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ABSTRACT

During rgccnt years corr€latim tra*ing hasbee,n considmed fast and effective by virhrc

of thc circ.ulail stnrcfir€ of thc saryling data for the learni4g phase of filts and

Fouier domain catorlation of correlatiqr. Durfury occhuion, motion blur, aod out-of-

view movemed of a target, most of thc correlation filter-based track€rs stafi to lern using

€rrunools samplcsadthetrackcrstartsdrifti4g.Currently,adaptivecorrelatimfilter-bascd

tra*ing algpritbms re bcing combinod with redetection modules. This hybridization

helps in redetection of thc tary€t in long-term tacking. The redrfedim mo&rles are mosfly

classifiers, which ctassifr tbe tnre object after Eacldng frilue oosunEncc. These

methods p€rform frrrcrably durfuE short-tsm occhrsim or partial occhuim. To firther

increase tbe Eacking efficieircy in challe'rgrng video sequenceg speifically &uing lqtg-

tr;rm occllsion, while maintaining real-timcprocessing speod, this studypreserfs atracldng

frilgreavoidancemethoq Gfficicntoaclusiondeetim,mdhandlingmee,hanism,andanery

adaptive leaming rate strategy. We first present a stratery to d€t@t the occluion uing

multiple ctres from thc respmse map, i.e., peak correhtion score and pc* to side lobe

ratio, average peak correlatim eneqgy, thc oonfid€nce of squared r€sPonse map. We

firther infiodrcc a novel imerpetalon of the ditrerence of peak orcldion betwm two

consccutive franres. After successful dct@tion of tracking frilure using multiple cucs, a

scmd stratery is presented to save thb tary€t being getting more €rntrl€olts. Our p,redictor

intheprodicion-estimationcollaborationmodrlecontinuouslypredicts thclocatimduring

occhsion. The predictor passes this result to Support Vc.ttr Machine (S\M). U/bEn the

targct rcappears in a framg the support vetor macninebasod classifier finds the corrod

object uslng the predicted loccion This collaboration bcween prediction and estimtion

dccr€ases the chance of tracking failwe as the prdictor continuously updates itself duriqg

occlusion and pnedicts the next locdion using its pruviors predictim. Once thc true object is

d€tetd by the classifis aftcr the clearaoce of occhuion, this result is forurad€d to the

baseline tracker to rcsume its Eac,ki4g operation and rrydate its paramAers. Togetlrer thcse

two proposed sch€mes show sigpificant imprwement in tracking efficiency. Furthermorg
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this collaboration in rodetoeion phase shows significatr improvement in the tra*futg

accura&y over videos containing six ctra[engiry asp€cts of visual obid tracking as

mentioned in th€ litcratur€. Novel adaptive learning rate stratcry fiuther increases the

robustness of proposed sch€me. Cornparism with 14 stat+of-the-art algprithms is given

in this s6dy. For evaluation of resultg thre difrq€d standard datascts are used. This

comparison shows that outcorre of this snrdyperbrmsbettcrthanthpothcr 14 statc{f-thc-

art algprithms.
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Chapter 1.

lntroduction

This chapter discgsses the intoduction of visual object tracking and the challenges

associat€d with trackhg. Fufth€rmorc, backgpund along with motination is provided. At last,

brief thesis contibrutions and an overvierw of the thesis is provided.

1.1 Oveniew

Visusl objec.t tracking has always been considered an active area of interest in the researe,h

field of cmpgter vision bcause of its widc spread ryplications and chalenging issues like

motionblur, object deformation, noisy envirolrment, fast motion, chtter, 6fl final[y occlusim

[U, [2]. Iong-t€rm tracking is considerod effctive if an alguittnn tracls an object of interest

for a long time in all or aoy of thc above chaUcnging sccnarios. Without cotrsid€riry the

orientation estimation of the object, th€ tracking prccess can be dividd into two st$patts i.e.

i) trmslation estimation and ii) soale estimation of a targgt in the next fraoe [3].

For translation estimation, broadly tracki4g algorithms can be dividd iro two gotlps: i)

generative and ii) discriminativa In thc generative scheme, the informdion of the objct is

gsed whiteconsideringtra*ing as a scanihproblem. Thediscriminating schemeconsiders the

tracking a classific*ion problem, while us'ng the objet and its baclgfourd information.

Discriminative tracking using a oonclation filtcr is studid sevcral rcsearch€rs in the field of

objec.ttraclcing [4], [5], [6], [7], [8], [9], [0], IU. E:rploitingcfucailarstnrcture andcomputittg
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corrclatiotr inthe freqtrency dornain which is simply muttiplication, the entreme frst tracl€r is

preseirted h tl2]. Iluc to the adaptive naturc of the orrelation filt€r, thc onlinc frst learning

mechani$tr makcs the correlation filter stritable for fast appearancechanging objed tracking.

Though correlation filters ar€ y€ry successful in visrul objwt tracking bu still two majc

limitations exist; First, thsy do not bave the inh€rcnt capability of tracting resumption once

the object is lost or the object moves out of the camera's field of view. lbe socond is that thc

less reliable tracked frame causeg the correlation filter to leam the wrong targct appeamce,

andthisleamingmraccumulatcswithth€passageof frames. Theftst limitationisaddr€ssd

in [9], tl3] by comidcring thc redetectiqr modrle, whge reddection is crried out in each

frame, increasingthecomplexitycost. Anotherapproachto rcdtrcingthe cmpUationat cost is

dcfining a threslrold to actinate the redetection modrle [3], [14]. The secmd limitation of

correlation filt66 based tracking is solved in t3] by lerning mrltiple correlation filters with

different learning rates. To cover the fixed template size problem of kernel filters' correlation

filter adaptive to scale changing is presented in [15]. Densc spatio-tEmptral context

information is used h tl6] to increase the efficiency and robushess of thc corr€lation filteis.

A simple hacki4g approach with an appearancc mod€l basd on multi-scale inage fecure

extraction using a data-independent basis is presentcd in [17]. Particle filters are also

incnrporata in kernclized conelation filters to r€dctect tbc traclrcr when rcsponsc rnap

bemres less reliable p8l. Fusion of multiple features in the correlation filter frameu'ork is

proposed in tl9]. In this rnethod adaptivl weighs are assignad to each feature to minimize the

iterference of noise. Thc metric learning model shatery is giveir in [20] to errhence the quality

of respmse map in correlation filt€r-bascd algorithms. Numerous researcher also proposed
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Convolutional Nilal Networt basot-trae;king strategies &[ing rec€ot yealB' For latest

examples, see [21], [22]. These neural network-based algorithns require a tot of training data

and targe comPutational time"

1.2 Applications

Visual tnacking has b€en gsed in applications like mbotics, suneillscg spofts analysis,

I ,msnn€d aerial vehicle, image bascd health diagnostic systerns, activity reognition,

indgstrial mbotics, lip trac,king ia film industry, transporttlom, and autonomous driving crs.

Some of theinarepresented inthis srction.

l2.l Autonomourdrlvingcerr

Autooomous cars have been considsed an important applicatim of visual objec't tracki4g

sincc thc last docade. It is a vehicle witlrout a drivs that can sensc the n€afty GnvirotrmEd to

avoid any obstacte. ltese cars arE €qulmed with many diffcred systems like the navigation

system, path plaming, envirtrttrnent p€rc€ptio& and coffrct sFtcms. For envirmmeirt

perce,ptio,n, visual objec traclcing can be used to recognize nearby objects md get the position

This information qtnacted fro,m vidoo is helpful for a car to plan its path by avoiding other

objects.Fgrtherrrore, informationregandingthepositionofthcoQictsatdiffcrenttimeinstants

also helps the carto predict the future positim of the surotmding objet. Finally, visral obiect

trackiqg cm also locde the positio of ttaffic signs for traffic sign recognition

122 Sportr rc{ivity anal5nir

Dgring rwent yeas, motion analysis of players has gpind a lot of atte,ntim from the visual

object trar,king commrnity. trrithout object tracking, activity is analyzed by observing th€ data
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collectcd after thc activity. Traditiomlly paople manrally r€cod and ualyze the data' With

the hclp of visual objoct tracking, this process is artomated. Let us take the exarple of a

basketball game. Visual objec-t hacking help in prdictilg the trajectories of Players.

Fgrthermore, this information is used for stratery plaming and performancc enaluation of

players and team managemeirt.

123 UnmennedAeridvehiclcc I

ThG ,nmanned aerial vehicle has been ued widely for suveillancc, prceffi deliveries,

arial photography and inspetions. kr all these applications, carncra mormted on umamed

aerial vehicle plays an essential role with the help of visual object tra*ing. For example, a

gser selec.ts the targe in the video frame, and unrnmned aerial vehicle will prrloess thc Yidoo

captgredby acameraand findthetarget's position. Withthehelp ofthispositio,n, anumamed

aerial vehicle can adjust itself to follow thc targe constatrly.

12.4 Eumrn-mrelineintcraction

Thc vi$al obj6t tracking commmiry plays a vital part in hclping the community by

providiag efficient ud user-friendly interactionwith rnachines, for exarrple prcviding sixth

sense to hgmans i.c., a wearable gesture itrerfrcc, perceprtual user imerfaces, eye gaze traclcing

fu visually impaired people etc.

l2.5 Virudrurvcillrnce

Nowadays yisual objet tracking il m iotegnt part of efficient and irtelligert visul

survcilance systems. Like, Siemens sicmms sistore CX EDs-iildligent video detetion
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syst€m, surveillarce of open places, pa*s, colonies, and buildings for suspiciors activity

detction

1.2.6 Imrgc brscd hedthdiagnocticryctemr

Visual objet tracking methods are also being applied in hcalth diagnostic system' Fon

example veirticglar wa[[ tracking and rwonstnrction of nocal tract shape'

1.3 Chatlenging issues t3mcist€d with visuel object tracking

For thc last2-3 decades, visrul object tracking has bcm consid€rd an essential area for

rcsearch because of challenges associated with it like occlusion, mcion blur, orr of view

movcrrrent of the object, illumination phanges in vido, in-plane rotatioq out of the plane

rotatiom, clutter backgognd, rpe.rrrd changes, and object deformatim.

13.1 Occlurion

Occlusion is considerod a widepread and cha[€nging problem for the objec't tracldng

commrmity. Wheir the targpt to bc trackod is occhrded by some other objec{, this phenomemon

is calledocclgsion It is firtterclassified asprtialocclusionand full occlusion. Strategies are

designed by observing the environment and nature of the taryet'

13.2 Apperrance e.hrnge

Most of th6 time in tracking, the object to be traclrcd is non-rigi4 which may c,hange its

rypearance &singmotion. to Uoarctfris issuc, mostly adaptivetrrcking sc,h€mes are applied-

Dudng the update of the target modcl, cven small errors accumulde as time passcs atd drifr

probleur arise. H the model is kcpt fiied, changes h targ€t appcaraose would not be



incorporated snd amin taryet will be lost. This is known as stagnation to the old appearaoce

probtem. Hencetherc is a tradc-offbetween drift aod stagnation

f33 Clutteredbeckground

ofteninobjecttnackingUa*grouna ismt a singls object' whcothcbaclgrcundhas many

other objects, it is known as clutts in object tta*ing terminology. This problem is easily

hmdled when the background is knoum but if tbe backgrcund is uotnown just like in outdoor

tracking; the sarcrity of thc problem ircrcas€s.

l3A Scale verietion

Taget changes its size when it moves away or toward the camera. Tt€r€fotr€, tracking

sch€mes need to adjust thE tcmplatdtargct model size accordi4gly.

135 Complcx obiect motion

This includes ogt-of-plane morremat or abrupt clrmge in sped and dirrctim oftbe target.

Due to the qrlong approximation of the targe model, tnacking bcomes a morE difficult 'a'k.

13.5 lttuminationvrrirtion

Change in light is also one of the major challenges for the object tracling commmity.

When the object is moving ftom dark to light 66 vflgs v€rsa' it e'haoges its appearmce'

1.4 Backgnound and Motivation

Visual object tracldng is a seondary field of computervision and machine lerning. This

field is interesting b6causc of its usefrrlncss in real-world applications for r€at -ime scenarios.

One of the iiler€sting applicatims is the rse of visual object tra*irry in robotics. Tracldng
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algorithms givc sigh to a robot jut like thc human eye and track the objecrts as per requirement'

surveillance is also a fascinating example of visusl obj*'t tracking. In the currcnt worl(

closed+ircuit telwision cam€ras are installed at wery important place to rword thc activities'

Most of tbc time, these ca6eras rword the gaftagc. For example, thse is no activity, but

cameras are still rwording, r€sulting in over usage of memory with garbagp data' Wheir thesc

camcras are equipped with vigual object tracking algorithms, only srspiciou ac'tivities are

saved in the memory. This helps in thc efficient utilization of memory. One other asp@t

tracking and saving only the suspicioru objectffion iGtead of saving the whole frme.

Althoughr€s€arcb€rshaveprt a lot of eftrt into this ar€ato developthc e'fficienttracking

algpritbns, this arca still demaods attention due to various difficulties associded with it. Thc

first and the most impctant constraint is real+ime processing porvu i.e., visual objet tracking

atgoritbm shouldbe ruoning inreal-time forreal-time applicdions. Thcre is always atradoff

between the efficiency of thc algorithm md time it takes to execute. The seond difficutty

whichmost ofthe algorithms frce in real-time applicdions is serrffi occlusion" U/beir an objrc:t

gets occlgded with similar object, visual object tracling algpriths easily make a mistake and

start tracking thc wrong object after the occlusion. so, in this sfidy our main objective is to

design an effici€ot visual tracking atguithm whic,h can cmsider the aforemeirtimod problerns.

1.5 Scope and contributionc

This thesis pr€s6rrts the efficied visuat tracking alguithm for single objet tra*ing

probiem i.e., the desig!€d alguithm is capable of predicting the stat€ of thc objet during the

occluion in collaboration with the estimatod position of thc objcct. It is firthEr investig$ed
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thatpeakcorclationscorc alone isnotgOod enorglto dAect theheavy occlusiom, motionblur'

backgpund clrtt€r, out-of-plane rotatiorU aod deformatim. Therreforg peak to side lobe rdio

is incorporated with peak conelationto dctcct th€ occhsion and other issucs metrioned above'

Furthemore, most of trle mcking algorithns deviate from the actusl tary€t bcause of the

flawed iryut. This happens wheir tacker start tracking the rurong tarEs. h this scenario' the

track€r should be capable of daeting thc erronous input aod should immediatety stotp

u@tingthe model.lVe detelop asctreurethatcandetectthe erronou iryutandstopupdating

tbe traslerwith emonous inprtr. Finally, the kernelized correlation filtertracler is modiEedto

increase its efficiency.

In bullct form the main codributions 6f rhis study are given below

l) A novel interpretatim of difference of the peak correlation (DoP) betweeir the curr€nt md

previols frame is presmed in this shdy. Nqgptive DoP tells that object is being got

corrupt. When thc difference betwm the currcnt and previos frmc is positive this tells

that the object is ooming out of occlusion/deformation

This stgdy presens a novel reliability detection module basd on hyb,ridization of average

peak correlation €n€rgy and coofid€oce of squared r€spms€ map (CSRM).

Novel Adrytive learning rate strategr to prwe,nt thc model fro,m being perverted. we

updatc the target model with high leaning rate when the APCE is hi$ whereas learning

rate is adjgstod as per value of APCE which also tell u abort the cmfid€Dce ofthe tracting

result.

2)

3)
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5)

predictimiscritical stepwhenthe objectisnot visibleinaframe. Estimationis also eq,ally

@cial during regular tracking. By inuodtrcing prediction-estirnation collaboration

sdh€mc, we achiwed bett€rtrackitrg elficiency in distarce pT ocision and werlry tkeshold'

The pro,posed shrdy zuggests avoiding tcmplate update uod€r erruroolls input gives

significant improvemed htracking accuacy to hmdle drift problem.

6) Itissbownthatpeakcorrelrionssxealoneisootgoodeooughtodetectheavyocclusion,

motionblur, scalevariation,ta*gounAdutter, outof-planerotationanddsformation'We

computed multiple cues ftrom the response maf which includcs peak corrclation, average

peak correlation enprgy, peak to side lobe ratio, the coofideoce of squared r€sponsc map,

and novel difference of peak correlation betrve@ two comscrrtive frames. Eac,h cue gives

diftrrent i6igh about the targd of interest, whie;h helps in accurate occlusion deEction

and recovery ofthe target.

7) Statlof-theart algoithm K€rnelizdl Correlation Filter cannot handle th.e scale variations'

This stgdy provides an e,fEcient scate handling stratcgy for KCT to cater to scale variations'

g) Compreheirsive evalrution aod analfls of p,roposcd algsritbru wittr stdc'of-thc-art

methods on accepted datasas arc carried out.

1.6 Research Problem stetement

Most of the wort in thc field of VOT is usually basd on different assrrytions sucih as

siagle{am€ra, singletarg€t, model-free, short-tcrn, causal tracking, and limit€d lcogth of the

video etc. Suppose we neglect all or any onc of these assumpions tracking b@omEs a

cha[€nghg job. The more issues are in a video soqucncc thc mme is difficult to track the
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object. so, to design a robust hacking algorithrn, it must accurdely track the object regardless

of the changes in appearance model and length of the vid€o €tc. In rrcetr litemature scveral

algorithms have beo developed to utilize complementary cues for robust visul ttacking'

Howwer, the robgstness of these trackers is still limited in chall€oging sc€narioE such as

dramatic illumindion variation, motion,blur, complex objec't motion and hearry occlusion"

In this s6y, a visral ta*ing algorithm to improve thc robrstness against major trac}ing

iss'es is p,resented. Ttc occlusio,nproblem is addressod by a collaboration of prediction and

estimatim algcithms. In adaptive short term tracking algprithms targ€t model is updated in

cach framc. WhEn vidco become long adrytive track€r forgets thc actual re,presentdlon of the

model aod ddft problem starts arisi4g Thisproblemis addrcssdby designing aodfutegrati4g

e,fficient algorithms that keeps the tatget's long-term mcooly ad adaptivity'

1.7 Rerearch obiecdvec

Many diffGrcnt visgal objec.t tracldtrg algorithms have been p,ro,posed duriry the last

d.cade. Most of these algorithms suffer ft,om slow processing. To increasc the processing

sped the correlation filter-based hacking algorithm with kenrel tricks have been proposed.

Thcse algoritbms are finc for frst prccessing brut suffer ft,om drifting problem. orrr main

objective is to incrcasc the robustness and accuacy of the ccrel*im filtcr-based trasking

algprithms.

1.8 Sfi:ucture of thesis

Thc r€st of the thesis is orgianized in the following rnann€r'
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Chrpter 2 tdt]rcteginrins dEscribes the general ta*glormA of visual objcct tracking'

focrsing m the correlation filter-based tracking methods'

Chrptcr 3 dcscribes 1fos main framewort for the proeosed wo'rt md methodology for the

mein corotributiorns of thethesis.

Chrptcr 4 starts with the irtrrodtrrdim to standard datasets and their attributes in dEtait

After this congehensive analysis of results is presented. Both tbe qualitative ard

qtrantitative analyses are presented at the end sfthis chapter'

Chapter 5 contains the conclusion and discussion about thc future work ofthis study.
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Chapter 2.

Literature Review

This chapter initially gives th€ bsckglolmd of general visual object tracking melhods' After

disc,ssing the conventional methods, correlation filter-basodtracking algprithms are discussed

in dctail with the background-

To understaod the conhibrution of this thesis, it is necessary to have a concept of how

discriminative learniry algpriths arc usually usod in computcr vision We provide a broad

overvierw in Swtion 2.1, which can be avoided by somemc already frmiliar with this scttiltg.

Sctions 2.2 Md2.3 will then refer to the saryliag problem and concedrate on earlier wort

that is more closely related to the thmr€tical framewo,rt we dcvetop. Lit€matur€ rwierws of

specific applications are withineac,hchaperofthis thesis, wherethey arethemost appropriate'

2.1 Imege recognition

Image classification is consideredthc most dirrctly formulated leamingproblem inimage

rrcognition l23l,l24l.Irt us supposc we have an image containing a singlc objct (may havc

multipte objec.ts). To classify the object from discrcte sct of classes lilre dmkeys' vehicles or

h,mms is knoum as image classification Event classific*ion and finegninod categorization

are related forms tZ4]. Rdh€r than learning a model using ure' ned pixels, thc iryut to th€

learnedmodel is gsgally arepresentation obtained employing amulti-stage pipeline, int€odfutg

to erftibit invariance to several confcunding frcton. The foremost step is typically the

extraction of regional features ovetr a grid of places in the frame, sueih as Histograms of
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ori€ded Gradims (tloc) [25], Scale Invariad Featur€ Transform (SIFT) [26]' or Local

Bimry Patterns (IBP) lz|7,tacite only some oommon deccriptors' They are nearby invariad

to brighess md ligbt changGS, since most are built on edgc dEtetion' and show some

invariance to r€gioml deformatiom, by calculating statistics over srnll r€gons' Thd is why'

such fcatures are cmmonly used as a first processing st€p in virtually all inage rmognition

problems, oot just classific4ion to exfhin this point, we should memim that this is the case

for most g'(p€rinEnts in this thesis, which are basod on HOCI features. A bit rnore specific to

classifictim is a coding or pooling stagg which calcul*es global statistics to fonn the final

represcntation of the image.

Examples include vc'tor quantization or bag'of-words models [28], sPatial pl/ramids

[29],[30], Fishervcrors [3U aodVectoroflocallyfugregatodDescriptors (VI-AD) [32]. The

global aggregdim subtly yields sune invarianceto geometric trmsfonnatims and distortions.

A discdminatiyc lerning procedure is their traircd to prdict tbe image class trom this

r€prcs€ntation. As the outpril cmsists of discnte classes, the model in this case is known as a

classifier. Leaming algorithms nornallyroquire a targe datas€t to leamthe modelparameers,

in this case imagss and g1otmd-tnilh" Aooth€r possibility is to classify whether the oliect is

pr€s€nt in thc imagp frame or not i.c. classification bctwm objcct md non-object classes'

Then algorithm may be used to fiill the pr€scncc of an object at scve,lal different location of

an image i.e. performing object dcetim [33], [lU, [34], [35]. Searchine the object at many

differcnt locations increases thc compuatioml cost. That is why, thesc tlpes of techniqrcs are

not cmmon in object dct€ctim. Most of the good detactors rue one or firore simple liner

modcl over HoG features, evaluat€d in a sliding-window manner and at multiplc scales [33],
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[11],[34],[35].slidirrg.windowdctegtorsweregivenbythcwell-t,nownViola.Jonesdetec.tc

t361. I^arge amounts of negative sarrples are also colleqed uslng a sliding window' which is

the requirement of any good dector. This means that negatine samples are related by

traoslatim and can be instadiated as virtual smples. This frct is eirploited in [37]'

Let ru considcr a single objec't facking prcbl€m i.e. tracking an objec't given only its initial

position aod size in first the fiame [3S], [39]. It can also be considered as dctction problem

usingthe procedure disctlssed above. Whentheobjec't is reiletctod inancw vid€o frame' th€

mod,el needs toupdateitselfforthe c,hanges inobject display/stnrcture. Hence wecan saythat

objec,t trackfuE is simply an ontine leaming problem. while detection and classification is a

batch lcaming problem. The samples obtained in anerft frme are also obtainedbytranslatio'n'

aod sincc they all belmg to th€ same irnagg we can make some sirylifying assurrptions in

our analysis ofvirfiral saurples. Predicting other extrinsic aspects of an object's appearance is

usually called pose estimation rc], [41]. Thcy may include rigid pose param€t€rs, such as an

objec{'s rotation or position relative to the camera' either in 2D or 3D l42l' They may also

incldc non-rigid deformation paramete$, such as the relative angles of a person's ioints [tt0]'

It is possible to lern a model th* prodicts thc pose dirrctly, as real-value4 oontinuous

variables !101, [4U, t42]. Aoothcr ryproach is to discrctize it into a set of poses' ad lem a

classifier to idEntify each pose [34], [43]. This method Gan morE diretly benefit ft'om the

advmces in classifier and detec{or learniry. It also makes it easier to tradc offcornputation

(increasing the nmb€r of discrete pos€s) for increased acctracy.
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2.2 The samPling Problem

wh€n aprplied to computer vision, a serious challe'oge for leaming is what we will call the

..sampling problenr,,. It is mostly an issue of orploiting prior knowledge well' consider an

image that will be used as a sample for learniry. Mo* ofthe time, any subrcgion ofthat image

is an equally vatid sarnple. This is espocially true for negative saryles (i'e' samplee that do not

conAin an object of interesQ. Thus, a single image can bc a virtually limitless source of

samples.

Traditionalmethods deal withthis factby selcting a limitednumberof samplesperimage,

duc to hardware limitations on anailabte m€mory [33], [lU, t44].Tte most straighfforward

mettrod is to siryly setec.t the sarnples randomly, a toclhnique that is most prcvalent intracking

applications due to their timo-scositive oaturc [45], [46]. On thc otho hen4 dctector leaming

mostly relies on hard-negative mining, p€rfomcd ofline [lu. ft consists of first tnaining an

initial d€tector using random samples Gimiluly to tracking). This detector is then crnluated

on a pool of images, and any wrong ddections (named "hard-negatives') are selected as

samples forre-taining.Ilard-negativeminingis avery opensive process, bltr crucial forgmd

detectorperfumance.

A similarteclniqge is alsolsedintra*in& where detectionmistakes arcfotrnduinga sct

of stnrctgral constraints t451. A related issue can also occur when waluating a detc'tor' To

localize an object, th€ learned model is evaluated over many zubregions of an image' The

amount of corrpgtation is prcportimal to thc nrmber of subregions considere4 mirroring thc

samplingprobleminlearning.Swemalideashavebeenp,roposcdinth€littratw€toaddress
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this problem. One of them is to use branch-and bound to find the maximun of a classifier's

response while avoiding urryrorrising candidate regions ta7l. unfortun*elv, in the worst case

thc alggritbm may still have to iterate over all rcsons' Though it does not prelude an

Gxhflstiye scaclc, anothernotable opttmizatim istouse sfrstbrut inaccuratc classifierto selct

promising regions, and only 4ply thc full, slower classifier on those [59, 139]' A rclated

method can quickly discard regions (and thrs their srbregions) for which thc enaluatod score

will be considered too low [48]. HowWer, it is forrrulated onty for distruces between irnagc

pairs. Althotrgh it may not be apparcnt at first, virtuat samples prcvid€ ao elegant solution to

the sampling problem, making it morc asreirableto analysis. subregions of an imags €xtnactd

at sligltly differ€nt locations are related bV tnansl*ion. Onc may ryproximate them frrom one

zubregionbygeneratingvirtual sarrylesbytranslation The 4proximatimis accrnate formost

pixels, ditreringonlyatthe bordos. Virtual smplesto approximatelcandngwithallpossible

zubregions of several imegGS, which if done naively world be irnpossible uing current

hardwarc is pro,posed in [49], allow training with all vifiual sarnplc translations at a frac'tion of

the conptrtational cost of staodard methods, strch as hard-negative mining.

23 X'ourier-domainmethods

The receirt guccess of correlation filter tracking motivatod us to research this direction [50],

[5U, [5], [a]. Correlation filters have shown promosing results in tenn of computational coat

i.e., they can prccess hundrods of fiames pcr secon( but using only a fractim of thc

computational pow€r. This is bcaue convolving two images is siryly equivalent to an

element-nrise multiplication in frequeocy domair" Thrs, by formulating their objec'tive in thc
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Fouier domaiD, thcy cm specify ttrc dtsirad o|rtpl[ of a liner model for scveral tmnslations'

orimageshifts, atooce.

Since long beelr, freArency-domain mdhods have been usod to comprte the fast

convolution, aod were used reccntly to speed rry the detectors at detection timE [52]' Tlrese

Founier transfoms were also used to speed up thc trainiry prccess of detctors i'e'' by

modifying an SVM solvcr with a more efficient zub gradient comptrtation [39]. Fourio domaitr

ap,proach can be very efficient bcause of the sevcrat dccadcs of researc,h in siFal processing

t501. At the same time, it can also be very limiting. Wc would like to comsmentty lwerage

more r€c",rt advmces in complter vision, such as more effective feafi[es, large-maryin

classifiss or kernel methods [53]. This bitr€d that a de€e€r connrction betrveen lerning

algoritbms and thc Fourier domain was noccssary to overcome the limitatims of diroc't Fouier

formulcions.

2.4 Tracking lerrning end detection (fracking by detcction)

This method considers object tracking as a detc'tion problem in wery frame. To make thc

correlation filter adaptive to thc appearance e;hanges of the taryct of intEr€st, recemly proposed

methods drawpositive and negative samplcaroundthe orpectod tary€tto updatetbe classifier

disc'Lrss€d in t3l. How6rer, stightly emonoous labeling of smples accurnulates over time aod

the trackcr starts drifting. This problo is known as sampling ambiguity. To handle it many

malrods have bcen proposed sgch as ensemble ha*i4g [54], randmized ensemblc ttacldng

[55], adaptive rmdomizexl eirserrble Ea*ing [56], onlinc multiple instarrce l€amiry [44], aod

transfer learning-basd tracking [54, [58].
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AnothEr problerr, with thE approach explainod in th€ prwiots paragraph' is tadmff

between stability aod adaptivity. The tracking sch€mes has been decomposed imo thr€o

modules, i.e., training, learniag and detection giveir in [45], t59l to kaep the system stable and

reasonablemodel ad8ptivity. Thcbasic ideainthc subsequent method is to updatethc detctor

with consendive rdc using the cxtra sdmple obtained trom the resulE of aggressively updatod

tracker. This onlinc ddcctor cm be rued'in case of occrrrence of tracking failure" Exmples

of such traclcer are given in [l3], [g], [14]. Onlinc ddec'tor for reinitialization oftracker in case

oftracking failgre is also proposod in t3]. ThG detestiotrmodule is ac'tirratad only if thc response

is lower thm thc speifiod thrcshold.

g15 proposed tracking mcthod also uses a support vestm machinqbasad online traincd

detector modute that dilfers from the already proposed [3], U4] tec;hniques. We actinate the

support vetor mac,hine-based detector module bas€d on two parameters rdh€r thrn 6nly fts

peak correlation value. In our qproach, Adaptive Failure Avoidanoe Tracking Mec,hanism

,singHiction-EstirnatimCollaboratim (AFAIU-PEC) response-ry is uitizd to calculate

the peak to side lobe ratio along with peak correlation value'

2.5 Correlrtion filter tracking

Correlatim filters are applied in many ap,plicdion areas like object dctction and

reognition [60]. This operator worls as elemed-to-elcm€nt multiplication h thc ftctluencY

domairq and researchers have applied oonelation filter emensively to visual objct tracking in

th€ last dtrad€ duc to its less computational cost attribute'
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The minimurn ogtput sum of squ|I€d error (MOSSE) filtEr is proposed in [4] track

monotonic imagps, whcne the filter is updated on e\r€ry frame' This filter is computationally

incxP€nsive bavfutg a prroccssing speed of more than a hrodrcd frames per secotrd'

K€rnclized correlation filter is proposed h [2], [61], which employs the propoties of

circulant mafices for extremc fast learning and rletction with the belp of fast Fouricr

transform. Efforts have been made to €ohancc th€ tracking performance by using correlation

filters.

Examples of algorithms basod on correlation filter ircludes multi-chaonel filters [6U' [62]'

[63], spatio+empmal context tcamiry [16], scale haodling md estimation [64], [65], [5U and

spdial rgrlarlzation lffril,167l,[68]. Most of these techniques aI€ vcry good in adopting thc

fast-e,hanging apperaoce of the model. Still, due to the non-availability of long-term memory

of target appearmce, these tcc,hiqlres arc susceptible to drift in case of occltuion and ort of

the view movement of targe objec.t. This problem is solved by keeping the long-term memory

of the targa and deploying two filters, ure for short tem memcy and thc other for long+erm

memoty [3]. At the samc time this increases the computational cost" md more memory will be

consum€d.

Coryressivc trackitrg algorithms are also presented in r€oent years which extracts th€

features ftrommulti-scalc featurespacewhosebasis fimctiondonot dependuponthcdata Ooc

of the examples of these tpes of hackers is given in U4'

Unlike existing techniques that eurploy only correJation filter for transldion estimation

wen dgring occluiorU we imodrced:the prcdictm modulg to handle the drifting^racking
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frilure in case of occfursion, motion blur aod out of thc view movcmcnt of t]e targct' In otr

approach (AFAI\d-PEC) prEdictor is incorporated with thc short-term memory correlation

filter.

Peak to side lobe ratio md peak correlation score from r€spotrsc map arc calculatd to

predict an objects's occlusion/motion blur/out of view mov€m€nt. Basd on these two

param€t€rs confidencc score is calcutatcE which will d€cide the reliability of thc ttacking

result for that speific frame. Short tEnn mcnnory filtEr will stop updating its weighs iftracking

rcliability is tcss than a c€rtah tbreshold say tr Measlremed follower prcdictor is usod to

predictthcnextpositionofthe objc{ during occlusiontime. oncethctracking r€sriltrcliability

aprproaches sp€cificd threshold say tr, agnin shst-tcrm memuy filtEr is activatd to estimate

the n€xt state ofthc object.

25.1 Mtninum Output Sum of Squrrcd Eror FilEr

Originally correlatim filters usod simple t€mptates and mostly faild wheo applied to

tracking applicdions. later, thc minimrim outprt sum of squared error filter was presented for

visual tracking 4plications [a]. This filter showed pmmin€ot results in term of eomprtational

time and tracking e,fficieocy. J[is fift6g minimizes the mem sqrared error of actual output and

required ortput. uathpatical MossE filter can be given as follows:

w = arsnrin frZf .ttrOxt- 
gilll+ rilwilZ Q.r)

where w is thc correlation filt€r that minimizes the sum of squared error bdween the actusl

outptr and the desired output, 4 is the d x 1 vetor version of thc training example, md 91 is
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the d x 1 d€sircd corElation output fcn th* traioing example' T)pically' 91 is chosen to be a

Gaussian firnc{ion centered at the origin with a small o forpositive traininS exm'ples' ad all

zeR)es for negative training exaryles. The parameter t is fm regularization Note thd the

original formulation h [U does mt inctudc the regulariztion tenn; this is equival€ot !o I = 0'

but we iocludc it for generalization we can erryress Eq. 2.1 in the frequcocy domain' and we

can find the minimrrm !y solving grail(fr) = 0.The cmonical form is writtrn as

n=ffi Q.2)

where dot the opcrator rppresents the tladamard product. Also note that the parameter L has

zubsumod a factor of N. Wheir trsed in seenarios that require incrememal lcaming; such as

visual fiacking tasls, thc MOSSE filter can be updated as a linear combination of the

prqriously leamed filter and a filter built m the new haining examples' Given a filter Op

learn€d on thc first N training examples, we can simply add an elcmcnt to the summatims

requirod in Eq. 2.2. Assume th't

*=ffi=fi+r Q.t)

Wh6lr a new inprtr fiv+r bcomes available we Gan update ail ald Dv with the following

updates

0r+r = (1 - rl)0rv + l(fir*r@0r*r)

Dr*r = (1 - f)Er + f(fi'*rOfiv*r)

where 0 < q < I is a parameter contnolling the learning rate'

Q-4a)

(2.4b)



smallcr values of q corrcspond to slow adaptation, whercas largcr valucs of q corrcspond

to mme aggressive adrytatiom. The MossE filt€r is uscd in visual tracking because the update

sch€me in Eq. 2.4 allows a tracking systerr to update the tary€t modcl quickly' Bolme et al'

providc a qualitative comparison ofthe MOSSE tacker's accutacy compared to othcr trackers

at thd z{ti,,Ire,while boasting ao impressivc 669 FPS' At such fast spcds' the MOSSE filter

became a viabld stafting point for subsequent tracl(crs that could bc developed to be more

robust and accurate at the orpeose of speed while rerraining fasterthsn rcal-time (30 F"S)'

2.52 KemdizedCorrelrtionllltcr

The tracking algorithm [fl builds on thc MOSSE filter concept t4] by extenaing the filttr

to non-linear corrclatim. LinearcorrelationbetweoaCF terrplateandatest imagp is theinner

prcduct of the tcmplatc w with a test sarylezfot wery possible shift of the test sample z.

Inst€sd of corrptting the linear k€rncl fimction wr z at wery shift of z, KCF computes some

nonJinear kernel (w, z) = gr (w)g@)wherc r rcpr€sents a kernel fiurction that is equivalent

to mryping w md z into a non-linear qpace with the liftitrg ftoction 0c).

In one sense, KCF can be vierwed as a change away frour linear correlatim filters. Still, it

can also be seen as m efficient way of solving and tcstitrg with kerncl ridge regression when

thp trainiry aod testing data is stnrcturod in a particular way (i.e., a circulant maEix). Hoiques

et al. derive KCT ftom the standad solution of kernclized ridge regression For learning w' we

assumc thp training dg13, X = lx,s.t1, -..,1,a-,rl is a d x d matix where rt contaig the same

elemeirts as rs shifted by k elemeds. The solution to k€rnclizd ridge regpssion is given by

t3l.



a, -- (K + 1I)-'g Q.s)

where K is the kerocl matrix such that Ktl = k(xi,x1),I is the identity matilt l' is the

regularization parametcr, g is the desired correlation outpu! and c are the dual-space

coefficients

The dual-space coefficients allow us to reunitethc original terrplatew as

w =|!=tdp(x) Q.6)

Where the kernel fuirction r(w, x) treats all data elements equallY, and kenrel K and the

coefficients c can be computed efficiently in the Fourier domain as follows:

Where Eo' represents the first row of tlc lrcmcl matrix K which conains the kcrnel firnction

compgtatim of xs with all possible shifts of another data smple d€Dotd r' ; either rs in the

training phase, or some test sarrple z inthe testing phase. This idea is getting closerto theuse

of the Fosier domain to compute linear cor€lation efficiently. With nonJinear kcmels,

Henriqges et al. show that all elements of fro' can be compted efficiently. As an example,

the craussian kernel r(x,x') = exP t- $ ttult' + llr'll2) can be comprred as

a. =ih

fru, -_ e,.o (-#(lpll2 + llr,ll2 - zr-(tO?* )))

Where f - represeirts the IDFT.

(2.7)

(2.8)
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J,st as in the case of tbe tinear k€rnel, comp'ting the Ga,ssian kernel in the Fourier domaitr

roduces the computational complexib" alth$gh there are additioDal DFT/IDFT op€rations

called coryarcd to thc lincar kernel. Dturing training; this kenrel is corputod for lerning the

coefficiems E' as shown above h Eq. 2.7, adwhen testing, thc correlation is coryuted as

0' = fr@fr"

where the IDFT of f' will produce the nonJinear conelation in the space domair

Q.e)

The KCF tracker utilizes these nor-lincar kernels to achieve performance improvemds

over the MOSSE filter. It op€rates similary, with an update schme in thc same spirit as Eq'

2.4. Oneimportant distinstion betrven the MOSSE tracl€r and thc KCF tracker is that the

MOSSE track€r derives and stores a conelation filt€r. In contrast, the KCT traclrcr computes

aod stores the dual space coefficients ao{ necessarily, the training examples. As traclrer

co,ntinues through a video seqrence, tho trackcr could retain multiple tEinfury images, but this

would result inprogressively slowertracking as the computatiornl demands in solving fonthe

k€rncl matix R , and subsoqrdly, o as sbown h Eq. 2.7, grwr with thc number of images

storod. Rath€r than atterryt to stu€ .trltipl" distirct training images o'r to discard data from

old frmres entirely, the KCF tracker storcs a single fiaining image x- that is a linear

combination of prwious i-agps, so that

fx = (1 -4)hr+trtx*

where xr is thc image patch in th€ kh fram€. I

(2.r0)
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wheir the KC.Ir tracker was first iffiodlrcc4 it exhibited bcter accurasy th'n other trackss

at that time, while r€eorting speeds greater than 150 f"S t6U. This corrbination of acotracy

and speed made it a popular track€r to iryrove lpm in several ways. Finally, it is importam

to note that the KCT is largely a reformrlation of the CSK trackEr introducd earlier by

Henriques et al. [12]. One of the biggest changes between thc CSK md KCF trackers is the

addition of multi<,hannel featureq which werc prwiorsly iffioducd for CTs [69]' [58]'

Henriqges et al. itrcoryorate multi+hamel features as a straigbtforward way to iryrove

performaocc, wh61p earn chaonel is trcated indepemdently, aod the correlationplanes of each

chamel attesttimc re summed.

2.53 A Simple Correlation f iltcr ltaeler

The p,ruvious two sections discussed the design principles of the two CFs tlr* appear in

almost all CFTs. This section outlines how either thc MOSSE filter or KCF can be

irylementad within a simple track€r. The simple tracl(€r orplained in this section can be

considerod a baseline traclrcr that other CFTs modiff, bnrt many details are first sm in the

KCF tracler. Modificatiurs often inchdc swapping ort partiorlar compon€Nrts of this gsneric

trac;1er, but oth€r track€rs rnay modiff mue significad portions of the tracking worlflow;

tlpse ohrnges are discgssod at lcngth itr Sec. 2.6. As we know that thc iryut to a tracker' along

with I = {Is,I1, . . . ,I,n }, is only thc ftst frame of a video with a rectangular bounding box b6 =

lxs, !s,wn,h] dEnoting the trgst regioq and the output of the hac;ker is rwtangular bounding

boxes b'y = lxft,yl, w[, hfi]denotiag the targct location estimates in thc rest of2Tthe frames of

th€ yid€o. kr ttr€ first franre we Gxftract features from the givenbornding box. It is iryortatr

to detailhow thistrainingis donc. TlpicallyinCFryplications, thetqlate ardthetestimage
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ar€ z€ro-padd€d wheo performing the F:FT t70]. Thc zerapadding is assumed to remove the

circ.larconvolutimeffects intnoducerlbythe DFT pll. Howwer, most CTTs do notperbrm

zero-padding befor€ computing the FFT of my space domain temptates or irnage patch€s'

Instea4 the cF is computed trom a r€gion larger than ftg actual tsrg€t; in sme nac;kers this

padding results in a cr with a width and hcight 2x larger than the original target scalc [wo,

hof .lti. €xtra padding is done in corrbination with applyiag windowing - gsually a cosine

wfudow-toborthredrrc,6pimradofthecfugularconvolutionandtoerrphasizethefeatures

that are within the original target region (and within thc targct regoq thc windowing

emphasizes the center of thc trgsf wen mme).

This desigp drcisim bas tradcotrs: the larger CF allows the tacker to lern egainst sonne

backgrcud inforsration implicitly, and th€ windowing does roduce aliastn8 effects, b'ut they

are not removed entirely (and zero-padding this larger CF would likely ro&rce thc sped

significantly). It's important to note that incorporating the background into thc CF training

rnakes morp scnse in the tra*ing 4plication; unlike tasks like ATR or other single-image

objec't dctection tasks, we know we will havc to distinguish th€ target from a similar

backgrcund in zubsequeirt frames; this is not tho case in ortherdercctiontasks.

Fromthe first frme, wc have an initial CF to dctect thc target thrcugbout the vidEo. In

zubsoquent frameg the tracking pmc€ss can remain relatively simple. An image parch c€nt€red

ontbcprcviogs estimatedtarget tocation is extracted from thencw frame. Thisparchisusually

the same size as the paddcd CF. Thc same feature extraction and windowing is perforrr,ed. We

take the DFT of the feature representatiur of thc target, and p€rform the correlation betrveen

the imagc patch md the CF. We take thc IDFT of corrcJatim outPut, and thc maximum
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corrclation value determines the ceder position of the target in thc coneliatim output plane' If

the target's scale is estimated, it may be done at this stage, or it may be done jointly with the

translation estimation of the target. More daails regalding scale estimation can be seen in se'

2.7 (the originat KCF tracker does not perfom any scale estimatim). For trackers that perform

reddection and/orfriture detction, this is usuallywhenthattracling element is exercised (the

KCF tracker does not perform my reddtection)'

Following the estimated targpt position (and scate), tbc CT mtlst be adaptd to the nclv

targEt informdion" At the neu target location (and appropriate scale), a fittal image patch is

eiftracted4 and featunes arc again extracted and windowed' This image infumation is

incorporaterl into thc filter desigu Thc MOSSE aod KCF filters arc designcd so that this car

be done with a simple linear combination of the prctrious CF and a CF designed solely on tle

nerv detectiom, i.e., 11 = (1 - l)t^ I trTn"*,where r denotes whatever filter design is use4

and I denotes the adaptation rate ftat balances the prwiously leamed model rs and thc

inforrration fr04 the ncw detction, dcnoted t*n.T\edctails of thc update as well as thc

valle of X. will vary frpm tacker to tracker as CF desigrrs vary, brut nearly all newer CFTs will

updatc thcir filter mod€I. The twostl prcoess of detect-qdate will contirue throueh thc

duration of the video. An overrricw of this entire system framewort is shown in Fig. 2.1. We

note that c€rtain dcsig! decisions tht ar-e preluded intheOnlinc Tracking B€nchma* (OIB)

and Visual Object Tracking (VOT) bemchmark chalengps. Both benchmafu prohibit rwising

old detectim outputs based or urorp r€c€nt fram€s. Additionally, specifrc pretrainod models

arenot allowedonape-videobasis. Howev€r, the €ntir€ datascthasnoprohibitionontailoring
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ccrtain traclrcr parao€tcrs (e.g., amotmt of padding, adaptation ratc 15 or CF specific

param€tcrs).

2.6 Improvements for Coreiation Filter Treckers

2.Gl Ferturre Repttrentetionr for corrplrtion trIlter Traclcrr

Traditionally, CTs assumed scatar or singte'channel features, e'g', grayscale intensities

when opoating on images. This was the casc for much of the p€rid befue CTTs being

introduced. CFs thet accommodated ottrer fedures, called vector CFs [69] on multi-chaonel

CFs [61], havc been dflrelopcd in mqe r€cd years. These CT designs werc like thc MOSSE

formulatim, in terms of minimizing thc MsE of tbe cofi€ldim output plaoe. The work

pr€sEd€d by both t69] ad [58] use the cross-spectral cn€q$r bdrveen diff€rd feature

chaflrcls, aa6 666h choosc hi*ogrmr of oriented gradients (IIOG) features to ilhutrde the nery

CF designs. As was discusscd in S€c. 2.3.2, thc KCF tracker uses multi-channcl HOG fedures'

but trcats them independently. White f€ating each feature chamcl ioAeeendenttY reduces the

computationtime, it ignores thepossibteimeractionsbetweeirfeature e,haonels and effectively

assumes that all featgre e,hannels are independent. We note that the choice to teat each feature

chamcl inde,pendentlv is the 30prcvailing choicc in cT'T desips.

nffiognnc of Oriefred Grdlentr

From the oridral MOSSE aod CsK,traclrcrs that usod only scalar features, serreral feature

descriptms havebeeir orplored in CFTs. As discussod above, the KCF trackerwas the first to

idroduce HOG feafiues to CFTs. HOGi fecures were originally inho&rced for pedestrian

dEt6tion but havc become a popular feature descriptor in a rmgc of objet detcction tasks
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tlSl. HOG descriptors aim to caPhrc edge features of a given taryct' Sincc the first use of

HOG in cFfs, a number of subsequetr cFTs use HOG, either as thc only fcafirc descriptor

or in conjtrnctim with other feature descriptors U7,V2ll73ltl5lt72lt25l. Thc KCF tracker

nsod a HoG cell size of 4 x 4 aod retsinod all 3l feature eiharnels, meaning thd a HoG

d€scdptsforanimagep*c,hofsizeu'xhwo*ldUtt,fxff'Mosttrackersuscthe4x4

ccll size ftrom thc KCF tracker, btrt some fackers ctrmgc this; rome CFTs use a I x I cell size

[65],a6x6cellsize[20],mdanotherthatuses 2x2geLlsizeforsmalltsrgctsaodthc4x4

cell size for larger targets . Most trackers fttain all 3l feature channels. The drcisiotr r€gading

cell sizebecomes a fmiliartadeofr smallercell sizes prroduce denser feature d€scriptors but

reduce the speed of thc tracker; using 3l HOG feature chamels requires 31 FFTs. Larger cell

sizes wi11 keep the tracldng speed much faster, but may not charact€rize the target well,

partiorlarly smaller targets. Overall thougb HOG features can be computed +dckly

(inAeeenAelrt of subsoquent FTTs), perform much Ssttcr than gayscale iil€nsity featurcs F4],

and do not appear to slow tracking down at all when dooc at a cell size of 4 x 4 U4} One final

note rqarding HOG features is that using a cell size of c x c means that thc smallest d€tectd

targg translations will be c pixcls by default. Thc original KCT trackcr does not address this,

and therefore all cstimated targc traoslations are multiples of 4 pixels. A modifid version of

thc KCF hack€r gses zub-cell peak estimation to estimate smaller target translations than the

HOGcell3lsizc [75].

Color faturer

While HOG descriptors captu€ the edge e,haracteristics of a target, other features attempt

to cqtgre the colq information of the targc objwt. The target object has a distitrc'tive colc in
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many vidoos , a.E, ttrack aod field athlde wearing a distinc{ jersey' If the target is the only

ycllow object h the vido, it certainly seerns straightforward to simply find thc yellow blob in

eachframe. The AdrytiveColorTrackcr(ACT)wasthc fustCFTtousccolorinformation for

feature descripors of thc filter and target image ptc'hes t10l' Thc authors explore the

effec-tiveness of sevcral color spaces, e.g., RGB, I-AB, HSV, and otbcrs' Their inrrcstigAtion

shows that color name atEibutes perfcm best. color names arc a higber dimensional

r€prcsedation of colors basod on humsn perception. Unlike other color spaccs whie'h have a

mathemdical formula to convert ftom RGB color space, surall ranges of RGB values are

mappedto aprobabilistic lldimeosim.rl vectu that sums to 1, where eactr valuc conespmds

to hrmanperception ofblack, blge, brorvnr gtql, grwa,otange, pin}, pgrple red, yellow, od

white. Colornames, likcHOG descripors, hadprwiorslybeenused inothercomputervisiotr

tasks t7dl. Since thc publication of the ACT tracker, a nurrber of CFTs have usod color nmes

joitrly with HOG desoiptors U4l, UT.Thc ACT track€r also prorposes dfunemsionality

rodnction for the color rrames; this results rn, a 25o/o increase in thc frames pe seond (FPS)

while only slightly roduci4g r*n qr. "

While the color name features are a pixel-wise descriptc, other trackers use colc

information in a different magrer. The Sum of Terrplate And Pixel-wise track€r [73] uses the

first frame to leam which RGB values are represetrative of the targ€t. In subsequd frames,

p€r-pixel scor€s basod on RGB values are smoothed out ov€r aregion equal to tbetarga size

to pro&rce a color r€spottsc plane. The amormt of smoothing pr*ludcs a sharp peak from

appearing within thc color r€spotrsc, but,it is usod as aS2conrplemat to a CF built with HOG

fcatures. Thc HOG resglt will often p,rolgce a much sharp€r correlation peak, while the color
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information serrres to reinforce or alter less sbarp peaks that would correspond to less confid€nt

dcttrtiotrs tom the HOG features. The two outptt lEsponscs have difrered shape

charact€ristics derived ftrom different information (color vs. texture), aod thc overall rcsult is

stoogcr.

Much like HOG descriptors, color features ar€ vcry quie* to comprtc' Most color spsccs

have 3 channels, while the oolor names have 11 chaonel$ which does result in slowcr

performmce (while HOCI features often make up for 3l feature chaonels by reducing thc

spmial resolution, color features are tpically of the sme spdial resolutim as thc original

target).

Deepleamed Featurcc

In rcccot yea6, deep convohtional nalrat nctworks (CNNS) have come to sryplant

..handcrafted" feahups like HOG in computer vision tasls [78], F9]. [80], [8U, [82]' While

haa6q.afted featqres like HOG re comprtedbased on what researchers €trpect to be salieiil

feature outprts fq discrimination, dcep neural networls (t'INo are expcted to leam

discriminative featur€s m thcir ounq given sufficient training data. Just as doep features

followed tbc intro&rction of a range of hand-crafted features in domains such as objec{

classificatim and localization, CNNs are being iofioduced to visual tracking shortly after hand-

craftcd fcatur€s. The visual tracking problem is characterized by the lach oftargC data pric

to thebeginniag of trackiag. This immediately rules ou tnaining a CNN trom scratcb iDst€ad

most CTTs that employ CNNs d€p€nd on a prarained model, tpically eith€r Alexi'Iet F8] or

vGGNGt tE3]. At s high lwel, cNNs takc m iryut ioage an4 over successive layers of

conrrclutims with filtcr banks and spatial pooling, learn feature represeirtations thd capturc
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el€m€lils raoging fr,om low-level tstures to image classificatims. For the simplest usc in

visual trackitrg, the cNN can be consid€rcd a static feature cxtractor, like HoG or colc

fcaturcs. This most basic aprproach is shown in wort by Danelljan ct al. [84], simply calld the

Du.pc"[.'r. The authms build a cF using th€ o.,tput trom each convolrrional network in

VGGN€I, whie,h takes an input image fich,of 224 x 2?A x 3 (a[ taryets are resized to fit th€

prctrain€d n€tsro*) and outprts a 109 x 109 x 96 descriptor ftom thE lst convolutional layer,

a26 x 26 x 256descripor ftom the 2nd convolutional layer, ana 13 x 13 x 512 descriptors

ftom tbc arq 4th, aod 5th convolutional layers. The authors shon, that the best performmce is

obtainorl when building the CT using thc lst output layet, ard in fact the performmce drops

offeach srccessive layergntil thc 5th layer, whichp€rforms only 3rdbest. The assumption is

thatthedceperlayersdonotprcvide anoughspdialresolution; ttrere isroughlya 17x re&rc'tion

in the spatial resolution ftom the orisinal patch to the 3rd layer. Most impctantly' the authors

showthatthe CFs built from the CNN'soutput outpetfotms comparable CFs builtjointly from

HOG and color name features. Frm this simple approach to building a deep cTT, more

advancements have been made. Rathcr than just using the outlPut frorr one layer, other works

have combinod the ouputs fiom diff€rqil layers [85], [86], [87]'

Thc Multi-IEvcl Deep Featurc Track€r (l,flDF) goes beyond jrst using a pretrained

n€twoft aod actually gses thc calnmt track infumation to Eain the CNN to adapt to the targc

rypearance and its sunormdinp, rather than just keeping th€ stafiing VGGNet' A look at recent

b€nchmark performance shows that deq features are used in many of the most accurate

traclss [88]. Howwer, the use of deep fecures does come at the cost of speed; CFTs uing

CNNs are tlpically much slower than tackers rsing hand-craftd featur€s. Despite this, visual
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trackingmay follow a similartrend as othocomputervisiontasla that havebecomemue md

mor€ drunioatedby dceP n€tworts.

2.7 Target scsle ectimetion

In their simplest constnrc{ioo, cTTs simply estimate the translation of a target; the 2I)

correlation output plane provides m insight into thE ehenging scale of a targs' eccuratAy

estim*ing target scale has mrltipte benefits; it dirctly affcts how tracLer performmce is

quantified in benchmark oraluations, and beyond benc,harks it can pmvide importatr

information in real-wcld applications. Along with bcing valuable in md of itsel4 accurately

estimting scale allows a trackcr to adjust its oum tracking proced[e to adapt to the e,hanging

t,gfgd',thts rcduciog thc possibility of drifting off of or losing the targc entirely. With the

possible irtrinsic aod extinsicbene,fits ofaccruatc scate estimatiom, th€rchas bccn agooddeal

of work in adatiog CFTs to scale varidion.

2.7.1 Erheurdve rcrle scareh

perhaps the earliest CFT to addrrss,scale estimation was the Discriminative Scalc Space

Track€r (DSST)I89], [90] . DSST sharEs many similarities with the KCT trackcr brr adds a

scale estimation comporcnt following the ranslatio,n cstintrim of thc tary€t. Following the

translatim estimationto det€mine lxl,yfil,the tracker extracts image patc,hes at S scales. For

ear,h scale r r [[-9, 1,...,[gJ], DSST exhacts an image parch of $zn a"wf-1x anh1a,

where a is the scaling factor bctween adiac€nt scales ud lw'y-r,Hy-rl is tbe previously

estimatod target size. Similer to the process for estimating thp targd traoslatiom' a separate CF

d€sigped for estimating scale is correlated with th€ featu€ descripors €xtract€d at each of thc
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S scales (DSST chooses S = 33). Bec.arse the targA c€nt€ring is roughly accorrylishe{ the

correlation output is limitedto a s x l output. trrst as the cF for trmslation cstimation is bruilt

in a way to farrcr smaller translation+ a lD Gagssian windowing is ryplied to the S x I scalc

correlation outpgt to frvor smaller scate e;hanges. This, along with a co$enative scale fac{or

of a = 1.02 r'sults h small estimatod scale changes fiom frame to frame, whie,h is oonsisteot

with targe behavior in most ryplications when the video's frame r& is 24-30 FPS (as is the

casc of nearly all benclmark videos). When thp target scale is estinate4 the scale filts is

updated.In subsoquent fumes, the iryrt imageis resizodaccordingtoth€ cur€nt scale forthc

estimatim of the targd 6mslation. Finally, we note that whilc thc hanslation filter in DSST

uses I x I cell sizc HOG featueq the scale filteruses PCA-HOG features [1 l] with 4 x 4 cells.

The jgstification for rsing a targer cell size is that pixel-wise estimatim is only a concern for

the targa fianslation.

DSST estimates the targ€t box in two stc,ps, first by estimating the tnanslation

lA& Ayl via a 2D conelation, and then jointty estimating [AW Atr] by estinating the change

in scale via a lD correlation The authors of DSST also explo,re estirnating thetranstation and

scale together by learning a 3D scale-space cT. They find that this 3D cts is much slower, as

would be expectd and also actualty performs slightly wone than thre sequcntial translation

aod scale estimation. Follouriag the findings duri4g the dwdopmem of DSST, a number of

trackcrs have followod the ryproach of sequential translmion and scale estimatim [9U' [84].

Still, another CFT does jointly estinatetransltim and scalc [68].
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2.72 Eficieilrcrlercrre[

DSST and tackers that ado,pted the same approach look exhaustively over variors scales'

whic,h may not b€ tbc most eilficient approach possible. Thc Multi-K€rnelizd coEelation

FiltEr (MKCT') track€rs [92], [93] seets to estimate the scale by fuding the scale that pro&rces

a co,rrrelation ortput peak with the highest PSR in a morE efficient m8uler by performing a

line search within a range of scales +10% of the cur€nt scale. This ryproach assures thd the

pSRs across difrcrsrt scales within thc searre,h range will 36mly have 1 singls local maximm;

with multiple tocal maxima, a suboptimal scale could be choeeo- Tte atrthors of [61] do not

report how ofteirthis assumption is acsurate.In additionto a line search, MKCF chooses to

rescale the features ratb€r than extract featrres multiple times trom ditrGred scales' The

authors do compare this approach to the 'taditional" apprcach of ortracting ftdures from

imagp patches of differem scate atrd show a smafl gain in thc acoracy wheir doing thc frster

rcscaling of feattrrcs, though this effct is relatively small'

The track€m mentioned aboye estimate tbe scale either exharstively or with a mor€

effEcieirt tine seardu The Multi-viem, Correlation Filter Tracker (M€FT) [%] roduces the

scalc estimation to a discrete decision to decidc if the targa is getting smaller, remaining the

same sizg or gctting latger. Once thp targct translatioll is estimatd, image patches at the

curr€d scale aod +5Yo aretcsted against the same CF used in translation estimation The

maximum nalue from the correlation outprut plaoe for each of the 3 scales is taken' ao4 after

theuchangpd scaleis givena srnallamorffofortraweight,thcmaximumvalue ofall3 planes

is 
'sed 

to determine if thc targe is getting smaller, lrger, or r€maining the sme size' If the

scale is clangin& it is changpd by So/o.It can be assumed that very small-scale changes will
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not bc d€t*ted, brut CFTs without any scale estirnation are rcbust to mioor changes, so

e,ffectively igror'mg thc smalle* changes should not bc a large conocm. The anthors claim

experimental results support thisl

2.t Perts-based correlrtion filter trackers

parts.bas€d nodds often seelc to perf, orm vision tasks by dmoryosing a lrge objet into

$naller pieces that can be op€rated o,n independently and th€n ioining thc r€sults of the

zubproblems to pmvide a coherent result for the €Ntir€ objec't. Parts-based modcls bave been

trsed prwiously in objet alignm€nt t95] md objet detec{ion [11]. More closely rclated to

CFfs, rtr€nt work on objec,t aligruent used CTs to d€toct individual carparts bcforc fusing

the result with a deformatio,n model [69].

I
li

l*h't

r------rttl

11.'

Figrne 2.1 Standard correlation filtcr-bascd trackfuE. h,h rcpresents thc coordinates of the

G; in th€ initial frame It represents the aext frame b1' rcptesents the estimated position

of thetargc inthenext frao€.

!II--I-II-\(,,0,, lnitialTninirg
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h

Figrge 2.2 Part-based Correlation filter trackiag. The top two images-sho$' thlt tracker ues

hi" prrtrfgel whereas two narts re u, od in the bottom two imagcs[72] .

Parts.based approaches are designu to handle objcct deformations, G'g', 8 pcdestrian's

e,hanging stride. In cmtrast, a singte redangular detectim window may stnrggle to characterize

I

all possible poss of the targa. ,qaaitiinraffy, pafis-models are inherently tolclaot to Partial

occlusion; if some object parts arc occhded, a d€tector can still wort wdl based on the strength

of the visible parts.
.l

Vis,al tracikers stand to UJ.nt from somc of the intrinsic characteri$ics of parts models,

but their application and benefits rc not thc same as thosc in singlc-image object det€ctiotr'

Parts.based objct detetors can benefit from target knowledge aod possible defrrmations' e'g"

a pedestrian detector can bc d€sig[cd to have a part for each limb. lVith no prior knowledge of
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the targe, parts cannot be de,finod so prccisely fortrackers; inst€ad, tbe configrrration of generic

part is nccessary. Still, vi$nl traclrcrs will benefit ftom robustuess to occhsion Additionally'

puts-models can easily be tailo,red to estimate scale; if parts are drifting frrther apart' that

alone canbe enougbto indicatethat the scale is increasiag.

A tracker proposed iu [96] uses KCF filters to localize 5 objec't parts, each approximately

20% the total trgct hcight aod widttt eonfigursd in a cross Pattern as shown in Fig' z'z'Ttle

individual part detections art given weights according to two factors: a higher PSR for a part's

deectorwill result inhigtrerweight, and a smallershift fiomthcprwios locationwillrcsult

in a higher weigh. The use of pSR is mostly self-exploatory but ernphasizing srraller shifts

does require justification Thc arfhors arguc that detectors for parts that become occludod can

possibly d6tft mother unoccluded part of the object; this is part of the risk of defining a

generic parts-model for all possible targeb. More generally, tbe justification is thd if all part

detstors shift equaly between fram€s, it is likely the entire objec't did, and thqe will be no

ngt effect of this shifting penatty on rhe relative weigls between pafts. E I of the 5 part

det€c.tom shifts mtrch 6sr€ than the otha parts, it is more likcly ar enor and should be given

less weigh (altbougb, utrd€r this design, an ouflier part could possibly shift less; this is trot

addressed). Oncc the idividual correlationplanes are weightd, ttrey are combined to prorride

a full confidence meF. The final target translation aod scale estimatim are determined by

Bayesian inference similar to a previoru,tac,ker [94, [98]. Thc track€r prorposed by Akin ct al'

[72] zubdivides targets into only 2 parts: either top and bottmr parts fm tall and nanow targets

or left ad right parts for short ad wide tary€ts as given in Fig. 2.2.1futwo parts rue KCTs

filters to localize their half of thc targc.',Ihe reliability of the 2trrf'detectoms is indicatodby
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the corrclation peak nalue for eac,h parl. Based on these wciglts, an additimal fu[-tary€t KCF

is built as well aod perfurms a full-targa targct d€tection centerod at thc location zuggested by

the two-part dctectors.

The target's scale is estimated by meas[ing the changing distance between the two parts'

wh€n u@ti4g thp cF models, tbe corre,l,ation peaks re tcsted against a threshold; if a part

detectim frlls bclow some threshol4 the part model will rct updat€, ad if all parts frll below

thc thrcshol4 the full-targd dctector will not update. This is meatrt to avoid updating the

models when thc target or tary€t pafi is occluded. Additionally, scale estimation is only

performed when all part detctions re considered reliable'

2.9 Other visual treckers

In Sec. 2.6, 569 2.7, ,frJc-S€D. 2.8, wide range of CFTS and the various irproverrents they

make to the MOSSE aod KCT trackEs that fiIBt used CTs for visral tracLing were discussod.

Howcver, both prior to infio&cing the MOSSE tacker and dudng the contirured grovnh of

CFTs inrecentyear3, many ottrervisual track€rs that do oot use CTs have been dweloped.

One of the most well-knoum trackas is the Tracling-Leaming-Detection (II-D) tracker

intrduccd in 2Ol2 t451. As its name suggests, the tracker has thre componeirts. A Mdiao-

Flow trac;ker [99] locates thc tsrget from frame to frame based otr"thc curr€nt trajedory. The

detrctor11ea1g new frarhes indepeodenfly of previous frames and can corrwt hild tnack Thc

leamer obs€nes both the track& and detc'tor, and estimates when the detestor is making

clrol3. Based on when the leamer believcs the d€tector is meking emorsr it can ge,nerate more

training data forthc d€tetorto improve its p€rformarce. TheTLD trackerwas the third most
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accurate tmcl(Er when the oTB50 benchmark was Publishod in 2013 with 29 track€rs includEd

tl00]. TheTLDtrackerisnot waluatedonthenostr€ccntVOTbenc'hmarls'btrtamore l,ecnt

proposedtrack€rthd fises tbeprinciplesofboththeTLD and KcF tradscrshasbeenproposed

ll0u.

The best performing tacker in the OTB50 benchmarlc's collection of trackers was the

Spusity-based Collabordive Modet (SCM) tacker tlsl. hong €t al' infioduce a

discriminative and a generativemodel that leams sparse gaysc&le features md sparsity-based

histograms within a particle filter framework Thc scM combinod the two apPrcaches while

stating that the generative modcl ptays a more significm mle in tracldng' Tbe scond best

tracl*r r€ported in the orieinal oTB50 benctrmarh was Stnrck t46]. stnrck trains a stnrcturod

output kEmel SVIU that continuEly adds prrwiots detetions and hard negatives from thc

region around each detection, while prqning thc number of possiblc support vecton over time

to avoid p,rogressively slower procesing times'

Despirc the succcss of the above trackers, meny rotY trackers have been iofioducd since

thc oIB ad voT hc,hmarls ess€otialy ftElllated the ways traclrcrs operate and are

evaluatod; nearly all of the most effective trlacLcrs on these benchmarts have been developed

since the intoduction of these bemchmats (and perhaps dcvelorped explicitly for thc

challengss pr€se|.rt h the datasets). This is tnre fu cFTs md othq rackers'

Thc best pqfoming track€r on ttls voT20l5 datasct was thc Multi-Domain Netwoft

(MDNet) tracker tl02]. MDNGT pEfiaircd a cNN on an outsid€ set of videos' tbeir combines

thisprerainednetworrkwithabinary classificationlayer fu atest vidco. candidateregions are
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samplod with raryiog translations and hcale clranges relilive to th€ previors target detetiom"

The significance of MDNet is that its nrccesg coupled withbeing one of the frst trac,kers to

use Cl.[Ns, likely irupired a growing number of newer trackss that use deep newodrs. Oth€r

CNN tackers iochld€ an extended version ofthe MDNet trackcr, with occlusion infenenoe and

a scale regression model to rcfirc thc outprt bounding boxes, submitted to the VOT20I6

bencnnark [88], and the Tree-structured Cmvolutional Nerral Network (IC]II{) track€r

[103] that uses a CNN along with a tree structurc to captuc the multi-modal appearance of

certaintargets. Another rrc€nt trackcr exchanges the CNN for a Siamese NN [104].

While doep n6works arc grcwng in popularity, other trackas which also performod very

well in recent benchmarks. The Edge Box Trackcr (BT) [05] rues an objectness measrre to

find region proposals within an entire frarne, which any object dcector can their process. The

tracker focgses on finding hard false-positives and re-ranking proposal regions, whidt can be

processed separately. The salient region-based tracktr (SRBT) uses color infrrmation to

segment a target more prcisely than a r€c'tangular boundi4g box; this more p'recise

segmentation determines which rWio,ns of thc rwtmgutr bormding box co,mibute to the

modcl update t88]. The geometric hypergraph trackEr (GGT) [106] uses a graph stnrcituc to

capture the relationships betwm diffcrcnt target parts as concspondcfitc€s between frames arc

fognd and usod to find a subcet of reliable parts. An cxt€ndd version of GGT appears in

VOT2016 th* ircorporates the Scale Adaptivc with Multiple Feattnes (SAItdF) CFT.

Along with original tracking systems, the outputs fircm multiple tackers canbe coobinod

to produce one composite outptrt. The median absoluc deviations (MAD) fusion shategy [107]

is able to dctet outliers, or trackers which hane likely friled. Each individual traclcer deviates
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ft,mthemodimdctermines thewcighr giv€ntothat trackerforthc frnal estimate' and outliers

are ignored aod rEinitialized on thc new estimtod tary€t location Thc VOT20I6 benchma*

contest uses a swafln of KCF trackers and aDSST scale estirnatim sc;heme, and o,tperfrros

bothKCF sndDSST [89].

2.10 SummerY

This chryter initially preseirted a. general bacl€puod on how discdmimtive leanfug

algorithms are .oed in coryuter visio,q ryplic*ioos. Aftrrthis, some stateof-the-art hackitrg

algorithms with a major focus on cmrelation filt€r-based tr8*ing are described' h thc eod

some improvements to correlation filter-basod tracking schcmcs arc prEscoted'

chrytcr 3 is based on the methodology of this research study' J[6 main somponcdls of the

prorposed work are discussed indctail'

Chaper 4 describes the results and its detailed discrssion. Whercas Ctapter 5 provides thc

conclusions of each contribrution and future recmmendatioms.
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Chapter 3.

MethodologY

Ogr objctive is to develop a robust onlinc haining-bascd visual ejcct tracking algorith to

handle thc lmg-term occhuion more €ffctively 
.\an 

other already proposed lmg-tcrm trac'king

m€thods. Withort cmsid€riry thc orientation of the objc't, tracking is simply tbc estimdion of

the trmsltim and scale obj6-t [3], [14]. In our poposod framewuls, the trmsliliotr estimdion

isbasedmthe correlationoftsnForalcontcxtmdscalcestimatimis basodonthcdiscriminmive

correlatim filter.

In this s6g:tioq the main coryoncots of the prorposed fiacking proccdurc are described. Filst

of all long-term oonelationfiacking [3], [4] is d€scribod in Sction IIIA. N€xt, we describe the

estimdor rnodrle [3] in Sctim IIIB, we use $ryport vedor machine classifi€r. Sc'tion ItrC

describes the l(almm filter-based prGdictor. Finally, in Sctim IIID, Prdicttr strdery is

aescriUe4 whictr assists thc toslation estimation filter during long+erm occlusion Diftrcd

notations and rmriables usod inthe following sections are given in Table 4'l'

3.1 Long-tem correlrtion trpking

Conelatisr filter based tnaclrcr cal$latethe weights w by training on an image patch i of

P x Q pixels to nodcl the targ€t 4pearalrce [3], [14], [54, [58], [6U, [64], [51], where all thc

cinulmt shifts i; xq,(p,q) e {0,1, ...,P - 1} x t0,1, ...,Q - 1}, ue @nsid€rod as smples for

training with the gawsian functim label y(p, q), i.e.



4

(3.1)
w = argrsn E,lo(+r)' w - Ylo'dlz + t(w)z

whcre o is map,ping to kerncl space md I denotes regularization parameta' which is

always greater then or equal to zero. As labeling is not binary ' hence w contains the

coefficients of garssian ridge regression model tl08l. By uing frst Fotri€r trmsform the

above objective firnction is minimizod to thc Eq' 3'2'

w =Epa c(o,q)o(h), Q'2)

where c is calculated by (3.3) using disc,rete Fourier transform as follows:

(3.3)

tderrotesthcdiscEteForriertransform(DFDardy--

{y(p,q)l(p,q) e [0,1, "',P - 1] x [0'1' "" 0 - 1]]'

In the new fime, Icgponse maP ovcr image patch u of size P X Q is calcrrlded by ttsitrg

inverse discrete Fourier transfqm as per Eq' 3'4'

g = f'(c O f(otu) . 
"(r))) , (3.4)

Where O is elernd-wise multiplication, f is lerned tary€t appcaraooe modcl and

maxim,m valtre of f is tbe new target locatiorn. Two correlation filt€rs arc trained using sinsle

frame, one to model the targe apPearance solcly and other to model the surrounding along

with thc targA. As sunounding information does Dot changp quickly and remains tqorally
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L(wrr,)') = max[0.1- iwrx]

urx= 0
(soiutioni

wrx=llpositirttilrgh) rrlth.u = 1:

-+
wrx

urx=l
{negative margln)

.--'--- |
wrx

Figrlle 3.1 $ry,port VectorMachine demonstration. On thc left sidc qeencircJes-rEpres€Dt

ihEpositive sample wher,eas, blue qosses rtprescding negatiye sampla This is the case of
G iir-r *"p.rutf" dataset. Th€ solid blac* line represems thc hyperplanc separating the

closes positive and negative samples.

stable it is very tseful to differeirtiarc thc target from the backgpwd in case of occlusim [3],

[14], [16]. A weighed cosine window is applied to feature channels to remove the boundary

discotrinrities of thercsponse map.

Cotrext Rcgl€33ion model R"oois,adaptive to cater the occlusion' ahrupt motion and

deformatim with the learning rate as Eq. 3.5 and Eq' 3'6:

tt{thY = -t,l

.,... J
-t

tt=(1 -p)tt-r+Fit,

ft=(1 -F)At-ttFAt,

(3.5)

(3.6)



Target appearaoce r€gr€ssion model Rt 
" 

is leamed from the most reliable and confidenfly

hacked frames. Reliability is determined using maximal value of I [3]. Unlike th€ €xisting

tectrniques [3], [4] to maintain the model stability in tnre letter and spirit, two thresholds are

dslinod to update the target regression modcl Rso, using (4). First threshold To is on peak

correlation value. Second threshold Tpo., is on peak to sidc lobe ration of the response rnap. If

both the criterion are m€q then only targ€t appearance rcgression model is updatod using F4.

3.4 i.e. nax( !)> Ts & PSR CI) > Tp,, Not that only the peak correlation value is enough to

cnsurE thc mod€l stability in case of lorg-teinr occhuion, as shown in Fig. I l. We update the

targ€t ryp€arance regressim model only if the tmcker results are abovc thc ccrtain rdiability

threshold i.e.Ts*, we kocp the learniag nte p aggressive.

For optimal scale seletion of trackd target, i-age pyramid teclrnique is implemented

using the concqt of [3a]. If P x 0 is the size oftarget and Ms the nuurbs of scales, thcn

S = argmax(max(9J, (mar(fz), ..., (max(f")) ,
s

where each s G s, s = {aaln t-Tl, [-T], ..., [-Th,

(3.7)

Unlike [34], we rnake the udatfury of targa regressim modcl more robust and Rs-is

updated rsing Eq. 3.4 if it satisfies the condition nax (f s)> Ta & PSR (9i > Tpn .

3.2 Support yGctor mechine-besed estimstor

To increase the robustness oftracking algorithr, a deedion modile is nocessuy to reoover

the targct when tracking frilure (rccun due to long-term occlusion and reentaing hto th€
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camcrla view, erroneous inprt to modcl update module or out of camera vicw movement of an

objec't.

Researcners proposed this model ofthc qrline detector and carried out redetection on each

frame in [ 3], [49], [50]. To decrease the computational e,fficienry, ccrtain thrcshold is defind

to actinate thc dctetor. Detetor is astivated only if the maxhum value of responsc map is

less than a predefined threshold [3]. Unlike these two approaches, a support vetor-bosed

d3tetor in collabo,ration with Iklmanrfiltcr-basd prodictor is imFlqn€ntd in our qproach

i.e., the prroposed detetor is activated if either of the following two cmditions are true i.e.

r) nax (y) <L and

ii) PSR(yi <Trn.

SWI is haind incrememtally by considaing thick fraining samples arormd the estimated

positim" Biury labels bave b€r assignd with respct to overlry ratio as given in [50]. We

assume the Eaining # lf t,cli = L,2,.,.,N1 is giveir having lV mrmber of samples in the

framc. r! is the feature vets of itr sample and cs is the binary class labcl for lth sample i.e,

ci e {+1, -1}. SVM classifier is d€find as follows:

ryilltll'+fDr(l; (oi,c)), (3.8)

where ftishypuplane ofSWIdetctor, t(h;(v,t)) = max{0,L,...,clh,ulland (h,u}isinner

prcduct bewen o and h. Passirrc-aggrcssive algorith is rylied to update the hperplme

param€tes as follows:
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Figur€ 3.2 Pictorial rEeresmtation of proposod tnacking tochnique. The Position is estimate4 on
the estimated position we have cstimated the scalc rsing pyramid tehniquc. Reliability oftnacking
is juggd tuing conditional block at ttrc right of scale estimation. Result is passed to collaboratu
ifthe hacking r€sult is not reliable. S\|IVI classiftr estimd€ thc nery position and its reliability is
checkd using seond conditional block shown in collaborator mo&rle if the results are reliable
enoughbased onthe threshold then new positim is S\/IVI estirnatorbased otherwise Iklman filter
prodictor will give new position wherp B,rrepresents the predictor aod Drrreprresents the detetor.
y3 is estimated position at estimated scale Rco is context rqression model, R1o is targa
appearance regrcssion mcrtlcl

ffiIlEffir
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FFI l;r1
'--'' frtu,-. 

, e

.1..

"EI)
Figrre 3.3 Modeling of context rcgr€ssion model and targe amearance r€gression model.

he h-ffivot(ht@,c)), (3'e)

Wh€rc T € (0, +@) corlmls thc ratl ofupdatiag ofhrVnl(h;(o ,c) is thc gradicot of loss

firnction" SVIvI philosorphy is shown inFig. 3.1.

Unlilc cxistingtchniques, inourpropoeodworttheparameters ofthedetetqs are upddod

using (9), when thc nax @!*)>?i , where yi is thc rcsponsc m"I. value for it" possible state

calculatedby thc detectorout of i nurnbaof staes inX (D,r) forP frame"

"EII
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3.3 l(dman filter-based prediction

In literature difrerent Kalmm filter [09] basd tracking algprithms have becn propose( for

example [10], [lU,l.ll2l, [13]. To incr€ase tbc efficiency of tsacking algmiths,IGlman

fitEr basd algprithms have been hyhidized with many othcr macking algorithms, sorne of thc

examples are in [14], [115], [16]. DiffGrrctr from the €xi$ing tochni$rcq we inmrporated

IGlman filt€r h sync,hronization with the estimdor module to avoid thc tracking frilurc causd

by long-terrr occlusion, motion blur or clutter background. IGlmm filter worls in a closod loop

cycle with prodicim md oor€ctiotr stqs (10)-(14), respectively. In our proposed tracking

framewodq IftLnan filter is activated in case ofthe failure oftracling causod by any ofthe issues

n€ntiond above. During oehuim ttre IGlman filter takes the current state fiom the main

fiacking algorithm(inourcase it isKCF) definodby(lX4) mdprdicts thc ncxt statebyuilg

(10) md (11). The mah hacldng algorithm (KCF) will stq Wdating its praneters aod targs

appearmce regr€ssim model. I(alnm filts conw'ts ibclfusing the pruvios loctim podictod

by (10) aod (ll) driqg occlrsion in the next framc. Formrlatim of trklman filter is gvcn by

Eq. 3.10- Eq. 3.14.

Predictim:

,!l = i" r-1 * Bu,

St =,r{St-rr{' + Q,

(3.10)

(3.11)

where xfl is predictod state at ter fiame, A is state transition matrit Sj is postaioi enor

oovariance mdix,Q is covariance matgx of dynamic noisq B is iryrt noise and A is state

trmsition matrix.
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Corrctim:

Kt-r= sr-rH?(Hst-rHr + R),

X" t*t = Xt I Kt-r(Yt - HX" t) ,

st+r=g-KrH)sb

Q.t2)

(3.13)

(3.14)

Where II ismeasurcmernmatix, f6 isthe measur€m€nttothclGlmantomthcmaintracking

dgorithm.

Depending on the condttior this measurEm€nt may orre from either ofthe throe sources i.e.;

i) main tracking algorith ii) estimatm rnodule iii) Kalnan filter self-prediction intheprwiots

frame. Depemding on these two cooditions; i) nar (y s) <I' m PSR (y i <Tp,,) nd ii) rtu (yfi>Tt

I(alnan filter cdirucs to predict the o€fit state during occluion and send predictod stde to

prodic'tor+stirnator collabqatim modtrle"

3.4 Predictionestimationcollrboretion

Collaboration module is proposod to handlc long-term occhsion, motion blur and clurer

ba*gotm{ ulike €rising tochniqries. Most of the already existing methods model tlrc targs

using its appearaoce. The majorproblan associded with thesc methods is their hcryability of

prediciag the statc of the object during occlusim. When the object resteis thc field of vierv of

frame after occlusion, diftrent tracking tehiques have been proposed to re4ttrc thc objct,

sgc.h as [3], [14]. Diff€r€nt frrom uisting, frameurorks, our proposed schcmc (AFAM-PEC)

actirratethepedictorand estimatoratthc smctime, whentheobjc{ gets occludedi.e. max(ys)

<7'orPSR (yi<Tp..
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Compute response
yi lor all states

Figure 3.4. Flow e;hart of Prredictor-estimator collaborator modulc.

During the occhsion p€riod prodictor starts prerlicting the locdion of thc targct and S\'|M

based classifier starts estirnating thc position of thc objct. If estimatd positior by S\ d basd

classificr satisfies the onditionmax (y;) >Tr, this positimis consid€rd a cor€Gt estimate aod
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is given to trklmm filter as measurtmtnt to prcdict thc nExt location" However, if estimated

positimdocsnotsatisrythe cmditimmax(yD>Tt, Kalmmfilter-basedPrEdictdpositimis

gven to the estirnaor to estimate the next locatim in thc next tme ard tbe sme is given to

Iklman filt€r to predict tbe n€xt locatim h the n€td framc' This 4pmach shows sigpificad

impov€m€nt in rcsults in corryarison to [3], tl6], t14. Tte flow c'hart of this mo&rle is gv€o

inFig 3.4.

3.5 Hybridization of svertge peak corrclation cnergf end confidence of

squsrd r$ponse msp

Ma:rimum response value has been used widely as reliability measure in tracHng

algorithms. During occlusion and motion blur etc. response map changes drastically. Sq

using only maximum resporuie value as reliability measune is not good enouglr" Another

measllre i.e., average peak correlation energr(APGE) is presented in[llfl given by eq'

3.1S.. APCE tells about the degree of fluchration of response map. If the obiect undergoes

fastmotiott thevalue of APCEwill be low.

ApcE=ffi
WherE, R* , R-i, denotes the maximum and minimum

respectively. R"" denotes the rth row and cttr column element of response map'

It has been shown practically that if the Arget apparently appears in the detection

scope, there will be sharper peak in nesponse map and the value of APCE will be smaller.

However, if ttre target is occluded, the peak in the response map will be smoother and the

(3.1s)

nalue of nesponse maP
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relative value of APCE becomes largert118l. Ttris problem is solved by squaring the

response map and then finding the confidence of squared nesponse map [118]'

Peak of the response map is represented in the nominator of eq' 3'16' Whereas

denomlnator repnesen6 the mean square value of the rcspo6e map.

csRM=ffi (3.151

Where, R* , R-6 denotes the maximum and minimum value of response map

rcspectively. R"," denotes the rth n w and cth column element of response map' M*N is the

dimension of response map. We increased the robustness of reliability measure by

considering both i.e., APCE and SCRM in the following nranner.

AP C E ll1 S RMi > T hre slold; T ar g et is t aliable

Where, ApCEt and CSRMT denotes the avemge peak correlation energl and confidence of

squared r€sponse map foriu frame respectively'

3.6 Novel interpretation of difierence of peah corehtion

Occlusion detection is one.of the biggest challenges to obiect tracHng community'

Relenant literatqre is already discussed in chapter number 2. In this section simplest and

novel occlusion detection mechanism is discussed. If the ped< correlation rcsponse value

change+ this means that obiect is losing its actual presentation. This may happen because

of occlusion, motion blur or deformation. Let us suppose PCT and PCT-1 are the peak

correlation values cument and previous frame respectively. computing the difference of

these two peak correlation values gives us insight bout ttre tracling reliability.
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Mathematically it is given by eq. 3.17'

( ir (PCr - PCt-r> o),obiectis getting cortryted'

lif fpc, - pir-, < o),obiect is comming out of degtadaation (3'lA

l. (PCr - PG-t) <Tltteshold'reliable to tack

Although p€ak correlatim is eirtensively uscd in objec't fiac,king algorittms, it is iilerpreted

difrc,ently in this shrdy. If the peak oonrJmion of thc culr€tf frame is tess thnl thc pcak

coneldim of pncviors fiame, thc object is locing its description Mmy frctols are respmsible

for drcline in the nalue of peak correlilion sme of them are occhsim, motim bhn and

deforoation in oQic't of interrest. u/hereas ifthe peak correlatim of successive framcs is highEr

than the prerriors framc this tells rrs that result is reliable and object is miry ot[ of occluion

mddaidngitsmiginald€scription Thisstrateryisircorporatedinthcgrryhicalabatractshorm

inFig.3.5.

3.7 Implementetion details

The corylete flow of the proposed tacking sch@e is p'reseded in Alggith 1' Tb€

conespmding flow chart of the mvel dcetor-estimdc collaborationmo&rle is presented in

Fig.3.4.

This thcsis corytt€d mrttihyo features d fractim of cost using the toe,hiquc pesmted in

t53].Ilistogran ofthc orieded gradi€nt with 3l bins inhistogrnnalong withhistogram oflocal

iileasities (IIoI) with 5 x 6 windorvs using I bins is irplememed- To cder fast illuminatiut

variatim$ HoI is appliod m brigbtness chmnct and transfcmd brighess cfranncl as giveir in

lllgl is impl€mdd.

Contcxtr€gr€ssimmodel Rrr. istrainodusing frrty-sevenchamrels featurcvctm. Whereas

targpt ryGaranc€ regressim model Rto" is trained usi4g HoG fcdlrlcs with 31 number of bins
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mly. Constatr velocity modet of Kalman fift€r is irylementod- Thc garssian k€rnel is trsed in

bothtarget ryearmce regression model and cqrtext-aware regressim model. correlatim in (2)

aod (3) is coryrte6 in the Fourier domain Detc{ion is donc by sliding window scanning fasttion

similar to t36]. SVI\{ classifi€r is trainod o6sid€ri4g very large umber of saryles amrnd thc

estimatod location Saoples having m overlap ratio withthe tary€t mod€t bounding box greater

tlrar 50olo arc given positive labels, whereas saqtes halring m overlry ratio less than 100/o are

assigned negative labels. Regularizatim paramaer in (1) is assumod to be 10-4, seanh window

in frmc is 180/o of the targg objct size width of kcrn€l is set 0.1, teaming rate p is considcr€d

0.01. Fq. scale handting, 2l nmb€r of scales are considerod md a scale factm is considered

1.08. To tum m thc S\Ad-based d€tector md Ikknan fifter-bosed predictm, threshold Tr is

consid€r€d 0.25. Detedon results are cmsidered reliable mly if the threshold Tj > 0.5. The

seondthresholdTsisconsideired0.5.Threstroldfc forupddingoftargdrqressionmodelRsoT

is 0.5. Most of thp prarreters are based m [3], [4], with sligh varidim or no variatim at all.

The proposorl glacking scheme is irylemented in MATI-AB (2019) on irfel wre i7,7th

generdim, 2.BO Gltzprooessor, RAM l6GB, a machinc with 64bit windows 10 operding

systerrt"
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Chapter 4.

Results and Discussion

This chapter fi$t d€scribes the datasa and its attribril€s. D€taild discussion on qualitativc

ard quantitrtine results is alsopresented-

Weevalgateorutrasterqgatitively using; i)Distaooeprwisimrucfiic asperFig.4.l b' Fig.

4.1 c, Fig 42b,Fig4.2 c, Fig. 4.3 b, Fig. 4.3 c andTabte4.3, ii) Ov€dap success ratcmefiic as

ps Fig. 4.6, Fig 4.7 ,Fig.4.8, Fig. 4.9, aod Table 4.4. Processing time coryarison is also given

in Table 4.5. We coryrcd ogr tracker on benchark datasct vidms with long-tenn cor€ldi@

track€r (ISTM) [3], spatiGtqoral coDt€xt leaming (STC)[16], aod r€al time compressive

tra*ins (CT)t14.

4.1 Dotaset

Ogr proposed hacking schmc is e\raluated md compared on rumlrer of selc-tod Yidoos form

benchra* ddas€ts OTB50 [120], OTBI00 [12U, Tcolor-L2g llu2l, aDd UAV-128 11237-

OTB50 oDtains 50 videos, OIBI00 coitafu$ 100 yidms, TlColu cdains 128 colu s€qu€oce'

aodUAV-I28 coffiins 128 vidms, capturedrsingrmamod airvehicle. Eachvidm ha* one or

more objecttracking chall@ggs associdodwithit. Wechoosethevideosbaving sevendtrihfes

namely, i) occltsion ii) scale variatiotr iii) mdim bhr iv) frst motim v) outof-plmc rotation

vi) deformatim and yii) backgound chtter to supptrt and etxalude or proposed trackEr.

E planation of each atlribute is given in Tarble4.2.
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Figrne 4.3 R€sults without predic{or-estimator collaboration a3(a) Sho'ws qualitative

-"tyttt i.e., after the occhuion in frame nrmber 234, LSTM [3] misguides thc I{4oan
fih;-bascd tracLcr. I(alnm filter-based taclrcr starts followiag LSTM t3] ad prcdicting

frlsc position4.3$) Distmce prwision plot for lValking2 s€qucnce using Kalmao filter-

basodtraclrcr t tirg a measureinent ftom LSTM t3l. a3(c) Distancc precision glot for
Walki4g2 scquenceruing LSTM [3] without incorporating Ihlman filt.u-basd traclrcr.
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4.1.1 Attributer of drtrrct

11ris paragrryt orplains tbo attibu€s of each video which also known as ctamging asP@ts

by visual tacking comunity. Six videos shorm in Fig. 4.4 i.e.Ioggi4gl, log}W,Walking2,

Human3, Girl2, skating2 are sclcted from oTB100 dataset. Th€s€ six vidos are also put of

tbe TColor-l2g datas€t. Whereas Fig. 4.5 shows five vidms i.e. Bike3, C84, Car9, Busstdion

and Building3. Out of these five vidos, for videoa ar€ part of UAV-123 Datas€t ud single

vido Busstdion is ftrm the TColm-128 ddaset. Henoe total of six videos ue from OTB100,

sweir vidm scqu€oc€s ftom TColor-l28 and forr vido s€qrrcnces from UAV-123 arcusd to

enalu*e our prcposc AFAIT{-PEC traclrcr. Joggiqgl and Jogging2 s€tltlcoces have occlusio,

deformation and otof-plmc rotatio- Walking2 so$r€nce has ffiibutes of scale \xadation'

occlgsion ud low resolution Girl2 and Human3 vido sequeoce harrc maximum challenges i.e.

5. Challenges associatod with Gid2 vido sequme are nmdy, scale vuidion, occhtsi@,

defrrmatiom, motim blur md out of plane rotation Whcreas Human3 vido contains scale

varidim, occftrsion, defcmdi@, qrtof-plme rotation aDd backgpund clutter. Skding2

seqgeoce has frgr attibutes associ*ed with it i.e, scale variatim, occluim, frst rnotim and of

of the plae rotatim. Bike3 codains fast Dotion, occlusion and outof-Plmc rotation. Cr4 and

Carg has Occlusion md Scale Vriation Bustatim vido sequence has Clutter Backgpund aod

Oocluion- Finally, Building3 vido soquence mtaios orrt of the Plme Rotatio- Therdoe, a

total of scven attibrutes rc associded with thcse sddd elcven vidos. Each anribrfe is

explainerl in Table 4.2.
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First row to- tn" hst row: ioggingt, logging2, girl2, human3, walking2 and sktiag2 vid€o

s€quEnces arc prcseoted respctively.
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seqtrEoccs ar€ pr€s€ntEd respctively.
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4.2 Quendtative andYsis

armr.ltatlvc r€sults in Table 4.3 and Table 4.4 show that oltr traclrer perfum well for long-

temr occlgsimchallenge. FuJogging2 FquGnGe, thcpmPos€dtraclrcr gives distmceprecision

of lgg%*2g-pixcltkesholdandlsTM t3] Eaclrcrgivesthe semd-highestprccisim of$F/o'

Whereas a11 the remaining fiackcm fril tp track thc objct aftcr occlusim. Likervisg m Joqgingl

saqueocc,the proposed sch€me spin achievEs 99olo pecision

On lyalking2 seEreooe the proeoscd tra*ing scheme agdn gives l(X)% distace prccisiql In

oontiast, all thc remaining thce traclrcrs lose the tqgS whenthc girl hthcvidm scqucnce g€ts

occludd with boy at framc nrmb€r 202.

On Girl2 s€rlu€ocg thc propoeod tracking algorithm rga', achieves gpod p€rformaoce with a

dfut@cc prcisiur of 95%and all the other nackers fril to tnach the target objct. On Human3

vido soqgence g|lll. fiacker ouffiums alt tbe remaining thr€e tracke$ by ac,hieving dfutmce

procisim of 99/o.It is also worth m€ntioning tbat hrmm3 vidm comains firrc challenging

dtibutes out of a total of nine dtributes given in [12U.

Skding2 vidoo soqgeace has extra chalenging attrihtrE of fast motim. Though tbc proeosd

tradrcr md all the oth6r trac}ers fril to track the trggt objoct" our hackEr still achievca the

second-higbest distmce precisim aod trqplrs thc targs obict for a greater nrmber of frmes thm

LST\{ t3]. On this sequmcc CT tl4 traclrcr tracls the trgst objet more than any orther traclrer.

Bustdi@3 video sequence scl@ted ftom TColor-l28 dataset codains ssvcrE occluim and

cl6t€ri4& Hence all thetraclrer loees thetargpt very early while the prqosed tacking s*€me

AFAI1{-PEC achievcsthcdi*mccpreisimof lflD/o. OnBikE3 vido eoqumea[thenac}ers
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Figur€ 4.6 Overlry sucsess rde oorrparison of pryposed algorithm (AFAII{-PEC) Yith
l{ffU [3], Black lincs r€prcs€nt the (AFAII{-PEC), while yellow lines re,pescoJ LSTM

tS]. Tdp-posed schernii.e., AFAIVI-PEC clearly or$p€rfqm all the other traclrer on dl
the vidos except skating2

fril to 63ck th6 targg. Thc proposod AFAIU-PEC achieves the higbest prcisim of 38% auxng

all. On Car,4 vidm $xlucrrcc agsin sur prroposod ta*futg schcme achierrcs thc 100% distEcc

precisim orrycrfqming all other trackers. Similarly, on Carg vidm sequ€ooe our proposod

trap&€r aod ISTM t3l both gave the distance fcision of 98o/obut CT [14 ud STC [16] lost

thc targs md garrc the prwision of tess than 25%. Builditrg3 soqueoce is relatively siryler



67

fffi*i1
-t
Effi-;l
e 0.rl-
otUr
5ot;

I

ml-

I
0rf

I

0ri-

0:

'r'1ryry|
-+-ld# -

+---'-::

r-.t!

I

_+ rts

.*-r---*--rih
--r-._: ----.:-::--l-r
-"'-'-":X::''--,-:iI

Ei;'...-}:::i;r:ril.ri'_:$;: .,,tffi
*lo_ Iffit

\-'*',* fr\#"o..- ff\E
crl

[t ll lJ 0+ 05 li 0, lt
0rdrEmsDH

Figrne 4.7 Ova@success rate co,ryarisonofproposd algsith (AFAI\{-PEC) with STC

tf6]. nf".t fine.-repnesd thc (afeU-pnq.while gryT ti"f rtpresent STC [16]' Th€

ffirua u.,L-" i.e., nFaM-pEC clearly ortperfonns all thc other trac&ers on all the videos

except skating2.

without havitrg mrch ctraflcngi4g aspece. So, all the track€rs successfully fiark the trget by

achievi4g l$% distmce p,rocision. Mean distace precisiur is dso given in Table 4.3.

gr1g propos€d AFAIVI-PEC ac;hieves thc highcst m€m distmcc prrecisim of 857q LSTItd [3]

achieves thc sccod high€st mean preisim of 54Yo, STC [15] achieves the thfud higbcst mcan

di$mc€ prccision of 38% while CT [lfl with lwest mEan distance preisim of 26%.

We ftst implerrdod Iklmm fitcr-basod tracking dgorithq as trklman filter is a

measurcm€nt follower algprithr" The oupr$ ofthe I,STM [3] algorithm is given as measrcment
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i.e., AfnU-pfC ortperfums all the othcrtraclers on all the videos except

skating2.

to IGlmm to see the restrlts. Fig 4.1 shows the results for LSTM t3] aod Kalman basd tracking

algodthm. Igtmm filter basod fiacking algprith achieves di*mce prrcisim of almost lm%

but thp LSTM [3] md nost ofthe traditimal algoriths ac,hiwes less ttnn l00o/o. This is beause

when object gets occludo( LSTM t3] itop estimding con€ct position of the objct and when

tbe object comes out of occ\rsion ISTM t3l tracker rldctds thc tagct object as shoYm in Fig.

4.t.

Inosirylementationlfttnmbasadfackeroominuorslypedidsthenen, state ofthetarget

obj6t ev€n during occlgsion which inrcases the distmse precisim. To firther iwestigatc this
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behavior, thcse alguithms have been aprpliod to othEr vid€os md the r€sults are shown in Fig'

4.2alswwiththcdistf,cep,recisimplot.Frmerurmber62,65ard6lobserrlethisbe,bavior.

Fig. 4.3 (Walkin4 vido sequence) rcprEsffi amth€r intErEsting frct that if the neasuement

Oy basetine tradrcr in ou case LSTM t3]) gven to Kalman filtEr is $T ng then Kalma will

prcdict the frlsc stat€ inn€xt frmc as it is a mcasur€m€il follower. Now, srrypce the baseline

uackErcqxinges to givethe wrong mcasur€m€trto Kalman fihcr-basd nacker wen after the

occluion of the targst is orrcr. h that case Iktman filter will be predicting the frlse stat€s aDd

tngetwillbelost.

I

tt

Figrre 4.9. Overlap success rate comparisorl ofthe proposd algorithm (AFAIU-PEC), LSTM

t3[ STC tt6] md CT tt7]. Black tines represent the (AFAII{-PEC), whereas yellow green

,nar"amesreeresentth€LSTM [3], STC [16] andCT [14 rcspectively.
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Figrne 4.10. Peak corrclation score of AFAIvI-PEC and LSTM [3] forjoeging 2 video rrsing

blue and red colurespectively

This pheomenon is clearly represemeA in Fig. 4.3, where affer 234th frame, bascline tracker

misguides the I(alnan filter ud both the algodth starts following wrmg objed. This b&aviu

is ourw.ted by proposing thc algsrithm which work by using th€ oollaboratim of the prcdictm

md estimator. Tabte 4.3 shows the distmce peisim of lffi% orrer this vidco soquencc. To

fifihcr srengthen our argumcnt, Fig 1l ptr€sffi the pd to sidc lobe rdio aod" This figrrrc

dqists that th€ proposod tnacldng algorithn ac.hicrres a higher PSR earlier thm thc ISIItd [3]
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alguifhm. Distarce prreision plot of Joggingl, Jogging2 atld Walking2 soqu€rlccs re girrcn in

Fig. 4.1, Etg.42,and Fig 4.3 respectively, which shows thd thc prqosed tracking sih€me

ouperfrrms thc dh€r thr€e tra*ing dgorithns'

Before qualitative *lyttt, lA us aralyze the ovalry sucoess rate mefiic' Fig' 4'6, Fig 4'7

andFig.4.8 showsthe coryarisonofthcproposorlalgprithwitheachoflsTM [3], STC [16],

md CT tl4. U/hereas Fig 4.9 gives thc coryarison of all fourtracking atg9riths m singleptot.

Table 4.4 sbows the werlry success rde frr varioru video sequmes at thrcshold of 0.5. For

Joggingl vido LSTM t3] aod proposed algdthn gives almost equal success rAe of 97%. CT

tl4 ad STC t16l give a N/od22% success rde as thsy fail to track after occhsion. The

algorithm proposed h this worrt achiwes the succcss rzfis of 99o/o for Jogging2 vido. At th€

smetimgLSTM [3] achier/cs 9Tlowhileothertwoalguiths achieveless tb2tr/o. Similrty,

onalltheotherremainingvido soqueoces AFAIvI-PEC achievcsthehighest srccess ratg details

are given in Table 4.4. The mean ov€rlap success rde is also calculat€d. Thc proposod AFAI\'I-

pEC orfperfrrms the oth€r traclrcrs by achisving mem overlry suoccss ratc of over 75%. I-STM

[3] achievesthememsucccss rdsof Slo/o,STC tl6] achieves tW/o,ardffllflthiarc2W/o.

Table 4.5 shorys tbc frames processed per secmd GPS) timc of all the 4 hackers over deven

selctod vidos. Prcpos€d tracking sch€me AFAI{-PEC shows not much increase in

cogg6atimal coet if oomparod wifh thc increase in trackiag effici€nsy as per Table 4.3 md table

4.4. For exmplg o1r proposod AFAIVI-PEC prccess 27.89 frames per seond whereas LSTM

t3] process 28.30 frames per seond. It is diftrence of erren less 
.tqn 

oltG framc. Similar is thE

case on all thc other vidos. CT tl{ aod STC [1 6] loses thc tuget in most oftbc vidm scqu€noes,

tbat is whytable 5 shows high F?S turcT [17] aod STC [16]'



72

Table 4-l Ndtiondnariables eiplanation

Dcnotefion Symbol Noto

Ertimrtcd po!flEm rnd lcrle r4=(l6fr, S), fr,9r, positionof the object md

Sris estimdod scale

Correlrtion retpome m.P Yt At fl frame

Rcgrcrdon model R* Mthrcspetto cmtert

Rcgrcrrionnodd R,, Modcl of targa

Iletector module Dn SVIvIbasd

Prcdictormodule ha I(almanbasd

Erfrmfied new porldon I' At fl frame

hedtcted rtrte ri StatcbyPy atfl frame

Ertimrtod thtcr x(Dd All possiblc sates by ddector

Eilimrbd.trte x'i Estimdedpossible statel for tn

frame

Rcryonrcmrpvrlue yi Response mry valuc for

estinatcd stat€ i
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TABLE 4-2 Cha[Gnging aspects fc visual object tracking

AtEibute trtmc

Targct is@y m fullyhidebehtudamth€rOccludon

noudingtoxes ratio of initial frame md prescnt

frame is out of rauge ts, ts > I (ts-2).
Scele vrrirtion

notation otrtargg object ort of image planc.Out+f-plrne

rrtrdon

Blurriry oftargpt rcgion dreto motion.Motion blur

Gmrnd tnrthmcim is greaterthm 20 pixcls.Frrtmo6on

Non-rigid objec{ deformation"Ddomrtion

targc objcct baclground having similar color or

todur€ as that of thc targ€t.

fdqfoutrd
dutten
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43 Qualitative analYsir

Fm the qulitative aoalysis, thc rcsults of forr tackers i.e. this p4er (AFAI\{-PEC)' LSTM

[3], STC [16] md CT [125], over eleten vido soqu€occt arc pres€nted in Fig' 4'4 and Fig' 4'5'

The top to bottml rours of Fig. 4.4 oontains loggingl, Iogg4g2,Cil2,Human3, lvalking2 and

Skrinp seqgeoces. Row-wisc analysis is giveir in this paragryh" tr the first row, all the naclrers

snocessfully track thc obi6t 'ntil ftame nrmber 71. While in frame urmber 79,tb pmeosd

algodthm is the only one to tra* thc object exactly while all the oth€rs have a window on the

pole instead of targg obj6t. At franc rumb€r 91, ISTM t3] tracker successfirlly redetocs thc

targct Aftcrthis frme the proposed algprith and LSTM [3] successfrrllytracls thc object till

thc end of vido while the other two algsiths fril to fiack after the occurrcnce of occlusion

Similrly, in thc s6ond row of Fig. 4.4, the proposd alggith successfully trac;ks the objct

md rcd€t@t the object after occlusim, erlier thm a[ thc remaining tlrr€e algoriths. LSTM [3]

shows semd-best beharrior over this scqu@e by tracking thc object successfully till th€ €n4

whereas remaining two algpriths fril to tnack the object when it r€appears after the occhrsion"

Thc only issue with LSTM t3] r€ported fc Joggingl and Jogging2 is the estimdim of the

positim of object during occhsim. In the third row of Fig. 4.4, fur Girl2 video sequencq alt the

tnaclrcm sgccessfirlly tack the object until occurreoce of clufiering. It can be secn in frme

ngmber 98 afterthc ctuttering thd all the traclrcB are succ€ssful intracking; but CT [14 frils to

traclc V/heir the second challenge of associated with this vidm occurs i.e. full occhuion' all the

trackers fail after the reappearance of the trg$ objd except tbe prroposed traclccr. Track€r

prceosed in this pry€r successfully tracks tbe tag€t obic't after occlusim whie,h is visible in

framerumb€r 168. Wenmalltbcfiaclrcrs overthisvidco fur600 frames. The forthrow ofFig.
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a.4 contains th€ imagps frun Humf,3 scrltl€oce' egain s tfuis soquence our prcpcaed dgorithm

shows better restrlts i.e., all the tnackers lose thc objet in the start of sequence, but thc pro'posed

thc fiaclrcrs are testod ov€r 590 fr@cs of this scqucocc'

In the Walki4g2 scllreope, the targA object gCs occhrdorl at tame rumbcr 50 md afterthis

framc, CT tl7] aod ISTM [3] loses the tary€t and starts folowing wong obj6't' STC [16] can

still tack the objec't after occhuion ht fails to hmdle the scale p'roperly' whereas or proposed

sch€me sgccessfully tac,ks the objct keeping the riglt scale. Iast soqueocc shoum in Fig. 4.4 is

Skding2. Although trot any tacker is abte to track the objct over full vidm soquenccr brut our

proposod algcith tracl$ the objec-t over a gr€atcr number of frames thm thp starc of thc an i.e.

LSTM t3]. Ihe proposed algorith tracks thc object until l25th frme and after this it strts

drifting. lVhereas CT tlTl hacks thc objct fur thc rnaximrm nrmber of frames. It can be seen

in frame number 484 that all thc track€rs lose the targ$. FiEt, STC tl6] loses thc targs after this

LSTM t3l th6n our prcpos€d tacker md * the €nd CT tl4 tackcr loses the trgct. Although

ogr proposod traclrer lmes thc target bcfore CT t14 h this vidm sequcnce' htr it has beneft of

performing 663tcr th€n CT [17] on all the othcr vidms whieh contain six challenges as pff table

4.2 orctgding frst mdim. Top to botton rows of Fig. 4.5 contain Bike3, C;aF4, Car9, Busstdion,

aod builditrg3 vidm seqgeoces. Thesc sequences are madc uing UAV. In Bikc3 scrlll€oce trgct

is relativcly small as corrpared to othcr vido s€rtu€nces. In this yidm Dot any tracker is able to

trackthetargct corrwtly biut stillproposerltraclerperformsbemer md tna*thctrget corredly

upto43'dframe.
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Table,l-3 Qrantitativc analysis; distance precision at threshold of 20 pixels over 1l

challengiru vidms selec,ted fiom otb50,0tb100, tcolor-l28, and uav-123

s.

NO.

SEQTIENCE OITR

AT'AI}I.PEC

LST

M [3I

sTc

llq
CT

tlil
I Joggbg I OlBllXl/fColon'l2t o.v,tg 0.967 0.208 0.221

2 Jogging 2 OTBI0/TCOLOR-128 0.E002 0.970 0.172 0.166

t WrtHtrg2 OrIBlO0/TColorl2t o.7n 0./m6 0.442 0.382

4 GIRL2 OTBTOO/TCOII)R.I28 0.940 0.186 0.262 0.188

5 Eumru.l OTBl0lYTColor-lZl oJttS 0.013 0.088 0.050

6 Bursttdon-cel-clr TColor-l2t 0.9t35 0.102 0.099 0.102

8 Crr4 UAV-IZI 
r

0.9t 0.9t 0.61 0.285

9 cARg UAV-123 0.9t7 0.85 0.201 0.2t2

10 BuildlngS UAI'-1Z} 1.000 1.000 .963 0.386

Mern hredrion 0.910 0.340 0.250 0.180
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Table 4-4 Quaditative Analysis; overlap suocess ratc at ltreshold of 0'5 Pixels over I 1

Challenging Vidms selected fiom OTB50, 0rIBl00, tcolor-I28, and uv-123

s.
NO.

Sequcnce Our
Afrm,pec

LSTM [31 src [161 cr I14

1 Joeghg f
0IBll[/taolor-l2t

0.gn 0.970 0.228
Tagslost

0.224
Target lost

2 Jogging2
ottl00/tcolor-12t

1.000 0.973 .185
Target lost

0.175
Target lost

3 Wr[ing2
OItsllXl/Eolorl2t

1.000 0.r()4
Target lost

0.791
fulelsstp

0.436
Targd lost

4 Glrl2 ofrl00/trolor-
l?t

0.w 0.190
Target lost

0.270
Target lost

0.115
Target lost

5 Eumrn3
OIBlI[/tcoloplZl

0Jtt .018
Target lost

0J(n
Taryet lal/

0.055
Target lost

6 Skrting2
ottllXlltcolor-l2t

0.070
target lost

0.019
Target lost

0.090
Target lost

.190
Trrget toct

7 Burrtrtion-cel-clr
blonl2t

1.000 0.113
Taryetlost

0.110 targa
lost

0.108

8 Bike3 urv-lZl 0379
Teryet

loct

0.269
Target lost

0.275 0.069

9 Clr{ UAV-12} 1.000 0.997 0.991 0.2%

l0 Cer9uav-lZl 0.9$i 0.982 0.2t6 0.212

l1 Buildryl UAV-lZt 1.000 1.000 1.000 1.000

Meu succcsarrte 0.t50 0.540 0.387 0.26t
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Table 4-5 Quantitative Anatysis; frdes per secod(fps) of 1l cha[enging videos selwted

fiom OIB50, 0(18100, tcolor-l28, aoduav-lZ]

s. No. Scqucnce 0ur
Afim-oec

LSTM
t3t

src [lq cr IlT

I JogglDg I
0lBlllll/fColor-l2t

27.9t 28.30 34.37
TaryS

lost

24.7'
Targ$

lost

2 Jogging 2
OTB100/TColu-12t

2t5t 22.12 38.23
Target

lost

27.07
Trget

lost

3 wdHrp
OlBllXt/TCotonl28

4.6 26.39 34.68
lhale
issu€

u.a
TargEt

lost

4 Girl2
OTB100/TColopl2t

ls.c2 16.63 12.50
Target

lost

21.%i
Tuget

lost

5 Huntn3
OIBl00/TColu-l2ii

21.lt t8.(B
Targct

lost

131.02
Target

lost

19.93
Trget

lost

6 Sleting2
OTB100/TColor-12t

.t

152t 20.71
Target

lost

58
Targe

lost

27.82
Target

lost

7 Bustrtion_cd-elr
TColopl2t

42.4 54.55
Target

lost

20.67
Targ$

logt

t2.60
Targ6

lost

8 BtkG3
uAv-123

33.14 57.47
Targst

lost

T2.83
TargEt

lost

13.03
Target

lost

9 Crr4
uAv-lzl

13.01 16.75 23.t6 r3.0E
Targct

lost

l0 Crr9
uAv-l2j!

l0.a 12.7t
Scale
issuc

29.23
Targst

lost

r8.18
Trget

lost

l1 Building3
uAv-lzl

t4.&) 16.55 22.89 13.19
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Table 46 Quaotitative analysis; distance precision at threshold of 20 pixels [3]

Trrctrcr mme Dirtrncc precirion rt 20-

pirelr

Overhp tucGels rete rt 507o

thrcilold

LSIM.
Deep[3]

t7.t 79.9

LSTM [3] M.8 tl3

MUSTeTPfl E6.5 78.4

MEEMI27] 83.0 69.6

TGPB[54 74.1 62.2

DSSr[6s] il.9 61.6

csKlr2I 65.6 55.9

Stuck[46] 70.5 62.8

scM[128] 47.5 t7.3

MrLt44l 60.8 52.t

TLD[4s] 56.1 45.7

LSETll2eI 54.5 4.3

In socond row of Fig. 4.5 Mvidm soquencc is shour. Inthis vido ourp,rqosd AFAIU-

pEC and LSTM 13] both track the trry€t successruV till the end of video btr proposed AFAI\{-

pEC ac,hieves bcter orreralt sucess rde which canbc seen in fimmc nrmbqaTl0 274 a,Id6ffi.
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STC tl5] also able to track the tagd til thc @d of vido but CT tl25] fails to track thc objc't

after the occhuion, which is visiblc in framc nrmber 235'

Itr thc third row of Fig. 4.5, all the fiaclrcrs srccessruV track the car till the occurrence of

occlusim in frame mmbcr 42. N occhsion ISTM t3] stnrck while our AFAII{-PEC

sgccessfully tracls the car even when it is oochrded. After thc occtusim STC [16] also fails to

uack correctly as p€r fraoe nrmber 270. \\lhilc proposod AFAII{-PEC od ISTM [3] tack the

objct till the end of video scrlu€oce. Though visra[y it seems that both the tracker8 have similar

pertrmancebrut asperquantitative analysis oTAFAIvI-PEC gives betterdistmceprwisimmd

overlry sgeess rate. In s€cotrd last row ofFig. 4.5 AFAIU-PEC ortperforms all th€ othcr tackers

by sgccessfully ha*ing the trgg after occlwim in fiame nrmber 51. All the rcmaining thrce

traslers fril to 6ack thc object after occlusion in this vido soqusrce. Last row of Fig. 4.5 shows

thcbuilding3 soquqroe. Allthe trackers srccessmytnckthetargebecauseof simplicityofthe

vid€o. Table4.TgivesthccmparisonofproposedmodifidKcT'atgsithwithspatio-tqotal

oontcxt leaming [16], state of the ffi rninimunr outptt sum of squared crmr [4], motion awarc

corr€lation filta [118], scale adaptive kernel corclation filt€r [15]. It is clear from the mem

precision that proposed algorith sbows promising result orrer selc'ted clallcngi4g vidcos.

Table 4.6 gives thc @mprism of base pryer [3] with deven state of the art tracker. It is

shownthgt adrytive corrElatiorr filtrr with short t€rm ud lmg-term m€mory gives the higb€st

di*mce prwisim when deep features are being usort Ulhereas without deep feafiues this

tracldng sch€m€ gives the socond highest preision In our study we are using hand cllaftd

featw€s instead of doep femres. Our proposad fia*€r p€rfrrms frvorable on chalengiAg

scqu€nccs as per table 4.4 md tablc 4.3.
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Table 4-7 Quantitative anatysis; distane pracisim at threshold of 20 pixels over 7

e,ballenging tidos selectcd from OTB50

Sequence Proporcd src MOSSE MACF SAI}IF

Blumt' 1.000 0.90 0.n5 1.000 0291

Blurhcc 1.000 0.629 0.998 1.000 1.000

Cerl 1.000 0.275 0.250 1.000 1.000

Crdrrk 1.000 1.000 r.000 1.000 1.000

Rcdtcu 1.000 0.798 1.000 1.000 1.000

Trelltr 1.000 0.738 0.r7E 1.000 1.000

rrYrlHng 1.000 1.000 1.000 1.000 1.000

Meon 1.000 0.770 0.670 1.000 0.898
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4.4 SummarY

This cnapter prcs€oted thc resuls of experiments performerl to evaluate thc performance

of the proposed studY.

Sc.tion.4.1 dcscribcdthe datas€tusedo evaluatetheperformance. OIB 50 andUAV 123,

two data sets have been gsed. Sec. a.2 p,rcsercerl thc quautitatine results with the help of Table

4.3, Table 4.4, Table 4.5, and Table 4.7. Grryhs were also prcs€nt€d in Fig. 4.2,Eig.4.l,Fig,

4.6, Fig. 4.7,Fig.4.g, Fig. 4 9 ad Fig. 4.l0.sec. 4.3 described the qualitative results using

Fig.4.1, Fig. 4.2,Fig. 4.3, Fig. 4.4, and Fig. 4. 5.

It is showa that proposed tnacldng scheme achisved zuperior performaoce in terms of

distarcc procision and overlry thr€shold. Correlation filtcr-basd tracking method with

incorporatlon of prediction-estimtion collaboration module do not incrcase considerable

computatiq6t ost. This is v€rified with the hclp of frames per second comParisoll

Chaptcr 5 concludcs the study with futtre recommendations'
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Chapter 5.

Conclusion and tr'uhrre Work

This chapter draws a cmclusim based on experimemal results. In the €oG future r€search

rcomncodations, possibilities, and gaps are discussod'

5.1 Conclusion

Inthis study, an adaptive conelatim filttr-basod tracking frilure avoidance mechanism is

presdcd. A k€rnelized oorrelation filter is used as basclinc taclrcr. Failure avoidancc

mectranisur is proposod md int€grated with K€rnclizd correl*ion filter. In our proposed

scheme we fust address theocclusionddectionproblemby soughingtrroparam€tErs fromthe

rcsponse mq i.e., i) pcak to side lobe ratio ii) pe* correlation value. These two param€t€rs

work together to dptect thc occlusion Seond, we incorporated I(alnan filter-based predictor

ad SVI1{ based estfunator to kernclized curel*ion filter. Thfud, we proposod collahration

module betweenpredictor and estimatorto avoidthe tnacking frilure' We choose videos ftom

the standard three datasets (OIBI00, TColor-I28, and UAV-123) having six chalt€nging

at6ibgtes to perform the orperiments. With the help of experiments, we show that proposed

workperformslgftfsragainst trackingalgmithsinterrrsofdiSanceprecision

md overlry thrcshold. Furthermqe, thc difference of peak correlation nalue between two

consecutive frame is int€rprctd differently to detect the occlusion and normal scenario in a

yidm. This iderprctationis appliedto ststeof-th€-art algorithmKsrclizd correlationfilter,

which shows prcmising results.
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5.2 X'uhrre recommendations

Follouring arE some future rrcommend*ions and research directims for visual objec{

trackingsysterrwhichcouldhclptoimprrovethcperformanceandrobrrstnessofsystem

fifih€r.

As predictor is contingously prarlicting the location of the objec't whether the objet is

ptr€s€nt in the frarnc or not. Efficicncy of thc traclrcr may bc firthcr eIrftam'€d by

dflising oiterim to stop prediction if the object is oU of vi€ry/ occluded fs sme

sp*ifiedtime

In the proposed visual objd tra*ing syst€m, onc can exploit nmlinear pediction

schemes to Fcdict the object's state. As movement of objed in a vidoo may or may

not be linear, nonlinear predictor would help to increase the e'fficiency of the

algorithm. Forr examptg other nonlinear modcls of Kalman filter may be orplorod to

pedict the nmlinear movem@ of objc{.

Hybridizationof lineu andnonlinearpredictorsmay alsobe agoodchoiceto increase

the performance of visual tra*i4g algorith without sigDificmt increase in

computational cost.

Features firsion tehniques may be ued to model the target objec't more preisely,

which will wentually hclp in increasi4g thc performance of proposed algo.ithm.

Finally, hybridizdion of doep features with hardsafted features rnay bc a gmd

candidat€ for fiture rescarch.
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