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0.1. Introduction 

To deal with imprecise and uncertain events has always been a challenging task 

as imprecision and vagueness lie in almost every field of science. To serve the goal, 

Zadeh [1] proposed the notion of fuzzy set (FS) where he described the uncertainty of 

an object/event by a membership grade 𝑚 that has a value from the interval [0, 1]. The 

value "0" means that the element does not belong to the set and the value "1" means 

that the element completely belongs to that set. The value between "0" and "1" tells the 

grade that how much an element belongs to that set. So the membership grade 

represents the uncertainty of human opinion. This uncertainty can be used to solve 

many real-life problems e.g. decision making [2], pattern recognition [3], etc. 

In FS theory, information is given in only one direction but most of the human 

opinions are not unidirectional e.g. if someone is giving his opinion about some mobile 

he will discuss his advantages as well as disadvantages. So, FS does not fully expressing 

human opinion. To overcome this issue, Atanassov [4] proposed the notion of the 

intuitionistic fuzzy set (IFS) based on two grades 𝑚 and 𝑛 representing the membership 

and non-membership degree of an object with the condition that the sum of 𝑚 and 𝑛 

must be less than or equal to 1. The IFS has proven to be useful in many areas like 

decision making [5, 6], pattern recognition [7], medical diagnosis [8], etc. 

With the help of IFS, any uncertain event can be modeled by using two grades 

𝑚 and 𝑛 but in real life situation, the sum of 𝑚 and 𝑛 may exceeds 1 because the 

opinion-makers evaluate these values separately. To deal with that type of information 

in which value of  𝑚 and 𝑛 exceeds 1, Yager [9] proposed the idea of the Pythagorean 

fuzzy set (PyFS) based on two grades 𝑚 and 𝑛 with the condition that the sum of 

squares of 𝑚 and 𝑛 must be less than or equal to 1. PyFS provides a considerably larger 

range for the values of 𝑚 and 𝑛 to be chosen but still, it has limited space. To obtain a 

space of membership and non-membership grades with no limitation, Yager [10] 

proposed the framework of q-rung orthopair fuzzy set (q-ROPFS) with the condition 

that the sum of the qth power of 𝑚 and 𝑛 must be less than or equal to 1, for a positive 

integer q. PyFSs and q-ROPFSs are used to solve many real-life problems such as 

decision making [11, 12], pattern recognition [13], and medical diagnosis [14], etc. The 

constraints of these mentioned fuzzy frameworks are discussed in Table 1. 



6 

 

Table 1 (fuzzy frameworks with their limitations) 

Fuzzy Structures Functions Limitations on Functions 

FS 𝑚 0 ≤ 𝑚 ≤ 1 

IFS (𝑚, 𝑛) 0 ≤ 𝑚 + 𝑛 ≤ 1 

PyFS (𝑚, 𝑛) 0 ≤ 𝑚2 + 𝑛2 ≤ 1 

q-ROPFS (𝑚, 𝑛) 0 ≤ 𝑚𝑞 + 𝑛𝑞 ≤ 1, 𝑞 ∈ ℤ+ 

   

All fuzzy models described in [1, 4, 9, 10] either use one membership grade to 

model an event or two but all real-life events cannot always be modeled by using these 

types of fuzzy frameworks. As in circumstances of voting where opinion cannot be 

restricted to yes or no but some refusal degree and abstinence are also involved. To 

model such an event, Cuong [15] used four grades membership "𝑚", abstinence "𝑖", 

non-membership "𝑛", and refusal grade "𝑟" and developed the concept of picture fuzzy 

set (PFS). Cuong's structure of PFS is of diverse nature but, likewise in IFSs, there is 

the restriction in PFS too that the sum of all three membership grades must not exceed 

1. PFS cannot handle the information if their sum exceeds from 1. To overcome this 

Mahmood et al. [16] developed an important concept of spherical fuzzy set (SFS) and 

consequently T-spherical fuzzy set (T-SFS). SFS has the condition that square sum of 

𝑚, 𝑖 and 𝑛 must not exceeds 1. A T-SFS allows the decision makers to choose any value 

from the closed unit interval regardless of any restriction. PFS, SFS, and T-SFS are 

used to solve many real-life problems such as decision making [17-19], etc. A 

description of the constraints of PFS, SFS, and T-SFS is provided in Table 2. 

Table 2 (Comparison of the restrictions of PFS, SFS, and TSFS) 

Fuzzy Structures Functions Limitations on Functions 

PFS (𝑚, 𝑖, 𝑛) 0 ≤ 𝑚 + 𝑖 + 𝑛 ≤ 1 

SFS (𝑚, 𝑖, 𝑛) 0 ≤ 𝑚2 + 𝑖2 + 𝑛2 ≤ 1 

T-SFS (𝑚, 𝑖, 𝑛) 0 ≤ 𝑚𝑡 + 𝑖𝑡 + 𝑛𝑡 ≤ 1, 𝑡 ∈ ℤ+ 

 A geometrical comparison among the ranges of PFSs, SFSs and T-SFSs is 

depicted in Figure 1 which is based on the constraints discussed in Table 2. All the 

numbers within and on the space of PFSs represent picture fuzzy numbers; all the 

numbers on and within the space of SFSs represent spherical fuzzy numbers; and all 

the numbers on and within space of T-SFSs represent T-spherical fuzzy numbers for 

𝑡 = 20.  
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               Figure 1 Comparison between PFSs, SFSs and T-SFS 

From figure 1, it is easy to observe that T-SFS is much more generalized and 

diverse than PFS and SFS. The space for T-SFS increases with any increment in the 

value of 𝑡. This enables the experts to have much more values to assign to each 

membership, abstinence and non-membership grades. 

In FS theory, the value of 𝑚 is a crisp number but in some circumstances a 

human opinion may not be described by a single number. For this, a concept of interval-

valued fuzzy set (IvFS) was proposed by Zadeh [20]. In IvFS, the membership degree 

is expressed by an interval which is closed sub-interval of [0, 1]. Like FSs, IvFSs have 

many applications in the field of decision making, pattern recognition, etc. Similarly in 

IFS, the value of "𝑚" and "𝑛" are expressed in the form of crisp number in which 

information may be lost. So, Atanassov and Gargov [21] proposed the concept of 

interval-valued IFS (IvIFS). In IvIFS, the degrees of membership and non-membership 

are expressed by intervals which are closed sub-intervals of [0, 1] and they keep the 

condition that the sum of the supremum of these sub-intervals must belong to [0, 1]. As 

the value of membership and non-membership in terms of the interval has more 

significance than the values in crisp number, therefore, the notions of PyFS and q-

ROPFS are also extended to interval-valued PyFS (IvPyFS) by Peng and Yang [22] 

with the condition that the square sum of the supremums of these sub-intervals must 

belongs to [0, 1] and interval-valued q-ROPFS (Ivq-ROPFS) by Joshi et al. [23] with 

the condition that the sum of 𝑞𝑡ℎ power of supremums of these sub-intervals must 

belongs to [0, 1]. The concept of interval-valued is also applied to PFS as interval-

valued PFS (IvPFS) by Coung [15] with the condition that the sum of supremums of 
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these sub-intervals must belongs to [0, 1] and T-SFS as interval-valued T-spherical 

fuzzy set (IvT-SFS) by Ullah et al. [24] with the condition that the sum of 𝑡𝑡ℎ power of 

supremums of these sub-intervals must belongs to [0, 1]. 

The Similarity measure (SM) is a significant content in FS theory. SMs are 

widely used in the field of pattern recognition, decision making, medical diagnosis, and 

clustering. Many authors developed SMs for different tools of uncertainty like IFSs, 

PyFSs, q-ROPFSs, PFSs, SFSs and T-SFSs. Ye [25] developed some cosine SMs for 

IFSs. Hung and Yang [26] developed some SMs based on Hausdorff distance for IFS. 

Chen and Chang [27] investigated the pattern recognition problem by using SMs 

between IFSs based on transformation techniques. Garg and Kumar [28] proposed SMs 

of IFSs and studied their applications in decision making. Some SMs for IFSs were 

discussed in [29-32]. Nguyen et al. [33] developed SMs for PyFSs using an exponential 

function. Wei and Wei [34] proposed some SMs based on cosine function for PyFS and 

studied their applications in pattern recognition problems and medical diagnosis 

problems. Some SMs for PyFSs were discussed in [35-38]. Wang et al. [39] proposed 

SMs of q-ROPFS based on cosine function and studied their applications in scheme 

selection and pattern recognition. Liu et al. [40] proposed distance measure and SM 

between q-ROFSs. Peng and Dai [41] did a study on classroom teaching quality 

assessment with q-ROPFSs based on multiparametric SM. Peng and Liu [42] proposed 

information measures for q-ROPFSs. Some decision making problems for q-ROFSs are 

solved in [43-45]. 

 Wei [46] proposed some SMs for PFSs and studied their applications in mineral 

field recognition and building material recognition. Wei [47] investigated strategic 

decision making problem by using cosine SM for PFSs. Son [48] proposed generalized 

PF distance measures. Wei and Gao [49] proposed picture fuzzy generalized dice SMs 

and used proposed SMs to solve building material recognition problem. Rafiq et al. [50] 

investigated decision making problem using cosine SMs for SFSs. Ullah et al. [51] 

proposed some SMs for T-SFSs. Some SMs and decision making problems were 

discussed in [52-54]. 

Multi-attribute decision making (MADM) is one of the most discussed 

problems in FS theory due to its influence in engineering, economics and management 

sciences. The study of MADM started in 1970 [55] to use the concept of FS in a 

decision-making problem. Later, the concept of IFS and its aggregation tools have been 
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greatly used in decision making problems. Xu [56] proposed some averaging 

aggregation operators for IFSs. Wei [57] investigated group-decision making problem 

using some induced geometric aggregation operators for IFSs. Liu [58] proposed some 

Hamacher operators for interval-valued IFSs and studied their application in decision 

making problem. Liu and Chen [59] solved group decision making problem with the 

help of Heronian aggregation operators for IFSs. Liu and Li [60] introduced interval-

valued IF power Bonferroni operators and investigated their usefulness in decision 

making problem. Garg [61] solved the MADM problem using intuitionistic fuzzy 

averaging operators. Some methods for IFS to solve the MADM problem are discussed 

in [62-66]. Wei and Lu [67] investigated the MADM problem with the help of 

Pythagorean fuzzy power aggregation operators. Garg [68] proposed PyF operators 

based on confidence levels and studied their application in decision making. Peng and 

Yuan [69] discussed some fundamental properties of PyF operators and investigated 

the MADM problem. Peng and Yang [70] discussed some fundamental properties of 

interval-valued PyF operators and investigated the MADM problem. Wei [71] 

introduced some interactive operators for PyFSs and investigated their usefulness in the 

MADM problem. Joshi [72] proposed group-generalized averaging operators and 

investigated their usefulness in MADM problems. Using PyFS some MADM problems 

are solved in [73-76]. Peng et al. [77] investigated the MADM problem by using 

exponential aggregation operators for q-ROPFS. Liu and Wang [78] used q-ROPF 

Archimedean Bonferroni operators to solve the MADM problem. Some MADM 

problems are studied using q-ROPFSs in [79-81]. 

Garg [82] proposed some averaging aggregation operators for PFS and solved 

MADM problem using proposed operators. Jana et al. [83] proposed picture fuzzy 

Dombi operator and studied their application in decision making. Wei [84] introduced 

some aggregation operators for PFS and investigated their usefulness in MADM 

problem. Wei [85] proposed picture fuzzy Hamacher operators and studied their 

application in MADM problem. Khan et al. [86] investigated the MADM problem using 

some logarithmic operators for PFS. Some aggregation operators for PFS are discussed 

in [87, 88]. Liu et al. [89] proposed T-spherical fuzzy power Muirhead mean operators 

and studied their application to MADM problem. Ullah et al. [90] proposed some T-

spherical fuzzy operators and investigated their application to MADM problem.Some 

methods for solving MADM problem were discussed in [91-93]. 
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In the theory of aggregation, weighted geometric and averaging operators are 

the widely used operators and these are based on some t-norms and t-conorms. 

Literature survey witnessed some other types of t-norms and t-conorms, respectively, 

among them Einstein t-norm and t-conorms have got some serious attention. Based on 

Einstein t-conorms and t-norms, several aggregation tools have been proposed for 

various fuzzy algebraic structures. The Einstein weighted averaging (EWA) and 

Einstein weighted geometric (EWG) operators of IFSs and interval valued IFSs have 

been investigated in [94,95]. For PyFSs, EWA and Einstein interactive aggregation 

operators are developed by [96,97], respectively. For further interesting work on 

Einstein aggregation operators and their applications in MADM, one is referred to [98–

100]. 
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0.2. Chapter Wise Study 

In this section, a short description of all chapters is discussed. 

Chapter 1 

In this chapter, some basic notions like FS, IvFS, IFS, IvIFS, PyFS, IvPyFS, q-

ROPFS, Ivq-ROPFS, PFS, IvPFS, SFS, and T-SFS are defined. Some basic operations 

on them like union, intersection, sum, product, scalar multiplication, power etc. are also 

defined on them. Further interactive operations are also defined on them. Based on 

Einstein t-norm and t-conorm, Einstein sum, Einstein product, Einstein scalar 

multiplication, and Einstein power is also defined. To rank different numbers of these 

frameworks score and accuracy function are also defined.  

Chapter 2 

In this chapter, some SMs are developed for IvPFSs due to the significance of 

describing the membership grades of PFS in terms of intervals. Several types cosine 

SMs, cotangent SMs, set-theoretic and grey SMs, four types of dice SMs and 

generalized dice SMs are developed. The properties of proposed SMs are also 

demonstrated. Using the proposed SMs, two well-known problems mineral field 

recognition and MADM are solved. The superiority of proposed SMs over existing SMs 

is demonstrated through a comparative analysis. 

Chapter 3 

In this chapter, some new improved operational laws are developed and their 

properties are studied. Based on newly developed operational laws, some series of 

geometric interactive improved aggregation operators namely, T-spherical fuzzy 

weighted geometric interactive averaging operator, T-spherical fuzzy ordered weighted 

geometric interactive averaging  operator and T-spherical fuzzy hybrid geometric 

interactive averaging operator are proposed. The properties of proposed operators are 

also studied. Then, an algorithm for solving MADM problem using proposed operator 

is developed. The validity of proposed algorithm and operators is checked through 

numerical example. Finally, the superiority of the proposed approach is explained with 

a counter example to show the advantages of the proposed work. 
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Chapter 4 

In this chapter, a series of averaging aggregation operators and interactive 

averaging aggregation operators under the features that each element is represented 

with T-SF numbers are proposed. Various properties of these operators are also studied. 

To rank T-SF numbers, a new score function is also proposed and some properties of 

newly developed score function are also studied. An algorithm for solving MADM 

problem using proposed operator is also developed. Solar energy is one of the best 

renewable sources of energy and also an environment-friendly source so the selection 

of solar cells is typically a multi-attribute decision-making problem. So the applicability 

of the developed algorithm is demonstrated with a numerical example in the selection 

of the solar cells and comparison of their performance with the several existing 

approaches. 

Chapter 5 

In this chapter, a series of geometric aggregation operators and interactive 

geometric aggregation operator is developed for T-SFS. Some properties like 

boundedness, monotonicity and idempotency are also studied. To rank T-SF numbers, 

a new score function is proposed in it. A comparison between geometric aggregation 

operators and interactive geometric aggregation operator is also developed with the help 

of a numerical example. An algorithm for solving MADM problem using proposed 

operator is also developed. The validity of proposed operator is checked with the help 

of an example. The advantages of proposed operators and a comparative analysis 

between proposed and existing work is also studied. 

Chapter 6 

In this chapter, some Einstein averaging and geometric aggregation operators 

for T-SFS namely T-SF EWA operator, T-SF Einstein ordered weighted averaging 

operator, and T-SF Einstein hybrid averaging operators, T-SF EWG operator, T-SF 

Einstein ordered weighted geometric operator, and T-SF Einstein hybrid geometric 

operators are proposed. Some properties of these operators are also studied. The 

MADM method is described in the environment of T-SFSs and is supported by a 

comprehensive numerical example using the proposed Einstein aggregation tools. The 

advantages of proposed operators are discussed in which some conditions are explained 

under which the proposed operator can reduce to other fuzzy frameworks. The 
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comparison between existing and proposed work is also developed with the help of an 

example. 

Chapter 7 

In this chapter, some Einstein interactive operational laws are proposed. Based 

on these operational laws, a series of T-SF Einstein interactive averaging operators and 

a series of T-SF Einstein interactive geometric operators are proposed. Then, an 

algorithm is proposed to solve MADM problem. The algorithm is also validated by 

solving a numerical problem. The advantages of proposed aggregation operators are 

also discussed. The superiority of proposed operators over existing work is checked 

with the help of an example. 

Chapter 8 

In this chapter, some SMs based on cosine function are proposed and also some 

SMs based on exponential function are proposed. Some basic properties of these SMs 

are also studied. Then by using proposed SMs, two well-known problems namely 

pattern recognition and strategy decision making problems are solved. Some conditions 

are discussed under which the proposed SMs can reduce to other fuzzy frameworks like 

IFS, PyFS, q-ROPFS, SFS, and T-SFS. The superiority of proposed operators is also 

validated with the help of an example. 
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Chapter 1 

Preliminaries 

All the basic definitions of FS, IvFS, IFS, PyFS, q-ROPFS, PFS, SFS and T-

SFS are defined here. Along with these definitions some operations for these fuzzy 

frameworks are also defined. Score and accuracy functions are usually used to rank the 

given numbers in any fuzzy frameworks. So, score and accuracy functions for all 

defined fuzzy environments are also defined. Some other definitions like fuzzy measure 

and probability function are also defined in this section. 

1.1. Fuzzy Set 

To deal with imprecise and uncertain events has always been a challenging task 

as imprecision and vagueness lie in almost every field of life. To serve the goal, Zadeh 

[1] proposed the notion of FS where he described the uncertainty of an object/event by 

a membership grade 𝑚 that has a value from the unit interval [0, 1]. 

1.1.1. Definition [1] 

A FS on a non-empty set 𝑋, is defined as  

ℱ = {(𝑥,𝑚(𝑥))| 𝑥 ∈ 𝑋}, 

where 𝑚:𝑋 → [0, 1] is a membership function and a number 𝑚 is called fuzzy number 

(FN). 

1.1.2. Definition [1] 

Some operations on fuzzy numbers ℱ1 = (𝑥,𝑚1(𝑥)) and ℱ2 = (𝑥,𝑚2(𝑥)) are defined 

as 

1. ℱ1 ⊆ ℱ2 iff 𝑚1 ≤ 𝑚2 

2. ℱ1 ∪ ℱ2 = max{𝑚1, 𝑚2} 

3. ℱ1 ∩ ℱ2 = min{𝑚1,𝑚2} 

4. ℱ1
𝑐 = 1 −𝑚1 

1.1.3. Definition [20] 

An IvFS on a non-empty set 𝑋, is defined as  
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𝐹 = {(𝑥, [𝑚𝐿(𝑥),𝑚𝑈(𝑥)])| 𝑥 ∈ 𝑋}, 

In IvFS, membership value is given in term of interval where lower limit 𝑚𝐿 and upper 

limit 𝑚𝑈 are mappings such that 𝑚𝐿 , 𝑚𝑈: 𝑋 → [0, 1] with the condition that 𝑚𝐿 ≤ 𝑚𝑈. 

1.2. Intuitionistic Fuzzy Set 

Atanassov [4] proposed the notion of the IFS based on two grades membership 

"𝑚" and non-membership "𝑛" of an object. IFSs have the condition that the sum of both 

𝑚 and 𝑛 must belongs to closed unit interval. Some operations like union, intersection, 

sum, product, scalar multiplication, power etc. are also defined on IFSs. 

1.2.1. Definition [4] 

An IFS on 𝑋 consists of membership and non-membership functions defined as 𝐼 =

{(𝑥,𝑚(𝑥), 𝑛(𝑥)) ∣ 𝑥 ∈ 𝑋} such that 𝑚, 𝑛: 𝑋 → [0,1] with the condition 0 ≤ 𝑚(𝑥) +

𝑛(𝑥) ≤ 1 ∀ 𝑥 ∈ 𝑋. Further, refusal grade of 𝑥 in 𝐼 is 𝑟(𝑥) = 1 − (𝑚(𝑥) + 𝑛(𝑥)) and 

the pair (𝑚, 𝑛) stands for intuitionistic fuzzy number (IFN). 

1.2.2. Definition [4, 56, 63] 

Some operations on IFNs 𝐼1 = (𝑚1, 𝑛1) and 𝐼2 = (𝑚2, 𝑛2) are defined as 

1. 𝐼1 ⊆ 𝐼2 iff 𝑚1 ≤ 𝑚2, 𝑛1 ≥ 𝑛2 

2. 𝐼1 ∪ 𝐼2 = (max{𝑚1,𝑚2} ,min{𝑛1, 𝑛2}) 

3. 𝐼1 ∩ 𝐼2 = (min{𝑚1, 𝑚2} ,max{𝑛1, 𝑛2}) 

4. 𝐼1
𝑐 = (𝑛1, 𝑚1) 

5. 𝐼1⊕ 𝐼2 = (𝑚1 +𝑚2 −𝑚1𝑚2, 𝑛1𝑛2) 

6. 𝐼1⊗ 𝐼2 = (𝑚1𝑚2, 𝑛1 + 𝑛2 − 𝑛1𝑛2) 

7. 𝜏𝐼1 = (1 − (1 − 𝑚1)
𝜏, 𝑛1

𝜏),    𝜏 > 0 

8. 𝐼1
𝜏 = ( 𝑚1

𝜏, 1 − (1 − 𝑛1)
𝜏),    𝜏 > 0 

1.2.3. Definition [61, 64] 

Some interaction operations on IFNs 𝐼1 = (𝑚1, 𝑛1) and 𝐼2 = (𝑚2, 𝑛2) are defined as 

1. 𝐼1⊕𝑖 𝐼2 = (
𝑚1 +𝑚2 −𝑚1𝑚2,

(1 − 𝑚1)(1 − 𝑚2) − (1 − 𝑚1 − 𝑛1)(1 − 𝑚2 − 𝑛2)
) 

2. 𝐼1⊗𝑖 𝐼2 = ((1 − 𝑛1)(1 − 𝑛2) − (1 − 𝑚1 − 𝑛1)(1 − 𝑚2 − 𝑛2), 𝑛1 + 𝑛2 −

𝑛1𝑛2) 
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3. 𝜏𝐼1 = (1 − (1 − 𝑚1)
𝜏, (1 − 𝑚1)

𝜏 − (1 −𝑚1 − 𝑛1)
𝜏),    𝜏 > 0 

4. 𝐼1
𝜏 = ( (1 − 𝑛1)

𝜏 − (1 −𝑚1 − 𝑛1)
𝜏 , 1 − (1 − 𝑛1)

𝜏),    𝜏 > 0 

1.2.4. Definition [94] 

Some Einstein operations on IFNs 𝐼1 = (𝑚1, 𝑛1) and 𝐼2 = (𝑚2, 𝑛2) are defined as 

1. 𝐼1⊕𝐸 𝐼2 = (
𝑚1+𝑚2

1+𝑚1𝑚2
,

𝑛1𝑛2

1+(1−𝑛1)(1−𝑛2)
) 

2. 𝐼1⊗𝐸 𝐼2 = (
𝑚1𝑚2

1+(1−𝑚1)(1−𝑚2)
,
𝑛1+𝑛2

1+𝑛1𝑛2
) 

3. 𝜏𝐼1 = (
(1+𝑚1)

𝜏−(1−𝑚1)
𝜏

(1+𝑚1)𝜏+(1−𝑚1)𝜏
,

2𝑛1
𝜏

(2−𝑛1)𝜏+𝑛1
𝜏) ,    𝜏 > 0 

4. 𝐼1
𝜏 = (

2𝑚1
𝜏

(2−𝑚1)𝜏+𝑚1
𝜏 ,
(1+𝑛1)

𝜏−(1−𝑛1)
𝜏

(1+𝑛1)𝜏+(1−𝑛1)𝜏
 ) ,    𝜏 > 0 

1.2.5. Definition [56] 

For any IFN 𝐼 = (𝑚, 𝑛), the score function is defined as, 

𝑆𝐶(𝐼) = 𝑚 − 𝑛 

and the accuracy function is defined as 

𝐴𝐶(𝐼) = 𝑚 + 𝑛 

The IFN which have greater score value will be superior to other. If the score of two 

IFNs is equal, then we rank them using accuracy value and a number is called superior 

if it has greater accuracy. If again accuracy values of two IFNs become equal, then both 

numbers are considered as similar. 

1.2.6. Definition [21] 

An IvIFS on 𝑋 consists of membership and non-membership functions defined as ℐ =

{〈𝑥, [𝑚𝐿(𝑥),𝑚𝑈(𝑥)], [𝑛𝐿(𝑥), 𝑛𝑈(𝑥)]〉 ∣ 𝑥 ∈ 𝑋} such that 𝑚𝐿 , 𝑚𝑈, 𝑛𝐿 , 𝑛𝑈: 𝑋 → [0,1] 

with the condition 0 ≤ 𝑚𝑈(𝑥) + 𝑛𝑈(𝑥) ≤ 1 ∀ 𝑥 ∈ 𝑋. Further, refusal grade of 𝑥 in ℐ 

is 𝑟(𝑥) = [𝑟𝐿(𝑥), 𝑟𝑈(𝑥)] = [1 − (𝑚𝑈(𝑥) + 𝑛𝑈(𝑥)), 1 − (𝑚𝐿(𝑥) + 𝑛𝐿(𝑥))] and the 

pair ([𝑚𝐿 , 𝑚𝑈], [𝑛𝐿 , 𝑛𝑈]) stands for interval-valued IFN. 

1.3. Pythagorean Fuzzy Set 

Yager [9] proposed the notion of the PyFS based on two grades 𝑚 and 𝑛 of an 

object with the condition that the square sum of 𝑚 and 𝑛 must belongs to closed unit 
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interval. Some operations are also defined for PyFSs. To rank PyFN, score and accuracy 

functions are defined. 

1.3.1. Definition [9] 

A PyFS on 𝑋 consists of membership and non-membership functions defined as ℵ =

{(𝑥,𝑚(𝑥), 𝑛(𝑥)) ∣ 𝑥 ∈ 𝑋} such that 𝑚, 𝑛: 𝑋 → [0,1] with the condition 0 ≤ 𝑚2(𝑥) +

𝑛2(𝑥) ≤ 1 ∀ 𝑥 ∈ 𝑋. Further, refusal grade of 𝑥 in ℵ is 𝑟(𝑥) = √1 − (𝑚2(𝑥) + 𝑛2(𝑥)) 

and the pair (𝑚, 𝑛) stands for Pythagorean fuzzy number (PyFN). 

1.3.2. Definition [9, 69] 

Some operations on PyFNs ℵ1 = (𝑚1, 𝑛1) and ℵ2 = (𝑚2, 𝑛2) are defined as 

1. ℵ1 ⊆ ℵ2 iff 𝑚1 ≤ 𝑚2, 𝑛1 ≥ 𝑛2 

2. ℵ1 ∪ ℵ2 = (max{𝑚1, 𝑚2} ,min{𝑛1, 𝑛2}) 

3. ℵ1 ∩ ℵ2 = (min{𝑚1, 𝑚2} , max{𝑛1, 𝑛2}) 

4. ℵ1
𝑐 = (𝑛1, 𝑚1) 

5. ℵ1⊕ℵ2 = (√𝑚1
2 +𝑚2

2 −𝑚1
2𝑚2

2, 𝑛1𝑛2) 

6. ℵ1⊗ℵ2 = (𝑚1𝑚2, √𝑛1
2 + 𝑛2

2 − 𝑛1
2𝑛2

2) 

7. 𝜏ℵ1 = (√1 − (1 −𝑚1
2)𝜏, 𝑛1

𝜏) ,    𝜏 > 0 

8. ℵ1
𝜏 = ( 𝑚1

𝜏, √1 − (1 − 𝑛1
2)𝜏) ,    𝜏 > 0 

1.3.3. Definition [71] 

Some interaction operations on PyFNs ℵ1 = (𝑚1, 𝑛1) and ℵ2 = (𝑚2, 𝑛2) are defined 

as 

1. ℵ1⊕𝑖 ℵ2 = (
√𝑚1

2 +𝑚2
2 −𝑚1

2𝑚2
2,

√(1 − 𝑚1
2)(1 − 𝑚2

2) − (1 − 𝑚1
2 − 𝑛1

2)(1 − 𝑚2
2 − 𝑛2

2)
) 

2. ℵ1⊗𝑖 ℵ2 =

(√(1 − 𝑛1
2)(1 − 𝑛2

2) − (1 − 𝑚1
2 − 𝑛1

2)(1 − 𝑚2
2 − 𝑛2

2),√𝑛1
2 + 𝑛2

2 − 𝑛1
2𝑛2

2) 

3. 𝜏ℵ1 = (√1 − (1 −𝑚1
2)𝜏, √(1 − 𝑚1

2)𝜏 − (1 −𝑚1
2 − 𝑛1

2)𝜏) ,    𝜏 > 0 

4. ℵ1
𝜏 = ( √(1 − 𝑛1

2)𝜏 − (1 −𝑚1
2 − 𝑛1

2)𝜏, √1 − (1 − 𝑛1
2)𝜏) ,    𝜏 > 0 
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1.3.4. Definition [96] 

Some Einstein operations on PyFNs ℵ1 = (𝑚1, 𝑛1) and ℵ2 = (𝑚2, 𝑛2) are defined as 

1. ℵ1⊕𝐸 ℵ2 = (√
𝑚1
2+𝑚2

2

1+𝑚1
2𝑚2

2 , √
𝑛1
2𝑛2

2

1+(1−𝑛1
2)(1−𝑛2

2)
) 

2. ℵ1⊗𝐸 ℵ2 = (√
𝑚1
2𝑚2

2

1+(1−𝑚1
2)(1−𝑚2

2)
, √

𝑛1
2+𝑛2

2

1+𝑛1
2𝑛2

2) 

3. 𝜏ℵ1 = (√
(1+𝑚1

2)
𝜏
−(1−𝑚1

2)
𝜏

(1+𝑚1
2)
𝜏
+(1−𝑚1

2)
𝜏 , √

2(𝑛1
2)
𝜏

(2−𝑛1
2)
𝜏
+(𝑛1

2)
𝜏) ,    𝜏 > 0 

4. ℵ1
𝜏 = (√

2(𝑚1
2)
𝜏

(2−𝑚1
2)
𝜏
+(𝑚1

2)
𝜏 , √

(1+𝑛1
2)
𝜏
−(1−𝑛1

2)
𝜏

(1+𝑛1
2)
𝜏
+(1−𝑛1

2)
𝜏 ) ,    𝜏 > 0 

1.3.5. Definition [69] 

For any PyFN ℵ = (𝑚, 𝑛), the score function is defined as, 

𝑆𝐶(ℵ) = 𝑚2 − 𝑛2 

and the accuracy function is defined as 

𝐴𝐶(ℵ) = 𝑚2 + 𝑛2 

The PyFN which have greater score value will be superior to other. If the score of two 

PyFNs is equal, then we rank them using accuracy value and a number is called superior 

if it has greater accuracy. If again accuracy values of two PyFNs become equal, then 

both numbers are considered as similar. 

1.3.6. Definition [22] 

An IvPyFS on 𝑋 consists of membership and non-membership functions defined as 

𝑁 = {〈𝑥, [𝑚𝐿(𝑥),𝑚𝑈(𝑥)], [𝑛𝐿(𝑥), 𝑛𝑈(𝑥)]〉 ∣ 𝑥 ∈ 𝑋} such that 𝑚𝐿 , 𝑚𝑈, 𝑛𝐿 , 𝑛𝑈: 𝑋 →

[0,1] with the condition 0 ≤ (𝑚𝑈(𝑥))
2
+ (𝑛𝑈(𝑥))

2
≤ 1 ∀ 𝑥 ∈ 𝑋. Further, refusal 

grade of 𝑥 in 𝑁 is 𝑟(𝑥) = [𝑟𝐿(𝑥), 𝑟𝑈(𝑥)] =

[√1 − ((𝑚𝑈(𝑥))
2
+ (𝑛𝑈(𝑥))

2
) , √1 − ((𝑚𝐿(𝑥))

2
+ (𝑛𝐿(𝑥))

2
)] and the pair 

([𝑚𝐿 ,𝑚𝑈], [𝑛𝐿 , 𝑛𝑈]) stands for interval-valued PyFN. 
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1.4. q-Rung Orthopair Fuzzy Set 

Yager [10] proposed the notion of the q-ROPFS based on two grades 𝑚 and 𝑛 

of an object with the condition that the sum of 𝑞𝑡ℎ power of 𝑚 and 𝑛 degree must 

belongs to closed unit interval. Some operations are also defined for q-ROPFSs. To 

rank q-ROPFN, score and accuracy functions are defined. 

1.4.1. Definition [10] 

A q-ROPFS on 𝑋 consists of membership and non-membership functions defined as 

𝒬 = {(𝑥,𝑚(𝑥), 𝑛(𝑥)) ∣ 𝑥 ∈ 𝑋} such that 𝑚, 𝑛: 𝑋 → [0,1] with the condition 0 ≤

𝑚𝑞(𝑥) + 𝑛𝑞(𝑥) ≤ 1 ∀ 𝑥 ∈ 𝑋 and 𝑞 ∈ 𝑍+. Further, refusal grade of 𝑥 in 𝒬 is 𝑟(𝑥) =

√1 − (𝑚𝑞(𝑥) + 𝑛𝑞(𝑥))
𝑞

 and the pair (𝑚, 𝑛) stands for q-rung othopair fuzzy number 

(q-ROPFN). 

1.4.2. Definition [10, 79] 

Some operations on q-ROPFNs 𝒬1 = (𝑚1, 𝑛1) and 𝒬2 = (𝑚2, 𝑛2) are defined as 

1. 𝒬1 ⊆ 𝒬2 iff 𝑚1 ≤ 𝑚2, 𝑛1 ≥ 𝑛2 

2. 𝒬1 ∪ 𝒬2 = (max{𝑚1, 𝑚2} ,min{𝑛1, 𝑛2}) 

3. 𝒬1 ∩ 𝒬2 = (min{𝑚1, 𝑚2} ,max{𝑛1, 𝑛2}) 

4. 𝒬1
𝑐 = (𝑛1, 𝑚1) 

5. 𝒬1⊕𝒬2 = (√𝑚1
𝑞 +𝑚2

𝑞 −𝑚1
𝑞𝑚2

𝑞𝑞

, 𝑛1𝑛2) 

6. 𝒬1⊗𝒬2 = (𝑚1𝑚2, √𝑛1
𝑞 + 𝑛2

𝑞 − 𝑛1
𝑞𝑛2

𝑞𝑞

) 

7. 𝜏𝒬1 = (√1 − (1 −𝑚1
𝑞)

𝜏𝑞

, 𝑛1
𝜏) ,    𝜏 > 0 

8. 𝒬1
𝜏 = ( 𝑚1

𝜏, √1 − (1 − 𝑛1
𝑞)

𝜏𝑞

) ,    𝜏 > 0 

1.4.3. Definition [79] 

For any q-ROPFN 𝒬 = (𝑚, 𝑛), the score function is defined as, 

𝑆𝐶(𝒬) = 𝑚𝑞 − 𝑛𝑞 

and the accuracy function is defined as 
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𝐴𝐶(𝒬) = 𝑚𝑞 + 𝑛𝑞 

The q-ROPFN which have greater score value will be superior to other. If the score of 

two q-ROPFNs is equal, then we rank them using accuracy value and a number is called 

superior if it has greater accuracy. If again accuracy values of two q-ROPFNs become 

equal, then both numbers are considered as similar. 

1.4.4. Definition [23] 

An Ivq-ROPFS on 𝑋 consists of membership and non-membership functions defined 

as 𝑄 = {〈𝑥, [𝑚𝐿(𝑥),𝑚𝑈(𝑥)], [𝑛𝐿(𝑥), 𝑛𝑈(𝑥)]〉 ∣ 𝑥 ∈ 𝑋} such that 𝑚𝐿 , 𝑚𝑈, 𝑛𝐿 , 𝑛𝑈: 𝑋 →

[0,1] with the condition 0 ≤ (𝑚𝑈(𝑥))
𝑞
+ (𝑛𝑈(𝑥))

𝑞
≤ 1 ∀ 𝑥 ∈ 𝑋. Further, refusal 

grade of 𝑥 in 𝑄 is 𝑟(𝑥) = [𝑟𝐿(𝑥), 𝑟𝑈(𝑥)] =

[√1 − ((𝑚𝑈(𝑥))
𝑞
+ (𝑛𝑈(𝑥))

𝑞
)

𝑞

, √1 − ((𝑚𝐿(𝑥))
𝑞
+ (𝑛𝐿(𝑥))

𝑞
)

𝑞

] and the pair 

([𝑚𝐿 ,𝑚𝑈], [𝑛𝐿 , 𝑛𝑈]) stands for interval-valued q-ROPFN. 

1.5. Picture Fuzzy Set 

Coung [15] proposed the notion of the PFS based on three grades membership 

"𝑚", abstinence "𝑖" and non-membership "𝑛" of an object. PFSs have the condition that 

the sum of 𝑚, 𝑖 and 𝑛 must belongs to closed unit interval. Some operations like union, 

intersection, sum, product, scalar multiplication, power etc. are also defined on PFSs. 

1.5.1. Definition [15] 

An PFS on 𝑋 consists of membership, abstinence and non-membership functions 

defined as 𝑃 = {(𝑥,𝑚(𝑥), 𝑖(𝑥), 𝑛(𝑥)) ∣ 𝑥 ∈ 𝑋} such that 𝑚, 𝑖, 𝑛: 𝑋 → [0,1] with the 

condition 0 ≤ 𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥) ≤ 1 ∀ 𝑥 ∈ 𝑋. Further, refusal grade of 𝑥 in 𝑃 is 

𝑟(𝑥) = 1 − (𝑚(𝑥) + 𝑖(𝑥) + 𝑛(𝑥)) and the triplet (𝑚, 𝑖, 𝑛) stands for picture fuzzy 

number (PFN). 

1.5.2. Definition [15, 82, 84] 

Some operations on PFNs 𝑃1 = (𝑚1, 𝑖1, 𝑛1) and 𝑃2 = (𝑚2, 𝑖2, 𝑛2) are defined as 

1. 𝑃1 ⊆ 𝑃2 iff 𝑚1 ≤ 𝑚2, 𝑖1 ≤ 𝑖2, 𝑛1 ≥ 𝑛2 

2. 𝑃1 ∪ 𝑃2 = (max{𝑚1, 𝑚2} ,min{𝑖1, 𝑖2} ,min{𝑛1, 𝑛2}) 

3. 𝑃1 ∩ 𝑃2 = (min{𝑚1,𝑚2} ,min{𝑖1, 𝑖2} ,max{𝑛1, 𝑛2}) 
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4. 𝑃1
𝑐 = (𝑛1, 𝑖1, 𝑚1) 

5. 𝑃1⊕𝑃2 = (𝑚1 +𝑚2 −𝑚1𝑚2, 𝑖1𝑖2, 𝑛1𝑛2) 

6. 𝑃1⊗𝑃2 = (𝑚1𝑚2, 𝑖1 + 𝑖2 − 𝑖1𝑖2, 𝑛1 + 𝑛2 − 𝑛1𝑛2) 

7. 𝜏𝑃1 = (1 − (1 −𝑚1)
𝜏, 𝑖1

𝜏, 𝑛1
𝜏),    𝜏 > 0 

8. 𝑃1
𝜏 = ( 𝑚1

𝜏, 1 − (1 − 𝑖1)
𝜏, 1 − (1 − 𝑛1)

𝜏),    𝜏 > 0 

1.5.3. Definition [84] 

For any PFN 𝑃 = (𝑚, 𝑖, 𝑛), the score function is defined as, 

𝑆𝐶(𝑃) = 𝑚 − 𝑛 

and the accuracy function is defined as 

𝐴𝐶(𝑃) = 𝑚 + 𝑖 + 𝑛 

The PFN which have greater score value will be superior to other. If the score of two 

PFNs is equal, then we rank them using accuracy value and a number is called superior 

if it has greater accuracy. If again accuracy values of two PFNs become equal, then 

both numbers are considered as similar. 

1.5.4. Definition [15] 

An IvPFS on 𝑋 consists of membership, abstinence and non-membership functions 

defined as 𝒫 = {〈𝑥, [𝑚𝐿(𝑥),𝑚𝑈(𝑥)], [𝑖𝐿(𝑥), 𝑖𝑈(𝑥)], [𝑛𝐿(𝑥), 𝑛𝑈(𝑥)]〉 ∣ 𝑥 ∈ 𝑋} such that 

𝑚𝐿 , 𝑚𝑈, 𝑖𝐿 , 𝑖𝑈, 𝑛𝐿 , 𝑛𝑈: 𝑋 → [0,1] with the condition 0 ≤ 𝑚𝑈(𝑥) + 𝑖𝑈(𝑥) + 𝑛𝑈(𝑥) ≤

1 ∀ 𝑥 ∈ 𝑋. Further, the degree of refusal of 𝑥 in 𝒫 is 𝑟(𝑥) = [𝑟𝐿(𝑥), 𝑟𝑈(𝑥)] =

[1 − (𝑚𝑈(𝑥) + 𝑖𝑈(𝑥) + 𝑛𝑈(𝑥)), 1 − (𝑚𝐿(𝑥) + 𝑖𝐿(𝑥) + 𝑛𝐿(𝑥))] and the triplet 

(𝑚, 𝑖, 𝑛) = ([𝑚𝐿 , 𝑚𝑈], [𝑖𝐿 , 𝑖𝑈], [𝑛𝐿 , 𝑛𝑈]) stands for interval-valued PFN. 

1.6. Spherical Fuzzy Set 

Mahmood et al. [16] proposed the notion of the SFS based on three grades 

membership "𝑚", abstinence "𝑖" and non-membership "𝑛" of an object with the 

condition that the square sum of 𝑚, 𝑖 and 𝑛 degree must belongs to closed unit interval. 

Some operations are also defined for SFSs. To rank SFN, score and accuracy functions 

are defined. 

 



22 

 

1.6.1. Definition [16] 

A SFS on 𝑋 consists of membership, abstinence and non-membership functions defined 

as 𝒮 = {(𝑥,𝑚(𝑥), 𝑖(𝑥), 𝑛(𝑥)) ∣ 𝑥 ∈ 𝑋} such that 𝑚, 𝑖, 𝑛: 𝑋 → [0,1] with a condition 

0 ≤ 𝑚2(𝑥) + 𝑖2(𝑥) + 𝑛2(𝑥) ≤ 1 ∀ 𝑥 ∈ 𝑋. Further, refusal garde of 𝑥 in 𝒮 is 𝑟(𝑥) =

√1 − (𝑚2(𝑥) + 𝑖2(𝑥) + 𝑛2(𝑥)) and the triplet (𝑚, 𝑖, 𝑛) stands for spherical fuzzy 

number (SFN). 

1.6.2. Definition [16] 

Some operations on SFNs 𝒮1 = (𝑚1, 𝑖1, 𝑛1) and 𝒮2 = (𝑚2, 𝑖2, 𝑛2) are defined as 

1. 𝒮1 ⊆ 𝒮2 iff 𝑚1 ≤ 𝑚2, 𝑖1 ≤ 𝑖2, 𝑛1 ≥ 𝑛2 

2. 𝒮1 ∪ 𝒮2 = (max{𝑚1,𝑚2} ,min{𝑖1, 𝑖2} , min{𝑛1, 𝑛2}) 

3. 𝒮1 ∩ 𝒮2 = (min{𝑚1, 𝑚2} ,min{𝑖1, 𝑖2} ,max{𝑛1, 𝑛2}) 

4. 𝒮1
𝑐 = (𝑛1, 𝑖1, 𝑚1) 

1.6.3. Definition [16] 

For any SFN 𝒮 = (𝑚, 𝑖, 𝑛), the score function is defined as, 

𝑆𝐶(𝒮) = 𝑚2 − 𝑛2 

and the accuracy function is defined as 

𝐴𝐶(𝒮) = 𝑚2 + 𝑖2 + 𝑛2 

The SFN which have greater score value will be superior to other. If the score of two 

SFNs is equal, then we rank them using accuracy value and a number is called superior 

if it has greater accuracy. If again accuracy values of two SFNs become equal, then 

both numbers are considered as similar. 

1.7. T-Spherical Fuzzy Set 

Mahmood et al. [16] proposed the notion of the T-SFS based on three grades 

membership "𝑚", abstinence "𝑖" and non-membership "𝑛" of an object with the 

condition that the sum of 𝑡𝑡ℎ power of 𝑚, 𝑖 and 𝑛 degree must belongs to closed unit 

interval. Some operations are also defined for T-SFSs. To rank T-SFN, score and 

accuracy functions are defined. 
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1.7.1. Definition [16] 

A T-SFS on 𝑋 consists of membership, abstinence and non-membership functions 

defined as 𝒯 = {(𝑥,𝑚(𝑥), 𝑖(𝑥), 𝑛(𝑥)) ∣ 𝑥 ∈ 𝑋} such that 𝑚, 𝑖, 𝑛: 𝑋 → [0,1] with the 

condition 0 ≤ 𝑚𝑡(𝑥) + 𝑖𝑡(𝑥) + 𝑛𝑡(𝑥) ≤ 1 ∀ 𝑥 ∈ 𝑋 and 𝑡 ∈ 𝑍+. Further, refusal garde 

of 𝑥 in 𝒯 is 𝑟(𝑥) = √1 − (𝑚𝑡(𝑥) + 𝑖𝑡(𝑥) + 𝑛𝑡(𝑥))
𝑡

 and the triplet (𝑚, 𝑖, 𝑛) stands for 

T-spherical fuzzy number (T-SFN). 

1.7.2. Definition [16] 

Some operations on T-SFNs 𝒯1 = (𝑚1, 𝑖1, 𝑛1) and 𝒯2 = (𝑚2, 𝑖2, 𝑛2) are defined as 

1. 𝒯1 ⊆ 𝒯2 iff 𝑚1 ≤ 𝑚2, 𝑖1 ≤ 𝑖2, 𝑛1 ≥ 𝑛2 

2. 𝒯1 ∪ 𝒯2 = (max{𝑚1, 𝑚2} , min{𝑖1, 𝑖2} ,min{𝑛1, 𝑛2}) 

3. 𝒯1 ∩ 𝒯2 = (min{𝑚1, 𝑚2} ,min{𝑖1, 𝑖2} ,max{𝑛1, 𝑛2}) 

4. 𝒯1
𝑐 = (𝑛1, 𝑖1, 𝑚1) 

5. 𝒯1⊗𝒯2 = (𝑚1𝑚2, 𝑖1𝑖2, √𝑛1
𝑡 + 𝑛2

𝑡 − 𝑛1
𝑡𝑛2

𝑡𝑡
) 

6. 𝒯1
𝜏 = ( 𝑚1

𝜏, √1 − (1 − 𝑖1
𝑡)𝜏

𝑡
, √1 − (1 − 𝑛1

𝑡)𝜏
𝑡

) ,    𝜏 > 0 

1.7.3. Definition [16] 

For any T-SFN 𝒯 = (𝑚, 𝑖, 𝑛), the score function is defined as, 

𝑆𝐶(𝒯) = 𝑚𝑡 − 𝑛𝑡 

and the accuracy function is defined as 

𝐴𝐶(𝒯) = 𝑚𝑡 + 𝑖𝑡 + 𝑛𝑡 

The T-SFN which have greater score value will be superior to other. If the score of two 

T-SFNs is equal, then we rank them using accuracy value and a number is called 

superior if it has greater accuracy. If again accuracy values of two T-SFNs become 

equal, then both numbers are considered as similar. 

1.7.4. Definition [24] 

An IvT-SFS on 𝑋 consists of membership, abstinence and non-membership functions 

defined as 𝑇 = {〈𝑥, [𝑚𝐿(𝑥),𝑚𝑈(𝑥)], [𝑖𝐿(𝑥), 𝑖𝑈(𝑥)], [𝑛𝐿(𝑥), 𝑛𝑈(𝑥)]〉 ∣ 𝑥 ∈ 𝑋} such that 

𝑚𝐿 , 𝑚𝑈, 𝑖𝐿 , 𝑖𝑈, 𝑛𝐿 , 𝑛𝑈: 𝑋 → [0,1] with the condition 0 ≤ (𝑚𝑈(𝑥))
𝑡
+ (𝑖𝑈(𝑥))

𝑡
+
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(𝑛𝑈(𝑥))
𝑡
≤ 1 ∀ 𝑥 ∈ 𝑋. Further, the degree of refusal of 𝑥 in 𝑇 is 𝑟(𝑥) =

[𝑟𝐿(𝑥), 𝑟𝑈(𝑥)] =

[√1 − ((𝑚𝑈(𝑥))
𝑡
+ (𝑖𝑈(𝑥))

𝑡
+ (𝑛𝑈(𝑥))

𝑡
)

𝑡
, √1 − ((𝑚𝐿(𝑥))

𝑡
+ (𝑖𝐿(𝑥))

𝑡
+ (𝑛𝐿(𝑥))

𝑡
)

𝑡
] 

and the pair ([𝑚𝐿 ,𝑚𝑈], [𝑖𝐿 , 𝑖𝑈], [𝑛𝐿 , 𝑛𝑈]) stands for interval-valued T-SFN. 

1.8. Some Other Related Notions 

 In this section, some other related notions namely fuzzy measure and probability 

function are defined in it.  

1.8.1. Definition [66] 

A fuzzy measure Θ: 2𝑋 → [0,1] on a finite set 𝑋 is defined as  

i. Θ(𝜙) = 0; Θ(𝑋) = 1 

ii. For all X1, 𝑋2 ⊆ 𝑋, if X1 ⊆ 𝑋2 then Θ(𝑋1) ≤ Θ(𝑋2) 

The possible orderings of elements of 𝑋 are presented by the permutation of 𝑋 with 𝑘 

elements forms a group 𝑋𝑛. 

1.8.2. Definition [66] 

The probability function 𝑃𝜌 on 𝑋 defined by 

𝑃𝜌(𝑥𝜌(1)) = Θ({𝑥𝜌(1)}),………, 

𝑃𝜌(𝑥𝜌(𝑗)) = Θ({𝑥𝜌(1), 𝑥𝜌(2), …… , 𝑥𝜌(𝑗)}) − Θ({𝑥𝜌(1), 𝑥𝜌(2), …… , 𝑥𝜌(𝑗−1)}),…….,  

𝑃𝜌(𝑥𝜌(𝑘)) = 1 − Θ({𝑥𝜌(1), 𝑥𝜌(2), …… , 𝑥𝜌(𝑘−1)}),  

Θ({𝑥𝜌(0)}) ≡ 0. 

where 𝜌 = (𝜌(1), 𝜌(2), …… , 𝜌(𝑘)) ∈ 𝑋𝑛 are called associated probabilities and 

{𝑃𝜌}𝜌∈𝑋𝑛
 is associated probability class of Θ. 
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Chapter 2 

Some Similarity Measures for Interval-valued Picture Fuzzy 

Sets and Their Applications in Decision Making 

SMs, distance measures and entropy measures are some common tools 

considered to be applied to some interesting real-life phenomena including pattern 

recognition, decision making, medical diagnosis and clustering. Further, interval-

valued picture fuzzy sets (IvPFSs) are effective and useful to describe the fuzzy 

information. Therefore, this chapter aims to develop some similarity measures for 

IvPFSs due to the significance of describing the grades of PFS in terms of intervals. 

Several types, cosine similarity measures, cotangent SMs, set-theoretic and grey SMs, 

four types of dice SMs and generalized dice SMs are developed. All the developed SMs 

are validated, and their properties are demonstrated. Two well-known problems 

including mineral field recognition problem and MADM problem are solved using the 

newly developed SMs. The superiorities of developed SMs over the SMs of PFS, IvIFS 

and IFS are demonstrated through a comparison and numerical examples. 

2.1. Similarity Measures 

In this section, some SMs like cosine SMs, cosine SMs based on cosine and 

cotangent functions, grey SMs, set-theoretic SMs, dice SMs and generalized dice SMs 

are defined for IvPFSs. Some basic properties of these SMs are also defined. In this 

chapter, if stated otherwise we use 𝑚1 = [𝑚1𝐿 , 𝑚1𝑈], 𝑚2 = [𝑚2𝐿 , 𝑚2𝑈], 𝑚3 =

[𝑚3𝐿 , 𝑚3𝑈], 𝑖1 = [𝑖1𝐿 , 𝑖1𝑈], 𝑖2 = [𝑖2𝐿 , 𝑖2𝑈], 𝑖3 = [𝑖3𝐿 , 𝑖3𝑈], 𝑛1 = [𝑛1𝐿 , 𝑛1𝑈], 𝑛2 =

[𝑛2𝐿 , 𝑛2𝑈], 𝑛3 = [𝑛3𝐿 , 𝑛3𝑈], 𝒫1 = (𝑚1, 𝑖1, 𝑛1), 𝒫2 = (𝑚2, 𝑖2, 𝑛2) and 𝒫3 =

(𝑚3, 𝑖3, 𝑛3). 

2.1.1. Cosine Similarity Measures for IvPFSs 

In this subsection, some cosine SMs and weighted cosine SMs for IvPFSs are 

defined and some basic properties of these SMs are also discussed. 

2.1.1.1. Definition  

For any two IvPFNs 𝒫1 and 𝒫2 , an interval-valued picture fuzzy cosine SM (IvPFCSM) 

between these two IvPFNs is defined as  
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𝐼𝑣𝑃𝐹𝐶𝑆𝑀1(𝒫1, 𝒫2)  

=
1

𝑘
∑

(

 
 
 

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) + 𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗)

√
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

√
𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗) + 𝑛2𝐿
2 (𝑥𝑗)

+𝑚2𝑈
2 (𝑥𝑗) + 𝑖2𝑈

2 (𝑥𝑗) + 𝑛2𝑈
2 (𝑥𝑗))

 
 
 𝑘

𝑗=1

 

For 𝑘 = 1 the above equation becomes correlation coefficient between IvPFSs.  

2.1.1.2. Theorem  

For any two IvPFNs 𝒫1 and 𝒫2, cosine SM fulfils the following properties: 

i. 0 ≤ 𝐼𝑣𝑃𝐹𝐶𝑆𝑀1(𝒫1, 𝒫2) ≤ 1. 

ii. 𝐼𝑣𝑃𝐹𝐶𝑆𝑀1(𝒫1, 𝒫2) = 𝐼𝑣𝑃𝐹𝐶𝑆𝑀1(𝒫2, 𝒫1) 

iii. 𝐹𝑜𝑟 𝒫1 = 𝒫2, 𝐼𝑣𝑃𝐹𝐶𝑆𝑀1(𝒫1, 𝒫2) = 1. 

Proof: (i) As membership, abstinence and non-membership of both IvPFNs belong to 

[0, 1], so it is obvious that 𝐼𝑣𝑃𝐹𝐶𝑆𝑀1(𝒫1, 𝒫2) belongs to [0, 1].  

(ii) Holds trivially. 

(iii) If 𝒫1 = 𝒫2 then 𝑚1𝐿 = 𝑚2𝐿, 𝑚1𝑈 = 𝑚2𝑈, 𝑖1𝐿 = 𝑖2𝐿, 𝑖1𝑈 = 𝑖2𝑈, 𝑛1𝐿 = 𝑛2𝐿 and 

𝑛1𝑈 = 𝑛2𝑈.  

Then  

𝐼𝑣𝑃𝐹𝐶𝑆𝑀1(𝒫1, 𝒫2)

=
1

𝑘
∑(

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) + 𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) + 𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)
)

𝑘

𝑗=1

 

=
1

𝑘
∑ 1𝑘
𝑗=1 =

1

𝑘
𝑘 = 1. 

2.1.1.3. Definition  

For any two IvPFNs 𝒫1 and 𝒫2, weighted cosine SM between these two IvPFNs is 

defined as  

𝐼𝑣𝑃𝐹𝑊𝐶𝑆𝑀1(𝒫1, 𝒫2)  
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=∑𝑤𝑗

(

 
 
 

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) + 𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗)

√
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

√
𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗) + 𝑛2𝐿
2 (𝑥𝑗)

+𝑚2𝑈
2 (𝑥𝑗) + 𝑖2𝑈

2 (𝑥𝑗) + 𝑛2𝑈
2 (𝑥𝑗))

 
 
 𝑘

𝑗=1

 

Where 𝑤 = (𝑤1, … , 𝑤𝑘) is a weight vector (WV) satisfies 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑘
𝑗=1 = 1. 

2.1.1.4. Theorem  

For any two IvPFNs 𝒫1 and 𝒫2, the weighted cosine SM fulfils the following properties: 

i. 0 ≤ 𝐼𝑣𝑃𝐹𝑊𝐶𝑆𝑀1(𝒫1, 𝒫2) ≤ 1 

ii. 𝐼𝑣𝑃𝐹𝑊𝐶𝑆𝑀1(𝒫1, 𝒫2) = 𝐼𝑣𝑃𝐹𝑊𝐶𝑆𝑀1(𝒫2, 𝒫1) 

iii. 𝐹𝑜𝑟 𝒫1 = 𝒫2, 𝐼𝑣𝑃𝐹𝑊𝐶𝑆𝑀1(𝒫1, 𝒫2) = 1 

Proof: (i) As membership, abstinence and non-membership of both IvPFNs belong to 

[0, 1], so it is obvious that 𝐼𝑣𝑃𝐹𝑊𝐶𝑆𝑀1(𝒫1, 𝒫2) belongs to [0, 1] . 

(ii) Holds trivially. 

(iii) If 𝒫1 = 𝒫2 then 𝑚1𝐿 = 𝑚2𝐿, 𝑚1𝑈 = 𝑚2𝑈, 𝑖1𝐿 = 𝑖2𝐿, 𝑖1𝑈 = 𝑖2𝑈, 𝑛1𝐿 = 𝑛2𝐿 and 

𝑛1𝑈 = 𝑛2𝑈.  

Then  

𝐼𝑣𝑃𝐹𝑊𝐶𝑆𝑀1(𝒫1, 𝒫2)

=∑𝑤𝑗 (
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) + 𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) + 𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)
)

𝑘

𝑗=1

 

= ∑ 𝑤𝑗
𝑘
𝑗=1 = 1. 

2.1.1.5. Definition  

For any two IvPFNs 𝒫1 and 𝒫2, the cosine and weighted cosine SM based on four 

functions, between 𝒫1 and 𝒫2 are defined as  
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𝐼𝑣𝑃𝐹𝐶𝑆𝑀2(𝒫1, 𝒫2)

=
1

𝑘
∑

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑟1𝐿(𝑥𝑗)𝑟2𝐿(𝑥𝑗) + 𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) +

𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗) + 𝑟1𝑈(𝑥𝑗)𝑟2𝑈(𝑥𝑗)

√

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑟1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) +

𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗) + 𝑟1𝑈
2 (𝑥𝑗)

√

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗) + 𝑛2𝐿
2 (𝑥𝑗)

+𝑟2𝐿
2 (𝑥𝑗) + 𝑚2𝑈

2 (𝑥𝑗) +

𝑖2𝑈
2 (𝑥𝑗) + 𝑛2𝑈

2 (𝑥𝑗) + 𝑟2𝑈
2 (𝑥𝑗)

𝑘

𝑗=1

 

and 

𝐼𝑣𝑃𝐹𝑊𝐶𝑆𝑀2(𝒫1, 𝒫2)

=∑𝑤𝑗

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑟1𝐿(𝑥𝑗)𝑟2𝐿(𝑥𝑗) +𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) +

𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗) + 𝑟1𝑈(𝑥𝑗)𝑟2𝑈(𝑥𝑗)

√

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑟1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) +

𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗) + 𝑟1𝑈
2 (𝑥𝑗)

√

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗) + 𝑛2𝐿
2 (𝑥𝑗)

+𝑟2𝐿
2 (𝑥𝑗) + 𝑚2𝑈

2 (𝑥𝑗) +

𝑖2𝑈
2 (𝑥𝑗) + 𝑛2𝑈

2 (𝑥𝑗) + 𝑟2𝑈
2 (𝑥𝑗)

𝑘

𝑗=1

 

Where WV 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 is with a condition that for 𝑗 = 1,2, … , 𝑘 𝑤𝑗 ∈ [0,1] and 

∑ 𝑤𝑗
𝑘
𝑗=1 = 1. 

2.1.1.6. Theorem  

For any two IvPFNs 𝒫1 and 𝒫2, cosine and weighted cosine SMs based on four 

functions satisfy the following properties: 

i. 0 ≤ 𝐼𝑣𝑃𝐹𝐶𝑆𝑀2(𝒫1, 𝒫2) ≤ 1. 

ii. 𝐼𝑣𝑃𝐹𝐶𝑆𝑀2(𝒫1, 𝒫2) = 𝐼𝑣𝑃𝐹𝐶𝑆𝑀2(𝒫2, 𝒫1) 

iii. 𝐹𝑜𝑟 𝒫1 = 𝒫2, 𝐼𝑣𝑃𝐹𝐶𝑆𝑀2(𝒫1, 𝒫2) = 1. 

2.1.2. Cosine Similarity Measures for IvPFSs Based on Cosine Function 

In this subsection some cosine SMs based on cosine function and some 

weighted cosine SMs based on cosine function for IvPFSs are defined. Some basic 

properties of these SMs are also discussed. 
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2.1.2.1. Definition  

For any two IvPFNs 𝒫1 and 𝒫2, cosine SMs based on cosine function between these 

two IvPFNs are defined as 

𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀1(𝒫1, 𝒫2) =
1

𝑘
∑cos {

𝜋

2
[
|𝑚1𝐿 −𝑚2𝐿|⋁|𝑖1𝐿 − 𝑖2𝐿|⋁|𝑛1𝐿 − 𝑛2𝐿|

⋁|𝑚1𝑈 −𝑚2𝑈|⋁|𝑖1𝑈 − 𝑖2𝑈|⋁|𝑛1𝑈 − 𝑛2𝑈|
]}

𝑘

𝑗=1

 

𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀2(𝒫1, 𝒫2) =
1

𝑘
∑cos {

𝜋

4
[
|𝑚1𝐿 −𝑚2𝐿| + |𝑖1𝐿 − 𝑖2𝐿| + |𝑛1𝐿 − 𝑛2𝐿|

+|𝑚1𝑈 −𝑚2𝑈| + |𝑖1𝑈 − 𝑖2𝑈| + |𝑛1𝑈 − 𝑛2𝑈|
]}

𝑘

𝑗=1

 

Further, cosine SMs using four functions membership, abstinence, non-membership 

and refusal are defined as  

𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀3(𝒫1, 𝒫2)

=
1

𝑘
∑cos {

𝜋

2
[
|𝑚1𝐿 −𝑚2𝐿|⋁|𝑖1𝐿 − 𝑖2𝐿|⋁|𝑛1𝐿 − 𝑛2𝐿|⋁|𝑟1𝐿 − 𝑟2𝐿|

⋁|𝑚1𝑈 −𝑚2𝑈|⋁|𝑖1𝑈 − 𝑖2𝑈|⋁|𝑛1𝑈 − 𝑛2𝑈|⋁|𝑟1𝑈 − 𝑟2𝑈|
]}

𝑘

𝑗=1

 

𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀4(𝒫1, 𝒫2)

=
1

𝑘
∑cos {

𝜋

4
[
|𝑚1𝐿 −𝑚2𝐿| + |𝑖1𝐿 − 𝑖2𝐿| + |𝑛1𝐿 − 𝑛2𝐿| + |𝑟1𝐿 − 𝑟2𝐿|

+|𝑚1𝑈 −𝑚2𝑈| + |𝑖1𝑈 − 𝑖2𝑈| + |𝑛1𝑈 − 𝑛2𝑈| + |𝑟1𝑈 − 𝑟2𝑈|
]}

𝑘

𝑗=1

 

2.1.2.2. Theorem  

For any three IvPFNs 𝒫1, 𝒫2 and 𝒫3, all IvPFCsSMs satisfy the following properties 

for 𝑡 = 1, 2, 3, 4. 

i. 0 ≤ 𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀𝑡(𝒫1, 𝒫2) ≤ 1. 

ii. 𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀𝑡(𝒫1, 𝒫2) = 𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀𝑡(𝒫2, 𝒫1) 

iii. For 𝒫1 = 𝒫2, 𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀𝑡(𝒫1, 𝒫2) = 1. 

iv. Consider 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, then 𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀𝑡(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀𝑡(𝒫1, 𝒫2)  

and  𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀𝑡(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀𝑡(𝒫2, 𝒫3) 

Proof: (i) Since value of cosine function lies in [0, 1], so it is obvious that value of 

𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀𝑡(𝒫1, 𝒫2) lies in [0, 1] for all 𝑡 = 1,2,3,4. 

(ii) Trivially hold. 
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(iii) For 𝒫1 = 𝒫2, 𝑚1𝐿 = 𝑚2𝐿, 𝑚1𝑈 = 𝑚2𝑈, 𝑖1𝐿 = 𝑖2𝐿, 𝑖1𝑈 = 𝑖2𝑈, 𝑛1𝐿 = 𝑛2𝐿, 𝑛1𝑈 =

𝑛2𝑈, 𝑟1𝐿 = 𝑟2𝐿 and 𝑟1𝑈 = 𝑟2𝑈. This shows that 

 |𝑚1𝐿 −𝑚2𝐿| = 0, |𝑖1𝐿 − 𝑖2𝐿| = 0, |𝑛1𝐿 − 𝑛2𝐿| = 0, |𝑚1𝑈 −𝑚2𝑈| = 0, |𝑖1𝑈 − 𝑖2𝑈| =

0, |𝑛1𝑈 − 𝑛2𝑈| = 0.  

So 𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀1(𝒫1, 𝒫2) =
1

𝑘
∑ cos{0}𝑘
𝑗=1 =

1

𝑘
∑ 1𝑘
𝑗=1 = 1. 

Similarly, for 𝑡 = 2,3,4, the others can also be proved. 

(iv) For 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, 𝑚1𝐿 ≤ 𝑚2𝐿 ≤ 𝑚3𝐿 also 𝑚1𝑈 ≤ 𝑚2𝑈 ≤ 𝑚3𝑈 

Similarly, 𝑖1𝐿 ≤ 𝑖2𝐿 ≤ 𝑖3𝐿, 𝑖1𝑈 ≤ 𝑖2𝑈 ≤ 𝑖3𝑈, 𝑛1𝐿 ≥ 𝑛2𝐿 ≥ 𝑛3𝐿 and 𝑛1𝑈 ≥ 𝑛2𝑈 ≥ 𝑛3𝑈. 

For 𝑗 = 1,2, … , 𝑘 we have 

|𝑚1𝐿 −𝑚2𝐿| ≤ |𝑚1𝐿 −𝑚3𝐿| 

|𝑖1𝐿 − 𝑖2𝐿| ≤ |𝑖1𝐿 − 𝑖3𝐿| 

|𝑛1𝐿 − 𝑛2𝐿| ≤ |𝑛1𝐿 − 𝑛3𝐿| 

|𝑚1𝑈 −𝑚2𝑈| ≤ |𝑚1𝑈 −𝑚3𝑈| 

|𝑖1𝑈 − 𝑖2𝑈| ≤ |𝑖1𝑈 − 𝑖3𝑈| 

|𝑛1𝑈 − 𝑛2𝑈| ≤ |𝑛1𝑈 − 𝑛3𝑈| 

As cosine function is decreasing in [0,
𝜋

2
], so 𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀1(𝒫1, 𝒫3) ≤

𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀1(𝒫1, 𝒫2) and also by following same method it can be proved that 

𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀1(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝐶𝑠𝑆𝑀1(𝒫2, 𝒫3). 

Similarly, for 𝑡 = 2,3,4, the others can also be proved. 

2.1.2.3. Definition  

For any two IvPFNs 𝒫1 and 𝒫2, weighted cosine SMs based on cosine function between 

these two IvPFNs are defined as 

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀1(𝒫1, 𝒫2) =∑𝑤𝑗 cos {
𝜋

2
[
|𝑚1𝐿 −𝑚2𝐿|⋁|𝑖1𝐿 − 𝑖2𝐿|⋁|𝑛1𝐿 − 𝑛2𝐿|

⋁|𝑚1𝑈 −𝑚2𝑈|⋁|𝑖1𝑈 − 𝑖2𝑈|⋁|𝑛1𝑈 − 𝑛2𝑈|
]}

𝑘

𝑗=1
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𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀2(𝒫1, 𝒫2)

=∑𝑤𝑗 cos {
𝜋

4
[
|𝑚1𝐿 −𝑚2𝐿| + |𝑖1𝐿 − 𝑖2𝐿| + |𝑛1𝐿 − 𝑛2𝐿|

+|𝑚1𝑈 −𝑚2𝑈| + |𝑖1𝑈 − 𝑖2𝑈| + |𝑛1𝑈 − 𝑛2𝑈|
]}

𝑘

𝑗=1

 

Further, the weighted cosine SMs using four functions membership, abstinence, non-

membership and refusal are defined as  

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀3(𝒫1, 𝒫2)

=∑𝑤𝑗 cos {
𝜋

2
[
|𝑚1𝐿 −𝑚2𝐿|⋁|𝑖1𝐿 − 𝑖2𝐿|⋁|𝑛1𝐿 − 𝑛2𝐿|⋁|𝑟1𝐿 − 𝑟2𝐿|

⋁|𝑚1𝑈 −𝑚2𝑈|⋁|𝑖1𝑈 − 𝑖2𝑈|⋁|𝑛1𝑈 − 𝑛2𝑈|⋁|𝑟1𝑈 − 𝑟2𝑈|
]}

𝑘

𝑗=1

 

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀4(𝒫1, 𝒫2)

=∑𝑤𝑗 cos {
𝜋

4
[
|𝑚1𝐿 −𝑚2𝐿| + |𝑖1𝐿 − 𝑖2𝐿| + |𝑛1𝐿 − 𝑛2𝐿| + |𝑟1𝐿 − 𝑟2𝐿|

+|𝑚1𝑈 −𝑚2𝑈| + |𝑖1𝑈 − 𝑖2𝑈| + |𝑛1𝑈 − 𝑛2𝑈| + |𝑟1𝑈 − 𝑟2𝑈|
]}

𝑘

𝑗=1

 

Where WV 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 is with a condition that for 𝑗 = 1,2, … , 𝑘 𝑤𝑗 ∈ [0,1] and 

∑ 𝑤𝑗
𝑘
𝑗=1 = 1. 

2.1.2.4. Theorem  

For any three IvPFNs 𝒫1, 𝒫2 and 𝒫3, all IvPFWCsSMs satisfy the following properties 

for 𝑡 = 1, 2, 3, 4. 

i. 0 ≤ 𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀𝑡(𝒫1, 𝒫2) ≤ 1. 

ii. 𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀𝑡(𝒫1, 𝒫2) = 𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀𝑡(𝒫2, 𝒫1) 

iii. For 𝒫1 = 𝒫2, 𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀𝑡(𝒫1, 𝒫2) = 1. 

iv. Consider 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, then 𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀𝑡(𝒫1, 𝒫3) ≤

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀𝑡(𝒫1, 𝒫2) and 𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀𝑡(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀𝑡(𝒫2, 𝒫3) 

Proof: (i) Since value of cosine function lies in [0, 1], so it is obvious that value of 

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀𝑡(𝒫1, 𝒫2) lies in [0, 1] for all 𝑡 = 1,2,3,4. 

(ii) Trivially hold. 

(iii) For 𝒫1 = 𝒫2, 𝑚1𝐿 = 𝑚2𝐿, 𝑚1𝑈 = 𝑚2𝑈, 𝑖1𝐿 = 𝑖2𝐿, 𝑖1𝑈 = 𝑖2𝑈, 𝑛1𝐿 = 𝑛2𝐿, 𝑛1𝑈 =

𝑛2𝑈, 𝑟1𝐿 = 𝑟2𝐿 and 𝑟1𝑈 = 𝑟2𝑈. This shows that 

 |𝑚1𝐿 −𝑚2𝐿| = 0, |𝑖1𝐿 − 𝑖2𝐿| = 0, |𝑛1𝐿 − 𝑛2𝐿| = 0, |𝑚1𝑈 −𝑚2𝑈| = 0, |𝑖1𝑈 − 𝑖2𝑈| =

0, |𝑛1𝑈 − 𝑛2𝑈| = 0.  
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So 

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀1(𝒫1, 𝒫2) =∑𝑤𝑗 cos{0}

𝑘

𝑗=1

=∑𝑤𝑗

𝑘

𝑗=1

= 1 

Similarly, for 𝑡 = 2,3,4, they can also be proved. 

(iv) For 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, 𝑚1𝐿 ≤ 𝑚2𝐿 ≤ 𝑚3𝐿 also 𝑚1𝑈 ≤ 𝑚2𝑈 ≤ 𝑚3𝑈 

Similarly, 𝑖1𝐿 ≤ 𝑖2𝐿 ≤ 𝑖3𝐿, 𝑖1𝑈 ≤ 𝑖2𝑈 ≤ 𝑖3𝑈, 𝑛1𝐿 ≥ 𝑛2𝐿 ≥ 𝑛3𝐿 and 𝑛1𝑈 ≥ 𝑛2𝑈 ≥ 𝑛3𝑈. 

For 𝑗 = 1,2, … , 𝑘 we have 

|𝑚1𝐿 −𝑚2𝐿| ≤ |𝑚1𝐿 −𝑚3𝐿| 

|𝑖1𝐿 − 𝑖2𝐿| ≤ |𝑖1𝐿 − 𝑖3𝐿| 

|𝑛1𝐿 − 𝑛2𝐿| ≤ |𝑛1𝐿 − 𝑛3𝐿| 

|𝑚1𝑈 −𝑚2𝑈| ≤ |𝑚1𝑈 −𝑚3𝑈| 

|𝑖1𝑈 − 𝑖2𝑈| ≤ |𝑖1𝑈 − 𝑖3𝑈| 

|𝑛1𝑈 − 𝑛2𝑈| ≤ |𝑛1𝑈 − 𝑛3𝑈| 

As cosine function is decreasing in [0,
𝜋

2
], so 𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀1(𝒫1, 𝒫3) ≤

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀1(𝒫1, 𝒫2) and also by following same method it can be proved that 

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀1(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀1(𝒫2, 𝒫3). 

Similarly, for 𝑡 = 2,3,4, the others can also be proved. 

2.1.3. Similarity Measures for IvPSs Based on Cotangent Function 

In this subsection, we proposed some cotangent SMs based on cotangent 

function and some weighted cotangent SMs based on cotangent function for IvPFSs, 

and some basic properties of these SMs are also discussed. 

2.1.3.1. Definition  

For any two IvPFNs 𝒫1 and 𝒫2, a cotangent SM based on cotangent function between 

these two IvPFNs is defined as 

𝐼𝑣𝑃𝐹𝐶𝑡𝑆𝑀1(𝒫1, 𝒫2) =  
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1

𝑘
∑cot {

𝜋

4
+
𝜋

4
[
|𝑚1𝐿 −𝑚2𝐿|⋁|𝑖1𝐿 − 𝑖2𝐿|⋁|𝑛1𝐿 − 𝑛2𝐿|

⋁|𝑚1𝑈 −𝑚2𝑈|⋁|𝑖1𝑈 − 𝑖2𝑈|⋁|𝑛1𝑈 − 𝑛2𝑈|
]}

𝑘

𝑗=1

 

Further, then cotangent SMs using four functions membership, abstinence, non-

membership and refusal is defined as  

𝐼𝑣𝑃𝐹𝐶𝑡𝑆𝑀2(𝒫1, 𝒫2) =  

1

𝑘
∑cot {

𝜋

4
+
𝜋

4
[
|𝑚1𝐿 −𝑚2𝐿|⋁|𝑖1𝐿 − 𝑖2𝐿|⋁|𝑛1𝐿 − 𝑛2𝐿|⋁|𝑟1𝐿 − 𝑟2𝐿|

⋁|𝑚1𝑈 −𝑚2𝑈|⋁|𝑖1𝑈 − 𝑖2𝑈|⋁|𝑛1𝑈 − 𝑛2𝑈|⋁|𝑟1𝑈 − 𝑟2𝑈|
]}

𝑘

𝑗=1

 

2.1.3.2. Theorem  

For any three IvPFNs 𝒫1, 𝒫2 and 𝒫3, all IvPFCtSMs satisfy the following properties 

for 𝑡 = 1, 2. 

i. 0 ≤ 𝐼𝑣𝑃𝐹𝐶𝑡𝑆𝑀𝑡(𝒫1, 𝒫2) ≤ 1. 

ii. 𝐼𝑣𝑃𝐹𝐶𝑡𝑆𝑀𝑡(𝒫1, 𝒫2) = 𝐼𝑣𝑃𝐹𝐶𝑡𝑆𝑀𝑡(𝒫2, 𝒫1) 

iii. For 𝒫1 = 𝒫2, 𝐼𝑣𝑃𝐹𝐶𝑡𝑆𝑀𝑡(𝒫1, 𝒫2) = 1. 

iv. Consider 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, then 𝐼𝑣𝑃𝐹𝐶𝑡𝑆𝑀𝑡(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝐶𝑡𝑆𝑀𝑡(𝒫1, 𝒫2) 

and 𝐼𝑣𝑃𝐹𝐶𝑡𝑆𝑀𝑡(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝐶𝑡𝑆𝑀𝑡(𝒫2, 𝒫3) 

2.1.3.3. Definition  

For any two IvPFNs 𝒫1 and 𝒫2, a weighted cotangent SM based on cotangent function 

between these two IvPFNs is defined as 

𝐼𝑣𝑃𝐹𝑊𝐶𝑡𝑆𝑀1(𝒫1, 𝒫2)

=∑𝑤𝑗 cot {
𝜋

4
+
𝜋

4
[
|𝑚1𝐿 −𝑚2𝐿|⋁|𝑖1𝐿 − 𝑖2𝐿|⋁|𝑛1𝐿 − 𝑛2𝐿|

⋁|𝑚1𝑈 −𝑚2𝑈|⋁|𝑖1𝑈 − 𝑖2𝑈|⋁|𝑛1𝑈 − 𝑛2𝑈|
]}

𝑘

𝑗=1

 

Further, then weighted cotangent SM using four functions membership, abstinence, 

non-membership and refusal is defined as  

𝐼𝑣𝑃𝐹𝑊𝐶𝑡𝑆𝑀2(𝒫1, 𝒫2)

=∑𝑤𝑗 cot {
𝜋

4
+
𝜋

4
[

|𝑚1𝐿 −𝑚2𝐿|⋁|𝑖1𝐿 − 𝑖2𝐿|⋁|𝑛1𝐿 − 𝑛2𝐿|

⋁|𝑟1𝐿 − 𝑟2𝐿|⋁|𝑚1𝑈 −𝑚2𝑈|⋁
|𝑖1𝑈 − 𝑖2𝑈|⋁|𝑛1𝑈 − 𝑛2𝑈|⋁|𝑟1𝑈 − 𝑟2𝑈|

]}

𝑘

𝑗=1
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Where WV 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 is with a condition that for 𝑗 = 1,2, … , 𝑘 𝑤𝑗 ∈ [0,1] and 

∑ 𝑤𝑗
𝑘
𝑗=1 = 1. 

2.1.3.4. Theorem  

For any three IvPFNs 𝒫1, 𝒫2 and 𝒫3, all IvPFWCtSMs satisfy the following properties 

for 𝑡 = 1, 2. 

i. 0 ≤ 𝐼𝑣𝑃𝐹𝑊𝐶𝑡𝑆𝑀𝑡(𝒫1, 𝒫2) ≤ 1. 

ii. 𝐼𝑣𝑃𝐹𝑊𝐶𝑡𝑆𝑀𝑡(𝒫1, 𝒫2) = 𝐼𝑣𝑃𝐹𝑊𝐶𝑡𝑆𝑀𝑡(𝒫2, 𝒫1) 

iii. For 𝒫1 = 𝒫2, 𝐼𝑣𝑃𝐹𝑊𝐶𝑡𝑆𝑀𝑡(𝒫1, 𝒫2) = 1. 

iv. Consider 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, then 𝐼𝑣𝑃𝐹𝑊𝐶𝑡𝑆𝑀𝑡(𝒫1, 𝒫3) ≤

𝐼𝑣𝑃𝐹𝑊𝐶𝑡𝑆𝑀𝑡(𝒫1, 𝒫2) and 𝐼𝑣𝑃𝐹𝑊𝐶𝑡𝑆𝑀𝑡(𝒫1, 𝒫3) ≤

𝐼𝑣𝑃𝐹𝑊𝐶𝑡𝑆𝑀𝑡(𝒫2, 𝒫3) 

2.1.4. Set-theoretic Similarity Measures and Grey Similarity Measures for IvPFSs 

In this subsection, set-theoretic SM, Grey SM and weighted set-theoretic SM, 

weighted Grey SM for IvPFSs are defined, and some basic properties of these SMs are 

also discussed.  

2.1.4.1. Definition  

For any two IvPFNs 𝒫1 and 𝒫2, an interval-valued picture fuzzy set-theoretic SM 

(IvPFStSM) between these IvPFNs is defined as  

𝐼𝑣𝑃𝐹𝑆𝑡𝑆𝑀1(𝒫1, 𝒫2)

=
1

𝑘
∑

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) + 𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗)

𝑚𝑎𝑥 (
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

,    
𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗) + 𝑛2𝐿
2 (𝑥𝑗)

+𝑚2𝑈
2 (𝑥𝑗) + 𝑖2𝑈

2 (𝑥𝑗) + 𝑛2𝑈
2 (𝑥𝑗)

)

𝑘

𝑗=1

 

2.1.4.2. Theorem  

For any three IvPFNs 𝒫1, 𝒫2 and 𝒫3, the IvPFStSM satisfies the following properties 

i. 0 ≤ 𝐼𝑣𝑃𝐹𝑆𝑡𝑆𝑀1(𝒫1, 𝒫2) ≤ 1. 

ii. 𝐼𝑣𝑃𝐹𝑆𝑡𝑆𝑀1(𝒫1, 𝒫2) = 𝐼𝑣𝑃𝐹𝑆𝑡𝑆𝑀1(𝒫2, 𝒫1) 

iii. For 𝒫1 = 𝒫2, 𝐼𝑣𝑃𝐹𝑆𝑡𝑆𝑀1(𝒫1, 𝒫2) = 1. 
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iv. Consider 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, then 𝐼𝑣𝑃𝐹𝑆𝑡𝑆𝑀1(𝒫1, 𝒫3) ≤

𝐼𝑣𝑃𝐹𝑆𝑡𝑆𝑀1(𝒫1, 𝒫2) and 𝐼𝑣𝑃𝐹𝑆𝑡𝑆𝑀1(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝑆𝑡𝑆𝑀1(𝒫2, 𝒫3) 

Proof: (i) As membership, abstinence and non-membership of both IvPFNs belong to 

[0, 1], so it is obvious that 𝐼𝑣𝑃𝐹𝑆𝑡𝑆𝑀1(𝒫1, 𝒫2) belongs to [0, 1] . 

(ii) Holds trivially. 

(iii) If 𝒫1 = 𝒫2 then 𝑚1𝐿 = 𝑚2𝐿, 𝑚1𝑈 = 𝑚2𝑈, 𝑖1𝐿 = 𝑖2𝐿, 𝑖1𝑈 = 𝑖2𝑈, 𝑛1𝐿 = 𝑛2𝐿 and 

𝑛1𝑈 = 𝑛2𝑈.  

Then  

𝐼𝑣𝑃𝐹𝑆𝑡𝑆𝑀1(𝒫1, 𝒫2)

=
1

𝑘
∑

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) + 𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) + 𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

𝑘

𝑗=1

 

=
1

𝑘
∑1

𝑘

𝑗=1

 

=
1

𝑘
𝑘 = 1 

(iv) For 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, 𝑚1𝐿 ≤ 𝑚2𝐿 ≤ 𝑚3𝐿 also 𝑚1𝑈 ≤ 𝑚2𝑈 ≤ 𝑚3𝑈 

Similarly, 𝑖1𝐿 ≤ 𝑖2𝐿 ≤ 𝑖3𝐿, 𝑖1𝑈 ≤ 𝑖2𝑈 ≤ 𝑖3𝑈, 𝑛1𝐿 ≥ 𝑛2𝐿 ≥ 𝑛3𝐿 and 𝑛1𝑈 ≥ 𝑛2𝑈 ≥ 𝑛3𝑈 

𝑚1𝐿𝑚3𝐿 + 𝑖1𝐿𝑖3𝐿 + 𝑛1𝐿𝑛3𝐿 +𝑚1𝑈𝑚3𝑈 + 𝑖1𝑈𝑖3𝑈 + 𝑛1𝑈𝑛3𝑈

≤ 𝑚1𝐿𝑚2𝐿 + 𝑖1𝐿𝑖2𝐿 + 𝑛1𝐿𝑛2𝐿 +𝑚1𝑈𝑚2𝑈 + 𝑖1𝑈𝑖2𝑈 + 𝑛1𝑈𝑛2𝑈 

And 

max(
𝑚1𝐿
2 + 𝑖1𝐿

2 + 𝑛1𝐿
2 +𝑚1𝑈

2 + 𝑖1𝑈
2 + 𝑛1𝑈

2 ,

𝑚3𝐿
2 + 𝑖3𝐿

2 + 𝑛3𝐿
2 +𝑚3𝑈

2 + 𝑖3𝑈
2 + 𝑛3𝑈

2 )

≥max(
𝑚1𝐿
2 + 𝑖1𝐿

2 + 𝑛1𝐿
2 +𝑚1𝑈

2 + 𝑖1𝑈
2 + 𝑛1𝑈

2 ,

𝑚2𝐿
2 + 𝑖2𝐿

2 + 𝑛2𝐿
2 +𝑚2𝑈

2 + 𝑖2𝑈
2 + 𝑛2𝑈

2 ) 

So clearly, 𝐼𝑣𝑃𝐹𝑆𝑡𝑆𝑀1(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝑆𝑡𝑆𝑀1(𝒫1, 𝒫2) 

Similarly, 𝐼𝑣𝑃𝐹𝑆𝑡𝑆𝑀1(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝑆𝑡𝑆𝑀1(𝒫2, 𝒫3) 
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2.1.4.3. Definition  

For any two IvPFNs 𝒫1 and 𝒫2, an interval-valued picture fuzzy weighted set-theoretic 

SM (IvPFWStSM) between these IvPFNs is defined as 

𝐼𝑣𝑃𝐹𝑊𝑆𝑡𝑆𝑀1(𝒫1, 𝒫2)

=∑𝑤𝑗

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) + 𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗)

𝑚𝑎𝑥 (
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

,    
𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗) + 𝑛2𝐿
2 (𝑥𝑗)

+𝑚2𝑈
2 (𝑥𝑗) + 𝑖2𝑈

2 (𝑥𝑗) + 𝑛2𝑈
2 (𝑥𝑗)

)

𝑘

𝑗=1

 

Where WV 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 is with the condition that for 𝑗 = 1,2, … , 𝑘 𝑤𝑗 ∈ [0,1] 

and ∑ 𝑤𝑗
𝑘
𝑗=1 = 1. 

2.1.4.4. Theorem  

For any three IvPFNs 𝒫1, 𝒫2 and 𝒫3, the IvPFWStSM satisfies the following properties 

i. 0 ≤ 𝐼𝑣𝑃𝐹𝑊𝑆𝑡𝑆𝑀1(𝒫1, 𝒫2) ≤ 1. 

ii. 𝐼𝑣𝑃𝐹𝑊𝑆𝑡𝑆𝑀1(𝒫1, 𝒫2) = 𝐼𝑣𝑃𝐹𝑊𝑆𝑡𝑆𝑀1(𝒫2, 𝒫1). 

iii. For 𝒫1 = 𝒫2, 𝐼𝑣𝑃𝐹𝑊𝑆𝑡𝑆𝑀1(𝒫1, 𝒫2) = 1. 

iv. Consider 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, then 𝐼𝑣𝑃𝐹𝑊𝑆𝑡𝑆𝑀1(𝒫1, 𝒫3) ≤

𝐼𝑣𝑃𝐹𝑊𝑆𝑡𝑆𝑀1(𝒫1, 𝒫2) and 𝐼𝑣𝑃𝐹𝑊𝑆𝑡𝑆𝑀2(𝒫1, 𝒫3) ≤

𝐼𝑣𝑃𝐹𝑊𝑆𝑡𝑆𝑀1(𝒫2, 𝒫3). 

2.1.4.5. Definition  

For any two IvPFNs 𝒫1 and 𝒫2, an interval-valued picture fuzzy grey SM (IvPFGSM) 

between these IvPFNs is defined as  

𝐼𝑣𝑃𝐹𝐺𝑆𝑀1(𝒫1, 𝒫2)  

=
1

3𝑘
∑

(

  
 

∆𝑚𝐿(𝑚𝑖𝑛) + ∆𝑚𝑈(𝑚𝑖𝑛) +

∆𝑚𝐿(𝑚𝑎𝑥) + ∆𝑚𝑈(𝑚𝑎𝑥)

∆𝑚𝐿 + ∆𝑚𝑈 + ∆𝑚𝐿(𝑚𝑎𝑥) + ∆𝑚𝑈(𝑚𝑎𝑥)
+

∆𝑖𝐿(𝑚𝑖𝑛) + ∆𝑖𝑈(𝑚𝑖𝑛) +

∆𝑖𝐿(𝑚𝑎𝑥) + ∆𝑖𝑈(𝑚𝑎𝑥)

∆𝑖𝐿 + ∆𝑖𝑈 + ∆𝑖𝐿(𝑚𝑎𝑥) + ∆𝑖𝑈(𝑚𝑎𝑥)

+
∆𝑛𝐿(𝑚𝑖𝑛) + ∆𝑛𝑈(𝑚𝑖𝑛) + ∆𝑛𝐿(𝑚𝑎𝑥) + ∆𝑛𝑈(𝑚𝑎𝑥)

∆𝑛𝐿 + ∆𝑛𝑈 + ∆𝑛𝐿(𝑚𝑎𝑥) + ∆𝑛𝑈(𝑚𝑎𝑥) )

  
 𝑘

𝑗=1

 

Where ∆𝑚𝐿(𝑚𝑖𝑛) = min{|𝑚1𝐿 −𝑚2𝐿|}, ∆𝑚𝑈(𝑚𝑖𝑛) = min{|𝑚1𝑈 −𝑚2𝑈|}, ∆𝑚𝐿 =

|𝑚1𝐿 −𝑚2𝐿|, ∆𝑚𝑈 = |𝑚1𝑈 −𝑚2𝑈|, ∆𝑚𝐿(𝑚𝑎𝑥) = max{|𝑚1𝐿 −𝑚2𝐿|}, ∆𝑚𝑈(𝑚𝑎𝑥) =

max{|𝑚1𝑈 −𝑚2𝑈|}, ∆𝑖𝐿(𝑚𝑖𝑛) = min{|𝑖1𝐿 − 𝑖2𝐿|}, ∆𝑖𝑈(𝑚𝑖𝑛) = min{|𝑖1𝑈 − 𝑖2𝑈|}, ∆𝑖𝐿 =
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|𝑖1𝐿 − 𝑖2𝐿|, ∆𝑖𝑈 = |𝑖1𝑈 − 𝑖2𝑈|, ∆𝑖𝐿(𝑚𝑎𝑥) = max{|𝑖1𝐿 − 𝑖2𝐿|}, ∆𝑖𝑈(𝑚𝑎𝑥) = max{|𝑖1𝑈 −

𝑖2𝑈|}, ∆𝑛𝐿(𝑚𝑖𝑛) = min{|𝑛1𝐿 − 𝑛2𝐿|}, ∆𝑛𝑈(𝑚𝑖𝑛) = min{|𝑛1𝑈 − 𝑛2𝑈|}, ∆𝑛𝐿 = |𝑛1𝐿 −

𝑛2𝐿|, ∆𝑛𝑈 = |𝑛1𝑈 − 𝑛2𝑈|, ∆𝑛𝐿(𝑚𝑎𝑥) = max{|𝑛1𝐿 − 𝑛2𝐿|}, ∆𝑛𝑈(𝑚𝑎𝑥) = max{|𝑛1𝑈 −

𝑛2𝑈|}. 

2.1.4.6. Theorem  

For any three IvPFNs 𝒫1, 𝒫2 and 𝒫3, the IvPFGSM satisfies the following properties: 

i. 0 ≤ 𝐼𝑣𝑃𝐹𝐺𝑆𝑀1(𝒫1, 𝒫2) ≤ 1. 

ii. 𝐼𝑣𝑃𝐹𝐺𝑆𝑀1(𝒫1, 𝒫2) = 𝐼𝑣𝑃𝐹𝐺𝑆𝑀1(𝒫2, 𝒫1) 

Proof: (i) As membership, abstinence and non-membership of both IvPFNs belong to 

[0, 1], so it is obvious that 𝐼𝑣𝑃𝐹𝐺𝑆𝑀1(𝒫1, 𝒫2) belongs to [0, 1] . 

(ii) Holds trivially. 

2.1.4.7. Definition  

For any two IvPFNs 𝒫1 and 𝒫2, an interval-valued picture fuzzy weighted grey SM 

(IvPFWGSM) between these IvPFNs is defined as  

𝐼𝑣𝑃𝐹𝑊𝐺𝑆𝑀1(𝒫1, 𝒫2)  

=
1

3
∑𝑤𝑗

(

 
 
 
 
 

(

 
 

∆𝑚𝐿(𝑚𝑖𝑛) + ∆𝑚𝑈(𝑚𝑖𝑛) +

∆𝑚𝐿(𝑚𝑎𝑥) + ∆𝑚𝑈(𝑚𝑎𝑥)

∆𝑚𝐿 + ∆𝑚𝑈 + ∆𝑚𝐿(𝑚𝑎𝑥)

+∆𝑚𝑈(𝑚𝑎𝑥) )

 
 
+

(

 
 

∆𝑖𝐿(𝑚𝑖𝑛) + ∆𝑖𝑈(𝑚𝑖𝑛) +

∆𝑖𝐿(𝑚𝑎𝑥) + ∆𝑖𝑈(𝑚𝑎𝑥)
∆𝑖𝐿 + ∆𝑖𝑈 + ∆𝑖𝐿(𝑚𝑎𝑥)

+∆𝑖𝑈(𝑚𝑎𝑥) )

 
 

+(
∆𝑛𝐿(𝑚𝑖𝑛) + ∆𝑛𝑈(𝑚𝑖𝑛) + ∆𝑛𝐿(𝑚𝑎𝑥) + ∆𝑛𝑈(𝑚𝑎𝑥)

∆𝑛𝐿 + ∆𝑛𝑈 + ∆𝑛𝐿(𝑚𝑎𝑥) + ∆𝑛𝑈(𝑚𝑎𝑥)
)

)

 
 
 
 
 

𝑘

𝑗=1

 

Where WV 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 is with a condition that for 𝑗 = 1,2, … , 𝑘 𝑤𝑗 ∈ [0,1] and 

∑ 𝑤𝑗
𝑘
𝑗=1 = 1 and ∆𝑚𝐿(𝑚𝑖𝑛) = min{|𝑚1𝐿 −𝑚2𝐿|}, ∆𝑚𝑈(𝑚𝑖𝑛) = min{|𝑚1𝑈 −𝑚2𝑈|}, 

∆𝑚𝐿 = |𝑚1𝐿 −𝑚2𝐿|, ∆𝑚𝑈 = |𝑚1𝑈 −𝑚2𝑈|, ∆𝑚𝐿(𝑚𝑎𝑥) = max{|𝑚1𝐿 −𝑚2𝐿|}, 

∆𝑚𝑈(𝑚𝑎𝑥) = max{|𝑚1𝑈 −𝑚2𝑈|}, ∆𝑖𝐿(𝑚𝑖𝑛) = min{|𝑖1𝐿 − 𝑖2𝐿|}, ∆𝑖𝑈(𝑚𝑖𝑛) =

min{|𝑖1𝑈 − 𝑖2𝑈|}, ∆𝑖𝐿 = |𝑖1𝐿 − 𝑖2𝐿|, ∆𝑖𝑈 = |𝑖1𝑈 − 𝑖2𝑈|, ∆𝑖𝐿(𝑚𝑎𝑥) = max{|𝑖1𝐿 − 𝑖2𝐿|}, 

∆𝑖𝑈(𝑚𝑎𝑥) = max{|𝑖1𝑈 − 𝑖2𝑈|}, ∆𝑛𝐿(𝑚𝑖𝑛) = min{|𝑛1𝐿 − 𝑛2𝐿|}, ∆𝑛𝑈(𝑚𝑖𝑛) =

min{|𝑛1𝑈 − 𝑛2𝑈|}, ∆𝑛𝐿 = |𝑛1𝐿 − 𝑛2𝐿|, ∆𝑛𝑈 = |𝑛1𝑈 − 𝑛2𝑈|, ∆𝑛𝐿(𝑚𝑎𝑥) = max{|𝑛1𝐿 −

𝑛2𝐿|}, ∆𝑛𝑈(𝑚𝑎𝑥) = max{|𝑛1𝑈 − 𝑛2𝑈|}. 
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2.1.4.8. Theorem  

For any three IvPFNs 𝒫1, 𝒫2 and 𝒫3, the IvPFWGSM satisfies the following properties: 

i. 0 ≤ 𝐼𝑣𝑃𝐹𝑊𝐺𝑆𝑀1(𝒫1, 𝒫2) ≤ 1. 

ii. 𝐼𝑣𝑃𝐹𝑊𝐺𝑆𝑀1(𝒫1, 𝒫2) = 𝐼𝑣𝑃𝐹𝑊𝐺𝑆𝑀1(𝒫2, 𝒫1). 

2.1.5. Some Dice Similarity Measures for IvPFSs 

In this subsection, some dice SMs and weighted dice SMs for IvPFSs are 

defined. Some basic properties of these SMs are discussed. 

2.1.5.1. Definition  

For any two IvPFNs 𝒫1 and 𝒫2, some dice SMs for these IvPFNs is defined as  

𝐼𝑣𝑃𝐹𝐷𝑆𝑀1(𝒫1, 𝒫2)

=
1

𝑘
∑

2(
𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) + 𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗)
)

(
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

) + (
𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗) + 𝑛2𝐿
2 (𝑥𝑗)

+𝑚2𝑈
2 (𝑥𝑗) + 𝑖2𝑈

2 (𝑥𝑗) + 𝑛2𝑈
2 (𝑥𝑗)

)

𝑘

𝑗=1

 

𝐼𝑣𝑃𝐹𝐷𝑆𝑀2(𝒫1, 𝒫2)

=
1

𝑘
∑

2(

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑟1𝐿(𝑥𝑗)𝑟2𝐿(𝑥𝑗) + 𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) +

𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗) + 𝑟1𝑈(𝑥𝑗)𝑟2𝑈(𝑥𝑗)

)

(

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑟1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) +

𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗) + 𝑟1𝑈
2 (𝑥𝑗)

) + (

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗) + 𝑛2𝐿
2 (𝑥𝑗)

+𝑟2𝐿
2 (𝑥𝑗) + 𝑚2𝑈

2 (𝑥𝑗) +

𝑖2𝑈
2 (𝑥𝑗) + 𝑛2𝑈

2 (𝑥𝑗) + 𝑟2𝑈
2 (𝑥𝑗)

)

𝑘

𝑗=1

 

𝐼𝑣𝑃𝐹𝐷𝑆𝑀3(𝒫1, 𝒫2)

=

∑ 2 (
𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) + 𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗)
)𝑘

𝑗=1

∑ (
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

)𝑘
𝑗=1 +∑ (

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗) + 𝑛2𝐿
2 (𝑥𝑗)

+𝑚2𝑈
2 (𝑥𝑗) + 𝑖2𝑈

2 (𝑥𝑗) + 𝑛2𝑈
2 (𝑥𝑗)

)𝑘
𝑗=1
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𝐼𝑣𝑃𝐹𝐷𝑆𝑀4(𝒫1, 𝒫2)

=

2∑ (

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑟1𝐿(𝑥𝑗)𝑟2𝐿(𝑥𝑗) + 𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) +

𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗) + 𝑟1𝑈(𝑥𝑗)𝑟2𝑈(𝑥𝑗)

)𝑘
𝑗=1

∑ (

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑟1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) +

𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗) + 𝑟1𝑈
2 (𝑥𝑗)

)𝑘
𝑗=1 + ∑ (

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗) + 𝑛2𝐿
2 (𝑥𝑗)

+𝑟2𝐿
2 (𝑥𝑗) + 𝑚2𝑈

2 (𝑥𝑗) +

𝑖2𝑈
2 (𝑥𝑗) + 𝑛2𝑈

2 (𝑥𝑗) + 𝑟2𝑈
2 (𝑥𝑗)

)𝑘
𝑗=1

 

2.1.5.2. Theorem  

For any three IvPFNs 𝒫1, 𝒫2 and 𝒫3, all IvPFDSMs satisfy the following properties for 

𝑡 = 1,2,3,4: 

i. 0 ≤ 𝐼𝑣𝑃𝐹𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) ≤ 1. 

ii. 𝐼𝑣𝑃𝐹𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) = 𝐼𝑣𝑃𝐹𝐷𝑆𝑀𝑡(𝒫2, 𝒫1) 

iii. For 𝒫1 = 𝒫2, 𝐼𝑣𝑃𝐹𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) = 1. 

iv. Consider 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, then 𝐼𝑣𝑃𝐹𝐷𝑆𝑀𝑡(𝒫1, 𝒫3) ≤

𝐼𝑣𝑃𝐹𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) and 𝐼𝑣𝑃𝐹𝐷𝑆𝑀𝑡(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝐷𝑆𝑀𝑡(𝒫2, 𝒫3) 

Proof: (i) As membership, abstinence and non-membership of both IvPFNs belong to 

[0, 1], so it is obvious that 𝐼𝑣𝑃𝐹𝐷𝑆𝑀1(𝒫1, 𝒫2) belongs to [0, 1]. 

(ii) Holds trivially. 

(iii) If 𝒫1 = 𝒫2 then 𝑚1𝐿 = 𝑚2𝐿, 𝑚1𝑈 = 𝑚2𝑈, 𝑖1𝐿 = 𝑖2𝐿, 𝑖1𝑈 = 𝑖2𝑈, 𝑛1𝐿 = 𝑛2𝐿 and 

𝑛1𝑈 = 𝑛2𝑈.  

Then  

𝐼𝑣𝑃𝐹𝐷𝑆𝑀1(𝒫1, 𝒫2)

=
1

𝑘
∑

2(𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) + 𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗))

(
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗) +

𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

) + (
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗) +

𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

)

𝑘

𝑗=1

 

=
1

𝑘
∑

2(𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) + 𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗))

2 (
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗) +

𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

)

𝑘

𝑗=1
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=
1

𝑘
∑1

𝑘

𝑗=1

 

=
1

𝑘
𝑘 = 1. 

(iv) For 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, 𝑚1𝐿 ≤ 𝑚2𝐿 ≤ 𝑚3𝐿 also 𝑚1𝑈 ≤ 𝑚2𝑈 ≤ 𝑚3𝑈 

Similarly, 𝑖1𝐿 ≤ 𝑖2𝐿 ≤ 𝑖3𝐿, 𝑖1𝑈 ≤ 𝑖2𝑈 ≤ 𝑖3𝑈, 𝑛1𝐿 ≥ 𝑛2𝐿 ≥ 𝑛3𝐿 and 𝑛1𝑈 ≥ 𝑛2𝑈 ≥ 𝑛3𝑈 

Now, 

2 (
𝑚1𝐿𝑚3𝐿 + 𝑖1𝐿𝑖3𝐿 + 𝑛1𝐿𝑛3𝐿

+𝑚1𝑈𝑚3𝑈 + 𝑖1𝑈𝑖3𝑈 + 𝑛1𝑈𝑛3𝑈
) ≤ 2 (

𝑚1𝐿𝑚2𝐿 + 𝑖1𝐿𝑖2𝐿 + 𝑛1𝐿𝑛2𝐿
+𝑚1𝑈𝑚2𝑈 + 𝑖1𝑈𝑖2𝑈 + 𝑛1𝑈𝑛2𝑈

) 

And 

(
𝑚1𝐿
2 + 𝑖1𝐿

2 + 𝑛1𝐿
2

+𝑚1𝑈
2 + 𝑖1𝑈

2 + 𝑛1𝑈
2 ) + (

𝑚3𝐿
2 + 𝑖3𝐿

2 + 𝑛3𝐿
2

+𝑚3𝑈
2 + 𝑖3𝑈

2 + 𝑛3𝑈
2 )

≥ (
𝑚1𝐿
2 + 𝑖1𝐿

2 + 𝑛1𝐿
2

+𝑚1𝑈
2 + 𝑖1𝑈

2 + 𝑛1𝑈
2 ) + (

𝑚2𝐿
2 + 𝑖2𝐿

2 + 𝑛2𝐿
2

+𝑚2𝑈
2 + 𝑖2𝑈

2 + 𝑛2𝑈
2 ) 

Clearly 𝐼𝑣𝑃𝐹𝐷𝑆𝑀𝑡(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) 

Similarly, 𝐼𝑣𝑃𝐹𝐷𝑆𝑀𝑡(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝐷𝑆𝑀𝑡(𝒫2, 𝒫3) 

2.1.5.3. Definition  

For any two IvPFNs 𝒫1 and 𝒫2, some weighted dice SMs between these IvPFNs are 

defined as  

𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀1(𝒫1, 𝒫2)

=∑𝑤𝑗

2(
𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) + 𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗)
)

(
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

) + (
𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗) + 𝑛2𝐿
2 (𝑥𝑗)

+𝑚2𝑈
2 (𝑥𝑗) + 𝑖2𝑈

2 (𝑥𝑗) + 𝑛2𝑈
2 (𝑥𝑗)

)

𝑘

𝑗=1
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𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀2(𝒫1, 𝒫2)

=∑𝑤𝑗

2(

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑟1𝐿(𝑥𝑗)𝑟2𝐿(𝑥𝑗) + 𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) +

𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗) + 𝑟1𝑈(𝑥𝑗)𝑟2𝑈(𝑥𝑗)

)

(

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑟1𝐿
2 (𝑥𝑗) +𝑚1𝑈

2 (𝑥𝑗) +

𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗) + 𝑟1𝑈
2 (𝑥𝑗)

) + (

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗) + 𝑛2𝐿
2 (𝑥𝑗)

+𝑟2𝐿
2 (𝑥𝑗) + 𝑚2𝑈

2 (𝑥𝑗) +

𝑖2𝑈
2 (𝑥𝑗) + 𝑛2𝑈

2 (𝑥𝑗) + 𝑟2𝑈
2 (𝑥𝑗)

)

𝑘

𝑗=1

 

𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀3(𝒫1, 𝒫2)

=

∑ 2𝑤𝑗
2 (

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) + 𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗)
)𝑘

𝑗=1

∑ 𝑤𝑗
2(

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗)

+𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) +

𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

)𝑘
𝑗=1 + ∑ 𝑤𝑗

2(

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗)

+𝑛2𝐿
2 (𝑥𝑗) + 𝑚2𝑈

2 (𝑥𝑗) +

𝑖2𝑈
2 (𝑥𝑗) + 𝑛2𝑈

2 (𝑥𝑗)

)𝑘
𝑗=1

 

𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀4(𝒫1, 𝒫2)

=

2∑ 𝑤𝑗
2(

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑟1𝐿(𝑥𝑗)𝑟2𝐿(𝑥𝑗) + 𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) +

𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗) + 𝑟1𝑈(𝑥𝑗)𝑟2𝑈(𝑥𝑗)

)𝑘
𝑗=1

∑ 𝑤𝑗
2(

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑟1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) +

𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗) + 𝑟1𝑈
2 (𝑥𝑗)

)𝑘
𝑗=1 + ∑ 𝑤𝑗

2(

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗) + 𝑛2𝐿
2 (𝑥𝑗)

+𝑟2𝐿
2 (𝑥𝑗) + 𝑚2𝑈

2 (𝑥𝑗) +

𝑖2𝑈
2 (𝑥𝑗) + 𝑛2𝑈

2 (𝑥𝑗) + 𝑟2𝑈
2 (𝑥𝑗)

)𝑘
𝑗=1

 

Where WV 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 is with a condition that for 𝑗 = 1,2, … , 𝑘 𝑤𝑗 ∈ [0,1] and 

∑ 𝑤𝑗
𝑘
𝑗=1 = 1. 

2.1.5.4. Theorem  

For any three IvPFNs 𝒫1, 𝒫2 and 𝒫3, all IvPFWDSMs satisfy the following properties 

for 𝑡 = 1,2,3,4: 

i. 0 ≤ 𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) ≤ 1. 

ii. 𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) = 𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀𝑡(𝒫2, 𝒫1) 

iii. For 𝒫1 = 𝒫2, 𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) = 1. 

iv. Consider 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, then 𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀𝑡(𝒫1, 𝒫3) ≤

𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) and 𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀𝑡(𝒫1, 𝒫3) ≤

𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀𝑡(𝒫2, 𝒫3) 
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Proof: (i) As membership, abstinence and non-membership of both IvPFNs belong to 

[0, 1], so it is obvious that 𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀1(𝒫1, 𝒫2) belongs to [0, 1]. 

(ii) Holds trivially. 

(iii) If 𝒫1 = 𝒫2 then 𝑚1𝐿 = 𝑚2𝐿, 𝑚1𝑈 = 𝑚2𝑈, 𝑖1𝐿 = 𝑖2𝐿, 𝑖1𝑈 = 𝑖2𝑈, 𝑛1𝐿 = 𝑛2𝐿 and 

𝑛1𝑈 = 𝑛2𝑈. 

Then  

𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀1(𝒫1, 𝒫2)

=∑𝑤𝑗
2 (𝑚1𝐿

2 (𝑥𝑗) + 𝑖1𝐿
2 (𝑥𝑗) + 𝑛1𝐿

2 (𝑥𝑗) + 𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗))

(
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗) +

𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

) + (
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗) +

𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

)

𝑘

𝑗=1

 

=∑𝑤𝑗
2 (𝑚1𝐿

2 (𝑥𝑗) + 𝑖1𝐿
2 (𝑥𝑗) + 𝑛1𝐿

2 (𝑥𝑗) + 𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗))

2 (
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗) +

𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

)

𝑘

𝑗=1

 

=∑𝑤𝑗

𝑘

𝑗=1

= 1. 

(iv) For 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, 𝑚1𝐿 ≤ 𝑚2𝐿 ≤ 𝑚3𝐿 also 𝑚1𝑈 ≤ 𝑚2𝑈 ≤ 𝑚3𝑈 

Similarly, 𝑖1𝐿 ≤ 𝑖2𝐿 ≤ 𝑖3𝐿, 𝑖1𝑈 ≤ 𝑖2𝑈 ≤ 𝑖3𝑈, 𝑛1𝐿 ≥ 𝑛2𝐿 ≥ 𝑛3𝐿 and 𝑛1𝑈 ≥ 𝑛2𝑈 ≥ 𝑛3𝑈 

Now, 

2 (
𝑚1𝐿𝑚3𝐿 + 𝑖1𝐿𝑖3𝐿 + 𝑛1𝐿𝑛3𝐿

+𝑚1𝑈𝑚3𝑈 + 𝑖1𝑈𝑖3𝑈 + 𝑛1𝑈𝑛3𝑈
) ≤ 2 (

𝑚1𝐿𝑚2𝐿 + 𝑖1𝐿𝑖2𝐿 + 𝑛1𝐿𝑛2𝐿
+𝑚1𝑈𝑚2𝑈 + 𝑖1𝑈𝑖2𝑈 + 𝑛1𝑈𝑛2𝑈

) 

And 

(
𝑚1𝐿
2 + 𝑖1𝐿

2 + 𝑛1𝐿
2

+𝑚1𝑈
2 + 𝑖1𝑈

2 + 𝑛1𝑈
2 ) + (

𝑚3𝐿
2 + 𝑖3𝐿

2 + 𝑛3𝐿
2

+𝑚3𝑈
2 + 𝑖3𝑈

2 + 𝑛3𝑈
2 )

≥ (
𝑚1𝐿
2 + 𝑖1𝐿

2 + 𝑛1𝐿
2

+𝑚1𝑈
2 + 𝑖1𝑈

2 + 𝑛1𝑈
2 ) + (

𝑚2𝐿
2 + 𝑖2𝐿

2 + 𝑛2𝐿
2

+𝑚2𝑈
2 + 𝑖2𝑈

2 + 𝑛2𝑈
2 ) 

Clearly 𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀1(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀1(𝒫1, 𝒫2) 

Similarly, 𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀1(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀1(𝒫2, 𝒫3) 

Similarly, all the properties can be proved for 𝑡 = 2,3,4. 
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2.1.5.5. Definition  

For any two IvPFNs 𝒫1 and 𝒫2, some generalized dice SMs between these IvPFNs are 

defined as  

𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀1(𝒫1, 𝒫2)

=
1

𝑘
∑

(
𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) + 𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗)
)

𝜆(

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗)

+𝑛1𝐿
2 (𝑥𝑗) +𝑚1𝑈

2 (𝑥𝑗) +

𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

) + (1 − 𝜆)(

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗)

+𝑛2𝐿
2 (𝑥𝑗) + 𝑚2𝑈

2 (𝑥𝑗)

+𝑖2𝑈
2 (𝑥𝑗) + 𝑛2𝑈

2 (𝑥𝑗)

)

𝑘

𝑗=1

 

𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀2(𝒫1, 𝒫2)

=
1

𝑘
∑

(
𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗) + 𝑟1𝐿(𝑥𝑗)𝑟2𝐿(𝑥𝑗)

+𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) + 𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗) + 𝑟1𝑈(𝑥𝑗)𝑟2𝑈(𝑥𝑗)
)

𝜆 (

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑟1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) +

𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗) + 𝑟1𝑈
2 (𝑥𝑗)

) + (1 − 𝜆)(

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗) + 𝑛2𝐿
2 (𝑥𝑗)

+𝑟2𝐿
2 (𝑥𝑗) + 𝑚2𝑈

2 (𝑥𝑗) +

𝑖2𝑈
2 (𝑥𝑗) + 𝑛2𝑈

2 (𝑥𝑗) + 𝑟2𝑈
2 (𝑥𝑗)

)

𝑘

𝑗=1

 

𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀3(𝒫1, 𝒫2)

=

∑ (
𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) + 𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗)
)𝑘

𝑗=1

𝜆∑ (

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗)

+𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) +

𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

)𝑘
𝑗=1 + (1 − 𝜆)∑ (

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗)

+𝑛2𝐿
2 (𝑥𝑗) + 𝑚2𝑈

2 (𝑥𝑗) +

𝑖2𝑈
2 (𝑥𝑗) + 𝑛2𝑈

2 (𝑥𝑗)

)𝑘
𝑗=1

 

𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀4(𝒫1, 𝒫2)

=

∑ (

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑟1𝐿(𝑥𝑗)𝑟2𝐿(𝑥𝑗) + 𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) +

𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗) + 𝑟1𝑈(𝑥𝑗)𝑟2𝑈(𝑥𝑗)

)𝑘
𝑗=1

𝜆∑

(

 
 

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗)

+𝑛1𝐿
2 (𝑥𝑗) + 𝑟1𝐿

2 (𝑥𝑗)

+𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗)

+𝑛1𝑈
2 (𝑥𝑗) + 𝑟1𝑈

2 (𝑥𝑗))

 
 

𝑘
𝑗=1 + (1 − 𝜆)∑

(

 
 

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗)

+𝑛2𝐿
2 (𝑥𝑗) + 𝑟2𝐿

2 (𝑥𝑗)

+𝑚2𝑈
2 (𝑥𝑗) + 𝑖2𝑈

2 (𝑥𝑗)

+𝑛2𝑈
2 (𝑥𝑗) + 𝑟2𝑈

2 (𝑥𝑗))

 
 

𝑘
𝑗=1

 

Where 0 ≤ 𝜆 ≤ 1. 
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2.1.5.6. Theorem  

For any three IvPFNs 𝒫1, 𝒫2 and 𝒫3 then all IvPFGDSMs satisfy the following 

properties for 𝑡 = 1,2,3,4: 

i. 0 ≤ 𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) ≤ 1. 

ii. 𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) = 𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀𝑡(𝒫2, 𝒫1). 

iii. For 𝒫1 = 𝒫2, 𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) = 1. 

iv. Consider 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, then 𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫3) ≤

𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) and 𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫3) ≤

𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀𝑡(𝒫2, 𝒫3). 

Proof: (i) As membership, abstinence and non-membership of both IvPFNs belong to 

[0, 1], so it is obvious that 𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀1(𝒫1, 𝒫2) belongs to [0, 1]. 

(ii) Holds trivially. 

(iii) If 𝒫1 = 𝒫2 then 𝑚1𝐿 = 𝑚2𝐿, 𝑚1𝑈 = 𝑚2𝑈, 𝑖1𝐿 = 𝑖2𝐿, 𝑖1𝑈 = 𝑖2𝑈, 𝑛1𝐿 = 𝑛2𝐿 and 

𝑛1𝑈 = 𝑛2𝑈 

Then, 

𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀1(𝒫1, 𝒫2)

=
1

𝑘
∑

(
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

)

𝜆(

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗)

+𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) +

𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

) + (1 − 𝜆)(

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗)

+𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗)

+𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

)

𝑘

𝑗=1

 

=
1

𝑘
∑

(
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

)

(

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗)

+𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) +

𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

)

𝑘

𝑗=1

 

=
1

𝑘
𝑘 = 1 

(iv) For 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, 𝑚1𝐿 ≤ 𝑚2𝐿 ≤ 𝑚3𝐿 also 𝑚1𝑈 ≤ 𝑚2𝑈 ≤ 𝑚3𝑈 

Similarly, 𝑖1𝐿 ≤ 𝑖2𝐿 ≤ 𝑖3𝐿, 𝑖1𝑈 ≤ 𝑖2𝑈 ≤ 𝑖3𝑈, 𝑛1𝐿 ≥ 𝑛2𝐿 ≥ 𝑛3𝐿 and 𝑛1𝑈 ≥ 𝑛2𝑈 ≥ 𝑛3𝑈 
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Now, 

(
𝑚1𝐿𝑚3𝐿 + 𝑖1𝐿𝑖3𝐿 + 𝑛1𝐿𝑛3𝐿

+𝑚1𝑈𝑚3𝑈 + 𝑖1𝑈𝑖3𝑈 + 𝑛1𝑈𝑛3𝑈
) ≤ (

𝑚1𝐿𝑚2𝐿 + 𝑖1𝐿𝑖2𝐿 + 𝑛1𝐿𝑛2𝐿
+𝑚1𝑈𝑚2𝑈 + 𝑖1𝑈𝑖2𝑈 + 𝑛1𝑈𝑛2𝑈

) 

And  

𝜆 (

𝑚1𝐿
2 + 𝑖1𝐿

2

+𝑛1𝐿
2 +𝑚1𝑈

2 +

𝑖1𝑈
2 + 𝑛1𝑈

2

) + (1 − 𝜆)(

𝑚3𝐿
2 + 𝑖3𝐿

2

+𝑛3𝐿
2 +𝑚3𝑈

2

+𝑖3𝑈
2 + 𝑛3𝑈

2

)

≥ 𝜆(

𝑚1𝐿
2 + 𝑖1𝐿

2

+𝑛1𝐿
2 +𝑚1𝑈

2 +

𝑖1𝑈
2 + 𝑛1𝑈

2

) + (1 − 𝜆)(

𝑚2𝐿
2 + 𝑖2𝐿

2

+𝑛2𝐿
2 +𝑚2𝑈

2

+𝑖2𝑈
2 + 𝑛2𝑈

2

) 

So, 𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫2)  

Similarly, 𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝐺𝐷𝑆𝑀𝑡(𝒫2, 𝒫3) 

2.1.5.7. Definition  

For any two IvPFNs 𝒫1 and 𝒫2, some weighted generalized dice SMs between IvPFNs 

are defined as  

𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀1(𝒫1, 𝒫2)

=∑𝑤𝑗

(
𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) + 𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗)
)

𝜆(

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗)

+𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) +

𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

) + (1 − 𝜆)(

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗)

+𝑛2𝐿
2 (𝑥𝑗) + 𝑚2𝑈

2 (𝑥𝑗) +

𝑖2𝑈
2 (𝑥𝑗) + 𝑛2𝑈

2 (𝑥𝑗)

)

𝑘

𝑗=1

 

𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀2(𝒫1, 𝒫2)

=∑𝑤𝑗

(

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑟1𝐿(𝑥𝑗)𝑟2𝐿(𝑥𝑗) +𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) +

𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗) + 𝑟1𝑈(𝑥𝑗)𝑟2𝑈(𝑥𝑗)

)

𝜆

(

 
 

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗)

+𝑛1𝐿
2 (𝑥𝑗) + 𝑟1𝐿

2 (𝑥𝑗)

+𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗)

+𝑛1𝑈
2 (𝑥𝑗) + 𝑟1𝑈

2 (𝑥𝑗))

 
 
+ (1 − 𝜆)

(

 
 

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗)

+𝑛2𝐿
2 (𝑥𝑗) + 𝑟2𝐿

2 (𝑥𝑗)

+𝑚2𝑈
2 (𝑥𝑗) + 𝑖2𝑈

2 (𝑥𝑗)

+𝑛2𝑈
2 (𝑥𝑗) + 𝑟2𝑈

2 (𝑥𝑗))

 
 

𝑘

𝑗=1
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𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀3(𝒫1, 𝒫2)

=

∑ 𝑤𝑗
2 (

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) + 𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗)
)𝑘

𝑗=1

𝜆∑ 𝑤𝑗
2(

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗)

+𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗)

+𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

)𝑘
𝑗=1 + (1 − 𝜆)∑ 𝑤𝑗

2(

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗)

+𝑛2𝐿
2 (𝑥𝑗) + 𝑚2𝑈

2 (𝑥𝑗)

+𝑖2𝑈
2 (𝑥𝑗) + 𝑛2𝑈

2 (𝑥𝑗)

)𝑘
𝑗=1

 

𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀4(𝒫1, 𝒫2)

=

∑ 𝑤𝑗
2(

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗)

+𝑟1𝐿(𝑥𝑗)𝑟2𝐿(𝑥𝑗) + 𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) +

𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗) + 𝑟1𝑈(𝑥𝑗)𝑟2𝑈(𝑥𝑗)

)𝑘
𝑗=1

𝜆∑ 𝑤𝑗
2

(

 
 

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗)

+𝑛1𝐿
2 (𝑥𝑗) + 𝑟1𝐿

2 (𝑥𝑗)

+𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗)

+𝑛1𝑈
2 (𝑥𝑗) + 𝑟1𝑈

2 (𝑥𝑗))

 
 

𝑘
𝑗=1 + (1 − 𝜆)∑ 𝑤𝑗

2

(

 
 

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗)

+𝑛2𝐿
2 (𝑥𝑗) + 𝑟2𝐿

2 (𝑥𝑗)

+𝑚2𝑈
2 (𝑥𝑗) + 𝑖2𝑈

2 (𝑥𝑗)

+𝑛2𝑈
2 (𝑥𝑗) + 𝑟2𝑈

2 (𝑥𝑗))

 
 

𝑘
𝑗=1

 

Where WV 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 have a condition that for 𝑗 = 1,2, … , 𝑘 𝑤𝑗 ∈ [0,1] and 

∑ 𝑤𝑗
𝑘
𝑗=1 = 1. 

2.1.5.8. Theorem  

For any three IvPFNs 𝒫1, 𝒫2 and 𝒫3, all IvPFWGDSMs satisfy the following properties 

for 𝑡 = 1,2,3,4: 

i. 0 ≤ 𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) ≤ 1. 

ii. 𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) = 𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀𝑡(𝒫2, 𝒫1) 

iii. For 𝒫1 = 𝒫2, 𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) = 1. 

iv. Consider 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, then 𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫3) ≤

𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫2) and 𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫3) ≤

𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀𝑡(𝒫2, 𝒫3) 

Proof: (i) As membership, abstinence and non-membership of both IvPFNs belong to 

[0, 1], so it is obvious that 𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀1(𝒫1, 𝒫2) belongs to [0, 1]. 

(ii) Holds trivially. 

(iii) If 𝒫1 = 𝒫2 then 𝑚1𝐿 = 𝑚2𝐿, 𝑚1𝑈 = 𝑚2𝑈, 𝑖1𝐿 = 𝑖2𝐿, 𝑖1𝑈 = 𝑖2𝑈, 𝑛1𝐿 = 𝑛2𝐿 and 

𝑛1𝑈 = 𝑛2𝑈 
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Then, 

𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀1(𝒫1, 𝒫2)

=∑𝑤𝑗

(
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

)

𝜆(

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗)

+𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) +

𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

) + (1 − 𝜆)(

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗)

+𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗)

+𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

)

𝑘

𝑗=1

 

=∑𝑤𝑗

(
𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗) + 𝑛1𝐿
2 (𝑥𝑗)

+𝑚1𝑈
2 (𝑥𝑗) + 𝑖1𝑈

2 (𝑥𝑗) + 𝑛1𝑈
2 (𝑥𝑗)

)

(

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗)

+𝑛1𝐿
2 (𝑥𝑗) + 𝑚1𝑈

2 (𝑥𝑗) +

𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

)

𝑘

𝑗=1

 

=∑𝑤𝑗

𝑘

𝑗=1

= 1 

(iv) For 𝒫1 ⊆ 𝒫2 ⊆ 𝒫3, 𝑚1𝐿 ≤ 𝑚2𝐿 ≤ 𝑚3𝐿 also 𝑚1𝑈 ≤ 𝑚2𝑈 ≤ 𝑚3𝑈 

Similarly, 𝑖1𝐿 ≤ 𝑖2𝐿 ≤ 𝑖3𝐿, 𝑖1𝑈 ≤ 𝑖2𝑈 ≤ 𝑖3𝑈, 𝑛1𝐿 ≥ 𝑛2𝐿 ≥ 𝑛3𝐿 and 𝑛1𝑈 ≥ 𝑛2𝑈 ≥ 𝑛3𝑈 

Now, 

(
𝑚1𝐿𝑚3𝐿 + 𝑖1𝐿𝑖3𝐿 + 𝑛1𝐿𝑛3𝐿

+𝑚1𝑈𝑚3𝑈 + 𝑖1𝑈𝑖3𝑈 + 𝑛1𝑈𝑛3𝑈
) ≤ (

𝑚1𝐿𝑚2𝐿 + 𝑖1𝐿𝑖2𝐿 + 𝑛1𝐿𝑛2𝐿
+𝑚1𝑈𝑚2𝑈 + 𝑖1𝑈𝑖2𝑈 + 𝑛1𝑈𝑛2𝑈

) 

And  

𝜆 (

𝑚1𝐿
2 + 𝑖1𝐿

2

+𝑛1𝐿
2 +𝑚1𝑈

2 +

𝑖1𝑈
2 + 𝑛1𝑈

2

) + (1 − 𝜆)(

𝑚3𝐿
2 + 𝑖3𝐿

2

+𝑛3𝐿
2 +𝑚3𝑈

2

+𝑖3𝑈
2 + 𝑛3𝑈

2

)

≥ 𝜆(

𝑚1𝐿
2 + 𝑖1𝐿

2

+𝑛1𝐿
2 +𝑚1𝑈

2 +

𝑖1𝑈
2 + 𝑛1𝑈

2

) + (1 − 𝜆)(

𝑚2𝐿
2 + 𝑖2𝐿

2

+𝑛2𝐿
2 +𝑚2𝑈

2

+𝑖2𝑈
2 + 𝑛2𝑈

2

) 

So, 𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫2)  

Similarly, 𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀𝑡(𝒫1, 𝒫3) ≤ 𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀𝑡(𝒫2, 𝒫3) 
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2.2. Applications for Strategy Decision Making and Mineral Fields 

Recognition 

In this section, applications for strategy decision making and mineral fields 

recognition are developed with the help of numerical examples that show the reliability 

of proposed SMs. 

2.2.1. Numerical Example for Strategy Decision Making 

A company wants to launch a new product and board of governors have to decide one 

strategy. For this purpose, there are three strategies to be selected shown as follows. 

1. 𝑔1: Make a product for rich persons 

2. 𝑔2: Make a product for every persons 

3. 𝑔3: Make a product for poor persons 

In order to do the best selection, it is necessary to compare these three strategies with 

popular product in the existing market, so we give a best strategy 𝑔: a popular product 

in the existing market. 

In addition, in order to evaluate these strategies, there are the following five attributes 

(which WV = (0.25,0.2,0.15,0.18,0.22)𝑇 ) to be used. 

1. 𝑆1: Risk of loss 

2. 𝑆2: Barriers in the development of business 

3. 𝑆3: Impact on society 

4. 𝑆4: Impact on environment 

5. 𝑆6: Growth analysis 

The decision maker gives the evaluation values for strategies according to attributes 

which are shown in Table 3. 

  Table 3 Decision values for Strategy Decision Making 

 𝑔1 𝑔2 𝑔3 𝑔 

𝑆1 

(

[0.26,0.31],
[0.12,0.24],
[0.21,0.39]

) (

[0.32,0.37],
[0.15,0.28],
[0.05,0.12]

) (

[0.23,0.46],
[0.1,0.15],
[0.31,0.36]

) (

[0.05,0.1],
[0.18,0.29],
[0.43,0.57]

) 
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𝑆2 

(

[0.25,0.46],
[0.03,0.13],
[0.17,0.23]

) (

[0.24,0.35],
[0.09,0.17],
[0.37,0.47]

) (

[0.41,0.56],
[0.03,0.09],
[0.14,0.27]

) (

[0.45,0.53],
[0.1,0.17],
[0.01,0.13]

) 

𝑆3 

(

[0.08,0.26],
[0.16,0.37],
[0.02,0.29]

) (

[0.25,0.31],
[0.21,0.29],
[0.3,0.39]

) (

[0.07,0.16],
[0.24,0.32],
[0.47,0.51]

) (

[0.23,0.41],
[0.07,0.17],
[0.11,0.26]

) 

𝑆4 

(

[0.2,0.4],
[0.1,0.3],
[0.1,0.2]

) (

[0.14,0.25],
[0.13,0.19],
[0.41,0.53]

) (

[0.17,0.21],
[0.07,0.14],
[0.51,0.61]

) (

[0.14,0.28],
[0.12,0.24],
[0.06,0.36]

) 

𝑆5 

(

[0.48,0.57],
[0.22,0.3],
[0.0,0.07]

) (

[0.31,0.41],
[0.02,0.09],
[0.39,0.47]

) (

[0.35,0.39],
[0.11,0.23],
[0.06,0.21]

) (

[0.19,0.31],
[0.04,0.08],
[0.49,0.59]

) 

 

The SM of three alternatives𝑔1, 𝑔2and𝑔3with 𝑔 with respect to WV 𝑤 =

(0.25,0.2,0.15,0.18,0.22)𝑇 are calculated by using the formulas of SMs, which are 

shown in Table 4. 

 

 

Table 4 Similarity Measures for Strategy Decision Making 

SM’s (𝑔1, 𝑔) (𝑔2, 𝑔) (𝑔3, 𝑔) 

𝐼𝑣𝑃𝐹𝑊𝐶𝑆𝑀1 0.7961 0.7794 0.7898 

𝐼𝑣𝑃𝐹𝑊𝐶𝑆𝑀2 0.8341 0.7811 0.7758 

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀1 0.8931 0.8720 0.8416 

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀2 0.6643 0.7347 0.6754 

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀3 0.8931 0.8551 0.8404 

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀4 0.6101 0.5558 0.4932 

𝐼𝑣𝑃𝐹𝑊𝐶𝑡𝑆𝑀1 0.6574 0.6195 0.5695 

𝐼𝑣𝑃𝐹𝑊𝐶𝑡𝑆𝑀2 0.6254 0.5909 0.5679 

𝐼𝑣𝑃𝐹𝑊𝑆𝑡𝑆𝑀1 0.7111 0.6576 0.6405 
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𝐼𝑣𝑃𝐹𝑊𝐺𝑆𝑀1 0.7843 0.7937 0.8168 

𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀1 0.7886 0.7621 0.7625 

𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀2 0.8317 0.7791 0.7744 

𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀3 0.7396 0.7592 0.7677 

𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀4 0.2772 0.2166 0.2738 

𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀1 0.7537 0.7948 0.8021 

𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀2 0.8187 0.7477 0.7578 

𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀3 0.6997 0.7457 0.7665 

𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀4 0.2716 0.2078 0.2668 

 

From Table 4, we can know the different similarity definitions can get the different 

SMs, however, in 18 SMs, there are 13 SMs in which (𝑔1, 𝑔)is the biggest, there are 

one SM in which (𝑔2, 𝑔)is the biggest, and there are four SMs in which (𝑔3, 𝑔)is the 

biggest. 

So we can get g1 is best option for company is to launch product for rich persons. 

2.2.2. Numerical Example for Mineral Fields Recognition 

Let us consider three kinds of mineral fields 𝑔1, 𝑔2 and 𝑔3. Each of them is featured by 

five minerals {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5} and the WV of minerals is (0.25,0.2,0.15,0.18,0.22)𝑇 .  

 Now consider an existing best mineral field 𝑔 and we have to check that which 

field is most similar to 𝑔. Experts evaluate each field under the consideration of five 

minerals as listed in Table 5. 

Table 5 Decision Values for Mineral Fields Recognition 

 𝑔1 𝑔2 𝑔3 𝑔 

𝑠1 

(

[0.37,0.49],
[0.03,0.11],
[0.34,0.40]

) (

[0.23,0.33],
[0.13,0.20],
[0.11,0.19]

) (

[0.12,0.35],
[0.07,0.18],
[0.22,0.32]

) (

[0.20,0.28],
[0.07,0.15],
[0.31,0.50]

) 
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𝑠2 

(

[0.07,0.23],
[0.11,0.29],
[0.21,0.33]

) (

[0.13,0.31],
[0.02,0.13],
[0.22,0.44]

) (

[0.26,0.44],
[0.02,0.08],
[0.16,0.27]

) (

[0.33,0.51],
[0.02,0.17],
[0.20,0.21]

) 

𝑠3 

(

[0.27,0.36],
[0.09,0.19],
[0.13,0.18]

) (

[0.09,0.19],
[0.17,0.31],
[0.22,0.36]

) (

[0.14,0.19],
[0.21,0.32],
[0.36,0.41]

) (

[0.17,0.37],
[0.04,0.14],
[0.22,0.36]

) 

𝑠4 

(

[0.09,0.43],
[0.12,0.21],
[0.14,0.35]

) (

[0.12,0.21],
[0.08,0.13],
[0.24,0.49]

) (

[0.13,0.19],
[0.08,0.22],
[0.48,0.58]

) (

[0.12,0.24],
[0.11,0.21],
[0.36,0.49]

) 

𝑠5 

(

[0.16,0.48],
[0.14,0.30],
[0.01,0.11]

) (

[0.13,0.34],
[0.01,0.23],
[0.31,0.42]

) (

[0.28,0.38],
[0.10,0.20],
[0.14,0.40]

) (

[0.15,0.26],
[0.09,0.17],
[0.43,0.56]

) 

 

The SMs of three alternatives with 𝑔 with respect to WV 𝑤 =

(0.25,0.2,0.15,0.18,0.22)𝑇 are calculated by using the formulas of SMs, which are 

shown in Table 6. 

Table 6 Similarity Measures for Mineral Fields Recognition 

SM’s (𝑔1, 𝑔) (𝑔2, 𝑔) (𝑔3, 𝑔) 

𝐼𝑣𝑃𝐹𝑊𝐶𝑆𝑀1 0.8154 0.9028 0.9382 

𝐼𝑣𝑃𝐹𝑊𝐶𝑆𝑀2 0.8413 0.9100 0.9255 

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀1 0.8983 0.9436 0.9565 

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀2 0.7963 0.8998 0.9112 

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀3 0.8963 0.9342 0.9472 

𝐼𝑣𝑃𝐹𝑊𝐶𝑠𝑆𝑀4 0.6449 0.8118 0.8305 

𝐼𝑣𝑃𝐹𝑊𝐶𝑡𝑆𝑀1 0.6468 0.7273 0.7607 

𝐼𝑣𝑃𝐹𝑊𝐶𝑡𝑆𝑀2 0.6093 0.6986 0.7379 

𝐼𝑣𝑃𝐹𝑊𝑆𝑡𝑆𝑀1 0.6911 0.7701 0.7952 

𝐼𝑣𝑃𝐹𝑊𝐺𝑆𝑀1 0.7426 0.7702 0.8132 
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𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀1 0.8030 0.8877 0.9252 

𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀2 0.8396 0.9092 0.9244 

𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀3 0.8010 0.8902 0.9252 

𝐼𝑣𝑃𝐹𝑊𝐷𝑆𝑀4 0.3039 0.2822 0.3195 

𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀1 0.7736 0.8122 0.8990 

𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀2 0.8584 0.9129 0.9260 

𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀3 0.7702 0.8067 0.8851 

𝐼𝑣𝑃𝐹𝑊𝐺𝐷𝑆𝑀4 0.3122 0.2832 0.3200 

 

  From Table 6, we can obtain that the 𝑔3 is most similar to 𝑔, so we can select the 𝑔3. 

2.3. Advantages 

In this section, we explain the advantages of the proposed SMs. 

2.3.1. Some special cases 

We prove the generalization of proposed works. For this, we consider two 

IvPFNs 𝒫1 and 𝒫2 

𝐼𝑣𝑃𝐹𝐶𝑆𝑀1(𝒫1, 𝒫2)

=
1

𝑘
∑

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑖1𝐿(𝑥𝑗)𝑖2𝐿(𝑥𝑗)

+𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗) + 𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗)

+𝑖1𝑈(𝑥𝑗)𝑖2𝑈(𝑥𝑗) + 𝑛1𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗)

√

𝑚1𝐿
2 (𝑥𝑗) + 𝑖1𝐿

2 (𝑥𝑗)

+𝑛1𝐿
2 (𝑥𝑗) +𝑚1𝑈

2 (𝑥𝑗)

+𝑖1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)

√

𝑚2𝐿
2 (𝑥𝑗) + 𝑖2𝐿

2 (𝑥𝑗)

+𝑛2𝐿
2 (𝑥𝑗) + 𝑚2𝑈

2 (𝑥𝑗)

+𝑖2𝑈
2 (𝑥𝑗) + 𝑛2𝑈

2 (𝑥𝑗)

𝑘

𝑗=1

 

 

 

 

(2.3.1.1) 

 

1. When lower and upper value of intervals becomes equal, then the equation 

(2.3.1.1) becomes SM for PFSs. 
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𝑃𝐹𝐶𝑆𝑀1(𝒫1, 𝒫2)

=
1

𝑘
∑

𝑚1(𝑥𝑗)𝑚2(𝑥𝑗) + 𝑖1(𝑥𝑗)𝑖2(𝑥𝑗) + 𝑛1(𝑥𝑗)𝑛2(𝑥𝑗)

√𝑚1
2(𝑥𝑗) + 𝑖1

2(𝑥𝑗) + 𝑛1
2(𝑥𝑗)√𝑚2

2(𝑥𝑗) + 𝑖2
2(𝑥𝑗) + 𝑛2

2(𝑥𝑗)

𝑘

𝑗=1

 

2. For 𝑖1 = [0,0] and 𝑖2 = [0,0], the equation (2.3.1.1) becomes SM for interval 

valued intuitionistic fuzzy number. 

𝐼𝑣𝐼𝐹𝐶𝑆𝑀1(𝒫1, 𝒫2) =
1

𝑘
∑

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑛1𝐿(𝑥𝑗)𝑛2𝐿(𝑥𝑗) +

𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗) + 𝑛2𝑈(𝑥𝑗)𝑛2𝑈(𝑥𝑗)

√
𝑚1𝐿
2 (𝑥𝑗) + 𝑛1𝐿

2 (𝑥𝑗)

+𝑚1𝑈
2 (𝑥𝑗) + 𝑛1𝑈

2 (𝑥𝑗)
√
𝑚2𝐿
2 (𝑥𝑗) + 𝑛2𝐿

2 (𝑥𝑗)

+𝑚2𝑈
2 (𝑥𝑗) + 𝑛2𝑈

2 (𝑥𝑗)

𝑘

𝑗=1

 

3. For 𝑖1 = [0,0] and 𝑖2 = [0,0] and the upper and lower values of membership 

and non-membership intervals become equal, then the equation (2.3.1.1) 

becomes SM for intuitionistic fuzzy number 

𝐼𝐹𝐶𝑆𝑀1(𝒫1, 𝒫2) =
1

𝑘
∑

𝑚1(𝑥𝑗)𝑚2(𝑥𝑗) + 𝑛1(𝑥𝑗)𝑛2(𝑥𝑗)

√𝑚1
2(𝑥𝑗) + 𝑛1

2(𝑥𝑗)√𝑚2
2(𝑥𝑗) + 𝑛2

2(𝑥𝑗)

𝑘

𝑗=1

 

4. For 𝑖1 = [0,0], 𝑛1 = [0,0] and 𝑖2 = [0,0], 𝑛2 = [0,0], the equation (2.3.1.1) 

becomes SM for IvFN. 

𝐼𝑣𝐹𝐶𝑆𝑀1(𝒫1, 𝒫2) =
1

𝑘
∑

𝑚1𝐿(𝑥𝑗)𝑚2𝐿(𝑥𝑗) + 𝑚1𝑈(𝑥𝑗)𝑚2𝑈(𝑥𝑗)

√𝑚1𝐿
2 (𝑥𝑗) +𝑚1𝑈

2 (𝑥𝑗)√𝑚2𝐿
2 (𝑥𝑗) + 𝑚2𝑈

2 (𝑥𝑗)

𝑘

𝑗=1

 

5. For 𝑖1 = [0,0], 𝑛1 = [0,0] and 𝑖2 = [0,0], 𝑛2 = [0,0] and the upper and lower 

values of membership intervals become equal, then the equation (2.3.1.1) 

becomes SM for FN  

𝐹𝐶𝑆𝑀1(𝒫1, 𝒫2) =
1

𝑘
∑

𝑚1(𝑥𝑗)𝑚2(𝑥𝑗)

√𝑚1
2(𝑥𝑗) + 𝑚2

2(𝑥𝑗)

𝑘

𝑗=1

 

Similarly, we can reduce all other similarities in interval-valued intuitionistic, 

intuitionistic and picture fuzzy environment. 

So, we can know the proposed SMs are more general than some existing SMs. 
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2.3.2. Comparative Study 

The main advantage of proposed works is that the existing SMs cannot handle 

the information given in IvPFNs, but they can handle the information given in 

intuitionistic, interval-valued intuitionistic and picture fuzzy environment. Hence the 

proposed SMs are more generalized than those of existing SMs.  

2.3.2.1. Example 

Here, an example for interval-valued intuitionistic fuzzy information has been taken 

from [29] and solved by the proposed SMs. A company wants to invest its capital in 

some business and they have four alternatives {𝑔1, 𝑔2, 𝑔3, 𝑔4} and must select one from 

these alternatives. So They evaluate these alternatives on the base of three attributes 

{𝑠1, 𝑠2, 𝑠3} with a WV (0.35,0.25,0.40)𝑇, the evaluation values are shown in table 7.  

Now we can use the SM of each alternative with the ideal alternative to select the 

best one. The given data is listed in Table 7. 

Table 7 Decision Makers for Comparative Study 

 s1 s2 s3 

g1 

(

[0.4,0.5],
[0.0,0.0]
[0.3,0.4]

) (

[0.4,0.6],
[0.0,0.0]
[0.2,0.4]

) (

[0.1,0.3],
[0.0,0.0]
[0.5,0.6]

) 

g2 

(

[0.6,0.7],
[0.0,0.0]
[0.2,0.3]

) (

[0.6,0.7],
[0.0,0.0]
[0.2,0.3]

) (

[0.4,0.7],
[0.0,0.0]
[0.1,0.2]

) 

g3 

(

[0.3,0.6],
[0.0,0.0]
[0.3,0.4]

) (

[0.5,0.6],
[0.0,0.0]
[0.3,0.4]

) (

[0.5,0.6],
[0.0,0.0]
[0.1,0.3]

) 

g4 

(

[0.7,0.8],
[0.0,0.0]
[0.1,0.2]

) (

[0.6,0.7],
[0.0,0.0]
[0.1,0.3]

) (

[0.3,0.4],
[0.0,0.0]
[0.1,0.2]

) 

 

By using the above information, the interval-valued intuitionistic fuzzy cosine SM 

(IvIFCSM) can be found as given 

𝐼𝑣𝐼𝐹𝐶𝑆𝑀1(𝑔1, 𝑔) = 0.5645, 
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𝐼𝑣𝐼𝐹𝐶𝑆𝑀1(𝑔2, 𝑔) = 0.8637, 

𝐼𝑣𝐼𝐹𝐶𝑆𝑀1(𝑔3, 𝑔) = 0.7768, 

𝐼𝑣𝐼𝐹𝐶𝑆𝑀1(𝑔4, 𝑔) = 0.7801. 

These results are similar as in [29]. So this proves the effectiveness of the proposed 

work. 
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Chapter 3 

Algorithm for T-Spherical fuzzy multi attribute decision-

making based on improved interactive aggregation 

operators 

The objective of this chapter is to present some new improved aggregation 

operators for the T-SFS, which is an extension of the several existing sets such as IFS, 

PyFS, q-ROPFS and PFS. In it, some new improved operational laws and their 

corresponding properties are studied. Further, based on these laws, we propose some 

geometric aggregation operators and studied their various relationships.  Desirable 

properties as well as some special cases of the proposed operators are studied. Then, 

based on these proposed operators, we present a decision-making approach to solve the 

multi-attribute decision making problems. The reliability of the presented decision-

making method is explored with the help of numerical example and compared the 

proposed results with several prevailing studies result. Finally, the superiority of the 

proposed approach is explained with a counter example to show the advantages of the 

proposed work. 

3.1. Proposed operational laws and aggregation operators  

This section is divided into two subsections. Subsection one presents the 

improved operations laws for the T-SFSs while other presents some improved 

geometric aggregation operators under the T-SFS environment.  

3.1.1. Improved Operational laws 

In this subsection, we present some new improved operations laws by 

incorporating the features of the degree of refusal into the analysis.  

3.1.1.1. Definition  

Let 𝒯₁ = (𝑚1, 𝑖1, 𝑛1) and 𝒯₂ = (𝑚2, 𝑖2, 𝑛2) be two T-SFNs. Then, the proposed 

operational laws are defined as  
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1. 𝒯1⊗𝑖 𝒯₂ =

(
√(1 − 𝑛1

𝑡)(1 − 𝑛2
𝑡 ) − (1 − 𝑚1

𝑡 − 𝑖1
𝑡 − 𝑛1

𝑡)(1 − 𝑚2
𝑡 − 𝑖2

𝑡 − 𝑛2
𝑡) − 𝑖1

𝑡𝑖2
𝑡𝑡
,

√1 − (1 − 𝑖1
𝑡)(1 − 𝑖2

𝑡)𝑡
, √1 − (1 − 𝑛1

𝑡)(1 − 𝑛2
𝑡 )

𝑡
) 

2. 𝒯1
𝜏 = (

√(1 − 𝑛1
𝑡)𝜏 − (1 −𝑚1

𝑡 − 𝑖1
𝑡 − 𝑛1

𝑡)𝜏 − (𝑖1
𝑡)𝜏𝑡
,

√1 − (1 − 𝑖1
𝑡)𝜏𝑡
, √1 − (1 − 𝑛1

𝑡)𝜏𝑡
) 

For two T-SFNs 𝒯₁ = (𝑚1, 𝑖1, 𝑛1) and 𝒯₂ = (𝑚2, 𝑖2, 𝑛2), new operations of 

multiplication can be construed from four aspects such as between; 

1. Two non-membership functions of different T-SFNs. 

2. Two membership functions of different T-SFNs. 

3. Membership and non-membership functions of different T-SFNs. 

4. Two neutral functions of different T-SFNs. 

These multiplication rules are of the form: 

1. 𝐸(𝑛1, 𝑛2) = 𝑛1. 𝑛2. Therefore, 𝑛𝒯₁⊗𝒯₂ = √(𝑛1
𝑡 + 𝑛2

𝑡 − 𝑛1
𝑡𝑛2

𝑡)
𝑡

 is considered as 

probability non-membership (PN) function operator i.e. 

𝑃𝑁(𝑛1, 𝑛2) = √𝑛1
𝑡 + 𝑛2

𝑡 − 𝑛1
𝑡𝑛2

𝑡𝑡
 

2. 𝐸(𝑚1, 𝑚2) = (𝑚1 + 𝑖1). (𝑚2 + 𝑖2). Therefore,   

                𝑚𝒯1⊗𝒯2 = √1 − (1 − (𝑚1
𝑡 + 𝑖1

𝑡)(1 − (𝑚2
𝑡 + 𝑖2

𝑡))
𝑡

 is considered as probability 

membership (PM) function operator i.e. 

𝑃𝑀(𝑚1,𝑚2) = √1 − (1 − (𝑚1
𝑡 + 𝑖1

𝑡))(1 − (𝑚2
𝑡 + 𝑖2

𝑡))
𝑡

 

3. 𝐼(𝑛1, 𝑚2) = √(𝑚2
𝑡 + 𝑖2

𝑡)𝑛1
𝑡 . 𝐼(𝑛1, 𝑚2)

𝑡
 is considered as probability heterogeneous 

(PH) function operator i.e. 

𝑃𝐻(𝑛1, 𝑚2) = √𝑚2
𝑡𝑛1

𝑡 + 𝑖2
𝑡𝑛1

𝑡𝑡
 

4. 𝐼(𝑖1, 𝑖2) = 𝑖1. 𝑖2. Therefore, 𝑖𝒯₁⊗𝒯₂ = √(𝑖1
𝑡 + 𝑖2

𝑡 − 𝑖1
𝑡𝑖2
𝑡). 𝑖𝒯₁⊗𝒯₂

𝑡
 is considered as 

probability neutral (PNe) function operator, i.e. 

𝑃𝑁𝑒(𝑖1, 𝑖2) = √𝑖1
𝑡 + 𝑖2

𝑡 − 𝑖1
𝑡𝑖2
𝑡𝑡
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From the proposed laws, it is observed that the several existing laws can be considered 

as a special case of it. For instance,  

1. For 𝑡 = 2, above operations become valid for SFNs. 

2. For 𝑡 = 1, above operations become valid for PFNs. 

3. For 𝑡 = 2 and 𝑖 = 0, above operations become valid for PyFNs. 

4. For 𝑡 = 1 and 𝑖 = 0, above operations become valid for IFNs. 

Further, it is observed that the above defined PN, PH satisfies the following properties. 

3.1.1.2. Theorem  

Let 𝒯1 = (𝑚1, 𝑖1, 𝑛1), 𝒯2 = (𝑚2, 𝑖2, 𝑛2), 𝒯3 = (𝑚3, 𝑖3, 𝑛3) and 𝒯4 = (𝑚4, 𝑖4, 𝑛4) be four 

T-SFNs. Then, we have 

1. Boundedness: 𝑃𝑁(1,1) = 1, 𝑃𝑁(0,0) = 0,0 ≤ 𝑃𝑁(𝑛1, 𝑛2) ≤ 1. 

2. Monotonicity: If 𝑛1 ≤ 𝑛3 and 𝑛2 ≤ 𝑛4. Then 𝑃𝑁(𝑛1, 𝑛2) ≤ 𝑃𝑁(𝑛3, 𝑛4). 

3. Commutativity: 𝑃𝑁(𝑛1, 𝑛2) = 𝑃𝑁(𝑛2, 𝑛1). 

Proof:  

1. For two T-SFNs, 𝒯1 and 𝒯2, and by definition of PN, we have 𝑃𝑁(𝑛1, 𝑛2) =

√𝑛1
𝑡 + 𝑛2

𝑡 − 𝑛1
𝑡𝑛2

𝑡𝑡
. Thus, we have PN(1,1) =1 and PN(0,0)=0. Further, since 𝑛1, 𝑛2 ∈

[0,1] and Zt which implies that 𝑛1
𝑡 + 𝑛2

𝑡 − 𝑛1
𝑡𝑛2

𝑡 = 1 − (1 − 𝑛1
𝑡)(1 − 𝑛2

𝑡 ) ≤ 1. 

Also, 𝑃𝑁(𝑛1, 𝑛2) ≥ 0. Therefore, 0 ≤ 𝑃𝑁(𝑛1, 𝑛2) ≤ 1. 

2. Since 𝑛1 ≤ 𝑛3 and 𝑛2 ≤ 𝑛4. Thus for any Zt , we get 1 − 𝑛1
𝑡 ≥ 1 − 𝑛3

𝑡  and 

1 − 𝑛2
𝑡 ≥ 1 − 𝑛4

𝑡  and hence 1 − (1 − 𝑛1
𝑡)(1 − 𝑛2

𝑡 ) ≤ 1 − (1 − 𝑛3
𝑡 )(1 − 𝑛4

𝑡 ). Thus,  

𝑃𝑁(𝑛1, 𝑛2) ≤ 𝑃𝑁(𝑛3, 𝑛4) holds. 

3. Holds trivial. 

3.1.1.3. Theorem  

Let 𝒯1 = (𝑚1, 𝑖1, 𝑛1), 𝒯2 = (𝑚2, 𝑖2, 𝑛2), 𝒯3 = (𝑚3, 𝑖3, 𝑛3) and 𝒯4 = (𝑚4, 𝑖4, 𝑛4) be four 

T-SFN. Then 

1. Boundedness: 𝑃𝐻(1,0,1) = 1, 𝑃𝐻(0,0,0) = 0,0 ≤ 𝑃𝐻(𝑚1, 𝑖1, 𝑛1) ≤ 1. 
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2. Monotonicity: If 𝑚1 ≤ 𝑚3, 𝑖1 ≤ 𝑖3 𝑎𝑛𝑑 𝑛2 ≤ 𝑛4. Then 𝑃𝐻(𝑚1, 𝑖1, 𝑛2) ≤

𝑃𝑁(𝑚3, 𝑖3, 𝑛4) and if 𝑛1 ≤ 𝑛3, 𝑖2 ≤ 𝑖4 𝑎𝑛𝑑 𝑚2 ≤ 𝑚4. Then 𝑃𝐻(𝑛1, 𝑖2, 𝑛2) ≤

𝑃𝐻(𝑛3, 𝑖4, 𝑚4) 

3. Commutativity: 𝑃𝐻(𝑚1, 𝑖1, 𝑛1) = 𝑃𝐻(𝑛1, 𝑖1, 𝑚1). 

3.1.1.4. Theorem  

If 𝒯1 and 𝒯2be two T-SFNs and 0  be a real number, then 𝒯1⊗𝒯2 𝑎𝑛𝑑𝒯1
𝜆 are also 

T-SFNs. 

3.1.1.5. Theorem  

Let 𝒯₁ = (𝑚1, 𝑖1, 𝑛1), 𝒯₂ = (𝑚2, 𝑖2, 𝑛2) be a T-SFNs, 𝜆, 𝜆₁, 𝜆₂ > 0 be real numbers. 

Then we have 

1. 𝒯1⊗𝑖 𝒯2 = 𝒯2⊗𝑖 𝒯₁ 

2. (𝒯1⊗𝑖 𝒯₂)
𝜆 = 𝒯1

𝜆 ⊗𝑖 𝒯2
𝜆 

3. 𝒯1
𝜆1 ⊗𝑖 𝒯1

𝜆2 = 𝒯1
𝜆1+𝜆2. 

3.1.2. Aggregation operators 

In this section, based on the above proposed operational laws, we have proposed 

some series of geometric interactive improved aggregation operators namely, T-

spherical fuzzy weighted geometric interactive averaging (T-SFWGIA) operator, T-

spherical fuzzy ordered weighted geometric interactive averaging (T-SFOWGIA) 

operator and T-spherical fuzzy hybrid geometric interactive averaging (T-SFHGIA) 

operator under the T-SFS environment.  

3.1.2.1. Definition  

For any collection 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗)  (𝑗 = 1,2,3, … , 𝑘) of T-SFNs. If the mapping 

𝑇 − 𝑆𝐹𝑊𝐺𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) =⊗𝑖𝑗=1
𝑘 𝒯

𝑗

𝑤𝑗
 

then 𝑇 − 𝑆𝐹𝑊𝐺𝐼𝐴𝑤 is called T-SFWGIA operator. where 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑘)
𝑇 is the 

WV of 𝒯𝑗  with 𝑤𝑗 ∈ (0,1] and ∑ 𝑤𝑗 = 1𝑘
𝑗=1 . 
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3.1.2.2. Theorem  

For any collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗)  (𝑗 = 1,2,3, … , 𝑘), the aggregated values 

obtained by using Definition 3.1.1.1 is still T-SFNs and is given by  

𝑇 − 𝑆𝐹𝑊𝐺𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √∏(1 − 𝑛𝑗

𝑡)
𝑤𝑗

𝑘

𝑗=1

−∏(1 −𝑚𝑗
𝑡 − 𝑖𝑗

𝑡 − 𝑛𝑗
𝑡)
𝑤𝑗
−∏(𝑖𝑗

𝑡)𝑤𝑗
𝑘

𝑗=1

𝑘

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝑗
𝑡)

𝑘

𝑗=1

𝑤𝑗
𝑡

, √1 −∏(1 − 𝑛𝑗
𝑡)

𝑘

𝑗=1

𝑤𝑗
𝑡

)

 
 
 
 
 

 

Proof: For any collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗)  (𝑗 = 1,2,3, … , 𝑘), we shall proof 

the result by induction on 𝑘. 

For 𝑘 = 1, we have 

 𝑇 − 𝑆𝐹𝑊𝐺𝐼𝐴𝑤(𝒯₁)   =  𝒯1
𝑤1  = (𝑚₁, 𝑖₁, 𝑛₁) 

 = (√(1 − 𝑛1
𝑡)1 − (1 − (𝑚1

𝑡 + 𝑖1
𝑡 + 𝑛1

𝑡))
1
− (𝑖1

𝑡)1
𝑡

, √1 − 1 + (𝑖1
𝑡)¹

𝑡
, √1 − 1 + (𝑛1

𝑡)¹
𝑡

) 

Thus, hold for 𝑘 = 1. Now, result holds for 𝑘 = 𝑙 

𝑇 − 𝑆𝐹𝑊𝐺𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑙)

=

(

 
 
 
 
 √∏(1 − 𝑛𝑗

𝑡)
𝑤𝑗

𝑙

𝑗=1

−∏(1 −𝑚𝑗
𝑡 − 𝑖𝑗

𝑡 − 𝑛𝑗
𝑡)
𝑤𝑗
−∏(𝑖𝑗

𝑡)𝑤𝑗
𝑙

𝑗=1

𝑙

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝑗
𝑡)

𝑙

𝑗=1

𝑤𝑗
𝑡

, √1 −∏(1 − 𝑛𝑗
𝑡)

𝑙

𝑗=1

𝑤𝑗
𝑡

)

 
 
 
 
 

 

Then for 𝑘 = 𝑙 + 1, we have 

𝑇 − 𝑆𝐹𝑊𝐺𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑙+1) =⊗𝑖𝑗=1
𝑙+1 𝒯

𝑗

𝑤𝑗
 

= 𝑇 − 𝑆𝐹𝑊𝐺𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑙) ⊗𝑖 𝒯𝑙+1
𝑤𝑙+1 
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=

(

 
√∏ (1 − 𝑛𝑗

𝑡)
𝑤𝑗𝑙

𝑗=1 −∏ (1 −𝑚𝑗
𝑡 − 𝑖𝑗

𝑡 − 𝑛𝑗
𝑡)
𝑤𝑗
−∏ (𝑖𝑗

𝑡)𝑤𝑗𝑙
𝑗=1

𝑙
𝑗=1

𝑡
,

√1 − ∏ (1 − 𝑖𝑗
𝑡)𝑙

𝑗=1

𝑤𝑗𝑡
, √1 − ∏ (1 − 𝑛𝑗

𝑡)𝑙
𝑗=1

𝑤𝑗𝑡

)

  

 ⊗𝑖

(

 
√(1 − 𝑛𝑗

𝑡)
𝑤𝑗
− (1 −mj

t − ij
t − 𝑛𝑗

𝑡)
wj
− (𝑖𝑗

𝑡)𝑤𝑗
𝑡

,

√1 − (1 − 𝑖𝑗
𝑡)
𝑤𝑗𝑡
, √1 − (1 − 𝑛𝑗

𝑡)
𝑤𝑗𝑡

)

  

=

(

 
 
 
 
 √∏(1 − 𝑛𝑗

𝑡)
𝑤𝑗

𝑙+1

𝑗=1

−∏(1 −𝑚𝑗
𝑡 − 𝑖𝑗

𝑡 − 𝑛𝑗
𝑡)
𝑤𝑗
−∏(𝑖𝑗

𝑡)𝑤𝑗

𝑙+1

𝑗=1

𝑙+1

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝑗
𝑡)

𝑙+1

𝑗=1

𝑤𝑗
𝑡

, √1 −∏(1 − 𝑛𝑗
𝑡)

𝑙+1

𝑗=1

𝑤𝑗
𝑡

)

 
 
 
 
 

 

So, the result holds for 𝑘 = 𝑙 + 1. Therefore, by mathematical induction, result holds 

for all 𝑘 ∈ 𝑍+. 

3.1.2.3. Theorem  

If 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗),  𝑗 = 1, … , 𝑘 be T-SFNs. Then the aggregated value using the T-

SFWGIA operator is also T-SFN. 

Proof: Since 𝒯𝑗 = (𝑚𝑗, 𝑖𝑗 , 𝑛𝑗) be a T-SFN, 𝑗 = 1,… , 𝑘, we have 0 ≤ 𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗 ≤ 1. So 

0 ≤ 𝑚𝑗
𝑡, 𝑖𝑗

𝑡, 𝑛𝑗
𝑡 ≤ 1 and 0 ≤ 𝑚𝑗

𝑡 + 𝑖𝑗
𝑡 + 𝑛𝑗

𝑡 ≤ 1. Then 

0  ≤∏(1 − 𝑛𝑗
𝑡)
𝑤𝑗

𝑘

𝑗=1

−∏(1−𝑚𝑗
𝑡 − 𝑖𝑗

𝑡 − 𝑛𝑗
𝑡)
𝑤𝑗
−∏(𝑖𝑗

𝑡)𝑤𝑗

𝑘

𝑗=1

𝑘

𝑗=1

≤ 1 

0  ≤ 1 −∏(1 − 𝑖𝑗
𝑡)𝑤𝑗

𝑘

𝑗=1

≤ 1 

0  ≤ 1 −∏(1 − 𝑛𝑗
𝑡)𝑤𝑗

𝑘

𝑗=1

≤ 1 

Now 
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√
  
  
  
  
  
  
 

∏(1 − 𝑛𝑗
𝑡)
𝑤𝑗

𝑘

𝑗=1

−∏(1 − (𝑚𝑗
𝑡 + 𝑖𝑗

𝑡 + 𝑛𝑗
𝑡))

𝑤𝑗
−∏(𝑖𝑗

𝑡)𝑤𝑗
𝑘

𝑗=1

𝑘

𝑗=1

+

1 −∏(1 − 𝑖𝑗
𝑡)
𝑤𝑗

𝑘

𝑗=1

+ 1 −∏(1 − 𝑛𝑗
𝑡)
𝑤𝑗 

𝑘

𝑗=1

𝑡

 

= √2 −∏(1 − (𝑚𝑗
𝑡 + 𝑖𝑗

𝑡 + 𝑛𝑗
𝑡))

𝑤𝑗
−∏(𝑖𝑗

𝑡)𝑤𝑗
𝑘

𝑗=1

𝑘

𝑗=1

−∏(1 − 𝑖𝑗
𝑡)
𝑤𝑗

𝑘

𝑗=1

𝑡

∈ [0,1] 

Thus, 𝑇 − 𝑆𝐹𝑊𝐺𝐼𝐴𝑤(𝒯1, … , 𝒯𝑘) is T-SFN. 

Further, it is observed that the proposed operator satisfies certain properties which are 

listed as follows. 

3.1.2.4. Theorem  

If all T-SFNs 𝒯𝑗  (𝑗 = 1,2, … , 𝑘) are equal to 𝒯0 where 𝒯0 is another T-SFN then  

𝑇 − 𝑆𝐹𝑊𝐺𝐼𝐴𝑤(𝒯1, … , 𝒯𝑘) = 𝒯₀ 

Proof: Assume that 𝒯𝑗 = 𝒯₀ = (𝑚₀, 𝑖₀, 𝑛₀) is a T-SFN ∀𝑗. Then, by definition of T-

SFWGIA operator, we have 

𝑇 − 𝑆𝐹𝑊𝐺𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √∏(1 − 𝑛𝑗

𝑡)
𝑤𝑗

𝑘

𝑗=1

−∏(1 − (𝑚𝑗
𝑡 + 𝑖𝑗

𝑡 + 𝑛𝑗
𝑡))

𝑤𝑗
−∏(𝑖𝑗

𝑡)𝑤𝑗
𝑘

𝑗=1

𝑘

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝑗
𝑡)

𝑘

𝑗=1

𝑤𝑗
𝑡

, √1 −∏(1 − 𝑛𝑗
𝑡)

𝑘

𝑗=1

𝑤𝑗
𝑡

)

 
 
 
 
 

 

=

(

 
 √(1 − 𝑛𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1 − (1 − (𝑚𝑗

𝑡 + 𝑖𝑗
𝑡 + 𝑛𝑗

𝑡))
∑ 𝑤𝑗
𝑘
𝑗=1

− (𝑖𝑗
𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

,

 √1 − (1 − 𝑖𝑗
𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

, √1 − (1 − 𝑛𝑗
𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

 )

 
 

 

         = (𝑚₀, 𝑖₀, 𝑛₀) 

              = 𝒯₀ 
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3.1.2.5. Theorem  

If 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) is a T-SFN and 

    𝒯𝐿 = (𝑚𝑎𝑥{0, (𝑚𝑖𝑛(𝑚𝑗 + 𝑖𝑗 + 𝑛𝑗) − 𝑚𝑖𝑛 𝑖𝑗 −𝑚𝑎𝑥 𝑛𝑗)},𝑚𝑖𝑛 𝑖𝑗, 𝑚𝑎𝑥 𝑛𝑗), 

    𝒯𝑈 = ((𝑚𝑎𝑥(𝑚𝑗 + 𝑖𝑗 + 𝑛𝑗) − 𝑚𝑎𝑥 𝑖𝑗 −𝑚𝑖𝑛 𝑛𝑗),𝑚𝑎𝑥 𝑖𝑗 , 𝑚𝑖𝑛 𝑛𝑗). Then, we have 

 𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝑊𝐺𝐼𝐴𝑤(𝒯1, … , 𝒯𝑘) ≤ 𝒯𝑈 

3.1.2.6. Theorem  

For a collection of two different T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) for all 

𝑗 = 1,2, … , 𝑘 which satisfy the following inequalities if 𝑛𝑗 ≥ 𝑛𝑗
′, 𝑖𝑗 ≤ 𝑖𝑗

′ and 𝑚𝑗
𝑡 + 𝑖𝑗

𝑡 +

𝑛𝑗
𝑡 ≤ (𝑚𝑗

′)
𝑡
+ (𝑖𝑗

′)
𝑡
+ (𝑛𝑗

′)
𝑡
 ∀𝑗, then we have  

𝑇 − 𝑆𝐹𝑊𝐺𝐼𝐴𝑤(𝒯₁, 𝒯2, . . . , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝑊𝐺𝐼𝐴𝑤(𝒯1
′, 𝒯2

′, . . . , 𝒯𝑘
′) 

 Proof: Since 𝑛𝑗 ≥ 𝑛𝑗
′, we have 

√1 −∏(1 − 𝑛𝑗
𝑡)

𝑘

𝑗=1

𝑤𝑗
𝑡

≥ √1 −∏(1 − (𝑛𝑗
′)
𝑡
)

𝑘

𝑗=1

𝑤𝑗
𝑡

 

and 𝑖𝑗 ≤ 𝑖𝑗
′, 

√1 −∏(1 − 𝑖𝑗
𝑡)

𝑘

𝑗=1

𝑤𝑗
𝑡

≤ √1 −∏(1 − (𝑖𝑗
′)
𝑡
)

𝑘

𝑗=1

𝑤𝑗
𝑡

 

As, 𝑚𝑗
𝑡 + 𝑖𝑗

𝑡 + 𝑛𝑗
𝑡 ≤ (𝑚𝑗

′)
𝑡
+ (𝑖𝑗

′)
𝑡
+ (𝑛𝑗

′)
𝑡
 ∀𝑗  we have 

(

 
 
 
 
 √∏(1 − 𝑛𝑗

𝑡)
𝑤𝑗

𝑘

𝑗=1

−∏(1 − (𝑚𝑗
𝑡 + 𝑖𝑗

𝑡 + 𝑛𝑗
𝑡))

wj

−∏(𝑖𝑗
𝑡)𝑤𝑗

𝑘

𝑗=1

𝑘

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝑗
𝑡)

𝑘

𝑗=1

𝑤𝑗
𝑡

, √1 −∏(1 − 𝑛𝑗
𝑡)

𝑘

𝑗=1

𝑤𝑗
𝑡

)
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≤

(

 
 
 
 
 √∏(1 − (𝑛𝑗

′)
𝑡
)
𝑤𝑗

𝑘

𝑗=1

−∏(1 − ((𝑚𝑗
′)
𝑡
+ (𝑖𝑗

′)
𝑡
+ (𝑛𝑗

′)
𝑡
))

wj

−∏(𝑖𝑗
′)
𝑡𝑤𝑗

𝑘

𝑗=1

𝑘

𝑗=1

𝑡

,

√1 −∏(1 − (𝑖𝑗
′)
𝑡
)

𝑘

𝑗=1

𝑤𝑗
𝑡

, √1 −∏(1 − (𝑛𝑗
′)
𝑡
)

𝑘

𝑗=1

𝑤𝑗
𝑡

)

 
 
 
 
 

 

Therefore, we have 

 𝑇 − 𝑆𝐹𝑊𝐺𝐼𝐴𝑤(𝒯₁, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝑊𝐺𝐼𝐴𝑤(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

3.1.2.7. Definition  

For any collection 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), (𝑗 = 1,2, , . . . , 𝑘) of T-SFNs. The 𝑇 −

𝑆𝐹𝑂𝑊𝐺𝐼𝐴𝜔: Ω
𝑛 → Ω is a mapping defined as   

𝑇 − 𝑆𝐹𝑂𝑊𝐺𝐼𝐴𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) =⊗𝑖𝑗=1
𝑘 𝒯

𝜎(𝑗)

𝜔𝑗
 

    then 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝐼𝐴𝜔 is called T-SFOWGIA operator, where 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑘)
𝑇 

is the associated WV of 𝒯𝑗  with 𝜔𝑗 ∈ (0,1] and ∑ 𝜔𝑗 = 1𝑘
𝑗=1  and 𝜎 is the permutation 

of {1,2, … , 𝑘} such that 𝜎(𝑗 − 1) ≥ 𝜎(𝑗). 

3.1.2.8. Theorem  

For any collection 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗), (𝑗 = 1,2, . . . , 𝑘) of T-SFNs. Then 

𝑇 − 𝑆𝐹𝑂𝑊𝐺𝐼𝐴𝜔(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √∏(1 − 𝑛𝜎(𝑗)

𝑡 )
𝜔𝑗

𝑘

𝑗=1

−∏(1 − (𝑚𝜎(𝑗)
𝑡 + 𝑖𝜎(𝑗)

𝑡 + 𝑛𝜎(𝑗)
𝑡 ))

𝜔𝑗
−∏(𝑖𝜎(𝑗)

𝑡 )𝜔𝑗
𝑘

𝑗=1

𝑘

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜔𝑗

𝑘

𝑗=1

𝑡

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜔𝑗

𝑘

𝑗=1

𝑡

)

 
 
 
 
 

 

3.1.2.9. Theorem  

If 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) is a T-SFN, 𝑗 = 1, … , 𝑘. Then the aggregated value using the T-

SFOWGIA operator is also T-SFN. 



65 

 

Proof: Since 𝒯𝜎(𝑗) = (𝑚𝜎(𝑗), 𝑖𝜎(𝑗), 𝑛𝜎(𝑗)) be a T-SFN, 𝑗 = 1,2, … , 𝑘, we have 0 ≤

𝑚𝜎(𝑗), 𝑖𝜎(𝑗), 𝑛𝜎(𝑗) ≤ 1. So 0 ≤ 𝑚𝜎(𝑗)
𝑡 , 𝑖𝜎(𝑗)

𝑡 , 𝑛𝜎(𝑗)
𝑡 ≤ 1 and 0 ≤ 𝑚𝜎(𝑗)

𝑡 + 𝑖𝜎(𝑗)
𝑡 + 𝑛𝜎(𝑗)

𝑡 ≤

1. Then 

0  ≤∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜔𝑗

𝑘

𝑗=1

−∏(1 − (𝑚𝜎(𝑗)
𝑡 + 𝑖𝜎(𝑗)

𝑡 + 𝑛𝜎(𝑗)
𝑡 ))

𝜔𝑗
−∏(𝑖𝜎(𝑗)

𝑡 )𝜔𝑗
𝑘

𝑗=1

𝑘

𝑗=1

≤ 1 

0  ≤ 1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜔𝑗

𝑘

𝑗=1

≤ 1 

0  ≤ 1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜔𝑗

𝑘

𝑗=1

≤ 1 

Now 

√
  
  
  
  
  
  
 

∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜔𝑗

𝑘

𝑗=1

−∏(1 − (𝑚𝜎(𝑗)
𝑡 + 𝑖𝜎(𝑗)

𝑡 + 𝑛𝜎(𝑗)
𝑡 ))

𝜔𝑗
−∏(𝑖𝜎(𝑗)

𝑡 )𝜔𝑗
𝑘

𝑗=1

𝑘

𝑗=1

+

1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜔𝑗

𝑘

𝑗=1

+ 1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜔𝑗

𝑘

𝑗=1

𝑡

 

= √2 −∏(1 − (𝑚𝜎(𝑗)
𝑡 + 𝑖𝜎(𝑗)

𝑡 + 𝑛𝜎(𝑗)
𝑡 ))

𝜔𝑗
−∏(𝑖𝜎(𝑗)

𝑡 )𝜔𝑗
𝑘

𝑗=1

𝑘

𝑗=1

−∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜔𝑗

𝑘

𝑗=1

𝑡

∈ [0,1] 

Thus, 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝐼𝐴𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) is T-SFN. 

3.1.2.10. Theorem  

𝑇 − 𝑆𝐹𝑂𝑊𝐺𝐼𝐴𝜔(𝒯1, … , 𝒯𝑘) = 𝒯₀ if  𝒯𝑗 = 𝒯₀ = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) is a T-SFN ∀𝑗. 

Proof: we have 

𝑇 − 𝑆𝐹𝑂𝑊𝐺𝐼𝐴𝜔(𝒯1, … , 𝒯𝑘) =  
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(

 
 
 
 
 √∏(1 − 𝑛𝜎(𝑗)

𝑡 )
𝜔𝑗

𝑘

𝑗=1

−∏(1 − (𝑚𝜎(𝑗)
𝑡 + 𝑖𝜎(𝑗)

𝑡 + 𝑛𝜎(𝑗)
𝑡 ))

𝜔𝑗
−∏(𝑖𝜎(𝑗)

𝑡 )𝜔𝑗
𝑘

𝑗=1

𝑘

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜔𝑗

𝑘

𝑗=1

𝑡

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜔𝑗

𝑘

𝑗=1

𝑡

)

 
 
 
 
 

 

=

(

 
 √(1 − 𝑛𝜎(𝑗)

𝑡 )
∑ 𝜔𝑗
𝑘
𝑗=1 − (1 − (𝑚𝜎(𝑗)

𝑡 + 𝑖𝜎(𝑗)
𝑡 + 𝑛𝜎(𝑗)

𝑡 ))
∑ 𝜔𝑗
𝑘
𝑗=1

− (𝑖𝜎(𝑗)
𝑡 )

∑ 𝜔𝑗
𝑘
𝑗=1

𝑡

,

√1 − (1 − 𝑖𝜎(𝑗)
𝑡 )

∑ 𝜔𝑗
𝑘
𝑗=1

𝑡

, √1 − (1 − 𝑛𝜎(𝑗)
𝑡 )

∑ 𝜔𝑗
𝑘
𝑗=1

𝑡

 )

 
 

 

         = (𝑚𝜎(0), 𝑖𝜎(0), 𝑛𝜎(0)) 

         = 𝒯₀ 

3.1.2.11. Theorem  

If 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) is a T-SFN and 

    𝒯𝐿 = (𝑚𝑎𝑥{0, (𝑚𝑖𝑛(𝑚𝑗 + 𝑖𝑗 + 𝑛𝑗) − 𝑚𝑖𝑛 𝑖𝑗 −𝑚𝑎𝑥 𝑛𝑗)},𝑚𝑖𝑛 𝑖𝑗, 𝑚𝑎𝑥 𝑛𝑗), 

    𝒯𝑈 = ((𝑚𝑎𝑥(𝑚𝑗 + 𝑖𝑗 + 𝑛𝑗) − 𝑚𝑎𝑥 𝑖𝑗 −𝑚𝑖𝑛 𝑛𝑗),𝑚𝑎𝑥 𝑖𝑗 , 𝑚𝑖𝑛 𝑛𝑗). Then 

 𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝐼𝐴𝜔(𝒯1, … , 𝒯𝑘) ≤ 𝒯𝑈 

3.1.2.12. Theorem  

𝑇 − 𝑆𝐹𝑂𝑊𝐺𝐼𝐴𝜔(𝒯1, … , 𝒯𝑘) = 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝐼𝐴𝜔(𝒯1
′, … , 𝒯𝑘

′) if 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) is any 

permutation of 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) where 𝑗 = 1,2, … , 𝑘. 

Proof: 

𝑇 − 𝑆𝐹𝑂𝑊𝐺𝐼𝐴𝜔(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) =  

(

 
 
 
 
 
 √∏(1 − (𝑛𝜎(𝑗)

′ )
𝑡
)
𝜔𝑗

𝑘

𝑗=1

−∏(1 − ((𝑚𝜎(𝑗)
′ )

𝑡
+ (𝑖𝜎(𝑗)

′ )
𝑡
+ (𝑛𝜎(𝑗)

′ )
𝑡
))

𝜔j

−∏(𝑖𝜎(𝑗)
′ )

𝑡𝜔𝑗
𝑘

𝑗=1

𝑘

𝑗=1

𝑡

,

√1 −∏(1 − (𝑖𝜎(𝑗)
′ )

𝑡
)

𝑘

𝑗=1

𝜔𝑗
𝑡

, √1 −∏(1 − (𝑛𝜎(𝑗)
′ )

𝑡
)

𝑘

𝑗=1

𝜔𝑗
𝑡

 )
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𝑇 − 𝑆𝐹𝑂𝑊𝐺𝐼𝐴𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) =  

(

 
 
 
 
 
 √∏(1 − 𝑛𝜎(𝑗)

𝑡 )
𝜔𝑗

𝑘

𝑗=1

−∏(1 − (𝑚𝜎(𝑗)
𝑡 + 𝑖𝜎(𝑗)

𝑡 + 𝑛𝜎(𝑗)
𝑡 ))

𝜔j
−∏(𝑖𝜎(𝑗)

𝑡 )𝜔𝑗
𝑘

𝑗=1

𝑘

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝑘

𝑗=1

𝜔𝑗
𝑡

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝑘

𝑗=1

𝜔𝑗
𝑡

 )

 
 
 
 
 
 

 

If 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) is any permutation of 𝒯𝑗 = (𝑚𝑗, 𝑖𝑗 , 𝑛𝑗) then we have 𝒯𝜎(𝑗)
′ = 𝒯𝜎(𝑗). 

Thus 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝐼𝐴𝜔(𝒯1
′, … , 𝒯𝑘

′) = 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝐼𝐴𝜔(𝒯1, … , 𝒯𝑘) 

3.1.2.13. Definition  

For any collection 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) of T-SFNs (𝑗 = 1,2, … , 𝑘). If the mapping 

𝑇 − 𝑆𝐹𝐻𝐺𝐴𝑤,𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) =⊗𝑗=1
𝑘 (�̃�𝜎(𝑗))

𝜔𝑗
 

    then 𝑇 − 𝑆𝐹𝐻𝐺𝐴𝑤,𝜔 is called T-SFHGA operator. where �̃�𝑗 = (𝒯𝑗)
𝑛𝑤𝑗

, 𝜔 =

(𝜔1, … , 𝜔𝑘)
𝑇 is the associated WV of 𝒯𝑗  with 𝜔𝑗 ∈ (0,1] and ∑ 𝜔𝑗 = 1𝑘

𝑗=1  and 𝑤 =

(𝑤1, … , 𝑤𝑘)
𝑇 is the WV of 𝒯𝑗  with 𝑤𝑗 ∈ (0,1] and ∑ 𝑤𝑗 = 1𝑘

𝑗=1 . 

3.1.2.14. Definition  

For any collection 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗)  (𝑗 = 1,2, … , 𝑘) of T-SFNs. If the mapping 

𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) =⊗𝑖𝑗=1
𝑘 �̃�

𝜎(𝑗)

𝜔𝑗
 

    then 𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔 is called T-SFHGIA operator. where 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑘)
𝑇 is 

the WV of 𝒯𝑗  with 𝜔𝑗 ∈ [0,1] and ∑ 𝜔𝑗 = 1𝑘
𝑗=1  and 𝑤 = (𝑤1, … , 𝑤𝑘)

𝑇 is the WV of 𝒯𝑗  

with 𝑤𝑗 ∈ (0,1] and ∑ 𝑤𝑗 = 1𝑘
𝑗=1 . 

3.1.2.15. Theorem  

For any collection 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗)  (𝑗 = 1,2, … , 𝑘) of T-SFNs. Then 

𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) 
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=

(

 
 
 
 
 √∏(1 − �̃�𝜎(𝑗)

𝑡 )
𝜔𝑗

𝑘

𝑗=1

−∏(1 − (�̃�𝜎(𝑗)
𝑡 + 𝑖̃𝜎(𝑗)

𝑡 + �̃�𝜎(𝑗)
𝑡 ))

𝜔j
−∏(𝑖̃𝜎(𝑗)

𝑡 )𝜔𝑗
𝑘

𝑗=1

𝑘

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖̃𝜎(𝑗)
𝑡 )

𝑘

𝑗=1

𝜔𝑗
𝑡

, √1 −∏(1 − �̃�𝜎(𝑗)
𝑡 )

𝑘

𝑗=1

𝜔𝑗
𝑡

)

 
 
 
 
 

 

The following example demonstrates these aggregation operators. 

3.1.2.16. Example  

Let 𝒯₁ = (0.3,0.8,0.1), 𝒯₂ = (0.4,0.3,0.6), 𝒯₃ = (0.7,0.1,0.5), 𝒯₄ = (0.9,0.4,0.1) 

and 𝒯₅ = (0.2,0.6,0.7) are T-SFN. The WV for 𝒯𝑗   (𝑗 = 1,2, . . ,5) is 𝑤 =

(0.18,0.22,0.16,0.21,0.23)𝑇. With loss of generality, we use 𝑡 = 2 for all calculations.  

Firstly, we utilize T-SFHGIA operators on this data to aggregate it.  

𝒯1 = (
√(1 − 0.12)5×0.18 − (1 − (0.32 + 0.82 + 0.12))

5×0.18
− (0.82)5×0.18,

 √1 − (1 − 0.82)5×0.18, √1 − (1 − 0.12)5×0.18
) 

   =  (0.1559, 0.7754, 0.0949) 

𝒯2 = (
√(1 − 0.62)5×0.22 − (1 − (0.42 + 0.32 + 0.62))

5×0.22
− (0.32)5×0.22,

√1 − (1 − 0.32)5×0.22, √1 − (1 − 0.62)5×0.22
) 

   =  (0.4317, 0.3139, 0.6228) 

𝒯3 = (
 √(1 − 0.52)5×0.16 − (1 − (0.72 + 0.12 + 0.52))

5×0.16
− (0.12)5×0.16,

√1 − (1 − 0.12)5×0.16, √1 − (1 − 0.52)5×0.16
) 

   =  (0.6629, 0.0895, 0.4534) 

𝒯4 = (
√(1 − 0.12)5×0.21 − (1 − (0.92 + 0.42 + 0.12))

5×0.21
− (0.42)5×0.21,

 √1 − (1 − 0.42)5×0.21, √1 − (1 − 0.12)5×0.21
) 

   =  (0.9094,0.4090,0.1024) 
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𝒯₅ = (
√(1 − 0.72)5×0.23 − (1 − (0.22 + 0.62 + 0.72))

5×0.23
− (0.62)5×0.23,

√1 − (1 − 0.62)5×0.23, √1 − (1 − 0.72)5×0.23
) 

   =  (0.2705,0.6336,0.7342) 

The score values corresponding to these aggregated numbers are 𝑆𝐶(𝒯1) = 0.0153,

𝑆𝐶(𝒯2) = −0.2016, 𝑆𝐶(𝒯3) = 0.2338, 𝑆𝐶(𝒯4) = 0.8166, 𝑆𝐶(𝒯5) = −0.4658. 

Based on score values we have the following arrangement of data. 

𝒯𝜎(1) = (0.9094,0.4090,0.1024), 𝒯𝜎(2) = (0.6629, 0.0895, 0.4534), 𝒯𝜎(3) =

(0.1559, 0.7754, 0.0949),  

𝒯𝜎(4) = (0.4317, 0.3139, 0.6228), 𝒯𝜎(5) = (0.2705,0.6336,0.7342) 

By using normal distribution-based method, we find 𝜔 =

(0.1117,0.2365,0.3036,0.2365,0.1117)𝑇 and by the definition of T-SFHGIA operator 

we have 

𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔(�̃�₁, �̃�₂, �̃�₃, �̃�₄, �̃�₅) = (0.4688,0.5643,0.4792) 

3.1.2.17. Theorem  

If 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) is a T-SFN, 𝑗 = 1,… , 𝑘. Then the aggregated value using the T-

SFHGIA operator is also T-SFN. 

3.1.2.18. Theorem  

𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯₀ if  𝒯𝑗 = 𝒯₀ = (𝑚0, 𝑖0, 𝑛0) is a T-SFN ∀𝑗. 

3.1.2.19. Theorem  

If 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) is a T-SFN and 

    𝒯𝐿 = (𝑚𝑎𝑥{0, (𝑚𝑖𝑛(𝑚𝑗 + 𝑖𝑗 + 𝑛𝑗) − 𝑚𝑖𝑛 𝑖𝑗 −𝑚𝑎𝑥 𝑛𝑗)},𝑚𝑖𝑛 𝑖𝑗, 𝑚𝑎𝑥 𝑛𝑗), 

    𝒯𝑈 = ((𝑚𝑎𝑥(𝑚𝑗 + 𝑖𝑗 + 𝑛𝑗) − 𝑚𝑎𝑥 𝑖𝑗 −𝑚𝑖𝑛 𝑛𝑗),𝑚𝑎𝑥 𝑖𝑗 , 𝑚𝑖𝑛 𝑛𝑗). Then 

 𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔(𝒯1, … , 𝒯𝑘) ≤ 𝒯𝑈 
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3.1.2.20. Theorem  

𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔(𝒯1
′, … , 𝒯𝑘

′) = 𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔(𝒯1, … , 𝒯𝑘) if 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) is any 

permutation of 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) where 𝑗 = 1,2, … , 𝑘. 

Whenever membership and neutral number of one T-SFN become zero then the 

membership and abstinence value is not accounted in aggregation [10]. While 

geometric interaction averaging operators developed in our manuscript overcome this 

problem. An example will describe it more clearly. 

3.1.2.21. Example  

Let 𝒯₁ = (0.7,0.5,0.6), 𝒯₂ = (0.9,0.5,0.4), 𝒯₃ = (0,0,0.1), 𝒯₄ = (0.5,0.3,0.4) and 

𝒯₅ = (0.6,0.4,0.5) are T-SFN. The WV for 𝒯𝑗   (𝑗 = 1,2, . . ,5) is 𝑤 =

(0.18,0.22,0.16,0.21,0.23)𝑇. 

Solution: First we will find T-SFHGA operator. 

    As, 0.7 + 0.5 + 0.6 = 1.8 ∉ [0,1] , 0.7² + 0.5² + 0.6² = 1.1 ∉ [0,1] but 0.7³ +

0.5³ + 0.6³ = 0.684 ∈ [0,1] 

    Similarly, 𝒯₂ and 𝒯₄ satisfy the condition for 𝑡 = 3. 

 �̃�₁ =

 (√(0.73 + 0.53)5×0.18 − (0.53)5×0.18
3

, 0.55×0.18, √1 − (1 − 0.63)5×0.18
3

) 

        = (0.7054,0.5359,0.5816) 

 �̃�₂ =

 (√(0.93 + 0.53)5×0.22 − (0.53)5×0.22
3

, 0.55×0.22, √1 − (1 − 0.43)5×0.22
3

) 

       = (0.9041,0.4665,0.4125) 

 �̃�₃ =  (√(03 + 03)5×0.16 − (03)5×0.16
3

, 05×0.16, √1 − (1 − 0.13)5×0.16
3

) 

        =  (0,0,0.0928) 

 �̃�₄ =

 (√(0.53 + 0.33)5×0.21 − (0.33)5×0.21
3

, 0.35×0.21, √1 − (1 − 0.43)5×0.21
3

) 

        =  (0.4874,0.2885,0.4063) 
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 �̃�₅ =

 (√(0.63 + 0.43)5×0.23 − (0.43)5×0.23
3

, 0.45×0.23, √1 − (1 − 0.53)5×0.23
3

) 

        = (0.5738,0.3486,0.0.5221) 

    Scores values for these aggregated numbers are obtained as 𝑆𝐶(�̃�₁) = 0.1543,

𝑆𝐶(�̃�₂) = 0.6689, 𝑆𝐶(�̃�₃) = −0.0008, 𝑆𝐶(�̃�₄) = 0.0487, 𝑆𝐶(�̃�₅) = 0.0466 and 

based on these score values, we have 

 �̃�𝜎(1) = (0.9041,0.4665,0.4125),  �̃�𝜎(2) = (0.7054,0.5359,0.5816), 

 �̃�𝜎(3) = (0.4874,0.2885,0.4063), �̃�𝜎(4) = (0.5738,0.3486,0.0.5221), �̃�𝜎(5) =

(0,0,0.0928) 

    By using normal distribution-based method, we find 𝜔 =

(0.1117,0.2365,0.3036,0.2365,0.1117)𝑇 and by the definition of T-SFHGA operator, 

we find 

𝑇 − 𝑆𝐹𝐻𝐺𝐴𝑤,𝜔(𝒯₁, 𝒯₂, 𝒯₃, 𝒯₄, 𝒯₅) = (0,0,0.4803) 

This type of aggregated value seems meaningless as whenever membership and 

abstinence value is zero in any one of the T-SFN it will make the value of membership 

and non-membership as zero in whole aggregated value. This shows that geometric 

aggregation operator of T-SFSs [10] does not possess the ability of aggregating such 

type of information effectively. 

On the other hand, the proposed new geometric interactive aggregation operators can 

process any type of information effectively. Now the Example 3.1.2.21 is solved using 

proposed new aggregation operators in order to justify its effectiveness. For it, we 

aggregate the data using T-SFHGIA operator, 

𝒯1 = (
√(1 − 0.63)5×0.18 − (1 − (0.73 + 0.53 + 0.63))

5×0.18
− (0.53)5×0.18

3

,

 √1 − (1 − 0.53)5×0.18
3

, √1 − (1 − 0.63)5×0.18
3

) 

   =  (0.6656, 0.5359, 0.5816) 

𝒯2 = (
√(1 − 0.43)5×0.22 − (1 − (0.93 + 0.53 + 0.43))

5×0.22
− (0.53)5×0.22

3

,

√1 − (1 − 0.53)5×0.22
3

, √1 − (1 − 0.43)5×0.22
3

) 
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   =  (0.9144, 0.4665, 0.4125) 

𝒯3 = (
 √(1 − 0.13)5×0.16 − (1 − (03 + 03 + 0.13))

5×0.16
− (03)5×0.16

3

,

√1 − (1 − 03)5×0.16
3

, √1 − (1 − 0.13)5×0.16
3

) 

   =  (0, 0, 0.0928) 

𝒯4 = (
√(1 − 0.43)5×0.21 − (1 − (0.53 + 0.33 + 0.43))

5×0.21
− (0.33)5×0.21

3

,

√1 − (1 − 0.33)5×0.21
3

, √1 − (1 − 0.43)5×0.21
3

) 

   =  (0.5141,0.2885,0.4063) 

𝒯5 = (
√(1 − 0.53)5×0.23 − (1 − (0.63 + 0.43 + 0.53))

5×0.23
− (0.43)5×0.23

3

,

√1 − (1 − 0.43)5×0.23
3

, √1 − (1 − 0.53)5×0.23
3

) 

   =  (0.6422,0.3486,0.0.5221) 

The score values of these numbers are obtained as 𝑆𝐶(𝒯₁) = 0.0981, 𝑆𝐶(𝒯₂) =

0.6943, 𝑆𝐶(𝒯₃) = −0.0008, 𝑆𝐶(𝒯₄) = 0.0688, 𝑆𝐶(𝒯₅) = 0.1225 and based on 

score values we have the following arrangement. 

𝒯𝜎(1) = (0.9144,0.4665,0.4125), 𝒯𝜎(2) = (0.6422,0.3486,0.0.5221),    𝒯𝜎(3) =

(0.6656,0.5359,0.5816),   𝒯𝜎(4) = (0.5141,0.2885,0.4063),      𝒯𝜎(5) = (0,0,0.0928) 

Now, by using definition of T-SFHGIA operator, we find 

𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔(𝒯₁, 𝒯₂, 𝒯₃, 𝒯₄, 𝒯₅) = (0.8375,0.4223,0.4928) 

Clearly the aggregated value obtained using T-SFHGIA operator is improved 

than the one obtained in using aggregated operators in [10] as it incorporates the zero 

values occurring in the membership and abstinence of T-SFNs efficiently. The analysis 

of both results proves the significance of proposed aggregation operators. 

3.2. MADM approach based on proposed operators 

Consider a decision making problem which consists a set of alternatives 𝑌 =

{𝑦1, 𝑦2, … , 𝑦𝑙} and set of attributes 𝑍 = {𝑧1, 𝑧2, … , 𝑧𝑞} with weighted vector 𝑤 =

(𝑤1, 𝑤2, … , 𝑤𝑞)
𝑇
, where 𝑤𝑘 ∈ (0,1] and 𝛴𝑘=1

𝑞 𝑤𝑘 = 1. Suppose every alternative 𝑦𝑗 is 
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represented by T-SFNs 𝒯𝑗𝑘 = (𝑚𝑗𝑘, 𝑖𝑗𝑘, 𝑛𝑗𝑘) which show that by which degree 

alternative satisfy, neutral and not satisfy the given attribute. Then, the following steps 

of the MADM approach based on the proposed operators are summarized as follows: 

 Step 1: Find the value of 𝑡 for which information of decision matrix lies in T-SF 

environment. 

 Step 2: Assume the WV 𝑤 = (𝑤1, … , 𝑤𝑞)
𝑇
 of 𝒯𝑗1, 𝒯𝑗2, … , 𝒯𝑗𝑞. where 𝑤𝑘 ∈ (0,1] and 

𝛴𝑘=1
𝑞 𝑤𝑘 = 1 we get 𝒯𝑗𝑘 = 𝒯𝑗𝑘

𝑙𝑤𝑘. 

 Step 3: By calculating the scores of each attribute of all alternatives, we find 

 𝒯𝜎(𝑗1), 𝒯𝜎(𝑗2), … , 𝒯𝜎(𝑗𝑘) 

Step 4: By using normal-distribution based method we find 𝑤 and then aggregate the 

data using T-SFHGIA operator. 

 Step 5: Find the scores of all alternatives. 

 Step 6: With the help of score values, we find the best option. 

3.2.1. Numerical Example 

The above mentioned approach has been illustrated with a real life decision-

making problem under the T-SFS environment and obtained results have been 

compared with the other existing results. 

3.2.1.1. Case study  

Jharkhand is the eastern state of the India, which has the 40 percent mineral resources 

of the country and second leading state of the mineral wealth after Chhattisgarh state. 

It is also known for its vast forest resources. Jamshedpur, Bokaro and Dhanbad cities 

of the Jharkhand are famous for industries in all over the world. After that, it is the 

widespread poverty state of the India because it is the primarily a rural state as 76 

percent of the population live in the villages which depend on the agriculture and wages. 

Only 30 percent villages are connected by roads while only 55 percent villages have 

accessed to electricity and other facilities. But in the today's life, everyone is changing 

fast to himself for a better life, therefore, everyone moves to the urban cities for a better 

job. To stop this emigration, Jharkhand government wants to set up the industries based 

on the agriculture in the rural areas. For this, the government has been organized 
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``MOMENTUM JHARKHAND'' global investor submit 2017 in Ranchi to invite the 

companies for investment in the rural areas. Government announced the various 

facilities for setup the five food processing plants in the rural areas and consider the 

five attributes required for company selection to setup them, namely, project cost (𝑄₁),  

technical capability (𝑄2), financial status (𝑄3), company background (𝑄4) and other 

factors (𝑄5).   The three companies taken as in the form of the alternatives, namely, 

Surya Food and Agro Pvt. Ltd. (𝑠₁), Mother Dairy Fruit and Vegetable Pvt. Ltd. (𝑠2) 

and Parle Products Ltd. (𝑠3) interested for these projects. Then the main object of the 

government is to choose the best company among them for the task. In order to fulfill 

it, a decision maker evaluated these and gives their preferences in the term of T-SFS 

and their preferences values are summarized in the form of decision-matrix shown in 

Table 8 as follows. 

Table 8 Input information related to each alternative 

 Q₁ Q₂ Q₃ Q₄ Q₅ 

s₁ (0.7,0.5,0.6) (0.9,0.5,0.4) (0.4,0.2,0.1) (0.5,0.3,0.4) (0.6,0.4,0.5) 

s₂ (0.5,0.4,0.6) (0.7,0.2,0.3) (0.5,0.3,0.6) (0.4,0.1,0.6) (0.5,0.2,0.4) 

s₃ (0.4,0.1,0.2) (0.5,0.4,0.1) (0,0,0.5) (0.6,0.2,0.2) (0.6,0.1,0.5) 

 

The given problem is solved using two approaches. First it is solved using new 

interactive operators showing their applicability. Then it is solved using geometric 

aggregation operators proposed in [10] showing their failure. 

Solution using proposed operators: 

Step 1: With some calculations, it is found that all the values in Table 8 are T-SFNs 

for 𝑡 = 3. 

Step 2: By taking 𝑤 = (0.18,0.22,0.16,0.21,0.23)𝑇 we find 𝒯𝑗𝑘 and their values are 

summarized as below in Table 9. 

Table 9 Aggregated values 

 k = 1 k = 2 k = 3 k = 4 k = 5 

j = 1 
(
0.6656,
0.5359,
0.5816

) (
0.9144,
0.4665,
0.4125

) (
0.3333,
0.2759,
0.0928

) (
0.5141,
0.2825,
0.4063

) (
0.6422,
0.3486,
0.5221

) 
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j = 2 
(
0.4520,
0.4384,
0.5816

) (
0.7194,
0.1703,
0.3095

) (
0.4212,
0.3817,
0.5614

) (
0.4053,
0.0891,
0.6086

) (
0.5264,
0.1571,
0.4184

) 

j = 3 
(
0.3843,
0.1259,
0.1931

) (
0.5397,
0.3650,
0.1032

) (
0,
0,

0.4662
) (

0.6104,
0.1845,
0.2033

) (
0.6209,
0.0708,
0.5221

) 

 

Step 3: Now we have to find the score of each attribute of all alternatives and their 

computed values are given as below in Table 10. 

Table 10 Score Values 

 k = 1 k = 2 k = 3 k = 4 k = 5 

j=1 0.0981 0.6943 0.0362 0.0688 0.1225 

j=2 −0.1043 0.3426 −0.1021 −0.1589 0.0726 

j=3 0.0495 0.1561 −0.1013 0.2190 0.0970 

By comparing the score values, we have 

𝑆𝐶(𝒯₁₂) > 𝑆𝐶(𝒯15) > 𝑆𝐶(𝒯11) > 𝑆𝐶(𝒯14) > 𝑆𝐶(𝒯₁₃) 

𝑆𝐶(𝒯₂₂) > 𝑆𝐶(𝒯₂₅) > 𝑆𝐶(𝒯₂₃) > 𝑆𝐶(𝒯₂₁) > 𝑆𝐶(𝒯₂₄) 

𝑆𝐶(𝒯₃₄) > 𝑆𝐶(𝒯₃₂) > 𝑆𝐶(𝒯₃₅) > 𝑆𝐶(𝒯₃₁) > 𝑆𝐶(𝒯₃₃) 

 Based on above score analysis, we find 𝒯𝜎(𝑗𝑘) and summarized as in Table 11 

Table 11 Ordered Aggregated values 

 k = 1 k = 2 k = 3 k = 4 k = 5 

j = 1 
(
0.9144,
0.5150,
0.4125

) (
0.6422,
0.9857,
0.5221

) (
0.6656,
0.4838,
0.5816

) (
0.5141,
0.3048,
0.4063

) (
0.3333,
0.1857,
0.0928

) 

j = 2 
(
0.7194,
0.2064,
0.3095

) (
0.5264,
0.9987,
0.4184

) (
0.4212,
0.2787,
0.5614

) (
0.4520,
0.9804,
0.5816

) (
0.4053,
0.1016,
0.6086

) 

j = 3 
(
0.6104,
0.2033,
0.2033

) (
0.5397,
0.4125,
0.1032

) (
0.6209,
0.9999,
0.5221

) (
0.3843,
0.0966,
0.1931

) (
0,
0,

0.4662
) 
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Step 4: By using normal distribution-based method, we get 𝜔 =

(0.1117,0.2365,0.3036,0.2365,0.1117)𝑇 and by using the defined aggregation 

operators, we have. 

 𝒯1 =  𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔(𝒯₁₁, 𝒯₁₂, 𝒯₁₃, 𝒯₁₄, 𝒯₁₅) 

=

(

 
 
 
 
 √∏(1 − 𝑛�̃�𝜎(1𝑘)

3 )
𝜔𝑗

5

𝑗=1

−∏(1 − (𝑚�̃�𝜎(1𝑘)

3 + 𝑖�̃�𝜎(1𝑘)
3 + 𝑛�̃�𝜎(1𝑘)

3 ))

𝜔𝑗

−∏(𝑖�̃�𝜎(1𝑘)
3 )𝜔𝑗

5

𝑗=1

5

𝑗=1

3

,

√1 −∏(1 − 𝑖�̃�𝜎(1𝑘)
3 )

5

𝑗=1

𝜔𝑗
3

, √1 −∏(1 − 𝑛�̃�𝜎(1𝑘)
3 )

5

𝑗=1

𝜔𝑗
3

)

 
 
 
 
 

 

 = (0.9380,0.4264,0.4928) 

𝒯2 =  𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔(𝒯₂₁, 𝒯₂₂, 𝒯₂₃, 𝒯₂₄, 𝒯₂₅) 

=

(

 
 
 
 
 √∏(1 − 𝑛�̃�𝜎(2𝑘)

3 )
𝜔𝑗

5

𝑗=1

−∏(1 − (𝑚�̃�𝜎(2𝑘)

3 + 𝑖�̃�𝜎(2𝑘)
3 + 𝑛�̃�𝜎(2𝑘)

3 ))

𝜔𝑗

−∏(𝑖�̃�𝜎(2𝑘)
3 )𝜔𝑗

5

𝑗=1

5

𝑗=1

3

,

√1 −∏(1 − 𝑖�̃�𝜎(2𝑘)
3 )

5

𝑗=1

𝜔𝑗
3

, √1 −∏(1 − 𝑛�̃�𝜎(2𝑘)
3 )

5

𝑗=1

𝜔𝑗
3

)

 
 
 
 
 

 

= (0.9420,0.3390,0.5296) 

𝒯₃ =  𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔(𝒯₃₁, 𝒯₃₂, 𝒯₃₃, 𝒯₃₄, 𝒯₃₅) 

=

(

 
 
 
 
 √∏(1 − 𝑛�̃�𝜎(3𝑘)

3 )
𝜔𝑗

5

𝑗=1

−∏(1 − (𝑚�̃�𝜎(3𝑘)

3 + 𝑖�̃�𝜎(3𝑘)
3 + 𝑛�̃�𝜎(3𝑘)

3 ))

𝜔j

−∏(𝑖�̃�𝜎(3𝑘)
3 )𝜔𝑗

5

𝑗=1

5

𝑗=1

3

,

√1 −∏(1 − 𝑖�̃�𝜎(3𝑘)
3 )

5

𝑗=1

𝜔𝑗
3

, √1 −∏(1 − 𝑛�̃�𝜎(3𝑘)
3 )

5

𝑗=1

𝜔𝑗
3

)

 
 
 
 
 

 

= (0.9779,0.9713,0.3906) 

Step 5: The score values of three alternatives based on their aggregated values are 

computed as  𝑆𝐶(𝒯₁) = 0.7056, 𝑆𝐶(𝒯2) = 0.6874, and 𝑆𝐶(𝒯₃) = 0.8813. 
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Step 6: By comparing score values, we get.  

𝑆𝐶(𝒯₃) > 𝑆𝐶(𝒯₁) > 𝑆𝐶(𝒯₂) 

    The comparison of score values indicate that 𝒯₃ has a greater score value. So, third 

Company is the best option. Thus, by using the new geometric interaction averaging 

operators a MADM problem is successfully solved. 

Solution using aggregation operators proposed in [10]:    

Step 1: The input preferences related to each alternative is summarized in Table 8 for 

𝑡 = 3. 

Step 2: By using WV 𝑤 = (0.18,0.22,0.16,0.21,0.23)𝑇 we find 𝒯𝑗𝑘
′  as follows in 

Table 12 

Table 12 Aggregated values 

 k = 1 k = 2 k = 3 k = 4 k = 5 

j = 1 
(
0.7054,
0.5359,
0.5816

) (
0.9041,
0.4665,
0.4125

) (
0.4655,
0.2759,
0.0928

) (
0.4874,
0.2825
0.4063

) (
0.5738,
0.3486,
0.5221

) 

j = 2 
(
0.5180,
0.4384,
0.5816

) (
0.6776,
0.1703,
0.3095

) (
0.7330,
0.3817,
0.5614

) (
0.3826,
0.0891,
0.6086

) (
0.4553,
0.1517,
0.4184

) 

j = 3 
(
0.4370,
0.1259,
0.1931

) (
0.4811,
0.3650,
0.1032

) (
0,
0,

0.4662
) (

0.5863,
0.1845,
0.2033

) (
0.5563,
0.0708,
0.5221

) 

 

Step 3: Now we have to find the score of each attribute of all alternatives as listed in 

Table 13 

Table 13 Score values 

 k = 1 k = 2 k = 3 k = 4 k = 5 

j = 1 0.1543 0.6689 0.1000 0.0487 0.0466 

j = 2 −0.0577 0.2815 0.2169 −0.1695 0.0212 

j = 3 0.0762 0.1103 −0.1013 0.1932 0.0298 

 

By comparing the score values, we have 
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𝑆𝐶(𝒯12
′ ) > 𝑆𝐶(𝒯11

′ ) > 𝑆𝐶(𝒯13
′ ) > 𝑆𝐶(𝒯14

′ ) > 𝑆𝐶(𝒯15
′ ) 

𝑆𝐶(𝒯22
′ ) > 𝑆𝐶(𝒯23

′ ) > 𝑆𝐶(𝒯25
′ ) > 𝑆𝐶(𝒯21

′ ) > 𝑆𝐶(𝒯24
′ ) 

𝑆𝐶(𝒯34
′ ) > 𝑆𝐶(𝒯32

′ ) > 𝑆𝐶(𝒯31
′ ) > 𝑆𝐶(𝒯35

′ ) > 𝑆𝐶(𝒯33
′ ) 

Based on above score analysis, we find 𝒯𝜎(𝑗𝑘)
′  as listed in Table 14 

Table 14 Ordered Aggregated values 

 k = 1 k = 2 k = 3 k = 4 k = 5 

j = 1 
(
0.9041,
0.4665,
0.4125

) (
0.7054,
0.5359,
0.5816

) (
0.4655,
0.2759,
0.0928

) (
0.4874,
0.2825,
0.4063

) (
0.5738,
0.3486,
0.5221

) 

j = 2 
(
0.6776,
0.1703,
0.3095

) (
0.7330,
0.3817,
0.5614

) (
0.4553,
0.1571,
0.4184

) (
0.5180,
0.4384,
0.5816

) (
0.3826,
0.0891,
0.6086

) 

j = 3 
(
0.5863,
0.1845,
0.2033

) (
0.4811,
0.3650,
0.1032

) (
0.4370,
0.1259,
0.1931

) (
0.5563,
0.0708,
0.5221

) (
0,
0,

0.4662
) 

 

Step 4: By using normal distribution-based method, we get 𝜔 =

(0.1117,0.2365,0.3036,0.2365,0.1117)𝑇 and by using the defined aggregation 

operators, we have. 

 𝒯1
′ =  𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔(𝒯11

′ , 𝒯12
′ , 𝒯13

′ , 𝒯14
′ , 𝒯15

′ ) 

=

(

 
 
 
 
 
 √∏(𝑚�̃�𝜎(1𝑘)

3 + 𝑖�̃�𝜎(1𝑘)
3 )

𝜔𝑗
−∏(𝑖�̃�𝜎(1𝑘)

3 )𝜔𝑗
5

𝑗=1

5

𝑗=1

3

,∏(𝑖�̃�𝜎(1𝑘))
𝜔𝑗

5

𝑗=1

,

√1 −∏(1 − 𝑛�̃�𝜎(1𝑘)
3 )

5

𝑗=1

𝜔𝑗
3

 

 )

 
 
 
 
 
 

 

= (0.5750,0.3533, 0.4473) 

𝒯2
′ =  𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔(𝒯21

′ , 𝒯22
′ , 𝒯23

′ , 𝒯24
′ , 𝒯25

′ ) 
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=

(

 
 
 
 
 
 √∏(𝑚�̃�𝜎(2𝑘)

3 + 𝑖�̃�𝜎(2𝑘)
3 )

𝜔𝑗
−∏(𝑖�̃�𝜎(2𝑘)

3 )𝜔𝑗
5

𝑗=1

5

𝑗=1

3

,∏(𝑖�̃�𝜎(2𝑘))
𝜔𝑗

5

𝑗=1

,

√1 −∏(1 − 𝑛�̃�𝜎(2𝑘)
3 )

5

𝑗=1

𝜔𝑗
3

 

 )

 
 
 
 
 
 

 

= (0.5384,0.1970,0.5721) 

𝒯3
′ =  𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔(𝒯31

′ , 𝒯32
′ , 𝒯33

′ , 𝒯34
′ , 𝒯35

′ ) 

=

(

 
 
 
 
 
 √∏(𝑚�̃�𝜎(3𝑘)

3 + 𝑖�̃�𝜎(3𝑘)
3 )

𝜔𝑗
−∏(𝑖�̃�𝜎(3𝑘)

3 )𝜔𝑗
5

𝑗=1

5

𝑗=1

3

,∏(𝑖�̃�𝜎(3𝑘))
𝜔𝑗

5

𝑗=1

,

√1 −∏(1 − 𝑛�̃�𝜎(3𝑘)
3 )

5

𝑗=1

𝜔𝑗
3

 

 )

 
 
 
 
 
 

 

= (0, 0, 0.3692) 

This seems meaningless because membership and abstinence of only one T-SFN is 

zero but existing operator make a whole aggregated value zero.    

Step 5: The score values are 

𝑆𝐶(𝒯₁) = 0.1006 

𝑆𝐶(𝒯2) = −0.0312 

𝑆𝐶(𝒯3) = −0.0503 

Step 6: By comparing score values, we get.  

𝑆𝐶(𝒯1) > 𝑆𝐶(𝒯2) > 𝑆𝐶(𝒯3) 

From above example, the applicability of proposed operators can easily be checked by 

comparing the results obtained using new and existing geometric aggregation operators. 

It is noticed that whenever membership and abstinence of one TSFN becomes zero, 

then the aggregated valued using existing aggregation operators seems impractical. 

However, the aggregated value using new geometric interactive aggregation operators 

seems significant and consistent.  
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3.3. Advantages of the proposed work 

In this section, we prove the generalization of proposed work over the existing 

literature. Here we observed that under some certain conditions the proposed work 

reduces to existing work which shows the superiority of our proposed work. 

Consider the T-SFWGIA operator defined as 

 𝑻 − 𝑺𝑭𝑾𝑮𝑰𝑨𝒘(𝓣𝟏, 𝓣𝟐, … , 𝓣𝒌)

=

(

 
 
 
 
 √∏(𝟏 − 𝒏𝒋

𝒕)
𝒘𝒋

𝒌

𝒋=𝟏

−∏(𝟏 − (𝒎𝒋
𝒕 + 𝒊𝒋

𝒕 + 𝒏𝒋
𝒕))

𝒘𝒋
−∏(𝒊𝒋

𝒕)𝒘𝒋
𝒌

𝒋=𝟏

𝒌

𝒋=𝟏

𝒕

,

√𝟏 −∏(𝟏 − 𝒊𝒋
𝒕)

𝒌

𝒋=𝟏

𝒘𝒋
𝒕

, √𝟏 −∏(𝟏 − 𝒏𝒋
𝒕)

𝒌

𝒋=𝟏

𝒘𝒋
𝒕

)

 
 
 
 
 

 

 

 

 

(3.3.1) 

 

1. If we take 𝑡 = 2 the equation (3.3.1) reduces to spherical fuzzy weighted geometric 

interaction averaging operator (SFWGIA operator) and we have 

𝑆𝐹𝑊𝐺𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √∏(1 − 𝑛𝑗

2)
𝑤𝑗

𝑘

𝑗=1

−∏(1 − (𝑚𝑗
2 + 𝑖𝑗

2 + 𝑛𝑗
2))

wj

−∏(𝑖𝑗
2)𝑤𝑗

𝑘

𝑗=1

𝑘

𝑗=1

,

√1 −∏(1 − 𝑖𝑗
2)

𝑘

𝑗=1

𝑤𝑗

, √1 −∏(1 − 𝑛𝑗
2)

𝑘

𝑗=1

𝑤𝑗

)

 
 
 
 
 

 

2. If we take 𝑡 = 1 the equation (3.3.1) reduces to picture fuzzy weighted geometric 

interaction averaging operator (PFWGIA operator) and we have 

𝑃𝐹𝑊𝐺𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
∏(1 − 𝑛𝑗)

𝑤𝑗

𝑘

𝑗=1

−∏(1 − (𝑚𝑗 + 𝑖𝑗 + 𝑛𝑗))
wj

−∏(𝑖𝑗)
𝑤𝑗

𝑘

𝑗=1

𝑘

𝑗=1

,

1 −∏(1 − 𝑖𝑗)

𝑘

𝑗=1

𝑤𝑗

, 1 −∏(1 − 𝑛𝑗)

𝑘

𝑗=1

𝑤𝑗

)
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3. If we take 𝑡 = 2 and 𝑖 = 0 the equation (3.3.1) reduces to Pythagorean fuzzy 

weighted geometric interaction averaging operator (PyFWGIA operator) and we 

have 

𝑃𝑦𝐹𝑊𝐺𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) =

(

 
 
 
 
 √∏(1 − 𝑛𝑗

2)
𝑤𝑗

𝑘

𝑗=1

−∏(1 − (𝑚𝑗
2 + 𝑛𝑗

2))
wj

𝑘

𝑗=1

,

√1 −∏(1 − 𝑛𝑗
2)

𝑘

𝑗=1

𝑤𝑗

)

 
 
 
 
 

 

4. If we take 𝑡 = 1 and 𝑖 = 0 the equation (3.3.1) reduces to intuitionistic fuzzy 

weighted geometric interaction averaging operator (IFWGIA operator) and we have 

𝐼𝐹𝑊𝐺𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) =

(

 
 
 
 
∏(1 − 𝑛𝑗)

𝑤𝑗

𝑘

𝑗=1

−∏(1 − (𝑚𝑗 + 𝑛𝑗))
wj

𝑘

𝑗=1

,

1 −∏(1 − 𝑛𝑗)

𝑘

𝑗=1

𝑤𝑗

)

 
 
 
 

 

Similarly, T-SFOWGIA and T-SFHGIA operators can be reduced to the 

existing operators.  All this clearly indicated that our proposed work can be used in the 

problems of existing literature, but the operators of existing literature are unable to deal 

with problems of T-spherical fuzzy information. For example, if we look at Example 

3.1.2.21, it can be seen that none of the existing operators can be applied to such 

problems where information is in the form of T-SFNs.  

3.3.1. Comparative analysis 

The significance of proposed new geometric operators lies in the fact that the 

result obtained by using these operations are justifiable than those developed earlier 

i.e., [16]  and [82, 84]. Such operators could not deal with situations where if 

membership and abstinence value of any number becomes zero then the membership 

and abstinence value of their aggregated value is also zero. Hence the existing 

operations of PFSs and T-SFSs did possess the capability of dealing with any kinds of 

information. But on the other hand the new geometric operations of T-SFSs can deal 

with any type of data justifiably. This point is demonstrated in example. 
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The second main advantage of our proposed work is that it has the ability of 

aggregate the data available in the form of IFSs, PyFSs, PFSs and SFSs. But conversely, 

the existing operators could not handle the data provided in T-spherical fuzzy 

environment. For example if we look at Example 3.1.2.21, its data is purely in the form 

of T-SFNs based on four grades of membership, abstinence, non-membership and 

refusal degree with 𝑡 = 3, which shows that the aggregation operators of IFSs, PyFSs, 

PFSs and SFSs could not aggregate this data. But if we look at Example 3.2.1 its data 

is in the form of IFNs and our proposed operators easily aggregated this type of data 

with 𝑡 = 1 and 𝑖 = 0. 

Hence by all means the proposed work has superiority over the existing work. 

3.3.1.1. Example  

Let 𝒯₁ = (0,0.5), 𝒯₂ = (0.5,0.4), 𝒯₃ = (0.4,0.2), 𝒯₄ = (0.3,0.3) and 𝒯₅ =

(0.7,0.1) ∈IFN. The WV for 𝒯𝑗(𝑗 = 1,2, . . ,5) is 𝑤 = (0.18,0.22,0.16,0.21,0.23)𝑇. 

 𝒯₁ =  ((1 − 0.5)5×0.18 − (1 − (0 + 0.5))
5×0.18

, 1 − (1 − 0.5)5×0.18) 

       = (0,0.5796) 

 𝒯₂ =  ((1 − 0.4)5×0.22 − (1 − (0.5 + 0.4))
5×0.22

, 1 − (1 − 0.4)5×0.22) 

       = (0.5039,0.3183) 

 𝒯₃ =  ((1 − 0.2)5×0.16 − (1 − (0.4 + 0.2))
5×0.16

, 1 − (1 − 0.2)5×0.16) 

        = (0.4000,0.2000) 

 𝒯₄ =  ((1 − 0.3)5×0.21 − (1 − (0.3 + 0.3))
5×0.21

, 1 − (1 − 0.3)5×0.21) 

        = (0.2870,0.2746) 

 𝒯₅ =  ((1 − 0.1)5×0.23 − (1 − (0.7 + 0.1))
5×0.23

, 1 − (1 − 0.1)5×0.23) 

= (0.7203,0.1094) 

Scores values are 

𝑆𝐶(𝒯₁) = −0.5796, 𝑆𝐶(𝒯₂) = 0.1856, 𝑆𝐶(𝒯₃) = 0.2000,

𝑆𝐶(𝒯₄) = 0.0125, 𝑆𝐶(𝒯₅) = 0.6109. 
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Thus, 𝑆𝐶(𝒯₅) > 𝑆𝐶(𝒯₃) > 𝑆𝐶(𝒯₂) > 𝑆𝐶(𝒯₄) > 𝑆𝐶(𝒯₁) and we have 

𝒯𝜎(1) = (0.7203,0.1094) 

𝒯𝜎(2) = (0.4000,0.2000) 

𝒯𝜎(3) = (0.5039,0.3183) 

𝒯𝜎(4) = (0.2870,0.2746) 

𝒯𝜎(5) = (0,0.5796) 

By using normal distribution-based method, we find  

𝜔 = (0.1117,0.2365,0.3036,0.2365,0.1117)𝑇. 

Now, by using definition of T-SFHGIA operator, we find 

𝑇 − 𝑆𝐹𝐻𝐺𝐼𝐴𝑤,𝜔(𝒯₁, 𝒯₂, 𝒯₃, 𝒯₄, 𝒯₅) = (0.4093,0.2919) 

Here we get the same result as in [62, 64]. Thus, the proposed new operators have the 

capability to solve problems that lies in the existing structures. 
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Chapter 4 

Multi-attribute decision making process with immediate 

probabilistic interactive averaging aggregation operators of 

T-spherical fuzzy sets and its application in the selection of 

solar cells 

 The objective of this chapter is to present some new interactive averaging 

aggregation operators by assigning associate probabilities for the T-SFSs. T-SFS is a 

generalization of the several existing theories such as IFSs and PFSs to handle the 

imprecise information. Under such environment, we developed some series of 

averaging interactive aggregation operators under the features that each element is 

represented with T-SFNs. Various properties of the proposed operators are also 

investigated. Further, to rank the different T-SFNs, we exhibit the new score functions 

and state their some properties. To demonstrate the presented algorithm, a decision 

making process algorithm is presented with T-SFS features. To save non-renewable 

resources and to protect environment the use of renewable sources is important. Solar 

energy is one of the best renewable sources of energy and also an environment-friendly 

source so the selection of solar cells is typically a MADM problem. So the applicability 

of the developed algorithm is demonstrated with a numerical example in the selection 

of the solar cells and comparison of their performance with the several existing 

approaches. 

4.1. New Score function of T-SFSs 

 This section is shown that existing score function [16] for T-SFSs have some 

shortcomings and a new score function is proposed to overcome these shortcoming. 

4.1.1. Definition  

For any T-SFN 𝒯 = (𝑚, 𝑖, 𝑛) the new score function is defined as 

𝑆𝐶(𝒯) = 𝑚𝑡 − 𝑖𝑡 − 𝑛𝑡 + (
𝑒𝑚

𝑡−𝑖𝑡−𝑛𝑡

𝑒𝑚
𝑡−𝑖𝑡−𝑛𝑡+1

−
1

2
) 𝑟𝑡,                                                     (4.1.1) 

Where 𝑟 = √1 − (𝑚𝑡 + 𝑖𝑡 + 𝑛𝑡)
𝑡

. 
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A T-SFN 𝒯1 = (𝑚1, 𝑖1, 𝑛1) is said to be superior than another T-SFN 𝒯2 = (𝑚2, 𝑖2, 𝑛2) 

if score of 𝒯1 is greater than 𝒯2. If score of both numbers is equal then the superiority is 

checked by the comparison of their refusal degree, the number 𝒯1 is superior if its 

refusal degree is smaller than 𝒯2 and numbers will be similar if their refusal degree is 

same.  

4.1.2. Remark  

The following special cases are concluded from the proposed score value, defined in 

Eq. (4.1.1), as 

1. Eq. (4.1.1) reduces to score value for SFSs when 𝑡 = 2; 

2. Eq. (4.1.1) become valid for PFSs if 𝑡 = 1; 

3. Eq. (4.1.1) become valid for PyFSs if 𝑡 = 2 and 𝑖 = 0; 

4. Eq. (4.1.1) reduces to score value for IFSs if 𝑡 = 1 and 𝑖 = 0. 

4.2. Some T-Spherical Fuzzy Averaging Operators 

In this section some operations for T-SFSs are defined and with the help of these 

operations some T-spherical fuzzy aggregation operators are proposed. This section is 

further divided into three subsections. In first subsection some averaging aggregation 

operators are proposed and some basic properties of these operators are also discussed. 

In second subsection some interactive averaging aggregation operators along with some 

basic properties are proposed. In third subsection superiority of interactive averaging 

aggregation operators over averaging aggregation operators is explained with the help 

of an example. 

4.2.1. T-Spherical Fuzzy Averaging Aggregation operators 

In this subsection some averaging aggregation operators e.g. T-SFOWA, IP-T-

SFOWA, T-SGCA, Ass. IP-T-SFOWA operators are proposed with some of their basic 

properties. 

4.2.1.1. Definition  

Consider collection of T-SFNs, 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), then T-SFOWA operator is defined as 

𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) =⊕𝑗=1
𝑘 (𝑤𝑗𝒯𝜎(𝑗)) 
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where 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 is a weight vector with a conditions that all weight vectors 

must belong to [0,1] and the sum of all weights is equal to 1 and 𝜎 =

(𝜎(1), 𝜎(2), … , 𝜎(𝑘)) is the permutation such that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). 

4.2.1.2. Theorem  

Consider a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), then 

𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘)  

= (√1 −∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝑤𝑗

𝑘

𝑗=1

𝑡

,∏𝑖
𝜎(𝑗)

𝑤𝑗

𝑘

𝑗=1

,∏𝑛
𝜎(𝑗)

𝑤𝑗

𝑘

𝑗=1

), 

Proof: The above result is proved by using mathematical induction, 

For 𝑘 = 1, 

𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑤(𝒯1) = (√1 − (1 − 𝑚1
𝑡)

𝑡
, 𝑖1, 𝑛1) 

= (𝑚1, 𝑖1, 𝑛1) 

Thus results hold for 𝑘 = 1. Now consider that the results hold for 𝑘 = 𝑙,  

𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑙)  

= (√1 −∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝑤𝑗

𝑙

𝑗=1

𝑡

,∏𝑖
𝜎(𝑗)

𝑤𝑗

𝑙

𝑗=1

,∏𝑛
𝜎(𝑗)

𝑤𝑗

𝑙

𝑗=1

) 

Then to prove that result hold for 𝑘 = 𝑙 + 1, 

𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑙+1)  

= (√1 −∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝑤𝑗

𝑙

𝑗=1

𝑡

,∏𝑖
𝜎(𝑗)

𝑤𝑗

𝑙

𝑗=1

,∏𝑛
𝜎(𝑗)

𝑤𝑗

𝑙

𝑗=1

)

⊕ (√1 − (1 −𝑚𝜎(𝑗)
𝑡 )

𝑤𝑗𝑡
, 𝑖
𝜎(𝑗)

𝑤𝑗 , 𝑛
𝜎(𝑗)

𝑤𝑗 ) 
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= (√1 −∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝑤𝑗

𝑙+1

𝑗=1

𝑡

,∏𝑖
𝜎(𝑗)

𝑤𝑗

𝑙+1

𝑗=1

,∏𝑛
𝜎(𝑗)

𝑤𝑗

𝑙+1

𝑗=1

) 

This proves that the results hold for all 𝑘 ∈ 𝑍+. 

4.2.1.3. Theorem  

If 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) for all 𝑗 = 1,2, … , 𝑘 then 𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0. 

Proof: As 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) then 

𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) = (√1 −∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝑤𝑗

𝑘

𝑗=1

𝑡

,∏𝑖
𝜎(𝑗)

𝑤𝑗

𝑘

𝑗=1

,∏𝑛
𝜎(𝑗)

𝑤𝑗

𝑘

𝑗=1

) 

= (√1 − (1 −𝑚𝜎(𝑗)
𝑡 )

∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

, (𝑖𝜎(𝑗))
∑ 𝑤𝑗
𝑘
𝑗=1 , (𝑛𝜎(𝑗))

∑ 𝑤𝑗
𝑘
𝑗=1 ) 

= (𝑚0, 𝑖0, 𝑛0) = 𝒯0 

4.2.1.4. Theorem  

For a collection of any two different T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) 

(𝑗 = 1,2, … , 𝑘) such that 𝑚𝑗 ≤ 𝑚𝑗
′, 𝑖𝑗 ≤ 𝑖𝑗

′ and 𝑛𝑗 ≥ 𝑛𝑗
′ for all 𝑗, then 

𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑤(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

Proof: As 𝑚𝑗 ≤ 𝑚𝑗
′, 𝑖𝑗 ≤ 𝑖𝑗

′ and 𝑛𝑗 ≥ 𝑛𝑗
′ for all 𝑗. This implies that 

√1 −∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝑤𝑗

𝑘

𝑗=1

𝑡

≤ √1 −∏(1 − (𝑚𝜎(𝑗)
′ )

𝑡
)
𝑤𝑗

𝑘

𝑗=1

𝑡

 

∏𝑖
𝜎(𝑗)

𝑤𝑗

𝑘

𝑗=1

≤∏(𝑖𝜎(𝑗)
′ )

𝑤𝑗

𝑘

𝑗=1

 

∏𝑛
𝜎(𝑗)

𝑤𝑗

𝑘

𝑗=1

≥∏(𝑛𝜎(𝑗)
′ )

𝑤𝑗

𝑘

𝑗=1
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(√1 −∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝑤𝑗

𝑘

𝑗=1

𝑡

,∏𝑖𝜎(𝑗)

𝑘

𝑗=1

,∏𝑛𝜎(𝑗)

𝑘

𝑗=1

 )

≤ (√1 −∏(1 − (𝑚𝜎(𝑗)
′ )

𝑡
)
𝑤𝑗

𝑘

𝑗=1

𝑡

,∏(𝑖𝜎(𝑗)
′ )

𝑤𝑗

𝑘

𝑗=1

,∏(𝑛𝜎(𝑗)
′ )

𝑤𝑗

𝑘

𝑗=1

 ) 

4.2.1.5. Theorem  

Consider a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) for all 𝑗 = 1,2, … , 𝑘 such that 𝒯𝐿 =

min
𝑗
{𝒯𝑗} and 𝒯𝑈 = max

𝑗
{ 𝒯𝑗}. Then  

𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

4.2.1.6. Definition  

Consider a collection of T-SFNs, 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), then IP-T-SFOWA operator is 

defined as 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) =⊕𝑗=1
𝑘 (𝜆𝑗

′𝒯𝜎(𝑗)) 

where 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 is a weight vector with a condition that all weight vectors 

belong to [0,1] and the sum of all weights must be equal to 1. 𝜆𝑗 is probability for each 

𝒯𝑗 , 𝜆𝑗
′ is an immediate probability of 𝒯𝜎(𝑗) and 𝜆𝑗

′ =
(𝑤𝑗𝜆𝑗)

∑ 𝑤𝑗𝜆𝑗
𝑘
𝑗=1

 and 𝜎 = (𝜎(1), … , 𝜎(𝑘)) 

is the permutation such that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). 

4.2.1.7. Theorem  

Consider a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), then 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) = (√1 −∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

,∏𝑖
𝜎(𝑗)

𝜆𝑗
′

𝑘

𝑗=1

,∏𝑛
𝜎(𝑗)

𝜆𝑗
′

𝑘

𝑗=1

) 

Proof: The above result is proved by using mathematical induction, 

For 𝑘 = 1, 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑃(𝒯1) = (√1 − (1 − 𝑚1
𝑡)

𝑡
, 𝑖1, 𝑛1) 
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= (𝑚1, 𝑖1, 𝑛1) 

Thus results hold for 𝑘 = 1. Now consider that the results hold for 𝑘 = 𝑙,  

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑃(𝒯1, 𝒯2, … , 𝒯𝑙)  

= (√1 −∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙

𝑗=1

𝑡

,∏𝑖
𝜎(𝑗)

𝜆𝑗
′

𝑙

𝑗=1

,∏𝑛
𝜎(𝑗)

𝜆𝑗
′

𝑙

𝑗=1

) 

Then to prove that result hold for 𝑘 = 𝑙 + 1, 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑃(𝒯1, 𝒯2, … , 𝒯𝑙+1)  

= (√1 −∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙

𝑗=1

𝑡

,∏𝑖
𝜎(𝑗)

𝜆𝑗
′

𝑙

𝑗=1

,∏𝑛
𝜎(𝑗)

𝜆𝑗
′

𝑙

𝑗=1

)

⊕ (√1 − (1 −𝑚𝜎(𝑗)
𝑡 )

𝜆𝑗
′𝑡

, 𝑖
𝜎(𝑗)

𝜆𝑗
′

, 𝑛
𝜎(𝑗)

𝜆𝑗
′

) 

= (√1 −∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙+1

𝑗=1

𝑡

,∏𝑖
𝜎(𝑗)

𝜆𝑗
′

𝑙+1

𝑗=1

,∏𝑛
𝜎(𝑗)

𝜆𝑗
′

𝑙+1

𝑗=1

) 

This proves that the results hold for all 𝑘 ∈ 𝑍+. 

4.2.1.8. Theorem  

If 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) for all 𝑗 = 1,2, … , 𝑘 then 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) =

𝒯0. 

Proof: As 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) then 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) = (√1 −∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

,∏𝑖
𝜎(𝑗)

𝜆𝑗
′

𝑘

𝑗=1

,∏𝑛
𝜎(𝑗)

𝜆𝑗
′

𝑘

𝑗=1

) 

= (√1 − (1 −𝑚𝜎(𝑗)
𝑡 )

∑ 𝜆𝑗
′𝑘

𝑗=1
𝑡

, 𝑖
𝜎(𝑗)

∑ 𝜆𝑗
′𝑘

𝑗=1 , 𝑛
𝜎(𝑗)

∑ 𝜆𝑗
′𝑘

𝑗=1 ) 

= (𝑚0, 𝑖0, 𝑛0) = 𝒯0 
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4.2.1.9. Theorem  

For a collection of any two different T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) 

(𝑗 = 1,2, … , 𝑘) such that 𝑚𝑗 ≤ 𝑚𝑗
′, 𝑖𝑗 ≤ 𝑖𝑗

′ and 𝑛𝑗 ≥ 𝑛𝑗
′ for all 𝑗. Then 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑃(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

Proof: As 𝑚𝑗 ≤ 𝑚𝑗
′, 𝑖𝑗 ≤ 𝑖𝑗

′ and 𝑛𝑗 ≥ 𝑛𝑗
′ for all 𝑗. This implies that 

  √1 −∏ (1 −𝑚𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘
𝑗=1

𝑡

      ≤ √1 −∏ (1 − (𝑚𝜎(𝑗)
′ )

𝑡
)
𝜆𝑗
′

𝑘
𝑗=1

𝑡

 

∏(𝑖𝜎(𝑗))
𝜆𝑗
′

𝑘

𝑗=1

≤∏(𝑖𝜎(𝑗)
′ )

𝜆𝑗
′

𝑘

𝑗=1

 

∏(𝑛𝜎(𝑗))
𝜆𝑗
′

𝑘

𝑗=1

≥∏(𝑛𝜎(𝑗)
′ )

𝜆𝑗
′

𝑘

𝑗=1

 

(√1 −∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

,∏𝑖
𝜎(𝑗)

𝜆𝑗
′

𝑘

𝑗=1

,∏𝑛
𝜎(𝑗)

𝜆𝑗
′

𝑘

𝑗=1

 )

≤ (√1 −∏(1 − (𝑚𝜎(𝑗)
′ )

𝑡
)
𝜆𝑗
′

𝑘

𝑗=1

𝑡

,∏(𝑖𝜎(𝑗)
′ )

𝜆𝑗
′

𝑘

𝑗=1

,∏(𝑛𝜎(𝑗)
′ )

𝜆𝑗
′

𝑘

𝑗=1

) 

4.2.1.10. Theorem  

Consider a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) for all 𝑗 = 1,2, … , 𝑘 such that 𝒯𝐿 =

min
𝑗
{𝒯𝑗} and 𝒯𝑈 = max

𝑗
{𝒯𝑗}. Then 

𝒯𝐿 ≤ 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

4.2.1.11. Definition  

Consider a collection of T-SFNs, 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) on a set of states of nature 𝑋 =

{𝑥1, … , 𝑥𝑘}, then T-SFCA operator with respect to fuzzy measure Θ is defined as 

𝑇 − 𝑆𝐹𝐶𝐴Θ(𝒯1, 𝒯2, … , 𝒯𝑘) =⊕𝑗=1
𝑘 (𝜆𝑗𝒯𝜎(𝑗)) 
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where 𝜆𝑗 = Θ({𝑥𝜎(1), 𝑥𝜎(2), … , 𝑥𝜎(𝑗)}) − Θ({𝑥𝜎(1), 𝑥𝜎(2), … , 𝑥𝜎(𝑗−1)}), Θ({𝑥𝜎(0)}) ≡ 0 

and 𝜎 is the permutation. 𝜎 = (𝜎(1), 𝜎(2),… , 𝜎(𝑘)) is the permutation such that 

𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). 

4.2.1.12. Theorem  

Consider a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), then 

𝑇 − 𝑆𝐹𝐶𝐴Θ(𝒯1, 𝒯2, … , 𝒯𝑘) = (√1 −∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝜆𝑗

𝑘

𝑗=1

𝑡

,∏𝑖
𝜎(𝑗)

𝜆𝑗

𝑘

𝑗=1

,∏𝑛
𝜎(𝑗)

𝜆𝑗

𝑘

𝑗=1

) 

Further, it is observed that T-SFCA operator also fulfils the properties as defined 

in theorems 4.2.1.3. – 4.2.1.5., so we omit here their proofs.  

4.2.1.13. Definition  

Consider a collection of T-SFNs, 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), the Ass. IP-T-SFOWA operators is 

defined as 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴∨(𝒯1, 𝒯2, … , 𝒯𝑘) = ⋁[⊕𝑗=1
𝑘 (𝜆𝜌(𝑗)

′ 𝒯𝜎(𝑗))]

𝜌∈𝑋𝑛

 

and 

  

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴∧(𝒯1, 𝒯2, … , 𝒯𝑘) = ⋀[⊕𝑗=1
𝑘 (𝜆𝜌(𝑗)

′ 𝒯𝜎(𝑗))]

𝜌∈𝑋𝑛

 

where 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 is a weight vector with a condition that all weight vectors 

belong to [0,1] and the sum of all weights must be equal to 1. 𝜎 = (𝜎(1), … , 𝜎(𝑘)) is 

the permutation such that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). For each associated probability 𝑃𝜌: 

𝜆𝜌(𝑗)
′ =

(𝑤𝑗𝜆𝜌(𝑗))

∑ 𝑤𝑗𝜆𝜌(𝑗)
𝑘
𝑗=1

, 𝜆𝜌(𝑗) ≡ 𝑃𝜌(𝒯𝜎(𝑗)) is an associated immediate probability and ∨

=maximum and ∧=minimum. 

4.2.1.14. Theorem  

Consider a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), then 
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𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴∨(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √1 − min

𝜌∈𝑋𝑛
(∏(1 −𝑚𝜎(𝑗)

𝑡 )
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

, min
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,

min
𝜌∈𝑋𝑛

(∏(𝑛𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

)

 
 
 
 
 

 

and   

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴∧(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √1 −max

𝜌∈𝑋𝑛
(∏(1 −𝑚𝜎(𝑗)

𝑡 )
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

, max
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,

max
𝜌∈𝑋𝑛

(∏(𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

)

 
 
 
 
 

 

Further, it is observed that 𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴∨ and 𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴∧ 

operator also fulfils the properties as defined in theorems 4.2.1.3. – 4.2.1.5., so we omit 

here their proofs.  

 4.2.1.15. Definition  

Consider a collection of T-SFNs, 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) on a set of states of nature 𝑋 =

{𝑥1, … , 𝑥𝑘}, then T-spherical fuzzy conjugate Choquet averaging (T-SFCCA) operator 

with respect to fuzzy measure Θ is defined as 

𝑇 − 𝑆𝐹𝐶𝐶𝐴Θ(𝒯1, 𝒯2, … , 𝒯𝑘) = (⊕𝑗=1
𝑘 (𝜆𝑗(𝒯𝑗)

𝑐
))

𝑐

 

where 𝜆𝑗 = Θ({𝑥𝜎(1), 𝑥𝜎(2), … , 𝑥𝜎(𝑗)}) − Θ({𝑥𝜎(1), 𝑥𝜎(2), … , 𝑥𝜎(𝑗−1)}), Θ({𝑥𝜎(0)}) ≡ 0 

and 𝜎 = (𝜎(1), 𝜎(2),… , 𝜎(𝑘)) is the permutation such that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). 

4.2.1.16. Theorem  

Consider a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), then  
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𝑇 − 𝑆𝐹𝐶𝐶𝐴Θ(𝒯1, 𝒯2, … , 𝒯𝑘)

= (∏(𝑚𝜎(𝑗))
𝜆𝑗

𝑘

𝑗=1

,∏(𝑖𝜎(𝑗))
𝜆𝑗

𝑘

𝑗=1

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗

𝑘

𝑗=1

𝑡

) 

4.2.2. T-Spherical Fuzzy Interactive Aggregation operators 

In this subsection some interactive averaging aggregation operators e.g. T-

SFOWIA, IP-T-SFOWIA, T-SGCIA and Ass. IP-T-SFOWIA operators along with 

some of their basic properties are proposed. 

4.2.2.1. Definition  

Consider a collection of T-SFNs, 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), then T-SFOWIA operator is defined 

as 

𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) =⊕𝑖𝑗=1
𝑘 (𝑤𝑗𝒯𝜎(𝑗)) 

where 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑘)
𝑇 is a weight vector with a conditions that all weight vectors 

must belong to [0,1] and the sum of all weights is equal to 1 and 𝜎 =

(𝜎(1), 𝜎(2), … , 𝜎(𝑘)) is the permutation such that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). 

4.2.2.2. Theorem  

Consider a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), then 

𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √1 −∏(1 −𝑚𝜎(𝑗)

𝑡 )
𝑤𝑗

𝑘

𝑗=1

𝑡

, √1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝑤𝑗

𝑘

𝑗=1

𝑡

,

 √∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝑤𝑗
−∏(1 −𝑚𝜎(𝑗)

𝑡 − 𝑖𝜎(𝑗)
𝑡 − 𝑛𝜎(𝑗)

𝑡 )
𝑤𝑗

𝑘

𝑗=1

𝑘

𝑗=1

−∏(𝑖𝜎(𝑗)
𝑡 )

𝑤𝑗

𝑘

𝑗=1

𝑡

)

 
 
 
 
 

, 

Proof: The above result is proved by using mathematical induction, 

For 𝑘 = 1, 
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𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴𝑤(𝒯1)

= (√1 − (1 − 𝑚1
𝑡)

𝑡
, √1 − (1 − 𝑖1

𝑡)
𝑡

, √(1 − 𝑚1
𝑡) − (1 − 𝑚1

𝑡 − 𝑖1
𝑡 − 𝑛1

𝑡) − 𝑖1
𝑡𝑡
) 

= (𝑚1, 𝑖1, 𝑛1) 

Thus results hold for 𝑘 = 1. Now consider that the results hold for 𝑘 = 𝑙,  

𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑙)

=

(

 
 
 
 
 √1 −∏(1 −𝑚𝜎(𝑗)

𝑡 )
𝑤𝑗

𝑙

𝑗=1

𝑡

, √1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝑤𝑗

𝑙

𝑗=1

𝑡

,

 √∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝑤𝑗
−∏(1 −𝑚𝜎(𝑗)

𝑡 − 𝑖𝜎(𝑗)
𝑡 − 𝑛𝜎(𝑗)

𝑡 )
𝑤𝑗

𝑙

𝑗=1

𝑙

𝑗=1

−∏(𝑖𝜎(𝑗)
𝑡 )

𝑤𝑗

𝑙

𝑗=1

𝑡

)

 
 
 
 
 

 

Then to prove that result hold for 𝑘 = 𝑙 + 1, 

𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑙+1)

=

(

 
 
 
 
 √1 −∏(1 −𝑚𝜎(𝑗)

𝑡 )
𝑤𝑗

𝑙

𝑗=1

𝑡

, √1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝑤𝑗

𝑙

𝑗=1

𝑡

,

 √∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝑤𝑗
−∏(1 −𝑚𝜎(𝑗)

𝑡 − 𝑖𝜎(𝑗)
𝑡 − 𝑛𝜎(𝑗)

𝑡 )
𝑤𝑗

𝑙

𝑗=1

𝑙

𝑗=1

−∏(𝑖𝜎(𝑗)
𝑡 )

𝑤𝑗

𝑙

𝑗=1

𝑡

)

 
 
 
 
 

 

⊕𝑖

(

 
√1 − (1 −𝑚𝜎(𝑗)

𝑡 )
𝑤𝑗𝑡
, √1 − (1 − 𝑖𝜎(𝑗)

𝑡 )
𝑤𝑗𝑡
,

 √(1 − 𝑚𝜎(𝑗)
𝑡 )

𝑤𝑗
− (1 −𝑚𝜎(𝑗)

𝑡 − 𝑖𝜎(𝑗)
𝑡 − 𝑛𝜎(𝑗)

𝑡 )
𝑤𝑗
− (𝑖𝜎(𝑗)

𝑡 )
𝑤𝑗𝑡

)

  

=

(

 
 
 
 
 √1 −∏(1 −𝑚𝜎(𝑗)

𝑡 )
𝑤𝑗

𝑙+1

𝑗=1

𝑡

, √1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝑤𝑗

𝑙+1

𝑗=1

𝑡

,

 √∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝑤𝑗
−∏(1 −𝑚𝜎(𝑗)

𝑡 − 𝑖𝜎(𝑗)
𝑡 − 𝑛𝜎(𝑗)

𝑡 )
𝑤𝑗

𝑙+1

𝑗=1

𝑙+1

𝑗=1

−∏(𝑖𝜎(𝑗)
𝑡 )

𝑤𝑗

𝑙+1

𝑗=1

𝑡

)

 
 
 
 
 

 

This proves that the results hold for all 𝑘 ∈ 𝑍+. 
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4.2.2.3. Definition  

Consider a collection of T-SFNs, 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), then IP-T-SFOWIA operator is 

defined as 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) =⊕𝑖𝑗=1
𝑘 (𝜆𝑗

′𝒯𝜎(𝑗)) 

where 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑘)
𝑇 is a weight vector with a condition that all weight vectors 

belong to [0,1] and the sum of all weights must be equal to 1. 𝜆𝑗 is probability for each 

𝒯𝑗 , 𝜆𝑗 is an immediate probability of 𝒯𝜎(𝑗) and 𝜆𝑗
′ =

(𝑤𝑗𝜆𝑗)

∑ 𝑤𝑗𝜆𝑗
𝑘
𝑗=1

 and 𝜎 = (𝜎(1), … , 𝜎(𝑘)) 

is the permutation such that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). 

4.2.2.4. Theorem  

Consider a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), then 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴𝑃(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √1 −∏(1 −𝑚𝜎(𝑗)

𝑡 )
𝜆𝑗
′

𝑘

𝑗=1

𝑡

, √1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

,

√∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝜆𝑗
′

−∏(1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑘

𝑗=1

−∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

 

)

 
 
 
 
 

 

4.2.2.5. Definition  

Consider a collection of T-SFNs, 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) on a set of states of nature 𝑋 =

{𝑥1, … , 𝑥𝑘}, then T-SFCIA operator with respect to fuzzy measure Θ is defined as 

𝑇 − 𝑆𝐹𝐶𝐼𝐴Θ(𝒯1, 𝒯2, … , 𝒯𝑘) =⊕𝑖𝑗=1
𝑘 (𝜆𝑗𝒯𝜎(𝑗)) 

where 𝜆𝑗 = Θ({𝑥𝜎(1), 𝑥𝜎(2), … , 𝑥𝜎(𝑗)}) − Θ({𝑥𝜎(1), 𝑥𝜎(2), … , 𝑥𝜎(𝑗−1)}), Θ({𝑥𝜎(0)}) ≡ 0 

and 𝜎 is the permutation. 𝜎 = (𝜎(1), 𝜎(2),… , 𝜎(𝑘)) is the permutation such that 

𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). 

4.2.2.6. Theorem  

Consider a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), then 
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𝑇 − 𝑆𝐹𝐶𝐼𝐴Θ(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √1 −∏(1 −𝑚𝜎(𝑗)

𝑡 )
𝜆𝑗

𝑘

𝑗=1

𝑡

, √1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗

𝑘

𝑗=1

𝑡

,

 √∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝜆𝑗
−∏(1 −𝑚𝜎(𝑗)

𝑡 − 𝑖𝜎(𝑗)
𝑡 − 𝑛𝜎(𝑗)

𝑡 )
𝜆𝑗

𝑘

𝑗=1

𝑘

𝑗=1

−∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗

𝑘

𝑗=1

𝑡

 

)

 
 
 
 
 

 

4.2.2.7. Definition  

Consider a collection of T-SFNs, 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), then Ass.IP-T-SFOWIA operators 

is defined as 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴∨(𝒯1, 𝒯2, … , 𝒯𝑘) = ⋁ [⊕𝑖𝑗=1
𝑘 (𝜆𝜌(𝑗)

′ 𝒯𝜎(𝑗))]

𝜌∈𝑋𝑛

 

And 

 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴∧(𝒯1, 𝒯2, … , 𝒯𝑘) = ⋀ [⊕𝑖𝑗=1
𝑘 (𝜆𝜌(𝑗)

′ 𝒯𝜎(𝑗))]

𝜌∈𝑋𝑛

 

where 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑘)
𝑇 is a weight vector with a condition that all weight vectors 

belong to [0,1] and the sum of all weights must be equal to 1. 𝜎 = (𝜎(1), … , 𝜎(𝑘)) is 

the permutation such that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). For each associated probability 𝑃𝜌: 

𝜆𝜌(𝑗)
′ =

(𝑤𝑗𝜆𝜌(𝑗))

∑ 𝑤𝑗𝜆𝜌(𝑗)
𝑘
𝑗=1

, 𝜆𝜌(𝑗) ≡ 𝑃𝜌(𝒯𝜎(𝑗)) is an associated immediate probability and ∨

=maximum and ∧=minimum. 

4.2.2.8. Theorem  

Consider a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), then 
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𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴∨(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 
 
 
 √1 − min

𝜌∈𝑋𝑛
(∏(1 −𝑚𝜎(𝑗)

𝑡 )
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

, √1 − min
𝜌∈𝑋𝑛

(∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

,

√
  
  
  
  
  
  
  

min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) − min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

− min
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

𝑡

)

 
 
 
 
 
 
 
 
 

 

and 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴∧(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 
 
 
 √1 −max

𝜌∈𝑋𝑛
(∏(1 −𝑚𝜎(𝑗)

𝑡 )
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

, √1 − max
𝜌∈𝑋𝑛

(∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

,

√
  
  
  
  
  
  
  

max
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −max
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

−max
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

𝑡

)

 
 
 
 
 
 
 
 
 

 

4.2.2.9. Definition  

Consider a collection of T-SFNs, 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) on a set of states of nature 𝑋 =

{𝑥1, …… , 𝑥𝑘}, then T-spherical fuzzy conjugate Choquet interactive averaging (T-

SFCCIA) operator with respect to fuzzy measure Θ is defined as 

𝑇 − 𝑆𝐹𝐶𝐶𝐼𝐴Θ(𝒯1, 𝒯2, … , 𝒯𝑘) = (⊕𝑖𝑗=1
𝑘 (𝜆𝑗(𝒯𝑗)

𝑐
))

𝑐

 

where 𝜆𝑗 = Θ({𝑥𝜎(1), 𝑥𝜎(2), … , 𝑥𝜎(𝑗)}) − Θ({𝑥𝜎(1), 𝑥𝜎(2), … , 𝑥𝜎(𝑗−1)}), Θ({𝑥𝜎(0)}) ≡ 0 

and 𝜎 = (𝜎(1), 𝜎(2),… , 𝜎(𝑘)) is the permutation such that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). 

4.2.2.10. Theorem  

Consider a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗), then 
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𝑇 − 𝑆𝐹𝐶𝐶𝐼𝐴Θ(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √∏(1 − 𝑛𝜎(𝑗)

𝑡 )
𝜆𝑗
−∏(1 −𝑚𝜎(𝑗)

𝑡 − 𝑖𝜎(𝑗)
𝑡 − 𝑛𝜎(𝑗)

𝑡 )
𝜆𝑗

𝑘

𝑗=1

𝑘

𝑗=1

−∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗

𝑘

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗

𝑘

𝑗=1

𝑡

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗

𝑘

𝑗=1

𝑡

)

 
 
 
 
 

 

Also, it is observed that all the above defined operators also satisfied the properties as 

defined in Properties 4.2.1.3. – 4.2.1.5.  

4.2.2.11. Remark  

If fuzzy measure and probability of T-SFSs become equal and furthermore probabilities 

of all T-SFNs become equal then Ass.IP-T-SFOWIA operator reduces to T-SFOWA 

operator. 

4.2.3. Comparison between aggregation operators and interactive aggregation 

operators 

In this section, the superiority of interactive averaging aggregation operators 

over averaging aggregation operators is explained with the help of an example. It is also 

explained that under some conditions the averaging aggregation operators fail while 

interactive averaging aggregation operators overcome this shortcoming. 

4.2.3.1. Example  

Consider T-SFNs, 𝑔1 = (0.63,0.0, 0.0), 𝑔2 = (0.68,0.25, 0.81) and 𝑔3 =

(0.0,0.51, 0.93) having a weight vector 𝑤 = {0.25, 0.40, 0.35}, fuzzy measures will be 

 Θ(𝜙) = 0,    Θ({𝑔1}) = 0.125,    Θ({𝑔2}) = 0.200,    Θ({𝑔3}) = 0.175,    

Θ({𝑔1, 𝑔2}) = 0.325,     Θ({𝑔1, 𝑔3}) = 0.300,    Θ({𝑔2, 𝑔3}) = 0.375,     

Θ({𝑔1, 𝑔2, 𝑔3}) = 1. 

Immediate probabilities for all possible permutations and the associated immediate 

probabilities for all possible permutations are given in Table 15. 

Table 15 Immediate Probabilities & Associated Immediate Probability 

 Immediate Probabilities 
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 𝜆1
′  𝜆2

′  𝜆3
′  

𝜎 = (𝑔1, 𝑔2, 𝑔3) 0.125 0.200 0.675 

𝜎 = (𝑔1, 𝑔3, 𝑔2) 0.125 0.700 0.175 

𝜎 = (𝑔2, 𝑔1, 𝑔3) 0.200 0.200 0.600 

𝜎 = (𝑔2, 𝑔3, 𝑔1) 0.700 0.200 0.100 

𝜎 = (𝑔3, 𝑔1, 𝑔2) 0.125 0.700 0.175 

σ = (𝑔3, 𝑔2, 𝑔1) 0.700 0.125 0.175 

Associated Immediate Probability 

 𝜆𝜌(1)
′  𝜆𝜌(2)

′  𝜆𝜌(3)
′  

𝜎 = (𝑔1, 𝑔2, 𝑔3) 0.0899 0.2302 0.6798 

𝜎 = (𝑔1, 𝑔3, 𝑔2) 0.0839 0.7517 0.1644 

𝜎 = (𝑔2, 𝑔1, 𝑔3) 0.1470 0.2353 0.6176 

𝜎 = (𝑔2, 𝑔3, 𝑔1) 0.6034 0.2759 0.1207 

𝜎 = (𝑔3, 𝑔1, 𝑔2) 0.0839 0.7517 0.1644 

σ = (𝑔3, 𝑔2, 𝑔1) 0.6114 0.1747 0.2140 

As for 𝑡 = 1,  0.68 + 0.25 + 0.81 = 1.74 ∉ [0, 1],  

As for 𝑡 = 2,  0.682 + 0.252 + 0.812 = 1.181 ∉ [0, 1] 

As for 𝑡 = 3,  0.683 + 0.253 + 0.813 = 0.861 ∈ [0, 1] 

Similarly for 𝑡 = 3, 𝒯1 and 𝒯3 are T-SFNs. 

Then aggregated values of averaging aggregation operators defined in Definitions 

4.2.1.1., 4.2.1.6., 4.2.1.11., and 4.2.1.13., will be 

𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑤(𝑔1, 𝑔2, 𝑔3) = (0.5846, 0.0, 0.0) 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑃(𝑔1, 𝑔2, 𝑔3) = (0.5452, 0.0, 0.0) 

𝑇 − 𝑆𝐹𝐶𝐴Θ(𝑔1, 𝑔2, 𝑔3) = (0.4752, 0.0, 0.0) 
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𝐴𝑠𝑠.  𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴∨(𝑔1, 𝑔2, 𝑔3) = (0.6423, 0.0, 0.0) 

𝐴𝑠𝑠.  𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴∧(𝑔1, 𝑔2, 𝑔3) = (0.4742, 0.0, 0.0) 

The above aggregation results seem meaningless as these averaging operators do 

not aggregate abstinence and non-membership value because one of the abstinence and 

non-membership value of given data is zero. So the results obtained through these 

averaging aggregation operators are not valid. To overcome this shortcoming we used 

interactive averaging aggregation operators. The results obtained by using interactive 

operators defined in Definitions 4.2.2.1., 4.2.2.3., 4.2.2.5., and 4.2.2.7. will be  

𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴𝑤(𝑔1, 𝑔2, 𝑔3) = (0.5846, 0.3793, 0.8617) 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴𝑃(𝑔1, 𝑔2, 𝑔3) = (0.5452, 0.4205, 0.8973) 

𝑇 − 𝑆𝐹𝐶𝐼𝐴Θ(𝑔1, 𝑔2, 𝑔3) = (0.4752, 0.4554, 0.9260) 

𝐴𝑠𝑠.  𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴∨(𝑔1, 𝑔2, 𝑔3) = (0.6423, 0.4571, 0.7420) 

𝐴𝑠𝑠.  𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴∧(𝑔1, 𝑔2, 𝑔3) = (0.4742, 0.2772, 0.9279) 

The proposed interactive operators aggregate all membership, abstinence and non-

membership values. This shows the superiority of interactive aggregation operators and 

the results obtained using these interactive operators are more reliable.  

4.3. Algorithm for MADM based on proposed operators 

In this section an algorithm was developed to solve MADM problem using the 

proposed averaging aggregation and interactive aggregation operators and a well-

known MADM example is solved by using the algorithm. 

Consider a set of alternatives 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑙} and set of attributes 𝐺 =

{𝑔1, 𝑔2, … , 𝑔𝑘} having a weight vector 𝑤 = {𝑤1, 𝑤2, … , 𝑤𝑘}, set of probabilities 

associated with them is 𝑃 = {𝜆1, 𝜆2, … , 𝜆𝑘} and associated immediate probabilities are 

𝑃𝜌(𝑗) = {𝜆𝜌(1)
′ , 𝜆𝜌(2)

′ , … , 𝜆𝜌(𝑘)
′ }. The weight vector and set of probabilities have a same 

condition that the sum of weights and probabilities must equal to 1 and weights and 

probabilities belong to closed unit interval. The fuzzy measure Θ have been calculated 

for all subsets of {𝑑1, 𝑑2, … , 𝑑𝑙}. Then to find the finest alternative among the feasible 

one, we summarized the following steps based on the proposed aggregation operators. 
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Step 1. Rate the given alternatives under the different set of attributes by an expert in 

terms of T-spherical fuzzy numbers and are summarized in the decision matrix as 

follows: 

𝒯 = (
(𝑚11, 𝑖11, 𝑛11) (𝑚12, 𝑖12, 𝑛12) …

… … …
(𝑚𝑙1, 𝑖𝑙1, 𝑛𝑙1) (𝑚𝑙2, 𝑖𝑙2, 𝑛𝑙2) …

… (𝑚1𝑘, 𝑖𝑖𝑘, 𝑛𝑖𝑘)

… …
… (𝑚𝑙𝑘, 𝑖𝑙𝑘, 𝑛𝑙𝑘)

) 

Step 2: Normalize the data, if required by converting the cost type ratings into the 

benefit type by using the following equation 

𝑟𝑙𝑘 = {
(𝑚𝑙𝑘, 𝑖𝑙𝑘, 𝑛𝑙𝑘)  ;   𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡𝑦𝑝𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠
(𝑛𝑙𝑘, 𝑖𝑙𝑘, 𝑚𝑙𝑘)  ;     𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑡𝑦𝑝𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

  

and hence obtained the normalized decision matrix 𝑅 = (𝑟𝑙𝑘). 

Step 3: Find the value of 𝑡 for which information matrix 𝑅 lie in T-spherical fuzzy 

environment i.e., to find the smallest value of 𝑡 which satisfy the condition 𝑚𝑙𝑘
𝑡 + 𝑖𝑙𝑘

𝑡 +

𝑛𝑙𝑘
𝑡 ≤ 1 for all 𝑙, 𝑘. 

Step 4. Utilize the normalized data and the value of 𝑡, aggregate all the numbers into 

the collective ones by using the aggregation operators such as IP-T-SFOWA, T-SFCA, 

Ass.IP-T-SFOWA etc. The resultant number is denoted by 𝒯𝑘 = (𝑚𝑘 , 𝑖𝑘, 𝑛𝑘) for 𝑘 =

1,2, … , 𝑙. 

Step 5. Compute the score value of the obtained number 𝒯𝑘 = (𝑚𝑘, 𝑖𝑘, 𝑛𝑘) by using 

equation  

𝑆𝐶(𝒯𝑘) = 𝑚𝑘
𝑡 − 𝑖𝑘

𝑡 − 𝑛𝑘
𝑡 + (

𝑒𝑚𝑘
𝑡 −𝑖𝑘

𝑡 −𝑛𝑘
𝑡

𝑒𝑚𝑘
𝑡 −𝑖𝑘

𝑡 −𝑛𝑘
𝑡
+1
−

1

2
) 𝑟𝑘

𝑡,                                                      

Where 𝑟𝑘
𝑡 = √1 −𝑚𝑘

𝑡 − 𝑖𝑘
𝑡 − 𝑛𝑘

𝑡𝑡
 

Step 6. Rank the alternatives based on the score values and hence select the best one. 

4.3.1. Numerical Example  

To save the non-renewable energy resources and the environment, the use of 

renewable energy plays a significant role in the aspect of the production of electricity. 

Solar cells are the best renewable sources of energy. There are several types of solar 

cells but few of them are studied in our application. The solar cells made with inorganic 
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semiconductors like crystalline silicon solar cell, a solar cell with advanced III-V thin 

layer, amorphous silicon solar cell, cadmium telluride solar cell, etc. are expensive and 

their use has been confined to a few technological options. While on the other hand, the 

solar cells made with organic semiconductors like a dye-sensitized solar cell, etc. can 

be processed on large surfaces at a relatively low temperature but they have some 

serious problems that the degradation of their compounds (plastics) and also they 

provide less efficiency about 5-11%.  

A MARCO company is situated in Islamabad Pakistan. This factory manufactures 

PVC pipes and plastic water tanks. Due to the load shedding of electricity, the company 

is unable to meet the demand. To overcome the deficit of supply and demand the 

company wants to generate electricity using solar energy. For which they have to select 

the best solar cell that increases production or efficiency, minimizes cost, and at the 

same time confers high maturity and reliability. They have a set of alternatives 𝐷 =

{𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5} where: 

𝑑1: Amorphous Silicon Solar Cell; 

𝑑2: Dye-sensitized Solar Cell; 

𝑑3: Cadmium Telluride Solar Cell; 

𝑑4: Solar cell with advanced III-V thin layer with tracking systems for solar 

concentration; 

𝑑5: Crystalline Silicon Solar Cell. 

Experts have evaluate these alternatives under consideration of following attributes 

𝐺 = {𝑔1, 𝑔2, 𝑔3} 

𝑔1: Cost; 

𝑔2: Efficiency in energy conversion; 

𝑔3: Heat tolerance. 

The experts give information in T-spherical fuzzy numbers after evaluation as in 

Table 16. 
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Table 16 Decision Matrix 

 𝑔1 𝑔2 𝑔3 

𝑑1 (0.51,0.42,0.87) (0.54,0.21,0.44) (0.47,0.36,0.81) 

𝑑2 (0.53,0.33,0.84) (0.00,0.23,0.47) (0.67,0.11,0.55) 

𝑑3 (0.39,0.26,0.77) (0.73,0.38,0.59) (0.64,0.41,0.52) 

𝑑4 (0.00,0.34,0.93) (0.91,0.27,0.56) (0.66,0.19,0.79) 

𝑑5 (0.22,0.46,0.78) (0.69,0.52,0.42) (0.59,0.41,0.72) 

Assume that the 𝑔1 is the cost type attribute, so we normalize the given information 

by converting the cost type into benefit type and obtained the normalized decision 

matrix given in Table 17. 

Table 17 Normalized Decision Matrix 

 𝑔1 𝑔2 𝑔3 

𝑑1 (0.87,0.42,0.51) (0.54,0.21,0.44) (0.47,0.36,0.81) 

𝑑2 (0.84,0.33,0.53) (0.00,0.23,0.47) (0.67,0.11,0.55) 

𝑑3 (0.77,0.26,0.39) (0.73,0.38,0.59) (0.64,0.41,0.52) 

𝑑4 (0.93,0.34,0.00) (0.91,0.27,0.56) (0.66,0.19,0.79) 

𝑑5 (0.78,0.46,0.22) (0.69,0.52,0.42) (0.59,0.41,0.72) 

As for 𝑡 = 1,  0.87 + 0.42 + 0.51 = 1.8 ∉ [0, 1],  

As for 𝑡 = 2,  0.872 + 0.422 + 0.512 = 1.19 ∉ [0, 1] 

As for 𝑡 = 3,  0.873 + 0.423 + 0.513 = 0.865 ∈ [0, 1]  

Similarly for 𝑡 = 3 all the information given in Table 17 are T-SFNs. The interaction 

of states of nature and weights of given attributes is in Table 18. 

Table 18 Interaction of states of nature and weights 

 𝑔1 𝑔2 𝑔3 Risk 

importance 

𝑔1 - 0.150 0.100 0.250 
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𝑔2 0.150 - 0.250 0.400 

𝑔3 0.100 0.250 - 0.350 

 

With the help of Table 18, the interaction between attributes will be 𝐼𝑔1 = 0.250, 

𝐼𝑔2 = 0.400, 𝐼𝑔3 = 0.350, 𝐼𝑔1𝑔2 = 0.150, 𝐼𝑔1𝑔3 = 0.100, 𝐼𝑔2𝑔3 = 0.250. The fuzzy 

measure can be calculated with the help of interaction using the following relationship  

Θ({𝑔𝑗}) = 𝐼𝑔𝑗 −
1

2
∑ 𝐼𝑔𝑗𝑔

𝑔∈𝐺{𝑔𝑗}

 

Θ({𝑔𝑗 , 𝑔𝑘}) = 𝐼𝑔𝑗 + 𝐼𝑔𝑘 −
1

2
∑ 𝐼𝑔𝑗𝑔

𝑔∈𝐺{𝑔𝑗,𝑔𝑘}

−
1

2
∑ 𝐼𝑔𝑘𝑔

𝑔∈𝐺{𝑔𝑗,𝑔𝑘}

           

𝑗, 𝑘 = 1,2,3,4. 𝑗 ≠ 𝑘 

Θ(𝜙) = 0, Θ(𝐺) = 1. 

The fuzzy measures will be Θ(𝜙) = 0,    Θ({𝑔1}) = 0.125,    Θ({𝑔2}) = 0.200,    

Θ({𝑔3}) = 0.175,    Θ({𝑔1, 𝑔2}) = 0.325,     Θ({𝑔1, 𝑔3}) = 0.300,    Θ({𝑔2, 𝑔3}) =

0.375,     Θ(𝐺) = 1. The immediate probabilities for every possible permutation are 

summarized in Table 19. An associated immediate probability for every possible 

permutation is summarized in Table 20. 

Table 19 Immediate Probability 

 𝜆1
′  𝜆2

′  𝜆3
′  

𝜎 = (𝑔1, 𝑔2, 𝑔3) 0.125 0.200 0.675 

𝜎 = (𝑔1, 𝑔3, 𝑔2) 0.125 0.700 0.175 

𝜎 = (𝑔2, 𝑔1, 𝑔3) 0.200 0.200 0.600 

𝜎 = (𝑔2, 𝑔3, 𝑔1) 0.700 0.200 0.100 

𝜎 = (𝑔3, 𝑔1, 𝑔2) 0.125 0.700 0.175 

σ = (𝑔3, 𝑔2, 𝑔1) 0.700 0.125 0.175 

Table 20 Associated Immediate Probability 

 𝜆𝜌(1)
′  𝜆𝜌(2)

′  𝜆𝜌(3)
′  
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𝜎 = (𝑔1, 𝑔2, 𝑔3) 0.0899 0.2302 0.6798 

𝜎 = (𝑔1, 𝑔3, 𝑔2) 0.0839 0.7517 0.1644 

𝜎 = (𝑔2, 𝑔1, 𝑔3) 0.1470 0.2353 0.6176 

𝜎 = (𝑔2, 𝑔3, 𝑔1) 0.6034 0.2759 0.1207 

𝜎 = (𝑔3, 𝑔1, 𝑔2) 0.0839 0.7517 0.1644 

σ = (𝑔3, 𝑔2, 𝑔1) 0.6114 0.1747 0.2140 

The aggregated values by proposed operators (Definitions 4.2.1.1., 4.2.1.6., 

4.2.1.11., and 4.2.1.13.) are shown in Table 21. 

Table 21 Aggregated values using aggregation operator 

 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

𝑇

− 𝑆𝐹𝑂𝑊𝐴𝑤 
(
0.6790,
0.3016,
0.5652

) (
0.6658,
0.1944,
0.5117

) (
0.7154,
0.4963,
0.5090

) (
0.8718
0.2529,
0.0

) (
0.6911,
0.4641,
0.4315

) 

𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐴𝑃 
(
0.6074,
0.3002,
0.6088

) (
0.6328,
0.1662,
0.5163

) (
0.6967,
0.3764,
0.5257

) (
0.8397,
0.2330,
0.0

) (
0.6630,
0.4545,
0.5076

) 

𝑇 − 𝑆𝐹𝐶𝐴𝛩 
(
0.5994,
0.3295,
0.6766

) (
0.6679,
0.1462,
0.5305

) (
0.6812,
0.3815,
0.5145

) (
0.7988,
0.2192,
0.0

) (
0.6466,
0.4362,
0.5574

) 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐴∨ 
(
0.7982,
0.2432,
0.4925

) (
0.7748,
0.1439,
0.4872

) (
0.7474,
0.3050,
0.4459

) (
0.9111,
0.2171,
0.0

) (
0.7423,
0.4376,
0.3034

) 

Ass. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐴∧ 
(
0.5748,
0.3600,
0.6752

) (
0.5008,
0.2616,
0.5287

) (
0.6787,
0.3867,
0.5581

) (
0.7954,
0.2974,
0.0

) (
0.6411,
0.4950,
0.5717

) 

This seems meaningless because the averaging aggregation operators cannot 

aggregate the non-membership value of 𝑑4 so valid aggregate of 𝑑4 is not obtained. 

The score values of aggregated operators are listed in Table 22, and the 

corresponding score values the ranking of alternatives is shown in the Table 23. 

Table 22 Score values of Table 21 

 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

𝑇

− 𝑆𝐹𝑂𝑊𝐴𝑤 

0.1176 0.1754 0.1226 0.6967 0.1687 

𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐴𝑃 

-0.0324 0.1279 0.1556 0.6352 0.0749 
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𝑇 − 𝑆𝐹𝐶𝐴𝛩 -0.1445 0.1655 0.1397 0.5579 0.0159 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐴∨ 

0.4077 0.3822 0.3353 0.7877 0.3326 

Ass. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐴∧ 

-0.1832 -0.0472 0.0901 0.5320 -0.0493 

 

Table 23 Ranking order of the alternatives 

Operators Rankings 

𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑤 𝑑4 ≥ 𝑑2 ≥ 𝑑5 ≥ 𝑑3 ≥ 𝑑1 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴𝑃 𝑑4 ≥ 𝑑3 ≥ 𝑑2 ≥ 𝑑5 ≥ 𝑑1 

𝑇 − 𝑆𝐹𝐶𝐴𝛩 𝑑4 ≥ 𝑑2 ≥ 𝑑3 ≥ 𝑑5 ≥ 𝑑1 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴∨ 𝑑4 ≥ 𝑑1 ≥ 𝑑2 ≥ 𝑑3 ≥ 𝑑5 

Ass. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐴∧ 𝑑4 ≥ 𝑑3 ≥ 𝑑2 ≥ 𝑑5 ≥ 𝑑1 

The ranking results in Table 23 are not accurate because non-membership value 

of 𝑑4 in averaging aggregation operators has not been aggregated.  

Now the aggregated values of all proposed interactive aggregation operators are 

shown in Table 24, the corresponding score values are listed in Table 25, and the 

ranking of alternatives is summarized in Table 26. 

Table 24 Aggregated Values by interactive aggregation operators 

 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐴𝑤 
(
0.6790,
0.3389,
0.6681

) (
0.6658,
0.2433,
0.5577

) (
0.7154,
0.3700,
0.5365

) (
0.8718
0.2722,
0.5942

) (
0.6911,
0.4721,
0.5452

) 

𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐴𝑃 
(
0.6074,
0.3315,
0.7050

) (
0.6328,
0.2138,
0.5496

) (
0.6967,
0.3857,
0.5452

) (
0.8397,
0.2508,
0.6502

) (
0.6630,
0.4639,
0.6019

) 

𝑇 − 𝑆𝐹𝐶𝐼𝐴𝛩 
(
0.5994,
0.3498,
0.7428

) (
0.6679,
0.1991,
0.5552

) (
0.6812,
0.3911,
0.5303

) (
0.7988,
0.2384,
0.6881

) (
0.6466,
0.4436,
0.6443

) 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐴∨ 
(
0.7982,
0.3853,
0.5960

) (
0.7748,
0.2936,
0.5204

) (
0.7474,
0.3940,
0.4757

) (
0.9111,
0.3109,
0.4613

) (
0.7423,
0.5008,
0.4089

) 

Ass. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐴∧ 
(
0.5748,
0.2763,
0.7477

) (
0.5008,
0.1912,
0.5637

) (
0.6787,
0.3249,
0.5729

) (
0.7954,
0.2338,
0.6963

) (
0.6411,
0.4456,
0.6486

) 
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Table 25 Score Values of Table 24 

 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐴𝑤 

-0.0262 0.1211 0.1783 0.4442 0.0691 

𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐴𝑃 

-0.1846 0.0887 0.1318 0.3012 -0.0291 

𝑇 − 𝑆𝐹𝐶𝐼𝐴𝛩 -0.2568 0.1344 0.1199 0.1768 -0.0922 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐴∨ 

0.2528 0.3262 0.2744 0.6456 0.2363 

Ass. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐴∧ 

-0.2723 -0.0709 0.1008 0.1584 -0.1070 

 

Table 26 Ranking Orderings 

Operators Rankings 

𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴𝑤 𝑑4 ≥ 𝑑3 ≥ 𝑑2 ≥ 𝑑5 ≥ 𝑑1 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐴𝑃 𝑑4 ≥ 𝑑3 ≥ 𝑑2 ≥ 𝑑5 ≥ 𝑑1 

𝑇 − 𝑆𝐹𝐶𝐼𝐴𝛩 𝑑4 ≥ 𝑑2 ≥ 𝑑3 ≥ 𝑑5 ≥ 𝑑1 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐴∨ 

𝑑4 ≥ 𝑑2 ≥ 𝑑3 ≥ 𝑑1 ≥ 𝑑5 

Ass. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐴∧ 

𝑑4 ≥ 𝑑3 ≥ 𝑑2 ≥ 𝑑5 ≥ 𝑑1 

It is observed from the Tables 23 to 26, T-SFOWA and T-SFOWIA operators do 

not reflect interactions between some states of nature. While the T-SFCA and T-SFCIA 

operators reflect interactions between some states of nature but Ass. IP-T-SFOWA and 

Ass. IP-TSFOWIA operators reflect interactions among all states of nature. 

4.4. Advantages 

In this section, the advantages of proposed operators over existing operators are 

discussed and some conditions are also discussed under which the proposed operators 

become valid for existing operators. 

Consider Ass.IP-T-SFOWIA operators 
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𝑨𝒔𝒔. 𝑰𝑷 − 𝑻 − 𝑺𝑭𝑶𝑾𝑰𝑨∨(𝓣𝟏, 𝓣𝟐, … , 𝓣𝒌)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 √𝟏 −𝐦𝐢𝐧

𝝆∈𝑿𝒏
(∏(𝟏 −𝒎𝝈(𝒋)

𝒕 )
𝝀𝝆(𝒋)
′

𝒌

𝒋=𝟏

)
𝒕

,

√𝟏 −𝐦𝐢𝐧
𝝆∈𝑿𝒏

(∏(𝟏 − 𝒊𝝈(𝒋)
𝒕 )

𝝀𝝆(𝒋)
′

𝒌

𝒋=𝟏

)
𝒕

,

 

√
  
  
  
  
  
  
  
  
  
  
  

𝐦𝐢𝐧
𝝆∈𝑿𝒏

(∏(𝟏−𝒎𝝈(𝒋)
𝒕 )

𝝀𝝆(𝒋)
′

𝒌

𝒋=𝟏

) −

𝐦𝐢𝐧
𝝆∈𝑿𝒏

(∏(𝟏 −𝒎𝝈(𝒋)
𝒕 − 𝒊𝝈(𝒋)

𝒕 − 𝒏𝝈(𝒋)
𝒕 )

𝝀𝝆(𝒋)
′

𝒌

𝒋=𝟏

)

−𝐦𝐢𝐧
𝝆∈𝑿𝒏

(∏(𝒊𝝈(𝒋)
𝒕 )

𝝀𝝆(𝒋)
′

𝒌

𝒋=𝟏

)

𝒕

 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

(4.4.1) 

 

and  

𝑨𝒔𝒔. 𝑰𝑷 − 𝑻 − 𝑺𝑭𝑶𝑾𝑰𝑨∧(𝓣𝟏, 𝓣𝟐, … , 𝓣𝒌)

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 √𝟏 −𝐦𝐚𝐱

𝝆∈𝑿𝒏
(∏(𝟏−𝒎𝝈(𝒋)

𝒕 )
𝝀𝝆(𝒋)
′

𝒌

𝒋=𝟏

)
𝒕

,

√𝟏 −𝐦𝐚𝐱
𝝆∈𝑿𝒏

(∏(𝟏 − 𝒊𝝈(𝒋)
𝒕 )

𝝀𝝆(𝒋)
′

𝒌

𝒋=𝟏

)
𝒕

,

 

√
  
  
  
  
  
  
  
  
  
  
  

𝐦𝐚𝐱
𝝆∈𝑿𝒏

(∏(𝟏 −𝒎𝝈(𝒋)
𝒕 )

𝝀𝝆(𝒋)
′

𝒌

𝒋=𝟏

) −

𝐦𝐚𝐱
𝝆∈𝑿𝒏

(∏(𝟏 −𝒎𝝈(𝒋)
𝒕 − 𝒊𝝈(𝒋)

𝒕 − 𝒏𝝈(𝒋)
𝒕 )

𝝀𝝆(𝒋)
′

𝒌

𝒋=𝟏

)

−𝐦𝐚𝐱
𝝆∈𝑿𝒏

(∏(𝒊𝝈(𝒋)
𝒕 )

𝝀𝝆(𝒋)
′

𝒌

𝒋=𝟏

)

𝒕

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

(4.4.2) 

1. For 𝑡 = 2, Eqs. (4.4.1) and (4.4.2) reduces to associate immediate probability 

spherical fuzzy ordered weighted interaction averaging (Ass.IP-SFOWIA) 

operator   
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𝐴𝑠𝑠. 𝐼𝑃 − 𝑆𝐹𝑂𝑊𝐼𝐴∨(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 
 
 
 √1 − min

𝜌∈𝑋𝑛
(∏(1 −𝑚𝜎(𝑗)

2 )
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,√1 − min
𝜌∈𝑋𝑛

(∏(1 − 𝑖𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,

  

√
  
  
  
  
  
  
  

min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −

min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
2 − 𝑖𝜎(𝑗)

2 − 𝑛𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) − min
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

)

 
 
 
 
 
 
 
 
 

 

and  

𝐴𝑠𝑠. 𝐼𝑃 − 𝑆𝐹𝑂𝑊𝐼𝐴∧(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 
 
 
 √1 −max

𝜌∈𝑋𝑛
(∏(1 −𝑚𝜎(𝑗)

2 )
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

),   √1 − max
𝜌∈𝑋𝑛

(∏(1 − 𝑖𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,

√
  
  
  
  
  
  
  

max
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −

max
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
2 − 𝑖𝜎(𝑗)

2 − 𝑛𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −max
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

)

 
 
 
 
 
 
 
 
 

 

2. For 𝑡 = 1, Eqs. (4.4.1) and (4.4.2) reduces to associate immediate probability 

picture fuzzy ordered weighted interaction averaging (Ass.IP-PFOWIA) 

operator   

𝐴𝑠𝑠. 𝐼𝑃 − 𝑃𝐹𝑂𝑊𝐼𝐴∨(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 
 
 1 − min

𝜌∈𝑋𝑛
(∏(1 −𝑚𝜎(𝑗))

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) , 1 − min
𝜌∈𝑋𝑛

(∏(1 − 𝑖𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,

min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −

min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗) − 𝑖𝜎(𝑗) − 𝑛𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) − min
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

)

 
 
 
 
 
 
 
 

 

and 
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𝐴𝑠𝑠. 𝐼𝑃 − 𝑃𝐹𝑂𝑊𝐼𝐴∧(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 
 
 1 −max

𝜌∈𝑋𝑛
(∏(1 −𝑚𝜎(𝑗))

𝜆𝑗
′

𝑘

𝑗=1

) , 1 − max
𝜌∈𝑋𝑛

(∏(1 − 𝑖𝜎(𝑗))
𝜆𝑗
′

𝑘

𝑗=1

) ,

 max
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗))
𝜆𝑗
′

𝑘

𝑗=1

) −

max
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗) − 𝑖𝜎(𝑗) − 𝑛𝜎(𝑗))
𝜆𝑗
′

𝑘

𝑗=1

) −max
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗))
𝜆𝑗
′

𝑘

𝑗=1

)

)

 
 
 
 
 
 
 
 

 

3. For 𝑡 = 2 and 𝑖 = 0, Eqs. (4.4.1) and (4.4.2) reduces to associate immediate 

probability Pythagorean fuzzy ordered weighted interaction averaging (Ass.IP-

PyFOWIA) operator   

𝐴𝑠𝑠. 𝐼𝑃 − 𝑃𝑦𝐹𝑂𝑊𝐼𝐴∨(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √1 − min

𝜌∈𝑋𝑛
(∏(1 −𝑚𝜎(𝑗)

2 )
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,

√min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) − min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
2 − 𝑛𝜎(𝑗)

2 )
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

)

 
 
 
 
 

 

and  

𝐴𝑠𝑠. 𝐼𝑃 − 𝑃𝑦𝐹𝑂𝑊𝐼𝐴∧(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 √1 −max

𝜌∈𝑋𝑛
(∏(1 −𝑚𝜎(𝑗)

2 )
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,

 

 

√max
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −max
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
2 − 𝑛𝜎(𝑗)

2 )
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

)

 
 
 
 
 
 

 

4. For 𝑡 = 1 and 𝑖 = 0, Eqs. (4.4.1) and (4.4.2) reduces to Ass.IP-IFOWIA 

operator   
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𝐴𝑠𝑠. 𝐼𝑃 − 𝐼𝐹𝑂𝑊𝐼𝐴∨(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 1 − min

𝜌∈𝑋𝑛
(∏(1 −𝑚𝜎(𝑗))

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,

min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) − min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗) − 𝑛𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

)

 
 
 
 

 

and 

𝐴𝑠𝑠. 𝐼𝑃 − 𝐼𝐹𝑂𝑊𝐼𝐴∧(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 1 −max

𝜌∈𝑋𝑛
(∏(1 −𝑚𝜎(𝑗))

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,

 max
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −max
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗) − 𝑛𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

)

 
 
 
 

 

Similarly we can reduce T-SFOWIA, IP-T-SFOWIA, T-SFCIA and T-SFCCIA 

operators. Another advantage of the proposed operators is that they aggregate that 

information where the existing operator fails. 

Next we investigate a comparison analysis between proposed method and existing 

work. The existing operators have some limitations that the existing operators cannot 

handle the information given in PyFSs, PFSs, SFSs and T-SFSs. The proposed 

operators are most generalized that they can handle the information given in IFSs, 

PyFSs, PFSs, SFSs and T-SFSs. Here with the help of an example discussed in [66], it 

is shown that the proposed operators can solve the information given in IFSs. 

4.4.1. Example  

Consider a normalized decision matrix in which information is given in IFNs given in 

Table 27. 

Table 27 Decision Matrix for Example 4.4.1. 

 𝑑1 𝑑2 𝑑3 

𝑔1 (0.60, 0.30) (0.50, 0.20) (0.60, 0.35) 

𝑔2 (0.60, 0.30) (0.50, 0.20) (0.20, 0.00) 

𝑔3 (0.31, 0.00) (0.50, 0.20) (0.60, 0.35) 

𝑔4 (0.20, 0.00) (0.50, 0.20) (0.60, 0.30) 
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𝑔5 (0.70, 0.30) (0.40, 0.20) (0.80, 0.10) 

𝑔6 (0.60, 0.30) (0.80, 0.20) (0.50, 0.20) 

The given information can be written as T-spherical fuzzy information and hence 

summarized their values in Table 2
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Table 28 Decision Matrix in T-SF information 

 𝑑1 𝑑2 𝑑3 

𝑔1 (0.60, 0.00, 0.30) (0.50, 0.00, 0.20) (0.60, 0.00, 0.35) 

𝑔2 (0.60, 0.00, 0.30) (0.50, 0.00, 0.20) (0.20, 0.00, 0.00) 

𝑔3 (0.31, 0.00, 0.00) (0.50, 0.00, 0.20) (0.60, 0.00, 0.35) 

𝑔4 (0.20, 0.00, 0.00) (0.50, 0.00, 0.20) (0.60, 0.00, 0.30) 

𝑔5 (0.70, 0.00, 0.30) (0.40, 0.00, 0.20) (0.80, 0.00, 0.10) 

𝑔6 (0.60, 0.00, 0.30) (0.80, 0.00, 0.20) (0.50, 0.00, 0.20) 

The weight vector for attributes will be 𝑤 = {0.25, 0.40, 0.35} and fuzzy 

measures will be as defined in [52]: 

 Θ(𝜙) = 0,    Θ({𝑑1}) = 0.175,    Θ({𝑑2}) = 0.125,    Θ({𝑑3}) = 0.100,    

Θ({𝑑1, 𝑑2}) = 0.500,     Θ({𝑑1, 𝑑3}) = 0.425,    Θ({𝑑2, 𝑑3}) = 0.475,     

Θ({𝑑1, 𝑑2, 𝑑3}) = 1. 

Immediate probabilities and associated immediate probabilities for all possible 

orders are computed given in Table 29 and Table 30, respectively. 

Table 29 Immediate Probabilities 

 𝜆1
′  𝜆2

′  𝜆3
′  

𝜎 = (𝑑1, 𝑑2, 𝑑3) 0.175 0.325 0.500 

𝜎 = (𝑑1, 𝑑3, 𝑑2) 0.175 0.575 0.250 

𝜎 = (𝑑2, 𝑑1, 𝑑3) 0.375 0.125 0.500 

𝜎 = (𝑑2, 𝑑3, 𝑑1) 0.525 0.175 0.350 

𝜎 = (𝑑3, 𝑑1, 𝑑2) 0.325 0.575 0.100 

σ = (𝑑3, 𝑑2, 𝑑1) 0.525 0.375 0.100 

 

Table 30 Associated Immediate Probability 

 𝜆𝜌(1)
′  𝜆𝜌(2)

′  𝜆𝜌(3)
′  

𝜎 = (𝑑1, 𝑑2, 𝑑3) 0.1885 0.3500 0.4615 

𝜎 = (𝑑1, 𝑑3, 𝑑2) 0.1815 0.5963 0.2222 

𝜎 = (𝑑2, 𝑑1, 𝑑3) 0.4038 0.1346 0.4615 

𝜎 = (𝑑2, 𝑑3, 𝑑1) 0.5526 0.1316 0.3158 
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𝜎 = (𝑑3, 𝑑1, 𝑑2) 0.3297 0.5833 0.0870 

σ = (𝑑3, 𝑑2, 𝑑1) 0.5326 0.3804 0.0870 

As 0.6 + 0.0 + 0.3 = 0.9 ∈ [0, 1] similarly for 𝑡 = 1, all values lie in T-SFSs. 

So here 𝑡 = 1 is taken. Then the aggregated values for 𝑡 = 1 are summarized in Table 

31. 

Table 31 Aggregated Values 

 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 

T-

SFOWA 
(
0.57,
 0.00,
 0.27

) (
0.47,
 0.00,
 0.00

) (
0.48,
 0.00,
 0.00

) (
0.45,
 0.00,
 0.00

) (
0.66,
 0.00,
 0.19

) (
0.66,
 0.00,
 0.23

) 

T-SFCA 
(
0.57,
 0.00,
 0.26

) (
0.54,
 0.00,
 0.00

) (
0.42,
 0.00,
 0.00

) (
0.51,
 0.00,
 0.00

) (
0.72,
 0.00,
 0.16

) (
0.73,
 0.00,
 0.23

) 

Ass.IP-T-

SFOW𝐴∨ 
(
0.588,
 0.00,
 0.244

) (
0.537,
 0.00,
 0.00

) (
0.521,
 0.00,
 0.00

) (
0.528,
 0.00,
 0.00

) (
0.725,
 0.00,
 0.154

) (
0.718,
 0.00,
 0.211

) 

Ass.IP-T-

SFOW𝐴∧ 
(
0.543,
 0.00,
 0.305

) (
0.404,
 0.00,
 0.00

) (
0.418,
 0.00,
 0.00

) (
0.385,
 0.00,
 0.00

) (
0.584,
 0.00,
 0.228

) (
0.611,
 0.00,
 0.255

) 

The score values of aggregated values are given in Table 32 and the ranking of 

all alternatives through score values or accuracy function is represented in Table 33. 

Table 32 Score Values 

 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 

T-

SFOWA 

0.3119 0.5312 0.5412 0.5108 0.4873 0.4416 

T-SFCA 0.3231 0.6006 0.4800 0.5712 0.5764 0.5049 

Ass.IP-T-

SFOW𝐴∨ 

0.3583 0.5977 0.5820 0.5889 0.5878 0.5158 

ASS.IP-

T-

SFOW𝐴∧ 

0.2470 0.4634 0.4779 0.4435 0.3054 0.3678 

 

Table 33 Rankings of Alternatives 

Operators Rankings 



115 

 

T-SFOWA 𝑔3 > 𝑔2 > 𝑔4 > 𝑔5 > 𝑔6 > 𝑔1 

T-SFCA 𝑔2 > 𝑔5 > 𝑔4 > 𝑔6 > 𝑔3 > 𝑔1 

Ass.IP-T-SFOW𝐴∨ 𝑔2 > 𝑔4 > 𝑔5 > 𝑔3 > 𝑔6 > 𝑔1 

ASS.IP-T-SFOW𝐴∧ 𝑔3 > 𝑔2 > 𝑔4 > 𝑔6 > 𝑔5 > 𝑔1 

From above example it is clear that the results obtained from proposed operators are 

similar to existing operators. This proves that the proposed operators are generalizations 

of existing operator. 
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Chapter 5 

Methods for multi-attribute decision making in T-spherical 

fuzzy sets using associated immediate probability interactive 

geometric aggregation operators 

In this chapter, associated immediate probability geometric aggregation 

operators have been developed for T-SFSs and associated immediate probability 

interactive geometric aggregation operators are proposed. Then a comparison between 

these operators is developed with the help of an example. The existing score function 

for T-SFSs does not involve abstinence so a new score function is developed which 

provides a better comparison between any two T-SFNs. Then to check the reliability of 

proposed operators an application for MADM problem is developed. The advantages 

of proposed work are also discussed in which it is shown that under some conditions 

the proposed operators can be reduced to other tools of uncertainty. The comparison 

between existing and proposed work is also developed with the help of an example. 

5.1. New Score Function and Geometric Operators for T-Spherical 

Fuzzy Sets 

This section is further divided into four subsections. In first subsection a new 

score function is proposed which involve abstinence while existing score function does 

not involve abstinence. Second subsection have some T-spherical geometric 

aggregation operators while third subsection have some T-spherical geometric 

interactive aggregation operators. A comparison between geometric aggregation 

operators and geometric interactive aggregation operators is discussed in fourth 

subsection.  

5.1.1. Score function 

 The score function defined in [16] does not involve abstinence so better 

comparison is not done by using this score function. To overcome this shortcoming a 

new score function is proposed in this subsection in which abstinence is involved. 

5.1.1.1. Definition  

The new score function for any T-SFN 𝒯 = (𝑚, 𝑖, 𝑛) is defined as 
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𝑆𝐹(𝒯) = 𝑚𝑡 − 𝑖𝑡 − 𝑛𝑡 

𝐴𝐶(𝒯) = 𝑚𝑡 + 𝑖𝑡 + 𝑛𝑡 

The T-SFN which have greater score value will be superior to other. If the score of two 

T-SFNs is equal, then we rank them using accuracy value and a number is called 

superior if it has greater accuracy. If again accuracy values of two T-SFNs become 

equal, then both numbers are considered as similar. 

5.1.1.2. Remark  

a) The proposed score function reduced to SFSs for 𝑡 = 2 

b) The proposed score function reduced to PFSs for 𝑡 = 1 

c) The proposed score function reduced to PyFSs for 𝑡 = 2 and 𝑖 = 0 

d) The proposed score function reduced to IFSs for 𝑡 = 1 and 𝑖 = 0 

5.1.2. T-Spherical Fuzzy Geometric Aggregation operators 

In this subsection different geometric aggregation operators are proposed using 

a tool of uncertainty called T-SFSs. Here IP-T-SFOWG, T-SFCG, Ass.IP-T-SFOWG 

operators are proposed and some basic properties of all these operators are also 

discussed. 

5.1.2.1. Definition  

The IP-T-SFOWG operator for a collection of T-SFNs, 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗) is defined as 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) =⊗𝑗=1
𝑘 (𝒯

𝜎(𝑗)

𝜆𝑗
′

), 

where 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 is a WV with a condition that all WVs belong to [0,1] and the 

sum of all weights must be equal to 1. 𝜆𝑗 is probability for each 𝒯𝑗 , 𝜆𝑗
′ is an immediate 

probability of 𝒯𝜎(𝑗) and 𝜆𝑗
′ =

(𝑤𝑗𝜆𝑗)

∑ 𝑤𝑗𝜆𝑗
𝑘
𝑗=1

 and 𝜎 = (𝜎(1), … , 𝜎(𝑘)) is the permutation such 

that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). 

5.1.2.2. Theorem  

For a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗) for all 𝑗 = 1,2, … , 𝑘, then 
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𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) = (∏𝑚
𝜎(𝑗)

𝜆𝑗
′

𝑘

𝑗=1

,∏𝑖
𝜎(𝑗)

𝜆𝑗
′

𝑘

𝑗=1

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

), 

Proof: By using mathematical induction, 

For 𝑘 = 1, 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝑃(𝒯1) = (𝑚1, 𝑖1, √1 − (1 − 𝑛1
𝑡)

𝑡
) 

= (𝑚1, 𝑖1, 𝑛1) 

Now let us assume that the results hold for 𝑘 = 𝑙,  

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑙) = (∏𝑚
𝜎(𝑗)

𝜆𝑗
′

𝑙

𝑗=1

,∏𝑖
𝜎(𝑗)

𝜆𝑗
′

𝑙

𝑗=1

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙

𝑗=1

𝑡

) 

Then to prove that result hold for 𝑘 = 𝑙 + 1, 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑙+1) 

= (∏𝑚
𝜎(𝑗)

𝜆𝑗
′

𝑙

𝑗=1

,∏𝑖
𝜎(𝑗)

𝜆𝑗
′

𝑙

𝑗=1

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙

𝑗=1

𝑡

)

⊗ (𝑚
𝜎(𝑗)

𝜆𝑗
′

, 𝑖
𝜎(𝑗)

𝜆𝑗
′

, √1 − (1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′𝑡

 ) 

= (∏𝑚
𝜎(𝑗)

𝜆𝑗
′

𝑙+1

𝑗=1

,∏𝑖
𝜎(𝑗)

𝜆𝑗
′

𝑙+1

𝑗=1

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙+1

𝑗=1

𝑡

 ) 

This proves that the results hold for all 𝑘 ∈ 𝑍+. 

5.1.2.3. Theorem  

IP-T-SFOWG operator satisfies the following conditions: 

i. If 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) for all 𝑗 = 1,2, … , 𝑘 then 𝐼𝑃 − 𝑇 −

𝑆𝐹𝑂𝑊𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0. 
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ii. For any two T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) such that  𝑚𝑗 ≤ 𝑚𝑗
′, 

𝑖𝑗 ≤ 𝑖𝑗
′ and 𝑛𝑗 ≥ 𝑛𝑗

′. Then 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝑃(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

iii. For a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) for all 𝑗 = 1,2, … , 𝑘 such that 𝒯𝐿 =

(min
𝑗
(𝑚𝑗) , min

𝑗
(𝑖𝑗) ,max

𝑗
(𝑛𝑗)) is minimal element and 𝒯𝑈 =

(max
𝑗
(𝑚𝑗) ,max

𝑗
(𝑖𝑗) ,min

𝑗
(𝑛𝑗)) is maximal element. Then  

𝒯𝐿 ≤ 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

Proof: i. As 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) then 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) = (∏𝑚
𝜎(𝑗)

𝜆𝑗
′

𝑘

𝑗=1

,∏𝑖
𝜎(𝑗)

𝜆𝑗
′

𝑘

𝑗=1

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

 ) 

= (𝑚
𝜎(𝑗)

∑ 𝜆𝑗
′𝑘

𝑗=1 , 𝑖
𝜎(𝑗)

∑ 𝜆𝑗
′𝑘

𝑗=1 , √1 − (1 − 𝑛𝜎(𝑗)
𝑡 )

∑ 𝜆𝑗
′𝑘

𝑗=1
𝑡

) 

= (𝑚0, 𝑖0, 𝑛0) = 𝒯0 

ii. As 𝑚𝑗 ≤ 𝑚𝑗
′, 𝑖𝑗 ≤ 𝑖𝑗

′ and 𝑛𝑗 ≥ 𝑛𝑗
′. This implies that 

∏𝑚𝜎(𝑗)

𝑘

𝑗=1

≤∏𝑚𝜎(𝑗)
′

𝑘

𝑗=1

  , 

∏𝑖𝜎(𝑗)

𝑘

𝑗=1

≤∏𝑖𝜎(𝑗)
′

𝑘

𝑗=1

  , 

√1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

≥ √1 −∏(1 − (𝑛𝜎(𝑗)
′ )

𝑡
)
𝜆𝑗
′

𝑘

𝑗=1

𝑡
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(∏𝑚
𝜎(𝑗)

𝜆𝑗
′

𝑘

𝑗=1

,∏𝑖
𝜎(𝑗)

𝜆𝑗
′

𝑘

𝑗=1

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

)

≤ (∏(𝑚𝜎(𝑗)
′ )

𝜆𝑗
′

𝑘

𝑗=1

,∏(𝑖𝜎(𝑗)
′ )

𝜆𝑗
′

𝑘

𝑗=1

, √1 −∏(1 − (𝑛𝜎(𝑗)
′ )

𝑡
)
𝜆𝑗
′

𝑘

𝑗=1

𝑡

) 

iii. Proof is straightforward. 

5.1.2.4. Definition  

The T-SFCG operator for a collection of T-SFNs, 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) with respect to fuzzy 

measure Θ is defined as 

𝑇 − 𝑆𝐹𝐶𝐺Θ(𝒯1, 𝒯2, … , 𝒯𝑘) =⊗𝑗=1
𝑘 (𝒯

𝜎(𝑗)

𝜆𝑗 ) 

where 𝜆𝑗 = Θ({𝑥𝜎(1), 𝑥𝜎(2), …… , 𝑥𝜎(𝑗)}) − Θ({𝑥𝜎(1), 𝑥𝜎(2), …… , 𝑥𝜎(𝑗−1)}), 

Θ({𝑥𝜎(0)}) ≡ 0 and 𝜎 is the permutation. 𝜎 = (𝜎(1), 𝜎(2),…… , 𝜎(𝑘)) is the 

permutation such that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). 

5.1.2.5. Theorem  

For a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗) for all 𝑗 = 1,2, … , 𝑘, then 

𝑇 − 𝑆𝐹𝐶𝐺Θ(𝒯1, 𝒯2, … , 𝒯𝑘) = (∏𝑚
𝜎(𝑗)

𝜆𝑗

𝑘

𝑗=1

,∏𝑖
𝜎(𝑗)

𝜆𝑗

𝑘

𝑗=1

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗

𝑘

𝑗=1

𝑡

) 

5.1.2.6. Theorem  

T-SFCG operators satisfies the following properties: 

i. If 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) for all 𝑗 = 1,2, … , 𝑘 then 𝑇 −

𝑆𝐹𝐶𝐺Θ(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0.  

ii. For any two T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) such that 𝑚𝑗 ≤

𝑚𝑗
′, 𝑖𝑗 ≤ 𝑖𝑗

′ and 𝑛𝑗 ≥ 𝑛𝑗
′. Then 

𝑇 − 𝑆𝐹𝐶𝐺Θ(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝐶𝐺Θ(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 
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iii. For a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗) for all 𝑗 = 1,2, … , 𝑘 such that 

𝒯𝐿 = (min
𝑗
(𝑚𝑗) ,min

𝑗
(𝑖𝑗) , max

𝑗
(𝑛𝑗)) is minimal element and 𝒯𝑈 =

(max
𝑗
(𝑚𝑗) ,max

𝑗
(𝑖𝑗) ,min

𝑗
(𝑛𝑗)) is maximal element. Then  

𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝐶𝐺Θ(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

5.1.2.7. Definition  

The Ass.IP-T-SFOWG operators for a collection of T-SFNs, 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) for all 𝑗 =

1,2, … , 𝑘, is defined as 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺∨(𝒯1, 𝒯2, … , 𝒯𝑘) = ⋁ [⊗𝑗=1
𝑘 (𝒯

𝜎(𝑗)

𝜆𝜌(𝑗)
′

)]

𝜌∈𝑋𝑛

 

and 

  

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺∧(𝒯1, 𝒯2, … , 𝒯𝑘) = ⋀ [⨂𝑗=1
𝑘 (𝒯

𝜎(𝑗)

𝜆𝜌(𝑗)
′

)]

𝜌∈𝑋𝑛

, 

where 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 is a WV with a condition that all WVs belong to [0,1] and the 

sum of all weights must be equal to 1. 𝜎 = (𝜎(1), …… , 𝜎(𝑘)) is the permutation such 

that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). For each associated probability 𝑃𝜌: 𝜆𝜌(𝑗)
′ =

(𝑤𝑗𝜆𝜌(𝑗))

∑ 𝑤𝑗𝜆𝜌(𝑗)
𝑘
𝑗=1

, 

𝜆𝜌(𝑗) ≡ 𝑃𝜌(𝒯𝜎(𝑗)) is an associated immediate probability and ∨=maximum and ∧

=minimum. 

5.1.2.8. Theorem 

For a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗) for all 𝑗 = 1,2, … , 𝑘, then 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺∨(𝒯1, 𝒯2, … , 𝒯𝑘)

= (max
𝜌∈𝑋𝑛

(∏(𝑚𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,max
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) , √1 −max
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

) 

and  
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𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺∧(𝒯1, 𝒯2, … , 𝒯𝑘)

= (min
𝜌∈𝑋𝑛

(∏(𝑚𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) , min
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) , √1 − min
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

) 

5.1.2.9. Theorem  

Ass.IP-T-SFOWG operators satisfies the following properties: 

i. If 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) for all 𝑗 = 1,2, … , 𝑘 then 𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 −

𝑆𝐹𝑂𝑊𝐺∨(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0 and 𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺∧(𝒯1, 𝒯2, … , 𝒯𝑘) =

𝒯0  

ii. For any two T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) such that 𝑚𝑗 ≤

𝑚𝑗
′, 𝑖𝑗 ≤ 𝑖𝑗

′ and 𝑛𝑗 ≥ 𝑛𝑗
′. Then 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺∨(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺∨(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

and  

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺∧(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺∧(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

iii. For a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗) for all 𝑗 = 1,2, … , 𝑘 such that 

𝒯𝐿 = (min
𝑗
(𝑚𝑗) ,min

𝑗
(𝑖𝑗) , max

𝑗
(𝑛𝑗)) is minimal element and 𝒯𝑈 =

(max
𝑗
(𝑚𝑗) ,max

𝑗
(𝑖𝑗) ,min

𝑗
(𝑛𝑗)) is maximal element. Then  

𝒯𝐿 ≤ 𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺∨(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

and  

𝒯𝐿 ≤ 𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺∧(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

5.1.3. T-Spherical Fuzzy Interactive Aggregation operators 

In this subsection some geometric interactive aggregation operators are 

proposed by using a tool of uncertainty called T-SFSs. In this subsection IP-T-

SFOWIG, T-SGCIG and Ass.IP-T-SFOWIG operators are proposed and some basic 

properties of these operators are also discussed. 

5.1.3.1. Definition  

The IP-T-SFOWIG operator for a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) is defined as 
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𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) =⊗𝑖𝑗=1
𝑘 (𝒯

𝜎(𝑗)

𝜆𝑗
′

), 

where 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 is a WV with a condition that all WVs belong to [0,1] and the 

sum of all weights must be equal to 1. 𝜆𝑗 is probability for each 𝒯𝑗 , 𝜆𝑗
′ is an immediate 

probability of 𝒯𝜎(𝑗) and 𝜆𝑗
′ =

(𝑤𝑗𝜆𝑗)

∑ 𝑤𝑗𝜆𝑗
𝑘
𝑗=1

 and 𝜎 = (𝜎(1), … , 𝜎(𝑘)) is the permutation such 

that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). 

5.1.3.2. Theorem  

For a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗), then 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √∏(1 − 𝑛𝜎(𝑗)

𝑡 )
𝜆𝑗
′

−∏(1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑘

𝑗=1

−∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

 

)

 
 
 
 
 

 

Proof: By using mathematical induction, 

For 𝑘 = 1, 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺𝑃(𝒯1)

= (√(1 − 𝑛1
𝑡) − (1 − 𝑚1

𝑡 − 𝑖1
𝑡 − 𝑛1

𝑡) − 𝑖1
𝑡𝑡
, √1 − (1 − 𝑖1

𝑡)
𝑡

, √1 − (1 − 𝑛1
𝑡)

𝑡
) 

= (𝑚1, 𝑖1, 𝑛1) 

Now assume that the results hold for 𝑘 = 𝑙,  

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑙)

=

(

 
 
 
 
 √∏(1 − 𝑛𝜎(𝑗)

𝑡 )
𝜆𝑗
′

−∏(1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙

𝑗=1

𝑙

𝑗=1

−∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙

𝑗=1

𝑡

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙

𝑗=1

𝑡

)
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Then to prove that result hold for 𝑘 = 𝑙 + 1, 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑙+1)  

=

(

 
 
 
 
 
 √∏(1 − 𝑛𝜎(𝑗)

𝑡 )
𝜆𝑗
′

−∏(1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙

𝑗=1

𝑙

𝑗=1

−∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙

𝑗=1

𝑡

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙

𝑗=1

𝑡

 )

 
 
 
 
 
 

 

⊗𝑖

(

 
√(1 − 𝑛𝜎(𝑗)

𝑡 )
𝜆𝑗
′

− (1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

− (𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′𝑡

,

 √1 − (1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′𝑡

, √1 − (1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′𝑡

 )

  

=

(

 
 
 
 
 √∏(1 − 𝑛𝜎(𝑗)

𝑡 )
𝜆𝑗
′

−∏(1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙+1

𝑗=1

𝑙+1

𝑗=1

−∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙+1

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙+1

𝑗=1

𝑡

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑙+1

𝑗=1

𝑡

 

)

 
 
 
 
 

 

This proves that the results hold for all 𝑘 ∈ 𝑍+. 

5.1.3.3. Theorem  

IP-T-SFOWIG operators satisfies the following properties: 

i. If 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) for all 𝑗 = 1,2, … , 𝑘 then 𝐼𝑃 − 𝑇 −

𝑆𝐹𝑂𝑊𝐼𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0. 

ii. For any two T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) such that 𝑚𝑗 ≤

𝑚𝑗
′, 𝑖𝑗 ≤ 𝑖𝑗

′ and 𝑛𝑗 ≥ 𝑛𝑗
′. Then 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺𝑃(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

iii. For a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗) for all 𝑗 = 1,2, … , 𝑘 such that 

𝒯𝐿 = (min
𝑗
(𝑚𝑗) ,min

𝑗
(𝑖𝑗) , max

𝑗
(𝑛𝑗)) is minimal element and 𝒯𝑈 =

(max
𝑗
(𝑚𝑗) ,max

𝑗
(𝑖𝑗) ,min

𝑗
(𝑛𝑗)) is maximal element. Then  
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𝒯𝐿 ≤ 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

Proof: i. As 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) then 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺𝑃(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √∏(1 − 𝑛𝜎(𝑗)

𝑡 )
𝜆𝑗
′

−∏(1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑘

𝑗=1

−∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

 

)

 
 
 
 
 

 

=

(

 
√(1 − 𝑛𝜎(𝑗)

𝑡 )
∑ 𝜆𝑗

′𝑘
𝑗=1 − (1 −𝑚𝜎(𝑗)

𝑡 − 𝑖𝜎(𝑗)
𝑡 − 𝑛𝜎(𝑗)

𝑡 )
∑ 𝜆𝑗

′𝑘
𝑗=1 − (𝑖𝜎(𝑗)

𝑡 )
∑ 𝜆𝑗

′𝑘
𝑗=1

𝑡

,

 √1 − (1 − 𝑖𝜎(𝑗)
𝑡 )

∑ 𝜆𝑗
′𝑘

𝑗=1
𝑡

, √1 − (1 − 𝑛𝜎(𝑗)
𝑡 )

∑ 𝜆𝑗
′𝑘

𝑗=1
𝑡

)

  

= (𝑚0, 𝑖0, 𝑛0) = 𝒯0 

ii. As 𝑚𝑗 ≤ 𝑚𝑗
′, 𝑖𝑗 ≤ 𝑖𝑗

′ and 𝑛𝑗 ≥ 𝑛𝑗
′. This implies that 

√∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

−∏(1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑘

𝑗=1

−∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

≤ √∏(1 − (𝑛𝜎(𝑗)
′ )

𝑡
)
𝜆𝑗
′

−∏(1 − (𝑚𝜎(𝑗)
′ )

𝑡
− (𝑖𝜎(𝑗)

′ )
𝑡
− (𝑛𝜎(𝑗)

′ )
𝑡
)
𝜆𝑗
′

𝑘

𝑗=1

𝑘

𝑗=1

−∏((𝑖𝜎(𝑗)
′ )

𝑡
)
𝜆𝑗
′

𝑘

𝑗=1

𝑡

  , 

√1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

≤ √1 −∏(1 − (𝑖𝜎(𝑗)
′ )

𝑡
)
𝜆𝑗
′

𝑘

𝑗=1

𝑡

    , 

√1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

≥ √1 −∏(1 − (𝑛𝜎(𝑗)
′ )

𝑡
)
𝜆𝑗
′

𝑘

𝑗=1

𝑡
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(

 
 
 
 
 √∏(1 − 𝑛𝜎(𝑗)

𝑡 )
𝜆𝑗
′

−∏(1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑘

𝑗=1

−∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗
′

𝑘

𝑗=1

𝑡

)

 
 
 
 
 

 

≤

(

 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

∏(1 − (𝑛𝜎(𝑗)
′ )

𝑡
)
𝜆𝑗
′

−∏(1 − (𝑚𝜎(𝑗)
′ )

𝑡
− (𝑖𝜎(𝑗)

′ )
𝑡
− (𝑛𝜎(𝑗)

′ )
𝑡
)
𝜆𝑗
′

𝑘

𝑗=1

𝑘

𝑗=1

−∏((𝑖𝜎(𝑗)
′ )

𝑡
)
𝜆𝑗
′

𝑘

𝑗=1

𝑡

,

√1 −∏(1 − (𝑖𝜎(𝑗)
′ )

𝑡
)
𝜆𝑗
′

𝑘

𝑗=1

𝑡

, √1 −∏(1 − (𝑛𝜎(𝑗)
′ )

𝑡
)
𝜆𝑗
′

𝑘

𝑗=1

𝑡

 

)

 
 
 
 
 
 
 
 

 

iii. Proof is straightforward. 

5.1.3.4. Definition  

The T-SFCIG operator for a collection of T-SFNs, 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) with respect to 

fuzzy measure Θ is defined as 

𝑇 − 𝑆𝐹𝐶𝐼𝐺Θ(𝒯1, 𝒯2, … , 𝒯𝑘) =⊗𝑖𝑗=1
𝑘 (𝒯

𝜎(𝑗)

𝜆𝑗 ) 

where 𝜆𝑗 = Θ({𝑥𝜎(1), 𝑥𝜎(2), …… , 𝑥𝜎(𝑗)}) − Θ({𝑥𝜎(1), 𝑥𝜎(2), …… , 𝑥𝜎(𝑗−1)}), 

Θ({𝑥𝜎(0)}) ≡ 0 and 𝜎 is the permutation. 𝜎 = (𝜎(1), 𝜎(2),…… , 𝜎(𝑘)) is the 

permutation such that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). 

5.1.3.5. Theorem  

For a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗) for all 𝑗 = 1,2, … , 𝑘, then 
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𝑇 − 𝑆𝐹𝐶𝐼𝐺Θ(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √∏(1 − 𝑛𝜎(𝑗)

𝑡 )
𝜆𝑗
−∏(1 −𝑚𝜎(𝑗)

𝑡 − 𝑖𝜎(𝑗)
𝑡 − 𝑛𝜎(𝑗)

𝑡 )
𝜆𝑗

𝑘

𝑗=1

𝑘

𝑗=1

−∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗

𝑘

𝑗=1

𝑡

,

√1 −∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝑗

𝑘

𝑗=1

𝑡

, √1 −∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝑗

𝑘

𝑗=1

𝑡

 

)

 
 
 
 
 

 

5.1.3.6. Theorem  

T-SFCIG operators satisfies the following properties: 

i. If 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) for all 𝑗 = 1,2, … , 𝑘 then 𝑇 −

𝑆𝐹𝐶𝐼𝐺Θ(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0. 

ii. For any two T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) such that 𝑚𝑗 ≤

𝑚𝑗
′, 𝑖𝑗 ≤ 𝑖𝑗

′ and 𝑛𝑗 ≥ 𝑛𝑗
′. Then 

𝑇 − 𝑆𝐹𝐶𝐼𝐺Θ(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝐶𝐼𝐺Θ(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

iii. For a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗) for all 𝑗 = 1,2, … , 𝑘 such that 

𝒯𝐿 = (min
𝑗
(𝑚𝑗) ,min

𝑗
(𝑖𝑗) , max

𝑗
(𝑛𝑗)) is minimal element and 𝒯𝑈 =

(max
𝑗
(𝑚𝑗) ,max

𝑗
(𝑖𝑗) ,min

𝑗
(𝑛𝑗)) is maximal element. Then  

𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝐶𝐼𝐺Θ(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

5.1.3.7. Definition  

The Ass.IP-T-SFOWIG operators for a collection of T-SFNs, 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) is 

defined as 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺∨(𝒯1, 𝒯2, … , 𝒯𝑘) = ⋁ [⊗𝑖𝑗=1
𝑘 (𝒯

𝜎(𝑗)

𝜆𝜌(𝑗)
′

)]

𝜌∈𝑋𝑛

 

and 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺∧(𝒯1, 𝒯2, … , 𝒯𝑘) = ⋀ [⊗𝑖𝑗=1
𝑘 (𝒯

𝜎(𝑗)

𝜆𝜌(𝑗)
′

)]

𝜌∈𝑋𝑛
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where 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 is a WV with a condition that all WVs belong to [0,1] and the 

sum of all weights must be equal to 1. 𝜎 = (𝜎(1), … , 𝜎(𝑘)) is the permutation such 

that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). For each associated probability 𝑃𝜌: 𝜆𝜌(𝑗)
′ =

(𝑤𝑗𝜆𝜌(𝑗))

∑ 𝑤𝑗𝜆𝜌(𝑗)
𝑘
𝑗=1

, 

𝜆𝜌(𝑗) ≡ 𝑃𝜌(𝒯𝜎(𝑗)) is an associated immediate probability and ∨=maximum and ∧

=minimum. 

5.1.3.8. Theorem  

For a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗) for all 𝑗 = 1,2, … , 𝑘, then 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺∨(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
  

max
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

−max
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −max
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

𝑡

,

√1 − max
𝜌∈𝑋𝑛

(∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

, √1 − max
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

 

)

 
 
 
 
 
 
 
 
 

 

and 

 𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺∧(𝒯1, 𝒯2, … , 𝒯𝑘) 

=

(

 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
  

min
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

− min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) − min
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

𝑡

 ,

 √1 − min
𝜌∈𝑋𝑛

(∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

, √1 − min
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

)

 
 
 
 
 
 
 
 
 

 

5.1.3.9. Theorem  

Ass.IP-T-SFOWIG operators satisfies the following properties: 
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i. If 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) for all 𝑗 = 1,2, … , 𝑘 then 𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 −

𝑆𝐹𝑂𝑊𝐼𝐺∨(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0 and 𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 −

𝑆𝐹𝑂𝑊𝐼𝐺∧(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0 

ii. For any two T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) such that 𝑚𝑗 ≤

𝑚𝑗
′, 𝑖𝑗 ≤ 𝑖𝑗

′ and 𝑛𝑗 ≥ 𝑛𝑗
′. Then 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺∨(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺∨(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

and 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺∧(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺∧(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

iii. For a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗) for all 𝑗 = 1,2, … , 𝑘 such that 

𝒯𝐿 = (min
𝑗
(𝑚𝑗) ,min

𝑗
(𝑖𝑗) , max

𝑗
(𝑛𝑗)) is minimal element and 𝒯𝑈 =

(max
𝑗
(𝑚𝑗) ,max

𝑗
(𝑖𝑗) ,min

𝑗
(𝑛𝑗)) is maximal element. Then  

𝒯𝐿 ≤ 𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺∨(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

and 

𝒯𝐿 ≤ 𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺∧(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

5.1.3.10. Remark  

If fuzzy measure and probability of T-SFSs become equal and furthermore probabilities 

of all T-SFNs become equal then Ass.IP-T-SFOWIG operators become equal to T-

SFOWG operator 

5.1.4. Comparison between aggregation operators and interactive aggregation 

operators 

In this subsection the superiority of interactive averaging aggregation operators 

over averaging aggregation operators is explained with the help of an example. It is also 

explained that under some conditions the averaging aggregation operators fail while 

interactive averaging aggregation operators overcome this shortcoming. 

5.1.4.1. Example  

Consider T-SFNs, 𝑔1 = (0.94,0.25, 0.41), 𝑔2 = (0.00,0.35, 0.47) and 𝑔3 =

(0.74,0.00, 0.39) having a WV 𝑤 = {0.45, 0.40, 0.15}, fuzzy measures will be 
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 Θ(𝜙) = 0,    Θ({𝑔1}) = 0.225,    Θ({𝑔2}) = 0.200,    Θ({𝑔3}) = 0.075,    

Θ({𝑔1, 𝑔2}) = 0.425,     Θ({𝑔1, 𝑔3}) = 0.300,    Θ({𝑔2, 𝑔3}) = 0.275,     

Θ({𝑔1, 𝑔2, 𝑔3}) = 1. 

Immediate probabilities for all possible permutations are listed in Table 34 

Table 34 Immediate Probabilities 

 𝜆1
′  𝜆2

′  𝜆3
′  

𝜎 = (𝑔1, 𝑔2, 𝑔3) 0.125 0.200 0.675 

𝜎 = (𝑔1, 𝑔3, 𝑔2) 0.125 0.700 0.175 

𝜎 = (𝑔2, 𝑔1, 𝑔3) 0.200 0.200 0.600 

𝜎 = (𝑔2, 𝑔3, 𝑔1) 0.700 0.200 0.100 

𝜎 = (𝑔3, 𝑔1, 𝑔2) 0.125 0.700 0.175 

𝜎 = (𝑔3, 𝑔2, 𝑔1) 0.700 0.125 0.175 

 

and associated immediate probabilities for all possible permutation are listed in Table 

35 

Table 35 Associated Immediate Probabilities 

 𝜆𝜌(1)
′  𝜆𝜌(2)

′  𝜆𝜌(3)
′  

𝜎 = (𝑔1, 𝑔2, 𝑔3) 0.0899 0.2302 0.6798 

𝜎 = (𝑔1, 𝑔3, 𝑔2) 0.0839 0.7517 0.1644 

𝜎 = (𝑔2, 𝑔1, 𝑔3) 0.1470 0.2353 0.6176 

𝜎 = (𝑔2, 𝑔3, 𝑔1) 0.6034 0.2759 0.1207 

𝜎 = (𝑔3, 𝑔1, 𝑔2) 0.0839 0.7517 0.1644 

𝜎 = (𝑔3, 𝑔2, 𝑔1) 0.6114 0.1747 0.2140 

 

As for 𝑡 = 1,  0.94 + 0.25 + 0.41 = 1.6 ∉ [0, 1],  
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As for 𝑡 = 2,  0.942 + 0.252 + 0.412 = 1.11 ∉ [0, 1] 

As for 𝑡 = 3,  0.943 + 0.253 + 0.413 = 0.92 ∈ [0, 1] 

So for 𝑡 = 3, the given information lie in T-spherical fuzzy environment. 

Then the aggregate of all averaging aggregation operators defined in Definition 5.1.2.1., 

5.1.2.4., and 5.1.2.7 will be 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝑃(𝑔1, 𝑔2, 𝑔3) = (0.0, 0.0, 0.4244) 

𝑇 − 𝑆𝐹𝐶𝐺Θ(𝑔1, 𝑔2, 𝑔3) = (0.0, 0.0, 0.4253) 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺∨(𝑔1, 𝑔2, 𝑔3) = (0.0, 0.0, 0.4176) 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺∧(𝑔1, 𝑔2, 𝑔3) = (0.0, 0.0, 0.4568) 

This seems meaningless as geometric aggregation operators ignore all membership and 

abstinence values as one of their value become zero. That’s why results obtain through 

these aggregation operators are not valid. To overcome this shortcoming we used 

interactive averaging aggregation operators. The results obtained by using interactive 

operators defined in definitions 5.1.3.1., 5.1.3.4., and 5.1.3.7 will be  

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺𝑃(𝑔1, 𝑔2, 𝑔3) = (0.8513, 0.2663, 0.4244) 

𝑇 − 𝑆𝐹𝐶𝐼𝐺Θ(𝑔1, 𝑔2, 𝑔3) = (0.8625, 0.2698, 0.4253) 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺∨(𝑔1, 𝑔2, 𝑔3) = (0.9276, 0.2626, 0.4176) 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺∧(𝑔1, 𝑔2, 𝑔3) = (0.6897, 0.3291, 0.4568) 

The proposed interactive operators aggregate all membership, abstinence and non-

membership values. This shows the superiority of interactive aggregation operators and 

the results obtained using these interactive operators are more reliable. 

5.2. Algorithm for MADM based on proposed operators 

In this section an algorithm was developed to solve MADM problem using the 

proposed aggregation and interactive aggregation operators and a well-known MADM 

example is solved by using the algorithm. 

Consider a set of alternatives 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑙} and set of attributes 𝐺 =

{𝑔1, 𝑔2, … , 𝑔𝑘} having a WV 𝑤 = {𝑤1, 𝑤2, … , 𝑤𝑘}, set of probabilities associated with 
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them is 𝒯 = {𝜆1, 𝜆2, … , 𝜆𝑘} and associate immediate probabilities are 𝒯′ =

{𝜆𝜌(1)
′ , 𝜆𝜌(2)

′ , … , 𝜆𝜌(𝑘)
′ }. The WV and set of probabilities have a same condition that the 

sum of weights and probabilities must equal to 1 and weights and probabilities belong 

to closed unit interval. The fuzzy measure Θ have been calculated for all subsets of 

{𝑑1, 𝑑2, … , 𝑑𝑙}. Then to solve MADM problem we have to follow the following steps. 

Step 1. Find the value of 𝑡 for which information lie in T-spherical fuzzy environment. 

Step 2. Aggregate the data using proposed operators. 

Step 3. Find the score of aggregated values. 

Step 4. With the help of score values choose the best option. 

5.2.1. Numerical Example  

A manufacturing company wants to select a supplier among five alternatives 𝐷 =

{𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5}, the experts evaluate these alternatives under consideration of 

following three attributes  

𝑔1: Price  

𝑔2: Delivery Compliance 

𝑔3: Technological capability 

 The experts evaluate these alternatives with respect to attributes and give information 

in membership, abstinence and non-membership as in Table 36. 

Table 36 Decision Matrix 

 g1 g2 g3 

d1 (0.47,0.25,0.88) (0.34,0.19,0.51) (0.51,0.29,0.77) 

d2 (0.23,0.41,0.75) (0.61,0.15,0.49) (0.53,0.22,0.48) 

d3 (0.89,0.33,0.43) (0.74,0.46,0.49) (0.84,0.36,0.60) 

d4 (0.91,0.33,0.42) (0.55,0.23,0.71) (0.88,0.39,0.61) 

d5 (0.59,0.43,0.51) (0.66,0.22,0.36) (0.63,0.41,0.72) 
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As for 𝑡 = 1,  0.47 + 0.25 + 0.88 = 1.6 ∉ [0, 1],  so the given information does not 

lie in picture fuzzy environment, 

As for 𝑡 = 2,  0.472 + 0.252 + 0.882 = 1.0578 ∉ [0, 1], so the given information 

also does not lie in spherical fuzzy environment, 

As for 𝑡 = 3,  0.473 + 0.253 + 0.883 = 0.8009 ∈ [0, 1]  

Similarly for 𝑡 = 3 all the information given in Table 36 are T-SFNs so the 

information lie in T-spherical fuzzy environment for 𝑡 = 3. 

The interaction of states of nature and weights of given attributes is as follows in 

Table 37 

Table 37 States of Nature and Weights 

 𝑔1 𝑔2 𝑔3 Risk 

importance 

𝑔1 - 0.150 0.250 0.400 

𝑔2 0.150 - 0.100 0.250 

𝑔3 0.250 0.100 - 0.350 

 

Where 𝐼𝑔1 = 0.400, 𝐼𝑔2 = 0.250, 𝐼𝑔3 = 0.350 will be weights of 𝑔1, 𝑔2 and 𝑔3 

respectively and 𝐼𝑔1𝑔2 = 0.150, 𝐼𝑔1𝑔3 = 0.250, 𝐼𝑔2𝑔3 = 0.100 will be the interactions 

between attributes. The fuzzy measure can be measured using the following 

relationship  

Θ({𝑔𝑗}) = 𝐼𝑔𝑗 −
1

2
∑ 𝐼𝑔𝑗𝑔

𝑔∈𝐺{𝑔𝑗}

 

Θ({𝑔𝑗, 𝑔𝑘}) = 𝐼𝑔𝑗 + 𝐼𝑔𝑘 −
1

2
∑ 𝐼𝑔𝑗𝑔

𝑔∈𝐺{𝑔𝑗,𝑔𝑘}

−
1

2
∑ 𝐼𝑔𝑘𝑔

𝑔∈𝐺{𝑔𝑗,𝑔𝑘}

          𝑗, 𝑘 = 1,2,3,4. 𝑗

≠ 𝑘 

Θ(𝜙) = 0, Θ(𝐺) = 1. 

The fuzzy measures will be 
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 Θ(𝜙) = 0,    Θ({𝑔1}) = 0.200,    Θ({𝑔2}) = 0.125,    Θ({𝑔3}) = 0.175,    

Θ({𝑔1, 𝑔2}) = 0.325,     Θ({𝑔1, 𝑔3}) = 0.375,    Θ({𝑔2, 𝑔3}) = 0.300,     Θ(𝐺) = 1. 

The immediate probabilities for every possible permutation are listed in Table 38 

Table 38 Immediate Probabilities 

 𝜆1
′  𝜆2

′  𝜆3
′  

𝜎 = (𝑔1, 𝑔2, 𝑔3) 0.125 0.200 0.675 

𝜎 = (𝑔1, 𝑔3, 𝑔2) 0.125 0.700 0.175 

𝜎 = (𝑔2, 𝑔1, 𝑔3) 0.200 0.200 0.600 

𝜎 = (𝑔2, 𝑔3, 𝑔1) 0.700 0.200 0.100 

𝜎 = (𝑔3, 𝑔1, 𝑔2) 0.125 0.700 0.175 

𝜎 = (𝑔3, 𝑔2, 𝑔1) 0.700 0.125 0.175 

 

Associated immediate probabilities are listed in Table 39 for every possible 

permutation 

Table 39 Associated Immediate Probabilities 

 𝜆𝜌(1)
′  𝜆𝜌(2)

′  𝜆𝜌(3)
′  

𝜎 = (𝑔1, 𝑔2, 𝑔3) 0.0899 0.2302 0.6798 

𝜎 = (𝑔1, 𝑔3, 𝑔2) 0.0839 0.7517 0.1644 

𝜎 = (𝑔2, 𝑔1, 𝑔3) 0.1470 0.2353 0.6176 

𝜎 = (𝑔2, 𝑔3, 𝑔1) 0.6034 0.2759 0.1207 

𝜎 = (𝑔3, 𝑔1, 𝑔2) 0.0839 0.7517 0.1644 

𝜎 = (𝑔3, 𝑔2, 𝑔1) 0.6114 0.1747 0.2140 

 

Now the aggregate the all aggregation operators are shown in Table 40 
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Table 40 Aggregated Values 

 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐺𝑃 
(
0.4826,
0.2698,
0.7931

) (
0.4429,
0.2453,
0.5800

) (
0.8416,
0.3607,
0.5623

) (
0.8501,
0.3579,
0.5920

) (
0.6232,
0.3920,
0.6684

) 

𝑇 − 𝑆𝐹𝐶𝐺Θ 
(
0.4266,
0.2358,
0.7695

) (
0.4259,
0.2333,
0.6119

) (
0.8162,
0.3836,
0.5150

) (
0.7459,
0.3030,
0.6174

) (
0.6276,
0.3297,
0.5696

) 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐺∨ 
(
0.4744,
0.2664,
0.6988

) (
0.4992,
0.3402,
0.5504

) (
0.8680,
0.4119,
0.4623

) (
0.8676,
0.3517,
0.5044

) (
0.6408,
0.4033,
0.5226

) 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐺∧ 
(
0.7321,
0.2182,
0.8535

) (
0.6579,
0.1941,
0.7124

) (
0.9226,
0.3442,
0.5676

) (
0.8725,
0.2743,
0.6602

) (
0.8444,
0.2826,
0.6694

) 

 

The score values of aggregated operators are listed in Table 41 

Table 41 Score Values 

 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐺𝑃 

-0.4060 -0.1230 0.3714 0.3610 -0.1168 

𝑇 − 𝑆𝐹𝐶𝐺Θ -0.3911 -0.1645 0.3507 0.1517 0.0265 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐺∨ 

-0.2534 -0.0817 0.4854 0.4811 0.0547 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐺∧ 

-0.2397 -0.0841 0.5616 0.3557 0.2796 

 

With respect to score values the ranking of alternatives are listed in Table 42 

Table 42 Rankings 

Operators Rankings 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐺𝑃 𝑑4 ≥ 𝑑3 ≥ 𝑑2 ≥ 𝑑5 ≥ 𝑑1 
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𝑇 − 𝑆𝐹𝐶𝐺Θ 𝑑4 ≥ 𝑑2 ≥ 𝑑3 ≥ 𝑑5 ≥ 𝑑1 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐺∨ 

𝑑4 ≥ 𝑑1 ≥ 𝑑2 ≥ 𝑑3 ≥ 𝑑5 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐺∧ 

𝑑4 ≥ 𝑑3 ≥ 𝑑2 ≥ 𝑑5 ≥ 𝑑1 

 

Now the aggregate the all interactive aggregation operators is shown in Table 43 

Table 43 Aggregated Values 

 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐺𝑃 
(
0.5021,
0.2751,
0.7931

) (
0.5050,
0.2874,
0.5800

) (
0.8478,
0.3656,
0.5623

) (
0.8835,
0.3680,
0.5920

) (
0.6380,
0.4047,
0.6684

) 

𝑇 − 𝑆𝐹𝐶𝐼𝐺Θ 
(
0.4905,
0.2466,
0.7695

) (
0.5201,
0.3011,
0.6119

) (
0.8359,
0.3970,
0.5150

) (
0.8419,
0.3247,
0.6174

) (
0.6516,
0.3709,
0.5696

) 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐺∨ 
(
0.5033,
0.2300,
0.6988

) (
0.5611,
0.2556,
0.5504

) (
0.8742,
0.3504,
0.4623

) (
0.8950,
0.2985,
0.5044

) (
0.7284,
0.3291,
0.5226

) 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐺∧ 
(
0.4684,
0.2737,
0.8535

) (
0.3957,
0.3796,
0.7124

) (
0.8071,
0.4239,
0.5676

) (
0.7830,
0.3659,
0.6602

) (
0.6174,
0.4164,
0.6694

) 

 

The score values of aggregated operators are listed in Table 44 

Table 44 Score Values 

 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐺𝑃 

-0.3930 -0.0901 0.3828 0.4322 -0.1052 

𝑇 − 𝑆𝐹𝐶𝐼𝐺Θ -0.3526 -0.1157 0.3849 0.3272 0.0408 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐺∨ 

-0.2258 -0.0068 0.5262 0.5618 0.2080 
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𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐺∧ 

-0.5394 -0.3543 0.2668 0.1432 -0.1367 

 

With respect to score values the ranking of alternatives are as defined in Table 45 

Table 45 Rankings 

Operators Rankings 

𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺𝑃 𝑑4 ≥ 𝑑3 ≥ 𝑑2 ≥ 𝑑5 ≥ 𝑑1 

𝑇 − 𝑆𝐹𝐶𝐼𝐺Θ 𝑑4 ≥ 𝑑2 ≥ 𝑑3 ≥ 𝑑5 ≥ 𝑑1 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐺∨ 

𝑑4 ≥ 𝑑2 ≥ 𝑑3 ≥ 𝑑1 ≥ 𝑑5 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇

− 𝑆𝐹𝑂𝑊𝐼𝐺∧ 

𝑑4 ≥ 𝑑3 ≥ 𝑑2 ≥ 𝑑5 ≥ 𝑑1 

 

IP-T-SFOWG, T-SFCG, IP-T-SFOWIG and T-SFCIG operators aggregate only 

one order of T-SFNs at a time while Ass.IP-T-SFOWG and Ass.IP-T-SFOWIG 

operators aggregate all possible orders of T-SFNs at a time. This indicates that T-SFCG 

and T-SFCIG are special cases of Ass.IP-T-SFOWG and Ass.IP-T-SFOWIG operators 

respectively. 

5.3. Advantages and Comparative Analysis 

In this section some advantages of proposed work are discussed and a 

comparative study of proposed and existing work is also developed. 

5.3.1. Advantages 

In this subsection, some conditions are discussed under which the proposed 

operators can reduced to existing operators. 

Consider Ass.IP-T-SFOWIG operators 
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𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺∨(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
  

𝑚𝑎𝑥
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −

𝑚𝑎𝑥
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −𝑚𝑎𝑥
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

𝑡

,

√1 −𝑚𝑎𝑥
𝜌∈𝑋𝑛

(∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

, √1 − 𝑚𝑎𝑥
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

  )

 
 
 
 
 
 
 
 
 

 

 

 

 

 

(5.3.1.1) 

and 

𝐴𝑠𝑠. 𝐼𝑃 − 𝑇 − 𝑆𝐹𝑂𝑊𝐼𝐺∧(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
  

min
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

− min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) − min
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

𝑡

,

√1 − min
𝜌∈𝑋𝑛

(∏(1 − 𝑖𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

, √1 − min
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
𝑡 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)
𝑡

 )

 
 
 
 
 
 
 
 
 

 

 

 

  

(5.3.1.2) 

1. For 𝑡 = 2, eq. (5.3.1.1) and (5.3.1.2) reduces to associate immediate 

probability spherical fuzzy ordered weighted interaction geometric (Ass.IP-

SFOWIG) operator   
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𝐴𝑠𝑠. 𝐼𝑃 − 𝑆𝐹𝑂𝑊𝐼𝐺∨(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
  

max
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −

max
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
2 − 𝑖𝜎(𝑗)

2 − 𝑛𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −max
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

√1 −max
𝜌∈𝑋𝑛

(∏(1 − 𝑖𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) , √1 −max
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

 )

 
 
 
 
 
 
 
 
 

 

and 

  

𝐴𝑠𝑠. 𝐼𝑃 − 𝑆𝐹𝑂𝑊𝐼𝐺∧(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 
 
 
 

√
  
  
  
  
  
  
  

min
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −

min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
2 − 𝑖𝜎(𝑗)

2 − 𝑛𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) − min
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

,

√1 − min
𝜌∈𝑋𝑛

(∏(1 − 𝑖𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) , √1 − min
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

  )

 
 
 
 
 
 
 
 
 

 

2. For 𝑡 = 1, eq. (5.3.1.1) and (5.3.1.2) reduces to associate immediate 

probability picture fuzzy ordered weighted interactive geometric (Ass.IP-

PFOWIG) operator   

𝐴𝑠𝑠. 𝐼𝑃 − 𝑃𝐹𝑂𝑊𝐼𝐺∨(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 
 
 max

𝜌∈𝑋𝑛
(∏(1 − 𝑛𝜎(𝑗))

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −

max
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗) − 𝑖𝜎(𝑗) − 𝑛𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −max
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,

1 − max
𝜌∈𝑋𝑛

(∏(1 − 𝑖𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) , 1 − max
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

 )
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and 

  

𝐴𝑠𝑠. 𝐼𝑃 − 𝑃𝐹𝑂𝑊𝐼𝐺∧(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 
 
 min

𝜌∈𝑋𝑛
(∏(1 − 𝑛𝜎(𝑗))

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −

min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗) − 𝑖𝜎(𝑗) − 𝑛𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) − min
𝜌∈𝑋𝑛

(∏(𝑖𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,

1 − min
𝜌∈𝑋𝑛

(∏(1 − 𝑖𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) , 1 − min
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

 )

 
 
 
 
 
 
 
 

 

3. For 𝑡 = 2 and 𝑖 = 0, eq. (5.3.1.1) and (5.3.1.2) reduces to associate immediate 

probability Pythagorean fuzzy ordered weighted interactive geometric (Ass.IP-

PyFOWIG) operator   

𝐴𝑠𝑠. 𝐼𝑃 − 𝑃𝑦𝐹𝑂𝑊𝐼𝐺∨(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √max

𝜌∈𝑋𝑛
(∏(1 − 𝑛𝜎(𝑗)

2 )
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −max
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
2 − 𝑛𝜎(𝑗)

2 )
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,

√1 −max
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) 

)

 
 
 
 
 

 

and  

𝐴𝑠𝑠. 𝐼𝑃 − 𝑃𝑦𝐹𝑂𝑊𝐼𝐺∧(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √min

𝜌∈𝑋𝑛
(∏(1 − 𝑛𝜎(𝑗)

2 )
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) − min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗)
2 − 𝑛𝜎(𝑗)

2 )
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,

√1 − min
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗)
2 )

𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) 

)

 
 
 
 
 

 

4. For 𝑡 = 1 and 𝑖 = 0, eq. (5.3.1.1) and (5.3.1.2) reduces to Ass.IP-IFOWIG 

operator   
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𝐴𝑠𝑠. 𝐼𝑃 − 𝐼𝐹𝑂𝑊𝐼𝐺∨(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 max𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) −max
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗) − 𝑛𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,

1 − max
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

 )

 
 
 
 

 

and 

𝐴𝑠𝑠. 𝐼𝑃 − 𝐼𝐹𝑂𝑊𝐼𝐺∧(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 min𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) − min
𝜌∈𝑋𝑛

(∏(1 −𝑚𝜎(𝑗) − 𝑛𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

) ,

1 − min
𝜌∈𝑋𝑛

(∏(1 − 𝑛𝜎(𝑗))
𝜆𝜌(𝑗)
′

𝑘

𝑗=1

)

 )

 
 
 
 

 

Similarly we can reduce all aggregation operators defined in section 5.1.2 and 5.1.3. 

Another advantage of the proposed operators is that they aggregate that information 

where the existing operators fails. 

5.3.2. Comparative Analysis 

A comparison analysis between existing and proposed work has been 

established in this section. Here an example has been taken in which information is 

given in IFNs and solved by using proposed operators which shows that the proposed 

operators can solve the information given in IFSs, PyFSs, PFSs and SFSs but the 

existing operators cannot solve the information given in PyFSs, PFSs, SFSs and T-

SFSs. So the proposed operators are the generalization of existing work. 

5.3.2.1. Example  

Consider a decision matrix in which information is given in IFNs as listed in Table 46 

Table 46 Decision Matrix 

 𝑑1 𝑑2 𝑑3 

𝑔1 (0.60, 0.30) (0.50, 0.20) (0.60, 0.35) 

𝑔2 (0.60, 0.30) (0.50, 0.20) (0.20, 0.00) 
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𝑔3 (0.31, 0.00) (0.50, 0.20) (0.60, 0.35) 

𝑔4 (0.20, 0.00) (0.50, 0.20) (0.60, 0.30) 

𝑔5 (0.70, 0.30) (0.40, 0.20) (0.80, 0.10) 

𝑔6 (0.60, 0.30) (0.80, 0.20) (0.50, 0.20) 

 

The given information can be written in T-spherical fuzzy information as in Table 47 

Table 47 Decision Matrix in T-SF information 

 𝑑1 𝑑2 𝑑3 

𝑔1 (0.60, 0.00, 0.30) (0.50, 0.00, 0.20) (0.60, 0.00, 0.35) 

𝑔2 (0.60, 0.00, 0.30) (0.50, 0.00, 0.20) (0.20, 0.00, 0.00) 

𝑔3 (0.31, 0.00, 0.00) (0.50, 0.00, 0.20) (0.60, 0.00, 0.35) 

𝑔4 (0.20, 0.00, 0.00) (0.50, 0.00, 0.20) (0.60, 0.00, 0.30) 

𝑔5 (0.70, 0.00, 0.30) (0.40, 0.00, 0.20) (0.80, 0.00, 0.10) 

𝑔6 (0.60, 0.00, 0.30) (0.80, 0.00, 0.20) (0.50, 0.00, 0.20) 

The WV for attributes will be 𝑤 = {0.25, 0.40, 0.35} and fuzzy measures will be as 

 Θ(𝜙) = 0,    Θ({𝑑1}) = 0.175,    Θ({𝑑2}) = 0.125,    Θ({𝑑3}) = 0.100,    

Θ({𝑑1, 𝑑2}) = 0.500,     Θ({𝑑1, 𝑑3}) = 0.425,    Θ({𝑑2, 𝑑3}) = 0.475,     

Θ({𝑑1, 𝑑2, 𝑑3}) = 1. 

Immediate probabilities for all possible permutations are listed in Table 48  

Table 48 Immediate Probabilities 

 𝜆1
′  𝜆2

′  𝜆3
′  

𝜎 = (𝑑1, 𝑑2, 𝑑3) 0.175 0.325 0.500 

𝜎 = (𝑑1, 𝑑3, 𝑑2) 0.175 0.575 0.250 

𝜎 = (𝑑2, 𝑑1, 𝑑3) 0.375 0.125 0.500 

𝜎 = (𝑑2, 𝑑3, 𝑑1) 0.525 0.175 0.350 
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𝜎 = (𝑑3, 𝑑1, 𝑑2) 0.325 0.575 0.100 

𝜎 = (𝑑3, 𝑑2, 𝑑1) 0.525 0.375 0.100 

 

Associated immediate probabilities for all possible permutation are listed in Table 49 

Table 49 Associated Immediate Probabilities 

 𝜆𝜌(1)
′  𝜆𝜌(2)

′  𝜆𝜌(3)
′  

𝜎 = (𝑑1, 𝑑2, 𝑑3) 0.1885 0.3500 0.4615 

𝜎 = (𝑑1, 𝑑3, 𝑑2) 0.1815 0.5963 0.2222 

𝜎 = (𝑑2, 𝑑1, 𝑑3) 0.4038 0.1346 0.4615 

𝜎 = (𝑑2, 𝑑3, 𝑑1) 0.5526 0.1316 0.3158 

𝜎 = (𝑑3, 𝑑1, 𝑑2) 0.3297 0.5833 0.0870 

𝜎 = (𝑑3, 𝑑2, 𝑑1) 0.5326 0.3804 0.0870 

As 0.6 + 0.0 + 0.3 = 0.9 ∈ [0, 1] similarly for 𝑡 = 1, all values lie in TSFSs. So here 

𝑡 = 1 is taken. 

Then the aggregate of all aggregation operators for 𝑡 = 1 are listed in Table 50 

Table 50 Aggregated Values 

 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 

T-SFCG 
(
0.57,
 0.00,
 0.26

) (
0.54,
 0.00,
 0.00

) (
0.42,
 0.00,
 0.00

) (
0.51,
 0.00,
 0.00

) (
0.72,
 0.00,
 0.16

) (
0.73,
 0.00,
 0.23

) 

Ass.IP-T-

SFOW𝐺∨ 
(
0.588,
 0.00,
 0.244

) (
0.537,
 0.00,
 0.00

) (
0.521,
 0.00,
 0.00

) (
0.528,
 0.00,
 0.00

) (
0.725,
 0.00,
 0.154

) (
0.718,
 0.00,
 0.211

) 

Ass.IP-T-

SFOW𝐺∧ 
(
0.543,
 0.00,
 0.305

) (
0.404,
 0.00,
 0.00

) (
0.418,
 0.00,
 0.00

) (
0.385,
 0.00,
 0.00

) (
0.584,
 0.00,
 0.228

) (
0.611,
 0.00,
 0.255

) 

 

The score values of aggregated values in Table 51 will be  
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Table 51 Score Values 

 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 

T-SFCG 0.3231 0.6006 0.4800 0.5712 0.5764 0.5049 

Ass.IP-T-

SFOW𝐺∨ 

0.3583 0.5977 0.5820 0.5889 0.5878 0.5158 

Ass.IP-T-

SFOW𝐺∧ 

0.2470 0.4634 0.4779 0.4435 0.3054 0.3678 

 

The ranking of all alternatives through score values or accuracy function are listed in 

Table 52 

Table 52 Rankings 

Operators                                                  Rankings 

T-SFCG 𝑔2 > 𝑔5 > 𝑔4 > 𝑔6 > 𝑔3 > 𝑔1 

Ass.IP-T-

SFOW𝐺∨ 

𝑔2 > 𝑔4 > 𝑔5 > 𝑔3 > 𝑔6 > 𝑔1 

Ass.IP-T-

SFOW𝐺∧ 

𝑔3 > 𝑔2 > 𝑔4 > 𝑔6 > 𝑔5 > 𝑔1 

 

From above example it is clear that the results obtained from proposed operators are 

similar to existing operators. This proves that the proposed operators are 

generalizations of existing operators. 
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Chapter 6 

T-Spherical Fuzzy Einstein Hybrid Aggregation Operators 

and Their Applications in Multi-Attribute Decision Making 

Problems 

T-SFS is a recently developed model that copes with imprecise and uncertain 

events of real-life with the help of four functions having no restrictions. This chapter 

aim to define some improved algebraic operations for T-SFSs known as Einstein sum, 

Einstein product and Einstein scalar multiplication based on Einstein t-norms and t-

conorms. Then some geometric and averaging aggregation operators have been 

established based on defined Einstein operations. The validity of the defined 

aggregation operators has been investigated thoroughly. The MADM method is 

described in the environment of T-SFSs and is supported by a comprehensive numerical 

example using the proposed Einstein aggregation tools. As consequences of the defined 

aggregation operators, the same concept of Einstein aggregation operators has been 

proposed for q-ROPFSs, SFSs, PyFSs, PFSs, and IFSs. To signify the importance of 

proposed operators, a comparative analysis of proposed and existing studies is 

developed, and the results are analyzed numerically. The advantages of the proposed 

study are demonstrated numerically over the existing literature with the help of 

examples. 

6.1. Einstein Operations for T-SFS 

 In this section, some Einstein operators for T-SFS are proposed with the help of 

Einstein sum and Einstein product. Some special cases of proposed operators are also 

discussed in the remark. 

6.1.1. Definition  

Let 𝒯1 = (𝑚1, 𝑖1, 𝑛1) and 𝒯2 = (𝑚2, 𝑖2, 𝑛2) be two T-SFNs. Then their Einstein 

operations are defined as follows: 

i). 𝒯1 ≤ 𝒯2  ⇒ 𝑚1 ≤ 𝑚2, 𝑖1 ≤ 𝑖2,   𝑛1 ≥ 𝑛2  

ii). 𝒯1⊗𝐸 𝒯2 = (√
𝑚1
𝑡𝑚2

𝑡

1+(1−𝑚1
𝑡 )(1−𝑚2

𝑡 )

𝑡
,   √

𝑖1
𝑡 𝑖2
𝑡

1+(1−𝑖1
𝑡)(1−𝑖2

𝑡)

𝑡
,   √

𝑛1
𝑡+𝑛2

𝑡

1+𝑛1
𝑡𝑛2

𝑡

𝑡
) 

iii). 𝒯1⊕𝐸 𝒯2 = (√
𝑚1
𝑡+𝑚2

𝑡

1+(𝑚1
𝑡+𝑖1

𝑡)(𝑚2
𝑡+𝑖2

𝑡)−𝑖1
𝑡 𝑖2
𝑡

𝑡
, √

𝑖1
𝑡 𝑖2
𝑡

1+(1−𝑖1
𝑡)(1−𝑖2

𝑡)

𝑡
, √

𝑛1
𝑡𝑛2

𝑡

1+(1−𝑛1
𝑡 )(1−𝑛2

𝑡 )

𝑡
 ) 
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iv). 𝜏𝒯1 = (√
(1+𝑚1

𝑡 )𝜏−(1−𝑚1
𝑡 )
𝜏

(1+𝑚1
𝑡 )𝜏+(1−𝑚1

𝑡 )𝜏

𝑡

, √
(2𝑖1

𝑡)𝜏

(2−𝑖1
𝑡)
𝜏
+(𝑖1

𝑡)𝜏

𝑡
, √

(2𝑛1
𝑡 )
𝜏

(2−𝑛1
𝑡 )
𝜏
+(𝑛1

𝑡)
𝜏

𝑡

) ,    𝜏 > 0 

v). 𝒯1
𝜏 = (√

2(𝑚1
𝑡 )
𝜏

(2+𝑚1
𝑡 )
𝜏
+(𝑚1

𝑡 )
𝜏

𝑡

, √
(2𝑖1

𝑡)𝜏

(2−𝑖1
𝑡)
𝜏
+(𝑖1

𝑡)𝜏

𝑡
, √

(1+𝑛1
𝑡 )𝜏−(1−𝑛1

𝑡)
𝜏

(1+𝑛1
𝑡 )𝜏+(1−𝑛1

𝑡 )𝜏

𝑡

) ,    𝜏 > 0 

6.1.2. Remark  

i. For 𝑡 = 2, above operations become valid for SFSs 

ii. For 𝑡 = 1, above operations become valid for PFSs 

iii. For 𝑖 = 0, above operations become valid for q-ROPFSs 

iv. For 𝑡 = 2 and 𝑖 = 0, above operations become valid for PyFSs 

v. For 𝑡 = 1 and 𝑖 = 0, above operations become valid for IFSs 

6.2. T-Spherical Fuzzy Einstein Hybrid Averaging Operators 

In this section, by using Einstein operations, T-SF Einstein weighted averaging 

(T-SFEWA) operators, T-SF Einstein ordered weighted averaging (T-SFEOWA) 

operators, T-SF Einstein hybrid averaging (T-SFEHA) operators are defined and some 

of their properties are also discussed. 

6.2.1. Definition  

For any collection 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) for all 𝑗 = 1,2,3, … , 𝑘 of T-SFS,  

𝑇 − 𝑆𝐹𝐸𝑊𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) =⊕𝐸𝑗=1
𝑘 𝑤𝑗𝒯𝑗

=

(

 
 
 
 √

∏ (1 +𝑚𝑗
𝑡)
𝑤𝑗
−𝑘

𝑗=1 ∏ (1 −𝑚𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1

∏ (1 +𝑚𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1 +∏ (1 −𝑚𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1

𝑡

, √
2∏ (𝑖𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (2 − 𝑖𝑗
𝑡)
𝑤𝑗
+∏ (𝑖𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

,

 √
2∏ (𝑛𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (2 − 𝑛𝑗
𝑡)
𝑤𝑗
+∏ (𝑛𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

)

 
 
 
 

 

is called 𝑇 − 𝑆𝐹𝐸𝑊𝐴 operator with WV 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑘)
𝑇 of 𝒯𝑗 , where 𝑤𝑗 ∈ (0,1] 

and ∑ 𝑤𝑗 = 1𝑘
𝑗=1 . 

6.2.2. Theorem  

If 𝒯𝑗 = 𝒯0  for all 𝑗, then 𝑇 − 𝑆𝐹𝐸𝑊𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0. 

Proof: Since 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) for all 𝑗 = 1,2,3, … , 𝑘 and ∑ 𝑤𝑗
𝑘
𝑗=1 = 1. Then 
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𝑇 − 𝑆𝐹𝐸𝑊𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 √

∏ (1 +𝑚0
𝑡)𝑤𝑗 −𝑘

𝑗=1 ∏ (1 −𝑚0
𝑡)𝑤𝑗𝑘

𝑗=1

∏ (1 +𝑚0
𝑡)𝑤𝑗𝑘

𝑗=1 +∏ (1 −𝑚0
𝑡)𝑤𝑗𝑘

𝑗=1

𝑡

, √
2∏ (𝑖0

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (2 − 𝑖0
𝑡)𝑤𝑗 +∏ (𝑖0

𝑡)𝑤𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

,

 √
2∏ (𝑛0

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (2 − 𝑛0
𝑡)𝑤𝑗 +∏ (𝑛0

𝑡)𝑤𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

)

 
 
 

 

=

(

 
 
 
 
 √

(1 +𝑚0
𝑡)∑ 𝑤𝑗

𝑘
𝑗=1 − (1 −𝑚0

𝑡)∑ 𝑤𝑗
𝑘
𝑗=1

(1 + 𝑚0
𝑡)∑ 𝑤𝑗

𝑘
𝑗=1 + (1 −𝑚0

𝑡)∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

, √
2(𝑖0

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

(2 − 𝑖0
𝑡)∑ 𝑤𝑗

𝑘
𝑗=1 + (𝑖0

𝑡)∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

,

 √
2(𝑛0

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

(2 − 𝑛0
𝑡 )∑ 𝑤𝑗

𝑘
𝑗=1 + (𝑛0

𝑡)∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

)

 
 
 
 
 

 

= (𝑚0, 𝑖0, 𝑛0) = 𝒯0. 

6.2.3. Theorem 

For a collection of T-SFNs 𝒯𝑗  for all 𝑗 = 1,2,3, … , 𝑘 and 𝒯𝐿 = min
𝑗
𝒯𝑗 , and 𝒯𝑈 =

max
𝑗
𝒯𝑗 . Then 

𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝐸𝑊𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

Proof: As 𝒯𝐿 = min
𝑗
𝒯𝑗 = (min𝑚𝑗 , min 𝑖𝑗 , max 𝑛𝑗) and 𝒯𝑈 = max

𝑗
𝒯𝑗 =

(max𝑚𝑗 , max 𝑖𝑗 , min 𝑛𝑗). Then  

min𝑚𝑗 ≤ 𝑚𝑗 ≤ max𝑚𝑗 

min𝑚𝑗
𝑡 ≤ 𝑚𝑗

𝑡 ≤ max𝑚𝑗
𝑡 

1 +min𝑚𝑗
𝑡 ≤ 1 +𝑚𝑗

𝑡 ≤ 1 +max𝑚𝑗
𝑡 

(1 + min𝑚𝑗
𝑡)
𝑤𝑗
≤∏(1 +𝑚𝑗

𝑡)
𝑤𝑗

𝑘

𝑗=1

≤ (1 +max𝑚𝑗
𝑡)
𝑤𝑗

 



148 

 

⇒ √
(1 +min𝑚𝑗

𝑡)
𝑤𝑗
− (1 −min𝑚𝑗

𝑡)
𝑤𝑗

(1 + min𝑚𝑗
𝑡)
𝑤𝑗
+ (1 −min𝑚𝑗

𝑡)
𝑤𝑗

𝑡

≤ √
∏ (1 +𝑚𝑗

𝑡)
𝑤𝑗
−𝑘

𝑗=1 ∏ (1 −𝑚𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1

∏ (1 +𝑚𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1 +∏ (1 −𝑚𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1

𝑡

≤ √
(1 +max𝑚𝑗

𝑡)
𝑤𝑗
− (1 −max𝑚𝑗

𝑡)
𝑤𝑗

(1 + max𝑚𝑗
𝑡)
𝑤𝑗
+ (1 −max𝑚𝑗

𝑡)
𝑤𝑗

𝑡

 

Now, min 𝑖𝑗 ≤ 𝑖𝑗 ≤ max 𝑖𝑗 

min 𝑖𝑗
𝑡 ≤ 𝑖𝑗

𝑡 ≤ max 𝑖𝑗
𝑡 

2min(𝑖𝑗
𝑡)
𝑤𝑗
≤ 2∏(𝑖𝑗

𝑡)
𝑤𝑗

𝑘

𝑗=1

≤ 2max(𝑖𝑗
𝑡)
𝑤𝑗

 

⇒ √
2min(𝑖𝑗

𝑡)
𝑤𝑗

(2 − min 𝑖𝑗
𝑡)
𝑤𝑗
+min(𝑖𝑗

𝑡)
𝑤𝑗

𝑡

≤ √
2∏ (𝑖𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (2 − 𝑖𝑗
𝑡)
𝑤𝑗
+∏ (𝑖𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≤ √
2max(𝑖𝑗

𝑡)
𝑤𝑗

(2 −max 𝑖𝑗
𝑡)
𝑤𝑗
+max(𝑖𝑗

𝑡)
𝑤𝑗

𝑡

 

Similarly,  max 𝑛𝑗 ≥ 𝑛𝑗 ≥ min 𝑛𝑗 

max𝑛𝑗
𝑡 ≥ 𝑛𝑗

𝑡 ≥ min𝑛𝑗
𝑡 

2max(𝑛𝑗
𝑡)
𝑤𝑗
≥ 2∏(𝑛𝑗

𝑡)
𝑤𝑗

𝑘

𝑗=1

≥ 2min(𝑛𝑗
𝑡)
𝑤𝑗

 

⇒ √
2max(𝑛𝑗

𝑡)
𝑤𝑗

(2 − max𝑛𝑗
𝑡)
𝑤𝑗
+max(𝑛𝑗

𝑡)
𝑤𝑗

𝑡

≥ √
2∏ (𝑛𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (2 − 𝑛𝑗
𝑡)
𝑤𝑗
+∏ (𝑛𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≥ √
2min(𝑛𝑗

𝑡)
𝑤𝑗

(2 −min 𝑛𝑗
𝑡)
𝑤𝑗
+min(𝑛𝑗

𝑡)
𝑤𝑗

𝑡

 

⇒ 𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝐸𝑊𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 
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6.2.4. Theorem  

For any two T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) such that 𝒯𝑗 ≤ 𝒯𝑗
′ for all 𝑗 =

1,2,3, … , 𝑘. Then 

𝑇 − 𝑆𝐹𝐸𝑊𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝐸𝑊𝐴𝑤(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

Proof: As 𝒯𝑗 ≤ 𝒯𝑗
′, which means 𝑚𝑗 ≤ 𝑚𝑗

′, 𝑖𝑗 ≤ 𝑖𝑗
′ and 𝑛𝑗 ≥ 𝑛𝑗

′. 

As, 𝑚𝑗 ≤ 𝑚𝑗
′   ⇒  𝑚𝑗

𝑡 ≤ (𝑚𝑗
′)
𝑡
 

⇒ 1+𝑚𝑗
𝑡 ≤ 1 + (𝑚𝑗

′)
𝑡
 

∏(1+𝑚𝑗
𝑡)
𝑤𝑗

𝑘

𝑗=1

≤∏(1 + (𝑚𝑗
′)
𝑡
)
𝑤𝑗

𝑘

𝑗=1

 

√
∏ (1 +𝑚𝑗

𝑡)
𝑤𝑗
−𝑘

𝑗=1 ∏ (1 −𝑚𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1

∏ (1 +𝑚𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1 +∏ (1 −𝑚𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1

𝑡

≤ √
∏ (1 + (𝑚𝑗

′)
𝑡
)
𝑤𝑗
−𝑘

𝑗=1 ∏ (1 − (𝑚𝑗
′)
𝑡
)
𝑤𝑗𝑘

𝑗=1

∏ (1 + (𝑚𝑗
′)
𝑡
)
𝑤𝑗𝑘

𝑗=1 +∏ (1 − (𝑚𝑗
′)
𝑡
)
𝑤𝑗𝑘

𝑗=1

𝑡

 

As, 𝑖𝑗 ≤ 𝑖𝑗
′   ⇒  𝑖𝑗

𝑡 ≤ (𝑖𝑗
′)
𝑡
 

⇒ 2∏(𝑖𝑗
𝑡)
𝑤𝑗

𝑘

𝑗=1

≤ 2∏((𝑖𝑗
′)
𝑡
)
𝑤𝑗

𝑘

𝑗=1

 

√
2∏ (𝑖𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (2 − 𝑖𝑗
𝑡)
𝑤𝑗
+∏ (𝑖𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≤ √
2∏ ((𝑖𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1

∏ (2 − (𝑖𝑗
′)
𝑡
)
𝑤𝑗
+∏ ((𝑖𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

 

Similarly, 𝑛𝑗 ≥ 𝑛𝑗
′   ⇒  𝑛𝑗

𝑡 ≥ (𝑛𝑗
′)
𝑡
 

⇒ 2∏(𝑛𝑗
𝑡)
𝑤𝑗

𝑘

𝑗=1

≥ 2∏((𝑛𝑗
′)
𝑡
)
𝑤𝑗

𝑘

𝑗=1
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√
2∏ (𝑛𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (2 − 𝑛𝑗
𝑡)
𝑤𝑗
+∏ (𝑛𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≥ √
2∏ ((𝑛𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1

∏ (2 − (𝑛𝑗
′)
𝑡
)
𝑤𝑗
+∏ ((𝑛𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

 

⇒ 𝑇 − 𝑆𝐹𝐸𝑊𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝐸𝑊𝐴𝑤(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

6.2.5. Definition  

For any collection 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) for all 𝑗 = 1,2,3, … , 𝑘 of T-SFS. Then 

    𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐴𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) =⊕𝐸𝑗=1
𝑘 𝜔𝑗𝒯𝜎(𝑗) 

=

(

 
 
 
 √

∏ (1 +𝑚𝜎(𝑗)
𝑡 )

𝜔𝑗
−𝑘

𝑗=1 ∏ (1 −𝑚𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1

∏ (1 +𝑚𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1 +∏ (1 −𝑚𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1

𝑡

, √
2∏ (𝑖𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

∏ (2 − 𝑖𝜎(𝑗)
𝑡 )

𝜔𝑗
+∏ (𝑖𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

,

 √
2∏ (𝑛𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

∏ (2 − 𝑛𝜎(𝑗)
𝑡 )

𝜔𝑗
+∏ (𝑛𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

)

 
 
 
 

 

then 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐴𝜔 is called 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐴 operator with associated WV 𝜔 =

(𝜔1, 𝜔2, … , 𝜔𝑘)
𝑇 of 𝒯𝑗 , where 𝜔𝑗 ∈ (0,1] and ∑ 𝜔𝑗 = 1𝑘

𝑗=1 . 𝜎(𝑗) is the permutation with 

respect to score value such that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). 

In next theorems, idempotency, boundedness, and monotonicity properties are proved 

for the above operator. 

6.2.6. Theorem  

If 𝒯𝑗 = 𝒯0  for all 𝑗 = 1,2,3, … , 𝑘, then 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐴𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0. 

Proof: Since 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) for all 𝑗 = 1,2,3, … , 𝑘 and ∑ 𝜔𝑗
𝑘
𝑗=1 = 1. Then 

𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐴𝜔(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 √

∏ (1 +𝑚0
𝑡)𝜔𝑗 −𝑘

𝑗=1 ∏ (1 −𝑚0
𝑡)𝜔𝑗𝑘

𝑗=1

∏ (1 +𝑚0
𝑡)𝜔𝑗𝑘

𝑗=1 +∏ (1 −𝑚0
𝑡)𝜔𝑗𝑘

𝑗=1

𝑡

, √
2∏ (𝑖0

𝑡)𝜔𝑗𝑘
𝑗=1

∏ (2 − 𝑖0
𝑡)𝜔𝑗 +∏ (𝑖0

𝑡)𝜔𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

,

 √
2∏ (𝑛0

𝑡)𝜔𝑗𝑘
𝑗=1

∏ (2 − 𝑛0
𝑡 )𝜔𝑗 +∏ (𝑛0

𝑡)𝜔𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

)
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 =

(√
(1+𝑚0

𝑡 )
∑ 𝜔𝑗
𝑘
𝑗=1 −(1−𝑚0

𝑡 )
∑ 𝜔𝑗
𝑘
𝑗=1

(1+𝑚0
𝑡 )
∑ 𝜔𝑗
𝑘
𝑗=1 +(1−𝑚0

𝑡 )
∑ 𝜔𝑗
𝑘
𝑗=1

𝑡

, √
2(𝑖0

𝑡)
∑ 𝜔𝑗
𝑘
𝑗=1

(2−𝑖0
𝑡)
∑ 𝜔𝑗
𝑘
𝑗=1 +(𝑖0

𝑡)
∑ 𝜔𝑗
𝑘
𝑗=1

𝑡

, √
2(𝑛0

𝑡 )
∑ 𝜔𝑗
𝑘
𝑗=1

(2−𝑛0
𝑡 )
∑ 𝜔𝑗
𝑘
𝑗=1 +(𝑛0

𝑡 )
∑ 𝜔𝑗
𝑘
𝑗=1

𝑡

) 

= (𝑚0, 𝑖0, 𝑛0) = 𝒯0. 

6.2.7. Theorem  

For a collection of T-SFNs 𝒯𝑗  for all 𝑗 = 1,2,3, … , 𝑘 and 𝒯𝐿 = min
𝑗
𝒯𝑗, and 𝒯𝑈 =

max
𝑗
𝒯𝑗 . Then 

𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐴𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

Proof: As 𝒯𝐿 = min
𝑗
𝒯𝜎(𝑗) = (min𝑚𝜎(𝑗) , min 𝑖𝜎(𝑗) , max 𝑛𝜎(𝑗)) and 𝒯𝑈 = max

𝑗
𝒯𝜎(𝑗) =

(max𝑚𝜎(𝑗) , max 𝑖𝜎(𝑗) , min 𝑛𝜎(𝑗)). Then  

min𝑚𝜎(𝑗) ≤ 𝑚𝜎(𝑗) ≤ max𝑚𝜎(𝑗) 

min𝑚𝜎(𝑗)
𝑡 ≤ 𝑚𝜎(𝑗)

𝑡 ≤ max𝑚𝜎(𝑗)
𝑡  

1 + min𝑚𝜎(𝑗)
𝑡 ≤ 1 +𝑚𝜎(𝑗)

𝑡 ≤ 1 +max𝑚𝜎(𝑗)
𝑡  

(1 + min𝑚𝜎(𝑗)
𝑡 )

𝜔𝑗
≤∏(1 +𝑚𝜎(𝑗)

𝑡 )
𝜔𝑗

𝑘

𝑗=1

≤ (1 +max𝑚𝜎(𝑗)
𝑡 )

𝜔𝑗
 

⇒ √
(1 +min𝑚𝜎(𝑗)

𝑡 )
𝜔𝑗
− (1 − min𝑚𝜎(𝑗)

𝑡 )
𝜔𝑗

(1 + min𝑚𝜎(𝑗)
𝑡 )

𝜔𝑗
+ (1 − min𝑚𝜎(𝑗)

𝑡 )
𝜔𝑗

𝑡

≤ √
∏ (1 +𝑚𝜎(𝑗)

𝑡 )
𝜔𝑗
−𝑘

𝑗=1 ∏ (1 −𝑚𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1

∏ (1 +𝑚𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1 +∏ (1 −𝑚𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1

𝑡

≤ √
(1 +max𝑚𝜎(𝑗)

𝑡 )
𝜔𝑗
− (1 −max𝑚𝜎(𝑗)

𝑡 )
𝜔𝑗

(1 + max𝑚𝜎(𝑗)
𝑡 )

𝜔𝑗
+ (1 −max𝑚𝜎(𝑗)

𝑡 )
𝜔𝑗

𝑡

 

Now, min 𝑖𝜎(𝑗) ≤ 𝑖𝜎(𝑗) ≤ max 𝑖𝜎(𝑗) 

min 𝑖𝜎(𝑗)
𝑡 ≤ 𝑖𝜎(𝑗)

𝑡 ≤ max 𝑖𝜎(𝑗)
𝑡  
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2min(𝑖𝜎(𝑗)
𝑡 )

𝜔𝑗
≤ 2∏(𝑖𝜎(𝑗)

𝑡 )
𝜔𝑗

𝑘

𝑗=1

≤ 2max(𝑖𝜎(𝑗)
𝑡 )

𝜔𝑗
 

⇒ √
2min(𝑖𝜎(𝑗)

𝑡 )
𝜔𝑗

(2 − min 𝑖𝜎(𝑗)
𝑡 )

𝜔𝑗
+min(𝑖𝜎(𝑗)

𝑡 )
𝜔𝑗

𝑡

≤ √
2∏ (𝑖𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

∏ (2 − 𝑖𝜎(𝑗)
𝑡 )

𝜔𝑗
+∏ (𝑖𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≤ √
2max(𝑖𝜎(𝑗)

𝑡 )
𝜔𝑗

(2 − max 𝑖𝜎(𝑗)
𝑡 )

𝜔𝑗
+max(𝑖𝜎(𝑗)

𝑡 )
𝜔𝑗

𝑡

 

Similarly, max 𝑛𝜎(𝑗) ≥ 𝑛𝜎(𝑗) ≥ min𝑛𝜎(𝑗) 

max𝑛𝜎(𝑗)
𝑡 ≥ 𝑛𝜎(𝑗)

𝑡 ≥ min 𝑛𝜎(𝑗)
𝑡  

2max(𝑛𝜎(𝑗)
𝑡 )

𝜔𝑗
≥ 2∏(𝑛𝜎(𝑗)

𝑡 )
𝜔𝑗

𝑘

𝑗=1

≥ 2min(𝑛𝜎(𝑗)
𝑡 )

𝜔𝑗
 

⇒ √
2max(𝑛𝜎(𝑗)

𝑡 )
𝜔𝑗

(2 − max𝑛𝜎(𝑗)
𝑡 )

𝜔𝑗
+max(𝑛𝜎(𝑗)

𝑡 )
𝜔𝑗

𝑡

≥ √
2∏ (𝑛𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

∏ (2 − 𝑛𝜎(𝑗)
𝑡 )

𝜔𝑗
+∏ (𝑛𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≥ √
2min(𝑛𝜎(𝑗)

𝑡 )
𝜔𝑗

(2 − min 𝑛𝜎(𝑗)
𝑡 )

𝜔𝑗
+min(𝑛𝜎(𝑗)

𝑡 )
𝜔𝑗

𝑡

 

⇒ 𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐴𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

6.2.8. Theorem  

For any two T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) such that 𝒯𝑗 ≤ 𝒯𝑗
′ for all 𝑗 =

1,2,3, … , 𝑘. Then 

𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐴𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐴𝜔(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

Proof: As 𝒯𝜎(𝑗) ≤ 𝒯𝜎(𝑗)
′ , which means 𝑚𝜎(𝑗) ≤ 𝑚𝜎(𝑗)

′ , 𝑖𝜎(𝑗) ≤ 𝑖𝜎(𝑗)
′  and 𝑛𝜎(𝑗) ≥ 𝑛𝜎(𝑗)

′ . 

As, 𝑚𝜎(𝑗) ≤ 𝑚𝜎(𝑗)
′   ⇒  𝑚𝜎(𝑗)

𝑡 ≤ (𝑚𝜎(𝑗)
′ )

𝑡
 

⇒ 1+𝑚𝜎(𝑗)
𝑡 ≤ 1 + (𝑚𝜎(𝑗)

′ )
𝑡
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∏(1+𝑚𝜎(𝑗)
𝑡 )

𝜔𝑗

𝑘

𝑗=1

≤∏(1 + (𝑚𝜎(𝑗)
′ )

𝑡
)
𝜔𝑗

𝑘

𝑗=1

 

√
∏ (1 +𝑚𝜎(𝑗)

𝑡 )
𝜔𝑗
−𝑘

𝑗=1 ∏ (1 −𝑚𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1

∏ (1 +𝑚𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1 +∏ (1 −𝑚𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1

𝑡

≤ √
∏ (1 + (𝑚𝜎(𝑗)

′ )
𝑡
)
𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − (𝑚𝜎(𝑗)
′ )

𝑡
)
𝜔𝑗𝑘

𝑗=1

∏ (1 + (𝑚𝜎(𝑗)
′ )

𝑡
)
𝜔𝑗𝑘

𝑗=1 +∏ (1 − (𝑚𝜎(𝑗)
′ )

𝑡
)
𝜔𝑗𝑘

𝑗=1

𝑡

 

As, 𝑖𝜎(𝑗) ≤ 𝑖𝜎(𝑗)
′   ⇒  𝑖𝜎(𝑗)

𝑡 ≤ (𝑖𝜎(𝑗)
′ )

𝑡
 

⇒ 2∏(𝑖𝜎(𝑗)
𝑡 )

𝜔𝑗

𝑘

𝑗=1

≤ 2∏((𝑖𝜎(𝑗)
′ )

𝑡
)
𝜔𝑗

𝑘

𝑗=1

 

√
2∏ (𝑖𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

∏ (2 − 𝑖𝜎(𝑗)
𝑡 )

𝜔𝑗
+∏ (𝑖𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≤ √
2∏ ((𝑖𝜎(𝑗)

′ )
𝑡
)
𝜔𝑗𝑘

𝑗=1

∏ (2 − (𝑖𝜎(𝑗)
′ )

𝑡
)
𝜔𝑗
+∏ ((𝑖𝜎(𝑗)

′ )
𝑡
)
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

 

Similarly, 𝑛𝜎(𝑗) ≥ 𝑛𝜎(𝑗)
′   ⇒  𝑛𝜎(𝑗)

𝑡 ≥ (𝑛𝜎(𝑗)
′ )

𝑡
 

⇒ 2∏(𝑛𝜎(𝑗)
𝑡 )

𝜔𝑗

𝑘

𝑗=1

≥ 2∏((𝑛𝜎(𝑗)
′ )

𝑡
)
𝜔𝑗

𝑘

𝑗=1

 

√
2∏ (𝑛𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

∏ (2 − 𝑛𝜎(𝑗)
𝑡 )

𝜔𝑗
+∏ (𝑛𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≥ √
2∏ ((𝑛𝜎(𝑗)

′ )
𝑡
)
𝜔𝑗𝑘

𝑗=1

∏ (2 − (𝑛𝜎(𝑗)
′ )

𝑡
)
𝜔𝑗
+∏ ((𝑛𝜎(𝑗)

′ )
𝑡
)
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

 

⇒ 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐴𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐴𝜔(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

6.2.9. Definition  

For any collection 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) for all 𝑗 = 1,2,3, … , 𝑘 of T-SFNs. The mapping 
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𝑇 − 𝑆𝐹𝐸𝐻𝐴𝑤,𝜔(�̃�1, �̃�2, … , �̃�𝑘) =⊕𝐸𝑗=1
𝑘 𝜔𝑗�̃�𝜎(𝑗) 

=

(

 
 
 
 √

∏ (1 + �̃�𝜎(𝑗)
𝑡 )

𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1

∏ (1 + �̃�𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1 +∏ (1 − �̃�𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1

𝑡

, √
2∏ (𝑖̃𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

∏ (2 − 𝑖̃𝜎(𝑗)
𝑡 )

𝜔𝑗
+∏ (𝑖̃𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

,

 √
2∏ (�̃�𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

∏ (2 − �̃�𝜎(𝑗)
𝑡 )

𝜔𝑗
+∏ (�̃�𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

)

 
 
 
 

 

is called T-SFEHA operator, where �̃�𝑗 = 𝑘𝑤𝑗𝒯𝑗. Let 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑘)
𝑇 is the WV 

and 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑘)
𝑇 is the associated WV of �̃�𝑗  with 𝑤𝑗 , 𝜔𝑗 ∈ (0,1] and 

∑ 𝜔𝑗 = 1𝑘
𝑗=1 , ∑ 𝑤𝑗 = 1𝑘

𝑗=1 . 

T-SFEHA operator first weights the T-spherical fuzzy values then rearrange them and 

measure the ordered T-spherical fuzzy values, so T-SFEHA operator is generalization 

of T-SFEWA and T-SFEOWA operator. For this reason, T-SFEHA operator will also 

be idempotent, monotone, and bounded. 

6.3. T-Spherical Fuzzy Einstein Hybrid Geometric Operators 

In this section, by using Einstein operations, T-SF Einstein weighted geometric 

(T-SFEWG) operators, T-SF Einstein ordered weighted geometric (T-SFEOWG) 

operators, T-SF Einstein hybrid geometric (T-SFEHG) operators are defined and some 

of their properties are also discussed. 

6.3.1. Definition  

For any collection 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) for all 𝑗 = 1,2,3, … , 𝑘 of T-SFNs. The mapping 

𝑇 − 𝑆𝐹𝐸𝑊𝐺𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) =⊗𝐸  𝑗=1
𝑘 𝒯

𝑗

𝑤𝑗
  

=

(

 
 
 
 √

2∏ (𝑚𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1

∏ (2 −𝑚𝑗
𝑡)𝑤𝑗𝑘

𝑗=1 +∏ (𝑚𝑗
𝑡)𝑤𝑗𝑘

𝑗=1

𝑡

, √
2∏ (𝑖𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (2 − 𝑖𝑗
𝑡)
𝑤𝑗
+∏ (𝑖𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

,

 √
∏ (1 + 𝑛𝑗

𝑡)𝑤𝑗 −∏ (1 − 𝑛𝑗
𝑡)𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + 𝑛𝑗
𝑡)𝑤𝑗 +∏ (1 − 𝑛𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

)

 
 
 
 

 

where 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑘)
𝑇 is the WV of 𝒯𝑗  for all 𝑗 = 1,2,3, … , 𝑘 such that 𝑤𝑗 ∈ (0,1] 

and ∑ 𝑤𝑗
𝑘
𝑗=1 = 1. 



155 

 

In next theorems, idempotency, boundedness, and monotonicity properties are proved 

for the above operator. 

6.3.2. Theorem  

If 𝒯𝑗 = 𝒯0  for all 𝑗 = 1,2,3, … , 𝑘, then 𝑇 − 𝑆𝐹𝐸𝑊𝐺𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0. 

Proof: Since 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) for all 𝑗 = 1,2,3, … , 𝑘 and ∑ 𝑤𝑗
𝑘
𝑗=1 = 1. Then 

𝑇 − 𝑆𝐹𝐸𝑊𝐺𝑤(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 √

2∏ (𝑚0
𝑡)𝑤𝑗𝑘

𝑗=1

∏ (2 −𝑚0
𝑡)𝑤𝑗 +∏ (𝑚0

𝑡)𝑤𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

, √
2∏ (𝑖0

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (2 − 𝑖0
𝑡)𝑤𝑗 +∏ (𝑖0

𝑡)𝑤𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

,

√
∏ (1 + 𝑛0

𝑡 )𝑤𝑗 −𝑘
𝑗=1 ∏ (1 − 𝑛0

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (1 + 𝑛0
𝑡 )𝑤𝑗𝑘

𝑗=1 +∏ (1 − 𝑛0
𝑡 )𝑤𝑗𝑘

𝑗=1

𝑡

 
)

 
 
 

 

=

(

 
 
 
 
 √

2(𝑚0
𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

(2 − 𝑚0
𝑡)∑ 𝑤𝑗

𝑘
𝑗=1 + (𝑚0

𝑡)∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

, √
2(𝑖0

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

(2 − 𝑖0
𝑡)∑ 𝑤𝑗

𝑘
𝑗=1 + (𝑖0

𝑡)∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

,

 √
(1 + 𝑛0

𝑡)∑ 𝑤𝑗
𝑘
𝑗=1 − (1 − 𝑛0

𝑡 )∑ 𝑤𝑗
𝑘
𝑗=1

(1 + 𝑛0
𝑡)∑ 𝑤𝑗

𝑘
𝑗=1 + (1 − 𝑛0

𝑡 )∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

)

 
 
 
 
 

 

= (𝑚0, 𝑖0, 𝑛0) = 𝒯0. 

6.3.3. Theorem  

For a collection of T-SFNs 𝒯𝑗  for all 𝑗 = 1,2,3, … , 𝑘 and 𝒯𝐿 = min
𝑗
𝒯𝑗, and 𝒯𝑈 =

max
𝑗
𝒯𝑗 . Then 

𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝐸𝑊𝐺𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

Proof: As 𝒯𝐿 = min
𝑗
𝒯𝑗 = (min𝑚𝑗 , min 𝑖𝑗 , max 𝑛𝑗) and 𝒯𝑈 = max

𝑗
𝒯𝑗 =

(max𝑚𝑗 , max 𝑖𝑗 , min 𝑛𝑗). Then  

min𝑚𝑗 ≤ 𝑚𝑗 ≤ max𝑚𝑗 

min𝑚𝑗
𝑡 ≤ 𝑚𝑗

𝑡 ≤ max𝑚𝑗
𝑡 
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2min(𝑚𝑗
𝑡)
𝑤𝑗
≤ 2∏(𝑚𝑗

𝑡)
𝑤𝑗

𝑘

𝑗=1

≤ 2max(𝑚𝑗
𝑡)
𝑤𝑗

 

⇒ √
2min(𝑚𝑗

𝑡)
𝑤𝑗

(2 − min𝑚𝑗
𝑡)
𝑤𝑗
+min(𝑚𝑗

𝑡)
𝑤𝑗

𝑡

≤ √
2∏ (𝑚𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (2 −𝑚𝑗
𝑡)
𝑤𝑗
+∏ (𝑚𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≤ √
2max(𝑚𝑗

𝑡)
𝑤𝑗

(2 − max𝑚𝑗
𝑡)
𝑤𝑗
+max(𝑚𝑗

𝑡)
𝑤𝑗

𝑡

 

Now, min 𝑖𝑗 ≤ 𝑖𝑗 ≤ max 𝑖𝑗 

min 𝑖𝑗
𝑡 ≤ 𝑖𝑗

𝑡 ≤ max 𝑖𝑗
𝑡 

2min(𝑖𝑗
𝑡)
𝑤𝑗
≤ 2∏(𝑖𝑗

𝑡)
𝑤𝑗

𝑘

𝑗=1

≤ 2max(𝑖𝑗
𝑡)
𝑤𝑗

 

⇒ √
2min(𝑖𝑗

𝑡)
𝑤𝑗

(2 − min 𝑖𝑗
𝑡)
𝑤𝑗
+min(𝑖𝑗

𝑡)
𝑤𝑗

𝑡

≤ √
2∏ (𝑖𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (2 − 𝑖𝑗
𝑡)
𝑤𝑗
+∏ (𝑖𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≤ √
2max(𝑖𝑗

𝑡)
𝑤𝑗

(2 −max 𝑖𝑗
𝑡)
𝑤𝑗
+max(𝑖𝑗

𝑡)
𝑤𝑗

𝑡

 

Similarly, max 𝑛𝑗 ≥ 𝑛𝑗 ≥ max𝑛𝑗  

max𝑛𝑗
𝑡 ≥ 𝑛𝑗

𝑡 ≥ min𝑛𝑗
𝑡 

1 + max𝑛𝑗
𝑡 ≥ 1 + 𝑛𝑗

𝑡 ≥ 1 +min𝑛𝑗
𝑡 

(1 + max𝑛𝑗
𝑡)
𝑤𝑗
≥∏(1 + 𝑛𝑗

𝑡)
𝑤𝑗

𝑘

𝑗=1

≥ (1 +min𝑛𝑗
𝑡)
𝑤𝑗
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⇒ √
(1 +max 𝑛𝑗

𝑡)
𝑤𝑗
− (1 −max 𝑛𝑗

𝑡)
𝑤𝑗

(1 + max 𝑛𝑗
𝑡)
𝑤𝑗
+ (1 −max 𝑛𝑗

𝑡)
𝑤𝑗

𝑡

≥ √
∏ (1 + 𝑛𝑗

𝑡)
𝑤𝑗
−𝑘

𝑗=1 ∏ (1 − 𝑛𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1

∏ (1 + 𝑛𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1 +∏ (1 − 𝑛𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1

𝑡

≥ √
(1 +min 𝑛𝑗

𝑡)
𝑤𝑗
− (1 −min 𝑛𝑗

𝑡)
𝑤𝑗

(1 +min 𝑛𝑗
𝑡)
𝑤𝑗
+ (1 −min 𝑛𝑗

𝑡)
𝑤𝑗

𝑡

 

⇒ 𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝐸𝑊𝐺𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

6.3.4. Theorem  

For any two T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) such that 𝒯𝑗 ≤ 𝒯𝑗
′ for all 𝑗 =

1,2,3, … , 𝑘. Then 

𝑇 − 𝑆𝐹𝐸𝑊𝐺𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝐸𝑊𝐺𝑤(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

Proof: As 𝒯𝑗 ≤ 𝒯𝑗
′, which means 𝑚𝑗 ≤ 𝑚𝑗

′, 𝑖𝑗 ≤ 𝑖𝑗
′ and 𝑛𝑗 ≥ 𝑛𝑗

′. 

As, 𝑚𝑗 ≤ 𝑚𝑗
′   ⇒  𝑚𝑗

𝑡 ≤ (𝑚𝑗
′)
𝑡
 

⇒ 2∏(𝑚𝑗
𝑡)
𝑤𝑗

𝑘

𝑗=1

≤ 2∏((𝑚𝑗
′)
𝑡
)
𝑤𝑗

𝑘

𝑗=1

 

√
2∏ (𝑚𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (2 −𝑚𝑗
𝑡)
𝑤𝑗
+∏ (𝑚𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≤ √
2∏ ((𝑚𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1

∏ (2 − (𝑚𝑗
′)
𝑡
)
𝑤𝑗
+∏ ((𝑚𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

 

As, 𝑖𝑗 ≤ 𝑖𝑗
′   ⇒  𝑖𝑗

𝑡 ≤ (𝑖𝑗
′)
𝑡
 

⇒ 2∏(𝑖𝑗
𝑡)
𝑤𝑗

𝑘

𝑗=1

≤ 2∏((𝑖𝑗
′)
𝑡
)
𝑤𝑗

𝑘

𝑗=1

 

√
2∏ (𝑖𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (2 − 𝑖𝑗
𝑡)
𝑤𝑗
+∏ (𝑖𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≤ √
2∏ ((𝑖𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1

∏ (2 − (𝑖𝑗
′)
𝑡
)
𝑤𝑗
+∏ ((𝑖𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

 

Similarly, 𝑛𝑗 ≥ 𝑛𝑗
′   ⇒  𝑛𝑗

𝑡 ≥ (𝑛𝑗
′)
𝑡
 

⇒ 1 + 𝑛𝑗
𝑡 ≥ 1 + (𝑛𝑗

′)
𝑡
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∏(1+ 𝑛𝑗
𝑡)
𝑤𝑗

𝑘

𝑗=1

≥∏(1 + (𝑛𝑗
′)
𝑡
)
𝑤𝑗

𝑘

𝑗=1

 

√
∏ (1 + 𝑛𝑗

𝑡)
𝑤𝑗
−𝑘

𝑗=1 ∏ (1 − 𝑛𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1

∏ (1 + 𝑛𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1 +∏ (1 − 𝑛𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1

𝑡

≥ √
∏ (1 + (𝑛𝑗

′)
𝑡
)
𝑤𝑗
−𝑘

𝑗=1 ∏ (1 − (𝑛𝑗
′)
𝑡
)
𝑤𝑗𝑘

𝑗=1

∏ (1 + (𝑛𝑗
′)
𝑡
)
𝑤𝑗𝑘

𝑗=1 +∏ (1 − (𝑛𝑗
′)
𝑡
)
𝑤𝑗𝑘

𝑗=1

𝑡

 

⇒ 𝑇 − 𝑆𝐹𝐸𝑊𝐺𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝐸𝑊𝐺𝑤(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

6.3.5. Definition  

For any collection 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) for all 𝑗 = 1,2,3, … , 𝑘 of T-SFNs. The mapping  

𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐺𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) =⊗𝐸𝑗=1
𝑘 𝒯

𝜎(𝑗)

𝜔𝑗
 

=

(

 
 
 
 √

2∏ (𝑚𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1

∏ (2 −𝑚𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1 +∏ (𝑚𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1

𝑡

, √
2∏ (𝑖𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

∏ (2 − 𝑖𝜎(𝑗)
𝑡 )

𝜔𝑗
+∏ (𝑖𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

,

 √
∏ (1 + 𝑛𝜎(𝑗)

𝑡 )𝜔𝑗 −∏ (1 − 𝑛𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + 𝑛𝜎(𝑗)
𝑡 )𝜔𝑗 +∏ (1 − 𝑛𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

)

 
 
 
 

 

where 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑘)
𝑇 is the associated WV of 𝒯𝑗  for all 𝑗 = 1,2,3, … , 𝑘 such that 

𝜔𝑗 ∈ (0,1] and ∑ 𝜔𝑗
𝑘
𝑗=1 = 1 and 𝜎(𝑗) is permutation with respect to score value such 

that 𝑆𝐶(𝒯𝜎(𝑗−1)) ≥ 𝑆𝐶(𝒯𝜎(𝑗)). 

In next theorems, idempotency, boundedness, and monotonicity properties are proved 

for the above operator. 

6.3.6. Theorem  

If 𝒯𝑗 = 𝒯0  for all 𝑗 = 1,2,3, … , 𝑘, then 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐺𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0. 

6.3.7. Theorem  

For a collection of T-SFNs 𝒯𝑗  for all 𝑗 = 1,2,3, … , 𝑘 and 𝒯𝐿 = min
𝑗
𝒯𝑗, and 𝒯𝑈 =

max
𝑗
𝒯𝑗 . Then 
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𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐺𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

6.3.8. Theorem  

For any two T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) such that 𝒯𝑗 ≤ 𝒯𝑗
′ for all 𝑗 =

1,2,3, … , 𝑘. Then  

𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐺𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐺𝜔(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

6.3.9. Definition  

For any collection 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) for all 𝑗 = 1,2,3, … , 𝑘 of T-SFNs. The mapping  

𝑇 − 𝑆𝐹𝐸𝐻𝐺𝑤,𝜔(�̃�1, �̃�2, … , �̃�𝑘) =⊗𝐸𝑗=1
𝑘 �̃�

𝜎(𝑗)

𝜔𝑗
 

=

(

 
 
 
 √

2∏ (�̃�𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1

∏ (2 − �̃�𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1 +∏ (�̃�𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1

𝑡

, √
2∏ (𝑖̃𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

∏ (2 − 𝑖̃𝜎(𝑗)
𝑡 )

𝜔𝑗
+∏ (𝑖̃𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

,

 √
∏ (1 + �̃�𝜎(𝑗)

𝑡 )𝜔𝑗 −∏ (1 − �̃�𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + �̃�𝜎(𝑗)
𝑡 )𝜔𝑗 +∏ (1 − �̃�𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

)

 
 
 
 

 

is called T-SFEHG operator, where �̃�𝑗 = 𝒯
𝑗

𝑘𝑤𝑗
. Let 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑘)

𝑇 is the WV 

and 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑘)
𝑇 is the associated WV of �̃�𝑗  with 𝑤𝑗 , 𝜔𝑗 ∈ (0,1] and 

∑ 𝜔𝑗 = 1𝑘
𝑗=1 , ∑ 𝑤𝑗 = 1𝑘

𝑗=1 . 

T-SFEHG operator first weights the T-spherical fuzzy values then rearrange them and 

measure the ordered T-spherical fuzzy values, so T-SFEHG operator is generalization 

of T-SFEWG and T-SFEOWG operator. For this reason, T-SFEHG operator will also 

be idempotent, monotone, and bounded. 

6.4. An approach to MADM with T-spherical fuzzy information 

           Let 𝐷 = {𝑑1, 𝑑2, 𝑑3, … 𝑑𝑙} be a set of alternatives and 𝐸 = {𝑒1, 𝑒2, 𝑒3, … 𝑒𝑘} be a 

set of attributes. The selection of best alternative is carried out using the aggregation 

tools proposed under the WV 𝑤 = {𝑤1, 𝑤2, 𝑤3, …𝑤𝑙} such that 𝑤𝑗 ∈ (0,1] and 

∑ 𝑤𝑗
𝑙
𝑗=1 = 1. The WV is chosen to weigh the arguments of decision makers. The 

detailed steps of decision making process are illustrated as follows. 
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Step 1. Find a value of 𝑡 for which the values lie in T-SF information means that find 

the exponent 𝑡 (which is finite natural number) such that the sum of the 𝑡𝑡ℎ power of 

all 𝑚, 𝑖 and 𝑛 values belong to [0, 1]. 

Step 2. Find �̃�𝑗 = 𝑘𝑤𝑗𝒯𝑗 (or �̃�𝑗 = 𝒯
𝑗

𝑘𝑤𝑗
). 

Step 3.  Find scores values and by using these score values we reorder them in a 

descending order. 

Step 4. Aggregate these ordered values using T-SFEHA (or T-SFEHG) operators. 

Step 5. By finding scores we choose the best option. 

The flow chart of a proposed algorithm is given below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Identify the alternatives and 

attributes 

Provide values to each alternative 

by considering the attributes 

Find the value of "𝑡" for which the 

given data lie in T-spherical fuzzy 

environment 

Find �̃�𝑗 = 𝑘𝑤𝑗𝒯𝑗 (or �̃�𝑗 = 𝒯
𝑗

𝑘𝑤𝑗) 

Find the score values and reorder 

the aggregated values in a 

descending order 

Aggregate the order values using 

T-SFEHA (or T-SFEHG) operators 

Find the score values and choose 

the best option 

Figure 2 Flow Chart 
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6.4.1. Example  

A company wants to extend his business and board of governors decided to invest their 

money in one of the best options from three business options 

i. 𝑏1: Food company 

ii. 𝑏2: Mobile phone company 

iii. 𝑏3: Construction company 

They assess the given companies on the basis of the following attributes. 

i. 𝐺1: Growth analysis 

ii. 𝐺2: Risk analysis 

iii. 𝐺3: Environmental impact analysis 

iv. 𝐺4: Development of society 

v. 𝐺5: Social-political impact 

The experts evaluate the given attributes under the consideration of given attributes 

as follows in Table 53: 

Table 53 Decision Matrix 

 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 

𝑏1 (0.5, 0.3,0.4) (0.9, 0.4,0.5) (0.7, 0.5,0.2) (0.8, 0.5,0.5) (0.2, 0.2,0.8) 

𝑏2 (0.2, 0.4,0.7) (0.4, 0.1,0.2) (0.9, 0.2,0.5) (0.3, 0.2,0.6) (0.5, 0.3,0.7) 

𝑏3 (0.6, 0.2,0.4) (0.3, 0.5,0.7) (0.7, 0.2,0.4) (0.5, 0.1,0.2) (0.4, 0.3,0.5) 

Step 1: As, 0.9 + 0.4 + 0.5 = 1.8 ∉ [0,1] , 0.9² + 0.4² + 0.5² = 1.22 ∉ [0,1] but 

0.9³ + 0.4³ + 0.5³ = 0.918 ∈ [0,1]. Similarly, sum of cube of all other values lie in 

[0, 1]. So for 𝑡 = 3 all values in Table 53 are T-SFNs. This clearly indicates that the 

given information cannot be handled by the existing AOs of IFSs, PyFSs, PFSs as well 

as SFSs.  

Step 2: By taking the WV w= (0.25, 0.20, 0.15, 0.18,0.22)𝑇, we find T-SFEWA 

values as 
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(

 
 
 
 
 
 
 √

(1 + 0.53)5×0.25 − (1 − 0.53)5×0.25

(1 + 0.53)5×0.25 + (1 − 0.53)5×0.25

3

= 0.5381,

√
2 × (0.33)5×0.25

(2 − 0.33)5×0.25 + (0.33)5×0.25

3

= 0.2104,

√
2 × (0.43)5×0.25

(2 − 0.43)5×0.25 + (0.43)5×0.25

3

= 0.3029
)

 
 
 
 
 
 
 

 

Similarly, we can find all other values as follow in Table 54 

Table 54 T-SFEWA values 

 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 

𝑏1 
(
0.5381,
0.2104,
0.3029

) (
0.9,
0.4,
0.5

) (
0.6398,
0.6144,
0.3155

) (
0.7770,
0.5437,
0.5437

) (
0.2064,
0.1665,
0.7788

) 

𝑏2 
(
0.2154,
0.3029,
0.6258

) (
0.4,
0.1,
0.2

) (
0.8440,
0.3155,
0.6144

) (
0.2896,
0.2401,
0.6384

) (
0.5160,
0.2604,
0.6698

) 

𝑏3 
(
0.6444,
0.1264,
0.3029

) (
0.3,
0.5,
0.7

) (
0.6398,
0.3155,
0.5240

) (
0.4829,
0.1288,
0.2401

) (
0.4129,
0.2604,
0.4591

) 

Step 3: Scores of each attribute of all alternatives using 𝑆𝐶(𝒯) = 𝑚3(𝑥) − 𝑛3(𝑥) will 

be 

Table 55 Score Values 

 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 

𝑏1 0.1280 0.6040 0.2305 0.3083 −0.4636 

𝑏2 −0.2350 0.0560 0.3692 −0.2359 −0.1632 

𝑏3 0.2398 −0.3160 0.1180 0.0988 −0.0264 

Based on above score analysis, we order the values of Table 56 as: 

Table 56 Ordered T-SFEWA values 

 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 
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𝑏𝜎(1) 
(
0.9,
0.4,
0.5

) (
0.7770,
0.5437,
0.5437

) (
0.6398,
0.6144,
0.3155

) (
0.5381,
0.2104,
0.3029

) (
0.2064,
0.1665,
0.7788

) 

𝑏𝜎(2) 
(
0.8440,
0.3155,
0.6144

) (
0.4,
0.1,
0.2

) (
0.5160,
0.2604,
0.6698

) (
0.2154,
0.3029,
0.6258

) (
0.2896,
0.2401,
0.6384

) 

𝑏𝜎(3) 
(
0.6444,
0.1264,
0.3029

) (
0.6398,
0.3155,
0.5240

) (
0.4829,
0.1288,
0.2401

) (
0.4129,
0.2604,
0.4591

) (
0.3,
0.5,
0.7

) 

Step 4: With the help of normal distribution-based method, we get 𝜔 =

(0.112,0.236,0.304,0.236,0.112)𝑇 and find T-SFEHA values as, 

(

 
 
 
 
 
 

√
  
  
  
  
  
  
  
  
  
(
(1 + 0.93)0.112 × (1 + 0.77703)0.236 × (1 + 0.63983)0.304

× (1 + 0.53813)0.236 × (1 + 0.20643)0.112
) −

(
(1 − 0.93)0.112 × (1 − 0.77703)0.236 × (1 − 0.63983)0.304

× (1 − 0.53813)0.236 × (1 − 0.20643)0.112
)

(
(1 + 0.93)0.112 × (1 + 0.77703)0.236 × (1 + 0.63983)0.304

× (1 + 0.53813)0.236 × (1 + 0.20643)0.112
) +

(
(1 − 0.93)0.112 × (1 − 0.77703)0.236 × (1 − 0.63983)0.304

× (1 − 0.53813)0.236 × (1 − 0.20643)0.112
)

3

)

 
 
 
 
 
 

= 0.6914 

Similarly, all other values can also be find 

�̃�𝜎(1) = (0.6914, 0.3859,0.4178) 

�̃�𝜎(2) = (0.5182, 0.2182,0.4960) 

�̃�𝜎(3) = (0.5277, 0.2188,0.3922) 

Step 5: Now we have to find the score values  

𝑆𝐶(�̃�𝜎(1)) = 0.2576, 𝑆𝐶(�̃�𝜎(2)) = 0.0172, 𝑆𝐶(�̃�𝜎(3)) = 0.0866 

𝑆𝐶(�̃�𝜎(1)) > 𝑆𝐶(�̃�𝜎(3)) > 𝑆𝐶(�̃�𝜎(2)) 

Since the score value of 𝑏1 is highest so Food Company is the best option for 

investment. 

Now, we check their validity by using Einstein hybrid geometric operators. 

By taking WV 𝑤 = (0.25, 0.20, 0.15, 0.18,0.22)𝑇 , find T-SFEWG values as listed in 

Table 57, 
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Table 57 T-SFEWG values 

 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 

𝑏1 
(
0.4032,
0.2104,
0.4308

) (
0.9,
0.4,
0.5

) (
0.7773,
0.6144,
0.1817

) (
0.8211,
0.5437,
0.4829

) (
0.1665,
0.1665,
0.8206

) 

𝑏2 
(
0.1264,
0.3029,
0.7485

) (
0.4,
0.1,
0.2

) (
0.9262,
0.3155,
0.4546

) (
0.3453,
0.2401,
0.5799

) (
0.4591,
0.2604,
0.7206

) 

𝑏3 
(
0.5108,
0.1264,
0.4308

) (
0.3,
0.5,
0.7

) (
0.7773,
0.3155,
0.3635

) (
0.5437,
0.1288,
0.1931

) (
0.3581,
0.2604,
0.5160

) 

Scores of each attribute of all alternatives will be as in Table 58 

Table 58 Score Values 

 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 

𝑏1 −0.0144 0.6040 0.4636 0.4411 −0.5479 

𝑏2 −0.4173 0.0560 0.7005 −0.1538 −0.2774 

𝑏3 0.0534 −0.3160 0.4216 0.1536 −0.0914 

Based on above score analysis, we find the ordered values of Table 59 as: 

Table 59 Ordered T-SFEWG values 

 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 

𝑏𝜎(1) 
(
0.9,
0.4,
0.5

) (
0.7773,
0.6144,
0.1817

) (
0.8211,
0.5437,
0.4829

) (
0.4032,
0.2104,
0.4308

) (
0.1665,
0.1665,
0.8206

) 

𝑏𝜎(2) 
(
0.9262,
0.3155,
0.4546

) (
0.4,
0.1,
0.2

) (
0.3453,
0.2401,
0.5799

) (
0.4591,
0.2604,
0.7206

) (
0.1264,
0.3029,
0.7485

) 

𝑏𝜎(3) 
(
0.7773,
0.3155,
0.3635

) (
0.5437,
0.1288,
0.1931

) (
0.5108,
0.1264,
0.4308

) (
0.3581,
0.2604,
0.5160

) (
0.3,
0.5,
0.7

) 

With the help of normal distribution-based method, we get 𝜔 =

(0.112,0.236,0.304,0.236,0.112)𝑇 and find T-SFEHG values as, 

�̃�𝜎(1) = (0.6121, 0.8737,0.8837) 
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�̃�𝜎(2) = (0.4325, 0.8056,0.9297) 

�̃�𝜎(3) = (0.5078, 0.8111,0.8663) 

Step 5: Now we have to find the score values 

𝑆𝐶(�̃�𝜎(1)) = −0.4608, 𝑆𝐶(�̃�𝜎(2)) = −0.7227, 𝑆𝐶(�̃�𝜎(3)) = −0.5192 

𝑆𝐶(�̃�𝜎(1)) > 𝑆𝐶(�̃�𝜎(3)) > 𝑆𝐶(�̃�𝜎(2)) 

Here again the score value of alternative 𝑏1 is high. So, Food Company is the best 

option for investment. Here it is important to discuss that the information given in Table 

53 is purely T-SFNs; therefore, it cannot be aggregated using the existing approaches 

of IFSs [94, 95], PyFSs [96, 97], q-ROPFSs [79] as well as PFSs [82, 84]. On the other 

hand, the work proposed in this manuscript can deal with all the existing problems that 

lie in the environment of IFSs, PyFSs, q-ROPFSs and PFSs which is clearly 

demonstrated in Section 6.5.  

6.5. Comparative Analysis 

 In this section, a comparative study is done in which it is shown that the 

proposed operators can be reduced to existing operators under some condition which 

proves the superiority of proposed operators. An example is taken from [94] and it is 

proved that the proposed operators provide the same result. 

 Consider the T-SFEHA defined as  

𝑻 − 𝑺𝑭𝑬𝑯𝑨𝒘,𝝎(�̃�𝟏, �̃�𝟐, … , �̃�𝒌)

=

(

 
 
 
 
 
 
 
 
 
 √

∏ (𝟏 + �̃�𝝈(𝒋)
𝒕 )

𝝎𝒋
−𝒌

𝒋=𝟏 ∏ (𝟏 − �̃�𝝈(𝒋)
𝒕 )

𝝎𝒋𝒌
𝒋=𝟏

∏ (𝟏 + �̃�𝝈(𝒋)
𝒕 )

𝝎𝒋𝒌
𝒋=𝟏 +∏ (𝟏 − �̃�𝝈(𝒋)

𝒕 )
𝝎𝒋𝒌

𝒋=𝟏

𝒕

,

√
𝟐∏ (�̃�𝝈(𝒋)

𝒕 )𝝎𝒋𝒌
𝒋=𝟏

∏ (𝟐 − �̃�𝝈(𝒋)
𝒕 )

𝝎𝒋
+∏ (�̃�𝝈(𝒋)

𝒕 )
𝝎𝒋𝒌

𝒋=𝟏
𝒌
𝒋=𝟏

𝒕

,

 √
𝟐∏ (�̃�𝝈(𝒋)

𝒕 )𝝎𝒋𝒌
𝒋=𝟏

∏ (𝟐 − �̃�𝝈(𝒋)
𝒕 )

𝝎𝒋
+∏ (�̃�𝝈(𝒋)

𝒕 )
𝝎𝒋𝒌

𝒋=𝟏
𝒌
𝒋=𝟏

𝒕

)

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

(6.5.1) 
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1. For 𝑡 = 2 the equation 6.5.1 reduces to spherical fuzzy Einstein hybrid averaging 

operators (SFEHA operator) i.e. 

𝑆𝐹𝐸𝐻𝐴𝑤,𝜔(�̃�1, �̃�2, … , �̃�𝑘)

=

(

 
 
 
 √

∏ (1 + �̃�𝜎(𝑗)
2 )

𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗)
2 )

𝜔𝑗𝑘
𝑗=1

∏ (1 + �̃�𝜎(𝑗)
2 )

𝜔𝑗𝑘
𝑗=1 +∏ (1 − �̃�𝜎(𝑗)

2 )
𝜔𝑗𝑘

𝑗=1

, √
2∏ (𝑖̃𝜎(𝑗)

2 )𝜔𝑗𝑘
𝑗=1

∏ (2 − 𝑖̃𝜎(𝑗)
2 )

𝜔𝑗
+∏ (𝑖̃𝜎(𝑗)

2 )
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

,

 √
2∏ (�̃�𝜎(𝑗)

2 )𝜔𝑗𝑘
𝑗=1

∏ (2 − �̃�𝜎(𝑗)
2 )

𝜔𝑗
+∏ (�̃�𝜎(𝑗)

2 )
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1 )

 
 
 
 

 

2. For 𝑡 = 1 the equation 6.5.1 reduces to picture fuzzy Einstein hybrid averaging 

operators (PFEHA operator) i.e. 

𝑃𝐹𝐸𝐻𝐴𝑤,𝜔(�̃�1, �̃�2, … , �̃�𝑘)

=

(

  
 

∏ (1 + �̃�𝜎(𝑗))
𝜔𝑗 −𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1

∏ (1 + �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1 +∏ (1 − �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1

,
2∏ (𝑖̃𝜎(𝑗))

𝜔𝑗𝑘
𝑗=1

∏ (2 − 𝑖̃𝜎(𝑗))
𝜔𝑗
+∏ (𝑖̃𝜎(𝑗))

𝜔𝑗𝑘
𝑗=1

𝑘
𝑗=1

,

 
2∏ (�̃�𝜎(𝑗))

𝜔𝑗𝑘
𝑗=1

∏ (2 − �̃�𝜎(𝑗))
𝜔𝑗
+∏ (�̃�𝜎(𝑗))

𝜔𝑗𝑘
𝑗=1

𝑘
𝑗=1 )

  
 

 

3. For 𝑖 = 0 the equation 6.5.1 reduces to q-ROPF Einstein hybrid averaging operators 

(q-ROPFEHA operator) i.e. 

𝑞 − 𝑅𝑂𝑃𝐹𝐸𝐻𝐴𝑤,𝜔(�̃�1, �̃�2, … , �̃�𝑘)

=

(

 √
∏ (1 + �̃�𝜎(𝑗)

𝑡 )
𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1

∏ (1 + �̃�𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1 +∏ (1 − �̃�𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1

𝑡

, √
2∏ (�̃�𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

∏ (2 − �̃�𝜎(𝑗)
𝑡 )

𝜔𝑗
+∏ (�̃�𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

 )

  

4. For 𝑡 = 2 and 𝑖 = 0 the equation 6.5.1 reduces to PyF Einstein hybrid averaging 

operators (PyFEHA operator) i.e. 

𝑃𝑦𝐹𝐸𝐻𝐴𝑤,𝜔(�̃�1, �̃�2, … , �̃�𝑘)

=

(

 √
∏ (1 + �̃�𝜎(𝑗)

2 )
𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗)
2 )

𝜔𝑗𝑘
𝑗=1

∏ (1 + �̃�𝜎(𝑗)
2 )

𝜔𝑗𝑘
𝑗=1 +∏ (1 − �̃�𝜎(𝑗)

2 )
𝜔𝑗𝑘

𝑗=1

, √
2∏ (�̃�𝜎(𝑗)

2 )𝜔𝑗𝑘
𝑗=1

∏ (2 − �̃�𝜎(𝑗)
2 )

𝜔𝑗
+∏ (�̃�𝜎(𝑗)

2 )
𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

 )

  

5. For 𝑡 = 1 and 𝑖 = 0 the equation 6.5.1 reduces to IF Einstein hybrid averaging 

operators (IFEHA operator) i.e. 
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𝐼𝐹𝐸𝐻𝐴𝑤,𝜔(�̃�1, �̃�2, … , �̃�𝑘)

= (
∏ (1 + �̃�𝜎(𝑗))

𝜔𝑗 −𝑘
𝑗=1 ∏ (1 − �̃�𝜎(𝑗))

𝜔𝑗𝑘
𝑗=1

∏ (1 + �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1 +∏ (1 − �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1

,
2∏ (�̃�𝜎(𝑗))

𝜔𝑗𝑘
𝑗=1

∏ (2 − �̃�𝜎(𝑗))
𝜔𝑗
+∏ (�̃�𝜎(𝑗))

𝜔𝑗𝑘
𝑗=1

𝑘
𝑗=1 

) 

Similarly, we can reduce T-SFEWA operator, T-SFEOWA operator, T-SFEWG 

operator, T-SFEOWG operator and T-SFEHG operators.  

6.5.1. Example  

Consider a decision matrix having five alternatives {𝒜1, 𝒜2, 𝒜3, 𝒜4, 𝒜5} and evaluate 

under four attributes {𝐺1, 𝐺2, 𝐺3, 𝐺4} 

The experts evaluate the alternatives on the basis of given attributes as 

Table 60 Decision Matrix 

 𝐺1 𝐺2 𝐺3 𝐺4 

𝒜1 (0.4,0.5) (0.5,0.4) (0.2,0.7) (0.2,0.5) 

𝒜2 (0.6,0.4) (0.6,0.3) (0.6,0.3) (0.3,0.6) 

𝒜3 (0.5,0.5) (0.4,0.5) (0.4,0.4) (0.5,0.4) 

𝒜4 (0.7,0.2) (0.5,0.4) (0.2,0.5) (0.3,0.7) 

𝒜5 (0.5,0.3) (0.3,0.4) (0.6,0.2) (0.4,0.4) 

Above decision matrix can be written in T-SFSs environment as in Table 61 

Table 61 Decision Matrix in the form of T-SFNs 

 𝐺1 𝐺2 𝐺3 𝐺4 

𝒜1 (0.4,0,0.5) (0.5,0,0.4) (0.2,0,0.7) (0.2,0,0.5) 

𝒜2 (0.6,0,0.4) (0.6,0,0.3) (0.6,0,0.3) (0.3,0,0.6) 

𝒜3 (0.5,0,0.5) (0.4,0,0.5) (0.4,0,0.4) (0.5,0,0.4) 

𝒜4 (0.7,0,0.2) (0.5,0,0.4) (0.2,0,0.5) (0.3,0,0.7) 

𝒜5 (0.5,0,0.3) (0.3,0,0.4) (0.6,0,0.2) (0.4,0,0.4) 

With a WV 𝜔 = (0.2,0.1, 0.3,0.4)𝑇. Then by using eq. (1) we get 
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Table 62 T-SFEWA values 

 𝐺1 𝐺2 𝐺3 𝐺4 

𝒜1 (0.3265,0,0.5109) (0.2163,0,0.4814) (0.2386,0,0.7406) (0.3135,0,0.4458) 

𝒜2 (0.5039,0,0.4319) (0.2704,0,0.4396) (0.6814,0,0.2548) (0.4584,0,0.6213) 

𝒜3 (0.4132,0,0.5109) (0.1679,0,0.5171) (0.4687,0,0.3659) (0.7059,0,0.2975) 

𝒜4 (0.6004,0,0.2561) (0.2163,0,0.4814) (0.2386,0,0.4850) (0.4584,0,0.8210) 

𝒜5 (0.4132,0,0.3478) (0.1232,0,0.4814) (0.6814,0,0.1535) (0.5901,0,0.2975) 

Then by using score function we order them as in Table 63  

Table 63 Ordered T-SFEWA values 

 𝐺1 𝐺2 𝐺3 𝐺4 

𝒜𝜎(1) (
0.3135,0,
0.4458

) (
0.3265,0,
0.5109

) (
0.2163,0,
0.4814

) (
0.2386,0,
0.7406

) 

𝒜𝜎(2) (
0.6814,0,
0.2548

) (
0.5039,0,
0.4319

) (
0.4584,0,
0.6213

) (
0.2704,0,
0.4396

) 

𝒜𝜎(3) (
0.7059,0,
0.2975

) (
0.4687,0,
0.3659

) (
0.4132,0,
0.5109

) (
0.1679,0,
0.5171

) 

𝒜𝜎(4) (
0.6004,0,
0.2561

) (
0.2386,0,
0.4850

) (
0.2163,0,
0.4814

) (
0.4584,0,
0.8210

) 

𝒜𝜎(5) (
0.6814,0,
0.1535

) (
0.5901,0,
0.2975

) (
0.4132,0,
0.3478

) (
0.1232,0,
0.4814

) 

By using eq. (3), we get  

�̃�𝜎(1) = (0.2434,0,0.5477) 

�̃�𝜎(2) = (0.4534,0,0.4360) 

�̃�𝜎(3) = (0.4273,0,0.4119) 

�̃�𝜎(4) = (0.3109,0,0.5072) 

�̃�𝜎(5) = (0.4440,0,0.2941) 

The score values of aggregated values will be 
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𝑆𝐶(�̃�𝜎(1)) = −0.3043,  𝑆𝐶(�̃�𝜎(2)) = 0.0174, 𝑆𝐶(�̃�𝜎(3)) = 0.0154, 𝑆𝐶(�̃�𝜎(4)) =

−0.1964, 𝑆𝐶(�̃�𝜎(5)) = 0.1499. 

This shows that 𝐴5 is most desirable alternative. Similarly, the above example can be 

aggregated by using T-SFEHG operator. 

6.5.2. Example  

Consider the information is given in T-spherical fuzzy environment for 𝑡 = 3 as in 

Table 64: 

Table 64 Decision Matrix 

 𝐺1 𝐺2 𝐺3 𝐺4 𝐺5 

𝒜1 (0.5, 0.3,0.4) (0.9, 0.4,0.5) (0.7, 0.5,0.2) (0.8, 0.5,0.5) (0.2, 0.2,0.8) 

𝒜2 (0.2, 0.4,0.7) (0.4, 0.1,0.2) (0.9, 0.2,0.5) (0.3, 0.2,0.6) (0.5, 0.3,0.7) 

𝒜3 (0.6, 0.2,0.4) (0.3, 0.5,0.7) (0.7, 0.2,0.4) (0.5, 0.1,0.2) (0.4, 0.3,0.5) 

Then some aggregation operators e. g. T-spherical fuzzy weighted averaging (T-

SFWA) operators, T-spherical fuzzy hybrid geometric (T-SFHG) operators, T-

spherical fuzzy weighted interactive averaging (T-SFWIA), T-spherical fuzzy hybrid 

interactive geometric (T-SFHIG) operators, T-SFEWA operators and T-SFEWG 

operators are used to solve given data. The aggregated values will be as in Table 65: 

Table 65 Aggregated values of Table 64 

 T-SFWA 

operators  

T-SFHG 

operators 

[10] 

T-SFWIA 

operators  

T-SFHIG 

operators  

T-SFEWA 

operators 

T-SFEWG 

operators 

𝒜1 
(
0.7284,
 0.3440,
0.4570

) (
0.5855,
 0.3824,
 0.5216

) (
0.7284,
0.3995,
0.6010

) (
0.9132,
 0.7872,
 0.5216

) (
0.6914,
 0.3859,
0.4178

) (
0.6121,
 0.8737,
0.8837

) 

𝒜2 
(
0.6015,
0.2264,
0.5039

) (
0.4723,
0.2102,
0.6030

) (
0.6015,
 0.2927,
0.6121

) (
0.9111,
0.8905,
0.6030

) (
0.5182,
0.2182,
0.4960

) (
0.4325,
0.8056,
0.9297

) 

𝒜3 
(
0.5367,
0.2318,
0.4148

)  (
0.5164,
0.1959,
0.5770

) (
0.5367,
0.3286,
0.5440

)  (
0.9579,
0.8506,
0.5770

) (
0.5277,
0.2188,
0.3922

) (
0.5078,
0.8111,
0.8663

) 
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The scores of the aggregated data obtained in Table 65 are given in Table 66 as follows: 

Table 66 Score Values 

 T-SFWA 

operators  

T-SFHG 

operators 

[16] 

T-SFWIA 

operators  

T-SFHIG 

operators  

T-SFEWA 

operators 

T-

SFEWG 

operators 

𝒜1 0.2909 0.0588 0.1693 0.6196 0.2576 −0.4608 

𝒜2 0.0897 −0.1140 −0.0118 0.5371 0.0172 −0.7227 

𝒜3 0.0832  −0.0544 −0.0064  0.6868 0.0866 −0.5192 

The geometrical comparison of the score values obtained using different aggregation 

techniques is depicted in Figure 3 where the blue stars denote the score values of the 

𝐴1 using different aggregation operators while the orange and grey stars denote the 

score values of the alternatives 𝐴2 and 𝐴3 respectively.   

 

Figure 3 (Score values of alternatives using different aggregation operators) 

The demonstration of the ranking results observed in Figure 3 are described in Table 

67. 

Table 67 Rankings 

Aggregation Operators  Reference Rankings 

T-SFWA operators Chapter 4  𝒜1 > 𝒜2 > 𝒜3 
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T-SFHG operators [16]  𝒜1 > 𝒜3 > 𝒜2 

T-SFWIA operators Chapter 4  𝒜1 > 𝒜3 > 𝒜2 

T-SFHIG operators Chapter 3  𝒜3 > 𝒜1 > 𝒜2 

T-SFEWA operators This Chapter 𝒜1 > 𝒜3 > 𝒜2 

T-SFEWG operators This Chapter 𝒜1 > 𝒜3 > 𝒜2 

 

6.5.3 Advantages.  

The advantages of proposed work over existing work are discussed in this section. 

The advantages of our work are as follows: 

1. T-SFS is superior to IFS, PyFS, q-ROPFS, PFS and SFS which is claimed and 

proved Example 6.4.1 and 6.5.1. 

2. T-spherical fuzzy Einstein AOs are more flexible than Einstein aggregation 

operators of IFSs, PyFSs and, PFS. This flexibility is shown in Section 6.5., where 

few restrictions on the proposed operator reduce them to Einstein operators of IFSs, 

PyFSs, q-ROPFSs, PFSs, and SFSs. 

Proposed operators can solve all the problems that are discussed in [82, 84, 94-97] but 

the existing operators cannot solve the problems when the information is given in T-

SFNs. 
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Chapter 7 

Some T-spherical fuzzy Einstein interactive aggregation 

operators and their application to selection of photovoltaic 

cells 

In this chapter, some new averaging and geometric operators in the T-SF 

environment are proposed. First new operational laws are defined then on the basis of 

these laws Einstein geometric interaction operators and Einstein averaging interactive 

aggregation operators are proposed. Some basic properties of these operators are also 

discussed. Then proposed operators are applied to the MADM problem to check their 

reliability. The advantages of proposed aggregation operators are also discussed. The 

superiority of proposed operators over existing work is checked with the help of an 

example. 

7.1. Einstein Interaction Operations for T-SFS 

 Existing Einstein operations (Chapter 6) have some limitations that they fail 

under some condition. So, we proposed some new Einstein interaction operations on 

which we define some new aggregation operators. If 𝒯1 = (𝑚1, 𝑖1, 𝑛1) and 𝒯2 =

(𝑚2, 𝑖2, 𝑛2) are two T-SFSs then their Einstein interaction operations are as follows: 

vi). 𝒯1⊗𝐸𝑖 𝒯2 =

(

 
 √

2((1−𝑛1
𝑡−𝑖1

𝑡)(1−𝑛2
𝑡−𝑖2

𝑡)−(1−𝑚1
𝑡−𝑖1

𝑡−𝑛1
𝑡 )(1−𝑚2

𝑡−𝑖2
𝑡−𝑛2

𝑡))

(1+𝑛1
𝑡 )(1+𝑛2

𝑡)+(1−𝑛1
𝑡)(1−𝑛2

𝑡)

𝑡

,

  √
(1+𝑖1

𝑡)(1+𝑖2
𝑡)−(1−𝑖1

𝑡)(1−𝑖2
𝑡)

(1+𝑖1
𝑡)(1+𝑖2

𝑡)+(1−𝑖1
𝑡)(1−𝑖2

𝑡)

𝑡
,   √

(1+𝑛1
𝑡 )(1+𝑛2

𝑡 )−(1−𝑛1
𝑡 )(1−𝑛2

𝑡)

(1+𝑛1
𝑡 )(1+𝑛2

𝑡 )+(1−𝑛1
𝑡 )(1−𝑛2

𝑡)

𝑡

)

 
 

 

vii). 𝒯1⊕𝐸𝑖 𝒯2 =

(

 
 
√
(1+𝑚1

𝑡 )(1+𝑚2
𝑡 )−(1−𝑚1

𝑡 )(1−𝑚2
𝑡 )

(1+𝑚1
𝑡 )(1+𝑚2

𝑡 )+(1−𝑚1
𝑡 )(1−𝑚2

𝑡 )

𝑡
, √

(1+𝑖1
𝑡)(1+𝑖2

𝑡)−(1−𝑖1
𝑡)(1−𝑖2

𝑡)

(1+𝑖1
𝑡)(1+𝑖2

𝑡)+(1−𝑖1
𝑡)(1−𝑖2

𝑡)

𝑡
,

√
2((1−𝑚1

𝑡−𝑖1
𝑡)(1−𝑚2

𝑡−𝑖2
𝑡)−(1−𝑚1

𝑡−𝑖1
𝑡−𝑛1

𝑡)(1−𝑚2
𝑡−𝑖2

𝑡−𝑛2
𝑡 ))

(1+𝑚1
𝑡 )(1+𝑚2

𝑡)+(1−𝑚1
𝑡 )(1−𝑚2

𝑡 )

𝑡

 
)

 
 

 

viii). 𝜏𝒯1 =

(

 
 
 √

(1+𝑚1
𝑡 )
𝜏
−(1−𝑚1

𝑡 )
𝜏

(1+𝑚1
𝑡 )
𝜏
+(1−𝑚1

𝑡 )
𝜏

𝑡

, √
(1+𝑖1

𝑡)
𝜏
−(1−𝑖1

𝑡)
𝜏

(1+𝑚1
𝑡 )
𝜏
+(1−𝑚1

𝑡 )
𝜏

𝑡

,

 √
2((1−𝑚1

𝑡−𝑖1
𝑡)
𝜏
−(1−𝑚1

𝑡−𝑖1
𝑡−𝑛1

𝑡 )
𝜏
)

(1+𝑚1
𝑡 )𝜏+(1−𝑚1

𝑡 )𝜏

𝑡

)

 
 
 

,      𝜏 > 0 
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ix). (𝒯1)
𝜏 =

(

 
 √

2((1−𝑛1
𝑡−𝑖1

𝑡)
𝜏
−(1−𝑚1

𝑡−𝑖1
𝑡−𝑛1

𝑡 )
𝜏
)

(1+𝑛1
𝑡 )
𝜏
+(1−𝑛1

𝑡 )
𝜏

𝑡

,

√
(1+𝑖1

𝑡)𝜏−(1−𝑖1
𝑡)
𝜏

(1+𝑖1
𝑡)𝜏+(1−𝑖1

𝑡)𝜏

𝑡

, √
(1+𝑛1

𝑡 )𝜏−(1−𝑛1
𝑡 )
𝜏

(1+𝑛1
𝑡 )𝜏+(1−𝑛1

𝑡 )𝜏

𝑡

)

 
 
,      𝜏 > 0 

7.1.1. Remarks  

1. The defined operations will reduced to SFSs for 𝑡 = 2. 

2. The defined operations will reduced to PFSs for 𝑡 = 1. 

3. The defined operations will reduced to q-ROFSs for 𝑖 = 0. 

4. The defined operations will reduced to PyFSs for 𝑡 = 2 and 𝑖 = 0. 

5. The defined operations will reduced to IFSs for 𝑡 = 1 and 𝑖 = 0. 

6. The defined operations will reduced to FSs for 𝑡 = 1, 𝑖 = 0 and 𝑛 = 0. 

7.2. T-Spherical Fuzzy Einstein Hybrid Geometric Interaction 

Operators 

In this section, on basis of new proposed Einstein operations we defined 

geometric interaction operator in the environment of T-SFS and some of its basic 

properties are also discussed like monotonicity, boundedness and idempotency. The 

validity of proposed work is checked with the help of an example. 

7.2.1. Definition 

For any collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗)  (𝑗 = 1,2,3, … , 𝑘). The mapping 

𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐺𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) =⊗𝐸𝑖𝑗=1 
𝑘 𝒯

𝑗

𝑤𝑗
 

=

(

 
 
 
 
 
 
 √

2(∏ (1 − 𝑛𝑗
𝑡 − 𝑖𝑗

𝑡)𝑤𝑗 −𝑘
𝑗=1 ∏ (1 −𝑚𝑗

𝑡 − 𝑖𝑗
𝑡 − 𝑛𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1 )

∏ (1 + 𝑛𝑗
𝑡)𝑤𝑗𝑘

𝑗=1 +∏ (1 − 𝑛𝑗
𝑡)𝑤𝑗𝑘

𝑗=1

𝑡

,

 √
∏ (1 + 𝑖𝑗

𝑡)𝑤𝑗 −∏ (1 − 𝑖𝑗
𝑡)𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + 𝑖𝑗
𝑡)𝑤𝑗 +∏ (1 − 𝑖𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

,

 √
∏ (1 + 𝑛𝑗

𝑡)𝑤𝑗 −∏ (1 − 𝑛𝑗
𝑡)𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + 𝑛𝑗
𝑡)𝑤𝑗 +∏ (1 − 𝑛𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

)

 
 
 
 
 
 
 

 

Where 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 is the WV of 𝒯𝑗  with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗

𝑘
𝑗=1 = 1. 

7.2.2. Theorem  

If all  𝒯𝑗 = 𝒯0, then 𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐺𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0. 
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Proof: Let 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) for all 𝑗 then 

𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐺𝑤(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 
 √

2(∏ (1 − 𝑛𝑗
𝑡 − 𝑖𝑗

𝑡)𝑤𝑗 −𝑘
𝑗=1 ∏ (1 −𝑚𝑗

𝑡 − 𝑖𝑗
𝑡 − 𝑛𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1 )

∏ (1 + 𝑛𝑗
𝑡)𝑤𝑗𝑘

𝑗=1 +∏ (1 − 𝑛𝑗
𝑡)𝑤𝑗𝑘

𝑗=1

𝑡

,

 √
∏ (1 + 𝑖𝑗

𝑡)𝑤𝑗 −∏ (1 − 𝑖𝑗
𝑡)𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + 𝑖𝑗
𝑡)𝑤𝑗 +∏ (1 − 𝑖𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

,

 √
∏ (1 + 𝑛𝑗

𝑡)𝑤𝑗 −∏ (1 − 𝑛𝑗
𝑡)𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + 𝑛𝑗
𝑡)𝑤𝑗 +∏ (1 − 𝑛𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

)

 
 
 
 
 
 
 

 

𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐺𝑤(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 
 
 
 
 
 √

2((1 − 𝑛𝑗
𝑡 − 𝑖𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1 − (1 −𝑚𝑗

𝑡 − 𝑖𝑗
𝑡 − 𝑛𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1 )

(1 + 𝑛𝑗
𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1 + (1 − 𝑛𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

,

 √
(1 + 𝑖𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1 − (1 − 𝑖𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

(1 + 𝑖𝑗
𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1 + (1 − 𝑖𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

,

 √
(1 + 𝑛𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1 − (1 − 𝑛𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

(1 + 𝑛𝑗
𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1 + (1 − 𝑛𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

)

 
 
 
 
 
 
 
 
 
 

 

              = (𝑚0, 𝑖0, 𝑛0) = 𝒯0  

7.2.3. Theorem  

Consider a collection of T-SFNs 𝒯𝑗  (𝑗 = 1,2, … , 𝑘) with 𝒯𝐿 = min
𝑗
𝒯𝑗 , and 𝒯𝑈 =

max
𝑗
𝒯𝑗 . Then 

𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐺𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

7.2.4. Theorem  

Consider any two T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) (𝑗 = 1,2, … , 𝑘) such 

that 𝒯𝑗 ≤ 𝒯𝑗
′ for all 𝑗. Then 

𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐺𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐺𝑤(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

Proof: Let 𝒯𝑗 ≤ 𝒯𝑗
′ then 𝑚𝑗 ≤ 𝑚𝑗

′, 𝑖𝑗 ≤ 𝑖𝑗
′ and 𝑛𝑗 ≥ 𝑛𝑗

′. Then by using basic information  
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√
2(∏ (1 − 𝑛𝑗

𝑡 − 𝑖𝑗
𝑡)
𝑤𝑗
−𝑘

𝑗=1 ∏ (1 −𝑚𝑗
𝑡 − 𝑖𝑗

𝑡 − 𝑛𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1 )

∏ (1 + 𝑛𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1 +∏ (1 − 𝑛𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1

𝑡

≤ √
2(∏ (1 − (𝑛𝑗

′)
𝑡
− (𝑖𝑗

′)
𝑡
)
𝑤𝑗
−𝑘

𝑗=1 ∏ (1 − (𝑚𝑗
′)
𝑡
− (𝑖𝑗

′)
𝑡
− (𝑛𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1 )

∏ (1 + (𝑛𝑗
′)
𝑡
)
𝑤𝑗𝑘

𝑗=1 +∏ (1 − (𝑛𝑗
′)
𝑡
)
𝑤𝑗𝑘

𝑗=1

𝑡

 

√
∏ (1 + 𝑖𝑗

𝑡)
𝑤𝑗
−∏ (1 − 𝑖𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + 𝑖𝑗
𝑡)
𝑤𝑗
+∏ (1 − 𝑖𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≤ √
∏ (1 + (𝑖𝑗

′)
𝑡
)
𝑤𝑗
−∏ (1 − (𝑖𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + (𝑖𝑗
′)
𝑡
)
𝑤𝑗
+∏ (1 − (𝑖𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

 

√
∏ (1 + 𝑛𝑗

𝑡)
𝑤𝑗
−∏ (1 − 𝑛𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + 𝑛𝑗
𝑡)
𝑤𝑗
+∏ (1 − 𝑛𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≥ √
∏ (1 + (𝑛𝑗

′)
𝑡
)
𝑤𝑗
−∏ (1 − (𝑛𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + (𝑛𝑗
′)
𝑡
)
𝑤𝑗
+∏ (1 − (𝑛𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

 

This shows that 

𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐺𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐺𝑤(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

7.2.5. Definition  

For any collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗, 𝑛𝑗)  (𝑗 = 1,2,3, … , 𝑘). The mapping 

𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐼𝐺𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) =⊗𝐸𝑖𝑗=1 
𝑘 𝒯

𝜎(𝑗)

𝜔𝑗
 

=

(

 
 
 
 
 
 
 √

2(∏ (1 − 𝑛𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 )𝜔𝑗 −𝑘
𝑗=1 ∏ (1 −𝑚𝜎(𝑗)

𝑡 − 𝑖𝜎(𝑗)
𝑡 − 𝑛𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1 )

∏ (1 + 𝑛𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1 +∏ (1 − 𝑛𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1

𝑡

,

 √
∏ (1 + 𝑖𝜎(𝑗)

𝑡 )𝜔𝑗 −∏ (1 − 𝑖𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + 𝑖𝜎(𝑗)
𝑡 )𝜔𝑗 +∏ (1 − 𝑖𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

,

 √
∏ (1 + 𝑛𝜎(𝑗)

𝑡 )𝜔𝑗 −∏ (1 − 𝑛𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + 𝑛𝜎(𝑗)
𝑡 )𝜔𝑗 +∏ (1 − 𝑛𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

)

 
 
 
 
 
 
 

 

Where 𝜔 = (𝜔1, … , 𝜔𝑘)
𝑇 is the associated WV of 𝒯𝑗   with 𝜔𝑗 ∈ [0,1] and ∑ 𝜔𝑗

𝑘
𝑗=1 =

1, and 𝜎(𝑗) is any permutation of (1, 2, … , 𝑘) such that �̃�𝜎(𝑗−1) ≥ �̃�𝜎(𝑗). 



176 

 

7.2.6. Theorem  

If all  𝒯𝑗 = 𝒯0, then 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐼𝐺𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0. 

7.2.7. Theorem  

Consider a collection of 𝑇 − 𝑆𝐹𝑁𝑠 𝒯𝑗  (𝑗 = 1,2, … , 𝑘) with 𝒯𝐿 = min
𝑗
𝒯𝑗, and 𝒯𝑈 =

max
𝑗
𝒯𝑗 . Then 

𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐼𝐺𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

7.2.8. Theorem  

For any two T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) for all (𝑗 = 1,2, … , 𝑘)such 

that 𝒯𝑗 ≤ 𝒯𝑗
′ for all 𝑗. Then 

𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐼𝐺𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐼𝐺𝜔(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

7.2.9. Definition  

For any collection 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗)  (𝑗 = 1,2,3, … , 𝑘) of T-SFNs. The mapping 

𝑇 − 𝑆𝐹𝐸𝐻𝐼𝐺𝑤,𝜔(�̃�1, �̃�2, … , �̃�𝑘) =⊗𝐸𝑖𝑗=1
𝑘 �̃�

𝜎(𝑗)

𝜔𝑗
 

=

(

 
 
 √

2(∏ (1 − �̃�𝜎(𝑗)
𝑡 − 𝑖̃𝜎(𝑗)

𝑡 )𝜔𝑗 −𝑘
𝑗=1 ∏ (1 − �̃�𝜎(𝑗)

𝑡 − 𝑖̃𝜎(𝑗)
𝑡 − �̃�𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1 )

∏ (1 + 𝑛𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1 +∏ (1 − 𝑛𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1

𝑡

,

√
∏ (1 + 𝑖̃𝜎(𝑗)

𝑡 )𝜔𝑗 −∏ (1 − 𝑖̃𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + 𝑖̃𝜎(𝑗)
𝑡 )𝜔𝑗 +∏ (1 − 𝑖̃𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

, √
∏ (1 + �̃�𝜎(𝑗)

𝑡 )𝜔𝑗 −∏ (1 − �̃�𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + �̃�𝜎(𝑗)
𝑡 )𝜔𝑗 +∏ (1 − �̃�𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

)

 
 
 

 

is called T-SFEHIG operator, where �̃�𝑗 = (𝒯𝑗)
𝑘𝑤𝑗

. Let 𝑤 = (𝑤1, … , 𝑤𝑘)
𝑇 is the WV 

and  𝜔 = (𝜔1, … , 𝜔𝑘)
𝑇 is the associated WV of 𝒯𝑗  with condition that both weight and 

associated WV belong to closed unit interval and their sum is equal to 1. 

Hybrid aggregation operators first aggregate the given data considering their 

attributes then rearrange them in a specific order. After that, they aggregate the data 

considering their order. This means that hybrid operators are a generalization of 

weighted and ordered weighted operators. So T-SFEHIG operator will satisfy 

idempotent, monotone and bounded property. 
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7.2.10. Example  

Consider T-SFNs 𝒯1 = (0.7,0.3,0.2), 𝒯2 = (0.9,0.1,0.6), 𝒯3 = (0.4,0.6,0.8), 𝒯4 =

(0.1,0.5,0.7), 𝒯5 = (0.0,0.0,0.8) with a WV 𝑤 = (0.25, 0.20, 0.15, 0.18,0.22)𝑇 . 

Solution: First of all we find the aggregated value of these T-SFNs by using T-spherical 

fuzzy Einstein hybrid geometric aggregation (T-SFEHG) operator from Chapter 6 to 

find out the drawbacks of given operators. For this purpose first of all we have to 

calculate the value of 𝑡 for which the given data lie in T-SF information. 

As, 0.9 + 0.1 + 0.6 = 1.6 

For 𝑡 = 2, 0.92 + 0.12 + 0.62 = 1.18 

For 𝑡 = 3, 0.93 + 0.13 + 0.63 = 0.946 

Similarly, for 𝑡 = 3 all the given data lie in the T-spherical fuzzy information. 

By using T-spherical fuzzy Einstein weighted geometric operator we shall be able to 

find these values, 

𝒯1 = (0.6388, 0.3232,0.5381) 

𝒯2 = (0.9,0.1,0.6) 

𝒯3 = (0.4163, 0.5464,0.7370) 

𝒯4 = (0.1050, 0.4829,0.6776) 

𝒯5 = (0.0,0.0,0.8206) 

Their scores values will be 

𝑆𝐶(𝒯1) = 0.1048, 𝑆𝐶(𝒯2) = 0.5130, 𝑆𝐶(𝒯3) = −0.3282, 𝑆𝐶(𝒯4) = −0.3099, 

𝑆𝐶(𝒯5) = −0.5525 

Now using score value, the aggregated values obtained by using T-SFEWG operators 

are rearranged in descending order. Then these ordered values are again aggregated by 

using T-SFEHG operator with associated WV will be 𝜔 =

(0.112,0.236,0.304,0.236,0.112) 

�̃�𝜎(1) = (0.9,0.1,0.6) 



178 

 

�̃�𝜎(2) = (0.6388, 0.3232,0.5381) 

�̃�𝜎(3) = (0.1050, 0.4829,0.6776) 

�̃�𝜎(4) = (0.4163, 0.5464,0.7370) 

�̃�𝜎(5) = (0.0,0.0,0.8206) 

Now again measure T-SFEHG operator 

𝑇 − 𝑆𝐹𝐸𝐻𝐺𝑤,𝜔(𝒯1, … , 𝒯5) = (0.0,0.8525,0.9882) 

From the above result, it is noticed that when 𝑖 or 𝑛 value of one T-SFN is zero then 

the T-SFEHG operator cannot aggregate the whole membership value. This shows a 

big flaw in the T-SFEHG operator. This means that the results obtained from T-SFEHG 

operators are not reliable. Now by T-SFEHIG operator, we shall show that the proposed 

operator will overcome this drawback. 

By using T-SFEWIG operator we shall be able to find 

𝒯1 = (0.7393, 0.3232,0.2154) 

𝒯2 = (0.9,0.1,0.6) 

𝒯3 = (0.4131, 0.5464,0.7370) 

𝒯4 = (0.0988, 0.4829,0.6776) 

𝒯5 = (0.0,0.0,0.8206) 

Their scores values will be 

𝑆𝐶(𝒯1) = 0.3941, 𝑆𝐶(𝒯2) = 0.5130, 𝑆𝐶(𝒯3) = −0.3299, 𝑆𝐶(𝒯4) = −0.3101, 

𝑆𝐶(𝒯5) = −0.5525 

Now using score value, the aggregated values obtained by using T-SEWIG operators 

are rearranged in descending order. Then these ordered values are again aggregated by 

using T-SFEHIG operator with associated WV will be 𝜔 =

(0.112,0.236,0.304,0.236,0.112)𝑇 

�̃�𝜎(1) = (0.9,0.1,0.6) 

�̃�𝜎(2) = (0.7393, 0.3232,0.2154) 
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�̃�𝜎(3) = (0.0988, 0.4829,0.6776) 

�̃�𝜎(4) = (0.4131, 0.5464,0.7370) 

�̃�𝜎(5) = (0.0,0.0,0.8206) 

Now again measure T-SFEHG operator 

𝑇 − 𝑆𝐹𝐸𝐻𝐼𝐺𝑤,𝜔(�̃�1, … , �̃�5) = (0.6878,0.4329,0.6591) 

This shows that the T-SFEIG operator aggregate the membership value. 

7.3. T-Spherical Fuzzy Einstein Hybrid Averaging Interaction 

Operators 

In this section, on basis of new proposed Einstein operations we define 

averaging interaction operators in T-spherical fuzzy environment and some basic 

properties are also discussed. 

7.3.1. Definition  

Consider a collection of T-SFS 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) (𝑗 = 1,2,3, … , 𝑘). Then 

    𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) =⊕𝐸𝑖𝑗=1
𝑘 𝑤𝑗𝒯𝑗  

=

(

 
 
 
 √

∏ (1 + 𝑚𝑗
𝑡)𝑤𝑗𝑘

𝑗=1 −∏ (1 −𝑚𝑗
𝑡)𝑤𝑗𝑘

𝑗=1

∏ (1 +𝑚𝑗
𝑡)𝑤𝑗𝑘

𝑗=1 +∏ (1 −𝑚𝑗
𝑡)𝑤𝑗𝑘

𝑗=1

𝑡

, √
∏ (1 + 𝑖𝑗

𝑡)𝑤𝑗𝑘
𝑗=1 −∏ (1 − 𝑖𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

∏ (1 + 𝑖𝑗
𝑡)𝑤𝑗𝑘

𝑗=1 +∏ (1 − 𝑖𝑗
𝑡)𝑤𝑗𝑘

𝑗=1

𝑡

,

 √
2(∏ (1 −𝑚𝑗

𝑡 − 𝑖𝑗
𝑡)
𝑤𝑗
−𝑘

𝑗=1 ∏ (1 −𝑚𝑗
𝑡 − 𝑖𝑗

𝑡 − 𝑛𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1 )

∏ (1 + 𝑚𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1 +∏ (1 −𝑚𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1

𝑡

)

 
 
 
 

 

then 𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐴𝑤 is called T-SFEWIA operator with WV 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑘)
𝑇 of 

𝒯𝑗  with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑘
𝑗=1 . 

7.3.2. Theorem  

If all 𝒯𝑗 = 𝒯0, then 𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0. 

Proof: Let 𝒯𝑗 = 𝒯0 = (𝑚0, 𝑖0, 𝑛0) for all 𝑗 then 
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𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 √

∏ (1 + 𝑚𝑗
𝑡)𝑤𝑗 −∏ (1 −𝑚𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

𝑘
𝑗=1

∏ (1 +𝑚𝑗
𝑡)𝑤𝑗 +∏ (1 −𝑚𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

, √
∏ (1 + 𝑖𝑗

𝑡)𝑤𝑗 −∏ (1 − 𝑖𝑗
𝑡)𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + 𝑖𝑗
𝑡)𝑤𝑗 +∏ (1 − 𝑖𝑗

𝑡)𝑤𝑗𝑘
𝑗=1

𝑘
𝑗=1

𝑡

,

 √
2(∏ (1 − 𝑚𝑗

𝑡 − 𝑖𝑗
𝑡)𝑤𝑗 −𝑘

𝑗=1 ∏ (1 −𝑚𝑗
𝑡 − 𝑖𝑗

𝑡 − 𝑛𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1 )

∏ (1 + 𝑚𝑗
𝑡)𝑤𝑗𝑘

𝑗=1 +∏ (1 −𝑚𝑗
𝑡)𝑤𝑗𝑘

𝑗=1

𝑡

)

 
 
 

 

𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘)

=

(

 
 
 
 
 √

(1 +𝑚𝑗
𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1 − (1 −𝑚𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

(1 + 𝑚𝑗
𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1 + (1 −𝑚𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

, √
(1 + 𝑖𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1 − (1 − 𝑖𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

(1 + 𝑖𝑗
𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1 + (1 − 𝑖𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

,

 √
2 ((1 − 𝑚𝑗

𝑡 − 𝑖𝑗
𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1 − (1 −𝑚𝑗

𝑡 − 𝑖𝑗
𝑡 − 𝑛𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1 )

(1 + 𝑚𝑗
𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1 + (1 −𝑚𝑗

𝑡)
∑ 𝑤𝑗
𝑘
𝑗=1

𝑡

)

 
 
 
 
 

 

              = (𝑚0, 𝑖0, 𝑛0) = 𝒯0 

7.3.3. Theorem  

Consider a collection of T-SFNs 𝒯𝑗  (𝑗 = 1,2, … , 𝑘) with 𝒯𝐿 = min
𝑗
𝒯𝑗 , and 𝒯𝑈 =

max
𝑗
𝒯𝑗 . Then 

𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

7.3.4. Theorem  

For any two T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) such that 𝒯𝑗 ≤ 𝒯𝑗
′ for all 𝑗. 

Then 

𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐴𝑤(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

Proof: Let 𝒯𝑗 ≤ 𝒯𝑗
′ then 𝑚𝑗 ≤ 𝑚𝑗

′, 𝑖𝑗 ≤ 𝑖𝑗
′ and 𝑛𝑗 ≥ 𝑛𝑗

′. Then by using this basic 

information  
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√
2(∏ (1 −𝑚𝑗

𝑡 − 𝑖𝑗
𝑡)
𝑤𝑗
−𝑘

𝑗=1 ∏ (1 −𝑚𝑗
𝑡 − 𝑖𝑗

𝑡 − 𝑛𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1 )

∏ (1 + 𝑚𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1 +∏ (1 −𝑚𝑗
𝑡)
𝑤𝑗𝑘

𝑗=1

𝑡

≤ √
2(∏ (1 − (𝑚𝑗

′)
𝑡
− (𝑖𝑗

′)
𝑡
)
𝑤𝑗
−𝑘

𝑗=1 ∏ (1 − (𝑚𝑗
′)
𝑡
− (𝑖𝑗

′)
𝑡
− (𝑛𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1 )

∏ (1 + (𝑚𝑗
′)
𝑡
)
𝑤𝑗𝑘

𝑗=1 +∏ (1 − (𝑚𝑗
′)
𝑡
)
𝑤𝑗𝑘

𝑗=1

𝑡

 

√
∏ (1 + 𝑖𝑗

𝑡)
𝑤𝑗
−∏ (1 − 𝑖𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + 𝑖𝑗
𝑡)
𝑤𝑗
+∏ (1 − 𝑖𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≤ √
∏ (1 + (𝑖𝑗

′)
𝑡
)
𝑤𝑗
−∏ (1 − (𝑖𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + (𝑖𝑗
′)
𝑡
)
𝑤𝑗
+∏ (1 − (𝑖𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

 

√
∏ (1 +𝑚𝑗

𝑡)
𝑤𝑗
−∏ (1 −𝑚𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 +𝑚𝑗
𝑡)
𝑤𝑗
+∏ (1 −𝑚𝑗

𝑡)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

≥ √
∏ (1 + (𝑚𝑗

′)
𝑡
)
𝑤𝑗
−∏ (1 − (𝑚𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

∏ (1 + (𝑚𝑗
′)
𝑡
)
𝑤𝑗
+∏ (1 − (𝑚𝑗

′)
𝑡
)
𝑤𝑗𝑘

𝑗=1
𝑘
𝑗=1

𝑡

 

This shows that 

𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐴𝑤(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝐸𝑊𝐼𝐴𝑤(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

7.3.5. Definition  

Consider a collection of T-SFSs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) (𝑗 = 1,2,3, … , 𝑘). Then 

    𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐼𝐴𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) =⊕𝐸𝑖𝑗=1
𝑘 𝜔𝑗𝒯𝜎(𝑗) 

=

(

 
 
 
 √

∏ (1 +𝑚𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1 −∏ (1 −𝑚𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1

∏ (1 +𝑚𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1 +∏ (1 −𝑚𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1

𝑡

, √
∏ (1 + 𝑖𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1 −∏ (1 − 𝑖𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

∏ (1 + 𝑖𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1 +∏ (1 − 𝑖𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1

𝑡

,

 √
2[∏ (1 − 𝑚𝜎(𝑗)

𝑡 − 𝑖𝜎(𝑗)
𝑡 )

𝜔𝑗
−𝑘

𝑗=1 ∏ (1 −𝑚𝜎(𝑗)
𝑡 − 𝑖𝜎(𝑗)

𝑡 − 𝑛𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1 ]

∏ (1 + 𝑚𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1 +∏ (1 −𝑚𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1

𝑡

)

 
 
 
 

 

then 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐼𝐴𝜔 is called T-SFEOWIA operator with associated WV 𝜔 =

(𝜔1, 𝜔2, … , 𝜔𝑘)
𝑇 of 𝒯𝑗  with 𝜔𝑗 ∈ [0,1] and ∑ 𝜔𝑗 = 1𝑘

𝑗=1 . Where 𝜎(𝑗) is any 

permutation of (1, 2, … , 𝑘) such that �̃�𝜎(𝑗−1) ≥ �̃�𝜎(𝑗). 
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7.3.6. Theorem  

If for all  𝒯𝑗 = 𝒯0, then 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐴𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) = 𝒯0. 

7.3.7. Theorem  

Consider a collection of T-SFNs 𝒯𝑗  (𝑗 = 1,2, … , 𝑘) with 𝒯𝐿 = min
𝑗
𝒯𝑗 , and 𝒯𝑈 =

max
𝑗
𝒯𝑗 . Then 

𝒯𝐿 ≤ 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐼𝐴𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝒯𝑈 

7.3.8. Theorem  

Consider any two 𝑇 − 𝑆𝐹𝑁𝑠 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗) and 𝒯𝑗
′ = (𝑚𝑗

′, 𝑖𝑗
′, 𝑛𝑗

′) such that 𝒯𝑗 ≤ 𝒯𝑗
′ 

for all 𝑗. Then 

𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐼𝐴𝜔(𝒯1, 𝒯2, … , 𝒯𝑘) ≤ 𝑇 − 𝑆𝐹𝐸𝑂𝑊𝐼𝐴𝜔(𝒯1
′, 𝒯2

′, … , 𝒯𝑘
′) 

7.3.9. Definition  

Consider a collection of T-SFNs 𝒯𝑗 = (𝑚𝑗 , 𝑖𝑗 , 𝑛𝑗)  (𝑗 = 1,2,3, … , 𝑘). The mapping 

𝑇 − 𝑆𝐹𝐸𝐻𝐼𝐴𝑤,𝜔(�̃�1, �̃�2, … , �̃�𝑘) =⊕𝐸𝑖𝑗=1
𝑘 𝜔𝑗�̃�𝜎(𝑗) 

=

(

 
 
 
 
 
 
 
 √

∏ (1 + �̃�𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1 −∏ (1 − �̃�𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1

∏ (1 + �̃�𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1 +∏ (1 − �̃�𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1

𝑡

,

 √
∏ (1 + 𝑖̃𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1 −∏ (1 − 𝑖̃𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

∏ (1 + 𝑖̃𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1 +∏ (1 − 𝑖̃𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1

𝑡

,

 √
2(∏ (1 − �̃�𝜎(𝑗)

𝑡 − 𝑖̃𝜎(𝑗)
𝑡 )

𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗)
𝑡 − 𝑖̃𝜎(𝑗)

𝑡 − �̃�𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1 )

∏ (1 + �̃�𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1 +∏ (1 − �̃�𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1

𝑡

)

 
 
 
 
 
 
 
 

 

 called T-SFEHIA operator. where �̃�𝑗 = 𝑘𝑤𝑗𝒯𝑗  and 𝑤𝑗 , 𝜔𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑘
𝑗=1 , 

∑ 𝜔𝑗 = 1𝑘
𝑗=1 . 

Hybrid aggregation operators first aggregate the given data considering their attributes 

then rearrange them in a specific order. After that, they aggregate the data considering 

their order. This means that hybrid operators are a generalization of weighted and 
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ordered weighted operators. So T-SFEHIA operator will satisfy idempotent, monotone 

and bounded property. 

7.3.10. Example  

Consider five T-SFNs 𝒯1 = (0.9,0.3,0.4), 𝒯2 = (0.6,0.3,0.2), 𝒯3 = (0.3,0.8,0.6), 𝒯4 =

(0.4,0.5,0.8), 𝒯5 = (0.6,0.0,0.0) with a WV 𝑤 = (0.25, 0.20, 0.15, 0.18,0.22)𝑇 . 

Solution: First of all we find the aggregated value of these T-SFNs by using T-spherical 

fuzzy Einstein hybrid averaging aggregation (T-SFEHA) operator from Chapter 6 to 

find out the drawbacks of given operators. For this purpose first of all we have to find 

the value of 𝑡 for which the given data lie in T-spherical fuzzy environment. 

As, 0.3 + 0.8 + 0.6 = 1.7 

For 𝑡 = 2, 0.32 + 0.82 + 0.62 = 1.09 

For 𝑡 = 3, 0.33 + 0.83 + 0.63 = 0.755 

Similarly, for 𝑡 = 3 all the given data lie in the T-spherical fuzzy environment. 

By using T-spherical fuzzy Einstein weighted averaging operator we shall be able to 

find these values, 

𝒯1 = (0.9362, 0.2104,0.3029) 

𝒯2 = (0.6,0.3,0.2) 

𝒯3 = (0.2726, 0.8527,0.6984) 

𝒯4 = (0.3862, 0.5437,0.8211) 

𝒯5 = (0.6187,0.0,0.0) 

Their scores values will be 

𝑆𝐶(𝒯1) = 0.7927, 𝑆𝐶(𝒯2) = 0.2080, 𝑆𝐶(𝒯3) = −0.3203, 𝑆𝐶(𝒯4) = −0.4961, 

𝑆𝐶(𝒯5) = 0.2368 

Now using score value, the aggregated values obtained by using T-SFEWA operators 

are rearranged in descending order. Then these ordered values are again aggregated by 

using T-SFEHA operator with associated WV will be 𝜔 =

(0.112,0.236,0.304,0.236,0.112) 
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�̃�𝜎(1) = (0.9362,0.2104,0.3029) 

�̃�𝜎(2) = (0.6187,0.0,0.0) 

�̃�𝜎(3) = (0.6, 0.3,0.2) 

�̃�𝜎(4) = (0.2726, 0.8527,0.6984) 

�̃�𝜎(5) = (0.3862,0.5437,0.8211) 

Now again measure T-SFEHA operator 

𝑇 − 𝑆𝐹𝐸𝐻𝐴𝑤,𝜔(�̃�1, … , �̃�5) = (0.6187,0.0,0.0) 

From the above result, it is noticed that when abstinence or non-membership value of 

one T-SFN is zero then the T-SFEHA operator cannot aggregate the whole abstinence 

and non-membership value. This shows a big flaw in the T-SFEHA operator. This 

means that the results obtained from T-SFEHA operators are not reliable. Now by T-

SFEIA operator, we shall show that the proposed operator will overcome this drawback.  

By using T-SFEIA operator we shall be able to find 

𝒯1 = (0.9362, 0.4308,0.2739) 

𝒯2 = (0.6,0.3,0.2) 

𝒯3 = (0.2726, 0.7370,0.5956) 

𝒯4 = (0.3862, 0.4829,0.7888) 

𝒯5 = (0.6187,0.0,0.0) 

Their scores values will be 

𝑆𝐶(𝒯1) = 0.7999, 𝑆𝐶(𝒯2) = 0.2080, 𝑆𝐶(𝒯3) = −0.1910, 𝑆𝐶(𝒯4) = −0.4333, 

𝑆𝐶(𝒯5) = 0.2368 

Now using score value, the aggregated values obtained by using T-SFEWIA operators 

are rearranged in descending order. Then these ordered values are again aggregated by 

using T-SFEHIA operator with associated WV will be 𝜔 =

(0.112,0.236,0.304,0.236,0.112) 

�̃�𝜎(1) = (0.9362,0.4308,0.2739) 
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�̃�𝜎(2) = (0.6187,0.0,0.0) 

�̃�𝜎(3) = (0.6, 0.3,0.2) 

�̃�𝜎(4) = (0.2726, 0.7370,0.5956) 

�̃�𝜎(5) = (0.3862,0.4829,0.7888) 

Now again measure T-SFEHIA operator 

𝑇 − 𝑆𝐹𝐸𝐻𝐼𝐴𝑤,𝜔(�̃�1, … , �̃�5) = (0.6372,0.5055,0.3978) 

This shows that the T-SFEIA operator aggregate the membership value. 

7.4. An algorithm for MADM with T-spherical fuzzy information 

          Consider a set of alternatives 𝐷 = {𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑙}  and a set of attributes 𝑀 =

{𝑚1, 𝑚2, 𝑚3, … ,𝑚𝑘} having a WV 𝑤 = {𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙} where 𝑤𝑗 ∈ [0,1] and 

∑ 𝑤𝑚
𝑙
𝑚=1 = 1. For making a decision we have to follow these steps. 

Step 1. Calculate 𝑡 for which the values lie in T-spherical information. 

Step 2. Aggregate the given alternatives according to attributes by T-SFEWIA (or T-

SFEWIG) operators using some WV. 

Step 3.  Find scores values and with the help of score value we reorder them in 

descending order. 

Step 4. Aggregate these ordered values using T-SFEHIA (or T-SFEHIG) operator. 

Step 5. Using score values find out the best option. 

7.4.1. Example  

A company wants to maximize its profit and board of governors decided to reduce their 

expenses. They observe that the cost of electricity is one of the major expense and they 

can reduce it if they started to generate electricity using solar energy. They have three 

options of photovoltaic cells that they may use in their solar plant. 

   i.   𝑑1: Monocrystalline Photovoltaic Cell 

   ii.  𝑑2: Polycrystalline Photovoltaic Cell 

   iii. 𝑑3: Thin Film Photovoltaic Cell 
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They assess the given photovoltaic cell on the base of following attributes. 

   i.   𝑀1: Heat Tolerance 

   ii.  𝑀2: Cost 

   iii. 𝑀3: Reliability 

   iv. 𝑀4: Efficiency 

   v.  𝑀5: Ability of charge separation 

Table 68 Decision Matrix 

 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 

𝑑1 (0.4, 0.1,0.7) (0.5, 0.2,0.4) (0.8, 0.3,0.7) (0.4, 0.8,0.5) (0.9, 0.5,0.2) 

𝑑2 (0.7, 0.4,0.3) (0.2, 0.4,0.7) (0.9, 0.3,0.6) (0.3, 0.2,0.8) (0.4, 0.7,0.5) 

𝑑3 (0.4, 0.7,0.5) (0.6, 0.6,0.1) (0.6, 0.9,0.2) (0.8, 0.1,0.1) (0.5, 0.6,0.2) 

Step 1: After some calculation we found 𝑡 = 3 at which all values in Table 68 are T-

SFNs. 

Step 2: By taking 𝑤 = (0.25, 0.20, 0.15, 0.18,0.22)𝑇 we find T-SFEWIA values of 

given data, as listed in Table 69. 

Table 69 Aggregated values 

 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 

𝑑1 
(
0.4308,
0.1077,
0.7367

) (
0.5,
0.2,
0.4

) (
0.7370,
0.2726,
0.7172

) (
0.3862,
0.7770,
0.5022

) (
0.9164,
0.5160,
0.1906

) 

𝑑2 
(
0.7485,
0.4308,
0.3061

) (
0.2,
0.4,
0.7

) (
0.8440,
0.2726,
0.6677

) (
0.2896,
0.1931,
0.7820

) (
0.4129,
0.7206,
0.5037

) 

𝑑3 
(
0.4308,
0.7485,
0.5064

) (
0.6,
0.6,
0.1

) (
0.5464,
0.8440,
0.2430

) (
0.7770,
0.0965,
0.0829

) (
0.5160,
0.6187,
0.2031

) 

 

Step 3: Scores of each alternative with respect to all attributes are shown in Table 70 
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Table 70 Score Values 

 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 

𝑑1 −0.3199 0.0610 0.0314 −0.0690 0.7626 

𝑑2 0.3906 −0.3350 0.3035 −0.4538 −0.0574 

𝑑3 −0.0499 0.2150 0.1488 0.4685 0.1290 

By comparing the score values, we have 

𝑆𝐶(𝒯15) > 𝑆𝐶(𝒯12) > 𝑆𝐶(𝒯13) > 𝑆𝐶(𝒯14) > 𝑆𝐶(𝒯11) 

𝑆𝐶(𝒯21) > 𝑆𝐶(𝒯23) > 𝑆𝐶(𝒯25) > 𝑆𝐶(𝒯22) > 𝑆𝐶(𝒯24) 

𝑆𝐶(𝒯34) > 𝑆𝐶(𝒯32) > 𝑆𝐶(𝒯33) > 𝑆𝐶(𝒯35) > 𝑆𝐶(𝒯31) 

Based on above score analysis, the data is arranged in descending order and the 

aggregated values of ordered data is as listed in Table 71 

Table 71 Ordered Aggregated Values 

 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 

𝑑1 
(
0.9164,
0.5160,
0.1906

) (
0.5,
0.2,
0.4

) (
0.7370,
0.2726,
0.7172

) (
0.3862,
0.7770,
0.5022

) (
0.4308,
0.1077,
0.7367

) 

𝑑2 
(
0.7485,
0.4308,
0.3061

) (
0.8440,
02726,
0.6677

) (
0.4129,
0.7206,
0.5037

) (
0.2,
0.4,
0.7

) (
0.2896,
0.1931,
0.7820

) 

𝑑3 
(
0.7770,
0.0965,
0.0829

) (
0.6,
0.6,
0.1

) (
0.5464,
0.8440,
0.2430

) (
0.5160,
0.6187,
0.2031

) (
0.4308,
0.7485,
0.5064

) 

Step 4: Associated WV will be 𝜔 = (0.112,0.236,0.304,0.236,0.112)𝑇 and by T-

SFEHIA operators, we have 

�̃�1 = (0.6596, 0.5227,0.4668) 

�̃�2 = (0.6176, 0.5291,0.5276) 

�̃�3 = (0.5826, 0.7075,0.2290) 

Step 5: Now we have to find the score values 
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𝑆𝐶(�̃�1) = 0.1853 

𝑆𝐶(�̃�2) = 0.0887 

𝑆𝐶(�̃�3) = 0.1858 

𝑆𝐶(�̃�3) > 𝑆𝐶(�̃�1) > 𝑆𝐶(�̃�2) 

Since the score value of 𝑑3 is highest so thin film photovoltaic cell is best option. 

Now, we check their validity by using Einstein hybrid geometric interaction operators. 

By taking 𝑤 = (0.25, 0.20, 0.15, 0.18,0.22)𝑇 we find T-SFEWIG values of given data, 

as listed in Table 72. 

Table 72 Aggregated Values 

 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 

𝑑1 
(
0.4117,
0.1077,
0.7485

) (
0.5,
0.2,
0.4

) (
0.7998,
0.2726,
0.6398

) (
0.4008,
0.7770,
0.4829

) (
0.9051,
0.5160,
0.2064

) 

𝑑2 
(
0.7347,
0.4308,
0.3232

) (
0.2,
0.4,
0.7

) (
0.9071,
0.2726,
0.5464

) (
0.2984,
0.1931,
0.7770

) (
0.4034,
0.7206,
0.5160

) 

𝑑3 
(
0.4064,
0.7485,
0.5381

) (
0.6,
0.6,
0.1

) (
0.6434,
0.8440,
0.1817

) (
0.7807,
0.0965,
0.0965

) (
0.5103,
0.6187,
0.2064

) 

 

Scores of Table 72 are shown in Table 73 

Table 73 Score Values 

 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 

𝑑1 −0.3495 0.0610 0.2497 −0.0482 0.7327 

𝑑2 0.3628 −0.3350 0.5833 −0.4425 −0.0717 

𝑑3 −0.0887 0.2150 0.2603 0.4749 0.1241 

By comparing the score values, we have 

𝑆𝐶(𝒯15) > 𝑆𝐶(𝒯13) > 𝑆𝐶(𝒯12) > 𝑆𝐶(𝒯14) > 𝑆𝐶(𝒯11) 
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𝑆𝐶(𝒯23) > 𝑆𝐶(𝒯21) > 𝑆𝐶(𝒯25) > 𝑆𝐶(𝒯22) > 𝑆𝐶(𝒯24) 

𝑆𝐶(𝒯34) > 𝑆𝐶(𝒯33) > 𝑆𝐶(𝒯32) > 𝑆𝐶(𝒯35) > 𝑆𝐶(𝒯31) 

Based on above score analysis, the data is arranged in descending order and the 

aggregated values of ordered data is as listed in Table 74 

Table 74 Ordered Aggregated Values 

 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 

𝑑1 
(
0.9051,
0.5160,
0.2064

) (
0.7998,
0.2726,
0.6398

) (
0.5,
0.2,
0.4

) (
0.4008,
0.7770,
0.4829

) (
0.4117,
0.1077,
0.7485

) 

𝑑2 
(
0.9071,
0.2726,
0.5464

) (
0.7347,
0.4308,
0.3232

) (
0.4034,
0.7206,
0.5160

) (
0.2,
0.4,
0.7

) (
0.2984,
0.1931,
0.7770

) 

𝑑3 
(
0.7807,
0.0965,
0.0965

) (
0.6434,
0.8440,
0.1817

) (
0.6,
0.6,
0.1

) (
0.5103,
0.6187,
0.2064

) (
0.4064,
0.7485,
0.5381

) 

Associated WV will be 𝜔 = (0.112,0.236,0.304,0.236,0.112)𝑇 and by T-SFEHIG 

operators, we have 

�̃�1 = (0.5445, 0.5217,0.5419) 

�̃�2 = (0.6830, 0.5376,0.5913) 

�̃�3 = (0.7556, 0.6879,0.2780) 

Step 5: Now we have to find the score values 

𝑆𝐶(�̃�1) = 0.0023 

𝑆𝐶(�̃�2) = 0.1080 

𝑆𝐶(�̃�3) = 0.4099 

𝑆𝐶(�̃�3) > 𝑆𝐶(�̃�2) > 𝑆𝐶(�̃�1) 

Here again the score value of alternative 𝑑3 is high. So, thin film photovoltaic cell is 

best option. 
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7.5. Advantages 

In this section we prove that our work is more generalized than that of existing 

work. In our proposed work experts are free in giving the values to alternatives 

according to given attributes not only this proposed work is also valid under those 

conditions where the existing work fail. Here we reduced the proposed work in 

intuitionistic, Pythagorean, q-rung orthopair, picture and spherical fuzzy environments. 

It prove that proposed work is valid for all those environments.  

 Consider the T-SFEHIA defined as  

𝑇 − 𝑆𝐹𝐸𝐻𝐼𝐴𝑤,𝜔(�̃�1, �̃�2, … , �̃�𝑘)

=

(

 
 
 
 
 
 
 
 √

∏ (1 + �̃�𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1 −∏ (1 − �̃�𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1

∏ (1 + �̃�𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1 +∏ (1 − �̃�𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1

𝑡

,

 √
∏ (1 + 𝑖̃𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1 −∏ (1 − 𝑖̃𝜎(𝑗)

𝑡 )𝜔𝑗𝑘
𝑗=1

∏ (1 + 𝑖̃𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1 +∏ (1 − 𝑖̃𝜎(𝑗)
𝑡 )𝜔𝑗𝑘

𝑗=1

𝑡

,

 √
2(∏ (1 − �̃�𝜎(𝑗)

𝑡 − 𝑖̃𝜎(𝑗)
𝑡 )

𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗)
𝑡 − 𝑖̃𝜎(𝑗)

𝑡 − �̃�𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1 )

∏ (1 + �̃�𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1 +∏ (1 − �̃�𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1

𝑡

)

 
 
 
 
 
 
 
 

 

 

 

 

 

(7.5.1) 

 

1. For 𝑡 = 2 the equation (7.5.1) reduces to SF Einstein hybrid interaction averaging 

operators (SFEHIA operator) i.e. 

𝑆𝐹𝐸𝐻𝐼𝐴𝑤,𝜔(�̃�1, �̃�2, … , �̃�𝑘)

=

(

 
 
 
 
 
 
 
 
 √

∏ (1 + �̃�𝜎(𝑗)
2 )

𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗)
2 )

𝜔𝑗𝑘
𝑗=1

∏ (1 + �̃�𝜎(𝑗)
2 )

𝜔𝑗𝑘
𝑗=1 +∏ (1 − �̃�𝜎(𝑗)

2 )
𝜔𝑗𝑘

𝑗=1

,

√
∏ (1 + 𝑖̃𝜎(𝑗)

2 )𝜔𝑗𝑘
𝑗=1 −∏ (1 − 𝑖̃𝜎(𝑗)

2 )𝜔𝑗𝑘
𝑗=1

∏ (1 + 𝑖̃𝜎(𝑗)
2 )𝑤𝑗𝑘

𝑗=1 +∏ (1 − 𝑖̃𝜎(𝑗)
2 )𝜔𝑗𝑘

𝑗=1

,

 √
2(∏ (1 − �̃�𝜎(𝑗)

2 − 𝑖̃𝜎(𝑗)
2 )

𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗)
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2 − �̃�𝜎(𝑗)
2 )

𝜔𝑗𝑘
𝑗=1 )
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2 )

𝜔𝑗𝑘
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2 )
𝜔𝑗𝑘

𝑗=1 )
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2. For 𝑡 = 1 the equation (7.5.1) reduces to PF Einstein hybrid interaction averaging 

operators (PFEHIA operator) i.e. 

𝑃𝐹𝐸𝐻𝐴𝑤,𝜔(�̃�1, �̃�2, … , �̃�𝑘)

=

(

 
 
 

∏ (1 + �̃�𝜎(𝑗))
𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1

∏ (1 + �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1 +∏ (1 − �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1

,
∏ (1 + 𝑖̃𝜎(𝑗))

𝜔𝑗𝑘
𝑗=1 −∏ (1 − 𝑖̃𝜎(𝑗))

𝜔𝑗𝑘
𝑗=1

∏ (1 + 𝑖̃𝜎(𝑗))
𝜔𝑗𝑘
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𝜔𝑗𝑘

𝑗=1

,

 
2(∏ (1 − �̃�𝜎(𝑗) − 𝑖̃𝜎(𝑗))

𝜔𝑗 −𝑘
𝑗=1 ∏ (1 − �̃�𝜎(𝑗) − 𝑖̃𝜎(𝑗) − �̃�𝜎(𝑗))

𝜔𝑗𝑘
𝑗=1 )

∏ (1 + �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1 +∏ (1 − �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1 )

 
 
 

 

3. For 𝑖 = 0 the equation (7.5.1) reduces to q-ROPF Einstein hybrid interaction 

averaging operators (q-ROFEHIA operator) i.e. 

𝑞 − 𝑅𝑂𝐹𝐸𝐻𝐼𝐴𝑤,𝜔(�̃�1, �̃�2, … , �̃�𝑘)

=

(

 
 
 
 
 √

∏ (1 + �̃�𝜎(𝑗)
𝑡 )

𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1

∏ (1 + �̃�𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1 +∏ (1 − �̃�𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1

𝑡

,

 √
2(∏ (1 − �̃�𝜎(𝑗)

𝑡 )
𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗)
𝑡 − 𝑛𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1 )

∏ (1 + �̃�𝜎(𝑗)
𝑡 )

𝜔𝑗𝑘
𝑗=1 +∏ (1 − �̃�𝜎(𝑗)

𝑡 )
𝜔𝑗𝑘

𝑗=1

𝑡

)

 
 
 
 
 

 

 

4. For 𝑡 = 2 and 𝑖 = 0 the equation (7.5.1) reduces to PyF Einstein hybrid interaction 

averaging operators (PyFEHIA operator) i.e. 

𝑃𝑦𝐹𝐸𝐻𝐼𝐴𝑤,𝜔(�̃�1, �̃�2, … , �̃�𝑘)

=

(

 
 
 
 
 
 √

∏ (1 + �̃�𝜎(𝑗)
2 )

𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗)
2 )

𝜔𝑗𝑘
𝑗=1

∏ (1 + �̃�𝜎(𝑗)
2 )

𝜔𝑗𝑘
𝑗=1 +∏ (1 − �̃�𝜎(𝑗)

2 )
𝜔𝑗𝑘

𝑗=1

,

 √
2(∏ (1 − �̃�𝜎(𝑗)

2 )
𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗)
2 − �̃�𝜎(𝑗)

2 )
𝜔𝑗𝑘

𝑗=1 )

∏ (1 + �̃�𝜎(𝑗)
2 )

𝜔𝑗𝑘
𝑗=1 +∏ (1 − �̃�𝜎(𝑗)

2 )
𝜔𝑗𝑘

𝑗=1

 )

 
 
 
 
 
 

 

5. For 𝑡 = 1 and 𝑖 = 0 the equation (7.5.1) reduces to IF Einstein hybrid interaction 

averaging operators (IFEHA operator) i.e.  
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𝐼𝐹𝐸𝐻𝐼𝐴𝑤,𝜔(�̃�1, �̃�2, … , �̃�𝑘)

=

(

 
 
 

∏ (1 + �̃�𝜎(𝑗))
𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1

∏ (1 + �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1 +∏ (1 − �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1

,

2(∏ (1 − �̃�𝜎(𝑗))
𝜔𝑗
−𝑘

𝑗=1 ∏ (1 − �̃�𝜎(𝑗) − �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1 )

∏ (1 + �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1 +∏ (1 − �̃�𝜎(𝑗))
𝜔𝑗𝑘

𝑗=1 )

 
 
 

 

Similarly we can reduce T-SFEWIA operator, T-SFEOWIA operator, T-SFEWIG 

operator, T-SFEOWIG operator and T-SFEHIG operator. 

7.6. Comparative Study  

              The proposed aggregation operators can aggregate the data given in FS, IFS, 

PyFS, q-ROPFS, PFS and SFS environments but the converse is not possible. Here with 

the help of an example it is proved that the proposed aggregation operator can aggregate 

the data given in IFSs. 

7.6.1. Example  

Let IFNs 𝒯1 = (0.2,0.5), 𝒯2 = (0.7,0.1), 𝒯3 = (0.3,0.4), 𝒯4 = (0.6,0.2) and 𝒯5 =

(0.5,0.5) with a WV 𝑤 = (0.25, 0.20, 0.15, 0.18,0.22)𝑇 . 

Solution. We can write these IFNs in the form of T-SFNs as 𝒯1 = (0.2,0,0.5), 𝒯2 =

(0.7,0,0.1), 𝒯3 = (0.3,0,0.4), 𝒯4 = (0.6,0,0.2) and 𝒯5 = (0.5,0,0.5). Then by using T-

SFEWIA operator we shall be able to find these values, 

𝒯1 = (0.2481,0,0.5312) 

𝒯2 = (0.7,0,0.1) 

𝒯3 = (0.2281, 0,0.3630) 

𝒯4 = (0.5538, 0,0.2071) 

𝒯5 = (0.5401,0,0.4599) 

Their scores values will be 

𝑆𝐶(𝒯1) = −0.2831, 𝑆𝐶(𝒯2) = 0.6, 𝑆𝐶(𝒯3) = −0.1350, 𝑆𝐶(𝒯4) = 0.3467, 𝑆𝐶(𝒯5) =

0.0801 
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Now using score value, the aggregated values obtained by using T-SFEWIA operators 

are rearranged in descending order. Then these ordered values are again aggregated by 

using T-SFEHIA operator with associated WV will be 𝜔 =

(0.112,0.236,0.304,0.236,0.112)𝑇 

�̃�𝜎(1) = (0.7,0,0.1) 

�̃�𝜎(2) = (0.5538, 0,0.2071) 

�̃�𝜎(3) = (0.5401,0,0.4599) 

�̃�𝜎(4) = (0.2281, 0,0.3630) 

�̃�𝜎(5) = (0.2481,0,0.5312) 

Now again measure T-SFEHIA operator 

𝑇 − 𝑆𝐹𝐸𝐻𝐼𝐴𝑤,𝜔(�̃�1, �̃�2, … , �̃�5) = (0.4709,0,0.2645) 

Here it is proved that the information given in IFNs can be solved by using T-SFEHIA 

operator. Similarly we can solve the information given in IFNs by using T-SEHIG 

operator and the information given in any other fuzzy structure can also be aggregated 

using the proposed operators. 
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Chapter 8 

Exponential Similarity Measures for T-Spherical Fuzzy Sets 

and Their Applications in Decision Making 

SMs are common tools that are considered to be applied to some interesting 

phenomena in real life including pattern recognition, decision making, etc. In this 

chapter, some SMs based on cosine function and some SMs based on exponential 

function are developed for T-SFSs. The basic properties of developed SMs are also 

discussed.  By using developed SMs, two well-known problems; pattern recognition 

and strategy decision making problems are solved. The superiority of developed SMs 

over SMs in SFS, PFS, q-ROPFS, PyFS, and IFS is demonstrated through a 

comparison. A numerical example is also discussed to prove the superiority of the 

proposed work. 

8.1. Similarity Measures 

In this section some cosine SMs based on cosine function are proposed and also 

some exponential SMs are proposed. Some basic properties of proposed SMs are also 

studied. 

8.1.1. Similarity Measures Based on Cosine Function 

In this subsection some SMs and weighted SMs based on cosine function are 

proposed and basic properties of these SMs are also discussed. 

8.1.1.1. Definition  

Consider two T-SFSs on domain 𝑋, 𝒯1 = {(𝑥𝑗 , 𝑚1(𝑥𝑗), 𝑖1(𝑥𝑗), 𝑛1(𝑥𝑗)) | 𝑥𝑗 ∈ 𝑋} and 

𝒯2 = {(𝑥𝑗 , 𝑚2(𝑥𝑗), 𝑖2(𝑥𝑗), 𝑛2(𝑥𝑗)) | 𝑥𝑗 ∈ 𝑋} where (𝑗 = 1,2, … , 𝑘) then four cosine 

SMs based on cosine function can be calculated as  

𝐶𝑆𝑀1(𝒯1, 𝒯2) =
1

𝑘
∑cos [

𝜋

2
(
|𝑚1

𝑡(𝑥𝑗) − 𝑚2
𝑡(𝑥𝑗)|⋁|𝑖1

𝑡(𝑥𝑗) − 𝑖2
𝑡(𝑥𝑗)|

⋁|𝑛1
𝑡(𝑥𝑗) − 𝑛2

𝑡(𝑥𝑗)|
)]

𝑘

𝑗=1

 

𝐶𝑆𝑀2(𝒯1, 𝒯2) =
1

𝑘
∑cos [

𝜋

4
(
|𝑚1

𝑡(𝑥𝑗) − 𝑚2
𝑡(𝑥𝑗)| + |𝑖1

𝑡(𝑥𝑗) − 𝑖2
𝑡(𝑥𝑗)|

+|𝑛1
𝑡(𝑥𝑗) − 𝑛2

𝑡(𝑥𝑗)|
)]

𝑘

𝑗=1
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𝐶𝑆𝑀3(𝒯1, 𝒯2) =
1

𝑘
∑cos [

𝜋

2
(
|𝑚1

𝑡(𝑥𝑗) − 𝑚2
𝑡(𝑥𝑗)|⋁|𝑖1

𝑡(𝑥𝑗) − 𝑖2
𝑡(𝑥𝑗)|

⋁|𝑛1
𝑡(𝑥𝑗) − 𝑛2

𝑡(𝑥𝑗)|⋁|𝑟1
𝑡(𝑥𝑗) − 𝑟2

𝑡(𝑥𝑗)|
)]

𝑘

𝑗=1

 

𝐶𝑆𝑀4(𝒯1, 𝒯2) =
1

𝑘
∑cos [

𝜋

4
(
|𝑚1

𝑡(𝑥𝑗) − 𝑚2
𝑡(𝑥𝑗)| + |𝑖1

𝑡(𝑥𝑗) − 𝑖2
𝑡(𝑥𝑗)|

+|𝑛1
𝑡(𝑥𝑗) − 𝑛2

𝑡(𝑥𝑗)| + |𝑟1
𝑡(𝑥𝑗) − 𝑟2

𝑡(𝑥𝑗)|
)]

𝑘

𝑗=1

 

Where the symbol "⋁" means the maximum operation. 

The SMs defined above will fulfil the following properties: 

1. 0 ≤ 𝐶𝑆𝑀𝑡(𝒯1, 𝒯2) ≤ 1 

2. 𝐶𝑆𝑀𝑡(𝒯1, 𝒯2) = 1 if and only if 𝒯1 = 𝒯2 

3. 𝐶𝑆𝑀𝑡(𝒯1, 𝒯2) = 𝐶𝑆𝑀𝑡(𝒯2, 𝒯1) 

4. If 𝒯3 = {(𝑥𝑗 , 𝑚3(𝑥𝑗), 𝑖3(𝑥𝑗), 𝑛3(𝑥𝑗)) | 𝑥𝑗 ∈ 𝑋} is a T-SFS on 𝑋 and 𝒯1 ⊆ 𝒯2 ⊆

𝒯3 then 𝐶𝑆𝑀𝑡(𝒯1, 𝒯3) ≤ 𝐶𝑆𝑀𝑡(𝒯1, 𝒯2) and 𝐶𝑆𝑀𝑡(𝒯1, 𝒯3) ≤ 𝐶𝑆𝑀𝑡(𝒯2, 𝒯3). 

where 𝑡 = 1,2,3,4. 

Proof: 1. As cosine function always lie in [0,1]  interval so it is obvious that 0 ≤

𝐶𝑆𝑀𝑡(𝒯1, 𝒯2) ≤ 1 for all 𝑡 = 1,2,3,4. 

2. Let us assume 𝒯1 = 𝒯2, then it means 𝑚1
𝑡(𝑥𝑗) = 𝑚2

𝑡(𝑥𝑗), 𝑖1
𝑡(𝑥𝑗) = 𝑖2

𝑡(𝑥𝑗), and 

𝑛1
𝑡(𝑥𝑗) = 𝑛2

𝑡(𝑥𝑗). 

⇒ |𝑚1
𝑡(𝑥𝑗) − 𝑚2

𝑡(𝑥𝑗)| = |𝑖1
𝑡(𝑥𝑗) − 𝑖2

𝑡(𝑥𝑗)| = |𝑛1
𝑡(𝑥𝑗) − 𝑛2

𝑡(𝑥𝑗)| = 0 

𝐶𝑆𝑀𝑡(𝒯1, 𝒯2) =
1

𝑘
∑cos[0]

𝑘

𝑗=1

 

𝐶𝑆𝑀𝑡(𝒯1, 𝒯2) =
1

𝑘
∑1

𝑘

𝑗=1

=
1

𝑘
× 𝑘 = 1 

      Conversely assume 𝐶𝑆𝑀𝑡(𝒯1, 𝒯2) = 1, then  

|𝑚1
𝑡(𝑥𝑗) − 𝑚2

𝑡(𝑥𝑗)| = |𝑖1
𝑡(𝑥𝑗) − 𝑖2

𝑡(𝑥𝑗)| = |𝑛1
𝑡(𝑥𝑗) − 𝑛2

𝑡(𝑥𝑗)| = 0 

       which means 𝑚1
𝑡(𝑥𝑗) = 𝑚2

𝑡(𝑥𝑗), 𝑖1
𝑡(𝑥𝑗) = 𝑖2

𝑡(𝑥𝑗), and 𝑛1
𝑡(𝑥𝑗) = 𝑛2

𝑡(𝑥𝑗). Thus 

𝒯1 = 𝒯2. 
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3. Consider 𝑡 = 1, 

𝐶𝑆𝑀1(𝒯1, 𝒯2) =
1

𝑘
∑cos [

𝜋

2
(
|𝑚1

𝑡(𝑥𝑗) − 𝑚2
𝑡(𝑥𝑗)|⋁|𝑖1

𝑡(𝑥𝑗) − 𝑖2
𝑡(𝑥𝑗)|

⋁|𝑛1
𝑡(𝑥𝑗) − 𝑛2

𝑡(𝑥𝑗)|
)]

𝑘

𝑗=1

 

=
1

𝑘
∑cos [

𝜋

2
(
|𝑚2

𝑡(𝑥𝑗) − 𝑚1
𝑡(𝑥𝑗)|⋁|𝑖2

𝑡(𝑥𝑗) − 𝑖1
𝑡(𝑥𝑗)|

⋁|𝑛2
𝑡(𝑥𝑗) − 𝑛1

𝑡(𝑥𝑗)|
)] = 𝐶𝑆𝑀1(𝒯2, 𝒯1)

𝑘

𝑗=1

 

Similarly, this can be proved for 𝑡 = 2,3,4. 

4. Consider 𝑡 = 1, If 𝒯1 ⊆ 𝒯2 ⊆ 𝒯3 then 𝑚1
𝑡(𝑥𝑗) ≤ 𝑚2

𝑡(𝑥𝑗) ≤ 𝑚3
𝑡(𝑥𝑗), 𝑖1

𝑡(𝑥𝑗) ≤

𝑖2
𝑡(𝑥𝑗) ≤ 𝑖3

𝑡(𝑥𝑗), and 𝑛1
𝑡(𝑥𝑗) ≥ 𝑛2

𝑡(𝑥𝑗) ≥ 𝑛3
𝑡(𝑥𝑗). Thus  

|𝑚1
𝑡(𝑥𝑗) − 𝑚2

𝑡(𝑥𝑗)| ≤ |𝑚1
𝑡(𝑥𝑗) − 𝑚3

𝑡(𝑥𝑗)| 

|𝑚2
𝑡(𝑥𝑗) − 𝑚3

𝑡(𝑥𝑗)| ≤ |𝑚1
𝑡(𝑥𝑗) − 𝑚3

𝑡(𝑥𝑗)| 

|𝑖1
𝑡(𝑥𝑗) − 𝑖2

𝑡(𝑥𝑗)| ≤ |𝑖1
𝑡(𝑥𝑗) − 𝑖3

𝑡(𝑥𝑗)| 

|𝑖2
𝑡(𝑥𝑗) − 𝑖3

𝑡(𝑥𝑗)| ≤ |𝑖1
𝑡(𝑥𝑗) − 𝑖3

𝑡(𝑥𝑗)| 

|𝑛1
𝑡(𝑥𝑗) − 𝑛2

𝑡(𝑥𝑗)| ≤ |𝑛1
𝑡(𝑥𝑗) − 𝑛3

𝑡(𝑥𝑗)| 

|𝑛2
𝑡(𝑥𝑗) − 𝑛3

𝑡(𝑥𝑗)| ≤ |𝑛1
𝑡(𝑥𝑗) − 𝑛3

𝑡(𝑥𝑗)| 

So 𝐶𝑆𝑀𝑡(𝒯1, 𝒯3) ≤ 𝐶𝑆𝑀𝑡(𝒯1, 𝒯2), and 𝐶𝑆𝑀𝑡(𝒯1, 𝒯3) ≤ 𝐶𝑆𝑀𝑡(𝒯2, 𝒯3). 

8.1.1.2. Definition  

Consider two T-SFSs on domain 𝑋, 𝒯1 = {(𝑥𝑗 , 𝑚1(𝑥𝑗), 𝑖1(𝑥𝑗), 𝑛1(𝑥𝑗)) | 𝑥𝑗 ∈ 𝑋} and 

𝒯2 = {(𝑥𝑗 , 𝑚2(𝑥𝑗), 𝑖2(𝑥𝑗), 𝑛2(𝑥𝑗)) | 𝑥𝑗 ∈ 𝑋} where (𝑗 = 1,2, … , 𝑘) and corresponding 

WVs to the decision criteria will be 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑘)
𝑇. Then four cosine SMs based 

on cosine function can be calculated as  

𝑊𝐶𝑆𝑀1(𝒯1, 𝒯2) =∑𝑤𝑗 cos [
𝜋

2
(
|𝑚1

𝑡(𝑥𝑗) − 𝑚2
𝑡(𝑥𝑗)|⋁|𝑖1

𝑡(𝑥𝑗) − 𝑖2
𝑡(𝑥𝑗)|

⋁|𝑛1
𝑡(𝑥𝑗) − 𝑛2

𝑡(𝑥𝑗)|
)]

𝑘

𝑗=1

 

𝑊𝐶𝑆𝑀2(𝒯1, 𝒯2) =∑𝑤𝑗 cos [
𝜋

4
(
|𝑚1

𝑡(𝑥𝑗) − 𝑚2
𝑡(𝑥𝑗)| + |𝑖1

𝑡(𝑥𝑗) − 𝑖2
𝑡(𝑥𝑗)|

+|𝑛1
𝑡(𝑥𝑗) − 𝑛2

𝑡(𝑥𝑗)|
)]

𝑘

𝑗=1
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𝑊𝐶𝑆𝑀3(𝒯1, 𝒯2) =∑𝑤𝑗 cos [
𝜋

2
(
|𝑚1

𝑡(𝑥𝑗) − 𝑚2
𝑡(𝑥𝑗)|⋁|𝑖1

𝑡(𝑥𝑗) − 𝑖2
𝑡(𝑥𝑗)|

⋁|𝑛1
𝑡(𝑥𝑗) − 𝑛2

𝑡(𝑥𝑗)|⋁|𝑟1
𝑡(𝑥𝑗) − 𝑟2

𝑡(𝑥𝑗)|
)]

𝑘

𝑗=1

 

𝑊𝐶𝑆𝑀4(𝒯1, 𝒯2) =∑𝑤𝑗 cos [
𝜋

4
(
|𝑚1

𝑡(𝑥𝑗) − 𝑚2
𝑡(𝑥𝑗)| + |𝑖1

𝑡(𝑥𝑗) − 𝑖2
𝑡(𝑥𝑗)|

+|𝑛1
𝑡(𝑥𝑗) − 𝑛2

𝑡(𝑥𝑗)| + |𝑟1
𝑡(𝑥𝑗) − 𝑟2

𝑡(𝑥𝑗)|
)]

𝑘

𝑗=1

 

Where the symbol "⋁" means the maximum operation. 

The weighted SMs defined above will fulfil the following properties: 

1. 0 ≤ 𝑊𝐶𝑆𝑀𝑡(𝒯1, 𝒯2) ≤ 1 

2. 𝑊𝐶𝑆𝑀𝑡(𝒯1, 𝒯2) = 1 if and only if 𝒯1 = 𝒯2 

3. 𝑊𝐶𝑆𝑀𝑡(𝒯1, 𝒯2) = 𝑊𝐶𝑆𝑀𝑡(𝒯2, 𝒯1) 

4. If 𝒯3 = {(𝑥𝑗 , 𝑚3(𝑥𝑗), 𝑖3(𝑥𝑗), 𝑛3(𝑥𝑗)) | 𝑥𝑗 ∈ 𝑋} is a T-SFS on 𝑋 and 𝒯1 ⊆ 𝒯2 ⊆

𝒯3 then 𝑊𝐶𝑆𝑀𝑡(𝒯1, 𝒯3) ≤ 𝑊𝐶𝑆𝑀𝑡(𝒯1, 𝒯2) and 𝑊𝐶𝑆𝑀𝑡(𝒯1, 𝒯3) ≤

𝑊𝐶𝑆𝑀𝑡(𝒯2, 𝒯3). 

8.1.2. Similarity Measures Based on Exponential Function 

In this subsection SMs based on exponential function were proposed. Some 

basic properties of these SMs are also discussed. Further these proposed are extended 

to weighted SMs. 

8.1.2.1. Definition  

Consider two T-SFSs on domain 𝑋, 𝒯1 = {(𝑥𝑗 , 𝑚1(𝑥𝑗), 𝑖1(𝑥𝑗), 𝑛1(𝑥𝑗)) | 𝑥𝑗 ∈ 𝑋} and 

𝒯2 = {(𝑥𝑗 , 𝑚2(𝑥𝑗), 𝑖2(𝑥𝑗), 𝑛2(𝑥𝑗)) | 𝑥𝑗 ∈ 𝑋} where (𝑗 = 1,2, … , 𝑘) then four SMs 

based on exponential function can be calculated as  

𝐸𝑆𝑀1(𝒯1, 𝒯2) =
1

𝑘
∑[21−(|𝑚1

𝑡 (𝑥𝑗)−𝑚2
𝑡 (𝑥𝑗)|⋁|𝑖1

𝑡(𝑥𝑗)−𝑖2
𝑡(𝑥𝑗)|⋁|𝑛1

𝑡 (𝑥𝑗)−𝑛2
𝑡 (𝑥𝑗)|) − 1]

𝑘

𝑗=1

 

𝐸𝑆𝑀2(𝒯1, 𝒯2) =
1

𝑘
∑[2

1−(
|𝑚1

𝑡 (𝑥𝑗)−𝑚2
𝑡 (𝑥𝑗)|⋁|𝑖1

𝑡(𝑥𝑗)−𝑖2
𝑡(𝑥𝑗)|

⋁|𝑛1
𝑡 (𝑥𝑗)−𝑛2

𝑡 (𝑥𝑗)|⋁|𝑟1
𝑡(𝑥𝑗)−𝑟2

𝑡(𝑥𝑗)|
)

− 1]

𝑘

𝑗=1

 

𝐸𝑆𝑀3(𝒯1, 𝒯2) =
1

𝑘
∑[21−

1
2
(|𝑚1

𝑡 (𝑥𝑗)−𝑚2
𝑡 (𝑥𝑗)|+|𝑖1

𝑡(𝑥𝑗)−𝑖2
𝑡(𝑥𝑗)|+|𝑛1

𝑡 (𝑥𝑗)−𝑛2
𝑡 (𝑥𝑗)|) − 1]

𝑘

𝑗=1
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𝐸𝑆𝑀4(𝒯1, 𝒯2) =
1

𝑘
∑[2

1−
1
2
(
|𝑚1

𝑡 (𝑥𝑗)−𝑚2
𝑡 (𝑥𝑗)|+|𝑖1

𝑡(𝑥𝑗)−𝑖2
𝑡(𝑥𝑗)|

+|𝑛1
𝑡 (𝑥𝑗)−𝑛2

𝑡(𝑥𝑗)|+|𝑟1
𝑡(𝑥𝑗)−𝑟2

𝑡(𝑥𝑗)|
)

− 1]

𝑘

𝑗=1

 

Where the symbol "⋁" means the maximum operation. 

The SMs defined above will fulfil the following properties: 

1. 0 ≤ 𝐸𝑆𝑀𝑡(𝒯1, 𝒯2) ≤ 1 

2. 𝐸𝑆𝑀𝑡(𝒯1, 𝒯2) = 1 if and only if 𝒯1 = 𝒯2 

3. 𝐸𝑆𝑀𝑡(𝒯1, 𝒯2) = 𝐸𝑆𝑀𝑡(𝒯2, 𝒯1) 

4. If 𝒯3 = {(𝑥𝑗 , 𝑚3(𝑥𝑗), 𝑖3(𝑥𝑗), 𝑛3(𝑥𝑗)) | 𝑥𝑗 ∈ 𝑋} is a T-SFS on 𝑋 and 𝒯1 ⊆ 𝒯2 ⊆

𝒯3 then 𝐸𝑆𝑀𝑡(𝒯1, 𝒯3) ≤ 𝐸𝑆𝑀𝑡(𝒯1, 𝒯2) and 𝐸𝑆𝑀𝑡(𝒯1, 𝒯3) ≤ 𝐸𝑆𝑀𝑡(𝒯2, 𝒯3). 

where 𝑡 = 1,2,3,4. 

Proof. 1. Trivially holds 

2. Let us assume 𝒯1 = 𝒯2, then it means 𝑚1
𝑡(𝑥𝑗) = 𝑚2

𝑡(𝑥𝑗), 𝑖1
𝑡(𝑥𝑗) = 𝑖2

𝑡(𝑥𝑗), and 

𝑛1
𝑡(𝑥𝑗) = 𝑛2

𝑡(𝑥𝑗). 

⇒ |𝑚1
𝑡(𝑥𝑗) − 𝑚2

𝑡(𝑥𝑗)| = |𝑖1
𝑡(𝑥𝑗) − 𝑖2

𝑡(𝑥𝑗)| = |𝑛1
𝑡(𝑥𝑗) − 𝑛2

𝑡(𝑥𝑗)| = 0 

𝐸𝑆𝑀𝑡(𝒯1, 𝒯2) =
1

𝑘
∑21 − 1

𝑘

𝑗=1

 

𝐸𝑆𝑀𝑡(𝒯1, 𝒯2) =
1

𝑘
∑1

𝑘

𝑗=1

=
1

𝑘
× 𝑘 = 1 

Conversely assume 𝐸𝑆𝑀𝑡(𝒯1, 𝒯2) = 1, then  

|𝑚1
𝑡(𝑥𝑗) − 𝑚2

𝑡(𝑥𝑗)| = |𝑖1
𝑡(𝑥𝑗) − 𝑖2

𝑡(𝑥𝑗)| = |𝑛1
𝑡(𝑥𝑗) − 𝑛2

𝑡(𝑥𝑗)| = 0 

which means 𝑚1
𝑡(𝑥𝑗) = 𝑚2

𝑡(𝑥𝑗), 𝑖1
𝑡(𝑥𝑗) = 𝑖2

𝑡(𝑥𝑗), and 𝑛1
𝑡(𝑥𝑗) = 𝑛2

𝑡(𝑥𝑗). Thus 𝒯1 =

𝒯2. 

3. Consider 𝑡 = 1,  

𝐸𝑆𝑀1(𝒯1, 𝒯2) =
1

𝑘
∑[21−(|𝑚1

𝑡 (𝑥𝑗)−𝑚2
𝑡 (𝑥𝑗)|⋁|𝑖1

𝑡(𝑥𝑗)−𝑖2
𝑡(𝑥𝑗)|⋁|𝑛1

𝑡 (𝑥𝑗)−𝑛2
𝑡 (𝑥𝑗)|) − 1]

𝑘

𝑗=1
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=
1

𝑘
∑[21−(|𝑚2

𝑡 (𝑥𝑗)−𝑚1
𝑡 (𝑥𝑗)|⋁|𝑖2

𝑡(𝑥𝑗)−𝑖1
𝑡(𝑥𝑗)|⋁|𝑛2

𝑡 (𝑥𝑗)−𝑛1
𝑡 (𝑥𝑗)|) − 1]

𝑘

𝑗=1

= 𝐸𝑆𝑀1(𝒯2, 𝒯1) 

Similarly, this can be proved for 𝑡 = 2,3,4. 

4. Consider 𝑡 = 1, If 𝒯1 ⊆ 𝒯2 ⊆ 𝒯3 then 𝑚1
𝑡(𝑥𝑗) ≤ 𝑚2

𝑡(𝑥𝑗) ≤ 𝑚3
𝑡(𝑥𝑗), 𝑖1

𝑡(𝑥𝑗) ≤

𝑖2
𝑡(𝑥𝑗) ≤ 𝑖3

𝑡(𝑥𝑗), and 𝑛1
𝑡(𝑥𝑗) ≥ 𝑛2

𝑡(𝑥𝑗) ≥ 𝑛3
𝑡(𝑥𝑗). Thus  

|𝑚1
𝑡(𝑥𝑗) − 𝑚2

𝑡(𝑥𝑗)| ≤ |𝑚1
𝑡(𝑥𝑗) − 𝑚3

𝑡(𝑥𝑗)| 

|𝑚2
𝑡(𝑥𝑗) − 𝑚3

𝑡(𝑥𝑗)| ≤ |𝑚1
𝑡(𝑥𝑗) − 𝑚3

𝑡(𝑥𝑗)| 

|𝑖1
𝑡(𝑥𝑗) − 𝑖2

𝑡(𝑥𝑗)| ≤ |𝑖1
𝑡(𝑥𝑗) − 𝑖3

𝑡(𝑥𝑗)| 

|𝑖2
𝑡(𝑥𝑗) − 𝑖3

𝑡(𝑥𝑗)| ≤ |𝑖1
𝑡(𝑥𝑗) − 𝑖3

𝑡(𝑥𝑗)| 

|𝑛1
𝑡(𝑥𝑗) − 𝑛2

𝑡(𝑥𝑗)| ≤ |𝑛1
𝑡(𝑥𝑗) − 𝑛3

𝑡(𝑥𝑗)| 

|𝑛2
𝑡(𝑥𝑗) − 𝑛3

𝑡(𝑥𝑗)| ≤ |𝑛1
𝑡(𝑥𝑗) − 𝑛3

𝑡(𝑥𝑗)| 

So 𝐸𝑆𝑀𝑡(𝒯1, 𝒯3) ≤ 𝐸𝑆𝑀𝑡(𝒯1, 𝒯2), and 𝐸𝑆𝑀𝑡(𝒯1, 𝒯3) ≤ 𝐸𝑆𝑀𝑡(𝒯2, 𝒯3). 

8.1.2.2. Definition  

Consider two T-SFSs on domain 𝑋, 𝒯1 = {(𝑥𝑗 , 𝑚1(𝑥𝑗), 𝑖1(𝑥𝑗), 𝑛1(𝑥𝑗)) | 𝑥𝑗 ∈ 𝑋} and 

𝒯2 = {(𝑥𝑗 , 𝑚2(𝑥𝑗), 𝑖2(𝑥𝑗), 𝑛2(𝑥𝑗)) | 𝑥𝑗 ∈ 𝑋} where (𝑗 = 1,2, … , 𝑘) and corresponding 

WVs to the decision criteria will be 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑘)
𝑇. Then four SMs based on 

exponential function can be calculated as  

𝑊𝐸𝑆𝑀1(𝒯1, 𝒯2) =∑𝑤𝑗 [2
1−(|𝑚1

𝑡 (𝑥𝑗)−𝑚2
𝑡 (𝑥𝑗)|⋁|𝑖1

𝑡(𝑥𝑗)−𝑖2
𝑡(𝑥𝑗)|⋁|𝑛1

𝑡 (𝑥𝑗)−𝑛2
𝑡 (𝑥𝑗)|) − 1]

𝑘

𝑗=1

 

𝑊𝐸𝑆𝑀2(𝒯1, 𝒯2) =∑𝑤𝑗 [2
1−(

|𝑚1
𝑡 (𝑥𝑗)−𝑚2

𝑡 (𝑥𝑗)|⋁|𝑖1
𝑡(𝑥𝑗)−𝑖2

𝑡(𝑥𝑗)|

⋁|𝑛1
𝑡 (𝑥𝑗)−𝑛2

𝑡 (𝑥𝑗)|⋁|𝑟1
𝑡(𝑥𝑗)−𝑟2

𝑡(𝑥𝑗)|
)

− 1]

𝑘

𝑗=1

 

𝑊𝐸𝑆𝑀3(𝒯1, 𝒯2) =∑𝑤𝑗 [2
1−

1
2
(|𝑚1

𝑡 (𝑥𝑗)−𝑚2
𝑡 (𝑥𝑗)|+|𝑖1

𝑡(𝑥𝑗)−𝑖2
𝑡(𝑥𝑗)|+|𝑛1

𝑡 (𝑥𝑗)−𝑛2
𝑡(𝑥𝑗)|) − 1]

𝑘

𝑗=1
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𝑊𝐸𝑆𝑀4(𝒯1, 𝒯2) =∑𝑤𝑗 [2
1−

1
2
(
|𝑚1

𝑡 (𝑥𝑗)−𝑚2
𝑡 (𝑥𝑗)|+|𝑖1

𝑡(𝑥𝑗)−𝑖2
𝑡(𝑥𝑗)|

+|𝑛1
𝑡 (𝑥𝑗)−𝑛2

𝑡 (𝑥𝑗)|+|𝑟1
𝑡(𝑥𝑗)−𝑟2

𝑡(𝑥𝑗)|
)

− 1]

𝑘

𝑗=1

 

Where the symbol "⋁" means the maximum operation. 

The weighted SMs defined above will fulfil the following properties: 

1. 0 ≤ 𝑊𝐸𝑆𝑀𝑡(𝒯1, 𝒯2) ≤ 1 

2. 𝑊𝐸𝑆𝑀𝑡(𝒯1, 𝒯2) = 1 if and only if 𝒯1 = 𝒯2 

3. 𝑊𝐸𝑆𝑀𝑡(𝒯1, 𝒯2) = 𝑊𝐸𝑆𝑀𝑡(𝒯2, 𝒯1) 

4. If 𝒯3 = {(𝑥𝑗 , 𝑚3(𝑥𝑗), 𝑖3(𝑥𝑗), 𝑛3(𝑥𝑗)) | 𝑥𝑗 ∈ 𝑋} is a T-SFS on 𝑋 and 𝒯1 ⊆ 𝒯2 ⊆

𝒯3 then 𝑊𝐸𝑆𝑀𝑡(𝒯1, 𝒯3) ≤ 𝑊𝐸𝑆𝑀𝑡(𝒯1, 𝒯2) and 𝑊𝐸𝑆𝑀𝑡(𝒯1, 𝒯3) ≤

𝑊𝐸𝑆𝑀𝑡(𝒯2, 𝒯3). 

where 𝑡 = 1,2,3,4. 

8.2. Application for Pattern Recognition and MADM problems 

In this section, the reliability of proposed SMs is checked by developing an 

application for pattern recognition and MADM problems. 

8.2.1. Numerical Example for Pattern Recognition 

Let us consider three known patterns 𝑋 = {𝑥1, 𝑥2, 𝑥3} which are characterized by the 

T-SFSs as: 

𝒯1 = {(0.81,0.37,0.63), (0.71,0.08,0.57), (0.87,0.24,0.56), (0.39,0.13,0.74)} 

𝒯2 = {(0.77,0.56,0.19), (0.91,0.25,0.39), (0.72,0.49,0.62), (0.56,0.12,0.47)} 

𝒯3 = {(0.64,0.58,0.47), (0.65,0.14,0.55), (0.63,0.07,0.57), (0.78,0.34,0.51)} 

And one unknown Pattern 

𝒯4 = {(0.79,0.48,0.51), (0.84,0.11,0.5), (0.69,0.22,0.55), (0.47,0.1,0.74)} 

Here all values lie in T-spherical fuzzy environment for 𝑡 = 3. In order to find the 

pattern of 𝒯4, the proposed SMs are calculated as listed in Table 75. Where 𝑙 = 1,2,3 

Table 75 Similarity Measures 

 𝒯1 𝒯2 𝒯3 
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𝐶𝑆𝑀1(𝒯𝑙, 𝒯4) 0.9327 0.9811 0.9102 

𝐶𝑆𝑀2(𝒯𝑙, 𝒯4) 0.9757 0.9857 0.9631 

𝐶𝑆𝑀3(𝒯𝑙, 𝒯4) 0.9302 0.9694 0.9102 

𝐶𝑆𝑀4(𝒯𝑙, 𝒯4) 0.9268 0.9647 0.8967 

𝐸𝑆𝑀1(𝒯𝑙 , 𝒯4) 0.7158 0.8391 0.6874 

𝐸𝑆𝑀2(𝒯𝑙 , 𝒯4) 0.7124 0.8030 0. 6874 

𝐸𝑆𝑀3(𝒯𝑙 , 𝒯4) 0.8169 0.8572 0.7913 

𝐸𝑆𝑀4(𝒯𝑙 , 𝒯4) 0.6997 0.7872 0.6654 

Their rankings are listed in Table 76. 

Table 76 Rankings 

 Rankings 

𝐶𝑆𝑀1(𝒯𝑙, 𝒯4) 𝒯2 ≥ 𝒯1 ≥ 𝒯3 

𝐶𝑆𝑀2(𝒯𝑙, 𝒯4) 𝒯2 ≥ 𝒯1 ≥ 𝒯3 

𝐶𝑆𝑀3(𝒯𝑙, 𝒯4) 𝒯2 ≥ 𝒯1 ≥ 𝒯3 

𝐶𝑆𝑀4(𝒯𝑙, 𝒯4) 𝒯2 ≥ 𝒯1 ≥ 𝒯3 

𝐸𝑆𝑀1(𝒯𝑙 , 𝒯4) 𝒯2 ≥ 𝒯1 ≥ 𝒯3 

𝐸𝑆𝑀2(𝒯𝑙 , 𝒯4) 𝒯2 ≥ 𝒯1 ≥ 𝒯3 

𝐸𝑆𝑀3(𝒯𝑙 , 𝒯4) 𝒯2 ≥ 𝒯1 ≥ 𝒯3 

𝐸𝑆𝑀4(𝒯𝑙 , 𝒯4) 𝒯2 ≥ 𝒯1 ≥ 𝒯3 

As SM between 𝒯2 and 𝒯4 is greater so they belong to same pattern. 

8.2.2. Numerical Example Strategy Decision Making Problem 

A company wants to launch a new product and owner of a company have to choose one 

strategy from the following three strategies: 

𝓈1: Make product for poor persons 
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𝓈2: Make product for rich persons 

𝓈3: Make product for both poor and rich person 

The decision maker have to evaluate these strategies under the consideration of 

following attributes: 

𝓆1: Barriers in the development 

𝓆2: Brisk of loss 

𝓆3: Growth analysis 

𝓆4: Impact on environment 

having a WV 𝑤 = (0.2,0.25,0.35,0.2)𝑇. Decision maker evaluate these alternatives 

with respect to given attributes and provide the data in T-spherical fuzzy environment 

as listed in Table 77: 

Table 77 Decision Matrix 

 𝓆1 𝓆2 𝓆3 𝓆4 

𝓈1 (0.75,0.14,0.33) (0.63,0.08,0.29) (0.47,0.34,0.64) (0.57,0.11,0.36) 

𝓈2 (0.81,0.25,0.41) (0.59,0.12,0.35) (0.59,0.42,0.19) (0.66,0.26,0.44) 

𝓈3 (0.77,0.29,0.22) (0.71,0.18,0.36) (0.61,0.1,0.49) (0.50,0.37,0.40) 

𝓈 (0.66,0.23,0.31) (0.91,0.07,0.39) (0.57,0.30,0.30) (0.59,0.17,0.41) 

The SMs of three alternatives {𝓈1, 𝓈2, 𝓈3} with respect to 𝓈 will be as listed in Table 78 

Table 78 Weighted Similarity Measures 

 𝓈1 𝓈2 𝓈3 

𝑊𝐶𝑆𝑀1(𝓈𝑙, 𝓈4) 0.8974 0.9153 0.9497 

𝑊𝐶𝑆𝑀2(𝓈𝑙, 𝓈4) 0.9572 0.9696 0.9748 

𝑊𝐶𝑆𝑀3(𝓈𝑙, 𝓈4) 0.8789 0.8959 0.9497 

𝑊𝐶𝑆𝑀4(𝓈𝑙, 𝓈4) 0.8706 0.8913 0.9357 

𝑊𝐸𝑆𝑀1(𝓈𝑙, 𝓈4) 0.6875 0.7376 0.7601 
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𝑊𝐸𝑆𝑀2(𝓈𝑙, 𝓈4) 0.6602 0.6973 0.7601 

𝑊𝐸𝑆𝑀3(𝓈𝑙, 𝓈4) 0.7854 0.8150 0.8189 

𝑊𝐸𝑆𝑀4(𝓈𝑙, 𝓈4) 0.6467 0.6845 0.7259 

The rankings of alternatives are listed in Table 79 

Table 79 Rankings 

 Rankings 

𝑊𝐶𝑆𝑀1(𝓈𝑙, 𝓈4) 𝓈3 ≥ 𝓈2 ≥ 𝓈1 

𝑊𝐶𝑆𝑀2(𝓈𝑙, 𝓈4) 𝓈3 ≥ 𝓈2 ≥ 𝓈1 

𝑊𝐶𝑆𝑀3(𝓈𝑙, 𝓈4) 𝓈3 ≥ 𝓈2 ≥ 𝓈1 

𝑊𝐶𝑆𝑀4(𝓈𝑙, 𝓈4) 𝓈3 ≥ 𝓈2 ≥ 𝓈1 

𝑊𝐸𝑆𝑀1(𝓈𝑙, 𝓈4) 𝓈3 ≥ 𝓈2 ≥ 𝓈1 

𝑊𝐸𝑆𝑀2(𝓈𝑙, 𝓈4) 𝓈3 ≥ 𝓈2 ≥ 𝓈1 

𝑊𝐸𝑆𝑀3(𝓈𝑙, 𝓈4) 𝓈3 ≥ 𝓈2 ≥ 𝓈1 

𝑊𝐸𝑆𝑀4(𝓈𝑙, 𝓈4) 𝓈3 ≥ 𝓈2 ≥ 𝓈1 

Since SM between 𝓈3 and 𝓈 is greater so 𝓈3 is better strategy for a company to adopt. 

8.3. Comparative Analysis 

In this section some conditions are discussed under which the proposed SMs 

can reduced to other tools of uncertainty like SFS, PFS, q-ROPFS, PyFS and IFSs. 

Superiority of proposed SMs is proved with the help of an example.  

For any two T-SFSs on domain 𝑋, 𝒯1 = {(𝑥𝑗 , 𝑚1(𝑥𝑗), 𝑖1(𝑥𝑗), 𝑛1(𝑥𝑗)) | 𝑥𝑗 ∈ 𝑋} and 

𝒯2 = {(𝑥𝑗 , 𝑚2(𝑥𝑗), 𝑖2(𝑥𝑗), 𝑛2(𝑥𝑗)) | 𝑥𝑗 ∈ 𝑋} where (𝑗 = 1,2, … , 𝑘) then consider SMs 

based on exponential as  

 

𝐸𝑆𝑀1(𝒯1, 𝒯2) =
1

𝑘
∑[2

1−(
|𝑚1

𝑡 (𝑥𝑗)−𝑚2
𝑡 (𝑥𝑗)|⋁|𝑖1

𝑡(𝑥𝑗)−𝑖2
𝑡(𝑥𝑗)|

⋁|𝑛1
𝑡 (𝑥𝑗)−𝑛2

𝑡 (𝑥𝑗)|
)

− 1]

𝑘

𝑗=1

 

 

(8.3.1) 

1. For 𝑡 = 2, the equation (8.3.1) becomes valid for SFSs 
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𝐸𝑆𝑀1(𝒯1, 𝒯2) =
1

𝑘
∑[21−(|𝑚1

2(𝑥𝑗)−𝑚2
2(𝑥𝑗)|⋁|𝑖1

2(𝑥𝑗)−𝑖2
2(𝑥𝑗)|⋁|𝑛1

2(𝑥𝑗)−𝑛2
2(𝑥𝑗)|) − 1]

𝑘

𝑗=1

 

2. For 𝑡 = 1, the equation (8.3.1) becomes valid for PFSs  

𝐸𝑆𝑀1(𝒯1, 𝒯2) =
1

𝑘
∑[21−(|𝑚1(𝑥𝑗)−𝑚2(𝑥𝑗)|⋁|𝑖1(𝑥𝑗)−𝑖2(𝑥𝑗)|⋁|𝑛1(𝑥𝑗)−𝑛2(𝑥𝑗)|) − 1]

𝑘

𝑗=1

 

3. For 𝑖 = 0, the equation (8.3.1) become valid for q-ROPFSs  

𝐸𝑆𝑀1(𝒯1, 𝒯2) =
1

𝑘
∑[21−(|𝑚1

𝑡 (𝑥𝑗)−𝑚2
𝑡 (𝑥𝑗)|⋁|𝑛1

𝑡 (𝑥𝑗)−𝑛2
𝑡 (𝑥𝑗)|) − 1]

𝑘

𝑗=1

 

4. For 𝑖 = 0, 𝑡 = 2 the equation (8.3.1) become valid for PyFSs  

𝐸𝑆𝑀1(𝒯1, 𝒯2) =
1

𝑘
∑[21−(|𝑚1

2(𝑥𝑗)−𝑚2
2(𝑥𝑗)|⋁|𝑛1

2(𝑥𝑗)−𝑛2
2(𝑥𝑗)|) − 1]

𝑘

𝑗=1

 

5. For 𝑖 = 0, 𝑡 = 1 the equation (8.3.1) become valid for IFSs  

𝐸𝑆𝑀1(𝒯1, 𝒯2) =
1

𝑘
∑[21−(|𝑚1(𝑥𝑗)−𝑚2(𝑥𝑗)|⋁|𝑛1(𝑥𝑗)−𝑛2(𝑥𝑗)|) − 1]

𝑘

𝑗=1

 

Similarly all the proposed SMs can be reduced for other fuzzy structures like SFSs, 

PFSs, q-ROPFSs, PyFSs and IFSs by follow the conditions defined above. 

8.3.1. Example  

Consider two TSFNs       𝒯1 = (0.801,0.401,0.701), 𝒯2 = (0.8,0.4,0.7) 

The different SMs calculate their similarity as listed in Table 80: 

Table 80 Different Similarity Measures 

 Similarity Measures 

           𝑆𝑀1(𝒯1, 𝒯2) [51] 1 

           𝑆𝑀2(𝒯1, 𝒯2) [51] 0.9985 

             𝑆𝑀3(𝒯1, 𝒯2) [51] 1 

𝐶𝑆𝑀1(𝒯1, 𝒯2) 1 

𝐶𝑆𝑀2(𝒯1, 𝒯2) 1 
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𝐶𝑆𝑀3(𝒯1, 𝒯2) 1 

𝐶𝑆𝑀4(𝒯1, 𝒯2) 1 

𝐸𝑆𝑀1(𝒯1, 𝒯2) 0.9973 

ESM2(𝒯1, 𝒯2) 0.9973 

ESM3(𝒯1, 𝒯2) 0.9946 

ESM4(𝒯1, 𝒯2) 0.9946 

In Table 6, different SMs were calculated of given data. It is clear that the existing SMs 

proposed in [51] and cosine SMs based on cosine function does not differentiate 

between 𝒯1 and 𝒯2 but the proposed SMs based on exponential function differentiate 

between 𝒯1 and 𝒯2. So this proves the accuracy of proposed ESMs. 
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Conclusion 

The whole thesis can be concluded as: 

In chapter 1, the basic definitions of different fuzzy structures are defined and 

some basic operations on these fuzzy frameworks are also discussed. In chapter 2, some 

SMs for interval-valued picture fuzzy information are proposed, include cosine SMs, 

SMs using cosine function, SMs using cotangent function, Set-theoretic SM, Grey SM, 

dice and generalized dice SMs for IvPFSs, and some basic properties of all these SMs 

are also discussed, then the proposed SMs are applied to decision making problems 

with the help of numerical examples. In addition, advantages of proposed works are 

also discussed. 

In chapter 3, some new product and power operations for T-SFS are introduced 

and based on new operations, some new geometric aggregation operations are defined. 

The generalization of new work is proved by using examples and remarks. Some 

properties of proposed operators are investigated and supported with examples. The 

new operators are applied in MADM process and results are studied. A comparison of 

new work is established with existing literature and its advantages over the existing 

work are discussed. 

In chapter 4, an extension of existing immediate probability, Choquet averaging 

and associated immediate probability averaging operators are developed by utilizing 

the concept of T-SFSs. In it, it is pointed out that the existing operators have some 

limitations and decision makers are not free to make a decision freely, and they fail to 

work when the information is given in PyFSs, PFSs, SFSs and T-SFSs. To overcome 

this shortcoming, some averaging aggregation operators are defined in most 

generalized tool of uncertainty called T-SFSs but they also fail under some conditions. 

To overcome this defect, some interactive averaging operators are defined and a 

comparison between these proposed operators is developed with the help of an example. 

The existing score values have shortcoming that they do not involve abstinence so new 

score function is proposed in which all degrees are involved and with the help of this 

new score function the different aggregated values are compared. To check the 

reliability an application of MADM problem is developed. The advantages of proposed 

work are also discussed. The comparative study of existing and proposed operators is 

also developed with the help of an example. 
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In chapter 5, some geometric and interactive geometric operators are developed 

by utilizing the concept of T-SFSs. In it, the main focus is on Ass.IP-T-SFOWG and 

Ass.IP-T-SFOWIG operators because associated immediate probability geometric 

aggregation operators reflect the interaction among all subsets of states of nature. As 

well as the proposed work has another advantage that these operators are proposed by 

utilizing the concept of T-SFSs so we can reduce the proposed operators under some 

conditions to SFSs, PFSs, PyFSs, IFSs. A comparison between geometric and 

interactive geometric operators is also developed. The superiority of any two TSFNs is 

checked using newly developed score function because the existing score function does 

not involve abstinence. An algorithm is established for MADM problem and a 

numerical example is also solved using that algorithm. Some conditions that reduce 

proposed operators to other fuzzy structures are discussed in the advantages section and 

a comparative study of proposed and existing work is also established.  

In chapter 6, some Einstein operations are defined for T-SFSs and based on 

these operations some improved Einstein averaging aggregation operators and Einstein 

geometric aggregation operators are defined. Some properties of these aggregation 

operators are also discussed. The validity of proposed operators is checked with the 

help of the MADM problem. The comparative analysis between existing and proposed 

work is also discussed in which some conditions are studied under which the proposed 

operators can be reduced to other tools of uncertainty like IFSs, PyFSs, q-ROPFSs, 

PFSs, SFSs. Some examples are also discussed in which the superiority of proposed 

operators is proved. The advantages of proposed operators are also discussed. 

In chapter 7, some new Einstein interactive operational laws are proposed. On 

the basis of these operational laws T-spherical Einstein interactive geometric and T-

spherical Einstein interactive averaging operators are proposed. We validate these 

operators with the help of an application in MADM. After that, some conditions are 

discussed on which the proposed operators can reduce to other fuzzy frameworks. A 

comparison of proposed and existing work is also established and explained using an 

example. 

In chapter 8, some cosine and weighted cosine SMs based on cosine function 

are proposed for most generalized fuzzy structure called T-SFS. Along with this some 

SMs based on the exponential function are also proposed for T-SFSs. Pattern 
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recognition problems and strategic decision making problems are investigated using 

proposed SMs. Then a comparative analysis is developed in which some conditions are 

discussed through which the proposed SMs can be reduced to other fuzzy structures. 

An example is also discussed in which it is proved that the proposed SMs based on 

exponential function has much better distinguishability than existing SMs. 

In future, there is scope to extend the proposed work to different frameworks 

and applied these aggregation operators and SMs to different fields. We also aim to 

generalize these operators and SMs in the field of T-spherical fuzzy soft sets. 
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