Generic Metadata Repository

Undertaken by
Nighat Zehra [323-FAS/MSCS/F06]

Supervised by
Dr. Nayyer Masood

Co. Supervisor

Ms. Tehmina Amjad

Department of Computer Science
Faculty of Basic and Applied Sciences

International Islamic University, H-10, Islamabad

al Isy,
0N A,
<

CENTRAL
FIBRARY F

% “LAMABAD.
5,
>,)

In the name of Almighty Allah,
The most Beneficent, the most Merciful.

Generic Metadata Repository

Final Approval

Department of Computer Science,

International Islamic University, Islamabad.

Dated: obli-o 4-01

Final Approval

It is certified that we have read the thesis, titled “Generic Metadata Repository” submitted
by Miss Nighat Zehra Reg. No. 323-FAS/MSCS/F06. 1t is our judgment that this thesis is
of sufficient standard to warrant its acceptance by the International Islamic University,
Islamabad, for the Degree of Master of Science in Computer Science, MS(CS).

Committee

External Examiner

Dr. Nazir Ahmed Sangi

Associate Professor,

Depratment of Computer Science,

Allama Igbal Open University, Islamabad.

Internal Examiner

Mr. M. Imran Saeed

Assistant Professor,

Department of Computer Science,
International Islamic University, [slamabad.

Supervisor

Dr. Nayyer Masood

Associate Professor,

Department of Computer Science,

Muhammad Ali Jinnah University, Islamabad.

Co. Supervisor

Ms. Tehmina Amjad

Assistant Professor,

Department of Computer Science,
International Islamic University, Islamabad.

Generic Metadata Repository Digsertation

A Dissertation Submitted To
Department of Computer Science,
Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad
As a Partial Fulfillment of the Requirement for the Award of the

Degree of Master of Science in Computer Sciences

ii

Generic Metadata Repository Dedication

DEDICATION

Dedicated to my beloved parents, sisters, brother and
my husband, their prayers always pave the way to

success for me.

il

Generic Metadata Repository Declaration

DECLARATION

I hereby declare that this thesis, “Generic Metadata Repository” neither in part nor in

full, has been copied from any source, except where cited; hence, acknowledged. It is further
declared that I have done this research with the accompanied report entirely on the basis of
our personal efforts, under the proficient guidance of our teachers especially our supervisors
Dr. Nayyer and Ms. Tehmina. No portion of the work being presented herein, has been
submitted to any other university, institute, or seat of learning, in support to any piece of

writing for bestowment of any other degree of qualification.

Nighat Zehra
323-FAS/MSCS/F06

iv

Generic Metadata Repository Acknowledgement

ACKNOWLEDGEMENTS

Praise to Allah, who is His infinite wisdom and benevolence, enabled me to undertake and
complete this task despitc my weakness and human limitations. Words cannot express the
gratitude towards my family especially my parents, whose prayers have made me able to

achieve this goal.

I cannot express my profound gratitude to my project supervisors, Dr. Nayyer Masood and
Ms. Tehmina Amjad who went through every inch of manuscript with painstaking attention
to detail and made infinite number of helpful suggestions. There ever available guidance,
support, help and blessing has been source of encouragement for me. Moreover, they

suggested many improvements and also attempted to correct my dyslexia spellings.

Acknowledgement is also due to my teachers specially, Mr. Shahid Rauf and Mr. Imran
Saeed for dedicatedly instilling and imparting enlightenment to me during the course of

studies and afterwards for my project.

Nighat Zehra
323-FAS/MSCS/F06

Generic Metadata Repository

Project in Brief

PROJECT IN BRIEF

Project Title

Generic Metadata Repository

Tools Used

Visual Studio 2008
Visual Paradigm
SQL Server 2005

Languages Used

C#
XML
XMI

System Used

Intel Pentium IV

Operating System Used

Windows XP

Starting Date:

21 November, 2007

Completion Date:

31* Dec, 2008

Undertaken By

Nighat Zehra
323-FAS/MSCS/F06

Supervised By

Dr. Nayyer Masood
and
Ms. Tehmina Amjad

vi

Generic Metadata Repository Abstract

ABSTRACT

A data warehouse (DW) is a database that integrates information from various operational
sources to satisfy decision making requests. For a well performance data warchouse many
components must work together. Metadata, usually called data about data, is an important
component of DW. In this research work, we concentrate on metadata repository. We have

addressed the major problems and issues of metadata repository, these issues are:

1) “The repository or metadata schema is truly application specific i-e dedicated to
data warehousing " [4]

(ii) Existing repositories that we have discussed in the literature review are tool
specific. They are dependent upon platform that means repository is dependent upon
the database management system.

(iii) The problem of designing a repository schema from multiple operational sources.

(iv) The issue of schema integration from multiple operational sources w.r.t DW that is

name matching.

Based on the problems and issues of metadata repository we have proposed the architecture
of generic metadata repository (GMR). GMR resolves the above mention problems. GMR
consists of following operations: (a} extract schema from XML metadata interchange (XMI),
(b) integrate schemas, (c) transform relational schema into star schema, and (d) store the
metadata about both schema into repository using Extensible Markup Language (XML}

documents.

Keywords

Data Warehouse, Metadata Repository, Schema Integration, Schema Transformation.

vii

Generic Metadata Repository Table of Contents

TABLE OF CONTENTS
Page
DEDICATION......oiteoteteeieteereeeseessesenseesssessssansacassssesessessessasssssseasessssssnesasessssressbsansssarssenseneas (iii)
DECLARATIONoocriitirercerestestiseeseesessentsassssosasressssstssssssssnsensssssassastasssssmssssssnsssssssssenanns (iv)
ACKNOWLEDGEMENTS.....ccoevrreeismiecrenaeemereestermasseseesssstssmsssssisssssssessanssnsrassserassnisarsnses (v)
PROJECT IN BRIEF ..oooooeeoeeeeeeee e eeeeeeeeesseeseeeseveseesossssessosseessesssessoessosssssansomessassssesssssssanees i)
ABSTRAC T ..oeeeteeei e cts et et sseveseeseesrssse e eass basbas s asaesas b bab s as s er e s abar e s rassaseaasransaans (vii)
TABLE OF CONTENTS ...ttt cereeseeses e seesssssnonessessssassonsessnssssssanansssennen (viii)
LIST OF FIGURESetoiiiieitiistiseserinstiencestrsessseseersssesesassesssssasssessosss binsasssesstsnesssssassesnsns (x)
LIST OF TABLES ...ttt eersae e e rrressnsics s ensasss sceresssstssesssenssssnssstessessnstssssnsanens (x)
CHAPTER 1 INTRODUCTION ..uittaiiinceecornrriorinrensacasscsssssssrnnsessasssstosssenasasns 1
1.1. Architecture of Data Warehosue.......c..covviiiiiiiiii e 3
1.2. Components of Data Warehouse.veoeiiiiiriiiiiiiciiiiie s e 4
| T T o - PSR 6
[€ o= o PSP PE ST PPESPS PPN 6
1.5, Problem Satetment.........cviiiiiiiier it e 7
)TN 110 (o : 1+ o P 7
| S N 1 [1 =3 - S PP 7
CHAPTER 2 LITERATURE SURVEY ..ccocvisniseermrrmesssssssnsicssssssssisesasssssssssassssarsussssnssssassans 9
2.1, LMerature SUIVEY...ouo e i i et ie s e st vt st s e aa s s e s e aeeens 11
2.2. Problem Statement......oooieiiiiiii i e e 25
CHAPTER 3 RESEARCH METHODOLOGY.c..cccciiiviniinnrnsnccnnss berraserasitasaane 26
3.1. Scope of proposed Selution.........ccocvieiiiiiiiiiiiiii e 28
3.2, Methodology. o uniiniit it s e e et eaas 28
CHAPTER 4 SYSTEM ARCHITECTURE......ccccccsvnsumrenssesersosessissnsaserssserssiossesssessosssssansase 38
- 3 DRI 11 ¢ (D13 11 | FO PO 39
4.2, System ATCRIteCIUIe,ciiiiiiii e 47
4.2.1 GMR Architecture Context Diagram..........cooviiiiiiiiiiiiiiiiiiiiinnnn 47
422 GMR Three Tier Architecture Flow Diagram..............ccooiiviiininnnnn 48
4.2.3 GMR Architecture Flow Diagram..........cc.ooiiiiiiiiiiiiiinii i, 49
42.4 Components of Architecture..........coovvveeiiiiiiiiiiiiiiiiiie e 49

viil

Generic Metadata Repaository

Table of Contents

43, Behavioral Description.ccooeviiiiiiiiin i 51
CHAPTER 5 IMPLEMENTATION...c..cctitiriiirmnrermesrmisesiasesraossnnsinrrsssanssssssascs 54
5.1, TechnOlOgY. .ooiiieiiiiiiiiiieiiie e s s v e 55
5.2, ALOTIIINS.vieiiir ettt e e 57
CHAPTER 6 EXPERIMENTAL RESULTS......ccccesveserirtinnescnsersrsansenssnesssasassns vesorseisnerasas 67
6.1, Match ResuUlt. . ..ot it rar s n s e e s e e e e 69
6.2. Merge Result........coiiiiiiiiiiiiii i rte e e e 71
6.3. Transform Result.......ocoiiiiiiiiiiiiiii i et i s e 72
CHAPTER 7 CONCLUSION....ccccormessmmirmmssssressisssssssssssasersessssnsssissssnsonsssssnaesssssasssasssassons 74
2N TR &)1 T4) L1131) D PO PPPPPPPR 75
7.2, FUuture WorK. ..ottt e s e e 76
APPENDICES ..ooiictimiisicsnssssssssicsssssssnsssossasssstssassassossistusssassassssssssnssasssassssssses vaavenessaressesasss 77
Appendix A: Screen ShotS......cvviiiier it 78
Appendix B: References. .. o.ocoouiiiiiiiii i 87

ix

Generic Metadata Repository Table of Contents

LIST of FIGURES
Figure 1-1: Architecture of Data Warehousec.ccoviiiiiiiiiiiiiiiii e 3
Figure 2-1: Distribution of data and metadata in data warehouse............c...ccoviiiiiii i3
Figure 2-2: Data Warehouse System..........ooooiiiiiiiiiiiiiiiii e 16
Figure 2-3: Star SCRema. ..o ot e it i 21
Figure 2-4: Star Schema Example..... ..ot 22
Figure 4-1: Viewpoints Hierarchy.........oocoiiiiniiiiiiniii i e eaaae 40
Figure 4-2: GMR Architecture Context Diagram........o.ooooviiiiiiiiiiiiiiieiir e, 47
Figure 4-3: The GMR 3-tier ArChIteCtUre. oeiivniin e eeiirniirenr et ceenn et 48
Figure 4-4: The GMR Architecture Flow Diagram............coivivuiniiiiiiniiiiiiiiinniaaens 49
Figure 4-5: State transition diagram............ccooiiiinieiiineniee it it aeasieaes 53
Figure 6-1 {(a): Example Schema 1........c.c.ooiiiiii e, 68
Figure 6-2 (b): Example Schema 2. e 69
LIST of TABLES
Table 2-1: Commercial Repository Approaches [3]......ccoovnviiiiiiii i 14
Table 2-2: Different categorizations of SI process........cvvviiiiiiiiiiiiiiriiiire e 23
Table 6-1(a): Matching Result............coiiiiiiiiiii e 69
Table 6-1(b): Matching Result......... ... 71
Table 6-2(a): Merging Result........cccoiuiriiiiiiiiiiii i s s e 71
Table 6-2(b): Merging Result.... ... e e anne 72
Table 6-3: Transformation Result (Dimension Columns)..........coooviiiiiiiiiiiinieiirnann 73
Table 6-4: Transformation Result (Fact Columns).......cooooooiiniiiiiiiiiii e 73

Chapter 1

INTRODUCTION

Chapter 1 Introduction

1 Imtroduction

The data warchouse is a database that is designed and used for decision making in an
organization or enterprise. It contains huge amount of data that is historical and static in
nature. Different analytical tools and techniques are applied in the large repository of data to

extract non-obvious/hidden information which is used in the decision making.

The data warehouse is defined in [1] as “a subject-oriented, integrated, time varying, non-
volatile collection of data that is used primarily in organizational decision making”.
Typically, the data warehouse is maintained separately from an organization’s operational
databases, the databases that contain data for day to day operations and reporting. However,
these operational databases serve as data source for the data warehouse. [t means that the data
that has come obsolete from the operational point of view and that has been set aside on a
backup medium that data is moved in data warehouse to perform analytical operations. So,
the data in the data warehouse is used for, what is called, the on-line analytical processing
(OLAP). The functional and performance requirements for the OLAP are quite different from
those of the on-line transaction processing (OLTP), the applications traditionally supported

by the operational databases [11].

The data warehouse is designed based on what kind of information is important in company’s
decision making process e.g. sales, marketing, inventory and accounting etc, and it adopts a

specialized schema design for maximum efficiency and performance,

The structure of this chapter is as follows: Section 1.1 describes the typical architecture of
data warehousing and the process of designing and operating a data warehouse. Section 1.2
gives the components of data warehouse. Section 1.3 and 1.4 provides a scope and objective
of the research project. Section 1.5 identifies the problem statement. Section 1.6 discusses the
approach that I have followed in my research and finally section 1.7 gives the overall

architecture of the thesis.

Generic Metadata Repository 2

Chapter 1 Introduction

ability to do complex analysis using the information in the data warehouse. The power user
wants to be able to navigate throughout the data warehouse, pick up interesting data, format
his own queries, and create custom reports and ad hoc queries. In order to provide
information to the wide community of data warehouse users, the information delivery
component includes different methods of information delivery. Ad hoc reports are predefined

reports primarily meant for novice and casual users.

1.2.5) Metadata:

Metadata in a data warehouse is similar to the data dictionary or the data catalog in a
database management system. In the data dictionary, we keep the information about the
logical data structures, the information about the files and addresses, the information about
the indexes, and so on. The data dictionary contains data about the data in the database.
Similarly, the metadata component is the data about the data in the data warehouse. The
focus of our research is the design of metadata and the metadata repository so here we are

going to discuss the metadata in detail.

Metadata is data about data that describes the data warchouse. It is used for building,

maintaining, managing and using the data warehouse. Metadata can be classified into:

() Technical metadata, which contains information about warehouse data for use by
warehouse designers and administrators when carrying out warehouse
development and management tasks.

(i) Business metadata, which contains information that gives users an easy-to-

understand perspective of the information stored in the data warehouse.

Metadata management is provided via metadata repository. Metadata repository management
software can be used: to map the source data to the target database; generate code for data

transformations; integrate and transform the data; and control moving data to the warehouse.

The repository offers a way to understand what information is available, where it comes
from, where it is stored, the transformations performed on the data, its currency and other

important facts about the data. Metadata has however taken on a more visible role among

Generic Metadata Repository 5

Chapter | Introduction

day-to-day knowledge workers. Today it serves as the main catalog, or map to a data

warehouse.

The central metadata repository is an essential part of a data warehouse. Metadata can be
generated and maintained by an ETL tool as part of the specification of the extraction,
transformation and load processes. The repository can also capture the operational statistics
on the operation of the ETL process. [deally, access to data definitions and business rules in

the metadata repository should be end user accessible.

The research work in this thesis is about a Generic Metadata Repository (GMR) for data
warehouse systems, which aids such systems to reuse the repository. The following

paragraphs will describe the summary of my thesis work.

1.3 Scope
The target here is to create a generic metadata repository, which is not restricted to only one
data warehouse. The generic integration and transformation methods are proposed. Some

major tasks of this research are:

e Architecture for GMR is investigated and developed
e Prototype of GMR is developed

1.4 Objectives

This research project is developed for a reusable component so that any other organization
can reuse this compenent, Keeping this thing in mind our objectives is to store the metadata
of operational source and data warehouse into the metadata repository based on XML
documents (having schema information) so that these documents can be used by any other

organization.

Generic Metadata Repository 6

Chapter | Introduction

1.5 Problem Statement

The metadata repository is application/organization specific so it can not be reused by any
other application/organization. We have developed a Generic Metadata Repository (GMR).
The work of the GMR will be demonstrated with the help of “student information system”.
We have also discussed the problem of designing a schema from multiple operational
sources. We have identified an issue of schema integration that is name matching and it is

solved by our proposed semi automatic approach CSI.

1.6 Approach

The first step is to investigate the best suitable programming language for the planned GMR
which will be C# (pronounced C Sharp) and XML. The reasons for preferring over other
programming languages will be elaborated in chapter 5. The first step is followed by an
architecture design and generic operations are defined. And then the development of the

sample GMR can begin.

The architectural design of the system is as following. The GMR will convert the E-R
schema into XMI schema using visual paradigm. After conversion, system will extract the
schema from XMI file and apply the integration process to integrate schemas. After
integration, integrated schema is then transformed into data warehouse schema that is the
‘star schema’. The metadata of both schemas are stored into the metadata repository using
XML documents. This repository can be reused by any other organization for creating their

data warehouse.

1.7 The Thesis

The rest of the document has been divided into following chapters:

e Chapter 2 is “Literature Survey”. We include different research papers to highlight (i)
the importance of metadata repository in data warehouse, (ii) the problem of
designing integrated schema from multiple operational sources, (iii) the approaches of

schema integration, and (iv) the concept of schema transformation. After

Generic Metadata Repository 7

Chapter | Introduction

summarizing these research papers we have identified the problems in the areas of

metadata repository.

e Chapter 3 is “Research Methodology” which describes the solution for the problem
statement i.e. generic metadata repository; it gives the research methodology and also

describes the approach that we have adopted in our thesis.

o Chapter 4 is “System Architecture” that presents the design and architecture of the

proposed solution.

e Chapter 5 is “Implementation”, in which the description of the languages and tools

are given and the details of the prototype that is developed.

e Chapter 6 is “Experimental Results”, in which different schemas are tested on

implemented techniques.

o Chapter 7 is “Conclusion” that briefly concludes the thesis and References are given

at the end.

Generic Metadata Repository 8

Chapter 2

LITERATURE SURVEY

Chapter 2 Literature Survey

2 Literature Survey

A data warehouse combines different data sources into a single data source for end user
access. End user can perform querying and reporting of warehouse information. “The goal of
data warehouse is to create a data repository that makes operational data available in a form

that is acceptable for deciston support and other applications™[16].

Metadata is one important concept that plays a fundamental role in the data warehousing
environment. Metadata (meta data, or sometimes meta information) is "data about data"[17]
and has to be referred for any kind of access or operation in the data warehouse. That is,
whenever a user poses a query the DBMS or a DW tool has to refer to metadata for verifying
the correctness of query, for the existence of required data, to find the location of data in the
repository, to set an efficient mechanism to access data, to know the format of data to read
and present it in a proper format. Similar types of references to the metadata are also required
when something is to be written into the DW. This explains the role and importance of
metadata in the DW operations. Authors in [1] mention the same fact as: Metadata is used in
data warehouse in a various ways:

- It is used to help the decision support system analyst lo locate the contents of data

warehouse.

- Itis a guide to the mapping of the data from operational system to data warehouse.
The nature of data stored in the metadata includes data about attributes or elements, (name,
data type, size, etc) and data about data structures or records (columns, length, fields, etc) and
data about data (location of data, how it is associated, etc) [17]. Data warehouse metadata are
the pieces of information that is stored in one or more special purpose metadata repositories
that includes (a) information on the contents of data warchouse, (b) information on the

processes that take place in data warehouse, and (¢) sources of data warchouse and so on

[231.

Generic Metadata Repository 10

Chapter 2 Literature Survey

CM is transferred into logical modeling. In multidimensional modeling where target
databases are relational or multidimensional. In relational implementations are star,
snowflake etc. in multidimensional implementations are cubes, dwarfs.

There is an issue of semantic gap between conceptual data models and relational or
multidimensional implementation of data cubes. No solutions can cope with
generalization/specialization relationships in OLAP hierarchies, how to represent dimension
constraints, or less expressive content dependencies. “Future research is required to bridge
the semantic gap i-¢ to preserve all information captured by CM in logical
implementations™[7].

“Research on DW modeling and design is far from being dead, because more sophisticated
techniques are needed for solving known problems because of new problems raised during

the adoption of DW to requirements of today’s business™[7].

2.1.2 Data cleaning: problems and current approaches

To improve the data quality by finding and removing the errors is done by data cleaning.
Data quality problems are present in single sources and multiple sources. The need of data
cleaning increases in multiple sources [21]. This paper presents the ETL processes. Data
cleaning is a part of ETL. All data cleaning is performed in data staging area. “Federated
database system and web-bases information systems face data transformation steps similar to
those of data warehouses™[21]. There is a wrapper for extraction and mediator for
integration. To minimize the manual inspection data cleaning tools should be supported.
Paper presents the data quality problems. Single source problems at schema level are
uniqueness violation; referential integrity violation, illegal values and problems at instance
level are missing values, misspellings and duplicate records. The main problem w.r.t schema
design is naming conflict [21][24]. Naming conflict occurs when the same name is used for
different objects (homonyms) or different names are used for the same object (synonyms).
Multiple source problems are naming conflict, structure conflicts or to identify overlapping

data. To solve these problems schema integration and data cleaning is required.

Data cleaning consists of different phases: data analysis, definition of transformation

workflow and mapping rules, verification, transformation, backflow of cleaned data.

Generic Metadata Repository 12

Chapter 2 Literature Survey

Transformation process requires large number of metadata {21]. For schema translation
following steps includes extracting values free form attributes, validation and correction, and
standardization, Different tools are available for data transformation and cleaning. Some

tools are domain specific e.g. cleaning name and address data.

2.1.3 On metadata interoperability in data warehouse

The use of data warehouse depends on effective management of metadata. Metadata
describes all warehouse data that is obtained from multiple sources. It is maintained in
central warehouse and accessible in various ways e.g. for querying, OLAP, navigation.
Metadata management is required for high quality of warchouse data and provides the
flexibility to extend the scope of warchouse, Data warehouse integrates multiple
heterogeneous data sources. Data integration is based on integration of metadata. “Metadata
integration also has to deal with heterogeneity as source systems substantially differ in the

degree and form they provide describing metadata.” [3]

Metadata of operational sources describes the structure, semantic, meaningful names and
describing comments. Perquisite to metadata integration is metadata interoperability (the
ability to exchange metadata between components of data warehouse). This paper presents

the environment of data warehouse as shown in figure 2-1.

Compoacnt -Bm}.hmgm&:-pu-usTnd

Figure 2-1: Distribution of data and metadata in data warehouse [3]

Generic Metadata Repository 13

Chapter 2 Literature Survey

It consists of file system, DBMS, Data warehouse, Data mart, tools for data modeling, ETL
tasks, OLAP, querying. All of these components maintain metadata e.g. database catalogs,

dictionaries, or tool specific repositories.

Metadata is accessed by different components so shared metadata needs to flow between
components as it is results in metadata replication. The use of different metadata models
makes complex metadata interoperability between components. “Consistently supporting
shared metadata is thus crucial for data warchouses. Repository support is needed permitting
tools and other data warchouse components to access, create, and extend shared

metadata.”[3]

This paper discusses the interoperability issues for metadata management that is based on
three dimensional classifications of major types of metadata. Author proposes a classification
scheme for data warehouse metadata differentiating along the dimension data, process and

USErs.

In the paper author, discusses the architectural alternatives for management of shared
metadata. There are different approaches centralized, decentralized, shared or federated and
mixed approach. Some interoperability mechanism like file exchange, repository API,

metadata wrapper and comparison of commercial repository products are also discussed.

There are several commercial repository solutions for data warehouse metadata management
is discussed. Major features of these products with respect to the metadata model, metadata
interoperability, and other functions are shown in table 2-1[3]. In the table 2-1, we have seen

that the Microsoft repository is based on the Microsoft technology.

Generic Metadara Repository 14

Chapter 2 Literature Survey

Aspects Ardent TBM Microsoft Sybase Viasoft
MetaStage | DataGuide Repository | WCC Rochade
Metadata Model proprietary | proprietary, DIM, extensi- | proprietary proprietary,
extensible ble extensible

Underlying DBMS DB:2 SQL Server | Adaptive IQ, | proprietary
SQL Server

Exchan | File { IBM Tag Lan- XML/XIF MDIS] XML/XIF
ﬁe For- gga«e, MDIS (DataStage),
fecha- | mar (ETI Extract) WAM (Ware
nisms house Archi-
gn 2 tect), ERX
irec- {ERWin}
Hons) 5 .
AP proprietary (C) [proprietary . proprietary
(COM) (C++)
Wrap- Cognos OLAP Serve CASE tools,
per Imprompna, ices, English DBMS, Pro-
Business Query gramming
Objects, CASE Languanes
Tools Fa :
Cognos Cognos CASE 100ls,
Impromptu, Impromptu, | DBMS
Business Objects Business
Objects, Eng-
iisg Wizard
Metadata Synchroniza- 2 publish-sub-
tion ; scribe
versioning, (COM)object |2 23 9 attribute fevel
Cmﬁgura%inn level % @ S

User Browsing, TOprie O ropriet
Inter- Na\-*igaxién-g_ %l‘.)}? wy gﬂ% % + l%?;)
Search
view of ETL } view of ETL | query builder
. memd.uL metadaga

impact Analy-
sis

a, s y WY /128
1BMOSh] BR99] wwwsybase. ¢ | wwwivias
soft- W msdn.micro- | cmubid soft.com

ware.com 4.ibhm.comfsoft- | soft.com/
ware/datafvw reposilory

Table 2-1: Commercial Repository Approaches [3]

2.1.4 The role of metadata for data warehousing

Metadata is used to store the meaning or properties of data. The purpose of metadata is to
better understand, manage and use that data. Metadata facilities managing, querying,
consistent use and understanding of data. This paper gives an overview about the role of
metadata plays for data warehousing. “Data warehousing is a collection of concepts and tools
which aims at providing and managing a set of integrated data (the data warehouse) for

business decision support within an organization.”[4]

Generic Metaduta Repository 15

Chapter 2 Literature Survey

It captures all kinds of information necessary to extract, transform and load data from source
systems into data warehouse. Paper presents the architecture of data warehouse systems as
shown in figure 2-2. Main components of this architecture are data sources, ETL, Data
Warehouse, Data Mart, Metadata repository. Metadata repository plays a main role in every

phase on data warchousing. Metadata helps the user to understand the content of warehouse.

1
! e
E %pplic- Applic pplic
[T S S — - S
PN il
T
Data
Man
i)
\ L /
E‘ Agpregation ¢ Sclection
. Comproent

— Duta lfow

] m=—= User srcess (possibly nsng
........ 2) additional browsas or
appibcatice programs)

Figure 2-2: A Data Warechouse System [4]

Metadata may be use in three different ways [4]:
Passively: by providing a consistent documentation about structure development process and

use of data warehouse.

Generic Metadata Repository 16

Chapter 2 Literature Survey

Actively: by storing semantic aspects e.g. transformation rules that are represented and
executed at runtime
Senti-actively: by storing static information. In it metadata is only read but not executed at
runtime.
The two purposes for generation and management of metadata are:

1. To minimize the efforts of development and administration

2. To improve the extraction of information from it

Metadata stored and maintained in repository. “Metadata needs for a specific application
domain (like data warehousing) actually impose the repository structure (e.g. the metadata

schema) and the semantics of metadata to be stored. “ [4]

The interaction of any component with the repository requires some mechanisms. Change
management deals with handling of changes inside or outside the repository. Repository
supports version and configuration management. “The repository meta model or metadata

schema is truly application specific i-e dedicated to data warehousing™[4].

The centralized approach to data warechouse metadata management can be realized by
general-purpose repository. There are some general purpose repositories available.

e UREP is an object oriented extensible repository. It provides Version control,
transactions, user and session management, metadata service, defining object
modeling constructs, extending UREP information model, reusing object types and
operations and extending repository functionality. It has been licensed by different
companies.

e Microsoft Repository is an object oriented extensible repository. It is targeted towards
software vendors and users wishing to support the management of metadata in a
variety of scenarios including software development and data warehousing.

e Platinum Repository is based on the E/R approach. It provides full bi-directional
interfaces to many CASE tools including Erwin, Bachman, Sterling/Cayenne and

Oracle Designer.

Generic Metadata Repository 17

Chapter 2 Literature Survey

2.1.5 The process of metadata modeling in industrial data warehouse

environments

There are different types of application vsing data warehouse {(DWH) to fulfill the needs of
different users. Metadata management system (MDMS) is the best way to provide the data
flows and structures. Current metadata models not provide all the needs of possible metadata
applications. “Standardized metadata models defined by groups of companies exist but they
can not contain all possible kinds of metadata another company may require”[8]. A metadata
model is a set of elements which are needed to implement the metadata schema. This paper
shows the process of creating metadata model as small and simple. “The goal of this paper is
not to show a new metadata model this is applicable to any DWH environment”[8]. In DWH
there are two main metadata standards: Common warehouse model (CWM) and Resource
description framework (RDF). In data warehousing there are three main areas of interest if
we consider from data flow to reporting tools that DWH users work. The first area is ETL i-
¢ a part of DWH. The second interest is reporting system or end user access. This is also
defined as data mart. “A data mart is a component of a DWH which can be used for querying
a defined subset of all DWH data”[8]. The third area is metadata management. Metadata
answer different questions, this paper limited to answer three questions that are.

“Where does data come from? Where does data belong to? (Q1). How is data transformed,

calculated, aggregated, etc.? (Q2). What meaning do data have? (Q3)"[8].
These questions lead to three possible dimensions. The first dimension is level of detail of

metadata answers to Q1. The second dimension contains not only physical position but also
the level of change of data that answers Q2. The third dimension contains level of abstraction
shows which metadata belong together by content.

“Adding unstructured metadata to MDMS metadata model is not currently possible”[8].
These three dimension shows there are many possible solutions in metadata modeling.

RDF provides the opportunity to create a metadata model that covers three dimensions. RDF
is basic metadata model. It is based on triple statements {subject, predicate, object}. A
subject is a resource like a column in a data model. The object is an attribute like a column
definition. The kind of relationship that connects an object to a subject is defined by

predicate. The most common relationship is p/c which could model as a tree.

Generic Metadata Repository 18

Chapter 2 Literature Survey

Representation and navigation through data model is addressed by first dimension of
metadata. If more than one tree is based on more than one data models then RDF is used to
link them. With this feature data flow can be model. To add object oriented feature to a RDF
statements RDFS is needed. RDFS offer predicates to define resources as classes and as class
instances.

There are two types of data schemas stored in MDMS (data schemas from productive
databases and enterprise information model). The navigation through metadata inside both
schemas is solution of 1** dimension. The links between all schemas span 2™ dimension. And
connection of entities from both schemas realizes third dimension.

Metadata integration and mapping is simple and limited because of importing database
schemas from one single tool. Paper describes the metadata schema of MDMS built using its
metadata model and gives a short overview of its implementation.

A metadata models are getting more complex over time and amount of relations between
them grow so need of model operators is getting urgent. These operators have been defined
in generic model management that is established in relation databases but not yet in RDF
repositories.

“The future development of MDMS is combination of application metadata with database
metadata. This will help to answer about which data were accessed or changed by which

process”[8].

2.1.6 Repository support for data warehouse evolution

Data warehouse consist of many components which store data for decision making. It can not
designed in one step usually change over many years. To design it first starts with creating
local data mart. Data marts are easier to implement then the enterprise-wide data warehouse.
Data warehouse can be virtual/distributes. Data warehouse is different from OLTP systems.
Data quality is important in data warchouse, Process model includes the processes like data
loading or update propagation but the process model is specialized to deal with evolution
processes. “The advantage of our proposed approach is that all relevant metadata of a data
warechouse (architecture, quality, process and evolution information) are stored in a central
repository”[6]. The information in the repository is used to find the deficiencies in data

warehouse. Data stores can make changes due to some reasons like changes to physical

Generic Metadata Repository 19

Chapter 2 Literature Survey

properties of the sgurce, business rules, user requirements agents of all types can change new
algorithms, rules, and so on. If any quality problem occurs then metadata repository is used
to check which quality problem is there. There is a future work that the proposed models will

be refined and extended to cove r new aspects of data warehouse processes.

2.1.7 Generic schema matching with cupid

Schema matching is an important step in schema integration. Data warchouse loading match
is an operation that takes two schemas as input and returns corresponding elements. Today
schema matching is doing manually and sometimes using a graphical tool but a minor name
variation leads them to astray. Author says that match operation should be independent
component and it must be generic means it can apply to many difference application
domains. First of all schema matching problem discusses that focuses on a semantics of data
may not completely capture in schema so user validation must be there. The goal is to match
two schemas and find the mapping and give it to the user for validation.

Taxonomy of matching techniques

“Schema matchers can be characterized by following criteria (a longer survey based on this
appears in [9]”.

1- schema vs instance level

Schema based matcher consider only schema information and instance based consider only
data.

2- element vs structural

An element based matcher find a mapping between individual schema elements and structure
level matcher match combinations of elements.

3- linguistic based matcher

It matches the names of schema elements and other description. It compares the equality of
names, comparing synonyms and WorldNet[10].

This paper proposes a new schema matching component i-e cupid. To be generic it has some
characteristics that are discussed in [9]. The cupid approach is schema based not an instance
based. In the paper algorithm of cupid is summarizes with an example. There is a future

work of integrating cupid with an off-the-shelf thesaurus and enhance the cupid to make it a

Generic Metadata Repository 20

Chapter 2 Literature Survey

truly general purpose schema matching component so that can be used for schema

integration[9].

2.1.8 From enterprise models to dimensional models: A methodology for data

warehouse and data mart design

Data warehousing is an important application of database technology. The most important
issue of data warehouse is how to design database to support end user queries. In this paper,
the design of data warehouse is based on an enterprise data model represented in entity
relationship form.

“Kimball proposed a new technique for data modeling specially for designing data
warehouses, which he called dimensional modeling”[13]. The objective of the dimensional
modeling is to provide a database design that is easy for end user to understand and write
queries. Another objective is efficiency of queries is maximized. Kimball began with the data
mart as a dimensional model for departmental data and viewed the data warehouse as the
enterprise wide collection of data marts. This is bottom up approach. Dimensional modeling
begins with the tables rather than entities or attributes such as ERDs. The basic building
block that is used in dimensional modeling is star schema. A star schema consists of one
central table that is called fact table and a number of tables called dimension tables that are
linked with fact table as shown in figure 2-3.

Dimegsion

_______ e e amaa, e

Dimenyeas" b | = e st
Table 2 " *Y=vs o8 FactTable Te=ee= "~ YTable 3

¥ 7

Dim' sion
Ta? 4

Figure 2-3: Star schema
The center of the star is the fact table, while the points of the star are the dimension tables.
The primary key of the fact table is the combination of primary keys of all dimension tables.

Generic Metadata Repository 21

Chapter 2 Literature Survey

A fact table contains the measurements. The fact table is linked to all dimension tables with
one to many relationships. The dimension tables contain the textual attributes. An example of

star schema is shown in figure 2-4.

Cum‘h‘k;f‘;'. Ll (O Sales Summary H_ < Jpe ‘E)Eut]ét
nasm™

Figure 2-4: Star schema example

The advantage of using star schema is that it reduces the number of tables in database and the
number of relationships between them and the number of joins.

Kimball’s[13] design approach is the fist approach it contains following steps. It begins by
identifying the facts that need to be aggregated and then dimensional attributes to aggregate
by and forming star schema based on these. There are different data warehouse design

approaches that are discussed in [12] e.g. star schema, snow flake schema and so on.

2.1.9 Conceptual and context based combination of schema matchers

Schema matching is an important operation of schema integration which is a basic problem
in many database applications, like data warehousing, E-commerce [18]. Schema matching
takes two schemas as input and produces correspondence between schema elements.
Different schema matching approaches Semint, SKAT and COMA are discussed in [19). In
this paper, author proposed a semi automatic schema matching approach. This approach is
conceptual and context based combination of schema matchers (C3SM). It has following
features concept based matching and correspondence between elements is established. It uses

the hybrid matchers that are the combination of different matchers. In future, author wants to

Generic Metadata Repository 22

Chapter 2 Literature Survey

In the following subsection, I discuss the above mentioned phase of SI that is, merging and

restructuring.

2.1.10.1 Merging and restructuring

Once the component schemas are conformed, they are merged by means of superimposition
of common concepts giving rise to some intermediate integrated schema(s). The intermediate
results are analysed, and if necessary restructured in order to achieve several desirable

qualities, An integrated schema may be tested against the following qualitative criteria:

— Completeness and Correctness: The integrated schema must contain all concepts present
in any component schema correctly. The integrated schema must be a representation of
the union of the application domains associated with the schemas,

— Minimality: If the same concept is represented in more than one component schema, it
must be represented once in the integrated schema.

— Understandable: The integrated schema should be easy to understand for the integrator
and for the end (global) users. This implies that among the several representations of
results of integration allowed by a data model, the one that is (qualitatively) the most
understandable should be chosen.

Conclusion of Literature Survey

As we have seen the “Literature Survey”, we have discussed different areas to highlight the
problems. We have discussed the two main issues that are the metadata repository is
important for a data warehouse and it is a complex task to establish a metadata repository
especially from multiple operational sources.

As we have seen the current survey, the schema design from multiple operational sources
w.r.t data warehouse is not much focused. However, due to specific needs of the data
warehouse domain, the problem of fetching metadata from multiple operational sources must
be studied in the perspective of data warchousing specifically. We have also identified the
preblem of schema integration that is naming conflict. Based on this problem, we have given

the detail of schema integration, which consists of schema matching and schema merging. In

Generic Metadata Repository 24

Chapter 2 Literature Survey

the literature survey, we have also discussed the schema matching technique and the concept

of schema transformation.

2.2 Problem Statement

Staudt, M [4) discovered a problem “that metadata repository is truly application specific i-e
dedicated to data warehousing”. Research on metadata that we have discussed in the
literature survey had considered that the metadata repository is application/organization
specific so it can not be reused by any other application/organization. This approach has
following problems:

» The application based repository is used for only a specific application of functional
purpose and can not be reused by any other data warehouse. So we have to build it for
every organization. It required more time and work to build a repository for every
organization.

e The existing repositories that we have discussed in the literature review are the tool
specific. They are dependent upon platform that means repository is dependent upon
the database management system. Only those can be used which are supported by
database management system. Rochade and Platinum [4] repository documentation is
not publicly available which makes problem in adoption of their proposals.

e Based on the literature survey we have seen that the problem of multiple operational
sources that is naming conflict. This problem occurs when we are doing schema
matching i- a part of schema integration. Here, we are going to focus this problem.
Name matching works under the assumption that if it has two schema elements have
same names they model the same. This may result some very ambiguous results e.g.
name could be of an institute or of a student.

e Based on the survey, we have seen that there is a need to integrate the schema

ing technique C3SM [19] with schema merging so that it could be used in any

sche;l5 tegration application like data warehousing.

I believe that there is a clear need for metadata repository within data warehouse, so that to
better facilitate data warehouse developer, and to make the repository generalize so that reuse
of repository can be possible. The remainder of this thesis presents a new methodology for

metadata repository.

Generic Metadata Repository 25

Chapter 3

RESEARCH
METHODOLOGY

Chapter 3 Research Methodology

The structure of this chapter is as follows. Section 3.1 gives the scope of GMR. Section 3.2

provides the methodology of research that we have adopted.

3.1 Scope of the proposed solution

The scope of the research work is as follows:
» Propose an architecture of GMR
e Propose a semi automatic approach of schema integration based on C3SM [19]
e Develop generic operations for schema integration and transformation

e Implement a prototype

3.2 Methodology
This section describes the methodology of the proposed solution and presents the different
phases into which the methodology has been classified. Following is a brief description of

this proposed methodology.

The tasks of the proposed generic metadata repository methodology are: first to convert the
E-R schema into XMI schema. After conversion into XMI schema, system will extract the
schemas from XMI files and analyses the schema for schema matching and merging. The
merging is applied on schemas to establish an integrated schema. After integrating the
schema, integrated schema is transformed into the data warehouse schema. Both integrated

schema and the transformed schema information is stored into the XML documents.

3.2.1 Phases of the proposed methodology

The methodology proposed in this thesis (GMR) decomposes into four phases. These are:

3.2.1.1 Conversion and extraction, in which Entity Relationship schemas are converted into
the XMI and then schema information is extracted;

3.2.1.2 Schema integration, in which schema elements are compared and merge into a single
schema;

3.2.1.3 Schema transformation, in which the integrated schema is converted into the data

warehouse schema 1-¢ star schema; and

Generic Metadata Repository 28

Chapter 3 Research Methodology

3.2.1.4 Storing inte XML documents, in which the metadata of integrated schema and the data

warehouse schema is stored into the generic metadata repository.

The major activities involved in the proposed methodology along with the phases are given
below:

3.2.1.1 Conversion and extraction

The aim of conversion activity is to convert an Entity relationship schema of any data source
into the XML metadata interchange (XMI). After converting into XMI schema, the process
of extraction is perform. This extraction process extracts the schema information using an

algorithm so that this schema information is used in the next phase.

3.2.1.2 Schema integration
The aim of this activity is to integrate two schemas. Using the extraction procedure we can
get schemas and then we will integrate them into one schema. Schema integration consists of
two sub-processes:

(i) Schema matching

(if) Schema merging

Schema matching and Schema merging:

Schema matching means comparing two schema’s to find the semantic relationship between
two schema’s. Schema merging is the process of integrating several schemas based on their
matching into a single schema.

“Currently, schema matching is typically performed manually and perhaps supported by a
graphical user interface™[9]. Obviously, manually specifying schema matches is a tedious,
time consuming, error-prone, and therefore expensive process. In [9], author says that match
operation should be independent component and it must be generic means it can apply to
many difference application domains. This requires automated suppart for schema matching.
To provide this automated support, we would like to see a generic, customizable
implementation of Match that is usable across application areas. But full automatic match can
not be performed because of heterogeneity. Fortunately, there is a lot of previous work on

schema matching developed e.g. CUPID, MOMIS and DIKE discussed in [9]). We identify

Generic Metadata Repository 29

Chapter 3 Research Methodology

the problem of name matching in problem statement section. This problem is recovered by
applying multiple matchers jointly. We also identify that there is a need of integrating
schema matching approach with schema merging. So we have proposed a semi automatic
schema integration approach CSI that handles the above problems of name matching by

using the concept of C3SM [19] and handles the integration problem.

C3SM based Schema Integration (CSI):
The CSI is a novel schema integration approach with following features:

e It uses multiple matchers, and

e It provides the integrated schema
The match operation takes two schemas as an input and produces a matching result that
which elements of the input schemas are logically related to each other. The matching results
specify the matching elements with a value between 0 and 1. A 0 indicates total
dissimilarities and 1 indicates strong similarities. Based on 0 and 1 matching values merging
operation is applied. At the merging stage there is an option that is given to the user that

select one schema whose naming will be applied to the integrated schema.

To perform schema matching and merging we are using Word Net 1.6 [10] dictionary but
there are few words that are specific to domain and the dictionaries available to us does not
contain these words. For example, Student Id, Emp Id. Here student id is roll no or
registration number and Emp _1d is related to Employee Id or Social Security Number. But
here Emp Id is acting as abbreviation for Employee 1d. We could not find this information in
Word Net dictionaries and to perform matching and merging with the use of such kind of
words we have to create our own dictionary which stores these words. This dictionary is

custom (user-defined) dictionary which contains three kinds of words.

e Word

e Synonym

e Abbreviation
Matchers of CSI:

In this section, we are discussing the matchers of CSIL. In CSI we combine Exact, Synonym,

Abbreviation and Dice Matcher and Merger.

Generic Metadata Repository 30

Chapter 3 Research Methodology

(@)

(in)

(iii)

(iv)

Exact Matcher and Merger
In exact matcher, there is character to character matching involved. For example:
e Student = Student
e Teacher = Teacher
If matcher produces a value of 1 it means match between elements is found and exact
merger is applied to merge the elements, otherwise if matcher produces a value of 0 it

means match does not found and exact merger is not applied.

Synonym Matcher and Merger
In synonym matcher, synonyms are used from WorldNet Dictionary and also from
our own user defined dictionary. For example:

¢ University = Institute

e Writer = Author

e Instructor = Teacher
If matcher produces a value of 1 it means match between elements is found and
synonym merger is applied to merge the elements, otherwise if matcher produces a

value of 0 it means match does not found and synonym merger is not applied.

Abbreviation Matcher and Merger
In abbreviation matcher, custom dictionary is used to match the schema elements. For
example:

e Registration Number = RegNo

¢ First Name = FName

e Student = std
If matcher produces a value of 1 it means match between elements is found and
abbreviation merger is applied to merge the elements, otherwise if matcher produces

a value of 0 it means match does not found and abbreviation merger is not applied.

Dice Matcher and Merger

In dice matcher, we have defined a formula named as dice formula to match the

element 1 and element 2.

Generic Metadata Repository 31

Chapter 3 Research Methodology

The dice formula is:
Dice = {(number of same character of element 1 in element 2 +
number of same character of element 2 in element 1)
/
(total number of characters of element] +

total number of characters of element 2)

Example of Dice Macther:
Consider an example to calculate matching using dice formula. Here element 1 and

element 2 are:

Element] = Registration

Element2 = Regoistration

Now applying a dice formula,

Dice = (12+5)/12+13 => 17/25 =0.68

According to the dice formula, the matching value is 0.68.

Here we have seen that there is only a difference of single character in both elements
but the matching value is very small. So here I have defined another formula named
as reverse dice, in which I have reversed all the characters of both elements and then
the dice formula is applied. Therefore, when we applied the dice formula to match the
characters, the matching must be in order e.g. if one element is checked once the it

should not repeat it again.

Example of Reverse Dice:
Consider an example of reverse dice. Here the element 1 and element 2 have the same
values that are defined in the above example. Now reverse the characters of element 1

and element 2, and then apply the reverse dice match formula.

Generic Metadata Repesitory 32

Chapter 3 Research Methodology

Elementl: noitartsiger
Element2: noitartsioger
Dice = (12+12)/12+13 =>24/25 =>0.96
According to the reverse dice concept, the matching value is 0.96.
Here we can get two values of dice matching, so we have to take one maximum value

from the both values. So the formula is:
max(Dice(el,e2) , Dice (el.reverse,c2.reverse))

In dice match we will take the maximum resulting value according to the value that is
defined. If the value is 0.8 then we should take the matching elements whose resuting
value is greater than 0.8. When we find the matching value greater than the value that

is defined then the dice merger is applied to merge the elements..

Sequence of matchers:

The matchers are applied in the following way:

First of all exact matcher is applied, it takes the schema element names as such. The elements
for which matcher is not found through exact matcher then synonym matcher is applied. It
compares the schema elements with their synonyms. The elements for which match is not
found through synonym matcher then abbreviation matcher is applied. It compares the
schema elements with their abbreviation. The elements for which match is not found through

abbreviation matcher then dice matcher is applied.

Process of integration

In our methodology, first of all schema is extracted from XMI and store in the data structure
name Xmidatabae. So we will create two schema objects of XMIdatabase, named as dbl and
db2. In XMIdatabase we have list of tables and relationships. In the table list we have list of
columns. We will create two list from dbl and db2, where all elements from dbl store in
list] and all elements from db2 store in list2. We will save the elements in the following
form.

Table Name: Column name

Generic Metadata Repository 33

Chapter 3 Research Methodology

Example:
Suppose there are two tables, student and course,
Student(regno,name,semisterno,gpa), Course(code, title, credithour)
The list stores the table name and column name in the following form:
List is:
Student
Student:regno
Student:name
Course
Course:code
Course: title
Now we will compare the elements from list] with the elements from list2. We will take one
element from list] and apply matching technique with all elements of list2. First of all we
will apply the exact matching, if no match found from exact matching then we will apply the
synonym matching, if no match found from synonym matching then we will apply the
abbreviation matching, and if no match found from all above then we will apply the dice
matching. If no matching value found from dice matcher it means there is no matching found

so ignore the element.

Cases of matching:

There are four matching cases, which are as follows:

(i) Table with Table matching
(ii) Table with Column matching
(iii)Column with Table matching

(iv)Column with Column matching

These matching cases will use integration appreoach for matching and merging that is CSL

Generic Metadata Repository 34

Chapter 3 Research Methodology

(i) Table with Table Matching
If both the elements that we are matching are tables, and there is matching found then we will
simply merge them according to the programming technique. E.g.

Schema 1: Course(name,code, cradithour)

Schema 2: Subject(code,title,cradithour)

In this case Course = Subject, so there is table with table matching.

(ii) Table with Column Matching
If the first element is table and the second element is column then we will first find the table
of second element and then check that first element has relationship with the table of second
element. If it has relationship then we will merge both elements, acording to the
programming technique. E.g.

Schemal: Student(regno,name,gpa)

Address(regno,houseno,sreetno,ciy, country)

Schema 2: Student(regno,name,gpa,address)
In this case Address = Student:address, so there is table-column match. In this example, first
we will check Address has relationship with student in first schema. If relationship exists
then elements will merge according to the programming technique, if no relationship found

then we will ignore this matching. In this example relationship is found.

(iti) Column with Table Matching
If the first element is column and the second element is table then we will first find the table
of first element and then we will check that the second element has a relationship with table
of first element. If it has a relationship then we will merge elements, acording to the
programming technique. E.g.

Schemal: Student(regno,name,gpa,address).

Schema 2:Student(regno,name,gpa)

Address(regno,houseno,sreetno,ciy, country)
In this case, Student:address= Address, so there is column-table match. In this example, first
we will check that address has a relationship with student in the second schema. if

relationship exists than the elements will merge according to the programming technique, if

Generic Metadata Repository 35

Chapter 3 Research Methodology

no relationship found then we will ignore this matching. In this example relationship is

found.

(iv) Column with Column Matching
If both the elements that we are going to match are the columns then we will find the table of
both elements, and then we will check whether both tables are same. If both tables are same
then we will merge the columns according to th programming technique.E.g.

Schemal: Course(code,name}

SchemaZ2: Subject(code,cradithoure,title)
In this case, course:code=subject:code, so there is column-column match. In this example,
first we will find the tables of both elements (code ,code). Here course and subject are the
table of element] and element2 respectively. Both tables are same so merge the columns.
Consider another example:

Schemal Student(name,regno)

Schema2 Course(name,code)
In this case, Student:name=couse:name, there is no column match because both tables are

different. So we will discard the matching.

3.2.1.3 Schema transformation

The aim of this activity is to transform schema into data warchouse schema. Using the
integration procedure we can get integrated schema and then we will transform the integrated
schema into data warehouse schema. “Kimball proposed a new technique for designing data
warehouses, which he called dimensional modeling”[13]. Our schema transformation is
based on the Kimball’s technique [13]. The basic building block that is used in dimensional
modeling is star schema. The integrated schema is used to transform into the data warehouse
schema that is star schema.

Star schema

Star schema has one large central table (fact table) and a set of smaller tables (dimensions)
linked with the fact table.

Fact table:

Generic Metadata Repository 36

Chapter 3 Research Methodology

A fact contains the measurements. A fact table consists of multiple foreign keys, each linked
with a primary key in a dimension table. Using the integrated schema, system will find the
fact table and its attributes and then this schema information is stored into the metadata
repository.

Dimension table

The dimension table contains the textual attributes. There could be any number of
dimensions in star schema. Using the integrated schema, system will find the dimensions and

their columns and these schema information is then stored into the metadata repository.

3.2.1.4 Storing into XML documents

The aim of this activity is storing the metadata of both operational source schema and the
data warehouse schema into the metadata repository using XML documents in the form of
XML schemas. “XML schemas contain elements having sub elements which further contains

other sub elements or attributes [9]”.

Generic Metadata Repository 37

Chapter 4

SYSTEM
ARCHITECTURE

Chapter 4 System Architecture

4 System Architecture

System architecture is the design or set of relations between the parts of a system. It is the
most important, pervasive, top level, decisions and then associated rationale about the overall
structure. As stated by Bass, Clements and Kazman, the software architecture is the structure
or structures of the system, which comprises software components, the externally visible

properties of those components and the relationship among them [22].

The architecture of generic metadata repository has been discussed in this chapter. This
architecture is supports the methodology described in the previous chapter. The architecture
of GMR, which consists of following operations: (a) extract schema from XMI, (b) integrate
schemas, (c) transform relational schema into star schema, and (d) store the metadata about

both schema into repository using xml documents.

The structure of this chapter is as follows. Section 4.1 gives the design of the system using
the viewpoints. Section 4.2 presents the architecture of the system. Section 4.3 provides the

behavioral description.

4.1 System Analysis and Design

System analysis and design is the specification or construction of a technical, computer based
solution for business requirements identified in the system analysis. It is the evaluation of
alternative solutions and the specification of a detailed computer based solution. It is
basically the design of the information processing system covering the activities of
determining detailed requirements, design of data and information flow. To analyze and

design a system we are using viewpoints oriented approach.

4.1.1 Viewpoints
Viewpoints can be used as a way of classifying stakeholders. Stakeholders range from system

end users through managers. Each viewpoint specifies a complete functional unit. This means

Generic Metadata Repository 39

Chapter 4 System Architecture

2.1

Reference: Admin sign in

Rationale: Admin will sign in to get the functionality of
the system.

Specification: Admin will enter login and password to
sign in. If the login and password is correct
then admin can do any functionality of the
system otherwise admin can not.

VPs: Admin

Non Functional Requirement: Password must be of more

more than 7characters.

2.2
Reference: Manage dictionary
Rationale: Admin will manage the dictionary for schema matching.
Specification: Admin will enter login and password to manage the
dictionary. Admin can manage the words, synonyms
and abbreviation for the dictionary.
1: Admin selects the Add new word option
» Admin enter the new word.
» System save the word and display the successfully saved

message.
la: If the word already added in to the dictionary. System display error

message and reject entries.
2: Admin selects the update word option
» System displays all word information.
» Admin select word, and update the word information
according to the requirement.
e System save these updates and display successful message.

2a: if word is not selected. System displays error and asks to select the

word.
2b: if update word is already exiting the dictionary. System displays

error messaee and reiect entry,

Generic Metadaia Repository 43

Chapter 4

System Architecture

VPs:

2.2

Specification:

3: Admin selects the add new synonyms option

Admin select the word.

System displays all word that is not synonym of selected
word.

Admin select the synonyms for selected word.

System saves the synonyms and display successfully

message.

4: Admin selects the remove synonyms option

Admin select the word

System displays all the synonyms.

Admin select the synonyms.

System removes the selected synonyms, and display

successfully message.

5: Admin selects the new Abbreviation option

Admin select the word.
Admin enter abbreviation.
System save the abbreviation and display successfully

message.
4a: If the abbreviation already added in to the dictionary. System

display error message and reject entries.

6: Admin selects the remove Abbreviation option

Admin select the word.

System displays all abbreviation of selected word.
Admin selects an abbreviation.

System removes the selected abbreviation and display

successfully message.
Sa: If the abbreviation not selected. System display error message and
ask the admin to select an abbreviation

Admin

Non Functional Requirement: Null

Generic Metadata Repository

44

Chapter 4

System Architecture

VPs:

2.3

Reference: Extract schema
Rationale: Admin will sign in to extract the schema.

Specification: Admin will sign in to extract schema.

Admin selects the extract schema option,
System displays all schemas on the screen and
Admin will select the two schemas. System
displays the schema information and save the
information into the database.

Admin

Non Funetional

Requirement: Admin should have to select the schemas.

VPs:

2.4

Reference: Integrate schema
Rationale: Admin will sign in to integrate the schema.

Specification: Admin will sign in to integrate the schema.

Admin selects the schema integration option.
System displays all schemas on the screen and
Admin will select the two schemas and submit
the schemas for integration. System will
display the schema integration result and save
the report of the integration.

Admin

Non Functional

Requirement: Admin should have to select the schemas.

Generic Metadata Repository

45

Chapter 4

System Architecture

VPs:

2.5

Reference: Transform schema
Rationale: Admin will sign in to transform the schema.

Specification: Admin will sign in to transform the schema.

Admin selects the schema transformation option.
System displays all schemas on the screen and
Admin will select the two schemas and submit
the schemas for integration. After schema
integration admin will apply the schema
transformation. System will display the schema
transformation result and save the report of
the transformation.

Admin

Non Functional

Requirement: Admin should have to select the schemas.

Generic Metadata Repository

46

Chapter 4 System Architecture

4.2 System Architecture
We propose architecture for a Generic Metadata Repository (GMR). This architecture
discusses the problem of integrating heterogeneous operational sources and storing metadata

into the XML documents so that any organization can reuse it.

4.2.1 GMR Architecture Context Diagram

The GMR architecture context diagram consists of four parts input, processing, output and
user interface as shown in figure 4-2. The repository takes input schema object and then
processes the schema objects and generates the output in form of XML files. The user
interface module acts as a client acquiring the services of the component and provides the

user interface in which the use can specify the schema object.

User Interface

View
Reports

Generic
Metadata XML »| Database/

Documents Nisk

Db schema Schema
elements

Repository

ﬂk

Upload
Schema

User Interface

Figure 4-2: GMR Architecture Context Diagram

Generic Metadata Repository 47

Chapter 4 System Architecture

4.2.2 Three tier Architecture flow diagram

The system will comprise of 3-tier layered named as data layer, application layer and client
layer respectively. Data layer will provide the data to the system. Application layer will
extract the information from data layer and will manipulate it and resultant outcome will be
sent to the client layer. The client layer wiil be based on the GUI and will display the results

to the end user. Figure 4-3 depicts the 3-tier layer.

Schema 1 Schema 2
4
Converting Qonverting
into XMI into XM1I Flow —

I I Process
Data . . C
Layer U

Data store S

Providing schemas for
manipulation

Retrieving schemas as

Application per requirement
R D
Dot Net s - : Generic
Application Semi Automatic M
< Integrationand ——> R ctadata
. epository
Transformation
\. Y,

e m mm kA m e, ———— o A R Ly e Y M e e e R e R W M M EE W W e =

Displays the result to end user
o Integrated Schema
o Transformed Schema

QQ User

Figure 4-3: The 3-tier architecture

Generic Metadata Repository 48

Chapter 4 System Architecture

4.2.3 GMR Architecture flow diagram
The GMR consists of following components as shown in figure 4-4. The main components
are extracting the schema objects, integrate schema, transform the schema and store the

schema into the generic metadata repository.

Data sources

h
schema XMI

XMI N schema Source-
Conversion Target h
Semi Semi mapping

Automatic Automatic o
XMI Schema Transformation

. Generic
Integration gj:% Metadata
% o= Integrated Repository
Schema Data
Warehouse
XMI |/ Metadata T\’_/

Conversion

g

Conversion

Data sources
integrated metadata

h 4

Flow —_ Generate
Reports

Process

Data store 6

Figure 4-4: GMR Architecture flow diagram

4.2.4 Components of architecture
The architecture of generic metadata repository consists of several components. Each

component performs functions and services. The following components are:

@ Data Sources Schemas:
There are different data source schemas and these schemas are available in the form of entity

relationship diagram.

Generic Metadata Repository 49

Chapter 4 System Architecture

(i) Conversion into XMI:
The entity relationship diagrams of operational sources are then converted into the XML
metadata interchange (XMI). It solves the problem of integrating heterogeneous operational

SOUrces.

(iii) Load Schema:
Once the XMI file is generated then it is required to load a particular file into a system. By
using an application form user can load the XMI file into the system and it saves into the

particular location. The file contains all the information about the data source schema.

(iv) Schema Extraction:
The XMI files that are loaded into the system are then used to extract the schema using
generic extract operation. The extraction process extracts all the schema information like

table names, column names, data type, length and constraints.

(%) Schema Integration:

Using the extraction procedure we can get schemas then we can apply the integration
procedure on the specified extracted schemas. Integration procedure consists of two
operations one is schema matching and another is schema merging. First of all we will apply
the schema matching using our proposed technique CSI. When we get the matching result
then the schema merging is applied. So at the end we will get the integrated schema. The

integrated schema information is then stored into the generic metadata repository.

(vi) Schema Transformation:

Once we get the integrated schema by applying CSI approach, we will apply the
transformation procedure. The transformation procedure transformed the integrated schema
into the data warehouse schema that is star schema. The star schema consists of dimension
tables and the fact table, The information about the dimension tables and the fact table is

stored in the generic metadata repository.

Generic Metadata Repository 50

Chapter 4 System Architecture

(vi) Generic Metadata Repository:

Data sources schema and the data warehouse schema information and the mapping between
them is stored into the generic metadata repository. This information is then suitable for
information delivery. The storage of metadata is based on Extensible Markup Language

(XML) documents. These documents are generic and can be reuse.

(viii) Reporting:
Each data source schema is constructed and represented in the form of tree. User can easily
understand the schema information. User can see the result of the integration and

transformation using reports.

(ix) Interfaces:
The system provides user friendly interfaces in which user can view (explore) the database

schema. System can save and load the schema on to the disk for the reuse purpose.

4.3 Behavioral description
A computer program/software always exists in some state. An externally observable mode of
behavior {e.g. waiting, computing, printing etc) that is changed when some event occurs (e.g.

mouse click etc).

The behavior domain describes a representation of states of software and events that canse

the software to change its state. The software behavior is described in two terms:

s States

e Events

Generic Metadata Repository 51

Chapter

4

System Architecture

The following section discusses the behavior of the GMR in terms of states and events.

States

The GMR software can have the following states.

Ready

Events

State

File reading state

DB schema retrieving state
Schema integrating state
Schema transformation state

XML files writing state

The following are the events that cause the GMR software to change its state described

above.

Files selected invoke file reading

File read invoke schema retrieving

Schema retrieving invoke integration
Integration complete invoke file writer
Integration invoke transformation
Transformation complete invoke file writer

File writing complete invoke ready state

Generic Metadata Repository

52

Chapter 4

System Architecture

State transition diagram

The state transition diagram of the system is shown in figure 4-5.

File Selected Ready
State
Invoke File 3
Reading
- N Writing Invoke
File Reading complete Ready state
State
Invoke Transformation
(S::I);]-n Schema Complete
ng Retrievin
etrieving File Writing ‘
v State Invoke
Schema y File Writer
Retrieving
State
Transformation
State
Integration Invoke
complete File
Writer
Schema Integration
Retrieving complete
.| Integration
"| State
Invoke Invoke
Integration Transformation

Figure 4-5: State transition diagram

The above diagram shows the control specification of the software that is described here.

Following is the scenario in which the software could be used.

The system is in ready state; user selects the database schema and invokes the file reading;

then it invokes the schema retrieving then integration state is invoked , after that XML writer

is invoked, then transformation is invoked, after that XML writer is invoked, now storing is

complete and system is again in ready state.

Generic Metadata Repository

53

Chapter 5

IMPLEMENTATION

Chapter 5 Implementation

5.1.2 XML
The XML stands for Extensible Markup language, it’s a component language used for
describing information as an electronic document and it stores the information intelligibly

that’s why it is called a Meta markup language [15].

The XML is a general-purpose specification for creating custom markup languages. It is
classified as an extensible language because it allows its users to define their own elements.
Its primary purpose is to help information systems share structured data, particularly via the
Internet, and it is used both to encode documents and to serialize data. XML is recommended
by the World Wide Web Consortium (W3C). It is a fee-free open standard. The

recommendation specifies both the lexical grammar and the requirements for parsing.

Area in which XML will be useful in the near-term include: Exchange of information
between organizations. In XML the documents are created by concentrating on what actually
information is and how it is structured. The logical structure of the XML document (schema
of XML document is defined either in the DTD or MSXML schema, either internally or in
some external file.

Advantages of XML

There are many advantages to using XML for information exchange, and they offer many
benefits to the user. The Extensive Markup Language uses human language, which is
conversable, and not the language used by computers which is binary and ASCH coded.
XML is readable by even people who have had no formal introduction to XML or have been
coached on it. It is as easy as HTML. XML is fully compatible with applications like JAVA,
and it can be combined with any application which is capable of processing XML
irrespective of the platform it is being used on. XML is an extremely portable language to the
extent that it can be used on large networks with multiple platforms like the internet, and it
can be used on handhelds or palmtops or PDAs. XML is an extendable language, meaning
that you can create your own tags, or use the tags which have already been created. There are
other advantages of using XML. It is a platform and independent language. It can be
deployed on any network if it is amicable for usage with the application in use. If the

application can work along with XML, then XML can work on any platform and has no

Generic Metadata Repository 56

Chapter 5 Implementation

boundaries. It is also vendor independent and system independent. While data is being
exchanged using XML, there will be no loss of data even between systems that use totally
different formats. XML can also be stored in databases in XML format and human readable
format, The advantages of XML include that it can be used as an instrument to share data and
application models in wide networks like internet. It supports Unicode, allowing aimost any
informatton in any written human language to be communicated. It can represent common
computer science data structures: records, lists and trees. Its self-documenting format
describes structure and field names as well as specific values. The strict syntax and parsing
requirements make the necessary parsing algorithms extremely simple, efficient, and
consistent. XML is heavily used as a format for document storage and processing, both

online and offline. It is based on international standards.

5.1.3 XMI

The XML Metadata Interchange (XM]I) is an Object Management Group (OMG) standard
for exchanging metadata information via Extensible Markup Language (XML). One purpose
of XML Metadata Interchange (XMI) is to enable easy interchange of metadata between
UML-based modeling tools and MOF-based metadata repositories in distributed
heterogeneous environments. XMI is also commonly used as the medium by which models
are passed from modeling tools to software generation tools as part of model-driven

engineering.

5.2 Algorithms

The algorithms of system operations are given below:

5.2.1 Algorithm of integration
This is algorithm of matching two schemas and make Master schema.

Algorithm

The pseudo code for this algorithm is given below. Following variables are use globally on
all functions

XMIDataBase databasel : Schema of database 1

XMIDataBase database? : Schema of database 2

Generic Metadata Repository 57

Chapter 5 Implementation

Int matchValue = 0.920

List 1listl = makeList(databasel)

List list2 = makeList{database?2?)

bool[] matches = new bool[size of listl]
string linel,line2,elementl, elementZ
int i = 0,rs

Function makeMasterDB()

While linel in 1listl then
elementl = extractElement(linel})
First applying exact matching
While line2 in list2 then
element2 = extractElement(line2)
If elementl = element2 then

rs =1
Else
rs =0
End If
If rs = 1 then
createMasterTable ()
End If
End Loop
If matches[i] == false then

Dictionary Matching
While string line2 in list2
element2 = extractElement (line2}
rs = dictionary match(elementl, element2)
If rs = 1 then
createMasterTable {}
End If
End Loop
End If
If matches[i] = false then

Dice Matching Here
While string line2 in list2 then
element2 = extractElement (line2)
rs = diesMatch(elementl, element2)
If rs >= matchValue then
createMasterTable ()
End If
End Loop
End If
i++
End Loop
saveRelaionShips (}
saveForignKeys {}

End Function

This is the functicn to compare two elements with exactly, using
dictionary and dice.

Generic Metadata Repository

58

Chapter 3 Implementation

Function double compareElement {(string elementl, string element?2)

double rs = 0

If elementl =
rs = 1

Else If (rs = dictionary match{elementl, elementZ)) = 0 Then
double rsl = dies(elementl, element2)
double rs2 = dies(revert{elementl), revert{element2))
rs = {(rsl » rs2) ? rsl : rs2

End If

return rs

element?2 then

End Function
This is the function return maximum result of two dies.
Function double diesMatch({string elementl, string elementZ2)

double rsl = dies{elementl, element2?)
double rs2 = dies{revert{elementl), revert{element2})
return (rsl > rs2) ? rsl : rs2

End Function
This function return Boolean value, whither element is column.

Function boolean isColumn(string element)
string[] sp = Split the element from ':'
if sp.Length == 2 then
return true
End If
return false

End Function
This function Return table name from given element
Function string ExtractTable({string column)

string[] sp = Split the column from ':'
return spl0]

End Function

This function makes the list of element from given XMIDataBase.

Function List makelList (¥MIDataBase db)

List list

While XMITable table in db.tables then
list.Add(table.name)

End Loop

¥While XMITable tab in db.tables then
While Column col in tab.ceolumns then

list.Add (tab.name+":"+col.name)

Generic Metadata Repository 59

Chapter 5

Implementation

End Loop
End Loop
return list
End Function

Function string extractElement (string element)

string[] sp = split the element from ':'
If sp.Length = 2 then

return sp[l].ToLower()
Else

return element.ToLower ()

End If
End Function

This function match two element by using dictionary.

Function float dictionary match({string elementl, string element2)

List list = List of Synonyms of elementl from custom dictionary
List wornetlList = List of Synonyms of elementl From WordNet

dictionary
While string syn in list then
If wornetlList not contain syn then
wornetList.Add (syn)

End If
End Loocp
If wornetList contain elementZ then
return 1
End If

list = List of all Abbreviation of elementl from custom dictionary

If list contain elementZ then
return 1

End If

return @

End Function

This function take the input a string and return it's revert string

Function string revert (string element)

nir

string r =
for {(int i = element.length - 1 i >= 0 i--)
r += element [i}
End Loop
return r
End Function
This function find dies value between two string

Function double dies(string elementl, string element2)}

int i = matchElement (elementl,element2)

Generic Metadata Repository

60

Chapter 5

Implementation

int j = matchElement (element2, elementl)

double val =i + j
double cnt = elementl.length + element2.Length

return val / cnt

End Function

This function return match value of one element with other element

Function int matchElement (string elementl, string element2)

char chl,ch2

int count=0,1i=0, j=0, ind=0

bool match = false

for (i = 0 i < elementl.Lengthi++)
match = false
chl = elementl[i]

while match = false AND j < element2.Length then

ch2 = element2[j]
If chl = ch? then
match = true
count++
End If
j++
End Loop
If match = false then
J = ind
Else
ind=j
End If
End Loop
return count

End Function
The architecture of master database is as following

e Master Table

0 Master Table Id
Matching Tablel XMIID
Matching Table2 XMIID
Matching tablel name
Matching tableZ name
0 Master table name

¢ Masgter Column

© 000

o Master Column id

¢ Matching Columnl name
o Matching Column2 name
o Master column name

o Data type

o Length

o Is Null able

0 1s Primary Key

¢ 1is unique

o XMI id

o Master table Id
¢ Relation ship
o Relation ship id

Ueneric Meradata Repository

61

Chapter 5

Implementation

O 0000

o

® Foreign Key

o
O
o
[s]
o

If isColumn(linel)

From Table idl

To Tableid?2

From Multiplicity
To Multiplicity
From table name
To table name

Foreign Key Id

Master Column Id

Master Column Name

Reference column Id

Reference Column name

This Function match schema and make master database
Function void createMasterTable()

then

If isColumn(line2) then

Else

Both column case

string tl = ExtractTable(linel)
string tZ
double rc = compareElement(tl, t2)
If rc >= matchValue then

ExtractTable(line2)

Creating new Master column

XMITable tab = table from databasel with name tl
Column coll = Column from tab with name elementl
Column col?2 = Column from table of name tZ from

databaseZ with

name element2

int mtid=master table id with name=tab.name And
xmiid=tab.xmiid

These are required fields of master column.

Matching Columnl = coll.name
Matching Column2 = col2.name
Master Column = coll.name
Data type = coll.datatype
Length = coll.length

Null able = coll.nullable
Primary Key = ceoll.primaryKey
Unique = coll.unique

XMIid = coll.xmiid

Master table id = mtid

Now save the above fields

matches(i] = true

End If

column table case

string tab = ExtractTable{linel}

List list = database2.getRelaticoship(line2)
double rc

Generic Metadata Repository

62

Chapter 5 Implementation

While XMITable tb in list then
string tl = tb.name
rc = compareElement {tab, £1)
If rc »>= matchValue then

Creating new Master column
XMITable tabl = Table from databasel with
name tab

Column coll = column from tabl with name
elementl
XMITable tab2 = table from databaseZ with

name lineZ2
int mtid = masterTable id with name = tabl.name
and xmiid = tabl.xmiid

These are required field ¢f Master Column.

Matching Columnl = coll.name
Matching Column2 = tabZ2.name
Master Ceolumn = coll.name
Data type = coll.datatype
Length = coll.length

Null able = coll.nullable
Primary Key = coll.primaryKey
Unique = coll.unique

XMIid = coll.xmiid

Master table id = mtid

Now save the above fields

matches[i] = true
End If
End Loop
END If
Else
If isColumn{line?) then

table column case
string tab = ExtractTable(line2)
List list = relation ships from databasel with table
name linel
double rc
While XMITable tb in list then
string tl = tb.name
rc = compareElement (t1l, tab)
If rc >= matchValue then
Creating new Master table
¥MITable tabl = table from databasel with
name tl
Column coll = Column from table with name
tab and column name element2 from databasel
XMITable tab2 = table from databasel with
name linel
int mtid = master table id with name =
tabl.name AND

Generic Metadata Repository 63

Chapter 5 Implementation

XMIid = tabl.xmiid
These are required field of Master Column.

Matching Columnl = tabZ.name
Matching Column2?2 = coll.name
Master Column = tabZ.name
Data type = coll.datatype
Length = ceoll.length

Null able = coll.nullable
Primary Key = coll.primaryKey
Unique = coll.unique

XMIid = cell.xmiid

Master table id = mtid

Now save the above fields

matches[i] = true
End If

End Locop

End If

Else
both table case
Create a new master table
XMITable t1 = table from databasel with name linel
XMITable t2 = Table from database2 with line2
These are field of master tables
Matching tablel xmmid = tl.xmiid
Matching table2 xmmid = t2.zmiid
Matching tablel name = tl.name
Matching table2 name = tZ2.name
Mater table name = tl.name
Save the above field in master table
matches{i] = true

End Else

End If

End Function
This function Save the master tale relationships

Function saveRelaionShips{)
While Relationship relation in databasel.relationship then
int midl = master table id with relation.from.name,
relation.from.xmiid
int mid2 = master table id with relation.to.name,
relation.to.xmiid
If midl not equal -1 AND mid2 not egual -1 then

Makes relationship of master tables

Generic Metadata Repository 64

Chapter 5 Implementation

These are required field of relationship

From Table Id = midl

To Table Id = mid2

From Multiplicity = relation.fromMultiplicity
To Multiplicity = relation.toMultiplicity
From table name = relation.from.name

To Table name = relation.to.name

Save this relationship
End If
End Loop
End Function

This function save the feorign key
Functien saveForignKeys()

While XMITable tables in databasel.tables then
While Column col in tables.ceolumns then
int cidl = Master Column Td with col.name and col.xmiid
int cid2 = -1
If col.fkey not equal null then
cid2 = Master Cloumn id with master column name =
col.fkey.column.name and xmiid =
col.fkey.column.xmiid
If c¢idl not equal -1 AND cid2 not equal -1 then
Make Foreign Key
These are required field of foreign key
Master Column Id = c¢idl
Master Column name = col.name
Reference Column Id = cid2
Reference Column name = col.fkey.column.name
End If
End If
End Loop
End Loop

End Function

5.2.3 Algorithm of transformation
The pseudo code for this algorithm is as follows:
Function insertDWDFColumn({int did,int mdid)
Make a list of all columns of integrated schema
ArraylList list = this.selectColumn{mdid)};
While ob in list then

if (ob[2].Equals{"varchar"}) || ob[2].Eguals("char")) then

Generic Metadata Repository 65

Chapter 5 Implementation

insert into the data warehouse dimension table

columns
End if
if {ob[2].Egquals("integer") !| ob[2].Equals("date")) then
insert into the data warehouse fact table columns
End else
End Leoop

End Function

Generic Metadata Repository 66

Chapter 6

EXPERIMENTAL
RESULTS

Chapter 6 Experimental results

6 Experimental Results

In this section, we have built a case study in order to show the working of our proposed
framework. We construct the case study from the domain of “Student Information System”.
A domain expert can make the entity relationship diagrams of two systems since purpose
here to show the working of our integration and transformation approach that we have used

in our thesis but not the construction of domain knowledge.

The structure of this chapter is as follows. Section 6.1 gives the results of matching results.
Section 6.2 gives the results of merging results and the section 6.3 gives the transformation
results.

Example Schemas

The two schemas that we have taken as an example in our case study are given below. Based
on these schemas the matching, merging and transformation results are displayed. The entity

relationship diagram of example schema 1 is shown in figure 6-1 (a).

fomesr Depaniment™ . 3635)
r b [:Deptiay, % = maartmﬁ”“ t~,

EEH Irmmﬂe e i

(SR, € OUTSe SEma e
,~ F[sCourastone s ot megerita) -
e; hml'q-m-n e Efnieger(1Dj .
”*W"mWWﬂmh m“mw”_wxy

g

g |

r
4

o Ea B S e

f'" B %‘Smm**gi éw\

Figure 6-1 (a): Example Schema 1

Generic Metadata Repository 63

Chapter 6 Experimental results

The entity relationship diagram of example schema 2 is shown in figure 6-1 (b).

= Un]vers(‘y :;:&.,’-*k—?' r' m é":’éa‘eﬁf:" g \

[

| U p——

e

R e

-+
e

Figure 6-1 (b): Example Schema 2

6.1 Matching Result

Based on the example schemas when we apply our match operation then the matching result
is produced. The matching result is shown in table 6-1 (a) and table 6-1 (b).

In table 6-1 (a), first two columns show the schema element table names taken from the two
example schemas. Next four columns show the matching results obtained by applying

different matchers.

Element 1 Element 2 Exact Synonym Abbreviation | Dice
Matcher Matcher Matcher Matcher

Student Student 1 0 0
Institute University

Course Course

Registration | Registroation
Qualification | CV
Teacher Lecturer

Department Dept
Program DegreeProgram

Table 6-1(a): Matching result

Generic Metadata Repository 69

Chapter 6 Experimental results

In table 6-1 (b), first two columns show the schema element table names and column names

taken from the two example schemas. Next four columns show the matching results obtained

by applying different matchers.

Synonym Abbreviation
Matcher | Matcher Matcher Matcher

Element 1 Element 2

Student:Fname | Student:FirstName 0 1
i Student:Lname | Student:LastName 0 1

Student:Regno | Student:Registratio 0 1

nNo

Student:Phone Student:Phone 0 0

Student:Address | Student:Address 0 0

Student:Guardia | Student:FatherNa 1 0

nName me

Institute:Iaddres | University:Uaddre 1 0

s S8

Institute;:Iname | University:Uname 1 0

Institute:Iphone | University:Uphone 1 0

Course:title

Course:CourseNa
me

$

Course:Coursec | Course:Courseld 0 1

ode

Course:Chour Course:CreditHour 0 1

Registration:Se | Registroation:Sem 0 0

mesterNo esterNo

Registration:Re | Registroation:regld 0 0

gld

Registration:dat | Registroation:Date 0 0

e

Qualification:In | CV:University 1 0

stitute

Qualification:cg | CV:CGPA 0 0

pa

Qualification:La | CV:FinalDegree 1 0

stDegree

Teacher:Fname | Lecturer:FirstNam 1 0
e

Teacher:Phone { Lecturer:Phone 0 0

Teacher:Lname | Lecturer:LastName 1 0

Teacher:Addres | Lecturer:Address 0 0

Teacher:Email

Lecturer:Email

Generic Metadata Repository

70

Chapter 6

Experimental results

Depariment:Dep
tid

Dept:Deptld

Department:Dep
Name

Dept:Dname

Department:HO

D

Dept:HeadOfDept

Program:Progra
mld

DegreeProgram:Pr

ogld

Program:Progra
mName

DegreeProgram:Pr

ogName

6.2

Merging Result

Table 6-1(b): Matching result

When the matching result is produced then the merging operation is applied. The merging
result is shown in table 6-2 (a) and table 6-2 (b).

In table 6-2 (a), first two columns show the schema element table names taken from the two

example schemas. Third column is the name of integrated element.

Element 1

Element 2

Integrated Element

Student

Student

Student

Institute

University

Institute

Course

Course

Course

Registration

Registroation

Registration

Qualification

Cv

Qualification

Teacher

Lecturer

Teacher

Department

Dept

Department

Program

DegreeProgram

Program

Student

Student

Student

Table 6-2 (a): Merging result

Generic Metadata Repository

71

Chapter 6

Experimental results

In table 6-2 (b), first two columns show some schema element column names taken from the

two example schemas. Third column is the name of integrated element.

Element 1

Element 2

Integrated Element

Fname

FirstiName

Fname

Lname

LastName

Lname

GuardianName

FatherName

GuardianName

Address

Address

Address

Iname

Uname

Iname

LastDegree

FinalDegree

LastDegree

cgpa

CGPA

cgpa

DepName

Dname

DepName

HOD

HeadOfDept

HOD

ProgramId

Progld

Programid

Coursecode

Courseld

Coursecode

Table 6-2 (b): Merging result

6.3

Transformation Result

When the integrated schema is produced then the transformation operation is applied. The

transformed result is shown in table 6-3 and 6-4.

In table 6-3, dimension tables and dimension columns are displayed.

Dimension Tables | Dimension Columns
Student Fname
Student Lname
Student GuardianName
Student Address
Student Phone
Institute [name
Institute Taddress

| Institute Iphone
Teacher Fname
Teacher Lname
Teacher Address

Generic Metadata Repository

72

Chapter 6

Experimental results

Teacher Phone
Teacher Email
Qualification LastDegree
Qualification Institute
Qualification cgpa
Department DepName
Department HOD
Program ProgramName
Course title

Table 6-3: Transformation result (dimension columns)

In table 6-4, fact table columns are displayed.

Fact Table
Columns

Data Type

Regno

integer

Deptld

integer

Programld

integer

Coursecode

integer

Chour

integer

Regld

integer

SemesterNo

integer

date

date

Table 6-4: Transformation result (Fact columns)

Generic Metadata Repository

73

Chapter 7

CONCLUSION

Chapter 7 Conclusion

7 Conclusion

Based upon the experimental results the following conclusion is drawn and few directions for
further study are also given. The structure of this chapter is as follows: Section 7.1 gives the

conclusion of the thesis and section 7.2 gives the future work of the research.

7.1 Conclusion

The research presented in this thesis concerns different areas to highlight the problems. We
have discussed the two main issues that are the metadata repository is important for a data
warchouse and it is a tedious and complex task to establish a metadata repository especially
from multiple operational sources as we have seen the problem of multiple operation sources

i-e naming conflict.

However, due to specific needs of the data warehouse domain, the problem of fetching
metadata from heterogeneous and autonomous resources must be studied in the perspective
of data warehousing specifically. Based on this problem, we have given the detail of schema
integration, which consists of schema matching and schema merging. In the literature survey,
we have also discussed the schema matching technique and the concept of schema

transformation.

Based on the literature survey, I have chosen to develop a metadata repository within the
context of data warehouse that is Generic Metadata Repository (GMR). I have proposed
architecture of generic metadata repository, which consists of following operations: (a)
extract schema from XMI, (b) integrate schemas, (c) transform relational schema into star

schema, and (d) store the metadata about both schema into repository using xml documents.

Generic Metadata Repository 75

APPENDICES

Appendix-A Input/Output Screens

Input/Output Screens

Login Window
This is the home page to enter into the Generic Metadata Repository. There is a login
window for admin to sign in with existing account. He will enter login and password to

enter into the system.

Manage GMR
After entering the login and password admin will be able to manage the generic metadata
repository using the menu items. Menu items contains manage dictionary, schema

integration and transformation, reports etc.

Generic Metadata Repository 79

Appendix-A Input/Output Screens

Manage Words

Admin can manage the words in the dictionary. He can add new words and also update

them.

*%| contactnumber
| country

"1 Course

:} Coursecode
“ | CourseName
1 CourseQfferinglist
=21 courselitle

| credithour
oy
| dateofbith
day
DegreeProgram
1 department
departmentid

Generic Metadata Repository 80

Appendix-A Input/Quitput Screens

Manage Synonyms

Admin can manage the synonyms in the dictionary. He can assign synonyms to existing

words and also remove them.

"~ Manage Synonyms

Bl localaddres 4
permanertaddress

Integrate and Transform Schema

In this window, all existing schemas are displayed in left side. Admin will select any two
schemas and then press the Integrate and Transform schema button. Here a message box
open and asks an option to select the master schema. After selecting the schemas,

integration and transformation process starts. At the end of transformation the XML

docurnents are generated.

Ir't_egaie - Transtorm Schema

Generic Metadata Repository 31

Appendix-A

Matching Result

After submitting integrate and transform schema button this window is displayed. In this

window both schemas are displayed in separate columns including their attributes. The

result of matching is displayed in the center.

L ¥MI1d: We_hZ2FYEACRWC.

4 & Dept
L E-XMIId: WWRZZFYEACRWGO
! - Primay Key Constrant Name :
& DegeeProgam
t = XMId: ov_FZ2FYEACRw.

g0y

| @ Lechrer

1 & Couse

] & Coursefteringlis
- - Registroation

. eq‘reeProgrn-ongnm
] CV—Qual1§1c_at:|.on
' Lémueaﬁghéﬁe;

5 Student :
: '-Elrmt ¢ LMLl : NeSbKFYEACRWY |
&[] Regihation i+ Piimary Key Constaint Name : |
= [nighat 1 ¢ & -Cobans
{ B Universiy

+ Primary Key Constrant Name : |

.Studem:. Laswue—s’;udem, :
+ Primary Key Constraint Name : §L1 :

I OVSZ2F AR |22
i—ﬁinaxyneymaiwm: :

| B Relationships

ni'vetsiéfiiﬁéticuté
epe= Depa.rtlenc

g R
Course=Course, ;

2 T A S TR M T S e s

N

Generic Metadata Repository

Input/Output Screens

Appendix-A Input/Output Screens

XML Documents

When the integration and transformation complete then the XML documents are
generated. An example of integrated table document is given below.

<?xml version="1.0" standalone="yes" 7>
- <MergeTable>

- «MergeTable>
<Mtid>525</Mtid>
<xid1>mr788fCFYEACRwOa</xid1>
<xid2>11e9bKiFYEACRWCV </xid2>
<t1>Student</t1>
<t2>8Student</t12>
<Iname>Student</iname>
zmdbid>20</mdbid>

</MergeTabhle>

- <MergeTable>
<Mtid>»>526</Mtid>
<xid1>gcO0CBfCFYEACRwWVYD</xid1>
<xid2>Wc_hZ2iFYEACRwWC . .</xid2>
<tl=Institute</t1>
<t2>University</t2>
<Iname>Institute</Iname>
<mdbid>20</mdbid>

</MergeTable>

- <MergeTable>
<Mtid=527</Mtid>
<xid1>eX0OCBfCFYEACRwbN</zid1>
<xid2>TwPxZ 2IFYEACRWOM</®id2>

~t1-Toarhar-/t1~

Loading Section
This page is used to load an XMI schema into the system. This schema is then used for

integration and transformation.

Generic Metadata Repository 83

Appendix-A

Input/Qutput Screens

Integrated tables
The report of integrated tables is displayed using this window.

Ay

{8 Integrated Table

e I]

I7BBCFYEACR. . |MeSLKFYEACR... [Student | Sludent

gc0CACFYEACR... {We_hZ2FYEAC.. |Instiute Universty Instiute
eXOCBICFYEAC... iTwPWZAFYEAC.. |[Teacher Lecturer Teacher
mBbCHCFYEAL... |GYsxZ2FYEACR... {Qualfication v Qualfication
(TCIB{CFYEACR... |wLIRZ2FYEAC... |Department Dept Department
aculBiCFYEACR... ov RZAFYEACR... | Progam DegresProgram | Program
7SSEICFYEACRACE | usWwniFYEACR... | Course Course Couse
wTiBtCFYEACRKFT | op_WwniFYEAL... |OfferingCourselist | CourseDftennglist | OiferingCourselist
JKSSICFYEACRHI | 3UDwnFYEACR... | Registration Regstoation Registration

Integrated Columns

The report of integrated columns is displayed using this window.

Generic Metadata Repository

O
O
._
F] [FACBCFYEACR..
F] |viCBCFYEACR..
[1 |SfCBICFYEACR. .
CKACBCFYEAL...
] | VhCBCFYEALR.
eLCBOFYEALR...
S—5" BOACPEACR.
84

Appendix-A Input/Output Screens

Integrated Relationships
The report of integrated relationships is displayed using this window.

Data Warehouse Tables
The report of data warehouse tables is displayed using this window.

Studert
175 Jrstitute 526

Teacher 527
Qualification 526
Department 529
Program 530
Course 53
181 OfferingCourselist {532

Registration

Generic Metadata Repository 85

Appendix-A

Data Warehouse Dimension Columns

The report of data warehouse dimension columns is displayed using this window.

Fname

Lname

174

835

GuardianName

174

897

Addiess

174

Phone

174

Iname

175

|address

175

Iphone

175

Frname

176

Lname

176

Address

176

Phone

176

Email

176

LastDegree

177

308

Institute

177

cgpa

177

910

DepName

178

912

Data Warehouse Fact Columns

The report of data warehouse fact columns is displayed using this window.

Redgistration

109 Regno 174 894
Deptid 178 911

Programid 179 914

Coursecode 180 916

1113 Chour 180 918
114 Reld 182 919
: SemesteiNo 182 920

date

Generic Metadata Repository

Input/Output Screens

APPENDIX B

Appendix-B

References

References

(1]
(2]

(31

[4]

(5]
(6]

[7]

(8]

(9]

£10]
[11]

Inmon, W.H. “Building the Data Warehouse”. John Wiley, 1992.

Paulraj Ponniah. “Data Warehousing Fundamentals”, A comprehensive
guide for IT professional. Wiley Publishers, 2001. ISBN: 0471-412546,
1997.

Hong Hai Do, Erhard Rahm. “On Metadata Interoperability in Data
Warehouse”. Techn.Report 1-2000, Dept. of Information Technology,
Univ. of Leipzig, March 2000.

Staudt, M.; Vaduva, A.; Vetterli, T. “The Role of Metadata for Data
Warehousing”. Techn.Report 99.06., University of Zurich, Dept. of
Information Technology, September 1999,

David Marco, 2001, Available at: http://www.tdan.com/view-articles/4968
Christoph Quix Informatik V, RWTH Aachen. “Repository Support for
Data Warehouse Evolution”. Proceedings of the International Workshop
on Design and Management of Data Warehouses (DMDW’99)
Heidelberg, Germany, 14. - 15.6. 1999.

Stefano Rizzi, Alberto Abello, Jens Lechtenborger, Juan Tryjillo.
“Research in data warehouse modeling and design: dead or alive?”.
Proceedings of the 9th ACM international workshop on Data warchousing
and OLAP. DOLAP 06, ACM Press, Nov.2006

Claudio Jossen, Klaus R. Dittrich. “The Process of Metadata Modeling in
Industrial Data Warehouse Environments”. BTW Workshops 2007: 16-27

Jayant Madhavan, Philip A. Bemnstein, Erhard Rahm. “Generic Schema
Matching with Cupid”. Proceedings of the 27th International Conference
on Very Large Data Bases. ACM Press, 2001

WordNet-a lexical database for English: http://wordnet.princeton.edw/.

Surajit Chaudhuri, Umeshwar Dayal. “4An Overview of Data Warehousing
and OLAP Technology”. ACM SIGMOD Record, March 1997, pp. 63-74.

Generic Metadata Repository 88

Appendix-B

References

[12]

[13]

[14]

[15]
[16]

(171

(18]

[19]

(20]

[21]

[22]

[23]

D. L. Moody, M. A. R. Kortink. “From Enterprise Models to Dimensional
Models: A Methodology for Data Warehouse and Data Mart Design”.
Proc. Of international workshop on design and management of data
warchouse (DMDW?2000)

KIMBALL, R. “The Data Warehouse Toolkit’, New York: J. Wiley &
Sons, 1996.

P. Bernstein and T. Bergstraesser. “Meta-data support for data
transformations using Microsoft Repository”. IEEE Data Engineering
Bulletin, 22(1):9-14, March 1999.

Sean McGrath. “XML by Example”, Prentice Hall PTR; May 28 1998.

Efraim Turban, Jay E. Aronson, Narasimha Bolloju (2001 six edition)
Decision Support Systems and Intelligent Systems.

“Wikipedia, The Free Encyclopedia” available at
http://en.wikipedia.org/wiki/Metadata#Data_warehouse_metadata

Rahm, E., Bernstein P.A. “A survey of approaches to automatic schema
matching”. VLBD Journal 10: 4, 2001.

Nayyer Masood, Omer Igbal. “Conceptual and Context based
Combination of Schema Matchers”. 4" IEEE ICET (IEEE International
Conference on Emerging Technologies), Oct, 2008.

Batini, C., Lenzerini, M., Navathe, S. B. “4 Comparative Analysis of
Methodologies for Database Schema Integration”, ACM Computing
Surveys, 18(4), p(323-364), Dec., 1986

E. Rahm, H.H Do. “Data Cleaning: Problems and Current Approaches”.
IEEE Tech. Bulletin on Engineering, Dec 2000.

L. Bass, P. Clemens and R. Kazman, “Sofiware Architecture in Practice”.
Addison Wesley, 2" ed., 2003.

Panos Vassiliadis. “Data warehousing metadata”, Encyclopedia of
database system, Editors-in-chief: Liu, Ling; Ozsu, M.Tamer, Springer,
2009.

Generic Metadata Repository 89

