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ABSTRACT

In this thesis, we have studied the linear properties of magnetohydrodynamic (MHD) waves in
degenerate plasma composed of three species; electron-positron-ion (e-p-i) by considering
Bohm potential, temperature degeneracy and spin magnetization. A generalized dispersion
relation is derived using quantum magnetohydrodynamic fluid model. Perpendicular and
oblique propagation modes of magnetoacoustic waves are investigated. It is noted that spin
magnetization and degree of arbitrary temperature modify the dispersive properties of the
waves. The results of this investigation are beneficial for understanding the collective
phenomena of space and astrophysical plasma.

Similarly, MHD waves are also studied in quantum degenerate electron- ion (e-i) plasma with
strong magnetic field in the presence of degenerate pressure due to Landau diamagnetic levels
and Pauli spin magnetization. A linear dispersion relation of low frequency propagation wave
in the direction of magnetic field is derived that strongly depends on the magnetic field while
in classical regime this field has no such a role. Quantum effects are incorporated through the
Landau pressure due to Landau quantization of magnetic field, magnetization energy linked to
spin motion and Bohm potential New modes of wave propagation associated with
quantization of orbital motion and spin magnetization in quantum plasmas are analyzed. It is
found that spin magnetization energy and quantum acoustic velocity affect the Alfven mode
propagation. The current study in the context of spin magnetization along with Landau
diamagnetic pressure is sufficient for investigating the compact astrophysical systems such as
neutron stars and white dwarfs.

Moreover, the generalized dispersion relation for the propagation of MHD waves in Cd* ion
trapped semiconductor electron-hole-ion plasmas is studied with effect of quantum
corrections. The important ingredients of these corrections occurred due to Bohm potential,
relativistic degeneracy, exchange-correlation potential and spin magnetization and have
significant impact on the dispersion properties of perpendicular and oblique modes of MHD
wave. The derived results are numerically analyzed by using the numerical parameters of
GaAs, GaSb, GaN, and InP semiconductors plasmas. From the numerical analysis, it is
observed that for higher number density, the phase speed of magnetosonic wave is larger for
the InP semiconductor, while for low number density plasma region, it gives lower values for
GaAs semiconductor. Similarly the phase speed of magnetosonic wave in GaAs decreases with
applied magnetic field for different regime of number density. Due to exchange-correlation
potential it is found that the frequencies of magnetosonic waves are blue-shifted means that it
has magnified the phase speed. It is also shown that frequency of oblique MHD wave for
GaAs semiconductor plasmas increases (decreases) with number density of electrons (holes).
The relativistic degeneracy term (y) for given number density is numerically calculated
(1.00011~1.0058) for all the above-mentioned semiconductors. It is observed that due to its
mild numerical value it has not significant impact on graphical manipulation. The Alfven

vi
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speed for above compound semiconductors with Bo < 104G is also calculated which exits in a
permissible range of order 10* cm/s to 107 cm/s. The results are helpful to understand the
energy transport in semiconductor plasma in the presence of magnetic field.
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Chapter 1

Introduction

1.1 Plasma Physics

The word “plasma” comes from the Greek which means something formed or molded.
It was introduced for the first time in 1929 by Tonks and Langumir to describe ionized
gases. Ionized means that when an electron is stripped off from a significant fraction
of a molecule. The difference between a gas and plasma is the presence of electrostatic
force among the charged particles that cannot be ignored in the study of dynamics
of plasma. By applying of magnetic field a Lorentz force is also developed which
leads to many novels and spectacular behavior of plasma. Plasma is considered as the
fourth state of matter. The basic distinction among the three states of matter (solids,
liquids and gases) lies in the difference between the binding forces that hold together
their constituent particles i.e., atoms and molecules. When a solid or liquid is heated
sufficiently the atoms or molecules gain more thermal kinetic energy that overcomes
their potential binding energy and phase transition occurs. Therefore, at high elevated
temperatures an ionized gas or plasma occurs

Three fundamental parameters of plasma are given as below

i. the plasma density n (that’s measured in particles per cubic meter ),

ii. the temperature of particle (that’s measured in eV, 1eV = 11605 K),

iii. the static magnetic field By (that’s measured in Tesla).

Other parameters, e.g., Larmor radius, Debye length, thermal velocity, Cyclotron
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frequency and Plasma frequency are derived from the above parameters. One of the
main properties of plasma is collective behavior that differentiates it from a neutral
gas. Particles in neutral gas interact only through collisions, which involve short range
Vander Walls forces. An independent straight path is followed by these particles from
the other neighborhood particles. On the other hand in plasma, situation is quite
different where interaction between charged particles involves the long range Columb
force and at the same time a charged particle interacts with several other particles.
Consequently, plasma shows an immediate reaction to an external perturbation which
is recognized as collective behavior. Debye shielding is main feature of plasma which is
the ability of plasma to reduce electric fields effectively. When a test charge (positive
charge) enteres in to plasma, the particles of plasma will try to neutralize the effect of
this test charge by confining its electric field to a specified distance which is known as
Debye length represented by Ap. In plasma, the test charge is surrounded by electrons
while ions feel repulsive force. Debye length (Ap,) is an important parameter of plasma
which is given by

’GoKBT
ADs = eTnc;e-, (1.1)

where 1. i8 equilibrium number density, T, is the electron temperature, € is permit-
tivity of free space, e is the elementary electronic charge and Kp is the Boltzmann
constant. This shielding process (non-static) depends on the thermal energy of elec-
trons (and ions).

Another property of plasma is the quasineutrality which is mixture of electrons and
ions that is not strictly neutral but like Debye length its deviation from neutrality can
occur at short distance. However, at lengths larger than Debye length, the plasma
must be quasineutral i.e., nyp = n (the number of positive charges is almost equal
to negative charges). This quasineutrality occurs due to collective behavior of plasma
and is a defining property of classical plasma. For small perturbations, the electrons
must attain the new equilibrium by getting its new position at Debye length Ap,.
The probable time taken by electrons is 7 =~ Ap./v. with the thermal velocity v,
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(=/KgT./m.). The reciprocal of response time is termed plasma frequency wp. and

ﬂe()e2
= ’ 1.2
Wpe pa— ’ ( )

that shows the typical electron oscillations with a fixed background of ions. On the

is the basic plasma parameter

basis of above-defined plasma parameters, we have three basic conditions for a gas to
be in plasma state.

() L >> Ape (size of plasma L must be larger than the Debye length) in order to
satisfy the quasineutrality condition.

(#) In Debye shielding, number of charged particles must be large Np >> 1 so that
plasma behave in a collective manner.

(#45) wpe >> v i.e., the plasma frequency wp must be greater than the collisional

frequency v so that the ionization rate is greater than the combination rate.

1.2 Multi-Component Plasma

Mostly in plasma, we focus at the contribution of negatively charged electrons and
positively charged ions. However there are also some other charged species that exit in
it, e.g., positrons, negative ions, negative dust, positive dust etc. Such type of plasma is
known as multi-component plasma. Details of some types of multi-component plasmas,
studied in our research work are given below:

1.2.1 Electron-Positron-Ion Plasma

The plasma state has received a remarkable attention in the field of physics due to the
fact that most observable state of matter in the universe exists in ionized form. Due to
this attention, the plasma physics has opened up various new scientific and industrial
applications. Among the classification of plasma, the pair-plasma containing charged

particles in the form of electrons and positrons is unique in its nature and existence. It

is believed that early universe existed in pair plasma state [ ]. It is also obvious that
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such a pair plasma consists of some nuclei (considered to be ions) in the background
by making it three component plasma known as electron-positron-ion plasma. The
addition of ions makes the three component plasma different from the pair plasma and
introduces some new modes of propagation. This three component of plasmas occur
in solar atmospheres | ], galactic nuclei | |, pulsars and neutron star’s environment | |
etc. Electron-positron-ion plasma can also be found in astrophysical jets of quasars and
blazars [ ]. The formation of this type of plasma is also detected in the magneto-tail
of the earth where electrons and positrons from the pulsars arrive and interact with
the electron-ion plasma in this region [ ]. Several experimental | | ideas have been
introduced to produce the electron-positron-ion plasma at laboratory level through
strong and high frequency lasers, in Tokomaks with the application of beam-plasma
system | |. The electron-positron-ion plasma has diverse applications and especially in
the understanding of astrophysical objects. The study of pulsars is the fundamental
application of electron-positron-ion plasma, which provides the basis for understanding
the phenomena occurring in distant astrophysical objects. The study of neutron stars
consisting of this three component plasma can provide diverse applications in the field
of solid state physics, where matter with high densities and strong fields are involved. It
is thought that the deep study and understanding of pair plasma or electron-positron-
ion plasma may provide ways to realize the concepts about the earlier universe. While
producing the electron-positron-ion plasma experimentally may help out to achieve

astrophysical like conditions at laboratory environments.

1.2.2 Electron-Ion-Hole Plasma

The most significant example of plasma is electron gas in an ordinary metal, where
valence electrons cannot be bound to any specific nucleus, but rather they behave
like a gas particles that’s why a metal is a good conductor. Moreover, at ambient
temperature and typical density, quantum effects can no longer be ignored. Thus elec-
tron gas along with lattice ions in a metal makes a real quanéﬁih plasma. Similarly,
semiconductor physics contributes another possible application of quantum plasmas
[, » , ] Though electron density in semiconductor materials is comparatively

4



less than in metals, the quantum effects are investigated due to the emerging of minia-
turization of electronic devices. The electron-hole (e-h) plasmas can be produced by
interaction of short laser pulses with matter where electrons gained energy during
interaction from valence band (V.B) and jump to conduction band (C.B) via absorp-
tion of single (or multi) photon depending upon band gap energy E,(T") and that
of photon energy. As a result of electrons transition holes are created in V.B [ |.
The electrons and holes fluids in semiconductor behave as quantum plasma under the
condition Tr.n > T, and they obey F.D statistics. Likewise, quantum effects be-
come more essential in semiconductors at such a small space scales i.e., the de Broglie
wavelengths associated with the electrons (and holes) are comparable to their average
inter-particle distances. For further manufacturing of modified semiconductor devices,
ion-implantation techniques are generally employed in which ions in host materials al-
ter their characteristics through introduction of metal ions (such as Fet, Cut, Ag*
etc.). In the recent past, ion-implanted semiconductor (IIS) plasmas have been ex-
plored[ , , . |, where quantum effects were studied. Also, Cd* ion trapped
in semiconductor gallium-arsenide (GaAs) heterostructure chip has been fabricated
[ ] which gives an interesting opportunity of three species electron-hole-ion (e-h-i)
semiconductor magnetoquantum plasmas to determine their quantum collective effects
on dispersive properties of magnetosonic propagation waves. In the last chapter, we
have studied the linear dispersive properties of low frequency magnetoacoustic waves
in spin-1/2 semiconductor quantum magnetoplasmas (GaAs, GaSb, GaN, and InP)
taking into account the degenerate relativistic and non relativistic pressure with Bohm
potential as well as exchange-correlation potential.

1.3 Premier of Quantum Plasma

Generally, plasma is divided into two types, classical plasma and quantum plasma.
Classical plasma is defined on the basis of low density and high temperature while on
another hand, quantum plasma is characterized by high density and low temperature.
The quantum mechanical effects can be observed in astrophysical objects (e.g., white
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dwarf, neutron stars, pulsars, magnetars, black holesetc.) [ , , ]as well asinsolid-
state objects (e.g., semiconductors, metals, nano-structures materials etc.) [, ]
The quantum effects play an important role when the average interparticle distance
(n~1/3) is comparable to the de Broglie’s wavelength, (Ag) i.e.,

Ay > 1, (1.3)
where
R
— . 14
AB= Vor (1.4)

Vin = /K5T/m is the thermal speed with T' (temperature), Kp (Boltzmann constant)
and m (mass of the quantum particle). The quantum effects may appear when the
Fermi temperature T becomes equal or greater than thermal temperature T, we then

have a relation

Ep(= KgTr) = %(31#)’/%2/3, (1.5)

of Fermi energy, Er in terms of Tr. For temperature condition of Tr > T the Maxwell-
Boltzmann (MB) distribution changes to Fermi-Dirac (FD) distribution. Therefore
another dimensionless quantum degeneracy parameter o (= !1‘.5) may be described as

o= % = 23V, (1.6)

This parameter quantifies the quantum regime in the limit range o > 1 and its more
detail is given in chapter (3). In other words at very low system temperature as
compared with Fermi Temperature i.e., T' < T the thermal energy may be ignored
and in this situation, typical velocity is called Fermi velocity which can be defined, by

2Er k
vp = ,/ Tn£ = ;(31#1:)1/3. (L.7)

In term of plasma frequency and Fermi velocity, we obtain typical scale length (length
of electrostatic screening) Ar. as
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Ape=2E = (M) . (18)

The quantum coupling parameter gq is the ratio of interaction energy E; (= EF) to

the average kinetic energy Ex

2
E; 1 \3

== n~n{—]. 19

9= B (nA%,) 19)

Plasma may be treated as quantum in nature when its particles significantly affect its
macroscopic properties. For example, miniaturization of semiconductor and metallic
structures to nano scales (thin metallic films, nanowires, quantum dots) has reached a
stage where the quantum tunneling effect of charge carriers has a substantial influence

on collective plasma processes in such structures.

1.4 Application of Quantum Plasma

Quantum plasma physics is a new research field which is rapidly grown in recent years
because of its potential applications in different areas of research. Quantum plasma
is usually used in quantum semiconductor (diodes), quantum dots [ ], nano wires
quantum computers [ |, micro plasma, laser produced plasma, ultra cold plasma,
ultra-small electronic components, bio photonics [ | and in compact astrophysical
objects (supernova, neutron stars, black hole etc.) [ |. Similarly quantum plasma
composed of electron gas along with ions that exists in ordinary metals and metallic
nanostructures e.g., nanoparticles, metal clusters and thin metal films. Moreover,
quantum plasma exists in quantum semiconductors and Laser produced plasma which
is briefly discussed application wise as follow:

1.4.1 Semiconductor Plasma

The field of semiconductor materials provides another probable application of quan-
tum plasma. Recently, the quantum electron-ion (e-i) semiconductor has been studied

by viewing the quantum effects i.e., quantum tunneling and quantum degeneracy pres-
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sure, which arise due to the Pauli’s exclusion principle and the Heisenberg’s uncertainty
principle. These effects play an important role in the behavior of electronic devices.
Quantum mechanical effects become prominent when the de Broglie’s wavelength as-
sociated with charge carriers (electrons and holes) become comparable to the spatial
variation of the doping profiles [. ]. The de Broglie’s wavelength is given by the re-
lation, Ag = VHAGT)' Quantum effects start playing a significant role when the de
Broglie ‘s wavelength is comparable to the interparticle distance of plasma Ap ~ d and
the plasma will be considered as quantum plasma which means that the plasma is high
dense. Otherwise the plasma will be treated as in classical nature. In other words we
can also say that if T < T then the plasma behaves as quantum nature. Accord-
ingly for T' << TF, the plasma is 80 in dense form that all the particles of plasma are
considered dimensionally like as Broglie s wavelength.

In quantum semiconductor plasma, the charge carriers due to the Pauli exclusion
principle obey the F.D distribution rather MB distribution. (The F.D distribution is
used for fermion particles e.g; electrons, protons, neutrons etc. follow both Heisenberg
uncertainty and Pauli Exclusion Principle. In this distribution the particles have fermi
energy EF i.e., the energy of the highest occupied state at absolute zero temperature.
Therefore at absolute zero temperature, fermions will fill up all available energy states
below a level Er with one (and only one) particle according to Pauli Exclusion Prin-
ciple. At higher temperature, some particles are elevated to level above the Fermi
level. On the other hand MB distribution can be used for bosons e.g; photons, bosons,
gluons, graviton etc. These particles have thermal energy Er. They follow Heisenberg
uncertainty and not follow Pauli Exclusion Principle). These quantum semiconductor
devices are like resonant tunneling diodes, high-electron-mobility transistors, or super
lattices [ ]. Though electron density in ordinary semiconductor materials is compara-
tively less than in metals, the quantum effects are investigated due to the emerging of
miniaturization of electronic components. To detect frequency shifts due to quantum

- effects, X-ray Thomson scattering in high energy density plasmas provide experimental
techniques for accessing narrow band width spectral lines [ ].
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1.4.2 Laser Produced Plasma

The rapid development of laser technology provides an excellent opportunity to con-
struct a high power laser source with high intense beam. This high power laser pulses
will open a new window dealing with interaction of laser beam with plasma in the
relativistic and quantum regime. There are a lot of physical linear and non linear
phenomena which are the subject interest in the thearetical investigations. These
phenomena contain self foucusing laser beam in quantum plasma [ ], laser filamenta-
tion [ ], linear and non linear electrostatic waves [ ] and electromagnetic waves [ |,
Cherenkov beam instabilities in quantum plasma [ ] and modulation instabilities in
the interaction of laser beam with relativistic quantum plasma [ ]. Semiconductor
provides a less expensive medium to model the phenomena in which laser produced
plasma has been found. When a beam of laser is incident on a semiconductor mater-
ial, electrons will excite from valance band to conduction band with the absorption of
photon energy. This inter band transition of the electrons creates holes in the valence
band, and this state may satisfy the plasma condition to produce electron-hole plasma.

1.4.3 Dense Astrophysical Plasma

Quantum plasma has a verity of applications in dense astrophysical objects, composed
of degenerate particles as well as non degenerate particles. In quantum plasmas, the
electron and positrons/holes are assumed to be degenerate while the ions are preserved
as non degenerate particles due to their much smaller de-Broglie wavelength in corre-
lation with thermal electrons. The dense astrophysical objects are discussed below in
detail.

‘White Dwarf Star

A white dwarf (WD) star is basically a long-dead high dense star that is formed through
the evolution process of intermediate mass stars like Sun. During the whole evolution
process period at about of several billion years, the star loses its original mass through

stellar winds and becomes in cool and dense form. However such a star at the end



of burning stage remains hot core (T > 10°K) called young WD. The mass of WD
is not as high enough as that of neutron star and black hole. Generally its mass is
comparable to that of sun while its volume is considered the same as that of earth.
A WD undergoes gravitational collapse when its mass exceeded to Myp = 1.4Mguq
(known as Chandrasekhar limit). WD star is so called because of its white colour that
has low luminosity. This type of star is in hydrostatic equilibrium which is due to the
electron degeneracy of pressure. Recently, strongly magnetized WD and its instability
due to nuclear processes have been studied by Otoniel et. al [ ]. Mostly WDs made of
axygen, carbon, or helium which possesses central densities up to ~ 10*'g cm™3. The
observed surface magnetic fields are from 10°G to 10°G. On the other hand, in the
framework of both Newtonian gravity and general relativity, analytical and numerical
calculations, show that WDs may have internal magnetic fields as large as 10'2-16G
[, ]

Due to quantum mechanical properties, the structure of WD star has a fascinating
feature inwhich electron degeneracy pressure (a phenomenon described by the Pauli
exclusion principle) against of its collapse [ ]. Other attractive property is that the
electrons are forced to squeeze with increasing mass of star and as a result the radius
of star decreases. The equation of state is modified through the incorporation of ad-
ditional factors associated with time period of rotation. In this model the restoring
force is applied due to the thermal electrons while ions are treated as inactive parti-
cles. Different modes such as p-mode (propagating acoustic mode) and g-mode (gravity
oscillation modes) have been theoretical studied [ , ].

Neutron Star

A neutron star (NS) is a collapsed core of very high dense giant star which has the total
in the range 10 - 25 of solar mass. In fact this type of star has a massive amount
of neutrons in its core that’s why it is called NS (or also known as giant nucleus). It
collapses so much that electrons and protons combine to form neutrons. Therefore this
system object has a high amount of neutrons but very slight variations of protons as
well as electrons which are a clear evident of its neutralized matter. These stars contain

10



Figure 1.1: White Dwarf

iron element as a main component, but the outer layers above of the core of iron layer
are composed of lighter elements [ |. A NS is partially supported against further
collapse by neutron degeneracy pressure, just as WD star is supported against collapse
by electron degeneracy pressure. Moreover, due to high density of NS, it has intense
gravitational and magnetic fields. The magnetic field of NS can be a billion times the
magnetic field on the surface of Earth. Usually, a huge dense NS may collapse into a
black hole and disappeared itself.

Figure 1.2: Neutron star

The temperature of a newly formed NS is in the range of 10! — 10'2K. However,

after a few years its temperature falls to 108K due to the emission of huge number of
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Figure 1.3: Magnetar

neutrinos [ ] and at this lower range of temperature, most of the light generated by a
NS is in X-rays. The magnetic field strength on the surface of NS ranges from 10° to
10%G [ ).

Pulsars and Magnetars

Generally NS is about 20km (12.5miles) in diameter and one sugar cube of its material
has weigh about 1billion tons (or 1 trillion Kg) on our Earth. Due to its small size
and high density NS possesses gravitational field about 2 x 10! times that of Earth.
NS can also carry magnetic field a million times stronger than the strongest magnetic
field produced on Earth. On the base of spinning effect and strong magnetic field these
stars can be further divided into two types: Pulsars and Magnetars.

Pulsars are spinning NSs which were first discovered by graduate student Jocelyn
Bell Burnett in 1967. Pulsars have strong magnetic field which have jets of particles
out moving often at the speed of light along their magnetic poles. Since the magnetic
field is not aligned with the spinning axis of star, therefore the beam of particles as a
light is swept around as it rotates. This light seems as the spotlight in a lighthouse.

Another type of NS is Magnetar which has magnetic field in the range 10'® — 105G
[ ] In Magnetars their crust is tightly locked with strong magnetic field so the change
occurred in one will cause to change the other. Therefore due to a huge magnetic field

the moment of star will release a tremendous amount of energy in the form of EM
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Figure 1.4: Pulsar

radiation. The SGR 1806-20 is a Magnetar which has been discovered in 1979 and
identified as soft gamma repeater. This star releases energy in 1/10 second which is
more than the energy released by Sun in the last 100,000 years.

1.5 Physics of MHD Waves

1.5.1 Alfven wave

Since low frequency EM waves can propagate in conducting fluid like plasma which is
not possible in rigid conducting medium. The two basic propagation modes are Alfven
waves and magnetosonic waves which are experimentally and theoretically studied.
Hannes Alfven in 1942 first predicted Alfven waves and assumed the plasma that
immersed in magnetic field as a conducting and incompressible medium. Alfven waves
are EM waves which have propagation vector K parallel to magnetic field By (i.e.,
K || By) with w < wy, 88 wa(= %) is the ion cyclotron frequency. The dispersion
relation for such a type of EM wave is given by

w= VA’G. (1.10)

In this equation V(= \ﬂlﬁ) is the Alfven speed and V; < c. Further Alfven waves-._

can be categorized into two main types. First is the torsional Alfven wave and second
is the compressional Alfven wave. Torsional Alfven wave is also known as shear Alfven
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wave and at frequency near to the ion cyclotron frequency is called ion cyclotron wave.
The word shear is appropriate in cartesian coordinate while the word torsional is in
cylindrical geometry. The propagation of the wave is angle dependent. Moreover,
this type of wave is slow and compressionaless which means that it is independent
of the change in density of fluid and related to low temperature. When we add the
kinetic effects then it said to be kinetic Alfven waves. On the other hand compressional
waves are known as magnetoacoustic or magnetosonic waves if magnetic field pressure
is incorporated. In this compressional wave the compression plasma is transverse to
By. Here dispersion relation is given by

w=Fk{Vi+V2 (1.11)

For compressional waves V4 > V, as V; = \/% denotes the ion acoustic speed which
describes that it is partially electrostatic and partially magnetic. If the magnetic fluctu-
ations increase as compare to density flux then electromagnetic behavior is dominante
likewise, if magnetic component is less than density fluctuation then electrostatic be-
havior will dominante. This wave is non-dispersive as phase and group velocities are
the same [ |. Compressional waves can also be designated as fast waves comparing
to torsional waves while at frequency above of the cyclotron frequency is known as
whistler wave or helicon wave [ ].

The Alfven waves have an important role in the development of controlled nuclear
fusion plasma which contributes to heat plasma at fusion temperature and carrying cur-
rent so that to generate magnetic field for the use of confining charged particles. These
waves may be helpful to understand the different instabilities and turbulance arising
in such controlled nuclear fusion plasma [ |. The Alfven waves play a crucial role in
Tokamaks and Stellerators. These waves are also observed in space plasma such as
earth’s magnetosphere, solar atmosphere and the interplanetary plasma. Similarly, the
coupling of energy between the ionosphere and magnetosphere at their sharp boundary
of the two regions may be explained through reflection of Alfven wave—s. ‘[ |- In solar
wind low frequency EM waves were examined through spacecraft measurements which
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are now called Alfven waves [ |. Likewise, the Alfven waves play a significant role in
astrophysical plasma under the influence of strong magnetic field. Recently, the effect
of Alfven wave on the thermal instability of the Interstellar medium is investigated
both numerically and analytically [ ]. The temperature difference between the sun’s
corona and its surface may be described on the base of energy transportation property
which is the basic idea given by Hannes Alfven. Thus the Alfven wave as a fundamen-
tal EM mode involved in many astrophysical phenomena e.g., energy transportation,
heating, damping, turbulence, mass loss in stars with cold corona etc.

1.5.2 Fast and slow Magnetosonic waves

A magnetosonic wave is a linear MHD wave which is propagated due to thermal and
magnetic pressures. Magnetosonic wave is categorized into two types, fast and the
slow magnetosonic modes. Both these modes have been recently discovered in the sun
corona | ]

Let ¢ is the displacement vector which gives the distance of a parcel plasma displaced
from equilibrium position in a specific direction. While F() is the force applied by a
parcel plasma displaced through displacement <. In cartesian axes K = k. §j + kyZ we
can derive the dispersion relation for MHD waves by using the following equations;

(W - ViK]) sz =0, (112)
(w2 - VSzki - Vzkﬁ) Sy — Vssz.k"g: =0, (1.13)
- ngJ_k"cy + (w2 - V}k“) Sz =0. (1.14)

For a non-trivial solution (i.e.,  is not equal to zero), we need

w? — V}kﬁ 0 0
det 0 W — V3K - VIR ~VZkuky | =0. (1.15)
0 ~VEkiky  wT-Viky

Equation (1.15) reduces the dispersion relation of MHD waves
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(@? - V3KD) [Ww* — K (V2 + V3) o + gk V3Vi] = 0. (1.16)

The solution for shear Alfven waves is given by

w? = Viki. (1.17)

A generalized form of magnetosonic wave in homogenous plasma is given by

wt — B2 (V2 + V3)u? + kk*ViVE =0. (1.18)

For fast and slow magnetosonic waves, the above equation can be written in simplified

form as

K2 (VE+ VE) AL
2 _ A S - .

here the subscripts f and sl stand for fast and slow respectively. It can be shown that
wy < w < wy, where w (= wy = V4k) is Alfven frequency. If the external magnetic
field is zero then V4 = 0 and wy = 0, implies wy = kVg. It means that slow mode
is disappeared while only fast mode remained in the system which is just as a sound
wave that propagates isotropically. Similarly, under the assumption of cold plasma
(To = 0), it follows that thermal pressure Py = 0 and therefore V5 = 0. Here w? =0
and w} = k¥*V3. Hence there is no slow wave, and the fast wave propagate in the
system isotropically with the Alfvén speed.

1.6 Quantum Magnetohydrodynamics Model

Magnetohydrodynamics (MHD) is the study which deals with the interaction of mag-
netic fields and moving conducting fluids. Here “Magneto” stands for electromagnetic
fields, “hydro” for fluid and “dyna.mf'es” for forces or moments. Three process are

important in MHD
¢ According to Faraday’s law of induction an induced e.m.f. is produced due to the
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relative moment of a conducting fluid and a magnetic field.

e The induced current will give a second, induced magnetic field according to Am-
pere’s law. This induced magnetic field will add to the applied (original) magnetic field
and the change is usually such that the fluid appears to drag the magnetic field lines
along with it and this is called frozen-in-lux condition.

® The combined magnetic field i.e., origional magnetic field plus induced magnetic
field interacts with induced current density, to give rise a Lorentz force [ ].

Some salient features of MHD are described as below:

e MHD model is used for low frequency plasma interaction i.e., w < wg. The
main propagation source of these MHD waves in plasma is ions particles in which
ions oscillate in response of a restoring force provided by an effective tension on the
magnetic field lines. Therefore, these waves are considered as low frequency waves.

o Ions and electrons are strongly magnetized which means that they are tied to the
magnetic field lines.

o Plasma will act like a single fluid.

# Scale may be considered as a bulk i.e., particle identity is lost.

e MHD describes the macroscopic behavior of plasma.

e Each term in the MHD equations represents a different physical effect.

Quantum hydrodynamic (QHD) model is one of the possible approach to inves-
tigate charged particle system with relevant quantum effects. Quantum MHD is the
macroscopic fluid model that is used to focus the global properties of quantum plasma.
The QMHD equations in a simplified form are given below [ |]:

0Pm -
W +V. (p,,,V) =0, (1'20)
8 _ Pmt? o (V2P
p,,,(a+v-V)v—JxB—VP+2m¢m‘V( ) (1.21)
VP=V3Vp,, (1.22)
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v xE=—%—?—, V x B = pyJ, (1.23)
and
m; K? Vz‘/Pm
= Yo - JxB)— v . 1.24
J=y, |E+vXxB ep,,.( x B) 3 ( o (1.24)

Here the plasma centre of mass density with m; >> m, is given as p,, (= n.m.+nym; =
nm;), the modified pressure as P(= P, + P,), current density as J(= (v; — ve)ne) and
Yo(= pm€®/memive) with v being the collisional frequency for momentum transfer
between electrons and ions. The adiabatic sound speed is represented by V, in the
above Equation (1.22). To use MHD model quasineutrality condition is considered.
Quasineutrality means neutral enough so that one can take n, = n, = n where n is the
common density called plasma density, but not so neutral that all the electromagnetic
forces vanish. Accordingly plasma has also collective behavior. Therefore to study
MHD waves in quantum plasma quasineutrality condition must be applied. Usually an
infinite conductivity is considered in an ideal MHD model by neglecting the Hall force
term in Equation (1.24) which gives

——vxBty (Vz‘/”:) , (1.25)
2em,

p,,.(%+v-V)v=i(VxB)XB—VP+2’:’::iV(V;‘:_m), (1.26)

and

%=Vx(va). (1.27)

The term that makes the quantum MHD different from the classical one is the quantum
correction term which appears as last term in Equation (1.26). The quantum correction
term in non-ideal QMHD vanishes if the curl of Equation (1.25) is operated and leads
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to a dynamo Equation (1.27) similar to that of classical MHD. Therefore, with the
assumption of infinite conductivity, still the condition of magnetic field lines frozen in
fluid is satisfied. Now we introduce the following some dimensionless parameters as
B Wel

y E = Fo, r =—‘7A— and E= wt, (1.28)

where p, and B, are the unperturbed mass density and magnetic field, respectively,
wei(= eBp/myc) is the ion cyclotron frequency and the typical Alfvén velocity V(=
v/2X) which provides a natural velocity scale in MEID. Rescaling the QMHD equations
with the dimensionless parameters provided in Equation (1.28), these equations in
normalized forms may be expressed as under

0P

5tV (Pn¥) =0, (1.29)

oo\, =B Bos o Peio (Vi
(E+V-VV)PM—(VXB)XB"'ﬁiva+ 5 V(m), (1.30)

B _vx(7xB), 13y

where H, is dimensionless parameter and is defined as

Ho= 8
° ViV,

This parameter H, measures the quantum effects which in MKS system can be written

(1.32)

H, =342 x 10-3032;, (1.33)

here ng (and By) is the ambient particle density (and the externally applied magnetic
field). It can be seen from Equation (1.33), that H, can be neglected in the case of

classical plasma systems where the number densities are low. However, for astrophysical
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plasmas such as WD ar NS, where the number densities lie in the range 10% —10%m "3,
the quantum parameter H, can take values near to unity or greater and, thus, quantum
effects become important.

1.7 Temperature Degeneracy and Fermi-Dirac Sta-
tistic

When the number density of quantum plasma increases and the system temperature
decreases, the interaction among the particles may play a vital role. As these particles
become closer, the overlapping of their associated waves may occur and consequently
energy levels split and therefore the effect of degeneracy observes. In case of de-
generate plasma equilibrium distribution changes from Maxwellian (classical) to F.D
(degenerate) [ ]. In quantum plasma, the two effects i.e., Pauli’s exclusion principle
and Heisenberg uncertainty principle are combined then as a result quantum pressure
is produced. The Pauli’s exclusion principle is due to fermions (particles with half-
integer spin) which obey F.D distribution while Heisenberg’s uncertainty principle is
linked with wave nature of particles. The electron degeneracy pressure may be gener-
ated when electron concentration is confined in a small volume [ ]. The §(= 375'7':)
(known as Fugacity) in F.D distribution which describes the degeneracy in chemical
potential (x) and thermodynamic electron particle temperature (7.). To show that
the regime is either degenerate or non degenerate depends on the numerical value of
§. If { «1ie., ghy is large and negative, the regime is a non degenerate implying
§ — 0, and similarly on the other hand, if { > 1 i.e., glz is large and positive, the
regime is completely degenerate implying ¢ — co with g — Tp, = 1/2mv},, here
vre = (K5Tre/m)"/? is the Fermi speed of electron. Alternatively, we can also define
the above system of regimes as (a) if Tr. <« T, , the regime is non degenerate and (b)
if Tre > T, the regime is considered as degenerate [ ]. In the theory of F.D system
we take the F.D distribution function which for electrons can be written as
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nnd) 14 eKaTe

here g, = 1/2m.v2, v, is the velocity of electron and u is the chemical potential of

(1.34)

electron which is a function of time and space. The chemical potential exists in the
limit range —00 « p — 400 and is an arbitrary quantity. In above equation A is

N n 3/2
the normalization constant and [ fd®v = n,, so that A = ~ Tt (h—'l"';ﬁ) =
2 (T':'i'i):” here Li, (£) of index v is the polylogarithm function given by [ ]

. _ 1 00 xu—l
=g ), $oyo (1.39)

where x = zf4- and I'(v) is the gamma function. Now the thermal equation of the

state of Fermi gase can be found from the following system of equations

OV, T, )

P=—_ |27 (1.36)
| OV I,
[V, T, )]

n=— | —== . 1.37
| op lvr ( )

Here Q(V, T, u) is the grand thermodynamic potential of the electron particle (i.e.,
it depends upon volume,teperature and chemical potential) which is given by the ex-

pression as
Q. = —K5T, Z]n (1 + e(H)/KBTe) . (1.38)
k
This equation implies
KT . 3/2 r
0

where go = (28 + 1) is the degeneracy with respect to the spin, » = ¢/KgT,, £ =
u#/KpT, and the chemical potential changes in the range —0o < u < +00,The system
of thermal equations (1.36-1.37) of state are given by
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P,T)= 59(021r)':fi3 ,/0. e(f‘f):{- 1’ (1-40)
Va@m)t = sdds

n(y, T) = (92015)2'23 /o e(f—f)+1' (1.41)

F.D integrals in the above two equations using gy = 0 with other parameters are given
below

] 3
2 (2mkgT, ) [ xidx
P, 1) =3 2mmit / e +1’° (1.42)
8 1
2mkgT,)T [ id
n(u, 7) = E7EET a (143)

0 el»—§) +1 '
In terms of polylogarithmic function Equations (1.42) and (1.43) can be written as

[ ]

P(p, T)= -g%’%%)ir (g) Liy (-erﬁﬂ) , (1.44)
n(u, T) = -(—"";'—1’:;%)—;1‘ (g) Liy (—eré"t:) : (1.45)

Solving Equations (1.44) and (1.45) we can obtain the generalized form of pressure
in terms of polylogarithm as
P = GnkgT,, (1.46)

hich is the barotropic equation of state with G = 2 being defined as arbi
W 1s the barotropic equation of state wit —Egi_—ébemg as arbitrary
temperature degeneracy parameter. For § << 1 we have G = 1 + 56, Therefore

Equation (1.46) becomes as

Pynp = (1 + ES/T)"kBT“ (147)

which gives the expression of pressure for in case of nearly non degenerate (NND)
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plasma. Accordingly, for £ > 1 polylogarithm function can be expanded as G =

(- %;-(1—7.';:)2). Hence Equation (1.46) implies as under

™ ksTe

2 2
Pnp = 3(1 - 12( p ) )ner

(1.48)

This equation shows pressure for in case of nearly degenerate plasma with Fermi energy

er = kgTFe.-

1.8 Spin Magnetization

Brodin et al. [ ] investigated novel collective EM wave phenomina including electron
spin-1/2 effect. The electron tends to align its spin effect with external magnetic field.
Consequently, there is emerged a plasma magnetization in the direction of this field.
The spin effect modifies the plasma current density and produces a magnetic moment
force on electron. The Maxwell's equations are written as

JB

VXE=—E,

(1.49)

and

Here J, (= }_gnV) is the plasma current density due to free electrons and similarly,
the electron magnetization spin curret density (J,,) is as under;
IJn=V xM, (1.51)

where M is spin magnetization (Pauli magnetization) per unit volume and its mathe-
matical expression can be derived in following manner.

As the energy of free electron in presence of external magnetic field in simple form
is given by

E = (N +1/2)hw + (R /2m)k,;z £ pgB. (1.52)



Here N denotes the Landau quantum number (N =0, 1,2,...). The first two terms in
right hand side of the above equation are related to the orbital motion of the electron.
While the last term results from the to the electron spin (s) coupled magnetic moment
(8, = —pgmg = Fpp, a8 m = +1/2,g = 2). A simple relation of spin magnetization
(pauli magnetization) is as under,

= (ny —n_)up, (1.53)

here n, is the number density of electrons with magnetic moment (u,) along the
magnetic field. Similarly, n_ is the number density of electrons with u, against the
field direction.

Under thermal equilibrium, the condition for high temperature is py,B <« KgT
therefore we have the relation for magnetization

nu%B
M= KT (1.54)
It means that magnetization in this case is temperature dependent i.e.,
M x 1 1.56
T: ( . )
Similarly, for low temperature new magnetization will become as
BI‘B
= (ny —n_)ug = —2KB D(E) & ik, (1.56)

In the above equation —j‘% can be replaced by §( E— Ey) for low temperature condition.
The density of states for the free electron gas,

D(E) = ( )3”(KBTF)’ (1.57)
Therefore,
M < nu%B
= o (1.58)
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This equation gives the expression for spin magnetization (Pauli magnetization)
per unit volume. The magnetization arises due to the spin of unpaired electrons and
is proportional to the difference of densities of electrons spin up and spin down (ny, —
Ngounm). At low temperature this difference vanishes due to pauli blocking. Therfore the
spin magnetization becomes zero for an ideal Fermi gas at ground state [ ]. However
the spin magnetization may play a significant role for those electrons which are closed
around to Fermi level. For spin quantum plasma the evoluation equation can be written
as

=133 (1.59)
In MHD, spin inertia can be neglected under the the assumption w < we < wee, which

gives the spin equation of motion as 8 X B = 0, and the solution is

8 = —3hn(ac)B, (1.60)

where 7(a¢)(= tanh(ag)) is the Langevin parameter due to the magnetization of a spin
distribution in thermodynamic equilibrium and a¢ is magnetic energy due to thermal
energy ratio i.e., ag = g}% as G is temperature degeneracy parameter and pB(|2f,—L|)
is the Bohr magneton. The spinning effect is as one of the most important property of
quantum plasma in the presence of high magnetic field. In quantum plasma, spin effect
urges the continuation of different types of waves. By employing separate spin (spin-
up and spin-down) evolution model, new longitudinal waves are obtained and these
types of waves are propagated along perpendicular and parallel direction of external
magnetic field.

1.9 Quantization of Magnetic Field and Landau Pres-

sure

e

Landau quantization is a mechanism by which the quantization of energy levels oc-
curred due to the presence of magnetic field. It is known that the moving electron
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(either spinning or orbital motion) produces a magnetic field which has a magnetic
moment along the axis of gyration. The orientation of magnetic moments generates
magnetism in medium. The spinning or orbital motion of electron is altered by apply-
ing the external magnetic field. In the presence of strong magnetic field the quantum
plasma has two magnetic effects: one is the Pauli magnetism due to the spin effect of
electron and the second is the Landau diamagnetism (Landau quantization) due to the
quantization of the orbital motion of electron. Landau quantization effect is a pure
quantum nature which has no classical analogy and can only be explained in quantum
mechanics [ ]. By applying external magnetic field, the energy of the system in terms
of quantized energy levels is enhanced due to diamagnetism. The fixed electron shows
Pauli paramagnetism that higher than Landau diamagnetism while the free electron
experiences Landau diamagnetism at T, > T, although, the Pauli paramagnetism be-
comes too small. The electrons rotate in circular orbit in a plane perpendicular to the
magnetic field in the direction of z—azis (HZ). The motion of electron can be resolved
into two parts : one is parallel to magnetic field inwhich the longitudinal energy is not
quantized that can be given as ¢, = 2;1; and the second, is quantized transverse energy

which can be written as

E_|_=EN=(2NL+1+8)HUQ, (1.61)

here Ni denotes the Landau quantum number (N; = 0,1,2,...) and the cyclotron
frequency is we = %, while s defines the spin orientation 5= %6", with o,(+1) is the
operator. Relation (1.61) manifests that the energy spectrum of electrons consist of
the lowest Landau level, Nz =0, s = —1, while 2 degenerate levels give us polarization
s = +1. Thus each value with £ # 0 occurs twice, and that with £ = 0 once. In terms
of Bohr magneton, ug(= 2%), Equation (1.61) can be written as

en = (2N + 1 + 8) ugHy. (1.62)

Thus the net energy of electron in the presence of magnetic field (¢ = £, +¢,) is
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2m,

e=e(Np,k:)=(2Np+1+8)ugHo + (1.63)

The first part of energy in right hand side of Equation (1.63) is discrete in nature
corresponding to the quantization of the circular motion perpendicular to the magnetic
field, it is to be noted that the spectrum discrete levels differentiated from each other
by the energy gap, 2ugHp. Accordingly, the second part of energy is not quantized and
depends on k;, corresponding to the motion of an electron along the magnetic field.

In order to empathize thermodynamic properties of electron gas embeded in quan-
tized magnetic field, the pressure can be written in the following way [ ]. As the
thermodynamic function (also called grand thermodynamic potential) in explicit form
can be expressed in the form Q, = Q.(T', V, u, H). Therefore pressure is defined in terms
of grand thermodynamic potential as

o0,
P=- W] - . (1.64)
For F.D distribution of electron we have
Q=) M =-KpT.) In(1+ebeVKsTe), (1.65)
k Ny,

where € is the energy of non-interacting particles i.e., Fermions or bosons in quan-
tum state N at temperature T, and p is the chemical potential that changes in the
limit from —oo0 to 400 in F.D distribution function. For electrons in e-i plasma the
thermodynamic function can be written as

p—e
Q. =—-2KsTY In (1 + eKBTe) . (1.66)

N
Here k — (N, Ky, k;) and € (N, k;) is given Equation (1.63) while the factor 2 takes
into account degeneracy with respect to spin. Let the electron gas is occupied in volume
V(= Ly LyL3), after further sinif:li.ﬁcation we get the following relation
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0o p—€
4KsT.V / dk, T
- —In|1+eftBle | de, 1.67
@rR)Y? 4~ ] de ( (1.67)
eng,
where ey, = (NL + 1/2) hw,. is the root of Equation (1.63) at k, = 0. Integrate up

this equation w.I.t £y, one can obtain

1 oo
= m/k&f (E)des

e—p\ !
here k; (£, Ni) = ¥ (¢ —ex,)/? and f(e) = | 1 +eKBTe) is the F.D distribu-

tion. It thon modifies Equation (1.67) as

Q. = (M)z Ay / ke (e, Ne) £ (€) . (1.68)

ENL

In the above equation R(= \/?;I-) is the magnetic-length. Now the pressure of the
electron gas can be written in the form as

P, = (M),z / u (e, N2) f (en) de

ENL

- éﬁz / (e — eny)/2 £ (€) de. (1.69)

E"L

Integration of the equation can be modified in the following form as

[ —em s (erce

SNL

- [ -en)”* (-2 a,

BNL

I

substituting the above relation in Equation (1.69) the pressure for arbitrary degenerate
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plasma becomes as

P.= 3?;2";2 / (- L)af’( ) : (1.70)

1.9.1 Pressure for Non Degenerate Plasma

Let’s solve the Equation (1.70) for non degenerate electron gas and that can be written

as
h= / c-en)”* (-2 a, (L71)
GNL
pL—E
in this case the distribution f (e, p) = (1 +eKBTe) for large negative value
B
p—€ . —£
) f ) elBle —
f becom = eKsl. - = eKpTe,
o KBT will eas f(e) =e thus e KT, B It makes
Equation (1.71) as
Pk —
KgT. T —_—
efiBie
L= [ (—en) eKolede. (1.72)
GNL

let & =¢g—¢y, and for e =€y, then €' = 0 and for € = oo it implies that £’ = oo.

Using these values in Equation (1.72) We get

B th -] —E'
KpgT, 2
_ (] Ble AN | KaT []
I, = Kol (e:) efApled ¢
—F_ENL [ oo —E'
KgT,
e Bie B
= ——— —_ —_— H K Tg !
KT, 0 / (€) /e Blede |de
[ 0
——F—ENL i oo —6"
KpT, —_—
e ABle 3 "i ’
= e—— | — 4 K T
KT, 2KBT¢/(E) efABled ¢
0
3 HE—ENL, —E'
= e K5 / (€)ieKaTed ¢ (1.73)
0
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. . €
Again subtitute z = T,

’
) 3

I3= /(e')!lle—ﬁd £ = (Kaﬂ)i /zl/Ze—zdz.
0

that implies &' = zK T, and de' = KpT,dz

(1.74)

Now using the the Gamma function definition T (z + 1) = [ z*¢®dz and it shows in our
0

oo
case that for z = 1/2 we have I' (1/2 + 1) that is equal to T' (3) = [ z'/%e~%dz = .
0

Using these manipulations we get
Is= (KsTo)} / z'Pe%ds = ‘/_(KBT,)z
0
and hence

2= 3\/_(KBT)g KBTe

which makes Equation (1.70) as

7

P, =

3h(2rR)? 4

by putting the value of £y, from Equation (1.62) we get

7

1 3
P, = 8(2m.)¥ 3y/x(KpT.)ieKBTe Z ¢~ (@NL+1)ugHo/KsTe

3h(27R)? 4 4

The summation w.r.t Ny, in Equation (1.78) gives

Y 2 = Rein h(ugHo/KsT)]

Np=0

8mo)t 3yA(KaTteXTe o~ ~pery.

(1.75)

(1.76)

(1.77)

(1L.78)

(1.79)



by putting in Equation (1.78) We have

M
(2rm,) i (KsT.)3 eKsT.
A(2rR)y®  sinh(ugHo/KsTe)

P.= (1.80)

B
The expression e KBTe (= ¢,) for non-degenerate gas, using Equation (8.42) of Ref. [ ]

thats holds true for any value of a strong field, including a quantizing magnetic field
has the value

¢ =ngT, _ _ne(m)i® sin h(ppHo/KpTe)

(2m.KsT,): (#pHo/KpT.)
It then makes the expression Equation (1.80) as

P. = n.KgT.. (1.81)

It is observed that in case of non-degenerate and classical plasma pressure is indepen-
dent of magnetic field.

1.9.2 Pressure for Degenerate Plasma

The problem of distribution of an ideal gas (Fermions or Bosons) can be solved by the
proposed method of Landau [ ]. At T — 0, the F.D distribution becomes Heaviside
step function. In this limit the chemical potential is equal to the Fermi energy, and
all states of energy below the Fermi energy is occupied, while all states above are
empty and such a state of plasma is called complete degenerate plasma. Following this
argument, (— %f) tends to a step-function with argument € — u, such that

(-3) = st ¢

where § is the Dirac-Delta function which is one for ¢ << £y (degenerate state of
plasma) and zero for £ >> €. Using this idea Equation (1.70) becomes

8 e
R—Shﬂzz f (¢ — ex,) V26 (e — £0) de. (1.82)
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Using the Dirac-Delta function property of T f(z)8 (z — a)dz = f(a). Therefore,
0

[ -5~ ur)de = (e - en ),

EN
where ey, = (2N + 1) ugHp and therefore the integral under the above condition of
degenerate state of plasma ¢ << £ becomes as

/(E - ENL)3/25(€ —pp)de = (Ep — (2NL + 1) I‘BHo)m.

EN

Equation (1.82) in simplified form is as under

P :,ﬁf;;;),[g{ep— (3N +1) g Ho 2 (189

Here Ny = I‘FT;I—%E. Using the quantum limit condition (when all electrons are
B

found at the zero Landau level i.e., ugHy < pp < 3ugHy), the Equation (1.83) can be
. ]
written as P, = 3%(12;%);,': 65 — napoHolY?,

The concentration of electrons is expressed in the following matheimatical relation

f: 7 (—%) k(€ )de,

(21rR)"‘ =]

From Equation (1.63)
Y, 2m 1 /2

z(EiNL) = T (5 ENL)

Therefore we have
_ 4em)t & / e —em )2 (- (e)
fi(2‘er)2 Ne de,
Further after the derivation one can get

(2m,) > 1/2
n=""gugHo Y [€p— (2Np+1) ppH]'”,
Np=0
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which implies that

No 3 1
15 6~ AN+ Dol = b (180
Ni=0 (s;ﬂmli;_) 'B**0
Using Equation (1.84) in Equation (1.83) we get
p_ 8m)t 1
¢~ 3K(2rR)? 3\ L3 H3
co
By using the values of R = (;ﬁm)’ and pp(= £X) we arrive at
m™ht\ nd  nd
P = (3?-"":) Fg = —IE (1.85)

The above equation describes that the pressure of degenerate electron gas in the
quantum limit has strong dependency on both density as well as magnetic field. This
equation is valid for the degenerate plasma in the presence of quantized magnetic field.

1.10 Thesis Layout

The thesis is based on theoretical analysis of quantum MHD waves with effect of spin
magnetization and temperature degeneracy and is divided into four chapters as follow.

In Chapter (1), we are discussing the basics of plasma physics, multi-component
plasma, application of quantum plasma, physics of MHD waves, quantum MHD model,
F.D distribution, arbitrary temperature degeneracy, spin Effect, Landau quantization
and Landau Pressure.

Chapter (2), is about our first research problem related to the study of MHD waves
in quantized magnetic field. This chapter consists of five sections. Section (I) gives
a literature review concerned to the problem. In Section (II) dispersion relation with
effect of quantizing magnetic field is derived and further different modes of MHD waves
are numerically and graphically analyzed. Similarly, we discuss dispersion relation with
effect of both quantizing field and spin magnetization for different MHD wave modes
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in Section (TII). Section (IV) is delegated to results and discussion . The conclusion of
the whole chapter is then given in Section (V).

In Chapter (3), we study our next research problem related to the linear properties
of MHD waves in nearly non degenerate and nearly degenerate quantum plasma com-
posed of three species (electrons, positrons and ions) in the presence of spin- 1/2 effect.
This chapter consists of four sections. Section (I) gives a literature review concerned
to the problem. In Section (II) a generalized dispersion relation is derived with the
help of equation of motion and continuity equation along with Maxwell equations using
MHD model and MHD wave propagation modes are analyzed. Results and discussion
are presented in Section (III). The conclusion is then described in Section (IV).

In Chapter (4), we describe the linear properties of magnetosonic waves in ion
trapped semiconductor electron-hole-ion (e-b-i) plasma with effects of density correla-
tion via Bohm potential, spin magnetization, exchange correlation potential and rel-
ativistic degeneracy. This chapter consists of five sections. Section (I) is related to
literature review. A modified and generalized dispersion relation for oblique propaga-
tion of waves is derived by using the quantum MHD model in section (II). Propagation
modes are described in section (IIT). Results and discussion for in case of some typical
parametric values of Cd* ion trapped in Gallium Arsenide (GaAs) and Gallium Nitride
(GaN) semiconductor compounds at room temperature are then given in section (IV).
The conclusion is then given in section (V).



Chapter 2

MHD Waves with Quantized
Magnetic Field

2.1 Introduction

Degenerate plasmas have gained a lot of interest owing to their important potential
applications in modern technology such as metallic and semiconductor nanostructures
(e.g., quantum dots, quantum wells, quantum wires, spintronics, quantum free elec-
tron lasers, nanoplasmonic devices, nanotubes, metallic nanoparticles, thin metal films,
metal clusters, etc.). Likewise, quantum plasmas commonly exist in dense astrophys-
ical systems particularly, WD, NS and superdense interior core of Jupiter [ , ]. It
is to be noted that the quantum plasma may play an important role when a hydrogen
pellet is compressed many times to that of its solid density state. In quantum plasmas,
the spin effect as well as quantization of the orbital motion of electrons are very sig-
nificant however they may not survive on classical scales. Quantum mechanical effects
appear when the average interparticle distance (or Wigner-Seitz radius) a = (3/47n)Y/3
is almost equal to or smaller than the thermal de Broglie wavelength i.e., nA} > 1.

It is well-established that Fermion gas under a constant external magnetic field
gives rise to two phenomena. First, is known as pauli paramagnetism and the second
is called Landau diamagnetism. The former phenomenon is occured due to the spin of

electrons, whereas in the latter case the orbital motion is quantized. The quantization
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(discreteness) of the orbital motion of electron gas was explained by Landau [ | under
the external magnetic field while experimenting on metals. The electron gas in the
presence of a constant external magnetic field performs dual motions (i.e., helical mo-
tions) simultaneously; One is a perpendicular motion which is purely rotational with
radius r = :—i (here v, is perpendicular component of velocity and w,, is the cyclotron
frequency) and the other is the parallel (along the direction of external magnetic field)
which is linear. The former motion is purely quantum in nature, whereas latter motion
is purely classical in nature so that kgT *» fwe [ , |. Lundin et al. investigated the
high frequency EM waves in the presence of extreme magnetic fields H ~ 10'* — 10*G
(in the vicinity of magnetars and pulsars) [ ]. The equation of state (EOS) has been
calculated for laser-plasma interaction with the effect of quantizing magnetic field in
laboratory level by Eliezer et al. [ ]. They further stressed to study the research on
laser-plasma interaction now becomes a domain of physics equivalent to astrophysical
plasmas such as WD and NS. Later on, Tsintsadze and his co-authors in their number
of papers have studied the relativistic thermodynamical properties of a Fermi gas in a
strong magnetic field [ ]. It was observed that the dispersion relation of longitudinal
electric waves is strongly dependent on the magnetic field strength. The impact of
such a strong magnetic field on the wave propagation and thermodynamical properties
of a medium is a vital issue in supernovae and NS. The prestellar of the evolution of
the universe and the convective zone of the sun as well as in laboratory plasma (e.g.,
the laser-matter interaction) are also characterized by strong magnetic fields. On the
basis of measured data of astrophysical system, the magnetic field on this surface NS
is reported, as 10" — 10'3G and while the field of interior core of NS can reach to
10'®G or even may be higher values[ , , ]. However, the rotational movement of
stars may cause to increase this field by a factor 103 ~ 10* shown by Bisnovati-Kogan
[ ]. Here in this situation the characteristic energy of electrons on a Landau level
reaches the non-relativistic limit of the electrons chemical potential p = Ep = g,
where Hy = H, (-L"E-) i.e., Hy(= ﬂs,g ~ 4.4 x 10'3G)-ia.Schwinger’s magnetic field and
ur(= y/E2ZE) is the speed of electrons at Fermi surface with T = S22 (Ferm

2m.Kp
temperature of electron), m,(mass of electron), and ki = 2 (reduced Plank’s constant).
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Alternatively, in terms of number density of plasma (n) along with magnetic field ( Hp),
Fermi temperature may also be defined as Tr = -“3.‘\,:—::‘;-(‘,},%’)2 Therefore, in the presence
of extreme magnetic field the wave dynamics and thermodynamical properties would
be quite different in quantum plasma governed by the quantum effects. In classical
plasma physics, fluid (or hydrodynamic) models are often derived by taking moments
of the appropriate kinetic equation (e.g., Vlasov’s equation) in velocity space. In the
magnetohydrodynamic (MHD) description of the plasma, the latter is considered as a
single charged fluid in which the plasma particles (viz, electrons and ions) move with
the same velocity. The quantum hydrodynamic model (QHD) and quantum MHD
model are the extensions of the classical hydrodynamic model. The QHD model for
charged particle systems is extended to the cases of nonzero magnetic fields. These two
models focus on some microscopic variables of quantum plasmas such as charge, mo-
mentum and energy transport. Therefore, these two models are widely used to study
the propagation properties of linear and nonlinear waves in quantum plasmas.
Usually, in quantum plasma, high density and low temperature are considered as
typical plasma environment in which quantum effects arise. Criteria of the electron
pumping in electron-hole (e-h) quantum plasma has been discussed by Afify [ |. The
linear and nonlinear propagation of kinetic Alfven waves (KAWSs) in quantum plasma
have been studied with the inclusion of spin magnetization effects. Using the numerical
values of physical parameters, it is found that the dynamics of linear and nonlinear
structures are significantly modified due to the change in spin magnetization effects
[ ]- The nonlinear propagation characteristics of inertial Alfven waves (IAWs) are
investigated by taking account into spin magnetization effects along with exchange
correlation effect [ ]. The features of shock waves in Landau quantized plasma are
also analyzed with higher (lower) electron density and magnetic field stength by Deka
and dev [ ]. Similarly, different spectra of spin magnetosonic waves are studied in
a nonrelativistic quantum degenerate plasma, accounting for spin-up and spin-down
electrons (assumed these electrons as two different fluids). It is found that the energy of
the degenerate electrons in the perpendicular direction becomes quantized into Landau
levels due to very strong magnetic field. It is also shown that the spin polarization may
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cause to give birth to a new wave [ |. Zedan et. al., investigated theoretically the
multi-dimensional instability of ion acoustic solitary waves in a magnetized, degenerate,
collisionless multi-ion plasma with trapping distributed electrons under the influence of
quantizing magnetic field and polarization effect. The stability of oblique propagating
wave with a polarization force effect is studied. Moreover, the growth rate of the wave
instability has also been calculated [ ]. The degenerate characteristics of the weakly
ionized NS are explained in the presence of quantized magnetic field. The quantized
magnetic pressure is taken along with Fermi pressure and therefore the sound wave in
the dispersive ionized neutrino stars is described. It has been shown that solitary wave
may exist for a NS (weakly ionized, degenerate and magnetized), where the density
of neutrons is much larger than the unperturbed density of charged electron and ion
species [ |.

The spin effects on linearly EM wave propagation in arbitrary direction have been
examined in dense magnetized plasmas by Hu et al., [ ], where it was shown that
spin phenomena to be more significant for low frequency modes as compare to high
frequency modes. Later on, the magnetoacoustic waves were studied in degenerate
e-p-i plasmas with effects of arbitrary temperature and spin magnetization. Here it
has been observed that the temperature degeneracy and spin magnetization modify
the dispersion modes of propagation waves [ ]. Similarly, the waves and instabilities
in relativistic anisotropic MHD plasma were studied and the dispersion relation was
derived for two modes of propagation, i.e., modified magnetosonic mode and shear
Alfven mode [ ]. The low frequency quantum MHD wave has been analyzed in dense
degenerate plasmas [ | to account for Bohm potential (along with spin effect) and
derived dispersion relation for perpendicular, oblique and parallel propagation modes.

In this Chapter, we investigate the radical changes in the propagation of MHD
waves when the effects of pressure caused by quantizing magnetic field and pauli para-
magnetism are incorporated. Here the main objective of our work is to observe the
quantum corrections-(Landau quantization, Spin effect, and Bohm potential) on the
dispersion modes of the MHD waves. The layout of the manuscript is given as follows:
Dispersion relation including the effect of quantizing magnetic field is derived in Sec.
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II. MHD waves with effect of combined orbital quantizition and spin magnetization is
given in Sec. ITI. Results and discussion are described in Sec. IV. The conclusion is
then given in the final section.

2.2 Dispersion relation with quantizing magnetic
field effect

Let’s consider a two fluid plasma model which is composed of electron and ion species.
The amplitudes of oscillations are assumed to be very small so that by using linearized
equations one can easily solve the system problem. At equilibrium the plasma is
considered to have null zeroth order velocities of electrons and ions i.e., vyg = vip = 0.

Therefore for both species, at first order, the equations of continuity can be given as:

One

5t +ng(V-ve) =0, (2.1)
and
2 o(V W) =0, (2.2)

where n, and n; are the first order of linearly perturbed number densities of electrons
and ions, respectively. Here ng is taken as unperturbed number density of particles
(electrons/ions). According to quasi- neutrality condition, we have n. = ny = ng.
Similarly, v, (and v;) is the electron fluid (and ion fluid ) perturbed velocity.

In quantum fluid model, the DFT is a general mathematical tool that is used to
study the electron exchange correlation potentials, where exchange potential comes up
from the Pauli exclusion principle, while the correlation potential happens when the
energy is lowered due to the wave function described by the Hartree-Fock hypothesis.
Brey et al. [ ] introduced the exchange-correlation potential in the field of solid state
physics: Later, in plasma physics, it became notable by incorporating the term of the
exchange-correlation potential by Crouseilleset al. [ ] in the quantum fluid model and
compared their results with DFT for thin films. This effect represents a short range
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electric potential which only depends on the number density of the Fermi particles. It is
observed that on a large time scale, the exchange-correlation potential effect becomes
weak as compared to other quantum corrections [ , , |. That’s why we have
ignored this effect in our current problem.

Let us suppose that an e-i plasma is immersed in the external uniform magnetic
field in the direction of z-direction H (0, 0, H). The momentum equations for both
fluids of electrons and ions are given by

ov, eE VP, v"/—
bt = —;e- _—— (Ve X H) mon, 2m2V [ (2.3)
and
ovi eE e VP, Visn
=T L uxmy- T My (TR (24

where m, (m;) is the mass of electrons (ions) and e is the charge of electrons. In
Equation (2.4), P, is perturbed arbitrary pressure given by P; = n;KgT;, which in turn
leads to VP; = KgT;Vn; with T; (ion fluid temperature). The last term is the Bohm
potential at right hand side of Equation (2.3) (and in Equation (2.4)) which arises due
to density fluctuations. Similarly the parameter P, in Equation (2.3) is the Landau
diamagnetic pressure (detailed explanation is given in chapter one), can be expressed,
> 4 3

P, = (Fo) —% F: (2.5)
This describes that the pressure has dependency on both number density as well as
magnetic field. By combining Equations (2.3) and (2.4), we get

av _ Bom o | Viv/Pm |
pugg =IXH-VP+ 5oy | (2.6)

Equations (2.1) and (2.2) can be combined to obtain

0pm

o+ pn(V V) =0, (2.7)



In Equations (2.6) and (2.7), we used v(=~~ miv; +-m¢v,

) which shows the global fluid
velocity, and p,,(= nym; + n,m, =~ nm,) is the plasma centre of mass density with
ne =~ n; = n. Here P is the global pressure and is defined as P = P; + F., where
P.(~ T’%) is the pressure for degenerate electrons. The system is closed with an EQS
for the pressure, therefore in terms of mass density, we can write VP = C2Vp,,, where
Cie = \/f;f-f = /VZ+ V2 is the sound velocity duly modified by Landau diamagnetic
levels with V, = (%25)"* and v, = (m——":n‘%) ¥ thermal speed of ions aud
modified Fermi speed of electrons respectively. The term J is the current density
and is given by J =(mV; — n.V.)e = nVe . Further J can be deduced by using the

Maxwell’s equation
I=1(vxn 2.8)
Ho ’ '
which gives as Ampere’s law. Using other Maxwell’s equation, i.e., Faraday’s law is

0H

VxE= —ﬁ’ (2.9)
where u, is the permeability of free space and the Ohm's law is
E=-vxH. (2.10)
The result is obtained after simplification, as
IxH= %(v x H) x H. 2.11)

Now substituting the above result in Equation (2.6), we have the following relation

2 2
pm% = %(V xH)xH-CiVp, + 2’:;;':ch [V‘/‘,{_‘—’;] . (2.12)

In order to write the above equations in linearized forms, lets suppose the small
amplitude variations in each physical quantities with their equilibrium values i.e.,
P (Ty ) = ppg + Py (7, t), H(r, t) = Ho+H, (r, t) and v (r, t) = v; (r, t). There-
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fore, Equation (2.7) and Equation (2.12) will become

Dt @)=, (213)
and
P = Z-Ho x (V x i) ~ ChV s + § ”"'° PV V] (214)

Differentiating Equation (2.14) w.r.t time ¢ and after rearranging, we have

Pv B
" 2 v (vl =o,
(2.15)
where V,, (= \,-%;—) is the Alfven velocity and v, (r, t) oc e®X~) with o is the

plasma mode frequency. Usmg H— —iw, V ik and g,y = —m‘—lmEqua.txon(
2.15). By simplification the following relation is obtained (in appendix A the detail

derivation is given )

wPvi—k (C2 +V2) (k- v1)+[(Va - vi) k= (V4 - h

(2 16)
Consider the following dimensionless variables

w n Vi
W— —,n— —, k-—»k—,vl—-»—
Wey L] Wei va

The dispersion relation (2.16) can be written in dimensionless form as

whvi —k(L+Br) (k- vi) +{(&- vi) k= (8- k) v+ (k- v1) ] (k- 3) —k (k- vy) H] = 0.
(2.17)
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(I‘o"‘"h4

o ) is the Landau diamagnetic pressure

(R

In the above expression, 8, = %:} =
modified plasma beta, while H,(= ?‘;ﬂ‘/";_‘_-"—h) is a dimensionless parameter that arises
due to the collective electron tunnelling effect through the so-called Bohm potential,
with wy = 22 being the jon cyclotron frequency. Equation (2.17) gives the modified
dispersion relation for e-i plasma with quantum corrections including Bohm potential
and modified quantum sound velocity due to Landau diamagnetic effect through the
correction of quantizing magnetic field. By ignoring the quantum corrections, one
can easily obtain the classical standard definition of dispersion. The above modified
dispersion equation can be used to investigate different modes of propagation of MHD
wave however in the following manner we only discuss the perpendicular propagation
and parallel propagation.

2.2.1 Perpendicular Propagation

This mode of propagation wave is the magnetosonic mode and for k 1 Hy, i.e., k
perpendicular to Ho, we have k - 2 = 0, as the pure Alfven wave always propagates in
the direction of magnetic field. Therefore, the dispersion Equation (2.17) is reduced to
in the following form:

wivi —k (1+ B, + H?) (k- vi) =0. (2.18)

The vector nature of equation requires that k will be parallel to the perturbed fluid
velocity v, i.e., k- vi = kv;. The wave is longitudinal in nature and its normalized
dispersion relation is given by

w=k+\/1+ B, + H?, (2.19)

we can also write in dimensional form as

h2k2?
4mgym,’

w=k\/ Ci+Vi+ (2.20)



It is clear from the above equation that the dispersion relation of magnetosonic wave is
modified by quantum speed due to Landau diamagnetic effect through pressure term,
Alfven propagation mode and Bohm potential.

2.2.2 Parallel Propagation

The wave propagates parallel to Hy, i.e., k | Hy which implies that V4 || Hy means
k-2 = k. In the mode of this type of propagation, the two dispersion relations
i.e., longitudinal propagation wave and transverse propagation wave are obtained. In
longitudinal wave propagation, v; is parallel to Hy (i.e., v; || V4, along with v; || k
means £ - v; = v; and k- v; = kv;) the dispersion Equation (2.17) is then further

reduced to in the following way:
w=k+v/fB, + H2. (2.21)
In dimensional form, we have
K2k?
w=k4/CZE + pnpn (2.22)

This only depends on Bohm potential. Whereas in transverse wave mode (i.e., v; L
V4, along with v; | k means Z- v, = 0 and k- v; = 0) then w?—V3?k? = 0 and the
same phase velocity is obtained as for in case of pure Alfven mode w = Vk.

2.3 MHD waves with Effect of Combined Orbital
Quantizition and Spin Magnetization

The magnetic moment associated with a quantum plasma is a new collective dynamical
property that arises due to indirect spin interaction through external effective magnetic
field and spin velocity coupling. Let us suppose a collisionless, quasineutral and spin
magnetized plasma which is assumed as perfectly dense degenerate. The dynamics of

electron may be modified due to the contribution of its spin force Fyp,. The continuity



equation remains the same as Equation (2.7), while only the momentum Equation (2.6)

is modified and can be written, as

v Pt o | VP
A - m ; 2.23
Pmy =J xH vp+2m‘_mev[ o | + Fopin (2.23)

where F i, is the magnetization energy which arises due to spin effect of electrons and
its mathematical expression is given by

F apin = pio V(M - H). (2.24)

The Pauli magnetization (spin magnetization) per unit volume is given by M, =
( :;.::,"(8) H and is related to magnetization current. For a magnetized medium with
magnetization M, the Ampere’s law in general form for the free current in a finite
volume is defined by J=%V x H— V x M. It is known that in a complete de-
generated plasma the Pauli magnetization dominates the Langevin-type susceptibility
which is given a8 Mian, = nugtanh (7(‘—) The Landau demagnetization susceptibil-
ity, M(= —1M,) is added to the effect due to electron orbital (spatial) contribution
implying that M = My + M, = (n—lg’fzg-) H. In a complete degenerated quantum
magnetized plasma, T, ~ 0 i.e., Tpe > T, is assumed. Thus, Equation (2.24) leads to
the following simplified form

F ppin = nBug(VH). (2.25)

The effect of the spin magnetization along with orbital motion of electron appears via
parameter (= Eﬂﬁ-@) and the condition # > 1 should be satisfied for spin magne-
tization. Using Equation (2.25) in Equation (2.23), we differentiate w.r.t time (t) to

obtain

%vl—C?V(V-vl)+VAx[Vx{Vx(leVA)}] -
2 [V (V)] + B 2 () = 0. (2:26)
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Note that one can obtain wH=Hy(k - v;) from Equations (2.9) and (2.10). Further
simplificating Equation (2.26) (in the appendix A the derivation detail is given) we
eventually get the following relation:

wivy —k (Ch+V3) (k- v1) + [(Va Vi) k= (Va-K) vi+ (k- v1) V4] (k- Vi)
KK

K G

(k-vi) + ﬂHo(-’;,g)k (k-v;)=0, 2.27)

Equation (2.27) can be expressed in a dimensionless form, as

wivi —k(1+8) (k- v1) +[(Z- vi)k— (& - k) vi+ (k- v1) 2] (k - 2)

—k(k-vy) (H?—€l) =0. (2.28)

In Equation (2.28), g¢ = —‘/“;‘_”_Z'—f_:ﬁ is the dimensionless parameter, showing the
iZFVA

normalized Zeeman energy which is due to spin magnetization. The above expression
gives the dispersion relation including quantum correction, i.e., spin magnetization
energy due to spin effect, Landau pressure due to quantizing magnetic field and Bohm
potential.

2.3.1 Perpendicular Propagation

In case of perpendicular propagation mode, we consider k - 2 = 0 and obtain the
dispersion relation from (2.28),

wivi —k(1+8;) (k- vi) —k(k- v1) (HZ —£5) =0, (2.29)

further by simplification, i.e., k - vi = kv;, one can easily arrive at the following result

w=ky/14+8, +HI—e} (2.30)
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Under the condition; €2 > (1 + 8, + H?), the magnetosonic waves become unstable. In
the presence of very strong magnetic field like due to spin magnetization if it overcomes
all other quantum corrections then the growth rate wy at which magnetosonic waves

become unstable can be written as

wor = ky[e3 — (1 + B + H2). (2.31)

2.3.2 Parallel Propagation

Similarly, in parallel propagation when k.V4 = kV}, we obtain the relation for longi-
tudinal wave propagation, as

w = ky/By + H2 — €} (2.32)

From Equations (2.30 and 2.32), it is clear that the unstable modes of waves in case
of dominant spin effect over other quantum effects could be affected and if the spin
effect is ignored then one can obtain again the same general MHD wave propagation
for quantum plasma as in Equations (2.19 and 2.20), respectively.

2.4 Results and Discussion

The study of dense astrophysical systems delivers basic information about the evolution
and structure of stars and galaxies. The exact description of mechanical as well as
thermal properties of dense astrophysical objects need more specific knowledge of EOS
in dense astrophysical plasmas. It is noted that in the evolution process, usually the end
product of the majority of stars are converted into the WD whose size is approximately
equal to the earth and mass equal to the NS. Typically, the WD has the strength of
magnetic field ~ (10° — 10°) G, interior density of the order of ~ 10%®cm~3 with an
average electron temperature ~ 10K [ ] The discovery of pulsar has shown the
presence of NS in universe. While magnetic fidd strength has been determined in the
NS in the range ~ (10! — 10'3) G. Furthermore, depending upon the mass and age
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of NS, the average value of temperature (10°K) indicates its photospheric properties.
Moreover, its number density of the order of ~ 10%cm~3 depends upon the value
of the strength of magnetic field and thermal temperature [ , ]. Generally, the
plasma is assumed as non-isothermal T, 3 T;. For T, = 100T; that is for dense
astrophysical systems if n = 10%cm™3, Ty(= 10*K) < Tr.(= 10'K) and T} = 10°K
then V, = 1.7 x 10® cm/ sec, and V; = 9.09 x 10* cm/ sec that means V; < V..

The following assumptions have been taken which are valid for the system under
consideration such as WD and NS (a) ngA% > 1, here Ag = 7"—:5!.: is the de Broglie
wavelength; For number density of plasma ng = 1.7 x 10%cm =3, one can obtain ngA} ~
3.02, which will confirm the validity of using the QMHD model. (b) T, < Tr; as the
Fermi temperature of electron is proportional to the number density, i.e., Tr o né.
For ng = 10%cm~3, we have Tr =~ 1.3 x 107K, and this value is greater than system
temperature. Therefore, the condition T, < T is valid for degenerate electrons in
quantum plasma. (c) Ep > Er, where Eg = m.c? is the rest mass energy of electrons,
and degenerate electrons are assumed to be in the non relativistic regime. Let for
Tr =~ 1.3 x 107K, we derive Er =~ 1.78 x 10~'8ergs and this value is much smaller than
the electron rest energy Eg ~ 8.19 x 10~'4ergs. Therefore, in our current study
the condition Eq >» Er holds.

It is convenient to describe that the thermodynamic properties of degenerate plasma
in the presence of strong magnetic fields is significantly modified. We know that Landau
levels may be analyzed in the presence of the magnetic field. The ratio of cyclotron
energy of electron (fiwc,) to rest mass-energy of electron (mec?) gives the term b ~
0.0016, as b = n%? = 2'4.&125 which verifies the condition of non relativistic plasma.
Here, Hia(=~ ”—fgma) denotes the value of the magnetic field scale for the system.
Also, the atomic unit of the strength magnetic field is calculated as Hp = 2.35 x 10°G
from #we = €2/ay, (as ag is Bohr radius). Now dimensionless magnetic field strength
can be defined as o; = Hio = ;"?, where o is the fine structure constant and has a value
~ 0.0072. In our current study oy (= 30) > 1, the electron cyclotron energy (fiwce)
becomes greater than electron thermal energy (kgT.) as well as Fermi energy (kgTF)
and hence majority of electrons adjust themselves at Landau ground state. In case of
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Figure 2.1: Numerical diagram of normalized dispersion relation given by Equation (2.19) of QMHD
wave is shown for different plasma number density 7 such that n = 10%cm=3(Thick, Blue), 3 x
10%*cm—3(Dotdashed, Green) and 5 x 1024cmn—3(Dashed, Red) with T; = 10% K and Hy = 10°G.
01 3> 1, the electron spins are aligned antiparallel to Hy. It is known that the orbital
motion of ions is also quantized but the cyclotron frequency is much smaller and hence
ignored here i.e., iwe = hwe(m,/m;). Similarly, for o, >> 1, the magnetic fields affect
the interaction among different particles such as molecules, atoms and protons due to
high cyclotron energy over typical electrostatic energy [ ]. In the presence of a strong
magnetic field the binding energy of atoms and formation of molecules is altered and
therefore, the quantum mechanical calculation of binding energy can be found in Refs.
[, 5k

Now we graphically represent (w versus k) the already obtained theoretical results
so that to visualize the complete picture of quantum effects on MHD waves. Using
the above numerical data in Equation (2.17) and Equation (2.28), the modification in
dispersive properties of low frequency waves have been observed by varying the number
density (n) and magnetic field (Hy).

Figure 2.1 represents the effect of number density of plasma on the perpendicular
MHD wavemode (using linear dispersion relation 2.19) including the Landau diamag-
netic effect and such a type of wave is longitudinal in nature. It is examined that the
increase in number density (10% — 5 x 10%4cm~3) at constant magnetic field (10°G) will
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Figure 2.2: Numerical diagram of dispersion relation given by Equation (2.21) of QMHD wave
is shown for different magnetic fields such that Ho = 3.0 x 10°G (Thick, Blue), 3.5 x 10°G
(Dotdashed, Green) and 4.0 X 108G (Dashed, Red) with 7} = 102K and n = 10%cm—3, where the
(normalized) wave frequency and (normalized) wave number are presented by vertical and horizontal
axes respectively.

cause to increase the phase velocity. Physically, it can be interpreted that the number
density of plasma is inversely proportional to Fermi screening therefore by increasing
n, decreases the Fermi screening length and so the dispersion of wave increases.

Similarly, Figure 2.2 shows the effect of magnetic field on the parallel MHD wave
mode (using linear dispersion relation 2.21) including Landau diamagnetic effect. It
has been shown that the wave frequency decreases with the increasing of magnetic
field (3 x 108 ~ 4 x 108G) at constant number density (10*4cm—3). It means that with
increasing Hy bound state increases and hence less numbers are then involved with
dispersion as a result the phase velocity decreases.

Figure 2.3 shows the effect of number density of plasma on the perpendicular MHD
wave mode (using linear dispersion relation 2.30) including Landau diamagnetic effect
along with spin magnetization and this wave is longitudinal in nature. It is observed
that increase in number density from 10%cm =3 to 9 x 10%em™3 at fixed magnetic field

-.. (10'°G) will cause to increase in phase velocity. Both the spin Pauli magnetism and
Landau diamagnetism depend on the magnetic field.
Accordingly, quantitatively the effect of Hy (7.5 x 10° — 8.8 x 10°G) at constant
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Figure 2.3: Normalized wave frequency as a function of normalized wave number (Equation
(2.30)) of QMHD wave is shown for plasma number density ie., n = 10%cm~3(Thick, Blue),
7 x 10®cm=3(Dotdashed, Green) and 9 X 10*°cm~3(Dashed, Red) with 7, = 102K and
Hy = 10°G.
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Figure 2.4: Numerical plots of dispersion relation given by Equation (2.32) of QMHD wave are shown
for different magnetic fields i.e., Ho = 7.5 X 10°G (Thick, Blue), 8.2 X 10°G (Dotdashed, Green)
and 8.8 X 10°G (Dashed, Red) with T} = 10K and n = 10%cm 3, where the (normalized) wave
frequency and (normalized) wave number are presented by vertical and horizontal axes respectively.
Other Paremeters are considered as in Figure (3.3).
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number density ( 102cm~3) is shown in Figure (2.4). This describes the effects of Hy
on the dispersive properties of parallel MHD wave mode including Landau diamagnetic
effect along with spin effect (Equation 2.32). The same trend has been observed as
that of Figure (2.2).

2.5 Conclusion

Impact of quantizing magnetic field and spin magnetization on the propagation of
low frequency MHD waves has been theoretically investigated in quantum magneto-
plasmas. Using QMHD model a linear dispersion relation has analytically derived.
The dispersion relation has elaborated both qualitatively and quantitatively for dense
plasma in the presence of quantizing magnetic field and spin magnetization. The im-
pact of other plasma parameters such as number density (), temperature (7°), and
magnetic field (Hp), on the dispersion relation of magnetoacoustic waves, has studied.
The perpendicular and parallel modes of wave propagation are deduced. Some novel
branches of magnetoacoustic waves were found, which have no analogies without the
Landau quantization of magnetic field and spin effect. It is noted that the longitudinal
wave propagation in the direction of magnetic field strongly depends on the magnetic
field while in the classical limit the magnetic field has no such a role. We have found
that the contribution of spin of electrons affects the Alfven propagation mode and the
condition 8; > 1 should be satisfied for spin Pauli magnetization. The variation of
the dispersion features for different number density of plasma associated with quantum
correction (i.e., Bohm potential, Landau quantization of magnetic field and spin effect)
were also explored. Mostly, in plasmas these quantum corrections are very small; how-
ever, they may be relevant for dense astrophysical systems in the presence of strong
magnetic field. It is found that the effects of the quantization of electron orbital motion
and that of electron spin have a substantial influence on the dynamics of magnetosonic
waves. The current model in the context of Landau diamagnetic pressure along with
spin magnetization is sufficient to study the astrophysical plasma environment exist-
ing in the compact systems e.g., white dwarfs, neutron stars and magnetars. Also at
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laboratory level, it suffices to study the perturbation in solid state objects (i.e. metals

and their nanostructures) and in inertial confinement processes as well.



Chapter 3

Effect of Temperature Degeneracy

on Spin Magnetosonic Waves

3.1 Introduction

Recently, the quantum plasma have gained much interest owing to its potential appli-
cations in miniaturized electronic devices [ ], laser induced plasma [ |, astrophysical
compact systems like WD, NS, magnetar and pulsar [ |, ultra-cold plasma [ ] and
so on. Quantum plasma is usually characterized by high density and relatively low
temperature parameters. Fermions (i.e., particles with spin of one half, e.g., electrons)
in such a system obey Pauli’s exclusion principle and that’s why follow the familiar
F.D statistics. In quantum plasma, spin effects play an important role at a scale of high
density with low temperature and strong magnetic field. There has been a great deal of
interest in excitations of collective modes in spin system, such as spin waves [ |. The
coupling of spin waves to the fermionic degrees of freedom produces the damping of
spin waves which may be experimentally measured. Using quantum theory, the study
of plasma along with charged particles has gained a lot of attention in astrophysical
objects e.g., strongly magnetized plasma [ ]. Cheng and Wu [ ] investigated the
spin 1/2 effects associated with electrons in quantum plasma and derived the basic
equations by assuming spin-orbit coupling effect. Further, it has been found that spin
alignment may be induced in such a plasma through spin-orbit coupling by the in-
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teraction of Langmuir waves with EM waves. Similarly, on the basis of MHD model
using the non relativistic Pauli spin equations, Wang et al. [ ] investigated the spin
effects associated to electrons due to the random orientation of the plasma particles in
a non uniform magnetic field with one-body particle-antiparticle Dirac theory of elec-
trons. The physical properties of the magnetosonic solitary waves (MSWs) induced by
head-on collision have been reported in quantum magnetoplasma with spin-1/2 non
relativistic degnerate electron [ ]. Igbal et al. employed spin quantum kinetic theory
to study the spatial and temporal damping mechanism of the right handed circularly
polarized (RCP) waves for both non degenerate and degenerate magnetized quantum
plasma. Accordingly, a spin-modified dispersion relation is derived for such RCP-waves
in electron-ion (e-i) quantum plasma [ ]. Sharma and Chhajlani [ ] studied the spin
effect due to induced magnetization, electrical resistivity and viscosity of medium on
the Jeans instability of quantum plasma embedded in the uniform magnetic field by
using the quantum MHD model. Shahid et al. [ ] studied the EM waves in e-p plasma
using non relativistic spin quantum fluid theory, they predicted that Faraday rotations
appear with the inclusion of spin effects of plasma species which is absent in normal
e-p plasma, i.e., without the presence of spin effects. The influence of spin effects to
linear EM wave modes in dense magnetized plasma have been found by Hu et al. [. ]
in arbitrarily direction, where it is shown that spin effect has more significant role for
low frequency mode as compared to high frequency mode. Recently, Andreev has sep-
arately described spin-up and spin-down effects for electron particles using quantum
hydrodynamic (QHD) model and introduced a new general mathematical form for wave
solution. It may be appeared as a sound-like solution, which is called as spin-electron
acoustic wave [ |. The effects of quantum corrections, i.e., the spin magnetization
energy, and arbitrary temperature degeneracy along with Bohm potential on the dis-
persive properties of spin MHD wave in magnetized e-p-i plasma have been analyzed
by Mushtaq et al. [ ]. Haas and Shahzad [ , ] have also studied linear and non
linear properties of ion-acoustic waves and magnetosonic waves with effect of arbitrary
temperature degeneracy.

Degenerate plasma exits at high number density and relatively low temperature. For
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such high density plasma, the mean inter-particle distance smaller (or of the same order
as) the de-Broglie wave length and are following F.D statistics and linked with Fermi
velocity, vp(= £(3a%ng)'/%). In dense astrophysical environments degenerate quantum
plasma can be expected to occur naturally. On other hand, non degenerate (classical)
plasma exists at low number density and relatively high temperature. In classical
mechanics, even though the properties of all particles are identical, they do not lose their
individuality and are easily distinguishable from each other. Therefore such a regime
of classical plasma obey Maxwell-Boltzmann statistics. Absolute non degenerate (and
degenerate) plasmas cannot exist in universe. However, at low temperature and high
density the equilibrium distribution of particles varies from non degenerate (classical)
plasma to F.D distribution (degenerate plasma). The pressure in quantum degenerate
plasma arises from the combined effects of Pauli’s exclusion principle (obeying F.D
distribution) and Heisenberg’s uncertainty principle due to wave-like nature of the
particles shown by Schrodinger’s wave equation, which is dependent on the number
density of plasma but is independent of their own temperature (thermal). The ions
can be assumed as non degenerate because of their heavy mass as compared to the
electrons (and positrons).

In this Chapter, we study the dispersive features of low frequency MHD waves in
magnetized e-p-i plasma with quantum spin-1/2 effects. Here the main objective of
this work is to study the quantum corrections, i.e., the degree of temperature degen-
eracy and spin magnetization of electrons (and positrons) along with Bohm quantum
potential on dispersion modes of MHD waves.

3.2 Basic Formulation and dispersion relatioin

Let us consider an e-p-i quantum plasma in which electrons and positrons are treated
as partially degenerate particles. Both the electrons and positrons follow the arbitrary
degenerate pressure’s law. Moreover, these particles have spin magx_x_etization energy
due to spin effect and quantum Bohm potential associated with density fluctuation.
On the other hand, ion particles are assumed as non degenerate (classical) due to their
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large inertia. The plasma is taken in the presence of external magnetic field having
direction along the yz-plane i.e., By = Bo(cos 8 §j +sin8 £) with §j and £ being the unit
vectors, where § is the angle that lies between magnetic field and propagation vector
k(= kjj). In current situation, the neutrality condition at equilibrium can be defined
a8 N = My + Nyg, Where ngp, Nyg and nyy are the unperturbed mumber densities of
electrons, positrons and ions, respectively. The amplitude of oscillations is considered so
small that we can easily solve the system by using linearized equations. The linearized
equations of momentum and continuity of the given dynamical system are given as

under

av; Vi xB K2 2n,0;
”:'O"HTJI = njoq;(E1+ Lc_.‘!) -VF+ 4—”1’_V(V2"j)+m!ﬁv(s -B,), (3.1)
and
%’: +njo(V - V;) =0, (3:2)

where n;o(n;) represents the unperturbed number density (first order perturbed num-
ber density). Here the subscript j stands for particles e, p and i (electrons, positrons
and ions, respectively). While V; is the fluid velocity, m; is the mass and g; is the
charge of j** particles, ¢ is the speed of light and (= ) is the reduced Plank’s
constant. The geometry of EM field is considered in such a way that the perturbed
electric and magnetic fields can be expressed, as E; = E;# and B, = —(ckE;/w)z,
respectively. The third term in right side of momentum Equation (3.1) is the quantum
Bohm Potential that arises due to density fluctuation (overlapping of wave function)
and accordingly the last term is the magnetization energy due to spin effect of elec-
trons/positrons. Also in the above corresponding equations the parameter B = %}5;
shows the magnetic moment and while s being the spin vector. Therefore, in terms of
Bohr magneton pp = |£%| the magnetic moments-for electrons (and positrons) can
be written by relations, y, = —pp (and g, = ppg) with m, = m, =m.

Regarding to pressure, it is supposed that ion follows the Maxwellian (non de-
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generate) pressure law, i.e., P, = n;KpT; implying that the pressure gradient force
is VP; = v;Vn;kpT;, with «; being the polytropic index. A quantum thermal elec-

tron/positron gas corresponds to a F.D distribution. A local quasi-equilibrium F.D dis-
A

1 +exp (E——;;T“)

here e.(= mV?/2) is the K.E with V is the microscopic velocity, p is the chemical

tribution function for electrons/positrons is given by f(v, r, t) =

potential term which can vary in the range from ~oo to +oco and T is the thermo-
dynamic temperature. The EOS for a degenerate gas is described by F.D probability
distribution has two independent parameters, i.e., one is T and the other is u. The ther-
modynamic temperature T is the main parameter for near-to-equilibrium Maxwellian
particles while on other hand, the chemical potential 4 is a unique parameter which
has prominent role in the energy spectrum of degenerate gas. Therefore it is interesting
to examine the different modes of wave propagation with EOS in which these two pa-
rameters, i.e., 4 and T have equal relevance. This situation is more relevant to systems
which are neither complete degenerate nor close to classical (non degenerate) statistics.
Alternatively, one can also say that it is more relevant to systems where thermal and
Fermi temperatures are of almost same order of magnitude i.e., T = Tr. The expres-
sion for electron (and positron) pressure in terms of polylogarithmic function can be
written in the following generalized form:

P= Gﬂk BT, (3.3)

with G(= ;g—:—:%)) being defined as arbitrary temperature degeneracy with thermal
temperature T. One can obtain a generalized relation for Maxwellian pressure as
P = nkgT in the limit of complete non degenerate case i.e.; G = 1. Introducing the
Sommerfeld lemma [ , |, p = ksTr [1 - 0—2;—;] and therefore In§ = o (1 - o5)
that implicates Gyp = o(1 — 0‘23"'-;). We obtain the pressure in case of nearly non
degenerate and nearly degenerate respectively, as

Pynp =nksT(1+ 565—)’ (3.4)



and
2 _gm?
PND = gﬂkBTF(l -0 -1—2'). (3-5)

The derivation detail of above three equations is given in Chapter one. Now the
Maxwell equations for the considered system are given, as

_ 18By
VXE = —Z?t—, (3.6)
_ 18E1 i
V x 31 = 27 + . J;. (37)

Taking the curl of Equation (3.6) and then using it in Equation (3.7), one can obtain
the following relation

UzE]_ +idnwd 1= C‘2 szlv (38)

where J; is the total current density which is given by

J1=_ gn;vj1 + cdare + cIpip. (3.9)
J

Here Jp. and Jygp are are the magnetization spin currents of electrons and positrons
respectively, which are defined by the following relations:

JInpe = -V x (zneI‘Bs/ h), (310)
Jump = =V x (2n,ups/h). (3.11)
In spin e-p-i quantum plasma, the spin evolution equation is defined as %st'i = 2—‘,':-7-(8_,- X

B), where the spin-thermal coupling terms are ignored. The exact term of spin inertia is
% which is also called spin angular frequency. The spin angular frequency of ion is low
as compared to electrons and positrons because of heavy mass. The gyration radius

and time taken for revolution of ions is comparatively smaller than for considering
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electrons and positrons. Under the assumption (w < weg < Wee, Wep), the spin inertia
can be neglected and we obtain the spin equation of motion as 8; x B = 0, which
has the solution 8; = —%hﬂ(ac)ﬁ. Under the assumption of considered geometry the
solution for spin particles (electrons and positrons) can be written as

8 = — 5 u(0Ge) (000 + sin2), (3.12)

and

85 =~ (acy)(co8 0 + sin ), (3.13)

where Langevin parameter n(ag) = tanh(ag) is due to the magnetization of a spin
distribution in thermodynamic equilibrium. Here, the term ag(= g,ﬂ(%) is the ratio
between magnetic energy and thermal energy. This term is modified by temperature
degeneracy and therefore for NND regime, we have

1pBo
QNND = =", (3.14)
(1+ ;%)K 8T
and for ND regime, the term can be written in the forms as
3__reBo (3.15)

N0 Mm@ KT
To study the linear perturbations, let us assume that all the perturbed quantities in
the plasma system are proportional to e**v—*), then Equation (3.1) may be expressed
for ions, electrons and positrons, using the concept of linearization, as

. Vax B , .
— imnygwVi; = nye (E1 + —lc—o-) — iy,n KpTikj, (3.16)
and

ihkne . . < pa
= Y+, (aGe)nGOF'BB 1 k sin ayy

(3.17)

"'iGenelkBTekyA_

—iMNgw Ve = —TNege (E1 + -v’—lcﬂ)



~d

Vo X B . . h%k%n, . . . pa
—imynyyw Vo1 = npoe (El + —plc—g) —iGpnp kpTpkj— ‘Tn-f'iu—iﬂp(aap)ﬂwﬂnﬂk sin 6.
(3.18)
Similarly, the linearized continuity Equation (3.2) becomes as
ok
nj = n—:‘:—ﬁ - V. (3.19)

In magnitude form, the magnetization current density for electrons and positrons can

also be written as

Jrme1 = ine(aGe)nd)F'Bkavcvl sin 0/ W, (320)

and

Jmp1 = —in,(CGp)np0s gk* Vpy1 8in 0 /. (3.21)

To study the dispersive features of low frequency magnetoacoustic waves in a magne-
tized quantum e-p-i plasma with spin effects in arbitrary degenerate state, we solve
Equations (3.16)-(3.21) along with Equation (3.8) to get a generalized dispersion rela-
tion in the following form

= (1— A)w? 1+ E'L&'_ca(al_&;sﬁw
w?— 2K = Q:‘ [w2(1 - Ai) - W?,- +W§(}os20A‘i + 912! +n§(aalg)ii;=’k‘!in’0 (1 _ %cmz 0)
2n,(aGp)weppgck® sin? 6
x[ (1~ Ag)o? ]+n;,, 1 Zelcolatelt
wi(l — A,) —w?, + w3, cos?0A, +,,=(,.G,),.%c=,,4,inz,(1 _ % ot 9
ZI—A,ie’;’ w
(1 - Ap)w?
* [‘*’2(1 — Ay) — w2, + w?, cos? HA,] ’ (322)

where Q;(= \/4"—"‘:’-'2) and we(= %) are the plasma oscillation frequency and cy-
clotron frequency of the j® species, respectively. In dispersion Equation (3.22), the
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spin effects with arbitrary degree of temperature degeneracy appear in 7,(ag.) and
myl0cy). Here 4 = 24, A, = [—‘“‘-‘G ke ‘“4:—:;] % and 4, = [G‘L—"fnﬂ + "—4:.."';] & are
the dimensionless quantities, while V(= /2£2.) is the ion thermal velocity. For the
case of NND, these dimensionless parameters for electrons and positrons; 4. and A4,,

respectively, can be written as

KpT, 3 K2k2] K2
A.NND = [ me (1+§§-)+Z,—n? i (3.23)
and
KpgT, 3 26?7 K2
AuNND = [ - R (1 + E%) + me | 52 (3.24)
Similarly, in terms of ND, it can be expressed as
2kgT, h2k2] k2
Anp = [5T In(£,) + 4—""?] L (3.25)
and
2kgT, h2k2) k2
Ao = —5#‘“(5»)+m] Y (3.26)

In Equations (3.23)—(3.26), the first term show that the temperature degeneracy effect
(because of F.D particle distribution) which is coming through the definition of £ =
e¥5T. While the second term in the same equations indicates the contribution of
the respective quantum Bohm potential effect that arises due to density correlation
and is proportional to the order of 4%. The generalized dispersion relation (3.22) in
the limiting cases are discussed below for investigating, the spin magnetization and
arbitrary temperature degeneracy effects on the propagation of MHD wave with respect
to different angles.

3.2.1 Perpendicular Propagation (0 = 7/2)

In this case, we consider a compressional magnetoacoustic wave with low frequency

mode. The inertia associated with the electrons and positrons is taken to be small such
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that w? < w?,, w?,. Quantum effects, appearing in A, (and A,), become important
for large wave number and therefore the limit can be assumed as w? € w2 A, w2 4p.
Further, by ignoring the Hall effect, it is considered that w? « w? and so w? < w2,
w2, Using these assumptions Equation (3.22) can be reduced to the following form

a_ oK
CEVIES

[‘-,2 h2k? 2 2
2+ Ve (51 - ri(aa] + 1 - o] @20

Equation (3.27) shows the compressional magnetoacoustic or fast MHD modes in quan-
tum e-p-i plasma. Here the modified acoustic speed is V(= \/ VA + BV, + B.VE.)
with Vgpe(= -Gi"ﬁl'l’-) being the thermal speed for electrons and positrons with
arbitrary temperature degeneracy. Also V(= ﬁoﬁ) is the Alfven velocity and
Va = VA\/ 1+ m"(—ag‘;)"—""” - 8—"3-‘5"—‘;7"&5& is the spin modified Alfvenic velocity.
Other parameters in Equation (3.27) are defined as 3, = (2)d., B, = (32)d, with

8, = 7= and §, = 7. Therefore the spin modified version of the Alfven velocity

has an important role in propagation of waves which depends on number density of
plasma and temperature degeneracy. This constant quantum correction produces a
contribution to the linear portion of magnetosonic wave. The other correction that is
not constant which is due to Bohm potential of order k* and depends on the number
density of electrons and positrons. The degree of temperature degeneracy by using
F.D particle distribution is considered in the third correction. Equation (3.27) can be
written for NND and ND systems with definitions of Gynp and Gyp in the following

forms

1 1/2
ck (1 4+ Zmlonmolisto _ MW)V}.,.V;‘.,.EPKTBT:’E(L,.&)%

T VIR | et 4 408, + (50 - o]+ 60 — ol
(3.28)



1/2

) ck | (14 lcpieene _ tmlenpleaneyydy 2 4 fhelen() - Foy?)p,
ND = ——fr——
VVI+E | kel - 2008, + 22451 — r2(anp)] + b1 — i2(anp)]}
(3.29)

Equation (3.28) relates the arbitrary temperature degeneracy parameter through
§., Which has been modified both the spin and pressure terms for NND plasma. For
complete non degenerate (CND) quantum plasma, i.e., £, , — 0 one can get relation
(11) of [ ] for zero positron concentration. On the other hand for the case of complete
degenerate (CD) plasma (T, , — 0), using Equation (3.29), one can easily retrieve re-
lation (16) of Ref. [ ). It is to be noted that wave propagation mode has been greatly
impacted for both NND and ND systems by the degree of temperature degeneracy.

Using the following dimensionless variables

W=~ k—k)p,.
(]

The dimensionless form of the dispersion relation (3.28) can be written as

wynp=kK* (Visnnp + Vaunnp + B H; ¥annp) , (3.30)
here
V,
VannnDp = M‘Z‘ 22 = Varn \/ 1+ prglp(@NNDp) — Y prelle(@NNDe), (3.31)

8 8n,
Where'YPflp:ﬂB.;Er'YPm:_‘?ol‘gandVAFn:%-

\Z
VsannD = S‘I/V:D, Vsnwp(= \/ Vein + BVéon + BVéen)- (3.32)
Here Voy = ‘—(,f}, Vepn = %:— and Vgey = %’,ﬁ: In the above representation (3.30),
2
H, = —h— is a dimensionless parameter which arises due to the collective
dmm N3 V3E

electron tunnelling effect through the so-called Bohm potential and ¥nynp = 6,[1 —
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flg(annDp)] + de[1 — n2(annpe)]-
Similarly, the dimensionless form of the dispersion relation (3.29) can also be writ-
ten, as

whp=K* (VanD +Vi.wp + KH? ¥unD) 5 (3.33)

where k—kAr, and dimensionless parameters are

‘-,AnND

Vannp = 75 \/1 + VPrgTlp(ANDp) — TpmeTle(@NDe); (3.34)
Vs
Vsnanp = :,:D, Vsnp(= \/V,?,-N + B, Ve + BeVEen)- (3.35)
and
Unnp = 81 — n(annp)] + &c[1 — n¥(annp))- (3.36)

3.2.2 Parallel Propagation (¢ =0)

Let us assume that wave propagates in the direction of magnetic field (along the
z—axis). Therefore Equation (3.22) in this case, yields

92_ 02 2
o = = - ':%+1 ":%+1_£. (3.37)

Under the assumption of low frequency limit ie., w? € o3, w? € W2, w® € W2,
w? € Ak?, and m < my, Equation (3.37) gives us w = kV, means that the spin and
other quantum corrections are vanished for Alfven propagation mode, because the spin
(along the z-axis ) will be aligned parallel to the background magnetic field (By) and
therefore does not couple with the perturbed magnetic field.

3.2.3 Oblique Propagation (0 = 7/4)

Here in this case we use in Equation (3.22), the MHD assumptions i.e., w? € w2 <
wd, wl; o? € AkY W? € WAy W? € wPA, and after some steps of algebra, the
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following relation is obtained

220 P 2rngopgni(anNDy) 21neopdn3(aNNDe) _ ( winp — ViK? ) a
WiND ksT, (1 + 2‘*5,,) + B2 kT, (1 + —g) + B winp — VAK /2
, 8mnyoppn,(annDp)c 8""":0#13’7;(Ofl\n\me)c2

(3.38)

B[4 (1+ )+ 28] B[ 1+ ) + 28]

for oblique MHD propagation mode, in NND plasma. While for ND plasma we have

K [1 _ 27’"1»0#%']:(01\!») 2mnaopdn2(anpe)
V2

( “’?VD—Vle ) a

whp | 3keTpln(6,) + 5 FheTeIn() + 2| \whp — VAK/2
8mnp0ppTy(anDp)C? 87rﬂeom;7)e(arm:e)c2 (3.39)
B [Bn(e,) + 2] Bo [FRRInie) + £
Equations (3.38) and (3.39) can be expressed in simplified form as
annnwfvnp - bNND“’?\rND +eynp =0, (3.40)
and
am,u bNDwND + Cyp = 0. (3.41)
The coefficients in Equation (3.40) for NND limit are defined as
a _ A 8'Irﬂ,,oll-a’lp(“NND:J)C2 8mneoppn.(anNDe)C
= — — — ,
T (e ) [ o) B
(3.42)



VAR ( 8mnyoupMy(aNNDp)C 8mneoppte(anNDe)C ) + VA
C

bynp = _ o
T\ (14 ) + 28] B [EeI (14 ) + 5 Z
AETY 2enppgna(annp) 2rnepB 2 (aNND) ’
07 KpTry (1 + f;—) + 88 KTk, (1 + fg-) + EE
(3.43)
and
e CRVE( o ol (ANNDp) 2mneouhn2 (NN De)
e 2 O';IKBTFP (1 + fg') + % 0. KpTr. (1 + fg-) + %’:‘3
(3.44)
The dimensionless form of the dispersion relation (3.40) can be written as
émvn“’:mp - ’;NND“’?VND +éynp =0, (3.45)
where
by = Vil + Yrpllp(QNNDp) _ YneTle(ANNDe) (3.46)
NND = s ¥
o,! (1+f§-) VAnN+H? ot (1+f§—) Vi.n + H?
§ _ VEn VrpTlp{ XN NDp) YneNle(ANNDe) K212
wvo T T N £ 2 2 1 2 & Vrv
o5t (1+5)VAn+H2 o7t (1+ %) Vay + B2
7 (1+5) VEn+H2 o7t (1+%) Vi + 2
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é = k‘V;\N 1— ﬁnpnp(aNNDP) _ 'ymne(aNNDe) . (3. 48)
e 2 ot (1+f§~) Viy+H? o7 (1+-§;—) VA + H?

2
Similarly, the d1menmonless form of the dlspersion relation (3.41) can be written as

&NDwND waND+éND = 0 (3-49)

'v,.,n,.(annp) VneNle(ONDe) (3.50)
I1-8o;) VEy+H 2(1-T0?) Vi +HE

Vm +

5 - k’Vfﬂ 'an”p(aN Dp) 'Yne”c(aNDG) +kv2
e 2 \30-55)Van+H 3(1-5o?) iy +H? e
'9 TN Dp) Fnelle(aNDe) )
+k2 1— np Ip _ ne'le ) 3.51
( s(1- ﬁ”iz)VﬁpN+Hl“ (- 12”—2) Vin +H? 881)
and
, k4VT2|N ﬁnp”p (aN DP) '?mne (aN De )
p=—1 [ . (3.52
i 2 ( -8 Viw+ B (0-50) Vawr ) &

Equations (3.45) and (3.49) are in the forms of biquadratic equations and can be solved

(d = NND :t J NND NNDcNND , (3-53)

28,yyp

and -.

W? = bND + \/ b?vp - MNDéND ) (354)




From Equations (3.53) and (3.54), it is concluded that oblique MHD mode is sub-
stantially modified by incorporating the quantum correction terms (Bohm Potential,
degree of temperature degeneracy in pressure term and in spin magnetization for e-p
particles), highlightly important and interesting features in the propagation of such a
type of waves,

3.3 Results and Discussion

For numerical analysis, the dispersion relation (3.22) is solved to investigate MHD wave
in three species (e-p-i) plasma by varying different values of angle @, spin magnetization
energy and degree of temperature degeneracy. This situation can be plotted with
the help of some numerical data of quantum plasma taken from dense astrophysical
systems. A compact dense astrophysical system forms the endpoint of stellar evolution.
Luminous stars lose their nuclear energy source in a finite time. Finally, all the available
energy of stars is consumed (stellar death) and the stars collapse to form compact
dense stars. It has been observed that the compact systems like WD and NS, as a salid
state are opposed to the gaseous interior of all other stars. Corresponding, in these
compact dense astrophysical systems, parameters such as number density, magnetic
field and arbitrary temperature degeneracy vary over a wide range of values. The
number densities for such a dense plasma varies about n = (10% — 10%) m~=3 and their
temperatures are T<10°K [ |. Similarly, the magnetic field in the WD and the NS is
predicted upto By < 10'%Tesla [ , ]. The Fermi temperature of degenerate plasma
depends on number density i.e., Tr ox n?/3 has numerical values for NND plasma to ND
plasma ~ 10* to 108K, respectively. Other parameters are taken as m = 9.1 x 10~3'kg,
m, = 1.67x 10~7kg, c = 3x 10°m/sec, kg = 1.38 x 10~ J/K, e = 1.602 X 10~°c and
K = 1.05 x 10731J — sec. The change in magnitude of parameters, such as, temperature
degenerate fugacity (£), temperature ratio o, magnetic field and density will modify
the dispersive properties of _Q}VIHD wave. The present work is related with borderline
system ( T = T ) i.e., neither complete non degenerate regime nor complete degenerate

regime. However, NND is slightly differentiated from ND by intermediate regime.

69



W/,

KAce

Figure 3.1: Dispersion diagram given by Equation (3.33) for perpendicular propagation mode
of MHD wave in ND plasma with different electron’s concentration effect such that neg = 1 X
103m3(solid black line), 5 x 10%3m~3 (deshed black line), 1034m=3 (solid red line) with
iy = 10°2m ™3 as a fixed value. Other parameters are 0, = 2, 0p = 2 and Bg = 5 X 108Tesla,
where w(= w—“’—“, along horizontal axis) and k(= kAp,, along vertical axis).

Figure 3.2: Dispersion disgram given by Equation (3 30) for perpendicular propagation mode
of MHD wave in NND plasma with different electron’s concentration effect such that n., =
1 x 10%m~3(solid black line), 2 X 10%®m~3 (dashed black line), 6 X 10%m=3 (solid red line)
with ngy = 10%m~3 as a fixed value. Other parameters are o0, = 0.02, op = 0.02 and
By = 5 10*Tesla, where w(= o=, along horizontal axis) and k(= kApe, along vertical

axis).



Figure 3.3: Dispersion diagram given by Equation (3.30) for perpendicular propagation mode of
MHD wave in NND plasma with different values of quantum temperature degeneracy factor such that
Oe, 0p = 0.02,0.02 (solid black line), 0.04,0.04 (dashed black line), 0.06,0.06 (solid red line).
Other parameters are 19 = 10%m 3, nyy = 10%m=3 and By = 5 x 10*Tesla.

The influence of electrons concentration on the dispersion of magnetosonic wave
(using Equation 3.29) for ND (and NND) plasma is represented in Figure 3.1 (and
Figure 3.2). In Figure 3.1, the normalized wave frequency w (ie., w = ) as
a function of normalized wavenumber k (i.e., kK = kAp.) decreases by increasing the
electrons number density of ND plasma n. (103 — 103%m=3) at a fixed number density
of positrons (ngo = 10%m=3). As increase in number density of electrons will cause to
decrease the wave frequency with more degeneracy factor and therefore it will enlarge
the Fermi screening length. The same trend is also shown in Figure 3.2 for in case of
NND plasma with electrons number density (1 x 10?® — 6 x 102*m~?) at a fixed number
density of positrons (ny, = 10%m~3), where the vertical axis (horizontal axis) shows
the normalized wave frequency, w = - (normalized wave number, k = kAp.).

The effect of degeneracy parameter o(= 1}'—) on the dispersion of perpendicular
MHD wave for NND plasma i.e., 0 < 1 is graphically shown in Figure 3.3. It has
been observed that increase in the values of o, o, from 0.02, 0.02 to 0.06, 0.06 will cause
to increase the frequency of wave. Figure 3.4 shows the impact of magnetic field on
MHD wave in NND plasma with number density (ne = 5 x 10%m=3, ny = 10m-3).
It is observed that the phase speed of wave decreases by increasing the value of By
from 10°T to 10°T. It means that due to increase in B,, the frequency increases.
Similarly, Figure 3.5 shows the effect of magnetic field on MHD wave in ND plasma
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Figure 3.4: Dispersion diagram given by Equation (3.30) for perpendicular propagation mode of
MHD wave in NND plasma with different magnetic fields, i.e., Bg = 10*T'esla (solid black line),
108Tesla (solid red line). Other parameters are gy = 5 X 10%¥m =3, nyy = 102m=3, o, = 0.02
and 0, = 0.02.

with number density (n = 5 x 10¥m=3, ng = 10**m™3) in which the phase speed of
wave increases. At lower density the effect of spin magnetization due to magnetic field
on the fast MHD mode in NND plasma is dominated and the mode is not altering by
the magnetic field upto number density 10m—3 and with values higher than this upto
10®m-3 it is increasing.

It is to be noted that the plasma density is considered low in NND regime as
compared to ND regime. The Alfven velocity is modified by the spin effect that affects
the dispersion features of the wave and corresponding the temperature degeneracy
associated with the NND and ND electrons (and positrons), can also play a vital role
in dynamics of magnetoacoustic waves.

In order to study oblique MHD wave in NND and ND quantum plasma we solve
the Equations 3.53 and 3.54. All the parameters considered here are the same as taken
in Figures 3.1 and 3.2. Figure 3.6 shows the effect of degenerate fugacity related to
electrons and positrons, i.e., £,,£, = 0.1,0.1—0.9,0.9 with number density n.o = 10%,
ng = 10#m~3 in NND magnetoplasma (¢ < 1) on dispersion of oblique propagation
of MHD wave. The increase in the magnitude of frequency is observed for the degree
of degeneracy in terms of fugacity. In Figure 3.7, the same trend of magnetic field
effect on oblique MHD wave in NND plasma is investigated as in Figure 3.4.
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Figure 3.5: Dispersion diagram given by Equation (3.30) for perpendicular propagation mode of
MHD wave in NND plasma with different magnetic fields, i.e., Bg = 10%Tesla (solid black line),
10%Tesla (solid red line). Other parameters are nieg = 5 X 103m =3, nyy = 10*m-3, 5, = 0.02
and g, = 0.02.
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Figure 3.6: Dispersion diagram given by Equation (3.54) for oblique propagation mode of MHD wave
in ND plasma with different magnetic fields, i.e., Bg = 10°Tesla (solid black line), 2 x 10°Tesla
(dashed black line), 3 X 105Tesla (solid red line). Other parameters are gy = 5 x 103%m=3,
ny = 10%m=3, 5, = 200 and o, = 200.
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Figure 3.7: Dispersion diagram given by Equation (3.53) for NND plasma of oblique propagation
mode of MHD wave for varying quantum degenerate fugacity factor of species, ie., {,, §, such that
€., &, = 0.1,0.1 (solid black line), 0.5,0.5 (dashed black line), 0.9,0.9 (solid red line). Other
parameters are 0 = 0.2, g, = 0.2, ng = 10%m 3, nyy = 10%m =3 and By = 5 x 10?Tesla.

3.4 Conclusion

In this chapter, we have studied the propagation of low frequency MHD waves with
arbitrary degree of temperature and spin degeneracy in e-p-i quantum plasma. Tem-
perature degenerate parameter has been incorporated by means of the pressure term
using the F. D Distribution. Starting from quantum bydrodynamics equations, in-
cluding the effects of temperature degeneracy and spin magnetization of electrons and
positrons, a generalized dispersion relation is derived. The electrons (and positrons)
are treated as quantum degenerate particles because of their smaller masses, while ions
are taken as non degenerate (classical). Further, the generalized dispersion relation
has been reduced to get three different modes in case of NND as well as ND plasma
with respect to angle of propagation under the low frequency MHD assumptions. The
quantum effects cannot affect the parallel propagation (6 = 0) at low-frequency. Three
quantum corrections, i.e., temperature degeneracy due to the quantum statistics, Bohm
potential arises due to the density fluctuation, and spin magnetization due to spin ef-
fects have been investigated. It is observed that number density of positron leads to
new modifications in the wave dispersion of MHD modes both in the NND and ND
regimes and also the background magnetic field enhances the dispersion mode. It is
also noted that the effect of temperature degeneracy in the presence of 1/2—spin mag-
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netization and Bohm potential modifies the dispersive property of magnetosonic waves
in quantum astrophysical dense plasmas. The modified Alfven velocity by spin mag-
netization affects, the dispersion features of the wave is comparatively less than that
of temperature degeneracy. It is found that the arbitrary degree of temperature and
spin degeneracy associated with electrons and positrons has a substantial influence on
the dynamics of magnetoacoustic waves.
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Chapter 4

Magnetosonic Waves in Ion
Trapped Semiconductor Chip

Plasma

4.1 Introduction

Recently, the quantum plasma has gained much interest due to its potential appli-
cations in astrophysical systems (e.g., WD, NS, magnetars, black holes, etc.) at low
temperature and high density. As normal plasmas are characterized by regimes of low
density at high temperature with negligible quantum effects [ ] but physical systems
where plasmas and quantum effects coexist is the noteworthy example of electron gas
in an ordinary metal. In case of metal, valence electrons cannot be bound to any spe-
cific nucleus, but rather they behave like a gas particles that’s why a metal is a good
conductor. At ambient temperature and typical density, quantum effects can no longer
be ignored. Thus, the electron gas along with lattice ions in a metal makes a real
quantum plasma. Similarly, semiconductor physics contributes another possible appli-
cation of quantum plasmas. Though the electron density in semiconductor materials
is comparatively less than in metals, even then quantum effects are investigated duse-to
the emerging of miniaturization of electronic devices. The electron-hole (e-h) plasmas

can be produced by interaction of short laser pulses with matter where electrons gained
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energy during interaction from valence band (V.B) and are excited to conduction band
(C.B) via absorption of single (or multi) photon depending upon the band gap energy
E4(T') and that of photon energy. As a result of electrons transition holes are created in
V.B. The electrons and holes fluids in semiconductor behave as quantum plasma under
the condition Tr.s > T, and obey FD statistics. Moreover, quantum effects become
more essential in semiconductors at such a small space scales when the de Broglie
wavelengths associated with the electrons (and holes) are comparable to their average
inter-particle distances, viz., d ~ ng bas ng is the equilibrium number density. For fur-
ther manufacturing of modified semiconductor devices, ion-implantation techniques are
generally employed in which ions in host materials alter their characteristics through
introduction of metal ions such as Fe*, Cut, Ag™ etc. In the recent past, ion-implanted
semiconductor (IIS) plasmas have been explored [ , , , |, where quantum ef-
fects were studied. Also, Cd* ion trapped in semiconductor gallium-arsenide (GaAs)
heterostructure chip has been fabricated [ ] which gives an interesting opportunity
of three species electron-hole-ion (e-h-i) semiconductor magnetoquantum plasmas to
determine their quantum collective effects on dispersive properties of magnetosonic
propagation waves. Non-linear property of the wave propagation in the medium can
be resulted in the formation of solitary pulses called solitons. The experimental investi-
gations of the acoustic solitons are carried out for a number of systems like Si, Sapphire,
MgO, Al;O3, GaAs and alpha-quartz materials. Later, Moslem et al. [ ] have also
applied their theoretical results to quantum semiconductors plasmas like GaAs, GaN,
GaSb, and InP.

Several new quantum plasma models [ , , , ] have been successfully
studied and made progress in investigation of spin magnetization of electrons [ |,
kinetic quantum effects due to Fermi particles [ ], non relativistic effects in dense
quantum plasmas | ] immersed in high magnetic field, and spin dynamics in semi-
relativistic plasmas [ |. Similarly, Asenjo [ | selected the quantum MHD model
to investigate the propagation of low frequency magnetosonic waves of two species
(electrons and ions) in quantum magnetoplasmas with Bohm potential and spin mag-
netization energy and discussed the effects of quantum corrections on the dispersion
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of oblique, perpendicular and parallel modes of propagation. Accordingly it has been
examined that temperature degeneracy along with spin-1/2 effect associated with elec-
trons and positrons, has a substantial influence on the dynamics of magnetosonic waves
in e-p-i plasmas [ ]. Typically, whenever quantum effects in plasmas are incorporated,
the exchange and correlation potential (V) effects can no longer be ignored. Actually,
this effect was effectively described by density function theory (DFT). A lot of theoret-
ical work has been done on an electron gas with the exchange and correlation potential
(Vze) effect (especially in quantum wells) [ , , , , , , ] There
fore, the contribution of this effect along with Fermi degenerate pressure and Bohm
potential will reshape the dispersive properties of magnetoacoustic waves in quantum
plasmas. The Fermi degenerate pressure at high density dominates over the thermal
pressure which supports the high dense objects against the gravitational burst. In such
a situation, thermal energy is always less than Fermi energy. According to degeneracy
pressure’s law, the degenerate pressure is directly related to 5/3 power of density in
case of non relativistic and is also related to 4/3 power of density in case of ultrarela-
tivistic[ , ]. Moreover, Shahid et al | ] have studied the parallel propagating
electromagnetic waves with the help of non relativistic spin quantum fluid theory in
e-p plasma to examine spin effect.

In this Chapter, we investigate linear dispersive properties of the low frequency
magnetoacoustic waves in spin-1/2 semiconductor quantum magnetoplasmas (GaAs,
GaSb, GaN, and InP) taking into account the degenerate relativistic and non rel-
ativistic pressure with Bohm potential as well as exchange-correlation potential. A
generalized dispersion relation is derived by using the QMHD model including the
quantum effects. The layout of the chapter is given as follows: Mathematical formula-
tion is described in Sec.II. Propagation modes are given in Sec.ITI. Numerical analysis
is discussed in its final portion.



4.2 Mathematical Formulation

Consider an e-h-i quantum semiconductor plasma in the presence of applied magnetic
field Bo(= By cos 8 + Bysin#z) with § and 2 being the unit vectors, where 8 is the
angle subtended by magnetic field strength with wave propagation direction (or wave
number) k(= kjj). The geometry of perturbed EM field is sketched in such a way that
electric field (E, = E) is considered along X-axis and magnetic field (B, = —%£.2) is
along Z-axis. The electrons (and holes) obey the relativistic degeneracy pressure’s law,
while ions as ND particles follow the classical’s law. The quantum mechanical effect of
ion is ignored due to its heavier mass. At equilibrium, background charge neutrality
condition can be taken by the relation n, + nyg = ng as n.g (in this Chapter) is the
unperturbed number density of r** species, r = i (ions), r = e (electrons) and r = h
(holes). The amplitude of the oscillations is assumed to be so small that this problem
may be solved by employing the linearized equations. In order to investigate the MHD
waves (or magnetosonic waves) in semiconductor plasma along Y-axis, we start with

that of balance equations of continuity and momentum as

%"’.+M(V.Vr)=0 r=i, e h (4.1)
8Vi _ [+ ] Vi X Bo VP,
g (E1 + 0ix ) - R, (42)
AL _ Qe Ve x By V P, _ VViee
a m: (El T ) ngm:  md + Fqe, (43)
and
V, xB P VYV,
8V;.=_q_:;_(E1+ A X o)_v A7 (4.4)
a4 my c npm;,  my

In these equations, V,, n, and g, (for subscript, r = e, h, i) are the fluid velocity,
perturbed number density and charge of electrons, holes, and ions, respectively. In such
a situation the perturbed number is very small as compared to unperturbed number
density i.e., n, €« n,9. Here the ef_l’?ctive mass of electrons (holes) is denoted by mg
(m}) and the mass of ions is m;. Reg;rdmg to the pressure term, as ions are considered

to be non degenerate (classical) so that the pressure gradient for ions in Equation (4.2)
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becomes as VP, = v;Er;Vn;, with +; being the polytropic index and Er; = kgT; is
the thermal energy of ions. All the quantum corrections are ignored for ions due to its

large inertia as compared to electrons (and holes). The electron pressures in the non

relativistic and ultrarelativisticlimit [ , , , ], are
2/352
Puga =T s, (43)
and
3hc
Pype = Tntla' (4.6)

The relativistic pressures for electrons and holes can be written in a generalized form

2EFen -
Neopo

Here Erep (= ﬂ;f"ﬁlL”“’) is the Fermi energy and Yegu = y/1+ (e p is the
relativistic factor due to electrons (and holes) with ¢ = “""—"ﬁ&’ﬂ The fourth
term in right side of Equation (4.3) (and Equation (4.4)) denotes the exchange and

Pren = Peoo + (4.7)

correlation force (Vzc .,4) due to identical particles i.e., electrons (and holes) in quantum
semiconductor with parallel and antiparallel spin-1/2. The contribution of this effect is
usually very weak, and is normally neglected. However, it is expected that exchange—
correlation effect plays an essential role due to the recent miniaturization of electronic
components. The exchange-correlation is a function of electron (and hole) density
which can be obtained via the adiabatic local density approximation(ALDA) [ , ,

] as
en? 0034
Vice = ~0.985—=2(1 + — - In(1 + 1837a3n, )],
€ a.Bnc,h '

where aj(= ;':‘%,) is the effect of Bohr atomic radius. The parameter € is the effective
dielectric constant of semiconductor. The dielectric constant is a measure of the amount
of electric potential energy, in the form of induced polarization that is stored in a given
volume of material under the action of an electric field. It is expressed as the ratio of
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the dielectric permittivity of material to that of a vacuum or dry air. Practically, it
is determined as the ratio of the capacity of a capacitor with wood as the dielectric

between the plates to that with dry air. Using the Taylor’s expansion under the

1/3

» G’ .
condition 18.37ajn.y <€ 1 (ie., Nep = i < 107om™%), one gets the expression

given by
9 1/3

T
Vecen = -16—2 +5.65m:’hn¢",..

We have considered the number density n; < 10¥cm=3 in our calculations according
to the above approximation. The last term in the right side of Equation (4.3) (and

Equation (4.4)) can be expressed, as

hﬁ

2neg notte p
4"e.h0(m:,h)2

V (Vnes) + ——V(8-B,), (4.8)

FQen =

where the first term in the right side of Equation (4.8) shows the Bohm quantum
potential associated with density fluctuation and the next second term corresponds to

Qulh'l =
2m: ,c

magnetization energy due to particle spining effect. The parameter u, ,(=
Fup.,) describes the magnetic moment for electrons and holes i.e., p, = —pg, (for
electrons) and p,, = pg, (for holes) while s is the spin vector. Here the spin evolution

equation may be written, as

(%+V¢‘h-v) s= 2—’;;’£(sx B). (4.9)

Under the MHD assumption (w < wg < Wee, Wen), the spin inertia can be neglected that
gives s B = 0, which has the solution s = ~3An(a.4)B. For electrons and holes under
the above approximation with assumed geometry, the solution can be more simplified
in the following form as

e = 5t p)(co 04 + sin 02), (4.10)

In Equation (4.10) n(a.s) = tanh(a. ) is the Langevin parameter due to the magneti-

zation of a spin distribution in thermodynamic equilibrium, where a,; = :.—i}'% and
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Tren & ET-";"!‘- = %}’%nﬁ is Fermi temperature of degenerate electrons and holes.
' eh

In case of non degenerate plasma, T, is replaced by Maxwellian temperature T, .

Using the Maxwell's EM equations V x E; = ~1%Bt and V x B, = 1%81 + 42, we

get the following relation
(«? = k) Ey+idrwd, =0. (4.11)

Here J, is the total current density which can be given by relation J; = ) g -n,v, +
cJers + cInne where Jopr = —V X (2n.pg8/h) (and Jpp = V x (2n,.p3,,sr/h)) is the
magnetization spin current of electrons (and holes).

To analyze the linear perturbation in semiconductor quantum plasmas, we assume
that all the first order perturbed quantities are proportional to e'®¥—# here k is the
wave number or direction of propagation and w is taken as the wave frequency. Using
the linearization, procedure Equations (4.1-4.4) can be written for ions, electrons and
holes as

n, = —4.V,, (4.12)

V,- XBO
[+

— iwmingV; = enyp (E1 + ) — i (7;Erkmi) g, (4.13)

—iwm:n,ove = —engy (El + v¢ : BU) - ’2 ( kEFe

3 T Te0 ne) Y- ‘(2EFekneOne)VmR,y

. { K3
—i ( yr— n,) § + in(ce) p g B1kneo sin 6. (4.14)

—iwmpnp Vi = enpg (E1 + Va : Bo) - ig ( kErn

3 e Th n;.) b7 :(2Ep,.km.on,.)V,¢R,.y

K2k3
—i ( e "h) § — in(an)pppBiknng sin 5. (4.15)
my,
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1.6e2n’3 5.65K2n2>

3 0,h0 .
Here Vocr, = §Peh — §5e.h with p, = —m— and Oep = —m Solving

Equations (4.12-4.15) along with Equation (4.11) we obtain the following generalized
dispersion relation for MHD waves.

12 1/2 1/2
Ao = (M0m0) Vg (H2) Vg (220) a9

] e h

where
w’(l - A.)
b= A=Ay - + uB oo 04, (4.17)
_ 20 (ae)weepgck®sin? @ n2(a.)ukc?k* sin? 9 w?,
Pe= [1 * ew? (1 f A.) 32“’2(51 - A.) (1 - ;2_(:082 0)]
w1~ Ae)

X [w“(l — A.) — W2, + w3, cos? 0A,] ’ (4.18)

and

2 k?sin? 0 2,Pk*sin? 0 2
o= 1 e ey (1~ )
x [ w1~ An) ] (4.19)

w?(1 — Ap) — wi +w?, cos? 04,

In the above Equations (4.16-4.19), wy = 22, w, = % and wa, = ;‘,ﬁ% respectively
represent the cyclotron frequency of ions, electrons and holes. The dimensionless quan-
tties are given on 4; = (%)" with Vi = (1E8)"", A, < [Be( + Vier) + 2] &
and A, = [—Véﬂ(ﬁ + Vzeer,) + %ﬂ ;"; The relativistic factor (7,40), Bohm poten-
tial (proportional to i? order), and exchange correlation parameter (Vicx,, ) appear in
modified dimensionless quantities A, (and A,) while the spin effects appear in 7(a,)
and (o). Thus, dispersion relation (4.16) is significantly modified by relativistic
pressure through electron-hole Fermi energies Eg, (= ?"’—;:.fﬁ’-) along with relativis-
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tic factor (7.g,0) and that of contribution of exchange correlation parameter (Vzcr, ,,)-
Also V., is the Fermi velocity of electrons and holes given by Ve, = Tﬁﬁ. In the
following, we will discuss the above dispersion relation of MHD waves with different
limiting modes in quantum semiconductor plasmas for the above mentioned quantum

effects.

4.3 Propagation Modes

In order to consider the wave propagation perpendicular to magnetic field in a rela-
tivistically degenerate e-h-i quantum semiconductor plasma, we assume By, = 0 and
only incorporate the perpendicular background magnetic field (viz., By = Bp2), which
makes an angle (= 7/2) with the wave propagation in the y-direction. This would
lead to the perpendicular EM waves and one can get a compressional magnetosonic
waves. Due to small inertia of electrons (and holes) we may consider the low fre-
quency limit (w? €« w2, w?,). The quantum corrections (like, relativistic degeneracy,
exchange-correlation potential and Bohm quantum potential appear in A, and A,) be-
come significant for large value of wave number and therefore the limit used as, w? <
A, Apw?,. Moreover, neglecting the Hall effects, it is considered, w? < w2 in such
away that (1 — A;) < w?/ w?. By incorporating the above mentioned assumptions in
Equation (4.16) the following reduced form is obtained as

, PR

YEVIFE

- 232
V‘2+V§"+“7 { fleo

2 vt s b

(4.20)
Equation (4.20) is the dispersion relation of compressional (or fast) MHD modes in

e-h-i semiconductor quantum plasmas. Here

. 1/2
Ta=Va (1 + Bmn(an)ppnting _ 81rn(ae)#aen=o) ’ (a.21)

B, Bq
is the modified Alfven velocity with spin magnetization effects of electron and hole
(7e,n), where V, is the standard Alfven velocity. Moreover, in Equation (4.20), Vy is the
modified acoustic speed including the relativistic degeneracy factor (y) and exchange
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correlation parameter (V.z) given by

o/ \ T4 0 m;

e () () B o () () i e

Using Equations (4.21),(4.22) with the value of V., in Equation (4.20) we get

WP = k2 [V}(l + SM(a'g:mnm _ hﬂ(agfshmo) +VA+ gf: ( ) (7_ +Vier))
i 0
25 (%) L Vi) + 5 e (2) (awmn.)
2E K23
13t (M) (ot Vi) + o { it - - P(anl}]
(4.23)

Equation 4.20 (and 4.23) is the dispersion relation of magnetosonic waves in quantum
semiconductor plasma including three species (e-h-i). This relation contains n(a.)
(the spin magnetization effect due to spin-; effect). From mathematical relation (4.21)
it is obvious that Alfven velocity increases due to spin magnetization effect of holes
but the converse effect is observed for electrons showing that there is a constant cor-
rection to Alfven velocity and as a result it produces a contribution to linear portion
of the propagation wave mode. The other correction is due to the Bohm quantum
potential that produces a contribution (of order k%) to the linear part of the wave.
Third correction may be added because of relativity factor (7. ) of quantum plas-
mas that causes to modify the acoustic speed and the fourth correction comes from
the exchange correlation parameter as V;cg,, bringing a linearly change in dispersive
properties of magnetoacoustic waves. The above quantum corrections have more sub-
stantial influence in semiconductor quantum plasmas with high number density and
low temperature and parametrically are shown in the section of numerical analysis and
discussion.
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Using the following dimensionless variables

w— -2-, k—kp..
Wei

The dimensionless form of the dispersion relation (4.23) can be written as

wi=k* o, (Vi + Vi, + B HZ,T,) . (4.24)
Here
Van
Van = Vi = Varn V1 + Yorn T (@h) = Ypnetle(@e), (4.25)

where 7,,, = Z48™ and Vyp, = JA.

Ven = VFF’ VS(-' ‘/:"' (— + Vch,.)ﬁhl + (— + Vu&)ﬂel) (426)

Bere Vo = 5, B = § (32) (%) ond B = 3 (22) (%5)-

In the above representation (4.24), H,j = h is a dimensionless pa-
\/zlme ATASVE

rameter which arises due to the collective electron (and hole) tunnelling effect through
the so-called Bohm potential and W, = 841 — n2(an)] + d[1 — n?(a.)]-

For oblique MHD propagation mode say for example; @ =% and by using the above-
mentioned low frequency assumptions we get the following relation after some steps of

algebraic manipulation:
k2 1- 2o, () 2mnoph 1 (ae) c — VAK?
| B (L Vg, + 2 Ba( L4 Vo) R | T V] V.ﬁ,k /2

"B o TR (GL + Vier,) + %'{} Bo{ggﬂ‘(,,—; + Vacr,) + 1077

Equation (4.27) shows the oblique propagation mode that depends on all the four

quantum corrections. In a more simplified form this equation can be written as
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awt — b +d=0. (4.28)

The coefficients in equation (4.28) are given as

A 87l'ﬂho[l3h7l(ah)cz 8"""e0#3e’7(0‘e)02
2=vz + 2Epy/ 1 AN 2Ep(_L A2 |’ (4.29)
A Bo{s-"f’..h m+Vnn,.)+4—"T’..w} Bo{g—"ﬁ_‘ E"I'Vzcng)‘*‘m:l
b= Vik? 8nnoppn(an)c? - 8mneopp n(ae)c? V2
= 7]
2 |B {32 (;!,;"'Vzcm)""‘m"};} Bo{g% (t+v,c&)+% Vi
2 2 .2
it |1 el () _ et () W] , (430)
A (m + an,‘) + Im? 3EFe (;; + V:c&) + Gme
and
O (i) | omader@) ) e
2 %EFh(;l’;' + Veer,) + "m"h- %EFe(;i; + Veer,) + 547:‘:

Equation (4.28) is in the form of biquadratic equation and one can obtain the following

equation

(4.32)

Jb + (b2 — 4ad)1/?
w= ,
2a

From the above equation (4.32), it is obvious that dispersion relation of oblique MHD
wave in semiconductor quantum plasmas depends on the spin effect, relativistic factor,
Bohm potential and exchange correlation, which cause to bring interesting features in

dispersive property of such a type of wave mode.
Similarly,the dimensionless form of the dispersion relation (1.27) with k(=k\p.)

T

can be written as

Guwt - b+ é=0, (4.33)
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'7anh7’h(ah) 7?'!’79(“‘) (434)

-2 _
G + Veer) + HY 355+ Veert) + HZ

; K2VZ, YornTIn{Cth) VpneTle(ate) Ky2

_ B, _ VA, (435
b 2 (%(;:—;+Vm)+H,"3 §(%+V,cn,)+H3 + K Vi (435)

+k2 1- ﬁanhqh(ah) _ ﬁmﬂe(ae) ) .
WL +Veer) + H 3% + Veem) + B2
and

4 k"VTz‘m '?mhnh(ah) ﬁmne(ae)

= TTin [ _ - , 4.
== (1 T + Vo) T B2 HL + Vour) + 2 (436)

where 4, = 2—"5.':%,:5, and 4, = -2"7':"‘}";%- Equation (4.33) is in the form of
biquadratic equation and can be solved as

Ao bEVD —4bé W. (4.37)

4.4 Results and Discussion

For a quantitative analysis, we have solved dispersion relation (4.16) for perpendicular
and oblique modes of MHD waves with respect to external uniform magnetic field in
quantum semiconductor plasmas. This type of plasma is considered to be composed
of three species (ions, electrons and holes). In order to further study the complete
picture of quantum effects (including spin magnetization, Bohm quantum potential
and exchange correlation along with relativistic degeneracy) on dispersive properties,
Equations (4.23) and (4.32) are graphically represented between w and k with the help
of numerical values of magnetized quantum plasmas system. Here we have to apply
our results to four cases of compound semiconductors at room temperature T = 300K
with typical parameters | , , |given as: Te-

(a) GaAs with np = 4.7 x 10'%cm ™3, ¢ = 12.80, m! = 0.067m,, and m}, = 0.5m,,
(b) GaSb with ng = 1.6 x 10em~3, € = 15.69, m? = 0.047m,, and m}, = 0.4m,, (c)
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GaN with ng = 5.0 x 10¥%cm ™3, € = 11.30, m? = 0.13m,, and m}, = 1.3m,, (d) InP
with ng = 5.7 x 10em 3, € = 12.6, m? = 0.077m,, and m}, = 0.6m,.

Consider ion concentration in above electron-hole compound semiconductors (ac-
cording to charge neutrality condition) in the presence of applied magnetic field {107 —
10%G]. Using the typical values, we can find out other parameters in case of GaAs
such as the electron Fermi energy cr. = 1.13 x 10~Mergs, electron thermal energy
ere = 4.14 x 10~4ergs, the rest effective mass energy m2c® = 5.49 x 10~%rgs and
the magnetization energy (at 10°G) pg,Bo = 9.27 x 10~'%rgs and similarly the
same energies calculated are given for case of holes in InP such as the Fermi energy
ern = 4.31 x 10~ Mergs, the thermal energy er, = 4.14 x 10~ 4ergs, the rest effective
mass energy mjc? = 1.06 x 10~%ergs and the magnetization energy (at 10°G) pp, By =
9.27 x 107 %rgs. These results show that pg, 4 Bo € EFeh, ETen K m},c2. It may be
noted that quantum spin effects can be minimized through this condition but magne-
tization due to higher values of magnetic fields can even have influence on dispersive
characteristics of magnetoacoustic waves. In the following, we will numerically show
the MHD waves in magnetized compound semiconductor quantum plasmas. Other pa-
rameters in cgs system are ¢ = 3 x 10%m/sec, m; = 1.67 x 10~24g, m, = 9.1 x 10~%g,
A =1.05 x 10~2erg — sec, kg = 1.38 x 10~ %rg/K, and e = 4.8 x 10~%statc.

Here we have considered the compound semiconductors (GaAs, GaSb, GaN and
InP). Compound semiconductors are made from two or more elements. Most com-
pound semiconductors are from combinations of elements from Group III and GroupV
of the Periodic Table of the Elements (GaAs, GaP, InP, etc.). Other compound semi-
conductors are made from Groups IT and VI (CdTe, ZnSe, etc.). It is also possible to
use different elements from within the same group (IV), to make compound semicon-
ductors such as SiC. In recent years, however, the cost of manufacturing compound
semiconductors has come down. It is still much higher than silicon, but at the same
time, the special properties of these crystals have become more important for certain
applications. Because of their fundamental.material properties, compound semicon-
ductors can do things that simply aren’t possible with silicon. During manufacturing
of compound semiconductor, the number density can be increased comparatively to
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Figure 4.1: Dispersion diagram of relation (4 23) for perpendicular propagation mode of MHD waves
in magnetized semicoductor plasmas (GaAs, GaSb and InP) at By = 10°G is plotted between wave
frequency and wavenumber. The number density of electrons (and holes) for these semiconductors
are taken as (N = 4.7 X 108%em™3 — 5.7 x 10cm™3), (and nyy = 5 x 10¥em™3 —
3.7 x 107cm~3) and accordingly GaAs (solid black curve), GaSb (dashed black curve), and InP
(solid red curve).

silicon according to their properties.

The numerical values obtained for relativistic factor of electron (y,) in GaAs,
GaSb, GaN and InP are 1.00011, 1.00023, 1.0058 and 1.00022, respectively, which
show that plasma with number density below than n = 10'®%m™? is almost completely
nonrelativistic while relativistic degeneracy starts in plasma with number density above
of this value as relativistic factor is density dependent function. The Alfven speed V
for the above semiconductors immersed in constant applied magnetic field (10‘G) are
calculated as in the range of 4.88 x 10°%cm /s — 1.06 x 107cm/s. Similarly, Alfven Speed
for different applied magnetic fields 10G—10*G with fixed number density of GaAs
(n = 4.7 x 10"%cm3) are calculated as 1.33 x 10*cm/s — 1.33 x 107cm/s.

Figure (4.1) shows the graphical representation between normalized wave fre-
quency w (ie., w = &) and normalized wavenumber k (i.e., k = kAp,) for differ-
ent compound semiconductors plasmas (GaAs, GaSb and InP) to study perpendicular
MHD waves by using equation (4.23). It is observed that phase velocity increases
with increasing number density of plasmas and therefore it is concluded that dispersive
properties of mag'netosonit.:‘waves enhanced with respect to number density.

Figure (4.2) represents the normalized wave frequency w (i.e., w = Z) and normal-
ized wavenumber k (i.e., k = kAp,) for a semiconductor (GaAs) with external applied
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Figure 4.2: Dispersion diagram given by Equation (3 30) for perpendicular propagation mode of
MHD wave in NND plasma with different values of quantum temperature degeneracy factor such that
Oe, Op = 0.02,0.02 (solid black line), 0.04,0.04 (dashed black line), 0.06, 0.06 (solid red line).
Other parameters are ngp = 10¥m™3, ny = 10%m =3 and By = 5 x 10'Tesla.

magnetic fields (105 — 1.4 x 105G). It is observed that wave frequency is decreased with
increasing magnetic field strength.

Figure (4.3) describes the significance of exchange correlation potential on disper-
sive properties of perpendicular MHD wave by plotting the wave frequency of wave
mode against wavenumber. The same parameters in Figure (4.1) and Figure (4.2)
are considered here. Graphically, the exchange correlation effect is more prominent
for By < 10°G, which concludes that spin magnetization is independent of this effect
because exchange correlations depend only on number densities of electrons/holes in
semiconductor plasmas and that of their effective masses. Hence, both the exchange
correlation (i.e., p, , 0c,») and spin magnetization (i.e., 7, ,) effects modify the disper-
sive properties of MHD waves.

In order to investigate numerically the oblique MHD waves in semiconductor quan-
tum plasmas, such as GaAs and GaN, we solve Equation (4.32). Here all the plasma
parameters (in the above Perpendicular propagation case) are taken as the same in the
previous figures. The oblique propagation modes are given below.

Figure (4.4) displays the graphical representation of wave frequency () versus
the wavenitmber (k) for oblique waves in semiconductor (GaAs) with different values
of number densities i.e., (ng = 4.7 x 10'%cm=2 ~ 6.7 x 10'%cm—2) and with fixed value

of npy = 2 x 10'%cm =2 as shown in 4.4 (a). It is clear that the phase velocity decreases
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Figure 4.3: Diagram of Dispersion relation (4.23) for perpendicular propagation mode of MHD waves
in magnetized semiconductor plasma (GaSb) with g9 = 1.6 X 107cm ™3, nyy = 7 x 10'%cm—3
is plotted with exchange correlation (dashed blue line) and without exchange correlation (solid red
line).
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Figure 4.4: Dispersion Diagram (4.32) of oblique propagation mode of magnetoacoustic waves in
semiconductor plasma (GaAs) at By = 102G is shown for different number densities of electrons;
ng = 4.7 X 10%m3(solid black line), ney = 5.7 x 10'%cm~3(dashed black line), ngg =
6.7 x 10'%cm—3 (solid red line) with fixed value 7259 = 2 x 10%em =3,
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Figure 4.5: Dispersion diagram (4.32) of oblique propagation mode of magnetoacoustic waves in
semiconductor plasma (GaAs) at By = 10?G is shown for different number densities of holes; npg =
2 x 10'8cm ™3 (solid black line), npg = 3 x 10'%cm 3 (dashed black line), npg = 4 x 10'8cm—3
(solid red line) with fixed value n.g = 4.7 X 10'8cm~3 and other parameters are taken the same as
in Figure (4.1).

with increasing number density of electrons while the trend of graph for different values
of holes density nyg is the same but opposite to that of n. as shown in 4.4 (b). It is
revealed from Figure (4.5) that by increasing the magnetic field from 1 x 102 G to

3 x 10°G, the dispersive properties of the oblique waves enhance.

4.5 Conclusion

To summarize, we have investigated the low frequency MHD waves in quantum semi-
conductor plasmas with quantum effects (Bohm potential, spin magnetization energy,
exchange correlation potential and relativistic degeneracy). A modified dispersion re-
lation is derived by using the QMHD model and further its reduced forms are also
obtained for propagation modes of magnetosonic waves in the presence of external
magnetic field. Relativistic degeneracy term (v,y) is numerically calculated for some
compound semiconductors plasmas as it is related to density but due to its smaller
numerical value, it could not be shown graphically. However, it is hoped that semicon-
ductor quantum plasmas with relativistic degeneracy factor due to high degree density
miniaturization in electronic components will have a crucial role in future. It is found

that the spin magnetization degeneracy and exchange correlation potential along with
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Figure 4.6: Dispersion diagram (4.32) of oblique propagation mode of magnetoacoustic waves in
semiconductor plasma (GaN) is shown for different magnetic fields ie., Bg = 1 x 10°G (solid
black line), Bg = 2 X 10°G (dashed black line) and By = 3 x 102G (solid red line), where
neg = 5.0 x 10cm 3, nyg = 3.0 x 10%cm 3 and other parameters are taken the same as in
Figure (4.1).

relativistic degeneracy associated with electrons (and holes) have a substantial influ-
ence on the dynamics of magnetosonic waves. We have applied our theoretical results
to four kinds of semiconductors plasmas; namely, GaAs, GaSb, GaN, and InP. The
present investigation reveals that the characteristics of the linear MHD waves in each
semiconductor are different depending upon the typical plasma parameters.

Actually, the current model is beneficial in the relevance and interest of scientific
community in context of practical and simulation like studies. When the number den-
sity is increased upto 10*cm=2 then the quantum diffraction and exchange correlation
like terms which are number density dependent are increasing and overall affecting the
fast mode significantly. At this particular (and above it) value the magnetic field effect
upto 10° G is constant and does not make any further variation in this mode. Beyond
10° G, i.e., upto 10® G we then observe the variation in this mode, which is signeficant
for simulation like studies, but practically upto this time at given semiconductor mag-
netic field, it is not useful. On the other hand when we consider the number density
below of order 10'%cm~3 (e.g., at 10*2cm™3) then the quantum diffraction and exchange
correlation like terms may be ignored and we can easily observe graphically the varia-
tion in low magnetic field i.e., even at below of 10° -10° G. We can also say that the
quantum effects (including of the exchange-correlation effects and the quantum Bohm
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potential) was seen to cause an increase in the phase speed of MHD waves.

Moreover the results are also beneficial to understand the energy transport in semi-
conductor plasma in the presence of perpendicular magnetic field. Although they may
also be applicable for understanding the dynamics of semiconductor plasma to produce
high power high band-width devices in analogy, which are contrast to the existing gas
plasma devices.
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Appendix A

Derivations

A.1 Derivation of Equations (2.17 and 2.28)

As we know
VP =C2Vp,, (A1)

here C2 = (ﬁ) = (V2 + V?2) is the modified quantum acoustic velocity which is
basically a new type of sound velocity and is duly modified by Landau diamagnetic
levels with ion thermal velocity V;(= ‘/5,5‘11) and modified Fermi velocity of electron

21r4h4

_ / ng N . . . .

Ve(= g 7 Hg)' Linearize Equation (A.1) and then differentiate w.r.t time (t) we
get

V2 = AV ) = PGk ) (A2)

Et_ i
From linearized continuity equation with p,,, = pg+pm; Wehave 2,y = —ppo (V - v1)
which makes Equation (.\.2)

V%tl-:- = —pmoCaV (V - v1) = proClk(k - v1). (A.3)

Now Consider the Bohm potential term as

R V2P
2m;m, VP |



By using linearized continuity equation and differentiate the above equation w.r.t time

(t) one can obtain

BT___ mik?
ot 4m.

(k-vy). (A.4)
IJxH=(VxH)xH.
Differentiating again the last one eaquation w.r.t time () we can get the following
relation
0
E(JXH)=VAX [VX{VX (Vl XVA)}].

The above equation can be written in simplest form by using the vector identity rule

and plane wave solution as

ﬁf’-(a H) = [(Va-v)k—-(Va-K)vir (k-v)Val (k- Va).  (AS)

The spin density force in linearized form is given as under

Fopin = poM (VH) = nppp8(VH),

Differentiate w.r.t time (t) and then dividing the above equation by p,,;, we get

( spin) = ﬂ( ) (VH ) —ﬂHo( )k (k-v1). (A.6)
Using the values from Equations (A.3-A.5) in Equation (2.14) one can obtain
U2V1 -k (C: + VA2) (k . V]_) + [(VA . V1) k- (VA . k) vi+ (k . V]_)VA] (k . VA)_.-

h2k?
4m.-m.

k(k-vl) =0.
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By Substituting Equations (A.3-A.6) in Equation (2.23) we can get

Wy —k (C2 +V3) (k- v1) + [(Va- V1) k= (Vi - k) vi+ (k- v1) V] (k- Vi)
h2K2

Ik (V1) + BHy(=E)k (k - v;) = 0.

B
m;

Using the non dimension parameters one can easily derive Equations (2.17 and 2.28).

*w
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