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Preface
For a mapping J : L ! L, an element a 2 L is said to be �xed point of J if Ja = a.

Choosing a member a0 of L and using the pattern an+1 = Jan, generate a sequence fang from

a0 in L, where n being from N, such a sequence is described to be a Picard sequence in the

literature. Iteration of such a sequence plays a key role in the iteration of a �xed point of some

given mapping with special contractive impositions. The study of �xed point theory has been a

wide �eld of research since the existence of non-linear analysis and researcher opted to locate a

solution point of di¤erent mathematical and engineering problems via reshaping the problems

in the frame of �xed point numerical and then iterating its �xed point, indeed the solution of

the problems.

Banach (1992) tendered debate of the metric �xed point theory by establishing the �rst

theorem termed as Banach contraction principle, directing researchers to a new �eld in mathe-

matics �xed point theorem, that is composed of topology, geometry and analysis. For a metric

space, a self-mapping J on L is said to be Banach contraction if J satis�es the inequality

d(Ja; Jy) � kd(a; y) for each a; y 2 L provided that 0 < k < 1. The statement of Banach

contraction principle states that for a complete metric space L, and a mapping J , J has a

unique �xed point in L. Despite of the brief statement and proof, the theorem accommodate a

comprehensive knowledge of �nding solution to complex problems in various �elds of studies,

such as game theory, functional analysis, dynamical system, PDEs and even biosciences. As

the iteration process is involved in the theorem, thus it can be easily applied on a computer

system. It was proved that Banach contraction is uniformly continuous on the set L, however,

to extend this idea with a weaker condition, Kannan [55] was the �rst who gave the idea of

non-continuous operator satisfying a new contractive condition. He proved the persistence of a

�xed point even if the operator is non-continuous. He described a weaker form of the Banach

contraction as d(Ja; Jy) � k [d(a; Ja) + d(y; Jy)] for all a; y 2 L where 0 � k < 1
2 . This was

further exploited by Chatterjee [37] in somehow closer form but quite di¤erent in nature. He

replaced the Kannan inequality by d(Ja; Jy) � k [d(a; Jy) + d(y; Ja)] for all a; y 2 L where

0 � k < 1
2 . One can observe that these three principles are independent of each other and had

provided base to the research of �xed point theory.
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The results of �xed point in the entire �eld had played an important role in di¤erent research

activities, for instance (see [12, 20, 23, 24, 28, 38, 39, 47, 48, 58, 82, 103]). Fixed point theory

has applications in various �elds of mathematics and other sciences, for example [10, 52, 65, 69].

Fréchet [45] tendered debate on the topic of metric which now a days contribute a central part

in both applied and pure mathematics. The metric space and its generalized forms are essential

as well as the inevitable part of many branches of mathematics. After exploring its application

in various �elds of mathematics and other sciences, mathematicians were compelled to come up

with the more general and extended versions of metric spaces like Matthews [68] put forwarded

the concept of partial metric version of Banach contraction theorem [27]. Several authors, then

presented interesting results on partial metric spaces and its topological properties [3, 46, 89].

Ran and Reurings [78] explaining the notion of partial order and gave applications. In 2008,

Jachymski [51] had the excellent idea to use the metric space endowed with a graph and the

contraction condition of Banach will be satis�ed only for the edges of the graph.

In parallel to this, Bakhtin [26] and Czerwik [41] introduced the de�nition of b-metric space.

Several authors interesting the notion of b-metric space to establish the persistence of �xed point

for contraction maps for instance, see [7, 20, 22, 42, 86, 104]. Also, among all these extensions of

metric space is the quasi metric space that was introduced byWilson [101]. The second condition

i.e., commutativity, does not hold in general in quasi metric spaces. Using this generalization,

various authors investigated �xed point for di¤erent mappings [25, 35, 60, 67, 83, 102]. This

discussion was followed by the topic of dislocated metric space [6, 15] and dislocated quasi

metric space [16, 30, 92, 96, 103]. Dislocated quasi b-metric space was investigated by Klin-

eam and Suanoom [64], for �xed point and �xed point theorems in complete dislocated quasi

b-metric space was explored [1, 77]. Moreover, Kamran et al. [56] elongated the concept of

b-metric space to extended b-metric space while replacing the parameter s � 1 in the triangle

inequality by the control function � : L� L! [1;+1) see also [87]: The same notion was also

generalized by Mlaiki et al. [71] in a di¤erent way with inserting a control function instead of

the constant �s�and hence named his newly de�ned metric as controlled metric type spaces.

The arguments continued and Abdeljawad et al. [2] added another notion labeled as double

controlled metric type spaces.

Besides all the extensions of metric space mentioned above, a big portion of the literature
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is composed of the multi-valued maps instead of single-valued maps. It was Nadler in 1969 [72]

who commenced discussion on maps that map on a set of points rather than those mapped

to single points only. He took Banach contraction as a special case of the Hausdor¤ Pompeiu

metric and establish �xed point theorem for multi-valued mappings. Later, this approach

was furthered by many renown researchers [22, 29, 92, 95, 98, 99] and likewise results were

established in a variety of metric spaces. To study �xed point in the area, the de�nition of �xed

point was rephrased as, for a multi-valued mapping J , a point a in the set L is named as �xed

point of J if a 2 Ja. Applications in engineering, economics, Nash equilibria and game theory

in �xed point results of multivalued mappings have introduced see [11, 18, 36, 66].

This thesis is a composition of theorems based on �xed point for both single-valued and

multi-valued mappings having certain contractive imposition. Fixed point concept is exploited

for iterating common �xed point of such maps. The dissertation is a mixture of diverse knowl-

edge of metric space and its extensions having di¤erent methodology of iterating a solution or

�xed point of distinct maps. This dissertation is split into four chapters. Following is a chapter

wise content distribution of our thesis.

Chapter 1, focuses fundamental notions and de�nitions that are primarily involved in the

main results or helps in understanding the results. Similarly, some important pre-existing �xed

point theorems are given in the chapter.

Chapter 2, explains in detail, notion of complete left (right) K-sequentially quasi metric

space. Also, we have presented the concept of �-Alt mapping and using that �xed point results

which established for F��s���s-contraction in the setting of quasi b-metric space. The chapter

further throw light on the applicability of the main theorems with concrete arguments.

Chapter 3, is related to common �xed point of coincidence as well as common �xed point

of four maps carrying speci�c impositions. Working in partial metric space, theorems has been

proved for �xed point. The multi-valued maps of �xed point is iterated for F -contractions in

abstract spaces with application.

Chapter 4, this chapter demonstrate �xed point of distinct contractions in left double con-

trolled quasi and dislocated quasi metric type spaces. The main results are explained using

concrete examples. Throughout this thesis N, R+and R denote the set of all natural numbers,

the set of all non-negative real numbers and the set of all real numbers, respectively.

3



Chapter 1

Preliminaries

This chapter is based on discussion about the evolution of �xed point theory. It throws light

on metric �xed point theory and its gradual upbringing in the �eld of non-linear analysis. The

fundamental notions and founding �xed point theorems are described in this chapter, these

notions/theorems enable us to understand our main work and also help us in proving these

important results. This chapter portrays the said results as generalizations of the renown metric

space. Section 1.1, tender discussion on the topics quasi metric, quasi b-metric, dislocated quasi

metric and dislocated quasi b-metric spaces. Section 1.2, de�ne double controlled metric type

spaces while Section 1.3, all others basic that empower our research.

1.1 Quasi and Dislocated Quasi b-Metric Spaces

1.1.1 De�nition [64]

Let L 6= fg and s � 1 a real number. A mapping dqb : L � L ! [0;+1) is called a dislocated

quasi b-metric , if the below conditions satis�ed:

(a) if dqb(a; y) = dqb(y; a) = 0; then a = y;

(b) dqb(a; y) � s [dqb(a; e) + dqb(e; y)], for any a; y; e 2 L:

The pair (L; dqb) is called a dislocated quasi b-metric space. The following remarks can be

observed:

(a) if s = 1, then a dislocated quasi b-metric space becomes a dislocated quasi metric space

[92];
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(b) if s = 1 and a = y implies dqb(a; y) = dqb(y; a) = 0; then (L; dqb) becomes a quasi metric

space [101, 102];

(c) if dqb(a; y) = dqb(y; a) and a = y implies dqb(a; y) = 0; therefor (L; dqb) becomes a b-metric

space [104]. For a 2 L and " > 0; Bdqb(a; ") = fy 2 L : max fdqb(a; y); dqb(y; a)g < "g

and Bdqb(a; ") = fy 2 L : max fdqb(a; y); dqb(y; a)g � "g are open and closed ball in (L; dqb)

respectively.

1.1.2 Example [88]

Let L = f1; 2; 3g. De�ne the function qs on L� L as qs(a; y) = 1
a2
for every a > y, qs(a; y) = 1

for a < y; and qs(a; y) = 0; for a = y, with qs(a; y) 6= (1; 2) and qs(1; 2) = 16
9 . Then (L; qs) is a

quasi b-metric space with coe¢ cient s = 2. It is neither a b-metric space since qs(1; 2) = 16
9 6=

qs(2; 1) =
1
4 , nor a quasi metric space since qs(1; 2) =

16
9 > 10

9 = qs(1; 3) + qs(3; 2):

Reilly et al. [83] established the concept of left as well as right K-Cauchy sequence and left

(right) K-sequentially complete quasi metric space.

1.1.3 De�nition [83]

Consider (L; q) is a quasi metric space. Then a sequence fang in (L; q) is called:

(a) Left (right) K-Cauchy, if for every " > 0, 9 n0 2 N such as q (am; an) < " (respectively

q (an; am) < ") for all m > n � n0.

(b) A converges to a; if limn!+1 q (an; a) = limn!+1 q (a; a) = 0 and the point a in this case

is called a limit of the sequence fang.

(c) (L; q) is called left (right) K-sequentially complete if each left (right) K-Cauchy sequence

in q convergent such as q (a; a) = 0.

1.1.4 Example [77]

Let L = R+ and p > 1. De�ne dqb : L� L! R+ by dqb(a; y) = ja� yjp + jajp for all a; y 2 L:

Then (L; dqb) is a dislocated quasi b-metric space with s = 2p > 1. But it is not a quasi b-metric

space. Also is not a dislocated b-metric space. It is obvious that (L; dqb) is neither b-metric

space nor dislocated quasi metric space.
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1.1.5 De�nition [30, 83]

Let (L; dqb) be a dislocated quasi b-metric space. Let fang is a sequence in (L; dqb); then

(a) fang is called left (right) Cauchy if for each " > 0, 9 n0 2 N such as dqb (am; an) < "

(respectively dqb(an; am) < "); for all m > n � n0:

(b) fang dislocated quasi b-converges to a 2 L; if lim
n!+1

dqb(an; a) = lim
n!+1

dqb(a; an) = 0 or for

any " > 0, 9 n0 2 N; such as 8 n > n0; dqb(a; an) < " and dqb(an; a) < " and the point a in this

case is called a dqb-limit of fang:

(c) (L; dqb) is a complete if and only if every Cauchy sequence in L is convergent.

1.1.6 De�nition [30]

Let (L; qs) is a quasi b-metric space. Then a sequence fang in (L; qs) is called:

(a) Left (right) K-Cauchy if for every " > 0, there exists n0 2 N such as qs (am; an) < "

(respectively qs (an; am) < ") for all m > n � n0.

(b) Converges to a; if limn!+1 qs (an; a) = limn!+1 qs (a; an) = 0. In this case, the point a is

called a limit of the sequence fang.

(c) (L; qs) is called left (right) K-sequentially complete if every left (right) K-Cauchy sequence

in it is qs-convergent.

1.1.7 De�nition [32, 92]

Let (L; dqb) is a dislocated b-quasi metric space. Let A be a nonempty subset of L and a 2 L:

We say, an element y0 2 A is a left (right) best approximation in A if,

dqb(a;A) = dqb(a; y0); where dqb(a;A) = inf
y2A

dqb(a; y)

and dqb(A; a) = dqb(y0; a); where dqb(A; a) = inf
y2A

dqb(y; a):

If every a 2 L has a best approximation in A; then A is called a proximinal set.

It is clear that if dqb(a;A) = dqb(A; a) = 0; then a 2 A: But, if a 2 A; then dqb(a;A) or

dqb(A; a) may not equal to zero. We denote P (L) the set of all proximinal subsets of L:
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1.1.8 De�nition [92]

The function Hdqb : P (L)� P (L)! [0;+1) ; which de�ned as

Hdqb(C;F ) = maxfsup
l2C

dqb(l; F ); sup
b2F

dqb(C; b)g

is called Hausdor¤ dislocated quasi b-metric on P (L): Also (P (L);Hdqb) is known as Hausdor¤

dislocated quasi b-metric space.

1.1.9 Lemma [95]

Every closed set A in a left (right) K-seqnentially complete quasi metric space L is a left (right)

K-sequentially complete.

1.2 Double Controlled Metric Type Spaces

1.2.1 De�nition [56]

Let L 6= fg and � : L� L ! [1;+1): The function q : L� L ! [0;+1) is called an extended

b-metric, if for each a; y; e 2 L the below satis�ed:

(q1) q (a; y) = 0, a = y;

(q2) q (a; y) = q (y; a);

(q3) q (a; y) � � (a; y) [q (a; e)+q (e; y)]. The pair (L; q) is called an extended b-metric space.

1.2.2 De�nition [71]

Given � : L� L! [1;+1), where L is nonempty. Let q : L� L! [0;+1). Suppose that for

all a; y; e 2 L the below conditions satis�ed:

(i) q(a; y) = 0, a = y,

(ii) q(a; y) = q(y; a),

(iii) q(a; y) � �(a; e)q(a; e) + �(e; y)q(e; y). Then, q is called a controlled metric type and

(L; q) is called a controlled metric type space.
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1.2.3 De�nition [2]

Given thye functions �; � : L � L ! [1;+1). If q : L � L ! [0;+1) satis�es the follows: for

all a; y; e 2 L;

(i) q(a; y) = 0, a = y,

(ii) q(a; y) = q(y; a);

(iii) q(a; y) � �(a; e)q(a; e) + �(e; y)q(e; y).

Then, q is called double controlled metric type with the functions �, � and the pair (L; q)

is called double controlled metric type space with the functions �; �.

1.2.4 Example [2]

Let L = [0;+1). De�ne q by

q(a; y) =

8>>>>>><>>>>>>:

0;, a = y,

1
a ; if a � 1 and y 2 [0; 1),
1
y ; if y � 1 and a 2 [0; 1),

1; if not.
Consider �; � : L� L! [1;+1) as

�(a; y) =

8<: a; if a; y � 1,

1; if not.
�(a; y) =

8<: 1; if a; y < 1,

max fa; yg ; if not.
Then, q is a double controlled metric type but, q is not an extended b-metric when consid-

ering the same function � = �. Indeed,

q(0;
1

2
) = 1 >

2

3
=
1

3
+
1

3
= � (0; 3) q (0; 3) + �

�
3;
1

2

�
q

�
3;
1

2

�
:

1.2.5 De�nition [2]

Let (L; q) is a double controlled metric type space with two functions, the sequence fang is

called:

(i) A convergent to some a in L, if for each " > 0, there is some integerN" such as q(an; a) < "

for each n > N". It is written as limn!+1 an = a.

(ii) A Cauchy if for every " > 0, q(am; an) < " for each m > n > N", where N" is some

integer.
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(iii) (L; q) is called complete if each Cauchy sequence is convergent.

1.2.6 Theorem [2]

Let (L; q) is a complete double controlled metric type space with the functions �; � : L� L!

[1;+1) and let J : L! L is a given map. Assume that:

q(Ja; Jy) � kq(a; y); for each a; y 2 L provided that k 2 (0; 1):

For r0 2 L; choose rn = Jnr0: Assume that

sup
m�1

lim
i!+1

� (ri+1; ri+2)

� (ri; ri+1)
� (ri+1; rm) <

1

k
:

In addition, for every r 2 L, we have

lim
n!+1

� (r; rn) and lim
n!+1

� (rn; r) exist and are �nite:

Then, J has a unique �xed point r� 2 L.

1.3 Some Basic Concepts

1.3.1 De�nition [9]

Consider � 2 	 and 	 denotes the set of functions � : [0;+1)! [0;+1) satis�ed the follows:

(	1) � is non decreasing.

(	2) For all t > 0; such as
+1P
k=0

�k (t) < +1; where �k is the kth iterate of �. The function

� 2 	 is called comparison function.

1.3.2 Lemma [9]

Let � 2 	: Then, we have

(i) � (t) < t; for all t > 0,

(ii) � (0) = 0:
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1.3.3 De�nition [53]

Consider S and Q are two self-mappings on L. If Sa = Qa, for some a 2 L; then a is called

coincidence point of S and Q.

1.3.4 De�nition [53]

A pair (S;Q) of self-maps de�ned on L is called a weakly compatible if they commute at there

coincidence points. (i.e. if Sa = Qa; for some a 2 L, then SQa = QSa):

1.3.5 De�nition [84]

Consider (L; d) be a metric space, J : L ! L be a given map and � : L � L ! [0;+1). The

map J is called an �-admissible if, for each a; y 2 L;

�(a; y) � 1) �(Ja; Jy) � 1:

1.3.6 De�nition [73]

Let J;=; S;Q : L ! L are maps of a non-empty set L and � : J(L) [ =(L) � J(L) [ =(L) !

[0;+1) is a mapping. A pair (S;Q) is called an �-admissible with respect to J and =; if for

all a; y 2 L; �(Ja;=y) � 1 or �(=a; Jy) � 1; implies

� (Sa;Qy) � 1 and � (Qa; Sy) � 1:

1.3.7 De�nition [68]

Consider L 6= fg and p : L� L! [0;+1) such as; for each a; y; e 2 L, if the below conditions

satis�ed:

(i) a = y , p(a; a) = p(a; y) = p(y; y);

(ii) p(a; a) � p(a; y);

(iii) p(a; y) = p(y; a);

(iv) p(a; y) � p(a; e)+p(e; y)�p(e; e): Then the pair (L; p) is called a partial metric space and

p is called a partial metric on L. If p is a partial on L, then the function ps : L� L! [0;+1)
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de�ned by ps(a; y) = 2p(a; y)� p(a; a)� p(y; y) satis�es the conditions of a metric space on L

and hence it is a usual metric on L.

1.3.8 Lemma [3]

A sequence fang in a partial metric space (L; p) is:

(i) A Cauchy sequence if and only if it is a Cauchy sequence in a metric space (L; ps).

(ii) A complete if and only if a metric space (L; ps) is complete. Moreover,

lim
n!+1

ps(a; an) = 0, lim
n!+1

p(a; an) = lim
n;m!+1

p(an; am) = p(a; a):

1.3.9 Lemma [3]

Consider (L; p) be a partial metric space and J : L! L is a given map. J is called a continuous

at a0 2 L; if it is sequentially continuous at a0, that is, if and only if

8fang � L; lim
n!+1

an = a0 implies lim
n!+1

Jan = Ja0:

1.3.10 Lemma [3]

Assume that an ! e as n! +1 in a partial metric space (L; p) whenever p(e; e) = 0. Then

lim
n!+1

p(an; y) = p (e; y) , for all y 2 L:

1.3.11 De�nition [78]

Let (L;�) be a partially ordered set and J : L ! L is a given map. We called J is non

decreasing with respect to � if a; y 2 L; a � y ) Ja � Jy:

1.3.12 De�nition [78]

Let d is a metric on L and (L;�) be a partially ordered set. We called (L;�; d) is regular

if for all nondecreasing sequence fang � L such as an ! a 2 L as n ! +1, there exists a

subsequence
�
an(|̂)

	
of fang such as an(|̂) � a for all |̂.
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1.3.13 De�nition [100]

Consider F is the set of all functions F : [0;+1)! R such as:

(F1) F is strictly increasing, that is for each a; y 2 [0;+1) whenever a < y implies F (a) <

F (y);

(F2) for all sequence f#ng+1n=1 of positive numbers, lim
n!+1

#n = 0 if and only if lim
n!+1

F (#n) =

�1;

(F3) there exists k 2 (0; 1) such as lim
#!0+

#kF (#) = 0.

1.3.14 De�nition [100]

Consider (L; d) be a metric space. A mapping J : L� L is called F -contraction if there exists

� > 0; we have

8 a; y 2 L, d(Ja; Jy) > 0) � + F (d(Ja; Jy)) � F (d(a; y)).

Ali et al. [7] see also [40] extended the set of mapping F de�ned by [100] to the set FS of

each functions F : [0;+1)! R such as

(F4) For every sequence f#ng of positive real numbers such as � + F (s#n) � F (#n�1) for

each n 2 N and some � > 0; we have � + F (sn#n) � F (sn�1#n�1); for each n 2 N.
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Chapter 2

Fixed Point Results for Locally

Contractive Multivalued Mappings

in Quasi and Quasi b-Metric Spaces

2.1 Introduction

After, many authors extended the Banach contraction theorem by using many di¤erent type

of contractions in many spaces. The concept of a quasi metric space was �rst introduced in

1930 [101]. Many authors have provided several extensions of this result by considering various

types of contractions and extended this concept to quasi b-metric space see [21, 43, 88]. Nadler

[72] gave a new direction to the �eld when he mapped the contraction maps on a set of points

instead of a single point. Various authors investigated �xed point theory for such mappings

in many directions. On the other hand, Reilly et al. [83] presented the concept of left (right)

K-Cauchy sequence and complete left (right) K-sequentially in complete quasi metric space.

Recently, Altun et al. [9] proved a signi�cant result concerning the existence of common �xed

point satisfying a contraction with new restriction of order in a complete ordered metric space.

Arshad et al. [16] observed that there were mappings which had �xed points but �xed point for

results were not established for such maps and introduced a contraction on closed ball satis�ed

common �xed points for such maps.
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In Section 2.2, we extended the result given by Altun et al. [9] in �ve ways: a pair of

multi-valued maps, open ball with new generalized contraction, left K-sequentially complete

quasi metric space and generalized a function � : L� L! [0;+1). We applied our results to

obtain the contractions along with a graph and a partial ordered spaces.

Wardowski [100] introduced the concept of F -contraction and investigated �xed point results

for di¤erent mappings (see also [4, 5, 7, 17, 49, 50, 58, 62, 76]). In Section 2.3, we discuss a

recent generalization of quasi b-metric space and introduce F ��s� ��s contraction which is an

extension of many announced contractions. Fixed point results for some of such contractions

have been obtained. We achieve results endowed with a graph and in ordered leftK-sequentially

complete quasi b-metric space. An application is presented to ensure the existence of unique

common solution point for integral equations and lastly we give an application to obtain the

unique solution of functional equations that rises in dynamic programming.

2.1.1 Lemma [95]

Let (L; qs) be a quasi b-metric space. Let (P (L);Hqs) be a Hausdor¤ quasi b-metric space on

P (L): Then, for each C;F 2 P (L) and for all l 2 C; there exists bl 2 F such as Hqs(C;F ) �

qs(l; bl) and Hqs(F;C) � qs(bl; l), where qs(l; F ) = qs(l; bl) and qs(F; l) = qs(bl; l):

2.1.2 De�nition

Let L 6= fg and � : L�L! [0;+1) is a map whenever � (a; y) � 1 and � (y; a) � 1 implies a =

y. Let M � L, de�ne �� (a;M) = inf f� (a; l) ; l 2Mg and �� (M;y) = inf f� (b; y) ; b 2Mg :

2.1.3 De�nition

Let L 6= fg and �s : L�L! [0;+1) is a map. LetM � L, de�ne ��s (a;M) = inf f�s (a; l) ; l 2Mg

and ��s (M;y) = inf f�s (b; y) ; b 2Mg :

2.1.4 De�nition [76]

Let F is the set of each strictly increasing functions F : [0;+1)! R, i.e for each a; y 2 [0;+1) ;

if a < y, then F (a) < F (y):
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2.1.5 De�nition [31]

Let s � 1 and let a function �s : [0;+1)! [0;+1) satis�es:

(	s1) �s is non-decreasing;

(	s2) for each t > 0; such as
1P
k=0

sk�ks (t) < +1; where �ks is the kth iterate of �s. Then

the function �s is called b-comparison function. Let s � 1, the function �s (t) = bt, t 2 [0;+1)

with 0 < b < 1
s is a b-comparison function. For each value of �s�in the given example, we can

obtain in�nitely many b-comparison functions by taking di¤erent values of �b�. Denote the set of

all b-comparison functions by 	s: If we take s = 1, then �s is called (c)-comparison function. If

� (t) = t
1+t ; then � is a (c)-comparison function. Denoted the set of all (c)-comparison functions

by 	:

2.1.6 Lemma [31]

Let �s 2 	s: Then, we have

(i) s�s (t) < t; for each t > 0;

(ii) �s (0) = 0:

Clearly s�s (t) < t for each t > 0 implies sn+1�n+1s (t) < sn�ns (t):

2.2 Fixed Point Results for A pair of Multivalued Mappings in

Quasi Metric Spaces via New Approach

Results given in this section have been published in [90]

Let (L; q) be a quasi metric space; a0 2 L and J : L ! P (L) be a multi-valued map on

L. Since Ja0 is a proximinal set, so there exists a1 2 Ja0 such as q(a0; Ja0) = q(a0; a1) and

q(Ja0; a0) = q(a1; a0): Now, for a1 2 L, there exist a2 2 Ja1 such as q(a1; Ja1) = q(a1; a2) and

q(Ja1; a1) = q(a2; a1): Continuing this way, we generate a sequence an of points in L such as

an+1 2 Jan, q(an; Jan) = q(an; an+1) and q(Jan; an) = q(an+1; an): We denote this iterative

sequence fLJ(an)g and say that fLJ(an)g is a sequence in L generated by a0:
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2.2.1 Theorem

Consider (L; q) be a left K-sequentially complete quasi metric space, S; J : L ! P (L) be the

multivalued mappings, � 2 	, a0 2 L; r > 0 and � : L� L! [0;+1). Suppose that:

(i) For every a; y 2 Bq(a0; r) \ fLJ (an)g with �� (Sa; a) � 1; �� (y; Sy) � 1; we have

maxfHq (Ja; Jy) ;Hq (Jy; Ja)g � � (Pq (a; y)) ; (2.1)

where

Pq (a; y) = max

�
q (a; y) ; q (a; Ja) ;

q (a; Ja) q (a; Jy) + q (y; Jy) q (y; Ja)

q(a; Jy) + q(y; Ja)

�
:

(ii)
jX
p=0

max f�p (q (a1; a0)) ; �p (q (a0; a1))g < r; for each j 2 N [ f0g : (2.2)

(iii) If a 2 Bq(a0; r), q (a; Ja) = q (a; y) and q (Ja; a) = q (y; a) ; then

(a) �� (a; Sa) � 1; implies �� (Sy; y) � 1; (b) �� (Sa; a) � 1; implies �� (y; Sy) � 1:

(iv) The set G(S) = fa : �� (a; Sa) � 1 and a 2 Bq(a0; r)g contains a0 and closed:

Then, the subsequence fa2ng of fLJ (an)g is a sequence in G (S) and a sequence fa2ng !

a� 2 G(S): Also, if inequality (2.1) satis�ed for a; y 2 fa�g : Then a� is a common �xed point

of J and S in Bq(a0; r):

Proof. As a0 is any element of G (S), from condition (iv) �� (a0; Sa0) � 1: Consider the

sequence fLJ (an)g : Then there exists a1 2 Ja0 such as

q (a0; Ja0) = q (a0; a1) and q (Ja0; a0) = q (a1; a0) :

From condition (iii) �� (Sa1; a1) � 1: In particular, (2.2) holds for j = 0, so

max fq (a1; a0) ; q (a0; a1)g < r:

Therefore, q (a1; a0) < r and q (a0; a1) < r. Hence a1 2 Bq(a0; r): Let a2; :::aj 2 Bq(a0; r) \
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fLJ (an)g ; �� (aj ; Saj) � 1 and �� (Saj+1; aj+1) � 1; for some j 2 N, where j = 2p; p =

2; 3; :::; j2 : By using Lemma 2.1.1, we have

q (a2p; a2p+1) � Hq (Ja2p�1; Ja2p)

� max fHq (Ja2p�1; Ja2p) ;Hq (Ja2p; Ja2p�1)g :

As a2p�1; a2p 2 Bq(a0; r) \ fLJ (an)g ; �� (a2p; Sa2p) � 1 and �� (Sa2p�1; a2p�1) � 1; by (2.1),

we have

q (a2p; a2p+1) � � (max fq (a2p�1; a2p) ; q (a2p�1; a2p) ;
q (a2p�1; a2p) q (a2p�1; Ja2p) + q (a2p; a2p+1) q (a2p; Ja2p�1)

q (a2p�1; Ja2p) + q (a2p; Ja2p�1)

��
:

q (a2p; a2p+1) � �(q (a2p�1; a2p)) : (2.3)

It implies that,

q (a2p; a2p+1) � max f� (q (a2p�1; a2p)) ; � (q (a2p; a2p�1))g : (2.4)

Again by Lemma 2.1.1, we have

q (a2p�1; a2p) � Hq (Ja2p�2; Ja2p�1)

� max fHq (Ja2p�2; Ja2p�1) ;Hq (Ja2p�1; Ja2p�2)g :

As a2p�1; a2p�2 2 Bq(a0; r) \ fLJang ; �� (Sa2p�1; a2p�1) � 1 and �� (a2p�2; Sa2p�2) � 1; by

(2.1), we have

q (a2p�1; a2p) � � (max fq (a2p�1; a2p�2) ; q (a2p�1; a2p) ; q (a2p�2; a2p�1)g)

= � (max fq (a2p�1; a2p�2) ; q (a2p�2; a2p�1)g) :

As � is non decreasing function, so

� (q (a2p�1; a2p)) � max
�
�2 (q (a2p�1; a2p�2)) ; �

2 (q (a2p�2; a2p�1))
	
: (2.5)
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Using (2:5) in (2.3), we have

q (a2p; a2p+1) � max
�
�2 (q (a2p�1; a2p�2)) ; �

2 (q (a2p�2; a2p�1))
	
: (2.6)

Now, by Lemma 2.1.1

q (a2p�2; a2p�1) � Hq (Ja2p�3; Ja2p�2) :

As a2p�3; a2p�2 2 Bq(a0; r) \ fLJang ; �� (a2p�2; Sa2p�2) � 1 and �� (Sa2p�3; a2p�3) � 1; by

(2.1), we have

q (a2p�2; a2p�1) � � (q (a2p�3; a2p�2)) : (2.7)

It implies that,

�2 (q (a2p�2; a2p�1)) � �2 (� (max fq (a2p�3; a2p�2) ; q (a2p�2; a2p�3)g)) : (2.8)

Now, by Lemma 2.1.1

q (a2p�1; a2p�2) � Hq (Ja2p�2; Ja2p�3) :

As a2p�3; a2p�2 2 Bq(a0; r) \ fLJang ; �� (Sa2p�3; a2p�3) � 1 and �� (a2p�2; Sa2p�2) � 1; by

(2.1), we have

q (a2p�1; a2p�2) � � (max fq (a2p�2; a2p�3) ; q (a2p�3; a2p�2)g) :

As � is non decreasing function, so

�2 (q (a2p�1; a2p�2)) � �2 (� (max fq (a2p�2; a2p�3) ; q (a2p�3; a2p�2)g)) : (2.9)

Combining inequalities (2.6), (2.8) and (2.9), we have

q (a2p; a2p+1) � max
�
�3q (a2p�3; a2p�2) ; �

3q (a2p�2; a2p�3)
	
: (2.10)

Following the patterns of inequalities (2.4), (2.6) and (2.10), we have

q (a2p; a2p+1) � max
�
�2p

�
q (a0; a1) ; �

2p (q (a1; a0))
�	
: (2.11)
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Also, by Lemma 2.1.1, we have

q (a2p+1; a2p) � Hq (Ja2p; Ja2p�1) :

As a2p�1; a2p 2 Bq(a0; r) \ fLJ (an)g ; �� (Sa2p�1; a2p�1) � 1 and �� (a2p; Sa2p) � 1, by (2.1),

we have

q (a2p+1; a2p) � � (q (a2p�1; a2p)) ; (2.12)

which implies that,

q (a2p+1; a2p) � max f� (q (a2p�1; a2p)) ; � (q (a2p; a2p�1))g : (2.13)

Using (2.5) in (2.12), we have

q (a2p+1; a2p) � max
�
�2 (q (a2p�1; a2p�2)) ; �

2 (q (a2p�2; a2p�1))
	
: (2.14)

Combining the inequalities (2.8), (2.9) and (2.14), we have

q (a2p+1; a2p) � max
�
�3q (a2p�3; a2p�2) ; �

3q (a2p�2; a2p�3)
	
: (2.15)

Following the patterns of inequalities (2.13), (2.14) and (2.15), we have

q (a2p+1; a2p) � max
�
�2p (q (a1; a0)) ; �

2p (q (a0; a1))
	
: (2.16)

Now, by using the inequalities (2.11), (2.2) and the triangle inequality, we have

q (a0; a2p+1) �
2pX
j=0

max
�
�jq (a1; a0) ; �

jq (a0; a1)
	
< r: (2.17)

Similarly, by using inequalities (2.16), (2.2) and the triangle inequality, we have

q (a2p+1; a0) �
2pX
j=0

max
�
�j (q (a1; a0)) ; �

j (q (a0; a1))
	
< r: (2.18)
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By inequality (2:17) and (2:18) ; we have a2p+1 2 Bq(a0; r):Also q (a2p+1; Ja2p+1) = q (a2p+1; a2p+2)

and q (Ja2p+1; a2p+1) = q (a2p+2; a2p+1) : As �� (Sa2p+1; a2p+1) � 1; so from condition (iii), we

have �� (a2p+2; Sa2p+2) � 1: Similarly, we have

q (a2p+1; a2p+2) � max
�
�2p+1 (q (a1; a0)) ; �

2p+1 (q (a0; a1))
	

(2.19)

and

q (a2p+2; a2p+1) � max
�
�2p+1 (q (a1; a0)) ; �

2p+1 (q (a0; a1))
	
: (2.20)

Also,

q (a0; a2p+2) � r and q (a2p+2; a0) � r:

It following that a2p+2 2 Bq(a0; r): Also

q
�
a2p+2 ; Ja2p+2

�
= q

�
a2p+2 ; a2p+3

�
and q

�
Ja2p+2 ; a2p+2

�
= q

�
a2p+3 ; a2p+2

�
:

As �� (a2p+2; Sa2p+2) � 1, so from condition (iii) we have �� (Sa2p+3; a2p+3) � 1: Hence by

mathematical induction an 2 Bq(a0; r), �� (a2n; Sa2n) � 1 and �� (Sa2n+1; a2n+1) � 1; for each

n 2 N. Also, a2n 2 G (S) : The inequalities (2.11), (2.16), (2.19) and (2.20) can be written as

q (an; an+1) � max f�n (q (a1; a0)) ; �n (q (a0; a1))g ; (2.21)

q (an+1; an) � max f�n (q (a1; a0)) ; �n (q (a0; a1))g ; (2.22)

for each n 2 N: Let k1 (") 2 N and �x " > 0 such as

X
k�k1(")

max
n
�k (q (a1; a0)) ; �

k (q (a0; a1))
o
< ":
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Let n;m 2 N with m > n > k1 ("), then

q (an; am) �
m�1X
k=n

q (ak; ak+1)

�
m�1X
k=n

max
n
�k (q (a1; a0)) ; �

k (q (a0; a1))
o

q (an; am) <
X

k�k1(")
max f�nq (a1; a0) ; �nq (a0; a1)g < ":

This proved that fLJ (an)g is a left K-Cauchy sequence in (L; q) and since (L; q) is a left K

sequentially complete, so fLJ (an)g ! a� 2 L and

lim
n!+1

q(a2n; a
�) = lim

n!+1
q(a�; a2n) = 0: (2.23)

As fa2ng is a subsequence of fLJ (an)g ; so a2n ! a�: Also, fa2ng is a sequence in G(S) and

G(S) is closed, so a� 2 G(S) and therefore

�� (a�; Sa�) � 1: (2.24)

Now,

q (a�; a�) � q (a�; a2n) + q (a2n; a
�) :

It implies that q (a�; a�) = 0: Now, by Lemma 2.1.1, we have

q (a�; Ja�) � q (a�; a2n+2) +Hq (Ja2n+1; Ja
�) :

By assumption, inequality (2.1) holds for a�: Also �� (Sa2n+1; a2n+1) � 1 and �� (a�; Sa�) � 1;

so

q (a�; Ja�) � q (a�; a2n+2) + � (max fq (a2n+1; a�) ; q (a2n+1; a2n+2) ;

q (a2n+1; a2n+2) q (a2n+1; Ja
�) + q (a�; Ja�) q (a�; Ja2n+1)

q (a2n+1; Ja�) + q (a�; Ja2n+1)

��
:

Since, q (a�; Ja2n+1) � q (a�; a2n+2) :
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Putting limit as n tends to in�nity of above inequality, we get

lim
n!+1

q (a�; Ja2n+1) = 0: (2.25)

Putting limit as n tends to in�nity and using inequality (2.23) and (2.25), we get

q (a�; Ja�) = 0: (2.26)

Now,

q (Ja�; a�) � Hq (Ja
�; Ja2n+1) + q (a2n+2; Ja

�) :

As inequality (2.1) hold for a�; �� (a�; Sa�) � 1 and �� (Sa2n+1; a2n+1) � 1; then

q (Ja�; a�) � (max fq (a2n+1; a�) ; q (a2n+1; a2n+2) ;

q (a2n+1; a2n+2) q (a2n+1; Ja
�) + q (a�; Ja�) q (a�; Ja2n+1)

q (a2n+1; Ja�) + q (a�; Ja2n+1)

��
+ q (a2n+2; a

�) :

Putting limit as n tends to in�nity and using (2.23) and (2.26), we get

q (Ja�; a�) = 0: (2.27)

From inequalities (2.26) and (2.27), we have a� 2 Ja�: As � (a�; Sa�) � 1 and q (a�; Ja�) =

q (Ja�; a�) = q (0; 0) ; then from (iii)

�� (Sa�; a�) � 1: (2.28)

From (2.24) and (2.28), we have �� (a�; Sa�) � 1; �� (Sa�; a�) � 1: This implies � (a�; y) � 1;

� (y; a�) � 1; for all y 2 Sa�: Thus, by De�nition 2.1.2, a� = y: Hence, a� is a common �xed

point of S and J .
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2.2.2 Example

Let L = [0;+1) and q (a; y) =

8<: a+ 2y if a 6= y

0 if a = y
, for (a; y) 2 L � L; then (L; q) is left

(right) K-sequentially complete quasi metric space. Consider � is a function on [0;+1) de�ne

by � (t) = 3t
4 : Let R is a binary relation on L de�ned as

R =

�
(a;

a

4
) : a 2

�
0; 1;

1

16
;
1

256
;
1

4096
; :::

��
[
�
(
a

4
; a) : a 2

�
1

4
;
1

64
;
1

1024
; :::

��
:

De�ne the pair of multivalued mappings J; S : L! P (L) by

Ja =

8<:
�
a
4 ;
a
2

�
, if a 2 [0; 1] ,

[a+ 1; a+ 2] , if a 2 (1;+1):
; Sa =

8<: fa4g; if a 2 [0; 1] ;

f2ag; if a 2 (1;+1):

De�ne � : L� L! [0;+1) as follows:

� (a; y) =

8>>><>>>:
1, if (a; y) 2 R,
1
2 ; if a; y 2 [0; 10) ^ (a; y) =2 R,

3, otherwise.

A = fa : �� (a; Sa) � 1g =
�
0; 1;

1

16
;
1

256
;
1

4096
; :::

�
:

B = fy : �� (Sy; y) � 1g =
�
0;
1

4
;
1

64
;
1

1024
; :::

�
:

Let a0 = 1 and r = 21; Bq(a0; r) = [0; 10): Then,

G(S) = fa : �� (a; Sa) � 1 and a 2 Bq(a0;r)g

=

�
0; 1;

1

16
;
1

256
; :::

�
:
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Clearly G(S) is closed and contains a0; so condition (iv) is satis�ed. Now, as 1
4n�1 2 Bq(a0; r);

for each n 2 N

q(
1

4n�1
; J

1

4n�1
) = q(

1

4n�1
;

1

4� 4n�1 ):

and

q(J
1

4n�1
;
1

4n�1
) = q(

1

4� 4n�1 ;
1

4n�1
):

As ��
�

1
4n�1 ; S

1
4n�1

�
� 1 implies ��

�
S 1
4�4n�1 ;

1
4�4n�1

�
� 1; if n is odd. Also, ��

�
S 1
4n�1 ;

1
4n�1

�
�

1 implies ��
�

1
4�4n�1 ; S

1
4�4n�1

�
� 1; if n is even: Also, 0 2 Bq(a0; r); q(0; J0) = q(0; 0);

q(J0; 0) = q(0; 0): As �� (0; S0) � 1 if and only if �� (S0; 0) � 1: Hence, condition (iii) is

satis�ed. Now, 2; 3 2 Bq(a0; r) with �� (S3; 3) � 1; �� (2; S2) � 1;

max fHq (J2; J3) ;Hq (J3; J2)g = max f11; 13g = 13 � Pq(2; 3);

this explain that a contractive condition is not satis�ed on whole Bq(a0; r): Now, when we take

11; 12 2 L with �� (S11; 11) � 1, �� (12; S12) � 1, we get

max fHq (J11; J12) ;Hq (J12; J11)g = max f40; 38g = 40 � Pq(a; y):

Therefore, the contractive condition is not satis�ed on L and Bq(a0; r):

Now, if we take a; y 2 Bq(a0; r) \ fLJang with �� (Sa; a) � 1; �� (y; Sy) � 1; then in general

a = 1
4n�1 ; y =

1
4m�1 ; where n is even; m is odd:

Case i: For n � m, we have

H(Ja; Jy) = H

��
1

4� 4n�1 ;
1

2� 4n�1

�
;

�
1

4� 4m�1 ;
1

2� 4m�1

��
= max

�
q

�
1

2� 4n�1 ;
1

4� 4m�1

�
; q

�
1

4� 4n�1 ;
1

2� 4m�1

��
= max

�
1

2� 4n�1 +
1

2� 4m�1 ;
1

4� 4n�1 +
1

4m�1

�
= max

�
4m�n + 1

2� 4m�1 ;
4m�n + 4

4� 4m�1

�
=
4m�n + 1

2� 4m�1 :

H(Jy; Ja) = max

�
1 + 4m�n

2� 4m�1 ;
1 + 4� 4m�n
4� 4m�1

�
:
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Now, we have

1 + 4� 4m�n
4� 4m�1 <

3

4

0@
�

3
2�4n�1

��
4�4m�n+2
4�4m�1

�
+
�

3
2�4m�1

��
4+2�4m�n
4�4m�1

�
�
4�4m�n+2
4�4m�1

�
+
�
4+2�4m�n
4�4m�1

�
1A ;

or max fHq (Ja; Jy) ;Hq (Jy; Ja)g � � (Pq(a; y)) :

Case ii: Similarly, for n > m, we have

max fHq (Ja; Jy) ;Hq (Jy; Ja)g =
1 + 4� 4n�m
4� 4n�1

<
3

4

�
1 + 2� 4n�m

4n�1

�
= � (Pq(a; y)) :

Case iii: If a = 0; y = 1
4m�1 ; we get

max fHq (Ja; Jy) ;Hq (Jy; Ja)g = max

�
1

4m�1
;

1

2� 4m�1

�
=

1

4m�1

<
2

4m�1
= � (Pq(a; y)) :

Case iv: If a = 1
4n�1 ; y = 0; we get

max fHq (Ja; Jy) ;Hq (Jy; Ja)g =
1

4n�1
� � (Pq(a; y)) :

Case v: Inequality (2.1) is trivially satis�ed when we take a = 0 and y = 0: Also,

jX
p=0

max f�p (q (a1; a0)) ; �p (q (a0; a1))g = 9 < 21 = r:

Thus, all the hypothesis of Theorem 2.2.1 hold. Moreover, 0 is a common �xed point of J and

S.

By dropping a left K-sequentially complete quasi metric space and taking complete metric

space; we have the below result.
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2.2.3 Theorem

Consider (L; d) be a complete metric space, r > 0, a0 2 L, S; J : L! P (L) be the multivalued

mappings on B(a0; r); � 2 	 and � : L � L ! [0;+1): Assume that the below assumptions

satis�ed:

(i) for each a; y 2 Bd(a0; r) \ fLJ (an)g with �� (Sa; a) � 1; �� (y; Sy) � 1; we have

Hd (Ja; Jy) � � (Pd (a; y)) ,

(ii)
jP
p=0

�p (d (a1; a0)) < r, for each j 2 N [ f0g :

(iii) if a 2 B(a0; r), d (a; Ja) = d (a; y) ; then

(a) �� (a; Sa) � 1; implies �� (Sy; y) � 1; (b) �� (Sa; a) � 1; implies �� (y; Sy) � 1;

(iv) G(S) = fa : � (a; Sa) � 1 and a 2 B(a0; r)g is closed and contains a0: Then, the sub-

sequence fa2ng of fLJ (an)g is a sequence in G (S) also, a sequence fa2ng ! a� 2 G(S) and

q (a�; a�) = 0: If inequality (i) satis�ed for a�: Then J and S have a common �xed point a� in

B(a0; r):

2.2.4 Theorem

Consider (L; q) be a complete left K-sequentially quasi metric space, � : L � L ! [0;+1),

� 2 	; a0 2 L and S, J : L! P (L) : Suppose that:

(i) for all a; y 2 L \ fLJ (an)g with �� (Sa; a) � 1; �� (y; Sy) � 1; we have

maxfHq (Ja; Jy) ;Hq (Jy; Ja)g � � (Pq (a; y)) ,

where

Pq (a; y) = max

�
q (a; y) ; q (a; Ja) ;

q (a; Ja) q (a; Jy) + q (y; Jy) q (y; Ja)

q(a; Jy) + q(y; Ja)

�
:

(ii) if q (a; Ja) = q (a; y) and q (Ja; a) = q (y; a) ; then

(a) �� (a; Sa) � 1; implies �� (Sy; y) � 1; (b) �� (Sa; a) � 1; implies �� (y; Sy) � 1;

(iii) the set G(S) = fa : � (a; Sa) � 1g contains a0 and is closed:

Then, the subsequence fa2ng of fLJ (an)g is a sequence in G (S) also, a sequence fa2ng ! a� 2
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G(S) and q (a�; a�) = 0: If inequality (i) is satis�ed for a�: Then J and S have a common �xed

point a� in L:

By taking self mappings, we obtain the below result.

2.2.5 Theorem

Consider (L; q) be a complete left K-sequentially quasi metric space, � : L� L! [0;+1) is a

function, r > 0; � 2 	; S; J : L ! L, a0 2 L and an = Jan�1 is a Picard sequence: Assume

that the below assumptions satis�ed:

(i) for all a; y 2 Bq(a0; r) \ fang with � (Sa; a) � 1 and � (y; Sy) � 1; we have

maxfq (Ja; Jy) ; q (Jy; Ja)g � � (Pq (a; y)) ,

where

Pq (a; y) = max

�
q (a; y) ; q (a; Ja) ;

q (a; Ja) q (a; Jy) + q (y; Jy) q (y; Ja)

q(a; Jy) + q(y; Ja)

�
:

(ii)
jP
p=0

max f�p (q (a1; a0)) ; �p (q (a0; a1))g < r; for each j 2 N [ f0g :

(iii) if a 2 Bq(a0; r), then

(a) � (a; y) � 1 implies � (SJa; Ja) � 1;

(b) �� (y; a) � 1 implies � (Ja; SJa) � 1;

(vi) G(S) = fa : � (a; y) � 1 and a 2 Bq(a0; r)g contains a0 and is closed: Then, the sub-

sequence fa2ng of fang is a sequence in G (S) also, a sequence fa2ng ! a� 2 G(S) and

q (a�; a�) = 0: If inequality (i) satis�ed for a�: Then J and S have a common �xed point

a� in Bq(a0; r):

Now, we apply our results to obtain the contractions endowed with a graph and a partial

ordered spaces as follows;
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2.2.6 De�nition

Let (L; q) be a quasi metric space along with a graph G and S; J : L ! P (L) be multivalued

maps. Consider that for r > 0, a0 2 Bq(a0; r) and � 2 	; the following conditions hold:

maxfHq (Ja; Jy) ;Hq (Jy; Ja)g � � (Pq (a; y)) ; (2.29)

for all a; y 2 Bq(a0; r)\fLJ (an)g with f(y; v) 2 E (G) : v 2 Syg and f(u; a) 2 E (G) ; u 2 Sag ;

where

Pq (a; y) = max

�
q (a; y) ; q (a; Ja) ;

q (a; Ja) q (a; Jy) + q (y; Jy) q (y; Ja)

q(a; Jy) + q(y; Ja)

�
:

Then, the pair (S; J) is called a �-graphic contractive multivalued maps on open ball.

2.2.7 Theorem

Consider (L; q) be a complete left K-sequentially quasi metric space with graph G. Let a0 2

Bq(a0; r), r > 0 and S, J : L ! P (L) is �-graphic contractive multivalued mappings on

Bq(a0; r). Suppose that the below assumptions are satis�ed:

(i)
jP
p=0

max f�pq (a1; a0) ; �pq (a0; a1)g < r; for each j 2 N [ f0g ;

(ii) if a 2 Bq(a0; r), q (a; Ja) = q (a; y), q (Ja; a) = q (y; a) ; then

(a) (a; u) 2 E (G) ; for each u 2 Sa implies (v; y) 2 E (G), for each v 2 Sy;

(b) (u; a) 2 E (G) ; for each u 2 Sa implies (y; v) 2 E (G) ; for each v 2 Sy:

(iii) The set G(S) = fa : (a; y) 2 E (G) for each y 2 Sa and a 2 Bq(a0; r)g is closed and

contains a0: Then, the subsequence fa2ng of fLJ (an)g is a sequence in G (S) and a sequence

fa2ng ! a� 2 G(S): Also, if inequality (2:29) satis�ed for a�: Then J and S have a common

�xed point a� in Bq(a0; r):

Proof. De�ne � : L � L ! R+; by � (y; v) = 1; for all v 2 Sy; if and only if y 2

Bq(a0; r)\fLJ (an)g with f(y; v) 2 E (G) : v 2 Syg : Also � (u; a) = 1; for all u 2 Sa; if and only

if a 2 Bq(a0; r) \ fLJ (an)g with f(u; a) 2 E (G) ; u 2 Sag : Moreover � (a; y) = 0; otherwise.

Now, as (S; J) is a �-graphic contractive multivalued mappings on open ball, so inequality

(2.29), implies inequality (2.1). Assumption (i) of Theorem 2.2.7 implies assumption (ii) of
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Theorem 2.2.1. Assumption (ii) of Theorem 2.2.7 implies assumption (iii) of Theorem 2.2.1.

Assumption (iii) of Theorem 2.2.7. implies assumption (iv) of Theorem 2.2.1. So, all hypothesis

of Theorem 2.2.1 hold. Thus, the subsequence fa2ng of fLJ (an)g 2 G (S), for each n 2 N[f0g

and a sequence fa2ng ! a� 2 G(s): Also if inequality (2:29) is satis�ed for a�; then inequality

(2:1) is satis�ed for a�: Then J and S have a common �xed point a� in Bq(a0; r):

2.2.8 Theorem

Consider (L;�; q) is an ordered complete left K sequentially quasi metric space, r > 0, a0 2 L

and S, J : L! P (L) be a non decreasing mappings on Bq(a0; r); with respect to � and there

is some � 2 	: Suppose that:

(i) for all (a; y) 2 Bq(a0; r) \ fLJ (an)g with Sa � a and y � Sy; we have

maxfHq (Ja; Jy) ;Hq (Jy; Ja)g � � (Pq (a; y)) ; (2.30)

where

Pq (a; y) = max

�
q (a; y) ; q (a; Ja) ;

q (a; Ja) q (a; Jy) + q (y; Jy) q (y; Ja)

q(a; Jy) + q(y; Ja)

�
:

(ii)
jP
p=0

max f�pq (a1; a0) ; �pq (a0; a1)g < r; for each j 2 N [ f0g :

(iii) if a 2 Bq(a0; r), q (a; Ja) = q (a; y) and q (Ja; a) = q (y; a) ; then

(a) a � Sa; implies Sy � y; (b) Sa � a; implies y � Sy:

(iv) G(S) = fa : a � Sa and a 2 Bq(a0; r)g contains a0 and is closed:

Then, the subsequence fa2ng of fLJ (an)g is a sequence in G (S), for each n 2 N [ f0g : Also

fa2ng ! a� 2 G(S): If inequality (2.30) satis�ed for a�: Then there is a single common �xed

point a� of J and S in Bq(a0; r):

Proof. De�ne � : L � L ! R+; by � (y; v) = 1; for all v 2 Sy; if and only if y 2

Bq(a0; r) \ fLJ (an)g with y � v; v 2 Sa: Also � (u; a) = 1; for all u 2 Sa; if and only if

a 2 Bq(a0; r) \ fLJ (an)g with a � u; u 2 Sa: Moreover � (a; y) = 0; otherwise. Then, clearly

Assumption (i)-(iv) of Theorem 2.2.8 implies assumption (i)-(iv) of Theorem 2.2.1. Hence, the

subsequence fa2ng of fLJ (an)g 2 G (S), for each n 2 N [ f0g, a sequence fa2ng ! a� 2 G(s)
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and if inequality (2.30) holds for a�; then inequality (2:1) is satis�ed for a�: Thus, J and S have

a common �xed point a� in Bq(a0; r):

2.2.9 Remarks

(i) By taking six proper subsets of Pq (a; y) instead of Pq (a; y) ; we can obtain six new corollaries

for each of theorems; Theorem 2.2.1, Theorem 2.2.3, Theorem 2.2.4, Theorem 2.2.5, Theorem

2.2.7 and Theorem 2.2.8.

(ii) Fixed point result in right K-sequentially quasi metric space can be obtained in a similar

way.

2.3 Fixed Point Results for F � �s � ��s Contraction in Quasi

b-Metric Spaces with Some Applications

Results given in this section will appear in [94]

2.3.1 De�nition

Let (L; qs; s) be a left K-sequentially complete quasi b-metric space, �s : L � L ! [0;+1)

and S; J : L ! P (L) are the multivalued maps. The pair (S; J) is called F � �s � ��s con-

traction on the intersection of a sequence and open ball, if �s 2 	, F 2 F ; a0 2 L, r; � > 0,

a; y 2 Bqs(a0; r) \ fJS (an)g, ��s (Sy; y) � s; ��s (a; Sa) � s; qs(a; Jy) + qs(y; Sa) 6= 0 and

maxfHqs(Sa; Jy);Hqs(Jy; Sa); Qs(a; y); Qs(y; a)g > 0; then

� +maxfF (Hqs (Sa; Jy)) ; F (Hqs (Jy; Sa))g � F (�s (Qs (a; y))) ; (2.31)

where

Qs (a; y) = max

�
qs (a; y) ; qs (a; Sa) ;

qs (a; Sa) qs (a; Jy) + qs (y; Jy) qs (y; Sa)

qs(a; Jy) + qs(y; Sa)

�
:
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Also, if qs(a; Jy) + qs(y; Sa) = 0; then maxfHqs (Sa; Jy) ;Hqs (Jy; Sa) ; Qs(a; y); Qs(y; a)g = 0:

Moreover,

jX
p=0

sp+1 [max f�ps (qs (a1; a0)) ; �ps (qs (a0; a1))g] < r; for each j 2 N [ f0g : (2.32)

2.3.2 Theorem

Let (L; qs; s) be a left K-sequentially quasi b-metric space, �s : L � L ! [0;+1), S; J : L !

P (L) and (S; J) is F � �s � ��s contraction on open ball. Suppose that:

(i) If a 2 Bqs(a0; r),

(a) ��s (a; Sa) � s; qs (a; Sa) = qs (a; y) and qs (Sa; a) = qs (y; a) implies ��s (Sy; y) � s;

(b) ��s (Sa; a) � s; qs (a; Ja) = qs (a; y) and qs (Ja; a) = qs (y; a) implies ��s (y; Sy) � s:

(ii) The set G(S) = fa : ��s (a; Sa) � s and a 2 Bqs(a0; r)g contains a0 and is closed:

Then, the subsequence fa2ng of fJS (an)g is a sequence in G (S), fa2ng ! a� 2 G(S) and

qs (a
�; a�) = 0: Also, if inequality (2.31) is satis�ed for a�: Then J and S have a common �xed

point a� in Bqs(a0; r):

Proof. Consider the sequence fJS (an)g generated by a0: As a0 is any element of G (S),

from assumption (ii) ��s (a0; Sa0) � s and a0 2 Bqs(a0; r): Then there exists a1 2 Sa0 such as

qs (a0; Sa0) = qs (a0; a1) and qs (Sa0; a0) = qs (a1; a0) : From condition (i) ��s (Sa1; a1) � s: By

(2.32), we have

max fqs (a1; a0) ; qs (a0; a1)g �
jX
p=0

sp+1 [max f�ps (qs (a1; a0)) ; �ps (qs (a0; a1))g] < r:

That is qs (a1; a0) < r and qs (a0; a1) < r. Hence, a1 2 Bqs(a0; r): Also

qs (a1; Ja1) = qs (a1; a2) and qs (Ja1; a1) = qs (a2; a1) :

As ��s (Sa1; a1) � s; so from assumption (i), we have ��s (a2; Sa2) � s: Now, by Lemma 2.1.1,
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we have

qs(a2p; a2p+1) � Hqs(Ja2p�1; Sa2p); qs(a2p+1; a2p) � Hqs(Sa2p; Ja2p�1) (2.33)

and

qs(a2p+1; a2p+2) � Hqs(Sa2p; Ja2p+1); qs(a2p+2; a2p+1) � Hqs(Ja2p+1; Sa2p): (2.34)

By the triangle inequality, we have

qs (a0; a2) � s [qs (a0; a1) + qs (a1; a2)] : (2.35)

By using (2.34), we have

� + F (qs (a1; a2)) � � + F (Hqs (Sa0; Ja1)) ;

� + F (qs (a1; a2)) � � +max fF (Hqs (Sa0; Ja1)) ; F (Hqs (Ja1; Sa0))g : (2.36)

Now, let a2p0 ; a2p0+1 is two consecutive elements of the sequence fJS (an)g. Clearly, if

maxfHqs(Sa2p0 ; Ja2p0+1); Hqs(Ja2p0+1; Sa2p0); Qs(a2p0 ; a2p0+1); Qs(a2p0+1; a2p0)g � 0;

for some p0 2 N [ f0g; or if qs(a2p0 ; Ja2p0+1) + qs(a2p0+1; Sa2p0) = 0; then

Hqs(Sa2p0 ; Ja2p0+1) = Hqs(Ja2p0+1; Sa2p0) = Qs(a2p0 ; a2p0+1) = Qs(a2p0+1; a2p0) = 0:

IfQs(a2p0 ; a2p0+1) = 0; then qs(a2p0 ; a2p0+1) = 0:Also, ifQs(a2p0+1; a2p0) = 0; then qs(a2p0+1; a2p0) =

0: So, a2p0+1 = a2p0 and a2p0 2 Sa2p0 : Now, Hqs(Sa2p0 ; Ja2p0+1) = 0 implies qs(a2p0+1; Ja2p0+1) =

0 and Hqs(Ja2p0+1; Sa2p0) = 0 implies qs(Ja2p0+1; a2p0+1) = 0: So, a2p0+1 2 Ja2p0+1 and hence

a2p0 is a common �xed point of S and J: Therefore, the proof is done. Now, suppose

maxfHqs(Sa2p; Ja2p+1); Hqs(Ja2p+1; Sa2p); Qs(a2p; a2p+1); Qs(a2p+1; a2p)g > 0;
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and qs(a2p; Ja2p+1)+ qs(a2p+1; Sa2p) 6= 0 for all p 2 f0g[N: As a0; a1 2 Bqs(a0; r)\fJS (an)g ;

��s (Sa1; a1) � s; and ��s (a0; Sa0) � s; by using (2.31) in (2.36), we have

� + F (qs (a1; a2)) � F (�s (Qs (a0; a1))) = F (�s (qs (a0; a1))) :

Since F is strictly increasing and � > 0, so qs (a1; a2) < �s (qs (a0; a1)). Now, inequality (2.35)

implies

qs (a0; a2) �
1X
p=0

sp+1 [max f�ps (qs (a1; a0)) ; �ps (qs (a0; a1))g] < r:

Now, by using (2.34), we have

� + F (qs (a2; a1)) � � + F (Hqs (Ja1; Sa0))

� � +max fF (Hqs (Ja1; Sa0)) ; F (Hqs (Sa0; Ja1))g :

As a1; a0 2 Bqs(a0; r) \ fJS (an)g ; ��s (a0; Sa0) � s and ��s (Sa1; a1) � s, then by (2.31), we

have

� + F (qs (a2; a1)) � F (�s (Qs (a0; a1))) � F (�s (qs (a0; a1))) :

Since F is strictly increasing and � > 0, so

qs (a2; a1) < �s (max fqs (a1; a0) ; qs (a0; a1)g) :

Now, by the triangle inequality

d (a2; a0) �
jX
p=0

sp+1 [max f�ps (qs (a1; a0)) ; �ps (qs (a0; a1))g] < r:

That is, qs (a0; a2) < r and qs (a2; a0) < r: So a2 2 Bqs(a0; r): Also

qs (a2; Sa2) = qs (a2; a3) and qs (Sa2; a2) = qs (a3; a2) :

As ��s (a2; Sa2) � s; so from assumption (i), we have ��s (Sa3; a3) � s: Let a3; :::aj 2 Bqs(a0; r);

and ��s (a0; Sa0) � s; ��s (Sa1; a1) � s; ��s (a2; Sa2) � s; ��s (Sa3; a3) � s; � � � ; ��s (Saj+1; aj+1) �
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s; for some j 2 N; where j = 2p; p = 1; 2; 3; :::; j2 : Now by using (2.33), we have

� + F (qs (a2p; a2p+1)) � � + F (Hqs (Ja2p�1; Sa2p))

� � +max fF (Hqs (Ja2p�1; Sa2p)) ; F (Hqs (Sa2p; Ja2p�1))g :

As a2p�1; a2p 2 Bqs(a0; r) \ fJS (an)g ; ��s (a2p; Sa2p) � s, ��s (Sa2p�1; a2p�1) � s and

maxfHqs(Ja2p�1; Sa2p);Hqs(Sa2p; Ja2p�1); Qs(a2p�1; a2p); Qs(a2p; a2p�1)g > 0; by (2.31), we

have

� + F (qs (a2p; a2p+1)) � F (�s(Qs(a2p; a2p�1)))

= F (�s (maxfqs (a2p; a2p�1) ; qs (a2p; a2p+1) ; qs (a2p�1; a2p)g)) :

If maxfqs (a2p; a2p�1) ; qs (a2p; a2p+1) ; qs (a2p�1; a2p)g = qs (a2p; a2p+1) ; then

� + F (qs (a2p; a2p+1)) � F (�s (qs (a2p; a2p+1))) ;

implies qs (a2p; a2p+1) < �s (qs (a2p; a2p+1)) < s�s (qs (a2p; a2p+1)) : A contradiction, so

� + F (qs (a2p; a2p+1)) � F (�s (max fqs (a2p�1; a2p) ; qs (a2p; a2p�1)g)) ;

Since F is strictly increasing and � > 0, so

qs (a2p; a2p+1) < max f�s (qs (a2p�1; a2p)) ; �s (qs (a2p; a2p�1))g : (2.37)

Now, by (2.34), we have

� + F (qs (a2p�1; a2p)) � � + F (Hqs (Sa2p�2; Ja2p�1))

� � + F (max fHqs (Sa2p�2; Ja2p�1) ;Hqs (Ja2p�1; Sa2p�2)g) :

As a2p�1; a2p�2 2 Bqs(a0; r) \ fJSang ; ��s (Sa2p�1; a2p�1) � s, ��s (a2p�2; Sa2p�2) � s and

maxfHqs(Sa2p�2; Ja2p�1); Hqs(Ja2p�1; Sa2p�2); Qs(a2p�2; a2p�1); Qs(a2p�1; a2p�2)g > 0; by
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(2.31), we have

� + F (qs (a2p�1; a2p)) � F (�s (Qs(a2p�2; a2p�1))) = F (�s (qs (a2p�2; a2p�1))) :

Since F is strictly increasing and � > 0, so

qs (a2p�1; a2p) < �s (qs (a2p�2; a2p�1)) ;

qs (a2p�1; a2p) < �s (max fqs (a2p�1; a2p�2) ; qs (a2p�2; a2p�1)g) :

As �s is non decreasing function, so

�s (qs (a2p�1; a2p)) < max
�
�2s (qs (a2p�1; a2p�2)) ; �

2
s (qs (a2p�2; a2p�1))

	
: (2.38)

Now, by (2.34), we have

� + F (qs (a2p; a2p�1)) � � + F (Hqs (Ja2p�1; Sa2p�2))

� � + F (max fHqs (Sa2p�2; Ja2p�1) ;Hqs (Ja2p�1; Sa2p�2)g) :

By (2.31), we have

� + F (qs (a2p; a2p�1)) � F (�s (Qs(a2p�2; a2p�1))) = F (�s (qs (a2p�2; a2p�1))) :

Since F is strictly increasing and � > 0, so

qs (a2p; a2p�1) < �s (qs (a2p�2; a2p�1)) < �s (max fqs (a2p�1; a2p�2) ; qs (a2p�2; a2p�1)g) :

As �s is non decreasing function, so

�s (qs (a2p; a2p�1)) < max
�
�2s (qs (a2p�1; a2p�2)) ; �

2
s (qs (a2p�2; a2p�1))

	
: (2.39)
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Now, by merging (2.38) and (2.39), we have

max f�s (qs (a2p�1; a2p)) ; �s (qs (a2p; a2p�1))g

< max
�
�2s (qs (a2p�1; a2p�2)) ; �

2
s (qs (a2p�2; a2p�1))

	
: (2.40)

Using (2:40) in (2:37) ; we have

qs (a2p; a2p+1) < max
�
�2s (qs (a2p�1; a2p�2)) ; �

2
s (qs (a2p�2; a2p�1))

	
: (2.41)

Now, by using (2:33) ; we have

� + F (qs(a2p�2; a2p�1)) � � + F (Hqs(Ja2p�3; Sa2p�2))

� � +max fF (Hqs(Ja2p�3; Sa2p�2)) ; F (Hqs(Sa2p�2; Ja2p�3))g :

As a2p�3; a2p�2 2 Bqs(a0; r) \ fJSang ; ��s (Sa2p�3; a2p�3) � s, ��s (a2p�2; Sa2p�2) � s and

maxfHqs(Sa2p�2; Ja2p�1); Hqs(Ja2p�1; Sa2p�2); Qs(a2p�2; a2p�1); Qs(a2p�1; a2p�2)g > 0; by

(2.31), we have

� + F (qs(a2p�2; a2p�1)) � F (�s (Qs(a2p�2; a2p�3)))

= F (�s (max fqs (a2p�2; a2p�3) ; qs (a2p�2; a2p�1) ; qs (a2p�3; a2p�2)g))

= F (�s (max fqs (a2p�2; a2p�3) ; qs (a2p�3; a2p�2)g)) ;

which implies that,

qs(a2p�2; a2p�1) < �s(max fqs (a2p�2; a2p�3) ; qs(a2p�3; a2p�2)g);

�2sqs(a2p�2; a2p�1) < �3s(max fqs(a2p�3; a2p�2); qs(a2p�2; a2p�3)g): (2.42)

Now, by using (2:34), we have

� + F (qs(a2p�1; a2p�2)) � � + F (Hqs(Sa2p�2; Ja2p�3))
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� � +max fF (Hqs(Ja2p�3; Sa2p�2)) ; F (Hqs(Sa2p�2; Ja2p�3))g :

As a2p�3; a2p�2 2 Bqs(a0; r) \ fJSang ; ��s (Sa2p�3; a2p�3) � s, ��s (a2p�2; Sa2p�2) � s and

maxfHqs(Sa2p�2; Ja2p�1); Hqs(Ja2p�1; Sa2p�2); Qs(a2p�2; a2p�1); Qs(a2p�1; a2p�2)g > 0; by

(2.31), we have

� + F (qs(a2p�1; a2p�2)) � F (�s (Qs(a2p�2; a2p�3)))

= F (�s (max fqs (a2p�2; a2p�3) ; qs (a2p�2; a2p�1) ; qs (a2p�3; a2p�2)g)) :

As,

qs(a2p�2; a2p�1) < �s(max fqs (a2p�2; a2p�3) ; qs(a2p�3; a2p�2)g)

� s�s(max fqs (a2p�2; a2p�3) ; qs(a2p�3; a2p�2)g)

< max fqs (a2p�2; a2p�3) ; qs(a2p�3; a2p�2)g :

So,

� + F (qs(a2p�1; a2p�2)) < F (�s (max fqs (a2p�2; a2p�3) ; qs (a2p�3; a2p�2)g)) ;

which implies that,

qs(a2p�1; a2p�2) < �s(max fqs (a2p�2; a2p�3) ; qs(a2p�3; a2p�2)g);

�2sqs(a2p�1; a2p�2) < �3s(max fqs(a2p�3; a2p�2); qs(a2p�2; a2p�3)g): (2.43)

Now, by (2.42) and (2.43); we have

max
�
�2sqs(a2p�2; a2p�1); �

2
sqs(a2p�1; a2p�2)

	
< �3s(max fqs(a2p�3; a2p�2); qs(a2p�2; a2p�3)g): (2.44)

Using (2:44) in (2:41), we have

qs(a2p; a2p+1) � max
�
�3s(qs(a2p�3; a2p�2)); �

3
s(qs(a2p�2; a2p�3))

	
. (2.45)
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Following the patterns of inequalities (2.37), (2.41) and (2.45), we have

qs(a2p; a2p+1) � max
�
�2ps (qs(a0; a1)); �

2p
s (qs(a1; a0))

	
:

As j = 2p; so

qs(aj ; aj+1) � max
�
�js(qs(a0; a1)); �

j
s(qs(a1; a0))

	
: (2.46)

Now, by using (2:33) ; we have

� + F (qs(a2p+1; a2p)) � � + F (Hqs(Sa2p; Ja2p�1))

� � +max fF (Hqs(Ja2p�1; Sa2p)) ; F (Hqs(Sa2p; Ja2p�1))g :

As a2p�1; a2p 2 Bqs(a0; r) \ fJS (an)g ; ��s (a2p; Sa2p) � s, ��s (Sa2p�1; a2p�1) � s and max

fHqs(Ja2p�1; Sa2p); Hqs(Sa2p; Ja2p�1); Qs(a2p�1; a2p); Qs(a2p; a2p�1)g > 0; by (2.31), we have

� + F (qs(a2p+1; a2p)) � F (�s (Qs(a2p; a2p�1)))

= F (�s (maxfqs (a2p; a2p�1) ; qs (a2p; a2p+1) ; qs (a2p�1; a2p)g)) :

By inequality (2.37), we have

� + F (qs(a2p+1; a2p)) < F (�s (max fqs (a2p�1; a2p) ; qs (a2p; a2p�1)g)) :

Now,

qs(a2p+1; a2p) < max f�s (qs(a2p�1; a2p)) ; �s(qs(a2p; a2p�1)g : (2.47)

Now, using (2.40) and (2.47), we have

qs(a2p+1; a2p) � max
�
�2s(qs(a2p�1; a2p�2)); �

2
s(qs(a2p�2; a2p�1))

	
: (2.48)

Now, using (2.44) and (2.48), we have

qs(a2p+1; a2p) � max
�
�3s(qs(a2p�3; a2p�2)); �

3
s(qs(a2p�2; a2p�3))

	
. (2.49)
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Following the patterns of inequalities (2.47), (2.48) and (2.49), we have

qs(a2p+1; a2p) � max
�
�2ps (qs(a0; a1)); �

2p
s (qs(a1; a0))

	
:

As j = 2p; so

qs(aj+1; aj) � max
�
�js(qs(a0; a1)); �

j
s(qs(a1; a0))

	
: (2.50)

Now, if j = 2p � 1; then inequalities (2.46) and (2.50) can be obtained by using similar argu-

ments. Now, by using the triangle inequality, (2.46) and (2.32), we have

qs (a0; aj+1) � sqs (a0; a1) + s
2qs (a1; a2) + :::+ s

jqs (aj�1; aj) + s
jqs (aj ; aj+1)

� sqs (a0; a1) + :::+ s
jqs (aj�1; aj) + s

j+1qs (aj ; aj+1)

< sqs (a0; a1) + s
2�sqs (a0; a1) + :::+ s

j+1�jsqs (a0; a1)

<

jX
p=0

sp+1 [max f�ps (qs (a1; a0)) ; �ps (qs (a0; a1))g] < r:

Similarly, by using the triangle inequality, (2.50) and (2.32), we have

qs (aj+1; a0) <

jX
p=0

sp+1 [max f�ps (qs (a1; a0)) ; �ps (qs (a0; a1))g] < r;

qs (a0; aj+1) < r and qs (aj+1; a0) < r:

It following that aj+1 2 Bqs(a0; r): Also ��s (Saj+1; aj+1) � s; qs (aj+1; Jaj+1) = qs (aj+1; aj+2)

and qs (Jaj+1; aj+1) = qs (aj+2; aj+1) ; so from assumption (i), we have ��s (aj+2; Saj+2) � s:

Now, if a3; :::al 2 Bqs(a0; r) and ��s (a0; Sa0) � s; ��s (Sa1; a1) � s; ��s (Sa3; a3) � s; � � � ;

��s (al+1; Sal+1) � s; for some l 2 N; where l = 2p + 1; p = 1; 2; 3; :::; l�12 , then similarly

we obtain al+1 2 Bqs(a0; r) and �
�
s (Sal+2; al+2) � s: Therefore, by mathematical induction

an 2 Bqs(a0; r), ��s (a2n; Sa2n) � s and ��s (Sa2n+1; a2n+1) � s, for each n 2 N [ f0g. Also, a2n
2 G (S) : Now inequalities (2.46) and (2.50) can be written as

qs (an; an+1) < max f�ns (qs (a1; a0)) ; �ns (qs (a0; a1))g ; (2.51)
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qs (an+1; an) < max f�ns (qs (a1; a0)) ; �ns (qs (a0; a1))g ; (2.52)

for all n 2 N: As
P+1
w=1 s

w�ws (t) < +1; then the series

+1X
w=1

sw�ws (max
�
�e�1s (qs (a1; a0)) ; �

e�1
s (qs (a0; a1))

	
)

converges for each e 2 N. As s�s(t) < t; so

sw+1�w+1s (max
�
�e�1s (qs (a1; a0)) ; �

e�1
s (qs (a0; a1))

	
)

< sw�ws (max
�
�e�1s (qs (a1; a0)) ; �

e�1
s (qs (a0; a1))

	
); for all w 2 N:

So, for �x " > 0, there exists k1 (") 2 N such as

+1X
j=1

sj�js

�
max

n
�k1(")�1s (qs (a1; a0)) ; �

k1(")�1
s (qs (a0; a1))

o�
< ":

Let m; k; h 2 N with m > k > k1 (") ; then

qs (ak; am) = qs (ak; ak+h) � sqs (ak; ak+1) + s
2qs (ak+1; ak+2) + :::+ s

hqs (ak+h�1; ak+h)

< s�ks (max fqs (a1; a0) ; qs (a0; a1)g) + s2�k+1s (max fqs (a1; a0) ; qs (a0; a1)g)

+:::+ sh�k+h�1s (max fqs (a1; a0) ; qs (a0; a1)g)

= s�smax
n
�k�1s (qs (a1; a0)) ; �

k�1
s (qs (a0; a1))

o
+

s2�2smax
n
�k�1s (qs (a1; a0)) ; �

k�1
s (qs (a0; a1))

o
+:::+ sh�hs max

n
�k�1s (qs (a1; a0)) ; �

k�1
s (qs (a0; a1))

o
<

+1X
j=1

sj�js

�
max

n
�k�1s (qs (a1; a0)) ; �

k�1
s (qs (a0; a1))

o�

<
+1X
j=1

sj�js

�
max

n
�k1(")�1s (qs (a1; a0)) ; �

k1(")�1
s (qs (a0; a1))

o�
< ":

Thus, fJS (an)g is a left K-Cauchy sequence in (L; qs) : As (L; qs) is a left K-sequentially
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complete, so fJS (an)g ! a� 2 L and

lim
n!+1

qs(an; a
�) = lim

n!+1
qs(a

�; an) = 0: (2.53)

As fa2ng is a subsequence of fJS (an)g ; so a2n ! a�: Also, fa2ng 2 G(S) and G(S) is closed,

so a� 2 G(S) and therefore

��s (a
�; Sa�) � s: (2.54)

Now, we show that a� is a �xed point for S. We claim that qs (a�; Sa�) = qs (Sa
�; a�) = 0. On

contrary, we assume that qs (a�; Sa�) > 0: Now

qs (a
�; Sa�) � s(qs (a

�; a2n+2) + qs (a2n+2; Sa
�)): (2.55)

Then, there exists n0 2 N such as qs (a2n+2; Sa�) > 0 for each n � n0: By Lemma 2.1.1,

0 < qs (a2n+2; Sa
�) � Hqs(Ja2n+1; Sa

�), so

maxfHqs (Ja2n+1; Sa�) ; Hqs(Sa�; Ja2n+1); Qs(a2n+1; a�); Qs(a�; a2n+1)g > 0;

for all n � n0: By Lemma 2.1.1, we have

� + F (qs (a2n+2; Sa
�)) � � + F (Hqs(Ja2n+1; Sa

�))

� � +max fF (Hqs (Sa�; Ja2n+1)) ; F (Hqs (Ja2n+1; Sa�))g :

By assumption, inequality (2.31) holds for a�: Also ��s (a
�; Sa�) � s and ��s (Sa2n+1; a2n+1) � s;

by (2.31), we have

� + F (qs (a2n+2; Sa
�)) � F (�s (Qs(a

�; a2n+1))):

Since F is strictly increasing, we have

qs (a2n+2; Sa
�) < �s (Qs(a

�; a2n+1)) :
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Putting lim
n!+1

im the above inequality, we get

lim
n!+1

qs (a2n+2; Sa
�) < lim

n!+1
�s (Qs(a

�; a2n+1)) : (2.56)

Now,

Qs(a
�; a2n+1) = max fqs (a�; a2n+1) ; qs (a�; Sa�) ;

qs (a
�; Sa�) qs (a�; Ja2n+1) + qs (a2n+1; Ja2n+1) qs (a2n+1; Sa�)

qs (a�; Ja2n+1) + qs (a2n+1; Sa�)

�

� max fqs (a�; a2n+1) ; qs (a�; Sa�) ;
qs (a

�; Sa�) qs (a�; a2n+2) + qs (a2n+1; a2n+2) qs (a2n+1; Sa�)

qs (a�; Ja2n+1) + qs (a2n+1; Sa�)

�
:

Putting lim
n!+1

in the above inequality, we get

lim
n!+1

(Qs(a
�; a2n+1)) � qs (a

�; Sa�) :

Now, inequality (2.56) implies

lim
n!+1

qs (a2n+2; Sa
�) < �s (qs (a

�; Sa�)) :

Putting limit as n tends to in�nity on inequality (2.55) and using the above inequality, we have

qs (a
�; Sa�) < �s (qs (a

�; Sa�)) < s�s (qs (a
�; Sa�)) :

As s�s (t) < t, so our assumption is wrong and qs (a�; Sa�) = 0: Now, assume that qs(Sa�; a�) >

0; then there is some n1 2 N such as qs(Sa�; a2n+2) > 0 for all n � n1: By Lemma 2.1.1,

0 < qs (Sa
�; a2n+2) � Hqs(Sa

�; Ja2n+1), so

max fHqs (Ja2n+1; Sa�) ; Hqs(Sa�; Ja2n+1); Qs(a2n+1; a�); Qs(a�; a2n+1)g > 0;

for all n � n1: As inequality (2.31) hold for a�; ��s (a
�; Sa�) � s and ��s (Sa2n+1; a2n+1) � s;
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then by Lemma 2.1.1 and (2.31), we have

� + F (qs (Sa
�; a2n+2)) � F (�s (Qs(a

�; a2n+1))):

Since F is strictly increasing, we have

qs (Sa
�; a2n+2) < �s (Qs(a

�; a2n+1)) :

Letting lim
n!+1

in the above inequality, we get

lim
n!+1

qs (Sa
�; a2n+2) < lim

n!+1
�s (Qs(a

�; a2n+1)) < qs (a
�; Sa�) = 0:

Now,

qs(Sa
�; a�) � sqs(Sa

�; a2n+2) + sqs(a2n+2; a
�):

Letting lim
n!+1

in the above inequality, we get

qs(Sa
�; a�) < 0:

Which is a contradiction, so qs(Sa
�; a�) = 0: Hence a� 2 Sa�: As ��s (a

�; Sa�) � s and

qs (a
�; Sa�) = qs (Sa

�; a�) = qs (a
�; a�) ; then assumption (i) implies that ��s (Sa

�; a�) � s:

Now, following similar lines as above we obtain that a� is a �xed point for J . Hence, a� 2 Ja�:

Hence, the pair (S; J) has a common �xed point a� in Bqs(a0; r):

2.3.3 Example

Let L = [0;+1) : De�ne qs : L�L! [0;+1) by qs (a; y) = (a+ 2y)2 ; if a 6= y and qs (a; y) = 0;

if a = y: Then (L; qs) is a left (right) K-sequentially complete quasi b-metric with s = 2.

Consider R is a binary relation on L de�ned by

R =

�
(a;

a

5
) : a 2 f0; 1; 1

25
;
1

625
; :::g

�
[
�
(
a

5
; a) : a 2 f1

5
;
1

125
;
1

3125
; :::g

�
:
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Consider �s a function on [0;+1) de�ned by �s (t) = 3t
8 : De�ne the pair of multivalued map-

pings J; S : L! P (L) by

Ja =

8<:
�
a
5 ;
a
4

�
; if a 2 [0; 1] ,�

4a3; a6 + 5
�
; if a 2 (1;+1):

Sa =

8<: fa5g; if a 2 [0; 1] ,�
a4; a7

�
; if a 2 (1;+1):

De�ne � : L� L! [0;+1) as follows:

� (a; y) =

8<: 2; if (a; y) 2 R
1
6 ; otherwise.

A = fa : ��2 (a; Sa) � 2g =
�
0; 1;

1

25
;
1

625
; :::

�
:

B = fy : ��2 (Sy; y) � 2g =
�
0;
1

5
;
1

125
;
1

3125
; :::

�
:

Let a0 = 1 and r = 49; then Bqs(a0; r) = [0; 3): Now,

G(S) = fa : ��2 (a; Sa) � 2 and a 2 Bqs(a0;r)g

=

�
0; 1;

1

25
;
1

625
; :::

�
:

Clearly G(S) is closed and contains a0: Therefore, the condition (ii) of Theorem 2.3.2 holds.

As, 1
5n�1 2 Bqs(a0; r); for each n 2 N; we have

qs(
1

5n�1
; J

1

5n�1
) = qs(

1

5n�1
;

1

5� 5n�1 ) and qs(J
1

5n�1
;
1

5n�1
) = qs([

1

5� 5n�1 ;
1

5n�1
):

Obvious, ��
�

1
5n�1 ; S

1
5n�1

�
� 2; for all n 2 f1; 3; 5; :::g implies ��

�
S 1
5�5n�1 ;

1
5�5n�1

�
� 2; for all

n 2 f1; 3; 5; :::g. Also, ��
�
S 1
5n�1 ;

1
5n�1

�
� 2; for all n 2 f2; 4; 6; :::g implies ��

�
1

5�5n�1 ; S
1

5�5n�1
�
�

2; for all n 2 f2; 4; 6; :::g: Also, 0 2 Bqs(a0; r); qs(0; J0) = qs(0; 0); qs(J0; 0) = qs(0; 0) and

�� (0; S0) � 2 if and only if �� (S0; 0) � 2: Therefore, the condition (i) of Theorem 2.3.2 hold.

Now, for each a; y 2 Bqs(a0; r) \ fLJang with ��2 (Sy; y) � 2; ��2 (a; Sa) � 2: In general for n is

odd; m is even, n;m 2 N

a =
1

5n�1
; y =

1

5m�1
:
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De�ned F : [0;+1)! R by the formula F (a) = ln(a) and � 2 (0; 158): After some calculation,

it can easily be proved that (S; J) is a F � �s � ��s contraction on open ball. Hence, all the

hypothesis of Theorem 2.3.2 hold. Hence, the pair (S; J) has a common �xed point 0.

2.3.4 Theorem

Consider (L; d) be a metric space and S; J : L! L. Assume that the below hypothesis satisfy:

(i) the set G = fa 2 L : � (a; Sa) � 1g is closed and non-empty;

(ii) there exists a function � 2 	 such as for every (a; y) 2 L�L; � (a; Sa) � 1; � (Sy; y) � 1

implies d (Sa; Jy) � � (d (a; y)) ;

(iii) for every a 2 L; we have � (a; Sa) � 1 implies � (Ja; SJa) � 1; and � (Sa; a) � 1

implies � (SJa; Ja) � 1: Then, for any a0 2 G; the Picard sequence fJna0g converges to some

a� 2 L and a� is a common �xed point of J and S.

2.3.5 Remarks

(i) By taking non-empty proper subsets of Qs (a; y) instead of Qs (a; y) in Theorem 2.3.2, we

can obtain six di¤erent new results.

(ii) By taking non-empty proper subsets of Qs (a; y) instead of Qs (a; y) in Theorem 2.3.4, we

can obtain six di¤erent new results.

Now, we achieve �xed point results for graphic F -�s-�
�
s contractions in quasi b-metric space.

2.3.6 De�nition

Let (L; qs) be a quasi b-metric space along with a graph G and S; J : L! P (L) are multivalued

mappings. The pair (S; J) is called F � �s-graphic contraction on the intersection of an open

ball and a sequence, if �s 2 	, F 2 F ; a0 2 L, r; � > 0, a; y 2 Bqs(a0; r) \ fJS (an)g,

f(a; v) 2 E (G) : v 2 Sag and f(u; y) 2 E (G) : u 2 Syg ; qs(a; Jy) + qs(y; Sa) 6= 0 and

maxfHqs(Sa; Jy); Hqs(Jy; Sa); Qs(a; y); Qs(y; a)g > 0; then

(i) � +maxfF (Hqs (Sa; Jy)) ; F (Hqs (Jy; Sa))g � F (�s (Qs (a; y))) (2.57)
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and if qs(a; Jy) + qs(y; Sa) = 0; then maxfHqs (Sa; Jy) ;Hqs (Jy; Sa) ; Qs(a; y); Qs(y; a)g = 0:

(ii)
jX
p=0

sp+1 [max f�ps (qs (a1; a0)) ; �ps (qs (a0; a1))g] < r; for each j 2 N [ f0g : (2.58)

2.3.7 Theorem

Consider (L; qs) be a left K-sequentially complete quasi b-metric space along with graph G.

Let a0 2 Bqs(a0; r), r > 0 and (S; J) is a F � �s-graphic contraction on the intersection of a

sequence and open ball. Suppose that the below assumptions are satis�ed:

(i) if a 2 Bqs(a0; r), (a) f(a; v) 2 E (G) : v 2 Sag ; qs (a; Sa) = qs (a; y) and qs (Sa; a) =

qs (y; a) ; then f(u; y) 2 E (G) : u 2 Syg :

(b) f(v; a) 2 E (G) : v 2 Sag ; qs (a; Ja) = qs (a; y)

and qs (Ja; a) = qs (y; a) ; then f(y; u) 2 E (G) : u 2 Syg ;

(ii) the set A(S) = fa : (a; v) 2 E (G) for all v 2 Sa and a 2 Bqs(a0; r)g is closed and con-

tains a0: Then, the subsequence fa2ng of fJS (an)g is a sequence in G (S) and fa2ng ! a� 2

G(S): Also, if inequality (2:57) satis�ed for a�: Then, J and S have a common �xed point a�

in Bqs(a0; r):

Proof. De�ne � : L � L ! [0;+1) by � (a; v) = s; for all v 2 Sa; and a 2 Bqs(a0; r) \

fJS (an)g with f(a; v) 2 E (G) : v 2 Sag : Also, � (u; y) = s; for each u 2 Sy and y 2 Bqs(a0; r)\

fJS (an)g with f(u; y) 2 E (G) : u 2 Syg : Moreover, � (a; y) = 0; for all other element of L.

Now, as (S; J) is a F � �s-graphic contraction. So inequality (2.57) implies inequality (2.31).

Inequality (2.58) implies inequality (2.32). Assumption (i) of Theorem 2.3.7 implies assumption

(i) of Theorem 2.3.2 and assumption (ii) of Theorem 2.3.7 implies assumption (ii) of Theorem

2.3.2. So, all assumptions of Theorem 2.3.2 hold. Hence the subsequence fa2ng of fJS (an)g

is a sequence in A (S), for each n 2 N [ f0g and fa2ng ! a� 2 A(s): Also, if inequality (2:57)

holds for a�; then inequality (2:31) holds for a�: Thus, J and S have a common �xed point a�

in Bqs(a0; r):

2.3.8 Theorem

Consider (L; d) be a complete metric space along with graph G and S, J : L ! L are the self

maps. Assume that the below assumptions satis�ed:
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(i) there exists a function � 2 	 such as for every (a; y) 2 L�L; (a; Sa) 2 E (G) ; (Sy; y) 2

E (G) ) d (Sa; Jy) � � (d (a; y)) ;

(ii) if (a; Sa) 2 E (G) ; then (Ja; SJa) 2 E (G) and if (Sa; a) 2 E (G) ; then (SJa; Ja) 2

E (G) ;

(iii) G(S) = fa : (a; Sa) 2 E (G)g is closed and non-empty:

Then, J and S have a common �xed point a� in L:

Now, we will apply the various �xed point results on a complete left (right) K-sequentially

quasi b-metric space endowed with a partial order as following.

2.3.9 Theorem

Consider (L;�) be a partial order set and (L; qs) be a complete left (right) K-seqnentially quasi

b-metric space. Let a0 2 L, r; � > 0 and S, J : L ! P (L) are the mappings on Bqs(a0; r).

Assume that there is some function �s 2 	, F is strictly increasing mapping and suppose that:

(i) for each (a; y) 2 Bqs(a0; r) \ fJS (an)g with Sy � y and a � Sa; if

maxfHqs(Sa; Jy);Hqs(Jy; Sa); Qs(a; y); Qs(y; a)g > 0 and qs(a; Jy) + qs(y; Sa) 6= 0, we have

� +maxfF (Hqs (Sa; Jy)) ; F (Hqs (Jy; Sa))g < F (�s (Qs (a; y)))

where,

Qs (a; y) = max

�
qs (a; y) ; qs (a; Sa) ;

qs (a; Sa) qs (a; Jy) + qs (y; Jy) qs (y; Sa)

qs(a; Jy) + qs(y; Sa)

�
;

if qs(a; Jy) + qs(y; Sa) = 0; then

maxfHqs (Sa; Jy) ; Hqs (Jy; Sa) ; Qs(a; y); Qs(y; a)g = 0:

(ii)
jP
p=0

sp+1 [max f�pqs (a1; a0) ; �pqs (a0; a1)g] < r; for each j 2 N [ f0g ;

(iii) if a 2 Bqs(a0; r),

(a) a � Sa; qs (a; Sa) = qs (a; y) and qs (Sa; a) = qs (y; a) implies Sy � y;

(b) Sa � a; qs (a; Ja) = qs (a; y) and qs (Ja; a) = qs (y; a) implies y � Sy;
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(iv) G(S) = fa : a � Sa and a 2 Bqs(a0; r)g contains a0 and is closed: Then, the subse-

quence fa2ng of fJS (an)g 2 G (S) and fa2ng ! a� 2 G(S): Also, if assumption (i) is satis�ed

for a�: Then J and S have a common �xed point a� in Bqs(a0; r):

Proof. De�ne � : L� L ! [0;+1) ; by � (a; v) = s; for all v 2 Sa; where a 2 Bqs(a0; r) \

fJS (an)g with a � Sa: Also � (u; y) = s; for each u 2 Sy; where y 2 Bqs(a0; r) \ fJS (an)g

with y � Sy:Moreover � (a; y) = 0; for all other element of L. It is easy to see that assumptions

(i), (ii), (iii) and (iv) of Theorem 2.3.9 implies inequality (2.31), inequality (2.32), assumption

(i) and assumption (ii) of Theorem 2.3.2 respectively. So, all assumptions of Theorem 2.3.2 are

satis�ed. Thus, the subsequence fa2ng of fJS (an)g is a sequence in G (S), for each n 2 N[f0g

and a sequence fa2ng ! a� 2 G(s): Also, if assumption (i) holds for a�; then inequality (2:31)

satis�ed for a�: Hence, J and S have a common �xed point a� in Bqs(a0; r):

2.3.10 Theorem

Consider (L;�; d) be an ordered metric space and S; J : L! L are the self mappings, suppose

that:

(i) the set G = fa 2 L : a � Sag is closed and non-empty;

(ii) there exists � 2 	 such as for every (a; y) 2 L � L; a � Sa; y � Sy ) d (Sa; Jy) �

� (d (a; y)) ;

(iii) for every a 2 L; we have a � Sa) Ja � SJa; a � Sa) Ja � SJa:

Then, for any a0 2 G; the Picard sequence fJna0g converges to some a 2 L and a� is a common

�xed point.

Application to system of integral equations

Let S; J : L ! L are two self maps and a0 2 L. Let a1 = Sa0; a2 = Ja1; a3 = Sa2 and so

on. In this way, we generate a sequence an in L such as

a2p+1 = Sa2p and a2p+2 = Ja2p+1; (where p = 0; 1; 2; : : : ).

We say that a sequence fJS(an)g 2 L generated by a0:
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2.3.11 De�nition

Let (L; qs) be a left (right) K-sequentially complete quasi b-metric space and S; J : L !

L. S and J is called an F � �s contraction, if there is some F 2 F ; � > 0; a; y 2 L;

maxfqs (Sa; Jy) ; qs (Jy; Sa) ; Qs (a; y) ; Qs (y; a)g > 0 and qs(a; Jy) + qs(y; Sa) 6= 0; then

� +maxfF (qs (Sa; Jy)) ; F (qs (Jy; Sa))g � F (�s (Qs (a; y))) ; (2.59)

if qs(a; Jy) + qs(y; Sa) = 0; then

maxfqs (Sa; Jy) ; qs (Jy; Sa) ; Qs (a; y) ; Qs (y; a)g = 0

where,

Qs (a; y) = max

�
qs (a; y) ; qs (a; Sa) ;

qs (a; Sa) qs (a; Jy) + qs (y; Jy) qs (y; Sa)

qs(a; Jy) + qs(y; Sa)

�
: (2.60)

2.3.12 Theorem

Let (L; qs) be a left (right) K-sequentially complete quasi b-metric space with a parameter

s � 1 and (S; J) is an F ��s contraction. Then, fJS(an)g ! a� 2 L: Also, if a� satis�es (2.59);

then S and J have a unique common �xed point a� in L.

Proof. We have only to prove a uniqueness. Let u is another common �xed point of S and

J . If maxfqs(Su; Ja�); qs(Ja�; Su); Qs (a�; u) ; Qs (u; a�)g � 0, or if qs(a�; Ju) + qs(u; Sa�) = 0;

then qs(Su; Ja�) = 0 and qs(Ja�; Su) = 0; which further implies qs (u; a�) = qs (a
�; u) = 0

and hence u = a�: Now, suppose qs (a�; u) > 0; then maxfqs(Su; Ja�); qs(Ja�; Su); Qs (a�; u) ;

Qs (u; a
�)g > 0 and qs(a�; Ju) + qs(u; Sa�) 6= 0. Then, we have

� + F (qs(Su; Ja
�)) � � +maxfF (qs(Su; Ja�)) ; F (qs(Ja�; Su))g

� F (�s (Qs (a
�; u))) :

This implies that,

qs(u; a
�) < �s (qs(u; a

�)) < s�s (qs(u; a
�))
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which is contradiction. Then, we get qs (u; a�) = 0: Similarly we obtain qs (a�; u) = 0: Hence

a� = u:

Now, as an application, we discuss Theorem 2.3.12 to �nd solution of the system of Volterra

type integral equations. Consider the following integral equations:

u(t) =

tZ
0

K1(t; s; u(s))ds; (2.61)

v(t) =

tZ
0

K2(t; s; v(s))ds (2.62)

for each t 2 [0; 1]:We �nd a solution of (2.61) and (2.62). Let L = C([0; 1]; [0;+1[) is the set of

all continuous functions on [0; 1], endowed with the complete a left (right) K-sequentially quasi

b-metric. For u 2 C ([0; 1]; [0;+1[) ; de�ne supremum norm as: kuk� = sup
t2[0;1]

f(u(t)) e��tg,

where � > 0 is taken arbitrary. Then de�ne

q� (u; v) =

"
sup
t2[0;1]

f(u(t) + 2v(t))e��tg
#2
= ku+ 2vk2� ;

for each u; v 2 C([0; 1]; [0;+1)); with these settings, (C([0; 1]; [0;+1)); q� ) becomes a quasi

b-metric space.

2.3.13 Theorem

Assume that the below conditions are hold:

(i) K1; K2 : [I]� [I]� [0;+1[! [0;+1[;

(ii) De�ne

Ju(t) =

tZ
0

K(t; s; u(s))ds;

Jv(t) =

tZ
0

K(t; s; v(s))ds:
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Let, � > 1; such as

maxfK(t; s; u) + 2K(t; s; v); K(t; s; v) + 2K(t; s; u)g < =(u; v)
�=(u; v) + 1 ; (2.63)

for each t; s 2 [0; 1] and u; v 2 C([0; 1]; [0;+1[); where

=(u; v) = �s

0@max
8<: jju+ 2vjj2 ; ku+ 2Suk2 ;

ku+2Suk2ku+2Jvk2+kv+2Jvk2kv+2Suk2

ku+2Jvk2+kv+2Suk2

9=;
1A :

Then, the integral equation (2.61) and (2.62) have a unique common solution.

Proof. By condition (ii)

jmaxfSu+ 2Jv; Jv + 2Sugj

= max

8<:
tZ
0

(K(t; s; u) + 2K(t; s; v))ds;

tZ
0

(K(t; s; v) + 2K(t; s; u))ds

9=;
<

tZ
0

=(u; v)
�=(u; v) + 1e

�sds <
=(u; v)

�=(u; v) + 1

tZ
0

e�sds;

jmaxfSu+ 2Jv; Jv + 2Sugj <
=(u; v)

�=(u; v) + 1e
�s;

jmaxfSu+ 2Jv; Jv + 2Sugj e��s <
=(u; v)

�=(u; v) + 1 ;

jjmaxfSu+ 2Jv; Jv + 2Sugjj� <
=(u; v)

�=(u; v) + 1 :

This implies
�=(u; v) + 1
=(u; v) <

1

jjmaxfJu+ 2Jv; Jv + 2Jugjj�
:

That is,

� +
1

=(u; v) <
1

jjmaxfSu+ 2Jv; Jv + 2Sugjj�
;
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which further implies

� � 1

jjmaxfSu+ 2Jv; Jv + 2Sugjj�
<

�1
=(u; v)

� +maxf �1
jjSu+ 2Jvjj�

;
�1

jjJv + 2Sujj�
g <

�1
=(u; v) :

Therefore, all assumptions of Theorem 2.3.13 are satis�ed for F (v) = �1p
v
; v > 0 and q� (u; v) =

ku+2vk2� . Thus, integral equations given in (2.61) and (2.62) have a unique common solution.

Application to functional equations

We derive an application for the solution of a functional equation arising in dynamic pro-

gramming. Consider U and V two Banach spaces, P � U; Q � V and

f : P �Q! P

g; u : P �Q! R

M;N : P �Q� R! R:

For further results on dynamic programming, we refer to [33, 34, 74]. Assume that P and Q

are the state and decision spaces, respectively. The problem related to dynamic programming

is reduced to solve the following functional equations:

p(
) = sup
�2Q

fg(
; �) +M(
; �; p(f(
; �)))g; (2.64)

q(
) = sup
�2Q

fu(
; �) +N(
; �; q(f(
; �)))g; (2.65)

for 
 2 P: We aim to give the existence and uniqueness of a common and bounded solution of

equations (2.64) and (2.65). Suppose B(P ) is the set of all bounded real valued functions on

P . Consider,

ds(h; k) = kh� kk2+1 = sup

2P

jh (
)� k (
)j2 ; (2.66)

for all h; k 2 B(P ): Then (B(P ); ds) is a quasi b-metric space. Assume that

(C1): M;N; g; and u are bounded.
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(C2): For 
 2 P; h 2 B(P ); S; J : B(P )! B(P ); take

Sh(
) = sup
�2Q

fg(
; �) +M(
; �; h(f(
; �)))g; (2.67)

Jh(
) = sup
�2Q

fu(
; �) +N(
; �; h(f(
; �)))g: (2.68)

Moreover, for every (
; �) 2 P �Q; h; k 2 B(P ); t 2 P and � > 0; implies

jM(
; �; h(t))�N(
; �; k(t)j � D(h; k)e�� (2.69)

where,

D(h; k) = �s

0@max
8<: jh(t)� k(t)j2 ; jh(t)� Sh(t)j2 ;

jh(t)�Sh(t)j2jh(t)�Tk(t)j2+jk(t)�Tk(t)j2jk(t)�Sh(t)j2

jh(t)�Tk(t)j2+jk(t)�Sh(t)j2

9=;
1A :

2.3.14 Theorem

Assume that the conditions (C1), (C2) and (2.69) hold. Then equation (2.64) and (2.65) have

a unique common and bounded solution in B(P ):

Proof. Take any � > 0: By using de�nition of supremum in equation (2.67) and (2.68),

there exist h1; h2 2 B(P ) and �1; �2 2 Q such as

(Sh1) < g(
; �1) +M(
; �1; h1(f(
; �1))) + �; (2.70)

(Jh2) < g(
; �2) +N(
; �2; h2(f(
; �2))) + �: (2.71)

Again using de�nition of supremum, we have

(Sh1) � g(
; �2) +M(
; �2; h1(f(
; �2))); (2.72)

(Jh2) � g(
; �1) +N(
; �1; h2(f(
; �1))): (2.73)
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Then equation (2.70) and (2.73) together with equation (2.69) implies

(Sh1)(
)� (Jh2)(
) � M(
; �1; h1(f(
; �1)))�N(
; �1; h2(f(
; �1))) + �

� jM(
; �1; h1(f(
; �1)))�N(
; �1; h2(f(
; �1)))j+ �

� D(h; k)e�� + �:

Since, � > 0 is arbitrary, we get

jSh1(
)� Jh2(
)j � D(h; k)e��

e� jSh1(
)� Jh2(
)j � D(h; k):

Which further implies that,

� + ln jSh1(
)� Jh2(
)j � ln(D(h; k):

Therefore, all requirements of Theorem 2.3.14 hold for F (g) = ln g; g > 0 and d� (h; k) =

kh � kk2� . Thus, there exists a common �xed point h� 2 B(W ) of J and S; that is, h�(
) is a

unique common solution of equations (2.64) and (2.65).
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Chapter 3

Fixed Points and Common Fixed

Points in Abstract Spaces

3.1 Introduction

Since Banach contraction principle has been exploited by number of researchers in di¤erent

ways (see [44, 53, 61]), Meir and Keeler [70] are among the mathematicians whose idea got

attention by many scholars and academicians. They demonstrated their contraction as, for

each " > 0, there exists � (") > 0 such as " � d(a; y) < " + � (") implies d (Ja; Jy) < " for

any a; y 2 L. Various authors [19, 54, 73, 80, 85] worked on the topic and found interesting

extensions of their works. Rhodes and Jungck [53] set in motion the use of weakly compatibility

and made a comparative analysis of weakly compatible and compatible maps. They claimed

that the �rst one implies the later one but the converse does not hold. Moreover, since, the

debate of common �xed point of two or more maps is under discussion since long, Patel et al.

[73] investigated common �xed point theorems of �-admissible maps whenever there were four

maps under consideration. In addition to the said ideas, Karapinar [59] used contractions that

involve rational expressions and discussed the existence of a �xed point in metric space. There

are also modi�ed results of multi-valued F -contraction by Rasham et al. [79] that comprise of

a pair of maps.

Section 3.2, following the pattern of Patel et al. [73] and examine common �xed point

theorems for single-maps based on the merged (� �  )-Meir-Keeler-Khan type contractive in
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complete metric space via �-admissible mappings. These results also re�ect the idea presented

by Redjel et al. [80]: In section 3.3, focuses on partial metric space and using � �  � K-

contractive maps, iterated �xed point which extend the results of Karapinar [59]. The same

results are also deduced in ordered partial metric space. In section 3.4, searches for �xed point

of a pair of multivalued maps accommodating certain impositions on the proximinal subsets

of L. Modi�ed versions of F -contraction on a sequence in dislocated b-quasi metric space and

F��s Khan type contraction are stated while considering b-quasi metric space. The section

imply application of the proved theorems to the solution of integral equations. Following are

the results we intend to use in our research. Fisher [44] revised the Khan [61] idea with an

improved version given below.

3.1.1 Theorem [44]

Consider J be a self mapping on a complete metric space (L; d) satis�ed:

d(Ja; Jy) � �
d (a; Ja) d (a; Jy) + d (y; Jy) d (y; Ja)

d(a; Jy) + d(y; Ja)
, � 2 ]0; 1[

if d(a; Jy) + d(y; Ja) 6= 0 and d(Ja; Jy) = 0; if d(a; Jy) + d(y; Ja) = 0: Then J has a unique

�xed point a� 2 L. Moreover, for each a0 2 L, the sequence fJna0g converges to a�.

3.1.2 Lemma [7]

Let (L; db; s) be a b-metric space and fang be any sequence in L, there is some � > 0 and

F 2 FS such as � + F (sdqb(an; an+1)) � F (dqb(an�1; an)); n 2 N: Then fang is a Cauchy

sequence in L.

3.2 Common Fixed Points for Generalized (��  )-Meir-Keeler-

Khan Mappings in Metric Spaces

Results given in this section have been published in [13]

We introduced the class of common �xed point results for two pairs of weakly compatible

self maps in complete metric space satis�es (��  )-Meir-Keeler-Khan type contractive via
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�-admissible mappings.

3.2.1 De�nition

Consider (L; d) be a complete metric space. The self-mappings J;=; S;Q : L ! L are called

(��  )-Meir-Keeler-Khan type, if there exists  2 	 and � : J(L) [ =(L) � J(L) [ =(L) !

[0;+1) satis�ed the below condition:

For each " > 0, there is some � (") > 0 such as,

" �  

�
d (Ja; Sa) d (Ja;Qy) + d (=y;Qy) d (=y; Sa)

d (Ja;Qy) + d (=y; Sa)

�
< "+ � (")

implies

� (Ja;=y) d (Sa;Qy) < ": (3.1)

3.2.2 Remark

It is easy to see that if J;=; S;Q : L! L be (��  )-Meir-Keeler-Khan type mappings, then

� (Ja;=y) d (Sa;Qy) �  

�
d (Ja; Sa) d (Ja;Qy) + d (=y;Qy) d (=y; Sa)

d (Ja;Qy) + d (=y; Sa)

�
, for all a; y 2 L:

(3.2)

3.2.3 Theorem

Consider (L; d) be a complete metric space and J;=; S, Q : L! L be an (��  )-Meir-Keeler-

Khan type mappings such as Q(L) � J(L) and S(L) � =(L). Assume that:

(i) the pair (S;Q) is �-admissible with respect to J and = (shortly �J;=-admissible);

(ii) there exists a0 2 L such as � (Ja0; Sa0) � 1;

(iii) one of J;=; S and Q is continuous.

(iv) (S; J) and (Q;=) are weakly compatible pairs of self-mappings.

Then J;=; S and Q have a common �xed point u� 2 L.

Proof. By hypothesis (ii), there is some a0 2 L such as � (Ja0; Sa0) � 1. De�ne the

sequences fang and fyng in L such as

y2p = Sa2p = =a2p+1 and y2p+1 = Qa2p+1 = Ja2p+2: (3.3)
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This can be done, since Q(L) � J(L) and S(L) � =(L). Since (S;Q) is �J;=-admissible, we

have

� (Ja0; Sa0) = � (Ja0;=a1) � 1 implies � (Sa0; Qa1) � 1 and � (Qa0; Sa1) � 1;

which gives,

� (=a1; Ja2) � 1 = � (y0; y1) � 1:

Again by (i), we have

� (=a1; Qa1) = � (=a1; Ja2) � 1 implies � (Qa1; Sa2) � 1 and � (Sa1; Qa2) � 1;

which gives,

� (Ja2;=a3) = � (y1; y2) � 1:

Inductively, we obtain

� (y2p; y2p+1) � 1; p = 0; 1; 2; :::� (3.4)

That is � (Ja2p;=a2p+1) � 1 and � (=a2p+1; Ja2p+2) � 1. By (3:2) and (3:4) ; we get

d (y2p; y2p+1) = d (Sa2p; Qa2p+1) � � (Ja2p;=a2p+1) d (Sa2p; Qa2p+1)

�  

�
d (Ja2p; Sa2p) d (Ja2p; Qa2p+1) + d (=a2p+1; Qa2p+1) d (=a2p+1; Sa2p)

d (Ja2p; Qa2p+1) + d (=a2p+1; Sa2p)

�
�  

�
d (Qa2p�1; Sa2p) d (Qa2p�1; Qa2p+1) + d (Sa2p; Qa2p+1) d (Sa2p; Sa2p)

d (Qa2p�1; Qa2p+1) + d (Sa2p; Sa2p)

�
�  

�
d (Qa2p�1; Sa2p) d (Qa2p�1; Qa2p+1)

d (Qa2p�1; Qa2p+1)

�
�  d (Qa2p�1; Sa2p)

�  d (y2p�1; y2p) ; for all p 2 N:
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Now,

d (y2p�1; y2p) = d (Qa2p�1; Sa2p) � � (=a2p�1; Ja2p) d (Qa2p�1; Sa2p)

�  

�
d (=a2p�1; Qa2p�1) d (=a2p�1; Sa2p) + d (Ja2p; Sa2p) d (Ja2p; Qa2p�1)

d (=a2p�1; Sa2p) + d (Ja2p; Qa2p�1)

�
�  

�
d (Sa2p�2; Qa2p�1) d (Sa2p�2; Sa2p) + d (Qa2p�1; Sa2p) d (Qa2p�1; Qa2p�1)

d (Sa2p�2; Sa2p) + d (Qa2p�1; Qa2p�1)

�
�  d (Sa2p�2; Qa2p�1) �  (y2p�2; y2p�1) :

That is,

d (y2p; y2p+1) �  d (y2p�1; y2p) �  2d (y2p�2; y2p�1) :

Continuing in this manner, we obtain

d (y2p; y2p+1) �  2pd (y0; y1) .

We can write a above inequality as,

d (yn; yn+1) �  nd (y0; y1) .

Now, we show that fyng is a Cauchy sequence. For each " > 0 there is some n (") 2 N withP
n�n(�)  

n (d (y0; y1)) < ": Let n;m 2 N such as n > m > n ("), by the triangle inequality, we

get

d (ym; yn) �
n�1X
k=m

d (yk; yk+1) �
X
k=m

 k (d (y0; y1)) �
X
k=n(�)

 k (d (y0; y1)) < ":

Which shows that fyng is a Cauchy sequence in a complete metric space (L; d) : 9 u� 2 L such

as limn!+1 yn = u� and sequentially, Sa2n, =a2n+1; Qa2n+1; Ja2n+2 ! u�; as n ! +1: By

assumption (iii)

lim
n!+1

Sa2n = lim
n!+1

=a2n+1 = lim
n!+1

Qa2n+1 = lim
n!+1

Ja2n+2 = u�.
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As, Q (L) � J (L) ; there exists u 2 L such as u� = Ju. By using (3.2) and (3.4) ; we have

d (Su; u�) � d (Su;Qa2n+1) + d (Qa2n+1; u
�)

� � (Ju;=a2n+1) d (Su;Qa2n+1) + d (Qa2n+1; u�)

�  

�
d (Ju; Su) d (Ju;Qa2n+1) + d (=a2n+1; Qa2n+1) d (=a2n+1; Su)

d (Ju;Qa2n+1) + d (=a2n+1; Su)

�
+ d (Qa2n+1; u

�)

�  

�
d (u�; Su) d (u�; Qa2n+1) + d (Sa2n; Qa2n+1) d (Sa2n; Su)

d (u�; Qa2n+1) + d (Sa2n; Su)

�
+ d (Qa2n+1; u

�) :

Letting limn!+1 of above inequality, we get d (Su; u�) � 0: Thus, Su = u�: So, Ju = Su = u�:

Therefore, u is a coincidence point of J and S: Since the pair of mappings S and J are weakly

compatible, we obtain

SJu = JSu;

Su� = Ju�:

Since S (L) � = (L) ; there exists a point v 2 L such as u� = =v: By (3.2) and (3.4) ; we have

d (u�; Qv) = d (Su;Qv) � � (Ju;=v) d (Su;Qv)

�  

�
d (u�; u�) d (u�; Qv) + d (u�; Qv) d (u�; u�)

d (u�; Qv) + d (u�; u�)

�
�  (0) :

That is d (u�; Qv) = 0: Thus, u� = Qv: Therefore, Qv = =v = u�: So v is coincident point of =

and Q: As, the pair of maps = and Q are weakly compatible

=Qv = Q=v,

=u� = Qu�.

Now, we show that u� is a �xed point of S: By (3:2) and (3:4) ; we have

d (Su�; u�) = d (Su�; Qv) � � (Ju�;=v) d (Su�; Qv)

�  

�
d (Ju�; Su�) d (Ju�; Qv) + d (=v;Qv) d (=v; Su�)

d (Ju�; Qv) + d (=v; Su�)

�
= 0:

So, d (Su�; u�) = 0: Thus, Su� = u�: Therefore, Su� = Ju� = u�: Now, we show that u� is �xed
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point of Q: By using (3:2) and (3:4) ; we get

d (u�; Qu�) = d (Su�; Qu�) � � (Ju�;=u�) d (Su�; Qu�) �  (0) = 0:

Thus, d (u�; Qu�) = 0: Therefore, u� = Qu�: So, Qu� = =u� = u�: Thus, Su� = Ju� = Qu� =

=u� = u�:

Hence, u� is a common �xed point of J;=; S and Q:

3.2.4 Theorem

Let (L; d) be a complete metric space and J;=; S, Q : L! L are an (��  )-Meir-Keeler-Khan

type mappings such as Q(L) � J(L) and S(L) � =(L). Assume that:

(i) the pair (S;Q) is �J;=-admissible;

(ii) there exists a0 2 L such as � (Ja0; Sa0) � 1;

(iii) if fyng is a sequence in L such as � (yn; yn+1) � 1 for each n 2 N and yn ! u� 2 L as n

tends to in�nity; then � (yn; u�) � 1; for each n 2 N.

Then, J;=; S and Q have a common �xed point u� 2 L provided (S; J) and (Q;=) are

weakly compatible pairs of self-mappings.

Proof. Similar lines of Theorem 3.2.3, we obtain a sequence fyng in L de�ned by:

y2n = Sa2n = =a2n+1 and y2n+1 = Qa2n+1 = Ja2n+2;

for all n � 0; which converges to some u� 2 L: Sequentially,

Sa2n;=a2n+1; Qa2n+1; Ja2n+2 ! u�; as n! +1:

Since Q (L) � J (L) ; there exists u 2 L such as u� = Ju. By (iii) and (2:4) ; we get

d (Su; u�) = d (Su;Qa2n+1) � � (Ju;=a2n+1) d (Su;Qa2n+1)

�  

�
d (Ju; Su) d (Ju;Qa2n+1) + d (=a2n+1; Qa2n+1) d (=a2n+1; Su)

d (Ju;Qa2n+1) + d (=a2n+1; Su)

�
�  

�
d (u�; Su) d (u�; Qa2n+1) + d (Sa2n; Qa2n+1) d (Sa2n; Su)

d (u�; Qa2n+1) + d (Sa2n; Su)

�
:
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Letting limn!+1; in above inequality, we have

d (Su; u�) � 0

Thus, Su = u�; so, Ju = Su = u�; Therefore u is a coincidence point of J and S: As, the pair

of mappings S and J are weakly compatible, we have

SJu = JSu;

Su� = Ju�:

Similarly, as S (L) � = (L) ; we get d (u�; Qv) = 0: That, u� = Qv: Therefore Qv = =v = u�:

So v is coincident point of = and Q: As, the pair of maps (=; Q) are weakly compatible so,

=Qv = Q=v,

=u� = Qu�.

We can easily show that u� is �xed point of S and Q and the proof is completed:

For a uniqueness of the �xed point of our results we considered the below condition:

(H) For all common �xed points a and y of J;=; S and Q; there is some v 2 L such as � (a; v) � 1

and � (y; v) � 1:

3.2.5 Theorem

Adding the condition (H) to the statement of Theorem 3.2:3 or 3.2:4; we get the uniqueness of

common �xed point of S; J , Q and =:

Proof. The existence of a �xed point has proved in Theorem 3.2.3 (respectively Theorem

3.2.4). Now, assume that ŵ is another common �xed point of J;=; S and Q such as u� 6= ŵ.

By using condition (H), there is some v 2 L such as � (Ju�; v) � 1 and � (=ŵ; v) � 1: De�ne a

sequence fvpg in L by

v0 = Sv0 = =v1 ; v2p = Sv2p = =v2p+1 and

v1 = Qv1 = Jv2 ; v2p+1 = Qv2p+1 = Jv2p+2 ;
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for all p � 0: Since the pair (S;Q) is �J;=- admissible, we obtain

� (u�; v2p) � 1 and � (ŵ; v2p) � 1; for all p:

Now, by using Remark 3:2:2; we have

d (u�; v2p+1) = d (Su�; Qv2p+1) � � (Ju�;=v2p+1) d (Su�; Qv2p+1)

�  

�
d (Ju�; Su�) d (Ju�; Qv2p+1) + d (=v2p+1; Qv2p+1) d (=v2p+1; Su�)

d (Ju�; Qv2p+1) + d (=v2p+1; Su�)

�
�  

�
d (Su�; Su�) d (Su�; Qv2p+1) + d (=v2p+1; Qv2p+1) d (=v2p+1; Su�)

d (Su�; Qv2p+1) + d (=v2p+1; Su�)

�
:

By the triangle inequality

d (=v2p+1; Qv2p+1) � d (Su�; Qv2p+1) + d (=v2p+1; Su�)

�  

�
d (=v2p+1; Qv2p+1) d (=v2p+1; Su�)
d (Su�; Qv2p+1) + d (=v2p+1; Su�)

�
�  d (=v2p+1; Su�) �  d (u�; v2p) :

Iteratively, this inequality implies

d (u�; v2p+1) �  2p+1 (d (u�; v0)) ; for all p:

Putting p! +1; in above inequality, we get

lim
p!+1

d (v2p; u
�) = 0: (3.5)

lim
p!+1

d (v2p; ŵ) = 0: (3.6)

By the uniqueness of the limit (3.5); (3.6) we get u� = ŵ:

The below example is to illustrate Theorem 3.2.3.
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3.2.6 Example

Consider L = [2; 20] and (L; d) be usual metric space: De�ne J; =; S and Q as follows:

S (a) = 2; for all a: Q (a) =

8<: 2; if a 2 [2; 5) [ [6; 20] ;

a+ 1; if a 2 [5; 6) :

J (a) =

8<: a; if a 2 [2; 7] ,

7; if a 2 (7; 20] :
= (a) =

8>>><>>>:
2; if a = 2

3; if a 2 (2; 5) [ [6; 20] ,

a+ 3; if a 2 [5; 6) :

Indeed, Q (L) � J (L) and S (L) � = (L), we note Sa = Ja for which a = 2 implies SJa = JSa

and Qa = =a implies Q=a = =Qa: Thus the pairsfS; Jg and fQ;=g are weakly compatible.

Consider " = 3
4 and suppose that  (t) =

3t
4 ; then J;=; S and Q satisfy the (��  )-Meir-Keeler-

Khan type contractive condition with the mapping � : J(L)[=(L)�J(L)[=(L)! R+ which

de�ned by

� (a; y) =

8<: 1; if a; y 2 [2; 5) [ [9; 20] ;
1
10 ; otherwise.

Clearly a = 2 is our unique common �xed point. Indeed, hypothesis (ii) is satis�ed with a0 = 2

2 L with � (2; 2) � 1: Thus, all the hypothesis of Theorem 3.2.3 are hold.

3.2.7 Corollary

Consider (L; d) be a complete metric space and Q : L ! L is an (��  )-Meir-Keeler-Khan

mapping. Assume that:

(i) Q is an �-admissibl and continuous;

(ii) there exists a0 2 L such as � (a0; Q (a0)) � 1. Then, Q has a �xed point in L.

Proof. Immediately by taking S = Q = = = J in the Theorem 3.2.3:

3.2.8 Corollary

Consider (L; d) be a complete metric space and let Q : L ! L is an (�;  )-Meir-Keeler-Khan

map. Assume that:
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(i) there exists a0 2 L such as � (a0; Q (a0)) � 1;

(ii) Q is an �-admissible;

(iii) if fang is a sequence in L such as � (an; an+1) � 1 for each n 2 N and an ! a 2 L as n

tends to in�nity, then � (an; a) � 1; for each n 2 N. Then, Q has a �xed point in L.

In the Theorem 3.2.4, if we take  (t) = �t; where � 2 (0; 1) and � (Ja;=y) = 1; for each

a; y 2 L, we obtain the below results.

3.2.9 Corollary

Consider (L; d) be a complete metric space. Let J , =; S; Q : L! L be the mappings satis�es

the below condition:

For " > 0; there exist ��> 0 such as,

" � �

�
d (Ja; Sa) d (Ja;Qy) + d (=y;Qy) d (=y; Sa)

d (Ja;Qy) + d (=y; Sa)

�
< "+ �� (3.7)

) d (Sa;Qy) < ":

Then, J;=; Q and S have a unique common �xed point u� 2 L: Moreover, for each a0 the

sequence fQna0g converge to u�.

Proof. Let � 2]0; 1[ and choose �0 2 ]0; 1[ with �0 > �. Fix " > 0. If we take �� =

"
�
1
� �

1
�0

�
: Assume that

1

�0
" � d (Ja; Sa) d (Ja;Qy) + d (=y;Qy) d (=y; Sa)

d (Ja;Qy) + d (=y; Sa) <
1

�0
"+ ��;

it following that

d (Sa;Qy) < �
d (Ja; Sa) d (Ja;Qy) + d (=y;Qy) d (=y; Sa)

d (Ja;Qy) + d (=y; Sa)

< �

�
1

�0
"+ ��

�

= �

�
1

�0
"+ "

�
1

�
� 1

�0

��
= ":
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Hence (3.7) is satis�ed which makes Theorem 3.1.1 an immediate consequence of Corollary

3.2.9.

Following the idea of Samet [85], according of Corollary 3.2.9 we obtain an integral version

for Fisher�s result. Now, we start by the below result.

3.2.10 Theorem

Consider (L; d) be a complete metric space and J;=; S;Q : L ! L; � 2 ]0; 1[. Suppose that

there exists � : [0;+1[! [0;+1[ satis�ed the below assumptions;

(i) � is nondecreasing and right continuous;

(ii) � (0) = 0 and � (t) > 0 for all t > 0;

(iii) for each " > 0; there exist ��> 0 such as

1

�
" < �

�
d (Ja; Sa) d (Ja;Qy) + d (=y;Qy) d (=y; Sa)

d (Ja;Qy) + d (=y; Sa)

�
<
1

�
"+ ��

implies �
�
1
�d (Sa;Qy)

�
< 1

�"; for all a; y 2 L: Then inequality (3:7) hold.

Proof. Fix " > 0; since �
�
1
�"
�
> 0; by assumption (iii) there exists � > 0 such as

�

�
1

�
"

�
< �

�
d (Ja; Sa) d (Ja;Qy) + d (=y;Qy) d (=y; Sa)

d (Ja;Qy) + d (=y; Sa)

�
< �

�
1

�
"

�
+ �

implies �
�
1

�
d (Sa;Qy)

�
< �

�
1

�
"

�
: (3.8)

Since � is right continuous, there exists ��> 0 such as;

�

�
1

�
"+ ��

�
< �

�
1

�
"

�
+ �:

For all a; y 2 L; such as

1

�
" <

d (Ja; Sa) d (Ja;Qy) + d (=y;Qy) d (=y; Sa)
d (Ja;Qy) + d (=y; Sa) <

1

�
"+ ��:
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Since � is nondecreasing, we have

�

�
1

�
"

�
< �

�
d (Ja; Sa) d (Ja;Qy) + d (=y;Qy) d (=y; Sa)

d (Ja;Qy) + d (=y; Sa)

�
< �

�
1

�
"+ ��

�
< �

�
1

�
"

�
+ �:

Then by (3:8), we have

�

�
1

�
d (Sa;Qy)

�
< �

�
1

�
"

�
;

which implies that d (Sa;Qy) < ": Then (3:7) is satis�ed.

Now, � denote the set of all map g : [0;+1[! [0;+1[ satis�ed the below assumptions:

(i) g(0) = 0 and g(t) > 0 for all t > 0;

(ii) g continuous and nondecreasing.

3.2.11 Corollary

Let (L; d) be a complete metric space and J;=; S;Q : L ! L are mappings, let g 2 � such as

for " > 0 there exist ��> 0; with

1

�
" < g

�
d (Ja; Sa) d (Ja;Qy) + d (=y;Qy) d (=y; Sa)

d (Ja;Qy) + d (=y; Sa)

�
<
1

�
"+ ��

implies g
�
1

�
d (Sa;Qy)

�
<
1

�
":

Then, (3:7) is satis�ed.

Proof. Since every continuos function g : R+ ! R+ is right continuous, the proof follows

immediately from Theorem 3.2.10:

3.2.12 Corollary

Consider (L; d) be a complete metric space and J; =; S and Q are four maps from L into itself.

Let ' : [0;+1[! [0;+1[ is a locally integrable function such as

Z t

0
' (u) du > 0; for all t > 0:
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Assume that " > 0; there exist ��> 0 such as

1

�
" �

Z d(Ja;Sa)d(Ja;Qy)+d(=y;Qy)d(=y;Sa)
d(Ja;Qy)+d(=y;Sa)

0
' (t) dt <

1

�
"+ ��

implies
Z 1

�
d(Sa;Qy)

0
' (t) dt <

1

�
": (3.9)

Thus, (3:7) is satis�ed. Now, we obtain an integral version of Khan result as follows.

3.2.13 Corollary

Consider (L; d) be a complete metric space and J;=; S;Q : L ! L be self mappings. Let

' : [0;+1[! [0;+1[ be a locally integrable function such as
R t
0 ' (u) du > 0; for each t > 0

and let � 2 ]0; 1[ : Assume that J;=; S and Q satis�ed the below condition. For all a; y 2 L;

Z 1
�
d(Sa;Qa)

0
' (t) dt � ��

Z d(Ja;Sa)d(Ja;Qy)+d(=y;Qy)d(=y;Sa)
d(Ja;Qy)+d(=y;Sa)

0
' (t) dt; (3.10)

where, ��2 (0; 1) : Then J;=; S and Q have an unique common �xed point. Moreover, for any

a 2 L, the sequence fyn (a)g converges to a�.

Proof. Let " > 0. it is easy to observe that (3:9) is satis�ed. Take ��= "
�

�
1
��� 1

�
; then

(3.7) is satis�ed.

3.3 Some Fixed Points of � �  � K-Contractive Mapping in

Partial Metric Spaces

Results given in this section have been published in [14]

We are starting to introducing the generalized of � �  �K-contractive in the context of

partial metric space as follows:

3.3.1 De�nition

Let (L; p) be a partial metric space and J : L! L is a map. J is called ��  �K-contractive

if there exists functions � : L � L ! [0;+1) and  2 	 such as for each a; y 2 L; a 6= y, we
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have

�(a; y)p(J(a); J(y)) �  (K(a; y)) (3.11)

whenever,

K (a; y) = max

�
p (a; y) ;

p (a; Ja) + p (y; Jy)

2
;
p (a; Jy) + p (y; Ja)

2
;

p (a; Ja) p (y; Jy)

p (a; y)
;
p (y; Jy) [1 + p (a; Ja)]

[1 + p (a; y)]

�
:

3.3.2 Theorem

Let (L; p) be a complete partial metric space and J : L ! L be � �  � K-contractive map

satis�es the below hypothesis:

(i) J is �-admissible;

(ii) there exists a0 2 L such as �(a0; Ja0) � 1:

(iii) J is a continuous. Then u 2 L such as J (u) = u:

Proof. From hypothesis (ii), there exists a0 2 L such as �(a0; Ja0) � 1: We generate a

sequence fang in L as follows: an+1 = Jan for each n 2 N [ f0g : If an0 = an0+1 for some

n0 2 N0; then u = an0 is a �xed point of J: Suppose that an 6= an+1 for each n 2 N [ f0g : By

(i), we have

� (a0; a1) = � (a0; Ja0) � 1) � (Ja0; Ja1) = � (a1; a2) � 1;

� (a1; a2) = � (a1; Ja1) � 1) � (Ja1; Ja2) = � (a2; a3) � 1:

By induction, we get

� (an; an+1) � 1: (3.12)

From (3.11) and (3.12), we have

p (an+1; an+2) = p (Jan; Jan+1) � � (an; an+1) p (Jan; Jan+1) �  (K (an; an+1))
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�  max

�
p (an; an+1) ;

p (an; Jan) + p (an+1; Jan+1)

2
;
p (an; Jan+1) + p (an+1; Jan)

2
;

p (an; Jan) p (an+1; Jan+1)

p (an; an+1)
;
p (an+1; Jan+1) [1 + p (an; Jan)]

[1 + p (an; an+1)]

�

=  max

�
p (an; an+1) ;

p (an; an+1) + p (an+1; an+2)

2
;
p (an; an+2) + p (an+1; an+1)

2
;

p (an; an+1) p (an+1; an+2)

p (an; an+1)
;
p (an+1; an+2) [1 + p (an; an+1)]

[1 + p (an; an+1)]

�
�  max fp (an; an+1) ; p (an+1; an+2)g ;

p (an+1; an+2) �  (max fp (an; an+1) ; p (an+1; an+2)g) , for all n:

If max fp (an; an+1) ; p (an+1; an+2)g = p (an+1; an+2), then

p (an+1; an+2) �  (p (an+1; an+2)) < p (an+1; an+2) .

Which is contradiction. Thus, max fp (an; an+1) ; p (an+1; an+2)g = p (an; an+1) ; for all n 2 N:

Hence,

p (an+1; an+2) �  (p (an; an+1)) : (3.13)

Continuing in this process inductively, we obtain

p (an; an+1) �  n (p (a0; a1)) , for each n 2 N: (3.14)

Using the de�nition of partial metric, we have

max fp (an; an) ; p (an+1; an+1)g � p (an; an+1) . (3.15)

Using inequality (3.14), we have

max fp (an; an) ; p (an+1; an+1)g �  n (a0; a1) : (3.16)
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By (3.15) and (3.16), we have

ps (an; an+1) = 2p (an; an+1)� p (an; an)� p (an+1; an+1)

� 2p (an; an+1) + p (an; an) + p (an+1; an+1) � 4 n (a0; a1) : (3.17)

Using inequality (3.17), we get

ps (an+k; an) � ps (an+k; an+k�1) + :::+ p
s (an+1; an)

� 4 n+k�1p (a0; a1) + :::+ 4 
np (a0; a1) � 4

n+k�1X
i=n

 ip (a0; a1) :

As
P+1
i=0  

ip (a0; a1) is a convergent. We obtain that fang is a Cauchy sequence in a metric space

(L; ps) : Now, by using Lemma 1.3.8 and the completeness of (L; p) ; we conclude the complete-

ness of (L; ps). Therefore the sequence fang is a convergent in (L; ps), say limn!+1 ps (an; u) =

0: By Lemma 1.3.8, we have

p (u; u) = lim
n!+1

p (an; u) = lim
m;n!+1

p (am; an) : (3.18)

Now, since fang is a Cauchy sequence in (L; ps) ; we get

lim
m;n!+1

ps (am; an) = 0. (3.19)

View of inequality (3:16), we have

lim
n!+1

p (an; an) = 0. (3.20)

From (3:19), (3:20) and de�nition of ps, we conclude that

lim
m;n!+1

p (am; an) = 0:

On using (3:18) ; we have

p (u; u) = lim
n!+1

p (an; u) = lim
m;n!+1

p (am; an) = 0. (3.21)
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Now, we show that Ju = u. By Lemma 1.3.9, we get

p (Ju; Ju) = lim
n!+1

p (Jan; Ju) = lim
m;n!+1

p (Jam; Jan) . (3.22)

That is,

p (Ju; Ju) = lim
m;n!+1

p (am+1; an+1) = 0: (3.23)

Using inequality (3:21) and (3:23), we get

p (u; u) = p (Ju; Ju) = 0: (3.24)

By Lemma 1.3.10; we have

lim
n!+1

p (an; Ju) = p (u; Ju) : (3.25)

Therefore, using (3:22) ; (3:24) and (3:25), we have

p (Ju; Ju) = p (u; u) = p (u; Ju) = 0:

Thus u = Ju: Hence u is a �xed point of J:

3.3.3 Theorem

Consider (L; p) is a complete partial metric space and J : L ! L is an � �  �K-contractive

map. Suppose that:

(i) there exists a0 2 L such as � (a0; J (a0)) � 1;

(ii) J is �-admissible;

(iii) if fang is a sequence in L such as � (an; an+1) � 1; for each n 2 N and an ! a 2 L as

n tends to in�nity; then there exists a subsequence
n
an(|̂)

o
such as �

�
an(|̂) ; a

�
� 1; for each

|̂ 2 N. Then, J has a �xed point in L.

Proof. Following the similar lines of the Theorem 3.3.2, we obtain that a sequence fang

given by an+1 = Jan, where n = 0,1,2,... converges to some u 2 L. From (3.12) and given
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hypotheses, there exists a subsequence
n
an(|̂)

o
of fang such as

�
�
an(|̂) ; a

�
� 1; for all |̂: (3.26)

Now, we proceed to prove that u is a �xed point of J . Suppose the contrary p(u; Ju) > 0.

Therefore, by using (3.11) and (3.26), we have

p(u; Ju) � p(u; an(|̂)+1) + p(an(|̂)+1 ; Ju)� p(an(|̂)+1 ; an(|̂)+1)

� p(u; an(|̂)+1) + p(an(|̂)+1 ; Ju) = p(u; an(|̂)+1) + p(Jan(|̂) ; Ju)

� p(u; an(|̂)+1) + �(an(|̂) ; u)p(Jan(|̂) ; Ju) � p(u; an(|̂)+1) +  
�
K(an(|̂); u)

�
:

p(u; Ju) � p(u; an(|̂)+1) +  max

8<:p�an(|̂) ; u� ; p
�
an(|̂) ; an(|̂)+1

�
+ p(u; Ju)

2
;

p
�
an(|̂) ; Ju

�
+ p

�
u; an(|̂)+1

�
2

;
p
�
an(|̂) ; an(|̂)+1

�
p (u; Ju)

p
�
an(|̂) ; u

� ;
p (u; Ju)

h
1 + p

�
an(|̂) ; an(|̂)+1

�i
h
1 + p

�
an(|̂) ; u

�i
9=; :

(3.27)

Letting limit |̂ tends to in�nity in (3.27), we get

p(u; Ju) �  (p(u; Ju)) < p(u; Ju):

Which is a contradiction. Therefore, p(u; Ju) = 0: Hence Ju = u.

3.3.4 Corollary [59]

Consider (L; d) be a complete metric space and J : L ! L is an � �  �K-contractive map.

Assume that:

(i) J is an �-admissible and continuous;

(ii) there exists a0 2 L such as � (a0; J (a0)) � 1. Then, J has a �xed point in L.
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3.3.5 Corollary [89]

Consider (L; p) be a complete partial metric space, � : L � L ! [0;+1) be an a function,

� 2 	 and J is generalized ��  contractive type mapping on L: Suppose that:

(i) J is an �-admissible and continuous;

(ii) there exists a0 2 L such as � (a0; J (a0)) � 1. Then, J has a �xed point in L.

3.3.6 Corollary [57]

Consider (L; d) be a complete metric space. Let J : L ! L is a mapping. Suppose that there

exists  2 	 such as

d(J(a); J(y)) �  (M(a; y));

for each (a; y) 2 L� L; where

M(a; y) = max

�
d (a; y) ;

d (a; Ja) + d (y; Jy)

2
;
d (a; Jy) + d (y; Ja)

2

�
:

Then, J has a unique �xed point.

3.3.7 Example

Let L = R+ where, (L; p) is a complete partial metric space with partial metric de�ned by

p(a; y) = maxfa; yg. De�ned J : L! L by

J(a) =

8>>><>>>:
a
6 ; if a 2 [0; 1] ,
a
3 �

1
6 ; if a 2 (1; 2],

a� 3
2 ; if a > 2.

Let � (a; y) =

8>>><>>>:
2; if a; y 2 [0; 1] ,
4
3 ; if a; y 2 (1; 2],

0; otherwise.
Clearly J is a continuous for all a 2 L: To show that J is �-admissible: Let a; y 2 L such as

� (a; y) � 1; by de�nition of � we have a; y 2 [0; 1] implies � (Ja; Jy) = � (a; y) � 1: Similarity

in the case a; y 2 (1; 2]. Now, the cases arises:

(i) In the case a; y 2 [0; 1], we have

� (a; y) p (Ja; Jy) = � (a; y) p
�a
6
;
y

6

�
= 2maxfa

6
;
y

6
g � 1

3
p(a; y)

�  (K(a; y)):
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(ii) Also, holds in the case a; y 2 (1; 2]:

(iii) In the case a 2 [0; 1] ; y 2 (1; 2]; we have

� (a; y) p (Ja; Jy) = � (a; y) p

�
a

6
;
y

3
� 1
6

�
= 0:

(iv) For y 2 [0; 1] ; a 2 (1; 2]; we have

� (a; y) p (Ja; Jy) = � (a; y) p

�
a

3
� 1
6
;
y

6

�
= 0:

(v) If a or y is not in [0; 2] ; then � (a; y) = 0, that is

� (a; y) p (Ja; Jy) �  (K (a; y)) :

Thus, J is ��  �K-contractive with  (t) = t
3 ; for each t � 0: Indeed, for a0 = 1; we have

� (a0; J (a0)) = � (1; J1) = �

�
1;
1

6

�
= 2:

Now, all hypothesis of Theorem 3.3.2 are satis�ed. In fact, 0 is a �xed point.

We can not apply Corollary 3.3.4 because, 29 �
1
6 : Indeed, if a =

3
2 ; y = 2; then

�
�
3
2 ; 2
�
ps
�
1
2 �

1
6 ;
2
3 �

1
6

�
= 4

3p
s
�
1
3 ;
1
2

�
= 4

3

�
2p
�
1
3 ;
1
2

�
� p

�
1
3 ;
1
3

�
� p

�
1
2 ;
1
2

��
= 2

9 and

ps
�
3
2 ; 2
�
= 2p

�
3
2 ; 2
�
� p

�
3
2 ;
3
2

�
� p (2; 2) = 1

2 ;  
�
1
2

�
= 1

6 :

3.3.8 Example

Consider L = f1; 2; 3; 4g and the function p : L� L! [0;+1) de�ned as

p (3; 4) = p (1; 2) = 3; p (1; 3) = p (2; 4) = 5; p (1; 4) = p (2; 3) = 4, p (a; y) = p (y; a) ;

p (1; 1) = 0; p (4; 4) = p (3; 3) = p (2; 2) = 2: De�ne a self mapping J as: J(1) = 4, J(3) = 3;

J(2) = 4; J(4) = 3; for all a 2 L: Obviously p is a partial metric on L; but not metric (since

p (a; a) 6= 0; for a 2 f2; 3; 4g): Clearly J is an �� �K-contractive map with  (t) = 4
5 t; t � 0:

In fact, for each a; y 2 L; we have

�(a; y)p(J(a); J(y)) �  (K(a; y)), � (a; y) =

8<: 1; if (a; y) 6= (3; 3);
1
4 , if (a; y) = (3; 3):
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Moreover, there exists a0 2 L such as �(a0; Ja0) = 1. In fact, for a0 = 1, we have

� (1; J1) = � (1; 4) = 1:

Let fang is a sequence in L such as � (an; an+1) � 1; for each n 2 N and an ! a 2 L; as n

tends to in�nity, for some a 2 L. From the de�nition of �, for all n, we have an 6= 0. Thus,

a 6= 0 and we have � (an; a) � 1 for all n. Also, J is �-admissible. For this, we have

� (a; y) � 1) a 6= 3; y 6= 3) Ja 6= 3; Jy 6= 3) � (Ja; Jy) � 1:

Consequently, J has a �xed point. In this case, 3 is a �xed point.

We denote by �x(J) the set of �xed points of J , for the uniqueness, we need the below

additional condition:

(H) For each a; y 2 �x (J), there exists e 2 L such as �(e; a) � 1 and �(e; y) � 1.

3.3.9 Theorem

Adding the condition (H) to the hypotheses of Theorem 3.3.3, we get that u is a unique of �xed

point of J .

Proof. Assume that v is another �xed point of J . From (H), there exists e 2 L such as

�(e; u) � 1; �(e; v) � 1: (3.28)

Since J is �-admissible, from (3.28), we have

�(Jn(e); u) � 1; �(Jn(e); v) � 1; (3.29)

for all n � 0. De�ne the sequence feng in L by en+1 = J(en) for each n = 0; 1; 2; ::: and e0 = e.

Suppose that d(en; u) > 0. By (3.29) and using the technique given in Theorem 3.2.5, it can

easily be proved that u = v.

We apply our results to obtain �xed points partial metric spaces endowed with a partial

ordered.
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3.3.10 Corollary

Let (L;�) be a partially ordered set and p is a partial metric on L such as (L; p) is complete. Let

J : L! L is a nondecreasing mapping with respect to � and satis�es the following inequality:

p(J(a); J(y)) �  (K(a; y)); for all a; y 2 L with a � y;

where

K (a; y) = max

�
p (a; y) ;

p (a; Ja) + p (y; Jy)

2
;
p (a; Jy) + p (y; Ja)

2
;

p (a; Ja) p (y; Jy)

p (a; y)
;
p (y; Jy) [1 + p (a; Ja)]

[1 + p (a; y)]

�
:

Assume that the below conditions satis�ed:

(i) (L;�; p) is regular or J is continuous;

(ii) there exists a0 2 L such as a0 � Ja0. Then J has a �xed point. Moreover, if for a; y 2 L,

there exists e 2 L such as a � e and y � e. Then, J has unique �xed point.

Proof. The proof comes easily from the follows. De�ne a map � : L � L ! [0;+1) by

� (a; y) =

8<: 1, if a � y or a � y;

0; otherwise�

3.4 New Types of F -Contraction for Multivalued Mappings and

Related Fixed Point Results in Abstract Spaces

Results given in this section have been published in [8]

3.4.1 Lemma

Let (L; dqb; s) be a dislocated b-quasi metric space. Let (P (L);Hdqb) be the Hausdor¤dislocated

b-quasi metric space on P (L): Then, for each C;F 2 P (L) and for each l 2 C; there exists

bl 2 F; such as Hdqb(C;F ) � dqb(l; bl) and Hdqb(F;C) � dqb(bl; l), where dqb(l; F ) = dqb(l; bl)

and dqb(F; l) = dqb(bl; l):
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3.4.2 Lemma

Let (L; dqb; s) is a dislocated b-quasi metric space. Let fang is any sequence in L there is some

� > 0 and F 2 FS such as

� + F (smaxfdqb(an; an+1); dqb(an+1; an)g) � F (maxfdqb(an�1; an); dqb(an; an�1)g) (3.30)

for each n 2 N: Then fang is a Cauchy sequence in L:

Proof. Let #n = maxfdqb(an; an+1); dqb(an+1; an)g; for all n 2 N. Therefore, by (3.30) and

property (F4), we have

� + F (sn#n) � F (sn�1#n�1); n 2 N:

Similar the technique as given in [7], we obtain fang is a Cauchy sequence in L:

Let (L; dqb) be a dislocated b-quasi metric space; a0 2 L and S; J : L ! P (L) be multi-

functions on L. Let a1 2 Sa0 is an element such as dqb(a0; Sa0) = dqb(a0; a1); dqb(Sa0; a0) =

dqb(a1; a0). Let a2 2 Ja1 be such as dqb(a1; Ja1) = dqb(a1; a2); dqb(Ja1; a1) = dqb(a2; a1):

Let a3 2 Sa2 be such as dqb(a2; Sa2) = dqb(a2; a3) and so on. Thus, we generate a se-

quence an of points in L such as a2n+1 2 Sa2n and a2n+2 2 Ja2n+1; with dqb(a2n; Sa2n) =

dqb(a2n; a2n+1); dqb(Sa2n; a2n) = dqb(a2n+1; a2n); and dqb(a2n+1; Ja2n+1) = dqb(a2n+1; a2n+2);

dqb(Ja2n+1; a2n+1) = dqb(a2n+2; a2n+1); where n = 0; 1; 2; � � � :We denote this iterative sequence

by fJS(an)g. We say that fJS(an)g is a sequence in L generated by a0: If J = S; then we say

that fLJ(an)g is a sequence in L generated by a0:

3.4.3 De�nition

Let (L; dqb; s) be a dislocated b-quasi metric space and S; J : L ! P (L) are two multivalued

mappings. The pair (S; J) is called a DQF -contraction, if there exists F 2 FS and � ; c > 0

whenever for any two consecutive points a; y belonging to the range of an iterative sequence

fJS(an)g with maxfHdqb(Sa; Jy);Hdqb(Jy; Sa); Dqb(a; y); Dqb(y; a)g > 0; we have

� +maxfF (sHdqb(Sa; Jy)); F (sHdqb(Jy; Sa))g � minfF (Dqb(a; y)); F (Dqb(y; a))g (3.31)
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where,

Dqb(a; y) = max

�
dqb(a; y);

dqb (a; Sa) :dqb (y; Jy)

c+maxfdqb (a; y) ; dqb (y; a)g
; dqb(a; Sa); dqb(y; Jy)

�
: (3.32)

3.4.4 Theorem

Consider (L; dqb; s) be a complete dislocated b-quasi metric with s � 1 and (S; J) be a DQF -

contraction. Then fJS(an)g ! u 2 L: Also, if (3.31) holds for each a; y 2 fug; then S and J

have a common �xed point u in L and dqb(u; u) = 0:

Proof. Let fJS(an)g is the iterative sequence in L generated by a point a0 2 L. If

maxfHdqb(Sa2p0 ; Ja2p0+1);Hdqb(Ja2p0+1; Sa2p0); Dqb(a2p0 ; a2p0+1); Dqb(a2p0+1; a2p0)g � 0

for some p0 2 N [ f0g; then

Hdqb(Sa2p0 ; Ja2p0+1) = Hdqb(Ja2p0+1; Sa2p0) = Dqb(a2p0 ; a2p0+1) = Dqb(a2p0+1; a2p0) = 0

Clearly, if Dqb(a2p0 ; a2p0+1) = 0; then dqb(a2p0 ; a2p0+1) = 0: Also Dqb(a2p0+1; a2p0) = 0 implies

dqb(a2p0+1; a2p0) = 0: So, a2p0 = a2p0+1 and a2p0 2 Sa2p0 : Now, Hdqb(Sa2p0 ; Ja2p0+1) = 0 implies

dqb(a2p0+1; Ja2p0+1) = 0 and Hdqb(Ja2p0+1; Sa2p0) = 0 implies dqb(Ja2p0+1; a2p0+1) = 0: So,

a2p0+1 2 Ja2p0+1 and a2p0 is a common �xed point of S and J . So the proof is completed in this

case. Now, let

maxfHdqb(Sa2p; Ja2p+1);Hdqb(Ja2p+1; Sa2p); Dqb(a2p; a2p+1); Dqb(a2p+1; a2p)g > 0;

for all p 2 N [ f0g: By Lemma 3.4.1, we have

dqb(a2p; a2p+1) � Hdqb(Ja2p�1; Sa2p), dqb(a2p+1; a2p) � Hdqb(Sa2p; Ja2p�1); (3.33)

and

dqb(a2p+1; a2p+2) � Hdqb(Sa2p; Ja2p+1), dqb(a2p+2; a2p+1) � Hdqb(Ja2p+1; Sa2p): (3.34)
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From (3.34), (F1) and using the condition (3.31), we get

F (sdqb(a2p+1; a2p+2)) � F (sHdqb(Sa2p; Ja2p+1))

� maxfF (sHdqb(Sa2p; Ja2p+1)); F (sHdqb(Ja2p+1; Sa2p))g

� minfF (Dqb(a2p; a2p+1)); F (Dqb(a2p+1; a2p))g � �

� F (Dqb(a2p; a2p+1))� � :

From (3.32), we have

Dqb(a2p; a2p+1) = maxfdqb(a2p; a2p+1);
dqb (a2p; Sa2p) :dqb (a2p+1; Ja2p+1)

c+maxfdqb (a2p; a2p+1) ; dqb (a2p+1; a2p)g
;

dqb(a2p; Sa2p); dqb(a2p+1; Ja2p+1)g

= maxfdqb(a2p; a2p+1);
dqb (a2p; a2p+1) :dqb (a2p+1; a2p+2)

c+maxfdqb (a2p; a2p+1) ; dqb (a2p+1; a2p)g
;

dqb(a2p; a2p+1); dqb(a2p+1; a2p+2)g

� maxfdqb(a2p; a2p+1); dqb(a2p+1; a2p+2)g:

If, maxfdqb(a2p; a2p+1); dqb(a2p+1; a2p+2)g = dqb(a2p+1; a2p+2); then

F (sdqb(a2p+1; a2p+2)) � F (dqb(a2p+1; a2p+2))� � :

It is a contradiction due to (F1) and s � 1: Thus,

F (sdqb(a2p+1; a2p+2)) � F (dqb(a2p; a2p+1))� � ; (3.35)

F (sdqb(a2p+1; a2p+2)) � F (maxfdqb(a2p; a2p+1); dqb(a2p+1; a2p)g)� � : (3.36)
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From (3.34), (F1) and using the condition (3.31), we get

F (sdqb(a2p+2; a2p+1)) � F (sHdqb(Ja2p+1; Sa2p))

� maxfF (sHdqb(Sa2p; Ja2p+1)); F (sHdqb(Ja2p+1; Sa2p))g

� minfF (Dqb(a2p; a2p+1)); F (Dqb(a2p+1; a2p))g � �

� F (Dqb(a2p; a2p+1))� �

= F (maxfdqb(a2p; a2p+1); dqb(a2p+1; a2p+2)g)� � :

By using (3.35) and (F1), we get

F (sdqb(a2p+2; a2p+1)) � F (maxfdqb(a2p; a2p+1);
1

s
dqb(a2p; a2p+1)g)� �

= F (dqb(a2p; a2p+1))� �

� F (maxfdqb(a2p; a2p+1); dqb(a2p+1; a2p)g)� � :

F (sdqb(a2p+2; a2p+1)) � F (maxfdqb(a2p; a2p+1); dqb(a2p+1; a2p)g)� � : (3.37)

Combining (3.36) and (3.37), we get

maxfF (sdqb(a2p+2; a2p+1)); F (sdqb(a2p+1; a2p+2))g � F (maxfdqb(a2p; a2p+1); dqb(a2p+1; a2p)g)�� :

(3.38)

By using (3.33) and (3.31), we have

F (sdqb(a2p; a2p+1)) � F (sHdqb(Ja2p�1; Sa2p))

� maxfF (sHdqb(Sa2p; Ja2p�1)); F (sHdqb(Ja2p�1; Sa2p))g

� minfF (Dqb(a2p�1; a2p)); F (Dqb(a2p; a2p�1))g � �

� F (Dqb(a2p; a2p�1))� � :
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From (3.32), we have

Dqb(a2p; a2p�1) = maxfdqb(a2p; a2p�1);
dqb (a2p; a2p+1) :dqb (a2p�1; a2p)

c+max fdqb (a2p; a2p�1) ; dqb (a2p�1; a2p)g
;

dqb(a2p; a2p+1); dqb(a2p�1; a2p)g

� maxfdqb(a2p; a2p�1); dqb(a2p�1; a2p); dqb(a2p; a2p+1)g:

If maxfdqb(a2p; a2p�1); dqb(a2p�1; a2p); dqb(a2p; a2p+1)g = dqb(a2p; a2p+1); then

F (sdqb(a2p; a2p+1)) � F (dqb(a2p; a2p+1))� � :

A contradiction due to (F1): Thus,

F (sdqb(a2p; a2p+1)) � F (maxfdqb(a2p�1; a2p); dqb(a2p; a2p�1)g)� � : (3.39)

By using (3.33) and (3.32), we have

F (sdqb(a2p+1; a2p)) � F (sHdqb(Sa2p; Ja2p�1)) � F (Dqb(a2p; a2p�1))� �

� F (maxfdqb(a2p; a2p�1); dqb(a2p�1; a2p); dqb(a2p; a2p+1)g)� � :

From (3.39), dqb(a2p; a2p+1) < maxfdqb(a2p�1; a2p); dqb(a2p; a2p�1)g; so

F (sdqb(a2p+1; a2p)) � F (maxfdqb(a2p; a2p�1); dqb(a2p�1; a2p)g)� � : (3.40)

Combining (3.39) and (3.40), we get

maxfF (sdqb(a2p; a2p+1)); F (sdqb(a2p+1; a2p))g � maxfdqb(a2p; a2p�1); dqb(a2p�1; a2p)g � � :

(3.41)

Combining (3.38) and (3.41), we get

� + F (smaxfdqb(an; an+1); dqb(an+1; an)g) � F (maxfdqb(an�1; an); dqb(an; an�1)g): (3.42)

By Lemma 3.4.2, fJS(an)g is a Cauchy sequence in (L; dqb): As, (L; dqb) is a complete dislocated
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b-quasi metric space, so there exists u 2 L such as fJS(an)g ! u

lim
n!+1

dqb(an; u) = lim
n!+1

dqb(u; an) = 0: (3.43)

Now, suppose dqb(u; Ju) > 0; then Dqb(a2n; u) > 0; so

maxfHdqb(Sa2n; Ju);Hdqb(Ju; Sa2n); Dqb(a2n; u); Dqb(u; a2n)g > 0:

By using Lemma 3.4.1 and (3.31), we have

� + F (sdqb(a2n+1; Ju)) � � +maxfF (sHdqb(Sa2n; Ju)); F (sHdqb(Ju; Sa2n))g

� minfF (Dqb(a2n; u)); F (Dqb(u; a2n))g � F (Dqb(a2n; u)):

As, F is strictly increasing, so

sdqb(a2n+1; Ju) < Dqb(a2n; u):

Taking lim
n!+1

in above inequality, we get

lim
n!+1

sdqb(a2n+1; Ju) < lim
n!+1

Dqb(a2n; u) (3.44)

From (3.32), we have

Dqb(a2n; u) = maxfdqb(a2n; u);
dqb (a2n; a2n+1) :dqb (u; Ju)

c+maxfdqb (a2n; u) ; dqb (u; a2n)g
; dqb(a2n; a2n+1); dqb(u; Ju)g:

Taking limit as n tends to in�nity in above inequality and by using (3.43), we get

lim
n!+1

Dqb(a2n; u) = dqb(u; Ju): (3.45)

Using inequality (3.45) in (3.44), we get

lim
n!+1

sdqb(a2n+1; Ju) < dqb(u; Ju): (3.46)

83



Now,

dqb(u; Ju) � sdqb(u; a2n+1) + sdqb(a2n+1; Ju):

Taking lim
n!+1

on above inequality; we get

dqb(u; Ju) � s lim
n!+1

dqb(u; a2n+1) + lim
n!+1

sdqb(a2n+1; Ju): (3.47)

Using inequality (3.43) and (3.46) in (3.47), we get

dqb(u; Ju) < dqb(u; Ju):

Which is a contradiction, so dqb(u; Ju) = 0: Now, suppose dqb(Ju; u) > 0; then there exists n0 2

N such as dqb(Ju; a2n+1) > 0 for all n � n0: By Lemma 3.4.1 dqb(Ju; a2n+1) � Hdqb(Ju; Sa2n),

so

maxfHdqb(Sa2n; Ju);Hdqb(Ju; Sa2n); Dqb(a2n; u); Dqb(u; a2n)g > 0,

for all n � n0: Following similar arguments as above, we get

lim
n!+1

sdqb(Ju; a2n+1) < dqb(u; Ju) = 0: (3.48)

Now,

dqb(Ju; u) � sdqb(Ju; a2n+1) + sdqb(a2n+1; u):

Taking lim
n!+1

on above inequality and using inequality (3.43) and (3.48), we get

dqb(Ju; u) � 0:

Which is a contradiction, so dqb(Ju; u) = 0: Thus u 2 Ju: Similar lines as above we obtain

that dqb(Su; u) = 0 and dqb(u; Su) = 0: Hence, the pair (S; J) has a common �xed point u in

(L; dqb): Now,

dqb(u; u) � dqb(u; Ju) + dqb(Ju; u) � 0:

Therefore dqb(u; u) = 0 and the proof is completed.
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3.4.5 Example

Let L = f0g[Q+ and dqb(a; y) = (a+ 2y)2 if a 6= y, and dqb(a; y) = 0; if a = y: Then (L; dqb) is

a dislocated b-quasi metric space with s = 2. De�ne the mappings S; J : L! P (L) as follows:

S(a) =

8<:
�
1
4a;

2
5a
�
\Q+; for all a 2 f0; 7; 74 ;

7
12 ;

7
48 ; � � � g;

[a+ 1; a+ 4] \Q+; otherwise.

J(y) =

8<:
�
1
3y;

3
8y
�
\Q+; for all y 2 f0; 7; 74 ;

7
12 ;

7
48 ; � � � g;

[y + 3; y + 6] \Q+; otherwise.

Case 1: If, � +maxfF (sHdqb(Sa; Jy)); F (sHdqb(Ja; Sy))g = � + F (sHdqb(Sa; Jy)) �

minfF (Dqb(a; y)); F (Dqb(y; a))g satis�ed. De�ne the function F : [0;+1)! R as F (a) = ln(a)

for all a 2 [0;+1) and � > 0: Since a; y 2 L; � = ln(1:2) and let a0 = 7; so the sequence de�ned

as fJS(an)g = f7; 74 ;
7
12 ;

7
48 ; � � � g 2 L and generated by a0 = 7: Also, fJS(an)g ! 0: Now, if

a; y 2 fJS(an)g [ f0g; we have

sHdqb(Sa; Jy) = 2Hdqb

��
1

4
a;
2

5
a

�
;

�
1

3
y;
3

8
y

��
= 2max

"(
sup
l2Sa

dqb

�
l;

�
1

3
y;
3

8
y

��
; sup
b2Jy

dqb

��
1

4
a;
2

5
a

�
; b

�)#

= 2max

�
dqb

�
2a

5
;
y

3

�
; dqb

�
a

4
;
3

8
y

��
= 2max

(�
2a

5
+
2y

3

�2
;

�
a

4
+
3

4
y

�2)
:

Also,

Dqb(a; y) = max

8<:dqb(a; y); dqb
�
a;
�
a
4 ;
2a
5

��
:dqb

�
y;
h
y
3 ;
3y
8

i�
1 + maxfdqb(a; y); dqb(y; a)g

;

dqb

�
a;

�
a

4
;
2a

5

��
; dqb

�
y;

�
y

3
;
3y

8

���
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= max

�
dqb(a; y);

dqb(a;
a
4 ):dqb(y;

y
3 )

1 + maxfdqb(a; y); dqb(y; a)g
; dqb(a;

a

4
); dqb(y;

y

3
)

�
= max

(
(a+ 2y)2 ;

(5ay)2

4(1 + (a+ 2y)2)
;

�
3a

2

�2
;

�
5y

3

�2)
= (a+ 2y)2 :

Case (i). If max
��

2a
5 +

2y
3

�2
;
�
a
4 +

3
4y
�2�

=
�
a
4 +

3
4y
�2
; and � = ln(1:2); then we have

3 (a+ 3y)2 � 20 (a+ 2y)2

6

5

�
a

4
+
3

4
y

�2
� (a+ 2y)2

ln(1:2) + ln

�
a

4
+
3

4
y

�2
� ln (a+ 2y)2 :

Which implies that, � + F (sHdqb(Sa; Jy) � F (Dqb(a; y)):

Case (ii). Similarly, if max
��

2a
5 +

2y
3

�2
;
�
a
4 +

3
4y
�2�

=
�
2a
5 +

2y
3

�2
and � = ln(1:2); then we

have

48 (3a+ 5y)2 � 1125 (a+ 2y)2

6

5

�
2a

5
+
2y

3

�2
� (a+ 2y)2

ln(1:2) + ln

�
2a

5
+
2y

3

�2
� ln (a+ 2y)2 :

Hence,

� + F (sHdqb(Sa; Jy) � F (Dqb(a; y)):

Case 2: If maxf� + F (sHdqb(Sa; Jy)); � + F (sHdqb(Ja; Sy))g = � + F (sHdqb(Ja; Sy)) holds.

sHdqb(Ja; Sy) = 2max

"(
sup
b2Ja

dqb(b; Sy); sup
l2Sy

dqb(Ja; l)

)#

= 2max

"(
sup
b2Ja

dqb

�
b;

�
1

4
y;
2

5
y

��
; sup
l2Sy

dqb

��
1

3
a;
3

8
a

�
; l

�)#

= 2max

�
dqb

�
3a

8
;
y

4

�
; dqb

�
a

3
;
2y

5

��
= 2max

(�
3a

8
+
2y

4

�2
;

�
a

3
+
4y

5

�2)
;
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where

Dqb(y; a) = max

8<:dqb(y; a); dqb
�
a;
�
a
4 ;
2a
5

��
:dqb

�
y;
h
y
3 ;
3y
8

i�
1 + maxfdqb(a; y); dqb(y; a)g

;

dqb

�
a;

�
a

4
;
2a

5

��
; dqb

�
y;

�
y

3
;
3y

8

���

= max

�
dqb(y; a);

dqb(a;
a
4 ):dqb(y;

y
3 )

1 + maxfdqb(a; y); dqb(y; a)g
; dqb(a;

a

4
); dqb(y;

y

3
)

�

Dqb(y; a) = max

(
(y + 2a)2 ;

(5ay)2

4(1 + (y + 2a)2)
;

�
3a

2

�2
;

�
5y

3

�2)
= (y + 2a)2 :

Case (i). If, max
��

3a
8 +

2y
4

�2
;
�
a
3 +

4y
5

�2�
=
�
a
3 +

4y
5

�2
; and � = ln(1:2); then we have

12 (5a+ 12y)2 � 1125 (y + 2a)2

6

5

�
a

3
+
4y

5

�2
� (y + 2a)2

ln(1:2) + ln

�
a

3
+
4y

5

�2
� ln (y + 2a)2 ; so

� + F (sHdqb(Ja; Sy) � F (Dqb(y; a)):

Case (ii). If max
��

3a
8 +

2y
4

�2
;
�
a
3 +

4y
5

�2�
=
�
3a
8 +

2y
4

�2
; and � = ln(1:2); then we have

12 (3a+ 4y)2 � 320 (y + 2a)2

6

5

�
3a

8
+
2y

4

�2
� (y + 2a)2

ln(1:2) + ln

�
3a

8
+
2y

4

�2
� ln (y + 2a)2 :

Hence, � +F (sHdqb(Ja; Sy) � F (Dqb(y; a)): Now, note that if a; y =2 fJS(an)g; the contraction

is not satis�ed. Thus, all assumptions of Theorem 3.4.4 hold. In fact 0 is a common �xed point.

Drop J in Theorem 3.4.4, we obtain the below Theorem.

87



3.4.6 Theorem

Consider (L; dqb) be a complete dislocated b-quasi metric space with s � 1 and S : L ! P (L)

be a multivalued mapping such as for every two consecutive points a; y belonging to the range

of an iterative sequence fS(an)g with Dqb(a; y) > 0; F 2 FS , � ; c > 0

� + F (sHq
b
(Sa; Sy)) � F (Dqb(a; y)); (3.49)

where

Dqb(a; y) = max

�
dqb(a; y);

dqb (a; Sa) :dqb (y; Sy)

c+ dqb (a; y)
; dqb(a; Sa); dqb(y; Sy)

�
: (3.50)

Then fS(an)g ! u 2 L: Moreover, if (3.49) is satis�ed for {ug and dqb(u; u) = 0; then S has a

�xed point:

3.4.7 Remark

Taking the di¤erent values of Dqb(a; y) in (3.32); di¤erent results on F -contractions can be

obtained as corollaries of the Theorem 3.4.4.

F��s-Khan type contraction in quasi b-metric spaces

Piri et al. [75] restated the notion of Khan [61] and Fisher [44] however, included rational

expressions in discussion. Piri et al. [76] also revised the results of Fk-Khan-type self-mapping

into a new form inside a complete metric space. We also demonstrated a new kind of rational

contraction investigated its �xed point using b- quasi metric space. This furthers Khan �xed

point theorem. Finally, we stated multi-valued F��s-Khan-type multivalued for more than one

maps in b- quasi metric space.

3.4.8 De�nition

Let L 6= fg, s � 1 and �s : L�L! [0;+1) is a map such as �s (a; y) � s and �s (y; a) � s; im-

plies a = y. LetM � L, de�ne ��s (a;M)=inf f�s (a; l) ; l 2Mg and ��s (M;y) = inf f�s (b; y) ; b 2Mg :

Let S; J : L! P (L) be the multivalued mappings, then the pair (S; J) is called ��s-Alt multi-
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valued mapping, if a 2 L

(a) ��s (a; Sa) � s; qb (a; Sa) = qb (a; y) and qb (Sa; a) = qb (y; a) implies �
�
s (Sy; y) � s;

(b) ��s (Sa; a) � s; qb (a; Ja) = qb (a; y) and qb (Ja; a) = qb (y; a) implies �
�
s (y; Sy) � s:

3.4.9 De�nition

Let (L; qb; s) be a b-quasi metric space and (S; J) is a pair of ��s multivalued mapping. Then

(S; J) is called F��s Khan type contraction, if � > 0 and there exists F 2 FS whenever for

any two consecutive points a; y belonging to the range of an iterative sequence fJS(an)g with

��s (Sy; y) � s; ��s (a; Sa) � s and maxfHqb(Sa; Jy);Hqb(Jy; Sa); qb(a; y); qb(y; a)g > 0; we have

� +maxfF (sHqb
(Sa; Jy)); F (sHqb

(Jy; Sa) � min fF (Qb (a; y)) ; F (Qb (y; a))g ; (3.51)

where,

Qb (a; y) =
qb (a; Sa) qb (a; Jy) + qb (y; Jy) qb (y; Sa)

maxfqb (a; Jy) ; qb (y; Sa)g
: (3.52)

3.4.10 Theorem

Consider (L; qb; s) be a complete b- quasi metric space with s � 1: Let �s : L � L ! [0;+1)

and (S; J) is a pair of F��s Khan type contraction and the set G(S) = fa : ��s (a; Sa) � sg is

closed and contains a0: Then fJS(an)g ! u 2 L: If (3.51) is satis�ed for each a; y 2 fug: Then,

there is a single common �xed point of S and J in L and qb(u; u) = 0:

As a0 is any element ofG (S), from condition of the theorem ��s (a0; Sa0) � s: Let fJS(an)g 2

L is a sequence generated by a point a0 2 L. Let a2p0 ; a2p0+1 are elements of this sequence.

Clearly, if

maxfHqb(Sa2p0 ; Ja2p0+1);Hqb(Ja2p0+1; Sa2p0); qb(a2p0 ; a2p0+1); qb(a2p0+1; a2p0)g � 0;

for some p0 2 N [ f0g; then

Hqb(Sa2p0 ; Ja2p0+1) = Hqb(Ja2p0+1; Sa2p0) = qb(a2p0 ; a2p0+1) = qb(a2p0+1; a2p0) = 0:
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As qb(a2p0 ; a2p0+1) = qb(a2p0+1; a2p0) = 0; so a2p0 = a2p0+1 and a2p0 2 Sa2p0 :

Now, Hqb(Sa2p0 ; Ja2p0+1) = 0 implies qb(a2p0+1; Ja2p0+1) = 0 and Hqb(Ja2p0+1; Sa2p0) = 0 im-

plies qb(Ja2p0+1; a2p0+1) = 0: So, a2p0+1 2 Ja2p0+1 and a2p0 is a common �xed point of S and J:

So the proof is done. In order to �nd common �xed point of S and J , when

maxfHqb(Sa2p; Ja2p+1);Hqb(Ja2p+1; Sa2p); qb(a2p; a2p+1); qb(a2p+1; a2p)g > 0;

for all p 2 f0g[N. Since ��s (a0; Sa0) � s, qb (a0; Sa0) = qb (a0; a1) and qb (Sa0; a0) = qb (a1; a0).

As (S; J) is ��s multivalued mapping, so �
�
s (Sa1; a1) � s: Now, ��s (Sa1; a1) � s; qb (a1; Ja1) =

qb (a1; a2) and qb (Ja1; a1) = qb (a2; a1) implies that ��s (a2; Sa2) � s: By induction we deduce

that ��s (a2p; Sa2p) � s and ��s (Sa2p+1; a2p+1) � s, for all p = 0; 1; 2; � � � . Now, by Lemma 2.1.1,

we have

qb(a2p; a2p+1) � Hqb(Ja2p�1; Sa2p); qb(a2p+1; a2p) � Hqb(Sa2p; Ja2p�1) (3.53)

and

qb(a2p+1; a2p+2) � Hqb(Sa2p; Ja2p+1); qb(a2p+2; a2p+1) � Hqb(Ja2p+1; Sa2p): (3.54)

As s � 1, then (3.54) implies

F (sqb(a2p+1; a2p+2)) � F (sHqb(Sa2p; Ja2p+1))

� maxfF (sHqb(Sa2p; Ja2p+1)); F (sHqb(Ja2p+1; Sa2p))g:

As a2p; a2p+1 2 fJS(an)g; ��s (a2p; Sa2p) � s and ��s (Sa2p+1; a2p+1) � s; by using the condition

(3.51), we get

F (sqb(a2p+1; a2p+2)) � min fF (Qb(a2p; a2p+1)) ; F (Qb(a2p+1; a2p))g � �

� F (Qb(a2p; a2p+1))� � :
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From (3.52), we get

Qb(a2p; a2p+1) =
qb(a2p; Sa2p)qb(a2p; Ja2p+1) + qb(a2p+1; Ja2p+1)qb(a2p+1; Sa2p)

maxfqb(a2p; Ja2p+1); qb (Sa2p; a2p+1)g

=
qb(a2p; a2p+1):qb(a2p; Ja2p+1) + qb(a2p+1; a2p+2)� 0

maxfqb(a2p; Ja2p+1); 0g
= qb(a2p; a2p+1):

Therefore,

F (sqb(a2p+1; a2p+2) � F (qb(a2p; a2p+1))� � : (3.55)

This implies

F (sqb(a2p+1; a2p+2)) � F (maxfqb(a2p; a2p+1); qb(a2p+1; a2p)g)� � : (3.56)

As s � 1, then (3.54) implies

F (sqb(a2p+2; a2p+1)) � F (sHqb(Ja2p+1; Sa2p))

� maxfF (sHqb(Ja2p+1; Sa2p)); F (sHqb(Sa2p; Ja2p+1))g

As a2p+1; a2p 2 fJS(an)g; ��s (Sa2p+1;; a2p+1) � s and ��s (a2p; Sa2p) � s; then using the condi-

tion (3.51), we get

F (sqb(a2p+2; a2p+1)) � min fF (Qb(a2p; a2p+1)) ; F (Qb(a2p+1; a2p))g � �

� F (Qb(a2p; a2p+1))� � = F (qb(a2p; a2p+1))� � :

Therefore,

F (sqb(a2p+2; a2p+1)) � F (maxfqb(a2p; a2p+1); qb(a2p+1; a2p)g)� � : (3.57)

Combining (3.56) and (3.57), we get

max fF (sqb(a2p+1; a2p+2)); F (sqb(a2p+2; a2p+1))g � F (maxfqb(a2p; a2p+1); qb(a2p+1; a2p)g)� � :

(3.58)
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As s � 1, then (3.53) implies

F (sqb(a2p; a2p+1)) � (sHqb(Ja2p�1; Sa2p))

� maxfF (sHqb(Sa2p; Ja2p�1)); F (sHqb(Ja2p�1; Sa2p))g:

As a2p; a2p�1 2 fJS(an)g; ��s (a2p;; Sa2p) � s and ��s (Sa2p�1; a2p�1) � s; then by using the

condition (3.51), we get

F (sqb(a2p; a2p+1)) � min fF (Qb(a2p; a2p�1)) ; F (Qb(a2p�1; a2p))g � �

� F (Qb(a2p; a2p�1))� � :

F (sqb(a2p; a2p+1)) � F

�
qb(a2p; Sa2p)qb(a2p; Ja2p�1) + qb(a2p�1; Ja2p�1)qb(a2p�1; Sa2p)

maxfqb(a2p; Ja2p�1); qb(a2p�1; Sa2p)g

�
� �

� F (qb(a2p�1; a2p))� � :

Therefore,

F (sqb(a2p; a2p+1)) � F (maxfqb(a2p�1; a2p); qb(a2p; a2p�1)g)� � : (3.59)

Similarly, by using (3.51), (3.52) and (3.53), we get

F (sqb(a2p+1; a2p)) � F (maxfqb(a2p�1; a2p); qb(a2p; a2p�1)g)� � : (3.60)

Combining (3.59) and (3.60), we get

�+F (smaxfqb(a2p; a2p+1)); F (qb(a2p+1; a2p)) � F (maxfqb(a2p�1; a2p); qb(a2p; a2p�1)g) : (3.61)

Combining (3.58) and (3.61), we get

� + F (smax fqb(an; an+1); qb(an+1; an)g) � F (maxfqb(an�1; an); qb(an; an�1)g) : (3.62)

By Lemma 3.4.2, fJS(an)g is a Cauchy sequence in (L; qb): As ��s (a2n;; San) � s for all n 2 N;

so fa2ng is a subsequence of fJS(an)g contained in G(S): As G(S) is closed, so there exists
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u 2 G(S) such as fa2ng ! u;

lim
n!+1

qb(an; u) = lim
n!+1

qb(u; an) = 0: (3.63)

Also, ��s (u; Su) � s: To complete the proof similar arguments as Theorem 3.4.4, we obtain

Proof. qb(u; Su) = 0 and qb(Su; u) = 0: Hence u 2 Su: As ��s (u; Su) � s and qb (u; Su) =

qb (Su; u) = qb (0; 0) ; then De�nition 3.4.8 implies

��s (Su; u) � s:

Similar arguments as above, we get

qb(u; Ju) = 0 and qb(Ju; u) = 0: Hence u 2 Ju: Hence, the pair (S; J) has a common �xed

point u in (L; qb):

Single valued result with application to system of integral equations

Let S; J : L ! L are the self maps and a0 2 L. Let a1 = Sa0; a2 = Ja1; a3 = Sa2 and so

on. We generate a sequence an in L such as

a2n+1 = Sa2n and a2n+2 = Ja2n+1; (where n = 0; 1; 2; : : : ).

We say that fJS(an)g is a sequence in L generated by a0:

The following result is obtained by replacing the multivalued mappings with the single

valued mappings in Theorem 3.4.4. Our results generalizes Theorem 24 in [79]. Also, we prove

uniqueness of common �xed point in our results.

3.4.11 Theorem

Consider (L; dqb) be a complete dislocated b-quasi metric space, s � 1 and S; J : L ! L are

two self maps. If there exists F 2 FS and � ; c > 0 whenever for any two consecutive points a; y

belonging to the range of an iterative sequence fJS(an)g with maxfdqb(Sa; Jy); dqb(Jy; Sa);
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Dqb(a; y); Dqb(y; a)g > 0; we have

� +maxfF (sdqb(Sa; Jy)); F (sdqb(Jy; Sa))g � minfF (Dqb(a; y)); F (Dqb(y; a))g; (3.64)

where

Dqb(a; y) = max

�
dqb(a; y);

dqb (a; Sa) :dqb (y; Jy)

c+maxfdqb (a; y) ; dqb (y; a)g
; dqb(a; Sa); dqb(y; Jy)

�
: (3.65)

Then, fJS(an)g ! u 2 L: Also, if u satis�es (3.64); the pair (S; J) has a common �xed point

in L and dqb(u; u) = 0.

Proof. Consider that a� is another common �xed point of S and J and dqb(Su; Ja�) > 0.

Then, we get

� + F (sdqb(Su; Ja
�))

� F

�
max

�
dqb(u; a

�);
dqb (u; Su) :dqb (a

�; Ja�)

1 + maxfdqb (u; a�) ; dqb (a�; u)g
; dqb(u; Su); dqb(a

�; Ja�)

��
;

this implies that

sdqb(u; a
�) < dqb(u; a

�):

Which is contradiction. Then dqb(Su; Ja�) = 0: Also

� + F (sdqb(Sa
�; Ju))

� F

�
max

�
dqb(a

�; u);
dqb (a

�; Sa�) :dqb (u; Ju)

1 + maxfdqb (a�; u) ; dqb (u; a�)g
; dqb(a

�; Sa�); dqb(u; Ju)

��
;

Then, we get dqb(Sa�; Ju) = 0: So, a� = u:

3.4.12 Corollary

Consider (L; dqb) be a complete dislocated b-quasi metric space, s � 1 and S; J : L! L are two

self mappings. If there exists F 2 FS and � ; c > 0 such as for any two consecutive points a; y

belonging to the range of an iterative sequence fJS(an)g with maxfdqb(Sa; Jy); Dqb(a; y)g > 0;

we have

� + F (sdqb(Sa; Jy)) � F (Dqb(a; y)); (3.66)
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where

Dqb(a; y) = max

�
dqb(a; y);

dqb (a; Sa) :dqb (y; Jy)

c+ dqb (a; y)
; dqb(a; Sa); dqb(y; Jy)

�
:

Then fJS(an)g ! u 2 L: Also, if u satis�es (3.66); then S and J have a unique common �xed

point in L and dqb(u; u) = 0.

Let F is the set of all functions F : R+ ! R de�ned by [100].

3.4.13 Corollary

Let (L; dqb) be a complete dislocated quasi metric space and S; J : L! L are two self mappings.

If there exists F 2 F and � ; c > 0 such as for any two consecutive points a; y belonging to the

range of an iterative sequence fJS(an)g withmaxfdqb(Sa; Jy); dqb(Jy; Sa); Dqb(a; y); Dqb(y; a)g >

0; we have

� +maxfF (dqb(Sa; Jy)); F (dqb(Jy; Sa))g � minfF (Dqb(a; y)); F (Dqb(y; a))g; (3.67)

where

Dqb(a; y) = max

�
dqb(a; y);

dqb (a; Sa) :dqb (y; Jy)

c+maxfdqb (a; y) ; dqb (y; a)g
; dqb(a; Sa); dqb(y; Jy)

�
:

Then fJS(an)g ! u 2 L: If u satis�es (3.67); then the pair (S; J) has a unique common �xed

point u in L and dqb(u; u) = 0.

Now, as an application, we discuss the application of Theorem 3.4.11 to �nd solution of the

system of Volterra type integral equations. Consider the following integral equations:

u(t) =

tZ
0

K1(t; s; u(s))ds; (3.68)

v(t) =

tZ
0

K2(t; s; v(s))ds (3.69)

for each t 2 [I]: We �nd the solution of (3.68) and (3.69). Let L = C([I]; [0;+1[) is the set

of each continuous functions on [I], endowed with the complete dislocated b-quasi metric. For
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u 2 C([I]; [0;+1[); de�ne supremum norm as: kuk� = sup
t2[0;1]

fu(t)e��tg; � > 0 is arbitrary.

Then de�ne

d� (u; v) =

"
sup
t2[0;1]

f(u(t) + 2v(t))e��tg
#2
= ku+ 2vk2�

for each u; v 2 C([I]; [0;+1[); with these settings, (C([I]; [0;+1[); d� ) becomes a dislocated

b-quasi metric space.

In the below theorem we prove the existence of solution of integral equations.

3.4.14 Theorem

Suppose that the below assumptions hold:

(i) K1;K2 : [0; 1]� [0; 1]� [0;+1)! [0;+1) and f; g : [I]! [0;+1) are continuous;

(ii) De�ne

Su(t) =

tZ
0

K1(t; s; u(s))ds;

Jv(t) =

tZ
0

K2(t; s; v(s))ds:

Also, assume there exist � > 1

maxfK1(t; s; u) + 2K2(t; s; v);K2(t; s; v) + 2K1(t; s; u)g �
p
�e2�s�� minfM(u; v);M(v; u)g;

(3.70)

for any t; s 2 [I] and u; v 2 C([I]; [0;+1[); where

M(u; v) = max

8<: jju+ 2vjj2 ; jju+2Sujj2jjv+2Jvjj2

c+maxfjju+2vjj2;jjv+2ujj2g ;

jju+ 2Sujj2 ; jjv + 2Jvjj2

9=; :

Then, integral equations (3:68) and (3:69) has a unique solution.
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Proof. By assumption (ii) and (3.70), we have

maxfSu+ 2Jv; Jv + 2Sug = max

8<:
tZ
0

(K1(t; s; u) + 2K2(t; s; v))ds;

tZ
0

(K2(t; s; v) + 2K1(t; s; u))ds

9=;
�

tZ
0

p
�e2�s�� minfM(u; v);M(v; u)gds:

(maxfSu+ 2Jv; Jv + 2Sug)2 � �e�� minfM(u; v);M(v; u)g
tZ
0

e2�sds

� 1

2
e�� minfM(u; v);M(v; u)ge2�t:

This implies,

�
maxfSu+ 2Jv; Jv + 2Suge��t

�2 � 1

2
e�� minfM(u; v);M(v; u)g:

That is,

2kmaxfSu+ 2Jv; Jv + 2Sugk2� � e�� minfM(u; v);M(v; u)g;

which further implies,

� + 2 ln kmaxfSu+ 2Jv; Jv + 2Sugk2� � lnminfM(u; v);M(v; u)g;

� +maxfs ln kSu+ 2Jvk2� ; s ln kJv + 2Sugk
2
�g � lnminfM(u; v);M(v; u)g:

Thus, all the assumptions of Theorem 3.4.11 are hold for F (a) = ln a; d� (u; v) = ku + 2vk2� ,

s = 2. Thus, the system of integral equations given in (3.68) and (3.69) has a common unique

solution.
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Chapter 4

Double Controlled Quasi and

Dislocated Quasi Metric Type

Spaces

Theory and de�nitions given in this section have been published in [91, 93, 97].

4.1 Introduction

Abdeljawad et al. [2] generalized the idea of controlled metric type spaces and introduced

double controlled metric type spaces. They replaced the control function �(a; y) in the triangle

inequality by two control functions �(a; y) and �(a; y): In this chapter we introduce double

controlled quasi, dislocated quasi metric type spaces and obtain �xed points, common �xed

points of single-valued and multivalued mappings satisfying di¤erent type contractions.

Section 4.1, contains some basic de�nitions of the concept of double controlled quasi and

dislocated quasi metric type spaces. In section 4.2, we introduce and prove some unique �xed

point results involving new types of contraction single-valued maps in double controlled quasi

metric type spaces. In section 4.3, we introduce some �xed points of multivalued mappings

satisfying rational type contractions, common �xed points of Reich type and Kannan type

contractions in double controlled quasi metric type spaces. In section 4.4, we obtain �xed point

results for a pair of multi-valued maps satisfying Kannan type double controlled contraction in
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a left K-sequentially complete double controlled dislocated quasi metric type space.

4.1.1 De�nition

Given �; � : L� L! [1;+1). If �q : L� L! [0;+1) satis�es the below conditions:

(�q1) �q(a; y) = �q(y; a) = 0; then a = y;

(�q2) �q(a; y) � �(a; e)�q(a; e) + �(e; y)�q(e; y); for all a; y; e 2 L.

Then, �q is called a double controlled dislocated quasi metric type with the functions �, �

and (L; �q) is called a double controlled dislocated quasi metric type space. If �(e; y) = �(e; y)

then (L; �q) is called a controlled dislocated quasi metric type space. If a = y; then (L; �q) is

called a double controlled quasi metric type space. For a 2 L and " > 0; B�q(a; ") = fy 2 L :

�q(a; y) < " and �q(y; a) < "g and B�q(a; ") = fy 2 L : �q(a; y) � " and �q(y; a) � "g are open

and closed ball in (L; �q) respectively:

4.1.2 Remark

Any quasi metric space, double controlled metric type space and controlled quasi metric type

space are double controlled quasi metric type space but, the converse is not true in general (see

examples 4.1.3, 4.2.2, 4.2.5, 4.3.4, 4.3.12 and 4.3.15).

4.1.3 Example

Let L = f0; 1; 2g : De�ned q : L�L! [0,+1) by q(0; 1) = 4; q(0; 2) = 1; q(1; 0) = 3 = q (1; 2) ;

q(2; 0) = 0; q(2; 1) = 2; q(0; 0) = q(1; 1) = q(2; 2) = 0:

De�ned �; � : L � L ! [1,+1) as �(0; 1) = �(1; 0) = � (1; 2) = 1; �(0; 2) = 5
4 ; �(2; 0) =

10
9 ;

�(2; 1) = 20
19 ; �(0; 0) = �(1; 1) = �(2; 2) = 1; �(0; 1) = �(1; 0) = �(0; 2) = � (1; 2) = 1;

�(2; 0) = 3
2 ; �(2; 1) =

11
8 ; �(0; 0) = �(1; 1) = �(2; 2) = 1:

Note that the usual triangle inequality in quasi metric is not satis�ed. Let a = 0; e = 2; y = 1;

we have

q(0; 1) = 4 > 3 = q(0; 2) + q(2; 1).
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Clearly q is double controlled quasi metric type for all a; y; e 2 L; but it is not a controlled

quasi metric type. In fact,

q(0; 1) = 4 >
255

76
= � (0; 2) q(0; 2) + �(2; 1)q(2; 1):

Also, it is not double controlled metric type space because, we have

q(0; 1) = 4 = � (0; 2) q(0; 2) + �(2; 1)q(2; 1) 6= q(1; 0):

4.1.4 De�nition

Let (L; �q) be a double controlled dislocated quasi metric type space with two functions. A se-

quence facg is convergent to some a in L if and only if limc!+1 �q(ac; a) = limc!+1 �q(a; ac) =

0.

4.1.5 De�nition

Let (L; �q) be a double controlled dislocated quasi metric type space with two functions.

(i) A sequence facg is a left Cauchy if and only if for every " > 0 such as �q(am; ac) < ", for all

c > m > c", where c" is some integer or limc;m!+1 �q(am; ac) = 0.

(ii) A sequence facg is a right Cauchy if and only if for every " > 0 such as �q(am; ac) < ", for

all m > c > c", where c" is some integer.

(iii) The sequence facg is a dual Cauchy if and only if it is left Cauchy as well as right Cauchy.

4.1.6 De�nition

Let (L; �q) be double controlled dislocated quasi metric type space, then

(i) Ever left-Cauchy sequence in L is convergent , it is left complete.

(ii) Each right-Cauchy sequence in L is convergent , it is right-complete .

(iii) Every left-Cauchy as well as right-Cauchy sequence in L is convergent, it is dual complete.
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4.1.7 De�nition

Consider (L; �q) be a double controlled dislocated quasi metric type space. Let A be a nonempty

subset of L and l 2 L: A point y0 2 A is called a best approximation in A if

�q(l; A) = �q(l; y0); where �q(l; A) = inf
y2A

�q(l; y)

and �q(A; l) = �q(y0; l); where �q(A; l) = inf
y2A

�q(y; l):

If each l 2 L has a best approximation in A; then A is known as proximinal set. P (L) is equal

to the set of all proximinal subsets of L:

4.1.8 De�nition

The function H�q : P (L)� P (L)! [0;+1) de�ned by

H�q
(C;F ) = max

�
sup
a2C

�q(a; F ); sup
b2F

�q(C; b)

�

is called Hausdor¤ double controlled dislocated quasi metric type on P (L): Also (P (L);H�q
)

is known as Hausdor¤ double controlled dislocated quasi metric type space. Following similar

arguments of Lemma 1.7 given by Shoaib [92], we obtain the below Lemma.

4.1.9 Lemma

Let (L; �q) be a double controlled dislocated quasi metric type space. Let (P (L);H�q) is a

Hausdor¤ double controlled dislocated quasi metric type space on P (L): Then, for all C;F 2

P (L) and for each l 2 C; there exists bl 2 F; such as H�q(C;F ) � �q(l; bl) and H�q(F;C) �

�q(bl; l).

4.1.10 Remark

Any dislocated quasi metric space or double controlled metric type space is double controlled

dislocated quasi metric type space but, the converse is not true in general. Also, a controlled

dislocated quasi metric type space is also double controlled dislocated quasi metric type space,

but the converse in general is not true (see examples 4.1.11 and 4.4.4).
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4.1.11 Example

Let L = f0; 1; 2; 3g : De�ne �q : L � L ! [0,+1) by: �q(0; 1) = 0; �q(0; 2) = 1; �q(0; 3) =

1
4 ; �q(1; 0) =

1
2 ; �q (1; 2) = 2; �q(1; 3) =

1
3 ; �q(2; 0) =

1
2 ; �q(2; 1) = 1; �q(2; 3) =

1
3 , �q(3; 0) =

3
2 ; �q(3; 1) = 2; �q(3; 2) =

1
4 , �q(0; 0) =

1
2 ; �q(1; 1) = 0; �q(2; 2) = 2; �q(3; 3) = 0: De�ne

�; � : L�L! [1,+1) as: �(0; 1) = � (1; 2) = �(0; 2) = 1; �(1; 0) = 4
3 ; �(2; 0) = 2; �(3; 1) =

4
3 ;

�(2; 3) = 3; �(0; 3) = 4
3 , �(1; 3) = 3; �(2; 1) = 1; �(3; 0) =

4
3 ; �(3; 2) = 2; �(0; 0) = �(1; 1) =

�(2; 2) = �(3; 3) = 1,

�(1; 2) = � (2; 1) = 3
2 ; �(2; 0) = 2; �(3; 0) = �(0; 3) = �(1; 0) = �(0; 1) = �(1; 3) = �(3; 1) =

1; �(3; 2) = 4; �(2; 3) = 1; �(0; 2) = 4
3 ; �(0; 0) = �(1; 1) = �(2; 2) = �(3; 3) = 1: It is obvious

that �q is double controlled dislocated quasi metric type for all a; y; e 2 L: It is clear that �q is

not double controlled metric type space. Also, it is not controlled dislocated quasi metric type.

Indeed,

�q(1; 2) = 2 >
3

2
= � (1; 3) �q(1; 3) + �(3; 2)�q(3; 2):

4.2 Double Controlled Quasi Metric Type Spaces and Some

Results

Results given in this section have been published in [97]

In this section, we generalize the de�nition of �xed point for double controlled quasi metric

type spaces with two incomparable functions � and � which are follows:

4.2.1 Theorem

Consider (L; q) be a left complete double controlled quasi-metric type space with the functions

�; � : L� L ! [1;+1) and let J : L! L is a given map. Assume that the below restrictions

are satis�ed:

There exists k 2 (0; 1) such as

q(Jv; Jy) � kq(v; y); for all v; y 2 L: (4.1)
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For a0 2 L; choose ac = Jca0: Assume that

lim
i;m!+1

� (ai+1; ai+2)

� (ai; ai+1)
� (ai+1; am) <

1

k
: (4.2)

In addition, for every a 2 L, we have

lim
c!+1

� (a; ac) and lim
c!+1

� (ac; a) exist and are �nite: (4.3)

Then, J has a unique �xed point a� 2 L.

Proof. Let a0 2 L is any element. facg is the sequence de�ned as above, if a0 = Ja0; then

a0 is a �xed point of J . By (4.1), we have

q(ac; ac+1) � kcq(a0; a1); c 2 N: (4.4)

For each natural numbers c < m; we have

q(ac; am) � �(ac; ac+1)q(ac; ac+1) + �(ac+1; am)q(ac+1; am)

� �(ac; ac+1)q(ac; ac+1) + �(ac+1; am)�(ac+1; ac+2)q(ac+1; ac+2)

+�(ac+1; am)�(ac+2; am)q(ac+2; am)

� �(ac; ac+1)q(ac; ac+1) + �(ac+1; am)�(ac+1; ac+2)q(ac+1; ac+2)

+�(ac+1; am)�(ac+2; am)�(ac+2; ac+3)q(ac+2; ac+3)

+�(ac+1; am)�(ac+2; am)�(ac+3; am)q(ac+3; am) � :::
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� �(ac; ac+1)q(ac; ac+1) +

m�2X
i=c+1

0@ iY
j=c+1

� (aj ; am)

1A� (ai; ai+1) q(ai; ai+1)

+

m�1Y
k=c+1

� (ak; am) q(am�1; am)

� �(ac; ac+1)q(ac; ac+1) +

m�2X
i=c+1

0@ iY
j=c+1

� (aj ; am)

1A� (ai; ai+1) k
iq(a0; a1)

+

m�1Y
i=c+1

� (ai; am) k
m�1q(a0; a1)

� �(ac; ac+1)k
cq(a0; a1) +

m�2X
i=c+1

0@ iY
j=c+1

� (aj ; am)

1A� (ai; ai+1) k
iq(a0; a1)

+
m�1Y
i=c+1

� (ai; am) k
m�1� (am�1; am) q(a0; a1)

= �(ac; ac+1)k
cq(a0; a1) +

m�1X
i=c+1

0@ iY
j=c+1

� (aj ; am)

1A� (ai; ai+1) k
iq(a0; a1)

� �(ac; ac+1)k
cq(a0; a1) +

m�1X
i=c+1

0@ iY
j=0

� (aj ; am)

1A� (ai; ai+1) k
iq(a0; a1):

Let, Sc =
cP
i=0

 
iQ
j=0

� (aj ; am)

!
� (ai; ai+1) k

i:

Hence, we have

q(ac; am) � q(a0; a1) [k
c�(ac; ac+1) + (Sm�1 � Sc)] : (4.5)

Let, ri =

 
iQ
j=0

� (aj ; am)

!
� (ai; ai+1) k

i: By using (4.2), we have lim
i!+1

ri+1
ri

< 1. By ratio

test the in�nite series
+1P
i=1

 
iQ
j=0

� (aj ; am)

!
� (ai; ai+1) k

i is convergent and let c;m tending to

in�nity in (4.5), it implies that

lim
c;m!+1

q(ac; am) = 0: (4.6)

Since (L; q) is a left complete double controlled quasi metric type space, there exists some

a� 2 L such as

lim
c!+1

q(ac; a
�) = lim

c!+1
q(a�; ac) = 0: (4.7)
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By (4.1) and using the triangle inequality, we have

q(a�; Ja�) � �(a�; ac+1)q(a
�; ac+1) + �(ac+1; Ja

�)q(ac+1; Ja
�)

� �(a�; ac+1)q(a
�; ac+1) + k�(ac+1; Ja

�)q(ac; a
�):

By taking limit c tends to in�nity together with (4.3) and (4.7), we get q(a�; Ja�) = 0, that

is Ja� = a�. Now, we have to show that the �xed point of J is unique for this, let � 2 L is

another �xed point of J such as J� = � and a� 6= �, we have

q(a�; �) = q(Ja�; J�) � kq(a�; �):

So a� = �. Hence, a� is the unique �xed point of J .

4.2.2 Example

Let L = f0; 1; 2g. De�ne q : L� L! [0,+1) and �; � : L� L! [1;+1) by

q(v; y) 0 1 2

0 0 3
4

1
8

1 2
5 0 4

5

2 1
5

1
4 0

,

�(v; y) 0 1 2

0 1 21
20 2

1 3
2 1 1

2 1 1 1

and

�(v; y) 0 1 2

0 1 11
10

5
3

1 1 1 10
9

2 1 2 1

:

It is easy to see that (L; q) is a double controlled quasi-metric type and the given function q is

not a controlled metric type for the function �. Indeed,

q(1; 2) =
4

5
>
63

80
= � (1; 0) q(0; 2) + �(0; 1)q(0; 1):

Take J0 = J2 = 0; J1 = 2 and k = 1
2 : We observe the below cases:

(i) If v = 0, y = 1, we have

q (Jv; Jy) =
1

8
<
1

2
� 3
4
=
3

8
:

Also, hold if v = 1, y = 0:

(ii) It is clear, in the case v = 0, y = 2. Also, if v = 2, y = 0,
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(iii) If v = 1, y = 2, we get
1

5
� 1

2
� 4
5
=
2

5
:

Similarly, in case v = 2, y = 1. So (4.1) holds: Now let a0 = 2; we have a1 = Ja0 = J2 = 0;

a2 = 0; a3 = 0; � � �

lim
i;m!+1

� (ai+1; ai+2)

� (ai; ai+1)
� (ai+1; am) = 1 < 2 =

1

k
:

That is, (4.2) holds: In addition, for each a 2 L, we have

lim
c!+1

� (a; ac) = � (a; 0) < +1 and lim
c!+1

� (ac; a) = � (0; a) < +1:

That is, (4.3) holds. Hence all hypothesis of Theorem 4.2.1 hold and a = 0 is a unique �xed

point.

Now, we introduce the concept of ���� k double controlled contraction and prove related

�xed point results with some examples.

4.2.3 De�nition

Let L 6= fg, (L; q) be a left complete double controlled quasi metric type space with the functions

�; � : L � L ! [1;+1) and J : L ! L is a given mapping. Assume that there exists a real

number k such as

h1 = sup fk� (v; y) ; v; y 2 Lg < 1

2
:

h2 = sup fk� (v; y) ; v; y 2 Lg < 1

2
:

Suppose that:

q (Jv; Jy) � k [q (v; Jy) + q (y; Jv)] ; for all v; y 2 L: (4.8)

For a0 2 L and ac = Jca0, we have

lim
i;m!+1

� (ai+1; ai+2)

� (ai; ai+1)
� (ai+1; am) <

1� h
h

; (4.9)
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where max fh1; h2g = h: Then, J is called �� �� k double controlled contraction.

4.2.4 Theorem

Let (L; q) be a left complete double controlled quasi metric type space with the functions �; �

: L�L ! [1;+1) and let J : L! L is ���� k double controlled contraction. Suppose that,

for each a 2 L, we have

lim
c!+1

� (a; ac) < +1 and lim
c!+1

� (ac; a) < +1: (4.10)

Then, J has a unique �xed point a� 2 L.

Proof. Consider a0 2 L is any element. facg is the sequence de�ned as above, if a0 = Ja0;

then a0 is a �xed point of J . By (4.8), we have

q(ac; ac+1) = q(Jac�1; Jac) � k [q(ac�1; Jac) + q(ac; Jac�1)]

� k [q(ac�1; ac+1) + q(ac; ac)]

� k�(ac�1; ac)q(ac�1; ac) + k�(ac; ac+1)q(ac; ac+1)

� h1q(ac�1; ac) + h2q(ac; ac+1); (by De�nition 4.2.3)

� hq(ac�1; ac) + hq(ac; ac+1)

q(ac; ac+1) � h

1� hq(ac�1; ac): (4.11)

Now,

q(ac�1; ac) = q(Jac�2; Jac�1) � k [q(ac�2; ac) + q(ac�1; ac�1)]

� k�(ac�2; ac�1)q(ac�2; ac�1) + k�(ac�1; ac)q(ac�1; ac)

� h1q(ac�2; ac�1) + h2q(ac�1; ac) (by De�nition 4.2.3),

q(ac�1; ac) � h

1� hq(ac�2; ac�1): (4.12)

Combining (4.11) and (4.12), we get

q(ac; ac+1) �
�

h

1� h

�2
q(ac�2; ac�1): (4.13)
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Continuing in this way, we obtain

q(ac; ac+1) �
�

h

1� h

�c
q(a0; a1): (4.14)

Now, to prove that facg is a Cauchy sequence, for each natural numbers c < m; by (4.14) and

using the technique given in Theorem 4.2.1, we have

Sc =
cX
i=0

0@ iY
j=0

� (aj ; am)

1A� (ai; ai+1)

�
h

1� h

�i
:

Hence, we have

q(ac; am) � q(a0; a1)

��
h

1� h

�c
�(ac; ac+1) + (Sm�1 � Sc)

�
: (4.15)

The ith term of the sequence fScg is ri =
 

iQ
j=0

� (aj ; am)

!
� (ai; ai+1)

�
h
1�h

�i
: By (4.9), we

have lim
i!+1

ri+1
ri

< 1. By ratio test fScg converges and so fScg is Cauchy: Letting c;m tend to

+1 in (4.15) yields

lim
c;m!+1

q(ac; am) = 0: (4.16)

So the sequence facg is a left Cauchy. As (L; q) is a left complete double controlled quasi metric

type space, there is some a� 2 L such as

lim
c!+1

q(ac; a
�) = 0 = lim

c!+1
q(a�; ac): (4.17)

We claim that Ja� = a�. By (4.8), we have

q(a�; Ja�) � �(a�; ac+1)q(a
�; ac+1) + �(ac+1; Ja

�)q(ac+1; Ja
�)
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� �(a�; ac+1)q(a
�; ac+1) + �(ac+1; Ja

�)k [q(ac; Ja
�) + q(a�; ac+1)]

� �(a�; ac+1)q(a
�; ac+1) + �(ac+1; Ja

�)k2 [q(ac�1; Ja
�) + q(a�; ac)]

+�(ac+1; Ja
�)kq(a�; ac+1)

� �(a�; ac+1)q(a
�; ac+1) + �(ac+1; Ja

�)k2[�(ac�1; a
�)q(ac�1; a

�)

+�(a�; Ja�)q(a�; Ja�) + q(a�; ac)] + �(ac+1; Ja
�)kq(a�; ac+1)

� �(a�; ac+1)q(a
�; ac+1) + �(ac+1; Ja

�)k2�(ac�1; a
�)q(ac�1; a

�)

+ (h2)
2 q(a�; Ja�) + �(ac+1; Ja

�)k2q(a�; ac) + �(ac+1; Ja
�)kq(a�; ac+1):

By taking limit as c tends to in�nity together with (4.17), we get

�
1� (h2)2

�
q(a�; Ja�) � 0:

Hence, a� = Ja�, which is a contradiction. Let a�� in L is another �xed point of J such as

Ja�� = a�� and a� 6= a��, we have

q(a�; a��) = q(Ja�; Ja��) � k [q(a�; Ja��) + q(a��; Ja�)]

� k [q(a�; a��) + q(a��; a�)]

�
�

k

1� k

�
q(a��; a�)

�
�

k

1� k

�2
q(a�; a��)

...

�
�

k

1� k

�2n
q(a�; a��):

By taking limit as n tends to in�nity, we have a� = a��. Hence, a� is a unique �xed point of J .

4.2.5 Example

Take L = f0; 1; 2g. De�ne q : L� L! [0,+1) and �; � : L� L! [1;+1) by
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q(v; y) 0 1 2

0 0 2
5

1
4

1 9
20 0 4

5

2 1
5

7
10 0

,

�(a; y) 0 1 2

0 1 102
100 1

1 6
5 1 1

2 11
10 1 1

and

�(a; y) 0 1 2

0 1 6
5

11
10

1 1 1 1

2 1 1 1

:

It is easy that (L; q) is a double controlled quasi-metric type. The given q is not a controlled

metric space for the function �. Indeed,

q(2; 1) =
7

10
>
307

500
= � (2; 0) q(2; 0) + �(0; 1)q(0; 1):

Take J0 = J2 = 2; J1 = 0 and k = 2
5 ; we observe the below cases:

(i) If v = 0, y = 1, we have

q (Jv; Jy) =
1

5
� 8

25
=
2

5

�
0 +

4

5

�
= k [q (v; Jy) + q (y; Jv)] :

If v = 1, y = 0, we get

q (Jv; Jy) =
1

4
� 8

25
= k [q (v; Jy) + q (y; Jv)] :

(ii) It is straightforward, in the case v = 0, y = 2.

(iii) If v = 1, y = 2, we get

1

4
� 2

5
=
2

5

�
4

5
+
1

5

�
= k [q (v; Jy) + q (y; Jv)] :

Similarly, in the case when we take v = 2, y = 1, that is the inequality (4.8) holds. Now, we

have

h1 = sup fk� (v; y) ; v; y 2 Lg <
1

2
and h2 = sup fk� (v; y) ; v; y 2 Lg <

1

2
:

h = maxfh1; h2g = 12
25 : Now, let a0 = 2; we have a1 = Ja0 = J2 = 2; a2 = 2; a3 = 2; � � �

lim
i;m!+1

� (ai+1; ai+2)

� (ai; ai+1)
� (ai+1; am) = 1 <

1� h
h

,
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which shows that (4.9) holds: Now, for each a 2 L, we have

lim
c!+1

� (a; ac) < +1 and lim
c!+1

� (ac; a) < +1:

That is, (4.10) holds. All hypothesis of Theorem 4.2.4 are satis�ed and a = 2 is unique �xed

point.

4.2.6 De�nition

Let (L; q) be a complete quasi b-metric space. J : L! L is called Chatterjee type b-contraction

if the following conditions are satis�ed:

q (Jv; Jy) � k [q (v; Jy) + q (y; Jv)] ;

for all v; y 2 L; k 2 (0; 12) and

b <
1� kb
kb

: (4.18)

4.2.7 Theorem

Consider (L; q) be a complete quasi b-metric space and J : L ! L is Chatterjee type b-

contraction. Then, J has a unique �xed point.

4.2.8 Remark

In the example 4.2.5, q is quasi b-metric with b = 16
13 ; but we can not apply Theorem 4.2.7

because J is not Chatterjee type b-contraction. Indeed, b � 1�kb
kb , for all b �

16
13 :

4.3 Fixed Point Results in Double Controlled Quasi Metric

Type Spaces

Results given in this section have been published in [93]

Let (L; q) be a double controlled quasi metric type space; a0 2 L and J : L ! P (L) be

multifunctions on L. Now, we consider the arguments of a sequence fLJ(ac)g as appearing in
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the beginning of section 2.2 and we say that fLJ(ac)g is a sequence in L generated by a0 under

double controlled quasi metric type q:We can de�ne fLJ(ac)g in other metrics in a similar way.

4.3.1 De�nition

Let (L; q) be a complete double controlled quasi-metric type space with the functions �; �

: L�L! [1;+1). A multivalued mapping J : L! P (L) is called a double controlled rational

contraction if the following conditions are satis�ed:

Hq (Jv; Jy) � k (Q (v; y)) ; (4.19)

for all v; y 2 L; 0 < k < 1 and

Q (v; y) = max

�
q (v; y) ; q (v; Jv) ;

q (v; Jv) q (v; Jy) + q (y; Jy) q (y; Jv)

q(v; Jy) + q(y; Jv)

�
:

Also; for a0 2 L; take ac 2 fLJ(ac)g such as

sup
m�1

lim
i!+1

� (ai+1; ai+2)

� (ai; ai+1)
� (ai+1; am) <

1

k
: (4.20)

Now, we prove that an operator J satisfying certain rational contraction has a �xed point

in double controlled quasi metric type space.

4.3.2 Theorem

Consider (L; q) be a left complete double controlled quasi-metric type space with the functions

�; � : L� L! [1;+1) and J : L! P (L) is a double controlled rational contraction. Suppose

that, for every a 2 L

lim
c!+1

� (a; ac) ; lim
c!+1

� (ac; a) exist and are �nite: (4.21)

Then, J has a �xed point a� 2 L.

Proof. By Lemma 4.1.9 and using inequality (4.19), we have

q (ac; ac+1) � Hq (Jac�1; Jac) � k (Q(ac�1; ac)) :
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Q(ac�1; ac) � max fq (ac�1; ac) ; q (ac�1; ac) ;
q (ac�1; ac) q (ac�1; Jac) + q (ac; ac+1) q (ac; Jac�1)

q (ac�1; Jac) + q (ac; Jac�1)

�
= q(ac�1; ac):

Therefore,

q (ac; ac+1) � kq(ac�1; ac): (4.22)

Now,

q (ac�1; ac) � Hq (Jac�2; Jac�1) � k (Q(ac�2; ac�1)) :

Q(ac�2; ac�1) = max fq (ac�2; ac�1) ; q (ac�2; ac�1) ;
q (ac�2; ac�1) q (ac�2; Jac�1) + q (ac�1; ac) q (ac�1; Jac�2)

q (ac�2; Jac�1) + q (ac�1; Jac�2)

�
:

Therefore,

q (ac�1; ac) � kq(ac�2; ac�1): (4.23)

Using (4.23) in (4.22), we have

q (ac; ac+1) � k2q(ac�2; ac�1):

Continuing in this way, we obtain

q (ac; ac+1) � kcq(a0; a1): (4.24)

Now, by (4.24) and using the technique given in Theorem 4.2.1, it can easily be proved that

facg is a left Cauchy sequence. So, for each natural numbers with c < m; we have

lim
c;m!+1

q(ac; am) = 0: (4.25)

Since (L; q) is a left complete double controlled quasi metric type space, there is some a� 2 L

such as

lim
c!+1

q(ac; a
�) = lim

c!+1
q(a�; ac) = 0: (4.26)
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By using the triangle inequality and then (4.19), we have

q(a�; Ja�) � �(a�; ac+1)q(a
�; ac+1) + �(ac+1; Ja

�)q(ac+1; Ja
�)

� �(a�; ac+1)q(a
�; ac+1) + �(ac+1; Ja

�)max fq (ac; a�) ; q (ac; ac+1) ;
q (ac; ac+1) q (ac; Ja

�) + q (a�; Ja�) q (a�; ac+1)

q (ac; Ja�) + q (a�; ac+1)

�
:

Using (4.21), (4.25) and (4.26), we get q(a�; Ja�) � 0. That is, a� 2 Ja�: Thus, a� is a �xed

point of J .

4.3.3 Theorem

Consider (L; q) be a left complete double controlled quasi metric type space with the functions

�; � : L� L! [1;+1) and J : L! L is a map such as:

q (Jv; Jy) � k (Q (v; y)) ;

for all v; y 2 L; 0 � k � 1 and

Q (v; y) = max

�
q (v; y) ; q (v; Jv) ;

q (v; Jv) q (v; Jy) + q (y; Jy) q (y; Jv)

q(v; Jy) + q(y; Jv)

�
:

Suppose that, for every a 2 L and for the Picard sequence facg

lim
c!+1

� (a; ac) ; lim
c!+1

� (ac; a) are �nite and sup
m�1

lim
i!+1

� (ai+1; ai+2)

� (ai; ai+1)
� (ai+1; am) <

1

k
:

Then J has a �xed point a� 2 L. We present the below example to illustrate Theorem 4.3.3.

4.3.4 Example

Let L = f0; 1; 2; 3g : De�ne q : L�L! [0,+1) by q(0; 1) = 1; q(0; 2) = 4; q(0; 3) = 5; q(1; 0) =

0; q (1; 2) = 10; q(1; 3) = 1; q(2; 0) = 7; q(2; 1) = 3; q(2; 3) = 5; q(3; 0) = 3; q(3; 1) =

6; q(3; 2) = 2; q(0; 0) = q(1; 1) = q(2; 2) = q(3; 3) = 0: De�ne �; � : L � L ! [1,+1) as

�(0; 1) = 2; �(1; 3) = 2; �(2; 1) = 7
3 ; �(3; 0) =

4
3 ; �(3; 2) =

3
2 and �(v; y) = 1; if otherwise,

�(1; 2) = � (2; 1) = �(2; 0) = �(3; 0) = �(0; 3) = �(2; 3) = �(3; 1) = 1; �(1; 0) = 3
2 ; �(0; 1) =
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2; �(1; 3) = 3; �(3; 2) = 4; �(0; 2) = 5
2 ; �(3; 3) = �(2; 2) = �(1; 1) = �(0; 0) = 1: Clearly (L; q)

is a double controlled quasi metric type space; but it is not a controlled quasi metric type space.

Indeed,

q(1; 2) = 10 > 4 = � (1; 0) q(1; 0) + �(0; 2)q(0; 2):

Also, it is not double controlled metric type space. Take J0 = J1 = 0, J2 = J3 = 1 and k = 1
3 :

We observe that

q (Jv; Jy) � k (Q (v; y)) ; for all v; y 2 L:

Let a0 = 2; we have a1 = Ja0 = J2 = 1; a2 = Ja1 = 0; a3 = Ja2 = 0; � � ��

sup
m�1

lim
i!+1

� (ai+1; ai+2)

� (ai; ai+1)
� (ai+1; am) = 2 < 3 =

1

k
:

Also, for every a 2 L, we have

lim
c!+1

� (a; ac) < +1 and lim
c!+1

� (ac; a) < +1:

All assumption of Theorem 4.3.3 hold and a� = 0 is a �xed point.

4.3.5 Theorem

Let (L; q) be a left complete quasi b-metric space and J : L! L is a map. Assume that there

is some k 2 (0; 1) such as

q (Jv; Jy) � k (Q (v; y))

whenever,

Q (v; y) = max

�
q (v; y) ; q (v; Jv) ;

q (v; Jv) q (v; Jy) + q (y; Jy) q (y; Jv)

q(v; Jy) + q(y; Jv)

�
;

for all v; y 2 L: Assume that 0 < kb < 1: Then, J has a �xed point a� 2 L:

4.3.6 Remark

In the example 4.3.4, note that q is a quasi b metric with b = 10
3 ; but we can not apply Theorem

4.3.5 for any b = 10
3 and k =

1
3 , because kb � 1:
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4.3.7 Theorem

Let (L; q) be a left complete quasi metric space and J : L ! P (L) is a multivalued map.

Suppose that there is some 0 < k < 1 such as for any v; y 2 L

Hq (Jv; Jy) � k

�
max

�
q (v; y) ; q (v; Jv) ;

q (v; Jv) q (v; Jy) + q (y; Jy) q (y; Jv)

q(v; Jy) + q(y; Jv)

��
:

Then, J has a �xed point a� 2 L:

Now, we consider a sequence fJS(an)g as in the beginning section 4.4. We introduce double

controlled Reich type contraction.

4.3.8 De�nition

Let L 6= fg, (L; q) be a left complete double controlled quasi-metric type space with the functions

�; � : L� L! [1;+1) and S; J : L! P (L) be a multivalued mappings. Assume that:

Hq(Sv; Jy) � t(q(v; y)) + k(q(v; Sv) + q(y; Jy))

and

Hq(Jv; Sy) � t(q(v; y)) + k(q(v; Jv) + q(y; Sy)); (4.27)

for each v; y 2 L; 0 < t+ 2k < 1: For a0 2 L; choose ac 2 fJS(ac)g, we have

sup
m�1

lim
i!+1

� (ai+1; ai+2)

� (ai; ai+1)
� (ai+1; am) <

1� k
t+ k

: (4.28)

Then the pair (S; J) is called a double controlled Reich type contraction.

The following results extend the results of Reich [81].

4.3.9 Theorem

Let S; J : L ! P (L) be the multivalued mappings, (L; q) be a left complete double controlled

quasi metric type space and (S; J) is a pair of double controlled Reich type contraction. Suppose

that, for all a 2 L

lim
c!+1

� (a; ac) is �nite and lim
c!+1

� (ac; a) <
1

k
: (4.29)
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Then, S and J have a common �xed point _z in L.

Proof. Consider the sequence fJS(ac)g. Now, by Lemma 4.1.9, we have

q(a2c; a2c+1) � Hq(Ja2c�1; Sa2c) (4.30)

By using the condition (4.27), we get

q(a2c; a2c+1) � t(q(a2c�1; a2c) + k(q(a2c�1; Ja2c�1) + q(a2c; Sa2c)

� t(q(a2c�1; a2c) + k (q(a2c�1; a2c) + q(a2c; a2c+1))

q(a2c; a2c+1) � t+ k

1� k (q(a2c�1; a2c))

= � (q(a2c�1; a2c)) : (4.31)

Now, by Lemma 1.11, we have

q(a2c�1; a2c) � Hq(Sa2c�2; Ja2c�1):

So,by using the condition (4.27), we have

q(a2c�1; a2c) � tq(a2c�2; a2c�1) + k (q(a2c�2; Sa2c�2) + q(a2c�1; Ja2c�1))

� tq(a2c�2; a2c�1) + k (q(a2c�2; a2c�1) + q(a2c�1; a2c))

� t+ k

1� k (q(a2c�2; a2c�1)) = � (q(a2c�2; a2c�1)) ; (4.32)

where � = t+k
1�k : Using (4.31) in (4.32), we have

q(a2c; a2c+1) � �2q(a2c�2; a2c�1): (4.33)
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Now, by Lemma 4.1.9 we have

q(a2c�2; a2c�1) � Hq(Ja2c�3; Sa2c�2):

Using the condition (4.27), we have

q(a2c�2; a2c�1) � tq(a2c�3; a2c�2) + k (q(a2c�3; a2c�2) + q(a2c�2; a2c�1))

� �3 (q(a2c�3; a2c�2)) : (4.34)

From (4.33) and (4.34), we have

�2(q(a2c�2; a2c�1)) � �3(q(a2c�3; a2c�2)): (4.35)

Using (4.35) in (4.31), we have

q(a2c; a2c+1) � �3(q(a2c�3; a2c�2)):

Continuing in this way, we get

q(a2c; a2c+1) � �2c(q(a0; a1)): (4.36)

Similarly, by Lemma 4.1.9, we have

q(a2c�1; a2c) � �2c�1(q(a0; a1)): (4.37)

Combating inequality (4.36) and (2.37), we have

q(ac; ac+1) � �c(q(a0; a1)): (4.38)

Now, by using (4.38) and by using the technique given in [2], it can easily be proved that facg

is a left Cauchy sequence. So, for all natural numbers with c < m; we have

lim
c;m!+1

q(ac; am) = 0: (4.39)
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Since (L; q) is a left complete double controlled quasi metric type space. So facg ! _z 2 L; that

is

lim
c!+1

q(ac; _z) = lim
c!+1

q( _z; ac) = 0: (4.40)

To show that _z is a common �xed point. We claim that q ( _z; J _z) = 0. On contrary suppose

q( _z;J _z) > 0: Now by Lemma 4.1.9, we have

q(a2c+1; J _z) � Hq(Sa2c; J _z):

q(a2c+1; J _z) � t(q(a2c; _z)) + k [q(a2c; a2c+1) + q( _z; J _z))] : (4.41)

Taking lim
c!+1

of inequality (4.41), we get

lim
c!+1

q(a2c+1; J _z) � t lim
c!+1

q(a2c; _z) + k lim
c!+1

[q(a2c; a2c+1) + q( _z; J _z))] :

By using inequalities (4.39) and (4.40), we get

lim
c!+1

q(a2c+1; J _z) � k(q( _z; J _z)): (4.42)

Now,

q( _z; J _z) � �( _z; a2c+1)q( _z; a2c+1) + �(a2c+1; J _z)q(a2c+1; J _z):

Taking lim
c!+1

and by using inequalities (4.29), (4.40) and (4.42), we get

q( _z; J _z) < q( _z; J _z):

It is a contradiction, therefore q( _z; J _z) = 0: Thus, _z 2 J _z: Now, suppose q( _z; S _z) > 0: By

Lemma 4.1.9, we have

q(a2c; S _z) � Hq(Ja2c�1; S _z):

By inequality (4.27), we get

q(a2c; S _z) � t(q(a2c�1; _z)) + k [q(a2c�1; a2c) + q( _z; S _z)] :
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Taking lim
c!+1

of above inequality, we get

lim
c!+1

q(a2c; S _z) � k(q( _z; S _z)): (4.43)

Now,

q( _z; S _z) � �( _z; a2c)q( _z; a2c) + �(a2c; S _z)q(a2c; S _z):

Taking lim
c!+1

and by using inequality (4.29), (4.40) and (4.43), we get

q( _z; S _z) < q( _z; S _z):

A contradiction. Thus, _z 2 S _z: Hence, _z is a common �xed point for S and J:

4.3.10 Theorem

Let (L; q) be a left complete double controlled quasi metric type space with the functions

�; � : L� L! [1;+1) and S; J : L! L be the mappings such as:

q(Sv; Jy) � t(q(v; y)) + k(q(v; Sv) + q(y; Jy))

and

q(Jv; Sy) � t(q(v; y)) + k(q(v; Jv) + q(y; Sy));

for each v; y 2 L; 0 < t + 2k < 1: Suppose that, for every a 2 L and for the Picard sequence

facg

lim
c!+1

� (a; ac) is �nite, lim
c!+1

� (ac; a) <
1

k
and

sup
m�1

lim
i!+1

� (ai+1; ai+2)

� (ai; ai+1)
� (ai+1; am) <

1� k
t+ k

:

Then S and J have a common �xed point a� 2 L.
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4.3.11 Theorem

Consider (L; q) be a left complete quasi b-metric type space with the functions �; � : L� L!

[1;+1) and S; J : L! L be the mappings such as:

q(Sv; Jy) � t(q(v; y)) + k(q(v; Sv) + q(y; Jy))

and

q(Jv; Sy) � t(q(v; y)) + k(q(v; Jv) + q(y; Sy));

for each v; y 2 L; 0 < t + 2k < 1 and b < 1�k
t+k . Then S and J have a common �xed point

a� 2 L.

4.3.12 Example

Let L =
�
0; 12 ;

1
4 ; 1
	
: De�ne q : L � L ! [0,+1) by q(0; 12) = 1; q(0; 14) =

1
3 ; q(

1
4 ; 0) =

1
5 ; q(

1
2 ; 0) = 1; q

�
1
4 ;
1
2

�
= 3; q

�
1
4 ; 1
�
= 1

2 ; q
�
1; 14
�
= 1

3 and q(v; y) = jv � yj ; if otherwise. De�ne

�; � : L � L ! [1,+1) as follows �
�
1
2 ;
1
4

�
= 16

5 ; �(0;
1
4) =

3
2 , �(

1
4 ; 1) = 3, �(1; 14) =

12
5 and

�(v; y) = 1; if otherwise. �(0; 12) =
14
5 , �(1;

1
2) = 3 and �(v; y) = 1; if otherwise: Clearly q is

double controlled quasi metric type for all v; y; e 2 L: Let, J0 = f0g ; J 12 =
�
1
4

	
; J 14 = f0g ;

J1 =
�
1
4

	
, S0 = S 14 = f0g, S

1
2 =

�
1
4

	
; S1 = f0g and t = 2

5 , k =
1
4 : Now, if we take the case

v = 1
2 , y =

1
4 ; we have

Hq(S
1
2 ; J

1
4) = Hq

��
1
4

	
; f0g

�
= q

�
1
4 ; 0
�
= 1

5 �
17
80 = t(q(v; y)) + k(q(v; Sv) + q(y; Jy)):

Also, satis�ed for all v; y 2 L: That is inequality (4.27) satis�ed. Now, let a0 = 1; we have

a1 = Sa0 = 0; a2 = Ja1 = 0, a3 = Sa2 = 0

sup
m�1

lim
i!+1

� (ai+1; ai+2)

� (ai; ai+1)
� (ai+1; am) = 1 <

15

13
=
1� k
t+ k

,

which shows that inequality (4.27) and (4.28) holds. Thus the pair (S; J) is double controlled

Reich type contraction. Finally, for every a 2 L; we obtain

lim
c!+1

� (a; ac) is �nite, lim
c!+1

� (ac; a) <
1

k
:
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All assumption of Theorem 4.3.9 are hold and _z = 0 is a common �xed point.

Note that q is a quasi b-metric with b = 3; but Theorem 4.3.11 can not be applied because

b � 15
13 =

1�k
t+k : Therefore, this example shows that our generalization from quasi b-metric space

to double controlled quasi metric type spaces is genuine. Also, It is not controlled quasi metric

type space. Indeed,

q(
1

4
;
1

2
) = 3 >

6

5
= �

�
1

4
; 0

�
q

�
1

4
; 0

�
+ �(0;

1

2
)q(0;

1

2
):

Taking t = 0 in Theorem 4.3.9, we obtain the below theorem of Kannan-type.

4.3.13 Theorem

Consider (L; q) be a left complete double controlled quasi metric type space with the functions

�; � : L� L! [1;+1) and S; J : L! P (L) are the multivalued mappings such as:

Hq(Sv; Jy) � k(q(v; Sv) + q(y; Jy)) and Hq(Jv; Sy) � k(q(v; Jv) + q(y; Sy));

for each v; y 2 L; 0 < 2k < 1: Suppose that, for every a 2 L and for the sequence fJS(ac)g, we

have

lim
c!+1

� (a; ac) is �nite, lim
c!+1

� (ac; a) <
1

k
and

sup
m�1

lim
i!+1

� (ai+1; ai+2)

� (ai; ai+1)
� (ai+1; am) <

1� k
k

:

Then, there is a single common �xed point for S and J in L.

Taking S = J , we get the below result.

4.3.14 Theorem

Consider (L; q) be a left complete double controlled quasi metric type space with the functions

�; � : L� L! [1;+1) and J : L! P (L) is a multivalued map such as:

Hq(Jv; Jy) � k(q(v; Jv) + q(y; Jy))

122



for each v; y 2 L; 0 < 2k < 1: Suppose that, for every a 2 L and for the sequence fJ(ac)g, we

have

lim
c!+1

� (a; ac) is �nite, lim
c!+1

� (ac; a) <
1

k
and

sup
m�1

lim
i!+1

� (ai+1; ai+2)

� (ai; ai+1)
� (ai+1; am) <

1� k
k

:

Then, J has a �xed point.

4.3.15 Example

Let L = [0; 3): De�ned q : L� L! [0,+1) as

q(v; y) =

8<: 0; if v = y;

(v � y)2 + v; otherwise:

with

�(v; y) =

8<: 2; if v; y � 1;
v+2
2 ; otherwise:

; �(v; y) =

8<: 1 if v; y � 1,
y+2
2 ; otherwise:

Clearly (L; q) is double controlled quasi metric type space. Choose Jv =
�
v
4

	
and k = 2

5 . It is

clear that J is Kannan type double controlled contraction. Also, for each a 2 L, we have

lim
c!+1

� (a; ac) < +1; lim
c!+1

� (ac; a) <
1

k
:

Thus, all hypotheses of Theorem 4.3.14 hold and _z = 0 is a �xed point.

4.3.16 Theorem

Let (L; q) be a left complete quasi b-metric space and J : L! P (L) be a mapping such as:

Hq (Jv; Jy) � k [q (v; Jv) + q (y; Jy)] ;

for each v; y 2 L; k 2 [0; 12) and b <
1�k
k : Then J has a �xed point a� 2 L.
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4.3.17 Remark

In the example 4.3.15, q(v; y) = (v � y)2 + v is a quasi b metric with b � 2; but we can not

apply Theorem 4.3.16 because J is not Kannan type b-contraction. Indeed b � 3
2 =

1�k
k :

4.4 Double Controlled Dislocated Quasi Metric Type Spaces

and Some Results

Results given in this section have been published in [91]

Let (L; �q) be a double controlled complete dislocated quasi metric type space; a0 2L and

S; J : L ! P (L) are multifunctions on L. Let a1 2 Sa0 is an element such as �q(a0; Sa0) =

�q(a0; a1); �q(Sa0; a0) = �q(a1; a0). Let a2 2 Ja1 be such as �q(a1; Ja1) = �q(a1; a2); �q(Ja1; a1) =

�q(a2; a1): Let a3 2 Sa2 be such as �q(a2; Sa2) = �q(a2; a3) and so on. Thus, we generate a

sequence an of members in L such as a2n+1 2 Sa2n and a2n+2 2 Ja2n+1; with �q(a2n; Sa2n) =

�q(a2n; a2n+1); �q(Sa2n; a2n) = �q(a2n+1; a2n); and �q(a2n+1; Ja2n+1) = �q(a2n+1; a2n+2);

�q(Ja2n+1; a2n+1) = �q(a2n+2; a2n+1); where n = 0; 1; 2; � � � : We denote this iterative sequence

by fJS(an)g: We say that fJS(an)g is a sequence in L generated by a0: If J = S; then

we say that fJ(an)g is a sequence in L generated by a0: Let M � L, de�ne �� (a;M) =

inf f� (a; l) ; l 2Mg and �� (M;y) = inf f� (b; y) ; b 2Mg :

4.4.1 De�nition

Let L 6= fg and � :L�L! [0;+1) be a map such as � (a; y) � 1 and � (y; a) � 1; implies

a = y. Let S; J : L! P (L) are the multi-valued maps, then the pair (S; J) is said to be ��-Alt

multivalued mapping, if

(a) �� (a; Sa) � 1; �q (a; Sa) = �q (a; y) and �q (Sa; a) = �q (y; a) implies �
� (Sy; y) � 1:

(b) �� (Sa; a) � 1; �q (a; Ja) = �q (a; y) and �q (Ja; a) = �q (y; a) implies �
� (y; Sy) � 1:

4.4.2 De�nition

Let (L; �q) be a complete double controlled dislocated quasi metric type space and (S; J) be

a pair of �� multivalued mapping. Then (S; J) is called �� Kannan type double controlled
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contraction, if for any two consecutive points a; y belonging to the range of a sequence fJS(an)g

with �� (Sy; y) � 1; �� (v; Sv) � 1 and �q(v; y) > 0; we have

max
n
H�q(Sv; Jy); H�q(Jy; Sv)

o
� k(�q(y; Jy) + �q(v; Sv)); (4.44)

where, k 2 [0; 12). Also, the terms of the sequence fJS(an)g satisfy the following

sup
m�1

lim
i!+1

� (ai+1; ai+2)

� (ai; ai+1)
� (ai+1; am) <

1� k
k

: (4.45)

4.4.3 Theorem

Let (L; �q) be a left K-sequentially complete double controlled dislocated quasi metric type

space. (S; J) is the pair of �� Kannan type double controlled contraction: Assume that:

(i) The set G(S) = fa : �� (a; Sa) � 1g is closed and contains a0:

(ii) For every a 2 L, we have

lim
n!+1

� (a; an) and lim
n!+1

� (an; a) <
1

k
: (4.46)

Then fJS(an)g ! a 2 L. Also, if (4.44) holds for each a; y 2 fa�g then, there is a single

common �xed point for S and J in L and �q(a
�; a�) = 0.

Proof. As a0 is any element of G (S), from condition (i) �� (a0; Sa0) � 1: Let fJS(an)g is

the iterative sequence in L generated by a point a0 2 L.

Since �� (a0; Sa0) � 1, �q (a0; Sa0) = �q (a0; a1) and �q (Sa0; a0) = �q (a1; a0). As (S; J) is �
�

multivalued mapping, so �� (Sa1; a1) � 1: Now, �� (Sa1; a1) � 1; �q (a1; Ja1) = �q (a1; a2)

and �q (Ja1; a1) = �q (a2; a1) implies that �
� (a2; Sa2) � 1: By induction we deduce that

�� (a2c; Sa2c) � 1 and �� (Sa2c+1; a2c+1) � 1, for all c = 0; 1; 2; � � � . Now, by Lemma 4.1.9,

we have

�q(a2c; a2c+1) � H�q(Ja2c�1; Sa2c) (4.47)

and

�q(a2c+1; a2c+2) � H�q(Sa2c; Ja2c+1): (4.48)
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Using (4.48), implies

�q(a2c+1; a2c+2) � H�q(Sa2c; Ja2c+1):

As a2c; a2c+1 2 fJS(an)g; �� (a2c; Sa2c) � 1 and �� (Sa2c+1; a2c+1) � 1, by using the condition

(4.44) in inequality (4.48), we have

�q(a2c+1; a2c+2) � k
�
�q(a2c; Sa2c) + �q(a2c+1; Ja2c+1)

�
� k

�
�q(a2c; a2c+1) + �q(a2c+1; a2c+2)

�
� k

1� k
�
�q(a2c; a2c+1)

�
� �

�
�q(a2c; a2c+1)

�
; where � =

k

1� k : (4.49)

Now, by (4.47), we have

�q(a2c; a2c+1) � H�q(Ja2c�1; Sa2c):

As a2c; a2c�1 2 fJS(an)g; �� (a2c; Sa2c) � 1 and �� (Sa2c�1; a2c�1) � 1; by using the condition

(4.44) in inequality (4.47), we get

�q(a2c; a2c+1) � k(�q(a2c�1; Ja2c�1) + �q(a2c; Sa2c) �
k

1� k
�
�q(a2c�1; a2c)

�
� �

�
�q(a2c�1; a2c)

�
; where � =

k

1� k : (4.50)

As a2c�2; a2c�1 2 fJS(an)g; �� (a2c�2; Sa2c�2) � 1 and �� (Sa2c�1; a2c�1) � 1; by using the

condition (4.44), we get

�q(a2c�1; a2c) � �
�
�q(a2c�2; a2c�1)

�
: (4.51)

Using (4.51) in (4.50), we have

�q(a2c; a2c+1) � �2�q(a2c�2; a2c�1): (4.52)

As a2c�2; a2c�1 2 fJS(an)g; �� (Sa2c�1; a2c�1) � 1 and �� (a2c�2; Sa2c�2) � 1; by using the

condition (4.44), we get

�q(a2c�2; a2c�1) � �3
�
�q(a2c�3; a2c�2)

�
: (4.53)
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From (4.52) and (4.53), we have

�2(�q(a2c�2; a2c�1)) � �3(�q(a2c�3; a2c�2)): (4.54)

Using (4.54) in (4.50), we have

�q(a2c; a2c+1)g � �3(�q(a2c�3; a2c�2)):

Continuing in this way, we get

�q(a2c; a2c+1)g � �2c(�q(a0; a1)): (4.55)

Now, by using (4.49), (4.50), (4.51) and continuing in this way, we get

�q(a2c+1; a2c+2) � �2c+1(�q(a0; a1)): (4.56)

Combining the inequalities (4.55) and (4.56), we have

�q(an; an+1) � �n(�q(a0; a1)): (4.57)

Now, by (4.57) and using the technique given in 4.2.1, it can easily be proved that {an} is a

left Cauchy sequence. So, for all natural numbers with n < m; we have

lim
n;m!+1

�q(an; am) = 0: (4.58)

So, the sequence fJS(an)g is a left Cauchy sequence. Since (L; �q) is a left K-sequentially

double controlled complete dislocated quasi metric type space, so there exists a� 2 L such as

fJS(an)g ! a� 2 L; that is

lim
n!+1

�q(an; a
�) = lim

n!+1
�q(a

�; an) = 0: (4.59)

Since (L; �q) is a left K-sequentially complete and G(S) is closed subset of L, so
�
G(S); �q

�
is

a left K-sequentially complete. As �� (a2c;; Sa2c) � 1 for all c 2 N: So fa2ng is a sequence of
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fJS(an)g contained in G(S): By completeness of
�
G(S); �q

�
and uniqueness of limit fa2ng ! a�;

that is

�� (a�; Sa�) � 1:

Now, we suppose that �q (a
�; Sa�) 6= 0. By Lemma 4.1.9, we have

�q(a2n; Sa
�) � H�q(Ja2n�1; Sa

�):

As �� (a�; Sa�) � 1 and �� (Sa2n�1; a2n�1) � 1; by using (4.44), we have

�q(a2n; Sa
�) � k

�
�q(a2n�1; a2n) + �q(a

�; Sa�)
�
: (4.60)

Taking lim
n!+1

of inequality (4.60), we get

lim
n!+1

�q(a2n; Sa
�) � lim

n!+1
k
�
�q(a2n�1; a2n) + �q(a

�; Sa�))
�
;

lim
n!+1

�q(a2n; Sa
�) � k(�q(a

�; Sa�)): (4.61)

Now,

�q(a
�; Sa�) � �(a�; a2n�1)�q(a

�; a2n�1) + �(a2n; Sa
�)�q(a2n; Sa

�): (4.62)

Taking lim
n!+1

of inequality (4.62) and using inequality (4.46) and (4.59), we get

�q(a
�; Sa�) � lim

n!+1
�(a2n; Sa

�)�q(a2n; Sa
�): (4.63)

Using inequality (4.46) and (4.61) in inequality (4.63), we get that

�q(a
�; Sa�) < �q(a

�; Sa�):

It is a contradiction, therefore

�q(a
�; Sa�) = 0: (4.64)
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Now, suppose that �q (Sa
�; a�) = 0. By Lemma 4.1.9 and (4.44), we have

�q(Sa
�; a2n) � H�q(Sa

�; Ja2n�1):

Now, �� (a�; Sa�) � 1 and �� (Sa2n�1; a2n�1) � 1; so by (4.44), we have

�q(Sa
�; a2n) � k

�
�q(a

�; Sa�) + �q(a2n�1; a2n)
�
: (4.65)

Taking lim
n!+1

of inequality (4.65), we get

lim
n!+1

�q(Sa
�; a2n) � lim

n!+1
k
�
�q(a2n�1; a2n) + �q(a

�; Sa�))
�
;

lim
n!+1

�q(Sa; a2n) � k(�q(a
�; Sa�)): (4.66)

Now,

�q(Sa
�; a�) � �(Sa�; a2n)�q(Sa

�; a2n) + �(a2n; a
�)�q(a2n; a

�): (4.67)

Taking lim
n!+1

of inequality (4.67) and using inequality (4.46) and (4.59), we get

�q(Sa
�; a�) � 1

k
�q(Sa

�; a2n): (4.68)

By using inequality (4.46) and (4.66) in inequality (4.68), we obtain

�q(Sa
�; a�) < �q(a

�; Sa�) = 0, by (4.64):

It is a contradiction. Hence, a� 2 Sa�. Now,

�q(a
�; a�) � �(a�; a2n)�q(a

�; a2n) + � (a2n; a
�) �q(a2n; a

�):

This implies �q(a
�; a�) = 0 as n! +1: As �� (a�; Sa�) � 1 and �q (a�; Sa�) = �q (Sa

�; a�) = 0:

So, De�nition 4.4.1 implies

�� (Sa�; a�) � 1:
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Now, by Lemma 4.1.9, we have

�q(a2n+1; Ja
�) � H�q(Sa2n; Ja

�):

As, �� (a2n; Sa2n) � 1 and �� (Sa�; a�) � 1; so by (4.44), we get

�q(a2n+1; Ja
�) � k

�
�q(a2n; a2n+1) + �q(a

�; Ja�))
�
: (4.69)

Taking lim
n!+1

of inequality (4.69), we have

lim
n!+1

�q(a2n+1; Ja
�) � lim

n!+1
k
�
�q(a2n; a2n+1) + �q(a

�; Ja�))
�
:

Taking lim
n!+1

and using inequality (4.58), we have

lim
n!+1

�q(a2n+1; Ja
�) � k(�q(a

�; Ja�)): (4.70)

Since,

�q(a
�; Ja�) � �(a�; a2n)�q(a

�; a2n) + �(a2n+1; Ja
�)�q(a2n+1; Ja

�):

Taking lim
n!+1

for above inequality and using inequality (4.46) and (4.59), we get

�q(a
�; Ja�) � 1

k

�
�q(a2n+1; Ja

�)
�
:

By using inequality (4.46) and (4.70), we get that

�q(a
�; Ja�) < �q(a

�; Ja�):

It is a contradiction. Thus �q(a
�; Ja�) = 0. Similar arguments as above, we get

�q(Ja
�; a�) = 0:

Hence a� 2 Ja�: Thus, a� is a common �xed point of S and J:
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4.4.4 Example

Let L = [0;+1) \ Q+ and de�ned �q(a; y) = (a+ 2y)2 if a 6= y, and �q(a; y) = 0; if a = y:

Then (L; �q) is a complete double controlled dislocated quasi metric type space with

�(a; y) =

8<: 2; if a; y � 1;
a+2
2 ; otherwise:

�(a; y) =

8<: 1, if a; y � 1,
y+2
2 ; otherwise:

Let,

� (a; y) =

8<: 1, if a 2 A and y 2 B
1
4 ; otherwise.

Now,

A = fa : �� (a; Sa) � 1g =
�
0; 1;

1

64
;
1

4096
; :::

�
:

B = fy : �� (Sy; y) � 1g =
�
0;
1

8
;
1

512
; :::

�
:

De�ne the maps S; J : L! P (L) as:

J(y) =

8<:
�y
8 ;
y
4

�
\Q+; for all y 2 f0; 1; 18 ;

1
64 ;

1
512 ;

1
4096 ; � � � g;

[y + 2; 2 (y + 1)] \Q+; if otherwise.

S(y) =

8<: f18yg \Q
+; for all y 2 f0; 1; 18 ;

1
64 ;

1
512 ;

1
4096 ; � � � g;

[y + 1; y + 3] \Q+; if otherwise.

The given �q is not a controlled dislocated quasi metric type space for the function �. Indeed,

�q(1; 3) = 49 > 37:5 = � (1; 0) �q(1; 0) + �(0; 3)�q(0; 3):

Now, �q (a0; Sa0) = �q (1; S1) = �q
�
1; 18
�
=
�
1 + 2

8

�2
=
�
5
4

�2
; we de�ne the sequence fJS(an)g =

f1; 18 ;
1
64 ;

1
512 ;

1
4096 ; � � � g in L generated by y0 = 1:

Note that �� (a; Sa) � 1; �q (a; Sa) = �q (a; y) and �q (Sa; a) = �q (y; a) implies �
� (Sy; y) � 1:

Also, �� (Sa; a) � 1; �q (a; Ja) = �q (a; y) and �q (Ja; a) = �q (y; a) implies �
� (y; Sy) � 1: So

the pair (S; J) is ��-Alt multivalued mapping on fJS (an)g :
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Now, for all a; y 2 L\fJS (an)g with �� (Sy; y) � 1; �� (a; Sa) � 1 and k = 2
5 ; we observe that

all cases are satis�ed that is

max
n
H�q(Sa; Jy);H�q(Jy; Sa)

o
� k(�q(a; Sa) + �q(y; Jy)):

Now, let a0 = 1; we have a1 = Sa0 =
1
8 ; a2 = Ja1 =

1
64 , a3 = Sa2 =

1
512 ; :::�

sup
m�1

lim
i!+1

� (ai+1; ai+2)

� (ai; ai+1)
� (ai+1; am) = 0:71 <

1� k
k

=
3

2
:

That is, the pair (S; J) is �� Kannan type double controlled contraction. Let a0 = 1, we have

G(S) = fa : �� (a; Sa) � 1 and a 2 fJS (an)gg

=

�
0; 1;

1

64
;
1

4096
; :::

�
:

That (i) is hold. Finally, for every a 2 fJS(an)g, we have

lim
n!+1

� (a; an) <
5

2
and lim

n!+1
� (an; a) <

5

2
:

Thus, each hypothesis of Theorem 4.4.3 hold. In fact 0 is a a single common �xed point of S

and J .

4.4.5 De�nition

Let (L; �q) be a complete dislocated quasi b-metric type space and S; J be a �
�-Alt multivalued

map. Then the pair (S; J) is called �� Kannan type b-contraction, for every two consecutive

points a; y belonging to the range of a sequence fJS(an)g with �� (Sy; y) � 1; �� (a; Sa) � 1

and �q(a; y) > 0; we have

max
n
H�q(Sy; Ja);H�q(Ja; Sy)

o
� k(�q(a; Ja) + �q(y; Sy)); 4.71

whenever, k 2 [0; 12) and b <
1�k
k :
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4.4.6 Theorem

Consider (L; �q) be a left K-sequentially complete dislocated quasi b-metric space and a pair

(S; J) is a �� Kannan type b-contraction: Assume that: the set G(S) = fa : �� (a; Sa) � 1g is

contains a0 and closed: Then fJS(an)gg ! a� 2 L. Also, if (4.71) holds for each a; y 2 fa�g;

then S and J have a common �xed point a� in L and �q(a
�; a�) = 0.

4.4.7 Remark

In the Example 4.4.4, �q(a; y) = (a+ 2y)
2 is a dislocated quasi b-metric with b = 2; but we can

not apply Theorem 4.4.6 because the pair (S; J) is not �� Kannan type b-contraction. Indeed

b � 1�k
k = 3

2 :

4.4.8 Corollary

Let (L; �) be a left K-sequentially complete b-metric space. Let the pair (S; J) be a �� Kannan

type contraction: Assume that the set G(S) = fa : �� (a; Sa) � 1g is closed and contains a0:

Then, S and J have a common �xed point a� in L.

Conclusion: The main aim of this chapter is to introduce double controlled quasi and

dislocated quasi metric type spaces and related de�nitions as a generalization of double con-

trolled metric-type spaces. We have removed one and a half restriction out of three restrictions

of double controlled metric-type spaces. These new spaces is a generalization of metric space,

quasi metric space, dislocated metric space, dislocated quasi metric space, partial metric space,

quasi partial metric space, b-metric space, quasi b-metric space, dislocated b-metric space,

dislocated quasi b-metric space, extended b-metric space, dislocated extended b-metric space,

quasi-extended b-metric space, dislocated quasi-extended b-metric space and double controlled

metric space. We establish new generalized contractions and obtain �xed point results for

single-valued as well as a pair of multivalued maps in complete double controlled quasi metric

type spaces and in left K-sequentially complete double controlled dislocated quasi metric type

spaces. New results in ordered spaces and new results for graphic contractions can be obtained

as corollaries of our results. Some examples have been built to demonstrate the novelty of

results.
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