
Generic Metadata Repository

Undertaken by

Nighat Zehra [323-FAS/MSCS/F06]

Supervised by

Dr. Nayyer Masood

Co. Supervisor

Ms. Tehmina Amjad

Department of Computer Science

Faculty of Basic and Applied Sciences

International Islamic University, H- 10, Islamabad

In the name of Almighty Allah,

The most Beneficent, the most Merciful.

Generic Metadara Re~ositorv Final Amroval

Department of Computer Science,

International Islamic University, Islamabad.

Dated: 04-04-07

Final Approval

It is certified that we have read the thesis, titled "Generic Metadata Repository" submitted
by Miss Nighat Zehra Reg. No. 323-FASMSCSlF06. It is our judgment that this thesis is
of sufficient standard to warrant its acceptance by the International Islamic University,
Islamabad, for the Degree of Master of Science in Computer Science, MS(CS).

Committee

External Examiner
Dr. Nazir Ahmed Sangi
Associate Professor,
Depratment of Computer Science,
Allama Iqbal Open University, Islamabad.

Internal Examiner
Mr. M. Imran Saeed
Assistant Professor,
Department of Computer Science,
International Islamic University, Islamabad.

Supervisor
Dr. Najyer Masood
Associate Professor,
Department of Computer Science,
Muhammad Ali Jinnah University, Islamabad.

Co. Supervisor
Ms. Tehmina Amjad
Assistant Professor,
Department of Computer Science,
International Islamic University, Islamabad.

Generic Metadara Reuositorv Dissertation

A Dissertation Submitted To

Department of Computer Science,

Faculty of Basic and Applied Sciences,

International Islamic University, Islamabad

As a Partial Fulfillment of the Requirement for the Award of the

Degree of Master of Science in Computer Sciences

Generic Metadata Reoositorv Dedication

DEDICATION

Dedicated to my 6ehedparents, sisters, 6rotlier and

my dustiam$ theirprayers always pave the way to

success for me.

iii

Generic Metadata Re~ositorv Declaration

DECLARATION

I hereby declare that this thesis, "Generic Metadata Re~ositorv" neither in part nor in

full, has been copied from any source, except where cited; hence, acknowledged. It is further

declared that I have done this research with the accompanied report entirely on the basis of

our personal efforts, under the proficient guidance of our teachers especially our supervisors

Dr. Nayyer and Ms. Tehmina. No portion of the work being presented herein, has been

submitted to any other university, institute, or seat of learning, in support to any piece of

writing for bestowment of any other degree of qualification.

Generic Metadata Reuositow Acknowlednement

ACKNOWLEDGEMENTS

Praise to Allah, who is His infinite wisdom and benevolence, enabled me to undertake and

complete this task despite my weakness and human limitations. Words cannot express the

gratitude towards my family especially my parents, whose prayers have made me able to

achieve this goal.

I cannot express my profound gratitude to my project supervisors, Dr. Nayyer Masood and

Ms. Tehmina Amjad who went through every inch of manuscript with painstaking attention

to detail and made infinite number of helpful suggestions. There ever available guidance,

support, help and blessing has been source of encouragement for me. Moreover, they

suggested many improvements and also attempted to correct my dyslexia spellings.

Acknowledgement is also due to my teachers specially, Mr. Shahid Rauf and Mr. Imran

Saeed for dedicatedly instilling and imparting enlightenment to me during the course of

studies and afterwards for my project.

Nighat Zehra
323-FAS/MSCS/F06

Generic Metadata Reuositow Project in Brief

PROJECT IN BRIEF

Generic Metadata Repository I 11 SQL Sewer 2005

C #
XML
XMI

Intel Pentiurn IV

Windows XP II
2 1'' November, 2007 II
3 1" Dec, 2008 I1
Nighat Zehra
323-FASNSCSIF06

Ms. Tehmina Amjad

Generic Metadato Re~osilorv A bsnact

ABSTRACT

A data warehouse (DW) is a database that integrates information from various operational

sources to satisfy decision making requests. For a well performance data warehouse many

components must work together. Metadata, usually called data about data, is an important

component of DW. In this research work, we concentrate on metadata repository. We have

addressed the major problems and issues of metadata repository, these issues are:

"The repository or metadata schema is truly application specific i-e dedicated to

data warehousing"(4J

Existing repositories that we have discussed in the literature review are tool

specific. They are dependent upon platform that means repository is dependent upon

the database management system.

The problem of designing a repository schema ffom multiple operational sources.

The issue of schema integration horn multiple operational sources w.r.t DW that is

name matching.

Based on the problems and issues of metadata repository we have proposed the architecture

of generic metadata repository (GMR). GMR resolves the above mention problems. GMR

consists of following operations: (a) extract schema from XML metadata interchange 0,
(b) integrate schemas, (c) transform relational schema into star schema, and (d) store the

metadata about both schema into repository using Extensible Markup Language (XML)

documents.

Keywords

Data Warehouse, Metadata Repository, Schema Integration, Schema Transformation.

Generic Metadata Rmository Table o f Contents

TABLE OF CONTENTS

Page
...

DEDICATION ... (111)
DECLARATION ... (iv)

ACKNOWLEDGEMENTS .. (4

PROJECT IN BRIEF .. (vi)

ABSTRACT ... (vii)

TABLE OF CONTENTS .. (viii)

LIST OF FIGURES .. (4

LIST OF TABLES ... (x)

... CHAPTER 1 INTRODUCTION 1

... 1.1. Architecture of Data Warehosue 3

1.2. Components of Data Warehouse ... 4

... 1.3. Scope 6

... 1.4. Objectives 6

... 1.5. Problem Satetment 7

... 1.6. Approach 7

1.7. The thesis .. 7

CHAPTER 2 LITERATURE SURVEY .. 9

.. 2.1. Literature Survey 11

... 2.2. Problem Statement 25

CHAPTER 3 RESEARCH METHODOLOGY .. 26

... 3.1. Scope of proposed Solution 28

3.2. Methodology .. 28

CHAPTER 4 SYSTEM ARCHITECTURE .. 38

.. 4.1. System Design 39

.. 4.2. System Architecture 47

... 4.2.1 GMR Architecture Context Diagram 47

4.2.2 GMR Three Tier Architecture Flow Diagram 48

4.2.3 GMR Architecture Flow Diagram .. 49

4.2.4 Components of Architecture ... 49

viii

Generic Mefadafa Reoosiforv Table o f Confenfs

.. 4.3. Behavioral Description 51

... CHAPTER 5 IMPLEMENTATION 54
.. 5.1. Technology 55
... 5.2. Algorithms 57

CHAPTER 6 EXPERIMENTAL RESULTS .. 67
... 6.1. Match Result 69

.. 6.2. Merge Result 71
.. 6.3. Transform Result 72

CHAPTER 7 CONCLUSION ... 74
... 7.1. Conclusion 75

... 7.2. Future Work 76

APPENDICES ... 77

Appendix A: Screen Shots ... 78

... Appendix B: References 87

Generic Metadafa Reuositorv Table o f Contents

LIST of FIGURES

... Figure 1-1: Architecture of Data Warehouse 3

Figure 2-1: Distribution of data and metadata in data warehouse 13

Figure 2-2: Data Warehouse System .. 16

Figure 2-3: Star Schema ... 21

Figure 2-4: Star Schema Example ... 22

... Figure 4-1: Viewpoints Hierarchy 40

... Figure 4-2: GMR Architecture Context Diagram 47

.. Figure 4-3: The GMR 3-tier Architecture 48

Figure 4-4: The GMR Architecture Flow Diagr am ... 49

.. Figure 4-5: State transition diagram 53

Figure 6-1 (a): Example Schema 1 .. 68

.. Figure 6-2 (b): Example Schema 2 69

LIST of TABLES

Table 2-1: Commercial Repository Approaches 131 .. 14

.. Table 2-2: Different categorizations of SI process 23

... Table 6-l(a): Matching Result 69

... Table 6- 1 (b): Matching Result 71

... Table 6-2(a): Merging Result 71

... Table 6-2(b): Merging Result 72

Table 6-3: Transformation Result (Dimension Columns) .. 73

.. Table 6-4: Transformation Result (Fact Columns) 73

Chapter 1

INTRODUCTION

Chapter 1 Introduction

Introduction

The data warehouse is a database that is designed and used for decision making in an

organization or enterprise. It contains huge amount of data that is historical and static in

nature. Different analytical tools and techniques are applied in the large repository of data to

extract non-obviouslhidden information which is used in the decision making.

The data warehouse is defined in [I] as "a subject-oriented, integrated, time varying, non-

volatile collection of data that is used primarily in organizational decision making".

Typically, the data warehouse is maintained separately from an organization's operational

databases, the databases that contain data for day to day operations and reporting. However,

these operational databases serve as data source for the data warehouse. It means that the data

that has come obsolete from the operational point of view and that has been set aside on a

backup medium that data is moved in data warehouse to perform analytical operations. So,

the data in the data warehouse is used for, what is called, the on-line analytical processing

(OLAP). The functional and performance requirements for the OLAP are quite different from

those of the on-line transaction processing (OLTP), the applications traditionally supported

by the operational databases [I I].

The data warehouse is designed based on what kind of information is important in company's

decision making process e.g. sales, marketing, inventory and accounting etc, and it adopts a

specialized schema design for maximum efficiency and performance.

The structure of this chapter is as follows: Section 1.1 describes the typical architecture of

data warehousing and the process of designing and operating a data warehouse. Section 1.2

gives the components of data warehouse. Section 1.3 and 1.4 provides a scope and objective

of the research project. Section 1.5 identifies the problem statement. Section 1.6 discusses the

approach that I have followed in my research and finally section 1.7 gives the overall

architecture of the thesis.

Generic Metadata Repository 2

Chapter I Introduction

ability to do complex analysis using the information in the data warehouse. The power user

wants to be able to navigate throughout the data warehouse, pick up interesting data, format

his own queries, and create custom reports and ad hoc queries. In order to provide

information to the wide community of data warehouse users, the information delivery

component includes different methods of information delivery. Ad hoc reports are predefmed

reports primarily meant for novice and casual users.

1.2.5) Metadata:

Metadata in a data warehouse is similar to the data dictionary or the data catalog in a

database management system. In the data dictionary, we keep the information about the

logical data structures, the information about the files and addresses, the information about

the indexes, and so on. The data dictionary contains data about the data in the database.

Similarly, the metadata component is the data about the data in the data warehouse. The

focus of our research is the design of metadata and the metadata repository so here we are

going to discuss the metadata in detail.

Metadata is data about data that describes the data warehouse. It is used for building,

maintaining, managing and using the data warehouse. Metadata can be classified into:

(i) Technical metadata, which contains information about warehouse data for use by

warehouse designers and administrators when canying out warehouse

development and management tasks.

(ii) Business metadata, which contains information that gives users an easy-to-

understand perspective of the information stored in the data warehouse.

Metadata management is provided via metadata repository. Metadata repository management

software can be used: to map the source data to the target database; generate code for data

transformations; integrate and transform the data; and control moving data to the warehouse.

The repository offers a way to understand what information is available, where it comes

from, where it is stored, the transformations performed on the data, its currency and other

important facts about the data. Metadata has however taken on a more visible role among

Generic Metodata Repository 5

Chapter I Introduction

day-to-day knowledge workers. Today it serves as the main catalog, or map to a data

warehouse.

The central metadata repository is an essential part of a data warehouse. Metadata can be

generated and maintained by an ETL tool as part of the specification of the extraction,

transformation and load processes. The repository can also capture the operational statistics

on the operation of the ETL process. Ideally, access to data definitions and business rules in

the metadata repository should be end user accessible.

The research work in this thesis is about a Generic Metadata Repository (GMR) for data

warehouse systems, which aids such systems to reuse the repository. The following

paragraphs will describe the summary of my thesis work.

1.3 Scope

The target here is to create a generic metadata repository, which is not restricted to only one

data warehouse. The generic integration and transformation methods are proposed. Some

major tasks of this research are:

Architecture for GMR is investigated and developed

Prototype of GMR is developed

1.4 Objectives

This research project is developed for a reusable component so that any other organization

can reuse this component. Keeping this thing in mind our objectives is to store the metadata

of operational source and data warehouse into the metadata repository based on XML

documents (having schema information) so that these documents can be used by any other

organization.

Generic Metadata Repmitoy 6

Chapter 1 Introduction

1.5 Problem Statement

The metadata repository is applicatiodorganization specific so it can not be reused by any

other applicatiodorganization. We have developed a Generic Metadata Repository (GMR).

The work of the GMR will be demonstrated with the help of "student information system".

We have also discussed the problem of designing a schema fiom multiple operational

sources. We have identified an issue of schema integration that is name matching and it is

solved by our proposed semi automatic approach CSI.

1.6 Approach

The first step is to investigate the best suitable programming language for the planned GMR

which will be C# (pronounced C Sharp) and XML. The reasons for preferring over other

programming languages will be elaborated in chapter 5. The first step is followed by an

architecture design and generic operations are defined. And then the development of the

sample GMR can begin.

The architectural design of the system is as following. The GMR will convert the E-R

schema into XMI schema using visual paradigm. After conversion, system will extract the

schema from XMI file and apply the integration process to integrate schemas. After

integration, integrated schema is then transformed into data warehouse schema that is the

'star schema'. The metadata of both schemas are stored into the metadata repository using

XML documents. This repository can be reused by any other organization for creating their

data warehouse.

1.7 The Thesis

The rest of the document has been divided into following chapters:

Chapter 2 is "Literature Survey". We include different research papers to highlight (i)

the importance of metadata repository in data warehouse, (ii) the problem of

designing integrated schema from multiple operational sources, (iii) the approaches of

schema integration, and (iv) the concept of schema transformation. After

Generic Metadafa Repository 7

Chapter I Introduction

summarizing these research papers we have identified the problems in the areas of

metadata repository.

Chapter 3 is "Research Methodology" which describes the solution for the problem

statement i.e. generic metadata repository; it gives the research methodology and also

describes the approach that we have adopted in our thesis.

0 Chapter 4 is "System Architecture" that presents the design and architecture of the

proposed solution.

0 Chapter 5 is "Implementation ", in which the description of the languages and tools

are given and the details of the prototype that is developed.

Chapter 6 is "Experimental Results ", in which different schema are tested on

implemented techniques.

Chapter 7 is "Conclusion" that briefly concludes the thesis and References are given

at the end.

Generic Metodata Repository 8

Chapter 2

LITERATURE SURVEY

Chapter 2 Literature Survey

Literature Survey

A data warehouse combines different data sources into a single data source for end user

access. End user can perform querying and reporting of warehouse information. "The goal of

data warehouse is to create a data repository that makes operational data available in a form

that is acceptable for decision support and other applications"[l6].

Metadata is one important concept that plays a fundamental role in the data warehousing

environment. Metadata (meta data, or sometimes meta information) is "data about datan[l7]

and has to be referred for any kind of access or operation in the data warehouse. That is,

whenever a user poses a query the DBMS or a DW tool has to refer to metadata for verifying

the correctness of query, for the existence of required data, to find the location of data in the

repository, to set an efficient mechanism to access data, to know the format of data to read

and present it in a proper format. Similar types of references to the metadata are also required

when something is to be written into the DW. This explains the role and importance of

metadata in the DW operations. Authors in [I] mention the same fact as: Metadata is used in

data warehouse in a various ways:

- It is used to help the decision support system analyst lo locate the contents of data

warehouse.

- It is a guide to the mapping of the data from operational system to data warehouse.

The nature of data stored in the metadata includes data about attributes or elements, (name,

data type, size, etc) and data about data structures or records (columns, length, fields, etc) and

data about data (location of data, how it is associated, etc) [17]. Data warehouse metadata are

the pieces of information that is stored in one or more special purpose metadata repositories

that includes (a) information on the contents of data warehouse, (b) information on the

processes that take place in data warehouse, and (c) sources of data warehouse and so on

P31.

Generic Metadata Repository 10

Chapter 2 Liferamre Survey

CM is transferred into logical modeling. In multidimensional modeling where target

databases are relational or multidiiensional. In relational implementations are star,

snowflake etc. in multidimensional implementations are cubes, dwarfs.

There is an issue of semantic gap between conceptual data models and relational or

multidimensional implementation of data cubes. No solutions can cope with

generalizationlspecialization relationships in OLAP hierarchies, how to represent dimension

constraints, or less expressive content dependencies. "Future research is required to bridge

the semantic gap i-e to preserve all information captured by CM in logical

implementations"[7].

"Research on DW modeling and design is far from being dead, because more sophisticated

techniques are needed for solving known problems because of new problems raised during

the adoption of DW to requirements of today's business"[7].

2.1.2 Data cleaning: problems and current approaches

To improve the data quality by fmding and removing the errors is done by data cleaning.

Data quality problems are present in single sources and multiple sources. The need of data

cleaning increases in multiple sources [21]. This paper presents the ETL processes. Data

cleaning is a part of ETL. All data cleaning is performed in data staging area. "Federated

database system and web-bases information systems face data transformation steps similar to

those of data warehouses"[21]. There is a wrapper for extraction and mediator for

integration. To minimize the manual inspection data cleaning tools should be supported.

Paper presents the data quality probIems. Single source problems at schema level are

uniqueness violation; referential integrity violation, illegal values and problems at instance

level are missing values, misspellings and duplicate records. The main problem w.r.t schema

design is naming conflict [21][24]. Naming conflict occurs when the same name is used for

different objects (homonyms) or different names are used for the same object (synonyms).

Multiple source problems are naming conflict, structure conflicts or to identify overlapping

data. To solve these problems schema integration and data cleaning is required.

Data cleaning consists of different phases: data analysis, definition of transformation

workflow and mapping rules, verification, transformation, backflow of cleaned data.

Generic Mefadota Repository 12

Chapter 2 Literature Survey

Transformation process requires large number of metadata [21]. For schema translation

following steps includes extracting values free form attributes, validation and correction, and

standardization. Different tools are available for data transformation and cleaning. Some

tools are domain specific e.g. cleaning name and address data.

2.1.3 On metadata interoperability in data warehouse

The use of data warehouse depends on effective management of metadata. Metadata

describes all warehouse data that is obtained from multiple sources. It is maintained in

central warehouse and accessible in various ways e.g. for querying, OLAP, navigation.

Metadata management is required for high quality of warehouse data and provides the

flexibility to extend the scope of warehouse. Data warehouse integrates multiple

heterogeneous data sources. Data integration is based on integration of metadata. "Metadata

integration also has to deal with heterogeneity as source systems substantially differ in the

degree and form they provide describing metadata." [3]

Metadata of operational sources describes the structure, semantic, meaninghl names and

describing comments. Perquisite to metadata integration is metadata interoperability (the

ability to exchange metadata between components of data warehouse). This paper presents

the environment of data warehouse as shown in figure 2-1.

Figure 2-1: Distribution of data and metadata in data warehouse 131

Generic Meradata Repository 13

Chapter 2 Literature Survey

It consists of file system, DBMS, Data warehouse, Data mart, tools for data modeling, ETL

tasks, OLAP, querying. All of these components maintain metadata e.g. database catalogs,

dictionaries, or tool specific repositories.

Metadata is accessed by different components so shared metadata needs to flow between

components as it is results in metadata replication. The use of different metadata models

makes complex metadata interoperability between components. "Consistently supporting

shared metadata is thus crucial for data warehouses. Repository support is needed permitting

tools and other data warehouse components to access, create, and extend shared

metadata."[3]

This paper discusses the interoperability issues for metadata management that is based on

three dimensional classifications of major types of metadata. Author proposes a classification

scheme for data warehouse metadata differentiating along the dimension data, process and

users.

In the paper author, discusses the architectural alternatives for management of shared

metadata. There are different approaches centralized, decentralized, shared or federated and

mixed approach. Some interoperability mechanism like file exchange, repository API,

metadata wrapper and comparison of commercial repository products are also discussed.

There are several commercial repository solutions for data warehouse metadata management

is discussed. Major features of these products with respect to the metadata model, metadata

interoperability, and other functions are shown in table 2-1 [3]. In the table 2-1, we have seen

that the Microsof? repository is based on the Microsoft technology.

Generic Metadata Repository 14

Chapter 2 Literature Survey

Table 2-1: Commercial Repository Approaches [3j

2.1.4 The role of metadata for data warehousing

Metadata is used to store the meaning or properties of data. The purpose of metadata is to

better understand, manage and use that data. Metadata facilities managing, querying,

consistent use and understanding of data. This paper gives an overview about the role of

metadata plays for data warehousing. "Data warehousing is a collection of concepts and tools

which aims at providing and managing a set of integrated data (the data warehouse) for

business decision support within an organization."[4]

Generic Metadata Repository 15

Chapter 2 Literature Survey

It captures all kinds of information necessary to extract, transform and load data from source

systems into data warehouse. Paper presents the architecture of data warehouse systems as

shown in figure 2-2. Main components of this architecture are data sources, ETL, Data

Warehouse, Data Mart, Metadata repository. Metadata repository plays a main role in every

phase on data warehousing. Metadata helps the user to understand the content of warehouse.

Figure 2-2: A Data Warehouse System 141

Metadata may be use in three different ways [4]:

Passively: by providing a consistent documentation about structure development process and

use of data warehouse.

Generic Meladata Repository 16

Chaprer 2 Literature Survey

Actively: by storing semantic aspects e.g. transformation rules that are represented and

executed at runtime

Semi-actively: by storing static information. In it metadata is only read but not executed at

runtime.

The two purposes for generation and management of metadata are:

1. To minimize the efforts of development and administration

2. To improve the extraction of information fkom it

Metadata stored and maintained in repository. "Metadata needs for a specific application

domain (like data warehousing) actually impose the repository structure (e.g. the metadata

schema) and the semantics of metadata to be stored. " [4]

The interaction of any component with the repository requires some mechanisms. Change

management deals with handling of changes inside or outside the repository. Repository

supports version and configuration management "The repository meta model or metadata

schema is buly application specific i-e dedicated to data warehousing"[4].

The centralized approach to data warehouse metadata management can be realized by

general-purpose repository. There are some general purpose repositories available.

UREP is an object oriented extensible repository. It provides Version control,

transactions, user and session management, metadata service, defming object

modeling constructs, extending UREP information model, reusing object types and

operations and extending repository functionality. It has been licensed by different

companies.

Microsoft Repository is an object oriented extensible repository. It is targeted towards

software vendors and users wishing to support the management of metadata in a

variety of scenarios including software development and data warehousing.

Platinum Repository is based on the Em approach. It provides full bi-directional

interfaces to many CASE tools including Erwin, Bachrnan, SterlingICaye~e and

Oracle Designer.

Generic Melodoto Repository 17

Chapter 2 Literature Survey

2.1.5 The process of metadata modeling in industrial data warehouse

environments

There are different types of application using data warehouse (DWH) to fulfill the needs of

different users. Metadata management system (MDMS) is the best way to provide the data

flows and structures. Current metadata models not provide all the needs of possible metadata

applications. "Standardized metadata models defined by yroups of companies exist but they

can not contain all possible kinds of metadata another company may require"[8]. A metadata

model is a set of elements which are needed to implement the metadata schema. This paper

shows the process of creating metadata model as small and simple. "The goal of this paper is

not to show a new metadata model this is applicable to any DWH environment"[8]. In DWH

there are two main metadata standards: Common warehouse model (CWM) and Resource

description h e w o r k (RDF). In data warehousing there are three main areas of interest if

we consider from data flow to reporting tools that DWH users work. The first area is ETL i-

e a part of DWH. The second interest is reporting system or end user access. This is also

defined as data mart. "A data mart is a component of a DWH which can be used for querying

a defined subset of all DWH data9'[8]. The third area is metadata management. Metadata

answer different questions, this paper limited to answer three questions that are.

'Where does data come from? Where does data belong to? (Ql). How is data transformed,

calculated, aggregated, etc.? (Q2). What meaning do data have? (Q3)'[8].

These questions lead to three possible dimensions. The first dimension is level of detail of

metadata answers to Q1. The second dimension contains not only physical position but also

the level of change of data that answers 42. The third dimension contains level of abstraction

shows which metadata belong together by content.

"Adding unstructured metadata to MDMS metadata model is not currently possible"[8].

These three dimension shows there are many possible solutions in metadata modeling.

RDF provides the opportunity to create a metadata model that covers three dimensions. RDF

is basic metadata model. It is based on triple statements {subject, predicate, object). A

subject is a resource like a column in a data model. The object is an attribute like a column

definition. The kind of relationship that connects an object to a subject is defined by

predicate. The most common relationship is p/c which could model as a tree.

Generic Meiadaia Repository 18

Chapfer 2 Literature Survey

Representation and navigation through data model is addressed by first dimension of

metadata. If more than one tree is based on more than one data models then RDF is used to

link them. With this feature data flow can be model. To add object oriented feature to a RDF

statements RDFS is needed. RDFS offer predicates to define resources as classes and as class

instances.

There are two types of data schemas stored in MDMS (data schemas from productive

databases and enterprise information model). The navigation through metadata inside both

schemas is solution of lSt dimension. The links between all schemas span 2"* dimension. And

connection of entities from both schemas realizes third dimension.

Metadata integration and mapping is simple and limited because of importing database

schemas from one single tool. Paper describes the metadata schema of MDMS built using its

metadata model and gives a short overview of its implementation.

A metadata models are getting more complex over time and amount of relations between

them grow so need of model operators is getting urgent. These operators have been defined

in generic model management that is established in relation databases but not yet in RDF

repositories.

"The future development of MDMS is combination of application metadata with database

metadata. This will help to answer about which data were accessed or changed by which

process"[S].

2.1.6 Repository support for data warehouse evolution

Data warehouse consist of many components which store data for decision making. It can not

designed in one step usually change over many years. To design it first starts with creating

local data mart. Data marts are easier to implement then the enterprise-wide data warehouse.

Data warehouse can be virtual/distributes. Data warehouse is different from OLTP systems.

Data quality is important in data warehouse. Process model includes the processes like data

loading or update propagation but the process model is specialized to deal with evolution

processes. "The advantage of our proposed approach is that all relevant metadata of a data

warehouse (architecture, quality, process and evolution information) are stored in a central

repository"[6]. The information in the repository is used to find the deficiencies in data

warehouse. Data stores can make changes due to some reasons like changes to physical

Generic Metadafa Repository 19

Chapter 2 Literature Survey

properties of the source, business rules, user requirements agents of all types can change new

algorithms, rules, and so on. If any quality problem occurs then metadata repository is used

to check which quality problem is there. There is a future work that the proposed models will

be refined and extended to cove r new aspects of data warehouse processes.

2.1.7 Generic schema matching with cupid

Schema matching is an important step in schema integration. Data warehouse loading match

is an operation that takes two schemas as input and returns corresponding elements. Today

schema matching is doing manually and sometimes using a graphical tool but a minor name

variation leads them to astray. Author says that match operation should be independent

component and it must be generic means it can apply to many difference application

domains. First of all schema matching problem discusses that focuses on a semantics of data

may not completely capture in schema so user validation must be there. The goal is to match

two schemas and find the mapping and give it to the user for validation.

Taxonomy of matching techniques

"Schema matchers can be characterized by following criteria (a longer s w e y based on this

appears in [9]".

1 - schema vs instance level

Schema based matcher consider only schema information and instance based consider only

data.

2- element vs structural

An element based matcher find a mapping between individual schema elements and structure

level matcher match combinations of elements.

3- linguistic based matcher

It matches the names of schema elements and other description. It compares the equality of

names, comparing synonyms and WorldNet[lO].

This paper proposes a new schema matching component i-e cupid. To be generic it has some

characteristics that are discussed in [9]. The cupid approach is schema based not an instance

based. In the paper algorithm of cupid is summarizes with an example. There is a future

work of integrating cupid with an off-the-shelf thesaurus and enhance the cupid to make it a

Generic Metadata Repository 20

Chapter 2 Literature Survey

truly general purpose schema matching component so that can be used for schema

integration[9].

2.1.8 From enterprise models to dimensional models: A methodology for data

warehouse and data mart design

Data warehousing is an important application of database technology. The most important

issue of data warehouse is how to design database to support end user queries. In this paper,

the design of data warehouse is based on an enterprise data model represented in entity

relationship fonn.

"Kimball proposed a new technique for data modeling specially for designing data

warehouses, which he called dimensional modeling"[l3]. The objective of the dimensional

modeling is to provide a database design that is easy for end user to understand and write

queries. Another objective is efficiency of queries is maximized. Kimball began with the data

mart as a dimensional model for departmental data and viewed the data warehouse as the

enterprise wide collection of data marts. This is bottom up approach. Dimensional modeling

begins with the tables rather than entities or attributes such as ERDs. The basic building

block that is used in dimensional modeling is star schema. A star schema consists of one

central table that is called fact table and a number of tables called dimension tables that are

linked with fact table as shown in figure 2-3.

-
Figure 2-3: Star schema

The center of the star is the fact table, while the points of the star are the dimension tables.

The primary key of the fact table is the combination of primary keys of all dimension tables.

Generic Mefadafa Reposilory 2 1

Chapter 2 Literature Survey

A fact table contains the measurements. The fact table is linked to all dimension tables with

one to many relationships. The dimension tables contain the textual attributes. An example of

star schema is shown in figure 2-4.

Sales Sumrnarv

Figure 2-4: Star schema example

The advantage of using star schema is that it reduces the number of tables in database and the

number of relationships between them and the number of joins.

Kiball's[l3] design approach is the fist approach it contains following steps. It begins by

identifying the facts that need to be aggregated and then dimensional attributes to aggregate

by and forming star schema based on these. There are different data warehouse design

approaches that are discussed in [12] e.g. star schema, snow flake schema and so on.

2.1.9 Conceptual and context based combination of schema matchers

Schema matching is an important operation of schema integration which is a basic problem

in many database applications, like data warehousing, E-commerce [18]. Schema matching

takes two schemas as input and produces correspondence between schema elements.

Different schema matching approaches SemInt, SKAT and COMA are discussed in [19]. In

this paper, author proposed a semi automatic schema matching approach. This approach is

conceptual and context based combination of schema matchers (C3SM). It has following

features concept based matching and correspondence between elements is established. It uses

the hybrid matchers that are the combination of different matchers. In future, author wants to

Generic Metadata Repository 22

Chapter 2 Literature Survey

In the following subsection, I discuss the above mentioned phase of SI that is, merging and

restructuring.

2.1.10.1 Merging and restructuring

Once the component schemas are conformed, they are merged by means of superimposition

of common concepts giving rise to some intermediate integrated schema(s). The intermediate

results are analysed, and if necessary restructured in order to achieve several desirable

qualities. An integrated schema may be tested against the following qualitative criteria:

- Completeness and Correctness: The integrated schema must contain all concepts present

in any component schema correctly. The integrated schema must be a representation of

the union of the application domains associated with the schemas.

- Minimality: If the same concept is represented in more than one component schema, it

must be represented once in the integrated schema.

- Understandable: The integrated schema should be easy to understand for the integrator

and for the end (global) users. This implies that among the several representations of

results of integration allowed by a data model, the one that is (qualitatively) the most

understandable should be chosen.

Conclusion of Literature Survey

As we have seen the "Literature Survey", we have discussed different areas to highlight the

problems. We have discussed the two main issues that are the metadata repository is

important for a data warehouse and it is a complex task to establish a metadata repository

especially from multiple operational sources.

As we have seen the current survey, the schema design from multiple operational sources

w.r.t data warehouse is not much focused. However, due to specific needs of the data

warehouse domain, the problem of fetching metadata from multiple operational sources must

be studied in the perspective of data warehousing specifically. We have also identified the

problem of schema integration that is naming conflict. Based on this problem, we have given

the detail of schema integration, which consists of schema matching and schema merging. In

Generic Metaduta Repository 24

Chapter 2 Literalure Survey

the literature survey, we have also discussed the schema matching technique and the concept

of schema transformation.

2.2 Problem Statement

Staudt, M [4] discovered a problem "that metadata repository is truly application specific i-e

dedicated to data warehousing". Research on metadata that we have discussed in the

literature survey had considered that the metadata repository is applicatiodorganization

specific so it can not be reused by any other applicatiodorganization. This approach has

following problems:

The application based repository is used for only a specific application of hctional

purpose and can not be reused by any other data warehouse. So we have to build it for

every organization. It required more time and work to build a repository for every

organization.

The existing repositories that we have discussed in the literature review are the tool

specific. They are dependent upon platform that means repository is dependent upon

the database management system. Only those can be used which are supported by

database management system. Rochade and Platinum [4] repository documentation is

not publicly available which makes problem in adoption of their proposals.

Based on the literature survey we have seen that the problem of multiple operational

sources that is naming conflict. This problem occurs when we are doing schema

matching i- a part of schema integration. Here, we are going to focus this problem.

Name matching works under the assumption that if it has two schema elements have

same names they model the same. This may result some very ambiguous results e.g.

name could be of an institute or of a student.

Based on the survey, we have seen that there is a need to integrate the schema

technique C3SM [19] with schema merging so that it could be used in any

gration application like data warehousing.

is a clear need for metadata repository within data warehouse, so that to

better facilitate data warehouse developer, and to make the repository generalize so that reuse

of repository can be possible. The remainder of this thesis presents a new methodology for

metadata repository.

Generic Mefadata Repository 25

Chapter 3

RESEARCH

METHODOLOGY

Chopter 3 Research Methodology

The structure of this chapter is as follows. Section 3.1 gives the scope of GMR. Section 3.2

provides the methodology of research that we have adopted.

3.1 Scope of the proposed solution

The scope of the research work is as follows:

0 Propose an architecture of GMR

Propose a semi automatic approach of schema integration based on C3SM [I91

Develop generic operations for schema integration and transformation

Implement a prototype

3.2 Methodology

This section describes the methodology of the proposed solution and presents the different

phases into which the methodology has been classified. Following is a brief description of

this proposed methodology.

The tasks of the proposed generic metadata repository methodology are: first to convert the

E-R schema into XMI schema. After conversion into XMI schema, system will extract the

schemas from XMI files and analyses the schema for schema matching and merging. The

merging is applied on schemas to establish an integrated schema. After integrating the

schema, integrated schema is transformed into the data warehouse schema. Both integrated

schema and the transformed schema information is stored into the XML documents.

3.2.1 Phases of the proposed methodology

The methodology proposed in this thesis (GMR) decomposes into four phases. These are:

3.2.1.1 Conversion and extraction, in which Entity Relationship schemas are converted into

the XMI and then schema information is extracted;

3.2.1.2 Schema integration, in which schema elements are compared and merge into a single

schema;

3.2.1.3 Schema transformation, in which the integrated schema is converted into the data

warehouse schema i-e star schema; and

Generic Meradara Repository 28

Chapter 3 Research Methodology

3.2.1.4 Storing into XML documents, in which the metadata of integrated schema and the data

warehouse schema is stored into the generic metadata repository.

The major activities involved in the proposed methodology along with the phases are given

below:

3.2.1.1 Conversion and extraction

The aim of conversion activity is to convert an Entity relationship schema of any data source

into the XML metadata interchange (XMI). After converting into XMI schema, the process

of extraction is perform. This extraction process extracts the schema information using an

algorithm so that this schema information is used in the next phase.

3.2.1.2 Schema integration

The aim of this activity is to integrate two schemas. Using the extraction procedure we can

get schemas and then we will integrate them into one schema. Schema integration consists of

two sub-processes:

(i) Schema matching

(ii) Schema merging

Schema matching and Schema merging:

Schema matching means comparing two schema's to find the semantic relationship between

two schema's. Schema merging is the process of integrating several schemas based on their

matching into a single schema.

"Currently, schema matching is typically performed manually and perhaps supported by a

graphical user interfacen[9]. Obviously, manually specifying schema matches is a tedious,

time consuming, error-prone, and therefore expensive process. In 191, author says that match

operation should be independent component and it must be generic means it can apply to

many difference application domains. This requires automated support for schema matching.

To provide this automated support, we would like to see a generic, customizable

implementation of Match that is usable across application areas. But full automatic match can

not be performed because of heterogeneity. Fortunately, there is a lot of previous work on

schema matching developed e.g. CUPID, MOMIS and DIKE discussed in [9]. We identify

Generic Metadata Repository 29

Chapter 3 Research Methodology

the problem of name matching in problem statement section. This problem is recovered by

applying multiple matchers jointly. We also identify that there is a need of integrating

schema matching approach with schema merging. So we have proposed a semi automatic

schema integration approach CSI that handles the above problems of name matching by

using the concept of C3SM [I91 and handles the integration problem.

C3SM based Schema Integration (CSI):

The CSI is a novel schema integration approach with following features:

It uses multiple matchers, and

It provides the integrated schema

The match operation takes two schemas as an input and produces a matching result that

which elements of the input schemas are logically related to each other. The matching results

specify the matching elements with a value between 0 and 1. A 0 indicates total

dissimilarities and 1 indicates strong similarities. Based on 0 and 1 matching values merging

operation is applied. At the merging stage there is an option that is given to the user that

select one schema whose naming will be applied to the integrated schema.

To perform schema matching and merging we are using Word Net 1.6 [lo] dictionary but

there are few words that are specific to domain and the dictionaries available to us does not

contain these words. For example, Student-Id, Emp-Id. Here student id is roll no or

registration number and Emp-Id is related to Employee Id or Social Security Number. But

here Emp-Id is acting as abbreviation for Employee Id. We could not find this information in

Word Net dictionaries and to perform matching and merging with the use of such kind of

words we have to create our own dictionary which stores these words. This dictionary is

custom (user-defined) dictionary which contains three kinds of words.

Word

Synonym

Abbreviation

Matchers of CSI:

In this section, we are discussing the matchers of CSI. In CSI we combine Exact, Synonym,

Abbreviation and Dice Matcher and Merger.

Generic Metadata Repository 30

Chapter 3 Research Methodology

(i) Exact Matclzer and Merger

In exact matcher, there is character to character matching involved. For example:

Student = Student

Teacher = Teacher

If matcher produces a value of 1 it means match between elements is found and exact

merger is applied to merge the elements, otherwise if matcher produces a value of 0 it

means match does not found and exact merger is not applied.

(ii) Synonym Matclzer and Merger

In synonym matcher, synonyms are used from WorldNet Dictionary and also from

our own user defined dictionary. For example:

0 University = Institute

0 Writer = Author

Instructor = Teacher

If matcher produces a value of 1 it means match between elements is found and

synonym merger is applied to merge the elements, otherwise if matcher produces a

value of 0 it means match does not found and synonym merger is not applied.

(iii) Abbreviation Matclier and Merger

In abbreviation matcher, custom dictionary is used to match the schema elements. For

example:

Registration Number = RegNo

0 First Name = FName

Student = std

If matcher produces a value of 1 it means match between elements is found and

abbreviation merger is applied to merge the elements, otherwise if matcher produces

a value of 0 it means match does not found and abbreviation merger is not applied.

(iv) Dice Matclier and Merger

In dice matcher, we have defined a formula named as dice formula to match the

element 1 and element 2.

Generic Metadata Repository 31

Chapter 3 Research Methodology

The dice formula is:

Dice = (number of same character of element 1 in element 2 +
number of same character of element 2 in element 1)

1

(total number of characters of element1 +
total number of characters of element 2)

Example of Dice Macther:

Consider an example to calculate matching using dice formula. Here element 1 and

element 2 are:

Element1 = Registration

Element2 = Regoistration

Now applying a dice formula,

Dice = (12+5)112+13 => 17/25 =0.68

According to the dice formula, the matching value is 0.68.

Here we have seen that there is only a difference of single character in both elements

but the matching value is very small. So here I have defmed another formula named

as reverse dice, in which I have reversed all the characters of both elements and then

the dice formula is applied. Therefore, when we applied the dice formula to match the

characters, the matching must be in order e.g. if one element is checked once the it

should not repeat it again.

Example of Reverse Dice:

Consider an example of reverse dice. Here the element 1 and element 2 have the same

values that are defined in the above example. Now reverse the characters of element 1

and element 2, and then apply the reverse dice match formula.

Generic Metadata Repository 32

Chopter 3 Research Methodology

Element1 : noitartsiger

Element2: noitartsioger

Dice = (12+12)/12+13 =>24/25 =>0.96

According to the reverse dice concept, the matching value is 0.96.

Here we can get two values of dice matching, so we have to take one maximum value

from the both values. So the formula is:

max(Dice(el,e2) , Dice (el.reverse,e2.reverse))

In dice match we will take the maximum resulting value according to the value that is

defined. If the value is 0.8 then we should take the matching elements whose resuting

value is greater than 0.8. When we find the matching value greater than the value that

is defined then the dice merger is applied to merge the elements..

Sequence of matchers:

The matchers are applied in the following way:

First of all exact matcher is applied, it takes the schema element names as such. The elements

for which matcher is not found through exact matcher then synonym matcher is applied. It

compares the schema elements with their synonyms. The elements for which match is not

found through synonym matcher then abbreviation matcher is applied. It compares the

schema elements with their abbreviation. The elements for which match is not found through

abbreviation matcher then dice matcher is applied.

Process of integration

In our methodology, first of all schema is extracted from XMI and store in the data structure

name Xrnidatabae. So we will create two schema objects of XMIdatabase, named as dbl and

db2. In XMIdatabase we have list of tables and relationships. In the table list we have list of

columns. We will create two list from dbl and db2, where all elements from dbl store in

list1 and all elements from db2 store in list2. We will save the elements in the following

form.

Table Name: Column name

Generic Metadata Repository 33

Chapter 3 Research Merhodolo&y

Example:

Suppose there are two tables, student and course.

Student(regno,name,semisterno,gpa), Course(code, title, credithour)

The list stores the table name and column name in the following form:

List is:

Student

Studentxegno

Student:name

Course

Course:code

Course: title

Now we will compare the elements from listl with the elements from list2. We will take one

element from listl and apply matching technique with all elements of list2. First of all we

will apply the exact matching, if no match found from exact matching then we will apply the

synonym matching, if no match found from synonym matching then we will apply the

abbreviation matching, and if no match found from all above then we will apply the dice

matching. If no matching value found from dice matcher it means there is no matching found

so ignore the element.

Cases of matching:

There are four matching cases, which are as follows:

(i) Table with Table matching

(ii) Table with Column matching

(iii)Column with Table matching

(iv)Column with Column matching

These matching cases will use integration approach for matching and merging that is CSI.

Generic Metodato Repository 34

Chapter 3 Research Methodology

(i) Table with Table Matching

If both the elements that we are matching are tables, and there is matching found then we will

simply merge them according to the programming technique. E.g.

Schema 1: Course(name,code, cradithour)

Schema 2: Subject(code,title,cradithour)

In this case Come = Subject, so there is table with table matching.

(ii) Table with Column Matching

If the first element is table and the second element is column then we will first find the table

of second element and then check that first element has relationship with the table of second

element. If it has relationship then we will merge both elements, acording to the

programming technique. E.g.

Schemal: Student(regno,name,gpa)

Address(regno,houseno,sreetno,ciy, country)

Schema 2: Student(regno,name,gpa,address)

In this case Address = Student:address, so there is table-column match. In this example, first

we will check Address has relationship with student in first schema. If relationship exists

then elements will merge according to the programming technique, if no relationship found

then we will ignore this matching. In this example relationship is found.

(iii) Column with Table Matching

If the first element is column and the second element is table then we will first find the table

of first element and then we will check that the second element has a relationship with table

of first element. If it has a relationship then we will merge elements, acording to the

programming technique. E.g.

Schemal: Student(regno,name,gpa,address).

Schema 2:Student(regno,name,gpa)

Address(regno,houseno,sreetno,ciy, country)

In this case, Student:address= Address, so there is column-table match. In this example, first

we will check that address has a relationship with student in the second schema. if

relationship exists than the elements will merge according to the programming technique, if

Generic Metadata Repository 35

Chapter 3 Research Methodologv

no relationship found then we will ignore lhis matching. In this example relationship is

found.

(iv) Column with Column Matching

If both the elements that we are going to match are the columns then we will find the table of

both elements, and then we will check whether both tables are same. If both tables are same

then we will merge the columns according to th programming technique.E.g.

Schemal: Course(code,name)

Schema2: Subject(code,cradithoure,title)

In this case, course:code=subject:code, so there is column-column match. In this example,

first we will find the tables of both elements (code ,code). Here course and subject are the

table of element1 and element2 respectively. Both tables are same so merge the columns.

Consider another example:

Schemal Student(name,regno)

Schema2 Course(name,code)

In this case, Student:narne=couse:name, there is no column match because both tables are

different. So we will discard the matching.

3.2.1.3 Schema transformation

The aim of this activity is to transform schema into data warehouse schema. Using the

integration procedure we can get integrated schema and then we will transform the integrated

schema into data warehouse schema. "Kirnball proposed a new technique for designing data

warehouses, which he called dimensional modeling"[l3]. Our schema transformation is

based on the Kimball's technique [13]. The basic building block that is used in dimensional

modeling is star schema. The integrated schema is used to transform into the data warehouse

schema that is star schema.

Star schema

Star schema has one large central table (fact table) and a set of smaller tables (dimensions)

l i e d with the fact table.

Fact table:

Generic Metadata Repository 36

Chapter 3 Research Methodology

A fact contains the measurements. A fact table consists of multiple foreign keys, each linked

with a primary key in a dimension table. Using the integrated schema, system will find the

fact table and its attributes and then this schema information is stored into the metadata

repository.

Dimension table

The dimension table contains the textual attributes. There could be any number of

dimensions in star schema. Using the integrated schema, system will find the dimensions and

their columns and these schema information is then stored into the metadata repository.

3.2.1.4 Storing into XML documents

The aim of this activity is storing the metadata of both operational source schema and the

data warehouse schema into the metadata repository using XML documents in the form of

XML schemas. "XML schemas contain elements having sub elements which further contains

other sub elements or attributes [9]".

Generic Metadata Repository 37

Chapter 4

SYSTEM

ARCHITECTURE

Chapter 4 System Architecture

4 System Architecture

System architecture is the design or set of relations between the parts of a system. It is the

most important, pervasive, top level, decisions and then associated rationale about the overall

structure. As stated by Bass, Clements and Kazman, the software architecture is the structure

or structures of the system, which comprises s o h a r e components, the externally visible

properties of those components and the relationship among them [22].

The architecture of generic metadata repository has been discussed in this chapter. This

architecture is supports the methodology described in the previous chapter. The architecture

of GMR, which consists of following operations: (a) extract schema from XMI, (b) integrate

schemas, (c) transform relational schema into star schema, and (d) store the metadata about

both schema into repository using xml documents.

The structure of this chapter is as follows. Section 4.1 gives the design of the system using

the viewpoints. Section 4.2 presents the architecture of the system. Section 4.3 provides the

behavioral description.

4.1 System Analysis and Design

System analysis and design is the specification or construction of a technical, computer based

solution for business requirements identified in the system analysis. It is the evaluation of

alternative solutions and the specification of a detailed computer based solution. It is

basically the design of the information processing system covering the activities of

determining detailed requirements, design of data and information flow. To analyze and

design a system we are using viewpoints oriented approach.

4.1.1 Viewpoints

Viewpoints can be used as a way of classifying stakeholders. Stakeholders range from system

end users through managers. Each viewpoint specifies a complete functional unit. This means

Generic Mefadafa Repository 39

Chapter 4 System Architecture

-
Gen

2.1

Reference: Admin sign in

Rationale: Admin will sign in to get the functionality of

the system.

Specification: Admin will enter login and password to

sign in. I f the login and password is correct

then admin can do any functionality of the

system otherwise admin can not.

VPs: Admin

Non Funct ional Requirement : Password must be of more

more than 7characters.

2.2

Reference: Manage dictionary

Rationale: Admin will manage the dictionary for schema matching.

Specification: Admin will enter login and password to manage the

dictionary. Admin can manage the words, synonyms

and abbreviation for the dictionary.

1: Admin selects the Add new word option

Admin enter the new word.

System save the word and display the successfully saved

message.

la: If the word already added in to the dictionary. System display error

message and reject entries.

2: Admin selects the update word option

System displays all word information.

Admin select word, and update the word information

according to the requirement.

System save these updates and display successful message.

2a: ifword is not selected. System displays error and asks to select the

word.

2b: if update word is already exiting the dictionary. System displays

error messaee and reiect enb-f.

eric Metadata Reposifory

Chapter 4 System Architecture

2.2

Specification:

3: Adrnin selects the add new synonyms option

Admin select the word.

System displays all word that is not synonym of selected

word.

Admin select the synonyms for selected word.

System saves the synonyms and display successfully

message.

4: Admin selects the remove synonyms option

Admin select the word

System displays all the synonyms.

Admin select the synonyms.

System removes the selected synonyms, and display

successfully message.

5: Admin selects the new Abbreviation option

Admin select the word.

Admin enter abbreviation.

System save the abbreviation and display successfully

message.

4a: If the abbreviation already added in to the dictionary. System

display error message and reject entries.

6: Admin selects the remove Abbreviation option

Admin select the word.

System displays all abbreviation of selected word.

Admin selects an abbreviation.

System removes the selected abbreviation and display

successfully message.

5a: If the abbreviation not selected. System display error message and

ask the admin to select an abbreviation

VPs: Admin

Non Functional Requirement: Null

I

!ric Metadata Repository

Chapter 4 System Architecture

2.3

Reference: Extract schema

Rationale: Admin will sign in to extract the schema.
I

I Specification: Admin will sign in to extract schema.

Admin selects the extract schema option.

System displays all schemas on the screen and

Admin will select the two schemas. System

displays the schema information and save the

information into the database.

VPs: Admin

Non Funct ional

Requirement: Admin should have to select the schemas.

2.4

Reference: Integrate schema

Rationale: Admin will sign in to integrate the schema.

Specification: Admin will sign in to integrate the schema.

Adrnin selects the schema integration option.

System displays all schemas on the screen and

Admin will select the two schemas and submit

the schemas for integration. System will

display the schema integration result and save

the report of the integration.

VPs: Admin

Non Funct ional

Requirement: Admin should have to select the schemas.

Generic Meradata Repositoty 45

Chapter 4 System Architecture

2.5

Reference: Transform schema

Rationale: Admin will sign in to transform the schema.

Specification: Admin will sign in to transform the schema.

Admin selects the schema transformation option.

System displays all schemas on the screen and

Admin will select the two schemas and submit

the schemas for integration. After schema

integration admin will apply the schema

transformation. System will display the schema

transformation result and save the report of

the transformation.

VPs: Admin

Non Funct ional

Requirement: Admin should have to select the schemas.

Generic Metadata Repository 46

Chapter 4 System Architecture

4.2 System Architecture

We propose architecture for a Generic Metadata Repository (GMR). This architecture

discusses the problem of integrating heterogeneous operational sources and storing metadata

into the XML documents so that any organization can reuse it.

4.2.1 GMR Architecture Context Diagram

The GMR architecture context diagram consists of four parts input, processing, output and

user interface as shown in figure 4-2. The repository takes input schema object and then

processes the schema objects and generates the output in form of XML files. The user

interface module acts as a client acquiring the services of the component and provides the

user interface in which the use can specify the schema object.

I User Interface I
I

f View
I

I Reports

I User Interface I

Db schema

Figure 4-2: GMR Architecture Context Diagram

Schema Databasel
elements Disk

Generic Metadata Repository 47

Chapter 4 System Architecture

4.2.2 Three tier Architecture flow diagram

The system will comprise of 3-tier layered named as data layer, application layer and client

layer respectively. Data layer will provide the data to the system. Application layer will

extract the information from data layer and will manipulate it and resultant outcome will be

sent to the client layer. The client layer will be based on the GUI and will display the results

to the end user. Figure 4-3 depicts the 3-tier layer.

Schema 1

JJ
Converting Converting
into XMI into XMI

Data I I
Laver J 1

Providing schemas for
manipulation I

Flow --t

Process

Data store CJ

Retrieving schemas as
Application per requirement
Layer

'?I
i>

Dot Net Generic
Application Metadata

Integration and - Repository
Transformation

user

Client
Layer

Figure 4-3: The 3-tier architecture

Displays the result to end user
0 Integrated Schema
0 Transformed Schema

Generic Metadata Repository 48

Chapter 4 System Architecture

4.2.3 GMR Architecture flow diagram

The GMR consists of following components as shown in figure 4-4. The main components

are extracting the schema objects, integrate schema, transform the schema and store the

schema into the generic metadata repository.

Data sources
schema

schema

Conversion

Conversion m q +
Conversion m

Source.

Automatic Automatic
Schema Transformation
7 -..--A : -~ - Generic ~ m r p l o n

Metadata
Integrated Repository
Schema

Warehouse
Metadata

I

Data sources
integrated metadata

Generate
Reports

Figure 4-4: GMR Architecture flow diagram

4.2.4 Components of architecture

The architecture of generic metadata repository consists of several components. Each

component performs functions and services. The following components are:

(i) Data Sources Schemas:

There are different data source schemas and these schemas are available in the form of entity

relationship diagram.

Generic Metadata Reposito?y 49

Chapter 4 System Architecture

(ii) Conversion into XMI:

The entity relationship diagrams of operational sources are then converted into the XML

metadata interchange (XMI). It solves the problem of integrating heterogeneous operational

sources.

(iii) Load Schema:

Once the XMI file is generated then it is required to load a particular file into a system. By

using an application form user can load the XMI file into the system and it saves into the

particular location. The file contains all the information about the data source schema.

(iv) Schema Extraction:

The XMI files that are loaded into the system are then used to extract the schema using

generic extract operation. The extraction process extracts all the schema information like

table names, column names, data type, length and constraints.

(v) Schema Integration:

Using the extraction procedure we can get schema then we can apply the integration

procedure on the specified extracted schema. Integration procedure consists of two

operations one is schema matching and another is schema merging. First of all we will apply

the schema matching using our proposed technique CSI. When we get the matching result

then the schema merging is applied. So at the end we will get the integrated schema. The

integrated schema information is then stored into the generic metadata repository.

(vi) Schema Transformation:

Once we get the integrated schema by applying CSI approach, we will apply the

transformation procedure. The transformation procedure transformed the integrated schema

into the data warehouse schema that is star schema. The star schema consists of dimension

tables and the fact table. The information about the dimension tables and the fact table is

stored in the generic metadata repository.

Generic hfefadata Repository 50

Chapter 4 System Architecture

(vii) Generic Metadata Repository:

Data sources schema and the data warehouse schema information and the mapping between

them is stored into the generic metadata repository. This information is then suitable for

information delivery. The storage of metadata is based on Extensible Markup Language

(XviL) documents. These documents are generic and can be reuse.

(viii) Reporting:

Each data source schema is constructed and represented in the form of tree. User can easily

understand the schema information. User can see the result of the integration and

transformation using reports.

(ix) Interfaces:

The system provides user friendly interfaces in which user can view (explore) the database

schema. System can save and load the schema on to the disk for the reuse purpose.

4.3 Behavioral description

A computer programlsoftware always exists in some state. An externally observable mode of

behavior (e.g. waiting, computing, printing etc) that is changed when some event occurs (e.g.

mouse click etc).

The behavior domain describes a representation of states of software and events that cause

the software to change its state. The software behavior is described in two terms:

0 States

Events

Generic Metadata Repository 5 1

Chapter 4 System Architecture

The following section discusses the behavior of the GMR in terms of states and events.

States

The GMR software can have the following states.

Ready State

File reading state

0 DB schema retrieving state

Schema integrating state

0 Schema transformation state

XML files writing state

Events

The following are the events that cause the GMR software to change its state described

above.

Files selected invoke file reading

File read invoke schema retrieving

Schema retrieving invoke integration

Integration complete invoke file writer

Integration invoke transformation

0 Transformation complete invoke file writer

File writing complete invoke ready state

Generic Metadota Repository 52

Chapter 4 System Archilecture

State transition diagram

The state transition diagram of the system is shown in figure 4-5.

Invoke
Conn Schema
String Retrieving

File Selected

Schema
Retrieving

Ready
State

I File Writing

Transformation
complete

Invoke
File Writer 1

Invoke File A

Reading
v Writing

File Reading complete
State

Figure 4-5: State transition diagram

Invoke
Ready state

I

The above diagram shows the control specification of the software that is described here.

Following is the scenario in which the software could be used.

The system is in ready state; user selects the database schema and invokes the file reading;

then it invokes the schema retrieving then integration state is invoked , after that XML writer

is invoked, then transformation is invoked, after that XML writer is invoked, now storing is

complete and system is again in ready state.

Generic Mefadafa Reposiloty 53

Transformation
State

Integration Invoke
complete

Schema

File 4
Writer

Integration
Retrieving 7 complete

Invoke
Integration Transformation

Integration
State

Invoke

Chapter 5

IMPLEMENTATION

Chapter 5 Implementafion

5.1.2 XML

The XML stands for Extensible Markup language, it's a component language used for

describing information as an electronic document and it stores the information intelligibly

that's why it is called a Meta markup language [15].

The XML is a general-purpose specification for creating custom markup languages. It is

classified as an extensible language because it allows its users to define their own elements.

Its primary purpose is to help information systems share structured data, particularly via the

Internet, and it is used both to encode documents and to serialize data. XML is recommended

by the World Wide Web Consortium (W3C). It is a fee-free open standard. The

recommendation specifies both the lexical grammar and the requirements for parsing.

Area in which XML will be useful in the near-term include: Exchange of information

between organizations. In XML the documents are created by concentrating on what actually

information is and how it is structured. The logical structure of the XML document (schema

of XML document is defined either in the DTD or MSXML schema, either internally or in

some external file.

Advantages of XML

There are many advantages to using XML for information exchange, and they offer many

benefits to the user. The Extensive Markup Language uses human language, which is

conversable, and not the language used by computers which is binary and ASCII coded.

XML is readable by even people who have had no formal introduction to XML or have been

coached on it. It is as easy as HTML. XML is fully compatible with applications like JAVA,

and it can be combined with any application which is capable of processing XML

irrespective of the platform it is being used on. XML is an extremely portable language to the

extent that it can be used on large networks with multiple platforms like the internet, and it

can be used on handhelds or palmtops or PDAs. XML is an extendable language, meaning

that you can create your own tags, or use the tags which have already been created. There are

other advantages of using XML. It is a platform and independent language. It can be

deployed on any network if it is amicable for usage with the application in use. If the

application can work along with XML, then XML can work on any platform and has no

Generic Mefadata Reposito?y 56

Chapter 5 Implementation

boundaries. It is also vendor independent and system independent. While data is being

exchanged using XML, there will be no loss of data even between systems that use totally

different formats. XML can also be stored in databases in XML format and human readable

format. The advantages of XML include that it can be used as an instrument to share data and

application models in wide networks like internet. It supports Unicode, allowing ahnost any

information in any written human language to be communicated. It can represent common

computer science data structures: records, lists and trees. Its self-documenting format

describes structure and field names as well as specific values. The strict syntax and parsing

requirements make the necessary parsing algorithms extremely simple, efficient, and

consistent. XML is heavily used as a format for document storage and processing, both

online and offline. It is based on international standards.

5.1.3 XMI

The XML Metadata Interchange (XMI) is an Object Management Group (OMG) standard

for exchanging metadata information via Extensible Markup Language (XML). One purpose

of XML Metadata Interchange (XMI) is to enable easy interchange of metadata between

UML-based modeling tools and MOF-based metadata repositories in distributed

heterogeneous environments. XMI is also commonly used as the medium by which models

are passed from modeling tools to software generation tools as part of model-driven

engineering.

5.2 Algorithms

The algorithms of system operations are given below:

5.2.1 Algorithm of integration

This is algorithm of matching two schemas and make Master schema.

Algorithm

The pseudo code for this algorithm is given below. Following variables are use globally on

all functions

XMIDataBase database1 : Schema of database 1
XMIDataBase database2 : Schema of database 2

Generic Metadafa Repository 57

Chapter 5 Implementation

Int matchvalue = 0.90
List listl = makeList(database1)
List list2 = makeList(database2)
bool[] matches = new bool[size of list11
string linel,lineZ,elementl, element2
int i = O.rs

Function makeMasterDB (

While line1 in listl then
elementl = extractElement(line1)
First applying exact matching
W h i l e line2 in list2 then

element2 = extractElement(line2)
If elementl = element2 then

rs = 1
E l s e

rs = 0
End If
If rs = 1 then

createMasterTable ()
End If

End Loop
If matches[i] == false then

Dictionary Matching
While string line2 in list2

element2 = extractElement(line2)
rs = dictionary - match(element1, element21
If rs = 1 then

createMasterTable ()
End If

End Loop
End If
If matches[i] = false then

Dice Matching Here
While string line2 in list2 then

element2 = extractElement(line2)
rs = diesMatch(element1, element21
If rs >= matchvalue then

createMasterTable ()
End If

End Loop
End If
i++

End Loop
saveRelaionShips ()
saveForignKeys ()

End Function

This is the function to compare two elements with exactly, using
dictionary and dice.

Generic Metadata Repository 58

Chapter 5 Implementation

Function double compareElement(string elementl, string element2)

double rs = 0
If elementl = element2 then

rs = 1
Else If (rs = dictionary-match(elernent1, element2)) = 0 Then

double rsl = dies(element1, element2)
double rs2 = dies(revert(elernentl), revert(element2))
rs = (rsl > rs2) ? rsl : rs2

End If
return rs

End Function

This is the function return maximum result of two dies

Function double diesMatch1string elementl, string element2)

double rsl = dies(element1, element21
double rs2 = dies(revert(elementl), revert(element2))
return (rsl > rs2) ? rsl : rs2

End Emaction

This function return Boolean value, whither element is column.

Function boolean isColumn(string element)

string[] sp = Split the element from ' : '
if sp.Length == 2 then

return true
End If
return false

End Function

This function Return table name from given element

Function string ExtractTablelstring column)

string[] sp = Split the column from ' : '
return sp[Ol

End Function

This function makes the list of element from given XMIDataBase.

Function List makeListIXMIDataBase db)
List list
While XMITable table in &.tables then

1ist.Addltable.name)
End Loop
While XMITable tab in &.tables then

While Column col in tab.columns then
list.Add(tab.name+":"icol.name)

Generic Metadata Repository 59

Chapter 5 Implementation

End Loop
End Loop
return list

End Function

Function string extractElement(string element)

string[] sp = split the element from ' : '
If sp.Length = 2 then

return sp [ll . ToLower ()
Else

return element.ToLower0
End If

End Function

This function match two element by using dictionary.

Function float dictionary-match(string elementl, string element2)

List list = List of Synonyms of elementl from custom dictionary
List wornetList = List of Synonyms of elementl From WordNet
dictionary
While string syn in list then

If wornetList not contain syn then
wornetList .Add(syn)

End If
End Loop
If wornetList contain element2 then

return 1
End If
list = List of all Abbreviation of elementl from custom dictionary
If list contain element2 then

return 1
End If
return 0

End Function

This function take the input a string and return it's revert string

Function string revert(string element)

string r = ""
for (int i = element.Length - 1 i >= 0 i--)

r += element [il
End Loop
return r

End Function

This function find dies value between two string

Function double dies(string elementl, string element2)

int i = matchElement(elementl,element2)

Generic Metadata Repository 60

Chapter 5 Implemenfation

int j = matchElement(element2, elementl)
double val =i + j
double cnt = elementl.Length + element2.Length
return Val / cnt

End Function

This function return match value of one element with other element

l?unction int matchElement(strin9 elementl, string element2)

char chl, ch2
int count=O, i=0, j=0, ind=O
boo1 match = false
for (i = 0 i < elementl.Lengthi++)

match = false
chl = elementl[il
while match = false AND j < element2.Length then

ch2 = element2ljl
If chl = ch2 then

match = true
count++

End If
j ++

End Loop
I f match = false then

j = ind
E l s e

ind= j
End I f

End Loop
return count

End Function
The architecture of master database is as following

Master Table
o Master Table Id
o Matching Table1 XMIID
o Matching Table2 XMIID
o Matching table1 name
o Matching table2 name
o Master table name

Master Column
o Master Column id
o Matching Column1 name
o Matching Column2 name
o Master column name
o Data type
o Length
o Is Null able
o is Primary Key
o is unique
o XMI id
o Master table Id

Relation ship
o Relation ship id

Generic Mefadafa &ository
-

61

Chapter 5 lmplemenrarion

o From Table id1
o To Tableid2
o From Multiplicity
o To Multiplicity
o From table name
o To table name

Foreign Key
o Foreign Key Id
o Master Column Id
o Master Column Name
o Reference column Id
o Reference Column name

This Function match schema and make master database
Function void createMasterTable0

If isColumn(linel1 then

If isColumn(line2) then
Both column case
string tl = ExtractTable(linel1
string t2 = ExtractTable(line21
double rc = compare~lement(t1, t2)
If rc >= matchvalue then

Creating new Master column

XMITable tab = table from database1 with name tl
Column coll = Column from tab with name element1
Column co12 = Column from table of name t2 from

database2 with
name element2

int mtid=master table id with name=tab.name And
xmiidztab. xmiid

These are required fields of master column.

Matching Column1 = coll.name
Matching Column2 = col2.name
Master Column = coll.name
Data type = coll.datatype
Length = coll.length
Null able = coll.nullable
Primary Key = coll.primaryKey
Unique = coll.unique
XMIid = coll.xmiid
Master table id = mtid

Now save the above fields

matches[i] = true

End If
Else

column table case
string tab = ExtractTable(line1)
List list = database2.getRelatioship(lineZ)
double rc

Generic Mefadata Repository 62

Chapter 5 Implementation

While XMITable tb in list then
string tl = tb.name
rc = compareElernent(tab, tl)
If rc >= matchvalue then

Creating new Master column
XMITable tabl = Table from database1 with

name tab
Column coll = column from tabl with name
element1
XMITable tab2 = table from database2 with

name line2
int mtid = masterTable id with name = tabl.name
and xmiid = tabl.xmiid

These are required field of Master Column.

Matching Column1 = coll.name
Matching Column2 = tab2.name
Master Column = coll.name
Data type = coll.datatype
Length = coll.length
Null able = coll.nullable
Primary Key = coll.primaryKey
Unique = coll.unique
XMIid = coll.xmiid
Master table id = mtid

Now save the above fields

matches[i] = true
End If

End Loop
END If

E l s e
If iscolumn (line2) then

table column case
string tab = ExtractTable(line2)
List list = relation ships from database1 with table
name linel
double rc
While XMITable tb in list then

string tl = tb.name
rc = compareElement(t1, tab)
If rc >= matchvalue then

Creating new Master table
XMITable tabl = table from database1 with

name tl
Column coll = Column from table with name

tab and column name element2 from database2
XMITable tab2 = table from database1 with

name linel
int mtid = master table id with name =

tabl.name AND

Generic Metadata Repository 63

Chapter 5 Implementation

XMIid = tabl.xmiid

These are required field of Master Column.

Matching Column1 = tab2.name
Matching Column2 = coll.name
Master Column = tab2.name
Data type = coll.datatype
Length = coll.length
Null able = coll.nullable
Primary Key = coll.primaryKey
Unique = coll.unique
XMIid = coll.xmiid
Master table id = mtid

Now save the above fields
matcheslil = true

End If
End Loop

End If

Else
both table case

Create a new master table

XMITable tl = table from database1 with name line1
XMITable t2 = Table from database2 with line2

These are field of master tables

Matching tablel m i d = tl.xmiid
Matching table2 m i d = t2.xmiid
Matching tablel name = tl.name
Matching table2 name = t2.name
Mater table name = tl.name

Save the above field in master table

matches[iJ = true

End Else
End If

End Function

This function Save the master tale relationships

Function saveRelaionShips0
While Relationship relation in databasel.relationship then

int mid1 = master table id with relation.frorn.name,
relation.from.xmiid

int mid2 = master table id with relation.to.name,
relation.to.xmiid

If mid1 not equal -1 AND mid2 not equal -1 then

Makes relationship of master tables

Generic Mefadafa Repository 64

Chapter 5 Implementation

These are required field of relationship

From Table Id = mid1
To Table Id = mid2
From Multiplicity = relation.fromMultiplicity
To Multiplicity = relation.toMultiplicity
From table name = relation.from.name
To Table name = relation.to.name

Save this relationship
End If

End Loop
End Function

This function save the forign key

Function saveForignKeys ()

While XMITable tables in databasel.tables then
While Column col in tables.columns then

int cidl = Master Column Id with col.name and col.xmiid
int cid2 = -1
If col.fkey not equal null then

cid2 = Master Cloumn id with master column name =

col.fkey.column.name and xmiid =

col.fkey.co1umn.xmiid
If cidl not equal -1 AND cid2 not equal -1 then

Make Foreign Key
These are required field of foreign key
Master Column Id = cidl
Master Column name = col.name
Reference Column Id = cid2
Reference Column name = col.fkey.column.name

End If
End If

End Loop
End Loop

End Function

5.2.3 Algorithm of transformation

The pseudo code for this algorithm is as follows:

Function insertDWDFColumn(int did,int mdid)
Make a list of all columns of integrated schema

ArrayList list = this.selectColurnn(mdid);
While ob in list then

if (ob[2] .Equals("varchar") I I ob[2] .Equals ("char")) then

Generic Metadata Repository 65

Chapter 5 Implementation

insert into the data warehouse dimension table
columns

End if
if (ob[2].Equals("integer") I I ob[2].Equals("date")) then

insert into the data warehouse fact table columns

End else

End Loop

End Function

~ e n e r i c ~ e t a d a t i Repository 66

Chapter 6

EXPERMENTAL
RESULTS

Chapter 6 Experimental results

6 Experimental Results

In this section, we have built a case study in order to show the working of our proposed

framework. We construct the case study from the domain of "Student Information System".

A domain expert can make the entity relationship diagrams of two systems since purpose

here to show the working of our integration and transformation approach that we have used

in our thesis but not the construction of domain knowledge.

The structure of this chapter is as follows. Section 6.1 gives the results of matching results.

Section 6.2 gives the results of merging results and the section 6.3 gives the transformation

results.

Example Schemas

The two schemas that we have taken as an example in our case study are given below. Based

on these schemas the matching, merging and transformation results are displayed. The entity

relationship diagram of example schema 1 is shown in figure 6-1 (a).

Figure 6-1 (a): Example Schema 1

Generic Metadata Repository 68

Chapter 6 Erperimental results

The entity relationship diagram of example schema 2 is shown in figure 6-1 (b).

Figure 6-1 @): Example Schema 2

1 Matching Result

Based on the example schemas when we apply our match operation then the matching result

is produced. The matching result is shown in table 6-1 (a) and table 6-1 (b).

In table 6-1 (a), first two columns show the schema element table names taken from the two

example schemas. Next four columns show the matching results obtained by applying

different matchers.

1 Element 1 I Element 2 I Exact 1 Synonym I Abbreviation 1 Dice 11

Table 6-l(a): Matching result

Generic Mefadata Reposimy 69

Chapter 6 Lkperimental results

In table 6-1 (b), first two columns show the schema element table names and column names

taken from the two example schemas. Next four columns show the matching results obtained

by applying different matchers.

Generic Metadata Repository 70

Chapter 6 Erperimental results

Table 6-I@): Matching result

6.2 Merging Result

When the matching result is produced then the merging operation is applied. The merging

result is shown in table 6-2 (a) and table 6-2 (b).

In table 6-2 (a), first two columns show the schema element table names taken from the two

example schema. Third column is the name of integrated element.

11 ~ lement 1 (Element 2 I Integrated Element

I

- - --

Table 6-2 (a): Merging result

Course

Registration

Qualification

Teacher

Department
Program

Generic Metadata Repository 71

Student

Institute

Course

Registroation

CV

Lecturer

Dept
DegreeProgram
Student

Student

University

Course

Registration

Qualification

Teacher

Department
Program
Shident

Student

Institute

Chapter 6 Experimental results

In table 6-2 (b), first two columns show some schema element column names taken from the

two example schema. Third column is the name of integrated element.

Element 1

Fname (FirstName

Table 6-2 (b): Merging result

6.3 Transformation Result

Element 2

Fname

I

When the integrated schema is produced then the transformation operation is applied. The

Integrated Element

I LastName I Lname

transformed result is shown in table 6-3 and 6-4.

In table 6-3, dimension tables and dimension columns are displayed.

GuardianName

Address

Dimension Tables Dimension Columns

Student

Student

Student GuardianName

FatherName

Address

Institute

GuardianName

Address

Teacher
Teacher
Teacher Address

Generic Metadata Repository 72

Chapter 6 Experimental results

Table 6-3: Transformation result (dimension columns)

Teacher
Teacher
Qualification
Qualification
Qualification
Department
Department
Program

In table 6-4, fact table columns are displayed.

Phone
Email
LastDegree
Institute
cgpa
DepName
HOD
ProgramName

Fact Table 11 ;;,, 1 1
II DeptId I integer

ProgramId I integer I
11 Coursecode (integer 11
11 Chour I integer 11

Table 6-4: Transformation result (Fact columns)

Generic Metadata Repository 73

Chapter 7

CONCLUSION

Chapter 7 Conclusion

7 Conclusion

Based upon the experimental results the following conclusion is drawn and few directions for

further study are also given. The structure of this chapter is as follows: Section 7.1 gives the

conclusion of the thesis and section 7.2 gives the future work of the research.

7.1 Conclusion

The research presented in this thesis concerns different areas to highlight the problems. We

have discussed the two main issues that are the metadata repository is important for a data

warehouse and it is a tedious and complex task to establish a metadata repository especially

from multiple operational sources as we have seen the problem of multiple operation sources

i-e naming conflict.

However, due to specific needs of the data warehouse domain, the problem of fetching

metadata from heterogeneous and autonomous resources must be studied in the perspective

of data warehousing specifically. Based on this problem, we have given the detail of schema

integration, which consists of schema matching and schema merging. In the literature survey,

we have also discussed the schema matching technique and the concept of schema

transformation.

Based on the literature survey, I have chosen to develop a metadata repository within the

context of data warehouse that is Generic Metadata Repository (GMR). I have proposed

architecture of generic metadata repository, which consists of following operations: (a)

extract schema from XMI, (b) integrate schema, (c) transform relational schema into star

schema, and (d) store the metadata about both schema into repository using xml documents.

Generic Metadata Repository 75

APPENDICES

InputIOutput Screens

Login Window

This is the home page to enter into the Generic Metadata Repository. There is a login

window for admin to sign in with existing account. He will enter login and password to

enter into the system.

Manage GMR

After entering the login and password admin will be able to manage the generic metadata

repository using the menu items. Menu items contains manage dictionary, schema

integration and transformation, reports etc.

Generic Metadata Repository 79

Aupendir-A Input/Outmt Screens

Manage Words

Admin can manage the words in the dictionary. He can add new words and also update

them.

Generic Metadara Repository 80

Manage Synonyms

Admin can manage the synonyms in the dictionary. He can assign synonyms to existing

words and also remove them.

Integrate and Transform Schema

In this window, all existing schemas are displayed in left side. Admin will select any two

schemas and then press the Integrate and Transform schema button. Here a message box

open and asks an option to select the master schema. After selecting the schemas,

integration and transformation process starts. At the end of transformation the XML

documents are generated.

Generic Metadata Repository 8 1

Matching Result

After submitting integrate and transform schema button this window is displayed. In this

window both schema are displayed in separate columns including their attributes. The

result of matching is displayed in the center.

Generic Metadata Repository 82

A~oendir-A Inou1/Ouluut Screens

XML Documents

When the integration and transformation complete then the XML documents are

generated. An example of integrated table document is given below.

<?xml version="l.O' standalone="yesU ?>
- <MergeTable>

- <Mergesable>
<Mtid>525c/Mtid>
<xidl>mr7B8fCFYEACRwOa</xidl>
<xid2>1le9bKiFYEACRwCV</xid2>
<t l>Student</ t l>
<t2>Student</t2>
<Iname>Studentc/Iname>
<mdbid>20</mdbid>

</MergeTable>
- <MergeTable>

<Mtid>526</Mtid>
~xidl>gcOC8fCFYEACRwVo~/xidl>
<xid2>Wc_hZ2iFYEACRwC.</xid2>
<t l> Ins t i tu te< / t l>
<t2>University</t2>
<Iname>Institute</Iname>
<mdbid>20</mdbid>

c/MergeTable>
- <MergeTable>

<Mtid>527</Mtid>
<xidl>eXOC8fCFYEACRwbN</xidl>
<xid2>TwPxZ2iFYEACRwOm</xid2>
r t i ~ r o a r h o r r / t l ~

Loading Section

This page is used to load an XMI schema into the system. This schema is then used for

integration and transformation.

Generic Metadata Repository 83

A m e n d i d Inuut/Outmf Screens

Integrated tables

The report of integrated tables is displayed using this window.

/ITCi8fCM ACR... wLJRZZFKAC ... Departmcn! Dept Departrrenl

1 zld8f aYEACR... ov- RuiM AD... Progam DegreePrqlrarn Rogarn

!7dETEACR&l ueWwniM ACR... h s e CMse G u s e

Integrated Columns

The report of integrated columns is displayed using this window.

Generic Mefadata Repository 84

A ~ ~ e n d i r - A In~ut/Outmit Screens

Integrated Relationships

The report of integrated relationships is displayed using this window.

Data Warehouse Tables

The report of data warehouse tables is displayed using this window.

1 Student I525

1 lnstilute 1526 I
Teacher

. 1527
I Qualification 1528 I
Plograrn 530

1 course 1531 I
OffeimgCourselist 532

i c 182 1 Registration 1533 I

-- -- p~ p~~ -

Generic Mefadafa Repository

Apuendir-A Inuut/Ouhmf Screens

Data Warehouse Dimension Columns

The report of data warehouse dimension columns is displayed using this window.

Data Warehouse Fact Columns

The report of data warehouse fact columns is displayed using this window.

Generic Mefadata Repository 86

APPENDIX B

Auuendix-B References

References

Inmon, W.H. "Building the Data Warehouse". John Wiley, 1992.

Paulraj Ponniah. "Data Warehousing Fundamentals", A comprehensive

guide for IT professional. Wiley Publishers, 2001. ISBN: 0471-412546,

1997.

Hong Hai Do, Erhard Rahm. "On Metadata Interoperability in Data

Warehouse". Techn.Report 1-2000, Dept. of Information Technology,

Univ. of Leipzig, March 2000.

Staudt, M.; Vaduva, A,; Vetterli, T. "The Role of Metadata for Data

Warehousing". Techn.Rep0t-I 99.06., University of Zurich, Dept. of

Information Technology, September 1999.

David Marco, 2001. Available at: hnp://www.tdan.com/view-articles14968

Christoph Quix Informatik V, RWTH Aachen. "Repository Support for

Data Warehouse Evolution". Proceedings of the International Workshop

on Design and Management of Data Warehouses (DMDW'99)

Heidelberg, Germany, 14. - 15.6. 1999.

Stefano Rizzi, Alberto Abello, Jens Lechtenborger, Juan Trujillo.

"Research in data warehouse modeling and design: dead or alive?".

Proceedings of the 9th ACM international workshop on Data warehousing

and OLAP. DOLAP 06, ACM Press, Nov.2006

Claudio Jossen, Klaus R. Dittrich. "The Process ofMetadata Modeling in

Industrial Data Warehouse Environments". BTW Workshops 2007: 16-27

Jayant Madhavan, Philip A. Bemstein, Erhard Rahrn. "Generic Schema

Matching with Cupis'. Proceedings of the 27th International Conference

on Very Large Data Bases. ACM Press, 2001

WordNet-a lexical database for English: http://wordnet.princeton.edd.

Surajit Chaudhuri, Umeshwar Dayal. "An Overview of Data Warehousing

and OLAP Technology". ACM SIGMOD Record, March 1997, pp. 65-74.

Generic Metadata Repository 88

D. L. Moody, M. A. R. Kortink. "From Enterprise Models to Dimensional

Models: A Methodolog for Data Warehouse and Data Mart Design".

Proc. Of international workshop on design and management of data

warehouse (DMDW'2000)

KIMBALL, R. "The Data Warehouse Toolkif", New York: J . Wiley &

Sons, 1996.

P. Bernstein and T. Bergstraesser. "Meta-data support for data

fransformations using Microsoft Repository". IEEE Data Engineering

Bulletin, 22(1):9-14, March 1999.

Sean McGrath. "XML by Example", Prentice Hall PTR, May 28 1998.

Efraim Turban, Jay E. Aronson, Narasimha Bolloju (2001 six edition)

Decision Support Systems and Intelligent Systems.

"Wikipedia, The Free Encyclopedia" available at

http://en.wikipedia.org/wiki/Metadata#DaW-wmehouse-meW&ta

Rahm, E., Bernstein P.A. "A survey of approaches to automatic schema

matching". VLBD Journal 10: 4,2001.

Nayyer Masood, Omer Iqbal. "Conceptual and Context based

Combination of Schema Matchers". 4" IEEE ICET (IEEE International

Conference on Emerging Technologies), Oct, 2008.

Batini, C., Lenzerini, M., Navathe, S. B. "A Comparative Analysis of

~e thodol 'o~ ies for Database Schema Integration", ACM Computing

Surveys, 18(4), p(323-364), Dec., 1986

E. Rahm, H.H Do. "Data Cleaning: Problems and Current Approaches".

IEEE Tech. Bulletin on Engineering, Dec 2000.

L. Bass, P. Clemens and R. Kazman. "Sofnare Architecture in Practice".

Addison Wesley, 2nd ed., 2003.

Panos Vassiliadis. "Data warehousing metadata", Encyclopedia of

database system, Editors-in-chief: Liu, Ling; Ozsu, M.Tamer, Springer,

2009.

Generic Metadata Repository 89

