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Preface

The study of flow dynamics of a fluid confined in a tube of a circular cross section, induced
by a traveling wave on its wall, has tremendous application in science and engineering. The
physical mechanism of the flow induced by the traveling wave can be well understood and in
known as the so-called peristaltic transport mechanism. The motion of fluid in the body of living
creatures is caused due to this mechanism. Such mechanism frequently occurs in organs such as
ureter, intestines and arterioles. Peristaltic pumping is also involved in the functioning of
medical instruments such as the heart-lung machine. Some recent investigations in this area can
be found in refs. [1-10].

A literature survey reveals that usually peristaltic motion is analyzed with a motivation that it
has application in physiology. In recent past it has been shown by the researchers [11, 12] that
an external sonic radiation can considerably increases the flow rate of a liquid through a porous
medium. Initially Ganiev and collaborates [13] performed the flow simulation via the wave
travelling on the flow boundary in the context of porous media. They proposed that sonic
radiation generates travelling waves on the pore walls in a porous medium. These waves in turn,
generate a net flow of fluid via the peristaltic mechanism.

In all the above cited references the nature of the fluid was assumed to be Newtonian, however,
e.g., oil and other hydrocarbons exhibit significant non-Newtonian behavior. Therefore some
researchers extended the work presented for classical Newtonian fluid in ref. [11] for non-
Newtonian fluids [14]. A further extension of the work done by Tsiklauri and Beresnev in [14]
was made by El-Shehawy et al. [15]. They studied the peristaltic compressible flow of a
Maxwellian fluid in a cylindrical pore by considering slip at the wall of the tube.

Motivated by the above mentioned studies, this dissertation extends the work presented in ref.
[15] for a Jeffrey fluid. In fact the work conducted in the chapter 3 of this dissertation contains
the previous studies [11, 14-16] as a special case. The brief layout of the dissertation is as
follows.

Chapter 1 is introductory in nature and presents basic definitions and equations. Chapter 2 is a
review of work by El-Shehawy et al. [15]. Missing mathematical details and all graphical results
of ref. [15] are reproduced in this chapter. Peristaltic compressible flow of a Jeffrey fluid in the
presence of slip at the wall is investigated in chapter 3. The effects of non-dimensional slip
parameter, relaxation and retardation times on net flow rate are analyzed in detail. The

dissertation ends up with a comprehensive bibliography.
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Chapter 1

Preliminaries

The aim of this chapter is to provide some basic concepts and definitions which are to be used

in the formulation of the problems in the next chapters.

1.1 Fluid

A fluid is a substance which continuously deforms under the application of shear stress.

1.2 Stress

Stress is defined as force per umit area acting on an infinitesimal surface element. Stress has
both magnitude and direction. and the direction is relative to the surface on which stress acts.
There are two type of stresses normal stress and tangential stress. The normal stress acts
inwards that is towards the surface and is perpendicular to the surface, while the shear stress

is the example of the tangential stress acts along the surface.

1.3 Pressure

Pressure is a force that acts normal to the area under consideration. Pressure is the example
of normal stress. When a fluid is contained in a vessel. it exerts some force at each point of

the inner surface. Such a force per unit are is known as pressure. The pressure p at a point is



defined as
oF
= i — 1.1
F 52130(65)’ (1.1)

where 45 is an elementary area and §F is the normal force due to fluid on é5.

1.4 Density

Density of the fluid is mass per unit volume. It is denoted by p and is given by

p= (1.2)

SE

In the above relation V is volume and m is mass the fluid within V.

1.5 Velocity

The velocity of a fluid is a vector field v = v (z,y. 2) which gives the velocity of an element of

fluid at a position (xz,y.2) and time ¢ in components form we can write
v=[u(z,y z.t).v(zy zt) wryzt). (1.3)

1.6 Viscosity

Viscosity is the fluid property by virtue of which a fluid offers resistance to shear stress. Newtons
law of viscosity states that for a given rate of angular deformation of a fluid. shear stress is

directly proportional to angular deformation. Viscosity at any point of the fluid is defined as

Tzy

b= (1.4)

where 7., denotes the shear stress acting in z -direction on the plane whose normal is in y-

direction. du/dy is the rate of angular deformation and u is component of velocity in z-direciton.



1.7 Angular Deformation

Angular deformation of a fluid involves changes in angle between two mutually perpendicular

lines.

1.8 Kinematic Viscosity

It is the ratio of dynamic viscosity to density. It is denoted by v and is given by

y=FE (1.5)
0

1.9 Strain Rate and Vorticity Tensors

The velocity gradient tensor VV can be decomposed into a symmetric part D and antisymmetric

part W as

w, (1.7)

B = b2

(Vv +vvT)

W = _(VW-vVv7T)=

[Nl Y

where 7 is called the rate of strain tensor and w is called the vorticity tensor. Also it is noted
that 7 = (VV + VVT) is equal to the Rivlin-Ericksen kinematic tensor. The vorticity is
defined by

w=VV-VVl =V xV.

1.10 Gradient of Velocity

The gradient of velocity V is defined as

9
ij

oV
8Ij )

VvV = (ej ) Vkek = e e, (18)

In a matrix form we can write



v, av; 9y
dr1 B8z1 I
vv=| 8u 8w 98V,
Ozo T2 Oz
oV, 8V v
zs Ors Oos
1.11 Divergence of a Vector
The divergence of a vector is defined by
8 OV Vi
VV=le— | Vieg=e,e— =6 —.
(Jaxj) RS kaa:j Jka;cj'

dz; 'Oz bxzy  Ozg

1.12 Curl of a Vector

The curl of a vector is

Vi
VxV = (ejﬁ) x Viey, = e; X ek%,
g 2

VxV

1.13 Divergence of a Tensor

The divergence of a tensor is defined by

3] 9Si;
VS= (ek(—,j-x—k) . (Sijeiej) = €; %}—‘l

t

1.14 Classification of the Fluid Flows

The following terms describe the states which are used to classify fluid flow

o (o _0Va (OVi Vs _ (0 W
! 83:2 31‘3 2 3:53 3.7:1 3 a.’rl 6$2

)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)



1.14.1 Uniform Flow

A flow in which the velocities of the liquid particles at all sections of pipe or channels are equal.

1.14.2 Steady Flow

A flow in which the quantity of fluid flowing per second is constant, that is the velocity, pressure
may change from point to point but do not change with time. The steady flow may be uniform

or non-uniform.

1.14.3 Laminar Flow

A flow in which each fluid particle has a definite path and the paths of individual particles do
not cross each other.

1.14.4 Turbulent Flow

A flow in which fluid particles move haphazardly in all directions. It is impossible to trace the
motion of individual particles in turbulent flow.

1.14.5 Viscous and Inviscid Flow

An inviscid flow is one in which viscous effects do not significantly influence the flow and are
thus neglected. In a viscous flow the effects of viscosity are important and cannot be ignored.
1.14.6 Compressible Flow

A flow in which volume and thus density of the flowing fluid changes during the flow is called
compressible flow.

1.14.7 Incompressible Flow

A flow in which volume and thus density of the flowing fluid does not change during the flow

is called incompressible flow.



1.15 Reynolds number

It is dimensionless number. Its is usually denoted by Re. It is the ratio of inertial forces to

viscous forces and is denoted by the formula

VL Vv
Re = pT = TL (1.14)

where V is characteristic velocity and L is the characteristic length.

1.15.1 Streamline

A streamline is everywhere tangent to the velocity vector at a given instant of time.

1.16 Types of Fluids

1.16.1 1deal Fluid

An ideal fluid is one that is incompressible and has no viscosity. Ideal fluids do not actually
exist . but sometimes it is useful to consider what would happen to an ideal fluid in a particular

fluid flow problem in order to simplify the problem.

1.16.2 Viscous Fluids

All fluids for which the dynamic viscosity is not zero are termed as viscous fluid. Viscous fluids
include Newtonian and non-Newtonian Fluids.

1.16.3 Newtonian Fluids

Fluids which obey Newtons’s Law of viscosity are known as Newtonian fluids.

1.16.4 Non-Newtonian Fluids

Fluids in which shear stress are not linearly proportional to deformation rate are known as

non-Newtonian fluids that is

d
roy # 1 (ﬁ) . (L15)



For non-Newtonian fluids

Toy = (‘;—:)n,n;é 1, (1.16)

where k is flow consistency index and n is flow behavior index. This equation reduces to
Newton’s law of viscosity if n = 1 with k¥ = . To ensure that 7, and du/dy have same signs

we write the equation as
" du
= T) dy s

du

dy

(1.17)

Try

where the term n = k|du/dy|"™! is referred to the apparent viscosity or affected viscosity. In
a non-Newtonian fluid the viscosity changes with the applied shear force. Ketchup, toothpaste,

blood and shampoo are common examples of non-Newtonian fluids.

1.17 Governing Equations

The equations used to describe the motion of the fluid are known as governing equations. The

following are the basic governing equations to describe a certain flow.

1.17.1 Continuity Equation

The law of conservation of mass says that the mass of a closed system will remain constant,
regardless of the processes acting inside the system. The mathematical form of conservation of
mass for compressible fluid is

dp

o T(VaV)=0. (1.18)

For incompressible fluid above equation simplifies to

V.V =0. (1.19)
that is
v v Ouw
5—5+5§+E—0. (1'20)



1.17.2 Navier-Stokes Equations

The law of conservation of momentum with usual notation is given by

p[§+V-V]V=divT+pf,

where T is Cauchy stress tensor, f is the body force per unit mass and ¢ is the time.

Generally, T has the form
T=-pl+8,

where pl is the indeterminate part of the stress and S is the extra stress tensor.

For a Newtonian fluid

S=pA; — 2 (V.V)L

where A is the first Rivlin-Ericksen tensor given by

A1 =VV 4+ (VvV)T,
Equation (1.21) in component form can be written as

[ du du du du] _@ N 85,y 4 0S8z, N a5;.

e Tyt E T T e T ey e TP
(du  du  du du]  8p  8S; 8S, = 0S,

p_dt+ud:c+tdy+udz_ B 8y+ Ox * Oy * dz Pl
[du du du dul  8p 08, 85, 8S..

Pla &yt E] T TR e Ty T TP

10

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)
(1.26)

(1.27)



Similarly from Eq. (1.23) the component of S are:

dv  Ju
= Spp=un a$+—3y ’

dw v
= Szy*“(a—y““a—z)*

= Szz=ﬂ(@+@):

8z Oz

2 Au
= ST .V4ou-—
# + Hoz'

3

9 )
= —uV-V+ Q,ug?i,
9y

3

2 ow
= 2. v, %Y
H + #32

3

Substituting the above results into Eqgs.(1.25) — (1.27) . we arrive at

o] _ Ren(Bmegr+ )
0z pfz+ 3 (V.V)

O —§§+u(§—i§+%§+%)
92 ply+ 305 (V.V)
| _ -—%—Fu(%}‘%+%‘§+%‘§
9z pfu + juz (V.V)

(1.28)
(1.29)
(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

Eqs. (1.34) — (1.36) are valid for any arbitrary three dimensional and tri-directional flow of a

Newtonian fluid.

11



Chapter 2

Slip effects on the peristaltic flow of

a non-Newtonian Maxwellian fluid

This chapter presents a review of the work by El-Shehawy et al. [15]. They have studied the
effects of slip at the wall of tube on the peristaltic flow of a compressible Maxwell fluid. All the
mathematical expressions and graphical results are re-derived. Some discrepancies are found
which are as follows. It is noted that in ref. [15] the expression of Vag (r) (Eq. (39) of ref.
[15]) is incorrect. In fact the factor (1 — iaty,) should be 1 for correct comparison. Further,
the factor (1 —iaty) in Eq. (2.62) (Eq. {41} of ref. [15]) and Eq. (2.68) (Eq. (46) of ref. 15))
should be 1.

2.1 Formulation of the problem

Consider an axisymmetric cylindrical tube (pore) having radius R and length L. A travelling

is imposed on the wall (boundary) of the tube with the displacement of the form

Wiz t) =R+ acos (E; (z — ct)) , (2.1)

where @ is the amplitude, X is wave length and c is the speed of the wave, respectively. A
cylindrical coordinate system (r. ¢, z) is employed to investigate the flow with z along the axis

of the tube. The velocity field for the flow under consideration is given as

12



v = [t (r,z1),0,v;(r,z,t)], (2.2)

where v, and v, are the radial and axial velocity components.
To describe the viscoelastic properties of the fluid, the constitutive equation to the Maxwell’s

model is used, which assumes that

a - 2

where t,,, is rélaxation time.

It is further assumed the following equation of state holds

1

f?—e = k", (2.4)
p Op

where k* is the compressibility of the liquid. The solution of this equation for the density as a

function of the pressure is given by

p = poe!k'(ﬁ—ﬂo)}! (2.5)

where py is the constant density at the reference pressure py.

The boundary conditions that must be satisfied by the fluid on the wall are the slip condi-
tions. For the slip flow the fluid still obevs the Navier-Stokes equation. but the no-slip condition
is replaced by the slip condition u; = A,0u/0n, where u; is the tangential velocity, n is the
normal to the surface, and A, is the coefficient close to mean free path of the molecules of the
fluid. This condition has been attributed to Beavers and Joseph for a porous boundary but
it was Navier who proposed it a century ago. Although the Navier condition looked simple,
analytically it is much more difficult than the no slip condition. Thus the boundary conditions
at the wall are

W Ov,

o (W) = o, s (Woz,t) = AZ2,

(2.6)

where A is the mean free path of the molecules of the liquid.

Utilizing Eqs. (1.23) and (2.3) into Eq. (1.21) and neglecting the body force one can write

13



(1 + tm%) (p% + p(v.V)v) = — (1 + tm%) Vp+pu [El - %(V.V) I] . (2.7)

In cylindrical coordinates, the mass balance equation (1.18) can be written as

Op dp dp dvr v,  Ov,
g ¢ Urgn TV - =0, 2.8
6t+U6r+LBz+p 8r+r+82 0 (2:8)
while Eq. (2.7) in scalar form become
— 8y 9p &y, 18vr _ vp 82y,
0 [ 9vr vy Oy (I +tmgy) E+u(GF+ 15 ?I*“{P‘)
1+tm5F It p ’Ura_'i"b'za =
S R (e d)
(2.9)
a\ [ v, Bv, v, —(1+tmg)§§+#(%§f+g%+%)
Prmae) Vo TP\ T2 )] T 6 (b, e, B0
+55: (Br + 5 + 52)
(2.10)

It would be expedient to simplify these equations by introducing non-dimensional variables.
There is a characteristic velocity ¢ and characteristic lengths a. A and R. The following variables
based on ¢ and R could thus be introduced:

= W Vr _ T P P _ Po < _CE

W =" m=2p=L 5=L m=27=%.
R. r c C.P po r p0C2 Po pocz R

(2.11)
The amplitude ratio ¢, the wave number o, the Reynolds number Re. the Knudsen number Kn
and the compressibility number y are defined by

a 27R pocR A

€= R 2= Re = . Kn=ﬁ. x = k*pyct. (2.12)

Under the above assumptions Egs. (2.5) and(2.8) — (2.10) can be rewritten in the non-
dimensional form after dropping the bar as

dp dp dp % v, Ou,
ot ar 0z

14



2 Ur Uy 2 r
v, dur Ovy _(1+tmgf gg+ﬁ(%%r_+%68r*r +%}T)
L imay a P\ T )| T 1.6 (8 8
Yr Qg
tarear Car +F 55
(2.14)
2y o 2y
0 Ov, v, av,; _(1+tm§)g§+§1;(%§l+%%r +%7f)
Htma) P T\ T )| T L s (o o
trregs (B T+ 5
(2.15)
p= exle—ro) (2.16)
also the boundary conditions (2.6) becomes
on(z.t) O, (r.z.t)
v ((1 .z, t) = —. 1, y2.t) = Kn————=, 217
vr((1+1).2,1) 5 (14 7).2.8) = Kn——pr, (2.17)
where
n(z,t) =€ecosa(z —t). (2.18)
2.2 Method of solution
Assuming the solution of the governing equations in a form [11]
p = po+epi(r.z,t) +Epa(rzt) + ...,
v, = eur(r,z,t) + Cug(r, z,t) + ..., (2.19)
v = evy(r.z.t) + 621-‘2(7", 2t + .
p = l4epi(r,z,t)+epy(rz,t) + ...

and doing a usual perturbation analysis one can obtain a closed set of governing equations for

the first () and second (€2) order as the following:

15



2 81.1, 32
8\ du "(Htm%)%Jfﬁ(%?ﬂ“%#—% Tzu!‘)
Lttng ) 50 = 1 8 {ou 5
(73 v
+ﬁza(#+—#+?})s
5] 2o v &2
0\ o _ —(+in$) B+ o (55 + 1%+ G¥)
1“’”& 9 1 8 {6u 8
u i3
+m5(#+—#+ﬁi
o, Ou m  On_,
ot s} T Oz !
/1= XD1.
(4t )0+ L (gl
(1+t )(3U2 p3U1+u3ul bam) may) G TR \ & T 7
m o 1 11— N—F— =
ot at ot or Oz +ﬁ§(%+g§+
— (14t 22 &2y 1
(1—+—t )(3’02 p301+uavl z,a'”l) (+mat) 5: T E}"'r
m o 1 o 1 1 =
at 517 &t & dz +ﬁ% @2+%2+%1;2
dp, dp dpy  up  Oup  Bvg Ju; w1 Iny
A R . A 2, m S g,
& e T, ar "8 Pl T
1 52

PQZXP2+§XP1-

(2.20)

(2.21)

(2.22)

(2.27)

Expanding Eq. (2.17) by Taylor expansion around r = 1 and substituting from Eq. (2.19) one

gets the following boundary conditions:

1a

U] (]_’ z}t) — _?(eia(z—t) _ e—ia(z—t))’

16

(2.28)



17 ity —iafe—t)\ OU1 B
ug{l,z,t) + 5 (e e ) . (1,z,t) =0,

du
v1(1, 2. 1) = Kna—:(l, z,t),

ve(l, z,t) + % (em(z't) - e_"""(z_t)) @1(1 z,t) =
Kn [%(1 Z,f) + % (eia(Z—t) —1a z—t) ) __ZL(I :l

Following [11] the solution of the linear problem can be assumed in the form -

ui(r,z,t) = Ul(r)ei“(z—f}_}_"Er'le—ia(z—t)’

rz.t) = Vl(r‘)eio‘(z“t) + V9erelz—t)

=

1

"3

(
(r,

1(7" Z.,t) = P]_(T)Eia(z_t) +ﬁ18_ia(z_t):
(

py(r.z,t) = Xpl(r)eia(z—t) + y Pre—ialz=t)

Here and in the following equations. the bar denotes a complex conjugate.

On the other hand the second (¢?) order solution can be written as

uz(r,z,t) = U(r) + Us(r)e®@G=t) 4 [pe~2ale—t)
vp(r.z.t) = Vo(r) + V2(T)€2ia(z—t) + Ve~ 2alz—t),
pa(r.z,t) = Payfr) + Po(r)edelz—t) 4 P,e=2ia(z—t)
pa(r.z,t) = Doglr)+ Dg(r)e%a(z‘t) + Dye 2alz—t)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

The latter choice of solution is motivated by the fact that the peristaltic flow is essentially a

nonlinear (second order) effect and adding non oscillatory term in the first order gives only

a trivial solution. Thus. one can add non oscillatory terms, such as Uag(r). Vag(r). Pag(r) and

D3o(r), which do not cancel out in the solution after time averaging over the period, only in

the second order and higher orders.

17



Substituting from Eq. (2.32) into Eqgs. (2.20) — {2.23) and (2.28) — (2.31) the following

system of equations are obtained.

—(1 —iaty) P, + & (U +%*L}—Q2U]
—ia (1 —iat,) U = ( T Re ( g " ) (2.34)
+3LRed£r (Ul + %l + zaVl) )
—ia(l ~ dat, )P + = V'-f—}:i—a?V
+3 (U] + B +4aWn),
U e
U, + — +ioV) = iax P {2.36)
T
Ui(1) = _Tm (2.37)
Vi(1) = KnV{(1). (2.38)
Here the prime denotes a derivative with respect to r.
A rearrangement of the system of Egs. (2.34) — (2.36) yields
3 T‘ U’ r]- T
AP+ (L-l + =T -0 (2:39)
i Vg
AP - (Vi+ 3 -3 ) =0 (2.40)
a r
where the complex parameters v and 3 are given by
y={(1- iatm)Re—%, 82 = a? — ia(1 — iatm)Re. (2.41)

Eliminating V1(r) by using Eq. (2.36). one can rewrite Eq. (2.40) as

o \dr r r 72

vl . P oy 1 /d 1 .U U
HEERCEVRIEIC |8 R
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Differentiating Eq. (2.42) with respect to r and using Eq. (2.39) give the following equation:

ix d? 1d 1 2,01 U U 2rr
_[%P’“?E_?_(B+%)](U1+71_7%_301) (2.43)
(g 3) (5 B ) o
This equation is rewritten, after multiplication by o? as
ixa\ (d® 1d 1 ,N\/(d d 1
-} —_t-—— - —t——— - U =0, 2.44
(1 v ) (dr2 + rdr 2 7 dr? + dr r? g ! (244)

where

_ 2(1=x) (1 —iat,)Re—(4/3) iax
- J e i (2.45)

From this equation (2.44) one obtains master equation for U;(r) and find its general solution

as

Ui(r) = C1h(vr) + CoIh(8r), (2.46)

where 7 is the modified Bessel function of the first kind of order one. Note, that Eq. (2.46)
is similar to Eq. (3.18) in [11]. except that C; and C; are complex constants calculated using
Eqgs. (2.37) — (2.38) and defined by

iady UQ(B) - 5KTLI}(5)]

1= 2 [O{Qh(B)IO(V) - 31/10(6)11(1/) +vKnly (B)Il(l}) (62 _ 052)] ) (247)

~ia® [Io(v) — vKnl (v)]

Cr = i 248
2 2 [OE2I1(H)I()(V) - BUIO(B)Il(V) + VKTLII(,B)I:[(U) (62 - 012)} ( )
Here Iy is the modified Bessel function of the first kind of order zerc
The general solution for Vi(r) is
2 C N
Vi(r) = 2 por) + 2352 Io(Br). (2.49)

and the general solution for Py(r):
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Pi(r) = G—(""—B)Ig(w) (2.50)

~V
Employing the same procedure as for the solution of system of order € one obtains the following

set of equations
Dy = xPao + x* P\ P, (2.51)

Uso

— — . PO, PFU
U20+———X(P1U1+P1U1+ —1 4

+Pm+ﬂm

\.___/
——
ra
o
b2
g

z'axPll_II—iaxEUl +U1?1+Uiﬁl—+ial/_’1U1 —iQVlFl =

iaXP1V1 ZCEXP1V1 + U1V + U1V = }::e (V20 + @) y (2 54)
Un() + 5 (T0) < U;0)) =0, (2.55)

1 /— . . 1 1
Violh) + 3 (G0 Vi) = Kn (Vi) + Vi +3V) . @59

It will be seen that. as far as the net flow is considered. only the functions Usp. Vag, Pag and
Dso contribute to the net flow as long as terms up to O(e?) are retained. Thus. the functions
Us, V. Py and D5 do not contribute to the net flow. and therefore the equations satisfied by them
will not written nor their solution will performed. In the next the solutions for Uso, Vag. P
and Dop will be computed.The second-order solution Uzo(r) can also be found in a way similar

to the one used in the first order as follows:

U20(T‘) = % - X [Pl(r)ff;(r) + F](T‘)U'l(‘r)} , (2.57)

where D) is a complex constant (which follows from the boundary conditions (2.55)) defined
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D = iaKn

(v -v). (2.58)
having the final form

waKn

Dy =
o o

. 2 2=
(iaClIl(v)+ i5°C2 1 (8) + iaCi (@) + 2 0211(3)). (2.59)

The general solution for Vap(r) is as follows:

1
Vao(r) = Dy — Re ] (V)T (7) + Va(r)Ua(r)] dr, (2.60)

where Dg is a complex constant defined by

Dy = —% (7{(1) + V{(l)) + Kn (Vz’o(l) + %Vf’(l) + %V_{’(l)) ; (2.61)

where the values of V(1) and V{'(1) are defined by

GG Lo ()11 (9) + 241G [y ()1, (B) + 255 [o(8)14 (7)
Vao(1) =Re | +9C%G 1(5)1,(B) — 2QG L)L (v) - @GO L@)R(8) |- (262)

~BGG 1By () — BGG 1y (B) 1 (9)

i32C,

(61

V(1) =iaCy (vI(v) — L(v)) +

(81o(8) — h(8)). (2.63)

The dimensionless fluid flow rate Q) can be calculated as

1 1
Q(z,t) =27 [ef vi{r, z, tyrdr + 62f vo(r, z,t)rdr + O(e?) | . (2.64)
0 0

Next, the net flow is considered over one period of time. The average of a variable G over one

period T of time ¢ is

T
(@) = % ]0 G(r. 2. t)dt. (2.65)
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At T = 27 /a, consequently the mean net axial velocity (V,) read

(Va) = € Vao(r), (2.66)

under neglect of O(e®)-terms. while the net flow rate {(Q) is given by

1
(Q) = 27é? /0 vap (r) rdr. (2.67)

under neglect of O(e?)-terms. Thus, the travelling wave induces a net flow of the liquid, of
which the (dimensionless) rate is expressed by Eq. (2.67). Hence. the net flow and the mean

net axial velocity are an effect of order €.

2.3 Numerical results and discussion

To study the behavior of net flow rate. numerical calculations for several values of @, K'n, t,, and
x are carried out. It is clear that one has to choose € << 1 because of the use of perturbation
method with the amplitude ratio € as a perturbation parameter [22]. Also for the perturbation
method to be valid and accurate ea® Re << 1 according to Takabatake [21].

Now consider the net flow rate (Q) given by equation {2.67). After one integration by parts,

{@) can be expressed as

1
@ =ré (D2 - Re [ VIR + Tiry0i0r) ar), (268)

where the solution of Eq. (2.60) for Vag(r) is used.

A numerical code has been written to calculate (@) according to Eq. (2.68). In order to
check the validity of the code, it has been run for the parameters similar to the ones used by
other authors. For instance. for ¢ = 0.15, Re = 100, a = 0.2, x=00.%,=00and Kn=00it
gives () = 0.2709, which is equal (which is equal if we keep four digits after the decimal point)
to the result of authors [18], who actually obtained {Q} = 0.2709. This corroborate the validity
of the present code. It should be noted that Eq. {2.68) will be identical to the similar equation
(4.1) of [11] if one set Kn = 0.0 and t,, = 0 in all present equations. Further, Eq.(2.68) will

be identical to the similar equation (16) of [14] if one set Kn = 0.0 in all presented equations.
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Firstly. the effect of slip boundary conditions in the case of a Newtonian (¢, = 0) fluid are
investigated. The result of calculations are presented in Fig. 1. where the dependence of (Q)
on the compressibility factor y for various values of Kn is investigated. It is noticed that the
range of {Q}) is approximately 0.4272 — 2.7043 for the range of x from 0 to 1. In particular, for
x = 0.0 the range of {Q) is just 1.2305 — 1.4714 x 107> for the three considered values of Kn,
while for x > 0 the range becomes 0.0034 — 3.8223 x 1075. Hence. (Q) is weakly affected by Kn
at x = 0.0. For x > 0, (@) strongly depends on the Knudsen number of slip flow. Furthermore,
we observe that for Kn = 0.0, {Q) attains a maximum of 2.7141 x 107° at ¥ = 0.5, and for
x > 0.5 the flow decreases to 0.4901 x 1073, while for Kn = 0.05 {Q) attains a maximum of
2.9734 x 1075 at x = 0.4, and for y > 0.4 the flow rate decreases until it reaches 0.2075 x 10~2,
for Kn = 0.1 (Q) attains a maximum of 3.8226 x 10~° at ¥ = 0.3, and for x > 0.3 the flow rate
decreases until it reaches 0.0035 x 107°. Thus. it is considered that at high values of K'n the
rate of decreasing of (Q) is greater than at low values. Furthermore. the compressibility factor
x has a significant influence on the net flow rate. and the Knudsen number Kn plays a more
significant role in the net flow of a compressible liquid than of an incompressible one.

Fig. 2 investigates the behavior of the net flow rate {@}} depending on the parameter
a, which is the tube radius measured in wavelengths. It is seen that the net flow rate (Q)
attains a maximum for a certain value of ¢, and this maximum increases with increasing Kn.
Furthermore. after (@) reaches the maximum value it then decreases with increasing a. but
this decrease is greatest at high values of Kn. Also it is noted that (Q) is nearly independent
of Kn for a < 0.001.

Secondly. the effect of slip boundary conditions in the case of non-Newtonian Maxwellian
fluid are investigated. It is known that viscoelastic fluids. described by the Maxwellian fluid.
have different flow regimes depending on the value of the parameter D, = t,/t,,. which is
called the Deborah number. In effect. the Deborah number is a ratio of the characteristic time
of viscous effects ¢, = pR?/p to the relaxation time ¢,,. As noted in. the value of the parameter
D, (which the authors of {19} actually call a) determines in which regime the system resides.
Beyond a certain critical value (D, = 11.64). the system is dissipative and conventional viscous
effects dominate. On the other hand, for small D.(D, < D._) the system exhibits viscoelastic

behavior.
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Figure 3 present the dependence of ()} on the compressibility parameter x for various values
of Kn.

When Kn = 0.0 it is assumed that the net flow rate reaches a maximum value (@) = 2.4918 x
1073 at x = 0.8. Further, when Kn = 0.05 it is noted that maximum value (@) = 2.6858 x 10°
at x = 0.7. The maximum value of (Q) = 3.2682 x 10~% and occurs at x = 0.6 when Kn = 0.1,
From the above discussion. we notice that {()) attains a maximum for a certain value of x and
this maximum increases with increasing K'n. Moreover, there is shifting the maximum value of
(@) towards lower values of x’s with increasing Kn.

Fig. 4 illustrates the behavior of the flow rate (@)} depending on the compressibility para-
meter Y at t,, = 10000 {deeply non-Newtonian regime).

In this deeply non-Newtonian regime it is seen that when Kn = 0.0 the maximum value
of (Q) = 7.2545 x 1075 at x = 1.0, whereas when Kn = 0.03 the maximum value of (Q) =
11.3979 x 10~% at x = 0.95 and when Kn = 0.05 the maximum value of (Q) = 15.4801 x 1073
at x = 0.9. Thus. in the absence of slip (Q)) increases with increasing x in the deeply non-
Newtonian regime. On the other hand. when the slip effect is taken into account. it is observed
that (@) attains a maximum at a certain value of x and then decreases. Moreover, there is a
shift in the maximum value of (Q} towards lower value of x with increasing Kn.

A comparison of Figs. 1.3 and 4 shows that when A'n = 0.05. the maximum value of (Q}
is 2.9734 x 107% at ¢, = 0.0 and x = 0.4, while the maximum value of (Q) is 2.6858 x 105
at x = 0.7 and t,, = 1000. Moreover. the maximum value of {Q) is 15.4801 x 107° at y = 0.9
and ¢, = 10000. It can be noted from the previous values that the slip boundary condition is
affected stronger in the case of a non-Newtonian regime than a Newtonian one. Furthermore.
the slip boundary conditions are weakly affected at compressible liquid (x > 0.0).

In Fig. 5 the dimensionless net flow rate {Q) is plotted versus a, which is the tube radius
measured in wavelengths. for the following set of parameters: ¢ = 0.001, Re = 10000.0. x = 0.6
and t, = 100. Note that for o < 0.001 the range of net flow rate (Q) is 0.0367 — .0791 x 10~4
at various values of Kn(0.0 < Kn < 0.1). Hence, the net flow rate {Q) is nearly independent
of Kn for a < 0.001. For 0.001 < a < 0.0065 it attains a maximum for a certain value of o
and this maximum increase with increasing Kn. For a > 0.0065 we observe that (Q) decreases

with increasing K'n. Further at K'n = 0.0 there is no negative value of (Q). Moreover () =
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—0.0113 x 10~ * reaches negative value at K'n = 0.05 and a = 0.009. while (Q) = —0.0196 x 10~*
at Kn = 0.075 and a = 0.008, and (Q) = —0.0074 x 10~¢ at Kn = 0.1 and a = 0.007. The
negative value of net flow rate ()} means the occurrence of back flow. This means flow occurs
in the direction opposite to the direction of propagation of the travelling wave on the tube wall.
Moreover, the reverse flow (back flow) occurs easily in the presence of slip boundary condition
and also a non-Newtonian regime. The net flow rate (Q} increases in the reverse direction with
increasing a.

In the Fig. 6 the dimensionless net flow rate (@} is plotted versus o for the following set
of parameters: ¢ = 0.001, Re = 10000.0, x = 0.6 and t,, = 1000. Observed that there is
no back flow at Kn = 0.0, while (@) = —0.0019 x 10~% at Kn = 0.05 and a = 0.006 and
(Q) = —0.0818 x 10™* at Kn = 0.1 and a = 0.004. A comparison of Figs. 5 and 6 shows that
when Kn = 0.0 there is no back flow, while at Kn = 0.05 the back flow occurs at ¢ = 0.009
when ¢, = 100, whereas at K'n = 0.05 the back flow occurs at a = 0.006 when ¢, = 1000.
Also. at Kn = 0.1 the back flow occurs at a = 0.007 when t,, = 100, whereas at Kn = 0.05
the back flow occurs at & = 0.004 when t,, = 1000. The previous discussion elucidates that
the back flow easily occur at low values of @ when large values of ¢,, and Kn are taken into
account.

To investigate the behavior of an incompressible (x = 0.0) Newtonian (¢, = 0.0) Maxwellian
fluid under the slip effect. the dimensionless net flow rate (Q) is plotted versus a in Fig. 7 for
€ = 0.001. Re = 10000.0. x = 0.0, t,, = 0.0. and Kn = {0.0,0.05,0.075 and 0.1). Observe
that range of (@} is approximately 1.2507 — 1.0723 x 10~% if K'n = 0.0.1.4863 — 1.1082 x 103
if Kn = 0.05,1.6505 — 0.6820 x 107° if Kn = 0.075 and 1.8616 — 0.0189 x 1073 if Kn = 0.1
for 0.0005 £ a < 0.01. Furthermore, at low values of a. the net flow (@) increases with
increasing Kn and decreases with increasing Kn at high values of a. Moreover, {Q) decreases
with increasing o and the rate of decrease of {Q) increases with an increase in K. The behavior
of an incompressible (x = 0.0) non-Newtonian Mexwellian fluid under the slip effects is studied
in Fig. 8. In this figure the net flow rate (@) is plotted versus c. for € = 0.001, Re = 10000.0,
x = 0.6 and t,,, = 1000.0 and Kn = 0.0.0.05 and 0.1. Note that {Q) decreases with increasing
@ to a certain value of o and then increases with increasing a. Furthermore, {Q) decreases

with increasing a and the negative value of (Q) for Kn = 0.05 begins at a = 0.004 and equals
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—0.0489 x 10~°, while the negative value of (Q) for Kn = 0.1 begins at a = 0.003 and equals
—0.2146 x 1075

In Fig. 9 the net flow rate (Q) is plotted versus o for the following set of parameters:
€ = 0.001, Re = 10000.0, x = 0.6 and ¢,, = 10000 (deeply non-Newtonian regime) and various
values of Kn within the range of 0.0 € a < 0.01.Thus figure reveal that in this deeply non-
Newtonian regime {Q)) becomes highly oscillatory and takes negative values for certain values of
a. Oscillatory behavior {(appearance of numerous maximum in the behavior of a physical value)
in the deeply non-Newtonian regime is not new [14]. Further the oscillations at Kn = 0.0 are
approximately the same as at Kn = 0.05 but there is a shift in the value of o 2 0.0005. For
example, (Q) = 0.0003 x 10~* when Kn = 0.0 and a = 0.0085, whereas {Q) = 0.0003 x 10~*
when Kn = 0.05 and o = 0.008. Moreover () has the same. approximately. at Kn = 0.0 and
Kn = 0.05 but there is shifting of the value of a.
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Fig. 1. The dimensionless flow rate () versus x at ¢ = 0.001, Re = 10000,
tm = 0.0 and a = 0.001
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Fig. 3. The dimensionless flow rate (Q) versus y at ¢ = 0.001.
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Chapter 3

Slip effects on peristaltic

compressible flow of a Jeffrey fluid

This chapter extends the analvsis of chapter 2 for a linear Jeffrey fluid model. Jeffrey fluid model
includes Newtonian and Maxwell fluid models as a special case. The governing equations involve
retardation time as a new parameter which was absent in the equations of chapter 2. The effects

of the retardation time on net Jow rate are discussed in detail.

3.1 Flow equations

The fundamental equations used in the derivation of the governing equations for the problem
considered here are (1.18) and (1.21). We assume a similar geometry as considered in chapter 2.
However. the fluid model considered here is the extension of the model used in the chapter 2. It
is assumed the properties of the material flowing through cylindrical tube (pore) are described

by the constitutive relation of the following form

(1 + tm%) S=yu (1 +t,§) (pKl - ;,u(V.V) 1) , (3.1)

where t, is the retardation time. Note that if we take ¢, = 0 the fluid model used in chapter 2
is retrieved. Now to obtain the governing equation I apply operator. (1 + tm;‘%) on both sides

of Eq. (1.21) and eliminate 7 in it using Eq. (3.1). Following this I get
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-1+ tm-g;) Vp

14 t— — v.Viv]| = 3.2
(+ Bt) (pat+p( )) a1 02) (E - ZaeVD). D

Equation (3.2) differs from its counterpart in chapter 2 i.e. Eq. (2.7) due to the presence of
t, in it. It teduces to Eq. (2.7) for ¢, = 0. This is the only equation which changes in the
extended problem and rest of the governing equations and boundary conditions remain same.

In component form Eq. (3.2) can be written as

ey O[O, (ow  ow\]_ —(ttmd) Brp(rnd) (Fre g oy
mat _pat P rar -za 5

Urzs + Ui

or Oz

(1+tmﬁ) [ Ou. ( . avz)} _ ~(+tmB) E+ul

4 5).
(3.4}

Thus the problem considered here is governed by Egs. (2.4). (2.6). (2.8), (3.3) and (3.4). For

the sake of convenience of reader these equations in their non-dimensionless form are written

as follows

(1+.+, 2) [p.aﬁ+p(v o Q’_’)] () R+ +tE) (%’}+}%_%&+
™ At o "5 - = - t
' ’ tam (L tg) & (B + 2+ 55).
(3.6)
(1+tm2) [p%+p(vr_@3_z+u§” _ ~ (1 4+t 2) Z+ L (1+1,2) (%}.;.%%_F%
at ot or 0z -i-%& (1+tf%)'c%(%: +L”_|:+%;_),
(3.7)
p= ex(p—po), (3.8)
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on(z.t)

O, (r, 2. t)
bt "

i (3.9)

v ((147).2.8) = (4 nhzt)=K

where
n{z,t) = ecosa(z — t).

3.2 Solution of the problem

In a similar manner as described in chapter 2 the flow quantities are described are expended in

-

power series of € as:

p = po+epy(r z,t) + pa(r 2, t) + ..oy

v = eur(r z.t)+ e2up(r, z, ) + (3.10)
v, = ev{r. z,t) + o, 2,6+ ey
p = ltep(rzt)+pp(r.z,t)+ ...

Upon making use of (3.10) in (3.5) — (3.9}, we get following systems:

System of order € :

& 2 : 2u;

(1+t 3)3u1 —(1+tm§)%+ﬁ(1+tr%)(_Taarul*'%%l“%}“L%:) (3.11)
mM o, o = )
at) ot 1 ay o (ou &

+§-§; 1+tr§)g(@l+u—rl+ml),
2 2,,
<1+t a)avl ~ () P g (L) (G0 + 15+ 5) (3.12)
™M g =, = -
ot} ot 1 ay a (o Bv
tam (L+bg) s (B + 2+ 52,
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(3.14)

1= XP-
System of order €? :
1+tm§){%2+pl%—}+u1%l+vl%l}_—(1+tm§)3§ 5.15)
3y (a8 i) g2 1 gy 8 {Bu font
+é(1+tra)(E"ﬂ‘+%%—§§+“£ﬁz)+m(1+tra)§(#+?+£)
8 8y {8 8 v
O\ (0vs B dn _ ow (1+tnd) 22+ & (1+6:8) (5% +192+ 5%
L+ ot -5? lat + a ILIE - 1 d f8u u v
+3r U+ t5) & #“Ff""&z)
(3.16)
dpy 6p1 Opy  uz  Oug  Ov Ou; wy  Om
A et LI 1 3.17
tu T or o 1\ 5 - r+32 ( )

Bt Yor 8z
p2 = xp2 + 2x pi- (3.18)

Expanding Eq. (3.9) by Taylor expansion around r = 1 and substituting from Eq. (3.10)

get the following boundary conditions:

ul(l.z._t) . _%(eu}(z—t) _ e—m(:—t))’ (3_19)
N l wa(z—t) _ —ta(z-—t) Ouy _
ug(l,z. 1) + 2(6 e )— pm (1.2,t) =0, (3.20)
(1.2.) = Kn%(l z.1), (3.21)
va(l.2.t) + %( wa(z=t) _ gmeala=t) (] 2 ¢) (322
= Kn [33(1 1 (et — gmalzm0) Z-t)} :
the following

After this we apply the same procedure as described in chapter 2 and arrive at

determining equations for I/, V] and P;.
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—a (1 —waty,) Uy =

—ta (1 —taty,) V1 =

1-wat,) d (77 . U
o 3;2 )5([‘1 _rl+“1V1)

—wx (1 — wotm) PL + LR?'") (n+4

wr{l—rot, )

+ (U + & +alh),

. [
U+ Tl + taVy = wax P,

From above equations we get

— L
U.l(l) = Tr

Vi(l) = KnVi(1).

Ui(r) = C1 L (br) + Co[1(8r).

LaCl LBCg

Vi(r) = Io(vr) + Io(Br),
Cy (12— 32
Pi(r)= %IO(VT)-
where
(1= aty) WX e o (1 — taty)
(1 - aty) Re 37 F=a'-w (1-aty)

and C{ and C3 are given as:

(1-cats)

,(1—x) (1—atm) pe — (4/3) oy

(atn) Re — (4/8) iax

37

— (1 — aty,) P + Gt (U1+5;1 4 —aQUl)

_ 0.21/1)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)



B [Io(8) — Kl (5)]

Ci =

*

e [In(v) — vKnl1 (V)]

2 (21 (8)Io(v) — Brlo(8)1(v) + vEnL(B)L1 (v) (8° — o?)]

Similarly the determining equations for Usg, Vag, Pop and Dy read:

U‘20+ T = —-X (Plaqi‘?lljl +

LaxPlﬁ—LaxﬁUl —+—U1a+ U 1 Ui +waViU—aViU; =

— — S — 1
LC!XP1V1 — LOIXP1V1 + L3V + UV = §é (Vgo —+ T

Day = xPoo + x* PP,

Pt + Pl
T T

Y

-+

=

2
3R.

T

Vao

Uaso(1) + % (L_T;(n + U;(1)) =0.

Py + f= (Uno +
(U +

).

qu
s

ﬂE‘"

Va(1) + % (V1) + Vi(1)) = Kn (Vzo(l) + %vl(l) + %ﬁ(l)) .

Solving Egs. (3.35) — {3.40) we get the following expressions.

f20(r) = -

*

1

— x [P(0)TL(r) + Pi(r)Un(7)]

1
Vao(r) = D} — Re / V(T () + Vi )T (7)] dr.

Tn which D} and D3 are given by
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= 2 [e21(8)Io(v) — Brig(B)h(v) + vEnL (81 (v) (62 - a?)] '

+F;lbr1 + P;ﬁ}) *

Q%g

).

)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)



2 N
— C —

p = ekn (Lacln(u) + Lﬁfzh(ﬁ)mcm(v) + Lﬁa 211(5)), (3.43)

. 1 — ; ! 1 " 1_ﬂ
D; = -5 ()= Vi) + Kn (Ve(1) + 3 (D) + 571 ). (3.44)

where the values of Vj3(1) and V{’(1) are defined by
3C

VI(1) = waCy [vIo(v) — L(v)] + - - 2 [8In(8) — L,(B)]. (3.45)

2CC o (1)1,(7) + 2GR Io(u)1,(B) + 200 1y (8) 1y (7)
Vio(1) =Re | +#CC1(5)1,(5) - 2GG 1) h(v) - RLELE)L(E) |- (346)
~BGG 1y(B) 1 (v) ~ PEG 1(B)1 (8)

The net flow rate is given by the following integral
1
(Q) = 27é? f Vao(r)rdr-. (3.47)
0

3.3 Discussion

The primary objective of this study is to analyze the effects of £, on the net flow rate (Q). To
investigate the behavior of (@) in presence of t, I have plotted Figures (3.1) — (3.9}). In Fig.
3.1 the net flow rate (Q) is plotted against x for various values of ¢, for relatively small values
of t, i.e. &, = 1000. It is observed from this figure that {Q)} increases attains maximum and
then decreases by increasing x. This maximum is lowest for a Maxwell fluid and greatest for a
Jeffrey fluid. The maximum for Newtonian fluid lies in between.

Figure 3.2 elucidates the behavior of (@) of various values of ¢, and non-zero values of Kn
i.e. Kn = 0.05. This figure give similar result as observed in Fig. 3.1. However. a closer look
at Fig. 3.1 and 3.2 reveals that (Q) attains a greater maximum for Kn = 0.05. Thus the slip
at the wall enhances the magnitude of (Q).

Figure 3.3 shows the variation of net flow rate (@) against x for various values of ¢, in deeply
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non-Newtonian regime i.e. for ¢,, = 10000. Note that for a Maxwell the net flow rate increases
monotonically and there is no appearance of maxima in values of (@). But for Newtonian and
Jeffrey fluid {Q) increases, attains a maximum and then decreases by increasing x. Thus a
Jeffrey fluid behaves differently from Maxwell fluid in deeply non-Newtonian regime. Figure
3.4 is prepared to see the variation of (@) in in deeply non-Newtonian regime for non-zero
values of Kn (= 0.05). This figure reveals the similar results as seen through Fig. 3.3. Figure
3.5 illustrates the variation of {Q) versus dimensionless tube radius a for different values of ¢,
and Kn = 0. It is noted from this figure that for a Maxwell fluid {()} increases by increasing
@, reaches a maximum and then decreases to zero. However, for Jeffrey fluid (Q) does not
become zero over the considered range of a. Further for a Newtonian fluid it increases by
increasing o and then become nearly independent of a. The observation of Figure 3.5 are in
the regime where non-Newtonian effects are not prominent and Kn = 0. When Kn = 0.05
and t,, = 100, the net flow rate in case of Newtonian fluid is greater than Jeffrey and Maxwell
fluid which is evident from Figure 3.6. Moreover. due to the presence of slip (@) first increases.
reaches a maximum and then decreases by increasing o for all three fluids (Jeffrey, Maxwell
and Newtonian). Figure 3.7 gives similar results as observed through Figure 3.6. Interestingly
for Kn = 0.05 and t,, = 1000 the behavior of (@) is somewhat different. Here its maximum
value is lowest for Maxwell fluid and highest for Jeffrey fluid (Figure 3.8).

Figure 3.9 presents the variation of (@) plotted against « for various values of ¢, = 10000
(non-Newtonian regime). This figure depicts that (@) is highly oscillatory for a Maxwell fluid
and attains negative values. The negative values of ()} mean the presence of back flow i.e. flow
in the opposite direction of propagation of peristaltic wave. However, the oscillatory behavior
of (Q) decreases and it become positive for large values of ;.

From the above discussion the following important conclusions can be drawn.

e The net flow rate () when plotted against y attains a higher maximum for a Jeffrey fluid
in comparison with Maxwell and Newtonian fluid in a viscous regime (regime where vis-
cous effects are dominant} for zero as well as non-zero values of Kn. Moreover, maximum

value of (@) for a Newtonian fluid is higher than the Maxwell fluid.

¢ In extreme non-Newtonian regime the graph of (@) versus x still attains a higher max-
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imum for Jeffrey fluid in comparison with Maxwell and Newtonian fluid. However, the

maximum value of {Q) for Maxwell fluid is higher than that of Newtonian fluid.

s The net flow rate when plotted against ¢ attains higher values for a Newtonian fluid in
comparison with Jeffrey and Maxwell fluid for small values of t,, (tm = 100) and Kn =
0, 0.05. Similar is the case when t,, = 1000 and K'n = 0. However, when t,, = 1000 and
Kn = 0.05, {Q) attains higher values for a Jeffrey fluid in comparison with Maxwell and

Newtonian fluid.

e Finally, in extreme non-Newtonian regime the results also reveal that the back flow and
oscillation in (@) are suppressed for Jefirey fluid in comparison with Maxwell fluid whether

Kn is zero or non-zero.
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Fig.1. The dimensionless flow rate (Q) versus x at e = 0.001, Re = 10000,
tm = 1000, o = 0.001 and Kn = 0.0
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Fig.2. The dimensionless flow rate (@) versus x at € = 0.001, Re = 10000,
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Fig. 3. The dimensionless flow rate (@) versus x at ¢ = 0.001, Re = 10000,

tm = 10000, @ = 0.001 and Kn = 0.0
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Fig. 4. The dimensionless flow rate (@) versus x at e = 0.001. Re = 10000,
tm = 10000, o = 0.001 and Kn = 0.05
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Fig. 5. The dimensionless flow rate {Q) versus a at € = 0.001,

Re = 10000, t,, = 100, x = 0.6 and Kn =0.0
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Fig. 6. The dimensionless flow rate (Q)) versus « at e = 0.001,

Re = 10000, t,, = 100, x = 0.6 and Kn = 0.05
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Fig. 7. The dimensionless flow rate {(}} versus o at ¢ = 0.001,

Re = 10000, t,, = 1000, x = 0.6 and Kn = 0.0
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Fig. 8. The dimensionless flow rate (Q) versus « at € = 0.001.

Re = 10000, t,, = 1000, x = 0.6 and Kn = 0.05
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Fig. 9. The dimensionless flow rate (@) versus a at ¢ = 0.001,

Re = 10000, t,, = 10000, x = 0.6 and Kn = 0.0
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