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ABSTRACT
 ̂ S-

The problem of plasma equilibrium" in tokamak is a free boundar>- problem described by 

the Grad-Shafranov equation in axisymmetric configurations. We derived the Grad- 

Shafranov equation and present an analytical solution to the Gra(J-Shafranov equation by 

using Solov’ev profile. This solution has a number of degree o f freedom in the form of 

free constants. These constants are to be determined by using the boundary constraints on 

the plasma surface. The solution can be used to calculate equilibrium in standard tokamak 

and as well as in spherical tokamak, depending upon the boundary constraint. Graphical 

comparison o f conventional and spherical tokamak has been carried out with the resuk 

showing the supremacy o f the spherical tokamak. At this point analysis is analytically 

complete and is ready to be implemented numerically to any toroidal configuration.
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CHAPTER: 1

Introduction

1.1 A Brief History of Plasma Physics:

In the mid of 19* century the great Czech'medical scientist, Johannes Purkinje first time 

used the Greek word plasma (means something “molded”) to denote the clear fluid 

which remain after the removal of all corpuscular material in the blood.

In 1927 an American chemist Irving Langmuir was the first who used the word “Plasma” 

to describe an ionized gas. But this is unlike the blood where there is really a fluid 

medium carrying the corpuscular material, there is actually no fluid medium entraining 

the electrons, ions and neutrals in an ionized gas.[1-2],

1.2 What is Plasma?

In simple words we can say that plasma is an ionized gas. When we heat up a solid the 

thermal motion of the atoms break the crystal lauice structure and convert into liquid. 

When a liquid is heat up the atoms evaporated from the surface and convert into a gas. 

When a gas is heat up due to the collision of the atoms with each other the electron is 

knocked out and forms plasma which is the fourth state of matter. But in the third case 

the phase transition does not occur therefore some of the scientist are disagree with 

statement that plasma is fourth state of matter. The charge separation between ions and 

electron give rise to the electric fields and the flow of charge particle give rise to current 

and magnetic field [3]. But it is to be noted that every ionized gas cannot be called 

plasma. There are some conditions for an ionized gas to be plasma.

Plasma is electrically neutral medium of positive and negative particles but the overall 

charge of plasma is roughly zero. The temperature of the plasma is very high. At low 

temperature the ions and the electron will recombine and the plasma will convert into 

ordinary gas. Examples of Plasma are:

1) Welding Arcs

2) Stars and Neon signs



3) Flash of lighting bulb

4) Slight amount of ionization* in a rocket

5) Flame of candle

1.3 Definition of Plasma:

Plasma comes from Greek which means something molded. A useful definition of 

Plasma is as follows:

'"''Plasma is a quasineutral gas o f charged and neutral particles which exhibits collective 

behavior’'.

Now we have to define “quasineutrality” and “collective behavior”.

1.3.1 Quasineutrality:

The plasma is quasineutral, which means neutral enough so that:

Tli =  Tie =  n .

Where n is common density called plasma density.

But not so neutral that all the electromagnetic forces vanish. But outside the plasma it 

seems to be neutral, because of equal number of positively charged ions and negatively 

charged electrons. This phenomenon is known as quasi neutrality of plasma. [4]

1.3.2 Collective Behavior:

In order to understand the Collective Behavior let us consider the force acting on 

molecule of ordinary air. Since the molecules are neutral therefore there is no net force 

on them. And the gravitational force is negligible. Thus the molecule move without any 

disturbance until they make collision with each other and due these collisions the motion 

of particle is controlled.

But in case of plasma the situation is totally different because of the existence of charge 

particles. These charge particles exert long range Coulomb force on each other due to 

this long range force plasma has large storage of information of possible motions. In 

plasma the long range coulomb forces are so much larger than the force due to ordinary 

collision. Therefore we neglect the forces due to ordinary collisions.



When a single particle is disturbed the whole plasma will be disturbed. And this is called 

Collective behavior of plasma [4].

1.4 Debye Shielding:

Let we put an electric field in plasma by introducing two charge balls cormected to a 

battery. The balls will Interact with the particles of opposite charges and cloud of ions 

will surround around the negative ball and electrons will surround around the positive 

ball. If the temperature is finite the particle at outCT boundary of cloud where the electric 

is weak, have thermal energy enough to escape from the cloud. The boundary of the 

cloud then reaches at the radius where the potential is roughly equal to the thermal 

energy KT of the particles and the shielding is not completed. This process is called 

Debye shielding. And the distance over which a significant charge separation occurs is 

called Debye length. [4]

Ad — ( l.l)

---------------- ■ -----------------
PLASMA

3

Figure: 1.1 Debye shielding. [4]



1.5 Plasma Parameter:

The Debye shielding is valid only when there is enough particles in the charge cloud. If 

there is one or two charge particles in the cloud region then it is clear that the shielding is 

impossible. The Debye shielding is valid only when the number of particles in the 

Debye sphere is large enough. This means Np » >  l.[4]

No = = 1.38 x 1 0 ^ ^  (T in kelvin) (1. 2)

In addition the collective behavior < < <  L

1.6 Conditions of Plasma:

The conditions for an ionized gas to be plasma are:

1: It should be dense enough that is much smaller than L the dimension of the 

system.ie. «  L.

Where Debye is length and L is the dimension of the system

2: In addition to «  L, for an ionized gas to be Plasma requires Nq »  1. Means the 

number should be greater than 1.

Where Nq is the number of particles in the Debye sphere.

1: The third condition for plasma is cu t > 1.

Where co is the plasma frequency and t  is the mean time between collisions.

1.7 Appiication of Plasma in Thermonuclear Fusion Reaction:

The main application is the control thermonuclear fiision. In 1952 it was proposed that 

hydrogen bomb fusion reaction can be control to make reactor but nuclear fusion is yet to 

be controlled. As we know that extremely high temperature in the order of lO^K^ to 

is required for initial excitation of nuclear fusion reaction. In practice we faced 

real problems to produce such an extreme temperature. The various serious problems that



is &ced by the scientist and engineers to design a container in which very hot plasma can 

be confined under high pressure to initiate nuclear fiision.

Nowadays various countries are working on “on magnetic botde” and we hope that they 

will succeed to con ^ e plaana in the magnetic botde up to the required of temperature 

and pressure for the fusion reactioa A nuclear fusion reactor, if  made, will be a great 

blessing to the humanity. Because nuclear fiision reactors the only source that can solve 

the energy crisis faced by the global community in the fiiture [4].

1,8 Energy Crises;

Worldwide increasing demand for the energy is a very serious problem for flie mankind. 

Saving energy and the use o f renewable energy sources will not be sufficient. On the 

other hand the reservoirs of the fossil fuels are also limited. The use of these fossil fiiels 

causes the emission of carbon dioxide and other chemicals which arc harmfijl for the 

mankind. The figure 1.1 shows the gap between the demand and defivery o f crude oil is 

rapidly widening [5].

Simply we can say that there are so many energy problems facing by this developed 

world and these problems wiU become worse in the fiiture. Each o f the existing energy 

source facing a couple of difficulties like, limited reservoirs, C02 production, emission of 

toxic material, waste disposed and high cost. The only possible solution for this generous 

problem of energy is the nuclear fusiotL[6]

Figure: 1.2 The widening gap between oil delivery and danand



1.9 The Role of the Fusion Energy:

The main aim of nuclear fusion reaction is the production of electricity. The fusion 

reaction involves the merging of two light elements mainly (H) and its isotopes tritium 

deuterium. In the Sun the main reaction is the nuclear fusion reaction of hydrogen which 

powers the Sun. There is about 1 atom of deuterium for every 6700 atoms of hydrogen in 

the naturally occurring sea water. If we use the naturally occurring deuterium to power 

the fusion reactors it can produces enough energy to full fill the need of the whole world 

for about 2 billion years at the present rate of energy consumption. [6]

The easiest fusion reaction is D-T fusion reaction because it requires the lowest energies 

and the isotopes can be easily extracted from the sea water. A significant amount of 

deuterium can be easily obtained from the sea water. But the tritium is the unstable and 

radioactive isotope of hydrogen having the lifetime of about 12 years; therefore it does 

not occur naturally. During the D-T reaction a large number of neutrons produce, these 

neutrons are then used to obtained tritium from lithium. A significant amount of energy 

is also released during the D-T reaction.

Tt can be written as:

D + T a + 71 + 17.6Mev

Fusion reaction
iftrc

D«utenum
nucleus N«itroo

Energy

Fusion

Tritiunn
nucleus

Figure: ! .3. Nuclear fusion



As the deuterium can be obtained from the naturally occurring sea water but the tritium 

does not therefore we produce the tritium artificially by neutron capture in tritium. The 

tritium production reactions are

n + L̂i ^  r  + ^He

n + ’Li ^  T +  "̂ He + n

The first reaction is suitable for slow neutrons while the second reaction is more feasible 

for fast neutrons. When we place lithium around the fusion chamber the neutron will 

release during the D-I fusion reaction are than can be used to produce tritium introducing 

the possibility of a fusion reactor breading its own fuel.

For ignition of a fusion reaction the energy of the two nuclei should be enough high to 

overcome the Coulomb repulsive force between the nuclei and must be enough close that 

the nuclear attractive force became dominant. Therefore the fuel of the fiision reaction 

must be heated to high temperature. The desired temperature for the D-I fusion reaction 

is a least 5x lO^kat at such a high temperature the gas occurs as a macroscopically neutral 

assembly of electron and ions called plasma.

Heating of plasma to the desired thermonuclear temperature and confining it adequately 

such that the net positive energy balance could be attained are the true leading disputes 

that decides the logical viability of the nuclear fusion. Because of magnetic confinement 

of plasma there occurs an impressive experimental progress in the current years. [7]

1.10 Magnetic Confinement of Plasma:

In order to get energy from the plasma we have to confine the plasma at extremely high 

temperature probably equal to the temperature at the core of the sun. But how it is 

possible? There is no material that can sustain itself in contact with" plasma at such high 

temperature. Fortunately unlike other ordinary gases plasma is a good conductor of 

electricity and the motion of the plasma particle can be controlled by rnagnetic field. As 

the plasma consists of charge particle that can experience the magnetic force, therefore 

we can easily confine the“*plasma by using the magnetic field. In the absence of the 

magnetic field the plasma particle will move randomly in different directions striking the 

walls of the vessels but when we apply a uniform magnetic field the charge particle will 

gyrate around the magnetic field lines in spiral paths, the negative charged electrons will



gyrates in one direction while tiie ions will gyrate in opposite direction in this way the 

motion of the plasma particle in the presence of the magnetic field' is restricted and do 

not hit the walls of the vessel. [8-9]

There are two types of magnetic confinement system.

1. The Magnetic Mirror (open system)
'*s

2. The Toroidal system (closed system).

i . l l  The Magnetic Mirror:

The magnetic mirror is an old machine designed for the pt^ma confinement. The idea of 

the magnetic mirror was based on the fact that the charge particles gyrates around the 

magnetic field lines and try to repel when enter a region of high magnetic field. The 

magnetic mirror configuration can be produce by a number of field coils wounded 

around straight open cylindrical shaped tube. To provide a strong magnetic field at the 

ends the coils are wounded closer at the ends than in the middle. Thus the ends of the 

cylindrical tube where the magnetic field is stronger constitute a magnetic mirror.

The magnetic mirror confines the charge particles of plasma with Marge velocity 

components in the direction perpendicular to axial field lines. But due to the collision the 

charge particles move fi'om one magnetic line of force to another. In this way the charge 

particles move across the magnetic field lines of forces and eventually trap and hit the 

walls of the vessel. This motion of the charge particles across the magnetic field is called 

plasma difiusion. [10]
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Figure: 1.4. Magnetic Mirror Configuration

1.12 Closed Confinement System Toroidal:

Tn closed confinement system the magnetic field lines are arranged in such a way that the 

particles completely endure inside the confinement section. The torus is the simplest 

arrangement as shown in the figure. A set of coils is positioned in order to create a 

toroidal field. The particle that flows beside the lines of the closed toroidal field will 

persist inside the toroidal confinement section. The nonuniformity and curve nature of 

the toroidal field give rise to such forces that act upon the charge particles to yields drift 

motions that are directed outward and it would compel the particles to touch the walls of 

the container, if not compensated. To compensate the drifts of the particles, caused due 

to the toroidal magnetic field, a poloidal magnetic field is applied upon the toroidal 

magnetic field. This idea, of the toroidal confinement system, is used in Tokomak 

configuration. [7]
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Figure: 1.5 Sim ple Toroidal M agnetic Field Configuration

1.13 Tokamak:

The word Tokamak is an abbreviation for the Russian word “Torodal naya Kamera 

Magnitnoi Katushki” which means Toroidal Chamber and Magnetic coil.

The Tokamak is the most effective machine developed to attain the safe condition for the 

controlled thermonuclear fusion reaction. It is a toroidal shaped device (like a care tire) 

in which plasma is, contained in a vacuum vessel, confined by winding magnetic fields. 

In Tokamak the main magnetic field is the toroidal magnetic field which is created by a 

series of coils evenly spaced around the torus. The toroidal field is not sufficient to 

confine the plasma. The toroidal field is stronger at the center which causes the plasma 

particles to drift away towards container walls. In order to balance the plasma pressure 

by the magnetic forces it necessary to introduces the poloidal magnetic field. The 

poloidal field is produced by the plasma current flowing in the toroidal direction. The 

poloidal magnetic field combines with the toroidal magnetic field to create the magnetic 

fields lines that spiral around the torus and counteracts the drifting effect of on the 

plasma. A schematic configuration of Tokamak is shown in the figure.



transfomier Coils 
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Figure: 1.6. Tokamak Configuration.

1.14 Methods of Plasma Heating

In Tokamak the plasma is heated by the plasma current induced by the primary coil. This 

type of heating is known as ohmic heating. The amount of heat produced by ohmic 

process depends on the current and the resistance of the plasma. But unfortunately is the 

temperature raises the resistance drops and makes this type of heating less effective, the 

maximum temperature that can be achieved by ohmic heating is up to 20-30 million K, 

which is twice the temperature in the core of the sun but not sufficient to start up the 

reactor .in Tokamak the second method used for the plasma heating is the injection of 

high energy neutral atoms into the plasma which are immediately ionized .these ions are



then trapped by the magnetic field and gave some energy to the plasma particle by 

making collision with them and thus the overall temperature rises. The third method for 

the plasma heating is the magnetic compression method. In this method the plasma is 

compressed by increasing magnetic field. In Tokamak the compression of plasma can be 

achieved by moving the plasma to the region where tHe magnetic field is higher and in 

this way the plasma is heated up. In Tokamak the plasma can also be heated by radio 

frequency heating method. In this method high frequency waves are injected into the 

plasma by means of oscillators these waves transfer tlieir energy to certain particles 

which then transfer the energy to the other particles of the plasma by making collision. 

And thus the overall plasma gets hot. [11]

Layout of the Thesis

The work done in this thesis is organized as follows. In first chapter of this thesis. Brief 

History of Plasma, Definition of Plasma, Debye Shielding, Plasma Parameter, 

Conditions of Plasma, Application of Plasma in Thermonuclear Reaction, Energy Crises, 

The Role of the Fusion Energy, Magnetic Confinement of Plasma, Magnetic Mirror, 

Closed Confinement system, Tokamak and Methods of Heating Plasma inside the 

Tokamak are briefly overviewed.

In the second chapter Tokamak Equilibrium and different type of parameters have been 

discussed. These parameters play very important role in understanding of tokamak 

equilibrium. The third chapter included a short term discussion of Spherical Tokamak 

and is tried to compare it with conventional tokamak. In the forth chapter we have
*

derived the Grad Shafranov equation and presented an analytical solution of the Grad 

Shafranov equation by using Solov’ev profile.



CAHPTER: 2
_ _ j-
Tokamak Equilibrium

2.1 Tokamak Equilibrium:

There are two aspects of Tokamak equiiibrium the first one is the internally balance 

between the plasma pressure and the magnetic field forces the second one is the shape 

and position of plasma which is determined and controlled by currents flowing in the 

external coils as we have described that the main component is the toroidal magnetic 

field which is generated by the toroidal current flowing in external coils and the toroidal 

magnetic field which is smaller than the toroidal magnetic field which is produced by the 

plasma current. The total toroidal field consist of this internally created field combines 

with the field due to toroidal current in the primary winding and other coils used to shape 

and control the plasma and finally the toroidal current in plasma is used to modify 

toroidal magnetic field. Ampere’s law is used to obtain the basic shape of toroidal field 

Now by taking the line integral over a closed circuit inside the toroidal field coils 

and ignoring the small toroidal current we get

2 n R B ^=  i i J r  (2.1.1)

Where R is the major radius and It is the poloidal current in the coils



Figure: 2.1. Basic radial variation ofpoloidal magnetic field.

This redial fall is a great significance in the present Tokamak.

Now the change in the poloidal magnetic field across the plasma is (Taking a as minor 

radius)

^Ro~a Ro+a"

(2.1.2)

Where is the magnetic field at the mid of the plane R = Ro. This change of the 

poloidal field across the plasma has a very great effect on the trajectories of the plasma 

particle. The poloidal magnetic field distribution is dependent upon the toroidal current 

profile .Using electrical conductivity the steady state current profile can be determined 

and due to this the electron temperature increases as Hence the current is maximum 

at the central region where the temperature is highest.

An outward force across the minor radius is exerted by the plasma pressure arid inward 

force exerted by the poloidal magnetic field. The magnetic ^pressure of the toroidal 

magnetic field taken iip the imbalance between their two forces in Tokamak the resulting 

magnetic field lines follow a helical path due the combination of poloidal and toroidal 

magnetic field and generate a set of infinite nested magnetic field line wind the torus. 

They follow a helical path as shown in the figure. And the magnetic field line changes its 

direction from surface to surface. For the stability of plasma the shearing of the magnetic 

field has very important implication. On each surface the average twist of the magnetic



field line is ciiaracterized by tiie safety factor q. whicti gives the measurement of tiie 

pitch of helical field line. And radial rate of change of q gives the shear.

The motion of the particle is to complex. The helical motion along the magnetic field is 

the basic component. The particles make frequent collision at low temperature, thus they 

can be regarded as a fluid. And the collisions are less frequent at low temperature 

therefore the toroidal geometry of the magnetic field effect the particles orbits.

The plasma equilibrium can be partially obtained by using the externally imposed 

conditions such as the net current, the applied energy and the toroidal magnetic field 

[12].

2.2 Flux Function

In case of axisymmetric (independent of toroidal angle) equilibrium the magnetic field 

lines in nested toroidal magnetic surface is shown in the figure.

Figure:2.1 M agn^ic flux surfaces forming a set o f  nested toroids



Figure: 2.3 Magnetic field lines and current lines lie in magnet surfiices.

The basic condition of the equilibrium in Tokamak is that the net forces on the plasma 

should be zero at all points. And for this it is necessary that the magnetic forces should 

balance by the pressure that is

J x B = A p  (2.2.1)

Thus from the above equation it is clear that B.AP = 0. This means that along the 

magnetic field lines there is no pressure gradient and the magnetic surfaces are at 

constant pressure

Equation (2.2.1) also gives that J. Ap =  0 And consequently the current also lies on the 

magnetic surfaces.

For Tokamak equilibrium it is worth to introduce the toroidal magnetic flux function ip. 

The poloidal magnetic flux ftinction can be determined from the poloidal flux lying in 

each magnetic surface. And therefore this flux function constant on that surface this 

satisfies.

B. A ip=0. (2.2.2)



2.3 Safety Factor

The safety factor q has a great importance in determining the stability. The large values 

of the safety factor q leads to the greater stability. Each magnetic field lie has specific 

values of q in case of axisymmetric equilibrium. As the magnetic field line goes around 

the torus on its associated magnetic surface it follows the helical path. If the magnetic 

line has a specific location in the poioidal plane at some toroidal angle, after changing 

the toroidal angle, it will regain that position. For this field lines the q value can be 

defined as

q=A0/27T (2.3.1)

The value of q will be equal to 1 if, after completing exactly one rotation around the 

torus, a magnetic field line comes back to its starting position. And the value of q will be 

high if the magnetic field lines move slowly in the poioidal direction.[12] if q = m/n then 

after m toroidal and n poioidal rotation around the torus the field line join itself. As 

shown in the figure.

Ota

Figure;2.4 (a) field lie on q = 2 surface, (b) Poioidal integration path, (c) Flux anomalous 

containing toroidal flux d(p and poioidal flux dxp.

Now we have to use the equation of line to calculate the value of q.

Rd(f> B*
—  =  —^ (2.3.2)

ds Bp  ̂ ^



In the above equation ds represent the distance covered in the poloidal direction moving 

through the toroidal angle. Bp and represent the poloidal and toroidal magnetic fields 

respectively. Thus equation (2.3.1) can be proceeded as

= (2.3.3)

The integration is taken out over a single poloidal circuit around the flux service as 

shown in the figure (b). Equation (2.3.3) clarify that for all the lines of magnetic field on 

the magnetic surface the value of q is same. Thus we can say that q is the function of flux 

that is q = q (ip). In case of large aspect ratio Tokamak of the circular cross-section 

equation (2.3.3) becomes

_  rB^

“  R oB p

Where r represents the minor radius of the flux function and the toroidal magnetic field 

should be constant.

In case of magnetic fluxes they safety factor q can be written as

d4>
^ ~  dip

The rate of change of toroidal flux with the poloidal flux gives us the safety factor q.

2.4 Plasma Beta

The ratio represents the efficiency of confinement of plasma by the magnetic field.

For a magnetic field the thermonuclear power got is an important quality for a reactor. 

The rate of reaction is proportional to (ffv) which is generally not expressed as a 

pressure. However in the temperature range imagined for a reactor 10-15KeV, (ffv') is 

coarsely related to T“ and the thermonuclear power is than proportional to the resulting 

form of called P* \s defined by



In the above equation Bq represent the toroidal magnetic'fleld and the integral should be 

taken over the whole volume of plasma. Now it is more suitable to use"tKe toroidal 

magnetic field for vacuum at the geometric center of plasma. The average value of p is 

defined as

^  I, '  ( J P d T / J d T )

 ̂ B ^ /2 n ,

Now the expression for poloidal (3 is given by

=  (2.4.33

In the above equation the integral are surface integrals over the whole poloidal cross- 

section and Ba=/̂ o

Where 1 represents the length of poloidal parameter of plasma And I represent the plasma 

current. For large aspect ratio circular plasma 1 = 2na  so equation (2.4.3) becomes

P  (2.4.4)
Hol^/Sn

Now in equation (2.4.3),* we use P (the volume average) rather than cross section average 

for an alternative.

Now taking the circular cross section and then taking the integral of the numerator of 

equation (2.4.4) by parts; we get

r adP

Now putting the value of dP/dr from the approximation pressure balance equation we 

get.

dp d ( Be d

2//o7 r



After integrating we get

Pp = \  + 7— —̂7 J ^  —  r ^ d r  (2.4.5)
( a B g J ^  'fo dr

■*
So it is clear from the above equation that there will be no azimuthal currents if the 

integrand is zero, then pp =  1 .

(i
If —s^>0,thenBp>l.

dr

On the other hand if —  < 0, the magnetic pressure —  dislodges a part of the plasma
dr 2fiQ

pressure and Pp < 1. As shown in the figure.

f t ,< i

R

Figure: 2.5 Profiles o f  for cases Bp>\  and Bp < 1.

2.5 Large Aspect Ratio:

The equilibrium in Tokamak requires a comparatively simple form of low- p,  plasma of 

circular cross-section with large aspect ratio. The ordering of quantities in terms of 

inverse aspect ratio, e  = a/R  is



Hô j e -
2d2<po

2p2̂<po B,

Where the toroidal magnetic field for vacuum at Rq. Now the pressure balances

equation of cylinder.

Jeo (2 .5 .1)

Where 7<p(r) and p (r) with p (a) = 0 specifying the equilibrium. Now the azimuthal field 

given by ampere’s law is.

And Jq can be determined by using equation (2.5.1). The flux surfaces get the shape of
g-

non-concentric circles when we include the toroidal effect as shown in the figure.

(b)
4

Figure; 2.6 (a) showing surface o f  circular flux moved by a distance A  with respect to the outer 

flux surfaces the center o f  which is at distance R .̂



Using the coordinate (r,0) with center at major radius Ro, the G.S equation can be 

written as

=  + r c o s e y p ’w  -  i i i n w m  (2-5 .2)

Now expanding <() we get

^  =  ^o (r )  + ^ i ( r , 9 )

The flux fiinction i/> given by equation (2.5.2) and (2.5.1).

(r  ̂ )  =  -H oR lP ’bl>o) -  III ■ (2.5.3)

And the first part of equation (2) is satisfied by

( I d  d  1 \  cos O dipQ

j  d r ^ d r ^  r'  ̂d 6 ^ ) ^  Ro dr 

=  - M o ( / ( t / 'o ) / ' ( W ) > o  -  2tloRorCOS9P'(}IJa')

=  + -  2f<„R„rco50P'(^„)

(2.5.4)

If we displace the flux surface t/j by a distance A{ipo(r)), ip then

= V 'o - A ( r ) ^

= rpo~ A(r)cos0 ^  (2.5.5)

Now put equation (2.5.5) in (2.5.4).



d
~ ^ d r

1 /  dr \ d  /  /dipp\^ dA 
d r \ d r ) j  r  Kdipo^ dr  \  \  d r / dr

fdipo\^ d A \  1 difJo

/  Ro dr

= A^CMo/^J/^'CV'o) + /^^ /(^o)/'(V 'o ) -  (2.5.6)

Now from equation (2.5.3) the first terms on the two sides of equation (2.5.6) cancel and 

leaving

(2,5.7)

We have used the definition of flux function to replace by

2.6 Shafranov Shift:

From the above discussion it has been cleared that the centers of the magnetic field 

surfaces are expatriate with respect to the center of the bounding surfaces .tis surfaces is 

denoted by A(r)

And can be calculated by solving equation (2.5.7). The axis displacement A(0) is 

known as the Shafranov shift.

The Shafranov shift is dependent on the particular forms of Po(r) and and equation

(2.5.7) should have to be solved for each case. However by using simple analytical forms 

some indications of the behavior can be obtained. Now by dropping the subscript zero 

we can write [12],

And

(2.6.1)

Equation (2.5.7) of the previous topic can be written as;



Where = ^^(a) and the poloidal beta Bp can be define by

B p  =  - T ^  =  " ' ' - f r ' " '  (2.6.3)

And

Bp = fioPIBg^ In this case now by using Ampere's law to equation (2.6.3) we get

Be = Bsa = -  (2.6.4)

Now using equation (2.6.4) for Bg we can integrate equation (2.6.2) numerically to get 

As as a function of Bp and v. However, if we use internal inductance li rather than v, it 

will more efficient

Thus

•ea 0

The graph of li is shown in figure,!. And practical fit with 2% is:

The parameter v is related to the central q valve and ratio of edge through — = v + 1
<io

and this ratio is shown in the figure. The figure shows the calculated valve the Shafranov 

shift in the form of contours of equal ^ )  A s/a in the ( Bp, Z, ) plane.



Figure: 2.7 Graph o f  the internal inductance o f the current



CHAPTER:3 

Spherical Tokamak

3.1 Spherical Tokamak:

In 1984 Martin Peng suggest an alternative arrangement of the magnetic coils that results 

in reduction of the aspect ratio. He suggest to use a single large conductor in the mid­

section of the reactor instead of the magnetic coils which minimize the magnitude of the 

hole at center nearly to zero and thus reduces the aspect ratio to 1.2 .

The design of the spherical Tokamak also includes the advance plasma shaping. In the 

spherical Tokamak the D-shaped cross section of plasma is used. If a D-shaped cross 

section is taken on the right and a overturned cross section on the leftward closed to each 

other such that their vertical sides touch each other it give a circular shape. And in three ̂  

dimensions the external surface is somewhat spherical. Therefore such type of 

configuration was named the Spherical Tokamak as shown in the figure bellow. [13]

Figure: 3.1. Spherical Tokamak.

The main feature of the spherical Tokamak configuration is the tremendously tight 

aspect ratio. One the main incentive of the spherical Tokamak configuration is to achieve 

the MHD P limit scaling As we know that should increases when the aspect



ratio becomes tighter. Similarly the higher the stabihty of Ps greater will be the 

attractiveness of a fusion reactor by allowing the use of lower toroidal magnetic field. In 

fact when one compare the spherical Tokamak to the standard Tokamak it is not quit 

clear that a spherical tokamak would lead to a more attractive reactor or not. However 

spherical tokamak has alternative application for which it would be better suited as a 

volume neutron source. The b'asis for the above discussion is as follows.

As we know that for a fusion reaction high plasma pressure is required. And also we 

know that the limiting toroidal Bmax on the inner leg of the toroidal field magnet results 

to a larger decrease in at the center of the plasma and at the center of plasma /? is 

define due to the strong 1/R effect at tight aspect ratio. And the ultimate result is that in 

spherical tokamak the maximum attainable pressure is usually less than in a standard 

tokamak.

As we require a much large toroidal current to achieve a safety factor in a tight aspect 

ratio device. Therefore in spherical to k ^ a k  the issue of the current driven is so difficult. 

[6]

3.2 Spherical Tokamak Configuration:

The spherical Tokamak devices contain a toroidal vacuum container surrounded by a 

chain of magnets. Logically a series of rings, around the external of the container bound, 

one set of ma^ets, but are actually linked by a mutual conductor in the middle. The 

pillar at the central is also usually used to company the solenoid. That forms the 

inductive coil for the ohmic heating system (and pinch current).

Figure: 3.2 spherical tokamak 

configurations.
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The official design of the spherical tokamak can be seen in the figure 3.4. The central 

pillar which is spiral into a solenoid is made up of copper, returns slabs, used to produce 

the toroidal field, are usually made up of upright copper wire and a metal ring linking the 

two and provides motorized sustenance^to the assembly [14].

3.3 List of Some Operational ST Machines:

• MAST, UK 

. ^NSTX,US

• Globus-M, Russia

• START ENEA, Italy

• TST-2, Japan

. SUNIST, China

• PEGASUS, United State

• ETE, Brazil

, • GUTTA, Russia

• KTM, Kazakhstan

• GLAST, Pakistan

3.4 Stability with in the Spherical Tokamak:

In 1970s and 80s the developments in plasma physics perform stronger job in 

understanding of stability problems, and this leads to a successions of "scaling laws". 

These laws are used for determining rough operating number across a large variety of 

systems. On the critical beta of a reactor configuration the Troyon's effort is a great 

achievement in the field of plasma physics. Troyon's effort offers a beta limit where 

working reactors will start to perceive important instabilities, and prove how this limit 

balances with size, configuration, magnetic field and plasma current.

The Troyon's study covered a wide range of configurations but did not give any 

explanation of the tight aspect ratio spherical tokamak, because the spherical tokamak



was not under consideration at that time. Later on a group at the Princeton Plasma 

Physics Laboratory started to work with several enhanced definitions of critical plasma 

parameters.

They proved that the simple dependency of the ^crit^^ the aspect ratio persist even for 

extremely tight aspect ratio. They also included the dependency of related with the 

kink modes. Combining the above results we can determine the ideal and 

corresponding fSj^ax of aspect ratio and elongation. [6]

First we have to introduce the improved definitions of the critical plasma parameter. 

Now according to Troyon and coworkers replacing the existing definition ^  by

2 i io < P >  2{Xq < P >
^  52 ^  >

Where < > represent the volume averaged value. It is quite clear that in the new 

definition the vacuum magnetic energy is swapped by the total magnetic energy < 

> = < B^ + Bp >. And these definitions coincide in case of large aspect ratio 6 -^ 0 . 

Now, a new definition of the safety factor which is lunched with a slightly different 

dependence on the elongation:

InBoO^ InBgO.^ / I  +  k ^ \
= n 1 ^ HaRoI V 2 y

In the above definitions the first one is for the case of conventional tokamak and second 

one is for case of spherical tokamak. Now we can compare these two definitions.

In case of conventional tokamak, from the dependence of q factor on k, taking the range 

of /c, 1 ~ 3. It is quite clear from the figure 3.5 that for k 3 q approaches to 6.2.

Similarly taking the same range of fcin the case for spherical tokamak it is quite clear 

form the figure; 3.6 that at /c = 3 q approaches to 11.



Figure: 3.3 Relation between k  and q for convention tokamak

Figure; 3.4 Relation b^ween k  and q for spherical tokamak

Now the comparative study of the conventional and spherical tokamak clarify that the 

spherical tokamak is more competent and provides more stability to the tokamak plasma 

as compare to the convention tokamak as shown in the figure 3.7 given below.



Figure: 3.5 comparison o f  conventional and spherical tokamak. The upper line represents the 

spherical tokamak while the lower line represents conventional tokamak.

As we know that the relation between j6, k, and e is given by

^  =  0 . 0 7 2 ( i ^ ) e ;

Now in case of conventional tokamak the aspect ratio A is usually 3 and thus the inverse 

aspect ratio 6 is 0.33. Using these valves in the above equation and taking the range of /c 

1 -> 4, we get the graph as shown in the figure 3.8.

m

Figure: 3.6. Relation between and k  for conventional tokamak



It is quite clear in the figure 3.7 that in case of conventional tokamak the maximum valve 

of P is 0.25 for /c = 4.

Now considering the same case for the spherical tokamak the aspect ratio A = 1.25 and 

inverse aspect ratio e = 0.8 we get the graph as shown in the figure 3.8.

Figure: 3.7. Relation between p  and k  for spherical tokamak

It is clear from the figure 3.8 that in case of the spherical tokamak i.e. e = 0.8 q get the 

value 0.5 for jc = 4.

Now the comparison of the above graphs is shown in the figure: 3.9. It is quite clear from 

the figure 3.9 that for the same range of k the spherical tokamak get higher valve of ^ 

than conventional tokamak. And it is obvious that higher valve of ^  provide much 

equilibrium to the tokamak plasma.



Figure: 3.8. Comparison o f ST and conventional tokamak w.r.t p. The upper line represents 

the spherical tokamak while the lower line r^resents conventional tokamak

So it will be more convenient to say that, from equilibrium point of view the spherical 

tokamak is more efficient configuration as compare to the conventional tokamak.

3.5 Advantages of ST
E

Spherical Tokomaks have two major advantages as compare to the conventional tokamak 

configuration.

The first is practical. In the Spherical Tokamak configuration the toroidal magnets are 

nearer to the surface of the plasma. This closeness cause a great reduction in the quantity 

of energy required to empower the magnets to acquire any specific value of magnetic 

field inside the plasma. As magnets are smaller and cost less this reduces the price of the 

reactor. There is no need to use superconducting magnets because the gains are so much 

greater and this leads to even better cost reductions.

The second advantage is related to the stability of plasma. A large number of instabilities 

were faced by the configuration of a useful system, in the initial stages of fusion 

research. In 1954 a meeting was arranged by Edward Teller discovering some of these 

disputes. He sensed that if they followed the convex lines of magnetic force rather than 

the concave, the plasmas would be intrinsically more stable. It was not clear at the time 

but after some time the meanings of these terms become obvious.



In most of the tokamak machine, the plasma is constrained to track helical magnetic 

lines. Due to this the plasma is forced to move to the inner area from the outer 

confinement area tracking a concave line. They are being strapped to the outer section 

while traveling inside, following a convex line. According to the Teller's thoughts, in the 

inner side of the reactor the plasma is naturally much stable. The actual limits that vary 

over the volume of the plasma, proposed by the ‘safety factor’ q.

In case of ancient circular cross-section tokamak, the plasma passes slightly less time on 

the inner side surface of plasma than the outer side, due to smaller radii. While in the 

case of modified tokamak with D-shaped plasma, the particles spend more time on the 

inner surface of the plasma because the inner side is significantly. But in case of 

Spherical Tokamak the particles pass much of their time on the inner side of the plasma 

surface. And this adds to improve the stability [6-14],

3.6 Disadvantages of ST

There are three disadvantages of the spherical tokamak compared to conventional 

tokamak. The first problem is that the net plasma pressure is lesser in Spherical 

Tokamak as compare to conventional tokamak configuration, due to higher beta. It is 

because of the value of the magnetic field on the inner side of the plasma surface,

In both the designs the value of the magnetic field is theoretically same, but in case of  ̂

spherical tokamak the aspect is very high, and a dramatic variation occurs in the effective 

field over the plasma volume.

The second problem is somewhat surprising, which can be considered as an advantage as 

well as a disadvantage. The size of ST is so smaller, especially at the middle; therefore 

there is slight or even no possibility for superconducting magnets. But it is not a big 

problem for the configuration because for ST configuration the field provided by the 

conventional copper coiled magnets is enough. However, there is a great chance of 

power dissipation in the central column. The maximum and possible field is about 7.5 T, 

which is smaller than the probable field in a conventional design. This imposes an 

additional constrain on the permissible plasma pressures. However, the price of the 

system decreases due to the nonexistence of the superconducting magnets.



In conclusion, in order to sustain an "extraordinary toroidal current, strongly looped 

magnetic fields and extremely asymmetrical plasma cross sections is required. And large 

extent of secondary heating systems should be needed, such as neutral beam injection. 

These are vigorously costly; therefore the ST configuration relies on high bootstrap 

current for efficient working. Fortunately, triangularity and high elongation are the 

topographies which are the causes of these currents. So there is possibility for the 

spherical tokamak to be more efficient in this regard. This is a field of dynamic research 

[6-14]



CHAPTER: 4 

Equilibrium of Tokamak and Analytic Solutions of the Grad- 

Shafranov Equation:

4.1 MHD Equations for Tokamak Equilibrium: *

Plasma equilibrium can well describe by the following equation;

] x B  = V 

V.B = 0 (4.1)

V X B = M J

For toroidally axisymmetric configuration, the above set of equations should be reduces 

to a single two-dimensional, nonlinear, elliptic Partial differential equation, whose 

solution comprises all the necessary material about nature of equilibrium. This equation 

is known as Grad-Shafranov equation and can be written as follows:

d Id ^  _  „2 (ip p

To describe the axisymmetric MHD equilibria we will initially use the cylindrical 

coordinates (R,<f> ,Z) where 0  is the angel of symmetry and R is the measure of the 

distance to the axis of symmetry (the major “radius of the toroidal system).

As nowadays there are several accurate and fast numerical Grad-Shafranov solvers are 

available but analytical solution is very important from theoretical point of view.

In several plasma confinement concepts, such as the tokomak and the stellarator for 

instance, the inverse aspect ratio can be used as an expansion parameter in equation. 

(4.2). Anal^ic solutions can be obtained by expanding equation (4.2) order by order. 

This method has .led to a very deep analytic understanding of static equilibrium in 

tokomaks.



In all circumstances of fusion interest, we ignoring the inertial term, and we can 

emphasis on static equilibria, 0, for which the equilibrium momentum equation takes 

the form;

J x B  = Vp (4.3)

Which is the weli-known equation expressing the balance between the magnetic force 

JxB  ’and the pressure gradient.

This is perceptibly not satisfactory to determine the equilibrium. The remaining 

equations are obtained from the Maxwell’s equations, consistent with the ideal MHD 

ordering: V.F= 0, andV x B=(Xo]. Thus, ideal MHD equilibrium are obtained from the 

following set of equations

V.B = 0

V x B  = ^iJ  (4.4)

J X B  =  Vp

And now we have to show that for toroidally axisymmetric plasmas, all the information 

contained in the seven equations given by eq. (4.4) can be articulated in a single equation 

for one variable: the Grad-Shafranov equation.

Although the computation of plasma equilibrium in magnetic confinement ideas is 

frequently considered a part of ideal MHD theory, the equilibrium described by 

equation.(4.4) is in fact similar with descriptions of the plasma which are more precise 

than ideal MHD, and valid in rules where ideal MHD is not, where the plasma ions are 

collision less.

As we have V. B = 0 and W X B = are the equations of magneto statics.

They are clearly exact equations when ^  =  0.

Now considering the’* second order moment of electrons’ and ions’ Maxwell-Boltzmann 

equations and then adding them we get:



p f + v . ( n ,  + n e ) =  i x B - v p

But in steady state case: “  — 0. and also we know that the viscosity tensors Hi — 0« 

He — 0 in equilibrium.

Thus equation (4,5) becomes:

] x B ^ V p  (4.6)

Simply we can say that equation (4.4) is valid far beyond the limits of ideal MHD.

(4.5)

4.3 The Grad-Shafranov Equation:

Now we will show how the set of equations (4.4) can be reduces, for toroidaily 

axisymmetric configuration, to a single two-dimensional, nonlinear, elliptic partial 

diflFereritial equation, whose solution contains all the necessary information to fully 

determine the nature of the equilibrium. This was first discovered by Lust and Schluter, 

Grad and Rubin, and Shafranov in the years 1957 to 1959 [15-16-17], In this section, we 

will rederive this equation, now known as the Grad-Shafranov equation (GS equation),

In order to describe the toroidal axisymmetric geometries we will initially use the

cylindrical coordinates (R,0,2) where <f> is the angel of symmetry, i.e. = R 'S

the measure of the distance to the axis of symmetry ( the major radius of the toroidal 

system). As shown in the figure (4.1)

Top view Cross section

il Oii { <}i : 1.0

F ig.4.l. Geometry for toroidaily axisymmetric equilibria and cylindrical coordinates.



Starting with the first equation in (4.4): V.B = 0 because of the toroidal axisymmetric 

nature this equation does not give any information about B0 the component of the 

magnetic field, which is called the toroidal magnetic field. However, it gives us a very 

suitable way of writing the poloidal magnetic field Bp which is in the (R,Z) plane.

Now as we have:

V.B = 0 (4.7)

But

B = 7 x A

Here A is the vector potential. And in axisymmetric case only appears in the 

expressions for and :

dA  ̂ 1 3(RA0) rA ô

Now introducing stream function i/f, defined by xj) = RA0 , so

B =  Bae8 +  j V 0 x e j  (4.9)

Where is the unit vector in the 0 direction, 60 = J?V0 .

The stream fiinction is actually the poloidal flux ipp normalized by dividing by a factor 

2n. the poloidal flux is defined as:

jpp = J  Bp. dS (4.10)

Where dS is an infinitesimal surface element.

Now to calculate the poloidal fiux through the area of a ring shaped surface in the plane 

Z=0, prolonging from the magnetic axis located at R~Ra, to an arbitrary ip contour at 

R=^^, we find:

r2n. fRi,

ijjp = d 0 dR R B ziR .Z  == 0)



rRt
d 0

difj
dR

iPp = 2 n m R , ,0 } -x j j { R a ,0 ) ]  (4.11)

As it is clear from equation (4.8) that ilf is defined with in an arbitrary integration 

constant, therefore we choose arbitrary constant so that il>{Ra, 0) = 0.

So equation (4.11) becomes;

V>p =  27ri/> (4.12)

Now using Ampere’s law, V x F  = /i^J, to obtain‘d an expression for J  in terms of stream 

function V'-

The poloidal current:

Now the toroidal current is:

dBff dBz 

d d^^\s

R aR /
+

Mole =

Where A* is the elliptic operator and given by:

+ az2

(4.13)

(4.14)

(4.15)

Now the projection of momentum equation J x B = Vp onto the three vectors B, J, 

and .

• Projection onto B

It is clear that the left-hand side of the momentum equation is perpendicular to B, due to 

axisymmetric, Vp has only Z and R components, so that the result of the projection is

~Q7xf}X 00).7p = 0

00.V 0 x Vp = 0 

40



It means V V' x  Vp has only 0 component, so

P = p W  (4-16)

Equation (4.16) shows that p depends on ip only and it is a surface quantity.-'

• Projection onto J

As B and J  play similar role in the momentum equation therefore projection onto J  leads 

to the following equation:

iv (R B 0 )x e0 .V p  = 0

=>e0.V(RB0)xVp = O (4.17)

But as we have from equation (4.16)

p = p OP)

So we can write

Vp ~ Vip

So equation (4.17) becomes:

e0.V(RB(s)xVT/» = O (4.18)

This is the similar situation as in equation (4.16) and in the same way we can conclude 

that

RB^=¥(xl)) (4.19)

The quantity RBq is a surface quantity like p and only depends on The quantity F has 

a physical interpretation with 0  : it is net poloidal current flowing in the toroidal field 

coils and plasma. And can be normalized by dividing by a factor —2n . Now to show this 

we will calculate the flux of the poloidal current density through a disk-shaped surface 

lying in the plane Z = 0, extending from R = 0 to an arbitrary \jj contour at R= We 

find:

p -  j  Ip-Iv =  J .-dS



'p = -  C  C  = “)

Ij, =  - 2 n  d R R ( \ ? ^ )

l^ = - 2 n  /"* dR ^  = - 2 n  F (i/.) (4.20)

The —ve sign shows the fact that the element of surface dS oriented in the +2 direction.

• Projection onto Vt/»

Now to calculate JxB we have

J X B = (7060 + Jp) X (5000 + Bp)

In the above equation it is clear that the cross product of the two toroidal components 

vanishes. And also

Jp X Bp = 0

Tt means only the cross terms between poloidal and toroidal components will contribute. 

So
f

/0C0 X Bp =  jV ifj

Now using the value of J0 from equation (4.14) we get

1 .
/ 0e0 x B p =  W

I:
Similarly

= (4.21)

Now for toroidal axisymmetry, the momentum equation can be written as:



It is clear from the above equation that the only nontrivial information in force balance 

equation is contained in the Vt/̂  component.

Equation (4.22) can be written in the form

I

This is the second-order, nonlinear, elliptic partial differential equation. Which is usually 

called Grad-Shafranov equation [18,19].

4.4 The Grad-Shafranov Equation with Solov'ev Profiles:

The GS equation equation.(4.23) can be place in a non-dimensional form through the 

normalization R = RgX, Z =  Roy^andip = t^o^-

Where R^is the major radius of plasma and is the arbitrary constant

(4.24).
3 x \ x 5 x j  dy^ ° iJjq d ip  jpQ di p  

The selections for p  and F  corresponding to the Solov'ev profiles are given by [20].

R^ dp 
i p i d ^

=  4  (4.25)
i/'o

Where A and C are constants. Since t/Iq is an arbitrary constant, so we can write A + C 

1

According to these conditions, the GS can be written as

d d ^ \\j ,   ̂ ,

But C = I — A so the above equation becomes;



Now we will calculate equilibria in various magnetic geometries for particular values of 

A corresponding to a range of /? values.

The solution to equation (4.26) is of the formi|j(x,y) = vpp(A:,y) +

Where il/p is the particular and is the homogenous solution. The particular solution 

can be written as :

= 7  +  (4.27)

Now the homogenous solution satisfies:

x ^ ( i ^ ) + ^ = 0  (4.28)
ax Vx dx /  dy^

Now we will present here' the detail of a general arbitrary degree polynomial-like 

solution to this equation for plasma with up-dowri symmetry which:has been derived by 

Zhenge/. al. in [21].

Now assume that there exists a general solution of the form

U  y) = S„=o,2.._. i  0 ^  (̂ * x )y  (4.29)

Where G is a function which has not been yet calculated but expected to have the same 

form as that of the particular solution \|jp. Now, if (4.29) is the solution, it will obviously 

satisfy the equation (4.28). Now putting (4.29) in (4.28) and identifying the terms where 

y has the same exponent for a given n, so we get the following relation on the index k, 

for a given n:

A  A  ^G(n,0.x) 

^  3x \jt dx

d /1 5 G (n ,k ,x )

) = 0 (4.30)

= —(n -  2k -I- l) (n  -  2k -h 2)G(n,k -  l.x ) (k ^  0)
\x  5x

For fe = 0 there are two solution to equation to the equation (4.30) 

Gl(n,Q,x) = 1 and G 2 (n .0 ,x )=

Thus we can write



G(ji,k ,x) = CjiiGl(n,k,x^ + c ^ G 2 (n ,k .x )  (4-31)

Where c„i and c„2 are free constants.

Now if G1 and G2 take the general forms:

G l{n ,0 ,x )  = 1

G H n .k .> 0 ,x } =  +  (4.32)

C2(n,ft,x) ( l ) ‘ („^.2fc)!22k/c!(fe+i)!*^'‘*̂

Then they will satisfy the recurrence relation (4.30) so that the solution assumed in 

(4.29) will certainly solve the differential equation (4.28).

We need to shorten the series such that the highest degree polynomials appearing are 

and Z^. The series have been truncated in the previous studies at R* and Ẑ .̂The fiill 

solution for up-down symmetric vj; containing the most general polynomial and 

polynomial-like solution for satisfying equation (4.28) which is consistent with our
I*

truncation condition is given by.

f l
^(x>y) ^  y ' ’ ^  ”  y  ) ■*■ ^2^2 + ^3^3 + + Cs + Cfill/g

+ c?^7

4̂ 1 = 1

ll/2 = X̂

vjjg = -  x ^ l n x  

\|j4 =  -  4x^y^

1P5 = 2y* -  9x^y^ + 3 x ^ \n x  -  U x ^ y ^  \n x  (4.33)

ijig = :ic:̂  -  12x^y^ + Sx^y*

ij/y = 8y^ -  140x^y'^ + VSx'^y^ -  15x^ In a: + ISOx^y ̂  In x -  120x^y* in x

Equation (4.33) is the exact solution to the G-S equation that explains all the 

configurations of interest of the up-down symmetry.



Our next assignment is to determine the unknown c„ that appears in equation (4.33).

4.5 The Boundary Constraints

Consider first the case where the plasma surface is smooth. A good option for these 

properties is to contest the function and its first and second derivative at three test points: 

the inner equatorial point, tlie outer equatorial point/and the high point (see Fig. 4.2 for 

the geometry). While this might appear to need nine free constants (i.e. three conditions 

at each of the three points), two are jobless because of the up-down symmetry. As it is 

clear how to specify the function and its first derivative at'each test point but the choice 

for the second derivative is less understandable. In order to specify the second 

derivatives we make use of a well-known analytic model for a smooth, elongated, “D” 

shaped cross section, which precisely defines ail the configurations of interest. The 

boundary of this cross-section is given by the following parametric equations

X =  1 +  fcos(T  +  a sin r )

y  = ek sin(r) (4.34)

Where t  the parameter which covers the range 0 <  t  <  2n. AIso,^ =  inverse

aspect ratio, s ina  =  5 is the triangularity, and k is the elongation.

The geometrical representation of these three parameters is shown in flgure.4.2

The triangularity is limited to the range 6 < s in (l)  ~ 0.841. The idea is so simple: we 

will match the curvature of the plasma surface determined by our solution with the 

curvature of the model surface (4.32) at each test point.



R / R c>

Fig: 4.2. Geometry of the problem and definition of tlie normalized geometric 

parameters e,K, and z.

Along the surface of constant ip , we have, by definition,

= i/'jcdx + jpydy = 0 (4.35)

First we have to obtained expression for the curvature at each point in terms of the partial 

derivatives of ip at these points by using the above equality.

For the inner and outer equatorial points, we can write

f x
dy2 = (S'"'® 1  = Oatthetwo points)

d?X _  ^yy

Similarly, at the top point, we have

(Since ipy =  0 at the two points)

d^y _  0rx 
dx  ̂ V’y

(4.36)

(4.37)



X yThe second step is to calculate — r and — - for the model surface (4.34), so that we
^ dy  2 dx^

can compare tHe curvatures. After some mindless algebra we have from equation (4.34) 

d^x 1
dy^

-----^ [ s i n z s i n ( T  + asinzT )(2acosr + 1)

+ (1 +  a COST y  COST cos ( t  + crsinr )]

(4.38)

d^y K Sim sin{r + asim )  +  (1 + acosrycosr  co s (t  +  asim )  
dx^ e (1  +  acosrYsin^iT +  asinr')

At the three points of interest, these expressions simplify significantly

d^x
d y ‘ T =  0

Outer equatorial point

d^x Inner equatoinal point (4.39)

d^x
‘̂ y"h=7T/2

High point

To simplify the expressions we named the three different curvatures N i, N2 and N3.

We are now introducing the seven geometric constraints, considering that the free

additive constant related to the flux function is selected so that ip = 0 on the plasma
f-

surface (this implies that 0  < 0 in plasma): 

ip i l  +  £, 0) = 0 Outer equatorial point

ip i l  — 0) = 0 Inner equatorial point

ip{l -  5e , K£) =  0 High point

— Ss, ke) = 0 High point maximum (4.40)

ipyyil + e,0) = + £, 0) Outer equatorial point curvature

\f)yyil ~  £, 0) = —̂ 2^ x 0 - ~  0) Inner equatorial point curvature 

^xxiX — Se, ke) =  —N^ipyil — ke) High point curvature



%

For a given value o f A the conditions given by equation (4.40) condense to a set of seven 

linear inhomogeneous algebraic equations for the unknown c„. This is a trivial numerical 

problem. We have found that even with only three test points the outer flux surface 

causing from our analytic solution for ip is charming and remarkably close to the 

surface given by equation (4.34) over the entire range of geometric parameters. A similar 

formulation put on to the circumstances where the plasma surface has a double null 

divertor X-point. Here, we can imagine that the smooth model surface actually relates to 

the 95% flux surface. The location of the X-point usually occurs to some extent higher 

and slightly closer to the inboard side of the plasma. Precisely we assume a 10% shift so 

that Xsep = 1 — 1.15e andy^ep = I .Ike.  In terms of the boundary constraints, there is 

efficiently only one change. At the X-point we can no longer enforce the second 

derivative curvature constraint but instead need that both the tangential and normal 

magnetic field dies out. The conditions at the inboard and outboard equatorial points are 

left unaffected. The end result is that if one tries to find an equilibrium solution where 

the plasma surface relates to a double null diverter and the 95% surface has an 

approximate elongation k  and triangularity S then the constraint conditions determining 

the Cn are given by

T^(l +  e, 0) =  0 Outer equatorial point

i/>(l — 0) = 0 Inner equatorial point

= 0 High point

^xixsep.y^ep) = 0 Bnormai = 0 at the high point (4.41)

H^y(j^sep>ysep') ^ ^tangential 0 at ^ e  high point

ipyyil + 0) = —N^xpxil +  £, 0) Outer equatorial point curvature 

xpyyil — E.O) = — 0) Inner equatorial point curvature

Now our next step is to evaluate the critical figures of merit that describe the plasma 

equilibrium.



t
To describe the properties of Solov’ev MHD equilibrium we have four figures of merit. 

These are described as follows.

Total plasma beta 

Toroidal plasma beta 

Poloidal plasma beta 

Kink safety factor

/? =  

P t  =

2/Zq<P>

_  2 p Lo< p >

B

Bi
(4.42)

Where Bo is the vacuum toroidal field at R= R<j And Bp is the average poloidal magnetic 

field on the plasma surface

P ~  id lp  ~  fd lp  ~  R„Cp (4.43)

Where Cp is taken as the normalized poloidal circumference of the plasma surface

C p = ^ # d i ,  =  2 C ; [ i  + ( ^ )
1/2

dx (4.44)

Lastly <p> is the volume averaged pressure

f p d r
< p >  = f a r (4.45)

Our aim is to derive explicit expression for the figures of merit'in terms of the geometric 

parameters s, k , and S, and ifj ,A. For this ,we require the quantities p and  

which can be obtained equation (4.25) and using the fact that rp = 0 on the plasma 

surface.



(4.46) 

V'oDuring the evaluation of the figures of merit the normalized quantity ^°/^^^^^often

appears in the results. So it is more worth to replace this quantity with an equivalent 

quantity q* which, after some calculation can be written as

i
<7* aRnBn u

dxdy
[yl +  (1 -  j4)A:̂ j

When we describe the MHD equilibrium there are some natural combinations of the 

figures of merit that appear which then depend only on the free parameter A and the 

geometry. This is suitable for determining general scaling relations.

Using this vision the required form of the figures of merit can be written as

C C dxci'v
Pp(£,k. 6, A) = - 2 { 1 - A ) - ^ [ j  ipxdxdy][^ - ^ ^ { A  {1 -  A)x'^]

(4.47) •

Where

(4.48)

is the normalized plasma volume.

The above set of equations can be solved numerically and applied to any magnetic 

confinement configuration e.g. spherical tokamak etc. However the numerical solution of 

these equations is beyond the scope this thesis.



Chapter 5

Summary, Conclusion and Future Suggestions

In the first section of this thesis we discussed properties of spherical toi^amak. And also 

present a brief comparison of spherical tokamak and conventional tokamak with respect 

to stability and equilibrium. We conclude that the spherical tokamak is more efficient 

than conventional tokamak because of the greater q value, small aspect ratio and high ^  

limits.

In the second part we reduced the set MHI) equations to a single two-dimensional, 

nonlinear, elliptical partial differential equation usually known as the Grad Shafranov 

equation then present an analytical solution to the Grad Shafranov equation by using 

Solov’ev profile. This solution has a number of degree of freedom in the form of free 

constant. And these constant are to be determined by using the boundary constraints on 

the plasma surface. This solution can be used to calculate equilibrium in standard 

tokamak and sphericaf tokamak, depending upon the boundary constraint. At this point 

analysis is analytically complete ^ d  is ready to be implemented numerically to any 

toroidal configuration. For future work it is recommended that numerical implementation 

of this work may be performend.
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