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Preface

Ciliary �ow has been a subject of scienti�c study from few decades because of its applications

in physiological and bioengineering science. Cilia has a structure like hair and its movement

is rhythmic and follow the wavy pattern which is formed by e¤ective and recovery stroke.

Ciliary movement and its frequency is e¤ected by the surrounding temperature, therefore a

number of researchers investigated the e¤ect of heat transfer on ciliary �ow of Newtonian and

non-Newtonian �uids.

Maqbool et. al. [1] investigated the magnetohydrodynamic convective �ow of Carreau �uid

through a ciliated channel. Sadaf et. al. [2] presented the MHD convective �ow through a

curved channel anchored with cilia. Akbar et. al. [3] investigated the physical aspects of

electro osmosis and thermal radiation of couple stress �uid through a symmetric and asym-

metric ciliated channel. She further studied the MHD and heat transfer e¤ect on �ow due to

metachronal wave of cilia and found the exact solution for pressure and velocity in Ref. [4].

Further Imran et. al. [5] modeled the convective �ow of Williamson �uid under electro osmotic

e¤ect and found the analytical solution for velocity, pressure, temperature and stream functions

using the perturbation technique. Bhatti et. al. [6], Mills et. al. [7], Butt. et. al. [8], Ra�q

et. al. [9] and Akbar et. al. [10] proposed ciliary �ow of di¤erent �uid models in di¤erent

geometry using thermal e¤ect.

In ciliary �ows, two immiscible �uid have vital role, therefore few studies on two layered

ciliary �ow have been presented. Rajashekhar et. al. [11], Ashraf et. al. [12], Fatima et.

al. [13] and Asghar et. al. [14] considered the Harschel Bukley model, Je¤rey �uid model,

Newtonian �uid and Ellis �uid to discuss the two layer �ow due to wavy boundary The study

of Ellis �uid due to peristaltic movement under the magnetic, thermal and osmotic e¤ect have

presented by di¤erent researchers in Refs. [15-21], but two layer ciliary �ow of Ellis �uid under

the buoyancy e¤ect has not been discussed earlier.

The present thesis analyze the viscoelastic �uid �ow in two layer ciliary �ow and is organized

in following three chapters. Chapter one deals with the basic laws of �uid mechanics and basic

de�nitions. Chapter two includes the two phase �ow of Newtonian �uid through a ciliated

channel and chapter three presents the viscoelastic Ellis �uid �ow in a ciliated channel under

thermal and buoyancy e¤ect.
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Chapter 1

Introduction

The de�nitions regarding this research are provided in this chapter.

1.1 Fluid

Fluid is a substance that can not have a particular shape, it deforms under the action of applied

shear stress. Liquids, solids and polymers are categorized as �uids.

1.2 Fluid Mechanics

It is the study of �uids subject to the given constraints, �uid mechanics deals with the movement

of the �uid particles and �uid at rest. Fluid dynamics is divided into three disciplines, analytical

�uid mechanics, numerical �uid mechanics and experimental �uid mechanics.

1.3 Multiphase Flow

Multiphase �ow consists of more than one phase or components which has separation at a

smaller scale but above the molecular level. Multiphase �ow can be classi�ed as disperse �ows

(e.g. drops or bubbles) and separated �ows.

1.3.1 Types of Multiphase Flow

The most common class of Multiphase �ow are two phase �ows and these include
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1) Gas-liquid �ow

2) Gas-solid �ow

3) Liquid-liquid �ow

4) Liquid-solid �ow

1.4 Properties of Flow

There are important �uid properties other than velocity and temperature, which are described

as follows

1.4.1 Viscosity

Viscosity is the property of the �uid which o¤ers resistance to the movement of one layer of the

�uid over another adjacent layer of the �uid because of shear stress. Mathematically,

� =
�yx
du
dx

; (1.1)

where du
dx is velocity gradient and �yx is shear stress.

1.4.2 Pressure

Pressure is de�ned as the magnitude of the force applied perpendicular to the surface area of

an object. Symbolically, it can be expressed as

P =
jF j
A
: (1.2)

1.4.3 Shear Stress

It expresses the e¤orts of a force parallel to the surface of interest. Mathematically, it is de�ned

as

� =
F

A
; (1.3)

where F is the force parallel to the surface and A is the surface area.
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1.5 Classi�cation of Fluid

1.5.1 Newtonian and Non-Newtonian Fluid

The �uid which follows Newton�s law of viscosity is de�ned as Newtonian �uid whereas �uid that

does not exhibit the property of constant viscosity and e¤ected by shear stress is categorized

as a non-Newtonian �uid.

1.6 Dimensionless Numbers

There are di¤erent non dimensional quantities that appear in non dimensional, incompressible,

momentum and energy equation and are described as follows:

1.6.1 Reynold�s Number

It quanti�es the in�uence of viscosity over the acceleration �eld. It does this by comparing the

magnitude of inertial e¤ects to viscous e¤ect. Mathematically,it is de�ned as:

Re =
�vL

�
; (1.4)

where L is the length, v is the speed of wave, � is the density and � is the dynamic viscosity.

1.6.2 Prandtl Number

It relates the relation between kinematic viscosity of the �uid and di¤usive property of the �uid

due to heat. Mathematically,

Pr =
�Cp
k
; (1.5)

where � is the thermal conductivity, � is the dynamic viscosity and Cp is speci�c heat due to

pressure.
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1.6.3 Grashof Number

Grashof number is a dimensionless number which approximates the ratio of buoyancy to viscous

forces acting on a �uid. Mathematically,

Gr =
ga3�(T1 � T0)

�2
; (1.6)

where g is gravitational acceleration , � is the coe¢ cient of volume expansion, T1 is the surface

temperature, T0 is the bulk temperature, a is the surface length, and � is the kinematic viscosity.

1.7 Heat Transfer

Heat transmission takes place when there is a di¤erence in temperature amongst the boundary

and �uid. It is classi�ed into di¤erent mechanisms e.g., conduction, convection and radiation.

1.7.1 Conduction

Conduction takes place when heat energy is transferred through collisions between neighboring

atoms or molecules. In solids and liquids, heat is transmitted through conduction due to less

distance between particles.

1.7.2 Convection

Convection occurs when there is a bulk movement of molecules, this mode of heat transfer takes

place in case of liquids and gases. Further, it can be classi�ed into following types:

Natural Convection

Natural convection occurs due to the buoyancy force which appears due to density di¤erence

in the presense of temperature di¤erence, e.g. oceanic winds give rise to natural convection.

Forced Convection

Convection induced by some external sources such as fans and pumps is known as forced

convection, e.g. geysers or water heaters and fans used in summer.
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Mixed Convection

Mixed convection includes both natural and forced convection.

1.7.3 Radiation

Radiation is the mode of heat transfer which does not require any medium to propagate, and

energy is transferred from hot object to cold object either in the form of electromagnetic waves

or photons.

1.8 Ciliary Surface

Most of the biological �uid �ows are due to small hair like structures called Cilia, present

on surface of various organs. A single cilium is usually of length 1-10 micrometers, and are

categorized into motile and non motile cilia. Motile cilia helps for the locomotion of the �uid

in a body while non motile cilia helps to pass the signals in sensory organs.

1.8.1 Metachronal Waves

Ciliary tip follows elliptical path that give rise to wavy motion and appears like travelling waves

called metachronal waves.

1.9 Basic Laws of Fluid Mechanics

1.9.1 Principle of Conservation of Mass

This law states that mass can neither be created nor destroyed and remains constant for a

system. Mathematically, for two phase �ow it is stated as follows:

@p(k)

@t
+r:(�(k)V(k)) = 0; (1.7)

where �(k) is the �uid density, t is the time, r represents divergence and V(k) is the velocity

vector. The superscript (k = 1; 2) refers to the �uid in layer I and layer II. For incompressible
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�ow, density of �uid is constant so the equation (1.7) takes the following form:

r:V(k) = 0: (1.8)

1.9.2 Principle of Conservation of Momentum

It is law of motion which states that net momentum of an isolated system remains conserved

within the system unless an external force is applied. For two phase �uid �ow, this law can be

expressed as follows

�(k)
dV(k)

dt
�r:� (k) = �b; (1.9)

where d
dt is the total derivative, �

(k) shows the Cauchy stress tensor, b is the body force and

�(k) shows the density of �uid in both layers.

In rectangular coordinates system equation (1.9) can be expressed as follows

�(k)

 
@u(k)

@t
+ u(k)

@u(k)

@x
+ v(k)

@u(k)

@y
+ w(k)

@u(k)

@z

!
=
@�

(k)
xx

@x
+
@�

(k)
xy

@y
+
@�

(k)
xz

@z
+ �(k)bx; (1.10)

�(k)

 
@v(k)

@t
+ u(k)

@v(k)

@x
+ v(k)

@v(k)

@y
+ w(k)

@v(k)

@z

!
=
@�

(k)
yx

@x
+
@�

(k)
yy

@y
+
@�

(k)
yz

@z
+ �(k)by; (1.11)

�(k)

 
@w(k)

@t
+ u(k)

@w(k)

@x
+ v(k)

@w(k)

@y
+ w(k)

@w(k)

@z

!
=
@�

(k)
zx

@x
+
@�

(k)
zy

@y
+
@�

(k)
zz

@z
+ �(k)bz: (1.12)

1.9.3 Principle of Conservation of Energy

This law states that energy can neither be created nor destroyed. Mathematically, it can be

written as follows

�(k)c(k)p
dT (k)

dt
= K(k)r2T (k) +Q0; (1.13)

where c(k)p is speci�c heat of �uid, T (k) is temperature in both layers and Q0 is heat source.
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Chapter 2

Heat Transfer Analysis of Two

Phase Flow in a Ciliated Surface

This chapter deals with heat transfer analysis of immiscible �ow of Newtonian �uid due to

ciliary movements through a channel. Convective �ow in the presence of buoyancy force and

heat source is considered and analytical results for �ow has been presented. Mathematical

model of the problem represents the complex system of partial di¤erential equations which are

simpli�ed by the lubrication approach. Exact solutions for velocity pro�le, temperature pro�le,

pressure gradient and volume �ow rate are calculated and in�uence of di¤erent �ow parameters

appearing in the study is explained graphically.

2.1 Formulation of the Problem

Newtonian �uid �ow is assumed to be unsteady and incompressible through a ciliated channel.

Wavy movement is formed by the collective beating of cilia that generates the metachronal

waves in (X�; Y �) coordinate system and tips of cilia follow an elliptical path described by the

following parametric equations:

X� = f(X�; X�
0 ; t

�) = X�
0 + a�� sin

�
2�

�
X� � ct�

�

��
; (2.1)

Y � = f
00
(X�; t�) = a+ a� cos

�
2�

�
X� � ct�

�

��
; (2.2)
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where � is a non dimensional parameter w.r.t cilia length, X�
0 is the reference position of cilia,

� is the eccentricity of ellipse, � and c are the wavelength and wave speed of metachronal wave

respectively.

The velocity pro�le of the problem is given by

V �(k) =
h
U�(k)(X�; Y �; t�); V �(k)(X�; Y �; t�); 0

i
; (2.3)

where U�(k) and V �(k) are the components of velocity in horizontal and vertical directions

respectively. Superscripts k corresponds to �uid in two layers.

Fig. 2.1: Geometry of the �ow problem

Governing equations of mathematical model are formulated by continuity, momentum and

energy equation.

r:V�(k) = 0; (2.4)

��(k)
dV�(k)

dt�
= div � (k) + ��(k)b; (2.5)

��(k)c(k)p
dT �(k)

dt�
= K(k)r2T (k) +Q0; (2.6)
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where ��(k) denotes density, � (k) is stress tensor for Newtonian �uid and is given by

� (k) = �P �I + �(k)A1; (2.7)

A1 =rV�(k) +
�
rV�(k)

�t
; (2.8)

P �is the pressure, I represents identity matrix, A1 is the �rst Rivilian Erickson tensor, c
(k)
p gives

speci�c heat at constant pressure, K(k) is thermal conductivity and Q0 re�ects heat source term.

No slip condition suggests that the �uid particles lying adjacent to cilia tips will have same

velocity as that of cilia tips and are given as follows:

U�(k) =
@f

@t�
+

@f

@X�
@X�

@t�
=
@f

@t�
+

@f

@X�U
�; (2.9)

V �(k) =
@f

00

@t�
+
@f

00

@X�
@X�

@t�
=
@f

00

@t�
+
@f

00

@X�U
�: (2.10)

Using Eqs. (2.1)-(2.2) in Eqs. (2.9)-(2.10) one can get following form of velocity at the boundary.

U� =
�2�
� ��ac cos

�
2�
�
X��ct�

�

��
1� 2�

� ��ca cos
�
2�
�
X��ct�

�

�� ; (2.11)

V � =
2�
� �ac sin

�
2�
�
X��ct�

�

��
1� 2�

� ��a cos
�
2�
�
X��ct�

�

�� ; (2.12)

where U� and V � are boundary conditions at

Y � = �a
�
1 + � cos

�
2�

�
X� � ct�

�

���
: (2.13)

The ciliary �ow from �xed to wave frame is transformed under the following transformations:

p�(x�; y�) = P �(X�; Y �; t�); y� = Y �; x� = X� � ct�; v� = V �; u� = U� � c: (2.14)

Using above relations Eqs.(2.4-2.6) in �xed frame take the following form:@u
�(k)

@x� + @v�(k)

@y� = 0;

��(k)

 �
u�(k) + c

� @u�(k)
@x�

+ v�(k)
@u�(k)

@y�

!
= �@p

�

@x�
+
@�

�(k)
xx

@x�
+
@�

�(k)
xy

@y�
+ �(k)g�(T ��T �0 ); (2.15)
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��(k)

 �
u�(k) + c

� @v�(k)
@x�

+ v�(k)
@v�(k)

@y�

!
= �@p

�

@y�
+
@�

�(k)
yx

@x�
+
@�

�(k)
yy

@y�
; (2.16)

��(k)c(k)p

 �
u�(k) + c

� @T �(k)
@x�

+ v�(k)
@T �(k)

@y�

!
= K(k)

 
@2T �(k)

@x�2
+
@2T �(k)

@y�2

!
+Q0; (2.17)

��(k)xy = ��(k)

 
@v�(k)

@x�
+
@u�(k)

@y�

!
; (2.18)

��(k)xx = 2��(k)
@u�(k)

@x�
; (2.19)

��(k)yy = 2��(k)
@v�(k)

@y�
: (2.20)

Since biological �ows are Poiseuille type, therefore �ow and temperature are assumed to be

maximum at center line y = 0 therefore, boundary conditions take the following form

��(1)xy = 0; at y� = 0; (2.21)

��(1)xy = ��(2)xy ; at y� = h�1; (2.22)

u�(1) = u�(2); at y� = h�1; (2.23)

u�(2) + c =
�2�
� ��ac cos

�
2�x�

�

�
1� 2�

� ��ac cos
�
2�x�
�

� ; at y� = h�; (2.24)

v�(2) =
2�
� �ac sin

�
2�x�

�

�
1� 2�

� ��a cos
�
2�x�
�

� ; at y� = h�: (2.25)

Temperature pro�le at boundary is given by

@T �(k)

@y�
= 0; at y� = 0; (2.26)

K(1)@T
�(1)

@y�
= K(2)@T

�(2)

@y�
; at y� = h�1; (2.27)

T �(1) = T �(2); at y� = h�1; (2.28)

T �(2) = T1; at y� = h�; (2.29)
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where

h� = �
�
a+ a� cos

�
2�x�

�

��
; (2.30)

h�1 = �
�
a+ a� cos

�
2�x�

�

��
: (2.31)

Non dimensional parameters are introduced as follows

x =
x�

�
; y =

y�

a
; u(k) =

u�(k)

c
; v(k) =

v�(k)

c
; h =

h�

a
; h1 =

h�1
a
; p =

a

c�(1)
p�;

 =
a

�
; Re =

�ac

�(1)
; Pr =

�(1)cp

k(k)
; � =

T �(k) � T �0
T �1 � T �0

; �(k) =
��(k)

�(1)
; �(k) =

��(k)

�(1)
;

k(k) =
k�(k)

k(1)
; Gr =

ga3�(T �1 � T �0 )
�2

; b =
a2Q0

(T �1 � T �0 )�(1)cp
; � =

a1
a
; Grt =

Gr

Re
;

�
(k)
ij =

a

c�(1)
�
�(k)
ij : (2.32)

Using above parameters Eqs. (2.15)-(2.32) reduce into the following form

@u(k)

@x
+
@v(k)

@y
= 0; (2.33)

Re 

 �
u(k) + 1

� @u(k)
@x

+ v(k)
@u(k)

@y

!
= �@p

@x
+ 

@�
(k)
xx

@x
+
@�

(k)
xy

@y
+Grt�

(k); (2.34)

Re 3

 �
u(k) + 1

� @v(k)
@x

+ v(k)
@v(k)

@y

!
= �@p

@y
+ 2

@�
(k)
yx

@x
+ 

@�
(k)
yy

@y
; (2.35)

PrRe 

 �
u(k) + 1

� @�(k)
@x

+ v(k)
@�(k)

@y

!
= 2

 
@2�(k)

@x2
+
@2�(k)

@y2

!
+ Pr b; (2.36)

� (k)xy = �(k)

 
2
@v(k)

@x
+
@u(k)

@y

!
; (2.37)

� (k)xx = 2�
(k)@u

(k)

@x
; (2.38)

� (k)yy = 2�
(k)@v

(k)

@y
; (2.39)

with boundary conditions

� (1)xy = 0; at y = 0; (2.40)
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� (1)xy = � (2)xy ; at y = h1; (2.41)

u(1) = u(2); at y = h1; (2.42)

u(2) =
�2��� cos (2�x)
1� 2��� cos (2�x) � 1; at y = h; (2.43)

v(2) =
2��c sin (2�x)

1� 2��� cos (2�x) ; at y = h: (2.44)

Temperature pro�le at boundary is given by

@�(1)

@y
= 0; at y = 0; (2.45)

K(1)@�
(1)

@y
= K(2)@�

(2)

@y
; at y = h1; (2.46)

�(1) = �(2); at y = h1; (2.47)

�(2) = 1; at y = h; (2.48)

where

h = � (1 + � cos (2�x)) ; (2.49)

h1 = �� (1 + � cos (2�x)) : (2.50)

For the slow biological �ow, small Reynold�s number and wavelength assumption reduces the

Eqs. (2.35-2.45) into the following form:

�@p
@x
+
@�

(k)
xy

@y
+Grt�

(k) = 0; (2.51)

�@p
@y

= 0; (2.52)

@2�(k)

@y2
+ Pr b = 0; (2.53)

� (k)xy = �(k)
@u(k)

@y
; (2.54)

� (k)xx = 0; (2.55)
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� (k)yy = 0; (2.56)

with boundary conditions

� (1)xy = 0; at y = 0; (2.57)

� (1)xy = � (2)xy ; at y = h1; (2.58)

u(1) = u(2); at y = h1; (2.59)

u(2) = �2��� cos (2�x)� 1; at y = h; (2.60)

v(2) = 2�� sin (2�x) + (2��)2� sin (2�x) cos (2�x) ; at y = h: (2.61)

Temperature pro�le at boundary is given by

@�(1)

@y
= 0; at y = 0; (2.62)

K(1)@�
(1)

@y
= K(2)@�

(2)

@y
; at y = h1; (2.63)

�(1) = �(2); at y = h1; (2.64)

�(2) = 1; at y = h: (2.65)

2.2 Solution of the Problem

Upon integration of Eq. (2.54) one can get following form of temperature pro�le:

�(k) = �Pr by
2

2
+A(k)y +B(k); (2.66)

where A(k) and B(k) are constants of integration and are determined by the boundary conditions

given in Eqs. (2.63)-(2.66)

A(1) = 0; 0 � y � h1; (2.67)

B(1) = 1 + Pr b

  
1� k(1)

k(2)

!
h1 (h1 � h) +

h2

2

!
; 0 � y � h1; (2.68)
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A(2) =

 
1� k(1)

k(2)

!
Pr bh1; h1 � y � h; (2.69)

B(2) = 1 + Pr bh

 
h

2
� h1

 
1� k(1)

k(2)

!!
h1 � y � h: (2.70)

Using Eqs. (2.68-2.71) in Eq. (2.67) one can get the temperature pro�les for two regions which

are given as follows

�(1) = 1� Pr b
 �

y2 � h2
�

2
�
 
1� k(1)

k(2)

!
h1 (h1 � h)

!
; (2.71)

�(2) = 1� Pr b
 �

y2 � h2
�

2
�
 
1� k(1)

k(2)

!
h1 (y � h)

!
: (2.72)

Rewrite Eq. (2.52) for two regions in terms of temperature pro�les

@p

@x
=
@�

(1)
xy

@y
+Grt

 
1� Pr b

 �
y2 � h2

�
2

�
 
1� k(1)

k(2)

!
h1 (h1 � h)

!!
; (2.73)

@p

@x
=
@�

(2)
xy

@y
+Grt

 
1� Pr b

 �
y2 � h2

�
2

�
 
1� k(1)

k(2)

!
h1 (y � h)

!!
: (2.74)

It is evident from Eq. (2.53), that pressure is a function of x only.

p 6= p(y): (2.75)

Integrating Eqs. (2.74-2.75) w.r.t y and using boundary conditions (2.58-2.59) one can get

following form of shear stress:

� (1)xy =
dp

dx
y �Grt

 
Pr by

 
�y

2

6
+

 
1� k(1)

k(2)

!�
h21 � h1h

�
+
h2

2

!
+ y

!
0 � y � h1 (2.76)

� (2)xy =
dp

dx
y �Grt

 
Pr by

 
�y

2

6
+

 
h2

2
� h1

 
1� k(1)

k(2)

!�
h� y

2

�!!
+ y

!
; h1 � y � h:

(2.77)
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Integrating Eqs. (2.77-2.78) w.r.t y and applying boundary conditions given in (2.60-2.61) one

can get following velocity pro�le for both regions

u(1) =
1

2

�
dp

dx

� �
y2 � h21

�
�(1)

+

�
h21 � h2

�
�(2)

!
+ u(h)

+
Grt
2

0BBBB@
Pr b
12

�
(y4�h41)
�(1)

+
(h41�h4)
�(2)

�
+

B(1)(h21�y2)
�(1)

� B(2)(h21�h2)
�(2)

� A(2)(h31�h3)
3�(2)

� 2h1
�(2)

�
B(1) �B(2)

�
(h1 � h) + h21

�(2)
A(2)(y � h)

1CCCCA ; (2.78)

u(2) =
1

2�(2)

�
dp

dx

��
y2 � h2

�
+ u(h) +

Grt
6

0@ Pr b(y4�h4)
4�(2)

� A(2)(y3�h3)
�(2)

� 3B(2)(y2�h2)
�(2)

� 6h1
�(2)

�
B(1) �B(2)

�
(y � h) + 3h21

�(2)
A(2)(y � h)

1A : (2.79)

To �nd the expression of vertical velocity, Eq. (2.34) in the following form is used:

@v(k)

@y
= �@u

(k)

@x
: (2.80)

Integrating Eq. (2.81), solving for v(k)and using no slip boundary condition, one can get the

following speed in transverse direction:

v(1) = �1
2

�
d2p

dx2

�0B@
�
y3

3
�yh21

�
�(1)

+
(h21�h2)y
�(2)

+
2(h3�h31)
3�(2)

+
2h31
3�(1)

1CA+ v(h)� (y � h)@u(h)
@x

; (2.81)

v(2) = � 1

6�(2)

�
d2p

dx2

��
3

�
y3

3
� yh2

�
+ 2h3

�
+ v(h)� (y � h)@u(h)

@x
: (2.82)

To observe the �ow patterns, following relation of stream function is used:

@ (k)

@y
= u(k); (2.83)

@ (k)

@x
= �v(k): (2.84)
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Using Eqs. (2.84-2.85), one can get expressions for stream functions for layer I and II,

 (1) =

�
dp

dx

�0@
�
y3

3 � yh
2
1

�
2�(1)

+

�
h21 � h2

�
y

2�(2)
�
�
h31 � h3

�
3�(2)

+
h31
3�(1)

1A
�
Z
v(h)dx+ (y � h)u(h) +

Grt

0BBBBBBB@
Pr b
24

0@�
y5

5
�yh41

�
�(1)

+
(h41�h4)y
�(2)

1A
+
B(1)

�
yh21�

y3

3

�
2�(1)

� B(2)(h21�h2)y
2�(2)

� A(2)(h31�h3)y
6�(2)

� yh1
�(2)

�
B(1) �B(2)

�
(h1 � h) + h21y

2�(2)
A(2)(h1 � h)

1CCCCCCCA
; (2.85)

 (2) =
1

2�(2)

�
dp

dx

��
y3

3
� yh2 + 2h

3

3

�
�
Z
v(h)dx+ (y � h)u(h) +

Grt

0BB@ Pr b
24�(2)

�
y5

5 � yh
4
�
+

B(2)
�
yh2� y3

3

�
2�(2)

�
A(2)

�
y4

4
�yh3

�
6�(2)

� h1
�(2)

�
B(1) �B(2)

� �y2
2 � yh

�
+

h21
2�(2)

A(2)(y
2

2 � hy)

1CCA : (2.86)

Total volumetric �ow in dimensionless form is given by

Q = Q(1) +Q(2); (2.87)

Q = hu(h) +
1

3

dp

dx

�
h31

�
1

�(2)
� 1

�(1)

�
� h3

�(2)

�

+Grt

0BBB@
Pr b
120

�
4h51

�
1
�(2)

� 1
�(1)

�
� 4h5

�(2)

�
�

B(2)(h31�h3)
3�(2)

� A(2)(h41�h4)
8�(2)

+
h31B

(1)

3�(1)
�

� h1
2�(2)

�
B(1) �B(2)

� �
h21 � h2

�
+

h21
4�(2)

A(2)(h21 � h2)

1CCCA : (2.88)
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Pressure gradient in terms of volumetric �ow is given by

dp

dx
= 3

0BBB@Q� hu(h)�Grt
0BBB@

Pr b
120

�
4h51

�
1
�(2)

� 1
�(1)

�
� 4h5

�(2)

�
�

B(2)(h31�h3)
3�(2)

� A(2)(h41�h4)
8�(2)

+
h31B

(1)

3�(1)
�

� h1
2�(2)

�
B(1) �B(2)

� �
h21 � h2

�
+

h21
4�(2)

A(2)(h21 � h2)

1CCCA
1CCCA�

�
h31

�
1

�(2)
� 1

�(1)

�
� h3

�(2)

�
: (2.89)

2.3 Graphical Results

This section provides the e¤ect of �ow parameters such as viscosities �(1) and �(2), thermal

buoyancy parameter Grt, constant heat radiation factor b and Prandtl number Pr on pressure,

streamlines, velocity and temperature pro�les.

2.3.1 Velocity Pro�le

Fig. 2.2 (a-b) shows the decaying e¤ect of viscosity of Newtonian �uid in layer I and II for

the axial velocity. The resistive property of the �uid in layer I causes to decelerate the �ow

near the center but does not change the �ow near the cilia tip. But the viscosity of the �uid

in layer II gives the decreasing e¤ect in both layers I and II. Fig. 2.2 (c) displays the growing

e¤ect of thermal buoyancy parameter Grt, on axial velocity, it indicates that when buoyancy

force become double, triple, and four times of the inertial force, viscosity of the viscous �uid

in both layers reduces that results to increase the �ow in both layers. Fig. 2.2 (d) illustrates

the e¤ect of Prandtl number on �ow �eld, it indicates that when kinematic viscosity became

double, triple and four times of the thermal conductivity of the �uid; the �ow rises in both

layers I and II. Fig. 2.2 (e) shows the e¤ect of heat radiation parameter on axial �ow, it is

observed that intensity of radiation factor help to �ow fastly in layer I and II, but the �ow in

layer I has high rate as compared with layer II.

2.3.2 Temperature Pro�le

Fig. 2.3(a-b) shows the impact of Prandtl number Pr and heat radiation factor b, this �gure

shows that when kinematic viscosity is dominant over thermal conductivity, then temperature
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in �uid rises, also the radiation factor causes to increase the temperature in �uid.

2.3.3 Pressure distribution

Fig. 2.4(a-b) displays the variation in favorable pressure for the varying values of volume �ow

rate and thermal buoyancy parameter Grt. It is noted that pressure change during the �ow

and rises when volume �ow increases, similarly when buoyancy force became double, triple and

four times of the inertial force then pressure change in �uid �ow rises signi�cantly near entry

and exit point.

(a) (b)
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(c) (d)

(e)

Fig. 2.2 (a-e): In�uence of �(1), �(2), thermal buoyancy parameter Grt; Prandtl number Pr
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and heat radiation factor b on velocity pro�le.

(a) (b)

Fig. 2.3(a-b): In�uence of Prandtl number Pr and heat radiation factor b on temperature

pro�le.

(a) (b)

Fig. 2.4(a-b): Impact of volume �ow rate Q and thermal buoyancy parameter Grt on

pressure gradient.
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Chapter 3

Heat Transfer Analysis of Ellis Fluid

Flow in a Peripheral Layer

This chapter examines the heat transfer analysis of Ellis �uid �ow through a channel that

is anchored by cilia. It is assumed that the convective �ow is incompressible and immiscible

within a conduite and movement in the �ow is due to the cilia tip. Mathematical model of the

problem provides a complex system of partial di¤erential equations which are simpli�ed by the

lubrication approach and solved under the no-slip and �uid interface condition. Mathematical

results for velocity, pressure, stream function and temperature are found in an explicit form

and displayed the impact of emerging parameters by graphs.

3.1 Formulation of the Problem

For the locomotion of Ellis �uid it is assumed that the �ow is generated by the cilia tips that

forms back and fro motion causing the metachronal wave. The Cartesian coordinate system is

chosen and the parametric equations for the path followed by the cilia tip are given as follows:

X� = f(X�; X�
0 ; t

�) = X�
0 + a�� sin

�
2�

�
X� � ct�

�

��
; (3.1)

Y � = f
00
(X�; t�) = a+ a� cos

�
2�

�
X� � ct�

�

��
(3.2)
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where � is a non dimensional cilia length parameter, X�
0 is the reference position of cilia, � is

the eccentricity of elliptical path, � and c are the wavelength and wave speed of metachronal

wave respectively.

The two-layer �ow through a ciliated channel suggests the following velocity pro�le:

V �(k) =
h
U�(k)(X�; Y �; t�); V �(k)(X�; Y �; t�); 0

i
; (3.3)

where U�(k) and V �(k) are the axial and transverse velocity respectively. Superscripts k = 1; 2

correspond to layer I (k = 1) and layer II (k = 2) of the Ellis �uid.

Fig. 3.1: Geometry of the �ow problem

The two layer convective �ow of viscous �uid through a ciliated channel is governed by the

following equations.

r:V�(k) = 0; (3.4)

��(k)
dV�(k)

dt�
= div � (k) + ��(k)b; (3.5)

��(k)c(k)p
dT �(k)

dt�
= K(k)r2T (k) +Q0; (3.6)

where ��(k) denotes density, � (k) is stress tensor for Ellis �uid in both layers and are given as
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follows:

� (k) = �P �I + S; (3.7)

S =

0BBB@ �(k)

1 +

�
L
(k)
s

S
(k)
0

���1
1CCCAA

(k)
1 ; (3.8)

A1 =rV�(k) +
�
rV�(k)

�t
; (3.9)

S
(k)
0 =

�(k)

2
; (3.10)

L(k)s =

r
1

2
tr

�
A
(k)
1

�2
; (3.11)

P �is the pressure, I represents identity matrix, S is the extra stress tensor for an Ellis Fluid,

�(k) is the dynamic viscosity, S(k)0 and � are material constants, L(k)s is second order invariant

of stress tensor and A(k)1 is the �rst Rivilian Erickson tensor, c
(k)
p gives speci�c heat at constant

pressure, K(1) and K(2) is thermal conductivity and Q0 re�ects heat source term.

In layer I and II, no slip conditions suggest that the �uid particles lying adjacent to cilia

tips moves with speed of cilia tips. Therefore, the velocity at the boundary is given as follows:

U�(k) =
@f

@t�
+

@f

@X�
@X�

@t�
=
@f

@t�
+

@f

@X�U
�; (3.12)

V �(k) =
@f

00

@t�
+
@f

00

@X�
@X�

@t�
=
@f

00

@t�
+
@f

00

@X�U
�: (3.13)

Using Eqs.(3.1)-(3.2) in Eqs.(3.12)-(3.13) one can get following form of velocity at the boundary:

U� =
�2�
� ��ac cos

�
2�
�
X��ct�

�

��
1� 2�

� ��ca cos
�
2�
�
X��ct�

�

�� ; (3.14)

V � =
2�
� �ac sin

�
2�
�
X��ct�

�

��
1� 2�

� ��a cos
�
2�
�
X��ct�

�

�� ; (3.15)

where U� and V � are the velocity components at the following wavy boundary:

Y � = �a
�
1 + � cos

�
2�

�
X� � ct�

�

���
: (3.16)
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To transform the �xed frame (X�; Y �; t�) into wave frame (x�; y�), following relations are used:

p�(x�; y�) = P �(X�; Y �; t�); y� = Y �; x� = X� � ct�; v� = V �; u� = U� � c (3.17)

To describe the convective �ow of Ellis �uid between the two layers following laws are used:

@u�(k)

@x�
+
@v�(k)

@y�
= 0; (3.18)

��(k)

 �
u�(k) + c

� @u�(k)
@x�

+ v�(k)
@u�(k)

@y�

!
= �@p

�

@x�
+
@�

�(k)
xx

@x�
+
@�

�(k)
xy

@y�
+ �(k)g�(T ��T �0 ); (3.19)

��(k)

 �
u�(k) + c

� @v�(k)
@x�

+ v�(k)
@v�(k)

@y�

!
= �@p

�

@y�
+
@�

�(k)
yx

@x�
+
@�

�(k)
yy

@y�
; (3.20)

��(k)c(k)p

 �
u�(k) + c

� @T �(k)
@x�

+ v�(k)
@T �(k)

@y�

!
= K(k)

 
@2T �(k)

@x�2
+
@2T �(k)

@y�2

!
+Q0; (3.21)

��(k)xy =
��(k)

R�(k)

 
@v�(k)

@x�
+
@u�(k)

@y�

!
; (3.22)

��(k)xx =
2��(k)

R�(k)
@u�(k)

@x�
; (3.23)

��(k)yy =
2��(k)

R�(k)
@v�(k)

@y�
; (3.24)

where,

R�(k) = 1 +

0BBBB@
s
2

��
@u�(k)
@x�

�2
+
�
@v�(k)

@y�(k)

�2�
+
�
@u�(k)
@y� + @v�(k)

@x�(k)

�2
��(k)

2

1CCCCA
��1

: (3.25)

Since the biological �ows are Poiseuille type, therefore �ow and temperature are assumed to be

maximum at center line y = 0 and �uid interface implies the following conditions:

��(1)xy = 0; at y� = 0; (3.26)

��(1)xy = ��(2)xy ; at y� = h�1; (3.27)
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u�(1) = u�(2); at y� = h�1; (3.28)

u�(2) + c =
�2�
� ��ac cos

�
2�x�

�

�
1� 2�

� ��ac cos
�
2�x�
�

� ; at y� = h�; (3.29)

v�(2) =
2�
� �ac sin

�
2�x�

�

�
1� 2�

� ��a cos
�
2�x�
�

� ; at y� = h�: (3.30)

Temperature at the �uid interface implies the following conditions

@T �(k)

@y�
= 0; at y� = 0; (3.31)

K(1)@T
�(1)

@y�
= K(2)@T

�(2)

@y�
; at y� = h�1; (3.32)

T �(1) = T �(2); at y� = h�1; (3.33)

T �(2) = T1; at y� = h�; (3.34)

where,

h� = �
�
a+ a� cos

�
2�x�

�

��
; (3.35)

h�1 = �
�
a+ a� cos

�
2�x�

�

��
: (3.36)

Non dimensional parameters are introduced as follows:

x =
x�

�
; y =

y�

a
; u(k) =

u�(k)

c
; v(k) =

v�(k)

c
; h =

h�

a
; h1 =

h�1
a
; p =

a

c�(1)
p�;  =

a

�
;

Re =
�ac

�(1)
; Pr =

�(1)cp

k(k)
; � =

T �(k) � T �0
T �1 � T �0

; �(k) =
��(k)

�(1)
; �(k) =

��(k)

�(1)
; k(k) =

k�(k)

k(1)
;

Gr =
ga3�(T �1 � T �0 )

�2
; b =

a2Q0

(T �1 � T �0 )�(1)cp
; � =

a1
a
; Grt =

Gr

Re
; �

(k)
ij =

a

c�(1)
�
�(k)
ij ;

� =

�
c

a�(k)�(1)

���1
: (3.37)

Using above parameters Eqs. (3.19)-(3.36) reduce into the following form.

@u(k)

@x
+
@v(k)

@y
= 0; (3.38)
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Re 

 �
u(k) + 1

� @u(k)
@x

+ v(k)
@u(k)

@y

!
= �@p

@x
+ 

@�
(k)
xx

@x
+
@�

(k)
xy

@y
+Grt�

(k); (3.39)

Re 3

 �
u(k) + 1

� @v(k)
@x

+ v(k)
@v(k)

@y

!
= �@p

@y
+ 2

@�
(k)
yx

@x
+ 

@�
(k)
yy

@y
; (3.40)

PrRe 

 �
u(k) + 1

� @�(k)
@x

+ v(k)
@�(k)

@y

!
= 2

 
@2�(k)

@x2
+
@2�(k)

@y2

!
+ Pr b; (3.41)

� (k)xy =
�(k)

R(k)

 
2
@v(k)

@x
+
@u(k)

@y

!
; (3.42)

� (k)xx =
2�(k)

R(k)
@u(k)

@x
; (3.43)

� (k)yy =
2�(k)

R(k)
@v(k)

@y
: (3.44)

Non-dimensional boundary conditions at �uid interface are given as:

� (1)xy = 0; at y = 0; (3.45)

� (1)xy = � (2)xy ; at y = h1; (3.46)

u(1) = u(2); at y = h1; (3.47)

u(2) =
�2��� cos (2�x)
1� 2��� cos (2�x) � 1; at y = h; (3.48)

v(2) =
2��c sin (2�x)

1� 2��� cos (2�x) ; at y = h: (3.49)

Non-dimensional form of temperature distribution at �uid interface is as follows:

@�(1)

@y
= 0; at y = 0; (3.50)

K(1)@�
(1)

@y
= K(2)@�

(2)

@y
; at y = h1; (3.51)

�(1) = �(2); at y = h1; (3.52)

�(2) = 1; at y = h; (3.53)
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where

h = � (1 + � cos (2�x)) ; (3.54)

h1 = �� (1 + � cos (2�x)) : (3.55)

The lubrication approach reduces the Eqs.(3.39-3.49), into following form

�@p
@x
+
@�

(k)
xy

@y
+Grt�

(k) = 0; (3.56)

�@p
@y
= 0; (p 6= p(x)) ; (3.57)

@2�(k)

@y2
+ Pr b = 0; (3.58)

� (k)xy =
�(k)

R(k)
@u(k)

@y
; (3.59)

� (k)xx = 0; (3.60)

� (k)yy = 0; (3.61)

with boundary conditions

� (1)xy = 0; at y = 0; (3.62)

� (1)xy = � (2)xy ; at y = h1; (3.63)

u(1) = u(2); at y = h1; (3.64)

u(2) = �2��� cos (2�x)� 1; at y = h; (3.65)

v(2) = 2�� sin (2�x) + (2��)2� sin (2�x) cos (2�x) ; at y = h: (3.66)

where

R(k) = 1 + �

 
@u(k)

@y

!��1
(3.67)

� =

�
c

a�(k)�(1)

���1
; (3.68)

where, � is Ellis �uid parameter.
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Temperature pro�le at boundary is given by

@�(1)

@y
= 0; at y = 0; (3.69)

K(1)@�
(1)

@y
= K(2)@�

(2)

@y
; at y = h1; (3.70)

�(1) = �(2); at y = h1; (3.71)

�(2) = 1; at y = h: (3.72)

3.2 Solution of the Problem

Integrating Eq. (3.58) one can get the temperature pro�le as follows

�(k) = �Pr by
2

2
+A(k)y +B(k); (3.73)

where A(k) and B(k) are constants of integration, that can be found by the boundary conditions

given in Eqs. (3.69)-(3.72)

A(1) = 0; 0 � y � h1; (3.74)

B(1) = 1 + Pr b

  
1� k(1)

k(2)

!
h1 (h1 � h) +

h2

2

!
; 0 � y � h1; (3.75)

A(2) =

 
1� k(1)

k(2)

!
Pr bh1; h1 � y � h; (3.76)

B(2) = 1 + Pr bh

 
h

2
� h1

 
1� k(1)

k(2)

!!
h1 � y � h: (3.77)

Using Eqs. (3.74-3.77) in Eq. (3.73) one can get the temperature pro�les for two regions which

can be written as follows

�(1) = 1� Pr b
 �

y2 � h2
�

2
�
 
1� k(1)

k(2)

!
h1 (h1 � h)

!
; (3.78)

�(2) = 1� Pr b
 �

y2 � h2
�

2
�
 
1� k(1)

k(2)

!
h1 (y � h)

!
: (3.79)
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Rewrite Eq.(3.56) in the presence of body force

@�
(1)
xy

@y
=
dp

dx
�Grt�(1) (3.80)

@�
(2)
xy

@y
=
dp

dx
�Grt�(2): (3.81)

Upon integrating Eqs. (3.81) w.r.t y and using boundary conditions (3.62-3.63), one can get

following expressions for shear stress:

� (1)xy =
dp

dx
y �Grt

�
�Pr b
6
y3 +B(1)y

�
; 0 � y � h1 (3.82)

� (2)xy =
dp

dx
y �Grt

�
�Pr b
6
y3 +

y2

2
A(2) +B(2)y

�
+ c(2); h1 � y � h; (3.83)

where

c(2) = Grth1

�
B(2) �B(1) + h1

2
A(2)

�
: (3.84)

After simplifying and integrating Eqs. (3.82-3.83) w.r.t y; and using Eq. (3.59), one can get

the following expressions:

u(k) = �(k)
Z h

0
� (k)xy R

(k)dy; (3.85)

or

u(k) = �(1)
Z h1

0
� (1)xyR

(1)dy + �(2)
Z h

h1

� (2)xyR
(2)dy: (3.86)

Applying boundary conditions given in Eqs.(3.64-3.65), one can get following axial velocity for

both regions,

u(1) = u(h) + f1 +

�
dp

dx

�2
f2 +

�
dp

dx

�
f3 +Grt [f4 + �(f5)] ; (3.87)

u(2) = u(h) + g1 +

�
dp

dx

�2
g2 +

�
dp

dx

�
g3 +Grt

�
g4 �

�

�(2)
(g5)

�
: (3.88)

To �nd the transverse component of velocity, following form of Eq.(3.38)is used:

@v(k)

@y
= �@u

(k)

@x
; (3.89)
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Integrating above equation w.r.t y and solving for v(k) and using no slip boundary condition,

one can get following expressions:

v(1) = v(h)� f6 �
�
d2p

dx2

��
2

�
dp

dx

�
f7 + f8 + �Grt(f9)

�
; (3.90)

v(2) = v(h)� f6 �
�
d2p

dx2

��
2

�
dp

dx

�
g6 +

1

�(2)

�
g7 +

�Grt

�(2)
(g8)

��
: (3.91)

Following relation of stream function helps to �nd the �ow patterns of Ellis �uid:

@ (k)

@y
= u(k); (3.92)

@ (k)

@x
= �v(k): (3.93)

Using Eqs. (3.92-3.93), for k = 1 (layer 1) and k = 2 (layer 2), one can get stream functions

for layer I and II, which are given as follows:

 (1) = �
Z
v(h)dx+ f10 + f1y +

�
dp

dx

�2
f7 +

�
dp

dx

�
f f8 + �Grt (f9)g+Grt f11; (3.94)

 (2) = �
Z
v(h)dx+ f10+ g9+

�
dp

dx

�2
g6+

1

�(2)

�
dp

dx

��
g7 +

�Grt

�(2)
g8

�
+
Grt

�(2)

�
g10 �

�

�(2)
g11

�
:

(3.95)

Total volumetric �ow in dimensionless form is given by

Q = Q(1) +Q(2); (3.96)

Q = u(h)h+

�
dp

dx

�2
g12 +

�
dp

dx

�
g13 + f12 +Grt f13: (3.97)

Since the volumetric �ow Q is in the form of quadratic equation in dp
dx , so we use quadratic

formula to �nd the roots of pressure gradient. Following are the roots of dpdx :

dp

dx
= h1; h2; (3.98)
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where,

h1 = � [u(h)h�Q+ f12 +Grt f13] ; (3.99)

h2 =
�g13
g12

+ u(h)h�Q+ f12 +Grt f13: (3.100)

where f12; f13; g12 and g13 are de�ned in appendix.

3.3 Graphical Results

This section provides the impact of �ow parameters, including viscosities �(1) and �(2), thermal

buoyancy parameter Grt, constant heat radiation factor b, and Prandtl number Pr, on pressure

gradient, stream lines temperature and velocity pro�les, with � = 0:5; � = 0:5; � = 0:4; x = 1;

 = 0:5; b = 0:2; k(1) = 0:5; and k(2) = 0:6:

3.3.1 Velocity Pro�le

Fig. 3.2 (a-b) displays the decaying e¤ect of viscosity on axial velocity in both layers I and

II. The viscosity of the �uid in layer I and II reduces the �ow in axial direction due to the

thickening of the �uid but the magnitude of the velocity is high when viscosity of the �uid in

layer I is �xed but viscosity of the �uid in layer II is varying. Fig. 3.2 (c-e) display the growing

e¤ect of thermal buoyancy parameter Grt, Prandtl number and heat radiation factor on axial

velocity of Ellis �uid. It is observed, when kinematic viscosity is seven, eight and nine times

of the thermal conductivity of the �uid, then �ow rises in the direction of metachronal wave in

both layers. The radiation factor also causes to rise the �ow in both layers along the length of

the channel.

3.3.2 Temperature Pro�le

Fig. 3.3(a-b) predict the behavior of temperature in the Ellis �uid for the rising values of

Prandtl number and heat radiation factor. The temperature of the �uid became high when

kinematic viscosity is dominant over thermal conductivity. It is also noticed that intensity of

heat radiation factor causes to accelerate the �ow in both layers.

34



3.3.3 Pressure Gradient

Fig. 3.4 (a-b) displays the variation in adverse pressure gradient for varying values of volume

�ow rate and thermal buoyancy parameter Grt. It can be seen that pressure change during

the �ow increases due to ascending values of volumetric �ow rate and it descends by the rising

values of thermal buoyancy parameter Grt.

3.3.4 Stream lines

Fig. 3.5 (a-f) displays the e¤ect of viscosity of �uid present in layer II in both regions 0 � y � 0:4

and 0:4 � y � 1:4: In region 0 � y � 0:4; the bolus size near the �uid interface y = 0:4 rises

and number of boluses decreases due to no slip, also near the ciliary tip, the number of boluses

and bolus size grow due to no slip between the �uid and wave speed of ciliary tip. Fig. 3.6 (a-f)

displays the e¤ect of thermal buoyancy parameter Grt, on �uid pattern in both layer I and II.

The number of boluses and size of boluses rise near the center line (y = 0) of the channel in

region 0 � y � 0:4; but number of boluses increases near the ciliary tip in region 0:4 � y � 1:4:

Fig. 3.7 (a-f) shows that Ellis �uid parameter � causes to increase the bolus size near the

interface y = 0:4 in the region 0 � y � 0:4; but decays the bolus size near the ciliary tip in the

region 0:4 � y � 1:4:

(a) (b)
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(c) (d)

(e)

Fig. 3.2(a-e): In�uence of �(1) , �(2), thermal buoyancy parameter Grt;Prandtl number Pr

and heat radiation factor b on horizontal velocity component.
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(a) (b)

Fig. 3.3(a-b): In�uence of Prandtl number Pr and heat radiation factor b on Temperature

pro�le.

(a) (b)

Fig. 3.4(a-b): Impact of volume �ow rate Q and thermal buoyancy parameter Grt on

pressure gradient.

For stream lines we have considered Ellis �uid parameter (� = 0:2) in both layers and drawn
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graphs for layer 1 and layer 2 separately.

Layer 1

(a) (b) (c)

Layer 2

(d) (e) (f)

Fig. 3.5: Variation in  (1) for (a) �(2) = 0:4; (b) �(2) = 0:6; (c) �(2) = 0:8

and in  (2) for (d) �(2) = 0:4; (e)�(2) = 0:6; (f) �(2) = 0:8.
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Layer 1

(a) (b) (c)

Layer 2

(d) (e) (f)

Fig. 3.6: Variation in  (1) for (a) Grt = 0:4; (b) Grt = 0:5; (c)Grt = 0:6

and in  (2) for (d) Grt = 0:4; (e)Grt = 0:5; (f) Grt = 0:6:
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Layer 1

(a) (b) (c)

Layer 2

(d) (e) (f)

Fig. 3.7: Variation in  (1) for (a) � = 0:3; (b) � = 0:5; (c)� = 0:7

and in  (2) for (d) � = 0:3; (e)� = 0:5; (f) � = 0:7:

3.4 Conclusion

This research has presented the two layer �ow of Newtonian and viscoelastic Ellis �uid under

thermal and buoyancy e¤ect with heat source. The mathematical models are simpli�ed by
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lubrication approach and results are displayed through graphs and following observations are

noted for velocity, pressure, temperature and stream function.

� The axial �ow of Ellis �uid in both layers decays for the �uid viscosity �(1) and �(2).

� The axial �ow of Newtonian and Ellis �uid rises by the heat radiation, buoyancy force

and convection.

� The temperature of Newtonian and Ellis �uid rises by the radiation and convection.

� The pressure gradient in Newtonian �uid rises by the volumetric �ow rate and buoyancy

parameter but for Ellis �uid pressure gradient decays due to buoyancy parameter.
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