
DOES LEHMAN'S LAWS APPLY TO OPEN SOURCE

SOFTWARE SYSTEMS? A CASE STUDY

Submitted By:

Furqan Shahid

Reg No 110-FASiIISSE/F06

Supervisor:

Muhammad Usman

Asstt Professor, DCS&SE' IIUI

Department of Computer Science & Software Engineering

Faculty of Basic & Applied Sciences

INTERNATIONAL ISLAMIC UNTVERSITY
ISLAMABAI)

, r\:/1'
{s/amab9l

x*turu, 7ft-- * ?6

MS

oo4 '6>
Fuo

L-xrfunaA PJ''f"'Dh) co-'1t"/*t

2t. Of2n lt'le:ve'"'etl'ot

DATA ENTER,ED K

-!lkrl''

,I
lott^c4 i

International Islamic University, Islamabad

Faculty of Basic & Applied Sciences

Department of Computer Science & Software Engineering

Dated: l6-01-2012

Final Approval

It is certified that we have read the thesis, entitled "DoES LEIIMAN'S LAWS APPLY

ToOPENsoURcEsoF"TwARESYSTEMS?ACASESTUDY",submiuedby
Furqan Shahid Reg No. 110-FASA,ISSE/I06. It is our judgment that this thesis is of

sufficient standard to warrant its acceptance by the international Islamic university,

Islamabad for MS degree in Software Engineering'

Project Evaluation Committee

External Eraminer:
Professor Dr Arshad Ali Shahid,

Head of Computer Science Department,

National University of Computer & Emerging Sciences (FAST-NU)' Islamabad

Internal Examiner:
Syed Muhammad Saqlain,

Assistani Professor, Department of Computer Science & Software Engineering

International Isirmic University, Islamabad

Supervisor:
Muhammad Usman,

Assistant Professor, Department of Computer Science &

lntemational Islamic University, Islamabad

Software Engineering

Ir
l/^, ,
\ ,f) -*vJ)

Declaration

I hereby declare and affirm that this thesis neither as a whole nor as part thereof has been

copied out from any source. It is further declared that I have completed this thesis entirely

on the basis of my personal effort, made under the sincere guidance of my supervisor' If

any part of this report is proven to be copied out or found to be a reproduction of some

other, I shall stand by the consequences. No portion ofthe work presented in this report

has been submitted in support ofan application for other degree or qualification of this or

any other university or institute of leaming.

Furqan Shahid

r TO.FAS/I\{SSE/T'06

ABSTRACT

InthisthesislhavepresentedresultsofmycasestudiesconductedtotesttheLehmanlawsof

software evolution on open source software systems. The domain ofopen source applications

on which I have tested these laws is Enterprise Resource Planning (ERP). I tested three ofthe

eightlawsonthreedifferentopensourceERPs.Thereasonbehindthiswotkisthatthelaws

ofLehman,whichhePostulatedonthebasisofhisthirtyyearsexperience,havebeenfound

to be disproving on some open source applications, like Linux Kernel' BSD family Kernel'

andNethacketc.Itgeneratedcertainquestionsforresearchcommunity'like'doopensource

applications really disobey Lehman or these are just few cases which can be considered as

exceptional ones? If open source applications really differ from Lehman then what is the

reason behind this difference? This type of questions require more effort of research

community in the form of study of more and more open source applications (belonging to

differentdomains)andthenanalysisoftheproducedresults.Thisthesisisbasicallya

contributioninthiswork,whichcanhelpresearchcommunityinreachingsomeconclusions

regarding the above mentioned questions l tested three laws of Lehman' first' fifth and the

sixth.Accordingtotheselaws,softwaresystemscontinuouslychange'continuouslygrow'

their growth rate declines, and their incremental growth (amount of growth made in a

vcrsion) remains in-variant on average' According to my results' the trend of declining

gro\\th rate was disproved on two of the three ERPs The other tllree trends' however' were

proved by all three ERPs included in my study'

ACKNOWLEDGEMENT

Al[praises and immeasurable thanks to Almighty Atlah. by Whom mercy, I have

achieved this success. Not only this, but all successes of my life are a result of His mercy,

wlro is The. Most lvlercifirl. After Almigtrty Allah and our beloved prophet Hazrat

Muhammad (Peace Be Upon Him), those who deserve most for my thanks, are my

parents. These are my parents, whose prayers. efforts and sacrifices made me to reach

this position. After that I am thankful to atl my teachers, who taught me at any stage of

my life, as they all have played role to make me to reach this position. From my teachers,

I want to say thanks especially to Mr M. Usman, my research supervisor, for his

efforts, guidance and good wishes regarding this thesis.. My acknowledgenent has no

right to be called "complete" until I say thanks to my wife, whose prayers,

encouragement and cooperation remained with me at each step of my research and thesis'

In the end, I u/ant to dedicate this work to my late son, M'Yahya Furqan'

Furqan Shahid

I I().FAS/MSSEiT'06

TABLE OF CONTENTS

Acknowledgement

List of Tables

Chapter i : Introduction

I .l -Software Evolution

1.2-Software Evolution StudY

I .i-Lehman Laws of Software Evolution

I .4-Case Srudies for Lehman Laws

1.5-Open Source Software Applications; Challenge for Lehman Laws

1.6-MY StudY

Chapter 2: Literarure Review

2.1- Growth Rate of Linux Kemel [Godfrey 2000]

2.2- Gro*th Rate of Linux and BSD Family Kemels [Robles 2005]

2.3- Growth Rate of Linux and FreeBSD [Izurieta 2006]

2.4- Growth Rate anci Complexity of Nethack [Simmons 2006]

2.5- Growth Rate of ARLA [Capiluppi 2004]

2.6- Growth, Complexity and Quality of Seven OSS [Xie 2009]

2.7- Growth Rate of Thirteen OSS Applications [Henaiz 2006]

2.8- Crowth and Change Trends of Four OSS [AIi 2009]

1

2

l
9

15

l6

19

23

26

30

35

40

46

52

rli

2.9- Growh, Complexity, and Quality of Linux [Feitelson 2009]

2.10- Growth, Change, and Complexity of Nagios [Bonkoski 2007]

2.11- Growh, Complexity' and Qualiry of Firefox [Dong 2008]

2.12- Growth and Change Trends of 8621 OSS [Koch 2005]

Summary Tables

Chapter 3: Research MethodologY

3. I -OPen Source ERPs Selection

3.2-Getting history (old versions) of my srudied ERPs

3.3-Tools Used

3.4-Procedure & Commands

Chapter 4: Results

4. l- Measures used in mY SrudY

4.2-GraPhs/Plots used in mY StudY

4.3-My Observations

4.4-Cornparison of my Results with Other Srudies

Chapter 5: Conclusions and Future Work

References

60

68

75

80

85

88

89

91

94

105

106

107

123

129

131

LIST OF TABLES

Table I Summarized description of the studies: [Godfrey2000], [Robles et al

20051, fizurieta and Bieman 2006] and [Simrlons et al 2006]

Table 2 Summarized description of the studies: [Capiluppi et al 2004], [Xie et al

20091. [Henaiz et al 2006] and [Ati and Maqbool 2009]

Table 3 Summarized description of the studies: flsraeli and Feitelson 2009],

[Bonkoski 2007], [Dong and Mohsen 2008] and [Koch 2005]

Table 4 Summarized results of my case studies

Table 5 Size measures for Openbravo revisions

Table 6 Size measures for Adempiere revisions

Table 7 Size rneasures for ApacheOFBiz revisions

CHAPTER 1: INTRODUCTION

1.1 SoftwareEvolution:

Software evolution means the changes.made, to software after its first delivery/release.

Software evolution is a fact that can't be denied [Xie et al 2009]. Evolution is necessary

to keep software acceptable for its users. It is because that the software is a model of

some part of real world. It is developed against the requirements of real world. And as

soon as real world changes, its requirements also changes, and as a result, software

begins to in-validate against those changed requirements. If we will not evolve software

then it will be continually in-validate against the requirements and a stage will come

when it will become totally useless for its users. So in order to keep software acceptable

for its users, it must be continually synchronized with the requirements ofreal world [Leh

78, Leh 97b1.

Another source of evolution is the conection of errors in software [AIi and Maqbool

2009]. It is not possible for developers to develop error-free software, first time. There

are always certain errors which can only be detected after software is delivered to its

users. Although software testing phase is there to control the errors, but testing can only

reduce errors, it can not remove 100 percent errors. There would be some errors which

will be diagnosed and reported by the users, when.they will use software. So software

will then be required to be evolved for removal ofthose errors.

I

When software is delivered to its users (first release) and users begin to use it, then they

detect and report erors. As a result evolution process stafls. Errors are corrected, those

corTections sometimes generate more erors! and thus more evolution is required'

Meanwhile some of the real world requirements change and to accommodate those

changed requirements, some more evolution (usually in the form of additions) is required.

when those additions are made to software, then some new errors produce which again

requires evolution. In this way the evolution process continues, as long as the softwale is

used by its users.

1.2 Software Evolution StudY:

Likeotherdisciplinesofsoftwareengineering,thesoftwareevolutionhasalsogot

attention of researchers and significant work about this discipline can be found in

published literan[e. The sh:dy in this area is important in the sense that it can be hoped

to be helpful in reducing the cost of evolution [Ali and Maqbool 2009] Controlling the

cost of evolution is a challenge for software development community, especially when it

has been discovered that evolutionary cost can be much more than the actual

developmentcost[Sornrnerville2005].Ithasbeendiscoveredinastudythatthecostof

evolution can be more than 90% of the total software cost [Xie et al 2009]'

oneofthemainfocusesofsottwareevolutionresearchersistodetermirrethetrendsof

softwareevolution,sothatuncertaintyinthecharacteristicsofevolvingsoftwarecanbe

minimized. Identification of the evolutionary trends can help us in prediction of the

furure characteristics of our software application and hence we can take certain steps to

ensurecosteffectiveevolutionofourapplication.Thepioneeroftheevolutionary.trends

related work was Meir Manny Lehman, who, on the basis of his thirry years experience,

postulated certain tends of evolution. He described those trends in the form of laws. So

those trends are known as "laws of software evolution". His effort is admitted to be the

biggest participation in the discipline of software evolution. It is difficult to find a study

in this area that is without the reference of Lehman laws. The next section describes

those laws, along with some of the case studies, which were used as basis of these laws.

1.3 Lehman Laws of Software Evolution:

Lehman initiatly proposed his laws in 1974, at that time they were three in total. Later in

1980, he added three more laws. Then again in 1996, he added two rnole laws, resulting

in total eight laws [Leh 97b]. These laws are:

1.3.1 Continuous Change (The First Law):

According to the first [aw, a software system will be continuously changed thoughout its

life. If this change is resisted, trying to make software stable then its users witl begin to

feel discomfort from it. They wilt begin to realize it, unable to satisfy their needs, and

this dissatisfaction will gradually increase. This is because software solves a real world

problem, in this sense it is a model of some part of real world, and hence' the real world

changes continuously, so its moriel must also be changed to keep it align with its original

[Leh78]. The change in software is required for many reasons' sometimes it is for

correction of some fault, sometimes for addition of new functionality and sometimes for

providingsupPorttonewhardware.Needforchangedoesn'tmeanthatthesoftwarewas

poorly designed, but change is an essential part of software'

1.3.2 Increasing Complexity (The Second Law):

According to the second law, the complexiry of a program'/software system increases' as

it evolves. When a software system is evolved, for addition of new fi:nctionality' for

example, then the objective of management is not limited to the addition of new features

just, but this objective is constrained by some other objectives too These other

objectives include, for example, the time in which change must be completed' the cost

limitation for implementing change and the resource consumption limitation for the

changed version etc. one of these objectives may be, and in fact should be, the limitation

on the structural degradation made by this change. But unfortunately, this objective is

rarely considered. It is because this objective has no apparent retum' Its effects are not

short term. It has long term e.ifects. If it is continuously ignored, as observed in many

cases,theproglamstructurewillbecontinuouslydegradedwitlreachchange'andatlast,

a stage wiil come when it w-ill become impossible to change the progam more lf effort

isspendtominimizethestrucfuraldegradationmadebyeaclrchange,thenthissituation

may be avoided [Leh78], [Leh97a].

1.3.3 Self Regulation (The Third Law):

According to the third law, the software evolution process follows certain predetermined

trends. These trends remain same regardless of the type of system/software, the type of

organization, its management and the environment in which it is working' These trends

areusuallyuncontrollable.Thislawcanbeconsideredasabstractoftheotherlaws.

Eachoftheotherlawsrepresentsatrendofsoftwareevolution.Firstlaw,forexample,

states that there is a trend of continuous change in software applications. Sirnilarly

4

second law states that there is irend of continuous increase in complexity of a software

appiication as it evolves. Similarly other laws too describe a trend of evolution, in this

way it is an abstract ofthe other laws.

This law was first formulated when the incremental grorvth of 03/360 was plotted

against the RSNs (Release sequence Numbers) [Leh78]. It was found that the average

incrementalgrowthremainsalmostsamewithsmallpositiveandnegativeripples.The

subsequentstudiesalsovalidatedthislawlike,LogicaPlcFastwire(FW)frnancial

transaction system [Leh97b] and the other studies made under the FEAST project

[Leh98a].

1.3.4 Conservation of Organization Stability (The Fourth Law):

According to the fourth law, the average amount of effort spent on each release remains

same. It must be noted that effort doesn't mean the man-hours dedicated to the release,

buririsameasureofchanges.introducedbyarelease.Thistrendwasfirstobservedin

thestudyofOs/360[Leh78],when,thenumberofmoduleshandledbyeachrelease'

were counted and plotted against RSN (Release Sequence Number)' Number of modules

handled is a sum of three measures, number of modules added' number of modules

deleted and the number of modules changed [Lhe98b]' The graph line was observed to

be forming regular cycles around the average line with small positive and negative

ripples. A release having changes more than the average was found to be followed by a

release having changes less than the average by nearly same amount' thus making the

average amount of change, same. It was concluded that this behavior was due to the fact

that organization wants stability and doesn't permit changes (in a release) more than a

specific amount. so this law was named as "conservation of organization Stability"'

This Iaw was not particularly examined in the subsequent studies made by Lehman at al,

however Twski suggested an Inverse Square Model for system $owth on the basis of

this observation, that effort remains same [Turski96]. This modet of Turski was found to

be, being validated by the real life applications, which can be considered another

evidence of validitY of this law.

1.3.5 Conservation of Familiarity (The Fifth Law):

This law was first formulated during the study of 05/360, when it was observed that each

release was increased in size, by a fixed amount. If a release showed un-usual increment

in size then that un-usual increment was adjusted by its subsequent releases by either zero

increment or even decrease in size. It was concluded that this trend was due to the reason

that users ofa software system can absorb only a fixed amount of enhancements. Thus if

a release introduces Iarger amount of enhancement, a negative feedback generates and as

a resulq ttrc subsequent ;eleases either don'l sl*Bnce or dectease in size to balance the

effect ofthat larger amount of erlancement [Leh78]'

At that time, Lehman concluded that the amount of enhancement (incremental growth)

remains same thoughout life of a software system. But in tater studies. he discovered

that this amount varies with the passage of time. Al first, he couldn'r conclude that either

this amount increases or <iecreases. Like in the study [Leh97b], he stated that amount of

incrementalgrowthmayincreasewithtimebecauseofimprovementinprogramming

technology, or it may decrease because of increasing complexity of software or it may

remain same because of balance befween these two factors. But in his later studies, he

leached the conclusion that this amount of incremental groMh decreases with the passage

of time [Leh98bl, ILeh200l].

In this way this law is, basically combination of two things. one. that evolutiona-ry trends

don't permit un-usual incremental $owth. If such gror .th occurs then it will be adjusted

by subsequent releases. And second, that the amount of incremental grou4h decreases as

tle software gets older.

1.3.6 Continuous Growth (The Sixth Law):

According to the sixth law, software systems continuously grow throughout their life. At

first glance, it appears that this law is same as first law, means, the law of continuous

change. But in fact it is different from that. Growth is a type of change made to cover

those features of real]ife system which were not included in the previous releases

[Leh97 a). If we adapt software to accommodate changes in those features of real life,

which are already covered by the software system, then this type of change will not be

considered as growth. Growh is related to the enhancements in the software.

A s-oftware alpticatiorr is a nrodel of' st-me ;ea[world application. And because real

world has an unbounded number of attribute, so the application' being a part of real

world, too has an unbounded number of attributes. But we have to develop software for a

bounded set of requirements within the constaints of budget and time limitations. So it

is not possible to automate a real world apptication fully. Thus we can say that every

software system is incomplete. The attributes/features of application which we exclude

from requirements, causes ..,<ers dissatisfaction. So sooner or later, users begin to realize

the need to cover those attributes too. This results iir an un-ended process of software

growth. [Leh97a, LeM00 i]

1.3.7 Declining Quality (The Seventh Law):

According to the seventh law, the quality of a software system decreases as it evolves.

The main reason of decline in quality is the structual degradation of software with its

evolution, as described in the second law. It is fact that every change in software

degrades its stnrcture. The dependencies among its components increase in an un-

normalized way. Components interfaces become more complex. The overall

architecture loses its integration. This structural degradation makes it more difficult to

change the software. Thus developers feel more difficulty in making changes in that

software, which means that the quality of software declines with the developer's point of

view. Moreover, when software is structurally degraded then any change in it causes to

produce many errors and faults. And hence its quality also decreases with the user's

point of view [LeM001].

I.3.8 Feedback Systems lThe Eighth Law):

According to the eighth law, the software systems are feedback control systems. and their

evolutionary characteristics are controlled by the user's feedback. This law can be

considered as a summary of the other seven laws. Each of the other laws describes an

evolutionary trend for software applications, which is usually not controllable. This law

srates that those trenfu are basically a result of user's feedback. This law was basically

concluded from the existence of regular cycles in the "amount of changes" and

"incremental gro*th" graphs. The positive ripples were considered to be a result of

positive feedback whereas the negative ripples were considered to be a result of negative

feedback.

1.4 Case Studies for Lehman Laws:

Lehman suggested the laws of evolution on the basis of his more than thirty years

experience. He was pioneer of the software evolution studies. He, on the basis of his

contribution in this field, is known as "father of software evolution". His laws are based

upon a number of case studies. These case studies are spread over thirry year period,

from 1971 to 2001. During this time, he also conducted a project FEAST (Feedback,

Evolution and software Technology), with industrial collaboration. to study the

evolutionary trends of software systems. This project let him to study a large variety of

medium to large sized software systems, belonging to different application domains,

working in different organizational environments and having different evolutionary

periods. This project was consisting of two phases which were identified as FEAST/I

and FEAST/Z. Tfie rirst phase, FEAST/I, commenced on october 1996 and terminated

in September 1998. And the second phase, FEAST/2, commenced on April 1999 and

terminated in March 2001. Lets look at few of those systems, studied by Lehman, for the

formulation of his laws. I have particularly focused on those parts ofcase studies which

are relevalt to the first, fifth and the sixth laws. Because my study includes these tl[ee

laws only.

1.4.1 05/360 lLeh97a, Leh 97bl:

This software system was one of those which were studied by Lehman in the very

begiming of his work means during 1970. But Lehman included its results in his later

10

studies too, like, [Leh 97b, Leh 98a], for the sake of comparison of later results with the

older ones. Here are given two plots of this system:

8000

7000

6000

i000

4000

1000

:000

1000

0 RsN

Figure 1: 05/360: Total size (in number ofmodules) plotted against releases [Leh et al

91bl

In this iigure, the total size of, applicatioa (meas'.u.ed, in number of modules) was plotted

against the release sequence numbers (RSN). The upward movement of graph indicated

continuous change and continuous growth trends. The Iinear increment in size has also

been shown by the relatively thin line. It can be Seen that actual increment was exactly

following the linear increment but with small ripples (positive or negative). So it

indicated that the incremental growth (amount of increment ir. each release) had remained

same throughout the period. This linear trend made Lehman to conclude initially that the

incremental gowth remains same throughout the life of application. Btlt, on the basis of

later studies, Lehman changed this statement.

Size in Modules OSrj60

11

Modrrles
1i50

1350

1ti0

950

7i0

ri0
150

r50

-50

osrl60
lncremantal Grou'th ?

t
t.
I

I

I
Arcraae lncrenrcnt t

art.?;., .. 1r'':
- - i i- - i -. j -'.:.-.- - -^--+ - - -l

RSN
l015t0

Figure 2: 05/360: lncremental growth (in number of modules) plotted against releases

[Leh et al 97 b]

In this figure, the incremental growth (number of modules increased in each release) has

been plotted against release sequence numbers. Here the straight horizontal line is

showing average incremental growth. On the basis of this plot, Lehman concluded that

size ofeach release increases by a fixed amount. And any un-usual increase in size will

be followed by releases with zero or negative increment, to compensate that un-usual

increase in size.

1.4.2 Logica FW (FastWire) [Leh 97b, Leh98a]:

This system was studied as part of FEAST project. It was a financial transaction system.

At the time of srudy, it was eight years old. Lehman gathered data about its latest five

years history. The data was consisting of number of modules in each release. Lehman

preferred to use the measure, number of modules, in all of his case studies, r:nlike some

other researchers, who preferred LOC. But Lehman said that number of modules can

give more consistent picture as compared to LOC. Because LOC depends on the

.' '. r-. t,;' -'.-
--."

t
'

12

progftunmer's practice vihereas number of modules measure is independent from that of

progftunmer. Moreover he said that he had repeated some of his case studies using the

LOC measure and found the same results. Thus LOC and number of modules will act in

the same way when used in the evolutionary studies of software systems.

In this study again, Lehman plotted total release size (number of modules) against the

release sequence numbers (RSl.l) and found the same results as were found in the study

of OSi360. .This system was belonging to far different domain than that of 03/360.

05/360 was an operating system whereas this system (logica FW) was a banking

transaction system. Moreover there was more than twenty years gap between both

shrdies. So the repetition of results gave much confidence to Lehman regarding his

conclusions, which he made more than twenty years ago, in the form of laws of

evolution. The plot is shown by the given figure:

3000

1500

2000

1i00

1000

500

0 RS]i
1i

Figure 3: Logica FastWire: Total size (in number of modules) plotted against releases

peh et aI 97'61

t0r0

Srze i:r Modules Logica FW

l3

The graph is showing continuous change and gro*th trends. However the linear

increment in size (shown by the relatively thin line) has shown that the actual increment

is not exactly following the linear increment. It is appearing that actual increment has

slowed down with the passage of time. This observation made Lehman to change his

statement of constant incremental growth throughout the life of application. He

concluded that the amount of incremental growth varies with the passage of time, but he

was still not sure that it will increase or decrease.

1.4.3 ICL VME Kernel and Lucent Technologies Real Time System

[Leh 98a, Leh98b]:

These two systems were also studied as part of FEAST project. First one of these,

Virnral Machine Environment (VME) was an operating system, developed by a UK

based company, Intemational Computers Limited (ICL). It was developed for the ICL's

manufactured mainframe computers. The second system was a real time system

developed by Lucent Technologies. Lehman gatheted data about more than ten releases

of each of these systems. Like his previous studies, he performed his analysis on the

basis of "number of modules" measure. So he collected number of modules in each

release and plotted them against the release sequence numbers (RSN). Both applications

showed same type of results. The results for Lucent Technologies application are gilcr,

here:

l4

120000

60000

Figure 4: Lucent Tech rela time system: Total size (in number of modules) plotted against

releases [Leh et al 98 b]

It can be seen that like 03/360 and Logica FW, the Lucent Technologies application also

showed contimrous gowth (afld hence continuom change) trend. The thin line. in the

graph, is showing linear growth. And we can observe that the actua.l grow'th is lying

totally above the linear growth. It is an indication of the fact that growth rate has been

decreased with the passage of time. Thus the incremental groMh (amount of growth in

each release) had not been remained same. But it was decreased with time. This

observation made Lehman to conclude that incremental gowth (and hence growth rate)

decreases as the system gets older. So he refined his fifth law, which initially stated that

incremental grovvth remains in-va, iant tluoughout the applrcation life. After refinement,

Lehman's fifth law was changed as "the incremental groMh and groMh rate decreases

with the passage of time".

Size

il \.Io-\rlcs
Luceat Tech. S-vs I

Grotth Treod

90000

i0000

15

1.5 Open Source Software Applications; Challenge for Lehman Laws:

Lehman formulated his laws on the basis of in-house applications. For all of his case

studies, he selected commercial applications. He didn't test his laws on any open source

application. His laws, however, were tested by other researchers for open source

applications, and, some of those laws were found to be disproved iu case of open source

software applications. Once it was discovered that some of the Lehman laws don't hold

true for open source applications, it gave a new direction to researchers. Many

researchers were attracted towards this issue and they started to test Lehman laws on

open source applications. Th: discoverer of this issue was Godfrey, who, first time

discovered that Linux (a well known and commonly used open source operating system)

wasn't following some of Lehman laws [Godfrey and Tu 2000]. He found that the

$owth rate of Linux had been increased during its past 96 releases. It was in

contradiction with the fifth law of Lehman. Later, in 2005 and 2009, the evolution of

Linux was again studied by two different researchers [Robles et a1 2005], [Israeli and

Feitelson 2009] and they also found same trends as were found by Godfrey in 2000. In

both srudies the growth rate of Linux was found to increasing, which was in accordance

with the findings of Godfrey, and hence, was contradictory with the fifth law of Lehman.

In 2005, Koch studied 8,621 open source applications [Koch 2005]. It was a very large

set which included applications of nearly all varietie-; small sized, nledium sized. large

sized, successful, unsuccessful etc. Moreover the applications were taken fiom different

domains. Koch also found the fifth law of Lehman to be disproved. because many

applications (especially large scale) were found to be evolving without any decrement in

their growth rates.

l6

In 2006, Simmons studied the evolutionary trends of an open source game, Nethack, and

found that Nethack was not following second and fifth laws of Lehman [Simmons et al

2006]. He found that certain complexity measures for Nethack were decreased with the

passage of time, which was in conhadiction with the second law of Lehman. It was also

found that Nethack's growth rate was not decreased during the past 23 years, which

disproved the fifth law of Lehman. In another study, in the same year (2006), Henaiz

observed 13 different open souce applications [Henaiz et al 2006]. He found that only

three of those thirteen applications were following the fifth law of Lehman. Means only

three were there with decreasing gowth rates. The remaining ten were evolving with

either in-variance $owth rate or.with an increasing growth rate. Thus ten of thirteen

applications were not obeying the fifth law of Lehman.

In 2009, Xie studied seven different open source applications [Xie et al 2009]. He

studied large number of releases of all of those seven applications and observed their

complexity and change rates. He found that all seven applications were increased in their

complexiry, which proved the second law of Lehman. However. he found fifth law of

Lehman to be disproved, because none ofthe seven applications showed decrement in its

growth rate.

1.6 My Study:

Validity of tire Lehman law,i on open souce applications is still a question for

researchers. It is nearly sure that some of the Lehman laws, in their original, don't hold

for cpen source applications, and hence they need refinements. Although few studies

have proposed refined versions ofthese laws [Dong and Mohsen 2008], but those haven't

17

been accepted at a large scale. And research community feels need of more case sfudies

in this are4 so that it can be clearly identified that, where and how much, the

evolutionary trends of open souce applications deviate from the laws of Lehman [Robles

et al 20051, fizurieta and Bieman 2006]. Such findings can be expected to prove helpfi:l

in the refinement of these laws. So I decided to conduct case studies to check validity of

Lehman laws on open source Enterprise Resource Planning (ERP) systems. I have found

no study in the published literature in which Lehman laws were tested on open souce

ERPs. I have decided to test first, fifth and the sixth laws of Lehman on three different

open source ERP systems. The law which was first time found to be disproving on open

source applications, was the fifth one [Godfrey and Tu 2000]. and most (nearly all) ofthe

later studies included this law in their work. So I particularly selected this law for my

study. I also included the first and the sixth laws il my work because these two laws are

very close to the frfth one. anrl same evolutiormry measures can be used to test the all

tkee. In order to skengthen my results, I decided to study three ERP systems rather than

the only one.

CHAPTER 2: LITERATURE REVIEW

Introduction:

In this chapter, I have described the studies in which Lehman laws were tested on open

source applications. Lehman proposed his laws on the basis of his case studies

performed on commercial applications. He didn't even considered just one of the open

source applications. And because open source applications differ from those of

commercial ones in their very natwe, so it is not un-natural to think that they (open

source) may not be proving Lehman laws which are purely basing on closed source

applicatioos. Thisw'as,the ieason rvhich'satrsed esearchers to check validity of these

laws on open source applications. Here are given some of those studies. I have described

each study under four headings:

Software applications:

Under this hiding, a brief introduction of those software application(s) has been given

which were observed in that study.

Research methodologv:

Under this heading, the methodology used by the study has been explained, which

includes, what source was used to get applications (releases), what measures,/metrics

were calculated and what tools were used to perform the study.

18

l9

Observations:

Under this heading, it has been stated that what t,?e of evolutionary trends were

observed in the studied application(s).

Conclusions:

Under this headhg, the conclusions regarding the proof or disproof of Lehman laus have

been described. That which law was found to be proved and q'hich was found to be

disproved.

At the end, a table, summarizing all these studies, has been given. In that table, each

study is surnmarized using a framework consisting of ten elements, which are:

l. Software applications studied

2. Domain of applications

3. Type of applications

4. Evolutionary period covered/ number ofversions obseryed

5. Measures/metricsused

6. Tools used

7. Source of releases used

8. What characteristics ofthe applications considered

9. Observations

10. Conclusions

2.1 Growth Rate of Linux Kernel [Godfrey and Tu 2000]:

Godfrey and Tu examined the evolution of Open Souce Systems to observe that either

their evolution holds the Lehinan Laws of software evolution or not. Means either their

evolution follows the trends of commercial in-house developed (closed source)

20

applications or not. For this purpose they observed two open source applications, the

Linux operating system kemel and the VIM text editor. They presented their findings

and conclusions about the Linux operating system in the study [Godfrey and Tu 2000].

2.1.1 SoftwareApplication:

Linux was originally written by Linux Torvalds, but then it were updated and enhanced

by hundreds or thousands of developers. It was basically developed to run on Intel 386

plarform, but later on it was ported to a large number of different architectues. Its first

release was launched into market in March 1994. After that, a large number of versions

have been released. Its releases are of two categories, development releases and the

stable releases. The development releases contain theluntested enhancements which are

for experimental purpose. But the stable releases contain the bug fixes made to the

experimental enhancements. The release numbers consist of tluee parts, middle of which

is an indicator ofthe O?e of release, an odd number indicates a development whereas an

even number indicates a stable release. At the time of study of Godfrey (early 2001), the

total 369 development and 67 stable versions had been released.

2.1.2 Research Methodology:

Godfrey studied 96 releases in lolal, 62 of which were development whereas 34 were

stable releases. The source of versions was the Linux Kemel Archives website. They

examined, basically, the growth pattem of Linux by measuring the growth made in each

release. For this purpose they used three different ways to examine the growth:

F The total size of the kemel, calculated as a compressed file

F The LOC of all source files was counted using the Unix command "wc-i"

21

) Using an awk script to make all blark lines

calculating LOC

F Using a program "exuberant ctags", to count

variables and the macros in different releases

2.1.3 Observations:

and comments ignored, while

number of global functions,

ln order to observe the growth trends of the Linux, they plotted the size of different

releases against time. Although different type of size measures were used as mentioned

above, the total release size as a compressed file, the LOC of all source artifacts, the

number of global functions, the number of variables and the number of macros. All of

these measures were plotted, and all told the same story, as shown by the figures 5 and 6-

;
.:!

23,mo,E0

i8, !OO.000

: a.at}l oc'a

1r.coo 0m

1_..COO.U)0

ic-o.l.0m

E.aol001

5.30l.oot

4.C00.000

:,v}].0@

Jan:g'i3

Figure 5: Total size of Release.(In Compressed Eorm) Plotted Against Time [Godftey

Jun19* Oct 19S !!3r l!€7 .jul:939 Ce. l9fg ipr:001

- Oe\-dop,r.nt rele3ser (1.1, 1.3, 2.1, 2.31

+ Stabb ftre.ses ('l,0, 1:,2-0, 22)

and Tu 20001

* Tcfal LOC a\rc f) - d€tdop.n .|t retrEal€s
+ Tdd LOC (lrc -r) - stat lc rclecas
+ Tcial LOC uncdrurHE€d - deydopmarn reEases

- Tdd LOC uncdrJnent(d - stable ,'deases

22

oo

F

2.500.osc

2.000 lcg

1.sff).000

1.m0.r30

&t 1S96]ec.9,:3 tpr:o! 1

3
Jon 1933 Jtrl 199 O.r 1995 !.rtr 1997

Figure 6: Total LOC of Release Plotted Against Time [Godfrey and Tu 2000]

It was observed that Linux has grown at a superJinear rate. Means its growth has speed

up with the time. The growth rate has been increasing with the passage of time.

2.1.4 Conclusions:

Thus it has been clearly observed that Linux $owth pattem contradicts with the Lehman

laws. According to Lehman and his fellows, the growth rate of an evolving software

rpplication slows down because of increasing complexity [Leh97 a) and [Turski96]. But

the Linux growth rate has been increasing. Similart,'it also contradicts another Lehman

law according to which the work rate remains in-variant tirrough,.rut the life of an

evolving application. The superJinearity of Linux gowth clearly indicates a continuous

increase in the work rate. It can be summarized that the Lehman's Fourth and Fifth laws

have been disproved in this study.

L)

2.2 Growth Rate of Linux and BSD Family Kernels [Robles et al 2005]:

Robles et al studied the evolut;onary trends of large libre software systems to determine

eittrer their evolutionary ffends are same as those, observed by Lehman in the studies of

commercial in-house applications, or different from them. Libre means free and open

source applications. They srudied applications having large sizes, being used by a large

user community and participated by a large community of developers. The basic focus of

study was to determine either these large open source applications follow Lehman's laws

or not.

2.2.1 SoftwareApplications:

Robles studied Linux kernel, BSD family kemels and eighteen other widely used open

source software applications. The BSD family kemels are considered altemates to the

Linux kemel. There are total thee kemels included in this family, FreeBSD, NetBSD

and OpenBSD. All these kemels have been derived fiom the IINIX operating system.

The other eighteen applications all belong to different domains and have a reasonable

evolutionary history.

2.2.2 ResearchMethodology:

They got different snapshots/versions of their applications from the publicatly available

repositories on Intemet. Linux however, being not available on public repositories, had

been got from the Linux website. For all other applications including the BSD family

kemels, the public CVS repositories were available, from where different snapshots of

each application were got. The monthly snapshot of each application was downloaded

from the date when repository was established till the time of study (April 2005). The

24

different versions of Linux were got from its website where these were available in the

form of compressed files. The size of each release was measured using a tool "SLOC-

Count". This tool detects all code files as well as the language in which those files were

written and then calculates the source lines of code (SLOC) ignoring the comments and

the blank lines. Robles et al studied 580 releases of Linux in total. For all other

applications, four years or more evolutionary period was studied.

2.2.3 Observations:

ln order to observe the growh rate of their studied applications, Robles plotted the total

size of each version (measured in uncommented lines of code) against the time, taking

time along x-axis and release size along y-axis. For Linux, the graph *u.l.up".-li.rea.,

thus showing that Linux had grown at a superlinear rate (growth rate increasing with

time) as shown by the figure 7. These results align very well with those found by

Godfrey nearly five years ago [Godfrey and Tu 2000]. Besides the un-commented LOC,

they used two other measues too, the total release size (in compressed form) and the

number of files in release. Like LOC, these two measures were also plotted against time,

and the same results (super-linear growh) were observed. In case of BSD family kernels,

none of the kemel showed super-linear growth trend, instead they all showed a linear

growth trend (in-variant growth mte) as shown by the figure 8. Only FreeBSD showed

superJinear $owth trend till 2000, but after that it also changed to linear one, resulting

an overall linear trend. From the other eighteen applications, sixteen of them showed a

growth rate linear or close to linear.

25

2.2.4 Conclusions:

Most of the studied applications clearly showed an in-variant growth rate. It clearly

contradicts with the fourth Lehman law, according to which work rate remains in-variant

throughout the life ofa software application. If work rate remains in-variant then gro*th

rate must decrease, as stated by Lehman and Turski [Leh97 a), [Turski96]. According to

the second law, the complexiry ofa software system continuously increases as it evolves.

Increase in complexity means, more effort (work rate) will be required to maintain

growth rate. But if effort remains same then growth rate will ultimately decline. So an

invariant $owth rate shows that effort (work rate) increases. due to which system has

maintaineditsgrowthrate.ItconfadictswiththefindingsofLehman.

2trO300

l5c{o00

! icG300

5&1300

l.o +'
l.l x
1.2
1.3 cr

2.0 r
2-l 6
22 .
2.3 4

2.5
2.5

t
I

,l^ :'
a

I

-t

I
I .. ' "" '

j
,_/..- I I

.r+l*Jn, l!
t?9) 1992 t95 r s€8 20c5

Figure 7: Total LOC of Linrx releases plotted against time [Robtes et al 2005]

26

:aC':i:.:<

'a{'}:.:<

glr-.:C

ryrd't r
.a3.E

.-tr-},.t-:

,.::::::- -^".-I+$li+" "'!:*
t ix'

Irtt'rI'lr!"

r*l +1.

r***fl-+ '.+

,;r5 1).i r >): r..,i2 I u.:. f cnl ;r-< ! ?T,,4 _-4.:,:. ic.i :x.: ;i6

Figure 8: Total LOC of "BSD family Kemels" releases plotted against time [Robles et al

200s1

2.3 Growth Rate of Linux and FreeBSD [Izurieta and Bieman 2006]:

Izurieta and Bieman conducted their case studies to determine either open source systems

evolve at a rate of commercial in-house systems or differ from that. They were basically

exited for this work by the conclusions of Godfrey about the OSS evolution rate [Godfrey

and'iu 2000]. They too were interested in the testing of Lehman's laws on open source

systems, ilat either those laws hold for open source systems or not. Their basic focus

was to examine that either open source systems grow at super-linear rate or not.

2.3.1 Software Applicatioris:

27

Like Godfrey, Izurieta also studied a very popular and widely used open source operating

system, i.e. Linux. However, they didn't thinl just one system sufficient, so they

expanded their observation to another widely used and large size open source operat.ing

system, the FreeBSD. Both these operating systems are considered altemate for each

others. However Linux suppofis more hardware devices than the FreeBSD. Both of

these systems follow the following type of setup, in which a small team of core

developers leads a large community of committers (developers) for development of new

code. Later on, a committer may be included in the core development team.

2.3.2 ResearchMethodology:

They observed only stable releases of their studied applications. It is a common trend in

open source applications to release a newer version with un-tested code for experimental

purpose. That type of release, which contains experimental and un-tested code, is called

a development (in case of Linux) or a current (in case of FreeBSD) release. However

these t,?es of releases are followed by stable releases which are mainly focused on bug

fixes and corection of erors found in their predecessor developmenUcurrent releases.

Izurieta and Bieman did not include development or current releases in their study, but

they purely focused on the stable releases. They got FreeBSD from its publically

available CVS (Concunent Versioning System) repositories. CVS is a system used to

maintain code history. It maintains a histoqy of changes made to source code files to

enable us to retrieve previous versions of the code files. Linux, however, doesn't have

such reoository, so it was obtained from its web site. They observed 127 releases of

Linux and 34 releases of FreeBSD, in total. They caiculaieci different type of measures

for their systems, including, Lines of Code (LOC), number of files, number of directories

28

and the total release size measured in Kbytes. To calculatb these measures, they used the

UNIX command "wc-I" as well as a shell script. Like Lehman, Izurieta plotted size

measures against release numbers instead of time. It is importanl to remind that Godfrey

plotted his measures against time rather than the release numbers. Thus in this aspect this

study is following Lehman rather than Godfrey. As stated above, Izurieta got various

versions of Linux from its website, where they were available in separate form.

FreeBSD, however, was got from publically available CVS repository, so they

downloaded the entire CVS tee of FreeBSD. Then by using CVS commands, they

checked out different releases of FreeBSD. And then, at the end, they used LINIX

command "wc-l" and the shell script to calculate different size measures, as indicated

above.

2.3.3 Observations:

To observe the growth pattem of their studied applications, Izurieta and Bieman plotted

different size measures oftheir applications against application's release numbers, taking

release numbers along x-axis and size measues against y-axis. The different size

measures which were plotted, include, total release size (measured in Kbytes), total LOC,

total number of C files, total number of C++ files, total number of H (header) files, total

number of Make file, total number of scripts and the total number of directories. From all

these plots/graphs, they included just one in this sody, that is, the total release size in

Kbytes, which is shown by Figures 9 and 10. However they have said that all these plots

showed same type of results. According to all these plots, both applications, means

Linux and FreeBSD, have grown at a linear rate (in-variant growth rate). Although at

29

v

\l\
t.,-

some points, a large increment in size could be observed, but the dominant growth trend

is the linear one.

2,3.4 Conclusions:

According to Lehman, the software systems grow at a linear or sub-linear rate. Means

either their grov'th rate remains same or it declines. If we examine growth rate on a short

span of time, it will be constar,t on average, but, if we examine it on long time span, it

will be decreasing [Leh98b]. Lehman quoted these findings under the fifth law of

software evolution, i.e. "conservation of familiarity". Because both Linux and FreeBSD

have grown at a linear rate, therefore they follodprove the Lehman's fifth law of

evolution. In this way, this study has proved that Lehman laws of evolution holds for

open source applications too.

R.l..r. S i!.1

.iiNi,!

P l:c'rtl

rcc(i{

i

,,:i+' * ;t +tl jd -!f f .,i ;,9,re nr

i\0lnit\1::i,.:\i')lbq!!':ri\
I t)- !)')- i')'.J i') l\'tr

SlJbL lrleacr!

I i:.\ l

Figure 9: FreeBSD total relcase sizes plotted against release numbers [Izurieta and

Bieman 20061

Rrhisc Sir6s

flr\.irr

SlJbla !ah$es

H3$l

r5!Jlt

ml:31

5lrli

1

30

Figure 10: Linux total release sizes plotted against release numbers [Izurieta and Bieman

20O6l

2.4 Growth Rate and Complexify of Nethack [Simmons et al 2006]:

Simmons et al performed software archeological study of evolutionary trends of an open

sowce system. Software archeological studies are basically aimed at studying/observing

characteristics of existing software applications to gain knowledge about different aspects

of software systems. So Simmons and his fellows studied evolutionary history of an

open source application to gain knowledge about evolutionary trends/cl.raracteristics of

open source software systems. The evolutionary characteristics which were obsen'ed by

Simmons include, the growth rate, the modularity, the complexity, the ratio of the module

complexity to the module volatility for changes and finally the ratio of the comment lines

to the LOC. They wanted to observe that either the measures related to gro\r(h rate,

3l

modularity and complexity increase or decrease during the life of an open source

application. Moreover, they observed that either the ratio of the comments increases as

the LOC increases or not. Some of these measues are related to the Lehman's laws.

Thus, in this way, Simmons tested some of the Lehman's laws on an open source

application in this study.

2.4.1 SoftwareApplications:

The open source software application, which was observed in this study, is a widely used

large size open source game, the Nethack. This application, at the time of study, had an

evolutionary history spread over more than a decade. Its popularity among user

community can be realized by ihis fact that this game was downloaded more than 20,000

times during the month of December,2005. Moreover, during this month, its link was hit

more than 277,'770 times. This application has been developed in C language. Its first

version was released in the mid of t980. And the latest version, at the time of study, was

released in 2003. Its versions are categorized into three generations, early, rniddle and

latest. During the early generation period, this application had no organized development

team. The whole development was a result of contribution of individual developers

spread all over the world. However in 1998, in the start of middle generation period, a

team of core developers was organized. At the time of study, the strength of developers

in the core development team was 1 I .

2.4.2 ResearchMethodology:

Simmons ex nined al} the relsa5=s of this- apptication fNethack), starting from the

earliest one (mid 1980) to the latest one (2003) with respect to the time of srudy.

32

However for calculation of different metrics they selected l2 such releases, which

introduced major enhancements or which were aimed at major bug fixes. Simmons used

the GQM (Goal Question Metric) approach for studying this application. There were

total five goals of study:

I . Does the application's growth rate decline as suggested by Lehman?

2. Does the modularity of code increase, because of improving programming

standards?

3. Does the complexity ofcode increase as suggested by Lehman?

4. Is the module having more complexiry is also more volatile for change?

5. Does the ratio of the comment lines increase as the LOC increases?

It can be clearly seen that two of the goals (first and the third) are directly related to the

Lehman's laws and hence they basically test Lehman's laws on the studied application.

Simmons, then, decided a number of metrics to be calculated for evaluation ofthe above

goals. The metrics, related to the first and third goals, include. the total release size, the

LOC, the executable LOC (eLOC), the comment lines (cLOC), the number of functions,

the McCabe complexity and the Halstead complexity. The applications source code was

downloaded from the website sourceforge.net, where it was available in compressed

form. In order to calculatc the above mentioned rnetrics, a commercial tool "understand

for C" was used. The whole metric data was then loaded to Microsoft Excel sheet for

generation of graphs.

2.4.3 Observations:

To observe the growth rate of the application (Nethack), Simmons plotted the total

release size, measured in bytes, against the release number. The result was a clear linear

)J

gowth as shown by figure 11. Linear growth means an in-variant $owth rate. To

strenglhen the results, Simmons further ploned other gowth related measures against the

release numbers, which include, the total LOC, the executable LOC and the number of

functions ia a release. All these plots verified the above results, means all these showed a

linear growth trend. These plots are shown by figures 12 and 13. As stated abole,

Simmons used two measures for observing complexity, the McCabe cyclomatic

complexity measure and the Halstead complexity measure. The McCabe cyclomatic

complexity measue counts the number of independent execution paths in the code,

whereas the Halstead measure counts the number of operands and operators in the code.

It is interesting to note that the application's Qrlethack's) complexity was found to be

decreasing with respect to the first measure, whereas it was found to be increasing with

respect to the second measure. It means that the complexity of the application has

decreased with respect to the number of execution paths, whereas it has increased with

respect to the number of operators and operands.

2.4.4 Conclusions:

The evolutionary characteristics of Nethack do not obey Lehman's fifth and second laws.

According to the findings of Lehman, the growth of a software application is sub-linear,

if we observe it over a long time span [Leh97a] and [Turski96]. It means that grou'th rate

of an application decreases /declines, if it were observed over a long span of time.

Lehman has quoted this observation r:nder the fifth 1aw of software evolution. But in

case of Nethack,. the growtb is not .subJirear, i$tead it is clearly linear, although it has

been observed over a long time span (frorn mid 1980 to 200i). It means that the growth

rate of Nethack is not declining but it remains in-variant. In this way it clearly

)+

contradicts with the Lehman's fifth law. Similarly, Nethack's evolutionary trends

contradict with Lehman's second law. According to the second law of Lehman, the

complexiry ofa software application increases, as it evolves. But in case of Nethack, it

was observed that the complexity of application, with respect to the number of execution

paths, has decreased instead of increasing. It is clearly contradictory with the findings of

Lehman.

20.000.000.00

15.000.000.00

10.000.000.00

5 000.000.00

0.00

-s.000.000.00

fJfr? +fi.!,5. 5. 5.'
*n?t. t.plp!o?)"t9"t)*s".t"slr"t"of ;s"r)

Figure 1

180.000
160.ooo
140.OOO

1 20.OOO

100.o00
80.000
60.o00
40_000
20.o00

o
-20.o00

.') "'-^ + ',': f1, 59>o .r)>
"at {}t ;is .r}> -r}t

Figure 12: The total LOC (represented by black squares) plotted against release numbers

I : The total release size plotted against release numbers [Simmons et al 2006]

y=693781x-1Et06

N=09{41

[Simmons et al 2006]

35

5.000

4.000

3.000

20DO

1.000

0

Figure 13: The total number of flrnctions (represented by black squares) plotted against

release numbers [Simmons et al 2006]

2.5 Growth Rate of ARLA [Capiluppi et aI2004]:

Capiluppi et al studied the growth of code components and changes in code structure of

an open source distributed file system. They believed that these observations are helpful

in the complexity evolution of an open source application. They basically have observed

the effect of grou,th in code components on the structue of code as well on the arrival

rate of new developers in an open solllce system. For this purpose they assumed three

hypotheses and tested them against their system. Those hypotheses are:

Htpothesis 1: The code of an application (number of files) grows with the passage of

time.

Hypothesis 2: There is a relationship between changes in code structure (folder strucrure)

and the code growth.

Hwothesis 3: There is a relationship between arrival rate ofnew developers and the code

$ollth.

They fr:rther explained each of the three hypotheses into the sub-hypotheses and then

tested each ofthose sub-hypotheses on their studied application to find conclusions. First

+^"!ssot+5 5 t. '5. .5-

36

one ofthe above three hypotheses is clearly related to the sixth law of Lehman. Not only

related, but it can be said that it is exactly what Lehman's sixth law says. So it can be

said that while testing this hypothesis, capiluppi basically tested the sixth law of

Lehman. Similarly, for testing this first hlpothesis, they plotted different size measures

like. Loc, sloc and KB etc, of the studied application against the release numbers.

These graphs, on one side proved the hypothesis, and on the other side showed the

growth rate of the application, which is directly related to the fifth law of Lehman. Thus

those graphs proved a source ot testing the fifth law ofLehman'

2.5.L SoftwareAPPlications:

capiluppi et al studied an open source distributed file system, ARLA. Distributed file

systems can be said backbone ofthe intemet technology. It can be used to enable users to

access files/data stored./placed at different computer systems, at their own PC's' ARLA

has been written in c language. Its first version was released in Feb 1998 and was

labeled as
.,0.0 release,'. The Iatest version, at the time of study. was 0.35.12, which was

released in Feb 2003. In this way capiluppi covered an evolution period of ARLA

spread over five years. During this five years period, 62 versions were released in total-

35 of them were major whereas 27 were minor releases'

2.5.2 ResearchMethodologY:

As srated above, capiluppi explained each of the three hypotheses in the form of many

sub-hypotheses. The first hypothesis has been explained as following sub-hypotheses:

Sub-hypothesis 1: The LOC of'applicarion increases rl'i th releases'

Sub-hypothesis 2: The SLOC of application increase with releases'

37

Sub-hypothesis 3: The size ofsource files measured in KB increases with releases.

Sub-hypothesis 4: The number of source files of application increase with releases.

Sub-hypothesis 5: The number ofsource folders ofapplication increase w'ith releases.

They studied 62 versions of ARLA in total. These versions were released during a period

of five years (1998 to 2003). They extracted data about different versions of the

application from a database cr:ated by them, in their previous work [Capiluppi 2003].

That database contains data about 400 different open source applications. The source of

information used in that work was the publically available CVS repositories of this

application. In order to test these hypotheses, they used the measures, LOC (total lines of

code including comments, blank lines etc), SLOC (source lines of code, LOC which are

executable), KB (total size of all source files in kilo bltes), number of sowce files and the

number of sowce folders. For LOC, they identified all source files (files having

extension .c or .h) and counted number of lines of all of those files. For SLOC, they

created a parsed file against each source file by eliminating comments and blank lines

fiom it. The parsed files were containing only the executable code. So number of lines

of parsed files gave the SLOC measure. To calculate these measures, they used UNIX

commands, as well as the "xscc" awk script.

2.5.3 Observations:

In order to observe code growth, Capiluppi plofted LOC against releases. The graph

clearly showed an upward trend as shown by Figure 14. Means the first sub-hypothesis

was true, that the LOC of an application increases with releases. Moreover this graph

showed a linear trend. Means the mt€ of growth was in-variant. ln order to test the other

sub-hypotheses, they plotted, one by one, each of these measures against releases, the

38

SLOC, the size of source files in kilo b)'tes, the number of source files and the number of

source folders. A1l these graphs showed same type of results as were shown by the first

plot, means an upward tend. The graphs for size (in KB) of source files, number of

source files and number of source folders have been shown by figures 14 and 15

resp€ctively. Thus all ofthe sub-hypotheses were found to be true. The application was

found to be growing with respect to all size meesures. Similarly, these graphs also

showed a clear linear trend, except the Iast one, means nurlber of source folders.

Although it can be said linear to some extent, but it was not as clear as were the other

ones. Thus all these graphs too showed an in-variant growth rate.

2.5.4 Conclusions:

ARLA has found to be following Lehman's fifth and sixth laws. According to the sixth

law, an application continuously grows throughout its life. ARLA, when examined using

a number of different size measures, was found to be growing. Thus it proved the

Lehman's sixth law of evolution. Similarly, according to tlie fifth [aw, an application

grows at an in-variant rate, if we observe its gtowth over a short time span. ln this study,

ARLA's growth was observed over a five years period and it was found to be growing at

an in-variant rate. which is in accordance with the law.

39

' ialf:il

15L}:r:rJ

'{r:':,J
-3n3f

-':Lr:':i:l

{,}:YJ

ir-.-t-'J

.1.-L':r

'5/L3

ratj
5:*|1
jI'-'

<.4.1

f$:'
2.Lr
:r.,n 1

" y't)
'':iJ

6',

3
5
?.
3
=-

Releases

Figure l4: The LOC and total size of source files (in KB) plotted against releases

[Capiluppi et al 2004]

8CC

7CC

cn-!'l

tnn

I t, rr-

n

12C

1G

8ce
o

=oC'.J >
Qt

P
3ZC3

6
qt

3
3
ut

9= 0.8600x +22.ffi
R? = 0.901?

'1,.1

Releases

Figure l5: The total number ofsource files and total number of source folders plotted

= 5.82tsx + 332.93

R? = 0.972i,

against releases [Capiluppi et al 2004]

40

2.6 Growth, Complexity and Quality of Seven OSS [Xie et al 2009]:

Xie et al studied evolutionary history of seven different .types of open source software

applications. The aim of study was two fold, one, to conclude that either these

projecrVapplications validate the existing evolutionary trends (especially those proposed

by Lehman) or not. And second to observe more evolutionary trends which have not

been quoted still by any other researcher. Xie et at believe that observing evolutionary

history of software application, with the aim of finding evolutionary trends, can help in

reducing the cost of evolution, which sometimes, according to the past studied, equal to

the 90% of the total software cost. It is a very comprehensive study, which used many

different types of software measures, as well as tested all of the eight laws of Lehman. It,

along with testing the existing evolutionary trends (like of Lehman), proposed new

evolutionary fiends as well as, first time, gave a clear distinction between $o\,\'th and

change measures.

2.6.1 SoftwareApplications:

Xie et al srudied total seven software applications which are all open source applications.

Here is a brief introduction for each ofthose applications:

Samba: It is a Client-server interoperatablility tool that enables clients having operating

system other than windows, like UNIX, to interact with the windows server. fhis ;rudy

covered 15 years evolutionary period of Samba (1994 to 2009) and observed its 89

official releases.

4l
Sendmail: It is an Emai.l transfer tool that uses different methods for mail delivery. This

study covered l5 years evolutionary period of Sendmail (1993 to 200g) and observed its

57 official releases.

BIND: It is a commonly used DNS (Domain Name System) server. This study covered 9

years evolutionary period ofBf,\D (2000 2009)) and observed its 168 ofEcial releases.

OpenSSH: It is network security tool that makes to avoid data from hijacking while

travelling on network. It encrypts data before transmitting it on the network path, so that

hijackers may not read it. This study covered 9 years evolutionary period of OpenSSH

(1999 to 2008) and observed its 78 official releases.

SOLite: It is an SQL database engine existing in the form of software library. This study

covered 8 years evolutionary period of SQLite (2000 to 2008) and observed its 172

official releases.

VSFTPD: It stands for Very Secure File Transfer Protocol Daemon. It is an FTP server

used by Linux. This sh:dy covered 8 years evolutionary period of VSFTPD (2001 to

2009) and observed its 60 official releases.

Ouaqga: It is a tool suit used for development of software routers. This study covered 5

years evolutionary period of Quagga (2003 to 2008) and observed its 29 official releases

In this way, this study has covered 69 years evolutionary period (aggregate/sum of

evolutionary periods ofall seven applications) and observed 653 official releases in total.

2.6.2 Research Methodology:

Xie et al downloaded different versions of their studied applications from the public

repositories ofthose applications. Many ofthose applications have both server and client

suits. But they considered just the sen'er part of applications and ignored the client part

42

as well as the test programs. The inclusion ofclient part and test programs will just result

in increased values of measures, it have no impact on the trends of evolution. Means the

trends uill remain same to those which are observed in case of pure server suits. They

merged all the source code ofa release in one file using the CIL merger tool. Then they

calculated LOC of that file to get the total LOC of release. Moreover, they used two

tools for analysis of the souce code, the ASTdiff (Abstract Syntax Tree difference) tool

and the RSM (Resource Standard Metrics) tool. They developed ASTdiff themselves,

but the RSM is a commercial tool. ASTdiff compares syntax lrees of the source code

files written in C language. It calculates a number of metrics for those files, including,

changes in types (stn:ctures), changes in data types and definitions of global variables.

changes in functions signatures and bodies, types (structures) added, global variables

added, functions added, types (structures) deleted, global variables deleted, functions

deleted etc. The RSM tool calculates cyclomatic complexity of the code.

2.6.3 Observations:

In order to observe evolutionary trends of their shrdied applications, Xie et al plotted

different size and change measures against the time. The first graph was to plot

cumulative number of changes, made to types/structures, global variables and functions,

against time. Ihe graph clearly showed an uoward trend, means the

modifications/changes are continuously happening. In other words, the application is

continually changing. The graph, shown in Figure 16, is just for Sanrba. but other six

applicertions have also shown' smrs R'pe of resultv. They observed that most of the

changes were related to the functions and very few were related to the global variables

and types/structures. For this purpose, they distributed changes among the three factors,

43

functions, types and global variables. The result clearly indicated that most of the

changes were belonging to functions. The graph is shown by Figure 17. They also

observed that additions are more common than deletions as the gaph in Figure l6 clearly

indicates. It was also noted that interface changes are much less frequent than the

implementation changes. Means mostly changes belong to the implementation rather

than the interface of ttre application. In order to test the law of self regulation (3rd law),

they plotted incremental growth against release numbers. Lehman derived this law when

he plotted the incremental $owth of 05/360 against release uumbers [Leh 78]. He

observed ripples (small positive and negative adjustments) in the graph, so he concluded

that software adjusts its size itself. Hence he concluded that the evolution process is self

regulatory. Xie et al, too, plotted incremental growth against release numbers and

observed ripples in it. The graph for OpenSSH is shown by Figure 18, however

remaining six applications, too, showed same type ofresults. Figure l8 also showed that

the incremental growth was neither in-variant nor it was declining. To skengthen this

observation, Xie et al further plotted number of functions added to each release against

the release numbers. The results, as shown by Figure 19, were same to those observed in

Figure 18. Means the incremental gro*th was neither in-variant nor it was declining.

Instead, incremental growth was found to be increasing. In order to test the law of

continuing growth (6th law), Xie et al plotted LOC of each release against the release

numbers. While calculating LOC, they ignored comments and empty lines. The graphs,

as shown by Fig:ure.20, were. contlnuously movrng upward. Thus it clearly indicated

ccntinuous growth in application size. . This observation was strengthened by a previous

graph (shown by Figure 16), which showed that additions are more common than

44

deletions. Larger number of additions will ultimately result in continuous

increment/growlh in the software size.

2.6.4 Conclusions:

All the applications were found to be continuously changing, with respect to functions

(their bodies and signatures), structures and global variables, so the law of continuous

change (firsr law) hes' ireen' verified. Similarly, all applications were found to be

increasing in their sizes (LOC, number of functions, number of structures, number of

global variables), so the law of continuous growth (sixth law) also verified. The

incremental gowth, when plotted against release numbers was found to be having small

positive and negative adjustments (ripples), which is in accordance with the law of self

regulation (third law). Thus the third law has also been verified. The incremental growth

was neither found to be in-variant nor it was decreasing, which indicated that applications

were growing at a super-linear rate. It means their gro'*th rate was increasing with time,

instead of decreasing or remaining in-variant. It contradicts with the law of conservation

I

Figure 16: Cumulative number of changes plotted against time (for Samba) [Xie et al

2009)

of familiarity (fifth law), thus the fifth law has not been verified.

45

l{ ll f.';

G1)'/.

2t)',.1

llr:t.l ltir.

Figure 17: Changes distributed among functions, structues and global variables (for

Samba) [Xie et al 2009]

lll

.-l

rf

I -i I)l-(.

Figure l8: Incremental growth (measured in modules) plotted against releases (for

OPenSSH) [Xie et al 2009]

Figure 19: Incremental growth (measured in functions) plotted against releases (for

Samba) [Xie et al 2009]

3U1.

o):

i
1t r .[, lri "', ,t.':i:;'.' .
' U-'-.-.'

"-,1'*J
i r' i'.i'."- i\-'ry'r--.'r-t\---.r/'lz'rr^I Vy'-'-r L-: '*'J I t Ll

f

f ,rrrc: i(,r-: E Sl r,lcl rlr(: I Ckrl):r.i Vitlrirl'l'-

lr. r-j
S:uu

46

: ',r j tr,

ll

-a o6'nSSH

--J
S<'trrltr rlil

:tl'l :]rttl,

'r' st)Lirr.

_lt t,, 'f Ill

Figure 20: LOC plotted against time (for six applications) [Xie et al 2009]

2.7 Growth Rate of Thirteen OSS Applications [Herraiz et al 2006]:

Herraiz et al studied gromh pattems of some open source applications using two types of

metrics, LOC and number of modules (source files). Their study was basically aimed at

compadng these two types of metrics. It was because, the studies which disproved

Lehman laws for open souce applications, like [Godfrey and Tu 2000] and lRobles et al

2005], used LOC or SLOC for measuring grou'th. Whereas Lehman, when suggested

laws, used the metric, number of modules (source files). So they thought to use these two

types of metrics on same projects/applications in order to observe that either they produce

same resuits or their results differentiate from each other. Besides this tliey also tested

Lehman laws on their studied applications. It was obvious that when they will calculate

those size metrics for iheir studied applications, they must observe that either those

applications have grown at rate ofLehman or not.

2.7.1 Software Applications:

jli:r.

47

They studied total thirteen applications, all of which iue open source in nature. Ten of

which are basicalty packages included in Debian GNU/Linux. Debian is perhaps the

largest software application of the x'orld consisting of more than 229 millions LOC.

Most of the open souce applications in the world are written for Debian GNU/Linux.

Thus it can be said that Debian is a representative of the whole community of open

source applications and its trends calr. he. said.to be the trends of most of the open source

applications. Henaiz et al included ten largest packages of Debian in their srudy, whose

names along with the evolutionary period are as under:

Besides these ten packages of Debian, they included three BSD family kemels in their

study, FreeBSD, OpenBSD and NetBSD. The evolutionary period covered for each of

these kemels. is as under:

1 . Amaya:

2. Evolution:

3. Kaffe:

4. Prc-Tools:

5. Python:

6. Wine:

7. wxWidgets:

8, XEmacs:

9. XFree86:

10. Linux:

i 1. FreeBSD:

12. OpenBSD:

8 years

7.5 years

7 yeus

5 years

8 years

7.5 years

2.5 years

7.5 years

8 years

13 years

12 years

7.5 years

48

13. NetBSD: I 3 years

2.7.2 ResearchMethodology:

They, first of all, defined the criteria for selection of applications to be studied. For this

purpose, they decided to include only those applications for which a CVS repository was

available. Secondly they deciCed to include those applications which have a reasonable

evroh:tionary iristory; s'o that some conclusiom can be made about their evolution trends.

Thus they decided to include applications having evolutionary history spread over thirty

months or more. Finally they decided to study applications which are large in size. So

they selected all applications meeting this criteria, except the Linux kemel, which was

not meeting one point of criteria, that is. its repository had not been maintained using a

CVS server. But they included it in their study because prior studies of Godfrey

[Godfrey and Tu 2000] and Robles [Robles et al 2005] included it, and they wanted to

compare their results with prior studies. They downloaded periodic snapshots of the

applications from their publically available cvS repositories, suing a tool GlueTheos.

Twelve of their studied applications were maintained in the form of CVS repositories, so

they got their snapshots. One application, however, was not maintained using CVS

server, which is Linux. Linux is available in the form of versions at its websile in

compressed form. So they downloaded those compressed versions and decompressed

thern to get the code. For each of the other twelve applications, all six months snapshots

were downloaded from the date of first commit till the date of study. Then they

.ziculated two types of measures for different mapshots/versions of each of those

applications and stored resultS in a database for future use and result interpretation. In

49

order to calculate these measures, means LOC and number of modules, a tool

SLOCCount was used.

2.7.3 Observations:

In order to comp.ue the two metics, SLOC and number of modules' Herraiz et al- fiIst of

all conelated both metrics againS each other, Uking number of modules along x-axis and

SLOC alsng y-ar(isr The result 'a;as * slear' linear graph, in case of all thirteen

applications as shown for Linux by Figure 21 .

t 5:-:t

L'-a

_r i;. :al

1---l-

: .;:-:a

:.-:(.

l s-.:C

'9-:€

taa,)1q

a
:rE 3 ':o:o !::o:

Figure 2l: Number of modules against SLOC for Linux [Herraiz et al 2006]

In order to observe the growth pattem of these applications, they plotted version size

against time, taking time along x-axis and version size along y-axis. Since versions size

was measured by two metrics, SLOC and number of modules, so they plotted two gaphs

for each application, one for SLOC and second for number of modules.

The results of these plots were mixed. For most of the applications (six of thirteen), the

result was super-linear, where as for four applications, it was linear. And for three

a"r rl)

rr{

,2 iv
J

a ?'
.f

,/'
_/

' |D:a

50

applications, it was sub-linear. The plots for FreeBSD and Linux have been shown by

figures 22, 23 au:,d24.

The applications along with the nature of their growth graphs are as under:

) Amaya: Linear

) Evolution: Sub-linear

b KaIfe: SuPlrJinear

) Prc-Tools: SuPer-linear

) Python: Linear

) Wine: Ltnear

) wxWidgets: . SuPer-linear

F XEmacs: Sub-linear

) XFreeS6: Sub-linear

P Linux: SuPer-linear

F FreeBSD: Linear

) OpenBSD: SuPer-linear

) NetBSD: SuPer-linear

2.7.4 Conclusions:

The linear graph of sloc against number of modules clearly showed that both metrics

are equal, means both generate same t)?e ofresults. Thus it doesn't matter, what type of

metric we use for observing growth pattem, because it doesn't change results. Both

metrics wiil show same type of grourh trends.. If sone study has used SLOC, then it can

be said that same o?e of results would be observed, if we repeat analysis using different

metric, means number of modules. Moreover the super-linear graphs of the six of

51

thirteen applications showed that most of the open source applications grow at a super-

linear rate; means their $owh rate increases with time rather than decreasing. Thus the

general grouth trend of open source applications is different from those of commercial

applications, which, according to Lehman, follow a sub-li-near gro*th trend. Sub-linear

means, their growth rate decreases with time. In this study. it was observed that mo$

applications were growing either aI an increasing.or a steady rate. Only three were there,

which were found to be loosing their growh rate. Thus the results of this study clearly

contradict with the findings of Lehman.

180c3

l SL.)C{

r40G3

t 211C3

rcoca

9C,03

50c3

40c3

20c.3

x
S€p 1991 Oc:- 19i5 Sep.l996 Feb. 1993 N3/. I E'-rg Dec.2OCj

Figure 22: Number of rnodules plotted against time for Linux fHerraiz et al 2006]

'r-c

-
'1 .l

:-1 El

2l
22
33
2,.,
2.5 <-
26

Aug- 2C C2

52

r s.--,

i r:r- :l[,

| 4i-:G

I :>-=C

I a-'a

ir,l.ttc

tJr:4:O

Aa-o:o

:E:+--O

e/y4

;{r:

r41:t

:,}it:

r 8:G

Figure 23: SLOC plotted agaiist time for FreeBSD [Henaiz et al 2006]

--,'- |
lr

.t

t

i'+

a

Figure 24: Number of modules plotted against time for FreeBSD [Herraiz et al 2006]

2.8 Growth and Change Trends of'FourOSS [Ali and Maqbool 2009]:

Ali and Maqbool studied evolution of small scale open source software systems using

different type of measures. They were feeling that the measue used to observe

:ri
ft. I

,t 'r

5

i
'.4

C :3 .!! :,5 :-f, l:O l:' 'tij ':i'

53

evolutionary behavior plays an important role regarding results. It is possible that

different measrues show different evolutionary behaviors of an application. They

performed their analysis using the meesures used by Lehman, i.e. number of modules.

Then they repeated their analysis using other measures, introduced purely by themselves

and compared both resuls. At the end they concluded that different measures represent

different aspects.of the applicar.ion. and their results may vary from each olher. Therefore

selection of an appropriate measure has much significance in the study of evolutionary

behavior of software applications.

2.8.1 SoftwareApplications:

They studied four different open source applications which are all small scale

applications. Here is a brief Lrtroduction of all those applications with the number of

versions studied / observed ofeach one:

KTorrent: It is a light open source application used for exchange of data. This study

covered 45 releases of KTonent.

GNOME: It acts as a desktop for users and developers of Linux. It is very user friendly.

This study covered 168 releases of GNOME.

Konversation: It acts as an IRC client. It is used for KDE desktop environment. It is too

very user friendly. This study covered 13 releases ofKonversation.

Evince: This application is used as a document viewer which allows viewing documents

of nrany different formats. This srudy covered 46 releases of Eviuce

2.8.2 Research Methodotogy:

54

Ali and Maqbool believe that just observing number of modules in a release is not

sufficient to conclude something about evolutionary trends. But it should also be focused

that how many modules have been added, how many deleted and how manv modified.

Just number of modules can't give us a true pictue of evolutionar-v uenCs. We can see

more insight, if we consider the three cor.rnts (modules added- deleted and modi6ed)

separately" instead of -i_ust total number of modules. They strengrhen their idea whh the

help of an example. Suppose a release, say Rl, has ten modules and the next release, say

R2, has twenty modules. If we consider just number of modules. we will say that '10

modules have been added to release R2. But we don't know the inner picture. It is not

necessary that just 10 new modules would be idded to release R2, but there ale many

possibilities. Like, it is possible that l5 new modules would be added, but 5 old modules

of release Rl would be deleted. In this way the net module count for release R2 will also

be 20. Thus if we focus on module count just, then we will lose inner information and

will not be able to determine the exact evolutionary trends. It's the reason they didn't

rely solely on total number of modules in a release. But they also counted three different

measures, number of modules added in a release, number of nrodules deleted from a

release and number of module; modified of a release. This enabled them to see more

deeply into the evolutionary trends of their srudied application and they pointed out

certain those trends which were not possible to observe by counting just total number

modules.

2.8.3 Observations:

In order to observe the evolutionary characteristics of these four applications, Ali and

Maqboot first used the measure used by Lehman, i.e. number of modules (number of

55

souce files) in each release. By using this measure, they plotted two types of graphs for

each application; one for total releases size (total number of modules in release), ald

second for modules increment (module difference between release i and i-l) i-n each

release. Both of the measures were plofted against release numbers. The res:It of the

fust plot (total release size in modules versus release number) shou-ed tbal mog

applications. rvere growing. at a..linear. rate- as. shown by figures 25,26'27 and 28. Only

one application, i.e Konservation was decreasing in size, ihstead of increasing. Similarly

the second plot (module increment against release number) also showed linear trend, but

in dovynward direction. Means the module increment rate was decreasing with the

passage of time, as shown by figures 29,30,3l and 32. In order to expand their

observation, they plotted three more measures against the release numbers, which are

number of modules added in a release, number of modules deleted from a release and

number of modified modules of a release. These three plots helped to observe the

evolutionary trends in more depth. And many those issues were appeared which were

hidden when only total numbe- of modules in a release were considered. It was clearly

observed that taking just the module difference between two teleases into account is not

enough. In order to get the complete pichue of evolution, it must be noted that how that

difference is distributed among additions and deletions. Finally they plotted total riumber

of changes in a release against the release numbers. The total number of changes was a

sum of the above mentioned three measures, means number ofadded modules, number of

Ccleted rnodules. and, number of, - modified modules- They named this measure as

ii-rcremental changes in a module. The r,,umber of incremental changes between modules

i and i+l can be calculated by taking summation of the number of modules added in

release i, number of modules deleted from release i and nunrber of modified modules of

release i. this measure is equitant to that used by Lehman to calculate incremental effort

[Leh 78]. Lehman named this measure as number of modules handled in a release.

2.8.4 Conclusions:

The plots of incremental changes were near to suaight horizonta.l lines fcy 'il ic.s

applications, It sho\+€d that. number of ircremental changes in successive releases

remained constant or in-variant. It clearly proved the fourth Law of Lehman, according

to which the incremental effort remains in-variant. Lehman concluded this law in his

study of 05/360 when he observed that number of modules handled in successive

releases remains in-variant [Leh 73]. From this, he concluded that effort spent on each

release remains in-variant. In this study, because, the nunber of incremental changes

remained in-variant, therefore it can be concluded that incremental effon remained same.

It is clearly in accordance with the findings of Lehman. Moreover the plots of module

difference between successive releases were also found to by nearly in-variant with a

slight downward trend. It is in accordance with the fifth law of Lehman, according to

which incremental growth remains in-variant or it slows down with the passage of time.

The in-variant $owth and change trends proved the observations of Lehman, observed

by him in different case studies and formulated in the fom-r of fourth and fifth laws [Leh

78]. The separate plots of number of modules added and number of modules deleted

disclosed certain other evolutionary trends, which were hidden when just module

difference was plo'tted. These uends helped to knorv about maturity and stability of an

application. An applicatici, with larger number of deleted and added modules can be

considered as immatue and unstable. Because the greater values for these two measure

56

57

show that modules are not easy to modify. So developers prefer to replace old modules

with new ones for conection of enors or enhancement of functionality rathel than

modifying the existing modules. Similarly a larger value for the number of modules

modified, represent that code is more stable and modules ale easy to be modiEed- Tbe

period in which there is larger value for number of modules added is a period in lrijc:

main. focus is enhancement of functionality. Similarly the period in utrich rhere is iarger

value of number for number of modules modified is a period in which main focus is

correction of errors.

6
3 :"1

I

Figure 25: Total release size (in number of modules) plotted against release numbers for

KTorrent [Ali and Maqbool 2009]

nf
-.-...r.._

t:

5
I

L
'l

I
t

58

Figure 26: Total release size (in number of modules) ploued against release numbers for

GNOME [Ali and Maqbool 2009]

::3

:la

:- afr

- t --

Figure 27: Total release size (in number of niodules) plotted against release numbers for

Konversation IAli and Maqbool 2009]

=

E

-- |

I

: - : 13 :: La,:s
fsra

:;)::.r l: :l :l ;t

Figure 28: Total release size (in number of modules) plotted against release numbers for

Evince [Ali and Maqbool 2009]

-/-
I

I

59

-:. f

3S

l:

.li'

Figure 29: Module difference/increment plotted against release numbers ior KTorrent

[Ali and Maqbool 2009]

- --c - 5-- - -*o - +s ^
s,t =:'- - -:- - -"

-4-' E' .-.r-' .+' f-.-
.9i *o" .i'* .st' 5.t'-.s-''- .sl- .-d'

d

E
S.

s
catl -r

Figure30: Module difference/increment plotted against release numbers for GNOME [Ali

and Maqbool 20091

60

Figure 3l: Module difference/increment plotted against release numbers for Koriversation

[Ali and Maqbool 2009]

?-

I

ir

-t
v

1l

,o

Figure 32: Module difference/increment plotted against release numbers for Evince [Ali

and Maqbool 20091

Growth, Complexity, and Quality of Linux [Israeli and Feitelson

20091:

Israeli and Feitelson snrdied the'evolutioneny' behav'ior uf a comnronly used, well known,

long lived and large scale open source application, the Linux kemel. There was just one

objective of study, to determine that either this application confirms to Lehman laws or

. -- -.L1I: r:: l3 -.:: :-. :r, ;_. a-. -: .r;1

61

not. Although this application, Linux kemel, had already been focused in many of the

previous studies, but Feitelson's work is unique in its nature. The three main

distinguishing factors are:

l. They studied total 810 releases of Linux. And none of the past studies had

observed too large number of versions.

2. They used many different types of metrics related to size, growth, complexity,

quality and effort, whereas none of the past studies used so large variety of

mekics.

3. They tested seven of the eight laws of Lehman usiug numerical measures,

whereas just one of the past studies covered so nany laws [Xei 2009] but ihey

didn't use numerical measures for all ofthose.

Thus on the basis of all these points, it will not be rnrong to say that this study is unique

in its nature.

2.9.1 SoftwareApplications:

As mentioned above, this study used the open source application Linux kernel for testing

the Lehman laws of software evolution. Linux is the application used by most of the

open source evolution studies. Its reasons include the wide spread use of Linux

throughout the world, the interest of open source developer's community in it, free and

easy availability of its different releases source codes. The fitst version of Linux was

released in March 1994. At the time of srudy, August 2008, total 810 different tlpes of

,;rajor ard minorre rsioas had been;eleased. This study covered all those versions.

2.9.2 Research Methodology:

62

They got source code of different releases of Linux from the Linux website and

calculated many different types of measures for those releases in order to observe the

trends of changes, grouth, complexiry, quality and effort. In this process they used a

commercially available CASE tool as well as developed their ou'n tool for their specific

needs. In order to observe growth, they calculated t*o size measures LOC and number

of modules. It is obvious that size is directly related to gro*th. Increasing size can be

validly assumed as continuous growth. Because it indicates that new code and functions

are being added to cover more and more featues of the real life. While counting LOC,

they considered only those statements which were executable. Means they ignored

comments and blank lines. Similarly while counting number of modules. they considered

each function as a module. Means in order to count number of modules, they counted

number of C functions in the release. In order to observe changes that happened in

different releases, they calculated size of "arch" and "drivers" sub directories of Linux

kemel. They realized that growth and change are very close to each other, even both

overlap. Therefore sometimes it is harder to distinguish among both. There are many

changes in code that can be put in both of the categories, change and growth. However

they distinguished change from growth on the basis of code directories. They assumed

that enhancements in the two subdirectories "arch" and ''drlvers" are basically for

accommodating the changes in real system rather than covering new features of real

world. So the size increment ofthese fwo directories is basically an indicator of changes

rather than growth. The "arch" subdirectory contains code related to the processor

architecture and the "drivers" subdirectory contains all device drivers. In order to

measure work rate, they used three different measures. One is the number of developer

63

participating in the code development of Linux. Second. the number of files added,

deleted, grew and shrunk in a release. And third. the release rate, means the time interval

between releases. Second of these measues was same to thar used by Lehman to observe

work rate in the study of 05/360 [Leh 78]. Lehman called this measure as number of

modules handled in a release. In order to observe rhe law of "conservation of

familiarity", they again observid the quantity of changes introduced by a release. But

this time they just examined changes quantiry rather than number of changes. They

compared different types of successive releases in general to conclude that either the

quantity of changes is limited to the point where familiarity will not suffer. This law,

however, has not been tested by them on the basis of size measures, LOC and number of

modules. It is also important to note that nearly all other studies have tested this law on

the basis of size measures. In order to test the law of self regulation, they followed the

same pattem as was adopted by Lehman. Means they ploned the size difference of

successive releases against the release numbers. In order to observe complexity of the

code, they used two commonly used measures, MCC (McCabe Complexity) and the

Halstead complexity measrues. The MCC can be calculated as:

MCC : number of conditional branches + 1

An extended version of MCC, named as EMCC, is also available, which counts number

of comparisons in each condition, rather than counting the condition as a whole. This

srudy also calculated EMCC for different versions of Linux. The Halstead complexity is

a measure of number of operators and operands in the code.

2.-o.3 Observations:.

64

In order to observe the growth pattem, Israeli and Feitelson plotted release size against

time. As mentioned above, the fwo different measures were used for size calculation,

LOC and number of modules. Each of these measures was separately plotted against

time. Both graphs generated very similar results. According to results of both graphs,

Linux had been grown at a mix of super-linear and linear rates. Before year 2003, the

growth pattem was super-linear, whereas after 2003 it was found to be linear. The graphs

have been shown by figures 33 and 34. In order to observe the law of continuing change,

the size of two subdirectories "arch" and "drivers" was plotted against time. It has

already been mentioned that Feitelson realized that the size ofthese two subdirectories is

directly concemed with the changes. The results were similar to those which were

observed in case of whole Linux. Means both subdirectories were growing at a linear or

super-linear rate. It was observed that the open source developers community

participating in the code development of Linux was increasing rapidly. Means the

developers taking interest in the Linux development were increasing in number. Linux

was gefting attention of more and more developers with the passage of time. The

developers interest in Linux was basically assumed an indicator of the rate of work.

Similarly in order to observe rate of work, the total number of files added, deleted, grown

and shrunk were plotted against time. And it was found that the number of files added,

deleted, grown and shrunk in each release remain almost same. The release rate was also

calculated for the sake of observing work rate. It was four.rd that the dominant trend of

release rate was staying in-variant. The size increment of each release was also plotted

against release numbers. The size increment was mea,sured as number of modules added

in a release. Or it will be more appropriate to say, the difference in nunlber of modules

65

between every two successive releases. It was observed that average number of modules

added in a release remained almost same. The actual line was found to be fluctuating

a.long average line with small and repetitive ripples. The graph has been shown by figure

35.

2.9.4 Conclusions:

Linux has been found to be continua.lly growing at a linear or super-linear rate, so it

clearly validated the sixth law of Lehman, according to which a software application

continually $ows throughout its active life. Similarly the continuous growth of the two

subdirectories "arch" and "drivers" validated the first law, according to which a software

application continuously changes tkoughout its life. The overall complexity ofcode was

increased. However there were also instances of reduction in complexity at functions

level. Perhaps this reduction was due to certain efforts which were made for controlling

complexiry. Such effo(s were evident and could be clearly observed. So it can be said

that the second law has been validated in case of Linux, according to which software

complexity increases continuously, unless work is done to control it. The work rate was

found to be in-variant with two perspectives. However from one perspective, it was

found to be increasing. It has been observed that the number of files handled (added,

deleted, grown or shrunk) in each release remained almost same, it clearly indicated arr

in-variant work rate. Similarly the interval between every two successive releases of

same type has also been found to be nearly same. Thus an in-variant release rate can also

bc considered as ao ind-icator of the in-variant work rate. However the nurnber of

,Jevelopers participating in Linux was found to be increasing rapidly, that is an indication

of the increasing work rate. Because two of these perspectives indicated the in-variant

66

work rate, so it can be said that fourth law of Lehman also validated, according to which

the average work rate, throughout the life of software, remains same. The two types of

releases, development releases and stable production releases confirmed the law of

familiarity conservation. Because it was observed that none of theses r*o tlpes of

releases introduced too many changes which affect familiarity. The ge::=al teod of

theses two types of releases was that each new release introduced small amount oi

changes, which did not create any severe problem regarding familiarity of the software.

The major releases, however, did not confirm this law. These releases were found to be

introducing large amount of changes as compared to their predecessor releases. Even in

some cases, a new major release was too much different from its predecessor that users

preferred to use outdated release instead of leaming later one. Thus it can be said that

Linux didn't fully validate the law of "conservation of familiarity". It was also observed

that the quality of Linux didn't decline with its evolution. It was basically a result of

continuous effo(s made to maintain quality. It can, however, be assumed that if those

efforts were not present then new versions may lose their quality as compared to the old

ones. Thus Linux validated the seventh law of evolution according to which quality of

software application declines with its evolution unless efforts are made to maintain it.

The module increment made in each releases was found to be in-variant on average. The

graph line was found to be fluctuating on average line with positive and negative ripples.

It is an indication of the trend that the number of modules added to each release tends to

remain same. A release with large number of added modules was found to be following a

release with small number of added modules to balance the average. It means that

growth and antlgrowth forces have balanced each other to maintain the level of

67

increments. It is in accordalce with the law of self regulation, according to which desire

for growth and constraints on growth balance each other, ald as a resu.lt software grows

at a constant rate.

5e{tr

4.sq.t(F

.te;m6

3.5e;m6

3e+006

2.5e+!(t6

2e+&16

1.5e-0OG

0

18CO00

16C6CO

14m@

1200c{

1C00c'3

8m0c

6m@

4tooc

2000c

c 07c8

[Israeli arid

Figure 33: The total LOC ofreleases plotted against time [Israeli and Feitelson 2009]

Number of Functions - All Directories
25

;-L.

ll ..;

!:,:

95 96 97 38 93 0C 01 03 D1 Cs 06

Fizure 34: The total number of modules of releases plotted agairst time

LOC - All Directories

Feitelson 20091

. --'_ _ -- v2 I

94 5969796 9000 01 02 03 0{ c5 g6 07 08

lncrem€ntal Change
'n

Number of Frles

68

Figure 35: The increment in releases plotted against release numbers [lsraeli and

Feitelson 20091

2.10 Growth, Change, and Complexity of Nagios [Bonkoski 2007]:

Bonkoski studied evolutionary behavior of a widely used relatively small size open

source application with respect to growth, change and complexity. The one point aim

was to compare evolutionary trends of open source applications with those of commercial

applications. At that time, the evolutionary trends of commercial in-house applications

had been determined and had b:en summarized in the form of eight laws by Lehman and

his companions [Leh 78], peh and Ramil 2001I and [Turski 96]. These laws were

prove<i to be valid for all type of commercial in-house applications, regardless ofthe type

of organization and its environment. All case studies of commercial applications proved

these laws. So these have been universally accepted and believed. However, validity of

these laws for open source applications was still a question. Because certain studies had

69

disproved some of these laws in case of open source applications. And it was o hot topic

for research community that either those laws, which were derived during the study of

commercial applications, hold for open source applications or not. That's why Bonkoski

performed this case study to add his contribution in this area ofresearch.

2.10.1 SoftwareApplications:

The software application studied by Bonkoski was a widely used application, named as

Nagios. Nagios is used as a system administrator tool to ensure system's availability. It

checks availability of the critical services of a business application and informs

administrator about any availability related problems before those problems are faced by

end user. This application is written in c language and has been proved very popular in

users and developers community within a short period. According to the facts available

on sourceforge.net, Nagios was downloaded more than 1.2 million tirnes during the

period of 4.5 years (Nov 2002 to Apr 2007). This application is relatively smaller in size

as compared to those observed by other studies in this research area, like, [Godfrey and

Tu 20001, [Robles et al 2005] and [Israeli and Feitelson 2009] etc. These studies

observed very large size open source applications like operating system kemels etc.

Another difference of this application form those of others in this area is that, this

application didn't have a very long evolutionar.v history. Its first version was released in

2002. And' at the time of study, 20c7, it had just rhree major versions. Thus at the time

of study, it had just five years evolutionary period to be observed. During these five

years' its three major and rrany minor. versions had. been released. This study did not

observe all ofthose versions, but it selected nine of thera for observation.

2.10.2 ResearchMethodology:

70

This srudy observed Nagios from two perspectives, growth./change and complexiry' For

this purpose they used seven different measules. Three were size related measures used

to observe change/growth and four were complexity related nreasures. As mentioned

above, they m:died total nine versions of the application released with a period of nearly

five years. The source of versions was sourceforge.net which is a large repository of

open source applications and has been used as a source of information in most of the

prior snrdies in this area. In order to calculate different measures, they used an evaluation

copy of Karakatau Metrics tool. This tool is written in Java language. It imports source

code and calculates different types of software measures. The results generated by this

tool were parsed using a scripting language and loaded into a database. Then database

was queried to extact data. The results of queries were saved into Excel files to generate

graphs. The size related measures used to observe change/growth trends were, SLOC'

number of functions and number of downloads. Bonkoski believed that SLoc alone is

not enough to represent all aspects of software growth. There are certain aspects which

can not be represented by SLOC, like code refactoring or optimization. So they counted

number of top level functions as well, to observe a full piiture of growth. Moreover they

also counted number of times, Nagios was downloaded by users community and

considered the number of downloads as an indicator of growth and change. It is the

unique point of this study because no other study has used number ofdownloads measure

as an indicator of growth. The complexity related measures used in this srudy are,

McCabe's cyclical complexity, Essential Complexity, NEST complexity and Halstead

complexity. The first measure, McCabe's complexity is calculated on the basis of

number ofdecisional paths used in the code. The Essential cornplexity is calculated same

7l
as McCabe's complexity, but before that code is restructured to its most primitive parts.

The NEST complexity is calculated on the basis of nested structures used in the methods.

And finally the Halstead complexity is a measure of the number of operators and

operands used in the code.

2.103 Observations:

In order to observe the change and growth fiends, two of the size measures, SLOC and

number of functions were plotted against the release numbers. The result was a clear

increment in both of these measures along with releases. Means each new release was

observed to be increasing in SLOC as well as in number of functions, as shown by

figures 36 and 37. Thus it proved that the application, means, Nagios has continually

grown and hence has continually changed. It was also observed that the growth rate was

linear with respect to each of these two measures. The number of downloads as recorded

from the website sourceforge.net was plotted against time (years) and it was found that

Nagios had continuously gained attention of more and rnore usel.s. User community was

found to be attracting towards Nagios rapidly. The results ofplot are a clear evidence of

this claim as shown by figure38. It can clearly be observed that the graph line has moved

upward rapidly, thus indicating that number ofdownloads have increased every year with

a significant figure. As already mentioned, Bonkoski has considered increasing interest

of user comrnunity in an application as an indicator of applications growth. So he

concluded that because number of downloads of Nagios have increased rapidly, therefore

this application has grown continrrallv. In order to observe the complexiry of application

over time, the different complexiry measrres were plotted against releases. As already

mentioned, four different complexity measures have been used in this study, McCabe

72

cyclical complexity, Essential complexity, NEST complexity and the Halstead

complexity. Each of these measures was plotted separately and results were shown by

figures 39, 40, 4l and 42 respectively. It can, once again, be observed &at each graph

Iine has moved upward nearly with each new release, thus indicating that complexity of

the application has increased in all perspectives. There is just one instalce of reduction

in complexity in case of Essential complexity, when transition occurred from release 2.8

to 3.0 (figure 40). Except this one case, there is no instance of reduction in complexity.

2.10.4 Conclusions:

The application (l.,lagios) has been found to be continually increasing in size ftom all

perspectives, which proved that Lehman's first and sixth laws apply to Nagios.

According to these two laws, a software application continuously changes (first law) and

continuously grows (sixth law). Thus we can say that these two laws of Lehman have

been verified in this srudy. Moreover the graphs of different complexity measures also

showed an upward trend, means complexity of application has increased in different

perspectives. It is clearly in accordance with the findings of Lehman, which, he

summarized in the form of second law, "increasing complexity". According to this law,

the complexity of an application increases with time. As the complexity of Nagios has

increased with time, thus it proved that this law has too been validated in this case.

73

?cmo

00m

sofio

is@

3C'I0

2C@0

rlm

r-0 1.2 1.4 2 0 2.2 2.{

Figure 36: The SLOC plotted against releases

31 2.8 3.0

[Bonkoski 2007]

980

960

94
931

900

e€o

85)

84
810

8C0

7e0

7€0

500000

4 00000

300000

200000

100000

0

Figure 37: The number of functions plotted against releases [Bonkoski 2007]

2001 2002 2003 2004 2005 2006 2007

Figure 38: The number ofdownloads ploned against time [Bonkoski 2007]

1? rf 1..r 20 22 2.1

74

11.6c}m
11.6080
11.4m
11.:md)
rl.@)
13.ffiI)
1c.6&o0
I c.4colo
tolfEfl)
r:3crlfli
:.€ac.n

l-a a)

Figure 39: The McCabe's cyclical complexity plotted against releases [Bonkoski 2007]

245(E{

1,40&l

135t80

?.3060

225m0

2:qm
2.1sIEO

:.10001

:_cm

3!m

1:.4)

1Cm

50

0

2.6 ?.8 3.0

Figure 40: The Essential complexity plotted against releases [Bonkoski 2007]

Figure 41: The NEST complexity plotted against releases [Bonkoski 2007]

2.0

10!3C.CLl
99tD C0

-q5rs.cn
94,1C Cn

-q23C.CD
9Cl0.C,j

NOJU ULi

a4rc.0G

1.0 1.4 ?0 :e

75

Figure 42: The Halstead complexity plotted against releases [Bonkoski 2007]

2.ll Growth, Complexity, and Quality of Firefox [Dong and Mohsen

20081:

Dong and Mohsen found that the laws of evolution proposed by Lehman were basically

for closed source applications, so they may not be valid for open source applications.

Their assumption was on the basis of certain facts which include:

F When Lehman initially proposed these laws [Leh 78], then open souce

development was not popular, therefore the main focus of every type of study at

that time was commercial in-house applications.

F Lehman proposed these laws on the basis of some case studies, which all are

commercial applications, means none of which is an open source application.

> The statements used by Lehman clearly indicate that the type of projects, he was

considering, were those controlled by strong managements. And those types of

projects were not under his consideration in which management has less or no

control on developers.

Moreover at the time of this study, some cases had been recorded in which open source

evolution was found to be deviating from the pattems of Lehman, the most prominent of

which was the srudy of Godfrey and Tu [Godfrey and Tu 2000]. In Godfrey's srudy,

Linux had been found to be evolving at a rate different from Lehman. So the main

question of this study was that either it is just the single case of Linux in which Lehman

laws were. disproved or other open source applications too sho* a deviating behavior

76

from Lehman's patterns. This study, not only tested the laws of Lehman on an open

source application, but it also suggested a modified version of these laws on the basis of

their o*l observations as well as observations of their pioneer studies especially by

Godfiers. ln that mordiEed version of laws, they excluded some of the existing laws (of

Lebman) and suggested some more laws on the basis of their own observations.

2.ll.l Software Applications:

The software application observed by Dong is a well known open source web browser,

Firefox. It is a very commonly used web browser which have a large communiry of users

all over the world. It is mainly written in three languages, C++, ANSI C and the

assembly language. Its different releases and their source code are freely available on its

website. This study covered its 4.5 years evolutionary history from 2004 to mid of2008.

There are two main types of releases of Firefox, trunk and branch. Most of the

development activities are performed on trunk releases. lvhen a trunk release is found

ready to be delivered as a version, then its code is frozen and is given to different teams

for qualiry assurance and bug fixing. That frozen version of code is identified as a

branch. After a branch is released, the trunk is unfrozen to absorb more developments.

For each major release of Firefox there are some associated alpha releases, beta releases,

release candidates and dot<lot releases. Dot-dot releases are basically including security

patches and updates.

2.11.2 ResearchMethodologY:

As mentioned above, the source code of different versions of Firefox is freely available

on its website, so the authors ofthis study got soulce code of different versions from that

77

website. Then they calculated different types of measures for each of those versions

including LOC and effort (measured in man-month). In order to count LOC, they used a

tool SLOC{ounr The evoluticnary period covered by this study is spread over 4.5 years

starting Aom 2004 and gnding at mid of2008. Dong and Mohsen realized that observing

rhe applicarion as a *trole is not enough, but one should also observe the

components/subsystems separately to get a true pictue of evolution. Considering the

application as a whole and ignoring the behavior of its individual components may cause

to mislead us. As an example they pointed out the difference of LOC between releases

2.0 and 3.0 of Firefox. There was a significant decrement in LOC of release 3.0 as

compared to its predecessor release, release 2.0. But it was because that a major

component "mailnews" was removed fiom release 3.0 considering it an extra component

that should not be a part of web browser. Otherwise the size of all other component in

release 3.0 was increased as compared to release 2.0. And if "mailnews" were not

removed from release 3.0 then it surely would be having larger LOC than release 2.0. So

the authors concluded that it will not be fair to say that Firefox lost its size from release

2.0 to release 3.0, because it was due to a specific reason. The true is that it grew in size.

The authors also considered the architectural changes that happened to Firefox as it

evolved. Moreover they focused on the languages used in development, that how the

language choice of developers changed over time. They observed that which language

was preferred by developers more and which did lose its favo'rability for developers.

2.11.3 Observations:

In order to observe the change and growth trends of Firefox, the LOC measure of

different releases was plotted against time (years). It was observed that Firefox had been

continuously increased in size between 2004 and mid-2008. lt was also observed that the

rate of growth was larger in initial period as compared to the later period. Meaas it was

observed that gronrh rate had been decreased over time. The graph ofloc versus time

(vears) has been sho*a by figure 43. There was only one incident of decrement in size as

it evoh-ed aom relea- 2.0 to release 3.0, but it was due to removal of an un-necessary

component from the application (Firefox), which in-fact can not be considered as an

evidence of size decrement. The growth rate of each individual component was also

observed, because autlors realized that it was necessary to view the true pictue of

evolution. It was found that the core components of browser remained almost stable.

The components which showed the continuous increment in size were security. DoM,

JavaScript interpreter and accessibility. other components, which include user-interface,

networking and parsing etc, also remained stable. Moreover the architecture of browser

also remained stable ro a significant exrenr. Ahhough changes occurred in it, but those

were minor. No major changes observed in the architecture. As for as the languages

used in development are concemed, the c++ was the most used language, however it lost

its ratio in the later releases. Its one reason was the removal of the "mailnews"

component from browser which was mainly wriuen in C++ language. The second large

language was the ANSI c and third was the assembly language. The ratio of assembly

language was found to be increasing in the later releases.

2.11.4 Conclusions:

As mentioned above that Firefox was found to be continuously increasing in size, this

indicated that Lehman's first and sixth laws proved in case of Firefox. Because

according to these two laws, software systems continually change (first law) as well as

78

79

continually grow (sixth law). Moreover the growth rate was found to be decreasing with

the passage of time, which also proved fifth law of Lehman. according to which groMh

rate of an evolving application tends to decline. Although fifth law was proved in this

study but the aurhon didn't include it in their modified version of laws. because it had

been disproved in tb€ su$ of Linux by Godfrey and Tu [Godfrey and Tu 2000]. It *'as

also concluded that the decrement in groWh rate would be due to the fact that the

complexity of application would have increased, so it would become difficult for

developers to add more functions. Thus the decrement in grouth rate was considered a

consequence of increment in complexity, so it was soncluded that complexity of

application had increased, which verified the second law of Lehman, according to which

complexity of software applications increases with time unless work is done to control it.

Iacrement in complexity means the poor structure of program. It means that the

application (Ilrefox) has lost its $ructure wirh its evolution. In other words it degraded

structurally with time. Thus it lost its quality with time, which proved the seventh law of

Lehman, which says that software applications lose their quality, as they evolve, unless

we do efforts to control it. The work rate (effort) was measured in man-month and it was

found that work rate was tending towards stabiliry, which is an indication of the trend

stated by Lehman as "conseryation of organizational stability". Lehman quoted this trend

as fourth law and stated that the effort spend on each release remains in-variant. In this

study, Dong and Mohsen too observed that effort had tended to remain in-variant.

However they realized that they had not sufficient evidence to say with confidence that

this law has been proved in their case study, because sollre more observations were

needed to get confidence about validity of this law.

80

:. - 5t.I X

:.-3?.3$

: a:: ll:

Figure.43: The LOC of releases plotted against time (years) [Dong and Mohsen 2008]

:ll: :11.1 : :315 :ll5 5 :i35 :135.5 ::i- ::i-.5 :ll? :3:3 5

2.12 Growth and Change Trends of 8621 OSS [Koch 2005]:

Open source applications differ from commercially developed in-house applications in

certain important aspects, which cause to change their processes from those of

commercial applications. The basic difference is that open source applications are being

developed by people who are not working under the control of a strong management

which can push them to do something. They are not usually working for monetary gains,

but their efforts are a result of their own interests. The open source development, being a

relatively new area, is not as matue as the commercial development is. The software

processes for commercial applications iue more defined and tested as compared to open

source applications. This is the reason why open source processes have got much

attention of researchers in the past decade. It has been a favorite area of researchers to

81

define and test the open souce development processes and to compare them with those of

commercial application development. One of these software processes is the evolution

process of open source softrrzre applications. Like other software processes, the

evolutionary processes for commercial applications have been defined, validared and

uriversally accepted The evoluionzry uendVlaus have been defined by Lehman and

others in different studies like, peh 781, [Leh 97a], [Leh 97b], [Leh and Ramil 2001] and

[Turski 96]. These laws have been tested in many case studies and found to be verified in

all cases. But the question for researchers, in the current decade, is that either these laws

hold for open souce applications or not. Open source evolution varies from that of

commercial applications evolution in many aspects, like, in case of commercial

applications, it is possible to mark clear distinction between the development and

evolution process, which in case of open source development is usually not possible.

Similaly open s'ource applications ene usualty dev.eioped following the rule of "release

early, release often", which is not suggested in case of commercial applications

evolution. At the time of this srudy, some researchers had already tested the evolutionary

trends of commercial applications (known as Lehman laws) on open source applications,

most important of which studies, was that of Godfrey and Tu [Godfrey and Tu 2000]. In

that study a large scale and widely used open source operating system "Linux" was

studied to test the Lehman's laws of evolution. And it was observed that Linux was not

following some of tlose laws. The present study is also a contribution in same type of

work. It has tested Lehman's laws on a large collection of open source applications

belonging to many different domains.

2.12.1 SoftwareApplications:

82

Koch observed 8,621 software applications in this study. All of those applications were

open source in nature. It is a very large number and no other study in this domain has

observed too large set of applications. Moreover this set included all t1'pe of applications,

large size, small size, succ.ssfirl, failsd g1g. Similarly, the applications included in this

set did not belong to some specific domain- but belonged to many different domains. The

total number of files, for the whole set of applications, werc 2,474,175.

2.12.2 ResearchMethodology:

The source of applications, observed in this study, was sourceforge.net, a well known and

most commonly used repository for open source applications. This repository was

established to enable open source community (developers, researchers and users) to

manage and control open source applications. It hosts thousands open source

applications, from where users search and download applications, developers launch their

own contributions as well as observe others contribution and researchers find the data

about evolutionary and other characteristics of applications. This repository is especially

helpful for the researchers who study the evolutionary trends of open source applications,

because it enables them to get the timely (monthly, quarterly etc) snapshots of the code of

applications hosted on it. For this purpose CVS or SMt'l clients are used, which

download the timely snapshots of code from the repository. Koch, in this study, used the

same methodology, means he dovmloaded the timely snapshots of code for all

applications from sourceforge.net using a CVS client. He started from the start date of

project/application and downloaded all monthly snapshot! of code till the date of study.

Then he calculated different measures for all those snapshots. including size (measureci in

83

LOC), total number of files and number of programmers. Most of these measures were

calculated using Perl scripts. Aad results were stored in a database for further analysis.

2.12.3 Observations:

It r*'as observed that total 7 ,'1i4-082 commits *ere made to the whole set of applications

*ith 663,801,121 LOC addd ard 87,405i83 LOC deleted. The total number of

programmers who conributed in the development was recorded 12,395. In order to

observe the groMh trends of these applications, two models were proposed, linear and

quadratic. Both these models were proposed by taking application size (in LOC) as a

function of time. Linear model was named as model A, whereas quadratic was named as

model B. These models are given as:

Model A: S(t)=a + t+b

Model B: S(t) = u * t2 + b + t+ c

According to the results of these models, all applications had grown over time. Then a

statistical test was made to observe the long term tendency of growth rate and it was

observed that growth rate had been declined for most of the applications. From the total

sample, 6l 7o were found to be declining in their growth rate.

2.12.4 Conclusions:

As mentioned above, all applications included in the sample were found to be growing

cver time, which clearly proved the first and sixth laws of Lehman. According to first

law, software applications must be continuously change, whereas according to sixth law,

software applications must be continuously grow. Similarly a large number of

applications (61 . %) from the observed sample also proved fifth law of Lehman,

84

according to which $owth rate declines over time due to increase in complexity. Koch

also compared those projects which had declined in their growth rates with those which

had shown an increasing growttr rate. He found rhet tlg app[i621ions which had declined

in growth rate were all large scale applications *ith a large number of programmers

participating in them. From w'here thel'concluded that the large scale open souce

applications with a large community of developers don't decline in their growth rate and

hence they disobey the fifth lav' of Lehman.

\o

N

q)

tr
U)

d

(\

E
o.)

.o
d
(g
q)

N

o
C.l

(!
q.)

o
.oo

O
O
(\
!)

o

<^
o.)

o

o.

o-o
q)
N

€
E

a

-o
F

z
E

oo

o\

.F

o

!o

!i o-

a\r >o
- 1l ..r

OF
6ogo
0)!

dE ?.. -.r.EE :* SiEe* E
o -J-,E.= (J

ffq+ Et: E
E3EEEE.E
;?5E?-72=
66ioaa==
FFOOZZi\Z

q
!

!
)

o

o

<.J

d
6l) E'di

L= >t
!!; C,E
91 >. EO .t=o= : n
- c.r Zi Z 6-_:= o-l 3? 6 o Ur!==a'7t,i1
CO- L-;i

3"8 i;.-.}€ E
:= x - H x =

o
E ro * E E* =f;6 -E*-sFcs3-68sI8EE? b E e 2 i y *6i a 2i I E i u oo

o

e

-EOo-2

\eo
N
=
E

N
o

-axco

l!L

=

ot)

'=

o

o
@

oa

o
o

o

oia,o

3g
59

.-b
l2 ! \-,/

: oi--eL=5
- o- O -
= bEE s
N ?.c)- 9.; .E=u E
o !! .

=fictt! E_u

Y J 9 9., 6 9P-

EE22*fliE

F

o

)a

;o.

.=>JO
o
o

=

ol,
n-:

5;
lE

65o

!a
oQ

r.= 0)

!;Cc

oN

Do

I

v

*I
c'o

a>-

nts
Er-(!o

cL=

=
oi

oa

o

>..9 E

E E*

.==_a

o (!:

Ef -
qAo

oi
(g Xg

(J o.*
J 3E

!r= d -i *69) L-d E

5o(J
o
oJ
U)

o
.s_.8
.oo
oJ .=
>3

'b5

36
)Z?:x.9 E

d.

()

6

9'

4 f
'9-O

to _E 5o

458
J<=

!

o
o.

!
E

.L

E

J

o

o

.J

d)

Ao
oq)

o
d
o\

P?+.9
rJ ,i.a -
! 3E E

-' 'd oSo o --E(E EL.6

!JELO)d.< E P=
* EX I

= =;,i a> z>
ozb
f, < l.!)

-o

':

v

:
a
()

-i

o-

aI

I

s
=c

co
F-
()=rii

.9

,9

.9
o-

o

o.

z

o

o
o
F

o
q'o
>5
oi,

l
f
o
F

.9

E
o

I

o

P-o
5(J

!
a

o
,9
.2

(-)

,9

.ao

n

.9

n
o

(_)

o,

ol
o
.o
(d

E

c\l
(!
c.)

N
(o

(u

o\
O
N

q)

o
X

+
N
(lI

o)

o.
o.

o.d(J

ao

0)

o
o
o.
<)

o-o
q)
N

a
C.l
o)

-o(l
F

t!

ozo

! ?€;
&f .= ::

I c.i. 'e0-e-9-5; E E Q
'o E E .:.9

bo ai
=?z 6 ? 2v()>z;:

?

E

CE6.9
,o.9

?3

z6

-6e

V;lll

.EE€;
2!24
.E!rE

=L !2:

t Eid
n i Ei
;9-h,.e F3+ g
= 6 tr< -

,9

z

(J

I

e

3

;
!

E

^'3 ?! .^

!xo
.e!;-.>.9

E-s?
ofd^
{ir;
E =,(i 6<r'Xz

.ig

a^ !!

a; !
3Ee.*t,aI

Ei !,lL.E

:>6
ez I o

=-5

F,2 i 32
iri*.!
-- in An ^+-- I r:
;P=*i?x;=-7E"

'-<A< i 3 =o

F

z
(,)
o

t
do
J

;
F

o

::2

5=,
E a=

} fi E-B

z 94 e

"a
i 2.9.;i F

c;.e>
I

o

E==3]= E]
? == ?

= 3 at -9

,968E

E -;9=

e9dEP
:E= 6;
o b)X e
,,; AE6 E

e

=E

E

tp
lv
IE
J

x

os
dszE

a>

.)E z

Ee;93;
EE E.: ;:

9 =o X F
=

+: iE=5
€ieEEH
;9ug>o

q
o

=.{s E

E E=a!.E; E

:rP i 3a
E:E3 6

iz:.e;Y,>aLt'^

J :Bl_!. o!= ; E

EE.EAds:E
E;

=
5EZ.EE

-C 9; :9 6;=
€E!:+EE;E
E EE! g EEi
Epti€EtI
E:EE3EE

=a a E o a a 9Z
i-ts;.e.8-t!E
Jz-6aezz ti

t
i-
F

E
I
6

?

3d

UO

UO

=
io6=E
t.ao q n
: x- n L

E E'9 _s:

: co;; h

o-d.o??
.:= o-E E E

-eE
=ag'44 -
aai
:-E
dE 3

-r!-;9

."= 4 5q a-: o

O

o

!?

,EA

;o.

ZJ

69.>a

=F

6Z

,BI€

vE o

lJ .: i-

)!z

.e

)

x

.9

X
2
f

U

.9

o

4;-

:E*

H 5-

P= o

d!=G

.=

Z
.4

":=
E.
J5

e

z

(,

.9

,9

E
ci

2

U

c

(.)

o
N

o

(l

oo

N
(,)

E
6
oo

o
o

r-

N

o

o

c.l

o
a)

0.)E
'o
(6

0)

a
0)

-o

o

o
o
a
.J

0)
N

a
;
O

-o
F

oo

N\o

o

? oC;} E TE
=-o-9ar.= o-; o
gb ! P

sEt"_a
; =;:o o'; d c

-r"E=u E
<.= ; d'-

- 9'o5E9'a-,l
-*€ o

9E'
Etti
: >li
oa.=
9;E
:o"

G-:o

o

.9

o

-l o-

.+

o-

o
(,
oo

=
o

iA 9rE
cC; d I

: a t3 E

.9--oEEE E !9!.9
*.U- 90I E'FEE!q
eizZ ?

ol:

!E!E
9EBE

E SI F'a: , -e

EsEl
!r-lE t0

,a cE?

EE fl E

i 9E.=

EI
c,i
ct

ol
>l
sl

cl

l lt-

'
rD

o

o
o

a{

=o
'E,
o

=o

ots
! a..t9s
9=

=
o
F

E
e
!!)

ocJ

Q
o
I

=
-o

€

o
U

E
L!
;

o
90.

oo

-'=:

Z.:i==
==n:E! S=rEr=;:19.ii:u
;:=€38g?E its-EeBr6>L
:€E a!E€ 9l u;36
!r E 5E Eo.= a) !J i: -9 caL-cEg\J(E

.zi.Ic=
=-=E'o i
E ? daioY>9
l.i o- 6 ii

- Eq-9
i i xE

.9

z
oo

o

o
n.9>b

'c
-t5

'.= 2 - a

=s s b<;ol o >'
o

= bb ri: r2E
='o; -E

P€3Eg

to

o

34
.d'ot
e

o

=

a

o

o
o

(-)

!E
-9=x9i:= I!ri l: E

6oi o E= a
>\c E o'v-c
=-

q >'9 6
5 EE6F g
'.iodiiiE
3Q c:€ E
otrFq:>,q6;Yc.=o
Xo.Y.=E=E'io t- E E; i=
2 U":E #t=

s

'o
o

|;

EE
l>

o.
o

I
--
q-

=
I o

o

o

=9-
.Q

BA

d,o
9*
T_
>z
;>

.. "i "

=0ro(!=
?2;.E€3
-

9.= Lvo2: x v'o.l

ate==c
9E-Y--E=
Y -r9.= 6 Etri'\-- !) a
tsEEq="8
E> i, E O sI =? 9 E i
? i:- 9 q g

=
i -.{ = e 3n

z9o 9i Ud
^ da) :.o o

X E>3 Eg u:de&z€E

=_
r!-thi<Ao:
'=d

9E
.=

I

I

o
E
e
E)
*
.=

I
E

o

gg
OO

"r ic, = !4- >,= >

EE,; EEE ii
+ 5=^:5: E; i
i5E+ E r: EE:
EE;EEE!;i;
ESSBeiF^E';Ea 2= ? ! i i: r ts u
.:= E PEE F ai;

.I -9 !?

eE 1::
!cr=9o

; a:.! Y

3 j 4 E q

'tE i:3 Y

'c 9 Z 6.9
r.oii !:

.J)

o

z

o

.9

E
lrl

r)ei>b
)

f

F

f
.9

E
€
:
3
d

o

o

E
O

F.
o

CHAPTER 3: RESEARCH METHODOLOGY

Introduction:

This chapter describes my research methodology in detail. The information given here

can be used to repeat this work as well as to perform some other work of this type. It

gives a detailed introduction ofthe techniques and tools which have been used for gefting

the older versions of my studied ERPs, theiools used for calculation of the different size

related measures (like SLOC) for each ofthose versions, the tools used for preparation of

results and finally the techniques used for analysis of different types of evolutionary

trends.

3.1 Open Source ERPs Selection:

An Enterprise Resource Plaruring (ERP) is an automated system used to manage the

entire business. It provides information about the important parts of a business, which

information can be used to manage that business. It provides management information

about products, suppliers, customers, stock, orders, manufacturing, sales, finance, and

human resource etc. It helps and enables management to monitor the performance of a

business with respect to its objectives.

88

89

At my proposa.l stage, I decided to choose the systems for my srudy from ERP domain.

So my first task was the selection of open source ERPs on which I will test the Lehman

laws of softw'are evolution. My srudy will be the first one (in published lireranre) in

which validit_v of Lehman laws *.ill be tested on open source ERP sy'stems.

For my srud;-. I decided to select those ERPs which are among fre mos popular oles rn

user's community and which have higher ratings. Moreover I decided to choose those

which are all developed using the same programming language, so that the size measures,

Iike LOC and SLOC, can generate consistent results. On the basis of these factors, I

selected the following three, Openbravo, Adempiere, and ApacheOFBiz. These three can

be placed in the list of top f,rve open source ERP-systems [Linuxlinks 201l] Moreover all

tlree have been developed using the same progpmming language, i.e. Java.

3.2 Getting history (otd versions) of my studied ERPs:

I got past versions of my studied ERPs fiom their repositories which are available online.

Not only my studied ERPs, but most ofthe open source applications are being maintained

in the form of online repositories. These repositories are a best source to get history of

these applications. These repositories are maintained with the help of version control

systems. Once we create repository of application with the help of version control

system, then version control system keeps record of all types of changes made to that

application. Whenever someone makes any change to the application, the version control

system creates a new version of that application, assigns it a unique id as well as stores

date and time of that version. In this way the different versions of application are

generated as soon as changes are made to it. These versions are also called, revisions,

90

snapshots or changesets etc. Version contlol systems allow us to view a list of all

revisions along with their date, time and ids. In order to get any older revision of

application, we juS have to tell id ofthat revision to version control system. Ia this *ay

we can get snapsboc/revision of application on any given date and time'

There are many repository hosting servers. like sourceforge. and girod,--:s =- liese

servers cOntain repositories of a large number of open source applicaons. The most

prominent ofwhich, is the sourceforge, this server hosts repositories of thousands ofopen

source applications.

During my study, four different version control systenls passed through my eyes,

concurrenr Versioning Sysrem (cVS), Subversion (SVN), Mercurial (hg) and Git. But I

have studied only two of them (SVN and hg) in detail, because repositories of my studied

applications have been maintained using these two systems. Openbravo and Adempiere

have been maintained using Mercurial. (hg) ard-.4pacheOFBiz has been maintained using

Subversion (SMrl).

3.2.1 Subversion (SVN) versus Mercurial (hg):

The difference between these two version control systems is that SM'l is centralized

version control system whereas hg is distributed version control system. That's why

S\N didn't allow me to download whole repository of ApacheoFBiz to my local

drive/PC. So in order to get many past snapshots, I have to download each snapshot

separately. But hg, being a distributed version control system, allowed rne to download

whole repositories of openbravo and Adempiere to my local PC. Once I got whole

repositories of both ERPs to my local drive, I got required snapshots from those local

copies of repositories.

9l

3.2.2 Tools for SVN and hg:

There are many tools avaiiable for SVN, which are called SM{ Clients. Some of those

are, TortoiseSVN, RapidSMt{, QSvn SmartSVN. Among those TortoiseSM{ has more

scores as compared to oders. It is used for Windou's operating system- Is cotn:'::rrir

once it is installed, begin to appear in the windows popup menrs from ui<= ue .-

easily use them. When it is installed, the windows pop-up menu begins to locli like:

Anaoge lcorr, By)
Refresh

P6te

6iisvr,r ctrecto,r...

fi Tortciresvll

Nlw

Properties

SVIrI is also available as an API of UNIX. I used TortoiseS\N and S\rI.l which is

available as part of [NIX.

Mercurial (hg) is also available as part of LINIX. A GUl-based tool, called TortoiseHg, is

also available, which, just like To(oiseSVN, used for windows and, after installation,

begins to appear in the pop-up menus of windows. But I didn't use that GUl-based tool, I

used the hg tool which is available as part of UNIX.

3.3 Tools Used:

The tools which I used during my study include, Cygnnn, SLOCCount, TortioseSNV and

MS Excel. From t?rese, the TortoiseSVN, as'desvribed above, is SVN type version

control system. And MS Excel was used to generate charts (graphs). The other two

92

tools, Cygwin and SLOCCount are described here briefly with the perspective of my

work.

3.3.1 Cygwin:

Cygwin is a tools which is used to enable/make-available LINfX APIs in Windorrs- If c.e

want to use some of APIs of LIn(in Windows operating s.vstem or \r'e '*rlt io :-.:u srcl

application in Windows which require functionality from UNIX APIs, rhen rre can install

and use Cygwin. As mentioned above, I used SMrl and hg tools which are available as

part of UNX, so I did it with the help of Cygwin. I was also needed some of IINIX APIs

to mn my second tool SLOCCount, which too, I made possible with the help of Cygwin.

I got Cygwin from its website www.cvqwin.com where it is available free of cost.

Cygwin is a very heavy tool which consumed much space (in GBs) on my secondary

storage device as well as much time (in hours) for both downloading and installation.

First I downloaded its setup to my locai drive, wirich occupied 1.84 GB space. Then I

installed it from that local setup and the size of installation folder was 6.45 GB. Ididnot

change the default installation path and let setup to install Cygwin on default path which

was "C:\Cygwin".

Cygwin is a prompt-based tool, which let us to type TINIX commands on command

prompt and it runs those commands, because it contains TINIX APIs. In this way, it let us

to "run IINIX" in the Windows operating system. The Cygwin interface looks like this:

During installation, Cygwin created a directory "home" on the installation path (means

clCygwin) and another directory with my user name "Furqan" (which I used to log on to

windows) inside the "home" directory. Cygwin treats this directory as the default path.

3.3.2 SLOCCount:

I used this tool to calculate sizes of different releases of my studied ERPs. The measures

which I selected for size calculation are "Source Lines ofCode (SLOC)" and "Number of

Source Code Files (Source Files)". This tool is developed by David A. Wheeler and, as

its name indicates, is used to count lines of source code in a program/application. Its

functionality is not limited to counting SLOC, but it can do much more, It also detects

the language in which code is developed and categorizes count of SLOC by language. It

can tell number of SLOC in each directory separately. It also tells the ratio of different

languages used in the source code. I used it just for two types of calculations, one, for

toral lines of source code, and second, for total number of source code files.

93

t-

94

I got this tool from htto://www.dwheeler.com/sloccount/ where it is available free of cost.

I downloaded it in zip fomr to my local directory. It was a very light file (ust 188 KB)

which consumed few seconds to dor.mload. The latest version which was available ar the

time of downlo ad, was 2.26. thgo I rrnTip that file. using the "winrar". to the home

directory of Cygwin (clcyg*in',home\fi:rqan). Its user guide is available a

http://www.dwheeler.com,/sloccount/sloccount.html which is enough to leam all of r:s

featues.

3.4 Procedure & Commands:

My first task was to getting versions/revisions of the

study. For this purpose, I started my work from

Adempiere and at the end moved to ApacheOFBiz.

3.4.1 Getting Versiors of Openbravo:

three ERPs, I had selected for my

Openbravo, and then moved to

The first task which I performed was downloading the Openbravo repository to my local

drive. For this purpose, I used the clone command of Mercurial (hg). Because creating

another copy of repository is called "cloning the repository", therefore this command is

called the clone command. The command was as under:

hg clone http://openbravo.he.souceforge.net:8000/hgroot/openbravo/mair/

/cygdrive/flopenbravo/tread

The URL included in this command is the URL of Openbravo repository and the path

"/cygdrive/f/openbravo/head" is the path of my local drive where repository is to be

saved. This command downloaded the whole reposirory of Openbravo to my local drive

95

(at the path f:\openbravo\head). It took 2.5 hours nearly to download the whole

repository. Now I was in the position to get any past snapshoUrevision/changeset of

Openbravo till the date when repository was first created. In order to view all the

available revisions, I used following command:

hg log /cygdrive/f/openbravo/head/ >> .'c) gdrivdf/openbravo/revisions.doc

This command generated a lisi of all available revisions and saved this list to the file

f:\openbravo\revisions.doc. I opened this file in the WordPad and the list ofall revisions

was there along with their dates, times and revision ids. Now I filtered revisions using

the monthly gaps. I downloaded repository to my local driue on 23 Jun, 2011. So the top

revision (also called the head revision) was made on 23 Jun, 201 I . Before ihat I selected

tlre revision made on 23 May,20l 1, before that 23 Apr, 201 I , before that 23 Mar, 201 1

and so on. In this way I moved to the date offirst revision. The earliest revision which I

selected was made on 23 Nov, 2007. Thus I selected a.ll monthly revisions between Nov,

2007 and Jun,20ll. This resulted in total 44 revisions. The file of filtered revisions is

given in the Appendix. Here is a snapshot of verysmallpartof thatfile:

96

changeseE: 12953:b9eb62{349da
cag: Eip
user: RlI packaging boc <seaff . rrnc openbravo . c orn>

daEe: Thu Ju]l 23 23r?9144 2011 +0200
sulcnary: CI: updaEe .LD I{ODULE Lo versioE 12952

cbangeseE: 1235?:a?o?bb?eade4
u.ger: EgoiLz CasEiIIo <ego i!:. =asEiIloe opeD.bravo. co5>
daEe: llon llay 23 l?:O8:51 2011 +{l2OO

sur nary: Flxed Issue 1?168. Errs= abe3 clickiug oB reference ll=t !:--=:

changeseE: L1.B16'::.fcqdcAzcggf
user: SEefan Hikhner <stefan. huehner8 openlrravo . com>

dace: Ued Apr 2(I lSro-9t3.4 2011. +0200
sunriary: IIib-updaEe] Fj.x deprecaEion uarnings afEer]og4f updace

changesec: 115O?:8b?e{8a804a9
parenE: 1150 6: 9ed0ec8 5 50cc
parenL: 11344:103820d15f01
ueer: VeLery Lezhebokov <valery.Iezheboko\'EgErall.corn>
daEe: Ued llar 23 2!i54to4 2011 +0100
suflmary: llerge ulch PI

Here each changeset/revision is given an id, like, revision of Jun 23, 201 I has id 12953

and May 23,2011has 12357 e.c. In my first command, which I used to clone the online

repository to my local hard drive, I didn't mention any revisiotl. Due to which it cloned

the latest revision of repository. In order to clone any of older revisions, I added the

revision id in that command. For example, in order to clone the revision made on 23

May, 2011 (having id 12357),1used following commard:

hg clone /cygdrive/f/openbravo/head./ /cygdrive/f/openbravo/12357 -t 12357

Here I didn't use the repository URL, but I used my local hard drive path (i.e.

f:\openbravo\liead), because now I had cloned repository to my local drive. from where I

could generate past revisions, so I had no need to use online repository. The numeric

value 1235'1, written after "-r", told that the revision having id 12357 was to be cloned.

So this commard cloned the revision "12357" to the mentioned path (i.e.

97

f:\openbravo\ 123 57). And as shown in the revisions file snapshot, this revision (12357)

was made on May 23,2011. Thus after tlris command, .l had got the one month older

revision of repository. Now I used this command repeatedly and got older and older

revisions of repository till the lirst revision (made on Nov 2007). Each revision of

repository was containing the application's (Openbravo) snapshot on the given date as

well as the information ofpast changes so that older revisions can be generated. But for

my analysis, I was needed past snapshots of the applications code just, not the

information of past changes, so I deleted the folder named .hg from all these revisions,

because the information of past changes was stored in that folder. And it was not part of

the applications code. After deleting this folder fiom all repository revisions,. the

monthly snapshots/versions ofOpenbravo were ready from Nov 2007 to Jun 201 l.

3.4.2 Getting Versions of Adempiere:

The procedure, I followed for Adempiere was satne as of Openbravo. The first conmand

which cloned its online repository to my local drive was as under:

hg clone http://adempiere.hq.sourceforee.net:8000/hgrooUademoiere/adempiere/

/cygdr.ive/f/adem pi ere,tread

This command cloned the latest revision of online repository to the following path of my

local drive "f:\adempiere\head". It took nearly five hours to download the repository. I

used this command on 23 Jun, 201 l. This means it downloaded the repository's snapshot

of 23 Jun,2011. Now by using the "hg log" command, I got the list of all available

revisions ofrepository. Then I filtered that list and selected the revisions with one month

gap. Means before Jun, 201 1, I selected the revision made on May, 201 I , then the

revision made on Apr, 2011 and so on. I moved to the month, rvhen the repository was

98

first time created. The earliest revision which I selected was made on Nov 2006. In this

way I selected total 56 revisions. Now I noted the revision ids of all the filtered revisions

and cloned all rhose revisions from the local copy of repository (which I had got by my

first cornmand). For cloning the revision made on May'201 I I used follou'ing command:

hg clone /cygdrive/flAdempiere,4read/ /cygdrive/f/Adern pierel 667 I -r 667 8

Here 6678 is the revision id which I selected from the month May 2011. This command

cloned the ''6678" revision of repository to the path "f:\adempiere\6678". This is just one

example, and following t}le same pattern I cloned all 56 revisions of repository. And in

the last step, I deleted the folder named .hg from all these revisions, becarrse this folder

just contains the changes history (which is used to genelate older revisions) and it is not

part of applications code. So after deleting this folder from all revisions, I had got the

application's (Adempiere's) monthly snapshots/versions fiom Nov 2006 to Jun 201 1.

3A3 GettingVersions ofApache0FBiz:

The procedure for preparing revisions of ApacheOFBiz was sontehow different tiom

those of Openbravo and Adempiere. Its because, as I have already described, the

repository of ApacheoFBiz has been maintained using the SVN instead of hg. For SM'i,

I used the GUI based tool TortoiseSVN. Its commands, after installation. were available

to me in the windows pop-up menu. SMrl doesn't allow to get revisions of repository

(called cloning), but it just allows to get revision of application (called export or

checkout). So it was not possible now to download the latest revision of repository to my

local drive and then get the older revisions from that local repository. But now I had to

download each revision of application (ApacheOFBiz) from online repository, sepamtely.

In order to view a list of all available revisions of application. I just right-clicked on my

99

desktop and selected the option TortoiseSMrl ".. Export from the pop-up menu, as

shown:

Artange lcor6 BY)

Refresh

Pa*e

f-lnepebro,^rser

.I ocate repostay here

Alt po.t.,.

*U Setihqs

?x+
#ouo.n

It opened the following dialog box:

Repostory

tRf olt rtnodory:

f trtb://svn.+aap.ils/repos/6f/dtidtn nk

Export dire(torY I

C:\DocunEnts dnd 5ettnEs\Fuqdn\1ed(op\of Hz tf

$Et/'J lo9

!t {I re(r:(5ive

f] onrt externals

ed stylc

RetEion

,.; HEAD revslon

i-:,1 ne"isicnr

ddadt v

t

l--s*ilr,
_l

i
--:-- 1

f-o-_ll-c"-"-fn+ ll

-1Here I entered the uRL of ApacheoFBiz repository a,rd clicked rhe ''sl]ow log" bunon.

The result appeared as the following dialog box:

E':Fort...New

Properties

Froflli 7l lfffi

Revr'ioo Adixr'
1139703 .>
1139ru O.
113 99 e"
ll3%S o
r 13%97 6j
l 1396% 6
tl3%5 a].'
I13969{ (t
t 139593 o.
1139692 o"
I139591 O-
r r 'ro(o'r ^'

v To:

tutt'q
hd6bd(
dGre
deF
eoce
dcF
doqi!
dooge
doo+!
dooqre
doogh
d@9i€

6r5lmlt Y -.
Ddte

8rlli17 Pt'l,sdurdry, }fE 6, mll
7:50:19 Pfi, sdwdry, JtrE 25, 201I
7r5O:{l Pl'i, s.turd.y, }rE 25, m1l
7:50:35 Pl'!, s*wday, l,le 25, 201I
7i50:?9 mir Saturdat, -IrE 25, 2011
7;50:23 Pt'i, t twday, JtrE 25, 201i
7150:17 Pt',|, Saturdri/, llr)e 25, 201I
7150:l I PM, Saturdav, June 25, 201 I
?150:03 PM, s*urday, June ?5, 201 I

7r49:57 Pl'|, Satuday, }rE 25, 511
7:49:51 Plri, Saturday, Jrrle 25, 201 t
,,!O.a< Oq <r|,'.lp lEt< 2altr

nCJr4e
nprove log nr:saget (.
FEATLRE: ed a Ure*
ftAItRE: Add hcber n
FEATLRE: llot tir Th
FEI'ILRE: I tlc tiread
FEAnnE: td a fl.E to
OPTIT'IEE: getExeolq
Ff,{: Prht ah errd rEss
Flt: *op pridrp o-t d
FIXI Faer out hklden b
FIxr r/Fn*hed,/Fl.r5he -E?v, ra,- Jlr6 r airl

)

100

Path Copy from path Revslor

sho.ehg I 7{{5 revisixl(s), from revisirt 418498 to .eyisi)(l r 13978 - 0 revrsioo(s) sele(ted.

flHide u'rdated chdE€d peth6

! Stop on cqy/rcnarra

n lncbde rDergcd revisiorE

5lror, 8l F;rlm_-l TR"''"+-| f;--l I c**r-l

It showed the top (latest) 100 revisions, but when I clicked the "show all" button, then it

showed all available revisions. The latest revision, also known as the head revision, was

made on 25 Jun, 2011 and its id is I139703, as can be clearly seen in the snap. Here,

once again, I filtered the revisions on the basis of monthly gaps. Before the revision

1139703, I selected the revision 1127662 which was made on May 20l l and before that

1096457, which was made on Apr 20l l and so on. I moved to month of first available

revision, which was July 2006. In this way, I selected total 60 revisions for my study. I

f;tr*-l
lH+l

lP Log lrlessoges - http:/svn. apdche,otglreposlasflofbizlt runk trtr4

l0t
noted ids of all of my selected revisions and downloaded (exported) them, one by one,

from online repository to my local drive. For each revision- I created a folder, right

clicked that folder, selected the option TortoiseSMrl * Export, then entered the id of that

revision in the proper text box i,nd finally clicked the OK button.

3.4.4 Setting the SLOCCount Tool:

Now it was the stage of calculating size measures for all of the revisions of the three

ERPs so that their evolutionary trends may be observed. I used, as already mentioned,

the two size measures, SLOC and source code files. For this purpose, I used the tool

SLOCCount. This tool could be used in UNIX operating system because it was required

some of the APIs of LINIX. So I insta.lled Cygwin for this purpose. Cygwin, as

described above, provided me UNIX (its prompt along with its APIs) in Windows. I

saved the SLOCCount folder (named SLOCCounr2.26) in the home directory of Cygwin

(which was c:\cygwin\homeWrqan). Before rsing SLOCCount, I had to make some

settings, first ofthem was adding some text to its file named as "makefile". I opened this

file in the WordPad and added the text ".exe" at the end of its 35'h line. After addition of

text, the line began to look like:

EXE_SUFFIX=.exe

After addition of this 1ext, I opened the SLOCCount folder on Cygwin prompt, using the

following command:

cd /cygdrive/c/cygwin/home/firqan /sloccounr2.26

Then I executed the two Cygwin commands, "install" and "make install". The purpose of

these commands was to make possible to run SLOCCount from any path without moving

to its directory. Now after these senings, the SLOCCount tool was ready to be used.

102

3.4.5 Calculating the SLOC:

Now I started to calculate SLOC for different revisions of my ERPs. I had total 160

revisions of the three ERPs (44 of Operbravo, 56 of Adempiere and 60 of

ApacheOFBiz). So I executed the command of SLOC calculation for 160 times. -{lso I

stored results of each command in a separate file. Thus after execulion of these

commands, I had got 160 results files. Here is given just one of those commands along

with the snapshot of its result file. I used this command to calculate SLOC for 12357

revision of Openbravo:

sloccount lcygdivelflopenbravoll23 5T l >> /cygdrive/f/openbravo_resultslLl2357 .doc

The first path in this command (/cygdrive/f/ope nbravo/12)571) is the folder where I had

saved the revision and second path (/cygdrive/f/openbravo_results/L 123 5 7.doc) is the

path and name of file in which command results were to be saved. The snapshot of this

result file is as under:

103

t n . Doa-dir.cGory .! !I. EoP, .. .!..ting ilir.ctorv toD-drE
I.td&t /cyg&ie./d/ot.DDrAv6-r.e./I2357l/COI!EIBUT0nS Eo EoD-di!
l'ddinr ./cyg&1v./d/oP.ttb!.eo-!.wrlI2357//qlt.Dll Eo t'oP-di!
Cr..Elng tll.Iltt fo! !.!conE.nE
ldding,/cYgtttlv./d/oD.tibrwo-!.vtl1235?//b\rlld- rrl !o coP-drr
C!..E1ng !il.Ittc lo! <oD liE
Add$E /cyg.urv./.1/oPadbr.wo-..sslI235?//ct..t..d^E'bs''l.Ech Eo cop-dtr
a&ug /ryE&re./d/or.e!!.vo-r.vrlI23S7l/..llP!.'corPtl'_co&Dt'E' la$ch to !oP-d!!
-r.Llilg /cyE&!v./.r/cP.D!!.eo-r.vil12357//.elrFs.'cdPtl' l'Ec! Eo EoF-dir
l.trhDE /cvgitllttc/d/oD.D!!avo-r.etllz3s?//'cliPr' ilts'rl - t4rc! _ l'sch Eo roP-d'ir
l.Id:!g /cyg& re./d/ oPqlb!.vo-!.etl I23S?//.tPorE _ 'Lt '!s' _ I.rc! Eo E6P-dir
C!.E:5t 5I.Ii5c lor l.t.l
Ct.&t!4 ltl.ritc lot lt-b
r'.ldrhE /cYq&ie./.Uor.aDr.6-r.6 /!23511/ Lor{l -,.c1 Eo Eop-di!
Cr..eing til.Iirc !o! E.tJ-:..
C!.acing ti,!.It5E !o! !.!.!Ec.d.cA
Cle.EinE !il.tisc !o! tlc-cor.
c!..EIEE liI.Iln lor rtc-.lb
creaElnE trI.IrsE tor .!c-g.n
Cre.cing !1l.Ii5c lot 5!c-E.3E
Cr..Eug lil.litt tor trc-E!!
C!..cing ti!.Ii't !o! tlc_wtt
Cr..EiDg til.U.E !ot t!c_u.d
,,.lrlj.Dg /cyg&lv./c/oP.Db!.vo-!.wtlrz3s?//EP&!'_d^!'!E' rruc.h Eo coP-dir
Cr.aEtng !iI.I13l lo! ,.b
A.s. r non-dt.€or, .! !!. to!r, .o cr.&trg .li!'eorv ttc-top-dir
IddiDE /cyg&iv./(Vot.aD!.6-r.vtlI235'l/5!c/build EI Eo r!c-ro,-di!
rddirg /cyq&iv./d/oF.D!!rto-r.wslI235?//trclburldrD_ nr !o 3rc-EoP-dar
ld.ling /cyEdr1v./d/oD.tD!.wo-!.vr,'I2357 / l szc / 7nd"')rP co src-toP-dir
AddJ.nq /cyqdrlvvd/oP.rDrrvo-r.vtllz3s1 / Ittc/ to'l) lct Eo t!c-coP-d1r
.Addlng /cygd!!v./d/oP.nbE.vo-revs/IZ3S7 / / sz. / ro9')'ProPettl'r ro trc-Eop-dr!
cr..Eing t1l.li.r for .!c_or9
C.!.9o!iu lng trI...
!:ndinE . solli'ng lOS .orrsd. -..
ioEd . solthg llDS .orlEd-
Corpwtng t.tulEr.

SlOC Dllecsory SIOC-bY-LEturg.(Sori"l)
rrgloz rrc-org l.v.Ell9loz
3s992 rodul.i l.v.E3e9g3, shlt
I IIog j.vr- IIIO'
9177 ttc_u.d I av.'9l??
?335 l.er'?3 35

3255 se! FlrP'3O63,F.!l'Iti.5h'r
96€ .!c_cil j.v.-tzs, th-a3
1e2 src-Ell).v.'7ez
21,5 rrc-db J.v..zls
136 slc_EoP_ib r I5P'I36
O UebCoEE.nE (Dou.,
O conlit (46.)
O I.E.l (noa.)
O Il'b (aon.)
o r. t.!.6c.d.c. (hon.)
0 src_q.f, (non.,
O cop-.Iir (Doa.)

ToE.Ir ErouP.d by lBgu.g. (doDD.E lequ'g' llts):
J.va: 19?626 196-2Ol)
php: 3063 I I- 6Ot,
p.!I: t9I l0.I0t,
j!D: l3S (0.071)

5h: 53 (0. 03r)

toE-i lbrslcal 56urc. Lro.. ol Cod. (slOC)

D.v.Iop&EnE ! ator! rsErr.!.. l.rroh_Y.a!. iP.!son-tloftbt,'
lE.!1c cocoxo rod.!, !.E.oD-EonEbt ' 2-r' (Xsloc"I 0s))

sch.drl. B3!rBt., Y.G5 (xonEhs)
(B.r1c cocolto ro.l.t, uonc}t' r z-5 r (P.t.oa_roch."0-3e),

!.Er!.E.d .f,v.r.E. Ir.b.! o! Dw.loF.rs (l!tort,/sch.ctul.) ' 21 03

toE.r lrEir.E.d cotE t,o D.v.IoF
(AY.r.q. t.].!y ' r96.Ze6/y..t. os.!E..d I 2

'O)-sLoccosr, copyrid.c (c) zool_2ooa D.ej.d -t. ub..I.t

, t 6.7t2.663

sloccoEE i. oP6 sowc..sot!s^!.lrs.. soriv.!.. lic'Dt'd Ed'! ch' cllu GDL

sloccounc coles siEb llsollrtliY ,J0 u tRNrrY. ed you a!' r'lcor' Eo

redlsEribv!. ie w.le! c.!!.ib <oDdlcroDt c sp.cil!.d bY !h. GNU cPl IrceB';
<.. Eh. doEBoE.eaou !o! d.e.1lt
PI..se c!.d!e chi. d.!. .t ro6.t.E.d uirq Dteid l- uh..l'!'' 'SLOCC6$e '

r91.0?r
{9.69 (s96.30)

2.35 t2e. 33)

104

3.4.6 Calculating the Source Code Files:

After SLOC, I had to count number of source code files for each of the 160 revisions.

For this purpose, I added the "filecount" parameter in the above mentioned sloccount

command. Like, to calcu.late number of source code files in the Openbravo's 12--1-57

revision, I used following command:

sloccount -- frlecount /cygdrive/flopenbrav ol 123 57 I >>

/cygdri ve/f/openbravo_results/F 1 23 5 7.doc

This command calculated the number of source code files in the Openbravo's 12357

revision and saved the results to the hle "f:\openbravo-results\F123 57.doc". I used this

command for each of the 160 revisions of my studied ERPs and stored results in separate

files. Thus after completion of this process, I had got 160 more results files. In this way,

I prepared 320 results files in total.

3.4.7 Loading Data & Preparing Charts:

The last step of my work was to load the results into MS Excel worksheets, so that I can

generate graphs/charts required for my analysis. So I created a sepalate workbook (Excel

frle) for each of three ERPs, loaded data into those workbooks and generated charts. The

data was consisting of three attributes, Revision Month, SLOC and Number of Source

Files. I got this data from those results files which I had prepared in the previous step

using the SLOCCount commands. These data sheets and the charts, I created from their

data, are given in the next chapter.

CHAPTER4: RESULTS

Introduction:

ln this chapter, I have described. the. results of my case studies in detail. The different

charts/graphs which I drew on the basis of different size related measures, have been

shown here. Each of the charts has been explained in the perspective of the evolutionary

trend indicated by that chart. At each step, the evolutionary trends are also compared

with the laws of Lehman. At the end, the results are summarized and are compared with

the results ofpast studies of this area.

4.1 Measures used in my Study:

I have tested the three laws of Lehman, first, fifth and the sixth. All these laws are

related to the growth trends of the software applications, so I used the size related

measrues, SLoc and number of source code files. I calculated these measures for each

monthly revisio snapshot of my studied applications and then plotted each of those

measures against the revision month. I used the same type of plots, as were used by

Lehman in his studies, when he formulated rhese three laws [Leh 78], [Leh 97b], [Leh

98a]. Those plots were:

105

106

1. Total size of release (measured in number of modules) plotted against the release

numbers.

2. Incremental grorxth ofeach release plotted against the release numbers.

Where incremental growth of release "x" was calculated as:

Size ofrelease "x" - size ofrelease "x -1"

I used same plots, but I used two size measures, rather than only one. In this way, I

repeated my observations twice, whi'ch resulted in strengthen of my conclusions. One of

the measures used by me was same as of used by Lehman, i.e. "number of source code

files", which maps exactly to the Lehman's measure "number of modules". However the

second measure, SLOC, was not used by Lehman, but I repeated my work using this

measure too because many well known studies in this area have used this measure, like

[Godfrey and Tu 2000], [Robles et al 2005], [Simmons et al 2006]. The results of these

measures for my studied applications can be seen in Tables 4.1 (for Openbravo), 4.2 (for

Adempiere) and 4.3 (for ApacheOFBiz).

4.2 Graphs/Plots used in my Study:

I have used following four tlpes of graphs for each of my studied applications:

1. Total size of revision (measured in source code files) plotted against the month of

revision.

Total size of revision (measured in SLOC) plotted against the month of revision.

Incremental growth ofrevision (number of source code files added in that revision

as compared to its predecessor revision) plotted against the month ofrevision.

2.

3.

10'7

4. Incremental groMh of revision (SLOC added in that revision as compared to its

predecessor revision) plotted against the month ofrevision.

The first two graphs are same except that different size measures are used. Similarly

third and fourth graphs are also same in nature, but are based on different size measures.

The first qpe of graph, i.e. total size of revision plotted against the revision month,

helped me in testing of first and sixth laws as well as partial testing of the fifth law. This

graph enabled me to obsene that eilher my studied applications have continually changed

and grown or not. Similarly, after addition of the reflection of linear growth in this

graph, it enabled me to observe the trend ofthe growth rates of applications, means either

their growth rate increased or decreased or remained same.

The second type of graph herped me in testing of the second part of the fifth law,

according to which, software applications grow at a fixed rate (although this rate

varies/decreases with the passage of time). The actuai phenomenon in this law is that

unusual growth is not possible, and, if it occurs then the subsequent period must

compensate this unusual growth. It is because an unusual growth diminishes/destroys

familiarity of stakeholders with the software, so a negative feedback generates, which

decreases the growth rate in the subsequent period. The reason of increased./unusual

growh is the fact that gowth is compulsory for software systems. Stakeholders of

software need and desire growh, but when it increases from a specific amount, it

diminishes familiarity and hence produces resistance to gowth.

4.3 My Observations:

Let's look at the evolutionary trends of my srudied ERPs, Openbravo, Adempiere and

ApacheOFBiz.

108

4.3.1 Openbravo:

The size of application (plotted against time) showed clearly upward trend. The graph

was found to be movir:g upward without any ambiguity, as cal be seen in figures 44 and

-15. The fi.rst figure (means 44) was drawn using the size measure SLOC whereas the

second (means 4.2) was drawn using the measure "number of source code files". Both of

the measures produced same type of results. The application has continuously grown and

hence has continuously changed. This verified the first and sixth laws of Lehman. The

"continuous groMh" is in accordance with the sixth law and the "continuor-rs change" is

with the first law.

25C.03C

:3C 313

:L5c.ccc

13C.C0C

c,---.
ADr-97 :lo!-37 Jun.08 Dec-CS Jul-39 Jan - 1C Arrg-13 .eb-I1 5. p-11

Figure 44: Openbravo: Revision size (in SLOC) against revision month (time).

109

L5CC

14 CC

1:3C

1C 3C

!: --

ADr-J7 i'ic'..3? Jun.3S Dec-CS Jrll-Cg Jan-1C Aug-1C =eb-11 S.p.11

Figure 45: Openbravo: Revision size (in Source code files) against revision month (time).

In order to observe the trend of growth rate, I added the projection of linear growth in the

actual growh graphs. Then by comparing the actual growth with the linear growth, I

deterrni.Ded. the trend of grorxth rate. These graphscan be seen in figures 46 and 47. In

case of SLOC (figure a6), the actual gowth has moved along with the linear growth by

making positive a:td negative ripples with it. It has crossed the linear growh many times,

which indicates that it (actual gror*th) is itself almost linear. Linear growh means that

the application has grown at an in-variant rate. Or in other words, the growth rate has

been remained same. However, in case of source files (figure 47), the actual growth has

travelled below the linear growth for most ofthe tine. It has crossed the linear growth

just once (near Feb 201l). In the past period, from Nov 2007 to Feb 2011, the actual

growth was moving below the linear growth. It is an indication of increasing growth rate,

means that the growth rate was slower in the initial period. but it increased with the

passage of time. Thus we can say that the growth rate of application (Openbravo) has

s33

DJJ

{cc

2CC

110

either remained in-variant (in case of SLOC) or increased (in case of source files). None

of the measure has shown decrement in growth rate. This trend is not in accordance with

the fifth law of Lehman. According to the fifth law, the growth rare decreases with the

passage of time. but Openbravo has grorm at an in-variant or even increasing rate.

zCC.9CC -

15C.C3C

'rco.3cc

5 C.33C

c

Apr-i 7 Nov{7 Jun-C8 lan.1C Aue-10 Feb-11 Se p-11

Figure 46: Openbravo: Revision size (in SLOC) against time (compared with

linear growth).

Dec.C8

111

1'5C C

1{33

1:33

lCff

5CC

130

2C0

J

Apr-C: Nov-C7 Jun-CS De(-C8 Jul.C9 Jan-tC iug-13 :eb-11 Sep-11

Figure 47: Openbravo: Revision size (in Source files) against time (compared

with linear growth).

Now, I plotted the incremental growth against time, that is. the growth made in each

revisjon against the revisioa month T.he growrh ofa revision is equal to the diflerence

benveen the sizes ofthat revision and its predecessor revision. For example:

Incremental Growth of Jun 201I Revision = Size of Jun 201I Revision - Size of May

201I Revision

It must be noted that incremental growth can be negative, because it is possible that a

revision may be smaller in size as compared to its predecessor rel'ision. But, because the

overall trend is increment in size therefore such examples (with negative incremental

growth) are very few. The graph also included the average incremental growth. The

purpose was to compare the actual incremental gowth with the average incremental

growth. These graphs are shown by figures 48 and -19. Figure 48 shows the graph drawn

using the SLOC measure, whereas, the figure 49 shows the graph drawn using the source

112

files measure. Both the graphs have shown same type of trends. That is, the actual

incremental growth has been found to be making cycles around lhe average incremental

so*rh r,rith positive and negative ripples. Larger positive ripples have been leaded by

lerger negatise ripples to ba.lance the overall growth. Theses ripples, according to the

fiffr lau of L:bmaq indicares dre presence of feedback effect, according to which, a

lerqer incremental growth (positive ripple) diminishes familiarity of stakeholders and as a

result negative feedback (resistance to growth) generates, which causes a smaller

incremental growth (negative ripple). Hence, Openbravo has proved the Lehman's

"conservation of familiailty" concept.

5C. CCC

{c,ccc

3C.C0C

2 C.CCo

10.CCC i

.J -- _._

ip[-37
.1C.9CC -

-2C.CCC

- 3 4.333

Figure 48: Openbravo: Revisions incremental growth (in SLOC) against revision

montl (time).

l13

3CC

253

233

33-

Apt lT Nc\,.sc :

-lc 3

-15C

-2oc

-2tc

Figure 49: Openbravo: Revisions Incremental growth (in Source Files) against

time.

4.3.2 Adempiere:

Adempiere too, like Openbravo, showed continuous growh and change trends. Here.

once again, both of the size graphs (one for SLOC and second for source files) were

found to be moving upward, thus showing continuous growth and hence continuous

change. The graphs can be seen in figures 50 and 51. 'The first graph (figure5O) has

plotted revisions SLOC against its month and the second (figure 51) has plotted revisions

source files against its month. In both cases, application (Adempiere) has been found to

be continually increasing in size, thus verifying the first (continuous change) and sixth

(continuous growth) laws of Lehman.

lan-1C lug.1C

tt4
90c.c0o

6C0.CC0

733.!AC

63C.CC3

i,13.333

ji3, f,33

2 CC.CC3

ICC,CCC , -
i

c:
\tar-t6 Oct'CE tFr.C7 Nor-C7 lun-CS Cec-C8 ,u1.39 ,an-1C ,tuq-1j Fib-11 5.p.t 1

Figure 50: Adempiere: Revision size (in SLOC) against revision month (time).

6C0C

300c

10cc

I'lar-3o Oct-C6 Apr-o7 iioy-C7 Jun-38 Dec-35]ul-C9 .Jnn-13 Aug.lC :=b.11 5ep-11

Figure 51 : Adempiere: Revision size (in Source code files) against revision month (time).

In order to determine the trend of growth rate, the actual growth was compared with the

iinear growh. The graphs are shown by iigures :7 and 53. Figure 52 shows the growth

rate trend for SLOC measure whereas figure53 shows growth rate trend for source files

1

l15
measures. The results of both measwes have strong resemblance with each other and

hence can be said same. In both cases (SLOC and source files), the actual growth has

travelled above the linear gror*rL u,hich shor,rs that gowth rate has been decreased with

ime. The qristence of acnral growth above than the lilear gro*th means that growth *,as

fasr ie the infuial FEiod h.t ir slored do*l uirb the passage of time. Thus the growth

rate of Adempiere was declined (decreased) with the passage of time. It is in accordance

with the fifth law of Lehman.

90c.cco : -- -

I

SCC,CCC .-

7Ci.33C .

bCS,CCC .j ---

sCC.CCC :-

--.-__:

4CC,CCC r ---
3CC 3CC : -..

?cc.ccc

13C.C3C --
l

3

l,'lar-C5 Oct4E Apr-C? tloy-C7 ,un.C8 DEC-CS Jut-A9 Jan-1C i!ig-1C ieb-11 Sep,L1

Figure52: Adempiere: Revision size (in SLOC) against time (compared with

linear growth).

6CCC

l16

'I CCJ

c

Llar-C6 Oct{6 Apr-c7 Nor cT Jun-C8 Dec-CB Jul-C9 lar:-13 iug-1C Feb-11 5ep.11.

. Figure 53: Adempiere: Revision size (in Source files) against time (compared

with linear growth).

To determine tbe existence of "conservation of familiarity" concept, the incremental

growth was plotted (against time) and. cornpared with the average incremental growth.

The graphs can be seen in figures 54 (for SLOC) and 55 (for source files). Both graphs

have verified the existence of the "conservation of familiarity" concept. The incremental

groMh has been remained invariant during the last half period of evolution, from Jul

2009 to Jun 2011. During this period, the incremental growth has been remained nearly

equal to average (as can be seen in both rigures 54 and 55). However in the first half

period, the incremental growth has been found to be varying and here cycles can be seen.

Means, in this period, the actual incremental growth has made cycles around the average

incremental growth, which is, as explained above, an indication of the existence of the

"conservation of familiarity" concept. In this way, A.dempiere has proved the Lehman's

fifth law.

5C30

117
r 5c.3c c

1CC.030

3

Mar-C6 Ocaa6 Apt -C7 No,rC7 lun-96 lan-lo Aug-1C Feb-11 SE p- 11

-50, ccc

-ICC.CCC ..-- --

Figure54: Adempiere: Revisions incremental growth (in SLOC) against revision

month (time).

2CC0 -
,

c-1

ieb-11 Sep-L1.lilEr-CE Oct-C5 Apr-07 Ncr-07 Jun-C8 -C8 Jul-C3 Jdn'1C Aug-l.C

5C.333 - -

1CCC -r-" -'

118

Figure 55: Adempiere: Revisions Incremental growth (in Source Files) against

time.

4.3.3 ApacheOFBiz:

ApacheOFBiz, like Openbrravo and Adempiere, has also shour continuous increase in

size aad hence has proved borh of rlre Leh'n^n la*s, iirsr and srv;- The graphs for the

t*'o measures SLOC and source 6.les can be seen in figures 56 and 57 respectively. Both

graphs have.a continuous movement in the upward direction, which shows contiluous

gror+th and hence continuous change trends. In this way, this application (ApacheOFBiz)

also aligns very well with the first and sixth laws of Lehman.

353,COC

3C0,CCC

25o,0co

2Ci),ooc

'l;c,c0c

'I CC, CCC

l,4ar.C6 Oct{6 Apr.C7 No\-97 Jun-08 Cec.C8 hl.C9 l.n-1C Aeg-10 Feb,11 teD-11

Figure 56: ApacheOFBiz: Revision size (in SLOC) against revision monrh (time).

lt9

333

53C

4C3

2CC

c

15oC

1rc0

1?33

133C

rr4Er-35 Ort'C6 Apr-C7 No'/.97 lun-18 Dec-C8]ul-Cg lEn-lC Aug-1.9 Feb-1L Sep-11

Figure 57: ApacheOFBiz: Revision size (in Source code files) against revision month

(time).

The growth rate of ApachdFBiz has been found nearly stable. If we compare its growth

graph with the linear growth, as shown by figures 58 and 59, the actual growth can be

observed (in case of SLOC measure) to be travelJing around the linear growth with small

cycles, which shows that the gowth rate has remained nearly invariant. In case of source

files measure (figure 59), the actual growth has travelled below the linear growth till Jan

2010, but it has travelled very close to the linear growth. However, it can be said that the

growth rate has increased (although by a slight amount) in case of source files measure.

Thus the grou'th rate of ApacheOFBiz has either increased or remained invariant. There

is no case of decreasing gowth rate. So the ApacheOFBiz has not proved the fifth law of

Lehman, accordi.ng to which growth rate declines (decreases) with time.

120
3 5C.C33

tcc.ccc

I53.C30

!.53.33f,

1C3.CC3

sc,09c

MEr-Ci C.t{6 Apr-C7 Nov'07 Jun-08 Dec{s Jirl.Cg Jan-10 Aug-1C Feb.11 Sep-11

Figure 58: ApacheOFBiz: Revision size (in SLOC) against time (compared with

linear growth).

16CC r

1{0c :

1zCC
:

6CC - ---

40C -t

l",lar-C5 Oct-36 Apr.!7 No,,-C7 Jun-C8 Dec-CS lul-C9 ..taD-]3 Aug-14 i€b-11 Sep-11

Figure 59: ApacheOFBiz: Revision size (in Source files) against time (compared

with linear growth).

121

In the last, the incremental growth of ApacheOFBiz was plotted against time. It also, like

the other two applications (Ooenbravo and Adempiere), proved the existence of the

-conservation of familiarity" concept. The acual incremental grouth formed regular

cycles aroutrd the average incremental gro*th- just like rhat found by khmaa in his case

snrdies of FW logica plc system. ICL \anE kerrE! ad rhe Lrrert Tec-h ::al tEe :-)En

[Leh 98b]. The graphs are shoqa by figures 60 and 61. These cycles proved that larger

incremental growth wasn't absorbable for the concemed (stakeholders) of ApacheOFBiz,

so revisiom wi:h larger gror+th were followed by revisions with smaller growth to

conserve/rnaintairthe familiarity of stakeholders with the application (ApacheOFBiz).

12.CCC

lC,CCC

5.33C

5.C33

4.C9C

2.CCC ."---

3 .:

!',/at-C5 Oct{5

Figure 60:

Apr-07 No\,{7 Jun.C8 Cec-38 Jul.Cg lan.10 -iug'10

ApacheOFBiz: Revisions incremental growth (in SLOC) against

revision month (time).

122
8cr

I

73

63

5C

J3

it
ii

3l

2C ,'

1C:

t
,t
!l
ll

Ma i-cs,rc l--
Apt-i7 Nov-C7 Jun-CB Dec-38 lan-1C qug-1C ieb-11 Sep-11

.:c
.

Figure 61: ApacheOFBiz: Revisions Incremental growth (in Source Files) against

time.

4.3.4 Results Summary:

The above discussion can be concluded in following points:

1. All thee ERPs (Openbravo, Adempiere and ApacheOFBiz) showed continuous

growth and hence continuous change trends. In this way all three proved first and

sixth laws of Lehmaa.

2. The incremental growth of all three ERPs showed that the revisions with larger

growh are usually followed by revisions with smatler gowth, so that the

familiarity of stakeho.lders with the application rnay be maintained (conserved).

This trend proved the existence of the "conservation of familiarity" concept,

introduced by Lehman as his fifth law.

123

The growth rate ofjust one ERP (Adempiere) was found to be decreasing. The

other two ERPs (Openbravo and ApacheOFBiz) showed an increasing or

invariant growth rate. In this way, juS one ERP pmved the Lehman's law of

-dgclining grouth rate". The other two disproved this 141'.

So the first and sixth la*s *,ere totall)' proved Bur ne lil ia.* \ zs paralll

prsred The concept of "conservation of familiariry" proved. But the concept of

"declining growth rate" disproved.

Table 4: Summarized results of my case studies

Comparison of my Results with Other Studies:

Nearly all of the studies, in which Lehman laws have been tested on open source

applications, have verified the continuous change and growth trends in open source

applications. In other words, all those studies have proved the first and the sixth laws of

Lehman. So, with respect to the validity of the first and the sixth laws, my results align

exactly with the past studies, like, [Godfrey and Tu 2000], [Capiluppi et al 2004], [Robles

et ai 20051, [Ilerraiz et al 2006]; [Xie et al 2009].

4.4

Laws---

ERPsJ

l" Law 6tn Law 5tn Law

Continuous
Change

Continuous
Growth

Limit on Incremental
Growth

Declining Growth
Rate

Openbravo Proved Proved Proved Disproved

Adempiere Proved Proved Proved Proved

ApacheoFBb Prtrqed' Proved Proved Disproved

124

The existence of the "conservation of familiarity" concept has been proved by some of

the past studies, whereas some other studies have disproved it. This concept hasn't been

tested ar a large scale. I have found only rwo studies in uhich rhis uerrd xas observed in

open souce applications, ffie et aI 20091 and [Fietelson 2009]. Xe srdied seven open

source 4plications aDd found ripples in their incremenral go*rt gr:phs niich is an

indication ol tre existence of this concept. Fietelson studied a u,ell known open source

operating system, Linux, and found that only some of its releases had entertained the

issue of familiarity, but many of the releases had ignored this issue. In this way,

Fietelson disproved fts exislsasg of this concept. My case studies have proved the

existence of this concept. So in this r"rp".i, .y results are in accordance with Xie, but

are different from Fietelson.

The last trend, "declining growth rate", has also been proved as well as disproved in past

studies. But most of the studies have disproved i.t, There are only few cases, in which

this concept was proved on open source applications. In most of the studies, the open

source applications were found with an invariant or an increasing growth rate. The

studies in which this concept was disproved include, [Godfrey and Tu 2000], [Capiluppi

et al 2004), [Robles et al 20051, [Izureita 2006], [Simmons et al 2006], [Herraiz et al

20061, [Xie et al 2009], [Ali and Maqbool 2009]. Godfrey disproved this concept on

Linux, Capiluppi on ARLA (a distributed file system), Robles on Linux, BSD family

kemels and other eighteen applications, Izurieta on Linux and FreeBSD, Simmons on

Nethack (a game), Herraize on ten (of thirteen) different applications, Xie on seven

different applications and Ali on four different applications. The few cases in which this

concept was proved, include three of thirteen applications studied by Herraiz and some

t25

small scale applications srudied by Koch in [Koch 2005]. In this way, my results align

with the results of past studies, as two of my case studies (Openbravo ald ApacheOFBiz)

have disproved and only one (Adempiere) has proved this concepr.

Revision Month SLOC Source Code Files
Incremental 6rowth

(sr-oc)
lncremental Growth

(Source Filesl
Nov-07 702,699 794
Dec-07 t02,982 795 283 1
Jan-O8 103,087 796 10s 1
Feb-08 76,449 578 -26,638 -2L8
Mar-08 76,!13 581 -335 3
Apr-08 81,676 517 s,553 36

May-08 80,838 509 -838 €
Jun-08 8r,520 613 782
Jul-08 82,O70 515 4gf,

Aug-08 32,037 515 _22 c
Sep-08 8Z;875 523 838 8
Oct-08 88,823 697 5,948 74
Nov-08 772,672 870 23,849 L73
Dec-08 151,680 885 39,008 15
Jan-09 753,770 889 2,030 4
Feb-09 135,531 901 -78,O79 L2
Mar-09 136,075 901 444 0
Apr-09 138,153 974 2,O88 13

May-09 740,272 924 2,109 10
Jun-09 147,526 930 7,254 6

Jul-09 142,8s2 939 L,325 9

Aug-09 r47,978 933 -87 4 -5
Sep-09 L42,645 935 667 3

Oct-09 L43,929 950 1-,284 74
Nov-09 744,489 953 560 3

Dec-09 743,906 991 -583 38
Jan-10 745,57 4 1019 1,668 28
Feb-10 L48,462 1034 2,888 15
Mar-10 749,517 1039 t,o49 5
Apr-10 L52,954 1060 3,443 ?1

May-10 155,023 1078 2,069 18
Jun-10 157,358 LO87 2,335 9

Jul-10 759,477 1099 2,t79 72

Aug-10 160,488 LLOz 1,011 3

Sep-10 167,228 1103 740 1

Oct-10 167,642 1105 414 3

Nov-10 163,205 1111 1,5 63 5
Dec-10 792,347 1339 29,t42 228
Jan-11 195,291 13 51 2,944 t2
Feb-11 198,079 L376 2,788 25
Mar-11 207,623 1388 3,544 L2

Apr-11 202,264 1388 647 0
May-11 19],o71 1333 -11,193 -55
Jun-11 L9t,O57 7327 -74 {

Openbravo 726

Table 5: Size measures for Openbravo revisions

Revision Month sroc Source Code Files
lncremental Growth

lst ocl
lncremental 6rowth

Nov-05 356,429 2120
oec-06 373,773 2151 17 ,144 4L

Jan-07 376,758 2168 2,985 7

teb-07 375,984 2167 -17 4 -1

Mar-{,7 385,27 7 2110 9,287

Apr{7 344,628 2766 -543 4
May-o7 388,351 2183 3,733 !7
,un-{r7 394,573 2207 6,272 24

Jul{7 4019!5 2269 7,382

Aug-07 443,410 2276 1,515

sep-07 537535 389s 134,066

Oct-07 537,850 3909 314 '_t

Nov-o7 555,501 4078 28.651

Dec-07 57251) 4082 7,076

Jan-08 578,L76 4118 4,659 36

teb-08 580,391 4130 2,275 12

Mar-08 581,853 4137 1,462 7

Apr-08 582,275 4737 422 0

May-08 582,591 4137 315 0

Jun-08 652,9r5 4ro5 70,324 368

Jul08 663,223 454.9 10,308 44

Aug-08 656,055 4570 -7,757 zr
Setro8 6s6,651 4579 585 9

Oct-08 764,94r 5201 108,290 622

Nov-08 581,929 4504 -83,012 -597

Dec-08 597,645 462r 10,115 !7
J.n-09 696,592 4530 3,947 9

Feb-09 674,050 4511 -22,542 -119

Mar-09 676,518 4518 2,46a 7

Apr-{r9 679,479 4534 2,907 15

May-09 689,704 4558 10,28s 24

Jun-09 590,394 4572 590 74

Jul-09 692,165 4506 t,771 34

Aut-09 693,394 4618 7,229

Sep-09 678,094 4625 -15,300 7

Oct-09 619,457 4638 1,363

NoY-09 581,125 4644 1,669 5

Dec-Gl 682,700 4650 1,57 4 6

Jan-10 682,794 4650 94 0

Feb-10 584,543 4554 1,7 49 4

Mar-10 685,441 4642 898 2a

Apr-I0 688,528 4698 3,087

May.10 589,102 4700 574 2

Jun-10 690,699 4706 7,597 6

Jul-10 591,535 4709 936

Aug-10 591,691 4709 55 0

Sep-10 59r,877 4770 185 1

oct.10 692,874 4717 997 7

Nov-10 69s,386 4724 2,512 7

Oec-10 595,487 4729 101 5

Jan-11 695,517 4729 30 0

Feb-11 595,883 4729 365 0

Mar- 11 69s,88s 4129 2 0

Apr-11 697,165 1735 7,24O 6

May-11 697,508 4735 343 0

Jun-11 705,153 4762 7655

Adempiere 12/

Table 6: 5i2e measures for Adempiere revisions

Revirion Month sroc Sou.ce Code Files
lncr€mantal Growth lncrem€ntal Growth

lSour(! Fihsl
lul{5 174,495 1000

Aut{6 176,297 1@5 Laoz 5

SepOG 777,U1 1@5 744

Oct-O6 776,467 992 -174 -14

NoY{6 D7,01r 9E9 144 -3

Dec{6 |n.769 998 758 9

tzn-07 1to31t 1004 2,549 5

Feb-07 $2.76 1011 2,468 7

Ma.-{r7 185,015 1019 7.259 8

Apr{7 1tttr22 1077 2,977

May{7 1rgj96 1020 t.514
lun-07 1901s 1026 .1,284

Jul47 194,433 1035 3,553

Aut-07 196,174 1038

Sep{7 198,851 1050 2,ti1 12

Oct{7 199,448 1057 597

NoY{7 2@,229 1065

Dec.oT 202,739 1073 2,510

Jan-Ot 203,678 to7 4 939

Feb{8 205,U2 1084 1,954 10

Mar{E 208,266 1092 2,624 8

Apr{8 2L0,142 1096 1,876 4

May-08 211.458 1098 1,326

Jun{8 213,@2 1105 1,534 8

Jul-08 213,388 1108 385 2

Aut{t 214,862 1114 L,4? 4 6

Sepot 2L7,243 7t27 2,381 13

&-06 2!7,EE7 1129 u4
Nov{8 218,5@ 1133 673

Oec{8 219,511 1136 951 3

Jan{9 219,955 1141 455

FcHg 221,867 1148 1,901

Mar{r9 224,4@ 1166 2,533 18

Ap.4, 234,696 1205 10,296 39

MafOS 216,571 1277 1,875 12

,lun09 240,654 7228 4,083 11

Jul.Og 243,629 1229 2,915

Aug-O9 241,354 1247 3,7 25 18

Sep-Og 249,863 1259 2,509 72

Oct{g 251,t21 1262 1,2U 3

Nov-09 255,444 1334 4,317 72

Dec{g 258,555 1355 31

Jan.10 262,052 1373 3,416 8

Feb-10 267,5,2 1'r01 5,410 28

Mar-10 270,946 1414 3,394 13

Apr-10 272,494 7423 1,548

May-10 272,024 7423 470 0

,un-10 272,950 t425 926

Jul-10 274,390 t429 1,440 4

Au8.l0 276,2L2 1442 7,822 13

sep10 276,547 rrt45 335

Oct-10 274,696 1449 2,149 4

Nov-10 279,109 1451 413

Dec.10 281.536 1459 2.527 8

lan-11 285,533 1469 3,897 10

FeFl1 285,893 7469 360 0

Mar-11 2A7,O19 r473 r,126 4

Apr-11 287,988 1477 969 4

MaY'11 289,972 1483 r,924

Jun-11 290,200 1483 288 0

ApacheuiBrz 128

Table 7: si'e measures for ApacheOFErz revisions

CHAPTER 5: CONCLUSION AND FUTURE WORK

The aim of this work was to check validiry of tluee of the Lehman lau's on rh= iif:, -r:-rr

open sowce ERP systems, which has been'achiw-ed. It was decided to check validity of

Lehman's growth related laws (first, fifth and the sixth) on three open source ERPs

(Openbravo, Adempiere and ApacheOFBiz), which has been done. In this way this

work is complete in its mandate. According to the results of this work, the Lehman law

of "declining gowth rate" has been found to be disproving on two of three ERPs.

However, on the basis of these results, it can't be concluded that this law really don't

hold for open source applications because these cases of invalidity can be the exceptional

ones. Although there exists certain other examples in the past studies, in which this law

was disproved on open source applications, like Linux kemel, BSD family kemels and

Nethack etc, but even all these cases don't provide enough evidence to challenge this law

at all. Lehman postulated his laws on the basis of thirry years experience, and a large

number of case sfudies conducted under the project named as Features, Evolution And

Software Technology (FEAST). These laws are widely accepted and have been

validated by many other researchers. The few examples of invalidity are not enough that

the validiry of these laws can be argued- For this purpose more open source applications

(taking from different domains) are needed to be studied and observed.

129

r30

One of the possible reasons of invalidity of Lehman laws on some open souce

applications can be rhat the open source applications, unlike closed source applications,

don't have a clear distinction between development ard evolution phases. In case of

closed source applications, the requiremts for u'hole application are collected and theo

on the basis of those requirements, a full featured application is developed. Ore n :.

firIIy developed. tien, it is. delivered to. end-uers. Before first delivery, all chanees and

growth are considered to be part of development rather than evolution. Aft'er delivery of

the first version, when end-users report errors or demand fs-- enlancements, then

evolution starts. But in case of open source applications, the application.is sometimes

delivered or started to use even when it is in development phase. In ihis case, the

development and evolution phases overlap each other, means the application is both

developed and evolved simultaneously. Thus, it becomes difficult to differentiate

between developmental and evolutionary changes.

If some application is started to use even when it is not fully developed then in the initial

period of evolution, two types of growth will occur, developmental growth and

evolutionary growth, which can cause rapid growth in that application. At that time, it

wi.ll be showing deviation fror.r fifth law of Lehmaa. But it is possible that after some

time period, such type of application also become align with Lehman, when its

development becomes complete and on-ty evolutionary grou'th remains left.

[Ali and Maqbool 2009]

[Bonkoski 2007]

[Capiluppi et al 2004]

[Dong and Mohsen 2008]

[Israeli and Feitelson 2009]

[Godfrey and Tu 2000]

REFERENCES:

Ali S, Maqbool O, Monitoring Softuare Evolution usine

Multiple Types of Charges, IEEE Intemational Conferencc m

Emerging Technolqies(rcED l9-20 Oct- 2009. pp 410--1i!

Bonkoski B, Open Source Softn'ae Evolution: Case Study

Nagios,

http://blog. greedygeeks.com/bonkoski_nagios_evolution.pdf

Capiluppi A, Morisio M, Ramil JF, Structural Evolution of an

Open Source System: A Case Study, Proceedings of the l2th

IEEE International Workshop on Program Comprehension

(IWPC'04), 24-26 Jun,2004, pp 172-182

Dong Y and Mohsen S, Does Firefox Obey Lehman's Laws of

Software Evolution? Masters Candidate, Department of

Computer Science, University of Waterloo, Waterloo, ON,

Canada

Israeli A, Feitelson DG, The Linux Kernel as a Case Study in

Suftware Evolution, Journal of Systems and Softrvarem, Volume

83, lssue 3, March 2010, pp 485-501

Godfrey MW and Tu Q, Evolution in Open Source Software: A

Case Study, Proceedings of the International Conference on

Software Maintenance, pp. l3l - 142,2000

l3l

[Henaiz et al 2006]

[Izurieta and Bieman 2006]

[Koch 2005]

[Leh 78]

lLeh97 a)

[Leh et al 97 b]

[Leh et al 98 a]

Herraiz 1, Robles G, Gonz'alez-Elarahona JM, Capiluppi A,
132

Ramil JF, Comparison between SLOCs and Number of Files as

Size Metrics for Software Evolution Analysis, Proceedings of

the Conference on Software Maintenance and Reengineering

(CSMR'06), 22-24 Mar- 2006, pp I I 3-220

Izurieta C and Bieman J, The Evolution of FreeBSD and Linux-

Proceedings of the ACM/IEEE Intemational Symposium on

Empirical Software Engineering (ISESE). 2006

Koch S, Evolution ofOpen Source Software Sysrems - A Large-

Scale Investigation, The First International Conference on Open

SourceSystems,Genova,ItaIy,JulyIl-l5,2005

id, Laws of Program Evolution-Rules and Tools for

Programming Management, Proc. Infotech State of rhe An

Conf., Why.Software Projects Fail?, Apr. 1978, pp. llll-11125.

Lehman MM, Laws of Software Evolution Revisited,

Proceedings of EWSPT'96, Nancy, LNCS I149, Springer

Yerlag, 1997, pp. 108-124

Lehman MM, Ramil JF, Wernick PD, Turski WM and Perry DE,

Metrics and Laws of Software Evolution - The Nineties View, in

Proceedings of the Fourth Intl Software Metrics Symposium,

Nov 5-7, Albuquerque, NM, 1997 , pp 20-32

Lehman MM, Perry DE, and Ramil JF, On Evidence Supporting

the FEAST Hypothesis and the Laws of Software Evolution, in

Proceedings of the Fifth International Metrics Symposium,

Metrics '98, Bethesda, Maryland, Nov. 20-21, 1998

[Leh et al 98 b]

peh and Ramil 20011

[Linuxlinks 201 l]

[Robles et al 2005]

[Simmons et al 2006]

ISommerville 2005]

[Turski 96_1

133

Lehman MM, Perry DE, and Ramil JF, Implications of Evolution

Metrics on Software Maintenance, in Proc. Of the 1998 Intl.

Conf. on Software Maintenance (ICSM,98), Bethesd4

Maryland, Nov 1998

Lehman MM and Ramil JF. Rules and Tools for Softu'are

Evolution Planning and ManagemenL Annals of Soft*.arc

Engineering I 1(1I1.5-44, 2001

Lrnuxlinks, 201 L

http://www- linuxl inks.com/article/2009 I I 290708 l7)E.iERp.ht

ml

Robles G, Amor JJ, Gonzalez-Barahona JM and He..aiz I

Evolution and GroMh in Large Libre Software projects,

Proceedings of the Inrernational Workshop on Principles of

Softrvare Erok*ioq pp, 165 -174,2005.

Simmons MM, Vercellone-Smith P. Laplante PA, Understanding

Open Source Software through Software Archaeology: The Case

of Nethack, Proceedings of the ioth Annual IEEE/I.,IASA

Software Engineering Workhop SEW-30 (SEW'06), Apr 2006,

pp 47-58.

Soirmeryille I, Software Engineering, Pearson Education, 2005

Turski MW , Reference Model for Smooth Growth of Software

Systems, IEEE Transactions on Software Engineering, Volume

22, Issue 8, August 1996

134

[Xie et al 2009] Xie G, Chen J and Neamtiu I, Towards a Better Understanding

of Software Evolution: An Empirical Study on Open Source

Software, Proc. IEEE ICSM (lntemational Conferrc on

Software Maintenance), Sep 2G26, 2009. Edmonton, Canada

