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Preface
The study of flow dynamics of a fluid conhned in a tube of a circular cross section, induced

by a travelirg wave on its wall, has tremendous application in science and engineering. The

physical mechanism of the flow induced by the traveling wave can be well understood and in

known as the so-called perisaltic Eansport mechanism. The motion of fluid in the body of living

creatures is caused due to this mechanism. Such mechanism frequently occurs in organs such as

ureter, intestines and arterioles. Peristaltic pumping is also involved rn the functionirg of

medical instmments such as the heartJung machine. Some recent investigations in this area can

be found in refs. [ - I0].

A literanue suwey reveals that usually peristaltic motion is analyzed with a motivation that it

has application in physiology. In recent past it has been showa by the researchers [l l, 12] that

an extemal sonic radiation can considerably increases the flow rate ofa liquid through a porous

medium. Initially Ganiev and collaborates !3] performed the flow simulation via the wave

travelling on the flow boundary in the context of porous media. They proposed that sonic

radiation generates travelling waves on the pore walls in a porous medium. These waves in turn,

generate a net flow offluid via the peristaltic mechanism.

ln all the above cited references the nature of the fluid was assumed to be Newlonian, however,

e.g., oil and other hydrocarbons exhibit significant non-Neuoniar behavior. Therefore some

researchers extended the work presented for classical Neuonian fluid in ref. [1] for non-

Newtonian fluids [14]. A funher extension of the work done by Tsiklauri and Beresnev in [14]

was made by El-Shehawy et al. [5]. They studied the peristaltic compressible flow of a

Maxwellian fluid in a cylindrical pore by considering slip at the wall ofthe tube.

Motivated by the above mentioned studies, this dissertation extends the work presented in ref.

[5] for a Jeffrey fluid. In fact the work conducted in the chapter 3 of this dissertation contains

the previous studies [], 14-16] as a special case. The brief layout of the dissertation is as

follows.

Chapter I is introductory in nature and presents basic definitions and equations. Chapter 2 is a

review of work by El-Shehaury et al. [5]. Missing mathematical details and all graphical results

of ref. I I 5] are reproduced in this chapter. Peristaltic compressible flow of a Jefhey fluid in the

presence of slip at the wall is investigated in chapter 3. The effects of non-dimensional slip

parameter, relaxation and retardation times on net flow rate are anallzed in detail. The

dissertation ends up wrth a comprehensive bibliography.
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Chapter 1

Preliminaries

The aim of this chapter is to provide some basic concepts and definitions which are to be used

in the formulation of the problerns in the next chapters.

1.1 Fluid

A fluid is a substance u'hich continuouslv deforms ulder the application of shear stress.

L.2 Stress

Stress is defined as force per unit area acting on an infinitesimal surface element. Stress has

both magnitude and direction. and the direction is relative to the surface on 'r'hich stress acts.

There are two t]'pe of stresses normal stress and tangential stress. The normal stress acts

im'ards that.is towards the surface and is perpendicular to the surface. u'hile the shear stress

is the example of the tangential stress acts along the surface.

1.3 Pressure

Pressure is a force that acts normal to the area under consideration. Pressure is the example

of norma.l stress. \\tren a fluid is contained in a vessel. it exerts some force at ea.h point of

the inner surface. Such a force per unit are is known as pressure. The pressure p at a point is



defined as
/ di, \n= lim I -=-= l.' 6s-o \d5l

u,'here 65 is an elementarl' area and 6F is the normal force due to fluid on d'9'

L.4 Density

(1 1)

Density of the fluid is mass per unit volume. It is denoted b1' p and is given b1'

m
v - v.

In the above relation V is volume and m is mass the fluid within V.

(1 2)

1.5 Velocity

The velocitl. of a fluid is a vector field v : v (r.g. z) u'hich gives the velocit]' of an element of

fluid at a position (2. y. z) and time t in components form I'e can u'rite

v : lu(r.y. z.t) .t'(r.y. z.t). u (r. g. :.1)] . (1 3)

1.6 Viscosity

Viscosity is the fluid propertl- b1 r'irtue of which a fluid offers resistance to shear stress. Neutons

la,r' of viscosity states that for a given rate of angular deformation of a fluid. shear stress is

directly proportional to angular deformation. Viscositl at anl' point of the fluid is defined as

Tty
t'= dr"ldv'

(1 4)

where r,, denotes the shear stress acting in o -direction on the plane t'hose normal is in g-

direction. duld.y is the rate of angular deformation and u is component of velocitf in z-direciton.



L.7 Angular Deformation

Angular deformation of a fluid involves changes in angle between two mutuallv perpendicular

Iines.

1.8 Kinematic Viscosity

It is the ratio of dynarnic viscosity to densit""*. It is denoted bv y and is given b1.

uu: r. (t 5)
p

1.9 Strain R^ate and Vorticity Tensors

The velocity gradient tensor vv can be decomposed into a symmetric part D and antisymmetric

part ,w 
as

1 -. 1.D : :(VV+VV/):;r, (1 6)

r1w : :(vv-vvr):;u. (1 7)'2' '--

where 7 is called the rate of strain tensor and or is called the vorticitl, tensor. AIso it is noted

that 1 : (VV + Wr) is equal to the Rivlin-Ericksen kinematic tensor. The vorticity is

defined by

-=VV-Vvr-Vxv.

L.l-0 Gradient of Velocity

The gradient of velocity V is defined as

vv: r",3)v*"u :.,.*9vk
\ oxt) d 

(1 8)

I.n a matrix form we can rrite



I av, oyt oy, 1
I ary 1tt arr Ittvv:l# # #l (1.e)

I ry, ov, ov' I

L 6ra Ott Ors )

1.11 Divergence of a Vector

The divergence of a vmtor is defined by

v.v: (",u1) .vtey = ", s*! = Lra*. (r.ru)
Yo:Ij/ ' oxj " drt

0v; 0\ ati at3
1 -el.:-rer=-+e1-dr, 'drt 'dtz " )re

L.L2 Cr-rrl of a Vector

The curl of a vector is

vxv : Gr#) xvkek:",,"*ff, (1.11)

V.v : ",(9" 
ov'\ ' ^ (av' dvs\ (ovz aYI\^\4,,- a,r)*"(a;-a,,/-"(at -dil (112)

1.13 Divergence of a Tensor

The divergence of a tensor is defined by

"r: G-*).(s,ielei) 
:",* (113)

L.L4 Classification of the Fluid Flows

The following terrns describe the states q'hich are used to classifu fluid flow



1.14.1 Uniform Flow

A flow in which the velocities of the liquid particles at all sections of pipe or channels are equal.

1.14.2 Steady Flow

A flou'in which the quantity of fluid flowing per second is constant. that is the velocity. pressure

may change from point to point but do not change sith time. The steady flon'may be uniform

or non-uniform.

1.14.3 Laminar Flow

A flou' in q'hich each fluid particle has a definite path and the paths of indiridual particles do

not cross earh other.

1.14.4 I\rrbulent Flow

A flow in s-hich fluid particles move haphazardly in all directions. It is impossible to trace the

motion of individual particles in turbulent flow.

1.14.5 Viscous and Inviscid Flow

An inviscid flo* is one in u'hich riscous effects do not significantly influence the flor.and are

thus neglected. In a 
'iscous 

flow the efiects of viscosity are important and cannot be ignored.

L.14.6 Compressible Flow

A flow in which volume and thus density of the flowing fluid changes during the flos- is called

compressible flow.

1.14.7 IncompressibleFlow

A flow in s'hich volume a.nd thus density of the flon'ing fluid does not change during the flow

is called incompressible flos-.



1.15 Reynolds number

It is dimensionless number. Its is usualll' denoted b1' Re. It is the ratio of inertial forces to

viscous forces and is denoted bv the formula

- pVL VL
pu

where V is characteristic velocitv and.L is the characteristic length.

1.15.1 Strearnline

A streamline is everJ,.where tangent to the velocity'vector at a gi\€n instant of time.

1.16 Types of Fluids

1.16.1 Ideal Fluid

An ideal fluid is one that is incompressible and has no viscositr'. Idea.l fluids do not actually

eist . but sometimes it is useful to consider u'hat would happen to an ideal fluid in a particular

fluid floq' problem in order to simpli$- the problem.

1.16.2 Viscous Fluids

All fluids for u-hich the dynamic viscosity is not zero are termed as viscous fluid- Viscous fluids

include Newtonian and non-Nertonian Fluids.

1.16.3 Newtonian Fluids

Fluids which obey Neutons's Law of viscosity are know:r as Nes.tonian fluids.

L.16.4 Non-Newtonian Fluids

Fluids in which shear stress are not linearly proportional to deformation rate are knowrr as

non-Neqtonian fluids that is
tt du.\r,"*ul . l.- \dy /

(1.15)



For non-Nes'tonial fluids

..,:*(fi)","+t. (1 16)

where k is flow consistency index and n is flow beharior index. This equation reduces to

Newton's law of viscosity if n : 1 with 7 : p. "lo ensure that r,o and du/d.y have same signs

we write the equation as

I du)" dnr,,:kldal =nda' (1 17)

s'here the term 4 : kld.uldg "-1 is referred to the apparent viscosity or afiected viscositl'. In

a non-Newtonian fluid the viscosity changes u'ith the applied shea"r force. Ketchup. toothpaste.

blood and sharnpoo are common examples of non-Neu.tonian fluids.

L.l7 Governing Equations

The equations used to describe the motion of the fluid are known as governing equations. The

following are the basic governing equations to describe a certain flou'-

1.17.1 Continuity Equation

The lau' of conservation of mass says that the mass of a closed svstem n'ill remain constant.

regardless of the processes acting inside the system- The mathematical form of conservation of

mass for compressible fluid is

?*rvrv)=o.(n

For incompressible fluid above equation simplifies to

(1.18)

(1.1e)

(1.20)

V.V:0.

that is
0u 0t 0u
0r' 0y 0z

:0.



1.17.2 Navier-Stokes Equations

The lan'of conservation of momentum with usual notation is given by

(1.21)

n'here T is Cauchy stress tensor. f is the body force per udt mass and , is the time.

Generally. T has the form

f : -pI + S. (1.22)

where pI is the indeterminate part of the stress and S is the extra stress tensor.

For a Nes'tonian fluid

S: pA, - f p 1v v; i. (1.23)
J

where A1 is the first Rivlin-Ericksen tensor given by

la I
ol6r+v ol ,: di.T + pr.

Ar : VV+ (VV)"

Equation (1.21) in component form can be t'ritten as

(1.24)

I d., du du du I 0p 4.S., AS,y AS-.eli-"i+.i+ui) = -i;-Z;+ff*ff+0t,. l.2s)

I du du du du1 0n a.9.., A-S.... A!ol"+,i+,fi-"ff1 : -fr-"#+W-T- or, (r.26)

I d, d.u du du) 0r: aS,. A5,,, A!ol; *";-,i* "i) : -;-ff +: -T * ot, tt27)

10



(1.28)

(1.2e)

(1.30)

(1.31)

(r.32)

(1.33)

- /0t Ez\: Sur:pl^ *;-1,- \dr dy/
^ / 0u' dr'\- 5.y = u\U * u),
- /0u 6u,\: s;,: ,\** * )

: 2=pV 
V +2p*,JOr

: ?pv.v +2t?,JOa
: ?r" v +2t#.

ol* *,* _.? * **1 : _** u({}. tri_{i) 
.' Ldt dt dy d, ) oL _ ltf rv.vl

,l? *,4 *,,4 *,,,L) : -* * r(# * {; * #)' Lot dr dy o, I pJ,t + +t,& F.y)

ol* *,! * "P*,Al __ -*- rGi.r# *g#)
' ldt dr dv d, ) pf*+trpa_+F.v)

Similarly from Eq. (1.23) the component of S are:

S"y

c

s,"

Srt

(1

s""

Substituting the above results into Eqs.(1.25) - (1.27) . we arrive at

(1.34)

(1.35)

(1.36)

Eqs. (1.3a) - (1.36) are r:alid for anv arbitran three dimensional and tri-directional flon'of a

Nertonian fluid.

11



Chapter 2

Slip effects on the peristaltic flow of

a non-Newtonian Maxwellian fluid

This chapter presents a revieu' of the work by El-Shehawl.et al. [15] . They have studied the

effects of slip at the $'all of tube on the peristaltic flow of a compressible \{axwell fluid. All the

mathematical expressions and graphical results are re-derived. Some discrepancies are found

which are as folloq's. It is noted that in ref. [15] the expression of V26 (r) (Eq. (39) of ref.

f15]) is incorrect. In fart the factor (7 - iat^\ should be 1 for correct comparison. Further,

the fartor (7 - iat",) in Eq. (2.62) (Eq. (41) of ref. I15l) and Eq. (2.68) (Eq. (a6) of ref. [1s])

should be 1.

2.L Formulation of the problem

Consider an axisymmetric cylindrical tube (pore) having radius .R and length I. A travelling

is imposed on the wall (boundary) of the tube r.ith the displacement of the form

w(z.t) :rR + acos (T r" - "r7 
, (2 1)

where a is the amplitude. ) is wave length and c is the speed of the wave. respectively. A

cylindrical coordinate sl.stem (r. O. z) is employed to investigate the flo*' s,.ith z along the axis

of the tube. The velocitv field for the flou. under consideration is given as

t2



y : lu, (r. z.t) ,0. "-, (r, z.t)l . (2.2)

*'here z'r ard ?,2 aJe the radial and axial velocity components.

To describe the viscoelastic properties of the fluid, the constitutive equation to the Nrlaxwell's

model is used. which assumes that

(2 3)

where t- is r€laxation time.

It is further assumed the follon'ing equation of state holds

7op

oar= 
r' (24)

where k* is the compressibility of the liquid. The solution of this equation for the densit-v as a

function of the pressure is given b-v

p : poslk' (o- od) 
. (2 s)

where p6 is the constant densitl. at the reference pressure p0.

The boundar;' conditions that must be satisfied by the fluid on the r.all are the slip condi-

tions. For the slip flow the fluid still obel-s the Navier-Stokes equation. but the no-slip condition

is replaced b1' the slip condition ut : Ap1ul1n. r.here u1 is the tangential velocit-,-. n is the

normal to the surface. and A, is the coefficient close to mean free path of the molecules of the

fluid. This condition has been attributed to Beavers and Joseph for a porous boundarl but

it was Navier who proposed it a century ago. Although the Navier condition looked simple.

analllically'it is much more difficult than the no slip condition. Thus the bourdary conditions

at the wall are

r.lW,z,t) = 
u+. r"(V'.z,t): ,Ar,
m A a;. (2.6)

where ,4 is the mean free path of the molecule of the liquid.

Utilizing Eqs. (1.23) and (2.3) into Eq. (1.21) and neglecting the body force one can.r,rite

t/ A\ ,
(, -,-;,) s = pAt - ir (v.v1r.

13



(,*,-*) (,# r,r, vr,) : - (, .,^*)vp + plA,- 1,""r,]
In cylindrical coordinates. the mass balance equation (1.18) can be written as

oo ,**'?*o(**"ro"\-nat*o o, oz \or , *):o'
while Eq. (2.7) in scalar form become

(, -,-9) I o4. *, (,.?! *,..@)l - - (1 + t^&) "# * u (%I - +* - i' * %F)\"^at)l'ar'"\"ar ""az))- *t*(*+++*).
(2.s)

/. 0\16u, / 0t,,..a,.,\l -(r+t-$) *-r(%"+-l#-%i)
\I+t""at)lo * *o("* *", *)): -t*t*+T+*)

(2.10)

It would be expedient to simplifu' these equations bf introducing non-dimensiona.l rariables.

There is a characteristic velocity c and characteristic lengths a. ) and -8. The follor-ing rzriables

based on c and .R could thus be introduced:

rr._ 14 ^ _\ _ r': _ p _ p ^_ po - ct t..._ _.G_ ..V: -.p::...p0_ ,.,_;. tz.It)n c c po Poc. Po( 11

The amplitude ratio €. the u'ave number a. the Reynolds number Re. the Knudsen number I(n
and the compressibility number 1 are defined by

,: 9. o: 2'P. 
R" - 

PocR. Kr: A t -- b. n^"2 tn- fi * A 1t 4 t = k'roc- t212),

Under the above assumptions Eqs. (2.5) and(2.8) - (2.10) can be rewritten in the non-

dimensional form after dropping the bar as

0o 0o 0o / 0u ?- Or'- \
a'',or+uz,i+ o\a, *;* a,):o

(2.7)

(2.8)

74

(2.13)



(,. r^*) I 0u- / 0u- Eu- \'l
lo**o\*,-"a,)):

- 1r - ;$1 * - * (# + i'# - *, * *5-)
, I A lAE r, Ar,r
'3R€ar\dr'r'3:)'

(2.14)

(, .,^*) l,* ., (,.* ., "'#)) : -(t-t^&)*-*(*-i,-f-%i)
, | 0 riht * .1 ,\

3Re6:\6r'r oz)'
(2.15)

(2 16)o: "xb 
oo) 

.

also the boundary conditiors (2.6) becomes

?.,((1 + 4) .,.,, = 
U'*''). 

r.. ((1 - l) . r.tt -- x,L$lt) .

where

(2.17)

,l G,t) : e cos o (z - t) .

2.2 Method of solution

Assuming the solution of the governing equations in a form [11]

(2.18)

p : po -t ep1Q. z.t) * e2pz0. z.t) + .....

Dr : eut(r, z.t) + e2u2(r, z,t) + .....

r'. = (t l (r. z. /) + e2r'z(r. z.t) + .....

p - I + cp1\r.z.l) t e2p2\r.z.t) - .....

(2.1e)

and doing a usual perturbation analvsis one can obtain a closed set of governing equations for

the first (e) a.nd second (e2) order as the following:

15



(r.,,"*)*:

/ 0\ 0u'
(I+t-&/ ar:

(, -,-#) (* -,,T,,,* *,,*)

- (r +t-$1 # * * (%;+. iT - i\ - %?)
*"h# (H +? +*),

- (t + t.,fi) * * * (%,+ * +* + %t)
- t a (oq, c-.,0!r.\
'3ReAz\Ar I r I az )'

0p, )uy u1 0a1

dtdrrdz

Pt : 'XPt,

(2.20)

(2.21)

(2.22)

(2.23)

_ - 1t + t,"fi)'# + * (*+ . iH - ?t * +:+)

- t a (a", -c2-a:\3Rea,\ar'r u, )rr.rn1

(' -'-*) (* -,,* *,,ff *,,u#)

lpz 1pt 0p., uz 0u2 Ory-;; -1- Ul;- - tl-- -r 
- + _- + --;-- + Plot Or O. r' dT dz

_ - (r + h&) *. *(%tr * i* * %:r)
-,**(**+-H)

(2.25)

:0. (226)

(2.28)

/ )ur ur dur \\u*;* u)

| ""P2 : \.1r2 + ,\'ri Q.27)

Expanding Eq. (2.17) b5, Taylor expansion around r: 1 and substituting from Eq. (2.19) one

gets the following boundarl. conditions:

u1(L, z,t) : -"]{"'"a-a - e-iaG-t\).

16



u2(t.z.t)+!r(","c-rt -e-i"G-q)ffo,,,0:0, (2.2s)

u1(t.z.t): x,ffO,,,A, (2.30)

tz{1.z.l)*} 1e,"t.-tr - e-ior?-ll) fffi.r.t) -
x"l*O, 

",t) + tr Gia('-t) - e-id(z-t)) u#tr, 
",A)

Following [11] the solution of the linear problem can be assumed in the form

u1(r,z,t) : Ci7(T )eid(z-t\ +Af-io('-t),

x1(r. z.t) : Vt(r)ei"('-t) tVrc-ia('-t1 . Q.32)

ttt(r, z,t) : P1(7-)ei'G-t) iPrs-''('-t1 .

pr(r. z.t) : aP1(r)ei"k-t) + XPf-tu(z-t).

Here and in the following equations. the bar denotes a complex conjugate.

On the other hand the second (e2) order solution can be written as

U2s(r) + ti2(ls2t'("-t1 +O ze-2i"("-t) ,

V2s(r) + V2(r)e2ia(z-t\ +V 2e-2id(z-t) . (2.33)

p2(r. z.t) : Pzo(r) * P2ft)ez;"("-O +P2e-2la('-t\.

p2(r. z.t) : Dzo(r) -t D2(r)e2i"('-t) + D 2e-2'a('-t)

The latter choice of solution is motivated by the fact that the peristaltic flow is essentially a

nonlinear (second order) effect and adding non oscillatory term in the first order gives only

a trivial solution. Thus. one can add non oscillatory terrns. such as Lt2s(r). V26(r). P26(r) arLd

D26(r), u'hich do not cancel out in the solution after time averaging over the period. onlv in

the second order and higher orders.

(2.31)

uc(r- z.t\ :

u2(r. z. t) :
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Substituting from Eq. (2.32) into Eqs. (2.20) - (2.23) and (2.28) - (2.31) the follou.ing

system of equations are obtained.

- (1 - iat^\ F,* * (ui + + - 9 - o'u,)
-ia(t -iat^)t\ : 

+r*r,'a (ui + | +tavr),

-ia (1 - iat, )v1- -io(f iat' )P1* * (v, * l - "'v')
+rn"-(Li+l+taq),

ui+L*iaV1 :ir,7pr.
T

r,i(1) :

ly.(1): Knv;(\).

Here the prime denotes a derivative with respect to r.

A rearrangement of the system of Eqs. (2.311) - (2.36) vields

cr* (t' -ut -t'] -;'t',) : o.
\r/

-tPt - ! ( v; -\- -r'y,) : o.o\ - r /
where the complex parameters 7 and 6 are gtven by

r:(1 -iai-) Rq -31. 02: o2 -io(l- iat-)Re.
3

Eliminating yr(") bV using Eq. (2.36) . one can req-rite Eq. (2.a0) as

-ia
2

(2.34)

(2.35)

(2 36)

(2.37)

(2 38)

(2 3e)

(2 10)

(2.4t)

j*1". 
? - (*. ?) "1 

. i (l. i) [,i .+ -]- ;,ri] : o

r8

(2.12)



Difierentiating E,q. (2.a2) with respect to r and using Eq. (2.39) grve the following equation:

-l:t{. + +# - *- ("* 3)] (', * + - ) - t'u,)
** ({"* # - +) (r; * + - lt - o,u,) : o

This equation is req'ritten. after multiplication bv o2 as

_ or)

(2.43)

(2.44)

(2.45)

(2.48)

(2.4s)

(, - T) (#.i* - i - *) (#. * - ) - e)u, :,,
where

From this equation (2.44) one obtains master equation for L,i(r) and find its general solution

as

Ur(r): grlrlrr) + Czh(Br), (2.16)

where ! is the modified Bessel function of the flrst kind of order one. Note, that Eq. (2.a6)

is similar to Eq. (3.18) in 111]. except that Cr and C2 are complex constants calculated using

Eqs. (2.32) - (2.38) and defined by

ia1u[In(B) - 0KnI1(B)l
(2.47)

a2I1(B)Is(u) - BuIs(A)l1(v) + vKnll(3)rlu) (

..2 ^2 
(l - 1) (l - ,o/-) Re - 14/3 tioq

" - " (1 - lot-) Re 1a/3) ,o \

.- 'io3 l.Io(vt - uh-nllu)-
"r:

Here Is is the modified Bessel function of the first kind of order zero

The general solution for Vl(r) is

vr(,) : if ' n(,,1 + 492 ro1L,1.

and the general solution for P1(r) :
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,,(.:9*9,o@) (2.50)

Employing the same procedure as for the solution of system of order e one obtains the following

set of equations

D2s : ap2s + x2 hpt,

u,o* ?= -. (a4 + 4u, -'+ -+ * r,u, - ru_a)

(2.51)

(2.52)

(2.54)

(2.55)

iayP1fi - taTPyU t +U fl t+U { t+ iafiLt y - taVl{1, : -P. * n"! (r;r** - 3) (2.53)
+fifl(u,o+ p),

iayP1fi -,inaP1V1 + Utq +TiV;: *a (" .?)'
1

t/zo(I) + , (i,,;ttt- lrirr r) = o.

(2.56)

It will be seen that. as far as the net flow is considered. onl;. the functions 02g,V2o, p2s and

D2o contribute to the net flog. as long as terms up to o(e2) are retained. Thus. the functions

uz,vz. Pz and D2 do not contribute to the net flow. and therefore the equations satisfied b1. them

will not written nor their solution will performed. In the next the solutions for Lr2s,v2s, p2s

and D26 u'i1l be computed.The second-order solution L,'26(r) ca.n also be found in a way similar

to the one used in the first order as follows:

D,
Uzo(,) - I - i lRt't6(rr +t(rrrjlrrl . (2.57)

v'here D1 is a complex constant (v'hich follo*'s from the bouadarl' conditions (2.55)) defued

v2o(r) + i Grtt+ v;(1)) : x,(uoot +1rv,1t1. j;ir,r)
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by

,,:'"{r" (r.11r; - [1ry) , (2.b8)

having the final form

D., = 
io:' (ro".,r.,,r, *'!!'1r,61 - io.-.,rr,)* 'f'Gr,tBr) . (2.59)' 2 \ a a ")

The general solution for l/26(r) is as follors:

v2{)(r) : o, - ru l,' lv,G)Ti\,t + VO)u,(i) ar, (2.60)

u'here D2 is a complex constatrt defined by

D,= -;(rirr*r,;rrr) + *,(r;o,rt*i,1,,,,, ]W,,,) e.61)

where the values of Vi6(1) and V/'(1) are defined by

[ *$elo1rtl,1,t + {9,Iot,\tt(h + a# Ioll't]t\r) l
viortl:n" | -Jac-ro1 s)rttJ) -.?Elo(r,1,(,) - *gororrtt,(rt I . \2.62t

L -'':t, a,r,l r(ut - i&p6tltlt\it 
]

v{(t):iac1(uro(u)-!(ru))+'!9t641s1- rtui)). (2.63)

The dimensionless fluid flow rate Q can be calculated as

Qtz.t) :rrl, l"' t'1lr.z.t\rdr-r' 
Io' "rrr.z.ttrdr +or€2)). (2.6r)

Next. the net flo* is considered over one period of time. The average of a rariable G over one

period 7 of time , is

G): + lo' 
ct,.,.oat
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At T -- 2n /a, consequently the mean net axial velocity (V,) read

(v") : e2vzo(r),

under neglect of O(e2)-terms. while the net flos' rate (Q) is given by

(2.66)

(2.67)

under neglect of O(e2)-terrns. Thus, the travelling v,'ave induces a net florl of the liquid. of

which the (dimensionless) rate is expressed by Eq. (2.67). Hence. the net flow and the mean

net axial velocit-v are an efiect of order e2.

2.3 Numerical results and discussion

To study the behavior of net floB rate. numerical calculations for ser.eral values of a- Kn.t,n ar,d,

1 are carried out. It is clear that one has to choose e << 1 because of the use of perturbation

method with the amplitude ratio 6 as a perturbation parameter [22]. Also for the perturbation

method to be valid and accurate eo2 Re << 1 according to Takabatake [21].

Now consider the net flon'rate (Q) given by equation (2.67). After one integration by parts,

(Q) can be expressed as

(2.68)

where the solution of Eq. (2.60) for V26(r) is used.

A numerical code has been c'ritten to calculate (Q) according to Eq. (2.68). In order to

check the validity of the code. it has been run for the parameters similar to the ones used by

other authors. For instance. for e : 0.15. Re : 100. a : 0.2. X: 0.0. i- : 0.0 and Kn : 0.0 it
$ves (Q) :0.2709. u'hich is equal (r-hich is equal if we keep four digits after the decimal point)

to the result of authors [18], who actually obtained (Q) : 0.2709. This corroborate ihe validity

of the present code. It shou-ld be noted that Eq. (2.6s) r'ill be identical to the similar equation

(a.t) of ftt] if one set Kn : 0.0 and ,m : 0 in all present equations. Further. Eq.(2.68) r.i1l

be identical to the similar equation (t6) of ll+] if one set Kn:0-o in all presented equations.

lQ) : znr2 
lol 

r2s (r) rd'r.

le) :,,2 (o, -* fr'[y,(,.)A(") 
+ tr1r)u,1r;] a,) ,
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Firstly. the efiect of slip boundarl' conditions in the case of a Neqtonian (t- : 0) fluid are

investigated. The result of calculations are presented in Fig. 1. where the dependence of (Q)

on the compressibiliti, fa.tor 1 for various ralues of Kn is investigated. It is noticed that the

range of (Q) is approximarel"v 0.4272 - 2.7043 for the range of I from 0 to 1. In particular. for

x : 0.0 the range of (Q) is just 1.2305 - 7.4774 x 10-5 for the three considered values of Kn.

while for 1 > 0 the range becomes 0.0034 - 3.8223 x 10-s. Hence. (Q) is weakly afiected by Kn

at X = 0.0. For 1 > 0, (Q) stronglv depends on the Knudsen number of slip flow. Furthermore.

we observe that for Kn : 0.0, (Q) attains a maximum of 2.7141 x 10-s at X : 0.5. and for

1 > 0.5 the flow decreases to 0.4901 " 10-5. ',r'hile for Kn :0.05 (Q) attains a maximum of

2.9734 x 10-5 at 1 : 0.4. and for 1 > 0.4 the flow rate decreases until it rearhes 0.2075 x 10-5.

for Kn= 0.1 (Q) attains a maximum of 3.8226 x I0-5 at l:0.3. andfory > 0.3theflowrate

decreases until it reaches 0.0035 x 10-5. Thus. it is considered that at high ralues of Kn the

rate of decreasing of (Q) is greater than at los- ralues. Furthermore. the compressibilitl factor

t has a significant influence on the net flo\. rate. and the Knudsen number Kz plavs a more

significant role in the net flou'of a compressible liquid than of an incompressible one.

Fig. 2 investigates the behavior of the net flou rate (Q) depending on the parameter

a, which is the tube radius measured in u'avelengths. It is seen that the net flow rate (Q)

attains a maximum for a certain value of a. and this maximum increases u.ith increasing Kn.

Furthermore. after (Q) reaches the maximum ralue it then decreases e'ith increasing a. but

this decrease is greatest at high ralues of I(n. Also it is noted that (Q) is nea.rly independent

of Kn for a < 0.001.

Secondly. the effect of slip boundar-v conditiors in the case of non-Neutonian \{axs.ellian

fluid are investigated. It is knour that viscoelastic fluids. described by the \Ia-xwellian fluid.

have different flow regimes depending on the ralue of the parametet De : t1)/tm, u,'hich is

called the Deborah number. In efrect. the Deborah number is a ratio of the characteristic time

of viscous effects t. : pR2 /p to the relaxation time i-. As noted in. the value of the parameter

D" (which the authors of [19i actually call a) determines in which regime the system resides.

Bevond a certain critical value (D" : 11.64). the svstem is dissipative and conventional viscous

efrects dominate. on the other hand. for small D"(D. < D".) the system exhibits viscoelastic

behavior.



Figure 3 present the dependence of (Q) on the compressibility parameter l for various values

of Kn.

\\rhen I{n : 0.0 it is assumed that the net flow rate reaches a maximum value (Q) : 2.4918x

10-i at 1: 0.8. Further. u'hen Xn : 0.05 it is noted that maximum value (Q) : 2.6858 x 10-s

atX:0.7. The maximum ralue of (Q) = 3.2682 x 10-5 and occurs at x:0.6 when Kn:0.7.
From the above discussion. we notice that (Q) attains a maximum for a certain ralue of 1 and

this maximum increases with increasing Kn, \{oreover. there is shifting the maximum ralue of

(Q) towards lower values of 1's u'ith increasing ffn.

Fig. tl illustrates the behavior of the flos' rate (Q) depending on the compiessibility para-

meter I at ,- : 10000 (deepl1" non-Ne*.tonian regime).

In this deeply non-Neutonian regime it is seen that when Kn:0.0 the maximum value

of (8) : 7.2545 x 10-s at I : 1.0. whereas when Iln : 0.03 the maximum value of (Q) :
11.3979 x 10-5 at 1:0.95 and q'hen ffn:0-05 the maximum ralue of (Q) : 15.4801 x 10-5

at X : 0.9. Thus. in the absence of slip (Q) increases u'ith increasing I in the deepll- non-

Nevtonian regime. On the other hand. t'hen the slip effect is taken into account. it is obsen'ed

that (Q) attains a maximum at a certain value of 1 and rhen decreases. \{oreover. there is a

shift in the maximum ralue of (Q) tou'ards lower value of 1 t'ith increasing I(n.

A comparison of Figs. 1.3 and 4 shol's that 'a'hen lrn : 0.05. the ma-ximum value of (Q)

is 2.9734 x 10-5 at t^ -- O.O and 1 : 0.4. while the maximum ralue of (Q) is 2-6858 x 10-5

at X:0.7 and, t^:1000. ]{oreover. the maximum value of (Q) is 15.4801 x 10-5 at I : Q.g

and im: 10000. It can be noted from the previous ralues that the slip boundary. condition is

affected stronger in the case of a non-Neqtonian regime than a Neutonian one. Furthermore.

the slip boundary conditions are weaklv afiected at compressible liquid (1 > 0.0).

In Fig. 5 the dimensionless net flo$' rate (Q) is plotted versus a. s'hich is the tube radius

measured in I'avelengths. for the following set of parameters: e : 0.001. Re : 10000.0. X : 0.6

and ,m : 100. Note that for a < 0.001 the range of net flow rate (Q) is 0.0367 - .0791 x 10-a

at various ralues of Kn(0.0 < Kn < 0.1). Hence. the net florr. rate (Q) is nearl,,- independent

of Kn for a < 0.001. For 0.001 < a < 0.0065 it attains a maximum for a certain value of a

and this maximum increase q'ith increasing Kn. For a > 0.0065 we observe that (Q) decreases

with increasing Xz. Further at Kn :0.0 there is no negative ralue of (e). I\{oreover (e) :
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-0.0113 x 10-{ reaches negative ralue at Kn : 0.05 and o : 0.009. u'hile (Q) : -0.0196 x 10-a

at Kn:0.075 and o:0.008. a.rrd (8) : -0.0074 x 10-a at Kn = 0.1 and o:0.007. The

negative relue of net flow rate (Q) means the occurrence of back flog.. This means flow occurs

in the direction opposite to the direction of propagation of the travelling wave on the tube wall.

\{oreover. the reverse flor' (back florr') occurs easily in the presence of slip boundary condition

and also a non-Nettonian regime. The net flow rate (Q) increases in the reverse direction with

increasing o.

In the Fig. 6 the dimensionless net flow rate (Q) is plotted versus a for the follou,ing set

of parameters: e : 0.001. Re = 10000.0. X : 0.6 and tm : 1000. Observed that there is

no back flog' at Kn :0.0. u'hile (Q) : -0.0019 x 10-a at Iln : 0.05 and a : 0.006 and

(Q) : -0.0818 x 10-a at Kn:O.l and a:0.004. A comparison of Figs. 5 and 6 shows that

r,r'hen Kn : 0.0 there is no back flow. u'hile al Kn:0.05 the back flow occurs at a = 0.00g

when t- : 100, whereas at Kn :0.05 the back flou' occurs at a : 0.006 r,hen t,,, = 1000.

AIso. at Kn:0.1 the back flow occurs at a:0.007 when t-: 100. whereas at fin:0.05
the back flow occurs at o:0.004 t'hen t- : 1000. The previous discussion elucidates that

the back flou' easily occur at Io*' values of o when large ralues of t- and r(n are taken into

account.

To investigate the behavior ofan incompressible (X : 0 0) Nen'tonian (t- : O.O) \{a:iwelhan

fluid under the slip effect. the dimensionless net flor. rate (Q) is plotted versus a in Fig. 7 for

e:0.001. Re: 10000.0. r = 0.0. r-:0.0. and. Kn: (0.0.0_0b.0.075 and 0.1). Observe

that range of (Q) is approximately 1.2507 - t.OT23 x 10-5 if Iin : 0.0. 1.4g63 - 1.10g2 x 10-J

if Kn -- 0.05. 1.6505 - 0.6820 ./ 10-5 if Kn : O.OZS and 1.8616 - 0.0189 x 10-5 if Kn = 0.1

for 0 0005 ! a < 0.01. Furthermore. at lou'r'alues of o. the net flo*. (e) increases *.ith

increasing Kz and decreases u'ith increasing 7(z at high r,alues of a. \Ioreover. (e) decreases

uith increasing a and the rate of decrease of (Q) increases v'ith an increase in Kn. The behavior

of an incompressible (1 : 0.0) non-Neu'tonian \{exwellian fluid under the slip efiects is studied

in Fig. 8. In this figure the net flow rate (Q) is plotted versus o. for e : 0.001, Re = 19996.9.

x : 0.6 and ,- : 1000.0 and Kn :0-0.0.05 and 0.1. Note that (e) decreases rith increasing

a to a certain value of a and then increases with increasing a- Furthermore. (e) decreases

with increasing a and the negative ralue of (Q) for Kn:0.05 begins at o : 0.004 and equals
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-0.0489 x 10-5, while the negative value of (Q) for Kn:0.1 begins at a : 0.003 and equals

-0.2146 x 10-5.

In Fig. 9 the net flow rate (Q) is plotted versus a for the following set of parameters:

e : 0.001, Re : 10000.0, X : 0.6 and ,- : 10000 (deeply non-Newtonian regime) and rious

rzlues of Kn within the range of 0.0 < a < 0.01.Thus figure reveal that in this deeply non-

Nes'tonian regime (Q) becomes highly oscillatory and ta.kes negative values for certain ralues of

o. Oscillatory behavior (appearance of numerous maximum in the behavior of a physical value)

in the deeply non-Newtonian regime is not new [14]. Further the oscillations at Kz:0.0 are

approximately the same as at Kz:0.05 but there is a shift in the ralue of o = 0.0005. For

example. (Q) :0.0003 x 10-a when Kn--0.0 and o:0.0085. q'hereas (Q) :0.0003 x f0 a

'r'hen Kn:0.05 and o:0.008. Iv{oreover (Q) has the same. approximately. at Kn:0.0 and

1{z:0.05 but there is shifting of the value of o.
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Fig. 1. The dimensionless flon' rate (Q) versus X zt e :0.00I, Re : 10000,

,-:0.0anda=0.001

26

0



o

0 0001

0 00008

0 00006

0 00004

0 00002

0 0000

f, =0.!

Kt = 0.05

Krr -00

0 000 0 002 0 004

a
0 006 0 008

Fig. 2. The dimensionless flou-rate (Q) versus a at e :0.001.

Re : 10000, ,- : 0.0 and X : 0.6

q

0 00003

0 000025

0 00002

0 00001 5

0 00001

5 x 10{

0

08UO0.40.200

X

Fig. 3. The dimensionless flo$' rate (Q) versus 1 at e :0.001.

Re : 10000. ,- = 1000 and a : 0.001

27

10



o/

0 00015

0 0001 0

0 00005

0 00000

0 00015

0 00010

0 00005

0 00000

080604oz0.0

x
Fig. 4. The dimensionless flow rate (Q) versus 1 at e:0.001,

Re : 10000. ,- : 10000 and a : 0.001

o

0 000 0 002 0 004 0 006 0 008 0 010

a

Fig. 5. The dimensionless flow rate (Q) versus a at e:0.001.

Re : 10000. tn -- 700 and X : 0.6

28

10



q

0 00003

0.00002

0.00001

0

-0 00001

-0 00002

0 000015

0 0000r

5 x io{

0.000 0 002 0.004

a
0 006 0 008

Fig. 6. The dimensionless floE rate (Q) versus o at e:0.001.

Re : 10000. ,- : 1000 and 1 : 6.6

CY

\
\
\

i1.
\\

Fig. 7. The dimensionless flou' rate (Q) versus a at e:0.001.

Re : 10000. ,- : 0.0 and X : 0.0

0 004

29

0 006 0 008

0



o

0 000015

0 0000'l

5 x lO{

0

-5 x lo{

-0 00001

fn =40

Kn =005

Kt =01

0 000 0 002 0 004

a
0.006 0 008

Fig. 8. The dimensionless flou'rate (Q) versus o at e: 0.001,

Re : 10000. i- : 1000 and X : 0.0

0000 0002 00M 0006 0008 0010
q

Fig. 9. The dimensionless flou'rate (Q) versus a at e: 0.001.

Re : 10000. ,- : 10000 and X : 0.6

30

-0

-0

cr



Chapter 3

SIip effects on peristaltic

compressible flow of a Jeffrey fluid

This chapter extends the anall'sis of chapter 2 for a linear Jefire-'- fluid model. Jefire1* fluid model

includes Nerttonian and }{axwell fluid models as a special case. The governing equations involve

retardation time as a nes parameter which r,r'as absent in the equations of chapter 2. The efrects

of the retardation time on net flow rate are discussed in detail.

3.1 FIow equations

The fundamental equations used in the derivation of the governing equations for the problem

considered here are (1.18) and (1.21). \L'e assume a similar geometr]'as considered in chapter 2.

However. the fluid model considered here is the extension of the model used in the chapter 2. It

is assumed the properties of the material flowing through c1-lindrrcal tube (pore) are described

b)' the constitutirc relation of the follou'ing form

('.,-$) s: r, (, .,.fl) (,a,- lrrv ur) , (3 1)

where t, is the retardation time. Note that if we tale i" : 0 the fluid model used in chapter 2

is retrieved. Now to obtain the governing equation I apply operator. (t + t^fi) on both sides

of Eq. (1.21) and eliminate r in it using Eq. (3.1) . Follot'ing this I get
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(, -,-*) (rff -rr" vr") : *,,,. ;r'i,-r-^,i',J1" r,,, t32)

Equation (3.2) differs from its counterpart in chapter 2 i.e. Eq- (2.7) due to the presence of

t, in it. It reduces to Eq. (2.7) for i, : g. This is the only equation I'hich changes in the

extended problem and rest of the governing equations and boundary conditions remain same.

In component form Eq. (3.2) can be written as

(, -, - * ) l,r# -, (,. * .,,*))- - ( 1 -' ^ *,_:{,: 
: :: ;,:'{,, ;T ; :f* 

i * # )

(3 3)

/. d\ [ du. I 0,,,.. a,..\l _ -(t* t^&\*+p(1+,,&\(%;+ *i* **.+)
\t*'^a)l'a -o \"a, *" a, )) +f (r+t.ff) &t*-;+hl.

(3 4)

Thus the problem considered here is governed b.'- Eqs. (2.4). (2.6) . (2.8) , (3.3) and (3.a) . For

the sake of convenience of reader these equations in their non-dimensionless form are sritten

as folloq's

0p 0o 0p 0r. ? r 0r,-^- r?. ^-l':-: P\ ^ +- * ^ )=U.dtdrdzdrTd:
(3 5)

I 0t- / Er 6r\l
lo * +o \..r*,,a,))=

- (r + t^$)# + * (r + L&) (# + i* - * * %i)
r--L rr - t A\ -L rQ:i - ri - Qlr'3&\'', "rattar\ar r.,ju,

_ - (r + h&)*+ fr (r+ il&) (# + i* + %?)
+S(r+L&)&(+-f+*).

(3 7)

(3 8)

(,.r^*)

(, .,,"*) l,T -, (,.r; _**)l

p : 
"xb- 

oo) .
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u,((t +,t).z t) : u'r*'",r,((1 
+ rt),z.t) : vr1"Qr''t), (3 9)

s'here

nQ,t) : e coso(; - t)

3.2 Solution of the problem

In a similar manner as described in chapter 2 the flow quantities are described are expended in

power series of e as:

p : po + ept(r, z,t) + e2p2(r,z,t) + ....,

rr : eut(r. z.t) + e2u2(r. z,t) + ..... (3.10)

'cz : eu1(r. z.t) + e2q(r. z.t) + ....,

p : 7'l ep1Q. z.t) + e2 p2(r. z.t) + .....

Upon making use of (3.10) in (3.5) - (3.9) . u'e get follor.ing s]-stems:

Svstem of order e :

- (t + t""fi) B * ni Q + t,z*) (%;+ * i# + *t)
*;i; *,)*t *1# i ";. *) 

"' / (3 12)

0p, 1ut u1 0u1-:-* ^ -r- -* ^ :0, (3.13)iit dr r iJz

(,.,""*)*:



System of order e2 :

(t + t,"ff) {oX + o,%.

+fi(r+ +il(*v*i
+rt* +rr?\:
*-p*W)*

- (t+t.,f;)ff
--L tt -+ -?t -L3F- \' 'r At t A,

Pt : 'Wt. (3.14)

(3 15)

(* *+ **),

(r.r^*,) / 1t'z 1t't 1ut 0r'r \
\a-n,6t+utar-,-ru)=

0p, 0p, 0p, ,z 0u2 0r2_;:- 'r u1-;- 'l- ( 1-- -i 
- - 

_- -1- _- - P1dtoro:roroz
1""

Pz: \]h + ;'ni. (3.18)

Expanding Eq. (3.9) by Ta1'lor expansion around r : 1 and substituting from Eq. (3-10) we

get the following boundary conditions:

z1(1. z. t) : -']tr""c-u - "-n(z-t)',.
(3.1e)

u2(1. z.t) +f,k^c-'t - "-'"r'-\T(1.:. i) : 0. (3.20)

-,^*t T + fr (r +,,il (%"+ + i* - %X',
+fr{r+r.&)&(o#.*?+H)

(3.16)

(*-Y-+):o {317)
\dr r 02/

- (r

?t(1. z.f) : fn*it. r.t),
OT

q(l. z.t) + + (e""G-t) - €-,o(;-t)) fflt, r.t1

= K " l# l. :. t ) - I k'ot'z -tt - r - ro{:-')) a} t. z. t t)

After this we apply the same procedure as described in chapter 2 and arrive at

determining equations for LI1.V1 and, P1.

(3 21)

/1 DO\
\!... )

the follou,ing
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-.a (1 - nt,.) U1

- La (7 - Latm) Vt --

_ - (1- Lrrt,.) pt+ Ir#d (u;*+ - ?r - "2ut)
-t';ft'"*tt,+*+ravl)'

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.2s)

(3.30)

(3 31)

(3.32)

+e+#) (u,+? i nvl).

L\ +? t nv1 : prp,.

u,(1) __ +,

V1(t) : Irnlul (t).

From above equations we get

where

,2-o2

and Ci and Cj are given as:

U1(r): grlrlrr) + Czlr(?r).

vrt l :'* nf,,1 +'!91 418,1,

&(r): C., (u2 - 32\LIoQr).
1u

., _ (1 - rol-) 
R" _ ro\. 

J2 = o2 _ ro 
(, - ,or.,) 

"".' (1 - ior,) 3 (1 - rof,)

(1 - x) t$ Re- (413) ny

ffin"- @ll)t".y

-ta (7 - tczt, ) P1+ g#D (v, + T - "'vr)



ta7u lIo(B) - 0KnIt(A
a2lt(S)Io(v) - SuIo(B)Ilu) + vKnIl(B)11(u) ( _ 

"r)] 
'

C;: -ta3 lt6(u1 - vKnl{v))
2la2I{ilIo@) - Sulo@)It(u) + uKnIl(B)h(u) ( _a2

Simila.rly the determining equations for U2n.V2n, P2o and D26 read:

(3.33)

(3.34)

(3.35)

(3 36)

(J.J / /

(3.38)

(3.3e)

(3.40)

(3.41)

(3.42)

D2s:yP2n+X'Pth,

uro + ? = -r ( prT, + e;1, + + - P+
-"r\

n X Pll t - ta x hU t + U t tt*i + U rti t + nV 1 L't 1 - toVlQ :

tayP1fi - raySVl + Uti + UtVt

Uzo(7)

-P.*n"! (rr"*?-?*)
+frfr(u,o+!),

: * ("' .?)'

\
+ P1q + PtUt) ,

* ]ror)

:0.

,,1r;* ] E(rt+ vr(1)) : r, (r,.ttt * jv,rrl

Solving Eqs. (3.35) - (3.40) u'e get the follou'ing expressions.

Ltzo(r) :f -. [at,rZl(r) + E(r)t (r)] .

v2s1) :Dl - Re f' 1v,g1fi;31 +fiqr1rt'11'1) ar.-.t-'

In which Di atd Di are given by

* ] (4r'l+ r4(1))
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Di:'+ (,.,ctrt@t * 43,uu, + ,,er1u1*'*r,,or) ,

D;: -;(trr,t * v;1ry) + *^ (u;01r1*f,r1'1r1* |Zlol)
s'here the values of Vlo(1) and V1'(1) are defined by

vil): L(tcllurs(v) - rr(4)+ 
qg\lrJlo(3) 

- 4(s)l

(3 43)

(3.44)

(3.45)

af 4p1 r,1o1 + incp r o1,1 r,1b + @P n@ n(v)
vlortl = n" | -!$4lo{ a\t,to\ - t,rlu_toettrrr) - *!dhtr)trto) (3.46)

_,!c!c2 r o(B) r | (4 _ 1!+? r o (B) h @)

The net flow rate is given by the follou'ing integral

V2s(r)rd,r. (3.47)

3.3 Discussion

The primary objective of this study is to analyze the effects of t, on the net flou' rate (Q). To

investigate the behavior of (Q) in presence of t" I have plotted Figures (3.1) - (3.9). In Fig.

3.1 the net flow rate (Q) is plotted against X for various r,-alues of t, for relatively small values

of to, i.e. tm : 1000. It is observed from this figure that (Q) increases attains maximum and

then decreases by increasing 1. This maximum is lowest for a \{axv,,ell fluid and greatest for a

Jeffre1' fluid. The maximum for Newtonian fluid Iies in bets'een.

Figure 3.2 elucidates the behavior of (Q) of various values of t" and non-zero rzlues of Kn

\.e. Kn:0.05. This figure give similar result as observed in Fig. 3.1. However. a closer look

at Fig. 3.1 and 3.2 reveals that (Q) attains a greater maximum for Kn:0.05. Thus the slip

at the wall enhances the magnitude of (Q).

Figure 3.3 shows the r'z,riation ofnet flou. rate (Q) against l for rarious values oft" in deeply

\q :2*r'? 
lol
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tron-Nentonian regime i.e. for t,n:10000. Note that for a Maxwell the net flow rate increases

monotonica.lly and there is no appearance of maxima in values of (Q). But for Newtonian a.nd

Jeffrey fluid (Q) increases, attains a maximum and then decreases by increasing 1. Thus a

Jeffrey fluid behaves differently from \{axwell fluid in deeply non-Newtonian regime. Figure

3.4 is prepared to see the variation of (Q) in in deeply non-Nestonian regime for non-zero

rzlues of Kn (: 9.35; . This figure reveals the similar results as seen through Fig. 3.3. Figure

3.5 illustrates the \ariatiotr of (Q) versus dimensionless tube radius o for different relues of t,

ar'd Kn :0. It is noted from this figure that for a N{axwell fluid (Q) increases by increasing

o, reaches a maximum and then decieases to zero. However. for Jefirey fluid (Q) does not

become zero over the considered range of o. Further for a Nestonian fluid it increases by

increasing o and then become nea.rly independent of o. The obsenation of Figure 3.5 are in

the regime where non-Nestonian efiects are not prominent arld I{n = 0. When I{n : 0.05

and t,, : 100. the net flos' rate in case of Newtonian fluid is greater than Jefirey and Maxwell

fluid which is evident from Figure 3.6. \foreover. due to the presence of slip (Q) first increases.

rearhes a maximum and then decreases by increasing a for all three fluids (Jefirey. Maxwell

and Newtonian). Figure 3.7 gives similar results as observed through Figure 3.6. Interestingly

for Kn:0.05 and ,- : 1000 the behavior of (Q) is somen,hat difierent. Here its maximum

ralue is lowest for Maxwell fluid and highest for Jeffrey fluid (Figure 3.8).

Figure 3.9 presents the \ariation of (Q) plotted against o for various values of r, : 10000

(non-Nentonian regime). This figure depicts that (Q) is highlv oscillatory for a \{a-xwell fluid

atrd attains negative values. The negative values of (Q) mean the presence of back flow i.e. flow

in the opposite direction of propagation of peristaltic *'ave. Hou'ever. the oscillatory behavior

of (Q) decreases and it become positive for large values of t..

From the above discussion the follos'ing important conclusions carr be drar*n.

o The net flow rate (Q) r.hen plotted against X attarrs a higher maximum for a Jefire1,fluid

in comparison s'ith \{axwell and Neutonian fluid in a viscous regime (regime u'here vis-

cous efiects are dominant) for zero as well as non-zero values of 1{n. \{oreover. maximum

value of (Q) for a Neqtonian fluid is higher than the \Iaxwell fluid.

o In extreme non-Nestonian regime the graph of (Q) versus X still attains a higher max-
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imum for Jeffrey fluid in comparison with Maxwell and Neu'tonian fluid. However. the

maximum value of (Q) for \{axvell fluid is higher than that of Nev-tonian fluid.

o The net flou'rate when plotted against o attains higher r.alues for a Neqtonian fluid in

comparison with Jefirey and \{axwell fluid for small values of t, (t"":100) and .hin :

0,0.05. Similar is the case rlhen t- : 1000 and Kn:0. However. I'hen t- : 1000 and

I{n:0.05, (Q) attains higher ralues for a Jeffrey fluid in comparison with Maxwell and

Nes'tonian fluid.

o Finally, in extreme non-Newtonian regime the results also reveal that the back flow and

oscillation in (Q) are suppressed for Jeffre1' fluid in comparison n'ith \{axwell fluid q'hether

Kn is zero or non-zero.
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Fig.1. The dimensionless flow rate (Q) versus X at € : 0.001. Re: 10000,

t-: 1000. o:0.001 and I(n:0 0
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