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0.1. Introduction

To deal with imprecise and uncertain events has always been a challenging task
as imprecision and vagueness lie in almost every field of science. To serve the goal,
Zadeh [1] proposed the notion of fuzzy set (FS) where he described the uncertainty of
an object/event by a membership grade m that has a value from the interval [0, 1]. The
value "0" means that the element does not belong to the set and the value "1" means
that the element completely belongs to that set. The value between "0" and "1" tells the
grade that how much an element belongs to that set. So the membership grade
represents the uncertainty of human opinion. This uncertainty can be used to solve

many real-life problems e.g. decision making [2], pattern recognition [3], etc.

In FS theory, information is given in only one direction but most of the human
opinions are not unidirectional e.g. if someone is giving his opinion about some mobile
he will discuss his advantages as well as disadvantages. So, FS does not fully expressing
human opinion. To overcome this issue, Atanassov [4] proposed the notion of the
intuitionistic fuzzy set (IFS) based on two grades m and n representing the membership
and non-membership degree of an object with the condition that the sum of m and n
must be less than or equal to 1. The IFS has proven to be useful in many areas like
decision making [5, 6], pattern recognition [7], medical diagnosis [8], etc.

With the help of IFS, any uncertain event can be modeled by using two grades
m and n but in real life situation, the sum of m and n may exceeds 1 because the
opinion-makers evaluate these values separately. To deal with that type of information
in which value of m and n exceeds 1, Yager [9] proposed the idea of the Pythagorean
fuzzy set (PyFS) based on two grades m and n with the condition that the sum of
squares of m and n must be less than or equal to 1. PyFS provides a considerably larger
range for the values of m and n to be chosen but still, it has limited space. To obtain a
space of membership and non-membership grades with no limitation, Yager [10]
proposed the framework of g-rung orthopair fuzzy set (q-ROPFS) with the condition
that the sum of the qth power of m and n must be less than or equal to 1, for a positive
integer g. PyFSs and q-ROPFSs are used to solve many real-life problems such as
decision making [11, 12], pattern recognition [13], and medical diagnosis [14], etc. The

constraints of these mentioned fuzzy frameworks are discussed in Table 1.



Table 1 (fuzzy frameworks with their limitations)

Fuzzy Structures Functions Limitations on Functions
FS m 0<m<1
IFS (m,n) 0<m+n<1i
PYFS (m,n) 0<m?+n?<1
g-ROPFS (m,n) 0<mi+ni<lqeZt

All fuzzy models described in [1, 4, 9, 10] either use one membership grade to
model an event or two but all real-life events cannot always be modeled by using these
types of fuzzy frameworks. As in circumstances of voting where opinion cannot be
restricted to yes or no but some refusal degree and abstinence are also involved. To
model such an event, Cuong [15] used four grades membership "m", abstinence "i",
non-membership "n", and refusal grade "r" and developed the concept of picture fuzzy
set (PFS). Cuong's structure of PFS is of diverse nature but, likewise in IFSs, there is
the restriction in PFS too that the sum of all three membership grades must not exceed
1. PFS cannot handle the information if their sum exceeds from 1. To overcome this
Mahmood et al. [16] developed an important concept of spherical fuzzy set (SFS) and
consequently T-spherical fuzzy set (T-SFS). SFS has the condition that square sum of
m, i and n must not exceeds 1. A T-SFS allows the decision makers to choose any value
from the closed unit interval regardless of any restriction. PFS, SFS, and T-SFS are
used to solve many real-life problems such as decision making [17-19], etc. A
description of the constraints of PFS, SFS, and T-SFS is provided in Table 2.

Table 2 (Comparison of the restrictions of PFS, SFS, and TSFS)

Fuzzy Structures Functions Limitations on Functions
PFS (m,i,n) 0<m+i+n<s1
SFS (m,i,n) 0<m?+i’+n?<1
T-SFS (m,i,n) o<mt+it+nt<1,tez*

A geometrical comparison among the ranges of PFSs, SFSs and T-SFSs is
depicted in Figure 1 which is based on the constraints discussed in Table 2. All the
numbers within and on the space of PFSs represent picture fuzzy numbers; all the
numbers on and within the space of SFSs represent spherical fuzzy numbers; and all
the numbers on and within space of T-SFSs represent T-spherical fuzzy numbers for
t = 20.



Space of T-SFSs
fort =20

Space of SFSs

Space of PFSs

Figure 1 Comparison between PFSs, SFSs and T-SFS

From figure 1, it is easy to observe that T-SFS is much more generalized and
diverse than PFS and SFS. The space for T-SFS increases with any increment in the
value of t. This enables the experts to have much more values to assign to each
membership, abstinence and non-membership grades.

In FS theory, the value of m is a crisp number but in some circumstances a
human opinion may not be described by a single number. For this, a concept of interval-
valued fuzzy set (IVFS) was proposed by Zadeh [20]. In IVFS, the membership degree
is expressed by an interval which is closed sub-interval of [0, 1]. Like FSs, IVFSs have
many applications in the field of decision making, pattern recognition, etc. Similarly in
IFS, the value of "m" and "n" are expressed in the form of crisp number in which
information may be lost. So, Atanassov and Gargov [21] proposed the concept of
interval-valued IFS (IVIFS). In IVIFS, the degrees of membership and non-membership
are expressed by intervals which are closed sub-intervals of [0, 1] and they keep the
condition that the sum of the supremum of these sub-intervals must belong to [0, 1]. As
the value of membership and non-membership in terms of the interval has more
significance than the values in crisp number, therefore, the notions of PyFS and g-
ROPFS are also extended to interval-valued PyFS (IvVPyFS) by Peng and Yang [22]
with the condition that the square sum of the supremums of these sub-intervals must
belongs to [0, 1] and interval-valued g-ROPFS (lvg-ROPFS) by Joshi et al. [23] with
the condition that the sum of g* power of supremums of these sub-intervals must
belongs to [0, 1]. The concept of interval-valued is also applied to PFS as interval-

valued PFS (IVPFS) by Coung [15] with the condition that the sum of supremums of
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these sub-intervals must belongs to [0, 1] and T-SFS as interval-valued T-spherical
fuzzy set (IVT-SFS) by Ullah et al. [24] with the condition that the sum of t** power of
supremums of these sub-intervals must belongs to [0, 1].

The Similarity measure (SM) is a significant content in FS theory. SMs are
widely used in the field of pattern recognition, decision making, medical diagnosis, and
clustering. Many authors developed SMs for different tools of uncertainty like IFSs,
PyFSs, q-ROPFSs, PFSs, SFSs and T-SFSs. Ye [25] developed some cosine SMs for
IFSs. Hung and Yang [26] developed some SMs based on Hausdorff distance for IFS.
Chen and Chang [27] investigated the pattern recognition problem by using SMs
between IFSs based on transformation techniques. Garg and Kumar [28] proposed SMs
of IFSs and studied their applications in decision making. Some SMs for IFSs were
discussed in [29-32]. Nguyen et al. [33] developed SMs for PyFSs using an exponential
function. Wei and Wei [34] proposed some SMs based on cosine function for PyFS and
studied their applications in pattern recognition problems and medical diagnosis
problems. Some SMs for PyFSs were discussed in [35-38]. Wang et al. [39] proposed
SMs of g-ROPFS based on cosine function and studied their applications in scheme
selection and pattern recognition. Liu et al. [40] proposed distance measure and SM
between g-ROFSs. Peng and Dai [41] did a study on classroom teaching quality
assessment with g-ROPFSs based on multiparametric SM. Peng and Liu [42] proposed
information measures for g-ROPFSs. Some decision making problems for q-ROFSs are
solved in [43-45].

Wei [46] proposed some SMs for PFSs and studied their applications in mineral
field recognition and building material recognition. Wei [47] investigated strategic
decision making problem by using cosine SM for PFSs. Son [48] proposed generalized
PF distance measures. Wei and Gao [49] proposed picture fuzzy generalized dice SMs
and used proposed SMs to solve building material recognition problem. Rafiq et al. [50]
investigated decision making problem using cosine SMs for SFSs. Ullah et al. [51]
proposed some SMs for T-SFSs. Some SMs and decision making problems were
discussed in [52-54].

Multi-attribute decision making (MADM) is one of the most discussed
problems in FS theory due to its influence in engineering, economics and management
sciences. The study of MADM started in 1970 [55] to use the concept of FS in a

decision-making problem. Later, the concept of IFS and its aggregation tools have been
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greatly used in decision making problems. Xu [56] proposed some averaging
aggregation operators for IFSs. Wei [57] investigated group-decision making problem
using some induced geometric aggregation operators for IFSs. Liu [58] proposed some
Hamacher operators for interval-valued IFSs and studied their application in decision
making problem. Liu and Chen [59] solved group decision making problem with the
help of Heronian aggregation operators for IFSs. Liu and Li [60] introduced interval-
valued IF power Bonferroni operators and investigated their usefulness in decision
making problem. Garg [61] solved the MADM problem using intuitionistic fuzzy
averaging operators. Some methods for IFS to solve the MADM problem are discussed
in [62-66]. Wei and Lu [67] investigated the MADM problem with the help of
Pythagorean fuzzy power aggregation operators. Garg [68] proposed PyF operators
based on confidence levels and studied their application in decision making. Peng and
Yuan [69] discussed some fundamental properties of PyF operators and investigated
the MADM problem. Peng and Yang [70] discussed some fundamental properties of
interval-valued PyF operators and investigated the MADM problem. Wei [71]
introduced some interactive operators for PyFSs and investigated their usefulness in the
MADM problem. Joshi [72] proposed group-generalized averaging operators and
investigated their usefulness in MADM problems. Using PyFS some MADM problems
are solved in [73-76]. Peng et al. [77] investigated the MADM problem by using
exponential aggregation operators for q-ROPFS. Liu and Wang [78] used g-ROPF
Archimedean Bonferroni operators to solve the MADM problem. Some MADM
problems are studied using q-ROPFSs in [79-81].

Garg [82] proposed some averaging aggregation operators for PFS and solved
MADM problem using proposed operators. Jana et al. [83] proposed picture fuzzy
Dombi operator and studied their application in decision making. Wei [84] introduced
some aggregation operators for PFS and investigated their usefulness in MADM
problem. Wei [85] proposed picture fuzzy Hamacher operators and studied their
application in MADM problem. Khan et al. [86] investigated the MADM problem using
some logarithmic operators for PFS. Some aggregation operators for PFS are discussed
in [87, 88]. Liu et al. [89] proposed T-spherical fuzzy power Muirhead mean operators
and studied their application to MADM problem. Ullah et al. [90] proposed some T-
spherical fuzzy operators and investigated their application to MADM problem.Some

methods for solving MADM problem were discussed in [91-93].



In the theory of aggregation, weighted geometric and averaging operators are
the widely used operators and these are based on some t-norms and t-conorms.
Literature survey witnessed some other types of t-norms and t-conorms, respectively,
among them Einstein t-norm and t-conorms have got some serious attention. Based on
Einstein t-conorms and t-norms, several aggregation tools have been proposed for
various fuzzy algebraic structures. The Einstein weighted averaging (EWA) and
Einstein weighted geometric (EWG) operators of IFSs and interval valued IFSs have
been investigated in [94,95]. For PyFSs, EWA and Einstein interactive aggregation
operators are developed by [96,97], respectively. For further interesting work on
Einstein aggregation operators and their applications in MADM, one is referred to [98—
100].
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0.2. Chapter Wise Study
In this section, a short description of all chapters is discussed.
Chapter 1

In this chapter, some basic notions like FS, IVFS, IFS, IVIFS, PyFS, IVPYFS, g-
ROPFS, Ivg-ROPFS, PFS, IVPFS, SFS, and T-SFS are defined. Some basic operations
on them like union, intersection, sum, product, scalar multiplication, power etc. are also
defined on them. Further interactive operations are also defined on them. Based on
Einstein t-norm and t-conorm, Einstein sum, Einstein product, Einstein scalar
multiplication, and Einstein power is also defined. To rank different numbers of these

frameworks score and accuracy function are also defined.
Chapter 2

In this chapter, some SMs are developed for IVPFSs due to the significance of
describing the membership grades of PFS in terms of intervals. Several types cosine
SMs, cotangent SMs, set-theoretic and grey SMs, four types of dice SMs and
generalized dice SMs are developed. The properties of proposed SMs are also
demonstrated. Using the proposed SMs, two well-known problems mineral field
recognition and MADM are solved. The superiority of proposed SMs over existing SMs

is demonstrated through a comparative analysis.
Chapter 3

In this chapter, some new improved operational laws are developed and their
properties are studied. Based on newly developed operational laws, some series of
geometric interactive improved aggregation operators namely, T-spherical fuzzy
weighted geometric interactive averaging operator, T-spherical fuzzy ordered weighted
geometric interactive averaging operator and T-spherical fuzzy hybrid geometric
interactive averaging operator are proposed. The properties of proposed operators are
also studied. Then, an algorithm for solving MADM problem using proposed operator
is developed. The validity of proposed algorithm and operators is checked through
numerical example. Finally, the superiority of the proposed approach is explained with
a counter example to show the advantages of the proposed work.
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Chapter 4

In this chapter, a series of averaging aggregation operators and interactive
averaging aggregation operators under the features that each element is represented
with T-SF numbers are proposed. Various properties of these operators are also studied.
To rank T-SF numbers, a new score function is also proposed and some properties of
newly developed score function are also studied. An algorithm for solving MADM
problem using proposed operator is also developed. Solar energy is one of the best
renewable sources of energy and also an environment-friendly source so the selection
of solar cells is typically a multi-attribute decision-making problem. So the applicability
of the developed algorithm is demonstrated with a numerical example in the selection
of the solar cells and comparison of their performance with the several existing

approaches.
Chapter 5

In this chapter, a series of geometric aggregation operators and interactive
geometric aggregation operator is developed for T-SFS. Some properties like
boundedness, monotonicity and idempotency are also studied. To rank T-SF numbers,
a new score function is proposed in it. A comparison between geometric aggregation
operators and interactive geometric aggregation operator is also developed with the help
of a numerical example. An algorithm for solving MADM problem using proposed
operator is also developed. The validity of proposed operator is checked with the help
of an example. The advantages of proposed operators and a comparative analysis

between proposed and existing work is also studied.
Chapter 6

In this chapter, some Einstein averaging and geometric aggregation operators
for T-SFS namely T-SF EWA operator, T-SF Einstein ordered weighted averaging
operator, and T-SF Einstein hybrid averaging operators, T-SF EWG operator, T-SF
Einstein ordered weighted geometric operator, and T-SF Einstein hybrid geometric
operators are proposed. Some properties of these operators are also studied. The
MADM method is described in the environment of T-SFSs and is supported by a
comprehensive numerical example using the proposed Einstein aggregation tools. The
advantages of proposed operators are discussed in which some conditions are explained
under which the proposed operator can reduce to other fuzzy frameworks. The

12



comparison between existing and proposed work is also developed with the help of an

example.
Chapter 7

In this chapter, some Einstein interactive operational laws are proposed. Based
on these operational laws, a series of T-SF Einstein interactive averaging operators and
a series of T-SF Einstein interactive geometric operators are proposed. Then, an
algorithm is proposed to solve MADM problem. The algorithm is also validated by
solving a numerical problem. The advantages of proposed aggregation operators are
also discussed. The superiority of proposed operators over existing work is checked

with the help of an example.
Chapter 8

In this chapter, some SMs based on cosine function are proposed and also some
SMs based on exponential function are proposed. Some basic properties of these SMs
are also studied. Then by using proposed SMs, two well-known problems namely
pattern recognition and strategy decision making problems are solved. Some conditions
are discussed under which the proposed SMs can reduce to other fuzzy frameworks like
IFS, PYFS, q-ROPFS, SFS, and T-SFS. The superiority of proposed operators is also
validated with the help of an example.
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Chapter 1

Preliminaries

All the basic definitions of FS, IVFS, IFS, PyFS, g-ROPFS, PFS, SFS and T-
SFS are defined here. Along with these definitions some operations for these fuzzy
frameworks are also defined. Score and accuracy functions are usually used to rank the
given numbers in any fuzzy frameworks. So, score and accuracy functions for all
defined fuzzy environments are also defined. Some other definitions like fuzzy measure

and probability function are also defined in this section.
1.1. Fuzzy Set

To deal with imprecise and uncertain events has always been a challenging task
as imprecision and vagueness lie in almost every field of life. To serve the goal, Zadeh
[1] proposed the notion of FS where he described the uncertainty of an object/event by

a membership grade m that has a value from the unit interval [0, 1].
1.1.1. Definition [1]
A FS on a non-empty set X, is defined as

F = {(x,m(x))| X € X},

where m: X — [0, 1] is a membership function and a number m is called fuzzy number
(FN).

1.1.2. Definition [1]

Some operations on fuzzy numbers F, = (x,m,(x)) and F, = (x, m,(x)) are defined

as

1. F,CF,iffm, <m,

2. F{UF, = max{m,,m,}
3. F, NnF, = min{my, m,}
4

1.1.3. Definition [20]

An IVFS on a non-empty set X, is defined as

14



F ={(x,[m,(x), my(x)D| x € X},

In IVFS, membership value is given in term of interval where lower limit m; and upper

limit m,, are mappings such that m;, my;: X — [0, 1] with the condition that m; < my,.
1.2. Intuitionistic Fuzzy Set

Atanassov [4] proposed the notion of the IFS based on two grades membership
"m" and non-membership "n" of an object. IFSs have the condition that the sum of both
m and n must belongs to closed unit interval. Some operations like union, intersection,

sum, product, scalar multiplication, power etc. are also defined on IFSs.
1.2.1. Definition [4]

An IFS on X consists of membership and non-membership functions defined as I =
{(x,m(x),n(x)) | x € X} such that m,n: X — [0,1] with the condition 0 < m(x) +
n(x) < 1V x € X. Further, refusal grade of x in I is r(x) = 1 — (m(x) + n(x)) and

the pair (m, n) stands for intuitionistic fuzzy number (IFN).
1.2.2. Definition [4, 56, 63]
Some operations on IFNs I; = (m4,n,) and I, = (m,, n,) are defined as

L €hLiffmy <myn, =2n,

I, U I, = (max{m,,m,}, min{n,,n,})
I, N I, = (min{my, m,}, max{n,,n,})
If = (ny, my)

I ® I; = (my + my — mymy, nyn,)
L ® I; = (mymy,ny +ny —nyny)
th=0-1-m)5ni), 7>0
F=(m,1-1—-n)", 7>0

© N o g ~ w DdPE

1.2.3. Definition [61, 64]

Some interaction operations on IFNs I; = (m4,n,) and I, = (mm,, n,) are defined as

_ my; + my, —mym,,
L L@k = (<1 —m) (A —my) — (1 —my —ny)(1—my — nz))

2. L ®; I, = ((1 —-n)A-ny,)—(1—-m; —ny)(1—my, —ny),ny +ny, —

n1n2)
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3. TIl=(1_(1_m1)T,(1_m1)T_(1_m1_n1)r), T>0
4. IT=(A-n)"—-(A-m—-n)"1-(1A—-ny)%), >0

1.2.4. Definition [94]

Some Einstein operations on IFNs I; = (m4,n;) and I, = (m,, n,) are defined as

__ [ mitm, nqny
L L®eh= (1+m1m2' 1+(1—n1)(1—n2))
_ mim; ni+n;
2. LQel = (1+(1—m1)(1—m2)’1+n1nz)

3. 1l = ((Hml) —(1-my) 2n ), >0

1+m)T+(1-my)T’ 2-n)T+nl

4 If — ( 2mj (1+n¢)*-(1-ny) )’ >0

2-m)T+mi’ (1+n)T+(1-ny)7
1.2.5. Definition [56]
For any IFN I = (i, n), the score function is defined as,
SC(H=m-n
and the accuracy function is defined as
AC(D =m+n

The IFN which have greater score value will be superior to other. If the score of two
IFNs is equal, then we rank them using accuracy value and a number is called superior
if it has greater accuracy. If again accuracy values of two IFNs become equal, then both

numbers are considered as similar.
1.2.6. Definition [21]

An IVIFS on X consists of membership and non-membership functions defined as 7 =
{(x, [m,(x), my()], [n,(x),ny(x)]) | x € X} such that my, my,n,ny: X - [0,1]

with the condition 0 < my;(x) + ny(x) < 1V x € X. Further, refusal grade of x in J

is r(x) =[r(x),ry(x)] = [1 — (mU(x) + nU(x)), 1- (mL(x) + nL(x))] and the

pair ([my, my], [n,, ny]) stands for interval-valued IFN.
1.3. Pythagorean Fuzzy Set

Yager [9] proposed the notion of the PyFS based on two grades m and n of an

object with the condition that the square sum of m and n must belongs to closed unit
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interval. Some operations are also defined for PyFSs. To rank PyFN, score and accuracy

functions are defined.
1.3.1. Definition [9]

A PyFS on X consists of membership and non-membership functions defined as X =

{(x,m(x),n(x)) | x € X} such that m,n: X — [0,1] with the condition 0 < m?(x) +

n?(x) < 1V x € X. Further, refusal grade of x in X is (x) = \/1 — (mz(x) + n? (x))
and the pair (m, n) stands for Pythagorean fuzzy number (PyFN).

1.3.2. Definition [9, 69]

Some operations on PyFNs &, = (m4,n;) and X, = (m,, n,) are defined as

1. X, SR, iffmy <my,n; =2n,

2. 8y UR, = (max{my, m,}, min{n, n,})
3. Ry N Ky = (min{m,, m,}, max{n,,n,})
4

Ni = (n, my)

5. X, R, = (\/mf +m3 — mfm%,nlnz)

6. R, ® X, = (mymy,nf + 1 - nfﬂ%)

7. IR, = (\/1 —(1 —mf)f,n{), >0
8. NI = (m;, 1— (1—n§)r), >0
1.3.3. Definition [71]

Some interaction operations on PyFNs X&; = (m,,n,) and X, = (m,,n,) are defined

as

2 2 2.2
\/m1 +m; —mims, )

1L Ry BiR, = <
JaA-mHA-md) - A -m?—nH(1-m2 —nd)

2. Ry Qi R, =
(VA =m)@T=nd) = A —mf —nH(A - mj —nd),n] +n3 —nin3)

3. IR, = (\/1 —A-md), JA-—md) —(1-m? - nf)f), >0

4. NI = (J(l—n%)f— (1—mZ—n?)r,1— (1—n§)f), >0
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1.3.4. Definition [96]

Some Einstein operations on PyFNs X; = (my,ny) and X, = (m3, n,) are defined as
_ m2+m3 ning
1 R, DX, = <J1+m§m§ '\/1+(1—”%)(1_n§)>
_ mim3 ni+nj
2. Ry Qe Ry = <J1+(1—mf)(1—m%),\/Hn%n%)

3, o = jmmzfumzf J G

(14m}) +(1-m)"" [ (2-nd)"+(n})" |’

2(m3)" (1+nd)"~(1-n3)’

T
4 K= j(z—mm(mi)“j(1+n%)’+(1—n%)’ » 7>0

1.3.5. Definition [69]

For any PyFN X = (i, n), the score function is defined as,
SC(R) = m? —n?

and the accuracy function is defined as
AC(R) = m? + n?

The PyFN which have greater score value will be superior to other. If the score of two
PyFNs is equal, then we rank them using accuracy value and a number is called superior
if it has greater accuracy. If again accuracy values of two PyFNs become equal, then

both numbers are considered as similar.
1.3.6. Definition [22]

An IVPYFS on X consists of membership and non-membership functions defined as

N = {{x, [m;(x), my(x)], [n,(x),ny(x)]) | x € X} such that m,, my,n,ny:X -

[0,1] with the condition 0 < (my(x))” + (ny(x))* <1V x € X. Further, refusal

grade of X in N is r(x) = [r,(x),ry(x)] =

l\/l — ((mu(x))2 + (nu(x))z),Jl — ((mL(x))2 + (nL(x))z)l and the pair

([my, my], [n,, ny]) stands for interval-valued PyFN.
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1.4. g-Rung Orthopair Fuzzy Set

Yager [10] proposed the notion of the g-ROPFS based on two grades m and n
of an object with the condition that the sum of q*"* power of m and n degree must
belongs to closed unit interval. Some operations are also defined for q-ROPFSs. To

rank q-ROPFN, score and accuracy functions are defined.
1.4.1. Definition [10]

A g-ROPFS on X consists of membership and non-membership functions defined as
Q = {(x,m(x),n(x)) | x € X} such that m,n: X — [0,1] with the condition 0 <

mi(x) +n?(x) <1VxeXandq € Z*. Further, refusal grade of x in Q is r(x) =

q\/l — (m4(x) + n4(x)) and the pair (m,n) stands for g-rung othopair fuzzy number
(q-ROPFN).

1.4.2. Definition [10, 79]

Some operations on g-ROPFNs Q; = (my,n,) and Q, = (m,, n,) are defined as

1. Q1 c QZ iff mq < my, Ny = ny

2. 91U Q, = (max{m,,m,}, min{n,,n,})
3. 91 NQ, = (min{m,, m,}, max{n,, n,})
4

. Q(l: = (nliml)

q
5 0109 = (\/mf + mg - mfmg,n1n2>

a
6. 9,0, = <m1m2' Jnf + ng - n?n?)

7. TQI=<q\/1—(1—m‘17)T,nI>, >0
Qf=<mf,q\/1—(1—nf)r>, >0

o

1.4.3. Definition [79]

For any g-ROPFN Q = (m, n), the score function is defined as,
SC(Q) =m9—n1

and the accuracy function is defined as
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AC(Q) =m9+ nt

The g-ROPFN which have greater score value will be superior to other. If the score of
two g-ROPFNs is equal, then we rank them using accuracy value and a number is called
superior if it has greater accuracy. If again accuracy values of two g-ROPFNs become

equal, then both numbers are considered as similar.
1.4.4. Definition [23]

An Ivg-ROPFS on X consists of membership and non-membership functions defined
as Q = {(x,[m,(x),my()], [n,(x),ny(x)]) | x € X} such that m,, my,n;,ny: X -
[0,1] with the condition 0 < (my(x))" + (ny(x))? < 1V x € X. Further, refusal

grade of X in Q is r(x) = [r(x), ry(x)] =

lq\/l—((mu(x))q+(nu(x))q),q\/l—((mL(x))q+(nL(x))q) and the pair

([my, myl, [n, ny]) stands for interval-valued g-ROPFN.

1.5. Picture Fuzzy Set

Coung [15] proposed the notion of the PFS based on three grades membership
"m", abstinence "i" and non-membership "n" of an object. PFSs have the condition that
the sum of m, i and n must belongs to closed unit interval. Some operations like union,

intersection, sum, product, scalar multiplication, power etc. are also defined on PFSs.
1.5.1. Definition [15]

An PFS on X consists of membership, abstinence and non-membership functions
defined as P = {(x, m(x),i(x),n(x)) | x € X} such that m,i,n: X — [0,1] with the
condition 0 < m(x) + i(x) + n(x) < 1V x € X. Further, refusal grade of x in P is
r(x) =1— (m(x) +i(x) + n(x)) and the triplet (m,i,n) stands for picture fuzzy
number (PFN).

1.5.2. Definition [15, 82, 84]
Some operations on PFNs P, = (m4,i;,n,) and P, = (m,, i, n,) are defined as

1. Pl c Pz |ffm1 sz,il S iz,nl an
2. Py U P, = (max{m,, m,}, min{iy, iy}, min{ny, ny})

3. P, NP, = (min{m,,m,}, min{iy, i,}, max{n,,n,})
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P = (ny,i;,my)

Py @ P, = (my + my — mymy, iyip, nyn,)

Py Q P, = (mymy, iy + iy — iyl Ny + My — NyNy)
=01 -1-m)%if,n}), >0
PP=(mj,1-(1-i)51-(1-n)%, >0

© N o 0 &

1.5.3. Definition [84]
For any PFN P = (m, i, n), the score function is defined as,
SC(P)=m—n
and the accuracy function is defined as
ACP)=m+i+n

The PFN which have greater score value will be superior to other. If the score of two
PFNs is equal, then we rank them using accuracy value and a number is called superior
if it has greater accuracy. If again accuracy values of two PFNs become equal, then

both numbers are considered as similar.
1.5.4. Definition [15]

An IVPES on X consists of membership, abstinence and non-membership functions
defined as P = {(x, [m; (x), my (x)], [i,(x), iy ()], [n,(x),ny(x)]) | x € X} such that
my, My, iy, iy, Ny, ny: X — [0,1] with the condition 0 < my(x) + iy(x) + ny(x) <
1V x € X. Further, the degree of refusal of x in P is r(x) = [r.(x),ry(x)] =
[1 - (mU(x) +iy(x) + nU(x)), 1-— (mL(x) +i(x)+ nL(x))] and the triplet

(m,i,n) = ([my, myl, [iL, iy], [n,, ny]) stands for interval-valued PFN.
1.6. Spherical Fuzzy Set

Mahmood et al. [16] proposed the notion of the SFS based on three grades
membership "m", abstinence "i" and non-membership "n" of an object with the
condition that the square sum of m, i and n degree must belongs to closed unit interval.
Some operations are also defined for SFSs. To rank SFN, score and accuracy functions

are defined.
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1.6.1. Definition [16]

A SFS on X consists of membership, abstinence and non-membership functions defined
as § = {(x,m(x),i(x),n(x)) | x € X} such that m,i,n: X — [0,1] with a condition

0 <m?(x) +i%(x) + n?(x) < 1V x € X. Further, refusal garde of x in S is r(x) =

\/1 — (m2(x) + i2(x) + n2(x)) and the triplet (m,i,n) stands for spherical fuzzy
number (SFN).

1.6.2. Definition [16]

Some operations on SFNs §; = (m4,i;,n;) and 8, = (m,, i,, n,) are defined as

1. § €S, iffmy <m,,i; <ing =n,

2. § US, = (max{m,,m,}, min{i,,i,}, min{n,,n,})
3. § NS, = (min{m,,m,}, min{iy, i}, max{n,,n,})
4

. 8f = (ny, iy, my)
1.6.3. Definition [16]
For any SFN § = (m, i, n), the score function is defined as,
SC(S) = m? — n?
and the accuracy function is defined as
AC(S) =m? +i?+n?

The SFN which have greater score value will be superior to other. If the score of two
SFNs is equal, then we rank them using accuracy value and a number is called superior
if it has greater accuracy. If again accuracy values of two SFNs become equal, then

both numbers are considered as similar.
1.7. T-Spherical Fuzzy Set

Mahmood et al. [16] proposed the notion of the T-SFS based on three grades
membership "m", abstinence "i" and non-membership "n" of an object with the
condition that the sum of t** power of m, i and n degree must belongs to closed unit
interval. Some operations are also defined for T-SFSs. To rank T-SFN, score and

accuracy functions are defined.
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1.7.1. Definition [16]

A T-SFS on X consists of membership, abstinence and non-membership functions
defined as 7 = {(x,m(x),i(x),n(x)) | x € X} such that m,i,n: X — [0,1] with the

condition 0 < mt(x) +i*(x) + n'(x) <1V x € Xand t € Z*. Further, refusal garde

of xinT isr(x) = i/l — (mt(x) + it(x) + nt(x)) and the triplet (m, i, n) stands for
T-spherical fuzzy number (T-SFN).

1.7.2. Definition [16]

Some operations on T-SFNs 7; = (my, i,n,) and 75, = (i, i, n,) are defined as

1. HCTiffmg <my,i; <iyn =n,

2. 73U T, = (max{my, m,}, min{i, i,}, min{n,, n,})
3. 71 N T; = (min{my, m,}, min{iy, i}, max{n,,n,})
4

. T =y, i,my)

— Y Y t t.,,t
5. 1Q7% = (m1m2: i1iz, Y0t +nf — nan)

6. 77 =(miy1-A— D) YT-A-nd7), t>0
1.7.3. Definition [16]
For any T-SFN T = (i, i, n), the score function is defined as,
SC(T) =mt —nt
and the accuracy function is defined as
AC(T) =mt+it +nt

The T-SFN which have greater score value will be superior to other. If the score of two
T-SFNs is equal, then we rank them using accuracy value and a number is called
superior if it has greater accuracy. If again accuracy values of two T-SFNs become

equal, then both numbers are considered as similar.
1.7.4. Definition [24]

An IVT-SFS on X consists of membership, abstinence and non-membership functions
defined as T = {{x, [m,(x), my (x)], [i,(x), iy ()], [n,(x), ny(x)]) | x € X} such that

my, my, i, iy, n,ny: X = [0,1] with the condition 0 < (mU(x))t + (iU(x))t +

23



(nU(x))tﬁl‘v’xEX. Further, the degree of refusal of x in T is r(x) =

[, (), 7y ()] =
[J 11— ((my() + (@) + (nu(x>)t)f\/1 = ()" + (1)  + (nL(x))t)]

and the pair ([my, myl, [iL, iy], [n, ny]) stands for interval-valued T-SFN.

1.8. Some Other Related Notions

In this section, some other related notions namely fuzzy measure and probability

function are defined in it.

1.8.1. Definition [66]

A fuzzy measure ©: 2X — [0,1] on a finite set X is defined as
. 0(p)=0;0X)=1
ii.  Forall X;,X, € X,ifX; € X, then 0(X;) < 0(X,)

The possible orderings of elements of X are presented by the permutation of X with k

elements forms a group X,,.

1.8.2. Definition [66]

The probability function B, on X defined by
B (xp1)) = O({xp)})sevvveee :
P, (%55)) = O({o 1y Xp2ys o er Ko }) = O((Xp(19r X2y o v Xp ity Do
Bo(%p00) = 1= 0({xp01) Xp2ys - o Xpe-1)})s

o)) =0.

where p = (p(1),p(2),......,p(k)) € X,, are called associated probabilities and

{P,} . isassociated probability class of .
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Chapter 2

Some Similarity Measures for Interval-valued Picture Fuzzy

Sets and Their Applications in Decision Making

SMs, distance measures and entropy measures are some common tools
considered to be applied to some interesting real-life phenomena including pattern
recognition, decision making, medical diagnosis and clustering. Further, interval-
valued picture fuzzy sets (IVPFSs) are effective and useful to describe the fuzzy
information. Therefore, this chapter aims to develop some similarity measures for
IVPFSs due to the significance of describing the grades of PFS in terms of intervals.
Several types, cosine similarity measures, cotangent SMs, set-theoretic and grey SMs,
four types of dice SMs and generalized dice SMs are developed. All the developed SMs
are validated, and their properties are demonstrated. Two well-known problems
including mineral field recognition problem and MADM problem are solved using the
newly developed SMs. The superiorities of developed SMs over the SMs of PFS, IVIFS
and IFS are demonstrated through a comparison and numerical examples.

2.1. Similarity Measures

In this section, some SMs like cosine SMs, cosine SMs based on cosine and
cotangent functions, grey SMs, set-theoretic SMs, dice SMs and generalized dice SMs
are defined for IVPFSs. Some basic properties of these SMs are also defined. In this

chapter, if stated otherwise we use m; = [my, myyl, m, = [my, myyl, ms =

[map, mayl, iy = [isg, iyl B2 = lian, iaul, i3 = lizn, izpl, 1 = [y, nayl, np =

[nor, napl, 13 = [ngp,nayl, Pr=(myinng), P, =(0myizn,) and Pz =

(mg, i3,n3).
2.1.1. Cosine Similarity Measures for IVPFSs

In this subsection, some cosine SMs and weighted cosine SMs for IVPFSs are

defined and some basic properties of these SMs are also discussed.
2.1.1.1. Definition
For any two IVPFNs P; and P, , an interval-valued picture fuzzy cosine SM (IvPFCSM)

between these two IVPFNs is defined as
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[vPFCSMX(P,, P,)

) My (o )may (%) + i10.(%) 120 (%) + s ()21 (%)
1 Z | +myy (%) may (%) + i1 (%) i20 (%) + 1y (%) 20 (%)
kj=1 \/ mi, (%) + if, (%) + niL(x) \/ m3, (%) + i3, (%) + 13, (%)

+mfu(xj) + ifu(x]-) + n%U(xj) +m%U(xj) + i%U(xj) + n%U(xj)

N

For k = 1 the above equation becomes correlation coefficient between IVPFSs.
2.1.1.2. Theorem
For any two IVPFNs P; and P,, cosine SM fulfils the following properties:

i. 0<IvPFCSM(P,,P,) <1.
ii. IvPFCSM(P,,P,) = IvPFCSM(P,,P,)
iii. For®P, =P, IvPFCSM*(P,,P,) = 1.

Proof: (i) As membership, abstinence and non-membership of both IvPFNs belong to
[0, 1], so it is obvious that IvPFCSM*(P;, P,) belongs to [0, 1].

(i) Holds trivially.
(iii) If Py = P, then my, = my, myy = myy, iy, = iy, by = by, My = Ny, and
Ny = Nay-

Then
[vPFCSM* (P, P,)

_ lzk: <me(xj) +if1 (%) + ndu(x) + miy () + i () + ngu(’“j))
ki \mi, () + i3, () +nfu(xg) +miy () + ify (x) + iy ()

_ 15k _ 1,
= ;Zj=1 = Ek =1.
2.1.1.3. Definition

For any two IVPFNs P, and P,, weighted cosine SM between these two IVPFNSs is

defined as

IvPFWCSM* (P, P,)
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ma () man (%) + i1.(%)i20. (%7) + 10, ()21 (%7)
_ z W, +myy (o) mau (%) + b (%) 20 (%) + 11w ()20 (%)
j=1 \\/ mﬁ(xj) + ifL(xj) + nfL(xj) \/ m%L(xj) + ii(xj) + n%L(x]')

+m2y (%) + 2 (x;) + ndy(x) +m3y () + i35 (%) + n2y(x))

Where w = (wy, ..., wy) is a weight vector (WV) satisfies w; € [0,1] and Zﬁ;l w; = 1.
2.1.1.4. Theorem

For any two IVPFNs P; and P,, the weighted cosine SM fulfils the following properties:

i. 0<IvPFWCSM'(P,P,) <1
ii. IvPFWCSM*(Py,P,) = IVPFWCSM*(P,,P;)
iii. For®P, =P, IvVPFWCSMY(P;,P,) =1

Proof: (i) As membership, abstinence and non-membership of both IvPFNs belong to
[0, 1], so it is obvious that [vPFW CSM* (P;, P,) belongs to [0, 1] .

(ii) Holds trivially.

(l“) If ?1 = :]32 then mlL = mZL, mlU = mzu, ilL = i2L1 ilU = izu, TllL = nZL and
Ny = Nay-

Then

[vPFWCSM(P,, P,)

_ \ miL (%) + £.(x) + ndu(x) + miy (%) + 3 (%) + ndu (%)

- Z " <me(xj) +if, () + nd () + miy (x) + ify (x) + "%U(xf)>

J=1

2.1.1.5. Definition

For any two IVPFNs P; and P,, the cosine and weighted cosine SM based on four

functions, between P, and P, are defined as
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[vPECSM2(P,, P,)
myp (x)ma (%) + i () iz (57) + map (x)m21. (%)
. +ry (%) 720 (%) + My () may (%) +
z 10 (%)i20 (%) + 11y ()20 (%) + 110 ()20 (%))
=t im2, (x) + i3, () + iy (x) m3, () +i3,() +nd,(x;)
+r12L(x]-) + mfu(xj) + +r22L(xj) + m%U(xj) +
ity () + iy (x) + 1% () | 3y (%) +ndy(x) + 7 (%)

ol

and

[vPFWCSM?(Py, P,)

myy (%)mar (%) + i1 (%) iz (%) + na (x)n2,. (%)
+11, ()21 (%) + may (3 )may (x;) +

10 (%) i20 (%) + 110 ()20 (%) + 110 (3) 720 (%))

k

=) w

=t mdy () + if () +nd(xg) [m3(xg) + i3, (%) + n3u(x)
+12 (%) + m¥y(x) + +12 () + m3y (%) +

iy (%) +nfy () + 15 (%) | 3y (%) + n3u(x) + 155 ()

Where WV w = (wy, ..., w;)" is with a condition that for j = 1,2, ..., k w; € [0,1] and

k —

2.1.1.6. Theorem

For any two IVPFNs P, and P,, cosine and weighted cosine SMs based on four

functions satisfy the following properties:

i. 0<IvPFCSM?*(P,P,) < 1.
ii. IvPFCSM?(P,,P,) = IvPFCSM?(P,,P;)
iii. For®, =P, IvPFCSM?(P;,P,) = 1.

2.1.2. Cosine Similarity Measures for IvVPFSs Based on Cosine Function

In this subsection some cosine SMs based on cosine function and some
weighted cosine SMs based on cosine function for IvPFSs are defined. Some basic

properties of these SMs are also discussed.
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2.1.2.1. Definition
For any two IVPFNs P; and P,, cosine SMs based on cosine function between these

two IVPFNSs are defined as

[ |my, —my VI, — i0lVIng, —ngl }

k
1
IvPFCsSM*(P,, P =—z cos{ . )
(P1, P2) kj=1 2 lVImyy — myylVliyy — iylVingg — nayl

|mqp —map| + liy, — il + [ngy, — gy }

k
[vPFCsSM?(Py, P,) 12 {”[
v s , =— ) cosi— . 3
pe2 kj=1 4 l+|myy — mayl + lizy — iyl + [nyy — npyl

Further, cosine SMs using four functions membership, abstinence, non-membership

and refusal are defined as
[vPFCsSM3 (P, P,)

k
_ 1 {” |myp — map Vi — iz [VIng, —nyIVIry, — 1o }
= - E CcoS{— ) :
k = 2 lVImyy — myy|Vliyy — bulVIngg — nayVirg — 2l

[vPFCsSM*(Py, P,)

k
=EZCOS{E[ Imy, — map| + liyy — fan| + g — ngp | + |1y, — 121 }
kj—l 4 1+Imyy — mayl + lizy — tayl + Iy — nayl + Iy — 1oyl

2.1.2.2. Theorem

For any three IVPFNs P,, P, and Ps, all IvPFCsSMs satisfy the following properties
fort =1,2,3,4.

i. 0<IvPFCsSM'(P,P,) < 1.
ii. IvPFCsSM!(P,,P,) = I[vPFCsSMt(P,, P,)
iii. ForP, = P,, [VPFCsSMt(P,,P,) = 1.
iv.  Consider P, € P, C P, then [IvPFCsSMt(Py, Ps) < I[vPFCsSME(P,, P,)
and [vPFCsSM(P,,P;) < [vPFCsSMt(P,, P3)

Proof: (i) Since value of cosine function lies in [0, 1], so it is obvious that value of
IvPFCsSMt(P;,P,) liesin [0, 1] forall t = 1,2,3,4.

(ii) Trivially hold.
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(iii) For Py = Py, my;, = myy, myy = Myy, iy, = lpp, by = by, Nyp = Npp, Nyy =

nzu, T‘lL == T‘2L and T‘lU ES rzu. ThlS ShOWS that

|myp —ma| =0, iy, — izl =0, Iy =yl =0, [myy —myyl =0, liyy — iyl =

0, [nyy —nyyl = 0.
S0 IVPFCsSM™ (Py, P,) = = ¥  cos{0} = = 3% 1 =1.
k k
Similarly, for t = 2,3,4, the others can also be proved.
(iv) ForP; € P, € P, my;, < My, < mgp alsomyy < myy < myy
Similarly, iy, < iy < i3, i1y < lpy < i3y, Ny = Ny = Ny aNd nyy = Nyy = N3y
Forj = 1,2, ...,k we have
|my, —my| < Imy, —mg,|
lig, — fan| < ligy — i3]
In1, — ol < gy — ngyl
Imyy — myy| < [myy — mayl
liyy — i2ul < liyy — i3yl
Ny — nayl < Ingy — nzyl

As cosine function is decreasing in [0%] s0 IvPFCsSM'(P,,P;) <

IvPFCsSM*(P;,P,) and also by following same method it can be proved that
IvPFCsSM*(P,, P;) < IvPFCsSM*(P,, P5).

Similarly, for t = 2,3,4, the others can also be proved.
2.1.2.3. Definition

For any two IVPFNs 2; and P,, weighted cosine SMs based on cosine function between

these two IVPFNs are defined as

k
[ |my —my|VI]iy, — i VIng, — nyyl
IVPFWCsSMY(P,,P,) = Zw- cos {— 1L 2Ll ) }
(P1, P2) = J 2 lVImyy — myylVliyy — izplVIngg — nypyl
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[vPFWCsSM2(Py, P,)

k
=Zw-cos{z[ Imay —maL] + [y — G + gy — g }
£ T My — mayl iy — Gyl + Ingy — nayl

Further, the weighted cosine SMs using four functions membership, abstinence, non-

membership and refusal are defined as

[vPFWCsSM3(Py, P,)

k
_ [ |my, —my[V]iy, — i [VIng, —ng [V, —
= wj COS , ;
= 2 lVImyy — myyVlizy — bulVIingg — naylViry — raul

[VPFWCsSM*(Py, P,)

4

k
_ ZW' cos{z[ Imy, —mar| + |y — fop | + Inyy — ngp | + [y — }
= / +myy — mayl + liyy — Gyl + Inyy — nayl + 1y — 120l

Where WV w = (wy, ..., w )T is with a condition that for j = 1,2, ..., k w; € [0,1] and

k

2.1.2.4. Theorem

For any three IVPFNs P;, P, and P;, all IWVPFWCsSMs satisfy the following properties
fort=1,2,3,4.

i.  0<IvPFWCsSM(P,P,) < 1.
ii.  [WPFWCsSM(P,,P,) = [VPFWCsSME(P,, Py)
iii. For®, = P,, [VPFWCsSMt(P,P,) = 1.
iv.  Consider P, S P, C P, then [vPFWCsSM (P, P3) <
[vPFWCsSME (P, P,) and [vPFW CsSME(Py, Ps) < I[vPFWCsSME(P,, Ps)

Proof: (i) Since value of cosine function lies in [0, 1], so it is obvious that value of
I[vPFWCsSM*(P,,P,) liesin [0, 1] forall t = 1,2,3,4.

(ii) Trivially hold.

(iii) For Py = P, my;, = my, myy = Myy, iy, = lpp, by = by, Ny = Npp, Mgy =

n2U, TlL = TZL and rlU = rzu. ThIS ShOWS that

|my, —my | =0, iy, — izl =0, Inyy, —npl =0, [myy —myyl =0, liyy — iyl =

0, |nyy —nayl = 0.
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So

k k
[vPFWCsSM* (P, P,) = z w; cos{0} = z w; =1
=1 =1

Similarly, for t = 2,3,4, they can also be proved.
(iv) ForP; € P, € P3, my;, < My, < mgp alsomyy < myy < myy
Similarly, iy, < iy < isp, i1y < lyy < i3y, Ny = Ny = Ny aNd nyy = nyy = N3y
Forj = 1,2, ...,k we have
|my, —my| < Imy, —mg,|
lig, — fzn| < ligy — i3]
Iy, — ol < Inqy — ngyl
Imyy — myy| < [myy — mayl
liyy — i2ul < liyy — i3yl
N1y — nayl < Ingy — nzyl

As cosine function is decreasing in [0%] s0 IvPFWCsSM (P, P;) <

IvPFWCsSM*(P,,P,) and also by following same method it can be proved that
IvPFWCsSM*(P,, P;) < IvPFWCsSM* (P, P3).

Similarly, for t = 2,3,4, the others can also be proved.
2.1.3. Similarity Measures for IvPSs Based on Cotangent Function

In this subsection, we proposed some cotangent SMs based on cotangent
function and some weighted cotangent SMs based on cotangent function for IVPFSs,

and some basic properties of these SMs are also discussed.
2.1.3.1. Definition

For any two IVPFNs P, and P,, a cotangent SM based on cotangent function between

these two IVPFNs is defined as

[vPFCtSMY (P, P,) =
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k
Z { |myp — map Vi, — iz [VIng, —nyl }

4" 4 Vimyy — myylVliy — iplVIng — nayl

?T‘l)—*

Further, then cotangent SMs using four functions membership, abstinence, non-
membership and refusal is defined as

[vPFCtSM?(Py, P,) =

k
lz {” Tl Imy, —my Vi — 2 VI, —nap[VIr, — 7y }
k & 4" 4|Vimyy —myylVlisy — i2ylVIngy — naylViry — rayl

2.1.3.2. Theorem

For any three IVPFNs P;, P, and P;, all IvPFCtSMs satisfy the following properties
fort =1,2.

i.  0<IvPFCtSM!(P,P,) < 1.
ii. IvPFCtSMt(P,,P,) = [VPFCtSMt(P,, P,)
iii. For®, =P, [VPFCtSMt(P,,P,) = 1.
iv.  Consider P, € P, € Ps, then IvPFCtSMt(P;, P3) < IvPFCtSM (P, P,)
and [vPFCtSMt (P, Ps) < IvPFCtSM'(P,, Ps)

2.1.3.3. Definition

For any two IVPFNs P, and P,, a weighted cotangent SM based on cotangent function

between these two IVPFNSs is defined as

[vPFWCtSM (P, P,)

my; — My |V0i, — 5 |VIng —n
ZWJ cot{ |myy 20VNiy, — i IVIng, 21 }
4 4-

V|m1U mZUlvliIU - i2U|V|n1U - nZUl

Further, then weighted cotangent SM using four functions membership, abstinence,
non-membership and refusal is defined as
IvPFW CtSM?(Py, P,)

T |mqp — map|V0iy, — iz [VIng, —nyyl
= ZWJ cot Z‘l‘Z VlrlL —T2L|V|m1U —m2U|V

lizy — i2y|VIngw — naylViry — rpl
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Where WV w = (wy, ..., wy)T is with a condition that for j = 1,2, ..., k w; € [0,1] and

Z?=1 W] =1.
2.1.3.4. Theorem

For any three IVPFNs P,, P, and P5, all IvVPFWCtSMs satisfy the following properties
fort =1,2.

. 0 < IvPFWCtSMt (P, P,) < 1.

ii.  IvPFWCtSMt(P,, P,) = IVPFWCtSMt(P,, P,)

iii. For®, =P, [vPFWCtSMt(P,,P,) = 1.

iv. Consider P, € P, CPs, then [vPFWCtSMt (P, P;) <
[vPFWCtSMt(P,, P,) and [VPFWCtSM(Py, Ps) <
[vPFWCtSMt(P,, Ps)

2.1.4. Set-theoretic Similarity Measures and Grey Similarity Measures for IVPFSs

In this subsection, set-theoretic SM, Grey SM and weighted set-theoretic SM,
weighted Grey SM for IVPFSs are defined, and some basic properties of these SMs are

also discussed.
2.1.4.1. Definition

For any two IVPFNs P; and P,, an interval-valued picture fuzzy set-theoretic SM
(IVPFStSM) between these IVPFNs is defined as

[vPFStSM(P,, P,)

) mar (o )mar (37) + i1, (3 )12 (%) + man (3 )20 (37)
_ Z 1y () mau (%) + v (%) izo (x7) + 1y (35)m20 (%))
= mi, (%) + i1, (%) + ni, (%) m3, (%) + i3, (%) + 13, (%))
T bz, () + 2y (x) + 12y () +my(x) + 3y(x) + nZy (x))
1U\*% 1U\*% 1U\*") 20\%Y 20\%Y) 20\"Y)

2.1.4.2. Theorem
For any three IVPFNs P;, P, and P5, the IVPFStSM satisfies the following properties

. 0 < [vPFStSM1(P,, P,) < 1.
ii.  IvPFStSMY(P,,P,) = [vPEStSM*(P,, P,)
iii. For®P, =P, [vPFStSM'(P,,P,) = 1.
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iv. Consider P, C P, CPs, then [vPFStSM* (P, P3) <
[vPFStSM(P,, P,) and [vPFStSM(P,, Ps) < IvPEStSM*(P,, P5)

Proof: (i) As membership, abstinence and non-membership of both IvPFNs belong to
[0, 1], so it is obvious that [TvPFStSM* (P;, P,) belongs to [0, 1] .

(ii) Holds trivially.

(iii) If Py = P, then my;, = myy, myy = Myy, iy = iz, by = lys My = Nz, aNd
Ny = Nay-

Then
[vPFStSM (P, P,)

K _ .
_ lz miL (%) +ifi () + nfu () + miy () + i () + ndu ()
i mi, (%) + if, () + ndu (%) + miy () + ify (x7) + ndy ()

| =

k
D
j=1

(|V) For :Pl c :PZ c ?3, my, < my, < msyy, also mqy < myy < msy
Similarly, ilL < iZL < i3L! ilU < iZU < igu, nq = Ny = N3y and Ny = Nyy = N3y

mqpmgzy + lyglzy + Ny N3 + MygMzy + liylzy + NyyNay

S mymyyp + lyply + NNy + MygMyy + Liglay + Nyyngy
And

2 2 2 2 .2 2
max <m1L + 1, +ny, +miy + iy + nlu'>
2 4 2 2 2 2 2
msz; + 13, + N3, + M3y + 13y + N3y

2 ) 2 2 ) 2
> max <m1L + 1y, +ny, +myy + iy + n1U»>
= 2 ) 2 2 ) 2
myp + 15 + Ny, +myy + 5y +nyy

So clearly, [IvPFStSM*(P,, P;) < IvPFStSM* (P, P,)

Similarly, [vPFStSM* (P, P) < IvPFStSM(P,, Ps)
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2.1.4.3. Definition

For any two IVPFNs P; and P,, an interval-valued picture fuzzy weighted set-theoretic
SM (IVPFWStSM) between these IVPFNSs is defined as

[vPFWStSM (P, P,)

. myy ()Mo (3) + i1.(%) 120 (%7) + 14, (321 (%))
_ Z W +myy (3)may (%) + i1y()i2u (%) + nay ()20 (%)
= ! max< m, (%) + if, (%) + i, (%) m3, (%) + i3, (%) +n3, () )

+m2y(x) + 2 (x) + ny(x) +m3y(x) + iy (%)) + nZy(x;)

Where WV w = (wy, ..., wg)" is with the condition that for j = 1,2, ...,k w; € [0,1]
and X5_, w; = 1.

2.1.4.4. Theorem
For any three IVPFNs P,, P, and P5, the IvVPFWStSM satisfies the following properties

. 0 < IVPFWStSM*(P,,P,) < 1.

ii.  IvPFWStSMY(P,,P,) = [vPFWStSM(P,, P,).

iii. For®P, =P, [vPFWStSM(P,,P,) = 1.

iv. Consider P, C P, C P, then [vPFWStSM* (P, P;) <
[vPFWStSM(P,, P,) and [VPFWStSM2(P,, Ps) <
[VPFWStSM(Py, Ps).

2.1.4.5. Definition

For any two IVPFNs P; and P,, an interval-valued picture fuzzy grey SM (IvPFGSM)

between these IVPFNSs is defined as
[VPFGSM' (P, P,)

ATnL(min) + ATnU(min) + AiL(min) + AiU(min) +
k ATnL(max) + A7"'U(max) AlL(moLx) + AlU(max)
|
3kz kAmL + AmU + AmL(max) + Amu(max) AlL + ALU + ALL(max) + Alu(max) |

Jj=1 AnL(mm) + AnU(mm) + AnL(max) + AnU(moLx)
AnL + AnU + AnL(max) + Anu(max)

Where  Am,gniny = min{|my, —my, [}, Amyniny = min{|myy —myyl}, Amy =
|my, —my |, Amy = Imyy — myyl, AMynax) = max{|my;, —my, |}, AMymax) =
max{|m,y — mayl}, Alpgniny = minfliy, — iz 1} Alyminy = min{lizy — izyl} Al =
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liy, — izl Ay = liyy — iyl Alf(max) = max{|iy;, — iz}, Alymax) = max{|i;y —
Ll Anpgminy = min{|ny, —nyp 1}, Anyoniny = min{ln,y —nyyl}, Ang, = ny, —
naul, Any = |nyy — nyyl, Anpmax) = max{|ny;, —nyl}, Anymax) = max{|n,y —

nayl}-

2.1.4.6. Theorem
For any three IVPFNs P;, P, and P;, the IVPFGSM satisfies the following properties:

i. 0 < IVPFGSM* (P, P,) < 1.
ii. IvPFGSM* (P, P,) = IVPFGSM*(P,, P;)

Proof: (i) As membership, abstinence and non-membership of both IvPFNs belong to
[0, 1], so it is obvious that IvPFGSM* (P;, P,) belongs to [0, 1] .

(ii) Holds trivially.
2.1.4.7. Definition

For any two IVPFNs P; and P,, an interval-valued picture fuzzy weighted grey SM
(IVPFWGSM) between these IVPFNs is defined as

IvPFWGSM* (P, P,)
/ ATnL(min) + A7”'U(min) + AlL(mm) + AlU(mln) + \
K ATnL(molx) + ATnU(max) AlL(max) + ALU(max)
_ 1 Z AmL + AmU + AmL(max) ALL + ALU + AlL(max) |
- ’ Wj +AMy max) / +Aly(max) /
]:
+ <AnL(min) + AnU(min) + AnL(max) + AnU(max)
AnL + AnU + AnL(max) + Anu(max)

Where WV w = (wy, ..., w;)" is with a condition that for j = 1,2, ...,k w; € [0,1] and

k . .

j=iwj =1 and Amy(miny = min{|m,; — myl}, AMymin) = min{|m,y — myyl},
Amy = [my, —my|, Amy = [myy — myyl, AMynax) = max{|m,;, —my |},
A7"'U(max) = maX{lmlU —myyl}, AiL(min) = min{lilL — i1}, AiU(min) =

min{|i,y — izyl}, Ay = liy, — iyl Aiy = iy — iyl, AiL(max) = max{|iy, — iz},
AiU(mch) = maX{lilU - i2U|}a AnL(min) = min{lnlL - nZLl}v AnU(min) =
min{|n;y — nayl}, Ang, = Iny —nyl, Any = ngy — nyyl, ANy max) = max{|n;; —

napl}, Anymax) = max{|n,y — nyyl}.
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2.1.4.8. Theorem
For any three IVPFNs P;, P, and P5, the IVPFWGSM satisfies the following properties:

i. 0 < IvPFWGSM(P,, P,) < 1.
ii.  [WPFWGSM'(P,,P,) = [IvPFWGSM'(P,, P,).

2.1.5. Some Dice Similarity Measures for IVPFSs

In this subsection, some dice SMs and weighted dice SMs for IVPFSs are
defined. Some basic properties of these SMs are discussed.

2.1.5.1. Definition
For any two IVPFNs P, and 2,, some dice SMs for these IVPFNs is defined as

IvPFDSM*(P;,P,)
) ( may, (%) may () + 140 (3)120.(%5) + 1, ()12 (%) )
lz +myy (%) may (%) + 10 (%) 20 (%) + 1y (%) 20 (%)
k < mlL(x]) + llL(x]) + nlL(x]) ) + < m%L(xj) + i%L(xj) + n%L(xj) )

+m2,(x;) + i2y(x;) + ny (%)) +m3y (%) + i25(x) + n3y(x;)

IvPFDSM?(Py, P,)

may, (%) may (%) + 140, (3) 120 (%5) + 1, ()12 (%)
) 2 +1y1(x)ran (%)) + myy (%)) may (%) +
lz iy (%) 120 (%) + mau (%) 20 (%) + v (3) 20 (%)
ki mi, (%) + if, (%) + nf. (%) m3, (%) + i3, (%) + n3, (%))
+12 () + m¥y(x;) + + +17 () + mZy(x;) +
iZy (%) + n3y (%) + % (x;) i2y(x) + n2y(x) + (%))

[vPFDSM3(Py, P,)
k o ( M (2)mar (37) + 20 () 22 (37) + 112 (3 )2 (35) )
T\ () mau (3) + faw ()20 () + 1w ()n2u (%))
K ( miy (%) + if, (%) + niL(x)) > Y < m3, (%) +i5.(%;) + 13, (%) )

=t +miy (%) + iy (%) + nfy (%)) = +miy (%) + i3y (%) +nfy (%)
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[vPEDSM*(P,, P,)
My, ()Mo (%) + 110, (3) 120, (%7) + 11, ()1 (%)
23K, +1y.(x)ran (%)) + myy (x)may (%) +
i1y (%) 20 (%) + s ()20 (%) + 120 ()20 (%)
miy (%) + if, (%) + niL (%) m3, (%) +i5.(%) + 13, (%)
?:1 +r12L(xj) + m%u(xj) + + 2:§=1 +r2L(xj) + mzu( ) +
ifu(xj) + n%u(xj) + rle(xj) lZU(x]) + an(xJ) + rZU(x])

2.1.5.2. Theorem

For any three IVPFNs P;, P, and P, all IvPFDSMs satisfy the following properties for
t=1234:

. 0 < [vPFDSMt(P,,P,) < 1.

ii.  IvPFDSM(P,,P,) = IvPFDSM'(P,, P,)

iii. For®P, =P, [IvPFDSMt(P,,P,) = 1.

iv. Consider P, € P, C P, then IvPFDSM' (P, P3) <
[vPFDSM'(P,,P,) and [vPFDSM*(Py, P3) < [vPFDSM'(P,, P3)

Proof: (i) As membership, abstinence and non-membership of both IvPFNs belong to
[0, 1], so it is obvious that IvPFDSM*(P;, P,) belongs to [0, 1].

(i) Holds trivially.

(iii) If Py = P, then my, = my, myy = myy, iy, = iy, by = by, My = Ny and
Ny = Nay-

Then
IvPFDSM* (P, P,)

lzk: mlL(x]) +if, () + ndi () + miy () + i3 (%) + ”w(x]))
k]=1 (mlL(xJ) + llL(x]) + nlL(x]) +> N <m1L(xj) + llL(xj) + nlL(xj) +>

miy(x;) + iy (%) + niy(x) miy(x;) + i3y (%) + niy(x))

1 i 2(m2, () + 2. (x) + n2,. () + m2u () + i () + ndu (7))
k , <m1L(xj) + 2, (x) +n2,(x) +>

m%u(xj) + i%u(xj) + n%U(xj)
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&=

K
21
=1

—1k—1

= k=1

(|V) For .7)1 c .7)2 c .7)3, mqy < msy; < ms;, also mqy < myy < msy
Sim"arly, ilL < iZL < i3L! ilU < iZU < igu, nqL = Ny = N3y and Ny > Ny > N3y
Now,

( mqpmgy + lypla, + Ny N3y ) < ( my My + lylp + Ny Ny )
tTMyMzy + liylay + NyNzy/ —  \TMyyMyy + Ligley + NyNay

And
m%L + ifL + n%L m%L + i%L + n%L
+m?, + i, + n?y, +m3y, + i3, + ndy
S mi, +if, +ni; " m3, + i3, +nj,
—\+mé, + %, + n?y +m3y, + i2, +n3y
Clearly IvPFDSMt(P,, Ps) < I[vPFDSM!(P,, P,)
Similarly, IvPFDSMt(fpl,?g) < IUPFDSMt(?Z,?g,)

2.1.5.3. Definition

For any two IVPFNs P; and P,, some weighted dice SMs between these IVPFNs are

defined as

[vPFWDSM(P,, P,)
2( myy (%)map (%) + i1 (%) 121 (%) + nap (3 )21 (%) )
_ z . +may () mau (%) + 1w (%) 20 (%) + naw (3) 20 (3)
= ! < m%L(xj) + ifL(xj) + n%L(xj) > n < m%L(xj) + i%L(xj) + n%L(xj) )

+m%u(xj) + ifu(xj) + nfU(xj) +m§U(xj) + i%U(xj) + n%U(xj)
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[vPEWDSM2(P,, P,)
may, ()Mo, (%) + 11,3120, (%) + 11, (321, (%)
) 2 +r1L(xj)r2L(xj) + mw(xj)mzu(xj) +
_ Z W, i (%) 20 (%) + 11w (36 )20 (%) + 710 (5 )rau (%)
o (mi () + 8 () +nd(n)\  miu() + () + (%)
+r12L(xj) + m%u(xj) + + +7”22L(xf) + m%u(xj) +
iy (%) +ndy (x) + 1% () i3y (%) + 3y (%) + 1y (%)

[vPFWDSM3(Py, P,)

ko2 < M (3)ma (%) + 11, ()22, (37) + 101, () ma1. (37) )
7 Ny () mau (35) + faw ()20 (%) + 10w () nau (%))

mi, (%) + if, () m3, (%) + 3.(x)
kow?| +nd () +miy(x) + |+ 2 w? | +nd(x) + m3y(x) +
ity (%) +nfy (%) i3y (%) + 13y (%)
[vPFWDSM*(P,, P,)
may, ()Mo, (%) + 1113120, (%) + 11, (31, (%)
2%k wf +ry, ()11 (1) + may (o) may () +
_ i1y (%) 20 (%) + 1w ()20 (%) + 110 ()20 (%)
miy (%) + i3,(x) + nd (%) m3, (%) + i3, (%) + 3, (%)
ke wf +12 (%) + miy(x) + + 2w +r2 (x;) + m3y(x;) +
iy (%) + nfy (%) + 15 (%)) i3y (%) + 13y (%) + 15 (%)

Where WV w = (wy, ..., w;)" is with a condition that for j = 1,2, ..., k w; € [0,1] and

k —

2.1.5.4. Theorem

For any three IVPFNs P,, P, and P5, all IvVPFWDSMs satisfy the following properties
fort = 1,2,3,4:

i. 0 < [IvPFWDSM (P, P,) < 1.
ii.  IvPFWDSM!(P,,P,) = [vPFWDSM!(P,, P,)
iii. For®, =P, [vPFWDSM'(P,,P,) = 1.

iv. Consider P, C P, C P, then IvPFWDSM (P, P3) <
[vPFWDSM*(Py, P,) and [vPFWDSMt(P;, P;) <
[vPFWDSMt (P, P3)
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Proof: (i) As membership, abstinence and non-membership of both IvPFNs belong to
[0, 1], so it is obvious that IvPFGDSM* (P;, P,) belongs to [0, 1].

(ii) Holds trivially.

(iii) If Py = P, then my;, = myy, Mmyy = Myy, iy, = iz, by = lys Ny = Nz, aNd
Ny = Nay-

Then
IvPFWDSM*(P;, P,)

_ zk: mlL(x]) + llL(xJ) + nlL(x]) + mlU(x]) + LlU(x]) + nw(x]))
B = <m1L(x]) +i2,(x) +n2,(x) +> N (mlL(xj) +i2,(x) +n2.(x) +>

mw(xj) + lw(xj) + n1u(xj) m%u(xj) + i%u(xj) + n%u(xj)

Zk: mlL(xJ) +if () + ndu (%) + miy () + ify (x7) + nw(x]))
= ) <m1L(xj) + llL(xj) + nlL(xj) +>

m%u(xj) + ifu(xj) + nfu(xj)

(|V) For :Pl c :PZ c ?3, mqy < msyy, < msyy, also mqy < myy < msy
Slmllal’|y, ilL < iZL < i3L’ ilU < iZU < igu, Ny, = Nyp = nsy, and Ny > Ny > N3y
Now,

< my Mgy + Ly lz, + Ny N3y > < ( my My + Uy lp + Nypnyy )
tTMyyMzy + lyylzy + NiyNay TMyMyy + liylay + NNy

And

2 -2 2 2 -2 2
my, + 11, +nip n m3z; + 13, + n3;,
+m?, + i3, + n?, +m2, + i3, + ndy

2, 2 2 2 2 2
S [ ™ + 1y, + i myp + 1y, + Ny
—\+mé, +i%, + n?y +m3y, + i2, +n3y

Clearly [vPFWDSM'(Py,P;) < IvPFWDSM*(P;, P,)
Slml|al‘|y, IUPFWDSMl(:Pl,:Pg) < IUPFWDSMl(Pz,:Pg)
Similarly, all the properties can be proved for t = 2,3,4.
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2.1.5.5. Definition

For any two IVPFNs P, and 2,, some generalized dice SMs between these IVPFNs are

defined as
[vPFGDSM(P,, P,)
) ( myy (%5)map (%) + i1 (%) 121 (%) + nap (3 )2, (%) >
_ lz +may () may () + i (%) 20 (37) + 110 (x)n20 (1)
k = m%L(xj) + i%L(xj) m%L(xj) + i%L(x]')
A +nfL(xj) + mfu(xj) +|+(@1-2) +n%L(xj) + m%U(xj)
iZy (%) + n3y (%) +i3y (%) +n3y(x;)

[vPFGDSM2(P,, P,)

; ( mas (3)mar () + 20 () 12 (37) + 1 ()20 (35) + 71 (o )2 (37) )
_ lz My (25)mau (3) + t10 ()20 (%) + Ma0 ()20 (35) + 710 ()20 (%))
kL

mi, (%) + if. (%) + nf. (%) m3, (%) + 3,(x5) +n3. (x))
A +12 (%) + m2y(x;) + +(1-2 +12 (x;) + m3y(x;) +
ify () + ndy (%) + 1y () i3y (%) + 13y (%) + 7 (%)
IvPFGDSM3(Py, P,)
K ( mar ()Mo (%) + in ()12 (%) + 1 (x5) 20 (%)) >
_ T\ () mau () + taw (%) 20 (%) + naw (%) n20 (%)
mi, () + if, (%)) m3. (%) + i3, (%)
AZ?=1 +nf (%) + miy(x) + |+ (1 —2) Z?=1 +n3, (%) + my (%) +
ify (%) +ndy (%) i3y (%) + ny (%)
[vPEGDSM*(P,, P,)
mar ()Mo (%) + in ()12 (%) + 1 (35) 20 (%))
j=1 711, ()20, (37) + M (35)may (37) +
i () 120 (%) + 11y ()20 (%) + 110 ()20 (%))
mi, (%) + if, () m3, (%) + i3, (x))

+mfu(xj) + ifu(xj) +m§u(xj) + i%U(xj)
+n%u(xj) + rlzu(xj) +n§u(xj) + rzzu(xj)

azk, k +nf, (%) +1.(%;) ) FA-DEE, k +n, (%) + 75, (%) )

Where 0 < 1< 1.
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2.1.5.6. Theorem

For any three IVPFNs P;, P, and P; then all IvVPFGDSMs satisfy the following
properties for t = 1,2,3,4:

. 0 < IvPFGDSM' (P, P,) < 1.
ii.  IvPFGDSMt(P,,P,) = [VPFGDSMt(P,, P,).
iii.  For®P, =P, [IPFGDSM!(P,,P,) = 1.

iv. Consider P, S P, CPs, then IvPFGDSM! (P, P3) <
[vPFGDSME (P, P,) and [vPFGDSM! (P, Ps) <
[vPFGDSM(P,, P3).

Proof: (i) As membership, abstinence and non-membership of both IvPFNs belong to
[0, 1], so it is obvious that IvPFGDSM* (P;, P,) belongs to [0, 1].

(i) Holds trivially.

(iii) If Py = P, then my, = my,, myy = myy, iy, = iy, by = by, My = Ny, and

Ny = Nyy
Then,
[vPFGDSM(P,, P,)
) ( mi, () + if1 (%) + ndu (%)) )
_ lz +mfu(xj) + ifU(xj) + nfu(x]-)
k = m?, (x) + 1%, (%) m?; (%) + if (%))
A +nfL(xj) + mfu(xj) + |+ -2) +nfL(xj) + mfu(xj)
ifu(xj) + n%u(xj) ‘Hfu(xj) + n%u(xj)

) ( miy (%) + if1 (%) + nii(x) )
1y My 9) + () k()
k
j=1

m%L(xj) + ifL(xj)
+nfL(xj) + mfu(xj) +

i%u(xj) + n%U(xj)

= Ek =1

(|V) For ?1 c ?2 c ?3, my, < my, < Mgy, also My < Myy < M3y

Similarly, iy, < iy < i3y, i1y < lpy < ligy, Ny = Ny = g, and nyy = nyy = ngy
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Now,

IA

( my mgy, + Uy i3 + Ny N3y )

( my My + lyplp + Nypnyy )
+Mmyymzy + liylay + NyyNay

+myymyy + liylay + NigNay
And
mi, + ify m3, + i3,
Al +né, +m2,+ |+ (1 =2 | +n3, + my,
ity +niy +isy +n3y
m%L + i%L m%L + i%L
> A +nZ +miy + |+ (A=) | +ni, + m3y,
ity +niy +iy + ndy
So, [IvPFGDSM*'(P,,P;) < IvPFGDSM' (P, P,)
Similarly, [IvPFGDSM®(P;, P;) < IvPFGDSM*(P,, P;)
2.1.5.7. Definition

For any two IvPFNs P; and P,, some weighted generalized dice SMs between IvPFNs

are defined as

[vPFWGDSM* (P, P,)

myy (%5)mar (%) + i1 (%) 120 (%) + nap (3 )21 (%) >

Zk: w; <+m1U(Xj)m2U(xj) + i1y (%) i20 (%) + 11y (%) 120 (%))

m%L(xj) + ifL(xj) m%L(xj) + i%L(xj)
Al 4nd(x) +miy(x) + |+ A =D | +nd,(x) + mZ,(x;) +
ifu(xj) + n%u(xj) i%u(xj) + n%u(xj)
IvPFWGDSM? (P, P,)

My (o )man (%) + i10.(%) 120 (%) + a1 ()21 (%)
. +71, ()72 (%7) + Moy (35)mau (%) +
_ Z . i (%) f2u (%) + 1au ()20 (%) + 1au (3) 20 (%)
= ! m?, (%) + if; (%)) m3, (%) + i3, (%)

5 k +n? (x) + 2 (%)) ) F-D) k +nZ, (%) + 2 (x)) )

+mfu(xj) + ifU(xj) +m§u(xj) + i%U(xj)
+n%u(xj) + rlzu(xj) +n§u(xj) + rzzu(xj)
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[vPFWGDSM3(P,, P,)

k.2 < myy (%5)mar (%) + i1 (%) 12 (%) + nyp (3 )21 (%) )

_ 7\ (3)mau (39) + a0 () i2u () + naw () n20 (%)
- mi (%) + if.(x)) m3. (%) + i3, (%))
ARK Wi 4nd () +miy(xg) |+ @ =D wP | +nd(x) + m3y(x))
+iZy(x;) + n2y (%)) +i2,(x;) + nZy(x;)
[vPFWGDSM*(Py, P,)
My ()Mo (%) + i10.(%) 120 (%) + s ()21 (%)
Faawf +11,, (% )21 (%) + Moy (3 )mau (%) +
i1y (%)) i2u (%) + naw ()20 (%) + 110 ()20 (%)
m3, (%) + if, (%)) m3, (%) + i3, (%)) \
5 +nfL(xj) + rlzL(xj) X +n§L(xj) + rZZL(xj) |

AVE ws
2j=1Vj '\+mgu(x,.) + 2 (x)
+n2y (%) + 13 (x)

|+ (=D, w )
+n§u(xj) + Tzzu(xj)
Where WV w = (wy, ..., w,)" have a condition that for j = 1,2, ...,k w; € [0,1] and

k —
j=1 W] - 1.

2.1.5.8. Theorem

For any three IVPFNs P;, P, and P5, all IVPFWGDSM s satisfy the following properties
fort = 1,2,3,4:

. 0 < IVPFWGDSME(P,, P,) < 1.

ii. IvPFWGDSM'(P,,P,) = IVPFWGDSMt(P,, P;)

iii. For P, = P,, IvPFWGDSM'(P;,P,) = 1.

iv. Consider P, C P, CPs, then IvPFWGDSM'(P,,P;) <
[vPFWGDSM(P;, P,) and IvPFWGDSM'(P,,P;) <
IvPFWGDSM(P,, P;)

Proof: (i) As membership, abstinence and non-membership of both IvVPFNs belong to
[0, 1], so it is obvious that [vPFWGDSM* (P,, P,) belongs to [0, 1].

(i1) Holds trivially.

(l“) If :Pl = :})2 then mlL == mZL, mlU == mzu, ilL = i2L1 ilU == izu, TllL = TlZL and

Ny = Nyy
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Then,

[vPFWGDSM* (P, P,)
) ( m2,(x;) + i, (x;) + n?,(x;) )
_ z . +me(xj) + ifU(xj) + n%U(xj)
= ! mi, (%) + if, () mi, (%) + i7.(x)
Al +n2(x) + miy(x) + |+ A =D | +nd(x;) + m¥y(x;)
ifu(xj) + n%u(xj) +i%U(x]') + n%U(x]')

m?,(x;) + i%,(x;) + n?,(x)) )

K :
_ Z . <+mf,,(xj) +iZy(x) + n2y (%))
- J
=1

m3, (%) + i, (%)
+nfL(xj) + mfu(xj) +

ity (x]) + "%U(xj)

k
j=1

(|V) For :Pl c :PZ c ?3, mqy, < msy;, < msy, also mqy < myy < msy

Similarly, ilL < iZL < i3L! ilU < iZU < igu, Ny, = Ny = Ny and Ny = Nyy = Nay

Now,
( my Mgy, + iypl3, + Ny Ny > < ( my My + iylp + Nypnyy )
TMyyMay + liylzy + NyNzy/ — \TMyygMyy + Liglay + NyNay
And
2, 2 2, 2
my, + U9, m3z; + 13,
.2 2 .2 2
Ly + iy +izy + n3y
2, 2 2 4 2
my;, + 14, my; + 15,
> A +nZ +miy + |+ (A=) | +nd, + m3y,
2 2 2 2
liy + Niy +ioy + oy

So, IvPFWGDSM* (P, P3) < [vPFWGDSM*(Py, P,)
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2.2. Applications for Strategy Decision Making and Mineral Fields

Recognition

In this section, applications for strategy decision making and mineral fields
recognition are developed with the help of numerical examples that show the reliability

of proposed SMs.
2.2.1. Numerical Example for Strategy Decision Making

A company wants to launch a new product and board of governors have to decide one

strategy. For this purpose, there are three strategies to be selected shown as follows.

1. g,: Make a product for rich persons
2. g,: Make a product for every persons

3. gs3: Make a product for poor persons

In order to do the best selection, it is necessary to compare these three strategies with
popular product in the existing market, so we give a best strategy g: a popular product

in the existing market.

In addition, in order to evaluate these strategies, there are the following five attributes
(which WV = (0.25,0.2,0.15,0.18,0.22)7 ) to be used.

S;: Risk of loss
S,: Barriers in the development of business
: Impact on society

S,: Impact on environment

o & 0 npoE
o
w

Se: Growth analysis

The decision maker gives the evaluation values for strategies according to attributes

which are shown in Table 3.

Table 3 Decision values for Strategy Decision Making

g1 g2 s g
S [0.26,0.31], [0.32,0.37], [0.23,0.46], [0.05,0.1],
[0.12,0.24], [0.15,0.28], [0.1,0.15], [0.18,0.29],
[0.21,0.39] [0.05,0.12] [0.31,0.36] [0.43,0.57]
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S, [[0.25,0.46],
[0.03,0.13],
[0.17,0.23]

[0.24,0.35],
[0.09,0.17],
[0.37,0.47]

[0.41,0.56],
[0.03,0.09],
[0.14,0.27]

[0.45,0.53],
[0.1,0.17],
[0.01,0.13]

Sz  [[0.08,0.26],
[0.16,0.37],
[0.02,0.29]

[0.25,0.31],
[0.21,0.29],
[0.3,0.39]

[0.07,0.16],
[0.24,0.32],

(B3
()
(B354
(B2

[0.23,0.41],
[0.07,0.17],

(&85
(st
(B33
(B3

[0.1,0.3], [0.13,0.19],
[0.1,0.2] [0.41,0.53]

[0.07,0.14],
[0.51,0.61]

[0.12,0.24],
[0.06,0.36]

S [[0.48,0.57],
[0.22,0.3],
[0.0,0.07]

[0.31,0.41],
[0.02,0.09],
[0.39,0.47]

[0.35,0.39],
[0.11,0.23],
[0.06,0.21]

[0.19,0.31],
[0.04,0.08],
[0.49,0.59]

(B3
()
Sa [0.2,0.4], ([0.14,0.25],)
(B2

The SM of three alternativesg,, g,andgswith g with respect to WV w =
(0.25,0.2,0.15,0.18,0.22)7 are calculated by using the formulas of SMs, which are

shown in Table 4.

Table 4 Similarity Measures for Strategy Decision Making

SM’s (91.9) (g2, 9) (g3, 9)
IvPFWCSM*  0.7961 0.7794 0.7898
IvPFWCSM?  0.8341 0.7811 0.7758
IvPFWCsSM*  0.8931 0.8720 0.8416
IvPFWCsSM?  0.6643 0.7347 0.6754
IvPFWCsSM®  0.8931 0.8551 0.8404
IvPFWCsSM*  0.6101 0.5558 0.4932
IvPFWCtSM*  0.6574 0.6195 0.5695
IvPFWCtSM?  0.6254 0.5909 0.5679

[vPFWStSM* 0.7111 0.6576 0.6405
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IvPFWGSM* 0.7843 0.7937 0.8168

IvPFWDSM* 0.7886 0.7621 0.7625
IvPFWDSM? 0.8317 0.7791 0.7744
IvPFWDSM?3 0.7396 0.7592 0.7677
IvPFWDSM* 0.2772 0.2166 0.2738
[vPFWGDSM* 0.7537 0.7948 0.8021
IvPFWGDSM? 0.8187 0.7477 0.7578
IvPFWGDSM?3 0.6997 0.7457 0.7665
IvPFWGDSM* 0.2716 0.2078 0.2668

From Table 4, we can know the different similarity definitions can get the different
SMs, however, in 18 SMs, there are 13 SMs in which (g,, g)is the biggest, there are
one SM in which (g,, g)is the biggest, and there are four SMs in which (g5, g)is the
biggest.

So we can get g, is best option for company is to launch product for rich persons.
2.2.2. Numerical Example for Mineral Fields Recognition

Let us consider three kinds of mineral fields g;, g, and g5. Each of them is featured by
five minerals {s;, s, s3, 54, S5} and the WV of minerals is (0.25,0.2,0.15,0.18,0.22)7 .

Now consider an existing best mineral field g and we have to check that which
field is most similar to g. Experts evaluate each field under the consideration of five

minerals as listed in Table 5.

Table 5 Decision Values for Mineral Fields Recognition

91 92 g3 g
S1 [0.37,0.49], [0.23,0.33], [0.12,0.35], [0.20,0.28],
[0.03,0.11], [0.13,0.20], [0.07,0.18], [0.07,0.15],
[0.34,0.40] [0.11,0.19] [0.22,0.32] [0.31,0.50]
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[0.07,0.23],
[0.11,0.29],
[0.21,0.33]

[0.13,0.31],
[0.02,0.13],
[0.22,0.44]

[0.09,0.19],
[0.17,0.31],

[0.26,0.44],
[0.02,0.08],
[0.16,0.27]

[0.33,0.51],
[0.02,0.17],
[0.20,0.21]

[0.27,0.36],
[0.09,0.19],
[0.13,0.18]

[0.14,0.19],
[0.21,0.32],
[0.36,0.41]

[0.17,0.37],
[0.04,0.14],

(B2
sz
(B33
(B35

[0.22,0.36]

[0.12,0.21],
[0.14,0.35]

[0.08,0.13], [0.08,0.22],
[0.24,0.49] [0.48,0.58]

[0.11,0.21],
[0.36,0.49]

[0.16,0.48],
[0.14,0.30],
[0.01,0.11]

[0.13,0.34],
[0.01,0.23],
[0.31,0.42]

[0.28,0.38],
[0.10,0.20],
[0.14,0.40]

[0.15,0.26],
[0.09,0.17],
[0.43,0.56]

() (22 (
(o) (223) (
S4 ([0-09,0-43],> [0-12,0-21],> ([0-13,0-19],
(i) (B (

The SMs of three alternatives with g with respect to WV w=
(0.25,0.2,0.15,0.18,0.22)7 are calculated by using the formulas of SMs, which are

shown in Table 6.

Table 6 Similarity Measures for Mineral Fields Recognition

SM’s (91.9) (g2, 9) (g3, 9)
IvPFWCSM*  0.8154 0.9028 0.9382
IvPFWCSM?  0.8413 0.9100 0.9255
[vPFWCsSM*  0.8983 0.9436 0.9565
[vPFWCsSM?  0.7963 0.8998 0.9112
IvPFWCsSM®  0.8963 0.9342 0.9472
IvPFWCsSM*  0.6449 0.8118 0.8305
[vPFWCtSM*  0.6468 0.7273 0.7607
IvPFWCtSM?  0.6093 0.6986 0.7379
IvPFWStSM*  0.6911 0.7701 0.7952

IvPFWGSM* 0.7426 0.7702 0.8132
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IvPFWDSM* 0.8030 0.8877 0.9252

IvPFWDSM? 0.8396 0.9092 0.9244
IvPFWDSM?3 0.8010 0.8902 0.9252
IvPFWDSM* 0.3039 0.2822 0.3195
IvPFWGDSM* 0.7736 0.8122 0.8990
IvPFWGDSM? 0.8584 0.9129 0.9260
IvPFWGDSM?3 0.7702 0.8067 0.8851
IvPFWGDSM* 0.3122 0.2832 0.3200

From Table 6, we can obtain that the g5 is most similar to g, so we can select the gs.
2.3. Advantages
In this section, we explain the advantages of the proposed SMs.

2.3.1. Some special cases

We prove the generalization of proposed works. For this, we consider two
IVPFNs P; and P,

[vPFCSM(P,, P,)
myy (%) mar (%) + i1 (%) 121 (%)
. 1 ()21 (%) + myy (%) mau (%)
_ Z 1w (%) f20 (%) + 1w ()20 (%)
=t T mi () + () | mi(xg) + 3.(x) (23.1.1)
+nfL(xj) + mfu(xj) +n§L(xj) + m%U(xj)
+ifu(xj) + nfU(xj) +i§u(xj) + n%U(xj)

1. When lower and upper value of intervals becomes equal, then the equation
(2.3.1.1) becomes SM for PFSs.
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PFCSM* (P, P,)

1 Z my (o)ma () + i () i2(3) + 1 (3)ma ()
T mi ) + 20g) +nd () [m3 () + ) + 3 (x)

2. For i; =[0,0] and i, = [0,0], the equation (2.3.1.1) becomes SM for interval
valued intuitionistic fuzzy number.
. My ()Mo (%) + na () na0 () +
Z myy (x)may (%) + nau (%)) 120 (%))
= | mi () +nd(x) | m3u(x) +ndy(x))
+m2,(x;) + n2y(x;) +miy(x;) + nZy(x;)

3. Fori; =[0,0] and i, = [0,0] and the upper and lower values of membership

IVIFCSM*(P,,P,) =

and non-membership intervals become equal, then the equation (2.3.1.1)
becomes SM for intuitionistic fuzzy number
IFCSMA(P,, P,) = %Zk: my () ma (%) + 1 (35)ma ()
= i )+ 73 (3) [m3 ) + 3 )
4. For i; =[0,0],n, =[0,0] and i, = [0,0], n, = [0,0], the equation (2.3.1.1)
becomes SM for IVFN.

k
[VFCSM™(P,,P,) = %z M (2)ma (35) + may () mau (%))
= G+ mdy () [m8,05) + 3, ()
5. For i, =[0,0],n, =[0,0] and i, = [0,0], n, = [0,0] and the upper and lower

values of membership intervals become equal, then the equation (2.3.1.1)
becomes SM for FN

k
1 . .
FCSMY(P;,P,) = - E ma (x;)m, (%)

=1 \/m% (%) + m3(x;)

Similarly, we can reduce all other similarities in interval-valued intuitionistic,

intuitionistic and picture fuzzy environment.

So, we can know the proposed SMs are more general than some existing SMs.
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2.3.2. Comparative Study

The main advantage of proposed works is that the existing SMs cannot handle
the information given in IVPFNs, but they can handle the information given in
intuitionistic, interval-valued intuitionistic and picture fuzzy environment. Hence the

proposed SMs are more generalized than those of existing SMs.
2.3.2.1. Example

Here, an example for interval-valued intuitionistic fuzzy information has been taken
from [29] and solved by the proposed SMs. A company wants to invest its capital in
some business and they have four alternatives {g,, g2, 93, 94} and must select one from
these alternatives. So They evaluate these alternatives on the base of three attributes
{s4, S5, 53} with a WV (0.35,0.25,0.40)7, the evaluation values are shown in table 7.

Now we can use the SM of each alternative with the ideal alternative to select the

best one. The given data is listed in Table 7.

Table 7 Decision Makers for Comparative Study

Sq S, S3
g [0.4,0.5], [0.4,0.6], [0.1,0.3],
[0.0,0.0] [0.0,0.0] [0.0,0.0]
[0.3,0.4] [0.2,0.4] [0.5,0.6]
g5 [0.6,0.7], [0.6,0.7], [0.4,0.7],
[0.0,0.0] [0.0,0.0] [0.0,0.0]
[0.2,0.3] [0.2,0.3] [0.1,0.2]
gs [0.3,0.6], [0.5,0.6], [0.5,0.6],
[0.0,0.0] [0.0,0.0] [0.0,0.0]
[0.3,0.4] [0.3,0.4] [0.1,0.3]
g4 [0.7,0.8], [0.6,0.7], [0.3,0.4],
[0.0,0.0] [0.0,0.0] [0.0,0.0]
[0.1,0.2] [0.1,0.3] [0.1,0.2]

By using the above information, the interval-valued intuitionistic fuzzy cosine SM
(IVIFCSM) can be found as given

IVIFCSM* (g4, g) = 0.5645,
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IWIFCSM(g,, g) = 0.8637,
IvIFCSM* (g5, 9) = 0.7768,
IvIFCSM*(g,,g) = 0.7801.

These results are similar as in [29]. So this proves the effectiveness of the proposed

work.
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Chapter 3

Algorithm for T-Spherical fuzzy multi attribute decision-
making based on improved interactive aggregation

operators

The objective of this chapter is to present some new improved aggregation
operators for the T-SFS, which is an extension of the several existing sets such as IFS,
PyFS, g-ROPFS and PFS. In it, some new improved operational laws and their
corresponding properties are studied. Further, based on these laws, we propose some
geometric aggregation operators and studied their various relationships. Desirable
properties as well as some special cases of the proposed operators are studied. Then,
based on these proposed operators, we present a decision-making approach to solve the
multi-attribute decision making problems. The reliability of the presented decision-
making method is explored with the help of numerical example and compared the
proposed results with several prevailing studies result. Finally, the superiority of the
proposed approach is explained with a counter example to show the advantages of the

proposed work.
3.1. Proposed operational laws and aggregation operators

This section is divided into two subsections. Subsection one presents the
improved operations laws for the T-SFSs while other presents some improved

geometric aggregation operators under the T-SFS environment.
3.1.1. Improved Operational laws

In this subsection, we present some new improved operations laws by

incorporating the features of the degree of refusal into the analysis.
3.1.1.1. Definition

Let 7y = (my,iy,ny) and T, = (my,,i,,n,) be two T-SFNs. Then, the proposed

operational laws are defined as

56



1. T Q®T.=
(V(l —nD(1-nd) -1 -mi—if —n)A —m} —if —nb) —qig,>
V1-(1-iHa-ib), y1-a-nH(A -nd)
2. T7 = (V(l —n))*— (1 —mf—if —nj)" - (ii)%)
J1-(A-=-iDHr, 1 -1 -nb"

For two T-SFNs T, = (my,i;,n;) and T, = (m,, i, n,), new operations of

multiplication can be construed from four aspects such as between;

1. Two non-membership functions of different T-SFNSs.

2. Two membership functions of different T-SFNSs.

3. Membership and non-membership functions of different T-SFNs.
4

. Two neutral functions of different T-SFNs.

These multiplication rules are of the form:

1. E(ny,n,) =ny.n,. Therefore, nr gr, =/ (i +n—nink) is considered as

probability non-membership (PN) function operator i.e.

t
PN(nq,n,) = \/nf + nb —nind

2. E(my,m,) = (my +iy).(m, + i,). Therefore,

My en, =1 — (1 — (mi+ )1 — (mb + ib)) is considered as probability

membership (PM) function operator i.e.

PM(m;,m,) = i/1 —(1=mt+iH)(1 - ms+1iY))

3. I(ny,my) =/ (mé +ib)nk.I1(ny, m,) is considered as probability heterogeneous

(PH) function operator i.e.

t/ .
PH(ny;,my) = |mint + iint

4. 1(iy,iy) = iy.i,. Therefore, iy g7, = \/(l§ +i5 — itib).iy @7, is considered as

probability neutral (PNe) function operator, i.e.
PNe(iy,iy) = [if + it —itit
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From the proposed laws, it is observed that the several existing laws can be considered

as a special case of it. For instance,

1. Fort = 2, above operations become valid for SFNs.

2. Fort = 1, above operations become valid for PFNSs.

3. Fort =2andi = 0, above operations become valid for PyFNs.
4

Fort = 1and i = 0, above operations become valid for IFNs.
Further, it is observed that the above defined PN, PH satisfies the following properties.
3.1.1.2. Theorem

Let T3 = (my, iy, 1), T3 = (My, i3, 1), T3 = (M3, i3,n3) and T, = (my, iy, n,) be four
T-SFNs. Then, we have

1. Boundedness: PN(1,1) = 1,PN(0,0) = 0,0 < PN(ny,n;) < 1.
2. Monotonicity: If n; < nz and n, < ny. Then PN(ny,n,) < PN(ng, ny).

3. Commutativity: PN (nq,n;) = PN(n,, n,).
Proof:

1. For two T-SFNs, 7; and 75, and by definition of PN, we have PN(ny,n,) =

Jnt +nb —nint. Thus, we have PN(1,1) =1 and PN(0,0)=0. Further, since n;,n, €
[0,1] and teZwhich implies that n{ +nf —nini =1-(1-n)H(A-nb) < 1.

Also, PN(n,,n,) = 0. Therefore, 0 < PN(n,,n,) < 1.

2. Since n; < nz and n, < n,. Thus forany teZ, we get 1 —n{ > 1 —nf and
1-ni>1-nb{andhencel — (1 —nH)(1 —ni) <1- (1 —ni)(A —nb). Thus,

PN(n;,n,) < PN(ns,n,) holds.
3. Holds trivial.
3.1.1.3. Theorem

Let 77 = (my, iy, 1), T3 = (My, i5,1,), T3 = (M3, i3,n3) and T, = (my, iy, n,) be four
T-SFN. Then

1. Boundedness: PH(1,0,1) = 1,PH(0,0,0) = 0,0 < PH(m4,i;,ny) < 1.
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2. Monotonicity: If my <ms,i; <izjandn, <n,. Then PH(my, i, n,) <
PN(mgs,is,n,) and if ny < ng, i, < iy and my, < my. Then PH(nq, i, n,) <
PH(n3,i4,my)

3. Commutativity: PH(m4,i;,n) = PH(ny,i;, my).

3.1.1.4. Theorem

If 7; and T;be two T-SFNs and A >0 be a real number, then 7; ® 7, andT;* are also
T-SFNEs.

3.1.1.5. Theorem

Let 7y = (my,iy,ny), T2 = (My,i,,n,) be a T-SFNs, 4,44, 4, > 0 be real numbers.
Then we have

1L 1R L=7,Q;T:

2. @i T =7 @7}

3 :7‘1)11 ®; 7,1/12 _ 7,1/11+/12_
3.1.2. Aggregation operators

In this section, based on the above proposed operational laws, we have proposed
some series of geometric interactive improved aggregation operators namely, T-
spherical fuzzy weighted geometric interactive averaging (T-SFWGIA) operator, T-
spherical fuzzy ordered weighted geometric interactive averaging (T-SFOWGIA)
operator and T-spherical fuzzy hybrid geometric interactive averaging (T-SFHGIA)

operator under the T-SFS environment.

3.1.2.1. Definition

For any collection 7; = (m;,ij,n;) (j = 1,2,3,..., k) of T-SFNs. If the mapping
T — SFWGIA, (T, Ty, .., Ti) =®ij.‘=1 J}Wj

then T — SFWGIA,, is called T-SFWGIA operator. where w = (wy, w,, ..., w;)7T is the
WV of 7; with w; € (0,1] and 3¥_, w; = 1.
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3.1.2.2. Theorem

For any collection of T-SFNs J; = (mj, i, nj) (j = 1,2,3, ..., k), the aggregated values
obtained by using Definition 3.1.1.1 is still T-SFNs and is given by

T — SFWGIA, (T, Ty e Tit)

. k k k
[[a-n" =T Ja=m—i—nt)" =T [,
j=1 j=1 j=1

. k Wi, k Wj
-[Ja-® . -TJa-=
j=1 j=1

Proof: For any collection of T-SFNs 7; = (m;, i;,n;) (j = 1,2,3, ..., k), we shall proof

the result by induction on k.
For k = 1, we have

T — SFWGIA,(T1) = " = (my, i1, 1)

_ (i/(l Caty (1= (mt 4 i+ D) — (DY 1/1 1+ (ig)l,t\/1 14 (n§)1>
Thus, hold for k = 1. Now, result holds for k = [

T — SFWGIA, (T, Ty .., T5)

l l l
t . )
[Ta-n" =T Ja-m =i =m0 =] Jaom.
j=1 j=1 j=1
. l Wi, l Wj
1—1_[(1—1'}?) ) 1—1_[(1—11}?)
j=1 j=1

Then for k =1 + 1, we have
T — SEWGIA,, (T;, Ty o, Tpy) =@ 77

j=17%j

=T — SFWGIA,, (T}, T3, ..., T}) ®; T,
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s =) =T i =)™ =1

:/1 -, (1 - i].t)wj,t\/l — e (1 —nH)™ /

/1/(1 —nt)" - (1- m{ — i — n$)" — (@5,
®i t w; t \&1
\/1—(1—1';) L 1= =nf)"

+1 +1 I+1

L=y =T Ta—m = =mpy =] e,
j=1 j=1 j=1
- I+1 Wwj +1
1—1_[(1—1 , H(l—nt)

So, the result holds for k = [ + 1. Therefore, by mathematical induction, result holds
forallk € Z™.

3.1.2.3. Theorem

If 7; = (m;,i;,n;), j=1,..,kbe T-SFNs. Then the aggregated value using the T-
SFWGIA operator is also T-SFN.

Proof: Since 7; = (m;, i;,n;) be a T-SFN, j = 1, ..., k, we have 0 < m;, i;,n; < 1. So
0<m] ],n <1and0<m +l +n < 1. Then
k k
o <[ Ji-™ [ o= -] J o =3
j=1 j=1
L
0 <1-| [a-iH¥i<1
j=t
L
0 <1—-| [@A-n)"i<1
j=t

Now
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~

k k
1— a\Wi _ 1-— t (t)W]
B( n]) g( (m +L+n) 1_[1 +
k k
1-| 0= +1-| |(1 =nt)"
11( )" + lj( )

ﬁ (1= (m +if +nf))” H(ﬁ)% H(l—ﬁ) I e [0,1]

Thus, T — SEWGIA,, (T}, ..., T;.) is T-SFN.

Further, it is observed that the proposed operator satisfies certain properties which are
listed as follows.

3.1.2.4. Theorem
If all T-SFNs 7; (j = 1,2, ..., k) are equal to T, where T is another T-SFN then
T — SFWGIA,(T;, ..., Te) = To

Proof: Assume that 7; = g = (mo, io, o) is @ T-SFN Vj. Then, by definition of T-
SFWGIA operator, we have

T — SFWGIA,, (T;, Ty, ..., T3.)

k K
t 1_[(1 — njt)wj — 1_[ (1 — (mf +if + nt) H(lt)wl
j=1 j=1
t k t k v
1- 1_[(1 - ijt) (1= 1_[(1 - nJF)
j=1 j=1

k

t k . Z,_ .
J@—ﬁfﬂ“—@—@ﬁ+¢w@)““—@ﬁ%m,

t\/l -(1- l.};)Zf:le, t\/l -(1- "jt)zﬁcﬂWj

= (m(), iO) n())

=T,
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3.1.2.5. Theorem
If 7; = (m;, ij,n;) isa T-SFN and
Tt = (max{0, (min(m; + i; + n;) — min i; — max n;)}, min i;, max n;),
TV = ((max(m]- + i; + nj) — max i; — min n;), max i;, min nj). Then, we have
TL<T—SFWGIA,, (T, ....,T) <TY
3.1.2.6. Theorem

For a collection of two different T-SFNs 7; = (my, ij,n;) and 7' = (mj, ij, n/) for all

j = 1,2, ..., k which satisfy the following inequalities if n; > n/,i; < i; and m; + i +
nt < (m) + (i) + (n))" vj, then we have
T — SFWGIA, (T, Ty,...,T) < T — SFWGIA,, (T, T3, ..., T

Proof: Since n; = n/, we have

. k Wi k Wi
1- 1_[(1 -nf) > [1- 1_[ (1-())
j=1 j=1
and i; < i},
. k i, k wij
1- 1_[(1 -if) < [1- n (1- (@)
j=1 j=1

As,m! +if +nf < (m)" + (i) + ()" ¥j we have

k k

K
1—[(1 B n})wj B 1_[ (1 - (mj +i + "J't))wj - H(ijt')wf,
j=1

k w
t
, 11— 1_[(1 —nf)
j=1

j=1 j=1

k w
t
1- n(1 —if)
j=1

J J
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U 1—(71 U(l— ( ) +(L) +(n))) _U(i;)twj'
feT1e-0) ]'tl—H(l—(n;f)]

Therefore, we have
T —SFWGIA, (T, Ty, ....T:) < T — SFWGIA,, (7,75, ... )
3.1.2.7. Definition

For any collection 7 = (mj,i;,n;), G =12,...,k) of T-SFNs. The T —
SFOWGIA,: Q™ — Q is a mapping defined as

T—SFOWGIA(,)(:TL:]E' 71'() ®l} 1 o'(])

then T — SFOWGIA,, is called T-SFOWGIA operator, where w = (w,, w5, ..., 0x)"
is the associated WV of 7; with w; € (0,1] and Z _1wj = 1 and o is the permutation

of {1,2,...,k} such that o(j — 1) = o (j).
3.1.2.8. Theorem
For any collection 7; = (my, ij,n;), (j = 1,2,..., k) of T-SFNs. Then

T — SFOWGIA, (T, Ty, ..., T3)

k K
t .
1_[(1 N nctr(j))wj N 1_[( (ma(J) + la(}) + ncr(})) 1_[(10(]))“’1
j=1 j=1
‘ - .t wj ‘ - t wj
1- n(l ~lop) 1- 1_[(1 ~ )
j=1 j=1

3.1.2.9. Theorem

f 7 = (m,i;,n;) is a T-SFN, j = 1, ..., k. Then the aggregated value using the T-
SFOWGIA operator is also T-SFN.
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Proof: Since T5(jy = (Mg(j), ia(j) Ne(jy) & @ T-SFN, j=1,2,...,k, we have 0 <

Mg (i) lo(j) Moy = 1. 500 < ma(])' 0(1)' a(}) <land0< ma(}) + la(}) +n,
1. Then

k
o,
0 = 1—[(1 ~To(n) - 1—[( = (Mo +io0y + ”oo)) n(lao))w’ =1

6(1) =

k
0o <1-][(a-iy)” <1
j=1

k
0 <1- 1_[(1 —nby)” <1
j=1

Now
k k
:
‘ 1_[(1 ~g) - 1_[( = (Mo + o) + ”a(f)) HOUU)) T
j=1 j=1
k k
. w wj
1- 1_[(1 —ityy) 1= 1_[(1 —nby)
\ j=1 Jj=1

k
wj
1_[ 1 - (mU(J) + la(}) + no(])) H(LG(J))wJ B 1_[(1 B la(])) '
=1

€ [0,1]
Thus, T — SFOWGIA, (T3, T3, ..., Ty,) is T-SFN.
3.1.2.10. Theorem
T — SFOWGIA, (T, ..., Ty) = To if T = To = (m,i;,n;) isa T-SFN Vj.
Proof: we have

T —SFOWGIA, (T, ..., Ty) =
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k k

t .
1_[(1 N nctr(j))w] N 1_[( (mcf(J) + la(}) + na(})) 1_[(16(}))“’1

j=1 j=1

k k
t i t .
1- | |(1 —it)” 1- | |(1 —nt)”
j=1 j=1

‘ ™o . kK .
_ /j(l - nfr(j)) ! (1 - (ma(J) + la(}) + na(}))) J H (lctr(j))zjzlw]'

t\/1 -(1- ig(j))z:;{:le; t\/l —(1- ng(j))iﬁ‘q%

= (Mg (0), ls(0) Mo (0))

N —

=T,
3.1.2.11. Theorem
f7; = (m;,ij,n;) isa T-SFN and
Tt = (max{0, (min(m; + i; + n;) — min i; — max n;)}, min i;, max n;),
TV = ((max(mj + i; + n;) — max i; — min n;), max i;, min nj). Then
TL<T—SFOWGIA,(T, ..., T) < TY
3.1.2.12. Theorem

T — SFOWGIAy(Ty, ., T) = T — SFOWGIA (T}, ..., T¢) if T = (m;,i;,n;) is any

permutation of 7' = (mj, ij,n;) where j = 1,2, ..., k.

Proof:
T — SFOWGIA, (T, 75, ..., T =

T[ ("00)) H( (mao)) + (i) + ()’ )wj—l:[(iéu))twj'

‘*’1’ k

1_[ (la(])) - 1_[ ("a(n)

=1
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T — SFOWGIA, (T, Ty, .., T3) =

k k
t .
[Ja=nt)™ =] [ (1 =ty + ity +mi)” 1_[(‘0(1))“”
j=1 j=1
. k @), K @j
1= 1_[(1 ~lo) o |1+ n(l ~ ()
j=1 j=1

= (mj, ij,n;) is any permutation of J; = (my, i;, n;) then we have T, (J) = T5(j)-

Thus T — SFOWGIA, (T, ..., T) =T — SFOWGIAw(f]}, o T)
3.1.2.13. Definition

For any collection 7; = (m;, i;,n;) of T-SFNs (j = 1,2, ..., k). If the mapping
~ Wi
T — SFHGAy (T3, T3 -, Tit) =@y (Toy)

then T — SFHGA,,, is called T-SFHGA operator. where 7; = (%)""/, w =
(wq, ..., w,)T is the associated WV of T; > with w; € (0,1] and Z" qwj=1land w =

(W1, ..., wi)T is the WV of 7; with w; € (0,1] and X5_; w; = 1.
3.1.2.14. Definition

For any collection 7; = (m;, i;,n;) (j = 1,2, ..., k) of T-SFNs. If the mapping
T — SFHGIAy,o (T3, Ty, ., i) =@, T

then T — SFHGIA,,, is called T-SFHGIA operator. where w = (w1, @y, ..., wy)" is
the WV of 7; with w; € [0,1] and ¥¥_; w; = LT and w = (wy, ..., w;)" is the WV of T;
with w; € (0,1] and ijle =1.

3.1.2.15. Theorem
For any collection 7; = (m;, i, n;) (j = 1,2, ..., k) of T-SFNs. Then

T — SFHGIA,, (71, T3, ., i)
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k k

k
t ) @j
1_[(1 — b))~ H (1 = (Mige + Togy + ﬁctr(j))) - H(ia(j))wj'
j=1

j=1 j=1

. k wj . k wj
1- H(l ~Tg) 1- 1_[(1 = Tig()
j=1 j=1

The following example demonstrates these aggregation operators.

3.1.2.16. Example

Let 7, = (0.3,0.8,0.1), T, = (0.4,0.3,0.6), T5 = (0.7,0.1,0.5), T, = (0.9,0.4,0.1)
and Ts=(0.2,0.6,0.7) are T-SFN. The WV for 7; (j =12,..,5) is w=

(0.18,0.22,0.16,0.21,0.23)T. With loss of generality, we use t = 2 for all calculations.

Firstly, we utilize T-SFHGIA operators on this data to aggregate it.

. J(1 — 0.12)5%018 — (1 — (0.32 + 0.8% + 0.12)) """ — (0.82)5%0.18,
- =
\/1 -(1- 0.82)5X0'18,\/1 — (1 —0.12)5x0.18
= (0.1559,0.7754, 0.0949)
7 J(1 — 0.62)5%022 — (1 — (0.42 + 0.32 + 0.62))7 "% — (0.32)5%022,
=
\/1 -(1- 0_32)5><0.22,\/1 — (1 — 0.62)5%0.22
= (0.4317,0.3139,0.6228)
T \/(1 — 0.52)5%0.16 — (1 — (0.72 + 0.12 + 0.52))”""° = (0.12)5%0.16,
- =
\/1 -(1- 0_12)5><0.16,\/1 — (1 — 0.52)5%0.16
= (0.6629,0.0895, 0.4534)
. J(1 —0.12)5%021 — (1 — (0.92 + 0.42 + 0.12)) 7" — (0.42)5%021,
=

\/1 -(1- 0.42)5X°-21,\/1 — (1 — 0.12)5%0.21

= (0.9094,0.4090,0.1024)
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5%0.23

. J (1—0.72)5%023 — (1 — (0.22 + 0.62 + 0.72)) — (0.62)5%023,
s =
\/1 -(1- 0.62)5X°-23,\/1 — (1 — 0.72)5%0.23

= (0.2705,0.6336,0.7342)

The score values corresponding to these aggregated numbers are SC(7;) = 0.0153,
SC(J;) = —0.2016, SC(T3) = 0.2338, SC(T,) = 0.8166, SC(T5) = —0.4658.

Based on score values we have the following arrangement of data.

To1y = (0.9094,0.4090,0.1024), To(2) = (0.6629,0.0895, 0.4534), Ty(s) =
(0.1559, 0.7754,0.0949),

T = (0.4317,0.3139,0.6228), T;(5) = (0.2705,0.6336,0.7342)

By using normal distribution-based method, we find W =
(0.1117,0.2365,0.3036,0.2365,0.1117)T and by the definition of T-SFHGIA operator

we have
T —SFHGIA,, o,(T1,T2,T3,T4,Ts) = (0.4688,0.5643,0.4792)
3.1.2.17. Theorem

If ; = (mj,ij,n;) is a T-SFN,j = 1, ..., k. Then the aggregated value using the T-
SFHGIA operator is also T-SFN.

3.1.2.18. Theorem
T — SFHGIA,, (71,73, ..., Ty) = To if Tj = To = (my, iy, np) isa T-SFN V.
3.1.2.19. Theorem
If 7; = (m;, ij,n;) isa T-SFN and
Tt = (max{0, (min(m; + i; + nj) — min i; — max n;)}, min i;, max n;),
TV = ((max(mj + i + n;) — max i; — min n;), max i;, min nj). Then

TL < T —SFHGIA,, (T;, ... T;) < TY
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3.1.2.20. Theorem
T — SFHGIA, (7}, .., 7)) = T — SFHGIA,, (%1, ..., Ti) if T' = (m},ij,n}) is any

permutation of 7; = (m;, i;, n;) where j = 1,2, ..., k.

Whenever membership and neutral number of one T-SFN become zero then the
membership and abstinence value is not accounted in aggregation [10]. While
geometric interaction averaging operators developed in our manuscript overcome this

problem. An example will describe it more clearly.
3.1.2.21. Example

Let 7, = (0.7,0.5,0.6),T, = (0.9,0.5,0.4),T5 = (0,0,0.1), T, = (0.5,0.3,0.4) and
Ts=(0.6,0.4,05) are T-SFN. The WV for 7, Gj=12,..,5) is w=
(0.18,0.22,0.16,0.21,0.23)T.

Solution: First we will find T-SFHGA operator.

As, 0.7+05+0.6=18¢[0,1],0.72+0.5>+ 0.62 = 1.1 ¢ [0,1] but 0.73 +
0.53 + 0.6% = 0.684 € [0,1]

Similarly, T, and T, satisfy the condition for t = 3.
Tl =

(i/(0.73 + 0.53)5%018 _ ((0.53)5%018 () 55%0.18 3/[1 (1 — 0_63)5><0.18)

= (0.7054,0.5359,0.5816)
Tz =

(i/(0.93 + 0.53)5%022 _ ((,53)5%x0.22 (0 55%0-22 3/1 _ (1 — 0_43)5><0.22)

= (0.9041,0.4665,0.4125)

Ts = (i/(03 + 03)5><0.16 — (03)5><0.16’ 05><0.16’ 31 — (1 — 0_13)5x0.16)
= (0,0,0.0928)
j:'4 =

(i/(0.53 + 0.33)5%021 _ ((,33)5x021 () 35%0-21 3/1 _ (1 — 0_43)5><0.21)

= (0.4874,0.2885,0.4063)
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:TS =
(i/(0_63 + 0_43)5><0.23 — (0_43)5x0.23’ 0_45><0.23' 3\/1 — (1 — 0_53)5x0.23)

= (0.5738,0.3486,0.0.5221)

Scores values for these aggregated numbers are obtained as SC(7;) = 0.1543,
SC(T,) = 0.6689, SC(T3) = —0.0008, SC(T,) = 0.0487, SC(Ts) = 0.0466 and

based on these score values, we have

Ty1y = (0.9041,0.4665,0.4125), T, () = (0.7054,0.5359,0.5816),
T3 = (0.4874,0.2885,0.4063), T, (4) = (0.5738,0.3486,0.0.5221), T;;(s) =
(0,0,0.0928)

By using  normal distribution-based method, we find w =
(0.1117,0.2365,0.3036,0.2365,0.1117)T and by the definition of T-SFHGA operator,

we find
T —SFHGA,, ,(T1,72,T3,T4,7s) = (0,0,0.4803)

This type of aggregated value seems meaningless as whenever membership and
abstinence value is zero in any one of the T-SFN it will make the value of membership
and non-membership as zero in whole aggregated value. This shows that geometric
aggregation operator of T-SFSs [10] does not possess the ability of aggregating such
type of information effectively.

On the other hand, the proposed new geometric interactive aggregation operators can
process any type of information effectively. Now the Example 3.1.2.21 is solved using
proposed new aggregation operators in order to justify its effectiveness. For it, we
aggregate the data using T-SFHGIA operator,

5%0.18

T = 3\/(1 — 0.63)5%018 — (1 — (0.73 4+ 0.53 + 0.63)) — (0.53)5%0.18,
T =
i/l — (1 — 0.53)5%0.18, 3\/1 — (1 — 0.63)5%0.18

= (0.6656,0.5359,0.5816)

5x0.22

3\/(1 — 0.43)5%022 — (1 — (0.93 + 0.53 + 0.43)) — (0.53)5%022,
i/l — (1 — 0.53)5x0.22, 3\/1 — (1 — 0.43)5x0.22

f]'é:
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= (0.9144,0.4665,0.4125)

- 3\/(1 — 0.13)5%016 — (1 — (0% + 03 + 0_13))5X0'16 — (03)5%0.16,
L =
i/l — (1 — 03)5x0.16, i/l — (1 —0.13)5x0.16
= (0,0,0.0928)
T 3\/(1 — 0.43)5%021 — (1 — (0.5 + 0.3% + 0.43)) 7" = (0.33)5%021,
=

i/l -(1- 0_33)5><0.21’ i/l -(1- 0_43)5x0.21

= (0.5141,0.2885,0.4063)

3\/(1 — 0.53)5%023 — (1 — (0.6% + 0.43 + 0.53))7 "% — (0.43)5%023,

3{/1 -(1- 0_43)5><0.23, i/l —(1- 0_53)5><0.23

o
|

= (0.6422,0.3486,0.0.5221)

The score values of these numbers are obtained as SC(7;) = 0.0981, SC(T>) =
0.6943, SC(T3) = —0.0008, SC(T4) = 0.0688, SC(Ts) = 0.1225 and based on

score values we have the following arrangement.

T5a) = (0.9144,0.4665,0.4125), T, ) = (0.6422,0.3486,0.0.5221), T =
(0.6656,0.5359,0.5816), T;(4) = (0.5141,0.2885,0.4063), 755 = (0,0,0.0928)

Now, by using definition of T-SFHGIA operator, we find
T — SFHGIA,, ,(T1,T2,T3,T4,Ts) = (0.8375,0.4223,0.4928)

Clearly the aggregated value obtained using T-SFHGIA operator is improved
than the one obtained in using aggregated operators in [10] as it incorporates the zero
values occurring in the membership and abstinence of T-SFNs efficiently. The analysis

of both results proves the significance of proposed aggregation operators.

3.2. MADM approach based on proposed operators

Consider a decision making problem which consists a set of alternatives Y

{y1,¥2, -, ¥} and set of attributes Z = {z;, z,, ... , z,} with weighted vector w =

(wy, wsy, ...,wq)T, where wy, € (0,1] and Z{_, w,, = 1. Suppose every alternative y; is
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represented by T-SFNs T3, = (mj, ijx, ny) which show that by which degree
alternative satisfy, neutral and not satisfy the given attribute. Then, the following steps

of the MADM approach based on the proposed operators are summarized as follows:

Step 1: Find the value of t for which information of decision matrix lies in T-SF

environment.

Step 2: Assume the WV w = (wy, ...,wq)T of T3y, Tja, .., T4 Where wy, € (0,1] and

Zi_we = 1weget T, = 7},1{‘”".
Step 3: By calculating the scores of each attribute of all alternatives, we find

Toj1) Ta(zyr 0 T ()

Step 4: By using normal-distribution based method we find w and then aggregate the
data using T-SFHGIA operator.

Step 5: Find the scores of all alternatives.
Step 6: With the help of score values, we find the best option.
3.2.1. Numerical Example

The above mentioned approach has been illustrated with a real life decision-
making problem under the T-SFS environment and obtained results have been

compared with the other existing results.
3.2.1.1. Case study

Jharkhand is the eastern state of the India, which has the 40 percent mineral resources
of the country and second leading state of the mineral wealth after Chhattisgarh state.
It is also known for its vast forest resources. Jamshedpur, Bokaro and Dhanbad cities
of the Jharkhand are famous for industries in all over the world. After that, it is the
widespread poverty state of the India because it is the primarily a rural state as 76
percent of the population live in the villages which depend on the agriculture and wages.
Only 30 percent villages are connected by roads while only 55 percent villages have
accessed to electricity and other facilities. But in the today's life, everyone is changing
fast to himself for a better life, therefore, everyone moves to the urban cities for a better
job. To stop this emigration, Jharkhand government wants to set up the industries based

on the agriculture in the rural areas. For this, the government has been organized
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“"MOMENTUM JHARKHAND" global investor submit 2017 in Ranchi to invite the
companies for investment in the rural areas. Government announced the various
facilities for setup the five food processing plants in the rural areas and consider the
five attributes required for company selection to setup them, namely, project cost (Q4),
technical capability (Q,), financial status (Qs), company background (Q,) and other
factors (Qs). The three companies taken as in the form of the alternatives, namely,
Surya Food and Agro Pvt. Ltd. (s1), Mother Dairy Fruit and Vegetable Pvt. Ltd. (s;)
and Parle Products Ltd. (s3) interested for these projects. Then the main object of the
government is to choose the best company among them for the task. In order to fulfill
it, a decision maker evaluated these and gives their preferences in the term of T-SFS
and their preferences values are summarized in the form of decision-matrix shown in

Table 8 as follows.

Table 8 Input information related to each alternative

Ql QZ Q3 Q4 QS
s; (0.7,0.5,0.6) (0.9,0.50.4) (0.4,0.2,0.1) (0.50.3,0.4) (0.6,0.4,0.5)

s, (0.5,0.4,0.6) (0.7,0.2,0.3) (0.50.3,0.6) (0.4,0.1,0.6) (0.5,0.2,0.4)
s; (0.4,0.1,0.2) (0.504,0.1) (0,0,05) (0.60.20.2) (0.6,0.1,0.5)

The given problem is solved using two approaches. First it is solved using new
interactive operators showing their applicability. Then it is solved using geometric
aggregation operators proposed in [10] showing their failure.

Solution using proposed operators:

Step 1: With some calculations, it is found that all the values in Table 8 are T-SFNs
fort = 3.

Step 2: By taking w = (0.18,0.22,0.16,0.21,0.23)" we find T}, and their values are

summarized as below in Table 9.

Table 9 Aggregated values

k=1 k=2 k=3 k=4 k=5
j=1 [0.6656, 0.9144, 0.3333, 0.5141, 0.6422,

0.5359, 0.4665, 0.2759, 0.2825, 0.3486,

0.5816 0.4125 0.0928 0.4063 0.5221
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j=2 [0.4520, 0.7194, 0.4212, 0.4053, 0.5264,
<0.4384,> 0.1703, 0.3817, (0.0891,) (0.1571,)

0.5816 0.3095 0.5614 0.6086 0.4184
j=3 [0.3843, 0.5397, 0, 0.6104, 0.6209,
0.1259, 0.3650, 0, 0.1845, 0.0708,
0.1931 0.1032 0.4662 0.2033 0.5221

Step 3: Now we have to find the score of each attribute of all alternatives and their
computed values are given as below in Table 10.

Table 10 Score Values

k=1 k=2 k=3 k=4 k=5
j=1 0.0981 0.6943 0.0362 0.0688 0.1225
j=2 —0.1043 0.3426 —0.1021 -0.1589 0.0726

j=3 0.0495 0.1561 -0.1013 0.2190 0.0970

By comparing the score values, we have
SC(T12) > SC(Ti5) > SC(T11) > SC(T14) > SC(T13)
SC(T22) > SC(T35) > SC(T23) > SC(T21) > SC(T24)
SC(T34) > SC(T32) >SC(T35) >SC(T31) >SC(T33)

Based on above score analysis, we find 75y and summarized as in Table 11

Table 11 Ordered Aggregated values

k=1 k=2 k=3 k=4 k=5

j=1 (09144, 0.6422, 0.6656, 0.5141, 0.3333,
0.5150, 0.9857, 0.4838, 0.3048, 0.1857,
0.4125 0.5221 0.5816 0.4063 0.0928

j=2 [0.7194, 0.5264, 0.4212, 0.4520, 0.4053,
0.2064, 0.9987, 0.2787, 0.9804, 0.1016,
0.3095 0.4184 0.5614 0.5816 0.6086

j=3 [0.6104, 0.5397, 0.6209, 0.3843, ( 0, )

0.2033, 0.4125, 0.9999, 0.0966, 0,
0.2033 0.1032 0.5221 0.1931 0.4662
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Step 4: By using normal distribution-based method, we get w =
(0.1117,0.2365,0.3036,0.2365,0.1117)T and by using the defined aggregation

operators, we have.

I=T- SFHGIAW,(U(TM,TQ;713;714;T15)

5 5
3
1—[ J(lk) H( J(lk) + ' tn a(lk) > 1_[( Ta(1k) ’
j=1 j=1
. 5 wj 5 wj
_ ]
1 1_[ (1 lTa(m) ’ 1_[ a(lk)
j=1 j=1
= (0.9380,0.4264,0.4928)

T, =T —SFHGIAy, ,(T21,T22,T23,T 24, T '25)

5 5
W
|| —|| 1-(md  +id  +n || ,
a(zk) ( To(2k) Ts(2k) a(zk) (T (zk)
j=1 j=1
5 wj 5 (l)j
3
1—| |(1—i~°: | |
Ts(2k) o'(zk)
j=1 j=1

= (0.9420,0.3390,0.5296)

T3 =T- SFHGIAw,w(TM;7321733,T34;T35)

5 ; 5
Wj
“T- e+ 2 +70)) = [0
a(3k) < To(3k) + T5@3K) + T5(3K) ( Ta(sk))
L =1

::]Ln

J=1 Jj=1
5 wj 5 wj
3
1—| |(1—i; - | |
o(3k) 0(3’()

= (0.9779,0.9713,0.3906)

Step 5: The score values of three alternatives based on their aggregated values are
computed as SC(T'y) = 0.7056, SC(T;) = 0.6874, and SC(T5) = 0.8813.
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Step 6: By comparing score values, we get.
SC(T3) > SC(T1) > SC(T>)

The comparison of score values indicate that 7’5 has a greater score value. So, third

Company is the best option. Thus, by using the new geometric interaction averaging
operators a MADM problem is successfully solved.

Solution using aggregation operators proposed in [10]:

Step 1: The input preferences related to each alternative is summarized in Table 8 for
t=3.

Step 2: By using WV w = (0.18,0.22,0.16,0.21,0.23)7 we find T as follows in
Table 12

Table 12 Aggregated values

k=1 k=2 k=3 k=4 k=5

j=1 [0.7054, 0.9041, 0.4655, 0.4874, 0.5738,

0.5359, 0.4665, 0.2759, 0.2825 0.3486,

0.5816 0.4125 0.0928 0.4063 0.5221

j=2 (0.5180, 0.6776, 0.7330, 0.3826, 0.4553,
0.4384,> 0.1703, 0.3817, 0.0891, 0.1517,)

0.5816 0.3095 0.5614 0.6086 0.4184

j=3 [0.4370, 0.4811, 0, 0.5863, 0.5563,

0.1259, 0.3650, 0, 0.1845, 0.0708,

0.1931 0.1032 0.4662 0.2033 0.5221

Step 3: Now we have to find the score of each attribute of all alternatives as listed in

Table 13

Table 13 Score values

k=1 k=2 k=3 k=4 k=5
j=1 0.1543 0.6689 0.1000 0.0487 0.0466
j=2 -=0.0577 0.2815 0.2169 -—0.1695 0.0212
j=3 0.0762 0.1103 -0.1013 0.1932 0.0298

By comparing the score values, we have
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SC(T2) > SC(T11) > SC(Ti3) > SC(Ta) > SC(T1s)

SC(T32) > SC(Tz3) > SC(Tz5) > SC(T31) > SC(T34)

SC(T34) > SC(T3,) > SC(T31) > SC(T35) > SC(T33)
Based on above score analysis, we find 7/, as listed in Table 14

Table 14 Ordered Aggregated values

k=1 k=2 k=3 k=4 k=5

j=1 /09041, 0.7054, 0.4655, 0.4874, 0.5738,
0.4665, 0.5359, 0.2759, 0.2825, 0.3486,
0.4125 0.5816 0.0928 0.4063 0.5221

j=2 [0.6776, 0.7330, 0.4553, 0.5180, 0.3826,
0.1703, 0.3817, 0.1571, 0.4384, 0.0891,
0.3095 0.5614 0.4184 0.5816 0.6086

j=3 [0.5863, 0.4811, 0.4370, 0.5563, ( 0, )

0.1845, 0.3650, 0.1259, 0.0708, 0,
0.2033 0.1032 0.1931 0.5221 0.4662

Step 4: By using normal distribution-based method, we get w =

(0.1117,0.2365,0.3036,0.2365,0.1117)7 and by using the defined aggregation
operators, we have.

7' = T = SFHGIAy,, (711, 712, T13, s, Tis)

5
m3 , Wj
- ( , i ,
ms. (1k) cr(lk) Ta’(lk) o(1k)
J=1 j=1
5
| l 0'(1k)

j=1

wi

= (0.5750,0.3533,0.4473)

T, = T = SFHGIAy,,(T31, T2, T3, T34 T35)
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5
0 2k O ( : ( . a2k ) :
( ) (Zk) U(Zk) ( )

J=1 j=1

5
| | a(zk)

j=1

wj

= (0.5384,0.1970,0.5721)

Ty = T — SFHGI Ay, (T30, T, T3, Tia, Ts)

5

. Wj
I__I a(3k) o(3k) I__I( 7&(3k) ’1__1 (172(3k)) ’
j=1 Jj=1
- 5 wi
I__I 6(3k)
j=1
= (0,0,0.3692)

This seems meaningless because membership and abstinence of only one T-SFN is

zero but existing operator make a whole aggregated value zero.
Step 5: The score values are
SC(T4) = 0.1006
SC(7) = —0.0312
SC(73) = —0.0503
Step 6: By comparing score values, we get.
SC(T1) > SC(T3) > SC(T3)

From above example, the applicability of proposed operators can easily be checked by
comparing the results obtained using new and existing geometric aggregation operators.
It is noticed that whenever membership and abstinence of one TSFN becomes zero,
then the aggregated valued using existing aggregation operators seems impractical.
However, the aggregated value using new geometric interactive aggregation operators

seems significant and consistent.
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3.3. Advantages of the proposed work

In this section, we prove the generalization of proposed work over the existing
literature. Here we observed that under some certain conditions the proposed work

reduces to existing work which shows the superiority of our proposed work.
Consider the T-SFWGIA operator defined as

T — SFWGIA, (T4, T2, ., Tk)

k k

k
t 1_[(1 -nt)" - 1_[ (1 — (m + i + nj.))w" - H(i]t.)wf',
j=1

j=1 j=1

, k Yi, k
1—1_[(1—1';) , 1—1_[(1—n;)
j=1 j=1

(3.3.1)

Wj

1. Ifwetake t = 2 the equation (3.3.1) reduces to spherical fuzzy weighted geometric

interaction averaging operator (SFWGIA operator) and we have

SFWGIA, (T3, T, s Tio)

k k k
1_[(1 - njz)wj - 1_[ (1 - (m]-z +i7 + njz))wl - n(if)wf,
j=1 j=1 j=1
k Wj k Wj
1-— 1_[(1 —-i?) , |[1- 1_[(1 —n?)
j=1 j=1

2. If we take t = 1 the equation (3.3.1) reduces to picture fuzzy weighted geometric

interaction averaging operator (PFWGIA operator) and we have

PFWGIA, (T, Ty, o, i)
k k

(TT6-m =TG-+ = [0

k wij k Wj
- Ja-9 a-]]a-m)
j=1 j=1
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3. If we take t =2 and i = 0 the equation (3.3.1) reduces to Pythagorean fuzzy
weighted geometric interaction averaging operator (PyFWGIA operator) and we

have

k k

[Ta-m" =T +n0)",

J=1 j=1

k w
1-| [a-m)
j=1

4. If we take t =1 and i = 0 the equation (3.3.1) reduces to intuitionistic fuzzy

PYFWGIA (T, Ty, ..., Ti)) =

J

weighted geometric interaction averaging operator (IFWGIA operator) and we have

/ ]j (1-n)" - ﬁ (1 = (m; + ”j))wj \

| 4 -
IFWGIA, (T, Ty o, Ti) = i /= =t

\ 1- lj(l - "j)wj

Similarly, T-SFOWGIA and T-SFHGIA operators can be reduced to the

existing operators. All this clearly indicated that our proposed work can be used in the

N~

problems of existing literature, but the operators of existing literature are unable to deal
with problems of T-spherical fuzzy information. For example, if we look at Example
3.1.2.21, it can be seen that none of the existing operators can be applied to such

problems where information is in the form of T-SFNs.
3.3.1. Comparative analysis

The significance of proposed new geometric operators lies in the fact that the
result obtained by using these operations are justifiable than those developed earlier
i.e.,, [16] and [82, 84]. Such operators could not deal with situations where if
membership and abstinence value of any number becomes zero then the membership
and abstinence value of their aggregated value is also zero. Hence the existing
operations of PFSs and T-SFSs did possess the capability of dealing with any kinds of
information. But on the other hand the new geometric operations of T-SFSs can deal

with any type of data justifiably. This point is demonstrated in example.
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The second main advantage of our proposed work is that it has the ability of
aggregate the data available in the form of IFSs, PyFSs, PFSs and SFSs. But conversely,
the existing operators could not handle the data provided in T-spherical fuzzy
environment. For example if we look at Example 3.1.2.21, its data is purely in the form
of T-SFNs based on four grades of membership, abstinence, non-membership and
refusal degree with t = 3, which shows that the aggregation operators of IFSs, PyFSs,
PFSs and SFSs could not aggregate this data. But if we look at Example 3.2.1 its data
is in the form of IFNs and our proposed operators easily aggregated this type of data
witht =1andi = 0.

Hence by all means the proposed work has superiority over the existing work.

3.3.1.1. Example

Let 7,=(0,0.5),T,=(0504)73=(04,0.2),T,=(0303) and Ts5=
(0.7,0.1) €IFN. The WV for 73;(j = 1,2,..,5) isw = (0.18,0.22,0.16,0.21,0.23)".

5x0.18

Ti = ((1-05)08 —(1-(0+05))" " ,1—(1-0.5)01%)

= (0,0.5796)

5x0.22

T, = (1-04)5022 - (1-(0.5+04))" ", 1—(1—0.4)5022)

= (0.5039,0.3183)

5x%0.16

Ts = ((1-0.2)50% —(1-(0.4+02))" 7,1 —(1-0.2)5016)

= (0.4000,0.2000)

5x0.21

T, = ((1-0.3)021 — (1-(03+0.3)) ,1—(1—0.3)>*021)

(0.2870,0.2746)

5%0.23

Ts = ((1—0.1)>%23 — (1-(0.7+0.1)) ,1— (1 —0.1)5%023)
= (0.7203,0.1094)
Scores values are
SC(T,) = —0.5796,  SC(T,) =0.1856,  SC(T5) = 0.2000,
SC(T4) = 0.0125,  SC(Ts) = 0.61009.

82



Thus, SC(T's5) > SC(T3) > SC(T,) > SC(T4) > SC(T1) and we have
Ty = (0.7203,0.1094)
Ty2) = (0.4000,0.2000)
Ty(3 = (0.5039,0.3183)
Ty = (0.2870,0.2746)
Tys) = (0,0.5796)
By using normal distribution-based method, we find
w = (0.1117,0.2365,0.3036,0.2365,0.1117)7.
Now, by using definition of T-SFHGIA operator, we find
T — SFHGIAy, ,(T1,72,T3,T4,Ts) = (0.4093,0.2919)

Here we get the same result as in [62, 64]. Thus, the proposed new operators have the

capability to solve problems that lies in the existing structures.
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Chapter 4

Multi-attribute decision making process with immediate
probabilistic interactive averaging aggregation operators of
T-spherical fuzzy sets and its application in the selection of

solar cells

The objective of this chapter is to present some new interactive averaging
aggregation operators by assigning associate probabilities for the T-SFSs. T-SFS is a
generalization of the several existing theories such as IFSs and PFSs to handle the
imprecise information. Under such environment, we developed some series of
averaging interactive aggregation operators under the features that each element is
represented with T-SFNs. Various properties of the proposed operators are also
investigated. Further, to rank the different T-SFNs, we exhibit the new score functions
and state their some properties. To demonstrate the presented algorithm, a decision
making process algorithm is presented with T-SFS features. To save non-renewable
resources and to protect environment the use of renewable sources is important. Solar
energy is one of the best renewable sources of energy and also an environment-friendly
source so the selection of solar cells is typically a MADM problem. So the applicability
of the developed algorithm is demonstrated with a numerical example in the selection
of the solar cells and comparison of their performance with the several existing

approaches.
4.1. New Score function of T-SFSs

This section is shown that existing score function [16] for T-SFSs have some

shortcomings and a new score function is proposed to overcome these shortcoming.
4.1.1. Definition

For any T-SFN T = (im, i, n) the new score function is defined as

mb_it_nt
SC(T) =mt—it—nt+(ee——1)rt, (4.1.1)

mt—it—nt 1~ 2

Where r = §/1 — (mt + it + nt).
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A T-SFN 77 = (m4, iy, n,) is said to be superior than another T-SFN 75, = (i, i, n,)
if score of 73 is greater than 7,. If score of both numbers is equal then the superiority is
checked by the comparison of their refusal degree, the number 7 is superior if its
refusal degree is smaller than 7, and numbers will be similar if their refusal degree is

same.
4.1.2. Remark

The following special cases are concluded from the proposed score value, defined in
Eq. (4.1.1), as

1. Eq. (4.1.1) reduces to score value for SFSs when t = 2;
2. Eq. (4.1.1) become valid for PFSs if t = 1;
3. Eg. (4.1.1) become valid for PyFSsif t = 2 and i = 0;

4. EqQ. (4.1.1) reduces to score value for IFSsif t = 1and i = 0.

4.2. Some T-Spherical Fuzzy Averaging Operators

In this section some operations for T-SFSs are defined and with the help of these
operations some T-spherical fuzzy aggregation operators are proposed. This section is
further divided into three subsections. In first subsection some averaging aggregation
operators are proposed and some basic properties of these operators are also discussed.
In second subsection some interactive averaging aggregation operators along with some
basic properties are proposed. In third subsection superiority of interactive averaging
aggregation operators over averaging aggregation operators is explained with the help

of an example.
4.2.1. T-Spherical Fuzzy Averaging Aggregation operators

In this subsection some averaging aggregation operators e.g. T-SFOWA, IP-T-
SFOWA, T-SGCA, Ass. IP-T-SFOWA operators are proposed with some of their basic

properties.
4.2.1.1. Definition

Consider collection of T-SFNs, 7; = (m;, i;, n;), then T-SFOWA operator is defined as

T —SFOW A, (T3, T3, .. Ti) =®=; (W;T5()
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where w = (wy, ...,w;,)T is a weight vector with a conditions that all weight vectors
must belong to [0,1] and the sum of all weights is equal to 1 and o=

(6(1),0(2), ..., a(k)) is the permutation such that SC(T,(j_1y) = SC(Ty(j)-
4.2.1.2. Theorem
Consider a collection of T-SFNs 7; = (m;, ij, n;), then

T — SFOWA,, (T, Ty, .., Ti)

o) 1_[ sy |

1 j=1

k
t .
j=1

k k
j=

Proof: The above result is proved by using mathematical induction,

Fork =1,

T — SFOWA,,(T;) = <t/1 —(1-mb), il,n1>

= (mlf ilﬂ nl)
Thus results hold for k = 1. Now consider that the results hold for k = I,

T — SFOWA,, (T, Ty, .., T;)

Then to prove that result hold for k = 1 + 1,

T — SFOWA,, (T, Ty, o, T141)

t t W] Wi Wi
D <J1 — (1 =m5) "a(]j)'"a(]j)>
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. 1+1 1+1 1+1
— t Wi W Wj
={ |1~ 1_[(1 ~ M) 1_[ 20 'H”au)
j=1 j=1 j=1
This proves that the results hold forall k € Z*.
4.2.1.3. Theorem
If T = Ty = (my, ig, o) forall j = 1,2, ...,k then T — SFOWA,, (7, Ty, ..., Ti) = To.

Proof: As 7; = T = (my, iy, np) then

k k

¢ Wi Wi wi

T — SFOWA,, (7}, T, ..., T}) = 1—| |(1—mf,(j)) f,| |la(]j),| |na(’j)
j=1 j=

k
=1 j=1

t 2k= w; 3 Zk= \&1 Zk= Wi
= (1= = me ) G o)
= (Mg, ig,ng) = Tp
4.2.1.4. Theorem

For a collection of any two different T-SFNs 7; = (m, i;,n;) and 7' = (m, i}, n/

( = 1,2,.., k) such that m; < m, i; < i; and n; = n; for all j, then
T — SFOWA,, (T, Ty, ... Ti) < T — SFOWA,, (T, T3, .., T)

Proof: As m; < mj, i; < i; and n; > n; for all j. This implies that

k k
wj , t\Wj
1—1_[(1—mg(j)) I < 1—1_[(1 (my))
j=1 j=1
k k
Wj ! Wi
[ [t =] l@o
j=1 j=1
k k
W] ] W]
| [t =] |iy
j=1 j=1



k k

t 1- l_[( a(})) U ’ Hntf(j)

j=1 j=1

k k
t , t\Wj .1 i I j
L1t T [ oo™
j=1 j=1

4.2.1.5. Theorem
Consider a collection of T-SFNs 7; = (m;, i;,n;) for all j = 1,2, ..., k such that 7, =
min{7;} and 7;; = max{J;}. Then
J J
T, <T — SFOWA, (T, Ty o, T) < Ty
4.2.1.6. Definition

Consider a collection of T-SFNs, 7; = (m,i;,n;), then IP-T-SFOWA operator is

defined as
IP =T — SFOWAp(T1, Ty, ..., i) =B%_1 (4jT5(j))

where w = (wy, ..., wy)T is a weight vector with a condition that all weight vectors

belong to [0,1] and the sum of all weights must be equal to 1. 4; is probability for each

i) and o = (6 (1), .., (k)

T;, A; is an immediate probability of 75y and 4; =
Z] 1 J}‘]

is the permutation such that SC(T,(j_1)) = SC(Ty(;»).
4.2.1.7. Theorem

Consider a collection of T-SFNs 7; = (m;, i;, n;), then

k k
t A A A
IP—T —SFOWAp(T1, T, .. Th) = |1 - 1_[(1 -mby) 7, 1_[ L | |0

j=1 j=1

Proof: The above result is proved by using mathematical induction,

Fork =1,

IP—T —SFOWAp(T7) = (tfl —(1-md), l'1,n1>
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= (my, iy, nq)
Thus results hold for k = 1. Now consider that the results hold for k = I,

IP—T — SFOWAp(T,, T, ..., T})

Then to prove that result hold for k = 1 + 1,

IP—-T — SFOWAP(:TIJ :Tz, ---;:Ti+1)

J=1 j=1 j=1
I A;
o({1-(- mom) ety et
1+1 l+1 +1

t AL A Al
t -] J
1- | |(1_m0(1')) ]'I |la<j)'| |"ou)
j=1 j=1 j=1

This proves that the results hold forall k € Z*.

4.2.1.8. Theorem

If T, = Ty = (Mg, ig,no) forallj = 1,2, ...,k then IP = T — SFOWAp(T1, T, ..., i) =
.

k k
t A A A
IP—T —SFOWAp(T,, Ty, ... Ti) = 1—| |( mpiy) | |zaf(]),| |n0’(1)
j=1

j=1 j=1

t yk_2L vk Al
_ t 1 j=1%j j=1%j
- <\/1 - (1 - md(j)) ] ]' a(]) ’na(j) >

= (Mg, i, o) =T
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4.2.1.9. Theorem

For a collection of any two different T-SFNs 7; = (my, i;,n;) and 7' = (m, i}, n/)

( = 1,2,.., k) such that m; < mj, i; < i; and n; = n; for all j. Then
IP—T —SFOWAp(T,, T3, ., Tp) < IP —T — SFOW Ap(7/, T3, ..., T

Proof: As m; < m;, i; < i; and n; > n; for all j. This implies that

t A t NN
\/1 —ML(1-mg))” < \/1 =TT (1= (mi))”

k k

. A" i A"
H(lo(j)) < H(laU)) J
j=1 j=1

k k
A ' Al
[ o) =] |0e)”
j=1 j=1
t k l s A i Aj
1= 1_[ mo) 1_[ Loty l_[nf’(ﬂ
j=1 j=1 j=1
t i A : A . 2]
’ J ./ j ! j
1— 1_[(1 — (M) ) 'H(la(j)) "H(”a(j)) !
j=1 j=1 Jj=1

4.2.1.10. Theorem
Consider a collection of T-SFNs 7; = (m;, i;,n;) for all j = 1,2, ..., k such that 7}, =
min{7;} and Ty =1naxﬂn}.Then
J J
T, <IP —T —SFOWAp(T1, Ty, ..., To) < Ty
4.2.1.11. Definition

Consider a collection of T-SFNs, 7; = (m,i;,n;) on a set of states of nature X =

{x4, ..., x.}, then T-SFCA operator with respect to fuzzy measure 0 is defined as

T — SFCAo(T1, Ty, ..., Tit) =@B%_1 (4T5(»)
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where ; = 0({*o(1) Xo(2)» - Xo(}) — O({Xo@) Xo(2)s - Xo(j-1}), O{Xe0)}) =0

and ¢ is the permutation. o = (a(l),a(Z),...,a(k)) is the permutation such that
SC(To(j-n) 2 SC(Ty(p).
4.2.1.12. Theorem

Consider a collection of T-SFNs 7; = (m;, ij, n;), then

k k k
t A A A
T —SFCAe(T, Ty, ... Ti) =| [1-— | |(1 - mg(j)) ! laj(j), | | na’(j)
j=1 j=1 j=1

Further, it is observed that T-SFCA operator also fulfils the properties as defined

in theorems 4.2.1.3. — 4.2.1.5., so we omit here their proofs.
4.2.1.13. Definition

Consider a collection of T-SFNs, 7; = (m;, ij, n; ), the Ass. IP-T-SFOWA operators is

defined as

Ass.IP —T — SFOWA, (11, Ty, ..., i) = \/ @k (A Ton)]

PEXn

and

Ass. IP —T — SFOWAL(T1, T, ..., i) = /\ Bk (A)Ton)]

PEXn

where w = (wy, ..., w,)T is a weight vector with a condition that all weight vectors
belong to [0,1] and the sum of all weights must be equal to 1. ¢ = (0(1), ...,a(k)) is
the permutation such that SC(7,(j—1)) = SC(T,;). For each associated probability P,:

b widep)

P = T wangy Aoy = Py(T5(jy) is an associated immediate probability and v

=maximum and A=minimum.
4.2.1.14. Theorem

Consider a collection of T-SFNs 7; = (m;, i;, n;), then
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Ass.IP — T — SFOWA(T,, Ty, ., Ti)

k k
t ! !
|[ 1— min l_[(1 _ m(tr(j))’lp(n min H(ia(},))’lpu) ,

PEXy, PEX.
j=1 j=1

k
. A
k min [ [Goc) ™

j=1

NN

and

Ass.IP =T — SFOWAL(T;, Ty, ., T2)

K
/ 1 — max II(I— a})p@ , max II(éU»%M)
n

PEXy PEX
j=1

-

NN

|

|

| ST

\ max H("a(j)) o
j=1

Further, it is observed that Ass.IP — T — SFOW A, and Ass.IP — T — SFOW A,
operator also fulfils the properties as defined in theorems 4.2.1.3. — 4.2.1.5., so we omit

here their proofs.
4.2.1.15. Definition

Consider a collection of T-SFNs, 7; = (m;,i;,n;) on a set of states of nature X =

{x1, ..., x; }, then T-spherical fuzzy conjugate Choquet averaging (T-SFCCA) operator

with respect to fuzzy measure 0 is defined as
k \\¢
T = SFCCAo(TL, Ty, ., ) = (@'y (4(7)))

where ; = 0({Xg(1), Xo(2)) - Xo(j}) = O{Xo) Xo(2) - Xs(j-1)}): O({Xo(0)}) =0
and o = (6(1),0(2), ..., a(k)) is the permutation such that SC(T,(;_1)) = SC(Tyj))-

4.2.1.16. Theorem

Consider a collection of T-SFNs 7; = (m;, i;, n;), then
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T — SFCCA@(:T;U g}; ,:T;()

. y) : At : y)
= [ o)™ ] o)™, [1=] [ =)™
1 j=1 j=1

]:

4.2.2. T-Spherical Fuzzy Interactive Aggregation operators

In this subsection some interactive averaging aggregation operators e.g. T-
SFOWIA, IP-T-SFOWIA, T-SGCIA and Ass. IP-T-SFOWIA operators along with
some of their basic properties are proposed.

4.2.2.1. Definition

Consider a collection of T-SFNs, 7; = (m;, i;, n;), then T-SFOWIA operator is defined

as
T — SFOWIA,, (T, Ty o, Ti.) =eeij.‘=1 (WiTs (i)

where w = (wy, w,, ..., w,)T is aweight vector with a conditions that all weight vectors
must belong to [0,1] and the sum of all weights is equal to 1 and o =

(a(1),0(2), ...,a(k)) is the permutation such that SC(T;¢;_1)) = SC(Ty(j))-
4.2.2.2. Theorem
Consider a collection of T-SFNs 7; = (m;, i;, n;), then

T — SFOWIA, (T, Ty, .., i)

k

k
t ot i
1— | |(1 — mg(j))wf, 1— | |(1 — ig(j))‘”’,
j=1

j=1

k k k
t . , ,
| |(1 —mb) " = | |(1 —mby =iy —nh) - | |("3(j))Wj
j=1 j=1 j=1

Proof: The above result is proved by using mathematical induction,

Fork =1,
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T — SFOWIA,,(T,)

- (fjl— A-m),[1- -, |a-m) - -m— i —nd) —ii)

= (my, i1,n9)
Thus results hold for k = 1. Now consider that the results hold for k = I,

T — SFOWIA, (T, Ty, ., T)

l l
t .t 1_[ .
j=1 j=1

l l l
t ) . .
| |(1 —mt) " - | |(1 —mt iy =ity b)) - | |("ctr(j))W]
j=1 j=1 j=1

Then to prove that result hold for k = 1 + 1,

T — SFOWIA, (T, T, o, Trv1)

l l
t 1—[ ot 1—[ .
j=1

J=1

l

l l
t ) . .
| |(1 - mrtr(j))wj - | |(1 — Mgy~ o) — "f;(j))wl - | |(ictr(j))W]
j:l j=1

j=1

t\/1 -(1- mfr(j))Wj' t\/l -(1- ifr(j))Wj'

@D
t i . i . j
\/ (1=mb;y)" = (1 =mbgy =iy = b)) = (i)™
. 1+1 . l+1
wi . wi
1- H(l -mby), 1= 1_[(1 —it)
j=1 j=1
- . I+1 1+1 l+1
W . W . W
ﬂ(l —mg) '~ 1_[(1 ~ Moy = lot) " May) |~ 1_[(‘3(1)) ]
j=1 j=1 j=1

This proves that the results hold for all k € Z™.
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4.2.2.3. Definition

Consider a collection of T-SFNs, 7; = (m,i;,n;), then IP-T-SFOWIA operator is

defined as
IP =T — SEFOWIAp(T1, Ty, ..., Ti) =eaij.‘=1 (ATs)

where w = (wy, w,, ..., w)T is a weight vector with a condition that all weight vectors

belong to [0,1] and the sum of all weights must be equal to 1. 4; is probability for each

W) and g = (o (1), .., o(K))

T;, 4; is an immediate probability of 7; ;) and 4; = Sk wia;

is the permutation such that SC(T,(j—1)) = SC(Ty(j))-
4.2.2.4. Theorem
Consider a collection of T-SFNs 7; = (m;, ij, n;), then

IP =T — SFOWIAp(T;, Ty, ., Tit)

k k
TR t
- 1_[(1 -mby)7, |1— 1_[(1 — it
j=1 j=1

k k k
' 1 t )‘} 1— t '1;' it A}
(1-m5) (1 =m5i) =~ oy ~mop)” — | (o)
j=1 j=1 j=1
4.2.2.5. Definition
Consider a collection of T-SFNs, 7; = (m;,i;,n;) on a set of states of nature X =

{x1, ..., x;.}, then T-SFCIA operator with respect to fuzzy measure 0 is defined as

T — SFCIAg(T3, T3, ., Tid) =i's_y (A7)

where ; = @({Xg(1), Xo(2), - Xo(n}) = O{Xe) Xo2) - Xs(j-1)}): O({Xo(0)}) =0

and o is the permutation. o = (a(l),a(Z),...,a(k)) is the permutation such that
SC(To(j-1)) = SC(To ().

4.2.2.6. Theorem

Consider a collection of T-SFNs 7; = (m;, i;, n;), then
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T — SFCIAo(T;, Ty s Tie)

k k

‘ TRYE TR
1- H(l —ma) s [1- 1_[(1 =~ ia)

j=1 ]=1

k k k
t Aj . Aj . Aj
1_[(1 — M) = n(l ~ Mgy ~ o) " Mop) |~ H(lf}g)) ]
j=1 j=1 j=1

4.2.2.7. Definition

Consider a collection of T-SFNs, 7; = (m;, i;,n,), then Ass.IP-T-SFOWIA operators

is defined as
Ass.IP — T — SEOWIA(Ty, Ty, .., Tp.) = \/ [eaij.‘zl (A;,(j):ra(j))]
PEXn

And

Ass.IP — T — SFOWIAN(T;, Ty, ..., ) = /\ 0/, Aoy Toi)]

PEXn

where w = (wy, wy, ..., wi )T is a weight vector with a condition that all weight vectors
belong to [0,1] and the sum of all weights must be equal to 1. o = (0(1), ...,a(k)) is
the permutation such that SC(7,(j-1)) = SC(T,;,). For each associated probability P,

Aoy = % Aoy = By(T5(y) is an associated immediate probability and v

=maximum and A=minimum.
4.2.2.8. Theorem

Consider a collection of T-SFNs 7; = (m;, i;, n;), then
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Ass.IP — T — SFOWIA(T,, Ty, o, T3)

k k

t ) /11 . t ]
1— [r)ré}a l_[(l _ m(t;(j)) p() , 1= };rel})a 1_[(1 _ l ) p(J)

j=1 j=1

o~

K k
= : ot Voo | ot it Aot
peitn |l(1 ma(i)) pex (1 Moy ~ o) — 0(1))
j=1 j=1

k
A,
_ : it p(j)
min | |(‘a(j))
j=1

and

Ass.IP — T — SFOWIA\(T;, Ty, ., Ti)

k
t /1! .
_ p(}) _ _ gt p(j)
1 E)rée)l(x | |(1 ma]) , |1 ffé?é | |(1 la(j))
j=1

B o | _ o _ p(j
t| e | |(1 Mg(h) pesn ] l(l Mgy = oty ~ M)
j:l j=1

- t Voo
_ 7 pU
max | |(‘a<j))
j=1

\

4.2.2.9. Definition

Consider a collection of T-SFNs, 7; = (m,i;,n;) on a set of states of nature X =

{x1, oo ,Xi}, then T-spherical fuzzy conjugate Choquet interactive averaging (T-

SFCCIA) operator with respect to fuzzy measure 0 is defined as
Cc
T = SFCCIAo(R, T -, T = (@1, (4(%)))

where 4; = 8({x5(1), *a@)» -+ Xo(}) = O({*o1) Xo@), -+ Xo(j-1}): O({*o)}) =0
and o = (6(1),0(2), ..., a(k)) is the permutation such that SC(T,(;_1)) = SC(Ty(j)).

4.2.2.10. Theorem

Consider a collection of T-SFNs 7; = (m;, i;, n;), then
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T — SFCCIAg (T, Ty o) Tit)

k k k

t A: . A i A
| |(1 —ngp)” - | |(1 —migy — oy ~ Megp) | | |(‘3(j)) !,
j=1 j=1 j=1

k

‘ - t t Y
j=1

j=1

Also, it is observed that all the above defined operators also satisfied the properties as
defined in Properties 4.2.1.3. — 4.2.1.5.

4.2.2.11. Remark

If fuzzy measure and probability of T-SFSs become equal and furthermore probabilities
of all T-SFNs become equal then Ass.IP-T-SFOWIA operator reduces to T-SFOWA

operator.

4.2.3. Comparison between aggregation operators and interactive aggregation
operators

In this section, the superiority of interactive averaging aggregation operators
over averaging aggregation operators is explained with the help of an example. It is also
explained that under some conditions the averaging aggregation operators fail while

interactive averaging aggregation operators overcome this shortcoming.
4.2.3.1. Example

Consider T-SFNs, g; = (0.63,0.0,0.0), g, =(0.68,0.25,0.81) and g5 =
(0.0,0.51, 0.93) having a weight vector w = {0.25, 0.40, 0.35}, fuzzy measures will be

0(¢) =0, 0({g1}) = 0.125, 0({g.}) = 0.200, 0({gs}) = 0.175,
0({g1, 92}) = 0.325, 0({g1, 93}) = 0.300, 0({g2, 93}) = 0.375,
0({91,92,93) = 1.

Immediate probabilities for all possible permutations and the associated immediate
probabilities for all possible permutations are given in Table 15.

Table 15 Immediate Probabilities & Associated Immediate Probability

Immediate Probabilities
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A Az Az

o= (91,92 93) 0.125 0.200 0.675
o= (91,93 92) 0.125 0.700 0.175
o= (92 91,93) 0.200 0.200 0.600
o= (9293 91) 0.700 0.200 0.100
o= (9391,92) 0.125 0.700 0.175
o= (9392 91) 0.700 0.125 0.175

Associated Immediate Probability

o) A2 Ao
o = (91,92 93) 0.0899 0.2302 0.6798
o = (91,93 92) 0.0839 0.7517 0.1644
o= (9291, 93) 0.1470 0.2353 0.6176
o= (9293 91) 0.6034 0.2759 0.1207
o =(9391,92) 0.0839 0.7517 0.1644
o = (93,92 91) 0.6114 0.1747 0.2140

Asfort =1, 0.68+4 0.25+0.81 = 1.74 ¢ [0,1],
Asfort =2, 0.68% + 0.252 + 0.81%2 = 1.181 ¢ [0, 1]
Asfort =3, 0.68° + 0.25%3 + 0.81% = 0.861 € [0,1]
Similarly for t = 3, 7; and 75 are T-SFNSs.

Then aggregated values of averaging aggregation operators defined in Definitions
4211.,42.16.,4.2.1.11.,and 4.2.1.13., will be

T — SFOWA,, (g4, g g) = (0.5846,0.0,0.0)
IP —T — SFOWAp(gy, g, gs) = (0.5452,0.0,0.0)

T — SFCAg (91,92, g3) = (0.4752,0.0,0.0)
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Ass. IP —T — SFOWA, (g1, 92, 93) = (0.6423,0.0,0.0)
Ass. IP —T — SFOWA,(91, 92, 93) = (0.4742,0.0,0.0)

The above aggregation results seem meaningless as these averaging operators do
not aggregate abstinence and non-membership value because one of the abstinence and
non-membership value of given data is zero. So the results obtained through these
averaging aggregation operators are not valid. To overcome this shortcoming we used
interactive averaging aggregation operators. The results obtained by using interactive
operators defined in Definitions 4.2.2.1., 4.2.2.3., 4.2.2.5., and 4.2.2.7. will be

T — SFOWIA, (91, g, g3) = (0.5846,0.3793,0.8617)
IP =T — SFOWIAp(gy, g g3) = (0.5452,0.4205,0.8973)
T — SFCIAo(gy, go, g3) = (0.4752,0.4554,0.9260)
Ass. IP —T — SFOWIA, (941,92, 93) = (0.6423,0.4571,0.7420)
Ass. IP =T — SFOWIAL(gy, g2, g3) = (0.4742,0.2772,0.9279)

The proposed interactive operators aggregate all membership, abstinence and non-
membership values. This shows the superiority of interactive aggregation operators and

the results obtained using these interactive operators are more reliable.
4.3. Algorithm for MADM based on proposed operators

In this section an algorithm was developed to solve MADM problem using the
proposed averaging aggregation and interactive aggregation operators and a well-

known MADM example is solved by using the algorithm.

Consider a set of alternatives D = {d,,d,, ...,d;} and set of attributes G =
{91, 92, -, gx} having a weight vector w = {wy,w,, ...,wy}, set of probabilities
associated with them is P = {1, A,, ..., A, } and associated immediate probabilities are
Po(y = 15y Ap(2ys -+ Ay }- The weight vector and set of probabilities have a same
condition that the sum of weights and probabilities must equal to 1 and weights and
probabilities belong to closed unit interval. The fuzzy measure © have been calculated
for all subsets of {d;, d,, ..., d;}. Then to find the finest alternative among the feasible

one, we summarized the following steps based on the proposed aggregation operators.
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Step 1. Rate the given alternatives under the different set of attributes by an expert in
terms of T-spherical fuzzy numbers and are summarized in the decision matrix as

follows:

(Myy, 010, n91)  (Myp, 12, N92) e (M, Liks Nik)
=t .

(Mmyg, G, myy) (Mg, i, Ny2) (M L Mk )

Step 2: Normalize the data, if required by converting the cost type ratings into the
benefit type by using the following equation

S {(mlk, L Nik) 5 for benefit type attributes
Y\ (g i my) 5 for cost type attributes

and hence obtained the normalized decision matrix R = (ry;,).

Step 3: Find the value of t for which information matrix R lie in T-spherical fuzzy
environment i.e., to find the smallest value of t which satisfy the condition m{, + i}, +

ny < 1forall [ k.

Step 4. Utilize the normalized data and the value of t, aggregate all the numbers into
the collective ones by using the aggregation operators such as IP-T-SFOWA, T-SFCA,
Ass.IP-T-SFOWA etc. The resultant number is denoted by 7;, = (my, iy, ny) for k =
1,2,..,L

Step 5. Compute the score value of the obtained number 7, = (my, iy, nx) by using

equation

t_.t t
ek Tk Mt 2

m,t(—i,t(—n,t( 1
. e
SC(T;) = mi — i —nj + <— - —)r,i,

Where ¢ = /1 —mt — it —nt
Step 6. Rank the alternatives based on the score values and hence select the best one.
4.3.1. Numerical Example

To save the non-renewable energy resources and the environment, the use of
renewable energy plays a significant role in the aspect of the production of electricity.
Solar cells are the best renewable sources of energy. There are several types of solar

cells but few of them are studied in our application. The solar cells made with inorganic
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semiconductors like crystalline silicon solar cell, a solar cell with advanced I11-V thin
layer, amorphous silicon solar cell, cadmium telluride solar cell, etc. are expensive and
their use has been confined to a few technological options. While on the other hand, the
solar cells made with organic semiconductors like a dye-sensitized solar cell, etc. can
be processed on large surfaces at a relatively low temperature but they have some
serious problems that the degradation of their compounds (plastics) and also they

provide less efficiency about 5-11%.

A MARCO company is situated in Islamabad Pakistan. This factory manufactures
PVC pipes and plastic water tanks. Due to the load shedding of electricity, the company
is unable to meet the demand. To overcome the deficit of supply and demand the
company wants to generate electricity using solar energy. For which they have to select
the best solar cell that increases production or efficiency, minimizes cost, and at the
same time confers high maturity and reliability. They have a set of alternatives D =
{dy,d,, ds,d,, ds} where:

d,: Amorphous Silicon Solar Cell;
d,: Dye-sensitized Solar Cell;
d5: Cadmium Telluride Solar Cell;

d,: Solar cell with advanced Il11-V thin layer with tracking systems for solar

concentration;
ds: Crystalline Silicon Solar Cell.

Experts have evaluate these alternatives under consideration of following attributes

G =1{91, 92 93}
g1: Cost;
g-: Efficiency in energy conversion;
gs: Heat tolerance.

The experts give information in T-spherical fuzzy numbers after evaluation as in
Table 16.
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Table 16 Decision Matrix

g1
(0.51,0.42,0.87)

(0.53,0.33,0.84)
(0.39,0.26,0.77)
(0.00,0.34,0.93)
(0.22,0.46,0.78)

92
(0.54,0.21,0.44)

(0.00,0.23,0.47)
(0.73,0.38,0.59)
(0.91,0.27,0.56)
(0.69,0.52,0.42)

g3
(0.47,0.36,0.81)

(0.67,0.11,0.55)
(0.64,0.41,0.52)
(0.66,0.19,0.79)
(0.59,0.41,0.72)

Assume that the g, is the cost type attribute, so we normalize the given information

by converting the cost type into benefit type and obtained the normalized decision

matrix given in Table 17.

Table 17 Normalized Decision Matrix

91

(0.87,0.42,0.51)
(0.84,0.33,0.53)
(0.77,0.26,0.39)
(0.93,0.34,0.00)

(0.78,0.46,0.22)

92

(0.54,0.21,0.44)
(0.00,0.23,0.47)
(0.73,0.38,0.59)
(0.91,0.27,0.56)

(0.69,0.52,0.42)

93

(0.47,0.36,0.81)
(0.67,0.11,0.55)
(0.64,0.41,0.52)
(0.66,0.19,0.79)

(0.59,0.41,0.72)

Asfort =1, 0.87 + 042+ 0.51 =18 ¢ [0,1],

Asfort =2, 0.872 + 0.42% + 0.512 = 1.19 ¢ [0, 1]

Asfort =3, 0.87% +0.423 + 0.513 = 0.865 € [0, 1]

Similarly for t = 3 all the information given in Table 17 are T-SFNs. The interaction

of states of nature and weights of given attributes is in Table 18.

Table 18 Interaction of states of nature and weights

g1 9o 93 Risk
importance
91 - 0.150 0.100 0.250
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92 0.150 - 0.250 0.400
I3 0.100 0.250 - 0.350

With the help of Table 18, the interaction between attributes will be I, = 0.250,
I,, = 0.400, I, = 0.350, I, ,, = 0.150, I, , = 0.100, I, ;. = 0.250. The fuzzy

measure can be calculated with the help of interaction using the following relationship

(o) =ly~5 D Lo

9€6{g;}
1 1
9({9j;gk}) =lg; +1g, — 2 Z Iy g ) Z Igyg
9€6{g;.9k} 9€6{g.91}
jk=1234)+k
0(¢p) =0, 0(6) = 1.

The fuzzy measures will be ©(¢) =0, 0({g,}) = 0.125, ©0({g,}) = 0.200,

0({gs}) = 0.175, ©0({g1,92}) = 0325, ©({g1,93}) = 0.300, ©({g2 g3}) =
0.375, ©(G) = 1. The immediate probabilities for every possible permutation are

summarized in Table 19. An associated immediate probability for every possible

permutation is summarized in Table 20.

Table 19 Immediate Probability

! ! !

1 2 3
o = (g1, 92 93) 0.125 0.200 0.675
o = (g1, 93 92) 0.125 0.700 0.175
o = (g2, g1, 93) 0.200 0.200 0.600
o = (g2, g3, G1) 0.700 0.200 0.100
o = (g3, 91, 92) 0.125 0.700 0.175
6 = (g3 92 91) 0.700 0.125 0.175
Table 20 Associated Immediate Probability
Ao(a) Ao(2) Ao@3)
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o = (91, 92 93) 0.0899 0.2302 0.6798

o = (91,93 92) 0.0839 0.7517 0.1644
o = (g2, 91, 93) 0.1470 0.2353 0.6176
o = (g2, 93 91) 0.6034 0.2759 0.1207
o = (g3, 91, 92) 0.0839 0.7517 0.1644
o = (93,92 91) 0.6114 0.1747 0.2140

The aggregated values by proposed operators (Definitions 4.2.1.1., 4.2.1.6.,
4.2.1.11., and 4.2.1.13.) are shown in Table 21.

Table 21 Aggregated values using aggregation operator

dy d, ds dy ds
T 0.6790,\ /0.6658,\ /0.7154, 0.8718 0.6911,
0.3016,] |0.1944,] (04963, | [0.2529,] |[o0.4641,
—SFOWAy  \ 05652 0.5117 0.5090 0.0 0.4315
IP—T 0.6074\ /0.6328,\ /0.6967,\ /0.8397\ /0.6630,
_srowa, 03002) (01662, ) {03764, ] {02330, ) |04sss,
0.6088 0.5163 0.5257 0.0 0.5076
T —SFCA, [05994)\ /0.6679,\ [0.6812)\ [0.7988\ /0.6466,
03295 | (01462, (03815 ] (02192 ] [o0.4362
0.6766 0.5305 0.5145 0.0 0.5574
Ass.IP —T /07982 [0.7748\ /0.7474\ /09111 /0.7423,
_srowa, \02432] (01839, ) {03050, [02171,) {04376
0.4925 0.4872 0.4459 0.0 0.3034
Ass.IP—T /0.5748\ /05008 /0.6787,\ /0.7954\ /0.6411,
03600, | (02616, [03867,] (02974 ] |[o0.4950,
—SFOWA,  \ g 6752 0.5287 0.5581 0.0 0.5717

This seems meaningless because the averaging aggregation operators cannot

aggregate the non-membership value of d, so valid aggregate of d, is not obtained.

The score values of aggregated operators are listed in Table 22, and the

corresponding score values the ranking of alternatives is shown in the Table 23.

Table 22 Score values of Table 21

d, d, ds d, ds
T 0.1176 0.1754 0.1226 0.6967 0.1687
— SFOWA,,

IP—T -0.0324 0.1279 0.1556 0.6352 0.0749

— SFOW Ap
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T —SFCAy -0.1445 0.1655 0.1397 0.5579 0.0159

Ass.IP—T  0.4077 0.3822 0.3353 0.7877 0.3326
— SFOWA,
Ass.IP—T  -0.1832 -0.0472 0.0901 0.5320 -0.0493
— SFOWA,

Table 23 Ranking order of the alternatives

Operators Rankings
T — SFOWA,, dy>d, >ds >d; > d,
IP—T — SFOW A, d,>d; >d, >ds >d,
T — SFCA, dy>d, >d; >ds > d,
Ass.IP —T — SFOWA, d,>d; >d, >d; >ds
Ass.IP — T — SFOW A, dy>ds>d, >ds>d;

The ranking results in Table 23 are not accurate because non-membership value

of d, in averaging aggregation operators has not been aggregated.

Now the aggregated values of all proposed interactive aggregation operators are
shown in Table 24, the corresponding score values are listed in Table 25, and the

ranking of alternatives is summarized in Table 26.

Table 24 Aggregated Values by interactive aggregation operators

d, d, ds d, ds

T 0.6790, 0.6658, 0.7154, 0.8718 0.6911,
0.3389, 0.2433, 0.3700, 0.2722, 0.4721,

— SFOWIAy,  \ g 6681 0.5577 0.5365 0.5942 0.5452
P_T 0.6074, 0.6328, 0.6967, 0.8397, 0.6630,
0.3315, 0.2138, 0.3857, 0.2508, 0.4639,

—SFOWIAp  \ 7050 0.5496 0.5452 0.6502 0.6019
T — SFCIA, (0.5994, 0.6679, 0.6812, 0.7988, 0.6466,
0.3498, 0.1991, 0.3911, 0.2384, 0.4436,

0.7428 0.5552 0.5303 0.6881 0.6443

Ass IP—T  /0.7982, 0.7748, 0.7474, 09111, 0.7423,
0.3853, 0.2936, 0.3940, 0.3109, 0.5008,

—SFOWIAy  \ 95960 0.5204 0.4757 0.4613 0.4089
Ass.IP —T  /0.5748, 0.5008, 0.6787, 0.7954, 0.6411,
srowia. 02763, 0.1912, 0.3249, 0.2338, 0.4456,

- r \0.7477 0.5637 0.5729 0.6963 0.6486
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Table 25 Score Values of Table 24

dq d, ds dy ds
T -0.0262 0.1211 0.1783 0.4442 0.0691
— SFOWIA,,
IP—-T -0.1846 0.0887 0.1318 0.3012 -0.0291
— SFOWIAp
T — SFCIA, -0.2568 0.1344 0.1199 0.1768 -0.0922
Ass.IP —T 0.2528 0.3262 0.2744 0.6456 0.2363
— SFOWIA,
Ass.IP —T -0.2723 -0.0709 0.1008 0.1584 -0.1070
— SFOWIA,
Table 26 Ranking Orderings
Operators Rankings
T — SFOWIA,, dy >d;>d, >ds>d,
IP—T —SFOWIAp dy,=>d;>d,>ds>d;
T — SFCIA, d,>d,>d; >ds >d,
Ass.IP —T dy,>d,>d; >d; >ds
— SFOWIA,
Ass.IP —T dy=>d;>d, >ds>dy
— SFOWIA,

It is observed from the Tables 23 to 26, T-SFOWA and T-SFOWIA operators do
not reflect interactions between some states of nature. While the T-SFCA and T-SFCIA
operators reflect interactions between some states of nature but Ass. IP-T-SFOWA and

Ass. IP-TSFOWIA operators reflect interactions among all states of nature.

4.4. Advantages

In this section, the advantages of proposed operators over existing operators are

discussed and some conditions are also discussed under which the proposed operators

become valid for existing operators.

Consider Ass.IP-T-SFOWIA operators

107



Ass.IP —T — SFOWIA, (T, T, .., Ti)
. k
— mi —mt ()
1-min( [ [(1-mig)™ ),
j=1
k
t ; t Yo
1—min 1_[(1—! ) ,
j=1
— k
i —mt ) | —
min| | [(1-mig)
j=1
t
k
: : 2
min ﬂ(l‘mao) fo) ~ Mag)) *
j=1
k
— mi it Yo
min| [ [(4)"
\ j=1
and
Ass.IP —T — SFOWIA,(T1, Ty, ., T2

t

k
i
1 — max l_[(l —m)) "0

PEXy
j=1
k
— P(I)
1 ll}gl(x 1_[(1 l(l))
j=1
k

max
PEXy

\

2
max 1_[(1 —mb )0 | -
j=1

l_[(l m

Al
it (40)]
— max | Ay
PEX | |( a(]))
j=1

ioh) — o) o0

(4.4.1)

(4.4.2)

1. Fort =2, Egs. (4.4.1) and (4.4.2) reduces to associate immediate probability

spherical fuzzy ordered weighted interaction averaging (Ass.IP-SFOWIA)

operator
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Ass.IP — SFOWIA,(T1, T, ..., Ty)
k k
— . _ 2 A’() _ ] 2 A’()
! e 1_[(1 mz ) 1 Iin (1—i2))"Y
j=1 i1
k
B min (1—m? )%(n _
PEXy a(j)
j=1
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Ra 1_[(1 Moy ~ oy ~Moep) P |~ min{ | [(iGe)
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and
Ass.IP — SFOWIAN(T1, Ty, o, Ti)
k k
2 2 0 , /1,(.)
1= e 1_[(1 —mZ;) P | 1= max (1-i2,)"% |,
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2. Fort =1, Eqgs. (4.4.1) and (4.4.2) reduces to associate immediate probability

picture fuzzy ordered weighted

operator

Ass.IP — PEOWIA(T,, Ty,

1 — min
PEXn

min
PEXn

k

min
PEXn
j=1

and

- 20
I](l—"%gr—%ﬁ)—"dn)p’

interaction averaging (Ass.IP-PFOWIA)

- Ti)

k
[ [ =man)™
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,1 — min
PEXn

k
[ [a-i) ).
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Ass.IP — PFOWIALN(T1,T>, ..., Tx)
k
1 - max H(l ~ () |, 1~ max
j=1
k
= max 1_[(1—m(-))1
pEXy a(j)
j=1
k
max n(l—m nN—l.n—nN )A;
pexn | 1 ! o(j) a(j) a(j)
]:

3. Fort=2andi =0, Egs. (4.4.1) and (4.4.2) reduces to associate immediate

probability Pythagorean fuzzy ordered weighted interaction averaging (Ass.IP-

k
. A
[ [a-iwe)).
j=1

’.
J

— max
PEXn

k

. A

| [Gon)”
j=1

PyFOWIA) operator
Ass.IP — PyFOWIA, (T3, Ty, ..., i)
k
t-min| [ Ja-mi) "o ).
j=1
= - k
min | [ J0 =)™ )= | [ [0 =iy —ni™
Jj=1 j=1
and
Ass.IP — PyFOWIAN(Ty, Ty, o, Ti)
k
1 [ Ja-me)™ )
j=1
k k
max [Ja-mzg)ee — max [ [a-mzq —nz)"o
j=1 j=1

4. Fort=1andi = 0, Egs. (4.4.1) and (4.4.2) reduces to Ass.IP-IFOWIA

operator
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Ass.IP — IFOWIA, (T, T, ...

and

Ass.IP — IFOWIAL(T,, Ty, ...

|
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Similarly we can reduce T-SFOWIA, IP-T-SFOWIA, T-SFCIA and T-SFCCIA

operators. Another advantage of the proposed operators is that they aggregate that

information where the existing operator fails.

Next we investigate a comparison analysis between proposed method and existing

work. The existing operators have some limitations that the existing operators cannot

handle the information given in PyFSs, PFSs, SFSs and T-SFSs. The proposed

operators are most generalized that they can handle the information given in IFSs,
PyFSs, PFSs, SFSs and T-SFSs. Here with the help of an example discussed in [66], it

is shown that the proposed operators can solve the information given in IFSs.

4.4.1. Example

Consider a normalized decision matrix in which information is given in IFNs given in

Table 27.

Table 27 Decision Matrix for Example 4.4.1.

91
92
93
Y4

dy
(0.60, 0.30)
(0.60, 0.30)
(0.31,0.00)
(0.20,0.00)

dy
(0.50, 0.20)
(0.50, 0.20)
(0.50, 0.20)
(0.50, 0.20)

ds
(0.60,0.35)
(0.20,0.00)
(0.60,0.35)
(0.60, 0.30)
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Is (0.70,0.30) (0.40,0.20) (0.80,0.10)
Je (0.60,0.30) (0.80,0.20) (0.50,0.20)

The given information can be written as T-spherical fuzzy information and hence

summarized their values in Table 2
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Table 28 Decision Matrix in T-SF information

dy dp ds
g1 (0.60,0.00,0.30)  (0.50,0.00,0.20)  (0.60,0.00,0.35)
Jop; (0.60,0.00,0.30)  (0.50,0.00,0.20)  (0.20,0.00,0.00)
93 (0.31,0.00,0.00)  (0.50,0.00,0.20)  (0.60,0.00,0.35)
9a (0.20,0.00,0.00)  (0.50,0.00,0.20)  (0.60,0.00,0.30)
Is (0.70,0.00,0.30)  (0.40,0.00,0.20)  (0.80,0.00,0.10)
Je (0.60,0.00,0.30)  (0.80,0.00,0.20)  (0.50,0.00,0.20)

The weight vector for attributes will be w = {0.25, 0.40, 0.35} and fuzzy

measures will be as defined in [52]:

0(¢) =0,

0({d,}) = 0.175,

0({d,}) = 0.125,

0({ds}) = 0.100,

0({d,,d,}) = 0.500, 0({d,,d3}) = 0.425,
9({d1:d2:d3}) =1

0({d,, d3}) = 0.475,

Immediate probabilities and associated immediate probabilities for all possible

orders are computed given in Table 29 and Table 30, respectively.

Table 29 Immediate Probabilities

’
1

[
2

1
3

o = (dy, dy, ds) 0.175 0.325 0.500
o = (dy, ds, dy) 0.175 0.575 0.250
o = (dy dy, ds) 0.375 0.125 0.500
o = (dy ds, dy) 0.525 0.175 0.350
o = (ds, dy, dy) 0.325 0.575 0.100
o = (ds, dy, dy) 0.525 0.375 0.100
Table 30 Associated Immediate Probability
() e o(3)
o = (dy, dy, ds) 0.1885 0.3500 0.4615
o = (dy, ds3, dy) 0.1815 0.5963 0.2222
o = (dy dy, ds) 0.4038 0.1346 0.4615
o = (dy ds, dy) 0.5526 0.1316 0.3158
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o= (ds,dy,dy) 0.3297 0.5833 0.0870
o= (ds,dy dq) 0.5326 0.3804 0.0870
As 0.6 + 0.0 + 0.3 = 0.9 € [0, 1] similarly for t = 1, all values lie in T-SFSs.
So here t = 1 is taken. Then the aggregated values for t = 1 are summarized in Table
31

Table 31 Aggregated Values

T <057> (047) (048) (045) (066) (066)
0.00 0.00 0.00 0.00 0.00 0.00
SFOWA  \ .27 0.00 0.00 0.00 0.19 0.23
T.SFCA  /0.57, 0.54 0.42, 0.51, 0.72, 0.73,
<000> (000) 0.00, (ooo) 0.00, 0.00,
0.26 0.00 0.00 0.00 0.16 0.23
Ass.IP-T- (0 588, ) <o 537, ) (0 521, > (0 528, ) (0.725 ) (0.718 )
0.00, 0.00, 0.00, 0.00, 0.00 0.00
SFOWAy  \ (244 0.00 0.00 0.00 0.154/ \o0211
Ass.IP-T- (0.543,) <o.404,> (0.418,) <O.385,> (0 584, ) (0.611,)
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
SFOWA, 1\ 305 0.00 0.00 0.00 0228/ \0.255

The score values of aggregated values are given in Table 32 and the ranking of

all alternatives through score values or accuracy function is represented in Table 33.

Table 32 Score Values

91 P g3 ga Is Je
T- 0.3119 0.5312 0.5412 0.5108 0.4873 0.4416

SFOWA
T-SFCA 03231 06006 04800 05712 05764  0.5049
Ass.IP-T- 03583 05977 05820 05889 05878  0.5158
SFOWA,
ASS.IP- 02470  0.4634 04779  0.4435 03054  0.3678
T-
SFOWA,

Table 33 Rankings of Alternatives

Operators Rankings
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T-SFOWA 93z > 92> 9as > gs > Jo > 91

T-SFCA 92> 95> 9ga> g > 93 > g1
Ass. IP-T-SFOWA,, 92>094> 095> 9z > 9o > 01
ASS.IP-T-SFOWA 93>92> 094> 96 > 9s > 01

From above example it is clear that the results obtained from proposed operators are
similar to existing operators. This proves that the proposed operators are generalizations

of existing operator.
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Chapter 5

Methods for multi-attribute decision making in T-spherical
fuzzy sets using associated immediate probability interactive

geometric aggregation operators

In this chapter, associated immediate probability geometric aggregation
operators have been developed for T-SFSs and associated immediate probability
interactive geometric aggregation operators are proposed. Then a comparison between
these operators is developed with the help of an example. The existing score function
for T-SFSs does not involve abstinence so a new score function is developed which
provides a better comparison between any two T-SFNs. Then to check the reliability of
proposed operators an application for MADM problem is developed. The advantages
of proposed work are also discussed in which it is shown that under some conditions
the proposed operators can be reduced to other tools of uncertainty. The comparison

between existing and proposed work is also developed with the help of an example.

5.1. New Score Function and Geometric Operators for T-Spherical

Fuzzy Sets

This section is further divided into four subsections. In first subsection a new
score function is proposed which involve abstinence while existing score function does
not involve abstinence. Second subsection have some T-spherical geometric
aggregation operators while third subsection have some T-spherical geometric
interactive aggregation operators. A comparison between geometric aggregation
operators and geometric interactive aggregation operators is discussed in fourth

subsection.
5.1.1. Score function

The score function defined in [16] does not involve abstinence so better
comparison is not done by using this score function. To overcome this shortcoming a

new score function is proposed in this subsection in which abstinence is involved.
5.1.1.1. Definition

The new score function for any T-SFN T = (m, i, n) is defined as
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SF(T)=mt—it—nt
AC(T) =mt +i* +n

The T-SFN which have greater score value will be superior to other. If the score of two
T-SFNs is equal, then we rank them using accuracy value and a number is called
superior if it has greater accuracy. If again accuracy values of two T-SFNs become

equal, then both numbers are considered as similar.
5.1.1.2. Remark

a) The proposed score function reduced to SFSs for t = 2
b) The proposed score function reduced to PFSs fort = 1
c) The proposed score function reduced to PyFSs fort = 2andi = 0

d) The proposed score function reduced to IFSsfort = 1andi = 0
5.1.2. T-Spherical Fuzzy Geometric Aggregation operators

In this subsection different geometric aggregation operators are proposed using
a tool of uncertainty called T-SFSs. Here IP-T-SFOWG, T-SFCG, Ass.IP-T-SFOWG
operators are proposed and some basic properties of all these operators are also
discussed.

5.1.2.1. Definition
The IP-T-SFOWG operator for a collection of T-SFNs, 7; = (my, i;,n;) is defined as

A
IP =T = SFOWGp (T3, Ty, .. T) =@y (7, )
where w = (wy, ..., wy)T is a WV with a condition that all WVs belong to [0,1] and the

A5 is an immediate

sum of all weights must be equal to 1. 4; is probability for each 7;, 4;

__(way)

== —
Yj—1Wjilj

probability of 7}, and 4] and o = (a(1), ..., a(k)) is the permutation such
that SC(Tj-1)) = SC(Ty(jy)-
5.1.2.2. Theorem

For a collection of T-SFNs 7; = (m;, i;,n;) forall j = 1,2, ..., k, then
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=

k

k
A ALt A
IP =T — SFOWGo (T3, T3, ..., T) = Hmainﬂ i |1 1_[(1 —n5i)7 )
j=1 j=1 j=1

Proof: By using mathematical induction,

Fork =1,

IP =T — SFOWGp(T) = <m1, i, t/1 -(1- n§)>

= (my,i,ng)

Now let us assume that the results hold for k = [,

l l
Al
IP =T — SFOWGo (T, T, ..., T, nmom 1_[ oty 1 — 1_[(1 —nby)”

Jj=1 Jj=1

Then to prove that result hold for k = 1 + 1,

IP—-T — SFOWGp(j-i, 7"2' ---17}+1)

l l
2
ﬂmou)' ity (1 o(;))
j=1 j=
i 7
®< Moty 1= (L= n)

+1 +1 +1

25
l_[ Moy a(;) ' (1 o(;))
j=1 j=

This proves that the results hold for all k € Z™.

5.1.2.3. Theorem
IP-T-SFOWG operator satisfies the following conditions:

L If T =0,=(0mgion,) for all j=12..,k then IP-T-
SFOWG(T1, T, .., Ti) = Ty,
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ii.  Foranytwo T-SFNs 7; = (my, ij,n;) and 7;' = (mj, ij, nj) such that m; < mj,

< ij and n; > n;. Then
IP =T — SFOWGH(T;, Ty, o, Ti) < IP — T — SFOWGp (T, Ty, oo, T
iii.  For acollection of T-SFNs 7; = (my, i;,n;) forall j = 1,2, ..., k such that 7}, =
(mjin(mf) , mjin(ij) , m]ax(nj)) is  minimal  element and Ty =
(m]ax(mj) , mjax(ij) , mjin(nj)) is maximal element. Then
T, <IP —T — SFOWGo(T, Ty, ., Ti) < Ty

Proof: i. As 7; = Ty = (my, iy, no) then

k

k k

A AL

IP—T —SFOWGp(71, 73, ..., Ty) = nmo’(j),l_[ iy 1_[ 1 — ng(j)) J
J=

j=1 j=1

_ (212 21 14; t\/ 1
= <ma(j) ity 1 (- o(;)) =

= (my, ip, ny) = Tp

ii. Asm; <mj, i; < i/ and n; > n/. This implies that

Kk k
Hma(j) < 1_[7”0(1) ’
j=1 j=1
Kk k
Hia(j) S Hiér(ﬂ ’
j=1 j=1
k k 3
/1’- ’ t\7j
1- n(l —nop) 2 1= 1_[ (1= (o))
j=1 j=1
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nma(n H 0% H(l a(;))

k k k
, AI' g AI‘
n(mo(,-)) g n(lao')) g 1_[ (’”ao))
j=1 j=1

j=1
iii. Proof is straightforward.

5.1.2.4. Definition

The T-SFCG operator for a collection of T-SFNs, 7; = (m;, i;, n;) with respect to fuzzy

measure O is defined as
T = SFCGo(T;, Ty, Ti) =@y (7,0,

where /1]- = G)({xa(l),xo(z), ...... rxa(j)}) — @({xa(l),xa(z), ...... 'xa(j—l)})v
0({x;»}) =0 and o is the permutation. o = (0(1),0(2),......,a(k)) is the
permutation such that SC(T,(;-1)) = SC(Ty(j))-

5.1.2.5. Theorem

For a collection of T-SFNs 7; = (m;, i;,n;) forall j = 1,2, ..., k, then

k

k k

A At A;

T — SFCGo(T1, Ty, ..., Ty) = | |maj(j),| |L0](j), 1—| |(1—ng(j))f
j=1

j=1 j=1

5.1.2.6. Theorem
T-SFCG operators satisfies the following properties:

i If 7 =7y=(mgip,ne) for all j=12,..,k then T-—
SFCGe(Ty Ty, oy Ti) = To.
ii.  Foranytwo T-SFNs 7; = (my,i;,n;) and 7' = (m, i/, n}) such that m; <

o ./
m;, i < i and nj = nj. Then

T — SFCGo(Ty, Ty, ..., T) < T — SFCGo(T, Ty, ..., T)
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iii. For a collection of T-SFNs 7; = (m, i;,n;) for all j = 1,2, ..., k such that
T, = (m_in(mj),mjn(ij),max(nj)> is minimal element and 7, =
j J j
(max(mj) ,max(i;), m_in(nj)) is maximal element. Then
J j j

T, <T—-SFCGog(71,T>,....,T%) < Ty
5.1.2.7. Definition

The Ass.IP-T-SFOWG operators for a collection of T-SFNs, 7; = (m, i;,n;) forall j =
1,2,..., k, is defined as

Al
Ass.IP =T = SEOWG,(, T, . %) = \ [ [®?=1 (T(r(%]))]
PEXn

and

e
Ass.IP —T — SFOWGA(Ty, Ty, .., ;) = /\ [®§=1 (7065’))]:

PEXy

where w = (wy, ..., w,,)T is a WV with a condition that all WVs belong to [0,1] and the

sum of all weights must be equal to 1. ¢ = (0(1), ...... ,a(k)) is the permutation such
. . A

that SC(T,j—1)) = SC(T;(;)- For each associated probability P,: A,y = —,EW’ ) ,

Tj=1Wito(

Aoiiy = By (Ty¢y) is an associated immediate probability and v=maximum and A

=minimum.
5.1.2.8. Theorem
For a collection of T-SFNs 7; = (m;, i;,n;) forall j = 1,2, ..., k, then

Ass.IP —T — SFOWG(T, Ty, ..., T3.)

k k .
’ , . ,
= | max H(mo_(j))lp(f) , max 1_[(1'0_(],))/1!7(]') ) 1 — max 1_[(1 _ ng-(j))/lp(j)

PEXn PEXn PEXn

and
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Ass.IP —T — SFOWG,(T,, Ty, ..., T3.)

k k

: t Yo | " .
= | min n(ma(])pm ,min H(l‘t’w) o0 | 1- min H(l_n )po)

j=1 j=1

5.1.2.9. Theorem
Ass.IP-T-SFOWG operators satisfies the following properties:

i If T =75 =(mg,ip,ne) for all j=12,..,k then Ass.IP—-T —
SFOWG, (T3, T, ..., T) = Ty and Ass.IP — T — SFOWG, (T, Ty, ..., i) =
Jo

ii.  Foranytwo T-SFNs J; = (my, i;,n;) and ;' = (mj, i, n}) such that m;

I/\

Vi .
My 4

< ijf and n; > n]f. Then
Ass.IP —T — SFOWG, (T3, T3, ..., Ty) < Ass.IP —T — SFOW Gy (T}, T, ..., T;)

and
Ass.IP —T — SFOWG,(T3, T3, ..., T) < Ass.IP — T — SFOWG\(T{, T3, ..., 7))

iii.  For a collection of T-SFNs 7; = (m;, ij,n;) for all j = 1,2, ..., k such that
T, = (mjn(mj),mjn(ij),max(nj)> is minimal element and 7, =
J J j
<max(mj) ,max(i;), mjn(nj)) is maximal element. Then
J J J

T, < Ass.IP —T — SFOWG, (T, Ty, .., ) < Ty

and
7, < Ass.IP —T — SFOWG,(T,, Ty, ..., Ti) < Ty

5.1.3. T-Spherical Fuzzy Interactive Aggregation operators

In this subsection some geometric interactive aggregation operators are
proposed by using a tool of uncertainty called T-SFSs. In this subsection IP-T-
SFOWIG, T-SGCIG and Ass.IP-T-SFOWIG operators are proposed and some basic

properties of these operators are also discussed.
5.1.3.1. Definition

The IP-T-SFOWIG operator for a collection of T-SFNs 7; = (m;, i;, n;) is defined as
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A
IP—T — SFOWIGp (71,75, ..., Tx.) ®11 =1 ( 00))

where w = (wy, ..., w,,)T is a WV with a condition that all WVs belong to [0,1] and the

sum of all weights must be equal to 1. /; is probability for each J;, A; is an immediate

E( ) anda = (a(1), ..., a(k)) is the permutation such
j=1 ]

that SC(Ta(j—l)) = SC(TU(]-)).

probability of T;;(;y and A; =

5.1.3.2. Theorem
For a collection of T-SFNs 7; = (m;, i;,n;), then

IP —T — SFOWIGH(Ty, Ty, ) Tie)

k k k
t A . Y . i
1_[(1 ~ () - 1_[(1 ~Magy o) " aq) 1_[(‘3(1)) g
j=1 j=1 j=1
1 N 1_[(1 0(1)) 1_[(1 na(}))

Proof: By using mathematical induction,

Fork =1,

IP — T — SFOWIG,(T;)

=<i/(1—n§)—(1—m§_i§_”i)_ii’i/ 1—11)J1—(1—n1)>

= (my,iy,nyg)

Now assume that the results hold for k = [,

IP —T — SFOWIGH(Ty, Ty, ..., T7)

. l l l
A ) Al . A
1_[(1 ~ () - 1_[(1 ~ Moy oty " aq) 1_[(‘3(;)) g
j=1 j=1 j=1
IR,
1—ﬂ(1 ), H( )
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Then to prove that result hold for k = 1 + 1,

IP —T — SFOWIGH(T;, Ty o) Tro1)

l l l
‘ t VA t -t £V R
1_[(1 ~ 1) - 1_[(1 ~ Mgy~ o) T Met) |~ n(‘om) ‘
j=1 j=1 j=1
£\
1—[(1 - lo(])) 1_[(1 —ngp)

/\/(1 _nU(J)) ] (1 ma(}) 0(1) U(J)) - (10(1)) \

\/1 N (1 0(1)) \/1 - (1 U(J)) j /

. +1 . I+1 . I+1 .
1_[(1 —ng) - 1_[(1 ~ Mgy~ log) = Maq) 1_[("3(1)) g
j=1 j=1 j=1

- . +1 bt +1 A
1= 1_[(1 — i) s 1= 1_[(1 ~ ()
j=1 j=1

This proves that the results hold for all k € Z™.
5.1.3.3. Theorem
IP-T-SFOWIG operators satisfies the following properties:

i If T =75=(mg,ipmne) for al j=12,..,k then [P-T-—
SFOWIG(T, Ty, ., T = To.
ii.  Foranytwo T-SFNs 7; = (my,i;,n;) and 7' = (m, i/, n}) such that m; <
mjf, j<i/andn; > n]’-. Then
IP =T — SFOWIGH(T,, Ty, ., i) < IP =T — SFOWIGH(T}, Ty, ..., Ty
iii.  For a collection of T-SFNs 7; = (m;, ij,n;) for all j = 1,2, ..., k such that
T, = (m_in(mj),mjn(ij),max(nj)> is minimal element and Ty =
J J J

(max(mj) ,max(i;), mjin(nf)) is maximal element. Then
J J
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T, <IP—T — SFOWIGo(T1, Ty, ..., Ti) < Ty
Proof: i. As 7; = Ty = (my, iy, no) then

IP — T — SFOWIGp(T;, Ty, ..., Ti)
. k k k
A ; A i A
1_[(1 ~ o) = 1_[(1 ~ Moty = lo() ~ M) |~ 1_[(‘3(13) K
j=1 j=1 j=1
t k t k
. A5 A
1- 1_[(1 ~logn) s 1= 1_[(1 ~ o)
j=1 j=1

t kA vk A sk 2l
t = t -t t = 't =
_ /J(l_nau)) = = (A =mggy — gy — )T = ()T

1/1—(1—1'3(,-))2?:”3,1/1—(1 nt ) 27 /

= (myg, i, o) =T

H o .7 r .. .
il. Asm; < m;, i; < i; and n; = n;. This implies that

. k k k 3
i . Al . ¢
l_[(l 0 1_[(1 ~ Mgy = log) = Maq) H(‘fr(j)) ’
j=1 j=1 j=1
‘ : ! t /1; : ! t Ly t ! :
< 1_[ (1 ~ (n55)) ) - l_[ (1 = (mgen) = (o) — (no(j)) 1_[ (‘a(n)
j=1 j=1 j=1
k
1_1_[(1_l (])) ] < 1—1_[ (lO'(j))
j=1

(1 - (néu))t)l}

— 1=

k /1/_ t
— n(1 —nt;y) 7= |1-

j=1 1

-
Il
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’ t VY - t -t t VA - Y
ﬂ(l —nop) - H(l ~ Moty = o) ~ M)~ H(lau)) ’
7 ]:1 ]=1
t k /11 t k AI
1- 1_[(1 — sy, 1= 1_[(1 —nby)”
j:l ]=1

:w

¢ l_[ (1 - (";(j))

i
(1= ()" = (i) = (o))
j=1 j=1
k
< 1_[ (Lo(]))
\ j=
k k
- 1_[ (la(])) 1 1_[ (na(]))
j=1 j=1

iii. Proof is straightforward.
5.1.3.4. Definition

The T-SFCIG operator for a collection of T-SFNs, 7: (m] i, n]) with respect to

fuzzy measure 0 is defined as

A
T — SFCIG@(TpTZ :7;<) ®l] =1 ( U(]]))

where /1]' = G)({xa(l),xo(z), ...,Xa(j)}) - @({xa(l),xa(z), ...,xa(j_l)}),
0({xs(0)}) = 0 and o is the permutation. o = (¢(1),5(2), ... ..., a(k)) is the
permutation such that SC (T, ¢;_1y) = SC(Ty(j))-

5.1.3.5. Theorem

For a collection of T-SFNs 7; = (m;, i;,n;) forall j = 1,2, ..., k, then
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T - SFCIG@(:TD"T'Z! ):TI'()

k k k

t A: . A i A
| |(1 —ngp)” - | |(1 —migy — oy ~ Megp) | | |(‘3(j)) !,
j=1 j=1 j=1

t : 2t : A
1- 1_[(1 — o) 1= 1_[(1 — ()
j=1 j=1

5.1.3.6. Theorem
T-SFCIG operators satisfies the following properties:

i If 7 =7y=(0mgipn,) for all j=12,..,k then T-—
SFCIGe (T3, Ty s T3) = Ty,

ii.  Foranytwo T-SFNs J; = (my, ij,n;) and ;' = (mj, i]

i, if,n}) such that m; <

mj, i; < ij and n; > n;. Then
T — SFCIGe(Ty, Ty, o, Ti) < T — SECIGe (T, Ty, e, T
iii.  For a collection of T-SFNs 7; = (m;, i;,n;) for all j = 1,2, ..., k such that
T, = (rnjin(mj),mjin(ij),m];;lx(nj)> is minimal element and 7, =
(m]ax(mj) , m]ax(ij) , mjin(nf)) is maximal element. Then

T, <T — SFCIGe(T,, Ty, ., Ti) < Ty
5.1.3.7. Definition
The Ass.IP-T-SFOWIG operators for a collection of T-SFNs, 7; = (m,i;,n;) is

defined as

Al
Ass.IP —T — SFOWIG,(T;, Ty, ..., i) = \/ [@ile (Ta(’]?g”)]
PEXn

and

Al
Ass.IP —T — SFOWIG,\ (T3, Ty, ..., i) = /\ [@ile (Ta(’]?g”)]
PEXn
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where w = (wy, ..., w;,)T is a WV with a condition that all WVs belong to [0,1] and the

sum of all weights must be equal to 1. ¢ = (¢(1), ..., a(k)) is the permutation such

_ Wjdpch)
Z; 1Wjt p(J)

that SC(T,j—1)) = SC(T,(;)- For each associated probability P,: A,y =

Aoy = By (T5(y) is an associated immediate probability and v=maximum and A

=minimum.

5.1.3.8. Theorem

For a collection of T-SFNs 7; = (m;, i;,n;) forall j = 1,2, ..., k, then
Ass.IP — T — SEOWIG,(T,, Ty ., Ti)
k
max (1-nt )A;’(D
t PEXn O-(J)
j=1
k k
A
— —mt, .. =it (0 it 6)]
=| |~ max ﬂ(l g = iy = b)) max H(lau)) -
\ j=1 j=1
t k !
_ _ 9 _ _ ot Yo
1= max ﬂ(l 5p) "0 ) 1= max| [ [(1 =)
j=1
and
Ass.IP — T — SEOWIGA(Ty, Ty o, i)

- t Voo
i — PU
: min | | [(1-ntg))
j=1
k k
t t p(]) t ’1;)(1')
— — min 1-m-,~—i,; — min i
pEXy, | |( o~ fe() T a(})) PEXp | |( 0(1))
Jj=1 Jj=1
k
| | w) " | | t Voo
1—m1n 1—1it oG , |1 — min 1—nt,.
pEXy ( o(j) ) pexn\ 1 1( 0(1))
J:

5.1.3.9. Theorem

Ass.IP-T-SFOWIG operators satisfies the following properties:
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i. If 7 =7, = (mg,ip,no) for all j=12,..,k then Ass.IP—-T —

SFOWIG,(Ty, Ty, . Ti) = Ty and Ass.IP —T —
SFOWIGK(T, Ty, s Ti) = Ty

ii.  Foranytwo T-SFNs 7; = (my,i;,n;) and 7' = (m, i/, n}) such that m; <

mj, i; < i; and n; > n;. Then
Ass.IP —T — SFOWIG,(T;, Ty, ..., Tie) < Ass.IP — T — SFOWIG, (T, T, .., T))
and
Ass.IP —T — SFOWIG,(Ty, Ty, ..., Ti) < Ass.IP — T — SFOWIGA(T}, Ty, ... T
iii.  For a collection of T-SFNs T; = (m;, ij,n;) for all j = 1,2, ..., k such that
T, = (mjin(mj) ,mjin(ij) , mjax(nj)) is minimal element and 7, =

(max(mj) ,max(i;), mjin(nj)) is maximal element. Then
J J

7, < Ass.IP — T — SFOWIG,(T3, T, ... Ti) < Ty
and

7, < Ass.IP =T — SFOWIGA(T3, T3, .. Ti) < Ty
5.1.3.10. Remark

If fuzzy measure and probability of T-SFSs become equal and furthermore probabilities
of all T-SFNs become equal then Ass.IP-T-SFOWIG operators become equal to T-
SFOWG operator

5.1.4. Comparison between aggregation operators and interactive aggregation

operators

In this subsection the superiority of interactive averaging aggregation operators
over averaging aggregation operators is explained with the help of an example. It is also
explained that under some conditions the averaging aggregation operators fail while

interactive averaging aggregation operators overcome this shortcoming.
5.1.4.1. Example

Consider T-SFNs, g; = (0.94,0.25,0.41), g, =(0.00,0.35,0.47) and g5 =
(0.74,0.00,0.39) havinga WV w = {0.45,0.40, 0.15}, fuzzy measures will be
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0(¢) =0, 0({g:}) = 0.225, 0({g2}) = 0.200, 0({gs}) = 0.075,
0({g1,9,}) = 0.425, 0({g1,93}) = 0.300, 0({g2,g3}) = 0.275,
0({91, 92,95} = 1.

Immediate probabilities for all possible permutations are listed in Table 34

Table 34 Immediate Probabilities

A A5 A
o= (91,92 93) 0.125 0.200 0.675
o= (91,93 92) 0.125 0.700 0.175
o= (92 91,93) 0.200 0.200 0.600
o= (9293 91) 0.700 0.200 0.100
o= (9391,92) 0.125 0.700 0.175
o= (9392 91) 0.700 0.125 0.175

and associated immediate probabilities for all possible permutation are listed in Table
35

Table 35 Associated Immediate Probabilities

p(1) Ao@) o)
o = (91,92 93) 0.0899 0.2302 0.6798
o= (91,93 92) 0.0839 0.7517 0.1644
o= (9291,93) 0.1470 0.2353 0.6176
o= (9293 91) 0.6034 0.2759 0.1207
o= (93 91,92) 0.0839 0.7517 0.1644
o= (93,92 91) 0.6114 0.1747 0.2140

Asfort =1, 0.94+ 0.25+0.41 = 1.6 ¢ [0, 1],
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Asfort =2, 0.94% + 0.252 + 0.41%2 = 1.11 ¢ [0, 1]
As fort = 3, 0.943 + 0.253 + 0.413 = 0.92 € [0, 1]
So for t = 3, the given information lie in T-spherical fuzzy environment.

Then the aggregate of all averaging aggregation operators defined in Definition 5.1.2.1.,
5.1.2.4.,and 5.1.2.7 will be

IP — T — SFOWGp (g1, g2, g3) = (0.0,0.0,0.4244)
T — SFCGo(gs, 92, g3) = (0.0,0.0,0.4253)
Ass.IP — T — SFOWG, (g4, g2, g3) = (0.0,0.0,0.4176)
Ass.IP — T — SFOWG,(g4, g2, g3) = (0.0,0.0,0.4568)

This seems meaningless as geometric aggregation operators ignore all membership and
abstinence values as one of their value become zero. That’s why results obtain through
these aggregation operators are not valid. To overcome this shortcoming we used
interactive averaging aggregation operators. The results obtained by using interactive
operators defined in definitions 5.1.3.1., 5.1.3.4., and 5.1.3.7 will be

IP — T — SFOWIGp(gy, g5, g3) = (0.8513,0.2663,0.4244)
T — SFCIGg (g1, g, g3) = (0.8625,0.2698,0.4253)
Ass.IP — T — SFOWIG,(gy, g, g3) = (0.9276,0.2626, 0.4176)
Ass.IP — T — SFOWIG,(9y, g, g3) = (0.6897,0.3291, 0.4568)

The proposed interactive operators aggregate all membership, abstinence and non-
membership values. This shows the superiority of interactive aggregation operators and

the results obtained using these interactive operators are more reliable.
5.2. Algorithm for MADM based on proposed operators

In this section an algorithm was developed to solve MADM problem using the
proposed aggregation and interactive aggregation operators and a well-known MADM

example is solved by using the algorithm.

Consider a set of alternatives D = {d;,d,, ...,d;} and set of attributes G =

{91, 92, -, gi} havinga WV w = {w;, w,, ..., w, }, set of probabilities associated with
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them is T = {A;,4,,...,4x} and associate immediate probabilities are 7' =
{2y Ap(2) - Apciy}- The WV and set of probabilities have a same condition that the

sum of weights and probabilities must equal to 1 and weights and probabilities belong
to closed unit interval. The fuzzy measure ® have been calculated for all subsets of

{d,,d,, ...,d;}. Then to solve MADM problem we have to follow the following steps.
Step 1. Find the value of t for which information lie in T-spherical fuzzy environment.
Step 2. Aggregate the data using proposed operators.

Step 3. Find the score of aggregated values.

Step 4. With the help of score values choose the best option.

5.2.1. Numerical Example

A manufacturing company wants to select a supplier among five alternatives D =
{d,,d,, ds,d,, ds}, the experts evaluate these alternatives under consideration of

following three attributes
g Price

g-: Delivery Compliance
gs: Technological capability

The experts evaluate these alternatives with respect to attributes and give information
in membership, abstinence and non-membership as in Table 36.

Table 36 Decision Matrix

81 82 83
d; (0.47,0.25,0.88) (0.34,0.19,0.51) (0.51,0.29,0.77)
d, (0.23,0.41,0.75) (0.61,0.15,0.49) (0.53,0.22,0.48)
ds (0.89,0.33,0.43) (0.74,0.46,0.49) (0.84,0.36,0.60)
d, (0.91,0.33,0.42) (0.55,0.23,0.71) (0.88,0.39,0.61)
ds (0.59,0.43,0.51) (0.66,0.22,0.36) (0.63,0.41,0.72)

132



Asfort =1, 0.47 + 0.25 + 0.88 = 1.6 ¢ [0, 1], so the given information does not

lie in picture fuzzy environment,

Asfort =2, 0.47% + 0.25% + 0.88%2 = 1.0578 ¢ [0, 1], so the given information

also does not lie in spherical fuzzy environment,
As fort =3, 0.47% + 0.25% + 0.88% = 0.8009 € [0, 1]

Similarly for t = 3 all the information given in Table 36 are T-SFNs so the

information lie in T-spherical fuzzy environment for t = 3.

The interaction of states of nature and weights of given attributes is as follows in
Table 37

Table 37 States of Nature and Weights

g1 9 Js Risk

importance
J1 - 0.150 0.250 0.400
92 0.150 - 0.100 0.250
g3 0.250 0.100 - 0.350

Where I, = 0.400, I, = 0.250, I;, = 0.350 will be weights of g;, g, and g3

= 0.150, I

respectively and I, 9,95 = 0.250, Iy, 5. = 0.100 will be the interactions

192

between attributes. The fuzzy measure can be measured using the following

relationship
1
o(lg) =1y, =5 D los
g€6{g;}
1 1 ] .
0({g,,9x}) = lo, + g, =5 Z lojg =3 Z Igeg jk=1234.]
9€G{gj.gr} 9€G{gj.gr}

*k
0(¢) =0, 0(G) = 1.

The fuzzy measures will be
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0(¢) =0,

0({g1,92}) = 0.325,

©({g1}) = 0.200,

0({g1,95}) = 0.375,

0({g2}) = 0.125,

0({g2, 95} = 0.300,

0({gs}) = 0.175,
0(6) = 1.

The immediate probabilities for every possible permutation are listed in Table 38

Table 38 Immediate Probabilities

A
o = (91,92 93) 0.125
o= (91,93 92) 0.125
o= (9291,93) 0.200
0 = (92,93 91) 0.700
o = (93,91, 92) 0.125
o= (9392 91) 0.700

0.200

0.700

0.200

0.200

0.700

0.125

0.675

0.175

0.600

0.100

0.175

0.175

Associated immediate probabilities are listed in Table 39 for every possible

permutation

Table 39 Associated Immediate Probabilities

0 = (91,92 93)
0 = (91,93 92)
0 = (92,91, 93)
0 = (92,93 91)
o = (93,91, 92)
o = (93,92, 91)

()
0.0899
0.0839
0.1470
0.6034
0.0839

0.6114

Ao2)
0.2302
0.7517
0.2353
0.2759
0.7517

0.1747

Ao3)
0.6798
0.1644
0.6176
0.1207
0.1644

0.2140
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Table 40 Aggregated Values

d, d, ds d, ds
P—T 0.4826, 0.4429, 0.8416, 0.8501, 0.6232,
(0 2698) (0 2453 ) (0 3607 > (0 3579 ) (0 3920 )
—SFOWGr  \ (7931 0.5800 0.5623 0.5920 0.6684
T —SFCGy  [0.4266, 0.42509, 0.8162, 0.74509, 0.6276,
0.2358, 0.2333, 0.3836, 0.3030, 0.3297,
0.7695 0.6119 0.5150 0.6174 0.5696
Ass. IP —T  [0.4744, 0.4992, 0.8680, 0.8676, 0.6408,
<0 2664) (0 3402) (0 4119) (0 3517) (0 4033)
—SFOWG,  \ g gogs 0.5504 0.4623 0.5044 0.5226
Ass. IP —T /07321, 0.6579, 0.9226, 0.8725, 0.8444,
<0 2182 ) (0 1941 ) (0 3442 > (0 2743 ) (0 2826 )
—SFOWG,  \ 98535 0.7124 0.5676 0.6602 0.6694
The score values of aggregated operators are listed in Table 41
Table 41 Score Values
d, d, ds d, ds
IP—T -0.4060 -0.1230 0.3714 0.3610 -0.1168
— SFOWGp
T —SFCGy  -0.3911 -0.1645 0.3507 0.1517 0.0265
Ass.IP—T  -02534  -0.0817 0.4854 0.4811 0.0547
— SFOWG,
Ass.IP—T  -0.2397 -0.0841 0.5616 0.3557 0.2796
— SFOWG,

With respect to score values the ranking of alternatives are listed in Table 42

Table 42 Rankings

Operators

IP—T — SFOWGp

Rankings

dy>ds>dy >ds >d,
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T — SFCGyg

Ass.IP —T d42d12d22d32d5
— SFOWG,
Ass.IP —T dy,=>2d;>d,>ds > d;
— SFOWG,

Now the aggregate the all interactive aggregation operators is shown in Table 43

Table 43 Aggregated Values

d, d, ds d, ds
IP—T (0 5021, ) (0 5050, ) (0 8478, ) (0 8835, ) (0 6380, )
0.2751 0.2874 0.3656 0.3680 0.4047
—SFOWIGr  \ 37931 0.5800 0.5623 0.5920 0.6684
T —SFCIGy [0.4905)\ (05201 [0.8359\ /(0.8419)\ /0.6516,
0.2466,] (03011,] (03970, [03247,] (03709,
0.7695 0.6119 0.5150 0.6174 0.5696
Ass.IP —T (0 5033, ) (0 5611, ) (0 8742, > (0 8950, ) (0 7284)
0.2300 0.2556 0.3504 0.2985 0.3291
—SFOWIG,  \ g 6988 0.5504 0.4623 0.5044 0.5226
Ass.IP —T  /0.4684\ /0.3957\ /0.8071\ /0.7830,\ /0.6174,
0.2737,] (0.3796 ) 0.4239 ) 03659, [0.4164,
—SFOWIG,  \gs535 0.7124 0.5676 0.6602 0.6694
The score values of aggregated operators are listed in Table 44
Table 44 Score Values
d, d, ds dy ds
IP—T 03930  -0.0901 0.3828 0.4322 -0.1052
— SFOWIG,
T —SFCIGy  -0.3526  -0.1157 0.3849 0.3272 0.0408
Ass.IP —T 02258  -0.0068 0.5262 0.5618 0.2080

— SFOWIG,
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Ass.IP —T -05394  -0.3543
— SFOWIG,

0.2668 0.1432

-0.1367

With respect to score values the ranking of alternatives are as defined in Table 45

Table 45 Rankings

Operators
IP —T — SFOWIGp
T — SFCIGg

Ass. IP—T
— SFOWIG,

Ass.IP—T
—SFOWIG,

Rankings

IP-T-SFOWG, T-SFCG, IP-T-SFOWIG and T-SFCIG operators aggregate only
one order of T-SFNs at a time while Ass.IP-T-SFOWG and Ass.IP-T-SFOWIG
operators aggregate all possible orders of T-SFNs at a time. This indicates that T-SFCG
and T-SFCIG are special cases of Ass.IP-T-SFOWG and Ass.IP-T-SFOWIG operators

respectively.

5.3. Advantages and Comparative Analysis

In this section some advantages of proposed work are discussed and a

comparative study of proposed and existing work is also developed.

5.3.1. Advantages

In this subsection, some conditions are discussed under which the proposed

operators can reduced to existing operators.

Consider Ass.IP-T-SFOWIG operators
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Ass.IP — T — SFOWIG,(Ty, Ty, ., Tie)

~

: PREL
— Py —
maz( | [(1-nt()
j=1

k k
A
ot st | _ it ) 53.1.1
=| Jrekn ]I_ll(l mé = ity = ) pexy ,l-—ll (i5¢))™*" (:3.11)

-~

k
t /11 .
_ _ p(J) _ _nt ()
1 Zg%x | |(1 laj ) 1 22§f | |(1 na(ﬂ)
j=1

and

Ass.IP — T — SFOWIG,(T,, Ty, .., i)

o~

: PRI
i - 4V
min{ | | —nt()
j=1

k k

: .

— mi —mt. . —it Yooy | _ i TR0 (5.3.1.2)
= | Ll_(l Moty = ot ~ Mo() min ]l=1|(la(]))

t -k . )L’(-) t k " AI(_)
— i — 9 Py — i — Py
1=min} [ l(l o) ") |1 min ||(1 o))

j=1 j=1

1. Fort = 2,eq.(5.3.1.1) and (5.3.1.2) reduces to associate immediate

probability spherical fuzzy ordered weighted interaction geometric (Ass.IP-
SFOWIG) operator

138



Ass.IP — SFOWIG, (T3, Ty, .., Ty.)
k
max (1—n? )%(1‘) _
PEX, a()
j=1
k k
— 2 _ 2 2 l’() _ - A’()
=| [othn | [ =m2g =iz —m2gp)™ max| | |(i5¢)) "
\ j=1 i
k k
! pesn 1_[(1 i55) " |, 1 max (1-n2;) Y
j=1 i1

and

Ass.IP — SFOWIGA(Ty, Ty, ) Tie)

min
PEXn

k
2 2 2 Vo)
1_[(1 ~ M) ~ ey ~ Men) "
j=1

k
1_[(1 _ nf,(,-))l”(") _
j=1

)

k !
H(iczr(j))ﬂp(n
j=1

— min — min
- \PEXn PEXy
k k
2 Vo0 2 Yoo
— i — 7 P — i —
t-min( | Ja-i2)" ), J1-min| ] [ -n2)
j=1 j=1

2. Fort=1,eq.(5.3.1.1) and (5.3.1.2) reduces to associate immediate

probability picture fuzzy ordered weighted interactive geometric (Ass.IP-

PFOWIG) operator

Ass.IP — PEOWIG, (T, Ty, ., Ti)

max
PEXn

max

k
i
i (6)]
max | |(1 = Mo() ~ lo() ~ M) "
j=1

k

[ [a- fop)™? .

j=1

1 — max
PEXn

139

1 — max
PEXn

k
1_[(1 — ) | -
j=1

— max
PEXn

k !/
[ Go) ).
j=1

k
| [ =nog) o
j=1




and

Ass. IP — PFOWIGL(T, Ty, ., Ti)
k
Al
i 6)]
min [ [(1=no) ™ | -
j=1
k , K ,
= | min 1_[(1 — Mg(j) — ia(j) _ no(j))lp(j) — min n(id(j))lp(j)
pEXn L pEXn |
Jj=1 j=1
k k
1 — min 1_[(1 i )%U) 1 — min 1_[(1 o )%(n
PEXy 44 o() ’ pexn\ 1 | a(j)
= ]=

3. Fort=2andi=0,eq.(5.3.1.1) and (5.3.1.2) reduces to associate immediate

probability Pythagorean fuzzy ordered weighted interactive geometric (Ass.IP-

PyFOWIG) operator

Ass.IP — PyFOWIG, (T, Ty, ., Ti)
k k
a2 Yoo | _ o2 2 Vo
max( | [(1-n20)) " | = max| | [(1—m2g—n2g)0 ).
j=1 j=1

1 — max
PEXn

k
1_[(1 _ nf,(j))’lp(f)
j=1

and
Ass.IP — PYFOWIG\(T;, Ty, ..., i)
k ’ k ,
. 1_[(1 —n2) "o | - min ﬂ(l —m2, —n2 ;)"0 |,

1 — min
PEXn

k
1_[(1 _ nff(j))lp(f)
j=1

4. Fort=1andi=0,eq.(5.3.1.1) and (5.3.1.2) reduces to Ass.IP-IFOWIG

operator
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Ass.IP — IFOWIG,(T;, Ty, ..., Tie)

|k| Ap0) |k| A50)
max 1—-n.n)"Y | —max 1—m,n—n,n) " |,
PEX, ( 0(1)) PEX,y ( a(j) 0(1))

j=1 j=1

k
Al
1— 1_[ 1— . ()
k max| | 1( 20
]:

SN—

and
Ass.IP — [FOWIG\(Ty, Ty, .., Ti)

PEXn PEXn

k k
) . ] Y
/ min 1_[(1 — 7o) " |~ min 1_[(1 ~ M) = e(n) " |,
I j=1 j=1

I
k I
| A ) P |
\ — min (1 =70(p) /

j=1
Similarly we can reduce all aggregation operators defined in section 5.1.2 and 5.1.3.
Another advantage of the proposed operators is that they aggregate that information

where the existing operators fails.
5.3.2. Comparative Analysis

A comparison analysis between existing and proposed work has been
established in this section. Here an example has been taken in which information is
given in IFNs and solved by using proposed operators which shows that the proposed
operators can solve the information given in IFSs, PyFSs, PFSs and SFSs but the
existing operators cannot solve the information given in PyFSs, PFSs, SFSs and T-

SFSs. So the proposed operators are the generalization of existing work.
5.3.2.1. Example

Consider a decision matrix in which information is given in IFNs as listed in Table 46

Table 46 Decision Matrix

dy d, d3
g1 (0.60, 0.30) (0.50, 0.20) (0.60, 0.35)
95 (0.60, 0.30) (0.50, 0.20) (0.20,0.00)
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g3

ga

9Is

e

(0.31,0.00)
(0.20,0.00)
(0.70,0.30)

(0.60,0.30)

(0.50,0.20)
(0.50,0.20)
(0.40,0.20)

(0.80,0.20)

(0.60, 0.35)
(0.60, 0.30)
(0.80,0.10)

(0.50,0.20)

The given information can be written in T-spherical fuzzy information as in Table 47

Table 47 Decision Matrix in T-SF information

g1

92

93

ga

Is

Y6

dy
(0.60,0.00, 0.30)
(0.60,0.00, 0.30)
(0.31,0.00,0.00)
(0.20,0.00, 0.00)
(0.70,0.00, 0.30)

(0.60,0.00, 0.30)

d,
(0.50,0.00, 0.20)
(0.50,0.00,0.20)
(0.50,0.00,0.20)
(0.50,0.00, 0.20)
(0.40,0.00, 0.20)

(0.80, 0.00, 0.20)

d3
(0.60,0.00,0.35)
(0.20,0.00,0.00)
(0.60,0.00,0.35)
(0.60,0.00,0.30)
(0.80,0.00,0.10)

(0.50,0.00, 0.20)

The WV for attributes will be w = {0.25, 0.40, 0.35} and fuzzy measures will be as

0(¢) =0,

0({d,, d,}) = 0.500,

0({d.}) = 0.175,

e({dll d21 dg}) =1.

0({d,}) = 0.125,

0({dy,ds}) = 0.425,

0({ds}) = 0.100,

0({d,, d3}) = 0.475,

Immediate probabilities for all possible permutations are listed in Table 48

Table 48 Immediate Probabilities

Ay
o = (dy,dy, d3) 0.175
o = (dy, ds, dy) 0.175
o = (dy, dy, d3) 0.375
o = (dy, ds, dy) 0.525

0.325

0.575

0.125

0.175

0.500

0.250

0.500

0.350
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o = (ds, dy, dy) 0.325 0.575 0.100

o = (ds,dy, dy) 0.525 0.375 0.100

Associated immediate probabilities for all possible permutation are listed in Table 49

Table 49 Associated Immediate Probabilities

Ao Ao p(3)
o = (dy, dy, d3) 0.1885 0.3500 0.4615
o = (dy, ds, dy) 0.1815 0.5963 0.2222
o = (dy dy, d3) 0.4038 0.1346 0.4615
o = (dy ds, dy) 0.5526 0.1316 0.3158
o = (ds, dy, dy) 0.3297 0.5833 0.0870
o = (ds, dy, dy) 0.5326 0.3804 0.0870

As 0.6 + 0.0 + 0.3 = 0.9 € [0,1] similarly for t = 1, all values lie in TSFSs. So here

t = 1is taken.

Then the aggregate of all aggregation operators for t = 1 are listed in Table 50

Table 50 Aggregated Values

g1 g2 g3 ga Is Y6

T-SFCG 0.57, 0.54, 0.42, 0.51, 0.72, 0.73,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.26 0.00 0.00 0.00 0.16 0.23

Ass.IP-T- (0.588,) <0.537,> <0.521,> <0.528,> <0.725,> <0.718,>
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,

SFOWGy 0.244 0.00 0.00 0.00 0.154 0.211

Ass.IP-T- (0.543,) (0.404,) <0.418,> <0.385,> <0.584,) (0.611,)
0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
SFOWG, 1\ (305 0.00 0.00 0.00 0.228 0.255

The score values of aggregated values in Table 51 will be
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Table 51 Score Values

g1 g2 k! ga Is Y6

T-SFCG 0.3231 0.6006 0.4800 0.5712 0.5764 0.5049

Ass.IP-T- 03583 05977 05820 05889 05878  0.5158
SFOWG,

Ass.IP-T- 02470 04634 04779 04435 03054  0.3678
SFOWG,

The ranking of all alternatives through score values or accuracy function are listed in
Table 52

Table 52 Rankings

Operators Rankings
T-SFCG 92> 9s > 9gas > 9o > 93 > g1
Ass.IP-T- 92> 94 > gs > g3z > ge > 91
SFOWG,

Ass.IP-T- 93> 92 > 9s > 9o > s > g1
SFOWG,

From above example it is clear that the results obtained from proposed operators are
similar to existing operators. This proves that the proposed operators are

generalizations of existing operators.
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Chapter 6

T-Spherical Fuzzy Einstein Hybrid Aggregation Operators
and Their Applications in Multi-Attribute Decision Making

Problems

T-SFS is a recently developed model that copes with imprecise and uncertain
events of real-life with the help of four functions having no restrictions. This chapter
aim to define some improved algebraic operations for T-SFSs known as Einstein sum,
Einstein product and Einstein scalar multiplication based on Einstein t-norms and t-
conorms. Then some geometric and averaging aggregation operators have been
established based on defined Einstein operations. The validity of the defined
aggregation operators has been investigated thoroughly. The MADM method is
described in the environment of T-SFSs and is supported by a comprehensive numerical
example using the proposed Einstein aggregation tools. As consequences of the defined
aggregation operators, the same concept of Einstein aggregation operators has been
proposed for g-ROPFSs, SFSs, PyFSs, PFSs, and IFSs. To signify the importance of
proposed operators, a comparative analysis of proposed and existing studies is
developed, and the results are analyzed numerically. The advantages of the proposed
study are demonstrated numerically over the existing literature with the help of

examples.

6.1. Einstein Operations for T-SFS

In this section, some Einstein operators for T-SFS are proposed with the help of
Einstein sum and Einstein product. Some special cases of proposed operators are also
discussed in the remark.
6.1.1. Definition
Let 73 = (mq,i;,ny) and T, = (m,,i,,n,) be two T-SFNs. Then their Einstein
operations are defined as follows:

). <, =>m<my i<, ng=n,
.. R mimt t ikt t[ nt+nd
). L®:T= <J1+(1-m5)(1-mg)' i) (-8) ~1+ning

[t mé+mb t itit t nint
). n@eT = <\/1+(mg+ig)(mg+ig)-i§ig' T+ (1) (1-8)"  T+(1-nd)(1-nl)
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, | tfarmbr-(emt)” [ @it (end)”
v). T = \/(1+m§)f+(1—m§)f’ (2-i)) +@HT" [(2-nt) +(08)" )’ t>0
¢ Z(mt)r ¢ (Zit)T t (1+nt)T—(1—nt)T
T 1 1 1 1
V). “‘Tl — ’(2+m§)t+(m§)‘r; (Z—ii)r+(ii)f’ (1+n§)r+(1_n§)1— , T > 0

6.1.2. Remark

i. Fort = 2, above operations become valid for SFSs
ii. Fort =1, above operations become valid for PFSs
iii.  Fori =0, above operations become valid for g-ROPFSs
iv. Fort=2andi = 0,above operations become valid for PyFSs
v. Fort=1andi=0,above operations become valid for IFSs
6.2. T-Spherical Fuzzy Einstein Hybrid Averaging Operators
In this section, by using Einstein operations, T-SF Einstein weighted averaging
(T-SFEWA) operators, T-SF Einstein ordered weighted averaging (T-SFEOWA)
operators, T-SF Einstein hybrid averaging (T-SFEHA) operators are defined and some
of their properties are also discussed.
6.2.1. Definition

For any collection 7; = (m;, i;, n;) forall j = 1,2,3, ..., k of T-SFS,

T — SFEWA,, (T, T3, -, i) =EBE}‘=1 w;T;

(r ARG mjt)wj —II., (1 - mjt)wj t\/ 2115, D)™ \

(L +m)" T, (1 - m)™ T, (2= i8) ™ + T, ()™

t 2 H?=1(n§)wj
2= m) T T ()

is called T — SFEW A operator with WV w = (wy, wy, ..., wy, )" of 7;, where w; € (0,1]

and Xf_ w; = 1.
6.2.2. Theorem
If ; = 7, forall j, then T — SFEWA,, (73, T3, ..., Ti) = Tp.

Proof: Since 7; = 75 = (my, ig, no) forall j = 1,2,3, ..., k and Zﬁ?:le = 1. Then

146



T — SFEWA,, (T3, T3, ... Ty,)
/ j KL+ mb)Yi =T, (1 — mb)™i J 2 1%, (i5)"

B K+ mO)Y + T (@ —mh)™i" T, (2 — i)Y + 15, D)™

|
) k j 21T, ()" /'

2 —nh)" + T (n5)")

k ) k . k .
ti(1+ m3)2i=1‘”1 -(1- m3)2i=1wl t 2(i3)2j=1""1
k. k.’ k. k.’
1+ m(t))zj=1w] +(1- m(t))Z,-:lw] (2 - l-(t))Z,-:lw] + (i6)2j=1W1

t 2(nf) "1

(2 — ng)Z?ﬂ Vi 4 (ng)zi'c:l wj

= (my, ip,ng) = Tp.

6.2.3. Theorem

For a collection of T-SFNs J; forallj = 1,2,3,..,k and 7% =minJ;, and 7V =
J

max J;. Then
j

TL < T — SFEWA, (T, Ty, o, Ti) < TV
Proof: As Tl = mjin?} = (min m;, min i;, max nj) and 7VY= m]jcleT- =
(max m;, max i;, min nj). Then
minm; < m; < maxm;
minm} < m; < maxm}

1 +minmf <1 +mf <1 +maxm]’?

k
(1 + min mf)wj < 1_[(1 + mf)wj < (1 + max m]?)wj
j=1
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t/(1 4+ min m]?)wj — (1 - min m]’?)wj eI T (1 + mf)Wj — 15, (1 - mf)Wj

(1 + min mf)wj + (1 — min m]-t)wj oI+ m})wj + 1k, (1 - mf)Wj

t (1 + max mf)wj — (1 — max m})wj

t\Wj . t\Wi
(1 + max mj) + (1 max mj)
Now, min [ <I; < maxi;

.t .t .t
min i < L < max 5

k
2min(if)" < 2 ﬂ(i})wi < 2 max(if)"”
j=1

‘ 2min(if)" t 2 [T}, ™
= : - < - '
(2 — min ijt)w’ + min(ijt)wj Iy, (2 - iJF)W] + H?=1(i;)wj

t 2 rnax(ijt)wj

(2 — max ijt)wj + max(i]-t)wj

Similarly, maxn; = n; = minn;

max n]t > nf > min nf

k
2max(n))” = 2 ()" = 2min(nf)”
j=1

t 2 max(n]?)wj o 2 H?=1(n§)w"
= . = - j
(2 — max n]’?)W’ + max(nf)wj Hf:l(z - nf)wj + H?ﬂ("f)wj

t 2 min(njt)wj

(2 — min nf)wj + min(n})wi

=>TL<T—-SFEWA,(T,%,....,T:) <TY
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6.2.4. Theorem

For any two T-SFNs 7; = (my, ij,n;) and 7} = (m}, ij,n}) such that 7; < 7;' forall j =
1,2,3,..,k. Then

T — SFEWA,, (71, T3, ..., Ti) < T — SFEWA, (T, 75, ... )
Proof: As 7; < 7}, which means m; < mj, i; < i; and n; = n;.

As,my<m! = mf< (m)

t t
=>1+mf <1+ (m]

H(1 +m)" <[ [(1+mp*)”

j=1

|7, (1 + mjt)wj —I7..(1 - mJF)Wj
k(+m)" +ITE, (1 - mb)"Y

_ e (1 + (m; t)Wj — 15, (1 - (m t)Wj

K (1 +(m] t)wj + 1%, (1 —(m] t)wj

Asip<il = it < (i)

=2 U(ijt)wj <2 U (@)~

tj 2T, ()" e 2114, ((i;)t)wj
a2 =) + L) (1, (2- )) 7 + i (@)

t
H H ! t !
Similarly, n; = nj = nf > (n]

=2] [ =2] [(@))"

j=1
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Wj

1A t Wj
tj 21T, (n})"; X 211, ((n))
@ =) L D™ s (2= 0))” + ey (1))
=T — SFEWA, (73, T3, .., Ty) < T — SFEWA,, (T, T3, .., T)
6.2.5. Definition

For any collection 7; = (m, i;,n;) forallj = 1,2,3, ..., k of T-SFS. Then

T — SFEOWA, (T3, Ty, ... o) =®5"_, ;T

/t (L +ml)” T (1 —mE )™ :/ 2 [T (i)
W wi’ i w i . w j
_ I Mo (1 +me) 7 + T (1 —mGn) ™ (2 — i5) 7 + = (iG)
|

~N

\ t 2[Tj1 (1))
wj w j
=1 (2 = nfg;) 7 + ioi(nb )™
then T —SFEOWA, is called T —SFEOWA operator with associated WV w =
(w1, W, ..., wy)" of T}, where w; € (0,1] and Zﬁ?:l w; = 1. 0(j) is the permutation with
respect to score value such that SC(T,¢j_1)) = SC(Ty(j)-

In next theorems, idempotency, boundedness, and monotonicity properties are proved
for the above operator.

6.2.6. Theorem
If7; =7, forall j = 1,2,3,...,k, then T — SFEOW A, (73, T, ..., Ti) = Tp.
Proof: Since 7; = 75 = (my, ig, no) forall j = 1,2,3, ..., k and Zf:le = 1. Then

T — SFEOWA,(T;, Ty, ., Ti)

/ [T, (1 + mE)@r — 15, (1 —mE)®i 214, (i) \
B Fa (U +mp)® + T (1= my)®5" JTT5=, (2 — i) + T, () |
tj 2T, ()" /'
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k o, kK L ko
fj(1+m5>2f—1°’1(1ms)21—1“’1fj 2(if)*/=1 ") j 2(nf)™/=1 )

3 ] 3 ) k ] k - k . ke .
(m§)I=2 04 (1-m) 2= T\ (2-i§) =1 T4 ()I=1 T ] (2-n§) /=2 4 (nf) /=1 )

= (my, io, 1) = Tp.

6.2.7. Theorem

For a collection of T-SFNs 7 for all j = 1,2,3,...,k and 7" =min7}, and 7V =
J

max J;. Then
j

TL < T — SFEOWA, (T, Ty, ., i) < TV
Proof: As Tt = min Ty = (minmy(j), min i,y , maxng;y) and IV = max Ty =
J J
(max Mg (), MaX Lg(j), Min na(j)). Then

minmg(jy < Mg(j) < MaxMe(j

ot t t
minmegjy < Mgy S MaX Mg j)

t

1+ minmf,(j) <1+ mf,(]-) <1+ maxmg

k
(1 + min mf,(j))wj < 1_[(1 + mf,(j))wj < (1 + maxmf,(j))wj

J=1

t (1 + min mg(j))wj — (1 — min mf,(j))wj

I . t w;j : t wj
(1 + mlnma(j)) + (1 — mmma(j))

< [T, (1+mé )™ =TT, (1 —mb )™
. _
M1, (1+m )™ + T, (1 - mé )™

t (1 + maxmg(j))wj - (1 - maxmg(j))wj

(1 + maxmg(j))wj + (1 - maxmg(j))wj

Now, min is() < iy(j) < maxiq())
minit, . < it ., < maxit,;
o(j) = *o(j) = a(j)
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k
2min(ig;))" <2 l_[(ifr(j))wj < 2max(if;))"”
j=1

N 2 min(if,(j))wj - :/ 2[5, )™
.. W; . 7. wj = , wj . wj
(2 =minil ;)" + min(il ;) M, (2= iby) 7 + TG y)

t 2 max(if,(j))wj

(2 — max if,(j))wj + max(i(";(j))wj

Similarly, maxng(jy = ng¢jy = minng)

t

t t :
maxng y = Ng(jy = MINNG

k
2max(nt))” 2 2] [(nb)® 2 2 min(nt;)”
j=1

w .
S 2 max(ng;) ™ > t\/ 2 [Mf=1 (g ;)

(2 — max ng(j))wj + max(nf,(j))wj - ng(j))wj + H?=1(nff(j))wj

=>TL < T —SFEOWA, (T, Ty, ..., Ti) < TV
6.2.8. Theorem

For any two T-SFNs 7; = (my, i;,n;) and 7' = (mj, i/, n}) such that J; < 7" forall j =
1,2,3, ..., k. Then

T — SFEOWA (T3, Ty, .., Ti) < T — SFEOW A, (T, Ty, ..., ;)

Proof: As 75y < T;(;), Which means mg(jy < my (), io(j) < lg(j) aNd Ny = Ng(jy.-
As, ma() <My = megy < (myg)’

a(j) o(j) =
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k

k
=1

j=1

t H?=1(1 + mfy(j))wj - H?=1(1 - mfy(j))wj
M-, (1 + mfr(j))wj +IT-,(1 - mfr(j))wj

a1+ (my)) ™ = Tl (1= (i) )™
=1 (1 + (mfy(j))t)wj + 115, (1 - (mfr(j))t)w]

AS, ig(j < ia'(]) = lo(}) = (10(1))

k k

. j ./ £\®

=2] o)™ <2] [ (o))"
j=1 j=1

:/ 210 1(1'3(1))(»,-
[T (2 — i)™ + T (i)™

t 21 (i ))
s, (2- (i:r(j))t)w] + [T ((ié(j))t)w]

IA

Similarly, ng(;) = na(]) = no(]) = (nU(]))

=2 1_[(”0(1)) 22 U (nU(J))

t\/ 2 [T ()
[_1(2 = k)™ + Mo (nb)™
! t wj
>t 2H?=1(("a(j)) ) :
= i wj
Iy (2 - (o)) + s (o))

= T — SFEOWA,, (T, T3, ... Ti) < T — SFEOW A, (T}, Ty, ... T

6.2.9. Definition
For any collection 7; = (m;, ij,n;) forall j = 1,2,3, ..., k of T-SFNs. The mapping
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T = SFEHAy (7, T, o, 5i) =@k -y 0750

~ W ~ wj ~ X
(f [a (1 + i) ™ — Ty (1 — ig) ™ :/ 21151 (05"
k —~ [V k ~ wi’? k ~ w j k ~ w i
_ | M= (147G ) 7 + T (L= G) ™ (2 — T5) 7 + (@)
\ j 2 Ty (R )
~ W _ @
=1 (2 - i) 7 + o (@)

is called T-SFEHA operator, where 77 = kw;T;. Let w = (W, Wy, ..., w;)" is the WV
and w = (wy, Wy, ...,w,)T is the associated WV of :T; with w;, w; € (0,1] and

T-SFEHA operator first weights the T-spherical fuzzy values then rearrange them and
measure the ordered T-spherical fuzzy values, so T-SFEHA operator is generalization
of T-SFEWA and T-SFEOWA operator. For this reason, T-SFEHA operator will also

be idempotent, monotone, and bounded.

6.3. T-Spherical Fuzzy Einstein Hybrid Geometric Operators

In this section, by using Einstein operations, T-SF Einstein weighted geometric
(T-SFEWG) operators, T-SF Einstein ordered weighted geometric (T-SFEOWG)
operators, T-SF Einstein hybrid geometric (T-SFEHG) operators are defined and some
of their properties are also discussed.
6.3.1. Definition

For any collection 7; = (m;, ij,n;) forall j = 1,2,3, ..., k of T-SFNs. The mapping

Wj

T — SFEWG,, (71, Ty, ... ) =QF j;lTj

j 2T}, (mf)" [ 2ML ™
| NT=@ = mp™ T om)™ (T (2 = )™+ T ()™

tj 4" — (1= )™ /'

f ()" + T, (1 = nh™i

where w = (W, wy, ..., wy)7 isthe WV of 7; forall j = 1,2,3, ..., k such that w; € (0,1]

and Yf_,w; = 1.
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In next theorems, idempotency, boundedness, and monotonicity properties are proved

for the above operator.

6.3.2. Theorem

If7; =7, forallj =1,23,..,k, thenT — SFEWG,, (7, T3, ..., T) = To.

Proof: Since T; = Ty = (myg, ip, no) forall j = 1,2,3, ...,k and ¥5_, w; = 1. Then

T — SFEWG,,(T,, Ty, ..., Ti)

/ f 2 [Tk, (mb)¥i : 21T, ()" \
| VT2 = md)™ + T, )™ (T, 2 = )™ + T, D™ |
N I

B :/H;;l(l T b)Y — [T, (1 — nh)™i

A+ )"+ T, (1 —np)™

t z(mg)Zﬁle t z(ig)zﬁle

(2 _ mg)Zﬁle + (mg)Zlewj ’ (2 _ if))z?:le + (i(t))zf’:le ’

k _ k )

(1 + n(t))Ej:lw, -(1- n8)2j=1‘”]
k _ k .

1+ n(t))Ej:lw, +(1- n8)2j=1‘”]

= (my, ip,no) = Tp.
6.3.3. Theorem
For a collection of T-SFNs 7 for all j = 1,2,3,..,k and 7% = min7j, and 7V =
]
max J;. Then
]
TL<T—-SFEWG, (1,75, ....T) < TY
Proof: As TL= rnjin?} = (min m;, min i;, max nj) and 7Y =max7 =
(max m;, max i;, min nj). Then
minm; < m; < maxm;

min mf < mf < max m}
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K
2 min(mf)wj <?2 H(mf)wj <?2 max(mf)wj
j=1

: \Wi k t\W;
. t 2 mln(mj) - :/ 2 szl(mj)wl

(2 — min mjt)wj + min(mjt)wj B Hﬁl(z - mf)Wj + H?=1(mf)wj

t 2 max(mf)wj

(2 — max mjt)wj + max(m]?)wj

Now, min i; < i; < maxi;

.ot .t .t
min i; < L < max i

K
2 min(ijt)wj <2 H(i})wi <2 max(if)wj
j=1

t 2 min(ijt)wj o 2[5, D™
= . F S ; '
(2 — min ijt)W’ + min(ijt)wj Hf:l(z - ijt)wj + H?:l(if)w}

t 2 max(ijt)wj

(2 — max ijt)wj + max(i]-t)wj

Similarly, maxn; = n; = maxn;

max njt > nf > min nf

1 +maxnf >1 +nf >1 —I—minnf

K
(1 + max n]’-:)wj > 1_[(1 + nf)wj > (1 + min nf)wj

j=1
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t (1 + max n]?)wj - (1 — max n})wj t ?:1(1 + ”;)Wj — H?=1(1 B nJF)Wj

(1 + max nf)wj + (1 — max n]-t)wj (1 n})wj +15,(1 - nf)Wj

t (1 + min n]-t)wj — (1 — min n})wj

(1 + min n]’?)wj + (1 — min nf)wj

= TL < T —SFEWG,, (T, T, ... T) < TV
6.3.4. Theorem
For any two T-SFNs 7; = (my, i;,n;) and 7' = (mj, i}, nj) such that J; < 7" forall j =
1,2,3, ..., k. Then
T — SFEWG,, (T3, Ty, ., Ti) < T — SFEWG,, (T, Ty, .., i)
Proof: As 7; < 7}, which means m; < mj, i; < i; and n; > n;.

t
12 t 12
AsS, m;<m; = mj < (mj

=2 H(m;)wf <2 H ((m)")”

tj 2T}, (m)™ < 215, ((m)')”
M@ =m)™ + ()™~ 11, (2- (m))” + 11, (m))”

Asip<il = it < (i)

=2 [ =2 [(@))”

j 2., 2115, ()
a2 =57 + L)Y T 11 (2- () + e, (())

Wj

t
H H ! t !
Similarly, n; = nj = nf > (n))

:>1+nf21+(njf)t
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k

[ [a+nt)”

j:l =1

:w

1+(

;{=1(1 + njF)wj - ?=1(1 - njy)wj
W W ;
@ +nd) Y AT (1 -n))

s (4 () ) - (1= ())”
-, (1 + (n})t)wj + 1%, (1 - (n]’-)t)w’

=T — SFEWG, (T, T3, ..., Ti) < T — SFEW G, (7}, T3, ..., ;)

6.3.5. Definition

For any collection J; (m], L],n]) forall j = 1,2,3, ..., k of T-SFNs. The mapping

T —SFEOWG, (7,75, ..., Ty) ®E] -1 a(,)

/f\/ 2 H§=1(m3(j))wj :/ 2115 1(1'3(}))“”' \
I : I (2 - I

K t K t
| j=1(2 — mo(j))w] + l_[J'=1(ma(j))w] a(])) + H] 1(10(1))

e [Tjza (1 + g ) = T2y (1 = ng )
[0 (1 + ng)® + T (T = g ) /

where w = (w;, Wy, ..., wy)" is the associated WV of 7; for all j = 1,2,3, ..., k such that
w; € (0,1] and 29‘:1 w; = 1 and o(j) is permutation with respect to score value such

that SC(Ty¢j—1)) = SC(Ty(jy)-

In next theorems, idempotency, boundedness, and monotonicity properties are proved

for the above operator.

6.3.6. Theorem

If 7 =T, forall j = 1,2,3,...,k, then T — SFEOW G, (7}, T3, ..., Ty.) = Ty.
6.3.7. Theorem

For a collection of T-SFNs 7 for all j = 1,2,3,..,k and 7% = min7}, and 7V =
]

max J;. Then
j
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TL<T—SFEOWG,(T,,T5, ..., T) < TY
6.3.8. Theorem

For any two T-SFNs 7; = (my, ij,n;) and 7} = (m}, ij,n}) such that 7; < 7;' forall j =
1,2,3, ..., k. Then

T — SFEOWG, (T, T3, ..,Ti) < T — SFEOWG (T, T, ..., T3))
6.3.9. Definition

For any collection J; (m], L],n]) forall j = 1,2,3, ..., k of T-SFNs. The mapping

~ o~ ~w
T — SFEHG,, (71, T, ..., T},) = ®E, ) od)
k (5 wj =
/ J 21T (M) t 211 (o)™
k o~ ~ w;j ~
H HJ=1(2_ 0(1))w1+1_[1 1(m0(1))w H?=1(2_la(j)) T+11 k 3(1)
I

|
= |
\ :/H§=1(1 + ) = Tl (1 = g )™ /l

[Tfo1 0+ G )T + T (1 — Tig )

is called T-SFEHG operator, where :77 = :J;kwf, Let w = (wy, Wy, .., w)T is the WV
and w = (wy, w,, ..., w,)T is the associated WV of T; with w;, w; € (0,1] and
‘I;=1 (1)] = 1, Z§(=1W] = 1.

T-SFEHG operator first weights the T-spherical fuzzy values then rearrange them and
measure the ordered T-spherical fuzzy values, so T-SFEHG operator is generalization
of T-SFEWG and T-SFEOWG operator. For this reason, T-SFEHG operator will also

be idempotent, monotone, and bounded.
6.4. An approach to MADM with T-spherical fuzzy information

Let D = {d,,d,, d5, ...d;} be a set of alternatives and E = {e;, e,, e3, ...ex} be a
set of attributes. The selection of best alternative is carried out using the aggregation

tools proposed under the WV w = {w;,w,, w3, ..w;} such that w; € (0,1] and

l
j=1

detailed steps of decision making process are illustrated as follows.

w; = 1. The WV is chosen to weigh the arguments of decision makers. The
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Step 1. Find a value of t for which the values lie in T-SF information means that find
the exponent ¢ (which is finite natural number) such that the sum of the t* power of

all m, i and n values belong to [0, 1].

. ~ ~ kw;j
Step 2. Find 7; = kw,; (or ; = 7).

Step 3. Find scores values and by using these score values we reorder them in a

descending order.
Step 4. Aggregate these ordered values using T-SFEHA (or T-SFEHG) operators.
Step 5. By finding scores we choose the best option.

The flow chart of a proposed algorithm is given below:

Figure 2 Flow Chart
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6.4.1. Example

A company wants to extend his business and board of governors decided to invest their

money in one of the best options from three business options

i.  by: Food company
ii.  b,: Mobile phone company

iii.  bs: Construction company
They assess the given companies on the basis of the following attributes.

I.  Gq: Growth analysis

ii.  G,: Risk analysis
iii.  G3: Environmental impact analysis
iv.  G4: Development of society

V.  Gs: Social-political impact

The experts evaluate the given attributes under the consideration of given attributes

as follows in Table 53:

Table 53 Decision Matrix

Gy G Gs Gy Gs
b, (0.5,0.3,0.4) (0.9,0.4,0.5) (0.7,0.50.2) (0.8,0.50.5) (0.2,0.2,0.8)
b, (0.2,0.4,0.7) (0.4,0.1,0.2) (0.9,0.2,0.5) (0.3,0.2,0.6) (0.5,0.3,0.7)

b; (0.6,0.2,04) (0.3,0.50.7) (0.7,0.2,04) (0.50.1,0.2) (0.4,0.3,0.5)

Step 1: As, 0.9+ 0.4+ 0.5=1.8¢[0,1],0.92 + 0.4% + 0.52 = 1.22 ¢ [0,1] but
0.9° + 0.4° + 0.5 = 0.918 € [0,1]. Similarly, sum of cube of all other values lie in
[0, 1]. So for t = 3 all values in Table 53 are T-SFNs. This clearly indicates that the
given information cannot be handled by the existing AOs of IFSs, PyFSs, PFSs as well
as SFSs.

Step 2: By taking the WV w= (0.25,0.20,0.15,0.18,0.22)7, we find T-SFEWA

values as
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3[(1 + 0.53)5%0.25 — (1 — (0.53)5%025
(1+ 0.5%)5¥025 4 (1 — 0.5%)5%025 0.5381,
3 2 x (0.33)5%0:25
(2 - 0.33)5X0-25 + (0.33)5X0.25 = 0-2104‘,
3 2 x (0.43)5%025

Similarly, we can find all other values as follow in Table 54

Table 54 T-SFEWA values

Gy G, Gs G, Gs

b, [0.5381, 0.9, 0.6398, 0.7770, 0.2064,
<0.2104,> <O 4,) <O.6144,> <O.5437,) (O 1665 )

0.3029 0.5 0.3155 0.5437 0.7788

b, [0.2154, 0.4, 0.8440, 0.2896, 0.5160,
<0.3029,> (O 1,) <0.3155,> <0.2401,> <O 2604 )

0.6258 0.2 0.6144 0.6384 0.6698

b; [0.6444, 0.3, 0.6398, 0.4829, 0.4129,
0.1264, 0.5, 0.3155, 0.1288, 0.2604,
0.3029 0.7 0.5240 0.2401 0.4591

Step 3: Scores of each attribute of all alternatives using SC(T) = m3(x) — n3(x) will
be

Table 55 Score Values

G, G, Gs G, Gs
b, 0.1280 0.6040 0.2305 0.3083 —0.4636
b, —0.2350 0.0560 0.3692 —0.2359 —0.1632

b; 0.2398 —-0.3160 0.1180 0.0988 —0.0264

Based on above score analysis, we order the values of Table 56 as:

Table 56 Ordered T-SFEWA values

Gy Gy Gs Gy Gs
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bs(1) <0.9,> (0.7770,) (0.6398,) (0.5381,) (0.2064,)
0.4, 0.5437, 0.6144, 0.2104, 0.1665,
0.5 0.5437 0.3155 0.3029 0.7788

b (2) (0.8440,) <0.4,> (0.5160,) (0.2154,) (0.2896,)
0.3155, 0.1, 0.2604, 0.3029, 0.2401,
0.6144 0.2 0.6698 0.6258 0.6384

bsz) [0-6444, 0.6398, 0.4829, 0.4129, 0.3,
0.1264, 0.3155, 0.1288, 0.2604, 0.5,
0.3029 0.5240 0.2401 0.4591 0.7

Step 4: With the help of normal distribution-based method, we get w =
(0.112,0.236,0.304,0.236,0.112)7 and find T-SFEHA values as,

(14 0.93)0112 x (1 + 0.77703)9236 x (1 + 0.63983)0:304
( x (14 0.53813)0-236 x (1 + 0.20643)0-112 ) B
(1 —0.93)0112 x (1 — 0.77703)0236 x (1 — 0.63983)0:304
( x (1 —0.53813)0236 x (1 — 0.20643)0112 )
((1 +0.93)0112 x (1 + 0.77703)0-236 x (1 + 0.63983)0-304> N

x (14 0.53813)0236 x (1 + 0.20643)0112
(1 —0.93)0112 x (1 — 0.77703)0236 x (1 — 0.63983)0:304
( x (1 —0.53813)0236 x (1 — 0.20643)0112 )

w

= 0.6914

\

Similarly, all other values can also be find
bo(1) = (0.6914,0.3859,0.4178)
by(2) = (0.5182,0.2182,0.4960)
bo(sy = (0.5277,0.2188,0.3922)
Step 5: Now we have to find the score values
SC(by(1)) = 0.2576, SC(by(z)) = 0.0172, SC(b,(3)) = 0.0866
SC(bg(1)) > SC(bg(z)) > SC(by(2))

Since the score value of b; is highest so Food Company is the best option for

investment.
Now, we check their validity by using Einstein hybrid geometric operators.

By taking WV w = (0.25,0.20,0.15,0.18,0.22)7, find T-SFEWG values as listed in
Table 57,
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Table 57 T-SFEWG values

Gy G Gs Gy Gs

b, [0.4032, 0.9, 0.7773, 0.8211, 0.1665,
<O.2104,> <0.4,> <0.6144,> <0.5437,) (0.1665,)

0.4308 0.5 0.1817 0.4829 0.8206

b, (0.1264, 0.4, 0.9262, 0.3453, 0.4591,
<0.3029,> (O.l,) (0.3155,) <0.2401,> <O.2604,>

0.7485 0.2 0.4546 0.5799 0.7206

b; (0.5108, 0.3, 0.7773, 0.5437, 0.3581,
0.1264, 0.5, 0.3155, 0.1288, 0.2604,
0.4308 0.7 0.3635 0.1931 0.5160

Scores of each attribute of all alternatives will be as in Table 58

Table 58 Score Values

Gy Gy Gs Gy Gs
b, —0.0144 0.6040 0.4636 0.4411 —0.5479
b, —0.4173 0.0560 0.7005 —0.1538 —0.2774

b; 0.0534 -0.3160 0.4216 0.1536 —0.0914

Based on above score analysis, we find the ordered values of Table 59 as:

Table 59 Ordered T-SFEWG values

Gy Gy Gs Gy Gs

b (1) <0.9,> (0.7773,) (0.8211,) (0.4032,) (0.1665,)
0.4, 0.6144, 0.5437, 0.2104, 0.1665,
0.5 0.1817 0.4829 0.4308 0.8206

bs(2) (0.9262,) <0.4,> (0.3453,) (0.459 1,) (0.1264,)
0.3155, 0.1, 0.2401, 0.2604, 0.3029,
0.4546 0.2 0.5799 0.7206 0.7485

bszy (07773, 0.5437, 0.5108, 0.3581, 0.3,
0.3155, 0.1288, 0.1264, 0.2604, 0.5,
0.3635 0.1931 0.4308 0.5160 0.7

With the help of normal distribution-based method, we get w=
(0.112,0.236,0.304,0.236,0.112)7 and find T-SFEHG values as,

b1y = (0.6121,0.8737,0.8837)
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bo(2) = (0.4325,0.8056,0.9297)
bo(sy = (0.5078,0.8111,0.8663)
Step 5: Now we have to find the score values
SC(by(1)) = —0.4608, SC(by(z)) = —0.7227, SC(by(3)) = —0.5192
SC(bs1)) > SC(by(3)) > SC(by(2))

Here again the score value of alternative b, is high. So, Food Company is the best
option for investment. Here it is important to discuss that the information given in Table
53 is purely T-SFNs; therefore, it cannot be aggregated using the existing approaches
of IFSs [94, 95], PyFSs [96, 97], g-ROPFSs [79] as well as PFSs [82, 84]. On the other
hand, the work proposed in this manuscript can deal with all the existing problems that
lie in the environment of IFSs, PyFSs, q-ROPFSs and PFSs which is clearly
demonstrated in Section 6.5.

6.5. Comparative Analysis

In this section, a comparative study is done in which it is shown that the
proposed operators can be reduced to existing operators under some condition which
proves the superiority of proposed operators. An example is taken from [94] and it is

proved that the proposed operators provide the same result.

Consider the T-SFEHA defined as

T — SFEHA,, (71,75, ..., Tx)

e[, (1 + mfro))wj (1 - 0(1))
(1 + ma(])) +IT, (1 - a(]))

6.5.1
t 2 H, 1(‘:;(,))wj ( )

a2 - ~a(,)) + 15 1(10(,)

t 21T 1(1“120))‘01'
H}‘=1(2_ a(])) +H} 1("’0(]) “
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1. For t = 2 the equation 6.5.1 reduces to spherical fuzzy Einstein hybrid averaging

operators (SFEHA operator) i.e.
SFEHA,o(71, T, .., Ti)
( (1 g ) T (1 - )™ \/ 2T} (5)* \‘
w;i’ w;j
=| j=1(1+m0(1)) +H1 1(1 0(1’)) ' H?=1(2 0(1)) ' +H1 1(‘0(1))
\ \/ 21_[? 1(ﬁc27(j))wj
M= (2 = 5)™ + = (R2)) ™

2. For t =1 the equation 6.5.1 reduces to picture fuzzy Einstein hybrid averaging

operators (PFEHA operator) i.e.
PFEHA,, (71, %5, .., T)

[Toa (1 + o)™ — Tz (1 = M) 2 [Tj-1 (o)™ \
| [ies (1 + ()™ + Tea (1 = o)™ THza(2 = To(p) ™ + s (fo) ™ |

\ 2 11 (fig )@ /l
- w - wi
H?=1(2 - ncf(j)) T+ H;C:l(ncr(j)) ’
3. For i = 0 the equation 6.5.1 reduces to q-ROPF Einstein hybrid averaging operators
(9-ROPFEHA operator) i.e.

q — ROPFEHA,, (71, T3, ... i)

(L ml )" T (1 - )™ tj 2 [T (g )
Ty (14 A )™+ T (1= )™ T (2 = 716 )™ + T (7)™ /

4. For t = 2 and i = 0 the equation 6.5.1 reduces to PyF Einstein hybrid averaging
operators (PyFEHA operator) i.e.

PYFEHA (T, %, ., k)

? (12" T (1 — w2 g) ™ \/ 2115 1(ﬁ§(j))wj
. ~ wi’ ~ w j
] 1(1 + ma(]) e + Hle(l - ma(])) ! j 1(2 0(})) + H;(=1(n§(])) !

5. For t =1 and i = 0 the equation 6.5.1 reduces to IF Einstein hybrid averaging
operators (IFEHA operator) i.e.

166



IFEHA,, (70, T, o, T

H?=1(1 + ma(j))wj - H;{=1(1 - ma(j))wj 2 H§=1(ﬁ0(1’))wj
k(14 ig) ™ + T, (1 = fig() ™ THCL (2 = Fiog) ™ + T, (o)™

Similarly, we can reduce T-SFEWA operator, T-SFEOWA operator, T-SFEWG
operator, T-SFEOWG operator and T-SFEHG operators.

6.5.1. Example

Consider a decision matrix having five alternatives {A,, A, A3, A4, As} and evaluate
under four attributes {G4, G,, G3, G4}

The experts evaluate the alternatives on the basis of given attributes as

Table 60 Decision Matrix

G, G, Gs Gy
A, (0.4,0.5) (0.5,0.4) (0.2,0.7) (0.2,0.5)
A, (0.6,0.4) (0.6,0.3) (0.6,0.3) (0.3,0.6)
As (0.5,0.5) (0.4,0.5) (0.4,0.4) (0.5,0.4)
A, (0.7,0.2) (0.5,0.4) (0.2,0.5) (0.3,0.7)
As (0.5,0.3) (0.3,0.4) (0.6,0.2) (0.4,0.4)

Above decision matrix can be written in T-SFSs environment as in Table 61

Table 61 Decision Matrix in the form of T-SFNs

G, G, Gs Gs
A, (0.4,0,0.5) (0.5,0,0.4) (0.2,0,0.7) (0.2,0,0.5)
A, (0.6,0,0.4) (0.6,0,0.3) (0.6,0,0.3) (0.3,0,0.6)
As (0.5,0,0.5) (0.4,0,0.5) (0.4,0,0.4) (0.5,0,0.4)
A, (0.7,0,0.2) (0.5,0,0.4) (0.2,0,0.5) (0.3,0,0.7)
As (0.5,0,0.3) (0.3,0,0.4) (0.6,0,0.2) (0.4,0,0.4)

Witha WV w = (0.2,0.1,0.3,0.4)7. Then by using eq. (1) we get
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Table 62 T-SFEWA values

G, G, Gz Gy
A; (0.3265,0,0.5109) (0.2163,0,0.4814) (0.2386,0,0.7406) (0.3135,0,0.4458)
A, (0.5039,0,0.4319) (0.2704,0,0.4396) (0.6814,0,0.2548) (0.4584,0,0.6213)
Az (0.4132,0,0.5109) (0.1679,0,0.5171) (0.4687,0,0.3659) (0.7059,0,0.2975)
A, (0.6004,0,0.2561) (0.2163,0,0.4814) (0.2386,0,0.4850) (0.4584,0,0.8210)

As (0.4132,0,0.3478) (0.1232,0,0.4814) (0.6814,0,0.1535) (0.5901,0,0.2975)

Then by using score function we order them as in Table 63

Table 63 Ordered T-SFEWA values

G G G Gy

ho (0 (Ee) () (2
he (9 (3B0) ) (ZM)
fa(00)(ema)  (OAmO) (1)
ho (1S080)  (E0) 20y (o)
Ao (L9 () (RO ()

By using eq. (3), we get
Ay = (0.2434,0,0.5477)
Ay = (0.4534,0,0.4360)
Ay = (0.4273,0,0.4119)
Ay = (0.3109,0,0.5072)

Aqs) = (0.4440,0,0.2941)

The score values of aggregated values will be
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SC(Ay1y) = —0.3043, SC(Ay(z)) = 0.0174, SC(Ay(3)) = 0.0154, SC(Ayw)) =
—0.1964, SC(Ay(s)) = 0.1499.

This shows that Az is most desirable alternative. Similarly, the above example can be

aggregated by using T-SFEHG operator.
6.5.2. Example

Consider the information is given in T-spherical fuzzy environment for t = 3 as in
Table 64:

Table 64 Decision Matrix

Gy Ga Gs Gy Gs
A, (05,03,04) (0.9,04,0.5) (0.7,0.50.2) (0.80.50.5) (0.20.2,0.8)
A, (0.2,0.4,0.7) (0.4,0.1,0.2) (0.9,0.2,0.5) (0.3,0.2,0.6) (0.50.3,0.7)

A;  (0.6,0.2,04) (0.3,05,0.7) (0.7,0.2,04) (0.5,0.1,0.2) (0.4,0.3,0.5)

Then some aggregation operators e. g. T-spherical fuzzy weighted averaging (T-
SFWA) operators, T-spherical fuzzy hybrid geometric (T-SFHG) operators, T-
spherical fuzzy weighted interactive averaging (T-SFWIA), T-spherical fuzzy hybrid
interactive geometric (T-SFHIG) operators, T-SFEWA operators and T-SFEWG

operators are used to solve given data. The aggregated values will be as in Table 65:

Table 65 Aggregated values of Table 64

T-SFWA  T-SFHG T-SFWIA T-SFHIG  T-SFEWA T-SFEWG

operators operators operators operators operators operators

[10]

A, [0.7284, 0.5855, 0.7284, 0.9132, 0.6914, 0.6121,
0.3440, 0.3824,) 0.3995, 0.7872, 0.3859, 0.8737,
0.4570 0.5216 0.6010 0.5216 0.4178 0.8837

A, (0.6015, 0.4723, 0.6015, 0.9111, 0.5182, 0.4325,
0.2264, 0.2102, 0.2927, 0.8905, 0.2182, 0.8056,
0.5039 0.6030 0.6121 0.6030 0.4960 0.9297

A; (0.5367, 0.5164, 0.5367, 0.9579, 0.5277, 0.5078,
0.2318, 0.1959, 0.3286, 0.8506, 0.2188, 0.8111,
0.4148 0.5770 0.5440 0.5770 0.3922 0.8663
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The scores of the aggregated data obtained in Table 65 are given in Table 66 as follows:

Table 66 Score Values

T-SFWA
operators
A, 0.2909
A,  0.0897
A;  0.0832

T-SFHG ~ T-SFWIA
operators operators
[16]

0.0588  0.1693
—0.1140  —0.0118
—0.0544  —0.0064

T-SFHIG

operators

0.6196

0.5371

0.6868

T-SFEWA T-
operators  SFEWG
operators
0.2576  —0.4608
0.0172 —0.7227
0.0866  —0.5192

The geometrical comparison of the score values obtained using different aggregation

techniques is depicted in Figure 3 where the blue stars denote the score values of the

A; using different aggregation operators while the orange and grey stars denote the

score values of the alternatives A, and A5 respectively.

0.8
0.6
04
0.2

-0.2
-0.4
-0.6

-08
TSFWWA

Score Values of Alternatives

TSFHG

TS5PWIA

WAl A2 A3

TSFHIG

TSFEWA

Figure 3 (Score values of alternatives using different aggregation operators)

TSFEWG

The demonstration of the ranking results observed in Figure 3 are described in Table

67.

Table 67 Rankings

Aggregation Operators

T-SFWA operators

Reference

Chapter 4

Rankings

Ay > Ay > Az
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T-SFHG operators
T-SFWIA operators
T-SFHIG operators
T-SFEWA operators

T-SFEWG operators

[16]

Chapter 4
Chapter 3
This Chapter

This Chapter

Ay > Az > A,
Ay > Az > A,
Az > Ay > A,
Ay > Az > A,

Ay > Az > A,

6.5.3 Advantages.

The advantages of proposed work over existing work are discussed in this section.

The advantages of our work are as follows:

1. T-SFS is superior to IFS, PyFS, g-ROPFS, PFS and SFS which is claimed and

proved Example 6.4.1 and 6.5.1.

2. T-spherical fuzzy Einstein AOs are more flexible than Einstein aggregation
operators of IFSs, PyFSs and, PFS. This flexibility is shown in Section 6.5., where
few restrictions on the proposed operator reduce them to Einstein operators of IFSs,

PyFSs, g-ROPFSs, PFSs, and SFSs.

Proposed operators can solve all the problems that are discussed in [82, 84, 94-97] but

the existing operators cannot solve the problems when the information is given in T-

SFNs.
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Chapter 7

Some T-spherical fuzzy Einstein interactive aggregation
operators and their application to selection of photovoltaic

cells

In this chapter, some new averaging and geometric operators in the T-SF
environment are proposed. First new operational laws are defined then on the basis of
these laws Einstein geometric interaction operators and Einstein averaging interactive
aggregation operators are proposed. Some basic properties of these operators are also
discussed. Then proposed operators are applied to the MADM problem to check their
reliability. The advantages of proposed aggregation operators are also discussed. The
superiority of proposed operators over existing work is checked with the help of an

example.

7.1. Einstein Interaction Operations for T-SFS

Existing Einstein operations (Chapter 6) have some limitations that they fail
under some condition. So, we proposed some new Einstein interaction operations on
which we define some new aggregation operators. If 73 = (my,i;,n;) and 7, =

(m,, i,,n,) are two T-SFSs then their Einstein interaction operations are as follows:

)

(14nf)(14+ns)+(1-nf)(1-n})

\/ ((1 ni-if)(1-nj-i5)-(1-mi~if-nj)(1-mj—if- nz))
Vi), Q7=

t[(1+i8)(1+i8)-(1-iH)(1-i) ¢ [(14+nh)(1+nb)-(1-ni)(1-nb)
(1+i))(1+i5)+(-iD-i5)" N (1+nf)(1+nf)+(A-n))(A-nb)

t|(+mi)(1+mg)—-(1-mi)(1-m3) ¢ |(1+i7)(1+i5)-(1-1)(1-i3)
(1+mi)(14m3)+(1-mi)(1-m3) " N (1+i7)(1+i)+(1-i7)(1-i3)’

vii) 1@ Tz =

(1-mi-if)(1-mj-iz)-(1-mi-if-nj)(1- mz_lz_nz))

(1+mi)(1+mE)+(1-m7)(1-m})

(emt)*~(m)" | (i) (1) \
(1+m1) +(1- ml) (1+m1) +(1- ml) |

(1 mf—if) —(1-m{-if- n1))
A+m)T+(a-mb)®

, 1T>0

-
1
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(1"‘”1) "‘(1_”1)

ix). ()=
t\/<1+ibf—(1—ii)’ t[@+nt)t—(1-nt)"

-t -t t t
A+iHT+A-iH)T  @+nh)T+A-nb)T

¢ [2((1-nt=i8) ~(1-m¢ it -nt)")
===z

, T>0

7.1.1. Remarks

The defined operations will reduced to SFSs for t = 2.

The defined operations will reduced to PFSs for t = 1.

The defined operations will reduced to g-ROFSs for i = 0.

The defined operations will reduced to PyFSs for t = 2 and i = 0.

The defined operations will reduced to IFSs fort = 1 and i = 0.

© o &~ w N

The defined operations will reduced to FSs fort = 1,i = 0and n = 0.

7.2. T-Spherical Fuzzy Einstein Hybrid Geometric Interaction

Operators

In this section, on basis of new proposed Einstein operations we defined
geometric interaction operator in the environment of T-SFS and some of its basic
properties are also discussed like monotonicity, boundedness and idempotency. The
validity of proposed work is checked with the help of an example.
7.2.1. Definition

For any collection of T-SFNs 7; = (m;, i;,n;) (j = 1,2,3, ..., k). The mapping

Wj

T = SFEWIGy, (73, Ty, ., Tit) =®pi_, T,

F (1 +nHYi+ Hj=1(1 f)Wz
_ eI, (L + ™ =TT, (1 = i)™
[T, (1 + i)W + T, (1 = i)™

e T2, (1 + 08" =TT, (1 — nh)™i
Fo (U +n)"i + 15, (1 = nh)Yi

i]z(l_[f:l(l - n; - i}:)wj - 1(1 - m — l t)W])

Where w = (wy, ..., w)" is the WV of 7; with w; € [0,1] and 3_, w; = 1.
7.2.2. Theorem
Ifall ; =Ty, then T — SFEWIG,, (T}, Ty, .., Tit) = To.
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Proof: Let 7; = T = (my, iy, no) for all j then
T — SFEWIG,,(T;, T3, ., i)

L+ n;)Wf + H,—=1(1 f)Wf

[T (1 + ™ + T, (1 = i)™

e T2, (1 + 08" =TT, (1 = nh)™)

_ J LY - TI,(— D™

T — SFEWIG,, (T, Ty, ., Ti)

ko wj K
2 ((1 — n§ — ijt)zj=1 wj _ (1 _ mjy _ l-jt _ n]¢)21_1w1>

K K
1+ nﬁ)zjnw} +(1- n5)2j=1WJ

)

k . k .
e|(1+ %= — (1 — b2

k . k i
(1+ %=1 + (1 — i) Z=")

ko koo
(1 + n})zfﬂwl -(1- nf)zfﬂwl

k . k .
1+ n})zjﬁle +(1- n5)2j=1W]
= (myg, i, o) = Tp

7.2.3. Theorem

Consider a collection of T-SFNs T; (j = 1,2,...,k) with 7% = minJ;, and TV =
]

max J;. Then
]
TL<T-SFEWIG,(T,,T5, ..., T) <TY
7.2.4. Theorem

Consider any two T-SFNs 7; = (m;,i;,n;) and ;' = (m}, i/,n}) (j = 1,2, ..., k) such
that 7; < 7;' for all j. Then

T — SFEWIG, (T3, Ty, ..., T) < T — SFEWIG,, (T, Ty, ..., 7))

Proof: Let 7; < 7;" thenm; < m/, i; < i;j and n; > n;. Then by using basic information
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e 12(TT5-, (1 —nf - ijt)wj -, (1 -mj i - nJF)Wj)

e, (1 + )™ + 1T, (1 — nf)™

2 (- ) - @) ~ T (1= o) - () - () )
} L+ m)) L (1- ()

Wj

Wj

. . .y . W
I, (1460 -1, (1 - i)™ _ j=1 (1 + (lj)t) j=1 (1 - (lj)t) ]
M+ )"+ (=)™ T i, (14 )+ e (1= (6)')

t ?:1(1 + n}:)wj - ?=1(1 - n}:)wj

G+ n)” + (- )

e (1 ) - T (1= () )
-, (1 + (n;)t)wj + 1%, (1 - (n]’-)t)W’

This shows that

T — SFEWIG,(T;, Ty, ..., Ti) < T — SFEWIG,, (T}, T3, ..., T

7.2.5. Definition
For any collection of T-SFNs 7; = (m;, i;,n;) (j = 1,2,3, ..., k). The mapping

T — SFEOWIG, (71,7, ..., Ty) :®Eij'(=1 Tcra()]]'.)

k : ; k . w;j
e[ 2(IT=a (1 = gy — i)™ =T (T = mGy = igy = ngy) )
[Tj21 (1 + g )7 + =g (1 — g ;)
_ e (MToa (T + i) = Tljoa (1 = ig))®

e [[1jo1 (1 + g ) =TT, (1 = ng ;)
[Tj=1 (1 + ng ) + TTjoq (1 — ng )

Where w = (wy, ..., wy)" is the associated WV of 7; with w; € [0,1] and Zj?:l wj =

1, and a(j) is any permutation of (1,2, ..., k) such that T;(;_1y = T5(j).
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7.2.6. Theorem

Ifall ; = T;, then T — SFEOWIG, (T}, T3, ..., Ti.) = Ty.

7.2.7. Theorem

Consider a collection of T —SFNs T; (j = 1,2,..., k) with 7% = mjin.‘]}, and 7Y =

max J;. Then
]
TL<T-SFEOWIG,(T,,T5, ..., T;) < TY
7.2.8. Theorem

For any two T-SFNs 7; = (my, i;,n;) and 7' = (m}, ij,n}) for all (j = 1,2, ..., k)such
that 7; < 7;' for all j. Then

T — SFEOWIG,, (T, Ty, ..., i) < T — SFEOWIG, (T, T3, ..., ;)

7.2.9. Definition

For any collection 7; = (m;, i;,n;) (j = ..., k) of T-SFNs. The mapping
T = SFEHIGy (T3, B0 Ti) =@, T0)

\/ 2(IT=a (1 = b = B = Miea (1 = Mgy = Ty = Fig) ™)
[Tjo1 (1 + g ) + T2y (1 = ngy) ’
\/HJ 1 (1 +850) 7 =TTy (1 = BG))* t\/nﬁl(l + fig () = Ilja (1 — fig )™
[To1 (1 + 7)) + Tfoa (1 = T ) Tza (1 + Fig )7 + Tljoa (1 = Aig )

is called T-SFEHIG operator, where 7 = (7). Let w = (wy, ..., w;)T is the WV
and w = (wyq, ..., w;)T is the associated WV of J; with condition that both weight and

associated WV belong to closed unit interval and their sum is equal to 1.

Hybrid aggregation operators first aggregate the given data considering their
attributes then rearrange them in a specific order. After that, they aggregate the data
considering their order. This means that hybrid operators are a generalization of
weighted and ordered weighted operators. So T-SFEHIG operator will satisfy
idempotent, monotone and bounded property.
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7.2.10. Example

Consider T-SFNs 7; = (0.7,0.3,0.2), 7, = (0.9,0.1,0.6), T3 = (0.4,0.6,0.8), T, =
(0.1,0.5,0.7), Tz = (0.0,0.0,0.8) with a WV w = (0.25,0.20, 0.15,0.18,0.22)".

Solution: First of all we find the aggregated value of these T-SFNs by using T-spherical
fuzzy Einstein hybrid geometric aggregation (T-SFEHG) operator from Chapter 6 to
find out the drawbacks of given operators. For this purpose first of all we have to

calculate the value of t for which the given data lie in T-SF information.
As,09+0.1+06=1.6

Fort =2,0.9% + 0.1 + 0.6* = 1.18

Fort =3,0.9% +0.13 + 0.6 = 0.946

Similarly, for t = 3 all the given data lie in the T-spherical fuzzy information.

By using T-spherical fuzzy Einstein weighted geometric operator we shall be able to
find these values,

T, = (0.6388,0.3232,0.5381)
7, = (0.9,0.1,0.6)

T3 = (0.4163,0.5464,0.7370)
T, = (0.1050,0.4829,0.6776)
Tz = (0.0,0.0,0.8206)

Their scores values will be

SC(7;) = 0.1048, SC(7,) = 0.5130, SC(%) = —0.3282, SC(7,) = —0.3099,
SC(T) = —0.5525

Now using score value, the aggregated values obtained by using T-SFEWG operators
are rearranged in descending order. Then these ordered values are again aggregated by
using T-SFEHG  operator  with  associated WV  will be w=
(0.112,0.236,0.304,0.236,0.112)

T2y = (0.9,0.1,0.6)
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Tg(z) = (0.6388,0.3232,0.5381)
T3 = (0.1050,0.4829,0.6776)
T4y = (0.4163,0.5464,0.7370)
To(s) = (0.0,0.0,0.8206)
Now again measure T-SFEHG operator
T — SFEHG,, (73, ..., T5) = (0.0,0.8525,0.9882)

From the above result, it is noticed that when i or n value of one T-SFN is zero then
the T-SFEHG operator cannot aggregate the whole membership value. This shows a
big flaw in the T-SFEHG operator. This means that the results obtained from T-SFEHG
operators are not reliable. Now by T-SFEHIG operator, we shall show that the proposed

operator will overcome this drawback.

By using T-SFEWIG operator we shall be able to find
J; = (0.7393,0.3232,0.2154)

7, = (0.9,0.1,0.6)

T3 = (0.4131,0.5464,0.7370)

T, = (0.0988,0.4829,0.6776)

Tz = (0.0,0.0,0.8206)

Their scores values will be

SC(7) = 03941, SC(7,) = 0.5130, SC(%) = —0.3299, SC(7,) = —0.3101,
SC(T) = —0.5525

Now using score value, the aggregated values obtained by using T-SEWIG operators
are rearranged in descending order. Then these ordered values are again aggregated by
using  T-SFEHIG  operator  with  associated WV will be w=
(0.112,0.236,0.304,0.236,0.112)"

Ty = (0.9,0.1,0.6)

T2y = (0.7393,0.3232,0.2154)
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T5(3) = (0.0988,0.4829,0.6776)
Ty = (0.4131,0.5464,0.7370)
To(sy = (0.0,0.0,0.8206)
Now again measure T-SFEHG operator
T — SFEHIG,, (7, ..., T:) = (0.6878,0.4329,0.6591)
This shows that the T-SFEIG operator aggregate the membership value.

7.3. T-Spherical Fuzzy Einstein Hybrid Averaging Interaction

Operators

In this section, on basis of new proposed Einstein operations we define
averaging interaction operators in T-spherical fuzzy environment and some basic
properties are also discussed.
7.3.1. Definition

Consider a collection of T-SFS 7; = (m;,i;,n;) (j = 1,2,3, ..., k). Then

T — SFEWIA,, (T3, Ty, .. T2) =eaEij?=1 w;T;

| Fo (U mOY + 15, (1= m)Yi " T, (1 + i)Y + T, (1 = i)™

e[2(IT, (1 —mé — i)™ =TT, (1 — mf —if —nf)™) |
Carm) 4 (- m)” )

then T — SFEWIA,, is called T-SFEWIA operator with WV w = (wy, wy, ..., w )T of
7; with w; € [0,1] and X_, w; = 1.

7.3.2. Theorem
If all ; = Ty, then T — SFEWIA,, (T, Ty, ..., Ti.) = Ty

Proof: Let J; = T = (my, io, o) for all j then
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T — SFEWIA, (T, Ty ., )

/ e[TTEC (1 +mOYi = TE, (1 = m9Yi o [TE, (1 + 9T = [TE (1 — i)Y
| kA mHY T (1 = mHYWs" (T (4 + DY + T, (1 — i)™

— |
k tjzmﬁlﬁ‘mﬁ—eﬁw]‘— (= mf =i =)™ /l

@+ mHYi + 15, (1 — mp)vi

T — SFEWIA, (T, Ty . Tie)

k . k . k ; k .
e|(1+mHZ=i — (1 —mH2=i (1 + %= — (1= 52"

k ] k I k . k i
(L+mbZ=1" 4+ (1 —mbHZ=" (1 +i9%=" + (1 - i) 2=

k k )
c[2((1 = mg — i — (1= mf — i —nt)H")

k } k .
(1 +m&Z="i + (1 — m§Z=1™i

= (my, Lo, ) = Tp
7.3.3. Theorem
]

Consider a collection of T-SFNs T; (j = 1,2,...,k) with 7/ =minJ;, and TV =
]

max J;. Then
j

TL<T—-SFEWIA, (71,73, ..., ) < TY
7.3.4. Theorem

For any two T-SFNs 7; = (my, ij,n;) and 7' = (mj, i}, n/) such that 7; < 7;' for all j.
Then
T — SFEWIA,, (7, Ty, ., Ti) < T — SEEWIA, (T, T3, ., T

Proof: Let 7; < 7}’ then m; < m;

4 S ij’ and n; = n;. Then by using this basic

information
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e 12(TTf=, (1 — mf — ijt)wj -, (1 -mj - - "J?)Wj)

H§§=1(1 + mjt)wj + H;{=1(1 - mj’;)wj

P (- ) - @))” -1 (1= ) - () - (1))
(1)) + I, (1- (m)')

Wj

. . .y . W
I, (1460 -1, (1 - i)™ _ j=1 (1 + (lj)t) j=1 (1 - (lj)t) ]
M+ )"+ (=)™ T i, (14 )+ e (1= (6)')

|y (1 +m)™ — T, (1 - mf)™

T, (1 4+ m)™ + 1T, (1 - mf)™

e , (1 + (m; t)Wj -1k, (1 — (m] C)Wj

K (1 +(m] t)wj + 1%, (1 —(m] C)Wj

This shows that
T — SFEWIA, (71, Ty, ..., Ty) < T — SFEWIA, (T, T3, ..., T
7.3.5. Definition

Consider a collection of T-SFSs 7; = (m, i;,n;) (j = 1,2,3, ..., k). Then

T — SFEOWIA, (T3, T3, ..., Tic) =EBEL-;‘=1 @i Ty (i)

e Tjoa (0 +mg ) = Tljoa (1 = mg ) ¢ [TTfoa (1 + i) = ITfoa (1 — i)™
[Tio1 @+ mg )7+ TTjzg (1 = mg ) (Tljoa (U + i) @7 + TTjzg (1 — i)

2[TT, (1 = mb gy = ibey) ™ =T, (1 —me ) — ity —nbey) ]
w w
M= (1 +mEen) ™ + T (1 —miy) ™

then T —SFEOWIA, is called T-SFEOWIA operator with associated WV w =
(w1, Wy, ., )T Of T; with w; €[0,1] and Y., w; = 1. Where o(j) is any

permutation of (1,2, ..., k) such that T, ;_1y = Ty,
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7.3.6. Theorem

If forall 7; = 75, then T — SFEOW A, (71, T3, ..., T) = To.

7.3.7. Theorem

Consider a collection of T-SFNs 7; (j = 1,2,...,k) with 7% = mjin?}, and 7Y =

max J;. Then
]
TL<T—-SFEOWIA,(T,,T5, ..., T;) < TY
7.3.8. Theorem

Consider any two T — SFNs T; = (m;,i;,n;) and 7' = (m}, i/,n}) such that 7; < 7'
for all j. Then

T — SFEOWIA, (T, Ty, ..., Ti) < T — SFEOWIA, (T, T3, ..., T)
7.3.9. Definition

Consider a collection of T-SFNs J; (mj, zj,nj) g = ..., k). The mapping

T — SFEHIA, (T, T, ., T3) =@Ei§=1 Ty i)

e |Tjza (1 + g ) = T2y (1 — g ;)
[To1 (1 + )7 + TTj=y (1 = g )) )

H] 11+ a(}))wj_ ?=1(1_ U(J))w]
[T (1 + T )7 + T (T = T

(MM (1 =ity — 1)) =TT (1 — by — 1y — i ))™)
w w
HJ=1(1+ o(})) ]+l_[] 1(1 cr(j)) !

called T-SFEHIA operator. where f; = kw;T; and w;, w; € [0,1] and Zj?zle =1,

Hybrid aggregation operators first aggregate the given data considering their attributes
then rearrange them in a specific order. After that, they aggregate the data considering

their order. This means that hybrid operators are a generalization of weighted and
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ordered weighted operators. So T-SFEHIA operator will satisfy idempotent, monotone

and bounded property.
7.3.10. Example

Consider five T-SFNs 7; = (0.9,0.3,0.4), T, = (0.6,0.3,0.2), Ty = (0.3,0.8,0.6), T, =
(0.4,0.5,0.8), Tz = (0.6,0.0,0.0) with a WV w = (0.25,0.20, 0.15, 0.18,0.22)".

Solution: First of all we find the aggregated value of these T-SFNs by using T-spherical
fuzzy Einstein hybrid averaging aggregation (T-SFEHA) operator from Chapter 6 to
find out the drawbacks of given operators. For this purpose first of all we have to find

the value of ¢t for which the given data lie in T-spherical fuzzy environment.
As, 03+ 08+ 0.6 =17

Fort = 2,0.3%2 + 0.82 4+ 0.6 = 1.09

Fort =3,0.3% +0.8% + 0.6 = 0.755

Similarly, for t = 3 all the given data lie in the T-spherical fuzzy environment.

By using T-spherical fuzzy Einstein weighted averaging operator we shall be able to

find these values,

T, = (0.9362,0.2104,0.3029)
7, = (0.6,0.3,0.2)

T3 = (0.2726,0.8527,0.6984)
T, = (0.3862,0.5437,0.8211)
Tz = (0.6187,0.0,0.0)

Their scores values will be

SC(7y) = 0.7927, SC(J3;) =0.2080, SC(T3) = —0.3203, SC(T,) = —0.4961,
SC(T5) = 0.2368

Now using score value, the aggregated values obtained by using T-SFEWA operators
are rearranged in descending order. Then these ordered values are again aggregated by
using  T-SFEHA  operator  with  associated WV will be w=
(0.112,0.236,0.304,0.236,0.112)
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T2y = (0.9362,0.2104,0.3029)
Ty(2) = (0.6187,0.0,0.0)
To(3) = (0.6,0.3,0.2)
To(ay = (0.2726,0.8527,0.6984)
Ty(s) = (0.3862,0.5437,0.8211)
Now again measure T-SFEHA operator
T — SFEHA,, (7}, .., 75) = (0.6187,0.0,0.0)

From the above result, it is noticed that when abstinence or non-membership value of
one T-SFN is zero then the T-SFEHA operator cannot aggregate the whole abstinence
and non-membership value. This shows a big flaw in the T-SFEHA operator. This
means that the results obtained from T-SFEHA operators are not reliable. Now by T-

SFEIA operator, we shall show that the proposed operator will overcome this drawback.
By using T-SFEIA operator we shall be able to find

73 = (0.9362,0.4308,0.2739)

7, = (0.6,0.3,0.2)

T3 = (0.2726,0.7370,0.5956)

T, = (0.3862,0.4829,0.7888)

7: = (0.6187,0.0,0.0)

Their scores values will be

SC(T;) =0.7999, SC(J;) =0.2080, SC(T3) =-0.1910, SC(T,) = —0.4333,
SC(T5) = 0.2368

Now using score value, the aggregated values obtained by using T-SFEWIA operators
are rearranged in descending order. Then these ordered values are again aggregated by
using T-SFEHIA  operator  with  associated WV will be w=
(0.112,0.236,0.304,0.236,0.112)

Ty = (0.9362,0.4308,0.2739)

184



T2y = (0.6187,0.0,0.0)

To(3) = (0.6,0.3,0.2)

Ty = (0.2726,0.7370,0.5956)

T, (s) = (0.3862,0.4829,0.7888)

Now again measure T-SFEHIA operator

T — SFEHIA,, (7}, ..., T5) = (0.6372,0.5055,0.3978)

This shows that the T-SFEIA operator aggregate the membership value.

7.4. An algorithm for MADM with T-spherical fuzzy information

Consider a set of alternatives D = {d,,d,, ds, ...,d;} and a set of attributes M =

{my, my, ms, ..., m} having a WV w = {w;,w,,ws, ...,w;} where w; € [0,1] and

L 1w, = 1. For making a decision we have to follow these steps.

Step 1. Calculate t for which the values lie in T-spherical information.

Step 2. Aggregate the given alternatives according to attributes by T-SFEWIA (or T-
SFEWIG) operators using some WV.

Step 3. Find scores values and with the help of score value we reorder them in

descending order.

Step 4. Aggregate these ordered values using T-SFEHIA (or T-SFEHIG) operator.
Step 5. Using score values find out the best option.

7.4.1. Example

A company wants to maximize its profit and board of governors decided to reduce their
expenses. They observe that the cost of electricity is one of the major expense and they
can reduce it if they started to generate electricity using solar energy. They have three

options of photovoltaic cells that they may use in their solar plant.
I. dy: Monocrystalline Photovoltaic Cell
ii. d,: Polycrystalline Photovoltaic Cell

iii. d5: Thin Film Photovoltaic Cell
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They assess the given photovoltaic cell on the base of following attributes.
i. M,: Heat Tolerance
Ii. M,: Cost
iii. M5: Reliability
iv. M,: Efficiency
V. Mc: Ability of charge separation

Table 68 Decision Matrix

M, M, M; M, M
d, (0.4,0.1,0.7) (0.5,0.2,04) (0.8,0.3,0.7) (0.4,0.80.5) (0.9,0.50.2)
d, (0.7,04,03) (0.2,0.4,0.7) (0.9,0.3,0.6) (0.3,0.2,0.8) (0.4,0.7,0.5)

d; (0.4,0.7,0.5) (0.6,0.6,0.1) (0.6,0.9,0.2) (0.8,0.1,0.1) (0.50.6,0.2)

Step 1: After some calculation we found t = 3 at which all values in Table 68 are T-
SFNSs.

Step 2: By taking w = (0.25,0.20,0.15,0.18,0.22)7 we find T-SFEWIA values of

given data, as listed in Table 69.

Table 69 Aggregated values

My M, M; M, Ms

d, [0.4308, 0.5, 0.7370, 0.3862, 0.9164,
(0.1077,) (0.2,) (0.2726,) (0.7770,) (0.5160,)

0.7367 0.4 0.7172 0.5022 0.1906

d, [0.7485, 0.2, 0.8440, 0.2896, 0.4129,
(0.4308,) (0.4,) (0.2726,) (0.1931,) (0.7206,)

0.3061 0.7 0.6677 0.7820 0.5037

d; (0.4308, 0.6, 0.5464, 0.7770, 0.5160,
0.7485, 0.6, 0.8440,) 0.0965, 0.6187,)
0.5064 0.1 0.2430 0.0829 0.2031

Step 3: Scores of each alternative with respect to all attributes are shown in Table 70
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Table 70 Score Values

M, M, Ms M, Ms
d; —0.3199 0.0610 0.0314 —0.0690 0.7626
d, 03906 —0.3350 0.3035 —0.4538 —0.0574

d; —0.0499 0.2150 0.1488 0.4685 0.1290

By comparing the score values, we have
SC(T1s5) > SC(T12) > SC(T13) > SC(T14) > SC(T11)
SC(T31) > SC(T3) > SC(Tis) > SC(T32) > SC(I24)
SC(T34) > SC(T32) > SC(T33) > SC(T35) > SC(I31)

Based on above score analysis, the data is arranged in descending order and the

aggregated values of ordered data is as listed in Table 71

Table 71 Ordered Aggregated Values

M, M, M M, Ms

d, /09164, 0.5, 0.7370, 0.3862, 0.4308,
(0.5160,) <O.2,> (0.2726,) (0.7770,) (0.1077,)

0.1906 0.4 0.7172 0.5022 0.7367

d, [0.7485, 0.8440, 0.4129, 0.2, 0.2896,
(0.4308,) (02726,) (0.7206,) <0.4,> (0.1931,)

0.3061 0.6677 0.5037 0.7 0.7820

d; (0.7770, 0.6, 0.5464, 0.5160, 0.4308,
0.0965, 0.6, 0.8440,) 0.6187,) 0.7485,
0.0829 0.1 0.2430 0.2031 0.5064

Step 4: Associated WV will be w = (0.112,0.236,0.304,0.236,0.112)7 and by T-

SFEHIA operators, we have
7, = (0.6596,0.5227,0.4668)
7, = (0.6176,0.5291,0.5276)
7; = (0.5826,0.7075,0.2290)

Step 5: Now we have to find the score values
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sc(7;) = 0.1853
sc(7;) = 0.0887
sc(7;) = 0.1858
SC(T3) > SC(J1) > SC(T)
Since the score value of d; is highest so thin film photovoltaic cell is best option.

Now, we check their validity by using Einstein hybrid geometric interaction operators.

By taking w = (0.25, 0.20, 0.15, 0.18,0.22)T we find T-SFEWIG values of given data,
as listed in Table 72.

Table 72 Aggregated Values

M, M, M; M, Ms

d, (0.4117,) 0.5, 0.7998, 0.4008, 0.9051,
0.1077, (0.2,) (0.2726,) (0.7770,) (0.5160,)
0.7485 0.4 0.6398 0.4829 0.2064

d, (0.7347,) (0.2,) (0.9071,) (0.2984,) (0.4034,)
0.4308, 0.4, 0.2726, 0.1931, 0.7206,
0.3232 0.7 0.5464 0.7770 0.5160

d; (0.4064, 0.6, 0.6434, 0.7807, 0.5103,
0.7485, 0.6, 0.8440, 0.0965, (0.6187,)
0.5381 0.1 0.1817 0.0965 0.2064

Scores of Table 72 are shown in Table 73

Table 73 Score Values

My M; Ms M, Ms
d;, —0.3495 0.0610 0.2497 —0.0482 0.7327
d, 0.3628 —0.3350 0.5833 —0.4425 —0.0717

d; —0.0887 0.2150 0.2603 0.4749 0.1241

By comparing the score values, we have
SC(Tis) > SC(Ti3) > SC(T3z) > SC(Try) > SC(T;y)
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SC(T23) > SC(T21) > SC(T35) > SC(T32) > SC(T34)
SC(T34) > SC(T33) > SC(T32) > SC(T35) > SC(T31)

Based on above score analysis, the data is arranged in descending order and the

aggregated values of ordered data is as listed in Table 74

Table 74 Ordered Aggregated Values

My M, M; M, Ms
d, /0.9051, 0.7998, 0.5, 0.4008, 0.4117,
(0.5160, (0.2726, <O.2,> (0.7770,) (0.1077,
0.2064 0.6398 0.4 0.4829 0.7485
d, (0.9071, 0.7347, 0.4034, 0.2, 0.2984,
0.2726, 0.4308, 0.7206, 0.4, 0.1931,
0.5464 0.3232 0.5160 0.7 0.7770

d; (0.7807, 0.6434, 0.6, 0.5103, 0.4064,
(0.0965,) (0.8440,) <O.6,> (0.6187,) (0.7485,)
0.0965 0.1817 0.1 0.2064 0.5381

Associated WV will be w = (0.112,0.236,0.304,0.236,0.112)" and by T-SFEHIG
operators, we have

7; = (0.5445,0.5217,0.5419)
7, = (0.6830,0.5376,0.5913)

7, = (0.7556,0.6879,0.2780)

Step 5: Now we have to find the score values
sc(7;) = 0.0023
Sc(7;) = 0.1080
Sc(75) = 0.4099
SC(T5) > SC(T3) > SC(T)

Here again the score value of alternative d; is high. So, thin film photovoltaic cell is
best option.
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7.5. Advantages

In this section we prove that our work is more generalized than that of existing
work. In our proposed work experts are free in giving the values to alternatives
according to given attributes not only this proposed work is also valid under those
conditions where the existing work fail. Here we reduced the proposed work in
intuitionistic, Pythagorean, g-rung orthopair, picture and spherical fuzzy environments.

It prove that proposed work is valid for all those environments.

Consider the T-SFEHIA defined as
T — SFEHIA,, (71, T, ., Ti)

tjnﬁl(l + g ) = 1o q (1 — g )

[T=1 (1 + g )7 + TTj=y (1 = g )7

H] 1(1 + la(J))wJ' — H} 1(1 a(}))wj
= \/Hj=1(1 + 10(1))0’] + ]_[J (1= a(;)) i’ (7.5.1)

e [2(IT5=, (1 - ao) L) - ?1(1"713(1)‘~3(j)‘ﬁff(j))wj)
[Tj- 1(1+m00)) +H1 (1= 0(1))

1. For t = 2 the equation (7.5.1) reduces to SF Einstein hybrid interaction averaging
operators (SFEHIA operator) i.e.

SFEHIA, (%, T, ., 7))

Wj

[T, (1 + g5 (1 -m2 )"
M, (1+ ﬁi?r(j))w] +IT¢., (1 - ma(j))w]

_ [T-1 (1 +75)) = [Ty (1 = 155)
[Tfo2 (1 + 75" + Ty (1 = T5 )

2Ty (1 = M2y — 120)) ™ = TIEL, (1 — M2y — By — A2g) )
~ w
H?=1(1 + ma(})) + HJ 1(1 a(j)) !
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2. For t = 1 the equation (7.5.1) reduces to PF Einstein hybrid interaction averaging

operators (PFEHIA operator) i.e.

PFEHA, (T T3, -, Ti)
Ty (1 + i) =TT (1 — ipy) ™ THC (X + To) ™ — TTEoa (1 = Togy) ™
~ w ~ wi’ ~ w i - Wi’
| j=1(1+Pioen) ™ + T (1= o) s (1 +T0¢n) ™ + T=a (1 = Top) ™
~ ~ [V ~ ~ ~ w i
\ 2(IT=r(1 = My = To(y) = TTf=a(1 = Tiio(y = o) = o)) )
T, (1 + i)™ + TTECL (1 = i)™

3. For i =0 the equation (7.5.1) reduces to g-ROPF Einstein hybrid interaction
averaging operators (q-ROFEHIA operator) i.e.

q — ROFEHIA,, (7, T, ..., i)

T (1 + e )™ =TT, (1=t )™
T, (1 + L))" + T, (1 —Aik)) ™

t 2(“?:1(1 - ma(j))wj - 9(:1(1 - mctr(j) - nctr(j))wj)
—~ w ~ w
M=y (1 + i) + T (1 = mg)

4. For t = 2 and i = 0 the equation (7.5.1) reduces to PyF Einstein hybrid interaction
averaging operators (PyFEHIA operator) i.e.

PyFEHIA,, (71, T, ., Ti)

I, (1 + M2 ) ™ =TT, (1 — M2 )™
[T, (1 + M2 0)) ™ + T, (1 — 72 )™

2T, (1 — M2 ))™ =TT (1 — 2y — i2))™)
I, (1 + M2 )™ + T, (1 - M2 )™

5. For t =1 and i = 0 the equation (7.5.1) reduces to IF Einstein hybrid interaction

averaging operators (IFEHA operator) i.e.
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IFEHIA,, (T, T, ., T3)
/ o2 (1 + o)™ = j=a(1 = Aig) ™ \
I
I

_ | ?=1(1 + ma(j))wj + H?=1(1 - ma(j))wj’
= ~ w i ~ ~ i
kZ(H?ﬂ(l — o) | —=a(1 = gy = flsgp) )
~ wj ~ wj
Moy (1 + o) ™ + s (1 = i) /

Similarly we can reduce T-SFEWIA operator, T-SFEOWIA operator, T-SFEWIG
operator, T-SFEOWIG operator and T-SFEHIG operator.

7.6. Comparative Study

The proposed aggregation operators can aggregate the data given in FS, IFS,
PyFS, g-ROPFS, PFS and SFS environments but the converse is not possible. Here with
the help of an example it is proved that the proposed aggregation operator can aggregate

the data given in IFSs.

7.6.1. Example

Let IFNs 7, = (0.2,0.5), 7, = (0.7,0.1), T3 = (0.3,0.4), 7, = (0.6,0.2) and Tz
(0.5,0.5) with a WV w = (0.25,0.20, 0.15, 0.18,0.22)".

Solution. We can write these IFNs in the form of T-SFNs as 7; = (0.2,0,0.5), 7, =
(0.7,0,0.1), 73 = (0.3,0,0.4), 7, = (0.6,0,0.2) and Tz = (0.5,0,0.5). Then by using T-

SFEWIA operator we shall be able to find these values,
7, = (0.2481,0,0.5312)

7, = (0.7,0,0.1)

Ty = (0.2281,0,0.3630)

T, = (0.5538,0,0.2071)

Tz = (0.5401,0,0.4599)

Their scores values will be

SC(7y) = —0.2831, SC(T;) = 0.6, SC(T3) = —0.1350, SC(T,) = 0.3467, SC(Tz) =
0.0801
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Now using score value, the aggregated values obtained by using T-SFEWIA operators
are rearranged in descending order. Then these ordered values are again aggregated by
using  T-SFEHIA  operator  with  associated WV  will be w=
(0.112,0.236,0.304,0.236,0.112)T

Ty = (0.7,0,0.1)
T5(2) = (0.5538,0,0.2071)
T5(3) = (0.5401,0,0.4599)
Ty = (0.2281,0,0.3630)
Ty(s) = (0.2481,0,0.5312)
Now again measure T-SFEHIA operator
T — SFEHIA,, (71,5, ..., T5) = (0.4709,0,0.2645)

Here it is proved that the information given in IFNs can be solved by using T-SFEHIA
operator. Similarly we can solve the information given in IFNs by using T-SEHIG
operator and the information given in any other fuzzy structure can also be aggregated

using the proposed operators.
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Chapter 8

Exponential Similarity Measures for T-Spherical Fuzzy Sets

and Their Applications in Decision Making

SMs are common tools that are considered to be applied to some interesting
phenomena in real life including pattern recognition, decision making, etc. In this
chapter, some SMs based on cosine function and some SMs based on exponential
function are developed for T-SFSs. The basic properties of developed SMs are also
discussed. By using developed SMs, two well-known problems; pattern recognition
and strategy decision making problems are solved. The superiority of developed SMs
over SMs in SFS, PFS, g-ROPFS, PyFS, and IFS is demonstrated through a
comparison. A numerical example is also discussed to prove the superiority of the
proposed work.

8.1. Similarity Measures

In this section some cosine SMs based on cosine function are proposed and also
some exponential SMs are proposed. Some basic properties of proposed SMs are also
studied.

8.1.1. Similarity Measures Based on Cosine Function

In this subsection some SMs and weighted SMs based on cosine function are

proposed and basic properties of these SMs are also discussed.

8.1.1.1. Definition

Consider two T-SFSs on domain X, 7; = {(xj,ml(xj), il(xj),nl(xj)) | x; € X} and

T, = {(xj,mz(xj), iz(xj),nz(xj)) | x; € X} where (j = 1,2,...,k) then four cosine

SMs based on cosine function can be calculated as

V|ni(x;) — ng(x;)|

k () — b (. (N it
o159 = 13" s [ (M) S PECIVIE) (o))
j=1

CSM*(T, T) =

Z F(lmi(xf) = mb ()| +]i4 () - is(x,-)|>l

4 +|ni () = na (%)
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CSM3(T;, T3) %i OS[ <|m1(x1) mz(xj)lvlll(xj)_lZ(x])l>l

V|n1(x]) nz(x])|V|rf(x]) (x])|

A\ |1 () = na ()] + [ () = 72 ()]

Where the symbol "V" means the maximum operation.

w7 =1 o (i) i)l + 1) ) )
j=1

The SMs defined above will fulfil the following properties:

1. 0<CSMUT,T) <1

2. CSM'(7,T,) =1ifandonlyif 7; = 7,

3. CSMY(71,T3) = CSM*(T3,71)

4. f 75 = {(xj,m3(xj), i3(xj),n3(xj)) | x; € X} isaT-SFSonXand7; € T, <
T3 then CSM'(T;,73) < CSMY(T,,7,) and CSM* (77, T3) < CSM'(T5, T3).

where t = 1,2,3,4.

Proof: 1. As cosine function always lie in [0,1] interval so it is obvious that 0 <
CSM(T;,T5) < 1forall t = 1,2,3,4.

2. Let us assume J; = T, then it means mi(x;) = m5(x;), if(x;) = i5(x;), and
ni(x) = n3(x).
= |mi(x) —m3(x)] = |ii(x) — 50)| = [ni(x) = ni(x)] = 0

k
1
CSMY(T,,T,) = EZ cos[0
=1

v 1
CSMt(Tl,TZ):EZ].:EXk:].

Conversely assume CSM* (77, 7;) = 1, then
mi(x) —ma ()| = [i5(x) = i50)| = |ni(x) —ns ()| = 0
which means m{(x;) = m&(x;), if(x;) = i5(x;), and ni(x;) = n5(x;). Thus

i =7
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3. Considert =1,

CSM* (T, T3) =

Zk: [<|m1(x,) m§ (x)|V[id () — lz(xj)|>l

Vini(x;) —n2(%)|

‘%i“’sl <|mz(x1) ml(x,)IVILZ(x,)—u(x,)l)l M, )

VInz (%) — ni ()]
Similarly, this can be proved for t = 2,3,4.
4. Considert =1, If ;€T T thenmi(x;) <mb(x) <mi(x;), it(x) <
i5(x;) < i5(x;), and ni(x;) = n5(x;) = n§(x;). Thus
mi(x) —m(x)] < [mi(xy) —m5 ()]
[m5(x) — mi ()] < [mi(x) —ms ()|
|it(xg) — i3 ()] < [i5(x) — i5 ()
|i2(x) = 15 ()| < [i5.(x) — i5 ()|
[ni (%) —n3 ()] < [ni(x;) — 5 ()]
[n5(x) = n3 ()] < |ni () — 3 ()]
So CSME(T, T3) < CSME(T, T), and CSME (T, T3) < CSME(Ty, T).
8.1.1.2. Definition
Consider two T-SFSs on domain X, 7; = {(xj,ml(xj), il(xj),nl(x]-)) | x; € X} and

T, = {(xj,mz(xj), iz(xj),nz(xj)) | x; € X} where (j = 1,2, ..., k) and corresponding
WVs to the decision criteriawill be w = (wy, wy, ..., w,)T. Then four cosine SMs based

on cosine function can be calculated as

WCSM*(T;,T;) = ij cos IZ (lml(xJ) mj (2) |V |6 () — lz(xj)|>l

= VIni (%) = n2 ()]

[mi (%) = ma ()] + [ (%) = lz(xj)|>l

WCSM? (-71 7}) = z Wj €0sS [4( +|n1(x1) nz(xj)l

j=1
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i (%) = ma(x;)|V]i (%) - lz(xj)|>l

WCSM3 (T, T,)
(73,7 ZW] COS[ <V|n1(x]) n (%) |V[rf () — 75 (%)

|m1(x]) mz(x])| + |11(x]) lz(x})l )l
+[ni () = nz ()| + | () — 72 ()]

Where the symbol "V" means the maximum operation.

WCSM*(T,,T>) = Z w; cos I (

j=

The weighted SMs defined above will fulfil the following properties:

1. 0 < WCSMY(T,Ty) <1

2. WCSM'(T,,7;) = lifandonlyif7; =T,

3. WCSMU(T,,Ty) = WCSME(Ty, T)

4. f 75 = {(xj,m3(xj), i3(xj),n3(xj)) | x; € X} isaT-SFSonXand7; € T, <
T, then WCSMY(T,T3) < WCSM'(T,,7,) and  WCSMY(T,,73) <
WCSM'(T5, T3).

8.1.2. Similarity Measures Based on Exponential Function

In this subsection SMs based on exponential function were proposed. Some
basic properties of these SMs are also discussed. Further these proposed are extended
to weighted SMs.

8.1.2.1. Definition

Consider two T-SFSs on domain X, 7; = {(xj,ml(xj), il(xj),nl(xj)) | x; € X} and

T, = {(xj,mz(xj), iz(xj),nz(xj)) | x; € X} where (j =1,2,...,k) then four SMs

based on exponential function can be calculated as
1 k
ESMY(T,,7,) = Ez [21—(|m§(xj)—m§(xj)|V|if(xj)—i§(xj)|V|n§(xj)—n5(xj)|) — 1]

& |m1(x1)—mz(x1)|V|11(xj) l<x,>|>
ESM2(T,, T,) = Ez Vlnl(xj) nb (x) VIt () (x))|

ESM*(T., T,) = 2[21——(|m1(x,> S () 8 o) =15 ) ko) -mg (e )) 1]
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1( |mi () —ma ()| +|if () - i3 (x;)|

k
ESM*(T,, T,) = Z 21‘f<+|ni(xj>—n5(xj>|+|rf(xj>—r5(xj>|> .
j=1

Where the symbol "V" means the maximum operation.
The SMs defined above will fulfil the following properties:

1. 0<ESM'!(T,Ty) <1

2. ESMY(7,,7,) =1ifandonly if 7; = 7,

3. ESM'(7,,7;) = ESM*(%;,73)

4. If 73 = {(xj,m3(xj), i3(xj),n3(xj)) | x; € X} isaT-SFSonXand7; € 7 €

T, then ESM!(7;, T3) < ESM'(7,,7;) and ESMt (T3, T3) < ESME(T,, 7).
where t = 1,2,3,4.
Proof. 1. Trivially holds

2. Let us assume 7; = T3, then it means mf(x;) = m5(x;), if(x;) = i%(x;), and
ni (%) = n5(x))-

= |mi(x) —m5 ()| = [i5(x) — 2(x)[ = |ni(x) —n5(x)] = 0

21 —1

-

1
ESM*(T,T) = %
j=1

k
21—1xk—1
o kT
j=1

Conversely assume ESM®(7;,7;) = 1, then
Imi(x) — m5 ()| = [i5(x) — 5 ()| = i) — b ()] = 0

which means m{(x;) = m5(x;), it (x;) = i4(x;), and nf (x;) = ns(x;). Thus 73 =

ESMY(T,,T;) =

& -

T,.

3. Considert = 1,

k
ESMA(T,,75) = %Z [~ )b VI )-8 eV e ne)D) — 1

j=1
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k

%z [21—(|m§(xj)—m§(x1')|V|i§(xj)—if(xj)|V|n§(x1')—n§(xj)|) - 1] = ESMY(T,, T})
j=1

Similarly, this can be proved for t = 2,3,4.

4. Consider t =1, If 7, €7, €T3 then mi(x;) < mi(x) <mi(x), i(x) <

i5(x;) < i5(x;), and ni(x;) = n5(x;) = n§(x;). Thus
mi (x) —m(x)] < [mi(x) —m5 ()]
[m3 () —m3(x)] < [mi(x;) —ms(x)]
|i(x) — 15 ()| < [i5(x) — i5 ()|
|i2(x) — ()] < |i1(x) — i5(x7)]|
i (x) — 3 (x)] < |ni(x) — S ()]
[n5(x) = n3(x)| < |ni(x) — 3 ()]
So ESMY(T,, T3) < ESM'(T,, Ty), and ESMt (T, T3) < ESME(Ty, 7).
8.1.2.2. Definition
Consider two T-SFSs on domain X, 7; = {(xj,ml(xj), il(xj),nl(xj)) | x; € X} and

T, = {(xj,mz ENRAENR (xj)) | x; € X} where (j = 1,2, ..., k) and corresponding
WVs to the decision criteria will be w = (wy, wy, ..., wy)T. Then four SMs based on

exponential function can be calculated as
k
WESM(T,,T,) = Z wy [ 2178 Cep)=mECe)IVIE G5 GepVInd Cep)-mCepl) — 1
j=1

K 1_(|mz<x,->—ma(xj>|v|iz<x,->—iz(x,->|)
wgst(g;,g;):EWj 5" Wint () -nt GepIVIrt () -riGe)l) _ 4
j=1

k
WESMA(T, ) = 3wy [218 0 (-l xlelo)-riCe) _ 1)
j=1
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k 1_1(|m§(xj)_m§(xj)|+|i§(xj)—ié(xj)l)
WESM*(T,,T;) = ZWJ- 2 A\l ns (el Ge)-r2 ()l — 1
j=1
Where the symbol "V" means the maximum operation.

The weighted SMs defined above will fulfil the following properties:

1. 0<WESM{(T, T <1

2. WESM'(7,,T,) = 1ifandonlyif 7; = 7,

3. WESM!(T,,T,) = WESM(T,, T,)

4. If 73 = {(xj,m3(xj), i3(xj),n3(xj)) | x; € X} isaT-SFSonXand7; € 7 €
7, then WESMY(T,T,) < WESM'(T,,T;) and WESM!(T,T) <
WESM!(T,, T5).

where t = 1,2,3,4.
8.2. Application for Pattern Recognition and MADM problems

In this section, the reliability of proposed SMs is checked by developing an

application for pattern recognition and MADM problems.
8.2.1. Numerical Example for Pattern Recognition

Let us consider three known patterns X = {x;, x,, x3} which are characterized by the
T-SFSs as:

7; = {(0.81,0.37,0.63), (0.71,0.08,0.57), (0.87,0.24,0.56), (0.39,0.13,0.74)}
T, = {(0.77,0.56,0.19), (0.91,0.25,0.39), (0.72,0.49,0.62), (0.56,0.12,0.47)}}
T3 = {(0.64,0.58,0.47), (0.65,0.14,0.55), (0.63,0.07,0.57), (0.78,0.34,0.51) }
And one unknown Pattern
T, = {(0.79,0.48,0.51), (0.84,0.11,0.5), (0.69,0.22,0.55), (0.47,0.1,0.74)}

Here all values lie in T-spherical fuzzy environment for t = 3. In order to find the

pattern of 7, the proposed SMs are calculated as listed in Table 75. Where [ = 1,2,3

Table 75 Similarity Measures
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CSM* (73, T,) 0.9327 0.9811 0.9102

CSM%(T;,T,)  0.9757 0.9857 0.9631
CSM3(7,7,)  0.9302 0.9694 0.9102
CSM*(7,7,)  0.9268 0.9647 0.8967
ESM\(%;,7,)  0.7158 0.8391 0.6874
ESM%(T;,7,)  0.7124 0.8030 0. 6874
ESM3(7;,7,)  0.8169 0.8572 0.7913
ESM*(T;,7,)  0.6997 0.7872 0.6654

Their rankings are listed in Table 76.

Table 76 Rankings

Rankings
CSM* (T, 7) T,271 273
CSM?(T,, 7) T, 271 273
CSM*(T,, 7) T, 271 273
CSM*(T,,74) T, 271 273
ESM'(T;,73) T, 271 273
ESM*(T,,7,) T, 271 273
ESM*(T,,73) T,271 273
ESM*(T;,7,) T,271 273

As SM between 7, and 7, is greater so they belong to same pattern.
8.2.2. Numerical Example Strategy Decision Making Problem

A company wants to launch a new product and owner of a company have to choose one

strategy from the following three strategies:

81: Make product for poor persons
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8,: Make product for rich persons
83: Make product for both poor and rich person

The decision maker have to evaluate these strategies under the consideration of

following attributes:

g4: Barriers in the development
g, Brisk of loss

g3: Growth analysis

g4: Impact on environment

having a WV w = (0.2,0.25,0.35,0.2). Decision maker evaluate these alternatives
with respect to given attributes and provide the data in T-spherical fuzzy environment
as listed in Table 77:

Table 77 Decision Matrix

941 7% 93 94

8,  (0.75,0.14,0.33) (0.63,0.08,0.29) (0.47,0.34,0.64) (0.57,0.11,0.36)
s, (0.81,0.25,0.41) (0.59,0.12,0.35) (0.59,0.42,0.19) (0.66,0.26,0.44)
83 (0.77,0.29,0.22) (0.71,0.18,0.36) (0.61,0.1,0.49)  (0.50,0.37,0.40)

s (0.66,0.23,0.31) (0.91,0.07,0.39) (0.57,0.30,0.30) (0.59,0.17,0.41)

The SMs of three alternatives {s,, 8,, 83} with respect to s will be as listed in Table 78

Table 78 Weighted Similarity Measures

81 8 83
WCSM'(s,8,)  0.8974 0.9153 0.9497
WCSM2(s,8,)  0.9572 0.9696 0.9748
WCSM3(s,,5,)  0.8789 0.8959 0.9497
WCSM*(s,,5,)  0.8706 0.8913 0.9357
WESM'(s,,8,)  0.6875 0.7376 0.7601
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WESM?(s, 5,) _ 0.6602 0.6973 0.7601
WESM?3(s,,8,)  0.7854 0.8150 0.8189

WESM*(s8,,8,)  0.6467 0.6845 0.7259

The rankings of alternatives are listed in Table 79

Table 79 Rankings

Rankings
WCSM' (8, 8,) 83 = 8, = 8y
WCSM? (s, 84) 83 = 8, = 8,
WCSM3 (s, 84) 83 = 8, = 8,
WCSM* (8, 8,4) 83 = 85 = 8y
WESM (8, 8,4) 83 = 8, = 8,
WESM?(8,,84) 83 = 8, = 8,
WESM3 (s, 84) 83 = 8, = 8
WESM*(s,,84) 83 = 8, = 8

Since SM between 85 and 8 is greater so 55 is better strategy for a company to adopt.
8.3. Comparative Analysis

In this section some conditions are discussed under which the proposed SMs
can reduced to other tools of uncertainty like SFS, PFS, g-ROPFS, PyFS and IFSs.
Superiority of proposed SMs is proved with the help of an example.

For any two T-SFSs on domain X, 7; = {(xj,ml(xj),il(xj),nl(xj)) | x; € X} and
T, = {(xj,mz(xj), iz(xj),nz(xj)) | x; € X} where (j = 1,2, ..., k) then consider SMs

based on exponential as

[mi(x;)-m} (xj)|V|i§(xj)—i§(xj)|>
-1

k
1= E(xj)-nS(x;
ESMI(:H,:B) — ]Zzl 2 < Vini( J) ( ])l (831)

1. For t=2, the -equation (8.3.1) becomes wvalid for SFSs
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ESM'(7,,T;) =

Sl

k
Z [21—(|m§(xj)—m§(xj)|V|i%(xj)—i§(xj)|V|n§(xj)—n§(xj)D — 1]
=1

2. For t=1, the equation (8.3.1) becomes wvalid for
k
ESM(7,T;) = %z[21—(|m1(xj)—mz(x,-)|v|i1(xj>—iz(xj>|v|n1(x,-)—nz(x,~)|) -1
j=1

3. For i=0, the -equation (8.3.1) become valid for @-ROPFSs

k
ESM(T,, T;) = %Z [~ )=tV ) ns o)) — 1
j=1

4. For i=0,t=2 the -equation (8.3.1) become valid for
k

ESMY(T;,T;) = lz [21—(|m%(xf)-m%(xj)IVIn%(xj)—n%(xj)l) _ 1]
k =
5 For i=0,t=1 the equation (8.3.1) become wvalid for
k
ESMY(T,,T;) = %z[21—(|m1(xf)—mz(xj)IVInl(x;-)—nz(xj-)l) _ 1]
j=1

Similarly all the proposed SMs can be reduced for other fuzzy structures like SFSs,

PFSs, q-ROPFSs, PyFSs and IFSs by follow the conditions defined above.
8.3.1. Example
Consider two TSFNs 73 = (0.801,0.401,0.701), 7, = (0.8,0.4,0.7)

The different SMs calculate their similarity as listed in Table 80:

Table 80 Different Similarity Measures

Similarity Measures

SM* (73, 73) [51] 1

SM2(T,, ) [51] 0.9985
SM*(73,75) [51] 1
CSM'(T7,,7) 1
CSM*(T1,73) 1
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CSMP(71,73) 1

CSM*(T3,T3) 1

ESMY(T,,T) 0.9973
ESM2(T;,T5) 0.9973
ESM3(T;, T5) 0.9946
ESM*(T;, T5) 0.9946

In Table 6, different SMs were calculated of given data. It is clear that the existing SMs
proposed in [51] and cosine SMs based on cosine function does not differentiate
between 7; and T, but the proposed SMs based on exponential function differentiate

between 7; and 7,. So this proves the accuracy of proposed ESMs.
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Conclusion

The whole thesis can be concluded as:

In chapter 1, the basic definitions of different fuzzy structures are defined and
some basic operations on these fuzzy frameworks are also discussed. In chapter 2, some
SMs for interval-valued picture fuzzy information are proposed, include cosine SMs,
SMs using cosine function, SMs using cotangent function, Set-theoretic SM, Grey SM,
dice and generalized dice SMs for IVPFSs, and some basic properties of all these SMs
are also discussed, then the proposed SMs are applied to decision making problems
with the help of numerical examples. In addition, advantages of proposed works are

also discussed.

In chapter 3, some new product and power operations for T-SFS are introduced
and based on new operations, some new geometric aggregation operations are defined.
The generalization of new work is proved by using examples and remarks. Some
properties of proposed operators are investigated and supported with examples. The
new operators are applied in MADM process and results are studied. A comparison of
new work is established with existing literature and its advantages over the existing

work are discussed.

In chapter 4, an extension of existing immediate probability, Choquet averaging
and associated immediate probability averaging operators are developed by utilizing
the concept of T-SFSs. In it, it is pointed out that the existing operators have some
limitations and decision makers are not free to make a decision freely, and they fail to
work when the information is given in PyFSs, PFSs, SFSs and T-SFSs. To overcome
this shortcoming, some averaging aggregation operators are defined in most
generalized tool of uncertainty called T-SFSs but they also fail under some conditions.
To overcome this defect, some interactive averaging operators are defined and a
comparison between these proposed operators is developed with the help of an example.
The existing score values have shortcoming that they do not involve abstinence so new
score function is proposed in which all degrees are involved and with the help of this
new score function the different aggregated values are compared. To check the
reliability an application of MADM problem is developed. The advantages of proposed
work are also discussed. The comparative study of existing and proposed operators is
also developed with the help of an example.
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In chapter 5, some geometric and interactive geometric operators are developed
by utilizing the concept of T-SFSs. In it, the main focus is on Ass.IP-T-SFOWG and
Ass.IP-T-SFOWIG operators because associated immediate probability geometric
aggregation operators reflect the interaction among all subsets of states of nature. As
well as the proposed work has another advantage that these operators are proposed by
utilizing the concept of T-SFSs so we can reduce the proposed operators under some
conditions to SFSs, PFSs, PyFSs, IFSs. A comparison between geometric and
interactive geometric operators is also developed. The superiority of any two TSFNSs is
checked using newly developed score function because the existing score function does
not involve abstinence. An algorithm is established for MADM problem and a
numerical example is also solved using that algorithm. Some conditions that reduce
proposed operators to other fuzzy structures are discussed in the advantages section and

a comparative study of proposed and existing work is also established.

In chapter 6, some Einstein operations are defined for T-SFSs and based on
these operations some improved Einstein averaging aggregation operators and Einstein
geometric aggregation operators are defined. Some properties of these aggregation
operators are also discussed. The validity of proposed operators is checked with the
help of the MADM problem. The comparative analysis between existing and proposed
work is also discussed in which some conditions are studied under which the proposed
operators can be reduced to other tools of uncertainty like IFSs, PyFSs, q-ROPFSs,
PFSs, SFSs. Some examples are also discussed in which the superiority of proposed

operators is proved. The advantages of proposed operators are also discussed.

In chapter 7, some new Einstein interactive operational laws are proposed. On
the basis of these operational laws T-spherical Einstein interactive geometric and T-
spherical Einstein interactive averaging operators are proposed. We validate these
operators with the help of an application in MADM. After that, some conditions are
discussed on which the proposed operators can reduce to other fuzzy frameworks. A
comparison of proposed and existing work is also established and explained using an

example.

In chapter 8, some cosine and weighted cosine SMs based on cosine function
are proposed for most generalized fuzzy structure called T-SFS. Along with this some

SMs based on the exponential function are also proposed for T-SFSs. Pattern
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recognition problems and strategic decision making problems are investigated using
proposed SMs. Then a comparative analysis is developed in which some conditions are
discussed through which the proposed SMs can be reduced to other fuzzy structures.
An example is also discussed in which it is proved that the proposed SMs based on

exponential function has much better distinguishability than existing SMs.

In future, there is scope to extend the proposed work to different frameworks
and applied these aggregation operators and SMs to different fields. We also aim to

generalize these operators and SMs in the field of T-spherical fuzzy soft sets.
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