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Abstract

Abstract

The aim of this project is to prove the famous theory "Equivalence of Turing Machine
and Computer" with more sound reasoning. Turing machine is model for general-purpose
computing device. There are many implementations of Turing Machine using physical
computer as well as many implementations of physical computing device using Turing
Machine. This project elaborates the simulation of computing model, using a high-level
language as its native code, on Turing machine. Efforts have been made to make it
possible to communicate among many of such simulations and finally, a deterministic
Turing model is designed that is able to actually simulate distributed processing.

A computing model based on the working of Turing machine is developed using
Microsoft Visual C++6
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Chapter 1 Introduction

1.Introduction

The project is about to implement a computing system on a Turing machine. Let’s first
describe the Turing machine. Turing machines are not physical objects but mathematical
ones that express the functional properties of a system. The architecture is simply
described, and the actions that may be carried out by the machine are simple and
unambiguously specified. It is not necessary to mention how the machine carries out its
actions, but the point is to specify that the machine can carry out the specified actions,

and that those actions may be uniquely described.

A system can be a physical or a virtual-system on any other physical system. In the

context of Turing Machine, we may classify systems into three categories.

o A Computing System: It is a system that understands a language, read source code
written in that language and executes the code. We may say that a ‘language’ is a

set of rules to express instructions to a computing system.

o A Compiler: It is a system that read a source code written in one language and

translates into another language. It does not execute the code.
o A Special Purpose System: It is to perform special user required functionality.

We may use the term system, algorithm and Turing machine interchangeably because it is
shown in different literature that for every problem that can be solved by a computer
(algorithm) there exist a Turing machine. Moreover we believe that, the purpose of

building a system is to implement an algorithm.

It can be said that compilers or computing systems separately are subset of computing
system, because if we have a close look to a compiler, it reads an algorithm written in one
language and translate it into another language but, it itself is an algorithm. Same is true
for a computing system. The hardware abstraction layer, the virtual machines and
operating systems are typical examples of logical computing system. Different processors
having their own instruction set architecture with which they accept code to execute are
examples of physical computing system. Virtual or logical systems are algorithms

implemented in languages understandable by the systems on which they are running.

Turing Machine for Distributed Computing Model 1



Chapter ) Introduction

All the modern devices whether they are logical or physical (electronic or mechanical or
combinations of both) are designed to implement algorithms and we call them systems.
All the physical, chemical or microelectronic theories are to implement the algorithms.
The efficiency of the whole system depends on the efficiency of the algorithm. Physical
or microelectronic optimization has less impact on the overall system efficiency than
optimization of the algorithm. So Turing machine can solve all and only those problems

solvable by a computer system (algorithm).

There are four classes of machine those are finite automata, push down automata, linear
bounded automata and Turing machine where according to capabilities the finite
automata is subset of push down automata, pushdown automata is subset of linear
bounded automata, and linear bounded automata is subset of Turing machine. Turing
machine full flag simulates real computer. Each class of machine accepts specific type of

languages having specific grammars.

A Turing machine is a kind of state machine. At any time the machine is in any one of a
finite number of states. Instructions for a Turing machine consist in specified conditions

under which the machine will transition between one state and another.

A Turing machine has an infinite one-dimensional tape divided into cells. Traditionally
we think of the tape as being horizontal with the cells arranged in a left-right orientation.
The tape has one end, at the left, and stretches infinitely far to the right. Each cell is able

to contain one symbol, either ‘0’ or ‘1°.

The machine has a read-write head, which at any time scanning a single cell on the tape.

This read-write head can move left and right along the tape to scan successive cells.

The action of a Turing machine is determined completely by the current state of the
machine, the symbol in the cell currently being scanned by the head and a table of

transition rules, which serve as the “program” for the machine.

The actions available to a Turing machine are either to write a symbol on the tape in the
current cell, or to move the head one cell to the left or right. If the machine reaches a
situation in which there is not exactly one transition rule specified, that., none or more

than one, then the machine halts.

ho
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In modern terms, the tape serves as the memory of the machine, while the read-write
head is the memory bus through which data is accessed and updated by the machine.
There are two important things to notice about the definition. The first is that the
machine's tape is infinite in length, corresponding to an assumption that the memory of
the machine is infinite. The second is similar in nature, but not explicit in the definition of
the machine, namely that a function will be Turing-computable if there exists a set of
instructions that will result in the machine computing the function regardless of the
amount of time it takes. One can think of this as assuming the availability of infinite time

to complete the computation.

These two assumptions are intended to ensure that the definition of computation that
results is not too narrow. This is to ensure that no computable function will fail to be
Turing-computable solely because there is insufficient time or memory to complete the
computation. If a function is not Turing-computable it is because Turing machines lack

the computational machinery to carry it out.

This project defines a Turing machine as a computing system model that has own set of
rules, symbols. A language similar to the high level language computer language has
been made as the understandable code of the Turing machine. When the Turing machine
is given source code using this high level language it execute the code. In this Turing
machine each sub Turing machine is a computing system and each has an identifier with

which these communicate among themselves.

A Distributed system is a collection of processors those do not share memory or a clock.
Each processor has its own local memory and clock. These processors communicate with
one another through various communication lines. Processors in a distributed system vary
in size and functionality. In a distributed system users servers and resources are
distributed over the whole system. A distributed system provides user with access to the
resources that the system provides. Service activity has also to be carried out across the
network but whole these things are transparent to the users. A client interface should not

distinguish between a local and a remote resource.

So when implemented, these Turing machines act as virtual distributed machines across

the system. On the other hand the algorithm written in its code finds itself in a complete

(I
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computing system. This Turing machine is actually composed of many smaller Turing
machines each independently a standard computing system. The smaller components

communicate among themselves to simulate the communications of a distributed system.
But let’s first give a brief introduction about Turing Machine.

Turing’s Question was, how do we compute?

His answer: read, write, look, control.

_read: input to Turing Machine

_write: output from Turing Machine

. look: move (Turing Machine) tape head

1.1. Turing Machines According to A.M.Turing’s Paper

During the International Congress of Mathematicians in Paris in 1900 David Hilbert
(1862-1943), one of the leading mathematicians of the last century, proposed a list of
problems for the following generations to profounder. On the list was whether the axioms
of arithmetic are consistent, a question which would have profound consequences for the
foundations of mathematics. Continuing in this direction, in 1928 Hilbert proposed the
decision problem (das Entscheidungsproblem), which asked whether there was a standard
procedure that can be applied to decide whether a given mathematical statement is true.
In his revolutionary paper!"! Alan Turing (1912-1954) proved that the decision problem
had no solution, and in doing so he outlined the rudimentary ideas which form the basis

for the modern programmable computer. Today his construction is known as a Turing

machine.
Configuration Behavior
m-config. | symbol | operation |[ final m-config.
a none RP1 B
a 1 RPO B
a 0 HALT (none)
1 RP1 a
B 0 RPO a

Turing Machine for Distributed Computing Model 4
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Given finite, non-empty, sets A and B, design a Turing machine which tests whether
A < B. Suppose that the first character on the tape is a 0, simply to indicate the beginning
of the tape. To the right of 0 follow the (distinct, non-blank) elements of A, listed in
consecutive positions, followed by the symbol &. To the right of & follow the (distinct,
non-blank) elements of B, listed in consecutive positions, followed by the symbol Z to

indicate the end of the tape:

O [T&[ 1T 117

The symbols 0, &, Z are neither elements of A nor B. The machine starts reading the

tape in the right most position, at Z. If A ¢ B, have the machine erase all the elements of
A and return a tape with blanks for every square which originally contained an element of
A. You may use the following operations for the behavior of the machine:

» R: Move one position to the right.

« L: Move one position to the left.

« S: Store the scanned character in memory. Only one character can be stored at a
time.

» C: Compare the currently scanned character with the character in memory. The
only operation of C is to change the final configuration depending on whether the scanned
square matches what is in memory.

» E: Erase the currently scanned square

*  P(): Print whatever is in parentheses in the current square.

You may use multiple operations for the machine in response to a given configuration.
Also, for a configuration gn, you may use the word “other” to denote all symbols S(r) not

specifically identified for the given qn.Be sure that your machine halts.

=  ComputingMachines:

We have said that the computable numbers are those whose decimals are calculable
by finite means. This requires more explicit definition. No real attempt will be made to
justify the definitions given until we reach §9. For present I shall only say that the
justification lies in the fact that the human memory is necessarily limited. We may
compare a man in the process of computing a real number to a machine which is only

capable of a finite number of conditions ql, g2, ..., qR, which will be calledthe “m-

W
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configurations”. The machine is suppliedwith a “tape” (the analogue of paper) running
through it, and divided into sections (called“squares™”) each capable of bearing a
“symbol”. At any moment there is just one square, say the r-th, bearing the symbol S(r)
which is “in the machine”. We may call this square the “scannedsquare”. The symbol on
the scanned square may be calledthe “scanned symbol”. The “scanned symbol” is the

only one of which the machine is, so to speak, “directly aware”. However, by altering its
m-configuration the machine can effectively remember some of the symbols it has “seen”

(scanned) previously. The possible behaviour of the machine at any moment is
determined by the m-configuration qn and the scanned symbol S(r).This pair gn, S(r) will
be called the “configuration”; thus the configuration determines the possible behaviour of
the machine. In some of the configurations in Which the scannedsquare is blank (that.
bears no symbol) the machine may writes down a new symbol on the scanned square; in
other configurations it may be erases the scanned symbol or overwrite. The machine may
also change the square which is being scanned, but only by shifting it one place to right
or left. In addition to any of these operations the m-configuration may be changed. Some
of the symbols written down will form the sequence of figures which is the decimal of the
real number which is being computed. The others are just rough notes to “assist the
memory”. It will only be these rough notes which will be liable to erasure. It my
contention that these operations include all those which are used in the computation of a
number. The defense of this contention \yill be easier when the theory of the machines is
familiar to the reader. In the next section I therefore proceed with the development of the

LAY 2% &

theory and assume that it is understood what is meant by “machine”, “tape”, “scanned”,

€etc.

=  Automatic machines:

If at each stage the motion of a machine (in the sense of §1) is completelydetermined
by the configuration, we shall call the machine an “automatic machine” (or a-machine).
For some purposes we might use machines (choice machines or c-machines) whose
motion is only partially determined by the configuration (hence the use of the
word“possible” 1n §1). When such a machine reaches one of these ambiguous
configurations, it cannot go on until some arbitrary choice has been made by an external

operator. This wouldbe the case if we were using machines to deal with axiomatic

Turing Machine for Distributed Computing Model 6
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systems. In this paper I deal only with automatic machines, and will therefore often omit

the prefix a-.

=  Computing machines.

If an a-machine prints two kinds of symbols, of which the first kind (called figures)
consists entirely of 0 andl (the others being called symbols of the second kind), then the
machine will be calleda computing machine. If the machine is suppliedwith a blank tape
andset in motion, starting from the correct initial m-configuration the subsequence of the
symbols printedby it which are of the first kindwill be called the sequence computed by
the machine. The real number whose expression as a binary decimal is obtained by
prefacing this sequence by a decimal point is called the number printed by the machine.

At any stage of the motion of the machine, the number of the scanned square, the
complete sequence of all symbols on the tape, andthe m-configuration will be saidto
describe the complete configuration at that stage. The changes of the machine and tape

between successive complete configurations will be called the moves of the machine.

Examples of computing machines:

I. A machine can be constructed to compute the sequence 010101 ....The machine is
to have the four m-configurations “b”, “c”, “f”, “e” andis capable of printing “0” and*“1”.
The behaviour of the machine is described in the following table in which “R” means
“the machine moves so that it scans the square immediately on the right of the one it was
scanning previously”. Similarly for “L”. “E” means “the scanned symbol is erased
and“P” stands for “prints”. This table (and all succeeding tables of the same kind) is to be
understood to mean that for a configuration described in the first two columns the
operations in the third column are carried out successively, and the machine then goes
over into the m-configuration described in the last column. When the second column is
blank, it is understood that the behaviour of the third and fourth columns applies for any
symbol and for no symbol. The machine starts in the m-configuration b with a blank tape.

(Example 1).

Turing Machine for Distributed Computing Model 7
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Configuration Behaviour

m-config. { symbol | operation | final m-config.
b none PO, R ¢

c none R e

e none P1,R f

f none R b

If (contrary to the description §1) we allow the letters L, R to appear more than once in

the operations column we can simplify the table considerably.

Configuration Behaviour

m-config. | symbol | operation | final m-config.

b none PO b
b 0 R, R, P1 b
b 1 R, R, PO b

A Turing Machine may have multiple tape or multiple head or multi dimensional tape but
all the following attempts have been proven to be equivalent to a ordinary Turing

Machine.
e Composition of Multiple Turing Machine
o Multiple Tape
e Multiple read/Write head
e Multi dimensional tape
e Non determinism.

That is we can construct a Turing Machine which is equivalent to any of the above of

these.

Turing Machine for Distributed Computing Model 8
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Chapter 2 Basics of Turing Machine

2.Basics of Turing Machine

This chapter provides a comprehensive knowledge about some advance issues of Turing

Machine, their capabilities and limitations.
2.1. Turing Machines and Complexity

There is numerous literature presenting different models of computing devices. Finite
automata are good for devices with a small amount of memory and relatively simple
control. Pushdown automata are good for devices with unlimited memory with a stack.
However it have been shown limitations of these models for even simple tasks. This

makes them too restrictive for general purpose computers.

In contrast, the Turing Machine, first proposed by Alan Turing in 1936“], i1s a much more
powerful model. It is essentially a finite automaton but with an unlimited and unrestricted
memory and is a more accurate model of a general purpose computer since it can do
everything a general purpose computer can do (although slower). Nevertheless, there are
problems that Turing machines can‘t solve; therefore a real computer can‘t solve them

either.

This is where we make a change in direction. We will start to examine problems that are
at the threshold and beyond the theoretical limits of what is possible to compute using
computers today. We will examine the following issues with the help of Turing

Machine‘s:

=  We use the simplicity of the Turing Machine model to prove formally that there

are specific problems (that. languages) that the Turing Machine cannot solve.

o Three classes: —Recursive™ = Turing Machine can accept the strings in
the language and determine if a string is not in the language. Sometimes

these are called decidable®,

o recursively enumerable" = Turing Machine can accept the strings in the
language but cannot tell for certain that a string is not in the language.

Sometimes these are called —partially decidable®.

Turing Machine for Distributed Computing Model 9



Chapter 2 Basics of Turing Machine

o non-RE" = no Turing Machine can even recognize the members of the

language. These are —non decidable.”

We then look at problems (languages) that do have Turing Machine's that accept them
and always halt; that., they not only recognize the strings in the language, but they tell us

when they are sure the string is not in the language.

The classes P and NP are those languages recognizable by deterministic and
nondeterministic Turing Machine's, respectively, that halt within a time that is some
polynomial in the input. Polynomial is as close as we can get, because real computers and

different models of (deterministic) Turing Machine's can differ in their running time by a
2
polynomial function, for example., a problem might take O(n ) time on a real computer
6
and O(n ) time on a Turing Machine.

=  NP-complete problems: These are in a sense the —hardest problems in NP.
These problems correspond to languages that are recognizable by a nondeterministic
Turing Machine. However, we will also be able to show that in polynomial time we can
reduce any NP-complete problem to any other problem in NP. This means that if we

could prove an NP Complete problem to be solvable in polynomial time, then P = NP.

=  Some specific problems that are NP-complete: satisfiability of boolean

(propositional logic) formulas, traveling salesman, etc.
2.1.1. Undecidable Problems

Given a C program (or a program in any programming language, really) that prints
"hello, world" is there another program that can test if a program given as input prints

"hello, world"?

This is tougher than it may sound at first glance. For some programs it is easy to

determine if it prints hello world. Here is perhaps the simplest:
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#include “stdio.h”

void main()

(

printf(*“hello, world\n”);
}

It would be fairly easy to write a program to test to see if another program consisting
solely of printf statements will output “hello, world”. But what we want is a program that
can take any arbitrary program and determine if it prints “hello, world”. This is much

more difficult. Consider the following program:

#include "stdio.h"

#define e 3

#define g (e/e)

#define h ((g+e)/2)

#define f (e-g-h)

#define ) (e*e-g)

#define k (j-h)

#define 1(x) tab2[x]/h

#define m(n,a) ((n&(a))==(a))

long tabl{}={ 989L,5L,261,0L,88319L,123L,0L,9367L };
int tab2[]={ 4,6,10,14,22,26,34,38,46,58,62,74,82,86 };
main(ml,s) char *s; {

int a,b,c,d,o[k],n=(int)s;

if(m1==1){ char b[2*;+{-g]; main(l(h+e)+h+e,b); printf(b); }
else switch(m1-=h){

case {2 a=(b=(c=(d=g)<<g)<<g)<<g;
return(m(n,alc)im(n,b)im(n,ald)jm(n,c|d));

case h:

for(a=fia<y;++a)if(tabl [a]&&!(tabl[a]%((long)l(n))))return(a);
case g:

if(n<h)return(g);if(n<)) {n-=g;c="D";o{f]=h;o[g]=f;}

Turing Machine for Distributed Computing Model {1



Chapter 2 Basics of Turing Machine

else{c="\r'-"\b';n-=j-g;o[fl=o[g}=g;}
if((b=n)>=e)for(b=g<<g;b<n;++b)o[b]=o[b-h]+o[b-g]+c;
return(o[b-g]%n+k-h);

default: if{m1-=¢) main(m1l-g+e+h,stg); else *(s+g)=f;
for(*s=a=f;a<e;) *s=(*s<<e)main(h+a++,(char *)ml);

!

}

The program above, when compiled with a C compiler will actually print “hello, world”.

When we start to look at the problem of creating a program that can determine if any
arbitrary program prints “hello, world” we see this program can be very difficult to create
indeed. In fact, we can prove there is no C program to solve that problem (called

undecidable) by supposing that there were such a program H, the “hello, world tester”

H takes as input a program P and an input file I for that program, and tells whether P,
with input I, prints “hello, world” (by which we mean it does so as the first 13 characters)

by outputting "yes" if it does, and "no" if it does not.

I yes

p / Hello-world tester ™, 10

Next we modify H to a new program H1 that acts like H, but when H prints no, H1 prints

“hello, world”. To do this, we need to find where "no" is printed and change the printf

statement to “hello, world” instead:

I yes

\ H1

P
b /' Hello-world tester ™ hello, world

Next modify H1 to H2 . The program H2 takes only one input, P2, instead of both P and

I. To do this, the new input P2 must include the data input I and the program P. The

program P and data input [ are all stored in a buffer in program H2. H2 then simulates
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hapter

Hi. but whenever H1 reads input, H2 feeds the input from the buffered copy. H2 can
maintain two index pointers into the buffered data to know what current data and code

should be read next:

P=PI H2 i Hi

Buffer:[ Pl

bt
1)
i

hello, world

However, H2 cannot exist. If it did, what would H2(H2 ) do? That is, we give H2 as input
to itself:

YyES

%

H2
Hello-world tester

Hl ——

hello, world

If H2 (H2 ) =yes, then H2 given H2 as input evidently does not print “hello, world”. It is
printing "yes". If we go back to the original program H, then H(H2) outputs yes if H2

prints “hello, world”. But H2 is not printing “hello, world” it is printing "yes" instead.

We have a similar contradiction if H2(H2) =“hello, world”. But if H2 prints “hello,
world” then back with H the output should be "yes". But if the output was "yes" then we

would not get the output of “hello, world”.

This situation is paradoxical and we conclude that H2 cannot exist. As a result, H1 cannot
exist and H cannot exist. Therefore we have contradicted the assumption that H exists
and no program H can tell whether or not another arbitrary program P prints "hello

world".
2.1.2. Reducing one problem to another

Once we have a single problem known to be undecidable we can determine that other
problems are also undecidable by reducing a known undecidable problem to the new
problem. We will use this same idea later when we talk about proving problems to be

NP-Complete.

To use this idea, we must take a problem we know to be undecidable. Call this problem
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U. Given a new problem, P, if U can be reduced to P so that P can be used to solve U,

then P must also be undecidable.

It is important to show that the new problem P can be used to solve the undecidable
problem U, and not vice-versa. If we show that our new problem can be solved by the
undecidable problem, then it merely shows that something impossible for computers to
do can solve our new problem. But it doesn‘t say anything about our new problem. We
might just be using a really hard solution to an easy problem. But if we can show the
other direction, that P can solve U, then P must be at least as hard as U, which we already

know to be undecidable.

Consider the problem: Does program Q ever call function foo? We can prove this

problem is undecidable.

Just as we saw with the "hello world" problem, it is easy to write a program that can
determine if some programs call function foo. For example, a program with no function
called foo obviously does not invoke function foo. But we could have a program that
contains lots of control logic to determine whether or not function foo is invoked. This

general case is much harder, and in fact undecidable. To prove this we use the reduction

technique for the "hello world" problem:
1. Rename the function "foo" in program Q and all calls to that function.

2. Add a function "foo" that does nothing and is not called.

LI

Modify the program to remember the first 12 characters that it prints, storing them in

array A

4. Modify the program so that whenever it executes any output statement, it checks the

array A to see if the 12 characters written are "hello, world" and if so, invokes

function foo.

If the final program prints "hello, world" then it must also invoke function foo. Similarly,

if the program does not print "hello, world" then 1t does not invoke foo.

Let's say that we have a program F-Test that can determine if a program calls foo. If we
run F-Test on the modified program above, not only can it determine if a program calls

foo, it can also determine if the program prints "hello, world". Therefore it is also
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capable of determining the "hello, world" problem. But we showed that this problem is

undecidable, so our program F-Test must be undecidable as well.
We'll re-visit problem reduction when we come to talk about NP-Complete problems.
2.1.3.  Universal Turing Machine"!

Definition: A universal Turing machine (UTM) is a Turing Machine that can be fed as

input a string composed of 2 parts:
1. The first is any encoded Turing Machine P, followed by a marker, say $.
2. The second part is a string w called the data.

The UTM reads the input, and then simulates P with input w.

A general purpose Turing Machine can simulate any special purpose Turing Machine.
Just store the representation of Turing Machine inside any other Turing Machine. The
operations of the Turing Machine are the processes that constitute computation. Any

particular Turing Machine represents one algorithm

The Universal Turing Machine a Turing Machine which implements the Turing Machine
algorithm is supplied with input symbols and a set of instructions (on tape) specifying
what a specific Turing Machine would do Since any algorithm can be implemented as a

specific Turing Machine the UTM can perform any algorithm.
2.1.4. Turing Machines and Lambda Calculus

One of the surprising results from mathematical analysis of computation (generally
credited independently to Alan Turing and Alonzo Church) is that a very simple machine
of the von Neuman variety (or of any one of many similar designs, including for example
Conway's ingenious Game of Life, a cellular automaton popular nowadays as a computer
screen saver) is capable of computing anything which we know any way at all of

computing.

For example, it is quite possible to build a machine of this sort with only one or two
instructions (which perhaps respectively read two bits and store back the negated OR of
them. and conditionally select one of two possible next instructions depending on the

value of a given bit) which is quite capable of performing any computation we might
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want. Almost all the instructions contained in modern computers are logically
unneccessary: They are included only to speed up specific common operations, such as

addition.

Turing's proof that a given machine is a Universal Turing Machine, capable of
computing anything which can be computed at all, is quite simple in concept, reducing to
showing that such a machine can be programmed to emulate perfectly any other machine
which you can describe precisely, and hence can compute whatever the described

machine could compute.

Alonzo Church®® worked in a more mathematical setting, developing a simple abstract
lambda calculus, and then similarly showing that any other computational scheme could

be described in terms of it.

Turing's proof has an intuitively pleasing nuts-and-bolts quality to it that made it more
immediately appealing and popular: To this day we speak of "Universal Turing
Machines" rather than (say) "Lambda Calculus Isomorphism". (Turing's name also

produces better puns about Universal Touring Machines...)
Church's lambda calculus has however perhaps had a deeper and more significant impact:

. It provided the conceptual substrate for denotational semantics (perhaps the
most promising, comprehensive and rigorous technique for describing what programming

languages "mean").

. It inspired the field of pure-functional programming, probably the currently the
promising line of research in programming language design. ("Haskell" appears likely to
be to functional programming what Smalltalk was to object-oriented programming: The
proof-of-concept implementation that moves the idea from the lab into mainstream

CONnSciousness.)

. It influenced the creation of Lisp, as witness the "lambda" syntax used to this day
in Lisp -- although John McCarthy!™, inventor of Lisp, strenuously denies that Lisp was

ever intended to be an implementation of the lambda calculus.

Since Muq MUF is in turn based heavily on Lisp, it can be reasonably argued that anyone

programming in Muq MUF owes a considerable intellectual debt to both Alan Turing's
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proof, with his abstract "Turing Machines" which led to the underlying computer

architecture, and to Church's proof, which led to the underlying software architecture.

Both proofs were of course at the time considered to be exercises in "pure mathematics”,

devoid of any practical application grin.
2.1.5. Computability theory

Computability theory is that part of the theory of computation dealing with which
problems are solvable by algorithms (equivalently, by Turing machines), with various

restrictions and extensions. Computability theory addresses four main questions:

. What problems can Turing machines solve?

. What other systems are equivalent to Turing machines?

. What problems require more powerful machines?

. What problems can be solved by less powerful machines?

=> What problems can Turing machines solve?
Not all problems can be solved. An undecidable problem is one that cannot be solved by
any algorithm, even given unbounded time and memory. Many undecidable problems are
known. For example, the Entscheidungsproblem (German for "decision problem") is this:
given a statement in first-order predicate calculus, decide whether it is universally valid.
Church and Turing independently proved this is undecidable. The halting problem is:
given a program and inputs for it, decide whether it will run forever or will eventually
halt. Turing proved this is also undecidable. A computable number is a real number
which can be approximated to any arbitrary degree of accuracy by an algorithm. Turing
proved that almost all numbers are uncomputable. Chaitin's constant is an uncomputable
number, even though it is well defined.

= What other systems are equivalent to Turing machines?
The languages that are accepted by a Turing machine are exactly those that are generated
by formal grammars. The lambda caiculus is a way of defining functions. The functions
that can be computed in the lambda calculus are exactly those that can be computed by a
Turing machine. These three formulations, Turing machines, formal grammars, and the

lambda calculus all look very different, and were all developed by different people. Yet

Turing Machine for Distributed Computing Model T



Chapter 2 Basics of Turing Machine

they are all equivalent, and have the same problem-solving power. This is generally taken
as evidence for the Church-Turing thesis, which is the claim that our intuitive notion of
an algorithm or an effective procedure is captured by the mathematical definition of a

Turing machine.

Electronic computers, and even quantum computers, are exactly equivalent to Turing
machines, if they have access to an unbounded supply of memory. As a corollary, all
implementable programming languages are at best equivalent in power to a Turing
machine (in practice, very few are less powerful). Such languages are said to be Turing-

complete. Systems equivalent to a Turing machine include:
o Turing machine with several tapes
o Turing machine with a 2-dimensional "tape" (an infinite number of linear tapes)
e Turing machine with a limited number of states and tape symbols
e Statesxsymbols can be any of 2x18, 3x10, 4x6, 5x5, 7x4, 10x3, 22x2
e Finite state machine with 2 stacks
o Finite state machine with 2 counters
e Formal grammar
e Post system
e Lambda calculus
o Partial recursive functions

e Almost any modern programming language (when given unlimited memory),

including:
o A language with 1 instruction, 1 parameter (see OISC and URISC here)
o A language with 8 instructions, no parameters (see BrainFuck)
¢ Wang tiles

o Recurrent neural network (finite-precision inputs/outputs/weights, infinite-

precision signals initialized to zero)
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e Cellular automaton, including:
e Conway's Game of Life

e Cellular automaton with just 1 dimension, 2 states, 3 cells per neighborhood (for

example. rule 110)
o Non-deterministic Turing machine
e Probabilistic Turing Machine

¢ Quantum computer

The last three examples use a slightly different definition of accepting a language. They
are said to accept a string if any computation accepts (for non-deterministic), or most
computations accept (for probabilistic and quantum). Given these definitions, those
machines have the same power as a Turing machine for accepting languages.
= What problems require more powerful machines?
Sometimes machines are considered that have more power than a Turing machine. For
example, an oracle machine uses a black box that can compute some particular function
that might not be possible for an ordinary Turing machine. The theory of real
computation deals with machines using infinite-precision real numbers. Within this
theory, it is possible to prove interesting statements such as "the complement of the
Mandelbrot set is only partially decidable". For other such powerful machines, see super-
Turing computation and hypercomputation.
= What problems can be solved by less powerful machines?

The Chomsky hierarchy defines those languages that can be accepted by four classes of
algorithms. They all assume a machine consisting of a non-deterministic finite state
machine combined with some form of memory. If the memory is an infinite tape, then it
has the full power of a Turing machine, and can accept exactly those languages that are
generated by unrestricted grammars. If it is given only an amount of memory
proportional to the size of the input, then it can recognize exactly those languages
generated by context-sensitive grammars. If it is given only a stack as its memory, then it

can recognize exactly those languages generated by context-free grammars. If it is given
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no additional memory at all then it can accept exactly those languages generated by

regular grammars.

Other restrictions on memory, or time, or other resources have often been considered.
The results for those restrictions are usually considered part of complexity theory rather

than computability theory.
2.1.6. Halting Problem/ function

Turing used the Universal Turing Machine idea to prove that in any general algorithm
there were propositions which could not be decided Basic method was to assume
Decidability was true and look for a paradox, for example. The Liar’s Paradox “This

statement is false.”
. If the statement is true, its content makes it false

) If it is false, its content makes it true Turing’s paradox arose from The Halting A
Turing Machine is just a formal model of what is an algorithm and a Universal Turing
Machine is an algorithm for executing algorithms. Any Turing Machine (including the
UTM) is said to halt if the algorithm terminates. They only stop when the computation is
finished.

Suppose we define a Universal Turing Machine which halts if The Turing Machine it is

executing does not halt

What happens when we ask the UTM to execute itself, its own algorithm?

. If the UTM halts, then the algorithm does not halt, that. the UTM does not halt.
. If the UTM does not halt, then the algorithm does halt, that. the UTM does halt.

The above two statements contradict with each other as we have shown in the part
‘undecidable problems’. This problem is known as halting problem. So Turing Machine

cannot solve the Halting Problem.

So using Turing’s definition of a “definite method” there exists a problem which cannot
be solved™. There is no Turing Machine that can accept any its own encoded Turing

Machine. Let us give an elaborated explation.
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Basic Idea:

e Define halting function H(P,w), where P is encoding of program (that., encoded

Turing machine) w is intended input for P.
e Let H(P,w) = yes if P halts on input w.
e Let H(P,w) =no if P does not halt on input w.
e Assume that a program computing H(P,w) exists.
e Construct a program Q(P) with input P:
e x=H(P,P)
e While x = yes, goto step 2.
e Now run program Q with input P = Q.

e Suppose Q(Q) halts. Then H(Q,Q) = yes, but Q is stuck in infinite loop and so it
doesn’t halt.

e Suppose that Q(Q) doesn’t halt. Then H(Q,Q) = no, while in fact Q(Q) halts.
e Therefore H(P,w) cannot exist.

Alan Turing solved a fundamental problem in mathematics. Defined what it is to be an
algorithm and explored the limits of computability provided an existence proof for the
general purpose digital computer and he didn’t stop there. The Halting Problem and its

role in answering Hilbert’s question is a key event in the history of computing.

Programming languages provide a framework for expressing algorithms. They provide a
means for giving ordered instructions to a machine capable of executing a program. Let’s
put it quite simply: they are the languages for writing programs. The actual details of how
modern programming systems work are not so simple, however, so let’s elevate them for
a brief moment: programming languages and the systems that support them mediate

between you and the machine.

As such, it seems difficult to consider programming without having a particular machine
or mechanism in mind. It is certainly the case that a programming language is closely

married with a programming system, some sort of computing system that you as its
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programmer must reason about in order to direct the execution of your programs. As a
computing entity, the programming language system does present some notion of
computation. However, it turns out that the programming system’s model of computation
need not be the hardware itself. Instead, modern programming languages provide a layer
of abstraction between a programmer’s algorithmic concerns and the physical constraints

of their hardware and operating system.

Despite being an abstraction of the physical machine, programming languages do allow
you to program with some precisely defined mechanism in mind. After all, a programmer
needs to have a clear understanding of his program’s effect. Let’s consider what makes
this layer of abstraction possible. First, we are armed with the notion, first introduced by
Alan Turing, that there exist abstract computing models that provide universal
computation, for example, the Turing machine model. Combine this fact with the
knowledge that the hardware and operating system form a physical computing machine
that closely emulates a universal computing device. Finally, let’s make the conceptual
leap that a computing device really is just another algorithm. The practical effect of all
this is that the machine model of a programming language can be an abstract one. The
abstract machine model that a programming language system presents for your programs

does not have to be the (concrete) computer on your desk.

e A programming system presents a programmer with a universal computing device

for executing any algorithm expressed in its programming language,

e A universal computing device, like that presented by a programming system, has
an (expressible) algorithm (expressible in, say, a machine language) recursively
enumerable language: if any language is accepted only by a specific turing
machine that is called recursively enumerable language. These are closed under

union concatenation and kleen closure.
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2.1.7. Encoding of Turing Machine’s program

|
Tape 1 tEncoditLg of TM’s tape mntentl

Data memory \

Tape 2 [Encoding of TM’s program |

Instruction memory /

T‘«‘l!>¢’3 Encoding of TM’s current state—|

PC % I3

UTM

Encode the three ingredients of Turing Machine using three tapes of a UTM and
follow the steps to run a Turing Machine in UTM.

UTM (simulates Turing Machine)
e read tape 1

e read tape 3

e consult tape 2 for what to do

o write tape 1 if necessary

¢ move head 1

e write tape 3
2.1.8. Church-Turing Thesis

The Turing machine models a human being solving a problem in an algorithmic way.

The Turning machine is a general model of computation.

=  Church-Turing Thesis: A language can be solved by an algorithm if and only if it

can be accepted by a Turing machine that terminates on every input.

[N
w
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2R
aaR
b;2.R
—_
aaL
1:1R bh:bL
- 2.2,

1R 3;3.L

Finite and pushdown automata are too restricted to serve as models of general-purpose

computers.

A Turing machine is similar to a finite automaton but with an unlimited and unrestricted
memory an infinite tape. It has a tape head that can read and write symbols and move

around on the tape.

A Turing machine can do everything that a real computer (as we know it) can do.
Nonetheless, there are problems that no Turing machines, and hence no real computers,

can solve.
=  Recursively Enumerable Languages

Definition: A language L over an alphabet _ is called recursively enumerable if there is a
Turing Machine that accepts every word in L and either rejects (crashes) or loops forever

for every word in LO; that.,
accept(T) =L,
reject(T) + loop(T) = LO.

In other words, the class of languages that are accepted by a Turing Machine is exactly

those languages that are recursively enumerable.
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=  Definition: A language L over an alphabet _is called recursive if there is a Turing

Machine that accepts every word in L and rejects every word in LO; that.,
accept(T) = L,
reject(T) = LO,
loop(T) =
2.1.9. Programming Techniques for Turing Machines

Sometimes, it helps to see a Turing Machine as something more complex than it actually
is. Those tricks do not change Turing machines as such; it is only the interpretation that

changes.

We can store data elements in states. This is implemented as complex state names. The
original state holding state g, and data elements A and B is named [q; A;B]. This

technique can be used for example. to remember some elements of the read data.

We can divide the tape into tracks. The symbol on the original tape holding symbols A,
B, and C from three tracks of tape is named [A;B;C]. This technique can be used for
example. for marking elements of data, that. track 1 can be used for actual data, and track

2 for marks.

We can extract parts of a Turing machine and treat them as subroutines. If a subroutine is

called from more than one place, its \code” needs to be copied to a new set of states.
Nature of Turing machines,

e Can match power of any sophisticated automata

e Can match power of any real special purpose computer

e Can be made general to simulate any special purpose Turing Machine

e Therefore can match power of any real general purpose computer

e In fact, it can match the power of any computation methods

R
N
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Here an example is presented of what can be done using Turing Machine. No CFG

generates L = {anbncn}
But there 1s a UG for {anbncn}

S »>WDZJD1. start

D—-ABCD|ABC 2. n of each
CA—-AC 3. sorting
CB—->BC is
BA—>AB permitted
WA —aW 4. traverse,
WB->bX downcase,
XB—-bX and
XC-ocY check
YCocY the sort

Y Z —05. check step 4

A recursive (decidable) language L is a language for which a Turing machine that accepts
it and halts on all inputs exists: If we L then the Turing machine halts in state q accept; if

w ¢ L then the Turing machine halts in state q reject.

. A language L is a recursively enumerable (r.e.) language if a Turing machine that
accepts it, exists: For all w € L, the Turing machine halts in q accept; for all w € L the

Turing machine either halts in state q reject or never halts.
2.1.10. Countability and Diagonalization

The notion of countability was described by Georg Cantor'® in 1873. If we have two
infinite sets, how can we tell whether one is larger than the other? Obviously we can't
start counting with each element or we will be counting forever Cantor.s solution is to

make a correspondence to the set of natural numbers.
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A correspondence is a function f: A—B that is one-to-one from A to B. Every element of
A maps to a unique element of B, and each element of B has a unique element of A

mapping to it.
Example: The set of natural numbers, N={ 1, 2, 3,4, . }.
The set of even numbers, E= { 2,4,6, .}

It might seem that N is bigger than E, since we have values in N that are not in E (by one
measure, we have twice as many.) However, using Cantor.s definition of size both sets

have the same size:

N1 E=FN)2
2 4
36

etc.

For every number in N, there is a corresponding value in E.

Definition: A set is countable if it is finite or if it has the same size as the natural

numbers.

For example, as we saw above, E is countable.

Example: The set of positive rational numbers, Q, is countable. That is,
Q={m/n|m,n eN }.

To show that this is countable, we need to make a 1:1 correspondence between the
rational numbers and the natural numbers. We must make sure that each rational number
1s paired with one and only one natural number. Consider the mapping as shown in the

matrix below:
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1/1 173 |1/4 |1/5 |1/6
d 2/1 7 (2/2 |2/3 |2/4 |2/§5 |2/6
3/1 “13/2 |3/3 |(3/4 |3/5 |3/6
4/1 (4/2 |4/3 |4/4 |4/5 |4/6
51 |5/2 |5/3 |5/4 [5/5 |5/6
6/1 [6/2 |6/3 |6/4 |6/5 |6/6

If we started in the first row and just worked our way to the right, we could assign each

rational number to a natural number:

etc.

1/1 -1
172 =2

1/3 —3

However, we would never make an assignment for values like 2/1.

The solution is the traverse the diagonals of the matrix. We assign values as:

1/1 =1
2/1 =2
1/2 =3
3/1 —4
2/2 —skipped

1/3 —5
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etc.

Notice how we had to skip any elements that would cause a repeat. Continuing in this

way, we can obtain a list for all elements of Q and therefore Q is countable.

2.1.11. Uncountable Sets

Since we have seen infinite sets that are countable, it might seem like any infinite set is

countable. However, this is not the case.
Example: The set of real numbers, R, is not countable.

Suppose that R is countable. Then there is a correspondence between members of R and

members of N. The following table shows some hypothetical correspondences:

N R

1 3.14159.
2 55.555.
3 0.12345.
4  0.50000.

Given such a table, we can construct a value x that is in R but that has no pairing with a

member in N.

To construct x, we ensure it has a digit that is different from all values listed in the table.
We can do this by starting with the first fractional digit of 3.14159. This is the digit 1. So

we pick something different, say we pick 4. Then we move to the second value. The

second fractional digit of 55.555 is 5. 345153. So we pick something different, say 6.
The third fractional digit of 0.12345 is 3. So we pick something different, say 1. We can

continue in this way, to construct x = 0.4612 ...

The value x is in R. However, we know that x has no corresponding value in N because
it differs from n in N by the nth fractional digit. Since x has no corresponding value in N,

the set of real numbers is not countable.
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This result is important because it tells us something our Turing Machine‘s and
computers cannot compute. It is impossible to exactly compute the real numbers e we

must settle for something else, for example. a less precise answer or computation.
Corollary: There exist languages that are not recognizable by a Turing Machine.

First, the set of all Turing machines is countable. We can show this by first observing
that the set of all strings Z* is countable, for a finite alphabetZ. With only finitely many
strings of each length, we may form a list of £* by writing down all strings of length 0,

all strings of length 1, all strings of length 2, etc.

The set of all Turing Machine is countable because each Turing Machine may be encoded
by a string s. This string encodes the finite control of the Turing Machine. If we omit
those strings that are not valid Turing Machine, then we can obtain a list of all Turing

Machine.

To show that the set of languages is not countable, observe that the set of all infinite
binary sequences is uncountable. The proof for this is identical to the proof we used to

show that the set of real numbers is uncountable.

The set of all languages has a correspondence to the set of all infinite binary sequences.
(For the alphabet of {0,1} they are the same. For languages with more than two symbols,
we use multiple bits to represent the symbols). Therefore, the set of all languages is also
uncountable and we conclude there are languages that are not recognized by any Turing

machine.

In fact, there are many more languages that are not recognized by Turing Machine‘s than
languages that are recognized by Turing Machine‘s. Fortunately, most of the time we
don‘t care about these other languages, but are only interested in ones that Turing

Machine‘s can recognize.

The above property of enumerability is one reason why we call languages recognizable
by Turing Machine‘s to be recursively enumerable. The —recursion® part is historical,
from using recursion to implement many of these problems (and therefore meaning that

this problem is decidable, or recognizable by a Turing Machine).
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2.1.12. The Decision Problem

David Hilbert!”) presented a list of mathematical problems in 1900®). Among the
problems were the foundational questions of whether the axioms of arithmetic are
consistent, and whether there is a number system in cardinality between the rational
numbers and the continuum of real numbers. In'®) Hilbert posed another group of
problems. This time dealing with the consistency, completeness and independence of the
axioms of a logical system in general, as well as the problem of deciding whether a given
statement 1s valid within a logical system. The solutions to these problems, in particular
Kurt Godel's!'™") demonstration of the incompleteness of arithmetic with the existence
of statements that are not provable (as true or false), had profound consequences for
mathematics, and brought to the fore mathematical logic as a separate field of study. In
this article, however, we deal primarily with the decision problem, which, to quote

Hilbert and Ackermannm], can be stated as:

.. . there emerges the fundamental importance of determining whether or not a given
formula of the predicate calculus is universally valid. . . . A formula . . . is called
satisfiable if the sentential variables can be replaced with the values truth and
falsehood . . . in such a way that the formula [becomes] a true sentence. . . . It is
customary to refer to the equivalent problems of universal validity and satisfiability

by the common name of the decision problem.

Following Gddel's results, the decision problem remained, although it must be
reinterpreted as meaning whether there is a procedure by which a given proposition can
be determined to be either “*provable" or ““unprovable". In Alonzo Church!®, formulated
this problem as: “'The decision problem of a logistic system is the problem to find an
effective procedure or algorithm, a decision procedure, by which for an arbitrary well-
formed formula of the system, it is possible to determine whether or not it is a theorem . .
.." To be sure, Church!"¥ proves that the decision problem has no solution, although it is
the algorithmic character of Turing's solution that is pivotal to the logical underpinnings
of the programmable computer. Moreover, the simplicity of a Turing machine provides a
degree of accessibility to the subject ideal for a first course in logic or discrete

mathematics.

Turing Machine for Distributed Computing Model 31



Chapter 2 Basics of Turing Machine

Briefly a Turing machine, M, is a device which prints a sequence of zeroes and ones on a
tape based on (i) the figure currently being scanned on the tape, and (i) a set of
instructions. Moreover, Turing describes the logical construction of a universal
computing machine, U, which accepts the set of instructions of a given machine M in
some standard form, and then outputs the same sequence as M. Applying a machine U to
another machine M is denoted as U(M) for this exposition. It follows from Turing's paper
(discussed later) that if the decision problem has a solution, then there is a machine D
thich accepts the set of instructions of another machine M and decides whether M prints
a finite or an infinite number of symbols on the tape. Determining whether a machine
terminates in a finite number of executable steps is today known as the halting problem in
computer science. If the decision problem, and hence the halting problem has a solution,
then a new machine 7 can be defined so that 7(A) halts if M does not halt, and 7(M) does
not halt if M halts. By considering the behavior of 7(T), we conclude that 7 halts and T
does not halt, a contradiction, from which it follows that the decision problem has no

solution.
2.1.13. Induction and Recursion

The logic behind the modern programmable computer owes much to Tur-ing’s
“computing machines,” discussed in the first project, which the reader should review.
Since the state of the machine, or m-configuration as called by Turing, can be altered
according to the symbol being scanned, the operation of the machine can be changed
depending on what symbols have been written on the tape, and affords the machine a
degree of programmability. The program consists of the list of configurations of the
machine and its behavior for each configuration. Turing’s description of his machine,
however, did not include memory in its modern usage for computers, and symbols read
on the tape could not be stored in any separate devise. Using a brilliant design feature for
the tape, Turing achieves a limited type of memory for the machine, which allows it to
compute many arithmetic operations. The numbers needed for a calculation are printed
on every other square of the tape, while the squares between these are used as “rough
notes to ‘assist the memory.” It will only be these rough notes which will be liable to

erasure’.
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Turing continues: “The convention of writing the figures only on alternate squares is

very useful: I shall always make use of it. I shall call the one sequence of alternate

squares F-squares, and the other sequence E-squares. The symbols on E-squares will be

liable to erasure. The symbols on F-squares form a continuous sequence. ... There is no

need to have more than one E-square between each pair of F-squares: an apparent need of

more E-squares can be satisfied by having a sufficiently rich variety of symbols capable

of being printed on E-squares”.

Let’s examine the Englishman’s use of these two types of squares. Determine the

Y
e

LI )

output of the following Turing machine, which begins with the tape

and the scanner at the far left, reading the symbol X.

Configuration Behavior

m-config. | symbol | operation final m-config.
a X R a
a 1 R,R a
a blank P(1),R,R,P(1), R, R, P(0) b
b X E,R c
b other L b
¢ 0 R, P(X), R a
¢ 1 R, P(X),R d
d 0 R,R e
d other R,R d
e blank P(1) b
e other R, R e

Recall the meaning of the following symbols used for operations.

* R: Move one position to the right.

* L: Move one position to the left.

* E: Erase the currently scanned square

* P(): Print whatever is in parentheses in the current square.
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2.1.14. The Decision Problem In A.M.Turing’s Words

or Das Entscheidungsproblem

Alan Turing’s!" proved most influential not only for mathmematical logic, but also
for the development of the programmable computer, and together with work of
Alonzo Church ¥ inaugurated a new field of study, known today as computability.
Recall that Turing’s original motivation for writing the paper was to answer the
decision problem of David Hilbert!, which asked whether there is a standard
procedure that can be applied to decide whether an arbitrary statement (within some
system of logic) is provable. A previous project examined the construction of
Turing’s “universal computing machine,” which accepts the instructions of any other
machine M in standard form, and then outputs the same sequence as M. The concept
of a universal machine has evolved into what now is known as a compiler or
interpreter in computer science, and is indispensable for the processing of any
programming language. The question then arises, does the universal computing
machine provide a solution to the decision problem? The universal machine is the
standard procedure for answering all questions that can in turn be phrased in terms of

a computer program.
First, study the following excerpts from Turing’s paper :

Automatic machines: If at each stage the motion of a machine is completely
determined by the configuration, we shall call the machine an “automatic machine”

(or a-machine). ...

=  Computing machines:
If an a-machine prints two kinds of symbols, of which the first kind (called figures)
consists entirely of 0 and 1 (the others being called symbols of the second kind), then
the machine will be called a computing machine. If the machine is supplied with a
blank tape and set in motion, starting from the correct initial m-configuration, the
subsequence of symbols printed by it which are of the first kind will called the

sequence computed by the machine. ...

= Circular and circle-free machines.
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If a computing machine never writes down more than a finite number of symbols of
the first kind, it will be called circular. Otherwise it is said to be circle-free. ...

A machine will be circular if it reaches a configuration from which there is no
possible move, or if it goes on moving and possibly printing symbols of the second

kind, but cannnot print any more symbols of the first kind.

=  Computable sequences and numbers.
A sequence is said to be computable if it can be computed by a circle-free machine. A
number is computable if it disers by an integer from the number computed by a circle-

free machine.

2.2. Equivalence between Turing Machine and
computer

— The computing model on Turing machine described in['*! presents 5 tape Turing
machine mapping some assembly function features.

First tape contains the main memory program. The program is in Assembly language
format containing both address and contents. The marker * and # are used as end
marker of address and contents. Second tape is instruction counter. The third tape
contains memory address. Forth tape contains computer input file and fifth tape is for

temporary use.

The functionality is simple. Fetch for the instruction number in the first tape that

match the instruction counter.
When the instruction address is found examine the value.

The value contains instruction in the first two three bits and remaining contains

address that are involved in action.

If the instruction requires value of some address then the value will be part of

instruction. Copy the instruction in second tape and execute it.

Details of what size of target address area will be instruction and data and how to

handle them are not discussed. It cannot handle more then binary operations.

Turing Machine for Distributed Computing Model

I
wn



Chapter 2 Basics of Turing Machine

= The computing model on Turing machine described in!'% Turing Machine
implementation involves a set of named states, which are specified in the building
stage of the machine. During Execution the machine will always be in one state. Here
we discuss some of its portions those are related to us.

This paper discusses the following two as previous work.

1. Cheran Soft Visual Turing

http://www.cheransoft.com/vturing/index.html

2. Various applets on the web

For example, http://www.igs.net/~tril/tm/tm.html
The aims of the program attempt to keep the solid foundations laid down by previous
work while building up on them and improving them. The core aims are discussed

below.

e The ability to program Turing Machines as truth tables, state diagrams and

simple instructions and to convert between all three formats.

e The ability to convert instructions from pseudo code to Turing Machine

instructions

e The ability to simulate Turing Machines in the formats above. The Simulator
must have a Graphical User Interface and must give real-time visual feedback

to the user, with a possibility to pause on a state for debugging.
e The ability to save Turing Machines and re-use them later.

In this paper states, symbols, instructions are saved in complex data structures
(discussed in the paper) moves (rules) are also saved in complex data structures.
Following are some of the issues those we have focused on this paper.

» Variable storage issues
The issue of variables is more complex than other ones. The machine to emulate a
computer would contain 4 tapes. One tape for user defined variables, one tape for

system variables, one tape for the call stack and one tape for processing.

First, we will look at the method used to actually store variables on the variable tapes.
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Each variable is written on the tape and separated by a unique variable symbol. For
example, if three variables a, b and ¢ with values “hello”, “goodbye” and “end”

respectively were to be stored on a tape, the tape would look like the one in figure 14.

@(hle(1(1 o[@]go‘od'kb'}[e@]%énd,

F iTgitreZ.l o S;torilzg variables on a tape
Notice how the variable symbols are given special markers so the machine does not
confuse them to be part of the actual variables. But it is not discussed in the paper
what special technique used for variable markers. (Any preamble, special symbol

etc.). It is worth to mention that the variable markers are implementation specific.

The storage of private variable would include an extra step to this storage model. For
every scope block, there would have to be a start and end marker, and within those
two markers, the variables in that scope would be stored.
» Variable assignment
Assigning a variable would require the following steps:
e On the relevant tape (system or user defined) find the variable marker if it

does not exist yet, create it at the end. When scanning the tape, skip any blocks

which are out of our scope.
e Copy the value to be assigned straight after the marker character

o If there isn’t enough space between the marker character and the start of the
next variable, shift the tape contents using a simple shifting machine.
> Variable retrieval
Retrieving a variable would require the following steps:

e On the relevant tape (system or user defined) find the variable marker if it

does not exist yet, return an error

e Copy the value between the marker found to the next marker (the variable)

from the variable tape to the desired location (usually the processing tape)

™

» Loops
Loops are fairly easy to convert to a tree using only the features specified above.
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First, create a system variable to use as a loop counter (unless an existing
variable has already been specified in a For loop declaration). In both cases,

initialise it with the initial value needed.
Run the code within the loop repeatedly, incrementing the counter each time.

Each time the code is about to run, compare the target value and the loop
counter value using the code specified in section 8.5 above. If they match, exit

the loop.

> Conditional blocks

With conditional blocks, each expression of the condition would first need to be sub-

split into the seven basic commands described above. That done, the different

expressions would be evaluated and equated. The code within the block would then be

run depending on the result of the equation.

> Function calling

Function calling would be fairly simple, assuming the binary encoding of the Turing

Machine of the function was stored in a normal system variable. The steps to calling

would be:

Write the current tape configuration of the processing tape to the call stack

tape.

Run a universal Turing Machine on the binary encoding of the Turing
Machine of the function for any variables needed by the function, create a new
scope block. Make the first variable in the new scope block the return value

for the function.

When the function is done running, read the tape configuration from the call
stack tape and restore it. Get the return value from the first variable in the

function scope block and then delete the scope block created.

» Arithmetic operations involving brackets and indices

Arithmetic operations involving brackets are simple all that needs to be done is to

split the bracketed operation into the seven basic operations specified above and store

the results of each of the brackets in a system variable. All operations on that bracket
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can then be done on the system variable it returned.

Supporting indices is also simple all that needs to be done is a series of multiplication

on the relevant number or variable.

The paper does not discuss the moves in detail and many of its feature are
implementation specific. There is no detail of solving equation. It left discursion just
after how to perform add, subtract, multiply and divide etc. No details of scope

handling is discussed.

Turing Machine for Distributed Computing Model 39



Chapter 3
Our Model



Chapter 3

Implementation

3. Our Model

3.1.

Aims of our research.

The aim of our research was:

Expressing all the functionalities of Turing Machine in completely predefined

moves. These moves are specified in the rules portion of out paper.

Moves (rules) are built in the Turing Machine containing the symbols and
states. So there is no need to dig down through all those complex data

structures to go to the next configuration.

The symbols used in the paper to represent states and tape symbols may be
changed in implementation. But strictly they should have a one to one

mapping those symbols specified in the research paper.

Each block of Turing Machine contains one token of higher level language. So
Turing Machine will not scan through all the individual parts of token. Instead

it will read the whole token at once.

The input (source code) given to Turing Machine must not be converted to any

other form for execution.

In addition to above point, the syntax of source code must be same as pseudo
code or syntax of third generation language (higher level language). So there

is no need to convert from pseudo code to Turing Machine input code.

Reference to any variable either to read or update must be done in one travel
in tape. One travel means going in reverse direction only once and then
coming back only once to the original position. That is the travel will change
direction only once in the whole travel, let alone reading some value in the

tape and then fetching some another value in another tape for one variable call.

As the syntax is same to that of higher level language syntax, so the execution

will also be sequentially token by token in one direction. Only in variable
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referencing, loop, function calling there is a turning point in the moves.

e It is worth to mention that some previous models have used program counter
or other jump mechanism in their model. But they have implemented that by
initializing some block of tape and then searching that value in another tape
one by one in all boxes until the value is found. We have not used this. Loop
and function call is implemented using such techniques that jump instruction

1s not needed.
o Expressions are solved by converting them to postfix form.
e Send receive will be implemented.
e Least possible temporary variable should be used.

e So there is no need to convert from pseudo code to Turing Machine input

code.

In modern computing model, different parts of it are again a individual computing model
having their own addressable identities. Therefore, we may call them addressable

computing unit.

Our proposed model is a compound Turing Machine of many simple Turing Machines.

We now describe systematically the characteristics of our model.

There are many kinds of physical computing devices, such as mini, micro, mainframe,
super scalar etc. These may be general purpose and special purpose. Computing models
may be physical and virtual (as software on other physical model). But the virtual models
can also be described as a big algorithm, collection / sequence of small physically

implemented algorithms.

In spite of these facts, there is no fundamental difference between data processing,

storage and communication between any kinds of computing model mentioned above.[5]

In a fully distributed environment, there can be global addressing systems to address a
small component of a native node participating in the whole system.[6] There may be

many mechanism adopted for this purpose.
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Our model describes using Turing Machine:
A computer with
™,

» Infinity long sequence of words each with an address

Infinity long address space.

A%

» Program of computer is stored in some word of memory.

Each word or box of tape represents a simple token of Higher-level language (Unlike the
models described in existing books that refers instruction of a memory as in the machine

or assembly language.)

3.2. Overall working in brief of our Turing Machine.

The main bottom-line idea of this implementation is, for each occurrence of instructions

the Turing Machine goes to a specific state and after performing the execution of that

instruction it goes to the next.

The structure of the Turing Machine is very simple switch statement nested by a while
loop. The switch statement checks the current configuration of the machine (current state
and symbols / tokens at current tape box.) and moves the machine to new configuration.

While loop is terminated by checking Turing Machine at final state.

While (current state is not final state)
{

switch( current state)

{

Check and move it to next configuration.

}

All the instructions are implemented as moves of Turing Machine.
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3.3. Turing machine executing third generation language instructions.

The machine, given in figure 3.1 starts at ‘S’ state reading the symbols at the program
track of program tape from left to right and fetches the keyword ‘hash’. On reading it go
to ‘s’ state and after that goes to their respective states and executes the instructions. Each
occupies one block of tape, as all of these are tokens. On reading two consecutive ‘hash’,

program ends. Here we discuss some features of three generation language executed in

[(#.m). 8, BY/|(#.m), B, BL[R.N,N] [(#, m), B, BY/[(#.m), B, Bl [R.N.N]

[(a.m), 8, B]7[(a,m), B, BL[R, N, N] )878)/((#, m). B, BLIR.N. ]

this Turing machine.

Figure3.] Starting of machine, passing comments, starting main program, finishing.

3.4. Variable definition

Variable can be defined before the starting of main program as well as inside the
program. The keywords ‘VDL’, VDR’, VDM, are used for the tape to detect the left,

right and middle point of the variable definition. Details of these are discussed before.

As shown in figure 3.2, whenever the tape head sense a ‘“VDL’ in s state, it assumes that
there is a variable definition at right so it goes to Variable definition state (V4)and
remains inactive until it finds a “VDL’ indicating the end of the variable definition. On

reaching the end, it returns to ‘s’ state.

If any defined variable is used as global variable inside some function it must be defined

before the function first call.
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A,m), B, B)/l(A,m), B, B[R, N, N]

NI

lw.m). B. BUl(w.m) B.BIIR.N. N1 fla.m). 8,8/ m). 5.8} [R. V. V]
Figure3.2 passing a variable definition at ‘s’ state

3.5. Variable reading:
When TM read a variable, it first

e Push (write in the third tape and move the third tape pointer right one box.) the

return point. (The current box number).
e Push the return point.
e Push R forread or W for write (discussed later).
e Push the variable name.
Let us discuss the steps in detail as shown in figure 3.3:

When it reads “VCL’ in ‘e’ state it assumes that there is a variable call at right so, it

switch to ‘vr’ state and goes to the last point of variable.

“vrpr’ state: sensing ‘VCR’ it switch to ‘vrpr’. then it push the next box address as return
address then switching to ‘vpn’ state, it push ‘R’, indicating that it wants to read a value

of the variable and switch to ‘vfv’ state to find variable.

‘vfv’ state: in this state it keeps moving the tape 1 head moving left. On every findings of
‘VDM’ it switch to ‘vin’ state. On this state it moves left and mach the variable name
with the tape 3 name (previously pushed the required variable name). if not matched it

again switch to ‘vfv’ state. On finding the name it switch to ‘vn’ state.

‘vn’ state: In this state it first deletes the pushed name starts moving right two boxes and
if the value is other then ‘VCL’ it is the value. Otherwise it is the reference to another
variable so it pushes the new name (the variable name at the reference) and again switch

to ‘vfv’ state and works in the previous way. When it finds it, it pops the variable name
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from the third tape. Then it moves the 3rd tape head left. There it checks whether it was

to be read or written (whether there was ‘R’ or ‘W”).

If it was to be read, delete the ‘R’ from third tape, move third tape head left, then
it writes the value to the postfix equation and goes to ‘vegr’ state to go to the
previous position. The expressions are solved by converting them to postfix form

so the value should be written to postfix equation.

Otherwise if it was to be written, delete the ‘W’ from third tape, move third tape
head left, then it moves the value from postfix equation to the value part of the
definition and erase from the postfix equation and goes to ‘vwgr’ state to go to the

previous position.

Now in both ‘vegr’ or ‘vwgr’ states the third tape value is the memory location of
the next execution starting point from where the variable was referenced. The
state is also changed to state to go the place from where the variable was called.
In case of variable writing back at moves second tape head right one box and go
to ‘vsgr’ state and start moving right to the next execution starting point from

where the variable was referenced.

3.6. Variable updating:

In any statement the Lvalue is calculated and updated. In this case no variable is updated

at the right hand side of the assignment operator. So when we finish calculating the right

hand side of the assignment operator (discussed at evaluation section), we fetch the

variable by the previous way and assign the value there at the value part. This will be

discussed in the statement part. How to write variable is already discussed in the previous

part.

Variable length is each variable will occupy one block. In this TM, address space,

variable value length, function names and all other reserve word, keyword length all is

assumed to occupy one block as those are tokens of the native code of Turing Machine.
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5.m).8.8VKs.m.8.8LURN.N  [(7.m).B.B}/[(n,m).B.B}[RN.N]  [(n.m).B.BV[(n.m).B.RLIL.N R

[(a,m), B, B]/[(a. m), B, B], [R. N, N] [(a, m), B, B]/[(a, m), B.m], [Lv N, R]

[(a,m), B, B]/[(a,m), B,a], [L, N, N]

[(u. m),B. m]/[(u._ m). B. Hl [N. N, N]

(6.m). B,x)/[(g. m), 8,x] [V, N]
[tct,m). B.R)ct, ), er, B[R, R, 1]

[(a. m). B,.\']/ [(a m), h’,.\-l [I., NN

[lce.m). #.x Yl m) 8.5} [R. N ¥]

[(a,m), B, a]/[(u, m), B,u], [R, N, N]

[(a,m), B, x}/[(a,m), B,x} [L,¥.N]
(a.m). B.B)/[(@.m), B.a}[1.N.N)

[(b‘, m), B,‘\']/[(o',m )8, .\']. [R, N, R]

[(6.). B. ) [(. ). B B} [R V. 1]

_

a, m), B,W]/[(a, m), B, B], [N, L, L]

[(a,m), w,x]/[(a, m),w, x],[R, R,N]

@ [(a.m). B,m]/[(a.m), B.8] [N, N.N] Vsar

[(a.m), B, xVl(a. m). B.x)[R. M. N]

Figure3.3 Accessing a variable for reading and updating
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3.7. Statements:

If we check the source code of any language, it is a series of statements just controlled by
some flow control statements. Statements are executed in ‘s’ state. At the starting of
program the TM is at ‘s’ state. At the beginning, inside a block (whether a function call
or loop or any other class of block it might be) the TM is at normal state ( s state)

executing statements. Statements are of the following categories:

3.8. Assignment statement.

(Variable : = expression.): in ‘s’ state if the TM sense a variable it assumes that it is an
Assignment statement. So until it sense a “: =”, it waits. Then it goes to ‘e’ state and
reads variable as discussed in the variable part. Initial moves up to ‘e’ state are shown in

the figure 3.4.

[, m), B, BYI. m), B, BY[R, NN}

[(()'.m), H,H]/[(a'.n BB

[(a.m). B.B)l(w.m). 8. B] [R. N, N} [(=.m). B, B]/[(tf, m). B, [[R.N.R)

Figure3.4 initial states for an assignment statement

Further moves are discussed at expression part. Other moves regarding assignment are

discussed in evaluation part.
3.9. Send / Receive expression to another Turing Machine.

Send: To make the send operation easy, in this model the data stream to be sent is first
gathered into the buffer (second tape) which is empty before and after this. The variable
reading and sending to tape 2 is discussed in variable read part. Then it ‘reads the send
symbol and goes to send state and start sending until the buffer (second tape) is empty.

After it is empty it goes to s state again. The moves are discussed below.

We have stated before the components those are exchanging data among themselves can

be ports of a single CPU or different CPUs connected by communication ports. But all of
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those should have an address.

We here also add that data sent and received to and from different I/O ports also done by

send and receive function.

In ‘s’ state if the TM reads a ‘SEND’ in it goes to ‘e’ state and reads variable and writes
values to postfix tape as discussed in the variable read section. On reading ‘SEND S’ in

——
()

‘e’ state it goes to ‘Z’ state.

*Z’ state: in this state it reads the next tape value as the destination address (n) and goes
to *Zn’ state. In this state it keeps on sending and erasing from the second tape. When the
second tape is empty, it finishes sending and return to ‘s’ state. Diagram for the moves

are shown in figure 3.5.

3.9.1. Send

{(A.m). 8. BY[(A.m), B, B} {1, N.N]

{61, m), B, B)[(r.m), B, B[R, NN} [ m) 8. BYl(=.m) 8.8 [R.N.N)

[t} x. Y[, m), B. BN 1.,

[(r,m), B, BY[or.m). B, BL[N, . N]

Figure3.5 moves for sending data to another machine
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As in figure 3.6, on reading the ‘RECV’ keyword it goes to ‘@’ state. In this state it
assumes the next tape box value as the receiving port address (n). it reads the reviving
port address and goes to ‘®n’ state. In this state it keeps on receiving values from the port
and on receiving ‘Blank symbol’ it goes to ‘s’ state. In ‘s’ state it reads a variable call and
fetch the variable and write the value there from postfix (second) tape. Moves of it is

discussed below.
On reading a “VCL’ keyword in ‘s’ state it goes to ‘st state.

In ‘st’ state it cross the variable and read ‘;’. On reading °;’ it moves right and push the
box number as return point and goes to ‘s;’ state. In this state it pushes ‘W’ and goes to

‘vpn’ state moves after that are discussed in variable read part.

3.9.2. Receive

[(e,m) 8.8]{(©,m). 8.8)[r, N.¥] [er,m), 8, 8} (e 00}, 5. BY [V, 1, ¥ )

{(r.m). x, BJi{(r,m).x, B} [N . R.N]

[(u, m), B, b‘]/[(u, m), B, m],[l., N, R] [, B, BYf{p,m), B.W L [1.N N}

{G. ), 8. 811G, m), B, B} {1, N, ¥] {a,m). 8. 8){la.m). 8. w1 1. N, /]

Figure3.6 Moves for receiving from another machine
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3.10. Read input / Write output:

These operations are same as send and receive which is discussed later. The difference is

at the send / receive node number. It is the port address of the input and output port.

3.11. Expressions:

These are arithmetic operations with brackets and indices or condition checking. When
an expression comes as a variable assignment statement a °;” is pushed (At the end it will
be popped) then the expression is converted into a postfix form. Our expression will
contain numeric values and operators terminated by °;’. The numeric values will be a

value in a box of tape. The operators will be:

e (: open parenthesis

): closing parenthesis

*: multiplication

/: division

+: addition

e :subtraction
These operators have four levels of precedence.
e Highest: (,)
o Middle: *,/
e Low:+,-
e Lowest: <>=1

We will add one more operator to help with the processing of the program. That is a

semicolon, *;’, which will indicate the end of an expression.
We start converting expression into postfix form at ‘e’ state.

To convert an expression from infix to postfix, we must first determine if the next (valid)

item in the equation is a number or an operator.
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= If the item is a number:
If the item is a number, it is sent directly to the postfix equation. This is discussed in the
variable part how to do it.

= If the item is a operator:

If the item is a operator, we use the stack to do one of the following:
If the operator is: (, *,/, + or - . in ‘e’ state if the operator is ‘0’ go to ‘eo’ state.

In ‘eo’ state move the operators from tape 3 to tape 2 that is pop the stack until either the
stack is empty, the operator ‘(‘ at the top of the stack or the top value on the stack has
lower precedence than the current operator. Moving from third tape to second tape means
each operator is popped from the stack, it is sent directly to the postfix equation. Then we

go to ‘e00’ state and push the current operator onto the stack and return to ‘e’ state.

[(n,m). B, B]I[(n, m), 8, B]. [N, N, I,]

[0.m), 8./, m) 8, 8) [, v, N] [0, B} (. ), BY[N. R.1)

[0} Bl ) w BY [N, 1)

[0.m), B, BY[0.m). 8.8} [N, ¥, 1]

[, m), 5. BVl{o.m). .01 [R, N, R)

Figure3.7 Handling bracket in converting to postfix equation
= If the operator is: )
Pop the stack until pop an open parenthesis, (. The closing parenthesis is NOT pushed on
the stack. All operators that are popped (except for the open parenthesis) are sent directly
to the postfix equation. If there is not an open parenthesis on the stack (that. you empty

the stack), the equation has an error of an unmatched closing parenthesis.

If the operator is ;” pop the stack until *;’ at the top, sending all popped operators to the
postfix equation other then ‘;’. Evaluate the expression and save the result into variable.
Then pop the °;’. In case the expression contains variables the variables are retrieved and

the value is sent to postfix equation.
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[G.m)u, BY[G mi)u. BY [N, 1, N]

[Goom). B G o) B8 [V, 2, )

(54

{G.m) B <P, m) x. B} [V 1T, [¢..m). 8, BYTC.m). B, BL [N, ¥, 1]

Figure3.8 moves for sending remaining operators at stack to postfix equation and coming to

starting of postfix equation,
3.12. Evaluating postfix equation:

If the machine reads a ;’ at ‘e’ state it comes to know that the whole equation has been
read and now it is time to make the stack empty to convert them to postfix form. So in ‘e’
state if it reads ‘;’ it goes to ‘evp’ state. In this state it first pops all the remaining
operators from the stack and send them to postfix form equation until it reads a ‘;’. On
reading the °;’ it assumes the bottom of the stack has been reached and erase the *;” and

go to ‘evr’ state.

In ‘evr’ state the tape pointer of the second tape is at the end of the postfix equation. So it

goes to the beginning of the equation and switch to ‘ev’ state to evaluate.

To evaluate a postfix expression, we will again need to use the stack. (Third Tape)

However, the stack will contain numeric values instead of operators.
In ‘ev’ state when a numeric value is encounter, the value is pushed on the stack.

When an operator (other than ;) is encountered, two values are popped from the stack the
operation 1s performed on these two values and the result is pushed onto the stack going

through ‘evo’ and ‘evoe’ states and returning to ‘ev’ state.

When the no operand is encountered, there should only be one value on the stack above
the “.". This value is the result of the expression. This value is moved to postfix equation

because it is to be written in the value part of the left variable of the equation. Also

w
[99]
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moving the tape 1 head right one box it goes to ‘evl’ state. It push the tape 1 box number
as return point and go to ‘ev2’ state. Then it push ‘W’ indicating its willingness to write

into the value part of variable. Then it goes to ‘ev3’ state.

In this state it keeps moving left until it reads a : indicating the L Value part has arrived.

Now it goes to ‘ev4’ and ‘vpn’ states and reads the variable name.

The next moves from here is discussed in the variable part.

[t} 0. BYIG. 1) B} [N, R,R] {G.mXo, BY[G.m).8,BLN, N, 1] [k Bon G, m) n, B)IN, N, 1)

G} m o VG ) Bomon} N R R)

[(',.m). A. H]/[(;.ln). B /1'1 [Ii’. N, I.]

[fer.m). 8. ﬁ]/[(a, m), B, W],[I.. N,R) [t} B.8Y[C.m)y 8.8)[1.N.¥)

{(ee.22), B, ).} 1. )[1.. R R) [(a.m), 8, B)il{arm). B.B)[1..N. N]

Figure3.9 moves for evaluating postfix equation
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3.13. Conditional blocks:

Conditional blocks are of two types:

Block like if else statements in C: when it reads an ‘IF’ it goes to expression state. On the
right side of IF must be some expression to evaluate and it evaluates it and push either
“T> or ‘F’ in the third tape. Then it reads a ‘THEN’ then it evaluates and the boolion
result from the third tape (stack) it also goes to the condition state. If the condition is false
it goes to false state and do nothing until it goes to a normal state.(‘s’) in false state it
only moves right but when reads an ‘IF” it just push an ‘IF’ and when it finds ‘ENDIF” it
just pops the ‘IF’ If it finds ‘ENDIF’ in false state and the stack-top is false then it pops
the false and goes to normal state. If it reads ‘ELSE’ then it goes to else part so if before
it was false (there was false at the top) then it goes to true state else it goes to false state.
The moves are as follows:

[(am), 8.7V (s, ), 8, BL[N N N] He,m), 8. 8Y(e, m). B, BY{R. N N)
(g m) 8. 8Y(B.w). 5. 8L [R.N 1]

[, m) B. B}l m). 8.1 #. V. &)

{(B.m), B.8)A(B.m), B, BN N 1)

2.0 B, FM{(z.m). 8. B) [N N)

f,m), B, F)f{(e.m) B, BLIR. N, V]

(a.m). B, +<Ylla, m). B 1} 1. M. R]

Figure3.10 moves of conditional blocks.

Block like switch statements in C: For some simplicity reason of this design this part is

not covered.
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3.14. Loops:

When there is an instruction symbol for loop. It push the program tape number as return
point. Then it checks the condition. Depending on the result of the check it goes to either
true or false state and remains there till it gets end loop symbol. At end if it gets the end
symbol while false state it pops the top (return point) else if it was in true state while
reading the end loop symbol it goes back to the old point to check the condition again.

The moves are as follows:

[(er,m), B.m}[(er. m). B, B}v.N.N]

[a.m). 5. \]/[(a m), Bl LN N
mpsslinmsalen.c  [am)8,T)am)8,8L[N,N,N] W ]

OO, ew

Y. m). B 5. ). B, BN, N, N)

[{er, ), B.x) (), B.x)[R, N, N] [ ), 8. BV ) K.} [R. N, )

[, ). 8, ) f(a.m). B, FL{N, N, V] e loop

[(Q. m), B, I"]I[(Q, m). B, Hl [R, N, I.]
fe.m), B, H]I[(u. m) 1IN N.R]

Qo) B <), m), B.x) [N, R] @ °

[(cl.m), 8, .\']/[(a, ), B, Bl [N, N

(M) BBV BB N.N. 1]

@ {.m).8.1)Q.m).8.8}[R.N. 1] @

Figure3.11 moves for loop

3.15. Function definition/calling:

Function is defined before the main program starts. Unlike the variable definition, there is
no move for function definition area. It is covered at S state before reading ‘hash’ and

going to s state. Function is defined as follows:

FUN <function-name> PARE <parameter list> BODY <Expressions> BODYEND

Where
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e FUN, the left end symbol of definition,
e PARE symbol used as separator between function name and parameters,

o Parameters are defined as reference variable is stated in the variable definition

part.
e BODY. the left point of definition before the body.
e Then comes the body of function as sequences of code.
e BODYEND the last point of body.
Each occupies one block of tape, as all of these are tokens.
Function is used as follows: (The moves are discussed below the text.)

Function Calling:
FUNC <function-name> ( <parameter list> ) <Expressions> ENDCALL
Where
e FUNC the left end symbol of definition,

e ENDCALL the left point of function call.

When TM read a Function call it goes to function call state and then it reach to the end of
the call point ENDCALL,then push the current program point (block number of program
tape), the box address as return point then it start moving left and push the parameters
from the left side, at last push the Function name then it starts moving left going to state
“finding function”. When it finds it, (Read a PARE followed by the matched name. When
it read PARE it comes to know that there is a Function name at left, so it check the left
box and if left box match the top-stack the definition is found.) it start moving right two
boxes and then parameters are starting there. It first then push ‘hash’ then goes to the last
part of definition and start coming back and pushing the whole function body till the
starting of function. Then it goes to the end point of the tape, starts popping the whole
function. When it pop ‘hash’ it assumes the next is parameters so it places parameters in
appropriate places. Then it goes to the s state and start executing body. At the end (when

it read BODYEND) it again goes to the return point from where it was called.

We have told in the variable part that global variables using inside a function body must
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be defined before the function definition so there is no problem in global variable

retrieval process.

[er.m). B BY[(a. ) 8, BL[R. N N} (e m) 8. B1fla.m) B.on} [1.. V. &] {(2.m), 8.8 A m) 8. B[N 1] Tt} B sYllom) B 5] (1.8 V)

o}t 8. 8o ) B.B) [N V) [(o.ms). 8. BY(a.m). 8.0} [1.. N R} [(a, m), B, .\']/[(u. m), B, x]. [l.. NN

[(x, ), 8, B)f(x.m) B.BYL.N.N)

. m) BB m) B B RN N (. m), B.x}1l(p. ), B.xL[1.. . ]

for.m). 8. x)/lfa.m). B.x)[R.N. N) [(er.em). B, BY[(, m). B,a} [1. N, R] {e.m). 8, 8Y{(s.m) 8.8} [N, ¥, ¥]

o). B.B(y.m) By [0 N
[ it ! o), B, x Yl m). 8,81 [0, N R]

fge )¢

ct, ). B, B](a,m), 8. L1V, V)

B} B.xYf{x,m) 8, B[R, N, 1)

(S ((fLm). K.\'l/((.\‘.m).H.HHI(.N_I,l
{lo.m) B.x)lio.m) B.x} R N.1]

@ [, m). B, x}{(r.m), B.x1 R, . ] @’

[(u, m), A, .r]/[(u. m), B, .rl [/1', NN ]

{o.m.s.2Yle.m) bx]) RN, 1)
[(Bom). 8. 8) (B} 8. BL{1. N 1]

18, m) .5, m) 5,5 [, N, N) l, m), &, )f(c.m), 8.3} [0, ¥, ¥]

(&), B.x]/[(a.m). 8.5} [R.¥ W] (5. m) B x){(5,m). B.xL[8. ¥ ¥}

{.m). 8. 5 e, B, x) [0, 2, V) (o, 1), B.xY[(x.m), B, B[N, 1)

{(¢,m). 8. 8)/[(8.m), 8,B} L, N, N]

) [(+.m), 8.B)/[(B.m), 8, BJ[L, N, L]
) (1)

f(am). 8.8]/{(B.m). B.BY[L, ¥, V]

Figure3.]2 moves for function handelling
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3.16. Interface

We have used MS Visual C++ 6 to implement our proposed Turing Machine. Its interface

is as shown in the figure. Different parts of it are self descriptive.

After giving source code (input) of this language and pressing ‘Run program’ button, the

Turing Machine starts moving its three heads according to following conditions:

The implemented software takes input (source code of the language of Turing Machine)

in one text area.
e The source code is case sensitive.
o The tokens are written separated by single space for the machine to detect them.
e Delay between executions of moves can be set. By default it is 1 milliseconds
e [t is also possible to run the machine in steps by checking the check box.
o The three tapes discussed in the research paper are also shown at the dialog Box.
e During execution time the status of the three tapes are displayed.

e Error handling features are partially implemented. That is, if an error occurs in
any state (the configuration has no valid move) the Turing machine may not
display error on that specific state but it will definitely show error at some later

state.
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Cument stateis: S
Tapetl Tape2 Tape3
Box No Content Box No Content Bax Na: Cantent
0 s} 8}
1 1 1
2 2 2
;3 3 3
4 4 4
5 5 5
3 [ 3}
7 7 7
8 8 8
q 9 9
™ Bunin Steps Set your Delay !T“ - - Run Program { Exit i
Figure3.13 Interface of the Turing machine
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3.17. Syntax of Language

Syntax to write program in this Turing Machine is discussed below.

—  Main body:

+ Before the Main body we may write our comments followed by variable
declarations and function declarations. It must be noted that:

« Al variables are global, so duplicate variable declaration will result in
error.

= Variables used in function must be declared before their use.

*  No constant value concept in the program. So all the constant values
must be defined as variables.

»  Function must be defined before the program starts.

»  Start point of program is key word ‘hash’. On reading a ‘hash’ in the tape one
the program begins execution.

+  One may give source code as input after the first ‘hash’ only. There should be no
‘hash’ keyword in the main program till the end.

»  Onreading two consecutive ‘hash’, the program stops. Afier that there should be
no code but may be comment. So comments must be either before the first
‘hash’ or at the end after the two consecutive ‘hash’.

= We may summarize the whole program syntax as follows:
<comments> <variable-definitions> <function-definitions> hash <main-body>
hash hash <comments>

*  Variable Declarations: We have only one type of variable. To declare a variable
we have to follow the following format with keywords.

»  ‘VDL’ the left end symbol of definition,
»  ‘VDM’ keyword is used as separator between value and name,
*  ‘VDR’ keyword is used as_ the left point

* VDL <variable-name> VDM <initial-value> VDR

*  Variable using: We have to follow the following format to use the variable.
+  ‘VCL’ the left end symbol of variable call,
*  ‘VCR’ keyword is used as the left point

+  VCL <variable-name> VCR

— Variable Reference Declarations:
* VDL <variable-name> VDM VCL <variable-name> VCR VDR

« It is same as variable definition instead at value area the referring variable is
called. It is specially designed to use as function parameters.

- Expression syntax:

«  Expression writing syntax is call the assignment variable and then write *: =
and the write syntax as call the variables and put the operators between them.

*  Variable Name : = Variable Name operator Expression ;
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—  Send to other Turing machine or output device.

»  This Turing machine uses ‘send’ and ‘receive’ to send to and receive from other
this type of Turing machine.

« It is worth to be noted that for every Input and Qutput operations, it receives and
sends. This model assumes the I/O ports as other Turing machine like itself..

= We use IP address to send to other machine and different keywords for different
/0 ports.

+  SEND Variable Name Variable Name...SEND_S <send-address>
—~  Receive from other Turing machine or input device.

« RECV <receive-address> Variable Name Variable Name...
—  [Ifthen else syntax is discussed below.

+ IF <condition-like-expression> THEN <Expressions> ELSE <Expressions>
ENDIF

*  Here the condition is also like expression.

— Loop syntax is discussed below:
«  LOOP <Condition> LOOP <Expressions> ENDLOQP
»  Here the condition is also like expression.

- Function Definition syntax is discussed below:

«  FUN <function-name> PARE <parameter list> BODY <Expressions>
BODYEND

—  Function Calling:

»  FUNC <function-name> <parameter list> ENDCALL
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4.Results

In this chapter we present the sample program written using language of our machine. At
run time, our implemented software writes all the configurations of the Turing Machine
moves in a file named “moves.txt” at the folder where the program resides. Detail of all
the moves can be seen there. Summery of the moves are discussed below with their

source codes.
4.1. Program to display:

This program defines a variable. It passes through variable definition states and enters

sending state and display.

hash VDL numberl VDM 5 VDR SEND VCL numberl VCR SEND S
DISPLAY hash hash

This program defines a variable. It passes through variable definition states and enters

sending state and sends it to the node having IP address 192.168.2.30.

hash VDL numberl VDM 5 VDR SEND VCL numberl VCR SEND S
192.168.2.30 hash hash

4.2. Program to assign:

This program defines two variables and then assigns ones value two another and

displays the assigned value.

VDL number] VDM 5 VDR VDL number2 VDM 3 VDR VDL result VDM 0
VDR hash VCL result VCR : = VCL numberl VCR ; SEND VCL result VCR
SEND_S DISPLAY hash hash

4.3. Program to multiply two numbers:

This program defines three variables and then multiplies ones value with another and

saves the result in the third and displays the result..

VDL numberl VDM 9 VDR VDL number2 VDM 5 VDR VDL result VDM 0
VDR hash VCL result VCR : = VCL number2 VCR * VCL numberl VCR :
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SEND VCL result VCR SEND_S DISPLAY hash hash
4.4. Program to receive and Display:

This program defines a variable. It passes through variable definition states and enters
receiving states. Then it receives a value from user and saves it in the variable and

then enters sending state and displays the contents of the variable.

hash VDL number]l VDM 5 VDR RECV USER VCL numberl VCR ; SEND
VCL numberl VCR SEND_S DISPLAY hash hash

This program defines a variable. It passes through variable definition states and enters
recetving states. Then it receives a value from node having IP address 192.168.2.30
and saves it in the variable and then enters sending state and displays the contents of

the variable.

hash VDL numberl VDM 5 VDR RECV 127.0.0.1 VCL numberl VCR ; SEND
VCL numberl VCR SEND_S DISPLAY hash hash

4.5. Program to receive, manipulate and Display:

This program defines two variables and receives their values as described above and

multiplies their values and display.

hash VDL num VDM 5 VDR VDL number VDM VCL num VCR VDR VDL
number]l VDM 5 VDR VDL number2 VDM 5 VDR RECV USER VCL number
VCR ; RECV USER VCL numberl VCR ; RECV USER VCL number2 VCR ;
VCL number VCR : = VCL number2 VCR * VCL numberl VCR ; SEND VCL
number VCR VCL number] VCR VCL number2 VCR SEND_S DISPLAY hash
hash

4.6. Program to receive, if else:

This program defines two variables and receives their values as described above and

goes to if else state and check the greater value and display it.

hash VDL num VDM 5 VDR VDL number VDM VCL num VCR VDR VDL
numberl VDM 5 VDR VDL number2 VDM 5 VDR RECV USER VCL number
VCR ; RECV USER VCL numberl VCR ; RECV USER VCL number2 VCR ;
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VCL number VCR : = VCL number2 VCR * VCL numberl VCR ; IF VCL
number VCR < VCL numberl VCR THEN SEND VCL number VCR SEND_S
DISPLAY ELSE SEND VCL numberl VCR SEND_S DISPLAY ENDIF hash

hash
4.7. Program to receive, nested if else (Find Smallest):

This program also act as the previous program but it performs nested if else in the if —

then else moves.

hash VDL num VDM 5 VDR VDL number VDM VCL num VCR VDR VDL
numberl VDM 5 VDR VDL number2 VDM 5 VDR RECV USER VCL number
VCR ; RECV USER VCL numberl VCR ; RECV USER VCL number2 VCR ;
VCL number VCR : = VCL number2 VCR * VCL numberl VCR ; IF VCL
number VCR < VCL numberl VCR THEN IF VCL number2 VCR < VCL
numberl VCR THEN SEND VCL numberl! VCR SEND S DISPLAY ELSE
SEND VCL number2 VCR SEND_S DISPLAY ENDIF ELSE IF VCL number?2
VCR < VCL number VCR THEN SEND VCL number VCR SEND_S DISPLAY
ELSE SEND VCL number2 VCR SEND_S DISPLAY ENDIF ENDIF hash hash

4.8. Program to receive, Loop (Calculate Factorial):

This program defines a variable and receives its values as described above and goes

to loop state and find the factorial of the number and display it.

hash VDL num VDM 1 VDR VDL number VDM VCL num VCR VDR VDL
numberl VDM 1 VDR VDL number2 VDM 1 VDR RECV USER VCL number2
VCR ; LOOP VCL number VCR < VCL number2 VCR LOOP VCL numberl
VCR : = VCL number2 VCR * VCL numberl VCR ; VCL number2 VCR : =
VCL number2 VCR - VCL number VCR ; ENDLOOP SEND VCL numberl
VCR SEND_S DISPLAY hash hash

4.9. Nested Loop

These are examples of nested loop programs.

VDL numl VDM 3 VDR VDL num2 VDM 2 VDR hash VDL num VDM 1
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VDR VDL number VDM VCL num VCR VDR VDL number! VDM 1 VDR
VDL number2 VDM 1 VDR RECV USER VCL number2 VCR ; LOOP VCL
num2 VCR < VCL numl VCR LOOP LOOP VCL number VCR < VCL
number2 VCR LOOP VCL numberl VCR : = VCL number2 VCR * VCL
numberl VCR ; VCL number2 VCR : = VCL number2 VCR - VCL number
VCR ; ENDLOOP VCL numl VCR : = VCL num! VCR - VCL num2 VCR ;
ENDLOOP SEND VCL numberl VCR SEND_S DISPLAY hash hash

hash VDL num VDM | VDR VDL number VDM VCL num VCR VDR VDL
numberl VDM 3 VDR VDL number2 VDM 4 VDR LOOP VCL number VCR <
VCL numberl VCR LOOP LOOP VCL number VCR < VCL number2 VCR
LOOP SEND VCL number2 VCR SEND_S DISPLAY VCL number2 VCR : =
VCL number2 VCR - VCL number VCR ; ENDLOOP SEND VCL numberl
VCR SEND_S DISPLAY VCL number2 VCR : = VCL number2 VCR + VCL
numberl VCR ; VCL numberl VCR : = VCL numberl VCR - VCL number
VCR ; ENDLOOP hash hash

hash VDL num VDM 1 VDR VDL number VDM VCL num VCR VDR VDL
number!l VDM 3 VDR VDL number2 VDM 4 VDR LOOP VCL number VCR <
VCL numberl VCR LOOP LOOP VCL number VCR < VCL number2 VCR
LOOP SEND VCL number2 VCR SEND S DISPLAY VCL number2 VCR : =
VCL number2 VCR - VCL number VCR ; ENDLOOP SEND VCL numberl
VCR SEND_S DISPLAY VCL numberl VCR : = VCL numberl VCR - VCL
number VCR ; ENDLOOP hash hash

4.10. Program to sequence:

The following programs solves equations having more then two variables.

VDL number VDM 5 VDR VDL numberl VDM 7 VDR VDL number2 VDM 3
VDR VDL number3 VDM 8 VDR VDL number4 VDM 12 VDR VDL result
VDM VCL number VCR VDR VDL number5 VDM 3 VDR VDL number6
VDM 3 VDR hash VCL number VCR : = VCL numberl VCR - VCL number?
VCR * VCL number3 VCR + VCL number4 VCR / VCL number5 VCR ; SEND
VCL result VCR SEND_S DISPLAY hash hash
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VDL numberl VDM 9 VDR VDL number2 VDM 5 VDR VDL number3 VDM 6
VDR VDL result VDM 0 VDR hash VCL result VCR : = VCL numberl VCR +
VCL number2 VCR * VCL number3 VCR ; SEND VCL result VCR SEND S
DISPLAY hash hash

VDL numberl VDM 9 VDR VDL number2 VDM 5 VDR VDL number3 VDM 6
VDR VDL result VDM 0 VDR hash VCL result VCR : = VCL number2 VCR *
VCL number3 VCR * VCL numberl VCR ; SEND VCL result VCR SEND S
DISPLAY hash hash

4.11. Program to Function receive, Loop:

The following programs defines functions and at run time calls the functions.

FUN dis PARE BODY VDL number! VDM 5 VDR SEND VCL numberl VCR
SEND_S DISPLAY SEND VCL numberl VCR SEND_S DISPLAY END hash
FUNC dis ENDCALL hash hash

VDL num VDM 5 VDR FUN dis PARE VDL number VDM VCL num VCR
VDR BODY VDL numberl VDM 5 VDR SEND VCL numberl VCR SEND_S
DISPLAY SEND VCL number VCR SEND_S DISPLAY END hash VDL a
VDM 9 VDR FUNC dis VCL a VCR ENDCALL hash hash

VDL num VDM 1 VDR FUN fact PARE VDL number VDM VCL num VCR
VDR BODY VDL numberl VDM 1 VDR VDL number2 VDM 1 VDR RECV
USER VCL number2 VCR ; LOOP VCL number VCR < VCL number2 VCR
LOOP VCL numberl VCR : = VCL number2 VCR * VCL numberl VCR ; VCL
number2 VCR : = VCL number2 VCR - VCL number VCR ; ENDLOOP SEND
VCL numberl VCR SEND S DISPLAY END hash VDL a VDM 1 VDR FUNC
fact VCL a VCR ENDCALL hash hash
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5.Conclusion and future work

5.1. Conclusion

In this project a computing model having a new Idea has been created and implemented.
Our new computing model is entirely based on Turing machine theory. It has also the
most common features of higher level language. This also simulates communications

among different computing models.

Moreover this is mathematical model that can be implemented on various architecture.
Even different sub Turing machines of our big Turing machine can be implemented on

different architecture.

Two things have been achieved in this project:
e “Equivalence of computer and Turing machine proved.”
e A new way to implement distributed computing found.

5.2. Future Work

As future work, we may also construct Turing machines accepting languages of more

complex programming paradigms. Some of them are stated below.

o Object-oriented programming

» Event-driven programming

o Flow-driven programming,

e Message passing programming,

e Class-based programming,

» Prototype-based programming (within the context of Object-oriented
programming)

e Logic programming

o Constraint programming,

« Component-oriented programming (as in OLE)

e Aspect-oriented programming (as in Aspect])

« Rule-based programming (as in Mathematica)

e Table-Oriented Programming (as in Microsoft FoxPro)

e Pipeline Programming (as in the UNIX command line)

e Post-object programming

» Subject-oriented programming

« Reflective programming
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e Dataflow programming (as in Spreadsheets)
e Policy-based programming
e Annotative programming

We may also construct Turing Machine that have easier syntax, less complexity in
running time.
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Abstract:

Turing machine is model for generalpurpose computing device. There are many

implementations of Turing Machine using physical computer as well as many implementations of physical
computing device using Turing Machine. In this study, we elaborate the simulation of computing model,
using a high-level language as its native code, on Turing machine. We also make it possible to
communicate among many of such simulations. Finally we present a deterministic Turing model that

actually simulates distributed processing.
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INTRODUCTION

Turing Machine is a mathematical model of
computing device. Turing Machine!", as defined by
Alan Turing in his historical study, is a 7 tuple as
following:

TM: lQ,Z,rs&SaB:ﬂ

Where, the symbols are sequertially the set of
states, the input symbols, the tape symbols, the set of
transition functions, the starting state, the blank symbol
and finally the set of final states.

There are many simulations of computer using
Turing Machine and simulation of Turing Machine
using computer to prove them equivalent®®. Here, we
elaborate them. This study describes a computing
model having many addressable identities as basic unit,
Turing Machine. Then the complete Turing Machine
makes it possible to make communications among these
models.

Thus in future, we shall use only TM as the formal
representation of what can be computed by any kind of
computing device*,

CQur proposed model is a compound Turing
Machine of many simple Turing Machines. We now
describe systematicaly the characteristics of our mode].

In modem computing model, different parts of a
computing model is again a computing model
themselves having their own addressable identities.

There are many kinds of physical computing
devices, such as mim, micro, manframe, super scalar
etc. These may be general purpose and special purpose.
Computing models may be physical and virtual
{as software on other physical model). But the virtual
models can also be described as a big algorithm,
collection/sequence of small physically 1mplemented
algonthms.

In spite of these facts, there is no fundamental
difference between data processing, storage and
communication between any kinds of computing model
mentioned above!*),

In a fully distributed environment, there can be
global addressing systems to address a small
component of a native node participating in the whole
system'®, There may be many mechanism adopted for
this purpose.

This study describes using Turing Machine:

A computer with

e Infinity long sequence of words each with an
address

¢ Infinity long address space.

e Program of computer is stored in some word of

memory.

Each word or box of tape represents a simple token
of Higher-level language (Unlike the models described
in existing books that refers instruction of a memory as
in the machine or assembly language.)

MODEL IN BRIEF

™= {Q"%,I,8 8B, f}

States: Q. The states are compound states of the states
of its sub Turing Machines. So we may say states are of

the following types: qi¢s. .. ¢a Where, = Q .

I is set of input alphabets.
T 1s set of tape alphabets.

8 1s set of moves. The moves are also compound moves
of the following formats:

Corresponding Author: Dr. Malik Sikander Hayat Khiyal, Departrnent of Computer Science, International Islamic University,
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Inform. Technol. J., 5 (2): 305-313, 2006

(. [(aem ). W, x, Da.[(oumy). v, Zl]-[D'D’D])‘
G(sz[(ar m, )vwzv"z]) (Qz »[(bz» m,}.Yz2. % ]'[D'D'D])z
8(ps.[(a; my), %, 1) (. [(0 M) 2.2, [D.D.D]),

8(py [(Raem,). W, %0 ]} (G0 [(ba.me ). % .2 [D.D.D])

Where, a,b.m,w,x,y,zeT’,q.q,€Q,De{L,R.N}

S 1s the starting state for all sub Turing Machines of the
compound Turing Machine.

B is the blank symbol.

f is the final accepting state. But when all the sub
Turing Machines goes to accepting state then the final
Turing Machine is assumed to be at the final state.
So the final state of the whole Turing Machine is
HEEHREL

FEATURES

QOur aim is to make the Turing machine that having
the following features:
s The TM is designed in so that its functionality will
be nearest possible of real computer while
remaining within the limitation of TM, the input
code of TM (which is also the executable code)
will be like that of Higher level Language code.
Not all the functionality of Higher Level Language
are discussed, but some of them to limit the
complexity.
Each token in the Higher Level Language
Language will occupy first tuple of a block in the
program tape, which the head will read at once
along with the block number (token number).
The TM i1s to simulate the computing functions like
those are in a distributed envirorument.
In literatures, a non-deterministic Turing Machine
is known to be a paralle] Turing machine. But in
some other places it is shown that it is not actually
simulation of a parallel processing with which we
agree. We disagree with the statement that non
deterministic Turing Machine to be a simulator of
distributed computing environment, because of the
following reasons
In non-deterministic environment where there
are several moves for a given configuration,
the Turing Machine starts moving in all paths
and thus creates branches only at that
particular configuration.
The number of branches only depends on the
number of moves available from that given
configuration, otherwise not. If there come a
multiple path configuration at any point, it will
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agam branch in the number of moves those are
available from that configuration.
In actual distributed environment, the
distributed processors (nodes) are not created
by instructions. (In thread creation, there is
actually no physical parallel processing occurs.
Rather the created threads share the time of
same processing node. Even if they use
different node the different nodes are
previously created by some other mechanism.)
In distributed environment, the nodes are
mostly previously statically created. If not then
processing nodes are created on availability
basis but not because of any instruction.
We produce a deterministic Turing Machine
having all the configurations with one move
besides acting as distributed model.
Our Turing Machine has each component as an
independent computing model and those perform
their tasks independently and while needed
communicate with the other model The main
reason to umte the individual components and
make the compound Turing Machine is, the
componernts of the compound Turing Machine can
communicate among themselves only not out of
those. This will simulate the physical
interconnected nodes those can communicate and
make a distributed system. The components those
are exchanging data among themselves can be
ports of a single CPU or different CPUs connected
by communication ports. But all of those should
have an address.
We have represented the reserve word tokens in
this model with the help of Greek alphabets. But
after implementation any other suitable token can
be used in these places.

FUNCTIONALITIES
Computing machine has the following functions:

Variable definition/storage retrieval: To reduce the
complexity, there are only two types of vanable
declarations here.

s Variables.
s Reference to other variable or reference.
Assignment operations: Basic arithmetic operations
add/subtract/multiply divide: There is no explicit sub
TM designed here for these.

Arithmetic and logical operations with brackets and
indices: This is done by converting equations to
postfix form.
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Conditional blocks: We have only used ‘if then else’
type of conditional blocks here.

Loops: In this model loop is started by checking an
initial value of a variable and termination is also done
by checking that value. Inside the loop body, the
variable is updated.

Function calling

s  Functions in this model are only ‘void’ functions
that mean those do not return value.

s Retum value s only got from function, by
parameters sent by reference.

« Function parameters only contain references to
other variables with which functions send and
recetve values.

DESCRIPTION OF OUR TM

Ow Turing Machine consists of components as
stated before. This portion describes one component in
detail. There are three tapes in this TM.

Program tape: This tape contains variable
declarations, program and mput. When the input
instruction 1s called, the nput value is stored in places
reserved for input in this tape. This tape has two tracks.
One for program and variable and another read only
track contains sequence number of boxes of the former
track. Point to be noted that the tape has one head with
which it read both the track and write only on the first
track second one is read only. In another way, we may
also describe this tape as only one track having the
boxes as tuple, which the TM head read. It writes only
on the first part of the tuple, second part of the tuple
contains the box number and this part is read only.

Postfix tape/Buffer tape: The arithmetic expressions
are converted mto postfix form before execution. The
postfix equation is stored in this tape. At the beginning,
this tape is empty. During the functionality, this tape
can also be used for other purpose as well such as
buffer while sending a buffer over a network. After
finishing work, it 15 empty.

Stack tape: This tape acts as stack for this TM. At the
beginning, this tape 1s empty. The functionality 1s same
like the other tape but it is called stack tape as it 15 used
as stack. Its way of functionality varies in the following
way.

s When a value is pushed the tape head moves right
and write the value or sometimes it writes and then
moves when the current block is already empty.

e When a value is popped, the head erases the
current value and moves left or it moves left and
then erases the value if the current box is empty.

e At any time to read the top value just read the
current box under the head or sometimes when the
current box 1s empty it moves left and read the
value. _

o Even then, this is a tape so it can be used for other
purpose as tape. Sometimes the push pop 1s merged
with other moves.

As default the second and third tape head is kept
over a blank box beside a filled box. When there is a
value on either of these tapes that to be read constantly
then that tapes head is kept on that box containing
value.

¢ Moves: Moves of a single component are of the
following form:

8{ai[(@m).w.x )@ [(b.m).y.2},[D.D.D])
where: ab,m,w,x,y,z €l,q,q9,€Q,D={L,R,N}
o Tape symbols

There are tape symbols for each instruction and
each reserve words and each value with which the
program is written on the tape. No defined name such
as variable name or function name can be repeated. So
at same time a name cannot be used as variable name
and function. Let alone overriding/overloading etc.
Tape symbols can be categorized in the following
categories:

e Value
Reserve words / key words
¢ Instruction symbols / state symbols; Note that there
1s a tape symbol for some of the states if not for all.
e Brackets of differenttypese.g. {,},(,).
e Operators: + - */=>< |:=

WORKING OF TM AND MOVES

From the left to right the global vanables and
the functions are written on the program tape, followed
by # as the marker for starting point of the main
program. When the main program is finished there is a
‘## as end marker of main program. After that there 15
1o more program written at the starting of computation.
However, at run time when a function 1s called, the
called function’s code is copied after the “##". The next
function call will copy the called function after that.
When a function returns (finish) it 1s erased from the
place where 1t was copied. at same time
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The machine starts reading the symbols at the
program track of program tape from left to right and
fetches ‘#". When it gets it go to s state and after that
goes to thewr respective states and executes the
mnstructions.

8(s.[(a.m}B,B])(S[(a,m}B,B].{R,N.N])
8(s[(#m).B.B])(s,[(#.m),B.B][R,N.N])
Where, s =Q, a € I'~ #, B= Blank symbol,
S=Starting state.

Moves at the end point.
§(s[{#.m).B,B)(s..[(#.m) B.B],[R.N.N])

8(s,.[ (#.myB.BJ)(£.[(#.m),B,B].[N,N.N])

Variable definition/storage retrieval
Variable is defined as follows:

AVLD Vo
Where:

e A the left end symbol of definition,

eV, is avariable name,

¢ &symbol used as separator between value and
name,

s« V., 1s avariable value,

s ythe left point.

Each occupies one block of tape, as all of these are
tokens. Whenever the tape head sense a A, it assumes
that there is a variable definition at right and same for
the other variable symbols for their respective purpose.
It goes to Variable definition state and remains in that
state until definition finishes.

§(s.[(a.m).B.B])(v..[(Am).B.B}[R,N.N])
S(V,i,[(a,m_),B,B])(vd,[(a,m),B,B],[R,N,N])
S(Vd,[(_u/,m).B,B])(s,[(w,m)B,B],[R,N,ND
where g e T —y—A, v, 56 Q.

If any defined variable is used as global variable
mside some function it must be defined before the

function first call due to some restriction in the variable
retrieving process.

Variable definition at function parameter or
variable as reference to another variable:

o AV my

tas
o0

Variable is read as follows: §Vn
Where:

o  § the left end symbol of definition,
eV, is a variable name,

s 1 the left point.

As the rule of the all programming languages
variable must be defined before use. So from a call
point the definition must be at the right side. So when
TM read a variable, it first

s  Pushthe return point. (The current box number)
Push W or R for whether to read or write.
Push the variable name.

When it starts reading variable it goes to the last
point of variable first then it push the next box address
(as return address) first then push whether to read or
write, then push the variable name then it starts moving
left going to ‘finding variable state’. When it finds it,
{Read a @ followed by the matched name. Point to be
noted that when it read @ it know that there i1s a
variable name at left, so it check the left box and if left
box match the top-stack the definition of variable is
found.) then it first delete the pushed name starts
moving right two boxes and if the value is other then 3,
it is the value. Otherwise it is the reference to another
variable so it pushes the new name (the variable name
at the reference) and again searches in the previous
way. When it finds it, it pops the variable name from
the third tape. Then it moves the 3¢ tape head left.
There it checks whether it was to be read or written.

e Ifitwas toberead, it writes the value to the postfix
equation.

o The expressions are solved by converting them to
postfix form so the value should be written to
postfix equation.

s  Otherwise if it was to be written then it moves the
value from postfix equation to the value part of the
definition and erase from the postfix equation.

e After that it pop the stack so the next top is the
memory location from where the variable was
referenced. The state is also changed to state to go
the place from where the variable was called.

Variable is read from state e. (Moves)
3(e{(m) B.B])(v.[(5:m).B.5, [R.N.N]
8(v..[(a.m).B,B]j{v,[(2.m)BB][R.N.N]}
6(\',,[(n, m),B,B])(v,F,[(n, m),B,B],[R,N,ND
ael-nev, vy €Q
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07

[(a.m)B.m].[L,N,R])
[(nm)B.R}[L.N.R])

(Voe-[(2.0).BB])(v,,
8{v,,.[(nm).B,B])(

Von

"( [ am),B,B] (v,\,.[(a m),B, a] [L.N, N)
a( [(2.m),B.x])(v, [(a.m),B.x} [L,N.N])
x, agl-¢

8{ve [ (6.m),B.% ) (v [(0.m)B  x], {L.N.N])

8 ,[am) Bx])(vh,[(am Bk] [LNN])
3(vy, {(a,m),B a])(vn a,mB,a],[R,N N])
s, f{6m)8.x])v, [(6:m) BEL{R.N.L)
5(v,.[(8.m),B.x]){v ., .[(3 m), B,BL[R.N,R])

[¢7]

(

(v

(

(

(

(v, - [ a,m) B B])(\'b[ a,m),B,a],[L,N,N])
5(v, [(a.m),B R])(v,g,[(a ,m),a B] [R.R L])
8(v,.[(a.m} B w])(v v | (2,m),B,BLIN,L,L})

(Vugo[ (2:0), w,x])(v,e..[ (2.m)w, x},[R,R,N])

(Voo (.0 ). B ])( Vg [ (3.m) B, X ],[R,R,N])

(Voo (2,m)B, m])(e[(2,m),B,B],[N,N,N})

(Vg [(am)B\] (V. [(a.-m) Bx][RNN])

5{ V.o (2:1)B.m J)(s.[(2,m) B, BL[N,N,N])

O) o

Oz

Vegr

3

Variable updating: In any statement the Lvalue is
calculated and updated. In this case no variable is
updated at the right hand side of the assignment
operator. So when we finish calculating the right hand
side of the assignment operator, we fetch the variable
by the previous way and assign the value there at the
value part. This will be discussed in the statement part.
How to write variable is already discussed in the
previous part.

Variable length 1s each variable will occupy one
block. In this TM, address space, variable value length,
function names and all other reserve word, keyword
length all 1s assumed to occupy one block as those are
tokens of the native code of Turing Machine,

Statements: If we check the source code of any
language. it is a series of statements just controlled by
some flow control statements. Statements are executed
in normal state. At the starting of program the TM 1s at
normal state. At the beginning, inside a block (whether
a function call or loop or any other class of block it
might be) the TM is at normal state (s state) executing
staternents. Statements are of the following categories:

Assignment statement: (Variable := expression.): in s
state if the TM sense a variable it assumes that it is an
Assignument statement. So until it sense a “:1=", it waits.
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Then it goes to e state and moves after that are
discussed in the variable part.

8(s.[(8,m),B,B])(s.,[(8,m),B.B],[R,N,N])
5(5,,[(a,m),B,B])(s,,[(a,m),B,B],[R,N,N]:}
ael-{,=6}

Move to just read a variable and write to postfix tape/
buffer 8(s..[(.m).B,BJ)(s.[(:,m).B,B],[R,N,N]

3(s [(5m)8,8])(e[(5:m).B. (R.N.0))

o  Further moves are discussed at expression part.

Other moves regarding assigrmment are discussed in
evaluation part.

Read variable from user./Write expression to
output: These operations are same as send and receive
which i3 discussed later. The difference is at the
send/receive node number. It is the port address of the
input and output port.

Send/Receive  expression to another Turing
Machine: Send: To make the send operation easy, in
this model the data stream to be sent 15 first gathered
into the buffer (second tape) which is empty before and
after this. The vaniable reading and sending to tape 2 is
discussed in variable read part. Then it reads the send
symbol and goes to send state and start sending unti! the
buffer (second tape) is empty. After it is empty it goes
tos state again. The moves are discussed below.

Send

8(s.[(A,m),B,B])(e.[/(A,m)B,R][R,N,R])
8(e,[(8,m)B,B])(E[(E m)B,B},[R,N,N})
8(&.[(n.m).B,B])(¥,.[(n,m}.B.B],[N.L.N})
( [(n,m)x,B])(E [(n,m),B.B],[N.L_.N])......
3(,.[(n,m),B.B])(s.[(n,m)B.B].[R,N.N])

=
“nr
=
=1

Recelve

5(s.[(€.m), B,B])(& [(®.m) B,B],[R,N,N])
( [(nm),B.B])(®,[(n,m),B,B],[N,L,N])
(@ ,[(nm ,x,B] G) [ (nm) ,x,B],[N,R,N]}
(

(2}

a

®,,[(n,m\B,B])(s[(n.m),B,B],[R,N,N})

O} [o7]

01

(sl [(.m),B, B])( [Gm)B,B}[R.N D \J]J
(s.[(@m) B.B])s .,[(a,m),B,m],[L,N,R])
[ a,m),B B])(s [(a mjB, W] LN R]v}
[

2 [(nm)B, B] (Voo [(mm)B, W]{L.NN])

<

S,

(s
8(s
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Both together (only the communicating move)

8@, (n2.m) x.B])(®,,.[ (n2.m).x. B} [N RN,

B(Em,[(nl,m),x.B])(EN,,[(nl,m),B.B], NL, ’])z

We have stated before the components those are
exchanging data among themselves can be ports of a
single CPU or different CPUs connected by
commuaication ports. But all of those should have an
address.

Expressions: These are arithmetic operations with
brackets and indices or condition checking. When an
expression comes as a variable assignment statement a
¢ is pushed (At the end it will be popped) then the
expression is converted into a postfix form. Our
expression will contain numeric values and operators.
The numeric values will be a value in a box of tape.
The operators will be:

¢ {: open parenthests
e ) closing parenthesis
« *: multiplication
o/ division

s+ addition

s - subtraction

These operators have four levels of precedence.

e Highest: (,)

e Middle: *, -

e Low: +, -

e Lowest <> =!

We will add one more operator to help with the
processing of the program. That is a semicolon, ',
which will indicate the end of an expression.

To comnvert an expression from 1nfix to postfix, we
must first determine if the next (valid) item in the
equation is a number or an operator.

If the item is a nurber, it is sent directly to the
postfix equation. This 1s discussed m the variable part
how to do it.

If the item 1s a operator, we use the stack to do one
of the following:

o Ifthe operatoris: {, *,/, + or-
Pop the stack until either the stack is empty, the
operator of (at the top of the stack or the top value
on the stack has lower precedence than the current
operator. As each operator is popped from the
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stack, it is sent directly to the postfix equation.
Then we push the current operator onto the stack.

s(e,[(o,m),B,B])(e,,,[(o,m),B,B],[N,N,L]’}
8(e°,[(o,m\),B,u])(eq,[(o,m),u,B],[N,R,L]:
oe{+,~*/,<>=4( uwefr,~* =0
has equal or higher precedence to o
8(e,[(0.m) B, d})(e,, [ (0.m).B.d[[N.N.R])
s(e,o,[(o,m),B,B]:(e,[(o,m),s,o],[R,N,R])

de{+,—,"',/,<,>,=,!,(}‘d' has lower precedence

then o.
e  Ifthe operator is:)

Pop the stack until pop an open parenthesis, (. The
closing parenthesis is NOT pushed on the stack.
All operators that are popped (except for the open
parenthesis) are sent directly to the postfix
equation. If there is not an open parenthesis on the
stack (i.e. you empty the stack), the equation has an
error of an unmatched closing parenthesis.

§(e.[(.m),B.B] (e,.[.m) BB][N.NL],
8(e, [(-m)B.u)(en[(.m)u, BL[N.RL])
8(e, [(0m)B,(J)(e[(m).B.B}[RN.N]

6,

o If the operator is “;” pop the stack until *;" at the
top, sending all popped operators to the postfix
equation other then °;’. Evaluate the expression and
save the result into variable. Then pop the *;". In
case the expression contains variables the variables
are retrieved and the value is sent to postfix
equation.

8(e[(:,m) B.B])E.., [(.m) B.B] [N.N.L])
56 L)oo () .10V R.E]

X e{+,—,“‘,/,<,>,=,!}
S B e LB AL
S(e,,_r, [(;,m),u,B]:(e v_,,[(’; ,mju, B][NLN]]

(e [m).B.BT) o0 [(-) BB L[N.RN]

Evaluating postfix equation: To evaluate a posthix
expression, we will again need to use the stack.
However, the stack will contain numeric values instead
of operators.

¢ When a numeric value is encounter, the value is
pushed on the stack.
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When an operator (other than ;) is encountered, two
values are popped from the stack the operation is
performed on these two values and the result is
pushed onto the stack.

When the no operand is encountered, there should
only be one value on the stack above the *;’. This
value is the result of the expression.

oB]'(e

oef+—*i<>=

( [(' m),B,n])(e,,..[(:-m)n.B].[N.N, 1))
= numeric value

(ev {Gom)n.n, J) (e, (.m),B.non, ],[N,N,R])

8e,.[(:-m}B.B]) (e[ (-:m) BBL[RN,L])

5(e, [(‘ m).B,B,[N,N,L])-

07.—4

8(e.-[ (. m) B n])( [(a.m).n.m],[L.R.R])
5(s,...[(2.m).B,B])e.., [(2.m),B,W],[L,N.R])
5(e..»[ (a.m).B B])(ev_, [(a.m).B.BL[L.N.N])

(o[ 2.8, [(nm). 2. [L.¥)

The next moves from here is dscussed in the
variable part. For every expression we first push ;> as
we told before, then convert the expression into postfix
then evaluate, then pop “;’

Conditional blocks: Conditional blocks are of two
types

Block like if else statements in C when it reads an o
it goes to expression state. In expression if it reads a f§
then it evaluates and the boolion result is in the third
tape (stack) 1t also goes to the condition state. If the
condition is false it goes to false state and do nothing
until it goes to a normal state.(‘s’) in false state it only
moves right but when reads an o it just push an o and
when it finds € it just pops the o. If it finds € in false
state and the stack-top 1s false then it pops the false and
goes to normal state. If it reads y then it goes to else
part so if before it was false {there was false at the top)
then it goes ta true state else it goes to false state. The
nmoves are as follows:

8(s.[(«.m),B.B] (& (e, m).B,B],[R,N,N]]
5(c..[(.m).B,B])(c[(B.m).B.B][R.N.L]
8(c.[(2.m),B.F])(s.[(.m),B.F].[R.N.N])
S{s,.[ta,m).B.w [\(s,

[N
= {}‘, OL}
5(;[,[(0_,;11),13,1:]) (s¢-[ (0m),B,FL.[R,N,R])

. (a,m).B,w ],[R,N,N]]
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8(sta{ (2:m),B,B])(st.[ (2,m).B, ], [R,N.N])
8(s..[(em).B, o )(se.[(e.:m),B,B].[R,N.L])
8(s¢,[(e,m),B,F])(s.[(e.m) B,B],[R,N.N))
8(c[(a,m),B.T])(s.{(2,m),B,B],[R,N,N])

8(s.[(x- m). B,B])(s:.[ (1. m).B.F],[R.N.R])
o(s0 (1 m)B.7])(s[(.m) B.BL[R.N.N)

§(s.[(e.m),B,B])(s[(em).B,B],[R.N,N])

Block like switch statements in C: For some
simplicity reason of this design this part is not covered.

Loops: When there is an instruction symbol for loop. It
push the program tape number as return point. Then it
checks the condition. Depending on the result of the
check it goes to either true or false state and remains
there till it gets end loop symbol. At end if it gets the
end symbol while false state it pops the top (retumn
point) else if it was in true state while reading the end
loop symbol it goes back to the old point to check te
condition again. The moves are as follows:

8(s,[(TL.m).B,B])(e.[(IL.m),B,m ], [R.N.R])
3(e..[ (TT,m), BB})(q[nm),BB][RNr]
8(c,[(a.m).B.F J)(s¢.[(a.m),B.B},[R.N,L])
8(si [ (a:m),B.x] )(slf [(a,m),B,x],[R.N,N])
8(se.[(Q.m).B.x])(s,[{m).B,BL[R.N,N])
(e[ (a,m).B,T])(s.[(a,m).B.BL[R.N,N]’
5
(s

0’)

s.[(@m),B,B]}(s..[(Qm).B.B][L.N.L]
8(s..[ (a,m) Bx])( s.[(a,m),B,x],[L,N,N]}
8(s..[(a,m),B,m])(s,[(a,m),B,BL[N,N.NJ)

Function definition/calling: Function is defined before
the main program starts. Unlike the variable defimtion,
there is no move for function definition area. It 1s
covered at S state before reading # and going to s state.
Function is defined as follows:

FP(AV, O 8V ey, AVRPEVimy,..) 6 {Body
again coded as the main program is coded. }Q
The parameter variables are all by reference wheather
going in or out. That is there format 1s “AV, 8V, my™”
Where:

block

v the left end symbol of definition,

e F,is a function name,
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s @ symbol used as separator between function name
and parameters,

o AV, D8V, Ry 1s a vanable referenced by value
details of which is already discussed at variable
part,

o © the left point of definition before the body.

e  Then comes the body of function as sequences of
code.

e O the last point of body.

e Each occupies one block of tape, as all of these are
tokens.

Function 1s used as follows: (The moves are
discussed below the text.)

AFn(8Vin,8Vom ....)o
Where:

e  )the left end symbol of definition,

e F,is afunction name,

e  §Vyn is the variable call which is already discussed
at variable part.

e o the left point of function call.

When TM read a Function call 1t goes to function

call state and then it reach to the end of the call

point ‘c’,fhen
push the current program point (block number of
program tape), the box address as return point then it
start moving left and push the parameters from the left
side, at last push the Function name then it starts
moving left going to state “finding function™ When it
finds it, (Read a @ followed by the matched name.
Point to be noted that when it read @ it comes to know
that there is a Function name at left, so it check the left
box and if left box match the top-stack the definition is
found.) it start moving right two boxes and then
parameters are starting there. It first then push ‘#" then
goes to the last part of defimtion and start coming back
and pushing the whole function body until the starting
of function. Then it goes to the end point of the tape,
starts popping the whole function. When it pop # it
assumes the next 1s parameters so it places parameters
in appropriate places. Then it goes to the s state and
start executing body. At the end (when it read Q) it
again goes to the return point from where it was called.
We have told in the variable part that global variables
using inside a function body must be detined before the
function definition so there is no problem in global
variable retrieval process.

Moves
[(Am)B.B])(f.[(Am),B.B].[RN.N]

f[(am ).B.B])(£.[(a,m}B.B],[R.N.N])

f,[(o,m)B,B])(f,.[(e.m).B.B].[R,N,N])
f, {(2.m),B B])(fp,,[ a,m),B,m},[L.N .R))
o.m),B,B]£,.[(o.m).B,B], [L.N,N])

£ [( -

8(f,.. 0-m),B.B])(f, [ (),m),B.B],[L.N,N])
8(£,,.[(5.m),B,B])(£,.[(5,m)B,5).[L.N,R])
8(£,[(n.m)B.B])(£,.[(n.m).B.n].[L.N.R])

,{(-»m),B,B]},[L.N,N])

£ {( m)B B])(
)(ftf J[(Am)B, B] [L.N,L])

£,[ (A,m)
,m),

(=,
J{gm Bx] [LNN])
(a,m),Bx],[L,N,N])
J[(a.m),B,#]{R,N,R])
fn [(a. m,B,B_},[R,N,N])
[(2.m),B.2]{L.N.R])
f,.[(u,m),B,u }[L.N,R])
(o [(m) B4 ] [RN.R])
f ,[ xm) B B])(fg,,[ (x,m)B,BT,[R,N,N])
,B])(f..[(B.m).B.B],[N.N,L])
[(B.m),B,u |)(f.,[(u,m).B,B}[R,N,L])
£ Bm)B#])(tw[(Bm .B.#],[L.N.N])
foe-[ (1.m),B,#])f e [ (w.m),B.#).[L.N.N])
foes [( v,m),B #])(f,P,[ (+.m)B,B],[R.N,L])
£ ( [ a,m),B, B])( [(a m} B, B] [R.N N]]
£,{(5:m).B.B])(§-..[(8.m) B.BL[R.N.L])
£peu:[(2m)B,X])( §-u:(2.m) B, B |,[N.N.L])
fo-ws (3:m) B 8 ])(f,-.[(2m) B, B] . N, L])
fo-o[(2m).Bx ), ,, [(x,mB,B}[R.N,L])
(£ o [xm)B (£, [(x.m}B.B]F.N,N])
5(f,,.[(6.m), B,B])(s.[(6,m),B,B][R,N.N])
8(s.[(.m) BB])( J[(©.m). B.B],[L.N.L])
(s,
5

e

s..[(a.m} Bx])(s.[(a.m).B.x ] {L.N,NJj
s [am),Bm] s[amLBB][I\NN]

1>
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CONCLUSIONS

We have described one component of our whole
Turing machine such components communicate among
themselves by the moves described in the send receive
section. This way our whole Turing Machine works as a
model of distributed computing.

As future work, we may include more complex
tasks such as object-oriented structure.
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