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Abstract

Present research aims to solve the grid load-balancing problem using Genetic
Algorithms.

Grid computing has emerged as a leading research area. Load balancing in grid
computation is an NP-complete problem. GA based scheduling algorithm named
“Genetic Load and Time Prediction Technique for Dynamic Load Balancing in Grid
Computing” is proposed for better resource optimization and task scheduling. The
algorithm has been tested on a multi-node grid environment and the experimental
results shows that this new technique can lead to significant performance gain in
various applications.

Experimental results also show that GA outperforms other algorithms. The research

also highlights some future areas for research.
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Chapter 1 Introduction

INTRODUCTION

Due to such a tremendous growth in technology, computational powers are reaching
to their saturation and demand from software industry is increasing day by day. In
order to address the sheer scale and complexity of the issues faced in pervasive
computing; it is necessary that software engineers achieve new competences that are
beyond those, which are required in past. In order to gain such computational powers,
is required a system that divides a job into smaller tasks which can run simultaneously
on multiple systems. Thus getting high computational powers and less execution time
or in other words you can simply say the solution lies in distributed computing.
Distributed computing is the next step in computer progress, where computers are not
only networked but also smartly distribute their workload across each computer so
that they stay busy and don't squander the resources. As shown in figure 1-1 in
distributed computing environment task is distributed among multiple computers and
thus leads to significant performance gain. This setup rivals even the fastest
commercial supercomputers built by companies like IBM or Cray. When you
combine the concept of distributed computing with the tens of millions of computers
connected to the Intemet, you've got the fastest computer on Earth.

30x1 =030

30x2 =060

30x3 =090

30x4=120

30x5=150 30x1=030 30x4=120 30x7=210
30x6=180 30x2=060 30x5=150 30 x 8 =240
30x7=210 30x3=090 30x6 =180 30x9=270
30x8 =240 Done Done Done
30x9=270

One Computer could handle this If multiple computers split the work up, they would get done more
work, but would process it slowly. quickly than one computer alone. This is Distributed Computing

Fig. 1-1 Difference between Distributed Computing
and Non-Distributed Computing

The demand for autonomous resource management for distributed computing
resources has increased in recent years. Distributed computing requires an efficient
and powerful communication mechanism between applications running on different
hosts and networks.

There are many different types of distributed computing systems and many challenges
to overcome in successfully designing one. The main goal of a distributed computing
system is to connect users and resources in a transparent, open, and scalable way.
Ideally this arrangement is drastically more fault tolerant and more powerful than
many combinations of stand-alone computer systems. An example of a distributed

GA Based Load and Time Prediction Technique for Dynamic Load Balancing



Chapter | Introduction

system is the World Wide Web. As you are reading a web page, you are actually
using the distributed system that comprises the site. As you are browsing the web,
your web browser running on your own computer communicates with different web
servers that provide web pages. Possibly, your browser uses a proxy server to access
the web contents stored on web servers faster and more securely. To find these
servers, it also uses the distributed domain name system. Your web browser
communicates with all of these servers over the internet via a system of routers which
are themselves part of a large distributed system.

At a lower level, it is necessary to interconnect multiple CPUs with some sort of
network, regardless of that network being printed onto a circuit board or made up of
several loosely-coupled devices and cables. At a higher level, it is necessary to
interconnect processes running on those CPUs with some sort of communication
system. Various hardware and software architectures exist that are usually used for
distributed computing for example Client-Server architecture, 3-Tier architecture, N-
Tier architecture, Cluster Computing etc. In Client-Server Computing, smart client
code contacts the server for data, then formats and displays it to the user. Input at the
client is committed back to the server when it represents a permanent change. Three
tier systems move the client intelligence to a middle tier so that stateless clients can be
used. This simplifies application deployment. Most web applications are 3-Tier. N-
Tier refers typically to web applications which further forward their requests to other
enterprise services. This type of application is the one most responsible for the
success of application servers. Cluster Computing refers typically to a set of highly
integrated machines that run the same process in parallel, subdividing the task in parts
that are made individually by each one, and then put back together to make the final
result.

Although clustering can provide significant improvements in total computing power,
a cluster remains a dedicated facility, built at a single location. Financial, political and
technical constraints place limits on how large such systems can become. For
example, ASCI White cost $110 million and needed an expensive new building [1].
Few individual institutions or research groups can afford this level of investment.
Cluster computing is not truly distributed computing. Cluster computing ties together
similar types of resources in a data center with similar operating systems through
special purpose connectors to deliver a specific application. Grid computing, in
contrast, offers heterogeneity by supporting different software without the need for
special connectors. Grid computing elevates these clusters to the next level by
connecting multiple clusters over geographically dispersed areas for enhanced
collaboration and resource sharing.

1.1 GRID COMPUTING

Surendra Reddy [2] defines Grid computing as an emerging technology that
transforms a computer infrastructure into an integrated, pervasive virtual environment
for dynamic collaboration and shared resources anywhere in the world providing
users, especially in science, with unprecedented computing power, services and
information. For scientists planning a research career, grid computing offers the
prospect of much more computing power in a collaborative environment at a small
fraction of the cost than before. Grid computing are a technology closely related to
cluster computing. The key differences between grids and traditional clusters are that
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grids connect collections of computers which do not fully trust each other, and hence
operate more like a computing utility than like a single computer. In addition, grids
typically support more heterogeneous collections than are commonly supported in
clusters.

Grid computing is optimised for workloads, which consist of many independent jobs
or packets of work, which do not have to share data between the jobs during the
computation process. Grids serve to manage the allocation of jobs to computers,
which will perform the work independently of the rest of the grid. All the nodes may
share resources such as storage, but intermediate results of one job do not affect other
jobs in progress on other nodes of the grid.

Grid computing is based on three simple concepts:
» Virtualization, severing the hard-coded association of resources to systems
e Resource allocation and management, dynamically allocating resources on
demand, and managing them
e Provisioning, configuring resources whenever and wherever needed.

Grid computing adapts to and dynamically aligns with research or business needs; it
takes advantage of widespread spare computing capacity and the ubiquity of the
Internet, which can tie these resources together. But the advantages of grid computing
don't stop with this dynamic alignment. Today, applications are independently
constructed, custom configured, and sized for peak load. That peak load may only
occur once a month, once a quarter, or even once a year, leaving resources under
utilized most of the time. This under utilization is accepted as a trade off and forces
people to choose between having enough scalability for peak loads and not buying too
much so that they've invested a lot of money in idle capacity. This is the problem that
grid computing solves.

Dynamic scaling is another basic component of grid computing based on the idea that
because the grid computer infrastructure can be built of small, standard,
interchangeable components, computer users can start small and then simply add
more components as they scale. This means that grid computing can happen
incrementally

1.1.1 GRID Vs. CLUSTER COMPUTING

According to Wikipedia Encyclopedia [3] many people confuse Grid computing with
cluster-based computing, but cluster computing is not truly distributed computing.
Cluster computing ties together similar types of resources in a data center with similar
operating systems through special purpose connectors to deliver a specific
application. Grid computing, in contrast, offers heterogeneity by supporting different
software without the need for special connectors.

The key difference as mentioned in Wikipedia Encyclopedia [3] between Grids and
traditional clusters are that Grids connect collections of computers which do not fully
trust each other, and hence operate more like a computing utility than like a single
computer. In addition, grids typically support more heterogeneous collections than are
commonly supported in clusters.

Further more Grids are dynamic in nature, while clusters typically contain a static
number of processors. Grids are distributed over local or wide area networks, and can
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also dynamically adding and removing resources without interrupting the application
services.

1.1.2 BENEFITS OF GRID COMPUTING

According to Matt Haynos [4] the impact of leveraging Grid computing will be
dramatic. With the inherent ability of a Grid computing to provide nearly 100%
uptime at an expected fraction of the costs of managing today's more static and fixed
environment, both enterprises and institutional service providers can reap tremendous
benefits. Following benefits of grid computing are listed on “cronos e-business
integrator” web site [5]:

1 Grid computing enables organizations to aggregate resources within an entire IT
infrastructure no matter where in the world they are located. It eliminates
situations where one site is running on maximum capacity, while others have
cycles to spare.
Organizations can dramatically improve the quality and speed of the products
and services they deliver, while reducing IT costs by enabling transparent
collaboration and resource sharing.

2 Grid computing enables companies to access and share remote databases. This
is especially beneficial to the life sciences and research communities, where
enormous volumes of data are generated and analyzed during any given day.

3 Grid computing enables widely dispersed organizations to easily collaborate on
projects by creating the ability to share everything from software applications
and data, to engineering blueprints.

4  Grid computing can create a more robust and resilient IT infrastructure better
able to respond to minor or major disasters.

S5 A grid can hamness the idle processing cycles that are available in desktop PCs
located in various locations across multiple time zones. For example, PCs that
would typically remain idle overnight at a company’s Asian manufacturing
plant could be utilized during the day by its European operations.

1.2 LOAD BALANCING

In distributed computing systems, scheduling and load balancing techniques are
critical issues for achieving good performance improvement. Load balancing is
defined as techniques which aim to spread tasks among the processors in a parallel
processor to avoid some processors being idle while others have tasks queuing for
execution. Load balancing may be performed either by heavily loaded processors
(with many tasks in their queues) sending tasks to other processors, by idle processors
requesting work from others, by some centralized task distribution mechanism, or
some combination of these. Some systems allow tasks to be moved after they have
started executing ("task migration") others do not.

GA Based Load and Time Prediction Technique for Dynamic Load Balancing
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Load balancing techniques assume practically no information/knowledge at compile
time of the runtime parameters of an application, such as task execution times or
communication delays. It mainly relies on the runtime distribution of processes
among Processing Elements (PE) to achieve defined performance goals. Note that
while load balancing refers to the redistribution as assigning of processes to different

PE's, load sharing refers to the sharing of the systems processing power among the
tasks.

1.2.1 DIFFERENT LOAD BALANCING PROBLEMS

Load balancing is very important for distributed applications. Making sure that each
host is doing its fair share of work can be a real performance enhancer. Simplest key
question is when the certain information about the load-balancing problem is known.
Mainly load balancing problems differs in three areas, which are:

TASKS COSTS

Task Cost means, time the task will take to execute completely. The problem is, in the
distributed and parallel task execution environment we don’t know and we can’t even
assume that either all the task have equal cost. Definitely not all the tasks can have
equal cost so the natural question is when the task cost is going know before starting
the task or at the time the task is created or only at the time the task ends, all these are
the task cost problem which are faced during the load balancing. This can easily be
understood by the following task cost spectrum.

TASK DEPENDENCIES

Task Dependencies mean a task is dependent for its execution on some other task.
These dependencies can be either data dependency (e.g. task u requires the results
generated by task v) or some other kind (e.g. task v can’t be executed until task u
completes its execution) of dependency. The problem is, to find out that can all tasks
be run in any order (without any dependencies) or sequence and if not then when
these dependencies will be known, before task starting or when task created or only
when the task ends. Task dependencies can be clearer by the following task
dependency spectrum.

LOCALITY

Locality means, span of the task execution over the distributed and parallel machines
e.g. some tasks have the requirement to run on the local processor only while some
other tasks can run on distributed machines, the question is how far they can be spread
over the machines in the distributed environment in order to gain the parallelism
while keeping in view the communication and other costs and dependencies. The real
problem for the load balancer is that it does not know that when this locality
information about the task will be known to it. This will be understood by the
following locality spectrum.

GA Based Load and Time Prediction Technique for Dynamic Load Balancing
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1.2.2 LOAD BALANCING SOLUTIONS

STATIC LOAD BALANCING

Processes in fixed set are statically assigned to processors, either at compile-time or at
start-up (i.e. partitioning). Avoids the typical 5-20% overhead of load balancing, but
is useless when the problem does not divide cleanly such as for problems involving
irregularly or unpredictability such as: mesh generation, game playing (chess), and
many optimization problems.

The simplest method is static load balancing. In this method, the problem is divided
up and tasks assigned to processors only once. The partitioning may occur before the
job starts, or as an early step in the application. The size and number of tasks can be
varied depending on the processing power of a given machine. On a lightly loaded
network, this scheme can be quite effective.

DYNAMIC LOAD BALANCING

When computational loads vary, a more sophisticated dynamic method of load
balancing is required. The most popular method is called the Pool of Tasks paradigm.
This is typically implemented as a master/slave program where the master manages a
set of tasks. It sends slaves jobs to do as they become idle. This method is used in the
sample program supplied with the distribution. This method is not suited for
applications which require task to task communication, since tasks will start and stop
at arbitrary times. In this case, a third method may be used. At some predetermined
time, all the processes stop; the work loads are then reexamined and redistributed as
needed. Variations of these methods are possible for specific applications.

KEY ISSUES IN THE DYNAMIC LOAD BALANCING

1. Load Measurement - load index is a simple measurement usually based on
counting ready (and executing) processes on a processor. Other factors
(communication, memory requirements, and multiple processors at an SMP
node) are more difficult to address.

2. Information Exchange - the load at a node is meaningful only when compared
to other nodes, often the neighbors. Information exchange may occur in
anticipation of load balancing, may be periodic, or may be based on a
significant change in a node’s load index.

3. Initiation Rule - designed such that benefit exceeds cost. If balancing is
initiated by an overloaded node, then designated as sender-initiated. If
initiated by an under loaded node, then known as receiver-initiated.
Symmetrical policies are also possible.

4. Load Balancing Operation - Defined by having rules for location, distribution,
and selection.

a. Location Rule determines which nodes participate.

b. Distribution Rule determines the redistribution of load among the
participants.

c. Selection Rule determines the processes to move. A non-preemptive
rule moves newly spawned processes that have not progressed on the

GA Based Load and Time Prediction Technique for Dynamic Load Balancing
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node of the parent processor. A preemptive rule can also migrate a
process that has progressed.

For many practical problems it is not necessary to actually migrate processes,
especially when a non-preemptive rule is used. Instead, just data that describes a task
is migrated.

Even though this sub-area of parallel processing has been calied load balancing,
practical cases can often emphasize idleness-avoidance over fairness. Having all
processors busy between load balancing operations is a reasonable goal.

Since load balancing schemes do not incorporate precedence’s between tasks
explicitly, some scenarios may lead to idle processors later in execution. Dynamic
load balancing, however, is usually used in situations where the task graph is not
available in advance. If the information exchange and location rules operate locally,
then the technique is called a nearest-neighbor algorithm.

To move a process several hops, the technique acts as an iterative algorithm. Note that
the iterations only manipulate load indices; only after these have converged does the
redistribution occur.

A direct algorithm does not depend on iteration, but depends on having a
communication system that supports the increased load. Direct algorithms behave as
though the network was a complete graph. Broadcasting and wormhole routing are
useful in supporting direct algorithms, but iterative techniques are still often
preferable in large systems.

1.3 GENETIC ALGORITHMS

Genetic algorithms are a part of evolutionary computing, which is a rapidly growing
area of artificial intelligence. Evolutionary computing began by lifting ideas from
biological evolutionary theory into computer science, and continues to look toward
new biological research findings for inspiration. However, an over enthusiastic
‘biology envy’ can only be to the detriment of both disciplines by masking the
broader potential for two-way intellectual traffic of shared insights and analogizing
from one another [6].

“Genetic algorithms are based on a biological metaphor: They view learning as a
competition among a population of evolving candidate problem solutions. A 'fitness'
function evaluates each solution to decide whether it will contribute to the next
generation of solutions. Then, through operations analogous to gene transfer in sexual
reproduction, the algorithm creates a new population of candidate solutions.”

1.3.1 SIMPLE GENETIC ALGORITHM

Solution to a problem solved by genetic algorithms is evolved. Algorithm is started
with a set of solutions (represented by chromosomes) called population. Solutions
from one population are taken and used to form a new population. This is motivated
by a hope, that the new population will be better than the old one. Solutions which are

GA Based Load and Time Prediction Technique for Dynamic Load Balancing
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selected to form new solutions (offspring) are selected according to their fitness - the
more suitable they are the more chances they have to succeed. This is repeated until
some condition (for example number of populations or improvement of the best
solution) is satisfied.

SEARCH SPACE

If we are solving some problem, we are usually looking for some solution, which will
be the best among others. The space of all feasible solutions (it means objects among
those the desired solution is) is called search space (also state space) as shown in
figure 1-2. Each point in the search space represents one feasible solution. Each
feasible solution can be "marked" by its value or fitness for the problem. We are
looking for our solution, which is one point (or more) among feasible solutions - that
is one point in the search space. The looking for a solution is then equal to a looking
for some extreme (minimum or maximum) in the search space. The search space can
be whole known by the time of solving a problem, but usually we know only a few
points from it and we are generating other points as the process of finding solution
continues.

k il
%Mqﬁw : Y
W e

Fig. 1-2 Example of Search Space

The problem is that the search can be very complicated. One does not know where to
look for the solution and where to start. There are many methods, how to find some
suitable solution (ie. not necessarily the best solution), for example HILL
CLIMBING, TABU SEARCH, SIMULATED ANNEALING and GENETIC
ALGORITHM. The solution found by these methods is often considered as a good
solution, because it is not often possible to prove what is the real optimum?

OUTLINE OF BASIC GENETIC ALGORITHM

1. [Start] Generate random population of » chromosomes (suitable solutions for
the problem)

2. [Fitness] Evaluate the fitness f{x) of each chromosome x in the population

3. [New population] Create a new population by repeating following steps until
the new population is complete

. [Selection] Select two parent chromosomes from a population
according to their fitness (the better fitness, the bigger chance to be
selected)

GA Based Load and Time Prediction Technique for Dynamic Load Balancing 8
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e  [Crossover] Cross over the parents to form a new offspring (children).
If no crossover was performed, offspring is an exact copy of parents.

° [Mutation] Mutate new offspring at each locus (position in
chromosome).

. [Accepting] Place new offspring in a new population
4. [Replace] Use new generated population for a further run of algorithm

5. [Test] If the end condition is satisfied, stop, and return the best solution in
current population

6. [Loop] Go to step 2

SOME COMMENTS

The outline of Basic GA is very general. There are many things that can be
implemented differently in various problems. First question is how fo create
chromosomes, what type of encodings to choose. With this is connected crossover and
mutation, the two basic Operators of GA. Next question is how to select parents for
crossover. This can be done in many ways, but the main idea is to select the better
parents (in hope that the better parents will produce better offspring). Also you may
think, that making new population only by new offspring can cause lost of the best
chromosome from the last population. This is true; hence the so called Elitism is often
used. This means, that at least one best solution is copied without changes to a new
population, so the best solution found can survive to end of run.

1.3.2 OPERATORS OF GA

The performance of a GA is influenced mainly by the following these two operators.
e Crossover
e Mutation

CROSSOVER

After we have decided what encoding we will use, we can make a step to crossover.
Crossover selects genes from parent chromosomes and creates a new offspring.
The simplest way how to do this is to choose randomly some crossover point and
everything before this point is copied from the first parent and then everything after a
crossover point is copied from the second parent.

Crossover can then look like this (] is the crossover point):

Chromosome 1 11011 100100110110

Chromosome 2 11011} 11000011110

GA Based Load and Time Prediction Technique for Dynamic Load Balancing
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Offspring 1 11011 | 11000011110

Offspring 2 11011 | 00100110110

There are other ways to make crossover, for example we can choose more crossover
points. Crossover can be rather complicated and very depends on encoding of the
encoding of chromosome. Specific crossover made for a specific problem can
improve performance of the genetic algorithm.

MUTATION

After a crossover is performed, mutation takes place. Mutation changes randomly
the new offspring. This is to prevent falling all solutions in population into a local
optimum of solved problem. For binary encoding we can switch a few randomly
chosen bits from 1 to 0 or from 0 to 1.

Mutation can then be following:

Original offspring 1 1101111000011110
Original offspring 2 1101100100110110
Mutated offspring 1 1100111000011110
Mutated offspring 2 1101101100110110

The mutation depends on the encoding as well as the crossover. For example when we
are encoding permutations, mutation could be exchanging two genes.

1.3.3 PARAMETERS OF GENETIC ALGORITHMS

CROSSOVER PROBABILITY

Crossover Probability says how often will be crossover performed. If there is no
crossover, offspring is exact copy of parents. If there is a crossover, offspring is made
from parts of parents' chromosome. If crossover probability is 100%, then all
offspring is made by crossover. If it is 0%, whole new generation is made from exact
copies of chromosomes from old. Crossover is made in hope that new chromosomes
will have good parts of old chromosomes and maybe the new chromosomes will be
better. However it is good to leave some part of population survive to next generation.

MUTATION PROBABILITY

Mutation Probability says how often will be parts of chromosome mutated. If there is
no mutation, offspring is taken after crossover (or copy) without any change. If
mutation is performed, part of chromosome is changed. If mutation probability is
100%, whole chromosome is changed, if it is 0%, nothing is changed. Mutation is

GA Based Load and Time Prediction Technique for Dynamic Load Balancing
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made to prevent falling GA into local extreme, but it should not occur very often,
because then GA will in fact change to random search.

OTHER PARAMETERS

There are also some other parameters of GA. One also important parameter is
population size. Population Size says how many chromosomes are in population (in
one generation). If there are too few chromosomes, GAs has a few possibilities to
perform crossover and only a small part of search space is explored. On the other
hand, if there are too many chromosomes, GA slows down. Research shows that after
some limit (which depends mainly on encoding and the problem) it is not useful to
increase population size, because it does not make solving the problem faster

1.3.4 ENCODING OF CHROMOSOMES

Encoding of chromosomes is one of the problems, when you are starting to solve
problem with GA. Encoding very depends on the problem. There are several types of
encoding which are as follows

Binary Encoding
Permutation Encoding
Value Encoding

Tree Encoding

1.3.5 SELECTION

Chromosomes are selected from the population for the crossover. The problem is how
to select these chromosomes. According to Darwin's evolution theory the best ones
should survive and create new offspring. There are many methods how to select the
best chromosomes, for example roulette wheel selection, rank selection, steady state
selection and some others.

1.3.6 ELITISM

When creating new population by crossover and mutation, we have a big chance, that
we will loose the best chromosome. Elitism is name of method, which first copies the
best chromosome (or a few best chromosomes) to new population. The rest is done in
classical way. Elitism can very rapidly increase performance of GA, because it
prevents losing the best found solution.

1.4 MOTIVATION

Thanks to advances in wide-area network technologies and the low cost of computing
resources, Grid computing came into being and is currently an active research area.
One motivation of Grid computing is to aggregate the power of widely distributed
resources, and provide non-trivial services to users. To achieve this goal, an efficient
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Grid scheduling system is an essential part of the Grid which not only schedules the
jobs on grid but also keeps the balance between all resources in terms of their
utilization.

Most of the research on load-balancing focused on static scenarios that, in most of the
cases, employ heuristic methods. However, genetic algorithms have gained immense
popularity over the last few years as a robust and easily adaptable search technique.
The work proposed here investigates how a genetic algorithm can be employed to
solve the dynamic load-balancing problem. A dynamic load-balancing algorithm is
developed whereby optimal or near-optimal task allocations can “evolve” during the
operation of the parallel computing system.

GA Based Load and Time Prediction Technique for Dynamic Load Balancing
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2. LITERATURE SURVEY

Since our research is focused on three different paradigms namely Genetic
Algorithms, Load Balancing and Grid Computing therefore the following paragraphs
gradually builds the Literature survey in the same mode.

2.1 LOAD BALANCING IN GRID COMPUTING

Grid computing has become an increasingly popular solution to optimize resource
allocation in highly charged IT environments. In research study of M. Wieczorek et
al. [6] three different algorithms (namely HEFT, Genetic and simple Myopic
algorithm) are compared in terms of incremental versus full-graph scheduling for
balanced versus unbalanced workflows. The results provided by authors shows that
HEFT algorithm works better than the other two algorithms. But the future work of
M. Wieczorek et al. shows that it does not consider the impact of typical network
scenarios, comparison is done on homogeneous cluster nodes and last but not least no
communication is considered.

D.P. Spooner et al. [7] primarily focus on implementing full operability with Globus
to enable performance-based ‘global’ scheduling in addition to ‘local’ scheduling and
for that purpose the authors primarily concentrated on the iterative heuristic algorithm
and performance prediction techniques that have been developed for the local
schedulers. But the main flaw in [7] is that its work is blocked with Globus toolkit
only and will not be helpful if other grid projects like Nimrod [8], NetSolve [9],
AppleS [10], Ninf [11], Condor [12], LSF [13] and Grid Resource broker (GRB) [14]
are in use. Further more the system is tested on homogeneous cluster nodes with non
real world data and embarrassingly parallel jobs and scheduling cost is not considered
for evaluating system performance.

J. Cao et al. [15] addresses grid load balancing issues using a combination of
intelligent agents and multi-agent approaches. In this research study, for local grid
load balancing the iterative heuristic algorithm is proven to be more efficient than the
first-come-first-served algorithm and for global grid load balancing a peer-to-peer
service advertisement and discovery technique is proven to be effective. The
experimental results proves that the use of a distributed agent strategy can reduce the
network overhead significantly and make the system scale well rather than using a
centralized control, as well as achieving a reasonable good resource utilization and
meeting application execution deadlines. This research work is the initial attempt
towards a distributed framework for building such and intelligent grid environment.
The extensions of the agent framework with new features e.g automatic QoS
negotiation, self-organizing coordination, semantic integration, knowledge-based
reasoning and ontology-based service brokering has been identified but not yet
implement in the research.

R. Buyya et al. [16] addressed the hybridization of the three popular nature’s
heuristics namely Genetic Algorithms (GA), Simulated Annealing (SA) and Tabu
Search (TS) for dynamic job scheduling on large-scale distributed systems. The
comparison of these 3 hybrid algorithms that is GA-SA and GA-TS with the pure GA
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was done and gain in efficiency of GA (in case of GA-TS) and better convergence (in
case of GA-SA) was claimed but no experimental results are shown to prove the claim
of the paper.

A novel mapping heuristic based on the cross-entropy (CE) method, for mapping a set
of interacting tasks of a parallel application onto a heterogeneous computing platform,
was proposed by S. Sanyal and S. K. Das [17]. The experimental results on 50 nodes
resource graph outperforms the GA over a factor of about 38. The only shortcoming
which is intended to remove as a future work in this research study is the slowness of
cross-entropy method which is inherently slow in its execution and the fact that this
slowness of CE in generating the appropriate mapping can decrease the performance
gain for the large set of tasks.

R. A. Moreno [18] had done the detailed analysis of main tasks that the grid resource
broker has to tackle (like resource discovery and selection, job scheduling, job
monitoring and migration etc.) in his research work, and different approaches to
perform these tasks is carefully examined. Finally, the problem of dynamic resource
brokering in an economic grid environment is discussed and new re-scheduling
policies for job migration under cost constraints are proposed with the promise that
economy-based migration policies can significantly reduce the final price that the user
pays for the resources used, without compromising performance.

According to S. Wagner et al [19] in contrast to other existing grid computing or
parallel optimization projects, Heuristic-Lab Grid offers the possibility of rapid and
easy use of existing optimization algorithms and problems in a parallel way without
the need of complex installation and maintenance. In this research study authors
present a new environment for parallel heuristic optimization based upon the already
proposed Heuristic-Lab. The Integration of some more parallel heuristic optimization
algorithms, new project dedicated to a common problem concerning heuristic
optimization and the adjustment of parameter values are planned for future work.

GA Based Load and Time Prediction Technique for Dynamic Load Balancing
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2.2 GENETIC ALGORITHMS FOR LOAD
BALANCING

In research paper of N. Navet et al. [20] a new genetic algorithms based technique is
proposed to best set the scheduling of tasks according to a chosen criterion such as the
minimizing of end-of-execution jitter or the maximizing of the freshness or the
consistency of a set of input data. The proposed GA makes use of the schedule-ability
analysis, as well as simulation because of the stochastic measurements required by the
fitness criteria. The only little shortcoming seems to present in this research work is
that at present only feasible schedules are allowed in the population of solutions and
the possibility to allow non-feasible schedules in the population of solutions is still
under work. Non-feasible schedules are those which require a measure of the
feasibility finer than just yes or no. Other possible extensions as identified by this
study include taking into account of shared resources and the extension to the
distributed case. Moreover the possibility that the GA gives some feedback when the
algorithm fails in order to help the designer to identify the bottlenecks of the system is
also recognized as future work but not yet done in the present research.

A Formal model which allows multiple schedule optimizations and a new efficient
heuristic approach based on genetic algorithms and list scheduling is presented by M.
Grajcar [21]. According to the concluding remark of the paper, it does misses some
important features e.g. selecting from multiple genetic operators and advanced parents
selection mechanism but the proposed algorithm still performs well both in terms of
running speed and result quality. Removal of some programming inefficiencies are
planed as the future work.

A. Y. Zomaya et al.[22] investigates how a genetic algorithm can be employed to
solve the dynamic load balancing problem. The dynamic load-balancing algorithm is
developed whereby optimal or near-optimal task allocations can “evolve” during the
operation of the parallel computing system. The algorithm considers other load
balancing issues such as threshold policies, information exchange criteria and inter-
processor communication. According to the paper the GA-based scheme works better
when the number of tasks is large and where the consistent performance is observed
while the other heuristics fail. The goals of minimum total completion time and
maximum processor utilization are claimed to be achieved in this research work.

The idea of building composite sorting algorithms from primitives to adapt to the
target platforms and the input data is proposed by X. Li et al. [23]. Genetic
Algorithms are used to search for the sorting routines and the results shows that the
best sorting routines are obtained when GAs are applied for the generation of
classifier system. The generated sorting algorithm is on the average 36% faster than
the best pure sorting algorithm when experimented on seven different platforms
including IBM ESSL, the INTEL MKL and the STL of C++. According to authors
this research study on the average, generated routines are 26% and 62% faster than
the IBM ESSL in an IBM Power 3 and IBM Power 4, respectively.

A scheduling routine based upon a genetic algorithm is developed by W. A. Greene
[24] which is claimed to be very effective and has relatively low cost. Two important
aspects of this research paper are: loads on the processors are well balanced and
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scheduling per se remains cheap in comparison to the actual productive work of the
processors. This scheduling routine is tested using 48 different scheduling
experiments, incorporating 8 different task distributions and in all experiments the
scheduler produces well-balanced schedules.

Dynamic Distributed Genetic Algorithm is proposed by W. Yi et al. [25]. According

to the paper dynamic distributed GA with directed migration has great potential to
overcome premature convergence. By employing directed migration, the research
paper claims that genetic diversity could be maintained through the global living
space. Since the size of each sub-population changes responding to the change of its
performance, better species are encouraged and poorer ones punished. There is no
global comparison so the overhead brought by the central monitor is negligible.
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2.3 GENETIC ALGORITHMS FOR LOAD
BALANCING IN GRID COMPUTING

The contribution of S. Song et al.’s [26] research study is two-fold: first the Min-Min
and Sufferage heuristics are enhanced under three risk modes driven by security
concerns and secondly a new Space-Time Genetic Algorithm for trusted job
scheduling is proposed. The results provided in this research work shows that there is
a need of more research study in order to over come the shortcoming of security
driven Min-Min and Sufferage heuristics who are unstable when apply to different
types of workloads plus the little flaw of Space-Time Genetic Algorithm that there is
a high number of risk-taking jobs experience.

A novel GA-based approach is proposed by S. Kim et al. [27] to address the problem
of scheduling a divisible Data Grid application while considering communication and
computation at the same time in wide area data intensive environment. The results
from the experiments on GA-related parameters suggest that the initialization of
population with chromosomes of good quality is critical to GA-based approach in
terms of the quality of solution and the convergence rate. The problem of multiple
jobs competing for shared resources is identified as future work but not yet
implemented in the present research.

Five heuristics are designed, developed, and simulated using the HC environment, in
research work of S. Shivle et al. [28]. Application tasks composed of communicating
subtasks with data dependencies and multiple versions were mapped using the
heuristics described in this research. According to authors, the GA, on average
produced the best mappings. The results this research can be used in the development
of ad hoc grids as claimed by the paper.

In the research study of Y. Tanimura et al. [29], the EVOLVE/G system, which is a
Grid tool for developer of evolutionary computation, is proposed. This system
consists of Agent and multiple Workers. Since the data can be exchanged between
Agent and Workers freely, any logical models of EC can be integrated. The system
also has the mechanism of clustering nodes on the Grid, which are placed in the tree
topology. Using the EVOLVE/G, the Grid model of the PSA/GAc (Parallel Simulated
Annealing using the Genetic Crossover) is implemented which is one of the
applications of EC. Two types of logical models of the PSA/GAc are prepared; the
general model and hybrid model. Through the experiment, it is shown that the hybrid
model has a good performance. In the hybrid model, the fine grained communication
is performed in a PC cluster and the coarse grained communication is occurred
between PC clusters. As a result, it presents that the EVOLVE/G system is useful to
develop systems of evolutionary computation. No future extensions are identified.

T. Jing et al. [30] in their research work describes a parallel hybrid-GA (PHGA) for
combinatorial optimization using an island model running in a networked computing
environment. Basically two-island PHGA implemented in a distributed computing
environment has been studied in the paper, and a new algorithm that embeds island
PHGA model with NetSolve is presented. Several QAP (quadratic assignment
problem) benchmarks are run and compared with the serial GA in order to verify the
performance of PHGA and the results show that the PHGA offers both improved
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solution quality and speedup due to parallel processing. Several issues for future
research are opens like extensive study on scalability of parallel GA in a distributed
computing framework is required plus there is room to explore the applicability of
parallelizing the local search of a serial GA. Along with these, other heuristics for
local search can be explored to enhance the performance of the parallel GA.

In research work of J. Cao et al. [31] a GA-based scheduler has been developed for
fine-grained load balancing at the local level, which is then coupled with an agent-
based mechanism that is applied to load balance at a higher level. The experimental
results demonstrate that the agent-based mechanism coupled with performance-driven
task scheduling is suitable for grid load balancing. Future enhancement to the system
will include the integration with other grid toolkits (e.g. Globus MDS and NWS).

24 PROBLEM STATEMENT

Since the scheduling problem is of crucial importance to the effective utilization of
large

scale parallel computers and distributed computer networks (grid is covering of
course both categories) , many different forms of scheduling have been studied. In a
broad sense, the general scheduling problem can be divided into two categories—job
scheduling and scheduling and mapping. In the former category, independent jobs are
to be scheduled among the processors of a distributed computing system to optimize
overall system performance. In contrast, the scheduling and mapping problem
requires the allocation of multiple interacting tasks of a single parallel program in
order to minimize the completion time on the parallel computer system. While job
scheduling requires dynamic run-time scheduling that is not a priori decidable, the
scheduling and mapping problem can be addressed in both static as well as dynamic
contexts. When the characteristics of the parallel program, including its task execution
times, task dependencies, task communications and synchronization, are known a
priori, scheduling can be accomplished offline during compile-time. On the contrary,
dynamic scheduling is required when a priori information is not available and
scheduling is done on the fly according to the state of the system.

While different approaches have used GAs for solving load balancing problems yet
the issues that remain to be addressed can be broadly categorized as following.

a) The execution time for load balancing has not been considered or has not
been quantitatively described.

b) A few dynamic load balancing algorithms that we have come across in our
literature review still not completely and comprehensively define for real
world scenarios.

c) Although the good schedule were claimed to be achieved but performance
is still compromised in term schedule cost.

d) To the best of our knowledge, no algorithm has been designed to prevent
resubmission in case of load failure. The algorithms that incorporate fault
tolerance use a simple strategy for restarting the task which in some cases
requires extensive overheads.

e) Most of the algorithms are restricted to static load balancing and as such
require a prior knowledge of various parameters. While this approach may
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work in problems of equivalent nature but cannot be broadly applied to
different applications.

Efficient execution in a distributed system can require, in the general case,
mechanisms for the discovery of available resources, the selection of an application-

appropriate subset of those resources, and the mapping of data or tasks onto selected
resources.
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3. PROPOSED METHODOLOGY

Scheduling, performance prediction and resource management are important but
challenging tasks for grid computing efforts. In particular, there has been existing and
ongoing work on network batch queuing and wide area scheduling. Ian Foster and
others have done researches on the nature of the grid scheduling environment with its
multiple possible performance measures and constraints, its large number of jobs and
job sources and its large number of processing, transmission and storage resources.
Grid development involves the efficient management of heterogeneous,
geographically distributed, and dynamically available resources. In this environment,
the resource broker (or scheduler) becomes one of the most critical components of the
grid middleware, since it has the responsibility of selecting resources and scheduling
jobs in such a way that the user/application requirements are met, in terms of overall
execution time (performance) and cost of the resources utilized. A grid resource
broker is required to perform the four tasks which are Resource discovery, Resource
selection, Job scheduling, Job monitoring and migration.

3.1 PROPOSED SOLUTION

In this research work we will basically try to increase the efficiency of grid scheduler.
Genetic Algorithms based scheduling algorithm named “Dynamic Online Scheduling”
is proposed for better resource optimization and task scheduling. The scheduling
process in this algorithm is addressed in two layers namely pre scheduling and post
scheduling. The newly coming problems from outside grid boundary are scheduled in
the first layer that is pre scheduling. In post scheduling the load balancing of the
already submitted tasks is done, that is if certain resource is found overloaded with
work while some other resources are free then some of the jobs of the overloaded
machine is automatically shifted to the free machines while keeping in mind the
robustness, reliability and efficiency of the job as well as the time cost,
communication cost and resource cost will also be considered.

The proposed solution is a grid 3 tier infrastructure to enable applications to leverage
the idle computing power from commodity computers as shown in figure. 3-1. First
tier is the logical representation for user and task (submitted by user) management.
Second tier consists of resource management and GA Load Balancer framework.

Key features of this new middleware are; support for a wide range of parallel
applications, use of advance GA based techniques on architectural design and
development, and node usage pattern collection, analysis and prediction. It has also a
great potential for lowering the level of waste of computational resources in today's
computing infrastructure. Third tier consists of task resource mapping, migration and
execution.
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Fig. 3-1 Grid Infrastructure

As show in the figure 3-1 Performance Monitoring and Analytic Applications are
present in all three above mentioned tears. This is because it is playing its role in all
three layers.

In this architecture tasks that are submitted from outside boundary, will be buffered
inside the GA Load Balancer. Before scheduling the tasks, the balancer dynamically
gets a list of available resources from the global directory entity. In order to get best
results for parallel assignment of tasks we will use some GA based technique. The
search space for genetic algorithm increases exponentially with the arrival of new
tasks. The model of the system is learned in terms of best individual calculated by
genetic algorithm. Time series analysis will be performed in a machine learning
environment, and processing is done in two phases: the learning phase and the
operational phase. In learning phase previous results will be gathered. In processing
phase new threshold values will be assigned to resources.

3.2 FUNCTIONAL MODULES

Functional modules of the system are described below:

3.2.1 RESOURCE COLLECTOR

Resource collector manages all the resources and generates the log of each resource
containing its utilization information at any particular time. Following pseudo code
will explain its working.

1. Starts the resource collector.

2. Collect the utilization information from all resources. The utilization
information which is monitored in this project consists of resource’s status
(online, offline), resource’s load, total memory, current percentage utilization
of memory and number of processors.

Display all the above mentioned information on GUI screen.

4. Continuously update this information after specified interval of time.

w

GA Based Load and Time Prediction Technique for Dynamic Load Balancing

21



Chapter 3 Proposed Methodology

As mentioned above openmosix view is used as resource management tool.
Openmosix provides us one solution for all above mention four steps. Openmosix
View is not being used as a cluster management tool rather as a resource monitoring
tool which could gather information about any kind of heterogeneous resources
making a grid environment.

3.2.2 RESOURCE ANALYZER

Resource analyzer tool developed in this project analyzes all the data of each resource
which is collected by resource collector in the log files. Following pseudo code will
explain its working.

1. When resource analyzer starts it collects the current situation of all the
Tesources.

2. Check resource’s status for every resource then collect the timed history,
which is generated by resource collector, of all the online resources.

3. Based on the time history set the threshold for each online resource. This
threshold is updated after each one hour. This threshold tells us how many
tasks could be assigned to that resource at any give time.

3.2.3 GA LOAD BALANCER/RE-BALANCER

This is the second important module of our grid. Our genetic algorithm is working
here. The features of GA Load Balancer are as follows:

a. Read the parsed task log file with respect to the parameters required by GA. In
short it collects the offline information of resources.

b. Extract the History of each task that matches any task in the submitted task
queue according to the resource it is assigned to.

c. Apply Genetic algorithm and get the results which can be in the form of
optimized task schedule assigned to resources.

d. Perform task mapping, migration and execution according to the schedule
provide in above step and provide output results.

e. In case of node failure, resume backup to get the tasks information and
redistribute the tasks.

f. Maintain the task and resource history for future use.

3.24 TASK COLLECTOR

Task collector tool developed in this project is the main GUI which interacts with
user. It works according to the following pseudo code.

1. User submits the task by providing task input file, output file, type and size.

2. It calculates the task submission time and put it in the task queue.

3. On receiving run command it schedules it to the appropriate resource and
starts its execution.

4. During the whole task execution period it monitors the resource to which this
task is assigned.
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5. After task is finished it calculates its total execution time and enters the task
data i.e task type, size and submission time etc as well as the resource
utilization during the execution of task into the log file.

Task scheduling tools works in the back end of task collector tool. Whenever the task
comes it’s the scheduler’s job to assign it to the appropriate node for execution
according to some criteria. In this project this criteria is genetic algorithm based. GA
based scheduler and analyzer is explained in the following section.

GA Based Load and Time Prediction Technique for Dynamic Load Balancing 23



CHAPTER 4

SYSTEM DESIGN



Chapter 4 System Design

4. SYSTEM DESIGN

System design is the specification or construction of a technical, computer-based
solution for the business requirements identified in the system analysis. It is the
evaluation of alternative solutions and the specification of a detailed computer-based
solution. The design phase is the first step towards moving from problem domain to
the solution domain. System design develops the architectural detail required to build
a system or product. In this phase we have designed software that will be used to
verify the efficiency of proposed enhanced schema technique.

Design is actually a multi-step process that focuses on four distinct attributes of a
program: data structure, software architecture, interface representation and procedural
detail. The design process translates requirements into a representation of the software
that can be assessed for quality before coding begins.

Design of system is always considered as the main goal to achieve because it is the
base of any system. It is necessary to have a solid and strong base to build the whole
architecture, so, the base should be well built to hold the system. No matter how well
the system is coded, if it does not have satisfying infrastructure, it will not be able to
meet the requirements of the customer. So, main emphasis should be given to the
design of any system.

4.1 OBJECT ORIENTED DESIGN METHOD

Object-Oriented design translates the Object Oriented Analysis (OOA) model of the
real world into an implementation-specific model that can be realized in software.
Object-oriented design transforms the analysis model, created using object-oriented
analysis method, into a design model that serves as a blueprint for software
construction. For the development of the system under consideration the same
technique is used.

Object-oriented design (OOD) is concerned with developing an object-oriented model
of a software system to implement the identified requirements.

Object Oriented Design builds on the products developed during Object-Oriented
Analysis (OOA) by refining candidate objects into classes, defining message
protocols for all objects, defining data structures and procedures, and mapping these
into an object-oriented programming language (OOPL).

4.1.1 CLASS DIAGRAM

Class diagrams are the backbone of almost every object-oriented method including
UML. They describe the static structure of a system. It can also be said that class
diagrams identify the class structure of a system, including the properties and methods
of each class. Also depicted are the various relationships that can exist between
classes, such as an inheritance relationship. The Class diagram is one of the most
widely used diagrams from the UML specification.
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Another purpose of class diagrams is to specify the class relationships and the
attributes and behaviors associated with each class. Class diagrams are remarkable at
illustrating inheritance and composite relationships. A class diagram consists of one
major component and that is the various classes, along with these are the various
relationships shown between the classes such as aggregation, association,
composition, dependency, and generalization. Refer to figure 4.1 which represents the

class diagram of the software that will show the processing of the queries and their
time differences.
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Fig. 4-1 Class Diagram
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4.1.2 SEQUENCE DIAGRAM

Sequence diagrams are temporal representation of interaction of objects. The
functionality of use cases described in previous chapter is explained using following

sequence diagrams described in figures 4-2 to 4-13.

Figure 4.2 explain the sequence diagram of resource collector use case. This use case
is for the management of rescurces of grid. It then starts all the other resource

handling modules of the grid like resource analyzer and resource monitor.

id, Systel

Resource Collector Started

fnal nitor Resources | i ' Resource Log
| |
: I
Start_Resource_Collector( ) |
&
Request for Resource nformation [

end Current Resource Information | <<~ e

Start_Resource_Monitor( )

Bt ey

)

L
l

|
|
|
|
| Get_Awaflable_Resources() |
|
|
!
I
l

Start_Resource_Analyzer( )

Successfully

f._.l,
|
I
!

Log_Reswrcq‘_lnb( )
i
|
!
|
l
l
|
|
|
)

Fig. 4-2 Sequence diagram of Collecting Resource Information Use Case
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Sequence of resource monitor use case is explained in figure 4-3. This use case
continuously monitors the resources, updates its information after specified interval of
time and logs the information.

r’RE: Resource } RAM: R : Resources RL:
! p
Collector Analyze Monitor Resources Resource Log

|1: Request To Start Resource Monjtor |

I
|
2: Start_Resource_Monitor( ) |
I
|

3: Request for Resource Informatio

|
|
|
|
|
4: Get_Awailable_Resources() |
: Send Current Resource Information <

) 6: Log_Resource_Info() L/
7b: Resource Monitor Starts >
Successfully | H

|
|
|
|
!
|
|
|
l
|
|

P

|
\
I
|
l
!
|

Fig. 4-3 Sequence diagram of Monitoring Resource Information Use Case
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Sequence of resource analyzer use case is explained in figure 4-4. This use case
retrieves the resource information form resource log and creates different kinds of
charts to show the resource performance.

\ RC : Resource RAM: RL :
Collector Anal nitor R Resource Log

1 |

fi: Request To Start Resource Analyzet

|
|
2: Start_Resource_Analyzer( ) |
<. |

|

3: Request for Resource Information_

4: Parse_Resource_Log()
<]

5: Send Resource Information <

6: Create_Resource_Load_Charts()

7: Create_Resource_Mem_Charts()
< .............
i8: Show_Resource_Charts( )
gb: Resource Analyzer <]

Starts Successfully

1

|

|

|

|
<«<——19a: Repeat from step 3 after speJliﬁed interval

|

\

T I

T | |
! |

| |

Fig. 44 Sequence diagram of Analyzing Resource Information Use Case
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Figure 4-5 describes the sequence of task collector. Task collector use case handles
the user or client side of grid that is it receives task for execution on grid. This is the

main client front end module and manages other sub task regarding modules like task
manager, task monitor and task analyzer.

PN
’ TAM:
G Grid System Task_ Analyzer Monitor |

} Request to Start Task Collector Deamon 1

Start_Task_Manager()

Z:]
Start_Task__Monitor( )

< ....... -
Start_Task_Analyzer( )

<
Task Collector Started Successfully

L
- )
! |
I l
l |

Fig. 4-5 Sequence diagram of Collecting Task Information Use Case
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The sequence of Load Task use case is explained in figure 4-6. This use case handle
requests for task submission from client.

{

Ny

X

CS : Client
Software/User

|

|

AN

T: Task

Submit New Task Request -> Submit_Task( )

Opens Submit Task Window

Manage_Task()

Enters the Task Aftributes
Send New Task Information

[Imvatid): Enter the Task information again

Get_Task_Aftribute()

[Valid]: Create_Task()

Task submitted successfully

Enter Task in Queue

S Ao oy

<

Request to Load Already Sawed Task

_ Opens the Load Task Window

Manage_Task()

Ps—

Selet the Task File to be loaded

Sends The Task file

Validates the task file

[Invalid]): Enter the Task file again

P=a—

[Valid]: Enter the loaded Tasks in Queue
1

Task Loaded Successfully

<__..___.4

Fig. 4-6 Sequence diagram of Load Task Use Case
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The sequence of edit task use case is described in figure 4-7. This use case handle the
edit task attributes request from user. It takes new attributes, validates them and enters
them in the task queue.

O
A

CS : Client T.Task
Software/Jser = }
| |
% Request for Edit Task
Search_Task( )
- [Task Found] : Opens Edit Task Form /

[Not Found] : Error Message Task not

< Enter changed Task attributes T
Submit changed attributes (l
Edit_Task()
< ...........
Validate_Task_Altribute()
. o
[Invalid] : Invalid Task Attribute Valid : Set_Task_Aftribute( )
< \
<

Enter Task in Queue

Task attributes successfully change

-

L
|
|
\

Fig. 4-7 Sequence diagram of Edit Task Use Case
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The sequence of save task use case is described in figure 4-8. This use case saves all
the tasks currently in the task queue either finished or queued.

r"j

CS : Client
Software/tser

|
it

Request to Sawe Tasks

I: Task

[False] : No Task present to sawe

Check if any task presentin
P ] the listto save

[True] : Save all tasks in current list call

Ali task sawe successtully

<1  Save_Task()

—

1
|
l
|

Fig. 4-8 Sequence diagram of Save Task Use Case
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The sequence of remove task use case is described in figure 4-9. This use case

removes the

specified task from the task queue.

Search_Task()

[Task Found]: Remove_Task()

CS : Client T Task
Software/User
{ Request To remowve Task |
[Task Not Found] : invalid Task Remowal request
L Task Removed Successfully

B

|
{
l
|

Fig. 4-9 Sequence diagram of Remove Task Use Case

The sequence of task monitoring use case is described in figure 4-10. This use case is
one of the main modules of task collector. This use case continuously monitors the
tasks and their status (executing, running, scheduled etc).

TAM: | 1. Task TMap
Task Analyzer Monitor i Task_Mapping

l
| 1: Request for Task information |

3

12: Get_Task_Altribute()
: Send Task Information | (<——

4: Request for Curent Status of TTask

L]

l
6: Send Updated Task Status

Y

Ta:

l

if [Task Status = Finished]) ll,og Task Information
1

5: Get_Task_Status()
<

{ Tb: Task Log |
z |
,

|
D 8: Repeat From Step 1 Aﬂﬁr Specified Intenal

|
l
l
l

R B

l

l

\

|

l

|

(

I

|

|

|

|
2] 7b: Log_Task_info()
/Lg::]

l

|

|

Fig. 4-10 Sequence diagram of Task Monitoring Use Case
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The sequence of task analyzing use case is described in figure 4-11. This use case is
also one of the main modules of task collector. This use case analyzes the current task
on the basis of its attributes and task history and gave this information to GA analyzer
which predicts the task execution time on the basis of this information.

o]
s g A TL: Task Log
G Grid System | Task Analyzer Monitor

| : |
1. Request to start Task Analyzer 2 Star_Task_Analyzer()

|
. |
l

3: Get_Queued_Task_History()
4: Request For Task history info

5: Get_Task_Histroy( )

|

6: Send Task History

7b: Task Analyzer Started Successfully 7a: Repeat from step 2 for each task in queue
<

i
|
|
|

- —

Fig. 4-11 Sequence diagram of Task Analyzing Use Case
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Figure 4-12 describes the sequence of Performance Monitor use case. This is one of
the major modules of our grid system. This use case constantly monitors the resources
and task queues and whenever finds the resources over loaded palaces the request for
rescheduling to GA analyzer and load balancer.

PM: RAM: | AL GAA:
Performance Monitor | Analyze Monitor Resources |  Task Analyzer Monitor GA Analyzer LoadBalancer

| Request Forall Curertly |

|
i I
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|
|
|
|
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S
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=
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|
|
[
|
|
|
|
[
|
1
|
|
|
|
1

1
i
|
|
|
|
|
|
|

S

Fig. 4-12 Sequence diagram of Performance Monitoring Use Case
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Figure 4-13 describes the sequence of GA based Analyzer and Load Balancer use
case. This is also one of the major and actual modules of our grid system. This use
case tries to balance the load on the grid resources by producing the optimized
scheduler for task allocation to resources.
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Fig. 4-13 Sequence diagram of GA-Base Analyzing Load Balancing and Task
Mapping Use Case
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4.1.3 SYSTEM ARCHITECTURE DIAGRAM

In figure 4-14 architecture of the system is illustrated in detail. System architecture
provides the overall working and flow the system.

.| PERFORMANCE
l MONITOR |
RESOURCE COLLECTOR TASK COLLECTOR
R R Requuld for Load Zallndnq Task
esou andf lancing ]
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‘ * GA's ANALYZER + LOAD ; l
BALANCER
i Task Task L
Gl Wil B § T e [ ot
Lo|" nitakze |
Popultation
l Task<=>Resource
N ves Mapping Engine
0
Selection Process Task
l Manager I ‘ Mapping I
Crossover
%
New
Mutation Population
Task
Executer
¥
Display
Qutput

Fig. 4-14 System Architecture Diagram
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S. IMPLEMENTATION

Software Development is the phase in which we transfer the proposed system into an
executable software. It is the carrying out, execution, or practice of a plan, a method,
or any design for doing something. Implementation is the action that must follow any
preliminary thinking in order for something to actually happen.

In this phase, the final design is translated into a machine-readable form. This phase
of implementation is the final phase in the software development life cycle. This
phase is also critical because the designer has to look for each and every possibility
that can occur during actual implementation. In case designer fails to cover all the
possibilities, then it can result into disastrous situation, and can fail the whole system.

This Phase can be divided into 2 main stages:

e Tools
¢ Generating Code
5.1 TOOLS

Tools play a very important role in development of any system. These tools can be
divided into different categories. They are as follows:

3.1.1 LANGUAGES

The major programming language used in this entire research work is C/C++. The
reason for using C is that it gives easy access to resources even at very down level
plus other resource monitoring and managing tools used in this research work are in C
language so C is definitely required in order to modify them according to research
requirement.

a) C/IC+
5.1.2 EDITORS

The Editors are used to Design the interface and edit their contents. Some of the
Editors used for this project are as follows:

1. KWrite

2. gedit
3. QT Designer

5.1.3 OFFICE TOOLS

Some of the office tools used in the research work is as follows:

a) Adobe Acrobat 7.0 Professional
b) Rational Rose 2002
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¢) Visio 2003
d) Gimp
e) MS Office XP/2006

5.1.4 GRID RESOURCE MANAGEMENT TOOL

This tool is used for task and resource monitoring and management.

a) OpenMosix View
5.2 GENERATING CODE

5.2.1 RESOURCE COLLECTOR METHODS

Resource collector manages all the resources and generates the log of each resource
containing its utilization information at any particular time. Following pseudo code
will explain its working.

1. Starts the resource collector.

2. Collect the utilization information from all resources. The utilization
information which is monitored in this project consists of resource’s status
(online, offline), resource’s load, total memory, current percentage utilization
of memory and number of processors.

3. Display all the above mentioned information on GUI screen.

4. Continuously update this information after specified interval of time.

As mentioned above openmosix view is used as resource management tool.
Openmosix provides us one solution for all above mention four steps. Openmosix
View is not being used as a cluster management tool rather as a resource monitoring
tool which could gather information about any kind of heterogeneous resources
making a grid environment.

5.2.2 RESOURCE ANALYZER METHODS

Resource analyzer tool developed in this project analyzes all the data of each resource
which is collected by resource collector in the log files. Following pseudo code will
explain its working.

1. When resource analyzer starts it collects the current situation of all the
resources.

2. Check resource’s status for every resource then collect the timed history,
which is generated by resource collector, of all the online resources.

3. Based on the time history set the threshold for each online resource. This
threshold is updated after each one hour. This threshold tells us how many
tasks could be assigned to that resource at any give time.
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5.2.3 TASK COLLECTOR METHODS

Task collector tool developed in this project is the main GUI which interacts with
user. It works according to the following pseudo code.

1. User submits the task by providing task input file, output file, type and size.

2. Tt calculates the task submission time and put it in the task queue.

3. On receiving run command it schedules it to the appropriate resource and
starts its execution.

4. During the whole task execution period it monitors the resource to which this
task is assigned.

5. After task is finished it calculates its total execution time and enters the task
data i.e task type, size and submission time etc as well as the resource
utilization during the execution of task into the log file.

Task scheduling tools works in the back end of task collector tool. Whenever the task
comes it’s the scheduler’s job to assign it to the appropriate node for execution
according to some criteria. In this project this criteria is genetic algorithm based. GA
based scheduler and analyzer is explained in the following section.

5.24 GA BASED ANALYZER AND LOAD BALANCER
METHODS

CHROMOSOME REPRESENTATION

We assume that the Tasks and Resources are arranged in an ascending order
according to the Task attributes (that is size, type, submission time) and Resource
usage (that is least loaded comes first). Figure 4 depicts the chromosome
representation which is used in our current strategy. Basically the each chromosome
in the population contains permutation of tasks and their fitness is calculated
according to the resources they were assigned to. Task T; is allocated to resource R1,
T, to R2 and T; to R3 and so on. When T, is completed, resource R1 is empty and
task Ty is allocated. This procedure goes on until all the tasks are allocated.

<T4,T2..Ty>

<Tp,T2..T4>

<T74,T73.Ts>

<TN,T2, . .T7>

Fig. 3: Chromosome Representation
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GA APPROACH FOR TASK SCHEDULING AND LOAD BALANCING

1.

2.

6.

Get Task List from Task Collector of length TNT where TNT is the total
number of tasks to be scheduled.

Get Resource List from Resource Collector of length TNAR where TNAR is
the total number of available resources, if no resource available then wait until
resources becomes available.

At t =0; generate an initial population with P chromosomes Popi(t), where P
represents the permutations of tasks and is calculated as:

P = N7 P

For each chromosome (i=1 to P), first allocate the jobs to the available
resources based on the FCFS bases. Then calculate the predicted time for each
task according to the resource’s current parameters it is assigned to from the
task history log. For example if one parameter of resource say load is used
then the task time prediction formula will be follows

PLr ~— HLg

PT7; R = PLR -HI_—IZT;E-
Where:
PTr g = Predicted Completion Time of task T on resource R
PLg = Present Load on resource R for 1* task, and Predicted Load for next
assigning tasks (Each task will increase some load on the resource which will
be calculated as predicted present load for next task)
HTr, g = History Completion Time for task T on resource R (taken from Task
Log History).
HLp = History Load on resource R when task T had completion time HTr g

Now the predicted time for each task in the chromosome can be easily
calculated using above formula.

Fitness value for each chromosome is calculated which will tell us the make-
span of schedule. Fitness value is calculated using following formula:

F - ——-——1—.—__
Max(3, PTr, )
The make-span of the schedule is calculated using following formula:

6 = Max@ PTyr)

TNT

PTy; .
Where & TR represents total number of tasks assigned to resource R.
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7.

10.

Apply Crossover operator on the population according to the probability
selected, Crospop(t+1) = recombined chromosomes of the population
NewPop;(t+1),

Apply mutation operator on the population according to the probability
selected, MutPop(t+1) = mutated population CrosPop(t+1).

Evaluate the fitness of each chromosome in new population and check if the
specified fitness value is achieved or not. If not starts the GAs loop again.

Send the specified schedule generated by GAs to Mapping Engine which will
assign the tasks to the resources and in case of post scheduling Mapping
Engine will migrate tasks from overloaded resources to relatively less loaded
resources to which they are assigned to.
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Chapter 6 Results and Discussion

6. RESULTS AND DISCUSSION

First of all grid platform is setup on 8 machines out of which four Intel Pentium IV
machines, one Intel Pentium II machine, one Intel Pentium III machine and two Intel
Celeron Pentium IV machines. The software used for resource management purpose is
OpenMosix which keeps up to date information about resources and keeps the log of that
information which is latter used by the proposed genetic algorithm based scheduler. Then
the Task Collector tool developed in this project is used for collecting task information
and at the end tasks collected from task collector tool are mapped according to the genetic
algorithm based scheduler to resources from resource management tool.

6.1 EXPERIMENTAL SETUP

For the performance evaluation purpose we first run bunch of tasks on limited resources
(2-8 machines) without any GAs involvement and calculate the execution cost that is the
total time it takes to complete all the assigns tasks on all machines. In absence of GA
based scheduler OpenMosix’s dynamic scheduler becomes active and performs the
scheduling work. After that we replace the OpenMosix scheduler with GA based
scheduler and again calculate the execution cost We calculate the execution cost for
different sizes of schedules by slowly increasing the number of resources (5, 10, 15, 20,
25 and 30 number of machines) both with and without GAs and the results shows that
GAs outperforms the OpenMosix scheduler in just 500 generations. The statistical results
obtained are listed in the following tables. The schedule sizes used were from 10 to 100
taking an increment of 10 in each step.

6.2 EXPERIMENTAL RESULTS

As shown in table 6-1 comparison of make span time generated by GA based scheduler
and OpenMosix scheduler is done for 15 and 30 number of processors and clearly the
GAs outperforms the OpenMosix’s scheduler.

Table 6-1 Comparison of Make span time generated by GAs and OpenMosix on
different sets of schedule size and number of processors

Schedule No of Processors
Size 15 30
GAs OpenMosix GAs OpenMosix

10 18.9173 36.501 8.536 25.5
20 53.4246 57.6 23.3635 45
30 96.3507 119.5 40.2314 77
40 154.848 174.5 64.9934 93.6
50 173.7653 211.001 73.5294 119.1
60 192.6826 247.502 82.0654 144.6
70 211.5999 284.003 90.6014 170.1
80 230.5172 320.504 99.1374 195.6
90 249.4345 357.005 107.6734 221.1

100 268.3518 393.506 116.2094 246.6

GA Based Load and Time Prediction Technique for Dynamic Load Balancing

43




Chapter 6 Results and Discussion

The detailed statistical results of proposed GA based technique are displayed in table 6-2
and of OpenMosix scheduler’s results in table 6-3. Both tables show the results for
different sets of schedule sizes with respect to different sets of processors. Optimal make
span time can easily be seen in table 6-2 generated by GA for any set of schedule size and
number of resources, which is much less than the make span generated by OpenMosix in
table 6-3 for the same set of schedule size and number resources.

Table 6-2 Makespan time in seconds generated by GAs on different sets of schedule
sizes and number of processors

GENETIC ALGORITHM BASED DYNAMIC ONLINE SCHEDULER
RESULTS
Schedule No of Processors
Size

5 10 15 20 25 30

10 31.8824 21.8824 18.9173 15.6805 10.2116 8.536

20 81.1515 66.78075 53.4246 44.7497 33.8824 23.3635

30 119.7331 111.0423 96.3507 90.9585 69.9869 40.2314

40 183.417 167.426 154.848 122.2548 115.5809 64.9934

50 215.2994 189.3084 173.7653 137.9353 125.7925 73.5294

60 247.1818 211.1908 192.6826 153.6158 136.0041 82.0654

70 279.0642 233.0732 211.5999 169.2963 146.2157 90.6014

80 310.9466 254.9556 230.5172 184.9768 156.4273 99.1374

90 342.829 276.838 249.4345 200.6573 166.6389 107.6734

100 374.7114 298.7204 268.3518 216.3378 176.8505 116.2094

Table 6-3 Makespan time in seconds generated by OpenMosix on different sets of

schedule size and number of processors

OPENMOSIX’S DYNAMIC SCHEDULER RESULTS
Schedule No of Processors
Size

5 10 15 20 25 30

10 59 43.8012 36.501 30 27.5 25.5

20 121 94.5 57.6 50 48 45

30 251.5 141 119.5 92.4 82.5 77

40 310.5 232.5 174.5 139 102.5 93.6

50 369.5 276.3012 211.001 169 130 119.1

60 428.5 320.1024 247.502 199 157.5 144.6

70 487.5 363.9036 284.003 229 185 170.1

80 546.5 407.7048 320.504 259 212.5 195.6

90 605.5 451.506 357.005 289 240 221.1

100 664.5 495.3072 393.506 319 267.5 246.6

The difference of statistical results for tables 6-3 and 6-2 can easily tells the overall
performance gain of the system due to GA based technique and are shown in table 6-4.
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Table 6-4 Performance gain of Genetic algorithms based scheduler over OpenMosix

scheduler
PERFORMANCE GAIN OF GA’s OVER OPENMOSIX
Schedule No of Processors
Size

5 10 15 20 25 30

10 54.04% 49.96% 51.83% 52.27% 37.13% 33.47%

20 67.07% 70.67% 92.75% 89.50% 70.59% 51.92%

30 47.61% 78.75% 80.63% 98.44% 84.83% 26.27%

40 59.07% 72.01% 88.74% 87.95% 112.76% 69.44%

50 58.27% 68.52% 82.35% 81.62% 96.76% 61.74%

60 57.69% 65.98% 77.85% 77.19% 86.35% 56.75%

70 57.24% 64.05% 74.51% 73.93% 79.04% 53.26%

80 56.90% 62.53% 71.92% 71.42% 73.61% 50.68%

90 56.62% 61.31% 69.87% 69.43% 69.43% 48.70%

100 56.39% 60.31% 68.20% 67.82% 66.11% 47.12%

The graphical view of GA based technique (table 6-2) and OpenMosix (table 6-3)
scheduler is shown in figures 6-1 and 6-2 respectively. In figure 6-1 schedule size versus
make span is plotted for different number of resources for both OpenMosix and GA based
scheduler.

Schedule Size Vs, Time (GA Based) N Schedule Size Vs. Time (Openmosix)
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Fig. 6-1: Comparison of Genetic Algorithm Based Dynamic Online Scheduler vs.
OpenMosix Scheduler (Schedule Size vs. Time)

In figure 6-2 Resources verses Make span is plotted for different lengths of schedules for
both GA based and OpenMosix’s scheduler.
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Resources Vs, Time With Different Schedule Resources Vs, Time With Different Schedule Sizes
Sizes (GA's Based Dynamic Scheduler) (Openmosix's Dynamic Scheduler)
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Fig. 6-2: Genetic Algorithm Based Dynamic Online Scheduler vs. OpenMosix
Scheduler (Number of Resources vs. Time)

Comparing the performance of two schedules, the percentage gain in GA Based scheduler

is shown in figure 6-3 for different lengths of schedules and different number of
resources.

Performance increase of GAs over
Openmosix

120.00%
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~

Schedule Size

Fig. 6-3: Performance gain using genetic algorithms based dynamic scheduler over
OpenMosix’s dynamic scheduler

6.3 SAMPLE OUTPUT

Two types of log files are generated and used by genetic algorithms for scheduling
purposes. After the task is finished the information in the following form is stored in the
1* log file. The preview of 1% log file is shown in figure 6-4.
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LPX taskhistory. ta

| Line: 20 Col: 0 INS NORM

After each twenty four hours the data from this log file is entered into the 2" log file
which is used for genetic base Al learning. The preview of 2™ log file is shown in figure

6-5.
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Fig. 6-5: Task Resource History File - 2

6.4 CONCLUSION AND FUTURE
ENHANCEMENTS

A new Genetic Load and Time Prediction Technique is proposed for better resource
optimization and task scheduling. The scheduling process in this algorithm makes use of
historical data in order to predict the resource load and task execution time. This load and
time prediction is then used by genetic algorithms to figure out which resource is most
suitable for which task. The scheduling process is addressed in two layers namely pre
scheduling and post scheduling. The newly coming problems from outside grid boundary
are scheduled in the first layer that is pre scheduling. In post scheduling the load
balancing of the already submitted tasks is done, that is if certain resource is found
overloaded with work while some other resources are free then some of the jobs of the
overloaded machine is automatically shifted to the free machines while keeping in mind
the robustness, reliability and efficiency of the job as well as the time cost,
communication cost and resource cost will also be considered.

6.4.1 CONCLUSION

In this research work we attempt to address the problem of load balancing in grid
computing using one of the popular heuristics namely GAs. Genetic Algorithm predicts
the execution time for each task with respect to resource, it is assigned to. We have tested
this algorithm on 30 machines heterogeneous grid environment simulation with different
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schedule sizes and the results shows that the proposed strategy outperforms one of the
most popular dynamic scheduler that is OpenMosix scheduler.

6.4.2 FUTURE ENHANCEMENTS

Future work will examine the application of proposed GA based algorithm as parallel
genetic algorithms and dynamic distributed algorithms proposed in [31]. In both cases
number and size of populations must be carefully determined. Even though significant
progress has been made in modeling the infrastructure of grid computing but the close
review clearly indicates that not much progress is made in formulating and efficient,
globally optimized, grid-scheduling algorithm for allocating jobs [32]. Therefore we are

planning to investigate this research area in depth using GAs as well as other heuristic
algorithms.
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ABSTRACT

Gird computing is an emerging science in the field of distributed computing which involves coordinating and
sharing computing, application, data, storage, or network resources across dynamic and geographically dispersed
organizations. Scheduling and load balancing techniques are critical issues in grid computing for achieving good
performance. The goal of load balancing is to minimize the response and execution time of a program by trying to equally
spread the load on processors and maximizing their utilization. It has been proven that finding optimal schedules for the
load-balancing problem is an NP-complete problem, even when the communication cost is ignorable. Genetic algorithms
are a probabilistic search approach, which are founded on the ideas of evolutionary processes. They are particularly
applicable to problems that are large, non-linear and possibly discrete in nature; features that traditionally add to the degree

of complexity of solution.

Present research aims to solve the grid load-balancing problem using Genetic Algorithms. A new Genetic
Algorithm based task scheduling technique is introduced, which has been tested on a multi-node grid environment and the
experimental results show that this new technique can lead to significant performance gain in various applications.

Keywords: Genetic Algorithms (GA), load balancing, grid computing, distributed computing, heterogeneous computing, evolutionary

computing.

INTRODUCTION

Grid Computing, as defined by its founders, has
emerged as an important new field, distinguished from
conventional distributed computing by its focus on large-
scale resource sharing, innovative applications, and, in
some cases, high-performance orientation (Foster et al.
2001 pp: 1).

Grid computing is a new technology that
transforms a computer infrastructure into an integrated,
pervasive virtual environment for dynamic collaboration
and shared resources anywhere in the world providing
users, especially in science, with unprecedented
computing power, services and information (Reddy
2004). With the advance in technologies, the cost of
computation resources required per operation is
continuously decreasing. Grid computing is one of many
factors which enable the effective use of wide spread
computing resources thereby providing non-trivial
services to users. According to the Department of
Computer Science at the University of Warwick, with
the emergence of grid environments featuring dynamic
resources and varying user profiles, there is an
increasing need to develop reliable tools that can
effectively coordinate the requirements of an application
with available computing resources. The ability to
predict the behaviour of complex aggregated systems
under dynamically changing workloads is particularly
desirable, leading to effective resource usage and
optimization of networked systems.

Scheduling and load balancing techniques are
critical issues in grid computing for achieving optimum

performance. The goal of load balancing is to minimize
the response and execution time of a program by trying
to equally spread the load on processors and maximizing
their utilization. Present research aims to solve the grid
load-balancing problem using Genetic Algorithms.

Genetic algorithms are based on a biological
metaphor: They view learning as a competition among a
population of evolving candidate problem solutions. A
‘fitness' function evaluates each solution to decide
whether it will contribute to the next generation of
solutions. Then, through operations analogous to gene
transfer in sexual reproduction, the algorithm creates a
new population of candidate solutions (Melanie 1999),
(Koza 1990), (Goldberg 1989), (Vose 1999), (Rennard
2000).Genetic  Algorithms are  nondeterministic
stochastic search/optimization methods that utilize the
theories of evolution and natural selection to solve a
problem within a complex solution space. They are
computer-based problem solving systems which use
computational models of some of the known
mechanisms in evolution as key elements in their design
and implementation (SANDIKCI 2000).

The rest of the paper is structured as follows.
Section 2 will provide some background work related to
load balancing, grid computing and genetic algorithms.
Section 3 provides the problem statement. Section 4 will
describe our methodology on how genetic algorithms
can be applied to the grid load balancing problem. Then
results, conclusion and future work are discussed in
section 4 and 5 respectively.
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BASIC CONCEPT

Recent research studies indicate that genetic
algorithms significantly enhance the performance of real
time applications. In one such study done by Wu and
Chau (2006), authors employ the hybrid genetic
algorithm based artificial neural network model for flood
prediction. The proposed model is tested against
empirical linear regression model, conventional ANN
model and a GA model, and results reveals that proposed
hybrid GA-based ANN algorithm outperforms the
conventional models. The limiting factor of this research
study is that it requires additional modelling parameters
and longer computation time.

In another study, Chau and Albermani (2003)
develop the prototype system by coupling the blackboard
architecture, an expert system shell VISUAL RULE
STUDIO and genetic algorithm (GA). Chau and
Albermani (2003) proposed the said system for the
optimize design of liquid retaining structures which can
act as a consultant to assist novice designers in the
design of liquid retaining structures. Near-optimal
solutions are claimed to be achieved after exploration of
small portion of search space at extraordinarily
converging speed.

Another example of genetic algorithm in a real
time application is, Usage of parallel genetic algorithm
for multiple criteria rainfall-runoff model calibration
which is proposed by Cheng et al (2005). The method
uses the fuzzy optimal model to evaluate multiple
alternatives with multiple criteria where chromosomes
are the alternatives, whilst the criteria are flood
performance measures Cheng et al 2005). The proposed
approach produces the similar results when compared
with results obtained by using a two-stage calibration
procedure but it significantly reduces the overall
optimization time and improves the solution quality. The
disadvantage of this research study is that it splits the
whole procedure into two parts which makes it difficuit
to integrally grasp the best behaviours of model during
the calibration procedure. In Continuation to study
(Cheng et al 2005) Cheng et al (2006) proposed a new
method to the muitiple criteria parameter calibration
problem, which combines GA with TOPSIS for
Xinanjiang model. Cheng et al (2006) removes the
disadvantage of their previous research study and
integrates the two parts of Xinanjiang rainfall-runoff
model calibration together thus simplifying the
procedures of model calibration and validation.
Comparison of results with two-step procedure shows
that the proposed methodology gives similar results to
the previous method, is also feasible and robust, but
simpler and easier to apply in practice.

In another study, Chau (2004) proposed a two-
stage dynamic model to assist construction planners to
formulate the optimal strategy for establishing potential
intermediate transfer centres for site-level facilities such
as batch plants, lay-down yards, receiving warehouses,
various workshops, etc. Under the proposed approach,
the solution of the problem is split into two stages,
namely, a lower-level stage and an upper-level stage.
Standard linear programming method is used to solve
former stage whereas the latter is solved by a genetic

algorithm. The efficiency of the proposed algorithm is
demonstrated through case examples.

In this research study the problem area has been
described, which is mostly based on the description of
Dong and Akl (2006). While different approaches have
used GAs for solving load balancing problems yet the
issues that remain to be addressed can be broadly
categorized as the following.

a) The execution time for load balancing has
not been considered or has not been
quantitatively described.

b) Most of the algorithms are restricted to
static load balancing and as such require
prior knowledge of various parameters.
While this approach may work in problems
of equivalent nature but cannot be broadly
applied to different applications.

c) A few dynamic load balancing algorithms
that have been studied and are also
mentioned in the literature review have not
been implemented in loosely coupled
systems such as grid computing.

d) To the best of the author’s knowledge, no
algorithm has been designed to prevent
resubmission in case of load failure. The
algorithms that incorporate fault tolerance
use a simple strategy for restarting the task
which in some cases requires extensive
overheads.

Efficient execution in a distributed system can
require, in the general case, mechanisms for the
discovery of available resources, the selection of an
application-appropriate subset of those resources, and
the mapping of data or tasks onto selected resources.

Grid computing has become an increasingly
popular solution to optimize resource allocation in
highly charged IT environments. In one of the recent
research studies done by Wieczorek et al (2005) three
different algorithms (namely HEFT, Genetic and simple
Myopic algorithm) are compared in terms of incremental
versus full-graph scheduling for balanced versus
unbalanced workflows. Without considering effect of the
typical network scenarios Wieczorek et al (2005) declare
HEFT as better algorithm. A multi-tiered framework
based on, Globus providers, distribution brokers and
local schedulers is used for grid work load management,
out of which only lowest tier is primary focused by
Spooner et al (2003). Spooner and his colleague use
iterative heuristic algorithm and performance prediction
techniques for performance based upon global and local
scheduling. The future work of Spooner et al for
examining the other two upper tiers is still on its way.
Cao et al (2005) addresses grid load balancing issues
using a combination of intelligent agents and multi-agent
approaches. The experimental result of research study of
Cao et al (2005) proves that the use of a distributed agent
strategy can reduce the network overhead significantly
and make the system scale well??? rather than using a
centralized control, as well as achieving a reasonable
good resource utilization and meeting application
execution deadlines. Abraham et al (2000) addressed the
hybridization of the three popular nature’s heuristics
namely Genetic Algorithms (GA), Simulated Annealing
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(SA) and Tabu Search (TS) for dynamic job scheduling
on large-scale distributed systems but didn’t provide any
experimental results for research evaluation. A novel
mapping heuristic based on the cross-entropy (CE)
method, for mapping a set of interacting tasks of a
parallel application onto a heterogeneous computing
platform, was proposed by Sanyal and Das (2005).
According to their research studies, Cross Entropy
methods are inherently slow and this slowness of the CE
based methods in generating the appropriate mapping
can decrease the performance gain for a large set of
tasks. Moreno (2003) proposed new rescheduling
policies for job migration under cost constraints after
analysing the main tasks that the grid resource broker
has to tackle (like resource discovery and selection, job
scheduling, job monitoring and migration etc.) in detail.
Wagner and Affenzeller (2004) present a new
environment for parallel heuristic optimization based
upon the already proposed Heuristic-Lab in.

A Formal model which allows multiple
schedule optimizations and a new efficient heuristic
approach based on genetic algorithms and list scheduling
is presented by Grajcar (2000). In spite of the fact that
the algorithm contains some programming inefficiencies,
it still performs well in terms of running speed and result
quality. Zomaya and Teh (2001) investigate how a
genetic algorithm can be employed to solve the dynamic
load balancing problem. The dynamic load-balancing
algorithm is developed by Zomaya and Teh (2001)
whereby optimal or near-optimal task allocations can
“evolve” during the operation of the parallel computing
system. A scheduling routine based upon a genetic
algorithm is developed (Greene, 2001) which is claimed
to be very effective and has relatively low cost. Two
important aspects of this research study are: loads on the
processors are well balanced and scheduling per se
remains cheap in comparison to the actual productive
work of the processors. Dynamic Distributed Genetic
Algorithm is proposed by Yi et al (2000). According to
the paper, dynamic distributed GA with directed
migration has great potential to overcome premature
convergence.

The contribution of Song et al (2005) is two-
fold: first the Min-Min and Sufferage heuristics are
enhanced under three risk modes driven by security
concerns and secondly a new Space-Time Genetic
Algorithm for trusted job scheduling is proposed. The
results of Song et al (2005) shows that there is a need of
more research study in order to over come the
shortcoming of security driven Min-Min and Sufferage
heuristics which are unstable when applied to different
types of workloads. A novel GA-based approach is
proposed by Kim and Weissman (2004) to address the
problem of scheduling a divisible Data Grid application
while considering communication and computation at
the same time in wide area data intensive environment.
According to Kim and Weissman (2004) the results from
the experiments on GA-related parameters suggest that
the initialization of population with chromosomes of
good quality is critical to GA-based approach in terms of
the quality of solution and the convergence rate. But the
problem of multiple jobs competing for shared resources
hasn’t been overcome in this study. Five heuristics that
have been designed, developed, and simulated using the

HC environment, are presented by Shivie et al (2005).
Application tasks are composed of communicating
subtasks with data dependencies, and multiple versions
were mapped using the heuristics described by Shivle et
al (2005) and the results can be used in the development
of ad hoc grids. The EVOLVE/G system, which is a
Grid tool for developer of evolutionary computation, is
proposed by Tanimura et al (2002). This system consists
of an Agent and multiple Workers. Since the data can be
exchanged between the Agent and Workers freely, any
logical models of EC can be integrated. Jing et al (2004)
describes a parallel hybrid-GA (PHGA) for
combinatorial optimization using an island model
running in a networked computing environment. Jing et
al (2004) opens several issues for future research like
extensive study on scalability of parallel GA in a
distributed computing framework. Applicability of
parallelizing the local search of a serial GA and other
heuristics for local search can be explored to enhance the
performance of the parallel GA. Cao et al (2003)
developed a GA-based scheduler for fine-grained load
balancing at the local level, which was then coupled with
an agent-based mechanism that was applied to load
balance at a higher level. Future enhancement to the
system will include the integration with other grid
toolkits (e.g. Globus MDS and NWS).

MATERIALS AND METHODS

In this research work an attempt has been made
to increase the efficiency of grid scheduler. GAs based
scheduling algorithm named “Dynamic Online
Scheduling” is proposed for better resource optimization
and task scheduling. The scheduling process in this
algorithm is addressed in two layers namely pre-
scheduling and post-scheduling. The newly coming
problems from outside grid boundary are scheduled in
the first layer which is pre-scheduling. In post-
scheduling the load balancing of the already submitted
tasks is done, that is if a certain resource is found
overloaded with work while some other resources are
free then some of the jobs of the overloaded machine are
automatically shifted to the free machines while keeping
in mind the robustness, reliability and efficiency of the
job as well as the time cost, communication cost.
Resource cost will also be considered.

Load and Time Prediction Technique:

The load on the resources and the execution time of the
tasks both are interrelated and depend on each other.
Every task has certain execution time and every task puts
a certain amount of load on the machine it is executed
on. We have developed a mechanism which on the basis
of task attributes (e.g size, type etc) and resource
attributes (e.g. memory, cpu cycles, load) tells the task
execution time on that machine. This strategy gives us
the advantage of dynamicity in the pool of
heterogeneous resources as well as tasks, since both task
and resource attributes are not assumed to be fixed. The
load and time prediction strategy is based on historical
data. Each resource is continuously monitored for its
utilization and the data is entered into the log file. This
log file helps us to set the threshold for our resources at
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any particular hour of day. The resource threshold is
updated after each hour. At the same time an extensive
amount tasks are executed on each resource and the
resource utilization is calculated with each task and the
log file logs that task’s attributes and resource
utilization. After that, we rearrange the task log file
according to the task attributes and time of the day they
were submitted on. Then we give this data to the genetic
algorithms to learn which resource is best suited for
which kind of task at any particular given time of the
day.

So far time prediction seems enough for load
balancing since each task will be assigned on the basis of
threshold plus the current situation of resource. But
that’s not exactly what happens in the real world. When
multiple tasks come the scheduler calculates the task
execution time for each task with respect to the current
situation of the available resources it is assigned to. Each
task will definitely increase some amount of load on a
resource. If multiple tasks are assigned to a resource then
after one task starts running, the current situation of the
resource will change but the scheduler predicts the task
execution time according to the pervious resource
situation that is before the execution of the previous task
began. To cover up this flaw, we developed a Load
Prediction strategy. This strategy is also based on history
data but this data is required to be generated only once
for each different set of attributes of task.

At this point it all seems static at compile time
work while its not. Dynamicity comes when a new task
arrives, GA scheduler become is activated and it
retrieves the required task attributes, lists the currently
available resources and predicts the execution time of
the task for each resource on the basis of current
resource parameters (e.g. memory, cpu cycles, load) or
predicted parameters, task attributes and the history data
from log file (that how much time the task of given
attributes takes to execute with respect to the resource
history parameters). The formula used by GAs to
calculate the prediction time is explained in a later
section.

Dynamic Online Scheduling: In dynamic online
scheduling, scheduling is done on the basis of the current
situation of the grid, which takes the current resources
states / parameters from the resource collector and task
list to be scheduled from the task collector and provides
both lists to GA based scheduler as shown in figure 1.
The Dynamic Online Scheduling procedure works in the
following manner.

Publications
PERFORMANCE .
MONITOR i
RESOURCE 3; 3 § TASK
COLLECTOR 5 COLLECTOR
L L P
GA Based ANALYZER +
LOAD BALANCER
TaskéResource
M@pin%Engine
Task Executer -t
Display Output

Figure 1: Dynamic Online Scheduling Overview
Pre-Scheduling

1. A list of available resources is generated on the
basis of the current situation of resources as
well as the history data about resources.

2. A list of tasks to be scheduled is generated from
the task queue.

3. Both lists (Resource list and Task list) are
provided to the GA based Analyzer and Load
Balancer which will generate the optimized
mapping of tasks to resources.

4. Mapping Engine assigns the tasks to resources.

5. Task Executer executes the task and displays
the output.

Post-Scheduling

1. Post scheduling algorithm becomes active when
the performance monitor views that certain
resources are being over utilized while some
others are being under utilized. The criteria for
the measurement of the resource’s overload
(that is if whether a certain resource is
overloaded or not) is its threshold limit.

2. Each resource has been assigned a certain
threshold on the basis of history data.

3. If certain resources are overloaded then the
performance monitor comes into action. It will
place the request to Load Balancer for
redistribution of the tasks.

4. Load Balancer will activate the Resource
Collector to provide the list of overloaded
resources and under utilized resources, and
Task Collector to provide the Task list of
overloaded resources.

5. Load Balancer will then generate the new
mapping.

Block diagram for pre and post scheduling has provided
the detailed internal architecture of system as shown in
figure 2.
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Figure 2: Detailed Internal Architecture of Online Scheduling
Genetic Algorithms for Scheduling

Chromosome Representation: For applying GAs
directly or coupled with other meta-heuristics, problem
(chromosome) representation is very important and it
directly affects the performance of the proposed
algorithm. The first decision a designer has to make is
how to represent a solution in a chromosome [14]. We
assume that the Tasks and Resources are arranged in an
ascending order according to the Task attributes (that is
size, type, submission time) and Resource usage (that is
least loaded comes first). Figure 3 depicts the
chromosome representation which is used in our current
strategy. Basically each chromosome in the population
contains permutation of tasks and their fitness is
calculated according to the resources they were assigned
to. Task T; is allocated to resource R1, T, to R2 and T;
to R3 and so on. When T, is completed, resource R1 is
empty and task Ty is allocated. This procedure goes on
until all the tasks are allocated.

<T4,T2..Tn>

<Tn,T2..T4>

<T4,T3...Ts>

<TnN,T2...T7>

Figure 3: Chromosome Representation

GA Approach for Task Scheduling and Load
Balancing

1. Get the Task List from the Task Collector of length
TNT where TNT is the total number of tasks to be
scheduled.

2. Get the Resource List from the Resource Collector
of length TNAR where TNAR is the total number of
available resources, if no resource is available then
wait until resources become available.

3. At t =0; generate an initial population with P
chromosomes Popi(t), where P represents the
permutations of tasks and is calculated as:

P=1nrP v

4. For each chromosome (i=1 to P), first allocate the
jobs to the available resources based on the FCFS
basis. Then calculate the predicted time for each
task according to the current parameters of the
resource it is assigned to from the task history log.
For example if one parameter of a resource say load
is used then the task time prediction formula will be

as follows

PIrp = HIrg

PL, HLy

PIrz = PLy HIrp
HL,

Where:
PT; p = Predicted Completion Time of task T on
resource R

PLg = Present Load on resource R for 1* task, and
Predicted Load for next assigning tasks (Each task
will increase some load on the resource which will
be calculated as predicted present load for next task)
HTy p = History Completion Time for task T on
resource R (taken from Task Log History).

HLp = History Load on resource R when task T had
completion time Ty, 5

Now the predicted time for each task in the
chromosome can be easily calculated using afore
mentioned formula.

5. Fitness value for each chromosome is calculated
which will tell us the make-span of the schedule.
Fitness value is calculated using following formula:

F = —1
Max(g PTr; »)

6. The make-span of the schedule is calculated using
following formula:

6 = Max(g PTrr)

g PTnr
Where represents the total number of
tasks assigned to resource R,
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7. Apply Crossover operator on the population
according to the probability selected, Crospop(t+1)
= recombined chromosomes of the population
NewPop,(t+1),

8. Apply mutation operator on the population
according to the probability selected, MutPop(t+1)
= mutated population CrosPop(t+1).

9. Evaluate the fitness of each chromosome in the new
population and check if the specified fitness value is
achieved or not. If not, start the GAs loop again.

10. Send the specified schedule generated by GAs to the
Mapping Engine which will assign the tasks to the
resources. In case of post scheduling the Mapping
Engine will migrate the tasks from the overloaded
resources to relatively less loaded resources.

EXPERIMENTAL RESULTS AND
DISCUSSION

As a fundamental base, we have adopted
OpenMosix as the resource monitoring and management
tool. OpenMosix provides the update network weather
service as well as logging the utilization information of
each resource. A Task Management tool is developed
which receives task from the users. GA scheduler works
at the back end which takes tasks form task management
tool and maps them to the available resources. (List of
available resources is provided by resource management
tool i.e OpenMosix) First we run bunches of tasks on
limited resources (2-8 machines) without any
involvement of GA scheduler and calculate the
execution cost that is the total time it takes to complete
all the assigned tasks on all machines, and then we
perform the same test using GA based scheduler and
again calculate the execution cost. We calculate the
execution cost for different sizes of schedules by slowly
increasing the number of resources (5, 10, 15, 20, 25 and
30 number of machines) both with and without GA and
the results shows that performance of system increases
when GA base scheduler is used. Figure 4 shows the
comparison results of system with proposed GA
scheduler and without GA scheduler. Schedule Size vs.
Make span is plotted in figure 4.

Scheduk Size Vs. Time (GA Based)

10 20 30 40 50 60 70 80 S 100

Schedule Size
~—-—Nodcs=5 il No des =1 v Nodes =15
awniphon NO de =20 = Nodes=25 ~—-—Nodes=30

Figure 4-(a): System performance with GAs based scheduler
(Schedule Size Vs. Time)

| Schedule Size Vs. Time (OpenmosiX's Dynamic |
Scheduler)

10 20 30 40 50 60 70 80 9 100

Schedule Size
«—g—Nodes=5 wfl-~Nodes=0 .- g Nodez=ls
—>¢—Nodea=20 —3—Nodes=25 ~—@-—Noder=30

Figure 4-(b): System performance without GAs based
scheduler (Schedule Size Vs. Time)

Table 1 and 2 displays the detailed information of
execution time of different sizes of schedules with
respect to different number of resources generated by
GA scheduler and Openmosix scheduler respectively.
Table 3 indicates the performance gain of GA scheduler
over Openmosix scheduler for each set of schedules and
resources.

Table 1: Makespan time in seconds generated by GA on
different sizes of schedule and number of processors
GENETIC ALGORITHM BASED DYNAMIC
ONLINE SCHEDULER RESULTS
S.Size No of Processors

5 10 15 20 25 30
10 318 21.8 18.9 15.6 10.2 8.5
20 81.1 66.7 534 44.7 33.8 | 233
30 [ 1197 [ 1110 96.3 90.9 69.9 | 402
40 | 1834 | 1674 | 1548 | 1222 | 1155 | 649
501 2152 | 1893 | 173.7 | 1379 | 1257 ] 735
60 | 247.1 | 2111 ] 1926 | 153.6 | 136.0 | 820
70 ] 279.0 | 233.0 } 2115 ] 169.2 | 1462 | 90.6
80 | 3109 | 2549 | 2305 | 1849 | 1564 | 99.1
90 | 3428 | 2768 | 2494 | 200.6 | 166.6 | 107.6

100 | 3747 | 2987 | 2683 | 2163 | 1768 | 116.2

Table 2: Make span time in seconds generated by
openmosix on different sets of schedule size and number
of processors

OPENMOSIX’S DYNAMIC SCHEDULER

RESULTS
S.Size No of Processors
5 10 15 20 25 30
10 59 43.8 36.5 30 27.5 25.5
20 121 94.5 57.6 50 48 45
30 § 2515 141 1195 { 92.4 82.5 77

40 { 310.5 232.5 1745 | 139 ] 102.5 | 93.6
50 | 369.5 276.3 2110 | 169 130 | 119.1
60 | 428.5 320.1 2475 | 199 ) 1575 | 1446
70 | 4875 363.9 2840 | 229 185 | 170.1
80 | 546.5 407.7 3205 | 259 ] 2125 | 1956
90 | 605.5 4515 3570 | 289 240 | 221.1
100 | 664.5 4953 393.5 | 319 | 267.5 | 2466
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Table 3: Performance gain of Genetic algorithms based
scheduler over openmosix scheduler
PERFORMANCE GAIN OF GA OVER
OPENMOSIX
S.Size No of Processors
10 15 20 25 30
10 | 49.96% | 51.83% | 52.27% 37.13% | 33.47%
20 | 70.67% | 92.75% | 89.50% 70.59% | 51.92%
30 | 78.75% | 80.63% | 98.44% 84.83% | 26.27%
40 | 72.01% | 88.74% | 87.95% | 112.76% | 69.44%
50 | 68.52% | 82.35% | 81.62% 96.76% | 61.74%
60 | 65.98% | 77.85% | 77.19% 86.35% | 56.75%
70 | 64.05% | 74.51% | 73.93% 79.04% | 53.26%
80 | 62.53% | 71.92% | 71.42% 73.61% | 50.68%
90 | 61.31% | 69.87% | 69.43% 69.43% | 48.70%
100 | 60.31% | 68.20% | 67.82% 66.11% | 47.12%

In order to visualize the performance of system
more clearly root mean square root error and correlation
coefficient is calculated from the results generated by
Openmosix scheduler and GA scheduler. Figure 5 shows
the correlation coefficient series, for different sizes of
schedules and number of resources, of both GA
scheduler and Openmosix Scheduler and it can be
clearly seen that GA scheduler is more correlated when
we increase the schedule size over time than Openmosix
scheduler.

I GA Based Dynamic Scheduler V.
Openmosix Scheduler

-0.85

-0.9

_E -0.85

-1.05

Schedule Size

l+'GA' —a— 'Openmosix’ ]

Figure 5: Correlation Coefficient of GA scheduler and
Openmosix scheduler

Figure 6 displays the root mean square root
error of Openmosix scheduler with respect to GA
scheduler and the plot indicates that as the schedule size
increases the error generated by Openmosix also
increases.

RMSE for Openmosix With Respect to GA
Based For Different Schedule Sizes

180
160
140
120
100
80
60
40

Root Mean Square Exrtor

10 20 30 40 50 60 70 80 9890 100
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Figure 6: Root Mean Square Error for Openmosix scheduler

Finer results are obtained when GAs is
executed for another 1000-1500 generations but by
increasing the number of generations performance gain
due to GAs starts compromising in terms of scheduling
cost so in order to obtain the best optimal result number
of generations for GAs are set to fixed for 500. After
running for 1500 generations the results appear more or
less the same. Table 4 shows the improvement in
makespan # (schedule cost) after each 100 generations
for different sizes of schedules.

Table 4: Improvement in the Makespan (Schedule Cost) after

each 100 generations for different schedule sizes

IMPROVEMENT IN THE MAKESPAN (SCHEDULE
COST) AFTER EACH 100 GENERATIONS

#. Of
Generat Schedule Size
ions

70 80 90 100
100 | 427.1055 | 437.8263 | 484.9545 | 491.3856
200 | 323.7534 356.622 | 327.1157 | 3749545
300 | 219.8443 | 2345184 { 2254005 | 280.4443
400 | 174.4709 | 1282745 | 1249915 | 191.7306
500 90.6014 99.1374 | 107.6734 | 116.2094
600 90.6014 98.1301 106.5564 | 115.5494
700 89.0151 98.1301 | 106.5564 | 115.5494
800 89.0151 97.1404 | 106.5564 | 115.5494
900 88.0151 97.1404 | 106.0112 | 115.0013

1000 88.0151 97.1404 [ 105.5461 | 115.0013

1100 87.6014 96.0011 | 1055461 | 114.5095

1200 87.6014 96.0011 | 105.5461 | 114.5095

1300 86.0121 96.0011 105.5461 | 114.5095

1400 86.0121 96.0011 [ 105.0215 | 114.1421

1500 86.0121 96.0011 | 105.0215 | 114.1421

1600 85.0501 96.0011 | 105.0215 | 114.1421

1700 85.0501 96.0011 | 105.0215 | 114.1421

1800 85.0501 96.0011 105.0215 § 114.142]

1900 85.0501 96.0011 | 105.0215 | 114.1421

2000 85.0501 96.0011 105.0215 | 114.1421

CONCLUSION AND FUTURE WORK

In this research work we attempt to address the
problem of load balancing in grid computing using one
of the popular heuristics namely GAs. Genetic
Algorithm predicts the execution time for each task with
respect to the resource it is assigned to. The prediction
time is based on the current attributes of task, current
and historical parameters (like load, memory etc) of
resources. We have tested this algorithm on a 30
machines heterogeneous grid environment with different
schedule sizes and the results show that the proposed
strategy can lead to the significant performance gain.

Future work will examine the application of
proposed GA based algorithm as parallel genetic
algorithms and dynamic distributed algorithms proposed
by Yi et al (2000). In both cases number and size of
populations must be carefully determined. Even though
significant progress has been made in modelling the
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infrastructure of grid computing but a close review
clearly indicates that not much progress is made in
formulating the efficient and globally optimized, grid-
scheduling algorithm for allocating jobs (Abraham et al.
2000). Therefore we are planning to investigate this
research area in depth using GAs as well as other
heuristic algorithms.
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infrastructure of grid computing but a close review
clearly indicates that not much progress is made in
formulating the efficient and globally optimized, grid-
scheduling algorithm for allocating jobs (Abraham et al.
2000). Therefore we are planning to investigate this
research area in depth using GAs as well as other
heuristic algorithms.
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Appendix C User Manual

C - USER MANUAL

Following is the description of software that is being used to compare the results. The
screens and their descriptions will be useful to understand this software.

C.1 TASK COLLECTOR SCREENS

Task collector is the main GUI which interacts with user to receive new tasks from user.
Task collector screens are shown in figures 8-1 to 8-5.

C.1.1 TASK COLLECTOR MAIN SCREEN

Task Collector is executed to start receiving the tasks from user and the screen shown in
Fig 8-1 is displayed for this purpose.

b Task Collectnr view

Fig C-1: Main Screen of Task Collector
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C.1.2 SUBMIT TASK SCREEN

Task information will be received from the user in the following screen as displayed in

figure 8-2.

Brd ~tirt new job

Fig C-2: Submit Task

After the task is submitted the main screen shown in figure 8-1
information about the tasks as shown in the figure 8-3.

will display the

- 8=
Task 1D« ' ISize Inpust Result Status Subemit Time
s 1024x768 froct/povray-3.6/scenes/advancedfdesk.pov imp/dol.ong QUEUED 1041 AM
10 600x400  froct/povray-3.6/scenesfadvanced/desk.pov tmprd03.jpeg QUEUED  10:43 AM
2 1024x768 froot/povray-3.6/scenesfativanced/desk.pov Aimp/dOL.jpeg QUEUED 1041 AM
3 1024x768 frootfpovray-3.6/scenesfadvanced/desk.pov Amp/dOL.xpm QUEUED 1041 AM
1024x768 jrootipovray-3.6/scenesfadvancedidesk.pov Amp/d02.bmp QUELED  10:41 AM
S S00x600  jroct/povray-3.6/scenesfadvanced/desk.pov Amp/i02.png QUEUED 1041 AM
6 BOOX600  /froot/povray-3.6/scenesfadvanced/desk pov Amp/dO2 jpeg QUEUED  10:42 AM
7 8OOX600  froct/povray-3.6/scenesfadvancedfdesk.pov Aimp/d02.xpm QUEUED  10:42 AM
8 BO0XG00  froot/povray-3.6/scenesfadvanced/desk.pov Amp/d02 bmp QUEUED 10142 AM
9 500x400  froot/povray-3.5/scenesfadvanced/desk.pov Amp/d03.png QUEUED 1043 AM
|
. ¥
Fig C-3: After task submission
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C.1.3 TASK OUTPUT SCREEN

When the task is finished the view output button is enabled and task output is displayed as
shown in the figure 8-4 according to the size provided by the user at the time of task
submission. ‘

Fig C4: Task Output Screen

GA Based Load and Time Prediction Technigue for Dynamic Load Balancing C-3



Appendix C User Manual

C.1.4 RESOURCE INFORMATION SCREEN

For task collector usage resource information is also kept within the task collector
module. Resource information e.g. its status, memory usage, load and threshold etc is
displayed in the following screen shown in figure 8-5.

Fig C-5: Resource Information Screen
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C.1.5 TASK LOG FILES

Two log files are generated and used by task collector, which are keeping the information
of total task execution time with respect to resource it is assigned to. These log files are
later on used by genetic algorithms to make scheduling decisions. The preview of two log
files is shown in figures 8-6 and 8-7.

User Manual

| Line: 20Col: 0 INS NORM

V fas khistory. txt Kwreie

File Edit View Bookmarks Jools Settings Help

NG 88 @ @@» &%% X AaAXg

Task Size Res, (Tine/Load® + Memory%)
Q1024%768. epng. Q01:15 PM L3R Q258 / 65.6364 + 32.0009
Q1024x788, Gjpe.  ©D1:15 PN L Q256 / 78.7778 + 32
@1024x768, oxpm, QU1:15 PN el 9258 / 25.7692 + 32.0769
01024x768, abmp, €01:15 PR @1, €258 / 66.5556 + 32.3333
0800600, @png.  ©01:15 PK oL €200 / 74.8571 + 32
@400x200, @bmp, 601:15 PM, o1 €58 / 40.6667 + 32
@800x600, Ojpe ©01:15 PM o1 0202 / 75.7143 + 32
@800x600, oxpn, Q01:15 PN, oL Q201 / 35.2778 + 32
@800x600, €bmp, Q01:15 PM, 01, 0202 / 76 + 32

©600%400, OGpng.  ©01:15 PN oL 0125 / 66.2 + 32
Q600x400, €jpe. ©01:15 PN, 01, @125 / 66.2 + 32
@600%400, @xpn, 001:15 PK 01 €126 / 71.8333 + 32
Q600x400, ebnp, oN1:15 PM 01 €126 / 66.6 + 32
©400%200, Gpng.  ©01:15 PN, 01 056 / 44 + 32

0400x200, Qjpe, @01:15 PM a1, €56 7/ 39.3333 + 32
@400x200, axpm, Q01:15 PK a1, €58 / 38.3333 + 32
©1024x768, Qpng. ©01:17 PN, 02, €240 / 42.8571 + 33.1429
p6oox4o00, ejpe. ©01:17 PK 02 €120 / 33.3333 + 33.3333
@600x400, @xpm, 001:17 PM 02 0123 / 47.3333 + 33.1667
@600x400, €bmp, @01:17 PM @2, @120 / 33.3333 + 33.3333
0400x200, Gpng ©01:17 P, Q2 €53 / ¢ + 33.5

0400x200, Qjpe, Q01:17 PN, 02 €55 7/ 0 + 33.5

2400x200, @xpm, ©01:17 PN, 02 €55 / 33.3333 + 33.3333
©400x200, gbmp,  ©01:17 PK, 02 052 / 0 + 33.5
01024x768, Qjpe. @01:17 PM, Q2 @239 / S0 + 33.1667
Q1024x768, Gxpn, 001:17 PN Q2 0239 / 17.6471 + 33.0588
01024x7868. Gbrp, Q01:17 PM. @2 €238 / 56.4 + 33.2
0BOOXE00, @png.  ©01:17 PN, 02 0192 / 56.8 + 33.2
8800x600, Qjpe. ©01:17 PN, @2, €184 / 50 + 33.25
@800x600, Gxpn, ©01:17 PK, Q2 0193 / 18.9333 + 33.0667
©800x600, Chmp, 001:17 PK, Q2 €193 / 50 + 33.25
2600x400, fpng. eD1:17 PM Q2 €123 / 33.3333 + 33.3333
01024x768. opng.  ©01:18 PN, @3, 0248 / 50 + 50.25
8600x400, ¢jpe, €01:18 PN 03, 9130 / 57 + 50.25
6600x400, axpm, €01:18 PM @3, €127 / 55.5 + 50.1667
Q600x400, Obrp, €01:18 PK a3 €130 / 42.8667 + 50.3333
DO PVTY Bt P L L B R T (Y § -~ Mo 4 AN Aoy P PPy

Fig. C-6: Task History File — 1
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After each twenty four hours the data from log file 1 is entered into the 2™ log file which
The preview of 2™ log file is shown in figure 8-7.

M tishronouts ehidory ixt it
Efe Edr. Yiew Rookmarks Tools Sewings - Help
DS 8N overaB RAKXY
ask Size, Type  Tine RI(Time/Tond%HexX) . R2(Tine/Losd%eHenk) . RI(Tine/Load%+Mean)
0400%200, eung  012:00 AX 054 / 11 + 31.5., . 053 / 0 + 33.5, . . 0S4 / 17 « S0,
2400x200. Ojpe.  ©12:00 AM 657 / 11,5 + 31.5, . S5 / 0 + 38.5, . 0568 / 17 + 50, .
©400x%200, Oxpm. ©012:00 AM, 056 / 40,6867 + 31,3332, 055 / 33.3333 + 33.3333,, Q57 / 45 + 50, .
0400%200, Ghmp.  ©12:00 AW 058 / 12,5 + 31.5 . 052 / 0 « 33.5 . . @s3 /17 + 50 .,
600400, opng.  ©12:00 AN €128 / 55.25 + 3125 8123 / 33.3333 + 33.3333. 0127 / 58.5 + 50.
©600x400, ojpe.  012:00 AM €124 / 55.5 + 31,25 . €120 / 33.3333 + 31.3333, 0128 / 58.5 + 50,
Oxpm. D12:00 AW 0126 / $5.5 + 31,3333 . 0123 / 47.3333 + 33,1667, 0126 / 56.8667 + 50,
9600x400, cbwp,  ©12:00 AM 0126 / $5.75 + 31.25 ©120 / 33.3333 + 33.3333 0124 / 44.6667 + 50,
Opng  012:00 AW €197 / 68 + 31,3333 . 0192 / 56.8 + 33,2 ®166 / 66.8 + 50,
08002600, Ojpe.  ©12:00 AW 9108 / 64.4 + 31.2 . 6194 / S0 + 33,25 0196 / 66.8 + 50,
8800X600, oxpm,  012:00 AW, 6198 / 36.2857 + 31.5, . €193 / 18.9333 + 33,0667, 0108 / 33.6 + 50
@BOOX600. cbop.  012:00 AW 0198 / 64.4 + 31,2 . 0193 / 50 + 83.25 N @106 / 66,8 + 50
01024768, ong.  ©12:00 AN 0250 / 55.625 + 31.375, . 0240 / 42.8571 + 33,1429, 0242 / $7.125 + 50,
91024768, Ojpe.  ©12:00 AW G249 / 68.% + 31,3333 . 239 / 50 + 33.1087. . 0243 / 70,3333 + 50,
01024x768, Gxpm,  012:00 AKX 0249 / 33.9333 + .4 . 0239 / 17.6471 + 33.0588 0243 / 33.05 + 50,
©1024x768, obmp,  €12:00 AN, ©249 / 68 + 31,2333, . 0238 / 56.4 + 33,2 . 0243 / 68 + 50, .
€400x200, epng  012:15 AW @54 / 11 + 31.5.. . 053 / 0+ 33.5 . 054 /17 « 50.
©9400%200, @jpe.  ©12:15 AW 057 / 11.5 + 31,5, . 0S5 / 0+ 33.5 . . Q956 / 17 + 50,
©400x200. oxpn  012:15 AR 056 / 40.6667 + 31.3333.. 055 / 33.3333 + 33.333%. @57 / 45 + 50 |
@400x200, cbop.  012:15 AN Q56 / 12.5 + 31.5 . 052 7/ 0 + 33.5 . 052 /17 + 50, .

), png  €12:15 AW 0128 / 55.25 + 31.25 . 0123 / 33.3333 + 23.3333 0127 / 58.5 + 30,
©600x400, ojpe.  ©12:15 AK 8124 / 55.5 + 31.25. \ £120 / 33.3333 + 33.3333, 0128 / 58.5 + 50,
600x400, Gpn, €12:15 AW 0126 / 5.5 + 31.3333 0123 / 47.3333 + 33,1667, 0126 / 56,6667 + 50,
0600x400, oy, 012:15 AN, 0126 / 55.75 + 31.25 . 0120 / 33.3333 + 33,3333 0124 / 44.6667 + 50,
0800x600, opng.  €12:15 AW €197 / 68 + 31.3333 . 8192 / 56.8 + 33.2, . 0196 / 66.8 + 50,
©B0OX600, Ojpe,  ©12:15 AW 0198 / 64.4 + 31.2 0194 / 50 + 33.25 . 0196 / 66.8 + 50.
0800x600, Gxpm 012:15 AR 0188 / 36.2857 + 1.5 . 0193 / 18.9333 + 33.0667. 0198 / 33.6 + 50,
QB80UX600, gomp,  ©32:15 AW 198 / 64.4 + 31,2 . 0193 / 50 + 33.25 . 0196 / 66.8 + S0,
01024x768, Gpng.  ©12:15 AW 6250 / §5.625 « 31.37%, . 0240 / 42.8571 + 33,1429, 0242 / 57.125 + 50,
£1024x768, Gjpe.  ©12:15 AN ©249 / 68.5 + 31.3333 023% / SO + 33,167, . 0243 / 70.3333 + 50,
Q1024x768. PR 012:15 AN €240 / 33.9333 + 31.4. . 0230 / 17.6471 + 33,0588, 0243 / 33.05 + 50,
01024768, obmp.  ©12:15 AW 0249 / 68 + 31,3333, . 0238 / 56.4 + 33.2 N 0243 /7 68 + 50, ,
8400200, opmg  ©12:30 AW 654 / 11 + 31.5. 053 / 0 + 33.5 . . 054 / 317 « 50,
©400x200, Ojpe.  ©12:30 AW 057 / 11.5 + 31.5 . 055 / O « 33.5. . . €56 / 17 + 50.
0400x200, Gxpm. €32:30 AN 058 / 40,6667 + 31,3333, 655 / 33,3333 + 33.3333, 057 / 45 + 50,
ﬁl A

kﬁ””l Cok 0 INS_ NORM

Fig. C-7: Task Resource History File — 2
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C.2 RESOURCE COLLECTOR SCREENS

The second module of this project is to collect the resource information from all the
resources in the platform and update it after certain intervals. The following are the
screens shots of openmosix view which is used as the resource collector module in this
project.

C.2.1 RESOURCE COLLECTOR MAIN SCREEN

The main screen of resource collector which shows the information about all the
resources and their utilization is shown in figure 8-6.

v -
Fite View Config: Collector  Help
ﬁ{ﬁ é ) ,‘ W"' ” N? | ”"”h‘am?%! W opsnMosixcollecior staties
clustemnodes load-balancing efficiency overali load allmemory  allepu
17216166 e,
17216187
172.16.1.86
17216188

172:16.1.88
172.16.1.90

Fig C-8: Resource Collector Main Screen
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C.2.2 RESOURCE CONFIGURATION SCREEN

Using resource configuration screen you can configure the usage of your particular
resource in the environment e.g. task migration decisions, connection with other resources
and migration of local or guest processes. The following screen shown in figure 8-7 will
be displayed for resource configuration.

b OPONMGSIXVIOW

X openMosix-configuration

node : [172.16.1.66

auto-rmigration onfoft
talk to.others nodes
local procs stay

yes | no | send away guestprocs

({1 | stant | stop | startistop

‘ ]’ apply H§ caneell
’ {m console ”?g remote proc-box |

ré clear | [ dlearhistory | @ close |

Fig C-9: Resource Configuration Screen
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C.2.3 RESOURCE UTILIZATION GRAPHICAL VIEW

The graphical view of individual resource as well as the whole grid environment is
displayed in the following screen shown in figures 8-7 and 8-8.

8 OnentinsivAnatyice 15

! Fle Help

i&lim&l&l@_} Wllaieovateth] 10 5is - LOAD < OVERVIEW
e e IR R S P S
£

J I O W
U NP I I B T

e e s = =2 == v |

Fig C-10: Resource Utilization view of all resources

GA Based Load and Time Prediction Technique for Dynamic Load Balancing c-9



Appendix C User Manual

g penmosixanaly /e
informations xbout node L
from: { 16.72006-23.35.6 to: 121.7.2005-16.59.32

Load Memory ‘ staticdata
CPUs

o

displaying node inforrations

Fig C-11: Resource Utilization view of individual resource
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C.2.4 RESOURCE HISTORY

Resource history generated by resource collector is used to set up a threshold policy for a

resource. The preview of the resource history file is shown in figure 8-12.

Eﬁe Edit Yiew Bookmarks JTools Settings Help
‘NG IR 09alaR XAQAS
9.9.2006-15 .45 00000
9.9.2006-15.1.2 0 25558 254 12 1
9.9.2006-15.1.15 0 25559 254 12 1
9.9.2006-15.1.28 0 25559 254 12 1
9.9.2006-15.1.41 0 25559 254 12 1
9.9.2006-15.1.54 0 25559 254 12 1
9.9.2006-15.2.7 0 25559 254 12 1
9.9.2006-15.2.20 0 25559 254 12 1
9.9.2006-15.2.33 0 25559 254 12 1
9.9.2006-15.2.47 0 25559 254 12 1
9.9.2006-15.3.0 0 25559 254 12 1
9.9.2006-15.3.13 0 25559 254 12 1
9.5.2008-15.3.26 0 25559 254 12 1
9.9.2008-15.3.39 0 25559 254 12 1
9.9.2006-15.3.52 0 25559 254 12 1
9.9.2006-15.4.5 0 25559 254 12 1
9.9.2006-15.4.18 4 25559 254 12 1
9.9.2006-15.4.31 5 25559 254 12 1
9.9.2006~-15.4.44 0 25559 254 12 1
9.9.2006-15.4.57 2 25559 254 12 1
9.9.2006-15.5.10 0 25559 254 12 1
9.9.2006-15.5.23 2 25559 254 12 1
9.9.2006~-15.5.36 0 25559 254 12 1
9.9.2006-15.5.49 0 25559 254 12 1
9.9.2006-15.6.2 1 25559 254 12 1
8.9.2006-15.6.15 0 25559 254 12 1
9.9.2006-15.6.29 0 25559 254 12 1
9.9.2006-15.6.42 0 25559 254 12 1
9.9.2006-15.6.55 0 25559 254 12 1
9.9.2006-15.7.8 0 25559 254 12 1
9.9.2006-15.7.21 0 25559 254 12 1
9.9.2006-15.7.34 2 25558 254 12 1
9.9.2006-15.7.47 1 25559 254 12 1
9.9.2006-15.8.0 0 25559 254 12 1
9.9,.2006-15.8.13 0 25559 254 12 1
9.9.2006-15.8.26 D 25559 254 12 1
9.9.2006-15.8.39 0 25559 254 12 1
9.9.2006-15.8.52 0 25559 254 12 1

tkE:ICd:O!NS NORM

onsmisismi -
- — s

Fig C-12: Resource History Files
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