DOES LEHMAN’S LAWS APPLY TO OPEN SOURCE
SOFTWARE SYSTEMS? A CASE STUDY

Submitted By:
Furqan Shahid

Reg No 110-FAS/MSSE/F06

Supervisor:
Muhammad Usman
Asstt Professor, DCS&SE, ITUI

Department of Computer Science & Software Engineering
Faculty of Basic & Applied Sciences
INTERNATIONAL ISLAMIC UNIVERSITY
ISLAMABAD

T
%)
(% ceNTRAL)Z

LLIBRARY [5

3
‘t;'a\ﬂ..‘

Accession o 7//—&61/6

m$

ool -6%
FUD

i-Nc/fw#ﬂk ijioml! P Cc‘m»’)u_ﬁul £ u;
el

1. 0pt '
e W Jodesic opmec 0%

DATA ENTERED
Mﬁ/sl'g

International Islamic University, Islamabad
Faculty of Basic & Applied Sciences
Department of Computer Science & Software Engineering

Dated: 16-01-2012
Final Approval

It is certified that we have read the thesis, entitled “DOES LEHMAN’S LAWS APPLY
TO OPEN SOURCE SOFTWARE SYSTEMS? A CASE STUDY”, submitted by
Furgan Shahid Reg No. 110-FAS/MSSE/F06. It is our judgment that this thesis is of
sufficient standard to warrant its acceptance by the international Islamic university,
Islamabad for MS degree in Software Engineering.

Project Evaluation Committee

External Examiner: Ch J
e

Professor Dr Arshad Ali Shahid,
Head of Computer Science Department,
National University of Computer & Emerging Sciences (FAST-NU), Islamabad

Internal Examiner: M
Syed Muhammad Saglain,

Assistani Professor, Department of Computer Science & Software Engineering
International Isiamic University, Islamabad

Supervisor: U

at
Muhammad Usman, 5
Assistant Professor, Department of Computer Science & Software Engineering
International Islamic University, Islamabad

Declaration

I hereby declare and affirm that this thesis neither as a whole nor as part thereof has been
copied out from any source. It is further declared that I have completed this thesis entirely
on the basis of my personal effort, made under the sincere guidance of my supervisor. If
any part of this report is proven to be copied out or found to be a reproduction of some
other, I shall stand by the consequences. No portion of the work presented in this report
has been submitted in support of an application for other degree or qualification of this or

any other university or institute of learning.

Furgan Shahid

110-FAS/MSSE/F06

ABSTRACT

In this thesis I have presented results of my case studies conducted to test the Lehman laws of
software evolution on open source software systems. The domain of open source applications
on which I have tested these laws is Enterprise Resource Planning (ERP). I tested three of the
eight laws on three different open source ERPs. The reason behind this work is that the laws
of Lehman, which he postulated on the basis of his thirty years experience, have been found
to be disproving on some open source applications, like Linux Kernel, BSD family Kernel,
and Nethack etc. It generated certain questions for research community, like, do open source
applications really disobey Lehman or these are just few cases which can be considered as
exceptional ones? If open source applications really differ from Lehman then what is the
reason behind this difference? This type of questions require more effort of research
community in the form of study of more and more open source applications (belonging to
different domains) and then analysis of the produced results. This thesis is basically a
contribution in this work, which can help research community in reaching some conclusions
regarding the above mentioned questions. [tested three laws of Lehman, first, fifth and the
sixth. According to these laws, software systems continuously change, continuously grow,
their growth rate declines, and their incremental growth (amount of growth made in a
version) remains in-variant on average. According to my results, the trend of declining
growth rate was disproved on two of the three ERPs. The other three trends, however, were

proved by all three ERPs included in my study.

ACKNOWLEDGEMENT

All praises and immeasurable thanks to Almighty Allah. by Whom mercy, I have
achieved this success. Not only this, but all successes of my life are a result of His mercy,
Who is The Most Mercifut. After Almighty Allah and our beloved prophet Hazrat
Muhammad (Peace Be Upon Him), those who deserve most for my thanks, are my
parents. These are my parents, whose prayers, efforts and sacrifices made me to reach
this position. After that I am thankful to all my teachers, who taught me at any stage of
my life, as they all have played role to make me to reach this position. From my teachers,
I want to say thanks especially to Mr M. Usman, my research supervisor, for his
efforts, guidance and good wishes regarding this thesis.. My acknowledgement has no
right to be called “complete” until [say thanks to my wife, whose prayers,
encouragement and cooperation remained with me at each step of my research and thesis.

In the end, I want to dedicate this work to my late son, M.Yahya Furqan.

Furqan Shahid

110-FAS/MSSE/F06

TABLE OF CONTENTS

Acknowledgement
List of Tables

Chapter I: Introduction

1.1-Software Evolution

1.2-Software Evolution Study

1.3-Lehman Laws of Software Evolution

1.4-Case Studies for Lehman Laws

1.5-Open Source Software Applications; Challenge for Lehman Laws

1.6-My Study

Chapter 2: Literature Review

2.1- Growth Rate of Linux Kernel [Godfrey 2000]

2.2- Growth Rate of Linux and BSD Family Kemels [Robles 2005)
2.3- Growth Rate of Linux and FreeBSD [lzurieta 2006]

2.4- Growth Rate and Complexity of Nethack [Simmons 2006]
2.5- Growth Rate of ARLA [Capiluppi 2004]

2.6- Growth, Complexity and Quality of Seven OSS [Xie 2009]
2.7- Growth Rate of Thirteen OSS Applications [Herraiz 2006]

2.8- Growth and Change Trends of Four OSS {Ali 2009]
H

s

15

16

40

46

52

2.9- Growth, Complexity, and Quality of Linux {Feitelson 2009]
2.10- Growth, Change, and Complexity of Nagtos [Bonkoski 2007}
2.11- Growth, Complexity, and Quality of Firefox [Dong 2008]
9.12- Growth and Change Trends of 8621 OSS [Koch 2005]
Summary Tables

Chapter 3: Research Methedology
3.1-Open Source ERPs Selection
3.2-Getting history (old versions) of my studied ERPs
3.3-Tools Used
3.4-Procedure & Commands

Chapter 4: Results
4.1- Measures used in my Study
4.2-Graphs/Plots used in my Study
4.3-My Observations
4.4-Comparison of my Resuits with Other Studies

Chapter 5: Conclusions and Future Work

References

Y

60

68

75

80

85

88

89

91

94

105

106

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

LIST OF TABLES

Summarized description of the studies: [Godfrey2000], [Robles et al

2005], [lzurieta and Bieman 2006] and [Simmons et al 2006]

Summarized description of the studies: [Capiluppi et al 2004], [Xie et al

2009]. [Herraiz et al 2006] and [Ali and Magbool 2009]

Summarized description of the studies: [Israeli and Feitelson 2009],

[Bonkoski 2007], [Dong and Mohsen 2008] and {Koch 2005]

Summarized results of my case studies
Size measures for Openbravo revisions
Size measures for Adempiere revisions

Size measures for ApacheOFBiz revisions

CHAPTER 1: INTRODUCTION

1.1 Software Evolution:

Software evolution means the changes.made ta. software after its first delivery/release.
Software evolution is a fact that can’t be denied [Xie et al 2009]. Evolution is necessary
to keep software acceptable for its users. It is because that the software is a model of
some part of real world. It is developed against the requirements of real world. And as
soon as real world changes, its requirements also changes, and as a result, software
begins to in-validate against those changed requirements. If we will not evolve software
then it will be continually in-validate against the requirements and a stage will come
when it will become totally useless for its users. So in oraer to keep software acceptable
for its users, it must be continually synchronized with the requirements of real world [Leh
78, Leh 97b].

Another source of evolution is the correction of errors in software [Ali and Magbool
2009]. It is not possible for developers to develop error-free software, first time. There
are always certain errors which can only be detected after software is delivered to 1ts
users. Although software testing phase is there to control the errors, but testing can only
reduce errors, it can not remove 100 percent errors. There would be some errors which
will be diagnosed and reported by the users, when they will use software. So software

will then be required to be evolved for removal of those errors.
1

When software is delivered to its users (first release) and users begin to use it, then they
detect and report errors. As a resuit evolution process starts. Errors are corrected, those
corrections sometimes generate more errors, and thus more evolution is required.
Meanwhile some of the real world requirements change and to accommodate those
changed requirements, some more evolution (usually in the form of additions) is required.
When those additions are made to software, then some néw errors produce which again
requires evolution. In this way the evolution process continues, as long as the software is

used by 1its users.

1.2 Software Evolution Study:

Like other disciplines of software engineering, the software evolution has also got
attention of researchers and significant work about this discipline can be found in
published literature. The study in this area is important in the sense that it can be hoped
to be helpful in reducing the cost of evolution [Ali and Magbool 2009]. Controlling the
cost of evolution is a challenge for software development community, especially when it
has been discovered that evolutionary cost can be much more than the actual
development cost [Sommerville 2005). It has been discovered in a study that the cost of
evolution can be more than 90% of the total software cost [Xie et al 2009].

One of the main focuses of software evolution researchers is to determine the trends of
software evolution, so that uncertainty in the characterstics of evolving software can be
minimized. Identification of the evolutionary trends can help us in prediction of the
future characteristics of our software application and hence we can take certain steps to

ensure cost effective evolution of our application. The pioneer of the evolutionary-trends

(S

related work was Meir Manny Lehman, who, on the basis of his thirty years experience,
postulated certain trends of evolution. He described those trends in the form of laws. So
those trends are known as “laws of software evolution”. His effort is admitted to be the
biggest participation in the discipline of software evolution. It is difficult to find a study
in this area that is without the reference of Lehman laws. The next section describes

those laws, along with some of the case studies, which were used as basis of these laws.

1.3 Lehman Laws of Software Evolution:

Lehman initially proposed his laws in 1974, at that time they were three in total. Later in
1980, he added three more laws. Then again in 1996, he added two more laws, resulting
in total eight laws [Leh 97b]. These laws are:

1.3.1° Continuous Change (The First Law):

According to the first law, a software system will be continuously changed throughout its
life. If this change is resisted, trying to make software stable then its users will begin to
feel discomfort from it. They will begin to realize it, unable to satisfy their needs, and
this dissatisfaction will gradually increase. This is because software solves a real world
problem, in this sens¢ it is a model of some part of real world, and hence, the real world
changes continuously, so its model must also be changed to keep it align with its original
fLeh78]. The change in software is required for many reasons, sometimes it is for
correction of some fault, sometimes for addition of new functionality and sometimes for
providing support to new hardware. Need for change doesn’t mean that the software was

poorly designed, but change is an essential part of software.

(OS]

1.3.2 Increasing Complexity (The Second Law):

According to the second law, the complexity of a program/software system increases, as
it evolves. When a software system is evolved, for addition of new functionality, for
example, then the objective of management is not limited to the addition of new features
just, but this objective is constrained by some other objectives too. These other
objectives include, for example, the time in which change must be completed, the cost
limitation for implementing change and the resource consumption limitation for the
changed version etc. One of these objectives may be, and in fact should be, the limitation
on the structural degradation made by this change. But unfortunately, this objective 1s
rarely considered. It is because this objective has no apparent return. Its effects are not
short term. It has long term eifects. If it is continuously ignored, as observed in many
cases, the program structure will be continuously degraded with each change, and at last,
a stage will come when it will become impossible to change the program more. 1f effort
is spend to minimize the structural degradation made by each change, then this situation
may be avoided [Leh78], [Leh97a].

1.3.3 Self Regulation (The Third Law):

According to the third law, the software evolution process follows certain predetermined
trends. These trends remain same regardless of the type of system/software, the type of
organization, its management and the environment in which it is working. These trends
are usually uncontrollable. This law can be considered. as abstract of the other laws.
Each of the other laws represents a trend of software evolution. First law, for example,

states that there is a trend of continuous change in software applications. Similarly

second law states that there is irend of continuous increase in complexity of a software
application as it evolves. Similarly other laws too describe a trend of evolution, in this
way it is an abstract of the other laws.

This law was first formulated when the incremental growth of OS/360 was plotted
against the RSNs (Release Sequence Numbers) [Leh78]. It was found that the average
incremental growth remains almost same with small positive and negative ripples. The
subsequent studies also validated this law like, Logica Plc Fastwire (FW) financial
transaction system [Leh97b] and the other studies made under the FEAST project
[Leh98a].

1.3.4 Conservation of Organization Stability (The Fourth Law):

According to the fourth law, the average amount of effort spent on each release remains
same. It must be noted that effort doesn’t mean the man-hours dedicated to the release,
but it is a measure of changes introduced- by a release. This trend was first observed in
the study of OS/360 [Leh78], when, the number of modules handled by each release,
were counted and plotted against RSN (Release Sequence Number). Number of modules
handled is a sum of three measures, number of modules added, number of modules
deleted and the number of modules changed [Lhe98b]. The graph line was observed 1o
be forming regular cycles around the average Jine with small positive and negative
ripples. A release having changes more than the average was found to be followed by a
release having changes less than the average by nearly same amount, thus making the
average amount of change, same. It was concluded that this behavior was due to the fact
that organization wants stability and doesn’t permit changes (in a release) more than a

specific amount. So this law was named as “Conservation of Organization Stability™.

This law was not particularly examined in the subsequent studies made by Lehman at al,
however Turski suggested an Inverse Squaré Model for system growth on the basis of
this observation, that effort remains same [Turski%6]. This model of Turski was found to
be, being validated by the real life applications, which can be considered another

evidence of validity of this law.
1.3.5 Conservation of Familiarity (The Fifth Law):

This law was first formulated during the study of OS/360, when it was observed that each
release was increased in size, by a fixed amount. If a release showed un-usual increment
in size then that un-usual increment was adjusted by its subsequent releases by either zero
increment or even decrease in size. It was concluded that this trend was due to the reason
that users of a software system can absorb only a fixed amount of enhancements. Thus if
a release introduces larger amount of enhancement, a negative feedback generates and as
a result; the subsequent releases either don’t snhance or decrease in size to balance the
effect of that larger amount of enhancement [Leh78].

At that time, Lehman concluded that the amount of enhancement (incremental growth)
remains same throughout life of a software system. But in later studies, he discovered
that this amount varies with the passage of time. At first, he couldn’t conclude that either
this amount increases or decreases. Like in the study [Leh97b], he stated that amount of
incremental growth may increase with time because of improvement in programming
technology, or it may decrease because of increasing complexity of software or it may
remain same because of balance between these two factors. But in his later studies, he
reached the conclusion that this amount of incremental growth decreases with the passage

of time [Leh98b], [Leh2001].

In this way this law is, basically combination of two things. one. that evolutionary trends
don’t permit un-usual incremental growth. If such growth occurs then it will be adjusted
by subsequent releases. And second, that the amount of incremental growth decreases as

the software gets older.
1.3.6 Continuous Growth (The Sixth Law):

According to the sixth law, software systems continuously grow throughout their life. At
first glance, it appears that this law is same as first law, means, the law of continuous
change. But in fact it is different from that. Growth is a type of change made to cover
those features of real life system which were not included in the previous releases
[Leh97a). If we adapt software to accommodate changes in those features of real life,
which are already covered by the software system, then this type of change will not be
considered as growth. Growth is related to the enhancements in the software.

A software apphicatior is a modet of some: real world application. And because real
world has an unbounded number of attribute, so the application, being a part of real
world, too has an unbounded number of attributes. But we have to develop software for a
bounded set of requirements within the constraints of budget and time limitations. So it
is not possible to automate a real world application fully. Thus we can say that every
software system is incomplete. The attributes/features of application which we exclude
from requirements, causes v<ers dissatisfaction. So sooner or later, users begin to realize
the need to cover those attributes too. This results in an un-ended process of software

growth. [Leh97a, Leh2001]

1.3.7 Declining Quality (The Seventh Law):

According to the seventh law, the quality of a software system decreases as it evolves.
The main reason of decline in quality is the structural degradation of software with its
evolution, as described in the second law. It is fact that every change in software
degrades its structure. The dependencies among its components increase in an un-
normalized way. Components interfaces become more complex. The overall
architecture loses its integration. This structural degradation makes it more difficult to
change the software. Thus developers feel more difficulty in making changes in that
software, which means that the quality of software declines with the developer’s point of
view. Moreover, when software is structurally degraded then any change in it causes to
produce many errors and faults. And hence its quality also decreases with the user’s
point of view [Leh2001].

1.3.8 Feedback Systems (The Eighth Law):

According to the eighth law, the software systems are feedback control systems, and their
evolutionary characteristics are controlled by the user’s feedback. This law can be
considered as a summary of the other seven laws. Each of the other laws describes an
evolutionary trend for software applications, which is usually not controllable. This law
states that those trends are basically a result of user’s feedback. This law was basicaliy
concluded from the existence of regular cycles in the “amount of changes” and
“incremental growth” graphs. The positive ripples were considered to be a result of
positive feedback whereas the negative ripples were considered to be a result of negative

feedback.

1.4 Case Studies for Lehman Laws:

Lehman suggested the laws of evolution on the basis of his more than thirty years
experience. He was pioneer of the software evolution studies. He, on the basis of his
contribution in this field, is known as “father of software evolution”. His laws are based
upon a number of case studies. These case studies are spread over thirty year period,
from 1971 to 2001. During this time, he also conducted a project FEAST (Feedback,
Evolution and Software Technology), with industrial collaboration, to study the
evolutionary trends of software systems. This project let him to study a large variety of
medium to large sized software systems, belonging to different application domains,
working in different organizational environments and having different evolutionary
periods. This project was consisting of two phases which were identified as FEAST/1
and FEAST/Z. THe first phase, FEAST/1, commenced on October 1996 and terminated
in September 1998. And the second phase, FEAST/2, commenced on Apnl 1999 and
terminated in March 2001. Lets look at few of those systems, studied by Lehman, for the
formulation of his laws. I have particularly focused on those parts of case studies which
are relevant to the first, fifth and the sixth laws. Because my study includes these three
laws only.

1.4.1 0OS/360 [Leh 97a, Leh 97b]:

This software system was one of those which were studied by Lehman in the very

beginning of his work means during 1970. But Lehman included its results in his later

studies too, like, [Leh 97b, Leh 98a), for the sake of comparison of later results with the

older ones. Here are given two plots of this system:

8000 g Size in Modules o564
7000 Growth Trend
6000

5000

4000

3000

2000

1000

01111||tu11;||l|[u1:1ivil'|‘|R.-
SN

Figure 1: 0S/360: Total size (in number of modules) plotted against releases [Leh et al
97 b}
In this figure, the total size of application (measured in number of modules) was plotted
against the release sequence numbers (RSN). The upward movement of graph indicated
continuous change and continuous growth trends. The linear increment in size has also
been shown by the relatively thin line. It can be seen that actual increment was exactly
following the linear increment but with small ripples (positive or negative). So it
indicated that the incremental growth (amount of increment in. each release) had remained
same throughout the period. This linear trend made Lehman to conclude initially that the
incremental growth remains same throughout the life of application. But, on the basis of

later studies, Lehman changed this statement,

10

. M
1550 3 Modules 051360
130 Incremental Growth .
A2 {
1150 0
930 0
LY
730 -
. Average Increment ! \
330 . o
.]
330 s 0. 4
—-—I-L-—u--‘--—-l-‘.'-.p —— . —— gl —
15’0 .’ “. LS .l ll :' “ ..c. . []
- . . 1’
-:)0 7T T T T T T T T 7T & ————rrT RSN
0 3 10 15 20

Figure 2: 0S/360: Incremental growth (in number of modules) plotted against releases
[Leh et al 97 b]
In this figure, the incremental growth (number of modules increased in each release) has
been plotted against release sequence numbers. Here the straight horizontal line is
showing average incremental growth. On the basis of this plot, Lehman concluded that
size of each release increases by a fixed amount. And any un-usual increase in size will

be followed by releases with zero or negative increment, to compensate that un-usual

increase in size.

1.4.2 Logica FW (FastWire) [Leh 97b, Leh98a]:

This system was studied as part of FEAST project. It was a financial transaction system.
At the time of study, it was eight years old. Lehman gathered data about its latest five
years history. The data was consisting of number of modules in each release. Lehman
preferred to use the measure, number of modules, in all of his case studies, unlike some
other researchers, who preferred LOC. But Lehman said that number of modules can

give more consistent picture as compared to LOC. Because LOC depends on the

11

programmer’s practice whereas number of modules measure is independent from that of
programmer. Moreover he said that he had repeated some of his case studies using the
LOC measure and found the same results. Thus LOC and number of modules will act in
the same way when used in the evolutionary studies of software systems.

In this study again, Lehman plotted total release size (number of modules) against the
release sequence numbers (RSN) and found the same results as were found in the study
of 0S/360. This system was belonging to far differentA domain than that of OS/360.
0S/360 was an operating system whereas this system (logica FW) was a banking
transaction system. Moreover there was more than twenty years .gap between both
studies. So "the repetition of results gave much confidence to Lehman regarding his
conclusions, which he made more than twenty years ago, in the form of laws of
evolution. The plot is shown by the given figure:

3000 - Size in Modules Logica FW
Growth Trend

01!!!|]l1'|[11lJ[irx:r1RS;\:
0 5 10 15 20

Figure 3: Logica FastWire: Total size (in number of modules) plotted against releases

[Leh et al 97'b]

12

The graph is showing continuous change and growth trends. However the linear
increment in size (shown by the relatively thin line) has shown that the actual increment
is not exactly following the linear increment. It is appearing that actual increment has
slowed down with the passage of time. This observatio;'i made Lehman to change his
statement of constant incremental growth throughout the life of application. He
concluded that the amount of incremental growth varies with the passage of time, but he

was still not sure that it will increase or decrease.

1.4.3 ICL VME Kernel and Lucent Technologies Real Time System

[Leh 98a, Leh98b]:

These two systems were also studied as part of FEAST project. First one of these,
Virtual Machine Environment (VME) was an operating system, developed by a UK
based company, International 'Computers Limited (ICL). It was developed for the [CL’s
manufactured mainframe computers. The second system was a real time system
developed by Lucent Technologies. Lehman gathered data about more than ten releases
of each of these systems. Like his previous studies, he performed his analysis on the
basis of “number of modules” measure. So he collected number of modules in each
release and plotted them against the release sequence numbers (RSN). Both applications
showed same type of results. The results for Lucent Technologies application are given

here:

120000 1 i€ Lucent Tech, Sys 1
1inModules Growth Trend

800060

60000

12 13

=
L o
=3
e

Figure 4: Lucent Tech rela time system: Total size (in number of modules) plotted against

releases [Leh et al 98 b]

It can be seen that like 0S/360 and Logica FW, the Lucent Technologies application also
showed contimous growth (and hence continuous change) trend. The thin line, in the
graph, is showing linear growth. And we can observe that the actual growth is lying
totally above the linear growth. It is an indication of the fact that growth rate has been
decreased with the passage of time. Thus the incremental growth (amount of growth in
each release) had not been remained same. But it was decreased with time. This
observation made Lehman to conclude that incremental growth (and hence growth rate)
decreases as the system geis older. So he refined his fifth law, which initially stated that
incremental growth remains in-variant throughout the application life. After refinement,
Lehman’s fifth law was changed as “the incremental growth and growth rate decreases

with the passage of time”.

14

1.5 Open Source Software Applications; Challenge for Lehman Laws:

Lehman formulated his laws on the basis of in-house applications. For all of his case
studies, he selected commercial applications. He didn’t test his laws on any open source
application. His laws, however, were tested by other researchers for open source
applications, and, some of those laws were found to be disproved in case of open source
software applications. Once it was discovered that some of the Lehman laws don’t hold
true for open source applications, it gave a new direction to researchers. Many
researchers were attracted towards this issue and they started to test Lehman laws on
open source applications. Thz discoverer of this issue was Godfrey, who, first time
discovered that Linux (a weil known and commonly used open source operating system)
wasn’t following some of Lehman laws [Godfrey and Tu 2000]. - He found that the
growth rate of Linux had been increased during its past 96 releases. It was in
contradiction with the fifth law of Lehman. Later, in 2005 and 2009, the evoluﬁon of
Linux was again studied by two different researchers [Robles et al 2005], {Israeli and
Feitelson 2009] and they also found same trends as were found by Godfrey in 2000. In
both studies the growth rate of Linux was found to increasing, which was in accordance
with the findings of Godfrey, and hence, was contradictory with the fifth law of Lehman.

In 2005, Koch studied 8,621 open source applications [Koch 2005]. It was a very large
set which included applications of nearly all varieties, small sized, niedium sized, large
sized, successful, unsuccessful etc. Moreover the applications were taken from different
domains. Koch also found the fifth law of Lehman to be disproved. because many
applications (especially large scale) were found to be evolving without any decrement in

their growth rates.

15

In 2006, Simmons studied the evolutionary trends of an open source game, Nethack, and
found that Nethack was not following second and fifth laws of Lehman [Simmons et al
2006]. He found that certain complexity measures for Nethack were decreased with the
passage of time, which was in contradiction with the second law of Lehman. It was also
found that Nethack’s growth rate was not decreased during the past 23 years, which
disproved the fifth law of Lehman. In another study, in the same year (2006), Herraiz
observed 13 different open source applications [Herraiz et al 2006]. He found that only
three of those thirteen applications were following the fifth law of Lehman. Means only
three were there with decreasing growth rates. The remaining ten were evolving with
either in-vanance growth rate or;with an increasing growth rate. Thus ten of thirteen
applications were not obeying the fifth law of Lehman.

In 2009, Xie studied seven different open source applications [Xie et al 2009]. He
studied large number of releases of all of those seven applications and observed their
complexity and change rates. He found that all seven applications were increased in their
complexity, which proved the second law of Lehman. However, he found fifth law of
Lehman to be disproved, because none of the seven applications showed decrement in its

growth rate.

1.6 My Study:

Validity of the Lehman laws on open source applications is still a question for
researchers. It is nearly sure that some of the Lehman laws, in their original, don’t hold
for cpen source applications, and hence they need refinements. Although few studies

have proposed refined versions of these laws [Dong and Mohsen 2008], but those haven’t

16

been accepted at a large scale. And research community feels need of more case studies
in this area, so that it can be clearly identified that, where and how much, the
evolutionary trends of open source applications deviate from the laws of Lehman [Robles
et al 2005], [Izurieta and Bieman 2006]. Such findings can be expected to prove helpful
in the refinement of these laws. So I decided to conduct case studies to check validity of
Lehman laws on open source Enterprise Resource Planning (ERP) systems. I have found
no study in the published literature in which Lehman laws were tested on open source
ERPs. I have decided to test first, fifth and the sixth laws of Lehman on three different
open source ERP systems. The law which was first time found to be disproving on open
source applications, was the fifth one [Godfrey and Tu 2000]. and most (nearly all) of the
later studies included this law in their work. So I particularly selected this law for my
study. I also included the first and the sixth laws in my work because these two laws are
very close to the fifth- ome, and same evolutiormary measures can be used to test the all
three. In order to strengthen my results, I decided to study three ERP systems rathgr than

the only one.

17

CHAPTER 2: LITERATURE REVIEW

Introduction:

In this chapter, I have described the studies. in which Lehman laws were tested on open
source applications. Lehman proposed his laws on the basis of his case studies
performed on commercial applications. He didn’t even considered just one of the open
source applications. And because open source applications differ from those of
commercial ones in their very nature, so it is not un-natural to ﬂliﬁk that they (open
source}) may not be proving Lehman laws which are purely basing on closed source
apphications. This was the reasonr which: caused researchers to check validity of these
laws on open source applications. Here are given some of those studies. [have described
each study under four headings:

Software applications:

Under this hiding, a brief introduction of those software application(s) has been given
which were observed 1n that study.

Research methodology:

Under this heading, the methodology used by the study has been explained, which
includes, what source was used to get applications (releases), what measures/metrics

were calculated and what tools were used to perform the study.

18

Observations:
Under this heading, it has been stated that what type of evolutionary trends were
observed in the studied application(s).
Conclusions:
Under this heading, the conclusions regarding the proof or disproof of Lehman laws have
been described. That which law was found to be proved and which was found to be
disproved.
At the end, a table, summarizing all these studies, has been given. In that table, each
study is summarized using a framework consisting of ten elements, which are:

1. Software applications stadied

2. Domain of applications

Type of applications

Lo

4. Evolutionary period covered/ number of versions observed

5. Measures/metrics used

6. Tools used

7. Source of releases used

8. What characteristics of the applications considered

9. Observations

10. Conclusions
2.1 Growth Rate of Linux Kernel [Godfrey and Tu 2000]:
Godfrey and Tu examined the evolution of Open Source Systems to observe that either
their evolution holds the Lehinan Laws of software evolution or not. Means either their

evolution follows the trends of commercial in-house developed (closed source)

19

applications or not. For this purpose they observed two open source applications, the
Linux operating system kemel and the VIM text editor. They presented their findings

and conclusions about the Linux operating system in the study [Godfrey and Tu 2000].
2.1.1 Software Application:

Linux was originally written by Linux Torvalds, but then it were updated and enhanced
by hundreds or thousands of developers. It was basically developed to run on Intel 386
platform, but later on it was ported to a large number of different architectures. Its first
release was launched into market in March 1994. After that, a large number of versions
have been released. Iis releases are of two categories, development releases and the
stable releases. The development releases contain the untested enhancements which are
for experimental purpose. But the stable releases contain the bug fixes made to the
expenimental enhancements. The release numbers consist of three parts, middle of which
is an indicator of the type of release, an odd number indicates a development whereas an
even number indicates a stable release. At the time of study of Godfrey (early 2001), the

total 369 development and 67 stable versions had been released.
2.1.2 Research Methodology:

Godfrey studied 96 releases in total, 62 of which were development whereas 34 were
stable releases. The source of versions was the Linux Kernel Archives website. They
examined, basically, the growth pattern of Linux by mecasuring the growth made in each
release. For this purpose they used three different ways to examine the growth:

» The total size of the kernel, calculated as a cempressed file

» The L.OC of all source files was counted using the Unix command “wc-1"

20

» Using an awk script to make all blank lines and comments ignored, while

calculating LOC

> Using a program “exuberant ctags”, to count number of global functions,

variables and the macros in different releases

2.1.3 Observations:

In order to observe the growth trends of the Linux, they plotted the size of different

releases against time. Although different type of size measures were used as mentioned

above, the total release size as a compressed file, the LOC of all source artifacts, the

number of global functions, the number of variables and the number of macros. All of

these measures were plotted, and all told the same story, as shown by the figures 5 and 6.

18,004,000 7
»
L]
1£.000 00C ~—
Mol
1.000.000 T " Developmen reteases (1.1, 1.3, 2.1, 2.3 ‘;J“
—— Stable refeases (1.0, 12,20,22) .’;
w 12.000.000 -
= '
=~
5 .. -~
= 18.003.00C 7
B #
a 's
@ 8 0003.00C 3
'-‘- L -
o
5,009.00C '-er ==
/
4,000,000 -
r]
2,000,000 ’
g
c - T T v -)
Jan 1652 Jun 1554 Ot 1885 Mar 1997 Juf 1953 Cec 1930 apr 2001

Figure 5: Total Size of Release (In Compressed Form) Plotted Against Time [Godfrey

and Tu 2000]

21

2.500.85C EERS —
- Tatal LOC {"w¢ -I") —~ development relezses
——Total LOC {"wc ") — stable releases ..'
" —— Total LOC uncommented — development releases r
2000000 ++ —— Total LOS uncommented — stable refeasss R
',.2"';
.
o
[
1,500.005 ’J,J— ¥
8 -
-4 rs
e -
5 9” e
- A
1,000.000 L
' I s
-~ P
e ""‘J_‘
. e [
VD el
500.C60 i -
i
e
N :5,:
Jan 1893 Jun 1654 Oz 1895 Mar 1997 Jui 1998 Jec THES Lpr 2081

Figure 6: Total LOC of Release Plotted Against Time {Godfrey and Tu 2000]
Tt was observed that Linux has grown at a super-linear rate. Means its growth has speed

up with the time. The growth rate has been increasing with the passage of time.
2.14 Conclusions:

Thus it has been clearly observed that Linux growth pattern contradicts with the Lehman
laws. According to Lehman and his fellows, the growth rate of an evolving sofiware
zpplication slows down because of increasing complexity. [Leh97a] and [Turski®6]. But
the Linux growth rate has been increasing. Similarl," it also contradicts another Lehman
law according to which the work rate remains in-variant throughout the life of an
evolving application. The super-linearity of Linux growth clearly indicates a continuous
increase in the work rate. It can be summarized that the Lehman’s Fourth and Fifth laws

have been disproved in this study.

22

2.2 Growth Rate of Linux and BSD Family Kernels [Robles et al 2005]:

Robles et al studied the evolutionary trends of large libre software systems to determine
either their evolutionary trends are same as those, observed by Lehman in the studies of
commercial in-house applications, or different from them. Libre means free and open
source applications. They studied applications having large sizes, being used by a large
user community and participated by a large community of developers. The basic focus of
study was to determine either these large open source applications foliow Lehman’s laws
or not.

2.2.1 Software Applications:

Robles studied Linux kernel, BSD family kernels and eighteen other widely used open
source software applications. The BSD family kernels are considered alternates to the
Linux kernel. There are total three kernels included in this family, FreeBSD, NetBSD
and OpenBSD. All these kernels have been derived from the UNIX operating system.
The other eighteen applications all belong to different domatns andrhave a reasonable
evolutionary history.

2.2.2 Research Methodology:

They got different snapshots/versions of their applications from the publically available
repositories on Internet. Linux however, being not available on public repositories, had
been got from the Linux website. For all other applications including the BSD 'family
kernels, the public CVS repositories were available, fFOI';‘l where different snapshdts of
each application were got. The monthly snapshot of each application was downloaded

from the date when repository was established till the time of study (April 2005). The

different versions of Linux were got from its website where these were available in the
form of compressed files. The size of each release was measured using a tool “SLOC-
Count”. This tool detects all code files as well as the language in which those files were
written and then calculates the source lines of code (SLOC) ignoring the comments and
the blank lines. Robles et al studied 580 releases of Linux in total. For all other

applications, four years or more evolutionary period was studied.
2.2.3 Observations:

In order to observe the growth rate of their studied applications, Robles plotted the total
size of each version (measured in uncommented lines of code) against the time, taking
time along x-axis and release size along y-axis. For Linux, the graph was-. super-linear,
thus showing that Linux had grown at a super-linear rate (growth rate increasing with
time) as shown by the figure 7. These results align very well with those found by
Godfrey nearly five years ago [Godfrey and Tu 2000). Bésides the un-commented LOC,
they used two other measures too, the total release size (in compressed form) and the
number of files in release. Like LOC, these two measures were also plotted against time,
and the same results (super-linear growth) were observed. In case of BSD family kemnels,
none of the kernel showed super-linear growth trend, instead they all showed a linear
growth trend (in-variant growth rate) as shown by the figure 8. Only FreeBSD showed
super-linear growth trend till 2000, but after that it also changed to linear one, resulting
an overall linear trend. From the other cighteen applications, sixteen of them showed a

growth rate linear or close to linear.

24

2.2.4 Conclusions:

Most of the studied applications clearly showed an in-variant growth rate. It clearly
contradicts with the fourth Lehman law, according to which work rate remains in-variant
throughout the life of a software application. If work rate remains in-variant then growth
rate must decrease, as stated by Lehman and Turski [Leh97a], [Turski96]. According to
the second law, the complexity of a software system continuously increases as if evolves.
Increase in complexity means, more effort (work rate) will be required to maintain
growth rate. But if effort remains same then growth rate will ultimately decline. So an
invariant growth rate shows that effort (work rate) increases. due to which system has

maintained its growth rate. It contradicts with the findings of Lehman.

IEGO000

4 <y PO AR ¥ X+

T

I
RIS = =

NP RWNEOLN=D

3005000

2560000

1500000

$G0E500

540000

0|_L_|_;_._._Lw¥-i|.ﬁ;¥ et aona a1 v g il L
1955 1992 1994 1998 1568 2060 2002 2004 2406

Figure 7: Total LOC of Linux releases plotted against time [Robles et al 2005]

25

TLLOEE vy LI B B T S S i Sh N Rey S S S S S Jun S S SIS S Snn G S i e B ek e o aew e ame o
'ma:}*" %
i o
HonI X
roipis =
IEHIC rren——]
"
nu™
an®
.-
BN =
-
-
-
- s ad
™ o
» ®
- SHACTC 2 ™ S
mik . ‘l.
A ®T T st
- oM *w¥l‘4
[" rob
['s 4 =
s % et
CCODIG LIS 2 =4
X e v
wuur
toadal
e ot
Q -+
¥k *
L0
st T
Yoy
:) A 1 L i -l ;N ¥ | L 1
55 10 L A i) 10% =00 pax o) o o e aCa e S i at} ot =

Figure 8: Total LOC of “BSD family Kernels™ releases plotted against time [Robles et al

2005]

2.3 Growth Rate of Linux and FreeBSD [Izurieta and Bieman 2006]:

{zurieta and Bieman conducted their case studies to determine either open source systems
evolve at a rate of commercial in-house systems or differ from that. They were basically
exited for this work by the conclusions of Godfrey about the OSS evolution rate [Godfrey
and Tu 2000]. They too were interested in the testing of Lehman’s laws on open source
systems, that either those laws hold for open source systems or not. Their basic focus

was to examine that either open source systems grow at super-linear rate or not.

2.3.1 Software Applications:

26

. Like Godfrey, Izurieta also studied a very popular and widely used open source operating
system, 1.e. Linux. However, they didn’t think just one system sufficient, so they
expanded their observation to another widely used and large size open source operating
system, the FreeBSD. Both these operating systems are considered alternate for each
others. However Linux supports more hardware devices than the FreeBSD. Both of
these systems follow the following type of setup, in which a small team of core
developers leads a large community of committers (developers) for development of new

code. Later on, a committer may be included in the core development team.
2.3.2 Research Methodology:

They observed only stable releases of their studied applications. It is'a common trend in
open source applications to release a newer version with un-tested code for experimental
purpose. That type of release, which contains experimental and un-tested code, is called
a development (in case of Linux) or a current (in case of FreeBSD) release. However
these types of releases are followed by stable releases which are mainly focused on bug
fixes and correction of errors found in their predecessor development/current releases.
Izurieta and Bieman did not include development or current releases in their study, but
they purely focused on the stable releases. They got FreeBSD from its publically
available CVS (Concurrent Versioning System) repositories. CVS is a system used to
maintain code history. It maintains a history of changes made to source code files to
enable us to retrieve previous versions of the code files. Linux, however, doesn’t have
such repository, so it was obtained from its web site. They observed 127 releases of
Linux and 34 releases of FreeBSD, in total. They caiculaied different type of measures

for their systems, including, Lines of Code (LOC), number of files, number of directories

27

and the total release size measured in Kbytes. To calculate these measures, they used the
UNIX command “wc-1" as well as a shell script. Like Lehman, Izurieta plotted size
measures against release numbers instead of time. It is important to remind that Godfrey
plotted his measures against time rather than the release numbers. Thus in this aspect this
study is following Lehman rather than Godfrey. As stated above, Izurieta got various
versions of Linux from its website, where they were available in separate form.
FreeBSD, however, was got from publically available CVS repository, so they
downloaded the entire CVS tiece of FreeBSD. Then by using CVS commands, they
checked out different releases of FreeBSD. And then, at the end, they used UNIX
command “we-1” and the shell script to calculate different size measures, as indicated

above.
2.3.3 Observations:

To observe the growth pattern of their studied applications, Izurieta and Bieman plotted
different size measures of their applications against application’s release numbers, taking
release numbers along x-axis and size measures against y-axis. The different size
measures which were plotted, include, total release size (measured in Kbytes), total LOC,
total number of C files, total number of C++ files, total nﬁmber of H (header) files, total
number of Make file, total number of scripts and the total number of directories. From all
these plots/graphs, they included just one in this study, that is, the total release size in
Kbytes, which is shown by Figures 9 and 10. However they have said that all these plots
showed same type of results. According to all these plots, both applications, means

Linux and FreeBSD, have grown at a linear rate (in-variant growth rate). Although at

28

A B

some points, a large increment in size could be observed, but the dominant growth trend
is the linear one.

2.3.4 Conclusions:

According to Lehman, the software systems grow at a linear or sub-linear rate. Means
either their growth rate remains same or it declines. If we examine gréwth rate on a short
span of time, it will be constart on average, but, if we examine it on long time span, it
will be decreasing [Leh98b]. Lehman quoted these findings under the fifth law of
software evolution, 1.e. “conservation of familiarity”. Because both Linux and FreeBSD
have grown at a linear rate, therefore they follow/prove the Lehman’s fifth law of
evolution. In this way, this study has proved that Lehman laws of evolution holds for

open source applications t0o.

Release Sizes

LoD

e — 3
Su00G0 . - W"‘-ﬂf‘/

B arerns :
= e [__._o—r—ﬁ-/ :
LR Tt —
o) — —
[J 1 T - T ..l T T T T 1T . T ¥ L3 r T T LI T T T Li T Ll T L 4 T 1 T L] T j

&N G B LS 3 [N a0 & o0y oA I T S RN

A A TS IIFITFII I T FFII IS IS

B A A A S ML SR S S A SR L T TR S S LA A, > :".‘ TR e e o

Stable releases

Figure 9: FreeBSD total relcase sizes plotted against release numbers [Izurieta and

Bieman 2006]

Release Sizes

[

5002) s

15033 1 — — e —

o
X

10333

5303) T

T . T T T O - S, SR R S R r - & 2 T ¥ 8 P

P S A N KRR : AN oMoN ST ﬁ N, e 7T £ ?1 Ed s & °
-)))

Fr e Ty g s 79 0 A D B Gy g AN RNy o7 oe t

- oMo [N RN M LY VIR PR 0

Stable teleases

Figure 10: Linux total release sizes plotted against release numbers [Izurieta and Bieman

2006]

2.4 Growth Rate and Complexity of Nethack [Simmons et al 2006]:

Simmons et al performed software archeological study of evolutionary trends of an open
source system. Software archeological studies are basically aimed at studying/observing
characteristics of existing software applications to gain knowledge about different aspects
of software systems. So Simmons and his fellows studied evolutionary history of an
open source application to gain knowledge about evolutionary trends/characteristics of
open source software systerns. The evolutionary characte}istics which were observed by
Simmons include, the growth rate, the modularity, the complexity, the ratio of the module
complexity to the module volatility for changes and finally the ratio of the comment lines

to the LOC. They wanted to observe that either the measures related to growth rate,

modularity and complexity increase or decrease during the life of an open source
application. Moreover, they observed that either the ratio of the comments increases as
the LOC increases or not. Some of these measures are related to the Lehman’s laws.
Thus, in this way, Simmons tested some of the Lehman’s laws on an open source
application in this study.

2.4.1 Software Applications:

The open source software application, which was observed in this study, 15 a widely used
large size open source game, the Nethack. This application, at the time of study, had an
evolutionary history spread over more than a decade. Its popularity among user
community can be realized by ihis fact that this game was downloaded more than 20,000
times during the month of December, 2005. Moreover, during this month, its link was hit
more than 277,770 times. This application has been developed in C language. Its first
version was released in the mid of 1980. And the latest version, at the time of study, was
released in 2003. Its versions are categorized into three generations, early, middle and
latest. During the early generation period, this application had no organized development
team. The whole development was a result of contribution of individual developers
spread all over the world. However in 1998, in the start of middle generation period, a
team of core developers was organized. At the time of study, the strength of developers

in the core development team was 11.
2.4.2 Research Methodology:

Stmmons examined- all the releases of this- appiication (Nethack), starting from the

earliest one (mid 1980) to the latest one (2003) with respect to the time of study.

However for calculation of different metrics they selected 12 such releases, which
introduced major enhancements or which were aimed at major bug fixes. Simmons used
the GQM (Goal Question Metric) approach for studying this application. There were
total five goals of study:
1. Does the application’s growth rate decline as suggested by Lehman?
2. Does the modularity of code increase, becausé of improving programming
standards? |

Does the complexity of code increase as suggested by Lehman?

[P

4. s the module having more complexity is also more volatile for change?

5. Does the ratio of the comment lines increase as the LOC increases?
It can be clearly seen that two of the goals (first and the third) are directly related to the
Lehman’s laws and hence they basically test Lehman’s laws on the studied application.
Simmons, then, decided a number of metrics to be calculated for evaluation of the above
goals. The metrics, related to the first and third goals, inc.:lude. the total release size, the
LOC, the executable LOC (eLOC), the comment lines (cLOC), the number of functions,
the McCabe complexity and the Halstead complexity. The applications source code was
downloaded from the website sourceforge.net, where it was available in compressed
form. In order to calculatc the above mentioned inetrics, a commercial tool “understand
for C” was used. The whole metric data was then loaded to Microsoft Excel sheet for
generation of graphs.

2.4.3 Observations:

To observe the growth rate of the application (Nethack), Simmons plotted the total

release size, measured in bytes, against the release number. The result was a clear linear

growth as shown by figure 11. Linear growth means an in-variant growth rate. To
strengthen the results, Simmons further plotted other growth related measures against the
release numbers, which include, the total LOC, the executable LOC and the number of
functions in a release. All these plots verified the above results, means all these showed a
linear growth trend. These plots are shown by figures 12 and 13. As stated above,
Simmons used two measures for observing complexity, the McCabe cyclomatic
complexity measure and the Halstead complexity measﬁre. The McCabe cyclomatic
complexity measure counts the number of independent execution paths in the code,
whereas the Halstead measure counts the number of operands and operators in the code.

It is interesting to note that the application’s (Nethack’s) complexity was found to be
decreasing with respect to the first measure, whereas it was found to be increasing with
respect to the second measure. It means that the complexity of the application has
decreased with respect to the number of execution paths, whereas it has increased with

respect to the number of operatnrs and operands.
2.4.4 Conclusions:

The evolutionary characteristics of Nethack do not obey Lehman’s fifth and second laws.
According to the findings of Lehman, the growth of a software application is sub-linear,
if we observe it over a long time span [Leh97a] and [Turski®6]. It means that growth rate
of an application decreases /declines, if it were observed over a long span of time.
Lehman has quoted this observation under the fifth law of software evolution. But in
case of Nethack, the. growth is not sub-linear, instead. it is clearly linear, although it has
been observed over a long time span {from mid 1980 to 2003). It means that the growth

rate of Nethack is not declining but it remains in-variant. In this way it clearly

L

L)

confradicts with the Lehman’s fifth law. Similarly, Nethack’s evolutionary trends
contradict with Lehman’s second law. According to the second law of Lehman, the
complexity of a software application increases, as it evolves. But in case of Nethack, it
was observed that the complexity of application, with respect to the number of execution

paths, has decreased instead of increasing. It is clearly contradictory with the findings of

Lehman.
20,000.000.00 R
15.000.000.00 l \l, }
10,000.000.00 & é £~ 9P
5.000.000.00 5099 y = 603781 - 16406 |
0o e TY 9 S S LTI
-S.I}GG.OGO.[}UT—T 8 S O

I I TP I I TR IR TN, O DN 0 A DS
NSNS . . . f i h "\ L Ol WA A ¥ > v) A S TN T 1
AMERLENIPN IS '59,59 A e ¥ aY T T A AN A

Figure 11: The totat release size plotted against retease numbers [Simmons et al 2006)

180.000
160.000 /,7—4——
140,000 e O
120.000
100,000
80.000 — e
— / ke

60.060 /!r/‘ i
40.000 //Ff/k -
20.000 ‘:ﬁ:z&=(- —

0 —_ e, T -7 T T T T T T
-20.000

N ,50'@ o R S S

Figure 12: The total LOC (represented by black squares) plotted against release numbers

[Simmons et al 2006]

5.000

4.000 ‘ e
3.000
2.000
1.000 — : —
o - - ’N“T"'”d: o
RS S ,§>'\Q RIS NP BT I

Figure 13: The total number of functions (represented by black squares) plotted against

release numbers [Simmons et al 2006]

2.5 Growth Rate of ARLA [Capiluppi et al 2004]:

Capiluppi et al studied the growth of code components and changes in code structure of
an open source distributed file system. They believed that these observations are helpful
in the complexity evolution of an open source application. They basically have observed
the effect of growth in code components on the structure of code as well on the arrival
rate of new developers in an open source system. For this purpose they assumed three
hypotheses and tested them against their system. Those hypotheses are:

Hypothesis 1: The code of an application (number of files) grows with the passage of
fime.

Hypothesis 2: There is a relationship between changes in code structure (folder structure)
and the code growth.

Hypothesis 3: There is a relationship between arrival rate of new developers and the code
growth.

They further explained each of the three hypotheses into the sub-hypotheses and then

tested each of those sub-hypotheses on their studied application to find conclusions. First

one of the above three hypotheses is clearly related to the sixth law of Lehman. Not only
related, but it can be said that it is exactly what Lehman;s sixth law says. So it can be
said that while testing this hypothesis, Capiluppi basically tested the sixth law of
Lehman. Similarly, for testing this first hypothesis, they plotted different size measures
like, LOC, SLOC and KB etc, of the studied application against the release numbers.
These graphs, on one side proved the hypothesis, and on the other side showed the
growth rate of the application, which is directly related to the fifth law of Lehman. Thus

those graphs proved a source of testing the fifth law of Lehman.
2.5.1 Software Applications:

Capiluppi et al studied an open source distributed file system, ARLA. Distributed file
systems can be said backbone of the internet technology. It can be used to enable users to
access files/data stored/placed at different computer systems, at their own PC’s. ARLA
has been written in C language. Its first version was released in Feb 1998 and was
labeled as “0.0 release”. The latest verston, at the time of study. was 0.35.12, which was
released in Feb 2003. In this way Capiluppi covered an evolution period of ARLA
spread over five years. During this five years period, 62 versions were released in total.

35 of them were major whereas 27 were minor releases.
2.5.2 Research Methodology:

As stated above, Capiluppi explained each of the three hypotheses in the form of many
sub-hypotheses. The first hypothesis has been explained as following sub-hypotheses:
Sub-hypothesis 1: The LOC of application increases with releases.

Sub-hypothesis 2: The SLOC of application increase with releases.

Sub-hypothesis 3: The size of source files measured in KB increases with releases.
Sub-hypothesis 4: The number of source files of application increase with releases.
Sub-hypothesis 5: The number of source folders of application increase with releases.
They studied 62 versions of ARLA in total. These versions were released during a period
of five years (1998 to 2003). They extracted data about different versions of the
application from a database crzated by them, m their previous work [Capiluppi 2003].
That database contains data about 400 different open source applications. The source of
information used in that work was the publically available CVS repositories of this
application. In order to test these hypotheses, they used the measures, LOC (total lines of
code including comments, blank lines etc), SLOC (source lines of code, LOC which are
executable), KB (total size of all source files in kilo bytes), number of source files and the
number of source folders. For LOC, they identified all source files (files having
extension .c or .h) and counted number of lines of all of those files. For SLOC, they
created a parsed file against each source file by eliminating comments and blank lines
from it. The parsed files were containing only the executable code. So number of lines
of parsed files gave the SLOC measure. To calculate these measures, they used UNIX
commands, as well as the “xsec” awk script.

2.5.3 Observations:

In order to observe code growth, Capiluppi plotted LOC against releases. The graph
clearly showed an upward trend as shown by Figure 14. Means the first sub-hypothesis
was. true, that the LLOC. of an application, increases with releases. Moreover this graph
showed a linear trend. Means the rate of growth was in-variant. In order to test the other

sub-hypotheses, they plotted, one by one, each of these measures against releases, the

SLOC, the size of source files in kilo bytes, the number of source files and the number of
source folders. All these graphs showed same type of results as were shown by the first
plot, means an upward trend. The graphs for size (in KB) of source files, number of
source files and number of source folders have been 'shown by figures 14 and 15
respectively. Thus all of the sub-hypotheses were found to be true. The application was
found to be growing with respect to all size measures. Similarly, these graphs also
showed a clear linear trend, except the last one, means number of source folders.
Although it can be said linear to some extent, but it was not as clear as were the other
ones. Thus all these graphs too showed an in-variant growth rate.

2.5.4 Conclusions:

ARLA has found to be following Lehman’s fifth and sixth laws. According to thé sixth
law, an application continuously grows throughout its life. ARLA, when examined using
a number of different size measures, was found to be growing. Thus it proved the
Lehman’s sixth law of evolution. Similarly, according to the fifth law, an application
grows at an in-variant rate, if we observe its growth over a short time span. In this study,
ARLA’s growth was observed over a five years period and it was found to be growing at

an in-variant rate, which is in accordance with the law.

0D sl \ 4003
T = — 375
* &I - 3500 —
ol o
g £ 8] o 32 X
* A = ot _ 10 §
"D m;n"‘f 2N 3’
) el 200 2
& e pi e
s = 25
. [+
Henoh - 2000
TN -::F‘gi‘f R,
e 4-.. EN IR
ERSAN T TT T T TR IT TR TEATT I T IR T e A 2T LTI v I it s

Releases

Figure 14: The LOC and total size of source files (in KB) plotted against releases

[Capiluppi et ai 2004]
8ce 12C
700 1
s = 5.820x + 33293 1%

R%=0.9727

Source files
Source folders

Releases
Figure 15: The total number of source files and total number of source folders plotted

against releases [Capiluppi et al 2004]

2.6 Growth, Complexity and Quality of Seven OSS [Xie et al 2009]:

Xie et al studied evolutionary history of seven different types of open source software
applications. The aim of study was two fold, one, to conclude that either these
projects/applications validate the existing evolutionary trends (especially those proposed
by Lehman) or not. And second to observe more evolutionary trends which have not
been quoted still by any other researcher. Xie et at believe that observing evolutionary
history of software application, with the aim of finding evolutionary trends, can help in
reducing the cost of evolution, which sometimes, according to the past studied, equal to
the 90% of the total software cost. It is a very comprehensive study, which used many
different types of software measures, as well as tested all of the eight laws of Lehman. It,
along with testing the existing evolutionary trends (like of Lehman), proposed new
evolutionary trends as well as, first time, gave a clear distinction between growth and
change measures.

2.6.1 Software Applications:

Xie et al studied total seven software applications which are all open source applications.
Here is a brief introduction for each of those applications:

Samba; It is a Client-Server interoperatablility tool that enables clients having operating
system other than windows, like UNIX, to interact with the windows server. This study
covered 15 years evolutionary period of Samba (1994 to 2009) and observed its 89

official releases.

40

Sendmail: It is an Email transfer tool that uses different methods for mail delivery. This
study covered 15 years evolutionary period of Sendmail (1993 to 2008) and observed its
57 official releases.

BIND: It is a commonly used DNS (Domain Name System) server. This study covered 9
years evolutionary period of BIND (2000 2009)) and observed its 168 official releases.
OpenSSH: It is network security tool that makes to avoid data from hijacking while
travelling on network. It encrypts data before transmiﬁiné it on the network path, so that
hijackers may not read it. This study covered 9 years evolutionary period of OpenSSH
(1999 to 2008) and observed its 78 official releases.

SQLite: It is an SQL database engine existing in the form of software library. This study
covered 8 years evolutionary period of SQLite (2000 to 2008) and observed its 172
official releases.

VSFTPD: It stands for Very Secure File Transfer Protocol Daemon. It is an FTP server
used by Linux. This study covered 8 years evolutionary period of VSFTPD (2001 to
2009) and observed its 60 official releases. |

Quagga: It is a tool suit used for development of software routers. This study covered 5
years evolutionary period of Quagga (2003 to 2008) and observed its 29 official releases
In this way, this study has covered 69 years evolutionary period (aggregate/sum of

evolutionary periods of all seven applications) and observed 653 official releases in total.
2.6.2 Research Methodology:
Xie et al downloaded different versions of their studied applications from the public

repositories of those applications. Many of those applications have both server and client

suits. But they considered just the server part of applications and ignored the client part

41

as well as the test programs. The inclusion of client part and test programs will just result
in increased values of measures, it have no impact on the trends of evolution. Means the
trends will remain same to those which are observed in case of pure server suits. They
merged all the source code of a release in one file using the CIL merger tool. Then they
calculated LOC of that file to get the total LOC of release. Moreover, they used two
tools for analysis of the source code, the ASTdiff (Abstract Syntax Tree difference) tool
and the RSM (Resource Standard Metrics) tool. They developed ASTdiff themselves,
but the RSM is a commercial tool. ASTdiff compares syntax trees of the source code
files written in C language. It calculates a number of metrics for those files, including,
changes in types (structures), changes in data types and definitions of global variables,
changes in functions signatures and bodies, types (structures) added, global vanables
added, functions added, types (structures) deleted, global variables deleted, functions

deleted ete. The RSM tool calculates cyclomatic complexity of the code.
2.6.3 Observations:

In order to observe evolutionary trends of their studied applications, Xie et al plotted
different size and change measures against the time. The first graph was to plot
cumulative number of changes, made to types/structures, global variables and functions,
against time. The grapn clearly showed an wupward trend, means the
modifications/changes are continuously happening. In other words, the application is
continually changing. The graph, shown in Figure 16, is just for Samba. but other six
applications have also shownr same type of resuits: They observed that most of the
changes were related to the functions and very few were related to the global variables

and types/structures. For this purpose, they distributed changes among the three factors,

42

functions, types and global variables. The result clearly indicated that most of the
changes were belonging to functions. The graph i1s shown by Figure 17. They also
observed that additions are more common than deletions as the graph in Figure 16 clearly
indicates. It was also noted that interface changes are much less frequent than the
implementation changes. Means mostly changes belong to the implementation rather
than the interface of the application. In arder to test the law of self regulation (3rd law),
they plotted incremental growth against release numbers. Lehman derived this law when
he plotted the incremental growth of OS/360 against release numbers [Leh 78). He
observed ripples (small positive and negative adjustments) in the graph, so he concluded
that software adjusts its size itself. Hence he concluded that the evolution process is self
regulatory. Xie et al, too, plotted incremental growth against reiease numbers and
observed ripples in it. The graph for OpenSSH is shown by Figure 18, however
remaining six applications, too, showed same type of resuits. Figure 18 also showed that
the incremental growth was neither in-vanant nor it was declining. To strengthen this
observation, Xie et al further plotted number of functions added to each release against
the release numbers. The results, as shown by Figure 19, were same to those observed in
Figure 18. Means the incremental growth was neither in-variant nor it was declining.
Instead, incremental growth was found to be increasing. In order to test the law of
continuing growth (6th law), Xie et al plotted LOC of each release against the release
numbers. While calculating LOC, they ignored comments and empty lines. The graphs,
as shown by Figure 20, were continuously moving upward. Thus it clearly indicated
continuous growth in application size. - This observation was strengthened by a previous

graph (shown by Figure 16), which showed that additions are more common than

43

deletions. Larger number of additions will ultimately result in continuous

increment/growth in the software size.
2.6.4 Conclusions:

All the applications were found to be continuously changing, with respect to functions
(their bodies and signatures), structures and global variables, so the law of continuous
change (first law) has beerr verrfied: - Simmarly, all applications were found to be
increasing in their sizes (LOC, number of functions, number of structures, number of
global variables), so the law of continuous growth (sixth law) also verified. The
incremental growth, when plotted against release numbers was found to be having small
positive and negative adjustments (ripples), which is in accordance with the law of self
regulation (third law). Thus the third law has also been verified. The incremental growth
was neither found to be in-variant nor it was decreasing, which indicated that applications
were growing at a super-linear rate. It means their growth rate was increasing with time,
instead of decreasing or remaining in-variant. It contradicts with the law of conservation

of familiarity (fifth law), thus the fifth law has not been verified.

(e
—= Moditications M
| == Additions e
BMEE 0 Deletions M - M
) A i e o _
1993 2iK)) N

Figure 16: Cumulative number of changes plotted against time (for Samba) [Xie et al

2009

44

HEDER
GO
WA IE:] Franetious Steneture- M Global Vinalles I -
1003 A SONK

Figure 17: Changes distributed among functions, structures and global variables (for

Samba) [Xie et al 2009]
lt} - :
- 1
Y :' Ia . '1. ‘.'G‘ ,’. 5]
. o S Q!'. ;
Db A A b LA AT L A N
¥
1.0pre3 2.2.01p1 5 opt

Figure 18: Incremental growth (measured in modules) plotted against releases (for

OpenSSH) [Xie et al 2009]

[—-v— Franction Body Changes —— Function Adeitions I

607 |

30

24

Figure 19: Incremental growth (measured in functions) plotted against releases (for

Samba) [Xie et al 2009]

45

LK - -~ —
. Sanba / RS T ——
x i = e
= T —— - T -
= -/.-----”‘ = I e
b il Sendmatl
i 28] 1) R BT T,
e T Fl i
o IR - PRSPy
- c— = ——
I — Z o
= F = e
- OpenSSH - SQLarte
[e 1 ke k) IE it
o — — ——— / I ————— s m— T —_—
= ! ——rr 1 =
= Fan =
- Vaftpd T Quagga
ol R R R 2R 3y T

Figure 20: LOC plotted against time (for six applications) [Xie et al 2009]

2.7 - Growth Rate of Thirteen OSS Applications {Herraiz et al 2006]:

Herraiz et al studied growth patterns of some open source applications using two types of
metrics, LOC and number of modules (source files). Their study was basically aimed at
comparing these two types of metrics. It was because, the studies which disproved
Lehman laws for open source applications, like [Godfrey and Tu 2000] and [Robles et al
2005], used LOC or SLOC for measuring growth. Whereas Lehman, when suggested
laws, used the metric, number of modules (source files). So they thought to use these two
types of metrics on same projects/applications in order to observe that either they produce
same resuits or their results differentiate from each other. Besides this they also tested
Lehman laws on their studied applications. It was obvious that when they will calculate
those size metrics for their studied applications, they must observe that either those

applications have grown at rate of Lehman or not.

2.7.1 Software Applications:

46

They studied total thirteen applications, all of which are open source in nature. Ten of
which are basically packages included in Debian GNU/Linux. Debian is perhaps the
largest software application of the world consisting of more than 229 millions LOC.
Most of the open source applications in the world are v_rritten for Debian GNU/Linux.
Thus it can be said that Debian is a representative of the whole community of open
source applications and its trends can be.said.to be the trends of most of the open source
applications. Herraiz et al included ten largest packages of Debian in their study, whose

names along with the evolutionary period are as under:

1. Amaya: 8 years
2. Evolution: 7.5 years
3. Kaffe: 7 years
4. Prc-Tools: 5 years
5. Python: 8 years
6. Wine: 7.5 years
7. wxWidgets: 2.5 years
8. XEmacs: 7.5 years
9. XFree86: 8 years
10. Linux: 13 years

Besides these ten packages of Debian, they included three BSD family kernels in their
study, FreeBSD, OpenBSD and NetBSD. The evolutionary period covered for each of
these kernels is as under:

11. FreeBSD: - 12 years

12. OpenBSD: 7.5 years

47

13. NetBSD: 13 years
2.7.2 Research Methodology:

They, first of all, defined the criteria for selection of applications to be studied. For this
purpose, they decided to include only those applications for which a CVS repository was
available. Secondly they decided to include those applications which have a reasonable
evohitionary history; so that some conciusions can be ma&e about their evolution trénds.
Thus they decided to include applications having evolutionary history spread over thirty
months or more. Finally they decided to study applications which are large in size. So
they selected all applications meeting this criteria, except the Linux kemel, which was
not meeting one ;;oint of criteria, that is, its repository had not been maintained using a
CVS server. But they included it in their study because prior studies of Godfrey
[Godfrey and Tu 2000] and Robles [Robles et al 2005] included it, and they wanted to
compare their results with prior studies. They downloaded periodic snapshots of the
applications from their publically available CVS reposit.ories, suing a tool GlueTheos.
Twelve of their studied applications were maintained in the form of CVS repositories, so
they got their snapshots. One application, however, was not maintained using CVS
server, which is Linux. Linux is available in the form of versions at its website in
compressed form. So they downloaded those compressed versions and decompressed
them to get the code. For each of the other twelve applications, all six months snapshots
were downloaded from the date of first commit till the date of study. Then they
caiculated” two types of measures for different smapshots/versions of each of those

applications and stored results in a database for future use and result interpretation. In

48

order to calculate these measures, means LOC and number of modules, a tool

SLOCCount was used.

2.7.3 Observations:

In order to compare the two metrics, SLOC and number of modules, Herraiz et al. first of
all correlated both metrics against each other, taking number of modules along x-axis and
SLOC along y-axis: The resudt was- z clear linear graph, in case of all thirteen

applications as shown for Linux by Figure 21.

LT

c

= T 24¥0 £200 GO pel <o o} 42T LE e C 70 13700

Figure 21: Number of modules against SLOC for Linux [Herraiz et al 2006}
In order to observe the growth pattern of these applications, they plotted version size
against time, taking time along x-axis and version size along y-axis. Since versions size
was measured by two metrics, SLOC and number of modules, so they plotted two graphs
for each application, one for SLOC and second for number of modules.
The results of these plots were mixed. For most of the applications (six of thirteen), the

result was super-linear, where as for four applications, it was linear. And for three

49

applications, it was sub-linear. The plots for FreeBSD and Linux have been shown by
figures 22, 23 and 24.

The applications along with the nature of their growth graphs are as under:

» Amaya: Linear

> Evolution: Sub-linear
% Kaffe: Super-linear
» Prc-Tools: ~Super-linear
> Python: Linear

» Wine: Linear

» wxWidgets: .' Super-linear
» XEmacs: Sub-linear
» XFree86: Sub-linear
» Linux: Super-linear
> FreeBSD: Linear

» OpenBSD: Super-linear
» NetBSD: Super-linear

2.7.4 Conclusions:

The linear graph of SLOC against number of modules clearly showed that both metrics
are equal, means both generate same type of results. Thus it doesn’t matter, what type of
metric we use for observing growth pattern, because it doesn’t change results. Both
metrics will show same type of growth trends. If some study has used SLOC, then it can
be said that same type of results would be observed, if we repeat analysis using differeni

metric, means number of modules. Moreover the super-linear graphs of the six of

50

thirteen applications showed that most of the open source applications grow at a super-
linear rate; means their growth rate increases with time rather than decreasing. Thus the
general growth trend of open source applications is different from those of commercial
applications, which, according to Lehman, follow a sub-linear growth trend. Sub-linear
means, their growth rate decreases with time. In this study, it was observed that most
applications were growing either at an increasing or a steady rate. Only three were there,
which were found to be loosing their growth rate. Thus the results of this study clearly

contradict with the findings of Lehman.

180C0 T r

(A

15000

T

14063

+
o

[

|

o T
P BRI RIND -4 ot 1ot b

D DR = HIN =D

12003

|
|
\.
l.i :
.
i
1
I
|

100C0 Lo —— _ |

80oGo - —d —_ ——f e S -

50CY ."““—'—F—-w"-r—'—-:—--—v—
" o :

40C3 — . —

1
2000 |- ~ 2 . s S

H
0 1
Sop- 1691 Qct-1803 Sep-1986 Feb-1893 MNov. 1998 Aug-2002 Dec-2004

Figure 22: Number of modules plotted against time for Linux [Herraiz et al 2006}

1 8.8 - |

PP

t A%

| P A - —_

T K

BLTLIG

L1000

LTCLO x o

G0

¥

-
bec EY SN
P ud

. -

: -+
e f

-
*
> 5 L 2
+
2000 =X
4 & -
1°C
-+
x‘. - -
= g 43 [759 32 | 8] <o tsl T N

Figure 24: Number of modules plotted against time for FreeBSD [Herraiz et al 2006}
2.8 Growth and Change Trends of Four OSS [Ali and Magbool 2009]:

Ali and Magbool studied evolution of small scale open source software systems using

different type of measures. They were feeling that the measure used to observe

52

evolutionary behavior plays an important role regarding results. It is possible that
different measures show different evolutionary behaviors of an application. They
performed their analysis using the measures used by Lehman, i.e. number of modules.
Then they repeated their analysis using other measures, introduced purely by themselves
and compared both results. At the end they concluded that different measures represent
different aspects.of the application and their results may vary from each other. Therefore
selection of an appropriate measure has much significance in the study of evolutionary

behavior of software applications.
2.8.1 Software Applications:

They studied four different open sour;:e applications which are all small scale
applications. Here is a brief iatroduction of all those applications with the number of
versions studied / observed of each one:

KTorrent: It is a light open source application used for exchange of data. This study
covered 45 releases of KTorrent.

GNOME: It acts as a desktop for users and developers of Linux. It is very user friendly.
This study covered 168 releases of GNOME.

Konversation: It acts as an IRC client. It is used for KDE desktop environment. It is too
very user friendly. This study covered 13 releases of Konversation.

Evince: This application is used as a document viewer which allows viewing documents

of many different formats. This study covered 46 releases of Evince.

2.8.2 Research Methodology:

Ali and Magbool believe that just observing number of modules in a release is not
sufficient to conclude something about evolutionary trends. But it should also be focused
that how many modules have been added, how many deleted and how many modified.
Just number of modules can’t give us a true picture of evolutionary trends. We can see
more insight, if we consider the three counts (modules added. deleted and modified)
separately, instead of iust total number of modules. Thes;r strengthen their idea with the
help of an example. Suppose a release, say R1, has ten modules and the next release, say
R2, has twenty modules. If we consider just number of modules, we will say that 10
modules have been added to release R2. But we don’t know the inner picture. It is not
necessary that just 10 new modules would be added to release R2, but there are many
possibilities. Like, it is possible that 15 new modules would be added, but 5 old modules
of release R1 would be deleted. In this way the net modute count for release R2 will also
be 20. Thus if we focus on module count just, then we will lose inner information and
will not be able to determine the exact evolutionary trends. It’s the reason they didn’t
rely solely on total number of modules in a release. But they also counted three different
measures, number of modules added in a release, number of modules deleted from a
release and number of module; modified of a release. This enabled them to see more
deeply into the evolutionary trends of their studied application and they pointed out
certain those trends which were not possible to observe by counting just total number
modules.

2.8.3 Observations:

In order to observe the evolutionary characteristics of these four applications, Ali and

Magboo! first used the measure used by Lehman, i.e. number of modules (number of

54

source files) in each release. By using this measure, they plotted two types of graphs for
each application; one for total releases size (total number of modules in release), and
second for modules increment (module difference between release i and i-1) in each
release. Both of the measures were plotted against release numbers. The result of the
first plot (total release size in modules versus release number) showed that most
applications. were growing.at a linear. rate, as. shown by figures 25, 26, 27 and 28. Only
one application, i.e Konservation was decreasing in size, instead of increasing. Similarly
the second plot (module increment against release number) also showed linear trend, but
in downward direction. Means the module increment rate was decreasing with the
passage of time, as shown by figures 29, 30, 31 and 32. In order to expand their
observation, they plotted three more measures against the release numbers, which are
number of modules added in a release, number of modules deleted from a release and
number of modified modules of a release. These three plots helped to observe the
evolutionary trends in more depth. And many those issues were appeared which were
hidden when only total numbe~ of modules in a release were considered. It was clearly
observed that taking just the module difference between two releases into account is not
enough. In order to get the complete picture of evolution, it must be noted that how that
difference is distributed among additions and deletions. Finally they plotted total iumber
of changes in a release against the release numbers. The total number of changes was 2
sum of the above mentioned three measures, means number of added modules, number of
deleted. modules - and. number. af -modified. modules. They named this measure as
incremental changes in a module. The number of incremental changes between modules

i and i+] can be calculated by taking summation of the number of modules added in

35

release 1, number of modules deleted from release i and number of modified modules of
release 1. this measure 1s equitant to that used by Lehman to calculate incremental effort

[Leh 78]. Lehman named this measure as number of modules handled in a release.
2.8.4 Conclusions:

The plots of incremental changes were near to straight horizontal lines for ail foue
applications: It showed that number of incremental changes in successive releases
remained constant or in-variant. It clearly proved the fourth Law of Lehman, according
to which the incremental effort remains in-variant. Lehman concluded this law in his
study of OS/360 when he observed that number of modules handled in successive
releases remains in-variant [Leh 78]. From this, he concl;.lded that effort spent on each
release remains in-variant. In this study, because, the number of incremental changes
remained in-variant, therefore it can be concluded that incremental effort remained same.
It is clearly in accordance with the findings of l.ehman. Moreover the plots of module
difference between successive releases were also found to by nearly in-variant with a
slight downward trend. It is in accordance with the fifth law of Lehman, according to
which incremental growth remains in-variant or it slows down with the passage of time.
The in-variant growth and change trends proved the observations of Lehman, observed
by him in different case studies and formulated in the form of fourth and fifth laws [Leh
78). The separate plots of number of modules added and number of modules deleted
disclosed certain other evolutionary trends, which were hidden when just module
difference was plotted. - These wends helped to know about maturity and stability of an
application. An application with larger number of deleted and added modules can be

considered as immature and unstable. Because the greater values for these two measure

56

show that modules are not easy to modify. So developers prefer to replace old modules
with new ones for correction of errors or enhancemeﬁt of functionality rather than
modifying the existing modules. Similarly a larger value for the number of modules
modified, represent that code is more stable and modules are easy to be modified. The
period in which there is larger value for number of modules added is a period in wiick
main. focus is enbancement of functionality. Similarly the period in which there 1s larger
value of number for number of modules modified is a period in which main focus is

correction of errors.

1
330 f
’ !t‘ My
G Tl .o Il
- F
z f/d
o~ =2 T
.-.-‘:.: f —_— Ticiteuken T
= + —— - 4
= i
-
[
ASre

Figure 25: Total release size (in number of modules) plotted against release numbers for

KTorrent [Ali and Magbool 2009]

: [1 o WU
I ey

AN

57

Figure 26: Total release size (in number of modules) plotted against release numbers for

GNOME [Al: and Magbool 2009]

—
=
) s — —t g N Fead = Teo-s
- —_— 1 .
= —— Y .
2] 3 J7 =N LT "satatses T om oatth
-— ~ 1) - H
g L i —— 4
i
i
Lox i
4
3
1
i
o

Figure 27: Total release size (in number of modules) plotted against release numbers for

Konversation [Ali and Magbool 2009]

] 3% !
1
5. = Pra - i
| .t & B
B _______’/—"—‘_. < L)
s 7 foT
| 5 i
] = 32
é l - ¥oaT -.—_ L g
>3 -"'J ! ——— I T TRl Bk o DrLcth
;1 ,.--:
3 7
; T 4 T LD AT RS XS I2IS I3 3L ELIFT LD i3 an
!]
RSN H
]
L S

Figure 28: Total release size (in number of modules) plotted against release numbers for

Evince [Ali and Magbool 2009]

58

L
¥}
"

Incte mental Changes
"Y'
W] [
{
f
' 4. !

'. Z ;’l
Hanantt i) \%i:b
3

i
I];‘
T
! {
1 -
P
LI
oo
L |

Ktorenitd)

[}
+

Uerranl 44

Rerr ot f (e g
ool 2 dri b
Herrenl 2,
Iorrent 4 dhetal
Kegied 2
Fluesapt-f 33!
Mureerd 4 2

?

Figure 29: Module difference/increment plotted against release numbers for K Torrent

[Al: and Magbool 2009}

r

ho-ee) et e Y
& T ——_ _ »
= s ———
S
]
= s
-4
=
5 2 - e A= E e
=

>
— T om BTy e
= o L]
- - ~ - -
S A e % P
- =~ . - s - - .
- = =X & - . -
= .:‘5 = 5 T o (& s
[o o =) o A
< <z (=3 =3 & [-t
L)

Figure30: Module difference/increment plotted against release numbers for GNOME [Ali

and Magbool 2009]

nirorsents) Catpms

Figure 31: Module difference/increment plotted against release numbers for Konversation

e menty | Ehaage:

[T PR

b

[Ali and Magbool 2009]

S P 2 o

T M BT T AT T

Traze-gT

Figure 32: Module difference/increment plotted against release numbers for Evince [Ali

and Magboo! 2009]

2.9 Growth, Complexity, and Quality of Linux [Israeli and Feitelson

2009]:

Israeli and Fertelson studied the evolutionary behavior of a commonly used, well known,

long lived and large scale open source application, the Linux kernel. There was just one

objective of study, to determine that either this application confirms to Lehman laws or

60

not. Although this application, Linux kernel, had already been focused in many of the
previous studies, but Feitelson’s work is unique in its nature. The three main
distinguishing factors are:

1. They studied total 810 releases of Linux. And none of the past studies had

observed too large number of versions.

[

They used many different types of metrics related to size, growth, complexity,
quality and effort, whereas none of the past studies used so large variety of
metrics.

They tested seven of the eight laws of Lehman using numerical measures,

(73]

whereas just one of the past studies covered so many laws [Xei 2009] but they
didn’t use numerical measures for all of those.
Thus on the basis of all these points, it will not be wrong to say that this study is unique

1n its nature.
2.9.1 Software Applications:

As mentioned above, this study used the open source application Linux kernel for testing
the Lehman laws of software evolution. Linux is the application used by most of the
open source evolution studies. Its reasons include the wide spread use of Linux
throughout the world, the interest of open source developer’s community in it, free and
easy availability of its different releases source codes. The first version of Linux was
released in March 1994. At the time of study, August 2008, total 810 different types of

major and minor versions had been released This study covered all those versions.

2.9.2 Research Methodology:

61

They got source code of different releases of Linux from the Linux website and
calculated many different types of measures for those releases in order to observe the
trends of changes, growth, complexity, quality and effort. In this process they used a
commercially available CASE tool as well as developed their own too! for their specific
needs. In order to observe growth, they calculated two size measures LOC and number

of modules. It is obvious that size is directly related to growth. Increasing size can be

validly assumed as continuous growth. Because it indicates that new code and functions

are being added to cover more and more features of the real life. While counting LOC,

they considered only those statements which were executable. Means they ignored

comments and blank lines. Similarly while counting number of modules, they considered

each function as a module. Means in order to count number of modules, they counted
number of C functions in the release. In order to observe changes that happened in
different releases, they calculated size of “arch” and “drivers” sub directories of Linux
kemel. They realized that growth and change are very close to each other, even both
overlap. Therefore sometimes it 1s harder to distinguish.a.mong both. There are many
changes in code that can be put in both of the categories, change and growth. However
they distinguished change from growth on the basis of code directories. They assumed
that enhancements in the two subdirectories “arch” and “diivers” are basically for
accommodating the changes in real system rather than covering new features of real
world. So the size increment of these two directories is basically an indicator of changes
rather than growth. The “arch” subdirectory contains code related to the processor
architecture and the “drivers” subdirectory contains all device drivers. In order to

measure work rate, they used three different measures. One is the number of developer

62

participating in the code development of Linux. Second, the number of files added,
deleted, grew and shrunk in a release. And third. the release rate, means the time interval
between releases. Second of these measures was same to that used by -Lehman to observe
work rate in the study of O8/360 [Leh 78]. Lehman called this measure as number of
modules handled in a release. In order to observe the law of “conservation of
familiarity”, they again observed the quantity of changes introduced by a release. But
this time they just examined changes quantity rather than number of changes. They
compared different types of successive releases in general to conclude that either the
quantity of changes is limited to the point where familiarity will not suffer. This law,
however, has not been tested by them on the basis of size measures, LOC and number of
modules. It is also important to note that nearly all other studies have tested this law on
the basis of size measures. In order to test the law of self regulation, they followed the
same pattern as was adopted by Lehman. Means they plotted the size difference of
successive releases against the release numbers. In order to observe complexity of the
code, they used two commonly used measures, MCC (McCabe Complexity) and the
Halstead complexity measures. The MCC can be calculated as:

MCC = number of conditional branches + 1

An extended version of MCC, named as EMCC, is also available, which counts number
of comparisons in each condition, rather than counting the condition as a whole. This
study also calculated EMCC for different versions of Linux. The Halstead complexity is

a measure of number of operators and operands in the code.

2.9.3 QObservations:-

In order to observe the growth pattern, Israeli and Feitelson plotted release size against
time. As mentioned above, the two different measures were used for size calculation,
LOC and number of modules. Each of these measures was separately plotted against
time. Both graphs generated very similar results. According to results of both graphs,
Linux had been grown at a mix of super-linear and linear rates. Before year 2003, the
growth pattern was super-linear, whereas after 2003 it was found to be linear. The graphs
have been shown by figures 33 and 34. In order to observe the law of continuing change,
the size of two subdirectories “arch” and “drivers” was plotted against time. It has
already been mentioned that Feitelson realized that the size of these two subdirectories is
directly concemned with the changes. The results were similar to those which were
observed in case of whole Linux. Means both subdirectories were growing at a linear or
super-linear rate. It was ovserved that the open source developers community
participating in the code development of Linux was increasing rapidly. Means the
developers taking interest in the Linux development were increasing in number. Linux
was getting attention of more and more developers with the passage of time. The
developers interest in Linux was basically assumed an indicator of the rate of work.
Similarly in order to observe rate of work, the total number of files added, deleted, grown
and shrunk were plotted against time. And it was found that the number of files added,
deleted, grown and shrunk in each release remain almost same. The release rate was also
calculated for the sake of observing work rate. It was found that the dominant trend of
release rate was staying in-variant. The size increment of each release was also plotied
against release numbers. The size increment was measured as number of modules added

in a release. Or it will be more appropriate to say, the difference in number of modules

64

between every two successive releases. It was observed that average number of modules
added in a release remained almost same. The actual line was found to be fluctuating
along average line with small and repetitive ripples. The graph has been shown by figure
35.

294 Conclusions:

Linux has been found to be continually growing at a linear or super-linear rate, so it
clearly validated the sixth law of Lehman, according to which a software application
continually grows throughout its active life. Similarly the continuous growth of the two
subdirectories “arch” and “drivers” validated the first law, according to which a software
application continuously changes throughout its life. The overall complexity of code was
increased. However there were also instances of reduct.ion in complexity at func.tions
level. Perhaps this reduction was due to certain efforts which were made for controiling
complexity. Such efforts were evident and could be clearly observed. So it can be said
that the second law has been validated in case of Linux, according to which software
complexity increases continuously, unless work 1s done to control it. The work rate was
found to be in-variant with two perspectives. However from one perspective, it was
found to be increasing. It has been observed that the number of files handled (added,
deleted, grown or shrunk) in each release remained almost same, it clearly indicated an
in-variant work rate. Similarly the interval between ev;ary two successive releases of
same type has also been found to be nearly same. Thus an in-variant release rate can also
be considered as an indicator of the in-variant work rate. However the number of
developers participating in Linux was found to be increasing rapidly, that is an indication

of the increasing work rate. Because two of these perspectives indicated the in-variant

65

work rate, so it can be said that fourth law of Lehman also validated, according to which
the average work rate, throughout the life of software, remains same. The two types of
releases, development releases and stable production releases confirmed the law of
familiarity conservation. Because it was observed that none of theses two tvpes of
releases introduced too many changes which affect familiarity. The general trend of
theses two types of releases was that each new release introduced small amount of
changes, which did not create any severe problem regarding familiarity of the software.
The major releases, however, did not confirm this law. These releases were found to be
introducing large amount of changes as compared to their predecessor releases. Even in
some cases, a new major release was too much different from its predecessor that users
preferred to use outdated release instead of learning later one. Thus it can be said that
Linux didn’t fully validate the law of “conservation of familiarity”. It was also observed
that the quality of Linux didn’t decline with its evolution. It was basically a result of
continuous efforts made to maintain quality. It can, however, be assumed that if those
efforts were not present then new versions may lose their quality as compared to the old
ones. Thus Linux validated the seventh law of evolution according to which quality of
software application declines with its evolution unless efforts are made to maintain fit.
The module increment made in each releases was found to be in-variant on average. The
graph line was found to be fluctuating on average line with positive and negative ripples.
It is an indication of the trend that the number of modules added to each release tends to
remain same. A release with large number of added modules was found to be following a
release with small number of added modules to balance the average. It means that

growth and anti-growth forces have balanced each other to maintain the level of

66

increments. It is in accordance with the law of self regulation, according to which desire
for growth and constraints on growth balance each other, and as a result software grows

at a constant rate.

5005 - LOC - All Directories

]

i

4.5¢+005 - s
3e+006 - | 25
3.5¢+006 oy

2e-+006

oy
ur

1.5e<008 ,_J
1006 S el

305000 wrae e T o o mnmmmrene

0 Lo

98 9 00 01 02 03 04 05 906 o7 08
Figure 33: The total LOC of releases plotted against time [Israeli and Feitelson 2009]

Number of Functions — All Directories
180000 H 55

180000 + 213?
140000 LT s
1200G0 + R
1206G0 A

kS

80009 A ,, B
80000 4
40000 - - e

Figure 34: The total number of modules of releases plotted against time [Israeli and

Feitelson 2009]

67

790 - Incremental Change in Number of Files

*
00 7

£00 - - .

200 1

300 - S E : e : : . : . : Fugaze rpRTert
200 t

100 A

0 - r T T T
o4 as o6 o7 36

Figure 35: The increment in releases plotted against release numbers [Israeli and

Feitelson 2009]

2.10 Growth, Change, and Complexity of Nagios {Bonkoski 2007]:

Bonkoski studied evolutionary behavior of a widely used relatively small size open
source application with respect to growth, change and complexity. The one point aim
was to compare evolutionary trends of open source applications with those of commercial
applications. At that time, the evolutionary trends of commercial in-house applications
had been determined and had bzen summarized in the form of eight laws by Lehman and
his companions [Leh 78], {Leh and Ramil 2001] and [Turski 96]. These laws were
proved to be valid for all type of commercial in-house applications, regardless of the type
of organization and its environment. All case studies of commercial applications proved
these laws. So these have been universally accepted and believed. However, validity of

these laws for open source applications was still a question. Because certain studies had

68

disproved some of these laws in case of open source applications. And it was o hot topic
for research community that either those laws, which were derived during the study of
commercial applications, held for open source applications or not. That’s why Bonkoski

performed this case study to add his contribution in this area of research.
2.10.1 Software Applications:

The software application studied by Bonkoski was a widely used application, named as
Nagios. Nagios is used as a system administrator tool to ensure system’s availability. It
checks availability of the critical services of a business application and informs
administrator about any availability related problems before those problems are faced by
end user. This application is written in C language and has been proved very popular in
users and developers community within a short period. According to the facts available
on sourceforge.net, Nagios was downloaded more than 1.2 million times during the
period of 4.5 years (Nov 2002 to Apr 2007). This application is relatively smaller in size
as compared to those observed by other studies in this research area, like, [Godfrey and
Tu 2000], [Robles et al 2005] and [Israeli and Feitelson 2009] etc. These studies
observed very large size open source applications like operating system kernels etc.
Another difference of this application form those of others in this area is that, this
application didn’t have a very long evolutionary history. Its first Version was released in
2002. And at the time of study, 20C7, it had just three major versions. Thus at the time
of study, it had just five years evolutionary period to be observed. During these five
vears, its three major and many minor. versions had been released. This study did not

cbserve all of those versions, but it selected nine of them for observation.

2.10.2 Research Methodology:

69

This study observed Nagios from two perspectives, growth/change and complexity. For
this purpose they used seven different measures. Three were size related measures used
to observe change/growth and four were complexity related measures. As mentioned
above, they studied total nine versions of the application released with a period of nearly
five vears. The source of versions was sourceforge.net which is a large repository of
open source applications and has been used as a source of information in most of the
prior studies in this area. In order to calculate different measures, they used an evaluation
copy of Karakatau Metrics tool. This tool is written in Java language. It imports source
code and calculates different types of software measures. The results generated by this
tool were parsed using a scripting language and loaded into a database. Then database
was queried to extract data. The results of queries were saved into Excel files to generate
graphs. The size related measures used to observe change/growth trends were, SLOC,
number of functions and number of downloads. Bonkoski believed that SLOC alone is
not enough to represent all aspects of software growth. There are certain aspects which
can not be represented by SLOC, like code refactoring or optimization. So they counted
number of top level functions as well, to observe a full picture of growth. Moreover they
also counted number of times, Nagios was downloaded by users community and
considered the number of downloads as an indicator of growth and change. It is the
unique point of this study because no other study has used number of downloads measure
as an indicator of growth. The complexity related measures used in this study are,
McCabe’s cyclical complexity, Essential Complexity, NEST complexity and Halstead
complexity. The first measure, McCabe’s complexity is calculated on the basis of

number of decisional paths used in the code. The Essential complexity is calculated same

70

as McCabe’s complexity, but before that code is restructured to its most primitive parts.
The NEST complexity is calculated on the basis of nested structures used in the methods.
And finally the Halstead complexity is a measure of the number of operators and

operands used in the code.
2.10.3 Observations:

In order to observe the change and growth trends, two of the size measures, SLOC and
number of functions were plotted against the release numbers. The result was a clear
increment in both of these measures along with releases. Means each new release was
observed to be increasing in SLOC as well as in number of functions, as shown by
figures 36 and 37. Thus it proved that the application, means, Nagios has continually
grown and hence has continually changed. It was also observed that the growth rate was
linear with respect to each of these two measures. The number of doﬁloads as recorded
from the website sourceforge.net was plotted against time (years) and it was found that
Nagios had continuously gained attention of more and more users. User community was
found to be attracting towards Nagios rapidly. The results of plot are a clear evidence of
this claim as shown by figure38. It can clearly be observed that the graph line has moved
upward rapidly, thus indicating that number of downloads have increased every year with
a significant figure. As already mentioned, Bonkoski has considered increasing interest
of user community in an application as an indicator of applications growth. So he
concluded that because number of downloads of Nagios have increased rapidly, therefore
this application has grown continually. In order to observe the complexity of application
over time, the different complexity measures were plotted against releases. As already

mentioned, four different complexity measures have been used in this study, McCabe

71

cyclical complexity, Essential complexity, NEST complexity and the Halstead
complexity. Each of these measures was plotted separatgly and results were shkon by
figures 39, 40, 41 and 42 respectively. It can, once again, be observed that each graph
line has moved upward nearly with each new release, thus indicating that complexity of
the application has increased in all perspectives. There is just one instance of reduction
in complexity in case of Essential complexity, when transition occurred from release 2.8

to 3.0 (figure 40). Except this one case, there is no instance of reduction in complexity.
2.10.4 Conclusions:

The application (Nagios) has been found to be continually increasing in size frpm all
perspectives, which proved that Lehman’s first and sixth laws apply to Nagios.
According to these two laws, a software application continuously changes (first law) and
continuously grows (sixth law). Thus we can say that these two laws of Lehman have
been verified in this study. Moreover the graphs of different complexity measures also
showed an upward trend, means complexity of application has increased in different
perspectives. It is clearly in accordance with the findings of Lehman, which, he
summarized in the form of second law, “increasing complexity”. According to this law,
the complexity of an application increases with time. As the complexity of Nagios has

increased with time, thus it proved that this law has too been validated in this case.

72

70000
80000

20000
22005
10000

=]

L]
4

1.0 1.2 1.3 20 22 24 28 28 30

Figure 36: The SLOC plotted against releases [Bonkoski 2007]

gEE&E

28]

g8

80
780

760

1z 1.2 14 20 22 24 28 23 20

Figure 37: The number of functions plotted against releases [Bonkoski 2007]

500000 -
400000 -
300000 P
200000 P

100000 T ,

] / -

2001t 2002 2003 2004 2005 2006 2007

Figure 38: The number of downloads plotted againét time [Bonkoski 2007)

11.80200 4-

11.60000
11.40000
11.20000
11,0000
12.80000
1£.60000
1240000
1520000
1260006

=000

Figure 39: The McCabe’s cyclical complexity plotted against releases [Bonkoski 2007]

L)

14

8 28

(i
[]

245000

[4

L

240659

235020

2.30620

225000
2.20000

L 4
L .

215040

210030

Figure 40: The Essential complexity plotted against releases [Bonkoski 2007]

1.0 1.2

1.4

20

22
=

24

28

2.4

30

2500 - : _
e — . —= = + + — :
1500 : , |
1000 +
€00 +
0 , : : :
19 12 14 20 22 24 2 23 30
Figure 41: The NEST complexity plotted against releases [Bonkoski 2007]
19920.00 .
9830 L0 Fadiu|
= - i
&500.00 T !
406 CO pe * > bR ;
200.60 // - !
$030.00 +—* + , : ;
£830L00 4-r E
2626 CO '
3430 CC . : : . . :
1c 1.2 1.4 23 22 24 25 2% 3G

74

Figure 42: The Halstead complexity plotted against releases [Bonkoski 2007)

2.11 Growth, Complexity, and Quality of Firefox [Dong and Mohsen
2008]: |
Dong and Mohsen found that the laws of evolution proposed by Lehman were basicaily
for closed source applications, so they may not be valid for open source applications.
Their assumption was on the basis of certain facts which include:

» When Lehman initially proposed these laws [Leh 78], then open source
development was not popular, therefore the main focus of every type of study at
that time was commercial in-house applications.

» Lehman proposed these laws on the basis of some case studies, which all are
commercial applications, means none of which is an open source application.

> The statements used by Lehman clearly indicate that the type of projects, he was
considering, were those controlled by strong manﬁgements. And those types of
projects were not under his consideration in which management has less or no
control on developers.

Moreover at the time of this study, some cases had been recorded in which open source
evolution was found to be deviating from the patterns of Lehman, the most prominent of
which was the study of Godfrey and Tu [Godfrey and Tu 2000]. In Godfrey’s study,
Linux had been found to be evolving at a rate different from Lehman. So the main
question of this study was that either it is just the single case of Linux in which Lehman

laws were. disproved or other open source applications too show a deviating behavior

from Lehman’s patterns. This study, not only tested the laws of Lehman on an open
source application, but it also suggested a modified version of these laws on the basis of
their own observations as well as observations of their pioneer studies especially by
Godfrey. In that modified version of laws, they excluded some of the existing laws (of

Iehman) and suggested some more laws on the basis of their own observations.
2.11.1 Software Applications:

The software application observed by Dong is a well known open source web browser,
Firefox. It is a very commonly used web browser which have a large community of users
all over the world. It is mainly written in three languages, C++, ANSI C and the
assembly language. Its different releases and their source code are freely available on its
website. This study covered its 4.5 years evolutionary history from 2004 to mid of 2008.
There are two main types of releases of Firefox, trunk and branch. Most of the
development activities are performed on trunk releases. When a trunk release is found
ready to be delivered as a version, then its code is frozen and is given to different teams
for quality assurance and bug fixing. That frozen version of code is identified as a
branch. After a branch is released, the trunk is unfrozen to absorb more developments.
For each major release of Firefox there are some associated alpha releases, beta releases,
release candidates and dot-dot releases. Dot-dot releases are basically including security
patches and updates.

2.11.2 Research Methodology:

As mentioned above, the source code of different versions of Firefox is freely available

on its website, so the authors of this study got source code of different versions from that

76

website. Then they calculated different types of measﬁes for each of those veréions,
including LOC and effort (measured in man-month). In order to count LOC, they used a
tool SLOC-Count. The evoluticnary period covered by this study is spread over 4.5 years
starting from 2004 and ending at mid of 2008. Dong and Mohsen realized that observing
the applicaton as a whole is not enough, but one should also observe the
components/subsystems separately to get a true picture of evolution. Considering the
application as a whole and ignoring the behavior of its individual components may cause
to mislead us. As an example they pointed out the difference of LOC between releases
2.0 and 3.0 of Firefox. There was a significant decrerﬁent in LOC of release 3.0 as
compared to its predecessor release, release 2.0. But it was because that a major
component “mailnews” was removed from release 3.0 considering it an extra component
that should not be a part of web browser. Otherwise the size of all other component in
release 3.0 was increased as compared to refease 2.0. And if “mailnews” were not
removed from release 3.0 then it surely would be having larger LOC than release 2.0. So
the authors concluded that it will not be fair to say that Firefox lost its size from release
2.0 to release 3.0, because it was due to a specific reason. The true is that it grew in size.
The authors also considered the architectural changes that happened to Firefox as it
evolved. Moreover they focused on the languages used in development, that how the
language choice of developers changed over time. They observed that which language

was preferred by developers more and which did lose its favorability for developers.
2.11.3 Observations:

In order to observe the change and growth trends of Firefox, the LOC measure of

different releases was plotted against time (years). It was observed that Firefox had been

77

continuously increased in size between 2004 and mid-2008. It was also observed that the
rate of growth was larger in initial period as compared to the later period. Means it was
observed that growth rate had been decreased over time. The graph of LOC versus time
(years) has been shown by figure 43. There was only one incident of decrement in size as
it evolved from release 2.0 to release 3.0, but it was due to removal of an un-necessary
component from the application (Firefox), which in-fact can not be considered as an
evidence of size decrement. The growth rate of each individual component was also
observed, because authors realized that it was necessary to view the true picture of
evolution. It was found that the core components of browser remained almost stable.
The components which showed the continuous increment in size were security, DOM,
JavaScript interpreter and accessibility. Other components, which include user-interface,
networking and parsing etc, also remained stable. Moreover the architecture of browser
also remained stable to a signiffcant extent. Although changes occurred in it, but those
were minor. No major changes observed in the architecture. As for as the languages
used in development are concerned, the C++ was the most used language, however it lost
its ratio in the later releases. Its one reason was the removal of the “mailnews”
component from browser which was mainly written in C++ language. The second large
language was the ANSI C and third was the assembly language. The ratio of assembly

language was found to be increasing in the later releases.
2.11.4 Conclusions:

As mentioned above that Firefox was found to be continuously increasing in size, this
indicated that Lehman’s first and sixth laws proved in case of Firefox. Because

according to these two laws, software systems continually change (first law) as well as

78

continually grow (sixth law). Moreover the growth rate was found to be decreasing with
the passage of time, which also proved fifth law of Lehman, according to which growth
rate of an evolving application tends to decline. Although fifth law was proved in this
study but the authors didn’t include it in their modified version of laws, because it had
been disproved in the study of Linux by Godfrey and Tu [Godfrey and Tu 2000]. It was
also concluded that the decrement in growth rate would be due to the fact that the
complexity of application would have increased, so it would become difficult for
developers to add more functions. Thus the decrement in growth rate was considered a
consequence of increment in complexity, so it was concluded that complexity of
application had increased, which verified the second law of Lehman, according to which
complexity of software applications increases with time unless work is done to control it.
Increment in complexity means the poor structure of program. It means that the
application (Firefox) has lost its structure with its evolution. In other words it degraded
structurally with time. Thus it lost its quality with time, which proved the seventh law of
Lehman, which says that software applications lose their quality, as they evolve, unless
we do efforts to control it. The work rate (effort) was measured in man-month and it was
found that work rate was tending towards stability, which is an indication of the trend
stated by Lehman as “conservation of organizational stability”. Lehman quoted this trend
as fourth law and stated that the effort spend on each release remains in-vartant. In this
study, Dong and Mohsen too observed that effort had tended to remain in-variant.
However they realized that they had not sufficient evidence to say with confidence that
this law has been proved in their case study, because some more observations were

needed to get confidence about validity of this law.

79

- i -
-~ . 3.0k

e -
- ‘vu,:‘j—.’ T T T T T
-

30= 230+ ¢ ~333% 23353 2535 23355 2317 275 2333 2333

(8.}

| Figure.43: The LOC of releases plotted against time (years) [Dong and Mohsen 2008]

2.12 Growth and Change Trends of 8621 OSS [Koch 2005]:

Open source applications differ from commercially developed in-house applications in
certain important aspects, which cause to change their processes from those of
commercial applications. The basic difference is that open source applications are being
developed by people who are not working under the control of a strong management
which can push them to do something. They are not usually working for monetary gains,
but their efforts are a result of their own interests. The open source development, being a
relatively new area, is not as mature as the commercial aevelopment is. The software
processes for commercial applications are more defined and tested as compared to open
source applications. This is the reason why open source processes have got much

attention of researchers in the past decade. It has been a favorite area of researchers to

define and test the open source development processes and to compare them with those of
commercial application development. One of these software processes is the evolution
process of open source software applications. Like other software processes, the
evolutionary processes for commercial applications have been defined, validated and
universally accepted. The evolutionary trends/laws have been defined by Lehman and
others in different studies like, [Leh 78], [L.eh 97a], [Leh 97b], [Leh and Ramil 2001] and
[Turski 96]. These laws have been tested in many case studies and found to be verified in
all cases. But the question for researchers, in the current decade, is that either these laws
hold for open source applications or not. Open source evolution varies from that of
commercial applications evolution in many aspects, like, in case of commercial
applications, it is possible to mark clear distinction between the development and
evolution process, which in case of open source develobment is usually not possible.
Simtlarly open source applications are usuatty deveioped following the rule of “release
early, release often”, which is not suggested in case of commercial applications
evolution. At the time of this study, some researchers had already tested the evolutionary
trends of commercial applications (known as Lehman laws} on open source applications,
most important of which studies, was that of Godfrey and Tu [Godfrey and Tu 2000]. In
that study a large scale and widely used open source operating system “Linux™ was
studied to test the Lehman’s laws of evolution. And it was observed that Linux was not
following some of those laws. The present study is also.a contribution in same type of
work. It has tested Lehman’s Jaws on a large collection of open source applications

belonging to many different domains.

2.12.1 Software Applications:

81

Koch observed 8,621 software applications in this study. All of those applications were
open source in nature. [t is a very large number and no other study in this domain has
observed too large set of applications. Moreover this set included all type of applications,
large size, small size, successful, failed etc. Similarly, the applications included in this
set did not belong to some specific doman. but belonged to many different domains. The

total number of files, for the whole set of applications, were 2,474,175.
2.12.2 Research Methodology:

The source of applications, observed in this study, was sourceforge.nef, a well known and
most commonly used repository for open source applications. This repository was
established “to enable open source community (developers, researchers and users) to
manage and control open source applications. It hosts thousands open source
applications, from where users search and download applications, developers launch their
own contributions as well as observe others contribution and researchers find the data
about evolutionary and other characteristics of applications. This repository is especially
helpful for the researchers who study the evolutionary trends of open source applications,
because it enables them to get the timely (monthly, quarterly etc) snapshots of the code of
applications hosted on it. For this purpose CVS or SVN clients are used, which
download the timely snapshots of code from the repository. Koch, in this study, used the
same methodology, means he downloaded the timely snepshots of code for all
applications from sourceforge.net using a CVS client. He started from the start date of
project/application and downloaded all monthly snapshots of code till the date of study.

Then he calculated different measures for all those snapshots. including size (measured in

32

LOCQ), total number of files and number of programmers. Most of these measures were

calculated using Perl scripts. And results were stored in a database for further analysis.
2.12.3 Observations:

It was observed that total 7,734.082 commits were made to the whole set of applications
with 663,801,121 LOC added and 87,403,383 LOC deleted. The total number of
programmers who contributed in the development was recorded 12,395, In order to
observe the growth trends of these applications, two mo&els were proposed, linear and
quadratic. Both these models were proposed by taking application size (in LOC) as a
function of time. Linear model was named as model A, whereas quadratic was named as
model B. These "models are given as:

Model A: S(t)=a*t+b

Model B: S(t)=a*t2+b*t+c
According to the results of these models, all applications had grown over time. Then a
statistical test was made to observe the long term tendency of growth rate and -it was
observed that growth rate had been declined for most of the applications. From the total

sample, 61 % were found to be declining in their growth rate.
2.12.4 Conclusions:

As mentioned above, all applications included in the sample were found to be growing
over time, which clearly proved the first and sixth laws of Lehman. According to first
law, software applications must be continuously change, whereas according to sixth law,
software applications must be continuously grow. Similarly a large number of

applications (61 .%) from the observed sample also proved fifth law of Lehman,

according to which growth rate declines over time due to increase in complexity. Koch
also compared those projects which had declined in their growth rates with those which
had shown an increasing growth rate. He found that the applications which had declined
in growth rate were all large scale applications with a large number of programmers
participating in them. From where thev concluded that the large scale open source
applications with a large community of developers don’t decline in their growth rate and

hence they disobey the fifth lav of Lehman.

84

[9007 12 10 suowtg] pue [90Qz urwarg pue eiaunzy] {500z 12 10 $91q04] ‘[0007A213pon] satpnis ay jo uondurasop pazireuiwnsg 1 3|qe L

paAoidsip
SAME] PUOD3S PUB LI} S UBLIYSN

suoneaijdde aainos uodo
10J a0} SPOY MEB{ YY1 S, UBIY3]

paAoldsip mE| yUno S, Uewiyar]

xnur £q pajepijea aq 1,ued
SME| YlJ1] pUR YInog s, uewys

SUOISN|3LUOY)

paseanuy sey spuesado

ue sojedado jo raquinu 03 3oadsal
ysm yoeylaN Jo Anxajdwios ay |
‘paseasoap sey

yied uonnoaxa 2y 03 1vadsar ym
yoryiaN 2ur Jo Anxadwod ay|

, ‘(A teou

sieak ¢7) ueds awn Fuof v 1940
1182 Jeaul| £ 18 umold sey YO8N

2)R1 JBAUI| ¥)8 UMOIT
AT (ISE19214 pUE XnUuIT ylog

a1 IM0IZ Jeauf|
pomoys suonealjdde sagio gy
‘ajel Jeaul]-1adns e Je smold xnui

ajet apaul]-radns e e smosd xnuin

SUONBAIISQ()/SBUIpUIy

Aixapdwion
a1y Yymorn

2Ry YIMOID

ArY YimoIn

1Y MO

POAIISQQ) SHSIIaYORIEYD

1u-adI0}a2n0g

(1SA9211 jo A1ousodatl SAD
‘5050010 XNUIT 10} 2)1SqaM XNuI

13U
uo sauonsodas ajqe(ieae Af[ealjqng
ANSAIAY SIATYDIY [2U 1Y XTI

DUSQIA SIAIYDIY [AULY XN

Pasn
UOJJetIIO} U] ISBI|OY JO 22008

s3e1) RRQNXT

WD 1d133s [1ays qduag Jme, uy
1} PURISIIPUN,, [00] [BIZIAWLIOD Y ‘punwiues 1-om,, XINN wrin)-301S ' [-9m,, puBlILIOD) XIuf} pasn sjooL
ueaad(pue siojesadQ Jo Jaquunp sall} H pue
*syred 0 10] DO7 uzipaw pue afelaay
1011N93x%3 Judpuadapul Jo Jaquiny 213 (s91) SOJIBIA 29 SI|qelIBA

'SUOIIOUNJ JO Jaquinp

13pB3Y) §] 'SY + D) ALY O Oy

‘suoijouny] 1eqoid Jo Jaquinp

‘30T pauswwo) 's9|1J Jo 2dA) Ju2ISJIP JO J3qQUINN xnui ysnf 1oy 591} Jo I3quinu pue ‘3071 pajualuLosu
‘307 21qeINdexy SALI0IIINP JO JAQINN w0} passardwos ut 3215 3583y ‘301
D01180L D071 [®eL ‘suolyeorjdde ‘(o]
‘aZIS a5B0|a1|RI0] ‘(sm£qy ur) azis asea[u oy, (12 0] DO PRAUIUNLOI-U[) passaldwo)) azig asealay [=10], pas(y sansesp
£00¢ 210w 10 s1eak 1noj Jo poliad B 1340
10861 prut woyy pourad uennjoagy ASg99al, Jo sasea[as pe | suonearjdde sayjo [[e Jo sioysdeus pa1aAa0))
‘saseajal z| 'XNUIT JO SISeIM L7] A[yluow *xnui Jo sasea[as Ogs S3TB2|9Y 96 PoLIdd UOIIN|OAT / SUOISIOA JO #

3sinog uadQ

aaunog uadQ are ylog

aa1nog uadQ e ||y

aainog uadQ

uonesljddy jo adA]

sulewiop jo
sad£y uaia)yp 01 Suofaq Jao §i

Jwen swosAg SunesadQ aue tpog | pue §O e Ajlwiey (gsg pue xnuig woisAg JunessdQ uy uoneaddy jo ainjen
asge=id suoneordde Jayjo g pue
FOBYION ‘xnui] | sjoused] Ajnuwey Sd ‘Jeudsy xnui [ouIay xnul paiprus uoneolddy asemyjog

[9007 te 12 suowuns]

[9007 wemg pue eaunz]

[s00z 1e 10 s91q0Y]

[000ZAa13poD]

[6007 100qbe]y pue 1y] pue [9007 fe 10 zieraH] ‘(600 [e 12 21X] ‘[+00¢ I® 13 ddnpide]] isa1pnis ay) Jo uonduosap pazuewwng 7 J|qe

paa0d sme| YUY PUB YUNOJ S, UBLILRDT

PAAIQUK| KME] Y] PUE LIN0J S UBWIYY]

pauLlijuod aq jou

PINOD 10 PALIUOD JOU 219Mm Sme yiydis
pue (UIAIS ‘YY1 “YLINO] ‘ParlLaA sme|
YIXIS PUB pAY] PUCISS “ISIL} 5, URIYD]

VTV Jo asea
ut poaosd Smeg YIXIS pue Yy §,Ueiuga

SUOISN[OUOTY

59589 15O U] JUFISUOD
yotrewsad sajed a3ueyd pue (mosd yiog)

synsas Jo adA) owes

PAMO¥ SO[NpOLU JO 1aqunu pue DS
ieg] *puad) Ymold 1eautj-qns pamouys
DALY PUB JEDUI] PIMOLS INGY “Iuaul-Jadns
pamatys suotiealdde uasuny at jo xig

oLlies

PAUTEIUDL JOU PASEIIOIP 13U YmoId
(muawasouy ‘sayddu pamoys (imoss
|EIUBWIA] ‘paseasaul aaey suenedl|dde
ne jo Anxaduoyy ‘umoad pur padueys
A[snonunuod aaey suoneaidde [y

(s1ap|oy

204N08 0 Jaquunu 3y Wdaoxa) ajer Ymosd
JURLIBA-U] PAMOYS SIINSERU |1y ‘1m0
SNONUNUGD & PIMOYS SAINSEIW [[V

SUOHTAIRSq()/STulpu,

23uey)) 'Imoan

qmoIry

Aengd) a1ey YImoan) Ymosn
[euswuasau] *Axa|dwao) *a3uey)

moID

POAIISGQ) SAISINDEIEY))

SO HIETINRRIN
pouoluay KIN

sautonsodar gAD

Ny wingy jof suoneardde asamy Japo jo
sponkcduun 2 poriad oyl SENY A aTISqIM
XBUP [1101 10T 21am SUCISIAA XNUTT

sauonsodal augng

santonsodar §A D) a(qe|iea £f|ea1ign,]

PAS) UONBILIOJU] 3500]2Y] JO 204N0G

T une-J071S soslan|nD

WSY ‘1QLsy “odiew)

1198 yme 298X, SANINn XINN

PaS(] S[00],

soBuoia

JO 1aquunu |B10, ‘PaljIpowl S3|hputy

O JAQUINYN "PIAAP SINPOL JO JaqUINN
‘pappe SI|NPOLY JO IDGURN “DoUIIjIP
S3INPON *S3|NPOW JO IDQUNU [B)0 |,

{39(1) 22N08) Fa|RPOW JO PQUINN *DO'TS

Pappe $a(NpoLl JO Jaquuny ‘paiajap
s3|qeLeA |eqe|d Jo soquInN ‘pa12|ap sadA)
10 I3qUINN ‘PAII[Ip SUot)stry Jo Jaquinpy

‘pappe sajqersea [eqo(d Jo JaquunN
‘pappe sadA1 Jo JequinN ‘pIppe suonauny

10 1aquunp “paijipow sajqeLea [2qo|d
10 requiny “‘payipow sadA) Jo sequinN
‘PALIPOLW SUONIUNY (O J3QUINK ‘D01

$19D]0} 32IN0S JO IIqUINN
IRIOL S L] 33008 JO IdqUINN 2101 {51
1) 531} 224n08 Jo 9215 9101, ‘D07S IO

pas[y sanseajy

(suciSIaA gp) aoumiAg
(SUOISIaA €]} UOLIESISAUCY] (SUOISIoA
891) IWOND *(SUOISIA gp) k0]

{sv) asawn (z1) asauadp

(9p) sy “(eeg) X1 (1)
9ROVAIX ‘(S 1) sonur X {67) s1Tptaxm
(1LY stnay (1) uo&d (Z21) s|e0-a4d
*(9p) aj4u ‘(1) vonnjoag ‘(y1) eAewry

(suoisian gz} edden()
‘(suotsIan 09) (d.LASA ‘(Suorsian

ZL1) A1DS ‘(sueisiaa gL) HSSUAdQ
‘(suoisaaa §91) ANIM ‘(suoissoa

. _.LS) ewipuag *(SUOISIoA £3) equieg

(£00Z 92 ©1 8661 3.} 5434 pal
Jo pouad e 3unnp pIsea|=t ‘SUOISIIA 79

P3I3A0]) POLIZJ UTIIN|OAT / SUDISISA JO #

suonea|dde
204nos uado 3[eds |[BWIS d1g NOJ |[V

asunog uad(y v

20unog usdQ |y

221nag uadQy

ucngaddy jo ad£ |

{19mata Juatnosop
7) 9ouiAg ‘(Juswuonaua dopysop
QA 40] WD Y] Ue) uoLjesisAuoy

‘(xnur 1oy dopjsap &) JWOND
(1001 Y8ueyaxa elep) JUaL0 1Y

(wosds Funueodg o wed 218 [j) SppUIRY

Aiuep Sg 248 204) 158 XAUINND
uriqaq Jo sofeyored Jofew e uay s

(owdoaAsp 19101 J0) 1INS |001) €9aeny)
*(jooooag Jajsuel] o1} QdLASA
‘{ouiBua T0OS) AUTHS (Joo Himaas
yiomisu) Hesuedp ‘(1oas0g SNQ)

QNI {1001 Jajsuer [1ewr) pepuag “(jooy
ANj1qeIeIadoaIUl J3AI9S-1U1|2) BqUIRS

wAsk;5 3l pAnqLISiC]

uonexddy jo amey

DDUIAT]
“UOIRSINALOY *FINOND U0 | Y

. dsHreN

‘qsguedQ ‘(§goaLs ‘xnur| ‘9gassyx
ALY H19EPI A XM fBUIM “UoIAY
$100 =04 *3)jey) ‘uonnjoas ‘edewry

#3300 ‘Ad.LASA WTOS
‘HSSUaQ ‘NI ‘[IBWpUDS ‘Equieg

VTIY

paipmg uonedddy aemyjog

(6007 [00qbey pue i]y]

19007 v 1° ZrmudH]

{6002 1210 21X]

{p00z 1815 iddnpde]

{5007 Yoo} pue [800Z Uasto pue Buoq] ‘(2007 Pisoyuod] {6007 UOSIANA,] pue I[deIs]] :SIIPS oY) Jo uonduassp pozirewIUng (€ 91qE]

suoneoijdde ajess sdaey Jo ased uy
HJLIDA 10U SBM MEB] UYL 2] SEIIM
suonestjdde jo adA) pe U1 pa1juIaA
219M SME| LIXIS PUB 151 S UBLULDT

"30UIPIAT JUIIDILINS-UY

Yim 1nq ‘pasord me| yunog 'xojand
JO 2882 U1 paaoad SMB| YIUaAIS pue
IXIS UYJ1) ‘PUODDS “ISII} S, HBUIYDT]

payLIaA
SMB] LIXIS pueR PU0DAS ‘1811 S, UBIUYIT

20U2pIA2 3low sannbas uonepijeA
S} INQ pAIEPIEA SeM ME| DIIY],
‘pareplieAa £[1101 JoU Sem me| yU1d
‘PIIBPI|EA 3IIM SME] YIUDIAIS pue
XIS ‘YINOJ ‘puodIs)51 S Ueuya]

SUQISN| U0

paut{aap sem)t ‘suoneatjdde uas
[[EWS JO 35BD UL SEAIIYM Paul|Hdp
j10u sem suoesrjdde ajess adau jo
1ex moad oy ‘umoid pue paBumd
A[snonunuoa suonesljdde ||y

o) um paseasnap Aljenb pue
passaaony uonenn|dde jo Ayxapdwo)
FAUINA-I SPIRMO) ADUapUD)
PRMOYS MOJJEL W UM PISeII0Ip
ams Imoll oy ‘(pefueys ssuay
pug) umoid A[enunuod pey xojailg

awn

paseasaun saey sanseaw Axadwos
N0y |12 9y, ‘anfeA Juedijiud|s

B AQ JeaA 4oED pasealdul aAey
SPEOJUMOP JO Jaquinu 3t] ‘suonoun}
JO Jaquinu pue DO7S 03 193dsas
ynm umoad A[jenunuoo sey soideN

W1 YUM paUrtosp Jou
sem Kjtjenb azemyos sy ‘sasea|as
AuBwl AQ pauieLIaIu2 Jou Sem Inss!

ALEI[IWE) S1BMYOS Y], “UBLEA

-UL ISOLUE PaUIBLLD] 31R1 Y10M Y],

‘a8J2A1 UD DWES UIBWIAI O] PIPUS)

JUSWLDUL ISES| 2 AU |, ‘paseasul
sey Ayrxajdwos apos jjeiano

3yl ‘umold Ajjenunuod se jam
se padueys Afenuuocs sey xnu|

SUOIBASISQ)/STUIpULY)

oy ‘auey)

Apeng
*Anxadwio) ‘ol ‘yimoln ‘aduey)

Axardwo) ‘yimomn *aduey)

Aend
“yimorny ‘uoyyq Auxardwo) ‘aduey)d

P3AIasSqQ) SONSLADRIRYD

12u-ad10j231n08

2)IsqaMm XOJall]

19U 3910J351n08

2115q2am Xnul]

Pas(] UOJeUII0U| 258D|9Y JO 92IN0Y

132x3 sy 29enFue)

|00y umo 112y padojaaap

1duos pag wneD-001s Fundog ‘oo soLnIW nejeyeIRY SE [|[9M SE |00] SV 8122900 Y pas() 5|00y,
s Jel
. . aseajay “(qunys 7 umoid ‘pajajap
Auxapdwino peagsjey | ‘pappe) pa|pueyf s3|npow Jo Jaquinp
‘Auxa|dwos 18aN ‘Aixajdwod | ‘safl) Jo Jagquunu Ul JUIWIDU| 358I[Y
[euassg ‘Anxajdwiod 2ok ‘Auxadwo) peanser, {ODNI)
srpwwesJord 5,93 ‘SPROJUMOP JO IaquINp

Jo aaquinp ‘sa1)y Jo Jaquinu ‘D07

(yeow-uew ug) WOy ‘001

‘suonpunj Jo raquiny ‘0TS

DOW papuaixg (Do) Aixadwo))
Qe ‘sa[npow Jo RpqunN ‘01

pasn) sansespy

paaiasqo sem uonestjdde yoeo
o joysdeus Ayuow e ‘Apms Jo awm
np [n 10aford Jo d)ep IS 9Y) WOl

800¢ plw 0}
p00Z Wolp posad UCHN|CAS PaIaA0))

poltad
AreuonnjoAa siesk ¢'p ‘SUDISIIA §

8007 1sn3ny 01 $661 YW
U23M)2q Pasealay SUOISIAA (|8

PRIaA0))
POlIad UQIINJOAT / SUOISIA JO #

asaneg uado 1Y

20:n0g uad()

axnosg uadQ

201nog uadp

uvonexnddy jo ad&)

suIBIOR

a13)11p 01 Suiuojaq pue papie)
‘|nyssa0ans ‘azis ad1e| ‘azis ||ewS
‘suoitesi|dde Jo sadAy [[e papnjow
yoiym ‘sucyesrjdde jo yas ofie) v

19SMO01g qIM

RL1qe|1eAB SWAISAS
2INSU2 0] PIsn [00] JOJRASIUIWPE UY

waskg Juumadp

uoneotddy jo a:neN

pa1pws suonedfjdde | zg'g (10|,

X0Joll]

soIdeN

xnurg

paipnig vonesyddy asemyos

[s00z Yooyl

"[300z vasyoN pue 3usd]

[Zo0z soyuog]

[600Z UOS|2)13 pue 1[3eas]]

CHAPTER 3: RESEARCH METHODOLOGY

Introduction:

This chapter describes my research methodology in detail. The information given here
can be used to repeat this work as well as to perform some other work of this type. It
gives a detailed introduction of the techniques and tools which have been used for getting
the older versions of my studied ERPs, the tools used for calculation of the different size
related measures (like SLOC) for each of those versions, the tools used for preparation of
results and finally the techniques used for analysis of different types of evolutionary

trends.

3.1 Open Source ERPs Selection:

An Enterprise Resource Planning (ERP) is an automated system used to manage the
entire business. It provides information about the important parts of a business, which
information can be used to manage that business. It provides management information
about products, suppliers, customers, stock, orders, manufacturing, sales, finance, and
human resource etc. It helps and enables management to monitor the performance of a

business with respect to its objectives.

88

At my proposal stage, I decided to choose the systems for my study from ERP domain.
So my first task was the selection of open source ERPs on which I will test the Lehman
laws of software evolution. My study will be the first one (in published literature) in
which validity of Lehman laws will be tested on open source ERP systems.

For my study, I decided to select those ERPs which are a-mong the most popular cnes in
user’s community and which have higher ratings. Moreover I decided to choose those
which are all developed using the same programming language, so that the size measures,
like LOC and SLOC, can generate consistent results. On the basis of these factors, I
selected the following three, Openbravo, Adempiere, and ApacheOFBiz. These three can
be placed in the list of top five open source ERP- systems [Linuxlinks 2011] Moreover all

three have been developed using the same programming language, i.e. Java.

3.2 Getting history (old versions) of my studied ERPs:

I got past versions of my studied ERPs from their repositories which are available online.
Not only my studied ERPs, but most of the open source applications are being maintained
in the form of online repositories. These repositories are a best source to get history of
these applications. These repositories are maintained with the help of version control
systems. Once we create repository of application with the help of version control
system, then version control system keeps record of all types of changes made to that
application. Whenever someone makes any change to the application, the version control
system creates a new version of that application, assigns it a unique id as well as stores
date and time of that version. In this way the different versions of application are

generated as soon as changes are made to it. These versions are also called, revisions,

89

snapshots or changesets etc. Version control systems allow us to view a list of all
revisions along with their date, time and ids. In order to get any older revision of
application, we just have to tell id of that revision to version control system. In this way
we can get snapshot’revision of application on any given date and time.

There are many repository hosting servers, like sourceforge. and gitorions == These
servers contain repositories of a large number of open §ource applicanens. The most
prominent of which, is the sourceforge, this server hosts repositories of thousands of open
source applications.

During my study, four different version control systems passed through my eyes,
Concurrent Versioning System (CVS), Subversion (S.VN), Mercurial (hg) and Git. But 1
have studied only two of them (SVN and hg) in detail, because repositories of my studied
applications have been maintained using these two systems. Openbravo and Adempiere
have been maintained using Mercurial (hg) and-ApacheOFBiz has been maintained using
Subversion (SVN). | |
3.2.1 Subversion (SVN) versus Mercurial (hg):

The difference between these two version control systems is that SVN is centralized
version control system whereas hg is distributed version control system. That’s why
SVN didn’t allow me to download whole repository of ApacheOFBiz to my local
drive/PC. So in order to get many past snapshots, [have to download each snapshot
separately. But hg, being a distributed version control system, allowed me to download
whole repositories of Openbravo and Adempiere to my local PC. Once I got whole
repositories of both ERPs to my local drive, I got required snapshots from those local

copies of repositories.

90

3.2.2 Tools for SVN and hg:

There are many tools available for SVN, which are called SVN Clients. Some of those
are, TortoiseSVN, RapidSVN, QSvn SmartSVN. Among those TortoiseSVN has more
scores as compared to others. It is used for Windows operating system. Its commands
once it is installed, begin to appear in the windows pop-up menus from whers we =2
easily use them. When it is installed, the windows pop-up menu begins te ook fike:

arrange Icors By »
Refresh

Paste

(7 /SYN Checkout....
P TortoiseSVN 4

New L4

Properties

SVN is also available as an API of UNIX. 1 used ToﬁoiseSVN and SVN which is
available as part of UNIX.

Mercurial (hg) is also available as part of UNIX. A GUl-based tool, called TortoiseHg, is
also available, which, just like TortoiseSVN, used for windows and, after installation,
begins to appear in the pop-up menus of windows. But I didn’t use that GUl-based tool, I

used the hg tool which is available as part of UNIX.

3.3 Tools Used:

The tools which I used during my study include, Cygwin, SLOCCount, TortioseSNV and
MS Excel. From these, the TortoiseSVN, as-described above, 1s SVN type version

control system. And MS Excel was used to generate charts (graphs). The other two

91

tools, Cygwin and SLOCCount are described here briefly with the perspective of my
work.

3.3.1 Cygwin:

Cygwin is a tools which is used to enable/make-available UNIX APIs in Windows. If wa
want to use some of APIs of UNIX in Windows operating system or we want to mum sach
application in Windows which require functionality from UNIX APIs, then we can install
and use Cygwin. As mentioned above, I used SVN and hg tools which are available as
part of UNIX, so I did it with the help of Cygwin. [was also needed some of UNIX APIs

to run my second tool SLOCCount, which too, I made possible with the help of Cygwin.

I got Cygwin from its website www.cygwin.com where it i$ available free of cost.

Cygwin is a very heavy tool which consumed much space (in GBs) on my secondary
storage device as well as much time (in hours) for both downloading and installation.
First I downloaded its setup to my local drive, which occupied 1.84 GB space. Then I
installed it from that local setup and the size of installation folder was 6.45 GB. I did not
change the default installation path and let setup to install Cygwin on default path which
was “C:\Cygwin”.

Cygwin is a prompt-based tool, which let us to type UNIX commands on command
prompt and it runs those commands, because it contains UNIX APIs. In this way, it let us

to “run UNIX” in the Windows operating system. The Cygwin interface looks like this:

92

During installation, Cygwin created a directory “home™ on the installation path (means

¢:\Cygwin) and another directory with my user name “Furqan” (which I used to log on to
windows) inside the “home™ directory. Cygwin treats this directory as the default path.
3.3.2 SLO€CCount:

I used this too! to calculate sizes of different releases of my studied ERPs. The measures
which I selected for size calculation are “Source Lines of Code (SLOC)” and “Number of
Source Code Files (Source Files)”. This tool is developed by David A. Wheeler and, as
its name indicates, is used to count lines of source code in a program/application. Its
functionality is not limited to counting SLOC, but it can do much more. It also detects
the language in which code is developed and categorizes count of SLOC by language. It
can tell number of SLOC in each directory separately. It also tells the ratio of different
languages used in the source code. I used it just for two types of calculations, one, for

total lines of source code, and second, for total number of source code files.

[got this tool from hitp://www.dwheeler.com/sloccount/ where it is available free of cost.

I downloaded it in zip form to my local directory. It was a very light file (just 188 KB)
which consumed few seconds to download. The latest version which was available at the
time of download was 2.26. Then I unzip that file, using the “winrar”, to the home
directory of Cygwin (ci\cygwin'homelfurqan). Its user guide is available

http://www.dwheeler.com/sloccount/sloccount.html which is enough to learn all of irs

features.

3.4 Procedure & Commands:

My first task was to getting versions/revisions of the three ERPs, I h‘.ad selected for my
study. For this purpose, I started my work from Openbravo, and then moved to
Adempiere and at the end moved to ApacheOFBiz.

3.4.1 Getting Versions of Openbravo:

The first task which [performed was downloading the Openbravo repository to my local
drive. For this purpose, I used the clone command of Mercunal (hg). Because creating
another copy of repository is called “cloning the repository”, therefore this command is
called the clone command. The command was as under:

hg clone http://openbravo.hg.sourceforge.net:8000/hgroot/openbravo/main/

/cygdrive/f/openbravo/head
The URL included in this command is the URL of Openbravo repository and the path
“/cygdrive/f/openbravo/head” is the path of my local drive where repository is to be

saved. This command downloaded the whole repository 6f Openbravo to my local drive

94

(at the path flopenbravo\head). It took 2.5 hours nearly to download the whole
repository. Now 1 was in the position to get any past snapshot/revision/changeset of
Openbravo till the date when repository was first created. In order to view all the
available revisions, I used following command:

hg log /cygdrive/f/openbravo/head/ >> ‘cyvgdrive/f/openbravo/revisions.doc

This command generated a list of all available revisions and saved this list to the file
f:\gpenbravo\revisions.doc. I opened this file in the WordPad and the list of all revisions
was there along with their dates, times and revision ids. Now I filtered revisions using
the monthly gaps. [downloaded repository to my local drive on 23 Jun, 2011. So the top
revision (also called the head revision) was made on 23 Jun, 2011. Before that I selected
the revision made on 23 May, 2011, before that 23 Apr, 2011, before that 23 Mar, 2011
and so on. In this way [moved to the date of first revision. The earliest revision which I
selected was made on 23 Nov, 2007. Thus [selected all monthly revisions between Nov,
2007 and Jun, 2011. This resulted in total 44 revisions. The file of filtered revisions is

given in the Appendix. Here is a snapshot of very small part of that file:

935

96

changeset: 12953 :b9eb624349da

tag: tip

user: RM packaging bot <staff.rnﬁopenbrévo.com>
date: Thu Jun 23 23:35:44 2011 +0200

sSummary: CI: updave AD MODULE to version 12952

changeset: 12357:a707hkh7eade4

uger: Egoitz Castille <egoitz.zastilloRopenbravo.com>

date: Mon Mey 23 17:08:51 201: +0200

SUmMMAry: Fixed Issue 17168. Errcr when clicking on reference link LZoTtonm
changeset: 11876: 1fc4dcB82c09f

user: Stefan Hikhner <stefan.huehnerfopenbravo.com>

date: Wed Apr 20 13:09:38 2011 +0200

Sunmary: [lih-update] Fix deprecation warnings after log4j update
changeset: 11507:8h7e4B8a800489

parent: 11506:9ed0ecB660ce

parent: 11344:103820d16£01

user; Valery Lezhebokov <valery.lezhebokov@gmail.com>

date: Ued Mar 23 21:54:04 2011 40100

sunmary: Merge with PI

Here each changeset/revision is given an id, like, revision of Jun 23, 2011 has 1d 12953
and May 23, 2011 has 12357 eic. In my first command, which I used to clone the online
repository to my local hard drive, I didn’t mention any revision. Due to which it cloned
the latest revision of repository. In order to clone any of older revisions, I added the
revision id in that command. For example, in order to clone the revision made on 23
May, 2011 (having id 12357), I used following command:

hg clone /cygdrive/f/openbravo/head/ /cygdrive/f/openbravo/12357 -r 12357

Here I didn’t use the repository URL, but I used my local hard drive path (ie.
f:\openbravothead), because now I had cloned repository to my local drive, from where]
could generate past revisions, so I had no need to use online repository. The numeric
value 12357, written after “-r”, told that the revision having id 12357 was to be cloned.

So this command cloned the revision “12357” to the mentioned path (ie.

f\openbravo\12357). And as shown in the revisions file snapshot, this revision (12357)
was made on May 23, 2011. Thus after this command, 1 had got the one month older
revision of repository. Now I used this command repeatedly and got older and older
revisions of repository till the first revision (made on Nov 2007). Each revision of
repository was containing the application’s (Openbravo) snapshot on the given date as
well as the information of past changes so that older revisions can be generated. But, for
my analysis, [was needed past snapshots of the applications code just, not the
information of past changes, so I deleted the folder named .hg from all these revisions,
because the information of past changes was stored in that folder. And it was not part of
the applications code. After deleting this folder from all repository revisions, . the

monthly snapshots/versions of Openbravo were ready from Nov 2007 to Jun 2011.
3.4.2 Getting Versions of Adempiere:

The procedure; I followed for Adempiere was same as of Openbravo. The first command
which cloned its online repository to my local drive was as under:

hg clone http://adempiere.hg.sourceforge.net:8000/hgroot/adempiere/adempiere/

/cygdrive/f/adempiere/head

This command cloned the latest revision of online repository to the following path of my
local drive “fi\adempierethead”. It took nearly five hours to download the repository. |
used this command on 23 Jun, 2011. This means it downloaded the repository’s snapshot
of 23 Jun, 2011. Now by using the “hg log” command, I got the list of all available
revisions of repository. Then I filtered that list and selected the revisions with one month
gap. Means before Jun, 2011, I selected the revision made on May, 2011, then the

revision made on Apr, 2011 and so on. I moved to the month, when the repository was

97

first time created. The earliest revision which I selected was made on Nov 2006. In this
way I selected total 56 revisions. Now I noted the revision ids of all the filtered revisions
and cloned all those revisions from the local copy of repository (which I had got by my
first command). For cloning the revision made on May 2011 [used following command:
hg clone /cygdrive/f/Adempiere/head/ /cygdrive/f/Adempiere/6678 -r 6678

Here 6678 is the revision id which I selected from the month May 2011. This command

cloned the <6678 revision of repository to the path “f\adempiere\6678”. This is just one

example, and following the same pattern I cloned all 56 revisions of repository. And in

the last step, I deleted the folder named .hg from all these revisions, because this folder

just contains the changes history (which is used to generate older revisions) and it is not _

part of applications code. So after deleting this folder from all revisions, I had got the

application’s (Adempiere’s) monthly snapshots/versions from Nov 2006 to Jun 2011.
3.4.3 Getting Versions of ApacheQFRBiz:

The procedure for preparing revisions of ApacheOFBiz was somehow different from
those of Openbravo and Adempiere. Its because, as I have already described, the
repository of ApacheOFBiz has been maintained using the SVN instead of hg. For SVN,
I used the GUI based tool TortoiseSVN. Its commands, after installation, were available
to me in the windows pop-up menu. SVN doesn’t allow to get revisions of repository
(called cloning), but it just allows to get revision of | application (called export or
checkout). So it was not possible now to download the latest revision of repository to my
local drive and then get the older revisions from that local repository. But now I had to
download each revision of application (ApacheOFBiz) from online repository, separately.

In order to view a list of all available revisions of application, I just right-clicked on my

98

desktop and selected the option TortoiseSVN — Export from the pop-up menu, as
shown:

Arrange Icons By P
Refresh

Paste

& {SYN Checkout...
o TorkoiseSYN

R4 4 Repo-browser

Properties .7 Create reposkory here
AlImpert...
. Settings
? Help

5 About

It opened the following dialog box:

>3
1
Repository i
D URL of repositorys i
© & htpyjfsn.apache.orglreposiast/ofbizftrunk v ol
> Export diectory: §
: C:\Documents and Settings\FurqantDesktoplofbiz |j :
i Fully recursive v u;
i 1
I [Jomkt externals]
| eolstyle defak v 5
: Revision
; 7 YHEAD revision S

{73 Revision N - ‘1 Show log J

o (e J (!

:
£
t
B

R . |

Here I entered the URL of Apache©FBiz repositery and clicked the “show log” button.

The result appeared as the following dialog box:

[og Messages - http:/fsvn.apache,orgfreposfasffofbiz/trunk

From: 7/ 1/2006 ~ Ta: efsion v _
Revision Actions Author Date Message 7 had
1139703 o harsbak 8:11:17 PM, Saturday, June 25, 2011 wmprove log messages (-
1139700 o dooge 7:50:49 PM, Saturday, June 25, 2011 FEATURE: Add a threac
1139699 Q. dooge 7:50:41 PM, Saturday, Jure 25, 2011 FEATURE: Add helper m
1139%98 o doogie 7:50:35 PM, Saturday, June 25, 2011 FEATLRE: Alow the Thr
1139697 {):J dooge 7:50:29 PM, Saturday, June 25, 2011 FEATURE: i the thread
1139696 {_}J doogie 7:50:23 PM, Saturday, June 26, 2011 FEATURE: Add aflag to
1139695 oo doogie 7:50:17 PM, Saturday, June 25, 2011 OPTIMIZE: getExecutor !
1139694 o doogie 7:50:11 PM, Saturday, June 25, 2011 FIX: Print an error mess
1139893 4. doogie 7:50:03 PM, Saturday, June 25, 2011 FIX: Stop printing ot ¢
1139692 o doogie 7:49:57 PM, Saturday, June 25, 2011 FIX: Fier out hrdden kb
1139691 @ doogie 7:49:51 PM, Saturday, June 25, 2011 FIX: s{Finsished/Finishe
1920800 -~ Arrrvia 74045 OM SabrwAdss hea 2T N1 ETV. Trarmara i.-ﬂ-.mll-iu'g.v
< ?
!, -
i
Action Path Copy frompath Revisior
< | _ >
Showing 17445 revision(s), from revision 418498 Lo revision 1139703 - § revision(s) selected.
[(JHide urwelated changed paths
[Jstop on copyfrename
[(Jinclude merged revisions | Hop |
| Show Al] [nextioo || Refresh | [o][cocel |

It showed the top (latest) 100 revisions, but when I clicked the “show all” button, then it
showed all available revisions. The latest revision, also known as the head revision, was
made on 25 Jun, 2011 and its id is 1139703, as can be clearly seen in the snap. Here,
once again, | filtered the revisions on the basis of monthly gaps. Before the revision
1139703, 1 selected the revision 1127662 which was made on May 2011 and before that
1096457, which was made on Apr 2011 and so on. I mo.ved to month of first available

revision, which was July 2006. In this way, I selected total 60 revisions for my study. 1

noted ids of all of my selected revisions and downloaded (exported) them, one by one,
from online repository to my local drive. For each revision, I created a folder, right
clicked that folder, selected the option TortoiseSVN — Export, then entered the id of that

revision in the proper text box wnd finally clicked the OK button.
3.44 Setting the SLOCCount Tool:

Now it was the stage of calculating size measures for all of the revisions of the three
ERPs so that their evolutionary trends may be observed. I used. as already mentioned,
the two size measures, SLOC and source code files. For this purpose, I used the tool
SLOCCount. This tool could be used in UNIX operating system because it was required
some of the APIs of UNIX. So I installed Cygwin for this purpose. Cygwin, as
described above, provided me UNIX (its prompt along with its APIs) in Windows. 1
saved the SLOCCount folder (named SLOCCount-2.26) in the home directory of Cygwin
(which was c¢:\cygwin\home\furgan). Before using SLOCCount, I had to make some
settings, first of them was adding some text to its file named as “makefile”. I opened this
file in the WordPad and added the text “.exe” at the end of its 35% line. After addition of
text, the line began to look like:

EXE_SUFFIX=exe

After addition of this text, I opened the SLOCCount folder on Cygwin prompt, using the
following command:

cd /cygdrive/c/cygwin/home/furqan/sloccount-2.26

Then I executed the two Cygwin commands, “install” and “make install”. The purpose of
these commands was to make possible to run SLOCCount from any path without moving

to its directory. Now after these settings, the SLOCCount tool was ready to be used.

101

3.4.5 Calculating the SLOC:

Now I started to calculate SLOC for different revisions of my ERPs. [had total 160
revisions of the three ERPs (44 of Openbravo, 56 of Adempiere and 60 of
ApacheOFBiz). So I executed the command of SLOC calculation for 160 times. Also 1
stored results of each command in a separate file. Thus after execution of these
commands, I had got 160 results files. Here is given just one of those commands along
with the snapshot of its result file. I used this command to calculate SLOC for 12357
revision of Openbravo:

sloccount /cygdrive/flopenbravo/12357/ >> /cygdrive/flopenbravo_results/L.12357.doc
The first path in this command (/cygdrive/f/openbravo/12357/) is the folder where I had
saved the revision and second path {/cygdrive/f/openbravo_results/L12357.doc) is the
path and name of file in which command results were to be saved. The snapshot of this

result file is as undes:

102

Have & non-directory et the top, so cresting directory top_dir

idding /cygdrive/d/openbrave_revs/12357//CONTRIBUTORS to top_dir

Adding /eygdrive/d/opanbravo_revs/12357//RQRADME to cop_dir

Creating filelist for WeblLoncentc

Adding /cygdrive/d/openbravo_revs/12357//build. xal to top_dir

Creating filelist for config

Addang /cyqdzzv-[d/openhrnvo_:uvs/l:SS?//czcnt:.dAtahnse.l.unch ce top_dir
Adding /cygdx;vc]d/npcnbtnva_rcvsjlZaS?II-:lxpsa.:o-pilt.conplcte.lnunch to top_dir
Adding /cyqdzive/dlapouh:(vn_revsl12357//eclips¢.:a:pile.lnunch to top_dir
Adding I:yquiv@/dfopenbrnvo_:evs/lzaS?!Ieclipse.ins:nll.saurce.lnunch £o top dir
Adding Icygd:ive!dlopenhrnvo_revs/lZGSTIchpnrt.dn:-h-se,lnunch to top_dir
Creacing Zilelist for legel

Creacing fileliset for lib

Adding /cygdriv-/d!opcabr-vo_rcvslleSTIJ1nq1j.lcf to cop_dir

Creacing filelist for modules

Creacinyg filelist for refersncedata

Creating filelist for src-core

Creating filelist for src-db

Creating filelist for src-gen

Creating filelist for src-test

Creating filelist for src-trl

Creating filelist for src-ucil

Creating filelist for src-vad

Adding /cygdzivtfd/op!ubrlvo_r-vs/1235711updntl.dn:-blsc.lnunch to top dir
Creacing filelist for web

Have a non-directory at the top, sa creacing directory sye_top_dir

Adding /cygdrives/d/openbrave_revs/12357//sre/build.xal to src_top_dir
Adding jcyquiv.fdjapenb:avn_revs/12357llsrc/huildAD.xnl to sre_top dir
Adding /cygdrivl!d}np-nhrnvo_rcvs/lz357/;sxciind!x.]sp To src_top_dir
Adding /cygdrivq/d!npanbrlvo_revs1123571152:/10g4j.lct to src top_dir
Adding Icyqdz1vefdlopenbravn_revsl12357//sr:/log1j_praper:ies to sro_top_dar
Creating filelist for src_pr¢

Categorizing files.

finding a working EDS comasnd. ...

Found a working MDS command.

Computing resulrs.

sLoc Directory SLOC-by-Language (Seorted)
119102 src_org java=1159102

3992 modules Java=38983, sh=3

11109 src-core java=11103

9177 src-wad java=3177

7338 Src-testc Jaoa=?335

3255 web php=3063, perl=lsl, sh=1
968 src-util java=925, sh=43

782 src-trl Java=782

ZL5 src-db Java=Zl5

136 sre_top_dir Isp=136

a WebContent (none)

0 config {none)

o] legal {none)

D 1ip (none)

a refarencedata (nona)

a sre-gen {none)

0 top_dir {aone)

Totals grouped by language {dominant languags first):

java: 187628 (98.20%)

php: 3063 {1.60%)

perl: 19l (0.10%)

jsp: 135 (0.07%)

sh: 53 (0.03%)

Totwl Physical Source Lines of Code (S5LO0) = 191,071

Development 3ffort Estimate, Person-Years {Person-Months) = 49.69 (556.30)
{Basic COCOMO model, Person-Months = 2.4 * (HSLOC**1.05))

Schedulae Estimate, Years (Months) = 2.36 (28.35)
(Basic COCOMO model, Months = 2.5 ~ (parson-months=™v0.38})

fscimaced Average Number of Davelopers (Effort/Schedule) = 21.83

Total Estimated Cost to Develop = § 6,712,683
(average salary = $56,286/year, overhead = 2Z,40}).

SLOCCount, Copyright (L) 2001-2004 David A. Wheeler

SLOCCount is Open Source .Sofrtware(Frae Softvara, licensed under tha GNU &PL.

SLOCCoune comes with ABSOLUTILY NO WARRANTY, and you are welcome to

redistribute it under certain conditions as specified by the GNU GPL license;

~es tha dacumencation for details.

Please credit cthis data a&s "genarated using Pavid A. Vheeler's 'SLOCCounc'.”

104
3.4.6 Calculating the Source Code Files:

After SLOC, I had to count number of source code files for each of the 160 revisions.
For this purpose, I added the “filecount” parameter in the above mentioned sloccount
cornmanci. Like, to calculate number of source code files in the Openbravo’s 12337
revision, I used following command:

sloccount -- filecount /cygdrive/f/openbravo/12357/ >>
/eygdrive/f/openbravo_results/F12357.doc

This command calculated the number of source code files in the Openbravo’s 12357
revision and saved the results to the file “f*\openbravo_results\F12357.doc”. 1 uséd this
command for each of the 160 revisions of my studied ERPs and stored results in separate
files. Thus after completion of this process, I had got 160 more results files. In this way,
I prepared 320 results files in total.

3.4.7 Loading Data & Preparing Charts:

The last step of my work was to load the results into MS Excel worksheets, so that I can
generate graphs/charts required for my analysis. So I created a separate workbook (Excel
file) for each of three ERPs, loaded data into those workbooks and generated charts. The
data was consisting of three attributes, Revision Month, SLOC and Number of Source
Files. I got this data from those results files which I had prepared in the previous step
using the SLOCCount commands. These data sheets and the charts, [created from their

data, are given in the next chapter.

CHAPTER 4: RESULTS

Introduction:

In this chapter, I have described the. results. of my case studies 1in detail. The different
charts/graphs which I drew on the basis of different siz;a related measures, have been
shown here. Each of the charts has been explained in the perspective of the evolutionary
trend indicated by that chart. At each step, the evolutionary trends are also compared
with the laws of Lehman. At the end, the results are summarized and are compared with

the results of past studies of this area.

4.1 Measures used in my Study:

I have tested the three laws of Lehman, first, fifth and_the sixth, All these laws are
related to the growth trends of the software applications, so I used the size related
measures, SLOC and number of source code files. I calculated these measures for each
monthly revision/snapshot of my studied applications and then plotted each of those
measures agaimst the revision month. I used the same type of plots, as were used by
Lehman in his studies, when he formulated these three laws {Leh 78], [Leh 97b], [Leh

98a]. Those plots were:

105

1. Total size of release (measured in number of modﬁles) plotted against the release
numbers.
2. Incremental growth of each release plotted against the release numbers.
Where incremental growth of release “x” was calculated as:
Size of release “x” — size of release “x -1"
I used same plots, but I used two size measures, rather than only one. In this way, I
repeated my observations twice, which resulted in strengthen of my conclusions. One of
the measures used by me was same as of used by Lehman, i.e. “number of source code
files”, which maps exactly to the Lehman’s measure “nmﬁber of modules”. However the
second measure, SLOC, was not used by Lehman, but I repeated my work using this
measure too because many well known studies in this area have used this measure, like
[Godfrey and Tu 2000], [Robles et al 2005}, {Simmons et al 2006]. The results of these
measures for my studied applications can be seen in Tables 4.1 (for Openbravo), 4.2 (for

Adempiere) and 4.3 (for ApacheOFBiz).

4.2 Graphs/Plots used in my Study:

I have used following four types of graphs for each of my studied applications:
1. Total size of revision (measured in source code files) plotted against the month of
revision.
2. Total size of revision (measured in SLOC) plotted against the month of revision.
3. Incremental growth of revision (number of source code files added in that revision

as compared to its predecessor revision) plotted against the month of revision.

106

4. Incremental growth of revision (SLOC added in that revision as compared to its
predecessor revision) plotted against the month of revision.

The first two graphs are same except that different size measures are used. Similarly
third and fourth graphs are also same in nature, but are based on different size measures.
The first type of graph, i.e. total size of revision plotted against the revision month,
helped me in testing of first and sixth laws as well as partial testing of the fifth law. This
graph enabled me to observe that either my studied applications have continually changed
and grown or not. Similarly, after addition of the reflection of linear growth in this
graph, it enabled me to observe the trend of the growth rates of applications, means either
their growth rate increased or decreased or remained same.
The second type of graph heiped me in testing of the second part of the fifth law,
according to which, software applications grow at a fixed rate (although this rate
varies/decreases with the passage of time). The actual phenomenon in this law is that,
unusual growth is not possible, and, if it occurs then the subsequent period must
compensate this unusual growth. It is because an unusual growth diminishes/destroys
familiarity of stakeholders with the software, so a negative feedback generates, which
decreases the growth rate in the subsequent period. The reason of increased/unusual
growth is the fact that growth is compulsory for software systems. Stakeholders of
software need and desire growth, but when it increases from a specific amount, it
diminishes familiarity and hence produces resistance to growth.
4.3 My Observations:
Let’s look at the evolutionary trends of my studied ERPs, Openbravo, Adempiere and

ApacheOFBiz.

107

108
4.3.1 Openbravo:

The size of application (plotted against time) showed clearly upward trend. The graph
was found to be moving upward without any ambiguity, as can be seen in figures 44 and
45. The first figure (means 44) was drawn using the size measure SLOC whereas the
second (imeans 4.2) was drawn using the measure “number of source code files”. Both of
the measures produced same type of results. The application has continuously grown and
hence has continuously changed. This verified the first and sixth laws of Lehman. The
“continuous growth” is in accordance with the sixth law and the “continuous change” is

with the first law.

350030 --- e e e e

200003 - o e R

150,000 - - —-em

190000 - =T

58—000 e e e e e mm e e T e m— e m s hme . EE— - e ——— e 1 -

a . . : B
Apr-37 Nov-37 Jun-08 Dec-08 Jul-39 Jan-13 Aug-12 Feb-11 Sep-il

Figure 44: Openbravo: Revision size (in SLOC) against revision month (time).

1690 -~ e -

4 o e e o o e e e e ol Ll —
1409 ~S

1233 H S S

1009 - -

8§33 - —

534 _ . B e _ e - aee e — E - . -

Apr-37 Nov-37 Jun-08 Cec-08 -39 Jan-13 Aug-12 Fzb-11 fep-ll

Figure 45: Openbravo: Revision size (in Source code files) against revision month (time).
In order to observe the trend of growth rate, I added the projection of linear growth in the
actual growth graphs. Then by comparing the actual gr_owth with the linear gréwth, |
determined- the trend of gyowth sate. These gyaphs can be seen in figures 46 and 47. In
case of SLOC (figure 46), the actual growth has moved along with the linear growth by
making positive and negative ripples with it. It has crossed the linear growth many times,
which indicates that it (actual growth) is itself almost linear. Linear growth means that
the application has grown at an in-variant rate. Or in other words, the growth rate has
been remained same. However, in case of source files (figure 47), the actual growth has
travelled below the linear growth for most of the time. It has crossed the linear growth
just once (near Feb 2011). In the past period, from Nov 2007 to Feb 2011, the actual
growth was moving below the linear growth. It is an indication of increasing growth rate,
means that the growth rate was slower in the initial period, but it increased with the

passage of time. Thus we can say that the growth rate of application (Openbravo) has

109

either remained in-variant (in case of SLOC) or increased (in case of source files). None
of the measure has shown decrement in growth rate. This trend is not in accordance with
the fifth law of Lehman. According to the fifth law, the growth rate decreases with the

passage of time, but Openbravo has grown at an in-variant or even increasing rate.

8202 meee— ~ — S e e e

150,000 -

130,000 - il —_ T T T T e e s

59-000 P e e e e e el e e o - - - - R

a : , - ; e

110

Apr-07 Nov-07 Jun-08 Dec-08 Jul-0% Jan-19 Aug-10 fah-11 Sep-il

Figure 46: Openbravo: Revision size (in SLOC) against time (compared with

linear growth).

1600 - m —— o - - . I rem—

1420 - —_—

29 - o — e T T T T T T T —

Apr-37 Nov-27 Jun-d8 Dec-08 Jl-29 Jan-12 Jug-19 Feb-11 Sep-1l
Figure 47: Openbravo: Revision size (in Source files) againsi time (compared
with linear growth).
Now, [plotted the incremental growth against time, that is. the growth made in each
revision against the revision month. The growth of a revision is equal to the difference
between the sizes of that reviston and its predecessor revision. For example:
Incremental Growth of Jun 2011 Revision = Size of Jun-2011 Revision - Size of May
2011 Revision
It must be noted that incremental growth can be negative, because it is possible that a
revision may be smaller in size as compared to its predecessor revisioh. But, because the
overall trend is increment in size therefore such examples (with negative incremental
growth) are very few. The graph also included the average incremental growth. The
purpose was to compare the actual incremental growth with the average incremental
growth. ‘These graphs are shown by figures 48 and 49. Figure 48 shows the graph drawn

using the SLOC measure, whereas, the figure 49 shows the graph drawn using the source

files measure. Both the graphs have shown same type -of trends. That is, the actual
incremental growth has been found to be making cycles around the average incremental
growth with positive and negative ripples. Larger positive ripples have been leaded by
larger neganve ripples to balance the overall growth. Theses ripples, according to the
fifth law of Lehman, indicates the presence of feedback effect, according to which, a
larger incremental growth (positive ripple) diminishes familiarity of stakeholders and as a
result negative feedback (resistance to growth) generates, which causes a smaller
incremental growth (negative ripple). Hence, Openbravo has proved the Lehman’s

“conservation of famiharity” concept.

52,320 - - S e e e . et e

30,000 :

39,900 -

PL e e ——

10,000 +-

R
Apr-37 Mow-02

10,900 ¢ -

.33993 - e e
Figure 48: Openbravo: Revisions incremental growth (in SLOC) against revision

month (time}).

112

330 _ ot v m e ehram e et r——— et s 7 e = e o —————— e e e e
253 - .) .
233 _ — - e e e e i —— e e i e e ee = e PR —— e - P . % e
I it
o i1
1 = ——— —— — e — - ————
33 A é-t
HE
- I = T g e = e
fi Pl
37— I ——— -HF S
R o — b W N o100, A= v,,":,?-..‘..._..;.,,,,,,_.__V;vﬂ,m,__...
_.é\pri—-a? Mow-37 Jun-08. Dec-08 hul-09 Jan-12 Auz-18 Fab-1 / Sep
-5 —— —— S S S . JF S
_103 : et e e ot PR e 4 e am s n el e - r s s amn mt amn A mrmnns - g At ik cam L e L 1% S 8o e bAA e i oot 3 L @i
:
-150 _m.- R e e
-390 “ U — e - -
253 - e - e

Figure 49: Openbravo: Revisions Incremental growth (in Source Files) against

time.
4.3.2 Adempiere:

Adempiere too, like Openbravo, showed continuous growth and change trends. Here,
once again, both of the size graphs (one for SLOC and second for source files) were
found to be moving upward, thus showing continuous growth and hence continuous
change. The graphs can be seen in figures 50 and 51. -The first graph (figure50) has
plotted revisions SLOC against its month and the second (figure 51} has plotted revisions
source files against its month. In both cases, application (Adempiere) has been found to
be continually increasing in size, thus verifying the first (continuous change) and sixth

(continuous growth) laws of Lehman.

11

113

114

900.000 - - i Ll e e e e B T e

SGO'OOQ ._ e e e e e e e e . - et e e

733,203 U __
630,033 -
533,022 — e
403,330 -
330,395 - et e e e
199,000 : e e

Mar-35 Ozt05 Apr-07 Now-Q7 Jun-98 Deg-38 hal-0g Jan-13 Aug-13 Feh-ll Sep-il

Figure 50: Adempiere: Revision size (in SLOC) against revision month (time).

60090 e e e e e

4990 -

3000 - | e
2000 - : g U U e
g R e LT N U U,

Mar-05 Oct-06 Apr-07 Nov-OF7 Jun-08 LCec-08 Jl-09 Jen-12 Auz-10 Fsb-1il Sep-it
Figure 51: Adempiere: Revision size (in Source code files) against revision month (time).
In order to determine the trend of growth rate, the actual growth was compared with the
linear growth. The graphs are shown by figures 32 and 53. Figure 52 shows the growth

rate trend for SLOC measure whereas figure53 shows growth rate trend for source files

115

measures. The resuits of both measures have strong resemblance with each other and
hence can be said same. In both cases (SLOC and source files), the actual growth has
travelled above the linear growth, which shows that growth rate has been decreased with
time. The existence of actual growth above than the linear growth means that growth was
fast in the initial period but 1t slowed down with the passage of time. Thus the growth

rate of Adempiere was declined (decreased) with the passage of time. It is in accordance

with the fifth law of Lehman.

900,000 - -—— e N S e S
800,009 4o - L — —
500,000 - _
403,000 + — - -
e 1o 0 o 1o OO e e
133‘300 .: —— PR _— e e ——————

Mar-35 Oct-08 Apr-07 Now-07 Jun-08 Dec-08 jul-0¢ Jan-13 Aug-13 Feb-11 Sep-11
Figure52: Adempiere: Revision size (in SLOC) against time (compared with

linear growth).

6300 - et L em mmm e e e e e - .

5000 -

4020 -

3003

1330)) -

9 - > , . e sy

Mar-J6 Oct-06 Apr-07 Nov-07 Jun-08 Cec-08 Jul-39% Jan-13 Aug-10 Feb-11 Sep-1i
Figure 53: Adempiere: Revision size (in Source files) against time (compared
with linear growth).

To determine the existence of “conservation of familiarity” concept, the incremental
growth was plotted (against time) and compared with the average incremental growth.
The graphs can be seen in figures 54 (for SLOC) and 55 (for source files). Both graphs
have verified the existence of the “conservation of familiarity™ concept. The incremental
growth has been remained invariant during the last half period of evolution, from Jul
2009 to Jun 2011. During this period, the incremental growth has been remained nearly
equal to average (as can be seen in both figures 54 and 55). However in the first half
period, the incremental growth has been found to be varying and here cycles can be seen.
Means, in this period, the actual incremental growth has made cycles around the average
incremental growth, which is, as explained above, an indication of the existence of the
“conservation of familiarity” concept. In this way, Adempiere has proved the Lehman’s

fifth law.

116

150,230 -

132,030 -

Mar-05

-30,939

Now-37 Jun-08

117
! -
i t
S 6 R _ e
i
\ —t V‘I‘ -

-130,009

a; Jul- 39’1 1an-10 Aug-10 Fab-11 Sep-11

Figure54: Adempiere: Revisions incremental growth (in SLOC) against revision

month (time).

2000 —

15353

1000 ,%..,.....ﬂ.. - —

Mar-06

-500

AM/.\

-

New-07 Jun-08

Jul-02

-1009 -

in-19

Aug-10

Feb-11 Sep-il

Figure 55: Adempiere: Revisions Incremental growth (in Source Files) against

time.

4.3.3 ApacheOFBiz:

ApacheOFBiz, like Openbravo and Adempiere, has also shown continuous increase in
size and hence has proved both of the Lehman laws, first and sixth. The graphs for the
two measures SLOC and source files can be seen in ﬁgurés 56 and 57 respectively. Both
graphs have a continuous movement in the upward direction, which shows continuous
growth and hence continuous change trends. In this way, this application {ApacheOFBiz)

also aligns very well with the first and sixth laws of L.ehman.

350,000 U R —-

300'003 P T B Ly O Y e e e i m

253,800 -

233,000

150,900 _- e s e e e . . e e

100,000 - - oo -

39,000 - e e e e e

LI . S . . e —— e - o n e ——

118

Mar-26 Oci-G&8 Apr-07 Nov-37 lun-08 Dec-98 Jul-02 ian-10 Auwg-10 Feb-11 Sep-11

Figure 56: ApacheOFBiz: Revision size (in SLOC) against revision month (time).

119

1000 i

803 — e

2490 - UUUU— S

g - . : : - : — _
Mar-35 Oct-95 Apr-07 Nov-07 Jun-08 Dec-28 Jul-0% Jen-10 Awug-19 Feb-11 Sep-11

Figure 57: ApacheOFBiz: Revision size (in Source code files) against revision month
(time).
The growth rate of ApacheOFBiz has been found nearly stable. If we compare its growth
graph with the linear growth, as shown by figures 58 and 59, the actual growth can be
observed (in case of SL.OC measure) to be traveliing around the linear growth with smail
cycles, which shows that the growth rate has remained nearly invariant. In case of source
files measure (figure 59), the actual growth has travelled below the linear growth till Jan
2010, but it has travelled very close to the linear growth. However, it can be said that the
growth rate has increased (although by a slight amount) in case of source files measure.
Thus the growth rate of ApacheOFBiz has either increased or remained invariant. There
is no case of decreasing growth rate. So the ApacheOFBiz has not proved the fifth law of

Lehman, according to which growth rate declines (decreases) with time.

. 120
350,030 -~ - - et e e

300,000 — N

253099

209000 ©-

152032 T T o T

133'303 ‘ - e e e e e —— S

SO'ODO H ——— o mCmem S ek s o e ——— R A AL A %8y, e 14

[4]

Mar-06- Oet-06 Apr-07 Nev-07 Jun-08 Dec-08 Jul-09 Jan-19 Aug-10 Feb-1l Sep-11
Figure 58: ApacheOFBiz: Revision size (in SLOC) against time (compared with

linear growth).

1400

1200 |

1333

§00 o R R ——

409 —_— - —

q e N S e S e i o e e 0 0L i 2 ot e avmm st e

Mar-0o OctUs Apr-07 Now-07 Jun-08 Cec-08 Jul-09 Jan-13 Aug-13 feb-11 Sep-11
Figure 59: ApacheOFBiz: Revision size (in Source files) against time (compared

with linear growth).

121

In the last, the incremental growth of ApacheOFBiz was plotted against time. It also, like

the other two applications (Ovoenbravo and Adempiere), proved the existence of the

“conservation of familiarity” concept. The actual incremental growth formed regular

cvcles around the average incremental growth, just like that found by Lehman in his case

studies of FW logica plc system, ICL VME keme! and the Lucent Tech real ttme syst=m

{Lech 98b]. The graphs are shown by figures 60 and 61. These cycles proved that larger

incremental growth wasn’t absorbable for the concerned (stakeholders) of ApacheOFBiz,

so revisions with larger growth were followed by revisions with smaller growth to

conserve/maintain the familiarity of stakeholders with the application (ApacheOFBiz).

12,000

10090 -

5,033

e

093 -

4090 oo

2,000

§

VUV _‘/\k‘ﬁ: fﬂ‘ij z B ___.,_?g‘i_ S
[R —

3
Mar-06 Oct-06

-2,300

B A4 W AN WA U .
N\ VRV

| 2; \z/\"j
A

Apr-07 Nov-37 Jun-28 Dec-38 Jul-09 Jan-10 Aug-10 Feb-ll Sep-11

Figure 60: ApacheOFBiz: Revisions incremental growth (in SLOC) against

revision month (time).

122

80 B e T M e he L e e s e - e i o i = e 1 e A iy — an

73 R

B e e _— [

10 - /

3 :
Marf-GS Ot Apr——"‘? Nov-07 Jun-38 Cec-08 Jul-09 lan-10 Aup-10 Feb-11 Sep-11

19

.30 k S o N
Figure 61: ApacheOFBiz: Revisions Incremental growth (in Source Files) against

time.
4.3.4 Results Summary:

The above discussion can be concluded in following points:

1. All three ERPs (Openbravo, Adempiere and ApacheOFBiz) showed continuous
growth and hence continuous change trends. In this way all three proved first and
sixth laws of Lehman.

2. The incremental growth of all three ERPs showed that the revisions with larger
growth are usually followed by revisions with‘ smaller growth, so thaf the
familiarity of stakeholders with the application may be maintained (conserved).
This trend proved the existence of the “conservation of familiarity” concept,

introduced by Lehman as his fifth law.

The growth rate of just one ERP (Adempiere) was found to be decreasing. The

L

other two ERPs (Openbravo and ApacheOFBiz) showed an increasing or
invaniant growth rate. In this way, just one ERP proved the Lehman’s law of

“dechning growth rate”. The other two disproved this law.

+. So the first and sixth laws were totally proved. But the &fih 2w was parally
proved. The concept of “conservation of familiarity” proved. But the concept of
“declining growth rate” disproved.
Laws— 1¥ Law 6™ Law 5" Law
ERPs| Continuous | Continuous | Limit on Incremental Declining Growth
Change Growth Growth Rate
Openbravo Proved Proved Proved Disproved
Adempiere Proved Proved Proved Proved
ApacheOFBiz | - Proved Proved Proved Disproved

Table 4: Summarized results of my case studies
4.4 Comparison of my Results with Other Studies:
Nearly all of the studies, in which Lehman laws have been tested on open source
applications, have verified the continuous change and growth trends in open source
applications. In other words, ali those studies have proved the first and the sixth laws of
Lehman. So, with respect to the validity of the first and the sixth laws, my results align

exactly with the past studies, like, [Godfrey and Tu 20001, [Capiluppi et al 2004], [Robles

et al 20057, [Herraiz et al 2006], [Xie et al 2009].

The existence of the “conservation of familiarity” concept has been proved by some of
the past studies, whereas some other studies have disproved it. This concept hasn’t been
tested at a large scale. I have found only two studies in which this rend was observed in
open source applications, [Xie et al 2009] and [Fietelson 2009]. Xie stdied seven open
source applications and found ripples in their incremental growth graphs. which 1s an
indication of the existence of this concept. Fietelson studied a well known open source
operating system, Linux, and found that only some of its releases had entertained the
issue of familiarity, but mamy of the releases had ignored this issue. In this way,
Fietelson disproved the existence of this concept. My case studies have proved the
existence of this concept. So in this respeci, my results are in accordance with Xie, but
are different from Fietelson.

The last trend, “declining growth rate”, has also been proved as well as disproved in past
studies. But most of the studies have disproved it. There are only few cases, in which
this concept was proved on open source applications. In most of the studies, the open
source applications were found with an invariant or an increasing growth rate. The
studies in which this concept was disproved include, [Godfrey and Tu 2000], [Capiluppi
et al 2004}, [Robles et al 2005], {Izureita 2006], [Simmons et al 2006], [Herraiz et al
2006], [Xie et al 2009], [Ali and Maqgbool 2009]. Godfrey disproved this concep;[on
Linux, Capiluppi on ARLA (a distributed file system), Robles on Linux, BSD family
kernels and other eighteen applications, Izurieta on Linux and FreeBSD, Simmqns on
Nethack (a game), Herraize on ten (of thirteen) different applications, Xie on seven
different applications and Al on four different applications. The few cases in which this

concept was proved, include three of thirteen applications studied by Herraiz and some

124

125
small scale applications studied by Koch in [Koch 2005]. In this way, my results align

with the results of past studies, as two of my case studies (Openbravo and ApacheOFBiz)

have disproved and only one (Adempiere) has proved this concept.

Openbravo 126
Revision Month SLOC Source Code Files Incremental Growth | Incremental Growth
(SLOC) (Source Files)

Nov-07 102,699 794
Dec-07 102,982 795 283 1
Jan-08 103,087 796 105 1
Feb-08 76,449 578 -26,638 -218
Mar-08 76,113 581 -336 3
Apr-08 81,676 617 5,563 36
May-08 80,838 609 -838 -B]
Jun-08 81,620 613 782 4]
Jul-08 82,070 615 250} Z
Aug-08 82,037 615 3a; o)
Sep-08 82:875|. 623 838 2
Oct-08 88,823 697 5,948 74
Nov-08 112,672 870 23,849 173
Dec-08 151,680 885 39,008 15
Jan-09 153,710 389 2,030 4
Feb-09 135,631 901 -18,079 12
Mar-09 136,075 sMm 444 0
Apr-09 138,163 914 2,088 13
May-09 140,272 924 2,109 10
Jun-09 141,526 930 1,254 6
Jut-09 142,852 939 1,326 9
Aug-09 141,978 933 -874 -6
Sep-09 142,645 936 667 3
Oct-09 143,529 950 1,284 14
Nov-09 144,489 953 560] 3
Dec-09 143,906 991 -583 38
Jan-10 145,574 1019 1,668 28
Feb-10 148,462 1034 2,888 15
Mar-10 149,511 1039 1,048 5
Apr-10 152,954 1060 3,443 21
May-10 155,023 1078 2,065 18
Jun-10 157,358 1087 2,335 9
Jul-10 159,477 1099 2,119 12
Aug-10 160,488 1102 1,011 3
Sep-10 161,228 1103 740 1
Oct-10 161,642 1106 414 3
Nov-10 163,205 1111 1,563 5
Dec-10 192,347 1339 29,142 228
Jan-11 195,291 1351 2,944 12
Feb-11 198,079 1376 2,788] 25
Mar-11 201,623 1388 3,544 12
Apr-11 202,264 1388 641 0
May-11 191,071 1333 -11,193 -55
Jun-11 191,057 1327 -14 -6

Table 5: Size measures for Openbravo revisions

Adempiere

Revision Month SLOC Source Code Files | Meremental Growth | Incremental Growth
{SLOC) {Source Files)
Nov-06 356,429 2120
Dec-06 373,773 2161 17,344 a1
Jan-07 376,758 2168 2,985 7
Feb-07 375,984 2167 774 1
Mar-07 385,271 2170 9,287 3
Apr-07 384,628 2166 -643 4
May-07 388,361 2183 3,733 17}
Jun-07 394,573 2207 6,212 24
Jul-07 401,955 2269 7,382 £2
Aug-07 403,470 2276 1,515 7
Sep-07 537,536 3895 134,066 1515
0ct-07 537,850 3509 314 o
Nov-07 566,501 4078 28,6511 =
Dec-07 573517 4082 7,016/ 4
Jan-08 578,176 4118 4,659 36
Feb-08 580,391 4130 2,215 12
Mar-08 581,853 4137 1,462 7
Apr-08 582,275 4137 422 0
May-08 582,591 4137] 316 0
Jun-08 652,915 4503 70,324 368
Jul-08 663,223 4543 10,308 44]
Aug-08 656,066 4570 -7,157 21
Sep-08 656,651 4579 585 9
Oct-08 764,941 5201 108,290 622
Nov-08 681,929 4604 -83,012 -597
Dec-08 692,645 4621 10,716 17
Jan-09 £96,502 4630 3,947 9
Feb-09 674,050 4511 -22,542 -119
Mar-09 676,518 4518 2,468 7
Apr-09 679,419 4534 2,901 16
May-09 689,704 4558 10,285 24
Jun-09 690,394 4572 £90 14
Jl-09 692,165 4606 1,771 34
Aug-09 693,394 4618 1,229 12
Sep-09 678,094 4625 -15,300 7
Oct-09 679,457 4638 1,363 13
Nov-09 681,126 4644 1,669 6
Dec-09 682,700 4650 1,574 6
Jan-10 682,794 4650 94 0
Feb-10 84,543 4654 1,749 4
Mar-10 685,441 4682 898 28
Apr-i0 088,528 4698 3,087 16
May-10 689,102 4700 574 2
Jun-10 690,699 4706 1,597 6
Jul-10 691,635 4709 936 3
Aug-10 691,691 4709 56 0
Sep-10 691,877 4710 186 1
Oct-10 692,874 4717 997 7
Nov-10 695,386 4724 2,512 7
Dec-10 695,487 4729 101 5
Jan-11 695,517 4729 30 0
Feb-11 695,883 4729 366 0
Mar-11 695,885 4729 2 0
Apr-11 697,165 4735 1,280 [
May-11 697,508 4735 343 0
Jun-11 705,163 4762 7655 27

Table 6: Size measures for Adempiere revisions

127

ApacheUrBiz

Revision Month sLOC Source Code Files '“"‘m[‘s'l‘;::fm‘“‘“ "‘"(;:’::‘::'Fs:;"'“
Jul-06 174,495 1000
Aug-06 176,297 1005 1,802 5
Sep-06 177,041 1006 744 1
Oct-06 176,867 992 -174 14
Nov-06 177,011 589 144 3
Dec-06 177,769 998 758 5
Jan-07 180,318 1004 2,549 5
Feb-07 182,786 1011 2,468 7
Mar-07 185,045 1019 2,259 3
Apr-07 188,022 1017 2,977 -2
May-07 189 596 1020 1,574 3
Jun-07 190 &8 1026 - 1,284 &
Jul-07 194,433 1035 3,553 P
Aug-07 196,714 1038 2,281 E]
Sep-07 198,851 1050 2,137 17]
Oct-07 199,448 1057 597 7
Nov-07 200,229 1065 781 8
Dec-07 202,739 1073 2,510 8
Jan-08 203,678 1074 939 1
Feb-08 205,642 1084 1,964 10
Mar-08 208,266 1092 2,624 8
Apr-08 210,142 1096 1,876 4
May-08 211,468 1098 1,326 2
Jun-08 213,002 1106 1,534 8
Jub-08 213,388 1108 386 2
Aug-08 214,862 1114 1474 3
Sep-08 217,243 1127 2,381 13
0Oct-08 217,887 1129 644 2
Nov-08 218,560 1133 673 4
Dec-08 219,511 1136 951 3
Jan-09 219,966 1141 455 5
Feb-09 221,867 1148 "1,501 7
Mar-09 224,400 1166 2,533 18
Apr-09 234,696 1205 10,296 39
May-09 236,571 1217 1,875 12
Jun-09 240,654 1228 4,083 11
Jul-09 243,629 1229 2,975 1
Aug-09 247,354 1247 3,725 18
Sep-09 249,863 1259 2,509 12
Oct-09 251,127 1262 1,264 3
Nov-09 255,444 1334 4,317 72
Dec-09 258,666 1365 3,222 31
Jan-10 262,082 1373 3,416 8
Feb-10] 267,552 1401 5,470 28
Mar-10] 270,946 1414 3,394 13
Apr-10| 272,494 1473 1,548 3
May-10 272,024 1423 470 0
Jun-10 272,350 1425 926 2
Jul-10 274,390 1429 1,440 4
Aug-10 276,212 1442 1,822 13
Sep-10 276,547 1445 335 3
Oct-10 278,696 1449 2,149 4
Nov-10 279,109 1451 413 2
Dec-10 281,636 1459 2,527 8
Jan-11 285,533 1469 3,897 10
Feb-11 285,893 1469 360 0
Mar-11 287,019 1473 1,126 4
Apr-11 287,988 1477 969 a
May-11 289,912 1483 1,924 3
Jun-11 290,200 1483 288 a

Table 7: Si~e measures for ApacheQOFRiz revisions

128

CHAPTER 5: CONCLUSION AND FUTURE WORK

The aim of this work was to check validitv of three of the Lehman laws on thre=s difSar=m
open source ERP- systems, which has beenrachieved. It was decided to check validity of
Lehman’s growth related laws (first, fifth and the sixth) on three 6pen source ERPs
(Openbravo, Adempiere and ApacheOFBiz), which has been done. In this way this
work 1s complete in its mandate. According to the results of this wotk, the Lehman law
of “declining growth rate” has been found to be dispfoving on t\;vo of three ERPs.
However, on the basis of these results, it can’t be concluded that this law really don’t
hold for open source applications because these cases of invalidity can be the exceptional
ones. Although there exists certain other examples in the past studies, in which this law
was disproved on open source applications, like Linux kernel, BSD family kernels and
Nethack etc, but even all these cases don’t provide enough evidence to challenge this law
at all. Lehman postulated his laws on the basis of thirty years experience, and a large
number of case studies conducted under the pfoject named as Features, Evolution And
Software Technology (FEAST). These laws are wiﬁely accepted and have been
validated by many other researchers. The few examples of invalidity are not enough that
the validity of these laws can be argued. For this purpose more open source applications

(taking from different domains} are needed to be studied and observed.

129

130
One of the possible reasons of invalidity of Lehman laws on some open source
applications can be that the open source applications, unlike closed source applications,
don’t have a clear distinction between development and evolution phases. In case of
closed source applications, the requirements for whole api:lication are collected and then
on the basis of those requirements, a full featured application is developed. Once &t is
fully developed.then.it is. delivered to. end-users. Before first delivery, all changes and
growth are considered to be part of development rather than evolution. After delivery of
the first version, when end-users report errors or demand for enhancements, then
evolution starts. But in case of open source applications, the application is sometimes
delivered or started to use even when it 1s in development phase. In this case, the
development and evolution phases overlap each other, means the application is both
developed and evolved simultaneously. Thus, it becomes difficult to differentiate
between developmental and evolutionary changes.
If some application is started to use even when it is not fully developed then in the initial
period of evolution, two types of growth will occur, developmental growth and
evolutionary growth, which can cause rapid growth in that application. At that time, it
will be showing deviation frora fifth law of Lehman. But it is possible that after some
time period, such type of application also become align with Lehman, when its

development becomes complete and only evolutionary growth remains left.

[Ali and Magbool 2009]

[Bonkoskt 2007]

[Capiluppi et al 2004]

[Dong and Mohsen 2008]

[Israeli and Feitelson 2009}

[Godfrey and Tu 2000]

REFERENCES:

Ali S, Magbool O, Monitoring Software Evolution using
Multiple Types of Changes, IEEE International Conference on

Emerging Technolegies {ICET) 19-20 Oct, 2009, pp 410-4"=

Bonkoski B, Open Source Software Evolution: Case Study
Nagios,
http://bIog.greedygceks.com/bonkoski_nagios_evolut_ion.pdf
Capiluppi A, Morisio M, Ramil JF, Structural Evolution of an
Open Source System: A Case Study, Proceedings of the 12th
IEEE International Workshop on Program Comprehension
(TWPC’04), 24-26 Jun, 2004, pp 172-182

Dong Y and Mohsen S, Does Firefox Obey Lehman’s Laws of
Software Evolution? Masters Candidate, Department of
Computer Science, University of Waterloo, Waterloo, ON,
Canada

Israeli A, Feitelson DG, The Linux Kernel as a Case Study in
Suftware Evolution, Journal of Systems and Softwarem, Volume
83, Issue 3, March 2010, pp 485-501

Godfrey MW and Tu Q, Evolution in Open Source Software: A
Case Study, Proceedings of the International Conference on

Software Maintenance, pp. 131 - 142, 2000
131

[Herraiz et al 2006]

[lzurieta and Bieman 2006)

[Koch 2005]

[Leh 78]

[Leh 97 a]

[Leh et al 97 b]

[Leh et al 98 a]

Herraiz I, Robles G, Gonz'alez-Barahona IM, Capiluppi A,
Ramil JF, Comparison between SLOCs and Number of Files as
Size Metrics for Software Evolution Analysis, Proceedings of
the Conference on Software Maintenance and Reengineering
(CSMR’06), 22-24 Mar, 2006, pp 215-220

lzurieta C and Bieman J, The Evolution of FreeBSD and Liminc
Proceedings of the ACM/IEEE International Symposium on
Empirical Software Engineering (ISESE), 2006

Koch S, qulution of Open Source Software Systems — A Large-
Scale Investigation, The First International Conference on Open
Source Systems, Genova, Ita!y,_ July 11 - 15, 2005 :

id, Laws of Program Evolution-——Rules and Tools for
Programming Management, Proc. Infotech State of the Art
Conf., Why Softwate Projects Fail?, Apr. 1978, pp. 11/1-11/25.
Lehman MM, Laws of Software Evolution Revisited,
Proceedings of EWSPT’96, Nancy, LNCS 1149, Springer
Verlag, 1997, pp. 108-124

Lehman MM, Ramil JF, Wernick PD, Turski WM and Perry DE,
Metrics and Laws of Software Evolution - The Nineties View, in
Proceedings of the Fourth Intl Software Metrics Symposium,
Nov 5-7, Albuquerque, NM, 1997, pp 20-32

Lehman MM, Perry DE, and Ramil JF, On Evidence Supporting
the FEAST Hypothesis and the Laws of Software Evolution, in
Proceedings of the Fifth International Metrics Symposium,

Metrics "98, Bethesda, Maryland, Nov. 20-21, 1998

132

[Leh et al 98 b)

[Leh and Ramil 2001]

[Linuxlinks 2011]

[Robles et al 2005]

[Simmons et al 2006]

[Sommerville 2005]

[Turski 96]

Lehman MM, Perry DE, and Ramii JF, Implications of Evolution
Metrics on Software Maintenance, in Proc. Of the 1998 Intl,
Conf. on Software Maintenance (ICSM'98), Béthescla,
Maryland, Nov 1998 -

Lehman MM and Ramil JF, Rules and Tools for Software
Evolution Planning and Management., Annals of Software
Engineering, 11(1):13-44, 2001 |

Lanuxlinks, 2011.

http://www linuxlinks.com/article/20091129070817552/ERP.ht
ml

Robles G, Amor JJ, Gonzalez-Barahona JM and Herraiz [.,
Evolution and Growth in Large Libre Software Projects,
Proceedings of the International Workshop on Principles of
Seftware Evolution; pp. 165 — 174, 2005.

Simmons MM, Vercellone-Smith P. Laplante PA, Understanding
Open Source Software through Software Archaeology: The Case
of Nethack, Proceedings of the 30th Annual IEEE/NASA
Software Engineering Workshop SEW-30 (SEW'06), Apr 2006,
pp 47-58.

Sommerville I, Software Engineering, Pearson Education, 2005
Turski MW | Reference Mode! for Smooth Growth of Software
Systems, IEEE Transactions on Software Engineering, Volume

22, Issue 8, August 1996

)

(8]

[Xie et al 2009]

Xie G, Chen J and Neamtiu I, Towards a Better Understanding
of Software Evolution: An Empirical Study on Open Source
Software, Proc. IEEE ICSM (International Conferemce on

Software Maintenance), Sep 20—26, 2009. Edmonton, Canada

