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ABSTRACT

The GMM approach is highly criticised due to its poor finite sample properties. Various
authors proposed non-parametric approaches as an alternative to GMM. This
dissertation primarily compares the finite sample properties of GMM and three Non-
Parametric approaches, i.e., Maximum Empirical Likelihood, Maximum Exponential
Empirical Likelihood, and Cressie and Read Optimal Convex Combination (CROCC)
using Monte Carlo simulation analysis. The findings of this study revealed that CROCC
is a more efficient estimator than all other estimators, especially from the GMM
approach that has poor finite sample properties. CROOC produces less biased estimator
than GMM in the exactly determined model, whereas MEL and MEEL produce lower
bias than GMM and CROCC in the overdetermined model. Therefore, the study

concluded that CROCC has better finite sample properties as compared to GMM.

The performance of CROCC can be improved, if the coefficient of optimal convex
combination is estimated by operationalizing the minimum quadratic risk estimator
appropriatly. Consequently, we introduced an alternative arbitrary method (Cressie and
Read Arbitrary Convex Combination - CRACC) that is independent of the computation
of the coefficient based on the minimization of quadratic risk. Our results showed that
in general, CROCC is more efficient than CRACC in the exactly determined model,
whereas CRACC is less biased and more efficient than CROCC in the overdetermined
model. Hence, it is recommended that researchers should use CRACC for estimating

the economic models having endogeneity issues.

Keywords: Endogeneity; Finite Samples; Information-Theoretic Approach; GMM;

Biasedness; Non-Parametric Approaches.
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CHAPTER 1. INTRODUCTION

The significant contribution of econometrists is to explore tools and techniques that
could aid in the estimation of unknown parameters and their distribution of a given data
set. Various techniques are effectively used to estimate different types of models based
on optimization. The estimation and inference of general linear regression models face
problems of unknown parameters that are functionally linked to samples moment
conditions. The estimation techniques for functionally independent moment equations
are linked to a number of parameters that can be classified in three ways. Firstly, if the
number of moment restrictions is smaller than the number of parameters to be
estimated, then the model is under-identified, which demonstrates that there is

inadequate information in the model to uniquely estimate parameters.

Secondly, if the number of moment equations is exactly equal to the number of
parameters, then the model will be exactly identified. In this case, the classical Pearson
Method of Moment (MOM) is used to obtain a unique solution of parameters that is
called the Ordinary Method of Moments. Thirdly, if the number of moment conditions
exceeds the number of parameters, then the model becomes overdetermined. In this
case, the additional information is available about unknown parameters. Generally, it is
unlikely to set the sample average of moment conditions rigorously equal to zero. This
case is associated with the Generalized Method of Moments (GMM), and its solution
was proposed by Hansen (1982). A similar method to the GMM approach was
discussed by Ferguson (1958), which is based on Pearson chi-squared statistics and

relates to an efficient GMM estimator.



The Maximum Likelihood (MLE) technique is most extensively used to estimate the
econometric model. This technique can be used in case we have complete knowledge
about the model and about its probability distribution. However, the Generalized
Method of Moments (GMM) approach does not need the condition of full knowledge
in model estimation. It requires only a set of moment functions specification according
to the model. The study of Imbens (2002) stated that the GMM approach is assumed as
a combination of characteristics of various approaches, including the Instrumental
Variables (IV) approach, Two Stage Least Squares (2SLS), Maximum Likelihood

(MLE) and Ordinary Least Square (OLS) techniques.

Due to the nested characteristics of all the above-discussed approaches, the GMM is
highly appreciated and used by authors and practitioners for the last two decades.
According to Judge and Mittelhammer (2011), the GMM approach used to estimate the
unknown parameters to satisfy the moment conditions, possibly close to zero. The close
to zero condition can be evaluated with weighted Euclidean distance. The GMM

estimator provides distinct efficient estimators concerning their weighting structure.

1.1 Empirical Likelihood (EL) Approach

The GMM based inference was proposed by Hansen (1982) for the overdetermined
model, and it has good asymptotic properties. However, several authors reported that
finite sample properties of GMM estimators are different from the asymptotic
properties (Altonji & Segal, 1996; Hansen, Heaton, & Yaron, 1996; Pagan &
Robertson, 1997). Consequently, the study of Owen (1988) proposed the Empirical

Likelihood (EL) method as an alternative approach that provides improved inferences



in econometric models. The EL! approach can be used to estimate the likelihood with
the help of sample data; only in case, there is no information available about parametric
functional form to construct likelihood function. Therefore, EL approach is known as
non-parametric empirical likelihood approach. The EL approach with constrained
optimization is used subject to the moment restrictions for estimation of unknown

parameters.

Similarly, the study of Kolaczyk (1994) extended the EL approach to generalised linear
models. Several other studies (Imbens & Spady, 2002; Newey & Smith, 2004; Qin &
Lawless, 1994) also presented EL as an alternative approach to GMM. The efficient
GMM estimator usually requires a two-step procedure for the estimation of the best
weighting matrix. In contrast, the empirical likelihood approach requires only a single
step that improves econometric modeling in finite samples (Judge & Mittelhammer,
2011). They discussed the EL approach as Nonparametric Maximum Likelihood
(NPML) for estimating unknown parameters as the parametric functional form for the
likelihood function is not available. Consistently, a number of authors proposed an
alternative approach to the GMM estimator that is known as exponential tilting /
Kullback-Leibler Information Criterion (KLIC)? to the GMM approach (Imbens,

Johnson, & Spady, 1998; Kitamura & Stutzer, 1997). precisely

! Various authors reported that the GMM approach has poor finite samples properties and suggested EL
approach as an alternative to GMM (Altonji & Segal, 1996; Hall & Horowitz, 1996; Imbens et al., 1998;
Imbens, 1997; Kitamura & Stutzer, 1997; Qin & Lawless, 1994). The EL approach is advantageous to
GMM due to the weight matrix handled internally during the estimation that improves the finite sample
properties (Judge & Mittelhammer, 2011).

2 Judge and Mittelhammer (2012) discussed that minimizing KL information is apparently equal to
maximizing — ¥, p;In (p;), that is exactly the Shannon-Jaynes information (entropy) measure. Campbell
(1999) discussed that Shannon entropy function is a measuring uncertainty in a discrete probability
distribution.



1.2 Cressie and Read Information Theoretic Approach
The power-divergence family of statistics was proposed by Read and Cressie (1984;
1988) for dealing with discrete data. The Cressie and Read (CR) proposed the following

divergence measures:

_ 1 C P
(Pav = oot Z P I - 1)

In CR? divergence measure, 'y’ is a parameter of this family of statistics, which shows
the different entropy measures. “p” is the probability of subjective distribution, and “q”
is the probability of the reference distribution. CR comprises three main variants in his
family of entropy measure as the Maximum Empirical Likelihood (MEL) approach,
Maximum Exponential Empirical Likelihood (MEEL) approach, and Maximum Log
Euclidean Likelihood (MLEL) based on the variation of ‘gamma’ coefficient. The
Judge and Mittelhammer (2011) derived all three variants of CR family of statistics

I(p, q,v) using Choices of gamma (-1, 0, 1).

They illustrated that CR(y = —1) represents MEL where the objective function is
{n~t¥ In (p;)}. The CR(y = 0) defines MEEL with following objective function
{=Y piIn (p))}. Whereas, the CR(y = 1) represents MLEL. The authors' Judge and
Mittelhammer (2011) discussed that inference methods of CR family are better than

traditional ML and GMM approaches. The authors also discussed that CR is an updated

3 The authors demonstrated that over defined ranges of the divergence measures, the Cressie and Read
family of information theoretic approach and entropy families are equivalent (Gorban and Judge 2010).

4



variant of the GMM estimator, where the unknown covariance matrix is handled

internally to estimate the unknown parameter.

The Data Generating Process (DGP) is generally unknown that poses a greater impact
on estimation. In order to deal with this deficiency, Judge and Mittelhammer (2012)
proposed the idea of the optimum choice rule in which the information of various
members of the CR family can be combined by minimizing a square error loss function.
The detailed explanation of the optimum convex combination rule is given in the next

section.

1.2.1 The Optimal Convex Combination of CR Family of Divergence
According to the study of Judge and Mittelhammer (2012), the optimal choice rule is
based on minimizing the square error loss function. This approach requires the optimal
use of the information obtained from two or more individual estimators of § from the
CR family of information-theoretic approach {B(y=-1), B(y=0), etc.}. The optimal use

of two estimators of “B” as follow:

B@=aBy=-D+1-DBy =0

This estimator is produced by minimizing the Quadratic Risk (QR) function that is
discussed in Chapter III. Moreover, the optimal convex combination B(@&) is superior
to the individual estimators B(y = -1) and B(y = 0) (Judge & Mittelhammer, 2012). This
emphasizes that the performance of the optimal convex combination is always better
than the performance of individual estimators obtain from the CR family of the
information-theoretic approach. The authors discussed that the optimal choice of the
estimators could be obtained from more than two individual information-theoretic

estimators to enhance the efficiency of the estimator.

5



1.3 Endogeneity

In the estimation of the regression model, one of the main assumptions of the Gauss-
Markov theorem is the orthogonality condition that must hold between independent
variables and error term (i.e., exogeneity). The violation of the orthogonality
assumption leads to OLS estimates biased and inconsistent. This situation is called an
endogeneity problem that produces bias estimates. The failure of this assumption occurs
because of simultaneity between dependent and independent variables, omitted variable

bias, or measurement error in independent variables.

In this setting, we need to establish more information in the form of instrumental
variables that are correlated with independent variables and orthogonal with the error
term (Judge & Mittelhammer, 2011). Various techniques have been introduced that use
instrumental variables to solve such an endogeneity issue in this respect. Among these
techniques, the Generalized Method of Moments (GMM) is the most popular estimator.
However, various studies have documented that GMM estimator has poor finite
samples properties (Altonji & Segal, 1996; Hall & Horowitz, 1996; Imbens et al., 1998,
Imbens, 1997; Kitamura & Stutzer, 1997; Qin & Lawless, 1994). In contrast, the
information-theoretic approach (MEL, MEEL) is also used to resolve the endogeneity
issue (Judge & Mittelhammer, 2011; Judge & Mittelhammer, 2012). Therefore, it is
important to identify alternative techniques having good finite sample properties to

solve the aforementioned problem of endogeneity.






1.4 Motivation

A number of studies reported that the finite sample properties of GMM are different
from the asymptotic properties of GMM and produces biased results* in the presence
of endogeneity problem. In contrast, the authors proposed Empirical Likelihood as an
alternative approach that has lower bias and improved inference in the finite sample
(Owen, 1988; Qin & Lawless, 1994). Similarly, other authors suggested Exponential
Tilting/Kullback-Leibler Information Criterion (KLIC) as an alternative approach to
GMM due to its poor finite sample properties (Imbens et al., 1998; Kitamura & Stutzer,
1997). In order to reduce the finite sample bias of GMM estimator Ramalho (2006)
analysed different bootstrapping techniques. The efficient GMM estimator usually
requires the best weighting matrix; however, the empirical likelihood approach
estimates the weight matrix internally during the estimation that improves the finite

sample properties of the EL estimator (Judge & Mittelhammer, 2011).

The study of Newey and Smith (2004) suggested the EL approach to reduce the finite
sample bias of GMM. According to Golan et al. (1996), MEEL/KLIC and MEL are the
special cases of maximum entropy’, whereas CR family encompasses all the entropy
measures, especially MEL and KLIC. The optimal choice of the parameters from the
CR family of test statistics was proposed (Judge & Mittelhammer, 2011; 2012). They

discussed that CR Optimal Convex Combination (CROCC) of two or more individual

“These authors (Altonji & Segal, 1996; Hall & Horowitz, 1996; Imbens et al., 1998; Imbens, 1997;
Kitamura & Stutzer, 1997; Qin & Lawless, 1994), explored the poor finite samples properties of GMM
approach. (Pagan & Robertson, 1997) registered a number of problems of GMM approach related with
finite sample properties.

5 Golan et al. (1996) applied maximum entopry estimation to a wide range o f econometric problems.
They also extended maximum entropy methodology to estimate linear regression models.

7



estimators (e.g., MEL, MEEL) have lower mean square errors than the individual

estimators.

The GMM approach is widely used in econometric literature, although plenty of authors
stated that the GMM approach has poor finite sample properties. In addition, a number
of studies suggested alternative approaches to GMM (Imbens & Spady, 2002;
Kitamura, 2001; Newey & Smith, 2004). However, the fragmented literature does not
offer consensus about a particular approach for various combinations of the degree of
endogeneity, strength of instrumental variables, and sample size. We are going to fill
the literature gap by evaluating the properties of CROCC with diverse combinations of
the degree of endogeneity (weak, moderate, high, and very high degree) and strength
of instrumental variables (weak, moderate, and strong strength) with variation in sample
sizes. We are also interested in comparing the results of CROCC with MEL, MEEL,

and GMM estimators to examine the best and the worst scenarios of all the estimators.

The study of Judge and Mittelhammer (2011) argued that the performance of CROCC
could be enhanced by using appropriate operationalization of the minimum quadratic
risk estimator. Therefore, we will introduce an arbitrary alternative method (Cressie
and Read Arbitrary Convex Combination - CRACC) to compute the coefficient of
convex combination that is independent of the computation of the coefficient based on
minimization of the quadratic risk function. Additionally, we will compare the

performance of CROCC with CRACC.

Furthermore, we would apply these information-theoretic estimators (MEL, MEEL,
CROCC, and CRACC) on real economic data in order to get the least bias estimates in

finite samples that are associated with the implementation of GMM estimators.



1.5 The objective of the Study

Following are the four main objectives of this dissertaion

» To evaluate and compare the finite samples properties of MEL, MEEL, and
GMM estimators in various combinations of degree of endogeneity and strength
of instrumental variables.

» To evaluate and compare the finite samples properties of Cressie and Read
Optimal Convex Combination (CROCC) with GMM estimator in various
combinations of degree of endogeneity and strength of instrumental variables.

» To evaluate and compare the finite samples properties of newly proposed
estimator denoted as Cressie and Read Arbitrary Convex Combination
(CRACC) with CROCC in various combinations of degree of endogeneity and
strength of instrumental variables.

» To implement the CRACC, CROCC, MEL, MEEL and GMM estimator in two

real world problems of Keynesian consumption function and money demand

function.

1.6 Significance of the Study

This research study demonstrates key theoretical and practical implications in the field
of inference in econometric models. As discussed earlier; the endogeneity problem and
finite samples are key issues in econometric models; we are addressing these issues by
comparing the information-theoretic estimators with the GMM approach in various
scenarios. The significance of this study is quite evident and prevalent in the following

ways.



Firstly, the study prepares substantial grounds for future researchers by offering a
comparison of the properties of MEL, MEEL, CROCC and GMM estimator on various
combinations of the degree of endogeneity and strength of the instrumental variables
for different sample sizes. It would help researchers to choose the right estimator

according to the degree of endogeneity and the sample size.

Secondly, this study investigates the properties of CROCC and also compare its
performance with GMM. This comparison would help the researchers to use optimal
convex combination estimator because of its supremacy on individual information

theoretic estimators and GMM.

Thirdly, this study introduces the CR Arbitrary Convex Combination (CRACC) and
compares its performance with CROCC. The newly proposed estimator: CRACC which
has superiorty to CROCC due to its assumption free estimation of two independent
samples. The introduction of this estimators and its comparison would help researchers
to implement the best and the most appropriate technique in different scenarios to tackle
endogeneity issues. The introduction of CRACC would open up another research

stream in current literature.

1.7 Organization of Thesis

This dissertation is composed of six sections. The second chapter synthesizes the
existing literature of the GMM and the information-theoretic approach. The
methodological discussion is presented in the third chapter. The results and discussion
of Monte Carlo simulation analysis on GMM and the information-theoretic approach
have been reported in the fourth chapter. The use of MEL, MEEL, and CR information-

theoretic estimators for the solution of the endogeneity problem in economics models
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(consumption functions and money demand functions) have been discussed in the fifth

chapter. Finally, chapter six concludes the entire discussion of this dissertation.
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CHAPTER 2. REVIEW OF LITERATURE

This chapter on literature includes the finite sample properties of GMM with orthogonal
conditions, it prepares strong grounds based on the previous and current debate on topic
to pursue further research.. This also consists of numerous studies conducted on small
sample properties of the nonparametric empirical likelihood approach and other entropy
criteria, that are the members of the Cressie and Read (CR) family of divergence
measures by several novelists (Imbens & Spady, 2002; Kitamura, 2001; Newey &

Smith, 2004). This chapter is divided into the following subsections.

Section 2.1 is focused on reviewing the GMM approach; its implication in economics
and its finite sample properties are discussed respectively. In section 2.2, the non-
parametric likelihood approach explored the arguments of renowned authors. Section
2.3 covers literature on Cressie and Read information divergence measures while the
literature on square error loss is discussed in subsection 2.3. The final summary of this

chapter is discussed in section 2.4.

2.1 GMM Approach

The MOM is commonly used to estimate the parameters of the sample average of the
moments equal to zero. The number of parameters is equal to the number of moment
equations referred to as an exactly identified system. Conversely, when the number of
moment equations is greater than the number of parameters to be estimated, then the
system becomes overdetermined, which is not feasible. However, its solution is
proposed by Hansen (1982) that is known as the GMM approach. The GMM approach
works with large sample properties that make sample analogues of population

orthogonality condition close to zero. He further suggested that an estimator is strongly
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consistent and holds the asymptotic normality conditions. He examined this procedure

by using the GMM estimation technique to test over-identified restriction.

2.1.1 GMM Approach, Endogeneity, and Economic Models

Several authors have reported the use of the GMM approach in the estimation of
different economic models. The study of Van Beveren (2012), used different
methodological problems which occurred while estimating the total factor productivity.
The author of the study discussed the GMM approach as a method of estimation.
Moreover, he also used GMM for the estimation of total factor productivity. The author
reported, based on the study of Wooldridge (2009), that the GMM estimator is more
efficient than the two step semiparametric procedures. He further argued that the GMM
approach could correct the simultaneity problem theoretically. However, the results
demonstrated that semiparametric estimators should be preferred as compared to the

GMM approach due to its poor performance in finite samples.

Another author, Bond, Hoeffler, and Temple (2001) worked on the problem of first
differenced GMM approach in the panel data growth model and reported to use an
alternate to GMM estimator for estimation of panel data. They argued that a persistent
time series first differenced GMM behaved poorly. Furthermore, the first difference
GMM is considered as problematic for growth models. According to the results of the
study, they suggested that the estimators of first differenced GMM are extremely

biased.

The demand and supply-side determinants of the textile industry in Pakistan was
analysed using the GMM approach to estimate simultaneous equations in the study of

Latif and Javid (2016). They illustrated that the prime advantage of using the GMM
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approach is to obtain consistent estimates in the presence of endogeneity in the model.
Whereas, the study of Kendix and Walls (2010), quantified the impact of oil industry
consolidation on refined product prices using US petroleum refining industry. They
have argued that the parameters can be estimated by using different techniques like least
squares and instrument variables approach; however, the most appropriate technique to
control the endogeneity issue is the GMM approach. The GMM was preferred to obtain
an efficient estimator. They estimated the same results by Two Stage Least Squares

(TSLS) that was consistent but inefficient.

The study of Ngo (2006) investigated the relationship between bank capital and
profitability. The author of the study argued that the GMM estimator is more efficient
than the simple instrumental variable and preferred GMM to the least squares principle.
By using the GMM estimated the model and found no relation between capital and
profitability. Similarly, Wooldridge (2001) worked to apply the generalized method of
moments and explored the difference between the GMM estimator and the weighting
matrix. The author argued that the GMM estimator minimizes the quadratic form
through the weight matrix into sample moment conditions that assure the consistency
of the GMM estimator. However, the study reported that a finite sample problem could
occur with the GMM estimator. In conclusion, the author reported that GMM is better
and more efficient than the ordinary least squares and two-stage least squares. Although
theoretically, it seems that GMM will always be on preference; still, researchers prefer
to use OLS and 2SLS. According to the results of this study, the author found that 2SLS

and GMM yield the same results.

The study of Kapetanios and Marcellino (2010) examined the instrumental variables

estimation by using factor analysis when the number of instruments increases. The
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authors examined that standard GMM is preferable when the regressors are the set of a
large finite set of observed instruments. The theoretical findings suggested the
superiority of factor GMM to the standard GMM. The author further mentioned that
the accuracy of GMM estimators decreased gradually when the factors used as
instruments. Hansen and West (2002), considered the role of a generalized method of
moments in case of macroeconomic time series analysis. The authors stated that the
GMM does not maintain strong assumptions as well as suggested to understand the
behaviour of GMM estimator under particular situations or misspecifications. They
explored GMM estimator in panel data studies as well as in nonlinear studies. The
findings of the study concluded that the GMM is an important part in macro-
econometrics and reported that GMM would be an essential estimator in near future.
Additionally, they discussed nonparametric Empirical Likelihood (EL) approach that
requires only sample information and moment conditions. This reported that the EL

approach is free from the estimation of the optimal weight matrix.

The study of Ma (2002) re-examined the new Philips curve with two specifications that
were neglected by Gali and Gertler; by applying the test statistics developed by Stock
and Wright using the GMM approach. Similarly, Baum, Schaffer, and Stillman (2003)
contrasted OLS, instrumental variables, and GMM approach. For this purpose, the
authors applied the Durbin-Wu-Hausman test. They mentioned that the GMM approach
is the most commonly used approach, especially in the case of Heteroskedasticity, as
well as in empirical research for the solution of simultaneity. The authors preferred the
GMM approach to the instrumental variables approach as it helps to obtain efficient
estimator; however, it demonstrates poor performance in finite samples. Additionally,

the study of Windmeijer & Santos Silva (1996) explored the estimation of count data

15



models with endogenous regressors by using the GMM estimator. In their study, the
authors analysed that the GMM estimator failed to give them a definite indication of

endogeneity.

2.1.2 GMM Approach and Finite Sample Bias

The econometric literature demonstrates that the GMM approach has advantages in
asymptotic properties in various situations. Plenty of studies also explored the
numerous problems of GMM estimator and reported that the properties of the finite
sample are quite different from asymptotic properties. Such as Altonji and Segal (1996)
investigated the finite samples properties of the GMM estimator. The authors examined
the covariance structure of the model that is associated with the weight matrix of the
GMM estimator, which is labeled as an optimal minimum distance (OMD) estimator.
The findings of the study displayed that OMD is highly biased in finite samples. The
authors of the above-stated study suggested an alternative estimator called
independently weighted optimal minimum distance (IWOMD) and compared the
performance of both OMD and IWOMD. Finally, the authors concluded that the

performance of the GMM estimator is poor in finite samples.

In accordance with the above study, Hall and Horowitz (1996) examined the GMM
inference base study. Based on the Monte Carlo investigation, the authors exhibited the
poor performance of the GMM estimator. They also developed the bootstrap critical
values of the test statistics obtained from the GMM approach for overdetermined
models. In relation to the above study, Hansen et al. (1996) examined the small sample
properties of the GMM estimator. They focused on three types of GMM estimators in
which moment conditions are weighted in different ways to differentiate these
estimators. The types discussed are as follows: the first one is two step GMM estimator
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that used the identity matrix as a weighted matrix. Second, the Iterative method is a
continuous form of two step estimator, where the weight matrix is continuously
updating until the convergence of the parameters. The third one is Continuous Updating
Estimator (CUE), in which the covariance matrix is repeatedly adjusted with parameter
changing in minimization of the quadratic function. In addition to the above, they
emphasized that overdetermined models construct the confidence regions. These
authors discussed different conditions of the Consumption-Based Capital Asset Pricing
Model (CCAPM) to test the small sample properties. They concluded that the CUE

estimator has less bias than the other estimator.

The study of Imbens (1997) compared the GMM estimator proposed by ( Hansen, 1982)
and iterative GMM estimator proposed by (Hansen et al., 1996) with an Empirical
likelihood estimator. Imbens (1997) discussed the advantages of the EL estimator and
reported that all other conventional estimators primarily need the weight matrix
estimation; however, the EL estimator has no such condition. This estimator has
attracted some information-theoretic interpretation. The finding of his study reported
that the EL estimator has low bias and lower root mean square error than the two step

GMM and iterative GMM estimators.

2.2 Empirical Likelihood and Information-Theoretic Approach

The empirical likelihood is primarily used by Thomas and Grunkemeier (1975), with
the help of a nonparametric likelihood ratio in the estimation of confidence intervals
for survival function. The study of Owen (1988) initially proposed the empirical
likelihood approach as an alternative approach for inference in econometric literature.
He argued that the empirical likelihood ratio (ELR) approach could be used to estimate
the confidence interval for a single parameter (sample mean). It is the nonparametric
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approach for inference that is further extension of Wilk’s theorem (1938). In this
context, the author (Owen, 1990) explained that the empirical likelihood could be used
to estimate several means. The results were multivariate generalizations of the previous
work of Owen and the nonparametric version of Wilk’s theorem. It was observed that
empirical likelihood intervals for a single mean are not affected significantly by
skewness as compared to t-statistics by applying the Cornish Fisher expansion. The
author presented an effective method for computation of empirical profile likelihoods

for a vector random variable mean.

As stated above, Owen (1991) explored the properties of non-parametric empirical
likelihood inference and explained that the sampling properties of empirical likelihood
estimators are similar to bootstrapping. The nonparametric empirical likelihood
methods from mean estimation to the estimation of regression models were explored.
He considered heteroskedastic and robust regression along with fixed and random
regressors. Therefore, homoscedasticity is not required to estimate the regression with
the empirical likelihood approach. Three extensions of empirical likelihood method
were presented, including constrained empirical likelihood for unknown distribution,
examined Euclidean distance that is an alternative to Likelihood function, and presented

the Triangular empirical likelihood method.

Additionally, Kolaczyk (1994) demonstrated that the Empirical likelihood approach is
admissible for the class of inference in econometrics. He extended the use of the EL
approach to generalized linear models. The study of Chen and Keilegom (2009)
discussed the review of the EL approach to estimate the regression models and their
inference problems. They considered the nonparametric, semiparametric, and

parametric regression models on censored and missing data. Consequently, they
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suggested the EL approach can be used to construct the likelihood ratio for inference to

the regression parameters.

As illustrated by Owen (1988), the parameter of unknown distribution for an empirical
likelihood ratio (ELR) has a Chi-square distribution. In order to further extend, Qin and
Lawless (1994) commenced a study with the prime objective to link moment equations
and empirical likelihood approach. They presented how estimators of both parameters,
as well as the underlying distribution, could be determined, and normal distribution can
be obtained asymptotically for estimators. Moreover, they revealed that for unknown
parameters, the empirical likelihood ratio has a chi-square distribution. The results
found parameters to be similar for parametric likelihood inference. This demonstrates
that the empirical likelihood function and the parametric likelihood function have the
same properties. They recommended the EL approach as the most beneficial for the
likelihood ratio approach on which to construct the confidence intervals and hypothesis

testing based to some extent.

In extension to the study of (Owen, 1991; Qin & Lawless, 1994); the author's Qin and
Lawless (1995) compared other approaches as well as extended EL approach in the
context of constraints on parameters. Their results of the simulation indicated that ELR
static approaches to their chi-square distribution are as similar as the Pseudo score
statistics. In several situations, the ELR approach behaves similarly to both asymptotic
and finite samples. They concluded that all the methods would be beneficial from the
second order adjustments to improve the accuracy of the confidence level and to test

the hypothesis for either small or moderate sample size.

A number of authors (Imbens et al., 1998; Kitamura & Stutzer, 1997; Qin & Lawless,

1994) studied the small sample properties of the GMM approach and identified that the
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GMM approach has poor finite sample properties. Consequently, they suggested
alternative approaches to the GMM approach based on moment restrictions. In
accordance with the above, Kitamura and Stutzer (1997) proposed an alternative
approach for minimizing the Kullback-Leibler the information-theoretic approach that
can handle weak data sampling process. They also suggested that this approach can be
used in overdetermined models. Moreover, the proposed estimator can be used to test
the hypothesis of over identified restrictions as an alternative approach to the GMM
approach. This approach has a similarity to the GMM approach asymptotically. The
study of Kitamura (2001) explored that in the case of an overdetermined restriction test,
the empirical likelihood approach overlooks other approaches in terms of large
deviation principle. This study examined the size and power of moment restriction tests
asymptotically. The author observed that the standard GMM has greater power than the
iterative GMM test; however, it looses the power comparative to empirical likelihood
ratio (ELR) test. Finally, author indicated that ELR test have value able properties than

GMM approach.

In another study, an asymptotic efficient method for estimating models with conditional
moment restriction was proposed (Kitamura, Tripathi, & Ahn, 2004). These authors
extended the methods of Empirical likelihood approach introduced by (Owen, 1988;
1990; 1991). They also generalized the estimator of (Qin & Lawless, 1994). They
conduct the Monte Carlo simulation analysis to test the efficiency of their estimator in
small samples, and their results showed that their test works very well in comparison to
some other estimators. They also proposed a likelihood ratio static for testing the

restriction on parameters.
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The study of Imbens et al. (1998) focused on an alternative approach to testing the over-
identified model in spite of improving the finite sample properties of the standard GMM
estimator. The authors also worked using an exponential tilting approach as it appears
more appealing than the empirical likelihood approach. This study made three key
contributions. The primary contribution is to introduce an appealing method for
calculating one step estimators. Secondly, the study offered substitutes to the GMM
approach, which are generally constructed on a quadratic form in case of the average
moments. Thirdly, the authors conducted a Monte Carlo experiment and determined
that the standard GMM approach gives poor results. Furthermore, they tested over-
identified restrictions in the context of the cross section, and it is concluded that an
exponential tilting approach can be used to test the hypothesis and to construct

confidence intervals because it has finite sample properties.

The literature suggested a great number of alternative approaches in order to shrink the
finite sample bias of the GMM approach. The empirical likelihood and exponential
tilting approach are more valuable among all other suggested approaches. The study of
Newey and Smith (2004) reported that the EL approach demonstrates lower bias than
the GMM approach in small samples. The findings of the study revealed two theoretical
benefits of the EL approach. First, as the number of moment restriction increases, the
GMM biasedness increases while the empirical likelihood biasedness does not increase
asymptotically. Secondly, they identified that the higher-order efficiency of the EL
approach increases after applying bias correction in comparison to other approaches.
The study also reported that the biasedness of the GMM approach increases with the
square root of the number of overdetermined restrictions as compared to its asymptotic

standard error, whereas the EL approach does not do so with a number of restrictions.
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The authors emphasized that the efficiency of the EL approach remains controlled with
the condition of bias correction among all other bias correction estimators; however, in
case of elimination of the condition, the mean square error of EL approach may not be
smaller. The study found that the nonparametric EL approach is equally beneficial as
the parametric Maximum Likelihood Estimator (MLE) in discrete data set
asymptotically. Hence, the EL is proved as the best alternative approach to the GMM

estimator.

The estimation of confidence intervals with the GMM approach is based on normal
approximation, as reported by (Imbens & Spady, 2002). This study used the EL
approach as an alternative to the GMM approach for the construction of confidence
intervals. These confidence intervals have identical asymptotic properties to the
standard GMM approach; however, these properties are considerably different in small
samples. These confidence intervals can be applied to both exact and overdetermined
cases. In order to check small sample properties, they conducted the Monte Carlo
simulation analysis in different cases. The results of the two cases suggested
considerably better confidence intervals; however, they demonstrated poor intervals in
the third case. The performance of all the confidence intervals increased with bootstrap
experiment, but EL based confidence interval remained outstanding in bootstrapping

investigation.

Golan et al. (1996) developed the entropy-based formulation that allowed them to solve
a wide range of estimation and inference problems in econometrics. Similarly,
Mittelhammer, Judge, and Miller (2000) placed GMM within the framework of EL and
Maximum Entropy (ME) for estimation. It can be shown that many of these estimation

techniques can be obtained as special cases of minimizing Cressie and Read (1984)
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power divergence criterion that comes directly from the Pearson (1900) chi-squared
statistic. Infinite sample econometrics, the exact distribution of estimators and test
statistics are usually unknown. This problem was explored in the study of Ullah (2002)
that examined the application of Kullback-Leibler divergence measure to

nonparametric estimation and hypothesis testing in regression models.

2.3 Cressie and Read (CR) Family of Divergence

The study of Cressie and Read (1984; 1988) proposed a family of divergence measures
that comprises of three main alternatives in its family of estimators. These alternatives
are known as Empirical Likelihood (EL), Kullback-Leibler (KL) — (Maximum
Exponential Empirical Likelihood (MEEL) is a special case of KL information-
theoretic approach) and the Euclidean Likelihood estimation techniques. The authors
Judge and Mittelhammer (2011) discussed that the Kullback-Leibler divergence
measure is a special case of Cressie and Read family of divergence. They proved that
if we use y =0, the CR family of test statistics leads to Maximum Empirical
Exponential Likelihood (MEEL) as: ¥, piln ( ;). The authors also discussed that if we
use the uniform distribution as reference distribution in Kullback-Leibler (KL)
information criterion, it is exactly equal to the MEEL approach. Additionally, they
stated MEEL as an updated variant of the GMM estimator as it handles unknown
covariance matrix internally for estimation of problem. In inference methods, the
members of the CR information-theoretic approach is similar to traditional Maximum

Likelihood (ML), and the GMM approaches.

The general linear models contemplated by (Akkeren, Judge, & Mittelhammer, 2002);
explored a new test having attractive small and asymptotic sampling properties that are
known as Data Base Information Theoretic (DBIT) estimator. In their Monte Carlo
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experiment, they compared three estimators, including GMM estimator, 2SLS, and
DBIT. They found that DBIT is superior from both GMM and 2SLS estimators in the
situation of dual balance criterion. Consequently, DBIT estimator is more appropriate
in the situation of small samples having weak instrumental variables than the GMM

and 2SLS estimators.

2.3.1 Optimal Convex Combinations of Cressie and Read Family

The variety of empirical studies has been conducted in social sciences to explore the
basis of partial or incomplete knowledge about data structure or theoretical
relationships that resulted in uncertainty in statistical models. The inappropriate model
specification may negatively affect the estimation and inaccuracy in inference. In this
context, Judge and Mittelhammer (2004) considered the Semi Parametric Stein Like
(SPSL) estimator that reduces error in estimation on the basis of the quadratic loss
function. SPSL performance is considered as superior to the least square estimator. This
estimator achieves consistency and asymptotic normality. The reduction of Mean
Square Error (MSE) in estimation is considered as the prime objective on which SPSL
estimator is based. This objective is designed for MSE improvement in the case of a
semiparametric approach. Several empirical pieces of evidence reported that the SPSL
estimator performs better for both finite samples and asymptotically. They developed
the formula in the context of two individual estimators, but it can be extended for more

than two estimators.

Furthermore, the study of Judge and Mittelhammer (2012) proposed the optimal
combination of two or more individual estimators computed using the CR family of
information criterion. This optimal combination has a minimum mean square error as
compared to the individual estimators. They used the concept of the CR information-
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theoretic approach and produced different approaches for estimation and inference.
These approaches have flexible probability distributions. They conducted the Monte
Carlo experiment to demonstrate small sample performance for an optimal estimator
that is computed from the CR family of test statistics under the assumption of
orthogonal condition that is not satisfied. They presented the more general procedure

that gives the possibility to enhance the performance of the estimator.

2.4 Literature Gap

The literature frequently investigated the econometric model estimation with moment
restriction, and the most popular discussed approach is the Generalized Method of
Moments (GMM) due to its large sample properties (Hansen, 1982). The GMM
approach is used to solve the problem of orthogonality conditions in overdetermined
models. The small sample properties were ignored in his work. However, Hansen et al.
(1996) explored the small sample properties of the GMM approach and compared it
with other estimators. They suggested an estimator whose small sample properties are
better than GMM estimator and named it “Continuous Updating Estimator (CUE).”
Several authors reported that GMM estimator does not have the appropriate asymptotic
properties and it has large finite sample bias (Altonji & Segal, 1996; Hall & Horowitz,
1996; Imbens et al., 1998; Imbens, 1997; Kitamura & Stutzer, 1997; Qin & Lawless,

1994).

In contrast, an alternative nonparametric approach was proposed in a study (Owen,
1988; Qin & Lawless, 1994) that is known as the Maximum Empirical Likelihood
(MEL) approach, and it has improved the inference in econometric models. Numerous
studies (Imbens & Spady, 2002; Kitamura, 2001; Newey & Smith, 2004) reported that
the MEL approach has low bias than the GMM approach in finite samples. Conversely,
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the authors (Imbens et al., 1998; Kitamura & Stutzer, 1997) proposed an alternative
approach that is exponential tilting / Kullback-Leibler Information Criterion (KLIC) as

replacement of the GMM approach.

The study of Mittelhammer and Judge (2003) discussed that the GMM estimator
usually requires two steps estimation procedure with the best weight matrix in
estimation; however, its small sample performance is very poor. On the other hand, the
empirical likelihood approach requires an only one-step procedure in which the weight
matrix is handled within the estimation process that improves the performance of the
estimator in finite samples. In parallel to these studies (Judge & Mittelhammer, 2012;
Judge & Mittelhammer, 2011) discussed that the CR family of divergence encompasses
all entropy measures, especially MEL and MEEL, which are the members of this
family. They proposed a convex combination approach, which is based on an optimal
choice of the individual estimators whose mean square error is lower than individual

estimators from the CR family of the information-theoretic approach.

The above literature addressed the usage and benefits of different approaches however
no one ever did the comparison of CR Optimal Convex Combination (CROCC) (Judge
& Mittelhammer, 2012; Judge & Mittelhammer, 2011) of the individual estimator
(MEL and MEEL estimators) with GMM approach in exact and overdetermined models
when orthogonality condition isn’t satisfied. This research is going to address this gap.
The literature does not show the application of the information-theoretic approach in
the estimation of economic models in the presence of endogeneity problem. The
researchers use the GMM approach to solve the simultaneity issue, although they know
that the GMM estimator has poor finite sample properties. We are going to offer a better

solution for the implementation of an information-theoretic approach to solve such kind
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of issues in finite samples. The coefficient of Cressie and Read Optimal Convex
Combination estimator (Judge & Mittelhammer, 2011) is based on assumption of two
independent samples. In this context, we are introducing CR Arbitrary Convex
Combinations (CRACC) which has superiorty to CROCC due to its assumption free
estimation of two independent samples and compare its performance with CROCC in
finite samples. This comparison would help to evaluate the finite sample properties of

CROCC in different scenarios.
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CHAPTER 3. METHODOLOGY

The main purpose of this study is to compare different nonparametric approaches to
estimate the regression models in the presence of endogeneity. Particularly, GMM
estimator is compared with information-theoretic estimators in finite samples when
orthogonality conditions do not hold. For the purpose of comparison, the linear

regression model is specified as:
Y=XB+e€ 3-1

Where “Y” is an (n X 1) vector of the dependent variable, “X” is an (n X k) matrix of
regressors, “B” is a (k X 1) vector of the unknown parameters and “€” is an (n X 1)
vector of residuals. The equation “3-1” should satisfy the assumption of
homoscedasticity COV (€]X) = o2 I,,. One of the main assumptions of the Gauss-
Markov Theorem is the endogeneity problem, i.e., the error term “€” of the regression
must be orthogonal to the regressors, which directly implies the orthogonality and
independence of the dependent variable. The endogeneity problem occurs when the
orthogonality condition of the “€” with X is not satisfied (i.e., E(X'€) # 0). The OLS

estimator of (k X 1) unknown parameters is given as

Bois = (X'X)7IX'Y 3-1A
By substituting “3-1” in the OLS estimator “3-1A” and after simplifying and the

expected value of “B,;5” is given as follows

EBois) = B+ (XX)E(X'€) 3-1B
In the presence of endogeneity problem the OLS estimator produces biased and

inconsistent estimates as the term “(X'X)~1E (X'€)” shows in “3-1B”. The violation of
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the exogeneity assumption of Gauss—Markov theorem (i.e., E(X'€) # 0) in “3-1B”
leads to OLS estimates bias. Other than OLS, various techniques have been introduced
that use instrumental variables to solve such an endogeneity issue in this respect. These
techniques are used in such a way that satisfies the orthogonality condition of the "€"
with instrumental variables ‘Z’ (i.e. E(Z'€) = 0). Among these techniques, the
Generalized Method of Moments (GMM) is the most popular estimator. However,
various studies have documented that the GMM estimator has poor finite samples
properties (Altonji & Segal, 1996; Hall & Horowitz, 1996; Imbens et al., 1998; Imbens,
1997; Kitamura & Stutzer, 1997; Qin & Lawless, 1994). Therefore, it is essential to
identify alternative techniques having good finite sample properties to solve the

problem mentioned above of endogeneity.

This dissertation argued that non-parametric approaches, including Maximum
Empirical Likelihood (MEL), Maximum Exponential Empirical Likelihood (MEEL),
and Cressie and Read Optimal Convex Combination (CROCC) can be among those
alternatives. These estimators are the members of the Cressie and Read family of the
information-theoretic approach. Hence, estimators under discussion are GMM, MEL,
MEEL, and CROCC, and their finite sample properties are compared in solving the
endogeneity problem. Additionally, we are introducing an estimator, Cressie and Read
Arbitrary Convex Combination (CRACC) and we will test its finite samples properties.
We will also compare this estimator with the CROCC estimator proposed by Judge and
Mittelhammer (2011) to evaluate the performance of the CROCC and CRACC. The

details of all these different approaches are given below.
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3.1 Generalize Method of Moment (GMM) Approach

The GMM estimator is the most commonly used in econometric modeling when
orthogonality conditions do not satisfy. The GMM is an approach used to estimate the
linear regression model when the moment conditions are greater than the number of
parameters proposed by (Hansen, 1982). According to “3-1” where Y(;x1), Xmxk)
B(xx1) and the matrix of instrumental variables is Z ) and W) is the weight matrix
which will be defined later. The GMM approach is implemented by defining a weight

Euclidean Distance based estimation objective function.

Q= {[Z' (Y- XB)]' W[Z' (Y- XB)]} 3-2

The GMM estimator seeks to minimize the Weighted Euclidean distance “Q.” A key
problem in the implementation of the GMM estimator is its dependence upon the choice
of the weight matrix, i.e., “W.” In practice, the efficient choice of the “W” is not defined
theoretically. Hence, in the case of the implementation of the GMM approach, the
choice of “W” is the main issue. Though Hansen (1982) proposed a solution for
efficient choice of “W”, however, his approach is criticised due to poor finite samples
properties reported by various authors (Altonji & Segal, 1996; Hall & Horowitz, 1996;
Imbens et al., 1998; Imbens, 1997; Kitamura & Stutzer, 1997; Qin & Lawless, 1994).

According to the study of Hansen (1982), the weight matrix “W” is defined as:

W= (Z'0?1,2)7!

Where “62” is specified in “3-1”,

The Method of Moment (MOM) is a special case of GMM estimator when the moment
conditions are equal to the number of unknown parameters, i.e., £ = k known as an

exactly determined model. Therefore, MOM estimator is given as follows
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Bmom = [Z'X]71Z'Y 3-3

Conversely, for the overdetermined model, i.e., where moment conditions are greater
than the number of parameters, i.e., € > Kk, the GMM estimator will estimate the
parameters by minimizing the “@” as specified in “3-2”. Now to obtain the first-order

condition, “Q” is differentiated w.r.to “B” and equated to zero. The resulting “B” known

as “ﬁGMM” is given as
Bowm = [X'ZWZ'X]"IX'ZW Z'Y 3-4

A number of studies have discussed the poor finite samples properties of the GMM
approach (Altonji & Segal, 1996, Hall & Horowitz, 1996). The efficiency of the GMM
estimator is based on “W.” Conversely, alternative approaches (MEL and MEEL) have
been suggested by various authors (Altonji & Segal, 1996; Hall & Horowitz, 1996;
Imbens et al., 1998; Imbens, 1997; Kitamura & Stutzer, 1997; Qin & Lawless, 1994).
These approaches require an only one-step procedure in which the “W” is handled
within the estimation process, improving the performance of the estimator in finite

samples (Judge & Mittelhammer, 2011; 2012).

3.2 Nonparametric Maximum Likelihood (NPML) Approach

To make the Non-parametric Maximum Likelihood (NPML) function, let us consider
the case of i.i.d simple random sample ¥ = (Yy,Y,,Y5,. .. Y;)' from the population
having the probability density function (PDF) f(y; ©) where O is the parameter of the
population and y;’s are random scalars. In this situation, the true likelihood function for
the parameter © can be expressed as L(0;y) = [[iL4 f(yi; ©). In this situation, we
assume that the parametric functional form f(y; @) is not known. However, if the

parametric form is unknown, then the non-parametric maximum likelihood (NPML)
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function can be constructed (Judge & Mittelhammer, 2011). According to authors,
consider random sample ¥y = (¥1,¥2,V3,. - -, Yn) to recover an estimate of PDF y.
Generally, the objective of NPML is to estimate the entire probability density or mass
function f(.) instead of estimation of the unknown parameter “©” that maximizes the

likelihood function. Therefore, the NPML function is written as

L(f;y) = [liea fFO) 3-5

Here, the NPML function “L(f; y)” specifies the likelihood that the estimated function
f(.) is the true population distribution underlying random samples y. In the NPML

function, the estimates of f(y) are explained as follows:

f(») = argmax; L(f;y) = argmax [, f(¥)) 3-6

Judge and Mittelhammer (2011) stated that “The feasible space for this maximization
problem consists of all possible functions that specify the properties of probability
density/mass functions.” The maximization problem in above “3-6” can be converted
into a simple parametric form by observing it as unknown values p; = f(y;) (where
p; is ith probability weight allocated to the ith observation: y; of the sample outcome)
used to solve the maximum likelihood problem in “3-6”. Afterward, we can define the
empirical probability mass function of a multinomial type that represents discrete
probability allocated to each number of observation of sample outcomes. In this
framework, the probability weights must satisfy the condition. “ p; > 0” for all sample
outcomes of the value of the joint likelihood for the observed sample is [[{L, f(y¥;) =
0, which is a minimum as opposed to a maximum value of L(f;y). The maximum

likelihood function “3-6” can be denoted as parametric maximum likelihood problem
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of finding the optimal choice of p;’s in a multinomial-type likelihood function in which

each “type” of outcome occurs only once. As a result

(B1, . Pn) = argmax,[[liL; pi] = argmax,[n~1 XL, In (p)] 3-7
Where p; > 0 forall i.

In the maximization problem, the transformed parametric likelihood function in “3-7”
is unbounded. It is because the probabilities p; are unrestricted in values. In this
situation, no solution will exist unless we apply the normalization condition to

probability weights, as given in the following equation.
i=1(p) =1 3-7A

Therefore, in the estimation of NPML the objective function n"1 31, In (p,) will be
maximized with the constraint of },{-, (p;) = 1. Hence, the Lagrange function of the

optimization problem can be written as follow:

In(L(p,m)) =n"13L In(p) - nELipi— 1) 3-7B

Similarly, the parameter estimates of linear regression models can be obtained from the

NPML estimation approach, which is detailed below.

3.2.1 Maximum Empirical Likelihood (MEL) Estimation for Linear

Model
In the study of (Kolaczyk, 1994; Owen, 1991; Judge & Mittelhammer, 2011), the
authors presented the use of the NPML/ MEL approach to estimate the linear regression
models. Consider a linear regression model of the form: Y = X + €, where “Y” is an

(n x 1) vector of dependent variable, “X” is an (n X K) matrix of regressors, “f” is a
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(k x 1) vector of the unknown parameters, and “€” is an (n X 1) vector of residuals. If
X and € are independent i.e. the orthogonality condition is satisfied E(X'e) =0,
conditional mean function for Y is given as E(Y|X =X), and (Y;, X)) (=
1,2,3, ..., n obervations. Where Y; is the i observation of vector Y(nx1) and X[; ; is the

h

i" row of the matrix X.

In the estimation of the linear regression model by using MEL approach, let us consider

the ith (k X 1) moment vector function h ((Yi, X[i,_]), B) = Xp;,) (i — Xq;,)B) for any

i =1,2,3,...,n. Under the assumption of orthogonality condition, we can assume that
ECh (Yo Xg1).B)) = EXp)'( Y — X(1)B)) = 0, forall i = 1,23, ..,n 3-8

In the estimation of the linear regression model, when “B” is the true value of the

parameter vector “B.” Therefore, the moment vector function is unbiased. Moreover,
the random vectors M ; = X{i“]( Y — X[ B) forall i = 1,2,3,...,n are iid random
vectors under the prevailing assumptions because (Y;, X;)) i = 1,2,3,...,n are iid.
M ;jisak X 1 vector for each i. When we take the expected value of M| ; i.e., E(M[ ;)
= 0 then My ;) is summed up forall i = 1,2,3,...,n, and a (k X 1) vector is obtained

known as k moment conditions for estimating k parameters.
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Assuming the MEL function for “B”, multiplied by (n~1) log-EL is expressed by
solving constrained maximization problem. The Lagrange form of log-EL is stated as

follows

In (LEL(B; Yi:x[i,.])) =n"' YL In(p) —uELipi— 1) -2 I p; (x'[i,.](yi -
Xii 3)) 39
Where A1), p are Lagrange multipliers and p; is defined as in section “3-2”. The

p; > 0Vi is implicit in the structure of the optimization problem. To fulfill the first-

order condition w.r.to the p;’s is as follows

71—;—:' = (X' (Y - X;8)) - n=0,i=123,..n 3-10

The optimal value of p = 1 because )i, p; = 1. Substituting the value of p = 1 in “3-

10” as a result the solution of p; is given as

Pi(B.2) = ([&' X' (Y — X[ B)] + D71 3-11

The first-order condition w.r.to A Lagrange multiplier

Yi=1Di (x'[i,.](yi - x[i,,]B)) =0 3-12
Substitute the optimal value of p; in “3-12” we get the expression that is a function of

B as follow:
A(B) = arga[ZiLs(n[A’ X'1;; (Y — Xp:.1B)] + )" (x'[i,.] (Vi — Xpi 3)) = 0]
3-13

We get expression in “3-13,” i.e., A(f8), which is an implicit function of the unknown

parameter {3, it cannot be expressed in closed form (Judge & Mittelhammer, 2011).
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According to the work of Qin and Lawless, (1994), the multinomial probability weights

p; must satisfy the condition of “0 < p; < 1” which indicates that “A” and “B”

necessarily satisfy the condition “A’ (X'[,-,_] (Y,- - X[in]ﬂ)) +1 > 1/n” for each i. At
wpR » : 7 ' 1

the fixed value of “B,” assuming that Dg = {A: (A (X (0] (Y,- - X[mﬂ)) +1 23}

that shows Dg is convex and compact. The authors also discussed that A(B) is

continuous differentiable function of “B.”

By putting the optimal solution of Lagrange multiplier “A(f)” into the optimal p; in

“3-11”, that allows the “p;” to be denoted as p;(8,A(B)) = (n[A(B)’ (X’[,-"](Y,- -

X[i,_]B)) + 1])7Y. According to Judge and Mittelhammer (2011), these probability

weights put into the log-EL objective function which can be written as

In(Lec(B: Y. Xp1))) = = Ity In ([ABY (X'pi) (Yo — X 1B)) + 1) 3-14

The MEL function for “f” is defined as

Be, = arg maxg [In ( Lev(B; Y,X[,-"]))] 3-15
In the linear regression model, the MEL estimator to estimate “@,” which is based on
unbiased moment function in “3-8” leads to familiar functional form for “Bg,”. The
Cressie and Read family (1984 & 1988) of test statistics contains various nonparametric
likelihood approaches, including the MEL approach that estimates the unknown

arameters “B” in linear regression models.
g

According to the objective of the present study, our focus is to estimate the regression
model having an endogeneity issue. In this case, the assumption of orthogonality

condition does not hold (i.e., E(X’€) # 0). So, the instrumental variables ‘Z’ are
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required to solve such a problem that satisfies the condition of E(Z'€) = 0. In this

setting, the moment functions are as follows:
E (h (% X3, Zgiy), p)) = E(Z'1)(Y - Xy, B)) = 0 fori=1,23,..,n 316

In (LEL(B: Yo, X Z[i,.])) = max,[n"1 I, In(p,) subjectto Y, p; =

land ¥ p; (z'[i,.](Y - X[i,.]ﬂ)) = 0] 3-17
Where Y(nxl)' X(nxk); Z(nx ) B(k)ﬂ)and l(kx 1) and “k = €”.

In the case of the exactly determined model, where “£”” estimating moment equations
are used to estimate the vector of “k” unknown parameters that provide unique values

of unknown parameter “§8.”

3.3 Kullback-Leibler (KL)/ Maximum Empirical Exponential

Likelihood (MEEL) Approach

Judge and Mittelhammer (2011) discussed the role of the KL information-theoretic
approach to measuring the discrepancy between two probability distributions, i.e., the
subjective distribution p(y) and the reference distribution q(y). The KL information

criterion is denoted as:

KL(p,q) = Z%,pin(PY/g,) 3-18

The reference distribution is usually specified as uniform distribution “q = (1/n)”. In
the above equation, KL (p, q) is also known as the MEEL approach. Therefore, if the
uniform distribution is used as a reference distribution in KL (p, ) information, then

the objective function can solve the empirical moment equation of
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I pih(Yu X Z ) B) = Ziyp (Z’[,”] (Y- X[L.]B)) = 0, where instrumental
variable “Z” is used due to E(X’€) # 0. Here, the objective is to minimize the KL
discrepancy between a subject distribution and classical empirical distribution function
on data. This KL/ MEEL criterion is also known as the maximum entropy criterion in

literature.

KL(p,n™11,) = T pjdn (n.p) = Iy piIn (p) + In (n) 3-19

Minimizing KL information is equivalent to maximizing— X[, p;In (p;), which is
precisely the Shannon-Jaynes entropy measure stated in (Judge & Mittelhammer,

2011). Consequently, the Lagrange function is:

In ( Lmees(B; Y. X1}, Z[i,.])) = =XLaipin(p) —uQiLipi—1) -

NELp (T (Y- X)) 3-20
Where Yinx1) X nxky Znx £) Bkx1)and Axx 1y and “k = £7. In the case of the exactly
determined model, where “£” estimating moment equations are used to estimate the
vector of “k” unknown parameters that provide unique values of unknown parameter
“B.” The “A” and “p” are Lagrange multipliers, and p; > 0 V i is implicitly structured
in the above-stated log-likelihood function. The first order optimization condition
applies to the above-stated function w.r.to “p;”, “A” and “B” is as follows:

exp[—l'(z'[t,.] (Yt'x[t.-] B))]

3-21
I exp[-2' (', ) (Yi-X(,18))]

pi(Bn A) =
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Substitute the value of p;, in “3-22” and “3-23” as

exP[—l’(Z'u,.] (Yi—X(,) B))]
Iy exp[-A (Z'[t,.] (Yi—X}i,18)

A(B) = L, = arg, B, i @' (Y — X)) = 0] 3-22

exp [—ll(zl[t,.l (Yi—Xg,) B))]
p eXP[—l’(Z' 1(Ye=X(;,1B)

Lg =¥, )] (=NZ',X;y) =0 3-23

Where ‘A(B)’s are the “k” optimal Lagrange multipliers with the “k” moment
constraints p; > 0 Vi. The expression A(B) in “3-22”, that is an implicit function of the
vector of unknown parameters “B,” it cannot be expressed in closed form. It is a
continuously differentiable function of “B.” By putting the optimal solution of Lagrange
multiplier “A(B)” into to the optimal probability weights in “3-21”, that permits the
empirical probabilities to be denoted in term of “B” as p;(B) = p,(B, A(B)). These

optimal probability weights put into the log MEEL objective function:

In ( LMEEL(B; Y,-,X[i‘_],Z[i,_])) = LMEgEL (B; ﬁi(B),i(B)) (Judge & Mittelhammer,

2011).

3.3.1 Computation of MEL Approach

In the estimation of MEL type problems, analytical solutions are not simple.
Consequently, we necessarily require numerical methods to solve these kinds of
problems. There are many ways to solve such kind of estimation problems numerically.
The Newton Raphson method is most commonly used. In the study of Mittelhammer et
al. (2000), they discussed the procedure of the Newton-Raphson method to find the
optimal point of a nonlinear function. Accordingly, the second-order Taylor expansion
series is used for local approximation. Let us consider a nonlinear objective function

L(B) with the choice of parameter “B”. Assumed an initial estimate of the unknown
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parameter "B," to derive the iterative algorithm for numerical optimizations by Taylor

series expansion as:

LB) = LB + 22 (B ) +2(B- o) T2 (B-By) 324

Take the derivatives of the above series, put them equal to zero, and find the optimal
point. Conditional on the initial estimate. “B,”, the next iterate is

b= 0o [ [

In the iterating process, we reach an optimal point by solving the problems in which the
current solution “B,” comes from the previous estimate “B..,”. In the Newton
algorithm, the step taken during iteration “t” dy_1= B¢ — Bt-1, is known as the direction.
The direction is a path from the starting point to the next step in the iterative solution.
The inverse of the Hessian matrix of the function is used to estimate the angle of the

direction and gradient of the function is used to determine the size of the direction.

The numerical methods are used to estimate the MEL (nonparametric approaches)
problems because it has no theoretical techniques to be solved. The simultaneous and
sequential methods proposed by Judge and Mittelhammer (2011) to estimate the MEL
problem by using the Newton-Raphson gradient-based search procedure. These authors
used these methods to determine the unknown value of the population mean. They
discussed that the sequential method is easier to solve the more complicated MEL (non-
parametric approaches) problem. In the present study, we have adopted the sequential

base numerical optimization procedure to solve the MEL and MEEL problem.
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Considering the problem of log Maximum Empirical Likelihood (MEL) function with

Lagrange constraint is given as follows:

In ( Le (B; Yl'x[i,.]vz[i,.])) =n"13L,In(p) - pELip— 1D -

VDX Y (Z' w1 (Y = X B)) 3-26

The first order optimization conditions w.r.to “p;”, “A” and “B” are as follows:

pi(B,2) = (n[A (2, (Y — X, 18)) + 1) 3-27
Ly = X1 pi (Z’u,.] (Y — Xp B)) =0 3-28
Lg = Xt Pt(— Nz,[l,.]x[t,.]) =0 3-29

We restrict the equations “3-28 and 3-29” by putting the optimal value of p; obtained

from the equation “3-27” and then:

AB) = Ly, = arga [T (n [1 (210 (% = X008)) + 1)) (201 (%~ Xq18)) =
0] 3-30
Lp = Ty} (Z',)(Y = X 18)) + 1)1 NT' X)) = 0 331

In the estimation of the MEL problem, the equation “3-30” and “3-31” can be solved

simultaneously by using the Newton-Raphson method to minimize the expression:
Q=1L+ L 3-32

The above-stated expression “Q” in equation “3-32” is numerically optimized

(minimize the squared Euclidean norm for necessary conditions) by using the equations
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“3-30” and “3-31”. It can be solved by sequential procedure, where first “3-30” is
solved for “A” for a given value of “B” (initial guess “0” as starting point of §) and then
solve “3-31” for “B” at given the previous value of “A” to minimize the square
Euclidean norm “3-32”. We continue the process until the convergence achieved. The

computation procedure of MEEL is the same as the computation of MEL in “3-32”,

3.4 Cressie and Read (CR) Family of Divergence

The Cressie and Read family of divergence measure and maximum empirical likelihood

as:

1
y(y+1)

I(p.qy) = TEapl (DY - 1] 3-33

In the CR criterion function, the “y” is a parameter that indexes members of the CR
family to measure the discrepancy between two probability distributions such as the

subjective distribution “p” and reference distribution “q.” The Lagrange function is as:

I (1(B; Vi X(i1,Zi0)) = Gy Za (R = 11} — m(Tiy(p) - 1) -

VDY (Z'[i,.] (Y — X, B)) 3-34

The above-discussed CR criterion function converges to the different entropy measures
by varying the parameter 'y’. As CR (y = —1) leads to the empirical log-likelihood,
(MEL) objective n=* ¥L; In (p;). The Specification CR (y = 0) leads to the empirical
exponential likelihood (MEEL) which is equal to “— Y p;In (p;)”. CR (y = 1) define
the log Euclidean of least squares likelihood function (MLEL) or least squares

empirical likelihood stated in (Judge & Mittelhammer, 2011). Therefore, the CR family
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of divergence encompasses all entropy measures (non-parametric approaches). The

MEL and MEEL approaches are among of them.

3.4.1 Optimal Choice and Quadratic Risk (QR) Function

We follow an approach proposed by Judge and Mittelhammer (2011) about the optimal
convex combination “B(a)” of parameters of different entropy measures “B(y) =
I( p,q,y)” from the CR family of test statistics to estimate unknown parameter. The
optimal convex combination is defined on the basis of the minimum Quadratic Risk
(QR) function. The following equation demonstrates this CR Optimal Convex

Combination (CROCC), as proposed by (Judge & Mittethammer,2011).
B(a) = Z;=1 o;B (v;), whereo; > 0v;, and Z;=1 =1 3-35

Here, each estimator “B(y)” is obtained from the CR family of test statistics by varying

the coefficient “y” as shown in the following equation.

1
y(y+1)

By =Ipqy = o [(% Y—1] 3-36

The above equation is optimized subject to the following constraints.
i=aPi =1 and ¥iL,p; (Z'[i,.] (Y - X[i,_]B)) =0 3-37

Following research objectives, we use two alternatives of CR family of test statistics,
i.e., MEL and MEEL represented with ﬁ(yl) and 3(72) respectively. The following
section explains the optimal choice of these two individual CR information-theoretic

estimators using minimum QR function.
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The Optimal choice of Two CR Alternatives

The following equation provides the formula of an optimal convex combination of

MEL and MEEL, as proposed by (Judge & Mittelhammer, 2011).

B@ = a&Blyp+ A -a) B(yz) 3-38

In the above equation, “@” is an estimated coefficient of convex combination and yields

as

p(B (v2). B)-E[(B (v1)-B)' (Blv2)-B)] 3-39
p(Bry), B)+p(Bly2), B) -2 E[(By1)- B) (Bly2)- B)]

R)

In the equation “3-39” the expression “E[(B(y1) — B)'(B(y2) — B)” is a cross
product of bias terms of B(y,) and B(y,). This expression is a non-zero term (Judge &
Mittelhammer, 2011). The authors contended that “assuming the moment conditions
are correctly specified, the ﬁ(y) estimators are consistent under regularity conditions no
more stringent than the usual conditions imposed to obtain consistency in the
generalized methods of moments (GMM) or the classical linear model”. Under this

€6 22

assumption, “E[(B(y;) — B)’(ﬁ(yz) — B)” approaches to zero as “n” increases. Judge

and Mittelhammer (2011) also assumed that the estimators B(y,) and B(y,) obtained

from two entropy measures are based on independent samples of data, therefore the

term “E[(B(v,) — B)'(B(y2) — B)]” s zero.
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P(ﬁ (v2), ﬁ)

= . be writt
p(B(y1). B)+p(B(y2). B) and can be written as

As a result, the equation “3-39” will be @ =

follow;
a= (cov(ft;(:()))v«(f:y(z)v(ﬁ(n)) 340
Where
cov(Bw) =

-1

ah(Y X 1,21, R 11
[z;'=1 ALY #gg(v;;”“'”] |2 5.0 (Y X1, 1, B) (Y3 X1 21 B) |

N on(Y. X1 Zu B ||
z:.=1p‘.(v)L,E,‘—,;(,§”—')] |

3-41
Where P;(y)s are estimated probability weights obtain from the solution to the

estimation of (y = —1) and (y = 0). After estimating the “@” CROCC estimator will

be as follow:
B(® = @B (MEL) + (1 - @) B (MEEL) 3-42

However, if the expression “E[(B(y1) — B)'(ﬁ(yZ) - B)” is a non-zero term, then
according to Judge and Mittelhammer (2011), the aforementioned expression needs to
operationalize appropriately. Therefore, we introduce an alternative approach as an
arbitrary method (Cressie and Read Arbitrary Convex Combination (CRACC)) to
compute the coefficient of convex combination that is independent of the computation
of the coefficient of convex combination. “@”. The details of CRACC are given in the

following section.
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3.4.2 CR Arbitrary Convex Combinations (CRACC)
Judge and Mittelhammer (2011) found that their estimated average value of “@” is in
the neighbourhood of “0.5”. Therefore, we took the arbitrary values of “a = 0.5”.

Using the arbitrary value (denoted as “a"), the convex combination will be as follow

B(a) = aBlyy1=-1)+ (1 —-a)B(yz=0) 3-43

Particularly, for the arbitrary value of a= 0.5 above equation will become

B(a=0.5) = 0.5B(MEL) + (1 — 0.5) B(MEEL) 3-44
The arbitrary convex combination is free from the assumptions required to estimate the
optimal convex combination proposed by (Judge & Mittelhammer, 2011). This research
also compared the performances of CRACC and CROCC to explore the best estimator.
We also introduced two other arbitrary combinations on a scale of 25% and 75% to
evaluate the CRACC. When the arbitrary convex combination with CRACC; is donated

where i= 1, 2, and 3 representing 0.25, 0.5, and 0.75, respectively.

3.5 Overdetermined Model and Linear Transformation

In the case, if the number “£” of moment equations becomes greater than the number
“k” of unknown parameters to be estimated (k < £), the system of equation (moment
equations) has full row rank, in this case, the system of moment equation is called

“overdetermined” system.

E((Y:, X3, Z' [3.B)) = Ty pih(Yi X[, Z' 1),B) = 0 3-45

Where, Ynx1), X(nxk) Znx ¢) Baxk) and (k < £) show the overdetermined model of
moment equations. It is generally impossible to solve for k parameters because the

system will estimate “£” parameters while “f — k” moment equations are redundant.

46



Therefore, moment conditions will estimate the “£” for “k” parameters. The functional
dependence transforms the overdetermined model into the exactly determined system
by reducing “£” moment equations to “k” dimensions. This conversion can be done by

pre-multiplying the “£ X 1” moment equations by a “k X £” matrix denoted by “v.”

Eth, (Y, X1, 2" 11,3, 8)) = Xiapilv *h(Y, X2 1), 8)] = O 3-46

The above stated “3-45” moment equations are successfully transformed to an exactly
determined system that has the same estimates got from the moment conditions “3-
46”.The idea of linear transformation was initially proposed by (McCullagh & Nelder,
1989). These authors exhibited the optimal selection of “v” that have minimum
covariance asymptotically. A number of studies, applied this idea of linear
transformation to estimate the overdetermined model by MEL approach (Mittelhammer
etal,, 2000; Qin & Lawless, 1994). The overdetermined model transformed into just a
determined model that can estimate the unique values of § having 'k’ parameters. The

"¢’ estimating moment conditions are as follows:

Eth(Y;, X;3.2' (11, 8) = Sy pi (2 13(Y - Xy ;8)1=0 3-47

The transformation provides us the k estimates.
E(h,(Y;, X[1),Z" (i), B)) = Zizapi v * [Z (Y — X[,B)] = 0 3-48

Where ‘v’ is (k X £) full row rank matrix as follows:

oh(YX[i.).Z' [4,], ' -
v=F [(‘—apuﬂ—)] [COV (h(Yi, X[i,_],z [L]’B))] 1 3-49
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Where [cov (h(Yi, X Z' 1) B))] = E[(h(Yp X, Z' (1,1 B)) *

(h(Yi, X Z' [i..]»B))’]’ numerous studies stated that the covariance of the MEL
estimator comes to be more efficient as the number of moment equations increased
(Mittelhammer et al., 2000; Qin & Lawless, 1994). Therefore, in the overdetermined
model, we can be used the above-discussed set of moment equations h,(X,Y,Z, ) to
estimate “k” unknown parameters in the estimating procedure of the MEL and MEEL
approach. In the overdetermined model, we use the same sequential base numerical
procedure to estimate the unknown parameters by using MEL and MEEL approach. We
have used MATLAB software to construct the required algorithm. However, to evaluate
these estimators, Monte Carlo Simulation (MCS) analysis is carried out whose

description is given below.

3.6 Monte Carlo Simulation Design

The Monte Carlo Simulation (MCS) analysis is used to analyze and compare the finite
sample properties of GMM and information-theoretic estimators (MEL, MEEL, and
CROCC) in estimating the linear regression model having the endogeneity problem.

Consider a linear regression model specified in “3-1”.

The objective of this study is to estimate the above equation when orthogonality
condition between “€” and X is not satisfied, i.e., (E(€]X) # 0). In this context, the OLS
technique is not applicable to estimate the parameter “B.” However, GMM, MEL,
MEEL, and CROCC can be used to estimate the above model in the presence of
endogeneity. To solve this kind of issue we need instrumental variables that satisfy the

orthogonality condition as E(€]Z) = 0, but have a correlation with endogenous
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regressor E(Z|X) # 0. Our analysis is based on “5000” Monte Carlo Simulations to

evaluate and compare the performance of the estimators.

3.6.1 Data Generating Process (DGP)

The data generating process (DGP) used to evaluate the performance of the above
discussed estimators when orthogonality condition do not satisfy, in the estimation of

the regression model is defined as follows

Ynx1) = Xmx2)Bx1) + €nx1) 3-50

Where B,x1)are the coefficients, €x1yare errors of “3-50” and

Xmx2) = [vX] 3-51
1
In “3-51” X(,,x2) are the regressors consist of y = 1 and X ;x1)-
(nx2) : (nx1)
1 (nx1)
X(nx1) = Znxa)ax1) + Ymx1y 3-52

Where Zg,xqy = (212, Z37,) is a matrix of instrumental variables and 8'(4x1) =
[81 8, 83 8,] are their respective coefficients and U (,x1y are residuals of “3-52.

The €(;x1) and V(;xq) are generated through Bivariate Normal distribution as follows:

0111 =
[€V Jinxz)~N ([0],[,[ 1 ) 3-53
Where “t” will measure the degree of endogeneity.

First of all, €,5x; and v, are generated through “3-53”, then four instrumental

variables Z; Z, Z; and Z, each of (n X 1) order are generated. By using the fixed
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8(4x1)> Z(nxa) and V(y»1) that are the components of regressor i.e. X(»x1) are generated
through “3-52”. Then matrix of regressors i.e. X(,x2) is generated according to “3-517.
Finally Y(nx1yis generated according to “3-50” by using the matrix X(;x2), Beax1)(a

constant coefficients vector) and €(,x 1) vector of errors.

We have generated a matrix of instrumental variables that are denoted as Z =
(Z,Z,7Z5Z7,]. The instrumental variables are iid from a multivariate normal
distribution, with a zero mean vector and some standard deviation. The outcomes of
eandZ will be generated independently so that E(e]Z) = 0. This fulfills the
fundamental condition for Z to be considered as a valid instrumental variable. In

equation “3-52” the values of '8’ measures the strength of instrumental variables that

will

will be determined by regressing X(nx1) 0n Zgx4). Theoretically, IVS = 8’8st
determine the Strength of Instrumental Variables abbreviated as (IVS) (Judge &

Mittelhammer, 2011).

Regarding the sampling scenarios of the Monte Carlo simulation experiments, sample
sizes of n = 25, 50, 100, 150, 200, and 250 are used to analyze the estimators in
accordance with study objectives. In all the sample sizes, we have estimated the
parameter of interest B with all aforementioned estimation techniques by varying the
values of T and 8. In order to analyze and compare the performances of the estimators,
different combinations of sample size (n), degrees of endogeneity® (t= 0.2, 0.4, 0.6 &

0.8 with low, moderate, high and very high respectively) and strength of instrumental

SThere is a linkage between endogeneity and instrumental varibles, whenever endogeneoty exist between
regressors and error term we have needed I'V’s to resolve this issue. Various Authors used Instrumental
variables to resolve the problem of endogeneity (Altonji & Segal, 1996; Hall & Horowitz, 1996; Imbens
et al., 1998; Imbens, 1997; Kitamura & Stutzer, 1997; Qin & Lawless, 1994).
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variables’ (8 = 0.25, 0.5 & 0.75 with weak, moderate and strong strength respectively)
are also constructed. In case of the exactly determined model, §; # 0 and §, = §; =
84 = 0, on the other hand, §; = 8§, = §3 = 8, # 0 when the model is overdetermined.

The listed combination is mentioned in the table, which is as follows:

Table 3-1: Degree of Endogeneity and Instrumental Variables Strength

Degree of Endogeneity (D.E)

0.2 0.4 0.6 0.8
Instrumental 0.25 0.25/0.2 0.25/0.4 0.25/0.6 0.25/0.8

Variables 0.5 0.5/0.2 0.5/0.4 0.5/0.6 0.5/0.8
0.75 0.75/0.2 0.75/0.4 0.75/0.6 0.75/0.8

Strength (IVS)

The Monte Carlo simulations on these combinations are conducted for each sample

size.

3.7 Empirical Analysis

For empirical analysis, we used the real time series to analyze the performance of the
information-theoretic approach to estimate the regression model in the presence of
endogeneity problem. Money demand function and consumption function are two
economic models that often do not satisfy the condition of orthogonality and cause
simultaneous bias. We evaluated the performances of selected estimators for these two
economic models. These economic models are selected because of the following

reasons;

7 Various authors have discussed method to find the strength of IV’s (Camron et al 2002; Stock and Yogo
2002; Baltagai 2007). For instance, Camron et al (2002) contended that R? and F test can be used to find
the strength of I'V’s.
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e These models have an endogeneity issue.

e We face small samples issue in such economic models.

¢ No application of information-theoretic models is found to estimate the
economic models.

The details of both models are provided in the following sections.

3.7.1 Money Demand Function

Keynes (1936) first proposed the idea of the money demand function, also known as
liquidity preference theory, in contrast to the quantity theory of money (QTM).
According to his theory, money supply and money demand depend upon the rate of
interest and permanent income. The higher the rate of interest, will lower the money
demand, and the higher the income will increase the money demand. Later on, many
theorists added different concepts (Friedman, 1956; Tobin, 1958) and different

estimating techniques Feige, (1967) regarding money demand functions.

Various studies found the problem of simultaneity bias in the estimation of the money
demand function. For instance, Hsing and Jamal, (2013) estimated the money demand
function using 3SLS method to solve such an endogeneity problem. Similarly, Thomas
(1993) discussed the money demand functions and stated the problem of simultaneity
bias in its estimation. The money demand and money supply functions and the problem

of simultaneity bias are discussed below.
Money Demand function: mg = b, +byr + by + & 3-54
Money supply function: mg = a, + a;r + h + &, 3-55
For equilibrium condition, the money demand equal to the money supply
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my = mg 3-56

Where ‘h’ is the stock of high-power money, ‘r’ is the rate of interest, and ‘Y’ is
permanent income. The level of income and high powered money stock is assumed
exogenous variables which are determined by the monetary authorities. Income appears
in demand function, while high power money stock is used in supply function.
However, interest is included in both functions. The consequences of simultaneity must

be considered as shown by the reduced form below:

= 39700 _ (_bz 1 £2mE -

- by—-a; (bl—al) y + (bl—al) h + by—-a; 3 57

_ biag—-boya; _ aiby by bijez—ajg; _
m = by—-a; (bl—al) y + (bl—al) h + by—a; 3 58

Since, mg = my, therefore reduced form for mg is identical to my and the rate of
interest is positively correlated with €,. This indicates that the money demand function
cannot be estimated directly due to the simultaneity problem where ‘t’ is an endogenous
variable. Money and rate of interest are endogenous variables that can be predicted by
permanent income and high-power money stock. The correlation of the rate of interest
with errors indicates the presence of endogeneity that needs to be solved to produce
unbiased estimates. The present study intends to provide such a solution to the

endogeneity problem in finite samples to estimate the money demand function.

To resolve this issue, we require instrumental variables that can be used to estimate the
money demand function. The equations “3-57” and “3-58” show that permanent income
and high-powered money stock variables satisfy the condition of instrumental variables.
Therefore, they can be used to estimate the money demand function. A number of

estimation techniques are available to estimate money demand function by using
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instrumental variables in this respect. However, we will apply GMM and information-
theoretic estimators, as discussed earlier, to evaluate their performances in finite
samples for a real economic problem. We collected annual data® from International
Financial Statistics (IFS) and the World Bank Data Bank for several countries to

estimate money demand function with a sample of 30 observations for each country.

3.7.2 Consumption Functions

The simultaneity bias can also exist in structural models such as Keynesian
consumption function, which is also known as the absolute income hypothesis (Keynes,
1936). Various authors reported the endogeneity problem in estimating the Keynesian
consumption function (Charemza & Deadman, 1997; Thomas, 1993). It is a two-

equation model, as follow:
Ct =a+ bYt 4 & 3-59
Y. =C+ I 3-60

Where C;: aggregate consumption, Y;: aggregate income and I;: investment. Equation
‘3-59” shows that the effect of an unexpected change in C, is due to change in ¢,. Both
equations are showing an increase in g, increases the C, while the increase in C, also
increases in Y. Therefore, C, and Y, are interdependent showing no change in C,
without the change in Y, and vice versa. However, C, may change with the change of

I;. Hence, both C,andY, are endogenous variables in the above system. The

& For empirical analysis, we have collected time series data from International Financial Statistics (IFS)
and the World Bank Data Bank for several countries with a sample of 30 observations for each country.
The time spane was from 1972 to 2009.
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endogeneity issue can be explained using equations “3-59” and “3-60 with respect to

the aforementioned system.

C= 2 + 2 +- 3-61

Y= 2+ 0+ 3-62

These equations have shown that consumption “C” and income “Y” are correlated with
disturbance term “g,”. We could not estimate the consumption function “3-59” directly
by the OLS technique because it will produce biased estimates. Therefore, to estimate
the consumption function, instrumental variables are needed to solve the model. In this
problem, we used investment and government expenditures as instrumental variables.
We intend to apply GMM and information-theoretic approaches to evaluate their

performances for the above real economic problem having the endogeneity issue.
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CHAPTER 4. RESULTS & DISCUSSIONS

This chapter provides the results of simulation analysis for both exactly determined and
over-determined models, as described in the methodology chapter. A comparative

analysis of different estimators is also part of this section.

4.1 Monte Carlo Simulation Analysis

This section will present the results of the Monte Carlo Simulation (MCS) in the
presence of endogeneity. The simulation analysis is based on four estimators, including
GMM, MEL, MEEL, and CROCC. Here CROCC is the optimal convex combination
of two individual entropy measures from CR family. The simulation analysis is applied
for both exactly determined and over-determined models. However, for the exactly
determined model, MOM (method of the moment) as a special case of the GMM
approach is applied. For both the simulation analyses, best and worst cases of the

estimator are identified using different cases of finite samples.

Moreover, the performances of estimators are analysed by different combinations of
the degree of endogeneity and instrumental variable strengths (IVS) for each finite
sample, as shown in Table 4-1. The degree of endogeneity is segregated into a low
degree, moderate, high, and very high, while the instrumental variable strengths (IVS)
are labeled as weak, moderate, and strong. Subsequent sections will present the results
of the entire MCS analysis based on these combinations to identify the best and worst

position of the estimators for both exactly determined and over-determined models.
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Table 4-1: Endogeneity and Instrumental Variables

Degree of Endogeneity (D.E)

20% 40% 60% 80%

Instrumental 25% 0.25/0.2 0.25/0.4 0.25/0.6 0.25/0.8

variable 50% 0.5/0.2 0.5/0.4 0.5/0.6 0.5/0.8

Strength (IVS) 75% 0.75/0.2 0.75/0.4 0.75/0.6 0.75/0.8

4.2 Biasedness of MCS for Exactly Determined Model

The exactly determined model is a model in which the number of moment conditions
is exactly equal to the numbers of unknown parameters. This section will present the
results of biasedness for such a conditional system. Table 4-2 compares the GMM with
information-theoretic estimators to evaluate the properties of the small sample in all the
combinations of degrees of endogeneity and IVS. Various graphs for biasedness are

constructed using data from Table 4-2 to explore the best and worst estimators.

These graphs are segregated into two broad categories. First, the variations in
biasedness are explored for varying degrees of endogeneity and samples against
different IVS. Second, the biasedness of estimators is also studied using varying IVS
and samples against different degrees of endogeneity. In other words, the superiority
and worseness of the estimators will be explored within different combinations of

varying endogeneity, IVS, and sample sizes.
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Table 4-2: Small Samples Bias in Exactly Determined Model

Samples Instr\{mental Degree o‘f Estimators
. variables Endogeneity
size strength (IVS) (D.E) MEL MEEL GMM CROCC
D.E=20% -0.06044 -0.09479 0.612496 | 0.065381
IVS=25% D.E=40% -0.04728 -0.01592 1.581684 | 0.157847
D.E = 60% 0.019664 0.071691 0.122376 | 0.217529
D.E= 80% -0.00172 0.082152 0.443509 | 0.286005
D.E=20% -0.06172 -0.04714 -0.00458 | 0.041374
a5 IV=50% D.E=40% -0.08896 -0.12494 0.080658 | 0.058197
D.E=60% -0.1666 -0.08056 -0.37491 | 0.075905
D.E= 80% -0.24146 -0.19164 0.275808 | 0.067181
D.E=20% -0.03351 -0.05266 -0.22652 | 0.003091
IVS=75% D.E=40% -0.04985 -0.07284 -0.07731 | 0.005751
D.E= 60% -0.08503 -0.07629 -0.07718 | 0.011885
D.E= 80% -0.10757 -0.12572 -0.20937 0.01391
D.E=20% -0.03985 -0.10027 -0.64839 | 0.055253
IVS=25% D.E=40% -0.09515 -0.10962 -0.54027 0.09914
D.E= 60% -0.11412 -0.16612 -0.7841 0.11508
D.E= 80% -0.17161 -0.11313 -0.54166 | 0.117639
D.E=20% -0.01142 -0.07232 -0.0176 0.019603
D.E=40% -0.04565 -0.11079 0.137229 | 0.027505
>0 IVS=50% D.E=60% -0.10529 -0.14036 -0.10204 | 0.033036
D.E= 80% -0.15453 -0.17719 -0.2707 0.030993
D.E=20% 1.04E-05 -0.01814 -0.01965 | 0.002416
IVS=75% D.E= 40% -0.01178 -0.02759 -0.0294 0.003593
D.E=60% -0.01895 -0.04304 -0.04501 | 0.003925
D.E= 80% -0.03121 -0.05475 -0.05673 | 0.004241
D.E=20% -0.01518 -0.10518 -0.70121 | 0.044539
IVS=25% D.E= 40% -0.04917 -0.15121 -0.07262 | 0.058569
D.E= 60% -0.09478 -0.18375 0.036573 0.06706
D.E= 80% -0.17966 -0.26723 -0.185 0.058549
D.E=20% 0.009644 -0.03601 -0.02078 | 0.010184
D.E= 40% -0.01016 -0.05381 -0.03602 | 0.012135
100 IVS=30% D.E= 60% -0.03069 -0.07208 -0.05319 | 0.017219
D.E= 80% -0.04581 -0.07507 -0.07041 | 0.020696
D.E=20% 0.003919 -0.01344 -0.00481 | 0.000284
IVS=75% D.E=40% 0.005831 -0.01683 -0.00819 | 0.004384
D.E= 60% 0.000452 -0.02174 -0.01324 | 0.004469
D.E= 80% -0.00642 -0.02312 -0.01461 | 0.004554
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Samples Instr\'xmental Degree of Estimators
size | n:s;?l'}'gls) E“‘fg‘ge'ty MEL | MEEL | GMM | CROCC
D.E=20% | -0.00104 | -0.09149 | -0.04498 | 0.031509
IVS= 25% D.E=40% | -0.02977 | -0.13306 | -0.18092 | 0.043599
D.E=60% | -0.06964 [ -0.141 -0.03186 | 0.053063
D.E= 80% -0.12209 | -0.17953 | -0.14732 | 0.051465
D.E=20% | 0.014767 | -0.03043 | -0.01155 | 0.005392
_ o D.E= 40% 0.00799 | -0.04077 | -0.02258 | 0.011033
150 IVS=30% D.E=60% | -0.00755 | -0.04523 | -0.02762 | 0.012651
D.E=80% | -0.01439 | -0.05766 | -0.041 | 0.010852
D.E=20% | 0.010732 | -0.01072 | -0.00204 | 0.003268
IVS=75% D.E=40% | 0.006621 | -0.01265 | -0.00407 | 0.003663
D.E=60% | 0.004242 | -0.01649 | -0.00785 | 0.003796
D.E= 80% -0.0006 | -0.01896 | -0.01024 | 0.002618
D.E=20% | 0.032279 | -0.06546 | -0.01884 | 0.029155
IVS=25% D.E=40% -0.00335 | -0.0876 | -0.05985 | 0.032546
D.E=60% -0.03482 | -0.11832 | -0.12412 | 0.043563
D.E=80% | -0.08098 | -0.1654 | -0.16129 | 0.036544
D.E=20% |[0.021588 | -0.031 -0.01182 | 0.004395
_ eno D.E=40% | 0.015569 | -0.02989 | -0.01124 | 0.011819
200 IV8=50% D.E=60% | 0.008452 | -0.03834 | -0.02038 | 0.011312
D.E=80% | -0.00621 | -0.04386 | -0.02671 | 0.009196
D.E=20% | 0.010961 | -0.00999 | -0.00136 | 0.002988
IVS=75% D.E=40% | 0.006719 | -0.01097 | -0.00253 | 0.002851
D.E=60% | 0.004942 | -0.01766 | -0.009 | 0.001028
D.E=80% | -0.00016 | -0.02085 | -0.01197 | -0.00073
D.E=20% | 0.045364 | -0.04703 -0.016 0.02941
IVS=25% D.E=40% | 0.020263 | -0.06773 | -0.03798 | 0.036814
D.E=60% | -0.01101 | -0.09078 | -0.06093 | 0.037394
D.E= 80% -0.04154 | -0.12665 | -0.08718 | 0.040691
D.E=20% | 0.028658 | -0.02484 | -0.00537 | 0.008856
250 VS= 50% D.E=40% | 0.018586 | -0.03148 | -0.01274 | 0.008097
D.E=60% | 0.011129 ] -0.03575 | -0.01756 | 0.008201
D.E=80% | 0.008881 | -0.04265 | -0.02478 | 0.009935
D.E=20% | 0.014608 | -0.00886 | -0.0005 | 0.004753
[VS=75% D.E=40% | 0.009359 | -0.01353 | -0.00506 | 0.001847
D.E=60% | 0.007914 | -0.0127 | -0.00431 | 0.003311
D.E=80% | 0.005427 | -0.0159 | -0.00734 | 0.002278
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4.2.1 Varying Endogeneity and Samples Against Different IVS

Figure 4-1 is providing the results for the biasedness of selected estimators for weak
IVS (i.e., 25%) but varying degrees of endogeneity and samples in case of the exactly
determined model. Figure 4-1 is depicting that the GMM estimator has high biasedness
for small samples (the sample of 25 and 50). These results are consistent for all four
selected degrees of endogeneity. This indicates that when the strength of the instrument
variable is weak, GMM produces high biasedness in small samples regardless of the
degree of endogeneity. It is also notable that GMM is providing more variations in

biasedness when the degree of endogeneity and sample size varies.

Conversely, MEL, MEEL, and CROCC are stable estimators across different sample
sizes. It is found that MEL and CROCC provided less biasedness as compared to GMM
and MEEL. Results also revealed that as the degree of endogeneity increases, all of the

estimators provided more biasedness.
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Figure 4-1: Biasedmness with Weak IVS in Exactly Determined Model
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The figure 4-2 evaluates the biasedness of the estimators for moderate (50%) IVS and
varied degree of endogeneity and samples. It can be viewed that GMM estimators have
larger businesses as compared to other estimators, especially for the sample size of 25
and 50. Moreover, all the estimators except CROCC showed high variations. Overall,
the MEL estimator is found superior as compared to MEEL and the GMM, while

CROCC outperformed than MEL.
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Figure 4-2: Biasedness with Moderate IVS in Exactly Determined Model
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Figure 4-3 further explores the biasedness of estimators for strong IVS and varied the
degree of endogeneity as well as sample sizes, All estimators, especially GMM, are
showing greater bias in a small sample of 25 and 50. However, as the sample size
increases, the biases of all estimators decrease. Results also showed that the CROCC
estimator showed less biasedness than other estimators, especially for small samples.
Hence, again CROCC estimator is concluded as a superior estimator, while GMM is

found worst estimator, especially for a small sample.
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Figure 4-3: Biasedness with Strong IVS in Exactly Determined Model
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4.2.2 Varying IVS and Sample Sizes Against Different Degrees of

Endogeneity

This section will provide the results of biasedness for varying IVS and sample sizes
against different degrees of endogeneity in case of an exactly determined model, Figure
4-4 is showing the biasedness of four estimators in case of a low degree of endogeneity
(20%) but with varying IVS and sample sizes. Graphs are depicting that the
performance of the estimators increased as the strength of the instrumental variables
increases from (25% to 75%) with a 25% degree of endogeneity. The biasedness of the
GMM estimator is very high at the sample size of 25 to 50. Overall, Figure 4-4 is

depicting that CRQCC is a superior estimator comparatively in small samples.
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Figure 4-4: Biasedness with Low Degree of Endogeneity in Exactly Determined

Model
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In Figure 4-5, biasedness of the estimators is explored for a moderate degree of
endogeneity (40%) and varying strength of instrumental variables and sample size.
Results are portraying that GMM has the highest biasedness as compared to all other
estimators for sample sizes of 25 and 50. On the other hand, all the estimators have
improved their performance as the strength of instrumental variables increase. Overall,
among four estimators, CROCC showed the least biasedness, especially for small

samples.



Figure 4-5: Biasedness with Moderate Degree of Endogeneity in Exactly
Determined Model
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Similarly, Figure 4-6 is providing a view of biasedness for varying IVS and samples
against a high (60%) degree of endogeneity. It can be viewed that GMM produced the
highest biasedness as compared to other estimators when IVS is moderate (50%) or
strong (75%), and the sample is small (25). However, CROCC performed best for the
same combinations of IVS and samples. Results also revealed that CROCC showed the
highest bias when the IVS is weak (25%), and the sample is small (25). For all other

combinations, CROCC performed better as compared to other estimators.
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Figure 4-6: Biasedness with High Degree of Endogeneity in Exactly Determined
Model
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At last, Figure 4-7 represents the biasedness of estimators for varying IVS and samples
against a very high degree of endogeneity. The graphs are showing that the GMM
estimator has the highest biasedness as compared to MEL, MEEL, and CROCC in smal|
samples. Conversely, MEEL has the highest biasedness in a large sample. Overall, the
picture is depicting high performances of all the estimators as the IVS is strong. 1t is
also notable that CROCC converges to zero for high 1VS. Hence, for a small sample

and reduced 1VS, CROCC performed better comparatively,
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Figure 4-7: Biasedness with Very High Degree of Endogencity in Exactly

Determined Model
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Figure 4-8: Summary of Biasedness in Exactly Determined Model

AR | o AN
]
3
53 8
i ' 8
] %‘i gt |y
51 3
& o
101 m
051 g (Estmator)
000 =Pttt (| et —t—t—4 |}
o 9] = CROCC
.45 2 |
; o
o 157 D
% 10 ml 4 MEEL
J-.
055 i + WEL
0.0' w i 2 I
251 i»;’ ; 4 |
1.5' U
0y m
J
051 g
00: ﬁpﬁ-ﬁ-ﬁ [ttt é
05 g
0000800 00000 poo000
veoegf ddcegd fRon g
Samples size

638



Summary of Results for Biasedness in Exactly Determined Model

Figure 4-8 is summarising the previous results and explores three useful general
implications for all the estimators. First, all the estimators produced less biasedness as
the IVS increased. Second, the performances of all the estimators increase as the sample
size increases. Third, with the increase in the degree of endogeneity, all the estimators
produced more biasedness. Table 4-3 further compares the biasedness of all the
estimators for all the possible combinations of the degree of endogeneity, the strength
of instrumental variables, and finite samples. Table 4-3 is showing five important

implications.

First, the overall analysis showed that CROCC and MEL document the least biasedness.
Second, CROCC is found better estimator when the strength of instruments is strong
regardless of the degrees of endogeneity and sample sizes. Third, CROCC is also found
best estimators for a very high degree of endogeneity irrespective of instrumental
variables and sample sizes. Fourth, GMM is found worst estimator as compared to
CROCC in all the “72” combinations except for “2” scenarios. Fifth, GMM is found
worst estimators for small samples (25& 50) in all settings. It concludes that CROCC
is a better estimator, especially than GMM, in estimating a regression model that does

not satisfy the condition of orthogonality.

Researchers can also use Table 4-3 in selecting the best estimators. Each cell of Table
4-3 represents specific combinations where researchers can select the best estimator
producing the least biasedness. For instance, if a researcher intends to estimate a model
having a very high degree of endogeneity, weak strength of instrumental variables and
a medium sample of 25 observations then he should follow the results of first-line from
row 5 and column 2 ([MEL < MEEL < CROCC < GMM]®).
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Table 4-3: Biasedness and Practical Implications for Exactly Determined Model

Weak Instruments

Moderate Instruments

Strong Instruments

Low
Degree

[MEL < CROCC < MEEL < GMM]®
[MEL < CROCC < MEEL < GMM]™®
[MEL < CROCC < MEEL < GMM]™
{MEL < CROCC < GMM < MEEL}"™
[CROCC <MEL < GMM < MEEL]™
[CROCC «MEL < GMM < MEELP™

[CROCC < MEEL < MEL < GMM]®
[MEL < CROCC < MEEL < GMM]*
[CROCC <MEL <MEEL < GMM]'"™
[CROCC < MEL < GMM < MEEL]"*
[CROCC < GMM < MEL < MEELF™
[GMM < CROCC < MEL < MEEL™

[CROCEC < MEL < MEEL < GMMP*
[CROCC < MEL < MEEL < GMM]®
[CROCC < MEL< (MM < MEEL]'™
[CROCC < MEL< GMM < MEEL]"™
[CROCC < GMM < MEL < MEEL]™
[CROCC < GMM < MEL < MEEL ™

Moderate
Degree

[MEEL < MEL < CROCC < GMM]J®
[CROCC « MEL < MEEL < GMM]*
[CROCE < MEL < GMM < MEEL)'™
[CROCE < MEL < MEEL < GMM]'*
[CROCE < MEL < GMM < MEEL)]™
[CROCC < MEL < GMM < MEEL]™

High
Degree

[MEL < MEEL < GMM < CROCC)®
[CROCE < MEL < MEEL < GMM]™®
[CROCE « GMM < MEL < MEEL]™
[CROCC < GMM < MEL < MEEL|**
[CROCC < MEL < GMM < MEEL]™
[CROCE < MEL < GMM < MEEL]*

CROCC < MEEL < MEL < GMM]™
CROCC < MEL < MEEL < GMM]®
MEL < CROCC < GMM < MEEL]"™®
MEL <CRQCC < GMM < MEEL|'"™
[CROCC < MEL < GMM < MEEL ™

[CROCC < MEL < GMM < MEEL**

CROCC <MEL < MEEL < GMM]®
CROCC < MEL <MEEL < GMM]*
[CROCE < MEL < GMM < MEEL]'™
[CROCC < MEL < GMM < MEEL]*™*
CROCC < MEL < GMM < MEEL]P® | .
CROCC <MEL < GMM < MEEL]™ | °

[CROCC MEEL < <MEL < GMM)®
CROCC < MEL < MEEL < GMM)*
CROCC <MEL < GMM < MEEL]"™
MEL < CROCC < GMM < MEEL]'*
[MEL < CROCC < GMM < MEELF*"
[MEL < CROCC < GMM < MEEL]™*

[CROCC < MEL < MEEL < GMM|®
[CROCC < MEL < MEEL < GMM]*
[MEL < CROCC < GMM < MEELJ]'®
[CROCC < MEL < GMM < MEEL]™®
[CROCC < MEL < GMM < MEELJ®

Very High
Degree

[MEL < MEEL < CROCC <GMM|®

[CROCC < MEEL < MEL < GMM]*
[CROCE < MEL < MEEL < GMM]**
[CROCC < MEL < GMM < MEEL]™*
[CROCC < MEL < GMM < MEEL]™
[CROCC < MEL < GMM < MEEL]**

[CROCC < MEEL < MEL < GMM[®
[CROCC <MEL < MEEL < GMM]*
[CROCC < MEL < GMM < MEEL]™
[CROCC < MEL < GMM < MEFL]"™*
[CROCC <MEL < GMM < MEEL]™
[CROCC < MEL < GMM < MEEL]™*

[CROCC <« MEL < GMM « MEEL];
[CROCC < MEL < MEEL < GMM)|

[CROCC < MEL < MEEL < GMMJ®
[CROCE < MEL < GMM <MEEL]"™
[CROCC < MEL <« GMM < MEEL]'™
[CROCC <MEL < GMM < MEELJ™
ICROCC < MEL < GMM < MEELJ™®

The table is summarising the results of MCS (5000 simulations) for all the possible combinations of the degree of
endogeneity, strength of instrumental variables, and finite sample sizes. The most left columin is representing the
different degrees of endogeneity while the first row is showing different strengths of instrumental variables. [n the
cells, all the estimators are ranked according to their biasedness for each sample size (as given in superscript).

4.3 MSE of MCS for Exactly Determined Model

This section will provide the results of mean square error {MSE) for the exactly

determined model. Similar to the previous section, the results are provided for varying

degrees of endogeneity, IVS, and sample sizes. The MSE is reported below in Table 4-

4.,
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Table 4-4: Mean Square Error in Exactly Determined Model

Instrumental Degree of Estimators
Samples | variables Endogeneity
size strength (D.E) MEL MEEL GMM CROCC
avs)
D.E.=20% 5.263648 7.372908 | 7569.387909 | 0.608279
[VS=25% D.E.=40% 4913355 7.724669 | 5053.347323 | 0.605876
D.E.=60% 5.354470 8.028549 | 138.997032 | 0.846179
D.E=80% 3.781407 11.889420 | 4633.633473 | 0.648154
D.E.=20% 2.044735 2.874396 36.727837 | 0.223713
25 IVS=50% D.E.=40% 1.979895 3.280283 | 1352.915218 | 0.192680
D.E.=60% 2.056596 5415838 | 250.442897 | 0.185143
D.E.=80% 2.405960 6.072679 | 302.776192 | 0.250193
D.E.=20% 0351519 0.329624 1.429182 0.052027
IVS=75% D.E.=40% 0.248625 0.298864 2.638258 0.056278
D.E.=60% 0.326332 0.595453 2.631434 0.058750
D.E.=80% 0.531379 0.995246 5.256359 0.053525
D.E.=20% 3.325089 3.320464 | 714.364708 | 0.371587
IVS=25% D.E.=40% 2.443568 4.640276 | 349.721256 | 0.362297
D.E.=60% 2.697626 5.496462 | 811.753345 | 0.328868
D.E.=80% 2.178263 6.498060 | 208.198871 | 0.329152
D.E.=20% 0.584771 0.445962 4.363759 0.069041
<o D.E.=40% 0.372047 0.718847 98.805819 | 0.070282
50 [V§=30% D.E.=60% 0.570402 0.914551 2.171688 0.078162
D.E.=80% 0.723276 1.835039 18.702903 | 0.082957
D.E.=20% 0.056147 0.049879 0.049505 0.022068
IVS=75% D.E.=40% 0.060866 0.052790 0.051499 0.022292
D.E.=60% 0.055727 0.063373 0.061189 0.022746
D.E.=80% 0.064209 0.074226 0.071389 0.024180
D.E.=20% 0.886567 1.228483 | 2382.452374 { 0.121573
[VS=25% D.E.=40% 0.837616 1.368415 95.734987 | 0.123083
D.E.=60% 0.797329 2.195516 | 249.311614 | 0.120467
D.E.=80% 1.148900 2.321780 23.437875 | 0.145091
D.E.=20% 0.099213 0.090654 0.163774 0.032313
epo D.E.=40% 0.106259 0.102445 0.099812 0.034019
100 TVS=50% D.E.=60% 0.139805 0.168606 0.130409 0.033908
D.E.=80% 0.143709 0.159510 0.707938 0.035829
D.E.=20% 0.023645 0.023819 0.023259 0.011051
[VS=75% D.E.=40% 0.022517 0.023945 0.022967 0.010994
D.E.=60% 0.022729 0.025502 0.024090 0.011134
D.E.=80% 0.022767 0.026040 0.024298 0.010956
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Instrumental Degree of Estimators
Samples { variables g .
. Endogeneity
size strength (D.E) MEL MEEL GMM CROCC
(IvS) )
D.E.=20% 0.609353 0.471208 1.914875 0.071177
D.E.=40% 0.421580 0.724948 24234358 | 0.076082
IVS=25% | DE=60% | 0444835 | 0.847869 | 24.706707 | 0.073157
D.E.= 80% 0.601108 0.911651 17.182840 | 0.079044
D.E.=20% 0.053770 0.050489 0.050291 0.020884
150 IVS= 50% D.E.=40% 0.053103 0.060548 0.058955 0.021553
° [ D.E=60% 0.057192 0.059158 0.056748 0.021699
D.E.= 80% 0.053916 0.063646 0.060099 0.021762
D.E.=20% 0.015116 0.014899 0.014451 0.007111
VS= 75% D.E.=40% 0.014174 0.015762 0.015002 0.006982
° | D.E=60% 0.014131 0.016321 0.015117 0.007057
D.E.= 80% 0.013776 0.016788 0.015353 0.007149
D.E=20% 0.269296 0.234822 0.978227 0.051263
IVS= 25% D.E.=40% 0.208236 0.319388 0.229387 0.053005
° [ D.E=60% 0.251505 0.524187 3.225318 0.053489
D.E.= 80% 0.326377 0.531672 1.781111 0.055447
D.E.=20% 0.038922 0.036795 0.036443 0.016429
D.E.=40% 0.036075 0.037733 0.036691 0.015450
= 0
200 IV8=50% D.E.= 60% 0.035895 0.041244 0.039315 0.016022
D.E.= 80% 0.040885 0.042603 0.039934 0.017044
D.E.=20% 0.010650 0.011761 0.011329 0.005442
IVS= 75% D.E=40% 0.010511 0.011820 0.011131 0.005234
* | D.E=60% 0.010187 0.012420 0.011327 0.005343
D.E.= 80% 0.010412 0.013247 0.011891 0.005480
D.E=20% 0.124080 0.107231 0.109563 0.038891
IVS= 25% D.E.= 40% 0.130597 0.126172 0.123089 0.041460
° | D.E=60% 0.164694 0.160929 0.140373 0.042105
D.E=80% 0.187373 0.324472 7.532700 0.041137
D.E=20% 0.028748 0.029165 0.028864 0.013156
250 [VS= 50% D.E=40% 0.028952 0.029440 0.028388 0.012787
* | D.E=60% 0.028658 0.029982 0.028332 0.012793
D.E.= 80% 0.026844 0.037633 0.034474 0.012590
D.E.=20% 0.009009 0.008879 0.008512 0.004328
IVS=75% | D.E=40% 0.008419 0.009476 0.008768 0.004244
D.E.=60% 0.007746 0.009802 0.008919 0.004209
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4.3.1 Varying Endogeneity and Samples Against Different IVS

This section will study the MSE of estimators for varying degrees of endogeneity and
sample sizes against different strengths of instrumental variables in case of an exactly
determined model. Figure 4-9 provides the chart of MSE for weak VS (25%) and
varying degrees of endogeneity. It is found that all the estimators improved their
performances with an increase in sample size. It is also found that the GMM estimator
has larger MSE as compared to other estimators. While CROCC is found as a superior
estimator in terms of MSE, especially when the sample size is small. Overall, it is

concluded that CROCC is better than MEL, MEEL, and GMM in terms of MSE,

Figure 4-9: MSE with Weak LVS in Exactly Determined Model
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Figure 4-10 evaluates the MSE of the estimators for moderate strength of instrumental
variables (50%) and varied degree of endogeneity and sample sizes. It is again found
that the GMM estimator has higher MSE than other information-theoretic estimators,

while CROCC documented the least MSE. Therefore, CROCC can be seen as a better
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estimator than MEL, MEEL, and even GMM in terms of biasedness and MSE when the

strength of the instrumental variable is moderate.

Figure 4-10: MSE with Moderate IVS in Exactly, Determined Model
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Similarly, Figure 4-11 provides the results of MSE for strong (75%) instrumental
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variable strength and varied degree of endogeneity to examine the efficiency of the

estimators. The GMM estimator still has greater MSE than all other information-

theoretic estimators. In small samples of 25, all the estimators except CROCC have

high variations in MSE with respect to endogeneity. However, for all other samples, no

variations are found for all the estimators. Overall analysis shows that CROCC has

consistent least MSE as compared to MEL, MEEL, and GMM. Hence, in the case of

strong instrumental variables, it can be argued that CROCC is the better estimator while

GMM performs worst.
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Figure 4-11: MSE with Strong IVS in Exactly, Determined Model
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4.3.2 Varying IVS and Sample Sizes Against Different Degrees of

Endogeneity
This section will explore the results of MSE for varying IVS and sample sizes against
each category of the degree of endogeneity in the case of an exactly determined model.
Figure 4-12 evaluates the MSE of the estimators for the low degree of endogeneity,
varied IVS, and sample. Results are showing that CROCC has the lowest MSE as
compared to all other estimators in this respect. On the other hand, the GMM estimator
is showing the highest MSE. Figure 4-12 also revealed that MSE of all the estimators
decreases with the increase in the sample size. Similarly, the MSE of all the estimators

is less for strong IVS,
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Figure 4-12: MSE with Low Degree of Endogeneity in Exactly, Determined
Model
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Conversely, Figure 4-13 is portraying the efficiency of the estimators in terms of MSE,
for a moderate degree of endogeneity (40%) and varied I'VS and sample sizes. Figure
4-13 is showing that the GMM has higher MSE than other estimators in all cases. While
CROCC showed lower MSE than other estimators, overall, the performance sequence

of MSE of four estimators can be written as CROCC < MEL < MEEL < GMM,

7
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Figure 4-13: MSE with Moderate Degree of Endogeneity in Exactly, Determined

Model
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Figure 4-14 further explores the results of MSE for a high degree of endogeneity (60%)
and varied IVS and sample sizes. GMM estimator documented high MSE than other
estimators, while CROCC showed the least MSE. Especially for weak IVS (25%), the
GMM showed very high MSE. However, as the [VS increases, the MSE of all
estimators reduced. Overall, the MSE of all the estimators for a high degree of

endogeneity can be concluded as CROCC < MEL < MEEL < GMM.
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Figure 4-14: MSE with High Degree of Endogeneity in Exactly, Determined
Model
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At last, Figure 4-15 analyses the efficiency of the estimators when the degree of
endogeneity is very high, and IVS and sample size vary. Figure 4-15 is showing that
for weak IVS (25%), the MSE of all the estimators is very high. However, as the IVS
increases the MSE reduced for all the estimators. In general, CROCC showed the least,

while GMM depicted the highest MSE comparatively for a very high degree of

endogeneity.

78



Figure 4-15: MSE with Very High Degree of Endogeneity in Exactly, Determined

Model
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4.3.3 Summary of Results for MSE in Exactly, Determined Model

The above discussion provides some useful general conclusions about MSE in an
exactly determined model for all the estimators. In general, MSE of all the estimators
reduced as the I'VS increases. Similarly, the MSE of the estimators decreased with the
increase in sample size. Table 4-5 further compares the efficiency of all the estimators
in all the scenarios. The table is providing two useful implications regarding the
efficiency of the estimators. First, CROCC is found as the most efficient estimator in
all the combinations. The reason for its superiority can be due fo its extraction of
information from MEL and MEEL. CROCC uses the minimum quadratic risk
estimation rule that ultimately decreases its MSE lower than the individual MSE of

MEL and MEEL. Second, GMM is the worst estimator as compared to information-
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theoretic estimators irrespective of the degree of endogeneity, instrumental variable
strength, and sample sizes. Hence, future studies are recommended to use CROCC in

estimating the regression model having the problem of endogeneity.
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Table 4-5: MSE and Implications for Exactly Determined Model

Weak Instruments

Moderate Instruments

Strong Instruments

Low
Degree

[CROCC <MEL < MEEL < GMM}®
[CROCC < MEL < MEEL < GMM]J*
[CROCC < MEL < MEEL < GMM]*®
[CROCC < MEL < MEEL < GMM]™®
[CROCC < MEL < MEEL < GMM]™
[CROCC < MEL < MEEL < GMMJ™

[CROCC <MEL < MEEL < GMMJ®
[CROCC <MEL < MEEL < GMM][*
[CROCC < MEL < MEEL < GMM[1®
[CROCC < MEL < MEEL < GMM]'*
[CROCC <MEL < MEEL < GMM™
[CROCC <MEL < MEEL < GMM]™**

Moderate
Degree

[CROCC < MEL < MEEL < GMMJ®
[CROCC < MEL < MEEL < GMM]*
[CROCC <MEL < MEEL < GMM]"™
[CROCC <MEL < MEEL < GMM]'*
[CROCC < MEL < MEEL < GMM]™
[CROCC < MEL < MEEL < GMM

[CROCC < MEL <MEEL < GMM]J®
[CROCC < MEL < MEEL < GMM]™®
[CROCC < MEL < MEEL < GMM]'"*
[CROCE < MEL < MEEL < GMM]'*
[CROCC < MEL < MEEL < GMMJ"™
JCROCC < MEL < MEEL < GMMP¥

[CROCC < MEL < MEEL < GMM]®
[CROCC < MEL < MEEL < GMM]*
[CROCC < MEL <MEEL < GMM]*®
[CROCC <MEL <MEEL < GMM)"*
[CROCC < MEL < MEEL < GMM]™
[CROCC < MEL = MEEL < GMM[**

[CROCC < MEL < MEEL < GMM]®
[CROCC < MEL < MEEL < GMM]*
[CROCC < MEL <MEEL < GMM]'™
[CROCC < MEL < MEEL < GMM]"**
[CROCC <MEL < MEEL < GMM)™
[CROCC < MEL < MEEL < GMMJ**

High
Degree

[CROCE <MEL < MEEL < GMM
[CROCC < MEL < MEEL < GMM]®

[CROCC < MEL <MEEL < GMM]*
[CROCC <MEL <MEEL < GMM]'**
[CROCC < MEL < MEEL < GMM]™
[CROCC <MEL < MEEL < GMM]™

Very High
Degree

[CROCC < MEL < MEEL < GMM)]
[CROCC < MEL < MEEL < GMM]*
[CROCC <MEL < MEEL < GMM]J™
[CROCC < MEL < MEEL < GMM)'®
[CROCC < MEL < MEEL < GMM]J®
[CROCC <MEL <MEEL < GMM[**

[CROCC < MEL < MEEL < GMM[®
(CROCC < MEL < MEEL < GMM[*
[CROCC < MEL < MEEL < GMM]"™
[CROCC < MEL < MEEL < GMM]'®
[CROCC < MEL < MEEL < GMM]™

JCROCC < MEL < MEEL < GMMP™

[CROCC <MEL < MEEL < GMMJ®
[CROCC < MEL < MEEL < GMM]®
[CROCC < MEL < MEEL < GMM]™
[CROCC < MEL < MEEL < GMM]'®
[CROCC <MEL < MEEL < GMM]™
[CROCC < MEL < MEEL < GMMJ

[CRGCC < MEL < MEEL < GMM|™®
[CROCC < MEL < MEEL < GMM[®
[CROCC < MEL < MEEL < GMM]'™
[CROCC < MEL < MEEL < GMM]'®
[CROCC < MEL < MEEL < GMM]J™

[CROCC <MEL < MEEL < GMMP®
[CROCC <MEL < MEEL < GMM)®
[CROCC < MEL < MEEL < GMM]'™
[CROCC < MEL < MEEL < GMM]™*
[CROCC < MEL < MEEL < GMM]™

{CROCC < MEL < MEEL < GMM[**

[CROCC < MEL < MEEL < GMM]J**

The table is summarising the results of MCS (5000 simulations) for all the possible combinations of the degree of
endogeneity, strength of instrumental variables, and finite sample sizes. The most left column is representing the
different degrees of endogeneity while the first row is showing different strengths of instrumental variables. In the

cells, all the estimators are ranked according to their MSE for each sample size (as given in superscript).

4.4

Biasedness of MCS for Overdetermined Model

This section will explore the results of biasedness in the case of the over-determined

model. The overdetermined model represents a model where the number of moment

conditions exceeds the number of parameters. In such a condition, the GMM estimator

is compared with information-theoretic estimators within different combinations of

sample sizes, IVS, and degree of endogeneity, as defined in the previous section.
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Table 4-6: Small Samples Bias in Overdetermined Model

Samples Instrqmental Degree qf Estimators
. variables Endogeneity
S1ze strength (IVS) (D.E) MEL MEEL GMM CROCC
D.E=20% | 0.131721 | 0.126771 | 0.147980 | 0.137196
IVS=25% D.E=40% | 0255778 | 0.265153 | 0.308088 | 0.285296
D.E=60% | 0419872 | 0.416329 | 0.446539 | 0.439316
D.E=80% | 0.557805 | 0.540770 | 0.583616 | 0.588621
D.E=20% | 0.063521 | 0.061779 | 0.092644 [ 0.080708
25 IVS= 50% D.E=40% | 0.160483 | 0.147456 | 0.180026 | 0.178066
D.E=60% | 0.231653 | 0.233323 | 0.275849 | 0.280108
D.E=80% | 0.323395 | 0.334926 | 0.376499 | 0.389285
D.E=20% | 0.013393 | 0.017021 | 0.034329 | 0.008604
IVS= 75% D.E=40% | 0.051946 | 0.027429 | 0.073958 | 0.057690
D.E=60% | 0.085858 | 0.062809 | 0.107013 | 0.084953
D.E=80% | 0.122039 | 0.100465 | 0.145094 | 0.131407
D.E=20% | 0.084847 | 0.086975 | 0.109530 | 0.099169
IVS=25% D.E=40% | 0.194070 | 0.188890 | 0.214384 | 0.219998
D.E=60% | 0.305693 | 0.309972 | 0.339093 | 0.351371
D.E=80% | 0.420732 | 0.430935 | 0.454369 | 0.480281
D.E=20% | 0.032428 | 0.033764 | 0.055731 | 0.048250
50 IVS= 50% D.E=40% | 0.077674 | 0.073730 | 0.093648 | 0.108783
D.E=60% | 0.129355 | 0.139178 | 0.159221 | 0.178634
D.E=80% | 0.177741 | 0.185994 | 0.206100 | 0.237675
D.E=20% | -0.002060 | -0.009244 [ 0.020730 | 0.001869
IVS=75% D.E=40% | 0.006056 | 0.009584 | 0.037914 | 0.022720
D.E=60% | 0.031088 | 0.028756 [ 0.056226 | 0.046752
D.E=80% | 0.043472 | 0.043857 | 0.071486 | 0.061580
D.E=20% | 0.045836 | 0.049923 [ 0.073881 | 0.065476
IVS=25% D.E=40% | 0.113530 | 0.112850 | 0.136220 | 0.149210
D.E=60% | 0.190590 | 0.203440 | 0.224390 | 0.247360
D.E=80% | 0.262040 | 0.271130 | 0.289670 | 0.330620
D.E=20% | 0.006301 | 0.006367 | 0.025032 | 0.017840
_ o D.E=40% | 0.030365 | 0.036634 | 0.053491 | 0.057349
100 [V§=350% DE=60% | 0.054735 | 0.060672 | 0.077781 | 0.092048
D.E=80% | 0.081789 | 0.084509 | 0.099419 | 0.124040
D.E=20% | -0.017333 | -0.011853 | 0.007158 [ -0.009614
VS= 75% D.E=40% | -0.007903 | -0.003907 | 0.016408 | 0.003349
D.E=60% | 0.004249 | 0.007787 | 0.027684 | 0.018149
D.E=80% | 0.011084 | 0.016503 | 0.034947 | 0.029071
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Instrumental Degree of Estimators
Sarpples variables Endogeneity

size strength (TVS) (D.E) MEL MEEL GMM CROCC
D.E=20% | 0.036437 | 0.025326 | 0.047482 | 0.045859

IVS= 25% D.E=40% | 0.080001 | 0.080126 | 0.100643 | 0.114459
D.E=60% | 0.132863 | 0.131192 | 0.151017 | 0.177000

D.E=80% | 0.177526 | 0.178516 | 0.196481 | 0.242562

D.E=20% | -0.002232 | -0.005472 | 0.013285 | 0.004050

150 IVS= 50% D.E=40% | 0.015236 | 0.016666 | 0.034308 | 0.031352
D.E=60% | 0.032886 | 0.033054 | 0.049785 | 0.055758

D.E.=80% | 0.050313 | 0.052517 | 0.067710 | 0.081191

D.E=20% | -0.017929 | -0.010914 | 0.005726 | -0.010443
IVS=75% D.E=40% | -0.014269 | -0.004795 | 0.011653 | -0.002789
D.E=60% | -0.007115 | 0.000206 | 0.016805 | 0.005607

D.E=80% | -0.003435 | 0.005501 | 0.022361 | 0.012708

D.E=20% | 0.024242 | 0.009787 | 0.030911 | 0.027196

IVS= 25% D.E=40% | 0.057735 | 0.054168 | 0.073706 | 0.085949
D.E=60% | 0.097268 | 0.099014 | 0.118139 | 0.141739

D.E=80% | 0.134736 | 0.131185 | 0.148410 | 0.185813
D.E=20% | -0.009964 | -0.005453 | 0.013446 | -0.000536

D.E=40% | 0.007572 { 0.010855 | 0.028760 | 0.022307

200 IVS=350% D.E=60% | 0.018122 | 0.017151 | 0.034493 | 0.035654
D.E=80% | 0.033634 | 0.031535 | 0.047156 | 0.055484
D.E=20% | -0.023375 | -0.009541 | 0.005307 | -0.011780
IVS=75% D.E.=40% | -0.018830 | -0.007538 | 0.007453 | -0.007048
D.E=60% | -0.013016 [ 0.000585 | 0.015349 | 0.001963

D.E=80% | -0.010187 | 0.000460 | 0.016356 | 0.004819

D.E=20% | 0.006895 | 0.007784 | 0.028306 | 0.024592

IVS=25% D.E=40% | 0.044298 | 0.042601 | 0.061166 | 0.070489
D.E=60% | 0.078955 | 0.068639 | 0.087549 | 0.110249

D.E=80% | 0.105269 | 0.100516 | 0.117594 | 0.153508
D.E.=20% | -0.009586 | -0.009058 | 0.010180 | -0.003788

D.E=40% | 0.001191 | 0.001824 | 0.019751 | 0.011339

250 1VS=50% D.E=60% | 0.012996 | 0.014494 | 0.032058 | 0.028657
D.E=80% | 0.022240 | 0.019940 | 0.036377 | 0.040216

D.E=20% | -0.021903 | -0.008891 | 0.003629 | -0.011515
IVS= 75% D.E=40% | -0.019799 | -0.006214 | 0.006700 | -0.007259
D.E=60% | -0.014519 | -0.005079 | 0.008738 | -0.003586

D.E=80% | -0.012958 | -0.000181 | 0.013685 | 0.001848
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4.4.1 Varying Endogeneity and Samples Against Different IVS

This section will provide the results of biasedness for varied endogeneity and sample
size in case of an over-determined model. Figure 4-16 exhibits the biasedness of the
estimators for weak [VS and varying degree of endogeneity and sample. On the vertical
axis, biasedness is measured while the horizontal axis represents sample sizes. As we
increased the endogeneity, the biasedness of all estimators increased. Similarly, when
the sample size increased, the biasedness of all estimators decreased and converged to
its true parameter value. Figure 4-16 also revealed that MEL and MEEL have low
biasedness than GMM and CROCC in all settings. GMM produced the highest

biasedness, especially for small sample sizes and low degree of endogeneity.

Figure 4-16: Biasedness with Weak IVS in Overdetermined Model
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Figure 4-17 reports the biasedness of the estimators when [VS is moderate, and the
degree of endogeneity and sample size varies. The increment of the degree of
endogeneity from low to very high degree intensifies the biasedness of all estimators,
however with the increase in the sample sizes, they presented better performances.

Overall, MEL and MEEL estimators are showing lower bias than GMM and CROCC.

Figure 4-17: Biasedness with Moderate IVS in Overdetermined Model
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Figure 4-18 explores the biasedness of estimators for strong IVS and varied
endogeneity and sample sizes. Results showed that with the increase in the degree of
endogeneity, the biasedness of all the estimators also increase. On the other side, all the
estimators improved their performance as we increased the sample size. However, the
GMM has the highest biasedness than all three estimators in all combinations. This

analysis also confirmed the superiority of MEL and MEEL over GMM and CROCC.
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Figure 4-18; Biasedness with Strong IVS in Overdetermined Model
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442 Varying IVS and Samples against Different Degrees of
Endogeneity

Figure 4-19 analyses the biasedness from MCS for a low degree of endogeneity and
varied TVS and sample sizes. In this analysis, the biasedness of GMM is found higher
than all other information-theoretic estimators, especially for small sample size and

weak IVS. With the increase of IVS, biasedness of all the estimators is reduced.

Similarly, the biasedness of all estimators decreases for large sample sizes.
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Figure 4-19: Biasedness with Low Degree of Endogeneity in Overdetermined

Model
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Figure 4-20 provides the detail of biasedness of MCS analysis for varied IVS and
samples when the degree of endogencity is low. In this investigation, the GMM
estimator produced more biasedness comparatively for the sample of “25” in all the
combinations. Conversely, MEL and MEEL generated the lowest biasedness. Similar
to previous results, all the biasedness of all the estimators reduced for large samples

and strong IVS.
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Figure 4-20: Biasedness with Moderate Degree of Endogencity in

Overdetermined Model
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Similarly, Figure 4-21 evaluates the biasedness of estimators when the degree of
endogeneity is high. The results showed improved performances of all the estimators
for the large sample. Likewise, the biasedness of the estimators reduced when IVS is
strong, especially in the case of MEEL. Results further revealed that MEL and MEEL
produce less biasedness than GMM and CROCC in all the combinations while GMM

performed worst in the case of the small sample and weak IVS.
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Figure 4-21: Biasedness with High Degree of Endogeneity in Overdetermined

Model
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At last, the graphs in Figure 4-22 are provided to analyse the biasedness of the
estimators for a very high degree of endogeneity. Results again concluded that the
biasedness of the estimators reduces as the sample size increases. Similar to previous
results, the performance of all the estimators increase for strong IVS as compared to
weak IVS. However, overall results again confirmed the superiority of MEL and MEEL

over GMM and CROCC.
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Figure 4-22: Biasedness with Very High Degree of Endogencity in
Overdetermined Model
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Figure 4-23: Summary of Biasedness in Overdetermined Model

o [ || e
96
=]
241 :
=N
5
3.2 N
m "
301 M %
06 .
o
5.4 'gl
g
921 ée
9 | M .
oo % .
FEYS

m I -
. -
. o
: \\\@& ?
" &
) Xﬁ'ﬂ:.;—. 5
w

301 M
081
S
‘:‘.4' E
\ %.
8.21 @
®

3.0 "%ﬁ =

Samples_size

(Estimator)
-+ CROCC
- GuM
-+ MEFL
+ MEL



4.4.3 Summary of Results for Biasedness in Overdetermined Model

Figure 4-23 provides the summary results of the biasedness of all the estimators across
different samples, degrees of endogeneity, and IVS in the case of the over-determined
model. The figure provides some useful general conclusions about estimators’
performances. As a whole, the performances of all the estimators increase for a large
sample. It indicates that all the estimators are consistent. Similarly, all the estimators
produced less biasedness when a strong instrumental variable is used as compared to
weak IVS. Conversely, as the degree of endogeneity increases, the biasedness of the
estimators also increases comparatively. Table 4-7 is comparing the four estimators for

each scenario. The table is providing two useful implications for the results.

First, MEEL is found better estimator in the case of a large sample (200 & 250)
irrespective of degrees of endogeneity and instrumental variable strengths. Second,
MEL and MEEL are better estimators than CROCC and GMM for weak and moderate
instrumental variable strengths. It is notable that in the case of the exactly determined
model, CROCC was found better estimators than MEL and MEEL for a very high
degree of endogeneity. However, in the case of the overdetermined model, MEL and
MEEL are performing better. We noticed that in exactly determined models, MEL and
MEEL produced negative biasedness while their optimal convex combination
(CROCC) produced positive but close to zero biasedness. Conversely, in the case of an
overdetermined model where four instrumental variables are used to estimate one
endogenous variable, MEL and MEEL produced positive biasedness. As a result, their
optimal convex combination went away from their individual positive biasedness that
increases the biasedness of CROCC comparatively. Hence, it is concluded that MEL

and MEEL produce less bias relatively in the presence of endogeneity.
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Table 4-7: Biasedness and Practical Implications for Overdetermined Model

Weak Instruments

Moderate Instruments

Strong Instruments

Low
Degree

IMEEL <MEL < CROCC < GMM)®
[MEL < MEEL < CROCC < GMM]®
[MEL < MEEL < CROCC < GMM]'™
[MEEL < MEL < CROCC < GMM]'™
[MEEL < MEL < CROCC < {iMM] ™
[MEL <MEEL < CROCC < GMM]™

{MEEL < MEL < CROCC = GMM)*
[MEL < MEEL < CROCC < GMM]*
[MEEL < MEL < CROCC < GMM]'™
[MEEL < MEL <CROCC < GMM]™
[MEL < MEEL < CROCC < GMMJ™
{MEL < MEEL < CROCC < GMM]*

[CROCC < MEL < MEEL < GMM]J®
[CROCC < MEL < MEEL < GMM]¥
[GMM < CROCC < MEEL < MEL]*™
[GMM < CROCC < MEEL <MEL]"*
[GMM < MEEL < CROCC < MEL]*
[GMM < MEEL < CROCC < MEL ]

Moderate
Degree

[MEL < MEEL < CROCC < GMMJ®
[MEL <MEEL < GMM < CROCC]®
[MEEL < MEL < GMM < CROCC]"™
[MEEL < MEL < GMM < CROCC]**
IMEEL <MEL < GMM < CROCC]**
[MEEL < MEL < GMM < CROCC]*

[MEEL < MEL < CROCC < GMM)®
[MEEL < MEL <« GMM < CROCC)*
[MEL < MEEL < GMM <CROCC]"™
[MEL < MEEL < CROCC < GMM]'™
[MEL <MEEL < CROCC < GMM]™
MEL < MEEL < CROCC < GMM]™

High
Degree

[MEEL < MEL < CROCC < GMMJ®
{MEL < MEEL < GMM < CROCC]*
[MEL < MEEL < GMM < CROCC]™
[MEEL <MEL < GMM < CROCC]**
[MEEL < MEL < GMM < CROCC]™*
[MEEL < MEL < GMM < CROCC]*

[MEL < MEEL < GMM < CROCC]®
[MEL <MEEL < GMM <CROCC[*
[MEL < MEEL < GMM < CROCC]™
[MEL <MEEL < GMM < CROCC]'™
[MEEL < MEL < GMM <CROCC]™
[MEL <MEEL < CROCC < CMM[™

MEEL < CROCC < GMM < MEL ,

[MEEL < MEL < CROCC < GMMJ®
[MEL <« MEEL < CROCC < GMM]™
[MEL < MEEL < CROCC < GMM]™
[CROCC < MEEL < MEL < GhM|"™®
[CROCC <MEEL < GMM < MELJ™

[MEEL < CROCC < MEL < GMM]®
[MEEL < MEL < CROCC < GMM[*®
[MEL < MEEL < CROCC < GMM['™
[MEEL < MEL <CROCC < GMM]"™
[MEEL < MEL < CROCC < GMMP™
[MEEL < CROCC < GMM <MEL]™_|

Very High
Degree

[MEEL < MEL < CROCC < GMM]P®
[MEL < MEEL < GMM < CROCC]®

[MEL < MEEL < GMM < CROCC]*™
[MEL <MEEL < GMM < CROCC]**
|MEEL < MEL < GMM < CROCCP*

[MEL < MEEL < GMM < CROCC]®
[MEL < MEEL < GMM < CROCC]®
[MEL < MEEL < GMM < CROCC]'™
[MEL < MEEL < GMM < CROCC}*
[MEEL <MEL < GMM < CROCC)™

[MEEL < MEL < GMM < CROCCP*

[MEEL < MEL < GMM < CROCCY™*

(MEEL < CROCC < GMM < MEL]®
[MEEL < CROCC < GMM < MEL]*
[MEL < MEEL < CROCC < GMM]'™
[MEL < MEEL <CROCC < GMM]™*
{MEEL < CROCC < MEL < GMM[**
[MEEL < CROCC < MEL < GMMJ**

The table is summarising the results of MCS (5000 simulations) for all the possible combinations of the degree of
endogenceity, strength of instrumental variables, and finite sample sizes. The most left column is representing the
different degrees of endogeneity while the first row is showing different strengths of instrumental variables. In the
cells, all the estimators are ranked according to their biasedness for each sample size (as given in superscript).

4.5 MSE of MCS for Overdetermined Model

This section will explore the results for MSE of MCS analysis in the case of an

overdetermined model. Similar to previous sections, results are presented with respect

to varying samples, IVS, and degree of endogeneity.
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Table 4-8: Mean Square Error in Overdetermined Model

Samples
size

Instrumental
variables
strength

(Ivs)

Degree of
Endogeneity
(D.E)

Estimators

MEL

MEEL GMM

CROCC

25

IVS=25%

D.E.=20%

0.384619

0.565216 | 0.396791

0.142165

D.E.= 40%

0.420759

0.708238 | 0.393339

0.195545

D.E.=60%

0.481954

0.885732 | 0.444742

0.287124

D.E.= 80%

0.545038

0.538630 | 0.519353

0.414447

IVS=50%

D.E.=20%

0.279600

0.250216 { 0.219084

0.093487

D.E.=40%

0.262562

0.295217 | 0.243078

0.135700

D.E.= 60%

0.252804

0.296491 | 0.257719

0.151019

D.E.= 80%

0.295358

0.354622 | 0.302199

0.226938

IVS=175%

D.E.=20%

0.100485

0.140272 | 0.090139

0.048587

D.E.=40%

0.101984

0.185907 | 0.097544

0.052662

D.E.=60%

0.119218

0.186806 | 0.099543

0.055584

D.E.= 80%

0.103223

0.184966 | 0.098453

0.069119

50

IVS=25%

D.E.=20%

0.285730

0.298636 | 0.268605

0.100122

D.E=40%

0.292070

0.285157 | 0.295041

0.132308

D.E.= 60%

0.321175

0.338128 | 0.337904

0.197253

D.E.= 80%

0.349902

0.373502 | 0.374043

0.290284

IVS=50%

D.E.=20%

0.117578

0.129706 | 0.130162

0.055653

D.E.= 40%

0.126849

0.140433 | 0.138831

0.062960

D.E.= 60%

0.124191

0.137880 | 0.136634

0.076562

D.E.= 80%

0.134618

0.129555 | 0.126966

0.097222

IVS=75%

D.E.=20%

0.044570

0.047386 | 0.043746

0.022831

D.E=40%

0.043417

0.046137 | 0.043572

0.023322

D.E.= 60%

0.041735

0.048471 | 0.045646

0.025534

D.E.=80%

0.044841

0.045488 | 0.044463

0.025519

100

IVS=25%

D.E.=20%

0.173550

0.177550 | 0.181350

0.067122

D.E.=40%

0.173680

0.165970 | 0.171090

0.081123

D.E.=60%

0.176090

0.186210 | 0.193750

0.113820

D.E.= 80%

0.193930

0.200370 | 0.203970

0.155950

IVS=50%

D.E.=20%

0.063308

0.063903 | 0.063975

0.030024

D.E.=40%

0.062511

0.065364 | 0.065144

0.032317

D.E.= 60%

0.060711

0.066518 | 0.067020

0.036067

D.E.= 80%

0.059598

0.066392 | 0.066304

0.040417

IVS=75%

D.E.=20%

0.020956

0.021839 | 0.021053

0.011646

D.E.=40%

0.021989

0.022472 | 0.021808

0.012315

D.E.= 60%

0.021311

0.021142 | 0.020850

0.011333

D.E.= 80%

0.020368

0.021209 | 0.020592

0.011940
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Samples
size

Instrumental
variables
strength
(IVS)

Degree of
Endogeneity
(D.E)

Estimators

MEL

MEEL GMM

CROCC

150

IVS=25%

D.E=20%

0.120202

0.116633 | 0.120753

0.049170

D.E.=40%

0.113844

0.123333 [ 0.126852

0.057323

D.E.= 60%

0.118662

0.119804 | 0.123769

0.072846

D.E.= 80%

0.117712

0.130283 | 0.133029

0.094864

IVS=50%

D.E.=20%

0.039606

0.042295 | 0.042621

0.020605

D.E.= 40%

0.039906

0.041364 | 0.041822

0.021531

D.E.= 60%

0.039657

0.041460 | 0.041644

0.022505

D.E.=80%

0.038199

0.042712 | 0.042864

0.024914

IVS=175%

D.E.=20%

0.014087

0.014187 | 0.013763

0.007789

D.E.= 40%

0.013310

0.014556 | 0.014301

0.007627

D.E.= 60%

0.013522

0.014159 | 0.013961

0.007562

D.E=80%

0.013300

0.014559 | 0.014657

0.007570

200

IVS=25%

D.E.=20%

0.090858

0.087821 | 0.090059

0.0395088

D.E=40%

0.093598

0.094068 | 0.097319

0.044515

D.E.= 60%

0.094557

0.089119 | 0.092539

0.054335

D.E.= 80%

0.087001

0.092732 | 0.096485

0.063819

IVS=50%

D.E.=20%

0.031710

0.030247 | 0.030654

0.015889

D.E.=40%

0.029372

0.030617 | 0.031037

0.015863

D.E.= 60%

0.029497

0.030958 | 0.030976

0.016255

D.E.= 80%

0.028220

0.033044 | 0.033058

0.018259

IVS=175%

D.E.=20%

0.010414

0.010794 | 0.010554

0.005790

D.E.= 40%

0.010625

0.010793 | 0.010566

0.005750

D.E.= 60%

0.010535

0.010944 | 0.010531

0.005957

D.E.= 80%

0.010220

0.010696 | 0.010532

0.005580

250

IVS=25%

D.E.=20%

0.074604

0.074094 { 0.076236

0.032360

D.E.=40%

0.080767

0.073081 | 0.075773

0.036704

D.E.= 60%

0.070883

0.072105 { 0.075433

0.040152

D.E.= 80%

0.075599

0.076733 | 0.079593

0.048716

IVS=50%

D.E.=20%

0.023952

0.025753 { 0.025833

0.013589

D.E.= 40%

0.023861

0.023784 | 0.023779

0.012581

D.E.= 60%

0.023663

0.024933 | 0.025135

0.013141

D.E.= 80%

0.023232

0.025222 | 0.025413

0.013391

IVS=175%

D.E.=20%

0.008309

0.008761 | 0.008372

0.004967

D.E.=40%

0.008704

0.008928 | 0.008516

0.005144

D.E.= 60%

0.007929

0.008789 { 0.008400

0.004771

D.E.= 80%

0.008475

0.008778 | 0.008470

0.004769
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4.5.1 Varying Endogeneity and Samples Against Different IVS

Figure 4-24 presents the MSE for varied endogeneity and samples when IVS is weak.
Results are showing that as the sample size increases, the MSE of all the estimators
decreases. However, the graphs are clearly showing that CROCC produced least MSE
regardless of the sample size, IVS, or degree of endogeneity. For a small sample size,

MEEL performed worst and produced the highest MSE.

Figure 4-24: MSE for Weak IVS in Overdetermined Model
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Figure 4-25 represents the graphs of MSE of estimators for moderate IVS in the
overdetermined model. Results are showing that CROCC is performing best in all the
combinations. However, the MSE of all the estimators reduces with the increase in
sample size. MEEL also performed worst when the degree of endogeneity is 40% or

above.
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Figure 4-25;: MSE for Moderate IVS in Overdetermined Model

T L | e e
03
024
014
Estimator
- CROCC
w00
% - GMM
- MEEL
03 -+ MEL
|
GZ}
01
00

50
00}
50
0
150
2001
2560 J

g g & 3
2]
Samples_size

Similarly, Figure 4-26 explores the results of MSE for varied endogeneity and sample -
sizes when IVS is strong. This analysis exhibited that the MSE of CROCC is less than
the MEL, MEEL, and GMM estimators. As the degree of endogeneity increases, the
MSE of all estimators increased when the sample is small. Conversely, the MSE
decreased as the sample size increases. Overall, CROCC performed best while MEEL

produced more MSE, especially for a small sample.
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Figure 4-26: MSE for Strong IVS in Overdetermined Model
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"

4.5.2 Varying IVS and Sample Sizes Against Different Degrees of

Endogeneity
Figure 4-27 exhibited the graphs about MSE when the degree of endogeneity is low in
an overdetermined model. The graphs are clearly showing that CROCC is the best
estimator comparatively regardless of the variations in IVS, degree of endogeneity, and
sample sizes, However, the MSE of all the estimators decreases as the sample size

increases, and TVS becomes strong.

Figure 4-27: MSE for Low Degree of Endogeneity in Overdetermined Model
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Figure 4-28 fix the degree of endogeneity at a moderate level and show MSE for varied
IVS and samples. Resuits showed that as the IVS changes from weak to strong, the
MSE decreased of all the parameters. Similar to previous results, MSE also reduced
with the increase in sample size in this context, Similarly, for all the combinations,

CROCC is found the best option comparatively,
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Figure 4-28; MSE for Moderate Degree of Endogeneity in Overdetermined

Model
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In Figure 4-29, MSE of estimators at a high degree of endogeneity is presented. The

graphs are depicting CROCC as the best estimator comparatively in terms of MSE. The

MEEL estimator produced higher MSE for the small sample, but for a larger sample

size, its MSE documented similar results of MEL and GMM. On the other side, the

MSE of all estimators decreased as we have increased the strength of instruments,

Similarly, with the increase in sample size, all the estimators improved their MSE.
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Figure 4-29: MSE for High Degree of Endogeneity in Overdetermined Model
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At last, Figure 4-30 is showing the MSE of all estimators at a very high degree of
endogeneity. This investigation also reveals that the MSE of CROCC is less than the
MEL, MEEL, and GMM. In the samples of “25,” the MEEL estimator has a higher
MSE than the MEL and GMM estimator, On the other hand, the MSE of all estimators

has decreased as we increased the sample size.

101



Figure 4-30: MSE for Very High Degree of Endogeneity in Overdetermined
Maodel
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4.5.3 Summary of Results for MSE in Overdetermined Model

In Figure 4-31, the MSE of all the estimators is summarized across different sample
sizes, IVS, and endogeneity. All the estimators improved their MSE as the strength of
the instrumental variable increases. Similarly, as the sample size increases, the MSE of
MEL, MEEL, and GMM estimators showed performances close to each other. In most
of the cases, the MSE of all the estimators increased with an increase in the degree of

endogeneity from low to very high.
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Table 4-9 further compares the efficiency of four estimators. Results showed that
CROCC is found the most efficient estimator as compared to other estimators in all the
combinations. Conversely, GMM is found the least efficient estimator in case of low
and moderate strength of instrument variables in most cases. However, for strong
instrument variable strength, MEEL is the least efficient estimator. Therefore, it is
concluded that CROCC is the most efficient estimator in both exactly determined and

overdetermined models having the problem of endogeneity.
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Figure 4-31: Summary of MSE in Overdetermined Model
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Table 4-9: MSE and Practical Implications for Overdetermined Model

Weak Instruments Moderate Instruments Strong Instruments

[CROCC <MEL < GMM < MEEL]® | [CROCC < GMM < MEEL <MELJ® | [CROCC < GMM < MEEL < MEL]J®

[CROCC < GMM <MEL <MEEL]® | [CROCC < MEL < MEEL < GMM]® | [CROCC < GMM < MEEL < MELJ*
Low [CROCC <MEL <MEEL < GMM]® | [CROCC < MEL < MEEL < GMM]* | [CROCC <MEL < GMM < MEEL)'*
Degree | [CROCC<MEL <MEEL < GMM)™ | [CROCC <MEL < MEEL < GMM]™ | [CROCC <MEL < GMM < MEEL}™
[CROCC <MEEL < GMM <MELJ® | [CROCC < MEL < MEEL < GMM]® | [CROCC < MEL < GMM < MEEL|™
[CROCC <MEEL < GMM < MEL]™ | [CROCC <MEL <MEEL < GMM]* | [CROCC <MEL < GMM < MEEL|*

(CROCC< GOMM < MEL < MEEL]® | [CROCC< GMM <MEL < MEELJ® | [CROCC< GMM < MEL < MEEL ™

(CROCC <MEEL < MEL < GMM)® | [CROCC < MEL < MEEL < GMMF® | [CROCC <MEL < GMM < MEEL]*
Moderate | [CROCC <MEEL <MEL < GMM]"™ | [CROCC < MEL < MEEL < GMM]'"™ | [CROCC <MEL < GMM < MEEL]"
Degree | [CROCC<MEL <MEEL < GMM]™ | [CROCC <MEL <MEEL < GMM]'* | [CROCC <MEL < GMM < MEFL |
[CROCC < MEL <MEEL < GMM]™ | [CROCC < MEL < MEEL < GMM]™ | [CROCC < MEL < GMM < MEEL]*
[CROCC < MEEL < MEL < GMM]®® | [CROCC < MEL < MEEL < GMM[® | [CROCC < MEL < GMM < MEEL]**

[CROCC < GMM < MEL < MEEL]® | [CROCC <MEL< GMM <MEEL|® | [CROCC < GMM < MEL < MEEL)®

) [CROCC <MEL < GMM < MEEL]* | [CROCC < MEL < MEEL < GMMJ® | [CROCC <MEL < GMM < MEEL]*
High [CROCC < MEL < MEEL < GMM]™ | [CROCC < MEL < MEEL < GMM]'® | (CROCC < MEL < GMM < MEEL]"
Degree | [CROCC<MEL <MEEL < GMM]"* | [CROCC < MEL <MEEL < GMM]"* | [CROCC < MEL < GMM < MEEL]"*
[CROCC <MEEL < GMM <MELJ™ | [CROCC < MEL < MEEL < GMMJ™ | [CROCC <MEL < GMM < MEEL]™
[CROCC <MEEL < MEL < GMM]* | [CROCC < MEL < MEEL < GMM[™ | [CROCC <MEL < GMM < MEELJ™

[CROCC < MEL <MEEL < GMMP® | [CROCC <MEL < GMM <MEEL]® | [CROCC < GMM < MEL < MEELJ®

) [CROCC < MEL <MEEL < GMM]® | [CROCC < GMM <MEEL <MEL]* | [CROCC < GMM < MEL < MEEL]*
Very High | [cROCC < MEL <MEEL < GMM]"™ | [CROCC <MEL < MEEL < GMM]* | [CROCC < MEL < MEEL < GMM}'®
Degree | [CROCC <MEL <MEEL < GMM]™ | [CROCC <MEL <MEEL < GMMJ* | [CROCC <MEL < MEEL < GMM[*®
[CROCC <MEL < MEEL < GMM™ | [CROCC < MEL < MEEL < GMMJ™ | [CROCC < MEL < MEEL < GMM]™
[CROCC < MEL < MEEL < GMMP®® | [CROCC < MEL < MEEL < GMM]™ | [CROCC < MEL < MEEL < GMM[™

The wable is summarising the results of MCS (5000 simulations) for all the possible combinations of the degree of
endogeneity, strength of instrumental variables, and finite sample sizes. The most left column is representing the
different degrees of endogencity while the first row is showing different strengths of instrumental variables. In the
cells, all the estimators are ranked according to their MSE for each sample size (as given in superscript).

106



4.6 Comparative Analysis of Convex Combinations of Cressie and

Read Information Theoretic Approach

Previous results have explored that CROCC is better than GMM and even other
individual information-theoretic estimators in many cases. CROCC is based on Cressie
and Read (CR) information-theoretic approach that optimizes the convex combination,
as suggested by (Judge & Mittelhammer, 2011). However, the CROCC estimator has
some limitations, as we have discussed in the previous section that may influence the
performance of the estimator. For this purpose, we introduced another estimator that
estimates Cressie and Read Arbitrary Convex Combinations (CRACC) from MEL and
MEEL. This dissertation compares the finite sample properties of convex combinations
of CROCC with CRACC. The descriptions of CROCC and CRACC are given as below.

The CROCC uses the following estimation method
B(@) = @B (MEL) + (1 — @) B (MEEL)
Where ‘@’ is estimated as follow

tr (cov ( B(MEL))
tr (cov ( E(MEL)) + tr (cov ( B(MEEL))

a=

While CRACC uses the following estimation method
B(a) = aB (MEL) + (1 —a)P (MEEL)

Where ‘a’ is an arbitrary value, as shown in Table 4-10, this dissertation proposed three
arbitrary convex combinations (i.e., 25%, 50%, and 75%) for the CR method. To better
understand the results, three arbitrary combinations are labeled as CRACC1 (for the

value of 25%), CRACC2 (for the value of 50%), and CRACCS3 (for the value of 75%).

107



The subsequent part will provide the comparison of biasedness and MSE on different
sample sizes using the “5000” Monte Carlo simulation (MCS) analysis for CROCC and
three proposed arbitrary combinations of CRACC. Similar to previous sections, the

performances of CROCC and CRACC is analysed for different IVS and degree of

endogeneity.
Table 4-10: Arbitrary Values Applied in CRACC
Arbitrary value Arbitrary Convex Combination
a=25% CRACC1 = 0.25 B (MEL) + (1 —0.25) B (MEEL)
a=50% CRACC2 = 0.50 B (MEL) + (1 —0.50) B (MEEL)
a=75% CRACC3 = 0.75 B (MEL) + (1 —0.75) B (MEEL)

4.6.1 Biasedness of CROCC and CRACC in Exactly Determined

Model
Table 4-11 is comparing the biasedness of CROCC and three arbitrary CRACC

estimators having a different level of instrumental variable strengths and degree of
endogeneity of different sample sizes. CROCC is found better estimators in small
samples (25 & 50), especially for the high degree of endogeneity, moderate
instrumental variable, and strong instrumental variable. Conversely, for large samples,
CRACC performed better in most cases. Therefore, the convex combination of CROCC
needs to improve in terms of biasedness to estimate the regression model having an

endogeneity problem with large samples.
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Table 4-11: Biasedness of CROCC and CRACC in Exactly Determined Model

Weak Instruments Moderate Instruments Strong Instruments
[CROCC< CRACC1,.2,3125 [CROCC< CRACC1,2,3125 [CROCC< CRACC1,2,3]25
[CRACC 1< CROCC< CRACC2,3]50 [CROCC< CRACC1.2,3]50 [CROCC< CRACC1.2,3]50
Low | [CRACCI<CROCC<CRACC23]100 | [CRACCI<CROCC<CRACC23]100 | [CROCC< CRACCI.2.3]100
Degree | [CRACCI<CROCC<CRACC23]I50 | [CRACCI<CROCC< CRACC23]1s0 | [CRACC2< CROCCS CRACCI3]150
[CRACC1< CROCC< CRACC2.3]200 | [CROCC< CRACCI,2,3]200 [CRACC2< CROCC< CRACC1.3]200
[CROCC< CRACC1,2,31250 [CRACC2< CROCC< CRACC1,3]250 | [CRACC2< CROCC< CRACC1.3]250
[CROCC< CRACCI 23125 [CROCC< CRACCI,23125
[CROCC< CRACC1,2,3125 [CROCC< CRACC1.2.3]50 [CROCC< CRACCI.2.3]50
[CRACC1< CROCC< CRACC2,3]50
Modera | [Raccr cRACCT 251100 [CROCC< CRACC1.2.3]100 [CRACC 1< CROCC< CRACC2,3]100
e eROCo< R Acc1’2'3%1 ® [CRACC1< CROCC< CRACC2,3]150 | [CRACCI<CRACC2<CROCC<
ORACC < CROCC- omacCa 00 | [CRACCISCRACC2<CROCCS CRACC3]150
Degree | Ipacc<CRACCI<CROCOS CRACC3]200 [CRACCI<CRACC2<CROCC<
RACCa %0 [CRACCI<CRACC2<CROCC< CRACC3]200
CRACC3]250 [CROCC< CRACC1,2:3]250
[CROCC< CRACC1,23125 [CROCC< CRACC1.2.3]25
[CROCC< CRACC1.2.3]50 [CROCC< CRACCI,2 3125 [CROCC< CRACC1.2.3]50
High | [CROCC<CRACCI23]100 L ROCC< CRACCI 22100 [CROCC< CRACC1.2,3]100
[CROCC< CRACC1.2.3]150 2 [CRACC 1< CROCC< CRACC2,3]150
Degree | [cROCC< CRACC1.2,3]200 {ggggg;cggggclfégig 231200 [CRACC1< CROCC< CRACC2,3]200
[CRACC1<CRACC2<CROCC< [CRACC1< CROCC< CRAGC 31280 | [CRACCI<CRACC2<CROCCS
CRACC3]250 . CRACC3]250
[CROCC< CRACC1,2,3]25 [CROCC< CRACC1,2,3]25 [CROCC< CRACC1,2,3]25
Very | [CROCC<CRACC1.23)50 [CROCC< CRACC1.2,3]50 [CROCC< CRACC1,2,3]50
) [CROCC< CRACC1.2,3]100 [CROCC< CRACC1.2.3]100 [CROCC< CRACC1.2.3]100
High
gh | [crocc< CRACCI 231150 [CROCC< CRACC1.2.3]150 [CROCC< CRACC1.2.3]150
Degree | [CROCC< CRACC1.231200 [CROCC< CRACC1.2.31200 [CROCC< CRACC1.2.31200
[CROCC< CRACC1.2.3]250 [CRACC1< CROCC< CRACC2,3]250 | [CRACC1< CROCC< CRACC2,31250

The table is summarising the results of MCS (5000 simulations) for all the possible combinations of the degree of
endogeneity, strength of instrumental variables, and finite sample sizes. The most left column is representing the different
degrees of endogeneity while the first row is showing different strengths of instrumental variables. In the cells, CROCC
and three arbitrary CRACC estimators are ranked according to their Biasedness for each sample size (as given in’
superscript).

4.6.1 MSE of CROCC and CRACC in Exactly Determined Model

Table 4-12 is comparing the MSE of CROCC and CRACC in the exactly determined
model. Results are clearly showing the least MSE of CROCC in all the combinations
of instrumental variable strengths, degrees of endogeneity, and sample sizes. Therefore,
it can be concluded that CROCC is an efficient estimator in an exactly determined

model.

109



Table 4-12: MSE of CROCC and CRACC in Exactly Determined Model

Weak Instruments Moderate Instruments | Strong Instruments

[CROCC< CRACC) 23] [CROCC< CRACC, 2;]* [CROCC< CRACC, 23]

[CROCC< CRACC;,,5]* [CROCC< CRACC, ;] [CROCC< CRACC 23]

Low [CROCC< CRACC,2,5]' [CROCC< CRACC,1;]'® [CROCC< CRACC,;2;]'™
Degree [CROCC< CRACC; 5] [CROCC< CRACC, ,,]'® [CROCC< CRACC, 2,5]'*
[CROCC< CRACC;23*® [CROCC< CRACC, 2,5]*® [CROCC< CRACC; 23]

[CROCC< CRACC 23] [CROCC< CRACC, 23 [CROCC< CRACC, 23]*

[CROCC< CRACC; 251 [CROCC< CRACC, 1;)* [CROCC< CRACC; 23]

[CROCC< CRACC; 35]* [CROCC< CRACC,]® |CROCC< CRACC15]*

Moderate [CROCC< CRACC;23]'® [CROCC< CRACC,,5]'® [CROCC< CRACC, 3,5}
Degree [CROCC< CRACC; 23] [CROCC< CRACC; 23] [CROCC< CRACC,2;3]"™
[CROCC< CRACC; 13 [CROCC< CRACC,35]*® [CROCC< CRACC, 1]

[CROCC< CRACC; 1] [CROCC< CRACC15]** [CROCC< CRACC,;,5**

[CROCC< CRACC,25]* [CROCC< CRACC) | [CROCC< CRACC,23)*

] [CROCC< CRACC2;5]* [CROCC< CRACC;5]* [CROCC< CRACC; ,,]*
High [CROCC< CRACC; 25" [CROCC< CRACC; 15]'* [CROCC< CRACC;23]'""
Degree [CROCC< CRACC 23] {CROCC< CRACC; 2;3]"* [CROCC< CRACC;,,]'®
[CROCC< CRACC; 3™ [CROCC< CRACC, ;3]*® [CROCC< CRACC; 23]

[CROCC< CRACC; 1,]** [CROCC< CRACC, 25| [CROCC< CRACC, 2%

[CROCC< CRACC;23]* [CROCC< CRACC, ;)" [[CROCC< CRACC,2;]*

) [CROCC< CRACC,5]** [CROCC< CRACC; ;3]® [CROCC< CRACC, 3]*

Very High [CROCC< CRACC; 251" [CROCC< CRACC, 2,5} [CROCC< CRACC;2,5]'®
Degree [CROCC< CRACC;2;]'* [CROCC< CRACC; 2;3]'* [CROCC< CRACC;2,]'*
[CROCC< CRACC, 2] [CROCC< CRACC;23]** [CROCC< CRACC.2 3}

|CROCC< CRACC; 53] [CROCC< CRACC;23]** [CROCC< CRACC, 3]

The table is summarising the results of MCS (5000 simulations) for all the possible combinations of
the degree of endogeneity, strength of instrumental variables, and finite sample sizes. The most left
column is representing the different degrees of endogeneity while the first row is showing different
strengths of instrumental variables. In the cells, CROCC and three arbitrary CRACC estimators are

ranked according to their MSE for each sample size (as given in superscript).

4.6.2 Biasedness of CROCC and CRACC in Overdetermined Model

Therefore, it is concluded that, in general, CROCC produces more biasedness than
CRACC. Table 4-13 compares the biasedness of CROCC and CRACC for all the
combinations of IVS, endogeneity, and sample sizes in an overdetermined model
having four instruments. Results are showing that CRACC exhibited the least
biasedness than CROCC when the weak or moderate instrumental variable is used.
However, for a strong instrumental variable, the CROCC performed better in some
cases. Therefore, it is concluded that, in general, CROCC produces more biasedness

than CRACC.
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Table 4-13: Biasedness of CROCC and CRACC in Overdetermined Model

Weak Instruments Moderate Instruments Strong Instruments

[CRACC, 5 < CROCC] [CRACC, 3 < CROCCJ* {CROCC < CRACC 3]

[CRACC, 35 < CROCC]J® [CRACC 23 < CROCCJ® [CROCC < CRACC}23]®

LOW [CRACC,,3 < CROCC] 100 [CRACC 23 < CROCC]IO0 [CROCC < CRACC[;,;]IOO
Degree [CRACC),3<CROCC]'**® | [CRACC;<CRACC, < CROCC< CRACC,] [CROCC < CRACC, 3]
[CRACC, 23 < CROCC]®® [CROCC < CRACC, 251 [CROCC < CRACC; 3

[CRACC, 23 < CROCC]* [CROCC < CRACC; ] [CROCC < CRACC, ]

[CRACC; 5 < CROCC]? [CRACC,2 < CROCC]? [CRACC; 3 < CROCC]®

[CRACC, 5 < CROCC]® [CRACC} 3 < CROCC]*® [CRACC, < CROCC]®

Moderate | [CRACC,,:<CROCC]® [CRACC,2; < CROCC]'® [CROCC < CRACC23]'®
Degree [CRACC; 25 < CROCC]'* [CRACC,,; < CROCC]'*° [CROCC < CRACC, 23]
[CRACCL;‘J < CROCC]ZOO [CRACC],Z‘J < CROCC]ZOO [CROCC < CRACC];J]ZOO

[CRACC,3 < CROCC]*® [CRACC,,3 < CROCCP* [CROCC < CRACC, 5]

[CRACC,2; < CROCC]?® [CRACC; 5 < CROCCI® [CRACC;23 < CROCCT?

] [CRACC,,; < CROCC]® [CRACC,, 3 < CROCC]® [CRACC; 23 < CROCC]*®
High [CRACC; 25 < CROCC]'™® [CRACC, 3 < CROCC}'™ [CRACC, 23 < CROCC]'™
Degree [CRACC,,; < CROCC]'® [CRACC, 3 < CROCC]"? [CRACC,,; < CROCC]™*?
[CRACC,2; < CROCC]*™® [CRACC,,; < CROCC]™ [CROCC < CRACC, 53]

[CRACC, 23 < CROCC]* [CRACC,,3 < CROCC]*® [CROCC < CRACC ]

[CRACC,,5 < CROCCT? [CRACC, 3 < CROCCP* [CRACC,) 23 < CROCC]*

. [CRACC)23< CROCC]SO [CRACC, 3 < CROCC]® [CRACC 3 < CROCC]50

Very High | [cracc,,, < cRocC]™ [CRACC, ;, < CROCC]'® [CRACC, < CROCC]®
Degree [CRACC,,; < CROCC]" [CRACC,, 3 < CROCC]'™® [CRACC, 3 < CROCC]'**

[CRACC;.5 < CROCC]*® [CRACC,,3 < CROCC]® [CRACC, < CROCC< CRACC, ;™
[CRACC, 23 < CROCCP* [CRACC,,; < CROCC]*® [CROCC < CRACC 2,

The table is summarising the results of MCS (5000 simulations) for all the possible combinations of the degree
of endogeneity, strength of instrumental variables, and finite sample sizes. The most left column is representing
the different degrees of endogeneity while the first row is showing different strengths of instrumental variables.
In the cells, all the estimators are ranked according to their Biasedness for each sample size (as given in

superscript).

MSE of CROCC and CRACC in Overdetermined Model in Table 4-14 compares the

MSE of CROCC and CRACC in the overdetermined model. It is found that CROCC is

an efficient estimator for very small samples (25) in all the combinations. Similarly,

CROCC is an efficient estimator than CROCC when the instrument variable is weak,

and the degree of endogeneity is low or moderate. However, in general, CRACC

performed better than CROCC for a moderate degree of endogeneity, a high degree of

endogeneity, and strong instrumental variables.
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Table 4-14: MSE of CROCC and CRACC in Overdetermined Model

Weak Instruments Moderate Instruments Strong Instruments
[CROCC <CRACC,;; J* [CROCC <CRACC,; ]* [CROCC < CRACC, ;3 ¥
[CROCC <CRACC, 23] [CROCC < CRACC,3)* [CRACC; < CROCC <CRACC;3]*®
Low [CROCC < CRACC,23]'® [CROCC <CRACC;,3]'® [CRACC; < CROCC < CRACC,;]'®
Degree | 1605 SChncenpe RACC ZCROC “craceLpe | cxace,<croce “crncc e
<CRACC)2;3 2 < < 13 2< < 13
[CROCC <CRACC, 3% [CRACC; <CROCC < CRACC,3]*® | [CRACC; <CROCC < CRACC,;J*®
[CROCC <CRACC,,; [ [CROCC < CRACC,,; [CROCC < CRACC,; | :
[CROCC < CRACCLz,]]so [CROCC < CRACC];,J]SO [CRACC; < CROCC < CRACCLJJSO i
Moderate | [CROCC <CRACC,,;]'® [CROCC <CRACC,,3]'"® [CRACC, <CROCC <CRACC;;]' |
Degree [CROCC < CRACC,,3]"® [CRACC; < CROCC <CRACC,3]'"® | [CRACC;<CROCC <CRACC,;]'®
[CROCC <CRACC,,3]*® [CRACC; < CROCC <CRACC3]*® | [CRACC,<CROCC < CRACC,;]*®
[CROCC < CRACC, ;3™ [CRACC, < CROCC <CRACC,;]*® | [CRACC,<CROCC <CRACC,;**
[CROCC <CRACC,,; B [CROCC <CRACC,,; J? [CROCC <CRACC,,;*
) [CROCC <CRACC,,3]* [CRACC; < CROCC <CRACC,3]® | [CRACC,<CROCC <CRACC,;]*
High [CRACC; < CROCC < CRACC,;]'® [CRACC, < CROCC <CRACC,;]' | [CRACC,<CROCC < CRACC;;]'®
Degree [CRACC, < CROCC < CRACC, )" [CRACC; < CROCC < CRACC;3]'® | [CRACC; <CROCC <CRACC,;]'®
[CRACC; < CROCC < CRACC,;}* [CRACC; < CROCC <CRACC,;** | [CRACC,<CROCC <CRACC,;}**®
[CRACC, < CROCC < CRACC, 5] [CRACC; < CROCC < CRACC;;]** | [CRACC; < CROCC < CRACC,;]**
[CROCC < CRACC,,; J* [CRACC, <CROCC <CRACC1;}® | [CROCC <CRACC;z3]*
) [CRACC;<CRACC;<CROCC<CRACC;J® | [CRACC,,3 < CROCCJ® [CRACC, < CROCC < CRACC, 3}
Very High | (cracc,,, <croccy® [CRACC; < CROCC <CRACC;3]"™ | [CRACC; < CROCC < CRACC:]®
Degree [CRACC,,3 < CROCC]™® [CRACC; < CROCC <CRACC,;]'"® | [CRACC;<CROCC <CRACC,;]'®
[CRACC,,; < CROCC]*™ [CRACC; < CROCC < CRACC,3;]*® | [CRACC; <CROCC <CRACC, ;}*®
[CRACC,,; < CROCC]*® [CRACC, < CROCC <CRACC;* | [CRACC,<CROCC <CRACC, J**

The table is summarising the results of MCS (5000 simulations) for all the possible combinations of the degree of
endogeneity, strength of instrumental variables, and finite sample sizes. The most left column is representing the different
degrees of endogeneity while the first row is showing different strengths of instrumental variables. In the cells, all the
estimators are ranked according to their MSE for each sample size (as given in superscript).

4.6.3 Summary of Results

The comparative analysis of CROCC and CRACC provided two useful implications.
First, CROCC is found an efficient estimator than CRACC in case of an exactly
determined model. It is also noteworthy that CROCC was an efficient estimator than
GMM, MEL, and MEEL in an exactly determined model, as explored in the previous
section. Therefore, future studies are recommended to use CROCC in estimating a
regression model having the problem of endogeneity in an exactly determined model.
Second, CROCC performed less efficient than CRACC in most cases in an
overdetermined model that alludes to the deficiency of CROCC. Therefore, it is
suggested that a convex combination of CROCC can be improved by taking arbitrary

values to produce efficient and less biased estimations.
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CHAPTER S. EMPIRICAL ANALYSIS

This dissertation also applied the MEL, MEEL, GMM, and CROCC to estimate
economic models on real data set. Since the focus of this research is to investigate the
estimators providing less biased and efficient estimations to resolve the endogeneity
problem. Therefore economic models having endogeneity in their system will be
suitable for analysing the application of studied estimators. Consumption function and
money demand function are two famous models that can help to investigate the
implication of studied estimators for real data set. Previously, various studies have
confirmed the existence of an endogeneity problem for these two economic models
(Charemza & Deadman, 1997; Thomas, 1993). To deal with such an endogeneity

problem, GMM is often used.

In practice, economic series for such models have limited or small samples. While the
GMM estimator produces biased and less efficient results for small samples as explored
in the previous section. Similarly, this dissertation proposed that applying information-
theoretic approaches can produce less biased and efficient estimations, even for small
samples comparatively. Therefore, it can be useful to apply an information-theoretic
approach to estimate the models having endogeneity, especially with small samples. To
conclude, these propositions in the case of real data set, MEL, MEEL, GMM, CROCC,
and CRACC2 (CRACC?2 is used because it was found efficient in most cases) will be
used to estimate consumption function and money demand function. If the results
confirm the superiority of information-theoretic models, then it is a new direction for
researchers to make the inference better, especially for a small sample. The subsequent
part will compare the performances of estimators for both consumption function and

money demand function separately.
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5.1 Consumption Function and Information-Theoretic Approach
This section will estimate the consumption function as proposed by Keynes (1936) and
also referred to as an absolute income hypothesis (AIH). The consumption function is

as follow:

Ci=a + bY,+ g 5-1

Yy=C+ I 5-2
In the above-stated system of equations, “C;” is household consumption, “Y¢” is per
capita income, and “I” is the investment. The equation “5-1” has a disturbance term.
“g¢” is known as the Keynesian consumption function. On the other hand, we do not
need to estimate the equation “5-2”, because this is aggregate demand equation and the
coefficient of the consumption and investment are equal to unity as stated in (Thomas,
1993). The reduced form of the above consumption system in (section: 3) has shown
that “C” and “Y” are endogenous variables, and “I;” is the only exogenous variable.
To solve the equation “5-1”, investment “I;”” and government expenditures “G” are used

as instrumental variables.
The Instrumental variables matrix is as below:
Z = [ constant Investment Government expenditures] = [ones | G]

This system of equations has simultaneity bias. Ordinary least square (OLS) estimator
is not suitable to estimate this model because of the simultaneity bias. As an alternative,

the GMM estimator can estimate such models. However, GMM does not hold good
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finite samples properties reported by numerous authors® in literature. This research
proposed that the information-theoretic approach holds such good finite sample
properties that can estimate the model has simultaneity bias more accurately. Therefore,
GMM and information-theoretic estimators are applied to the consumption function for
the purpose of comparison. The data set regarding the above equations of consumption
function is collected from the International Financial Statistics (IFS) database with a

sample size of less than “30”.

In consumption function, the slope coefficient of income is known as marginal
propensity to consume (MPC), whose range is between “0 < MPC < 1” in absolute
measures. However, we have used the log transformation (semi-log model) where the
coefficient of income is known as elasticity of consumption with respect to income.
The consumption function (semi-log model) is estimated, and the coefficients of

endogenous regressor (Elasticity of consumption) are plotted in Figure 5-1.

The vertical axis of Figure 5-1 represents the elasticity, while the horizontal axis is
denoted with countries. Results showed that the estimated elasticity obtained from the
GMM estimator is greater than the estimates of information-theoretic estimators. For
instance, in the case of Australia, the GMM estimator showed that the elasticity of unity,
while all the information-theoretic estimators documented the elasticity around “0.9”
for the same country. Similarly, for Austria, the GMM showed the elasticity of greater
than unity. Conversely, the elasticity measured by all the information-theoretic

estimators is less than unity (around 0.85). In the case of New Zealand, the analysis

® The GMM estimator have poor finite samples properties, in this regard various authors (Altonji & Segal,
1996; Hall & Horowitz, 1996; Imbens et al., 1998; Imbens, 1997; Kitamura & Stutzer, 1997; Qin &
Lawless, 1994) have reported the number of problems of GMM estimator.
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showed more differences between the estimate of GMM (Elasticity equal 0,98) and
information-theoretic estimators (Elasticity around 0.6). Overall results are alluding
that the estimates of information-theoretic estimators are very close to each ather while

the GMM estimates are far away from them,

Figure 5-1: Estimates of the Coefficients of Endogenouis Regressor Consumption
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Table 5-1: Coefficients of Endogenous Regressor of Consumption Function

Countries MEL MEEL GMM CROCC | CRACC2
Australia 0.9039 0.86243 1.0011 0.88217 0.883166
Austria 0.82243 0.84207 1.01731 0.83641 0.832249
Bangladesh 0.75455 0.68421 0.68085 0.6927 0.719382
Belgium 0.85588 0.76893 0.93221 0.82829 0.812404
India 0.76346 0.6423 0.94176 0.63896 0.702876
New Zealand 0.55905 0.65 0.98931 0.55905 0.604525
Spain 0.9514 0.91881 0.97032 0.94214 0.935105
Sri Lanka 0.91957 0.84658 0.95835 0.91007 0.883077

5.2 Money Demand Function and Information-Theoretic Approach

The money demand function is also estimated using GMM and information-theoretic
estimators. It was Keynes (1936) who proposed the idea of liquidity preference theory
against the quantity theory of money (QTM). In his model, he explained the role of
interest rate with respect to supply and demand for money. According to him, the
demand for money can be segregated into three parts, i.e., precautionary demand for
money, transaction demand for money, and speculative demand for money. Later on,
various authors (Friedman, 1956; Tobin, 1958)!° presented different ideas about money
demand functions. In this concern, (Thomas, 1993) discussed different theories about
money demand functions and also stated the problem of simultaneity bias in the
estimation of the money demand function. The money demand function and its

simultaneity bias also have been discussed in the previous section “3”. Due to a special

19 (Friedman, 1956) presented the reformulation in quantity theory of money.
(Tobin, 1958) discussed the idea of non-human wealth in money demand function and presented the
portfolio diversification.
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case of simultaneity bias, this study selected the money demand function for empirical

analysis. The money demand function can be stated as follow:
myg = b,+ bir + by + g
mg = a,A + a;r +h + ¢
Equilibrium condition
mg=mg=m

In this system, the rate of interest “r”” and money supply “M” (money supply M2) are
endogenous variables. On the other side, high-powered money “h” and permanent
income “Y” are exogenous variables. If we apply the OLS to estimate the money
demand function, we will face the biased parameters. One can apply GMM to estimate
the above money demand function in the presence of simultaneity bias. However, as
noted earlier by Monte Carlo simulation analysis and various studies that the GMM
approach has large finite samples bias'! than alternative estimators (information-

theoretic approach)'?, GMM could provide biased results for a small sample.

Therefore, the above money demand function is estimated using MEL, MEEL,
CROCC, and GMM approaches to compare their results in the real data set. We have
estimated the money demand function for several countries and collect data form the

World Bank database with sample size “30”. The results are discussed as follows.

1! Various authors (Altonji & Segal, 1996; Hall & Horowitz, 1996; Pagan & Robertson, 1997) discussed
number of problems of GMM estimator and its poor finite samples properties.

'2 These authors (Imbens et al., 1998; Guido W Imbens, 1997; Kitamura & Stutzer, 1997; Qin & Lawless,
1994) presented alternative approaches over GMM approach to avoid small samples biasedness.
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Table 5-2: Money Demand Function and Information-Theoretic Approach

Country Estimators & Coefficient of Endogenous Regressor
MEL MEEL GMM | CROCC | CRACC2

Australia -0.3658 | -0.30779 | -0.40061 | -0.33667 | -0.3368
Bahamas -1.13306 | -0.86625 | -0.39599 | -0.95958 | -0.99966
Barbados -0.49286 | -0.42026 | -0.37214 | -0.45014 | -0.45656
Belize -1.24919 | -1.18611 | -1.83796 | -1.2167 | -1.21765
Canada -1.10219 | -1.12506 | -1.15918 | -1.11413 | -1.11363
Dominica -0.95018 | -0.98642 | -1.22315 | -0.96792 | -0.9683
Fiji -0.24042 | -0.19742 | -0.23783 | -0.21703 | -0.21892
Grenada -1.19684 | -0.75252 | -6.93384 | -0.94935 | -0.97468
Jamaica -1.13985 | -0.99432 | -1.2073 | -1.05989 | -1.06709
Japan -0.04571 | -0.05048 | -0.03408 | -0.04784 | -0.0481
Kenya -0.04695 | -0.0572 | -0.13197 | -0.05196 | -0.05208
Lesotho -2.22421 | -2.40153 | -3.04603 | -2.37353 | -2.31287
Malawi -0.71861 | -0.67078 | -1.2893 | -0.69352 | -0.6947
Papua New Guinea -1.16703 | -1.03652 | 1.27666 | -1.10821 | -1.10178
Philippines -0.01764 | -0.00811 | -0.00779 | -0.01267 | -0.01288
Sierra Leone -1.11315 | -1.00566 | -1.62164 | -1.06123 | -1.05941
Singapore -0.99924 | -0.95047 | -1.01302 | -0.97321 | -0.97486
Solomon Islands -1.85608 | -1.78699 | -0.55372 | -1.82001 | -1.82154
South Africa -1.13882 | -1.08208 | -0.34012 | -1.10637 | -1.11045
Sri Lanka -1.23509 | -1.18308 | -2.19007 | -1.26018 | -1.20909
St. Kitts and Nevis -5.82938 | -5.98211 | 5.323506 | -5.89038 | -5.90575
St. Lucia -1.06729 | -1.16184 | -0.65 -1.11103 | -1.11457
St. Vincent and Grenadines | -1.26051 | -1.11241 | 0.079798 | -1.18891 | -1.18646
Swaziland -0.92946 | -0.99515 | -1.39359 | -0.96088 | -0.96231
Uganda -0.98117 | -0.97035 | -1.43159 | -0.97573 | -0.97576

In Figure 5-2, we have reported the coefficients of the endogenous regressor (interest
rate/ coefficient in terms of elasticity) for several countries. According to the theory,
the interest rate is inversely related to the money demand ( negative elasticity). Still,
GMM estimators have shown the positive elasticity of “interest rate” for three countries
(Papua New Guinea, St. Kitts & Nevis, and St. Vincent & the Grenadines). Conversely,
GMM showed a very high negative elasticity than information-theoretic estimators in
the case of “Grenada.” In the overall analysis, it is found that the estimates of GMM

are away from the information-theoretic estimators.
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Figure 5-2: Estimates of the Coefficients of Endogenous Regressor of Money
Demand Function
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Figure 5-3 also demonstrated that all the estimators have negative elasticity as per the

theoretic relationship between “interest rate” and “money demand.” In this analysis,

GMM still showed elasticity greater than the unity of the countries (Dominica,

Swaziland, and Uganda), while for some countries, information-theoretic estimators

documented the elasticity less than unity. In some cases, all estimators are also very

close to each other. However, in most of the cases, the elasticity calcuiated by GMM is

away from the information-theoretic estimators.

Figure 5-3: Estimates of the Coefficients of Endogenous Regressor of Money
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5.3 Summary of Empirical Analysis

This chapter applied the GMM and information-theoretic approaches to estimate money
demand and consumption function. All the information-theoretic estimators provided
similar estimations of both economic models. However, the estimations of GMM were
quite far from the estimations of information-theoretic estimators. These results confirm
the reliability and efficiencies of information-theoretic estimators than GMM. Hence,
future studies should use information-theoretic estimators to estimate the economic

models having the problem of endogeneity.
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CHAPTER 6. CONCLUSION & RECOMMENDATIONS

The wide range of data sampling experiment (i.e., based on above discussed Monte
Carlo Simulation analysis) is used to analyse and compare the finite sample properties
of GMM and information-theoretic estimators (MEL, MEEL, and CROCC) in
estimating the linear regression model with non-orthogonal condition. The findings of

the thesis are entirely based on Monte Carlo simulation Experiment.

The entire analysis is segregated into four parts. This study primarily compared the bias
and Mean Square Error (MSE) of GMM and information theoretic estimators including
MEL, MEEL and CROCC using different sample sizes with a variety of degrees of
endogeneity and strength of instrumental variables. First, the biases and Mean Square
Error (MSE) of GMM and information theoretic estimators are compared in exactly
determined model. Overall analysis found that CROCC and MEL produced the least
biasedness than GMM estimator in exactly determined model. But CROCC produced
the least MSE of all other estimators (indicates CROCC is most efficient estimator than

other) in all conditions for exactly determined model.

Secondly, The Monte Carlo simulation analysis is conducted for overdetermined
models, where the number of moment conditions IV’s exceeds from the number of
unknown parameters. In this case, GMM is most commonly used in estimation of
econometric models, but the performance of GMM estimator is based on the choice of
the weight matrix. In contrast, information theoretic estimators give us unique estimates
in overdetermined models. Because these estimators handled unknown weight matrix
within the estimation procedure. In this case, the information theoretic estimators are
superior to GMM. In this part of the thesis, we are also analysed the biasedness and

MSE’s of GMM and information theoretic estimators within overdetermined model. In
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general, the MEL and MEEL documented lower bias than the GMM and even CROCC
in an overdetermined model. For a small sample of 25 observations, GMM produced
the highest bias than other estimators. Conversely, CROCC is found most efficient
estimator when MSE of all the estimators are compared. Therefore, it is reccommended
to use CROCC in future research studies rather than using GMM and other individual
estimators of information theoretic approach in order to obtain efficient estimates of

regression model having the problem of endogeneity in finite samples.

In third part, we introduced an alternative method (i.e. Cressie and Read Arbitrary
Convex Combination - CRACC) based of arbitrary convex combination that is
independent from the optimization of the coefficient of convex combination of
CROCC. The proposed method (CRACC) is efficient and applicable than CROCC due
to its assumption free estimation of convex combinaticn. The results evidenced that
CROCC is a more efficient estimator than CRACC in case of exactly determined
model. However, CROCC performed less efficient than CRACC in most cases in an
overdetermined model that alludes the deficiency of CROCC. Therefore, it is suggested
that convex combination of CROCC can be improved by taking arbitrary values to

produce efficient and less biased estimations.

Overall simulation analysis, we examine a range of data generating processes and found
consider able conclusions. As the effectiveness of the instruments decreases, and the
degree of endogeneity increases the performance of all the estimators decreases in term
of biasedness, but information-theoretic estimator are still better than GMM in small
samples scenario. Similarly, the MSE of all the estimators increases but convex

combination still remains superior to all. Conversely, with any type of the degree of
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endogeneity with the strong instrumental variable strength, Information theoretic

estimator are better than GMM!?3, especially convex combinations.

In general, all the estimators improve their performance (shows consistency) as the
sample size increases. However, the most of the cases, the Information-theoretic type
estimators demonstrate less bias than the traditional GMM estimator. In terms of MSE,
the Information-theoretic type are usually superior but, convex combinations are more

better than individual estimators (MEL and MEEL) and GMM.

Finally in the last part; GMM and information theoretic estimators are applied to
estimate money demand and consumption function. It is found that elasticity estimated
by information theoretic estimators were close to each other. However, the elasticity
produced by GMM are quite far from the estimations of information theoretic
estimators. Therefore, it is concluded that GMM is the less reliable and less efficient

estimator in finite samples.

This research demonstrates significant implications in the estimation of econometric
models. As discussed earlier; the endogeneity problem and finite samples are key issues
in econometric models. Our findings would help the researchers to use aproperiate
estimators to resolve endogeneity issues in finite samples accoding to their estimating
model. The newly proposed estimator: CRACC which has superiorty to CROCC due

to its assumption free estimation of two independent samples. It would help the

13 Varioys author reported that the GMM approach has poor finite samples properties of GMM and they
suggested that The EL approach is an alternative to GMM (Altonji & Segal, 1996; Hall & Horowitz,
1996; Imbens et al., 1998; Imbens, 1997; Kitamura & Stutzer, 1997; Qin & Lawless, 1994).

The authors (Imbens et al., 1998; Kitamura & Stutzer, 1997) proposed an alternative approach that is
exponential tilting (i.e., Kullback-Leibler Information Criterion (KLIC) / Maximum Exponential
Empirical Likelihood (MEEL)) as replacement of the GMM approach.
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researchers to use best and appropriate estimator. It would open up another research

stream in current literature.

6.1 Limitations of the study

There are following limitations of this study.

Our findings are limited to mentioned Monte Carlo simulation anslysis. The used
estimators can be evaluated on different type of DGP. Similarly, there are many other
nonparametric approaches that can also be evaluated with Information theoretic
estimators and GMM. We have just focused to endogeneity issue, but it can be enhance

to heteroskedasticity and autocorrelation.

6.2 Policy Recommendation and Future Research

The results provide strong policy implications for the estimation of econometric models
having the problem of endogeneity. Since GMM does not hold better finite sample
properties, therefore, future studies are recommended to use information-theoretic
estimators rather than GMM, especially for small samples. It is suggested that
researchers should use CROCC to estimate economic models for the exactly determined
system. However, for an overdetermined model, CRACC is recommended to estimate
more efficient coefficients. There are some recommendations for future research, as

follows:

o The efficiency of CROCC and CRACC can be improved by developing efficient
and assumption-free optimization method of convex combination.
o In this study, we used two individual information-theoretic estimators (MEL

and MEEL) to construct the convex combinations. Therefore future studies are
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recommended to evaluate the efficiency of convex combination based on more
than two individual information-theoretic estimators.

In this study, we used four instrumental variables for one endogenous regressor
in the case of the overdetermined model. The future study can evaluate the
efficiency of CRACC and CROCC by varying the number of instrumental
variables in the overdetermined model.

The scope of this study was limited to the endogeneity problem. Information-
theoretic estimators should also be evaluated in the presence of

Heteroskedasticity and Autocorrelation.
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Appendix A Results of Monte Carlo Simulation Analysis
Appendix A-1 Biasedness of Estimators for Exactly Determined
Model
Samples Instrumental Degree of Biasedness of Estimators
size variables strength Endogeneity (D.E) | CROCC CRACC1 | CRACC2 | CRACC3
D.E= 20% 0.065381 | -0.06903 | -0.07762 | -0.0862
IVS= 25% D.E= 40% 0.157847 | -0.03944 | -0.0316 | -0.02376
D.E= 60% 0.217529 | 0.032671 | 0.045677 | 0.058684
D.E= 80% 0.286005 | 0.01925 | 0.040218 | 0.061185
D.E= 20% 0.041374 | -0.05808 | -0.05443 | -0.05079
25 IVS= 50% D.E= 40% 0.058197 | -0.09795 | -0.10695 | -0.11594
D.E= 60% 0.075905 | -0.14509 | -0.12358 | -0.10207
D.E= 80% 0.067181 | -0.229 -0.21655 | -0.2041
D.E= 20% 0.003091 | -0.0383 | -0.04308 | -0.04787
IVS= 75% D.E= 40% 0.005751 | -0.0556 | -0.06135 | -0.06709
D.E= 60% 0.011885 | -0.08284 | -0.08066 | -0.07847
D.E= 80% 0.01391 | -0.11211 | -0.11664 | -0.12118
D.E= 20% 0.055253 | -0.05495 | -0.07006 | -0.08517
IVS= 25% D.E= 40% 0.09914 | -0.09876 | -0.10238 | -0.106
D.E= 60% 0.11508 | -0.12712 | -0.14012 | -0.15312
D.E= 80% 0.117639 | -0.15699 | -0.14237 | -0.12775 |
D.E= 20% 0.019603 | -0.02664 | -0.04187 | -0.05709 ,
50 IVS= 50% D.E= 40% 0.027505 | -0.06194 | -0.07822 | -0.0945 T
D.E= 60% 0.033036 | -0.11406 | -0.12283 | -0.13159 |
D.E= 80% 0.030993 | -0.1602 | -0.16586 | -0.17152
D.E= 20% 0.002416 | -0.00453 | -0.00906 | -0.0136 !
IVS= 75% D.E= 40% 0.003593 | -0.01573 | -0.01968 | -0.02364
D.E= 60% 0.003925 | -0.02497 | -0.03099 | -0.03701
D.E= 80% 0.004241 | -0.0371 | -0.04298 | -0.04886
D.E= 20% 0.044539 | -0.03768 | -0.06018 | -0.08268
IVS= 25% D.E= 40% 0.058569 | -0.07468 | -0.10019 | -0.1257
D.E= 60% 0.06706 | -0.11702 | -0.13926 | -0.1615
D.E= 80% 0.058549 | -0.20155 | -0.22344 | -0.24534
D.E= 20% 0.010184 | -0.00177 | -0.01318 | -0.0246
100 IVS= 50% D.E= 40% 0.012135 | -0.02107 | -0.03199 | -0.0429
D.E= 60% 0.017219 | -0.04103 | -0.05138 | -0.06173
D.E= 80% 0.020696 | -0.05312 | -0.06044 | -0.06775
D.E= 20% 0.000284 | -0.00042 | -0.00476 | -0.0091
VS= 75% D.E= 40% 0.004384 | 0.000167 | -0.0055 | -0.01116
D.E= 60% 0.004469 | -0.0051 | -0.01064 | -0.01619
D.E= 80% 0.004554 | -0.0106 | -0.01477 | -0.01895
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Instrumental

Samples | - iables strength Degree of CROCC | CRACC1 | CRACC2 | CRACC3
size (IVS) Endogeneity (D.E)

D.E= 20% 0.031509 | -0.02365 | -0.04626 | -0.06888

VS 25% D.E= 40% 0.043599 | -0.0556 | -0.08142 | -0.10724

D.E= 60% 0.053063 | -0.08748 | -0.10532 | -0.12316

D.E- 80% 0.051465 | -0.13645 | -0.15081 | -0.16517

D.E-20% | 0.005392 | 0.003469 | -0.00783 | -0.01913

D.E= 40% 0.011033 | -0.0042 | -0.01639 | -0.02858

150 V5= 50% D.E= 60% 0.012651 | -0.01697 | -0.02639 | -0.03581

D.E= 80% 0.010852 | -0.02521 | -0.03603 | -0.04685

D.E= 20% 0.003268 | 0.005369 | 6.44E-06 | -0.00536

Vse 755% D.E- 40% 0.003663 | 0.001804 | -0.00301 | -0.00783

D.E= 60% 0.003796 | -0.00094 | -0.00613 | -0.01131

D.E= 80% 0.002618 | -0.00519 | -0.00978 | -0.01437

D.E= 20% 0.029155 | 0.007843 | -0.01659 | -0.04103

VSe 255 D.E= 40% 0.032546 | -0.02441 | -0.04548 | -0.06654

D.E= 60% 0.043563 | -0.0557 | -0.07657 | -0.09745

D.E= 80% 0.036544 | -0.10209 | -0.12319 | -0.1443

D.E= 20% 0.004395 | 0.008441 | -0.00471 | -0.01785

o D.E= 40% 0.011819 | 0.004204 | -0.00716 | -0.01852

200 V3= 50% D.E= 60% 0.011312 | -0.00325 | -0.01494 | -0.02664 |

D.E= 80% 0.009196 | -0.01563 | -0.02504 | -0.03445 |

D.E= 20% 0.002988 | 0.005725 | 0.000488 | -0.00475

VSe 755% D.E=40% | 0.002851 | 0.002296 | -0.00213 | -0.00655 |

D.E= 60% 0.001028 | -0.00071 | -0.00636 | -0.01201

D.E= 80% -0.00073 | -0.00533 | -0.0105 | -0.01567

D.E= 20% 0.02941 | 0.022266 | -0.00083 | -0.02393

VSe 255 D.E= 40% 0.036814 | -0.00173 | -0.02373 | -0.04573

D.E= 60% 0.037394 | -0.03095 | -0.0509 | -0.07084

D.E= 80% 0.040691 | -0.06282 | -0.08409 | -0.10537

D.E= 20% 0.008856 | 0.015284 | 0.00191 | -0.01146

250 VS 50% D.E= 40% 0.008097 | 0.00607 | -0.00645 | -0.01896

D.E= 60% 0.008201 | -0.00059 | -0.01231 | -0.02403

D.E= 80% 0.009935 | -0.004 | -0.01688 | -0.02977

D.E= 20% 0.004753 | 0.008742 | 0.002876 | -0.00299

Vs 75% D.E= 40% 0.001847 | 0.003637 | -0.00209 | -0.00781

D.E= 60% 0.003311 | 0.002761 | -0.00239 | -0.00754

D.E= 80% 0.002278 | 9.45€-05 | -0.00524 | -0.01057
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Appendix A-2 MSE of Estimators for Exactly Determined Model

samples I.nstrumental Degree of MSE of Estimators ;
size variab 'ﬁf/;;re"gth Endogeneity (D.E) | CROCC | CRACC1 | CRACC2 | CRACC3 J
D.E= 20% 0.608279 | 3.441282 | 3.185371 4.495913j:
IVS= 25% D.E= 40% 0.605876 | 3.263028 | 3.181471 4.668685%

D.E= 60% 0.846179 | 3.523326 | 3.358625 | 4.860366
D.E= 80% 0.648154 | 2.813016 | 3.841555 | 6.867023

D.E= 20% 0.223713 | 1.328453 | 1.22797 | 1.743284

95 VS 50% D.E= 40% 0.19268 | 1.335503 | 1.337437 | 1.985697
D.E= 60% 0.185143 | 1.484876 | 1.854176 | 3.164496

D.E= 80% 0.250193 | 1.762291 | 2.158854 | 3.59565

D.E= 20% 0.052027 | 0.21974 | 0.172165 | 0.208793

IVS= 75% D.E= 40% 0.056278 | 0.161666 | 0.141053 | 0.186786

D.E= 60% 0.05875 | 0.217909 | 0.226622 | 0.35247

D.E= 80% 0.053525 | 0.363032 | 0.384228 | 0.594966

D.E= 20% 0.371587 | 2.100016 | 1.690888 | 2.097704

VS= 25% D.E= 40% 0.362297 | 1.718808 | 1.843339 | 2.817162

D.E= 60% 0.328868 | 1.888849 | 2.085729 | 3.288267

D.E= 80% 0.329152 | 1.658933 | 2.205789 | 3.818831

D.E= 20% 0.069041 | 0.35614 | 0.256796 | 0.286736

50 IVS= 50% D.E= 40% 0.070282 | 0.260713 | 0.281402 | 0.434113
D.E= 60% 0.078162 | 0.375373 | 0.367721 | 0.547447

D.E= 80% 0.082957 | 0.534261 | 0.65655 | 1.090143

D.E= 20% 0.022068 | 0.034545 | 0.026301 { 0.031412

IVS= 75% D.E= 40% 0.022292 | 0.03754 | 0.028418 | 0.033502

D.E= 60% 0.022746 | 0.035759 | 0.030377 | 0.039582

D.E= 80% 0.02418 | 0.041562 | 0.035683 | 0.046571

D.E= 20% 0.121573 | 0.581823 | 0.537227 | 0.752781

IVS= 25% D.E= 40% 0.123083 | 0.558316 | 0.553682 | 0.823715

D.E= 60% 0.120467 { 0.59055 | 0.754655 | 1.289644

D.E= 80% 0.145091 | 0.806113 | 0.88733 | 1.392552

D.E= 20% 0.032313 | 0.060897 | 0.046698 | 0.056617

100 IVS= 50% D.E= 40% 0.034019 | 0.067039 | 0.05333 | 0.065132
D.E= 60% 0.033908 | 0.090485 | 0.078846 | 0.104886

D.E= 80% 0.035828 | 0.093172 | 0.07896 | 0.101072

D.E= 20% 0.011051 | 0.014634 | 0.011659 | 0.014721

IVS= 75% D.E= 40% 0.010994 | 0.014276 | 0.011767 | 0.01499

D.E= 60% 0.011134 | 0.014519 | 0.012244 | 0.015905

D.E= 80% 0.010956 | 0.014567 | 0.01238 | 0.016204
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samples Instrumental Degree of MSE of Estimators
. iables st th .
size varia aflg)'e“g Endogeneity (D.E) | CROCC | CRACC1 | CRACC2 | CRACC3
D.E= 20% 0.071177 | 0.371964 | 0.26981 | 0.302891 ‘
IVS= 25% D.E= 40% 0.076082 | 0.286645 | 0.292229 | 0.438329 ‘
B D.E= 60% 0.073157 | 0.307383 | 0.328738 | 0.5089 |
D.E= 80% 0.079044 | 0.404871 | 0.391217 | 0.560143 i
D.E= 20% 0.020884 | 0.032737 | 0.025179 | 0.031097
150 IVS= 50% D.E= 40% 0.021553 | 0.033257 { 0.027883 | 0.036979 |
- g D.E= 60% 0.021699 | 0.035634 | 0.028776 | 0.036617 |
D.E= 80% 0.021762 | 0.034852 | 0.030119 | 0.039717
D.E= 20% 0.007111 | 0.009316 | 0.007346 | 0.009208
IVS= 75% D.E= 40% 0.006982 | 0.008762 | 0.007223 | 0.009556
- D.E= 60% 0.007057 | 0.008851 | 0.007456 | 0.009946
D.E= 80% 0.007149 | 0.008955 | 0.007851 | 0.010462
D.E= 20% 0.051263 | 0.165853 | 0.125626 | 0.148616
IVS= 25% D.E= 40% 0.053005 | 0.138027 | 0.133149 | 0.193603
g D.E= 60% 0.053489 | 0.175486 | 0.195593 | 0.311827
D.E= 80% 0.055447 | 0.220916 | 0.219978 | 0.323563
D.E= 20% 0.016429 | 0.023981 | 0.018646 | 0.022917
D.E= 40% 0.01545 | 0.021867 | 0.017408 | 0.022696
200 IVS= 509
>0% D.E= 60% 0.016022 | 0.022814 | 0.019345 | 0.025488
D.E= 80% 0.017044 | 0.026254 | 0.021663 { 0.027113
D.E= 20% 0.005442 | 0.006695 | 0.005563 | 0.007251
IVS= 75% D.E= 40% 0.005234 | 0.006528 | 0.005418 | 0.007182
? D.E= 60% 0.005343 | 0.006455 | 0.005583 | 0.007571
D.E= 80% 0.00548 | 0.006707 | 0.005944 | 0.008124
D.E= 20% 0.038891 | 0.076097 | 0.057294 | 0.067673
IVS= 25% D.E= 40% 0.04146 | 0.081505 | 0.064404 | 0.079293
0 D.E= 60% 0.042105 | 0.103859 | 0.082953 | 0.101977
D.E= 80% 0.041137 | 0.12746 | 0.130338 | 0.196009
D.E= 20% 0.013156 | 0.017792 | 0.014209 0.018
250 IVS= 50% D.E= 40% 0.012787 | 0.017814 | 0.014182 | 0.018058
0 D.E= 60% 0.012793 | 0.017942 | 0.014591 | 0.018604
D.E= 80% 0.01259 | 0.017535| 0.016231 | 0.02293
D.E= 20% 0.004328 | 0.005586 | 0.004424 | 0.005521
VS= 75% D.E= 40% 0.004244 | 0.005256 | 0.004378 | 0.005784
g D.E= 60% 0.004209 | 0.004947 | 0.004356 | 0.005975
D.E= 80% 0.004128 | 0.004888 | 0.004381 | 0.006096
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Appendix A-3 Biasedness of Estimators for Overdetermined Model

samples I.nstrumental Degree of Biasedness of Estimators
size "a"ab'gf/;;re“gth E"d?gir)‘e'w CROCC | CRACC1 | CRACC2 | CRACC3
D.E= 20% 0.137196 | 0.127931 | 0.129186 | 0.130463
IVS= 25% D.E= 40% 0.285296 | 0.262809 | 0.260465 | 0.258121 !
D.E= 60% 0.439316 | 0.417215 | 0.418101 | 0.418987
D.E= 80% 0.588621 | 0.545017 | 0.549221 | 0.553404
D.E= 20% 0.080708 | 0.062154 | 0.062658 { 0.063078
25 IVS= 50% D.E= 40% 0.178066 | 0.150712 | 0.153969 | 0.157226
D.E= 60% 0.280108 | 0.232853 { 0.232492 | 0.232033
D.E= 80% 0.389285 { 0.332043 | 0.329161 | 0.326278
D.E= 20% 0.008604 | 0.020599 | 0.044186 | 0.037768
VS= 75% D.E= 40% 0.05769 | 0.033612 | 0.039797 | 0.045933
D.E= 60% 0.098953 { 0.068763 | 0.074373 { 0.080571
D.E= 80% 0.151407 | 0.105978 | 0.111231 | 0.116772
D.E= 20% 0.099169 | 0.086443 | 0.085911 | 0.085379
IVS= 25% D.E=40% 0.219998 | 0.190185 | 0.19148 | 0.192775
D.E= 60% 0.351371 | 0.308902 | 0.307832 | 0.306762
D.E= 80% 0.480281 | 0.428384 | 0.425833 | 0.423283
D.E= 20% 0.04825 | 0.03343 | 0.033096 | 0.032762
50 IVS= 50% D.E= 40% 0.108783 | 0.074716 | 0.075702 | 0.076688
D.E= 60% 0.178634 | 0.136722 | 0.134267 | 0.131811
D.E= 80% 0.237675 | 0.184119 | 0.181864 | 0.180051
D.E= 20% 0.001869 | -0.00745 | -0.00565 | -0.00386
VS= 75% D.E= 40% 0.02272 | 0.008559 | 0.007899  0.00702
D.E= 60% 0.050752 | 0.029625 | 0.030245 | 0.031083
D.E= 80% 0.07158 | 0.043787 | 0.043856 | 0.043596
D.E= 20% 0.065476 | 0.048901 | 0.047879 | 0.046858
IVS= 25% D.E= 40% 0.14921 | 0.11302 | 0.11319 0.11336
D.E= 60% 0.24736 | 0.20023 | 0.19701 0.1938
D.E= 80% 0.33062 | 0.26886 | 0.26659 0.26431
D.E= 20% 0.01784 | 0.006351 | 0.006334 | 0.006318
100 IVS= 50% D.E= 40% 0.057349 | 0.035067 | 0.0335 0.031932
D.E= 60% 0.092048 | 0.059188 | 0.057704 | 0.056219
D.E= 80% 0.12404 | 0.083829 | 0.083149 | 0.082469
D.E= 20% -0.00961 | -0.01307 | -0.01455 | -0.01588
VS= 75% D.E=40% 0.003349 { -0.0049 | -0.00591 | -0.00683
D.E= 60% 0.018149 | 0.006985 | 0.006071 | 0.005303
D.E= 80% 0.029071 | 0.015411 | 0.014199 | 0.012977
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L

Instrumental

Biasedness of Estimators

Samples variables strength Degre.e of
size (IVS) Endogeneity (D.E) | CROCC CRACC1 | CRACC2 | CRACC3
D.E= 20% 0.047859 | 0.028104 | 0.030881 | 0.033659
IVS= 25% D.E= 40% 0.114459 | 0.080095 | 0.080063 | 0.080032
D.E= 60% 0.177 0.13161 | 0.132027 | 0.132445
D.E= 80% 0.242562 | 0.178268 | 0.178021 | 0.177773
D.E= 20% 0.00405 | -0.00466 | -0.00385 | -0.00304
150 VS= 50% D.E= 40% 0.031352 | 0.016308 { 0.015951 | 0.015593
D.E= 60% 0.055758 | 0.033012 | 0.03297 | 0.032928 |
D.E= 80% 0.081191 | 0.051966 | 0.051415 | 0.050864
D.E= 20% -0.01044 | -0.01267 | -0.01442 | -0.01618
IVS= 75% D.E= 40% -0.00279 | -0.00716 | -0.00953 | -0.0119 |
D.E= 60% 0.005607 | -0.0018 | -0.00339 | -0.00509 |
D.E= 80% 0.012708 | 0.003345 | 0.001146 | -0.00113
D.E= 20% 0.030196 | 0.013401 | 0.017015 | 0.020629 |
IVS= 25% D.E= 40% 0.085949 | 0.05506 | 0.055952 | 0.056844 |
D.E= 60% 0.141739 | 0.098578 | 0.098141 | 0.097705
D.E= 80% 0.185813 | 0.132073 | 0.132961 | 0.133849
D.E= 20% -0.00054 | -0.00658 | -0.00771 | -0.00884
200 IVS= 50% D.E= 40% 0.022307 { 0.010034 | 0.009213 | 0.008393 :
D.E= 60% 0.035654 | 0.017394 | 0.017636 | 0.017879 |
D.E= 80% 0.055484 | 0.03206 | 0.032584 | 0.033109 |
D.E= 20% -0.01178 | -0.0128 | -0.01627 | -0.01983
IVS= 75% D.E=40% -0.00705 | -0.01036 | -0.01318 | -0.01601
D.E= 60% 0.001963 | -0.00275 | -0.0062 | -0.0095
D.E= 80% 0.004819 | -0.0022 | -0.00486 | -0.00752
D.E= 20% 0.024592 | 0.007562 | 0.007339 | 0.007117
IVS= 25% D.E= 40% 0.070489 | 0.043026 | 0.04345 | 0.043874
D.E= 60% 0.110249 | 0.071218 | 0.073797 | 0.076376
D.E= 80% 0.153508 | 0.101704 { 0.102893 | 0.104081
D.E= 20% -0.00379 | -0.00919 | -0.00932 | -0.00945
—eno D.E= 40% 0.011339 | 0.00159 | 0.00157 | 0.001534
250 IVS=50% D.E= 60% 0.028657 | 0.01412 | 0.013745 | 0.013371
D.E= 80% 0.040216 | 0.020515 | 0.02109 | 0.021665
D.E= 20% -0.01152 | -0.01227 | -0.0154 | -0.01858
VS= 75% D.E= 40% -0.00726 | -0.00953 | -0.01278 | -0.01611
D.E= 60% -0.00359 | -0.00733 | -0.00972 | -0.01207
D.E= 80% 0.001848 | -0.00338 | -0.00657 | -0.00976
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Appendix A-4 MSE of Estimators for Overdetermined Model

samples lr\strumental Degree of MSE of Estimators
size Var'ab'af/;;r ength E”dz’g.eE';e'ty CROCC | CRACC1 | CRACC2 | CRACC3
D.E= 20% 0.142165 | 0.346788 | 0.243925 | 0.256547
IVS= 25% D.E= 40% 0.195545 | 0.452534 | 0.319386 | 0.308795
D.E= 60% 0.287124 | 0.593679 | 0.429032 | 0.39179
D.E= 80% 0.414447 | 0.452205 | 0.424468 | 0.455284
D.E= 20% 0.093487 | 0.159199 | 0.133853 | 0.173954
25 IVS= 50% D.E= 40% 0.1357 [0.193208 | 0.153763 | 0.176881
D.E= 60% 0.151019 | 0.201417 | 0.16252 | 0.179598
D.E= 80% 0.226938 | 0.257841 | 0.215703 | 0.228209
D.E= 20% 0.048587 | 0.23433 | 0.074612 | 0.029667
VS= 75% D.E= 40% 0.052662 | 0.111713 | 0.073063 | 0.069851
D.E= 60% 0.055584 | 0.114206 | 0.078419 | 0.080459 |,
D.E= 80% 0.069119 | 0.114947 | 0.077774 | 0.074028
D.E= 20% 0.100122 | 0.188594 | 0.149763 | 0.182141
IVS= 25% D.E= 40% 0.132308 | 0.190683 | 0.160344 | 0.19414
D.E= 60% 0.197253 | 0.245258 | 0.211476 | 0.236782
D.E= 80% 0.290284 | 0.299833 | 0.271344 | 0.288034
D.E= 20% 0.055653 | 0.081615 | 0.063563 | 0.075551
50 IVS= 50% D.E= 40% 0.06296 | 0.088075 | 0.068358 | 0.081283
D.E= 60% 0.076562 | 0.092109 | 0.074571 | 0.085264
D.E= 80% 0.097222 | 0.094641 | 0.083617 | 0.097183
D.E= 20% 0.022831 | 0.029017 | 0.022425 | 0.027609
VS= 75% D.E= 40% 0.023322 | 0.028537 | 0.022441 | 0.027361
D.E= 60% 0.025534 | 0.030893 | 0.023822 | 0.027741
D.E= 80% 0.025519 | 0.029087 | 0.023667 | 0.028716
D.E= 20% 0.067122 | 0.11074 | 0.087806 | 0.10874
VS= 25% D.E= 40% 0.081123 | 0.10901 | 0.091306 | 0.11286
D.E= 60% 0.11382 | 0.13005 | 0.10964 | 0.12499
D.E= 80% 0.15595 | 0.15188 | 0.13464 | 0.14865
D.E= 20% 0.030024 | 0.039395 | 0.031126 { 0.039097
100 IVS= 50% D.E= 40% 0.032317 | 0.041335 | 0.03285 | 0.039909
D.E= 60% 0.036067 | 0.04217 { 0.033086 | 0.039266
D.E= 80% 0.040417 | 0.043859 | 0.035215 | 0.040462
D.E= 20% 0.011646 | 0.013888 | 0.010869 | 0.013303 |
VS= 75% D.E= 40% 0.012315 | 0.014097 | 0.011207 | 0.013879
D.E= 60% 0.011333 | 0.013208 | 0.010495 | 0.013324
D.E= 80% 0.01194 { 0.013644 | 0.011035 | 0.013479
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samples Ipstrumental Degree of MSE of Estimators
. variables strength Endogeneity
size (IVS) (D.E) CROCC CRACC1 | CRACC2 | CRACC3
D.E= 20% 0.04917 | 0.072433 | 0.058295 | 0.074218 |:
IVS= 25% D.E= 40% 0.057323 | 0.078605 | 0.062114 | 0.07386
D.E= 60% 0.072846 | 0.082061 | 0.06929 | 0.081491
D.E= 80% 0.094864 | 0.092136 | 0.077325 | 0.085851 |
D.E= 20% 0.020605 | 0.026119 | 0.020279 | 0.024774
150 IVS= 50% D.E= 40% 0.021531 | 0.025943 | 0.02056 | 0.025214
D.E= 60% 0.022505 | 0.026265 | 0.0209 | 0.025364
D.E= 80% 0.024914 | 0.027473 | 0.021642 | 0.025217
D.E= 20% 0.007789 | 0.008993 | 0.007245 | 0.008943
IVS= 75% D.E= 40% 0.007627 | 0.009012 | 0.006956 | 0.008389
D.E= 60% 0.007562 | 0.008606 | 0.00689 | 0.008595
D.E= 80% 0.00757 | 0.009019 | 0.006981 | 0.008372
D.E= 20% 0.039088 | 0.055197 | 0.044828 | 0.056715
IVS= 25% D.E= 40% 0.044515 | 0.059738 | 0.048216 | 0.059503
D.E= 60% 0.054335 | 0.059906 | 0.051075 | 0.062625
D.E= 80% 0.063819 | 0.064176 | 0.053703 | 0.061311
D.E= 20% 0.015889 | 0.018976 | 0.015462 | 0.019707
200 VS= 50% D.E= 40% 0.015863 | 0.019027 | 0.014955 | 0.018404
D.E= 60% 0.016255 | 0.019329 | 0.015209 | 0.018598
D.E= 80% 0.018259 | 0.02101 | 0.016195 | 0.018598
D.E= 20% 0.00579 | 0.006871 | 0.005409 | 0.006517
IVS= 75% D.E= 40% 0.00575 | 0.006718 | 0.005331 | 0.006634
D.E= 60% 0.005957 | 0.006948 | 0.005483 | 0.006767
D.E= 80% 0.00558 | 0.006593 | 0.005145 | 0.006354
D.E= 20% 0.03236 | 0.045927 | 0.036624 | 0.046182
IVS= 25% D.E= 40% 0.036704 | 0.047213 | 0.039871 | 0.051056
D.E= 60% 0.040152 | 0.047368 | 0.038919 | 0.046757
D.E= 80% 0.048716 | 0.051637 | 0.043082 | 0.05107
D.E= 20% 0.013589 | 0.016412 | 0.012998 | 0.015511
250 VS= 50% D.E= 40% 0.012581 | 0.014886 | 0.012085 | 0.015189
D.E= 60% 0.013141 | 0.015523 | 0.012174 | 0.014888
D.E= 80% 0.013391 | 0.015684 | 0.012173 | 0.014689
D.E= 20% 0.004967 | 0.00546 | 0.00439 | 0.005373
VS 75% D.E= 40% 0.005144 | 0.005753 | 0.004825 | 0.00587 '
D.E= 60% 0.004771 | 0.005598 | 0.004319 | 0.005165
D.E= 80% 0.004769 | 0.005531 | 0.004398 | 0.00538
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Appendix B Estimation of Consumption Function

Countries | Coefficients MEL MEEL GMM CROCC CRACC2
rustral constant | 0.040883 | 0.297131 | -0.56099 | 0.175187 | 0.169007
ustralia slope | 0.903904 | 0.862429 | 1.001097 | 0.882166 | 0.883167
Austria constant | 0.697428 | 0.558382 | -0.69017 | 0.598455 | 0.627905
slope | 0.822427 | 0.84207 | 1.01731 | 0.836409 | 0.832249

sangladesh |_constant | 2888245 | 3.275478 | 3.203675 | 3.228758 | 3.081862
slope | 0.754554 | 0.684209 | 0.680853 | 0.692696 | 0.719382

o constant | 0.653818 | 3.873487 | 0.016325 | 0.883373 | 2.263653
Belgium slope | 0.855879 | 0.768929 | 0.932212 | 0.82829 | 0.812404
dia constant | 0.87257 | 2.904443 | 0.102782 | 2.935136 | 1.888507
slope | 0.763455 | 0.642297 | 0.941763 | 0.638956 | 0.702876

New constant | 5.328512 | 4 20.39655 | 5.328525 | 4.664256
Zealand slope | 0.559051| 0.65 | 0.989305 | 0.559049 | 0.604526
Spain constant | 0.017307 | 0.344233 | -0.17278 | 0.110209 | 0.18077
slope | 0.951401 | 0.918809 | 0.970317 | 0.94214 | 0.935105

oritamka |_constant | 0.781741 | 1.663143 | 0.250428 | 0.896459 | 1.222442
Slope | 0.919569 | 0.846584 | 0.958349 | 0.91007 | 0.883077
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Appendix C Estimation of Money Demand Function
.. Estimators

Country coefficients "o MEEL | GMM | CROCC | CRACC2
alpha 13.48706 | 13.41692 | 13.5331 | 13.45184 13.45199
Australia beta 1 1.332292 | 1.326763 | 1.335197 | 1.329515 1.329528
Beta 2 -0.3658 | -0.30779 | -0.40061 | -0.33667 -0.3368
alpha 15.82671 | 13.4607 | 10.30451 | 14.28837 14.64371
Bahamas beta 1 0.692968 | 0.912388 | 1.190769 | 0.835632 | 0.802678
Beta 2 -1.13306 | -0.86625 | -0.39599 | -0.95958 -0.99966
alpha 7.405828 | 5.684565 | 4.514197 | 6.392939 | 6.545197
Barbados beta 1 1.557935 | 1.718882 | 1.828512 | 1.652645 1.638409
Beta 2 -0.49286 | -0.42026 | -0.37214 | -0.45014 -0.45656
alpha 12.73991 11.326 | 26.41333 | 12.0116 12.03296
Belize beta 1 1.086851 | 1.238312 | -0.38156 | 1.164869 | 1.162582
Beta 2 -1.24919 | -1.18611 | -1.83796 -1.2167 -1.21765
alpha 27.08581 | 23.49773 | 25.4025 | 25.00163 | 25.29177
Canada beta 1 0.206776 | 0.531555 | 0.381692 | 0.395428 | 0.369166
Beta 2 -1.10219 | -0.94985 | -1.15918 -1.0137 -1.02602
alpha 12.67075( 11.6948 | 12.52629 12.193 12.18278
Dominica beta 1 0.983077 | 1.094832 | 1.050444 | 1.037783 | 1.038955
Beta 2 -0.95018 | -0.98642 | -1.22315 | -0.96792 -0.9683
alpha 10.75997 | 10.40242 | 10.73836 | 10.56546 10.5812
Fiji beta 1 1.2829| 1.321045 | 1.285203 | 1.303652 | 1.301973
Beta 2 -0.24042 | -0.19742 | -0.23783 | -0.21703 -0.21892
alpha 8.659073 | 7.690368 | 21.56799 | 8.119499 | 8.174721
Grenada betal 1.503722 | 1.519411 | 1.258571 | 1.512461 1.511567
Beta 2 -1.19684 | -0.75252 | -6.93384 | -0.94935 -0.97468
alpha 20.47284 | 18.80992 | 20.01009 | 19.55918 19.64138
Jamaica beta 1 0.739674 | 0.845766 | 0.795041 | 0.797964 0.79272
Beta 2 -1.13985 4 -0.99432 -1.2073 | -1.05989 -1.06709
alpha 22.11652 | 25.62112 | 13.55515 | 23.68147 | 23.86882
Japan beta 1 0.81326 | 0.58153 | 1.37935| 0.709783 | 0.697395
Beta 2 -0.04571 | -0.05048 | -0.03408 | -0.04784 -0.0481
alpha 12.76104 | 12.81586 | 13.21006 | 12.78782 | 12.78845
Kenya beta 1 1351085 | 1.34816 | 1.327386 | 1.349656 | 1.349623
Beta 2 -0.04695 -0.0572 | -0.13197 | -0.05196 -0.05208
alpha 21.53174 | 22.30248 | 24.5633 | 22.1808 | 2191711
Lesotho beta 1 0.621614 | 0.575286 | 0.481128 0.5826 0.59845
Beta 2 -2.22421 | -2.40153 | -3.04603 | -2.37353 -2.31287
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Estimators

Country coefficients Foer MEEL | GMM | CROCC | CRACC2
alpha | 15.99173 | 15.85597 | 17.61425 | 15.92052| 15.92385
Malawi betal | 1.080856 | 1.080097 | 1.08975| 1.080458 | 1.080477
Beta2 | -0.71861| -0.67078 | -1.2893 | -0.69352|  -0.6947
alpha | 16.82337 | 16.38107 | 7.181783 | 16.62403 | 16.60222
Papua New Guinea betal | 1.020966 | 1.039991 | 1.581664 | 1.02954| 1.030479
Beta2 | -1.16703 | -1.03652 | 1.27666 | -1.10821| -1.10178
alpha | 11.36105 | 11.23736 | 11.23241 | 11.29659 | 11.29921
Philippines betal | 1.577005 | 1.586923 | 1.587328 | 1.582174| 1.581964
Beta2 | -0.01764 | -0.00811 | -0.00779 | -0.01267 | -0.01288
alpha | 16.60935 | 16.83191 | 19.0395 | 16.71685| 16.72063
Sierra Leone betal | 1.018737 | 0.975616 | 0.942348 | 0.997909 | 0.997177
Beta2 | -1.11315| -1.00566 | -1.62164 | -1.06123 | -1.05941
alpha | 15.47461 | 15.11676 | 15.57828 | 152836 | 15.29569
Singapore betal | 1018082 | 1.049462 | 1.008937 | 1.034831| 1.033772
Beta2 | -0.99924 | -0.95047 | -1.01302 | -0.97321| -0.97486
alpha | 17.29033 | 16.77748 | 11.67634 | 17.02253 | 17.03391
Solomon Islands beta 1 0.69039 | 0.736705 | 1.090838 | 0.714575 0.713548
Beta2 | -1.85608 | -1.78699 | -0.55372 | -1.82001| -1.82154
alpha | 20.25904 | 19.93359 | 15.63602 | 20.0729 | 20.09632
South Africa betal | 0.946602 | 0.966046 | 1.226517 | 0.957723 | 0.956324
Beta2 | -1.13882 | -1.08208 | -0.34012 | -1.10637 | -1.11045
alpha | 17.51744 | 17.42959 | 20.23614 | 17.55981 | 17.47352
Sri Lanka betal |1.121903 |1.117462 | 1.095787 | 1.124045| 1.119683
Beta2 | -1.23509 | -1.18308 | -2.19007 | -1.26018 | -1.20909
alpha | 25.19735 | 28.26567 | -2.29956 | 26.42273 | 26.73151
St. Kitts and Nevis betal |0.645141| 0.36479 | 1.277738 | 0.533178| 0.504966
Beta2 | -5.82938| -5.98211 | 5323506 | -5.89038| -5.90575
alpha | 8480981 | 8.628457 | 7.721107 | 8.549208 | 8.554719
st. Lucia betal | 1535306 |1.538467 | 1.533181| 1.536769 | 1.536887
Beta2 | -1.06729 | -1.16184 -0.65| -1.11103| -1.11457
ot Vincent and the alpha | 11.84475 | 10.94959 | 8.079521 | 11.41195 | 11.39717
e betal |1.173992 |1.243587 | 1.32085| 1.207641| 1.20879
Beta2 | -1.26051 | -1.11241 | 0.079798 | -1.18891| -1.18646
alpha | 15.17194 | 15.37623 | 16.64025 | 1526964 | 15.27409
Swaziland betal |0.916861 | 0.910297 | 0.867772 | 0.913722| 0.913579
Beta2 | -0.92946 | -0.99515 | -1.39359 | -0.96088 | -0.96231
alpha | 17.75942 | 17.71008 | 19.93859 | 17.73462 | 15.92385
Uganda betal |0.994686 | 0.996368 | 0.913917 | 0.995531| 1.080477
Beta2 | -0.98117 | -0.97035 | -1.43159 | -0.97573|  -0.6947
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