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Abstract: 

In many practical signal processing problems, the objective is to estimate from a 

collection of noise "contaminated "measurements a set of constant parameters upon 

which the underlying true signals depend . Moreover, the accurate estimation of the 

direction of arrival of all signals transmitted to the adaptive array antenna contributes to 

the maximization of its performance with respect to recovering the signal of interest and 

suppressing any present interfering signals. The same problem of detennining the 

direction of arrival (DOA) of impinging wave fronts, given the set of signals received at 

an antenna array from multiple emitters, arises also in a number of radar, sonar, 

electronic surveillance, and seismic exploration applications. In general, the DOA 

estimation algorithms can be categorized into two groups; the conventional algorithms 

and the subspace algorithms. 

In this thesis report different Direction of Anival (DOA) techniques like Pisarenko 

Harmonic Decomposition (PHD), The Minimum Norm (MN) Algorithm, The Minimum 

Variance Distortion less Method (MVD), Multiple Signal Classifier (MUSIC) and 

ESPRIT Algoritlun have been discussed. 

Computer sinlulations have been carried out for the following techniques 

1-spectral estimation 

2-MVD(capon) method 

3-Music Algoritlun 

Simulations were carried for two uncorrelated signals impinging on uniform linear array 

(ULA) having 10 antenna elements, which were equally spaced by half the wave length. 

Number of snapshots was 100. 

Con~puter simulation shows that subspace based DOA estimation technique Music 

Algorithm outperfo~med the other two technique and give better resolution for two 

uncorrelated signal conling from different directions. 

vii 



Table of Contents 

Chapter1 INTRODUCTION page Nunlbe~ 

1.1 Need For Smart Antennas ---------------..------------------. 1 

1.2 Overview of direction of arrival ----------.------------------- 4 

@OA) Algoritluns 

Chapter 2 Signal Model And Problem Formulation 

chapter 3 DOA Estimation Technique 

3.1 Pisarenko Harmonic ............................................ 17 
Decomposition 

3.2 Multiple Signal Classifier -.--------.---.----.----.------------ 18 

(MUSIC) 

3.3 Minimum Norm (MN) ----------------------------------.-. 2 1 



Table 1: Symbols and Description 
- 
Terms Descriptions 

Number of Sources 

Number of Sensors (Array Elements) 

P x 1 Original Signal Vector 

N x 1 steering vector 

N x 1 Noise Vector 

N x 1 Vector of Array Outputs 

N x 1 Weight vector 

Beam former Output 

Reference signal 

Error Signal 
. . .  

Noise Variance 

Nxp Steering Matrix 

pxp Autocorelation Matrix defined by ~ ~ s = ~ [ s ( t ) s ~ ( r ) ]  
. .. 

NxN Signal autocorrelation Matrix defined by R, = E{x(t)xH(~) 

NxN Matrix defined by R, =.A(@& (8) 

NxN Noise Autocorrelation Matrix defined by R, = d1 

An Estimate of R, 

Eigenvalues of R, 

Eigenvalues of R, 

Eigenvectors of R, 

Eigenvectors of nx 
Noise Subspace Dimension 

Number of Snapshots 

Conjugate Transpose Operation 



Chapter 1 

INTRODUCTION 

Many refer to smart antenna systems as smart antennas, but in reality antennas by themselves 

are not smart. It is the digital signal processing capability, along with the antennas, which 

make the system smart. Although it may seem that smart antenna systems are a new 

technology, the fundamental principles upon which they are based are not new. In fact, in the 

1970s and 1980s two special issues of the IEEE Transactions on Antennas and Propagation 

were devoted to adaptive antenna arrays and associated signal-processing techniques [1,2]. 

The use of adaptive antennas in communication systems initially attracted interest in military 

applications. Particularly, the techniques have been used for many years in electronic warfare 

(EWF) as countermeasures to electronic jamming. In military radar systems, similar 

techniques were already used during World War I1 [3]. However, it is only because of today's 

advancement in powerful low-cost digital signal processors, general-purpose processors and 

ASICs (Application Specific Integrated Circuits), as well as innovative softwarebased sigual 

processing techniques (algorithms), that smart antenna systems are gradually becoming 

commercially available. 

1.1 NEED FOR SMART ANTENNAS 

Wireless communication systems, as opposed to their wire line counterparts, pose some 

unique challenges. 

I- The limited allocated spectrum results in a limit on capacity. 

ii- The radio propagation environment and the mobility of users give rise to signal 

fading and spreading in time, space and frequency 
... 
111- The limited battery life at the mobile device poses power constraints. 

In addition, cellular wireless comn~unication systems have to cope with interference due 

to frequency reuse. Research efforts investigating effective technologies to mitigate such 

effects have been going on for the past twenty five years, as wireless comn~unications are 



been going on for the past twenty five years, as wireless co~llrnu~iications are experiencing rapid 

growth . Among these methods are multiple access schemes, channel coding and 

FIGURE 1.1: Wireless systems impairments[5]. 

equalization and smart antenna employment. Fig. 1. I summarizes the wireless com~~~unication 

systems impairments that smart antennas are challenged to combat. 

An antenna in a teleconirnunications systemis theport.throug11 which radio frequency 

(RF) energy is coupled from the transmitter to the outside world for transmission pu- 

poses,and in reverse, to the receiver from the outside world for reception purposes. 

To date,antennas have been the most neglected of all the components in personal 

commuuications systems. Yet, the manner in which radio frequency energy is distributed into 

and collected from space has a profound influence upon the efficient use of spectn~m, the cost 

of establishing new personal cornn~unications networks and the service quality provided by 

those networks . The commercial adoption of snlart antenna techniques is a great promise to 

the solution of the aforementioned wireless communications' impairn~ents. 

OVERVIEW 

The basic idea on which smart antenna systems were devefoped is most often introd~~ced with 

a sinlple intuitive example that correlates their operation with that of the human auditory 



system. A person is able to determine the Direction of Arrival (DOA) of a sound by utilizing 

a three-stage process: 

FIGURE. I .2: Human auditory function [4] 

1- One's ears act as acoustic sensors and receive the signal. 

2 -Because of the separation between the ears, each ear receives the signal with a different 

time delay. 

3 -The human brain, a specialized signal processor, does a large number of calculations to 

correlate information and compute the location of the received sound. 

To better provide an insight of how a smart antenna system works, let us imagine two 

Persons carrying on a conversation inside an isolated room as illustrated in Figl.2. The 

listener between the two persons is capable of determining the location of the speaker as he 

moves about the room because the voice of the speaker amves at each acoustic sensor, the 

ear, at a different time. The human "signal processor," the brain, computes the direction of the 

speaker from the time differences or delays received by the two ears. Afterward, the brain 

adds the strength of the signals from each ear so as to focus on the sound of the con~puted 

direction utilizing a similar process, the human brain is capable of distinguishing between 

multiple signals that have different directions of arrival (DOA). Thus, if additional speakers 

join the conversation, the brain is able to enhance the received signal from the speaker of 

interest and tune out unwanted interferers. Therefore, the listener has the ability to distinguish 

one person's voice, from among many people talking simultaneously, and concentrate on one 



conversation at a time. In this way, any unwanted interference is attenuated. Conversely, the 

listener can respond back to the same direction of the desired speaker by orienting hisiher 

transmitter, hisflier mouth, toward the speaker. 

Electrical smart antenna systems work the same way using two antennas instead of two ears, 

and a digital signal processor instead of the brain . Thus, based on the time delays due to the 

impinging signals onto the antenna elements, the digital signal processor computes the 

direction-of-anival (DOA) of the signal-of-interest (SOI), and then it adjusts the excitations 

(gains and phases of the signals) to produce a radiation pattern that focuses on the SO1 while 

tuning out any interferers or signals-not-of-interest (SNOI). 

Transfemng the same idea to mobile communication systems, the base station plays the 

role of the listener, and the active cellular telephones simulate the role of the several sounds 

heard by human ears. In mobile communication system digital signal processor located at the 

base station works in conjunction with the antenna array and is responsible for adjusting 

various system parameters to filter out any interferers or signnls-not-of-interest (SNOI) while 

enhancing desired communication or signals-ofinterest (Sol) .  Thus, the system forms the 

radiation pattern in an adaptive manner, responding dynamically to the signal environment 

and its alterations. The principle of beam forming is essentially to weight the transmit signals 

in such a way that obtains a constructive s~rperposition of different signal parts. Note that 

some knowledge of the transmission channel at the transmitter is necessary in order for beam 

fonning to transmission be feasible, such that maximum radiated power is produced in the 

directions of desired mobile users and deep nulls are generated in the directions of undesired 

signals representing co-channel interference from mobile users in adjacent cells. Prior to 

adaptive beamforining, the directions of users and interferes must be obtained using a 

direction of arrival algorithm. 

1.2 Overview of Direction of Arrival (DOA) Algorithms 

After the signal from all directions has been anticipated by antenna array, The DOA algorithm 

determines the direction of all incoming signals based on the time delays. There are number 



of DOA estimation techniques. These techniques can be categorized on the basis of data 

analysis and implementation into four different area : conventional methods, subspace based 

n~ethods, maximum likelihood methods, and integrated methods. 

Conventional methods for DOA estimation are based on the concepts of beam forming and 

nil11 steering and do not exploit the statistics of the received signal [4]. In this technique, the 

DOA of all the signals is determined from the peaks of the output power spectrum obtained 

from steering the beam in all possible directions. Examples of conventional methods are the 

delay-and-sum method (classical beam former method or Fourier method) and Capon's 

minimum variance method. One major disadvantage of the delay-and-sum method is its poor 

resolution; that is, the width of the main beam and the height of the side lobes limit its ability 

to separate closely spaced signals .On the other hand, Capon's minimum variance technique 

tries to overcome the poor resolution problem associated with the delay-and-sun1 method, and 

in fact, it gives a significant improvement. Although it provides better resolution, Capon's 

method fails when the SNOIs are correlated with the SOL unlike conventional methods, 

subspace methods exploit the structure of the received data, resulting in a dramatic 

improvement in resolution. Two main algorithms that fall into this category are the Multiple 

Signal Classification (MUSIC) algorithm and the Estimation of Signal Parameters via 

Rotational Invariance Technique (ESPRIT). In 1979, Schmidt proposed the conventional 

MUSIC algorithm that exploited the eigen structure of the input covariance matrix [4]. This 

algorithm provides information about the number of incident signals, DOA of each signal, 

strengths and cross correlations between incident signals, and noise powers. Like many 

algorithms, the conventional MUSIC possesses drawbacks. One of the drawbacks is that it 

requires very precise and accurate array calibration. Another drawback is that, if the 

impinging signals are highly correlated, it fails because the covariance matrix of the received 

signals becomes singular. And lastly, it is computationally intensive. To improve the 

conventional MUSIC algorithm further, several attempts were made to increase its resolution 

performance and decrease its computational complexity. In 1983, Barbell developed the Root- 

MUSIC algorithm based on polynomial rooting and provided higher resolution; its drawback 

was that it was applicable only to uniformly spaced linear arrays [5] . In 1989, Sclmidt 

proposed the Cyclic MUSIC, a selective direction finding algorithm, which exploited the 

spectral coherence properties of the received signal and made i t  possible to resolve signals 



Chapter 2 

Signal Model and Problem Formulation 

2.1 Signal Model for Array Processing 

The essential goal of sensor array signal processing is to estimate signal parameters by 

combining temporal and spatial information, captured via sampling a wave field with a set of 

judiciously placed antenna sensors. The wave field is assumed to be generated by a finite 

number of emitters, and contains information about the signal parameters characterizing the 

emitters. In this section, we will provide the mathematical model that has been widely used 

for array signal processing through the recent decades. 

2.2 Antenna Array Response 

Consider a uniform linear array (ULA) consisting of N identical antenna elements illustrated 

in Fig. 2.1 Suppose there is only one narrow-band point source so ( t)  with carrier frequency w, 

present in the far field. If the distance between the array and the source is large enough 

compared to the aperture of the array, the wave front impinging on the array can be 

approximately considered as planar. Assuming that antenna array is composed of identical 

isotropic elements, each element receives a time-delayed version of the same plane wave with 

wavelength 1. In other words, each element receives a phase-shifted version of the signal[4]. 

For example, with a uniform linear array (ULA), as shown in Fig.2.1, the relative phases are 

271 . 
also uniformly spaced, with ~ t - d m ( @  being the relative phase difference between a 
adjacent elements. The vector of relative phases is referred to as the steering vector (SV) a(@) 

. A more general concept is the array response vector (ARV) which is the response of an 

array to an incident plane wave. It is a combination of the steering vector and the response of 

each individual element to the incident wave. 



FIGURE. 2.1: A uniform linear army (ULA) with N sensor elements along with an impinging 
uniform plane EM wave[4]. 

the array response vector(ARV)f or uniform linear array(ULA) under discussion is given as 

-2a 
inserting value of Y=-dsin(8) we-get a 



Where N x 1 array response vector a(B)  is referred to as the steeling vector of the array to a 

planar wave arriving from the direction 8. It is known that N different steering vectors 

randomly selected from the manifold are generally linearly independent. 

2.3 Direction of Arrival (DOA) Estimation algorithms 

For the Beamformer to steer the radiation in a particular direction and to'place the 

nulls in the interfering directions the direction of anival(D0A) has. to de kn&m beforehand. 

The DOA algorithms does exactly the sale ,  they work on the sihth received at the output of 
. . 

the array and computes the direction of arrivals of all the incoming signals.' Once the angle 
. .. 

information is known it is fed into the beamforming . . network to compute the complex weight 

vectors required for beam steering. It is shown in the following fignre. 

v v v 

... 
Beamforming 

.... . 

.' Fig. 2.2: Beamforming Setup with Direction Of Amval Estimation 



2.4 Problem formulation 

Consider a beam forming setup shown in figure 2.3, consisting of an array of N 

sensors with arbitrary locations and arbitrary directional characteristics, which receives 

signals generated by p narrowband sources with known center frequency w, and locations 0 1, 

0 2, B3 . . . . . . B . The output y(t) of the array with variable element weights wrn is the 

weighted sum of the received signals S,(t) at the array elements and the noise n(t) at the 

receivers connected to each element. The weights are iteratively computed based on the 

output y(f),a reference signal d(t) that approximates thedesired signal, and previous weights. 

Fig. 2.3: An Addaptive Beamforming System. 

The beam former output is gven by 



Where w" denotes the complex conjugate transpose of the weight vector w. In order to 

compute the opti~num weights, the array response vector from the sampled data of the array 

output has to be known. The array response vector is a function of the incident angle as well 

as the frequency. Since the signals are narrowband, the propagation delay across the array is 

much smaller then the reciprocal of the signal bandwidth, and it follows that by using a 

complex envelop representation, the output of the kthelement of the array, x,(t) (see figure 2.3), 

can be expressed as a sum of phase-shifted and attenuated versions of the original signal si(t) 

and is given in the following equation [S]. 

Where ro(Bi) is the propagation delay between a reference point and the kfi sensor for the i,,, 

wave front impinging on the array from direction Bi, n,(Qi) is the corresponding sensor 

element complex response (gain and phase) at frequency IVO and n, (1) is the noise present at 

kt,, sensor. Employing vector notation for the outputs of the N sensors, the data niodel 

becomes. 

Where we have the following 

x(t) = [xl(t), x2(t), . .... x ~ ( t ) ] ~  is Nx1 vector of signals representing sensor outputs. 

si(t) is the signal emitted by the iLh source as received at the reference sensor 1 of the 

array. 



- jo.r,(B,) - jo.s,(B,) 
a(&) = [nl(8.)e . ........., aN(6?)e l T  is a Nxl vector often termed as 

array response or m a y  steering vector towards direction 0,. 

.... n(t) = [nl(t),n2 (0, n~ (t)lT is a Nxl noise vector. 

Equation (2.7) can be written in a more compact form using matrix notation as follows 

where A(B) is the Nxp matrix of the array steering vectors, i.e 

and s(t) i spxl  vector of the signals generated by p narrowband sources, i.e 

Our objective is to determine the Direction of Arrivals (DOA's) 01, 02, Q3, .... B,, of the sources 

from the information given by Eq (2.6). To achieve the goal let's make the following 

assumptions 

A.1 The number of sources generating the signals is known and is smaller than the number of 

sensors i.e p < N. 

A.2 The set of any p steering vectors is linearly independent. 

A.3 The signal waveforms are non-coherent Gaussian processes. 

A.4 The noise samples nk(t) are zero mean Gaussian random pmcess with variance and are 

statistically independent from each other. 

Assumptions A.l  and A.2 guarantee the uniqueness of the solution and assumptions 

A.3 and A.4 have been made to make the mathematical treatment an easier one. 



2.5 SIGNAL AUTOCOVARIANCE MATRICES 

Let us consider the problem in the context of eigen space, a space which is sparuled by 

the eign vectors of a matrix, that corresponds to some scalar constant called eign value of the 

matrix . Consider the array output x(t) which is given by 

x = A @ ) s +  N. 

The N x  Ncorrelation matrix R, of the vector x(f) is given by 

Now 

Therefore from Eq (2.7) we have 

= A ( ~ ) E { s s ~ ) A ( ~ } +  A ( @ ) E { s N ~ ) + E  ( N S ~ ) A ~ ( @ + E { N N ~ }  

Assuming that the signal and the noise are uncorrelated Gaussian random process then the 

following holds. 

E { S N ~ }  = E { N S ~ }  = O  



Hence we are left with 

Where R~, = E(  S S ) kxk autocorelation matrix of the original signals si(1) and G* 1 = 

~ { n ( t ) n " ( f ) } .  Let us define R, as signal correlation matrix and R,, as noise correlation matrix 

1.e. 

R, = A(8) Rss A" (8) (2.9) 

And 

R, = 21 (2.10) 

Then Eq (2.7) becomes 

R, = R, + R, (2.11) 

A class of spatial spectral estimation techniques is based on the eigenvalue decomposition 

(EVD) of the spatial correlation matrix R,. The rationale behind this approach is that one 

wants to emphasize the choices for the steering vector a(@, which correspond to signal 

directions. The method exploits the property that the directions of arrival determine the eigen 
x x 

Structure of the matrix. To see this let us suppose that q l x  > qz 2 . . . . . . 2 q~ denote the 
S 

eigenvalues of the matrix Rx and q,' > q; > ... . .. > q~ denote the eigenvalues of the matrix 

R,. From assumption A.2 it follows that the steering matrix A ( @ )  is of full column rank p. 

Also the non-coherence of thep incoming plane waves implies that t h e p x p  matrix R,, given 

by R,, = ~ { s ( t ) s ~  ( t ) )  is a full rank matrix. Therefore the R, matrix given by Eq (2.9) will also 

have a rank equal top.  It means that R, will have p nonzero and N-p zero eigenvalues. Since 

q,E have been arranged in a descending order, then the smallest N-P eigenvalues of R, will be 

equal to zero. Thus we have qt 

zero q: = (Non
zero 



qi' = qtS + d from eq (2.1 1) 

Using Eq (2.1 1) we see that eigenvalues of R, can be written as 

Hence the EVD of the correlation matrix R, can be written as 

Where 

are the orthogonal eigenvectors of the ma& R, and Satisfy the eigenvalue equation given by 
X 

...... Rx ek = qt ek k = 1 , 2 ,  N (2.16) 

Using Eq (2.1 I), Eq (2.14) can be written as 
7 ..... R, ck = d e *  k = p + l ,  N (2.17) 

Or equivalently, 

Using Eq (2.7) above equation can be written as 

A(B)R,,A" (B)ek = 0 k = p  + I ,  ....... N 

From which it follows that 



Equation (2.23) readily implies that the subspace spanned by the eigenvectors {epl, ep+2, 

...... eN) is the orthogonal complement of the subspace spanned by the steering vectors 

{a{(BI), a(B2), ......... a(0,)). Since the eigenvectors of the correlation matrix R, are 

orthogonal to each other we can also conclude that the subspace spanned by the eigenvectors 

{el, el, .........., ep) is exactly the same as the subspace spanned by the vectors { a ( B  I), a(Bl), 

..... a(ep)) .  

The previous analysis leads to the following observations. If the propagation field 

contains p distinct non-coherent propagating signals in a spatially white noise environment, 

then the eigenvalue decomposition of the spatial correlation matrix Ii, results in the formation 

of two disjoint subspaces that are the orthogonal complement of each other. The first one, 

called the Signnl plrrs noise subspnce is spanned by the eigenvectors corresponding to the p 

largest eigenvalues of R,. The second, called the noise slrbspnce is spanned by the 

eigenvectors corresponding to the N-psmallest eigenvalues of R,. Thus given the eigenvectors 

of the matrix R,, we may determine the signal directions of arrival by searching for those 

steering vectors a(@) that are orthogonal to the noise subspace which is spanned by the 

eigenvectors {epl, ep+2, . . . . . ..., eN} corresponding to the N-p smallest eigenvalues of R,. In 

practice, R, is unknown but can be consistently estimated from the available data as 

Where M represents number of snapshots of x ( t )  taken at time instants tl,t2, ..... tu. Because of 

the uncertainty in the eigenvector estimates{ eP+~ ,  epz, . . . . . . .., eN 1 introduced by the way we 

estimate the matrix R,, we can only search for those steering vectors a(B) that are most 

closely orthogonal to the noise subspace. 



Chapter 3 

DOA Estimation Techniques 

3.1 Pisarenko Harmonic Deconlposition (PHD) 
In this method it is assumed that x(t) is a s u n  of 11 narrow band non-coherent plane 

wave signals in white noise and that the number of sources, p generating these signals is 
,. 

Itnown. A (p+l)x(p+l) autocorrelation R, is estimated and its EVD is performed. With a 

(p+l)x(p+l) autocorrelation matrix It, the dimension of the noise subspace becomes equal to 

one and is spanned by the eigenvector corresponding to the minimum eigenvalue q,,,i,, = 0' . 

Denoting this eigenvector by 6,i, , it follows that will i&, be approxin~ately orthogonal to 

each steering vector a(8i). i.e .aH(6i) 611,i,1 =O for i=1.2 .................... P 

Therefore if we form a Direction Estimation Function (DEF), also called the Pseudo- 

Spectrum, like the one given below. 

Then PIqID(0) will be infinite (theoretical) at Locations whcrc 0 = 0, ibr i = 1, .., p. In practice 

however, a plot of P p ~ ~ ( 6 ' )  will contain p peaks. The locations of these peaks in the plot of 

DEF may be used to estimate the Directions of Arrival (DOA) of the original signals s,(t). 

The major disadvantage with this method is that if an eight element array is used, seven 

signal sources are assumed to exist and the method will locate seven DOA's. If only one 



signal source is known to exist, only signals from the first two antenna elements should be 

taken. However the method being of theoretical interest, has led to the important insights into 

the DOA estimation problems, and has provided the stimulus for the development of other 

EVD methods that are more robust. 

3.2 Multiple Signal Classifier (MUSIC) 

Music Algorithm is an extension of PHD method and was presented by Schmitt in 

1979. to see how it works, let us assume that x(t )  is a sum of p narrow band non-coherent 

plane wave signals in white noise and that the number of sources, p generating these signals is 

known. Let an N  x N  estimate of the autocorrelation matrix of x(t)  with N > p + 1 (In PHD 

method N = p + 1). If the eigenvalues of R, are arranged in descending order, ql, 2 q2,2 (13, 

1 ...., q, and if {&, 62, ....., C,, ;,+I, ... . .., &) are the corresponding eigenvectors, then these 

eigenvectors may be divided into two groups: the p signal plus noise eigenvectors 

correspoinding to p largest eigenvalues and the N - p  noise eigenvectors corresponding to the 

N  - p  smallest eigenvalues that ideally are equal to 02. These N-p noise eigenvectors will be 

approximately orthogonal to the p steering vectors a(@, i.e. 

where Ek represents the k,h noise eigenvector. 



Fig. 3.1: Music pseudospectrum for0 1= 20' 92= 40'  83= G0' 

All the N - p noise eigenvectors will share the same p roots. However, beca~~se each noise 

eigenvector is a length N vector, there are an additional N - p roots that are due entirely to the 

noise i.e each of the noise eigenvector will have these roots due to noise only and that also at 

random frequencies. This may given rise to the spurious peaks in the pseudo spectrum of 

single noise eigenvector (as in the case of PHD method.) Therefore when only one noise eign 

vector is used to estimate DOA's, there may be some ambiguity in disting~~ishing the desired 

peaks from the spurious ones. In MUSIC algoritlm the effects of these spurious peaks are 

reduced by averaging the pseudo spectra obtained for each of the noise eigenvectors i.e. 

MUSIC algorithm assumes the following form of the DEF or pseudo spectrum. 



Above equation can be written as 

Let us define 

Then Eq (3.5) can be written in amore compact form as follows. 

This is called MUSIC pseudo-spectrum. One note able thing about this spectrum is that, i t  is 

based on single realization of the stochastic process represented by the snap shots x( f )  for t = 

1,2, ............, M. Music estimates are consistent and converge to true source bearings as the 

number of snapshots grows to infinity. However this is true only for the case of unconelated 

signal. For strongly correlated signals, the estimates provided by the MUSIC pseudo spectrum 

are extremely poor compared with the situation where uncorrelated signals are used. This is 

the major problem with the music algorithm. 



3.3 The Minimum Norm (MN) Algorithm 

The Minimum Norm (MN) method is also based on the EVD of the spatial correlation 

marix R,. In this method, two sets of eigenvectors are formed as follows. 

And 

where GTand g3rare 1 x p and 1 x (N - p )  row vectors respectively. The matrices G, and G, 

have dimensions (N - 1) x p and (N -1) x ( N  - p), respectively. Instead of forming pseudo 

spectrum that uses all of the noise eigenvectors as in the MUSIC, the MN algorithm aims to 

find a single N x 1 vector Q that satisfies the following conditions; 

The vector Q lies in the noise subspace and therefore it is orthogonal to the signal plus 

noise subspace i.e. 

E,,H Q=O 

The first element of Q is equal to unity i.e. 

The vector Q has minimum norm. 

In order to ensure that the minimum norm solution is not a null vector, the first element of Q 
has taken to be unity. The aim is now to find a (N -1) x 1 vector q that has minimum norin. By 

putting Eq (3.8) and Eq (3.1 1) into Eq (3.10) we get the following equation. 



This is a linear system of p equations in N-1 unknowns. Since we assumed that N > p, Eq 

(3.12) represents an undetermined system of linear equations with no unique solution. One 

approach that is often used to define a unique solution is to find a vector satisfying the 

equations that has the minimum noml i.e. 

Ilq(l=g, subject to G," q =g, (3.13) 

H .  , If G, has rank equal to N - 1 then the (N - 1 )  x (N - I) matrix G, G, 1s mvertible and the 

minimum noml solution is given by; 

q =(GI GSH )-I Gs g, (3.14) 

The matrix 

G9=(G, G: )-I GS (3.15) 

is known as the pseudo-inverse of the matrix G," for the underdetermined problem. 

Correspondingly the minimum norm solution for the vector Q is given by 

With the knowledge of minimum norm vector Q ,  the MN algorithm f o ~ m s  the following form 

of the DEF 

Again as with the MUSIC, MN pseudo spectrum is also based on a single realization of the 

underlying stochastic process. 

3.4 The Minimum Variance Distortionless Method (MVD) 

The methods we discussed so far are also referred to as noise subspace methods, 

because the DOA's are estimated using the fact that all the noise eigenvectors are orthogonal 



to the steering vectors (that contain DOA information). In this section we shall discus a 

method called MVD , which does not use the noise eigenvectors to determine the pseudo 

spectrum; instead it uses signal plus noise eigenvectors to obtain the pseudo spectrum and 

hence this method is also referred to as signal plus noise subspace method. 

MVD method is developed as a constrained optimization problem. Recall that the sensors 

outputs x(t)  are weighted by a vector w to produce the beamformer output y(t) i.e. 

y(5) = wH ~ ( t )  

The spectral estimates are derived by finding a weight vector m, which minimizes the output 

noise variance. In order to ensure that the desired signal from some direction 8  is passed to 

the output with a specific gain and phase (i.e without any distortion), a constraint may be used 

so that the response of the beamformer to the desired signal is 

I V ~ ~ ( B ) = I  

where a(@) represents an ideal plane wave corresponding to the direction of interest 8. 

Minimization of contributions to the output due to noise is accomplished by choosing the 

weights to minimize the variance of the output power, which is the mean square value ofy(t) 

i.e. 

Var:~(t): = E{ 1 Y ( O ~ I  (3.1 8) 

Var {y(r),,- wH R, w 

Var {y(l): = wH R, w + wH R, w 



Where we have made use of Eq R,=R,+R,. thus we have a complete constrained 

optimization problem stated as follows 

Minimize 

Var {y(l)} = w H  Rx w 

= w H f i 1 v  + +V"R.W 

Subject to 

wH a(@ = 1 

This is equivalent to minimizing the output noise power w" R,, w alone. Now any constrained 

optimization method can be used to solve this problem, however the most simplest is the 

Lagrange multiplier method. If we follow this method, the optimum weight vector is given by 

The power in the beam when steered in the direction of interest determined by a (0)  becomes 

Fig 3.2 shows capon (MVD) pseudospectrum for three uncorelated signals coming from 

different directions 



Fig.3.2:Capon(MVD) pseudo spectrum for 6 1= 2 0' 6' 2= 4 0' 8 3= 6 0' 

this is the MVD direction estimation function (DEF) or MVD pseudo spectrum. Now let us 

perfom] EVD of the spatial correlation matrix i.e. 

The inverse RL' has the same eigenvectors as that of R,, but its eigen values are reciprocal of 
those of R,. Therefore 



Since MVD is a signal plus noise subspace method, The EVD of RX-' is truncated to include 
only the terms that correspond to signal plus noise subspace i.e. 

So equation (3.27) becomes 



Equation gives another form of MVD pseudo spectrum 

3.5 The ESPRIT Algorithm 

ESPRIT stands for Estimation of Signal Parameters via Rotational Invariance Techniques 

and was first proposed by Roy and Kailath in 1989. The goal of the ESPRIT techniques to 

exploit the rotational invariance in the signal subspace which created by two arrays with a 

translational invariance structure. ESPRIT ~nherently assumes narrowband signals so that one 

knows the translational phase relationship between the multiple arrays to be used[7]. As with 

MUSIC, ESPRIT assumes that there are p <N narrow-band sources centered at the center 

frequencyfl. These signal sources are assumed to be of a sufficient range so that the incident 

propagating field is approximately planar. The sources can be either random or deternlinistic 

and the noise is assumed to be random with zero-mean. ESPRIT assumes multiple identical 

arrays called doublets. These can be separate arrays or can be composed of sub arrays of one 

larger array. It is important that these arrays are displaced translationally but not rotationally. 

An example is shown in Fig. 3.3 where a four element linear array is composed of two 

identical three-element sub arrays or two doublets. These two sub arrays are translationally 

displaced by the distance d. Let us label these arrays as array 1 and array 2 



and 

where 

Array 1 

Array 2 

Fig. 3.3:Doublet composed of two identical displaced arrays[6] 



= apxp diagonal unitary matrix with phase shifts between the doublets for each AOA 

Ai = Vandermonde matrix of steering vectors 

for subarrays i = 1 , 2  

The complete received signal considering the contributions of both sub arrays is given as 

We can now calc~~late the correlation matrix for either the completearray or for the two 
subarrays. The correlation matrix for the complete array is given by 

R, =E[x .x"] = AR, AH+ I (3.31) 

nl 
10 whereas the correlation matrices for the two subarrays are given by 

and 

Each of the full rank correlation matrices given in Eq. (3.32) and (3.33) has a set of 

eigenvectors corresponding to the p signals present. Creating the signal subspace for the two 

subarrays results in the two matrices El and E2. Creating the signal subspace for the entire 

array results in one signal subspace given by Ex. Because of the invariance structure of the 

array, Ex can be decomposed into the subspaces E l  and E2.Both El and Ez are Nx p matrices 

whose colunlns are composed of the P eigenvectors corresponding to the largest eigenvalues 

of R1 I and Rzz. Since the arrays are translationally related, the subspaces of eigenvectors are 

related by a unique non-singular transformation matrix such that 



EIY = E2 (3.34) 

There must also exist a unique non-singular transformation matrix T 

Such that 

E l = A T  (3.35) 

and 

By substituting Eqs. (3.39) and (3.40) into Eq. (3.41) and assuming that A is of full-rank, we 

can derive the relationship 

Thus, the eigenvalues of Y must be equal to the diagonal elements of @ such that A I  = e~~~~~~ 
jkdsin 82 jldsin Bp 

, I ?  = e ,. . . ,Ap=e and the columns of T must be the eigenvectors of Y.Y is a 

rotation operator that maps the signal subspace EI into the signal subspace E2. One is now left 

with the problem of estimating the subspace rotation operator Y and consequently finding the 

eigenvalues of Y.If we are restricted to a finite number of measurements and we also 

assume that the subspaces El and E2 are equally noisy, we can estimate 

the rotation operator Y' using the total least-squares (TLS) criterion.Details of the TLS 

criterion can be found in van Huffel and Vandewalle . This procedure is outlined as follows. 

.m Estimate the array correlation matrices R11, R22 from the data samples. 

Knowing the array correlation matrices for both subarrays, one can estimate the total 

number of sources by the number of large eigenvalues in either R,, or R,,. 

Calculate the signal subspaces El and E2 based upon the signal eigenvectors of R,,  and R,,. 

For ULA, one can alternatively construct the signal subspaces from the entire array signal 

subspace E,.E, is an Nxp matrix composed of the signal eigenvectors. El can be constnlcted 



by selecting the first NR + 1 rows ((N + ly2 + I for odd mays) of Ex. E2 can be constructed 

by selecting the last NO+l rows ((N+ l ) n  + 1 for odd arrays) of Ex. 

Next form a 2P x 2P matrix using the signal subspaces such that 

where the matrix Ec is from the eigenvalue decomposition (EVD) of C such that 21 ~ 1 2 2 . .  . ... h~ 
and A = diag {h, A2,. . . , h p )  

.Partition E,: into four pxp submatrices such that 

.Estimate the rotation operator 

Y = -E,, ~2 

.Calculate the eigenvalues of 11, L2,. . . , Lp 

.Now estimate the angles of arrival, given that Ai = IAi le j arg(Ai ) 

8.- , - sm- . 1 arg(h)/kd i = 1,2, . . . , p 

If so desired, one can estimate the matrix of steering vectors from the signal subspace Es 

and the eigenvectors of Y given by EV such that 



Chapter 4 

Computer simulations 

Matlab programme is developed to compute direction of arrival (DOA) for following DOA 

estimation algorithms 

1 -spectral estimation 

2-MVD method 

;-Music algorithm 

In this simulation we used the following common parameters 

1- Number of sources p=2 uncorrelated signals with the same S/R of 20 dB are corning 

from 30' and35" . 

2- Number of snapshots k=100 

3- Number of antenna elements N=10 

The noise at each antenna element is assumed to be additive white Gaussian with zero mean 
and variance equal to 0.5. 

Fig (1) shows simulation result for spectral estimator, this technique is based on signal and 

noise power consideration, this technique is not showing good resolution . 

Fig (2) shows simulation result for capon method based on following function 

showing better resolution and giving peaks at Wand  35" 

Fig(;) shows simulation result for Music algorithm based on following function- 



Music algorithm outperformed the above two algorithms and gave sharp peaks at 30" and 

35' 



fig. 4.2: MVDR(capon method)pseudo spectrum for two uncorrelated signals coming from 
directions8l=3O0 and 81=3S0 
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fig.: 4.3 MUSIC pseudo spectrum for two uncorrelated signals coming from directions 
81=30•‹and 81=35" 



fig 4.4 spectral estimation for two uncorrelated signals coming from directions 
O1=3O0and 01=65' 

fig 4.5 MVDR(capon method) for two uncorrelated signals coming from directions 
01=3O0and 01=65' 

fig 4.6 MUSIC Pseudo spectrum for two uncorrelated signals coming from directions 
81=30•‹and 01=65O 



fig 4.7 spectral estimation for three uncorrelated signals coming from directions 
8 1=30•‹ 82=35' and 83=40•‹ 
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fig 4.8 MVDR (capon method) for three uncorrelated signals coming fiom directions 
81=30•‹and €I2=35' "d03=400 

fig 4.9 MUSIC Pseudo spectrum for two uncorrelated signals coming from directions 
81=30•‹ 82~35 '  and83=40•‹ 
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fig 4.1 0 spectral estimation for three uncorrelated signals coming from directions 
81=20•‹ 82=40•‹ and 83=60•‹ 

fig 4.1 1 MVDR (capon method) for three uncorrelated signals coming from directions 
8 1=20•‹ and 82=40•‹ 83=60•‹ 

fig 4.12 MUSIC Pseudo spectrum for two uncorrelated signals coming from directions 
8 1=20•‹ 82=40•‹ and 83=60•‹ 
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