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ABSTRACT

Deep learning has been employed for different image processing problems in recent years.
Although there is impressive performance of these architectures, their inner working largely
remains heuristic. The celebrated sparse coding theory works on the premise of first rep-
resenting data with a over-complete matrix called dictionary and the corresponding sparse
maps employing pursuit algorithms for optimal solutions. This theory which has been ex-
tensively researched in last decade has been extended recently to theoretically model deep
neural networks and extract insights about their inner working. The convolutional sparse
coding (CSC) and the multi-layer convolutional sparse coding (ML-CSC) has been pre-
sented as theoretical equivalent to forward pass of convolutional neural networks (CNNs).
The ML-CSC has been analyzed for convergence analysis and feature extraction of pub-
licly available datasets for performance comparison with legacy CNN based classification
frameworks. Although, this research area has grabbed significant attention in recent years
by image processing community, the frameworks have not been applied in application sce-
narios like biomedical imaging.

In this research work, we propose ML-CSC based frameworks for inverse problem of com-
pressive sensing MRI (CS-MRI) and biomedical image classification problems. An opti-
mized ML-CSC framework employing multi-layer basis pursuit algorithms is implemented
for CS-MRI restoration tasks on different datasets and shown its improved performance in
terms of fast convergence, improved PSNR/SSIM and fast restoration times as compared
to the state of the art. The performance of layered basis pursuit employing global pur-
suit and local pursuit is given to demonstrate the effectiveness of the proposed restoration
frameworks. Furthermore, comparative analysis is given for CS-MRI restoration task of
knee MR images by training and testing state of the art restoration frameworks alongside
our proposed framework. Utilizing self-acquired knee MR dataset and different brain MR
datasets, the restoration performance of the proposed framework is demonstrated. In fur-

ther work, a biomedical image classification framework is proposed and implemented for



/

classification of knee anterior cruciate ligament (ACL) tear pathology on self-acquired and
labeled knee MR dataset. With the help of extensive empirical results, the classification ef-
ficiency of proposed framework is compared with the state-of-the-art deep learning-based

architectures with improved results.
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CHAPTER 1
INTRODUCTION

Deep neural networks have been the focus of research for solving an array of problemis
during the last decade. The enhancements in the computational power of computers further
enabled these frameworks to be used for different image processing tasks. With the suc-
cessful applicability of these networks, interest grew in the theoretical foundation of thege
architectures which largely remain heuristic in their implementations. Thus, the resurgenq‘,te
of the application of time-tested exiting tools of sparse coding theory has been applieéd
to better analyze and model these architectures. The celebrated sparse coding theory hijls
been presented as one key candidate for the purpose. With its successful implementation in
signal and image processing research, the theory has been further extended to model deép
neural networks i.e. convolutional neural networks (CNNs), and analyze their performan#e
for better understating of their inner working and possible further improvements. The coﬁ-
volutional sparse coding (CSC) and the multi-layer convolutional sparse coding (ML—CStt)
which is a special case of sparse coding theory have been presented as theoretical fram;s—
works which can be used to model CNNs theoretically. In the seminal works, the CSC and
ML-CSC has been implemented for general datasets with legacy CNNs as the baseline for
performance comparison [1].

Although the preliminary work has shown the impressive performance of ML-CSC baséd
frameworks, open problems need further investigations for effects of batch normalizatidn,
regularization techniques, application of pooling operations, and implementation of ML-

CSC on applied problems of image processing.

17



Existing deep learning-based architectures suffer from the following limitations.

Deep neural networks for inverse problems

* The deep learning architectures are mainly trained with heuristic techniques that ref-
quire theoretical analysis to improve feature learning for an accurate solution to the
inverse problems, especially in the case of biomedical images where the reconstruc-
tions should be of reasonable quality for the clinicians to accurately interpret far

diagnosis.

* The frameworks require extensive training before being implemented in applicatidn

scenarios on custom datasets.

* A generalized architecture that can be adapted to other datasets and protocols is ré-
quired to pave the way for better integration of Artificial intelligence (AlI)-assisted

tools in the biomedical imaging pipeline.

* Once the model parameters are learned, the test/ restore framework is required to lj)e

implemented with minimum effort in clinical settings for wider applicability.
Deep Neural networks for classification of biomedical images

» The frameworks are mostly applied on general imaging datasets for classification
which requires a large number of labeled images. In the case of biomedical images,
the availability of large datasets labeled by specialist radiologists is a challenging

issue.

* Due to the limited availability of datasets, the problem of imbalanced classifica-
tion becomes even more challenging which is crucial for decision making for post-
diagnosis treatment of patients. Furthermore, in the case of classification of biomed-
ical images for anterior cruciate ligament tears problem (ACL), recent works mostly

address the binary classification problem of presence or absence of ACL tears, wherein

18



the classification task of partial tear presents an additional challenge for classification.

algorithms.

* The deep learning (DL) architectures are mainly trained with heuristic techniques
which require theoretical analysis to improve feature learning for accurate classifica-
tion, especially in the case of biomedical images where the error margin should be as

small as possible.

» Lastly medical imaging plays a crucial role in diagnosis, treatment planning, treat-
ment delivery, and follow-ups. To increase efficiency, there is an urgent need to
integrate DL-based automation tools into all stages of the medical imaging pipeline

ranging from image acquisition and reconstruction to analysis and interpretation.

1.1 Contributions

This research work aims at developing algorithms for compressive sensing magnetic resdj—
nance imaging (MRI) image reconstruction for their corresponding undersampled measuré-
ment and biomedical image classification frameworks based on ML-CSC theory employing
multi-layer basis pursuit algorithms. In the proposed framework the insights are taken from
the celebrated sparse coding theory and its recently proposed version of the multi-layered
sparse coding to design a CS-MRI framework and a classification framework optimally
designed and tuned for grayscale labeled MR images obtained at Hospital Kuala Lumpur

(HKL). Specifically, this work makes the following contributions,

* The multi-layer sparse coding theory which has been recently used to explain the th#—
oretical foundations of deep learning is extended to inverse problem namely CS-MRI
to demonstrate its effectiveness. Furthermore, unlike the traditional deep learning
frameworks based on CNNs, the multi-layered iterative thresholding algorithm (ML-
ISTA) based framework benefits from network unfoldings to increase network depth

without incurring the cost of additional parameters and computational complexity.
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This in turn improves reconstruction performance demonstrated through experiments

on multiple datasets.

A generalized framework is designed, trained, and images restored on four bench-

mark datasets.

The framework is tested to demonstrate the fast restoration of MR images on GPU

and CPU machines with reasonable restoration time and PSNR/SSIM.

The framework has been optimized successfully on the labeled knee MR dataset and
an average test set accuracy of 92% has been achieved without adding regularization

techniques.

The unrolling ML-CSC framework with ML-ISTA, its fast version FISTA along with
multilayered Basis Pursuit (ML-BP) is demonstrated to perform better than the CNN-

based classification framework taken as baseline, without increasing network depth.

The solution to challenging partial ACL tear classification problem, where the clas-
sifiers generally do not give sound accuracies, is optimized with data augmenta-
tion techniques and accuracy of more than 85% on this specific class is achieved
by proposing for multilayer iterative thresholding algorithm (ML-ISTA) framework,

which outperformed traditional CNN with the same number of parameters.

Data augmentation technique especially suited for training a DL framework on biomed-
ical images is applied, which shows optimal performance as compared to other trans-

forms used in image classification algorithms.

Lastly, a classification framework based on a recurrent architecture with the same
depth as the generative models described above is trained and analyzed for com-
parison. The accuracies of all models are compared with CNN, demonstrating the

viability and effectiveness of the MR image classification framework.

20



Taking insights from recent research works in theoretical foundations of deep learning ,
we have proposed a CS-MRI restoration framework based on multilayered convolutional
sparse coding (ML-CSC) with Iterative Shrinkage Thresholding Algorithms based global
basis pursuit to learn a fast mapping between the training set of MR images and their cors
responding undersampled measurements in k-space. With the global pursuit of ML-CSC
and faster convergence, the framework is first trained on a GPU machine in a short time
and the learned model is successfully used for CS-MRI image restoration with different
CS-ratios using random masks. The test set reconstruction is also carried out on the CPU
with a reasonable restoration time without employing GPUs after the trained parameters

are available.

1.2 Thesis organization

The rest of the dissertation is organized as follows.

Chapter 2: Literature Review

The chapter covers the background for the other chapters of the dissertation. A briéf
overview of sparse coding theory, theoretical foundations of deep neural networks, and
multi-layer convolutional sparse coding is given. The feature learning of convolutional
neural networks and the ML-CSC-based model is introduced with a focus on implementa-
tion algorithms for inverse problems and classification problems in the biomedical imaging

domain.

Chapter 3: Multi-Layer Basis Pursuit for Compressed Sensing MR Image Recoijl-
struction

This chapter introduces a generic framework for MR image reconstruction from under-
sampled measurements which is applied for different CS-MRI problems. Experiments on
different MR datasets acquired in different imaging planes are performed to demonstrate
the merits of the proposed restoration framework as compared to the state-of-the-art. For

multi-layer basis pursuit, the global pursuit algorithm employing an iterative thresholding

21



algorithm is utilized for CS-MRI image reconstruction.

Chapter 4: Implementation of multi-layer convolutional sparse coding framework for
classification problem

A classification framework based on ML-CSC, employing iterative thresholding algorithmis
for basis pursuit is proposed and implemented for classification of custom knee dataset ac-
quired at Hospital Kuala Lumpur (HKL). A series of detailed experiments are conducted
to show the merits of the proposed classification framework as compared to baseline con-

volutional neural network-based architecture.

Chapter 5: Multi-layer Convolutional Sparse coding Framework for Restoration of
Under-sampled MR Images

Further extending the work of chapter 3, a CS-MRI framework utilizing iterative thresﬁ-
olding algorithms for layer-wise pursuit is proposed. Extensive experiments on two bench-
mark datasets of brain MR images are shown to demonstrate the merits of the proposed

framework.

Chapter 6: Comparative analysis of ML-CSC based CS-MRI framework with sta‘te
of the art |

The frameworks proposed in Chapter 3 and C hapter 5 are compared with the state-of-
the-art custom knee MR dataset acquired for the research work at Hospital Kuala Lumpur
(HKL). The analysis was done by training the proposed CS-MRI restoration and state-
of-the-art MRI restoration frameworks on the same dataset and presenting the restoration
results of both in tabular form demonstrating the better restoration efficiency of our pro-

posed framework.

Chapter 7: Summary and Future Direction
The chapter summarizes the contributions presented in this dissertation and recommends
future directions about how to employ deep sparse coding to further improve the entire

MRI imaging pipeline and workflow and discuss future work.
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CHAPTER 2
LITERATURE REVIEW

Deep neural networks have been the focus of extensive research works in recent years due to
the availability of supporting hardware and large-scale datasets. Due to the heuristic struc-
ture of deep learning algorithms, the theoretical aspect of working of these frameworks has
been researched to better model the inner working and develop insights for improvement.
Spare coding theory [2], which has been the focus of image processing research during the
last decade has been presented as the theoretical foundation of deep neural networks. In
the following, Convolutional Neural Networks (CNNs), the sparse coding theory, and the
convolutional sparse coding the inverse problem of MRI image reconstruction and classifi-

cation of MRI images are briefly reviewed.

2.1 Convolutional Neural Networks, Sparse Coding and Multi-layer Convolutional

Sparse Coding Theory

In the following, first a review of CNN, is given along with sparse coding theory. The
connection between the two is given through a brief review of convolutional sparse coding
and multi-layer convolutional sparse coding. Lastly the chapter-wise organization of dis-
sertation is given.

Convolutional neural networks [3, 4] are utilized for data that exhibit grid-like topology.
For one-dimensional signals, the neural networks can be modeled as 1D-CNN [5], whereas
image data can be modeled as 2D-CNN [6]. For video data, the kernel or feature dimension

can be further extended to model video data[7].
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2.1.1 Convolutional Neural Networks

The ability of machine learning algorithms that can learn and improve based on the experi-
ence of the complexity of the problem at hand and their adaptation to that specific problem
gives tremendous opportunities in an array of applications. The CNNs are a fundamental
part of representation learning and are briefly explained below. The forward pass is the
fundamental part of the CNNs (Figure 2.1), where an input signal X € R is convolved
with set of m, leamned filters of chosen size n, giving output as feature maps or kernels.
In matrix vector form, this can be written as WI' X € RMN™  where W, € R"™, is a
convolutional matrix (transposed) with learned filters as columns with all their shifts. Aftér
convolution, a bias term b; € R¥™ is added to resulting vector and a nonlinear operation
(here Rectified Linear Unit-ReLU) is applied. For a two layers forward pass of CNN, the

operation is given by Equation (2.1),
X, W2, [b)2,) = Zy = ReLUWT ReLU(WT.X + by) + by) 2.1

The output of first stage/layer is then treated as input to another stage with convolutional
matrix W R¥™>N™2 and bias term b, € R¥™2. The operation is extended up to desired
number of layers and feature maps are then used for problems like classification and inverse
problems. For the problem of classification, the output of last layer is fed to train a classifier
which tries to predict the label h(X) associated with given image X. For given dataset of
images (X);, the task of CNN including filters [W;]X | and biases [b;]X |, parameter of the
classifiers U can be written as, Equation (2.2)

min U)Zl h(X;), U, f(X,), Wiy, b)) (2.2)

(AR AL

The task of the optimization algorithm is to minimize the mean of the loss function /. Re-

cent research works have utilized CNNs, especially in computer vision. These frameworks
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Figure 2.1: Forward pass of a Convolutional Neural Network

have been used in deep learning research problems ranging from image processing taskls
of segmentation, classification, general object detection to inverse problems [8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20]. The successful application of CNNs in range of image
processing applications emphasized the need for their broader theoretical understanding to
improve the performance. Sparse coding theory [2] has been successfully utilized for im-
age processing tasks of denoising, de-blurring, image recognition, image segmentation and

image classification during the last decade [21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

2.1.2 Sparse Coding

Sparse representations for image processing work on the premise that images can be rep-
resented as a sparse linear combination of elements from a redundant dictionary, For an
image of size X, the patch extractor operator R, extracts a patch of a specific size, which

can be represented as,
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ZI"'=R,,X

The sparse coding theory further represent the ith patch of the underlying image as;

RiX =Dy,

Where D is the dictionary of atoms +; is the ith sparse feature map representing the ith
patch extracted from the image. The sparse coding image representation modal is given in

Figure 2.2.
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Figure 2.2: Sparse coding image representation model

The greedy basis algorithm pursuit can be written with £; norm as:
Py “En“’h'”ﬂ st. R,X = D, (2.3)
The optimization of Equation (2.3) is NP-hard therefore greedy methods such as Orthog-
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onal Matching Pursuit (OMP), thresholding or convex relaxations such as basis pursuit
are employed for solutions. Over the years the sparse coding-based model has been suc-
cessfully used for image denoising problems [31] and other inverse problems in image
processing [32, 33, 34]. Inverse problems in image processing like image de-blurring,
super-resolution, and image denoising have been successfully tackled with a sparse repre-
sentation model. Under the model assumption, natural signals can be modeled as a sparse
linear combination of a few columns taken from a matrix defined as a dictionary. Sparse
coding or pursuit is the process of recovering the sparse decomposition of a given signal
over a dictionary (typically over complete). This inverse problem is formulated usually
as an optimization objective with minimizing a ¢, pseodonorm or the ¢; norm as its con-
vex relation resulting in signal reconstruction of acceptable quality. For deployment of an
effective sparse representation model, the discovery of a dictionary consistent with the un-
derlying data is required resulting in the dictionary learning problem. This problem gets
complicated with high dimensional signals (i.e. complete images) due to requirement of
more memory and high computations. Consequently, the global pursuits fail to keep track
of local varying behaviors resulting in poor performance of the dictionary learning frame-
works. Thus, to circumvent this issue, the large images are first split into small overlapping
patches, dictionaries are learnt, sparse coded, reconstructed before averaging the patches
back for complete image (global signal) reconstruction. Although this strategy is widely
implemented, the limitation of introducing artifacts at the patch averaging stage and not

keeping track of dependencies between adjacent patches limits its applicability.

213 Convolutional Sparse Coding and Multi-layer Convolutional Sparse Coding

The celebrated sparse coding theory has been the focus of research works to theoretically
explain deep neural networks. Convolutional sparse coding (CSC) framework which is a
special case of sparse coding theory [35, 36], has shown to exhibit superior performance

to traditional patch-based image processing frameworks. This framework (Figure 2.3) pro-
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Figure 2.3: A multi-layer convolutional sparse coding model

vides a global, yet tractable, model that operates on the whole images instead of image
patches, resulting in addressing several limitations of the patch-based sparse models while
achieving superior performance in various applications. The global model also makes the
process translation-invariant w.r.t underlying structures of input images and addresses the
local-global problem in image modeling present in traditional patch-based processing. In
CNNs the images are convolved with filters and dimensions of resulting feature maps
are decreased through max or mean pooling. This process is repeated layered wise un-
til high-level feature maps are extracted from input images and then used for classification
or other tasks. In convolutional sparse coding [37, 35], first the convolutional dictionaries
are learned from images, and then pursuit algorithms are used to learn sparse feature maps
of the given images. These feature maps are then used for image classification and the
solution of inverse problems. The CSC framework has been presented in recent research
works to establish the connection between convolutional neural networks and sparse cod-
ing theory. The forward pass of CNNs and CSC was shown completely equivalent in [38]

, wherein it was elaborated that CNNs are a special case of sparse modeling with special
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structures imposed on dictionaries of sparse models, and stability of solution bounds on the
success of pursuit algorithms. In multilayered CSC (ML-CSC), which is a layered exten+
sion of CSC, the convolutional dictionaries are trained and feature maps obtained on input
images, and pursuit algorithms are applied in layers to obtain high-level features. In each
successive layer, the ML-CSC takes the feature maps of the preceding layer as inputs and
repeats the process of dictionary learning and sparse coding to successive layers. Although
earlier work of [38, 39] did not incorporate effects of pooling operation on ML-CSC model,
the work in [40] theoretically modeled pooling operation in ML-CSC framework and em-
phasized the benefits of the addition of pooling layer to CSC model. Work in [40] applie@
pooling operation on one layer only and took feature maps of successive layers in original
feature dimensions. Rey-Otero et al. in [41] proposed two convex alternatives by merging
global norms with local penalties and constraints to existing CSC formulations resulting in
more efficient and converging algorithms. The work in {41} examined the proposed model
on tasks of natural image inpainting and cartoon texture separation.

Although the CSC and MLC have been investigated for theoretical insights in the context of
deep learning frameworks in recent years, the implementations of the models thus proposed
largely remain limited to general datasets and natural images. Thus in our research work,
the theoretical insights of ML-CSC were applied to challenges of biomedical image pro-
cessing tasks, such as the restoration of undersampled MRI pictures and the classification
of knee MRI images for anterior cruciate ligament (ACL) rupture in our work. Specifically,
we have proposed a compressive sensing MRI(CS-MRI) image restoration framework and
a classification framework for biomedical images incorporating the multi-layer convolu-
tional sparse coding and computationally efficient first-order pursuit algorithms. The CS-
MRI framework has been trained on multiple brain datasets and a knee MR dataset and its
performance has been compared with state-of-the-art CS-MRI frameworks. The classifica-
tion framework has been trained on the knee MR dataset for the classification of ACL tear

types of normal, complete, and partial tears. Extensive experiments on multiple datasets
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show the effectiveness of the proposed frameworks and their possible integration into MRI

imaging pipelines for improving the efficiency of diagnosis.

2.2 Magnetic Resonance Imaging Compressive Sensing Image Restoration Problem:-

Image Restoration Techniques

MRI is a non-invasive imaging modality, which is frequently used in academic and clinical
settings for different applications. The imaging modality with the help of flexible signal
encodings is being used to visualize soft-tissue contrast showing anatomical, metabolic,
and functional information. Unlike other radiology modalities like X-rays, CT scans, and
positron emission tomography (PET), MRI is radiation-free which makes it favorable to
reduce risk factors. Although these benefits have resulted in the wide adoption of MRI in
clinical applications, some challenges need to be addressed to make MRI more accessible
and efficient. One of the challenges in using MR is its longer scan time as compared to the
radiology-based techniques, as the technique requires more measurements to reconstruct
high-quality images for better diagnosis. To address this issue, a great deal of effort has
gone into designing optimization-based algorithms, where the reconstruction function is
a regularized minimization problem. Similarly, techniques like parallel imaging (PI) and
compressive sensing (CS) have also been proposed to reduce the acquisition time through
undersampling. In PI, the objective of undersampling is achieved with the placement of
more receiver coils in the MRI scanner and processing the resulting signals for reconstruc-
tions. In contrast, the CS technique uses existing hardware for signal acquisitions and
employs sparse coding techniques for reconstructions. The advantage of CS is its ready
applicability to the existing acquisition systems, unlike PI, which requires hardware modi-
fications for parallel acquisitions.

Reconstructing signals from their measurements is an inverse imaging problem where the

aim is to recover an estimate of original image of specific size x from the measurements y.
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In its basic form, the problem of reconstruction is formulated as:
Royj{y} = argmin f(H(z),y), (2.4)

where the objective of the optimization is to develop a system model H with minimum
possible errors with the aim to recover image z of specific size from its undersampled mea‘r-
surements y. The challenge for recovering a signal from its under-sampled observation is to
design and implement Equation (2.1) for a specific application. For sparse measurements of
signals that exhibit sparsity in some domains, the Equation (2.1) can be further added with a
regularized term that enforces the sparsity constraint on required solutions. Therefore, an&
new application necessitates the development of new system models and corresponding
regularizers resulting in much effort going into developing general-purpose minimization
algorithms and their regularizers in recent years. The reconstruction algorithms for CS-
MRI are tuned for a non-linear optimization problem, which uses time-consuming iterative
techniques. These techniques use handcrafted penalty terms as regularizers, which are dif-
ficult to tune. Furthermore, due to the non-quantitative nature of MR images in most cases,
MR images can vary between protocols and scanners resulting in difficulty for clinicians
in quantitative analysis of MRI scans. CS theory works on the premise that if a signal is
sparse in some transform domain, it can be reconstructed with high probability after taking
fewer measurements as compared to the Nyquist sampling theorem. With the capability of
undersampling during acquisition and compression at the same time, CS theory has been
applied in different applications like video compressive sensing [42], cognitive radio com-
munication [43], ECG signal compression [44] and MRI [45].

An alternative to optimization-based approaches for recovering an undersampled signal is
learning-based approaches. Given a set of ground truth images as train set and their cor-

responding undersampled measurements {7,,y,}~_;, the objective of the learning-based
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approach is to solve the reconstruction algorithm of the form:

N
=7 i n s 2.5
Riearn = arg Dgr};ge; f{zn,yn}), Do + g(0) (2.5)

where Rjeqrn is the parametric reconstruction model, f(.) is a measure of the error to be
minimized, © is the set of all learnable parameters, g(©) is the regularizer added to avoid
overfitting of the learning model. Once the learning/training step is complete, the model
can be readily used to reconstruct new images from their corresponding undersampled mea-
surements. Fueled by the learning and approximation capability of deep neural networks,
learning-based techniques have been proposed for the restoration of CS signals in con;-
pressed form to the original signal domain [46, 47]. For MRI acquisition, where the signal
is acquired in k-space, the challenge for successful CS-MRI reconstruction is to train a
neural network for nonlinear mapping with fully sampled k-space data [48]. One of the
advantages of learning-based algorithms is their ability to overcome many limitations of
legacy optimization-based approaches like handcrafted features for forward models and
the design of problem-specific cost functions and optimizers. In other words, the strength
of the learning-based approaches lies in their generalization capability for an array of prob-
lem types, unlike the optimization-based approaches, which are generally problem-specific.
The availability of datasets on large scale for MRI research in recent years has enabled the
utilization of learning-based models with the design of algorithms for efficient solutions
of a myriad of inverse problems including compressive sensing. Generally, the CS re-
construction works have been grouped into three categories with the emergence of deep
learning-based architectures. In the following section, a brief review is given for these cat-

egories with an emphasis on research related to our work.
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221 Optimization Based Reconstruction

Optimization-based or objective function-based reconstruction approaches use sparse reg}-
ularization to design transform sparsity for CS reconstruction. These methods employ the
transform sparsity in transform domain {49, 50], and dictionary learning based subspace
[51, 52, 53] for CS reconstruction. Methods based on these techniques have the advantagh
of fast optimization at the cost of introducing staircase artifacts in images constructed from
compressive measurements [54]. The issue has been further addressed through the group-
ing of similar patches to better keep the sparsity structure in non-local patch-based recon-
struction methods [S5]. The dictionary learning-based methods have better reconstructio{n
quality although are dependent upon reference images to improve the CS reconstructidﬁ
performance and are difficult to generalize. For methods that rely on traditional transfornis
like wavelets, or DCT, the convergence is fast, but results are less accurate. The dicti(,f)-
nary learning-based methods produce better quality reconstruction results at the cost of
slow convergence. Spatiotemporal sparse Bayesian learning techniques have also been enﬁ-
ployed for simultaneous recovery of multi-channel physiological signals [56]. Employing
sparse Bayesian learning, a high-resolution Electrical Impedance Tomography (EIT) image
reconstruction method exploiting the structure sparsity of the underlying signals for estima-
tion of images was proposed in [57]. Liu ez al. in [58] proposed a Bayesian learning-based
approach to reconstruct EIT signals utilizing Bayesian spatiotemporal priors, resulting in
enhanced reconstruction performance and reduced computational complexity as compar%d

to state of the art. f

2.2.2 Learning Based Reconstruction with Deep Neural Networks

Deep learning algorithms have been successfully applied to the solutions of inverse prob-
lems in image processing in recent years [59, 60]. In [46], A.Musavi et al. used stacked
autoencoders to reconstruct natural images from ImageNet dataset. Iliadis et al. in [47]

presented a deep learning-based framework for recovering compressive sensing video.
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These CS recovery frameworks were usually constrained by a fixed measurement matrix
and image size. To resolve this issue, Jin et al. in [60] proposed a convolutional neural
network(CNN) based algorithm to learn mappings from preliminary CS reconstruction tq
high-quality reconstruction. More recently the generative adversarial networks (GANSs) aré
proposed for CS-MRI reconstruction [61, 62, 63]. These works use mean square error lﬂ
the pixel domain as a loss function to achieve a better quality of CS reconstruction. G.Lu¢
et al. in [64] proposed a deep learning framework based on the Bayesian approach by using
the likelihood of priors as training loss and the objective function to improve the reconstruc-
tion quality of MR images. Wolterink ez al. in [61] proposed a framework based on traininé
a CNN along adversarial CNN to better estimate routine dose CT images from low dose CT
images. The DAGAN framework in [62] coupled adversarial loss with the content loss tb
better preserve texture and edges in reconstructed images. For improved performance and
fast reconstruction time, Mardani ez al. in [63] compared a GAN-based framework Witil
dictionary learning, wavelet-based, and deep learning frameworks incorporating pixel-wise
mapping. Adler et al. in [65] presented a deep learning framework based on block-based
CS, which jointly optimized sensing matrix and non-linear reconstruction operator giv-
ing improved performance compared to state of the art. In the absence of fully sampled
datasets, Yaman et al. in [66] proposed a self-supervised learning framework for MR im-
age reconstruction without using fully sampled data. By dividing the sub-sampled points
for each MR scan into two sets, one for data consistency term and the other for training
loss, MR images reconstruction was achieved with comparable quality to fully supervised

learning-based approaches.

2.2.3 Multi-layered Thresholding Algorithms with Unfoldings

The discriminative learning methods based on the concept of unfolding an iterative sparse
coding algorithm initially proposed in [67], use insights from model-based and deep learning-

based approaches. In these algorithms, one iteration is equivalent to traditional CNN-based
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learning frameworks. As the iterations are increased, the frameworks learn the requiredj
mapping in the training phase with the same number of parameters as the traditional CNNs,;
with flexibly of increasing network depth without incurring the cost of increased param-
eters as encountered in traditional CNNs. Zhan et al. [68] proposed a multilayered basisg
pursuit algorithm based on unfolded neural architecture for CS recovery of natural imageéi
used by Kulkarni et al. in [69] along with its generalization to MR images. This work
employed an iterative thresholding algorithm (ISTA) [70], to recover natural images from
their undersampled measurements. Inspired from primal-dual hybrid gradient methods,
Adler et al. [71] proposed a learned primal-dual algorithm replacing proximal operator#
with a CNN. Gupta [72] et al. presented a relaxed version of projected gradient descenq,
wherein measurement consistency of reconstructed images with their corresponding mea;-
surements was enforced to achieve convergence under certain conditions, with improveﬂ
results for sparse-view computed-tomography (CT) reconstruction. Hammernik et al. [73]
embedded a variational model in an unrolled gradient descent scheme to reconstruct kneF:
MR images with an undersampling factor of 4. The work demonstrated improved compd]-
tational performance for undersampled reconstruction on a single graphic card. Metzler at
al. [74] developed an unrolled approximate message passing (D-AMP) algorithm, defining
it as the learned-AMP, where a deep CNN replaced the denoising operator of each iter-
ation of AMP [75]. Further extending their preliminary work in [76), Yang et al. [77]
proposed a CS recovery framework based on an unrolled alternating direction method of
multipliers (ADMM) algorithm for CS recovery of MR and natural images. The proposed
model where parameters of CS recovery and ADMM are learned discriminately achieved
favorable results on complex-valued MR images and real-valued natural images. In the
parallel imaging (PI) domain, Sriram ez al. [78] integrated traditional PI methods with a
deep neural network for acceleration factors of 4-Fold and 8-Fold (CS-ratio of 25% and

12.5%, respectively), achieving comparable results with the state of the art for CS-MRI.
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2.24 Convolutional Sparse Coding and Inverse Problems

The success of deep learning architectures for the solution of inverse problems in image
processing motivated the research direction of designing deep learning architectures incoﬂ
porating domain-specific knowledge. Convolutional sparse coding theory has been sudj—
cessfully applied to image super-resolution, reconstruction of hyperspectral images, ddt
noising of seismic data, and reconstruction of biomedical images like MRI and CT scans.

Marivani et al. in [79] proposed a multimodal deep learning architecture for the solution of
the CSC problem by employing an unfolding proximal method. Using RGB images as side
information, the proposed method was applied for the super resolution problem of neaf—
infrared images. For single image super-resolution (SISR), Ahmed et al. in [80] propose;d
a convolutional sparse coding-based model in the wavelet domain. The work employéd
a wavelet integrated convolutional sparse coding approach to better capture contextual in-
formation of images. Simon ef al. in [81] suggested a Bayesian connection between tl'ije
CSC model and the patch-based frameworks for denoising the problem of natural images.
Using strided convolutions, the authors proposed a feed-forward network that followed an
MMSE approximation to the CSC model. Serrano et al. in [82] employed convolutional
sparse coding to reconstruct videos from single frame which is coded with temporal infor-
mation. The full video sequence was then reconstructed from the single coded image and
a trained dictionary. The work imposed an additional constraint in the temporal dimen-
sion, enforcing sparsity of the first order overtime for the proposed CSC-based high-speed
video acquisition problem. Extending the sparse coding theory to hyper-spectral domain,
Arun et al. in [83] implemented sparse coding in convolutional encoder-decoder frame-
work. The proposed models employing shrinkage thresholding algorithm and structured
sparse regularization utilized 3D convolutions for modeling spatial and spectral features of
hyper-spectral data. The authors showed with extensive experiments the applicability of 2D
and 3D filters along with sparse regularization for improved learning capability on tasks of

super-resolution and dimensionality reduction on hyper-spectral datasets. Al-Madani.M et
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al. in [84] implemented a convolutional sparse coding (CSC) framework for denoising task
of seismic data with Local Block Coordinate Descent (LoBCoD) algorithm. The proposed
framework presented better inversion capability of the CSC model by exploiting its treaf-
ment of input images globally, unlike the legacy patch base approaches resulting in bettdr
inversion of noisy seismic data. Furthermore, work in [84] compared the performance of
the CSC model with dictionary learning-based algorithm K-SVD for benchmarks of peak
signal-to-noise ratio (PSNR) and the relative L2-norm of the error (RLNE)showing better
performance for the former algorithm. Addressing the ill-posed image super-resolution
problem, Marivani et al. in [85] proposed a multi-modal deep learning framework that iI}-
corporates sparse priors and relies on a deep unfolding operator similar to the CSC modéj:l
with side information. The framework was used for super-resolution of near-infrared and
multi-spectral images with RGB as side information resulting in better performance as
compared to the state-of-the-art. Carrera et al. in [86] compared the convolutional spar:*;e
coding model which seeks sparsity over the entire dictionary via a global optimization with
traditional techniques requiring separate sparsity w.r.t. each translate of the orthonormal
basis and solving multiple partial optimizations. Through experiments, it was shown that
the CSC model performed better on sparse signals and the performance of the model in
terms of the variance of the global solution increased rapidly with the original signal be-
coming less sparse. Xiong et al. in [87] proposed a two-stage model utilizing convolutional
sparse coding for image restoration problems of de-blurring, denoising, and MRI compres-
sive sensing. The authors used Augmented Lagrangian and alternating direction method
of multipliers for an optimal solution to the non-linear optimization problem showing the
effectiveness of CSC-priors for the tasks of inverse problems as compared to the sate of
the art techniques. To extract transient events from the EEG data, Prokopiou et al. in
[88] employed convolutional sparse coding (CSC) analysis along with simultaneous EEG-
fMRI data. The authors used the events in voxel-wise fMRI analysis and also employed

FIR models to obtain HRF estimates using convolutional sparse coding events showing the
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CSC model’s ability to detect reliable events in EEG data. Nguyen-Duc et al. in [89] pro-
posed an alternating method that concurrently builds a multi-scale 3D CSC dictionary as
the MRI reconstruction from undersampled measurements proceed using a variant of the
ADMM algorithm. The authors demonstrated the reconstruction performance as compared
to dictionary learning-based methods for undersampled MRI reconstruction.

To recover highly undersampled dynamic fMRI data, Nguyen-Duc et al. in [90] em:-
ployed a multi-scale 3D CSC framework and a spectral decomposition technique. Us-
ing a shared 3D convolution-based dictionary built progressively during the reconstruction
process, the technique used unsupervised learning to recover high-frequency components
while the low-frequency components of MRI were restored using total variation-based er;-
ergy minimization method using temporal coherence of dynamic MRI data. To better ap-
proximate the sparse input data, elastic-net regularization was used. The performance df
the proposed method was demonstrated for different sampling ratios on cardiac and brain
MR images as compared to the state of the art. Xiong et al. in [91] employed convolutional
sparse coding in gradient domain to address the limitations of patch-based CS-MRI tech-
niques. In the proposed method, which operated on whole gradient image for capturing
correlation between local neighborhoods and exploiting gradient image global correlation,
the authors demonstrated the better reconstruction of MR images in terms of better edges
and sharp features. Existing methods of image synthesis problems are limited by the re-
quirement of large training sets, are tailored for specific applications, or need patch-based
processing. These limitations were addressed by Huang et al. in [92] with the proposed
framework namely Dual convolutional filter learning (DOTE) approach. The framework’s
effectiveness was demonstrated on tasks of image super-resolution and cross-modality syn-
thesis. To address the challenge of requirement of large amount of data for fast and accurate
reconstruction of magnetic resonance (MR) images from under-sampled data, Guo et al. in
[93] proposed a federated learning based approach utilizing data from multiple institutions.

Authors in [93] used the learnt intermediate latent features among distinct source sites and
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aligned them with the distribution of the latent features at the target site in a cross-site mod-
elling for MR image reconstruction for generalizability of the proposed framework.

Quan in et al. in [94] used 3D convolutional sparse coding to extract and adapt tem+
poral information from the MRI data using compact shift-invariant 3D filters. The author$
demonstrated the effectiveness of CSC-based algorithms as compared to the dictionary
learning-based state-of-the-art. Quan et al. in [95] proposed a CSC based method to recon-
struct undersampled dynamic contrast-enhanced (DCE) MRI data. By using an extension
to the ADMM algorithm, authors introduced energy formation based on the learning over
time-varying DCE-MRI images on graphical processing units comparing the performance
with dictionary learning-based state-of-the-art methods.

To simultaneously solve the problems of super-resolution and cross-modality image
synthesis, Huang et al. in [96] proposed weakly-supervised joint convolutional sparse cod-
ing based on semi-supervised learning with few registered multi-modal image pairs. The
authors used an additional maximum mean discrepancy term for minimizing dissimilarity
between feature distributions of paired images which were enhanced in the joint learning
process with unpaired data. A sparse model namely Bidirectional Convolutional Sparse
Coding (BiCSC) proposed by Zhang et al. in [97] tackled the semi-supervised problem of
learning latent features from ultrasound and CT images. These features are then used to for-
mulate a relationship between the two image modalities. The resulting images are then used
for multi-needle detection in three-dimensional (3D) ultrasound (US) with reduced noi‘%e
and artifacts. Finally for true needle position, clustering algorithms were used and modLl
a needle per region of interest(ROI), the random sample consensus algorithm (RANSAC)
was used. The framework was used on the prostate image dataset giving its efficacy for
accurate needle detection for ultrasound-guided high-dose-rate prostate brachytherapy.

Convolutional sparse coding was used by Bao ef al. in [98] to reconstruct undersampled
CT image reconstruction. The proposed framework exploits the CSC capability of working

on whole images instead of patches thus avoiding the artifacts caused by patch aggrega-
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tion in traditional dictionary learning-based reconstruction methods. Yan et al. in [99]
addressed the limitations of Sliding window-based dynamic brain connectivity frarr1ework$3
by proposing a framework employing that automatically learned a low rank and sparse brain
functional connectivity patterns from raw fMRI data. The model with the help of leameqh
sparse coded convolutional filters was able to measure different length dynamic brain func;-
tional connectivity patterns in an equal space. The authors demonstrate the applicabilit}fl
of the proposed methods in real clinical applications for brain disorder diagnosis. The
limitations of methods using small overlapping patches in sparse coding techniques were
recently addressed through convolutional sparse coding using shift-invariant dictionaries
and ¢y,¢; norms. These norms resulted in an imbalanced sparsity across various regions 1h
the given image. This issue was addressed with employing ¢, ., norms which operated laj-
cally while thinking locally as an alternate to ¢y , £; norms. Plaut and Giryes et al. in [10d]
proposed and demonstrated a greedy algorithm for specially tailored for 4 o, norm for
image inpainting and salt-and-pepper noise removal. Sun et al. [101] proposed an adver-
sarial defensive method to counter adversarial attacks employing the convolutional sparse
coding technique. Authors used convolutional dictionaries and projected both clean and
adversarially attacked input images to quasi-natural image space and employed a Sparse
Transformation Layer (STL) between the first layer of the network the input. The proposed
image projection technique onto quasi-natural image space was demonstrated for image
detail preservation and adversarial perturbations removal as compared to state-of-the-art
transformation-based adversarial defenses.

Liu et al. in [102] developed online dictionary learning(ODL) based on first and
second-order methods. In contrast to batch-based learning methods, which sample batches
of training signals, the ODL techniques process training samples in a streaming fashion.
Compared to the state-of-the-art convolutional dictionary learning algorithms based on
batch-processing, authors proposed CDL based on first order ODL requiring lower learn-

ing time and memory. Furthermore, a second-order ODL method was proposed proving
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the convergence of earlier research work[103]. Quan et al. in [104] employed hierarchical
multi-scale 3D convolutional sparse coding to generate up to 75 dimensions feature vec-
tors for voxel classification problem. The generated features were then fed to a randoxﬂ
forest-based classifier for classification. The proposed method was compared against the
conventional intensity-based voxel classification methods on real-world volume and syns
thetic datasets. Chun et al. in [105] proposed Block Proximal Gradient method using a
Majorizer (BPG-M) for Convolutional dictionary learning (CDL or sparsifying CDL). The
method was employed for learning filter for image denoising problem and was compared
with the augmented Lagrangian (AL) method or the variant alternating direction method of
multipliers (ADMM) based methods. With experiments, it was shown to converge quickly,
with fewer memory requirements for large datasets and requiring no parameters tuning as
compared to ADMM based methods. Liu et al. in [106] presented a synthesis and analysis
s deconvolutional network (SADN) enforcing sparse convolutions between filters and their
underlying images. The work employed Markov Random fields(MRF) and sparse coding tb
represent general images with generative and discriminative abilities. The proposed model

was shown to be effective on the problem of image compressive sensing.

2.3 Feature Learning and Classification Problem

One of the most common sports injuries in young adults is an ACL tear. A study which
spanned over 21 years, discovered an incidence of 68.8 per 100,000 person-years in the
general population [107]. The diagnosis requires surgical intervention such as reconstruc-
tion or enhanced primary repair to avoid further damage and degeneration of injury into os-
teoarthritis and subsequent chronic instability [108, 109, 110]. The frequent occurrence of
the ACL tear in the sports community and general public requires an accurate diagnosis of
complete and partial ACL tears. This is also important for therapeutic decision-making and
avoidance of further damage. In addition to examinations by experienced sports medicine

specialists for exams like pivot shift tests, magnetic resonance (MR) imaging is routinely
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used to complement and confirm clinical diagnosis and assess the status of associated in-
juries. MR imaging plays a crucial part in diagnosing, treatment planning, treatment deliv-
ery, and follow-ups. Consensus is building among researchers for the stronger need of using
automated tools to reduce costs, increase efficiency and provide higher diagnostic and prog-
nostic accuracy for clinical decision making. Although for an experienced musculoskeletal
(MSK)-trained radiologist, MR imaging is specific and accurate in diagnosing ACL teats
[111], the diagnosis becomes challenging for non-MSK radiologists and clinicians without
access to sub-specialty radiology. People who do not have access to specialists for diag-
nosing ACL tear injuries remain at risk of further deterioration of injuries without timely
and proper diagnosis.

Deep learning (DL) has emerged as a powerful tool for image processing tasks in recent
years complemented with the development of graphical processing hardware. The sub-
sequent DL algorithms developed so far have been successfully used in tasks like object
detection [112], MR image reconstruction [15, 113] and classification of biomedical im-
ages [114, 115]. The primary advantage of learning representations through deep neural
networks is their ability to learn semantically meaningful patterns and features in underly-
ing data without explicit human intervention. These models once trained successfully on
training datasets can be effectively used for the solution of a range of problems like image
recognition and image classification on (unseen) test data. With the tremendous success of
DL architectures i.e. the Convolutional Neural Networks (CNNs) until recent years, their
working has largely remained heuristic, and a deeper understanding is required to model
their working and improve performance. Sparse coding theory [2] developed over the last
decade has been applied to a range of problems in image processing [27, 116]. The the-
ory is based on constructing models that represent signals as linear combinations of a few
columns, called atoms from a given redundant matrix termed as a dictionary. This theory
applied successfully in problems of image processing tasks over the last decade has been

recently extended to explain the theoretical foundation of DL. The convolutional sparse
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coding (CSC) and its multilayered version ML-CSC have been introduced to explain thb
theoretical foundation of DL and its association with the sparse coding theory. Specifically,
the CNNs are interpreted as approximations of multi-layer basis pursuit problem [35, 38]}
The ability of DL architectures to learn from the wider availability of datasets demonstrade
their capacity to become part of biomedical imaging workflow and help revolutionize thﬁe

|
healthcare industry, especially for communities with limited access to specialized facilities.

231 Deep Neural Networks for Feature Learning and Classification

With improvements in hardware for processing a large number of images, it became fe?—
sible to train large neural networks for classification tasks on datasets of different sizefj‘s.
The seminal work of [117] significantly improved the state-of-the-art classification of gefjl—
eral images using graphical processing units. The work achieved an error rate of mo‘re
than 15% on the ImageNet dataset. This error rate has been improved significantly since
then on general datasets available for research purposes. In addition to general datasets,
Rajpurkar et al. in [118] implemented a 121 layer deep neural network for radiologist-
level pneumonia detection on chest X-rays. The algorithm was trained on a large dataset
of Chestx-raysi4 [119]. Hannun et al. in [120] developed a deep neural network (DNN)
to classify 12 rhythm classes using 91,232 single-lead ECGs from 53,549 patients. Liu
et.al in [121] used classification performance of DL networks as compared to clinical re-
ports for binary classification (tear or nor tear presence), and concluded that there is no
significant difference between the two. The study by Chang et.al in [122], demonstrated
the feasibility of a high-performing CNN tool to detect complete ACL injury with over
96% test accuracy for binary classification problems. The study, which excluded cases
with partial tear and mucoid pathologies demonstrated the feasibility of high performing
CNN tool, with customized CNN architecture and dynamic patched-based sampling with
five-sliced 3-D input. The results of the study in [123] suggested the usefulness of pre-

operative MRI-detected lateral meniscal extrusion (LME) for estimating lateral meniscus
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posterior root tear (LMPRT) in injured knees with an ACL tear. Although there is a sig:j—
nificant improvement in application to classifications and inverse problems in the contexit
of DL architectures, the theoretical foundations of DL largely remain heuristic. One such
very useful heuristic technique which is widely applied in DL architectures as regulariza-
tion to avoid overfitting the model on test data is the dropout. This technique randomlﬁl
discards activations to improve classification accuracy on tests sets and avoid over—ﬁttiné
by the learning model. These regularization techniques have been improved recently with
the proposal of stochastic techniques to further reduce overfitting by DL networks [124].

The recent research addressing the limitations of DL architectures has focused on a thé—
oretical explanation of the working of deep learning frameworks. In [35, 38], authors
elaborated the significance of theoretical understanding of deep learning and proved the
connection between widely used CNN architectures and celebrated sparse coding theory.
The sparse coding theory which has been successfully used in an inverse problem in imag-
ing and classification tasks was shown in [35] to be tightly connected to CNN. The work
established a connection between CNN and sparse coding theory and further gave insights
to the multilayered version of sparse coding. Further work by [125] pointed out the subop-
timal performance of the model presented in [35]. The work in [125] analyzed the proposed
multilayered basis pursuit in the context of a combination of synthesis and analysis. Fur-
ther extending the work on multilayered basis pursuit and its application to explain CNNs
and performance on applied problems of classification, Sulam et al. in [1] introduced a
multilayered basis pursuit framework wherein an [; norm penalty was proposed on inter-
mediate representations of the multilayered framework. [1] showed that iterative thresh-
olding algorithms can be used for multilayer basis pursuit and demonstrated the framework
effectiveness on classification tasks of general datasets of MNIST, SVHN, and CIFAR-10

with improved performance of thresholding algorithms as compared to the CNNs.
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CHAPTER 3 |
IMPLEMENTATION OF MULTI-LAYER CONVOLUTIONAL SPARSE CODING%
BASED FRAMEWORK FOR COMPRESSED SENSING MR IMAGE
RECONSTRUCTION

Compressive sensing (CS) is a widely used technique in biomedical signal acquisition and
reconstruction. The technique is especially useful for reducing acquisition time for MRI
signal acquisitions and reconstruction, where effects of patient fatigue and Claustrophobia
need mitigation. In addition to improving patient experience, faster MRI scans are impor-
tant for time-sensitive imaging, such as functional or cardiac MRI, where target movement
is unavoidable. Inspired from recent research works of ML-CSC theory utilized for the
modeling of deep neural networks, this work proposes a multi-layer basis pursuit frame-
work that combines the benefit from objective-based CS reconstructions and deep learning-
based reconstruction by employing iterative thresholding algorithms for successfully train-
ing a CS-MRI restoration framework on GPU and reconstruct test images using parameters
of the trained model. Extensive experiments show the effectiveness of the proposed frame-
work on four MRI datasets in terms of faster convergence, improved PSNR/SSIM, and
better restoration efficiency as compared to the state of the art frameworks with different
CS ratios.

The convolutional neural networks have been interpreted with the help of a recently pro-
posed multi-layer convolutional sparse coding framework which comprises a cascade of
convolutional sparse layers. This model interprets the forward pass of CNN as pursuit
algorithms that aim to estimate the feature maps or nested sparse representation from un-
derlying given data. Although this model has proved pivotal in explaining the theoretical
foundations of deep learning frameworks, Its efficient implementations of real-world prob-

lems, such as undersampled MR-image reconstruction, are yet to be investigated.
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In this chapter a CS-MRI image reconstruction framework based on the ML-CSC model is
proposed and implemented multiple MR datasets showing its effectiveness with the help df

extensive empirical evidence.

3.1 MRI Image Acquisition and CS Reconstruction Model

In biomedical signal capture and reconstruction, compressed sensing (CS) is a widelB'
utilized approach. The technique is particularly beneficial for lowering acquisition time
for magnetic resonance imaging (MRI) signal acquisition and reconstruction when patielilt
weariness and Claustrophobia must be considered. In time-sensitive imaging, such as fumjt-
tional or cardiac MRI, where target movement is unavoidable, faster MRI scans are critical.
This work proposes a multi-layer basis pursuit framework that combines the benefits of
objective-based CS reconstructions and deep learning-based reconstruction by employing
iterative thresholding algorithms for successfully training a CS-MRI restoration framework
on GPU and reconstructing test images using parameters of the trained model, which is
inspired by recent research works on multi-layer convolutional sparse coding (ML-CSC)
theory to model deep neural networks. Extensive experiments on four MRI datasets show
that the proposed framework is more effective than state-of-the-art frameworks with differ-
ent CS ratios in terms of faster convergence, improved Peak signal-to-noise ratio(PSNR)/
structural similarity index measure(SSIM), and better restoration efficiency. The MR-CS

image acquisition problem can be modelled as:
. 1 2
§ = argmin 5{[@¥s — ylf; + Alls]l, @B.1)

where @ is measurement matrix, ¥ are sparsifying basis, s are sparse coefficients i.e. z =
¥s, and A > 0. Typical sparsifying basis ¥ consists of wavelet, DCT or any other learned

dictionary. Substituting sparsifying transform and its sparse coefficient vectors with z, i.e.

46



z = Us, and orthonormal sparsifying transform as ¥.W* = ], in Equation (3.1), we have:ii
. 1 . . ;
x:a.rgmzlnilléz—sz%-)\H\I! z|l1, (3.2!)

The compressive sensing incorporates the compression into acquisition with measuremedt

matrix ® € CM*¥_ (M < N), to infer original signal z € CV from its measurements

y = ®x € CM. The compression ratio is defined as M/N.

Equation (3.2) is further generalized by replacing the regularization term with learned con-

volutional filters.

L

. !

£ = argmin §H<I>J: —yll2 + Z Ag(Dyzx), (3.3)
=1

The transform matrix in Equation (3.3) is denoted by D;, which can be a gradient transform,
discrete wavelet transform (DWT), or Discrete Cosine Transform (DCT). L is the number
of layers of the transformation matrix. Here, g(.) is a [, sparse regularization function

where ¢ € [0, 1].

3.1.1 Solvers for CS MRI Reconstruction Problem

One way to solve Equation (3.3) is the popular variable splitting and auxiliary variables

method of ADMM as proposed in [76, 77]. The objective function can be written as:

L
o1
min 7|z ~ yllF + > Mg(z),
=1 349
st z=Dix Ylel?2 .. L,

where z; is defined as an auxiliary variable. The minimization problem for a two layer

multi-layer basis pursuit problem with constraints can be written as:

!
leln ‘2~||y - DIDZ:E“g + /\1||.’L‘I|1 + )\2”23”1, s.t. r = DQ.’EQ, (35)
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To solve Equation (3.5), an augmented Lagrangian (in normalized form) is constructed t¢3

minimize the loss given by:

T1,T2,U 2

1 f
min >|ly — D1 Dazallz + Adllzalls + Aellzalli + g“ml ~ Dyza +ullz, (3.6)

After merging the /; norm terms, the pursuit of innermost representations is carried out Witj’l
any basis pursuit formulations like the iterative shrinkage thresholding algorithm (ISTA).
This algorithm then updates intermediate representations followed by updating of dual vari-

able u. As the minimization function is convex, convergence is guaranteed [126].

312 ML-CSC as a Theoretical Foundation For Deep Learning

The heuristic techniques applied to problems in deep learning frameworks have been re-
cently investigated for theoretical explanations of deep learning with the help of celebrated
sparse coding theory. Sparse coding theory [2] works on the premise of first learning fil-
ters (weights/dictionaries) from given data and then finding the sparse representation maps
from those dictionaries for representations of the underlying structure of the data. Once
the underlying structure is successfully modeled, the problems of reconstruction on im-
ages from noisy measurements, retrieving/reconstructing a signal in compressive sensing
domain, and classification of test sets on already trained dictionaries and sparse maps can
be done successfully with the help of different algorithms developed over the years and
applied successes fully in different domains. The sparse coding theory has been further
extended to theoretically explain widely used CNNs namely convolutional sparse coding.
The resulting CSC model, where a special circulant and convolutional structure is imposed
on dictionaries (which are otherwise traditionally unstructured in sparse coding theory) is
defined as a forward pass of CNN[35]. Further work in a multilayered version of CSC has
been shown in [1] for convergence analysis and multi-layer basis pursuit for classification

performance comparison with CNNs on three public datasets.
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3.1.3 Multi Layered Basis Pursuit

A signal y admitting a sparse representation in terms of a dictionary I, can be representeﬂ
as y = Dz, with z having a sparse structure (solution with fewer non-zero entries). After
employing an /; norm penalty and considering the problem as NP-hard, the basis pursuﬁt

problem is given as:

min zll1 s.t.|ly — Dz|[3, 3.7

Papyan et al. in [35] extended the basis pursuit problem to multi-layer settings, where a
signal y expressed as y = D, for sparse representations r; and possibly convolutional
dictionary D;. The sparse representations can be further expressed as z; = D,z, for
another dictionary D, with sparse representations z3. This framework can be extenddd
to L number of layers. Under this framework, for an observed signal y, the deep codidg

problem in multi-layer settings can be expressed as:
min|ly — Dizlf; st [zi1 = Dis, |laillo < silizy, (3.8)

This generative multi-layer basis pursuit framework has provided a platform for conve-
niently analyzing deep neural networks. Alternatively, the work in [125] developed a global
pursuit algorithm based on projection interpretation. By imposing an analysis prior on

deepest representation, Equation (3.7) can be written as,

Il’al:in lly = Da,nyzw)ll3,

3.9
stllzrllo <sp. 1| Dg,yzelle < si—1)izy,

The greedy pursuit algorithm presented in [125] does not scale for high dimensional set-
tings. Sulam et al. [1] presented a multi-layer basis pursuit algorithm that could leverage
the symbiotic relationship of analysis and synthesis-priors on sparse representations of dif-

ferent layers according to the depth of the multi-layer basis pursuit framework. Specifically,
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a convex relation was proposed for (3.9), resulting in multi-layer basis pursuit:
1 |
mzlnEHy—-D1D2x||§+)\1||D23:||1+)\2||$||1, (3.10)

The model imposed mixture of analysis and synthesis priors, with A\; = 0 and Ay > O

recovering traditional pursuit with factorized global dictionary D.

314 Iterative Shrinkage Algorithms

Iterative shrinkage algorithms (ISTA) are first-order methods that require matrix-vector
multiplications and entry-wise operations. This gives a clear advantage over interior point
methods and other solvers, which depend upon second-order information making them
computationally expensive in high dimensional settings. ISTA originally proposed in [70]
gives convergence in order of J(1/k) in functional value and its fast version FISTA [127]

has improved convergence in the order of O(1/k?). The ISTA algorithm is given as follows:

Algorithm 1 ISTA
Init 2° € f(z)
1. for any k=0,1,2.. do
2 rFtl = prox1g(z — -V f(z))
3: end for

315 Layered Basis Pursuit

The layered basis pursuit in context of sparse models and deep learning has been proposed

addressing pursuit problems of the form:
&; « argmin ||Z,-1 — Daif[5 + Alzll1, (3.11)

[68] and [128] attempt to unfold neural networks with iterative thresholding and minimiz-

ing ML-BP. As a result, each representation estimate is required to explain the immediate

50



layer only and a signal based on generation in global multilayer sparse model settings 1$

not possible.

3.2 Proposed ML-CSC Based Framework for CS-MRI :‘

We propose a multi-layer basis pursuit algorithm based on an iterative thresholding al‘-
gorithm. The algorithm considers the merits of objective-based approaches and network-
based approaches to achieve CS-MRI reconstruction. Each ISTA update is fed to an ML-
CSC network employing multi-layer ISTA for basis pursuit. The deep network learns the
mappings from previous ISTA updates with a fixed number of unfoldings which corre-

sponds to the iterations of ISTA.
3.21 Model

Given a decomposed loss function of the form;

F(z) = f(z) + g(2),

where f(z) is convex and smooth and g(z) is smooth, L is Lipchitz constant, the ISTA
algorithm as proximal gradient method finds the minimizer of F' = f + g by iterating the

updates given by proximal operator g(.):
k+1 kL
"t = prox1 g(z* — —V f(z)), (3.12)
T Ly

The traditional ISTA formulation cannot be applied to (3.10) due to presence of no separa-
ble composite term in g(.). In order to tackle this issue and solve (3.10), gradient mapping'

approach [129] is analyzed.

!For a detailed description of gradient operators, see [129], chapter 10.
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Given a function of the form F' = f + g, the gradient mapping operator is given by:
1 ‘
G1?(z) = L(z — prox gz — -V (2))), (3.13)
k
The ISTA update for (3.13) can be written as:

1
oFl = ok EG{‘,g(x)’

This update can be considered as gradient mapping step. Since,
« GH9(z) = VF(z) = Vf(z)as g(z) =0,
« GH9(z) = 0iff z is minimizer of F(z),
Essentially ®T(®z*~! — y) is gradient of the data fidelity term in Equation (3.10). The

objective function of ML-BP, can be generally expressed as minimization problem of the

form,

min F(z) = f(D;z) + gi(Dix) + g2(),
for the ith layer of ML-BP, the proximal gradient mapping method to minimize above
objective function takes the update of the form:

281 = prox,, (zf — . DTGI) 9P (ghy), (3.14)

for ¢ > 0 and ¢ > 0, which are learnable parameters of ML-CSC framework. The proximal
of g;_1(D;.) involves a composite term, an approximation for representations z; is proposed
such that x;_, = D;x;. Therefore, for ith layer of the framework the update of (3.14) can
be modified as,

¥+ = prox,, (zf — t.DTG]) "1k ), (3.15)

with approximation of composite term, the calculation of proximal mapping of g term

becomes soft thresholding that is prox,,, = 7a(z). For a multi-layer model, the ISTA
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update step can be written as:

1

t
o To ok — DT (e — T (ke — DT (D, —9)), (Bu16)

The algorithm employing multi-layer ISTA takes images in k-space along with their C$
measurements, learns the mappings from CS measurements with ground-truth images, anctl
saves the mappings in the form of model parameters of ML-CSC. The testing module
reconstructs the test images with the help of trained ML-ISTA learned parameters and gives
PSNR/SSIM of recovered images. The framework initializes the dictionaries with Xavier
initialization {130] for all layers. The multilayered basis pursuit algorithm employing an

iterative thresholding algorithm for multi-layer pursuit is given in Algorithm-2.

Algorithm 2 ML-ISTA for CS-MRI
Require: (y,,z;]¥,, dictionaries D; and ),

Ensure: Model containing parameters of neural network for CS-MRI image restoration.
{vi, x;}X | are images in k-space and their corresponding CS measurements, NV is
size of trainset
1: InitSetzf =y, V k and 1l =0
2. for k=1:Kdo

£, Dipzs V,[0,L—1]
3: for for i=1:L do

5t Toa (3, ~ ¢, DT (Did; — «51))) > Find set of representations
4: end for
5: end for > Save model with Epoch number

The training module (Figure-3.1) takes pairs of images, their corresponding CS mea-
surements in k-space along with undersampling masks and trains the model parameters.
The learning Algorithm-2 uses ML-ISTA unfoldings to increase depth of learning frame-

work without incurring cost of additional parameters. The testing framework takes the test
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ML-ISTA Module

Images with
C5 measurements

Figure 3.1: Framework for CS-MRI.

set images, undersampling masks, and the parameters of the saved model to reconstruct un-
dersampled test images and comparing the metrics of PSNR and SSIM with ground truth
images along with restoration time.

The pseudo-code for training and testing the CS-MRI framework is given below.

ML-ISTA CS-MRI PSEODOCODE
* Training ML-ISTA with MRI Train Data:.

Reqguire; Input: MR images, their CS measurements, random masks, [; and A,
Ensure: Model containing parameters of ML-ISTA for CS-MRI reconstruction.
« Run encoding to find representations for given layers
for Unfoldings=1,2.., do

+ Find representations using ML-ISTA with global pursuits

+ Train and save model with EPOCH number and minimum loss

end for

» Reconstruct Test set with trained model.

Require: Trained model, MR test images, undersampling masks
Ensure: Reconstructed images with PSNR |, SSIM and reconstruction CPU/GPU time
for i=1:N do

» Run ML-ISTA with leamed dictionaries from trained model
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* Reconstruct MR images

* Calculate PSNR and SSIM of testset > N is the size of test selij;

end for

3.2.2 Architecture

The proposed framework takes advantage of iterative thresholding-based pursuit algoritllrds
along with the learning capability of the ML-CSC model and maps each learning update to
an ML-ISTA-based unfolding. The sparsifying transform is replaced with ML-ISTA learn-
ing, which is denoted by D(.). In the multilayered basis pursuit algorithm, D(.) consists qf
six convolutional layers with ISTA-based pursuit (Equation (3.16)), as given in Algorithm-
2. After replacing sparsifying transform with learnable parameter D(.), Equation (3.2)
becomes:

. 1
:c=argmzm§||<1>a:—y[[%-k)\HD(:c)Hl, @G.17
The ISTA update for CS reconstruction is given by;
1 1
T* = "1 — pV 5|0z — y|lY), 2 = argmin 5| @z — THE + NID(@)]l;,  (3.18)

The ISTA update consists of the gradient of data fidelity term used for intermediate recon-

struction of images.

ISTA-Module

ISTA module generates a representation of intermediate results with learnable step size p.

Proximal Mapping

The z* takes ISTA update as input and computes = according to Equation (3.17).
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323 Training Loss for CS-MRI Framework

Given pairs of MR images with their corresponding CS measurements, the framework pro-
duces intermediate reconstructions denoted by x7*°, The loss function is designed to seck
reduced discrepancy between the input images and the intermediate reconstruction satis{y-

ing symmetry constraint of D*D* = [,¥ k = 1,2, .., in check. The end to end loss is thus

defined as:
1 N .
— ec 2
sd:screpancy = m E = 1“3-7,_ - iri”z
1 ZN ZU A (D 2
eonstramt = _IN i=1 k=1||p ( (:r,)) - .’.E,-Hz
Etota.l = Ediscrepancy + ’\Ecmstrumt (319
—— Total Loss —— Total Loss
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Figure 3.2: Train set losses for brain MR (lef¢) and knee MR (right) datasets.

where image size [, number of images N, ML-ISTA unfoldings [/, learning rate ) ate

parameters used in above equations. A learning rate of le-4 with Adam optimizer [131]

and learning rate decay factor of 0.2 is used in Pytorch impleméntation. The discrepancfy.
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constraint and total losses along with the number of EPOCHs are given in Figure 3.2 for

brain and knee MR datasets.

3.24 Datasets

The first dataset used for training the CS-MRI framework comprises 622 knee MR images
of adult patients (Male and Female) aged between 18 to 40 years, with the coronal view
and Proton density (PD) fat saturation, collected from a 1.5T imaging unit (Siemens MAG-
NETOM Symphony) at Hospital Kuala Lumpur (HKL). The patients underwent knee MRI
scans for anterior cruciate ligament (ACL) tear diagnosis and a certified radiologist labeled
the images for ACL tear types of complete, partial, and normal knee categories. The sec-
ond dataset has been taken from [68], with 850 brain images acquired in axial and sagittal
planes. A test set size of 5% is used to validate the performance of the testing framework
in both data sets for analyzing PSNR and SSIM on reconstructed images. The third dataset
comprising brain images is of the normal aging coronal plane with 123 slices, matrix size
(256 x 256), and is publicly available on the AANLIB database of Harvard medical school
at http://www.med.harvard.edu/AANLIB/home.html [132] used by Murad et al. in [133].
We have also used a single image consisting of a single-slice (axial T2-weighted reference
brain image) dataset of size (256x256), Vivo MR scans from American Radiology Services
as used by Prasad et al. in [51]. The framework was trained on a workstation with core i9-
9900 and RTX-2080Ti GPU. PSNR along with CS-ratios and reconstruction time is given
in Table-3.2 for ADMM-Net [134], ISTA-Net [68] and our proposed framework.

3.3 Empirical Results

Figure-3.3 gives ground truth images along with the restored images emphasizing the ACL
and three tear types.The three types of masks which are used for undersampling in k space
for CS-MRI reconstruction algorithms [77] are given in Figure 3.4. In our proposed frame-

work, the random mask has been used for undersampling in & space, and results were
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obtained for different CS ratios. Results for CS-MRI reconstruction of four different bench-
mark test sets, CS ratios along with PSNR/SSIM, and restoration times are given in Table
3.1. PSNR/SSIM for the brain MR dataset of [68] is given in Table 3.2 for comparison;
The image-wise PSNR/SSIM along with the average PSNR/SSIM plots of reconstructed
images for both datasets are given in Figure-3.5 for Brain MR images and Figure-3.6 fot

Knee MR images.

Complete tear Partlal tear Normal ACL

Complete baar

Partial tear Normal ACL

Figure 3.3: Knee MR ground truth images (top} and reconstructed images (bottom), for
ACL tear identification with 5-fold acceleration factor

331 Clinical Application

MR imaging plays a crucial role in the medical imaging pipeline comprising diagnosis,
treatment planning, treatment delivery, and follow-ups. ACL tear is one of the common
sports injuries, diagnosed with MRI scans by clinicians to compliment and support physical
examinations like the Lachman, pivot shift, and anterior drawer tests of ACL tear patients

for assessment of the knee injury.
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{a} Cartesian mask {b} Radial mask {c) Random mask

Figure 3.4: Examples of undersampling mask
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Figure 3.5: PSNR/SSIM of brain MR[68] test set

For CS-MRI practical applications, the reconstructed images from undersamnpled acquisi-
tions must be of high quality for radiologists to successfully diagnose different types of
ACL tears, the status of the meniscus, and pathologies of patients. The proposed frame-
work successfully restores undersampled images and gives a good PSNR/SSIM for the
5-Fold acceleration factor (20% CS-ratio), as shown in Table-3.1, and Figure-3.3 for both

datasets.
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Figure 3.6: PSNR/SSIM of Knee MR test set

Table 3.1: Average PSNR/SSIM and restoration times of reconstructed brain and Knee
MR images

Dataset CS Ratio GPU Time

20% 30% 0% 50%
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
Brain[51] 3897/0.9641 42.30/0.9799 45.16/0.9876 49.06/0.9924  0.0216s
Brain[68] 39.25/0.9551 41.50/0.9689 43.66/0.9774 4596/0.9855  0.0688s
Brain[132] 31.68/0.8782 35.21/0.9234 383509554 41.60/0.9724  0.0409s
Knee  36.93/0.9262 39.68/0.9569 4204/0.9738 434409824  0.0977s
332 Discussion

The proposed framework has been trained on a brain MR dataset of 800 images and teste!cl
on three benchmark test sets with encouraging and comparable results demonstrating ms
generalizability. The zoomed part of regions of interest for ACL tear pathology showekl
reasonable reconstruction quality of images in terms of PSNR/SSIM as given in Table 1.
The results of knee datasets exhibit better performance as compared to the brain dataset
as shown in Figure 5 and Figure 6. One reason for these improved results can be the

acquisition of the knee MR dataset, as all the train and test sets contain images from the
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Table 3.2: Algorithms along with the PSNR and reconstruction times of brain MR imagesi

Algorithms CS Ratio GPU/CPU Time
20% 0% 40% 50%
PSNR  PSNR PSNR PSNR
ADMM-Net 37.17 3984 4156 43.00 0.95355/--
ISTA-Net* 38.73 4089 42.52 44.09 0.1437s-.-
ML-CSC 39.25 4150  43.66 4596  0.0688s/2.85

coronal plane. On the other hand, the brain dataset comprises images from axial and sagittal
planes. The restoration results showed better performance in terms of average PSNR/SSIM
with state-of-the-art, comparative performance on a single image, and dataset of 123 MR
images of the brain. The framework also demonstrates the relative benefits of traininé

frameworks on different custom datasets acquired in specific planes (e.g. axial or coronalb
and restoring images in relevant planes with better quality. As the test framework only use
saved parameters from the training framework, it can be readily integrated into clinicdl

settings for improving the efficiency of the MR imaging pipeline.

Summary

In this chapter, a CS-MRI restoration framework based on multi-layer convolutional sparse
coding, employing iterative thresholding algorithms for basis pursuits to learn parameters
of nonlinear mappings from undersampled MR images acquired in & -space was proposed.
Empirical results showed that the proposed MRI-CS framework learned the desired map-
ping from CS measurements effectively for brain and knee MR images after training on
masks with different CS ratios. Furthermore, at the cost of a smaller increase in learn-
able parameters of a deep neural network, the CS reconstruction results are improved with
reasonable reconstruction time as compared to the state of the art. The images can also
be successfully restored on a CPU-based machine with parameters learned from models
trained on GPU in a reasonable amount of time. The generalized structure and application

to four different datasets also signify the applicability of the framework in practical appli-
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cations in the MR imaging pipeline for increasing the efficiency of clinical diagnosis.
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CHAPTER 4
IMPLEMENTATION OF MULTI-LAYER CONVOLUTIONAL SPARSE CODING
BASED FRAMEWORK FOR BIOMEDICAL IMAGE CLASSIFICATION |
PROBLEM

Deep learning architectures have been extensively used in recent years for the classification
of biomedical images to assist clinicians in the diagnosis and treatment management of pa-
tients with different health conditions. These architectures have demonstrated expert-level
diagnosis, and in some cases, surpassed human experts in diagnosing health conditions.
The automation tools based on deep learning frameworks have the potential to transform
all stages of the medical imaging pipeline from image acquisition to interpretation and anal-
ysis. One of the most common areas where these techniques are applied is knee MR image
classification for different types of Anterior Cruciate Ligament (ACL) tears. If properly
and timely managed, the diagnosis and treatment of ACL tear can avoid further degrada-
tion of patients’ knee joints and can help slow the process of subsequent occurrence of
knee arthritis. In this work, we have implemented a novel classification framework based
on multilayered basis pursuit algorithms inspired by recent research work in the area of the
theoretical foundation of deep learning with the help of celebrated sparse coding theory.
We implement an optimal multilayered Convolutional Sparse Coding (ML-CSC) frame-
work for the classification of a labeled dataset of knee MR images with the coronal view
and compare the results with a traditional convolutional neural network (CNN) based clas-
sifiers. Empirical results demonstrate the effectiveness of the ML-CSC framework and
show that the framework can successfully learn distinct features on small a dataset and
achieves a good efficiency of more than 92% without employing regularization techniques
and extensive training on large datasets. In addition to 95% average accuracy on the pres-

ence and absence of ACL tears, the framework also performs well on the imbalanced and
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challenging classification of partial ACL tear with 85% accuracy.

Deep learning techniques have been used for classification problems of images with im-
proving accuracies on unseen test sets. In biomedical imaging, the potential of deep learn:
ing techniques to assist clinicians in diagnosis and treatment management has been ex-
plored in research works. One of the areas where deep neural networks are applied fof
classification is labeled MRI images of knee Anterior Cruciate ligament (ACL) tear. In
this chapter, a classification framework based on a multilayer convolutional sparse coding
framework is proposed. With the help of extensive empirical experiments on knee ACL
tear data set, the effectiveness of the proposed model is shown as compared to the state-oft
the-art traditional CNN-based classifiers.

In this work, we have implemented an optimal framework for multilayered basis pursuit
algorithms and demonstrated through experiments its applicability to the classification o&
biomedical images. The novel architecture, which is optimized for the classification df
biomedical images, trained on an original dataset of knee MR images, achieves a good av-
erage test accuracy of more than 92% and class-wise test accuracy of 95%, outperforminé
traditional CNN without adding regularization parameters and computational complexity.
In the following, a brief overview of the clinical background of ACL and its tears, a brief
overview of CNNs, the multilayered sparse coding model, and image classification in the
context of CNN and ML-CSC are given. Furthermore, overviews of iterative threshold-
ing algorithms for single layer basis pursuit and its extended version in multilayer settings
along with multilayered basis pursuit are given. Lastly the ML-CSC model, its implemern-
tations for classification of biomedical image dataset, and experimental results of image

classification of the knee ACL tear are given.
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4.1 Anterior Cruciate Ligament Tear - Background

An anterior cruciate ligament (ACL) is one of the key ligaments that help stabilize the kncq
joint, These ligaments connect the thighbone (femur) to the shinbone (tibia) (Figure 1). In-
juries of ACL are most often a result of low-velocity, noncontact, deceleration injuries, anci
contact injuries with a rotational component. A complete tear is characterized by rupture of
the ligaments and partial tear by stretching of the ligaments becoming loose and damalged‘i
The MR images with a partial tear, normal knee, and complete ACL tears are given from

dataset used in this work (Figure 4.1)

Normal ACL Torn ACL

Femur
\\ Anterior Cruciate

Ligament ( ACL) _. ACL Tear

{, ﬁ Posterior Cruciate
AT | Ligament

: & i‘:fﬁ E
} ~Fibula I I
5] J P

Figure 4.1: Knee anatomy with normal and torn ACL tears (Coronal view)

The diagnosis process involves an emphasis on the history and physical examination
of affected patients. The Lachman, pivot shift, and anterior drawer tests are three types of
physical examinations performed on ACL tear patients for assessment of the injury. Out
of these three tests, the anterior drawer test has the highest sensitivity of 94% [135]. MRI

examination coupled with physical examination helps clinicians in identifying ACL tear
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types in addition to identifying bone bruising, which is present in most of the patients with
an ACL tear. Once the ACL tear is diagnosed, the treatment plan is devised by clinician$
for rehabilitation or surgical intervention according to patient condition and medical profile,
Studies have been reported that, in some cases, an average radiologist must interpret on¢
image every 3-4 seconds in an 8-hour workday to meet the workload demand. Under
these conditions, the errors are inevitable for radiology tasks where visual perception and
decision making are involved [136]. An integrated Al system in the imaging pipeline,
which enables the trained radiologist to receive pre-screened images would enable better
decision making especially in heavy workloads in addition to helping in the diagnosis of
ACL tear of knee injury patients in regions where trained MSK - radiologists are difficult
to access. Besides, the ability of machines to scan large amounts of data enables them to

generalize the classification algorithms for better decision-making.

4.2 Deep Neural Networks for Classification

With improvements in hardware for processing of a large number of images, it became fea-
sible to train large neural networks for classification tasks on datasets of different sizes. The
seminal work of [117] significantly improved the state of the art classification of general
images using graphical processing units. The work achieved an error rate of more than 15%
on the ImageNet dataset. This error rate has been improved significantly since then on gen-
eral datasets available for research purposes. In addition to general datasets, Rajpurkar et
al. in [118] implemented a 121 layer deep neural network for radiologist-level pneumonia
detection on chest X-rays. The algorithm was trained on a large dataset of Chestx-rays14
[119]. Rajpurkar et al. in [137] developed a 33 layer CNN for detecting a wide range of
heart arrhythmias from single-lead ECG records. Liu ef al. in [121] used classification
performance of DL networks as compared to clinical reports for binary classification (tear
or nor tear presence), and concluded that there is no significant difference between the

two. The study by Chang et al. in [122], demonstrated the feasibility of a high-performing
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CNN tool to detect complete ACL injury with over 96% test accuracy for binary classifica-
tion problems. The study, which excluded cases with partial tear and mucoid pathologies
demonstrated the feasibility of high performing CNN tool, with customized CNN archi-
tecture and dynamic patched-based sampling with five-sliced 3-D input. The results of the
study in [123] suggested the usefulness of preoperative MRI-detected lateral meniscal ex-
trusion (LME) for estimating lateral meniscus posterior root tear (LMPRT) in injured knees
with an ACL tear. Although there is a significant improvement in application to classifica-
tions and inverse problems in the context of DL architectures, the theoretical foundations
of DL largely remain heuristic. One such very useful heuristic technique which is widely
applied in DL architectures as regularization to avoid overfitting the model on test data is
a dropout. This technique randomly discards activations to improve classification accuracy
on tests sets and avoid over-fitting by the learning model. These regularization techniques
have been improved recently with the proposal of stochastic techniques to further reduce
overfitting by DL networks [124].

The recent research addressing the limitations of DL architectures has focused on a the-
oretical explanation of the working of deep learning frameworks. In [35, 38], authors
elaborated the significance of theoretical understanding of deep learning and proved the
connection between widely used CNN architectures and celebrated sparse coding theory.
The sparse coding theory which has been successfully used in an inverse problem in imag-
ing and classification tasks was shown in [35] to be tightly connected to CNN. The work
established a connection between CNN and sparse coding theory and further gave insights
to the multilayered version of sparse coding. Further work by [125] pointed out the subop-
timal performance of the model presented in [35]. The work in [125] analyzed the proposed
multilayered basis pursuit in the context of a combination of synthesis and analysis. Fur-
ther extending the work on multilayered basis pursuit and its application to explain CNNs
and performance on applied problems of classification, Sulam e al. in [1] introduced a

multilayered basis pursuit framework wherein an /; norm penalty was proposed on inter-
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mediate representations of the multilayered framework. [1] showed that iterative thresh-
olding algorithms can be used for multilayer basis pursuit and demonstrated the framework
effectiveness on classification tasks of general datasets of MNIST, SVHN, and CIFAR-10
with improved performance of thresholding algorithms as compared to the CNNs.

In this work, we have implemented an optimal framework for multilayered basis pursuit
algorithms and demonstrate through experiments its applicability to the classification of
biomedical images. The novel architecture, which is optimized for classification of biomed-
ical images, trained on an original dataset of knee MR images, achieves a good average test
accuracy of more than 92% and class-wise test accuracy of 95%, outperforming traditional

CNN without adding regularization parameters and computational complexity.

4.3 Convolutional Sparse Coding Model-The Multilayered Basis Pursuit

Sparse coding theory works on the premise of first learning filters (weights/dictionaries)
from given data and then finding their sparse representation from those dictionaries for
the representation of given images. Once the underlying structure is successfully modeldjd
through sparse coding theory, the problems of reconstruction on images from noisy mea-
surements, retrieving/reconstructing a signal in compressive sensing domain, and classifi-
cation of test sets on already training dictionaries and sparse maps can be done successfully
with the help of different algorithms developed over the years and applied successes fully
in different domains. In sparse coding theory, formally, a given signal y admits a sparse
representation in terms of a dictionary D, if y = Dz, and z is sparse. Given dictionary D,

the celebrated basis pursuit problem with /; norm penalty is formulated as,
min ||z|; 5.t.]|y ~ Dzl|3 (4.1)

This modeling theory was extended in [35] to multilayer settings, providing a connection

between sparse coding theory and state-of-the-art DL architectures. The traditional sparse
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coding model assumes the dictionaries without any structure. Whereas in CSC, which is a
special form of sparse coding [2]), a special structure on learned dictionaries is imposed with
filters banded together and concatenated in circulant form. In the multilayered version of
CSC, which is an extended version of CSC, the sparse feature maps thus obtained from one
layer are then treated as input to the second layer, and dictionary learning and sparse coding
steps are repeated for subsequent layers. The CSC model represents a signal of interest as
multiplication of dictionaries D and sparse vectors z. The deep learning problem in the
context of sparse coding theory, which is shown as a theoretical explanation of CNNs [35],
can be formulated as follows. For a global signal X, convolutional dictionaries D and

sparse vectors , and k£ number of layers, the deep pursuit problem is defined as [125]:

Find [r)f, st |ly—Duz]2<e
Ti—1 = Dl.’L'i vV 2 S ] S k (42)

lzillo<s; V 1<i<k

A convex relaxation proposed in [1] for deep pursuit problem result in multilayered basis

pursuit. For a two-layer model, the problem can be formulated as,
.1 9
IIl;Ilé'Hy—D1D2I“2+)\1||D2.’L‘”1+)\2||.’L‘||1 (43)

In case A;, Ay = 0 and A; > 0, the above formulation is equivalent to traditional basis
pursuit with global dictionary. With A, \; > 0, analysis priors are imposed on set of

sought after representations z with regularized solutions as a result.
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4.3.1 ML-CSC for Classification

Given sparse vectors ['* and dictionaries D, the classifications problem can be formulated
in deep sparse coding context as,

min j I(f(R(X;),U,T*(X;), D) (4.4)

Where sparse representations I are fed to the classifier after dictionary learning, multilayer

basis pursuit, and training of the classifier.

4.4 Algorithms

DL architectures and algorithms traditionally deal with high dimensional settings where
second-order methods result in prohibitive computational complexity and slow conver-
gence rates. The proximal gradient descent which uses first-order approximations for up-
dating its optimization steps is, therefore, a suitable choice for multilayer basis pursuit dug
to its dependence on sparse prior terms instead of the convex term [129]. This algorithm
only needs to calculate the sub-gradients of convex term and proximal mapping associatetl
with update depending on sparse prior. The convergence analysis is done in terms of the

number of iterations of the algorithm.

4.4.1 Layered Basis Pursuit

The layered basis pursuit (L-BP) given in [35], addresses sequence of pursuit of the form:
.’i‘, - arg min ||.’£‘,‘_1 — D.’L'IHLZ; + )\L”|.’L‘1”1 (45)

where 7y = y and i=1 to k.
These algorithms [68],[128], which present heuristic approximation do not minimize Equa-

tion (4.3) and each layer is required to explain next layer only so cannot be used to generate
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Figure 4.2: Multilayered basis pursuit based framework for MR image classification.

signal according to multilayer sparse model. Algorithm-3 for layered basis pursuit which

Algorithm 3 ML-BP
Input signal y, dictionaries D,
Init Set £, = y,
L fori=1:%do

. s MODFELY

' o Pi(D,, 24, M)
3 retum[Z,])5 > Set of representations
4: end for

seeks sparse maps z, subject to constraints given in of Equation(4.2) for P, term (which is

basis pursuit) and thresholding operator H at each layer of the neural network.

4.4.2 Iterative Thresholding Algorithms (ISTA)

ISTA is a first-order method for optimizing functions comprising composite terms origi-
nally proposed in [70]. A faster version of this algorithm FISTA was proposed in [127]
introduced momentum term, giving improved convergence rates. These algorithms require
matrix-vector multiplications, therefore are appealing due to their low complexity. The

ISTA provides convergence in function value in the order of ((1/k) and its fast version
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FISTA provides better convergence rate in the order of O(1/ k?). The proximal gradienft

method ISTA works by iterating the updates given by the proximal operator. As g(.) in

Algorithm 4 ISTA
Init 2° € f(x)
1: for any k=0,1,2. do
22 M =proxig(z - -V f(z))
3: end for

Equation(4.3) is sum of /; composite terms so, application of ISTA algorithm is not feasi-
ble. Another feasible alternative the generalized LASSO [138] can also be computation-
ally expensive due to the requirement of inversions of linear operators during optimization.
The iterative algorithm employing re-weighted l, norm approaches proposed in [139], f@r
compressive sensing also requires iterative matrix inversions and is thus computational]}y

expensive.

4.4.3 Multi-layer ISTA and FISTA

For a composite model comprising a smooth and convex term f(z) and convex and net

necessarily smooth term g(z), the objective function is given by
F(z) = f(z) + g(z)
The gradient mapping is the operator given by:
G1(z) = Lz = prox9(z - V(@) 46

Where L is Lipschitz constant.

The ISTA update step for Equation(4.6) is given by,

1
L

" =gk ZG09(x) 4.7)
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The optimization problem of multilayer basis pursuit is given by
min F(z) = f(Dyx) 4+ g1(D21) + g2(7)
The sparse representations for second layer are
F(z3) = f(Daxa) + g1(Dax2) + ga(T2)
The update for the gradient mapping method is given by:

57 = o o4 1t @

Here c and ¢ are constants with specific bounds for convergence of the subject algorithms.
As g1(Ds.) is composite term in Equation (4.8), in order to avoid calculating its proximal
mapping, the term D,z, is approximated with x, that is z; = Dyx,. The approximation
results in calculation of proximal mapping of z; in in Equation (4.8). The update far
Equation (4.8) becomes:

25! = prox,,, (zf — t.G{}) "% af) 4.9)

Consequently, the proximal mapping of composite term after approximation becomes soft
thresholding of z; which is equal to z; = T;),z;. The update step for ML-ISTA after above

approximation becomes:
t
257 = Tog[2 — - Dj (2} — eD{ (Dyf — )] (4.10)

Algorithms for ISTA and FISTA in multilayer settings are described in Algorithm 5 and

Algorithm 6 respectively.
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Algorithm 5 ML-ISTA
Input signal y, dictionaries D; and A;:
InitSetzf =y, Vkand z} =0
1: for k=1:K do
2 Ti D{f,f,):lii Vs [U, L-— l]
3 fori=1:Ldo
4 it Too (& — DT (Didi — 22)))

t Set of representations
5 end for
6: end for

Algorithm 6 ML-FISTA
Input signal y, dictionaries D; and A;;

Init: Setzf =y, Vkand z = 0;
1: for k=1:K do

2: Ty — D(t,sz Vg [O, L~ 1]
3 fori=1:Ldo

4: 25t Tan (@ — pDT(Dd; — 2¥4)))

5 best 1++/1+445

2

. K+l t=lg k+l _ .k
6: zézp + Ag(Er —xg)
> Set of representations
7T end for
8: end for

The FISTA algorithms incorporate the momentum term which improves the conver-
gence rate, The framework for classification with iterative thresholding algorithms is given
in Figure 4.3 and pseudocode is presented in Appendix-A. The ISTA module described in
Figure 4.3 computes representations according to Algorithm 4. First, the encoded feature
maps are backward computed for the three layers framework, and the iterations and un-

foldings progress according to the ML-ISTA algorithm in Figure 4.3. The (-) sign given in
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Figure 4.3 depicts subtraction of resulting representations after convolution and transposed
convolution operations are carried out with dictionaries D. The number of unfoldings in«
side the ISTA module enables the shallow network to increase depth without having any

impact on the number of parameters.

444  Unfolded Iterative Algorithms as Neural Networks

Unfolded iterative algorithms are successfully used in recent research works [67, 140, 141,
142]), for solving sparse recovery problems. To speed up the computational cost associ-
ated with approximation algorithms, the work in [140] showed a combination of optimiza-
tion and neural networks to produce deterministic functions to successfully approximate
parsimonious/sparse models resulting in a significant reduction in computational time for
applications requiring real-time performance such as image modeling, robust face model-
ing, audio sources separation and robust speaker recognition. The work in [141), proposed
a partial weight coupling structure to leamed iterative thresholding algorithms (LISTA)
and support selection for improved convergence rate with experimental demonstrations. A
two-layer ISTA network is given in Figure 4.3. The classification framework implements h

multilayer ISTA and FISTA framework with two unfoldings.

Figure 4.3: A two layer ISTA model as illustrated in [1]
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4.5 Experiments and Results on Knee MR Dataset

We use a dataset of 623 MR images comprising 205 {(complete tear), 205 {normal), and 213
{partial tear) images with the coronal view. Data collected in the study include adult pa.
tients, aged between 18 to 40 years {(Male and Female), with Proton density (PD)-weighted
images and fat saturation. The images were labeled by a certified MSK-radiologist at Hos-

pital Kuala Lumpur (HKL). An 80-20 split is applied for train and test. This work does

Partial Normal Complete

Normal

Figure 4.4: Labeled Knee MR images from Knee MR dataset

not employ regularization techniques of dropout and batch normalization to provide a clear
experimental setup and demonstrate its effectiveness on a framework with application to
biomedical image classification. All algorithms use three convolutional layers, with a filter
size of 5 in each layer, and the number of feature maps of 16,32 and 32 size for layers ong,

two, and three respectively. These parameters have empirically experimented for optimal
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performance on this dataset. Similarly, all algorithms use a learning rate of 0.001 and batch
size of 3. The optimizer parameters of weight decay (an [, weight regularization) and learn;
ing rate scheduler values have also been kept the same for all algorithms. All models have
been trained with stochastic gradient descent. Table-4.1 gives precision, recall, average ac-
curacies, and F-1 scores for baseline CNN, and All-Free learning framework and proposed
ML-ISTA, ML-FISTA, and ML-BP with network unfoldings.

Table 4.1: Precision, Recall, Accuracy and F-1 scores of iterative thresholding algorithms
with unfoldings

Algorithms Precision Recall Accuracy F1-Score
CNN 87.79 90.30 88.19 88.34
All Free 88.77 89.50 89.89 89.58
ML-FISTA-unfolding= 1 82.29 82.18 82.00 82.14
ML-FISTA-unfolding = 2 90.45 90.55 89.43 90.45
ML-ISTA-unfolding = 1 87.50 88.10 88.00 87.30
ML-ISTA-unfolding = 2 91.00 91.29 91.96 91.03
ML-BP-unfolding = 1 92.42 92.68 92.20 92.42
ML-BP-unfolding = 2 90.01 90.01 90.90 89.58

Table 4.2: Class-wise accuracies and test loss

Algorithms Partial ACL tear Complete Average accuracy Test Loss
ACL
tear
CNN 71 95 88 0.1291
All Free 71 97 89 0.0814
ML-ISTA 85 93 92 0.0785
ML-FISTA 73 98 89 0.1845
Layered BP 82 100 92 0.0814

The classification metrics of the framework with the highest average accuracy have been
highlighted to emphasize the effectiveness and better accuracy of proposed frameworks as
compared to baseline. Class-wise accuracies, average accuracies, and test losses of CNN

and proposed algorithms are given in Table-4.2, with emphasis on the framework with
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better classification accuracies on complete ACL tear and partial ACL tear.

4.5.1 Multi-layered Iterative Thresholding Algorithms with Unfoldings

The results of the classifier based on features extracted by multilayered iterative threshold+
ing algorithms are given in Figure 4.6 and Figure 4.7. The classifier performance is given
for two unfoldings (1 and 2) and a further increase in unfolding value results in divergence
of algorithms. The training accuracy of implemented frameworks is given in Figure 4.9
for unfoldings 1 and 2. Train losses and validation losses for the number of unfoldings are
depicted in Figure 4.10 and Figure 4.11 respectively. The empirical results show improve-
ment in Jearning performance of the proposed classification framework, a sharp decrease in
loss curves, and better classification accuracy as unfoldings are increased. The ML-ISTA
framework with two unfoldings outperforms CNN and ML-FISTA with reasonable mar-

gins as shown in Table-4.1.

4.5.2 Layered Basis Pursuit

The layered basis pursuit algorithm is incorporated with the same architecture and hy-
perparameters of baseline CNN and results are added for comparison. The algorithm as
proposed in [35], is implemented with each iterative shrinkage iteration unrolling at each
layer. Whereas in the case of ML-ISTA and ML-FISTA, unrolling of iterations is done for
the entire multi-layer basis pursuit problem. The experimental framework uses two itera-
tions and results are given for comparison with CNN in Figure 4.8. The ML-BP framework
with single unfolding has comparable results with the ML-ISTA framework and outper-

forms baseline with reasonable margins in terms of average accuracy.

4.5.3 An Adaptive Learning Framework

In addition to the three generative models described above, an all-free learning framework

consisting of three layers with the same number of feature maps as CNN is also imple-
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Figure 4.5: Confusion matrices of CNN and All-Free framework
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Figure 4.11: Validation loss for unfolding = 1 (left), and unfolding = 2 (right)

mented. In this framework, the dictionaries and corresponding representations are ada;i-
tively learned for the subject dataset. The all-free model is trained on the same number aof
layers and relevant parameters for a recurrent architecture. Framework for ML-ISTA, ML—
FISTA, and layered BP has the same number of parameters as of CNN, whereas all fre@:
framework has QLK) parameters, L is the number of layers (here 3 layers are used) an@ii
K is the nomber of unfoldings. The results for classification accuracies for baseline CNﬁcI
and all-free recurrent architecture are given in Figure 4.5, Table-4.1, and Table-4.2. The
number of iterations of the framework slightly improves the accuracies on given classes as

observed in ISTA and FISTA architectures.

454 Data Augmentation

MR data used in the architecture is first center cropped for an image size of 320x320 and
then normalized with the mean and standard deviation of the dataset. Of many transforms
available in Pytorch, the center crop proves very effective in this architecture, and the learn-
ing curve for the training dataset follows a steady pattern of decrease with an increase in

the number of epochs.
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4.5.5 Class Imbalance

When there is an imbalance in classes, DL frameworks give poor classification accuracy in
certain classes. For the knee ACL tear classification problem, the classifiers give poor accu-
racy for the challenging problem of partial ACL tear classification as compared to the other
two classes. To circumvent this issue, the oversampling of the partial tear category is done
during the training phase. This technique significantly increases test accuracy for partiai
ACL tear class when equally applied for CNN as well as the proposed framework, resulting
in improved results of the proposed framework with two unfoldings in comparison to other
classification algorithms. The accuracies and effectiveness of biomedical classification al-
gorithms can be further improved by incorporating the learning framework with different
datasets comprising different age profiles (young and aged population) and gender profiles

for a more specific and accurate diagnosis.

4.5.6 Deep Learning Architecture and the Challenge of Overfitting

The DL architecture was chosen for this problem of classification, the size of filters and
number of feature maps were observed to be optimal for this dataset of knee MR images4i
Deeper architectures for CNN, with a higher number of feature maps, resulted in the un-
derfitting of the learning model. The effect of the performance of the classifier is given
to demonstrate the effectiveness of ISTA, FISTA, and layered basis pursuit with unfold-
ings, which uses the iterations of the algorithm to extend the depth of the network without
increasing the number of parameters. With improved results in terms of accuracy of clas-
sifiers as shown in confusion matrices are given in Figures 4.6, 4.7, and 4.8, the unfolding
increases the classification performance of the implemented framework, especially on an
imbalanced class of partial ACL tear. Unlike the CNN, where the increase in depth of
neural network results in underfitting of learning model, this framework successfully can
be implemented with two unfolding for ISTA (Figure-4.6), FISTA (Figure 7), and L-BP
(Figure 4.8).
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4.5.7 Discussion

The challenging problem of identification of partial ACL tear, which is characterized by
stretching and weakening of the knee ligaments is diagnosed by clinicians with clinical
tests along with MR imaging and arthroscopic examinations. In our work, the MR images
with coronal PD were used for training and testing the framework, as the coronal imaging
plane is mainly used by radiologists to trace ACL fibers from origin to insertion. In the
proposed framework, the partial tear class is successfully identified with 85% accuracy by
ML-ISTA and 82% accuracy by ML-BP. The cases of complete ACL tear class which are
characterized by the rupture of the knee ligaments are identified with 98% accuracy by
ML-FISTA followed by ML-BP framework which has an accuracy of 97%. Overall, the
ML-BP algorithm results in the highest average classification accuracy on all classes as
shown in Table 4.1 and Table 4.2.

Generally, the presence of notch origin tears makes the diagnosis of a complete ACL tear
difficult for radiologists to detect in clinical settings. Another possible reason for misclassi-
fication of the complete ACL tear class is the mild focal intrasubstance degeneration rathe“r
than a complete tear.

As MRI-based pathology is localized to small regions of interest, the image crop operation
applied in our work significantly improves the learning network training accuracy. This
insight can be used to further improve the framework with the incorporation of training im-
ages comprising of sagittal and axial planes, which are part of standard knee imaging pro-
tocol used in clinical applications. The evaluation and interpretation of three-dimensional
(3D) data is another unique feature associated with cross-sectional imaging. For muscu-
loskeletal injuries, the combination of 3D contextual information of ligaments in the imag-
ing pipeline is especially useful for diagnosing ACL tears. Furthermore, the performance
and generalizability of the framework may be improved with the incorporation of different

magnetic field strengths, scanning protocols, and vendors of MRI scanners.

86



g

Summary

In this chapter, a multilayered convolutional sparse coding (ML-CSC) framework employ+
ing iterative thresholding pursuit algorithms was implemented and demonstrated its ef-
fectiveness in terms of classification accuracy in comparison to traditional CNN-based
frameworks. Algorithms of gradient mapping schemes like iterative thresholding algorithlﬁ
(ISTA), fast iterative thresholding algorithm (FISTA) along multilayered basis pursuit were
implemented for feature extraction and training of the classifier. The framework was ap-
plied to a labeled dataset of knee MR images for classification and accuracies were given
for different types of ACL tears. In absence of larger labeled datasets, this work demon-
strated the effectiveness of the classification framework’s learning capability with the same
number of features as the baseline CNN, and without adding regularization hyperparamef-
ters and computational complexity to the neural network architecture. The framework alsi)
demonstrated the effectiveness of unfolding on neural networks’ performance, improving

classification accuracies on imbalanced classification problems of a partial ACL tear.
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CHAPTER 5
MULTI-LAYER CONVOLUTIONAL SPARSE CODING FRAMEWORK FOR
RESTORATION OF UNDER-SAMPLED MR IMAGES

Magnetic resonance imaging plays an important role in the diagnosis of different patholoi
gies associated with human anatomy. The need to acquire images with higher temporal
and spatial resolution induce longer scan times resulting in patient fatigue and claustro-
phobia. In addition to long scan times, the induced motion artifacts further necessitate the
reduction in scan time for better image quality in case the process is repeated. To circum+:
vent the longer scan time, parallel imaging and compressive sensing techniques have beeril1
proposed enabling 2- to 3-fold scan time accelerations. The emergence of deep leamingi
based techniques that rely on a large number of fully sampled MR images to learn imagg%
priors and key parameters. In this chapter, we propose a multi-layer convolutional sparsqj
coding framework (ML-CSC) utilizing layered basis pursuit for CS-MRI reconstructionj
and demonstrate its effectiveness with different acceleration factors. The generic architec-
ture i1s shown to provide successful reconstruction from undersampled images which can
be used for clinical interpretations. Magnetic resonance imaging (MRI) is a noninvasive
imaging modality widely used in clinical applications to assist clinicians in diagnosis and
treatment management of different health conditions [136]. One of the challenges of MRI
image reconstruction is the longer scan time needed for better quality image reconstruc-
tion. This results in claustrophobia in some patients and becomes a challenging issue in
cardiac MR imaging due to the presence of motion artifacts. To address the issue, tech-
niques like parallel imaging (PI) and compressive sensing have been proposed. In PI, the
scan time is decreased by a reduction in increment steps and utilizing the multiple receiver
coil sensitivity for MRI image reconstruction. The compressive sensing (CS) techniqué

works on the premise of acquiring k-space data being randomly undersampled has a sparsé
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representation in some basis or dictionary which are pre-defined. The non-linear image
reconstruction is done to enforce sparsity and consistency in acquired MR data. The The
Food and Drug Administration (FDA) in 2017, cleared the use of CS technology opening

the door for broader use of the technique in clinical settings [143, 144].

5.1 CS MR Image Reconstruction as Inverse Problem

The MR image reconstruction can be given as linear model of equations where the task
of reconstruction is to recover an image from its undersampled observations. The MR-C$

image acquisition problem can be modeled as:
A 1 2
s:argmmEH(D\IJs—y||2+/\||s||1, (5.1)

where ® is measurement matrix, ¥ are sparsifying basis, s are sparse coefficients i.e. =
Us, and A > 0. Typical sparsifying basis ¥ consists of wavelet, DCT or any other learned

dictionary. Substituting sparsifying transform and its sparse coefficient vectors with z, i.e.

z = Vs, and orthonormal sparsifying transform as ¥. ¥+ = [, in Equation (5.2), we have:
. 1 2 +
& = argmin 2|0z ~ y|l3 + Al a1, (5.2)

The compressive sensing incorporates the compression into acquisition with measurement
matrix & € CM*N (M <« N), to infer original signal z € C¥ from its measurements
y = ®z € CM. The compression ratio (CS-ratio) is defined as M/N.

Equation (5.2) is further generalized by replacing the regularization term with learned con-
volutional filters.

L
. 1
% = argmin 5|9z - yll3+ > Ag(Diz), (5.3)

=1

The transform matrix in Equation (5.3) is denoted by D;, which can be a gradient transform,

discrete wavelet transform (DWT), or Discrete Cosine Transform (DCT). Here, g(.) is a lg
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sparse regularization function where ¢ € [0,1]. The CS reconstruction problem can be.
categorized into different groups with the emergence of deep learning-based techniques. In
the following sections, a brief overview is given for different approaches applied for the

CS-MRI problem in recent research works.

5.1.1 Dictionary Learning-Based Approaches

In traditional CS reconstruction techniques, the transform or fixed dictionary is known as a
priori, whereas the dictionary learning techniques adaptively learn the dictionary from the
underlying MR images [53, 52]. The traditional techniques relying on fixed transform are
fast but give less accurate results, while in dictionary learning-based methods, the conver-

gence guarantees are difficult to achieve due to nonconvex optimization.

5.1.2 Low-Rank-Based Approaches

This technique utilizes the inherent high degree of correlations of MR images, representing
them with the union of low-dimensional sub-spaces [145]. In [146], patch-based recon-

struction for undersampled 2D cine MR images has been used.

513 Deep Learning and Multi-layer Thresholding Algorithms for MR Image Re-

construction

One of the main drawbacks of traditional CS reconstruction methods is dependent on the
choice of the sparsifying transform, leading to over smoothness of images when high ac-
celeration factors are used. Other drawbacks include a non-generalization of algorithms
as they depend upon specific images. For recovering an undersampled signal, an alterna-
tive approach is learning-based techniques. For the learning-based approach, given a set
of ground truth images as train set and their corresponding undersampled measurements

{xn, yn})_,, the objective of the learning-based approach is to solve the reconstruction al-
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gorithm of the form:

N
Rlearn = argrggzl f({xm yn}); De + g(@) (54)

where f(.) is a measure of the error to be minimized, © is the set of all learnable param-
eters, g(©) is the regularizer added to avoid overfitting of the learning model. The model
can be used successfully for CS signal reconstruction after the training phase is complete.
In the CS-MRI image reconstruction problem, the task is to reconstruct images from the
undersampled & space measurements. This is done with help of training a neural network
for non-linear mapping between fully sampled k-space data and under-sampled k-space
data [113, 147, 148]. The successful implementations of deep neural networks for inverse
problems in image processing, the theoretical understanding of these networks have beeLx
recently explored to improve their performance [38, 35, 1]. Taking insights from the celé—
brated spars coding theory, the multilayered convolutional sparse coding frameworks have
been proposed to theoretically model deep neural networks. This model has been used iln
[149] to reconstruct undersampled MR images with improved performance as compared
to traditional CNN-based frameworks. In this work, we implement the multi-layer basis
pursuit with layer-wise pursuit i.e ML-BP, and demonstrate with empirical experiments its
viability in the restoration task of CS-MRI. The proposed generic framework once trained
on GPU enabled machine to successfully restore undersampled MR images with desirable
quality for clinical interpretation.

The contribution of this work is the implementation of layered wised basis pursuit instead
of global pursuit for finding sparse representations of MR images and learning the non lin-

ear mapping form fully sampled dataset to under sampled datasets.

91



5.2 ML-CSC Based Framework for CS-MRI Image Reconstruction Problem

In ML-CSC-based framework employing a layered basis pursuit, a signal y admitting a
sparse representation in terms of a dictionary D, can be represented as y = Dz, with =
having a sparse structure (solution with fewer non-zero entries). After employing an Iy
norm penalty and considering the problem as NP-hard, the basis pursuit problem is given
as:

min ||zl s.t.|ly — Dx||Z, (5.5)

Each representation estimate is required to explain the immediate layer only and a signal
is not generated based on the global multilayer sparse model. The ML-BP algorithm is
implemented for six layers comprising dictionaries of the same size. The pursuit is done

on the individual layer for feature extraction for underlying MR datasets.

521 Iterative Shrinkage Algorithms for Basis Pursuit

Iterative shrinkage algorithms (ISTA) require matrix-vector multiplications and entry-wise
operations. This gives a clear advantage over computationally expensive second-order
methods like the interior point method [68, 129]. We propose a multi-layer basis pursuit al-
gorithm based on an iterative thresholding algorithm. The algorithm takes into account the
merits of objective-based approaches and network-based approaches to achieve CS-MRI
reconstruction. Each ISTA update is fed to an ML-CSC network employing multi-layer
ISTA for basis pursuit. The deep network learns the mappings from previous ISTA updates

with a fixed number of unfoldings which corresponds to the iterations of ISTA.

Algorithm 7 Iterative Shrinkage Thresholding Algorithm
Init 2° € f(x)
1: for any k=0,1,2.. do
2 = prox 1 g(z — = V£(z))
3: end for
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5.2.2 Model

Given a decomposed loss function of the form;

F(z) = f(z) + g(2),

where f(x) is convex and smooth and g(z) is smooth, L is Lipchitz constant, the ISTA
algorithm as proximal gradient method finds the minimizer of F' = f + g by iterating the

updates given by proximal operator g(.):

! = proz1g(z* ~ —1-Vf(:r)), (5.6)
L Ly ‘

'

The traditional ISTA formulation cannot be applied to (5.5) due to the presence of nd
separable composite term in g(.). To tackle this issue and solve (5.5), gradient mapping
approach is analyzed.

Given a function of the form F' = f + g, the gradient mapping operator is given by:
f9 1 }
G1’(z) = L(z — prozyg(z - L—ka(z))), (5.7
The ISTA update for (5.7) can be written as:

1
* =gk — ZGE9(x),

L

This update can be considered as gradient mapping step. Since,
* G*(z) = VF(z) = Vf(z) as g(z) = 0,
« GJ9(z) = 0iff z is minimizer of F(z),

Essentially ®7(®2*~1 — 1) is gradient of the data fidelity term in Equation (5.5). The

objective function of ML-BP, can be generally expressed as minimization probiem of the
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form,

min F'(z) = f(Diz) + g1(D.x) + g2(),

for ith layer of ML-BP, the proximal gradient mapping method to minimize above objective

function takes the update of the form:

1

2! = prowy,(of —t.DTG[[)* (o)), (58)

for ¢ > 0 and ¢ > 0, which are learnable parameters of ML-CSC framework. The proximall
of g;_1(D;.) involves a composite term, an approximation for representations z; is proposedi
such that z,_; = D;x;. Therefore, for ith layer of the framework the update of (5.8) can be@
modified as, ‘

1

ht! = prowyg, (zF - t.D?G{;g’g’_leﬁl), (5.9)i1

with approximation of composite term, the calculation of proximal mapping of g term
becomes soft thresholding that is prozy,) = 7x(x). For a multi-layer model, the ISTAi

update step can be written as:
¢ i
o TAfek — DF (b, — Tdu(eb, = DL, (Db =), (5.10)

The ML-BP algorithms employing multi-layer ISTA trains with images in k-space along
with their CS measurements learns the mappings from CS measurements with ground-%
truth images and saves the mappings in the form of model parameters of the ML-CSC!
framework. Once the parameters are saved, the testing module reconstructs the test imagesii
with the help of learned parameters. The framework (Figure 5.1) initializes the dictionariesj

with Xavier initialization for all layers.
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Figure 5.1: Training framework for CS-MRI image restoration with ML-BP

5.2.3 Datasets and Parameter Settings

The first dataset has been taken from [68], with 850 brain images acquired in axial and
sagittal planes (Figure 5.2). The second benchmark comprises a single image consisting
of a single-slice (axial T2-weighted reference brain image) dataset of size (256x256), Vivo

MR scans from American Radiology Services as used by Prasad et al. in [53]). All algo+

Figure 5.2: Example images from test set

rithms use three convolutional layers, with a filter size of 5 in each layer, and the number
of feature maps of 16,32 and 32 size for layers one, two, and three respectively. These

parameters have empirically experimented for optimal performance on these datasels.

95



524 Training Loss

The framework produces intermediate reconstructions denoted by z7°° when given pairs
of MR images with their corresponding undersampled measurements. The loss function
seeks to reduced discrepancy between the input images and the intermediate reconstruction
satisfying symmetry constraint of D*D* = I,V k = 1,2, .., in check. The end to end los$

1s thus defined as:

1 N
£d1screpancy = }_]—V—lelnx:ec - -’L‘l”%

1 N v Nk k 2
Econstraint = mzizlzkzluD (D (.’L‘,)) - .’L'illz

Stotal = Sdiscrepancy + /\Econstramt (.1 lb

where image size I, number of images N, ML-ISTA unfoldings U, learning rate A are
parameters used in above equations.
A learning rate of le-4 with Adam optimizer and learning rate decay factor of 0.2 is useﬂ

in Pytorch implementation.

5.3 Empirical Results

The results of CS-MRI restoration framework based on multi-layer basis pursuit are given
in Table-5.1. Image-wise PSNR and SSIM for 20% CS ratio (5-fold acceleration factor)

for brain MR images is given in Figure 5.3. First the IstaNet [68] is trained on the briah

Table 5.1: Average PSNR/SSIM and restoration times of reconstructed brain MR images

Dataset CS Ratio GPU Time

20% 30% 40% 50%
PSNR/SSIM PSNR/SSIM PSNR/SSIM  PSNR/SSIM

Brain [53] 38.90/0.9598 42.69/0.9825 46.24/0.9914 49.39/0.9945  0.103596s
Brain [68] 39.25/0.9551 41.52/0.9693 44.03/0.9798 46.08/0.9862 0.07268s
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Figure 5.3: Image-wise PSNR and SSIM for 20% CS ratio (5-fold acceleration factor) for
brain MR images

dataset and parameters are saved. Then the the proposed CS-MRI framework is trained on
the same dataset with same number of EPOCHs. The results of restoration are then taken
for testset images for the relevant test codes of IstaNet and our proposed frameworks. The
results are given for four CS-ratios with PSNR and SSIM for the both datasets in Table 5.1.
The pseodocode for CS-MRI training and testing frameworks based on mulu-layer basig

pursuit algorithm is given below.

ML-ISTA CS-MRI PSEQDOCODE
* Training ML-ISTA with MRI Train Data:.

Require: Input: MR images, their CS measurements, random masks, [J; and A;
Ensure: Model containing parameters of ML-ISTA for CS-MRI reconstruction.
* Run encoding to find representations for given layers

* Find representations using ML-ISTA with global pursuits

* Train and save model with EPOCH number and minimum loss

* Reconstruct Test set with trained model.
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Require: Trained model, MR test images, undersampling masks

Ensure: Reconstructed images with PSNR , SSIM and reconstruction CPU/GPU time

for i=1:Ndo

¢ Run ML-BP with learned dictionaries from trained model
* Reconstruct MR images

* Calculate PSNR and SSIM of testset > N is testset size

end for

5.4 Discussion

In this work, we have implemented a generic CS-MRI restoration framework and shown ité
restoration efficiency on multiple datasets. The trained parameters of the proposed framei
work for specific MR imaging anatomy can be used for restoration same anatomy in a
clinical setting successfully. The work can be further extended for utilizing different planes

and datasets for its wider usage and application in clinical settings.

Summary

The deep learning-based architectures have paved the way for generic acceleration frame-
works, where the algorithms once trained on fully sampled datasets can be used to restore
undersampled MR images with acceptable quality as compared to fully sampled MR 1m4
ages. These techniques have the advantage of learning the distinct non-linear mappiné
between fully sampled data with undersampled data without explicit fine-tuning or handﬁj
crafted features for different imaging modalities and protocols. This work implemented
the multi-layer basis pursuit algorithm with layer-wise pursuit. The algorithm trained on
a GPU-enabled machine is shown to converge quickly and the restoration framework suc-

cessfully restores images in a small-time on CPU based machine.
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CHAPTER 6
COMPARATIVE ANALYSIS OF ML-CSC BASED CS-MRI FRAMEWORK
WITH STATE OF THE ART

In image processing research, deep neural networks have been employed extensively for
inverse problems. Following that, there was a need to conceptually model deep nets using
well-known sparse coding theory, leading to the development of convolutional sparse cod-
ing (CSC) theory. The CSC theory, which is a subset of sparse coding theory, is based on
the idea of learning filters/dictionaries and sparse feature maps to represent underlying data
(natural or biological images). Unlike their sparse coding counterparts, dictionaries have a
unique structure, and pursuit algorithms work on a global scale rather than in patches.

This global pursuit results in mitigating the effects of the patch aggregation process;
during traditional regularization-based techniques. Further extending the CSC model, the
learning features are again processed through the CSC model representing them with an-
other layer of filters/dictionaries and their corresponding sparse maps. This process is con-
tinued until the last layers of the model making the multi-layer convolutional sparse coding
model. The pursuit algorithms can be employed layer-wise of a global pursuit algorithm
can be utilized using iterative thresholding algorithms.

In our previous works, we have implemented an ML-CSC model on classification tasks
of biomedical images and restoration tasks of CS-MRI images. This work will further
extend the proposed model and compare its performance on the custom dataset acquirecﬂ1
at Hospital Kuala Lumpur (HKL). The restoration efficiency will be compared with the arﬁ‘
and extensive empirical results will be presented to show the effectiveness of the proposed

model.
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6.1 Convolutional Sparse Coding and Inverse Problems

Deep neural networks have been used extensively for inverse problems in image processing
research. Subsequently, the interest has been shown to theoretically model deep nets with
celebrated sparse coding theory resulting in the emergence of convolutional sparse coding
theory. Convolutional sparse coding [150, 151], has been the focus of recent research inter-
est and has been presented as theoretical foundations of deep neural networks. Figure 6.1
shows the number of publications from the Scopus database for the theme of convolutional

sparse coding and multi-layer convolutional sparse coding.

2020
2019
2018
2017

2016

Year

2015
2014
2013

2011

LI T L T

) 5 10 15 20 25 30 35
Publications

Figure 6.1: Number of publication on Scopus searched with "CSC and ML-CSC” search
term.

In our previous works, we implemented ML-CSC models on classification and CS-MRI
restoration tasks of biomedical images. This work will further extend the proposed model

and compare its performance with the state-of-the-art custom dataset acquired at HKL.
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The restoration efficiency will be compared on benchmarks of peak signal to noise ratio
(PSNR), structure similarity index (SSIM), and MR image restoration times, presenting

extensive empirical results to show the effectiveness of the proposed model.

6.2 State of the Art CS-MRI Restoration Framework and ML-CSC Based CS-MRI
Model

For reconstruction of a signal acquired with undersampled measurements, the purpose of
reconstruction is to infer original signal from its randomized measurements. For MRI

signals which are acquired in k -space, the problem can be formulated mathematically as :
. 1 2
s=argmsln§||<I>\Ils—y||2+/\{[s||1, (6.1)

where ® is measurement matrix, ¥ are sparsifying basis, s are sparse coefficients i.e. z =
¥s, and A > 0. Typical sparsifying basis ¥ consists of wavelet, DCT or any other learned
dictionary. Substituting sparsifying transform and its sparse coefficient vectors with z, i.e.

z = Vs, and orthonormal sparsifying transform as ¥. W+ = I, in Equation (6.2), we have:
. 1
a::argmzln§||<ba:—yl|§+/\||\I/+IHl, (6.2)

The compressive sensing incorporates the compression into acquisition with measurement
matrix & € CM*V, (M < N), to infer original signal z € CV from its measurements
y = x € CM. The compression ratio is defined as M//N.

Equation (6.2) is further generalized by replacing the regularization term with learned cort-

volutional filters.
L

. 1
& = argmin ||®z ~ vl + > Mg(Diz), (6.3)
=1

The transform matrix in Equation (6.3) is denoted by Dj, which can be a gradient transform,

discrete wavelet transform (DWT), or Discrete Cosine Transform (DCT). Here, g(.) is a Zq
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sparse regularization function where g € [0, 1].

6.2.1 Ista-Net: The Layered Basis Pursuit (ML-BP)

The layered basis pursuit in context of sparse models and deep learning has been proposed

for addressing pursuit problems of the form:
&, + argmin ||Z;_; — Dxi||3 + M|z |1, (6.4)

[68] proposed Ista-Net, an algorithm for compressive sensing (CS) reconstruction of natu-
ral images using insights from traditional optimization-based and network-based methods,
Employing the iterative shrinkage thresholding algorithm for optimizing a general ¢; norm
CS reconstruction model, a structured deep network was proposed for the reconstruction of
undersampled images in the pixel domain. Instead of using hand-crafted features, authorz’i
utilized a customized CNN for learning the parameters of the non-linear mapping operator
and end-to-end learning of transforms, shrinkage thresholds, and step sizes. The proposed
framework was employed for CS reconstruction of 91 images dataset used by Kulkarni et
al. in [69] and CS-MRI reconstruction of brain images used by Yang et al. in [76]. [68] anq
[128] attempt to unfold neural networks with iterative thresholding and minimizing MLi

BP. As aresult, each representation estimate is required to explain the immediate layer only

and a signal based on generation in global multilayer sparse model settings is not possible,

6.2.2 Multi-layer Convolutional Sparse Coding Framework for CS-MRI Imagéj

Restoration

The heuristic techniques applied to problems in deep learning frameworks have been re-
cently investigated for theoretical explanations of deep learning with the help of celebrated
sparse coding theory. Sparse coding theory [2] works on the premise of first learning fil-

ters (weights/dictionaries) from given data and then finding the sparse representation maps
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from those dictionaries for representations of the underlying structure of the data. Once
the underlying structure is successfully modeled, the problems of reconstruction on im-‘T

ages from noisy measurements, retrieving/reconstructing a signal in compressive sensiné
domain, and classification of test sets on already trained dictionaries and sparse maps cad
be done successfully with the help of different algorithms developed over the years anq
applied successes fully in different domains. The sparse coding theory has been funhe;
extended to theoretically explain widely used CNNs namely convolutional sparse coding.
The resulting CSC model, where a special circulant and convolutional structure is imposed
on dictionaries (which are otherwise traditionally unstructured in sparse coding theory) is
defined as a forward pass of CNN. Further work in a multilayered version of CSC has been

shown in [1] for convergence analysis and multi-layer basis pursuit for classification per¥

formance comparison with CNNs on three public datasets.

6.2.3 Multi Layered Basis Pursuit

A signal y admitting a sparse representation in terms of a dictionary D, can be represented
as y = Dz, with = having a sparse structure (solution with fewer non-zero entries). After
employing an /; norm penalty and considering the problem as NP-hard, the basis pursuit
problem is given as:

min ||z|ly s-t.lly — Dx||3, (6.5)

V.Papyan et al. in [35] extended the basis pursuit problem to multi-layer settings, where a
signal y expressed as y = D;x,, for sparse representations ; and possibly convolutional
dictionary D;. The sparse representations can be further expressed as z; = Dsx, for
another dictionary D, with sparse representations ;. This framework can be extended
to L number of layers. Under this framework, for an observed signal y, the deep coding

problem in multi-layer settings can be expressed as:

min|ly — Dyza|;  s.t[zi-1 = Dz, [lzillo < ]y, (6.6)
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This generative multi-layer basis pursuit framework has provided a platform for conve-
niently analyzing deep neural networks. Alternatively, the work in [125] developed a global
pursuit algorithm based on projection interpretation. By imposing an analysis prior on

deepest representation, Equation (6.5) can be written as,

min lly = Da,pyzwll3, (6.7)

sitl|zillo <si. [[|Dg,ryzello < 31—1],(;1,

The greedy pursuit algorithm presented in [125] does not scale for high dimensional set-
tings. J.Sulam ez al. [1] presented a multi-layer basis pursuit algorithm that could leverage
the symbiotic relationship of analysis and synthesis-priors on sparse representations of dif-

ferent layers according to the depth of the multi-layer basis pursuit framework. Specifically,

a convex relation was proposed for (6.7), resulting in multi-layer basis pursuit:
1 2 ‘
min 5{ly — D1Dazl[; + M| Dazly + Aol2l1, (6.8)

The model imposed mixture of analysis and synthesis priors, with A; = 0 and A, > 0

recovering traditional pursuit with factorized global dictionary D.

6.2.4 Iterative Shrinkage Algorithms

Iterative shrinkage algorithms (ISTA) are first-order methods that require matrix-vector
multiplications and entry-wise operations. This gives a clear advantage over interior point
methods and other solvers, which depend upon second-order information making them
computationally expensive in high dimensional settings.

ISTA originally proposed in {70] gives convergence in order of J(1/k) in functional
value and its fast version FISTA [127] has improved convergence in the order of O(1/ K?).
The ISTA algorithm is given as Algorithm-8. In the following, the proposed model for

ML-CSC employing multi-layer basis pursuit-based learning framework of [149] is used
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Algorithm 8 ISTA
Init z° € f(z)
for any k=0,1,2.. do
%! = proxy g(z — £V f(x))
end for

for comparative analysis with state of the art CS-MRI restoration framework [68] trained
on for brain and knee MR datasets. Both frameworks are tested on different datasets an4
reconstruction efficiency in terms of peak signal to noise ratios(PSNR), structure similar-
ity index (SSIM), and average restoration time is given for different undersampling ratios,
The ML-CSC-based algorithm incorporates the merits of network-based approaches and
objective-based approaches for CS-MRI reconstruction. The ML-CSC framework takes
each ISTA update and employs multi-layer ISTA for basis pursuit. With a fixed number of

unfoldings, the framework learns the mappings from previous ISTA updates which corre‘-
1
spond to the iterations of ISTA. |

|
625  Model |

Given a decomposed loss function of the form:

F(z) = f(z) + g(z),

where f(z) is convex and smooth and g(z) is smooth, L is Lipchitz constant, the ISTA
algorithm as proximal gradient method finds the minimizer of F = f + g by iterating the
updates given by proximal operator g(.):

1

k+1 k
7 = proxig(z® —
P L ( Lk

Vi(z)), (6.9)

The traditional ISTA formulation cannot be applied to (6.8) due to presence of no separable

composite term in g(.). In order to tackle this issue and solve (6.8), gradient mapping!

'For a detailed description of gradient operators, see [129], chapter 10.
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approach [129] is analyzed.
Given a function of the form F = f + g, the gradient mapping operator is given by:

1

I V(z))), (6.10)

GH9(z) = L(z - prox 1 g( —
The ISTA update for (6.10) can be written as:
k+1 k_ Lgg
" =2 — ZG 22(z),

This update can be considered as gradient mapping step. Since,
« GP9(z) = VF(z) = Vf(z)as g(z) = 0,
« G99(x) = 0 iff z is minimizer of F(z),

Essentially ®T(®z*~! — y) is gradient of the data fidelity term in Equation (6.8). The
J
objective function of ML-BP, can be generally expressed as minimization problem of the

form,

min F(z) = f(D;z) + g1(D,x) + go2(x),

for ith layer of ML-BP, the proximal gradient mapping method to minimize above objective

function takes the update of the form:
= prox,,, (zF — t.D?G{}g‘g"l(D")(xf)), (6.1 1!)

fort > 0 and ¢ > 0, which are learnable parameters of ML-CSC framework. The proximal
of g,_1(D;.) involves a composite term, an approximation for representations z, is proposed
such that x, 1 = D,x;. Therefore, for ith layer of the framework the update of (6.11) can
be modified as,

xi’H.l = proxtg1(a:? - t'D;'TG.lff;:)‘gl—le—l ’ (612)
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|
with approximation of composite term, the calculation of proximal mapping of g terrd
becomes soft thresholding that is prox,,) = 7a(z). For a multi-layer model, the ISTA
update step can be written as:

; |
2t Tk = =D ek = Tohps(aly — DLy (Diriy — )] (6.13)

i—

The algorithm employing multi-layer ISTA takes images in k-space along with their C§
measurements, learns the mappings from CS measurements with ground-truth images, and
saves the mappings in the form of model parameters of ML-CSC. The testing module re+
constructs the test images with the help of trained ML-ISTA learned parameters and give$
PSNR/SSIM of recovered images. The framework initializes the dictionaries with Xavie#
initialization [130] for all layers. The multilayered basis pursuit algorithm employing iterr

ative thresholding algorithm for multi-layer pursuit is given in Algorithm-9.

Algorithm 9 ML-ISTA for CS-MRI
Require: [y;,z,|¥,, dictionaries D; and );

Ensure: Model containing parameters of neural network for CS-MRI image restoration. :
{y;, z;}}¥, are images in k space and their corresponding CS measurements, N is sizej
of trainset

1: nitSetzk =y, V k and z} =0
2: for k=1:K do
£; + D pyxf V[0,L—1] i

3: for fori=1:L do

o T (3 — 1, DT (D — x¥4))) > Find set of representations
4: end for
5: end for > Save model with Epoch number

The training module of the proposed CS-MRI restoration framework takes pairs of

images, their corresponding CS measurements in k-space along with undersampling masks
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and trains the model parameters. The learning Algorithm-9, uses ML-ISTA unfoldings tq}
increase depth of learning framework without incurring cost of additional parameters. Thd
testing framework takes the test set images, undersampling masks, and the parameters o¢
the saved model to reconstruct undersampled test images and comparing the metrics ofj
PSNR and SSIM with ground truth images along with restoration time. The pseudo-cod#

for training and testing the CS-MRI framework is given below.

ML-ISTA CS-MRI PSEODOCODE
* Training ML-ISTA with MRI Train Data:.

Require: Input: MR images, their CS measurements, random masks, D; and A,
Ensure: Model containing parameters of ML-ISTA for CS-MRI reconstruction.
* Run encoding to find representations for given layers ‘

for Unfoldings= 1,2.., do |

* Find representations using ML-ISTA with global pursuits

¢ Train and save model with EPOCH number and minimum loss

end for

* Reconstruct Test set with trained model.

Require: Trained model, MR test images, undersampling masks
Ensure: Reconstructed images with PSNR , SSIM and reconstruction CPU/GPU time
for i=1:N do
* Run ML-ISTA with learned dictionaries from trained model

!
I
!
|
|
i

* Reconstruct MR images

¢ Calculate PSNR and SSIM of testset > N is the size of test set;

end for

6.2.6 Architecture

The proposed framework takes advantage of iterative thresholding-based pursuit algorithms

along with the learning capability of the ML-CSC model and maps each learning update to
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an ML-ISTA-based unfolding. The sparsifying transform is replaced with ML-ISTA leam%?
ing, which is denoted by D(.). In the multilayered basis pursuit algorithm, D(.) consists oijr
six convolutional layers with ISTA-based pursuit (Equation (6.13)), as given in Algorithmjl‘
9. After replacing sparsifying transform with learnable parameter D(.), Equation (6.4i

becomes:

1 |
53=argmin§||<1>m—y||§+/\||D(m)||1, (6.14)

The ISTA update for CS reconstruction is given by;

1
T = 2+ - pV oIz - ), 1
1 (6.15)
o* = argmin 3|90 — Z¥} + N [D(@)l |

:
The ISTA update consists of the gradient of data fidelity term used for intermediate recon]-
|

struction of images.

ISTA-Module |

1
ISTA module generates a representation of intermediate results with learnable step size pJ)‘

Proximal Mapping

The z* takes ISTA update as input and computes z according to Equation (6.14).

6.2.7 Training Loss for CS-MRI Framework ]{

\
Given pairs of MR images with their corresponding CS measurements, the framework prd-

duces intermediate reconstructions denoted by z]°¢. The loss function is designed to seek
reduced discrepancy between the input images and the intermediate reconstruction satisfy-
ing symmetry constraint of DFDF = [ ,V k=1,2,.., in check. The end to end loss is thus

defined as:

1 N rec 2
Sdiscrepancy = mzizlnwi — Izllg
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1 N [
Leonstraint = mzizlzkzlnpk(pk(xi)) — zi|l3

(6.16);

Etotal = Ediscrepancy + /\Econstraint

where [ is the the image size , N are the number of images, U are ML-ISTA unfoldings ,
A is the learning rate in above equations.
The framework employed a learning rate of 1e-4 with Adam optimizer [131] and learning

rate decay factor of 0.2 for Pytorch implementation.

Table 6.1: Average PSNR/SSIM and restoration times of reconstructed Knee MR imagesJ

Framework CS Ratio GPU Time

20% 30% 40% 50%
PSNR/SSIM PSNR/SSIM PSNR/SSIM  PSNR/SSIM

ISTA-Net[68] 34.45/0.8621 36.87/0.9132 39.16/0.9474 41.74/0.9707 0.04289s
Ours 36.93/0.9262 39.68/0.9569 42.04/0.9738 43.44/0.9824 0.0977s

i
i
I
|
|

6.2.8 Dataset

\
For training of the CS-MRI framework, a dataset comprising 622 knee MR images o%
adult patients (Male and Female) aged between 18 to 40 years, with the coronal view and
Proton density (PD) fat saturation, collected from a 1.5T imaging unit (Siemens MAGNE-
TOM Symphony). The MR images were acquired to diagnose ACL tear at Hospital Kuala
Lumpur (HKL) and a certified radiologist labeled the images for ACL tear types of com{-

. i |
plete, partial, and normal knee categories. 1

6.3 Empirical Results

The proposed framework employed a random mask for undersampling of MR images in
k space for CS-MRI reconstruction algorithms and results were obtained for different CS-

ratios. Results for CS-MRI reconstruction of knee MR dataset, CS ratios, PSNR/SSIM,
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and restoration times are given in Table 6.1. The proposed framework has been trained
on a knee dataset of 622 images and restoration performance is shown on the test set with
encouraging and comparable results as compared to the state-of-the-art framework whicﬂ

1

is also trained and tested with the same dataset and other parameters.

6.4 Summary

In this chapter, a CS-MRI restoration framework based on multi-layer convolutional sparse
coding, employing iterative thresholding algorithms for basis pursuits to learn parameterii
of nonlinear mappings from undersampled MR images acquired in k -space proposed in our
earlier work was compared with state of the art. Empirical results on custom acquired knee
MR datasets showed that the proposed CS-MRI framework successfully trained for the
desired mapping from CS measurements effectively for knee MR images after training on
masks with different CS ratios with improved convergence and reconstruction results at the
cost of a smaller increase in learnable parameters of a deep neural network. The successful
application of proposed methods shows that it can be used for different anatomies due to
its generalizability and can be easily integrated into the MRI imaging pipeline to improve

acquisitions.
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CHAPTER 7
CONCLUSION AND FUTURE WORK

7.1 Summary of the Contributions

|

- . . |
In this research work, we proposed and implemented multi-layer convolutional sparse cod-
ing frameworks for the inverse problem of compressive sensing MRI restoration and clas-

sification of biomedical images. Our contributions include,

* A compressive sensing MRI framework for restoration of undersampled MR images
was presented employing multi-layer convolutional sparse coding (ML-CSC) theory
and compared it with state-of-the-art for multiple benchmark datasets. With help q"f
extensive empirical results, the effectiveness of the proposed frameworks has been
demonstrated for fast convergence and improved peak signal to noise ratios and strug-

ture similarity index measurements benchmarks on multiple datasets.

» Furthermore, a biomedical image classification framework is proposed employing
ML-CSC and pursuit algorithms compared with state-of-the-art deep learning-based
architectures. Extensive experiments and results were given to show the effectiveness
of the proposed frameworks employing different pursuit algorithms and comparink

them with state of the art self-labeled datasets acquired at Hospital Kuala Lumpur.

* Finally, the CS-MRI restoration framework proposed in chapter-3 was analyzed and
compared on knee MR dataset with state of the art keeping all parameters the same
and showing the better restoration quality of our proposed framework on benchmarks

of PSNR/SSIM and restoration times.
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7.2 Future Directions

In future work. the research work can be extended with

* Implementation of the CS-MRI restoration framework for parallel coil MRI usiné
datasets acquired in specific planes as training and testsets to further improve the

models.
» Framework used to restore images directly taken in undersampled form.

» In addition, the research work can be extended to design more generalized classifiers
using transfer learning, which can adapt to different datasets without requiring train-
ing from scratch and use them for improvement in the performance of classifiers of

biomedical images. ‘
i

* In summary, the models can be further improved with training on diverse datasets
and their potential integration into imaging pipelines in coordination with clinicians

for improving the efficiency of biomedical imaging.
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APPENDIX A
EXPERIMENTAL EQUIPMENT

The experimental setup for the research work consisted HP Omen workstation with 9-999(

and NVIDAI 2080 Ti GPU.
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