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Abstract

ABSTRACT

Physical properties of ZnSe thin films of various thicknesses deposited in two
batches Bl i.e. on In-0;:Sn (ITO) coated glass substrate and B2 i.e. on bare glass
substrate. by physical vapor deposition, have been studied. X-Ray Diffraction (XRD),
Rutherford Backscattering Spectroscopy (RBS), Scanning Electron Microscopy
(SEM), Transmission spectroscopy and four probe conductivity techniques were used
to characterize the samples. XRD pattern showed that all the films are cubic with
preferential orientation along (111). The structural parameters such as grain size D.
strain €. lattice parameters and dislocation density & are calculated from the XRD
patterns. It is observed that the lattice parameters in B1 have shown an increase from
5.678 to 5.834A with increasing film thickness and become close to that of CdTe
which makes ZnSe a suitable window material for CdTe/ZnSe hetero-junction solar
cell. RBS analysis shows that indium was diffused into the film from the ITO layer.
The optical transmission spectra show that transmission decreases with increasing
film thickness and the band gap of samples in B2 are higher than B1 samples. The
electrical characterizations show that the films with thickness 71nm and 86nm are
more conductive. The sample of B1 series with least film thickness (71nm) has shown
highest improvement in conductivity after annealing due to inclusion of ITO and
In-0; and might have greater concentration. The samples of B2 were highly resistive

but after doping with Ag, their conductivity was improved.
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Chapter 1 Introduction and literature Review

CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1. SEMICONDUCTORS

On the basis of electrical conductivity materials are classified into three types
i.e. conductors, insulators and semiconductors. Semiconductors are those materials
whose conductivity lies in between conductors and insulators 10° to 10°® siemen per
cm.[1] Semiconductors are insulators at 0K but at room temperatures they show

limited conductivity this fact is due to,

e Partially filled conduction band,
¢ Partially filled valance band,

e A very narrow energy gap between conduction and valance band (~1eV)

Semiconductors can be doped with impurities which alter their electronic properties in

a controlled way. There are two types of semiconductors:

» Elemental semiconductors
» Compound semiconductors

1.2. ELEMENTAL SEMICONDUCTORS

In this type of semiconductor, the crystal is composed of atomic elements single
type from group IV of the periodic table, the elements of this group includes

carbon (C), germanium (Ge), silicon (Si}), and tin (Sn). Among these elements

-1-
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Silicon is the most abundant element on earth as well as the most commonly used

electronic semiconductor material.
1.3. COMPOUND SEMICONDUCTORS

In this type of semiconductors, the crystal is formed with the atoms of two or
more elements from different groups of periodic table, GaAs, CdTe, ZnSe, GaAsP,
AlGalnP etc are some of the examples of compound semiconductors most commonly

used. Compound semiconductors are classified into three types;

¢ Binary (only two elements are present in compound i.e. GaAs, CdTe, ZnSe
etc.)

e Ternary (three elements form this type of compound i.e. GaAsP, ZnCdTe
etc.)

e Quaternary (four elements form this type of compound i.e. AlGalnP,

InGaAsSb etc.)

1.4. Doping of Semiconductors

Doping is a process by which the conductivity of semiconductors can be
changed and controlled by adding impurities of some suitable element of periodic

table, there are two type of dopant for semiconductors.

¢ N-type Dopant or donor impurity:

For n-type doping of Si, pentavalent impurity (Si is tetravalent) like P or
As are added. These atoms are also called donor atoms as they donate a free
electron to the semiconductor. Electrons are the majority carriers in this type of
doping. In I1-VI semiconductors like CdTe, ZnSe, and CdS can be doped n-type
by adding any element of group III or VII to these semiconductors.[2] In an n-
type semiconductor, due to the higher concentration of electrons than that of

holes the Fermi level lies closer to the conduction band.
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e P-type Dopant or acceptor impurity:

For p-type doping of Si, trivalent impurity like B (boron) or Al are added.
These are called acceptor atoms as they accept electrons. Holes are the majority
carriers in this type of doping. II-VI compound semiconductors like CdS, CdTe
can be doped p-type by adding any elements of group [ or V to the
semiconductor.[2] In a p-type semiconductor the Fermi level lies closer to the

valence band because there is a low concentration of electrons than that of holes.
1.4.1. DIRECT AND INDIRECT BAND GAP SEMICONDUCTORS

Distinguishing characteristic of semiconductors is the situation of the
conduction band energy minimum above valance band maximum, on E-k diagram
[3]. In Si and Ge. the maximum of valance band does not lie exactly below the
minimum of conduction band as shown in Fig. 1.1 (b).

Valance band maximum of all the semiconductors occur at k=0 while the
conduction band minimum of Silicon & Germanium (Indirect Band gap) occur at
different values of k which indicate a difference of momentum between these two
points. In case of GaAs or ZnSe (Direct Band gap) both points, valance band
maximum and conduction band minimum, occur at k=0 as shown in Fig 1.1 (a).

E interband photoluminescence

condyction
band
conduction ban7

clucyianx
)‘.\ / A
[+31
R /
T \“\‘gy;ctrc-.:: /7
——s /
- .

Sl E—
k-0 k k=0 k
direct—gap malecrials indirect—gap materials
(a) (b)

Figure: 1.1 E-K diagrams of semiconductor band gap (a) Direct and (b) Indirect
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In the case of direct band gap semiconductors, a photon of energy hv can
excite an electron from the top of the valance band to the bottom of conduction
band and an electron in conduction band can fall directly in the hole of valance
band by emitting a photon of energy equal to band gap Eg. In case of indirect
band gap there is a k- vector shift of conduction band minimum with respect to
valance band maximum due to which the electron in conduction band can’t fall
directly into valance band reason for this is that it have to undergo change in its
energy and momentum. Also in case of indirect semiconductor an electron can’t
excited by a photon from the top of valance band to the bottom of conduction
band. because the photon has sufficient energy for this transition but doesn’t
follow the momentum conservation. An electron motion between the valance
band and conduction band of an indirect semiconductor can occur by the action of
photon or through a defect in semiconductor, which can provide sufficient
momentum for transition. This is the reason due to which direct semiconductors

are preferred for optical devices.

1.5. FAMILIES OF SEMICONDUCTORS

The semiconductor crystals are formed by covalent bonding of the
conductivity atoms. The bonding electrons lies in the valance band, separated from
the conduction band which is completely empty.[4]

There are three families of semiconductors:

e 1V-group elemental semiconductors
e 1II-V compound semiconductors

e [I-VI compound semiconductors

1.5.1. IV-group elemental semiconductors

Semiconductors which are composed of only a single atomic element from
group IV of the periodic table, semiconductor elements of group IV are carbon

(C). germanium (Ge). silicon (Si), and tin (Sn). Silicon is the most abundant and
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the most commonly used electronic semiconductor material as shown in Fig. 1.2

(a).

1.5.2. IlI-VCompound Semiconductors

The 1II-V semiconductors are formed in such a way that one element is
from group [lI and other from Group V of periodic table. These semiconductors
are prominent for applications in optoelectronics. Moreover, 1l1I-V
semiconductors have ability for higher speed operation than those of silicon
semiconductors in electronics applications, particularly their importance in the
areas like wireless communications. The crystal lattice of compound
semiconductors is constructed from atomic elements in different groups of the
periodic table. In this type, compound semiconductors are based in such a way
that an atomic element A is from Group IIl and an atomic element B is from
Group V. Each Group I1I atom s bound to four atom of Group V, and each atom
of Group V is bound to four atoms of Group [lI, general arrangement is as shown
in Fig. 1.2 (b). Bonds are formed by sharing of electrons in such a way that the
valance band of each atom is filled with 8 electrons. Mainly the bonding is
covalent but there is a component of ionic bonding because there is shift of
charge from the Group V atoms to the Group III atoms while it is covalent in case
of elemental semiconductors. Some of the IlII-V compound semiconductors are

GaAs, GaP, InAs, GaSb, InP, and InSb.

1.5.3. I-VI Compound Semiconductors

H-V1 semiconductors are composed with one atomic element from
Group Il and other atomic element from Group VI and each atom of Group Il is
bonded to four nearest neighbours of Group VI as shown in Fig. 1.2.(c). In this
case the charge transferred from Group VI to Group Il atoms is more than that in
case of IlI-V compounds therefore the ionic character is more in this case as
compare with that of [1[-V. These semiconductors can be created in ternary and
quaternary forms, much like the III-V semiconductors. II-V] compounds are not

much common as the III-V semiconductors, but have some important



A
.

Chapter 1 Introduction and literature Review

applications. Some of the II-VI semiconductors are ZnTe, ZnSe, ZnS, CdS, CdTe
and CdSe

Group IV Group I Group V Groupll  Group VI
* . . . t .
+
- ©- @ | |8 Q| |'e-

hé):@:@:é}: l@:é:é:é: !@Sé:é}:@:

@@@@ @@@@ @@@@
@@@@ @@@.@ @@@@
(a) (b) {c)

Figure: 1.2. Bonding arrangements of atoms in semiconductor crystals. (a)
Elemental semi-conductor such as silicon. (b) Compound III-V
semiconductor such as GaAs. (¢) Compound 11-V! semiconductor such
as CdS.

1.6. PROPERTIES OF 11-VI COMPUND SEMICONDUCTORS

Before studying the applications of 11-VI compound semiconductors, here
we will briefly describe some of the structural, optical and electronic properties

of 11-VI compound semiconductor materials.

1.6.1. STRUCTURAL PROPERTIES

I1-VI compound semiconductors are either zinc blende (Cubic) or wurtzite
(Hexagonal) in structure, structural lattice of both are shown in Fig. 1.3.(a, b).
Among the [I-VI semiconductors ZnTe, ZnSe and ZnS are in the form of zinc-
blende lattice structure, while CdS and CdSe are either the zinc blende or the
wurtzite lattice structure and CdTe forms in the wurtzite lattice structure. In case
of Zinc blende structure the lattice constants (in nm) are, ZnS (0.541), ZnSe
(0.567), ZnTe (0.610), CdS (0.582), CdSe (0.608) and CdTe (0.648) [3]while in

case of Wurtzite structure, the lattice constants a, and ¢, (in nm) are ZnS
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(0.3811/0.6234), Zn0(0.32495/0.52069), ZnSe (0.398/0.653), ZnTe (0.427/0.699)
CdS (0.4135/0.6749) and CdSe (0.430/0.702).

o
[of o

<>

(b)

2

Figure: 1.3.  (a) Zinc blende (Cubic) (b) wurtzite (Hexagonal)
1.6.2. OPTICAL PROPERTIES

11-V1 compound semiconductors are direct band gap semiconductors
which is a positive feature of these semiconductors over Si as there is no change
of momentum take place in case of transition of electron between valance band
and conduction band. also these are wide band gap semiconductors their band
gaps (in eV) at room temperature are Zn$S (3.68), ZnO (3.4), ZnSe (2.71), ZnTe
(2.394). CdS (2.5), CdSe (1.75) and CdTe (1.475) and their absorption co-
efficient (in cm™) are Zn$S (< 0.135), ZnSe (1-2x107), CdS (< 0.007), CdSe (<
0.0015) and CdTe (< 0.003).

1.6.3. ELECTRICAL PROPERTIES

Because of wide band gap most of the [I-VI compound semiconductors are
insulators, by doping them their conductivities can be increased significantly.
Elements from group 1B such as Cu, Ag and Au are very important dopants in [I-
V1 compound semiconductors. In addition to their addition as acceptor impurity,
they occupy interstitial lattice site to show a high diffusivity at relatively low
temperature.[6] ZnSe and CdTe are only 11-VI compound semiconductors which

can be doped as both n- type and p-type extrinsic semiconductors.[7]
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Before going into the details of the applications of II-VI compound
semiconductors in the thin film solar cells, we will first describe the basics of

solar ceils.

1.7. SOLAR CELL

Expected increasing cost of fossil fuels have forced the research to find new
resources of energy generation to meet the increasing energy demands of the
universe, solar cells or photovoltaic devices got their attention by the researcher
as alternate energy resources. A solar cell or a photovoltaic device is a p-n
junction semiconductor device that converts light directly into electricity when
exposed to light. This phenomenon of conversion of light into electricity is
known as photovoltaic effect. As the sun is the only natural source of light for the
earth that radiates light with black body spectrum of electromagnetic waves at
6000K. These photovoltaic devices have a vast range of application among
different fields of life like calculators, clocks, toys, night bulbs and remote
locations that are not connected to the power supply grid station. Also solar cells
are the only power source for the space station for communications and other
processes.[8] PV devices can also be used to provide large scale power generation
like Building Integrated Photovoltaic (BIPV) and centralized Power stations.[9]
currently most advanced photovoltaic cells are based on silicon crystalline and

polycrystalline form.[10]

1.7.1. PHYSICAL MECANISM OF CONVERSION OF LIGHT INTO
ELECTRICITY

The principle of operation of solar cell can be explained as the photons having
energy greater than the band gap energy (Eg) of semiconductor are absorbed. as a
result of this act electron from the valance band are raised to conduction band and
holes are created in the valance band correspondingly. As a result of absorption of
photon in the depletion region of pn-junction, generated electron-hole pairs are
being separated by the electric field present in the depletion region and make

them to flow through the external circuit/load. If the impedance of the load
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matches with that of solar cell then the max power is delivered to the load.

Schematic diagram of a solar system is shown in Fig. 1.4.

Solar conversion efficiency is given by equation no 1.1.

N=Vols FF/Poll 1.1

Where:

Vo IS Open circuit voltage which is voltage generated with infinite load
resistance

I,c is short circuit current which is the current generated with zero load
resistance

FF is fill factor which is defined as the ratio of the max. power generated
by cell divided by Vls) and

P is solar power [49]

SOLAR CELL
BACK CONTACT

FRONT
CONTACT VOLTMETER
| LOAD

)

AMMETER

Figure: 1.4, A photovoltaic cell placed in a simple circuit that allows the production
of useable power

The researchers have devoted their interest to increase the efficiency of
solar cell by introducing new materials for photovoltaic devices. In thin film solar
cells the p-n junction is composed of two layers, one is called the window layer

and the other is the absorber layer. The function of window layer is to transmit all
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the incident photon to the absorber layer, where the electron hole pairs are
generated and are collected by the junction potential. The p-n junction is
sandwiched between front contact layers which is a transparent conducting oxide
with high transparency in the visible region. On the other side of junction another
contact layer is formed which could be any suitable metal. Both front and back
contacts should be ohmic in nature. Schematic layout diagram of conventional pn-

junction thin film solar cell is shown in Fig. 1.5.

Sanlight
Fhotoas

‘ : ) ' : . : ) Negalive lerminal

Corer Glona R | .

Transparest conductisg ovide

B-Iy pe semicoaduior (Cds)

P pe wmicomd wclor (CdTe)

Gold contact Posilive (erminal

Figure: 1.5. A schematic layout of a conventional pn junction thin-film solar cell.

1.8. APPLICATION OF 11I-VI COMPUND SEMICONDUCTORS IN
THIN FILM SOLAR CELLS

I1-VI compound semiconductors are widely used in thin film solar cell as
their window layer, absorber layer and buffer layers because of their wide band
gap detail of application of different II-VI compound semiconductor, in solar cell,
are given as below;

e ZnTe as back contact for CdS/CdTe solar cells [12]
e ZnSe as window layer and buffer layer [13]
e« 7nQO as front contacts [[4]

e 7nS as window layer [13]

-10-
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¢ (CdS as window layer and buffer layer [16]
s CdTe as absorber layer [17]
e (dSe as window layer [138]

1.9. ABOUT ZnSe

The Zinc Selenide (ZnSe) is a light yellow binary compound (1I-VI)
semiconductor with a wide band gap of 2.7 €V [19]. The propertics such as wide
band gap, high photosensitivity and low resistivity make it highly attractive. ZnSe
exists in two crystalline forms i.e. zincblende (cubic) and wurtzite (hexagonal),
and cubic phase is believed to be stable. At room temperature the ZnSe has the
electron affinity of 4.09 eV and electron mobility is about 530 em® Vs [20]
Like other [1-VI compounds, ZnSe is generally doped as an n-type semiconductor,
but is difficult to dope it as a p-type. ZnSe have been doped p-type by using
nitrogen as the dopant.[21] Because of direct and large band gap of ZnSe, it has
drawn considerable interest among other 11-VI compound semiconductors,
which makes it appropriate for use in optoelectronics as detectors and emitters.
By providing good imaging characteristics, it is useful for optical components in
hich power laser window and multispectral applications.[22] Its wide
transmission wave length range (600 nm to 2000 nm) has made it useful as an IR
material.[23] Tt is used as transmission window in IR spectroscopy, ATR prisms
and night vision applications. It is also used in high resolution thermal imaging
systems to correct the colour distortion which is often inherent in other lenses
used in system. The band gap of ZnSe (2.7¢V at room temperature} corresponds
to an optical absorption threshold at 460 nm. Therefore the material is useful for
the active region in blue-green emission light emitting diodes (LED) [24] and
blue diode lasers.[25] Due to high transmission coefficient of ZnSe, it is used as
window layer in solar cells. Therefore it can substitute CdS in photovoltaic solar
cell devices, which will result in higher cell efficiency by means of admission of
more photons to the absorber layer, because of its larger band gap.[26] ZnSe
doped with tellurium can be used in ultrasonic transducers. Doped ZnSe is used

as host layer of thin film electroluminescent devices.[27] These wide application

-11-
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possibilities of ZnSe have given considerable importance to the investigation of

its thin films in recent years.

1.10. A BRIEF REVIEW OF RESEARCH WORKS ON ZnSe
AND THIN FILMS

The optoelectronic semiconducting material ZnSe has been extensively
studied as single crystals and also as epitaxial and polycrystalline thin films
prepared by different techniques because of its unique optoelectronic and other
properties with a hope of exploring potentialities for fabrication of new scientific
and technological devices. The inter band electronic property of zincblende ZnSe
was theoretically and confirmed them experimentally by Markowski et.al. [28] J.
Dutta. et al studied the photoconductivity in poly crystalline semiconductors and
grain boundary effect. They showed that the carrier recombination at grain
boundaries drastically influence the carrier transport mechanism in layers. This
was done theoretically and was confirmed by them experimentally. [29] Effect of
thermal annealing on band gap and optical properties of chemical bath deposited
ZnSe thin films were studied by F. 1. Ezema et.al. They reported that due to
change in the morphology as a result of air annealing film showed a red shift of
0.10eV to 0.20eV in optical spectra. [30] Thickness of the film affect the physical
properties of thin film, Enriquez and Methew reported the influence of the
thickness on structural, optical and electrical properties of chemical bath
deposition CdS thin films as the variation of the band gap between conduction
and valance band because of straqin of films and in relatively thiner films the
trapping centres were less while thicker films were less photosensitive. [31]
Lokhande et a! studied the deposition and characterization of chemical bath ZnSe
thin films and showed that thin films of ZnSe can be deposited by Chemical bath
deposition (which is relatively simple and cheap method). These films deposited
on various substrate temperatures were found to be amorphous in nature
containing oxygen and nitrogen in addition to Zn and Se and they showed that
these films are photoactive. [32] Microstructural characterization and optical
properties of ZnSe thin films were reported by Rusu et al. that the preferred

orientationof ZnSe films by qausi-closed technique is (111) which was confirmed

-12-
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by XRD and HRTEM. They calculated the band gap as 2.5¢V and 2.80eV. [33]
Further AFM images showed that the films were homogeneous and of uniform
grain size. By heat treatment increased orientation degree of crystalline was
observed [34] Chandramohan et al studied the preparation and characterization
of semiconducting ZnCdSe thin films. Electrodeposited films of ZnCdSe based on
cvclic voltammetry and their wurtzite nature was confirmed by XRD. Also they
showed that how the composition of ZnSe and CdSe changes the band gap
between 2.82eV and 1.72eV, they also reported their surface morphology was
studied by SEM and composition analysis was done by XRD and EDAX [35]
Venkatachalam et al reported the composition, structural, dielectric, DC and
optical properties of ZnSe thin films deposited by vacuum evaporated, RBS was
used to study the composition analysis which was stoichiometric. XRD confirmed
their cubic nature also they calculated their grain size D, lattice strain ¢,
dislocation density &, and their lattice parameter and they calculated their
dielectric constant as 8.11. [36] In another paper Venkatachalam et al reported the
properties and characterization of ZnSe films deposited by vacuum evaporated
technique at different substrate temperature, they showed their crystalline nature
and photo response in the visible range.[37] Doping of semiconductor is the
defining property of semiconductors, by this process the conductivity of the
semiconductors is controlled. Zulfigar et al studied the physical properties of
ZnSe thin films prepared by two source evaporation and their properties after
doping, they studied the optical properties by transmittance spectra and calculated
the band gap also they showed that by the doping of Ag in ZnSe thin films their
resistivity fell from ~10° Q-cm to 19.6 Q-cm. [38] Agili et al reported the
properties of Ag doped ZnTe thin films by an ion exchange process, they reported
that there was a reduction to 0.01% of resistivity of doped thin films as compare
with those were undoped, they also reported that there was a shift of optical band
gap. reduction of transmittance and an increase in refractive index was

observed.[39]

13-
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1.11. OBJECTIVE OF PRESENT STUDY

As the thickness of the film strongly affect the physical properties of the
materials i.e. structural, optical and electrical properties. In my present work we
have focused on the effect of thickness on the physical properties of ZnSe thin
fitms deposited by Physical Vapour Deposition technique and the effect of air
annealing and Ag doping on the physical properties of these films have been
studied. Another objective of the present work was to gain understanding of wide

band gap semiconductors for solar cell applications.

-14-
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CHAPTER 2

EXPERIMENTAL TECHNIQUES

2.1. PREPARATION OF THIN FILMS.

Thin films of ZnSe were deposited on glass substrate by Physical Vapour deposition
(PVD) at the rate of 0.2nm per second at 80° substrate temperature the vacuum level
was set to ~10"® torr. High purity deposition grade powders (ZnSe 99.9%, ITO 99.5%
Manufacturer M/s Balzer) were used for thin film deposition, thickness of the films
were controlled using quartz crystal thickness monitor. Two batches of ZnSe thin

films were prepared

Bl. In first batch ZnSe films were grown over 200nm thick In.O;: Sn
(ITO) coated glass. Samples are named A, B and C.
B2. In second batch films were deposited directly on glass substrate.

Samples are named a, b, c.

2.1.1. ANNEALING

The annealing of semiconductor thin film increases the conductivity and
grain size. Therefore, all the samples were annealed in air in furnace at 100°C,
200°C and 300°C for one hour and then they were furnace cooled to room

temperature,

2.1.2. Ag DOPING

The as grown B2 were highly resistive. There samples were doped with Ag by lon

exchange process Silver has 4d'°5s' electronic configuration so that it could make

-15-
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it p-type ZnSe. Before doping samples were annealed at 300°C to increase the
adhesion between film and substrate then a solution of AgNO; was prepared by
mixing lgram of AgNO; in 1 litre of distilled water and then the solution was
heated up to 60°C and the samples were dipped in the solution for 5 minutes. The
samples were then annealed at 350°C for one hour and furnace cooled to room

temperature.

2.2. CHARACTERIZATION TECHNIQUES

2.2.1. X-RAY DIFFRACTION (XRD):

X-Ray diffraction is a non destructive technique used to determine
structural properties such as lattice parameters (10™*A), lattice strain, grain size,.
expitaxy, phase composition, preferred orientation (Laue) order-disorder
transformation, thermal expansion, dislocation density, identifying crystalline
phases and orientation, , it can also be employed to measure thickness of thin
films and multi-layers, to determine atomic arrangement. The XRD technique
works on the X-Ray diffraction from crystals explained by W.L. Bragg and W.H.

Bragg, known as Bragg’s Law;

2d5in8=nX ... 2.1

Where d is interplanner spacing, 0 is the angle which the incident beam makes
with the crystal plane, n is the order of diffraction and X is the wavelength of the

X-Rays used. The schematic diagram of Bragg’s Law is shown in Fig. 2.1.

Bragg'sLaw .~
ni=2d-sin6 .
rd

Figure: 2.1  Schematic diagram of Bragg’s Law
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Figure: 2.2 XRD apparatus

In the present work CuKa X-Rays (.=1.54056A) have been used to study
the crystal structure of ZnSe thin films. The XRD spectra were taken between
26~20-80 with scan speed of ldegree per min. The XRD data was taken from X-
Ray diffrectrometer D8 Bruker AXS shown in Fig. 2.2.

2.2.2. RUTHERFORD BACK SCATTERING SPECTROSCOPY (RBS)

It is a non-destructive quantitative multi-element compositional analysis
technique by which quantitative analysis are possible without using standard reference
materials. This technique is named after Lord Earnest Rutherford (a Scientist). This
technique was established by Hans Geiger and Ernest Marsden between [909 and
1914 under the supervision of Rutherford. In this technique an ion like He® is
incident on the sample and due to the interaction with the neuclius of the target atom
it is scattered at certain angle if the scattering angle is greater than 90° then it is called
backscattering. The energy of back scattered ions are analyezed and compared with

the incedent ions as shown in equation 2.2.

-17-
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(M — M?sin?8)7 + M, cos8 ]

E
K=—
Ey M+ M,

.22

Where K is kinametic factor E, is energy of incident ion and E is energy of
backscattered ion. M, is mass of incident particle and M ; is mass of target neuclii and

0 is the scattering angle.

In the present work He'" beam of 2MeV was used at normal incidence and
the backscattered beam was detected at Si surface Barrier detector mounted at 10°
relative to the incident beam. The current was set to 20 nA (electrical) to

minimize the pile up effect.

Figure 2.3. (a) shows energy of incident ion E, and energy of backscattered ion E (b)
shows block diagram of RBS. Figure 2.4 (a) shows the experimental setup for the

study of RBS. A schematic of RBS geometry is shown in Fig. 2.4 (b).

(a)
lon Beam
Accelerator [Energy Collimator cs ham“"abe""f
alyzer
Backscattering
lon Energy
Analysis
(b)

Figure: 2.3 (a) lon-target neuclues interaction (b) Block diagram of RBS
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Figure: 2.4 (a) Experimental set up for RBS (¢) Schematic photograph of RBS
geometry

2.2.3. TRANSMISSION SPECTROSCOPY

The transmission spectroscopy is a very useful technique to determine the
percentage transmission of the optical coatings. The transmission spectrum is
alternatively used to measure the absorption edge of the coated material. In this
technique a photometer is used which can give electromagnetic waves in near IR, UV
and visible region. The electromagnetic radiation fall on the sample some are
transmitted, some are reflected and least are absorbed as shown in Fig. 2.5. We have

studied the transmission spectra of ZnSe thin films in wavelength range from 200 nm
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to 1100 nm using a spectrophotometer perkin elmer lambda -19 uv-vis-nir
spectrophotometer. Its working wave lengths are 190 nm to 3200 nm. Abscissa
accuracy =£0.15 nm (UV/VIS range), +0.6nm (NIR range), Ordinate is = 0.08%T.
Detectors used in this apparatus are side window photomultiplier for UV and Visible
while PbS detector for NIR. The experimental set up for this apparatus is shown in
Fig. 2.6.

Adsorption

tncident beam \ / Scatter
v

Front reflection > Transmission
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Figure: 2.5 Mechanism of incidence of beam of light on sample

: lamp

i /Z
Grating

JEntrance slit

Reference
position

Sample

position Chopper

(PMT}

Figure: 2.6 Optical arrangement of spectrophotometer
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2.2.4. SCANNING ELECTRON MICROSCOPY (SEM)

The surface morphology of thin film optical coating is very critical from
application point of view. The surface smoothness and the grain morphology are
studied using SEM. Use of electron microscope was established due to the
limiting magnification and resolving power of the optical microscope. In contrast
to optical microscope. electron microscope has very large magnification as well
as resolving power. The essential components of an electron microscope are
electron gun, beam controller and detectors. Schematic diagram of a scanning

electron microscope (SEM) is shown in Fig. 2.7.

Figure 2.7.  Schematic diagram of scanning electron microscope

2.2.5. ELECTRICAL CONDUCTIVITY

Material’s surface resistivity can be measured by many ways. two- or four-
point probe method is one of the most common methods for measuring surface
resistance.[40] In this method either the probes are aligned linearly or in a square

pattern to make contact with the surface of the sample.[4]1] Both methods are the most
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common methods for measuring sheet resistivity because they have the ability to
minimize the effects of contact resistance Rc.[40.41] The block diagram of two and
four point probe methods are shown in Fig. 2.8. In two points probe method a
constant Voltage is applied across two points and corresponding current is measured
hence I-V characteristics are drawn. The drawback of this method is that in case of
materials with high conductivity the resistance of connecting wires also become
effective this deficiency can be overcome by using four probes in which constant
current 1s made to flow through material between points 1 and 4 and potential
difference between points 2 and 3 is measured by using voltmeter. In the present
study four point probe method was used Silver paste was used for the purpose of
conducting contacts. I-V characteristics of all the samples were carried out in light
and in dark. For light Tungsten Halogen lamp was used. To study the photo decay
after the illumination the samples were placed in dark and current decay was recorded
for Smin with an interval of | minute. The HP 4140 pico ammeter and voltage source
has been used to measure the [-V characteristics of the samples. The experimental
arrangements used for [-V characteristics in light and dark are shown in Fig. 2.9 (a)

and (b) respectively.

4

(a) (b)

Figure 2.8.  Method for resistivity measurement (a) Two Probe, (b) Four Probe
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(b)

Figure 2.9.  Experimental arrangement for I-V characteristics in (a) light (b) dark
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CHAPTER 3

RESULTS AND DISSCUSSION

3.0. INTRODUCTION

Structural, optical and electrical properties of the samples prepared in Batch |
and 2 have been disused in this chapter. All these properties have been studied in
three sections;

e Section-1, properties of as-prepared samples of ZnSe/ITO has been
discussed.

e Section-2, properties of samples of B-1 annealed at 100, 200 and 300°C
has been discussed.

e Section-3, properties of Ag doped ZnSe have been discussed.

3.1. SECTION-1

In this section the analysis of as prepared samples A, B and C have been
described. First of all the results of XRD, RBS and SEM have been discussed for
structural characterization then the results of transmission spectroscopy for
optical characterization are described in last results of electrical properties
i.e. 1-V characteristics, Photocurrent and Photo decay and photosensitivity have

been discussed.
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3.1.1. STRUCTURAL CHARACTERIZATION

3.1.1.1. X-RAY DIFFRACTION

The XRD spectra of ZnSe/ITO/glass thin films (t~71, 77, 86nm) are shown in
Fig.3.1 (a-c). The samples with t~70, 77, 86nm will be designated by the alphabets A,
B and C respectively in the text. The XRD spectra of ZnSe thin films has shown a
cubic structure with preferred (111) orientation observed at 26~27.22. However.
there is a shift in the (111) peak position to lower 28 values with the increase in the
thickness of the ZnSe films. The crystalline quality has been also improved with the
increase of ZnSe thin film thickness. The structural parameters of ZnSe thin film
samples were calculated using the (111) peak which are shown in Table 1. It can be
seen from this table that the cell parameters have been increased to 5.83 and 5.834A
with the increase in the film thickness. Moreover, no impurity peak was observed
from the ITO itself. The values of the cell parameters for the sample A were found to
be 5.678A comparable to the already reported values for ZnSe. [37] The grain size,
lattice strain and dislocation density of sample A, B and C were also calculated from

the XRD data using equations 3.1, 3.2 and 3.3 respectively. [36]

D=0.94/$Cos6 3.1
£= PCos8/4 3.2
6=15¢/aD 3.3

It can be seen from this table that as the thickness is increased there is a
decrease in the grain size, whereas the lattice strain and dislocation density has been

increased.
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Figure: 3.1  XRD patterns of samples A, B and C.
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3.1.2. COMPOSITION, THICKNESS AND MICROSTRUCTURE:

The composition and thickness of as deposited thin films of B 1 were
determined through Rutherford Backscattering Spectroscopy (RBS). The RBS
spectra of sample A. B and C are shown in Fig. 3.2. The simulation codes RUMP
and SIMNRA were used to calculate the thickness and composition of these
samples. The thickness of sample A, B and C are calculated to be 71nm, 77nm
and 86nm. Compositional analysis shows that Zn to Se ratio is ~1.12 in all the
samples with a significant inclusion of indium from under layer in sample B and
C. The Indium might have been introduced during the deposition of ZnSe on
In-O;:Sn (ITO) film due to very high temperature of ZnSe vapours. The thickness
of ITO layver was also determined and found to be 1414, 1770, 1322nm of sample
A, B and C respectively. These results have shown that indium (or tin) have been
diffused into the ZnSe layer, and probably have occupied Zn or Se sites which
have changed the lattice parameter but did not affect the phase purity of the
material. The results extracted from RBS analysis are given in Table 3.2.

The microstructure of the ZnSe thin films was studied through scanning
electron microscopy (SEM). Two samples were selected for this purpose; one
with least thickness and second with largest thickness. The SEM micrographs are
shown in Fig. 3.3. It can be seen from these images that there is full coverage of
the glass substrate by the film with SEM selected resolution with small amount of

clusters on the film surface.
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Figure: 3.3 SEM micrograph of samples (a) A and (b) C.




Chapter 3 Results and Discussion

3.1.3. OPTICAL ANALYSIS

The transmission spectra of A, B and C samples in the wavelength range 200-
1200nm are shown in Fig. 3.4, It can be seen from this figure that the samples A and
C have shown higher transmission as compared to the sample B. The one possible
reason of low transmission of sample B is higher thickness of ITO layer. The

absorption coefficient « (cm™) was calculated using equation 3.4.
e=1/[d*In(1/T)] ...l 34

Where

d: film thickness

T: Transmission

The effects of reflection and transmission lasses in glass and ITO layer were
ignored. The absorption coefficients as a function of incident photon energy are
shown in Fig. 3.5. It can be seen from this figure that the absorption coefficient is

higher in sample B and least in sample C.

The energy gap E, of the films was calculated from (othv)2 vs hv plots as
shown in Fig. 3.6. by assuming direct band gap material. Intercepts were drawn from
the linear portion of the (¢hv) vs hv curves. The x-intercepts values are selected as the
energy gap of each sample. The calculated band gap values are 2.43, 2.2 and 2.6eV
for samples A, B and C respectively. There are various factors which can influence
the band gap energy i.e. lattice parameter, grain size, impurities, lattice strain etc.
[42]). The increase in the band gap energy in sample C may be attributed to the
decrease in grain size and higher lattice strain. {43] However, the sample B has shown

a band gap lower than sample A and C, which may be due to the higher In content as

compared to that of sample C.
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Figure: 3.4  Optical transmission spectra of samples A, B and C.

1.5
—A

1 ----B
b, -C

o/ i

o 'J.\

E1.0~ .

£

i

]

0.0 ' . l -
400 600 800 1000 1200

Figure: 3.5  Absorption spectra of samples A, B and C.

233



Chapter 3 Results and Discussion

10.0

o A (E°=2.43e\l)
c B (Eg=2.2eV)
& G {E°=2.6eV)

(ahu)2[x10"(eVicm)?]
o ~
o 19,1

N
o

0.0

hu(eV)

Figure: 3.6  Plot of « as function of photon energy of samples A, B and C

3.1.4. ELECTRICAL ANALYSIS
3.1.4.1. I-V. CHARACTERISTICS

The [-V characteristics of ZnSe thin films of B 1 in dark as well as under
illumination are shown in Fig. 3.7. (a, b). It can be seen from this figure that these
films are low resistance and shown ohmic behaviour. The sample C has shown
highest current values as compare to A and B thin films; where the sample B has
shown least conductivity in terms of magnitude of eclectic current which flows
through the sample. The conductivity of polycrystalline semiconductor thin films
could be influenced by two sources; one is the grain boundaries (grain boundaries act
as scattering centers for charge carriers) and the other is the charge carrier
concentration {electrons/holes). The grain size in sample A and B is higher than that
of sample C: higher the grain size smaller will be the grain boundaries and lower the

resistance. Since sample C has smallest grain size so highest number of grain
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Chapter 3 Resulits and Discussion

boundaries but it has higher conductivity, therefore, the possible reason of higher
conductivity of these samples is the high carrier concentration supplied by the
diffused indium as compared to A and B thin films. As far as the I-V measurements in
dark are concerned there was very little effect on the conductivity of the samples,

which shows that the film are not very much sensitive to darkness.
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Figure: 3.7 1-V characteristics of ZnSe/ITO samples (as prepared) in (a) light
(b) dark

3.1.4.2. PHOTOCURRENT AND PHOTODECAY

Figure 3.8 shows the current measurement under dark and illumination. At t=0
when the light was switched ON, there is a rise in the current through the B and C thin
films. The excess carriers have been produced due to the illumination of the sample
which is called the photocurrent. A gradual decay in photocurrent was observed when
the light was switched OFF; it took five minutes for the current to decay to its initial
values at t=0. The rise of current in the light is called photocurrent where as the
decrease in photocurrent when illumination was removed is called photo decay. This

behaviour which is observed in semiconductor is due to the presence of defects in the
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crystals which may form electronic states (called trapping/recombination centers) in
the forbidden energy gap. In presence of high density of recombination centers the
rise time and fall time of photocurrent is decreased whereas the trapping centers act to
prolong the decay of photocurrent. [44] In the case of ZnSe thin films B and C, there
is very slow decay of the photocurrent which indicates the presence of trapping
centers in the material. The A thin film has shown a slow decay which can be due to a
large number of trapping centres. According to semiconductor physics the
recombination rate and carrier lifetime are proportional to the density of
recombination centers and carrier concentration and inversely proportional to the

density of recombination centers respectively.
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Figure: 3.8 Photocurrent rise when placed under illumination and decay in darkness
after illumination in as prepared samples {a) A, (b) B, (¢} C.
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3.1.4.3. PHOTOSENSITIVITY

The photosensitivity of a semiconductor is the response of a semiconductor to

illumination. It is defined as

Iligh! - Idn'k

§=
Tk 3.5

Where Tign, [ gark are the currents through semiconductors under illumination and dark,
respectively. The plot of photosensitivity versus thickness of ZnSe thin films is shown
in Fig. 3.9. The figure shows that B and C thin films are more photosensitive as
compared to the A thin film. In semiconductors the trapping centers which trap holes.
help to increase the life time of electrons in conduction band and resuits in a net
increase in the photocurrent. Therefore, in B and C thin films the trapping centers

possibly have trapped holes, which have increased the photosensitivity of these films.
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Figure: 3.9 Variation of photosensitivity samples A, B and C of ZnSe/ITO (as
prepared)
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3.2. SECTION-2

In B-2 the annealed samples of B1 have been discussed. The
ZnSe/ITO/glass thin film samples were annealed in air at 100, 200 and 300°C for
one hour. The objective of the annealing experiments was to improve the
electrical properties of these samples and to study its effect on their structural
properties. In the following results of the annealing experiments have been

discussed.

3.2.1. STRUCTURAL CHARACTERIZATION
3.2.1.1. X-RAY DIFFRACTION

The XRD of one of the ZnSe samples annealed in air at 300°C is shown in
Fig.3.10. The XRD of sample C was chosen due to its higher thickness. It can be
seen from this figure that although the cell parameter has not been changed but
some extra peaks have been appeared which correspond to ITO and In;0;. Indium

possibly has reacted with the oxygen in air to form its oxide.
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Figure: 3.10  XRD patterns of sample C annealed at 300°C
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The (111) peak was used to caiculate the grain size, lattice strain and dislocation
density of air annealed ZnSe sample. These calculations have shown an increase
in grain size which is usually observed after annealing [45]. The lattice strain and
the dislocation density were decreased after air annealing. The structural

parameters are given in Table 1.

3.2.1.2. RUTHERFORD BACKSCATTERING SPECTROSCOPY:

The RBS spectra of A, B. and C samples were taken after air annealing to
see the effect of air annealing on the films. It was observed from this analysis that
thickness of sample A and B have been decreased as shown from the decrease in
the area under the peaks. Whereas, there is a diffusion of the ZnSe thin film into
the ITO/glass substrate in the case of sample C, which is in agreement with the

XRD analysis which has shown the presence of ITO peak.
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3.2.2. ELECTRICAL ANALYSIS
3.2.2.1. I-V CHARACTERISTICS

Sample A

I-V characteristics of ZnSe thin films, sample A annealed at 100°C, 200°C and
300°C. under illumination as well as in dark are shown in Fig. 3.12. (a, b). It can be
seen from this figure that there is an increase in the film conductivity with the
increase in the annealing temperature. Since it is known that the conductivity is
influenced by grain size as well as the carrier concentration, hence the possible reason
for this behaviour can be due to the increasing grain size with annealing temperature.
The increase of grain size with annealing has been verified by XRD data analysis. The
second possible reason could be the diffusion of indium in ZnSe thin film which can
increase the charge carrier concentrations but we did not observe further diffusion of
indium or Sn in to the film from the RBS spectra, therefore, the most possible reason
of increase in conductivity might be the increase in grain size. The increased grain
size reduces the number of grain boundaries and hence the resistance of the material.
The samples have shown same behaviour in the dark and did not observe any

improvement in the photosensitivity of the films after annealing.
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Figure: 3.12  1-V characteristics of ZnSe/ITO of sample A after annealing in (a)
light (b) dark
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Sample B

[-V characteristics of ZnSe thin films, sample B annealed at 100, 200 and
300°C, under illumination as well as in dark are shown in Fig. 3.13 (a, b). It can be
seen from this figure that these films are low resistance and ohmic in nature. The
conductivity of the samples has been increased with the increase of annealing
temperature above 100°C. There is very little change in the conductivity after
annealing at 100°C. The increase in conductivity after 300°C annealing is very high
and at very low applied voltage (5V) current through the sample exceeded than that of
lower temperature anneals, which shows that 300°C is the appropriate temperature to
increase the conductivity of the samples without changing the structure of the
material. The measurements in dark have shown the similar response as observed for

the case of sample A.
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Figure: 3.13  I-V characteristics of ZnSe/ITO of sample B after annealing in (a)
light (b) dark

Sample C

-V characteristics of ZnSe thin films, sample C annealed at 100, 200 and
300°C. under illumination as well as in dark are shown in Fig. 3.14. (a, b). There is an
increase in conductivity after annealing above 100°C. It can also be seen from this

figure that the increase in current with the applied voltage is very high even at small
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applied voltages as compared to the as-prepared and 100°C annealed sample. It was
observed from the XRD analysis that the grain size of the as-prepared sample C is
small as compared to that of sample A and B, therefore, such a huge increase in
conductivity could possibly be due to two reasons; one is the increase in grain size
after annealing (Which is also observed from XRD data analysis) and the second is
the increased intermixing of ZnSe/ITO layers as observed from the RBS analysis. The
intermixing of the two layers might have increased the charge carriers. Thin film n-
type As far as the I-V measurements in dark are concerned there was very little effect
on the conductivity of the samples, which shows that the film are not very much

sensitive to darkness.

15} J 15| A
/4 —o— AP hé & —=— AP
'-'-12_ £ -o— 100C 12_ ;[ A/ —e— 100C
g i/ —— 200C _ vy o/ —a— 200C
= Vi ——300C < oA —v—300C
- g - §.9 L /
o A = v A
= - s f/ a
38 7/ 581+ 4
37 4 ==t | Tl UK g8
4 e v/ P fe
0 _\‘-Qfgf"—: 0 .‘___.{l’.:ﬂ.f
a 2 4 6 g 10 0 2 4 6 8 10
Voltage (V) Voltage {V)
(a) (b)

Figure: 3.14  I-V characteristics of ZnSe/ITO of sample C after annealing in (a)
light (b) dark

The 1-V characteristics of ZnSe thin films samples A, B and C annealed at
100, 200 and 300°C are compared in Figs. 3.15-3.17 (a and b). It can be seen from this
figure that at each annealing temperature the conductivity of the ZnSe film with
highest thickness (sample C) has higher conductivity, whereas that of sample B is
least. However, at 300°C annealing conductivity of sample A and C is equal but still
larger than that of sample B. The comparison of I-V curves of ZnSe thin films also
shows that the annealing of samples at 200°C has resulted in maximum increase in the

conductivity of the films. We have seen from the XRD of 300°C sample that in
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addition to ZnSe crystalline phase there also exist ITO and InyOs; phases, with an

increase in grain size. The inclusion of the impurity phases might have created

donor/acceptor states which can produce majority carriers in the material and hence

the higher conductivity at room temperature. However, from the RBS analysis we can

see that there is a decrease in the peak counts after annealing, which would have

changed the Zn to Se ratio and hence the charge carrier concentration in the sample.
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Figure: 3.15

I-V characteristics of ZnSe/ITO samples annealed at 100°C in (a) light

(b} dark
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3.2.2.2. PHOTOCURENT AND PHOTODECAY

Fig. 3.18 shows the response of ZnSe thin films under light and then in dark
after annealing at 100°C. At t=0 when the light was switched ON, there is a rise in the
photo current through the sample B and C. It can be seen from this figure that a sharp
decay in photo current was observed during the first minutes after the light was
switched OFF and then a gradual slow decay in photocurrent in successive minutes
was observed: it took five minutes for the current to decay to its initial values at =0.
In the as-prepared sample such sharp decay of current was not observed, which shows
that after air annealing some trapping centers have been produced, which quickly
trapped the excess carriers when the photo excitation was removed and later on those
trapped carriers have been released gradually producing a slow decrease of the
photocurrent. Tt can be seen from this figure that sample A shows an anomalous
behaviour, instead of current rise after the application of photo excitation there is a
sharp current fall and after the illumination was switched OFF there is a current rise in
the dark during the measurement time. The possible reason is that some defects have
been generated after annealing which act as trapping centres which trapped excess

carriers and after the illumination is switched OFF the trapped carriers have been
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released. This result has also shown that the external excitation source (i.e.light)

played a negative role.

In Fig. 3.19 the photo decay in sample A, B, and C after 200°C annealing has
been compared. These results show that annealing at 200°C did not affect the
behaviour of photo decay in sample A and B. The possible reason of such behaviour
is that the trapping centers produced are of the same type as in the as-prepared
samples. However, in the case of sample C two steps have been observed in the photo

decay region showing the presence of two different types of trapping centers.
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Figure: 3.18.  Photocurrent rise when placed under illumination and decay in
darkness after illumination of samples (a) A, (b) B, (¢) C annealed at
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200°C.

The photo decay measurements of ZnSe thin film samples A, B and C after
300°C annealing are shown in Fig. 3.20. In sample B the photo decay is linear with
time from the start of the dark region. The sample A have shown a decrease in current
after illumination and gradual increase in dark and C have shown a sudden fall in
current in first min and then a slow decay. In sample A and C similar behaviour was
observed after 100°C anneal respectively.
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Figure: 3.20.  Photocurrent rise when placed under illumination and decay in
darkness after illumination of samples (a) A, (b) B, (¢) C annealed at
300°C.
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3.2.2.3. PHOTOSENSITIVITY

The plot of photosensitivity versus thickness of ZnSe thin films is shown in
Fig.3.21. for the samples annealed at 100, 200 and 300°C. It can be seen from this
figure that the films with intermediate thickness i.e. 76nm has shown higher
photosensitivity as compared to sample A and C. However, the photosensitivity has
been decreased in all the samples after annealing as compared to as-prepared samples.
In semiconductors the trapping centers which trap holes, help to increase the life time
of electrons in conduction band and results in a net increase in the photocurrent.
Therefore, in B and C thin films the trapping centers possibly have trapped holes,

which have increased the photosensitivity of these films.
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3.3. SECTION-3 Ag-DOPED

In this section structural, optical and electrical analysis of ZnSe thin films
deposited in B2 have been discussed. First of all the results of XRD, RBS and
SEM have been discussed then the results of transmission spectroscopy are
described in last results of electrical properties i.e. [-V characteristics,
Photocurrent and Photo decay and photosensitivity have been discussed. In this
section the samples with thickness 64, 72 and 73nm are designated with alphabets

a, bandc.

3.3.1. STRUCTURAL CHARACTERIZATION
3.3.1.1. X-RAY DIFFRACTION

The XRD of one of the ZnSe samples of B2 is shown in Fig.3.22. The
XRD of sample ¢ has the highest thickness among those deposited in B2. XRD
pattern of this sample shows a single fine peak at 26=27.14 which shows its cubic
structure over amorphous glass. Structural parameters have been calculated which
are shown in Table 1. It can be seen that the grain size is about 33nm. This shows
its good quality of deposition. The lattice parameters were found to be 5.676

which is very close to the already reported value {37].

(11)
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Figure: 3.22.  XRD Pattern of sample “¢”
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3.3.1.2. COMPOSITION, THICKNESS AND MICROSTRUCTURE:

Rutherford Backscattering Spectroscopy (RBS) was used to measure the
composition and thickness of as deposited thin films. The RBS spectra of as
prepared sample a, b and ¢ along with their simulation spectra are shown in Fig.
3.23. Thickness and composition of these samples were calculated by using the
simulation codes RUMP and SIMNRA. Results are shown in table. 3 (a). The
thickness of sample a, b and ¢ (as deposited) are calculated to be 64nm, 72nm and
73nm. Compositional analysis shows that Zn to Se have almost same ratio in all

the samples.

RBS spectra of these samples after doping are shown in Fig. 3.24. The
thicknesses of these samples are 79nm, 48nm (in two layers) and 43nm. The
results are shown in table. 3. (b). The RBS analysis shows that there is uniform
diffusion of Ag in thin film of sample a and ¢ while in sample b Ag components
are at surface and have not completely diffused in the film. The Ag component in
sample is about 32% while in b and c it is about 22% which is much less than that

of sample a.

The microstructure of the ZnSe thin films deposited on glass substrate was
studied through scanning electron microscopy (SEM). Two samples were selected
for this purpose. One sample having least thickness “a” and second having largest
thickness “c¢”. The SEM micrographs are shown in Fig.25. (a, b). It can be seen
from these images that there is full coverage of the glass substrate by the film
with SEM selected resolution with small amount of clusters on the film surface of

sample c.
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Figure: 3.23. RBS spectra with simulated spectra of undoped samples (a) a,(b) b and
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¥

E.. a (As-deposited) b (As-deposited) ¢ (As-deposited)

o~

)

n th Zn% | Se% | th Zn% | Se% th In% | Se%
7]

E‘ 64nm 48 |52 72nm | 49.5 50.5 73nm | 49.1 | 50.9
2

E a2 (Ag-doped) b (Ag-doped) ¢ {Ag-doped)

—_ Zn | Se | Ag Zn | Se | Ag Zn | Se | Ag

th h =

5 % % % | ™ ]l % %l ™ %l % %
S | 79nm | 32 | 36 | 32 [ 30nm | 31 | 33 ;36 |43nm | 37 | 42 | 2]
e Zn | Se

%N Th o | o

- 18nm | 50 | 30
Table: 3.3. Table of the thickness and percent composition of different elements

present in each layer in ZnSe as prepared and Ag doped samples data
obtained from Rutherford backscattering spectroscopy (RBS)

3.3.2. OPTICAL ANALYSIS

The optical spectra of a, b and ¢ samples in the wavelength range 200-1200nm
are shown in Fig. 3.26. We can see that the optical transmission decreases with the

increase of film thickness.

The effects of reflection and transmission losses can be due to glass substrate
and film thickness. The absorption coefficients as a function of incident photon
energy are shown in Fig. 3.27. It can be seen from this figure that the absorption

coefficient increases with the increase of film thickness.

The energy gap E, of the films was calculated from (ahv)* vs hv plots as
shown in Fig. 3.28. by assuming direct band gap material. By drawing the intercepts
from the linear portion of the (athv)® vs hv curves. The x-intercepts values are selected
as the energy gap of each sample. The calculated band gap values are 4.30, 4.40 and
4.41eV for samples a, b and ¢ respectively. It can be seen that with the increase of
film thickness there is an increase in band gap energy which may be due to the

decrease of grain size with increase of film thickness.
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Figure: 3.26. Optical transmission spectra of samples a, b and ¢.
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Figure: 3.27. Optical transmission spectra of samples a, b and c.

-56-



Chapter 3 Results and Discussion

30
—c=— a (Eg=4.30eV)
—<¢— b (Eg=4.40eV)
25+ —2—¢c{Eg=4.41eV)
[
. 20t
©
*
Na—-s 15 B
=
=
L
10+
5 3 il
0 - .

hu(eV)

Figure: 3.28. Plot of « as function of photon energy of samples a, band ¢

3.3.3. ELECTRICAL ANALYSIS
3.3.3.1. 1-V CHARACTERISTICS

The [-V characteristics of samples a, b and ¢ doped with Ag in light and dark
are shown in Fig. 3.29. (a, b). Figure 3.29 shows that the films are low resistance and
ohmic in nature. The sample a has shown highest current values than b and ¢. It can
be seen from the graph that the value of current is approximately equal in b and c. The
possible reason of highest current values in a can be due to the presence of higher
amount of Ag contents which is verified by RBS data. After doping of Ag the
thickness have been reduced also fewer amount of Ag can be the reason for lower
conductivity in sample b and ¢. I-V measurements in dark and light shows that the
films are not are much sensitive to dark.
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Figure: 3.29. 1-V Characteristics of ZnSe samples doped with Ag in (a) light (b)
dark
3.3.3.2., PHOTOCURRENT AND PHOTODECAY

Fig.3.30. shows the current measurement under dark and illumination. At t=0
when the light was switched ON, there is a rise in the current through the Ag doped
samples a, b and. A gradual decay in photocurrent was observed when the light was
switched OFF; it took five minuets for the current to decay to its initial values at t=0.
In the case of sample ¢, in first minute a slow decay and then a relatively higher decay
have been observed. In sample b a linear decay has been observed while in sample a
there is very slow decay of the photocurrent which indicates the presence of trapping
centers in the material
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Figure: 3.30. Graph showing the thickness wise decay of current when the ZnSe
doped with Ag sample is placed in darkness (a) a, (b) b, (¢) c.

3.3.3.3.

PHOTOSENSITIVITY

The plot of photosensitivity versus thickness of ZnSe thin films is shown in
Fig.3.31. The figure shows that sample a and ¢ are more photosensitive as compared
to sample b. In samples a and c the trapping centers possibly have trapped holes,
which have increased the photosensitivity of these films. While in case of sample b
the lowest photosensitivity may be due the presence of Ag contents on the surface.
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CHAPTER 4

SUMMARY AND CONCLUSION

4.1. SUMMARY

1. It was observed from the structure analysis of ZnSe/ITO/glass and
ZnSe/glass films that thin films with lowest thickness has the axis length is that of
pure ZnSe. However, as the thickness of ZnSe/ITO/glass film is increased there is
an increase in the axis length of the films, which shows that the structural
properties are changed when ZnSe films are deposited on ITO coated glass
substrate as compared to that of ZnSe on glass substrate.

2. The Rutherford Backscattering analysis of ZnSe/ITO/glass thin films
shows that there is diffusion of In from substrate into the film. The inclusion In in
the film might be the reason of high conductivity of as-prepared ZnSe/glass film.
The SEM images shows good quality ZnSe/ITO/glass and ZnSe/glass films of all
thickness.

3. The optical transmission spectra of ZnSe/ITO/glass show that the energy
band gap of intermediate thickness is least whereas that of sample with maximum
thickness is close to that of already observed Eg values. The large Eg in ZnSe
may be due to decrease in grain size and higher lattice strain as compared to other
samples.

4. The electrical conductivity measurement shows that ZnSe/ITO/glass films
with highest thickness are more conductive that other two samples. The possible
reason is higher charge carrier concentration in these samples. The photo
response of ZnSe/ITQ/glass shows that thin films with higher thickness i.e. B and
C are more photosensitive than that of sample A. Whereas in the case of

ZnSe/glass, the thin film with intermediate thickness are least photosensitive. The
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annealing of samples shows that there is an increase in the electrical conductivity

of all samples.

5. The electrical conductivity measurements of ZnSe/glass thin films shows
that as-prepared samples are highly resistive but after silver doping the electrical

conductivity of all the samples have been increased.

4.2 CONCLUSION

We can conclude from the summary of the results that ZnSe thin films become
conductive when deposited on ITO coated glass substrate eliminating the need of
further doping of the material. Moreover, the lattice parameters become close to
that of CdTe making ZnSe a suitable window material for CdTe/ZnSe¢ hetero-
junction solar cell. It has also been concluded that thickness is not only parameter
which affects the properties of ZnSe thin films, other parameter i.e. film quality ,
grain size. optical band gap all contribute to the over all performance of ZnSe thin

films.
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