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ABSTRACT

Different Radars technologies has been developed with each having their own advantage. Like

Phased array radars are used to circumvent the limiation due to the mechanical radars. Using beam

steering it has the additional advantage of anay gain. However, it cannot remove range base

interfercnces as well as clutters. Frequency diverse array (FDA) radars have been proposed not for

a long time ago. It creates beam pattern which is range dependent. Similarly, Multiple Input

Multiple Output (MMO) radars have also been recently inhoduced where waveform diversity is

exploircd, and additional advantages have been achieved. However, the primary task is estimation

of thc parameters. In term of radars range and angle of a targct is the utmost important parameter

to be estimated.

The estimation of the parameter depends upon the number of samples as well as noise level. In

this dissertation we exploit the application of compessive sensing technique for MIMO FDA

radars. We cstablish a metlrod to cast the problem of parametcr estimation into compressive

sensing frarnework. First the angle estimation using compressive sensing is studied. The grid

mismatch problem is also addressed. An optimization method is developed for finding the optimal

grid resolution forthe estimation ofthe sourre angle. Different array configurations are considered

for one dimension as well as twodimension estimation. Compressive sensing using single and

multiple snap shot is also considercd. A prcprocessing stage is considercd to make the algorithm

robust against Gaussian as well as Impulsive noise.

The technique developed is used in MMO FDA radar for the estimation of the range and angle.

Since range and angle information is coupled in MIMO FDA radar, double pulse method is

considened to decouple them. Sub array structure is used in receive domain. Using compressive

sensing the range and angle information is extracted.
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CHAPTER 1

INTRODUCTION

The parameter estimation of the taryet consists of several parameterc. However, detection and

localization of the target is important and in certain applications it is of very high importance.

Which is about estimation of the direction of the target known as direction of arrival estimation

and estimation of the range of the target. Direction of arrival (DOA) estimation is an important

parameter which is to be estimated in number of applications. It has applications in a numbcr field.

Where the aim is to accurately estimate the location of flre sources. The problem of parameter

estimation is dependent upon number of factors like the number of the sensom, the spacing

between the sensols and the noise levels. The parameter estimation which includes range as well

as direction of arrival ofthe source has a great importance in radars. It has application in different

type of radars. Like phase array radar, MIMO radars. FDA radars etc. However, the daa required

for prccessing the direction of arrival is huge which requires a lot of ptocessing power and

memory. Compressive sensing is a technique wherp the data can be prccessed without satisfying

the Nyquist criteria. Therefore, compressive sensing can be applied for parameter estimation for

different radar types and array stnrcture. Effect of different noise type on parameter estimation is

considered and method to mitigatc in compressive sensing is also considered.

1.1 Background

The mnge and angle of the source ar€ an imporhnt parameter to be estimated. The aim in (DOA)

probleur is b accurately estimaE the location of the sources and range also. Howweq the estimation

of the soruce location and the range is teaEd separately [t-3]. There are nrmber of algorithms that

I



calr bc rsed for the estimation of the location of fte sources [zl-8]. Most ued algorithms for source

localization are "genealized cross corelation" (GCC), "minimum variance disbrtion less rcsponsd'

GvfVDR) and zubspace Echnique like *Multiple signal classificatiod' MUSIC) algorithn,

"estimation of signal parameter via a rctational vadant technique" (ESPIRID. Howwer, these

algorithms r€quir€ that the sampling to be at Nlquist rate. CIherwisg the performance of the

algpritms degndes. Also, the noise has an iryortant role in estimation of paramaers. The effort

are made to malrc the estimationalgorithm as muchrobrustpossible.

Beamforming methods are also used for the estimation of the location of the sourEes. Howwer, it

relies on fte prior knowledgg of thc anhna pattern and depemds upon the sampling at Nyquist rate

and signal to noise natio (SNR). In practical sce,narios, it is possible that the aot€Nrna elements may

malfimction, and this may lead to sparse ant€Dna arrays. The ffiormance of the algorithms

mentioned above degrades using sparse antenna arays.

Sparse antcnna arfrays can have also certain advantrges. Usiry sparse antenna, larger aperhre can be

achierred [9]. Ditrerent techiques are used for designing spa$e anterma anay, some of tlre,m are

using nrmerical methods. Similarly, sparse antenna array can be designed utilizing coprime

antemna elemenE [4]. Howwer, if the sparse anay is random then there is not much contol on the

desip due to the randomness. That is not desirable in operational scenarios. In certain cases, it is

impossible to rtpair the antenna elements. Therefore, an alternative method is required to

reconstnrct the antenna patt€rn.

Compressive sensing (CS) techniques can be rsed for parameter estimation I l0]. The CS techniquc

is used for solving an underdetermined system rnd has gained lot popularity over the years and

plenty of research has beeir done in this field. This exploits the sparsity of the system. It has

application in several fields. According to the CS frameworh if a simal is sparse in a certain

domain, the'n it can be reconstnrcted usiqg only a small number of measureinents which are linear.



As most of the real time signals arc sparse therefore the signal may be reconstnrcted usmg a linear

equation with a smallq number of samples. In CS, we try b fiDd the spane vector that can be

viewed as solving the inverse problem. In source localization problem the soutces, can be spame

in the spatial donain, that they are not present at wery anglg hence duc to the sparsity of source in

spatial domain the concept of comp,ressive sensing can be applied. Superresolution can be achieved

Using CS hchiques for estirnation of fte sources. Which means tbat sources closer than Rayleigh

resolution in the prese,oce ofnoise can be resolved. Genemally, soulpe localization can be done uing

single or multiple measuements.

It is important b mention that noise plays ao important role in estimation techniEres. Generally, tbe

distrib,ution of noise is considered Garssian. Howwer, ftp si$al can be comrpted with impulses in

the time domain duc b ahosphmic noise or faulty receiver. The impulsive noise does not follow

Garssimdistribution. Forbetterresult itis roquiredthatthe algorithm b berohrstagainstdifferent

noise distibution.

Radar is an active field of strdy. Several radar technologies have been dweloped like phased array

radar (PAR), Multiple rryut multiple ouQut (MMO) radars and frequency diverse array (FDA)

radar. These rcchnologies have replaced the conveirtional mechanical system. One of such

tochnology is FDA radar, which is based on the principle of impleure,nting a small frequency

increment acrcss the anay elemenE which is very small. This creates a pattern which is joint in

range and angle. This technique can rcmove range dependent interfsences to improve SNR. The

beanrpattern of the mentioned radar is poiodic in time as well as range. This has an effect on the

localization parameter. Similarly, MIMO radar have been combined with FDA radar calld

*MMO-FDA" mdar. This can effetively locate trrgets in both which is range and angle

dime,nsions.
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Direction of arrival estimation is done in MIMO FDA radars. CS techniques are applied for thc

DOA estimation aswell asrange estirnationruing doubleprlsemetlrod and also theeffectofnoise

is considered. SimilarlS subanay stnrcture is considered for more robustness and double pulse

methodusing compressive sensing is applied.

1.2 Reseanch Problem

Parameter estimation using compressive se,nsing is an interesting field of study especially DOA

estimation and mnge estimation. Howwer, parameter estirnation uing compressive sensing

depends upon the resolution of the grid defmd. It may happen strch that fte rpsolution of the

sollnces does not coincides with the grid resolution. This leads to grid mismarch problem or off

gnd trrgets. A grld refineurent sche,me is devel@ to solve the proble,m. Similarly, a

preprocessing stage is required b make the parameter estimation algorithm morp robrut against

impulsive noise as well as Gaussian noise. To solve sparse solution r, regression is considered. The

p,roblem is formulat€d for single time saryle as well as multiple time samples. To select the

regularization term Ge,neralized cross validatioa (GCV) method is usod. DOA estirnation problem

fordifferent anay sEucttre is considerod like uoiform linear sparse antenna array, L shaped spame

aot€nna array. Similarly, parameter estimation for MMO FDA radar is done using compressive

sensing. Application of compressed sensing for sub array antenna array is considered and aprplied

to MIMO FDA radar also. Since the range and angle information is coupled in MIMO FDA radar.

Double Pulse technique is usod to decouple them.

1.3 Contribution

Here we apply compressive sensing framework for parameter estimation for MIMO FDA radar.

The main challenge for the application of the compressive senslng is to define the grid resolution

for the dictionary. To remove grid, misrnabh a scheine is develo,ped for the selection of the grid



resolution for the dictionary. Similarly, the effect of impulsive noise as well as garusian noise is

; studied on the paramcttr estimation and a prrprocessing stage is suggestod for multi sample

compressive sensing to make the detection more robust. The main contibution of the dissertation

is as follows.

o I novel frameryork DOA estirnation problm wing CS techniqug t*ing into consideiation

off grid targets or grid mismarch.

o A neur fitness function is calculato4 which is based on the ditrerence of source eneqgy that

is formed betweeir adjacent grids due to grld misrnatrh in DOA estimation

o An approach for finding thc best discretization value using the designed objective firnction

is prese,ntod for iteiative grid refinerreirt.

o lhe prcposd scheine is viably testod for multiple lnuces with differcnt €ncrgy and spatial

resolution-based scenarios in DOA estimation.

i 
o A new multi sample compressive sensing techniEre, is considered forsource estimationusing

spars€ ante,nna with geometry in t l,lq. and L shaped anay.

o I prcprccessi4g stage based on MIICO and weighrcd moving average filt€r is intnoduced to

make mA estimationmore robust against impulsive and Gaussiannoises.

o The iteiative grid refinemurt in CS is achiwed through fomrulation of a fitness fimction.

o The proposed CS technique rEmoves the anrbiguity about the location of the souces due to

grid mismarch and provides a discretization value.

o The simulation resuls veriS the proposd method for sce,narios of lD/2D DOA estimation.

o Sub array sEfircture for the receive side of MIMO FDA radar is suggested

o Compressive sensing model usi4g double pulse method for MIMO FDA radar is designed.

o Angle and range is estirnated using compressive sensing technique forMIMO FDA radar.



1.4 Organization

This dissertation is divided in to five chapters. The first chapter includes the introduction. The

research prroblem and the main conribution of the dissertation. The socond chapter includes

nccessary bpics for rmdsstanding the research work. lVe intoduce the direction of arival

schemes for source localizatio,n. The popular schemes like MUSIC, ML techniEre and

beamformi4g technique is introduced. Their the idea of compressive sensing in the presence of the

pruvious resear,h is presented. The history of radar and modenrization in the radar is also

intoduced in this chaptcr. The idea of PAR and FDA radar is also intoduced here. Next in chapter

three the source localization using comp,ressive seirsing is intoduced. A source localization rnodel

using compressive sensing is dwelopod for linear anay. An optimization rcchnique for grid

refinerrentmethod is also dweloped. Inchapter fourthe idea dweloped in theprevious chapterin

trilorod forsparse linearas well as sparse L shapedanternna anay fordirectionofarrival estimation

in two dimensions. A sysEm is dweloped for multi sample. The effect of differrent noise is also

considerod, and a method ofpreprocessing is inhoduced to remove Gaussian as well as impulsive

noise. Finally in chapter 5 the technique dweloped in the prwious chapter is applied to M114O

FDA radar having sub anay stnrcture in the receive domain. The coryressive se,nsing technique

uiag double pulse method is intoduced. That decouple angte and rmge information,



CHAPTER2

LITERATIIRE REVIEW

We introduce a brief rwiew of the necessary topics before discussion of the main contribrutions.

In this section we intnoduce different methods for source localization methods. In source

localization we estimate fte diroction of the incoming sourpes. Each method hss its advantage and

disadvantrge. In general, the algorithms for the estimation of the souce localization d€p€nds upon

the ngmber of the sounses, ante,nna elemeirB and noise lwel. [ater, wc discuss the compressive

sensing Echniques. How the technique work with a smaller mrrrber of samples. SimilarlS how

to cast the parameter estimation proble,m into compressive semsing framewo*. The methods

available to solve sparse solutions. The type of the antenrD arrays also effects the estimation. In

the end the section, we discuss differreirt tlpes of radars and their operation.

2.1 Direction ofArrival Schemes

The DOA estirnation has a wide aplicatioo. It is used in applications like radars, sonars, medical

imagng and wireless comrlmication. The aim is to estimate of the sourtes fiom the signal

received by an antenna array or other sensor array. The stnrcture ofthe sensof array can be linear

or diffcreirt like oon uniform, cfucular, L shaped or rectangular. The sensor array is used for high

sienal gain and flexibility in term of beam shape and interference rejection. Hence sensor array is

used for DOA estimation and other parameter estimation like range. We can say that for DOA



estimation scnsor anay is required. Thc anay can comprise of different structure. Using sqtsor

anayhave c€rtain benefits likc improve,ment in signal to noise ratio (SNR), beam steering.

Before discussion on conventional souroe localization metho4 wc consider the signal modcl. The

same signal model will bc used in thc rest of thc dissertation for rmiform linear anay. For

simplificationwe considera ULA withthe spacingbetweeir the antcma elemeirts to be constant

A rmiform lincar anay (LJI-A) as shoum in the Fig. l, with^l\rnumber of antma elements. The

inter ele,meirt spacing betweeir the antenoa respectivc, ele,rreirE isL D. kt us assume that therc

are P numbcr sorlrces at differeirt mgles, 0t We consider far ficld. The received signal at some

zfr numbenanteirna elcment is as

t .G) = ! s, {t)e'('-r)tdruc'

where si in the above equation is the amplitudc of the si$al that is received. k frd d, are wave

numbq and disance betweeir the antenna elemmb. Then, Equation (1) can be uritteir as

(l)

8



I=Ar

The above equation is without noise. with noisg the received signel is given as

I=Ar+n

where r is the Gaussirn noise,l is considerod to be the steering matrix aod y fte received vector.

Some of the methods for source localization arc mentionod below.

2.1.1 Beamforming Technique

Beamformiag is oue of the methods for estimati4g the direction of arrival I l-13]. Thc classical

beamforming method also known as sum and delay beamforming metbod operates by steering the

main beam in the angle domain. If the rctum signal ftrom the soucel is above certain threshold

lwel, then the location of thc source is at that angle. The beam is steered using phase shifters.

Where the phase arnong thc adjace,nt antenna ele,menE is changed such that the beam is steered in

the direction using phase shifters. lrt us consider a rmiform linear array. Tlre beamforming

netrrork consist ofphase shifter for each aot€nna elernent as shown in figure below.

Sensors Weights

Fig2.2 : Beamforming network

I

(2)

(3)



To create a beam in the brcadsidc the phase difference betrreen the antenna element is zero. To

sttift the beam to a specific direction the,n a progressive phase shift is addd amo4g the antenna

elemeirts. In localization the maximtrrr power is achiwed by steeriag the beam bward the sources.

A conventional beamforming method is shorm in figrre 2.2. Also known as delay aod sum beam

forming method. It consisE ofphase shifter. The phase due to path delay is compensated ruing the

phase shift€rs. Consid€r a M se,nsors anray, with a uniform spacing. We consider a signal r(t)

which is frr field with an angle. The signal roceived by the I/d s€nsolt

x(t) = [r(t - r,),r(t - tr),....,.,r(t - t 
")l

Where rr,r ilrs the time delay due to the path difference for each gignal received by the antenna

anay. Foruniform linear anay the delay is grvm as

t = (d cos0,l I c

If [w,,wz,""" rrl are fte weights thc outputy(t) generated by the linear combination of

received signal aod p canbe re,preseirted as

y(t) = r nr(t)

The output power of the beamformfury is given as

P(y)= o,'= E{lrl'} = r'R,,

Where w* (o) = a(0) , a(o ) is the steering vector of the main beam.

2.1.2 Maximum Likelihood Method

Maximum Likelihood (ML) is another method for estimating the dirwtion of arrival U6,17]. In

this method we try to maximize the likelihood that the signal is comi4g frrom a particular direction.

(4)

(s)

(6)

(7)

l0



We consider 1[6 signal model that is prwiously statcd for uniform linear anay. The likelihood

firnction of the different snap shot of the received signal , is y(t, ),11t, ),"' "' ,./(lr,) is given as

N,

, = y1+.exp(- 4' r,r, - Ar(r) lt)
l.l rdct[o'I,] o-

thereforethe fimction is givmas

.x,
lntr = -iv, tar - u/v, tno' - *t lvtrl- Ar(r)1'!

o"l

*= -n-1,' *li F,,,- rr(r)lOOOOrrr

Which canbe represented as

.x,2
o'=- ^ >lvtrl-lr(r)l

l,I N , n-r'

Next t bing derivative with respect to x(r) and keeping the other constant

Olnl 2 -
;= -A [v(r)- Ar(r)l
dx(tl o'

(8)

(e)

Whereas o2 , x(tl and e in r arre the unlmowrr parameters. Taldng dsivative with respect to c'

aod keeping the other constant the above equation can be expressed as

(10)

(t l)

Which canbe simplified into

r(r) = (A'A)'' l'y(r)

Finally by substituting the equations

(t2)

ll

-

(r3)



t., 2

min,{j l[r" - A(A'A)'rA']vr,ll
(14)

2.1.3 MUSIC

h the subspace method for the direction of arrival thc MUSIC algorithm is one of the most

prominent methods [8]. This algerithm is basd upon the eigen dcomposition of the covariance

matix. lrt us consider the signal model presented in figure 2.3.The output correlation matrix

frrom the sensor array is give,n as

R, = E[tr"]

R, = E[tl.*N)(Ar*x1"1

R, = AR.,rAr l Rrr
(15)

Wherc R,,, = Elrl'I is the correlation matrix of tre signal and R nn is corrclation matrix of the

noise. The covariaoce matix canbe represe,nted as

., = +*t y(,)y'(,) (16)

Then we apply decomposition on the covariance mafix. The eigen values and the eigern vctors

correspondiqg the covariance matix x, consist of both fts signal and the noise. The eigen values

of R, are sorted according to the size. The signal covariance matrix R, bave rank M, which are

orthogonal to M steering vector. Therefor€

Rr{.'ASAf, = 0

ll,lrl "0. = ,
A"q. - o

lF

t2

(17)



The plot of the pseudo spectnrm is give,n as

D-
' Y.rrc -

(18)

r" (o)Q.Q,Ee(o;

The MUSIC exhibiB sharp pealc at the sotrrce position.

Despite the resolution, MUSIC have a high scnsitiviE/ to model emo$.

-40 -20 0 20 10 60 80

angle

Fig 2.3: MUSIC algorithm

2.2 COMPRESSII{E SENSING

In this section we will look in to the conc€,pt of compressive sensing. Compressive sensiqg is a

method of solving an underdetermined system [9-2U. As it can be applied to a number of fields

like mathematics, comput€r scieoce and communication where we try to solve anrmderdeterrrined

matix. It does not follow the raditional sampliag theory that is celebrated Nyquist theorem.

l3
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The celebrated Nyquist theorcm have is usod in a number of applications. Where data can be

exactly recoverod firom a set of uniformly samples 122,231. Accoding to the Nlquist thoorw, "a

signal can be reconstnrcted if saryliag frogency to be twice the highest frequency present in the

signd of inteiresf'.

TheFourierhansform iofafurction Tiscompactlysrryportodinf , rt.Tlrenthcfirnctioncan
L-;';l

be rmonstucted tom measuments 
{rr]l]].,.,lrl,

' 2*n Bt
f Ul= L.lt;)sin(-- rn)

. [sin(.r)yr*olsrncr= { r I

[r if x=o)

(1e)

s

Utilizing the Nryuist sampling thorem, thc signal processing can be done in the digital domain.

Howwe4 it poses certain challemges. As the higfiest freque, cy compone,nt increases so thc

r€quir€m€Nt of the sampling frrequeircy. It may happeir so that sampling ftequcncy at such 6 high

rate maynotbe realizable pactically. In many applicationq the Nlquist rate is too high. Which is

too cosfly. psl this, we often depeird on comp,ression.

The aim of the compressive s€,nsitrg is to roconstnrct the signal with fewer measuremens. We take

in to considqation that the sipal is sparse so,me domain Mmy Signals such as real-world signals

ar€ spa$e in some domain Sparse signals have a lowerdimensionality, they can be represmted by

few linearmeasurements. An optirnal rtcovery, the algorithm recovem all sparse signals (with good

probability).

2.2.1 Problem Fonnulation

The CS framework can be explained using figue 2.41241. Some discrete signal r of length N, is

spame ifsome its coefficient arenonz€roundersome hansformation Tlre,nthe informationcontent
b
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of^r is K dimcnsions. Th€rcforc, for signal acquisitioo, K times. Which can be ac;hiwed by maldng

some random, linear obsenrations f Ax where .rl is an MxN nwnrenent nntrix. This is also

knovmas dictionary. IfI satisfies incohaencythenr canberecovered. Forpractical applications,

the condition of sparsity

Mx1
'Mircd'(nndoml

-r measurements N>>M
Measurement matrix NxlEl

Signal of interest

Fig 2.4: Recovery of compresscd signal

The compressed sensing approach rccovers the sparse signal x ftom y by finding the solution to

the following proble,m 125-2T.

minimize ldr suQiectto rFAx

2.3 RADAR

In this scction we bricfly discuss the concept of RADAR. We start with a brief introductory history

of radar and some important d€tails and their we discuss thc latest rescarch oa PA& FDA radar

aod MIMO radar. Shrdy on radar lilrc Phasd MIMO radar and MMO-FDA radar has beeir
\- 

discussed.

v

L
.N MF

Nonzedr-Entries

Q0)
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2.3.1 History of RADAR

Radar stards for"Mdio Detection And Ranging". History of Radar extended daEd to 1886, when

Heinrich Hertr dernonsnated that the radio waves can be reflected by a metrllic object [U. In

1903, Hiilureyersuccessfullyperformedanexpaiment fordetection ofshipsusingreflectedradio

waves at a range ofjust over one mile. In next ttuee decades, airc,raft detection at a distance of 50

miles was achiwed in 1932. This was followod by a patent on aircrafts detection in 1934 awarded

to Taylor, Young, and Hyland [28-31].

In an anticipation of World War II, all couuties especially Britain worked for developnent of

radars that could detect from large distances. A pulsed radar with full capability of detection and

ranging was presentod by Robert Watson-Watt in 1935 [28]. Building on it they developed an

Afucraft-Irtcrception (AI) radar in 1939, for the detection and interception of hostile aircraft. The

syst€m was mormted on an aircraft and had the capability to detect ships from air [3U.

Earlier RADAR's had huge mechanical stnrctres involving a lot of mechanical movenreirt for

detecting an airqaft. f,lue b mechanical system givc rise to certain noises and limitation degrading

the SNR Therefore, a great urge was there to delrelop a radar syste,m with the capability of

elechonic steering instcad of mechanical steering. Dedicated research to produce a radar syst€Nn

with electonic steering resulted in dwelopmeirt of most popular radar syst€m in 1960 by the name

of phased anay radar (PAR) 132-341. Antenna arrays using elechonic beam steering techiques

were explored and employed in military and civilian radars in the late 1970s. e.g., the PAVE

PAWS radar [35]. This was followed by multimode p,rogrammable radar in l9E0's and air borne

electonically scanned antenna radar in 1990's [36]. Although the radar technology was basically

flourished by military, sweral civilian applications also be,nefited from the technology. Most

significant of these civilian applications includ€ air haffic contnol (ATC) and marine navigation

l6



saf*y. TELEFT NKEN dcvelopcd the first ATC in 1955. This ATC radar re,mained in use uodcr

the name Grcund Radar Systcm (CRS) bctwem 1955-1957.

IIg 2.5: Early RADAR systems
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trIg 2.6: phasd anay Radar syst€m

2.3.2 Classifrcation of Radars

Radar systems can bc classified in t€rms of antenna tlpcs, &uation of signal, number of ante,nnas

usod for transmission. On thc basis of th€ distance betwceir transmitFr and receiver it can be

classified [34]. In mono-static ndar, the transmitter and receiver antemna clemcnts are closely

placed and only ono ant€rura element performs both transmitting and r€cciving tasks by time

. Bistatic system, on the other hand, uses one transmitEr and onc receiver ant€Doa

that are separatod by a significant distance. Multi-static radar uses two or more tranmittiqg or

r€ceiving ant€Dnas with large distance bctrrccn the antemas [37] .

In t€rms sf signal duratiom, a radar system id classified into contimrous waveform (ClV) radar or

pulsc radar. CW radar tranmits a srcady frequocy is tansmitrcd and processes the received signal

for Doppler shift in the received frroque,ncy. These radars, also called Doppler radars, have the

inability b measure the range of targeq howwer, applying a linear froquemcy modulation (LFIU)

It



to CW radar allows trs to measure mnge as well as speod of target. Pulse radar on the other hand

fansmit a hain of RF pulses with a low duty cycle. Direction of the targ€t can be acquired ftom

the angle of arrival and range can be measured frrom propagation time ofthe reflected signal. These

radars, also known as pulse-D,oppler radars, can also estimate the speed of target by using lhppler

frequency [32].

In t€rms of ntrmber of antennas, radan can bc categorized 5s singlerantelma and multiple-antenna

radar. For singleantenna based mdar, a dirwtional anHma is rotatod on a mochanicd ped€stal to

scan thc whole region of interest Multiple ant€mas radar uses an anay of antenna to steer a beam

towards target, as inPAR aodFDA radar. Moreover, the electnonic beam steering also eliminates

the rcd of mechanical steering.

Finally, array radars use three different kinds ofbasic array strucfir€s. First is linear anay in which

antmoas are placed closc b each other in a staight line. h case of equal distance betwee,lr

antennas, it is calld Uniform Linear array (ULA) [3E]. Second array stnrcture is planar anay,

which anangps the antenna elemeirB as a grid of aute,nna in two dimensions [39]. Ttird type of

anay stnrcturc is circular anay, in which antenna eleme,nts are placed in a circle [40].

2.4 X'DA Radar

FDA stands for frrequency diverse Anay. InitiallS FDA was investigated by Anto,nik [41]!t41. The

are diffenent th€n Phasd array radar. PAR have certain disadvantage also which is its inability to

scan in range dimension. Beam steering in range dimension can be very usefirl in localizing a

target in range dimension as well as rejecting the range depe,ndent clutter. this inability of PAR in

mnge dimemsion. In FDA radsr a small frequency increment a/ at each element. This creates a

beam pattern which is range dependent. This FDA radars have the ability to scan both in angle

L
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and range. FDA radar can be used for multiple mission simultanously by utilizing ttrc additional

degree of freedom.

FDAradars work on the principle of small frequency incrcment therpfore therp is no requirement

ofthe phase shifter as in PAR. Since FDA scans without phase shiftcrs, the radiation characteristics

of FDAhas been simulated in [451. The FDAexhibitperiodicity in time, angle, and distance. This

is exploitcd in [46].

Another important research area synthetic aperture radar (SAR) [47], [4t].It has been shown thd

application of FDA to SAR has improved the high-resolution imaging. In addition to uniform linear

array, FDA has also been investigated for planar ara),s [a9] and circular arrays [50]. Receiver

architectures for different tlpes of FDA arrays have been proposed in [51].

2.4.1 Signal Model

In this setion we present the signal model for FDA. Irt ru consider a ULA as shown in thc figure

2.1 given below. /., is the cennal operating frequency. As mentioned earlier small frequency

incrc,ment is a, . As shoum in the figure each ele,ment has a incremeirt of al . Thru the frrequency

at the ph antenna eleme,nt is given as

fo= fo+ p.Lf

Wherre p= 0,1,2.... (p-l). The signal hansmittd is given as

s, (t) = exp(- i2r f otl

The array factor for the FDA radar can be given as

(21)

(22)

A F (t,Af, r,o, = i,-i.., 
{- 

rr.jt,, t)l
20

(23)



t

f, "6+,lf fi +ar/ fi+(P -1)4f

Fig 2.7 z Frequency diverse array

In the above equation r, is the range of the target ftrom the pth ele,rrent ard, 7 
n is the wavelength

of the antenna ele,meirt. Assuming a taryet in space thc beampattern with rmiform weight can be

given as

Using the far field assumption i.e r. * ro and /o n Af .The,n the beam pattem can be writte,lr as

l,-'
B,o,(t,Lr,r.r,= 

lt:Iexp 
{-rr*rr,* pattl' }. ry)}l

B,o,(t, Lt, r,r, .l@J;i' r'nt- rrrr ll

Where I = -2r fo(t - Ll and 4 = 
(, 
,nor, * 2r fod sino 

-2rafr\c ( c c)

(24)

(25)

2t



The bcampattenr can be simplified as

we can see that the beam pattern of the FDA radar is a function oftime, range and frequency offset.

Fixing any parameter the beampattern will be function of the other two. Since we arc interested in

rmgoangle analysis in this work, thercfore, for a fixed frequency offset and time, FDA beampattcm

will vary in both angle and range dimension.
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Fig2.t: FDApattern
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It can be observed in fig 2.t thatthe beampatErn has more than one maxima at different ranges due to

periodicity property of FDA. It can also observe tlut FDA radar produces multiple periodic maxima

in range dimension. Moreover, it can be seen that number of maxima incrcases due to larger frequency

oftet. Multiple maxima propefty is not desirable due to its effects on target rcturns from a particular

range-angle pair, resulting in low overall SINR

2.5 MIMO Radar

MIMO stands for Multiple Input and Multiple Output system. It is prirnarily usd in wireless

communication syste,ms to achieve higher data rates. In MIMO syst€,m multiple waveforms are

trarsmited in order to avoid frding chamels. Du€ to path independence, different tansmittd

simals experimce different level of frding, r€sulting in more or less constant averagc aignal-to-

noise ratio (SNR) levels. This rvzs contary to existi4g system at that time which transmit all of

their e,nergy over a singls path" The conc€pt of MMO systern was introduce in [52,53]. Ttere is

plenf research over advantages and disadvantages of application of MIMO in Radars. The basic

aprplication of MMO in Radar is to achierre waveform diversity. Where differqrt waveforms are

hansmitEd. Concept of virhnl l€ngth is introduced in [54-56]. In comparison with PA& MIMO

radars have the disadvantage of anay gain. That is compensated using waveform diversity. Iot of

research had been done for stealth detection using MIMO radars. The antenna array for the MIMO

radars can be closely spaced orwidely separated. Each having iE advantages.

2.5.1 Phased MIMO Radar

Phasd MIMO radar [57-60] has boen inhoduced to combine the features of both PAR and MIMO

radar in a single radar systern. This radar has collocatcd antenna elements at the transmitter and

receiner side just lile PAR and Cohercnt MIMO radar. Transmit array can be dividd into subarrays

which can be non-overlapped or overlapped stnrcture. Each subarray trammits a turique wavefornr and

steers a beam of reasonable gain towards a target in the region of interest by designing proper weidf
23



voctor. Furtheunore, the wanefomrs hansmitted by different subarray are uthogonal which resenrbles

MIMO radar.

2.5.1.1 Signal Model

Radiating elements are placed in the vicinity of each other to make it a collocated radar. This phased

MIMO radar divides the whole hansmit array into subarrays which have full overlapping as shoum in

Figure 2.9 below

I't zuburay 16 nrbarra-v .'fG subarray

Fig 2.9: Subarray Phased MIMO radar

. In order to steer a beam in d€sfud region, the antenna eleme,lrts of subarray will tansrnit

wavefor& where is the nrunba of samples of each pulse. At the output of IUth zubarray, transmitted

signal can

I,(k)= pw,tu(O)s.(hl

In the equation above s, is the signal send by the nrt subarray. ,r(a ) is the steering vector and w"

is the weight for the corresponding subarray. Where as p r€preseirt the energy of the subarray.

Whichis given as

(27)

.... r . Io
I
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P

^r

(28)

(2e)

The combined effect of the beanr pointing is given as

f(t) = ,_E, ,.nu(d)r.(t)

= , [* 
tu(a)] r, (,t)

w is PxN weight matrix and r,1t; = [s,(t),sr(r),...... ,rr(t)] is Nxl waveform. Each entry of

weight matix will represent the association of an anteona element to a particular zubarray. Each

eiilry of the weight rnatrix will represent the association of the antenna ele,ment b the subarray.

Moreover, all non-zero weighs in a zubanay scale same waveform to steer a beam towards region

of interest Transmittod signel by each antrnna element can be representod as

g1k)= rWt,(k) (30)

The antenna elemenb transmit a combination of waveforms which are orthogonal to each other.

In lit€ratu€, the phased MIMO radar has beeir preseirEd in nro diffseirt types of subanray

anangements i.e. overlapped subanays and disjoint subarrays [6]{6].

The disjoint subanays have further applied to two difrerent array architectures. One of

them has used LJI-A as a hansmitting anay and divide it into disjoint subarrays [6L
70]. The other architecture has simply divided a planar anay into disjoint subanays and

used partially correlated waveforms in differ€nt subanays t7HU.
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Chapter 3

INTRODUCTION

In this chapter we will disctss the DOA estimation using compressive sensiqg and establish the

basis at which the DOA estimation prroblem can be casted into a CS framework. We estrblish the

basic for applying comptressive senslng estimation to a uniform linear array. For nnge estimation

similarmethodology will be used in chapter 5. As mentioned earlier that I-ocation of the sourues

arE sparse, that are at few angles i.e., spatially sparse sources. This establishes the sparsity criteria

for the application of the compressive sensrng. Hence the location of the sourpes can be estimated

usittg compressive sensi4g (CS) methods. The estimation usiqg comp,ressive sensing can achiwe

super resolution. Howwer, one of the issues in CS is b define the resolution of the grid. Ther€ is

always a possibility that the targeE resolution may be in betrveen the grid points, which mearr

that the location of the target does not coincides with the grid dcfind. This creates ambiguity

about the location of the soutre.

In order to remove the anrbiguity about the location of the souces a gnd refineme,lrt algorithm is

also presented that itcatively calculated the best grid density in order to remove the ambiguity

about the location of the sourtes. The CS model is developed for a single time stamp. Formultiple

time shmp the model is develo,ped in the next chapter. The proposed technique is dcveloped for

uniform linear anay.

3.1 CS Problem X'ormulation

We will formulate the estimation of the source location in to the CS framework. The metlrod

dweloped for castiqg the problem into CS framework can be ge,lreralized for estirnation of the
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mnge of the soulces. Which is shom in cbapter 5 where thc prroble,m is formulized for MIMO

FDA radar for estimation of the soutpe angle as well as the range.

For the DOA estimation as me,ntioned we consider a uniform linear anay (t I-A) as shown in the

Figure 2.1 inchapter 2. We co,nsider iVnumber of antcma ele,neirts at equal distance. Where the

distance betrveen the respectivg antenna elemmt isL 12. There are P number sounces at diffenent

angles, 0t The soulces are at the far field- Then the received signal atthe mh antenna element is

givern as

P

y .(t) = ) s, (r)e'('-rlrdruc'
r=l

(l)

where si is the amplitude of thc roceived signal. k and d al€ waye number and distance betrveen the

antenna elementr. Then, the above eqution can be rrpresented as

lr, I l- I I I ll-s, I
. I I at*J.rno, ctLa.tno. . 

"!rr.rn",

The above oquation in the vector form canbe written as

y - At

With noise it can be represented as

Y-At+! (4)

we see how the DOA problem can be explained in the CS domain. Irt us consider the figrre given

below

Q)

(3)
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tr'tg 3.1: Sparsc rrpresentation in angle domain

Letus considerauniform linearanay. Theangledonaincanbe dividdino small grid. As shoum

in the figure that the angle domain is divided into N gnd points. We assume that the source is

sparse. As it is shown in the figrue that the soupe is at few angles. Heirce the sourcc is sparse in

the angle domain as if consider the angle domain it is at few angles. Thc location of thc source in

the angle domain can be represeirtod by the signal sfrength whercas those angles whm the source

is not presmt can bc represeirted by noise on for simplification by zero. If thc level of noise is less

than thc signal stneng6. Otherwise, a pr€pnrcessing stage is added which is discussed in next

chapter. Initially to constnrct the basis we do rot consider noisc. He,nce if we have a vector of

signal stseirglh in the angle donain it will be a sparse anay. This satisfies the sparsity criteria of

thc CS framework

Necessarybacl€pund for the compressive s€osing is presented intheprevious chapter. A sparse

representation of thc signal can be reconstnrcted only with just fcw numbers of samples. l.ct us
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consider a signal s which is a discrete simal. It is a discreE signal which is sparse in certain domain

s r Cil. Let rs consid€r thaty is the received signal of dimensionMsuch that y e d. The simplest

case is to consider without noise. the received sipal is given as

V-Ar

A is a s€nsurg matix of dimension A e ff wherre M<<iV. The ideal assumption on the sparsity

ofs means that we count the mrmba of non zqos elemeirt in s. Which is giveir by lls llo also knoum

as lo - nonn. This leads problerr which is NP hard. To solve this mflny approximation mettrods

have been dweloped. Like gr€edy ap,proximation method. One of the methods is b trse h w lp

relaxation. The unknow signal s is considered spars€ their the problm can be given as

i = min ll.ll, '.r y - Ar

consideringp = 0 then it will be a NP hardproblem. So we considerp --1. We can rccast it as a Ir -

norm proble,ln and solved followiag the giveir equation

i = min ll, - ,"lll* r ll'!1,

In practical scenario there is always a noise. Now, let us considcr noise. If the received signal is

conhminated withnoise z which is

y=Artn

The optimizationproblenr is giveir as

m i" lpll, ".r llv - e.lll . 
"

(5)

(6)/\
a

\
/{

t

^\N (7)

(8)

(e)
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here e is a parameEr that specifies how much noise is allowed. In order to formulate the p,roblerr

in the CS framework consider the figrue given as in Figurre 3.1 given in [95], whqe the spaci4g

betrree'n the antenna elemelrts is dwhich is ,r/1. As the goal is to find the location of the soulpes,

we consider a uniform linear array. We consider a narrow band signal for K nunrber of sources

arriving at the uniform linear anay of M nrmber of elements. The received signal is shoum in

equation l. With z number of antenna elements and P number sourccxr. As seen in the figrre b

cast this in the sparsc r€,pr€seirtation problem an over complete dictionary of anay steering vec"tor

I is intnoducod. where A = l0t , 02, -.,0ru1, N is the sampling of th€ grid. The N will be mtrch

higher than K. Therefore, the mafix A is given as

I

etH.$dr

"tt.-tltt 
rrret

I

llrnJ,a-

,r.-rrrr aror,e'

I

, ll trti 
"

erl.-llLa.$rt )

(10)

f

l=

y2

l-, * JL

we consider the problem for a single time stamp T=1. Where s is Nxl vetor and non zero

corresponding to ilposition of the angle at which the target is prese,lrt Therefore, the Equation I

formulatod for CS frameurork is given as in Equation l l.

fy, tr ll-I
e t*d .tn cr

" 
t<n-ri*a .,ne,

I
*d .tn C-e

et<n-lr*d.tnez

I
e t*d .tne N

"rrn-rlro..nr, ]L

.tt

.t2

.tr,

(l l)

We estimate the source location through solving the I I normalization equation mentionod in the

above equations.
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First, we look into the effect of the nrmber of the samples on the conventional DOA estimation

- algorith in thc figure grven below. There are number of algorithms discussed in chaptcr 2. We

consider MUSIC algorithm which is the most widely algorithm used for DOA estimation. As

mentioned earlierthe traditional algorithm depends upon the nuurber of the samples. It is show in

prwious chaptm that if there are strfficieirt samples ften the location of the sourccs is estimating.

Howwer the prformance degnd€s with thc nrmber of the samples.

MUSIC algodthm

-n

t"'' :t:
l.r;[: I,
..t... r.....'..i........:.......
\: : :

l:
'1""'-""""r.. ..!'!r....rr

..\.:........:....... j.... 
.
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-tm €0 flt -10 -n 0 20 40 60 B0 lm
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Ftg 3.2: Effect of number of samples on MUSIC algorithm

In Figure 3.2,the results of two sources-based DoA estimation arc prese,nted that are 
"j 

6l angle

of 200 and 230. The received signal SNR is 20dB and the numberof antenna elements arre 10.
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As tho rumbcr of th€ samplcs decreases their the estimation of the souue localization also

n dcteriomates.

Ncxt we considq CS tochniques for solving th€ DOA problem. Considering a si4gle sample at

T=l we consider a single snapshot problem. Thc method derreloped fss singls snapshot is

generalized for multiple snapshot problem also keeping in mind the mrmber of samples are still

less than the Nlquist critffia. We create an over complcte having a resolution of 10.

The location of the targets can be rcsolvcd by solving equation (9) with thc help of linear

pogramming. We rue oonver optimization toolbox for solvi4g this problm. For simplicity we

comsider a noiseless case. It is shocm in Figrre 3.3 those two targes with amplitudc of 2 and I on

nonnal scale at location 200 aod 230 arcresolved.

010zJ3040506070809t
Angle

Fig3.3: DOA estimationusing CS
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3.2 Grid Mismatch Pnoblem

One of the main issues with application of CS in thc DOA problem is definition of the grid

resolution- Thc resolution dce€nds upon the sampling grid fonnulation and the sampling grid is

rmiforo. If the gdd sizc is defind very fine, it increases thc computational roquirrments. If the

size of the sampling grld is largc, their thc resolution decreases and close tarycts cannot bc

dctecbd.

Next, we considerasccnario inwhichthctargsts locatioms are notalignedwiththcgridresolution.

Considcring two targets; one is at 40.50 with amplitude 2 and the other is at 43.50 with amplihrde

I

tr'tg 3.4: Grid mismatch of 2 sources

In Figrue 3.4,itis shown that thc four targets are daectd. This creates ambiguity about thc location

of the arges and the number of the targets. Howwer, it is observed that the amplitude of thc received

30 'lO 50 G0 70 El C,
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signal is distribruEd in the adjac€nt grid. Similarly the figure 3.5 aod 3.6 shows the grid mismatch

problem for 3 and 4 sources.

1.4

1.2

I

€ o.at
E
E o.o

0.4

o.2

0 l0 m 3{t 'o 
^tr" 

60 7o E{l etl lm

Ftg 3.5: Grid mismatch for 3 sources

zJ3040506070
Angle

Fig 3.6: Grid mismatch for 4 sources
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3.4 Proposed Solution

As shom in the previous soction that duc to gnd mismatch multiple tarEpts are created. This

creates ambiguity about the location of the source in the angle domain Therefore, we considsr a

gridrefinementmethod dependingon a fitness fimction. The fitness firoctiongoyems the levcl of

gdd dissretization.

The methodolory we propose for the selection of discretization value for the grid is based on a

fitness function. Considering Figure 3.7, two grids are shown. The upper grid represents the

resolution of the grid with discretization value of ,= 0..,-e,. Whereas in the lower grid e"

represents the location of the soupe.

0, 0A

I
e,

lcrthnclSolm

GrU Imhrbn Dr,inrd

Ftg 3.7: DOA grid mismatch

st€p is to estimate thc vector s uslng the overcompleteUsing fu I, rcgularization the first

dictionary defined for thc iteiation

.' = min ll, - ^'.lll 
. ,lhll: (t2)
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Duc to gridnismstch, thc eirergyofthc sourceis disEibutcd amongthc adjacent grids as showninfigure

4. Thc discrctisod grid resolution is lodefinod and the location ofthe source is 60.40. Thc e,neryy of thc

sonroe distributod arnong thc adjaceirt glds is mathe,matically presented as

',=l'".- E"..,! (13)

59

Angle

tr'ig 3.8: Anbiguity due to gid mismatch of single sourpe

Irt , bc the iteration index in which the discnctization value is '' . The peaks in the vector s are detccte4

aod thc difference is aken as in above equation.

ot

B o.t
E

(14)F =Ell

The,n the prcoess is repeated with r* r" iteration with fin€r grid discr€tised value and with dictionary

d€find with ne$, discretization value. Thc fitness firnction is calculatad as
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F.=Et+t t+t

A termination criterion is defined asset as

F >_F| ,+t

(ls)

(16)

Ifit satisfies theterminationcriteriq thenthe discretizationvalue inthe ifritemation is thebest value

for the gnd to discretise at. For the case of multiple sourtes, the equation 15 can be genemalized

for sum of the difference of adjacent pealc and sum of individual peaks if there is no adjaceirt

peak As me,lrtioned, i is the itemation number. In each iteration the discretization value is reduced.

It is selected by the user. In our simulations we have selected a discretization value of l, 0.5, 0.1,

0.01. The main steps involved in the proposed algorithm arc grv€,ll as follows.

Proposed Ngorithm

Setup:

1- Define initial grid resolution of r"

2- Calculate the Over CompleE dictionary

$ Select 0re fitness function. i.e., equal to zero

4- Estimate the regularization term t using GCV method

While ( r, 
= 

q., )

l- Calculate ''

F
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2- Calculate r, according

3- Change grid resolution

4- Calculate dictiooary e,.,

5- Estirnate r"'

6- Calcularc r,.,

Endwhile

Output: ''

The regularization tem, t in (17) plays imporant role for the acclracy of thc solution and must

be estimatod. It is a cornpromise between findiag a solution that is sparse as possible and has lower

enor as possible. Two methods for estimating the regutarization term are L cunre and genralized

cross validation (CCV). In GCV, it is more convenient as comparod to L curve whse we must

find the oomer lz4l.ltcan be computed using the followi4g relations.

GCY(11= lln.. - rl' (t7)
trace(I - AA')'

A'=(A'A+lt)-,At
tr = A'Y

The GCV estimate is variant of the above oquation which is obtained by applying nocessaqr calculation

and results in GCV function [25]. This tcchnique estimates z by assgming that the optimum value of

,r should be chosen to minimize GCV value.
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Table 2 shows the itqations for solving the grid mismarch problem rsr4g the proposed algorithm.

We consider a different case, wherc finer resolution is required to detect the sources. Two sources

are considered with locations at 40.40 and 43.30 and amplitude of 2 and I shovm in Table 3.

We consider the case of four sources at different location in table 3. Due to grid mismatch multiple

targets are detected. However using the mention optimization algorithm the resolution of the grid

is resolved for the best estimation of the targets.

Trblc l: Grid mismltch casc for two sonrrcs

Am[tudc&Locrdon Grld Rcrolutlor l. Gdd Reroludor ltS. Gtld Reroludon 0.lo
Amplltude Source # I

-a

Ar 0.7830 Ar 1.999 Ar 1.998
tu 1.3208

Source # 2
=t

tu 0.()61 A2 0.999 Ao 0.998
A4 0.4905

Location 40.50 0, 40u e1 40.5u 0r 4.0.50

0t 4lv
43.50 0" 43u e2 43.5u 02 43.5u

0t 44to

Fitnem h=0.6221 Fz=2.9lll) F r2.90t

Table 2: Grid mismatch case forthree sources

Amplitude & Loerdon Grld Rcsolution
l0

Grid
Rerolution
0.s

Grid Rerolutlon
0.10

Grid Resolution 0.010

Amplitude Source #
l=2

Ar 0.9797 Ar 0.3381 Ar 1.988 Ar 1.9916
Ao 1.1367 Ao 1.66,96

Source #
2=l

tu 0.5718 4,3 0.5718 Ao 0.9987 Ao 0.991
Fre 0.3312 lt4 0.3122

Location 40.40 0, 4ry 0, 400 0r q.4u eL q.40
0" 4lu 0, 40.5u

4330 0t 430 0q 430 02 43.30 02 43.30
0^ 44iu 0^ 43.5u

tr'itnecs fi=0.4167 Fz=1.4934 F 12.9975 Ft= 2.9827

:
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Table 3: Grid mismabh case for four sources

Amplitude & Location Grid Recolution
l0

Grid
Rccolution 0.50

Grid
Resolution 0.lo

Grid Resolution 0.010

Amplitude Source # I
=)

Al 1.1805 Ar 0.3951 Ar 1.9998 Ar 1.9991
A2 0.8286 Az 1.6061

Source # 2
:'l

tu t.29so tu 0.7604 Ao 1.9997 Ao t.9977
A4 0.7080 A1 1.240/9

Source# 3 As 0.746 tu 1.9054 A3 1.9990 As 1.9923
A6 1.266.3

Source # 4
-/

N 0.2037 A6 1.0556 AL4 1.9951 fv 1.9631
tu 1.7768 *, 0.%08

Location 30.40 0.r 300 0, 30(, 0r 30.4u er 30.4u
0, 3lu 0, 30.50

43.30 0" 430 0" 431) e2 43.39 e2 4r.30
0. 44to 0^ 43.5u

60.50 0. 600 es 60.50 e3 60.50 03 60.50
0. 6lu

80.7',t 0, g0u 0. 80.50 e4 80.7(, 04 90.70
0^ 8lu 0z 8lu

tr'itness Fr=3.033t Fz=3 71lt F r7.993t Ft=7.9J23

In the figure grven below we consider two targets located which ar€ at 30.50 and oo sn. The

regularizationparamet€rforeach SNR lerrel is calculatedusing the GCV merhod mentioned. The

mean squarc error (MSE) of the proposed method is compared with Cramer Rao lower bound

(CRLB) for DOA estimation and offgrid method with bias. For a greater SNR based scenario, the

prcposed algorithm is reasonable accurate. Additionally, the proposed approsch is simpler and

roquires less computations.

q

40



100

1o.1

10-2

1o{

1o{

1o€

sNR(dB)

tr'lg 3.9: MSE comparison

>(.
_#CRLB

-'e-Prcpced 
il€fiod

otrGdd

51015202530351y0

F

4l



CIIAPTER 4

INTRODUCTION

In the previous setion we discussed the techniquc for casting the DOA estimation probleur in to

the compressive se,lrsi4g probleur. Similarly, a grid refinement p,roblem was considerod for solviag

tlrc target amblgulty due b grid mismarch. The problem was deftred for LJLA. Howwer, the

antenna arrays can be of di:tfereirt stnrcture. Which can be of one dimension or two dimensions.

Whereas planar array' circular array or L shaped array are used for DOA estimation in two

dimensions. L shaped anay consists of two orthogonal UI-As. It provides improved DOA

estimation [98]' we have used CS using linear anay. In this chapter we consider multiple

snapshots and one dimension and twodimension sparse antenna anay. The number of snapshob

is still less than the n.mbers of samples required by Nlquist criteria.

Noise have effect on the estimation of the abov+-meirtioned technique. Ge,lremally, the distibrution

of noise is considsed Gausian Howwe& the signal can be comrpted with impglses in the time

domain due to ahospheric noise or faulty receiver. This does not follow Gaussian distibution. The

impulsive noise can be defmod by alpha stable distribnrtion [99]. To solve the imprlsive noise modian

differemce corre'ntopy (MDCo) algorith is suggested in tl00]. The MDCo derives the weighting

facor from the corenhopy criErion, which suHrresses impulsive noise. Thse are sweral methods

to make the algorithm rcbtlsg like moving average filter. weighted rnoving avffage filter is a

derivative of rnoving average filter. Whereas the weighted moving average fil6r has better

perforrraace than moving average filter.
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In practical sceoarios, the antenna elemenB rnay malfunction which may lead to sparse antenna

arrays. The taditional DOA estimation algorithms do not work for sparse anteona anays. Whereas

Spar,se antemna anays have certain also. Usiag spase ant€nnas, larger apertgre can be

achieved [10U. For desiEniqg sparse antenna anay different techniqucs have beeir dcveloped. The

idea of using mrmerical techniques for designing non-LJLA was first utilized in minimum

redrmdancy anray which was intnoduced by Moffet. Similarly, sparte antenna array utilizing

coprime antema elements was intodtrced in [02]. However, if the sparse anay is random then

thcr€ is not mrrch contnol ovq the desip. In some papers differeirt subspace decomposition

methods arc us4 like in Yarris Wang who uses tcrylov subspacc method thm apply ESpIRIT

algorithm for estimation of DOA using spanrc antentra anay.

4.1 Signal Modet
Here we will dcvelop the model for sparse antenna anay for compressive scNrsi1g. similarly

differeirt antsnna stnrcture is considered forone dimension and twodimension search in the angle

domain' Compressive se'lrsing (cS) tochniques are usod for DoA estirnation in sparse antenna

anay' As CS techniqtre is trsed for solving an underdeterrrined syttem [103,104] and it has g3ined

lot of popularity. Accordiag to the cs mathmatical frameurork, if a signral is sparse in some

domaln, *then it can be reconstnrcted using only a small nuurber of linear measultme'rB,, as

mentionod in [105]. As most of the real time signals ar€ spane therefore 1fos signal can be

reconshrcted using a linear equation It is imporhnt that resnicted isometric prcp€rty (Rp) is

satisfied' In Cs, we try to find the sparse v@tor. It can be viewed as solving the inverse probleur,

which can be expressed in term of finding the /o norm. Mathematically it is giveir as

,"io !f ll, s., x = Ar

[1. r€pr€sqrB the number of nonzero in the vector. The x is the observed vector ren.,, i.d
Ae I 'r" is the basis mahix called tlre dictionary. This is an NP hard problenr- To find the sparse
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solution a nrmber of methods have boen dwelopd like greedy algorithm [106], basis pursuit U04,

LASSO algorithm, In I l0E] a recursive weigtrted mininnrm trprm with focul grdodetermined system

solver (FOCUSS) is applied. In [09] a hardrrare has been dcvelo,ped br spectal estimation using

compressive s€osing framework

In most cases it is considered that fte position of the soucqt is in the grid defined- That is not always

possible. It may happen such that the location of the source does not coincide with the discretization

of the gdd. This creates grid mismarch or offgrid targets. The problem can also be solved rsing off-

grid sparse method [3 U. Thc initial grid resolutio,n is still definod. A bias is added to the signal model

using first order approxirnation of the manifold matix. This model may be non-convex and difficult

b solve. Itemative grid rcIinement is one of the most popular methods which requires a procedure b

seloct the discretizationvahre forthe grid.

We consider multi sample compressive sensing Echnique to spas€ antenna array and evaluate the

performance of the compressive sensing fornonuniform sparse anffia anay. Two tlpc of antenna

array stnrcfires are considerod. For onedimension f,tOA estimation we consider non rmiform lin€ar

sparse anay and for DOA estimation in two dimemsion we consider non uniform sparse L shaped

array. We considq that the sources are quasi-static. A multi sample CS scenario is considered.

Now we dwelop the signal model of the systern. Initially we consider uniform linear anay (ULA).

Then we develop the signal model forrandom spase linear anay and L shaped anay is developed.

Then the application of the CS for DOA estimation for the dwelopod array stnrcture is considered.

First let us consider a uiform linear array. The signal received by the n" element in the presence

of noise not only Gaussian but also impulsive is given as

y.(t)= f, s,1r;e-"'-rrrr'Ee, + nr(tl+ nr(tl

The distance between the antenna element isL t2 with ,u number of antenna eleurents in the array.

We consider that there are P number of sources at different angles 0, and with amplitude of ,, , where

4
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as i :1,2 ...P. in th€ far field, r, is thc Gaussian noise aod

equation canbe expressed as

y=Ar+nr+tr,

The above cquation can also be writen as

Y=Ar+n,

r, is the impulsive noise. The above

r' ttcplEs€rts the total noise. Which consist of Gaussian as well as impulsive noise. In the above

equation A = [.(r,),r(r,).... ... ,e(o,)l r€prcscllts thc steering matix with

l(0 rl = Il, Q- 
fr u'",,... ..., r- t"r -rlu ttot 

rr

Afterthe model forthe uLA, we dwelop the signal model for sparse antenna array. using sparse

antenna array can have certain advantages. In t Il{, it is possible that certain number of the antenna

elemmts nalftrnction' This leads to a sparse antcrma aniay such that the spacing betwem thc

antmna elemeirts become nonuniform andrandom. As shom in the figrrcgivenbelow.

-&

Fig 4.1: Sparsc aotana Anay

(3)

(4)

t
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Ict us consider an antemna anay consist of M number elements. Some of the elemem6 have

malfimctionod and only few ele,rrents are working. We suppose that the first and the last antenna

elements are fimctioning. Duc to this the distance betrveen the ante,nna element is not uniforu,

sttch that the distance du is not twice the distance dr as shown in the figure gven above. Hence the

distance betrveen the antenna element is not uniform. The received signal for suc,h and antenna

anay is giveir as

x=At+nr

x is thereceivedvoctorfrrom the sparsc lineararray where t51r'r,.i =f, 
*,'is steeringrnao.ix

and .' is combined noise defined earlier. r'= position of the active elernent in the array with

respect to thc first element Using such m antenna anay configruation, the haditional DOA

estimation algoriftm like MUSIC fails to estimate the location ofthe sources. For DOA estimation

using sparse linear array CS tochnique will be used.

For estrmation in 2 dimension a2D anay structure is required. We consider an L-shaped array for

estimation of the sounee location in 2 dimensions. As the name suggests it consist of nro ULA

sttch that they ane orthogonal to each other as shoum in the figrue 4.2 givenbelow.

(5)

I
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Eig4.2z Sparse L shaped antenna anay

In the above figure repr€sent two linear sparse antenna anays such that the two aniays arc

orthogonal to each other's. Since they are in two dimensions ofthe array confrguration can be used

for detection of the source in two dimensions also.

Thc L shapd antenna anayhave ccrtain advantagcs wheir coryarod to othqantenoas regardiag

DoA cstimation in two dimensions. The Lshapcd anay has a simpler configuration as co,mpared

to other configr[ations such as rectangular and triangular aniay, however it has a bctter accuracy

for estimatiag 2-D DoA [l10] the Lshaped anays can provide the largcr anay apcrturc dcfircd

by the largest distance amoqg the seirsors. The cramer rao bound in DOA estimation for L shaped

antenna is bater then the antenna stnrcture of thc same category. In [10U, Tayem and Kwon has

shoum that it is possible to decompose thc 2-D problem into trvo ind€pcnd€rf l-D problems by

ustng thc Lshapod . Bu! the two indcpendmt sets of angles havc b be properly pair€d together

using appropriate techniques [9].
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We now dwelop the signal model for sparse Lshapd antc,lrna anay for estimation in two

dimensions. Irt rs consider the stnrcture shovm in figxe 4.2. TVo random linear sparse anays along

theraxisandzaxisareconsiderodsuchthattheelementattheoriginoftheaxisiscomuronbetween

the,m" t et r' and ,v' be the nurrber of the active elementr along the x and z axis. For simplicrry we

car assume th* a 'is equal to iv, . We heat L shaped element configuration as two s€parate linear

sparse elemenE array. Then fts signal received along the z axis is giveir as

r. = A.r, + [, (6)

Intheaboveequation r.isthesteeringmahixofdimeirsion A, e r r''r. r'represe,rtstheposition

of the active ele,ment in the array.A, =[r,or).r,(),t,..' .r.o,)t whereas o,o,lis grven as

e,(lr)= [,c

with A. = [r.(d,.1, l.t.(0r.lrl.-' - - ,t.(O,.l,lt Whefe a,1e f( r, iS gtveNr

l,(e,,),l = 11, 2' 
*t *'r' -"',--. . --, e-'t,.' 

-rl't 6tt 
"otl 

D lt

In Compressive sensing we try to solve an underdetermined sptem [32]. Such tbat any sparse

representation of the signal can be roconstnrcted. Cconsider a signal s which is sparse in certain

domain re I "' with '' asthereceivedsignalofdimension r suchthat ',€ 
r *".Tlrereceivedsignal

is given as

r'= A't

l' is a sensrng matix of dime,nsion A' G r r 'r wherre ,, << ry . The syste,m is undeidetermined and ttrcre

is no unique solution fors. If the trnknow signal s is considered spase then the optimization prcbleq

can be grv€n alr

i = m in lhll, ", r' = A't

With p = 0 then the problem will be a NP hard problem. Therefore, we considerp :1. This can be

casted as a /r norm problem and solved following the given eqtration

'ttt-), 
,...... ,r-rtu'-t)iltrr,1r . ThG gignal along the x axis is given as

(8)

(e)
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i : min ll x'- .r'r lll * , Ihll,
(10)

In the above equation .e is the r€guladzation Erm. It is a compromise betwee,n ftrdhg a solution

that is sparse as possible and has lower enor. If the received signal is contaminated with noise.

The optimization p,roblem without impulsive noise becomes

- in ll.ll, ".r ll *'- r'' l!] . r (l l)

where a is a parameter that specifies how much noise is to be allowed? To formulate source

localization problem in thc compressed sensing framework, consider the figur€ grvem in I I I l]. For

represeirti4g the estimationproblenr into a CS, we assume that the location ofthe souroes is sparse

in the angle domain. For represeirting the estimation problem into a CS frameworh we assume

that the location of the soupe is sparse in the angle domain. We define an overcompleE dictionary

r'as shorm h tho equation I l.

ll
etla.Eq etr.t 

l,

Irrr -ttrr.,or, -rfr -tlrrr,"o,.C

.l

. ell"nc'

. : 
"ttu'ltttn'c,

(t2)

A,=

Ie

Where 
^, 
= lflt , 02, .- ,0u1, N is the sampling of the grid. The /V will be mtrch higher than ,r .

Howwer, considering a case for multi time samples let Ibe the duration for multi snap shot which

isgiveirasT= l,2,i,...,Tp.ThenthereceivedvectorXisgivenos xlrv-[r(,),r(r,).,.trot]'.As

mentioned earlier, we suppose that the location of the soultes is stationary or very slow for the

sarnpling period.

Some of the issues in applying compressive sensing is the prese,nce of impulsive and Gawsian

noise in the received signal. Also, application of compressive se,nsing for DOA estimation in two
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dimeirsions requires vcry high coryutation To make the system more robust against the prcseirce

ofnoisg a prcproccssing stage is added before applying compressine sensrng technique. Similarly,

due to grid mismarch it is possible multiple targets are detected. Therefore, a mcthod is requirod

for monal of ambiguity for DOA estimation in one and two dimensions by sclecting thc grid

discretization valuc.

As mcntioncd earlier that noise plays an inportant role in the estimation of the sounees. we take

into consid€mation the effect of noise on the DOA e.stimation using single saryle CS technique

and our proposed schemc. OnIy Craussian noise is considered We comsider the same number of

sparse antenna elemat as considered h th€ previoru case. The,re are two sourues located at 300

ad 400. In this case the SI{R is 2dB. As shoum in thc figrre 4.3,hatby directly applying CS

technipe using singlc time sample, the location of the sourpes is not much distinguishable ftom

the noise.

uD3040
Angh

Fig 43: Two sources with SNR of 2dB



Similarly, the estimation criteria degrades in the prcsence of the impulsive noise. we consider a

sparse lincar array with two sources at -r0'and ro'with SNR of 4()dB. We considq an impulsive

noise at one ofthe active ele,ments. The effoct of impulsive noise on estinration is shoum in figrue

4.4.

{0 {0 -10 -2O

Fig 4.4: DOA estimation in the prcsence of Noise

4.2 PROPOSEDMETHODOLOGY

Here we consider a method for solviag 6gl1i sample CS framcn ork for sparsc rmiform linear anay

as well as L shaped array. As mentioned earlierwe considcr that two tlpe of noise is present in the

signel modcl. One is Craussian noisg and thc other is Impulsive noise. In orrdq for the daection

system to accurarcly estimate thc location of the soutpes it is necessary to make it rcbust against

noise by the effect of noise as much as possiblc. A pre processing stage b€fore CS is

suggested for removal of the impulsive noise and make thc received gignal more robrust against

o
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E
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0
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Gaussian noise. Also, a method for rernoving ambiguity about the position of the sources due to

grid mismatch is proposed.

A preprocessing stage for the rmiform linear sparse array is used to minimizs the effect of noise.

That can be extended for L shaped anay. 'lAe pre prccesslng stage consist of two parts. Fint part

deal with the rcmoval of impulsive noise using MDCO. The other part is the implerme,ntation of

the weighted moving average filter. lVe assune such that the first antenna eleurent is the rpference

eleme,lrt for a certain time. The energy of the signal received during the sampling period ?e is given

as

t.

E 'rt')
E,.t = 4.T

P

(13)

(14)

We set a threshold 
", - 6n'^r.-iis the variance of the signal at the referrence antemna. Now we

consider two variables p and O such that p=:.(r)wh€f,€ a=ctencatnumbcrend o=.,,(r). If

l, - el. "" it is considered that the gignel is normal, othenrise it coutains impulsive noise.

MDCO algorithm presented in [6] is used. According b which the correirfiopy is a method to deal

with nonlinear and local optimal measurement of two random rrariables like p aod e . That is

given as

Y (P.Ol = E pel*tp,Orl= ll *<p,qlP,.o(o,Q)dodt

In the above equation rr.l is the hanslation. Gare,rally Gaussian density fuirction is used as a

ksnel firnction. The random variable p and g follows alphadistribtrtion, then the MDCO is given

as in equation 15 which is used to sulrpr€ss the impulsive noise. o is the size of the Gaussian kenrel

and r is the r, norm of the pr€ process data ftom each element, which represen6 the median of

the received signal.
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R,.c. =' 
i".,i 

q#i*,[-ryi*,[ ryi"] (15)

Using the above equation the samples containing impulsive noise are removed. Next we consider

a method for re,moving the Gaussian noise from the system. In genemal there are different methods

for removing the Gaussian noise. One of the method is avemaging whe,n we have multipls samples.

Ingeneral,amovingaveragefilterisgrvenas *.-(r,,_..,+. . +r,,lfx.Wherexisthereceived

vector from each antenna element. We find out the variance of each received vctor from antenna

element.

w, = var(lr) . P=elementno

Once the w is calculated then we apply it to the filt€r defin€d in the equation below for smoothing.

(16)

(17)
x,., = * E l-,.,(',., + r,-".,)

1t - wrl

Here .f, is the nurrber of the samples which is fp and ,, is the variance of the samples received.

The moving average filter is applied to saryles of each ant€,nna elerneirts.

Now we apply the coryressed sensing technique on linear sparse ante,nna anay first. The

flowgraph of the technique which includ€s compressive sensinB with a preprocessing stage to

make it robust is as follows.
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tr'ig 4.5: Flow gnaph" Cs for Linear spase anay

we study the DOA estimation technique using lincar sparsc anay. For the currcnt sc€nario

impulsive noise is not considered only Craussian noise is preseirt. A rmiform linear anay of 60

clemeirt is selec"ted. From thesc elements only 16 random ele,ments are working. Keeping in vieur

that the first aod the last antona clements are in working condition. Sweir samplee are take,n frrom

each activc antemna elements. TVo sources are at location of 510 and 710. Each with amplittrde of

I on thc normal scale and with SNR of 20dB.

Thc proposcd sch€me is appliod. Thc regularization t€rm is selected to be 0.001. Figurc 4.6 shows

the result where two hrgcts are detectod.

Grid definition and
CSwingIr

regularization
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Next in figure 4.1 andFigure 4.8 shows the same antenna array configuration with SNR of 15

and 9dB. The location of the souces in the angle domain is -300and 3d.
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Fig 4.7: DOAestimation of trro soupes with SNR l5dB
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Ftg 4.8: DOAestimation oftwo sour,oes wittr SNRof 9dB

Next in figure 4.9 shows the same scenario for three sources at location of 300, 400 and 700 with SI{R

of20dB.
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Ftg 4.9: DOA estimation ofthree sources SI{R lsdB
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Ftg 4.10: DOA estimation ofthree sourres SNR 9dB

In figrrre 4.10 aod figrue 4.11 wc estimate the DOA for three sources with samc nlmber of sparse

ant€noas and at differeirt SI{R. Similarly, we consider a case for fogr sourpes. The location of the

sounees is -300, 100, 500 and 700. All thc souues have thc samc pow€r in figure 4.12.
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Fig 4.11: f,lOAestimation of four sounoes with SNR 2(HB
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The figure 4.13 and 4.14 shows detection of four sources at -300 ,100, 4d ,7d with SNR of l5dB

and 9dB. It seen that multi sources can be detccted using sparse antcnna atray.

Inthis case we take into consideiationthe effectofnoise onthcDOA cstimationusing singlc sample

CS technique and oru proposed scheme. Only Gaussian noise is considered We consider the same

numbm of sparse antenna elemeirt as considered in the prwioru casc. There are two sourees locatod

at 300 and 400. In this case the SNR is 2dB. As shoum in thc figrue 4.15, that by directly applying

CS technique rsing single time sample, thc location of the sourc6 is not mgch distinguishable ftom

the noisc.

010m3040506{'
Angle

tr'tg 4.14: Two sources with SNR of 2dB

Next, we apply preprocessing stage before applying DOA estimation schcme. After combining

multiple samples. Figure 4.16 shows the deection of the souroes

o
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E

:
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Fig 4.15: DOA estimation after data conditioniag

Figure 4.14 shows the effect of calculating DOA using single sample in the presence of noise
and figure 4.15 shows the effect of multiple samples on the DoA estimation. Which is more
robust

The sanc sctup is analped for a signal with SNR of -6dB as shoum in figrre 4.17 ard,figure 4. l g.

In figur€ 16 preprocessing is not appliod. Ihc location of thc sourees camot be identifiod.
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FIg 4.15: TVo sources with SNR -6dB

After applying preprocessing stage before thc estimation tberc is an improvemeirt and the peaks in

the angte domain are distinguished as in figrue 4.17.
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Fig 4.18: DoA estimation of three sourccs without preprocessing
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Flg 4.19: DoA estimation to thrce sourccs with preprocessing
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Similarly, in figrue 4.lE lhcre arc thrce sourpes at location of -300, 100 and 400f ith SNR of 2dB.

In figrrrc 4.19 we apply preprocessing on thc data.
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tr'ig 420: Thr€e sourcclt with SI{R -2dB
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In figure 4.20 we try to estimate thc DOA of three sources at same location previously. Due to

pres€nce of noise the angle of the sources caonot be estimatod prcpcrly. Howwer, after

prtprocessing thc location of the sounoes is estimatod accurately as shown in figur€ 4.21.

Now we consider the efrect of impulsive noise. we consider a sparse linear array with two sourpeg

at -to'and lo'with SNR of 40dB. We consider an impulsive noise at one of thc active elemeir6.
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Flg 422: Effect of Impulsive noise on DOA estimation.

Applying theMDCo algorithm suggested inthcpreprocessing stage supprcss the impulsivenoise

and the DOA of the souroes is estimatod accurately.

Forsolving tbc gridmismatchthc same algorithm developedprerriously is applied forboth sparse

Iinear as well as L shaPed antema arfray. In this case, wc consider thc sitgation where the location

ofthc souroes docs not coincide with the definition of the grid resolution. Initially it was supposad

that the resolution ofthc grld is 10. Thc location ofthe sources does not coincide with the resolution
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ofthc grid. Ttrcn in such cases the eire4gy of the source detected is distibubd among thc adjacent

e5ids.

Let us consider trvo sourues at 50.50 and 60.50. Initial grid resolution is selectod to bG t0 and SNR

of20dB.
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Fig 4.23: Ambiguity due to g.d mismatch for two souroes

As shoum in figarc 4.23 since tbe location of the souroes does not coincide with the grid resolution

four targets are detected at location of 500, 510, 600 and 610. This crcates ambiguity about the

position of thc sourccs.

Next, wc consider a sccoario for thrcc souroes at location of location 0r = -30.40, 0z = 50.50, 03 =

60'fl with samc sparse antenna anay as discruscd earlier. We consider initial grid resolution of lo

and SNR of 20dB' It is shown in figrue 4.24 thatsix targes are detected instead of three creating

an ambiguity about the position of thc sourpes.

o!t
E
g
o

65



o7

06

0.5

0.tl

0.3

0.2

01

0

{rt

4.2

{r.3
-100 €0 60{0aooz04060EO10o

Angte

Flg4.24z Ambiguity duc to mismetch of Three sognees

Figurc 25 represents thc target ambiguity due to four sources. The souces are at location of el = -

30.50, 0z = -10.50, 0r = 50.50, fu : 60.50 with SI{R of 30d8. To remove the ambiguity a fitness

firnction is used meirtioned in proposed solution the grid is refind and the new dictionary is

created with slighfl y fincr resolution-
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trIg 425: Ambiguity due to misrnarch of foru sqrces

Thc underdetermined syst€,m is solved and thc amplitude of the peak above certain timil is taken.

The fitness ftrnctioa is calculatod- The nery fitness function is compared with the prwio,s

calculated nahrc. If it satisfies the termination critqia the opeiation is terminated, ad thc pcak

correspond to the tnre location of thc sourtcs. If the criteria are not satisfied the process is rcpeatod

with finer grid resolution.

The algorith is applied to solve fte ambiguity due to grid mismatch for two sourocs. Table I

shows thc application of the algorithm in tabular format. As mentiond that there are two sour.es

with cqual arylitrde at location of 30.50and 50.50. Inidal thc grid resolution is takeir to be 10. Thc

meirtioned method is applid and thc fitness fimction is calculated. The grid rcsolution in the

second iteration is taken to be 0.50. Thc und€r det€rmined system is solved using Jr norm

minimization and the new fitncss firnction is calculated. The fitncss ftrnction is increased tberefore

the proccss is repeated for a grid resolution of 0.I0. the fitness firnction compared with the
67



prwious value is slightly docreased thus we conclude that the fitness function in the prwious

iteiation is maximum and the best discnetization value for the grid is 0.50.

Table 1: Grid Mismatch of two Sources

Amplitude & Locetion Grid Rcmtution lo Grid Rcrolution 0.50 Grid Rccotution 0.lo
Arplttudc Sourcc # I =l Al o.49n At 0.952t Ar 0.95l2

A2 0.5430

Source# 2 =l At 0.6t0t A2 t.0106 A2 0.9t42
Al 0.3652

Locrtlon 30.5U 0L 3(r 0r 30.5u 0r 30.5u
02 3lo

50.5u 0t 5(P O2 50.5u 02 50.50
0a 5lo

Fitncg It-C.Z:ru Fr= l.93Gl Fr 1.9354

The CS technique can be applid on the signal after the preprocessi4g stage. The prcprcc$sing

stage for L shaped artenna anay is similar, as we consider L shaped antenna as combination of

two orthogonal sparse linear anay. The prcprccessing is applied independeirtly on the multi sample

signal

x, and x. .

Next, we apply CS technique on the reeived signal from sparse linear anay and sparse L strapod

array. First we apply the CS techniEre on the sparse linear array .
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For the case of linear spase array, the multi sample received signal is x , such that x ' e c "'", with

impulsive noise supprressed and also applied the moving average filter for minimizing the effect

of the Gaussian noise. lVe assume that thc received signal is qatrsi+tationary. Qarsi-stationary

signals r€prcsmtr c€rtain class of signals in which the statistics are locally static over a certain

time. fire underrdetermined case of such class is trsed for DOA estimation in radars and sonars

[33]. In [34] its utilization is mentioned to monito,r birds in an airport for avoidance yith aircraft.

We corrbine all time samples of a spatial indq of x, which can bc r€ercs€nted by a vector

r'Gr{'rr. In order to cast the DOA problern in to CS franrervork we define an overcomplete

dictionaryr'such that A'ca"' . [Ve select initial discretization value of r" . Then the dictionary

is grven !s r'=[r(o,),r(8r),.. ...,r(a,rlwith r1a, t=lr..-n -..... . ,j-r0tt-rr.rd, Ir. The sparse vector

I e I "' is estimated by solving equation 12 with peaks correeponding to the estirnated DOA.

Next, we cast the signal model developed for L shaped anEnna arrayinto the CS framewort. As

L shaped antemna anay consist of two linear arrays. The received signal frrom eactr independent

sparse linear anay is x,,, x,. e a ' ". .The received signal is passed through the pre-p,rocessing stage

ind€p€Ndcntly then all-time samples of the spatial indexes are combined such ttrey can be

rep'resented 0s ri.r',er"'. As shown in signal model the steering matrix rlconsist of I
component only whereas, e', consist of a and , components. According to [34] array manifold

mafix of x axis, a new parameter can be intoduced defined as

CO3d. = COIOTCOt), (18)

Then the steering matrix Ai = [r(o, ), r(o, )... ,rto, )] wittl r1o,, I = [r,.-,'.-.,, . -.-,Hta'i,...., ] . To

apply CS technique an overcomplete dictionaries r i and r 1 ale created, as for sparse linear array

was created. Then the following optimization problern is solved.
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.'ol',[, ".r llrl - e1., !] .,
niollr,ll, rr lri-eir,!, <e

(le)

(20)

The elwation mgle can be estimatod using equation 19. The azimuth angl6 fs1 p souroes is

estimatd from r, us' g the equation gven below.

a. = "r..o, l" 

o"r" ,/"orri,r] _ = 1,2,_. , p

Qr)

Now we consider the case of DOA estimation in two dimension using sparse L shapd ante,nna

array. The pro,posod method is used to estimate the location of the taryet. Let us consider two

targeb with equal ampliMe. With elwation angles of p, - 4oo ,),= ioo 8r.d elwation angle of

dr = 30o t e , - 40o with SNR of 40dB. The problem is solved usrng equation 19 for the elevation

mgles.

{O 60 -40 -n

Fig1.26r DOAestimation forthe Elevation oftwo sounees
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As shown in figure 4.26the elevation ofthe targets is rcsolved. Then equation 20 is solved

for o . It is obseryed that since the location of the targeb aligned with the rcsolution of the

grid but the value offfre proposed ar does not. Using the suggested grid rcfinement method

based on the distribution of the source energy the value of o is estimated. Then with the

hclp of eqnation 2l the azimuth angles arc estimated which irc d, - zp.gln and ot - 4o o2o .
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CHAPTER5

Introduction

In this chapter we accumulate the theory presented in the prweding chapers and apply it

b MIMO FDA rada$. lve establistr technique for the application of comp,ressive sensing

for MMO FDA radars. In prcviors chapter we considercd two tlpes of noises which was

Impulsive noise and Gaussian noise. As mentioned earlier a filtering stage is added for data

conditioning to improve the dercction in the presence of noise. Similarly, the optimization

mettrod fm grid re,finerrent is us€d for accurately estimating the parameters of ttre target.

The word MIMO stands forMultiple Input and Multiple Output. The concept behind it is

wavefmrn diversity. Wherp differrent antenna elemenB transmit different waveforms. In

certain condition it provides superiority as compared to Phase array radas. This concept

is employed in radars and have many applications. FDA radars have innigued researclrers

for application in SAR (syntlraic Ap€rtur€ radar) and many more application where

frequency diversity is ryplied at the antenna elements. The FDA radar have a range and

angle dependent beam pattem. Several techniques have been presented to decouple the

informatio,n. Similarly, FDA -MMo radar have been suggested to accommodate the

advantages of both the FDA and the MIMO radar. One of the methods for dcoupling of

the angle and the range is double pulse method suggested by [ll]. kr ttris method two

pulses are transmitted. kr the first pulse frequency divemsity is not employed" It acts as a

simple MIMO radar where ttre angle of the target is estimated. For the next pulse frequency
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diversity is employed. Since the information about the angle of ttre target is know the range

is estimaEd.

lVe errploy compressive sensing technique for MIMO FDA radar using sub arrays in the

receive mode only. The parameters of the target arc estirnated accurately. In the next

section we rwisit the concept of MMO-FDA radar and thcn we inroduce the proposed

architecturp and the implementation of the compressive sensing for MMO-FDA radar.

5.1 MIMO FDA Radar
Let us considtr a collocated anEnna array. Consist of M transmitting elements and il
elementr. lVe consid€r a ULA. The ULA can be divid€d in to mansmitting and receiving

anay. Similarly it can be arranged in to subarray. Irt us consider the signal transrnitted by

0le zr " ant€nna elerrent given in eqtration l.

s.(r) = ff ,.(t7st2'!-t'r
(l)

(2)

(3)

lvhere "f, is the frequency componmt for the rn '' ant€nna element which is

f.= fo+1n-l)Arf m =1,2,3...,M

Similarly' e is energy and , ttre waveform of the transmitted signal. The waveform of

each tansmitting antenna elernent is orttrogonal. As shown in the equation given below

llttll'tt - tlst2'vt'-^"d, = o m * n

otherw ise

I )vtl'u)at = r
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[,et us consider fre space loss. The echo signal received by ttre

ele,rrent is given as

z" rtceiving antenna

t,(t) = irffrru -t..t - t, 
^1, """t-+ 

t. -tt'-r-,'t-.t
(4)

In the above equation 6 is the reflection coelficient arnd L.. is the doppler Arequency. The

rcceive tfune delays are given as

,.., =!I, - dr(m- l)sind]

,,., = ![r - t!*(n- l)sind]

In the above oquation dt and d. is the intcreleinat spacing betrveen in the hansmitting

and the receiving antenna elements. On the received side the signal is down converted

passd through a rnatctr filter and converted in digial domain usrng an ADC (Analog to

Digital Conrrerter) for firtherprocessing. The signal is passed through tr numberofmatch

filter which is equal to the number of the anEnna elerrqrtr. After match filtering ttle llr "

output of the z" antenna element is given as

doppler fr,equency can be estimated using /, ="'/^,. similarly, thc hansmit and the

,,,. . 
[#,et2r 

r.tt-r.te-'*4t'-'-tttttc+ 
"('-IttEe 

t

. 
ff 

, ", 
2' r, t t-rot 

e- 
t tr L' 

r- 
t t' \' -tt' 

rt 
zt 4t t t' -r 

"r'r'+ " 
(r-r)tr!' I

(5)

(6)
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The output of tlre above equation can be written as

- ,12 !4 1ltlI.trotl.

Q)Ir
I

I

t'
la l.

,.=,lT€1.

t.
I

I

le
- trrtr -rr!,+ t:rttr -rrroo ic"j

This can be upmessed as

a(r ,0 )

Wherc ae,ot and ,(a) arcr€,pses€nHas

Ir
| - ,r.!,, rr,!.,,n"

i" ' t'

t.
I

t.
t.
I

| -rr,fr-rl{'+ r:'(u-tttrr!r,
le

t2t 
lJltt

b(01 =ll,e 2' ,""'. ,e

Now let us considcr the double pulse solution to the range angle ambiguity in FDA M114O

radar' As it is shown in the above equation ttrat the range and the angle ar€ coupld

together. A number of mettrods have been develo@ to decouple ttre rurge and the angle

*,=1r ,yl,...... ,r,L)' = ffrorrrc
(8)

(e)

a(r,0 ) =

.J

,2.til4rll-nrot.
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information. One of the methods is double pulse metrod. kr double pulse method two pulse

arc hansmittd such that in the first pulse ttrcrc is no ftrequency inctement anrmg the

ant€mns elenrents while in the seond pulse there is a @uency increment among the

ant€nna ele,ments.

5.1 Pnoposed Solution

We proposed a solution for the implenrentation of compressirre sensing for FDA MIMO

using double pulse method. The double pulse method is usod to decouple the range and ttre

angle information in FDA MIMO radars. We use sub anay in the rccive mode. Using

subarray further improves the SNR and more robrust against the noises. Different subarray

archibctures are present. A b,riefrevierv of the subanays used is as follows.

firere is different configuration of subarrays tsed. However, the most common of them

are contigtroru and overlapped subarrays. As shown below. If we have a large number of

elernents in an array. Tha applying phase shift€r and attenuatq at the elenrent lwel is

very €xpensive and diffcult to conhol. Therefo,re, the anay is divid€d into subarrays and

the beamforming is applied at the subarray. Howwer this scheme gives rise to gating

lotres.
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Fig 5.1: Subarray stnrctrrr€

Next in consideration is the overlapped subarray. It produces a flat-topped sec'tor pattqn

with low sidelobes. It zuppresses the grating lobes. It has applications, where it is required

fp minimize the number of contnols to steer the beam. Howwer, the architecture of an

overlappod subarray antennas includcs many splitting/combining ratios.

A tpical desUn of ovulapped subanay is given in tl12] as shovm in figrre 5.2. Which

shows a typical linear overlapped subarray with a 3:l overlap ratio. lVith 4:l combiner.

The output combiner gets its signal ftom thrce different contiguous anays. Taylor tapping

is usually used to firther suppras the side lobes. In general, some of the advantages of

the contiguous subanays is roduced number of phase shifte,ls, Analog beamformer

implementation but with high narow band peak sidelobes and wideband Sating lobes.

Whereas in overlapped subanrays we have the advantage of low sidelob€ performancg aod

it also sulrpresses the wideband Sating lobes.
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Fig 5.2: Subarray architecturc

one of the main advantages of the FDA radar is that there is no need for the phase shifter.

As digital phase shifter infioduces quantization enror, which creates beam pointing error

and increases the sidelobe levels. Whereas control of the fequency is easier. The proposed

architecturc for the implcmenation of the compressive sensing for FDA MMo is as

follows

f2

TransmitArray

L!
fi

/

/

/
fir

78



SubAmy#2

I
SubArry#l

o
I

PlF
Proccitirq
F ltcring

hF
noccsdng
F lenng

Prc
Ploccs!ing
frltcring

PrF
Pioccs$ng
Ftltcnng

IT J
M
FI

Meh
FilEr

I r,rrt r,

Lo'*
It atch
Fihcr

[ctt
hcrI T-

Compressive Sensing Framework & Optimized
Grid rrefinement

Fig5.3: CS architectur€ fon FDA MIMO radar

Let us consider for simplicity that the roceive antenna array is divid€d in to trro zubarrays.

This can be genenalized for more. Similarly, initially we will consider a single snry shot

poblem. This can be fi[ther extqrded for multiple snapshot case as show]r in the prwiogs

chryters. The receive antenna anay is divid€d in to two zubarnays. fts signal received by

each zubanay afterma&h filt€ring is given as

xt= AtS + N

xz= AzS + N
(r0)

H€le xrand rrarethesignalreceivebythesubarrap. Ar and Ararethearrayfactorof

the corresponding array factor. The array factor in the prrwious section is dcrived which

modified forthe subanay ant€nna anay as follows.
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A, = br(g)@ t(O,r)

f rr.!.,.e 12.\* -z1rr.o1f
b,(0) = ll.e '. ...... ,r t- 

i

L

Similarly A, is definedas

Ar = br(O)O t(o,rt (lZ)
I tzrtlrr.t tt.Lt.t ,zr\, -rtrr."1l

br = l c '. ." t. 
,...... ,? r.'- "-- 

il-.t
In the above Gquation the toal numhr of the ant€nm elqncnts arc M. fire size of the

subanay at thc overlap ratio is up to the designer. ftr ttre above oquation the size of the

subarray is P.

Now as discussed that we have selected double pulse sceirario. The first pulse is transmitted

without any frequency increrne,nt. In this case the receive equation after march frltering by

each sub anayis given as

X.r=A.rS.r#N.r
X.r=A.rS.rtN.r

(13)

In the above equation r€prescNrt the received signal with r€spect to the subarray. A., and

A., ar€ the respective steering vector of the subarray which are given as

A ., = fa.r(0 r1. a.r(0 r), a,r(0 rl ;.. ... . a.r(0 rll'
A ., = la. r(0 r), a.r(0, l. a, r(0 r1.... ... . a. r(e, )lt

(t l)

(14)

Where o.t = a,, @ D, and eo2 = a,tg D, . The new transmitting steering vector is

given as

f-- ,:r1rrrd, t2tltrtt, 1lrrlr -trlrrr!. I (15)1.,=fl,c t ,c I -f.....,c r'-',...... ,2 
l

EO



lVis the guassian noise il e 10,o"r). ,l,and Azur- the steering vector of the respective

subarrays. The closs-covariance rnatrix betrreen ttre data vecton of the nvo sub arrays.

wlrcr€ as x,,= E[s s 
/ 

l= diag 11o,r,o, ;.. ,rr'l) .In the vcctor form it can be vritten as

z =vcc(R,)-A-R.,+o]I (17)

As it is seen that the vectorz consists ofvirtual anay. Tlrcrefore, we take in to consideration

the tue position of fire artay the receirred vector after removing the virtual elerrent position

is given as

z =vcc(R,) = A R.. +6tI (18)

Now we look in to the implerrentation of the comprressive sensing for the received signal

vector' As in the previous chaper we have mentioned that to solve a spa$e solution we

use /, regularization. However it is important to select the dictionary for the above

problem. As mentioned earlier we select an over co,mplete dictionary such that the received

signal is sparse in that domain. Let us suppose that we select r as the dictionary such that

fr6lu'ttr. In th€ absence of noise the compressive sensing fram*rork to the sparse

solution is given as

n,,=e lx,xi l
R-=A ,R,,A! + o'z,I

i= miallz-nr lll.rhll,

Howwer in the preseirce of noise the above equation is givan as

(16)

(le)

il

'n,n ll'll, "r ll , - n, ll; . " (20)



Now la us considq a linear ant€dra array. It corsist of total 10 anteona eleme,lrts. As

mentioned earlier we are using dorble pulse melhod. Where the first pulse does not contain

frequeircy incre,ment among the antenna elements. In the prrwious compressive sensing is

applied for single map shot and multiple snry shot. The signal in multiple snap shot is

more robust against noise as a prc prccessi4g stage is added for Gagssian as well as

Iryulsive noise. The sig"al is pass througfu match filter first. For simplicrty we consider

that the array is split into to subarray. Each sub array consists of 5 autenna element and

they are overlapped. Such the first and the last antenna element is not shar€d among them.

Next in figure 5.4 we estimarc x fon a simple LJLA with 10 element and fon a sgbanay

defined above.

--*-UtA
-+-Sub

-25 -20

Ncise dB

Fig 5.4: comparison of z calculated for uLA md subanay strtrcture

The scelrario is tested to two sources at an angel of 3dand +daegree. The horizontal

Iine represents the nalues at different noise which is addod to the signal ftom the sou,pes

which is at 0dB. It is clear frrom figrre 5.4 that the proposed method for subarray is more
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rcbust against noise. Nex! we oompare the proposed algorithm with 
" 

norm minimization

method in figurre 5.5.
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x'ig 5.5: comparison ofproposed solution with ,'norm minimization

In figur€ 5.5 we calctrlate the mean squar€ error (MSE) of the DOA estimation between

the proposod solution and t'norm minimization method. Both using singte time sample.

It is clear that the MSE of the Proposed method is far less than the traditional ,,nonn

rninimization method. Nex! we consider a scenario of the detection of the proposod

melhodforDOAestirnationofmultipletargets atdiffereirtnoise lwels addedto the signal.

-5-r0-t5a5
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Fig 5.6: Detection of two sources with added noise of -40dB
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Fig 5.7: Det€ction of two sourc€s with added noise of -20dB

Figure 5.6 and figrre 5.7 shows the detection oftwo soutc€s. The sogrces in figure 5.6 are

at an angle of 300 and f o'with noise lwel of -40d8 added to the source sigrrd at 0dB. While
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in figur€5.7 the sources are at t oo and lo'with noise lwel of -20dB addod. The sourccs ane

estimated.

o
Angb

Fig 5.t: Detection of two souues with added noise of -l0dB
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trIg 5.9: Detection of two sources with added noise of -5dB
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The figure 5.8 and figure 5.9 shows the detection of two sources with the noise power of -

t0dB and -5d8.
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tr'ig 5.10: Detection of three sources with added noise of -40d8

X'lg 5.11: Detection of three sources with added noise of -20dB
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In figure 5.10 od figurc 5.11 shows the daection ofthree sources in the presence ofnoise

of .4OdB and -20d8. The locatio,n of the sources in the angle domain is resolved. Similarly

i in figtrr€ 5.12 shows the detection of tbree soupes with noise of -5dB. The location of the

soutces is resolved howeverdue to noise there are certain spikes, but they are low and can

be ignored after p,ropo thrEsholding.

-r00
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E

€0 60 40 ao o 20 40 60 80 100
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Fig 5.12: Detection of three sources with added noise of -5dB
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f ig5.13: Detection of fou sources with added noise of -40d8
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We consider the situation where the location of the souoe does not coincide with the

definition of the grid resolution" As initiallywe sulrlxrse the resolution ofthe grid is l0 and

the location of the souree is such tbat it is not in the grld. It is in between the grid then in

such cases the ampliMe ofthe source detectd is distributed anoqg the adjacent grid

Fig 5.15: Ambiguity due to mismarch of two sourpes

;20 0 20 4{r 60 E0 lm
Angle
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Fig 5.16: Ambiguity due to mismatch of two soupes

Asshowninfigrue 5.l5andfigur€5.16.Theyaretwosourcesatanglessf -ro.ro6sd zo.s'

. However four targets are daected which are at angles o1 -100,-e0 and at angle of 2oo,2tn

as shoum in figrre 19. Similarly for figure 20 sources at location sf -ro.s'6sl ro soslp

detected at angles of -100'-e0 *6 t00,1 lo . It is notod that since grid resolution dcfined is r.

and the location of the sources does not coincidcs with the grid resolution therefore this

created ambiguity about the location of the sounees and the poryer of the sourtes detected

is distibutod amoqg the adjacent grid as shoum in figrre 5.16 and figrre 5.I7. Next in

figur€ 2l we show the gid mismaEh problem for thr€e sources.
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I'ig 5.17 Ambiguitydue to mismatch of three sounoes

As shoum in figrre 21 there are three sourres at location of -50.50'30.50 6a6 ss.so . The grid

resolution of r' is defined. Total of six targeb are detected due to grid misrnatchproblem.

Grid ltfisntte.h proble,m is solved using the algorithm dcfined before Using the

optimization method d€find in the previous chapter the tnre position of the target can be

estinated as shown in table l.

Tablel:

Amplitude &
Locetion

Grtd
Reroludon lo

Grld
Reroludon 0.50

trd
Rcmludon0.lo

Anpltndc

Sourcc # I
=[

Ar 0.5(b5
Ar 0.gx;t Al 0.wt

Al 0..4t73

Source # 2
=l

tu 0.4t73
A2 0.99et A2 0.9E61

A. 0.5(b5

Locedon

-10.50
0L -tw

0L -10.50 0L -10.50
e2 -9

10.50
03 l(P

02 10.50 02 10.50
e1 llu

Flhcm Fr=llll3t{ Fz=1.9{R4 F *l.9lB4
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Oncetheangle is estimatedwecometo therangeestimationprroblern. As mentionedearlier

that in double pulse pnroblem two pulses are transmitted onc without the frequency

increnrent and the other with frequency incrernent. The range of thc target is estimated

using the secondpulse which is paiodic in range and angle.

The output of the array after matrh filtering can be representcd using eqrution 8. Since t1e

information about the angle of the target have been extracEd then to estimate the range of

the targst then an overcomplete set of tlre ranges of the target is madc which can be

rcpesentedas r=[r,,rr,""",r.]where wisthedisoetizationpointoftherangedonrain.

The range dornain is discretized between lrt%1. We stack the range set corresponding

to the number r which is the nunrber of the sources. That can be given as

; = l-r"r,ur'r"1,21r"' t1t,,y 1r"' "' r (r,..ry r r1a,r) r "' "' rrrr,r rf

The sparse signal model can be given as

(21)

Xr-A,ts.r+N
Xr-Arrsr2+N

(22)

Wh€re I A.r and A., is given as

A,, = [r., (0,, r, ), 1., (0,, r, )r... ... rt,, (0., r,., )rr,, (0., r. )]
A,, = [r,r(0, rt1 ),r..(0; r t, )r... ... rt,r(0*, r,-, )rt.,(0., r. )]

whichcanbefurttrergivorasl,,(0.,r.)=r,.,(0.)@r.11(0y,r,)similarlyforr.,

(23)
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Next we implement the above discussion for estimation of thc mnge. We consider a siqgle

source at an angle of 3d and mnge of 3000 meterc. Using double pulse M114O FDA we

fint estimarc the location of the sorroe next using frequency increment among the antenna

elements estimate the range of the source using the above discussed equation.

By implemelrting ttre equations and using grid refinement method the range of the sourpe

is estimated as shown in figure

Fig 5.18: Range estimation sf singls sourpe
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CIIAPTER 6

Conclusion

In this diss€rtation we pn pose an application of compressive sensing for M1yO FDA

radar. Wh€r€ we estimate thc parameters of a target. The paramcters that are estimated are

range and angle of ttre target. Comprressivc sensing using single snapshot as well as multi

snap shot is considerod. Lritially wc establish compressive sensing problem for estirnating

tlre angle of anivrl of the taryet. Different array stnrcture linear, sparse linear and L shaped

for estimating the anglc of arival of the target in one dimension as well as two dimensions

is studied- It is observed ttrat thc grid or resolution of the dicionary plays as important role.

If the location of the target docs not coincide with resolution of the gr4 rhen the solution

creates grid mismabh proble'm" Where aa ambiguity is created due to the locatio,n of the

targEt. To renrove this ambiguity an opimization mettrod is de,velo@ for estimating the

exact grid resolution for the detection of the target. Similarly noise plays an important role

in thc estimation of the targEts. Two tlpes of noises are considercd. One is Gaussian and

the other is impulsive noise. A pre processing stage is included before the application of

the comp'ressive se,nsing. The pre processing stage rcmoves the effect of the impglsive

noisc and also rnake thc systerr more robrust sgninsl the Gausian noise.

It is obs€n/ed in the MIMO FDA radar the range and the angle information is coupled. To

docouple the range and the angle information double pulse method is errployed. Wlere the

first pulse is ransmitted without tlre frrequancy incrememt among the antenna elernents and

the socond pulse is transmitted with the fr,equency increnrent among the antenna elements.

Sub array antenna stnrcture in the receive domain is suggested. For simplicity two sub

array are considered. The received signal from each subarray is passed through a pre

prooessing stage and then a match filter. The compressive sensing is applied on each pglse



separately. In ord€r to make it multi sample ttren differeirt pulses are hansmitted and each

pulses i.e with frequency increment and without frrequency incremmt is staggerred

separately. First th€ angle information is extracted. The optimization algorithrn dsvcloped

is used for rcmoving the ambiguity about ttre location of the sourucs. Once tlre angle

information has bqt exhacted ttre range information using compressive sensing from the

second pulse which have frequency increnrent among the antenna element is exhacted. In

short we devetoped a CS framervort for the DOA estimation. The problem of grid

refinement is addrcsseq and a novel mettrod is presented for solving it. The problerr is

explored for sparse antenna array using linear and L shaped ant€ntra array, The grid

refinerneirt is applied.

The work is appliod for subarray MIMO FDA radar. Linear case is consider€d o,nly. Furttrer

afiay structur€ can be explored for future work.

tr'ufure YYork

l- The compressive sensing prroblem for DOA estimation is devel@ for linear,

sparse linearandsparse L shaped antqma array. The technique dcveloped can

be furttrer qtended for different antenna array like circular or r€ctangular.

2- To make the system robut a pEprccessing stage based on weigfued moving

avqiage filter and MDCO to remove Gaussian as well as Impulsive noise.

Furth€r techniques formakingthe system rohst can be explored.

3' Multipath effect is not consider€d. Strrdy of multipath and mettrods can be

developed to renrove therr.

4- The multipath influence the estimation of the parameters. In order to rcmove

multipath different algorithm are used with comprcssive sensing like ICA

(hdependent Component Analysis
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