o |
Aes. Ko (PRE) v

Centralized Association Rules Mining
(C-ARMing)

Tol236

Developed by

Zakia Jalil
Saleha Jamshaid

Supervised by

Dr. Malik Sikander Hayat Khiyal

Department of Computer Science
Faculty of Applied Sciences

International Islamic University, Islamabad.
(2006)

LIBRARY

Islamabad

*ZV 7.138€

Ass No (PHB) et

In The Name of

ALLAH ALMIGHTY
The Most Merciful, The Most Beneficent

Centralized Association Rules Mining (C-ARMing) Final Approval

Department of Computer Sciences

International Islamic University Islamabad

Date: 1. ve b
Final Approval

This is to certify that we have read the thesis submitted by Zakia Jalil 214-CS/MS/04
and Saleha Jamshaid 219-CS/MS/04. It is our judgment that this thesis is of sufficient
standard to warrant its acceptance by International Islamic University, Islamabad for the
degree of MS Computer Science.

Committee:

External Examiner !h l@&

Dr. Qasim Rind
Professor,
Preston University, [slamabad.

Internal Examiner ’ (L/

Mr. Asim Munir -~
Assistant Professor,

Faculty of Applied Sciences,

International Islamic University,

Islamabad.

Supervisor

Dr. M. Sikander Hayat Khiyal %‘E

Head, Department of Computer Science,
Faculty of Applied Sciences,
International Islamic University,
Islamabad.

Dissertation

A dissertation submitted to the
Department of Computer Science,
Faculty of Applied Sciences,
International Islamic University, Islamabad, Pakistan,

as a partial fulfillment of the requirements for the award of the degree of

MS in Computer Science

Centralized Association Rules Mining (C-ARMing) i

Dedication

To
The Holiest Man Ever Born,

Prophet Muhammad (plwyicdl!)

To
Our Parents and Families
We are most indebted to our parents and families, whose affection has always been the
source of encouragement for us, and whose prayers have always been a key to our
success.

To
Those Holy Seekers
Who give away their lives to make the stream of life flow
Smoothly and with Justice.

And
To
Our Honorable Teachers
Who have been a beacon of knowledge and a constant source of inspiration,
for our whole life span.

Centralized Association Rules Mining (C-ARMing) i

Acknowledgement

Declaration

We hereby declare and affirm that this software neither as a whole nor as a part thereof
has been copied out from any source. It is further declared that we have developed this
software and accompanied report entirely on the basis of our personal efforts, made
under the sincere guidance of our teacher§, If any part of this project is proven to be

of some other, we shall stand by the

copied out or found to be a reproduc{in
& §

consequences.

No portion of the work pres
application for other degree ¢

of learning.

Zakia Jalil
214-CS/MSCS/F04
Saleha Jamshaid
219-CS/MSCS/F04

Centralized Association Rules Mining (C-ARMing) iii

Acknowledgement

Acknowledgement

We bestow all praises to, acclamation and appreciation to Almighty Allah, The Most
Merciful and Compassionate, The Most Gracious and Beneficent, Whose bounteous
blessings enabled us to pursue and perceive higher ideals of life, Who bestowed us
good health, courage, and knowledge to carry out and complete our work. Special
thanks to our Holy Prophet Muhammad (SAW) who enabled us to recognize our Lord
and Creator and brought us the real source of knowledge from Allah (SWT), the

Qur’an, and who is the role model for us in every aspect of life.

We consider it a proud priviléged to expr@ss our deepest gratitude and deep sense

£

blik Sikander Hayat Khiyal who kept

obligation to our reverend supervisor D
our morale high by his suggestions a on. His motivation led us to this

success. Without his sincere and thd precious guidance; we could

It will not be out of placeftogexpr ‘ d 4 ¥aifon and gratitude for our

teachers Mr. Muhammad iy én- SaedeaiGRM f JURRLIK for their dedication,

presentation of this manuscript. 1 : our success.
Finally we must mention that it was main y due to our parent’s moral support and
financial help during our entire academic career that enabled us to complete our work
dedicatedly. We owe all our achievements to our most loving parents, who mean most
to us, for their prayers are more precious before any treasure on the earth. We are also
thankful to Miss Sadia Arshid and Miss Maham Javed for their assistance during the
project, and to our loving brothers, sisters, friends, and class fellows who mean the
most to us, and whose prayers have always been a source of determination for us.
Zakia Jalil
214-CS/MSCS/F04
Saleha Jamshaid
219-CS/MSCS/F04

Centralized Association Rules Mining (C-ARMing) v

Project In Brief

Project Title:

Organization

Under Taken By:

Supervised By:

Starting Date:

End Date:

Tools used:

System Used

PROJECT IN BRIEF

Centralized Association Rules Mining (C-ARMing)

International Islamic University, Islamabad

Zakia Jalil

Reg. No# 214/CS/MSCS/F04
Saleha Jamshaid

Reg. No# 219/CS/MSCS/F04

Dr.Malik Sikander Hayat Khiyal.

Head of Department of Computer Science
International Islamic University, Islamabad.
February, 2006.

July, 2006.

Matlab 7, VB.Net

Pentium 1V

Centralized Association Rules Mining (C-ARMing) v

Abstract

ABSTRACT

With the explosive growth in information technology, the demands of the users of the
computer systems from the data they are storing, is increasing day by day. The awareness
about the importance of the data for the businesses has made them more demanding of
their‘compu‘ter systems. Now 'they want their computers to think for\them and assist them
in decision making. So different Decision Support Systems are created for this purpose.
These DSS take data of over decades of the years as an input and give output in the form
of some smart business decision. This extraction of information from huge data
warehouses is known as Data Mining. Association Rule Mining is one of the branches of
Data Mining,. It refers to the mining of interesting associations between different data
items which can’t be found out with traditional data models. Association Rule Algorithm
finds these associations between the frequently sold items, so that the user could put such

associated items with in close proximity.

Our devised algorithm, CMA, is efficient than the existing algorithms by a factor of 50
percent in terms of database scans. In previous algorithms, the supports of the itemsets
were calculated by scanning the database for those particular itemsets. The multiple
database scans are avoided, in our devised algorithm, by using a formula of s*D for
calculating the supports of the itemsets. So the database is only scanned once for

candidate set creation alone.

The experiments are performed over the synthetic database, created exclusively for this

project. The synthetic database is used for performance efficiency.

Centralized Association Rules Mining (C-ARMing) vi

Centralized Association Rules Mining (C-ARMing) Table of Contents

TABLE OF CONTENTS
Chapter No Contents Page No
1. Introduction 1
1.1 Data Warchousing 2
1.2 Data Mining 4
1.2.1 Predictive Model 5
1.2.1.1 Classification 5
1.2.1.2 Regression 6
1.2.1.3 Time Series Analysis 6
1.2.2 Descriptive Model 6
1.2.2.1 Clustering 7
1.2.2.2 Summarization 7
1.2.2.3 Sequence Discovery 7
1.2.2.4 Association Rules 8
1.3 Association Rules Mining 8
1.3.1 Basic Concept 10
1.4 Association Rules Mining Environments 11
1.5 Existing Techniques 12 -
1.6 Scope of the project 14
2, Literature Survey 15
2.1 Association Rules Mining in Centralized Architecture 16
2.1.1 Mining of Association Rules between Sets of Items in
Large DBs 16
2.1.2 Set-Oriented Mining of Association Rules in Relational
DBs 17
2.1.3 Fast algorithm for Mining Association Rules 17
2.1.4 An Efficient Hash-Based algorithm for Mining Associaton
Rules 18
2.1.5 An Efficient Algorithm for Mining of Association Rules in
Large Databases 19
2.1.6 Mining Association Rules: Anti-Skew Algorithms 19
2.2 Association Rule Mining in Distributed Architecture 20

2.2.1 A Fast Distributed Algorithm for Mining Association Rules20
222 Efficient Mining of Association Rules in Distributed DBs 22

2.3 Problem Statement 23

3. Problem Domain and Proposed Solution 26
3.1 Problem Domain 27

3.1.1 Multiple Database Scans 27

3.1.2 Large Candidate Set Size 28

3.1.3 Algorithm’s Execution Time 28

3.1.4 Accurate Number of Partitions 29

3.1.5 Data for Association Models 29

3.1.6 Data Skew 30

3.2 Proposed Solution 30

3.2.1 Decreased disk I/O 31

viit

Centralized Association Rules Mining (C-ARMing)

Table of Contents

Chapter No Contents Page No
3.2.2 Dataset 32
3.2.3 Randomization of the Partitions 32
4, System Design 33
4.1 Major Modules & Architectural Diagram 33
42 Database Acquisition 34
4.3 Database Randomization 35
44 Partition Creation 35
4.5 Partition Loading 35
46 Locally Large Itemset Creation 36
4.6.1 Database Scan 36
4.6.1.1 Support Count 37
4.6.1.2 Candidate Set Generation 37
4.6.2 Local Itemset Calculation 37
4.7 Globally Large Itemset Creation 37
4.7.1 Global Candidate Set Generation 38
4.7.2 Global Large Itemset Calculation 38
S. Implementation 39
5.1 MS Excel 39
5.2 Visual Basic .Net 40
5.2.1 Creation of Randomized Partitions 40
53 MATLAB7.0 45
5.3.1 Partition Loading - 45
5.3.2 Finding Loclly Large 1-Itemse 46
5.3.3 Finding Loclly Large 2-Itemset 49
5.3.4 Finding Loclly Large k-Itemset 50
5.3.5 Finding Globally Large Itemset 53
6. Results 56
6.1 Working of PARTITION Algorithm 57
6.1.1 Processing on Partition 1 57
6.1.2 Processing on Partition 2 59
6.1.3 Processing on Partition 3 60
6.1.4 Globally Large Itemset Calculation 61
6.2 Working of CMA Algorithm 64
7. Conclusion and Future Enhancements 68
7.1 Conclusions 68
7.2 Future Enhancement 69
Appendix A References
Appendix B Publication
Appendix C .Net Technology

ix

Centralized Association Rules Mining (C-ARMing) Table of Contents

List of Tables
Serial No. Tables Page No.
1. Table 6-1: The dataset. 57
2. Table 6-2: Three Partition created after dividing the database. 57
3. Table 6-3: Candidate 1-itemsets of partition 1. 58
4. Table 6-4: Candidate 1-itemset of partition 2. 59
5. Table 6-5: Candidate 1-itemset of partition 2. 61
6. Table 6-6: Globally large 1-itemsets. 63
7. Table 6-7: Globally large 2-itemsets. 63
8. Table 6-8: Globally large 3-itemsets. 64
9. Table 6-9: 3 Partitions created by CMA. 64
10. Table 6-10: Candidate 1-itemsets. 65
11. Table 6-11: Large 2-itemsets and their supports. 66
12. Table 6-12: Large 3-itemsets and their supports. 66
13. Table 6-13: Global Support count of candidate itemsets. 67

Cemtralized Association Rules Mining (C-ARMing)

Table of Contents

List of Figures
Serial No. Fi_gures Page No.
1. Figure 1-1: Different Data mining models 5
2. Figure 3-1: Functionality of C-ARMing 31
3. Figure 4-1: Architectural Diagram 34
4, Figure 7-2 Database scans taken by different algorithms 68

xi

Chapter 1
’—-———_————————-———-

Introduction

Chapter 1 Introduction

1. Introduction

Businessmen are always been in the competition with their opponents. It is observed that
there is always an atmosphere of competition, whenever there are two stores in vicinity. Both
the shopkeeper will be in the state of contention for grabbing the attention of the customers.
There is, in fact, no harm in healthy business competition. It gives energy to the business, so
not only the businessman will enjoy the full fruit of his struggle, but also the customers will
be provided with best products.

The growth of the business depends upon a number of factors, i.e., businessman’s attitude
towards his customers, the environment of the store, the quality of the goods available, their
prices, the packing, the brands, and above all, the way the goods are placed in the shelves. It
has always been observed that it is not just the in-time availability of different products in the
store to help increasing its sales, but also their proper placement on the shelves. Businessmen
always try to do the best to increase the sales of their stores. In past, their efforts were
supported with their observation alone. The emergence of Information Technology has
changed the whole scenario of the business decisions. The users now analyze their data to
facilitate their business decisions. For example, previously a store keeper was required to do
a lot of observation in order to come to know how to place different products on the shelves?
Whether to make different categories of different products and then assign them to different
shelves or what? And what should be the criteria for categorizing different product items
together? What shelf formation is going to be well accommodated in the store and will result
in increasing sales? Entertaining such queries is not an easy task to handle. It requires
extraordinary observatory skills, and a mind to make good analysis. Whereas now a days,
with the help of data, and using a computer, a user can make any shelf planner and analyze
on the basis of each planner, and finalize the best suitable one for his store. His data also tells
him about the most frequently sold items, and what is the appropriate time to place an order
for the new stock? What stock? How much? And with what frequency? Keeping in view all
these issues and benefits of data, the users are not ready to loose any data. The day-to-day
data kept in Operational System can not reside permanently on disk. It remains on disk for

some specific time, and then dumped into archives. The user is ready to take any measures to

Centralized Association Rules Mining (C-ARMing) 1

Chapter 1 Introduction

preserve all its data, without loosing any amount of it. In return, with growing amount of data
in databases, the user is also expecting more from it. A marketing manager is no longer
satisfied with a simple listing of marketing contacts, but wants detailed information about
customer’s past purchases as well as predictions of future purchases [3], without realizing the
capabilities of the Data Models in use. In order to satisfy analytical queries, Data Warehouses

are the best forum.
1.1 Data Warehousing

A data Warehouse is a repository of information collected from multiple sources, stored
under a unified schema, and which usually resides at a single site. Data Warehouses are
constructed via a process of data cleaning, data transformation, data integration, data loading,

and periodic data refreshing [2].

According to Inmon, Data Warehouse is “A subject-oriented, integrated, time-variant, and
non-volatile collection of data in support of management’s decision making process” [4].
With Data Warehousing, corporate-wide data (current and historical) are merged into a single
repository. It contains informational data, which are used to support other functions such as
planning and forecasting [3]. The data has been gone through a number of phases to become
informaﬁonal data from operational data. There are many routines applied on it, commonly
known as Extract-Transform-Load (ETL) routines, through which the data from different
systems, files, mediums, data models and paradigms, is Extracted, and then Transformed into
some unified and summarized format after cleansing, and then Loaded onto the Data
Warehouse. The basic motivation for this shift to the strategic use of data is to increase
business profitability. Traditional data processing supports the day-to-day clerical and
administrative decisions, while Data Warehousing supports long-term strategic decisions. A
1996 report by International Data Corporation (IDC) stated that an average refurn on
investment (ROI) in Data Warehousing reached 401% [3].

Data Warehouse is used for Ad hoc queries. The data remains static in the Data Warehouse

as no changes or modifications could be done on it after it’s once been loaded into Data

Centralized Association Rules Mining (C-ARMing) 2

Chapter 1 Introduction

Warehouse. The data schema used for it could either be the Star Schema (in which the tables
or dimensions are kept de-normalized), or the Snow-Flake schema (which normalizes the

tables or the dimensions).

A Data Mart contains a subset of corporate-wide data that is of value to a specific group of
users. The scope is confined to specific selected subject [2]. The example of Data Mart could
be easily taken from a University System, where we have different departments, i.e.,
Accounts Department, Examination Department, and Students Affairs Department. If we
collect the historical data of a particular department from all sources, and clean them,
transform into a uniform format, and then load it in our computer, in order to be able to get
analytical queries answered, then it means we are building separate Data Marts for each
department of the University System. All Data Marts of an organization collectively form a
Data Warehouse. The data loaded on the computer system is supposed to be summarized
data, like if two attributes of STUDENT Entity class are in the format “current_date” and

“date_of birth”, after summarization, it would become a single attribute “student_age”.

Depending upon the source of data, Data Marts can be categorized as Independent or
Dependent. Independent Data Marts are sourced from data captured from one or more
Operational Systems, or external information providers, or from data generated locally within
a particular department or geographic -area. Dependent Data Marts are sourced directly from
enterprise Data Warehouses [2]. The Independent Data Marts are created using the Bottom-
Up approach of creating the Data Marts, in which developers start implementing the Data
Marts first, which eventually form a corporate-wide Data Warehouse. Whereas the
Dependent Data Marts are created by dividing the corporate-wide Data Warehouse into
subsets, according to the needs of the different departments. The approach followed for
creating the Dependent Data Marts is the Top-Down approach.

Data Marts may be stored and accessed separately. The level is at a departmental, regional or
functional level. These separate Data Marts are much smaller, and they more efficiently

support analytical types of applications [3].

Centralized Association Rules Mining (C-ARMing) 3

Chapter 1 Introduction

1.2 Data Mining

With limited amount of data, and information to be retrieved, simple SQL queries are
used to retrieve and present the demanded information to the user. But with the huge amount
of data and user’s increasing demand for sophisticated information retrieval out of this data,
the SQL queries can no longer fulfill the demands. However, the use of SQL is not always
adequate to meet the end user requirements of specialized and sophisticated information from
an unorganized large data bank. This necessitates looking for certain alternative technique to
retrieve information from large and unorganized source of data [6]. The SQL is used for
information retrieval from Operational Systems, which access the Database via queries that
are well-defined in the language like SQL. It accesses the data we have in our database, a
subset of the database. Whereas in Data Mining, the entire technique is different from that of
the traditional database queries. The query with which the data set is accessed might not
necessarily be well-defined or precisely stated [3]. It is mostly a fully fledged algorithm used
to query the data set in Data Mining. The data accessed is usually a different version from
that of the original Operational Database. Thé data have been cleansed and modified to better
support the mining process. The output of the Data Mining query is not a subset of the
database. Instead it is the output of some analysis of the contents of the Database [3]. So,
Data Mining is the technique of extracting meaningful information from large and mostly
unorganized data banks. It is the process of performing automated extraction and generating
predictive information from large data banks [6]. It can be defined as finding hidden
information in a database. Different Data Mining algorithms are used to fulfill the data
mining tasks. To do so, the algorithm first analyzes the data and then determines for that data
a closer model, according to its characteristics. There are two major types of the models,

Predictive Model and Descriptive Model, as shown in fig.1-1.

Centralized Association Rules Mining (C-ARMing) 4

Chapter 1 Introduction

Data Mining Algorithms Business Uses

Discover relationships in
data.

Customers who
purchasad SUVs are
also likely to purchase
optional insurance
products

Descnptive Business Use Case

Analysis

Classifying customers as
highly, medium., low
profitability or loss

Assign keywords (o text,
for future text mining

Praedictive

. Business Usc Case
Analysis - .

Figure 1-1: Different Data mining models

1.2.1 Predictive Model

This model uses known results found from different data and then makes the prediction. A
predictive Model enables to predict the values of data by making use of known results from a

different set of sample data [6]. This model is sub divided into three tasks:

1.2.1.1 Classification

The data is mapped into predefined groups, called the Classes. Classification enables to
classify data in a large data bank into predefined set of classes that are defined before
studying or examining data in the data bank. That is why it is also referred to as supervised
learning. Classification tasks not only enable to study and examine the existing sample data

but also enable to predict the future behavior of that sample data.

Centralized Association Rules Mining (C-ARMing) 5

Chapter 1 Introduction

1.2.1.2 Regression

The use of regression task enables to forecast future data values based on the present and past
data values. Regression task examines the values of data and develops a mathematical
formula. The result produced on using this mathematical formula enables to predict future
behavior of existing data [6]. For example, a college professor wishes to a reach certain level
of savings before her retirement. Periodically, she predicts what her retirement savings will
be based on its current values and several past values. She uses a simple linear regression
formula to predict this value by fitting past behavior to a linear function and then using this
function to predict the values at points in the future. Based on these values, she then alters
her investment portfolio [3].

1.2.1.3 Time Series Analysis

The use of time series analysis task enables to predict future values if the current set of
values are time dependent. Time series analysis makes use of current and past sample data to
predict the future values. The values to be used for time series analysis are evenly distributed
as hourly, daily, weekly, monthly, yearly, and so on. A time series plot can be drawn to
visualize the amount of change in data for specific changes in time [6]. There are three basic
functions performed in time series analysis. In case one, distance measures are used to
determine the similarity between different time series. In the second case, the structure of the
line is examined to determine (and perhaps classify) its behavior. A third application would

be to use the historical time series plot to predict future values [3].
1.2.2 Descriptive Model

A descriptive model identifies patterns or relationships in data. Unlike the predictive model,
a descriptive model serves as a way to explore the properties of the data examined, not to
predict new properties [3]. So a descriptive model enables to determine the patterns and

relationships in a sample data [6]. This model is used to examine the data and explore its

Centralized Association Rules Mining (C-ARMing) 6

Chapter 1 Introduction

properties. That’s how it is different from predictive model. This model further has four

tasks:
1.2.2.1 Clustering

The use of clustering enables to create new groups and classes based on the study of patterns
and relationship between values of data in a data bank [6]. Clustering is similar to
classification except that the groups are not predefined, but rather defined by the data alone.
Special type of clustering is called Segmentation (unsupervised learning). With
segmentation a database is partitioned into disjointed groupings of similar tuples called

segments [3].
1.2.2.2 Summarization

Summarization maps the data into subsets with associated simple descriptions. It extracts or
derives representative information about the database. This may be accomplished by actually
retrieving portions of the data. Alternatively, summary type information can be derived from
the data [3]. So the summarization enables to summarize a large chunk of data containing in
a web page or a document. The story of this summarized data enables to get the gist of the
entire web page or the document. Thus, summarization is also known as Characterization or

Generalization [6].
1.2.2.3 Sequence Discovery

Sequential Analysis or sequence discovery is used to determine sequential patterns in data.
These patterns are based on a time sequence of actions [3]. So the use of sequence discovery
enables to determine the sequential patterns that might exist in a large and unorganized data
bank. The sequence in data bank is discovered using the time factor, i.e., by associating the

data item by the time at which it was generated and the likes [6].

Centralized Association Rules Mining (C-ARMing) 7

Chapter 1 Introduction

1.2.2.4 Association Rules

Link Analysis alternatively referred to as Affinity Analysis or Association, refers to the
data mining task of uncovering relationships among data. The best example of this type of
application is to determine the association rules. An association rule is a model that
identifies specific types of data associations. These associations are often used in the retail
sales community to identify items that are frequently purchased together [3]. It establishes
association and relationships between large and unclassified data items based on certain
attributes and characteristics. Association rules define certain rules of associativity between

data items and then use those rules to establish relationship [6].
1.3 Association Rules Mining

As previously stated, it is not just the availability of the products that results in the
enhancements of the sales of a particular store, but there are other factors as well. One of
them is'the proper placement of the items on the shelves. Shelf placement should always be
done keeping in view the hidden associations between different products. Placing together
such associated goods will result in increased sales of the store. To have better understanding

of the concept, let’s go through the following case study:

Mr. Junaid opened a general store in a crowded residential area. To his comfort, there was
only one store in the vicinity, the Sheikh General store. So he was optimist for grabbing the
attention of the customers very soon. But for his amazement, people still preferred sheikh
general store for their buying. He started following the footsteps of the Sheikh’s by taking the
stock from the same wholesaler as the Sheikh’s do, and treating the customers with
politeness and honor. But still he was far away from meeting his sales goals, which was quite
strange for him. He started examining Sheikh’s quite critically. Every thing he did was
compatible to those of Sheikh’s. Then what’s the difference? So he decided to change the
shelf placement of his store. At the time, his shelves were arranged according to the item
categories like all the biscuits, pretzels, and bread were placed on one shelf, drinks were on

the other, snacks and sandwiches on the next, eggs were placed near butter, jam, honey and

Centralized Association Rules Mining (C-ARMing) 8

Chapter 1 Introduction

sandwich spread on separate shelf. Junaid was under impression that his shelf placement was
more presentable easy, as compared to the Sheikh’s, where different items were placed
together on shelves, without any proper arrangement, according to Junaid’s views. But
surprised with his continuous failure while Sheikh’s success, he adopted Sheikh’s shelf
placement as it is. Surprisingly, his sales also increased and soon his store became equally
popular as that of Sheikh’s. He then analyzed the keys of his success behind that change. He
came across some very interesting results. He realized that shelf placement is actually how
good you are in tempting a customer to buy something he hasn’t planned to buy, and not just
to help him buy the list of items he came from his home to buy. The trick is to target out the
proper shelf placement technique. To target that out, he started analyzing the buying habits of
the of customers, like if a customer is purchasing the milk, he might also be purchasing bread
and eggs (which are associated to the breakfast), so by placing them together within close
proximity may further encourage the sale of these items together within single visit to the
store. For the customers purchasing snacks at tea time, he placed together snacks, biscuits,
pretzels, sandwiches, pizzas, pastries and patties together, and for the teen-agers that are used
to take fast food as lunch, he placed soft drinks closed with the burgers. And by doing this,
he was now tempting a customer entered his store only to buy a burger, also to buy the Pepsi,
and the girl purchasing nail polish, also a nail polish remover, and hence enjoying full fruit of

his efforts.

The increase in Junaid’s sales was due to the fact that Mr. Junaid discovered the hidden link,
association, between different items. These associations are not casual relationships, so can
not be targeted out plainly by any Entity Relationship Diagram, or any other Data Model,
because they do not represent any relationship inherent in actual data, which is true in case of
functional dependencies. There are certain measures of rule-interestingness. One of them is
Support. The Support (s) for an association rule X=> Y is the percentage of transactions in
the database that contain X U Y [3]. The number of times the bread is purchased shows the
support for bread in the database. The other measure of rule interestingness is the
Confidence. The confidence or strength () for an association rule X=> Y is the ratio of the
number‘ of transactions that contain X U Y to the number of transactions that contain X.

confidence measure the strength of the rule, whereas support measures how often it should

Centralized Association Rules Mining (C-ARMing) 9

Chapter 1 Introduction

and the total number of transactions in D. The number of transactions required for the itemset
satisfying minimum support is therefore referred to as the minimum support count. If an
itemset satisfies minimum support, then it is a frequent itemset.
Association rule mining is a two-step process:
1. Find all frequent itemsets: by definition, each of those itemsets will occur at least as
frequently as a pre-determined minimum support count.
2. Generate strong association rules from the frequent itemsets: By definition, these
rules must satisfy minimum support and minimum confidence [2].

The association rules are generated simply using the following formula:

If
(support({Y, X})) > min_conf
support({X})
Then X=Y isavalid rule.

Here X is called the antecedent of the rule, whereas Y makes the consequent of the rule.
1.4 Association Rule Mining Environments

The problem of association rule mining falls in two broad categories: The Centralized

Environment, and the Distributed Environment.

In Centralized Environment, there is one, huge centralized database, from which the task is to
identify the most frequently occurring together items. So to generate association rules in such
an environment, not only the data to be examined is important, but also the size and amount
of data. It requires large memories, for scanning the data, candidate set generation and
support' count calculation. Also, the efficiency of algorithm to be designed for centralized

environment is very crucial.

In Distributed Environment, the data is either horizontally or vertically distributed across
different nodes of a network, so the problem of one single huge database is solved to some
extends, but it gives rise to another problem, i.e., the itemset found to be large at one node,

need not be so in the entire network. Such problems are faced because of data skewness

Centralized Association Rules Mining (C-ARMing) 11

Chapter 1 Introduction

occur in the database [3]. Support and confidence respectively reflect the usefulness and
certainty of discovered rules. A support of 2% for association rule means that 2% of all
transactions under analysis show that bread and butter are purchased together. A confidence
of 60% means that 60% of the customer who purchased bread, also bought the butter.
Typically, association rules are considered interesting if they satisfy both a minimum support
threshold and a minimum confidence threshold. Such thresholds can be set by users or

domain experts.
1.3.1 Basic Concept

Let I = {i1,iz,...,im} be the set of items. Let D, the task-relevant data, be a set of database
transactions where each transaction T is a set of items such that T < I. each transaction is
associated with an identifier TID. Let A be a set of items. A transaction T is said to contain A
if and only if Ac T. An association rule is an implication of the form A=B, where Acl,
Bcl, and ANB = @. The rule A=B holds in the transaction set D with support s, where s is
the percentage of transactions in D that contain A U B (i.e., both A and B). This is taken to
be the probability, P(AUB). The rule A=B has confidence c in the transaction set D ifcis a
percentage of transactions in D containing A that also contain B. This is taken to be the

conditional probability, P(B|A). That is,

Support (A=>B) = P(AUB).
Confidence (A=>B) = P(B|A).

Rules that satisfy both a minimum support threshold (min_sup) and a minimum confidence
threshold (min_conf) are called strong. By convention, we write support and confidence
value so as to occur between 0% and 100%, rather than 0 to 1.0.

A set of items is referred to as an itemset. An itemset that contains k items is a k-itemset.
The set {bread, butter} is a 2-itemset. The occurrence frequency of an itemset is the
number of transactions that contain the itemset. This is also known, simply, as the
frequency, support count, or count of the itemset. An itemset satisfies minimum support

if the occurrence frequency of the itemset is greater than or equal to the product of min_sup

Centralized Association Rules Mining (C-ARMing) 10

Chapter 1 Introduction

property. So in order to determine whether the locally large itemset is also globally large or
not, all the nodes broadcast its large itemsets across the network. But it results in increased

message passing, so this is also a problem to be solved.
1.5 Existing Techniques

There are a number of techniques adapted to handle the problem of association rule mining.
Each of these techniques strive to minimize the database scans, while generating smaller
candidate sets to avoid extra efforts of counting support and maintaining the information
about those false-positive candidates. The goal before each technique of association rule

mining is to generate more and more true-positives. The techniques are as follows:

AIS algorithm is presented in paper [7], which is the earliest work for the mining of
association rules of items in large databases. Its functionality is presented in detail in section
2.1.1. It takes a separate database scan for almost every step, like candidate itemset creation,
large 1-itemset generation, support count, etc. The problem with this algorithm is that, it is
confined to only the single consequent rule generation. Secondly the larger candidate set

generated is its major drawback.

An algorithm SETM is presented in [8]. It works in the same way as AIS, but SQL is used to
compute large itemsets. The detailed functionality is described in section 2.1.2. The
technique discussed in SETM is also a single consequent rule generation technique. Its
disadvantage is due to the larger size of candidate set generated. For each candidate itemset,
the candidate generated has many entries as the number of transactions in which the
candidates are present. Also to count the support for candidate itemsets, the candidate set is
in wrong order and needs to be sorted on itemsets. After counting and pruning out small
candidate itemsets that don not have minimum support, the resulting set of large items needs

another sort on TID before it can be used for generating candidates in the subsequent passes.

The pioneer work is presented in [9] in which notorious Apriori algorithm is presented. All

other subsequent algorithms are the adaptation of Apriori to some extents. Details of this

Centralized Association Rules Mining (C-ARMing) 12

Chapter 1 Introduction

paper are presented in section 2.1.3. The author discovered some shortcomings in his Apriori
algorithm himself, so presented another version of Apriori called AprioriTid. It works in the
same way as Apriori, but does not use the database for counting support after the first scan,
instead it uses the pair of itemset and it’s TIDs for this purpose. It works efficiently in later
passes. The best features of both the algorithms were combined in another variant of Apriori,
presented in the same paper called AprioriHybrid. In Apriori, the problem is that the
database of transactions is scanned entirely for each pass. For AprioriTid algorithm, the
database is not scanned after the 1% pass. Rather, the transaction id & candidate large k-
itemsets present in each transaction are generated in every pass. But AprioriTid’s
performance is not better than Apriori’s in initial stages, as there are too many candidate k-
itemsets to be tracked during the early stages of the process. The AprioriHybrid algorithm is
presented as a solution comprising of the best features of Apriori and AprioriTid, but the

challenge is to determine the switch over point between the two algorithms.

The algorithm DHP (standing for Direct Hashing and Pruning) is presented in [10], which is
an extension of Apriori. It is confined to the generation of large itemsets only. Its details are

given in section 2.1.4. It also uses the Apriori_gen() and Subset() function as were used in

the Apriori.

PARTITION algorithm is presented in [11]. This algorithm takes two database scans.
Firstly, for generation of all potentially large itemsets and store it as a set, this set is the
superset of all the large itemsets. Secondly, to measure the support of these itemsets and
storing them in their respective counters created. The detailed study of PARTITION
Algorithm is presented in section 2.1.5. The main problem with PARTITION algorithm is to
find out the accurate number of partitions for the given memory. So this must also be cater

for while implementing.

The mining of association rules in distributed environment is discussed in section 2.2, which
is an important and emerging field of database scenarios. An algorithm DMA (Distributed
Mining of Association rules), is presented in [13], which is an adaptation of Apriori in

parallel systems. The performance of algorithm is compared with another algorithm, CD

Centralized Association Rules Mining (C-ARMing) 13

Chapter 1 Introduction

(Count Distribution), which is the adaptation of Apriori in share nothing parallel systems.
The details of DMA are given in section 2.2.2. It takes just a single database scan in the

course of its execution.

The literature proves that the generation of large itemsets is the main problem in generating
the association rules in large databases. It involves many problems like the candidate sets
created for generation of large itemsets are very large; the database is supposed to be scanned
again and again in order to create candidate sets and to generate their support counts. Also

the pruning of the itemsets from the candidate sets, that are not large, is also a problem.

1.6 Scope of the project

The Association Rule Mining is a very effective research area, which helps in facilitating not
only the retail industry problems of hidden association between different itemsets, but also in
different other areas like telecommunications, effective advertising, targeted marketing, and

inventory control.

In the centralized environment, the problem is to take the huge database and apply the
association rule mining algorithm on that database, which definitely is not easy to be handled
efficiently. Secondly, the extra database scans in that case is also a big problem in both the
cases of time and space complexities. In this case huge memory is required to scan the entire
database, which is either in partitions or in a single large database. So it needs resource-

hungry architecture.

Centralized Association Rules Mining (C-ARMing) 14

Chapter 2

e ——————————————————————————————

Literature Survey

Chapter 2 Literature Survey

2. Literature Survey

One of the reasons behind maintaining any database is to enable the user to find interesting
patterns and trends in the data. For example, in a supermarket, the user can figure out which
items are being sold most frequently. But this is not the only type of ‘trend’ which one can
possibly think of. The goal of database mining is to automate this process of finding
interesting patterns and trends. Once this information is available, we can perhaps get rid of
the original database. The output of the data-mining process should be a "summary" of the
database. This goal is difficult to achieve due to the vagueness associated with the term
‘interesting’. The solution is to define various types of trends and to look for only those

trends in the database. One such type constitutes the Association Rules.

Association rule mining finds interesting association or correlation relationships among a
large set of data items. With massive amounts of data continuously being collected and
stored, many industries are becoming interested in mining association rules from their
databases. The discovery of interesting relationships among huge amounts of business
transaction records can help in many business decision making processes, such as catalog

design, cross-marketing, and loss-leader analysis.

A typical example of association rule mining is Market Basket Analysis. This process
analyzes customer buying habits by finding associations between the different items that
customers place in their “shopping baskets”. The discovery of such associations can help
retailers develop marketing strategies by gaining insight into which items are frequently
purchased together by customers. For instance, if customers are buying milk, how likely are
they to also buy bread (and what kind of bread) on the same trip to the supermarket? Such
information can lead to increased sales by helping retailers do selective marketing and plan
their shelf space. For example, placing milk and bread within close proximity may further
encourage the sale of these items together within single visits to the store. So association rule
mining has always been a hot topic for the researchers, as it addresses the problem area of the
retail industry, from where every one today is effected to some extent. The amount of

research going on in the area predicts that in near future, we should expect computers to help

Centralized Association Rules Mining (C-ARMing) 15

Chapter 2 Literature Survey

each and every business of any volume, in every aspect. No matter whether it is shelf
placement, Human Resource Management, customer’s trend analysis, and introduction of

new products based on those trends analyzed and what not.
2.1 Association Rule Mining in Centralized Architecture

In centralized environment, there is one, huge centralized database, from which the task is to
identify the most frequently occurring together items. So to generate association rules in such
an environment, not only the data to be examined is important, but also the size and amount
of data. It requires large disks, for scanning the data for candidate set generation and support
count calculation. Also, the efficiency of algorithm to be designed for centralized

environment is very crucial.

Today, the data warehouses are mostly developed on centralized architecture, as they contain
massive amount of data of the tens of years, so the organizations often dedicate one big
machine with huge memory and fastest processing capabilities and RAM for the data
warehouse at a single node. When data warehouses are centralized, so are the data mining
algorithms, and so are the researches undertaken on the data mining. Association rule mining,
too, is mostly done in centralized environment. Different techniques of centralized mining of
association rules are devised so far, like Apriori, Sampling, Partitioning, Data parallelism,
Task parallelism etc. In the following, we give the study of few notorious research papers of

the centralized architecture of the association rule mining.
2.1.1 Mining Association Rules Between Sets of Item In Large Databases.

Agarawal et al., [7] presented in this papér an algorithm called AIS, for the mining of
Association rules of items in large databases. According to algorithm, the database is scanned
and candidate sets of frequently occurring itemsets are created. Their support is counted with
database scan again. It reads the transaction and determines which large items of previous
pass are present in that transaction. New candidate itemsets are generated by extending these

large itemsets with other items in the transaction. The candidates generated from a

Centralized Association Rules Mining (C-ARMing) 16

Chapter 2 Literature Survey

transaction are added to the set of candidate itemsets for the pass, or the counts of the

corresponding entries are increased if they were created by an earlier transaction.
2.1.2 Set-Oriented Mining for Association Rules in Relational Databases

Houtsma and Swami., [8] presented in this paper an algorithm, called SETM. It works in
the same way as AIS, but SQL is used to compute large itemsets. The candidate set
generations separate in SETM than counting. Candidate itemsets and the TIDs of the
transactions containg it are saved in same sequential structure, which is sorted and
aggregated at the end of pass in order to determine the support count of candidate set. The
small candidate itemsets are pruned out after counting, as they do not have minimum support
specified by the user. Then the set of the candidate set is again sorted on the basis of TIDs

preparing it to be used in the next pass for generating candidate set.
2.1.3 Fast Algorithms for Mining Association Rules

Agarawal and Srikant., [9] presented in this paper an algorithm, called Apriori. It is termed
as the pioneer work in their area. All other subsequent algorithms are the adoption of Apriori
to some extents. This algorithm counts item occurrences from the database to determine large
1-itemset in first pass. In the next pass, the algorithm

1).Generates candidate itemsets

2).Checks the support count.

The algorithm uses a special function, apriori-gen () and uses the candidate itemsets of
previous pass to generate large itemsets. It joins the previously determined large itemsets to
make the candidate itemsets. It stores the candidate itemsets in a Hash tree, a special
structure. The candidate itemsets generated by this algorithm is smaller one than that created

by SETM and AIS. Also, it generates multiple consequent association rules, which AIS and
SETM do not.

Centralized Association Rules Mining (C-ARMing) 17

Chapter 2 Literature Survey

Another version of Apriori, AprioriTid, is also presented by authors in this paper, which
works in the same way as Apriori, but does not use the database for counting support after
the first scan, instead it uses the pair of itemset and its TIDs for this purpose. It works

efficiently in later passes.

AprioriHybrid is another variant of the same algorithms which combines the best features
of both Apriori and AprioriTid, i.e., using Apriori in earlier iterations and AprioriTid in later
ones, to enjoy more benefits from both the algorithms. Basically in AprioriHybrid, it
switches to AprioiTid when it expects that the set of candidate item sets at the end of the pass
will fit in memory. Experimental results show that AprioriHybrid has excellent performance

over large databases.
2.1.4 An Effective Hash-Based algorithm for Mining Association Rules

Park et al,, [10] give in this paper, the algorithm DHP (standing for Direct Hashing and
Pruning), which is an extension of Apriori. It uses the hashing technique. It is confined to the
generation of large itemsets, the step one of the mining association rules. It deals with the
itemset generation up to 2-itemsets. It also uses the Apriori_gen() and Subset() function as
were used in the base algorithm, Apriori. The major features of DHP are:

1).It generates large itemsets more efficiently.

2).It also reduces the transaction database.

It uses hashing technique for generation of candidate itemsets, especially for 2-itemsets and
for reducing the database size. It uses the effective pruning techniques to progressively shrink
the size of transaction database. The candidate itemset generated by previous algorithms was
very large so tracking of k-itemsets in each transaction was not easy. Where as DHP trims
the database right after generation of large 2-itemsetm, so the cost of computation is reduced
for the subsequent iterations. As DHP generates Hash table in its first pass for storage of
candidate sets, so it takes a bit longer time in first pass than Apriori. But its execution time

for later iterations is much faster than Apriori.

Centralized Association Rules Mining (C-ARMing) 18

Chapter 2 Literature Survey

2.1.5 An Efficient Algorithm for Mining Association Rules in Large Databases

Savasere et al., [11] presented PARTITION algorithm in this paper. This algorithm takes
two database scans. Firstly, for generation of all potentially large itemsets and store it as a
set, this set is the superset of all the large itemsets. Secondly, to measure the support of these

itemsets and storing them in their respective counters created.

The working of this algorithm is divided in two phases. In phase I, the database is logically
divided into non-overlapping partitions, which are considered one by one and large itemsets
for each partition are generated and at the end all itemsets are merged to form the set of all
potentially large itemsets. The phase II generates the actual support of these itemsets, to
identify large itemsets. The partition sizes are chosen such that each partition can be
accommodated in the main memory so that the partitions are read only once in each phase.

The database is read once in phase I and once in phase II. The small itemsets are pruned out.
For each itemset, is associated its sorted TID list. A TID list for itemset 1 contains the TIDs
of all transactions that contain the itemset 1 within a given partition. To count the support of
all itemsets in a partition, this algorithm divides the cardinality of TID list by the total
number of transactions in that partition. Initially, the tidlists for 1-itemsets are generated
directly by reading the partition. The tidlist for a candidate k-itemset, is generated by joining

the tidlists of the two (k-1)-itemsets that were used to generate the candidate k-itemset.
2.1.6 Mining Association Rules: Anti- Skew Algorithms

Lin and Dunham, [14] presented a series of algorithms, called AS-CPA, in which different
algorithms were presented. In case a random sample can be drawn, the RSAS-CPA is
presented, whereas in case a random sample is not to be drawn without scanning the database
from the beginning, a SSAS-CPA is applied.

AS-CPA is the variation of the SPINC algorithm, which makes use of the cumulative count
of each candidate itemset to achieve the illusion of a large partition. AS-CPA provides
several effective techniques to filter out false candidate itemsets at an earlier stage, as
compare to SPINC algorithm.

Centralized Association Rules Mining (C-ARMing) 19

Chapter 2 Literature Survey

2.2 Association Rule Mining in Distributed Architecture

In distributed environment, the data is either horizontally or vertically distributed across
different nodes of a network, so the problem of one single huge database is solved to some
extends, but it gives rise to another problem, i.e., the itemset found to be large at one node,
need not be so in the entire network. Such problems are faced because of data skew property.
So in order to determine that whether the locally large itemset is also globally large or not, all
the nodes broadcast its large itemsets across the network. But it results in increased message

passing, so this is also a problem to be solved.

In Distributed architecture, a data warehouse is divided amongst the local nodes of the
distributed system, so each node maintains its own data warehouse. This trend is mainly
supportive for the big chains, having customers and branches all over the world. Centralized
data warehouses for such organizations are not a sane idea, so the data warehouse is

distributed among each node.

In distributed data warehouses, the data mining techniques for association rule mining are
mostly adapted from centralized environment, and modified in order to meet the needs of the
distributed architecture. Although a little, but the comprehensive work done so far in the
distributed environment is also considered in this research. The literature surveyed for

distributed association rule mining is as follows:
2.2.1 A Fast Distributed Algorithm for Mining Association Rules.

Cheung et al,, [12] discussed in this paper the mining of association rules in distributed
environment, as it is an important and emerging field of database scenarios. An algorithm
FDM (standing for Fast Distributed algorithm for Mining) is proposed in this paper which in
an adoption of DHP in parallel environment, with three variations i.e., FDM-LP, FDM-LUP
and FDM-LPP. The performance of algorithm is compared with another algorithm, CD
(Count Distribution), which is the adoption of Apriori in share nothing parallel systems.

Centralized Association Rules Mining (C-ARMing) 20

Chapter 2 Literature Survey

As FDM is designed mainly for parallel systems (which can be easily extended to distributed
systems) so the task of finding large itemset is divided into two subtasks:
1).To determine the locally large itemsets

2).To determine the globally large itemsets

The FDM has some distinct features. Firstly, the candidate sets are generated at each site
using technique of Apriori. Secondly some itemsets from the candidate sets generated are
pruned .away using two different techniques, the local pruning and global pruning, to prune
away those itemsets that are not truly the large itemsets. Thirdly, to determine the support
counts to check whether the itemset is large or not, O(n) messages are required for each
itemset. Whereas the straight forward adoption of some sequential technique requires O(n?)
messages. To ensure O(n) messages, a technique count polling is introduced. In this
technique, each candidate itemset is assigned to a polling site, which will determine whether
that itemset is globally large or not by broadcasting polling requests for that particular
itemset and collecting the local support counts for it and then determining the global support
count., At each site, the large itemsets along with their support counts are sent to their
respective polling site before polling request. The polling site then sends polling request to
rest of the sites to collect the support counts and when all the support counts are received, the
globally large itemsets are determined and broadcast to all the sites along with their global
support counts. In this paper, the authors compared their technique with anther algorithm, the
Count Distribution. The details of CD algorithm are given below.

CD (Count Distribution)

It generates the candidate itemsets using apriori-gen () function, at each site on the large
itemsets found in previous pass. Then local support counts for all candidate itemsets are
computed at each site, and then broadcasted to all the sites then the globally large itemsets
are computed and so on. Same process is repeated for all the iterations. The number of

messages to compute support count for each candidate itemsets in CD is O(n?).

Centralized Association Rules Mining (C-ARMing) 21

Chapter 2 Literature Survey

2.2.2 Efficient Mining of Association Rules in Distributed Databases

Cheung et al., [13] enhanced their previous work discussed in [13] in this paper. The claim
of O(n) messages passed to collect support count for a candidate itemset was not achieved by
FDM successfully, and it remained O(n?) messages. To cope with this problem, another
algorithm DMA (Distributed Mining of Association rules), is presented. The performance of
DMA is tested against CD algorithm. In DMA, to generate candidate itemsets, apriori-gen ()
is not applied directly, rather it is applied in such a way that it minimizes the candidate set to
a greater extend than in the case of direct application of apriori-gen(). '

DMA also uses polling site technique to determine heavy itemsets. After local pruning, each
site computes candidate set itemsets along with their support counts and sends it to their
corresponding polling site. After receiving it, polling site sends polling request to the rest of
sites to send the support count for that itemsets. As all the sites are already having the support
counts of all itemsets so reply to polling request is sent by those remaining sites as well. The
polling site then computes the global count, determines the heavy itemsets and broadcasts
those heavy itemsets along with their global support counts to all the sites. In the whole
procedure, the database partition at each site is scanned only once for calculating the support
count and then those counts are stored in hash tree. This hash tree contains the support counts
of both the heavy itemsets at that site and heavy itemsets at some other site. The later are
stored in order to entertain the polling requests made by the remote sites so one database scan
is done to compute the support counts of itemsets and are stored in the hash tree and retrieved
from that hash tree when required. This optimizes the database scanning required for count

exchange, which is equivalent as that done in the sequential algorithms.

As the candidate sets at all the sites are the same, so during polling requests, instead of
sending the name of itemset, only their respective position is sent to optimize the size of the
message over the network.

The algorithms tested for its performance in two ways i.e.

1).With fixed number of sites and varying support threshold and the size of database.

2).With different number of sites and fixed support threshold and database size.

In both cases DMA performs better than CD.

Centralized Association Rules Mining (C-ARMing) 22

Chapter 2 Literature Survey

2.3 Problem Statement

In mining the association rules, the problem is decomposed in to two steps:
1. All the itemsets that have support above the user specified minimum support are
generated. These itemsets are called large itemsets. All the others are said to be small.

2. Then from these large itemsets generate the association rules.

From the literature surveyed, it is obvious that the first step dominates the efficiency of the
whole algorithm. If the number of candidate itemset is small and to-the-point, the rules
generated on the basis of these itemsets would be the exact ones. Their will be a little effort

spent on pruning the small itemstes during the iteration of algorithm in k steps.

After the creation of large itemsets, it is straightforward to generate rule out of it, using the
above mentioned formula. So it is the stepl which determines the efficiency of the algorithm
as the database is scanned for many times during this step. Firstly, the items are taken from
the database, then their support is counted from the database, then 2-itemsets are created, and
till k-itemset creation the database is scanned again and again, i.e., the same is done for the
every iteration. As it is obvious that the mining of association rules is not done on a small
database rather it could be on a huge database, or a Data warehouse, or some distributed
database with multiple nodes. So this multiple scan of database physically means a lot.

Excessive research has been done on this area.

An earlier work in this area was done in paper [7], but it is confined and restricted to only the

single consequent rule generation. Secondly the larger candidate set generated is its major
drawback.

The technique discussed in paper [8] is also a single consequent rule generation technique. Its
disadvantage is due to the larger size of candidate set generated. For each candidate itemset,
the candidate generated has many entries as the number of transactions in which the

candidates are present.

Centralized Association Rules Mining (C-ARMing) 23

Chapter 2 Literature Survey

Also to count the support for candidate itemsets, the candidate set is in wrong order and
needs to be sorted on itemsets. After counting and pruning out small candidate itemstes that
don not have minimum support, the resulting set of large items needs another sort on TID

before it can be used for generating candidates in the subsequent passes.

For Apriori, discussed in [9], the database of transactions is scanned entirely for each pass,
while in first pass the database is scanned twice, so it means for 10 iterations, 10+1 scans of

the entire database.

For AprioriTid algorithm, the database is not scanned after the 1% pass. Rather, the
transaction id & candidate large k-itemsets present in each transaction are generated in every
pass. But AprioriTid’s performance is not better than Apriori’s in initial stages, as there are

too many candidate k-itemsets to be tracked during the early stages of the process.

The Hybrid algorithm is presented as a solution comprising of the best features of Apriori
and AprioriTid, but the challenge is to determine the switch over point between the two

algorithms.

The problem of efficient itemset generation is tackled up to 2-itemset generation only in [10].

PARTITION algorithm is presented in [11]. The main problem with PARTITION algorithm
is to find out the accurate number of partitions for the given memory. So this must also be

cater for while implementing.

Itemsets are reduced in the second iteration in paper [12]. So other iterations might have a
larger set of candidate itemsets. Also O(n) messages claim is not met. Actually it remained
O(n?).

The problem with AS-CPA algorithm family, presented in [14] is that it takes (2n-1)/n scans
over the database, where n is the number of partitions. So as the number of partitions

increase, the number of scans over the database also increases.

Centralized Association Rules Mining (C-ARMing) - 24

Chapter 2 Literature Survey

The literature survey proves that the generation of large itemsets is the main problem in
generating the association rules in large databases. It involves many problems like the
candidate sets created for generation of large itemsets are very large; the database is
supposed to be scanned again and again in order to create candidate sets and to generate their
support counts. Also the pruning of the itemsets from the candidate sets, that are not large, is
also a problem. So in order to get efficient results, DMA presented in [13] should be

implemented in centralized environment.

Centralized Association Rules Mining (C-ARMing) 25

Chapter 3

————————————————————————————————

Problem Domain and
- Proposed Solution

Chapter 3 Problem Domain and Proposed Solution

3. Problem Domain and Proposed Solution

Association rule mining is grabbing more and more attention of the researchers of the Data
Mining because this is the area of the common interest of every one. It mainly addresses the
problem that the retail community faces, which affects almost every body. Association rule
mining is basically to find out those special and interesting relationships between different
items which can never be targeted out by any other means. The Association model is often
associated with "market basket analysis", which is used to discover relationships or
correlations in a set of items. It is widely used in data analysis for target direct marketing,
catalog design, and other business decision-making processes. A typical association rule of
this kind asserts the likelihood that, for example, "70% of the people who buy spaghetti, cola

drink, and sauce also buy garlic bread."

Association models capture the co-occurrence of items or events in large volumes of
customer transaction data. Because of progress in bar-code technology, it is now possible for
retail organizations to collect and store massive amounts of sales data, referred to as "basket
data." Association models were initially defined on basket data, even though they are
applicable in several other applications. Finding all such rules is valuable for cross-marketing
and mail-order promotions, but there are other applications as well: catalog design, add-on

sales, store layout, customer segmentation, web page personalization, and target marketing.

Traditionally, association models are used to discover business trends by analyzing customer
transactions. However, they can also be used effectively to predict Web page accesses for
personalization. For example, assume that after mining the Web access log, Company X
discovered an association rule "A and B implies C," with 80% confidence, where A, B, and C
are Web page accesses. If a user has visited pages A and B, there is an 80% chance that
he/she will visit page C in the same session. Page C may or may not have a direct link from
A or B. This information can be used to create a dynamic link to page C from pages A or B
so that the user can "click-through" to page C directly. This kind of information is
particularly valuable for a Web server supporting an e-commerce site to link the different

product pages dynamically, based on the customer interaction.

Centralized Association Rules Mining (C-ARMing) 26

Chapter 3 Problem Domain and Proposed Solution

Since association rule algorithms work by iterative enumeration, they work best for sparse
data sets, that is, data sets where each record contains only a small fraction of the total
number of possible items (if the total number of items is very large). Algorithm performance
degrades exponentially with increasing number of frequent items per record. Therefore, to
get good runtime performance, one of the following conditions should hold:

o If the data set is dense, the number of possible items (candidate itemset) is small.

o If the number of possible items is large, the data set is sparse.

e The data set becomes progressively sparser with increasing item set length due to the

application of the minimum support threshold.

The last condition holds for higher minimum support values.
3.1 Problem Domain

There are some issues in association rule mining that must be considered while devising an
efficient association rule mining algorithm, because it can degrade the performance of the

algorithm if not catered for. Some of the issues are:

3.1.1 Multiple Database Scans

So, with the help of association rule mining, the aim is to find out the hidden associations
between items and generate association rules, which facilitates the retailers to place the items
of high confidence value together. The problem with the association rule mining is the
multiple database scans. For example, at first, different items are examined as whether they
are frequently sold items or not. Then the frequently sold items are examined together to find
out the confidence between two large itemsets. For the large 2-itemsets, confidence level is
measured, and then large 3-itemsets are found, and so on, up till large k-itemsets. Before
generating a particular large itemset, its respective candidate itemset is generated first.
During all this process, the database is scanned again and again. Multiple disk I/Os are never
appreciated in the computing world; no matter how much smaller is the size of that file.

While talking about data mining disk I/Os, we always refer to a huge data warehouse, having

Centralized Association Rules Mining (C-ARMing) 27

Chapter 3 Problem Domain and Proposed Solution

data of over decades of years. So in data mining, the primary task should always be to

minimize the database scans, the disk I/Os, and not the query execution time.

3.1.2 Large Candidate Set Size

Large itemsets are generated on the basis of its respective candidate sets. For example, in
order to generate large 3-itemset, its candidate 3-itemset is considered, which is created from
large 2-itemset. So candidate set plays the vital role in the efficiency of the algorithm. The
large sized candidate sets result into the wasted efforts of considering false candidates as the
large itemsets. So in order to have an efficient algorithm for association rule mining, efforts
should be made to generate accurate and smaller candidate sets, having almost all the

candidate items that should be the large items as well.

3.1.3 Algorithm Execution Time

Although the algorithm execution time has never been an issue in data warehousing queries,
because these queries run on huge data gluts, having data of twenty to forty years, so
obviously data warehouse queries are time consuming. In fact the data mining queries are
asked to help in reaching some decision. These decisions can change the over all shape of the
business in question, hence has a long lasting effect on it. So the obvious delays in query
response time are tolerated with patience in business community. To understand this

scenario, let’s take the example of ABC TV manufacturing company.

ABC TVs want to establish a new branch of their company in a neighboring/ European
country. Before going to take such a decision and invest in a foreign country, they want to
know is it safe and sane to invest there or not? Will it proved to be a good decision? To
answer such queries, they need to consider few factors. Like, is TV-Watching the favorite
and popular time passing activity there or not? What is the annual sale of TV’s there? What
is the standard of TV channels, and the programs they telecast? And what are the average
prices of TV’s in the market out there? To get such queries answered, a huge database needs
to be considered, having records of some 10-15 years, and telling about the sales transactions

of TV sets. Manually, such queries would be taking at least a month to be answered.

Centralized Association Rules Mining (C-ARMing) 28

Chapter 3 Problem Domain and Proposed Solution

Whereas, using some data mining algorithm, results could be efficiently and quickly
generated. So, if this data mining algorithm takes some time, of course longer than that of the
usual operational queries, it is just nothing as comparing it with the benefits they are getting
from it. The algorithm will tell them, after analyzing the TV customer’s data, about the
average sale prices of TV sets, the average number of TV sets sold there, the growth in sales
of TV sets before some big sporting event (like FIFA world cup, Olympics, etc.), and will
finally help the top management of company to decide whether to invest there or not, in the
time span that is much much shorter than that would have been taken by the management

manually, and with much accuracy that is intractable to be achieved through manual system.
3.1.4 Accurate Number of Partitions

Partitioning is the technique of dividing the dense centralized database into a number of
partitions, and then executing the algorithm on each partition by bringing the partitions one
by one in the memory. A partition once brought into the memory for execution must not be
brought again. Also care must be taken while making partitions so that the made partition
should fit well in to the memory, and hence the need for bringing a partition rapidly into the

memory is minimized.

3.1.5 Data for Association Models

Association models are designed to use sparse data. Sparse data is data for which only a
small fraction of the attributes are non-zero or non-null in any given row. Examples of sparse
data include market basket and text mining data. For example, a market basket problem,
there might be 1,000 products in the company's catalog, and the average size of a basket (the
collection of items that a customer purchases in a typical transaction) is 20 products. In this
examplé, a transaction/case/record has on average 20 out of 1000 attributes that are not null.
This implies that the fraction of non-zero attributes on the table (or the density) is 20/1000, or
2%. This density is typical for market basket and text processing problems. Data that has a
significantly higher density can require extremely large amounts of temporary space to build

associations.

Centralized Association Rules Mining (C-ARMing) 29

Chapter 3 Problem Domain and Proposed Solution

Association models treat NULL values an indication of sparse data. The algorithm doesn't
handle missing values. If the data is not sparse and the NULL values are indeed missing at
random, it is necessary to perform missing data imputation (that is, "treat” the missing

values) and substitute the NULL values for a non-null value.
3.1.6 Data Skew

One of the major problems of the Partition algorithm is data skew, which refers to the
irregularity of data distribution over the entire database. For example, the October earthquake
of Pakistan caused a drastic demand for tents. Per month demands of the tents for the
affected areas were about 200,000, and the situation remained so throughout the winters. By
using the sequential approach for partitioning the centralized database, if we take the data of
a quarter of the year as one partition, then according to the 4" partition of 2005’s data, tent
will emerge as a large itemset, which in fact is not. As a contrary, the annual sale of tents in
Pakistan, before the October earthquake, is 25 tents per year. This is the outlier, caused by
the data skew of the abnormal circumstances. And if we take the transactions randomly from
the database to build different partitions, the October-Dec’05’s tragic condition’s transactions

will be distributed throughout the database, so no problem of outliers will emerge.

Data skew can cause the algorithm to generate many false candidate itemsets. One way to
overcome the data skew is the randomness of data across all partitions. However, this
conflicts with the goal of exploiting sequential I/O to speed up reading the database. Even
without data skew, unless each item is distributed rather uniformly over database, and the
size of each partition is large enough to capture this uniformhess, the chance of a local large
itemset being a global large itemset can be small, and the number of candidate itemset
generated can be very large. However, this conflicts with the main idea of partitioning:

processing one partition in memory at a time to avoid multiple scans over database from disk.

3.2 Proposed Solution

Efficient association rule mining algorithm can be devised by finding solutions to some of

the above mentioned factors. Like the algorithm must not take frequent database scans,

Centralized Association Rules Mining (C-ARMing) 30

Chapter 3 Problem Domain and Proposed Solution

should create accurate and precise candidate sets with lowest possible number of false
candidates, should consider records at random to avoid data skew, and be a bit quicker as

well. The functionality of C-ARMing project is shown in fig.3-1.

Our area of
Research

1
1

/ Distributed Database

Data Mining

Figure 3-1: Functionality of C-ARMing
In the following, we present the factors by which we have improved our algorithm and

minimized the overheads of the techniques in the market.

3.2.1 Decreased Disk 1/0s

Like other data mining techniques that must process enormous databases, association rule
mining is inherently disk-I/O intensive. It takes multiple database scans in order to calculate
the support counts of the candidate itemsets, to approve them as large itemsets or not. Which
in large databases, means a lot of extra work to be done. These I/O costs can be reduced in
two ways: by reducing the number of times the database needs to be scanned, or through
parallelization, by partitioning the database between several machines which then perform a
parallel association rule mining algorithm. In recent years much progress has been made in

both directions.

Centralized Association Rules Mining (C-ARMing) 31

Chapter 3 Problem Domain and Proposed Solution

In our devised algorithm, the algorithm takes only a single database scan over each partition
to create large itemsets. We are using a formula, as is used by Cheung et al [13] in DMA
algorithm, to check the support of an itemset. To calculate locally large itemsets, s * D; is
used, where s is the support of the itemset, set by the user, and D; is the size of each partition.
For global support count, s * D is used, where s is same support, while D is the size of entire
central database. So now, instead of calculating the occurrence frequency of an itemset by
counting its actual occurrences in the database, it is simply counted through this formula, and

hence results in the decreased disk /Os.
3.2.2 Dataset

The data used is synthetic data, which is created exclusively for this study. Each tupple of the
database is of the form <TID> <A, B, C, D,...> where TID is the Transaction Identifier,
which is the primary key to uniquely identify each tupple, and the literals represent the retail
store’s items bought together in each transaction. For example, take a transaction <T1004>
<A, C, D> for example, where A represents butter, C represents bread, and D represents
milk, so we can say that transaction number 1004 represents the purchase of breakfast items
by a customer during his visit to the store. The size of the database used is 100,000
transactions. This synthetic data represents different transaction data items with literals,

which helps reducing the size of the database and improves the algorithm processing speed.
3.2.3 Randomization of the Partitions

To calculate large itemsets, the database should be partitioned randomly, i.e., for each
partition, transactions should be picked from the database randomly. We devised a random
function, which randomly picks transactions and store them in partitions, and at the end,
equal-sized, n number of partitions are created. These partitions are random, equal-sized, and
non-overlapping. By non-overlapping, we mean that a transaction once picked for a

particular partition, have 0% probability to be picked up again for any other partition.

Centralized Association Rules Mining (C-ARMing) 32

Chapter 4 System Design

4. System Design

The project takes MS Excel sheet as an input. The database stored in that Excel sheet is the
exclusively created synthetic database, which is used to represent the actual transaction
database’s items with literals. We know that association rule mining is a two-step process:
1. Finding all frequent itemsets: by definition, each of those itemsets will occur at
least as frequently as a pre-determined minimum support count.
2. Generating strong association rules from the frequent itemsets: By definition,
these rules must satisfy minimum support and minimum confidence [2].
The association rules could be simply generated with the help of the formula
presented in section 1.3.1.
Our research is confined to the step 1, as the step 2 is trivial after calculation of accurate

large itemsets.

4.1 Major Modules & Architectural Diagram

The main modules of our project are given below, while the Architectural Diagram is

mentioned in the fig. 4-1.

Database Acquisition
Database Randomization
Partition Creation

Partition Loading

Locally Large Itemset Creation

YV V V V V V

Globally Large Itemset Creation

Centralized Association Rules Mining (C-ARMing) 33

Chapter 4 System Design

Figure 4-1: Architectural Diagram

The detailed description of modules is given below.

4.2 Database Acquisition

This project takes as an input the synthetic database, which is specially crated for this
research. The database is created in MS Excel. The size of the database is 100,000 tuples.
Records are in the form of <TID> <list of items>, where TID is the transaction identifier of
each record for its unique identification in the database, the primary key. The synthetic
database is actually the representative of the transaction database because it represents the
items that are purchased together in a single transaction. Instead of representing those
transactions in the form of the actual items (like Milk, Butter, Tea bags etc.), synthetic
database represents these items in the form of literals. So a transaction of the Transaction

database will be represented in the following way in the Synthetic database:

Transaction database record= <T10056><Burger, Amrat, French Fries, Shashlik>.
Corresponding Synthetic database record= <T10056><A, B, D, E>.

So throughout the database, A, B, D, and E will be used to represent Milk, Butter, Bread, and
Corn Flakes, respectively.

Centralized Association Rules Mining (C-ARMing) 34

Chapter 4 System Design

4.3 Database Randomization

Transactions in a database are stored as the transactions physically occur. So we can say that
a page from the database is the snapshot of the transactions of some specific time period. For
example, it is observed that the sales of eggs are higher during winters and falls during
summer. So transactions occurred during winters will clearly show us this observation. This
is not recommended for analysis, because the database is going to be partitioned before
analysis, and sequential reading of database will render us with the items which might be
frequently purchased during some specific time period, but actually are not the frequently
purchased items. Example could be taken as that of the sales of the tents during earthquake
2005, as mentioned in chapter 3. To avoid such outliers, we have randomized our database.
This randomization of the records results in a database, having the records of same climatic
conditions scattered over the database, so only the true frequently sold items of the database

are marked as frequent items.

4.4 Partition Creation

Partitioning is the technique of dividing the huge centralized database into a number of
partitions in order to speed up the specified processing. It is basically to help in memory
management in case of having huge data to be processed with low minimum primary

memory. So, the huge data will be processed in that memory.

The algorithm divides the database into four, non-overlapping partitions. The partition

creation module stores its output in four different columns of a separate MS Excel sheet.

4.5 Partition Loading

Previously, in the centralized databases, the entire database was supposed to be loaded into

the memory for the creation of large itemsets in the database. We have adopted the technique

Centralized Association Rules Mining (C-ARMing) 35

Chapter 4 System Design

4.6.1.1 Support Count

In his step, the algorithm counts the occurrences of each item in the loaded partition. These
occurrences are actually the supports of these items, as defined in chapter 1. On the basis of

these supports, the items are qualified as whether the large or the small itemsets.
4.6.1.2 Candidate Set Generation

Large itemsets are created on the basis of their respective candidate sets. Candidate set is
composed of the items that might possibly be the actually large itemsets. The candidate set

generation and the support count is done during the single database scan.
4.6.2 Large Items Calculation

For the creation of Large-1 itemsets, the candidate set is matched against the supports of the

items. If support of the item is greater than the minimum support specified by the user, then
-the item is marked as a Large Itemset. All the rest of the items are pruned away, hence

minimizing the chance for the false candidates.

For large 2-itemset calculation, candidate 2-itemset is created first. Candidate 2-itemset is

created by joining large 1-itemset with itself. It is denoted with I; * ;. This joining will result

into a set of 2-items like AB, BD, CE etc. then their confidence is measured, and qualifying

items are marked as large 2-itemsets, and so on till k-itemsets.
4.7 Globally Large Itemset Creation

All the large itemsets from all the partitions are then considered globally, i.e., whether the
locally large itemsets also the globally larger or not? This module helps in finding the most
accurate itemsets so that the association rules could only be found between those itemsets
only.

The sub modules of this module are as follow:

Centralized Association Rules Mining (C-ARMing) 37

Chapter 4 System Design

4.7.1 Global Candidate Set Generation

In order to find out large itemsets, we know that its respective candidate set is generated first.
Locally, it is created by scanning the database. For global candidate set, scanning the
database again is contrary to the idea of the partitioning technique. We use the locally large
itemsets as the candidate set for the calculation of global large itemsets. For example, in
order to have candidate 1-itemset, the large 1-itemsets from all the partitions are considered
as the candidate 1-itemset. Large 2-itemsets of all the partitions are considered as candidate

2-itemsets, and so on.

4.7.2 Global Large Itemset Calculation

All the items of candidate 1-itemset are then considered for the globally large 1-itemset. The
supports of all the items are merged from their respective supports, from each partition. Then
the items are matched against the condition X. Support > min_support, where support is
now the support of the item in the entire database. For all the items for which the condition
holds true are marked as globally large 1-itemsets. Same is done for all the itemset, till the

creation of globally large k-itemset.

Centralized Association Rules Mining (C-ARMing) 38

Chapter 5

m

Implementation

Chapter 5 Implementation

5. Implementation

Implementation includes all the details that were required to make the system operational.
The development tools and technologies to implement the system and also reasons for
selecting particular tool is discussed. Then the modules being translated into the

implementation tool will be descried.

Software selection is very important step in developing a computer based system. The
software that is used is capable of meeting the requirement of the proposed system. After
considering the number of tools available these days such as Visual Basic, Visual C++.Net,
Visual C, Java we choose MS Excel, Visual Basic.Net and MATLAB.

5.1 MS Excel

Microsoft Excel (full name Microsoft Office Excel) is a spreadsheet program written and
distributed by Microsoft for computers using the Microsoft Windows operating system and
for Apple Macintosh computers. It features an intuitive interface and capable calculation and
graphing tools which, along with aggressive marketing, have made Excel one of the most
popular microcomputer applications to date. It is overwhelmingly the dominant spreadsheet
application available for these platforms and has been so since version 5 in 1993 and its

bundling as part of Microsoft Office.

MS Excel provides us its built-in workbooks for storage of huge data in any or all of the three
worksheets of workbook, as well as provides us the facility to add more worksheet in a
workbook to fulfill the requirement of data. Then we can perform mathematical, statistical or
accounting functions. Our dataset that we used for finding large item set is in two excel
sheets, as it consists of 1 lac records. After randomizing the data and creating partitions our

final data is in sheet 3, this data set is then provided to MATLAB for large item set.

Centralized Association Rules Mining (C-ARMing) 39

Chapter 5 Implementation

5.2 Visual Basic .NET (VB.NET)

Visual Basic .Net is an object-oriented computer language that can be viewed as an evolution
of Microsoft's Visual Basic (VB) implemented on the Microsoft NET framework. Its
introduction has been controversial, as significant changes were made that broke backward

compatibility with VB and caused a rift within the developer community.

The great majority of VB.NET developers use Visual Studio .NET as their integrated

development environment (IDE). SharpDevelop provides an open-source alternative IDE.

Like all .NET languages, programs written in VB.NET require the .NET framework to

execute.

Microsoft .Net is an umbrella term that applies to a collection of products and technologies
from Microsoft. All have in common a dependence on the Microsoft .NET Framework, a
component of the Windows operating system. For more details about .Net Framework, see

Appendix.

5.2.1 Creation of Randomized Partitions

The following code creates the randomized partitions for the C-ARMing project.
Public Sub flLoadExcelFile()

Dim objwb As Object

Dim objws As Object

Dim partNo As String

Dim irow, icol, i, }, k As Integer

Dim sXLSPath As String

sXLSPath = TextBox1.Text

Dim obj As New Excel.Application

dt1.Columns.Add("Col1", System.Type.GetType("System.String™))
dtl.Columns.Add("Col2", System.Type.GetType("System.String"))

Centralized Association Rules Mining (C-ARMing) 40

Chapter 5 Implementation

dt2.Columns.Add("Col3", System.Type.GetType("System.String"))
dt2.Columns.Add("Col4", System.Type.GetType("System.String"))
Try
‘Get open application
If File.Exists(sXLSPath) = False Then
MsgBox("XLS fiel Not Found")
End If
objwb = obj. Workbooks.Open(sXLSPath)
Dim R As Excel.Range
Dim R1 As Int64
R = objwb.Worksheets(1).usedrange()
Dim r2 As Excel.Range
r2 = objwb. Worksheets(2).usedrange
Dim max As Int64
Dim totRow As Int64
totRow = R.Rows.Count + r2.Rows.Count
Dim arr(totRow + 2, 2) As Object
Dim arrInd As Int64
arrlnd =0
ProgressBarl.Maximum = R.Rows.Count
max = R.Rows.Count
ProgressBarl.Value = 0
Fori=1 To R.Rows.Count
Dim ar() As Object = {objwb.Worksheets(1).Cells(i, 1).Value,
objwb. Worksheets(1).Cells(i, 2).Value}
Dim newRow As DataRow = dt]1.NewRow
Dim a As Int64
Dim b As Int64
a=1
b=0
For j = 0 To UBound(ar)

Centralized Association Rules Mining (C-ARMing) 41

Chapter 5

Implementation

newRow(j) = ar(j)
arr(arrind, a) = ar(j)
a=a+]1
Next
arrInd = arrlnd + 1
dt1.Rows.Add(newRow)
ProgressBarl.Value = ProgressBarl.Value + 1

Labell.Text = "Records " & ProgressBarl.Value & " Of

Sheet 1 are Processed"
Application.DoEvents()
Next
R = objwb.Worksheets(2).usedrange
ProgressBarl.Maximum = R.Rows.Count
ProgressBarl.Value =0
Fori=1 To R.Rows.Count
Dim ar() As Object= {objwb.Worksheets(2).Cells(i,
objwb. Worksheets(2).Cells(i, 2).Value}
Dim newRow As DataRow = dt2.NewRow
Dim a As Int64
Dim b As Int64
a=1
b=0
- For j =0 To UBound(ar)
newRow(j) = ar(j)
Ifar(j) ="" Then
b=1
Else
b=0
arr(arrInd, a) = ar(j)
a=a+]1

End If

1).Value,

Centralized Association Rules Mining (C-ARMing)

42

Chapter 5 Implementation

Next
I[fb=0 Then

arrInd = arrInd + 1
End If

ProgressBarl.Value = ProgressBarl.Value + 1
Labell.Text = "Records " & ProgressBarl.Value & " Of Sheet 2 are
Processed"

Application.DoEvents()

Next
Dim MyValue, maxVal, part As Integer
ProgressBarl.Maximum = arrInd
ProgressBarl.Value = 0
maxVal = arrInd
part = maxVal / 4
Fori=0To part—1
" Initialize random-number generator.
Randomize(0)
" Generate random value between 1 and 100000.
MyValue = Clnt(Int((maxVal * Rnd()) + 0))
With objwb.worksheets(3)
Cells(i + 1, 1).Value = arr(MyValue, 1)
.Cells(i + 1, 2).Value = arr(MyValue, 2)
" Initialize random-number generator.
Randomize(0)
*Generate random value between 1 and 100000.
| MyValue = CInt(Int((maxVal * Rnd()) + 0))
Cellsi + 1, 3).Value = ar(MyValue, 1)
.Cells(i + 1, 4).Value = arr(MyValue, 2)
' Initialize random-number generator.
Randomize(0)

‘Generate random value between 1 and 100000.

Centralized Association Rules Mining (C-ARMing) 43

Chapter 5 Implementation

These are comprehensive collections of MATLAB functions (M-files) that extend the
MATLAB environment to solve particular classes of problems. Areas in which toolboxes are
available include signal processing, image processing, image acquisition, control systems,

neural networks, fuzzy logic, wavelets, simulation, and many others.

The code for the modules describe in previous chapter is as follows.

5.3.1 Partition Loading
fori=1:4

if i==1
data_set="B1:B25000'
elseif i==
data_set="D1:D25000'
elseif i==3
data_set="F1:F25000'
elseif i==4
data_set="H1:H25000'
end]
[n,T]= xlsread('dataset.xls',3,data_set);

5.3.2 Finding Locally Large 1-itemset
% find A
idx = strfind(T, 'A");
idx(:,1);
countA=cal_count(idx);
countA
aa(q)=countA;
q=q+1;

aa;

Centralized Association Rules Mining (C-ARMing) 45

Chapter 5

Implementation

MyValue = Clnt(Int((maxVal * Rnd()) + 0))
.Cells(i + 1, 5).Value = arr(MyValue, 1)
.Cells(i + 1, 6).Value = arr(MyValue, 2)
' Initialize random-number generator.
Randomize(0)
‘Generate random value between 1 and 100000.
MyValue = Clnt(Int((maxVal * Rnd()) + 0))'
.Cells(i + 1, 7).Value = arr(MyValue, 1)
.Cells(i + 1, 8).Value = arr(MyValue, 2)
End With
ProgressBarl.Value = ProgressBarl.Value + 1
Labell.Text =" Writing Records in Sheet 3"
Application.DoEvents()
Next
Labell.Text = "Process Completed"
obj.Workbooks.Close()
Catch ex As Exception
- MsgBox(ex.Message)
End Try
End Sub

5.3 MATLAB 7.0:

MATLAB integrates mathematical computing, visualization, and a powerful language to

provide a flexible environment for technical computing. The open architecture makes it easy

to use MATLAB and its companion products to explore data, create algorithms, and create

custom tools that provide early insights and competitive advantages.

MATLAB has evolved over a period of years with input from many users. In industry,

MATLAB is the tool of choice for high-productivity research, development, and analysis.

MATLAB features a family of add-on application-specific solutions called toolboxes.

Moreover toolboxes in MATLAB, allow one to learn and apply specialized technology.

Centralized Association Rules Mining (C-ARMing)

44

Chapter 5 Implementation

% find B

idx = strfind(T, 'B");
idx(:,1);

size(idx);

countB=cal count(idx);
countB

bb(c)=countB;

c=ct+1;

bb;

% find C

idx = strfind(T, 'C");
idx(:,1);

size(idx);
countC=cal_count(idx);
countC

cc(g)=countC;

g=gtl;

cc;

% find D

idx = strfind(T, 'D");
idx(:,1);

Size(idx);
countD=cal_count(idx);
countD

dd(b)=countD;

b=b+1;

dd;

% find E

Centralized Association Rules Mining (C-ARMing) 46

Chapter 5 Implementation

idx = strfind(T, 'E');
idx(:,1);

size(idx);
countE=cal_count(idx);
countE

ee(y)=countE;

y=y+1;

ee;

Op *RAERERKRKRKRRRERKRRRKRRRfIn] |arge]-ifemset*F*FHEEFRERERRRKLRERERRE

s=struct('ts',{});

s2=struct('ts',{});

lit_ind=1;

% s=55%

% D=25000

% thus using formula

% count=s*D=55%*2500 = 13500

if countA>13500

cha=1;
large 1(lit_ind)='A";
lit_ind=lit_ind+1;

msgbox('A is Large 1-itemset')

end
if countB>13500
chb=1;
large 1(lit_ind)="B";
lit_ind=lit_ind+1;
msgbox('B is Large 1-itemset")
end
if countC>13500

Centralized Association Rules Mining (C-ARMing) 47

Chapter 5

Implementation

chc=1;
large 1(lit_ind)='C";
lit_ind=lit_ind+1;
msgbox('C is Large 1-itemset’)
end
if countD>13500
chd=1;
large 1(lit_ind)='D";
lit_ind=lit_ind+1;
* msgbox('D is Large 1-itemset')
end
if countE>13500
che=1;
large _1(lit_ind)="E";
lit_ind=lit_ind+1;
msgbox('E is Large 1-itemset')
end

5.3.3 Finding Locally Large 2-itemset
%%%%%%%%%%%%%% large 2 item set

lit_ind

large 1

vt=1;

t=1;

for z=1:lit_ind-1

for k=z+1:1it_ind-1

large 2=strcat(large_1(z),',";
large 2=strcat(large 2,large 1(k));
s2(rt).ts=large_2;
rt=rt+1;

end

%6066 %% YoY% %% Yo% % %% %6 %%

Centralized Association Rules Mining (C-ARMing)

48

Chapter 5 Implementation
end
a=1;
for p=1:rt-1
large 2=s2(p).ts
idx = strfind(T, large 2);
idx(:,1);
size(idx);
count_larg 2=cal_count(idx);
if (count_larg 2>13500)
ch_21=l;
fi_count(a)=count_larg 2
ch_2(l)=count larg 2;
I=1+1;
ch_2;
s(a).ts=large 2;
a=atl;
msgbox(large 2)
end
if(a>2)
vt=size(s)
var=1;
for r=1:vt(2)-1
for u=r+1:vt(2)
cand_st = strcat(s(r).ts,',")
cand_st = strcat(cand_st,s(u).ts)
end
end
Centralized Association Rules Mining (C-ARMing) 49

Chapter 5 Implementation

5.3.4 Finding Locally Large k-itemset

[t1,t2,t3,T]=p1('B1:B25000";
f1=1;2=1,;f3=1;f4=1;cnd_item_st=1;f6=1;cnd_item=1;f8=1;sum_21=zeros(5);sum_21a=0;su
m_22a=0;sum_23a=0;sum_44a=0;
sum_21b=0;sum_22b=0;sum_23b=0;sum_44b=0;
sum_21=0;sum_22=0;sum_33=0;,sum_44=0;
if nargin<3

t3.cnt=0;

t3.ele="";
end

sz1=size(t1);

for kl=1:521(2)
t{kl}=t1(kl).ele;
s11(kD=t1(kl).ele;
cntl(kl)=t1(kl).cnt;

end

sz=size(t2);
if sz~=0
f 2=1
if sz(2)>1
for kj=1:sz(2)
kj
t{kl+kj}=t2(kj).ele;

cnt12(kj)=t2(kj).cnt

item(f1)=t2(kj).cnt;
b=t2(kj).cle
[c1,c2,c3]=check_1(b)
fl=f1+1;
item(f1)=cl
fl=f1+1;
item(f1)=c2
fl=f1+1;
item(f1)=c3
fl=f1+1;
sum_21=0;
for x=1:4

sum_21=sum_21+item(kj-1+x)
end

sum_2la(f 2)=sum 21;
f 2=f 2+1;

Centralized Association Rules Mining (C-ARMing) 50

Chapter 5

Implementation

end

else
kj=1;
t{kl+kj}=t2.cle;
cnt12(kj)=t2.cnt;
item(f1)=t2.cnt;
b=t2.ele;
[el,c2,c3]=check_1(b)
f1=f1+1;
item(fl)=cl;
fl1=f1+1;
item(f1)=c2;
f1=f1+1,
item(fl)=c3;
f1=f1+1;
sum_21=0;
for x=1:4

sum_21=sum_21+item(x)

end

sum_21a(f 2)=sum_21;
end

sz3=size(t3);

fib=1;f 2b=1;

if (sz3(2))==1

t{kl+kj+1}=t3.ele;
item_b(f1b)=t3.cnt;
b=t3.ele;
[c1,c2,c3]=check_1(b)
flb=f1b+1;
item_b(flb)=cl;
flb=f1b+1;
item_b(flb)=c2;
flb=f1b+1;
item_b(f1b)=c3;
f1b=f1b+1;
sum_21b=0;

for x=1:4

sum_21b=sum_21b+item_b(x)

end
sum _21b(f 2b)=sum 21b;

elseif sz3(2)>1
flo=1;f 2b=1;

Centralized Association Rules Mining (C-ARMing)

51

Chapter 5 _Implementation

for km=1:sz3(2)
t{kl+kj+km}=t3(km).ele;
cnt31(km)=t3(km).cnt;

item_b(f1b)=t3(km).cnt;
b=t3(km).ele
[c1,c2,c3]=check 1(b)
flb=f1b+1;
item_b(fl1b)=cl
flb=f1b+1;
item_b(fl1b)=c2
flb=f1b+1;
item_b(f1b)=c3
flb=f1b+1;
sum_21b=0;

for x=1:4

sum 21b=sum_21b+item_ b(km-1+x)
end

sum 21b(f 2b)=sum_21b;
f 2b=f 2b+l;
end

end

end

sx=size(t);

str=strrep(t,'A’, Burger’)

str=strrep(str,’B',' Amrat')
str=strrep(str,'C','Chilli Sauce")
str=strrep(str,'D','French fries')
str=strrep(str,'E','Shashlik')

str

set(handles.listbox13,'String',str)

set(handles.listbox2,'String',T)
[t12,t22,t32]=p1('D1:D25000");

if nargin<3
t33.cnt=0;
t33.ele="";
end

szl 1=siie(t12);
for kl1=1:sz11(2)

Centralized Association Rules Mining (C-ARMing) 52

Chapter 5 Implementation

t 1{kl1}=t12(kil).ele;
s21(kl1)=t12(kl1).ele;
cnt21(kl11)=t12(kl1).cnt;

end
sz2=size(t22);
if sz2~=0

f3=1;f 4=1,
if sz2(2)>1
for kj2=1:522(2)
kj2
t_1{kl1+kj2}=t22(kj2).ele;

cnt22(kj)=t22(kj2).cnt

item_1(f3)=t22(kj2).cnt;
b=t22(kj2).ele
[c1,c2,c3]=check_2(b)
f3=3+1;
item_1(f3)=cl
f3=f3+1;
item_1(f3)=c2
f3=13+1;
item_1(f3)=c3
f3=13+1;

sum_22=0;;

for x=1:4

sum_22=sum_22+item_1(kj2-1+x)
end

sum_22a(f _4)=sum_22
f 4=f 4+1;
end
else
kj2=1;
t 1{kll+kj2}=122.¢ele;
cnt22(kj2)=t22(kj2).cnt;
item_1(f3)=t22(kj2).cnt;
b=t22.ele;
[c1,c2,c3])=check 2(b)
f3=13+1;
item_1(f3)=cl;
f3=13+1;

Centralized Association Rules Mining (C-ARMing) 53

Chapter 5 Implementation

item_1(f3)=c2;
3=13+1;
item_1(f3)=c3;

for x=1:4
sum_22=sum_22-+item_1(x)
end
sum_22a(f 4)=sum_22
end

f3b=1;f 4b=1;
if (sz3(2))=—=

t_1{kl+kj+1}=t32.ele;
item_b(f3b)=t32.cnt;
b=t32.ele;
[cl,c2,c3]=check_2(b)
f3b=f3b+1;
item_b(f3b)=cl;
f3b=f3b+1;
item_b(f3b)=c2;
f3b=f3b+1;
item_b(f3b)=c3;
3b=f3b+1;
sum_22b=0;
for x=1:4
sum_22b=sum_22b+item_b(x)
end

sum_22b(f 4b)=sum_22b;

elseif sz3(2)>1
f3b=1;f 4b=1;
for km=1:5z3(2)

t_1{kl+kj+1}=t32(km).ele;

item_b(f3b)=t32(km).cnt;
b=t32.ele;
[c1,c2,c3]=check_2(b)
f3b=f3b+1;
item_b(f3b)=cl;
f3b=f3b+1;
item_b(f3b)=c2;
f3b=f3b+1;
item_b(f3b)=c3;
f3b=3b+1;

Centralized Association Rules Mining (C-ARMing) 54

Chapter 5

Implementation

sum_22b=0;

for x=1:4
sum_22b=sum_22b+item_b(x)

end

sum_22b(f 4b)=sum 22b;

f 4b=f 4b+1;
end

end
end

sx 1=size(t);
strl=strrep(t,'A',/ Burger’)
strl=strrep(str1,'B','Amrat’)
strl=strrep(strl,'C','Chilli Sauce')
str1=strrep(strl,'D’,'French fries")
strl=strrep(str1,'E','Shashlik")

strl
set(handles.listbox 14,'String',str1)

[t13,t23,t33]=p1(F1:F25000");
t13
123
133
if nargin<3
t33.cnt=0;
133.ele="";
end

sz13=size(t13);

for kl1=1:5211(2)
t 3{kl1}=t13(kl1).ele;
s31(k11)=t13(kl1).ele;
cnt31(k11)=t13(kl1).cnt;

end

sz2=size(t23)
if sz22~=0
f 4=1;
3=1
if sz2(2)>1
for kj2=1:522(2)

Centralized Association Rules Mining (C-ARMing)

55

Chapter 5 Implementation

kj2
t3{ki1+kj2}=t23(kj2).ele;

cnt23(kj)=t23(kj2).cnt

item_2(f3)=t23(kj2).cnt;
b=t23(kj2).ele
[c1,c2,c3]=check_3(b)
f3=f3+1;
item_2(f3)=cl
f3=f3+1;
item_2(f3)=c2
f3=3+1;

item 2(f3)=c3
3=13+1;

sum_23=0;

for x=1:4

sum_23=sum_23+item_2(kj2-1+x)
end

sum_23a(f 4)=sum_23
f 4=f 4+1;
end
else
kj2=1;
t 3{kl1+kj2}=t23.¢le;
cnt23(kj)=t23(kj2).cnt;
item_2(f3)=t23(kj2).cnt;
b=t23.¢le;
[c1,c2,c3]=check_3(b)
cnd_item_st=cnd_item_st+1;
item 2(cnd_item_st)=cl;
cnd_item_st=cnd_item st+1;
item_2(cnd_item_st)=c2;
cnd_item_st=cnd_item_st+1;
item_2(cnd_item_st)=c3;
sum_23=0;
for x=1:4
sum_23=sum_23+item 2(x)
end
sum_23a(f_4)=sum_23
end

sz3=size(t33);

Centralized Association Rules Mining (C-ARMing) 56

Chapter 5 Implementation

if (sz3(2))==1

cnd_item_st_1=1;f 6b=1;
if (sz3(2))==1

t_3{kl+kj+1}=t33.ele;
item_b(cnd_item_st_1)=t33.cnt;
b=t33.¢ele;
[c1,c2,c3]=check_3(b)
cnd_item_st_l=cnd_item_st_1+1;
item_b(cnd_item_st_1)=cl;
cnd_item_st_1=cnd_item_st_1+1;
item_b(cnd_item_st_1)=c2;
cnd_item_st_l=cnd_item_st_1+1;
item_b(cnd_item_st_1)=c3;
cnd_item_st_l=cnd_item_st 1+1;
sum_23b=0;
for x=1:4
sum_23b=sum_23b+item_b(x)
end

sum_23b(f_6b)=sum_23b;
elseif sz3(2)>1
cnd_item_st_1=1;f 6b=1;
for km3=1:sz3(2)
t_3{kl+kj+1}=t33(km3).ele;
item_b(cnd_item_st_1)=t33(km3).cnt;
b=t33.ele;
[e1,c2,c3]=check 3(b)
cnd_item_st_l=cnd_item st 1+1;
item_b(cnd_item_st_1)=cl;
cnd_item_st_l1=cnd item_st_1+1;
item_b(cnd item_st_1)=c2;
~ cnd_item_st_1=cnd_item_st_1+1;
item_b(cnd_item_st_1)=c3;
cnd _item_st_1=cnd _item_st _1+1;
sum_23b=0;
for x=1:4
sum_23b=sum_23b+item_b(x)
end

sum_23b(f 6b)=sum_23b;
f 6b=f 6b+1;
end

end

Centralized Association Rules Mining (C-ARMing) 57

Chapter 5

Implementation

end
end

sx2=size(t);

str2=strrep(t,'A','Burger’)
str2=strrep(str2,B','Amrat')
str2=strrep(str2,'C’,'Chilli Sauce")
str2=strrep(str2,'D','French fries")
str2=strrep(str2,'E','Shashlik")

str2
set(handles.listbox15,'String',str2)

[t14,t24,t34]=p1('H1:H25000";

if nargin<3
t34.cnt=0;
t34.ele="";
end

sz11=size(t14);

for kl1=1:sz11(2)
t 4{kl1}=t14(kll).ele;
s41(kl1)=t14(kll).ele;
cnt41(kl1)=t14(kll).cnt;

end

sz2=size(t24);
if s22~=0
cnd_item=1,

if sz2(2)>1
for kj2=1:52(2)

t 4{kl1+kj2}= t24(kj2).ele;
cnt24(km3)=t24(km3).cnt;
item_1(cnd_item)=t22(kj2).cnt;
[c1,c2,c3]=check_4(t2(kj.ele))
cnd_item=cnd_item+1;
item_1(cnd_item)=c1;
cnd_item=cnd_item+1;
item_1(cnd_item)=c2;
cnd_item=cnd_item+1;
item_1(cnd_item)=c3;

for x=1:4
sum_44=sum_44-+item_1(kj2-1+x)

Centralized Association Rules Mining (C-ARMing)

58

Chapter 5 Implementation

end
sum_44a(f8)=sum_44;
f8=18+1;
end
else
kj2=1;
t_4{kl1+kj2}= 124 ele;
cnt24(kj2)=t24.cnt;
item_1(cnd_item)=t24(kj2).cnt;
b=t24.ele;
[c1,c2,c3]=check_4(b)
cnd_item=cnd_item+1;
item_1(cnd_item)=cl;
cnd_item=cnd_item+1;
item_1(cnd_item)=c2;
cnd_item=cnd_item+1;
item_1(cnd_item)=c3;

for x=1:4
sum_44=sum_44+item_1(x)

end
sum_44a(f8)=sum_44;

end

sz3=size(t34),

if sz3(2)y=—=
cnd_item2=1;f 8b=1;
km3=1;
t_4{kl+kj+1}=t34(km3).ele;
item_b(cnd_item2)=t34(km3).cnt;
b=t33.ele;
[c1,c2,c3]=check_4(b)
cnd_item2=cnd_item2+1;
item_b(cnd_item2)=cl;
cnd item2=cnd_item2+1;
item_b(cnd_item2)=c2;
cnd_item2=cnd_item2+1;
item_b(cnd_item2)=c3;
cnd_item2=cnd_item2+1;
sum_44b=0;
for x=1:4

sum_44b=sum_44b+item_b(x)

end

sum_44b(f_8b)=sum_44b;
elseif sz3(2)>1

Centralized Association Rules Mining (C-ARMing) 59

Chapter 5 Implementation

cnd_item2=1;f 8b=1;
for km3=1:523(2)
t_4{kl+kj+1}=t34(km3).ele;
item_b(cnd_item2)=t34(km3).cnt;
b=t33.ele;
[c1,c2,c3]=check_4(b)
cnd_item2=cnd_item2+1;
item_b(cnd_item2)=cl;
cnd_item2=cnd_item2+1;
item_b(cnd_item2)=c2;
cnd_item2=cnd_item2+1;
item_b(cnd_item2)=c3;
cnd_item2=cnd_item2+1;
sum_44b=0;
for x=1:4
sum_44b=sum_44b+item_b(x)
end

sum_44b(f_8b)=sum_44b;
f 8b=f 8b+1;
end

end
end
sx3=size(t);
str3=strrep(t,'A',/ Burger')
str3=strrep(str3,'B','Amrat')
str3=strrep(str3,'C','Chilli Sauce')
str3=strrep(str3,'D’, French fries")
str3=strrep(str3,'E','Shashlik")
str3
set(handles.listbox16,'String',str3)

sum_a=0;
sum_b=0;
sum_c=0;
sum_d=0;
sum_e=0;sum_2=0;sum_3=0;

sa=size(s11)

sb=size(cnt1)
al=0;b1=0;c1=0;d1=0;e1=0;
a2=0;b2=0;c2=0;d2=0;e2=0;
a3=0;b3=0;c3=0;d3=0;e3=0;
a4=0;b4=0;c4=0;d4=0;e4=0;
for w=1:5a(2)

Centralized Association Rules Mining (C-ARMing) 60

Chapter 5

Implementation

if sti(w)y='A’
cha=1;
al=cntl(w)

elseif s11(w)="B'
chb=1;
bl=cnt1(w)

elseif s11(w)=="C'

cl=cntl(w)

elseif s11(w)=="D'
chd=1;
di=cnti(w)

elseif s11(w)=—="E'
che=1;
el=cntl(w)

end

end

sa=size(s21)
sb=size(cnt21)

for w=1:sa(2)
if s21(w)='A'

a2=cnt21(w)
elseif s21(w)==B'

b2=cnt21(w)
elseif s21(w)="C'

c2=cntl(w)
elseif s21(w)=="D'

d2=cnt21(w)
elseif s21(w)="E'

e2=cnt21(w)
end
end
sa=size(s31)
sb=size(cnt31)

for w=1:sa(2)
if s31(w)=="A’
cha=1;

Centralized Association Rules Mining (C-ARMing)

61

Chapter 5

Implementation

a3=cnt31(w)
elseif s31(w)=—="B'

chb=1;

b3=cnt31(w)
elseif s31(w)=="C'

c3=cnt31(w)
elseif s31(w)=="D'
chd=1;
d3=cnt31(w)
elseif s31(w)="E'
che=1;
e3=cnt31(w)
end
end
sa=size(s41)
sb=size(cnt41)

for w=1:sa(2)

if s41(w)="A'
cha=1;
ad4=cnt41(w)

elseif s41(w)="B'
chb=1;
b4=cnt41(w)

elseif s41(w)=="C'

cd=cnt41(w)
elseif s41(w)=="D'
chd=1;
d4=cnt41(w)
elseif s41(w)=="E'
che=1;
ed=cnt41(w)
end
end

5.3.5 Finding Globally Large Item set

sum_a= al+a2+a3+a4;
sum_b=bl+b2+b3+b4;
sum_c= cl+c2+c3+c4;
sum_d= d1+d2+d3+d4,;
sum_e= el+e2+e3+e4;

Centralized Association Rules Mining (C-ARMing)

62

Chapter 5

Implementation

gla=1;

if sum_a>13500
var="A'
glar{gla}=var;
gla=gla+1;

msgbox('A is globally large 1-itemset’)
end
if sum_b>13500

var="B'

glar{gla}=var;

gla=gla+1;

msgbox('B is globally large 1-itemset')
end
if sum_c>13500

var="C'

glar{gla}=var;

gla=gla+1;

msgbox('C is globally large 1-itemset')
end
if sum_d>13500

var="D'

glar{gla}=var;

gla=gla+1;

msgbox('D is globally large 1-itemset’)
end
if sum_e>13500

var='E'

glar{gla}=var;

gla=gla+1;

msgbox('E is globally large 1-itemset’)
end
sum_2la
sz21= size(sum_21a)

if(sz21(2)>1)
for u=1:5221(2)
if sum_21a(u)>55500
var=t2(u).ele;
glar{gla}=var

Centralized Association Rules Mining (C-ARMing)

63

__Implementation

gla=gla+1;
msgbox(var)
end
end
else

if((sum_21a)>55500)
var=t2.ele;
glar{gla}=var
gla=gla+1
msgbox(var)

end
end
sz21= size(sum_22a)

if(sz21(2)>1)
for u=1:5221(2)
if sum_22a(u)>55500
var=t22(u).ele;
glar{gla}=var
gla=gla+1;
msgbox(var)
end
end
else

if((sum_22a)>55500)
var=t22.ele;
glar{gla}=var
gla=gla+1
msgbox(var)

end
end
sz21= size(sum_23a)
if(sz21(2)>1)
for u=1:s221(2)
if sum_23a(u)>55500
var=t23(u).ele;
glar{gla}=var
gla=gla+1
msgbox(var)
end
end
else

Centralized Association Rules Mining (C-ARMing)

64

Chapter 5

Implementation

if((sum_23a)>55500)
var=t23.ele;
glar{gla}=var
gla=gla+1
msgbox(var)
end
end
sz21= size(sum_44a)
if(sz21(2)>1)
for u=1:5z21(2)
if sum_44a(u)>55500
var=t24(u).cle;
glar{gla}=var
gla=gla+1
msgbox(var)
end
end
else

if((sum_44a)>55500)
var=t24.ele;
glar{gla}=var
gla=gla+1
msgbox(var)

end
end

sz21=size(sum_21b);
if(sz21(2)>1)
for u=1:5221(2)
if sum_21b(u)>55500
var=t3(u).ele;
glar{gla}=var
gla=gla+1;
msgbox(var)
end
end
else

if((sum_21b)>55500)
var=t3.ele;
glar{gla}=var
gla=gla+1
msgbox(var)

Centralized Association Rules Mining (C-ARMing)

65

Chapter 5

Implementation

end
end
sz21= size(sum_22b)

if(sz21(2)>1)
for u=1:5s221(2)
if sum_22b(u)>55500
var=t23(u).ele;
glar{gla}=var
gla=gla+1;
msgbox(var)
end
end
else

if((sum_22b)>55500)
var=t23.ele;
glar{gla}=var
gla=gla+1
msgbox(var)

end
end
sz21= size(sum_23b)
if(sz21(2)>1)
for u=1:5221(2)
if sum_23b(u)>55500
var=t32(u).ele;
glar{gla}=var
gla=gla+1
msgbox(var)
end
end
else

if((sum_23b)>55500)
var=t32.ele;
glar{gla}=var
gla=gla+1
msgbox(var)
end
end
sz21= size(sum_44b)
if(sz21(2)>1)
for u=1:s221(2)
if sum_44b(u)>55500

Centralized Association Rules Mining (C-ARMing)

66

Chapter 5

Implementation

var=t34(u).ele;
glar{gla}=var
gla=glat+1
msgbox(var)
end
end
else

if((sum_44b)>55500)
var=t34.ele;
glar{gla}=var
gla=gla+1
msgbox(var)

end
end
glar
al.1=";
ha=";
fg=1;
sx=size(glar);
for t=1:sx(2)-1

ha=glar{t}
ah=glar{t+1}
if strcmp(ha,ah)
continue;
end
finl {fg}=ha;
fg=fg+1;
end
finl{fg}=ah;

sx4=size(t),

str4=strrep(t,'A',Burger’)
str4=strrep(str4, B','Amrat')
strd=strrep(str4,'C','Chilli Sauce')
str4=strrep(str4,'D','French fries")
str4=strrep(str4,'E','Shashlik')

str4

set(handles.listbox8,'String',str4)

Centralized Association Rules Mining (C-ARMing)

67

Chapter 6

P—————————————————————————————

Results

Chapter 6 Results

6. Results

To illustrate the performance of our devised algorithm, the CMA algorithm, we give here an
example, in which at first PARTITION Algorithm is applied on the central database. It
divides the database into three distinct, non-overlapping, and random partitions, and then
calculates the locally large k-itemsets. And finally computes globally large itemsets of size
1,2,...,k. In the second part of the example, CMA Algorithm is applied on the same database,
which also divides the central database into three distinct, non-overlapping, and random
partitions, and then calculates locally large itemsets by bringing each partition one by one
into memory. Globally large itemsets are calculated at the end. Instead of counting the
itemsets in the transactions of the actual database, CMA Algorithm uses the formula of s * D;
(as is used by Cheung et al in DMA Algorithm presented in [13]) for counting support within
each partition, where s is the support of the itemset, set by the user, like 30%, 60%, 75%
etc.(50% in this example), and D; is the size of each partition database(3 in this example). For
global support count, it uses the formula, s * D, where D is the size of the entire database (12
in this example).

The dataset for this example is presented in table 6-1.

T2 AB,D
T3 ADE
T4 ABD
TS B,C,D
Té6 AB,E
T7 ADE
T8 B,CE
T9 AB,C
T10 A,CD
T11 ADE

Centralized Association Rules Mining (C-ARMing) 68

Chapter 6 ‘ Results

T12 C,D.E

Table 6-1: the dataset

6.1 Working of PARTITION Algorithm

First, PARTITION Algorithm is applied to the database, which works on random partitions,
so the original database, given in table 6-11, is divided into three distinct, non-overlapping,

and random partitions, which are presented in table 6-2.

T6 | ABE | T4 | ABD | 15 | BCD
T9 | ABC | T7 | ADE | T8 | BCE
T12 | CDE | Til | ADE | T10 | ACD

Table 6-2: Three Partition created after dividing the database.
6.1.1 Processing on Partition 1
It then generates the candidate 1-itemset, and then counts its support. The support taken in

this example is 50%. So the large itemsets are created and stored along with their TIDs, as

shown in table 6-3.

T2 B
T2 D
T6 A

Centralized Association Rules Mining (C-ARMing) 69

Chapter 6 Results

T6
T6
T9
T9
T9
T12
T12
T12

W O O O W »| W} @

Table 6-3: Candidate 1-itemsets of partition 1.

Then candidate 2-itemset is generated by multiplying large 1-itemset with itself, like I; *
1;.The candidate 2-itemsets of partition 1 are {AB, AC, AD, AE, BC, BD, BE, CD, CE, DE}.
Then the TIDs of the transactions containing these 2-itemsets are stored against each 2-
itemsets. The number of TIDs against each itemset shows its occurrence in the partition. For
example, in partition 1, AB is present in T2, T6, and T9, so it means it has occurrence of 3
out of 4 transactions, i.e., %=0.75, which means 75% transactions in partition 1 contains AB,
which is greater than 50%, so AB is a locally large 2-itemset in partition 1. The supports
calculated for each candidate 2-itemset is given below:

AB={2,6,9}, so support is AB=3/4= 0,75

AC={9}, so support is AC=1/4=0.25

AD= {2}, so support is AD=1/4=0.25

AE= {2}, so support is AE=1/4=0.25

BC= {9}, so support is BC=1/4=0.25

BD= {2}, so support is BD=1/4=0.25

BE= {6}, so support is BE=1/4=0.25

CD= {12}, so support is CD=1/4=0.25

CE= {0}, so support is CE=0

DE= {12}, so support is DE=1/4=0.25

Centralized Association Rules Mining (C-ARMing) 70

Chapter 6 Results

So the large 2-itemsets in Partition 2 are {AB, AD, AE, DE}. From this we will have
candidate 3-itemset of {ABD, ADE, ABE, BDE}. But as only 1 large 2-itemset is present in
partition 1, so no candidate 3-itemset is possible. Same is repeated with partition 2 and

partition 3, which are illustrated below.
6.1.2 Processing on Partition 2

The large itemsets in partition 2 are calculated the same way as are calculated in the partition
1.

T1
Tl
T4
T4
T4
T7
T7
T7
TI1
T11
T11

m| o »| W o| »| o | »| 0| =| >

Table 6-4: Candidate 1-itemset of partition 2.

The candidate 2-itemset is, 1; * |; ={AB,AC, AD,AE ,BC,BD, BE,CD, CE, DE}
AB={T1, T4}, so the support is= AB=2/4=0.5

AC={T1}, so the support is=1/4=0.25

AD={T4,T7,T11}, so the support is= 3/4=0.75

AE={T7,T11}, so the support is= 2/4=0.5

Centralized Association Rules Mining (C-ARMing) 71

Chapter 6

Results

BC={T1}, so the support is=1/4=0.25
BD={T4}, so the support is=1/4=0.25
BE={0}, so the support is=0

CD={0}, so the support is=0

CE={0}, so the support is=0
DE={T7,T11}, so the support is= 2/4=0.5

Candidate 3-itemsets are:

ABD={T4}, so the support is=1/4=0.25
ADE={T7,T11}, so the support is=2/4=0.5
ABE={0}, so the support is=0

BDE={0}, so the support is=0

So in the end we have only ADE as large 3-itemset in Partition 2.

6.1.3 Processing on Partition 3

Similarly, large itemsets of partition 3 are calculated which are given below.

T3
T3
T5
T5
TS
T8
T8
T8
T10

"y .
D
E
B
C
D
B
C
E
A

Centralized Association Rules Mining (C-ARMing)

72

Chapter 6 Results

T10
T10 D

@)

Table 6-S: Candidate 1-itemset of partition 2.

Supports of the 1-itemsets are
A=4,B=2,C=1,D=3,E=2

Candidate 2-itemset= {AB, AC, AD, AE, BC, BD, BE, CD,CE, DE }
AB={0}, so the support is=0

AC={T10}, so the support is=1/4=0.25
AD={T3,T10}, so the support is=2/4= 0.5
AE={T3}, so the support is=1/4=0.25
BC={T5,T8}, so the support is=2/4=0.5
BD={T5}, so the support is=1/4=0.25
BE={T8}, so the support is=1/4=0.25
CD={T5,T10}, so the support is=2/4=0.5
CE={T8}, so the support is=1/4=0.25
DE={T3}, so the support is=1/4=0.25

As we have only one large 2-itemset so no candidate 3-itemset is possible.
6.1.4 Globally Large Itemset Calculation

Now, we combine the large itemsets of all the partitions and merge them in a single global

set.

Centralized Association Rules Mining (C-ARMing) 73

Chapter 6 Results

ol o] o]] i | 3| 9| W]] O] Ln| V]]| K| K K| W] W] W DN NN

—
[

p—
o

—
(=]

p—
p—

Ol > O | > ol w| »| 0 O W @ O »| T @ > O O W O ®w » @ O »| O B »

—
—

Centralized Association Rules Mining (C-ARMing) 74

Chapter 6 Results

11
12
12
12

m O O m

Table 6-6: Globally large 1-itemsets.

Supports of the 1-itemsets are
A=9,B=7,C= 6,D=7,E=6

[T1,T2,T4

T2,T3,T4 AD
T2,T4 BD
T5,T8 BC
T6,T7 AE
T6,T8 BE
T9,T10 - AC
T10,T11 AD
T10,T12 CD
T11,T12 DE

Table 6-7: Globally large 2-itemsets.

Supports of the large 2-itemsets are:

AB=7,AD=2,BD= 1,BC= 1,AE= 1,BE= 1,AC= 1,AD= 1,CD= 1,DE= 1.

Centralized Association Rules Mining (C-ARMing) 75

Chapter 6 Results

Table 6-8: Globally large 3-itemsets.

And the support of the 3-itemset is 1, so no globally large 3-itemset is present in the database
taken.

6.2 Working of CMA Algorithm

Now, we apply CMA Algorithm on the same database, which also works by randomizing the
database, and divides the database into three distinct, non-overlapping, and random

partitions, which are presented in table 6-9.

T2 |ABD |T4 |ABD |T3 |ADE

9 |(ABC |[T11 [ADE |TS |B,CD
T6 |ABE [Tl |ABC (T8 |B,CE
Ti12 |CDE |[T7 (ADE |Ti0 |ACD

Table 6-9: 3 Partitions created by CMA

We consider in this example, minimum support count, s=50%. So the candidate 1-itemsets

are presented in table 6-10.

Centralized Association Rules Mining (C-ARMing) 76

Chapter 6 Results

2>=0.5%4

A 3>=0.5%4 A 4>=0.5*4 A

B 3>=0.5*%4 B 2>=(.5*4 B 2>=0.5*%4
C 2>=0.5*4 C 1>=0.5*4 C 3>=0.5%4
D 2>=0.5%4 D 3>=0.5*4 D 3>=0.5%4
E 2>=0.5*4 E 2>=0.5%4 E 2>=0.5*4

Table 6-10: Candidate 1-itemsets.

In Partition 1 the large 1-itemsets are {A, B, C, D, E}. In Partition 2 the large 1-itemsets are
{A, B, D, E}. While in Partition 3 the large 1-itemsets are {A, B, C, D, E}.

The candidate 2-itemsets in Partition 1 are {AB, AC, AD, AE, BC, BD, BE, CD,CE, DE}, in
Partition 2 are {AB, AD, AE, BD, BE, DE} and in Partition 3, are {AB, AC, AD, AE, BC,
BD, BE,CD,CE, DE}. The large 2-itemsets of three partitions are presented in table 6-11.

BE 1 BE 1

Centralized Association Rules Mining (C-ARMing) 77

Chapter 6 Results

CD 1 CD 2
CE 1 CE 1
DE 1 DE 1

Table 6-11: Large 2-itemsets and their supports.

As shown in the table 6-11, large 2-itemset in Partition 1 is {AB}, in Partition 2 are {AB,
AD, AE, DE} and in Partition 3 are {AD, BC, CD}. The table also shows that no candidate
3-itemset in Partition 1 is possible. Whereas in Partition 2 the candidate 3-itemset are { ABD,
ADE, ABE} and in Partition 3 {ABC, ABD, ACD, BCD}.

The support counts of candidate 3-itemsets of three partitions are given below in the table 6-
12:

" ABD 10
ADE ABD 0
ABE ACD 1

BCD 1

Table 6-12: Large 3-itemsets and their supports.

So the only large 3-itemset found is {ADE}.
In order to check whether the locally large itemsets are actually large in database or not, we

check each locally large itemset globally with the help of formula X.Sup>= s*D, where D is

the size of the entire database, which in this case is 12.

Centralized Association Rules Mining (C-ARMing) 78

Chapter 6 Results

9>=6

3 4 2

B 3 2 2 7>=6
C 2 1 3 6>=6
D 2 3 3 8>=6
E 2 2 2 6>=6
AB 3 2 0 5<6
AC T 0 1 2<6
AD 1 3 2 6>=6
AE 1 2 1 4<6
BC 1 0 2 3<6
BD 1 1 1 3<6
BE 1 0 1 7<6
CD 1 0 2 3<6
CE 1 0 1 2<6
DE 1 2 1 4<6

Table 6-13: Global Support count of candidate itemsets.

From the table 6-13, the only globally large 2-itemset is {AD}, and sine we have a single

globally large 2-itemset so no candidate 3-itemset is possible and the process stops here.

Experiments show that the database scanning is reduced to half with CMA algorithm, and the

early pruning also decreased the chances for the false candidates.

Centralized Association Rules Mining (C-ARMing) 79

Chapter 7/

o ———————————————————————————————

Conclusion
| &
Future Enhancements

Chapter 7 Conclusion and Future Enhancements

7. Conclusion & Future Enhancements

We have implemented our C-ARMing technique’s simulation software on the Pentium
Machine with limited memory and slow processing speed. But there is always a chance for
improvement in every software. So we discuss below the conclusion and future
enhancements to our C-ARMing model. Better results can be obtained if the server machine
is used with Xeon processor or Dual processing power system. It would further reduce the

time complexity of the algorithm.

7.1 Conclusion

Previously, the database was used to be scanned again and again for the generation of
candidate itemsets, and then for the actually large itemsets, which in the case of huge
database means a lot. Which resulted in higher CPU costs and large number of I/Os as well.
The technique we adopted not only reduces the CPU cost, but also decreases the database
scanning with the percentage of 50%, which is an achievement, with special reference to the
Data mining queries. Our technique, the C-ARMing, also results in the efficient processing
speed, and hence Association Rules could easily be generated from them. The database scans
taken by the different algorithms are shown in the fig. 7-1.

8
74
61
Pl ® 1scan
418 B 2scan
3 7 O n+iscans
: . B 1scan
04

Partition DMA Apriori CMA

Figure 7-1 Database scans taken by different algorithms

Centralized Association Rules Mining (C-ARMing) 80

Chapter 7 Conclusion and Future Enhancements

7.2 Future Enhancements

During our project, we have implemented our C-ARMing technique with the synthetic
database, created exclusively for this study. The size of the database was 100,000 tuples. In
future we will compare PARTITION and our devised CMA Algorithm by implementing the
PARTITION Algorithm as well. CMA Algorithm could also be tested with transactional
databases, and on different systems, other than Pentium machines, to conduct a comparative
study and test the functionality of the algorithm. Development of same project in some other
tool such as VC++ or entirely in Dot net frame work can improve the efficiency by reducing
its time complexity. In future we are also planning to test the same algorithm with the

database size exceeding 1million transactions.

Centralized Association Rules Mining (C-ARMing) 81

Appendix A

g

Reffernces

References

References

[1]. “Decision Support Systems and intelligent Systems”. Fifth edition. By Efraim Turban,
Jaye. Aronson. Pg 34.

[2]. “Data Mining: Concepts and Techniques”. By Jiawei Han, Micheline Kamber. Pg 15,
226, 227.

[3]. “Data Mining: Introductory and Advanced Topics”. By Margaret H. Dunham. Pg 5,
6, 38, 166.

[4]. “Database Systems: A Practical Approach to Design, Implementation, and
Management”. By Thomas Connolly, Carolyn Begg. Pg 1047.

[5]. “Data Warehousing”. By BRB Publications. Pg 79.

[6]. “Data Mining: Typical Data Mining Process for Predictive Modelling”. By BPB
Publication. Pg 3, 5.

[7]. Rakesh Agarawal, Tomasz, Imielinski, and Arun Swami. “Mining Association Rules
Between Sets of Item In Large Databases”. Proceedings of the ACM International

Conference on Management of Data,1993.

[8]. Maurice Houtsma, Arun Swami.”Set-Oriented Mining for Association Rules in
Relational Databases”. Proceedings of the IEEE International Conference on Data

Engineering, 1995.

References

[9]. Rakesh Agarawal, Ramakrishnan Srikant. “Fast Algorithms for Mining Association
Rules”. Proceedings of the International Very large Databases Conference, 1994.

[10]. Jong Soo Park, Ming-Syan Chen and Philip S. Yu. “An Effective Hash-Based
algorithm for Mining Association Rules”. Proceedings of the ACM International

Conference on Management of Data, 1995.

[11]. Ashoke Savasere, Edward Omiecinski and Shamkant Navathe. “An Efficient
Algorithm for Mining Association Rules in Large Databases”. Proceedings of the 21s
VLDB Conference, Zurich, Switzerland,1995.

[12]. David W. Cheung, Jiawei Han, Vincent T. Ng, Ada W Fu, and Yongjian Fu. “A Fast
Distributed Algorithm for Mining Association Rules”.

[13]. David W. Cheung, Vincent T. Ng, Ada W. Fu, and Yongjian Fu. “Efficient Mining of
Association Rules in Distributed Databases”. IEEE Transactions on Knowledge and
Data Engineering, 1996.

[14]. Jun-Lin Lin, Margaret H. Dunham. “Mining Association Rules: Anti-Skew
Algorithms”. Department of Computer Science and Engineering, Southern Methodist
University, Dallas, Texas.

[15]. http://en.wikipedia.org/wiki/Microsoft .NET Framework.

[16]. http://msdn.microsoft.com/netframework/technologyinfo/overview/default.aspx.

Publication

Appendix B

Journal Name
ISSN

Copy Right

Association Rule Mining in Centralized Databases

Saleha Jamshaid, Zakia Jalil, Malik Sikander Hayat Khiyal and Muhammad Imran Saeed
Faculty of Applied Sciences, International Islamic University, Islamabad, Pakistan

Abstract: Mining of Association Rules between the items of a huge centralized Database is very interesting
and important research area. Its importance becomes more significant in case of sales transaction. There are a
number of algorithms working on this specialized research area. The algorithm presented in this study,
(Centralized Mining of Association-Rules), CMA is more efficient than the previous existing algorithms, as it
not only reduces the overhead of frequent disk I/Os and the CPU cost, but it also reduces the database scan
to the half. The CMA algorithm, presented in this study, basically takes the best features of two state-of-the-art
algorithms in the area, i.e., the technique of PARTITION algorithm of ceritralized database area is taken for
partitioning the huge Database and then, the DMA algorithm of distributed database environment is applied
on each partition. The large itemsets to be found at the end of operation at each partition are to be merged
together and then the actual set of large itemsets is finally created.

Key words: Data warehousing, data mining, association rules

INTRODUCTION

With the growing competition in retail industry, it
has been observed that along with other factors, proper
placement of different items together at shelves is also a
major factor to increase the sales of a store. Because some
itemns have special sort of relationships among each other,
which can never be targeted out simply with the help of
Entity-Relationship Diagram (ERD) or some mathematical
formulae, as these relationships are not the casual
relationships. To represent these relationships between
data items, association rules are used. For example, if a
person buys a computer, he is likely to be buying some
software CDs as well. If we offer our customers free
Operating System installation and place some antivirus
CDs on the prominent and nearest shelves to the counter,
the customer couldn’t stop himself from noticing the
importance of the antivirus software for his system’s
protection as well. And if we offer this antivirus to him
with some special concession package, he will definitely
be induced to buy those as well. It means that not only we
are running our computer business with distinction from
our competitors, but also establishing a side business of
CD shop. This is what we call Association between two
items; the Association between computer and CDs and
the association between computers and the virus-guard
software. And all such business decisions are supported
well with the help of finding out these Associations. And
to find these Associations, we use Association Rules.

Association rule Mining is an important research
area in Databases. It usually involves huge amount of

data glut, out of which, useful information is to be
extracted in the form of association rules. The task of

‘Mining association rules is to analyze the entire Database

and find out the association rules for different sets of
items. It requires multiple Database scans for the rule
generation. N

The algorithm presented in this study CMA,
generates large itemsets by only taking a single scan of
the database after the creation of the candidate sets. It
divides the centralized database into a number of
partitions, which are not taken sequentially from the
database, but the partitions are created by taking random
tuples from the database and then collecting them
together in different partitions. Bach partition is loaded
into the memory one by one and then the large itemsets
are created from each partition. At the end, the large
itemsets of all the partitions are collected and then
examined that whéther these are actually large itemsets in
the entire database or not. Within each partition, the large
itemsets are created by taking a single database scan after
creation of the candidate sets, thus minimizing the disk
I/Os to the half, as that of the PARTITION Algorithm
presented by Savarse et al. (1995). The database used for
the experiments of CMA Algorithm is synthetic data,

" created exclusively for this study.

s

BASIC CONCEPT

In the present study we give the basic description of
this problem area, which is mostly based on the

.description given by Agarawal et al. (1993). The problem

Corresponding Author: Malik Sikander Hayat Khiyal, Faculty of Applied Sciences, International Islamic University, Islamabad,

Pakistan

2

Jcurnal Name

of association rule mining is tackled in many research
papers. Many algorithms are devised to solve this
problem. From the literature, it has been observed that
problem can be divided into two sub problems:

+ Find all frequent/large itemsets
¢ QGenerate strong association rules from these
frequent/large itemsets (Han, 2001).

Here, by large itemsets, we mean the items that
frequently occur together in different transactions. We
define a threshold number of occurrences for a given
itemset, if the number of occurrences is greater than that
threshold value, then the item is a larger one, otherwise a
small one. It is done by scanning the entire Database and
calculating the number of occurrences of each itemset.
This individual number of occurrences of an itemset is
called the support of that itemset. And the threshold
value of support, specified by the user is called the
minimum_support. Like support another feature used is
called confidence, which actually determines the strength
of the rule. To understand it lets take an example. In order
to measure the confidence of two items, say burger and
the drink, the number of times the burger appears in the
transaction, so is the drink. This is called the confidence
between two items. It can have any value, 60 and 70% etc.
association rules are the implication of the form X=-Y.
Here X is called the antecedent and Y is called
consequent of the rule. The rule X=Y has confidence ¢ in
the transaction set D if ¢ is the percentage of the
transaction in D containing X that also contain Y (Han,
2001).

The literature surveyed and the study with different
algorithms, has shown that in order to have an efficient
algorithm for the association nile mining, it is required to
cmphasize a lot over the generation of frequent/large
itemsets, the first sub problem. The quicker the algorithm
at stepl, the efficient will be the association rule Mining
process. So othe present study is confined with the step]
only.

The functionality, followed so far for generation of
large itemsets 1s as follows: :

Let I = {i,i;,...,I,.} be the set of items, D3 be the
transactipnal database, T the set of items such that T<l.
So the rule X=Y means XcI, YcI and XnY = ¢. As
mentioned before, it is the stepl which determines the
efficicncy of the algorithm as the database is scanned for
many times during this step. Firstly, the items are taken
from the database, then their support is counted from the
database, then 2-iteinsets are created and up to k-itemset
creation (k-itemset is an itemset of size k), the databuase i3
scaied again and again, i.e., the same is done for the

every iteration. As it is obvious that the mining of
association rules is not done on a small database, rather
it could be on a huge database, or a data warehouse, or
some distributed database with multiple nodes. So this
multiple scan of database physically means a lot.
Excessive study has been done on this area. ,

An earlier study in this area is done by Agrawal et al.
(1993), in which AIS algorithm is presented. This
algorithm scans the database to create the candidate sets
of frequently occurring itemsets. The second database
scan counts the support of these candidate sets. The
candidates generated from a transaction are added to the
set of candidate itemsets for the pass, or the counts of the
corresponding entries are increased if they were created
by an earlier transaction. The problem with this algorithm
is that, it is confined to only the single consequent rule
generation and creates larger candidate set.

An algorithm SETM is presented by Houtsma and
Swami (1995). It uses SQL for computing large itemsets.
Candidate itemsets and the corresponding TIDs are saved
together and are sorted and aggregated at the end of pass
to determine the support count. The small candidate
itemsets are pruned out. Then the set of the candidate set
is again sorted on the basis of TIDs for next pass. SETM
also uses the single consequent rule generation
technique. It also generates large candidate itemsets. For
each candidate itemset, the candidate gencrated has many
entries as the number of transactions in which the
candidates are present. Also to count the support for
candidate itemsets, the candidate set is in wrong order
and needs to be sorted on TIDs. After counting and
pruning out small candidate itemstes, the resulting set of
large items needs another sort on TID, to be used in the
subsequent passes.

The pioneer work is presented by Agrawal and
Srikant (1993) in which notorious Apriort algorithun 1
presented. All other subsequent algorithms are the
adaptation of Apriori to some extents. This algorithm
counts item occirrences from the database to detonnine
Jarge) -itemset in first pass. In the next pass, the algorithin
first generates candidate itemsets, using apriori-gen () and

" then checks the support comt. Tt stores the candidato

emsets i a special structure, the llash Tree. The
candidate itemsets gencrated by this algoritlun is smaller
than that created by SETM and AIS. Also, unlike the AIS
and SETM, it generates multiple consequent association
rules. Another version of Apriori, AprioniTid, is also
presented in this study, which does not use the database
for support couuting after the first scan, instead it uses
the pair of itemset and it's TIDs for this parpose. It works
clliciently in later passes. Apriorillybrid is another variant
of the same algorithms which uses Apriori in earlier

Journal Name

iterations and AprioriTid in later ones, to enjoy more
benefits from both the algorithms. In Apriori, the problem
is that the database is scanned entirely for each pass, so
it means for 10 iterations, 10 scans of the entire database.
For AprioriTid algorithm, its performance is not better
than Apriori’s in initial stages, as there are too many
candidate k-itemsets to be tracked during the early stages

- of the process. The challenge in AprioriHybrid is to
determine the switch over point between the two
algorithms,

Partition algorithm, presented by Savasere et al.
(1995), takes two database scans. Firstly, for generation of
potentially large itemsets and store it as a set, which is the

. superset of all the large itemsets. Secondly; to measure
the support of these itemsets and storing them in their
respective counters created. '

The working of this algorithm is divided in two
phases. In phase I, the database is logically divided into
non-overlapping partitions, which are considered one by
one and large itemsets for each partition are generated
and at the end all itemsets are merged to form the set of all
potentially large itemsets. The phase II generates the
actual support of these itemsets, to identify large itemsets.
The database is read once in phase I and once in phase II.
The small itemsets are pruned out. For each itemset, is
associated its sorted TID list. To count the support of all
itemsets in a partition, this algorithm divides the
cardinality of TID list by the total number of transactions
in that partition. Initially, the tidlists for 1-itemsets are
generated directly by reading the partition. The TID list
for a candidate k-itemset, is generated by joining the TID
lists of the two (k-1)-itemsets that were used to generate
the candidate k-itemset The main problem with
PARTITION algorithm is to find out the accurate number
of partitions for the given memory.

The mining of association rules .in distributed
environment is discussed by Cheung et al. (1996). An
algorithm Distributed Mining of Association rules,
(DMA) is presented, which is an adaptation of Apriori in
parallel systems. In DMA, to generate candidate itemsets,
apriori-gen() is not applied directly, rather it is applied in
such a way that it minimizes the candidate set to a greater
extend than in the case of direct application of apriori-
gen(). It 'uses polling site technique to determine heavy
itemsets, after local pruning. In the whole procedure, the
database partition at each site is scanned only once for
calculating the support count and then those counts are
stored in Hash Tree. This Hash Tree contains the support
counts of both the lieavy itemsots at that site and heavy
itemisets at some other site. The later are stored in order 1o
ctertain the polling requests made by Uie remote sites so
one database scan is done to compute the support counts

of itemsets and are stored in the Hash Tree and retrieved
from that Hash Tree when required. This oplimizes the
database scanning required for count exchange. ,

The literature proves that the generation of large
itemsets is the main problem in generating the association
rules in large databases. It involves many problems like
the candidate scts created for generation of large itemsets
are very large; the database is supposed to be scanned
again and again in order to create candidate sets and to
generate their support counts. Also the pruning of the
itemsets from the candidate sets, that are not large, is also
a problem.

MATERIALS AND METHODS

The algorithm DMA requires only one database scan
at each site in order to calculate the heavy itemsets. So
far, the best work done on centralized databases, the

"Partition algorithm, achieves the same with two database

scans. So to apply DMA algorithm on each partition
(obviously excluding the concept of polling site, which is
specific for distributed databases), the large itemsets
could be found with a single database scan.

So the major task is to divide the database into a
number of partitions. These partitions are logical and non-
overlapping, i.e., the transactions found in one partition
should not also be present in other partition. Similarly, the
partitions are not to be taken sequentially from the
centralized database, these are to be created by taking the
transactions randomly from the database to avoid the
outliers (i.e., itemsets caused due to data skewness). For
example, the October earthquake of Pakistan caused a
drastic demand for tents. Per month demands of the tents
for the affected areas were about 200,000 and the
situation remained so throughout the winters. By using
the sequential approach for partitioning the centralized
database, if we take the data of a quarter of the year as
one partition, then according to the 4th partition of 2005’s -
data, tent will emerge as a large itemset, which in fact is
not. As a contrary, the annual sale of tents in Pakistan,
before the October earthquake, is 25 tents per year. This
1s the outlier, caused by the data skewness of the
abnormal circumstances. And if we take the transactions
randomly from the database to build different partitions,
the October-Dec’05’s tragic condition’s transactions will
be distributed throughout the database, so no problem of
outliers will emerge. This task is achieved with the
specially devised function, the Random (), to randomly
take ttansactions from the dutabuse and group thom
together 1n partitions. Each partition is supposed (o
contant 1D number of transactions, afler which the counter
1 initialized and then selected transactions are to bo

Journal Name

stored in second partition and so on. Then each partition
is brought into memory one by one. For each partition,
candidate 1-itemset is created, from which, large 1-itemset
Js generated. Then candidate 2-itemset is generated using
apriori-gen () and from that candidate set, large 2-itemset
is created and so on up to k-itemsets. Same is done with
each partition.

Dataset: The functionality of the CMA algorithm has
been tested on extensive experiments. The dataset used
in these experiments is synthetic data, created exclusively
for these experiments. Each tupple of the database is of
the form <TID> <A, B, C, D,...> where TID is the
transaction identifier, which is the primary key to uniquely
identify each tupple and the literals represent the retail
store’s items bought together in each transaction. For
example, take a transaction <T1004> <A, C, D> for
example, where A represents butter, C represents bread
and D represents milk, so we can say that transaction
number 1004 represents the purchase of breakfast items
by a customer during his visit to the store. The size of the
database used is 100, 000 transactions.

Random function: To calculate large itemsets, CMA
Algorithm partitions the database randomly, i.e., for each
partition, transactions are picked from the database
randomly. It is also possible to avoid this overhead of
randomizing the partitions by picking up sequential
partitions, 1.e., if the size of the database is 20 MB, then
take first five MB data in partition 1, next five MB data as
partition 2, next five MB data as partition 3 and the last
five MBs as partition 4. But the problem with sequential
partitioning is that there might be some item that are
excessively bought during some specific time period,
under some specific abnormal circumstances, which
actually are not the large itemsets, but within a partition
containing those transactions of that particular time
period, it appear as large itemsets. Such situations cause
into wasted efforts for considering something as large
itemscts, which factually are not. Let’s take October 8th
carthquake cxamplo once again. During those 3-4 months,
sweaters, jackets and blankets were extensively
purchased by the people of the saved areas, in order to
gift those to the people of devastated areas, to help them
fight the extreme climatic conditions. Under normal
circumstances, these items are not heavily bought items,
because people usually buy two or three swealers during,
the whole winters. And blankets aro the least purchased
items, as those are purchased after some five years. So, by
taking sequential parttions, the partition cousisting of
transactions of the last quarter of tho year 2005 will result

blankets, sweaters and jackets as heavily bought items,
which actually are not and also no other partition will
approve those as the heavy itemsets. So it means we are
wasting our resources on wrong candidates, in other
words, false positives. To overcome these problems
caused by the sequential partitioning, random patrtitions
are used. We devised a random function, which randomly
picks transactions and store them in partitions and at the
end, equal-sized, n number of partitions are created. These
partitions are random, equal-sized and non-overlapping.
By non-overlapping, we mean that a transaction once
picked for a particular partition, have 0% probability to be
picked up again for any other partition. The functionality
of random function is tested over a number of
experiments, with varying number of transactions different
datasets and it proved its performance in every case.

Decreased disk 1/0s: Earlier, algonthms were taking
multiple database scans in order to calculate the support
counts of the candidate itemsets, to approve them as large
itemsets or not. Which in large databases, means a lot of
extra work to be done. In CMA algorithm, we are using a
formula (as is used by Cheung et al. (1996) in DMA
algorithm) to check the support of an itemset. To calculate
locally large itemsets, s * D; is used, in which s is the
support of the itemset, set by the user (50% in these
experiments) and D, is the size of each partition. For global
support count, s * D is used, where s is same support,
while D is the size of entire central database.

The size of the D, is selected by keeping in view the
hardware requirements of the system in use, so that each
partition fits well in the memory, keeping enough space
for the L1_List, L_List And other Operating System
processes to run, simultaneously. After the partitioning,
each partition is to be loaded into the memory and then
the DMA algorithm (with due amendments) is to be
applied on it. As the database to be used in this study is
a centralized database, so there is no need of polling site
technique or polling requests etc. Similarly, only one set
of support count is to be generated, instead of the two
sets generated in DMA. The databaso to be used for thoe
cxperiments i the synthetic data, created exclusively for
this study. The functionality of our devised CMA
algorithm is prescnted in the Fig. 1. When a partition is
loaded into the memory, the partition is scanned and
supports for the candidate itemsets are counted and
stored inthe L1_List. To find out the large itemsets of the
partition, each ilemset is checked for the following

condition:

IT X aup,.cs * D, then
AdAX, Xosup, partitiondl) mto 1. List

Journal Name

Where D, is the number of transactions in ith
partitionThe itemsets not meeting this condition are
pruned away to avoid extra processing. In the next
iteration, the function apriori_gen () is applied on the large
itemsets created in the previous iteration and so on, till
either no new itemset is added to the L_List, or no
itemsets are there to be the input for the apriori_gen () in
the next iteration. At the end of calculations in all the
partitions, the itemsets in the G_List are now checked
again, this time with the D, the number of transactions in
the entire database. The condition ix:

Forall X € I._List
{Xsup=Y"., Xsup,;
I Xsupes * 1D then
{Iusert X into L_List AND
Prune away rest of the itemsets,
}
}

So only the actually large itemsets are feft inthe L_List.
CMA algorithm is presented in Fig. 1.

Partiion = Random (Centralized DB);, /m number of
partitions are generated
P = partition-database (D)
N = number of partitions
Fori=1 tonbegin
Read-in-partition (pi€P) // load partition
Ifk =1 then
Scan DB, to compute L.1_List;
Iilse
{
C,=U".,, C=U"., Apriori_gen
(L1_List,,)
Scan DB, for support and put in C,;

/fcalculation of locally large itemset
forall X € C,do
{ .
If X.sup,2s * D, then
Add(X, ¥X.sup, partition#) into
L_List,

/fcalculation of actually large itemset
Forall X € L_List

{

X.sup =YY", Xsup;

If X.sup2s * D then
{
Insert X into L_List AND
Prune away rest of the itemsets;
}

}

Fig. 1 CMA-Algorithm

"Example: To illustrate the perfonﬁance of CMA algorithm,

we give in the following section an example, in which at.
first Partition algorithm is applied on the central database,
which divides the database into three distinct, non-
overlapping and random partitions, and then calculates
the locally large k-itemsets, and finally computes globally
large itemsets of size 1,2,....,k. In the second part of the
example, CMA Algorithm is applied on the same database,
which also divides the central database into three distinct,
non-overlapping and random partitions and then
caleulntes locully lurge itemsots by bringing cach partition
one by one into memory. Globally large itemsets are
calculated at the end. Instead of counting the itemsets in
tho trausactions of tho nctunl databare, CMA Algorithm
usos tho formuta of 8*1), (ws is used by Cheung et al.
(1996) for counting support within each partition, where
s 13 the support of the itemset, set by the user, like 30, 60

~and 75% cte. (50% in this example) and D, is the sizoe of

each partition database (3 in this example). For global
support count, it uses the formula, s * D, where D is the
size of the entire database (12 in this example). The
datasct is prescnted bolow:

TiD Itemnset
T1 ABC
T2 ABD
T3 ADE
T4 ABD
TS BRC.D
T6 ALK
T7 ADH
™™ neu
T9 ABC
TI0 ACD
T1l ADE
T12 CDE

First, Partition algorithm is applied to the database,
which works on random partitions, so the original
database, given in dataset presentation, is divided into
three distinct, non-overlapping and random partitions,
which are presented in Table 1.

It.then generates the candidate 1-itemset and then
counts its support. The support taken in this example is
50%. So the large itemsets are created and stored along
with their TIDs, as shown in Table 2.

Then candidate 2-itemset is generated by multiplying
large 1-itemset with itself, like 1, * 1, The candidate 2-
itemsets of partition 1 are {AB, AC, AD, AE, BC, BD, BE,
CD, CE, DE}. Then the TIDs of the transactions
containing, these 2-itemsets are stored against each 2-
itemsets. The number of TIDs against each itemset shows
its occurrence in the partition. For example, in partition 1,
AB is present in T2, T6 and T9, so it means it has
occurrence of 3 out of 4 transactions, 1.e., 3/4 = 0.75, which
means 75% transactions in partition 1 contains AB, which

Journal Name

Table 1: Three Partitions created after dividing the database

Table 3: Candidate 1-itermnset of partition 2

Partition 1 Partition 2 Partition 3

D Itemset D
T2 ABD Ti
T6 ABE Ta
T9 AB,C T7
T12 C.D.E Tl

Itemaet 1 10)
AB,C T
ABD TS
ADE 8
ADE T10

lemsct
ADE
B.C.D
B.CE
ACD

Table 2: Candidate 1-itemsets of partition 1

D I-itemset
T2 A

T2 n

T2

Té

Té

Té

T9

T9 .
T9
TI12
TI12
Ti2

moQOQW>EW>»0

18 greater than 50%, so AB is a locally large 2-itemset in
partition 1. The supports calculated for each candidate 2-
itemset is given below:

AB = {T2,T6,T9}, so supportis AB=3/4 =0.75
AC = {T9}, so support is AC =1/4 = 0.25

AD = {T2}, sosupport is AD =1/4= 0.25

AE = {T2}, sosupport is AE =1/4 = 0.25

BC = {T9}, so support is BC=1/4 =0.25

BD = {T2}, sosupport is BD = 1/4 = (.25

BE = {T6}, so supportis BE = 1/4 = 0.25

CD = {T12}, so supportis CD = 1/4 = 0.25

CE = {0},sosupportis CE=0

DE = {T12}, so support is DE = 1/4 = 0.25

So the large 2-itemsets in Partition 2are {AB, AD and
- AE, DE}. From this we will have candidate 3-itemset of
{ABD, ADE, ABE, BDE}. Butas only 1 large 2-itemset is
present in partition 1, so no candidate 3-itemset is
possible. Same is repeated with partition 2 and partition 3,
which are illustrated in Table 3 and 4.

Partition =2

Candidate 2-itemset= 1, * 1, ={AB,AC, AD, AE, BC,
BD, BE,CD, CE, DE}

AB= {T1T,4}, sothe support is= AB=24=0.5

AL = {T1}, so the support is=1/4 = 0.25

AD = {T4,T7,T11}, so the support is= 3/4 = 0.75

AE = {T7,T11}, so the support is= 2/4 = 0.5

BC = {T1}, so the support is=1/4 = 0,25

BD = {T4}, so the support is=1/4 = 0,25

BE = {0}, so the supportis =0

CD = {0}, so the supportis =0

CE = {0}, so the support is = 0

DE = {T7,T11}, so the support is= 2/4 = 0.5

TID 1-itemset
T1 A
T1 B
Tl C
T4 A
T4 B
T4 D
T7 A
T7 D
T7 E
TI1 A
TI11 D
T11 E
Table 4: Candidate 1-itemset of partition 2

TID) 1-itemset
T3 A
T3 D
T3 E
TS B
TS (o]
TS D
T8 B
T8 (o]
T8 E
TI10 A
Ti0 C
Ti0 D

Candidate 3-itemsets are
ABD = {T4}, so the supportis = 1/4 =0.25
ADE = {T7,T11}, so the supportis =2/4=0.5
ABE = {0}, so the supportis = 0
BDE = {0}, so the support is = 0

So at the end we have only ADE as large 3-itamset in
Partition 2.

Partition =3

Supports of the 1-itemsets are
A=4B=2C=],D=3E=2
Candidate 2-itemset = {AB, AC, AD, AE, BC, BD, BE,
CD,CE, DE }
AB = {0}, so the supportis =0
AC = {T10}, so the support is = 1/4 = 0.25
AD = {T3,T10}, so the support is = 2/4 = 0.5
AE = {T3}, so the supportis = 1/4 = 0.25
BC = {T5,T8}, so the support is = 2/4 = 0.5
BD = {T5}, sothe support is = 1/4 = 0.25
BE = {T8}, so the support is = 1/4=0.25
CD = {T5,T10}, so the support is = 2/4 = 0.5
CE = {T8}, so the support is =1/4 = 0.25
DE = {T3}, so the support is =1/4 = 0.25

As we have only one large 2-itemset 5o no candidate
3-itemset is possible.

Now, we combine the large itemsets of all the
partitions and merge them in a single global set
(Table 5-7).

Journal Name

Table S: Globally large 1-itemsets
TiD 1-itemset
A

WOWLHN0NINNOAOAA LML LD DD WWREINNN- =~

mUOmOD>U0Q>QE>NIQUID>NE>0QOEUOE>ONO>0O0>OQU0

Table 6: Globally large 2-ftemsets

TID 2-iternset
T1,T2T4 AB
T2,T3,T4 AD
T2,T4 BD
TS,T8 . BC
T6,T7 AE
T6,T8 BE
T9,T10 AC
T10,T11 AD
T10,T12 CD
T11,T12 DE

Table 7: Globally large 3-itemsets
TID 3-itemset
T2T4 ABD

Supports of the 1-itemsets are
A=9,B=17,C=6,D=7,E=6

Supports of the large 2-itemsets are
AB =17 AD = 2,BD=1,BC=1,AE=1,BE=1,
AC=1,AD=1,CD=1,DE=1,

And the support of the 3-itemset is 1, so no globally
large 3-itemset is present in the database taken.

Now, we apply CMA Algorithm on the same
database, which also works by randomizing the database
and divides the database into three distinct, non-
overlapping and random partitions, which are presented
in Table 8.

We consider in this example, s = 50%. So the
candidate 1 -itemsets are presented in Table 9.

InPartition 1 the large 1-itemsets are {A, B, C, D, E}.
In Partition 2 the large 1-itemsets are {A, B, D, E}. While
in Partition 3 the large 1-itemsets are {A, B,C,D,E}.

The candidate 2-itemsets in Partition | are {AB, AC,
AD, AE, BC, BD, BE, CD,CE, DE}, in Partition 2 are {AB,
AD, AE, BD, BE, DE} and in Partition 3, are {AB, AC,
AD, AE, BC, BD, BE,CD,CE, DE}. The large 2-itemsets of
three partitions are presented in Table 10.

As shown in the Table 10, large 2-itemset in Partition
1 is {AB}, in Partition 2 ‘are {AB, AD, AE, DE} andin

Table 8: 3 Partitions created by CMA

Partition} Partition 2 Partition 3

TID Itemset TID Itemset TID Itemset
T2 ABD T4 ABD T3 AD.E

T9 ABC Ti1 ADE TS B,C,D

Té6 ABE Tl ABC T8 B,CE

TI12 CD.E T7 ADE T10 ACD

Table 9: Candidate 1-itemsets

Partition 1 Partition 2 Partition 3

Candidate Local count Candidate Local count Candidate Local count
l-Jtemset (X.support 1-Itemset (X.support l-Itemset (X.support

25°D) 23*D) 25*D)
A 320.5%4 A 420.5%4 A 220.5%4
B 320.5%4 B 220.5%4 B 2:0.5%4
C 2:0.5%4 [of 120.5%4 C 320.5%4
D 2:0.5%4 D 320.5%4 D 320.5%4
E 220.5%4 E 220.5%4 E 2:0.5%4
Table 10: Large 2-itemsets and their supports
P1 P2 . P3
CL! X.sup' Cr? X.sup? cL? X.sup®
AB 3 AB 2 AB 0
AC 1 AD 3 AC 1
AD 1 AE 2 AD 2
AE 1 BD 1 AE 1
BC 1 BE 0 BC 2
BD 1 DE 2 BD 1
BE 1 BE 1
cD 1 CcD 2
CE 1 CE 1
DE 1 DE "~ 1
Table 11: Large 3-iternsets and their supports
P2 P3
CI;’ Xsup’ CI;’ Xsuﬁ
ABD 1 ABC 0
ADE 2 ABD 0
ABE 0 ACD 1

BCD 1

Journal Name

“Table) 2: Global Suppoat comupt of candidate itewsets

Locally large
candidate set X.sup' X.sup? X.sup? X.Sup »5*D
A 3 4 2 9:6
B 3 2 2 726
C 2 1 3 626
D 2 3 3 826

2 2 2 626
AB 3 2 0 <6
AC 1] 1 2<6
AD 1 3 2 626
AE 1 2 1 4<6
BC 1 0 2 3<6
BD 1 1 1 3<6
BE 1 0 1 2<6
CcD 1 0 2 3<6
CE 1 0 1 2<6
DE 1 2 1 4<6

Partition 3 are {AD, BC, CD}. Table 10 shows that no
candidate 3-itemset in Partition 1 is possible. Whereas in
Partition 2 the candidate 3-itemset are {ABD, ADE, ABE}
and in Partition 3 {ABC, ABD, ACD, BCD}.

The support counts of candidate 3-itemsets of three
partitions are given in the Table 11.

So the only large 3-itemset found is {ADE}: In order to
check whether the locally large itemsets are actually large
in database or not, we check each locally large itemset
globally with the help of formula X.Supz s*D, where D is
the size of the entire database, which in this case is 12.

From the Table 12, the only globally large 2-itemset
is {AD} and sine we have a single globally large 2-itemset
so no candidate 3-itemset is possible and the process
stops here. '

CONCLUSIONS

Previously, the database was used to be scanned
again and again for the generation of candidate itemsets
and then the actually large itemsets, which in the case of
huge database means a lot. Which resulted in higher CPU
costs and large number of I/Os as well. CMA algorithm
presented, not only reduces it, but also decreases the
database scanning with the percentage of 50%, which is
an achievement. It also results in the efficient processing
speed and hence association rules could easily be
generated from them. The database scans taken by the
different algorithms are given in Fig. 2.

8- T
1 B 1 Scan
M 28can
61 O oSan
54 D 1 Scan
4
34
24
_I] [
04 T T v Y .|
Pastition DMA

Apdori CMA

Fig. 2: Database scans taken by different algorithms

We have implemented CMA Algorithm, but used
only with our synthetic dataset, created exclusively for
the study. In future we will compare PARTITION and our
designed CMA Algorithm with different datasets and
systems to conduct a comparative study.

REFERENCES

Agarawal, R., T. Imielinski and A. Swami, 1993. Mining
association rules Between Sets of item in large
databases. Proceedings of the ACM International
Conference on Management of Data, pp: 207-216.

Agarawal, R. and R. Srikant, 1994. Fast algorithms for
mining association rules. Proceedings of the
International Very large Databases Conference, pp:
487-499.

Cheung, D.W,, V.T. Ng, AW.Fuand Y. Fu, 1996. Efficient
mining of association rules in distributed databases.
IEEE Trans. on Know. Data Engineering, pp: 911-921.

Han, J M., Kamber and Simon Fraser University, 2001.
Data Mining: Concepts and Techniques, Kaufmann
Publishers.

Houtsma, M. and A. Swami, 1995. Set-Oriented mining for
association rules in relational databases.
Proceedings of the IEEE Intl. Conference on Data
Engineering, pp: 25-32.

Savasere, A., E. Omiecinski and S. Navathe, 1995. An
Efficient algorithm for mining association rules in
large databases. Proceedings of the 21st VLDB
Conference, Zurich, Switzerland, pp: 432-443.

Farrukh (July 19, 2006)

Appendlx C

'''''' S e R N S T N e e

NET Technology

Appendix C - Net Technology

C-1 Microsoft NET

>

Microsoft .NET is software that connects information, people, systems, and
devices. It spans clients, servers, and developer tools, and consists of:

The NET Framework 1.1, used for building and running all kinds of software,
including Web-based applications, smart client applications, and XML Web
services components that facilitate integration by sharing data and functionality
over a network through standard, platform-independent protocols such as XML
(Extensible Markup Language), SOAP, and HTTP.

Developer tools, such as Microsoft Visual Studio® .NET 2003 which provides an
integrated development environment (IDE) for maximizing developer

productivity with the NET Framework.

A set of servers, including Microsoft Windows® Server 2003, Microsoft SQL
Server™, and Microsoft BizTalk® Server, that integrates, runs, operates, and

manages Web services and Web-based applications.

Client software, such as Windows XP, Windows CE, and Microsoft Office XP,
that helps developers deliver a deep and compelling user experience across a

family of devices and existing products.

C-2 .NET Framework

>

The NET Framework is an integral Windows component for building and
running the next generation of software applications and Web services. The NET
Framework:

Supports over 20 different programming languages.

Manages much of the plumbing involved in developing software, enabling

developers to focus on the core business logic code.

Makes it easier than ever before to build, deploy, and administer secure, robust,

and high-performing applications.

Appendix C v Net Technology

» The NET Framework is composed of the common language runtime and a

unified set of class libraries
C-3 Design Goals and Principal Features

The .NET Framework was designed with several intentions:

» Interoperability - Because so many COM libraries have already been created, the
NET Framework provides methods for allowing interoperability between new
code and existing libraries.

» Common Runtime Engine - Programming languages on the NET Framework
compile into an intermediate language known as the Common Intermediate
Language, or CIL; Microsoft's implementation of CIL is known as Microsoft
Intermediate Language,, or MSIL. In Microsoft's implementation, this
intermediate language is not interpreted, but rather compiled in a manner known
as just-in-time compilation (JIT) into native code. The combination of these
concepts is called the Common Language Infrastructure (CLI), a specification;
Microsoft's implementation of the CLI is known as the Common Language
Runtime (CLR).

» Language Independence - The NET Framework introduces a Common Type
System, or CTS. The CTS specification defines all possible datatypes and
programming constructs supported by the CLR and how they may or may not
interact with each other. Because of this feature, the NET Framework supports
development in multiple programming languages. This is discussed in more detail
in the .NET languages secﬁon below.

» Base Class Library - The Base Class Library (BCL), sometimes referred to as
the Framework Class Library (FCL), is a library of types available to all
languages using the .NET Framework. The BCL provides classes which
encapsulate a number of common functions such as file reading and writing,
graphic rendering, database interaction, XML document manipulation, and so
forth.

Appendix C .Net Technology

> Simplified Deployment - Installation and deployment of Windows applications
has been the bane of many developers' existence. Registry settings, file
distribution and DLL hell have been nearly completely eliminated by new
deployment mechanisms in the NET Framework.

> Security - .NET allows for code to be run with different trust levels without the
use of a separate sandbox.

> The design of the NET Framework is such that it supports platform
independence. That is, a program written to use the framework should run without
change on any type of computer for which the framework is implemented. At
present, Microsoft has implemented the full framework only on the Windows
operating system. Microsoft and others have implemented portions of the
framework on non-Windows systems, but to date those implementations are not

widely used.

C-4 NET Framework architecture

: 4 + 4
YV
B Ty mm' Wmuw
—— z G LN
ﬁi%ll%l@iﬁii

1’9 mmum

Visual overview of the Common Language Infrastructure (CLI)

Appendix C .Net Technology

C-5 Common Language Infrastructure (CLI)

The most important component of the .NET Framework lies in the Common Language
Infrastructure, or CLI. The purpose of the CLI is to provide a language agnostic platform
for application development, including, but not limited to, components for: exception
handling, garbage collection, security, and interoperability. Microsoft's implementation
of the CLI is called the Common Language Runtime, or CLR. The CLI is composed of
five primary parts:

e Common Type System (CTS)

e Common Language Specification (CLS)
e Common Intermediate Language (CIL)
e Just-in-Time Compiler (JIT)

e Virtual Execution System (VES)

C-6 Assemblies

The intermediate MSIL code is housed in NET assemblies, which for the Windows
implementation means a Portable Executable (PE) file (EXE or DLL). Assemblies are the
NET unit of deployment, versioning and security. The assembly can be made up of one
or more files, but one of these must contain the manifest, which has the metadata for the
assembly. The complete name of an assembly contains its simple text name, version
number, culture and public key token; it must contain the name, but the others are
optional. The public key token is generated when the assembly is created, and is a value
that uniquely represents the name and contents of all the assembly files, and a private key
known only to the creator of the assembly. Two assemblies with the same public key
token are guaranteed to be identical. If an assembly is tampered with (for example, by

hackers), the public key can be used to detect the tampering.

Appendix C Net Technology

C-7 Metadata

All CIL is self-describing through .NET metadata. The CLR checks on metadata to
ensure that the correct method is called. Metadata is usually generated by language

compilers but developers can create their own metadata through custom attributes.
C-8 Base Class Library (BCL)

The Base Class Library (BCL), sometimes incorrectly referred to as the Framework Class
Library (FCL) (which is a superset including the Microsoft.* namespaces), is a library of
types available to all languages using the NET Framework. The BCL provides classes
which encapsulate a number of common functions such as file reading and writing,
graphic rendering, database interaction, XML document manipulation, and so forth. The

BCL is much larger than other libraries, but has much more functionality in one package.
C-9 Security

NET has its own security mechanism, with two general features: Code Access Security
(CAS), and validation and verification. Code Access Security is based on evidence that is
associated with a specific assembly. Typically the evidence is the source of the assembly
(whether it is installed on the local machine, or has been downloaded from the intranet or
Internet). Code Access Security uses evidence to determine the permissions granted to
the code. Other code can demand that calling code is granted a specified permission. The
demand causes the CLR to perform a call stack walk: every assembly of each method in
the call stack is checked for the required permission and if any assembly is not granted

the permission then a security exception is thrown.

When an assembly is loaded the CLR performs various tests. Two such tests are
validation and verification. During validation the CLR checks that the assembly contains
valid metadata and CIL, and it checks that the internal tables are correct. Verification is
not so exact. The verification mechanism checks to see if the code does anything that is

'unsafe'. The algorithm used is quite conservative and hence sometimes code that is 'safe’

Appena’ix C | Net Technology

|

|
|
is not veriﬁe#;l. Unsafe code will only be executed if the assembly has the 'skip

verification' p%rmission, which generally means code that is installed on the local

]
\

machine.

The languages supported by the .Net framework are listed below:

Supported pro%‘ramming languages

APL Fortran Pascal

C++ Haskell Perl

C# Java Language Python

COBOL \ Microsoft JScript® RPG

Component Pasbal Mercury Scheme

Curriculum Mondrian SmallTalk
Eiffel Oberon Standard ML

| Forth Oz Microsoft Visual Basic®

