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Abstract:

In many practical signal processing problems, the objective is to estimate from a
collection of noise "contaminated "measurements a set of constant parameters upon
which the underlying true signals depend . Moreover, the accurate estimation of the
direction of arrival of al signals transmitted to the adaptive array antenna contributes to
the maximization of its performance with respect to recovering the signal of interest and
suppressing any present interfering signals. The same problem of detennining the
direction of arrival (DOA) of impinging wave fronts, given the set of signals received at
an antenna array from multiple emitters, arises aso in a number of radar, sonar,
electronic surveillance, and seismic exploration applications. In general, the DOA
estimation agorithms can be categorized into two groups; the conventional agorithms
and the subspace algorithms.

In this thesis report different Direction of Amval (DOA) techniques like Pisarenko
Harmonic Decomposition (PHD), The Minimum Norm (MN) Algorithm, The Minimum
Variance Distortion less Method (MVD), Multiple Signal Classifier (MUSIC) and
ESPRIT Algoritlun have been discussed.

Computer simulations have been carried out for the following techniques

1-spectral estimation

2-MVD{capon) method

3-Music Algorithm

Simulations were carried for two uncorrelated signals impinging on uniform linear array
(ULA) having 10 antenna elements, which were equally spaced by half the wave length.
Number of snapshots was 100.

Computer simulation shows that subspace based DOA estimation technique Music
Algorithm outperformed the other two technique and give better resolution for two

uncorrelated signal coming from different directions.

Vil
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Table 1: Symbolsand Description

Terms Descriptions

p | Number of Sources

N | Number of Sensors(Array Elements)

sz} | P x 1 Original Signa Vector

a(d) | N x 1 steeringvector

n(t) | Nx 1NoiseVector

x(?) | N x 1Vectorof Array Outputs

W N x 1 Weight vector

y(©) | Beamformer Output

d(t) | Referencesignal

e@® | Error Signa

g Noise Variance

A8 | Nxp Steering Matrix

Res | PXpAutocorelationMatrix defined by Rss=E[s(1)s"(1)]

R, | NxN Signd autocorrelaion Matrix defined by R, = E{x(®)x"(®)}

R, | NxN Matrix defined by R, = A(@Rgs ©

R, NxN NoiseAutocorrelationMatrix defined by R, = o1

R, An Estimate of R,

gi | Eigenvauesof R,

g’ |Ei génval uesof R,

e Eigenvectorsof R,

& | Eigenvectorsof R,

N-p | Noise Subspace Dimension

M | Number of Snapshots

H | Conjugate Transpose Operation




Chapter 1
INTRODUCTION

Many refer to smart antenna systems as smart antennas, but in reality antennas by themselves

are not smart. It is the digital signa processing capability, along with the antennas, which
make the system smart. Although it may seem that smart antenna systems are a new
technology, the fundamental principles upon which they are based are not new. In fact, in the
1970s and 1980s two specia issues of the IEEE Transactions on Antennas and Propagation
were devoted to adaptive antenna arrays and associated signal-processing techniques {1,2].
The use of adaptive antennas in communication systems initially attracted interest in military
applications. Particularly, the techniques have been used for many years in electronic warfare
(EWF) as countermeasures to electronic jamming. In military radar systems, similar
techniques were already used during World War 1i {3]. However, it isonly because of today's
advancement in powerful low-cost digital signal processors, genera-purpose processors and
ASICs (Application Specific Integrated Circuits), as well as innovative software-based signal
processing techniques (algorithms), that smart antenna systems are gradually becoming

commercially available.

1.1 NEED FOR SMART ANTENNAS

Wireless communication systems, as opposed to their wire line counterparts, pose some
unique challenges.
I- The limited allocated spectrum resultsin a limit on capacity.
ii- The radio propagation environment and the mobility of usersgive riseto signal
fading and spreading in time, space and frequency
1ii- The limited battery life at the mobile device poses power constraints.
In addition, cellular wireless communication systems have to cope with interference due
to frequency reuse. Research efforts investigating effective technologies to mitigate such

effects have been going on for the past twenty five years, as wireless communications are



been going an for the past twenty five years, as wireless communications are experiencing rgpid
growth . Among these methods are multiple access schemes, channel coding and

FIGURE 1.1: Wireless /SaMSimpairments(5],

equalizationand smart antennaemployment. Fig. I.| summarizesthe wirelesscommunication
systems iImparmentsthat smart antennas are challenged to combeat.

An antennain a telecommunications system.is the port through which radiofrequency

(RF) energy is coupled from the transmitter to the outside world for transmission pu-
poses,and in reverse, to the receiver from the outside world for reception purposes.

To date,antennas have been the most neglected of all the components in personal
communications Systems. Y et, the manner in which radio frequency energy is distributed into
and collected from space has a profound influence upon the efficient use of spectrum, the cost
of establishing new personal communications networks and the service quality provided by
those networks . The commercial adoption of smart antenna techniques is a great promise to

the solution of the aforementioned wireless communications' impairments.

OVERVIEW
The basic idea on which smart antenna systems were devefoped ismost often introduced with

a simple intuitive example that correlates their operation with that of the human auditory



system. A person is able to determine the Direction of Arrival (DOA) of a sound by utilizing

athree-stage process:

§ o\ -Levaned speaker

FIGURE. |.2: Human auditory function [4]

1- One's ears act as acoustic sensors and receive the signal.

2 -Because of the separation between the ears, each ear receives the signal with a different
time delay.

3 -The human brain, a specialized signal processor, does a large number of calculations to
correlate information and compute the location of the received sound.

To better provide an insight of how a smart antenna system works, let us imagine two

Persons carrying on a conversation inside an isolated room as illustrated in Figl.2. The
listener between the two persons is capable of determining the location of the speaker as he
moves about the room because the voice of the speaker amves at each acoustic sensor, the
ear, a adifferent time. The human*'signa processor,” the brain, computes the direction of the
speaker from the time differences or delays received by the two ears. Afterward, the brain
adds the strength of the signals from each ear so as to focus on the sound of the computed
direction utilizing a similar process, the human brain is capable of distinguishing between
multiple signals that have different directions of arrival ( DQA) . Thus, if additional speakers
join the conversation, the brain is able to enhance the received signal from the speaker of
interest and tune out unwanted interferers. Therefore, the listener has the ability to distinguish

one person's voice, from among many people talking simultaneously, and concentrate on one
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conversation at a time. In this way, any unwanted interference is attenuated. Conversely, the
listener can respond back to the same direction of the desired speaker by orienting his/her
transmitter, histher mouth, toward the speaker.

Electrical smart antenna systems work the same way using two antennas instead of two ears,
and adigital signal processor instead of the brain . Thus, based on the time delays due to the
impinging signals onto the antenna elements, the digital signal processor computes the
direction-of-arrival (DOA) of the signal-of-interest (SOI), and then it adjusts the excitations
(gains and phases of the signals) to produce a radiation pattern that focuses on the SOT while
tuning out any interferersor signals-not-of-interest (SNOI ).

Transfemng the same ideato mobile communication systems, the base station plays the

role of the listener, and the active cellular telephones simulate the role of the several sounds
heard by human ears. In mobile communication system digital signal processor located at the
base station works in conjunction with the antenna array and is responsible for adjusting
various system parameters to filter out any interferers or signals-not-of-interest (SNOI) while
enhancing desired communication or signal s-ofinterest (SOIL). Thus, the system forms the
radiation pattern in an adaptive manner, responding dynamically to the signal environment
and its aterations. The principle of beam forming is essentially to weight the transmit signals
in such a way that obtains a constructive superposition of different signal parts. Note that
some knowledge of the transmission channel at the transmitter is necessary in order for beam
fonning to transmission be feasible, such that maximum radiated power is produced in the
directions of desired mobile users and deep nulls are generated in the directions of undesired
signals representing co-channel interference from mobile users in adjacent cells. Prior to
adaptive beamforming, the directions of users and interferes must be obtained using a

direction of arrival agorithm.

1.2 Overview of Direction of Arrival (DOA) Algorithms

After the signal from all directions has been anticipated by antenna array, The DOA algorithm
determines the direction of all incoming signals based on the time delays. There are number



of DOA estimation techniques. These techniques can be categorized on the basis of data
analysis and implementation into four different area : conventional methods, subspace based
methods, maximum likelihood methods, and integrated methods.

Conventional methods for DOA estimation are based on the concepts of beam forming and
aull steering and do not exploit the statistics of the received signal [4]. In this technique, the
DOA of all the signals is determined from the peaks of the output power spectrum obtained
from steering the beam in al possible directions. Examples of conventional methods are the
delay-and-sum method (classical beam former method or Fourier method) and Capon's
minimum variance method. One major disadvantage of the delay-and-sum method is its poor
resolution; that is, the width of the main beam and the height of the side lobes limit its ability
to separate closely spaced signals .On the other hand, Capon’'s minimum variance technique
tries to overcome the poor resolution problem associated with the delay-and-sunl method, and
in fact, it gives a significant improvement. Although it provides better resolution, Capon's
method fails when the SNOIs are correlated with the SOI. unlike conventional methods,
subspace methods exploit the structure of the recelved data, resulting in a dramatic
improvement in resolution. Two main algorithms that fall into this category are the Multiple
Signa Classification (MUSIC) agorithm and the Estimation of Signal Parameters via
Rotational Invariance Technique (ESPRIT). In 1979, Schmidt proposed the conventiona
MUSIC algorithm that exploited the eigen structure of the input covariance matrix [4]. This
algorithm provides information about the number of incident signals, DOA of each signal,
strengths and cross correlations between incident signals, and noise powers. Like many
algorithms, the conventional MUSIC possesses drawbacks. One of the drawbacks is that it
requires very precise and accurate array calibration. Another drawback is that, if the
impinging signals are highly correlated, it fails because the covariance matrix of the received
signals becomes singular. And lastly, it is computationally intensive. To improve the
conventional MUSIC algorithm further, several attempts were made to increase its resolution
performance and decrease its computational complexity. In 1983, Barbell devel oped the Root-
MUSIC algorithm based on polynomial rooting and provided higher resolution; its drawback
was that it was applicable only to uniformly spaced linear arrays [5] . In 1989, Schmidt
proposed the Cyclic MUSIC, a selective direction finding algorithm, which exploited the

spectral coherence properties of the received signal and made it possible to resolve signals



Chapter 2
Signal Model and Problem Formulation

2.1 Signal Model for Array Processing

The essential goal of sensor array signal processing is to estimate signal parameters by
combining temporal and spatia information, captured via sampling a wave field with a set of
judiciously placed antenna sensors. The wave field is assumed to be generated by a finite
number of emitters, and contains information about the signal parameters characterizing the
emitters. In this section, we will provide the mathematical model that has been widely used

for array signal processing through the recent decades.

2.2 Antenna Array Response

Consider a uniform linear array (ULA) consisting of N identical antenna elements illustrated
in Fig. 2.1 Suppose thereisonly one narrow-band point source s, (t) with carrier frequency w,
present in the far field. If the distance between the array and the source is large enough
compared to the aperture of the array, the wave front impinging on the array can be
approximately considered as planar. Assuming that antenna array is composed of identical
isotropic elements, each element receives atime-delayed version of the same plane wave with
wavelength . In other words, each element receives a phase-shifted version of the signal[4].
For example, with a uniform linear array (ULA), as shown in Fig.2.1, the relative phases are
2

a

adjacent elements. The vector of relative phasesis referred to as the steering vector (SV) a(6)

also uniformly spaced, with ¥=>4+dsin{6) being the relative phase difference between

. A more general concept is the array response vector (ARV) which is the response of an
array to an incident plane wave. It is a combination of the steering vector and the response of

each individual e ement to the incident wave.
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FIGURE. 21: A uniform linear array (ULA) with N sensor elements along with an impinging
uniform plane EM wave[4].

thearray response vector(ARV)f or uniformlinear array(UILA) under discussion isgiven as

'f(N""’}‘ T (21)

27

a dsin(d) weget

inserting value of W=



a(6) = (2.2)
JzTE(N~l)s'1n(6)

Where N x 1 array response vector a{ @) is referred to as the steeling vector of the array to a
planar wave arriving from the direction 6. It is known that N different steering vectors
randomly sel ected from the manifold are generally linearly independent.

2.3 Direction of Arrival (DOA) Estimation algorithms

For the Beamformer to steer the radiation in a particular directionand to'place the
nulls in the interfering directions the direction of arrival(DOA) has.to beé iméwn beforehand.
The DOA agorithms does exactly the same, they work on the signal received at the output of
the array and computes the direction of arrivals of all thei |ncom| ng signals. “Once the angle
informationis known it isfed into the beamformmg network to compute the complex weight
vectorsrequired for beam steering. It is shown in the following figure.

DOA

! Beamnforming
Algorithm

Fig. 2.2 Beamforming Setup with Direction Of Arrival Estimation

1



o

2.4 Problem formulation

Consider a beam forming setup shown in figure 2.3, consisting of an array of N
sensors with arbitrary locations and arbitrary directional characteristics, which receives
signals generated by p narrowband sources with known center frequency w, and locations € 1,
€, O3 ...... 0, . The output y(f) of the array with variable element weights wm is the
weighted sum of the received signals S«(f) at the array elements and the noise »(r) at the
receivers connected to each element. The weights are iteratively computed based on the
output y{(¢),a referencesignal 4(¢) that approximatesthe desired signal, and previous weights.

51 (t)

I
\4| Xl(t):

) |
LGl S

S; (t) : . [

e(t)
() | —®

/T__@f“_‘i B o
I

Controller L.

Sp(t)

. Iy (t)

Fig. 2.3: An Addaptive Beamforming System.

The beam former output 1s given by
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Where w'! denotes the complex conjugate transpose of the weight vector w. In order to
compute the optimum weights, the array response vector from the sampled data of the array
output has to be known. The array response vector is afunction of the incident angle as well
as the frequency. Since the signals are narrowband, the propagation delay across the array is
much smaller then the reciprocal of the signal bandwidth, and it follows that by using a
complex envelop representation, the output of the & element of the array, x (see figure 2.3),
can be expressed as a sum of phase-shifted and attenuated versions of the origina signal s:(1)
and isgiven in the following equation [8].

—ja)o'n(t?i)

x(t)= .§1 a:(6)s(t)e + () 2.4)
J=

Where 7.{&%) is the propagation delay between a reference point and the %, sensor for the j,,

wave front impinging on the array from direction &;, a.(&;) is the corresponding sensor
element complex response (gain and phase) at frequency we and ;. (#) is the noise present at

ks sensor. Employing vector notation for the outputs of the N sensors, the data model
becomes.

)2,
x()= Y a(Bi)si(t) +n() (2.5)

j=
Where we have thefollowing
o x(V)=[x1(8), xz(D), ..... xn(D]" is NxI vector of signals representing sensor outputs.
e s5{¢t) isthe signal emitted by the 7y, source as received at the reference sensor 1 of the

array.
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o a@)=la(@) ’ m"T'(a). ......... Lax(@)e ’ m"r"(g’)]T is a Nx| vector often termed as
array response or array steering vector towards direction &;.
o () = [m(B)ng (@), - e (O] isaNx| noise vector.

Equation (2.7) can be written in a more compact form using matrix notation asfollows
xX(t) = A@G)s(1) + n() (2.6)

where A(#) isthe Nxp matrix of the array steering vectors, 1.e

A(G) = [a(G1), (0. ..... a(6,)]

and s(¢) is pxI vector of the signals generated by p narrowband sources, i.e

s(t) = [s1(t), s20), .. 5, 0]

Our objective isto determine the Direction of Arrivals(DOA’s) &, &, &;, .... 6, of the sources
from the information given by Eq (2.6). To achieve the goa let's make the following
assumptions
A.1 The number of sources generating the signalsis known and is smaller than the number of
sensorsi.e p<N.
A.2 The set of any p steering vectorsis linearly independent.
A.3 The signal waveformsare non-coherent Gaussian processes.
A.4 The noise samples ny(t) are zero mean Gaussian random pmcess with variance and are
statistically independent from each other.

Assumptions A.l and A.2 guarantee the uniqueness of the solution and assumptions
A.3 and A.4 have been made to make the mathematical treatment an easier one.



2.5 SIGNAL AUTOCOVARIANCE MATRICES

Let us consider the problem in the context of eigen space, a space which is spanned by
the eign vectors of a matrix, that corresponds to some scalar constant called eign value of the

matrix . Consider the array output x(f) which is given by
X=A(8)S +N.
The N x N correlation matrix R, of the vector x(¥) is given by
R, =E{xx" Q.7
Now
X X = a5+ N) (A(@) S+ N

=A@)s+N) ST AT @y N

=(A(@)yss" A" (O)yHa(E) s NH+NSH AT (G)r N

Thereforefrom Eq (2.7) we have

R, =E{(A(8)SSTA(DHAO)S NH+(NsT AT (N

= E{A(G)SS"A(@}+E{A(D)S N E{NS"A" (@ }+E{NN")

=A(E(SSMAO+ ADE{SN +E {NST L AP (O+E{(NNT
Assuming that the signal and the noise are uncorrelated Gaussian random process then the
following holds.

E{SN"} =E{NS"} =0



14

Hence we are left with
Re=A(@)Res AT (O)F 61 (2.8)

Where Rss = E{ S s™ 3 kxk autocorelation matrix of the original signals si(f) and c? 1=

E{n(Nn"()}. Let us define R, as signal correlation matrix and R,, as noise correlation matrix

1€,

R, = A(8)Rgs A™ (8) (2.9)
And
R, =o'l (2.10)
Then Eq (2.7) becomes
R(=R, +R, (2.11)

A class of spatial spectral estimation techniques is based on the eigenvalue decomposition
(EVD) of the spatia correlation matrix R,. The rationale behind this approach is that one
wants to emphasize the choices for the steering vector a(f), which correspond to signal
directions. The method exploits the property that the directions of arrival determine the eigen
Structure of the matrix. To see this let us suppose that q|x > qzx 2 2 qu denote the
eigenvalues of the matrix R, and > ¢5°> ...... > gn denote the eigenvalues of the matrix
R;. From assumption A.2 it follows that the steering matrix A(&) is of full column rank p.
Also the non-coherence of thep incoming plane wavesimpliesthat thepxp matrix Rss given
by Rs = E{s(#)s" (1)} isafull rank matrix. Therefore the Rs matrix given by Eq (2.9) will also
have a rank equal top. It means that Rs will have p nonzero and N-p zero eigenvalues. Since
g. have been arranged in a descending order, then the smallest N-P eigenvalues of R, will be

equal to zero. Thuswe have qix

@ = (N@H k;p+1,p+2, ..... N } (2.12)
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X

@ =g +0 fromeq  (2.11)

Using Eq (2.11) we see that eigenvalues of R, can be written as

g = gi+ o k=12,
. (2.13)
o k=p+I1p+2,..N
Hence the EVD of the correlation matrix Ry can be written as
Jil
Re=) [q +oJee + Z o erey (2.14)
k=l k=p+1
Where
1 k=1
H
ere; =01 = 2.15
e ‘ {Zero k=l } 2.15)

are the orthogonal eigenvectors of the matrix R, and Sati sfy the eigenval ue equation given by

Rt =qi & k=12 e N (2.16)
Using Eq (2.11), Eq (2.14) can be written as
Rier =c’ex k=p+1 .. N (2.17)
Or equivalently,
(Re~“Dex =0 k=p+1 ... N (2.18)

Using Eq (2.7) above equation can be written as

A(ORAM (B)er =0 k=p+1, ..., N (2.19)

From which it follows that

A" (Q)er =0 k=p+1... N (2.20)
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Or a” (e =0 i=1,2,...p (2.21)

Equation (2.23) readily implies that the subspace spanned by the eigenvectors {ep+i, €pez,
...... ey} is the orthogonal complement of the subspace spanned by the steering vectors
{a{(&1), a(f2)y weevennsn a(f,)}. Since the eigenvectors of the correlation matrix R, are
orthogonal to each other we can aso conclude that the subspace spanned by the eigenvectors
fel, ez, ... ,¢p} isexactly the same as the subspace spanned by the vectors {a( &), a(&2).

The previous analysis leads to the following observations. If the propagation field
contains p distinct non-coherent propagating signals in a spatially white noise environment,
then the eigenvalue decomposition of the spatial correlation matrix Ry results in the formation
of two digoint subspaces that are the orthogonal complement of each other. The first one,
caled the Signal plus noise subspace is spanned by the eigenvectors corresponding to the p
largest eigenvalues of Ry The second, caled the noise subspace is spanned by the
eigenvectors corresponding to the N-psmallest eigenvalues of Ry. Thus given the eigenvectors
of the matrix Ry, we may determine the signal directions of arrival by searching for those
steering vectors a(#) that are orthogonal to the noise subspace which is spanned by the
el genvectors {ept1, €pt2, «..u... , en} corresponding to the N-p smallest eigenvalues of R,. In
practice, R, is unknown but can be consistently estimated from the available data as

1M H
Ry =— % x@)x"(t) (2.22)
M=

Where M represents number of snapshots of x{¢) taken at time instants ty,13,...../». Because of
the uncertainty in the eigenvector estimates{ e;+1, ep2, .. ..... , ey } introduced by the way we
estimate the matrix R,, we can only search for those steering vectors a(&#) that are most

closely orthogonal to the noise subspace.



Chapter 3
DOA Estimation Techniques

3.1 Pisarenko Harmonic Decomposition (PHD)

In this method it is assumed that x(¢) isasun of ;2 narrow band non-coherent plane
wave signals in white noise and that the number of sources, ;» generating these signals is
known. A (p+1)x(p+1) autocorrelation lh{\. Is estimated and its EVD is performed. With a
(p+1)x(p+1) autocorrelation matrix Ry the dimension of the noise subspace becomes equal to
one and is spanned by the eigenvector corresponding to the minimum eigenvalue qmin = o~ .
Denoting thiseigenvector by €gyi, , it followsthat will &, beapproximately orthogonal to
each steering vector a(@i. i.e a8 &, =0 for i=12,.................. P
Therefore if we form a Direction Estimation Function (DEF), also called the Pscudo-

Spectrum, like the one given below.

1
Ppp = l““(g)emin r (3.1)

Then Ppyup(6) will be infinite (theoretical) at Locationswhere (! = ¢; fori=1, .., p. In practice
however, aplot of Ppup(d)} will contain p peaks. The locations of these peaks in the plot of

DEF may be used to estimate the Directions of Arrival (DOA) of the original signals s1).

The major disadvantage with this method is that if an eight element array is used, seven
signal sources are assumed to exist and the method will locate seven DOA’s, If only one



signal source is known to exist, only signals from the first two antenna elements should be
taken. However the method being of theoretical interest, has led to the important insights into
the DOA estimation problems, and has provided the stimulus for the development of other
EV D methods that are more robust.

3.2 Multiple Signal Classifier (MUSIC)

Music Algorithm is an extension of PHD method and was presented by Schmitt in
1979. to see how it works, let us assume that x(f} is a sum of p narrow band non-coherent
plane wave signalsin white noise and that the number of sources, p generating these signals is
known. Let an N x N estimate of the autocorrelation matrix of x(f) withN > p+ 1 (In PHD
method N = p + 1). If the eigenvalues of R, are arranged in descending order, q;, 2 qz, > qa,
> .., qy andif {€, 8y, ..., & Epaty oene . , &5} are the corresponding eigenvectors, then these
eigenvectors may be divided into two groups. the p signal plus noise eigenvectors
correspoinding to p largest eigenvalues and the N — pnoise eigenvectors corresponding to the
N — p smallest eigenvalues that ideally are equal to o>. These N-p noise eigenvectors will be
approximately orthogonal to the p steering vectors a(6), i.e.

a () &=0 fori=1,2, ....p (3.2)
k=p+1,.... N
or simply
a' (0) &=0 fork=p+1,....... N (3.3)

where & represents the 4 noi se eigenvector.
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MUSIC ALGORITHM
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Fig. 3.1: Music pseudospectrum for# 1= 20" §2=40' &3=60

All the N — p noise eigenvectors will share the same p roots. However, because each noise
eigenvector isa length N vector, there are an additional N — p rootsthat are due entirely to the
noise i.e each of the noise eigenvector will have these roots due to noise only and that also at
random frequencies. This may given rise to the spurious peaks in the pseudo spectrum of
single noise eigenvector (as in the case of PHD method.) Therefore when only one noise eign
vector is used to estimate DOA’s, there may be some ambiguity in distinguishing the desired
peaks from the spurious ones. In MUSIC algorithm the effects of these spurious peaks are
reduced by averaging the pseudo spectra obtained for each of the noise eigenvectors i.c.
MUSIC algorithm assumes the following form of the DEF or pseudo spectrum.



Puusic(8 )=

>

k=p+l

a(6)e; 'z

Above eguation can be written as

Pmusic@y =
N H
Z al’(0)8y) @& a(8))
k=p+l1
-~ N H
Let usdefine Uy — Z & &
k=p+1

Then Eq (3.5) can be written in amore compact form asfollows.
1

~

Pmusic =

a'’(6)0xa(d)
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(3.4)

(3.5)

(3.6)

(3.7)

This is called MUSIC pseudo-spectrum. One note able thing about this spectrum is that, it is

based on single realization of the stochastic process represented by the snap shots x(¢) for f =

1.2

3=h

............ » M. Music estimates are consistent and converge to true source bearings as the

number of snapshots grows to infinity. However this is true only for the case of uncorrelated
signal. For strongly correlated signals, the estimates provided by the MUSIC pseudo spectrum
are extremely poor compared with the situation where uncorrelated signals are used. Thisis

the major problem with the music algorithm.
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3.3 The Minimum Norm (MN) Algorithm
The Minimum Norm (MN) method is also based on the EVD of the spatial correlation

marix R,. In this method, two sets of eigenvectors areformed as follows.

gT
E~{ e e, ....., e] :{E’ } (3.8)
o7
And E, =[ Bp+1, ...... » BN]= G (39)

where g,"and g,7are 1 x p and 1 x (N - p) row vectors respectively. The matrices G, and G,
have dimensions (N — 1) x p and (N -1) X (N — p), respectively. Instead of forming pseudo
spectrum that uses all of the noise eigenvectors as in the MUSIC, the MN agorithm aims to

find asingle N x 1 vector O that satisfies thefollowi ng conditions;

. The vector € liesin the noise subspace and therefore it is orthogonal to the signal plus
noise subspace i.€.
E. 0=0 (3.10)
. Thefirst element of € is equal to unity i.e.
1
Q =[ } (.11)
—-q
. The vector £ has minimum norm.

In order to ensure that the minimum norm solution is not a null vector, the first element of o
has taken to be unity. Theaim is now to find a (N -1) X 1 vector q that has minimum norm. By
putting Eq (3.8)and Eq (3.11) into Eq (3.10) we get the following equation.



GHq =g (3.12)

This is a linear system of p equations in N-1 unknowns. Since we assumed that N > p, Eq
(3.12) represents an undetermined system of linear equations with no unique solution. One
approach that is often used to define a unique solution is to find a vector satisfying the

equationsthat has the minimum norm 1.e.
lal =g, subjectto G q =g (3.13)

If G, has rank equal to N - 7 then the (N - ) x (N - 1) matrix G, G is invertible and the

minimum norm solution is given by;

q=(G; G"*)' Gs g (3.14)
The matrix
G'=(G, Gy Gs (3.15)

is known as the pseudo-inverse of the matrix G¢" for the underdetermined problem.

Correspondingly the minimum norm solution for the vector s given by

1
o= [-(G,G,H )"G,gJ (3.16)

With the knowledge of minimum norm vector Q, the MN agorithm forms the following form

1
of the DEF Pun = l‘l (3.17)
" aH ey

Again as with the MUSIC, MN pseudo spectrum is also based on a single realization of the
underlying stochastic process.

3.4TheMinimum Variance Distortionless M ethod (MVD)

The methods we discussed so far are also referred to as noise subspace methods,

because the DOA’s are estimated using the fact that all the noise eigenvectors are orthogonal



to the steering vectors (that contain DOA information). In this section we shall discus a
method called MVD , which does not use the noise eigenvectors to determine the pseudo
spectrum; instead it uses signal plus noise eigenvectors to obtain the pseudo spectrum and
hence this method isalso referred to as signal plus noise subspace method.

MVD method is developed as a constrained optimization problem. Recall that the sensors
outputs x(#) are weighted by a vector w to produce the beamformer output y(¢) i.e.

y(® =W x()
The spectral estimates are derived by finding a weight vector w, which minimizes the output
noise variance. In order to ensure that the desired signal from somedirection # is passed to
the output with a specific gain and phase (i.e without any distortion), a constraint may be used
So that the response of the beamformer to the desired signal is

wa(@)y=1
where a(&) represents an ideal plane wave corresponding to the direction of interest 8.
Minimization of contributions to the output due to noise is accomplished by choosing the

weights to minimize the variance of the output power, which is the mean square value of y(#)

* Var{y()}= E( | y)I’} (3.18)
= E{(w" x()(w" x(t)"}
=w E{x(t)x" (t)}w

or Va = wi R, w

Va 50} =w'R,w+w'R, w (3.19)



Where we have made use of Eq R,.=R,tR,. thus we have a complete constrained
optimization problem stated asfollows
Minimize

Var y(t)} = w" Ry w (3.20)

=w'Rsw+ 'R, w
Subject to
wH a(@) =1
This is equivalent to minimizing the output noise power 1" R, w alone. Now any constrained
optimization method can be used to solve this problem, however the most simplest is the

Lagrange multiplier method. If we follow this method, the optimum weight vector is given by

R a®)
Wop = ) (3.21)
a” (@R, a@

The power in the beam when steered in the direction of interest determined by a ( ¢ ) becomes

1
Purn  (B)= (3.22)
a” @ Ry’ a(9)

Fig 3.2 shows capon (MVD) pseudospectrum for three uncorelated signals coming from
different directions
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Fig.3.2:Capon(MVD) pseudo spectrum for 1= 20 82=40 @&3=60°

this is the MVD direction estimation function (DEF) or MVD pseudo spectrum. Now let us
perform EVD of the spatial correlation matrix i.e.

N
Ry = kz greet’ (3.23)
-1

Theinverse Rx" has the same eigenvectors as that of R, but its eigen values are reciprocal of

those of Ry. Therefore
N
R)= % —1x-e;-e;H (3.24)
k=1q:



R = § IRV %’ LI (3.25)
i k=14 +o? k=p+l o2 .

Since MVD isasignal plus noise subspace method, The EVD of Rx"' is truncated to include
only the termsthat correspond to signal plus noise subspace 1.c.

D
Ri'= & — eell (3.26)
k=1 ka +G
So equation (3.27) becomes
1 a
Puvn(@) = (3.27)

P 1
oy 5 —— eel? [a@@)
k=1 qs +ag

1

{ﬁ L (" @eella(0) )}

kzl q:s + o

|

[§ ! = at’ @)e | aH(Q)e:)H]

k=1 th + o




Pmvp = ;
P 1 2
3 —— at (9)es
k=lg" +c

Equation gives another form of MV D pseudo spectrum

3.5TheESPRIT Algorithm

ESPRIT stands for Estimation of Sgnal Parameters via Rotational Invariance Techniques
and was first proposed by Roy and Kailath in 1989. The goal of the ESPRIT techniques to
exploit the rotationa invariance in the signa subspace which created by two arrays with a
translational invariance structure. ESPRIT inherently assumes narrowband signals so that one
knows the translational phase relationship between the multiple arrays to be used[7]. As with
MUSIC, ESPRIT assumes that there are p <N narrow-band sources centered at the center
frequency /0. These signal sources are assumed to be of a sufficient range so that the incident
propagating field is approximately planar. The sources can be either random or deterministic
and the noise is assumed to be random with zero-mean. ESPRIT assumes multiple identical
arrays called doublets. These can be separate arrays or can be composed of sub arrays of one
larger array. It is important that these arrays are displaced trandlationally but not rotationally.
An example is shown in Fig. 3.3 where a four element linear array is composed of two
identical three-element sub arrays or two doublets. These two sub arrays are trandationally

displaced by the distanced. Let uslabel these arrays asarray 1 and array 2
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Array 1

4] (-] O (5]

Array 2

Fig. 3.3:Doublet composed of two identical displaced arrays[6]

sik) |
s2(k)
xi(B)=[n,(81) ar(02),........... .a(8p)). . +ny{k) (3.28)
(k)
=A, sy (k)
and
x2(k)=Az.s(k)ytny(k) (3.29)
= A,.D.s(ky+na(k)
where

D - diag{ejkdsmm,ejkdsmﬁz _____________ ,ejkdsinﬂp}
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=a pxp diagona unitary matrix with phase shifts between the doublets for each AOA
Ai = Vandermonde matrix of steering vectors
for subarraysi=1,2

The completereceived signal considering the contributions of both sub arraysis given as

| k) A m(k)
k= Lz(k)}“[Aup]'s(k“[m(k)]

We can now calculate the correlation matrix for either the completearray or for the two
subarrays. The correlation matrix for the complete array is given by

R, =E[x .x"] = AR, A"+ & | (3.31)
whereas the correlation matrices for the two subarrays are given by

R, =E[x;.x)""] = ARss A"+ & 1 (3.32)
and

R:; =E[x2.%,"] = Ao R, A+ ¢’ 1 (3.33)

29

Each of the full rank correlation matrices given in Eq. (3.32) and (3.33) has a set of

eigenvectors corresponding to the p signals present. Creating the signal subspace for the two

subarrays results in the two matrices E; and E;. Creating the signal subspace for the entire

array results in one signal subspace given by EX. Because of the invariance structure of the

array, Ex can be decomposed into the subspaces E; and E;.Both E; and E2 are NX p matrices

whose columns are composed of the P eigenvectors corresponding to the largest eigenvalues

of Ry, and Ry,. Since the arrays are translationally related, the subspaces of eigenvectors are

related by a unique non-singular transformation matrix such that



EY=E, (3.34)
There must also exist a unique non-singular transformation matrix T
Such that

E] =AT (335)

E;=A®T (3.36)
and

By substituting Egs. (3.39) and (3.40) into Eq. (3.41) and assuming that A is of full-rank, we
can derivethe relationship

TYT'=0
Thus, the eigenvalues of ¥ must be equal to the diagonal elements of @ such that 4, = e##n %!

, Ao

rotation operator that maps the signal subspace E; into the signal subspace E;. Oneis now left

= /M8 p= e % and the columnsof T must bethe eigenvectorsof ¥\ isa

with the problem of estimating the subspace rotation operator ' and consequently finding the
eigenvalues of W.If we are restricted to a finite number of measurements and we also

assume that the subspacesE, and E; are equally noisy, we can estimate

the rotation operator ¥ using the total least-squares (TLS) criterion.Details of the TLS
criterion can be found in van Huffel and Vandewalle . This procedure is outlined as follows.

.m Estimate the array correlation matrices Ry, Ryz from the data samples,

Knowing the array correlation matrices for both subarrays, one can estimate the total

number of sources by the number of large eigenvalues in either R, or R,

Calculate the signal subspaces E; and E, based upon the signal eigenvectors of R,,and R.,.
For ULA, one can dternatively construct the signal subspaces from the entire array signal
subspace E..E, isan Nxp matrix composed of the signal eigenvectors. E, can be constructed



by selecting the first N/2 + 1 rows {(N + 1)/2 + | for odd mays) of E,. E, can be constructed
by selecting the last N/2+1 rows ((N+ 1)/2 + 1 for odd arrays) of E..

Next form a 2P x 2P matrix using the signal subspaces such that

E
C { '] [E, EJ=E.A E
) E:

where the matrix E¢ is from the eigenvalue decomposition (EVD) of C suchthat 21> t2>......22»
and A =diag {11, 4z, ..., A2}

Partition E. into four pxp submatrices such that

En En
EC=
E2 E22
.Estimate the rotation operator

Y= _Elz Ezz_l

.Calculate theeigenvaluesof 1, 4z, ...,4p

« Now estimate the angles of arrival, given that Ai =|Ai |e j arg(Ai)

g=sm—targ(Ap/kd i=1,2,...,p

If so desired, one can estimate the matrix of steering vectors from the signal subspace ES

and the eigenvectorsof ‘¥ given by E¢ such that

A=EsEy



Chapter 4

Computer simulations

Matlab programme is developed to compute direction of arrival (DOA) for following DOA
estimation algorithms
1-spectral estimation
2-MVD method
3-Music algorithm
In this simulation we used the following common parameters
1- Number of sources p=2 uncorrelated signals with the same S/& of 20 dB are corning
from 30" and35”
2- Number of snapshots k=100
3- Number of antenna elements N=10

The noise at each antenna e ement is assumed to be additive white Gaussian with zero mean
and variance equal to 0.5.

Fig (1) shows simulation result for spectral estimator, this technique is based on signal and
noise power consideration, thistechnique is not showing good resolution .

Fig (2) shows simulation result for capon method based on following function

Prvn(6) = ‘
a’ (0) R a(d)

showing better resolution and giving peaksat 30°and 35"

Fig(3) shows simulation result for Music algorithm based on following function-



Pumusic(@ y= . |
Z al(a )& &) a(8)

k=p+1

Music algorithm outperformed the above two agorithms and gave sharp peaks at 30" and
35!
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