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ABSTRACT

The problem of plasma equilibrium’ in tokamak is a free boundary problem described by
the Grad-Shafranov equation in axisymmetric configurations. We derived the Grad-
Shafranov equation and present an analytical solution to the Grad-Shafranov equation by
using Solov’ev profile. This solution has a number of degree of freedom in thg form of
free constants. These constants are to be determined by using the boundary constraints on
the plasma surface. The solution can be used to calculate equilibrium in standard tokamak
and as well as in spherical tokamak, depending upon the boundary constraint. Graphical
comparison of conventional and spherical tokamak has been carried out with the result
showing the supremacy of the spherical tokamak. At this point analS/sis is analytically

complete and is ready to be implemented numerically to any toroidal configuration.
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CHAPTER: 1

Introduction

1.1 A Brief History of Plasma Physics:

In the mid of 19" century the great Czech medical scientist, Johannes Purkinje first time
used the Greek word plasma (means something “molded™) to denote the clear fluid

which remain after the removal of all corpuscular material in the blood.

In 1927 an American chemist Irving Langmuir was the first who used the word “Plasma”
to describe an ionized gas. But this is unlike the blood where there is really a fluid
medium carrying the corpuscular material, there is actually no fluid medium entraining

the electrons, ions and neutrals in an ionized gas.[1-2].

1.2 What is Plasma?

In simple words we can say that pla:;ma is an ionized gas. When we heat up a solid the
thermal motion of thé atoms break the crystal lattice structure and convert into liquid.
When a liquid is heat up the atoms evaporated from the surface and convert into a gas.
When a gas is heat up due to the collision of the atoms with each other the electron is
knocked out and forms plasma which is the fourth state of matter. But in the third case
the phase transition does not occur therefore some of the scientist are disagree with

statement that plasma is fourth state of matter. The charge separation between ions and

electron give rise to the electric fields and the flow of charge particle give rise to current

and magnetic field [3]. But it is to be noted that every ionized gas cannot be called

plasma. There are some conditions for an ionized gas to be plasma.

Plasma is electrically neutral medium of positive and negative particles but the overall
charge of plasma is roughly zero. The temperature of the plasma is very high. At low
temperature the ions and the electron will recombine and the plasma will convert into

ordinary gas. Examples of Plasma are:

1) Welding Arcs

2) Stars and Neon signs



3) Flash of lighting bulb

4) Slight amount of ionization” in a rocket
5) Flame of candle

1.3 Definition of Plasma:

Plasma comes from Greek which means something molded. A useful definition of

Plasma is as follows:

“Plasma is a quasineutral gas of charged and neutral particles which exhibits collective

behavior”.

Now we have to define “quasineutrality” and “collective behavior”.

1.3.1 Quasineutrality:

The plasma is quasineutral, which means neutral enough so that:
n=n.=n.

Where n is common density called plasma density.

But not so- neutral that all the electromagnetic forces vanish. But outside the plasma it
seems to be neutral, because of equal number of positively charged ions and negatively

charged electrons. This phenomenon is known as quasineutrality of plasma. [4]

1.3.2 Collective Behavior:

In order to understand the Collective Behavior let us consider the force acting on
molecule of ordinary air. Since the molecules are neutral therefore there is no net forge
on them. And the gravitational force is negligible. Thus the molecule move without any
disturbance until they make collision with each other and due these collisions the motion

of particle is controlled.

But in case of plasma the situation is totally different because of the existence of charge
particles. These charge particles exert long range Coulomb force on each other due to
this long range force plasma has large storage of information of possible motions. In
plasma the long range coulomb forces are so much larger tklan the force due to ordinary

collision. Therefore we neglect the forces due to ordinary collisions.



When a single particle is disturbed the whole plasma will be disturbed. And this is called

Collective behavior of plasma [4].

1.4 Debye Shielding:

Let we put an electric field in plasma by introducing two charge balls connected to a
battery. The balls will interact with the particles of opposite charges and cloud of ions
will surround around the negative ball and electrons will surround around the positive
ball. If the temperature is finite the particle at outér boundary of cloud where the electric
is weak, have thermal enérgy enough to escape from the cloud. The boundary of the
cloud then reaches at the radius where the pﬁtential is roughly equal to the thermal
energy KT of the particles and the shielding is not completed. This process is called
Debye shielding. And the distance over which a significant charge separation occurs is

called Debye length. [4]

€gkpT,
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Figure: 1.1 Debye shielding. [4]



1.5 Plasma Parameter:

The Debye shielding is valid only when there is enough particles in the charge cloud. If
there is one or two charge particles in the cloud region then it is clear that the shielding is
impossible. The Debye shielding is valid only when the number of particles Np in the

Debye sphere is large enough. This means N >>> 1.[4]

T3/2
ni/

Np =n2ml} = 1.38 x 10° (T in kelvin) (1.2)

In addition the collective behavior 15 <<< L

1.6 Conditions of Plasma:
The conditions for an ionized gas to be plasma are:

1: It should be dense enough that A, is much smaller than L the dimension of the

system.ie. Ap < L.
Where A, Debye is length and L is the dimension of the system

2: In addition to Ap « L, for an ionized gas to be Plasma requires N, >> 1. Means the

number should be greater than 1.
Where Np, is the number of particles in the Debye sphere.
1: The third condition for plasma is wt > 1.

Where w is the plasma frequency and T is the mean time between collisions.

1.7 Appiication of Plasma in Thermonuclear Fusion Reaction:

The main application is the control thermonuclear fusion. In 1952 it was proposed that
hydrogen bomb fusion reaction can be control to make reactor but nuclear fusion is yet to
be controlled: As we know that extremely high temperature in the order of 107K° to
10°K® is required for initial excitation of nuclear fusion reaction. In practice we faced

real problems to produce such an extreme temperature. The various serious problems that



is faced by the scientist and engineers to design a container in which very hot plasma can

be confined under high pressure to initiate nuclear fusion.

Nowadays various countries are working on “on magnetic bottle” and we hope that they
will succeed to confine plasma in the magnetic bottle up to the required of temperature
and pressure for the fusion reaction. A nuclear fusion reactor, if made, will be a great
blessing to the humanity. Because nuclear fusion reactors the only source that can solve

the energy crisis faced by the global community in the future {4].

1.8 Energy Crises:

Worldwide increasing demand for the energy is a very serious problem for the mankind.
Saving energy and the use of renewable energy sources will not be sufficient. On the
other hand the reservoirs of the fossil fuels are also limited. The use of these fossil fuels
causes the emission of carbon dioxide and other chemicals which are harmful for the
mankind. The figurel.1 shows the gap between the demand and delivery of crude oil is
rapidly widening [5].

Simply we can say that there are so many energy problems facing by this developed
world and these problems will become worse in the future. Each of the existing energy
source facing a couple of difficulties like, limited reservoirs, Co, production, emission of
toxic material, waste disposed and high cost. The only possible solution for this generous

problem of energy is the nuclear fusion.[6]

150
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Figure: 1.2 The widening gap between oil delivery and demand.



1.9 The Role of the Fusion Energy:

The main aim of nuclear fusjon reaction is the production of electricity. The fusion
reaction involves the merging of two light elements mainly (H) and its isotopes tritium
deuterium. In the Sun the main reaction is the nuclear fusion reaction of hydrogen which
powers the Sun. There is about 1 atom of deuterium for every 6700 atoms of hydrogen in
the naturally occurring sea water. If we use the naturally occurring deuterium to power
the fusion reactors it can produces enough energy to full fill the need of the whole world

for about 2 billion years at the present rate of energy consumption. (6]

The easiest fusion reaction is D-T fusion reaction because it requires the lowest energies
and the isotopes can be easily extracted from the sea water. A significant amount of
deuterium can be easily obtained from the sea water. But the tritium is the unstable and
radioactive isotope of hydrogen having the lifetime of about 12 years; therefore it does
not occur naturally. During the D-T reaction a large number of neutrons produce, these
neutrons are then used to obtained tritium from lithium. A significant amount of energy

is also released during the D-T reaction.

It can be written as:

D+T-> a+n+17.6Mev

Fusion reaction
Deuterium
nucleus Newtron

nucleus

Figure: 1.3. Nuclear fusion



As the deuterium can be obtained from the naturally occurring sea water but the tritium
does not therefore we produce the tritium artificially by neutron capture in tritium. The

tritium production reactions are
61 4
n+°Li » T+ "He
n+’Li > T+ 'He+n

The first reaction is suitable for slow neutrons while the second reaction is more feasible
for fast neutrons. When we place lithium around the fusion chamber the neutron will
release during the D-I fusion reaction are than can be used to produce tritium introducing

the possibility of a fusion reactor breading its own fuel.

For ignition of a fusion reaction the energy of the two nuclei should be enough high to
overcome the Coulomb repulsive force between the nuclei and must be enough close that
the nuclear attractive force became dominant. Therefore the fuel of the fusion reaction
must be heated to high temperature. The desired temperature for the D-I fusion reaction
is a least 5x107kat at sucﬁ a high temperature the gas occurs as a macroscopically neutral

assembly of electron and ions called plasma.

Heating of plasma to the desired thermonuclear temperature and confining it adequately
such that the net positive energy balance could be attained are the true leading disputes
that decides the logical viability of the nuclear fusion. Because of magnetic confinement

of plasma there occurs an impressive experimental progress in the current years. {7]

1.10 Magnetic Confinement of Plasma:

In order to get energy from the plasma we have to confine the plasma at extremely high
temperature probably equal to the temperature at the core of the sun. But how it is
possible? There is no material that can sustain itself in contact with’plasma at such high
temperature. Fortunately unlike other ordinary gases plasma is a good conductor of
electricity and the motion of the plasma particle can be controlled by ragnetic field. As
the plasma consists of charge particle that can experience the magnetic force, therefore
we can easily confine the plasma by using the magnetic field. In the absence of the
magnetic field the plasma particle will move randomly in different difections striking the
walls of the vessels but when we apply a uniform magnetic field the charge particle will

gyrate around the magnetic field lines in spiral paths. the negative charged electrons will
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gyrates in one direction while the ions will gyrate in opposite direction in this way the
motion of the plasma pa;lic]e in the presence of the magnetic field'is restricted and do

not hit the walls of the vessel.[8-9]

There are two types of magnetic confinement system.

1. The Magnetic Mirror (open system)
2. The Toroidal system (closed system).

1.11 The Magnetic Mirror:

The magnetic mirror is an old machine designed for the plasma confinement. The idea of
the magnetic mirror was based on the fact that the charge particles gyrates around the
magnetic field lines and try to repel when enter a region of high magnetic field. The
magnetic mitror configuration can be produce by a number of field coils wounded
around straight open cylindrical shaped tube. To provfdg a strong magnetic field at the -
ends the coils are wounded closer at the ends than in the middle. Thus the ends of the

cylindrical tube where the magnetic field is stronger constitute a magnetic mirror.

The magnetic mirror confines the charge particles of plasma with* large velocity
components in the direction perpendicular to axial field lines. But due to the collision the
charge particles move from one magnetic line of force to another. [n this way the charge
particies move across the magnetic field lines of forces and eventually trap and hit the
walls of the vessel. This motion of the charge particles across the magnetic field is called

plasma diffusion. {10].



B3 S SR S S

MASCSHME TIOC FiZo O

Figure: 1.4. Magnetic Mirror Configuration

1.12 Closed Confinement System Toroidal:

In closed confinement system the magnetic field lines are.arranged in such a way that the
particles completely endure inside the confinement section. The torus is the simplest
arrangement as shown in the figure. A set of coils is positioned in order to create a
toroidal field. The particle that flows beside the lines of the closed toroidal field will
persist inside the toroidal confinement section. The nonuniformity and curve nature of
the toroidal field give rise to such forces that act upon the charge particles to yields drift
motions that are directed outward and it would compel the particles to touch the walls of
the container, if not compensated. To compensate the drifis of the particles, caused due
to the toroidal magnetic ficld, a poloidal magnetic field is applied upon the toroidal
magnetic field. This idea, of the toroidal confinement system, is used in Tokomak

configuration. [7]
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Figure: 1.5 Simple Toroidal Magnetic Field Configuration

1.13 Tokamak:

The word Tokamak is an abbreviation for the Russian word “Torodal naya Kamera

Magnitnoi Katushki” which means Toroidal Chamber and Magnetic coil.

The Tokamak is the most effective machine developed to attain the safe condition for the
controlled thermonuclear fusion reaction. It is a toroidal shaped device (like a care tire)
in which plasma is, c;ntained in a vacuum vessel, confined by winding magnetic fields.
In Tokamak the main magpetic field is the toroidal magnetic field which is created by a
series of coils evenly spaced around the torus. The toroidal field is not sufficient to
confine the plasma. The toroidal field is stronger at the center which causes the plasma
particles to drift away towards container walls. In order to balance the plasma pressure
by the magnetic forces it necessary to introduces the poloidal magnetic field. The
poloidal field is proguced by the plasma current flowing in the toroidal direction. The
poloidal magnetic field combines with the toroidal magnetic field to create the magnetic
fieids lines that spiral around the torus and counteracts the drifting effect of on the

plasma. A schematic configuration of Tokamak is shown in the figure.

10
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Figure: 1.6. Tokamak Configuration.

1.14 Methods of Plasma Heating

In Tokamak the plasma is heated by the plasma current induced by the primary coil. This
type ‘of heating is known as ohmic heating. The amount of heai produced by ohmic
process depenas on the current and the resistance of the plasma. But unfortunately is the
temperature raises the resistance drops and makes this type of heating less effective. the
maximum temperature that can be achieved by ohmic heating is up to 20-30 million K,
which is twice the temperature in the ¢ore of the sun but not sufficient to start up the
reactor .in Tokamak the second method used for the plasma heating is the injection of

high energy neutral atoms into the plasma which are immediately ionized .these ions are

11
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then trapped by the magnetic field and gave some energy to the plasma particle by
making collision with them and thus the overall temperature rises. The third method for
the plasma heating is the magnetic compression method. In this method the plasma is
compressed by increasing magnetic field. In Tokamak the compression of plasma can be
achieved by moving the plasma to the region where the magnetic field is higher and in
this way the plasma is heated up. In Tokamak the plasma can also be heated by radio
frequency heating method. In this method high frequency waves are injected into the
plasma by means of oscillators these waves transfer their energy to certain particles
which then transfer the energy to the other particies of the plasma by making collision.’

And thus the overall plasma gets hot. [11]

Layout of the Thesis

The work done in this thesis is organized as follows.. In first chapter of this thesis, Brief
History of Plasma, Definition of Plasma, Debye Shielding, Plasma Parameter,
Conditions of Plasma, Application of Plasma in Thermonuclear Reaction, Energy Crises,
The Role of the Fusion Energy, Magnetic Confinement of Plasma, Magnetic Mirror,
Closed Confinement system, Tokamak and Methods of Heating Plasma inside the

Tokamak are briefly overviewed.

In the second chapter Tokamak Equilibrium and different type of parameters have been
discussed. These parameters play very important role in understanding of tokamak
equilibrium. The third chapter included a short term discussion of Spherical Tokamak
and is tried to compare it with conventional tokamak. In the forth chapter we have
derived the Grad Shafranov equation and presented an analytical solut!ison of the Grad

Shafranov equation by using Solov’ev profile.

12



CAHPTER: 2

Tokamak Equilibrium

2.1 Tokamak Equilibrium: ¢

There are two aspects of Tokamak equilibrium the first one is the internal"l'y balance
between the plasma pressure and the magnetic field forces the second one is the shape
and position of plasma which is determined and controlled by currents flowing in the
external coils as we have described that the main component is the toroidal magnetic
field which is generated by the toroidal current flowing in external coils and the toroidal
magnetic field which is smalier than the toroidal magnetic field which is produced by the
plasma current. The total toroidal field consist of this internally created field combines
with the field due to toroidal current in the primary winding and other coils used to shape
and control the plasma and finally the toroidal current in plasma is used to modify
toroidal magnetic field. Ampere’s law is used to obtain the basic shape of toroidal field

By. Now by taking the line integral over a closed circuit inside the toroidal field coils

and ignoring the small toroidal current we get

2RBy = p,lr 2.1.1)

Where R is the major radius and I is the poloidal current in the coils

1

13
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Figure: 2.1. Basic radial variation of poloidal magnetic field.

This redial fall is a great significance in the present Tokamak.

Now the change in the poloidal magnetic field across the plasma is (Taking a as minor

radius)

Ry . Ry
ABy = By G- )

Ro—a Ro+a
2a
. ~ = )
- ~ Byor (2.1.2)

Where By is the magnetic field at the mid of the plane R = Ry. This change of the
poloidal field across the plasma has a very great effect on the trajectories of the plasma
particle. The poloidal magnetic field distribution is dependent upon the toroidal current
profile .Using electrical conductivity the steady state current profile can be determined
and due to this the electron temperature increases as T.?. Hence the current is maximum

at the central region where the temperature is highest.

An outward force across the minor radius is exerted by the plasma pressure and inward
force exerted by the poloidal magnetic ficld. The magnetic ‘pressure of the toroidal
magnetic field taken up the imbalance between their two forces in Tokamak the resulting
magnetic field lines follow a helical path due the combination of poloidal and toroidal
magnetic field and generate a set of infinite nested magnetic field line wind the torus.
They follow a helical path as shown in the figure. And the magnetic field line changes its
direction from surface to surface. For the stability of plasma the shearing of the magnetic

field has very important implication. On each surface the average twist of the magnetic

14



field line is characterized by the safety factor q. which gives the measurement of the

pitch of helical field line. And radial rate of change of q gives the shear.

The motion of the particle is to complex. The helical motion along the magnetic field is
the basic component. The particles make frequent collision at low temperature, thus they
can be regarded as a fluid. And'the collisions are less frequent at low temperature

therefore the toroidal geometry of the magnetic field effect the particles orbits.

The plasma equilibrium can be partially obtained by using the externally imposed

conditions such as the net current, the applied energy and the toroidal magnetic field

[12].

2.2 Flux Function

In case of axisymmetric (independent of toroidal ‘angle) equilibrium the magnetic field

lines in nested toroidal magnetic surface is shown in the figure.

Figure:2.1 Magnetic flux surfgcgs forming a set of nested toroids.

15



Figure: 2.3 Magnetic field lines and current lines lie in magnet surfaces.

‘The basic condition of the equilibrium in Tokamak is that the net forces on the plasma
should be zero at all points. And for this it is necessary that the magnetic forces should

balance by the pressure that is
IXB = Ap (2.2.1)

Thus from the above equation it is clear that B.AP = 0. This means that along the
magnetic field lines there is no pressure gradient and the magnetic surfaces are at

constant pressure

Equation (2.2.1) also gives that J. Ap = 0 And consequently the current also lies on the

magnetic surfaces.

For Tokamak equilibrium it is worth to introduce the toroidal magnetic flux function .
The poloidal magnetic flux function can be determined from the poloidat flux lying in
each magnetic surface. And therefore this flux function constant on that surface this

satisfies.
B. A y=0. 22.2)
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2.3 Safety Factor

The safety factor q has a great importance in determining the stability. The large values
of the safety factor q leads to the ‘greater stability. Each magnetic field lie has specific
values of g in case of axisymmetric equilibrium. As the magnetic field line goes around
the torus on its associated magnetic surface it follows the helical path. If the magnetic
line has a specific location in the poloidal plane at some toroidal angle, after changing
the toroidal angle, it will reg;in that position. For this field lines the q value can be

defined as

=Ap/2m 23.1)

The value of q will be equal to 1 if, after completing exactly one rotation around the
torus, a magnetic field line comes back to its starting position. And the value of q will be
high if the magnetic field lines move slowly in the poloidal direction.[12] if @ = m/n then
after m toroidal and n poloidal rotation around the torus the field line join itself. As

shown in the figure.

®)

Constant ¢ /

Figure:2.4 (a) field lie on q = 2 surface. (b) Poloidal integration path. (c) Flux anomalous
containing toroidal flux d¢ and poloidal flux dip.

Now we have to use the equation of line to calculate the value of q.

Rdp _ By
= = B (2.3.2)
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In the above equation ds represent the distance covered in the poloidal direction moving

through the toroidal angq-le. Bp and B, represent the poloidal and toroidal magnetic fields
respectively. Thus equation (2.3.1) can be proceeded as

g=—¢12 45 (2.3.3)

T2t RBp
The integration is taken out over a single poloidal circuit around the flux service as
shown in the figure (b). Equation (2.3.3) clarify that for all the lines of magnetic field on
the magnetic surface the value of q is same. Thus we can say that q is the function of flux
that is ¢ = q (i). In case of large aspect ratio Tokamak of the circular cross-section

equation (2.3.3) becomes

ar

B
q=-—
R.8Bp

Where r represents the minor radius of the flux function and the toroidal magnetic field

should be constant.

In case of magnetic fluxes they safety factor q can be written as

The rate of change of toroidal flux with the poloidal flux gives us the safety factor q.

2.4 Plasma Beta

The ratio represents the efficiency of confinement of plasma by the magnetic field.

P

B=srom (24.1)

For a magnetic field the thermoniciear power got is an important quality for a reactor.
The rate of reaction is proportional to n” (6v) which is generally not expressed as a
pressure. However in the temperature range imagined for a reactor 10-15KeV, (ov) is
coarsely related to T and the thi:rmonucl_ear power is than proportional to the resulting

form of f3, called B* is defined by
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24.2

B§/2u, @42
In the above equation By represent the toroidal magnetic field and the“integral should be
taken over the whole volume of plasma. Now it is more suitable to .use”the toroidal
magnetic field for vacuum at the geometric center of plasma. The average value of § is

defined as

(fPdr/ [dr)

<h>= Bg/2u,

Now the expression for poloidal f is given by

__ ([ Prds/ [ds)

Pe =", @43

In the above equation the integral are surface integrals over the whole poloidal cross-

section and B,=p, I/

Where | représents the length of poloidal parameter of plasma And I represent the plasma

current. For large aspect ratio circular plasma | = 2ra so equation (2.4.3) becomes

Bp = J pds
P uorz/en

(2.4.4)

Now in equation (2.4.3), we use P (the volume average) rather than cross section average

for an alternative.

Now taking the circular cross section and then taking the integral of the numerator of

equation (2.4.4) by parts; we get

J-adP 2
u w1240 ar

Now putting the value of dP/dr from the approximation pressure balance equation we

get.

dp  d(B3\ B, d
ar Yar (2/10 * ur r (rBg) = 0
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After integrating we get

1 dB3
Bp=1+ 7 J, Ertdr (2.4.5)

So it is clear from the above equation that there will be no azimuthal currents if the

integrand is zero, then Sp = 1.

2
if 22250, then Bp>1.
dar

Y4 2
On the other hand if % < 0. the magnetic pressure -zil dislodges a part of the plasma
Q

pressure and ffp < 1. As shown in the figure.

B\ B, ’ .
Fp>1 Bo<t

Figure: 2.5 Profiles of B,, for cases Bp>1 and Bp < 1.

2.5 Large Aspect Ratio:

The equilibrium in Tokamak requires a comparatively simple form of low- §, plasma of
circular cross-section with large aspect ratio. The ordering of quantities in terms of

inverse aspect ratio, £ = a/R is

By = Bpo (22) (14 0(e%)) By~ £B
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~t Tp0 Bp~1
Ho(B—£?)

Where Bg,is the toroidal magnetic field for vacuum at R,. Now the pressure balances

equation of cylinder.

d , - .
d_f=]rpBB = Joo (2.5.1)

Where j, () and p (r) with p (a) = 0 specifying the equilibrium. Now the azimuthal field
given by ampere’s law is.
1d

Hojy = — ——(By)

And jg can be determined by using equation (2.5.1). The flux surfaces get the shape of

non-concentric circlés when we include the toroidal effect as shown in the figure.

(b)

(2)

Figure: 2.6 (a) showing surface of circular flux moved by a distance A with respect to the outer

flux surfaces the center of which is at distance R,.
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Using the coordinate (r,d) with center at major radius R,, the G.S equation can be

written as
10 9 18 1 ( o <inp )
ror or V12962 )Y TR 47 cosa\ 00 TSMOT56) ¥
= —u, (R, + rcos8)?P'(Y) — uo f (W) ' (W) (25.2)

Now expanding i we get

Y=Y, + . (r.6)

The flux function ¥ given by equation (2.5.2) and (2.5.1).

2L (1 2o} = RAP (o) — 2 Fo)f (W) (2.5.3)

rar

And the first part of equation (2) is satisfied by ¢,

19 @ N 1 3?2 cosf dip,
ror ar @ 126z R, dr

= —uoR5P' (oltps — 15 (f (o) ' (o)) o — 20RoTCOSOP’ (o)

3

= —i(ﬂoREP'(Kbo) + #5 f(wo)f’(lpo))ﬁwl - ZﬂoRoTCOSBPI(Ipa)

dr

254)
If we displace the flux surface ¥ by a distance A(1,(r)), ¥ then
Y =19, +Y
3o
=, — A(T) %
=, — A(r)cosg LLe (2.5.5)

dr
Now put equation (2.5.5) in (2.5.4).
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o (052 () ) -

dpg dr

= A (oREP" (o) + 3 [ (o) (o) — 2utoRor 2 @256)

Now from equation (2.5.3) the first terms on the two sides of equation (2.5.6) canceli and

leaving

2 (53, 22) = (2, 22— B}, @s)

We have used the definition of flux function to replace di" /R, by By,

-

2.6 Shafranov Shift:

From the above discussion it has been cleared that the centers of the magnetic field
surfaces are expatriate with respect to the center of the bounding surfaces .tis surfaces is

denoted by A(r)

And can be calculated by solving equation (2.5.7). The axis displacement A;= A(0) is
known as the Shafranov shift.

The Shafranov shift is dependent on the particular forms of Py(r) and By,(r) and equation
(2.5.7) should have to be solved for each case. However by using simple analytical forms
some indications of the behavior can be obtained. Now by dropping the subscript zero

we can write [12].
—~ r2_-
P=P(1— a_z)
And
N 2, 5
J=i=2) (2.6.1)
Equation (2.5.7) of the previous topic can be written as:
dA 1 3 1,r
- = —R—Bé(_a[—2 BpBg, + - J, Bg,dr) (2.6.2)

23



Where Bg, = By, and the poloidal beta Bp can be define by

P _ 4, J':Prdr '

B, /210 a?B3,

Bs (2.6.3)

And

By = u,P/B}, In this case now by using Ampere’s law to equation (2.6.3) we get

2
1_(1_;?)V+1

By =Bg, = (2.6.4)

r/a

Now using equation (2.6.4) for By we can integrate equation (2.6.2) numerically to get
As as a function of Bp and v. However, if we use internal inductance /; rather than v, it

will more efficient

Thus

B3 a Birdr
l; = Ef; =2/ agsga (2.6.5)

The graph of I; is shown in figure.1. And practical fit with 2% is:
l; = In(1.65 + 0.897)

The parameter v is related to the central q valve and ratio of edge through qi =v+1
[+]
and this ratio is shown in the figure. The figure shows the calculated valve thé Shafranov

shift in the form of contours of equal (S) AS/a in the ( Bp,l;) plane.
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Figure: 2.7 Graph of the internal inductance of the current
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CHAPTER:3
Spherical Tokamak

3.1 Spherical Tokamak:

In 1984 Martin Peng suggest an alternative arrangement of the magnetic coils that results
in reduction of the aspect ratio. He suggest to use a single large conductor in the mid-
section of the reactor instead of the magnetic coils which minimize the magnitude of the

hole at center nearly to zero and thus reduces the aspect ratio to 1.2.

The design of the spherical Tokamak also includes the advance plasma shaping. In the
spherical Tokamak the D-shaped cross section of plasma is used. If a D-shaped cross
section is taken on the right and a overturned cross section on the leftward closed to each
other such that their vertical sides touch each other it give a circular shape. And in three
dimensions the external surface is somewhat spherical. Therefore such type of(

configuration was named the Spherical Tokamak as shown in the figure bellow. [13]

Figure: 3.1. Spherical Tokamak.

The main feature of the spherical Tokamak configuration is the tremendously tight
aspect ratio. One the main incentive of the spherical Tokamak configuration is to achieve

the MHD £ limit scaling f~€. As we know that B should increases when the aspect

=
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ratio becomes tighter. Similarly the higher the stability of g, greater will be the
attractiveness of a fusion reactor by allowing the use of lower toroidal magnetic field. In
fact when one compare the spherical Tokamak to the standard Tokamak it is not quit
clear that a spherical tokamak would lead to a more attractive reactor or not. However
spherical tokamak has alternative application for which it would be better sPited as a

volume neutron source. The basis for the above discussion is as follows.

As we know that for a fusion reaction high plasma pressure is required. And also we
know that the limiting toroidal Bmax on the inner leg of the toroidal field magnet results
to a larger decrease in B, at the center of the plasma and at the center of plasma § is
define due to the strong 1/R effect at tight aspect ratio. And the ultimate result is that in
spherical tokamak the maximum attainable pressure is usually Ies§ than in a standard

tokamak.

As we require a much large toroidal current to achieve a safety factor in a tight aspect

ratio device. Therefore in spherical tokqmak the issue of the current driven is so difficult.

[6]

3.2 Spherical Tokamak Configuration:

The spherical Tokamak devices contain a toroidal vacuum container surrounded by a
chain of magnets. Logically a series of rings, around the external of the container bound,
one set of magnets, but are actually linked by a mutual conductor in the middle. The
pillar at the central is also usually used to company the solenoid. That forms the

inductive coil for the ohmic heating system (and pinch current).

Figure: 3.2 spherical tokamak

configurations. iy

. /
PRIMRY COLS TORGIDAL
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The official design of the spherical tokamak can be seen in the figure 3.4. The central
pillar which is spiral into a solenoid is made up of copper, returns slabs, used to produce
the toroidal field, are usually made up of upright copper wire and a metal ring linking the

two and provides motorized suster}ancedto the assembly [14].

3.3 List of Some Operational ST Machines:

« MAST, UK
« NSTX, US
» Globus-M, Russia
« START ENEA, Italy
o TST-2, Japan
o SUNIST, China
* PEGASUS, United State
e ETE, Brazil
_+ GUTTA, Russia
e KTM, Kazakhstan
«  GLAST, Pakistan

3.4 Stability with in the Spherical Tokamak:

In 1970s and 80s the developments in plasma physics perform stronger job in
understanding of stability problems, and this leads to a successions of "scaling laws".
These laws are used for determining rough operating number across a large variety of
systems. On the critical beta of a reactor configuration the Troyon's effort is a great
achievement in the field of plasma physics. Troyon's effort offers a beta limit where
working reactors will start to perceive important instabilities, and prove how this limit

balances with size, configuration, magnetic field and plasma current.

The Troyon's study covered a wide range of configurations but did not give any

explanation of the tight aspect ratio spherical tokamak, because the sphericaftokamak
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was not under consideration at that time. Later on a group at the Princeton Plasma

Physics Laboratory started to work with several enhianced definitions of critical plasma

parameters.

They proved that the simple dependency of the S.;;on the aspect ratio persist even for
extremely tight aspect ratio. They also included the dependency of q. related with the
kink modes. Combining the above results we can determine the ideal g. and

corresponding B, Of aspect ratio and elongation. [6]

First we have to introduce the improved definitions of the critical plasma parameter.

Now accoraing to Troyon and coworkers replacing the existing definition § by

2, <P> 2u,<P>
B = 2 - 2
B2 <B?>

Where < > represent the volume averaged value. It is quite clear that in the new
definition the vacuum magnetic energy B2 is swapped by the total magnetic energy <
B? > = < B2 + B} >. And these definitions coincide in case of large aspect ratio € - 0.
Now, a new definition of the safety factor which is lunched with a slightly different

dependence on the elongation:

2nB,a? 2nB,a? (1 + kz)
e = - -
= URa " R\ 2

In the above definitions the first one is for the case of conventional tokamak and second

one is for case of spherical tokamak. Now we can compare these two definitions.

In case of conventional tokamak, from the dependence of q factor on k, taking the range

of k, 1~ 3. It is quite clear from the figure 3.5 that for k = 3 q approaches t0 6.2.

Similarly taking the same range of k in the case for spherical tokamak it is quite clear

form the figure: 3.6 that at x = 3 q approaches to 11.
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Figure: 3.3 Relation between k and q for convention tokamak
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~NF

Figure: 3.4 Relation between x and q for spherical tokamak

Now the comparative study of the conventional and spherical tokamak clarify that the
spherical tokamak is more competent and provides more stability to the tokamak plasma

as compare to the convention tokamak as shown in the figure 3.7 given below.
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q(k)

Figure: 3.5 comparison of conventional and spherical tokamak. The upper line represents the

spherical tokamak while the lower line represents conventional tokamak.

As we know that the relation between §, x, and € is given by

1+k2
B = 0.072(7)6;
Now in case of conventional tokamak the aspect ratio A is-usually 3 and thus the inverse
aspect ratio € is 0.33. Using these valves in the above equation and taking the range of &

1 — 4, we get the graph as shown in the figure 3.8.

0.25

0.2

— 0.15

0.1

0.05

of, - . . . . }
1 1.5 2 2.5 3 3.5 4

Figure: 3.6. Relation between 8 and x for conventional tokamak
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It is quite clear in the figure 3.7 that in case of conventional tokamak the maximum valve

of B is 0.25 for x = 4.

Now considering the same case for the spherical tokamak the aspect ratio A = 1.25 and

inverse aspect ratio € = 0.8 we get thé graph as shown in the figure 3.8.

0.5 : : —_—

0.4 |

0.31

1 1.5 2 2.5 3 3.5 4

Figure: 3.7. Relation between £ and k for spherical tokamak

It is clear from the figure 3.8 that in case of the spherical tokamak i.e. € = 0.8 q get the

value 0.5 for x = 4.

Now the comparison of the above graphs is shown in the figure: 3.9. It is quite clear from
the figure 3.9 that for the same range of k the spherical tokamak get higher valve of
than conventional tokamak. And it is obvious that higher valve of B provide-much

equilibrium to the tokamak plasma.
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Figure: 3.8. Comparison of ST and conventional tokamak w.r.t 8. The upper line represents

the spherical tokamak while the lower line represents conventional tokamak

wn

So it will be more convenient to say that, from equilibrium point of view the spherical

tokamak is more efficient configuration as compare to the conventional tokamak.

3.5 Advantages of ST

E

Spherical Tokomaks have two major advantages as compare to the conventional tokamak

configuration.

The first is practical. In the Spherical Tokamak configuration the toroidal magnets are
nearer to the surface of the plasma. This closeness cause a great reduction in the quantity
of energy required to empower the magnets to acquire any specific value of magnétic
field inside the plasma. As magnets are-smaller and cost less this reduces the price of the
reactor. There is no need to use superconducting magnets because the gains are so much

greater and this leads to even better cost reductions.

The second advantage is related to the stability of plasma. A large number of instabilities
were faced by the configuration of a useful system, in the initial stages of fusion
research. In /954 a meeting was arranged by Edward Teller discovering some of these
disputes. He sensed that if they followed the convex lines of magnetic force rather than
the concave, the plasmas would be intrinsically more stable. It was not clear at the time

but after some time the meanings of these terms become obvious.
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In most of the tokamak machine, the plasma is constrained to track helical magnetic
lines. Due to this the plasma is forced to move to the inner area from the outer
confinement area tracking a concave line. They are being strapped to the outer section
while traveling inside, following a convex line. According to the Teller's thoughts, in the
inner side of the reactor the plasma is naturally much stable. The actual limits that vary

over the volume of the plasma, proposed by the ‘safety factor’ g,

In case of ancient circular cross-section tokamak, the plasma passes slightly less time on
the inner side surface of plasma than the outer side, due to smaller radii. While in the
case of modified tokamak with D-shaped plasma, the particles spend more time on the
inner surface of the plasma because the inner side is significantly. But in case of
Spherical Tokamak the particles pass much of their time on the inner side of the plasma

surface. And this adds to improve the stability f[6-14].

3.6 Disadvantages of ST

There are three disadvantages of the spherical tokamak compared to conventional
tokamak. The first problem is that the net plasma pressure is lesser in Spherical
Tokamak as compare to conventional tokamak configuration, due to higher beta. It is
because of the value of the magnetic field on the inner side of the plasma surface, Bp,qx-
In both the designs the value of the magnetic field is theoretically same, but in case of?
spherical tokamak the aspect is very high, and a dramatic variation occurs in the effective

field over the plasma volume.

The second problem is somewhat §urprising, whic'h can be considered as an advantage as
well as a disadvantage. The size of ST is so sma]rler, especially at the middle; therefore
there is slight or even no possibility for superconducting magnets. But it is not a big
problem for the configuration because for ST configuration the field provided by the
conventional copper coiled magnets is enough. However, there is a great chance of
power dissipation in the central column. The maximum and possible field is about 7.5 7,
which is smaller than the probable field in a conventional design. This imposes an
additional constrain on the permissible plasma pressures. However, the price of the

system decreases due to the nonexistence of the superconducting magnets.
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In conclusion, in order to sustain an’extraordinary toroidal current, strongly looped
magnetic fields and extremely asymmetrical plasma cross sections is required. And large
extent of secondary heating systems should be néeded, such as neutral beam injection.
These are vigorously costly; therefore the ST configuration relies onhigh bootstrap
current for efficient working. Fortunately, triangularity and ’high elongation are the
topographies which are the causes of these currents. So there is possibility for the’

spherical tokamak to be more efficient in this regard. This is a field of dynamic research

[6-14]
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CHAPTER: 4

Equilibrium of Tokamak and Analytic Solutions of the Grad-

Shafranov Equation:

4.1 MHD Equations for Tokamak Equilibrium: :

Plasma equilibrium can well describe by the following equation;

JxB=V
V.B=20 4.1
VXB:#O]

For toroidally axisymmetric configuration, the above set of equations should be reduces
to a single two-dimensional, nonlinear, efliptic Partial differential equation, whose
solution comprises all the necessary material about nature of equilibrium. This equation
is known as Grad-Shafranov equation and can be written as follows:

210y @Y _ _ padp _ pdF
RaRRaR+azz" HoR ap Fdw (4.2)

To describe the axisymmetric MHD equilibria we will initially use the cylindrical
coordinates (R,¢ ,Z) where ¢ is the angel of symmetry and R is the measure of the

distance to the axis of symmetry (the major radius of the toroidal system).

As nowadays there are several accurate and fast numerical Grad-Shafranov solvers are

available but analytical solution is Very important from theoretical point of view.

In several plasma confinement concepts, such as the tokomak and the stellarator for
instance, the inverse aspect ratio can be used as an expansion parameter in equation.
(4.2). Anal?tic;solutions can be obtained by expanding equation (4.2) order by order.
This method has.led to a very deep analytic understanding of static equilibrium in

tokomaks.
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4.2 Equilibrium Equations in Fusion Plasmas:

In all circumstances of fusion interest, we ignoring the inertial term, and we can
emphasis on static equilibria, v=0, for which the equilibrium momentum equation takes

the form:

JXB=Vp “.3)

Which is the well-known equation expressing the balance between the magnetic force

JxB’and the pressure gradient.

This is perceptibly not satisfactory to determine the equilibrium. The remaining
equations are obtained from the Maxwell’s equations, consistent with the ideal MHD
ordering: V.B= 0, and V x B=y,]. Thus, ideal MHD equilibrium are obtained from the

following set of equations

V.B=0
VXB =y (4.4)
JxB="Vp

And now we have to show that for toroi&ally axisymmetric plasmas, all the information
contained in the seven equations given by eq. (4.4) can be articulated in a single equation

for one variable: the Grad-Shafranov equation.

Although the computation of plasma equilibrium in magnetic confinement ideas is
frequently considereé a part of ideal MHD theory, the equilibrium described by
equation.(4.4) is in fact similar with descriptions of the plasma which are more prec’ise’
than ideal MHD, and valid in rules where ideal MHD is not, where the plasma ions are‘

collision less.

Aswehave V.B =0 and V x B =y,] are the equations of magnetostatics.

They are clearly exact equations when a% =0.

Now considering the second-order moment of electrons’ and ions’ Maxwell-Boltzmann

equations and then adding them we get:
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Pt V(L +T)=JxB-Vp (4.5)

But in steady state case: % =~ 0, and also we know that the viscosity tensors [[; = 0,
[1e = 0 in equilibrium.
Thus equation (4.5) becomes:

Jx B =Vp (4.6)

.

Simply we can say that equation (4.4) is valid far beyond the limits of ideal MHD.

4.3 The Grad-Shafranov Equation:

Now we will show how the set of equations (4.4) can be reduces, for toroidally
axisymmetric configuration, to a single two-dimensional, nonlinear, elliptic partial
differenitial equation, whose solution contains all the necessary information to fully
determine the nature of the equilibrium. This was first discovered by Liist and Schliiter,
Grad and Rubin, and Shafranov in the years 1957 to 1959 [15-16-17]. In this section, we
will rederive this equation, now known as the Grad-Shafranov equation (GS equation),

In order to describe the toroidal axisymmetric geometries we will initially use the
cylindrical coordinates (R,¢,Z) where ¢ is the angel of symmetry, i.e. :—0 =0, and R is
the measure of the distance to the axis of symmetry ( the major radius of the toroidal

system). As shown in the figure (4.1)

Cross section

21

Fig.4.1. Geometry for toroidally axisymmetric equilibria and cylindrical coordinates.
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Starting with the first equation in (4.4): V.B = 0 because of the toroidal axisymmetric
nature this equation does not give any information about By the component of the
magnetic field, which is called the toroidal magnetic field. However, it gives us a very ~

suitable way of writing the poloidal magnetic field B, which is in the (R,Z) plare.

Now as we have:
V.B=10 “@.n
But
B=VxA
Here A is the vector potential. And in axisymmetric case only Ay appears in the
expressions for Bgand B 7

B o 10RAy) o

A(RAg) .
az R 07 (4.8)

1
R OR

Now introducing stream function i, defined by = RAy , so
B =Bgeg+ Vi Xeg (4.9)
Where e is the unit vector in the @ direction, ey = RV@ .

The stream function is actually the poloidal flux y» normalized by dividing by a factor

27. the poloidal flux is defined as:
Yp = [Bp.dS (4.10)

Where dS is an infinitesimal surface element.

Now to calculate the poloidai flux through the area of a ring shaped surface in the plane
Z=0, prologhging from the magnetic axis located at R=R,, to an arbitrary 1 contour at

R=R,, we find:

2. Ry
Wp = f do | dRRB,(R.Z=0)
0 Ro
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27, Rb al/)
Pp = J; de X dR—

Yp = 21[P(R,, 0) — Y(R,, 0)] (4.11)

As it is clear from equation (4.8) that ¥ is defined with in an arbitrary integration

constant, therefore we choose arbitrary constant so that P{(R,, 0) =0.
So equation (4.11) becomes:
Yp =27 Y (4.12)

Now using Ampere’s law, V x B = p,] , to obtain‘an expression for J in terms of stream

function ¥.
The poloidal current:
Holp =2 * V(RBy) X €y (4.13)

Now the toroidal current is:

dBg 0By,
#olo =37 ~ 3R

1[_a (1641) \6241]

tolo =~ [R5r\R3R) T 322

Holg = —%A‘w 4.14)

Where A* is the elliptic operator and given by:

-x = 27, (%) = R (12X) &
AX =R v.(Rz = RaR(RaR)-}-azz (4.15)

Now the projection of momentum equation ] X B = Vp onto the three vectors B, I,

and Vij .

* Projection onto B

It is clear that the left-hand side of the momentum equation is perpendicular to B, due to
axisymmetric, Vp has only Z and R components, so that the result of the projection is

1
ﬁ-(Vszeq,).Vp=0

= ea.VszVp‘:O
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= Vyxvp=20

3
It means V 3 X Vp has only @ component, so

= p=p@E) 4.16)
Equation (4.16) shows that p depends on i only and it is a surface quantity.
* Projection onto J
As B and J play similar role in the momentum equation therefore projection onto J leads
to the following equation:

1
ﬁV(RB@) X eg.Vp =0

=e4.V(RBy) X Vp = 0 (4.17)

But as we have from equation (4.16)

p=p{)
So we can write
Vp = vy
So equaiion (4.17) becomes:
e@.V(BBa) xVyp=0 (4.18)

This is the similar situation as in equation (4.16) and in the same way we can conclude

that
RBy=F(y) 4.19)

The quantity RBy is a surface quantity like p and only depends on . The quantity F has
a physical interpretation with ) : it is net poloidal current flowing in the toroidal field
coils and plasma. And can be normalized by dividing by a factor —2m . Now to show this
we will calculate the flux of the poloidal current density through a disk-shaped surface
lying in the plane Z = 0, extending from R = 0 to an arbitrary i contour at R= R,. We
find:

1,,=f],,.ds
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L= — [ [ Rj; dRAOR, Z =0)
I,=—f"d¢ [*dRR]; (RZ=0)

- _ Ry 1 9(RBg)
I,=-2m | dRR(; %)

R aF -
I==2nf" dR_= —2nF () (4.20)
The —ve sign shows the fact that the element of surface dS oriented in the +Z direction.

* Projection onto Vi

Now to calculate IxB we have
] x B = (Jpeg +1,) X (Bgeg + B)

In the above equation it is clear that the cross product of the two toroidal components

vanishes. And also

JpxB,=0
It means only the cross terms between poloidal and toroidal components will contribute.
So

Jo
}@8@ X Bp = va

Now using the value of j4 from equation (4.14) we get

1 .
XB,= - A Yv
Js€o P HoR? PP
¥
Similarly
1, dF
]p X B¢em = _HFEVUJ “.20

Now for toroidal axisymmetry, the momentum equation can be written as:

1 . 1 dF . dp
Al YV - S F oV = 0 (4.22)

L
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It is clear from the above equation that the only nontrivial information in force balance

equation is contained in the Vy component.

Equation (4.22) can be written in the form

x d dF
A Y = uoRzﬁ— Foo (4.23)

P

This is the second-order, nonlinear, elliptic partial.differential equation. Which is usually

called Grad-Shafranov equation[18,19].

4.4 The Grad-Shafranov Equation with Solov'ev Profiles:

£

The GS equation equation.(4.23) can be place in a non-dimensional form.through the

normalization R = Ryx, Z = Ryy,and ¥ = Y .
Where R,is the major radius of plasma and 1, is the arbitrary constant

a 1oy %Y LR ,dp Ry®_dF
— (=)t —= === F— 4.24).
Xé‘x(xax)+6y2 Mo ay~ w2l dy (4.24)

The selections for p and F corresponding to the Solov'ev profiles are given by [20].

——F—= (4.25)

Where 4 and C are constants. Since ¥, is an arbitrary constant, so we can write A+ € =

1

According to these conditions, the GS can be written as

i) (16_¢)+ Y

— (= v _ 2
¥ox\x ax dy? (©x* + 4

But € =1 — A so the above equation becomes;
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X o ax)+ayz—(1 A)x* + A (4.26)

Now we will calculate equilibria in various magnetic geometries for particular values of

A corresponding to a range of § values.
The solution to_equation (4!.26) is of the formy(x,y) = U, (x, y) + ¥y (x,y)

Where s, is the particular and s, is the homogenous solution. The particular solution

can be written as :
x? 1 _2 x*
Y,(x,y) ==+AGx*Inx-7) (4.27)
Now the homogenous solution satisfies:

D (1oun) , On _
xax(x ax)+ =0 (4.28)

Now we will present here the detail of a general arbitrary degree polynomial-lilEe
solution to this equation for plasma with up-down symmetry which has been derived by

Zhenget. al. in [21].

Now assume that there exists a general solution of the form

U (%,3) = Znmoa.. Lo Gk, x)y™ 2 (4.29)
Where G is a function which has riot been yet calculated but e§pectéd to have the same
form as that of the particular solution {s,. Now, if (4.29) is the solution, it will obviously
satisfy the equation (4.28). Now putting (4.29) in (4.28) and identifying the terms where
y has the same exponent for a given n, so we get the following relation on the index k,

for a given n:

d (13G(n0x)\ _
x5()—(—_—ax ) =0 (4.30)

0 (lm)= ~(n-2k+1D(m—-2k+ 2)G(n, k- 1,x) k#0)

ax\x dx
For k = O there are two solution to equation to the equation (4.30)
61(n,0,x)=1 and G2(n.0,x)= x?

Thus we can write



»

G(n k,x) = ¢y G1(n, k,x) + ¢,2G2(n, k, x) 4.31)
Where c,; and c,, are free constants.
Now if G1 and G2 take the general forms:

G1(n,0,x) =1

n! - 1
(n—2k)! 22K k1(k—1)!

G1(nk,> 0,x) = (~1) x%k (2 lnx+%— 22;;1;5 (4.32)

al 1
(n=2Kk)1 2%k (k + D1

G2(n k,x) = (—1)* 2k+2

Then they will satisfy the recurrence relation (4.30) so that the solution assumed in

(4.29) will certainly solve the differential equation (4.28).

We need to shorten the series such that the highest degree polynomials appearing are
RS and Z5. The series have been truncated in the previcus studies at R* and Z*. The full
solution for up-down symmetric s containing the most general polynomial and
polynomial-like 'solution for 1 satisfying equation (4.28) which is consistent with our

truncation condition is given by.

. x* 1 x* .
b(xy) = i A (Exz Inx — F) + oy + Py F el Gl s+ el

+ ¢c7Y

Y3 = y2 = x?%lnx
W, = x* — 4x%y?
Ws = 2y* — 9x2y? + 3x*Inx — 12x2y? Inx (4.33)
Yo = x — 12x*y? + 8x2y*
, = 8y% — 140x%y* + 75x*y? — 15x%Inx + 180x*y?Inx — 120x%y*Inx

Equation (4.33) is the exact solution to the G-S equation that explains all the

configurations of interest of the up-down symmetry.
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Our next assignment is to determine the unknown c,, that appears in equation (4.33).

4.5 The Boundary Constraints

Consider first the case where the plasma surface is smooth. A good option for these
properties is to contest the function and its first and second derivative at three test points:
the inner equatorial point, the outer equatorial point,”and the high point (see Fig. 4.2 for
the geometry). While this might appear to need nine free constants (i.e. three conditions
at each of the three points), two are jobless because of the up-down symmetry. As it is
clear how to specify the function and its first derivative at’each test point but the chgige
for the second derivative is less' understandable. In order to specify the secbnd
derivatives we make use of a well-known analytic model for a smooth, elongated, “D”
shaped cross section, which precisely defines all the configurations of interest. The

boundary of this cross-section is given by the following parametric equations
x =1+ ecos{(t + asint)
y = =gk sin(t) 4.34)
Where 7 the parameter which covers the range 0 < 7 < 271. Also, £= a/Rois the inverse
aspect ratio, sina =& is the triangularity, and x is the: elongation.
The geometrical representation of these three parameters is shown in figure.4.2

The triangularity is limited to the range § < sin(1) ~ 0.841. The idea is so simpie: we
will match the curvature of the plasma surface determined by our solution "with the

curvature of the mode! surface (4.32) at each test point.
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Fig: 4.2. Geometry of the problem and definition of the normalized geometric

parameters &,k, and z.

Along the surface of constant Y , we have, by definition,
dyp = Ydx +pydy =0 (4.35)

First we have to obtained expression for the curvafhrc at each point in terms of the partial

derivatives of i at these points by using the above equality.

For the inner and outer equatorial points, we can write

Lx () _2 (¥ ince X = i
pre e (zp,) = "% ( z,bx) (Since ol 0 at the two points)

a2 P . .
ﬁ =— ¢—": (Since ,, = 0-at the two points) (4.36)

Similarly, at the top point, we have

2y _ ¥
dx? - .wy (4‘37)
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2 .
% and %x—)z' for the model surface (4.34), so that we

can compare the curvatures. After some mindless algebra we have from equation (4.34)

d?x
d_yZ T Prleosit [sint sin (t + asintt )(2acost + 1)
+ (1 + acost )? cost cos (r + asint)}
(4.38)
d2y _ x sintsin(r + asint) + (1 + acost)*cost cos(r + asint)
dx? ¢ (1 + acost)3sin3(t + asint)
At the three points of interest, these expressions simplify significantly
[ = (1::? N, Outer equatorial point
ex | gmer il po
dyszn = P N, Inner equatorial point (4.39)

& cosa®

2
[ 1 =-&5_ N, Highpoint
T=m/2

To simplify the expresSions we named the three different curvatures Ny , Naand N;.

We are now introducing the seven geometric constraints, considering that the free
additive constant related to the flux function is selected so that ¥ = 0 on the plasma

surface (this implies that 1 < 0 in plasnjlaa_:

YA +60)=0 Outer equatorial point

YA —-¢£0)=0 Inner equatorial point

Y1 —3de,ke) =0 High point

P, (1—6e,x)=0 High point maximum (4.40)

PYyy(1+&0) = =Ny, (1 +£0) Outer equatorial point curvature
Pyy (1 —£,0) = =N, (1 — £,0) Inner equatorial point curvature

Yex (1 — 8¢, k) = —=N3p,, (1 — 8¢, ke)  High point curvature
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5
For a given value of 4 the conditions given by equation (4.40) condense to a set of seven
linear inhomogeneous algebraic equations for the unknown ¢,. This is a trivial numerical
problem. We have found that even with only three test points the outer flux surface
causing from our analytic solution for ¥ is charming and remarkably close to the
surface given by equation (4.34) over the entire range of geometric parameters. A similar
formulation put on to the circumstances where the plasma surface has a double null
, divertor X-point. Here, we can imagine that the smooth model surface actually relates to
the 95% flux surface. The location of the X-point usually occurs to some extent higher
and slightly closer to the inboard side of the Slasma. Precisely we assume a 10% shift so
that xg.,, = 1 — 1.16¢ and y,e, = 1.1ke. In terms of the boundary constraints, there is
efficiently only one change. At the X-point we can no longer enforce the second
derivative curvature constraint but instead need that both the tangential and normal
magnetic field dies out. The conditions at the inboard and outboard equatorial points are
left unaffected. The end result is that if one tries to find an equilibrium solution where
the plasma surface relates to a double ‘null diverter and the 95% surface has an
approximate elongation x and triangularity & then the constraint conditions determining

-the ¢, are given by

Yv(1+60)=0 . Outer equatorial point

PY(1—¢0)=0 ) Inner equatorial point

P(Xsepr Ysep) = 0 High point

Ve (Xseps Ysep) = 0 Brormar = 0 at the high point (4.41)
Py (Xsep) Vsep) = 0 Brangencias = 0 at the high point

Pyy(1+¢60) = —N ¥ (1+¢, E)) Outer equatorial point curvature

Py, (1 — £0) = =N, (1 —¢,0)  -Inner equatorial point curvature

Now our next step is to evaluate the critical figures of merit that describe the plasma

equilibrium.
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4.6 The Plasma Figures of Merits:

To describe the properties of Solov’ev MHD equilibrium we have four ﬁguresrof merit.

These are described as follows.

2U<D>
Total plasma beta —
P A BZ+B}
2uo<p>
Toroidal plasma beta B = M;zp
0
2U<p>
Poloidal plasma beta By £ %zp (4.42)
: 2
. B
Kink safety factor q. = ;—O
o

Where B, is the vacuum toroidal field at R= R, And Ep is the average poloidali(magnetic

field on the plasma surface

B — $Bpdl,  [Holedsy _ pol

TP A, T édl,  ReCp (4.43)

Where C,, is taken as the normalized poloidal circumference of the plasma surface

1 1+e N
Co= il =2 [1+(2)] ax (4.44)
Lastly <p> is the volume averaged pressure ’
_ [par
<p>=5g (4.45)

Our aim is to derive explicit expression for the figures of merit'in terms of the geometric
parameters £, k, and §,and ¥ ,A. For this we require the quantities p and F? = R?B]
which can be obtained equation (4.25) and using the fact that 1 = 0 on the plasma

surface.
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P(ry) = = s (1 =AY
Ho
RS 2%,
B3(x,y) = B2 - 2 4y (4.46)
During the evaluation of the figures of merit the normalized quantity "b"/ aR, Booﬁen

appears in the results. So it is more worth to replace this quantity with an equivalent

quantity q. which, after some calculation can be written as

When we describe the MHD equilibrium there are some natural combinations of the
figures of merit that appear which then depend only on the free parameter 4 and the

geometry. This is suitable for determining gene?a] scaling relations.

Using this vision the required form of the figuires of merit can be written as

2 -2
Bp(e.x,8,A) = —2(1— A)%E [f szdxdy]{f d—x:-X[A + (1 - A)x?}

2B
Br = —~ (4.47)-
q?
_ £2 Bz’i
b= qi+e?
Where
V= J dr = [ xdxdy (4.48)

2m R3
is the normalized plasma volume.

The above set of equations can be solved numerically and applied to any magnetic
confinement conﬁgurationfe.g. spherical tokamak etc. However the numerical solution of

these equations is beyond the scope this thesis.
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Chapter 5
Summary, Conclusion and Future Suggéstions

In the first section of this thesis we discussed properties of spherical tokamak. And also
present a brief comparison of spherical tokamak and conventional tokamak with respect
to stability and equilibrium. We conclude that the spherical tokamak is more efficient
than conventional tokamak because of the greater q value, small aspect ratio and high g

limits.

In the second part we reduced the set MHD equations to a single two-dimensional,
nonlinear, elliptical partial differential equation usually known as the Grad Shafranov
equation then present an analytical solution to the Grad Shafranov equation by using
Solov’ev profile. This solution has a number of degree of freedom in the form of free
constant. And these constant are to be determined by using the boundary constraints on
the plasma surface. This solution can be used to calculate equilibrium in standard
tokamak and spherical tokamak, depending upon the t;oundary constraint. At this point
analysis is analytically complete and is ready to be implemented numerically to any-
toroidal configuration. For future work it is recommended that numerical implementation

of this work may be performend.
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