An integrated approach for Developing Semantic mismatch
free Commercial Off The Shelf (COTS) components

Toé55€

DATA ENTERED

Developed by:

Muhammad Summair Raza
MS (Software Engineering)
Fall 2005

Supervised by:
Dr. Hamid Abdul Basit
Lahore University of Management Sciences (LUMS)

DEPATRTMENT OF COMPUTER SCIENCE
FACULTY OF BASIC & APPLIED SCIENCES
INTERNATIONAL ISLAMIC UNIVERSITY ISLMABAD

C)%
i
Accession Ne .MQ
N,
@ s

00_5’- /9 ‘
R Al |

/- Commes, Uh/[/Dw'oc(uc'(fﬁ
s. computed goftwarc. Guality cmbasd

s/ ~

2
¢ (’\\ L\ C

s
i

In the Name of

ALLAH

The Most Merciful
The Most Beneficent

Project Title:

Organization:

Objective:

Undertaken By:

Supervised By:

tarted On:

Completed On:

Research Area

PROJECT IN BRIEF

An integrated approach for developing semantic mismatches free

Commercial off the Shelf (COTS) component.

International Islamic University Islamabad, Pakistan.

The objective of the project is to fulfill the degree requirement of

MS in Software Engineering.

Muhammad Summair Raza

89-FAS/MSSE/F05

Dr. Hamid Abdul Basit
Assistant Professor,
Lahore University of Management Sciences,

Lahore

Component Based Software Engineering (CBSE)

International Islamic University, Islamabd
Faculty of Basic & Applied Sciences
Department of Computer Science

Dated: 28 March 2009

FINAL APPROVAL

It is certified that we have read the thesis, entitled “An Integrated Approach for
developing semantic mismatch free Commercial Off The Shelf Components”, submitted
by Mr. Summair Raza (89-FAS/MSSE/F05), it is our judgment that this thesis is of
sufficient standard to warrant its acceptance by the International Islamic University
Islamabad for the award of MS degree in Software Engineering.

PROJECT EVALUATION COMMITTEE:

Supervisor
Dr. Hamid Abdul Basit

Assistant professor \) . 0
LUMS, Lahore. \> | L{ A’V{l 'Q‘w C1

*
L
|
|
|
|
o
|
|
L
"

External Examiner: /\'/')/l}—/e
Da, M, A%@»Q !

\ ~ e
R TR i
Internal Examiner:
Swlomz M h ,
fecd. P DS
FRAS, VU, HA10
\$ Q puerntordl .

A thesis submitted to the Department of Computer Science,
Faculty of Basic & Applied Sciences, International Islamic University, Islamabad
Pakistan as a partial fulfillment of the

Requirements for the Award of the Degree of

MS in Software Engineering

To

MY DEAREST PARENTS & RESPECTED TEACHERS
Their efforts and guidance
Made me able to achieve this endeavor,
Without
Their prays and support

This dream could have never come true

Declaration

I hereby declare and affirm that this thesis neither as whole nor as part thereof has been
copied out from any source; 1 have provided proper references and citations wherever
required. It is further declared that I have completed this thesis on the basis of my
personal efforts, made under the sincere guidance of my supervisor. If any part of this
report is proven to be copied out or found to be a reproduction of some other, I shall
stand by the consequences. No portion of the work presented in this report has been
submitted in support of an application for other degree or qualification of this or any

other University or institute of learning.

Muhammad Summair Raza
89-FAS/MSSE/F05

ACKNOWLEDGEMENTS

First of all I express my sincere thanks to ALLAH and bestow all praise and appreciation
to Almighty Allah, The most Merciful and Compassionate, The Most Gracious and
beneficent, whose bounteous blessings enabled me to pursue and perceive higher ideals
life, who bestowed me good knowledge to complete my work successfully. And
Especially I am grateful to His Holy Prophet Muhammad (SAW) who enabled me to
recognize my creator and provided me a true path to follow for success in this world and
for hereafter.

Secondly I wish to express my profound gratitude to my supervisor Dr.Hamid Abdul
Basit, whose suggestions led me throughout this thesis. This thesis would not have been
possible without the kind support, the trenchant critiques, the probing questions, and the

remarkable patience of my research advisor.

Finally I am thankful to my parents who ever provide me warm encouragement, love and

moral support during my entire academic career.

Muhammad Summair Raza
89-FAS/MSSE/F05

Table of Contents

CRAPLET-T ..ottt bbb a bbb e a e bbb ae e 1
Introduction to COTS and CBSE ...ttt 1
1.1 Motivation for CBSE:cooveerrienreniiencnic et 1
1.2 Component Base Software Engineering:.........cocvvvereienenecenennnencnesenennnnns 4
1.3 COMPONENLS:oiriiiiiiiiieinieiettiite ittt sre et ssaae s saee s sar s a e serabeseabeessbnes s 6
1.4 Types of COMPONENL TEUSE:cc.ovveriiiinrenririieciiicse e sresaesaasaens 7
1.4.1 Black BOX REUSE:c.evierieiirniiiieieencinrcc sttt e sneenesn st ssnee e sns s s 7
1.4.2 White BOX REUSE:ccccviimiiiiiiieitiriciienr ettt srcrecne e 7
1.4.3 Gray BoX REUSE!.......coceveriiiiicriinieiitcietncnetnciens s esaseaesaesresssssesses 7
1.5 Benefits of SOftware REUSE:oceevcireceireniiintiniectiiectieceie st 8
1.6 Challenges of SOftWare TEUSE:c.cocuemriereiririnccnininienetnre et saeneeens 9
1.7 CompPonent INTEITACES:oveiverreererrererreennenterreeeneeesearessessessessessessensaseessessesseses 10
1.9 Architectural MiSMALCRES:c..oveerviriirreeriieiitniceeese ettt sr e 12
CRAPLET = 2 oottt et s rresee s s st e sene s e e st e abesat e sabesnrasenessnesanesassesbaesnnssans 13
LIterature SUIVEYcocivieerciieniiniine ittt et esb e st sas s sr s b s 13
2.1 TerminolOZIEScccuvceerireeniireerrcriertiee et sreseesse e et e be e e saesresbessnesnessensseens 13
2.2 COTS INLEGTALIONeeeveirieeenriireeeiirte et rite e st eeare st srreeresertesenessneasssesbnesnsesnncs 14
2.3 Integration anomalies: classifiCationcocevereeieeniienieenieese e ereesneeeeseeseane 14
2.4 Integration anomalies: negotiation and reconciliation approaches...........c..cece... 17
CRAPLET = 3 .ottt b e e bt st e s b et sttt s e e b e e aeesaesan et esnees 20
Definition 0f PrODIEM........eociiieiiiieninirc ettt e s s et e saesseessnsssessessnsansensesses 20
3.1 Problem definition:coceeuerererniinienenneerneesessiaeeassensrastessssssssseassssssssssssnsns 20
3.2 Research QUESLIONS:cccviriveriirierieerireenressressseeeseessnsessssnesssseessseesssesesnsaesenans 21
3.3 Main Objectives in Order of Priority:......cocceverrerccirnnerieerenrerenressesreesnessessenans 21
3.4 OQutputs of the proposed T€S€archccecoeruveveriernieciireee et 22
3.5 Benefits of the Research..........ooeoviviniiiniiiiencccccc e 22
3.6 JUSHTICAtION: ...ttt et re st e e ab e e e st e sresa et e ersesrnenne 22
3.7 Research MEthodc.ccveiieieiniicceeniciectce ettt sttt e s 24
38 S COPE: ittt st st e ettt e b e et e et e e eanns 24
CRAPLET = 4 ...ttt sttt et s e s e e e b e be e p e sanesreesnes 26
PropoSEd SOIULION........ceviiirieriirietecirerieree et esresresesne e sesaessessessassessesaseeseessessasassensans 26
4.1 COTS Semantic Mismatch Reconciliation using Semantic Thesaurus
(SMIREST): .ottt re s e st esbe st e s eae st asaesssa e st e ssneeseeesnseseseensasasenn 26
4.1.1 Enhanced domain analysis:cccvvuiieniniiininnninnnecnneee s 26
4.1.2 Enhanced COTS internal design:ccccoovviiniincicinccicnes 27
4.2 Enhance able Semantic Thesaurus (EST):....cocvvvoriieieicrieceeeeeeccec e 28
4.2.1 EST FEAUTES......ccueoerureiereireenerienenreeeeseessessessessnsssessassssssessnsssnsssessesnassanns 28
4.3 EST Component: Implementation of semantic thesaurusc.coceeeveverrenennas 29
4.3.1 Semantic TRESAUIUS:ccevevveririrrinrcctinrereeeresesresesreseesresressssressesaesaesanans 29
4.3.2 Conflict Resolution & Thesaurus Control Mechanism:ccceeveurnnn.e. 30
4.3.3 Thesaurus Control Interface (TCI)coooveviervrernivieerreeeneeeeecre e 30

4.4 Interaction of EST supported COMPONENntsccccvereeerrerenenienesserenseseeressenns 30

CRAPLET = 5 vttt bbb bbb e s be bbb s e s R e e s nans 32

CaSE STUAIES.....ceiveererrieriricririre et se st st e ettt e e s et st s b e assobs st s e sab e sbeerb s b e st besaes 32
5.1 MAthTYPE....eoveniieeieeeriterece ittt es bbb n e s sn e b s 32
5.2 Wrapper code developmentc.ccuvurueiiiiiviiniinienni e 33
5.3 Cas€ STUAY — 1 .ooiiieeirieinirieeesesreee ettt eee sttt b b ae s s b es 34

5.3.1 COMNCEIMS ..vevvivrrririeriniesrensesesnesessesseentesseesseessesaeessessesmsesstensassssssessssssesses 34
5.3.2 Basic Course of actions: Narrative style.........coceveveeeerecnenencceniinneenireene 34
5.3.3 Wrapper Code for EONML........cociviiienriiiciitiecnteincccrecsssens 35
5.4 Case Study —2.....coevvniiinenniiciennens e 37
54,1 CONCLIMS ..covirrreerereeriierrecrrireetrneesersstesresest e et essesesaesseesssssessesssssssesssesssnesnsens 38
5.4.2 Basic Course of actions: Narrative style..........ccoerevenmnicinrinnieninnennnineenns 38
5.4.3 Wrapper Code for Scinet Math........c.cocooceveninnnnnnnnccnnnnncnenecnes 38
5.5 CaSE StUAY — 3 .ottt ettt re st sae st e s e e e e naeans 39
5.5.1 COMCEIMS ..eouveiuerrrereesiresereeresrersteessesseesssesssrsesessesssasssesessessessasesssessnasssssssasns 39
5.5.2 Wrapper Code Generatedcccoverviiiienvcnieneniincninecnenieiesneeeesseneens 39
5.0 CALCUIUScoevieirrereiiir ettt et e sr e et bes 40
5.6.1 Application of Proposed SOIution..........ccceveverrienerriesenrenicencentneneeineeeeenes 40
5.6.1.1 Semantic ThESAUTUS.......c..ceveirerruernrreiirsieenirenirerresssesssnesssessessssessresssssenas 40
5.6.1.2 Thesaurus Control INterfacec.cooeverviiecciniinininenc e 41
5.6.1.3 Component Control Unit (CU)ccccovevericnnnsiinnnenineneentcnenesceeeenaes 42
5.6.1.4 Main Functionality COMPONENL..........ccecveerierveerieernensiensienrensersneseesaeene 42
5.7 Sample SOUICE COAEcoerririrriiiriiiieeeerteerrertese et esreeaessressseesasesseessraesasesanens 43
5.7.1 CDEC ClaSScoueuirreiirririiiiieissit sttt sb e 43
5.7.2 Sample Interaction with EONL through Wrapper.........cc.ccccvveruerrenrererrennennen 46
5.7.3 Sample Interaction with eCalculus without Wrapper..........ccooeerveereveerreruene. 47

VaAlIABHOMN «....vueeeeiviveeretieecete ettt ses et et sas s s bbb e s ses s sasasssasseseseseaesesenssnns 49
6.1 Wrapper code size and Customizabilitycccccevreriinenininncncnecrenneienens 49
Rate of Component’s Customizability (RCC).......ccceeverenemmnierinirrieniereienreeesreneeans s1
Function POINtS (FP)c..coiiiiiirieeci sttt s te e an st sresnnens 51
6.3 Fault tolerance enhances with more and more reuse...........ccouvverererccresenerrenes 52
6.5 PETTOIMANCE........oeeiiiiiieirt ettt re s ns 53
6.6 CONCIUSIONervreureiietierrte e ereeeeterrestrrerseessesseeseessessseesssasssessesssessnssnensesssenssenes 54

6.7 FULUTE PIANS ...ovveieiiiiieerteceieteccrre e sve st rsa e sae st st s e e s e s e esbessaesaesreevassaas 54
RETETEIICESoovniieiiriiiirereee ettt ettt ettt et sara st e e s e e e s e ese e ssesaesnesansenans S5

T

List of Tables:

Table 1:
Table-2:
Table-3:
Table-4:
Table-5:
Table-6:
Table-7:

Component Models........coceieiiiiiiiiieiierinienereriesusiesassesassnene 12
A Classification of Interface Models.........cccovevvrieieiiiianininnienne 17
The UnSCom Classification Schema.........c.cccoveiiiiiiiiiniiiniannee 17
Semantics of data exchanged........c..ccevviuviiiniiiieiiiiiiiiiiiiiiinen, 36
List of wrapper classes......cc.ceeieiiiiiiieiiiiieiiicieiiiciecineieronecennes 37
Wrapper code COMPAriSOmN.....coiiieeiiiieiieeiecietierircierineiescaciscnes 45
Table Of MetricS...ccuvuvueriiiiininninerniiiiiiieiirieieiieiieieinsseiesesoanaes 51

List of Figures:

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Architectural inconsistencies and sub-classification..................... 18
Research Method........cccooviviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 25
Traditional COTS design.....cccovieiieiiiiiiiiniiainicionicaciecaronennsonns 28
Enhanced COTS Design......c.cocevviniiiiiiniiiiiiiiiniiiiniiiiiinnae, eeeed9
EST CompOnent....cccceeveeniinieninnrinrieisnciessassnscsssssscsssassnssnsonses 30
Interaction of EST supported component............c.coevvveeicnenncnense 32
EONL Integration: Abstract Level........c.cccovvuieiiiieiiienniiinnnennnes 35
Scinet Math Integration: Abstract Level.......cc.cccciiiiiiiiniininninnn 39
Fault tolerance Vs COTS reuse.......cccovvvnininieiriiiennisesercnisacanns 53

i

ABSTRACT

Software in the modern age are mostly developed by the integration of pre fabricated
COTS components as it is the simplest way to develop systems quickly consuming lesser
cost as compared to the traditional development approaches. The promising features of
CBSE have introduced a new idea of assembling software rather than building them.
Assembling software in this way alternatively results in rapid development, lesser cost
with quality software assembled from pre tested COTS components. However the task is
not as easy as it appears apparently. Assembling software from the existing components
presents other challenges among which the “integration time mismatches” is the one.
Various strategies have been proposed to overcome these mismatches each requiring
some external mechanism outside the component to solve them.

This dissertation is an endeavour to provide an integrated approach for resolving
integration time semantic mismatches. It enables COTS components to detect semantic
mismatches and resolve them by themselves, thus letting the COTS component itself to
participate in mismatch resolution process.

The external mediation, in this way, will be reduced up to maximum, resulting in a
smooth integration process with a cut-down in integration cost. The proposed approach
will further enhance the fault tolerance capabilities of COTS components as it is used

more and more.

Y

An Integrated approach for developing Semantic mismatch free COTS components

Chapter-1

Introduction to COTS and CBSE

1.1 Motivation for CBSE:

Efforts have been made, right from emergence of software engineering to improve
software development process with special emphasis on design to develop more
significant notations to confine and capture the proposed functionality of system, along
with encouraging the development of systems by reusing already developed components
rather than developing from initial. Each success in these endeavours helped
organizations to maintain and improve the quality, maintainability, and flexibility of
complex and critical systems developed for broad category of domains.

However organizations, having large-scale and complex applications development, still
face a lot of problems, especially while testing and updating the systems. So until systems
are not designed carefully, they may be costly, in terms of cost and time to enhance the
functionality further, and to test the systems updations effectively and efficiently.
Furthermore, the ever-growing demand for unprecedented complex software has made
software engineers seriously think in terms of code reusability, as the software sizes in
excess of 10 million lines are a practical reality. Such system may have even a decade of
development period, alternatively facing the challenges of changing requirements and
different other parameters, obviously demanding a clear shift towards “Assembly of
code” instead of “building from scratch” approach and using COTS products is one way
to implement this strategy, because software development then becomes the process of
“simply” integrating COTS components.Engineering practices to support code reuse —
CBSE - is the need of time.

So Component Based Development (CBD), now, has been widely accepted as one of the
core technologies both in academia and industry. It is successful model for developing
software by integration of already developed components, resulting in reduction of

efforts, cut of time to market [1] and generating a remarkable attraction due to the

International Islamic University, Islamabad. 1

An Integrated approach for developing Semantic mismatch free COTS components

development of plug-and-play reusable-software, which lead to the concept of
‘commercial off-the-shelf (COTS) components [2], developed by different vendors and
probably tested and validated by their use in some other applications. Yet another
capability, the Component based development comprises, is the easy reconfiguration of
components or integration of newer versions to cater the desired changes in
organizational business processes. CBD reduces complexity by offering high level of
abstractions, separation of concerns and encapsulation of functionality. It involves
designing a system so that it can be reused in other development efforts [3].

There is clear deferment of processes from develop-from-scratch approach towards build-
from-components by their assessment, customization and finally integration [4].
According to Brooks [5], the best way to construct software is that never construct it.
Economic aspects are compelling software development to focus on the challenges and
opportunities associated with COTS products [6]. Benefits of COTS-based-systems
include reduced costs of development, quick deployment, and low maintenance costs [6].
These benefits compel organizations to get their software systems from pre-built COTS
components [6]. A clear trend is there now to assemble software rather than building it.
Frequently, components from different providers are used to assemble component-based
applications.

Different studies conducted on reuse have resulted that about 40%-60% of SLOC is
reusable among applications, about 60% of design can be reused in business software,
about 75% of functionality is common in no. of programs, however only 15% code was
only found to be unique to a particular application; the potential and the actual reuse rates
range from 15%-18% [7].

“Software reuse benefits have been substantially discussed in literature e.g in software
engineering encyclopedia, in NATO sofiware reuse standards, PhD dissertations,
software reuse books, journals and software engineering books etc” [7].

Following measures are taken from [7]

- An empirical study of 25 projects (with range 3,000-112,000 LOC) conducted at NASA
software production environment resulted that about 32% of software has been reused
/modified from pre-existing systems.

- In Motorola reuse is seen as an alternate-option to improve quality and productivity.

International Islamic University, Islamabad. 2

An Integrated approach for developing Semantic mismatch free COTS components

- At HP Inc. a survey (of two reuse projects) about reuse-assessment indicated reduction
of defect density, with range 24%-76% and productivity increase of 40%-57%.

- IBM has developed a Reuse Support Center, which involves almost 30 sites worldwide.
They have reported the millions of dollars savings, with reuse range 20%-30% in
software.

However despite the benefits of reuse, there are certain factors that effect reuse success
and failure both directly and indirectly. These factors may be technical, theoretical,
organizational, management-related, economy-related etc [7]. Integration time
mismatches are just one to name. Even, when we have selected the appropriate
components according to requirements, some other fundamental issues may still prevail
like one that chosen parts do not fit together well. The integration of such components
results in no. of critical faults and inconsistencies [8] called “Architectural Mismatches”
[9]. While leading to grave consequences, the mismatches also require some intermediate
mediation mechanism, the Wrapper/Glue Code, to overcome the problem. This mediation
mechanism is required as many times as the component is reused, not only for the same
component while integrating in different applications, but also for its later versions. This
entail the first attention of the researchers to come with the solutions of the number of
problems adhere to CBSE.

This thesis is a consequence of motivation for this obligation and provides the solution

for solving one of the integration time mismatches problem.

International Islamic University, Islamabad. 3

An Integrated approach for developing Semantic mismatch free COTS components

1.2 Component Base Software Engineering:

According to [10] CBSE is primarily concerned with three functions:

» Software development from pre-produced parts.

> Reuse of these parts in other software.

» Customization and maintenance of these parts to develop new software.
“CBSE emphasizes the design and development of software using reusable-software-
components” [11].
CBSE includes much more than means of neatly organizing an inclusive reuse program.
For constant development of components both processes and methodologies are also
provided. It is the ultimate anthology of proficiencies ever accumulated on this emerging
technology.
CBSE emerged decades ago. Production of software components was proposed in 1969
by Mcllroy. Since then, a number of things e.g. pluggability and granularity, of
components have significantly changed.
In contrast with the traditional development methodologies that adhere to be development
centric, Component-Based Software Engineering (CBSE) aims to come with integration-
centric approach. It uses the same Engineering principles as those of OOP to the entire
designing and creating process of software systems. Among others, it spotlights on
reusing and adapting already developed components, rather than developing from
scratch, letting organizations to “assemble the software” rather than “building it”. As a
result, it gives several potential advantages, such as developing large systems, comprising
of pre-developed components, and hence cutting down the overall development time and
costs as the common functionality in applications may be developed only once and may
be used again and again in different contexts, instead of re-inventing the wheel. It lets
organization to maintain productivity and quality along with augmenting interoperability
and portability due to the reason that components can be easily added and replaced.
Initially reusability was adhoc-based because, as a whole the industry was lacking any
accepted standard and without standard developers could not be motivated to design and

develop for reuse.

International Islamic University, Islamabad. 4

An Integrated approach for developing Semantic mismatch free COTS components

The ever growing demand for complex systems imposes limitations on industry to come
up with tools to ensure their availability (development) with in shorter time. The “buy,
don’t build approach” is the first candidate solution, organizations are striving for, to
cater the needs. As a result reusability has been gaining substantial importance to fulfil
industrial requirement. CBSE ensures safer code — the code gets refined and becomes
more reliable as it has already been tested in no. of contexts.

Organisations, while developing new components, need to develop them from reuse point
of view, which means a careful design, that-if not considered may lead to huge loss of
development time and cost.

The paragraph from [3] explains the clear trend which organisations seem to follow:

“The commercial off-the-shelf (COTS) products are becoming increasingly popular. They
cause shrinking of budgets and accelerate the COTS augmentation. Both in development
and maintenance there is a shift from custom-development to COTS-based systems. The
proper use will establish a solid modernization practice”.

CBSE now has become a constant roadmap for rapid software development and is a
dominant research area. Massive research has already been conducted in this field and a

lot of research is still in progress.

International Islamic University, Islamabad. 5

An Integrated approach for developing Semantic mismatch free COTS components

1.3 Components:

According to [13]:
“A Component is an opaque-implementation of functionality which Subjects to third-

party composition, conforming with a component-model”

“Reusable software components are self contained and clearly distinguishable artifacts
which depict and/or perform explicit functions and have clear interfaces along with
appropriate documentation and a defined reuse status” [7].

Components are clearly identifiable and integrate able artifacts in software systems. They
have well defined interfaces and encapsulate internal details so that they may interact
with each other for the final component based software, even without knowing the
internal details of each other. Each component has its own documentation.

Using of a component in various projects, result in the fact that it has to be maintained
only once e.g. bugs need not be fixed only once, documentation is written only once, and
by spreading the similar code over many locations we can avoid many inconsistency
problems [7].

The “self-contained” in the above definition means that component should be self-
sufficient, i.e. it should by itself perform the intended functionality without the help of or
including the other components. However, in case a component needs the presence of
other components then the entire group will be considered as a single component, with
one component working as the interface for the intact group. According to this definition
a single function may be a component as far as it does not need the presence of other
functions, so the different libraries having set of functions and modules are considered as
a single component.

“Identifiable” means, the implementation of a single software component must be precise
which could easily be identified i.e. the code of component must not be intermixed with
other components or scattered in all files of application, but must be in a single module or
in case of more than one modules, it must be properly packaged. Components details
should be properly documented and they should be developed by following standard

CBSE practices, in order to maximize and facilitate their reuse.

International Islamic University, Islamabad. 6

An Integrated approach for developing Semantic mismatch free COTS components

1.4 Types of component reuse:

1.4.1 Black Box Reuse:
By black box reuse we mean that we use the component but we cannot see, know or

modify he internal functionality of component [7]. The component user only has single or
a set of interfaces provided by the component to interact with it. Internal details are
hidden and cannot be modified. User only has the knowledge of “what” functionality a
component implements with out knowing “how” it is being implemented. This

alternatively facilitates the replacement of components with the newer ones.

1.4.2 White Box Reuse:
It is still another form of reuse. It means that the internals of a component can be changed

for the purpose of reuse [7]. User has the source code and other implementation details of
the component; this facilitates the component user to modify the component according to
requirements. However, on the other hand, it has its own negatives. Customization of the
internal of a component will be regarded as a new component, which will require a

thorough testing and fixing of the bugs.

1.4.3 Gray Box Reuse:
Gray box reuse means that (components are used as the black box components but) the

user can see the internals of the component which provides the user with the information
about internal functionality of component without giving him any ability to change it [7].
So the user can get some idea about, how component works.

Glass box reuse may have its own limitations. Changing the internals of component may

become fatal as it may lead to malfunctioning of component.

International Islamic University, Islamabad. 7

An Integrated approach for developing Semantic mismatch free COTS components

1.5 Benefits of Software Reuse:

Software reuse always has positive impacts on quality, productivity, performance and

reliability providing application consistency and reducing risks.

Quality: as the component gets reused with the passage of time, the number of errors and
bugs get fixed and the quality of component increases, particularly this would

not be the case for a newly developed component.

Productivity: reuse leads to increase the productivity, as using the existing code save a
lot of time and effort for designing, developing and testing the same code again.

This alternatively benefits in the form of a sharp cut down in overall cost.

Performance: with each no. of reuse a component gets performance wise maturity, as it
gets refined with the implementation of new algorithms, and ultimately saves

the time for optimization of the newly developed code.

Interoperability: Components present standard interfaces to use their services, which
lets the augmented interoperability of components in component based systems,

leading to lesser no of interoperability errors.

Reduced Risks: if components are used then there is less chance of risks using these
components as they get already tested and verified in various no. of applications
contexts, which enhances the confidence of the application developer. However
this is not the case with the newly developed code which has, so far, not tested

in real domain.

Standard compliance: due to the presence of standards, such as interface standards, the
use of components leads to enhanced compliance among applications, e.g. if
Menus are implemented in the form of component and all applications use the
same menu component, all applications will have same menu format which will
increase the dependency of systems as user are likely to make less mistakes in

case of similar interface.

International Islamic University, Islamabad. 8

An Integrated approach for developing Semantic mismatch free COTS components

1.6 Challenges of software reuse:

Despite the benefits of reuse, it is still not an easy paradigm, one might assume. There are
many challenges that contribute towards the failure of software reuse. The next section

presents some of the challenges.

Initial cost: software reuse saves the cost for further software development; however, it
requires an initial investment, which of-course needs support from organizations
top management.

Inadequate organizational structure: Organizations tending to exploit reuse need a bit

change in their structure. For example, they may need separate teams responsible
to gather, maintain and provide reusable-components [7].

Not-invented here: people may be hesitant to use other’s software. They may have lack
of confidence on the software being reused or may be confident to develop a
better and efficient code by themselves instead of using someone else’s code.

Difficult to find reusable components: before reuse the first step is to search for an
appropriate component. Normally components come with incomplete
documentation that does not fully explain the internals of component which leads,
not only, towards the difficulty of finding the appropriate components, but also
makes it a tough task to reuse a selected component.

Non-reusability of components: after a component is found, it may still be challenging
to reuse the component, because the software are seldom written in a way to ease
their reuse, although not intentionally, it requires solid expertise and skill with all

the possible (future) reuses in mind.

International Islamic University, Islamabad. 9

An Integrated approach for developing Semantic mismatch free COTS components

1.7 Component interfaces:

Component interfaces are the connecting points to use the component’s services. This is
normally the user view of the component. They hide the implementation details. The
successful interoperability of components depends upon interface specification; these
specifications provide a basis for the development, management and use of software
components [14]. Jun Han in [14] defines a framework for interface specification

discussing the five aspects given below:

Signature: are the basis tools for the component to interact with external environment.
They include all the necessary methods or elements which help in this interaction

i.e., attribute operations and events.

Configurations: component interface may have no. of configurations according to use
contexts, each configuration may comprise of no. of ports according to the

functionality, the component provides in Component Based system.

Semantics: semantics of signature elements mean to describe the semantics of the all

signature elements, to capture their precise behavior.

I-constraints: Interaction constraints provide the complete details of how to get the

intended functionality of component.

Qualities: characterizes the non-functional or quality attributes, e.g. attributes related to

reliability, security and performance.

So interfaces need to follow the implementation standards. Components may have
multiple interfaces to fulfill multiple customer needs e.g. they may implement separate
interface for configuration, yet another interface for initialization and domain
functionality etc. ,

Two important aspects of interaction with component through interfaces are the function
calls (to use the component services) and the data exchange between the component and

the target application. The next section will explain that any mismatch between

International Islamic University, Islamabad. 10

An Integrated approach for developing Semantic mismatch free COTS components

component’s interface and the interface of target application causes serious integration

time or execution time errors which may lead to the failure of the application.

International Islamic University, Islamabad. 11

An Integrated approach for developing Semantic mismatch free COTS components

1.9 Architectural mismatches:

Despite all the efforts, software development from reusable components remains an
elusive goal, even, when we have selected the appropriate components according to
requirements, some other fundamental issues may still prevail like one that chosen parts
do not fit together well [9]. The integration of such components results in no. of critical
faults and inconsistencies [8] called “Architectural Mismatches” [9]

Architectural mismatches, also called “Integration anomalies” [8], arise when a
component makes some false assumptions (pre-assumptions) about the architecture of the
target application [16]. These assumptions often contradict the assumptions of other
components/target application and lead to a number of variation points (variability). A
variation point means the place where there is some conflict among same family
members [18]. Different classifications of these anomalies exist in literature e.g. [17, 19],

however the main are:

» Syntax at component interface level:
Mismatches in representation of data imported/exported.

» Semantics at component interface level:
Occur when the data with different semantics is exchanged among different
components.

» Application-specific properties at system level:
Local functionalities of the components do not accurately represent the target
application context.

» Pragmatic properties of system environment:

These inconsistencies are related to the computational environment of the

components e.g. access-policies, concurrency-constraints, timing requirements or

underlying architectural constraints etc.
As COTS often come in black box form (binary form), therefore it is not possible to
modify the source code or re-link the object code with library [25]. So we use the
Wrapper/Glue code to negotiate or overcome the anomalies that arise. A recent research
[8] emphasizes to separately implement fault tolerant strategies for these inconsistencies

in Wrapper/Glue Code.

International Islamic University, Islamabad. 12

An Integrated approach for developing Semantic mismatch free COTS components

Chapter - 2

Literature Survey

A smooth and error free interaction of components is critical to the success of component
based systems. For these systems architectural mismatches have always been an issue and
the situation becomes worst critical in case of large, complex applications having high
dependability requirements. It is essential to include different ways to muddle through
software faults [21]. So the mismatches have been focus of the research with passage of

time.

2.1 Terminologies:

CBA Commercial-Off-The-Shelf Based Applications
CBS Commercial-Off-The-Shelf Based Systems
CBSE Component Based Software Engineering
COTS Commercial Off-The-Shelf

GOTS Government Off-The-Shelf

GUI Graphics User Interface

LOC Lines of Code

KLOC Kilo-Lines of Code

NATO North Atlantic Treaty Organization

NASA National Aeronautics and Space Administration
IBM International Business Machines Corporation.
HP Hawvelet Packard

NEC NEC Software Engineering Laboratory

GTE GTE Data Services Inc.

UDS Universe Defense Systems

ooP Object Oriented Programming

SEI Software Engineering Institute

0SS Open Source Software

International Islamic University, Islamabad. 13

An Integrated approach for developing Semantic mismatch free COTS components

2.2 COTS Integration:

COTS based systems are composed of components at different levels, integrated either
statically at CBS’s design time or dynamically at runtime. The interoperability among the
components takes place in the form of sharing / exchanging data and services. Message
passing (through message busses) may be used, in case; a component wants to establish a

communication session with other components.

2.3 Integration anomalies: classification:

Architectural mismatches or integration anomalies are inevitable part of COTS
integration process. They stem when a reusable component makes false assumptions
about the architecture of target application [16]. These assumptions often diverge with
the assumptions of other components/target application and lead to a number of variation
points (variability). A variation point means the place where there is some conflict among
same family members [18].

Kevin et all. in [22] argue:

“The components that apparently seem to be compatible, architectural mismatches may
hinder their integration to develop and application. Software engineers can face subtle
problems to get the components work together even if they are developed using the same
programming language and run on the same platform. Engineers have to write the
wrapper code, customize the component and some time re-implements the functionality to
overcome the architectural mismatches”.

The resulting system may be unable to meet the performance requirements.

So, it has been the focus of the research, right from the first day, to comprehensively and
systematically detect and classify such mismatches, develop sufficient approaches and
tools to cope with them.

The term “Architectural Mismatch” was first coined by Garlan et. all in [9]. While
developing AESOP, they came across six main difficulties during integration of four
existing software subsystems (components) into a new coherent system: bulk of code,

poor performance, extensive modification required to make components work together

International Islamic University, Islamabad. 14

An Integrated approach for developing Semantic mismatch free COTS components

smoothly, the necessity of reinventing existing functionality to meet the intended use,
redundant complexity of resulting application, and a complex, error-prone system
development process [16]; Root causes of these mismatches were divided in four broad
categories: Nature of the components, Nature of the connectors, Global architectural
structure, and Construction process [16]. Four guidelines were proposed by them [16] to
overcome these mismatches

o Architectural assumptions should be made explicit.

o Large pieces of software should be developed from orthogonal subcomponents.

o Techniques should be provided for reconciling mismatches.

o Sources for architectural design guidance should be developed.

In fact study of Garlan et. all provided a solid base for further research to deal with
architectural mismatches.

In [17] Yakimovich et el. presented two major causes of COTS interaction
incompatibilities: syntax and semantic-pragmatic.

Syntax defines the syntactic rules, where as the functional interaction specifications are
defined by semantic-pragmatics. Syntactic differences among the components result in
syntactic incompatibilities. Semantic-pragmatic incompatibilities, on the other hand, can
arise out of the conflict in components interaction. The semantic pragmatic
incompatibilities are further classified as: ‘

» l-order semantic-pragmatic incompatibility or internal problem: caused by a
single component. E.g. it may be that this component does not fulfill the required
functionality.

» 2-order semantic-pragmatic incompatibility or a mismatch: incompatibility
occurred due to interaction of two components.

» N-order semantic-pragmatic incompatibility: incompatibility caused due to
interaction of several components.

In [19] Reussner e.t al. present enhancements of two already existing classification
schemas for component-interoperability-errors to carry component alteration in order to
avoid mismatches.

Firstly they modify the “Interface classification schema”, and present a more systematic

classification of incompatibilities based on two dimensions. One dimension differentiates

International Islamic University, Islamabad. 15

An Integrated approach for developing Semantic mismatch free COTS components

between functional and non functional perspectives and the second is concerned with

granularity of interface description. By using these two dimensions they resulted in a

classification matrix shown in Table-2.

Secondly, they derive a novel classification of component heterogeneities from UnScom

framework [20]. It differentiates between different component perspectives, i.e. it

differentiates between different developments perspectives, corresponding to main steps

of component development process, also distinguishing between three design views, on

the other hand as shown in Table-3

Methods

_ | Interfaces

Domain

Functional

Signature

Protocols

Domain Objects

Non-Functional

Method Specific Quality

Interface Specific
Quality

Domain
Constraints

Table-2: A Classification of Interface Models.

Functionality / Architectural | Implementation/ |
Concepts Design / Interfaces | Quality (physical):
(Domain-related) (Logical)

Static View Information Objects | Type Declarations, Usability,
(Structure) (Entity Model) Properties Maintainability,
(Attributes) Portability
Operational View Functions Evens, Methods, Functionality

(Effects) (Operations Model) Exceptions,
Assertions

Dynamic View Process (Flow Interaction Reliability,

(Interactions) Model) Protocols Efficiency

Table- 3: The UnSCom Classification Schema.

In [8] Sglietti et al. present an approach to detect and tolerate architectural

inconsistencies. They categorize architectural mismatches in different classes and tend to

implement a wrapper that separately handles these mismatches.

They mainly identify integration anomalies in four classes:

Syntactic inconsistencies: inconsistency in the representations of data imported/exported

to/from component.

International Islamic University, Islamabad.

16

An Integrated approach for developing Semantic mismatch free COTS components

Semantic inconsistencies: inconsistency of semantic nature e.g. exchanging the data
with different semantics

Application-based inconsistencies: may occur if the local functionalities of components
fail to accurately represent the global application context.

Pragmatic inconsistencies: pragmatic inconsistencies are concerned with component’s
computational environment. E.g. access policies, timing-constraints and other
architectural limitations etc.

These classes are further classified in sub-classes as shown in fig 1.

Language Violation of Violation of absolute

Inconsistencies statefinput relation =] time constraints

Numerical Deta mnge Violation of concurrency
| Inconsistencies inconsistencies [~ constraints

Physical Vinlation of achitectural
"1 Inconsistencies ™| constreints

Figure 1: Architectural inconsistencies and sub-classification.

2.4 Integration anomalies: negotiation and reconciliation approaches
Keshav et. al [23] discuss their initial conclusions from architectural-style-integration

analysis. They form an integration-taxonomy comprising of three main functional
integration elements: Translator, Controller and Extender.

A Translator translates both the data and the functions between different formats;
however contents of the data are not changed. It does not need the information about
source/destination of data

A Controller based on some predefined decision making process, a controller
synchronizes and negotiates information exchange between different components. It does
however need to know the exact identities of components for which decisions are being

made.

International Islamic University, Islamabad. 17

An Integrated approach for developing Semantic mismatch free COTS components

An Extender adds new features/functionalities, and hence augments component‘s
capability. Extender may or may not need to know about the component identity with
which it interacts, depending on the particular application.

Authors also propose to combine these basic integration elements to make possible, the
interaction of different components combinations.

Robert DeLine in [24] provides the catalog of tools and techniques to negotiate
packaging-mismatches that are organized with respect to underline architectural-
commitment. All the techniques presented are explained with the help of an example
system consisting of two components A and B that exhibit incompatibilities while
interacting with each other.

On-line bridge: in using on-line bridge a new component (i.e. Br - bridge component) is
inserted between the interacting components A and B. Br implements a separate interface
for each of the components involved in-interaction.

Off-line bridge: is a special version of on-line bridge except that the component-B is in
form of some persistent data. Now the bridge component Br reads data of B and
transforms it to be compatible to A. This component transforms component B to B’
which then interacts with component A.

Wrapper: in this method the bridge Br and the component B are wrapped together to
form a new component B’, this component than interacts with component A.

Mediator: in this method the connector C can support several alternatives (interfaces) for
a given commitment. Components A and B can use any of the provided commitment to
interact with each other.

Intermediate Representation: just like Mediator technique, but the only restriction is
that the mismatches between component A and B are caused by data representation.
Connector C can support several alternatives (interfaces) for a given commitment
regarding data-representation.

Unilateral negotiation: In this technique a single component (A) supports multiple
commitments, and if the other component’s (B’s) commitment is supported by it (i.e by

A) then A is specialized to match B’s commitment and they are integrated.

International Islamic University, Islamabad. 18

An Integrated approach for developing Semantic mismatch free COTS components

Bilateral negotiation: in this technique both component support a set of alternative
commitments and agree upon a protocol to select one of the alternatives with negotiation
with each other.

Component extension technique: In this technique a component provides mean for its
extension. It defers some of the commitments about interaction by assigning these

commitments to a set of modules integrated while the component is initialized at runtime

Eun Soo Cho et. al. in [1] present a methodology for component development. During
“Identify variability” (DA3) phase they tend to model the existing variability of the
domain, to design components that let component users to customize variation points.
They tend to identify the attribute and logic variability by examining function
descriptions and use case descriptions. They argue to consider function semantics while
comparing functions. Similarly they identify work flow variability by examining use case
descriptions. They further argue to specify the scope of each variation point. If variation
point has a closed set of known variants, it is marked as “Predictable”, else “Non-

predictable” which means that the scope is open for future additions.

In [25] Soo Dong Kim et al. present a comprehensive set of techniques to comprehend
variability in blackbox components and present effective interface-based customization
schemes:

Selection Technique: it provides classes and a customize interface for component users
in order to select one of the component variants, realized in it. After selection of a
specific variant, it is stored in order to use it as references in further invocations.

Plug-in technique: in this technique we pass references of objects to components using
customize interface and call the functions of these objects (whose references are passed)
by using these references inside the component. In this way we can provide the
application specific functionality to component and the component can be customized for
each application.

External prbﬁle technique: this technique an external file such as XML file, describing
the customization variants, is used to allocate an external customization variant to a
variation-point. In this way, however, to change a variant the external profile needs to be

changed.

International Islamic University, Islamabad. 19

An Integrated approach for developing Semantic mismatch free COTS components

Chapter - 3
Definition of Problem

All of the integration mismatches require a permanent solution in order to generate plug
and play COTS.

This thesis is an endeavor that lets us develop such intelligent COTS components which
lead towards minimum external mediation required for resolving semantic mismatches.
Semantic mismatches occur due to misinterpretation of data exchanged between
components, sequencing critical system failures, in case they are not resolved e.g. failure
of NASA’s Mars Climate Orbiter mission [26], where a component exported its data
which was representing physical force in British units (pound-force), while the other
component expected the measure in metric units (Newton). Similarly, the cost of
programming-errors in component interoperability is estimated to be $16 Billion in
capital facilities industry in US alone. The primary reason for such high cost is due to
fixing of errors in incorrect data that is exchanged between different components [27].

So all these facts lead towards the need of an active research to cope with semantic
mismatches as to avoid system failures, reduce development costs, and cater the obstacles

to provide smooth and easily integrate able COTS having Plug and play characteristics.

3.1 Problem definition:

Almost all the negotiation strategies, to resolve architectural mismatches (including
semantic errors), tend to provide reconciliation methodologies external to components;
however an important scenario that is left unaddressed, is the internal design of the
component, especially from the perspective of its role in resolving integration
mismatches, and particularly resolving semantic mismatches as in context of this thesis.

All the preceding facts discussed so far lead to the following question that frames the

problem area for this research:

International Islamic University, Islamabad. 20

An Integrated approach for developing Semantic mismatch free COTS components

“How can we develop such intelligent Commercial off the self (COTS)
components that could themselves participate in fault tolerance mechanism to
resolve the semantic mismatches, in order to reduce the traditional external
mediation mechanism required?”’

The above statement clearly implies that the successful implementation of proposed
solution will reduce, up to maximum extent, the intermediate mediation mechanism

required to negotiate the semantic mismatches.

3.2 Research Questions:

This thesis tends to answer the following questions:
» How can we reduce intermediate Reconciliation work required to negotiate the
integration mismatches?
» How can we develop intelligent COTS components which themselves participate
in mismatch reconciliation process, (to reduce reconciliation work)?
> What will be the role of COTS internal design in achieving the goal?
» What enhancements will be required in COTS internal design?

3.3 Main Objectives in Order of Priority:

The objectives of the research are:

1) To analyze the COTS integration process.

2) To analyze semantic mismatches, their categories and root causes.

3) To analyze the fault tolerance strategies.

4) To probe out the way to involve the COTS in fault tolerance mechanism in order
to reduce the intermediate mediation mechanism for resolving the semantic
mismatches.

5) To explore, how to minimize the dependency of component-based developers on
COTS specifications, regarding semantics of data exchange (mismatches)

between components

International Islamic University, Islamabad. 21

An Integrated approach for developing Semantic mismatch free COTS components

3.4 Outputs of the proposed research

The outputs of the proposed research are:

> A simple integration process resulting minimum integration time semantic faults
and consequently reducing mediation efforts (Wrapper/Glue Code).

> An enhanced COTS design that will let the COTS to be intelligent enough to itself
participate in fault tolerance process.

» Reduced dependency of COTS integrators on COTS design specification,

regarding integration faults.

3.5 Benefits of the Research

Some of the benefits of the proposed research are:

» A simple and smooth COTS integration approach.
> Minimum integration-time architectural mismatches.

» Reduced cost of COTS integration.

3.6 Justification:

Wrapper/glue code, bridges, mediators, extenders and controllers etc. are all intermediate
mediation mechanisms provided by different research approaches, however all these
mechanisms are external to components and are required as many times as component is
integrated, not only for same component while integrating in different applications but
also for its later versions. This requires a clear shift in the internal design of component
that could enable the smooth integration of COTS with minimum no. of integration time
mismatches and required customization process.

As COTS often exist in black box (binary) form, therefore it is prohibited to modify the
source code or re-link the object code with library. So the Wrappers/ Glue wares remain

the only mechanism to overcome the problem.

International Islamic University, Islamabad. 22

An Integrated approach for developing Semantic mismatch free COTS components

Although mediation approaches reconcile the inconsistencies including integration time

and runtime semantic mismatches, however they suffer the following drawbacks:

» Developing intermediate mediation mechanism (Wrapper/glue code etc.) requires
in-depth details of COTS functionality and hence not an easy job as, the COTS
specifications are normally incomplete [28] and do not provide much detail about
the COTS internal functionality.

»> All the intermediate code remains the separate entity, external to the components,
especially in case of Black Box Components.

> In case of porting the same component to some other (target) application, most
likely the same type/no. of anomalies will be flagged again and the same amount

of intermediate code will have to be re-written in context of the new target.

The above facts clearly show that the intermediate mediation mechanism is just a
temporary solution that does not add to enhance anomaly-free COTS portability and does
not provide any solution to minimize the amount of Wrapper/Glue Code. Also, it is really
a challenge to customize black box components without any access to internal design and
source code of these COTS [25]. However, this is the only solution so far to overcome
the problem.

The proposed integrated approach will be a step ahead towards providing a complete base
for developing glue ware independent, anomaly-free, automatically plug-and-play COTS
(regarding semantic mismatches) with increased portability and target domains. An
important feature of Such COTS components will be the role of a component itself in
resolving semantic mismatch, consequently minimizing the dependency of component-
based developers on COTS design specifications.

Finally, this solution will also help the COTS users, who can get rid of consulting the
COTS specifications to resolve the integration mismatches; as such specifications are
mostly incomplete [28] in providing an in-depth detail of the COTS internal

functionality.

International Islamic University, Islamabad. 23

An Integrated approach for developing Semantic mismatch free COTS components

3.7 Research Method

Modify Approach

Figure 2: Research Method

The main question of research was: how to develop a methodology to solve the semantic
mismatches while reducing the external mediation mechanism required.

The apparent starting point to answer the question was to study a large body of
knowledge associated with resolving architectural mismatches. As the research tends to
modify the existing design of COTS, so different approaches for designing COTS were
also studied and a new slightly enhanced design of COTS was proposed.

Experiments were then carried out to verify the methodology and results were analyzed
and compared with other approaches to confirm the validity of the proposed solution.

Entire process is shown Figure 2.

3.8 Scope:

Although all integration mismatches require an active research, but this thesis provides a
solution for semantic mismatches that occur at interface level. A design based approach is
presented to solve the problem i.e. a slight enhancement is made to traditional design of
COTS, in addition to the interface and domain objects of a COTS component.

The approach enables COTS to itself identify a semantic mismatch and then reconcile it.

The approach will minimize the amount of external work required to heal semantic

International Islamic University, Islamabad. 24

An Integrated approach for developing Semantic mismatch free COTS components

errors, alternatively increasing portability and target domains while reducing CBA
developer’s dependability on COTS specifications.

The approach also motivates to make the COTS intelligent enough to not only solve
semantic mismatches but also other classes of errors discussed in previous sections.

Finally the approach is equally applicable to all types of COTS either they are black-box,

white-box or gray-box.

International Islamic University, Islamabad. 25

An Integrated approach for developing Semantic mismatch free COTS components

Chapter - 4
Proposed Solution

The proposed research solves the semantic mismatches in a way that the COTS
component itself participates in error reconciliation process without requiring mediation
code being needed. This chapter will provide a brief detail of the proposed solution.

I argue that the errors will continue to occur and the intermediate reconciliation will be
required many times during integration until and unless we involve the COTS itself in the

negotiation process.

4.1 COTS Semantic Mismatch Reconciliation using Semantic
Thesaurus (SMiReST):

Semantic Mismatch Reconciliation using Semantic Thesaurus (SMiReST), for its
implementation, requires two enhancements in the traditional COTS development
process:

» Enhanced domain analysis

» Enhanced COTS internal design

Following section discusses both steps in detail

4.1.1 Enhanced domain analysis:

During this phase the target domain of component is analyzed to understand the problem
and component requirements. SMiReST requires an extra consideration to be made to
traditional domain analysis phase. It emphasizes to identify and model all the possible
semantics of data that the component will import and export during its interaction with
target application. E.g. in case, the parameters of a certain service call include the price of
an item, we need to consider all the possible currencies, the target application may be

deemed to use.

International Islamic University, Islamabad. 26

An Integrated approach for developing Semantic mismatch free COTS components

The process of modeling all the possible data semantics will enable the COTS to be
enriched semantically so that it may be capable to negotiate semantic mismatches during
interoperation, in case any semantic mismatch is detected.

This requires a comprehensive analysis and thorough study of all possible target contexts.
A history of other COTS from the same family and some possible target applications will

be more helpful in this regards.

4.1.2 Enhanced COTS internal design:

COTS components are a collection of domain objects that interoperate to provide the
intended functionality. The functionality is provided by using external interfaces. In fact

an interface is an invoking point of a COTS component. Figure 3.

Interface
& ‘) —
\ 7/

Figure 3: traditional COTS design

Each object in set of objects is dedicated for a specified task. Additionally each object
may further aggregate sub-objects, and hierarchy may continue up to n-level.

The proposed COTS design suggests enhanceable semantic thesaurus (EST) as an
essential part of each component that is developed. Now the COTS component along
with Central Control Unit (CU) consists of two sub components: Enhanceable Semantic
Thesaurus component — the component which implements the EST, and Main
Functionality Component (MFC) — set of domain objects which perform the domain
functionality as shown in figure 4.

In fact all the interaction of component is controlled by central control unit (CU), that

intercepts all the calls to and from the components, it then verifies the semantics of data

International Islamic University, Islamabad. o 27

An Integrated approach for developing Semantic mismatch free COTS components

and in case any mismatch is found EST component is request to resolve it and then the
call is delegated to MFC. Similarly before returning the data to calling application
semantics are validated and made compatible to those of calling application and finally

data is returned.

¢—) Interaction
Figure 4: Enhanced Cots Design

4.2 Enhance able Semantic Thesaurus (EST):

Enhanceable Semantic Thesaurus (EST) is basically an implementation of semantic
dictionary that holds all the possible semantics (that were identified during enhanced

domain analysis phase) of the data, the component operates on.
4.2.1 EST Features:

Enhance able:

An important feature of EST, as the name indicates, is its ability of being enhance able.
This means that if the semantics (considered by target application) of any data are not
defined in EST (one of the situations leading to semantic mismatch), they can be added
using a simple interface (explained in next session). In fact this feature enables the COTS
itself, to participate in mismatch resolution process which otherwise requires intensive

external mediation work.

International Islamic University, Islamabad. 28

An Integrated approach for developing Semantic mismatch free COTS components

Mismatch elimination with passage of time:
Probability of semantic mismatches reduces as much as the component gets used. This is
because EST gets populated with more and more semantics, which alternatively
‘augments the component’s fault tolerance capability and increases component strength
to participate in mismatch resolution process.

[t also means that the later versions of COTS component will less error prone as

compared to earlier versions

4.3 EST Component: Implementation of semantic thesaurus:

In any component, EST can be implemented either by applying a single object or a set of
objects each having a dedicated functionality. However the best approach to implement

EST is to implement it as a sub component, of the main component.

> Interaction Interface

Figure 5: EST Component

Main parts of EST component Structure are (Figure 5):

4.3.1 Semantic Thesaurus:
It is basically the repository of all the semantics that were identified during Enhanced

domain analysis phase. It can be implemented either by using database or simple flat

files, storing the semantics of the data. Any new semantic that is defined is stored in this

International Islamic University, Islamabad. 29

An Integrated approach for developing Semantic mismatch free COTS components

repository for future use. In fact this repository gets enriched as new semantics are

defined, with the use of the component.

4.3.2 Conflict Resolution & Thesaurus Control Mechanism:
This feature enables the EST component to resolve the mismatch and negotiate it, on the

basis of the terms defined in Semantic Thesaurus.

All the thesaurus related processing is performed by this sub-component, e.g resolve the
mismatch, add new semantics in Thesaurus, delete semantics from thesaurus etc.

It is the key feature of EST component that enables the main COTS component to
participate in mismatch detection and resolution process, and hence eliminates the

external mediation mechanism required to resolve the mismatches otherwise.

4.3.3 Thesaurus Control Interface (TCI):
All the functionality of EST component can be invoked through this interface. It is used

by CU, which after detecting any mismatch, uses this interface to forward the requests for
negotiating it.

Similarly the Semantic Thesaurus management tasks e.g. its customization by addition of
more semantics, by modification or deletion of existing semantics etc. can be performed

through this interface.

4.4 Interaction of EST supported Components:

All the calls from the target applications are first interpreted by CU. The data
accompanied by these calls is verified, and if semantic mismatch is detected, CU requests
EST component to negotiate it and after the mismatch is resolved by EST component,
CU forwards the call to MFC, which after performing the requested functionality returns
the results to CU. CU, if needed, now again requests the EST component to make the
semantics compatible with the calling application, and the results are finally forwarded to
calling application.

Interaction of EST supported components is explained with the help of diagram (Figure

6) given below.

International Islamic University, Islamabad. 30

An Integrated approach for developing Semantic mismatch free COTS components

]
1. Call Request E

'
>

2. Semantics mismatch
detected

3. Call forwarded to EST

4. Mismatch Resolved

«

5. Call forwarded to MFC

6. Task performed

7. Semantic verified
8. Call Return ’

3
cmmmmemeee]

)
[l
1
]
1
1
T
)
1
1
1
v
1
I
1
1
[
1
1
1
'
1
1
1
Ll
1
I
1
i
'
'
1
i
[l
Ll
1
1
1
1
t
1
i
1
'
1
1
1
Ll
1
]
1
]
'a
w
i

Figure 6: Interaction of EST supported component

International Islamic University, Islamabad.

31

An Integrated approach for developing Semantic mismatch free COTS components

Chapter - §

Case Studies

To prove its solidity, every new concept and idea requires concrete experiments before its
practical implementation. In order to prove the proposed solution three case studies were
implemented.

In each case study one separate mathematical component was integrated to a custom
build application. Each component was black box in nature and to keep the consistency
among results the same custom build application was used.

Finally an in-house developed math component, “eCalculus”, developed according to
proposed solution was integrated and the results were analyzed on the basis of the results.
The integration of same nature of components also proved the drawback of current

development approaches regarding the semantics of data exchanged.

5.1 MathType:

A mathematical application “MathType” is developed to prove the results. It is a custom
build application meant for providing functional support to mathematicians, scientists and
engineers regarding the basic math domains e.g. trigonometry, statistics, natural number
manipulation etc.

Implementation of MathType was completed in two steps:

* A Command Line Interface (CLI) was developed to get the input commands from
user and to show the results.
* The CLI was then integrated with three mathematical components (COTS) and in-

house developed eCalculus.

Each component was responsible to complete the command, and provide the results back
to the CLL

International Islamic University, Islamabad. 32

An Integrated approach for developing Semantic mismatch free COTS components

5.2 Wrapper code development:

In order to resolve the semantic mismatches among CLI and the integrated components,
the reconciliation mechanism was implemented. Object Oriented approach was used to
develop the wrapper code, and separate wrapper classes were implemented for
reconciliation of data with different semantics just for “separation of concerns”.

Finally the total no. of wrapper classes, developed in each case (during integration of
COTS and eCalculus), lead us to make conclusions about the size of the wrapper code

required and ultimately to the validity of proposed solution.

International Islamic University, Islamabad. 33

An Integrated approach for developing Semantic mismatch free COTS components

5.3 Case Study - 1:

In first case study a mathematical component “Extreme Optimization Numerical Library
(EONL) version 3.0” by Extreme Optimization [29] was integrated with MathType.

“EONL is the most innate numerical-library intended for the .NET framework. It has its
use in large number of applications. This library basically provides object oriented

approach without suffering any cost regarding the performance”. [29].

5.3.1 Concerns:
The intention to integrate this component was:

= To find out the no. of semantic mismatches and calculate the size/effort to write

the wrapper code for resolving these mismatches.

* To analyze the portability of the component by verify about either the component

permits or not, the easy enhancement of semantics regarding data exchange

A full 60 days trial version of EONL for .NET was used for this purpose.

5.3.2 Basic Course of actions: Narrative style
MathType needs to deal with different semantics of data for different mathematical

domains e.g. for trigonometric functions some possible semantics were Degree, Radian
and Grads Etc. Also sometime user needs to define its own semantics e.g Base-5, Base-
20 number systems etc.

However for such issues, no support was found in EONML, so the traditional approach
was followed to negotiate the mismatches. i.e. Wrapper code was developed as shown in

figure 7.

Figure 7: EONL Integration: Abstract Level
Table-4 below shows the complete list of data and possible semantics that were

concerned with MathType

International Islamic University, Islamabad. 34

An Integrated approach for developing Semantic mismatch free COTS components

Table-4: Semantics of data exchanged

Data Exchanged | Data Semantics | Description
Number System | Binary Binary number system includes 0 and 1
Octal Octal no. system includes numbers from 0-7
Decimal Has base-10 and includes numbers from 0-9
Hexadecimal Has base-16 and includes decimal numbers 0-9
and A,B,C,D,E,F
N-Number It represents a number system with any base
System provided the base is less than 35. It allows the
user to define its own semantics i.e. user can
define any number system according to its own
requirements. This option was not provided in
any component
Angle Mode Degree Unit of angle equal to 1/360 of circle
circumference.
Radians Unit of angle equal to 180/m1 degree
Gradians Unit of plane angle, equivalent to 40 of a full
circle.
N-Angle Mod It shows the user defined angle mod i.e. user

can define his own semantics depending on his
requirement. This option was also not provided

in any component

5.3.3 Wrapper Code for EONML:
In order to overcome the mismatches the wrapper code was developed, as explained

already, Object Oriented approach was used to overcome the issue, a separate wrapper

class was implemented to negotiate each type of semantic mismatch.

Table-5 shows the list of classes developed corresponding to each type of semantic

mismatch

International Islamic University, Islamabad. 35

An Integrated approach for developing Semantic mismatch free COTS components

Table-S: List of wrapper classes

Data Data Semantics | Wrapper Explanation
Exchanged Class
Number Binary CBin Converts data with binary semantic to
System any other semantic
Octal COct Converts data with Octal semantic to
any other semantic
Decimal CDec Converts data with Decimal semantic
to any other semantic
Hexadecimal CHex Converts data with Hexadecimal
semantic to any other semantic
N-Number CNmN Converts data with N-Number system
System semantics to other semantic
Angle Mode Degree CDeg Converts Degree mod to any other
mod
Radians CRad Converts Radian mod to any other
mod
Grad CGrad Converts Grad mod to any other mod
N-Angle Mod | CAmN Corcllverts N-Angle mod to any other
mo

Totally 10 wrapper classes were written to negotiate all the mismatches between

MathType and EONML where 9 classes were handling semantic mismatches and one

class “CDataConv” was written to convert data structures to make them compatible with

those of EONML data structures.

International Islamic University, Islamabad.

36

An Integrated approach for developing Semantic mismatch free COTS components

5.4 Case Study ~ 2:

During this case study a second mathematical component “Scinet Math” by “OBACS”
[30] was integrated with "MathType”.

“Scinet Math” is intended to perform basic mathematical operations in order to fulfill the
need of numerical-software-components for basic mathematical operations or highly
advanced scientific or engineering problems [30]. Some of its features include:

Numerical Differentiation

Numerical Integration

Interpolation

Optimization

Root Finding :

Ordinary Differential Equations
Real/Complex Vectors
Real/Complex Matrices

System of Simultaneous Linear Equations
LU Decomposition

QR Decomposition

Singular Value Decomposition
Eigenvalue Decomposition
Fractional Numbers

Complex Numbers

Quaternions

Bessel Functions [First/Second Kind]
Chebyshev Polynomials [First/Second Kind]
Legendre Polynomials

Laguerre Polynomials

Hermite Polynomials

Gamma Function

Permutations

Combinations

Normal Distribution

Chi-Square Distribution

Hyperbolic Trigonometric Functions
Sorting Algorithms

International Islamic University, Islamabad. 37

An Integrated approach for developing Semantic mismatch free COTS components

5.4.1 Concerns:

The intention to integrate this component was the same:

» To explore the integration time semantic mismatches and develop the wrapper

code for them

» To analyze the portability of the component by verify about either the component

permits or not, the easy enhancement of semantics regarding data exchange

A full 30 days trial version of fully functional “Scinet Math” was used for this purpose.

5.4.2 Basic Course of actions: Narrative style:
“Scienet Math” was integrated in the same as the case of EONL, with “MathType”.

(Figure 8)

Figure 8: Scinet Math Integration: Abstract Leve!

The same no. and type of errors were encountered except the there was some support for
the “Angle Mode” parameters in a way that Scinet Math supported Degree and Radian
semantics, however the semantic mismatches again occurred while dealing with “Grads”
semantic. Also there was no support for user to define its own semantics. So the wrapper

classes were written in the same way as in case of EONL.

5.4.3 Wrapper Code for Scinet Math:
Almost same amount of wrapper code was required to overcome the semantic

mismatches. For this purpose the same wrapper classes that were written for EONL were
reused except with some modification due to some extent of semantic support provided in

Scinet Math.

However “CDataConv” class was not required as there were no data format mismatch.

International Islamic University, [slamabad. 38

An Integrated approach for developing Semantic mismatch free COTS components

5.5 Case Study - 3:

In this case study the final Off the Shelf component “NMATH” by “CenterSpace” [31]
integrated with MathType.

“The NMath Suit, intended for .Net platform, provides the basic building-blocks for
engineering, financial, mathematical, and scientific applications. Matrix and vector
classes, random number generators, statistics, linear algebra, muitiple linear regression,
numerical integration methods, optimization, interpolation, biostatistics, analysis of

variance (ANOVA), and object-oriented interfaces are some of the features included”

[31].

5.5.1 Concerns:
NMath was the final case study that was implemented, to highlight the semantic

mismatches, regarding Commercial Off the shelf components and the results that were
analyzed. A no. of semantic mismatches (Table-2) were occurred for which wrapper code
was required. Also no support for defining the semantics by user was found in the

component.

5.5.2 Wrapper Code Generated
The same amount of wrapper code had to be re-written however as we had already

developed the wrapper code so those wrapper classes were used again. All the classes
defined in Table-3 were reused. Also no “CDataConv” class was required as there was no

data type mismatch.

International Islamic University, Islamabad. 39

An Integrated approach for developing Semantic mismatch free COTS components

5.6 eCalculus:

eCalculus was the in-house developed Off-The-Shelf mathematical component,
integrated to verify the proposed solution. The architecture of this component was based
on the model that was complied with the proposed design.

Possible semantics were integrated as subcomponent with in “eCalculus”, in order to
avoid semantic mismatches, and consequently minimize the external mediation.

Further more the scope of semantics with in eCalculus was kept open to enhance the

semantic thesaurus with minimum effort.

5.6.1 Application of Proposed Solution:

5.6.1.1 Semantic Thesaurus:
Semantic thesaurus was implemented using flat files, all the possible semantics were

saved in thesaurus using (Key, Value) structure.

e.g. in case of angle mode the thesaurus had following entries:

0 1 2 3 4 5

AM DEG |AM RAD |AM GRAD |AM CUST_|AM CUST_ | AM _CUST_

1 0.0174532 1.111 - - -

AM_DEG key at index “0” represents the default mode of the component i.e. component
performs all the trigonometric calculations in degree mode. AM_RAD key at index “1”
represents the value of Radian in one degree, so if any parameter is received in Radian
mode, it will be converted to default angle mode using the Keys “AM_DEG” and
“AM_RAD” by EST component’s Conflict Resolution and EST control mechanisms.
Same is the case with AM_GRAD which shows the angle mode in Gradients. For the
purpose of adding new semantics user only needs to use CU’s user interface to add the
semantics before using it, as all other responsibility is that of the EST component to add
those semantics and update the semantic thesaurus.

“AM_CUST _” keys at indexes 3, 4, 5... indicate the open scope of thesaurus where new

semantics can be added by the user. However the semantics must be defined in terms of

International Islamic University, Islamabad. 40

An Integrated approach for developing Semantic mismatch free COTS components

default angle mode of component i.e. any value of custom semantic defined by user must
be equal to 1 degree.

As eCalculus uses MOD DEG as the default angle mod for trigonometric functions, so
all the parameters for trigonometric functions that will be in “degree mode”, they will
require no conversion in their mode. However, all the other angle modes will be first
converted in “degree mode” before applying any trigonometric function on them. But one
thing the worth noting is, that any parameter received in angle mode other than “degree”
will not be considered as a semantic mismatch, unlike the mathematical components used
in previous case studies, so no external code will be required as the EST component’s
mismatch resolution mechanism will resolve the conflict by converting it to “degree”
mode by itself, after reported by CU.

Similarly the semantic thesaurus for Number Systems was defined:

0 1 2 3 4 5
NS_BIN NS_OCT |NS DEC |NS HEX |NS_CUST_ | NS CUST_
2 8 10 16 - -

Here the key “NS_BIN” represents the binary number system and the value of “2” of this
key represents the base. Similarly the key “NS_OCT” represents the octal number system
and the value “8” of this key represents the base.

The keys “NS_CUST _” at indexes 4, 5... represent the open scope of thesaurus where

user can add its own semantics.

5.6.1.2 Thesaurus Control Interface:
Component’s Control Unit (CU) uses this interface to perform the thesaurus control

tasks. E.g. addition of new semantics, resolution of conflicts et.c
Some of the sample calls by CU are:

TCI::sem_Add (“AM_CU_MAM?” | ”0.33476”),

TCI bool::sem_IsSemanticMismatch (‘AM_GRAD”)

TCI double::sem_Resolve (“AM_GRAD” , »2.34”);

International Islamic University, Islamabad. 41

An Integrated approach for developing Semantic mismatch free COTS components

Sem_Add (...) function of TCI interface is used to add new semantics to semantic
dictionary. The parameters are sent in the “Key, Value” notation. Here the new semantic
“AM_CU_MAM” is defined, which shows the new angle mode “My Angle Mode” and
the value “0.33476” shows that 1 degree = 0.33476 MAM.

sem_IsSemanticMismatch (...) is used by CU to confirm that whether the parameter
received will cause a semantic mismatch or not. And in case the true value is returned the
further call to “sem_Resolve” is made which resolves the mismatch by taking as input the
value of parameter and converting it to default angle mode, CU then passes the parameter

to MFC for required processing.

5.6.1.3 Component Control Unit (CU):
Component’s Control Unit (CU) is the traditional sub-component that intercepts all the

services requests to component. It validates all the data exchanged to/from component. In
case any mismatch is detected it then passes the data to EST component and after
receiving the validated data from EST component it then forwards the call to MFC.
Similarly before returning the data to the calling application, CU again request EST
component to change the semantics w.r.t. calling application.

Along with semantic validation CU performs all the other validations like NULL values,
extreme values etc.

For all the calls to component CU provides external interface, which can be used by other
application to invoke all the functionality provided by the component. CU internally links

to EST component and MFC.

5.6.1.4 Main Functionality Component:

MFC is the main component that provides the domain functionality, however the user
cannot pass the service request directly to MFC rather MFC receives all the requests by
CU. MFC always operates in its default mode regarding semantics, however any service
call with data other than the default semantics is first forwarded to EST component and
then to MFC, which makes sure that MFC operates on data that is semantics mismatch
free. Similarly after performing the intended functionality all the results are returned to
CU which again after validating the semantics (w.r.t target application) returns to calling

application.

International Islamic University, Islamabad. 42

An Integrated approach for developing Semantic mismatch free COTS components

5.7 Sample source code:

Following are some snippets of source code from case studies

5.7.1 CDec class:

The following code shows the “CDec” wrapper class which is responsible for converting
the data with decimal semantics to any other number system.

Public Class CDec
Public Function Dec2Bin(ByVal dec As Double) As String
Dim dval As Integer
Dim bval As String
bval = ""
dval = Normalize (dec)
Do While dval > O
bval = bval & (dval Mod 2).ToString
dval (dval \ 2)
Loop

Dec2Bin = Invert (bval)
End Function
Public Function Normalize(ByVal dec As Double) As Integer
Dim temp, normval As Integer
Dim s As String
s = dec.ToString
temp = dec.ToString.IndexOf(".")
If temp > 0 Then
s = dec.ToString.Substring(0, temp)
End If
normval = System.Convert.ToInt64(s)
Normalize = normval
End Function

Function Invert (ByVal str As String) As String
Dim charstr() As Char = str.ToCharArray
Array.Reverse (charstr)
Return charstr
End Function
Public Function Dec20ct (ByVal dec As Double) As String
Dim dval As Integer
Dim oval As String
oval = ""
dval = Normalize(dec)

Do While dval > O
oval = oval & (dval Mod 8).ToString
dval = (dval \ 8)

Loop

Dec20ct = Invert{(oval)

International Islamic University, Islamabad. 43

An Integrated approach for developing Semantic mismatch free COTS components

End Function
Public Function Dec2Hex (ByVal dec As Double) As String

Dim dval,

temp As Integer

Dim hval As String
Dim es() As Char = {"Q", "1v", "2", "3", "4",6 "5, "e", "7V,
ll8", ll9ll, llA", "Bll, "Cll, "D", IIE"’ "F", "Gll, HHH, "I", HJ", "K", "L",
llzvlll, th", "O", "P‘l, IIQ", "R", "S", IIT", "Ull, "vll, IIW", "Xll, "Y", IIZ"}
hval = ""
dval = Normalize (dec)
Do While dval > 0
temp = dval Mod 16
hval = hval & es(temp)
dval = (dval \ 16}
Loop
Dec2Hex = Invert (hval)
End Function
Public Function Dec2NSn(ByVal dec As Double, ByVal radox As
Integer) As String
If (radox > 35) Then
Return -1
End If
Dim dval, temp As Integer
Dim nval As String
Dim es() As Char = {("Q", "1vw, "2", "3",6 w4n",6 n"hH®, "g", "Iv,
"8", n9u’ "A", "B", Ilc", "D", IIE", IIF", "G", IIH", "I", IIJ", IIKH, "L",
"M", "N", nolv, "P", nQn, "R", "S", "T", "U", "vn, IIW", "X", "Y", IIZ"}
nval = ""
dval = Normalize (dec)
Do While dval > 0
temp = nval Mod radox
nval = nval & es(temp) 'GetEqualSymbol (temp)
nval = (nval \ radox)
Loop
Dec2NSn = Invert (nval)
End Function
End Class
Public Class wCOct
Public Function Oct2Dec(ByVal dec As String) As String
Oct2Dec = Convert.ToInt32(Long.Parse(dec), 8) ‘correct

End Function

Public Function Oct2Hex (ByVal dec As String) As String
OctZ2Hex = Dec2Hex(Oct2Dec(dec)).ToUpper() 'correct

End Function

Public Function Oct2Bin(ByVal dec As String) As String
Oct2Bin = Dec2Bin(Oct2Dec(dec)) 'correct

End Function

Public Function OctZNSn(ByVal dec As String) As String
Oct2NSn = Dec2Bin(Oct2Dec(dec)) 'fake

End Function

Public Function Normalize (ByVal dec As Double) As Integer

International [slamic University, Islamabad.

44

An Integrated approach for developing Semantic mismatch free COTS components

Dim temp, normval As Integer
Dim s As String
s = dec.ToString
temp = dec.ToString.IndexOf(".")
If temp > 0 Then
s = dec.ToString.Substring(0, temp)

End If
normval = System.Convert.ToInt64(s)
Normalize = normval

End Function

Function Invert(ByVal str As String) As String
Dim charstr() As Char = str.ToCharArray
Array.Reverse (charstr)
Return charstr

End Function

End Class

Public Class wCBin

Public Function Bin2Hex{ByVal dec As String) As String
Bin2Hex = Dec2Hex (Bin2Dec(dec)) .ToUpper{) 'correct

End Function

Public Function BinZ2Dec{(ByVal dec As Double) As String
Bin2Dec = Convert.ToInt32(dec, 2) 'correct

End Function

Public Function Bin20ct (ByVal dec As String) As String
Bin20ct = Dec20ct(Bin2Dec(dec)) 'correct

End Function

Public Function Normalize(ByVal dec As Double) As Integer
Dim temp, normval As Integer
Dim s As String
s = dec.ToString
temp = dec.ToString.IndexOf(".")
If temp > 0 Then

s = dec.ToString.Substring(0, temp)

End If
normval = System.Convert.ToInt64 (s)
Normalize = normval

End Function

Function Invert(ByVal str As String) As String
Dim charstr() As Char = str.ToCharArray
Array.Reverse (charstr)
Return charstr

End Function

End Class

International Islamic University, Islamabad.

45

An Integrated approach for developing Semantic mismatch free COTS components

5.7.2 Sample Interaction with EONL through wrapper:

Public Sub doOperationf()
Select Case (lastOperator)
Case "a"

temps = wrp.Add(getLastScrValue, getScreeni().ToString,
numberSystem)

clrScr ()

toScreen(temps)

Case '"s"

temps = wrp.Subtract (getLastScrValue, getScreeni().ToString,
numberSystem)

clrScr ()

toScreen(temps)

Case "m"

temps = wrp.Multiply(getLastScrValue, getScreeni().ToString,
numberSystem) ‘

clrScr()

toScreen{temps)
Case "d"

temps = wrp.Divide(getLastScrValue, getScreeni().ToString,
numberSystem)

clrScr ()

toScreen(temps)

End sub

Here “wrp” is the object of main wrapper class which receives the data, and then after
negotiating the semantics forwards the request to component, the code of the functional
wWrapper::Add(...) below shows how wrapper class first changes the semantics and then

forwards the request to EONL:

Function Add{(ByVal fv As String, ByVal sv As String, ByVal sem As
String) As String
If (sem = BINARY SYSTEM) Then
vl.SetValue(bin.Bin2Dec(Val(fv)), 0)
v2.SetValue(bin.Bin2Dec(Val(sv)), 0)
v = Vector.Add(vl, v2)
Add = (dec.Dec2Bin(v.GetValue(0)))
Elself (sem = OCTAL_SYSTEM) Then
vl1l.SetValue{oct.Oct2Dec{Val (fv)), 0)

International Islamic University, Islamabad. 46

An Integrated approach for developing Semantic mismatch free COTS components

v2.S8etValue (Oct2Dec (Val(sv)), 0)
v = Vector.Add(vl, v2)
Add = dec.Dec20ct (v.GetValue(0))
ElseIf (sem = HEXADECIMAL SYSTEM) Then
vl.SetValue (hex.Hex2Dec(Val(fv)), 0)
v2.SetValue (hex.Hex2Dec(Val (sv)), 0)
v = Vector.Add(vl, v2)
Add = dec.Dec2Hex(v.GetValue(0))
Else
vl.SetValue (getLastScrValue, 0)
v2.SetValue(getScreeni (), 0)
v = Vector.Add(vl, v2)
Add = v.GetValue(0).ToString
End If
End Function

The first two “bold” lines are changing the semantics of data to decimal and the third line
is forwarding the request to EONL. However in fourth line, the data is changed again to
make it compliance with the semantics of original application and then results are

returned back.

5.7.3 Sample Interaction with eCalculus without wrapper:

Public Sub doOperation()

Select Case (lastOperator)

Case "a"
Dim cmp = New CComponent
Dim ans = cmp.CSum(getLastScrValue(), getNewScrvValue(),
numberSystem)
clrScr()

toScreen{ans)

Case "s"

Dim cmp = New CComponent

Dim ans = cmp.CSub{getLastScrValue(), getNewScrValue(),
numberSystem)

clrScr()

toScreen(ans)

Case "m"

Dim cmp = New CComponent

Dim ans = cmp.CMul (getLastScrValue (), getNewScrValue(),
numberSystem)

clrScr ()

International Islamic University, Islamabad. 47

An Integrated approach for developing Semantic mismatch free COTS components

toScreen(ans)

Case "d"
Dim cmp = New CComponent
Dim ans = cmp.CDiv(getLastScrValue(), getNewScrValue(),
numberSystem)
clrScr()

toScreen(ans)

End Sub

Here “cmp” is the object of the component and all the service requests are forwarded to
component using the direct methods from interface, as component is itself responsible for
handling semantic mismatches so here we have no need of wrapper classes. The

following code shows a sample function from “eCalculus” component.

Public Function CSum(ByVal firstvalue As String, ByVal secondvalue As
String, ByVal inputmod As Integer) As String

If (inputmod = HEX MODE) Then
Dim fvl = Hex2Dec(firstvalue.ToString())
Dim svl = Hex2Dec(secondvalue.ToString())
CSum = Dec2Hex(fvl + svl)

ElseIf (inputmod = OCTAL MODE) Then
Dim fvl = Oct2Dec(firstvalue.ToString())
Dim svl = Oct2Dec(secondvalue.ToString())
CSum = Dec20ct (fvl + svl)

ElseIf (inputmod = BINARY MODE) Then
Dim fvl = Bin2Dec(firstvalue.ToString())
Dim svl = Bin2Dec(secondvalue.ToString())
CSum = Dec2Bin(fvl + svl)

Else
CSum = (Val(firstvalue) + Val(secondvalue)).ToString()

End If

End Function

The function itself detects the semantics of the data, converts them to component’s
default semantics using thesaurus and then performs the intended functionality, after this
the data is again converted to semantics of target application and the results are returned
back. This mechanism clearly shows how we have eliminated the intermediate mediation

mechanism by shifting the responsibility of semantic mismatch handling to component.

International Islamic University, Islamabad. 48

An Integrated approach for developing Semantic mismatch free COTS components

Chapter - 6

Validation

In order to verify the result of case studies, the wrapper code written in each case was
compared. The number of “wrapper classes” written was used to conclude about the size
of the code and finally this metric was provided as an evidence to prove the validity of

the proposed solution.

6.1 Wrapper code size and Customizability:

The number of “wrapper classes” written in each case was used as source to conclude the
size of the code. Each wrapper class contained the LOC containing 70 to 100 SLOC.

However the wrapper required in “eCalculus” was of minimum and included the only
class “CDataConv” to convert the data formats as was required in case of EONL along
with an additional parameter to “eCalculus” function calls, including the semantics of
parameter in “Key, Value” form, e.g. the following function call shows the request for the

Arch Cosine of the specified value.
IExtern::tig.cos(“0.345”, “MOD_RAD”);

Here the angle value is provided in “Radian” Mod and the key “MOD_RAD” specifies
the component to calculate the results in Radians. |
The following table (Table-6) shows the comparison of wrapper classes (code) that were

written for each of the case study

International Islamic University, Islamabad. 49

An Integrated approach for developing Semantic mismatch free COTS components

Table-6: wrapper code comparison

Data Data Semantics = | EONL | Scinet | NMATH | eCalculus

Exchanged T L ‘ = “Mgih '

Number Binary CBin \/ v | v

System Octal COct v v v x
Decimal CDec v v v x
Hexadecimal CHex v v v x
N-Number System | CNmN v v v x

Angle Mode | Degree CDeg v v v x
Radians CRad v v v x
Grad CGrad v v v x
N-Angle Mod CAmN v v v x

However in case of “Scinet Math” the classes “CDeg” and “CRad” contained less SLOC
due to some support provided for Degree and Radian modes in Scinet math.

The lesser no of wrapper classes means the minimum the size of wrapper code. Here the
size of wrapper classes was almost same.

Furthermore some state of the art metrics were used to compare and the results in context

of the size of wrapper code and customizability of the components based on the proposed

solution:
Table-7: Table of Metrics
Factors and Metrics l’ Components
Factor Metrics { EONL | Scinet MamATH eCalculus
Customizability | RCC 0 0.5 0 1
Size of wrapper | FP 2.53 2.35 2.53 0.36
code KSLOC | 0.7 0.65 0.7 0.10
WMC 4.5 5 5 2

International Islamic University, Islamabad. 50

An Integrated approach for developing Semantic mismatch free COTS components

Rate of Component’s Customizability (RCC):

The measure RCC [33] shows, how easy it is to customize a component. It is basically
the percentage of writable properties in a component -

RCC =P,(c)/ A(c)

Where Py(c) = Writeable properties in component and A(c) = Total number of properties.
The results show the highest value of P,,(c) for “eCalculus”, which ultimately proves that
“eCalculus” is easy to customize as compared to other, which was one of the objectives

of the proposed approach.

Function Points (FP):
This standard metric was basically used to measure the size of wrapper code. Backfiring

technique (used to calculate FPs from SLOC) was used to Calculate FPs. The results

obtained are shown in the graph given below:

FPs for each Wrapper Code

EONL Scinet Math NMATH eCalculus

The minimum value of FP obtained for eCalculus clearly shows the minimum effort,

required to integrate the components, based on the proposed solution.

Thousand Source Line of Code (KSLOC):
Thousand Source-Line-of-Code metric, when calculated, was found to be having
minimum valule “0.10” for “eCalculus”, which is a clear proof that we need minimum

intermediate mediation which integrating COTS based on proposed solution.

International Islamic University, Islamabad. 51

An Integrated approach for developing Semantic mismatch free COTS components

Weighted Methods Per Class (WMC):

As Object Oriented Approach was used to write the wrapper code, WMC shows the
average size of each wrapper class. In case of “eCalculus”, the average value of WMC is
“2” almost half of all the values obtained in each other case. So the size of intermediate
wrapper classes, was minimum for “eCalculus” as compared to all other components.
After analyzing the above metrics and their values, we can safely conclude about the
proposed approach that it requires the minimum amount of intermediate mediation work
and still enhancing the customizability of the component.

6.2 Customization through configuration not through adaptation:

Case studies depict yet another characteristic of the proposed solution i.e. it lets us
develop the components that can be customized by configuration and not through
adaptation.

In case of white box components we do have the source code and we normally modify
this code (or write down the wrapper) in order to make the COTS fit for our application,
where as in case of black box COTS the wrapper/glue is the only option.

However the grey box COTS do provide us the limited customization yet defining new
semantics is missing. However ’in case of semantics the proposed solution best provides
the way to customize the components through configuration without any external
mediation even you can define new semantics through configuration which is not

possible in traditional COTS design

6.3 Fault tolerance enhances with more and more reuse:

The more the reuse of EST based COTS components the more the EST enrichment, so
the fault tolerant capabilities of EST based COTS components get augmented with
passage of time and the probability of semantic mismatches eliminate (Figure 9).

This is true not only for the same version of a COTS component integrated in different

domains but also for its later versions.

Time
Fault Tolerance

Fig9: Fault tolerance Vs COTS reusability

International Islamic University, Islamabad. 52

An Integrated approach for developing Semantic mismatch free COTS components

6.4 Increase portability:

Portability of the components can be enhanced by implementing EST, as the same
component can contain and cope with multiple semantics so the same components can be
used in multiple domains with minimum effort. E.g. “eCalculus” is equally useable in
many domain (mathematics and other scientific domains) without getting semantic

mismatches (Angle Mod and Number System).

6.5 Performance:

An important feature of EST based components is that they provide all the above
discussed features without compromising the performance in terms of execution time, i.e.
the service time of the COTS will be the same as that of COTS having external wrapper
code and adherence of EST will not create any overhead.

However it will not improve the performance further regarding execution time, i.e. the
execution time of EST based components and the components without EST (but having

wrapper code) will be the same.

International Islamic University, Islamabad. 53

An Integrated approach for developing Semantic mismatch free COTS components

6.6 Conclusion:

The proposed solution presents a smooth integrated approach for developing semantic
anomalies free wrapper/glue independent COTS components for minimizing integration-
time semantic mismatches.

The proposed solution suggests a shift from the traditional COTS design by introducing
an Enhanced Semantic Thesaurus (EST) as an essential part of the COTS component.
EST stores all the possible semantics of the data exchanged to/from COTS. It enables
COTS component to detect the semantic mismatches and automatically resolve it, thus
letting the component to participate in mismatch resolution process by itself. Hence the
burdensome of developing the wrapper/glue for resolving semantic mismatches shifts
from the developer to COTS component. The proposed solution leads us to develop
COTS components which could be customized by configuration and not through
adaptation. EST also enhances the fault tolerance capabilities of COTS with passage of
time due to enrichment of EST, as the COTS is used more and more. Components
become highly portable with minimum probability of semantic mismatches, and the most
of all is that all of its features are provided without compromising any performance
measure.

It provides us further inspiration to develop COTS which could have fault tolerance not
only for semantic mismatches but for all types of architectural mismatches highlighted so

far.

6.7 Future plans:
In future, I have planned to opt for solving other types of mismatches too so that we

could develop such intelligent components which could participate in resolving all types
of mismatches (effectively and efficiently without any overhead on component) and
hence reducing the intermediate mediation up to maximum. I will try even to develop
mechanisms so that the component could expose its complete documentation by itself

without any need for paper manuals.

International Islamic University, Islamabad. 54

An Integrated approach for developing Semantic mismatch free COTS components

References:

(1]

2]

3]

[4]

(3]

(6]

(71

8]

&)

[10]

“A domain analysis and modeling methodology for Component
development”, by E. SOOK C., S. D. KIM and S. Y. RHEW. World
scientifific publishing co. international journal of software engineering

and knowledge engineering 2004. ‘

“Selecting Software components with multiple interfaces” by L. Iribarne
and J. M. Troya and A. Vallecillo. Proceedings of the 28th Euromicro
Conference, 2002 IEEE.

“Modernizing Legacy Systems”, First addition, By R. C. Seacord, P.
Daniel, G. A. Lewis. Addison Wesley 2003. ISBN-10: 0-321-11884-7.
Page-304

Y. Yang, J. Bhuta, B. Boehm. and D. Port (2005). "Value-Based Processes
for COTS-Based Applications." IEEE-Software Special Issues on COTS-
Based Development, Volume 22, Issue 4.

"No Silver Bullet: Essence and Accidents of Software Engineering." By
Jr. F. Brooks (1987), IEEE Computer, Volume 20, Issue 4.

“Attribute-Based COTS Product Interoperability Assessment” by J. Bhuta,
B. Boehm. Sixth International IEEE Conference on Commercial-off-the-
Shelf (COTS)-Based Software Systems 2007 (ICCBSS'07), pp.163-171.

Software engineering with reusable components, by Johannes Sametinger,
1997, ISBN 3-540-62695-6 Springer-Verlag page no. 11

“Supporting Component and Architectural Re-usage by Detection and
Tolerance of Integration Faults” by Martin Jung and Francesca Saglietti.
Ninth IEEE International Symposium on High-Assurance Systems
Engineering (HASE'05) 2005. pp.47-55

“Architectural Mismatch or why it’s hard to build systems out of existing
Parts” by D. Garlan, R. Allen and J. Ockerbloom. Proceedings of the 17th
international conference on Software engineering (ICSE-1995) 1995. Pp.
179.

component based softwrae engineering by George Heineman T. and
Wiolliam T. Councill, Addison-wesley, 2001

International Islamic University, Islamabad. 55

An Integrated approach for developing Semantic mismatch free COTS components

[11] “Software engineering a practitioner’s approach” by R. S. Pressman. st
edition. ISBN 0073655783. Mcgraw-Hill. Page. 721.

[12] Clements, P.C., “From subroutines to Subsystems: Component based
software development,” American-programmer, Vol. no. 8, No. 11,
November-1995.

[13] Volume II: Technical Concepts of Component-Based Software
Engineering, 2nd Edition by Bachmann et al. Technical report, CMU/SEI-
2000-TR-008, ESC-TR-2000-007 (May 2000)

[14] “Temporal logic based specification of component interaction protocols”
by J. Han, Monash University: School of Network computing.
Proceedings. of the ECOOP-2000 Workshop on Object-Interoperability
(WOTI°00), June-2000, pages 43-52.

[15] R. Weinreich, J. Sametinger, Component Models and Component
Services: Concepts and Principles, Chapter 3 of Component-Based
Software Engineering: Putting the Pieces Together, George Heineman,
Bill Councill (eds.), Addison-Wesley, pp. 33-48, June 2001.

[16] “Architectural Mismatch: Why reuse is so hard”, by D. GARLAN, R.
ALLEN, and JOHN O. IEEE Software, vol. 12, no. 6, pp. 17-26, Nov.
1995, doi:10.1109/52.469757.

[17] "A Classification of Software Component Incompatibilities for COTS
Integration." By Yakimovich D., Travassos G., and Basili V. (1999),
Proceedings of 24th Software Engineering Workshop.

[18] “A systematic methodology for developing components frameworks” by
S. Choi, S. Chang, and S. Kim, Proceedings of the 7th Fundamental
Approaches to Software Engineering Conference, 2004 , LNCS 2984, pp.
359-373.

[19] “Classifying Software Component Interoperability Errors to Support
Component Adaptation” by Steffen Becker, Sven Overhage and H.
Reussner. Springer-Verlag Verlin Heidelberg 2004.

[20] "UnSCom: A Standardized Framework for the Specification of Software
Components" by O. Sven. Weske M. and Liggesmeyer P. (Eds.): LNCS
3263, pp. 169-184, 2004.

[21] “An idealized fault-tolerant architectural component” P. Asterio de C.
Guerra, Rogerio de lemos. Workshop on Architecting Dependable
Systems, Orlando, FL, May 2002.

International Islamic University, Islamabad. 56

An Integrated approach for developing Semantic mismatch free COTS components

[22]

[23]

[24]

[23]

[26]

[27]

[28]

(29]

[30]

[31]

(32]

[33]

“Architectural Mismatch in Service-Oriented Architectures” by B. Kevin,
G. Mark and Edy Liongosari S. Proceedings of the International
Workshop on Systems Development in SOA Environments 2007.
ISBN:0-7695-2960-7. Page 4.

“Towards a taxonomy of architecture integration strategies” by Keshav R.
and Gamble R. Third International Software Architecture Workshop, Nov.
1-2, 1998.

“A Catalog of Techniques for Resolving Packaging Mismatch” by Robert
DeLine. Proceedings of the 1999 symposium on Software reusability,
May-1999, Los Angeles, CA.

“Variability design and customization mechanisms for COTS
components” by S. D. Kim et. al. International Conference on
Computational Science and Its Applications 2005. LNCS 3480/2005, pp.
57-66, 2005.

Mars climate Orbiter Mishap Investigation Board Phase-1 Report, 1999.
Stephenson AG.

“Finding Errors in components That Exchange XML Data” Mark G.,
Proceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering (ASE-2007), November 5-9, 2007.

“Analysis of Compositional Conflicts in Component-Based Systems” by
Andress Leicher et al. 4th international workshop, SC 2005. LNCS
3628, pp. 67-82

http://www.extremeoptimization.com

http://www.obacs.com

http://www.centerspace.net

“Function points languages table” version 3.0, April 2005, by
“Quantitative Software Management”, Inc.
http://www.qsm.com/resources/function-point-languages-table/index.html

“A Metrics Suite for Measuring Reusability of Software Components” by

W. Hironori et all., Ninth International Software Metrics Symposium
(METRICS'03), 2003. pp. 221.

s,
P Mhe g

International Islamic University, [slamabad.

| 57

