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ABSTRACT

During recent years correlation tracking has been considered fast and effective by virtue
of the circulant structure of the sampling data for the learning phase of filter and
Fourier domain calculation of correlation. During occlusion, motion blur, and out-of-
view movement of a target, most of the correlation filter-based trackers start to learn using
erroneous samples and the tracker starts drifting. Currently, adaptive correlation filter-based
tracking algorithms are being combined with redetection modules. This hybridization
helps in redetection of the target in long-term tracking. The redetection modules are mostly
classifiers, which classify the true object after tracking failure occurrence. These
methods perform favorably during short-term occlusion or partial occlusion. To further
increase the tracking efficiency in challenging video sequences, specifically during long-
term occlusion, while maintaining real-time processing speed, this study presents a tracking
failure avoidance method, efficient occlusion detection, and handling mechanism, and anew
adaptive learning rate strategy. We first present a strategy to detect the occlusion using
multiple cues from the response map, i.e., peak correlation score and peak to side lobe
ratio, average peak correlation energy, the confidence of squared response map. We
further introduce a novel interpretation of the difference of peak correlation between two
consecutive frames. After successful detection of tracking failure using multiple cues, a
second strategy is presented to save the target being getting more erroneous. Our predictor
in the prediction-estimation collaboration module continuously predicts the location during
occlusion. The predictor passes this result to Support Vector Machine (SVM). When the
target reappears in a frame, the support vector machine-based classifier finds the correct
object using the predicted location. This collaboration between prediction and estimation
decreases the chance of tracking failure as the predictor continuously updates itself during
occlusion and predicts the next location using its previous prediction. Once the true object is
detected by the classifier after the clearance of occlusion, this result is forwarded to the
baseline tracker to resume its tracking‘operation and update its parameters. Together these
two proposed schemes show significant improvement in tracking efficiency. Furthermore,
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this collaboration in redetection phase shows significant improvement in the tracking
accuracy over videos containing six challenging aspects of visual object tracking as
mentioned in the literature. Novel adaptive learning rate strategy further increases the
robustness of proposed scheme. Comparison with 14 state-of-the-art algorithms is given
in this study. For evaluation of results, three different standard datasets are used. This
comparison shows that outcome of this study performs better than the other 14 state-of-the-
art algorithms.
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Chapter 1.

Introduction

This chapter discusses the introduction of visual object tracking and the challenges
associated with tracking. Furthermore, background along with motivation is provided. At last,
brief thesis contributions and an overview of the thesis is provided.

1.1 Overview

Visual object tracking has always been considered an active area of interest in the research
field of computer vision because of its wide spread applications and challenging issues like
motion blur, object deformation, noisy environment, fast motion, clutter, and finally occlusion
[1], [2]. Long-term tracking is considered effective if an algorithm tracks an object of interest
for a long time in all or any of the above challenging scenarios. Without considering the
orientation estimation of the object, the tracking process can be divided into two subparts i.e.
i) translation estimation and ii) scale estimation of a target in the next frame [3].

For translation estimation, broadly tracking algorithms can be divided into two groups: i)
generative and ii) discriminative. In the generative scheme, the information of the object is
used while considering tracking as a search problem. The discriminating scheme considers the
tracking a classification problem, while using the object and its background information.
Discriminative tracking using a correlation filter is studied several researchers in the field of

object tracking [4], [5], [6], [7], [8], [9], [10], [11]. Exploiting circular structure and computing



correlation in the frequency domain which is simply multiplication, the extreme fast tracker is
presented in [12]. Due to the adaptive nature of the correlation filter, the online fast learning
mechanism makes the correlation filter suitable for fast appearance-changing object tracking.
Though correlation filters are very successful in visual object tracking but still two major
limitations exist; First, they do not have the inherent capability of tracking resumption once
the object is lost or the object moves out of the camera’s field of view. The second is that the
less reliable tracked frame causes the correlation filter to learn the wrong target appearance,
and this learning error accumulates with the passage of frames. The first limitation is addressed
in [9], [13] by considering the redetection module, where redetection is carried out in each
frame, increasing the complexity cost. Another approach to reducing the computational cost is
defining a threshold to activate the redetection module [3], [14]. The second limitation of
correlation filter based tracking is solved in [3] by leaming multiple correlation filters with
different learning rates. To cover the fixed template size problem of kernel filters, correlation
filter adaptive to scale changing is presented in [15]. Dense spatio-temporal context
information is used in [16] to increase the efficiency and robustness of the correlation filters.
A simple tracking approach with an appearance model based on multi-scale image feature
extraction using a data-independent basis is presented in [17]. Particle filters are also
incorporated in kemelized correlation filters to redetect the tracker when response map
becomes less reliable [18]. Fusion of multiple features in the correlation filter framework is
proposed in [19]. In this method adaptive weights are assigned to cach feature to minimize the
interference of noise. The metric leaming model strategy is given in [20] to enhance the quality

of response map in correlation filter-based algorithms. Numerous researcher also proposed



Convolutional Neural Network based-tracking strategies during recent years. For latest
examples, see [21], [22]. These neural network-based algorithms require a lot of training data
and large computational time.
1.2  Applications

Visual tracking has been used in apphcatxons like robotics, surveillance, sports analysis,
unmanned aerial vehicle, image based health diagnostic systems, activity recognition,
industrial robotics, lip tracking in film industry, transportation, and autonomous driving cars.
Some of them are presented in this section.

1.2.1 Autonomous driving cars

Autonomous cars have been considered an important application of visual object tracking
since the last decade. It is a vehicle without a driver that can sense the nearby environment to
avoid any obstacle. These cars are equipped with many different systems like the navigation
system, path planning, environment perception, and control systems. For environment
perception, visual object tracking can be used to recognize nearby objects and get the position.
This information extracted from video is helpful for a car to plan its path by avoiding other
objects. Furthermore, information regarding the position of the objects at different time instants
also helps the car to predict the future position of the surrounding object. Finally, visual object

tracking can also locate the position of traffic signs for traffic sign recognition.
122 Sports activity analysis

During recent years, motion analysis of players has gained a lot of attention from the visual

object tracking community. Without object tracking, activity is analyzed by observing the data



collected after the activity. Traditionally people manually record and analyze the data. With
the help of visual object tracking, this process is automated. Let us take the example of a
basketball game. Visual object tracking help in predicting the trajectories of players.
Furthermore, this information is used for strategy planning and performance evaluation of

players and team management.
123 Unmanned Aerial vehicles

The unmanned aerial vehicle has been used widely for surveillance, product deliveries,
arial photography and inspections. In all these applications, camera mounted on unmanned
aerial vehicle plays an essential role with the help of visual object tracking. For example, a
user selects the target in the video frame, and unmanned aerial vehicle will process the video
captured by a camera and find the target’s position. With the help of this position, an unmanned
aerial vehicle can adjust itself to follow the target constantly.

124 Human-machine interaction

The visual object tracking community plays a vital part in helping the community by
providing efficient and user-friendly mteractlon with machines, for example, providing sixth
sense to humans i.e., a wearable gesture interface, perceptual user interfaces, eye gaze tracking
for visually impaired people etc. '

1.25 Visual surveillance

Nowadays visual object tracking :is an integral part of efficient and intelligent visual

surveillance systems. Like, Siemens siemons sistore CX EDS-intelligent video detection



system, surveillance of open places, parks, colonies, and buildings for suspicious activity
detection.
1.2.6 Image based health diagnostic systems

Visual object tracking methods are also being applied in health diagnostic system. For

example, ventricular wall tracking, and reconstruction of vocal tract shape.

1.3  Challenging issues associated with visual object tracking

For the last 2-3 decades, visual object tracking has been considered an essential area for
research because of challenges associated with it like occlusion, motion blur, out of view
movement of the object, illumination changes in video, in-plane rotation, out of the plane

rotation, clutter background, appearance changes, and object deformation.
13.1 Occlusion

Occlusion is considered a widespread and challenging problem for the object tracking
community. When the target to be tracked is occluded by some other object, this phenomenon
is called occlusion. It is further classified as partial occlusion and full occlusion. Strategies are

designed by observing the environment and nature of the target.

13.2 Appearance change

Most of the time in tracking, the object to be tracked is non-rigid, which may change its
appearance during motion. To handléthis issue, mostly adaptive tracking schemes are applied.
During the update of the target model, even small errors accumulate as time passes and drift
problem arise. If the model is kept fixed, changes in target appearance would not be



incorporated and again target will be lost. This is known as stagnation to the old appearance
problem. Hence there is a trade-off between drift and stagnation.
133 Cluttered background

Often in object tracking background is not a single object. When the background has many
other objects, it is known as clutter in object tracking terminology. This problem is easily
handled when the background is known but if the background is unknown just like in outdoor
tracking, the severity of the problem increases.

134 Scale variation

Target changes its size when it moves away or toward the camera. Therefore, tracking
schemes need to adjust the template/target model size accordingly.
13,5 Complex object motion

This includes out-of-plane movement or abrupt change in speed and direction of the target.

Due to the wrong approximation of the target model, tracking becomes a more difficult task.
13.6 INumination variation

Change in light is also one of the major challenges for the object tracking community.
When the object is moving from dark to light or vice versa, it changes its appearance.
1.4 Background and Motivation

Visual object tracking is a secondary field of computer vision and machine learning. This
field is interesting because of its usefulness in real-world applications for real -ime scenarios.

One of the interesting applications is the use of visual object tracking in robotics. Tracking



algorithms give sight to a robot just like the human eye and track the objects as per requirement.
Surveillance is also a fascinating example of visual object tracking. In the current world,
closed-circuit television cameras are installed at every important place to record the activities.
Most of the time, these cameras record the garbage. For example, there is no activity, but
cameras are still recording, resulting in over usage of memory with garbage data. When these
cameras are equipped with visual object tracking algorithms, only suspicious activities are
saved in the memory. This helps in the efficient utilization of memory. One other aspect
tracking and saving only the suspicious object/person instead of saving the whole frame.

Although researchers have put a lot of effort into this area to develop the efficient tracking
algorithms, this area still demands attention due to various difficulties associated with it. The
first and the most important constraint is real-time processing power i.e., visual object tracking
algorithm should be running in real-time for real-time applications. There is always a tradeoff
between the efficiency of the algorithm and time it takes to execute. The second difficulty
which most of the algorithms face in reai-time applications is severe occlusion. When an object
gets occluded with similar object, visual object tracking algorithms easily make a mistake and
starttrac]dngthewrongobjectaﬁerthfocclusion. So, in this study our main objective is to

design an efficient visual tracking algorithm which can consider the aforementioned problems.

1.5 Scope and contributions
This thesis presents the efficient visual tracking algorithm for single object tracking
problem i.c., the designed algorithm is capable of predicting the state of the object during the

occlusion in collaboration with the estimated position of the object. It is further investigated



that peak correlation score alone is not good enough to detect the heavy occlusion, motion blur,
background clutter, out-of-plane rotation, and deformation. Therefore, peak to side lobe ratio
is incorporated with peak correlation to detect the occlusion and other issues mentioned above.
Furthermore, most of the tracking algorithms deviate from the actual target because of the
flawed input. This happens when tracker start tracking the wrong target. In this scenario, the
tracker should be capable of detecting the erroneous input and should immediately stop
updating the model. We develop a scheme that can detect the erroneous input and stop updating
the tracker with erroneous input. Finally, the kemelized correlation filter tracker is modified to
increase its efficiency.
In bullet form the main contributions of this study are given below

1) A novel interpretation of difference of the peak correlation (DoP) between the current and
previous frame is presented in this study. Negative DoP tells that object is being got
corrupt. When the difference between the current and previous frame is positive this tells

that the object is coming out of occlusion/deformation.

2) This study presents a novel reliability detection module based on hybridization of average

peak correlation energy and confidence of squared response map (CSRM).

3) Novel Adaptive learning rate strategy to prevent the model from being perverted. We
update the target model with high learning rate when the APCE is high whereas leaming
rate is adjusted as per value of APCE which also tell us about the confidence of the tracking

result.



4) Prediction is critical step when the object is not visible in a frame. Estimation is also equally
crucial during regular tracking. By introducing prediction-estimation collaboration
scheme, we achieved better tracking efficiency in distance precision and overlap threshold.

5) The proposed study suggests avoiding template update under erroneous input gives

significant improvement in tracking accuracy to handle drift problem.

6) It is shown that peak correlation score alone is not good enough to detect heavy occlusion,
motion blur, scale variation, background clutter, out-of-plane rotation and deformation. We
computed multiple cues from the response map which includes peak correlation, average
peak correlation energy, peak to side lobe ratio, the confidence of squared response map,
and novel difference of peak correlation between two consecutive frames. Each cue gives
different insight about the target of interest, which helps in accurate occlusion detection

and recovery of the target.

7) State-of-the-art algorithm Kernelized Correlation Filter cannot handle the scale variations.

This study provides an efficient scale handling strategy for KCF to cater to scale variations.

8) Comprehensive evaluation and analysis of proposed algorithms with state-of-the-art
methods on accepted datasets are carried out.

1.6 Research problem statement

Most of the work in the field of VOT is usually based on different assumptions such as
single-camera, single-target, model-free, short-term, causal tracking, and limited length of the
video etc. Suppose we neglect all or any one of these assumptions tracking becomes a

challenging job. The more issues are in a video sequence the more is difficult to track the
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object. So, to design a robust tracking algorithm, it must accurately track the object regardless
of the changes in appearance model and length of the video etc. In recent literature, several
algorithms have been developed to utilize complementary cues for robust visual tracking.
However, the robustness of these trackers is still limited in challenging scenarios such as

dramatic illumination variation, motion blur, complex object motion and heavy occlusion.

In this study, a visual tracking algorithm to improve the robustness against major tracking
issues is presented. The occlusion problem is addressed by a collaboration of prediction and
estimation algorithms. In adaptive short term tracking algorithms target model is updated in
each frame. When video become long adaptive tracker forgets the actual representation of the
model and drift problem starts arising. This problem is addressed by designing and integrating

cfficient algorithms that keeps the target’s long-term memory and adaptivity.

1.7 Research objectives

Many different visual object tracking algorithms have been proposed during the last
decade. Most of these algorithms suffer from slow processing. To increase the processing
speed, the correlation filter-based tracking algorithm with kernel tricks have been proposed.
These algorithms are fine for fast processing but suffer from drifting problem. Our main
objective is to increase the robustness and accuracy of the correlation filter-based tracking
algorithms.

1.8 Structure of thesis

The rest of the thesis is organized in the following manner.
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Chapter 2 at the beginning, describes the general background of visual object tracking,
focusing on the correlation filter-based tracking methods.

Chapter 3 describes the main framework for the proposed work and methodology for the
main contributions of the thesis.
Chapter 4 starts with the introduction to standard datasets and their attributes in detail.

After this comprehensive analysis of results is presented. Both the qualitative and

quantitative analyses are presented at the end of this chapter.

Chapter § contains the conclusion and discussion about the future work of this study.



12

Chapter 2.

Literature Review

This chapter initially gives the background of general visual object tracking methods. After
discussing the conventional methods, correlation filter-based tracking algorithms are discussed
in detail with the background.

To understand the contribution of this thesis, it is necessary to have a concept of how
discriminative learning algorithms are usually used in computer vision. We provide a broad
overview in Section 2.1, which can be avoided by someone already familiar with this setting.
Sections 2.2 and 2.3 will then refer to the sampling problem and concentrate on earlier work
that is more closely related to the theoretical framework we develop. Literature reviews of

specific applications are within each chapter of this thesis, where they are the most appropriate.

2.1 Image recognition

Image classification is considered the most directly formulated learning problem in image
recognition [23], [24]. Let us suppose we have an image containing a single object (may have
multiple objects). To classify the object from discrete set of classes like donkeys, vehicles or
humans is known as image classification. Event classification and fine-grained categorization
are related forms [24]. Rather than learning a model using unrefined pixels, the input to the
learned model is usually a representation obtained employing a multi-stage pipeline, intending
to exhibit invariance to several confounding factors. The foremost step is typically the

extraction of regional features over a grid of places in the frame, such as Histograms of
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Oriented Gradients (HOG) [25], Scale Invariant Feature Transform (SIFT) [26], or Local
Binary Patterns (LBP) [27], to cite only some common descriptors. They are nearby invariant
to brightness and light changes, since most are built on edge detection, and show some
invariance to regional deformations, by calculating statistics over small regions. That is why,
such features are commonly used as a first processing step in virtually all image recognition
problems, not just classification. To explain this point, we should mention that this is the case
for most experiments in this thesis, which are based on HOG features. A bit more specific to
classification is a coding or pooling stage, which calculates global statistics to form the final

representation of the image.

Examples include vector quantization or bag-of-words models [28], spatial pyramids
[29],[30], Fisher vectors [31] and Vector of Locally Aggregated Descriptors (VLAD) [32]. The
global aggregation subtly yields some invariance to geometric transformations and distortions.
A discriminative learning procedure is then trained to predict the image class from this
representation. As the output consists of discrete classes, the model in this case is known as a
classifier. Learning algorithms normally require a large dataset to learn the model parameters,
in this case images and ground-truth. Another possibility is to classify whether the object is
present in the image frame or not i.e. classification between object and non-object classes.
Then algorithn may be used to find the presence of an object at several different location of
an image i.e. performing object detection [33], [11], [34], [35]. Searching the object at many
different locations increases the computational cost. That is why, these types of techniques are
not common in object detection. Most of the good detectors use one or more simple linear

model over HoG features, evaluated in a sliding-window manner and at multiple scales [33],
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[11], [34], [35]. Sliding-window detectors were given by the well-known Viola-Jones detector
[36]. Large amounts of negative samples are also collected using a sliding window, which is
the requirement of any good detector. This means that negative samples are related by

translation and can be instantiated as virtual samples. This fact is exploited in [37].

Let us consider a single object tracking problem i.e. tracking an object given only its initial
position and size in first the frame [38], [39]. It can also be considered as detection problem
using the procedure discussed above. When the object is re-detected in a new video frame, the
model needs to update itself for the changes in object display/structure. Hence, we can say that
object tracking is simply an online learning problem. while detection and classification is a
batch leamning problem. The samples obtained in a next frame are also obtained by translation,
and since they all belong to the same image, we can make some simplifying assumptions in
our analysis of virtual samples. Predicting other extrinsic aspects of an object’s appearance is
usually called pose estimation [40), [41). They may include rigid pose parameters, such as an
object’s rotation or position relative to the camera, either in 2D or 3D [42]. They may also
include non-rigid deformation parameters, such as the relative angles of a person’s joints [40].
It is possible to learsn a model that predicts the pose directly, as real-valued, continuous
variables [40], [41], [42]. Another approach is to discretize it into a set of poses, and learn a
classifier to identify each pose [34], [43]). This method can more directly benefit from the
advances in classifier and detector learning. It also makes it easier to trade off computation

(increasing the number of discrete poses) for increased accuracy.
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2.2 The sampling problem

When applied to computer vision, a serious challenge for learning is what we will call the
“sampling problem™. It is mostly an i'ssue of exploiting prior knowledge well. Consider an
image that will be used as a sample for learning. Most of the time, any subregion of that image
is an equally valid sample. This is especially true for negative samples (i.c. samples that do not
contain an object of interest). Thus, a single image can be a virtually limitless source of

samples.

Traditional methods deal with this fact by selecting a limited number of samples per image,
due to hardware limitations on available memory [33], [11], [44]. The most straightforward
method is to simply select the samples randomly, a technique that is most prevalent in tracking
applications due to their time-sensitive nature [45], [46]. On the other hand, detector learning
mostly relies on hard-negative mining, performed offline [11]. It consists of first training an
initial detector using random samples (similarly to tracking). This detector is then evaluated
on a pool of images, and any wrong detections (named “hard-negatives”) are selected as
samples for re-training. Hard-negative mining is a very expensive process, but crucial for good

detector performance.

A similar technique is also used in tracking, where detection mistakes are found using a set
of structural constraints [45]. A related issue can also occur when evaluating a detector. To
localize an object, the learned model is evaluated over many subregions of an image. The
amount of computation is proportional to the number of subregions considered, mirroring the

sampling problem in leamning. Several ideas have been proposed in the literature to address
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this problem. One of them is to use branch-and bound to find the maximum of a classifier’s
response while avoiding unpromising candidate regions [47]. Unfortunately, in the worst case
the algorithm may still have to iterate over all regions. Though it does not preclude an
exhaustive search, another notable optimization is to use a fast but inaccurate classifier to select
promising regions, and only apply the full, slower classifier on those [59, 139]. A related
method can quickly discard regions (and thus their subregions) for which the evaluated score
will be considered too low [48]. Howeyver, it is formulated only for distances between image
pairs. Although it may not be apparent at first, virtual samples provide an elegant solution to
the sampling problem, making it more amenable to analysis. Subregions of an image extracted
at slightly different locations are related by translation. One may approximate them from one
subregion by generating virtual samples by translation. The approximation is accurate for most
pixels, differing only at the borders. Virtual samples to approximate learning with all possible
subregions of several images, which if done naively would be impossible using current
hardware is proposed in [49], allow training with all virtual sample translations at a fraction of

the computational cost of standard methods, such as hard-negative mining,

23 Fourier-domain methods

The recent success of correlation filter tracking motivated us to research this direction [50},
[51), [5], [4]. Correlation filters have shown promosing results in term of computational cost
i.e.,, they can process hundreds of frames per second, but using only a fraction of the
computational power. This is because convolving two images is simply equivalent to an
element-wise multiplication in frequency domain, Thus, by formulating their objective in the
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Fourier domain, they can specify the desired output of a linear model for several translations,

or image shifts, at once.

Since leng been, frequency-domain methods have been used to compute the fast
convolution, and were used recently to speed up the detectors at detection time [52]. These
Fourrier transforms were also used to speed up the training process of detectors i.e., by
modifying an SVM solver with a more efficient sub gradient computation [39]. Fourier domain
approach can be very efficient because of the several decades of research in signal processing
[50]. At the same time, it can also be very limiting. We would like to concurrently leverage
more recent advances in computer vision, such as more effective features, large-margin
classifiers or kernel methods [53]. This hinted that a deeper connection between learning
algorithms and the Fourier domain was necessary to overcome the limitations of direct Fourier
formulations.

24 Tracking learning and detection (tracking by detection)

This method considers object tracking as a detection problem in every frame. To make the
correlation filter adaptive to the appearance changes of the target of interest, recently proposed
methods draw positive and negative sample around the expected target to update the classifier
discussed in [3]. However, slightly erroneous labeling of samples accumulates over time and
the tracker starts drifting. This problem is known as sampling ambiguity. To handle it many
methods have been proposed such as ensemble tracking [54], randomized ensemble tracking
[55], adaptive randomized ensemble tracking [56], online multiple instance learning [44], and

transfer learning-based tracking [57], [58).
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Another problem, with the approach explained in the previous paragraph, is tradeoff
between stability and adaptivity. The tracking schemes has been decomposed into three
modules, i.e., training, learning and detection given in [45], [59] to keep the system stable and
reasonable model adaptivity. The basic idea in the subsequent method is to update the detector
with conservative rate using the extra sample obtained from the results of aggressively updated
tracker. This online detector can be used in case of occurrence of tracking failure. Examples
of such tracker are given in [13], [9], [14]. Online detector for reinitialization of tracker in case
of tracking failure is also proposed in [3]. The detection module is activated only if the response

is lower than the specified threshold.

Our proposed tracking method also uses a support vector machine-based online trained
detector module that differs from the already proposed [3], [14] techniques. We activate the
support vector machine-based detector module based on two parameters rather than only the
peak correlation value. In our approach, Adaptive Failure Avoidance Tracking Mechanism
using Prediction-Estimation Collaboration (AFAM-PEC) response map is utilized to calculate

the peak to side lobe ratio along with peak correlation value.

2.5 Correlation filter tracking

Correlation filters are applied in many application areas like object detection and
recognition [60]. This operator works as element-to-element multiplication in the frequency
domain, and researchers have applied correlation filter extensively to visual object tracking in

the last decade due to its less computational cost attribute.
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The minimum output sum of squared eror (MOSSE) filter is proposed in [4] track
monotonic images, where the filter is updated on every frame. This filter is computationally

inexpensive having a processing speed of more than a hundred frames per second.

Kernelized correlation filter is proposed in [12], [61], which employs the properties of
circulant matrices for extreme fast leaming and detection with the help of fast Fourier
transform. Efforts have been made to enhance the tracking performance by using correlation

filters.

Examples of algorithms based on correlation filter includes multi-channel filters [61], [62],
[63], spatio-temporal context learning {16}, scale handling and estimation [64], [65], [51] and
spatial regularization [66], [67], [68]. Most of these techniques are very good in adopting the
fast-changing appearance of the model. Still, due to the non-availability of long-term memory
of target appearance, these techniques are susceptible to drift in case of occlusion and out of
the view movement of target object. Tkis problem is solved by keeping the long-term memory
of the target and deploying two filters, one for short term memory and the other for long-term
memory [3]. At the same time this increases the computational cost, and more memory will be
consumed.

Compressive tracking algorithms are also presented in recent years which extracts the
features from multi-scale feature space whose basis function do not depend upon the data. One

of the examples of these types of trackers is given in [17].

Unlike existing techniques that employ only correlation filter for translation estimation

even during occlusion, we introduced:the predictor module, to handle the drifting/tracking
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failure in case of occlusion, motion blur and out of the view movement of the target. In our
approach (AFAM-PEC) predictor is incorporated with the short-term memory correlation

filter.

Peak to side lobe ratio and peak correlation score from response map are calculated to
predict an objects’s occlusion/motion blur/out of view movement. Based on these two
parameters confidence score is calculated, which will decide the reliability of the tracking
result for that specific frame. Short term memory filter will stop updating its weights if tracking
reliability is less than a certain threshold say tr. Measurement follower predictor is used to
predict the next position of the object during occlusion time. Once the tracking result reliability
approaches specified threshold say t,, again short-term memory filter is activated to estimate

the next state of the object.
25.1 Minimum Output Sum of Squared Error Filter

Originally correlation filters used simple templates and mostly failed when applied to
tracking applications. Later, the minimum output sum of squared error filter was presented for
visual tracking applications [4]. This filter showed prominent results in term of computational
time and tracking efficiency. This filter minimizes the mean squared error of actual output and

required output. Mathematical MOSSE filter can be given as follows:
w = argmin X [w®x, - gill} + Allwil3 @1
w .

where w is the correlation filter that minimizes the sum of squared error between the actual

output and the desired output, x; is the d X 1 vector version of the training example, and g, is
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the d X 1 desired correlation output for that training example. Typically, g; is chosen to be a
Gaussian function centered at the origin with a small o for positive training examples, and all
zeroes for negative training examples. The parameter A is for regularization. Note that the
original formulation in [1] does not include the regularization term; this is equivalent to A = 0,
but we include it for generalization. We can express Eq. 2.1 in the frequency domain, and we

can find the minimum by solving grad(®) = 0.The canonical form is written as

E‘L 204 (22)

w= -
zl=1 2! 02["'1

where dot the operator represents the Hadamard product. Also note that the parameter A has
subsumed a factor of N. When used in scenarios that require incremental learning, such as
visual tracking tasks, the MOSSE filter can be updated as a linear combination of the
previously leamned filter and a filter built on the new training examples. Given a filter Wy
learned on the first N training examples, we can simply add an element to the summations

required in Eq. 2.2. Assume that

_ Hl%es _ay
we g =it A 2.3)

When a new input £y,; becomes available, we can update 8y and by with the following
updates

Ay = (1 —n)ay + (2N +1OFn+1) (2.49)
byt = (1 =mby +1(y410%y+1) (2.4b)

where 0 <7 <1 is a parameter controlling the learning rate.
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Smaller values of 1 correspond to slow adaptation, whereas larger values of n correspond
to more aggressive adaptation. The MOSSE filter is used in visual tracking because the update
scheme in Eq. 2.4 allows a tracking system to update the target model quickly. Bolme et al.
provide a qualitative comparison of the MOSSE tracker’s accuracy compared to other trackers
at that 24time, while boasting an impressive 669 FPS. At such fast speeds, the MOSSE filter
became a viablé starting point for subsequent trackers that could be developed to be more
robust and accurate at the expense of speed while remaining faster than real-time (30 FPS).

252 Kernelized Correlation Filter

The tracking algorithm [7] builds on the MOSSE filter concept [4] by extending the filter
to non-linear correlation. Linear correlation between a CF template and a test image is the inner
product of the template w with a test §ample z for every possible shift of the test sample z.
Instead of computing the linear kernel function w7z at every shift of z, KCF computes some
non-linear kernel x(w, z) = @7 (W)@(2) where x represents a kernel function that is equivalent

to mapping w and z into a non-linear space with the lifting function ¢(-).

In one sense, KCF can be viewed as a change away from linear correlation filters. Still, it
can also be scen as an efficient way of solving and testing with kernel ridge regression when
the training and testing data is sn'uctured. in a particular way (i.e., a circulant matrix). Henriques
et al. derive KCF from the standard solution of kernelized ridge regression. For learning w, we
assume the training data X = [x,.xy, ...., X4—1] is 2 d x d matrix where x; contains the same
elements as x, shifted by k elements. The solution to kernelized ridge regression is given by
3]
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a=(K+A)™g 23)

where K is the kemel matrix such that K;; = k(x;,x;), I is the identity matrix, A is the
regularization parameter, g is the desired correlation output, and a are the dual-space
coefficients.

The dual-space coefficients allow us to rewrite the original template w as

w=JL, a,0(x) (2.6)

Where the kernel function x(w, x) treats all data elements equally, and kernel K and the

coefficients a can be computed efficiently in the Fourier domain as follows:

Q= T 2.7

Where k**' represents the first row of the kernel matrix K which contains the kernel function
computation of x, with all possible shifts of another data sample denoted x' ; either x; in the
training phase, or some test sample z in the testing phase. This idea is getting closer to the use
of the Fourier domain to compute linear correlation efficiently. With non-linear kemels,
Henriques et al. show that all elements of k**' can be computed efficiently. As an example,

the Gaussian kernel x(x, x") = exp (— ;1,- (lixl? + Ix'l|*) can be computed as

B = exp (~ % (lIzll? + li'I* — 2F - (202" ))) @8)

Where F~ represents the IDFT.
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Just as in the case of the linear kernel, computing the Gaussian kernel in the Fourier domain
reduces the computational complexity, although there are additional DFT/IDFT operations
called compared to the linear kernel. During training, this kemel is computed for learning the

coefficients &* as shown above in Eq. 2.7, and when testing, the correlation is computed as
J=ea0k* (2.9)
where the IDFT of §' will produce the non-linear correlation in the space domain.

The KCF tracker utilizes these nor-linear kernels to achieve performance improvements
over the MOSSE filter. It operates similary, with an update scheme in the same spirit as Eq.
2.4. One important distinction between the MOSSE tracker and the KCF tracker is that the
MOSSE tracker derives and stores a correlation filter. In contrast, the KCF tracker computes
and stores the dual space coefficients and, necessarily, the training examples. As tracker
continues through a video sequence, the tracker could retain multiple training images, but this
would result in progressively slower tracking as the computational demands in solving for the
kernel matrix R , and subsequently, @ as shown in Eq. 2.7, grow with the number of images
stored. Rather than attempt to store mlﬂﬁple distinct training images or to discard data from
old frames entirely, the KCF tracker stores a single training image x~ that is a linear

combination of previous images, so that
R =102y +1x, (2.10)

where xy is the image patch in the k' frame. -
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When the KCF tracker was first introduced, it exhibited better accuracy than other trackers
at that time, while reporting speeds greater than 150 FPS [61]. This combination of accuracy
and speed made it a popular tracker to improve upon in several ways. Finally, it is important
to note that the KCF is largely a reformulation of the CSK tracker introduced earlier by
Henriques et al. [12]. One of the biggest changes between the CSK and KCF trackers is the
addition of multi-channel features, which were previously introduced for CFs [69], [58].
Henriques et al. incorporate multi-channel features as a straightforward way to improve
performance, where each channel is treated independently, and the correlation planes of each

channel at test time are summed.

253 A Simple Correlation Filter Tracker

The previous two sections discussed the design principles of the two CFs that appear in
almost all CFTs. This section outlines how either the MOSSE filter or KCF can be
implemented within a simple tracker. The simple tracker explained in this section can be
considered a baseline tracker that other CFTs modify, but many details are first seen in the
KCF tracker. Modifications often include swapping out particular components of this generic
tracker, but other trackers may modify more significant portions of the tracking workflow;
these changes are discussed at length in Sec. 2.6. As we know that the input to a tracker, along
withI = {ly, ],,..., I, }, is only the first frame of a video with a rectangular bounding box b, =
[x0. Yo, Wo. ho] denoting the target region, and the output of the tracker is rectangular bounding
boxes by = [x, Yk, Wi, hiJdenoting the target location estimates in the rest of 27the frames of
the video. In the first frame, we extract features from the given bounding box. It is important

to detail how this training is done. Typically in CF applications, the template and the test image
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are zero-padded when performing the FFT [70]. The zero-padding is assumed to remove the
circular convolution effects introduced by the DFT [71]. However, most CFTs do not perform
zero-padding before computing the FFT of any space domain templates or image patches.
Instead, the CF is computed from a region larger than the actual target; in some trackers this
padding results in a CF with a width and height 2x larger than the original target scale [wo,
ho}’.This extra padding is done in combination with applying windowing — usually a cosine
window — to both reduce the impact of the circular convolution and to emphasize the features
that are within the original target region (and within the target region, the windowing
emphasizes the center of the target even more).

This design decision has tradeoffs: the larger CF allows the tracker to learn against some
background information implicitly, and the windowing does reduce aliasing effects, but they
are not removed entirely (and zero-padding this larger CF would likely reduce the speed
significantly). It’s important to note that incorporating the background into the CF training
makes more sense in the tracking application; unlike tasks like ATR or other single-image
object detection tasks, we know we will have to distinguish the target from a similar
background in subsequent frames; this is not the case in other detection tasks.

From the first frame, we have an initial CF to detect the target throughout the video. In
subsequent frames, the tracking process can remain relatively simple. An image patch centered
on the previous estimated target location is extracted from the new frame. This patch is usually
the same size as the padded CF. The same feature extraction and windowing is performed. We
take the DFT of the feature representation of the target, and perform the correlation between
the image patch and the CF. We take the IDFT of correlation output, and the maximum
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correlation value determines the center position of the target in the correlation output plane. If
the target’s scale is estimated, it may be done at this stage, or it may be done jointly with the
translation estimation of the target. More details regarding scale estimation can be seen in Sec.
2.7 (the Original KCF tracker does not perform any scale estimation). For trackers that perform
redetection and/or failure detection, this is usually when that tracking element is exercised (the

KCF tracker does not perform any redetection).

Following the estimated target pos1;tion (and scale), the CF must be adapted to the new
target information. At the new target location (and appropriate scale), a final image patch is
extracted4 and features are again extracted and windowed. This image information is
incorporated into the filter design. The MOSSE and KCF filters are designed so that this can
be done with a simple linear combination of the previous CF and a CF designed solely on the
new detection, i.e., T, = (1 — 2)1;—; + ATpey, Where T denotes whatever filter design is used,
and A denotes the adaptation rate that balances the previously learned model 7; and the
information from the new detection, denoted ,,,. The details of the update as well as the
value of A will vary from tracker to tracker as CF designs vary, but nearly all newer CFTs will
update their filter model. The two-step process of detect-update will continue through the
duration of the video. An overview of this entire system framework is shown in Fig. 2.1. We
note that certain design decisions that are precluded in the Online Tracking Benchmark (OTB)
and Visual Object Tracking (VOT) benchmark challenges. Both benchmarks prohibit revising
old detection outputs based on more recent frames. Additionally, specific pretrained models

are not allowed on a per-video basis. However, the entire dataset has no prohibition on tailoring
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certain tracker parameters (e.g., amount of padding, adaptation rate A, or CF specific

parameters).

2.6 Improvements for Coneiaﬁon Filter Trackers

2.6.1 Feature Representations for Correlation Filter Trackers

Traditionally, CFs assumed scalar or single-channel features, e.g., grayscale intensities
when operating on images. This was the case for much of the period before CFTs being
introduced. CFs that accommodated other features, called vector CFs [69] or multi-channel
CFs [61], have been developed in more recent years. These CF designs were like the MOSSE
formulation, in terms of minimizing the MSE of the correlation output plane. The work
presented by both [69] and [58] use the cross-spectral energy between different feature
channels, and both choose histogram of oriented gradients (HOG) features to illustrate the new
CF designs. As was discussed in Sec. 2.3.2, the KCF tracker uses multi-channel HOG features,
but treats them independently. While treating each feature channel independently reduces the
computation time, it ignores the possible interactions between feature channels and effectively
assumes that all feature channels are independent. We note that the choice to treat each feature
channel independently is the 30prevailing choice in CFT desigus.

Histograms of Oriented Gradients

From the original MOSSE and CSK..trackers that used only scalar features, several feature
descriptors have been explored in CFTs. As discussed above, the KCF tracker was the first to
introduce HOG features to CFTs. HOG features were originally introduced for pedestrian

detection but have become a popular feature descriptor in a range of object detection tasks
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[18]. HOG descriptors aim to capture edge features of a given target. Since the first use of
HOG in CFTs, a number of subsequent CFTs use HOG, either as the only feature descriptor
or in conjunction with other feature descriptors [7],[72]{73][15][72][25]. The KCF tracker
used a HOG cell size of 4 x 4 and retained all 31 feature channels, meaning that a HOG

descﬂptorforanimagepatchofsizew'XhWONdbe‘-:-x%x 31. Most trackers use the 4 x 4

cell size from the KCF tracker, but some trackers change this; some CFTsusea 1 x 1 cell size
[65],a 6 x 60ellsize[20],andanother'thatuse32 x 2 cell size for small targets and the 4 x 4
cell size for larger targets . Most trackers retain all 31 feature channels. The decision regarding
cell size becomes a familiar tradeoff: smaller cell sizes produce denser feature descriptors but
reduce the speed of the tracker; using 31 HOG feature channels requires 31 FFTs. Larger cell
sizes will keep the tracking speed much faster, but may not characterize the target well,
particularly smaller targets. Overall though, HOG features can be computed quickly
(independent of subsequent FFTs), perform much better than grayscale intensity features [74],
and do not appear to slow tracking down at all when done at a cell size of 4 x 4 [74]. One final
note regarding HOG features is that using a cell size of ¢ x ¢ means that the smallest detected
target translations will be ¢ pixels by default. The original KCF tracker does not address this,
and therefore all estimated target translations are multiples of 4 pixels. A modified version of
the KCF tracker uses sub-cell peak estimation to estimate smaller target translations than the
HOG cell 31size [75].

Color features
While HOG descriptors capture the edge characteristics of a target, other features attempt

to capture the color information of the target object. The target object has a distinctive color in
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many videos, e.g., a track and field athlete wearing a distinct jersey. If the target is the only
yellow object in the video, it certainly seems straightforward to simply find the yellow blob in
each frame. The Adaptive Color Tracker (ACT) was the first CFT to use color information for
feature descriptors of the filter and target image patches [10). The authors explore the
effectiveness of several color spaces, e.g., RGB, LAB, HSV, and others. Their investigation
shows that color name attributes perform best. Color names are a higher dimensional
representation of colors based on human perception. Unlike other color spaces which have a
mathematical formula to convert from RGB color space, small ranges of RGB values are
mapped to a probabilistic 11-dimensional vector that sums to 1, where each value corresponds
to human perception of black, blue, brown, grey, green, orange, pink, purple, red, yellow, and
white, Color names, like HOG descriptors, had previously been used in other computer vision
tasks [76]. Since the publication of the ACT tracker, a number of CFTs have used color names
jointly with HOG descriptors [74], [77]. The ACT tracker also proposes dimensionality
reduction for the color names; this results in a 25% increase in the frames per second (FPS)

while only slightly reducing accuracy. '

While the color name features are a pixel-wise descriptor, other trackers use color
information in a different manner. The Sum of Template And Pixel-wise tracker [73] uses the
first frame to learn which RGB values are representative of the target. In subsequent frames,
per-pixel scores based on RGB values are smoothed out over a region equal to the target size
to produce a color response plane. The amount of smoothing precludes a sharp peak from
appearing within the color response, but it is used as a 32 complement to a CF built with HOG
features. The HOG result will often proc'luce a much sharper correlation peak, while the color
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information serves to reinforce or alter less sharp peaks that would correspond to less confident
detections from the HOG features. The two output responses have different shape
characteristics derived from different information (color vs. texture), and the overall result is

stronger.

Much like HOG descriptors, color features are very quick to compute. Most color spaces
have 3 channels, while the color names have 11 channels, which does result in slower
performance (while HOG features often make up for 31 feature channeis by reducing the
spatial resolution, color features are typically of the same spatial resolution as the original
target).

Deep-Learned Features

In recent years, deep convolutional neural networks (CNNs) have come to supplant
“handcrafted” features like HOG in computer vision tasks [78], [79]. [80], [81], [82]. While
hand-crafted features like HOG are computed based on what researchers expect to be salient
feature outputs for discrimination, deep neural networks (NNs) are expected to leam
discriminative features on their own, given sufficient training data. Just as deep features
followed the introduction of a range of hand-crafted features in domains such as object
classification and localization, CNNs are being introduced to visual tracking shortly after hand-
crafted features. The visual tracking problem is characterized by the lack of target data prior
to the beginning of tracking. This immediately rules out training a CNN from scratch; instead,
most CFTs that employ CNNs depend on a pretrained model, typically either AlexNet [78] or
VGGNet [83]. At a high level, CNN:; take an input image and, over successive layers of

convolutions with filter banks and spatial pooling, learn feature representations that capture
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elements ranging from low-level textures to image classifications. For the simplest use in
visual tracking, the CNN can be considered a static feature extractor, like HOG or color
features. This most basic approach is shown in work by Danelljan et al. [84], simply called the
DeepCFT. The authors build a CF using the output from each convolutional network in
VGGNet, which takes an input image patch of 224 x 224 x 3 (all targets are resized to fit the
pretrained network) and outputs a 109 x 109 x 96 descriptor from the 1st convolutional layer,
a 26 x 26 x 256 descriptor from the 2nd convolutional layer, and 13 x 13 x 512 descriptors
from the 3rd, 4th, and 5th convolutional layers. The authors show that the best performance is
obtained when building the CF using the 1st output layer, and in fact the performance drops
off each successive layer until the 5th layer, which performs only 3rd best. The assumption is
that the deeper layers do not provide enough spatial resolution; there is roughly a 17x reduction
in the spatial resolution from the original patch to the 3rd layer. Most importantly, the authors
show that the CFs built from the CNN’s output outperforms comparable CFs built jointly from
HOG and color name features. From this simple approach to building a deep CFT, more
advancements have been made. Rather than just using the output from one layer, other works
have combined the outputs from different layers [85], [86], [87].

The Multi-Level Deep Feature Tracker (MLDF) goes beyond just using a pretrained
network and actually uses the current track information to train the CNN to adapt to the target
appeamnceanditssmroundings,mther?hanjustkeepingthestaningVGGNet.Alookatrecent
benchmark performance shows that deep features are used in many of the most accurate
trackers [88]. However, the use of deep features does come at the cost of speed; CFTs using

CNNs are typically much slower than trackers using hand-crafted features. Despite this, visual
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tracking may follow a similar trend as other computer vision tasks that have become more and

more dominated by deep networks.

2.7 Target scale estimation

In their simplest construction, CFTs simply estimate the translation of a target; the 2D
correlation output plane provides no insight into the changing scale of a target. Accurately
estimating target scale has multiple b;%neﬁts; it directly affects how tracker performance is
quantified in benchmark evaluations, and beyond benchmarks it can provide important
information in real-world applications. Along with being valuable in and of itself, accurately
estimating scale allows a tracker to adjust its own tracking procedure to adapt to the changing
target, thus reducing the possibility of drifting off of or losing the target entirely. With the
possible intrinsic and extrinsic benefits of accurate scale estimation, there has been a good deal

of work in adapting CFTs to scale variation.

2.7.1 Exhaustive scale search

Perhaps the earliest CFT to address scale estimation was the Discriminative Scale Space
Tracker (DSST)[89], [90] . DSST shares many similarities with the KCF tracker but adds a
scale estimation component following the translation estimation of the target. Following the

translation estimation to determine [x}, y;], the tracker extracts image patches at S scales. For
s-1 s—-1 . : [] [
each scale n € [l_T A l—;—”, DSST extracts an image patch of size a"wy._; X a™h;_,,

where a is the scaling factor between adjacent scales and [wy_;, hi_,] is the previously
estimated target size. Similar to the process for estimating the target translation, a separate CF
designed for estimating scale is correlated with the feature descriptors extracted at each of the
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S scales (DSST chooses S = 33). Because the target centering is roughly accomplished, the
correlation output is limited to a S x 1 output. Just as the CF for translation estimation is built
in a way to favor smaller translations, a 1D Gaussian windowing is applied to the S x 1 scale
correlation output to favor smaller scale changes. This, along with a conservative scale factor
of a = 1,02 results in small estimated scale changes from frame to frame, which is consistent
with target behavior in most applications when the video’s frame rate is 24-30 FPS (as is the
case of nearly all benchmark videos). When the target scale is estimated, the scale filter is
updated. In subsequent frames, the input image is resized according to the current scale for the
estimation of the target translation. Finally, we note that while the translation filter in DSST
uses 1 x 1 cell size HOG features, the scale filter uses PCA-HOG features [11] with 4 x 4 cells.
The justification for using a larger cell size is that pixel-wise estimation is only a concern for

the target translation.

DSST estimates the target boundmg box in two steps, first by estimating the translation
[Ax, Ay] via a 2D correlation, and then jointly estimating [Aw, Ah] by estimating the change
in scale via a 1D correlation. The authors of DSST also explore estimating the translation and
scale together by learning a 3D scale-space CF. They find that this 3D CF is much slower, as
would be expected, and also actually performs slightly worse than the sequential translation
and scale estimation. Following the ﬁndmgs during the development of DSST, a number of
trackers have followed the approach of sequential translation and scale estimation [91], [84].
Still, another CFT does jointly estimate translation and scale [68].
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2.7.2 Efficient scale search

DSST and trackers that adopted the same approach look exhaustively over various scales,
which may not be the most efficient approach possible. The Multi-Kernelized Correlation
Filter (MKCF) trackers [92], [93] seeks to estimate the scale by finding the scale that produces
a corrrelation output peak with the highest PSR in a more efficient manner by performing a
line search within a range of scales +10% of the current scale. This approach assumes that the
PSRs across different scales within the search range will 36only have a single local maximum;
with multiple local maxima, a suboptimal scale could be chosen. The authors of [61] do not
report how often this assumption is accurate. In addition to a line search, MKCF chooses to
rescale the features rather than extract features multiple times from different scales. The
authors do compare this approach to the “traditional” approach of extracting features from
image patches of different scale and show a small gain in the accuracy when doing the faster
rescaling of features, though this effect is relatively small.

The trackers mentioned abqve estimate the scale either exhaustively or with a more
efficient line search. The Multi-view Correlation Filter Tracker (MvCFT) [94] reduces the
scale estimation to a discrete decision to decide if the target is getting smaller, remaining the
same size, or getting larger. Once the target translation is estimated, image patches at the
current scale and £5% are tested against the same CF used in translation estimation. The
maximum value from the correlation output plane for each of the 3 scales is taken, and, after
the unchanged scale is given a small amount of extra weight, the maximum value of all 3 planes
is used to determine if the target is getting smaller, larger, or remaining the same size. If the
scale is changing, it is changed by 5%. It can be assumed that very small-scale changes will
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not be detected, but CFTs without any scale estimation are robust to minor changes, so
effectively ignoring the smallest changes should not be a large concern. The authors claim

experimental results support this.

2.8 Parts-based correlation filter trackers

Parts-based models often seek to perlform vision tasks by decomposing a large object into
smaller pieces that can be operated on independently and then joining the results of the
subproblems to provide a coherent result for the entire object. Parts-based models have been
used previously in object alignment [95] and object detection [11]. More closely related to
CFTs, recent work on object alignment used CFs to detect individual car parts before fusing
the result with a deformation model [69].

Initial Trainirg

Figure 2.1 Standard correlation filter-based tracking. Ip,bo represents the coordinates of the
target in the initial frame, Ix represents the next frame, by’ represents the estimated position
of the target in the next frame.
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Figure 2.2 Part-based Correlation filter tracking. The top two images show that tracker uses
five parts[96] whereas two parts are used in the bottom two images[72] .

Parts-based approaches are design',&d to handle object deformations, e.g., a pedestrian’s
changing stride. In contrast, a single rectangular detection window may struggle to characterize
all possible poses of the target. Additi;‘mnlly, parts-models are inherently tolerant to partial
occlusion; if some object parts are occluded, a detector can still work well based on the strength

of the visible parts.

Visual trackers stand to benleﬁ't from 'some of the intrinsic characteristics of parts models,
but their application and benefits are not the same as those in single-image object detection.
Parts-based object detectors can benefit from target knowledge and possible deformations, e.g.,
a pedestrian detector can be designed to have a part for each limb. With no prior knowledge of
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the target, parts cannot be defined so precisely for trackers; instead, the configuration of generic
part is necessary. Still, visual trackers will benefit from robustness to occlusion. Additionally,
parts-models can easily be tailored to estimate scale; if parts are drifting farther apart, that

alone can be enough to indicate that the scale is increasing,

A tracker proposed in [96] uses KCF filters to localize 5 object parts, each approximately
20% the total target height and width, configured in a cross pattern as shown in Fig. 2.2. The
individual part detections are given weights according to two factors: a higher PSR for a part’s
detector will result in higher weight, and a smaller shift from the previous location will result
in a higher weight. The use of PSR is mostly self-explanatory but emphasizing smaller shifts
does require justification. The authors argue that detectors for parts that become occluded can
possibly detect another unoccluded part of the object; this is part of the risk of defining a
generic parts-model for all possible targets. More generally, the justification is that if all part
detectors shift equally between frames, it is likely the entire object did, and there will be no
net effect of this shifting penalty on the relative weights between parts. If 1 of the 5 part
detectors shifts much more than the other parts, it is more likely an error and should be given
less weight (although, under this design, an outlier part could possibly shift less; this is not
addressed). Once the individual correlation planes are weighted, they are combined to provide
a full confidence map. The final targei translation and scale estimation are determined by
Bayesian inference similar to a previous tracker [97], [98]. The tracker proposed by Akin et al.
[72] subdivides targets into only 2 parts: cither top and bottom parts for tall and narrow targets
or left and right parts for short and w1de targets as given in Fig. 2.2, The two parts use KCFs
filters to localize their half of the target.The reliability of the 2 part detectors is indicated by
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the correlation peak value for each part. Based on these weights, an additional full-target KCF
is built as well and performs a full-target target detection centered at the location suggested by

the two-part detectors.

The target’s scale is estimated by measuring the changing distance between the two parts.
WhmupdatingtheCFmodels,thecolrrelationpeaks are tested against a threshold; if a part
detection falls below some threshold, the part model will not update, and if all parts fall below
the threshold, the full-target deiector will not update. This is meant to avoid updating the
models when the target or target part is occluded. Additionally, scale estimation is only

performed when all part detections are considered reliable.

2.9  Other visual trackers

In Sec. 2.6, Sec 2.7, and Sec. 2.8, wide range of CFTs and the various improvements they
make to the MOSSE and KCF trackers that first used CFs for visual tracking were discussed.
However, both prior to introducing the MOSSE tracker and during the continued growth of
CFTs in recent years, many other visual trackers that do not use CFs have been developed.

One of the most well-known trackers is the Tracking-Learning-Detection (TLD) tracker
introduced in 2012 [45]. As its name suggests, the tracker has three components. A Median-
Flow tracker [99] locates the target from frame to frame based on‘the current trajectory. The
detector treats new frates independently of previous frames and can correct failed track. The
learner observes both the tracker and detector, and estimates when the detector is making
errors. Based on when the leamer believes the detector is making errors, it can generate more

training data for the detector to improve its performance. The TLD tracker was the third most
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accurate tracker when the OTB50 benchmark was published in 2013 with 29 trackers included
[100]). The TLD tracker is not evaluated on the most recent VOT benchmarks, but a more recent
proposed tracker that fuses the principles of both the TLD and KCF trackers has been proposed

[101].

The best performing tracker in the OTB50 benchmark’s collection of trackers was the
Sparsity-based Collaborative Model (SCM) tracker [15]. Zhong et al. introduce a
discriminative and a generative model that learns sparse grayscale features and sparsity-based
histograms within a particle filter framework. The SCM combined the two approaches while
stating that the generative model plays a more significant role in tracking. The second best
tracker reported in the original OTB50 benchmark was Struck [46). Struck trains a structured
output kernel SVM that continuously adds previous detections and hard negatives from the
region around each detection, while pruning the number of possible support vectors over time

to avoid progressively slower processing times.

Despite the success of the above trackers, many new trackers have been introduced since
the OTB and VOT benchmarks essentially regulated the ways trackers operate and are
evaluated; nearly all of the most effective trackers on these benchmarks have been developed
since the introduction of these benchmarks (and perhaps developed explicitly for the
challenges present in the datasets). This is true for CFTs and other trackers.

The best performing tracker on the VOT2015 dataset was the Multi-Domain Network
(MDNet) tracker [102]. MDNet pretrained a CNN on an outside set of videos, then combines

this pretrained network with a binary classification layer for a test video. Candidate regions are
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sampled with varying translations and scale changes relative to the previous target detection.
The significance of MDNet is that its success, coupled with being one of the first trackers to
use CNNs, likely inspired a growing number of newer trackers that use deep networks. Other
CNN trackers include an extended version of the MDNet tracker, with occlusion inference and
a scale regression model to refine the output bounding boxes, submitted to the VOT2016
benchmark [88], and the Tree-Structulred Convolutional Neural Network (TCNN) tracker
[103] that uses a CNN along with a tree structure to capture the multi-modal appearance of

certain targets. Another recent tracker exchanges the CNN for a Siamese NN [104].

While deep networks are growing in popularity, other trackers which also performed very
well in recent benchmarks. The Edge Box Tracker (EBT) [105] uses an objectness measure to
find region proposals within an entire frame, which any object detector can then process. The
tracker focuses on finding hard false-positives and re-ranking proposal regions, which can be
processed separately. The salient region-based tracker (SRBT) uses color information to
segment a target more precisely than a rectangular bounding box; this more precise
segmentation determines which regions of the rectangular bounding box contribute to the
model update [88]. The geometric hypergraph tracker (GGT) [106] uses a graph structure to
capture the relationships between different target parts as correspondences between frames are
found and used to find a subset of reliable parts. An extended version of GGT appears in
VOT2016 that incorporates the Scale Adaptive with Multiple Features (SAMF) CFT.

Along with original tracking systems, the outputs from multiple trackers can be combined
to produce one composite output. The median absolute deviations (MAD) fusion strategy [107]
is able to detect outliers, or trackers which have likely failed. Each individual tracker deviates
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from the median determines the weight given to that tracker for the final estimate, and outliers
are ignored and reinitialized on the new estimated target location. The VOT2016 benchmark
contest uses a swarm of KCF trackers and a DSST scale estimation scheme, and outperforms

both KCF and DSST [89].

2,10 Summary

This chapter initially presented a. general background on how discriminative learning
algorithms are used in computer vision applications. After this, some state-of-the-art tracking
algorithms with a major focus on correlation filter-based tracking are described. In the end

some improvements to correlation filter-based tracking schemes are presented.

Chapter 3 is based on the methodology of this research study. The main components of the

proposed work are discussed in detail.

Chapter 4 describes the results and its detailed discussion. Whereas Chapter 5 provides the
conclusions of each contribution and future recommendations.



Chapter 3.

Methodology

Our objective is to develop a robust online training-based visual object tracking algorithm to
handle the long-term occlusion more effectively than other already proposed long-term tracking
methods. Without considering the orientation of the object, tracking is simply the estimation of
the translation and scale object [3], [14]. In our proposed framework, the translation estimation
is based on the correlation of temporal context and scale estimation is based on the discriminative
correlation filter.

In this section, the main components of the proposed tracking procedure are described. First
of all long-term correlation tracking [3], [14] is described in Section IITA. Next, we describe the
estimator module [3] in Section IIIB, we use support vector machine classifier. Section IIIC
describes the Kalman filter-based predictor. Finally, in Section INID, predictor strategy is
described, which assists the translation estimation filter during long-term occlusion. Different

notations and variables used in the following sections are given in Table 4.1.

3.1 Long-term correlation tracking

Correlation filter based tracker calculate the weights w by training on an image patch i of
P x Q pixels to model the target appearance [3], [14], [57], [58], [61], [64], [51], where all the
circulant shifts iy xq, (7, q) €{0,1, ..., P — 1} x {0,1, ..., Q — 1}, are considered as samples for

training with the gaussian function label y(p, q), i.e.
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w = argin T4 J0(25) - w =y (o, ol + aw)? G.1)

Where o is mapping to kernel space and 4 denotes regularization parameter, which is

always greater then or equal to zero. As labeling is not binary , hence w contains the

coefficients of gaussian ridge regression model [108]. By using fast Fourier transform the
above objective function is minimized to the Eq. 3.2.

w=Tpq ¢ q) 0(lps). (2

where ¢ is calculated by (3.3) using discrete Fourier transform as follows:

—_ — Ji¢))
C=fl)= f(a(D o@D)+2° G3)

f  denotes the  discrete  Fourier transform (DFT) and y=

@.9|@ 9 € ©0.1,...P - 1} x{0.1,..,Q — 13},

In the new frame, response map over image patch u of size P X @ is calculated by using

inverse discrete Fourier transform as per Eq. 3.4.
9=F1(COflew-o®)), (G4

Where © is element-wise multiplication, £ is learned target appearance model and
maximum value of § is the new target location. Two correlation filters are trained using single
frame, one to model the target appearance solely and other to model the surrounding along

with the target. As surrounding information does not change quickly and remains temporally
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Figure 3.1 Support Vector Machine demonstration. On the left side green circles represent
the positive sample whereas, blue crosses representing negative sample. This is the case of
the linear separable dataset. The solid black line represents the hyperplane separating the
closes positive and negative samples.

stable, it is very useful to differentiate the target from the background in case of occlusion [3],
[14], [16]. A weighted cosine window is applied to feature channels to remove the boundary

discontinuities of the response map.

Context Regression model R.,,is adaptive to cater the occlusion, abrupt motion and

deformation with the learning rate as Eq. 3.5 and Eq. 3.6:
1t =01-p1 +6it, (3.5

A = (1-pAt +pat, (3.6)
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Target appearance Iregmsion model R;,, is learned from the most reliable and confidently
tracked frames. Reliability is determined using maximal value of § [3]. Unlike the existing
techniques [3], [14] to maintain the mode! stability in true letter and spirit, two thresholds are
defined to update the target regression model R, using (4). First threshold T, is on peak
correlation value. Second threshold T, is on peak to side lobe ration of the response map. If
both the criterion are met, then only target appearance regression model is updated using Eq.
3.41i.e max( $)> Ty & PSR (9) > Tpsr. Not that only the peak correlation value is enough to
ensure the model stability in case of lorg-term occlusion, as shown in Fig. 11. We update the
target appearance regression model only if the tracker results are above the certain reliability

threshold i.e. T¢q, , we keep the learning rate 8 aggressive.

For optimal scale selection of tracked target, image pyramid technique is implemented

using the concept of [34]. If P X @ is the size of target and N is the number of scales, then

§= argm’ax(max(ﬁ) ,(max(9,), ..., (max(%;)) , (eN))
Where each s €5, § = {a*|n [-*22],[-*22]. .. [- 22 ]p.

Unlike [34], we make the updating of target regression model more robust and R.,,is

updated using Eq. 3.4 if it satisfies the condition max (9¢)> T, & PSR (§¢) > Tpsy .

3.2 Support vector machine-based estimator

To increase the robustness of tracking algorithm, a detection module is necessary to recover

the target when tracking failure occurs due to long-term occlusion and reentering into the
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camera view, erroneous input to model update module or out of camera view movement of an

object.

Researchers proposed this model of the online detector and carried out redetection on each
frame in [13], [49], [50]. To decrease the computational efficiency, certain threshold is defined
to activate the detector. Detector is activated only if the maximum value of response map is
less than a predefined threshold [3]. Unlike these two approaches, a support vector-based
detector in collaboration with Kalman lﬁlter—based predictor is implemented in our approach

i.e., the proposed detector is activated if either of the following two conditions are true i.e.

i) max (ys) <Irand

ii)  PSR(yy <Tpm

SVM is trained incrementally by considering thick training samples around the estimated
position. Binary labels have been assigned with respect to overlap ratio as given in [50]. We
assume the training set {f;, ¢;Ji = 1,2, ..., N} is given having N number of samples in the
frame. f; is the feature vector of i*® sample and c; is the binary class label for i*® sample i.c.,
¢; € {+1,-1)}. SVM classifier is defined as follows:

m'fn;l lII)* + %ZI I(h; (Wi, c), (X))

where h is hyperplane of SVM detector, I(h; (v, ¢)) = max{0,1, ..., c(h,v)} and (h, v) is inner
product between v and h. Passive-aggressive algorithm is applied to update the hyperplane

parameters as follows:



Figure 3.2 Pictorial representation of proposed tracking technique. The Position is estimated, on
the estimated position we have estimated the scale using pyramid technique. Reliability of tracking
is jugged using conditional block at the right of scale estimation. Result is passed to collaborator
if the tracking result is not reliable. SVM classifier estimate the new position and its reliability is
checked using second conditional block shown in collaborator module, if the results are reliable
enough based on the threshold then new position is SVM estimator based otherwise Kalman filter
predictor will give new position. where Pys represents the predictor and Drrrepresents the detector.
¥ is estimated position at estimated scale, Rcon is context regression model, Rur is target
appearance regression model. '
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FE1 FEI

Figure 3.3 Modeling of context regression model and target appearance regression model.

heh- ——ﬂ-'("’(” ) Vpl(h; (w,¢)), (Y9

HoRl(hi(w )l 4o5
Where T € (0, +0) controls the rate of updating of b, Vxl(h; (v, ¢ ) is the gradient of loss
function. SVM philosophy is shown in Fig. 3.1.
Unlike existing techniques, in our proposed work the parameters of the detectors are updated

using (9), when the max (y;,) >T;, where y] is the response map value for it* possible state

calculated by the detector out of i number of states in X (Dx) for #* frame.
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3.3 Kalman filter-based prediction
In literature different Kalman filter [109] based tracking algorithms have been proposed, for
example [110], [111], [112], [113]. To increase the efficiency of tracking algorithms, Kalman
filter based algorithms have been hybridized with many other tracking algorithms, some of the
examples are in [114], [115], [116]. Different from the existing techniques, we incorporated
Kalman filter in synchronization with the estimator module to avoid the tracking failure caused
by long-term occlusion, motion blur or clutter background. Kalman filter works in a closed loop
cycle with prediction and correction steps (10)-(14), respectively. In our proposed tracking
framework, Kalman filter is activated in case of the failure of tracking caused by any of the issues
mentioned above. During occlusion the Kalman filter takes the current state from the main
tracking algorithm (in our case it is KCF) defined by (1)-(4) and predicts the next state by using
(10) and (11). The main tracking algorithm (KCF) will stop updating its parameters and target
appearance regression model. Kalman filter corrects itself using the previous location predicted
by (10) and (11) during occlusion in the next frame. Formulation of Kalman filter is given by
Eq. 3.10- Eq. 3.14.
x = AJI{”,_1 + Bu, (3.10)
S = A§‘,_1AT +0Q, (3.11)
where, x;' is predicted statc at t™* frame, A is state transition matrix, S, is posteriori error
covariance matrix,Q is covariance matrix of dynamic noise, B is input noise and A is state

transition matrix.
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Correction:
K.y =S, HT(HS..,HT +R), (3.12)
X"te1 =X, + Ky (Y, — HX"}), (3.13)
Sesr = (- KTH) S, (.14)

Where H is measurement matrix, Y; is the measurement to the Kalman from the main tracking
algorithm.

Depending on the condition this measurement may come from either of the three sources i.e.;
i) main tracking algorithm ii) estimator module iii) Kalman filter self-prediction in the previous
frame. Depending on these two conditions; i) max (yg) <Tr or PSR (¥g) <Tps) and ii) max (y;)>T.
Kalman filter continues to predict the next state during occlusion and send predicted state to

predictor-estimator collaboration module.

3.4 Prediction estimation collaboration

Collaboration module is proposed to handle long-term occlusion, motion blur and clutter
background, unlike existing techniques. Most of the already existing methods model the target
using its appearance. The major problem associated with these methods is their incapability of
predicting the state of the object during occlusion. When the object re-enters the field of view of
frame after occlusion, different tracking techniques have been proposed to recapture the object,
such as [3], [14]. Different from existing' frameworks, our proposed scheme (AFAM-PEC)
activate the predictor and estimator at the same time, when the object gets occluded i.e. max(y;)

<T, or PSR (¥8) < Tyur.-
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Figure 3.4. Flow chart of Predictor-estimator collaborator module.
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During the occlusion period predictor starts predicting the location of the target and SVM
based classifier starts estimating the position of the object. If estimated position by SVM based

classifier satisfies the condition max (y,) >T,, this position is considered a correct estimate and
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is given to Kalman filter as measurement to predict the next location. However, if estimated
position does not satisfy the condition max (y;) >T,, Kalman filter-based predicted position is
given to the estimator to estimate the next location in the next frame and the same is given to
Kalman filter to predict the next location in the next frame. This approach shows significant
improvement in results in comparison to [3], [16], [17]. The flow chart of this module is given

inFig. 3.4.
3.5 Hybridization of average peak correlation energy and confidence of

squared response map

Maximum response value has been used widely as reliability measure in tracking
algorithms. During occlusion and motion blur etc. response map changes drastically. So,
using only maximum response value as reliability measure is not good enough. Another
measure i.e,, average peak correlation energy(APCE) is presented in[117] given by eq.
3.15.. APCE tells about the degree of fluctuation of response map. If the object undergoes

fast motion, the value of APCE will be low.

APCE = —Rmaz—Rmunl® __ | ' (3.15)
mean(Ty,(Ry.c~Rpua)?) )
Where, Rpgy , Rpin denotes the maximum and minimum value of response map

respectively. R, ;. denotes the rth row and cth column element of response map.

It has been shown practically that if the target apparently appears in the detection
scope, there will be sharper peak in response map and the value of APCE will be smaller.

However, if the target is occluded, the peak in the response map will be smoother and the
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relative value of APCE becomes larger[118]. This problem is solved by squaring the

response map and then finding the confidence of squared response map [118].

Peak of the response map is represented in the nominator of eq. 3.16. Whereas

denominator represents the mean square value of the response map.

CSRM = ——Jimax’~Rm’] (3.16)

B 7,’;21‘41 I |Rrc—Renin®| )
Where, Ryax » Rmin denotes the maximum and minimum value of response map
respectively. R, . denotes the rth row and cth column element of response map. M*N is the

dimension of response map. We increased the robustness of reliability measure by

considering both i.e,, APCE and SCRM in the following manner.

APCE'||CSRM! > Threshold; Target is raliable

Where, APCE! and CSRM® denotes the average peak correlation energy and confidence of

squared response map for it frame respectively.

3.6 Novel interpretation of difference of peak correlation

Occlusion detection is one of the biggest challenges to object tracking community.
Relevant literature is already discussed in chapter number 2. In this section simplest and
novel occlusion detection mechanism is discussed. If the peak correlation response value
changes, this means that object is losing its actual presentation. This may happen because
of occlusion, motion blur or deformation. Let us suppose PCT and PCT-1 are the peak
correlation values current and previous frame respectively. Computing the difference of

these two peak correlation values gives us insight bout the tracking reliability.
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Mathematically it is given by eq. 3.17.

if (PCy — PCy_; < 0),0bject is comming out of degradaation 3.17)
(PCr — PCr_,) < Threshold, reliable to track

{ if (PCy — PCy_, > 0),0bject is getting corrupted

Although peak correlation is extensively used in object tracking algorithms, it is interpreted
differently in this study. If the peak correlation of the current frame is less than the peak
correlation of previous frame, the object is losing its description. Many factors are responsible
for decline in the value of peak correlation some of them are occlusion, motion blur and
deformation in object of interest. Whereas if the peak correlation of successive frames is higher
than the previous frame this tells us that result is reliable and object is coming out of occlusion
and attaining its original description. This strategy is incorporated in the graphical abstract shown
in Fig. 3.5.

3.7 Implementation details

The complete flow of the proposed tracking scheme is presented in Algorithm 1. The
corresponding flow chart of the novel detector-estimator collaboration module is presented in
Fig. 3.4.

This thesis computed multilayer features at fraction of cost using the technique presented in
[53]. Histogram of the oriented gradient with 31 bins in histogram along with histogram of local
intensities (Hol) with 6 X 6 windows using 8 bins is implemented. To cater fast illumination
variations, Hol is applied on brightness channel and transformed brightness channel as given in
[119] is implemented.

Context regression model Ry, is trained using forty-seven channels feature vector. Whereas

target appearance regression model Ry,, is trained using HoG features with 31 number of bins
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only. Constant velocity model of Kalman filter is implemented. The gaussian kernel is used in
both target appearance regression model and context-aware regression model. Correlation in (2)
and (3) is computed in the Fourier domain. Detection is done by sliding window scanning fashion
similar to [36]. SVM classifier is trained considering very large number of samples around the
estimated location. Samples having an overlap ratio with the target model bounding box greater
than 50% are given positive labels, whereas samples having an overlap ratio less than 10% are
assigned negative labels. Regularization parameter in (1) is assumed to be 10~*, search window
in frame is 180% of the target object size, width of kernel is set 0.1, learning rate B is considered
0.01. For scale handling, 21 number of scales are considered and a scale factor is considered
1.08. To tumn on the SVM-based detector and Kalman filter-based predictor, threshold 7, is
considered 0.25. Detectors results are considered reliable only if the threshold T, > 0.5. The
second threshold T, is considered 0.5. Threshold T, for updating of target regression model R, .,
is 0.5. Most of the parameters are based on [3], [14], with slight variation or no variation at all.
The proposed tracking scheme is implemented in MATLAB (2019) on intel core i7, 7th
generation, 2.80 GHz processor, RAM 16GB, a machine with 64bit windows 10 operating

system.



58

Chapter 4.

Results and Discussion

This chapter first describes the dataset and its attributes. Detailed discussion on qualitative

and quantitative results is also presented.

We evaluate our tracker quantitively using; i) Distance precision metric as per Fig. 4.1 b, Fig.
4.1 ¢, Fig. 42 b, Fig 4.2 ¢, Fig. 4.3 b, Fig. 4.3 c and Table 4.3, ii) Overlap success rate metric as
per Fig. 4.6, Fig. 4.7, Fig. 4.8, Fig. 4.9, and Table 4.4. Processing time comparison is also given
in Table 4.5. We compared our tracker on benchmark dataset videos with long-term correlation
tracker (LSTM) [3], spatio-temporal context learning (STC)[16], and real time compressive
tracking (CT)[17].

4.1 Dataset

Our proposed tracking scheme is evaluated and compared on number of selected videos form
benchmark datasets OTBS0 [120], OTB100 [121], TColor-128 [122], and UAV-128 [123].
OTBSO0 contains 50 videos, OTB100 contains 100 videos, TColor contains 128 color sequence,
and UAV-128 contains 128 videos, captured using unmanned air vehicle. Each video has one or
more object tracking challenges associated with it. We choose the videos having seven attributes
namely, i) occlusion ii) scale variation iii) motion blur iv) fast motion v) out-of-plane rotation
vi) deformation and vii) background clutter to support and evaluate our proposed tracker.

Explanation of each attribute is given in Table 4.2.
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FIGURE 4.1. Comparison of LSTM [3] and proposed algorithm (AFAM-PEC) for Joggingl
video. 4.1(3) Qualitative Analysis. 4.1(b) Distance Precision Plot; Proposed algorithm
(AFAM-PEC) achieved distance precision of 100% at threshold of 20-pixels. 4.1(c) Distance
Precision Plot; LSTM [3] is unable to achieve 100% distance precision at threshold of 20-

pxels.
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Figure 4.2 Comparison of LSTM [3] and proposed algorithm (AFAM-PEC) for Jogging2
video. 4.2(a) Qualitative Analysis. 4.2(b) Distance Precision Plot; Proposed algorithm
(AFAM-PEC) achieved distance precision of 100% at threshold of 20-pixels. 4.2(c) Distance
Precision Plot; LSTM [3] cannot achieve 100% distance precision at threshold of 20-pxels.
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Figure 4.3 Results without predictor-estimator collaboration. 4.3(a) Shows qualitative
analysis i.e., after the occlusion in frame number 234, LSTM [3] misguides the Kalman
filter-based tracker. Kalman filter-based tracker starts following LSTM [3] and predicting
false position.4.3(b) Distance precision plot for Walking? sequence using Kalman filter-
based tracker taking a measurement from LSTM [3]. 4.3(c) Distance precision plot for
Walking?2 sequence using LSTM [3] without incorporating Kalman filter-based tracker.
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4.1.1 Attributes of dataset

This paragraph explains the attributes of each video which also known as challenging aspects
by visual tracking community. Six videos shown in Fig. 4.4 i.c. Joggingl1, Jogging2, Walking?2,
Human3, Girl2, Skating? are selected from OTB100 dataset. These six videos are also part of
the TColor-128 dataset. Whereas Fig. 4.5 shows five videos i.e. Bike3, Car4, Car9, Busstation
and Building3. Out of these five videos, four videos are part of UAV-123 Dataset and single
video Busstation is from the TColor-128 dataset. Hence total of six videos are from OTB100,
seven video sequences from TColor-128 and four video sequences from UAV-123 are used to
evaluate our propose AFAM-PEC tracker. Joggingl and Jogging? sequences have occlusion,
deformation and out-of-plane rotation. Walking2 sequence has attributes of scale variation,
occlusion and low resolution. Girl2 and Human3 video sequence have maximum challenges i.c.
S. Challenges associated with Girl2 video sequence are namely, scale variation, occlusion,
deformation, motion blur and out of plane rotation. Whereas Human3 video contains scale
variation, occlusion, deformation, out-of-plane rotation and background clutter. Skating2
sequence has four attributes associated with it i.e., scale variation, occlusion, fast motion and out
of the plane rotation. Bike3 contains fast motion, occlusion and out-of-Plane rotation, Car4 and
Car9 has Occlusion and Scale Variation. Bustation video sequence has Clutter Background and
Occlusion. Finally, Building3 video sequence contains Out of the Plane Rotation. Therefore, a
total of seven attributes are associated with these selected eleven videos. Each attribute is

explained in Table 4.2.
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Figure. 4.4 Qualitative results of the proposed scheme (AFAM-PEC), LSTM [3], STC [16],
and CT [17] on six challenging sequences selected from OTB50, OTB100 and TColor-128.
First row to the last row: joggingl, jogging?, girl2, human3, walking2 and skating? video
sequences are presented respectively.
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Figure. 4.5 Qualitative results of the proposed scheme (AFAM-PEC), LSTM [3], STC [16],
and CT [17] on five challenging sequences selected from TCOLOR-128 and UAV-123
databases. First row to the last row: bike3, car4, car9, busstation, and building3 video
sequences are presented respectively.
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4.2 Quantitative analysis

Quantitative results in Table 4.3 and Table 4.4 show that our tracker perform well for long-
term occlusion challenge. For Jogging2 sequence, the proposed tracker gives distance precision
of 100% at 20-pixel threshold and LSTM [3] tracker gives the second-highest precision of 97%.
Whereas all the remaining trackers fail to track the object after occlusion. Likewise, on Jogging]
sequence;the proposed scheme again achieves 9% precision.

On Walking?2 sequence the proposed tracking scheme again gives 100% distance precision. In
contrast, all the remaining three trackers lose the target when the girl in the video sequence gets
occluded with boy at frame number 202,

On Girl2 sequence, the proposed tracking algorithm again achieves good performance with a
distance precision of 95% and all the other trackers fail to track the target object. On Human3
video sequence our tracker outperforms all the remaining three trackers by achieving distance
precision of 99%. It is also worth mentioning that human3 video contains five challenging
attributes out of a total of nine attributes given in [121].

Skating2 video sequence has extra challenging attribute of fast motion. Though the proposed
tracker and all the other trackers fail to track the target object, our tracker still achieves the
second-highest distance precision and tracks the target object for a greater mumber of frames than
LSTM [3]. On this sequence CT [17] tracker tracks the target object more than any other tracker.

Bustation3 video sequence selected from TColor-128 dataset contains severe occlusion and
cluttering. Hmceallthehackerlosesthétarget very early while the proposed tracking scheme
AFAM-PEC achieves the distance precision of 100%. On Bike3 video sequence all the trackers
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Figure 4.6 Overlap success rate comparison of proposed algorithm (AFAM-PEC) with
LSTM [3], Black lines represent the (AFAM-PEC), while yellow lines represent LSTM
[3]. The proposed scheme i.e., AFAM-PEC clearly outperform all the other tracker on all
the videos except skating?
fail to track the target. The proposed AFAM-PEC achieves the highest precision of 38% among
all. On Car4 video sequence again our proposed tacking scheme achieves the 100% distance
precision outperforming all other trackers. Similarly, on Car9 video sequence our proposed
tracker and LSTM [3] both gave the distance precision of 98% but CT [17] and STC [16] lost

the target and gave the precision of less than 25%. Building3 sequence is relatively simpler
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Figure 4.7 Overlap success rate comparison of proposed algorithm (AFAM-PEC) with STC
[16]. Black lines represent the (AFAM-PEC), while green lines represent STC [16). The
proposed schemei.e., AFAM-PEC clearly outperforms all the other trackers on all the videos
except skating?.

without having much challenging aspects. So, all the trackers successfully track the target by
achieving 100% distance precision. Mean distance precision is also given in Table 4.3.

Our proposed AFAM-PEC achieves the highest mean distance precision of 85%, LSTM [3]
achieves the second highest mean precision of 54%, STC [16] achieves the third highest mean
distance precision of 38% while CT [171 with lowest mean distance precision of 26%.

We first implemented Kalman filter-based tracking algorithm, as Kalman filter is a

measurement follower algorithm. The output of the LSTM [3] algorithm is given as measurement
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Figure 4.8 Overlap success rate comparison of proposed algorithm (AFAM-PEC) with CT

[17]. Black lines represent the (AFAM-PEC), while red lines represent CT [17]. The

proposed scheme i.e., AFAM-PEC outperforms all the other trackers on all the videos except

skating?.
to Kalman to see the results. Fig. 4.1 shows the results for LSTM [3] and Kalman based tracking
algorithm. Kalman filter based tracking algorithm achieves distance precision of almost 100%
but the LSTM [3] and most of the traditional algorithms achieves less than 100%. This is because
when object gets occluded, LSTM [3] stop estimating correct position of the object and when
the object comes out of occlusion LSTM [3] tracker re-detects the target object as shown in Fig.
41,

In our implementation Kalman based tracker continuously predicts the new state of the target

object even during occlusion which increases the distance precision. To further investigate this
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behavior, these algorithms have been applied to other videos and the results are shown in Fig.
4.2 along with the distance precision plot. Frame number 62, 65 and 67 observe this behavior.
Fig. 4.3 (Walking2 video sequence) represents another interesting fact that if the measurement
(by baseline tracker in our case LSTM [3]) given to Kalman filter is wrong then Kalman will
predict the false state in next frame as it is 8 measurement follower. Now, suppose the baseline
tracker continues to give the wrong measurement to Kalman filter-based tracker even after the

occlusion of the target is over. In that case, Kalman filter will be predicting the false states and

target will be lost.
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Figure 4.9. Overlap success rate comparison of the proposed algorithm (AFAM-PEC), LSTM
[3], STC [16] and CT [17]. Black lines represent the (AFAM-PEC), whereas yellow green
and red lines represent the LSTM [3), STC [16] and CT [17] respectively.
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Figure 4.10. Peak correlation score of AFAM-PEC and LSTM [3] for jogging 2 video using
blue and red color respectively

This phenomenon is clearly represented in Fig. 4.3, where after 234th frame, baseline tracker
misguides the Kalman filter and both the algorithm starts following wrong object. This behavior
is corrected by proposing the algorithm which works by using the collaboration of the predictor
and estimator. Table 4.3 shows the distance precision of 100% over this video sequence. To
further strengthen our argument, Fig. 11 presents the peak to side lobe ratio and. This figure
depicts that the proposed tracking algorithm achieves a higher PSR earlier than the LSTM [3]
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algorithm. Distance precision plot of Jogging!, Jogging2 and Walking2 sequences are given in
Fig. 4.1, Fig. 42, and Fig. 4.3 respectively, which shows that the proposed tracking scheme

Before qualitative analysis, let us analyze the overlap success rate metric. Fig. 4.6, Fig. 4.7
and Fig. 4.8 shows the comparison of the proposed algorithm with each of LSTM [3], STC [16],
and CT [17]. Whereas Fig 4.9 gives the comparison of all four tracking algorithms on single plot.
Table 4.4 shows the overlap success rate for various video sequences at threshold of 0.5. For
Joggingl video LSTM [3] and proposed algorithm gives almost equal success rate of 97%. CT
[17] and STC [16] give a 20% and 22% success rate as they fail to track after occlusion. The
algorithm proposed in this work achieves the success rate of 99% for Jogging? video. At the
same time, LSTM [3] achieves 97% while other two algorithms achieve less the 20%. Similarly,
on all the other remaining video sequences AFAM-PEC achieves the highest success rate, details
are given in Table 4.4. The mean overlap success rate is also calculated. The proposed AFAM-
PEC outperforms the other trackers by achieving mean overlap success rate of over 75%. LSTM

[3] achieves the mean success rate of 51%, STC [16] achieves 30%, and CT [17] achieves 20%.

Table 4.5 shows the frames processed per second (FPS) time of all the 4 trackers over eleven
selected videos. Proposed tracking scheme AFAM-PEC shows not much increase in
computational cost if compared with the increase in tracking efficiency as per Table4.3 and table
4.4. For example, our proposed AFAM-PEC process 27.89 frames per second whereas LSTM
[3] process 28.30 frames per second. It is difference of even less than one frame. Similar is the
case on all the other videos. CT [17] and STC [16] loses the target in most of the video sequences,
that is why table 5 shows high FPS for CT [17] and STC [16).



Table 4-1 Notations/variables explanation

Denotation Symbol Note
Estimated position and scale | x.= (R, 9§, $1), | £, ¥, position of the object and
$:is estimated scale
Correlation response map Ve At £* frame
Regression model Reon With respect to context
Regression model Rear Model of target
Detector module Diym SVM based
Predictor module Py Kalman based
Estimated new position 2 At #* frame
Predicted state xy State by Py at t* frame
Estimated states XDy All possible states by detector
Estimated state x'; Estimated possible state I for ¢
frame
Response map value yi Response map value for

estimated state i




TABLE 4-2 Challenging aspects for visual object tracking

Attribute name | Abbreviation Explansation
Occlusion oCC Target is partially or fully hide behind another
object
Scale variation sV Bounding boxes ratio of initial frame and present
frame is out of range ts, ts > 1 (ts=2).
Out-of-plane OPR Rotation of target object out of image plane.
rotation
Motion blur MB Blurring of target region due to motion.
Fast motion FM Ground truth motion is greater than 20 pixels.
Deformation DEF Non-rigid object deformation.
Background BC Target object background having similar color or
clutters texture as that of the target.

73
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43 Qualitative analysis

For the qualitative analysis, the results of four trackers i.c. this paper (AFAM-PEC), LSTM
[3], STC [16] and CT [125], over eleven video sequences are presented in Fig. 4.4 and Fig. 4.5.
The top to bottom rows of Fig. 4.4 contains Joggingl, Jogging2, Girl2, Human3, Walking2 and
Skating? sequences. Row-wise analysis is given in this paragraph. In the first row, all the trackers
successfully track the object until frame number 71. While in frame number 79, the proposed
algorithm is the only one to track the object exactly while all the others have a window on the
pole instead of target object. At frame number 91, LSTM [3] tracker successfully redetects the
target. After this frame, the proposed algorithm and LSTM [3] successfully tracks the object till

the end of video while the other two algorithms fail to track after the occurrence of occlusion.

Similarly, in the second row of Fig. 4.4, the proposed algorithm successfully tracks the object
and redetect the object after occlusion, earlier than ail the remaining three algorithms. LSTM [3]
shows second-best behavior over this sequence by tracking the object successfully till the end,
whereasremainingtwoalgorithmsfaﬂtlotracktheobjectwhmitreappeamaﬂm'theocclusion.
The only issue with LSTM [3] reported for Joggingl and Jogging? is the estimation of the
position of object during occlusion. In the third row of Fig. 4.4, for Girl2 video sequence, all the
trackers successfully track the object until occurrence of cluttering. It can be seen in frame
number 98 after the cluttering that all the trackers are successful in tracking, but CT [17] fails to
track. When the second challenge of associated with this video occurs i.e. full occlusion, all the
trackers fail after the reappearance of the target object except the proposed tracker. Tracker
proposed in this paper successfully tracks the target object after occlusion which is visible in
frame number 168. We run all the trackers over this video for 600 frames. The fourth row of Fig.
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4.4 contains the images from Human3 sequence, again at this sequence our proposed algorithm
shows better results i.c., all the trackers lose the object in the start of sequence, but the proposed
tracker successfully tracks the object, which is visible in frame numbers 252, 301 and 410. All

the trackers are tested over 590 frames of this sequence.

In the Walking2 sequence, the target object gets occluded at frame number 50 and after this
frame, CT [17] and LSTM (3] loses the target and starts following wrong object. STC [16] can
still track the object after occlusion but fails to handle the scale properly, whereas our proposed
scheme successfully tracks the object keeping the right scale. Last sequence shown in Fig. 4.4 is
Skating2. Although not any tracker is able to track the object over full video sequence, but our
proposed algorithm tracks the object over a greater number of frames than the state of the art i.e.
LSTM [3]. The proposed algorithm tracks the object until 125th frame and after this it starts
drifting. Whereas CT [17] tracks the object for the maximum number of frames. It can be seen
in frame number 484 that all the trackers lose the target. First, STC [16] loses the target after this
LSTM [3] then our proposed tracker and at the end CT [17] tracker loses the target. Although
our proposed tracker loses the target before CT [17] in this video sequence, but it has benefit of
performing better then CT [17] on all the other videos which contain six challenges as per table
4.2 excluding fast motion. Top to bottom rows of Fig. 4.5 contain Bike3, Car4, Car9, Busstation,
and building3 video sequences. These sequences are made using UAV. In Bike3 sequence target
is relatively small as compared to other video sequences. In this video not any tracker is able to
track the target correctly but still proposed tracker performs better and track the target correctly
upto 43™ frame.



Table 4-3 Quantitative analysis; distance precision at threshold of 20 pixels over 11

challenging videos selected from otb50,0tb100, tcolor-128, and uav-123

S. SEQUENCE OUR LST | STC | CT

NO. AFAM-PEC | M[3] | [16] | [17]
1 Jogging 1 OTB100/TColor-128 0.9739 0.967 | 0.208 | 0.221
2 | Jogging 2 OTB100/TCOLOR-128 0.9902 0.970 | 0.172 | 0.166
3 Walking2 OTB100/TColor-128 0.722 0.406 | 0.442 | 0.382
4 GIRL2 OTB100/TCOLOR-128 0.940 0.186 | 0.262 | 0.188
5 Human3 OTB100/TColor-123 0.795 0.013 | 0.088 | 0.050
6 Busstation_cel_clr TColor-128 0.9835 0.102 | 0.099 | 0.102
8 Car4 UAV-123 0.98 0.98 | 0.64 | 0.285
9 CAR9 UAV-123 0.917 085 | 0.201 | 0.212
10 Building3 UAV-123 1.000 1.000 | .963 | 0.386
Mean Precision 0.910 0.340 | 0.250 | 0.180
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Table 4-4 Quantitative Analysis; overlap success rate at Threshold of 0.5 Pixels Over 11

Challenging Videos selected from OTB50, 0TB100, tcolor-128, and uav-123

S. Sequence Our LSTM 3] | STC[16] CT [17}
NO. Afam-pec
1 Jogging 1 0.997 0.970 0.228 0.224
OTB100/tcolor-128 Target lost | Target lost
2 Jogging 2 1.000 0.973 185 0.175
otb100/tcolor-128 Target lost | Target lost
3 Walking?2 1.000 0.404 0.794 0.436
OTB100/¢color-128 Target lost | Scale Issue | Target lost
4 Girl2 oth100/tcolor- 0.947 0.190 0.270 0.115
128 Target lost | Target lost | Target lost
5 Human3 0.988 018 0.100 0.055
OTB100/tcolor-123 Target lost | Target lost | Target lost
6 Skating2 0.070 0.019 0.090 190
otb100/tcolor-128 target lost | Targetlost | Target lost | Target lost
7 Busstation_cel_clr 1.000 0.113 0.110 target 0.108
tcolor-128 Target lost lost
8 Bike3 uav-123 0379 0.269 0.275 0.069
Target | Target lost
lost
9 Card UAV-123 1.000 0.997 0.991 0.294
10 Car9 uav-123 0.985 0.982 0.216 0.212
11 Building3 UAV-123 1.000 1.000 1.000 1.000
Mean success rate 0.850 0.540 0.387 0.261
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Table 4-5 Quantitative Analysis; framies per second(fps) of 11 Challenging Videos selected

from OTBS50, 0TB100, tcolor-128, and uav-123

S.NO. Sequence Our LSTM | STC(16] | CT {17]
Afam-pec 13]
1 Jogging 1 27.89 28.30 3437 24.73
0OTB100/TColor-128 Target Target
' lost lost
2 Jogging 2 21.51 2212 38.23 27.07
OTB100/TColor-128 Target Target
lost lost
3 Walking2 24.65 26.39 34.68 24.24
OTB100/TColor-128 Scale Target
issue lost
4 Girl2 15.62 16.63 12.50 21.96
OTB100/TColor-128 Target Target
lost lost
5 Human3 21.18 18.09 131.02 19.93
OTB100/TColor-123 Target Target Target
lost lost lost
6 Skating2 15.28 20.71 58 27.82
O0TB100/TColor-128 Target Target Target
) lost lost lost
7 Busstation cel_clr 2.40 54.55 20.67 12.60
TColor-128 Target Target Target
lost lost lost
8 Bike3 33.14 5747 22.83 13.03
UAV-123 Target Target Target
lost lost lost
9 Card 13.01 16.75 23.16 13.08
UAV-123 Target
lost
10 Car9 10.44 12.71 29.23 18.18
UAV-123 Scale Target Target
issue lost lost
11 Building3 14.60 16.55 22.89 13.19

UAV-123
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Table 4-6 Quantitative analysis; distance precision at threshold of 20 pixels [3]

Tracker name Distance precision at 20~ Overlap success rate at 50%
pixels threshold
LSTM- 878 79.9
Deep(3]

LSTM (3] 84.8 813
MUSTer{[77] 86.5 78.4
MEEM([127] 83.0 69.6

TGPR[57] 74.1 62.2

DSST[65] 64.9 61.6

CSK[12] 65.6 55.9
Struck([46] 70.5 62.8
SCM[128] 475 37.3

MIL[44] 60.8 52.1

TLD[45] 56.1 45.7
LSHT[129] 54.5 43

In second row of Fig. 4.5 Car4 video sequence is show. In this video our proposed AFAM-
PEC and LSTM [3] both track the target successfully till the end of video but proposed AFAM-

PEC achieves better overall success rate which can be seen in frame mumbers 270 ,274 and 600.



STC [16] also able to track the target till the end of video but CT [125] fails to track the object

after the occlusion, which is visible in frame number 235.

In the third row of Fig. 4.5, all the trackers successfully track the car till the occurrence of
occlusion in frame number 42. At occlusion LSTM [3] struck while our AFAM-PEC
successfully tracks the car even when it is occluded. After the occlusion STC [16] also fails to
track correctly as per frame number 270. While proposed AFAM-PEC and LSTM [3] track the
object till the end of video sequence. Though visually it seems that both the trackers have similar
performance but as per quantitative analysis our AFAM-PEC gives better distance precision and
overlap success rate. In second last row of Fig. 4.5 AFAM-PEC outperforms all the other trackers
by successfully tracking the target after occlusion in frame number 51. All the remaining three
trackers fail to track the object after occlusion in this video sequence. Last row of Fig. 4.5 shows
the building3 sequence. All the trackers successfully track the target because of simplicity of the
video. Table 4.7 gives the comparison of proposed modified KCF algorithm with spatio-temporal
context learning [16], state of the art minimum output sum of squared error [4], motion aware
correlation filter {118], scale adaptive kemnel correlation filter [15]. It is clear from the mean
precision that proposed algorithm shows promising result over selected challenging videos.

Table 4.6 gives the comparison of base paper [3] with eleven state of the art tracker. It is
shown that adaptive correlation filter with short term and long-term memory gives the highest
distance precision when deep features are being used. Whereas without deep features this
tracking scheme gives the second highest precision. In our study we are using hand crafted
features instead of deep features. Our proposed tracker performs favorable on challenging
sequences as per table 4.4 and table 4.3. |



Table 4-7 Quantitative analysis; distance precision at threshold of 20 pixels over 7

challenging videos selected from OTB50

Sequence Proposed STC MOSSE MACF SAMF
Blurcar2 1.000 0990 10275 1.000 0.291
Blurface 1.000 0.629 (0998 1.000 1.000
Carl 1.000 0.275 |0.250 1.000 1.000
Cardark 1.000 1000 |1.000 1.000 1.000
Redteam 1.000 0.798 |1.000 1.000 1.000
Trellis 1.000 0.738 |0.178 1.000 1.000
Walking 1.000 1000 |1.000 1.000 1.000
Mean 1.000 0.770 {0670 1.000 0.898
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44 Summary
This chapter presented the results of experiments performed to evaluate the performance
of the proposed study.

Section. 4.1 described the dataset used to evaluate the performance. OTB 50 and UAV 123,
two data sets have been used. Sec. 4.2 presented the quantitative results with the help of Table
4.3, Table 4.4, Table 4.5, and Table 4.7. Graphs were also presented in Fig. 4.2, Fig. 4.3, Fig,
4.6, Fig. 4.7, Fig. 4.8, Fig. 4 9 and Fig. 4.10.Sec. 4.3 described the qualitative results using

Fig.4.1, Fig. 4.2, Fig. 4.3, Fig. 4.4, and Fig. 4. 5.

It is shown that proposed tracking scheme achieved superior performance in terms of
distance precision and overlap threshold. Correlation filter-based tracking method with
incorporation of prediction-estimation collaboration module do not increase considerable

computational cost. This is verified with the help of frames per second comparison.

Chapter 5 concludes the study with future recommendations.
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Chapter 5.

Conclusion and Future Work

This chapter draws a conclusion based on experimental results. In the end, future research

recommendations, possibilities, and gaps are discussed.

5.1 Conclusion

In this study, an adaptive correlation filter-based tracking failure avoidance mechanism is
presented. A kernelized correlation filter is used as baseline tracker. Failure avoidance
mechanism is proposed and integrated with Kernelized correlation filter. In our proposed
scheme we first address the occlusion detection problem by soughing two parameters from the
response map i.e., i) peak to side lobe ratio ii) peak correlation value. These two parameters
work together to detect the occlusion. Second, we incorporated Kalman filter-based predictor
and SVM based estimator to kernelized correlation filter. Third, we proposed collaboration
module between predictor and estimator to avoid the tracking failure. We choose videos from
the standard three datasets (OTB100, TColor-128, and UAV-123) having six challenging
attributes to perform the experiments. With the help of experiments, we show that proposed
work performs better against swa-@&m tracking algorithms in terms of distance precision
and overlap threshold. Furthermore, the difference of peak correlation value between two
consecutive frame is interpreted differently to detect the occlusion and normal scenario in a
video. This interpretation is applied to state-of-the-art algorithm Kernelized correlation filter,

which shows promising results.



B4

5.2 Future recommendations

Following are some future recommendations and research directions for visual object
tracking system which could help to improve the performance and robustness of system
further.

e Aspredictor is continuously predicting the location of the object whether the object is
present in the frame or not. Efficiency of the tracker may be further enhanced by
devising criterion to stop prediction if the object is out of view/ occluded for some
specified time.

e In the proposed visual object tracking system, one can exploit nonlinear prediction
schemes to predict the object’s state. As movement of object in a video may or may
not be linear, nonlinear predictor would help to increase the efficiency of the
algorithm. For example, other nonlinear models of Kalman filter may be explored to
predict the nonlinear movement of object.

o Hybridization of linear and nonlinear predictors may also be a good choice to increase
the performance of visual tracking algorithm without significant increase in
computational cost.

o Features fusion techniques may be used to model the target object more precisely,
which will eventually help in increasing the performance of proposed algorithm.,

e Finally, hybridization of deep features with hand-crafted features may be a good
candidate for future research.
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