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ABSTRACT

“Comparison of Different Measures of Correlation for Categorical Data”

Testing of independence is widely and frequently used by the
practitioners/researchers in every field of science. Some tests of independence are used
for continuous and categorical data while there are some tests that can be used only for
categorical data. For the continuous data there is a lot of literature on comparison of
different measures of association, but for the categorical data we were unable to find any
comparison of various measures of independence. This study compares four measures of
correlation/tests of independence for categorical data, categorized into 2x2 contingency
table on the basis of size of test and stringency criterion. We found that Fisher’s exact test
of independence (1934) is the robust and best test of all the four tests of

independence/measures of correlation for categorical data.
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Chapter 1

INTRODUCTION

1.1 Brief Introduction

Tests of Independence are part of tools of every social scientist. These tools are
frequently used as a routine practice in Economics, Econometrics, Statistics, Social
science and Biological sciences. The data on which these tools are to be applied is of
various types and nature. The data may be of continuous or qualitative type. The
continuous data can be further divided into ratio and interval. Similarly the qualitative
data can be further divided into Nominal, Ordinal and Rank-Order. Keeping view all the
types of data the researcher must be careful in conducting the test of independence
because there are different tests available for different types of data. But usually the
researchers do not take care of the data type and use Pearson Product Moment Coefficient
of Correlation. If the data is continuous and it satisfies normality assumptions then there
is no problem with it. But if the data is qualitative then the use of Pearson Product
Moment Coefficient of Correlation is not appropriate and may produce wrongvresults.
There is huge amount of literature that can lead researcher to appropriate choice of test if

the data is continuous.
There are several tests of independence which can be applied to qualitative data.
For example Spearman rank correlation coefficient and Kendall tau coefficient of rank

correlation can be applied to rank-order data, Goodman and Kruskal’s gamma measure of

association and chi-square test of independence can be applied to ordinal or categorical



data and chi-square test of independence and Fisher’s exact test can be applied to nominal

data.

For continuous type of data or the rank-order type of data the comparison of
correlation coefficients exist in literature. For example Tahani A. Mature and Elsayigh
(2010) compared ten correlation coefficients. Similarly Jann Hauke and Tomasz
Kossowski compared Pearson and Spearman correlation coefficient for the same sets of
data. Cornbleet and Shea (1978) compared product moment coefficient of correlation and
rank correlation coefficients. Barnhart etal compared the concordance correlation

coefficient and coefficient of individual agreement,

So there is a guideline available for comparison and usage of a test of
independence/measure of correlation for continuous data in literature. But there is no
guideline for the comparison of tests of independence/measures of correlation for

categorical data.

Nobody (to the best of my knowledge) has compared the coefficients of
correlation/ tests of independence for categorical data. Especially for Ordinal or Nominal
type of data categorized in a contingency table I was unable to find any comparison. So in
order to fill this gap in literature this study has been conducted. In this study four tests of
independence/measures of correlation are compared for the simplest type of contingency
table i.e 2 X 2 contingency table. The four tests of independence/measures of correlation

that are compared in this study are
(D Goodman & Kruskal’s Gamma measure of association

(i)  Chi Square test of independence
2



(iii)  Pearson product moment coefficient of correlation
(iv)  Fisher’s exact test of independence

1.2 Motivation

Once 1 was being asked that which test of independence may be used for
categorical data from the available tests of independence in literature. Then I searched for
the comparison of tests of independence/measures of correlation for categorical data
using the best search facilitators like Google and I was astonished that no such

comparison is there. This led me to think of investigating this problem myself.

As there are various tests of independence for categorical data so one can apply
any one of them and it is commonly accepted that the conclusions drawn from different
tests of independence/measures of correlation will be same. But in reality different tests
of independence lead to different conclusion. For example Young and Winn (2003) noted
the sighting of Gymnothorax Moringa and G. vicinus (species of eel) in an area of 150 by
250 meters. The two variables of classification were the species of eel and the type of
habitat. Young and Winn used Chi-square test of Independence (Chi-square = 6.26 and p-
value = 0.044) and concluded that the two variables of classification are dependent as the
p-value of chi-square was less than nominal value of 0.05. When I used the same data to
test the null hypothesis of independence using Goodman and Kruskal’s gamma measure
of association, [ cannot reject the null hypothesis of independence (Gamma = -0.142, Z =

-1.61 and p-value = 0.1074) as the p-value of gamma is greater than the nominal value of

0.05.



In such a situation one cannot decide that which test of independence /measure of
correlation may be used or which test of independence/measure of correlation will
performs best, unless one has an idea about the size and power of these tests. This
motivated and inspired me to conduct this study so that there may be a crystal clear most

appropriate test of independence/measure of correlation for categorical data.

1.3 Objectives of the study

There are various tests of Independence/measures of Correlation for data
categorized in a contingency table available in the literature. Different tests can lead to
different conclusion and nobody knows which of the tests should be used for the data in
hand. Therefore objective of this study is to find out a test of independence which gives

the best size and power properties for this type of data.
1.4  Significance of the study

As the usage of the test of independence/measures of correlation for categorical
data is common practice in every field of science, so this study will help the
practitioners/researchers of these fields enabling them to apply the most appropriate test
of independence/measure of correlation. This study will also help them in updating their
knowledge about the empirical performance of the four tests of independence/measures of

correlation for categorical data.



Chapter 2

LITERATURE REVIEW

As a result of extensive search on the internet it is found that the tests of
Independence/measures of Correlation for categorical data are not compared in the
literature (to the best on my knowledge). However the comparisons of tests of
Independence/measures of Correlation are found in literature for continuous data and for
rank order data. One of the recent comparisons in which two measures of correlation for
rank order data are also compared is of Maturi and Elsayigh (2010). They compared ten
correlation coefficients using a three step bootstrap procedure. The ten correlation

coefficients compared by them were

(i) Pearson product moment “r”
(i) Spearman’s rho “p”
(iii)  Kendall’s tau “t”
(iv)  Spearman’s Foot rule “Ft”
W) Symmetric Foot rule “C”
(vi)  The Greatest deviation “Rg”
(vil)  The Top-Down “r'T”

(viil) Weighted Kendall’s tau “tw”

(ix) Blest “v”



x) Symmetric Blest’s coefficient “v’”.

They used bootstrap method for their comparison. In order to decide that how
many replications should be used to get the most accurate results, they used a three step
bootstrap approach which was introduced by Andrews and Buchinsky (2002). They used
this approach to determine the optimal number of replications for a specified degree of
accuracy. They also used this approach to estimate the standard errors of the correlation
coefficients without imposing the null hypothesis. They compared the correlation
coefficients on basis of standard error criterion that is a correlation coefficient having the

lowest standard error was considered as the best by them.

Three-step bootstrap approach can be used to determine the number of
replications with pre-fixed degrees of accuracy which is applied for many different
bootstrap problems, such as estimating the standard error, confidence interval and p-value
for classical statistical techniques. Accuracy is measured by the percentage deviation of
the bootstrap standard error estimate based on N bootstrap simulations from the
corresponding ideal bootstrap standard error estimate for which N = . A bound of the
relevant percentage deviation, pdb, is specified such as the actual percentage deviation is

less than this bound with a specified probability, (1-8) tends to one. That is, for given

(pdb,0), the optimal number of repetitions, N* satisfies

Fay

SE,.— SE

o0

*

P’| 100 < pdb |=1-6

SE

o



Where SZ_ an ideal bootstrap estimate of standard error (SE) is, Sch'N is the bootstrap

approximation of SE_ based on N bootstrap replications. Also P represents the

probability with respect to randomness in bootstrap samples.

They concluded that “one should use the PEARSON correlation coefficient if the
data meets the normality assumption; otherwise, the GREATEST DEVIATION performs
well especially when the data has outliers. However, when we want emphasis on the
initial (top) data, the SYMMETRIC BLEST’S coefficient has lowest standard error

amongst other weighted correlation coefficients”.



Chapter 3

INDEPENDENCE IN CATEGORICAL DATA

In this chapter Independence for a rxccontingency table is defined, the
significance of Independence is discussed, independence for 2x2 contingency table is
also explained and a brief overview of tests of independence/measures of correlation that
are compared in this study is given. At the end of the chapter the procedure with which

the data is generated in 2x 2 contingency table is described.

3.1 Independence when the data are categorized in rxc Contingency

Table

Let the data on two variables/factors say X and Y is categorized in a rxc two
way contingency table, where r is the number of rows and ¢ is the number of columns. X
variable/factor is categorized along r rows and Y variable/factor is categorized along ¢

columns as depicted in Table 3.1.



Table: - 3.1

rxc Contingency Table

Marginal
Y variable/factor
Probability
X1 Xy, | e X,
(7[1}) (7[[2) (”lc) 7[1.
Xn Xpy | e X,,
ﬂ- { ]
S (721) (7,2) (75.) 2
°
<
(]
)
.8
=
>
>
x x xI‘L‘
rl r2 ............ ﬂ'r o
(71',4) (7[’_2) (ﬂm)
Marginal
7[01 7[.2 ............... ﬂ.r 1
Probability




where x;; is the number of observations lying in the cell which is the intersection

of ith row and jth column and 7, is the corresponding cell probability.

The null hypothesis for any test of independence is that the two factors/variables

are independent i.e.
Hy 7%, =T 7T, or Ho: 7, ~ T, 7, =0  Vvi=l,2,.. randj=1,2,...c

The general alternative hypothesis for any test of independence is that the two

factors/variables are not independent i.e.

Ha: 7, 2 7,7, or Hp my—mom,, #0 ¥V i=1,2,...,randj=1,2,....c

i -_/' I ¥

where 7, is the total of probabilities of ith row i.e

[4
Tu=2m,
=

and 7, is the total of probabilities for jth column i-e

r
T =27
i=l

{ad

.2 Significance of Tests of Independence

The tests of independence are widely and frequently used in every field of science.
But their applications are much more in Medical sciences, Social sciences and Biological
sciences. These tests are used to draw the conclusion about the dependence or

independence of two variables/factors.
10



In Medical sciences when a pharmacist wants to know the effect of medicine. He
takes the data of subjects before and after the medicine or the groups the subjects into
two. One is the group of subjects which has been given the medicine called as treatment
group and the other group which has not been given the medicine called as control group.
In either of the two situations he uses any of the tests of independence to tests whether

the medicine has any effect or not.

In Education if a researcher wants to know the effect of a new technique of
teaching, that whether it is effective or not. He takes the grades of students before and
after the technique and tests them for independence using any of the tests of independence

to know whether the technique is effective or not.

Similarly in Biological sciences if a researcher want to know the effect of a
fertilizer. He takes the data before and after the use of fertilizer or groups the plants into
two groups. One is the treatment group and the other is control group. Treatment group is
that group of plants which are fertilized and the control group is that group of plants
which are not fertilized. In either of the situations the researcher uses a test of

independence to know whether that fertilizer has a significant effect or not.

All of the above examples show that the tests of independence are frequently used
and their result/conclusion is very important. If a test of independence leads to a wrong

conclusion then it has very adverse effects on a human life and society.

11



3.3 Overview of Tests of Independence/Measures of Correlation

A brief overview of each of test of Independence/measure of Correlation is given

as under.

5

3.3.1 Pearson Product Moment Co-efficient of Correlation

Developed by Pearson (1896), the Pearson Product Moment correlation
coefficient is employed with interval/ratio data to determine the degree to which two
variables co vary (i.e., vary in relationship to one another. The statistic computed for the
Pearson product-moment correlation coefficient is represented by the letter r. r is an
estimate of o (the Greek letter rho), which is the true correlation between the two
variables in the underlying population. » can assume any value within the range of 1 to
+1. The absolute value of » indicates the strength of the relationship between the two
variables. As the absolute value of r approaches i, the degree of linear relationship

between the variables becomes stronger.

The sign of » indicates the nature or direction of the linear relationship that exists
between the two variables. A positive sign indicates a direct linear relationship, whereas a
negative sign indicates an indirect (or inverse) linear relationship. A direct linear
relationship is one in which a change on one variable is associated with a change on the
other variable in the same direction (i.e., an increase on one variable is associated with an
increase on the other variable, and a decrease on one variable is associated with a
decrease on the other variable). An indirect/inverse relationship is one in which a change

in one variable is associated with a change in the other variable in the opposite direction

12



(i.e., an increase on one variable is associated with a decrease in the other variable, and a

decrease in one variable is associated with an increase in the other variable).

r is computed using the relation

. ny XY-y X3V
X=X nyr -y

Where r is the total number of observations and X and Y are two series.
r can be used as a test of independence under the null hypothesis of independence i-e

H,: p =0 against the alternative of non independence using the relation

r~Jn—22
1 — 2

I =

where ¢ follows Student’s t-distribution with n-2 degree of freedom.

3.3.2 Goodman & Kruskal’s Gamma Measure of Association

It is a measure of strength of association for the contingency table data when both
variables are in ordinal scale of measurement. It was developed by Leo Goodman and
William Kruskal’s in as series of papers from 1954 to 1972 and named after its two
developers. The range of its value is from -1 (100% negative association) to +1 (100%
positive association). A zero value of Goodman & Kruskal’s Gamma indicates that there
is no association in the variables. A pair is said to be concordant if it is ranked in the same
order for both variables and a pair is said to be disconcordant if it is ranked in different

order for both variables i.e any pair of observations (x; ,y) and (x; , ;) are said to be

13



concordant if the ranks for both elements agree: that is, if both x; > x; and y; > y; or if both
x; < x; and y; < y;, they are said to be discordant, if x; > x; and y; < y; or if x; < x; and
yi > y;and If x; = x; or y; = y;, the pair is neither concordant, nor disconcordant. G is a
symmetrical measure of association and depends upon number of concordant pairs (N;)

and number of disconcordant pairs (N;). The relation for Gamma is given as under

G__: Nv_Nd
N, +N,

If Ny > Ny ie. there are more number of concordant pairs then number of
disconcordant pairs then Gamma is positive showing that there is a positive association
between the variables. If N; <Ny i.e. there are more number of disconcordant pairs then
number of concordant pairs then Gamma is negative showing that there is a negative
association between the variables. If N, = Ny i.e. the number of concordant pairs is equal
to the number of disconcordant pairs then the gamma will neither be positive nor

negative, it will be zero showing that there is no association between variables.

Gamma can be used as a test of independence using a Z score where the null

hypothesis is y= 0 (No Association) against the alternative hypothesis of association

z=G |l
n(i-GY)

where “n” is the total number of observations and rest of the terms are defined

above.

14



3.3.3 Chi-square test of independence

The Chi-square test of Independence checks the interdependence between two
variables. This test criterion was first developed by Karl Pearson in 1900. The null
hypothesis of chi-square test of independence states that the two variables of
classification are independent and the alternative hypothesis states that the two variables
of classification are not independent, instead they are associated. Let the two variables are
categorized in a »xc¢ contingency table then the test statistic of the Chi-square test of

independence is

Zz = 22 (Oif ;eii)z

i=t j=l if

where o, is the observed frequency ith row and jth column cell and e, is the

corresponding expected frequency.

The critical value of the test depends upon the significance level & and the number

of degree of freedom which is(r —1)(c —1).

The expected frequencies can be calculated by using the formula

where 4; is the total of i*" row, B . is the total of j th column and “n” is the total number

of observations.

15



3.3.4 Fisher’s exact test of independence

According to Daniel (1990) the Fisher exact test, which is also referred to as the
Fisher—Irwin test, was simultaneously proposed by Fisher (1934, 1935), Irwin (1935), and
Yates (1934).The test is used with 2 x 2 contingency tables involving small as well as
large sample sizes when one or neither of the marginal sums is predetermined by the
researcher. It is one of a class of exact tests, so called because the significance of the
deviation from a null hypothesis can be calculated exactly, rather than relying on an
approximation that becomes exact in the limit as the sample size grows to infinity, as with
many statistical tests. This test is useful for categorical data that result from classifying
objects in two different ways. It is used to examine the significance of the association
between the two kinds of classification.

Following equation is used for the computation of the exact probability P of

obtaining a specific set of observed frequencies in a 2 x 2 contingency table.

_(@+alb+d)(a+b)l(c+d)!
B nlalblc!d!

P

Where a is the number of observations lying in 1% row and 1% column cell, b is the
number of observations lying in 1% row and 2" column cell, ¢ is the number of
observations lying in 2" row and 1% column cell and d is the number of observations
lying in 2™ row and 2™ column cell and “!” represents factorial notation.

Then these probabilities P’s are calculated for the observed data and for all
extreme cases. By summing all P’s, Pr (Total Probability and p-value) is obtained. If this
Py is less than or equal to size of test then null hypothesis of independence is rejected

otherwise null hypothesis cannot be rejected.

16



34 Generation of Data in 2x2 contingency table with a specific measure
of association

Null hypothesis in our study is Hy: The two variables/factors are independent i-e

H:n —m7m, =A=0 vV i=l2andj=1, 2.

ij io’fej T
Alternative hypothesis in our study is Hy: The two variables/factors are dependent i-¢

H,:m;~mm,, =A#0 Vi=12 j=I2and0<A<l.

iz .j

In order to get the four cell probabilities 7,,,7,,,7,,7, following four equations are

vsed.
Ty =Ty + A
Ty =Ty — A
Ty = Tyl — A
Tay =T oy + A

If we put A =0 then the four cell probabilities z,,, 7,,, 7,,, #,, will be obtained for

null hypothesis of independence and if we put a value of A other than zero then the four

cell probabilities ,,, 7,,, 7,,, 7,, Will be obtained under alternative hypothesis. For data to

be generated under alternative hypothesis the values of Athat are used in our study are

A =[0.02,0.04,0.06,0.08,0.1,0.12,0.14,0.16,0.18] .
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The two marginal probabilities 7, and 7,, play a vital role in generation of data in
2x2contingency table. As the sum of total probabilities is 1, so z,,=1~7, and

T, =l-7

Qe le *

In our study we have taken 7, =[0.1,0.2,0.3,0.4,0.5]and
7z, =[0.1,0.2,0.3,0.4,0.5]. There were total 25 combinations of 7, and 7, where the

value of Ais taken as zero and these combinations are named as “Combinations of

Independence”.

There are (25x9) 225 combinations of 7, and 7z, where the value of Ais taken

from the setA=[0.02,0.04,0.06,0.08,0.1,0.12,0.14,0.16,0.18]. Out of these 225
combinations there were 90 combinations where the cell probabilities were negative or
greater than 1. So these 90 combinations were excluded from further analysis and we
were left with only 135 combinations and these combinations were named as

“Combinations of Alternative”.

Uniform random numbers are generated in the interval (0, 1) of a specific sample
size ‘n’. Then these “n” uniform random numbers are converted to 2x2 contingency

using all of the above 160 combinations of x,,,7,,,7,,%7,, (25 combinations of
independence and 135 combinations of alternative) using the following procedure.

If the random number is less than or equal to 7;; then it is counted for 1* row and

1* column cell or if the random number is greater than 7y, but less than or equal to
T+ T2 then it is counted for 1% row and 2™ column cell or if the random number is

greater than m;;+ 7y, but less than or equal to my1+ ®i2+ ®2; then it is counted for 2™ row
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and 1" column cell or if the random number is greater than ;14 T2+ 7z¢ then it is counted

for 2™ row and 2™ column cell.

Similarly in order to use Pearson Product Moment coefficient of correlation,

following procedure is used for generation of data in two series X and Y.

If the random number is less than or equal to my; then X and Y are assigned zero
or if the random number is greater than 7;; but less than or equal to my14 s then X is
assigned zero and Y is assigned 1 or if the random number is greater than m;1+ m;2 but less
than or equal to ;14 M2+ M1 then X is assigned 1 and Y is assigned zero or if the random

number is greater than w1+ M2+ 721 then X and Y are assigned 1.
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Chapter 4

COMPARING TESTS OF INDEPENDENCE

The four tests of Independence/measures of Correlation (Chi-square test of
Independence, Goodman & Kruskal’s Gamma measure of association, Pearson Product
Moment coefficient of correlation and Fisher Exact Test) are compared in this study on

the basis of Size and Power of each test and Stringency criterion.

In this chapter the stepwise procedure for Monte Carlo simulations is stated. The
Stringency criterion that is used as the basis of comparison in this study is also explained

in this chapter. At the end of chapter the Limitation of our study is discussed.

4.1 Monte-Carlo Simulation Design
The step wise procedure that is used to estimate the Simulated Critical values,

Size of test and Power of test for each test of Independence/measure of Correlation is

given as under.

(i) Generation of data in 2x2 contingency table using those combinations of
7, -7, and sz, which satisfy the Null Hypothesis of independence and
calculation of Simulated Critical Values for the three tests of
Independence/measures of Correlation i.e. Chi-square test of
Independence, Goodman & Kruskal’s Gamma measure of Association,

Pearson Product Moment Coefficient of Correlation.
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(1)  Generation of data in 2x2 contingency table using those combinations of

7, »7,, and x,, which satisfy the Null Hypothesis of independence and

calculation of size of test for the four tests of Independence/measures of
Correlation i.e. Chi-square test of Independence, Goodman & Kruskal’s
Gamma measure of Association, Pearson Product Moment Coefficient of

Correlation and Fisher exact test.

(i)  Generation of data in 2x2 contingency table using those combinations of

r,, =, and m, which satisfy the Alternatives Hypothesis of Non-

Independence and calculation of Power “P” of each of the tests of

Independence/measures of Correlation at different alternatives.

4.2 Stringency Criterion

The two characteristics Size and Power of any test are very important for the
comparison of different tests. The tests can be compared on the basis of Size and Power.
Let there are two tests Test; and Test; that are needed to be compared. Then these two
tests can be compared on the basis of their Size and Power. But this approach does not
give a satisfactory conclusion as at some alternatives Test) may be more powerful as
compared to Test; and at some other alternatives Test; may be more powerful as
compared to Test;. So in order to address the problem of a single standard to compare the

tests a technique known as stringency is used.

A brief layout of Stringency Criterion for the comparison of four tests of

Independence/measures of Correlation is
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(i)
(i)

(iii)

(iv)

(iv)

Calculation of critical values for each test of independence.
Drawing of Power curve for each test of Independence/measure of

correlation by taking different alternatives along x-axis and Power of that

test along y-axis i-e P T,* Versus §,, where g, are different alternatives

and P T,* isthe Power of test ‘ T** at different alternatives ‘¢, .

Drawing of approximated Power Envelope (APE) by taking different

alternatives along x-axis and the approximation of maximum Power
(AMP) along y-axis i-e the plot of P* T, * versus6,. Where P" T, * is

the approximated Maximum Power at 6, for a specific “ j’.

Calculation of Short Comings of each Test of Independence i-e the
Maximum difference between the Power Curve of a Test of Independence

and approximated Power Envelope.

S T, =max[P' T, -P T,* |

Identification of the most stringent test i-¢ that test which has minimum of
the shortcomings of the four tests of independence i-e Goodman &
Kruskal’s Gamma Measure of Association, Chi-Square Test of
Independence, Pearson Product Moment Co-efficient of Correlation and

Fisher Exact Test.

All of the above steps in 2.1 and 2.2 are repeated for different sample sizes of 25,

50 and100.
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4.3 Approximating the Power Envelope

In this study in order to obtain power Envelope a test of independence based on
Neyman Pearson Lemma is constructed. According to Neyman Pearson (NP) Lemma

when one is testing the point null hypothesis
Hp: 6 =09
against the point Alternative hypothesis
Ha: 6 =0,
then test based on Likelihood ratio which rejects H, in favor of Ha

_ LH(G,/%) _

LR@) LH(E,/X)

Derereerere (4.2.1)

Where LH (00 / x) is the likelihood function under Hy , LH (01 / x) is the likelihood
function under Hy and

P(LRX)<v/Hp)=a
is the most powerful test of size “a” for a threshold “v™.

In order to find the Likelihood function for a 2x2 contingency table the
Multinomial model proposed by G. Rodriguez (2010) is used. According to G. Rodriguez

the log-Likelihood function is given as

Log-LH = i}: Xy TG oeoerescs e (4.2.2)

J=U i=l
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where x;jis the number of observations lying in the ith row and jth column cell and

m; is the cell probability of ith row and jth column.

In order to calculate NP test, data are generated in 2x2 contingency table either
using combinations of independence if we are estimating simulated critical values of NP
test or using combinations of alternatives if we are estimating powers of NP test. Then
log-likelihood function under null hypothesis is calculated using relation 4.2.2 where 7's
are taken from respective combination of independence. Similarly same relation 4.2.2 is
used to calculate the log-likelihood function under alternative by using the z's from
respective combinations of alternative. Finally relation 4.2.1 is used to calculate the test

statistic of NP test.

For each fixed alternative there are 25 powers of NP test corresponding to each
point in the null hypothesis of independence. So in order to choose the LEAST
FAVORABLE null hypothesis we take the smallest power as an approximation to

maximum power (AMP).

44 Limitation of Study

The scope of this study is limited to 2x2 contingency table. Four tests of
independence/measures of correlation (Goodman & Kruskal’s Gamma Measure of
Association, Chi-Square Test of Independence, Pearson Product Moment Co-efficient of

Correlation and Fisher Exact Test) are compared for 2x2 contingency table in this study.
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Chapter 5

COMPUTATION OF SIMULATED CRITICAL VALUES AND

EMPIRICAL SIZE

In this chapter it is explained that why the simulated critical values are needed?
Simulated critical values for each test of independence/measure of correlation are also
estimated in this chapter. Size and distortion in size of each test of independence/measure
of correlations is also calculated in this chapter and at the end of chapter the conclusion is

stated.

5.1 Why the Simulated Critical Values are needed?

Most of the tests are based on asymptotic critical values which do not provide
reliable estimates when sample size is small, so there is a need to get critical values which
work well even in small samples. That’s why we used simulated critical values for our
analysis The critical value of each test of independence/measure of correlation is already
given in the literature e.g. the Critical Value for Chi-Square test of independence is the
value from which the area of chi-squares distribution with (#-1)(c-1) degree of freedom is
greater than 0.95 keeping the size of test constant at 5%. When I used these critical values
here after named as asymptotic critical values to estimate the size of each test of
independence/measure of correlation, I found substantial distortion in the size of each test
of independence/measure of correlation (documented in Section 5.2). So in order to keep
the size of test constant at nominal size of 5% the simulated critical values for each test of

independence are estimated.
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5.2 Size distortion when asymptotic critical values are used

The data are generated in 2x2 contingency table using all of the 25 combinations
of independence and the size of each test of Independence/measure of Correlation is
calculated by taking the asymptotic critical values for different sample sizes of 25, 50,

and 100 using a Monte Carlo sample size of 10,000.

The Size of test for Chi-square test of Independence using asymptotic critical

values at three different sample sizes of 25, 50 and 100 are given in Table 5.2.1.

The Size of test for Goodman and Kruskal’s Gamma measure of Association
using asymptotic critical values at three different sample sizes of 25, 50 and 100 are given

in Table 5.2.2.

The Size of test for Pearson Product Moment coefficient of Correlation using
asymptotic critical values at three different sample sizes of 25, 50 and 100 are given in

the Table 5.2.3.

Fisher’s exact test is not asymptotic and its exact critical values can be computed.
The size of Fisher’s exact test at three different sample sizes of 25, 50 and 100 are given

in Table 5.4.4.
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Table: - 5.2.1 Size of test for Chi-square (using asymptotic critical values)

Combinations of INDEPENDENCE Size for CHISQUARE
PI(1,1) PK1,2) PI(2,1) n=25 n=50 n=100
0.01 0.09 0.09 10.0 7.1 4.8
0.02 0.08 0.18 9.9 6.9 5.1
0.03 0.07 0.27 10.0 6.8 5.2
0.04 0.06 0.36 9.9 6.9 5.0
0.05 0.05 0.45 10.0 7.0 5.0
0.02 0.18 0.08 10.0 7.0 5.1
0.04 0.16 0.16 10.0 7.0 5.0
0.06 0.14 0.24 10.1 6.9 5.0
0.08 0.12 0.32 10.1 7.0 5.0
0.10 0.10 0.40 10.0 7.0 4.8
0.03 0.27 0.07 9.9 7.0 4.8
0.06 0.24 0.14 9.9 6.9 5.1
0.09 0.21 0.21 9.9 7.0 4.8
0.12 0.18 0.28 9.9 7.2 5.4
0.15 0.15 0.35 10.0 7.0 49
0.04 0.36 0.06 9.9 6.9 4.9
0.08 032 0.12 10.0 7.1 49
0.12 0.28 0.18 10.1 7.0 5.0
0.16 0.24 0.24 10.0 6.9 5.0
0.20 0.20 0.30 9.9 7.0 5.1
0.05 0.45 0.05 10.0 6.9 4.9
0.10 0.40 0.10 10.0 7.0 4.9
0.15 0.35 0.15 10.2 6.9 5.0
0.20 0.30 0.20 10.0 7.1 5.0
0.25 0.25 0.25 10.0 7.2 4.8

The above table shows substantial distortion in size of Chi-square test of
independence when asymptotic critical values are used. However when sample size

increases the distortion in size decreases.
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Table: - 5.2.2 Size of test for Gamma (using asymptotic critical values)

Combinations of INDEPENDENCE Size for GAMMA
PI(1,1) PI(1,2) PI2,1) n=25 n=50 n=100
0.01 0.09 0.09 12.0 9.0 5.8
0.02 0.08 0.18 12.1 9.0 6.1
0.03 0.07 0.27 11.9 9.0 6.0
0.04 0.06 0.36 11.8 8.9 5.8
0.05 0.05 0.45 12.1 9.1 6.1
0.02 0.18 0.08 12.0 9.1 5.9
0.04 0.16 0.16 12.1 9.1 6.0
0.06 0.14 0.24 12.0 9.0 5.6
0.08 0.12 0.32 12.0 9.0 59
0.10 0.10 0.40 12.0 8.9 6.2
0.03 0.27 0.07 12.0 9.0 5.9
0.06 024 0.14 12.1 9.0 5.8
0.09 0.21 0.21 12.0 9.1 6.1
0.12 0.18 0.28 12.0 9.0 6.1
0.15 0.15 0.35 12.0 9.0 6.0
0.04 0.36 0.06 12.0 89 6.0
0.08 0.32 0.12 12.0 9.1 5.8
0.12 0.28 0.18 11.9 9.0 6.0
0.16 0.24 0.24 12.0 8.9 6.2
0.20 0.20 0.30 12.1 8.9 6.0
0.05 045 0.05 12.0 8.9 6.1
0.10 0.40 0.10 12.0 8.9 5.9
0.15 0.35 0.15 11.9 9.0 6.0
0.20 0.30 0.20 12.0 9.0 6.1
0.25 0.25 0.25 12.0 9.0 6.2

The above table shows substantial distortion in size of Goodman and Kruskal’s
Gamma measure of Association when asymptotic critical values are used. However when

sample size increases the distortion in size decreases.
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Table: - 5.2.3 Size of test for Pearson (using asymptotic critical values)

TH s

Combinations of INDEPENDENCE Size for PEARSON
PI(1,1) PI(1,2) PI(2,1) n=25 n=50 n=100
0.01 0.09 0.09 9.1 7.0 52
0.02 0.08 0.18 9.1 7.1 5.0
0.03 0.07 0.27 9.0 7.1 52
0.04 0.06 0.36 8.9 6.9 4.8
0.05 0.05 0.45 9.0 7.0 5.1
0.02 0.18 0.08 9.0 6.8 49
0.04 0.16 0.16 8.9 6.9 5.0
0.06 0.14 0.24 8.8 6.9 5.1
0.08 0.12 0.32 8.9 7.0 52
0.10 0.10 040 8.9 7.1 5.1
0.03 0.27 0.07 9.1 7.0 5.0
0.06 0.24 0.14 8.9 7.1 5.1
0.09 0.21 0.21 9.1 6.9 5.0
0.12 0.18 0.28 9.1 7.0 5.0
0.15 0.15 0.35 9.1 7.2 5.1
0.04 0.36 0.06 8.9 7.1 5.0
0.08 0.32 0.12 89 7.1 5.0
0.12 0.28 0.18 8.8 6.8 5.1
0.16 0.24 0.24 8.9 7.0 5.0
0.20 0.20 0.30 9.0 6.9 5.0
0.05 0.45 0.05 9.2 7.1 5.0
0.10 0.40 0.10 9.1 7.0 5.0
0.15 0.35 0.15 9.0 7.1 5.0
0.20 0.30 0.20 8.9 7.0 5.0
0.25 0.25 0.25 9.1 6.9 5.1

The above table shows substantial distortion in size of Pearson product moment
coefficient of correlation when asymptotic critical values are used. However when sample

size increases the distortion in size decreases.
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3.3 Computation of Simulated critical values

In order to find the simulated critical values “n” uniform random numbers are
generated in interval (0,1) and then these random numbers are converted in 2 X 2
contingency table using all of the 25 combinations of independence (see Section 3.4). For
a Monte Carlo sample size of 10,000 the simulated critical values for Chi-square Test of
Independence, Goodman and Kruskal’s Gamma measure of Association and Pearson

Coefficient of Correlation are obtained at three different samples sizes of 25, 50 and 100.

The critical values are different for different combinations of independence at a
specific sample size for particular test of Independence/measure of Correlation, so we
chose the supremum of these critical values as our Simulated Critical value in order to
keep the size of test less than or equal to nominal size of 5%. If there are lower critical
values (LCVs) just as for Pearson and Gamma the minimum of these LCVs is chosen as
our simulated critical value in order to keep the size of test less than or equal to nominal

size of 5%.

For example the simulated critical values for Goodman and Kruskal’s Gamma
measure of Association at sample size of 25 are given in the Table 5.3.1. The least LCV is
-0.72 and the supremum UCV is 0.91 so we take these two critical values as simulated

critical values for Goodman and Kruskal’s Gamma at sample size of 25.

In the same manner the critical values for three tests of independence are chosen.
The simulated critical values that are used in further analysis for each test of

independence at three sample sizes of 25, 50 and 100 are given in Table 5.3.2.
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Table:- 5.3.1 Simulated critical Values for Goodman and Kruskal’s Gamma

Combinations of INDEPENDENCE LCV ucv
PI(1,1) PI(1,2) PI(2,1)

0.01 0.09 0.09 -0.04 0.91
0.02 0.08 0.18 -0.28 0.90
0.03 0.07 0.27 -0.45 0.81
0.04 0.06 0.36 -0.57 0.74
0.05 0.05 0.45 -0.66 0.66
0.02 0.18 0.08 -0.28 0.90
0.04 0.16 0.16 -0.49 0.85
0.06 0.14 0.24 -0.58 0.81
0.08 0.12 0.32 -0.66 0.76
0.10 0.10 0.40 -0.71 0.71
0.03 0.27 0.07 -0.45 0.80
0.06 0.24 0.14 -0.60 0.80
0.09 0.21 0.21 -0.66 0.79
0.12 0.18 0.28 -0.71 0.76
0.15 0.15 0.35 -0.72 0.72
0.04 0.36 0.06 -0.56 0.74
0.08 0.32 0.12 -0.66 0.76
0.12 0.28 0.18 -0.71 0.75
0.16 0.24 0.24 -0.71 0.73
0.20 0.20 0.30 -0.71 0.71
0.05 045 0.05 -0.66 0.66
0.10 0.40 0.10 -0.71 0.71
0.15 0.35 0.15 -0.72 0.72
0.20 0.30 0.20 -0.72 0.73
0.25 0.25 0.25 -0.71 0.73

Where ‘LCV’ means lower critical value and ‘UCV’ means upper critical value.
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Table:- 5.3.1 Simulated critical Values

Sample Critical Critical Values for Goodman | Critical \falues for Pear‘son
Size Values for & Kruskal's GAMMA Coefficient of Correlation
Chi-square LCV ucyv LCV ucv
25 5.21 -0.72 0.91 -0.41 0.55
50 5.95 -0.68 0.89 -0.29 0.35
100 4.61 -0.65 0.75 -0.20 0.23

As the Test of Independence based on Neyman Pearson Lemma (NP test) is the
ratio of the Likelithood Function under Null and Altemative hypothesis. So the critical
values will be different for different alternative hypothesis. Also for a particular
alternative hypothesis there will be 25 different critical values corresponding to 25

different combination of Independence for a specified sample size.

5.4  Computation of Size of Test based on simulated critical values

The data are generated in 2x 2 contingency table using all of the 25 combinations
of independence and by taking the critical values obtained in previous section 5.3, the size
of each test of Independence/measure of Correlation is calculated for different sample

sizes of 25, 50, and 100 using a Monte Carlo sample size of 10,000.

The Size of test for Chi-square test of Independence at three different sample sizes

of 25, 50 and 100 are given in Table 5.4.1.

The Size of test for Goodman and Kruskal’s Gamma measure of Association at

three different sample sizes of 25, 50 and 100 are given in Table 5.4.2.

The Size of test for Pearson Product Moment coefficient of Correlation at three

different sample sizes of 25, 50 and 100 are given in the Table 5.4.3.
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The Size of test for Fisher exact test of independence at three different sample

sizes of 25, 50 and 100 are given in the Table 5.4.4,

Table:- 5.4.1 Size of Chi-square (using simulated critical values)

Combinations of INDEPENDENCE Size for CHISQUARE
PI(1,1) PI(1,2) PI(2,1) n=25 n=50 n=100
0.01 0.09 0.09 5.1 4.6 5.0
0.02 0.08 0.18 3.0 2.2 2.8
0.03 0.07 0.27 1.2 0.8 2.2
0.04 0.06 0.36 0.4 04 24
0.05 0.05 0.45 0.1 0.2 2.3
0.02 0.18 0.08 3.3 2.0 2.8
0.04 0.16 0.16 2.4 1.5 24
0.06 0.14 0.24 1.8 1.2 3.1
0.08 0.12 0.32 1.0 0.9 3.0
0.10 0.10 0.40 0.8 1.1 2.9
0.03 0.27 0.07 1.1 0.7 2.7
0.06 0.24 0.14 2.0 1.3 3.0
0.09 0.21 0.21 1.6 1.1 2.8
0.12 0.18 0.28 1.6 1.3 2.9
0.15 0.15 0.35 1.6 1.3 34
0.04 0.36 0.06 0.5 0.3 2.3
0.08 0.32 0.12 1.0 1.0 2.9
0.12 0.28 0.18 1.6 1.2 3.5
0.16 0.24 0.24 1.9 1.8 3.4
0.20 0.20 0.30 1.9 1.4 3.5
0.05 0.45 0.05 0.2 0.3 2.4
0.10 0.40 0.10 0.7 0.9 3.1
0.15 0.35 0.15 1.6 1.4 3.0
0.20 0.30 0.20 1.9 1.7 3.5
0.25 0.25 0.25 2.1 1.6 33

The above table shows that size of Chi-square test of independence is less or equal

to nominal size of 5%, as we have used simulated critical values.
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Table:-5.4.2 Size of Gamma (using simulated critical values)

Combinations of INDEPENDENCE Size for GAMMA
PI(1,1) PI(1,2) PI2,1) n=25 n=50 1=100
0.01 0.09 0.09 4.8 2.7 2.5
0.02 0.08 0.18 1.3 0.3 0.8
0.03 0.07 0.27 0.3 0.3 23
0.04 0.06 0.36 0.3 1.1 3.4
0.05 0.05 045 1.0 2.2 3.2
0.02 0.18 0.08 1.5 0.5 0.8
0.04 0.16 0.16 0.7 0.6 2.4
0.06 0.14 0.24 0.7 1.5 1.5
0.08 0.12 0.32 1.4 2.3 0.6
0.10 0.10 0.40 2.0 2.2 0.3
0.03 0.27 0.07 0.3 0.5 2.3
0.06 0.24 0.14 0.8 1.6 1.6
0.09 0.21 0.21 1.7 22 0.3
0.12 0.18 0.28 2.1 1.6 0.2
0.15 0.15 0.35 2.7 1.0 0.1
0.04 0.36 0.06 0.2 1.1 3.3
0.08 0.32 0.12 1.4 2.2 0.7
0.12 0.28 0.18 2.3 1.5 0.2
0.16 0.24 0.24 2.7 0.5 0.0
0.20 0.20 0.30 2.7 0.6 0.0
0.05 0.45 0.05 0.9 2.3 3.2
0.10 0.40 0.10 1.9 2.1 0.4
0.15 0.35 0.15 2.8 1.0 0.0
0.20 0.30 0.20 24 0.4 0.0
0.25 0.25 0.25 2.5 0.3 0.0

The above table shows that size of Goodman and Kruskal’s Gamma measure of
association is less or equal to nominal size of 5%, as we have used simulated critical

value.
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Table:- 5.4.3 Size of Pearson (using simulated critical values)

Combinations of INDEPENDENCE Size for PEARSON
PI(1,1) PI(1,2) PI2,1) =25 n=50 n=100
0.01 0.09 0.09 2.9 2.2 2.3
0.02 0.08 0.18 1.4 1.7 2.1
0.03 0.07 0.27 0.5 1.5 3.1
0.04 0.06 0.36 0.6 1.4 2.8
0.05 0.05 0.45 1.1 1.8 3.4
0.02 0.18 0.08 1.3 1.6 2.2
0.04 0.16 0.16 09 1.5 3.2
0.06 0.14 0.24 1.2 2.0 3.3
0.08 0.12 0.32 1.5 2.5 3.1
0.10 0.10 0.40 2.1 2.7 3.4
0.03 0.27 0.07 0.6 1.4 2.5
0.06 0.24 0.14 1.0 2.1 33
0.09 0.21 0.21 1.6 2.6 3.7
0.12 0.18 0.28 1.9 2.5 3.1
0.15 0.15 0.35 2.2 3.2 3.0
0.04 0.36 0.06 0.5 1.7 32
0.08 0.32 0.12 1.7 2.3 33
0.12 0.28 0.18 2.3 2.8 3.0
0.16 0.24 0.24 2.4 2.5 34
0.20 0.20 0.30 2.3 2.9 33
0.05 0.45 0.05 1.0 2.2 3.5
0.10 0.40 0.10 2.0 2.9 3.5
0.15 0.35 0.15 2.5 2.6 33
0.20 0.30 0.20 2.7 2.6 3.5
0.25 0.25 0.25 2.2 2.7 3.7

The above table shows that size of Pearson product moment coefficient of
correlation is less or equal to nominal size of 5%, as we have used simulated critical

values.
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Table:- 5.4.4 Size of Fisher

Combinations of INDEPENDENCE Size for FISHER
PI(1.1) PI(1,2) PI(2,1) n=25 n=50 n=100
0.01 0.09 0.09 1.1 4.0 3.7
0.02 0.08 0.18 1.1 3.0 2.7
0.03 0.07 0.27 0.6 2.0 2.5
0.04 0.06 0.36 0.3 1.1 2.5
0.05 0.05 0.45 0.2 0.8 2.6
0.02 0.18 0.08 1.1 2.6 24
0.04 0.16 0.16 1.6 2.6 2.7
0.06 0.14 0.24 1.3 2.1 3.1
0.08 0.12 0.32 0.9 2.2 33
0.10 0.10 0.40 0.8 2.5 32
0.03 0.27 0.07 0.5 1.8 2.1
0.06 0.24 0.14 1.2 2.2 3.1
0.09 0.21 0.21 1.8 2.8 3.7
0.12 0.18 0.28 1.9 31 3.9
0.15 0.15 0.35 2.3 3.2 4.0
0.04 0.36 0.06 0.2 0.9 2.5
0.08 0.32 0.12 1.1 24 3.7
0.12 0.28 0.18 1.8 3.1 3.9
0.16 0.24 0.24 3.1 34 3.8
0.20 0.20 0.30 3.0 3.5 44
0.05 0.45 0.05 0.1 0.7 2.6
0.10 0.40 0.10 0.7 2.7 3.7
0.15 0.35 0.15 2.3 3.1 3.8
0.20 0.30 0.20 3.0 3.2 3.7
0.25 0.25 0.25 4.6 4.8 5.1

The above table shows that size of Fisher exact test of independence is less or

equal to nominal size of 5%.

Size of Goodman and Kruskal’s Gamma and Pearson product moment coefficient

of correlation always remain below 5% because the distribution of these two measures in
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non symmetric. The non symmetry of Goodman and Kruskal’s Gamma and Pearson are

shown in Figure 5.4.1 and 5.4.2.

Figure: - 5.4.1 Probability distribution of Goodman and Kruskal’s Gamma

8 ] T 1 T I
/\
I 4
o
|
'i
|
il |
S
.
I [ 1
/ |
/ NSNS A
) S adi / N~
04 {2 0 02 '

37



5.5 Comparison on the basis of size of test

In order to observe that which test of independence has the minimum distortion in
size, the average of deviations of size (using asymptotic critical values) of three tests
excluding Fisher’s exact test around S are calculated for three sample sizes of 25, 50 and
100. Fisher’s exact test was excluded because it was observed that Fisher exact test has

the zero distortion in size.

The average of positive deviations of size of each test around 5 excluding Fisher’s
exact test when asymptotic critical values are used for three sample sizes of 25, 50 and
100 are given in Tables 5.5.1. Fisher’s exact test has been excluded from the table

because it has zero distortion.

Table: - 5.5.1 Distortion in size (using asymptotic critical values)

Sample Size Gamma Chi-square Pearson
25 7.0 5.0 4.0
50 4.0 2.0 2.0
100 1.0 0.1 0.1

There is zero distortion in size of four tests of independence when simulated

critical values are used.

5.5 Conclusion

As we have discussed, the space of null hypothesis is not a singleton, rather it

contains many points. Fisher’s exact test shows zero distortion in size. Therefore on the

basis of size, Fisher exact test of Independence is the best of all the four tests.




Chapter 6

POWER COMPARISION

In this chapter the Powers of each test of Independence/measure of Correlations
are estimated. Difference in power of each test of Independence/measure of Correlation
from approximate Power Envelope is also shown using a Pictorial representation in this
chapter. The most stringent test of all the four tests of independence/measures of

correlations is also identified and at the last of the chapter the Conclusion is stated.

6.1 Computation of Power of Each Test

In order to calculate the Power of each test of Independence/measure of
Correlation the data are generated using all of the 135 combinations of Alternative. The
powers of Goodman & Kruskal’s Gamma Measure of Association, Chi-Square Test of
Independence, Pearson Product Moment co-efficient of correlation and Fisher Exact test

are obtained for a Monte Carlo sample size of 10,000.

Powers of Goodman & Kruskal’s Gamma Measure of Association, Chi-Square
Test of Independence, Pearson Product Moment co-efficient of correlation and Fisher
Exact test for different combinations of marginal probabilities (7,,andx,,) are given in

tables 6.1.1

6.2  Computation of Power Envelope

The Powers of NP test at least favorable null hypothesis is used as an

approximation of maximum power (AMP).
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Table: - 6.1.1 Powers of tests at sample size of 25 whenx,, = 0.4andn, =0.4.

Alternative A Powers

Chi Gamma Fisher Pearson AMP
0.02 3.58 1.33 4.72 1.61 11.77
0.04 6.93 1.54 9.71 2.80 20.05
0.06 14.48 2.58 17.33 6.84 35.56
0.08 25.73 5.98 -29.33 13.25 51.28
0.10 40.12 12.85 46.13 25.18 67.41
0.12 57.67 2291 62.47 41.83 81.12
0.14 73.68 38.81 77.87 60.72 92.52
0.16 87.45 57.28 89.51 78.54 97.47
0.18 95.28 74.93 96.34 91.96 99.17

Table: - 6.1.2 Powers of tests at sample size of 50 when 7, = 0.4andr, =0.4.

. Powers

Alternative 4 Chi Gamma Fisher Pearson AMP
0.02 2.75 1.1 5.02 1.55 11.14
0.04 6.02 1.25 8.82 2.81 20.29
0.06 12.93 2.17 17.02 6.06 31.76
0.08 22.45 4.81 28.45 12.39 48.61
0.1 36.73 10.35 4345 23.29 65.29
0.12 54.09 19.34 60.56 39.47 82.16
0.14 70.41 33.46 75.89 58.83 92.04
0.16 85.48 50.12 88.43 77.98 97.53
0.18 93.98 70.53 95.83 92.61 99.49
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Table: - 6.1.3 Powers of tests at sample size of 100 whenz,, =0.4andr, =0.4.

Al ive 4 Powers

fernative Chi Gamma Fisher Pearson AMP
0.02 3.25 0.12 6.78 3.48 15.58
0.04 9.69 0.19 16.92 9.29 32.17
0.06 24.07 0.76 3547 22.87 52.35
0.08 45.6 2.62 59.5 44.63 75.78
0.1 69.16 9.24 81.18 68.47 91.59

0.12 88.28 23.22 93.86 87.85 98.1
0.14 97.24 48.14 98.96 96.84 99.72
0.16 99.69 76.64 99.88 99.66 99.97

0.18 100 95.22 99.99 100 100

6.3 Comparison on the basis of Power curves

In order to compare the tests on the basis of powers, power of each test at each
alternative is subtracted from AMP and then they are sorted in ascending order of that
difference. These sorted differences are then plotted using a scatter plot by taking the

number of combination along x-axis and the difference of power from AMP along y-axis.
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Figure: - 6.3.1

Difference in powers of each test from AMP at sample size of 25
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The above figure depicts that Fisher’s exact test and Chi-square test has minimum
deviations from AMP. Whereas the Gamma has the maximum deviations from AMP. So

Fisher’s exact test and Chisquare test are more powerful tests as compared to the rest of

two i-e Gamma and Pearson.
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Figure: - 6.3.2

Difference in powers of each test from AMP at sample size of 50
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The above figure depicts that Fisher’s exact test has minimum deviations from

AMP. Whereas the Gamma has the maximum deviations from AMP. So Fisher’s exact

test is more powerful tests as compared to the rest of three i-e Gamma, Chisquare and

Pearson.
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Figure: - 6.3.3

Difference in powers of each test from AMP at sample size of 100
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The above figure depicts that Fisher’s exact test, Chisquare test and Pearson
Product Moment Coefficient has minimum deviations from AMP. Whereas the Gamma
has the maximum deviations from AMP. So Fisher’s exact test, Chisquare test and
Pearson Product Moment Coefficient is more powerful tests as compared to Gamma

measure of associaton.
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6.3.1 Conclusion

All of the above figures show that Fisher’s exact test has the minimum deviation
from AMP among all the four tests of independence/measures of correlation. So Fisher’s
exact test is the best test of independence of all the four tests/measures on the basis of
power. Also it is clear from the figures that the Goodman and Kruskal’s Gamma measure

of association is the worst test of all the four test of independence.

6.4  Identification of Most Stringent Test

The Power of each test of independence/measure of correlation is subtracted from
the Power of NP Test and then to calculate the Short Coming of each test of
independence/measure of correlation the maximum of these differences is taken for a

specific combination of marginal probabilities ( 7,,andr,,) at three sample sizes of 25,50

and 100. All of these results are shown in tables 6.4.1, 6.4.2 and 6.4.3.

Table: - 6.4.1 Most stringent test

. Shortcoming .
Sample Size Chi Gamma Fishor Pearson Most stringent test
25 43.03 88.41 41.58 45.57 Fisher
50 41.31 83.42 35.37 41.23 Fisher
100 35.93 68.41 31.86 38.78 Fisher

6.4.1 Conclusion

The Fisher’s exact test of independence is the best test of all the four tests of
independence/measures of correlation for categorical data on the basis of stringency

criterion.
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6.5 Conclusion

As discussed in 6.3.1, Fisher’s exact test of independence is the best test of all the
four tests of independence/measures of correlation for categorical data on the basis of
power and as discussed in 6.4.1, Fisher’s exact test of independence is the best test of all
the four tests of independence/measures of correlation for categorical data on the basis of

stringency criterion, so Fisher’s exact test is the best test of all the tests of independence.
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Chapter 7

THE BEST AND WORST CASES OF EACH TEST OF
INDEPENDENCE

As already it is stated in section 6.3.1 that Goodman and Kruskal’s Gamma
measure of association performs worst, so it is excluded from the further analysis. In this
chapter combination of alternative where each of the three tests of independence (Fisher’s
exact test, Chi-square test and Pearson product moment coefficient of correlation)
performs best and worst are given by a pictorial representation and in form of a table.
Those combinations at which the powers of three tests of independence (Fisher’s exact
test, Chi-square test and Pearson product moment coefficient of correlation) are greater

than 90% are eliminated from further analysis.

7.1 Combinations of Alternative where tests perform BEST

For all three sample sizes of 25, 50 and 100, those combinations of alternative are
considered best where the difference between power of a particular test and AMP is less

than 5%.

7.1.1 When sample size is 25

Combinations of alternative where Chi-square performs best at sample size of 25

are shown in figure 7.1.1.1 and Table 7.1.1.1.

Combinations of alternative where Fisher’s exact test performs best at sample size

of 25 are shown in figure 7.1.1.2 and Table 7.1.1.2.
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Combinations of alternative where Pearson product moment coefficient of

correlation performs best at sample size of 25 are shown in figure 7.1.1.3 and Table

7.1.1.3.

Figure: - 7.1.1.1 Combinations of alternative where Chi-square performs best
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Table: - 7.1.1.1 Combinations of alternative where Chi-square performs best

PI(L,.) PIC,1) delta AMP CHI
0.1 0.1 0.08 86.21 82.63
0.2 02 0.12 91.36 86.53
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Figure: - 7.1.1.2 Combinations of alternative where Fisher performs best
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Table: - 7.1.1.2 Combinations of alternative where Fisher performs best
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Figure: - 7.1.1.3 Combinations of alternative where Pearson performs best
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Table: - 7.1.1.3 Combinations of alternative where Pearson performs best

PI(1,) PI(,1) delta AMP PEAR
0.1 0.1 0.08 86.21 84.41
0.2 0.2 0.14 94.71 91.30
0.1 0.1 0.06 72.21 68.15
02 0.2 0.12 91.36 86.51
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7.1.2 When sample size is 50
Combinations of alternative where Chi-square performs best at sample size of 50

are shown in figure 7.1.2.1 and Table 7.1.2.1.

Combinations of alternative where Fisher’s exact test performs best at sample size

of 50 are shown in figure 7.1.2.2 and Table 7.1.2.2.

Combinations of alternative where Pearson product moment coefficient of

correlation performs best at sample size of 50 are shown in figure 7.1.2.3 and Table

7.1.2.3.

Figure: - 7.1.2.1 Combinations of alternative where Chi-square performs best
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Table: - 7.1.2.1 Combinations of alternative where Chi-square performs best

PI(1,.) PI(,1) delta AMP CHI
0.10 0.10 0.02 32.25 29.62
0.10 0.10 0.04 69.46 65.90
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Figure: - 7.1.2.2 Combinations of alternative where Fisher performs best
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Table: - 7.1.2.2 Combinations of alternative where Fisher performs best

PK1,) PI(,1) delta AMP FIS
0.10 0.10 0.02 32.25 29.22
0.40 0.40 0.12 98.02 94.32
0.10 0.10 0.04 69.46 65.38
0.50 0.40 0.12 97.86 93.74
0.40 0.50 0.12 98.10 93.86
0.50 0.50 0.12 97.43 92.47
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Figure: - 7.1.2.3 Combinations of alternative where Pearson performs best
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Table: - 7.1.2.3 Combinations of alternative where Pearson performs best

PI(1,.) PI(.,1) delta AMP PEAR
0.10 0.10 0.06 93.18 89.05
0.10 0.10 0.04 69.46 65.31

7.1.3 When sample size is 100

Combinations of alternative where Chi-square performs best at sample size of 100

are shown in figure 7.1.3.1 and Table 7.1.3.1.

Combinations of alternative where Fisher’s exact test performs best at sample size

of 100 are shown in figure 7.1.3.2 and Table 7.1.3.2.
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Figure: - 7.1.3.1 Combinations of alternative where Chi-square performs best
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Table: - 7.1.3.1 Combinations of alternative where Chi-square performs best

PI(1,) PI(,1) delta AMP CHI
0.2 0.2 0.06 96.05 91.50

Figure: - 7.1.3.2 Combinations of alternative where Fisher performs best
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Table: - 7.1.3.2 Combinations of alternative where Fisher performs best

PI(1,.) PI(,1) delta AMP FIS
0.1 0.1 0.04 93.01 89.64
0.2 0.2 0.06 96.05 91.11

7.2 Combinations of Alternative where tests perform WORST

For sample size of 25, those combinations of alternative are considered worst
where the difference between power of a particular test and AMP is greater than 40%.
Similarly for sample size of 50, those combinations of alternative are considered worst
where the difference between power of a particular test and AMP is greater than 35% and
for sample size of 100, those combinations of alternative are considered worst where the

difference between power of a particular test and AMP is greater than 20%.

7.2.1 When sample size is 25

Compbinations of alternative where Chi-square performs worst at sample size of 25

are shown in figure 7.2.1.1 and Table 7.2.1.1.

Combinations of alternative where Fisher’s exact test performs worst at sample

size of 25 are shown in figure 7.2.1.2 and Table 7.2.1.2,

Combinations of alternative where Pearson coefficient of correlation performs

worst at sample size of 25 are shown in figure 7.2.1.3 and Table 7.2.1.3.
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Figure:-7.2.1.1Combinations of alternative where Chi-square performs worst
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Table:-7.2.1.1Combinations of alternative where Chi-square performs worst

PI(1,.) PI(,1) delta AMP CHI
0.2 0.5 0.08 58.03 15.69
0.5 0.2 0.08 58.51 10.48

Figure: - 7.2.1.2 Combinations of alternative where Fisher performs worst
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Table: - 7.2.1.2 Combinations of alternative where Fisher performs worst

PI(1,) PI(,1) delta AMP FIS
0.2 0.5 0.08 58.03 17.08
0.5 0.2 0.08 58.51 16.93

Figure: - 7.2.1.3 Combinations of alternative where Pearson performs worst
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Table: - 7.2.1.3 Combinations of alternative where Pearson performs worst

PI(1,) PI(.,1) delta AMP PEAR
0.5 0.4 0.12 80.39 39.06
0.4 0.5 0.1 65.29 23.29
0.4 0.4 0.1 67.41 25.18
03 0.5 0.1 69.95 27.65
0.4 0.5 0.12 82.16 39.47
0.2 0.5 0.08 58.03 15.05
0.5 0.3 0.1 70.39 27.14
0.5 0.4 0.1 67.13 23.35
0.5 0.5 0.12 80.07 35.93
0.5 0.2 0.08 58.51 14.24
0.5 0.5 0.1 66.53 15.96




7.2.2 When sample size is 50

Combinations of alternative where Chi-square performs worst at sample size of 50

are shown in figure 7.2.2.1 and Table 7.2.2.1.

Combinations of alternative where Pearson coefficient of correlation performs

worst at sample size of 50 are shown in figure 7.2.2.2 and Table 7.2.2.2.

Figure: 7.2.2.1Combinations of alternative where Chi-square performs worst
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Table: 7.2.2.1Combinations of alternative where Chi-square performs worst

PI(1,) PI,1) delta AMP CHI
0.40 0.10 0.04 51.86 14.36
0.10 0.50 0.04 52.89 15.01
0.10 0.40 0.04 53.03 14.55
0.20 0.50 0.06 69.14 29.73
0.50 0.10 0.04 54.36 14.13
0.50 0.20 0.06 70.30 29.73
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Figure: - 7.2.2.2 Combinations of alternative where Pearson performs worst
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Table: - 7.2.2.2 Combinations of alternative where Pearson performs worst

PK1,.) PI(.,1) delta AMP; PEAR
0.50 0.20 0.06 70.30 35.37
0.50 0.10 0.04 54.36 10.99

7.2.3 When sample size is 100

Combinations of alternative where Chi-square performs worst at sample size of

100 are shown in figure 7.2.3.1 and Table 7.2.3.1.

Combinations of alternative where Fisher’s exact test performs worst at sample

size of 100 are shown in figure 7.2.3.2 and Table 7.2.3.2.



Figure:-7.2.3.1Combinations of alternative where Chi-square performs worst
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Table:-7.2.3.1Combinations of alternative where Chi-square performs worst

PI(1,.) PI(,1) delta AMP CHI
0.5 0.2 0.04 64.82 44.72
0.5 0.5 0.04 50.82 30.55
0.4 03 0.04 55.76 34.97
0.5 0.1 0.02 37.74 16.38
0.5 0.5 0.06 82.64 60.74
0.5 0.1 0.04 87.23 64.97
02 0.5 0.04 67.15 44.74
0.1 0.5 0.04 87.12 59.96

Figure: - 7.2.3.2 Combinations of alternative where Fisher performs worst
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Table: - 7.2.3.2 Combinations of alternative where Fisher performs worst

PI(1,) PI(,1) delta AMP FIS
0.5 0.1 0.02 37.74 17.42
0.2 05 0.04 67.15 45.85
0.1 0.5 0.04 87.12 64.62
0.5 0.1 0.04 87.23 64.33

Figure: - 7.2.3.3 Combinations of alternative where Pearson performs worst
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Table: - 7.2.3.3 Combinations of alternative where Pearson performs worst

PI(1,) PI(,1) delta AMP PEAR
03 0.4 0.06 85.37 65.08
0.5 0.3 0.06 84.44 62.98
0.4 0.5 0.06 78.43 56.96
0.3 0.2 0.04 66.83 45.33
03 0.5 0.06 85.43 63.43
0.5 0.1 0.02 37.74 15.73
0.3 0.3 0.04 57.94 35.35
0.5 0.4 0.06 79.87 57.08
0.4 0.4 0.06 80.86 57.67
0.4 0.4 0.04 50.49 27.18
0.4 02 0.04 64.17 40.59
0.4 0.5 0.04 49.03 25.33
02 0.3 0.04 68.73 44.95
0.5 0.4 0.04 49.42 25.35
0.2 0.4 0.04 64.96 40.84
0.3 0.4 0.04 54.75 3037
0.4 0.3 0.04 55.76 31.04
0.5 02 0.04 64.82 39.65
0.5 0.3 0.04 53.77 28.56
0.3 0.5 0.04 55.09 28.93
0.5 0.5 0.04 50.82 23.26
0.5 0.5 0.06 82.64 53.92
0.2 0.5 0.04 67.15 3337
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Chapter 8

CONCLUSION, RECOMMENDATIONS AND DIRECTION
FOR FUTURE RESEARCH

In this chapter the conclusion of this study and in the light of this conclusion a

recommendation is given. The directions for future research are also discussed at the end

of chapter.

8.1 Conclusion

In light of the conclusion of chapter number 5 (Section 5.5), it is observed that the
Fisher’s exact test of independence is the robust test in terms of Size. Any combination of
independence can be taken for the computation of size of Fisher’s exact test of

Independence and distortion in size is the minimum of all the four tests of independence.

In chapter 6, it was concluded (Section 6.5) that the Fisher’s exact test of
independence is the robust test in terms of power, also the Fisher’s exact test of

independence is the Most Stringent test of all the four tests of independence.

So it is concluded that the Fisher’s exact test of independence is the robust test in
terms of both Size and Power and is also the Most Stringent test of all the four tests of

independence.

8.2  Recommendation

As the Fisher’s exact test of independence performs best as compared to all of the

four tests of Independence/measure of Correlation for Categorical data on the basis of
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both Size of test and Stringency criterion. So the practitioners/researchers should use
Fisher’s exact test of independence when they are testing of independence for categorical

data.

Direction for Future Research

-

8.3
This study can be extended to the data categorized in a two 3%3 contingency table

or 4x4 contingency table or so on. Also more co-efficient of correlation/Tests of

independence for categorical data can be included in future research.
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