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0.1.  Literature Review 

In real life situations, we often face imprecision or uncertainties due to several 

measures. To cope with such imprecise events, Zadeh introduced fuzzy set (FS) [1] in which 

an object or element of a set is assigned a membership grade in unit interval [0, 1]. The 

membership grade 0 points towards no satisfaction at all while membership grade 1 means full 

satisfaction. The partial satisfaction is denoted by other values in the unit interval based on 

their degree of satisfaction. FS theory has been applied to many situations like in intelligent 

systems by Yager and Zadeh [2], pattern recognition by Pedrycz [3], soft sets by Maji et al. [4], 

traffic and transportation by Trabia et al. [5], clustering by Xie and Beni [6] and many other 

areas. For some recent developments in FS theory and other tools of uncertainty and their 

applications one is referred to [7-9]. 

Zadeh’s FS was a success indeed but there were some events which could not be deal 

with using ordinary FSs and therefore Atanassov  [10] developed the concept of intuitionistic 

fuzzy set (IFS) as an extension of FS that deals with uncertain situations in a better way as its 

structure is not limited to membership grade only. The concept of IFSs is a better tool to use 

due to its diverse structure describing membership as well as non-membership grades of an 

element. The theory of IFSs have been remarkably used in some areas so far. In [11] medical 

diagnosis is discussed based on IFSs by De et al. and in [12], Xu defined some aggregation 

operators for IFSs which have been applied to multi-attribute decision making (MADM) by Li 

in [13]. Some similarity measures for IFSs are discussed in [14] by Szmidt and Kacprzyk and 

applied to medical diagnostics problems. 

There is a limitation exists in Atanassov’s structure of IFS that it restricts the sum of 

membership and non-membership grades on a scale of [0, 1]. In some situation, the IFS cannot 

describe effectively the opinion of human being due to weak limitations. For handling such 



types of problems, Yager [15] proposed the notion of Pythagorean fuzzy set (PyFS), as an 

extension of IFS to deal with uncertainty. The constraint of PyFS is that the sum of the square 

of membership grade and the square of non-membership grade is restricted to [0,1]. Further, 

Fei and Deng [16] applied Pythagorean fuzzy sets in multi criteria decision-making problems. 

The study of PyFS is very rich due to its larger domain as [17-21] focused on the aggregation 

theory of PyFS and its application in MADM. In [22] by Garg, the concept of linguistic PyFSs 

is developed and a MADM problem is discussed in such environment. In [23] by Garg, the 

strategic DM with some probability is examined using the framework of PyFSs and in [24] by 

Garg the famous TOPSIS method is performed in the environment of PyFSs. 

When a decision maker provides (0.85,0.82) for membership and non-membership 

grades, the IFSs and PyFSs cannot deal effectively i.e. 0.85 + 0.82 = 1.67 ≥ 1 and 0.852 +

0.822 = 0.72 + 0.67 = 1.39 ≥ 1. For handling such kinds of problems, Yager [25] again 

initiated the notion of q-rung orthopair fuzzy set (q-ROFS). The q-ROFS is a generalization of 

PyFS to deal with unknown and unpredictable information. The limitation of q-ROFS is that 

the sum of the n-power of membership grade and the n-power of non-membership grade is 

restricted to [0,1]. The q-ROFS is more general and more feasible than PyFS, IFS and FS.The 

geometrical interpretation of q-ROFS and their existing approaches are captured in Figure 1. 

    

 

 

 

 

 

 

                            Figure 1(Geometrical interpretation of q-rung orthopair fuzzy set) 



FS and IFS assigned single values to objects from unit interval which proved to be handful in 

most of the places, yet these concepts are further improved and the concepts of interval-valued 

FS (IVFS) in [26] by Zadeh and interval-valued intuitionistic fuzzy set (IVIFS) by Atanassov 

and Gargov  [27] are proposed. The theory of aggregation of IVIFSs and their applications in 

MADM is discussed in [28-31]. These new concepts of IVFSs and IVIFSs are improved than 

FSs and IFSs because these described the membership/non-membership grades in terms of 

closed interval [0, 1] instead of a single value. Furthermore, the concept of interval valued 

Pythagorean fuzzy set (IVPyFS) and interval valued q-rung ortho pair fuzzy set (IVq-ROFS) 

are introduced by [32,33]. For some other relevant work one may refer to [34-36]. 

The concepts of FS, IFS,PyFS and q-  ROFS couldn’t be applied in circumstances 

where human opinion isn’t of the type yes and no but it has some sort of abstinence or refusal 

degree as well. To agree with such demands and to model a concept close to human nature, 

Cuong [37] proposed the concept of PFS based on four possible situations like satisfaction, 

abstinence, dissatisfaction and refusal degree. The geometrical representation of all picture 

fuzzy numbers is demonstrated in Figure 2. Some other basic study about PFSs can be found 

in [38, 39]. The framework of PFS has be greatly utilized in several real-life problems as the 

aggregation operators of PFSs have been developed and utilized in multi-attribute decision 

making (MADM) by Wei [40] and Garg [ 41] respectively. The similarity (distance) measures 

of PFSs and their applications are comprehensively discussed by Son in [42]. Thong [43] 

developed a new computational intelligence-based method for picture fuzzy clustering. For 

some other relevant work one may refer to [44-45].  



     

Figure 2 (Space of all picture fuzzy numbers) 

By studying the structure of PFSs, it is derived that it generalizes FSs, IFSs and can 

manage the data or situations that FSs and IFSs could not. But there is a restriction in the 

structure of  PFS that the sum of membership, abstinence and non-membership grade must be 

less than 1. Because of the condition on PFSs, it is difficult to give values to its membership, 

abstinence and non- membership tasks by their self-choice. Mahmood et al. [46] introduced 

the notion of spherical fuzzy sets (SFSs) and (T-SFSs) that make better the construction of 

PFSs. Such type of structure of T-SFSs, shapes both human attitude and opinion along with 

yes/no, and can manage any sort of data with no constraints. For instance, if we observe the 

limitations of PFSs and T-SFSs, then it becomes obvious that the structure of T-SFS has no 

constraints. The limitations of IFS, PFSs and T-SFSs are as follows: 

 for IFS 𝐴 = {ṭ𝑖, (Ŝ(ṭ), Ð(ṭ𝑖))}, we have 0 ≤ Ŝ(ṭ𝑖) +  Ð(ṭ𝑖) ≤ 1; 

 for PFSs 𝐴 = {𝑥𝑖 , (Ŝ(ṭ𝑖), Î(ṭ𝑖), Ð(ṭ𝑖))}, we have 0 ≤ Ŝ(ṭ𝑖) +  Î(ṭ𝑖) +  Ð(ṭ𝑖) ≤ 1; 

 for T-SFSs 𝐴 = {𝑥𝑖, (Ŝ(ṭ𝑖), Î(ṭ𝑖), Ð(ṭ𝑖))}, we have 0 ≤ Ŝ𝑛(ṭ𝑖) + Î
𝑛(ṭ𝑖) + Ð

𝑛(ṭ𝑖) ≤ 1 for 

some 𝑛 ∈ ℤ+. 



 From the relationship with existing structures and its constraints the comprehensive 

structure and originality of T-SFSs is obvious. Some other useful work on T-SFSs can be found 

in [47-51]. 

Dealing with uncertain situations and insufficient information required some high 

potential tools. Graph is one such mathematical tool which effectively deals with large data. 

When there is some sort of uncertainty factors, FG is a tool that needs to be used. Due to its 

capacity of handling large data, graph theory is of some special interest as it can be applied to 

many problems. The theory of fuzzy graphs (FGs) has its own significance as application of 

fuzzy set (FS) theory has no limits. Zadeh’s FS provided a solid ground for the theory of FGs 

which have been introduced by Kauffman [52] in 1973. After that, FGs have been 

comprehensively studied by Rosenfeld [53]. The study of FGs lead many scientists to 

contribute in this field such as Bhattacharya [54] discussed several graph theoretic results for 

FGs. Bhutani [55] worked on automorphisms of FGs and Mordeson and Chang-Shyh [56] 

developed operations on FGs. FGs have been applied to many practical situations like 

optimization problems by Kóczy [57], clustering by Yeh and Bang [58], shortest path problem 

by Klein [59] and social networks Nair and Sarasamma [60] etc. For some other work on FGs 

one may refer to [61-64] etc.  

The concept of Intuitionistic fuzzy graphs (IFGs) is introduced in [65] by Atanassov. 

Like IFSs, some quality works on the theory of IFGs are also being done. Parvathi, 

Karunambigai and Atanassov [66] studied operations on IFGs, Gani and Begum [67] discussed 

the size, order and degree of IFGs, Akram and Davvaz [68] investigated strong IFGs, Parvathi 

and Thamizhendhi [69] discussed domination in IFGs, Akram and Dudek [70] proposed 

intuitionistic fuzzy hypergraphs, Karunambigai, Akram et al. [71] presented the concept of 

balanced IFGs, Karunambigai, Parvathi et al. [72] studied constant IFGs and Chountas et al. 

[73] discussed intuitionistic fuzzy trees.  For some other noteworthy work on IFGs one may 



refer to [74, 75] etc. The concept of PyFSs leads to the development of Pythagorean fuzzy 

graphs (PyFGs) [76].  For more related concept we may refer to [77, 78]. 

A generalization of FG known as interval valued fuzzy graph (IVFG) was introduced 

by Akram and Dudek in [79] where the nodes and edges are in the form of interval valued 

fuzzy numbers (IVFNs). Some other aspects of IVFG were discussed in [80-85]. The concept 

of interval valued IFG (IVIFG) was proposed by Mishra and Pal in [86] and some other terms 

and notions related to IVIFG can be found in [87,88]. The concept of single valued 

neutrosophic graph (SVNG) introduced by Broumi et al. in [89],  has been extensively used in 

several problems such as shortest path problem [90, 91], communication problem [92], decision 

making [93] etc. The concept of SVNG was further generalized to interval valued neutrosophic 

graph (IVNG) proposed by Broumi in [94] where the membership, abstinence and non-

membership grades are described by closed subintervals of the unit interval. The framework of 

IVNG is the most sophisticated one among all existing graph structures. For some other work 

on IVNG, one may refer to [95-97].  

Shortest path problem is one of the famous problems that have been greatly discussed 

in different generalized fuzzy structures. In [98] by Okada and Soper studied the shortest path 

problem using fuzzy arcs and in [99] by Deng et al. proposed fuzzy Dijkstra algorithm for 

finding shortest path. In [100-102]  some good work on fuzzy shortest path problems was 

provided. In [103] by Gani, and Jabarulla proposed a way of finding shortest path in 

intuitionistic fuzzy environment and in [104] by Mukherjee used Dijkstra algorithm to find 

shortest path in IFG. For some other works on shortest path problems, one may refer to  [105-

107]. 

Clustering is a technique in which objects of similar nature are grouped together into 

clusters. The objects that are in a cluster have some common attributes different from those 



which are not in the cluster. Cluster analysis is widely used in different fields such as data 

mining [108], recommender systems [109], image segmentations [110] and wireless sensor 

networks [111] etc. The concept of FSs and its different extensions have been extensively 

applied in clustering problems for example [112] is based on some techniques of fuzzy 

clustering, [113] provided the application of hesitant fuzzy sets in clustering, [114] is about j-

divergence of IFSs and its application in clustering, [115] is based on some hierarchal 

clustering of IFSs and [116] is about a new clustering algorithm choquet aggregation operators. 

Further, Clustering in the environment of FG has been studied in [117], while the same 

algorithm is studied for IFG in [118]. The algorithm is used in a decision-making problem in 

[118] for both fuzzy and intuitionistic fuzzy environment. 

0.2.  Chapter wise study 

     In chapter 1, we describe some very pioneer ideas of FS, IFSs, PyFSs, q-ROFSs, PFSs 

and TSFSs etc. The relationship between the definitions of each concept is demonstrated. 

Further, the ideas of FGs, IFGs and PyFGs are also demonstrated with the help of some 

examples. These notions are helpful in establishing new studies. 

In chapter 2, a new concept of intuitionistic fuzzy graph of nth type (IFGNT) is proposed as 

a generalization of intuitionistic fuzzy graphs (IFGs) and intuitionistic fuzzy graphs of second 

type (IFGST). Some light has also been shed upon the concepts of constant intuitionistic fuzzy 

graphs of second type (CIFGST) and constant intuitionistic fuzzy graphs of nth type (CIFGNT). 

Moreover, some basic definitions of and results from IFGNT have been developed, supported 

with examples. Besides, the advantages of proposed new concept over the existing concepts 

have been highlighted and a comparative study of new and existing works made. Further, an 

application of IFGNT has been demonstrated in social networks context. 



In chapter 3, a novel clustering algorithm in the environment of picture fuzzy graphs is 

developed. The proposed clustering algorithm is an improved version of clustering algorithm 

of fuzzy graphs and intuitionistic fuzzy graphs. Chapter 3 thoroughly investigated the existing 

clustering algorithms proposed in the frameworks of intuitionistic fuzzy graphs by pointing out 

the deficiencies and suggesting a solution which is applicable in handling real-life scenarios. 

The proposed clustering algorithm is supported with the help of a numerical problem discussing 

those cases which have not been discussed in the existing algorithms and the results are 

examined. To develop the new algorithm a study of picture fuzzy graphs along with some 

interesting result is established. A comparative study of the new work with that of existing 

work is established proving the worth of the proposed new work. Some drawbacks of the 

existing concepts and advantages of new theory are also discussed. Chapter ended with a 

summary of proposed work and possibly related future work in these directions. 

In chapter 4,  a social network and a wifi network using the concept of picture fuzzy 

graph (PFG). For this purpose, the concept of PFG and some basic terms are demonstrated 

including complement, degree and bridges. The main advantage of the proposed PFG is that it 

describes the uncertainty in any real-life event with the help of four membership degrees where 

the traditional FG and IFG fails to be applied. The viability of PFG is shown by utilizing the 

concept in demonstrating two real-life problems including a social network and a Wi-Fi-

network. A comparison of PFG with existing notions is established showing its superiority over 

the existing frameworks. 

In chapter 5, some developments based on fuzzy graph theory are discussed in detail. 

A notion of a T-spherical fuzzy graph (T-SFG, for short) is presented as a generalization of 

fuzzy graph, an intuitionistic fuzzy graph and a picture fuzzy graph. The originality, the 

imperativeness and the importance of this notion is discussed by showing some results, giving 

examples and a graphical analysis. Some theoretical terms of graphs such as a T-spherical fuzzy 



sub-graph, a complement of T-SFG, degree of T-SFG are clarified and their attributes and 

aspects are analyzed. The main goal of this chapter is to study two types of decision-making 

problems using the framework of T-SFGs. These two problems include the problem of the 

shortest path and a safe root for an airline journey in a T-spherical fuzzy network. The 

comparison of this new approach towards these problems with existing approaches is also 

established. A new algorithm is put forward in the event of T-SFGs and is used to seek out the 

shortest path problem. The overall analysis of the suggested notion under the prevailing theory 

is conducted. The advantages of the proposed approach were discussed based on the existing 

tools and a short comparison of the new with existing tools was established. 

In chapter 6, some serious flaws in the existing definitions of several root level 

generalized FG structures with the help of some counter examples are shown and these issues 

are fixed. First,  to improve the existing definition for interval valued FG, interval valued 

intuitionistic FG and their complements as these existing definitions are not well-defined i.e. 

one can obtain some senseless intervals using the existing definitions. The limitation of the 

existing definitions and the validity of new definitions is supported with some examples. It is 

also observed that the notion of single valued neutrosophic graph (SVNG) is not well-defined 

either. The consequences of the existing definition of SVNG are discussed with the help of 

examples. A new definition for SVNG is developed and its improvement is demonstrated with 

some examples. The definition of interval valued neutrosophic graph is also modified due to 

the shortcomings existed in the current definition and the validity of new definition is proved. 

An application of proposed work in decision making is solved in the framework of SVNG 

where the failure of existing definitions and effectiveness of new definitions is demonstrated.  

In chapter 7,  the notion of graph for newly established concept of interval-valued PyFS 

(IVPyFS). Introduced the concept of interval-valued Pythagorean fuzzy graphs (IVPyFGs) and 

discussed its related ideas with the help of examples. The significance of using interval valued 



fuzzy concepts over non-interval valued fuzzy concepts are demonstrated numerically. Further 

the advantages of using the new approach are over the pre-existing ideas is demonstrated with 

the help of numerical examples. The main goal of this chapter is to study three types of 

decision-making problems using the framework of IVPyFGs. These three problems include the 

problem of selection of best university in a network of universities, supply chain management 

problem, and shortest path problem. The comparison of new approach towards these problems 

with existing approaches is also established.  

In chapter 8,  a new notion of interval valued q-rung ortho pair fuzzy graph (IVq-ROFG) 

and to study the related graphical terms such as subgraph, complement, degree of vertices and 

path etc. Each of the graphical concept is demonstrated with an example. Another valuable 

contribution of this chapter is the modeling of some traffic networks, telephone networks and 

social networks using the concepts of IVq-ROFGs. First, the famous problem of finding a 

shortest path in a traffic network is studied using two different approaches. A study of social 

network describing the co-authorship between different researchers from several countries is 

also established using the concept of IVq-ROFGs. Finally, a telephone networking problem is 

demonstrated showing the calling ratios of incoming and outgoing calls among a group of 

people. Through comparative study, the advantages of working in the environment of IVq-

ROFG are specified. 

 

 

 

 

 



Chapter 1 

Preliminaries 

In this chapter we describe some very pioneer ideas of FSs, IFSs, PyFSs, q-ROFSs, PFSs 

and TSFSs etc. The relationship between the definitions of each concept is demonstrated. 

Further, the ideas of FGs, IFGs, PyFGs are also demonstrated with the help of some examples. 

These notions are helpful in establishing new studies. 

1.1.  Fuzzy Sets and Their Generalizations 

In this section the notion of FSs and their generalizations are discussed. 

1.1.1 Definition [1]  

Let Ẋ be a universal set. Then FS in Ẋ is defined as 

 𝐴 = {〈ṭ, Ŝ𝐴(ṭ)〉/ṭ ∈ Ẋ} 

Here Ŝ𝐴: Ẋ ⟶ [0, 1] is the membership function of the FS on 𝐴.  

1.1.2 Definition [10] 

 Let Ẋ be a universal set. Then IFS is defined as 

Ḅ = {< ṭ, ŜḄ(ṭ), ÐḄ(ṭ) >: ṭ ∈ Ẋ} 

Here ŜḄ: Ẋ → [0, 1] represents membership degree and ÐḄ: Ẋ → [0, 1] represents non-

membership degree of ṭ ∈ Ẋ with a condition 0 ≤  ŜḄ(ṭ) + ÐḄ(ṭ) ≤ 1. Furthermore, 

(ŜḄ(ṭ), ÐḄ(ṭ)) is known as a intuitionistic fuzzy number (IFN) denoted as 𝐼𝐹𝑁 = (ŜḄ, ÐḄ). 

1.1.3 Definition [15] 

 Let Ẋ be a universal set. Then PyFS is defined as 



Þ = {< ṭ, ŜÞ(ṭ), ÐÞ(ṭ) >: ṭ ∈ Ẋ} 

Here ŜÞ: Ẋ → [0, 1] represents membership degree and ÐÞ: Ẋ → [0, 1] represents non-

membership degree of ṭ ∈ Ẋ to set Þ provided that 0 ≤ ŜÞ
2(ṭ) + ÐÞ

2(ṭ) ≤ 1. The extent of 

indeterminacy here is defined by 

𝜋Þ(ṭ) = √(1 − ŜÞ
2(ṭ) − ÐÞ

2(ṭ))
2

 

    

 

 

 

 

 

 

 

 

 

                                   Figure 3 (A comparison of spaces of IFSs and PyFSs) 

Furthermore, (ŜÞ(ṭ), ÐÞ(ṭ)) is known as a Pythagorean fuzzy number (PyFN) denoted as Þ =

(ŜÞ, ÐÞ). All the above discussed theory and geometrical compression clearly shows the 

significance of PyFS as it is the generalization of FS and IFS. The above Figure 3 shows that 

every fuzzy number and IFN is PyFN but converse is not true.  

1.1.4 Definition [25]  

Let Ẋ be a universal set. Then q-ROFS is defined as 

ř = {< ṭ, Ŝř(ṭ), Ðř(ṭ) >: ṭ ∈ Ẋ} 



Here Ŝř: Ẋ → [0, 1] represents membership degree and Ðř: Ẋ → [0, 1] represents non-

membership degree of ṭ ∈ Ẋ to set ř provided that 0 ≤ Ŝř
𝑞(ṭ) + Ðř

𝑞(ṭ) ≤ 1  for 𝑞 ∈ 𝑍+.The 

extent of indeterminacy here defined by 

𝜋ř(ṭ) = √(1 − Ŝř
𝑞(ṭ) − Ðř

𝑞(ṭ))
ǹ

 

Furthermore, (Ŝř(ṭ), Ðř(ṭ)) is known as a q-rung orthopair fuzzy number (q-ROFN) denoted 

as ř = (Ŝř, Ðř). 

1.1.5 Definition [37] 

 A PFS on a universal set Ẋ is characterized by three functions Ŝ, Î and Ð on [0,1] fulfilling 0 ≤

Ŝ(ṭ) + Î(ṭ) + Ð(ṭ) ≤ 1.  The values of Ŝ, Î and Ð in the unit interval describe the membership 

degree, the abstinence and the non-membership degrees of ṭ in Ẋ. Also 1 − (Ŝ(ṭ) + Î(ṭ) +

Ð(ṭ)) denotes the refusal degree of ṭ ∈ Ẋ. The triplet (Ŝ, Î, Ð) is known as a picture fuzzy 

number (PFN).  

     

                      

 

 

 

 

 

 

 

 

                                                        Figure 4 (Picture fuzzy space) 



The problem with PFSs and its constraint is depicted in figure 4. Realizing this issue 

Mahmood et al. in [100] proposed a new concept of SFSs and consequently T-SFSs. The 

following definitions are described along their geometrical representation in order to make the 

point clear that SFSs and T-SFSs generalize IFSs and PFSs. 

1.1.6 Definition [46] 

 A SFS on a universal set Ẋ is characterized by three functions Ŝ, Î and Ð  on [0,1] with the 

condition 0 ≤ Ŝ2(ṭ) + Î2(ṭ) + Ð2(ṭ) ≤ 1. The value of Ŝ, Î and Ð in the unit interval describe 

the membership, the abstinence and the non-membership degree of ṭ in Ẋ. Also Ṛ(ṭ) =

√1 − (Ŝ2(ṭ) + Î2(ṭ) + Ð2(ṭ)) denote the refusal degree of ṭ ∈ Ẋ. The triplet (Ŝ, Î, Ð) is 

known as a spherical fuzzy number (SFN). 

1.1.7 Definition [46] 

 A T-SFS on a universal set Ẋ is characterized by three functions Ŝ, Î and Ð  on [0,1] provided 

that 0 ≤ Ŝǹ(ṭ) + Îǹ(ṭ) + Ðǹ(ṭ) ≤ 1 for some ǹ ∈ ℤ+ . The values of Ŝ, Î and Ð  in the unit 

interval describes the membership, the abstinence and the non-membership degrees of ṭ in Ẋ. 

Also Ṛ(ṭ) = √1 − (Ŝǹ(ṭ) + Îǹ(ṭ) + Ðǹ(ṭ))
𝑛

 denotes the refusal degree of ṭ ∈ Ẋ. The triplet 

(Ŝ, Î, Ð) is known as a T-spherical fuzzy number (TSFN). 

The following figures describe SFSs and T-SFSs, showing its novelty and diversity in structure. 

Moreover, Figures 5, 6 and 7 show that T-SFSs have no limitation. 

     

 

 



     

 

 

 

     

 

 

 

 

 

                             Figure 5 (Space of spherical fuzzy sets)  

    

 

 

 

 

 

 

 

 

 

 

                   Figure 6 (T-SFS (n=5)) 

 

 

 

 

 

 

 



    

 

 

 

 

 

 

 

 

 

Figure 7. T-SFS (n=10)  

It is easy to conclude that the concept of T-SFS is a generalization of the concept of FS, IFS, 

PyFS, q-ROFS, PFS and also SFS, without the limitation in its structure. 

1.2 Score Functions  

In this section we discussed the score function of IFSs, PyFSs, q-ROFSs, PFS, SFSs and T-

SFs. 

1.2.8 Definition [11] 

 The Score function of an IFN (ŜḄ(ṭ), 𝐷Ḅ(ṭ)) is defined as 𝑆𝑐𝐼𝐹𝑁 = ŜḄ(ṭ) − 𝐷Ḅ(ṭ). Here 

ŜḄ: Ẋ → [0, 1] represents membership degree and ÐḄ: Ẋ → [0, 1] represents non-membership 

degree of ṭ ∈ Ẋ with a condition 0 ≤  ŜḄ(ṭ) + ÐḄ(ṭ) ≤ 1. 

1.2.9 Definition [49] 

 The Score function of  PyFN (ŜÞ(ṭ), 𝐷Þ(ṭ)) is defined as 𝑆𝑐𝑃𝑦𝐹𝑁 = ŜÞ
2(ṭ) − ÐÞ

2(ṭ). Here 

ŜÞ: Ẋ → [0, 1] represents membership degree and ÐÞ: Ẋ → [0, 1] represents non-membership 

degree of ṭ ∈ Ẋ to set Þ provided that 0 ≤ ŜÞ
2(ṭ) + ÐÞ

2(ṭ) ≤ 1. The extent of indeterminacy here 

defined by 



𝜋Þ(ṭ) = √(1 − ŜÞ
2(ṭ) − ÐÞ

2(ṭ)) 

1.2.10 Definition [25] 

 The Score function of a  q-ROFNs (Ŝř(ṭ), 𝐷ř(ṭ)) is defined as 𝑆𝑐𝑞−𝑅𝑂𝐹𝑁 = Ŝř
𝑞(ṭ) − Ðř

𝑞(ṭ). 

Here Ŝř: Ẋ → [0, 1] represents membership degree and Ðř: Ẋ → [0, 1] represents non-

membership degree of ṭ ∈ Ẋ to set Þ provided that 0 ≤ Ŝř
𝑞(ṭ) + Ð𝑣

𝑞(ṭ) ≤ 1 for 𝑞 ∈ 𝑍+. The 

extent of indeterminacy here defined by 

𝜋ř(ṭ) = √(1 − Ŝř
𝑞(ṭ) − Ðř

𝑞(ṭ))
𝑞

 

1.2.11 Definition [38] 

The score function of a PFN is defined by 𝑃𝑠 = Ŝ − Ṛ. Ð, where Ŝ, Ð represents the 

membership, non- membership degrees and Ṛ = 1 − (Ŝ(ṭ) + Î(ṭ) + Ð(ṭ)) represents the 

refusal degree for PFN. 

1.2.12 Definition [46]  

The score function for a SFN is defined by 𝑆𝑐𝑠 = Ŝ
2 − Ṛ2. Ð2, where Ŝ, Ð represents the 

membership, non- membership degrees and Ṛ(ṭ) = √1 − (Ŝ2(ṭ) + Î2(ṭ) + Ð2(ṭ))
2

 

represents the refusal degree for SFN. 

1.2.13 Definition [46] 

 The score function for a T-SFN is defined by 𝑇𝑆𝑠 = Ŝ
ǹ − Ṛǹ. Ðǹ, where Ŝ, Ð represents the 

membership, non- membership degrees and Ṛ(ṭ) = √1 − (Ŝǹ(ṭ) + Îǹ(ṭ) + Ðǹ(ṭ))
ǹ

 

represents the refusal degree for T-SFN. 

 



1.3  Aggregation Operators 

In this section the aggregation operators of IFNs, PyFNs, q-ROFNs, PFNs, SFNs and TSFNs 

are discussed. 

1.3.1 Definition [12] 

 The intuitionistic fuzzy weighted averaging (IFWA) operators of an IFNs ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖𝑛 is 

denoted and defined by  

 ṭ𝑖 = 𝐼𝐹𝑊𝐴(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ) = (1 −∏(1 − Ŝ𝑖𝑗)

ǹ

𝑗=1

𝑤𝑗

, (∏Ð

ǹ

𝑗=1

)

𝑤𝑗

) 

1.3.2 Definition [12] 

 The intuitionistic fuzzy weighted geometric ( IFWG) operator of an IFN ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ is 

denoted and defined by  

 ṭ𝑖 = 𝐼𝐹𝑊𝐺(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ) = ((∏Ŝ

ǹ

𝑗=1

)

𝑤𝑗

, 1 −∏(1 − Ð𝑖𝑗)

ǹ

𝑗=1

𝑤𝑗

) 

1.3.3 Definition [15]  

The Pythagorean fuzzy weighted averaging (PyFWA) operator of PyFN ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ is 

denoted and defined by 

 ṭ𝑖 = 𝑃𝑦𝐹𝑊𝐴(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ) =

(

 √1 −∏(1 − (Ŝ𝑖𝑗)
2
)

ǹ

𝑗=1

𝑤𝑗

, (∏Ð𝑖𝑗

ǹ

𝑗=1

)

𝑤𝑗

)

  

1.3.4 Definition [15] 

The Pythagorean fuzzy weighted geometric ( PyFWG) operator of PyFN ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ is 

denoted and defined by 



 ṭ𝑖 = 𝑃𝑦𝐹𝑊𝐺(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ) =

(

 (∏Ŝ𝑖𝑗

ǹ

𝑗=1

)

𝑤𝑗

, √1 −∏(1 − (Ð𝑖𝑗)
2
)

ǹ

𝑗=1

𝑤𝑗

)

  

1.3.5 Definition [34] 

 The q-Rung orthopair fuzzy weighted averaging (q-ROFWA) operator of q-ROFN 

ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ is denoted and defined by 

 ṭ𝑖 = 𝑞 − 𝑅𝑂𝐹𝑊𝐴(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ) =

(

 𝑞√1 −∏(1 − (Ŝ𝑖𝑗)
𝑞
)

ǹ

𝑗=1

𝑤𝑗

, (∏Ð𝑖𝑗

ǹ

𝑗=1

)

𝑤𝑗

)

  

1.3.6 Definition [34] 

 The q-Rung orthopair fuzzy weighted geometric ( q-ROFWG) operator of q-ROFN 

ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ is denoted and defined by 

 ṭ𝑖 = 𝑞 − 𝑅𝑂𝐹𝑊𝐺(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ) =

(

 (∏Ŝ𝑖𝑗

ǹ

𝑗=1

)

𝑤𝑗

, 𝑞√1 −∏(1 − (Ð𝑖𝑗)
𝑞
)

ǹ

𝑗=1

𝑤𝑗

)

  

1.3.7 Definition [40] 

 The Picture fuzzy weighted averaging (PFWA) operator of an PFN ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ is denoted 

and defined by  

 ṭ𝑖 = 𝑃𝐹𝑊𝐴(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ) =

(

 
 
 
 1 −∏(1 − Ŝ𝑖𝑗)

ǹ

𝑗=1

𝑤𝑗

,

(∏Î𝑖𝑗

ǹ

𝑗=1

)

𝑤𝑗

, (∏Ð𝑖𝑗

ǹ

𝑗=1

)

𝑤𝑗

)

 
 
 
 

 

 



1.3.8 Definition [40] 

 The Picture fuzzy weighted geometric ( PFWG) operator of a PFN ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ is denoted 

and defined by  

 ṭ𝑖 = 𝑃𝐹𝑊𝐺(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ) =

(

 
 
 
 (∏Ŝ𝑖𝑗

ǹ

𝑗=1

)

𝑤𝑗

, (∏Î𝑖𝑗

ǹ

𝑗=1

)

𝑤𝑗

,

1 −∏(1 − Ð𝑖𝑗)

ǹ

𝑗=1

𝑤𝑗

)

 
 
 
 

 

1.3.9 Definition [48] 

 The spherical fuzzy weighted averaging (SFWA) operator of SFN ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ is denoted 

and defined by 

 ṭ𝑖 = 𝑆𝐹𝑊𝐴(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ) =

(

 
 
 
 
 √1 −∏(1 − (Ŝ𝑖𝑗)

2
)

ǹ

𝑗=1

𝑤𝑗

,

(∏Î𝑖𝑗

ǹ

𝑗=1

)

𝑤𝑗

, (∏Ð𝑖𝑗

ǹ

𝑗=1

)

𝑤𝑗

)

 
 
 
 
 

 

Where 𝑤𝑗 be the weight vector with a condition that is ∑ 𝑤𝑗
ǹ
𝑗=1 = 1. 

 

 

1.3.10 Definition [48] 

 The spherical fuzzy weighted geometric ( SFWG) operator of SFN ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ is denoted 

and defined by: ṭ𝑖 = 𝑆𝐹𝑊𝐺(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ) =

((∏ Ŝ𝑖𝑗
ǹ
𝑗=1 )

𝑤𝑗
, (∏ Î𝑖𝑗

ǹ
𝑗=1 )

𝑤𝑗
, √1 − ∏ (1 − (Ð𝑖𝑗)

2
)ǹ

𝑗=1

𝑤𝑗
). 



1.3.11 Definition [48] 

 The T- spherical fuzzy weighted averaging (T-SFWA) operator of TSFN ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ is 

denoted and defined by 

 ṭ𝑖 = 𝑇𝑆𝐹𝑊𝐴(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ) =

(

 
 
 
 
 𝑞√1 −∏(1 − (Ŝ𝑖𝑗)

𝑞
)

ǹ

𝑗=1

𝑤𝑗

,

(∏Î𝑖𝑗

ǹ

𝑗=1

)

𝑤𝑗

, (∏Ð𝑖𝑗

ǹ

𝑗=1

)

𝑤𝑗

)

 
 
 
 
 

 

1.3.12 Definition [48,50] 

 The T- spherical fuzzy weighted geometric ( TSFWG) operator of TSFN ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ is 

denoted and defined by 

 ṭ𝑖 = 𝑇𝑆𝐹𝑊𝐺(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖ǹ) =

(

 
 
 
 
 (∏Ŝ𝑖𝑗

ǹ

𝑗=1

)

𝑤𝑗

, (∏Î𝑖𝑗

ǹ

𝑗=1

)

𝑤𝑗

,

𝑞√1 −∏(1 − (Ð𝑖𝑗)
𝑞
)

ǹ

𝑗=1

𝑤𝑗

)

 
 
 
 
 

 

1.4 Addition and Multiplication Operations 

In this section operations of addition and multiplications of q-ROFN and TSFNs are 

deliberated. 

1.4.1 Definition [34] 

 The addition and multiplication of q- ROFNs is denoted and defined as 

1) (Ŝ1, Ð1) + (Ŝ2, Ð2) = (ǹ√(Ŝ1)
ǹ
+ (Ŝ2)

ǹ
− (Ŝ1)

ǹ
(Ŝ2)

ǹ
, Ð1Ð2) 

2) (Ŝ1, Ð1) × (Ŝ2, Ð2) = (Ŝ1Ŝ2, ǹ√(Ð1)
ǹ + (Ð2)

ǹ − (Ð1)
ǹ(Ð2)

ǹ) 



1.4.2 Remark  

Replacing ǹ = 1 reduces the above defined equations in the environment of IFNs and for ǹ =

2 reduces defined equations in the environment of PyFNs. 

1.4.3 Definition [48,50]  

The addition and multiplication of TSFNs are denoted and defined as: 

1) (Ŝ1, Î1, Ð1) + (Ŝ2, Î2, Ð2) = (ǹ√(Ŝ1)
ǹ
+ (Ŝ2)

ǹ
− (Ŝ1)

ǹ
, Î1Î2, Ð1Ð2) 

2) (Ŝ1, Î1, Ð1) × (Ŝ2, Î2, Ð2) =

(Ŝ1Ŝ2, ǹ√(Î1)
ǹ
+ (Î2)

ǹ
− (Î1)

ǹ
(Î2)

ǹ
, ǹ√(Ð1)ǹ + (Ð2)ǹ − (Ð1)ǹ(Ð2)ǹ) 

1.4.4 Remark  

 Replacing ǹ = 1 reduces the above defined equations in the environment of PFNs and for 

ǹ = 2 reduces defined equations in the environment of SFNs. 

1.5  Fuzzy Graphs and Their Generalizations 

In this section, we recall definitions related to graphs of FSs, IFSs and PyFSs underlying the 

main considerations of this Thesis. 

1.5.1 Definition [52] 

 A FG is a pair Ġ = (Ṿ, Ẻ) where Ṿ is the set of nodes and Ẻ is the collection of edges between 

these nodes such that 

1) Every ṭ ∈ Ṿ is characterized by a function Ŝ: Ṿ → [0, 1] denoting the degree of membership 

of ṭ ∈ Ṿ.  



2) Every ṭ ∈  Ẻ is characterized by a function Ŝ: Ṿ × Ṿ → [0, 1] denoting the degree of 

membership ṭ ∈ Ṿ × Ṿ satisfying the condition Ŝ(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ(ṭ𝑖), Ŝ𝑗(ṭ𝑗)). 

1.5.2 Definition [65] 

 An IFG is a duplet Ġ = (Ṿ, Ẻ) where the set of nodes is denoted by Ṿ and Ẻ is the collection 

of edges between these nodes such that 

1) Every ṭ ∈ Ṿ is characterized by two functions Ŝ: Ṿ → [0, 1] and Ð: Ṿ → [0, 1] denoting the 

membership and non-membership degree of ṭ ∈ Ṿwhich satisfies the condition that 0 ≤

Ŝ + Ð ≤ 1. Moreover, the term Ṛ defined by Ṛ = 1 − Ŝ − Ð, denotes the hesitancy level 

of ṭ ∈  Ẻ. 

2) Every ṭ ∈  Ẻ is characterized by two functions Ŝ: Ṿ × Ṿ → [0, 1] and Ð: Ṿ × Ṿ → [0, 1] 

denoting the membership and non-membership degree of ṭ ∈ Ṿ × Ṿ satisfying the 

conditions: 

Ŝ(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ(ṭ𝑖), Ŝ(ṭ𝑗)) 

Ð(ṭ𝑖, ṭ𝑗) ≤ max (Ð(ṭ𝑖), Ð(ṭ𝑗)) 

with a condition that  0 ≤ Ŝ + Ð ≤ 1. Moreover, the term Ṛ denotes the hesitancy level of ṭ ∈

 Ẻsuch that Ṛ = 1 − Ŝ − Ð. 

 

 

 

 

 



1.5.3 Example  

 The following Figure 8 is an example of IFG. 

 

     

 

 

 

 

 

 

                            Figure 8 (Intuitionistic fuzzy graph compatible with definition 1.5.2) 

1.5.4 Definition [76] 

 A PyFG is denoted and defined as Ġ = (Ṿ, Ẻ) where  

1. Ṿ = {ṭ1, ṭ2, ṭ3, … , ṭǹ} such that  Ŝ: Ṿ → [0, 1] represents membership degree and  Ð: Ṿ →

[0, 1] represents non-membership degree of ṭ𝑖 ∈ Ṽ respectively provided that  

0 ≤ Ŝ2 + Ð2 ≤ 1   For all ṭ𝔦 ∈ Ṿ, (𝑖 = 1, 2, 3, … ǹ) 

2. Ẻ ⊆ Ṿ × Ṿ where  Ŝ: Ṿ × Ṿ → [0, 1] and  Ð: Ṿ × Ṿ → [0, 1] are such  Ŝ(ṭ𝑖, ṭ𝑗) ≤

min[Ŝ(ṭ𝑖), Ŝ(ṭ𝑗)] Ð(ṭ𝑖, ṭ𝑗) ≤ max[Ð(ṭ𝑖), Ð(ṭ𝑗)]with the condition 0 ≤ Ŝ2(ṭ𝑖, ṭ𝑗) +

Ð2(ṭ𝑖, ṭ𝑗) ≤ 1  

for all (ṭ𝑖, ṭ𝑗) ∈ Ẻ. 

 

 



1.5.5 Definition [52] 

 A pair 𝐻 = (Ṿ′, Ẻ′) is considered as fuzzy subgraph (FSG) of FG Ġ = (Ṿ, Ẻ) if Ṿ′ ⊆ Ṿ and 

𝐸′ ⊆ Ẻ i.e. Ŝ′1𝑖 ≤ Ŝ1𝑖 and Ŝ′2𝑖𝑗 ≤ Ŝ2𝑖𝑗 (𝑖, 𝑗 = 1,2, … , 𝑛). 

1.5.6 Definition [65] 

 A pair 𝐻 = (Ṿ′, Ẻ′) is considered as an intuitionistic fuzzy subgraph (IFSG) of IFG Ġ =

(Ṿ, Ẻ) if Ṿ′ ⊆ Ṿ and 𝐸′ ⊆ Ẻ i.e. Ŝ′1𝑖 ≤ Ŝ1𝑖, Ð
′
1𝑖 ≥ Ð1𝑖 and Ŝ′2𝑖𝑗 ≤ Ŝ2𝑖𝑗, Ð

′
2𝑖𝑗 ≥

Ð2𝑖𝑗  (𝑖, 𝑗 = 1,2, … , ǹ). 

1.5.7 Example  

 An IFSG 𝐻 of IFG of Figure 8 is shown in Figure 9. 

     

 

 

 

 

 

 

 

 

 

                                           Figure 9 (Intuitionistic fuzzy sub graph of Figure 8) 

1.6  Complement, Degree, Density and Path of FGs and IFGs 

In this section, the complement, degree, density and path of FGs and IFGs are discussed. 

 

 



1.6.1 Definition [53] 

 The complement of FG Ġ = (Ṿ, Ẻ) is defined by Ġ𝑐 = (Ṿ𝑐 , Ẻ𝑐) where Ṿ𝑐 = Ṿ and the 

membership grade of Ẻ is defined by (Ŝ)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ(ṭ𝑖), Ŝ(ṭ𝑗)) − Ŝ ((ṭ𝑖, ṭ𝑗)). 

1.6.2 Example  

The following Figure 10 is an example of an FG while Figure 11 represents the complement 

of the FG depicted in Figure 10. 

 

 

Figure 10 (Fuzzy graph compatible with definition 1.5.1)         Figure 11 (Complement of                                                              

     fuzzy graph depicted in Figure 10) 

 

1.6.3 Definition [66] 

 The complement of an IFG Ġ = (Ṿ, Ẻ) is defined as  

1. Ṿ𝑐 = Ṿ. 

2. Ŝ1𝑖
𝑐
= Ŝ1𝑖 and Ð1𝑖

𝑐 = Ð1𝑖 for all 𝑖 = 1,2, … 𝑛. 

3. Ŝ2𝑖𝑗
𝑐
= 𝑚𝑖𝑛(Ŝ1𝑖, Ŝ1𝑗) − Ŝ2𝑖𝑗 and Ð2𝑖𝑗

𝑐 =  𝑚𝑎𝑥(Ð1𝑖 , Ð1𝑗) − Ð2𝑖𝑗 for every 𝑖. 𝑗 = 1,2, …𝑛. 

 



1.6.4 Example  

The following Figure 12 is an example of IFG while Figure 13 represents the complement of 

the IFG depicted in Figure 12. 

 

Figure 12 (Intuitionistic fuzzy graph                        Figure 13 (Complement of Intuitionistic                                                                                                              

compatible with definition 1.5.2)                                     fuzzy graph depicted in Figure 12)                                 

1.6.5 Definition [67] 

 The degree of any vertex of an IFG is denoted and defined by 

  𝑑(ṭ) = (𝑑Ŝ(ṭ), 𝑑Ð(ṭ)) where 𝑑Ŝ(ṭ) = ∑ Ŝ2(ṭ𝑖,𝑖≠𝑗 ṭ𝑗) and 𝑑𝑑(ṭ) = ∑ 𝑑2(ṭ𝑖,𝑖≠𝑗 ṭ𝑗). 

1.6.6 Example  

Consider a graph Ġ = (Ṿ, Ẻ) where Ṿ = {ṭ1, ṭ2, ṭ3} be the set of vertices and Ẻ be the set of 

edges. Then the degree of vertices of an IFG in Figure 14 is given below. 

 

 

 

 

 

 



 

    Figure 14 (Intuitionistic fuzzy graph) 

Degree of vertices of the above Figure 14 is 

𝑑(ṭ1) = (0.3, 0.6), 𝑑(ṭ2) = (0.5, 1.0), 𝑑(ṭ3) = (0.4, 0.8). 

1.6.7 Definition [56] 

 Let Ġ = (Ṿ, Ẻ) be a FG. Then its density is defined as 

𝐷𝑁(𝐺) = (𝐷𝑁Ŝ(Ġ)) = (
2∑ (Ŝ2(ṭ, 𝑤))ṭ,𝑤∈𝑉

∑ (Ŝ1(ṭ)⋀Ŝ1(𝑤))(ṭ,𝑤)∈𝐸

 )       

1.6.8 Definition [71] 

 Let Ġ = (Ṿ, Ẻ) be an IFG. Then its density is defined as 

𝐷𝑁(𝐺) = (𝐷𝑁Ŝ(Ġ), 𝐷𝑁𝑑(Ġ)) =

(

  
 

2∑ (Ŝ2(ṭ, 𝑤))ṭ,𝑤∈𝑉

∑ (Ŝ1(ṭ)⋀Ŝ1(𝑤))(ṭ,𝑤)∈𝐸

,

 
2 ∑ (Ð2(ṭ, 𝑤))ṭ,𝑤∈𝑉

∑ (Ð1(ṭ)⋁Ð1(𝑤))(ṭ,𝑤)∈𝐸
 
)

  
 
       

1.6.9 Example  

The density of an IFG depicted in Figure 12 is calculated as 

The density of  𝐷𝑁Ŝ(Ġ) = (
2(0.2+0.3+0.1)

0.3+0.3+0.3
) = 1.3 and 𝐷𝑁Ð(Ġ) = (

2(0.4+0.6+0.2) 

0.6+0.6+0.3
) = 1.6 

1.6.10 Definition [66] 

 An arrangement of distinct vertices ṭ1, ṭ2, … , ṭǹ is called a path in an IFG if one of the 

following conditions is satisfied: 

1. Ŝ2𝑖𝑗 > 0 𝑎𝑛𝑑 Ð2𝑖𝑗 = 0  

2.  Ŝ2𝑖𝑗 = 0 𝑎𝑛𝑑 Ð2𝑖𝑗 > 0 



3. Ŝ2𝑖𝑗 > 0 𝑎𝑛𝑑 Ð2𝑖𝑗 > 0. 

1.6.11 Example  

The following Figure 15 is an example of IFG which is explain below. 

    

 

 

 

 

 

 

                                          Figure 15 Intuitionistic fuzzy graph 

In the above Figure 15, ṭ1, ṭ2 and ṭ2, ṭ3 is a path. 

1.7 Aggregation Operators of IVIFNs and Their Generalizations 

The aggregation operators of IVIFNs and their generalizations discussed in this section. 

1.7.1 Definition [28] 

 The Interval valued intuitionistic fuzzy weighted averaging (IVIFWA) operators of IVIFNs 

ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖𝑛 is denoted and defined by  

 ṭ𝑖 = 𝐼𝑉𝐼𝐹𝑊𝐴(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖𝑛) =

(

 
 
 
 
 
 
 

[
 
 
 
 
 
1 −∏(1 − Ŝ𝐿𝑖𝑗)

𝑛

𝑗=1

𝑤𝑗

,

1 −∏(1 − Ŝ𝑈𝑖𝑗)

𝑛

𝑗=1

𝑤𝑗

]
 
 
 
 
 

,

[(∏Ð𝐿𝑖𝑗

𝑛

𝑗=1

)

𝑤𝑗

, (∏Ð𝑈𝑖𝑗

𝑛

𝑗=1

)

𝑤𝑗

]

)

 
 
 
 
 
 
 

 



 

1.7.2 Definition [28] 

 The Interval valued intuitionistic fuzzy weighted geometric ( IVIFWG) operators of IVIFNs 

ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖𝑛  is denoted and defined by 

 

ṭ𝑖 = 𝐼𝑉𝐼𝐹𝑊𝐺(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖𝑛) =

(

 
 
 
 
 
 
 (∏Ŝ𝐿𝑖𝑗

𝑛

𝑗=1

)

𝑤𝑗

, (∏Ŝ𝑈𝑖𝑗

𝑛

𝑗=1

)

𝑤𝑗

,

1 −∏(1 − Ð𝐿𝑖𝑗)

𝑛

𝑗=1

𝑤𝑗

,

1 −∏(1 − Ð𝑈𝑖𝑗)

𝑛

𝑗=1

𝑤𝑗

)

 
 
 
 
 
 
 

 

1.7.3 Definition [29] 

 The Interval valued Pythagorean fuzzy weighted averaging (IVPyWA) operators of IVIFNs 

ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖𝑛 is denoted and defined by 

 ṭ𝑖 = 𝐼𝑉𝑃𝐹𝑊𝐴(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖𝑛) =

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
√1 −∏(1 − (Ŝ𝐿𝑖𝑗)

2
)

𝑛

𝑗=1

𝑤𝑗

,

√1 −∏(1 − (Ŝ𝑈𝑖𝑗)
2
)

𝑛

𝑗=1

𝑤𝑗

]
 
 
 
 
 
 
 

,

[(∏Ð𝐿𝑖𝑗

𝑛

𝑗=1

)

𝑤𝑗

, (∏Ð𝑈𝑖𝑗

𝑛

𝑗=1

)

𝑤𝑗

]

)

 
 
 
 
 
 
 
 
 

 

 

 

 



1.7.4 Definition [29] 

 The Interval valued Pythagorean fuzzy weighted geometric (IVPyWG) operators of IVIFNs 

ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖𝑛  is denoted and defined by  

 

ṭ𝑖 = 𝐼𝑉𝑃𝐹𝑊𝐺(ṭ𝑖1, ṭ𝑖2, … , ṭ𝑖𝑛) =

(

 
 
 
 
 
 
 
 
 (∏Ŝ𝐿𝑖𝑗

𝑛

𝑗=1

)

𝑤𝑗

, (∏Ŝ𝑈𝑖𝑗

𝑛

𝑗=1

)

𝑤𝑗

,

√1 −∏(1 − (Ð𝐿𝑖𝑗)
2
)

𝑛

𝑗=1

𝑤𝑗

,

√1 −∏(1 − (Ð𝑈𝑖𝑗)
2
)

𝑛

𝑗=1

𝑤𝑗

)

 
 
 
 
 
 
 
 
 

 

1.8 Addition and Multiplication of IVPyFNs 

In this section the addition and multiplication of IVPyFNs are discussed. 

1.8.1 Definition [29] 

 The addition and multiplication in an IVPyFNs is denoted and defined as 

3) ([Ŝ𝐿1, Ŝ
𝑈
1], [Ð

𝐿
1, Ð

𝑈
1]) + ([Ŝ

𝐿
2, Ŝ

𝑈
2], [Ð

𝐿
2, Ð

𝑈
2]) =

(

  
 

[
 
 
 √(Ŝ𝐿1)

2
+ (Ŝ𝐿2)

2
− (Ŝ𝐿1)

2
(Ŝ𝐿2)

2
,

√(Ŝ𝑈1)
2
+ (Ŝ𝑈2)

2
− (Ŝ𝑈1)

2
(Ŝ𝑈2)

2

]
 
 
 

,

[Ð𝐿1Ð
𝐿
2, Ð

𝑈
1Ð

𝑈
2] )

  
 

 

4) ([Ŝ𝐿1, Ŝ
𝑈
1], [Ð

𝐿
1, Ð

𝑈
1]) × ([Ŝ

𝐿
2, Ŝ

𝑈
2], [Ð

𝐿
2, Ð

𝑈
2]) =

(

[Ŝ𝐿1Ŝ
𝐿
2, Ŝ

𝑈
1Ŝ
𝑈
2],

[
√(Ð𝐿1)2 + (Ð𝐿2)2 − (Ð𝐿1)2(Ð𝐿2)2,

√(Ð𝑈1)2 + (Ð𝑈2)2 − (Ð𝑈1)2(Ð𝑈2)2
]
)  



1.8.2 Remark  

 Replacing 𝑛 = 1 reduces the defined score function in the environment of IVIFSs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

Intuitionistic Fuzzy Graphs of nth Type with Applications 

In this chapter, a new concept of IFGNT is proposed as a generalization of  IFGs and 

IFGST. Some light has also been shed upon the concepts of constant intuitionistic fuzzy graphs 

of second type (CIFGST) and constant intuitionistic fuzzy graphs of nth type (CIFGNT). 

Moreover, some basic definitions of and results from IFGNT have been developed, supported 

with examples. Besides, the advantages of proposed new concepts over the existing concepts 

have been highlighted and a comparative study of new and existing work is established. 

Further, an application of IFGNT has been demonstrated in social networks context. 

2.1 Intuitionistic fuzzy graphs of nth type 

In this section, the notion of IFGNT is discussed with examples. The concepts of subgraph and 

complement of IFGNT are also discussed and exemplified. The degree of IFGNT is defined 

and illustrated with an example. 

2.1.1 Definition  

 A Pair Ġ = (Ṿ, Ẻ ) is known as IFGNT if  

1) Ṿ = {ṭ1, ṭ2, ṭ3, … ṭ𝑛} is the set of vertices such that Ŝ1: Ṿ ⟶ [0, 1] and Ð1: Ṿ ⟶ [0, 1] 

represents the degrees of membership and non-membership of the element ṭ𝑖 ∈ Ṿ 

respectively with a condition that 0 ≤ Ŝ1
𝑛
(ṭ𝑖) + Ð1

𝑛(ṭ𝑖) ≤ 1 for all ṭ𝑖 ∈ Ṿ (𝑖 ∈ 𝐼). 

2) Ẻ ⊆ Ṿ × Ṿ where Ŝ2: Ṿ × Ṿ ⟶ [0, 1] and Ð2: Ṿ × Ṿ ⟶ [0, 1] represent the degrees of 

membership and non-membership of the element (ṭ𝑖, ṭ𝑗) ∈ Ẻ such that Ŝ2(ṭ𝑖, ṭ𝑗) ≤



 𝑚𝑖𝑛{Ŝ1(ṭ𝑖), Ŝ1(ṭ𝑗)} and Ð2(ṭ𝑖, ṭ𝑗) ≤  𝑚𝑎𝑥{Ð1(ṭ𝑖), Ð1(ṭ𝑗)} with a condition that 0 ≤

Ŝ2
𝑛
(ṭ𝑖, ṭ𝑗) + Ð2

𝑛(ṭ𝑖, ṭ𝑗) ≤ 1 for all (ṭ𝑖, ṭ𝑗) ∈ Ẻ (𝑖 ∈ 𝐼). 

2.1.2 Example  

Consider the following graphs where Figure 16 represents an IFGNT while Figure 17 is not an 

IFGNT because of the edge (ṭ3, ṭ4). The vertices in the below figures are purely intuitionistic 

fuzzy numbers (IFNs) of n-type for 𝑛 = 4. 

     

 

 

 

 

 

 

 

 

 

                              Figure 16 (Intuitionistic fuzzy graph of nth type) 

 

 

 

 

 

 

 

 

 

 



   

 

 

 

 

 

 

 

 

                           

                                   Figure 17 (Not an intuitionistic fuzzy graph of nth type) 

2.1.3 Remark  

 An IFG and IFGST are surely IFGNT but converse is not true in general. 

2.1.4 Example  

 For 𝑛 = 4, the graph in Figure 16 is an IFGNT but the graph in Figure 17 is not an IFGNT 

and clearly shows that none of them is either IFGST nor IFG. Because, for ṭ1 = (0.8, 0.8), we 

have 0.8 + 0.8 = 1.6 ≰ 1 also 0.82 + 0.82 = 1.28 ≰ 1. 

2.1.5 Definition  

 A pair Ḣ = (Ṿ°, Ẻ°) is known as intuitionistic fuzzy subgraph of n-type of Ġ = (Ṿ, Ẻ ) if Ṿ° ⊆

Ṿ and Ẻ° ⊆ Ẻ that is Ŝ1𝑖
°
≤ Ŝ1;Ð1

° ≥ Ð1 and Ŝ2𝑖𝑗
°
≤ Ŝ2𝑖𝑗;Ð2𝑖𝑗

° ≥ Ð2𝑖𝑗 for all 𝑖, 𝑗 = 1,2, … 𝑛. 

2.1.6 Example  

 The graph depicted in Figure 18 is an intuitionistic fuzzy subgraph of n-type of IFGNT 

portrayed in Figure 16. Moreover, the vertices in the below Figure 18 are purely IFNs of n-

type for 𝑛 = 4. 



 

 

 

 

 

 

 

                                      Figure 18 (Intuitionistic fuzzy subgraph of Figure 16) 

 

2.1.7 Definition  

 The set of all triplets for vertices is denoted by (Ṿ𝑡, Ŝ1𝑡, Ð1𝑡) in an IFGNT Ġ = (Ṿ, Ẻ ) where 

Ŝ1𝑡 = {ṭ𝑖 ∈ Ṿ: ( Ŝ1𝑖)
2 ≥ 𝑡} and Ð1𝑡 = {ṭ𝑖 ∈ Ṿ: ( Ð1𝑖)

2 ≤ 𝑡} for some 𝑖. 𝑗 = 1, 2, … 𝑛 is a subset 

of Ṿ for 0 ≤ 𝑡 ≤ 1 and the set of all triplets for edges is denoted by (Ẻ𝑡, Ŝ2𝑡, Ð2𝑡) where Ŝ1𝑡 =

{(ṭ𝑖, ṭ𝑗) ∈ Ṿ × Ṿ: ( Ŝ2𝑖𝑗)
2 ≥ 𝑡} and Ð1𝑡 = {(ṭ𝑖, ṭ𝑗) ∈ Ṿ × Ṿ: ( Ð2𝑖𝑗)

2 ≤ 𝑡} for some 𝑖. 𝑗 =

1, 2, … 𝑛 is a subset of Ẻ for 0 ≤ 𝑡 ≤ 1. Here (Ṿ𝑡, Ẻ𝑡) is a subgraph of Ġ. 

2.1.8 Theorem  

 If Ġ = (Ṿ, Ẻ ) is an IFGNT. Then (Ṿẋ, Ẻẋ) is an intuitionistic fuzzy subgraph of (Ṿỵ, Ẻỵ) for 

any ẋ, ỵ such that 0 ≤ ẋ ≤ ỵ ≤ 1. 

Proof: Consider ṭ𝑖 ∈ Ṿẋ then ṭ1𝑖
𝑛 ≤ ẋ so ṭ1𝑖

𝑛 ≤ ỵ implies ṭ𝑖 ∈ Ṿỵ. Therefore, Ṿẋ ⊆ Ṿỵ. Now, 

consider (ṭ𝑖, ṭ𝑗) ∈ Ẻẋ then ṭ2𝑖𝑗
𝑛 ≤ ẋ so ṭ2𝑖𝑗

𝑛 ≤ ỵ. Therefore, ẋ ≤ ỵ implies (ṭ𝑖, ṭ𝑗) ∈ Ẻỵ and 

hence Ẻẋ ⊆ Ẻỵ. So, (Ṿẋ, Ẻẋ) is an intuitionistic fuzzy subgraph of (Ṿỵ, Ẻỵ). 

 

 



2.1.9 Theorem  

 Let 𝐻 = (Ṿẋ
°, Ẻẋ

°
) be an intuitionistic fuzzy subgraph of an IFGNT Ġ = (Ṿ, Ẻ ). Then for any 

0 ≤ ẋ ≤ 1 (Ṿẋ
°, Ẻẋ

°
) is an intuitionistic fuzzy subgraph of (Ṿẋ, Ẻẋ). 

Proof: Given that Ṿẋ
° ⊆ Ṿ and Ẻẋ

°
⊆ Ẻ. To prove that (Ṿẋ

°, Ẻẋ
°
) is an intuitionistic fuzzy 

subgraph of (Ṿẋ, Ẻẋ). For this we have to show that Ṿẋ
° ⊆ Ṿẋ and Ẻẋ

°
⊆ Ẻẋ. Assume that ṭ𝑖 ∈

Ṿẋ
° implies (Ŝ1𝑖

°
)𝑛 ≥ ẋ implies Ŝ1𝑖

𝑛
≥ ẋ. Therefore, (Ŝ1𝑖

°
)𝑛 ≤ Ŝ1𝑖

𝑛
 implies ṭ𝑖 ∈ Ṿẋ implies 

Ṿẋ
° ⊆ Ṿẋ. 

Now consider (ṭ𝑖, ṭ𝑗) ∈ Ẻẋ
,
 implies (Ŝ2𝑖𝑗

°
)𝑛 ≥ ẋ implies (Ŝ2𝑖𝑗)

𝑛 ≥ ẋ. Therefore, (Ŝ2𝑖𝑗
°
)𝑛 ≤

Ŝ2𝑖𝑗
𝑛

 implies (ṭ𝑖, ṭ𝑗) ∈ Ẻẋ implies Ẻẋ
°
⊆ Ẻẋ. Therefore (Ṿẋ

°, Ẻẋ
°
) is an intuitionistic fuzzy 

subgraph of (Ṿẋ, Ẻẋ). 

2.1.10 Definition  

 The complement of an IFGNT Ġ = (Ṿ, Ẻ ) is defined as  

1. Ṿ̅ = Ṿ. 

2. Ŝ1𝑖
̅̅ ̅̅ = Ŝ1𝑖 and Ð1𝑖̅̅ ̅̅ = Ð1𝑖 for all 𝑖 = 1,2, … 𝑛. 

3. Ŝ2𝑖𝑗
̅̅ ̅̅ ̅ = 𝑚𝑖𝑛(Ŝ1𝑖, Ŝ1𝑗) − Ŝ2𝑖𝑗 and Ð2𝑖𝑗̅̅ ̅̅ ̅ =  𝑚𝑎𝑥(Ð1𝑖, Ð1𝑗) − Ð2𝑖𝑗  for every 𝑖. 𝑗 = 1,2, … 𝑛. 

2.1.11 Example  

 Consider the graphs in Figure 19 and Figure 20, where graph in Figure 20 represents the 

complement of graph depicted in Figure 19. Moreover, the vertices in these graphs are purely 

IFNs of nth type for 𝑛 = 3. 

 



 

 

 

 

 

 

 

 

 

 

                             Figure 19 (Intuitionistic fuzzy graph of nth type) 

 

  

 

 

 

 

 

 

 

 

 

 

                                       Figure 20 (Complement of Figure 19) 

2.1.12 Definition  

 Let Ġ = (Ṿ, Ẻ ) be an IFGNT. Then the degree of vertex ṭ is defined by ȡ(ṭ) = 

(ȡŜ(ṭ), ȡÐ(ṭ)) where ȡŜ(ṭ) = ∑ Ŝ2𝑢≠ṭ (ṭ,  𝑢) and ȡÐ(ṭ) = ∑ Ð2𝑢≠ṭ (ṭ,  𝑢). 



2.1.13 Example  

 Consider an IFGNT depicted in Figure 21 where all the nodes are purely IFNs of nth type for 

𝑛 = 4. The degrees of all vertices are determined below using Definition 2.1.12. 

ȡ(ṭ1) = (1.1, 1.6), ȡ(ṭ2) = (0.9, 1.4),  

ȡ(ṭ3) = (0.8, 1.3), ȡ(ṭ4) = (1.0, 1.5). 

    

 

 

 

 

 

 

 

                                         Figure 21(Intuitionistic fuzzy graph of nth type) 

2.2 Constant Intuitionistic Fuzzy Graphs of n-Type 

This section is based on the novel concept of CIFGNT and CIFGST. These concepts are 

illustrated with the help of examples. The notion of total degree and constant function are also 

studied and supported with examples. 

2.2.1 Definition  

 An IFGNT Ġ = (Ṿ, Ẻ )  is said to be CIFGNT of degree (ҟ𝑖, ҟ𝑗) or (ҟ𝑖, ҟ𝑗) −IFGNT if 

ȡŜ(ṭ𝑖) = ҟ𝑖 and ȡÐ(ṭ𝑗) = ҟ𝑗 for all ṭ𝑖, ṭ𝑗 ∈ Ṿ. 

2.2.2 Example  



 The graph portrayed in Figure 22 is an example of CIFGNT where all nodes are IFNs of nth 

type for 𝑛 = 4. The degree of all vertices is same i.e. (0.9, 1.6). 

    

 

 

 

 

 

 

 

                                    Figure 22 (Constant Intuitionistic fuzzy graph of nth type) 

 

2.2.3 Remark  

Definition 2.2.2 reduces to the definition of CIFGST if every element of  Ṿ and Ẻ are purely 

IFNs of second type. 

2.2.4 Remark  

A complete IFGNT need not be CIFGNT. 

This remark is demonstrated by the following example. 

2.2.5 Example  

Consider the following IFGNT depicted in Figure 23 where all nodes are purely IFNs for 𝑛 =

3. Further, this IFGNT is complete but not constant. 

 

 



 

 

 

 

 

 

 

 

 

                          Figure 23(Complete intuitionistic fuzzy of nth type) 

2.2.6 Definition  

For an IFGNT Ġ = (Ṿ, Ẻ ). The total degree (𝜏1, 𝜏2) of a vertex ṭ is defined as: 

𝑡ȡ(ṭ) = [∑ȡŜ2(ṭ) + Ŝ1(ṭ),

ṭ∈Ẻ

∑ȡÐ2(ṭ) + Ð1(ṭ)

ṭ∈Ẻ

] 

If total degree of each vertex is same, then Ġ is called IFGNT of total degree (𝜏1, 𝜏2) or (𝜏1, 𝜏2)-

totally CIFGNT. 

2.2.7 Example  

Consider an IFGNT in Figure 24 where all the nodes are purely IFNs for 𝑛 = 2. Further, total 

degree of each vertex is (1.5, 2.3). 

 

 

 

 



 

 

 

 

 

 

 

 

 

                          Figure 24 (Intuitionistic fuzzy graph of nth type) 

2.2.8 Example 

Consider an IFGNT in Figure 25 where all the nodes are purely IFNs for 𝑛 = 3. Further, Ġ is 

totally constant. 

 

 

 

 

 

 

 

 

                                           Figure 25 (Intuitionistic fuzzy graph of nth type) 

2.2.9 Theorem 

 Let  Ġ be an IFGNT. Then (Ŝ1, Ð1) is a constant function iff the following are equivalent. 

1)  is CIFGNT. 

2)  is totally CIFGNT. 



Proof. Assume that (Ŝ1, Ð1) is a constant function. Consider Ŝ1(ṭ𝑖) = ƈ1 and Ð1(ṭ𝑖) = ƈ2 for 

all ṭ𝑖 ∈ Ṿ where ƈ1 and ƈ2 are constants. Suppose that Ġ is a (ҟ𝑖, ҟ𝑗) −IFGTN.Then ȡŜ(ṭ𝑖) =

ҟ1 and ȡÐ(ṭ𝑖) = ҟ2 for all ṭ𝑖 ∈ Ṿ. So, 𝑡ȡŜ(ṭ𝑖) = ȡŜ(ṭ𝑖) + Ŝ1(ṭ𝑖), 𝑡ȡÐ(ṭ𝑖) = ȡÐ(ṭ𝑖) +

Ð1(ṭ𝑖), 𝑡ȡŜ(ṭ𝑖) = ҟ1 + ƈ1, 𝑡ȡÐ(ṭ𝑖) = ҟ2 + ƈ2 for all ṭ𝑖 ∈ Ṿ. Therefore Ġ is totally CIFGNT. 

Hence (1)  ⟹ (2) is proved.  Now to prove (2) ⟹ (1). Suppose Ġ is totally CIFGNT to prove 

Ġ is CIFGNT. As Ġ is totally 𝐶IFGNT then 𝑡ȡŜ(ṭ𝑖) = ȓ1, 𝑡ȡÐ(ṭ𝑖) = ȓ2 for all ṭ𝑖 ∈ Ṿ. ȡŜ(ṭ𝑖) +

Ŝ1(ṭ𝑖) = ȓ1, ȡÐ(ṭ𝑖) + Ð1(ṭ𝑖) = ȓ2, ȡŜ(ṭ𝑖) + ƈ1 = ȓ1, ȡŜ(ṭ𝑖) = ȓ1 − ƈ1. Likewise ȡÐ(ṭ𝑖) +

Ð1(ṭ𝑖) = ȓ2, ȡÐ(ṭ𝑖) + ƈ1 = ȓ1, ȡÐ(ṭ𝑖) = ȓ1 − ƈ1. Therefor (1) and (2) are equivalent. 

Conversely, suppose that (1) and (2) are equivalent i.e. Ġ is CIFGNT iff Ġ is totally CIFGNT. 

Assume that (Ŝ1, Ð1) is not a constant function. Then Ŝ1(ṭ1) ≠ Ŝ1(ṭ2), Ð1(ṭ1) ≠ Ð1(ṭ2) for at 

least ṭ1, ṭ2 ∈ Ṿ. Let Ġ is totally CIFGNT. Then ȡŜ(ṭ1) = ȡŜ(ṭ2) = ҟ1, ȡÐ(ṭ1) = ȡÐ(ṭ2) = ҟ2. 

So, 𝑡ȡŜ(ṭ1) = ȡŜ(ṭ1) + Ŝ1(ṭ1) = ҟ1 + Ŝ1(ṭ1) and 𝑡ȡŜ(ṭ2) = ҟ2 + Ŝ1(ṭ2). Likewise 

𝑡ȡÐ(ṭ1) = ȡÐ(ṭ1) + Ð1(ṭ1) = ҟ1 + Ð1(ṭ1) and 𝑡ȡÐ(ṭ2) = ҟ2 + Ð1(ṭ2). Therefore, Ŝ1(ṭ1) ≠

Ŝ1(ṭ2), Ð1(ṭ1) ≠ Ð1(ṭ2). We have 𝑡ȡŜ(ṭ1) ≠ 𝑡ȡŜ(ṭ2), 𝑡ȡÐ(ṭ1) ≠ 𝑡ȡÐ(ṭ2). So, Ġ is not totally 

CIFGNT which is contradiction to our supposition. Now, consider Ġ is totally CIFGNT. Then 

𝑡ȡŜ(ṭ1) = 𝑡ȡŜ(ṭ2), ȡŜ(ṭ1) + Ŝ1(ṭ1) 

= ȡŜ(ṭ2) + Ŝ1(ṭ2), ȡŜ(ṭ1) − ȡŜ(ṭ2) 

= Ŝ1(ṭ1) − Ŝ1(ṭ2) (𝑖. 𝑒. ≠ 0) ȡŜ(ṭ1) ≠ ȡŜ(ṭ2) 

Likewise, ȡÐ(ṭ1) ≠ ȡÐ(ṭ2). So, Ġ is not constant which contradiction to our supposition. 

Therefore (Ŝ1, Ð1) is a constant function. 

2.2.10 Theorem  

If an IFGNT Ġ is constant and totally constant. Then (Ŝ1, Ð1) is constant function. 



Proof. Consider  Ġ is (ҟ1, ҟ2) −constant and (𝜏1, 𝜏2)-totally CIFGNT. Then by definitions 

ȡŜ(ṭ1) = ҟ1 and ȡÐ(ṭ1) = ҟ2 for ṭ1 ∈ Ṿ and 𝑡ȡŜ(ṭ1) = 𝜏1, 𝑡ȡÐ(ṭ1) = 𝜏2 for ṭ1 ∈ Ṿ, ȡŜ(ṭ1) +

Ŝ1(ṭ1) = 𝜏1 for all ṭ ∈ Ṿ. ҟ1 + Ŝ1(ṭ1) = 𝜏1  implies that Ŝ1(ṭ1) = (𝜏1 − ҟ1), for all ṭ ∈ Ṭ. 

Hence Ŝ1(ṭ1) is constant function. Similarly, Ð1(ṭ1) = (𝜏2 − ҟ2), for all ṭ ∈ Ṿ. 

2.2.11 Remark  

 Converse of the Theorem 2.2.10 does not hold. We show this by the following example. 

2.2.12 Example  

 The following IFGNT depicted in Figure 26 where each node is purely IFNs for 𝑛 = 3 support 

the above Remark 2.2.11 i.e. (Ŝ1, Ð1) is constant function, but neither CIFGNT  nor totally 

CIFGNT. 

  

 

 

 

 

 

 

 

                                         Figure 26 (Intuitionistic fuzzy graph of nth type) 

2.3 Application 

In this section, we discussed the application of IFGNT in social networks. It is discussed 

that the framework of IFGNT is diverse in nature than that of IFS and IFSST. It allows the 

membership and non-membership values to be chosen from anywhere in the interval [0, 1] 



regardless of any condition. So, this type of structure can be applied to many real-life problems 

with no limitations. 

2.3.1 Social networks 

We discussed the application of IFGNT in social networks where the relationship 

between different countries based on different matters has been studied. We used IFGNT to 

determine the level of relationship. For this purpose, we consider different matters that are 

important in the relationship of different countries with each other. These includes culture, 

area, religion, behavior of peoples, budget for defense expenditure, visa policy, trade, political, 

border management and media. 

Consider Figure 27 where a list of countries is taken into account and their relations are 

studied keeping in mind the above discussed matters in the environment of IFGNT. The 

countries are India, Saudi-Arab, Iran, Pakistan, and China. The following graph gives us a brief 

information about the relationship of these countries with each other. 

 

 

 

 

 

 

 

 

 

 

 

 

                                   

                                                 Figure 27 (Intuitionistic fuzzy network of nth type) 



The edge between two countries represent their relation. We list the edge values of each 

pair of countries in Table 1. These edges are in the form of IFNNT having a membership and 

non-membership grade which mean that if the membership degree is greater compared to the 

non-membership degree then the relationship is considered as strong otherwise weak. The 

degree of each vertex will give us the strength of relationship of a country with all other 

countries. 

 

 

 

 

 

 

 

 

 

 

           

 

                         Table 1(relation of every pair of countries in the form of IFNs of nth type) 

Now the degree of relation of each country is calculated based on Definition 2.1.12. 

The high degree of membership shows the good relation of it with other countries and vice 

versa. The degree of relation of each country is listed in Table 2. 

 

 

 

 

 



 

 

 

  

 

 

 

                   

                         Table 2 (Degree of relation of each country determined from Figure 27) 

For simplicity, the strength of each vertex is measured by using the effective degree 

which is defined as the difference of membership degree and non-membership degree. The 

effective degree of each vertex is calculated in Table 3. 

 

 

 

 

 

 

 

 

 

                                 Table 3 (Effective degree of relation of each country) 

 From the calculation in Table 3 it is clear that on different matters, china has better 

relationship with other countries. The effective degree of Saudi-Arab and Iran shows that their 

relationship is not as much stronger compared to china but better than Pakistan and India. 



2.4 Advantages 

The proposed framework IFGNT generalizes both IFG and IFGST. The main advantage 

of proposed framework is that the space of IFGNT is much larger than that of IFS and IFSST 

and is free of any barriers i.e. it allows the decision makers to assign membership and non-

membership values from anywhere in the interval [0, 1]. All the works done so far in IFG and 

IFGST can be done in the proposed structure of IFGNT. On the other hand, the work 

information in the form of IFNNT could not be processed using the notions of IFSs or IFSSTs 

because of their limited structures. For example, if we look at Figure 27 of social networks, all 

the information is in the form of IFNs of nth type, hence IFGs and IFGST are failed to describe 

it. 

2.5 Conclusion 

In this chapter, the theory of IFGNT, CIFGST and CIFGNT have been proposed. Some 

basic graph theoretic concepts are defined for IFGNT and their properties are investigated. The 

structure of IFS, IFSST and IFSNT are compared and it is proved that IFSNT generalizes IFS 

and IFSST which also prove the generalization of IFGNT over IFG and IFGST. A real-life 

application of proposed IFGNT is discussed showing is worth. In future some further 

contribution to this theory could be made such as the concepts of cycles, tree could be defined 

in this frame work. The minimum spinning tree problems could be discussed along with some 

other real-life problems. Further this study could be extended to the directions of soft set theory 

and rough set theory to deal with some multi attribute decision making problems. 

 

 



Chapter 3 

An Improved Clustering Algorithm for Picture Fuzzy Graphs and 

its Applications in Human Decision Making 

In this chapter, we developed a novel clustering algorithm in the environment of PFGs. 

The proposed clustering algorithm is an improved version of clustering algorithm of FGs and 

IFGs. We thoroughly investigated the existing clustering algorithms proposed in the 

frameworks of IFG by pointing out the deficiencies and suggesting a solution which is 

applicable in handling real-life scenarios. The proposed clustering algorithm is supported with 

the help of a numerical problem discussing those cases which have not been discussed in the 

existing algorithms and the results are examined. To develop the new algorithm a study of 

PFGs along with some interesting result is established. A comparative study of the new work 

with that of existing work is established proving the worth of the proposed new work. Some 

drawbacks of the existing concepts and advantages of new theory are also discussed. We ended 

with a summary of proposed work and possibly related future work in these directions. 

3.1 A Note on Picture Fuzzy Graphs 

In this section, the concepts PFG, subgraph of PFG, density of PFG, balanced PFG and 

single-valued edge density PFG (SEDPFG) are developed. The defined concepts are supported 

with the help of examples and some results based on balanced PFGs are also studied. These 

concepts are the essential parts of clustering algorithm proposed in Section 3.4. 

 

 

 



3.1.1 Definition  

A pair Ġ = (Ṿ, Ẻ) is known as PFG if  

i. Ṿ denotes the set of vertices such that Ŝ1: Ṿ ⟶ [0, 1], Î1: Ṿ ⟶ [0, 1] and Ð1: Ṿ ⟶

[0, 1]denote the degrees of membership, abstinence and non-membership of vertex ṭ𝑖 ∈

Ṿ respectively with a condition 0 ≤ Ŝ1 + Î1 + Ð1 ≤ 1 for any ṭ𝑖 ∈ Ṿ ( 𝑖 ∈ 𝐼). 

ii. Ẻ ⊆ Ṿ × Ṿ where Ŝ2: Ṿ × Ṿ ⟶ [0, 1] , Î2: Ṿ × Ṿ ⟶ [0, 1] and Ð2: Ṿ × Ṿ ⟶

[0, 1] denote the degree of membership, abstinence and non-membership of 

edge(ṭ𝑖, ṭ𝑗) ∈ Ṿ × Ṿ such that Ŝ2(ṭ𝑖, ṭ𝑗) ≤ min[Ŝ1(ṭ𝑖), Ŝ1(ṭ𝑗)], Î2(ṭ𝑖, ṭ𝑗) ≤

min[Î1(ṭ𝑖), Î1(ṭ𝑗)] and Ð2(ṭ𝑖, ṭ𝑗) ≤ max[Ð1(ṭ𝑖), Ð1(ṭ𝑗)] with a condition that 0 ≤

Ŝ2 + Î2 + Ð2 ≤ 1. Moreover, 1 − (Ŝ1𝑖 + Î1𝑖 + Ð1𝑖) denotes the refusal degree. 

3.1.2 Example  

Consider the two graphs below where the one depicted in Figure 28 is a PFG while the one 

depicted in Figure 29 is not a PFG. 

  

 

 

 

 

 

 

     Figure 28 (picture fuzzy graph) 

 

 

 



 

  

 

 

 

 

 

 

 

                                                        Figure 29 (Not a picture fuzzy graph) 

3.1.3 Definition  

 A pair H = (Ṿ′, Ẻ′) is said to be picture fuzzy subgraph (PFSG) of a PFG Ġ = (Ṿ, Ẻ) if Ṿ′ ⊆ Ṿ 

and Ẻ′ ⊆ Ẻ that is Ŝ1𝑖
′
≤ Ŝ1𝑖,Î1𝑖

′
≤ Î1𝑖, Ð1𝑖

′ ≥ Ð1𝑖 and Ŝ2𝑖𝑗
′
≤ Ŝ2𝑖𝑗, Î2𝑖𝑗

′
≤ Î2𝑖𝑗,Ð2𝑖𝑗

′ ≥ Ð2𝑖𝑗 

for all 𝑖, 𝑗 = 1, 2, … , 𝑛. 

3.1.4 Definition  

The density of a PFG Ġ = (Ṿ, Ẻ) is denoted by 𝐷(Ġ) = (𝐷Ŝ(Ġ), 𝐷Î(Ġ), 𝐷Ð(Ġ)) and defined as: 

𝐷(Ġ) = (𝐷Ŝ(Ġ), 𝐷Î(Ġ), 𝐷Ð(Ġ)) =

(

 
 
 
 
 
 

2∑ (Ŝ2(ṭ, 𝑤))ṭ,𝑤∈Ṿ

∑ (Ŝ1(ṭ)⋀Ŝ1(𝑤))(ṭ,𝑤)∈Ẻ

,

2 ∑ (Î2(ṭ, 𝑤))ṭ,𝑤∈Ṿ

∑ (Î1(ṭ)⋀Î1(𝑤))(ṭ,𝑤)∈Ẻ

,

 
2 ∑ (Ð2(ṭ, 𝑤))ṭ,𝑤∈Ṿ

∑ (Ð1(ṭ)⋁Ð1(𝑤))(ṭ,𝑤)∈Ẻ )

 
 
 
 
 
 

            (1)    

3.1.5 Example  

 The density of PFG depicted in Figure 28 is calculated as: 

𝐷Ŝ(Ġ) =
2(0.2 + 0.2 + 0.2 + 0.1 + 0.2 + 0.2)

0.2 + 0.3 + 0.2 + 0.2 + 0.2 + 0.2
= 1.69 



𝐷Î(Ġ) =
2(0.3 + 0. .3 + 0.2 + 0.2 + 0.3 + 0.2)

0.3 + 0.3 + 0.2 + 0.2 + 0.3 + 0.2
= 2.0 

𝐷Ð(Ġ) =
2(0.2 + 0.3 + 0.3 + 0.3 + 0.3 + 0.2)

0.2 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3
= 1.88 

𝐷(Ġ) = (1.69,2.0, .1.88). 

3.1.6 Definition  

A PFG Ġ = (Ṿ, Ẻ) is balanced if  𝐷(𝐻) ≤ 𝐷(Ġ) that is 𝐷Ŝ(𝐻) ≤ 𝐷Ŝ(Ġ), 𝐷Î(𝐻) ≤

𝐷Î(Ġ) and 𝐷Ð(𝐻) ≤ 𝐷Ð(Ġ) for all subgraphs 𝐻 of Ġ. 

3.1.7 Definition  

A PFG Ġ = (Ṿ, Ẻ) is said to be complete PFG if Ŝ2(ṭ𝑖, ṭ𝑗) = [Ŝ1(ṭ𝑖) ∧  Ŝ1(ṭ𝑗)], Î2(ṭ𝑖, ṭ𝑗) =

[Î1(ṭ𝑖) ∧   Î1(ṭ𝑗)] and Ð2(ṭ𝑖, ṭ𝑗) = [Ð1(ṭ𝑖) ∨  Ð1(ṭ𝑗)] for every ṭ𝑖, ṭ𝑗 ∈ Ẻ and a PFG Ġ = (Ṿ, Ẻ) 

is said to be strong PFG if Ŝ2(ṭ𝑖, ṭ𝑗) = [Ŝ1(ṭ𝑖) ∧  Ŝ1(ṭ𝑗)], Î2(ṭ𝑖, ṭ𝑗) = [Î1(ṭ𝑖) ∧   Î1(ṭ𝑗)] and 

Ð2(ṭ𝑖, ṭ𝑗) = [Ð1(ṭ𝑖) ∨  Ð1(ṭ𝑗)] for every ṭ𝑖, ṭ𝑗 ∈ Ẻ. Further, the complement of a PFG Ġ =

(Ṿ, Ẻ)  is represented by Ġ𝑐 = (Ṿ𝑐, Ẻ𝑐) and defined by 

1. Ṿ𝑐 = Ṿ. 

2. Ŝ1(ṭ𝑖)
𝑐 = Ŝ1(ṭ𝑖), Î1(ṭ𝑖)

𝑐 = Î1(ṭ𝑖), Ð1(ṭ𝑖)
𝑐 = Ð1(ṭ𝑖), ∀ ṭ𝑖 ∈ Ṿ. 

3. Ŝ2(ṭ𝑖, ṭ𝑗)
𝑐
= [Ŝ2(ṭ𝑖)  ∧ Ŝ2(ṭ𝑗)] − Ŝ2(ṭ𝑖, ṭ𝑗), Î2(ṭ𝑖, ṭ𝑗)

𝑐
= [Î2(ṭ𝑖) ∧  Î2(ṭ𝑗)]−Î2(ṭ𝑖 , ṭ𝑗) and 

Ð2(ṭ𝑖, ṭ𝑗)
𝑐
= [Ð2(ṭ𝑖) ∨  Ð2(ṭ𝑗)] −Ð2(ṭ𝑖, ṭ𝑗) ∀ ṭ𝑖, ṭ𝑗 ∈ Ẻ. 

3.1.8 Theorem  

Every complete PFG is balanced. 

Proof. Let Ġ = (Ṿ, Ẻ) be a complete PFG. Then we have 

Ŝ2(ṭ, 𝑤) = Ŝ1(ṭ)⋀Ŝ1(𝑤)  



Î2(ṭ, 𝑤) = Î1(ṭ)⋀Î1(𝑤)   

Ð2(ṭ, 𝑤) = Ð1(ṭ) ∨ Ð1(𝑤).  

Because, 

∑ (Ŝ2(ṭ, 𝑤))ṭ,𝑤∈Ṿ = ∑ (Ŝ1(ṭ)⋀Ŝ1(𝑤))(ṭ,𝑤)∈Ẻ   

∑ (Î2(ṭ, 𝑤))ṭ,𝑤∈Ṿ = ∑ (Î1(ṭ)⋀Î1(𝑤))(ṭ,𝑤)∈Ẻ  and 

∑ (Ð2(ṭ, 𝑤))ṭ,𝑤∈Ṿ = ∑ (Ð1(ṭ)⋁Ð1(𝑤))(ṭ,𝑤)∈Ẻ   

Now 

𝐷(Ġ) =

(

 
 
 

2∑ (Ŝ2(ṭ, 𝑤))ṭ,𝑤∈Ṿ

∑ (Ŝ1(ṭ)⋀Ŝ1(𝑤))(ṭ,𝑤)∈Ẻ

,
2 ∑ (Î2(ṭ, 𝑤))ṭ,𝑤∈Ṿ

∑ (Î1(ṭ)⋀Î1(𝑤))(ṭ,𝑤)∈Ẻ

,

 
2 ∑ (Ð2(ṭ, 𝑤))ṭ,𝑤∈Ṿ

∑ (Ð1(ṭ)⋁Ð1(𝑤))(ṭ,𝑤)∈Ẻ )

 
 
 

 

=

(

 
 
 

2∑ (Ŝ1(ṭ)⋀Ŝ1(𝑤))(ṭ,𝑤)∈Ẻ

∑ (Ŝ1(ṭ)⋀Ŝ1(𝑤))(ṭ,𝑤)∈Ẻ

,
2 ∑ (Î1(ṭ)⋀Î1(𝑤))(ṭ,𝑤)∈Ẻ

∑ (Î1(ṭ)⋀Î1(𝑤))(ṭ,𝑤)∈Ẻ

,

 
2 ∑ (Ð1(ṭ)⋁Ð1(𝑤))(ṭ,𝑤)∈Ẻ

∑ (Ð1(ṭ)⋁Ð1(𝑤))(ṭ,𝑤)∈Ẻ )

 
 
 

 

= (2,2,2)  

Let 𝐻 be a PFSG of Ġ. Then 𝐷(𝐻) = (2,2,2) and hence Ġ is balanced. 

3.1.9 Remark  

For the above Theorem, converse statement is not true. 

 

 



3.1.10 Example  

The graph in Figure 30 is balanced but not complete. 

 

 

 

 

 

 

 

                  Figure 30 (Balanced picture fuzzy graph but not complete) 

 

𝐷(Ġ) = (𝐷Ŝ(Ġ), 𝐷Î(Ġ), 𝐷Ð(Ġ)) = (1.5,0,1.5) 

Let 𝐻1 = {ṭ1, ṭ2}, 𝐻2 = {ṭ1, ṭ3}, 𝐻3 = {ṭ1, ṭ4}, 𝐻4 = {ṭ2, ṭ3}, 𝐻5 = {ṭ2, ṭ4}, 𝐻6 = {ṭ3, ṭ4}, 𝐻7 =

{ṭ1, ṭ2, ṭ3}, 𝐻8 = {ṭ1, ṭ3, ṭ4}, 𝐻9 = {ṭ1, ṭ2, ṭ4}, 𝐻10 = {ṭ2, ṭ3, ṭ4}, 𝐻11 = {ṭ1, ṭ2, ṭ3, ṭ4} be a non-

empty subgraphs of Ġ. 

Now we find the densities of all subgraphs: 

𝐷(𝐻1) = (1.5,0,1.5), 𝐷(𝐻2) = (0,0,0), 𝐷(𝐻3) = (1.5,0,1.5), 𝐷(𝐻4) = (1.5,0,1.5), 𝐷(𝐻5) =

(0,0,0), 𝐷(𝐻6) = (1.5,0,1.5), 𝐷(𝐻7) = (1.5,0,1.5), 𝐷(𝐻8) = (1.5,0,1.5), 𝐷(𝐻9) =

(1.5,0,1.5), 𝐷(𝐻10) = (1.5,0,1.5) and 𝐷(𝐻11) = (1.5,0,1.5). 

Hence, Ġ is balanced PFG as 𝐷(𝐻𝑖) ≤ 𝐷(Ġ) for 𝑖 = 1,2, …𝑛. So, it is observed from above 

graph that  

Ŝ2(ṭ, 𝑤) ≠ Ŝ1(ṭ)⋀Ŝ1(𝑤)  

Î2(ṭ, 𝑤) ≠ Î1(ṭ)⋀Î1(𝑤)  

Ð2(ṭ, 𝑤) ≠ Ð1(ṭ) ∨ Ð1(𝑤)  



Which shows that Ġ is not complete. Hence, we proved that Ġ is not complete but balanced.  

3.1.11 Corollary 

All strong PFGs are balanced. 

3.1.12 Definition 

 If Ġ = (Ġ𝑐)𝑐. Then Ġ is considered as self-complementary PFG.  

3.1.13 Theorem  

 For a self-complementary PFG, the density of Ġ is 𝐷(Ġ) = (1,1,1). 

Proof. Straightforward. 

3.1.14 Theorem  

 Let Ġ = (Ṿ, Ẻ) be a strictly balanced PFG and Ġ𝑐 = (Ṿ𝑐, Ẻ𝑐) be its complement. Then 𝐷(Ġ) +

𝐷(Ġ𝑐) = (2, 2, 2). 

Proof. Proof is straightforward. 

3.1.15 Definition 

 Let Ġ1=(Ṿ1, Ẻ1) and Ġ2 = (Ṿ2, Ẻ2) be two PFGs. A homomorphism 𝑓: Ġ1 ⟶ Ġ2 is a bijective 

mapping 𝑓: Ṿ1 ⟶ Ṿ2 which satisfies the following conditions: 

1. Ŝ1(ṭ1) ≤ Ŝ2(𝑓(ṭ1)), Î1(ṭ1) ≤ Î2(𝑓(ṭ1)) and Ð1(ṭ1) ≥ Ð2(𝑓(ṭ1)) 

2. Ŝ1(𝑢1ṭ1) ≤ Ŝ2(𝑓(𝑢1), 𝑓(ṭ1)), Î1(𝑢1ṭ1) ≤ Î2(𝑓(𝑢1)𝑓(ṭ1)) and Ð1(𝑢1ṭ1) ≥

Ð2(𝑓(𝑢1), 𝑓(ṭ1))  for all ṭ1 ∈ Ṿ1 and 𝑢1, ṭ1 ∈ Ẻ1. 

 

 



3.1.16 Definition  

 Let Ġ1=(Ṿ1, Ẻ1) and Ġ2 = (Ṿ2, Ẻ2)  be two PFGs. An isomorphism 𝑓: Ġ1 ⟶ Ġ2 is a bijective 

mapping 𝑓: Ṿ1 ⟶ Ṿ2 which satisfies the following conditions: 

1. Ŝ1(ṭ1) = Ŝ2(𝑓(ṭ1)), Î1(ṭ1) = Î2(𝑓(ṭ1)) and Ð1(ṭ1) = Ð2(𝑓(ṭ1)) 

2. Ŝ1(𝑢1ṭ1) = Ŝ2(𝑓(𝑢1) 𝑓(ṭ1)), Î1(𝑢1ṭ1) = Î2(𝑓(𝑢1)𝑓(ṭ1)) and Ð1(𝑢1ṭ1) = Ð2(𝑓(𝑢1)𝑓(ṭ1)) 

for all ṭ1 ∈ Ṿ1 and 𝑢1ṭ1 ∈ Ẻ1. 

3.1.17 Theorem  

 Let Ġ1 = (Ṿ1, Ẻ1) and Ġ2 = (Ṿ2, Ẻ2) be two isomorphic PFGs. If Ġ2 is balanced, then Ġ1 is 

balanced. 

Proof. Let 𝑓: Ṿ1 → Ṿ2 be a bijection such that for every 𝑢, ṭ ∈ Ṿ1 

Ŝ1(ṭ) = Ŝ1
∗(𝑓(ṭ))  

Î1(ṭ) = Î1
∗(𝑓(ṭ))  

Ð1(ṭ) = Ð1
∗(𝑓(ṭ))  

Ŝ2(ṭ, 𝑤) = Ŝ2
∗(𝑓(ṭ), 𝑓(𝑤))  

Î2(ṭ, 𝑤) = Î2
∗(𝑓(ṭ), 𝑓(𝑤))  

Ð2(ṭ, 𝑤) = Ð2
∗(𝑓(ṭ), 𝑓(𝑤))  

Then 

∑ Ŝ1(ṭ)ṭ,𝑤∈Ṿ1 = ∑ Ŝ1
∗(ṭ)ṭ,𝑤∈Ṿ2   

∑ Î1(ṭ)ṭ,𝑤∈Ṿ1 = ∑ Î1
∗(ṭ)ṭ,𝑤∈Ṿ2   

∑ Ð1(ṭ)ṭ,𝑤∈Ṿ1 = ∑ Ð1
∗(ṭ)ṭ,𝑤∈Ṿ2   



and 

∑ Ŝ2(ṭ, 𝑤)ṭ,𝑤∈Ṿ1 = ∑ Ŝ2
∗(ṭ, 𝑤)ṭ,𝑤∈Ṿ2   

∑ Î2(ṭ, 𝑤)ṭ,𝑤∈Ṿ1 = ∑ Î2
∗(ṭ, 𝑤)ṭ,𝑤∈Ṿ2   

∑ Ð2(ṭ, 𝑤)ṭ,𝑤∈Ṿ1 = ∑ Ð2
∗(ṭ, 𝑤)ṭ,𝑤∈Ṿ2   

If 𝐻1 = Ġ(Ṿ(𝐻1), Ẻ(𝐻1)) is a PFSG of Ġ1 and 𝐻2 = Ġ(Ṿ(𝐻2), Ẻ(𝐻2)) is a PFSG of Ġ2 where 

for every ṭ, 𝑤 ∈ Ṿ(𝐻1) we have 

Ŝ1(ṭ) = Ŝ1
∗(𝑓(ṭ))  

Î1(ṭ) = Î1
∗(𝑓(ṭ))  

Ð1(ṭ) = Ð1
∗(𝑓(ṭ))  

and 

Ŝ2(ṭ, 𝑤) = Ŝ2
∗(𝑓(ṭ), 𝑓(𝑤))  

Î2(ṭ, 𝑤) = Î2
∗(𝑓(ṭ), 𝑓(𝑤))  

Ð2(ṭ, 𝑤) = Ð2
∗(𝑓(ṭ), 𝑓(𝑤))  

Since Ġ2 is balanced so 𝐷(𝐻2) ≤ 𝐷(Ġ2) i. e. 𝐷Ŝ(𝐻2) ≤ 𝐷Ŝ(Ġ2), 𝐷Î(𝐻2) ≤ 𝐷Î(Ġ2) and 

𝐷Ð(𝐻2) ≤ 𝐷Ð(Ġ2). Now 

2∑ Ŝ2
∗(ṭ, 𝑤)ṭ,𝑤∈Ṿ(𝐻1)

∑ Ŝ1
∗(ṭ) ∧ Ŝ1

∗(𝑤)(ṭ,𝑤)∈Ẻ(𝐻1)

≤
2∑ Ŝ2

∗(ṭ, 𝑤)ṭ,𝑤∈Ṿ2

∑ Ŝ1
∗(ṭ) ∧ Ŝ1

∗(𝑤)(ṭ,𝑤)∈Ẻ2

 

2∑ Î2
∗(ṭ, 𝑤)ṭ,𝑤∈Ṿ(𝐻1)

∑ Î1
∗(ṭ) ∧ Î1

∗(𝑤)(ṭ,𝑤)∈Ẻ(𝐻1)

≤
2∑ Î2

∗(ṭ, 𝑤)ṭ,𝑤∈Ṿ2

∑ Î1
∗(ṭ) ∧ Î1

∗(𝑤)(ṭ,𝑤)∈Ẻ2

 

and 



2∑ Ð2
∗(ṭ, 𝑤)ṭ,𝑤∈Ṿ(𝐻1)

∑ Ð1
∗(ṭ) ∧ Ð1

∗(𝑤)(ṭ,𝑤)∈Ẻ(𝐻1)

≤
2∑ Ð2

∗(ṭ, 𝑤)ṭ,𝑤∈Ṿ2

∑ Ð1
∗(ṭ) ∧ Ð1

∗(𝑤)(ṭ,𝑤)∈Ẻ2

 

2∑ Ŝ2(ṭ, 𝑤)ṭ,𝑤∈Ṿ(𝐻1)

∑ Ŝ1
∗(ṭ) ∧ Ŝ1

∗(𝑤)(ṭ,𝑤)∈Ẻ(𝐻1)

≤
2∑ Ŝ1(ṭ, 𝑤)ṭ,𝑤∈Ṿ1

∑ Ŝ1
∗(ṭ) ∧ Ŝ1

∗(𝑤)(ṭ,𝑤)∈Ẻ1

 

2∑ Î2(ṭ, 𝑤)ṭ,𝑤∈Ṿ(𝐻1)

∑ Î1
∗(ṭ) ∧ Î1

∗(𝑤)(ṭ,𝑤)∈Ẻ(𝐻1)

≤
2∑ Î1(ṭ, 𝑤)ṭ,𝑤∈Ṿ1

∑ Î1
∗(ṭ) ∧ Î1

∗(𝑤)(ṭ,𝑤)∈Ẻ1

 

and 

2∑ Ð2(ṭ, 𝑤)ṭ,𝑤∈Ṿ(𝐻1)

∑ Ð1
∗(ṭ) ∧ Ð1

∗(𝑤)(ṭ,𝑤)∈Ẻ(𝐻1)

≤
2∑ Ð1(ṭ, 𝑤)ṭ,𝑤∈Ṿ1

∑ Ð1
∗(ṭ) ∧ Ð1

∗(𝑤)(ṭ,𝑤)∈Ẻ1

 

i.e. 𝐷Ŝ(𝐻1) ≤ 𝐷Ŝ(Ġ1), 𝐷Î(𝐻1) ≤ 𝐷Î(Ġ1) and 𝐷Ð(𝐻1) ≤ 𝐷Ð(Ġ1) because 𝐷(𝐻1) ≤ 𝐷(Ġ1). 

Hence Ġ1 is balanced. 

3.1.18 Definition 

 Let Ġ = (Ṿ, Ẻ) be a PFG. The index matrix representation of PFG is of the form [Ṿ, Ẻ𝑀(Ġ) ⊂

Ṿ × Ṿ], where Ṿ = {ṭ1, ṭ2, ṭ3, … ṭ𝑛} and  

Ẻ𝑀(Ġ) = {(Ŝ𝑖𝑗, Î𝑖𝑗 , Ð𝑖𝑗)} =

ṭ1
ṭ2…
ṭ𝑛
[
 
 
 
 

ṭ1
(Ŝ11, Ð11)

(Ŝ21, Ð21)
…

(Ŝ𝑛1, Ð𝑛1)

ṭ2
  (Ŝ12, Ð12)

  
(Ŝ22, Ð22)

…
(Ŝ𝑛2, Ð𝑛2)

…
……
…
…

ṭ𝑛
(Ŝ1𝑛, Ð1𝑛)

(Ŝ2𝑛, Ð2𝑛)
…

(Ŝ𝑛𝑛, Ð𝑛𝑛)]
 
 
 
 

 

Where (Ŝ𝑖𝑗 , Î𝑖𝑗 , Ð𝑖𝑗) ∈ [0, 1] × [0, 1] × [0, 1] and (𝑖, 𝑗 = 1, 2, … , 𝑛). An edge between two 

vertices ṭ𝑖 and ṭ𝑗 is indexed by (Ŝ𝑖𝑗 , Î𝑖𝑗 , Ð𝑖𝑗). 

3.1.19 Definition 

Let  Ġ = (Ṿ, Ẻ) be a PFG. Then the edge density of  an edge 𝑒 of Ġ is defined as 



𝐷Ġ(𝑒) = (
2 (Ŝ2(ṭ, 𝑤))

∑ (Ŝ1(ṭ)⋀Ŝ1(𝑤)(ṭ,𝑤)∈Ẻ

,
2 (Î2(ṭ, 𝑤))

∑ (Î1(ṭ)⋀Î1(𝑤)(ṭ,𝑤)∈Ẻ

,
2(Ð2(ṭ, 𝑤))

∑ (Ð1(ṭ)⋁Ð1(𝑤)(ṭ,𝑤)∈Ẻ

)  (2) 

3.1.20 Definition 

 A PFG Ġ = (Ṿ, Ẻ) with edge density on its each edge is called edge density PFG of Ġ and is 

denoted by EDPF(Ġ). 

3.1.21 Example 

 The edge density PFG of the graph depicted in Figure 28 is given in Figure 31. 

 

 

 

 

 

 

 

 

                               Figure 31(Edge density picture fuzzy graph) 

3.1.22 Definition 

The single valued edge density of an edge 𝑒 of a PFG Ġ = (Ṿ, Ẻ) is defined as: 

𝑆Ẻ𝐷(𝑒) =

(
2 (Ŝ2(ṭ, 𝑤))

∑ (Ŝ1(ṭ)⋀Ŝ1(𝑤))(ṭ,𝑤)∈Ẻ

)

(
2(Ð2(ṭ, 𝑤))

∑ (Ð1(ṭ)⋁Ð1(𝑤))(ṭ,𝑤)∈Ẻ
) + (

2 (Î2(ṭ, 𝑤))

∑ (Î1(ṭ)⋀Î1(𝑤))(ṭ,𝑤)∈Ẻ

)

      (3) 

 

 



3.1.23 Definition 

 A PFG Ġ = (Ṿ, Ẻ) with single valued edge density on its each edge is called single valued 

edge density PFG and is denoted by SEDPFG. 

3.1.24 Definition 

 The single valued edge density of picture fuzzy matrix (𝑆Ẻ𝐷𝑃𝐹𝑀) is defined as 

𝑆Ẻ𝐷𝑃𝐹𝑀(Ġ) = [Ð𝑖𝑗] where 

Ð𝑖𝑗 =

{
 
 
 

 
 
 

(
2(Ŝ2(ṭ, 𝑤))

∑ (Ŝ1(ṭ)⋀Ŝ1(𝑤))(ṭ,𝑤)∈Ẻ

)

(
2(Ð2(ṭ, 𝑤))

∑ (Ð1(ṭ)⋁Ð1(𝑤))(ṭ,𝑤)∈Ẻ
) + (

2 (Î2(ṭ, 𝑤))

∑ (Î1(ṭ)⋀Î1(𝑤))(ṭ,𝑤)∈Ẻ

)

for ṭ ≠ 𝑤

0 for ṭ = 𝑤

  (4) 

3.1.25 Example 

The 𝑆Ẻ𝐷𝑃𝐹𝑀 of PFG defined in Figure 28 is given by: 

𝑆Ẻ𝐷𝑃𝐹𝑀(Ġ) =

ṭ1
ṭ2
ṭ3
ṭ4 [
 
 
 
 
ṭ1
0
0.23
0.59
0.47

ṭ2
    0.23    

   
0
0.47
0.39

ṭ3
0.59        

  
0.47  
0
0.39

   

ṭ4
0.47
0.39
0.39
0 ]
 
 
 
 

 

The next section briefly illustrated the clustering algorithm for PFGs and its applications in 

human decision-making. 

3.2 Pre-Existing Study on Clustering in the Environment of FG and IFG and Some 

Challenges 

This section is divided into three subsections. In the first subsection, the clustering 

algorithms of FG and IFG proposed by [117, 118], are discussed followed by numerical 



examples. In the second subsection, some lapses are pointed out in while working in the 

environment of FG and PFG and their solutions are proposed.  

3.2.1 Fuzzy Clustering Algorithm [117] 

In this subsection, the clustering algorithm in the environment of FGs followed by an example 

for demonstration of the algorithm. 

1. Establish the edge density fuzzy matrix 𝐸𝐷𝐹𝑀(Ġ) with 𝑚 vertices. 

2. Based on step one, establish the single-valued fuzzy matrix 𝑆𝐸𝐷𝐹𝑀(Ġ). 

3. Now for the 𝑆𝐸𝐷𝐹(Ġ), construct the narrow slicing. 

Here arise two cases: 

Case 1: If 𝑆𝐸𝐷𝐹(Ġ) is balanced. Then 𝑆𝐸𝐷𝐹(Ġ) = 𝑆𝐸𝐷𝐹(Ġ1). 

Case 2: If 𝑆𝐸𝐷𝐹(Ġ) is not balanced. Then proceed as follows: 

a) For every row of 𝑆𝐸𝐷𝐹𝑀(Ġ), find the sum of its entries. 

b) Chose the least value corresponding to a vertex ṭ in 𝑆𝐸𝐷𝐹𝑀(Ġ). 

c) Develop an induced subgraph i.e. 𝑆𝐸𝐷𝐹(ĠÎ) with the help of remaining vertices. 

d) Repeat step (a), (b) and (c) and continue doing so until the selection of 𝑚 − 1 vertices. 

e) Arrange the vertices obtained in each step into groups. 

f) Thus, we have obtained narrow slicing of 𝑆𝐸𝐷𝐹(Ġ). 

4. In order to compute the τ-edge components of 𝑆𝐸𝐷𝐹(Ġ), we proceed as follows: 

a) From 𝑆𝐸𝐷𝐹(Ġ) obtained a 𝑆𝐸𝐷𝐹𝑀(Ġ). 

b) Utilizing the concept of edge cohesiveness and by grouping the vertices into clusters, a 

minimal τ-edge connected subgraph is obtained. 

Now an example is presented in support of the above algorithm in which a human decision-

making problem is illustrated. 



3.2.2 Numerical Example 

Consider a FG having five vertices and each vertex is connected with the other in Figure 

(32). The five vertices represent five different attributes among which a group of human needs 

to decide which of them are substantial for assigning a good brand or object. Here we used the 

notions of FG to solve the problem of determining best attributes among the list of attributes. 

In our case, the five vertices ṭ1, ṭ2, ṭ3, ṭ4 and ṭ5 represents the attributes Quality, Service, Price, 

Technology, and Advertisement respectively. The fuzzy clustering algorithm is demonstrated 

stepwise below. 

 

 

 

 

 

 

 

 

 

Figure 32 (fuzzy graph based on information of human opinion) 

Step 1. First, we used the concept of edge density of FGs [117] to obtain an 𝐸𝐷𝐹𝑀(Ġ). 

  

𝐸𝐷𝑀(Ġ) =

ṭ1
ṭ2
ṭ3
ṭ4
ṭ5 [
 
 
 
 
 
ṭ1
0

0.167
0.167
0.167
0.083

ṭ2
   0.167
0

   0.167

    
0.25
  0.083

ṭ3
 0.167   

 

0.167
0

 
0.083
     0.083

   

ṭ4
0.167 
0.25
0.083
0

0.083

ṭ5
   0.083
  0.083
    0.083

  
0.083
0 ]

 
 
 
 
 

 

Step 2. The sum of every row is calculated and listed in Table 4 

 



 

                                     

                                             Table 4(Sum of values in SEDF matrix) 

 

 

 

 

 

 

                                            Figure 33 (Single-valued edge density fuzzy graph) 

 

Based on calculations in Table 4, the least value occurs for row 1. Hence, we have the first 

cluster 𝐶1 = ({ṭ1}, {ṭ2, ṭ3, ṭ4, ṭ5}). Now the 𝑆𝐸𝐷𝐹𝑀(Ġ)induced by the remaining vertices is 

denoted by 𝑆𝐸𝐷𝐹𝑀(Ġ1) and is given by: 

𝑆𝐸𝐷𝐹𝑀(Ġ1) =

ṭ2
ṭ3
ṭ4
ṭ5 [
 
 
 
 
ṭ2
0

0.167
0.25 
0.083

 

  

ṭ3
0.167   
0

0.083
0.083

ṭ4
0.25   
0.083  
0

0.083
  

ṭ5
0.083
0.083
0.083
0 ]

 
 
 
 

 

Proceeding similarly, we have  

 

 

                                   Table 5 (Sum of values in SEDF matrix) 



Based on calculations in Table 5, the least value occurs for row 2. Hence, we have the second 

cluster 𝐶2 = ({ṭ2}, {ṭ3, ṭ4, ṭ5}). Now the 𝑆𝐸𝐷𝐹𝑀(Ġ)induced by the remaining vertices is 

denoted by 𝑆𝐸𝐷𝐹𝑀(Ġ2) and is given by: 

𝑆𝐸𝐷𝐼𝐹𝑀(Ġ2) =

ṭ3
ṭ4
ṭ5

[

ṭ3
0

0.083
0.083  

   

ṭ4
0.083
0

0.083
  
  

ṭ5
   0.083
0.083
0

] 

Proceeding similarly, we have 𝐶2 = ({ṭ3}, {ṭ4}, {ṭ5}) and 

{({ṭ1}, {ṭ2, ṭ3, ṭ4, ṭ5}), ({ṭ2}, {ṭ3, ṭ4, ṭ5}), ({ṭ3}, {ṭ4}, {ṭ5})}is the required narrow slicing. It is 

clear that 𝑆𝐸𝐷𝐼𝐹𝑀(Ġ2) contains 𝐶345 = 0.083. Hence, the parameters service and Technology 

corresponding to ṭ3, ṭ4 and ṭ5 respectively are the factors that influenced the consumer decision 

for a brand. 

Now we moved towards step 3 where τ-edge components of 𝑆𝐸𝐷𝐹(Ġ) are evaluated.  

Step 3. For various values of 𝜏, the τ-edge components of 𝑆𝐸𝐷𝐹𝑀(Ġ)are shown in Table 6. 

 

 

 

 

 

 Table 6 (t-edge component of fuzzy graph) 

Now we discussed the clustering algorithm for IFGs proposed by [118]. 

 

 



3.2.3 Intuitionistic Fuzzy Clustering Algorithm [118] 

In this subsection, the clustering algorithm in the environment of FGs followed by an example 

for demonstration of the algorithm. 

1. Establish the edge density intuitionistic fuzzy matrix 𝐸𝐷𝐼𝐹𝑀(Ġ) with 𝑚 vertices. 

2. Based on step one, establish the single-valued intuitionistic fuzzy matrix 𝑆𝐸𝐷𝐼𝐹𝑀(Ġ). 

3. Now for the 𝑆𝐸𝐷𝐼𝐹(Ġ), construct the narrow slicing. 

Here arise two cases: 

Case 1: If 𝑆𝐸𝐷𝐼𝐹(Ġ) is balanced. Then 𝑆𝐸𝐷𝐼𝐹(Ġ) = 𝑆𝐸𝐷𝐼𝐹(Ġ1). 

Case 2: If 𝑆𝐸𝐷𝐹(Ġ) is not balanced. Then proceed as follows: 

a) For every row of 𝑆𝐸𝐷𝐼𝐹𝑀(Ġ), find the sum of its entries. 

b) Chose the least value corresponding to a vertex ṭ in 𝑆𝐸𝐷𝐼𝐹𝑀(Ġ). 

c) Develop an induced subgraph i.e. 𝑆𝐸𝐷𝐼𝐹(ĠÎ) with the help of remaining vertices. 

d) Repeat step (a), (b) and (c) and continue doing so until the selection of 𝑚 − 1 vertices. 

e) Arrange the vertices obtained in each step into groups. 

f) Thus, we have obtained narrow slicing of 𝑆𝐸𝐷𝐼𝐹(Ġ). 

4. In order to compute the τ-edge components of 𝑆𝐸𝐷𝐼𝐹(Ġ), we proceed as follows: 

a) From 𝑆𝐸𝐷𝐼𝐹(Ġ) obtained a 𝑆𝐸𝐷𝐼𝐹𝑀(Ġ). 

b) Utilizing the concept of edge cohesiveness and by grouping the vertices into clusters, a 

minimal τ-edge connected subgraph is obtained. 

Now an example is presented in support of the above algorithm for IFGs in which a human 

decision-making problem is illustrated. 

 



3.2.4  Numerical Example 

In this numerical example, we consider the same problem as discussed in FGs but with 

intuitionistic fuzzy information. Consider the graph in Figure 34. 

 

 

 

  

 

 

         

                          Figure 34 (Intuitionistic fuzzy graph based on information of human opinion) 

Step 1. First, we used the concept of edge density of IFG [118] to obtain an 𝐸𝐷𝐼𝐹𝑀(Ġ). 

𝐸𝐷𝑀(Ġ) =

ṭ1
ṭ2
ṭ3
ṭ4
ṭ5
[
 
 
 
 
 

ṭ1
(0,1)

(0.167,0.039)
(0.167,0.12)
(0.167,0.078)
(0.083,0.078)

ṭ2
(0.167,0.039)

(0,1)
(0.167,0.039)
(0.25,0.039)

  (0.083,0.078)

ṭ3
(0.167,0.12)
(0.167,0.039)

(0,1)
(0.083,0.078)
(0.083,0.12)

ṭ4
(0.167,0.078) 
(0.25,0.039)
(0.083,0.078)

(0,1)
(0.083,0.16)

ṭ5
(0.083,0.078)
(0.083,0.078)
(0.083,0.12)
(0.083,0.16)

(0,1) ]
 
 
 
 
 

 

And based on 𝑆𝐸𝐷𝐼𝐹(Ġ) depicted in Figure 34, the 𝐸𝐷𝐼𝐹𝑀(Ġ) is developed. 

𝑆𝐸𝐷𝐼𝐹𝑀(Ġ) =

ṭ1
ṭ2
ṭ3
ṭ4
ṭ5 [
 
 
 
 
 

ṭ1
0     
428     
1.39    
2.14    
1.064     

ṭ2
4.28
0
4.28
6.41
1.064   

 

ṭ3
1.39
4.28
0

1.064
0.69

  

ṭ4
2.14 
6.41 
1.064   
0
0.52

ṭ5
1.064
1.064
0.69
0.52
0 ]

 
 
 
 
 

 

Step 2. The sum of every row is calculated and listed in Table 7. 



 

 

  

                                Table 7 (Sum of values in SEDIF matrix) 

 

 

 

 

 

 

 

 

 

                                

                                             

                                            

                                            Figure 35(Single-valued edge density intuitionistic fuzzy graph) 

 

Based on calculations in Table 7, the least value occurs for row 2. Hence, we have the first 

cluster 𝐶1 = ({ṭ2}, {ṭ1, ṭ3, ṭ4, ṭ5}). Now the 𝑆𝐸𝐷𝐼𝐹𝑀(Ġ) induced by the remaining vertices is 

denoted by 𝑆𝐸𝐷𝐼𝐹𝑀(Ġ1) and is given by: 

𝑆𝐸𝐷𝐼𝐹𝑀(Ġ1) =

ṭ1
ṭ3
ṭ4
ṭ5 [
 
 
 
 
ṭ1
0
1.39
2.14 
1.064

 

 

ṭ3
1.39   
0

1.064
0.69

ṭ4
2.14   
1.064  
0
0.52

ṭ5
1.064
0.69
0.52
0 ]

 
 
 
 

 

Proceeding similarly, we have  

 



                                          

 

                           

 

                                       Table 8 (Sum of values in SEDIF matrix) 

Based on calculations in Table 8, the least value occurs for row 1. Hence, we have the second 

cluster𝐶2 = ({ṭ1}, {ṭ3, ṭ4, ṭ5}). Now the 𝑆𝐸𝐷𝐼𝐹𝑀(Ġ)induced by the remaining vertices is 

denoted by 𝑆𝐸𝐷𝐼𝐹𝑀(Ġ2) and is given by: 

𝑆𝐸𝐷𝐼𝐹𝑀(Ġ2) =

ṭ3
ṭ4
ṭ5

[

ṭ3
0

1.064
. 69   

ṭ4
1.064
0
0.52

  

ṭ5
   0.69
0.52
0

] 

Proceeding similarly, we have 

   

                                        Table 9 (Sum of values in SEDIF matrix) 

Based on calculations in Table 9, the least value occurs for row 3. Hence, we have the third 

cluster𝐶3 = ({ṭ3}, {ṭ4, ṭ5}). Now the 𝑆𝐸𝐷𝐼𝐹𝑀(Ġ)induced by the remaining vertices is denoted 

by 𝑆𝐸𝐷𝐼𝐹𝑀(Ġ3) and is given by: 

𝑆𝐸𝐷𝐼𝐹𝑀(Ġ3) =
ṭ4
ṭ5
[
ṭ4
0
0.52

   
ṭ5
0.52
0
] 

Proceeding similarly, we have 𝐶4 = ({ṭ4}, {ṭ5}) and 

{({ṭ2}, {ṭ1, ṭ3, ṭ4, ṭ5}), ({ṭ1}, {ṭ3, ṭ4, ṭ5}), ({ṭ3}, {ṭ4, ṭ5}), ({ṭ4}, {ṭ5})} is the required narrow 

slicing. It is clear that 𝑆𝐸𝐷𝐼𝐹𝑀(Ġ3) contains 𝐶45 = 0.52. Hence, the parameters service and 



Technology corresponding to ṭ4 and ṭ5 respectively are the factors that influenced the consumer 

decision for a brand. 

Now we moved towards step 3 where τ-edge components of 𝑆𝐸𝐷𝐼𝐹(Ġ) are evaluated.  

Step 3. For various values of𝜏, the τ-edge components of 𝑆𝐸𝐷𝐼𝐹𝑀(Ġ)are shown in Table 10. 

  

                          Table 10 (t-edge components of intuitionistic fuzzy graph) 

Now we discussed the parameters of IFG and pointed out the limitation in it.  

a. Parameters Assigning for Intuitionistic Fuzzy Graphs 

 In [118], a human decision-making problem is portrayed using the concept of FGs and 

IFGs. In the problem that is solved in the environment of IFGs, human opinion was established 

about 10 brands under some attributes such as quality (Q), service (S), price (P), technology 

(T) and advertisement (A). It is discussed that human decision about a brand could be yes or no 

or between yes or no, i.e., hesitancy. The human opinion is taken in the form of intuitionistic 

fuzzy numbers (IFNs). The influence chart of human-decisions is given as follows: 

 

 



 

 

                                    Table 11 (Chart representing human opinion about brands [118]) 

This problem was modelled using IFGs where vertices are represented by the attributes 

Q, S, P, T and A, and the edges show the relation of these edges. The opinion yes, no and 

hesitancy are symbolized respectively by ⨁, ⊝ and ?. Some rules were set which are: 

 All +ṭ𝑒 values were considered as membership of a vertex. 

 All −ṭ𝑒 values were considered as non-membership of a vertex. 

 All values marked as ? were considered as hesitancy degree of a vertex. 

 All +ṭ𝑒 values of consecutive vertices are termed as membership value of an edge. 

 Difference in −ṭ𝑒 values of consecutive vertices is termed as non-membership value of 

an edge. 



b. Limitations Occurred in Assigning Parameter for IFGs and Solution to Overcome 

these Limitations: 

 By observing Table 4, it becomes clear that the approach of [117, 118] to assign 

parameters for FGs and IFGs are good enough, but it could not explain some aspects which 

somehow effects the reliability of model. Here are some reasons based on which IFG is of 

less significance. 

 The model assigned values to membership, non-membership and hesitancy but refusal 

degree was ignored. 

 The abstinence or neutral value has not been discussed in the model. 

 The refusal degree of an edge has been defined. 

 For edges ⨁,⨁ is considered as membership degree of an edge while ⊝,⨁ is considered 

as non-membership degree but the cases like(⨁,⊝),(⊝,⊝),(⨁, ? ), (⊝, ? ) and (? , ? ) 

have not been given any attention. 

The reason behind these types of limitations is the structure of IFSs i.e. in an IFSs one only 

models the membership, hesitancy and non-membership degree. To overcome the situation, in 

this article we developed the clustering algorithm in the environment of PFGs. A PFSs is the 

only framework which described not only the membership and non-membership degree of an 

element but it also described the abstinence and refusal degree and is considered as very much 

suitable to model human opinion. We took the problem defined in [118] to the environment of 

PFGs and solved the decision-making problem. Now we discussed some basic graph theoretic 

concept in the field of PFGs. 

Now we present the algorithm in the environment of PFG and illustrate it with the help of an 

example. 

 



3.3   Edge Density Picture Fuzzy Clustering Algorithm 

In this section, we provide an algorithm for clustering in the environment of PFG, a 

flowchart to describe the steps of algorithm and demonstration for the parameter of PFGs.  

3.3.1 Picture Fuzzy Clustering Algorithm 

A detailed picture fuzzy clustering algorithm is described as follows: 

c) Establish the edge density picture fuzzy matrix 𝐸𝐷𝑃𝐹𝑀(Ġ) with 𝑚 vertices. 

d) Based on step one, establish the single-valued picture fuzzy matrix 𝑆𝐸𝐷𝑃𝐹𝑀(Ġ). 

e) Now for the 𝑆𝐸𝐷𝑃𝐹(Ġ), construct the narrow slicing. 

Here arise two cases: 

Case 1: If 𝑆𝐸𝐷𝑃𝐹(Ġ) is balanced. Then 𝑆𝐸𝐷𝑃𝐹(Ġ) = 𝑆𝐸𝐷𝑃𝐹(Ġ1). 

Case 2: If 𝑆𝐸𝐷𝑃𝐹(Ġ) is not balanced. Then we proceed as follows: 

g) For every row of 𝑆𝐸𝐷𝑃𝐹𝑀(Ġ), find the sum of its entries. 

h) Chose the least value corresponding to a vertex ṭ in 𝑆𝐸𝐷𝑃𝐹𝑀(Ġ). 

i) Develop an induced subgraph i.e. 𝑆𝐸𝐷𝑃𝐹(ĠÎ) with the help of remaining vertices. 

j) Repeat step (a), (b) and (c) and continue doing so until the selection of 𝑚 − 1 vertices. 

k) Arrange the vertices obtained in each step into groups. 

l) Thus, we have obtained narrow slicing of 𝑆𝐸𝐷𝑃𝐹(Ġ). 

f) In order to compute the τ-edge components of 𝑆𝐸𝐷𝑃𝐹(Ġ), we proceed as follows: 

g) From 𝑆𝐸𝐷𝑃𝐹(Ġ) obtained a 𝑆𝐸𝐷𝑃𝐹𝑀(Ġ). 

h) Utilizing the concept of edge cohesiveness and by grouping the vertices into clusters, a 

minimal τ-edge connected subgraph is obtained. 

 



3.3.2 Demonstration of Parameters for Picture Fuzzy Graphs 

Consider the collection of 𝑚 attributes and 𝑛 number of people are involved to vote in favor, 

vote against, remain abstain or did not vote. Such a phenomenon can be modeled using the 

concept of PFGs where each attribute will denote a vertex of the PFG and the relation between 

them is considered as an edge of PFG. In the following we demonstrate the meaning of each 

component of vertices and edges of PFGs. 

 A vertex ṭÎ is of the shape (Ŝ, Î, Ð) where Ŝ & Ð denote the number of people who voted 

in favor (against) respectively while Î denote the people whose vote is not counted at all 

and the term 1 − Ŝ𝑢𝑚(Ŝ, Î, Ð) = 𝑟 denote the people who did not vote at all i.e. who 

refused to vote to any option. 

 An edge 𝑒𝑗𝑘 is having the form (Ŝ𝑗𝑘, Î𝑗𝑘 , Ð𝑗𝑘) where Ŝ𝑗𝑘 denote who vote for both𝑗 & 𝑘, Î𝑗𝑘 

denote the people whose remain abstained for 𝑗𝑘 while Ð𝑗𝑘 denote the people who voted 

against 𝑗𝑘. The term 𝑟𝑗𝑘 = 1 − Ŝ𝑢𝑚(Ŝ𝑗𝑘, Î𝑗𝑘 , Ð𝑗𝑘) denote the people who did not vote to 

any 𝑗𝑘. 

A flow chart of the algorithm proposed is depicted in the next subsection. 

 

 

 

 

 

 

 



3.3.3 Flow Chart: 

 

Figure 36 (Flow chart of picture fuzzy clustering algorithm) 

Now we illustrate the proposed algorithm with the help of a numerical example where we 

assumed a picture fuzzy decision graph based on the demonstrated theory. 

3.3.4 Numerical Example: 

Consider a PFG having five vertices and each vertex is connected with the other. The 

five vertices represent five different attributes among which a group of human needs to decide 

which of them are substantial for assigning a good brand or object. We use the approach of 



clustering algorithm for PFGs to solve the problem of determining best attributes among the 

list provided. In our case, the five vertices ṭ1, ṭ2, ṭ3, ṭ4 and ṭ5 represents the attributes Quality, 

Service, Price, Technology and Advertisement respectively. The picture fuzzy clustering 

algorithm is demonstrated stepwise below. 

  

 

 

 

 

 

 Figure 37 (Picture fuzzy graph based on information of human opinion) 

Step 1. First, we used Eq. (1) to obtain an 𝐸𝐷𝑃𝐹𝑀(Ġ). 

𝐸𝐷𝑀(Ġ) =

ṭ1
ṭ2
ṭ3
ṭ4
ṭ5

[
 
 
 
 
 
 
 
 
 
 
 
 

ṭ1
(0,0,1)

(0.167,0.29,0.039)
(0.167,0.14,0.12)
(0.167,0.14,0.078)
(0.083,0.29,0.078)

 

ṭ2
(0.167,0.29,0.039)

(0,0,1)

 (0.167,0.14,0.039)

  
(0.25,0.14,0.039)

  (0.083,0.29,0.078)
   

 

ṭ3
(0.167,0.14,0.12)   
(0.167,0.14,0.039) 

(0,0,1)
(0.083,0.14,0.078)
(0.083,0.14,0.12)

  

ṭ4
(0.167,0.14,0.078)   
(0.25,0.14,0.039)
(0.083,0.14,0.078)

(0,0,1)
(0.083,0.14,0.16)

  

ṭ5
(0.083,0.29,0.078)
(0.083,0.29,0.078)
(0.083,0.14,0.12)
(0.083,0.14,0.16)

(0,0,1) ]
 
 
 
 
 
 
 
 
 
 
 
 

 

And based on 𝑆𝐸𝐷𝑃𝐹(Ġ) depicted in Figure 37, the 𝐸𝐷𝑃𝐹𝑀(Ġ) is developed. 



𝑆𝐸𝐷𝑃𝐹𝑀(Ġ) =

ṭ1
ṭ2
ṭ3
ṭ4
ṭ5 [
 
 
 
 
 

ṭ1
0     
0.51     
0.64    
0.77    
0.23       

ṭ2
0.51
0
0.93
1.40
0.23    

 

ṭ3
0.64
0.93
0
0.38
0.022

  

ṭ4
0.77 
1.40 
0.38     
0
0.28

ṭ5
0.23
0.23
0.022
0.28
0 ]

 
 
 
 
 

 

Step 2. The sum of every row is calculated and listed in Table 12. 

                    

                                                          

                                                       Table 12 (Sum of values in SEDPF matrix) 

  

 

 

 

 

 

                        Figure 38 (single-valued edge density picture fuzzy graph) 

 

Based on calculations in Table 12, the least value occurs for row 5. Hence, we have the first 

cluster 𝐶1 = ({ṭ5}, {ṭ1, ṭ2, ṭ3, ṭ4}). Now the 𝑆𝐸𝐷𝑃𝐹𝑀(Ġ) induced by the remaining vertices is 

denoted by 𝑆𝐸𝐷𝑃𝐹𝑀(Ġ1) and is given by: 

𝑆𝐸𝐷𝑃𝐹𝑀(Ġ1) =

ṭ1
ṭ2
ṭ3
ṭ4 [
 
 
 
 
ṭ1
0
0.51
0.64  
0.77

 

 

ṭ2
0.51   
0
0.93
1.40

ṭ3
0.64   
0.93  
0
0.38

ṭ4
0.77
1.40
0.38
0 ]
 
 
 
 

 



Proceeding similarly, we have 

  

 

                              Table 13 (Sum of values in SEDPF matrix) 

Based on calculations in Table 13, the least value occurs for row 1. Hence, we have the 

second cluster𝐶2 = ({ṭ1}, {ṭ2, ṭ3, ṭ4}). Now the 𝑆𝐸𝐷𝑃𝐹𝑀(Ġ) induced by the remaining 

vertices is denoted by 𝑆𝐸𝐷𝑃𝐹𝑀(Ġ2) and is given by: 

𝑆𝐸𝐷𝑃𝐹𝑀(Ġ2) =

ṭ2
ṭ3
ṭ4

[

ṭ2
0
0.93
1.40   

ṭ3
0.93
0
0.38

  

ṭ4
   1.40
0.38
0

] 

Proceeding similarly, we have 

  

        Table 14 (Sum of values in SEDPF matrix) 

 

Based on calculations in Table 14, the least value occurs for row 3. Hence, we have the third 

cluster 𝐶3 = ({ṭ3}, {ṭ2, ṭ4}). Now the 𝑆𝐸𝐷𝑃𝐹𝑀(Ġ) induced by the remaining vertices is 

denoted by 𝑆𝐸𝐷𝑃𝐹𝑀(Ġ3) and is given by: 

𝑆𝐸𝐷𝑃𝐹𝑀(Ġ3) =
ṭ2
ṭ4
[
ṭ2
0
0.38

   
ṭ4
0.38
0
] 



Proceeding similarly, we have 𝐶4 = ({ṭ2}, {ṭ4}) and 

{({ṭ5}, {ṭ1, ṭ2, ṭ3, ṭ4}), ({ṭ1}, {ṭ2, ṭ3, ṭ4}), ({ṭ3}, {ṭ2, ṭ4}), ({ṭ2}, {ṭ4})}is the required narrow 

slicing. It is clear that 𝑆𝐸𝐷𝑃𝐹𝑀(Ġ3) contains 𝐶24 = 0.38. Hence, the parameters service and 

Technology corresponding to ṭ2 and ṭ4 respectively are the factors that influenced the 

consumer decision for a brand. 

Now we moved towards step 3 where τ-edge components of 𝑆𝐸𝐷𝑃𝐹(Ġ) are evaluated.  

Step 3. For various values of𝜏, the τ-edge components of 𝑆𝐸𝐷𝑃𝐹𝑀(Ġ)are shown in Table 15. 

  

                                     Table 15 (τ-edge components of T-spherical fuzzy graph) 

3.4 Advantages of Picture Fuzzy Clustering over Fuzzy and Intuitionistic Fuzzy 

Clustering 

It is already discussed in Section 3.3.2 that a PFG handle model the human opinion with the 

help of four membership functions denoting membership, abstinence, non-membership and 

refusal degree. On the other hand, and IFG uses two kinds of values to describe an imprecise 

event while a FG has only one kind of membership grade. We refer to the PFG depicted in 

Figure 37. If the abstinence values are dropped, the IFG used in Section 3.2.4 is obtained. 

Similarly, if we dropped the values of non-membership and abstinence grades both, the FG 



used in Section 3.2.2 is obtained. Now we analysed the results obtained in case of FG, IFG and 

PFG to show the superiority of PFG over IFG and FG. 

Clustering results using FG obtained in Section 3.2.2 are: 

{

({ṭ1}, {ṭ2, ṭ3, ṭ4, ṭ5}),
({ṭ2}, {ṭ3, ṭ4, ṭ5}),

 ({ṭ3}, {ṭ4}, {ṭ5})
} 

Clustering Results using IFG obtained in Section 3.2.4 are: 

{
 

 
({ṭ2}, {ṭ1, ṭ3, ṭ4, ṭ5}),

 ({ṭ1}, {ṭ3, ṭ4, ṭ5}),
({ṭ3}, {ṭ4, ṭ5}),
({ṭ4}, {ṭ5}) }

 

 
 

Clustering Results using PFG obtained in Section 3.3.2 are: 

{
 

 
({ṭ5}, {ṭ1, ṭ2, ṭ3, ṭ4}),

 ({ṭ1}, {ṭ2, ṭ3, ṭ4}),

 ({ṭ3}, {ṭ2, ṭ4}),
({ṭ2}, {ṭ4}) }

 

 
 

The results clearly show that results obtained using IFG are improved than FG while results 

obtained using PFGs are improved than FG and IFG. Hence the clustering approach in the 

environment of PFG is relatively effective than FG and IFGs. Further, information provided in 

both fuzzy environment and intuitionistic fuzzy environment can be processed using the 

concept of PFG but not conversely. 

3.5 Conclusion 

In this chapter, a novel clustering approach in the environment of PFG is proposed due to 

the shortcomings existed in the clustering algorithms of FGs and IFGs. We have briefly 

discussed some notions and terms related to IFGs and have explained them with examples. We 

have studied the drawbacks of intuitionistic fuzzy clustering algorithm and have provided a 



solution by developing the algorithm to the environment of PFGs. To illustrate the new 

algorithm, an example is provided where a decision-making problem is solved using picture 

fuzzy clustering technique. To show the viability of the new picture fuzzy algorithm, it is 

explained that under certain conditions the new algorithm can be used to solve the problems 

that lies in the environment of FGs and IFGs. PFG is a useful generalization of FGs and IFG. 

In the near future, we plan to study some other decision-making problems in the environment 

of PFGs. The concept of PFG can also be used networking problems and shortest path 

problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

Analysis of Social Networks and Wi-Fi Networks by Using the       

Concept of Picture Fuzzy Graphs 

In this chapter, we analysed a social network and a wife network using the concept of 

PFG. For this purpose, the concept of PFG is proposed and some basic terms are demonstrated 

including complement, degree and bridges. The main advantage of the proposed PFG is that it 

describes the uncertainty in any real-life events with the help of four membership degrees 

where the traditional  FG and IFG fails to be applied. The viability of PFG is shown by utilizing 

the concept in demonstrating two real-life problems including a social network and a Wi-Fi-

network. A comparison of PFG with existing notions is established showing its superiority over 

the existing frameworks. 

4.1 Picture Fuzzy Graph 

In this section, the concept of PFG is introduced and several related results are 

discussed. Further, some basic terms of PFGs are demonstrated including complement, degree 

and bridges. 

4.1.1 Definition  

 A pair Ġ = (Ṿ, Ẻ) is known as PFG if 

(i)   Ṿ = {ṭ1, ṭ2, … , ṭ𝑛} such that Ŝ1: Ṿ ⟶ [0, 1], Î1: Ṿ ⟶ [0, 1] and Ð1: Ṿ ⟶ [0, 1] represents 

the degrees of truth membership, abstinence membership and false membership of the element 

ṭ𝑖 ∈ Ṿ respectively with a condition 0 ≤ Ŝ1 + Î1 + Ð1 ≤ 1   

For any ṭ𝑖 ∈ Ṿ, ( 𝑖 ∈ 𝐼). 



 (ii) Ẻ ⊆ Ṿ × Ṿ where Ŝ2: Ṿ × Ṿ ⟶ [0, 1], Î1: Ṿ × Ṿ ⟶ [0, 1]  and Ð2: Ṿ × Ṿ ⟶ [0, 1] such 

that Ŝ2(ṭ𝑖, ṭ𝑗  ) ≤ min[Ŝ1(ṭ𝑖), Ŝ1(ṭ𝑗)], Î2(ṭ𝑖, ṭ𝑗) ≤ min[  Î1(ṭ𝑖),   Î1(ṭ)] and Ð2(ṭ𝑖, ṭ𝑗) ≤

max[  Ð1(ṭ𝑖),   Ð1(ṭ𝑗)] with a condition that 0 ≤ Ŝ2(ṭ𝑖, ṭ𝑗) + Î2(ṭ𝑖, ṭ𝑗) + Ð2(ṭ𝑖, ṭ𝑗) ≤ 1 for 

any (ṭ𝑖 , ṭ𝑗) ∈ Ẻ, ( 𝑖 ∈ 𝐼). Moreover, 1 − (Ŝ1𝑖 + Î1𝑖 + Ð1𝑖) represent refusal degree. 

The amount of truth membership, abstinence and false membership of the vertex ṭ𝑖 represented 

by (ṭ𝑖, Ŝ1𝑖, Î1𝑖, Ð1𝑖) and the degree of truth membership, abstinence and false membership of 

the edge relation 𝑒𝑖𝑗 = (ṭ𝑖, ṭ𝑗) on Ẻ represented by (𝑒𝑖𝑗, Ŝ2𝑖𝑗, Î2𝑖𝑗 , Ð2𝑖𝑗). 

 4.1.2 Example   

 Consider a graph Ġ = (Ṿ, Ẻ) where Ṿ = {ṭ1, ṭ2, ṭ3, ṭ4} be the set of vertices and Ẻ =

{ṭ1ṭ2, ṭ2ṭ3, ṭ2ṭ4, ṭ3ṭ4, ṭ4ṭ1} be the set of edges. Then the following Figure 39 is an example of 

PFG. 

  

 

 

 

 

                                                      Figure 39 (Picture fuzzy graph) 

 

 

 

 



  

                                             Figure 40 (Not a picture fuzzy graph) 

 

4.1.3 Definition  

 A pair  𝐻 = (Ṿ′, Ẻ′) is called picture fuzzy subgraph (PFSG) of the PFG Ġ = (Ṿ, Ẻ)  if   Ṿ′ ⊆

Ṿ and Ẻ′ ⊆ Ẻ or if  Ŝ1𝑖
′
≤ Ŝ1𝑖, Î1𝑖

′
≤ Î1𝑖 , Ð1𝑖

′ ≥ Ð1𝑖 and Ŝ2𝑖
′
≤ Ŝ2𝑖, Î2𝑖

′
≤ Î2𝑖 , Ð2𝑖

′ ≥ Ð2𝑖 for 

any  𝑖 ∈ I.    

4.1.4 Definition  

The score function of a PFG is defined by 𝑃𝑠 = 1 − 𝑟. Ð1 where Ð1 represents the false 

membership and 𝑟 = 1 − (Ŝ1 + Î1 + Ð1)  represent the refusal degree in PFG. 

4.1.5 Definition  

 An arrangement of distinct vertices ṭ1, ṭ2, … , ṭ𝑛 is called a path in PFG if one of the following 

conditions is satisfied: 

4. Ŝ2𝑖𝑗 > 0, Î2𝑖𝑗 > 0 and  Ð2𝑖𝑗 = 0  

5.  Ŝ2𝑖𝑗 = 0, Î2𝑖𝑗 = 0 and  Ð2𝑖𝑗 > 0 

6. Ŝ2𝑖𝑗 > 0, Î2𝑖𝑗 > 0 and  Ð2𝑖𝑗 > 0. 

 



4.1.6 Example  

The following Figure 41 is an example of PFG for a path which is explain below. 

  

 

 

 

 

                                          Figure 41 (Picture fuzzy graph) 

 

In the above Figure   𝑡1𝑡3, 𝑡3𝑡2 is a path. 

4.1.7 Definition  

 An open walk in no which vertex appear more than one is called path on a graph. 

4.1.8 Definition  

 If 𝑃 = ṭ1ṭ2, … , ṭ𝑛+1 and ṭ1 = ṭ𝑛+1 for 𝑛 ≥ 3, then it is called cycle. 

4.1.9 Definition  

 A path is called connected if two vertices are joined trough this path. 

4.1.10 Definition  

 For a path 𝑃  

1. The Ŝ − 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ is 𝑆Ŝ =   {  Ŝ2𝑖𝑗𝒊,𝒋
𝒎𝒊𝒏 }       

2. The Î − 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ is 𝑆Î =   {  Î2𝑖𝑗𝒊,𝒋
𝒎𝒊𝒏 }   



3. The Ð − 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ is 𝑆Ð =   {  Ð2𝑖𝑗𝒊,𝒋
𝒎𝒂𝒙 }  

4. The strength of the path 𝑆𝑃 =(𝑆Ŝ, 𝑆Î, 𝑆Ð).    

4.1.11 Definition  

 If Ġ = (Ṿ, Ẻ)  be a PFG. Then the degree of any vertex ṭ is denoted and defined by 

 𝑑eg (ṭ) = (𝑑Ŝ(ṭ), 𝑑Î(ṭ), 𝑑Ð(ṭ)) where 𝑑𝑒𝑔Ŝ(ṭ) = ∑ Ŝ2(ṭ,ṭ≠𝑢 𝑢), 𝑑𝑒𝑔Ð(ṭ) = ∑ Ð2(ṭ,ṭ≠𝑢 𝑢) and 

𝑑𝑒𝑔Î(ṭ) = ∑ Î2(ṭ,ṭ≠𝑢 𝑢). 

4.1.12 Example  

 Consider a graph Ġ = (Ṿ, Ẻ)  where Ṿ = {ṭ1, ṭ2, ṭ3, ṭ4} be the set of vertices and Ẻ =

{ṭ1ṭ2, ṭ2ṭ3, ṭ3ṭ4, ṭ4ṭ1} be the set of edges. Then PFG and the degree of its vertices is given below. 

  

                                                      Figure 42 (Picture fuzzy graph) 

 

The degree of vertices are: 

𝑑(ṭ1) = (0.2, 0.6, 0.6), 𝑑(ṭ2) = (0.3, 0.5, 0.5), 𝑑(ṭ3) = (0.4, 0.3, 0.4), 𝑑(ṭ4) =
(0.3, 0.4, 0.5). 

 

 



4.1.13 Proposition  

 A PFG is a generalization of IFG. 

Proof. This is obvious as by taking abstinence equal to zero PFG reduces to IFG. 

4.1.14 Definition  

 The complement Ġ𝑐 of PFG Ġ = (Ṿ, Ẻ) is   

4. Ŝ𝐴(ṭ𝑖)
𝑐 = Ŝ𝐴(ṭ𝑖), Î𝐴(ṭ𝑖)

𝑐 = Î𝐴(ṭ𝑖), Ð𝐴(ṭ𝑖)
𝑐 = Ð𝐴(ṭ𝑖), ∀ ṭ𝑖 ∈ 𝑉. 

5. Ŝ𝐵(ṭ𝑖, ṭ𝑗)
𝑐
= min[Ŝ𝐵(ṭ𝑖), Ŝ𝐵(ṭ𝑗)] −  Ŝ𝐵(ṭ𝑖, ṭ𝑗), Î𝐵(ṭ𝑖, ṭ𝑗)

𝑐
= min[  Î2(ṭ𝑖),   Î2(ṭ𝑗)] −

Î𝐵(ṭ𝑖, ṭ𝑗) and Ð2(ṭ𝑖 , ṭ𝑗)
𝑐
= max[  Ð2(ṭ𝑖),   Ð2(ṭ𝑗)] − Ð2(ṭ𝑖, ṭ𝑗) ∀ ṭ𝑖 , ṭ𝑗 ∈ Ẻ. 

4.1.15 Remark  

If  Ġ = (Ṿ, Ẻ) is a PFG, then definition 4.1.14 implies that Ġ𝑐
𝑐
= (Ṿ𝑐𝑐, Ẻ𝑐

𝑐
) = Ġ. 

4.1.16 Proposition  

 Ġ = Ġ𝑐
𝑐
 iff Ġ is a strong PFG. 

Proof. This result is obvious by the definition of Ġ𝑐. 

The following figures provided a verification of proposition 4.1.16. 

4.1.17 Example  

 Consider a graph Ġ = (Ṿ, Ẻ) where Ṿ = {ṭ1, ṭ2, ṭ3, ṭ4} be the set of vertices and Ẻ =

{ṭ1ṭ2, ṭ2ṭ3, ṭ3ṭ4, ṭ4ṭ1} be the set of edges. Then, PFG and its complement is given below. 



  

                                                             Figure 43 (Picture fuzzy graph) 

 

 

 

 

 

                                                   

                                                          Figure 44 (Complement of Figure 43) 

 

4.1.18 Definition  

 A PFG Ġ is called self-complementary If Ġ = Ġ𝑐
𝑐
 

4.1.19 Example  

 From the above Figure 43 and Figure 44, it is clear that Ġ is self -complementary. 

4.1.20 Definition 

 The composition of two edge relations (𝑒𝑖𝑗 , Ŝ2𝑖𝑗, Î2𝑖𝑗 , Ð2𝑖𝑗) and (𝑒𝑗𝑘, Ŝ2𝑗𝑘 , Î2𝑗𝑘 , Ð2𝑗𝑘)  is a PFG 

represented by 𝑒𝑖𝑗°𝑒𝑗𝑘 is of the form (𝑒𝑗𝑘, Ŝ2𝑗𝑘, Î2𝑗𝑘, Ð2𝑗𝑘) where  



Ŝ2𝑖𝑘 = max{ [𝑗
𝑚𝑖𝑛 Ŝ2𝑖𝑗, Ŝ2𝑗𝑘]}, Î2𝑖𝑘 = max{ [𝑗

𝑚𝑖𝑛 Î2𝑖𝑗 , Î2𝑗𝑘]   

and Ð2𝑖𝑘 =min{ [𝑗
𝑚𝑎𝑥 Ð2𝑖𝑗 , Ð2𝑗𝑘]} ∀ ṭ𝑖, ṭ𝑘 ∈ Ṿ. 

4.1.21 Definition  

 An edge relation (𝑒𝑖𝑗 , Ŝ2𝑖𝑗, Î2𝑖𝑗 , Ð2𝑖𝑗) is 

1. Reflexive if  (𝑒𝑖𝑖, Ŝ2𝑖𝑖, Î2𝑖𝑖 , Ð2𝑖𝑖) = (ṭ𝑖, Ŝ1𝑖, Î1𝑖 , Ð1𝑖) . 

2. Symmetric if  (𝑒𝑖𝑗 , Ŝ2𝑖𝑗, Î2𝑖𝑗 , Ð2𝑖𝑗) = (𝑒𝑗𝑖, Ŝ2𝑗𝑖 , Î2𝑗𝑖 , Ð2𝑗𝑖) .  

3. Transitive if (ṭ𝑖 , ṭ𝑗) and (ṭ𝑗, ṭ𝑘) implies the edge relation (ṭ𝑖, ṭ𝑘) ∀ ṭ𝑖, ṭ𝑗 , ṭ𝑘 ∈ Ṿ. 

4.1.22 Definition  

 If 𝑒𝑖𝑗 is the edge relation then powers of 𝑒𝑖𝑗 is defined as:  

= 𝑒𝑖𝑗 =𝑒𝑖𝑗
1 (𝑒𝑖𝑗, Ŝ2𝑖𝑗 , Î2𝑖𝑗 , Ð2𝑖𝑗) 

= 𝑒𝑖𝑗°𝑒𝑖𝑗 = (𝑒𝑖𝑗, Ŝ2𝑖𝑗
2
, Î2𝑖𝑗

2
, Ð2𝑖𝑗

2)𝑒𝑖𝑗
2  

= 𝑒𝑖𝑗°𝑒𝑖𝑗°𝑒𝑖𝑗 = (𝑒𝑖𝑗, Ŝ2𝑖𝑗
3
, Î2𝑖𝑗

3
, Ð2𝑖𝑗

3)𝑒𝑖𝑗
3  and so on. 

Also 

= 𝑒𝑖𝑗 =𝑒𝑖𝑗
∞ (𝑒𝑖𝑗, Ŝ2𝑖𝑗

∞
, Î2𝑖𝑗

∞
, Ð2𝑖𝑗

∞) 

Where Ŝ2𝑖𝑗
∞
= {Ŝ2𝑖𝑗

𝑘
} ,

𝑘=1,2,…𝑛

𝑚𝑎𝑥

 Î2𝑖𝑗
∞
= {Î2𝑖𝑗

𝑘
} ,

𝑘=1,2,…𝑛

𝑚𝑎𝑥

 and Ð2𝑖𝑗
∞ = {Ð2𝑖𝑗

𝑘},
𝑘=1,2,…𝑛

𝑚𝑖𝑛
 are the 

Ŝ − 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ ,  Î − 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ and Ð − 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ  of connectedness between only two vertices 

ṭ𝑖 and ṭ𝑗. 

Also      

                                     = {0, 𝑖𝑓 ṭ𝑖  ≠  ṭ𝑗  𝑎𝑛𝑑 𝑒𝑖𝑗
0 (ṭ𝑖, Ŝ1𝑖, Î1𝑖 , Ð1𝑖) 𝑖𝑓 ṭ𝑖is equal to ṭ𝑗} . 



The following Theorem 4.1.23 signifies the relation of subgraph and a graph in context of the 

Definition 4.1.22.  

4.1.23 Theorem  

 If 𝐻 = (Ṿ′, Ẻ′) is a PFSG of PFG Ġ = (Ṿ, Ẻ). Then  Ŝ2𝑖𝐽
′∞
≤ Ŝ2𝑖𝑗

∞
 , Î2𝑖𝐽

′∞
≤ Î2𝑖𝑗

∞
 and 

Ð2𝑖𝐽
′∞ ≥ Ð2𝑖𝑗

∞ for any ( ṭ𝑖, ṭ) ∈ Ẻ. 

Proof: As Ṿ′ ⊆ Ṿ 𝑎𝑛𝑑 Ẻ′ ⊆ Ẻ. 

⟹ Ŝ1𝑖
′
≤ Ŝ1𝑖 , Î1𝑖

′
≤ Î1𝑖  , Ð1𝑖

′ ≥ Ð1𝑖 for every ṭ𝑖 ∈ Ṿ     

and   Ŝ2𝑖𝑗
′
≤ Ŝ2𝑖𝑗      

Î2𝑖𝑗
′
≤ Î2𝑖𝑗       

Ð2𝑖𝑗
′ ≥ Ð2𝑖𝑗       

For every ṭ𝑖, ṭ𝑗 ∈ Ṿ. 

Suppose a path ṭ1ṭ2, … , ṭ𝑛 of 𝐻. 

Here Ŝ2𝑖𝑗
′∞
= {(Ŝ2𝑖𝑗

′
)𝑘} 

𝑘=1,2,…𝑛

𝑚𝑖𝑛
       

Î2𝑖𝑗
′∞
= {(Î2𝑖𝑗

′
)𝑘} 

𝑘=1,2,…𝑛

𝑚𝑖𝑛
     

Ð2𝑖𝑗
′∞ = {(Ð2𝑖𝑗

′)𝑘} 
𝑘=1,2,…𝑛

𝑚𝑎𝑥
      

and 

Ŝ2𝑖𝑗
∞
= {(Ŝ2𝑖𝑗)

𝑘} 
𝑘=1,2,…𝑛

𝑚𝑖𝑛
    

Î2𝑖𝑗
∞
= {(Î2𝑖𝑗)

𝑘} 
𝑘=1,2,…𝑛

𝑚𝑖𝑛
      



Ð2𝑖𝑗
∞ = {(Ð2𝑖𝑗)

𝑘} 
𝑘=1,2,…𝑛

𝑚𝑎𝑥
     

Therefore, 

Ŝ2𝑖𝑗
′∞
= {(Ŝ2𝑖𝑗

′
)𝑘} 

𝑘=1,2,…𝑛

𝑚𝑖𝑛
 

≤ {(Ŝ2𝑖𝑗)
𝑘}

𝑘=1,2,…𝑛

𝑚𝑖𝑛
    

 = Ŝ2𝑖𝑗
∞

 

                                Î2𝑖𝑗
′∞
= {(Î2𝑖𝑗

′
)𝑘} 

𝑘=1,2,…𝑛

𝑚𝑖𝑛
 

≤ {(Î2𝑖𝑗)
𝑘} 

𝑘=1,2,…𝑛

𝑚𝑖𝑛
     

= Î2𝑖𝑗
∞

 

also 

Ð2𝑖𝑗
′∞ = {(Ð2𝑖𝑗

′)𝑘} 
𝑘=1,2,…𝑛

𝑚𝑎𝑥
 

≥ {(Ð2𝑖𝑗)
𝑘} 

𝑘=1,2,…𝑛

𝑚𝑎𝑥
, by (12) 

= Ð2𝑖𝑗
∞       

Hence proved.  

4.1.24 Definition  

 If Ġ = (Ṿ, Ẻ) be a PFG and let ṭ𝑖, ṭ𝑗 be any two different vertices. If deleting an edge (ṭ𝑖, ṭ𝑗) 

reduces the strength between some pair of vertices then it is called bridge in Ġ.   

 

                                                                                                                                                                                                                                                          



4.1.25 Example  

 In Figure 43 the strength of (ṭ1ṭ2) is (0.1, 0.3, 0.3). Here (ṭ1, ṭ2) is a bridge, because if an edge 

(ṭ1, ṭ2) remove from Ġ in Figure 43 then the strength of the connectedness between ṭ1 and ṭ2 is 

reduced. 

In the following Theorem 4.1.26 it is proved that if an edge is a bridge, then it can never be the 

part of a cycle and conversely. 

4.1.26 Theorem  

 If 𝑒𝑖𝑗 = (ṭ𝑖, ṭ𝑗) be an edge. Then for any two vertices in PFG Ġ = (Ṿ, Ẻ) the following are 

equivalent: 

(i) 𝑒𝑖𝑗 is a bridge. 

(ii) Ŝ2𝑖𝑗
′∞
< Ŝ2𝑖𝑗, Î2𝑖𝑗

′∞
< Î2𝑖𝑗and Ð2𝑖𝑗

′∞ > Ð2𝑖𝑗 . 

(iii) 𝑒𝑖𝑗 is not an edge of any cycle. 

Proof. (ii)⟹(i). Suppose  Ŝ2𝑖𝑗
′∞
< Ŝ2𝑖𝑗, Î2𝑖𝑗

′∞
< Î2𝑖𝑗and Ð2𝑖𝑗

′∞ > Ð2𝑖𝑗 .To show that (i) is true. 

Suppose on contrary (i) is not true, then 

                    Ŝ2𝑖𝑗
′∞
= Ŝ2𝑖𝑗

∞
≥ Ŝ2𝑖𝑗, Î2𝑖𝑗

′∞
= Î2𝑖𝑗

∞
≥ Î2𝑖𝑗 and Ð2𝑖𝑗

′∞ = Ð2𝑖𝑗
∞ ≤ Ð2𝑖𝑗 

⟹ Ŝ2𝑖𝑗
′∞
≥ Ŝ2𝑖𝑗, Î2𝑖𝑗

′∞
≥ Î2𝑖𝑗 and Ð2𝑖𝑗

′∞ ≤ Ð2𝑖𝑗 , leading to a contradiction. Hence (i) is 

true.(i)⟹(iii) now if  (i) is true. To prove (iii). If 𝑒𝑖𝑗 is edge of a cycle, then including the edge 

𝑒𝑖𝑗 to any path can be transformed into a path not including  (ṭ𝑖, ṭ𝑗). As  cycle is a path from ṭ𝑖 

to ṭ𝑗 ⇒ 𝑒𝑖𝑗 can not be a bridge which is contradiction so  our supposition is wrong. Therefor, 

𝑒𝑖𝑗 is not an edge of any cycle. (iii)⟹(ii) is straight forward.  

 



4.1.27 Theorem  

 If  Ġ = (Ṿ, Ẻ) be a PFG. Then 

(i) Ŝ2𝑖𝑗, Î2𝑖𝑗  and Ð2𝑖𝑗 are constants then no bridge contains in Ġ ∀ ṭ𝑖, ṭ𝑗 ∈ Ṿ.. 

(ii) Ŝ2𝑖𝑗, Î2𝑖𝑗  and Ð2𝑖𝑗 are not constants then there is at least one bridge in Ġ  for all  

( ṭ𝑖 , ṭ𝑗) ∈ Ẻ. 

Proof. Straight forward.  

4.2 Applications of picture fuzzy graph 

 As studied, in a PFG, the nodes and edges are picture fuzzy numbers (PFNs) and hence 

described the uncertain information better than discussed in the environment of IFS and FS. 

Therefore in this section, applications of PFG in social network and Wi-Fi network system are 

discussed.  

4.2.1 Application in social network 

A social network basically established the relationship between a group of people or 

members of a society or organization. Whenever the networks are large, computing the strength 

of relationship between the members of that network is a challenging task. 

 Here, a social network of some peoples a a certain group is considered where the 

relationship of every member with other is defined in terms of a PFN. In such network, vertices 

represent the people and edges represent the relationship between them. Consider the 

representation of a social group and its members in the environment of a 𝑃𝐺𝐹. Let the given 

social network is a PFG denoted by Ġ = (Ṿ, Ẻ) , where Ṿ = {𝑆𝑡𝑜𝑛𝑒, 𝑀𝑖𝑐ℎ𝑎𝑙,

𝑃𝑎𝑟𝑒𝑟𝑎,𝑀𝑎𝑡ℎ𝑒𝑤𝑠, 𝑅𝑎𝑖𝑛𝑎, 𝐽𝑢𝑙𝑖𝑒,𝑊𝑎𝑡𝑠𝑜𝑛.𝐻𝑖𝑠𝑠𝑦,𝑀𝑒𝑠𝑠𝑦, 𝐶ℎ𝑎𝑟𝑙𝑦, 𝑆𝑡𝑖𝑛𝑔, 𝑆ℎ𝑎𝑢𝑛}. Each 

vertex represents the social skills of a person in the form of a PFN. The larger the membership 

grade is the more social a person is and vice versa. In this network, if two peoples share some 



common characteristics including good personality, good behavior, best skills and social 

sympathy, then they are connected, and their relation is described in the form of a PFN. The 

set of all edges of this social network are given in Table 13 followed by the social network Ġ =

(Ṿ, Ẻ)  in Figure 45. 

Table 16 shows the relationship of the peoples connected to each other in terms of picture fuzzy 

numbers. Greater membership grade corresponds to more social values of a person.  

  

                  Table 16 (Edge values of social network depicted in Figure 45) 

 

The social network connecting different people is shown in Figure 45 where the edge 

values are in the form of picture fuzzy number showing their social skills. The larger 



membership grade shows that a person is more social. The larger non-membership grade shows 

the low sociality of a person in connection. 

 

   Figure 45 (Social network of a group of people) 

 

In order to compute the strength of the socially connected members, the concept of degree of 

PFG is utilized. The degree of a node determines how much social a person is. For this purpose, 

first the degree of each node is computed in Table 17 and then based on the difference of 

membership and non-membership grade of the degree, the strength is decided.  

In the Table 17 below, the degree of each person in social network is calculated. These degrees 

are utilized to compute the score values of each person in social network. The more is the 

degree of a person means the more social a person is. 



  

      Table 17 (Degrees of vertices of Figure 45) 

 

To compute the most social person, the difference of the membership and non-membership 

grade is calculated and shown in Table 18 below. 



   

Table 18 (difference of the membership and non-membership grade of degrees given in Table 

17) 

 

Results in Table 18 clearly indicates that the difference value of the membership and non-

membership grade of Charli is greatest among all values hence making him the most social 

person in this network. Hissy and Messy stands at No 2 with a difference value of 1. The rest 

of the ranking is shown in a bar graph depicted in Figure 46. 



                      

 Figure 46 (Analysis of the difference of the membership and non-membership grade) 

 

The observations in Table 15 are shown geometrically in Figure 46. Clearly Charlie has the 

greatest score value and is declared as most social person in this social network.   

4.2.2 Application in Wi-Fi system    

 Consider a Wi-Fi system containing 12 devices {Ç1, Ç2, Ç3, Ç4, Ç5, Ç6, Ç7, Ç8, Ç9, Ç10, Ç11, Ç12} 

each device connected to the main server (Ç0). The given Wi-Fi system is described using IFG 

as well as PFG in Figure 47 and Figure 48. The membership function show the connectivity of 

the device with the main server (Ç0) and the non-membership function shows the dis-

connectivity of the device with the main server (Ç0) in IFG. 
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                                  Figure 47(Intuitionistic fuzzy Wi-Fi-network) 

  

Upon observing Figure 48, the connectivity of devices is discussed in terms of picture fuzzy 

numbers where the membership, abstinence and non-membership grades represent the 

connectivity, technical error and the dis-connectivity with the main device (Ç0) respectively. 

Further, the refusal degree represents that the device is not connected at all. 



 

  

                           Figure 48(Picture fuzzy Wi-Fi network) 
 

Now, the effective degrees of devices of the Wi-Fi network depicted in Figure 47 are computed 

and given in Table 19 followed by a bar-graph showing the strength of connectivity of all 

devices.  



  

           Table 19 (Score values of the Wi-Fi network based on intuitionistic fuzzy information) 

 

The results of Table 19 suggest that the strength of connectivity of device Ç11 is highest among 

all. This means that device Ç11 gain maximum signals from the server. The connectivity 

strength of other devices can be observed from the bar-graph given in Figure 49 below. 



 

 

Figure 49 (Ranking of the signal strength of Wi-Fi devices of intuitionistic fuzzy W-Fi 

network) 

 

Similarly, the effective degrees of devices of the Wi-Fi network depicted in Figure 49 based 

on picture fuzzy information are computed and given in Table 20 followed by a bar-graph 

showing the strength of connectivity of all devices. 
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           Table 20 (Score values of the Wi-Fi network based on picture fuzzy information) 

  

The effective degrees of all devices of Table 20 shows the connectivity strength. The 

results displayed in Table 20 are more significant than that of provided in Table 19 because of 

the nature of information of picture fuzzy numbers. Here Ç11  is the strongest connected device 

but the score value is different from that in intuitionistic fuzzy environment because of the 

abstinence grade involved. The ranking of connectivity strength of all devices in picture fuzzy 

environment is shown using a bar graph depicted in Figure 50 below. 

 



 

     Figure 50 (Ranking of the signal strength of Wi-Fi devices of picture fuzzy W-Fi network) 

 

Figure 50 presents the geometrical representation of the effective degrees of the information 

provided in Table 20.   This analysis clearly indicates that device Ç11 has the greatest signal 

strength while devices Ç6 and Ç7 are the lowest signal providing devices.  

4.3 Conclusion 

In this chapter, the concept of PFG is introduced and some of its basic terms and notions such 

as picture fuzzy subgraphs, strength of PFG, degree of PFG and bridges in PFGs are defined 

are defined followed by numerical demonstration. The novelty of PFGs over IFGs is studied 

with the help of some results. The concept of degree of a vertex is proposed which shows the 

strength of connectivity of a vertex with other vertices. The proposed concept of PFG is utilized 

in describing a social network where the relationships of the people of a certain social group 

are discussed using the degree of PFG. Further, a Wi-Fi network is also studied where the nodes 

and edges are based on picture fuzzy information. The strength of signals is briefly described 

using degree of PFGs. The significance of the using PFGs over IFG and FG is demonstrated 

numerically via a comparative study. In near future, our aim is to define some other terms of 
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graph theory such as operations on PFGs, modular product on PFGs and picture fuzzy 

hypergraphs and applied them to practical situation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

An approach towards decision making and shortest path problems 

based on T-spherical fuzzy information 

In this chapter, we propose some developments in fuzzy graph theory. An original notion of a 

TSFG is presented as a commonality of FG, an IFG and PFG. The originality, the 

imperativeness and the importance of this notion is discussed by showing some results, giving 

examples and a graphical analysis. Some theoretical terms of graphs such as a T-spherical fuzzy 

sub-graph, a complement of TSFG, degree of TSFG are clarified and their attributes and 

aspects are analyzed. The main goal of this chapter is to study two types of decision-making 

problems using the framework of TSFGs. These two problems include the problem of the 

shortest path and a safe root for an airline journey in a T-spherical fuzzy network. The 

comparison of this new approach towards these problems with existing approaches is also 

established. A new algorithm is put forward in the event of T-SFGs and is used to seek out the 

shortest path problem. The overall analysis of the suggested notion under the prevailing theory 

is conducted. The advantages of the proposed approach were discussed based on the existing 

tools and a short comparison of the new with existing tools was established. 

5.1 T-Spherical Fuzzy Graphs  

The TSFG is an extension of TSFS [46], characterized by membership, abstinence and 

non-membership grades. The limitations of TSFS is that the sum of n-power of membership, 

n-power of abstinence and n-power of non-membership grades is less than or equal to 1. The 

T-SFS is a modified version of the SFS [46], PFS [37], q-ROFS [25], PyFS [15], IFS [10] and 

FS [1] to cope with complicated and unknown information in the environment of fuzzy set 



theory. Keeping the advantages of the T-SFS, In this section, we will introduce the concept of 

TSFG and present its most important properties. 

5.1.1 Definition  

 A graph Ġ = (Ṿ, Ẻ) is called TSFG if 

(i) Ṿ = {ṭ1, ṭ2, ṭ3, … , ṭ𝑛} be the set of vertices for which Ŝ: Ṿ ⟶ [0, 1], Î: Ṿ ⟶ [0, 1] and 

Ð: Ṿ ⟶ [0, 1]represent respectively,  the membership degree, the abstinence degree and the 

non-membership degree of the element ṭ𝑖 ∈ Ṿ under the condition 0 ≤ Ŝ1
𝑛
(ṭ𝑖) + Î1

𝑛
(ṭÎ) +

Ð1
𝑛(ṭ𝑖) ≤ 1 for 𝑛 ∈ 𝑍+, for all ṭ𝑖 ∈ Ṿ(𝑖 ∈ 𝐼) and √1 − (Ŝ1

𝑛
(ṭ𝑖) + Î1

𝑛
(ṭ𝑖) + Ð1

𝑛(ṭ𝑖
𝑛

)) 

represents the refusal degree of ṭ in Ṿ. 

(ii) Ẻ ⊆ Ṿ × Ṿ where Ŝ2: Ṿ × Ṿ ⟶ [0, 1], Î 2: Ṿ × Ṿ ⟶ [0, 1] and Ð2: Ṿ × Ṿ ⟶ [0, 1] 

represents the membership degree, the abstinence degree and the non-membership degree 

of the element (ṭ𝑖, ṭ𝑗) ∈ Ẻ such that Ŝ2(ṭ𝑖, ṭ𝑗) ≤ min{Ŝ1(ṭ𝑖), Ŝ1(ṭ𝑗)}, Î2(ṭ𝑖, ṭ𝑗) ≤

min{Î1(ṭ𝑖), Î1(ṭ𝑗)} and Ð2(ṭ𝑖, ṭ𝑗) ≤ max{Ð1(ṭ𝑖), Ð1(ṭ𝑗)} under the condition 0 ≤

Ŝ2
𝑛
(ṭ𝑖, ṭ𝑗)+Î2

𝑛
(ṭ𝑖, ṭ𝑗) + Ð2

𝑛(ṭ𝑖, ṭ𝑗) ≤ 1 for all (ṭ𝑖, ṭ𝑗) ∈ Ẻ, and 

√1 − (Ŝ2
𝑛
(ṭ𝑖, ṭ𝑗) + Î2

𝑛
(ṭ𝑖, ṭ𝑗) + Ð2

𝑛(ṭ𝑖, ṭ𝑗)
𝑛

) describes the refusal degree of  (ṭ𝑖, ṭ𝑗) in Ẻ. 

5.1.2 Example  

Consider a graph Ġ = (Ṿ, Ẻ) contains the set of vertices and edges. The following graph shown 

on Figure 51 is an example of TSFG for 𝑛 = 4. In turn, Figure 52 shows an example of a non-

TSFG. 

 

 



    

 

 

 

 

 

 

          

 

 

Figure 51 (T-Spherical fuzzy graph) 

    

 

 

 

 

 

 

     

 

 

                                                               Figure 52 (Not T-spherical fuzzy graph) 

5.1.3 Theorem  

Every T-SFG is a generalization of PFG, IFG and FG. 

Proof: It is easy to verify that  

(i) if 𝑛 = 1, then the definition of T-SFG reduces to PFG; 

(ii) if 𝑛 = 1 and Î = 0, then the definition of T-SFG reduces to IFG; 

(iii) if 𝑛 = 1, Î = 0 and Ð = 0, then the definition of T-SFG reduces to FG. 



The above result shows the importance of the new concept, because it generalizes all existing 

structures and may cope with situations in which existing structures fail due to limitations in 

their structures. 

5.1.4 Definition  

For T-SFSs 𝐴 = {Ŝ𝐴, Î𝐴, Ð𝐴} and 𝐵 = {Ŝ𝐵, Î𝐵 , Ð𝐵}, we define 

𝐴⊕ 𝐵 = {{ṭ, (
√Ŝ𝐴

𝑛
(ṭ) + Ŝ𝐵

𝑛
(ṭ) − Ŝ𝐴

𝑛
(ṭ). Ŝ𝐵

𝑛
(ṭ)

𝑛

, √Î𝐴
𝑛
(ṭ) + Î𝐵

𝑛
(ṭ) − Î𝐴

𝑛
(ṭ). Î𝐵

𝑛
(ṭ)

𝑛

Ð𝐴. Ð𝐵

)}} 

𝐴⊗ 𝐵 = {{𝜘, ((Ŝ𝐴(ṭ). Ŝ𝐵(ṭ)), (Î𝐴(ṭ). Î𝐵(ṭ)), √Ð𝐴
𝑛(ṭ) + Ð𝐵

𝑛(ṭ) − Ð𝐴
𝑛(ṭ). Ð𝐵

𝑛(ṭ)
𝑛

)}} 

Comparison rules have always been a challenge in fuzzy environment because at some 

occasion the function for comparing two values could not differentiate between the numbers 

due to the ill structure of the score function. If we look at the comparison rules of IFSs, it 

becomes quite clear that several score functions have been developed from time to time. In 

[48], an improved score function for IFS is developed and it is discussed that the existing score 

functions have their limitations, as demonstrated by the examples. In addition, we have 

significantly fewer results regarding PFSs and there is no score function in the literature. 

Therefore, here we developed a new score function as a generalization of the score function 

defined in [48]. This new score function will be used in the shortest path problem (Section 

5.2.2). 

5.1.5 Definition  

The score function for a TSFN 𝐴 = (Ŝ, Î, Ð) is defined as: 

𝑆𝐶(𝐴) =
(Ŝ)

𝑛
(1−(Î)

𝑛
−(Ð)𝑛)

3
∈ [0, 1]         (5)  



5.1.6 Remark  

 For Î = 0 and 𝑛 = 1, the defined score function (5) reduces to the case of IFSs. 

5.1.7 Definition  

A TSFG Ġ′ = (Ṿ′, Ẻ′) is T-spherical fuzzy subgraph (T-SFSG) of the graph Ġ = (Ṿ, Ẻ) if Ṿ′ ⊆

Ṿ and Ẻ′ ⊆ Ẻ. 

5.1.8 Definition  

 Let the representation 𝐺̅ = (𝑉̅, 𝐸̅) is called the complement of T-SFG, if 

(i) Ṿ̅ = Ṿ i.e. Ŝ𝑖
̅ = Ŝ𝑖,Î𝑖

̅ = Î𝑖 and Ð𝑖̅̅̅ = Ð𝑖,𝑖 = 1,2, … , 𝑛; 

(ii) Ŝ2𝑖𝑗
̅̅ ̅̅ ̅ = min(Ŝ𝑖, Ŝ𝑗) − Ŝ2𝑖𝑗,Î2𝑖𝑗

̅̅ ̅̅ = min(Î𝑖 , Î𝑗) − Ŝ2𝑖𝑗and Ð2𝑖𝑗̅̅ ̅̅ ̅ = max(Ð𝑖, Ð𝑗) − Ð2𝑖𝑗,𝑖, 𝑗 =

1,2, … , 𝑛. 

5.1.9 Example  

In this example, we give a TSFG and its complement. 

    

Figure 53 (T-spherical fuzzy graph) 



     

       Figure 54 (Complement of the T-spherical fuzzy graph in figure 53) 

 The vertices of the above Figures 53 and Figure 54 are entirely T-SFNs for 𝑛 = 3. 

5.1.10 Definition  

The degree of a TSFG Ġ = (Ṿ, Ẻ)  is defined by 𝑑(ṭ) = (𝑑Ŝ(ṭ), 𝑑Î(ṭ), 𝑑Ð(ṭ)), where 𝑑Ŝ(ṭ) =

∑ Ŝ2(ṭ, 𝑢)𝑢≠ṭ , 𝑑Î(ṭ) = ∑ Î2(ṭ, 𝑢)𝑢≠ṭ  and 𝑑Ð(ṭ) = ∑ 𝑑Ð2(ṭ, 𝑢)𝑦≠ṭ  for  ṭ, 𝑢 ∈  Ṿ. 

5.1.11 Definition  

 A TSFG is said to be 

1) semi Ŝ strong: if Ŝ(ṭ𝑖, ṭ𝑗) = min (Ŝ(ṭ𝑖), Ŝ(ṭ𝑗)); 

2) semi Î strong: if Î(ṭ𝑖, ṭ𝑗) = min (Î(ṭ𝑖), Î(ṭ𝑗)); 

3) semi Ð strong: if Ð(ṭ𝑖, ṭ𝑗) = max (Ð(ṭ𝑖), Ð(ṭ𝑗)); 

4) strong: if (1), (2) and (3) hold. 

 

 

 



5.1.12 Example  

Let Ġ = (Ṿ, Ẻ) be a graph, where Ṿ is the set of vertices and Ẻ is the set of edges, which is 

presented in Figure 55.   

 

 

 

 

 

 

 

 

                                  Figure 55 (T-spherical fuzzy graph) 

The vertices of the above Figure 55 are entirely T-SFNs for 𝑛 = 4, where the degrees of the 

vertices are 

𝑑(ṭ1) = (0.9, 1.1, 1.3), 𝑑(ṭ2) = (1, 1, 1.1), 𝑑(ṭ3) = (0.8, 0.8, 1.4),   𝑑(ṭ4) = (0.7, 0.9, 1.6). 

5.1.13 Definition  

 A graph Ġ = (Ṿ, Ẻ) is defined as a strong TSFG, if 

1. Ṿ = {ṭ1, ṭ2, ṭ3, … , ṭn} is the set of vertices such that Ŝ: Ṿ ⟶ [0, 1], Î: Ṿ ⟶ [0, 1] and 

Ð: Ṿ ⟶ [0, 1] represent, respectively the membership degree, abstinence and the non-

membership degree of the element ṭi ∈ Ṿ under the condition  0 ≤ Ŝ1
n
(ṭi) + Î1

n
(ṭi) +

Ð1
n(ṭi) ≤ 1 for n ∈ Z+, for all ṭi ∈ Ṿ(i ∈ I) and √1 − (Ŝ1

n
(ṭi) + Î1

n
(ṭi) + Ð1

n(ṭi
n

)) is 

represents the refusal degree of ṭ in Ṿ. 



2. Ẻ ⊆ Ṿ × Ṿ where Ŝ2: Ṿ × Ṿ ⟶ [0, 1],  Î2: Ṿ × Ṿ ⟶ [0, 1] and Ð2: Ṿ × Ṿ ⟶ [0, 1] 

represent, respectively the membership degree, the abstinence degree and the non-

membership degree of the element (ṭi, ṭj) ∈ Ẻ such that Ŝ2(ṭi, ṭj) = min{Ŝ1(ṭi), Ŝ1(ṭj)}, 

Î2(ṭi, ṭj) = min{Î1(ṭi), Î1(ṭj)} and Ð2(ṭi, ṭj) = max{Ð1(ṭi), Ð1(ṭj)} under the condition 

0 ≤ Ŝ2
n
(ṭi, ṭj)+Î2

n
(ṭi, ṭj) + Ð2

n(ṭi, ṭj) ≤ 1 for all (ṭi, ṭj) ∈ Ẻ, and 

√1 − (Ŝ2
n
(ṭi, ṭj) + Î2

n
(ṭi, ṭj) + Ð2

n(ṭi, ṭj)
n

) describes the refusal degree of  (ṭi, ṭj) in Ẻ. 

5.1.14 Theorem  

 If Ġ is a strong TSFG, then its complement Ġ is also a strong TSFG. 

Proof. Two cases to consider. If  ṭ𝑢 ∈ Ẻ, then it follows from the fact Ɠ is strong TSFG that 

Ŝ2
̅̅̅(ṭ𝑢) = min(Ŝ1(ṭ), Ŝ1(𝑢)) − Ŝ2(ṭ𝑢) = min(Ŝ1(ṭ), Ŝ1(𝑢)) − min(Ŝ1(ṭ), Ŝ1(𝑢)) = 0, 

Î2
̅(ṭ𝑢) = min(Î1(ṭ), Î1(𝑢)) − Î2(ṭ𝑢) = min(Î1(ṭ), Î1(𝑢)) − min(Î1(ṭ), Î1(𝑢)) = 0 

and    

Ð2̅̅̅̅ (ṭ𝑢) = max(Ð1(ṭ), Ð1(𝑢)) − Ð2(ṭ𝑢) = max(Ð1(ṭ), Ð1(𝑢)) − max(Ð1(ṭ), Ð1(𝑢)) =

0. 

If ṭ𝑢 ∉ Ẻ, then Ŝ2
̅̅̅(ṭ𝑢) = min(Ŝ1(ṭ), Ŝ1(𝑢)) − Ŝ2(ṭ𝑢) = min(Ŝ1(ṭ), Ŝ1(𝑢)), Î2

̅(ṭ𝑢) =

min(Î1(ṭ), Î1(𝑢)) − Î2(ṭ𝑢) = min(Î1(ṭ), Î1(𝑢)) and Ð2̅̅̅̅ (ṭ𝑢) = max(Ð1(ṭ), Ð1(𝑢)) −

Ð2(ṭ𝑢) = max(Ð1(ṭ), Ð1(𝑢)). 

5.1.15 Definition  

In TSFG a path is a sequence of some distinct vertices ṭį(į = 1, 2, 3…n) one of the following 

conditions hold for some (į, ʝ = 1, 2, 3, … n) 

  Ŝ2įʝ > 0,  Î2įʝ > 0 and  Ð2įʝ > 0; 



  Ŝ2įʝ = 0,  Î2įʝ = 0 and  Ð2įʝ > 0; 

  Ŝ2įʝ > 0,  Î2įʝ > 0 and  Ð2įʝ = 0. 

5.1.16 Definition 

 Let ṭ = ṭ1, ṭ2, ṭ3, … ṭn+1(n > 0) be a path. Then, its length is n. This path is called a cycle, if 

ṭ1 = ṭn+1 for (n ≥ 3). Moreover, we say that two vertices combined by a path are connected. 

5.1.17 Example  

Let Ѵ = {ṭ1, ṭ2, ṭ3, ṭ4} and Ẽ  be the set of edges illustrated by Figure 56. 

 

 
                 

                                                  Figure 56 (T-spherical fuzzy graph) 

Here ṭ1ṭ2ṭ3ṭ4 is a path, and hence ṭ1, ṭ2, ṭ3, ṭ4 are connected vertices. The length of this path is 

3. Moreover ṭ1ṭ2ṭ3ṭ1 form a cycle. 

5.2 Application in Finding Shortest Path in a Network 

The most common problem of graph theory is the shortest path problem. It has been 

extensively tested for almost every fuzzy structure [104-107] with an algorithm, which is 

relatively easy and thanks to that we obtain the best results expected. The comprehensive steps 

of the algorithm, are implemented in this section using the numerical example and a series of 

relative tests. 



5.2.1 Dijkstra Algorithm 

Dijkstra algorithm is the most widely used algorithm for computing shortest path in a 

network. From time to time, some modifications have been made in Dijkstra algorithm and 

several formulae are included to get optimum results. These formulae include distance and 

similarity measures and aggregation operators etc. Some useful work in this regard have been 

done in [104, 105]. 

The steps of the Dijkstra algorithm are as follows. 

1. Take the first node as (0, 0, 1) and the distance of every node to itself is zero. 

2. Take  i = 1. 

3. Find j for P1j = P11⊕⋀k∈NP(1)P1k and determine P1j where "⋀" denotes the minimum of 

P1k for k ∈ NP(1) which can be calculated using score function. Further NP(𝑖) denote the 

collection of all nodes having some relation with 𝑖. 

4. Put i = j. 

5. Find k for Pjk = P1j⊕⋀h∈NP(j)Pjh and determine Pjk. 

6. This process should be continued until destination node is obtained. 

7. When destination node is reached, then the algorithm is stopped. 

5.2.2 Example  

Let us consider a network of 6 nodes as in Figure 57, where the distance of every two, 

connected nodes, is provided in by the form of TSFNs. We proceed with the algorithm as 

follows. 



  

    Figure 57 (T-spherical fuzzy network) 

 

In the above graph it is shown that the source node is node 1 and the destination node is node 

6, so for 𝑛 = 6 and for the first step 𝑃11 = (0,0,1). Note that 𝑃11 = (0,0,1) because the distance 

at node 1 is zero so its non-membership grade is 1 and membership and abstinence grades are 

zero. At first 𝑖 = 1, so it needs to find 𝑗 by the equation 

𝑃1𝑗 = 𝑃11⊕⋀𝑗∈𝑁𝑃(1)𝑃1𝑗 = 𝑃11⊕⋀𝑗∈{2,3}𝑃1𝑗 = 𝑃11⊕ (𝑃12⋀𝑃13) 

We are doing the first iteration in details and the rest are similar so we just omit the details 

there. 

Note that 𝑃12⋀𝑃13 means the minimum of 𝑃12 & 𝑃13. To compute the minimum between 

𝑃12 & 𝑃13, we calculate their score values i.e. 𝑆𝐶(𝑃12) and 𝑆𝐶(𝑃13). If  

 𝑆𝐶(𝑃12) < 𝑆𝐶(𝑃13) then 𝑃12⋀𝑃13 = 𝑃12 

 𝑆𝐶(𝑃12) > 𝑆𝐶(𝑃13) then 𝑃12⋀𝑃13 = 𝑃13 

By using Eq. (1). 

𝑆𝐶(𝑃12) = 𝑆𝐶(0.5,0.5,0.7) =
0.56(1 − 0.56 − 0.76)

3
= 0.0045 

Similarly  



𝑆𝐶(𝑃13) = 𝑆𝐶(0.3,0.6,0.8) = 0.000168 

As 𝑆𝐶(𝑃12) > 𝑆𝐶(𝑃13). Therefore, 𝑃12⋀ 𝑃13 = 𝑃13 and 

𝑃1𝑗 = 𝑃11⊕⋀𝑗∈𝑁𝑃(1)𝑃1𝑗 = 𝑃11⊕⋀𝑗∈{2,3}𝑃1𝑗 = 𝑃11⊕ (𝑃12⋀𝑃13) = 𝑃11⊕𝑃13 

= (0,0,1) ⊕ (0.3,0.6,0.8). 

Then by using Def. (4.1.8), we have 

= (0.00405,0.064,0.8) 

This implies that 𝑗 = 2, 𝑃13 = (0.00405,0.064,0.8). similarly, we continued the processes. 

For the next step, for 𝑖 = 2 , we need to find 𝑗 by the equation 

𝑃1𝑗 = 𝑃12⊕⋀𝑗∈𝑁𝑃(2)𝑃2𝑗 = 𝑃12⊕⋀𝑗∈{3,5}𝑃2𝑗 = 𝑃13⊕ (𝑃34⋀𝑃35) 

= (0.045,0.18,0.8) ⊕ ((0.7,0.4,0.3) ∧ (0.7,0.8,0.9))

= ((0.045,0.18,0.8) ⊕ (0.1225) ∧ (0.008095)) 

= (0.00405,0.0648,0.8) ⊕ (0.7,0.8,0.9) = (0.058825,0.131072,0.72). 

This implies that 𝑗 = 2, 𝑃15 = (0.058825,0.131072,0.72). 

First subsequently for 𝑖 = 3, we must find 𝑗 by the equation 

𝑃1𝑗 = 𝑃13⊕⋀𝑗∈𝑁𝑃(3)𝑃3𝑗 = 𝑃13⊕⋀𝑗∈{4,5}𝑃1𝑗 = 𝑃15⊕𝑃56 

= (0.058825,0.131072,0.72) ⊕ (0.6,0.5,0.3) = (0.181107,0.131442,0.216). 

This implies that 𝑗 = 2, 𝑃16 = (0.181107,0.131442,0.216). 

So, the shortest path in the above graph is  𝑃1 ⟶ 𝑃3 ⟶ 𝑃5 ⟶ 𝑃6. Hence, by using a modified 

Dijkstra algorithm, we have successfully computed the shortest path from source node to 

destination node. The results obtained here have greater precision because of its diverse 



structure and a detailed comparison showing the validity and superiority of the proposed 

algorithm is discussed in Section 5.3. 

5.3 Proportional Study and Merits of Proposed Algorithm 

In the current part, we will explain that the proposed algorithm can be applied in intuitionistic 

fuzzy environment and to Pythagorean fuzzy networks. Consider the intuitionistic fuzzy 

network illustrated in Figure 58. 

  

    Figure 58 (Intuitionistic fuzzy network) 

The proposed algorithm for computing shortest path can be applied in finding the shortest path 

form node 1 to node 6 by considering the abstinence grade as zero i.e. every duplet given in 

intuitionistic fuzzy network can be considered as a T-SFN. Hence this overall network based 

on intuitionistic fuzzy information can be considered as a T-spherical fuzzy network and can 

be solved accordingly. In addition, if we consider Figure 59 where a network of nodes is given 

in Pythagorean fuzzy environment. This too can be considered as T-spherical fuzzy 

environment by the abstinence grade as zero in every duplet and take 𝑛 = 2. 



 

  

 Figure 59 (Pythagorean fuzzy network) 

5.4 Observation of a Safe Root for an Airline Journey in a T-Spherical Fuzzy Network 

The proposed concept of T-SFG can be applied in important part of mathematics and can 

be also used as a tool in various fields, including biology, physics, transport networks and social 

networks. The traffic network of an airline system is always of importance. Usually, those 

routes are selected for an airline which relatively less expensive and safer.  

We assume a set of five different countries at our disposal and we want to travel to and 

from these countries by plane. Airline companies keep goal to make best amenities available 

for passengers. Air traffic controllers must strictly follow the schedule of arrivals and 

departures of company airplanes, and this work can be done by planning efficient routes for 

airplanes. The efficiency of an airline route can be defined in terms of less expense and safety 

i.e. an airline is considered as more efficient if it is less expensive, take less time (pick shortest 

route) and choose a safe route.   A network of T-SFG airlines and five countries is showed in 

Figure. 60, where vertices and edges represent countries and flights respectively. In Figure 60, 

the edge values between two countries represent information about the efficiency of the route. 

The larger value of the membership grade means the more reliable is the airline. 



 

 

   Figure 60 (T-spherical fuzzy airline network) 

 

  

   Table 18 (T-spherical fuzzy edges of Figure 60) 

 



For convenience, the edges of the above Figure. 60 are summarized in the above Table 18. 

Note that all the triplets given in Table 18 are purely TSFNs for 𝑛 = 6. 

The truth membership degree of each vertex represents the strength of airline route. 

This means that a larger value of truth membership degree means the more efficient the airline 

route and vice versa.  The indeterminacy membership degree of each denotes the 

unpredictability in the airline route. The falsity membership degree of each vertex shows the 

errors of that system and the rejection degree shows the chances of cancelation of the flights. 

For instance, the edge between Germany and China denotes that flight safety for this travel is 

90%, 60% is dependent on unlikely systems and 80% is unsecure. The truth membership 

degree, the indeterminacy membership degree and the falsity membership degree of each edge 

is quantified by applying a specified relation or it is determined by some experts in the system. 

Now we discuss a special circumstance that often due to weather, technical problems 

or personal problems, the passenger renounces its direct flight between the two selected 

countries. So, if he wants to go there straight away, he has to choose an indirect connection, as 

usually connecting flights exist between these countries. 

For instance, if a passenger missed or skipped his flight from Germany to United States then 

four connecting flights exist which are denoted by routes 𝑹𝒊 such as 

𝑹𝟏: 𝐺𝑒𝑟𝑚𝑎𝑛𝑦 → 𝐶ℎ𝑖𝑛𝑎 → 𝑈𝑛𝑖𝑡𝑒𝑑 𝑆𝑡𝑎𝑡𝑒𝑠 

𝑹𝟐: 𝐺𝑒𝑟𝑚𝑎𝑛𝑦 → 𝐶ℎ𝑖𝑛𝑎 → 𝑀𝑒𝑥𝑖𝑐𝑜 → 𝑈𝑛𝑖𝑡𝑒𝑑 𝑆𝑡𝑎𝑡𝑒𝑠 

𝑹𝟑: 𝐺𝑒𝑟𝑚𝑎𝑛𝑦 → 𝐶ℎ𝑖𝑛𝑎 → 𝐵𝑟𝑎𝑧𝑖𝑙 → 𝑈𝑛𝑖𝑡𝑒𝑑 𝑆𝑡𝑎𝑡𝑒𝑠 

𝑹𝟒: 𝐺𝑒𝑟𝑚𝑎𝑛𝑦 → 𝐶ℎ𝑖𝑛𝑎 → 𝐵𝑟𝑎𝑧𝑖𝑙 → 𝑀𝑒𝑥𝑖𝑐𝑜 → 𝑈𝑛𝑖𝑡𝑒𝑑 𝑆𝑡𝑎𝑡𝑒𝑠 

By calculating or quantifying the length or duration of all flights, the most appropriate flight 

can be identified by taking the maximum truth membership value, the minimum indeterminacy 



membership value, as well as the falsity and rejection membership values. For this purpose, we 

utilize Definition 5.1.10 by means of which we could get the degree of each vertex i.e. the 

degree of each route. The lager membership value in the degree of a node will give us the 

suitable route.  

The algorithm for our proposed problem is as follows: 

5.4.1 Algorithm 

The detailed steps of this algorithm are 

 

Step 1. Enter the truth membership degree, the indeterminacy membership degree and the 

falsity membership degree of all vertices (countries); 

 

Step 2. Compute all boundaries using subsequent relations; 

 

Step 3. Compute all the possible routes 𝑅𝑖 between the countries; 

 

Step 4. Compute the lengths of all the routs 𝑅𝑖 applying the subsequent formula given in 

Definition 5.1.10 i.e. for  (ṭ, 𝑢) ∈  Ṿ 

𝑑Ŝ(ṭ) =∑ Ŝ2(ṭ, 𝑢)
𝑢≠ṭ

 

𝑑Î(ṭ) =∑ Î2(ṭ, 𝑢)
𝑢≠ṭ

 

𝑑Ð(ṭ) =∑ Ð2(ṭ, 𝑢)
𝑦≠ṭ

 

Step 5. Locate the confirmed route with the maximum truth membership level, minimum 

indeterminacy-membership level and minimum falsity membership level. 

Using this proposed algorithm, we have the degrees computed as: 



𝑑(𝑅1)  =  (1.5, 1.1, 1.1) 

𝑑(𝑅2)  =  (2.4, 1.5, 2.1) 

𝑑(𝑅3)  =  (2.3, 1.8, 2.3) 

𝑑(𝑅4)  =  (2.5, 2.0, 3.2) 

 

These results show us that 𝑅1 is the best route as the difference of the membership and non-

membership values is less comparative to other degrees. However, if we investigate the 

diagram of the airline route in Figure 60, it seems that the direct route from Germany to United 

States is the efficient route. 

5.5 Application of T-spherical fuzzy graphs in Supply Chain Management (SCM) 

In the problem of SCM, the performance of the components which are usually the partners 

in a supply chain is measured. Companies usually run on several aspects and in SCM problems, 

we aim to know about the most significant aspect. We adapt the example discussed in [28] 

where four aspects of a company are assessed. We assume the four aspects as “standard of the 

service”, “cost & price”, “quality” and “response time” which we denoted by ⱬ𝑖(𝑖 =

1, 2, 3, 4). Three decision makers gave their preferences in the decision matrices 𝑅1, 𝑅2 and 𝑅3 

respectively in the form of TSFNs where the membership, abstinence and non-membership 

grades of the four aspects are investigated. 

𝑅1 = [

(0.7,0.8,0.9) (0.73,0.84,0.95) (0.74,0.45,0.9)
(0.55,0.78,0.67) (0.86,0.77,0.45) (0.67,0.56,0.6)
(0.9,0.8,0.7)
(0.5,0.4,0.3)

(0.8,0.3,0.7)
(0.64,0.63,0.62)

(0.9,0.8,0.7)
(0.8,0.7,0.8)

    

(0.77,0.56,0.67)
(0.67,0.66,0.55)
(0.45,0.46,0.47)
(0.67,0.87,0.69)

] 

𝑅2 = [

(0.72,0.82,0.29) (0.74,0.85,0.91) (0.71,0.25,0.39)
(0.65,0.48,0.57) (0.66,0.67,0.65) (0.77,0.76,0.76)
(0.69,0.48,0.57)
(0.58,0.48,0.39)

(0.38,0.3,0.7)
(0.64,0.73,0.72)

(0.97,0.87,0.77)
(0.77,0.87,0.75)

    

(0.78,0.56,0.67)
(0.69,0.66,0.55)
(0.49,0.46,0.47)
(0.68,0.87,0.69)

] 



𝑅3 = [

(0.77,0.78,0.79) (0.78,0.84,0.85) (0.54,0.35,0.39)

(0.65,0.68,0.57) (0.66,0.67,0.55) (0.77,0.66,0.63)
(0.29,0.28,0.27)
(0.56,0.46,0.36)

(0.68,0.63,0.67)
(0.74,0.73,0.72)

(0.8,0.7,0.6)
(0.8,0.7,0.8)

    

(0.77,0.56,0.67)

(0.67,0.36,0.55)
(0.45,0.66,0.47)
(0.67,0.77,0.60)

] 

Here we utilize the averaging aggregation operators of TSFSs studied in [48] to obtain a 

single decision matrix 𝑅 from 𝑅1, 𝑅2 and 𝑅3. 

𝑇𝑆𝐹𝑊𝐴(ṙ𝑖1, ṙ𝑖2, … , ṙ𝑖𝑛) = (√1 −∏(1 − Ŝ𝑗
𝑛)
𝑤𝑗

𝑚

𝑗=1

𝑛

,∏(Î𝑗)
𝑤𝑗

𝑚

𝑗=1

,∏(Ð𝑗)
𝑤𝑗

𝑚

𝑗=1

) 

𝑅 = [

(0.73,0.8,0.59) (0.75,0.84,0.91) (0.70,0.34,0.55)
(0.59,0.64,0.61) (0.79,0.71,0.54) (0.74,0.65,0.66)
(0.82,0.51,0.51)
(0.55,0.44,0.34)

(0.73,0.36,0.69)
(0.68,0.69,0.68)

(0.93,0.80,0.70)
(0.79,0.76,0.78)

    

(0.77,0.56,0.67)
(0.68,0.57,0.55)
(0.47,0.50,0.47)
(0.67,0.84,0.67)

] 

This newly obtained regrouped data is depicted using a T-SFG in Figure 61. 

                           

                          Figure 61 (Directed Network four aspects in the form of T-SFG) 

Taking Ŝ2𝐿 ≥ 0.60 (The highest membership score of every edge in the above figure 61) The 

T-SFG depicted in Figure 61 converted into another T-SFG depicted in Figure 62 below. 



    

 Figure 62 (Partial Directed Network based on T-SFGs) 

 

To compute the out-degree of the four aspects for their ranking, we use the following formula 

as given below. 

𝑂𝑢𝑡 − 𝑑(ⱬ) = 

Based on given definition 5.1.10 of out-degree, we have 

𝑂𝑢𝑡 − 𝑑(ⱬ1) = (0.75,0.84,0.91) 

𝑂𝑢𝑡 − 𝑑(ⱬ2) = (0.68,0.57,0.55)) 

𝑂𝑢𝑡 − 𝑑(ⱬ3) = (0.77,0.56,0.67) 

𝑂𝑢𝑡 − 𝑑(ⱬ4) = (0.68,0.69,0.68) 

After having a look at the membership degree of the out-degrees, we have the following 

ranking. 

𝑂𝑢𝑡 − 𝑑(ⱬ3) ≥ 𝑂𝑢𝑡 − 𝑑(ⱬ1) ≥ 𝑂𝑢𝑡 − 𝑑(ⱬ2) ≥ 𝑂𝑢𝑡 − 𝑑(ⱬ4) 

Implies that ⱬ3 ≥ ⱬ1 ≥ ⱬ2 ≥ ⱬ4 

Hence, using the concept of T-SFGs, an SCM problem is solved successfully where the most 

significant factor in a supply chain is determined. The ranking shows that the factor ⱬ3 is most 

significant factor on which we could count. 

 

 



5.5 Comparative Study and Advantages 

The proposed approaches are more general and more reliable than Existing methods 

due to its limitations, the sum of the n-power of membership, n-power of abstinence and n-

power of non-membership grades are bounded to [0,1]. The characteristics comparison 

between proposed methods and existing methods are described below in Table 22. 

 

 Table 22 (Comparison of T-spherical fuzzy networks over other existing networks) 

The importance and imperativeness of the proposed approach are due to the fact that the novel 

approach can solve problems in the environment of PyFSs as well as IFSs. Now we investigate 

two examples consisting information in the form of PyFNs or IFNs. 

Consider the information in the form of PyFNs as follows in Table 23. 



   

Table 23 (Pythagorean fuzzy edges) 

Currently, this type of information can simply be organized using the Definition 2.1.12 

with Ð = 0. In addition, we have information in the form of IFNs given by Table 24. 

   

               Table 24 (Intuitionistic fuzzy edges) 



Therefore, Definition 5.1.10 could employ the proposed approach.  Any other way, due to their 

constraints structures, the tools of PyFSs or IFSs cannot be used to the information of T-SFSs. 

All this reveals the significance of novel presented approach. When we are considering the 

value of parameter 𝑛 = 1 and taking the value of abstinence as zero, the proposed work in def. 

(5.1.10) is reduced for IFG and similarly, when we consider the value of parameter 𝑛 = 2 and 

taking the value of abstinence is zero, the proposed work in def. (5.1.10) is reduced for PyFG. 

If we are taking only the abstinence degree will be zero, then the Def. (5.1.10) is converted for 

q-ROFG.  

The proposed methods are more general than existing methods due to some reasons discussed 

as below: 

 The T-SFG is an extension of SFG, IFG, PFG and PyFG, characterized by membership, 

abstinence and non-membership grades. The diversity of T-SFS is that the sum of n-power of 

membership, n-power of abstinence and n-power of non-membership grades is less than or 

equal to 1. The T-SFG is an enhanced version of spherical fuzzy graph (SFG), PFG, q-ROFG, 

PyFG, IFG and FG to cope with complicated and unknown information in the environment of 

fuzzy set theory. 

Due to these all reasons, the T-SFG is proved to be a better tool to deal with all kind of problems 

in real-life having uncertainty. Therefore, handling problems using T-SFG is more reliable and 

more feasible than existing methods.  

5.6 Conclusion 

In this chapter, the notion of T-SFG has initiated based on the new theory of T-SFSs. The 

significance of T-SFGs has studied in analysis of the novelty of T-SFSs, and it has examined 

that T-SFGs are generalizations of IFGs and PFGs and can be helpful in those situations where 

IFGSs and PFGs failed to be useful. Several fundamental theoretical terms of graphs have been 



defined including T-spherical fuzzy subgraphs, complement and strength of T-SFGs, degree of 

vertices and bridges in T-SFGs. Several operations have also defined for T-SFGs and related 

results are studied. For T-SFGs, famous Dijkstra algorithm was created and in a network of T-

SFGs the shortest path problem has been solved. The core advantage of the proposed work can 

be used in practical situations, which can be managed using IFGs or PFGs, but those structures 

are tunable to manage the data provided in T-spherical fuzzy situation. In a short period, from 

application point of view, the structure of T-SFGs could be very valuable in some problems 

including optimization in networks, traffic signal problems, and other problems of engineering 

and computer sciences.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6 

Some Root Level Modifications in Interval Valued Fuzzy Graphs 

and Their Generalizations Including Neutrosophic Graphs 

FG and its generalizations played an essential role in dealing with real life problems 

involving uncertainties. The goal of this chapter is to show some serious flaws in the existing 

definitions of several root level generalized FG structures with the help of some counter 

examples. First, we aim to improve the existing definition for IVFG, IVIFG and their 

complements as these existing definitions are not well-defined i.e. one can obtain some 

senseless intervals using the existing definitions. The limitation of the existing definitions and 

the validity of new definitions is supported with some examples. It is also observed that the 

notion of SVNG is not well-defined either. The consequences of the existing definition of 

SVNG are discussed with the help of examples. A new definition for SVNG is developed and 

its improvement is demonstrated with some examples. The definition of interval valued 

neutrosophic graph is also modified due to the shortcomings existed in the current definition 

and the validity of new definition is proved. An application of proposed work in decision 

making is solved in the framework of SVNG where the failure of existing definitions and 

effectiveness of new definitions is demonstrated.      

6.1 Improvements in Interval Valued Fuzzy Graphs and Interval Valued Intuitionistic 

Fuzzy Graphs 

In this section, first, the existing definitions of IVFG and IVIFG are reviewed and the 

shortcomings of these algebraic structures are pointed out with the help of examples. New 

definitions for IVFG and IVIFG are developed and their fitness are verified with the help of 

some examples. 



First, we review the definition of IVFG defined in [79] and provide an example to show 

the limitation of the definitions. 

6.1.1 Definition  [79]  

An IVFG is a duplet Ġ = (Ṿ, Ẻ) where Ṿ denotes a collection of nodes and Ẻ denotes the 

collection of edges between these vertices such that 

1) Every ṭ ∈ Ṿ is characterized by a function Ŝ representing the membership degree of ṭ ∈ Ṿ. 

Basically, Ŝ = [Ŝ𝐿 , Ŝ𝑈] is a closed subinterval [0, 1]. 

2) Every 𝑒 ∈ Ẻ is characterized by a function Ŝ denoting the degree of membership 𝑒 ∈ Ṿ ×

Ṿ. Basically Ŝ = [Ŝ𝐿 , Ŝ𝑈] satisfying the conditions: 

Ŝ𝐿(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ𝐿(ṭ𝑖), Ŝ
𝐿(ṭ𝑗)), Ŝ𝑈(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ𝑈(ṭ𝑖), Ŝ

𝑈(ṭ𝑗)) 

6.1.2 Example  

 Consider the following Figure 63 where we observed that while determining the edge values, 

we get undefined intervals as highlighted. This shows that the current notion of an IVFG is 

not satisfactory and that is leads us to develop a new definition. 

 

  

 

 

 

 

 

                                Figure 63 (Interval valued fuzzy graph containing undefined intervals) 

 

 



6.1.3 Definition  

 An IVFG is a duplet Ġ = (Ṿ, Ẻ) where Ṿ denotes a collection of nodes and Ẻ denotes the 

collection of edges between these vertices such that 

1) Every ṭ ∈ Ṿ is characterized by a function Ŝ representing the membership grade of ṭ ∈ Ṿ. 

Basically,  Ŝ = [Ŝ𝐿 , Ŝ𝑈] is a closed subintervals of the unit interval [0, 1]. 

2) Every 𝑒 ∈ Ẻ is characterized by a function Ŝ denoting the membership grade of 𝑒 ∈ Ṿ × Ṿ. 

The closed subinterval Ŝ = [Ŝ𝐿 , Ŝ𝑈] satisfying the conditions:  

Ŝ𝐿(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ𝐿(ṭ𝑖), Ŝ
𝐿(ṭ𝑗)) and 

Ŝ𝑈(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ𝑈(ṭ𝑖), Ŝ
𝑈(ṭ𝑗)) such that Ŝ𝑈(ṭ𝑖, ṭ𝑗) ≥ min (Ŝ𝐿(ṭ𝑖), Ŝ

𝐿(ṭ𝑗)). 

This definition is supported with the help of following example in which we show that none of 

the intervals is undefined and that Definition 6.1.3 works perfectly. 

6.1.4 Example  

The following IVFG depicted in Figure 64 is in accordance with Definition 6.1.3. 

 

  

 

 

 

 

 

 

 

  Figure 64 (Interval valued fuzzy graph compatible with Definition 6.1.3) 



Next we provide a critical study of IVIFGs with a definition which is based on IVIFG 

which yield undefined closed sub-intervals. First, we review the existing definition and the 

existing shortcomings with the help of examples. Then the new definition is developed and 

supported by an example. 

6.1.5 Definition [85] 

 An IVIFG is a duplet Ġ = (Ṿ, Ẻ) where the set of nodes is denoted by Ṿ and Ẻ is the collection 

of edges between these nodes such that 

1) Every ṭ ∈ Ṿ is characterized by two functions Ŝ and Ð denoting the membership and non-

membership grades of ṭ ∈ Ṿ. Basically, Ŝ = [Ŝ𝐿 , Ŝ𝑈] and Ð = [Ð𝐿 , Ð𝑈] are closed 

subintervals of the unit interval [0, 1] with a condition that 0 ≤ Ŝ𝑈 + Ð𝑈 ≤ 1. Moreover, 

the term 𝑅 = [𝑅𝐿 , 𝑅𝑈] denote the hesitancy level of ṭ ∈ Ṿ such that 𝑅𝑈 = 1 − Ŝ𝐿 − Ð𝐿 and 

𝑅𝐿 = 1 − Ŝ𝑈 − Ð𝑈. 

2) Every 𝑒 ∈ Ẻ is characterized by two functions Ŝ and Ð denoting the membership and non-

membership grades of 𝑒 ∈ Ṿ × Ṿ. Basically Ŝ = [Ŝ𝐿 , Ŝ𝑈] and Ð = [Ð𝐿 , Ð𝑈] satisfying the 

conditions: 

Ŝ𝐿(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ𝐿(ṭ𝑖), Ŝ
𝐿(ṭ𝑗)), Ŝ𝑈(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ𝑈(ṭ𝑖), Ŝ

𝑈(ṭ𝑗)) 

Ð𝐿(ṭ𝑖, ṭ𝑗) ≥ max (Ð𝐿(ṭ𝑖), Ð
𝐿(ṭ𝑗)), Ð𝑈(ṭ𝑖, ṭ𝑗) ≥ max (Ð𝑈(ṭ𝑖), Ð

𝑈(ṭ𝑗)) 

provided that 0 ≤ Ŝ𝑈 + Ð𝑈 ≤ 1. Moreover, the term Ř = [Ř𝐿 , Ř𝑈] denote the hesitancy level 

of 𝑒 ∈ Ẻ such that Ř𝑈 = 1 − Ŝ𝐿 − Ð𝐿 and Ř𝐿 = 1 − Ŝ𝑈 − Ð𝑈. 

This Definition 6.1.5 seems to be weak in two ways. The first reason is that IVIFG is a 

generalization of IFG where the non-membership grade of edge is defined as Ð(ṭ𝑖, ṭ𝑗) ≤

max (Ð(ṭ𝑖), Ð(ṭ𝑗)) which is not followed in defining IVIFG raising a question on its 



perfection. Another shortcoming in Definition 6.1.5 is we may sometime have obtained 

undefined closed intervals which should be avoided. For further illustration, consider the 

example as follows. 

6.1.6 Example  

 Consider the following IVIFG in Figure 65 where it is observed that we get some undefined 

intervals by applying Definition 6.1.5. The undefined closed intervals are highlighted. 

      

 

 

 

 

 

 

 

 

Figure 65 (Interval valued intuitionistic fuzzy graph obtained using Definition 6.1.5 having 

undefined intervals) 

Keeping in mind the weakness of Definition 6.1.5 as demonstrated by Example 6.1.6 , we 

propose a new definition of IVIFG which is well defined and truly a generalization of IFG. 

6.1.7 Definition  

 An IVIFG is a pair Ġ = (Ṿ, Ẻ) where the set of nodes is denoted by Ṿ and Ẻ is the collection 

of edges between these nodes such that 

1) Every ṭ ∈ Ṿ is characterized by two functions Ŝ and Ð denoting the membership and non-

membership grades of ṭ ∈ Ṿ. Basically, Ŝ = [Ŝ𝐿 , Ŝ𝑈] and Ð = [Ð𝐿 , Ð𝑈] are closed 

subintervals of the unit interval [0, 1] with a condition that 0 ≤ Ŝ𝑈 + Ð𝑈 ≤ 1. Moreover, 



the term 𝑅 = [𝑅𝐿 , 𝑅𝑈] denotes the hesitancy level of ṭ ∈ Ṿ such that 𝑅𝑈 = 1 − Ŝ𝐿 − Ð𝐿 

and 𝑅𝐿 = 1 − Ŝ𝑈 − Ð𝑈. 

2) Every 𝑒 ∈ Ẻ is characterized by two functions Ŝ and Ð denoting the membership and non-

membership grades of 𝑒 ∈ Ṿ × Ṿ. Basically Ŝ = [Ŝ𝐿 , Ŝ𝑈] and Ð = [Ð𝐿 , Ð𝑈] are such that: 

Ŝ𝐿(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ𝐿(ṭ𝑖), Ŝ
𝐿(ṭ𝑗)). 

Ŝ𝑈(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ𝑈(ṭ𝑖), Ŝ
𝑈(ṭ𝑗)) such that Ŝ𝑈(ṭ𝑖, ṭ𝑗) ≥ min (Ŝ𝐿(ṭ𝑖), Ŝ

𝐿(ṭ𝑗)). 

Ð𝐿(ṭ𝑖, ṭ𝑗) ≤ max (Ð𝐿(ṭ𝑖), Ð
𝐿(ṭ𝑗)). 

Ð𝑈(ṭ𝑖, ṭ𝑗) ≤ max (Ð𝑈(ṭ𝑖), Ð
𝑈(ṭ𝑗)) such that Ð𝑈(ṭ𝑖, ṭ𝑗) ≥ max (Ð

𝐿(ṭ𝑖), Ð
𝐿(ṭ𝑗)). 

provided that  0 ≤ Ŝ𝑈 + Ð𝑈 ≤ 1. Moreover, the term Ř = [Ř𝐿 , Ř𝑈] denote the hesitancy level 

of 𝑒 ∈ Ẻ such that Ř𝑈 = 1 − Ŝ𝐿 − Ð𝐿 and Ř𝐿 = 1 − Ŝ𝑈 − Ð𝑈. 

The following example shows that Definition 6.1.7 improves the concept of IVIFG and there 

is no chance of getting undefined intervals. 

6.1.8 Example  

Consider the graph depicted in Figure 66 demonstrating the new definition of IVIFG. 

 

 

 

 

 

       

 

 

 

 

 



                                                         Figure 66 (Interval valued intuitionistic fuzzy graph) 

The next section is based on shortcomings of existing definitions of the complement of an 

IVFG and of an IVIFG together with the development of new definitions. The existing and new 

definitions are demonstrated with examples. 

6.2 New Definitions for Complement of Interval Valued Fuzzy Graph and Interval 

Valued Intuitionistic Fuzzy Graph 

It is observed that the definition of complement of IVFG did not provide justifiable results 

on some occasions. The results obtained using the current definition of IVFG leads us to obtain 

some undefined intervals, and therefore in this section we propose a new definition for 

complement of IVFG. 

For the first time, the complement of IVFG was defined in [84]. First, we review the existing 

definition and with the help of an example we pointed out its shortcomings. 

6.2.1 Definition  [84] 

The complement of an IVFG Ġ = (Ṿ, Ẻ) is defined by Ġ𝑐 = (Ṿ𝑐 , Ẻ𝑐) where Ṿ𝑐 = Ṿ and the 

membership and non-membership grades of Ẻ satisfying the conditions: 

(Ŝ𝐿)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ𝐿(ṭ𝑖), Ŝ

𝐿(ṭ𝑗)) − Ŝ
𝐿 ((ṭ𝑖, ṭ𝑗))  (Ŝ𝑈)

𝑐
(ṭ𝑖, ṭ𝑗) =

min (Ŝ𝑈(ṭ𝑖), Ŝ
𝑈(ṭ𝑗)) − Ŝ

𝑈(ṭ𝑖, ṭ𝑗). 

6.2.2 Example  

In the following two IVFGs, Figure 68 represents the complement of IVFG depicted in Figure 

67 based on based on existing definition which leads us to certain undefined intervals as 

highlighted. 



       

      

     Figure 67 (Interval valued fuzzy graph) 

 

      

      Figure 68 (Complement of graph depicted in Figure 67 based on Definition (6.2.1) giving 

us   undefined intervals) 

Another definition of complement of IVFG is defined in [79] which is described as: 

6.2.3 Definition  [79] 

The complement of an IVFG Ġ = (Ṿ, Ẻ) is defined by Ġ𝑐 = (Ṿ𝑐 , Ẻ𝑐) where Ṿ𝑐 = Ṿ and the 

membership functions of Ẻ𝑐 satisfies the following: 

(Ŝ𝐿)
𝑐
(ṭ𝑖, ṭ𝑗) = {

0                                          𝑖𝑓       Ŝ𝐿(ṭ𝑖, ṭ𝑗) ≥ 0

min (Ŝ𝐿(ṭ𝑖), Ŝ
𝐿(ṭ𝑗))      𝑖𝑓       Ŝ

𝐿(ṭ𝑖, ṭ𝑗) = 0
} 



(Ŝ𝑈)
𝑐
(ṭ𝑖, ṭ𝑗) = {

0                                          𝑖𝑓       Ŝ𝑈(ṭ𝑖, ṭ𝑗) ≥ 0

min (Ŝ𝑈(ṭ𝑖), Ŝ
𝑈(ṭ𝑗))      𝑖𝑓       Ŝ

𝑈(ṭ𝑖, ṭ𝑗) = 0
} 

This definition is not well defined as it is not valid for all types of IVFGs. The problem in this 

definition of complement is that it does not possesses the property (Ġ𝑐)𝑐 = Ġ. This is 

demonstrated in the following example. 

6.2.4 Example  

The complement of IVFG as exhibited in Figure 67 is depicted in Figure 69 below and it is 

observed that all the edges have disappeared surprisingly which seems insignificant. Now we 

determine the complement of Figure 69 again and put it on display in Figure 70 which clearly 

indicates that the basic result of complement i.e. (Ġ𝑐)𝑐 = Ġ  does not hold true for Definition 

6.2.3. 

    

                       Figure 69 (Complement of Figure (67)) 

 



      

   Figure 70 (Complement of Figure (69) based on Definition (6.2.3)) 

Moreover, Definition 6.2.3  is used to find the complement of a complete IVFG in [79] 

by Akram and Dudek where this definition possesses the property of a complement i.e. (Ġ𝑐)𝑐 =

Ġ. But we need a definition of complement which can be used for entire range of IVFG and not 

only complete IVFG therefore we develop a new well-defined definition for the complement 

of IVFGs as follows. 

6.2.5 Definition  

The complement of IVFG Ġ = (Ṿ, Ẻ) is defined by Ġ𝑐 = (Ṿ𝑐, Ẻ𝑐) where Ṿ𝑐 = Ṿ and the 

membership grades of Ẻ satisfies the following properties: 

(Ŝ𝐿)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ𝐿(ṭ𝑖), Ŝ

𝐿(ṭ𝑗)) − Ŝ
𝐿 ((ṭ𝑖, ṭ𝑗)). 

(Ŝ𝑈)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ𝑈(ṭ𝑖), Ŝ

𝑈(ṭ𝑗)) − Ŝ
𝑈(ṭ𝑖, ṭ𝑗) + min (Ŝ

𝐿(ṭ𝑖), Ŝ
𝐿(ṭ𝑗)). 

In the following examples, we not only demonstrate the new definition but also verify 

that the basic property of the notion of complement as presented in definition 6.2.5 is available, 

i.e. (Ġ𝑐)𝑐 = Ġ. 

 

 



6.2.6 Example  

In what follows, Figure 71 represents the complement of Figure 67 and Figure 72 represents 

the complement of Figure 71. Hence, as we claimed the equality (Ġ𝑐)𝑐 = Ġ holds true for our 

proposed new definition. 

      

            Figure 71 (Complement of graph depicted in Figure (67)) 

      

     Figure 72 (The complement of graph depicted in Figure (71)) 

Now we develop the definition of complement for IVIFGs because the existing definition does 

not make any sense in some cases as we described for IVFGs. 

6.2.7 Definition  

The complement of IVIFG Ġ = (Ṿ, Ẻ) is defined by Ġ𝑐 = (Ṿ𝑐, Ẻ𝑐) where Ṿ𝑐 = Ṿ and the 

membership and non-membership grades of Ẻ satisfied the conditions: 



(Ŝ𝐿)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ𝐿(ṭ𝑖), Ŝ

𝐿(ṭ𝑗)) − Ŝ
𝐿 ((ṭ𝑖, ṭ𝑗)). 

(Ŝ𝑈)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ𝑈(ṭ𝑖), Ŝ

𝑈(ṭ𝑗)) − Ŝ
𝑈(ṭ𝑖, ṭ𝑗) + min (Ŝ

𝐿(ṭ𝑖), Ŝ
𝐿(ṭ𝑗)). 

(Ð𝐿)𝑐(ṭ𝑖, ṭ𝑗) = max (Ð𝐿(ṭ𝑖), Ð
𝐿(ṭ𝑗)) − Ð

𝐿 ((ṭ𝑖 , ṭ𝑗)). 

(Ð𝑈)𝑐(ṭ𝑖, ṭ𝑗) = max (Ð𝑈(ṭ𝑖), Ð
𝑈(ṭ𝑗)) − Ð

𝑈(ṭ𝑖 , ṭ𝑗) + max (Ð
𝐿(ṭ𝑖), Ð

𝐿(ṭ𝑗)). 

6.2.8 Example  

Consider the following IVIFGs where the graph depicted in Figure 74 represents the 

complement of Figure 73. Moreover, through some easy calculations, one can easily verify that 

(Ġ𝑐)𝑐 = Ġ. 

    

        Figure 73 (Interval valued intuitionistic fuzzy graph) 



             

Figure 74 (Complement of interval valued intuitionistic fuzzy graph depicted in Figure (73)) 

In the next section, we discuss the limitations of SVNGS, IVNGs, and their complements. In 

addition, we develop some new valid definitions. 

6.3 Improvements in Single Valued Neutrosophic Graphs and Interval Valued 

Neutrosophic Graphs 

In this section, we study the SVNGs proposed in [89] and IVNGs developed in [94] 

and we describe their shortcomings with some examples. Then a new definition is proposed 

for both SVNGs and IVNGs and their complements are discussed. In support of these new 

definitions, we present some examples. 

6.3.1 Definition  [89] 

A SVNG is a pair Ġ = (Ṿ, Ẻ) where Ṿ is the set of nodes and Ẻ is the collection of edges 

between these nodes such that 

1) Every ṭ ∈ Ṿ is characterized by three functions Ŝ: Ṿ → [0, 1], Î: Ṿ → [0, 1] and Ð: Ṿ → [0, 1] 

denoting the membership, neutral and non-membership grades of ṭ ∈ Ṿ which satisfy 0 ≤

Ŝ + Î + Ð ≤ 3.  



2) Every 𝑒 ∈ Ẻ is characterized by three functions Ŝ: Ṿ × Ṿ → [0, 1], Î: Ṿ × Ṿ → [0, 1] and 

Ð: Ṿ × Ṿ → [0, 1] denoting the membership, neutral and non-membership grades of 𝑒 ∈

Ṿ × Ṿ satisfies:  

Ŝ(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ(ṭ𝑖), Ŝ(ṭ𝑗)) 

Î(ṭ𝑖, ṭ𝑗) ≥ max (Î(ṭ𝑖), Î(ṭ𝑗)) 

Ð(ṭ𝑖, ṭ𝑗) ≥ max (Ð(ṭ𝑖), Ð(ṭ𝑗)) 

Which satisfy the inequality 0 ≤ Ŝ + Î + Ð ≤ 3. 

It is observed that this definition is not suitable and needed to be modified based on two 

reasons. The first reason lies in the fact that as SVNG is a generalization of IFG. So, by 

exempting the indeterminacy value Definition 6.3.1 should reduce to IFG but in actually it does 

not happen as the non-membership degree of an edge in IFG and in SVNG are defined in a 

different way i.e. the non-membership degree for IFG is defined as Ð(ṭ𝑖, ṭ𝑗) ≤

max (Ð(ṭ𝑖), Ð(ṭ𝑗)) while in case of SVNGs it is defined as Ð(ṭ𝑖, ṭ𝑗) ≥ max (Ð(ṭ𝑖), Ð(ṭ𝑗)). 

The second reason is based on definition of complement of SVNGs. As the complement 

of an SVNG needed to be an SVNG but it did not happen in some occasions. We present the 

current definition of complement of SVNG and with the help of an example describe that the 

complement of an SVNG is not well defined. 

6.3.2 Definition  [89] 

The complement of SVNG Ġ = (Ṿ, Ẻ) is defined by Ġ𝑐 = (Ṿ𝑐, Ẻ𝑐) where Ṿ𝑐 = Ṿ and the 

membership, neutral value and non-membership grades of Ẻ satisfies the conditions: 

(Ŝ)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ(ṭ𝑖), Ŝ(ṭ𝑗)) − Ŝ ((ṭ𝑖, ṭ𝑗)). 



(Î)
𝑐
(ṭ𝑖 , ṭ𝑗) = max (Î(ṭ𝑖), Î(ṭ𝑗)) − Î ((ṭ𝑖, ṭ𝑗)). 

(Ð)𝑐(ṭ𝑖, ṭ𝑗) = max (Ð(ṭ𝑖), Ð(ṭ𝑗)) − Ð((ṭ𝑖, ṭ𝑗)). 

Keeping in mind Definition 6.3.2 and consider the following example, where talking the 

complement of an SVNG does not remain an SVNG. All this leads to some modification in the 

basic definition of SVNG which not only generalizes an IFG but also compatible to satisfy the 

basic properties of taking complement. 

6.3.3 Example  

In the following figures, Figure 75 represents an SVNGs and Figure 76 represents the 

complement of SVNGs depicted in Figure 75. It is clear from Figure 76 that the complement 

of SVNG is not an SVNG. 

    

   Figure 75 (Single valued neutrosophic graph) 



    

Figure 76 (Complement of single valued neutrosophic graphic depicted in Figure (75)) 

Now we present a new definition for SVNG as a generalization of IFG which is well-defined. 

6.3.4 Definition  

An SVNG is a pair Ġ = (Ṿ, Ẻ) where Ṿ is the set of nodes and Ẻ is the collection of edges 

between these nodes such that 

1. Every ṭ ∈ Ṿ is characterized by three functions Ŝ: Ṿ → [0, 1], Î: Ṿ → [0, 1] and Ð: Ṿ → [0, 1] 

denoting the membership, neutral and non-membership grades of ṭ ∈ Ṿ which satisfy the 

inequality 0 ≤ Ŝ + Î + Ð ≤ 3.  

2. Every 𝑒 ∈ Ẻ is characterized by three functions Ŝ: Ṿ × Ṿ → [0, 1], Î: Ṿ × Ṿ → [0, 1] and 

Ð: Ṿ × Ṿ → [0, 1] denoting the membership, neutral and non-membership grades of 𝑒 ∈

Ṿ × Ṿ satisfying   

Ŝ(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ(ṭ𝑖), Ŝ(ṭ𝑗)) 

Î(ṭ𝑖, ṭ𝑗) ≤ max (Î(ṭ𝑖), Î(ṭ𝑗)) 

Ð(ṭ𝑖, ṭ𝑗) ≤ max (Ð(ṭ𝑖), Ð(ṭ𝑗)) 

provided that 0 ≤ Ŝ + Î + Ð ≤ 3. 



6.3.5 Example  

 In the following figures, Figure 77 represents an SVNG compatible with the new definition 

and Figure 78 represents the complement of the SVNG depicted in Figure 77. 

     

      Figure 77 (Single valued neutrosophic graph) 

 

      
     

Figure 78 (Complement of graph depicted in Figure (77)) 

Likewise, in SVNGs the same kind of flaws exists in the definition of IVNGs. First, we 

present the existing definition of IVNG and point out its limitation with the help of an example. 

Then we develop the new definition for IVNG and support it with an example. After developing 



the new definition for IVNGs, we discuss the concept of complement for IVNGs by considering 

the defects exist in forming complements of IVFG and IVIFG.  

6.3.6 Definition  [94] 

An IVNG is a pair Ġ = (Ṿ, Ẻ) where Ṿ is the set of nodes and Ẻ is the collection of edges 

between these nodes such that 

1. Every ṭ ∈ Ṿ is characterized by three functions Ŝ, Î and Ð denoting the membership, neutral 

and non-membership grades of ṭ ∈ Ṿ. Basically, Ŝ = [Ŝ𝐿 , Ŝ𝑈], Î = [Î𝐿 , Î𝑈] and Ð = [Ð𝐿 , Ð𝑈] 

are closed subintervals of the unit interval [0, 1] which satisfy the inequality 0 ≤ Ŝ𝑈 + Î𝑈 +

Ð𝑈 ≤ 3.  

2. Every 𝑒 ∈ Ẻ is characterized by three functions Ŝ, Î and Ð denoting the membership, neutral 

and non-membership grades of 𝑒 ∈ Ṿ × Ṿ. Basically Ŝ = [Ŝ𝐿, Ŝ𝐿], Î = [Î𝐿 , Î𝑈] and Ð =

[Ð𝐿 , Ð𝐿] are such that: 

Ŝ𝐿(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ𝐿(ṭ𝑖), Ŝ
𝐿(ṭ𝑗))  Ŝ𝑈(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ𝑈(ṭ𝑖), Ŝ

𝑈(ṭ𝑗)) 

Î𝐿(ṭ𝑖, ṭ𝑗) ≥ max (Î𝐿(ṭ𝑖), Î
𝐿(ṭ𝑗))  Î𝑈(ṭ𝑖, ṭ𝑗) ≥ max (Î𝑈(ṭ𝑖), Î

𝑈(ṭ𝑗)) 

Ð𝐿(ṭ𝑖, ṭ𝑗) ≥ max (Ð𝐿(ṭ𝑖), Ð
𝐿(ṭ𝑗)) Ð𝑈(ṭ𝑖, ṭ𝑗) ≥ max (Ð𝑈(ṭ𝑖), Ð

𝑈(ṭ𝑗)) 

which satisfy the inequality 0 ≤ Ŝ𝑈 + Î𝑈 + Ð𝑈 ≤ 3. 

Likewise, IVFG and IVIFG are defined, Definition 6.3.6 sometime leads to undefined closed 

sub-intervals as shown in following example. 

6.3.7 Example  

Consider the following example of an IVNG as exhibited in Figure 79 based on Definition 

6.3.6 leading us to some undefined intervals. 

 



 

    

  Figure 79 (Interval valued neutrosophic graph with undefined intervals) 

Now we present a new definition of IVNG as follows. 

6.3.8 Definition  

An IVNG is a pair Ġ = (Ṿ, Ẻ) where Ṿ is the set of nodes and Ẻ is the collection of edges 

between these nodes such that 

1) Every ṭ ∈ Ṿ is characterized by three functions Ŝ, Î and Ð denoting the membership, neutral 

and non-membership grades of ṭ ∈ Ṿ. Basically, Ŝ = [Ŝ𝐿 , Ŝ𝑈], Î = [Î𝐿 , Î𝑈] and Ð = [Ð𝐿 , Ð𝑈] 

are closed subintervals of the unit interval [0, 1] with a condition that 0 ≤ Ŝ𝑈 + Î𝑈 + Ð𝑈 ≤

3.  

2) Every 𝑒 ∈ Ẻ is characterized by three functions Ŝ, Î and Ð denoting the membership, neutral 

and non-membership grades of 𝑒 ∈ Ṿ × Ṿ. Basically Ŝ = [Ŝ𝐿, Ŝ𝐿], Î = [Î𝐿 , Î𝑈] and Ð =

[Ð𝐿 , Ð𝐿] are such that: 

Ŝ𝐿(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ𝐿(ṭ𝑖), Ŝ
𝐿(ṭ𝑗))  Ŝ𝑈(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ𝑈(ṭ𝑖), Ŝ

𝑈(ṭ𝑗)) 



Î𝐿(ṭ𝑖, ṭ𝑗) ≤ max (Î𝐿(ṭ𝑖), Î
𝐿(ṭ𝑗))  Î𝑈(ṭ𝑖, ṭ𝑗) ≤ max (Î𝑈(ṭ𝑖), Î

𝑈(ṭ𝑗)) 

Ð𝐿(ṭ𝑖, ṭ𝑗) ≤ max (Ð𝐿(ṭ𝑖), Ð
𝐿(ṭ𝑗)) Ð𝑈(ṭ𝑖, ṭ𝑗) ≤ max (Ð𝑈(ṭ𝑖), Ð

𝑈(ṭ𝑗)) 

provided that Ŝ𝑈(ṭ𝑖, ṭ𝑗) ≤ Ŝ𝐿(ṭ𝑖, ṭ𝑗), Î
𝐿(ṭ𝑖, ṭ𝑗) ≤ Î

𝑈(ṭ𝑖, ṭ𝑗), Ð
𝐿(ṭ𝑖, ṭ𝑗) ≤ Ð𝑈(ṭ𝑖, ṭ𝑗) and 0 ≤

Ŝ𝑈 + Î𝑈 + Ð𝑈 ≤ 3. 

6.3.9 Example  

Consider the graph depicted in Figure 80 demonstrating the new definition of IVNGs. 

    

                   Figure 80 (Interval valued neutrosophic graph) 

Next, we discuss the existing definition for taking the complement of IVNG and show 

its limitations with the help of examples. Then we propose a new definition for the complement 

of IVNG as the existing definition leads us to some undefined intervals. 

6.3.10 Definition  [89] 

The complement of IVNG Ġ = (Ṿ, Ẻ) is defined by Ġ𝑐 = (Ṿ𝑐 , Ẻ𝑐) where Ṿ𝑐 = Ṿ and the 

membership, abstinence and non-membership grades of Ẻ are satisfying: 

(Ŝ𝐿)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ𝐿(ṭ𝑖), Ŝ

𝐿(ṭ𝑗)) − Ŝ
𝐿 ((ṭ𝑖, ṭ𝑗)). 



(Ŝ𝑈)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ𝑈(ṭ𝑖), Ŝ

𝑈(ṭ𝑗)) − Ŝ
𝑈(ṭ𝑖, ṭ𝑗). 

(Î𝐿)
𝑐
(ṭ𝑖, ṭ𝑗) = max (Î

𝐿(ṭ𝑖), Î
𝐿(ṭ𝑗)) − Î

𝐿 ((ṭ𝑖, ṭ𝑗)). 

(Î𝑈)
𝑐
(ṭ𝑖, ṭ𝑗) = max (Î𝑈(ṭ𝑖), Î

𝑈(ṭ𝑗)) − Î
𝑈(ṭ𝑖, ṭ𝑗). 

(Ð𝐿)𝑐(ṭ𝑖, ṭ𝑗) = max (Ð𝐿(ṭ𝑖), Ð
𝐿(ṭ𝑗)) − Ð

𝐿 ((ṭ𝑖 , ṭ𝑗)). 

(Ð𝑈)𝑐(ṭ𝑖, ṭ𝑗) = max (Ð𝑈(ṭ𝑖), Ð
𝑈(ṭ𝑗)) − Ð

𝑈(ṭ𝑖 , ṭ𝑗). 

6.3.11 Example  

The following IVNG depicted in Figure 81 shows that the Definition 6.3.10 for complement 

of IVNG leads us to some undefined intervals. 

    

                            Figure 81(Complement of Figure (79)) 

As IVNG is a generalization of IVFG and IVIFG so its complement defined in [89] is not well-

defined therefore we propose a new definition for complement of IVNG as follows. 

6.3.12 Definition  

The complement of IVNG Ġ = (Ṿ, Ẻ) is defined by Ġ𝑐 = (Ṿ𝑐 , Ẻ𝑐) where Ṿ𝑐 = Ṿ and the 

membership, abstinence and non-membership grades of Ẻ are satisfying the conditions: 



(Ŝ𝐿)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ𝐿(ṭ𝑖), Ŝ

𝐿(ṭ𝑗)) − Ŝ
𝐿 ((ṭ𝑖, ṭ𝑗)). 

(Ŝ𝑈)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ𝑈(ṭ𝑖), Ŝ

𝑈(ṭ𝑗)) − Ŝ
𝑈(ṭ𝑖, ṭ𝑗) + min (Ŝ

𝐿(ṭ𝑖), Ŝ
𝐿(ṭ𝑗)). 

(Î𝐿)
𝑐
(ṭ𝑖, ṭ𝑗) = max (Î

𝐿(ṭ𝑖), Î
𝐿(ṭ𝑗)) − Î

𝐿 ((ṭ𝑖, ṭ𝑗)). 

(Î𝑈)
𝑐
(ṭ𝑖, ṭ𝑗) = max (Î𝑈(ṭ𝑖), Î

𝑈(ṭ𝑗)) − Î
𝑈(ṭ𝑖, ṭ𝑗) + max (Î

𝐿(ṭ𝑖), Î
𝐿(ṭ𝑗)). 

(Ð𝐿)𝑐(ṭ𝑖, ṭ𝑗) = max (Ð𝐿(ṭ𝑖), Ð
𝐿(ṭ𝑗)) − Ð

𝐿 ((ṭ𝑖 , ṭ𝑗)). 

6.3.13 Example  

 Consider the following IVNGs where the graph depicted in Figure 83 is the complement of 

the graph depicted in Figure 82. Moreover, through some easy calculation, one can easily verify 

that (Ġ𝑐)𝑐 = Ġ.  

(Ð𝑈)𝑐(ṭ𝑖, ṭ𝑗) = max (Ð𝑈(ṭ𝑖), Ð
𝑈(ṭ𝑗)) − Ð

𝑈(ṭ𝑖 , ṭ𝑗) + max (Ð
𝐿(ṭ𝑖), Ð

𝐿(ṭ𝑗)). 

 

    

 

           Figure 82 (Interval valued neutrosophic graph) 



    

    

Figure 83 (Complement of graph depicted in Figure (82)) 

So far in our study, we have developed the theory of IVFGs and its generalizations providing 

examples that explained the limitation in existing definitions and the fitness of new definitions. 

6.3.14 Remark  

The work done proposed is applicable whether the graphs are directed or undirected. 

Now a real-life application is presented to show the feasibility of proposed work. The 

process of ranking universities is explained based on SVNGs. 

6.4 Ranking of Universities by Higher Education Commission 

The higher education commission (HEC) of Pakistan needed to evaluate the Pakistani 

universities in research perspectives. HEC Pakistan plan to give away some financial support 

to those universities whose research is comparatively better. The university with good research 

score will earn greater financial support. Here we shall discuss the case of federal capital 

Islamabad. Four universities 𝑧1, 𝑧2, 𝑧3 and 𝑧4 from Islamabad are chosen representing Quaid e 

Azam university, National University of Science and Technology, Comsats university and 

International Islamic University Islamabad. The criterion for ranking of universities is 



‘’research productivity’’.  The members of quality assurance cell (QEC) of HEC provide their 

information in the form of a single valued neutrosophic preference relations (SVNPRs) as given 

in Figure 84. The weight vector in this case is given by  𝑤 = (0.2,0.1,0.3,0.2)𝑇. The detailed 

steps of algorithm for this process are explained followed by stepwise calculations of this 

problem.  

6.4.1 Steps of Algorithm 

Step 1: Establishing SVNPRs: This step involves the evaluation of objects by decision 

makers in the form of SVNGs. 

Step 2: The SVNPRs forms a relational matrix known as single valued neutrosophic 

relational matrix (SVNRM) denoted by Ṙ = (ṙ𝑖𝑗)𝑛×𝑛. 

Step 3: This step involves the aggregation of information provided in the relational matrix in 

Step 2.  

Step 4: This step involves the ranking of aggregated data based on score function. 

Now we solve the problem stepwise demonstrating all calculations. 

Step 1: this step involves the information from QEC of HEC Pakistan about universities in 

the form of SVNGs as exhibited in Figure 84. 



   

  

     Figure 84 (Directed Network of the Single valued neutrosophic information) 

Here, the importance of new definition of SVNG is clear. In decision making problems, 

we usually have two types of attributes known as attributes of cost type and of benefit types. 

In case the attributes are of cost types, the data is normalized using the definition of 

complement of SVNGs. Therefore, if we utilize the existing definition of SVNGs and its 

complement as we have done in Example 11. We obtained some undefined results. Similar is 

the case with other structures. All this shows the importance of new proposed definitions of 

several fuzzy graphs and their complements.  

Step 2: From SVNPRs provided in Figure 83, we have the following relational matrix. 

Ṙ = (ṙ𝑖𝑗)4×4 = (

(0.5,0.5,0.5) (0.3,0.4,0.5) (0.4,0.2,0.3)
(0.3,0.4,0.5) (0.5,0.5,0.5) (0.2,0.4,0.4)
(0.2,0.4,0.1)
(0.3,0.3,0.1)

(0.3,0.3,0.4)
(0.3,0.2,0.3)

(0.5,0.5,0.5)
(0.3,0.1,0.3)

    

(0.4,0.2,0.2)
(0.1,0.4,0.5)
(0.1,0.5,0.3)
(0.5,0.5,0.5)

) 

Step 3: Using single-valued neutrosophic weighted averaging operator on relational matrix to 

aggregate the data. 



ṙ𝑖 = ÎṾ𝑃𝐹𝑊𝐴(ṙ𝑖1, ṙ𝑖2, … , ṙ𝑖𝑛) = (1 − (∏(1 − Ŝ𝑖𝑗)

𝑛

𝑗=1

ẅ𝑗

, (∏Î𝑖𝑗

𝑛

𝑗=1

)

ẅ𝑗

, (∏Ð𝑖𝑗

𝑛

𝑗=1

)

ẅ𝑗

) 

The aggregation results are given as: 

ṙ1 = (0.349302063,0.3552344,0.4102356) 

ṙ2 = (0.204404888, 0.4912912, 0.5371592) 

ṙ3 = (0.266048598, 0.5219262, 0.3675541) 

ṙ4 = (0.297165899,0.2919586,0.3393458) 

Step 4: The aggregated data obtained in Step 3 is ranked based on the following score 

function  and the ranking results are given below.  

ṣ(ṙ𝑖) =
(Ŝ + 1 −  Î + 1 − Ð)

3
 

ṣ(ṙ1) = 0.527944021,  ṣ(ṙ2) = 0.391984829,  ṣ(ṙ3) = 0.458856099,  ṣ(ṙ4) =

0.555287166 

Finally, we have the following ranking 

 ẓ4 >  ẓ1 >  ẓ3 >  ẓ2 

The ranking results indicate that International Islamic University Islamabad stands at number 

1 in research productivity among four universities of federal capital of Islamabad in the 

evaluation of quality assurance cell of HEC. If we use geometric aggregation operators instead 

of averaging aggregation operators, the results would be same. 

 

 



6.5 Conclusion 

In this chapter, we successfully pointed out the shortcomings existing in the current 

definitions of IVFG, IVIFG with the help of examples and developed a new improved 

definition for these concepts. It is also discussed that the current definitions of complement for 

IVFG and IVIFG leads us to some undefined results, therefore some new definitions for 

complement of IVFG and IVIFG are proposed and supported by examples. Further it is 

observed that the definition of SVNG has some serious flaws, described by examples. So, a 

new modified definition for SVNG has been developed and supported by some examples. The 

concept of IVNG is also modified and the validity of the modified definition is tested with 

examples. Throughout this chapter, we defined all those terms which were not previously 

defined well. In near future, we shall investigate some other results of IVFGs, IVIFG, IVNG, 

SVNGs for any possible shortcomings if existed and then try to improve them. 

 

 

 

 

 

 

 

 

 

 



Chapter 7 

An Approach Towards Decision Making and Shortest Path 

Problems Using the Concepts of Interval-Valued Pythagorean 

Fuzzy Information 

7.1 Interval Valued Pythagorean Fuzzy Graphs 

In this section the concept of IVPyFG is defined and some other useful graph related 

idea are explored. To make these ideas more understandable, each concept is supported with 

examples.  

7.1.1 Definition [32] 

 An IVPyFS (over a universal set 𝑋) is of the form 𝐴 = {𝑥, (Ŝ(𝑥), Ð(𝑥))} where Ŝ and Ð are 

mappings from 𝑋 to some subinterval of [0, 1] i.e. Ŝ(𝑥) = [Ŝ𝐿(𝑥), Ŝ𝑈(𝑥)] and Ð(𝑥) =

[Ð𝐿(𝑥), Ð𝑈(𝑥)] with a condition 0 ≤ (Ŝ𝑈(𝑥))
2

+ (Ð𝑈(𝑥))
2
≤ 1. 

Now we defined a score function for ranking purpose of IVPyFNs. 

7.1.2 Definition  

The score function for an IVPyFN 𝐴 = ([Ŝ𝐿 , Ŝ𝑈], [Ð𝐿 , Ð𝑈]) is defined as: 

Ŝ𝐶(𝐴) =
(Ŝ𝐿)

2
(1 − (Ð𝐿)2) + (Ŝ𝑈)2((1 − (Ð𝑈)2))

2
  Ŝ𝐶(𝐴) ∈ [0, 1] 

7.1.3 Definition 

An IVPyFG is a pair Ġ = (Ṿ, Ẻ) where Ṿ is the set of nodes and Ẻ is the collection of edges 

between these nodes and 



1) Every ṭ ∈ Ṿ is characterized by two functions Ŝ and Ð denote the degree of membership 

and non-membership of ṭ ∈ Ṿ. Basically,  Ŝ = [Ŝ𝐿 , Ŝ𝐿] and Ð = [Ð𝐿 , Ð𝐿] are subintervals 

of the unit interval [0, 1] with a condition that 0 ≤ (Ŝ𝑈)
2
+ (Ð𝑈)2 ≤ 1. Moreover, the 

term 𝑅 = [𝑅𝑈, 𝑅𝐿] denote the refusal degree of ṭ ∈ Ṿ such that 𝑅𝑈 =

√1 − (Ŝ𝐿)
2
− (Ð𝐿)2

𝑛

 and 𝑅𝐿 = √1 − (Ŝ𝑈)
2
− (Ð𝑈)2

𝑛

. 

2) Every 𝑒 ∈ Ẻ is characterized by two functions Ŝ and Ð denote the degree of membership 

and non-membership of 𝑒 = (Ŝ, Ð) ∈ Ṿ × Ṿ. Basically Ŝ = [Ŝ𝐿 , Ŝ𝐿] and Ð = [Ð𝐿 , Ð𝐿] 

are defined as: 

Ŝ𝐿(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ𝐿(ṭ𝑖), Ŝ
𝐿(ṭ𝑗)) and 

 Ŝ𝑈(ṭ𝑖, ṭ𝑗) ≤ min (Ŝ𝑈(ṭ𝑖), Ŝ
𝑈(ṭ𝑗)) s.t Ŝ𝑈 ≥ min (Ŝ𝐿(ṭ𝑖), Ŝ

𝐿(ṭ𝑗)). 

Ð𝐿(ṭ𝑖, ṭ𝑗) ≤ max (Ð𝐿(ṭ𝑖), Ð
𝐿(ṭ𝑗)) and 

 Ð𝑈(ṭ𝑖, ṭ𝑗) ≤ max (Ð𝑈(ṭ𝑖), Ð
𝑈(ṭ𝑗)) s.t Ð𝑈 ≥ max (Ð𝐿(ṭ𝑖), Ð

𝐿(ṭ𝑗)). 

with a condition that  0 ≤ (Ŝ𝑈)
2
+ (Ð𝑈(𝑥))

2
≤ 1. Moreover, the term Ř = [Ř𝑈, Ř𝐿] denote 

the refusal degree of 𝑒 ∈ Ẻ such that Ř𝑈 = √1 − (Ŝ𝐿)
2
− (Ð𝐿)2

𝑛

 and Ř𝐿 =

√1 − (Ŝ𝑈)
2
− (Ð𝑈)2

𝑛

. 

7.1.4 Theorem  

IVPyFG is a generalization of IVFG and IVIFG. 

Proof: We prove this result as follows: 

1) If we take 𝑛 = 1. The definition of IVPyFG reduces to IVIFG. 



Figure 85 (Interval valued Pythagorean fuzzy graph) 

2) If we take 𝑛 = 1, Ð𝐿 = Ð𝑈 = 0. The definition of IVPFG reduces to IVFG. 

This result shows the significance of the new concept as it the generalization of all the 

existing structures and can deal with the situations where the existing structures fails due to the 

limitations in their structures. 

7.1.5 Example  

The following Figure 85 is an example of IVPyFG. 

   

. 

 

7.1.6 Definition  

 An IVPyFG Ġ′ = (Ṿ′, Ẻ′) is said to be interval valued Pythagorean fuzzy subgraph 

(IVPFSG) of the graph Ġ = (Ṿ, Ẻ) iff Ṿ′ ⊆ Ṿ and Ẻ′ ⊆ Ẻ. 

 

 

 

 

 

 

 



 

7.1.7 Example  

 The following Figure 86 provide is an example of IVPyFSG in Figure 85 of IVPyFG. 

   

 

One of the important concept in graph theory is complement of a graph which has been 

discussed widely in the frameworks of FGs and IFGs and other fuzzy algebraic structures. Here 

we defined the complement of IVPyFG which is a generalization of the complement of IVIFG 

and IVFG under some restrictions. The defined concept is then supported with the help of some 

examples and results. 

7.1.8 Definition  

 The degree of a vertex in an IVPyFG Ġ = (Ṿ, Ẻ)  is denoted and defined by  

d(𝑢) = (ɖŜ1𝐿(𝑢), ɖŜ1𝑈(𝑢), ɖÐ1𝐿(𝑢), ɖÐ1𝑈(𝑢))Where ɖŜ1𝐿(𝑢) = ∑ Ŝ2𝐿(𝑢𝑦)𝑢≠𝑦
𝑢∈Ṿ

, ɖŜ1𝑈(𝑢) =

∑ Ŝ2𝑈(𝑢𝑦)𝑢≠𝑦
𝑢∈Ṿ

 and ɖÐ1𝐿(𝑢) = ∑ Ð2𝐿(𝑢𝑦)𝑢≠𝑦
𝑢,𝑦∈Ṿ

, ɖÐ1𝑈(𝑢) = ∑ Ð2𝑈(𝑢𝑦)𝑢≠𝑦
𝑢,𝑦∈Ṿ

. 

Here (ɖŜ1𝐿(𝑢), ɖŜ1𝑈(𝑢)) represents the lower and upper degrees of membership function of 

the vertex and (ɖÐ1𝐿(𝑢), ɖÐ1𝑈(𝑢)) represents the lower and upper degrees of non-

membership function of the vertex. 

 

Figure 86 (Interval valued Pythagorean fuzzy subgraph) 



7.1.9 Definition  

The complement of IVPyFG Ġ = (Ṿ, Ẻ) is defined by Ġ𝑐 = (Ṿ𝑐 , Ẻ𝑐) where Ṿ𝑐 = Ṿ and the 

membership grades of Ẻ are defined by: 

(Ŝ𝐿)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ𝐿(ṭ𝑖), Ŝ

𝐿(ṭ𝑗)) − Ŝ
𝐿 ((ṭ𝑖, ṭ𝑗)). 

(Ŝ𝑈)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ𝑈(ṭ𝑖), Ŝ

𝑈(ṭ𝑗)) − Ŝ
𝑈(ṭ𝑖, ṭ𝑗) + min (Ŝ

𝐿(ṭ𝑖), Ŝ
𝐿(ṭ𝑗)). 

(Ð𝐿)𝑐(ṭ𝑖, ṭ𝑗) = max (Ð𝐿(ṭ𝑖), Ð
𝐿(ṭ𝑗)) − Ð

𝐿(ṭ𝑖 , ṭ𝑗). 

(Ð𝑈)𝑐(ṭ𝑖, ṭ𝑗) = max (Ð𝑈(ṭ𝑖), Ð
𝑈(ṭ𝑗)) − Ð

𝑈(ṭ𝑖 , ṭ𝑗) + max (Ð
𝐿(ṭ𝑖), Ð

𝐿(ṭ𝑗)). 

7.1.10 Theorem  

 For IVPyFG Ġ = (Ṿ, Ẻ), (Ġ𝑐)𝑐 = Ġ. 

Proof: Let Ġ = (Ṿ, Ẻ) be an IVPyFG. Then by definition of complement, we prove this result 

as: 

(Ŝ𝐿)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ𝐿(ṭ𝑖), Ŝ

𝐿(ṭ𝑗)) − Ŝ
𝐿 ((ṭ𝑖, ṭ𝑗)). 

((Ŝ𝐿)
𝑐
)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ𝐿(ṭ𝑖), Ŝ

𝐿(ṭ𝑗)) − (min (Ŝ
𝐿(ṭ𝑖), Ŝ

𝐿(ṭ𝑗)) − Ŝ
𝐿 ((ṭ𝑖, ṭ𝑗))) =

Ŝ𝐿 ((ṭ𝑖, ṭ𝑗)). 

(Ŝ𝑈)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ𝑈(ṭ𝑖), Ŝ

𝑈(ṭ𝑗)) − Ŝ
𝑈(ṭ𝑖, ṭ𝑗) + min (Ŝ

𝐿(ṭ𝑖), Ŝ
𝐿(ṭ𝑗)). 

((Ŝ𝑈)
𝑐
)
𝑐
(ṭ𝑖, ṭ𝑗) = min (Ŝ𝑈(ṭ𝑖), Ŝ

𝑈(ṭ𝑗)) − (min (Ŝ
𝑈(ṭ𝑖), Ŝ

𝑈(ṭ𝑗)) − Ŝ
𝑈(ṭ𝑖, ṭ𝑗) +

min (Ŝ𝐿(ṭ𝑖), Ŝ
𝐿(ṭ𝑗))) + min (Ŝ

𝐿(ṭ𝑖), Ŝ
𝐿(ṭ𝑗)). 

((Ŝ𝑈)
𝑐
)
𝑐
(ṭ𝑖, ṭ𝑗) = Ŝ𝑈(ṭ𝑖, ṭ𝑗). 



Similarly, we can prove that 

((Ð𝐿)𝑐)𝑐(ṭ𝑖, ṭ𝑗) = Ð𝐿(ṭ𝑖, ṭ𝑗). 

((Ð𝑈)𝑐)𝑐(ṭ𝑖, ṭ𝑗) = Ð
𝑈(ṭ𝑖, ṭ𝑗). 

Hence, (Ġ𝑐)𝑐 = Ġ. 

7.1.11 Example  

Consider the following IVPyFGs where the graph depicted in Figure 88 is the complement of 

the graph depicted in Figure 87. Moreover, through some easy calculation, one can easily verify 

that (Ġ𝑐)𝑐 = Ġ.   

                                  

                                      Figure 87 (Interval valued PyFG) 

                                    



Figure 89 (Strong IVPyFG) 

   Figure 88 (Complement of IVPyFG in Figure (87)) 

 

7.1.12 Definition  

 An IVPyFG is known as: 

5) Semi Ŝ strong: if Ŝ𝐿(ṭ𝑖, ṭ𝑗) = min (Ŝ
𝐿(ṭ𝑖), Ŝ

𝐿(ṭ𝑗)) and Ŝ𝑈(ṭ𝑖, ṭ𝑗) = min (Ŝ𝑈(ṭ𝑖), Ŝ
𝑈(ṭ𝑗)) 

6) Semi Ð strong: if Ð𝐿(ṭ𝑖, ṭ𝑗) = max (Ð
𝐿(ṭ𝑖), Ð

𝐿(ṭ𝑗)) and Ð𝑈(ṭ𝑖, ṭ𝑗) =

max (Ð𝑈(ṭ𝑖), Ð
𝑈(ṭ𝑗)) 

7) Strong: if (1) and (2) holds true. 

7.1.13 Example   

The graph in Figure 89 is strong IVPyFG. 

                                   

 

  

7.1.14 Definition  

In an IVPyFG, a set of distinct nodes ṭ𝑖 (𝑖 = 1, 2, ,3…𝑚) is considered as a path if there exist 

an edge between every two vertices ṭ𝑖 and ṭ𝑗 for 𝑖, 𝑗 = 1, 2, ,3…𝑚. Or a set of distinct nodes 

ṭ𝑖 (𝑖 = 1, 2, ,3…𝑚) is considered as a path if at least one of the following holds true. 



1) Ŝ(ṭ𝑖, ṭ𝑗) is a non-zero subinterval of [0, 1]. 

2) Ð(ṭ𝑖 , ṭ𝑗) is a non-zero subinterval of [0, 1]. 

Consequences of Definition 7.1.14. 

1) If a path consists of 𝑚 vertices. Then its length is 𝑚 − 1. 

2) A path is known as cycle if its first and last vertex coincides. 

3) Two vertices are said to be connected if they are joined by a path. 

7.1.15 Example  

The following Figure 90 is an example of Path in IVPyFG. 

 

   Figure 90 (A path in an Interval valued Pythagorean) fuzzy graph) 

In the above Figure 90, ṭ1ṭ3ṭ4 is path. 

7.2 Applications in Decision Making 

In this section, the developed approach of IVPyFGs is utilized in two decision making 

problems. The first problem is about the selection of best university among some universities 

while the second one is the famous problem of supply chain management.  



 7.2.1 Decision Making for the Evaluation of Best University: 

In this problem, a network of universities is evaluated in a capital to obtain the best 

university based on performance. For this we consider a network of four universities denoted 

by 𝑧𝑖(𝑖 = 1, 2, 3, 4). These four universities are being monitored and must be evaluated under 

the attribute “efficiency”. A group of decision makers anonymously evaluated these 

universities and gave their opinions in the form IVPyFGs displayed using IVPyFGs. 

The process of decision making is based on the following steps: 

1. Obtaining information from decision makers. 

2. Forming a relational matrix based on the information provided in Step 1. 

3. Using interval valued Pythagorean fuzzy weighted averaging (IVPFWA) or interval valued 

Pythagorean fuzzy weighted geometric (IVPFWG) operator to aggregate the information 

of relational matrix. 

4. Use ranking function to obtained optimum results.  

A detailed numerical example is discussed as follows 

Step 1: information from decision makers about universities is obtained in Figure 91 

 



   

Figure 91 (Directed Network of the Interval valued Pythagorean fuzzy relation IVPyFR) 

Step 2: forming relational matrix. 

Ṙ = (ṙ𝑖𝑗)4×4 =

(

 
 
 
 
 
 
(
[𝟎. 𝟒, 𝟎. 𝟓],
[𝟎. 𝟒, 𝟎. 𝟓]

) , (
[𝟎. 𝟑, 𝟎. 𝟔],
[𝟎. 𝟒, 𝟎. 𝟕]

) , (
[𝟎. 𝟒, 𝟎. 𝟕],
[𝟎. 𝟐, 𝟎. 𝟓]

) , (
[𝟎. 𝟓, 𝟎. 𝟕],
[𝟎. 𝟐, 𝟎. 𝟕]

)

(
[𝟎. 𝟐, 𝟎. 𝟕],
[𝟎. 𝟓, 𝟎. 𝟔]

) , (
[𝟎. 𝟒, 𝟎. 𝟓],
[𝟎. 𝟒, 𝟎. 𝟓]

) , (
[𝟎. 𝟒, 𝟎. 𝟔],
[𝟎. 𝟓, 𝟎. 𝟕]

) , (
[𝟎. 𝟑, 𝟎. 𝟔],
[𝟎. 𝟒, 𝟎. 𝟔]

)

(
[𝟎. 𝟒, 𝟎. 𝟔],
[𝟎. 𝟐, 𝟎. 𝟔]

) , (
[𝟎. 𝟓, 𝟎. 𝟕],
[𝟎. 𝟏, 𝟎. 𝟑]

) , (
[𝟎. 𝟒, 𝟎. 𝟓],
[𝟎. 𝟒, 𝟎. 𝟓]

) , (
[𝟎. 𝟑, 𝟎. 𝟓],
[𝟎. 𝟓, 𝟎. 𝟖]

)

(
[𝟎. 𝟒, 𝟎. 𝟕],
[𝟎. 𝟑, 𝟎. 𝟓]

) , (
[𝟎. 𝟑, 𝟎. 𝟔],
[𝟎. 𝟐, 𝟎. 𝟒]

) , (
[𝟎. 𝟐, 𝟎. 𝟒],
[𝟎. 𝟓, 𝟎. 𝟕]

) , (
[𝟎. 𝟒, 𝟎. 𝟓],
[𝟎. 𝟒, 𝟎. 𝟓]

)
)

 
 
 
 
 
 

 

Step 3: Using IVPFWA operator on relational matrix to aggregation of data. 

ṙ𝑖 = 𝐼Ṿ𝑃𝐹𝑊𝐴(ṙ𝑖1, ṙ𝑖2, … , ṙ𝑖𝑛)

=

(

 
 
 
 
 
 

[
 
 
 
 
√1 − (∏(1 − (Ŝ𝐿𝑖𝑗)

2
)

𝑛

𝑗=1

1
𝑛

, √1 − (∏(1 − (Ŝ𝑈𝑖𝑗)
2
)

𝑛

𝑗=1

1
𝑛

]
 
 
 
 

,

[
 
 
 
 

(∏Ð𝐿𝑖𝑗

𝑛

𝑗=1

)

1
𝑛

, (∏Ð𝑈𝑖𝑗

𝑛

𝑗=1

)

1
𝑛

]
 
 
 
 

)

 
 
 
 
 
 

 



 𝑖 = 1,2, … , 𝑛, 

We aggregate ṙ𝑖𝑗, 𝑗 = 1,2, … ,4 corresponding to the university ẓ𝑖, and then get the complex 

IVPFN ṙ𝑖 of the university ẓ𝑖, over all other universities. 

ṙ1 = ([0.408609, 0.636849], [0.0016, 0.030625]) 

ṙ2 = ([0.337536, 0.608982], [0.0.01, 0.315]) 

ṙ3 = ([0.408609, 0.587717], [0.001, 0.018]) 

ṙ4 = ([0.337536, 0.57149], [0.003, 0.0175]) 

Step 4: Now we find the score values of ṙ𝑖 by using the score function: 

ṣ(ṙ𝑖) =
((Ŝ𝐿

𝑖
)
2
(1 − (Ð𝐿𝑖)

2) + (Ŝ𝑈
𝑖
)2(1 − (Ð𝑈𝑖)

2))

2
 

ṣ(ṙ1) = 0.00028, ṣ(ṙ2) = 0.000356, ṣ(ṙ3) = 0.000106, ṣ(ṙ4) = 0.000107 

According to  ṣ(ṙ𝑖) 𝑖 = 1,2, … ,4 we get ranking of the universities ẓ𝑖, 𝑖 = 1,2, … ,4 as: 

 ẓ2 >  ẓ1 >  ẓ4 >  ẓ3 

Therefore, the best university is  ẓ2. 

Now the problem is solved again using IVPFWG operators and we repeat from Step 3. 

Step 3: Using IVPFWG operator on relational matrix to aggregation of data. 

ṙ𝑖 = 𝐼Ṿ𝑃𝐹𝑊Ġ(ṙ𝑖1, ṙ𝑖2, … , ṙ𝑖𝑛) 

                    =

(

 
 

(∏ Ŝ𝐿𝑖𝑗
𝑛
𝑗=1 )

1

𝑛, (∏ Ŝ𝑈𝑖𝑗
𝑛
𝑗=1 )

1

𝑛,

√1 − (∏ (1 − (Ð𝐿𝑖𝑗)
2
)𝑛

𝑗=1

1

𝑛
, √1 − (∏ (1 − (Ð𝑈𝑖𝑗)

2
)𝑛

𝑗=1

1

𝑛

)

 
 

  



We aggregate ṙ𝑖𝑗, 𝑗 = 1,2, … ,4 corresponding to the university ẓ𝑖, and then get the complex 

IVPFN ṙ𝑖 of the university ẓ𝑖, over all other universities. 

ṙ1 = ([0.006, 0.03675], [0.319378, 0.617585]) 

ṙ2 = ([0.0024, 0.0315], [0.454175, 0.608982]) 

ṙ3 = ([0.006, 0.02625], [0.34691, 0.608508]) 

ṙ4 = ([0.0024, 0.021], [0.372401, 0.547141] 

Step 4: Now we find the score values of ṙ𝑖 by using the score function: 

ṣ(ṙ1) = 0.000434, ṣ(ṙ2) = 0.000314, ṣ(ṙ3) = 0.000233, ṣ(ṙ4) = 0.000157 

Therefore according ṣ(ṙ1) we get ranking of the universities ẓ𝑖, 𝑖 = 1,2, … ,4 as: 

 ẓ1 >  ẓ2 >  ẓ3 >  ẓ4 

Therefore, the best university is  ẓ1. 

Analysis shows that the results obtained using different aggregation techniques are different. 

So, the choice of using aggregation operators is up to decision makers. 

7.2.2 Application in Supply Chain Management 

 In supply chain management the partners of a company assessed based on their 

performances towards a supply chain. The coordination of companies depends on many 

aspects. In this problem, our aim is to find out most influential aspect in a supply chain. Let us 

consider we have four aspects i.e. service level, cost and price, quality and response time 

denoted by 𝑧𝑖(𝑖 = 1, 2, 3, 4). To rank these factors, three decision makers are asked to give 

their preferences in the form of IVPyFNs in three matrices below. 



𝑅1 =

[
 
 
 
 
 
 
 
 (
[0.5,0.6],
[0.5,0.6]

) (
[0.7,0.7],
[0.2,0.5]

) (
[0.1,0.7],
[0.1,0.5]

)

(
[0.3,0.7],
[0.4,0.7]

) (
[0.5,0.6],
[0.5,0.6]

) (
[0.2,0.5],
[0.5,0.6]

)

(
[0.2,0.6],
[0.4,0.6]

)

(
[0.3,0.5],
[0.4,0.7]

)

(
[0.2,0.4],
[0.5,0.6]

)

(
[0.2,0.7],
[0.3,0.6]

)

(
[0.5,0.6],
[0.5,0.6]

)

(
[0.3,0.4],
[0.4,0.5]

)

    

(
[0.5,0.7],
[0.6,0.7]

)

(
[0.5,0.7],
[0.4,0.6]

)

(
[0.3,0.6],
[0.5,0.7]

)

(
[0.5,0.6],
[0.5,0.6]

)
]
 
 
 
 
 
 
 
 

 

𝑅2 =

[
 
 
 
 
 
 
 
 (
[0.5,0.6],
[0.5,0.6]

) (
[0.5,0.7],
[0.1,0.6]

) (
[0.3,0.5],
[0.5,0.6]

)

(
[0.2,0.7],
[0.5,0.7]

) (
[0.5,0.6],
[0.5,0.6]

) (
[0.3,0.6],
[0.4,0.7]

)

(
[0.1,0.6],
[0.3,0.7]

)

(
[0.1,0.6],
[0.2,0.6]

)

(
[0.5,0.5],
[0.5,0.6]

)

(
[0.3,0.4],
[0.5,0.6]

)

(
[0.5,0.6],
[0.5,0.6]

)

(
[0.3,0.55],
[0.4,0.6]

)

   

(
[0.2,0.6],
[0.3,0.4]

)

(
[0.5,0.7],
[0.1,0.6]

)

(
[0.2,0.6],
[0.4,0.5]

)

(
[0.5,0.6],
[0.5,0.6]

)
]
 
 
 
 
 
 
 
 

 

𝑅3 =

[
 
 
 
 
 
 
 
 (

[0.5,0.6],
[0.5,0.6]

) (
[0.3,0.7],
[0.3,0.5]

) (
[0.1,0.5],
[0.3,0.7]

)

(
[0.4,0.6],
[0.5,0.6]

) (
[0.5,0.6],
[0.5,0.6]

) (
[0.3,0.6],
[0.3,0.7]

)

(
[0.5,0.7],
[0.6,0.6]

)

(
[0.53,0.72],
[0.1,0.2]

)

(
[0.5,0.6],
[0.1,0.7]

)

(
[0.53,0.63],
[0.12,0.42]

)

(
[0.5,0.6],
[0.5,0.6]

)

(
[0.4,0.5],
[0.3,0.5]

)

    

(
[0.2,0.6],
[0.5,0.6]

)

(
[0.5,0.6],
[0.5,0.5]

)

(
[0.2,0.3],
[0.3,0.4]

)

(
[0.5,0.6],
[0.5,0.6]

)
]
 
 
 
 
 
 
 
 

 

 

The information of three different reviewers are regrouped using IVPyFWA operators as: 

  

𝐼Ṿ𝑃𝐹𝑊𝐴(ṙ𝑖1, ṙ𝑖2, … , ṙ𝑖𝑛) =

(

 
 
 
 
 
 
√1 − (∏(1 − (Ŝ𝐿𝑖𝑗)

2
)

𝑛

𝑗=1

)

1
𝑛

, √1 − (∏(1 − (Ŝ𝑈𝑖𝑗)
2
)

𝑛

𝑗=1

)

1
𝑛

,

(∏Ð𝐿𝑖𝑗

𝑛

𝑗=1

)

1
𝑛

, (∏Ð𝑈𝑖𝑗

𝑛

𝑗=1

)

1
𝑛

)

 
 
 
 
 
 

 



𝑅 =

[
 
 
 
 
 
 
 
 (
[0.43,0.46],
[0.042,0.072]

) (
[0.44,0.48],
[0.002,0.05]

) (
[0.35,0.45],
[0.005,0.07]

)

(
[0.38,0.47],
[0.03,0.098]

) (
[0.43,0.46],
[0.042,0.072]

) (
[0.4,0.45],
[0.02,0.098]

)

(
[0.38,0.47],
[0.024,0.084]

)

(
[0.39,0.46],
[0.003,0.028]

)

(
[0.41,0.43],
[0.008,0.084]

)

(
[0.39,0.46],
[0.006,0.05]

)

(
[0.43,0.46],
[0.042,0.072]

)

(
[0.38,0.43],
[0.016,0.05]

)

   

(
[0.38,0.46],
[0.03,0.056]

)

(
[0.43,0.47],
[0.007,0.06]

)

(
[0.36,0.44],
[0.02,0.05]

)

(
[0.43,0.46],
[0.042,0.072]

)
]
 
 
 
 
 
 
 
 

 

The regrouped data is transformed into a directed IVPyFG depicted in Figure 92. 

                                         

         Figure 92 (Directed Network OF IVPyFR) 

Using the condition Ŝ2𝐿 ≥ 0.46, The IVPyFG in Figure 92 reduces to another IVPyFG which 

is depicted in Figure 93.  



   

    Figure 93 (Partial Directed Network OF IVPyFR) 

Now we used Definition 7.1.8 to compute the out degrees of every vertex 𝑧𝑖 as follows: 

𝑂𝑢𝑡 − 𝑑(𝑧1) = ([0.82,0.94], [0.032,0.061]) 

𝑂𝑢𝑡 − 𝑑(𝑧2) = ([0.81,0.94], [0.05,0.196]) 

𝑂𝑢𝑡 − 𝑑(𝑧3) = ([0.38,0.47], [0.024,0.084]) 

𝑂𝑢𝑡 − 𝑑(𝑧4) = ([0.78,0.92], [0.009,0.078]) 

By observing the degree of membership, where the score function is available in step 4, it is 

clear that  

𝑂𝑢𝑡 − 𝑑(𝑧1) ≥ 𝑂𝑢𝑡 − 𝑑(𝑧2) ≥ 𝑂𝑢𝑡 − 𝑑(𝑧4) ≥ 𝑂𝑢𝑡 − 𝑑(𝑧3) 

Hence 𝑧1 ≥ 𝑧2 ≥ 𝑧4 ≥ 𝑧3 which shows that cost and price is the required factor that one must 

keep in mind.  

Now again all the steps are repeated and instead of IVPyFWA operators, we used IVPyFWG 

operators to regroup the data of first three matrices. 



First, the information of three different reviewers are regrouped using IVPyFWA operators as: 

𝐼Ṿ𝑃𝐹𝑊Ġ(ṙ𝑖1, ṙ𝑖2, … , ṙ𝑖𝑛) =

(

 
 
 
 
 
 (∏Ŝ𝐿𝑖𝑗

𝑛

𝑗=1

)

1
𝑛

, (∏Ŝ𝑈𝑖𝑗

𝑛

𝑗=1

)

1
𝑛

,

√1 − (∏(1 − (Ð𝐿𝑖𝑗)
2
)

𝑛

𝑗=1

)

1
𝑛

, √1 − (∏(1 − (Ð𝑈𝑖𝑗)
2
)

𝑛

𝑗=1

)

1
𝑛

)

 
 
 
 
 
 

 

𝑅 =

[
 
 
 
 
 
 
 
 (
[0.042,0.072],
[0.43,0.46]

) (
[0.035,0.011],
[0.36,0.44]

) (
[0.001,0.058],
[0.39,0.46]

)

(
[0.008,0.098],
[0.42,0.47]

) (
[0.042,0.072],
[0.43,0.46]

) (
[0.015,0.072],
[0.41,0.47]

)

(
[0.003,0.084],
[0.42,0.47]

)

(
[0.005,0.072],
[0.37,0.45]

)

(
[0.02,0.04],
[0.41,0.47]

)

(
[0.01,0.06],
[0.39,0.44]

)

(
[0.042,0.072],
[0.43,0.46]

)

(
[0.012,0.037],
[0.39,0.44]

)

   

(
[0.007,0.084],
[0.43,0.45]

)

(
[0.042,0.098],
[0.40,0.45]

)

(
[0.004,0.036],
[0.40,0.45]

)

(
[0.042,0.072],
[0.43,0.46]

)
]
 
 
 
 
 
 
 
 

 

The regrouped data is transformed into a directed IVPyFG depicted in Figure 94. 

   

               Figure 94 (Directed Network OF IVPyFR) 

 

Using the condition Ŝ2𝐿 ≥ 0.058, the IVPyFG in Figure 94 reduces to another IVPyFG which 

is depicted in Figure 95. 



The regrouped data is transformed into a directed IVPyFG depicted in Figure 93. 

  

   Figure 95 (Partial Directed Network OF IVPyFR) 

Now we used Definition 7.1.8 to compute the out degrees of every vertex 𝑧𝑖 as follows: 

𝑂𝑢𝑡 − 𝑑(𝑧1) = ([0.008,0.142], [0.82,0.91]) 

𝑂𝑢𝑡 − 𝑑(𝑧2) = ([0.065,0.268], [1.21,1.39]) 

𝑂𝑢𝑡 − 𝑑(𝑧3) = ([0.003,0.084], [0.42,0.47]) 

𝑂𝑢𝑡 − 𝑑(𝑧4) = ([0.005,0.072], [0.37,0.45]) 

By observing the degree of membership, where the score function is available in step 4, it is 

clear that  

𝑂𝑢𝑡 − 𝑑(𝑧2) ≥ 𝑂𝑢𝑡 − 𝑑(𝑧1) ≥ 𝑂𝑢𝑡 − 𝑑(𝑧3) ≥ 𝑂𝑢𝑡 − 𝑑(𝑧4) 

Hence 𝑧2 ≥ 𝑧1 ≥ 𝑧3 ≥ 𝑧4 which shows that cost and price is the required factor that one must 

keep in mind. 



Hence by using even different operators, we get same results i.e. cost and price is the factor we 

must looked for.  

7.2.2.1 Comparative Study and Advantages 

 The significance of the proposed new approach lies in the fact that the new approach can solve 

the problems that occur in the environment of PyFSs as well as IVIFSs. Here we discuss two 

examples having information in the form of PyFNs or IVIFNs. 

Consider the decision matrix where information is in the form of PyFNs as follows: 

Ṙ = (ṙ𝑖𝑗)4×4 = (

(𝟎. 𝟔, 𝟎. 𝟔), (𝟎. 𝟑, 𝟎. 𝟖), (𝟎. 𝟕, 𝟎. 𝟔), (𝟎. 𝟓, 𝟎. 𝟔)
(𝟎. 𝟖, 𝟎. 𝟑), (𝟎. 𝟔, 𝟎. 𝟔), (𝟎. 𝟓, 𝟎. 𝟕), (𝟎. 𝟔, 𝟎. 𝟓)
(𝟎. 𝟕, 𝟎. 𝟒), (𝟎. 𝟐, 𝟎. 𝟖), (𝟎. 𝟔, 𝟎. 𝟔), (𝟎. 𝟕, 𝟎. 𝟔)
(𝟎. 𝟑, 𝟎. 𝟕), (𝟎. 𝟓, 𝟎. 𝟔), (𝟎. 𝟒, 𝟎. 𝟕), (𝟎. 𝟔, 𝟎. 𝟔)

) 

Now this type of information can easily be processed using the IVPFWA and IVPWG 

operators by assuming Ŝ𝐿 = Ð𝐿 = 0. 

Further, if we have information in the form of IVIFNs as in decision matrix below: 

Ṙ = (ṙ𝑖𝑗)4×4 =

(

 
 
 
 
 
 
(
[𝟎. 𝟑, 𝟎. 𝟓],
[𝟎. 𝟐, 𝟎. 𝟓]

) , (
[𝟎. 𝟑, 𝟎. 𝟒],
[𝟎. 𝟒, 𝟎. 𝟓]

) , (
[𝟎. 𝟒, 𝟎. 𝟓],
[𝟎. 𝟐, 𝟎. 𝟑]

) , (
[𝟎. 𝟓, 𝟎. 𝟔],
[𝟎. 𝟐, 𝟎. 𝟑]

)

(
[𝟎. 𝟐, 𝟎. 𝟒],
[𝟎. 𝟐, 𝟎. 𝟓]

) , (
[𝟎. 𝟑, 𝟎. 𝟓],
[𝟎. 𝟐, 𝟎. 𝟓]

) , (
[𝟎. 𝟏, 𝟎. 𝟒],
[𝟎. 𝟐, 𝟎. 𝟔]

) , (
[𝟎. 𝟐, 𝟎. 𝟓],
[𝟎. 𝟒, 𝟎. 𝟓]

)

(
[𝟎. 𝟏, 𝟎. 𝟔],
[𝟎. 𝟑, 𝟎. 𝟒]

) , (
[𝟎. 𝟑, 𝟎. 𝟕],
[𝟎. 𝟏, 𝟎. 𝟑]

) , (
[𝟎. 𝟑, 𝟎. 𝟓],
[𝟎. 𝟐, 𝟎. 𝟓]

) , (
[𝟎. 𝟏, 𝟎. 𝟑],
[𝟎. 𝟓, 𝟎. 𝟔]

)

(
[𝟎. 𝟒, 𝟎. 𝟓],
[𝟎. 𝟑, 𝟎. 𝟓]

) , (
[𝟎. 𝟑, 𝟎. 𝟒],
[𝟎. 𝟐, 𝟎. 𝟒]

) , (
[𝟎. 𝟐, 𝟎. 𝟒],
[𝟎. 𝟓, 𝟎. 𝟔]

) , (
[𝟎. 𝟑, 𝟎. 𝟓],
[𝟎. 𝟐, 𝟎. 𝟓]

)
)

 
 
 
 
 
 

 

Then the proposed approach can still be used by utilizing averaging and geometric aggregation 

operators of IVIFSs as defined in [30].  On the other hand, the aggregation tools of PyFSs or 

IVIFSs cannot be applied to the information of IVPyFSs due to their limited structures. All this 

shows the worth of new developed approach. 

7.2.4 Application in Finding Shortest Path in a Networks: 



Shortest path problem is one of the renowned problem of graph theory. In fuzzy graph theory, 

shortest path problem has been greatly studied in almost every fuzzy structure [104-107]. Here 

the algorithm proposed by [104] which is relatively simpler and get us optimum results. The 

detailed steps of algorithm along with a flowchart are next in this section followed by a 

numerical example and some comparative study. 

7.2.4.1  Algorithm for Finding Shortest Path: 

The steps of algorithm are: 

8. Take the first node as ([0, 0], [1, 1]) as distance of every node to itself is zero. 

9. Take 𝑖 = 1. 

10. Find 𝑗 for 𝑃1𝑗 = 𝑃11 + ⋀𝑗∈𝑁𝑃(1)𝑃1𝑗 and determine 𝑃1𝑗. 

11. Put 𝑖 = 𝑗. 

12. Find 𝑘 for 𝑃𝑗𝑘 = 𝑃1𝑗 + ⋀𝑘∈𝑁𝑃(1)𝑃𝑗𝑘 and determine 𝑃𝑗𝑘. 

13. This process should be continued until destination node is obtained. 

14. When destination node is reached. Then algorithm is stopped. 

To further demonstrate the algorithm, a flowchart is depicted in Figure 96. 



 

                                                  Figure 96 (Flowchart of proposed algorithm) 



7.2.4.2 Example  

Now consider a network of 6 nodes in Figure 97 and the distance of every two, connected 

nodes, is provided in the form of IVPyFNs. We proceed with the algorithm as follows 

  

 

           Figure 97 (Interval value Pythagorean fuzzy graph) 

In In the above graph shows the source node is node 1 and the destination node is node 6, so 

for 𝑛 = 6 and for the first step 𝑃11 = ([0,0], [1,1]). At first 𝑖 = 1, so it needs to find 𝑗 by the 

equation. 

𝑃1𝑗 = 𝑃11 + ⋀𝑗∈𝑁𝑃(1)𝑃1𝑗 = 𝑃11 + ⋀𝑗∈{2,3}𝑃1𝑗 = 𝑃11 + (𝑃12⋀𝑃13) 

= ([0,0], [1,1]) + (([. 2, .5], [. 4, .6]) ∧ ([. 3, .5], [. 4, .6])) 

= ([0,0], [1,1]) + (0.0968 ∧ 0.1178) 

= ([0,0], [1,1]) + ([. 2, .5], [. 4, .6]) 

= ([. 2, .5], [. 4, .6]) 

Hence for 𝑗 = 2, 𝑃12 = ([. 2, .5], [. 4, .6]). 

Now set 𝑖 = 2, we need to find 𝑗 by the equation 



𝑃1𝑗 = 𝑃12 + ⋀𝑗∈𝑁𝑃(2)𝑃2𝑗 = 𝑃12 + ⋀𝑗∈{3,5}𝑃2𝑗 = 𝑃12 + (𝑃23⋀𝑃25) 

= ([0.2,0.5], [. 4, .6]) + (([. 3, .5], [. 5, .7]) ∧ ([. 5, .6], [. 6, .6])) 

= ([0.2, 0.5], [. 4, .6]) + (0. ,0975 ∧ 0.1952) 

= ([. 36, .66], [. 2, .42]) 

Hence for 𝑗 = 2, 𝑃13 = ([. 36, .66], [. 2, .42]). 

Now set 𝑖 = 3, we need to find 𝑗 by the equation 

𝑃1𝑗 = 𝑃13 + ⋀𝑗∈𝑁𝑃(3)𝑃3𝑗 = 𝑃13 + ⋀𝑗∈{4,5}𝑃1𝑗 = 𝑃13 + (𝑃34⋀𝑃35) 

= ([0.36,0.66], [0.2,0.42]) + (([. 3, .7], [. 4, .6]) ∧ ([. 4, .5], [. 5, .6])) 

= ([0.36,0.66], [0.2,0.42]) + (0.1946 ∧ 0.14) 

= ([. 52, .76], [. 1, .25]) 

Hence for 𝑗 = 2, 𝑃15 = ([. 52, .76], [. 1, .25]). 

Now set 𝑖 = 5, we need to find by the equation 

𝑃1𝑗 = 𝑃15 + ⋀𝑗∈𝑁𝑃(5)𝑃1𝑗 = 𝑃15 + ⋀𝑗∈{6}𝑃1𝑗 = 𝑃15 + 𝑃56 

= ([. 52, .76], [. 1, .25]) + ([0.3,0.4], [0.4,0.7]) 

= ([. 58, .80], [. 04, .175]) 

Hence for 𝑗 = 2, 𝑃16 = ([. 52, .76], [. 1, .25]). 

So, the shortest path in the above graph is 𝑃1 ⟶ 𝑃2 ⟶ 𝑃3 ⟶ 𝑃5 ⟶ 𝑃6. 

If we observe Figure 97, one can say that shortest path may be 𝑃1 ⟶ 𝑃3 ⟶ 𝑃4 ⟶ 𝑃6 

or 𝑃1 ⟶ 𝑃2 ⟶ 𝑃5 ⟶ 𝑃6 or 𝑃1 ⟶ 𝑃3 ⟶ 𝑃5 ⟶ 𝑃6 but in actual the shortest path neither of 



these and it is 𝑃1 ⟶ 𝑃2 ⟶ 𝑃3 ⟶ 𝑃5 ⟶ 𝑃6. This shows how accurately the imprecise 

information is processed and shortest path is found using IVPyFGs.   

7.2.4.3  Comparative Study and Advantages of Proposed Algorithm:  

In this section, it is described that the proposed algorithm is applicable in the 

environments of IVIFSs as well as Pythagorean fuzzy networks.  If we take a network in the 

environment of IVIFSs as depicted in Figure 98. 

  

   Figure 98 (Interval valued intuitionistic fuzzy network) 

The shortest path in this case can similarly be found with the help of proposed algorithm using 

the proposed operations of addition with some conditions. 

Further if we consider this kind of problem in an environment of PyFSs e.g. consider a network 

of nodes in Pythagorean fuzzy environment in Figure 99. The shortest path algorithm can be 

carried out using proposed operation with some conditions over it.   

  



Figure 99 (fuzzy network) 

Some advantages of the algorithm are: 

1. The algorithm we used is very easy to be used and the results can be obtained much 

quicker than the existing algorithms. 

2. The algorithm can be used for any kind of fuzzy structure. 

3. The results obtained in current situation would be better than the results in the 

environment of FSs, IFSs, IVIFSs. PyFSs as IVPyFS generalizes all these structures. 

7.3 Conclusion 

This chapter contributed towards the theory of IVPyFGs as the concept of IVPyFG is 

proposed and some graph theoretic ideas were explored. Each graph related concept is 

supported by an example. Then the described concept of IVPyFGs is used in two decision 

making problems and a shortest path problem. Using the weighted averaging and weighted 

geometric aggregation operators, first decision making problem is solved involving the 

selection of best university among some universities. In second decision-making problem, a 

supply chain management problem is solved using the same aggregation operators and degree 

of an IVPyFG. The next problem was to find a shortest path in a network where path length 

was in the form of IVPyFNs. This problem is solved using a novel approach and the results ae 

discussed. We discussed the advantages of the proposed work and a comparative analysis have 

been established. In near future, we shall try to discuss some other shortest path algorithms and 

then make a comparative study. 

 

 

 



Chapter 8 

Analysis of Social Networks, Communication Networks and 

Shortest Path Problems in the Environment of Interval Valued q-

Rung Orthopair Fuzzy Information 

8.1 Interval valued q-rung orthopair fuzzy graphs 

The aim of this section is to briefly introduce the framework of IVq-ROPFG and to study 

its consequences. Some related graphical concepts are also demonstrated with the help of 

examples. These basic notions are used in applications discussed in section 8.2 , section 8.3  

and section 8.4. 

8.1.1 Definition  

 A graph Ġ =< Ṿ, Ẻ, Ạ, Ḅ > is known as IVq-ROPFG if 

1. Ṿ = {ṭ1, ṭ2, ṭ3, … , ṭ𝑞} such that  ŜẠ𝐿: Ṿ → [0, 1], ŜẠ𝑈: Ṿ → [0, 1] represent the lower and 

upper limits of membership degrees and  ÐẠ𝐿: Ṿ → [0, 1], ÐẠ𝑈: Ṿ → [0, 1] represents the 

lower and upper limits of non-membership degrees of ṭ𝑖 ∈ Ṿ respectively provided that 0 ≤

(ŜẠ𝑈)
𝑞
+ (ÐẠ𝑈)

𝑞
≤ 1   for 𝑞 ∈ ℤ+ for all ṭ𝑖 ∈ Ṿ, (𝑖 = 1, 2, 3, …𝑚) 

2. Ẻ ⊆ Ṿ × Ṿ where  ŜḄ𝐿 , ÐḄ𝐿 ∶ Ṿ × Ṿ → [0, 1] and ŜḄ𝑈, ÐḄ𝑈 ∶ Ṿ × Ṿ → [0, 1] such as 

ŜḄ𝐿(ṭ𝑖, ṭ𝑗) ≤ min[ŜẠ𝐿(ṭ𝑖), ŜẠ𝐿(ṭ𝑗)] , ŜḄ𝑈(ṭ𝑖 , ṭ𝑗) ≤ min[ŜẠ𝑈(ṭ𝑖), ŜẠ𝑈(ṭ𝑗)] such that 

ŜḄ𝑈(ṭ𝑖, ṭ𝑗) ≥ min[ŜẠ𝐿(ṭ𝑖), ŜẠ𝐿(ṭ𝑗)] and ÐḄ𝐿(ṭ𝑖 , ṭ𝑗) ≤ max[ÐẠ𝐿(ṭ𝑖), ÐẠ𝐿(ṭ𝑗)], ÐḄ𝑈(ṭ𝑖 , ṭ𝑗) ≤

max[ÐẠ𝑈(ṭ𝑖), ÐẠ𝑈(ṭ𝑗)] such that ÐḄ𝑈(ṭ𝑖, ṭ𝑗) ≥ max[ÐẠ𝐿(ṭ𝑖), ÐẠ𝐿(ṭ𝑗)] with a condition 0 ≤

(ŜḄ𝑈(ṭ𝑖, ṭ𝑗))
𝑞

+ (ÐḄ𝑈(ṭ𝑖, ṭ𝑗))
𝑞

≤ 1 for 𝑞 ∈ ℤ+ for all (ṭ𝑖, ṭ𝑗) ∈ Ẻ. 



Moreover, the lower and upper limits of membership and non-membership values of a 

vertex ṭ𝑖 are denoted as (ṭ𝑖, ŜẠ𝐿 , ÐẠ𝐿 ) and (ṭ𝑖 , ŜẠ𝑈, ÐẠ𝑈  ) and that of an edge relation ę𝑖𝑗 =

(ṭ𝑖, ṭ𝑗) is denoted by (ę𝑖𝑗 , ŜḄ𝐿 , ÐḄ𝐿) and (ę𝑖𝑗 , ŜḄ𝑈, ÐḄ𝑈).  Edge between two vertices ṭ𝑖, ṭ𝑗  exist 

unless Ŝ2𝑖𝑗 = 0 = Ð2𝑖𝑗. Further, the notion Λ used for maximum and the notion ⋁ used for 

minimum. 

Now we defined a score function for ranking purpose of IVq-ROPFG. 

8.1.2 Definition  

The score function for IVq-ROPFN 𝐴 = ([Ŝ𝐿 , Ŝ𝑈], [Ð𝐿 , Ð𝑈]) is defined as: 

𝑆𝐶(𝐴) =
(Ŝ𝐿)

𝑞
(1 − (Ð𝐿)𝑞) + (Ŝ𝑈)𝑞((1 − (Ð𝑈)𝑞))

2
  𝑆𝐶(𝐴) ∈ [0, 1] 

8.1.3 Theorem  

IVq-ROPFG is a generalization of IVPyFG, IVIFG and IVFG. 

Proof: We prove this result as follows: 

3) If we take 𝑞 = 2. The definition of IVq-ROPFG reduces to IVPyFG. 

4) If we take 𝑞 = 1. The definition of IVq-ROPFG reduces to IVIFG. 

5) If we take 𝑞 = 1, and ÐẠ𝐿 = ÐẠ𝑈 = 0. The definition of q-ROPFG reduces to IVFG. 

This result shows the significance of the new concept as it is the generalization of all the 

existing structures and can deal with the situations where the existing structures failed due to 

the limitations in their structures. 

8.1.4 Example  

Let Ṿ = {ṭ1, ṭ2, ṭ3, ṭ4} and Ẻ be the collection of vertices and edges, respectively. Then, we have 

the following IVq-ROPFG for q =3. 



   

   Figure 100 (Interval valued  q-rung ortho pair fuzzy graph) 

8.1.5 Definition  

 A graph Ⱨ =< Ṿ′, Ẻ′ >  is considered as IVq-ROF subgraph (IVq-ROFSG) of an IVq-ROFG 

Ġ =< Ṿ, Ẻ > i.e. Ⱨ ≤𝐺 Ġ if Ṿ′and Ẻ′ are subsets of Ṿ and Ẻ respectively. or Ⱨ =< Ṿ′, Ẻ′ >  is 

considered as IVq-ROFSG of IVq-ROFG Ġ =< Ṿ, Ẻ > if ŜẠ𝐿𝑖
′ ≤ ŜẠ𝐿𝑖 , ŜẠ𝑈𝑖

′ ≤ ŜẠ𝑈𝑖 , ÐẠ𝐿𝑖
′ ≥

ÐẠ𝐿𝑖 , ÐẠ𝑈𝑖
′ ≥ ÐẠ𝑈𝑖 and ŜḄ𝐿𝑖

′ ≤ ŜḄ𝐿𝑖 , ŜḄ𝑈𝑖
′ ≤ ŜḄ𝑈𝑖 , ÐḄ𝐿𝑖

′ ≥ ÐḄ𝐿𝑖 , ÐḄ𝑈𝑖
′ ≥ ÐḄ𝑈𝑖 for all  𝑖, 𝑗 =

1, 2, 3, 4, …𝑚. 

8.1.6 Example  

An IVq-ROFSG of IVq-ROFG mentioned in previous example 8.1.4  is given below 

             

         Figure 101 (IVQROPFSG of Figure (100)) 



 

8.1.7 Definition  

 An IVq-ROPFG Ġ =< Ṿ, Ẻ > is considered as 

1.  semi − Ŝ 𝑠𝑡𝑟𝑜𝑛𝑔 if ŜḄ𝐿 = Λ(ŜẠ𝐿𝑖 , ŜẠ𝐿𝑗), ŜḄ𝑈 = Λ(ŜẠ𝑈𝑖 , ŜẠ𝑈𝑗) for all 𝑖, 𝑗. 

2. semi − Ð 𝑠𝑡𝑟𝑜𝑛𝑔 if ÐḄ𝐿 = ⋁(ÐẠ𝐿𝑖 , ÐẠ𝐿𝑗), ÐḄ𝑈 = ⋁(ÐẠ𝑈𝑖  , ÐẠ𝑈𝑗)for all 𝑖, 𝑗. 

3. strong if Ġ is semi − Ŝ 𝑠𝑡𝑟𝑜𝑛𝑔 and 𝑠𝑒𝑚𝑖 − Ð 𝑠𝑡𝑟𝑜𝑛𝑔 or Ġ is 𝑠𝑡𝑟𝑜𝑛𝑔 if  

ŜḄ𝐿 = Λ(ŜẠ𝐿𝑖 , ŜẠ𝐿𝑗), ŜḄ𝑈 = Λ(ŜẠ𝑈𝑖 , ŜẠ𝑈𝑗) and ÐḄ𝐿 = ⋁(ÐẠ𝐿𝑖 , ÐẠ𝐿𝑗), ÐḄ𝑈 =

⋁(ÐẠ𝑈𝑖  , ÐẠ𝑈𝑗) for all (ṭ𝑖, ṭ𝑗) ∈ Ẻ. 

8.1.8 Definition  

 An IVq-ROPFG Ġ =< Ṿ, Ẻ > is considered as 

1. Complete−Ŝ 𝑠𝑡𝑟𝑜𝑛𝑔 if ŜḄ𝐿 = Λ(ŜẠ𝐿𝑖 , ŜẠ𝐿𝑗), ŜḄ𝑈 = Λ(ŜẠ𝑈𝑖 , ŜẠ𝑈𝑗) and ÐḄ𝐿 <

⋁(ÐẠ𝐿𝑖 , ÐẠ𝐿𝑗), ÐḄ𝑈 < ⋁(ÐẠ𝑈𝑖  , ÐẠ𝑈𝑗)for all 𝑖, 𝑗 for all 𝑖, 𝑗. 

2. Complete−Ð 𝑠𝑡𝑟𝑜𝑛𝑔 if  if ŜḄ𝐿 < Λ(ŜẠ𝐿𝑖 , ŜẠ𝐿𝑗), ŜḄ𝑈 < Λ(ŜẠ𝑈𝑖 , ŜẠ𝑈𝑗) and ÐḄ𝐿 =

⋁(ÐẠ𝐿𝑖 , ÐẠ𝐿𝑗), ÐḄ𝑈 = ⋁(ÐẠ𝑈𝑖  , ÐẠ𝑈𝑗)for all 𝑖, 𝑗 for all 𝑖, 𝑗. 

3. Complete if ŜḄ𝐿 = Λ(ŜẠ𝐿𝑖 , ŜẠ𝐿𝑗), ŜḄ𝑈 = Λ(ŜẠ𝑈𝑖 , ŜẠ𝑈𝑗) and ÐḄ𝐿 = ⋁(ÐẠ𝐿𝑖  , ÐẠ𝐿𝑗), 

ÐḄ𝑈 = ⋁(ÐẠ𝑈𝑖  , ÐẠ𝑈𝑗) for all (ṭ𝑖, ṭ𝑗) ∈ Ẻ. 

8.1.9 Definition  

The complement of an IVq-ROPFG Ġ =< Ṿ, Ẻ > is denoted and defined as  Ġ𝑐 =< Ṿ𝑐, Ẻ𝑐 > 

where Ṿ𝑐 = Ṿ and the grades of Ẻ are defined by: 

1. (ŜḄ𝐿)
𝑐
(ṭ𝑖, ṭ𝑗) = ∧ (ŜẠ𝐿(ṭ𝑖), ŜẠ𝐿(ṭ𝑗)) − ŜḄ𝐿 ((ṭ𝑖, ṭ𝑗)) 

2. (ŜḄ𝑈)
𝑐
(ṭ𝑖, ṭ𝑗) = ∧ (ŜẠ𝑈(ṭ𝑖), ŜẠ𝑈(ṭ𝑗)) − ŜḄ𝑈 ((ṭ𝑖, ṭ𝑗)) + ∧(ŜẠ𝐿(ṭ𝑖), ŜẠ𝐿(ṭ𝑗)) 



3. (ÐḄ𝐿)
𝑐
(ṭ𝑖, ṭ𝑗) = ∨(ÐẠ𝐿(ṭ𝑖), ÐẠ𝐿(ṭ𝑗)) − ÐḄ𝐿 ((ṭ𝑖 , ṭ𝑗)). 

4. (ÐḄ𝑈)
𝑐
(ṭ𝑖, ṭ𝑗) = ∨ (ÐẠ𝑈(ṭ𝑖), ÐẠ𝑈(ṭ𝑗)) − ÐḄ𝑈 ((ṭ𝑖, ṭ𝑗)) + ∨ (ÐẠ𝐿(ṭ𝑖), ÐẠ𝐿(ṭ𝑗)) 

8.1.10 Example  

Let Ṽ = {ṭ1, ṭ2, ṭ3, ṭ4} be the set of vertices and Ẻ be the set of edges. Then the complement of 

an IVq-ROPFG of example 8.1.4 is given below 

         

  Figure 102 (Complement of IVQROPFG of example 8.1.4) 

8.1.12 Remark  

Likewise, in crisp sets, ((Ġ𝑐)𝑐) = Ġ.  

8.1.13 Definition  

The degree of a vertex in an IVq-ROPFG Ġ =< Ṿ, Ẻ > is denoted and defined by  

ɖ (ṭ) = (ɖŜ1𝐿(ṭ), ɖŜ1𝑈(ṭ), ɖÐ1𝐿(ṭ), ɖÐ1𝑈(ṭ)) Where ɖŜ1𝐿(ṭ) = ∑ Ŝ2𝐿(ṭ𝑦)ṭ≠𝑦
ṭ,𝑦∈𝑉

, ɖŜ1𝑈(ṭ) =

∑ Ŝ2𝑈(ṭ𝑦)ṭ≠𝑦
ṭ,𝑦∈𝑉

 and ɖÐ1𝐿(ṭ) = ∑ Ð2𝐿(ṭ𝑦)ṭ≠𝑦
ṭ,𝑦∈𝑉

, ɖÐ1𝑈(ṭ) = ∑ Ð2𝑈(ṭ𝑦)ṭ≠𝑦
ṭ,𝑦∈𝑉

. 

Here (ɖŜ1𝐿(ṭ), ɖŜ1𝑈(ṭ)) represents the lower and upper degrees of membership function of the 

vertex and (ɖÐ1𝐿(ṭ), ɖÐ1𝑈(ṭ)) represents the lower and upper degrees of non-membership 

function of the vertex.  



8.1.14 Example  

Let Ṿ = {ṭ1, ṭ2, ṭ3, ṭ4} and Ẻ be the collection of vertices and edges, respectively. Then, we have 

the following IVq-ROPFG for q =3. 

          

                       Figure 103 (Interval valued Q-rung ortho pair fuzzy graph) 

Degree of vertices are: 

ɖṭ1 = ([0.6, 1], [1.1,1.4], ɖṭ2 = ([0.5, 1], [0.9,1.4], ɖṭ3 = ([0.5, 1], [0.9,1.4], ɖṭ4 =

([0.6, 1], [1.1,1.4],   

8.1.15 Proposition  

Let Ġ =< Ṿ, Ẻ > be a complete−Ŝ strong or complete−Ð strong q-ROPFG. Then its 

complement is complete IVq-ROPFG. 

Proof: Let Ġ be a  complete−Ŝ strong q-ROPFG ⇒ ŜḄ𝐿 = Λ(ŜẠ𝐿𝑖 , ŜẠ𝐿𝑗), ŜḄ𝑈 =

Λ(ŜẠ𝑈𝑖 , ŜẠ𝑈𝑗) and ÐḄ𝐿 < ⋁(ÐẠ𝐿𝑖 , ÐẠ𝐿𝑗), ÐḄ𝑈 < ⋁(ÐẠ𝑈𝑖  , ÐẠ𝑈𝑗) for all 𝑖, 𝑗. To prove Ġ𝑐 is 

complete we have to prove either 1 or 2. 

1.  ŜḄ𝐿
𝑐
> 0, ŜḄ𝑈

𝑐
> 0 𝑜𝑟 ÐḄ𝐿

𝑐 > 0, ÐḄ𝑈
𝑐 > 0 

2. ŜḄ𝐿
𝑐
= 0, ŜḄ𝑈

𝑐
= 0 𝑜𝑟 ÐḄ𝐿

𝑐 > 0, ÐḄ𝑈
𝑐 > 0 



Now as ŜḄ𝐿
𝑐
= Λ(ŜẠ𝐿𝑖 , ŜẠ𝐿𝑗) − ŜḄ𝐿 = {

0 𝑖𝑓 ŜḄ𝐿 > 0

ŜẠ𝐿𝑖 𝑖𝑓 ŜḄ𝐿 = 0
, ŜḄ𝑈

𝑐
= Λ(ŜẠ𝑈𝑖  , ŜẠ𝑈𝑗) − ŜḄ𝑈 =

{
0 𝑖𝑓 ŜḄ𝑈 > 0

ŜẠ𝑈𝑖 𝑖𝑓 ŜḄ𝑈 = 0
 

And  ÐḄ𝐿
𝑐 = ⋁(ÐẠ𝐿𝑖 , ÐẠ𝐿𝑗) − ÐḄ𝐿 > 0, ÐḄ𝑈

𝑐 = ⋁(ÐẠ𝑈𝑖  , ÐẠ𝑈𝑗) − ÐḄ𝑈 > 0for all 𝑖, 𝑗 =

1, 2, 3, …𝑞 as Ġ =< Ṿ, Ẻ > be a  Complętę−Ŝ 𝑠𝑡𝑟𝑜𝑛𝑔. Hence Ġ̅ =< Ṿ̅,  Ẻ̅ > is complete. The 

second part can be proved analogously. 

8.1.16 Definition  

 In an IVq-ROPFG a path is a sequence of some distinct vertices ṭ𝑖(𝑖 = 1, 2, 3, … , 𝑞) if either 

one of the following holds for some (𝑖, 𝑗 = 1, 2, 3, … ,𝑚) 

  ŜḄ𝐿𝑖𝑗 > 0,  ŜḄ𝑈𝑖𝑗 > 0 and  ÐḄ𝐿𝑖𝑗 > 0,  ÐḄ𝑈𝑖𝑗 > 0 

  ŜḄ𝐿𝑖𝑗 = 0,  ŜḄ𝑈𝑖𝑗 = 0 and  ÐḄ𝐿𝑖𝑗 > 0,  ÐḄ𝑈𝑖𝑗 > 0 

  ŜḄ𝐿𝑖𝑗 > 0,  ŜḄ𝑈𝑖𝑗 > 0 and  ÐḄ𝐿𝑖𝑗 = 0,  ÐḄ𝑈𝑖𝑗 = 0 

8.1.17 Definition  

 Let 𝑃 = ṭ1, ṭ2, ṭ3, … , ṭ𝑚+1 (𝑚 > 0) be a path. Then its length is 𝑚. This path is known as a 

cycle if ṭ1 = ṭ𝑚+1 for (𝑚 ≥ 3) while two vertices combined by a path are known as connected. 

8.1.18 Example  

Let Ṿ = {ṭ1, ṭ2, ṭ3, ṭ4} and Ẻ  be the set of edges. Then, refer Figure 103. 



 

  

 

           Figure 104 (Interval valued Q-rung ortho pair fuzzy graph) 

Here ṭ1ṭ2 ṭ3 ṭ4 is a path and hence ṭ1, ṭ2, ṭ3, ṭ4 are connected vertices and the length of this 

path is 3. Moreover ṭ1ṭ2 ṭ3ṭ1 is a cycle. 

8.1.19 Definition  

 Let 𝑡 ∈ [0, 1]. Then the triple < Ṿ𝑡 , [ ŜẠ𝐿𝑡,  ŜẠ𝑈𝑡], [ ÐẠ𝐿𝑡 ,  ÐẠ𝑈𝑡] > ⊆ Ṿ and <

Ẻ𝑡, [ ŜḄ𝐿𝑡,  ŜḄ𝑈𝑡], [ ÐḄ𝐿𝑡,  ÐḄ𝑈𝑡] >  ⊆ Ẻ for some 𝑖 = 1, 2, 3, …𝑚 where  

 ŜẠ𝐿𝑡 = {ṭ𝑖 ∈ Ṿ:  ŜẠ𝐿𝑖 ≥ 𝑡},  ŜẠ𝑈𝑡 = {ṭ𝑖 ∈ Ṿ:  ŜẠ𝑈𝑖 ≥ 𝑡} and  ÐẠ𝐿𝑡 = {ṭ𝑖 ∈ Ṿ:  ÐẠ𝐿𝑖 ≤

𝑡},  ÐẠ𝑈𝑡 = {ṭ𝑖 ∈ Ṿ:  ÐẠ𝑈𝑖 ≤ 𝑡},  ŜḄ𝐿𝑡 = {(ṭ𝑖, ṭ𝑖) ∈ Ṿ × Ṿ:  ŜḄ𝐿𝑖𝑗 ≥ 𝑡},  ŜḄ𝑈𝑡 =

{(ṭ𝑖, ṭ𝑖) ∈ Ṿ × Ṿ:  ŜḄ𝑈𝑖𝑗 ≥ 𝑡}and  ÐḄ𝐿𝑡 = {(ṭ𝑖, ṭ𝑖) ∈ Ṿ × Ṿ:  ÐḄ𝐿𝑖𝑗 ≤ 𝑡},  ÐḄ𝑈𝑡 =

{(ṭ𝑖, ṭ𝑖) ∈ Ṿ × Ṿ:  ÐḄ𝑈𝑖𝑗 ≤ 𝑡}. 

8.1.20 Theorem  

 For 𝑥, 𝑦 ∈ [0, 1] such as 𝑥 ≤ 𝑦, let Ⱨ =< Ṿ𝑥, Ẻ𝑥 > and Ġ =< Ṿ𝑦, Ẻ𝑦 >. Then Ⱨ ≤𝐺 Ġ. 

Proof: To prove Ⱨ ≤𝐺 Ġ. We show that Ṿ𝑥and Ẻ𝑥 are subsets of Ṿ𝑦 and Ẻ𝑦 respectively. Let 

ṭ𝑖 ∈ Ṿ𝑥 so ÐẠ𝐿𝑖 ≤ 𝑥 ≤ 𝑦 as 𝑥 ≤ 𝑦  ⇒  ÐẠ𝐿𝑖 ≤ 𝑦 and ṭ𝑖 ∈ Ṿ𝑦  ⇒ Ṿ𝑥 ⊆ Ṿ𝑦,  ÐẠ𝑈𝑖 ≤ 𝑥 ≤ 𝑦 as 

𝑥 ≤ 𝑦  ⇒  ÐẠ𝑈𝑖 ≤ 𝑦 and ṭ𝑖 ∈ Ṿ𝑦  ⇒ Ṿ𝑥 ⊆ Ṿ𝑦 



Let (ṭ𝑖, ṭ𝑖) ∈ Ẻ𝑥 which implies that  ÐḄ𝐿𝑖𝑗 ≤ 𝑥  

            ≤ 𝑦 as 𝑥 ≤ 𝑦 

             ⇒  ÐḄ𝐿𝑖𝑗 ≤ 𝑦 and (ṭ𝑖, ṭ𝑖) ∈ Ẻ𝑦 

            ⇒ Ẻ𝑥 ⊆ Ẻ𝑦. 

Let (ṭ𝑖, ṭ𝑖) ∈ Ẻ𝑥 which implies that  ÐḄ𝑈𝑖𝑗 ≤ 𝑥 

            ≤ 𝑦 as 𝑥 ≤ 𝑦 

             ⇒  ÐḄ𝑈𝑖𝑗 ≤ 𝑦 and (ṭ𝑖, ṭ𝑖) ∈ Ẻ𝑦 

            ⇒ Ẻ𝑥 ⊆ Ẻ𝑦. 

Hence Ⱨ ≤𝐺 Ġ. 

8.1.21 Theorem  

 Let Ⱨ =< Ṿ′, Ẻ′ > and Ġ =< Ṿ, Ẻ > such that Ⱨ ≤𝐺 Ġ. Then for 𝑥 ∈ [0, 1]  < Ṿ𝑥
′ , Ẻ𝑥

′ >

 ≤𝐺 < Ṿ𝑥, Ẻ𝑥 >. 

Proof: Let ṭ𝑖 ∈ Ṿ𝑥
′ ⇒  ŜẠ𝐿𝑖

′ ≥ 𝑥 ⇒ ŜẠ𝐿𝑖 ≥ 𝑥 as   ŜẠ𝐿𝑖
′ ≤ ŜẠ𝐿𝑖 ⇒ ṭ𝑖 ∈ Ṿ𝑥 ⇒ Ṿ𝑥

′ ⊆ Ṿ𝑥 ⇒  ŜẠ𝑈𝑖
′ ≥

𝑥 ⇒ ŜẠ𝑈𝑖 ≥ 𝑥 as   ŜẠŜ𝑖
′ ≤ ŜẠ𝑈𝑖 ⇒ ṭ𝑖 ∈ Ṿ𝑥 ⇒ Ṿ𝑥

′ ⊆ Ṿ𝑥 . Let (ṭ𝑖, ṭ𝑗) ∈ Ẻ𝑥
′ ⇒  ŜḄ𝐿𝑖𝔧

′ ≥ 𝑥 ⇒

ŜḄ𝐿𝑖𝑗 ≥ 𝑥 as   ŜḄ𝐿
′ ≤ ŜḄ𝐿 ⇒ (ṭ𝑖, ṭ𝑗) ∈ Ẻ  

⇒ Ẻ𝑥
′ ⊆ Ẻ ⇒  ŜḄ𝑈𝑖𝔧

′ ≥ 𝑥 ⇒ ŜḄ𝑈𝑖𝑗 ≥ 𝑥 as   ŜḄ𝑈
′ ≤ ŜḄ𝑈 ⇒ (ṭ𝑖, ṭ𝑗) ∈ Ẻ ⇒ Ẻ𝑥

′ ⊆ Ẻ  

Hence  < Ṿ𝑥
′ , Ẻ𝑥

′ >  ≤𝐺 < Ṿ𝑥, Ẻ𝑥 >. 

8.2 Applications 

In this section, we aim to apply the proposed idea of IVq-ROPFS to some real-life 

engineering problems including, shortest path problem which is a famous problem utilized in 



civil engineering to compute the shortest route among some possible routes. Second, we present 

an application of proposed ideas to discuss two engineering decision making problems. Further, 

IVq-ROPFGs are used in analysing a social network where the social network of co-authors of 

different countries is demonstrated. At last, an application of IVq-ROPFGs is studied in 

observing a telephone network where the incoming and outgoing calls are observed followed 

by a dynamic algorithm. 

8.2.1 Shortest Path Problem 

In advanced transportation problems of traffic engineering, the computation of shortest 

route is often a challenging task. Several algorithms exist in literature in order to compute the 

shortest route among some possible routes such as Dijkstra algorithm and Floyd’s algorithm. 

Whenever the information about the path has lack of precision that is the information is fuzzy 

in fact, then fuzzy Dijkstra algorithm is utilized to compute shortest path among all possible 

paths. Some comprehensive work on fuzzy Dijkstra algorithm and its application in finding 

shortest path problem has been done in [104-107]. We followed the algorithm used in [104]. 

The comprehensive steps of algorithm next to a flow chart are in this section using two methods 

to find the shortest path subsequently pursued by two numerical examples and several related 

studies. 

8.2.1.1 Dijkstra Algorithm for Finding Shortest Path Problem. 

 Dijkstra algorithm is the mainly sound or most suitable way to locate shortest path in a 

network. The Dijkstra algorithm’s comprehensive steps for IVq-ROPFGs are acknowledged as 

follows: 

1. Record the source node as permanent node (P) and allot it the label ([0,0], [1,1])  because 

in shortest path this node is integrated by defect and the covered distance at this stage is 0. 



2. Compute the label [𝑣𝑖⊕𝑑𝑖𝑗, 𝑖]  for each node j whose pathway is from node I, condition 

is when j is not a permanent node, in addition if j is labeled as [𝑣𝑗 , 𝑘] by means of some 

additional node then substitute [𝑣𝑗 , 𝑘] by [𝑣𝑖⊕𝑑𝑖𝑗 , 𝑖] only if 𝑆𝐶(𝑣𝑖⊕𝑑𝑖𝑗) is less than 

𝑆𝐶(𝑣𝑗). 

3. If all the nodes are enduringly labeled, the algorithm eliminates. Moreover, choose 

[𝑣𝑟 , 𝑠] having shortest distance 𝑣𝑟  and do again step 2 by setting  𝑖 = 𝑟. 

4.  Discover the shortest path from SN to DN, by means of information of the label. 

8.2.1.2 Example  

 Consider a traffic engineering problem of several stopes/nodes connected by roads of a certain 

city. The aim is to compute the shortest route from node 1 to node 6. We apply the Dijkstra 

algorithm to this problem in order to compute the shortest route. The information about 

suitability of roads from one node to another node are given in terms of IVq-ROPFNs where 

the first interval shows the suitability of a road while the second interval shows the non-

suitability of a road. A brief demonstration of computing shortest route using Dijkstra 

algorithm described in section 8.2.1.1 is demonstrated as follows. 

         

         Figure 105 (Interval valued Q-rung ortho pair fuzzy graph) 

The edges involved in this network are listed in Table 25. 



   

         Table 25 (Weights of edges) 

Now we apply the modified Dijkstra algorithm and the step by step computations are as 

follows: 

Step 1: Mark node 1 as permanent as this node is in the shortest path by default. 

Step 2: There are two ways directed from node 1 i.e. we may either move to node 2 or to 

node 3. Therefore, we have the following list of nodes in Table 26. 

    

Table 26 (List of nodes) 

Now we to find the score of ([0.4,0.8], [0.5,0.7]) and ([0.5,0.7], [0.2,0.7]). 

𝑆𝐶([0.4,0.8], [0.5,0.7]) = 0.196192 

𝑆𝐶(([0.5,0.7], [0.2,0.7]) = 0.24495  

Therefore, the score of ([0.4,0.8], [0.5,0.7]) is less than the score of (([0.5,0.7], [0.2,0.7]), so 

we mark node 2 as permanent and labeled it by (([0.4,0.8], [0.5,0.7]), ṭ1). 

Step 3:  There are two ways directed from node 3 i.e. we may either move to node 4 or to 

node 5. Therefore, we have the following list of nodes in Table 27. 



  

 

Table 27 (List of nodes) 

Now we find the score of  ([0.016746,0.398481], [0.25,0.49]) and 

([0.016746,0.243058], [0.1,0.49]) as follows: 

𝑆𝐶([0.016746,0.398481], [0.25,0.49]) = 0.107892  

𝑆𝐶([0.016746,0.243058], [0.1,0.49]) = 0.069515 

Here we note that the score of ([0.016746,0.243058], [0.1,0.49]) is less than the score of 

([0.016746,0.398481], [0.25,0.49]), so therefore we mark node 5 as 

(([0.016746,0.243058], [0.1,0.49]), ṭ2) is label is permanent. 

Step 4:  There is only one way directed from node 5 i.e. we can only move to node 6. Therefore, 

we have the following list of nodes in Table 28. 

   

Table 28 (List of nodes) 

As there is only one way from node 5 to 6. Therefore, we mark node 6 as  

([0.12005,0.20583], [0.06,0.392]) and labeled it permanent. 



Step 5: Nodes 2 and 4 are the remaining temporary nodes, so their status is changed to 

permanent and we have the following list of nodes in Table 29.  

   

Table 29 (List of nodes) 

Step 6: From Table 30, we have the following sequence of shortest path form SN to DN i.e. 

from node 1 to 6.  

   

Table 30 (List of nodes) 

Hence the shortest path according to modified Dijkstra algorithm is ṭ1 → ṭ2 → ṭ5 → ṭ6. Despite 

there are more ways from node 1 to node 6 but considering the information of the decision 

makers about the paths we found that the shortest path is ṭ1 → ṭ2 → ṭ5 → ṭ6. Now we consider 

the same problem using a new algorithm which is demonstrated in section 8.2.1.1.  

8.2.1.3 A New Algorithm for Finding Shortest Path  

In this subsection, the aim is to compute the shortest path from node 1 to node 6 of  Example 

8.2.1.2. This new algorithm is proposed by [106] and the reason to follow this algorithm is the 

easy way of its computations. The programming of this method is also easy compared to the 

previously discussed algorithm. 

8.2.1.4 Algorithm for Finding Shortest Path 

The steps of algorithm are: 



15. Take the first node as ([0, 0], [1, 1]) as distance of every node to itself is zero. 

16. Take 𝑖 = 1. 

17. Find 𝑗 for 𝑃1𝑗 = 𝑃11 + ⋀𝑗∈𝑁𝑃(1)𝑃1𝑗 and determine 𝑃1𝑗. 

18. Put 𝑖 = 𝑗. 

19. Find 𝑘 for 𝑃𝑗𝑘 = 𝑃1𝑗 + ⋀𝑘∈𝑁𝑃(1)𝑃𝑗𝑘 and determine 𝑃𝑗𝑘. 

20. This process should be continued until destination node is obtained. 

21. When destination node is reached. Then algorithm is stopped. 

To further demonstrate the algorithm, a flowchart is depicted in Figure 106. 



   

 

 

Figure 106 (Flow chart of the new algorithm) 

8.2.1.5 Example 8 

Here we consider the information of Example 8.2.1.2 to compute the shortest path using 

proposed new algorithm. The detailed steps are demonstrated as follows. 



 In the above Figure 105 graph shows the source node is node 1 and the destination node is 

node 6, so for 𝑚 = 6 and for the first step 𝑃11 = ([0,0], [1,1]). At first 𝑖 = 1, so it needs to 

find 𝑗 by the equation. 

𝑃1𝑗 = 𝑃11 + ⋀𝑗∈𝑁𝑃(1)𝑃1𝑗 = 𝑃11 + ⋀𝑗∈{2,3}𝑃1𝑗 = 𝑃11 + (𝑃12⋀𝑃13) 

= ([0,0], [1,1]) + (([. 4, .8], [. 5, .7]) ∧ ([. 5, .7], [. 2, .7])) 

= ([0,0], [1,1]) + (0.196192 ∧ 0.24495) = ([0,0], [1,1] + (0.196192) 

= ([0,0], [1,1]) + ([. 4, .8], [. 5, .7]) = ([. 4, .8], [. 5, .7]) 

Hence for 𝑗 = 2, 𝑃12 = ([. 4, .8], [. 5, .7]). 

Now set 𝑖 = 2, we need to find 𝑗 by the equation 

𝑃1𝑗 = 𝑃12 + ⋀𝑗∈𝑁𝑃(2)𝑃2𝑗 = 𝑃12 + ⋀𝑗∈{3,5}𝑃2𝑗 = 𝑃12 + (𝑃23⋀𝑃25) 

= ([. 4, .8], [. 5, .7]) + (([. 3, .9], [. 5, .7]) ∧ ([. 3, .6], [. 2, .7])) 

= ([. 4, .8], [. 5, .7]) + (0. ,253082 ∧ 0.135) = ([. 4, .8], [. 5, .7]) + (0.135) 

= ([. 4, .8], [. 5, .7]) + ([0.3,0.6], [0.2,0.7]) = ([0.044636, 0.308704], [. 1, .49]) 

Hence for 𝑗 = 2, 𝑃15 = ([0.044636, 0.308704], [. 1, .49]). 

Now set 𝑖 = 5, there is only one way from node 5 which is node 6. we need to find by the 

equation 

𝑃1𝑗 = 𝑃15 + ⋀𝑗∈𝑁𝑃(5)𝑃1𝑗 = 𝑃15 + ⋀𝑗∈{6}𝑃1𝑗 = 𝑃15 + 𝑃56 

= ([0.044636, 0.308704], [. 1, .49]) + ([0.7,0.8], [0.6,0.8])

= ([. 120052,0.207448], [. 06, .392]) 

Hence for 𝑗 = 2, 𝑃16 = ([. 120052,0.207448], [. 06, .392]) 



So, the shortest path in the above graph is 𝑃1 ⟶ 𝑃2 ⟶ 𝑃5 ⟶ 𝑃6. This is exactly the same 

path that is obtained using Dijkstra algorithm, but this method has an advantage over the 

Dijkstra algorithm as its computation is easy and takes less time comparatively.  

8.2.1.6 Comparative Study and Advantages 

      As it is already discussed that IVq-ROPFS generalizes FS, IVFS, IFS, IVIFS, PyFSs, 

IVPyFS and q-ROPFS. Here we assume the same problem in the environment of fuzzy graphs 

i.e. the information of the edges is now taken in the form of fuzzy numbers as depicted in 

Figure 107. We apply the proposed Dijkstra algorithm as well as the new algorithm for finding 

the shortest path to problem with fuzzy information and analyze the results in Table 28. 

      

    Figure 107 (Network of roads in fuzzy environment) 

The shortest paths using the two algorithms in above traffic problem with fuzzy information 

are given in Table 31.  

 

 

 

 

Table 31 (shortest path obtained using the proposed algorithms in fuzzy environment) 

These results are clearly different than the results obtained in the environment of IVq-

ROPFGs. This is because the information in the form of IVq-ROPFNs not only describe the 



membership degree, but it also describes the non-membership degree and hence provide better 

results. In case of fuzzy membership grading, the non-membership degree about the suitability 

of a path is not available thus increasing the vagueness. The results obtained using both 

algorithms in two different environments are demonstrated in Figure 108 and Figure 109 

respectively where the shortest path is represented by 1→ 2 → 5 → 6. The following Figure 

107 shows the shortest path in the environment of IVq-ROPFGs. 

  

               Figure 108(shortest path in Interval valued Q-rung ortho pair fuzzy environment) 

The Figure 109 shows the shortest path using both algorithms in the environment of fuzzy 

graphs where the 1→ 3 → 4 → 6 path shows the shortest path. 

  

    Figure 109  (shortest path in fuzzy environment) 

 

 



8.3 Application of social networks 

A social network is considered as the network of peoples/ groups/ countries which are 

socially connected. The mathematical modelling of such social networks is very essential to 

study the behaviour of people/groups/countries involved. Graph theory provide such platform 

as a graph can be considered as a network of socially connected persons or objects.  

In research community, several co-authors from different countries are usually connected. 

The aim of this section is to apply the concept of IVQROPFGs to a social network of several 

co-authors of different countries. In such networks, the nodes represent the countries which the 

authors belong to and the edges denote the strength of their co-authorship relation i.e. to how 

much extent the authors involve with each other.  Such networks can be very large because of 

the large number of scientists from enormous countries. In our case, we present a social 

network of research collaborators from few countries and analyse it using the concept of 

IVQROPFSs.   

Co-authorship required due to following reasons  

1. Field of expertise: In interdisciplinary research, authors from different fields of expertise 

join together to work on a problem which involves more that more than one field for its 

solution. 

2. Language barriers: Sometimes to maintain the quality of language in a research project, 

authors from different countries required professionals from the same field but with high 

skills of language as well. 

3. Supervision: At many occasions, authors did collaboration with high ranked researchers in 

order to give the research a better look by supervising the research project. 

4. Funding: Funding a research project is also considered as an essential part as in some cases 

authors approach other researches from the same fields but with some funding sources. 



 

In Figure 110 below, we have shown the relation of several co-authors from five countries 

with other countries. The nodes represent the country of the researcher while the edges show 

their mutual relation keeping in mind the 4 points discussed above. We analyse the degree of 

each node which shows the strength of relation of the authors from that country with the 

researchers of other countries. 

 

 

 

    Figure 110 (Social network) 

In above Figure 110, the relationship between the co-authors of every two countries is 

characterized by the edge in the form of IVQROPFN. In Table 29, the degree of each node is 

given in the form of IVQROPFN showing the strength of the relationship of the researchers of 

that country with the researchers of other countries. The membership grade of each value of 

degree shows the intensity of strength and the non-membership value shows the weakness of 

the relation among the co-authors. So, if the non-membership degree is smaller in contrast to 



membership degree then the relationship is measured as strong or else weak. Each apex degree 

will present us the relationship of the researchers of a country with other countries.  

   

               Table 32 (Edge relations of Figure 110) 

At the present, on basis of Definition 8.1.13 the relation’s degree of each country is 

quantified in terms a score value. The strength of Relationship of the researchers of one country 

with that of other countries is fine if there is a high degree of membership otherwise the relation 

will be neutral or poor. The quantified terms of degrees are given in Table 33, by using the Def. 

(8.1.4). 

     

                      Table 33 (Scores of degrees of each vertex)  

The computed score values of the degree of each country is given in Table 33 which clearly 

indicated that the score of India and Saudi-Arab is less negative, so the researchers of these 

countries have a better rate of co-authorship with that of other countries. Pakistan stands at 

number 3 in this Table. The above information is represented by a bar graph in Figure 111 for 

a better understanding of score values. Such bar graph analysis of data is very useful when we 

have large type of data that happened in real life. 

   



 

 

 

 

 

 

 

 

 

 

   Figure 111 (Analysis of score values of Table 30) 

8.3.1 Comparative Study and Advantages:  

Now we establish a comparative study of the analysis of social networks in the 

environments of FGs and IVQROPFGs. We observe the network of co-authorship by 

representing the edges and vertices of the social network discussed in Figure 110 using fuzzy 

numbers. Consider a collaboration network of co-authors in the environment FGs in Figure 

112. 
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   Figure 112 (Co-authorship network using fuzzy numbers) 

The strength of relationship between the co-authors of different countries using fuzzy 

numbers are given in Table 31. 

    

Table 31 (Relationship of co-authors in terms of fuzzy numbers as depicted in Fig 112) 

Note that the information provided in Figure 112 are taken from Figure 110 but in the form of 

fuzzy numbers. The degree of each county using the definition of degree of fuzzy numbers in 

order to rank the countries is given in Table 32. 

     

    Table 32 (Degree of each node of Fig 112) 

The information of Table 32 clearly indicates that China and Pakistan stand at number 

1 in co-authorship network while Saudi-Arab and Iran stands at number 2 with degree 1.1. 

India in this regard at number 3. However if we refer to Table 30 then we came to know that 

India and Saudi-Arab was on top in collaboration network. The bar graph of degrees of each 

node of Figure 112 is depicted in Figure 113. 

 



  

  Figure 113 (Analysis of degrees of Table 32) 

Note that the analysis of social network using IVq-ROPFG is more effective than using 

FGs because an IVq-ROPFG describes the non-membership degree as well along with 

membership degree while traditional fuzzy graph can only describe the membership grade of 

the relation of co-authors of the two countries.  

8.4 Applications of IVQROPFGs in Telephonic Networks: 

Telephone network is another area where graph theory is applicable as telephones connect 

peoples to each other. In a telephone network, people act as nodes while the edges denote their 

connectivity sources. There are three major types of telephone networks known as: 

 Public Switched Telephone Networks (PSTNs): These networks are usually termed as 

public telephone networks e.g. Landline networks connected public of the world. 

 Wireless Networks: These are commonly used mobile networks that connects individuals. 

 Private Networks: These types of networks are used within an organization connecting the 

employee of that specific organization. 

With a rapid increment in the usage of mobile networks, the incoming and outgoing calls gained 

considerable importance. In fuzzy graph theory one cannot find significant amount of work 
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dealing with the incoming and outgoing calls which is a dynamic problem. Therefore, in this 

subsection, we develop an algorithm for storing the number of incoming or outgoing calls using 

the approach of IVQROPFGs. 

In a wireless mobile network, whenever a call is made, there are three kinds of circumstances 

that a person can face, that are: 

 Call is received 

 Call is not received or rejected 

 Call gets hanged or a network error accrued. 

The above discussed three kinds of circumstances can be easily modeled using the membership 

grade, non-membership grade and the hesitancy grade of an IVQROPFN. We present a 

dynamic algorithm to handle the incoming and outgoing calls in a wireless mobile network.  

8.4.1 Algorithm:  

Let us assume a network of some peoples that are connected to each other using mobile 

phones. An incoming or outgoing call could face a situation of 1. call is received, 2. call is not 

received and 3. call is left unattended or call gets disrupted i.e. a network error accrued. The 

first and second situation can be considered as the membership and non-membership grade 

while the third case can be considered as the hesitancy degree of an IVQROPFN. The algorithm 

for such IVQROPF telephone network can be described in the steps given as: 

1. Setup the set of vertices Ṿ = {ṭ𝑖, 𝑖 = 1, 2, 3, … , 𝑞  }. In our case each ṭ𝑖 =

([Ŝ𝐿Ạ, Ŝ
𝑈
Ạ], [Ð

𝐿
Ạ, Ð

𝑈
Ạ]) represents a telephone number where [Ŝ𝐿Ạ, Ŝ

𝑈
Ạ] is the tendency 

of calling while [Ð𝐿Ạ, Ð
𝑈
Ạ] is the tendency of not calling to other numbers. 



2. Establish the set of edges Ẻ = {([Ŝ𝐿Ḅ𝑖 𝑗, Ŝ
𝑈
Ḅ𝑖𝑗 ], [Ð

𝐿
Ḅ𝑖 𝑗, Ð

𝑈
Ḅ𝑖 𝑗]) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 =

1, 2, 3, 4, … , 𝑞. } and calculate the degree of membership and non-membership for all 

([Ŝ𝐿Ḅ𝑖 𝑗 , Ŝ
𝑈
Ḅ𝑖𝑗 ], [Ð

𝐿
Ḅ𝑖 𝑗, Ð

𝑈
Ḅ𝑖 𝑗]) using the relation 

ŜḄ𝐿(ṭ𝑖, ṭ𝑗) ≤ Λ[ŜẠ𝐿(ṭ𝑖), ŜẠ𝐿(ṭ𝑗)] , ŜḄ𝑈(ṭ𝑖, ṭ𝑗) ≤ Λ[ŜẠ𝑈(ṭ𝑖), ŜẠ𝑈(ṭ𝑗)]   

and 

ÐḄ𝐿(ṭ𝑖, ṭ𝑗) ≤ ⋁[ÐẠ𝐿(ṭ𝑖), ÐẠ𝐿(ṭ𝑗)], ÐḄ𝑈(ṭ𝑖, ṭ𝑗) ≤ ⋁[ÐẠ𝑈(ṭ𝑖), ÐẠ𝑈(ṭ𝑗)] 

 

3. Obtain an IVq-ROPFG Ġ =< Ṿ, Ẻ > 

8.4.1 Example  

Consider Ṿ = {ṭ1, ṭ2, ṭ3, ṭ4, ṭ5}, the set of 5 telephone numbers making an IVq-ROPFG 

network. Let Ẻ = {(ṭ1, ṭ2), (ṭ1, ṭ3), (ṭ2, ṭ3), (ṭ2, ṭ5), (ṭ4, ṭ3), (ṭ4, ṭ5), (ṭ5, ṭ1), (ṭ5, ṭ3)} be the set 

of edges whose values are given in Table 33 below in the form of IVq-ROPFN for q=2. 

    

Table 33 (The number of calls between different phone numbers in the form of  

IVq-ROPFNs) 

The telephone network discussed in Example  having edges in the form of IVq-ROPFG given 

in Table 33 is portrayed in Figure 114. 



  

                   Figure 114 (Telephone network in the environment of IVq-ROPFGs) 

 

We use Definition 8.1.13 to find the degree of each vertex telephone network depicted in 

Figure 114. All the degrees are given in Table 34. 

                                      

     Table 34 (Degree of vertices of Figure 114) 

To analyse the degrees more explicitly, we use the score function of IVq-ROPFN to compute 

the score of degrees provided in Table 34. The score values are given in Table 35 below. 



     

                      Table 35 (Score of vertices of Figure 114) 

Analysing Table 35, we came to know that 𝑃3 has zero degree which is better than the 

degree of other vertices which are negative showing that the effective calling ratio of ṭ3 is better 

than the calling ratios of other callers. ṭ2 is at number 2 in this effective calling list. For a better 

view, the bar graph of the data available in Table 35 is given in in Figure 115. 

   

 

 

Figure 115 (Score values of degrees of effective calling ratios of telephone network discussed 

in Figure 114) 

8.4.2 Comparative Study and Advantages  

Here, we present a comparison of telephone network based on IVQROPFGs with a telephone 

network based on FGs. The information about the incoming or outgoing calls are shown using 
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fuzzy numbers and a fuzzy telephone network is depicted in Figure 116 where the values of 

edges between several telephone numbers are given in Table 36. 

    

 

Figure 116 (Telephone network based on fuzzy graphs showing the effective number of 

incoming or outgoing calls) 

The incoming calls received are demonstrated using fuzzy numbers while there is no 

information about the number of calls rejected or the calls that go interrupted by network errors. 

That is the main reason an FG cannot be able to demonstrate a telephone network in a better 

way as an IVq-ROPFG does. The information of incoming or outgoing calls in terms of fuzzy 

numbers is given in Table 36. 

      

Table 36 (information about the incoming our outgoing calls in terms of fuzzy numbers) 

numbers) 



To get a clear image of the telephonic network demonstrated in Figure 116 using FGs, we 

utilize the concept of degree of FGs. The degrees of each node of the FG are given in Table 37 

followed by a bar graph showing the effective ratio of incoming or outgoing calls.   

     

 Table 37 (Degree of vertices of telephonic network depicted in Figure 116) 

   

 

  Figure 117 (Bar graph of degrees of fuzzy telephonic network) 

Analyzing Table 37 and Figure 117, it is quite clear that ṭ1 has the highest number of incoming 

or outgoing calls. ṭ2 is at number second in the list. However, if we investigate the results 

obtained in the case of telephonic network of IVq-ROPFG in Figure 114, we came to know 

that ṭ3 has better rate of incoming calls. 
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8.5 Applications in Engineering Decision Making 

Decision making is one of the important tools that is highly used in several scientific fields 

including, engineering, economics, management sciences and other fields of machine learning 

and soft computing. The aim of this section is to utilize the concept of IVQROPFG in solving 

engineering decision making problems. 

8.5.1 Algorithm  

In decision making problems using graphs, we  considered the family of alternatives, which 

are connected to each other using the edges of the graph. The aim is to evaluate all the 

alternatives on equal weights and to determine the best among them using some aggregation 

operators. 

Consider a list of 𝑛 alternatives needed to be evaluated under a common attribute and 

connected to each other by edges whose information is provided in the form of IVQROPFNs. 

This IVQROPFG is obtained by the information of decision makers. The steps of decision-

making problem are given by: 

 Step 1: Formation of IVQROPFGs by decision makers in which information about the 

alternatives are given in the form of IVQROPFNs. 

 Step 2: Using the information of the IVQROPFG provided in Step 1 to construct a relational 

matrix. 

Step 3: Using the weighted averaging and weighted geometric aggregation operators of 

IVQROPFSs to aggregate the information given in the relational matrix obtained in Step 2. 

Step 4: Use score values to rank the alternatives for finding the best alternative among the given 

list of alternatives. 

 



8.5.2 Decision Making to Evaluate the Best Engineering Project 

Consider four civil engineering projects needed to be completed by the government of 

Pakistan in the financial year 2019-20. These four projects are denoted by 𝑧𝑖(𝑖 = 1, 2, 3, 4) 

including “building a hospital”, “building a road connecting two cities”, “building a school in 

the nearby urban area” and “reconstruction of government oil refinery”. The government of 

Pakistan needs to complete all these projects but in order of importance and need. The 

recognized building authority evaluate the feasibility of all these projects with the help of 

experts to prioritize the projects. The decision-making panel consisting of engineers, economist 

and other government officials. The detailed steps of this decision-making problem using the 

proposed algorithm are demonstrated as follows: 

                             

 Figure 118 (Directed Network of the Interval valued q-rung ortho pair fuzzy relation IVq-

ROFR) 

Step 1: Formation of IVQROPFG connecting the four projects describing their suitability in 

terms of IVQROPFNs. 



Step 2: Formation of matrix relating the four projects. 

Ṙ = (ṙ𝑖𝑗)4×4 =

(

 
 
 
 
 
 
(
[𝟎. 𝟒, 𝟎. 𝟔],
[𝟎. 𝟒, 𝟎. 𝟔]

) , (
[𝟎. 𝟑, 𝟎. 𝟖],
[𝟎. 𝟒, 𝟎. 𝟕]

) , (
[𝟎. 𝟒, 𝟎. 𝟕],
[𝟎. 𝟐, 𝟎. 𝟖]

) , (
[𝟎. 𝟓, 𝟎. 𝟕],
[𝟎. 𝟓, 𝟎. 𝟖]

)

(
[𝟎. 𝟐, 𝟎. 𝟖],
[𝟎. 𝟓, 𝟎. 𝟖]

) , (
[𝟎. 𝟒, 𝟎. 𝟔],
[𝟎. 𝟒, 𝟎. 𝟔]

) , (
[𝟎. 𝟐, 𝟎. 𝟔],
[𝟎. 𝟓, 𝟎. 𝟕]

) , (
[𝟎. 𝟑, 𝟎. 𝟖],
[𝟎. 𝟒, 𝟎. 𝟔]

)

(
[𝟎. 𝟒, 𝟎. 𝟗],
[𝟎. 𝟐, 𝟎. 𝟕]

) , (
[𝟎. 𝟓, 𝟎. 𝟔],
[𝟎. 𝟏, 𝟎. 𝟖]

) , (
[𝟎. 𝟒, 𝟎. 𝟔],
[𝟎. 𝟒, 𝟎. 𝟔]

) , (
[𝟎. 𝟑, 𝟎. 𝟖],
[𝟎. 𝟓, 𝟎. 𝟖]

)

(
[𝟎. 𝟒, 𝟎. 𝟖],
[𝟎. 𝟑, 𝟎. 𝟖]

) , (
[𝟎. 𝟑, 𝟎. 𝟖],
[𝟎. 𝟐, 𝟎. 𝟒]

) , (
[𝟎. 𝟐, 𝟎. 𝟖],
[𝟎. 𝟓, 𝟎. 𝟕]

) , (
[𝟎. 𝟒, 𝟎. 𝟔],
[𝟎. 𝟒, 𝟎. 𝟔]

)
)

 
 
 
 
 
 

 

Step 3: Using IVQROPFWA aggregation operator given below on the matrix obtained in Step 

2. 

ṙ𝑖 = 𝐼𝑉𝑄𝑅𝑂𝑃𝐹𝑊𝐴(ṙ𝑖1, ṙ𝑖2, … , ṙ𝑖𝑛)

=

(

 
 
 
 
 
 

[
 
 
 
 
√1 −∏(1 − (Ŝ𝐿𝑖𝑗)

𝑞
)

𝑛

𝑗=1

1
𝑛

, √1 −∏(1 − (Ŝ𝑈𝑖𝑗)
𝑞
)

𝑛

𝑗=1

1
𝑛

]
 
 
 
 

,

[
 
 
 
 

(∏Ð𝐿𝑖𝑗

𝑛

𝑗=1

)

1
𝑛

, (∏Ð𝑈𝑖𝑗

𝑛

𝑗=1

)

1
𝑛

]
 
 
 
 

)

 
 
 
 
 
 

 

 𝑖 = 1,2, … , 𝑛, 

Now all ṙ𝑖𝑗, 𝑗 = 1,2, … ,4 are aggregated and the results are given below. 

ṙ1 = ([0.4184, 0.7154], [0.3557, 0.7200]) 

ṙ2 = ([0.3103,0.7295], [0.4472, 0.6701]) 

ṙ3 = ([0.4184, 0.7819], [0.2515, 0.6260]) 

ṙ4 = ([0.3516, 0.7444], [0.3310, 0.5856]) 

Step 4: Using the score function defined for IVQROPFSs to rank the aggregated data obtained 

in Step 3. The score values are given below followed by the ranking results. 



ṣ(ṙ𝑖) =
((Ŝ𝐿

𝑖
)
𝑞
(1 − (Ð𝐿𝑖)

𝑞) + (Ŝ𝑈
𝑖
)𝑞(1 − (Ð𝑈𝑖)

𝑞))

2
 

ṣ(ṙ1) = 0.1847, ṣ(ṙ2) = 0.1629, ṣ(ṙ3) = 0.2525, ṣ(ṙ4) = 0.2067 

 ẓ3 >  ẓ4 >  ẓ1 >  ẓ2 

Hence, the projects are ranked as: 

 Building a school in the nearby urban area is at priority ONE. 

 Reconstruction of government oil refinery is second in priority list. 

 Building a hospital is at number 3 in priority list. 

 Building a road connecting two cities is at last in priority list. 

Now we solve the same problem using IVQROPFWG operators and to do so, we start the 

process from Step 3. 

Step 3: Using IVQROPFWG given below to aggregate the information given in matrix 

obtained in Step 2. 

ṙ𝑖 = 𝐼𝑉𝑄𝑅𝑂𝑃𝐹𝑊𝐺(ṙ𝑖1, ṙ𝑖2, … , ṙ𝑖𝑛) 

=

(

 
 
 
 
 
 

[
 
 
 
 

(∏Ŝ𝐿𝑖𝑗

𝑛

𝑗=1

)

1
𝑛

, (∏Ŝ𝑈𝑖𝑗

𝑛

𝑗=1

)

1
𝑛

]
 
 
 
 

,

[
 
 
 
 
√1 − (∏(1 − (Ð𝐿𝑖𝑗)

𝑞
)

𝑛

𝑗=1

1
𝑛

, √1 − (∏(1 − (Ð𝑈𝑖𝑗)
𝑞
)

𝑛

𝑗=1

1
𝑛

]
 
 
 
 

)

 
 
 
 
 
 

 

ṙ1 = ([0.3936,0.6964], [0.4129, 0.7444]) 

ṙ2 = ([0.2632, 0.6928], [0.4586, 0.6973]) 

ṙ3 = ([0.3936, 0.7135], [0.3885, 0.7159]) 



ṙ4 = ([0.3139, 0.7200], [0.3966, 0.6358] 

Step 4: Using the score function defined for IVQROPFSs to rank the aggregated data obtained 

in Step 3. The score values are given below followed by the ranking results. 

ṣ(ṙ1) = 0.1559, ṣ(ṙ2) = 0.1264, ṣ(ṙ3) = 0.1724, ṣ(ṙ4) = 0.1674 

 ẓ3 >  ẓ4 >  ẓ1 >  ẓ2 

Hence, we got the same ranking as we did by using the IVQROPFWA operators: 

 Building a school in the nearby urban area is at priority ONE. 

 Reconstruction of government oil refinery is second in priority list. 

 Building a hospital is at number 3 in priority list. 

 Building a road connecting two cities is at last in priority list. 

Note that, it is not necessary that the results obtained using weighted averaging and weighted 

geometric aggregation operators will always be the same. However, the use of weighted 

averaging or weighted geometric aggregation operators are up to the decision makers. 

8.6 Decision Making in Supply Chain Management 

        Supply chain management involves the assessment of companies based on their 

performance in a supply chain. There are several aspects which plays vital role in a supply 

chain and our aim is to find out the best among those aspects. 

Consider a supply chain of some engineering companies and assume that there are four factors 

i.e. service level, cost and price, quality and response time denoted by 𝑧𝑖(𝑖 = 1, 2, 3, 4) playing 

a vital role in this chain. To compute the most influential factor among those four, we utilized 

the following four simple steps to evaluate the most influential factor. 



1. Obtain information about given number of factors by decision makers in three or more 

decision matrices. 

2. Regroup the information obtained in Step 1 using IVQROPFA or IVQROPFG aggregation 

operators into a relational matrix which results in the formation of the IVQROPFG as well.  

3. Use the Definition 8.1.13 to compute the out-degrees of each factor. 

4. Rank the values of out-degrees to get the most influential factor. 

The information about the four factors towards their importance in the supply chain are given 

in three matrices below followed by the stepwise demonstration of supply chain management 

problem. 

𝑅1 =

[
 
 
 
 
 
 
 
 (
[0.5,0.6],
[0.5,0.6]

) (
[0.7,0.7],
[0.2,0.5]

) (
[0.1,0.7],
[0.1,0.5]

)

(
[0.3,0.7],
[0.4,0.7]

) (
[0.5,0.6],
[0.5,0.6]

) (
[0.2,0.5],
[0.5,0.6]

)

(
[0.2,0.6],
[0.4,0.6]

)

(
[0.3,0.5],
[0.4,0.7]

)

(
[0.2,0.4],
[0.5,0.6]

)

(
[0.2,0.7],
[0.3,0.6]

)

(
[0.5,0.6],
[0.5,0.6]

)

(
[0.3,0.4],
[0.4,0.5]

)

    

(
[0.5,0.7],
[0.6,0.7]

)

(
[0.5,0.7],
[0.4,0.6]

)

(
[0.3,0.6],
[0.5,0.7]

)

(
[0.5,0.6],
[0.5,0.6]

)
]
 
 
 
 
 
 
 
 

 

𝑅2 =

[
 
 
 
 
 
 
 
 (
[0.5,0.6],
[0.5,0.6]

) (
[0.5,0.7],
[0.1,0.6]

) (
[0.3,0.5],
[0.5,0.6]

)

(
[0.2,0.7],
[0.5,0.7]

) (
[0.5,0.6],
[0.5,0.6]

) (
[0.3,0.6],
[0.4,0.7]

)

(
[0.1,0.6],
[0.3,0.7]

)

(
[0.1,0.6],
[0.2,0.6]

)

(
[0.5,0.5],
[0.5,0.6]

)

(
[0.3,0.4],
[0.5,0.6]

)

(
[0.5,0.6],
[0.5,0.6]

)

(
[0.3,0.55],
[0.4,0.6]

)

   

(
[0.2,0.6],
[0.3,0.4]

)

(
[0.5,0.7],
[0.1,0.6]

)

(
[0.2,0.6],
[0.4,0.5]

)

(
[0.5,0.6],
[0.5,0.6]

)
]
 
 
 
 
 
 
 
 

 

𝑅3 =

[
 
 
 
 
 
 
 
 (

[0.5,0.6],
[0.5,0.6]

) (
[0.3,0.7],
[0.3,0.5]

) (
[0.1,0.5],
[0.3,0.7]

)

(
[0.4,0.6],
[0.5,0.6]

) (
[0.5,0.6],
[0.5,0.6]

) (
[0.3,0.6],
[0.3,0.7]

)

(
[0.5,0.7],
[0.6,0.6]

)

(
[0.53,0.72],
[0.1,0.2]

)

(
[0.5,0.6],
[0.1,0.7]

)

(
[0.53,0.63],
[0.12,0.42]

)

(
[0.5,0.6],
[0.5,0.6]

)

(
[0.4,0.5],
[0.3,0.5]

)

    

(
[0.2,0.6],
[0.5,0.6]

)

(
[0.5,0.6],
[0.5,0.5]

)

(
[0.2,0.3],
[0.3,0.4]

)

(
[0.5,0.6],
[0.5,0.6]

)
]
 
 
 
 
 
 
 
 

 



2.  Now we use the IVQROPFA operators to regroup the information given in above three 

decision matrices. Using the following IVQROPFA operator, the relational matrix 𝑅 is 

formed given below. 

𝐼𝑉𝑄𝑅𝑂𝑃𝐹𝐴(ṙ𝑖1, ṙ𝑖2, … , ṙ𝑖𝑛)

=

(

 
 
 
 
 
 
√1 − (∏(1 − (Ŝ𝐿𝑖𝑗)

𝑞
)

𝑛

𝑗=1

)

1
𝑛

, √1 − (∏(1 − (Ŝ𝑈𝑖𝑗)
𝑞
)

𝑛

𝑗=1

)

1
𝑛

,

(∏Ð𝐿𝑖𝑗

𝑛

𝑗=1

)

1
𝑛

, (∏Ð𝑈𝑖𝑗

𝑛

𝑗=1

)

1
𝑛

)

 
 
 
 
 
 

 

𝑅 =

[
 
 
 
 
 
 
 
 (
[0.43,0.46],
[0.042,0.072]

) (
[0.44,0.48],
[0.002,0.05]

) (
[0.35,0.45],
[0.005,0.07]

)

(
[0.38,0.47],
[0.03,0.098]

) (
[0.43,0.46],
[0.042,0.072]

) (
[0.4,0.45],
[0.02,0.098]

)

(
[0.38,0.47],
[0.024,0.084]

)

(
[0.39,0.46],
[0.003,0.028]

)

(
[0.41,0.43],
[0.008,0.084]

)

(
[0.39,0.46],
[0.006,0.05]

)

(
[0.43,0.46],
[0.042,0.072]

)

(
[0.38,0.43],
[0.016,0.05]

)

   

(
[0.38,0.46],
[0.03,0.056]

)

(
[0.43,0.47],
[0.007,0.06]

)

(
[0.36,0.44],
[0.02,0.05]

)

(
[0.43,0.46],
[0.042,0.072]

)
]
 
 
 
 
 
 
 
 

 

This relational matrix is clearly an IVQROPFG depicted in Figure 119. 

     



  Figure 119 (Directed Network of IVQROPFG sowing the relation of four 

factors in the supply chain) 

The Figure 119 reduces a partial IVq-ROPFG by using the condition Ŝ2𝐿 ≥ 0.46 which is 

depicted in Figure 120.  

  

   Figure 120 (Partial Directed Network of supply chain factors) 

3.Utilizing the formula of out-degree to compute the out-degree values of each factor given as: 

 𝑂Ŝ𝑡 − 𝑑(𝑧1) = ([0.82,0.94], [0.032,0.061]) 

𝑂Ŝ𝑡 − 𝑑(𝑧2) = ([0.81,0.94], [0.05,0.196]) 

𝑂Ŝ𝑡 − 𝑑(𝑧3) = ([0.38,0.47], [0.024,0.084]) 

𝑂Ŝ𝑡 − 𝑑(𝑧4) = ([0.78,0.92], [0.009,0.078]) 

By observing the degree of membership, it is clear that  

𝑂Ŝ𝑡 − 𝑑(𝑧1) ≥ 𝑂Ŝ𝑡 − 𝑑(𝑧2) ≥ 𝑂Ŝ𝑡 − 𝑑(𝑧4) ≥ 𝑂Ŝ𝑡 − 𝑑(𝑧3) 



Hence 𝑧1 ≥ 𝑧2 ≥ 𝑧4 ≥ 𝑧3 which shows that cost and price is the required factor that one must 

keep in mind. The results would be the same if we use IVQROPFG aggregation operators 

instead of IVQROPFA operators 

8.6 Conclusion 

In this chapter, a novel idea of IVq-ROPFG is introduced as a generalization of FG, IVFGS, 

IFG, IVIFG and PyFG. With the help of some remarks, the generalization of proposed work is 

proved. Several graphical concepts are developed for IVq-ROPFG such as the concept of 

subgraph, complement, degrees, out-degrees and paths etc. Each concept is demonstrated with 

examples. In the environment of IVq-ROPFG, a shortest path computation problem is analysed 

and demonstrated with the help of two different techniques. A co-authorship network of the 

authors of several countries and their relation is also analysed using the concepts of IVq-

ROPFGs. A telephone network model is presented where the extent of calls between two or 

more persons is analyzed using the approach of IVq-ROPFGs. Two engineering decision 

making problems are discussed using the approach of IVq-ROPFGs. For every application that 

is assessed, a comparative study is established and the advantages of working in the area of 

IVq-ROPFG are demonstrated with the help of examples. In future, we plan to study few more 

decision-making problems using some different aggregation tools of IVq-ROPFGs. 
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