Non-Linear Problem Solving Using
Neural Networks and Genetic Algorithms

MS Electronic Engineering

A dissertation submitted to FET ITUI in partial fulfillment of requirement for

degree of Master of Science in Electronics Engineering

Department of Electronic Engineering
Faculty of Engineering and Technology
International Islamic University, Islamabad.

(2008)

CENTRAL

\\ IBRARY A/[
ISLAMABAD

Certificate of Approval

/7-
It is certified that we have read the project repott submitted by Junaid Ali [481-

FET, é PHOEE [Fol .
] transferred in Electronics Engineering. It is our judgment that

this report is of sufficient standard to watrant its acceptance by the International

Islamic University, Islamabad for degtee of MS Electronic Engineering (MSEE).

Supervisor .
Dr. Tjaz Mansoor Qureshi
Dean, FET, IIU Islamabad.

A ot

External Examiner
Dr. Abdul Jalil
Associate Professor
PIEAS, Isla d.

\
J
Internal rnné

Drt. Tanweer Ahmed Cheema
Assistant Professor, 11U, Islamabad.

A dissertation submitted to the Department of Electronics Engineeting, Faculty of
Engineeting and Technology, International Islamic University, Islamabad, Pakistan, as

a partial fulfillment of the requirements for the award of the degree of

MS in “Electronic Engineering «

To
The Holiest man Ever Born,
PROPHET MUHAMMAD (PEACE BE UPON HIM)
&
To
MY PARENTS

T am most indebted to my parents, whose affection has been the source of

encouragement for me, and whose prayers have always been key to my success.

Declaration

I hereby declare that this research and simulation, neither as a whole nor as a part
thereof, has been copied out from any soutce. It is further declared that I have
developed this tesearch, simulation and the accompanied repott entitely on the basis
of my petsonal effort made under the guidance of my supervisor and teachers.

If any patt of ﬁﬂs report to be copied or found to be reported, I shall standby the
consequences. No portion of this work presented in this report has been submitted in
suppott of any application for any other degrée ot qualification of this or any othet

univetsity ot institute of learning.

<

v

Junaid Ali
184-FAS/MS=CS/F-04
(Transferred in MSEE)
17 - FET | PHDEE | F-°4

Acknowledgements

With the glorious name of ALLAH almighty who bestowed His blessings upon me
and has made me worthy to make this report to utmost effort. I am extremely

thankful to my God for the moral help, patience and courage to complete my thesis.

I acknowledge with deep apptreciation, the utmost cooperation, constant
encouragement and inspiring guidance of Dr. vI]'az Mansoor Qureshi supervisor of
my thesis. Guidance and valuable suggestions by Dr. Tanweer Ahmed Cheema
helps a lot. I am grateful to my friend Raja Asif who has helped me to improve my
work through insightful and critical comments.

At this state of my life I don’t forget the biggest moral suppott of my Parents whose

prays have always remained with me.

Project Title:

Organization:

Under Taken By:

Supervised By:

External Examiner:

Tool Used:

System Used:

Project in Brief

Non Linear Problem Solving Using Artificial Neural
Netwotk and Genetic Algorithms

International Islamic University H-10, Islamabad

Ms . Junaid Al

Dr.Tjaz Mansoor Qurashi

Dean Faculty of Engineering &Technology
ITUI

Dr. Abdul Jalil

Associate Professor
PIEAS, Islamabad.

Matlab 7

Pentium IV

Table of Contents

CHAPTER 1 INTRODUCTION
1T TN TEOQUCHION. cvevereeseeerescremsseaeesserssensenrerinsssassssasisssesssasessassesssontsessssnes sessatssevasasaranmrsssrrsnsnstessatstotssassesisssnstsnsbsnsnsns 6
1.2 LAETANITE SULVEY ...vvvrrsrseerusssvessssesssssesssssssssssssssstssssresssnsssessessssses s sess s 40s s 002008184 S e 8
1.3 Previous Work......: eveteratareseressssasatesaeetoesastR bt st seeae s et eReRa RS Se e SR A s bSO AL e e R RO R SR SRS e R R e R e RS n s R s e seeRebe s nn 8
1.4 RECENL RESEALCH . cvrerisieeriemerssiesesesssessssessssssssssesssesssessnesssensassnsssesnbes st et etasasesastiessstsessanermsonissasstssosssessassensienss 9
1.5 PIODIEIIL STALEIMENL c.evvevivensinererseserererasrasesssseseseasecsessentesinesssssrestarsastsasesstatsasssinastas srart e st sesesnt et sssrasratssassessastaes 9
1.6 ODJECHVE Of the PIOJECL. ovvvvvssertreeesssnsseresssesnsersssssssssisstsssss i assss s S b 10
1.7 Scope and Plan of the Project............. e et et p st SO 10
1.8 OrANIZAON OF THESIS 1ovvvueuuirrsrrerssseasensosssccessssssssinsssersssas s ba s st 11
CHAPTER 2 ARTIFICIAL NEURAL NETWORK 12
2.1 What 15 2 NEUral INETWOIK? ... vvivreeeerrerersersssesssesscsastssssesstssasteronssssasssosssssssssssssssesatm et o tbatssssssssbsussssasersisssss 13
2.2 HSTOTCAL BACKGIOUN: 11vrve e veverravsssemssssnasssnnansasssisssassassssssssssssssss s amar s s s s 200 13
2.3 The BiolOGICAl MOGEL.....ouuuuirimmiriiimisnsissassnsersseemisssssssssssssrmass s bssssssss s e s s s s 14
2.4 The MathemAtical MOAEL....vcueeeeieveieesceresissssereesessis et sassastetsss s st nis s see sasasatasssestssssasssssassnsasasens 15
D5 ACHVATON FUNCHOMNS e vtevereirerensisrssssessssesassessosssossissssstsssssesssssstacssstssassastsnssss st sssss i sssessssesssisssssssissssessssnsasins 17
2.5.1 SEEP TFUNCHON 1vvuvvrieersvssusssssessesssssssssssssssscessssssssss o Aas 1RSSR e 17
2.5.2 LINCAL COMDBIMAION cvevevrvrvrrireniessieecseessssssastactesissnssessassensmssasssasssstasssassssesontasessarssssntsisssssssrssrssssssessresssen 18
2.5.3 Continuous Log-Sigmoid FUNCHONocvvccesmeintcrrreesmssessssssesssnssssassssas s s ssssisss s ssenes 18
2.5.4 Continuous Tan-SigMoid FUNCHOMNuuwrumercrisesmmnsirissssias s sassass st st i 19
25,5 SOFNIAX FUIICHON e veeevsraiaseeseressessersssssssansasasnsseseesstssssasatsesensstssssssrssnssesssassssarsssssmetsbsits st statsastsasiasasasssassssases 19
2.6.1 Single Layer Feed FOrward NEtWOL:ccuvcrimrievsimmimrnr st s ressnase s nnneass 20
2.6.2 M}lldlayer Feed Forwatd NEtWOLKS c..vierrieirceressnesasssasssasesesessisssasastsresssassonsassisssnsssssssonssssansesssons 20
2.6.3 Feed Back Neural NETWOTKS: . .ociererverermersesescsmsessmssisossisressssisssssssssssssssastssstsssisssrssssassansss rrtreseest et 21
2.6.4 Recurrent NeULal NEtWOLKS. ...ccoireeersetsesrecsesirssiiississiesssssasssassssassssesssessssass st ssstsasanssastsssssmsssssnsisnsseses 22

2.7 Applications Of Neural NEtWOLKS:cccuvereeriirmsieiismmiissimiisssssisssismssssscssss s ires s asass s s 22

2.7.1 Neural Networks in MEICINe. ..ouvvvmieiiiniiieinirsetiie et e snssssasssesctststssssasannsstes st e sessasn ot s soniases 22
2.7.2 Modeling and Diagnosing the Cardiovascular SFSteml .. urrrrrmssemnrissmssssssmnsssemsissssisssssssssensees 23
2.7.3 ELECtEOMIC INOSES.cvvrrverrurreaseerecsreessreisetosressesemsasessssssssorsssbssasnsssssnssnssst srecstssesssenthsssnssrssnsssssanasssasisnstonssss 24
2.7.4 Instant Physi;ian .. 24
2.8 Advantages Sertresrnsrnre e eranesses e 24
2.9 DHSAQVANLAZES. «.voevccvuuesrrsisnirssnsrssassssserssssssesssessssssesssas st sssssc st As R84SR b R0 24
2,10 PELCEPLIONS. c.uvvvsvrcvressrarrsssesssasansssssssssssosisscsstsessibess s an e 14 A 1802 SR S s 25
211 INQUIAL COING ..vvvvvvrnrrrerrsssnsrassssissnssssosessssesanasessssss asssse s s ss s 41 808 S8 RSt 0000000 25
CHAPTER 3 LEARNING

3.1 SUPEIVISEA JEAINING covvvvvvvevussenssrresemssis s eressssasis b s s R e iR 27
3.2 UNSUPEIVISEA LEATNING ..vc.cvvuvvunieriassssssnree e reaassersss asssosamsse s bS8 s 28
3.3 Reinforcement Lcammg .. 28
3.4 DEHA RULE oottt iesasessssssasescessrseessssesas st ssase s s s hessbasa st st des s e a s e T bR RS R A sttt 28
3.4.1Change from PerCePION:. .cimmmisrisreersesisiaserissesinima st s s 29
Delta Rule: Training by Gradient Descent REVISILED.......uuuiumrmrmiinimsssssnrcnsnntins it sseesoe 29
342 ALGOTIIIIL cooevveescrincetansnsseses st e aeie s R 181 LRSS RS RS 30
3.5 Nonlinear Compression TeChIGUES ... cuereressrersimrrmscecissrimseninsssrirs st sssssssasessssessssiasis s rins s senss 30
3.5.1 Example.....ccovvveririnennncacns OSSO OO SO GO RO PRI T ORISR SRR 31
3.5.2 5-LaYEL INEIWOLKS 1vsvisrsrerserssnserensessresssseesseessarssinsisssessssssossssse s eass s s s s s 000 31
CRT R S5 2Te i) IS 8 (ST T0) =L TR 32

4 EXample: Faces..oeeurivcinrenres st sass st s st e 32
3.7 Kohonen's Self-Otganizing Map (SOM):eum . erueumssecrimissmsissnssissmsssissassissiemsessscssess s issnsiss s sassssssssooessss 34
3.7.1Algorithm for Kohonon's Self Organizing Map: UV — 34
3.7.2 Examples Of unsupervised Leamning e erereemmsisinisssresssstirssssiesisesissssanssssstes s st saess s 36
3.8 ACHVE LATTINE cevvvervusnaerirasessnnsssnssssessssassssesssce s s s ams a8 s 58 8100 RS S e 36
3.9 ApPProaches and algOMRMS...ouuruuressmmisrisslissssssmsiess s sossmsarin st 36
2

CHAPTER 4 GENETIC ALGORITHMS

4.1 GenetiC ALGOLIRITIS. c.vucvueriiiesirniniissiesssrees s sssss s et e san s rass s soise e st eab b s st s b8 st 39
4.2 TOEEOAUCHON: . e vveerie et nraeeresesseessnesne sessreanos st reserssstastsserssire st aebates et o smrnasbsasts s e snsethasasssedbestsss snsabossnssnnns 39
4.3 HICLALCHY OF GAS ourvuviriernvinscencitn i st stis s sssscsse st s st d S0 st st 39
4.4 Components of a GA: ..cueeeeee. etaeretseasees e R SRR SRS a AR R b SRR R AR SRR SRR s SRR 41
4.4.1 Simple Genetic AIGOHIIML .cco.ouvuvveer s s s s 41
4,5 NATUTAL SEIECHON «...vecvrsirrsorsirisrosisssossissssrssssssssssssesmsssssssmsssssssssssssissessssissssmsssessssssssarsssessssasassisasssssessssrmesssisns 42
4.6 SIMUIAEA EVOIIEON 1eevvrrvcrurevrrermercsiees recseesirsasesssissssssscss st s s s ssssassssassssasssssssasssonssssonssssssassossssssnnssenes 42
4.7 Benefits of Genetic AIZOHItRMS ...t ss st sisessisessssers ettt s 47
4.7.1 Whenn t0 USE 2 GA .ottt e e s s s sev s as e s st a0t o0t e bsnsinssasas s s ssrsssasenes 48
4.8 CONCIUSION 1u.vrtrv e cereseaaesseesesesessesosensssatoe s srsssssssstssss s s s s b e s AR R R8s bbb s a8t 48
CHAPTER 5 NON LINEAR ODE
5.1 DIfferential EQUALION: ..uvureerserieesierssssssrsssssserssssisessse s sassess et s sib s bb s ass s s as b s 4s R b8 e RS 50
5.2 The Natre Of SOIIHONS ..c.vuveeevrecieiiinircicriaitniesrseritsecaesosissssssssssssssssssssssassssssssessess astass sssssinsasnsssassasssses 50
5.3 Separable EQUAtON c.vieriemcierierisiistss e ses sttt en s s s st ass s b b s RS ss s 51
5.4 First Order Linear Differential EQUAOMciuirerrierisceirisie s srsssi it sssasssssssesssssiscssesessssecsisssssmsessssssenssssanss 51
5.4.1 EXAMPLES ...cvucvereuimnremiusiiisniesiossaes s s sssssssssses s s tss st 410 08048 SRR P8 ms 0 52
5.5 Second Otder Linear Differential Equation ... 52
5.5.1 EXAMPIES ..ocvvverevriersseniseassisssisnrsasssssasssssssssss s sesess b s asssons s 5 a4 4410084484140 5 110 0t 53
5.6 Non Linear Differential EQUATON: ...omuervunrivissisesscssessnnse s sistsecsssisssieseni s ssssssensesmm s ssssess ssesssssssens oo 53
5.6 1T EERAMIPLES ..vevveverrrncrmsimsemsee oo isecnss s sassass aasensintstssss s ssss s assass e s a8 12 as e Eb s e bR b bt e A b s sass b s 53
CHAPTER 6 PROPQOSED NEMERICAL METHOD FOR SOLUTION OF NON LINEAR ODE
6.1 BernOUIH EQUAtION: c...vvvurnieenicverirnessressiessssss s e ss st st sessssrss s aba s s AR st st er s 0 57
6.2 WeiSSINGEL'S FEQUAOM: c.vvuxpuuerrsassssissssscessssssrs s esiss s seris s s smss s bass s s AR a8 b 00000 57
6.3 Va1l Det POl EQUAHON cevevvveeriassrssssssiessssess s st s s s b8 002 59
6.4 Mapping for DENN c.ooooooe oo oo oo oo eeessseseesessseseeeese et eesesessesessesss et 8sR SRR AR eE RSB RR BRGS0 60
APPENUIX AL .. .iii e e s 64

Simulation & Result.........cooiiviiiiiiiiiii s

AL s T3 0 el 1 0 T O O 88

Glossary..o.ooiviiiriiii e s 87
93

23 T 1 o o X T N

[Introduction

1.1 Introduction

Artificial neural netwotks (ANN) are among the newest signal-processing technologies in the
electronics engineering. An Artificial Neural Network is an adaptive, most often nonlinear system
that learns to perform a function (an input/output mapping) from data. The first artificial neuron

was produced in 1943 by.the neurophysiologist Watren McCulloch and the logician Walter Pits.

A neural network is a massively parallel distributed processor made up of simple processing units, which has a natural

property for storing experimental knowledge and making it available for use. 1t resembles the brain in two respeds

1. The Knowledge is acquired by the network from its environment through a learning
process.
2. Interneuron connection strengths, known as synaptic weight, are used to store the acquired

knowledge.
The use of the neural networks offers the following useful properties and capabilities:

1. Nonlineatity: An artificial neuron can be linear and non linear. A neural network made
from the no linear neurons interconnection is itself non linear. Nonlinearity is a highly
important property particularly if the underlying physical mechanism responsible for
generation of the input signals (speech signal, face recognition signal etc) are inhetitally non
linear. '

2. Input/ Output Mapping: Supervised learning is one of the most popular paradigm in
learning that involves modification of the synaptic weights of neural network by applying a
set of labeled training samples, it consist of unique input signal and desired corresponding
output signal. Supervised learning paradigm suggests a close analogy between the input
output mapping performed by the neural network and nonparametric statistical interference.

3. Adaptively: Neural network have a built-in capability to adopt their synaptic weights to
change in the surrounding environment, if neural network is trained on a specific
environment can be trained by itself with the minor changes. Their synaptic weights are
modified by itself with the changes in the environment like it does in real time. This
adaptability does not always robust; I mean it can go very opposite as well.

4. Evidential Response: Neural networks particularly when implemented of pattem

recognition systems can be designed to provide information not only about which particular

pattern to select, but also about confidence m the decision making. This latter information
can reject the ambiguous patterns.

Contextual Information: Knowledge is represented by the very structure and activation
state of neural network. Every neuron in the network is potentially affected by the global
activity of all other neurons in the network. Consequently, contextual information is dealt
with naturally by a neural network.

Fault Tolerance: Implementing a neural network on the hardware has the potential to be
inherently fault tolerant or capable of robust computation, in the sense that its performance
degrades gracefully under adverse operating conditions. In principle a neural network
exhibits a graceful degradation in performance rather than catastrophic failure.

From the various existed activation function; I use the linear activation function on the input
and output layer of Differential Equation (DE) neural network, while log sigmoid activation
function is used for mathematical linear mapping of non linear differential equation. The
architecture is simple feed forward with the real numbers as the bias frofn the range -5 to 5,
with some hidden layers. Details are their in rest of the chapters. Weights on the
communication links are adjusted and upgraded by the genetic algorithms and pattern search
which forms it as hybrid intelligent algorithm. |
Unsupervised learing is used to train the system is discussed in chapter 3. Learning has a
ptimary significance in the neural networks which is supposed to be trained according to the
environment. The performance can be improved by the learning of the neural net. A neural
‘network is trained due to the synaptic weights on the communication links and due to the
bias, which keep on performing better by the learning on each iterative process about its
environment that is the key point in an intelligent system.

‘EL.eamiﬂg is a process by which the free parameters of a neural network are adopted through a process of
simulation by the environment in which the network is embedded. This type of the learning is determined by

the manner in which the parameter changes take place.”

Genetic algorithms are global search, an optimization technique model from the natural
genetics, Exploring search space by incorporating a set of candidate solution in parallel. A
genetic algorithm maintains a population of candidate solutions where each of the solution is
usually coded as a binary string called a chromosome. A chromosome also referred as a

genotype — encode a parameter set i.e. a candidate solution. For a set of variables being

7

optimized, each encoded parameter in a chromosome is also called as gene. A decode
parameter set is called phenotype. Our chromosome set contains the real values. A set of
chromosome forms a population which is evaluated and ranked by a fitness evolution

function. The evolution form from one generation to the next one evolves mainly three

steps.

1) Creation

i) Reproduction

1it) Mutation & recombination

Moreover the genetic algorithms alone are not so helpful for the searching for a global
minimum; for this purpose I have incorporated the pattern search to form the hybrid

intelligent algorithm whose convergence towards the answer is remarkable.

1.2 Literature Survey

Solutions of differential equations arise in a wide variety of engineering applications in
electromagnetic, signal processing, computational field dynamics, embedded systems, digital
communication etc. These equations ate. typically solved using either analytical methods or
numerical methods. Analytical solution method are however feasible only for simple
geometries, which limit their applicability, in most practical problems with complex
boundary conditions, numerical methods are required in order to obtain a reasonable
solution. As the artificial neural netwotk can approximate any continuous function more
efficiently than any linear combination of fixed basic functions. However their learning

structure is not yet classified due to the non linearity, abnormality and complexity.

]

1.3 Previous Work

[y

In nineteen sixties various scientists used unsuccessfully the feed forward neural network in
the field of signal processing and computation. In 1971 people use successfully the feed
forward neural network as an application in digital computers with the KBM methods.
Previously people have applied the neural network on motion control methods for bipedal

humanoid locomotion a nd their rectlinear path. Robot locomotion 1s a multi-objective

problem in motion controls. To optimization of the parameters simultaneously cause
explosion of search space and timings as well. The same techniques are used to measure the
braking torques in the motion of the bodies; these applications involve solution of complex
ordinary differential equations. Hydro system scheduling involves complex non linear

equations that were solved using the artificial neural networks (ANN).

1.4 Recent Research

Artificial neural netwotk have been recently shown that they can be successfully
incorporated into solution methods for ordinary differential equations both for ordinary
differential equation and partial differential equations. These solution methods rely on the
function approximation capabilities of the feed forward neural network. A recent method
for solving differential equation using feed forward neural network was applied to a non
steady catalyst solid gas reactor. Due to ANN universal capabilities of approximation, it is
possible to postulate them as a solution for a given DE problem that defines an
unsupervised error. These problems are also solvable by traditional numerical methods
which are slow and have more space complexity. Recently Riccati differential equation has
been solved by using multilayer back propagation neural network.

Unsupervised neural network is also used to solve non linear complex Schrodinger’s
equation in 2001. Lots of recent research has been done in this regard from which the
versatility and scope of the thesis is clear as a reference, I have mentioned in the above

passage.

1.5 Problem statement

Analytical methods to solve the non linear differential equation are very complex and tedious
so analytical methods are used to solve these equations but the time and space complexity is
very high and slow as well. Previously researchers solve the non linear problems by
transforming into the linear samples. The problem comes for the computation of parameters
to be trained for particular task, different strategies are used previously like LMS, sparse tree
etc. But no one has calculated these parameters by direct method as the optimal parameters
are unique and can be directly calculated. A function approximate the differential equation

automatically from the learning samples, but the learning methodology will be unsupervised

in order to make our system versatile. Feed forward DENN (differential equation neural

network) will produce the better results quantitatively with a MSE~107°.

1.6 Objective of the project

This research project aims at solving the non linear differential equation using neural
network and hybrid intelligent algorithms. The objective is to process and analyze the
complex non linear systems. The theme of the project is to design and develop new and
advance algorithms and techniques to tackle various problems occur during the adjustment
of the link weights, during the learning and their up gradation. The focus is to get the best
chromosome set which approximate the smallest possible MSE or number of generations,
which ever comes earlier. This project aims to the advancement in the field of signal

processing in digital electronics.

1.7 Scope and Plan of the Project

Artificial neural network is one (;f the growing fields in digital electronics which can tackle
the 80% of the non linear problems of the world, due to its versatility and compatibility of
ANN using the heuristics and non sequential procedures intelligently. The system based on
the research done in this thesis will play its major role in providing the help to
mathematicians and scientists to calculate/approximate the solution of non linear complex

differential equations like Bernoulli, Van der Pol, Weissinger’s etc.

The whole project is divided into four categories:

® Neural Network Architecture
Our NN architecture is feed forward neural network
® Jearning
We perform the unsupervised learning
® Hybrid Intelligent Algorithm
To avoid the clasping in the local minima and to search global minima we use genetic
algorithm with pattem search

® Exact Solution

10

To clarify over analytical method we find the complex exact solutions provided in

the standard texts.

1.8 Organization of Thesis

Chapter 1 have a very brdef introduction of the neural networks, learning and intelligent
algorithms, with a sutrvey about the project is taken in this regard is also the part of this
chapter. Chapter2 is related to the neural network architecture techniques and activations
function in detail. Supervised and unsupervised learning to train the network is in the
chapter 3. Genetic algorithms and hybrid intelligent algorithms are one of the important
segments in the learning of synaptic weights on the communication links of neural network
is in chapter 4. Discussion of Non lineatr differential equations is the part of chapter 5.
Proposed system is one of the important part of thesis in which the architecture and layers
of the non linear differential equation have been discussed with the unsupetvised learning
rules. These non linear problems are solved and results are approximated with the neural
network approach incorporated with genetic algorithms is discussed in chapter 6. Last
chapter contain the results with the best chuomosomes and MSE obtained by proposed

method run for 400 generations on a finite real domain of time.

11

12

2.1 What is a Neural Network? |

An artificial neural network is a system based on the operation of biological neural networks,
in other words, an emulation of biological neural system. The key elements of this paradigm
are the novel structure of the information processing system. It is composed of a large
number of highly interconnected processing elements (neurons) working in unison to solve

specific problems.

+

Artificial neural networks (ANN) are among the newest signal-processing technologies in the
electronics engineering. An artificial nelual network is an adaptive, most often nonlinear
system that learns to perform a function (an input/output mapping) from data. Adaptive
means that the system parameters are changed during operation, normally called the training
phase. After the training phase the Artificial Neural Network parameters are fixed and the
system is deployed to solve the problem at hand (the testing phase). The Artificial Neural
Netwotk is built with a systematic step-by-step procedure to optimize a performance
criterion ot to follow some implicit internal constraint, which is commonly referred to as the

learning rule

2.2 Historical Background:

Neural network simulations appear to be a recent development. However, this field was
established before the advent of computets, at:d has sutvived at least one major setback and
several eras. Many important advances have been boosted by the use of inexpensive
computer emulations. Following an initial petiod of enthusiasm, the field survived a period
of frustration and disrepute. During this period when funding and professional support was
minimal, impottant advances were made by relatively few researchers. These pioneers wete
able to develop convincing technology which surpassed the limitations identified by Minsky
and Papert. Minsky and Papert, published a book (in 1969) in which they summed up a
general feeling of frustration (against neural networks) among researchers, and was thus
accepted by most \x;ithout further analysis. Currently, the neural network field enjoys a
resurgence of interest and a corresponding increase in funding. The first artificial neuron was
produced in 1943 by the neurophysiologist Warren McCulloch and the logician Walter Pits.
But the technology available at that time did not allow them to do too much in this field.

13

2.3 The Biological Model

Artificial neural networks emerged after the introduction of simplified neurons by
McCulloch and Pitts in 1943 (McCulloch & ‘I?,jtts, 1943). These neurons were presented as
models of biological neurons and as conceptual components for citcuits that could perform
computational tasks. The basic model of the neuron is founded upon the functionality of a
biological neuron. "Neurons are the basic signaling units of the nervous system" and "each

neuron is a discrete cell whose several processes atise from its cell body".

i

Figure 2.1 Biological model of neuton

The neuron has four main regions to its structure. The cell body, or soma, has two offshoots
from it, the dendrites, and the axon, which end in presynaptic terminals. The cell body is the
heart of the cell, containing the nucleus and maintaining protein synthesis. A neuron may
have many dendrites, which branch out in a treelike structure, and receive signals from other
neurons. A neuron usually only has one axon which grows out from a part of the cell body
called the axon hillock. The axon conducts electric signals generated at the axon hillock
down its length. These electric signals are called action potentials. The other end of the axon
may split into several branches, which end int a presynaptic terminal. Action potentials are

the electric signals that neurons use to convey information to the brain. All these signals are

14

identical. Therefore, the brain determines what type of information is being received based
on the path that the signal took. The brain analyzes the patterns of signals being sent and
from that information it can interpret the type of information being received. Myelin is the
fatty tissue that surrounds and insulates the axon. Often short axons do not need this
insulation. There are uninsulated parts of the axon. These areas are called Nodes of Ranvier.
At these nodes, the signal traveling down the axon is regenerated. This ensures that the
signal traveling down the axon travels fast and remains constant (i.e. very short propagation
delay and no weakening of the signal). The synapse is the area of contact between two
neurons. The neurons do not actually physically touch. They are separated by the synaptic
cleft, and electric signals are sent through chemical 13 interaction. The neuron sending the
signal is called the presynaptic cell and the neuron receiving the signal is called the
postsynaptic cell. The signals are generated by the membrane potential, which is based on
the differences in concentration of sodium and potassium ions inside and outside the cell
membrane. Neurons can be classified by their number of processes (or appendages), or by
their function. If they are classified by the number of processes, they fall into three
categories. Unipolar neurons have a single process (dendrites and axon are located on the
same stem), and are most common in invertebrates. In bipolar neurons, the dendrite and
axon are the neuron's two separate processes. Bipolar neurons have a subclass called pseudo-
bipolar neurons, which are used to send sensory information to the spinal cord. Finally,
multipolar neurons are most common in mammals. Examples of these neurons are spinal
motor neurons, pyramidal cells and Purkinje cells (in the cerebellum). If classified by
function, neurons again fall into three separate categories. The first group is sensory, or
afferent, neurons, which provide information for perception and motor coordination. The
second group provides information (or instructions) to muscles and glands and is therefore
called motor neurons. The last group, interneuronal, contains all other neurons and has two
subclasses. One group called relay or projection intemneurons have long axons and connect
different parts of the brain. The other group called local interneurons are only used in local

circuits.

2.4 The Mathematical Model

15

When creating a functional model of the biological neuron, there are three basic components of

importance. First, the synapses of the neuron are modeled as weights. The strength of the

connection between an input and a neuron is noted by the value of the weight. Negative weight

values reflect inhibitory connections, while positive values designate excitatory connections

[Haykin]. The next two components model the actual activity within the neuron cell. An adder sums

up all the inputs modified by their respective weights. This activity is referred to as linear

combination. Finally, an activation function controls the amplitude of the output of the neuron. An

acceptable range of output is usually between 0 and 1, or -1 and 1.
Mathematically, this process is described in the figure

‘Eixed input xo =11

| ik = b ins)

-__Acxiva_tion

. N Function

Fele., : W e . Sutput
' A] B | gy

]

:;S_E'p,. ek

“Fapat Synaptic Threshold
siztnls Weights.

Summing’
Junctiony

TR

Figure2.2 Mathematical Model

From this model the interval activity of the neuron can be shown to be:

=

2.1

The output of the neuron y, would therefore be the outcome of some activation function

on the value ofv, .

16

2.5 Activation Functions

There are a number of common activation functions in use with neural networks. This is not

an exhaustive list.

weights
inputs
X}
activation
functon
net input
%2 nes}
Q9

x activation

3

transfer
: function

threshold

Figure2.3 A simple neural network

2.5.1 Step Function

A step function is a function like that used by the original Perceptron. The output is a certain
value, A,, if the input sum is above a certain threshold and A, if the input sum is below a
certain threshold. The values used by the Perceptron were A; = 1 and A, = 0. These kinds of
step activation functions are useful for binary classification schemes. In other words, when
we want to classify an input pattern into one of two groups, we can use a binary classifier
with a step activation function. Another use for this would be to create a set of small feature
identifiers. Each identifier would be a small network that would output a 1 if a particular
input feature is present and a 0 otherwise. Combining muldiple feature detectors into a single

netwotk would allow a very complicated clustering or classification problem to be solved.

17

05

)
i

i 1

Figure2.4 Step function

2.5.2 Linear Combination

A linear combination is where the weighted sum input of the neuron plus a linearly

dependant bias becomes the system output. Specifically:
y=C+5b 2.2

In these cases, the sign of the output is considered to be equivalent to the 1 or 0 of the step

function systems, which enables the two methods, be to equivalent if

0=-14 , 23

2.5.3 Continuous Log-Sigmoid Function

A log-sigmoid function, also known as a logistic function, is given by the relationship:

T16=—

1+e™ ' 24

18

Where B is a slope parameter. This is called the log-sigmoid because a sigmoid can also be
constructed using the hyperbolic tangent function instead of this relation. In that case, it
would be called a tan-sigmoid. Here, we will refer to the log-sigmoid as simply “sigmoid”.
The sigmoid has the property of being sitnilar to the step function, but with the addition of 2
region of uncertainty. Sigmoid functions in this respect are very similar to the input-output
relationships of biological neurons, although not exactly the same. Below is the graph of a
sigmoid function. ’

0.5 0 9]

i L.

Figure 2.5 Log sigmoid activation function

Sigmoid functions are also prized because their derivatives are easy to calculate, which is
helpful for calculating the weight updates in certain training algorithms. The derivative is
given by:

a0
41O on-T0

25

2.5.4 Continuous Tan-Sigmoid Function

2.5.5 Softmax Function

19

The softmax activation function is useful predominantly in the output layer of a clustering
system. Softmax functions convert a raw value into a postetior probability. This provides a

measure of certainty. The softmax activation function is given as:

€g;
Y=g o
Z jeL€ 2.6

L is the set of neurons in the output layer.

2.6 Architecture of Neural Networks

Artificial Neural Networks are classified as either Feed-Forward, or Feedback networks.
2.6.1 Single Layer Feed Forward Network:

A Feed-Forward network allows traffic in one direction vonly, i.e. from input to output. There
are no loops, and each output from a particular layer does not affect other neurons on the

same layer.

Higdden-layar Cuputs

Figure 2.6 Singlé layer feed forward network

2.6.2 Multilayer Feed Forward Networks

The package supports FF neural networks with any nimber of hidden layers and any
number of neurons (hidden neurons) in each layer. In Figure 2.6 a multi-output FF network

with two hidden layers is shown.

20

1 1
Xy ZG%EG
Yol YY 6

X1

Figure 2.7 A multi-output feed forward network with two hidden layers.

The number of layers and the number of hidden neurons in each hidden layer are user
design parameters. The general rule is to choose these design parameters so that the best
possible model with as few parameters as possible is obtained. This is, of course, not a very
useful rule, and in practice you have to experment with different designs and compare the
results, to find the most suitable neural network model for the problem at hand. For many

practic:ﬂ applications, one or two hidden'layers will suffice.

2.6.3 Feed Back Neural Networks:

Feedback architectures allow loops in the network. This means that the output from one
neuron can be sent to neurons that have already fired. Obviously, this architecture is much
more complex, but it is also 2 more accurate representation to biological models. It is also

much more powerful than the existed feed forward neural networks and recurrent neural

networks.

21

Figure 2.8 Feed back neural network
In either structure, 3 distinct layers exist: an input layer, a "hidden" layer, and an output layer.

The input layer represents the raw data that is fed into the system. The hidden layer does the
"work" in a neural network and its output is generated based on the weights of the links it
receives input from, and the threshold of each neuron. This output in tum is interpreted
based on the links between the hidden layer and the output layer and creates a final output.
In a single layer system, the process ends here. However, there are multiple layer systems
which then use this output as input into another layer, essentially nesting several neural
networks amongst each other. Again, this is 2 more complex implementation, but more

closely resembles natural neural networks.

To learn more about the history of neural networks

2.6.4 Recurrent Neural Networks

A tecurrent neural network is a neural network where the connections between the units
form a directed cyde. Recurrent neural networks must be approached differently from feed
forward neural networks, both when analyzing their behavior and training them. Recurrent

neural networks can also behave chaotically.

2.7 Applications of Neural Networks:

ANN are also used in the following specific paradigms: recognition of speakers in
communications; diagnosis of hepatitis; =ecovery of telecommunications from faulty
software; interpretation of multi meaning Chinese words; undersea mine detection; texture
analysis; three-dimensional object recogiﬁdon; hand-written word recognition; and facial

recognition.
2.7.1 Neural Networks in Medicine

Artificial Neural Networks (ANN) is currendy a 'hot' research area in medicine and it is

believed that they will receive extensive application to biomedical systems in the next few

22

years. At the moment, the research is mostly on modeling parts of the human body and

recognizing diseases from various scans (e.g. cardiograms, CAT scans, ultrasonic scans, etc.).

Neural networks are ideal in recognizing diseases using scans since there is no need to
provide a specific algorithm on how to identify the disease. Neural networks learn by
example so the details of how to recognize the disease are not needed. What is needed is a
set of examples that are representative of 2'l the variations of the disease. The quantity of
examples is not as important as the 'quanﬁlty'. The examples need to be selected very

carefully if the system is to petform reliably and efficiently.
2.7.2 Modeling and Diagnosing the Cardiovascular System

Neural Networks are used experimentally to model the human cardiovascular system.
Diagnosis can be achieved by building 2 model of the cardiovascular system of an individual
and compating it with the real time physiclogical measurements taken from the patient. If
this routine is carried out regulasly, potential harmful medical conditions can be detected at

an early stage and thus make the process of combating the disease much easier.

A model of an individual's cardiovascular system must mimic the relationship among
physiological variables (i.e., heart rate, systolic and diastolic blood pressures, and breathing
rate) at different physical activity levels. I£ a model is adapted to an individual, then it
becomes a model of the physical condition of that individual. The simulator will have to be
able to adapt to the features of any individual without the supetvision of an expert. This calls

for a neural network.

Another reason that justifies the use of ANN technology is the ability of ANNs to provide
sensor fusion which is the combining of values from several different sensors. Sensor fusion
énables the ANNSs to learn complex relationships among the individual sensor values, which
would otherwise be lost if the values were individually analyzed. In medical modeling and
diagnosis, this implies that even though each sensor in a set may be sensitive only to a
specific physiological variable, ANNGs are capable of detecting complex medical conditions

by fusing the data from the individual biomedical sensors.

23

2.7.3 Electronic Noses

ANN' s are used experimentally to implement electronic noses. Electronic noses have several
potential applications in telemedicine. Telemedicine is the practice of medicine over long
distances via a communication link. The electronic nose would identify odours in the remote
surgical environment. These identified odours would then be electronically transmitted to
another site where a door generation system would recreate them. Because the sense of smell

can be an important sense to the surgeon, telesmell would enhance telepresent surgery.

2.7.4 Instant Physician

An application developed in the mid-1980s called the "instant physician" trained an auto
associative memory neural network to store a large number of medical records, each of
which includes information on syrnptorhs, diagnosis, and treatment for a particular case.
After training, the net can be presented with input consisting of a set of symptoms; it will

then find the full stored pattern that represents the "best" diagnosis and treatment.

2.8 Advantages

A neural network can perform tasks that a linez;r program can not.

When an element of the neural network: fails, it can continue without any problem by their
parallel nature.

A neural network leatns and does not need to be reprogrammed.

It can be implemented in any application.

An ability to learn how to do tasks based on the data given for training or initial expetience.

It can be implemented without any problem.

2.9 Disadvantages

» The neural network needs training to operate.

The architecture of a neural network is different from the architecture of microprocessors

therefore needs to be emulated.

24

» Requires high processing time for large neural network

2.10 Perceptrons

Perceptrons are neural nets that change with "experience," using an error-correction rule
designed to change the weights of each response unit when it makes erroneous responses to
stimuli that are presented to the network. A simple perceptron is one in which the associator
units are not interconnected, which means that it has no short-term memory. (If such
connections are present, the perceptron is called cross coupled. A cross-coupled perceptron

may have multiple layers and loops back from an "earlier" to a "later" layer.) If the associator
units feed the pattern x = (X; + X, + X;eeerrnenee x,) to the output unit, then the response of

that unit will be to provide the pattern discrimination.

2.11 Neural Coding

There are various existed methods for neural coding.

e Adaptive Spike Coding

o Integrated-And-Fire Neurons and Networks

e Localized Versus Distributed Representation

e Motor Cortex: Coding And Decoding of Directional
e Operations

e Optimal Sensofy Encoding

e Population Codes

e Rate Coding And Signal Processing

e Sensoty Coding and Information Transmission
e Sparse Coding in the Primary Cortex

o Synchronization, Binding and Expectancy

e Synfire Chains)

25

Chapter 3

Learning

A neural network has to be configured such that the application of a set of inputs produces
(either 'direct’ or via a relaxation process) the desired set of outputs. Various methods to set
the strengths of the connections exist. One way is to set the weights explicitly, using a priof
knowledge. Another way is to 'train' the neural netwotk by feeding it teaching pattetns

and letting it change its weights according to some learning rule.

We can categories the learning situations in two distinct sorts. These are:

3.1 Supervised learning

Supervised learning is also called associative learning in which the network is trained by
providing it with input and matching output pattemns. These input-output pairs can be
provided by an external teacher, or by the system which contains the neural network (self-
supervised). During the learning process global information may be required. Paradigms of
supervised learning include error-correction learning, reinforcement learning and stochastic
learning.

An important issue concerning supetvised learning is the problem of error convergence, i.e.
the minimization of error between the desired and computed unit values. The aim is to
determine 2 set of weights which minimizes the error. One well-known method, which is

common to many learning paradigms, is the least mean square (LMS) convergence.

Ioput - Targer

“Featre) ‘Feature

> Newal Ner

T Weight/ threshold
adjusgent

Supervised Legrning Algarithm

Figure 3.1 Supervised leatning procedure

27

3.2 Unsupervised learning

It is also called Self-organization in which an (output) unit is trained to respond to clusters of
pattern within the input. In this paradigm the system is supposed to discover statistically
salient features of the input populaton. Unlike the supervised learning paradigm, there is no
a ptioti set of categories into which the patterns are to be classified; rather the system must
develop its own representation of the input s‘tlmuh uses no external teacher and is based
upon only local information. It is also refetred to as self-organization, in the sense that it
self-organizes data presented to the network and detects their emergent collective properties.
Paradigms of unsupervised learning are Hebbian learning and competitive learning. Ano2.2
From Human Neurones to Artificial Neuronesther aspect of leaming concerns the
distinction or not of a separate phase, during which the network is trained, and a subsequent
operation phase. We say that a neural network learns off-line if the learning phase and the
operation phase are distinct. A neural network learns on-line if it learns and operates at the
same time. Usually, supetvised learning is performed off-line, whereas unsupervised learning

is performed on-line.

3.3 Reinforcement Learning

This type of learning may be considered as an intermediate form of the above two types of
learning. Here the leanﬁ11g machine does some action on the environment and gets a
feedback response from the environment. The learning system grades its action good
(rewarding) or bad (punishable) based on the environmental response and accordingly
adjusts its parameters. Generally, parameter adjustment is continued until an equilibrium
state occurs, following which there will be no more changes in its parameters. The self

otganizing neural learning may be categorized under this type of leaming.

3.4 Delta Rule

Delta rule is also known as three other name which are as following;

Adaline Rule
Widrow-Hoff Rule
Least Mean Squares (LMS) Rule

28

3.4.1Change from Perceptron:

o * Replace the step function in the with a continuous (differentiable) activation function, e.g
linear

o * For classification problems, use the step function only to determine the class and not to

update the weights.
o * Note: this is the same algorithm we saw for regression. All that really differs is how the
classes are determine
Teacher out Out
i
- Teacher
A
Error S
Error
PerceptronLearning Deita Rule
i
j; Figure 3.2 Learning through delta rule

J
é Delta Rule: Training by Gradient Descent Revisited

Construct a cost function E that measures how well the network has learned. For example

29

n

E=1)(t;~») 3.1

i=1
(one output node)
where

n = number of examples

t, = desired target value associated with the i-th example

y, = output of netwotk when the i-th input pattern is presented to network

e To train the network, we adjust the weights in the network so as to decrease the cost (this is

where we require differentiability). This is called gradient descent.
3.4.2 Algorithm

o Initialize the weights with some small random value
e Untl E is within desired tolerance, update the weights according to

where E is evaluated at W(old), p is the learning rate

and the gradient is
oF

new) =w(old) — u— 3.2
w(new) =w(old) ™
E ='2L2(ti _yi)2 33

i=1

OF &

= . — V.)X s 3.4

aW g(] yl) 1

3.5 Nonlinear Compression Techniques

30

Two layer networks perform a projection of the data onto a linear subspace. In this case, the
encoding and decoding portions of the network are really single layer linear networks. This
works well in some cases. However, many datasets lie on lower dimensional subspaces that

are not linear.
3.5.1 Example

A helix is 1-D, howevet, it does not line on a 1-D linear subspace.

Figure 3.3 1-D linear subspace

To solve this problem we can let the encoding and decoding portions each be multilayer

networks. In this way we obtain nonlinear projections of the data.

3.5.2 5-Layer Networks

outputs
linear @
nonlinear®® @ @ © Decoding
linear -«4—— |ow dim representation
nonlinear & & & & Encoding
inear @& &
inputs

Figure 3.4 5-layer networks

31

3.5.3 Example: Hemisphere

(From Fast Nonlinear Dimension Reduction, Nanda Kambhatla NIPS93)

Compressing a hemisphere onto 2 dimensions

Figure 3.5 Hemisphere on 2-dimension

4 Example: Faces

(from Fast Nonlinear Dimension Reduction, Nanda Kambhatla,NIPS93)

In the examples below, the original images consisted of 64x64 8-bit/pixel grayscale images.
The first 50 principal components were extracted to from the image you see on the left. This

was reduced to 5 dimensions using linear PCA to obtain the image in the center. The same

32

imageon the left was also reduced to 5 dimensions using a 5-layer (50-40-5-40-50) network

to produce the image on the right.

Figure 3.6 Facel

50 principal components 5 principal components 5 nonlinear components

Figure 3.7 Face 2

3.6 Bayesian Learning for Neural Networks:

Artificial “‘neural networks" are now widely used as flexible models for regression and
classification applications, but questions remain regarding what these models mean, and how
they can safely be used when training data is limited. Bayesian Learning for Neural Networks
shows that Bayesian methods allow complex neural network models to be used without fear
of the “overﬁtﬁng" that can occur with traditional neural network learning methods. Insight
into the nature of these complex Bayesian models is provided by a theoretical investigation
of the ptots over functions that underlie ther. Use of these models in practice is made

possible using Markov chain Monte Carlo techniques. Both the theoretical and

33

computational aspects of this work are of wider statistical interest, as they contribute to a

better understanding of how Bayesian methods can be applied to complex problems

3.7 Kohonen's Self-Organizing Map (SOM):

Kohonon's SOMs atre a type of unsupervised learning. The goal is to discover some
underlying structure of the data. However, the kind of structure we are looking for is very

different than, say, PCA or vector quantization.

Kohonen's SOM is called a topology-preserving map because there is a topological structure
imposed on the nodes in the network. A topolngical map is simply a mapping that preserves

neighborhood relations
3.7.1Algorithm for Kohonon's Self Organizing Map:

e Assume output nodes are connected in an array (usually 1 or 2 dimensional)
e Assume that the network is fully connected - all nodes in input layer are connected to all
nodes in output layer.

e Use the competitive learning algorithm as follows:

¢ Randomly choose an input vector x

¢ Determine the "winning" output node i, where w; is the weight vector connecting the

inputs to output node.

e Note: the above equation is equivalent tow,x > w,x only if the weights are normalized.
,w,. —x| < |wk —x|Vk 3.5
¢ Given the winning node i, the weight update is

w, (new) = w, (old) + uN (i, k)(x - w,) | 3.6

34

where, N(i,k)is called the neighborhood function that has value 1 when i =k and falls off
with the distance |rk - r,.|' between units 7 and % in the output array. Thus, units close to the

winner as well as the winner itself, have their weights updated appreciably. Weights
associated with far away output nodes do not change significantly. It is here that the
topological information is supplied. Nearby units receive similar updates and thus end up

responding to nearby input pattems.

The above rule drags the weight vector w; and the weights of nearby units towards

the input x.

Figure 3.8 Nearby input pattems

Up until now we have discussed how to train nets given a training set of input and target
values. The target value is often called the teacher signal because it represents the "right

answer". ie. what the output of the net should be. Training with a teacher signal is

called”Supervised learning”.
We can also train nets on inputs where there is no teacher signal. The purpose might be to

e discover undetlying structure of the data
¢ encode the data
e compress the data

e transform the data

This kind of learning is called unsupervised leaming because there is no explicit teacher signal.

35

3.7.2 Examples of unsupervised learning

Hebbian learning

w(t+1) = w(e)+my(0)x(?) 3.7
This moves w toward infinity in the direction of the eigenvector with largest Eigen value of
the correlation matrix

A more stable version is Oja's rule
w(t +1) = w() +n(x(@) = y(O)w() y(¢) ’ 3.8

principal component analysis
competitive learning

vector quantization

3.8 Active Learning

There are situations in which unlabeled data is abundant but labeling data is expensive. In
such a scenario the learning algorithm can actively query the user/teacher for labels. This
type of supervised learning is called active learning. Since the learner chooses the examples,
the number of examples to learn a concept can often be much lower than the number
required in normal supervised learning. With this approach there is a risk that the algorithm

might focus on unimportant or even invalid examples.

3.9 Approaches and algorithms

Analytical learning
Artificial neural network
Back propagation
Boosting

Bayesian statistics
Case-based reasoning
Decision tree learning

Inductive logic programming

36

Gaussian process regression

Learning Automata

Minimum message length (decision trees, decision graphs, etc.)
Naive bayes classifier

Nearest Neighbor Algorithm

Probably approximately correct learning (PAC) learning
Ripple down rules, a knowledge acquisition methodology
Symbolic machine learning algorithms

Sub ‘symbolic machine learning algorithms

Support vector machines

Random Forests

Ensembles of Classifiers

Otdinal Classification

Data Pre-processing

Handling imbalanced datasets

37

Chapter 4

Genetic algorithms

4.1 Genetic Algorithms

“Genetic Algorithms are good at taking large, potentially huge search spaces and navigating
fhem, looking for optimal combinations of things, solutions you might not otherwise find in

a lifetime.”

4.2 Introduction:

This is an introduction to genetic algorithm methods for optimization. Genetic algorithms
wetre formally introduced in the United States in the 1970s by John Holland at University of
Michigan. The continuing price/performance improvements of computational systems have
made them attractive for some types of optimization. In particular, genetic algorithms work
very well on mixed (continuous and discrete), combinatorial problems. They are less
susceptible to getting 'stuck’ at local optima than gradient search methods. But they tend to

be computationally expensive.

To use a genetic algorithm, you must represent a solution to your problem as a genome (ot
chromosome). The genetic algorithm then creates a population of solutions and applies genetic
opetators such as mutation and crossover to evolve the solutions in order to find the best

one(s).

This ptesentation outlines some of the basics of genetic algorithms. The three most
important aspects of using genetic algorithms are: (1) definition of the objective function, (2)
definition and implementation of the genetic representation, and (3) definition and
implementation of the genetic opetators. Once these three have been defined, the generic
genetic algorithm should work fairly well. Beyond that you can try many different variations
to improve petformance, find multiple optima (species - if they exist), or parallelize the
algorithms.

4.3 Hierarchy of GA’s

The hierarchy diagram of the genetic algorithms is shown below to have a quick view on the

evolution of genetic algotithms in the searching techniques.

39

|
r Enumerative techniqi

I Calculus-based techniques j
T

—

I
ynacci J r Nev:rton l

Figure 4.1 Genetic algotithm hierarchy

Many human inventions were inspired by nature. Artificial neural networks is one example.
Another example is Genetic Algorithms (GA). GAs search by simulating evolution, starting
from an initial set of solutions or hypotheses, and generating successive "generations”" of
solutions. This particular branch of Al .Was inspired by the way living things evolved into

more successful organisms in nature. The main idea is survival of the fittest, a.k.a. natural selection.

A chromosome is a long, complicated thread of DNA (deoxyribonucleic acid). Hereditary
factors that determine particular traits of an individual are strung along the length of these
chromosomes, like beads on a necklace. Fach trait is coded by some combination of DNA
(there are four bases, A (Adenine), C (Cytosine), T' (Thymine) and G (Guanine). Like an
alphabet in a language, meaningful combinations of the bases produce specific instructions

to the cell

Changes occur during reproduction. The chromosomes from the parents exchange
randomly by a process called crossover. Therefore, the offspring exhibit some traits of the

father and some traits of the mother.

A rarer process called mutation also changes some traits. Sometimes an etror may occur
during coéying of chromosomes (mitosis). The patent cell may have -A-C-G-C-T- but an
accident may occur and changes the new cell to -A-C-T-C-T-. Much like a typist copying a

book, sometimes a few mistakes are made. Usually this results in a nonsensical word and the

40

cell does not survive. But over millions of years, sometimes the accidental mistake produces
a more beautiful phrase for the book, thus producing a better species. The following basics

term are used in genetic algorithms.

Chromosome: A set of genes. Chromosome contains the solution in form of genes.

Gene: A part of chromosome. A gene contains a part of solution. It determines the solution.
E.g. 16743 is a chromosome and 1, 6, 7, 4 and 3 are its genes.

TIndividual: Same as chromosome.

Population: No of individuals present with same length of chromosome.

Fitness: Fitness is the value assigned to an individual. It is based on how far or close a
individual is from the solution. Greater the fitness value better the solution it contains.
Fitness function: Fitness function is a function which assigns fitness value to the individual.
It is problem specific.

Breeding: Taking two fit individuals and intermingling there chromosome to create new
two individuals.

Mutation: Changing a random gene in an individual.

Selection: Selecting individuals for creating the next generation.

4.4 Components of a GA:

A problem to solve, and...

¢ Encoding technique (gene, chromosome)

e Imitialization procedure (creation)
e Evaluation function (environmert)
e Selection of parents (reproduction)

o Genetic operators (mutation, recombination)

e Parameter settings (practice and ary)

4.4.1 Simple Genetic Algorithm

{

41

initialize population;
evaluate population;

while TerminationCriteriaNotSatisfied

{
select parents for reproduction;
ﬁerform recombination and mutation;
evaluate population;
}
}
4.5 Natural Selection

In nature, the individual that has better survival traits will survive for a longer period of time.
This in turn providesA it a better chance to produce offspring with its genetic material.
.Therefore, after a long period of time, the entire population will consist of lots of genes
from the supetior individuals and less from the inferior individuals. In a sense, the fittest

survived and the unfit died out. This force of natute is called natural selection.

The existence of competition among individuals of a species was recognized certainly before
Darwin. The mistake made by the older theorists (like Lamarck) was that the environment
had an effect on an individual. That is, the environment will force an individual to adapt to
it. The molecular explanation of evolution ptoves that this is biologically impossible. The

species does not adapt to the environment, rather, only the fittest survive.

4.6 Simulated Evolution

42

To simulate the process of natural selection in a computer, we need to define the following:

e A representation of an individual at each poirt during the search process we maintain a
"generation" of "individuals." Each individual is a data structure representing the "genetic
structure” of a possible solution or hypothesis. Like a chromosome, the genetic structure of
an individual is described using a fixed, finite alphabet. In GAs, the alphabet {0, 1} is usually

used. This string is interpreted as a solution to the problem we are trying to solve.

For example, say we want to find the optimal quantity of the three major ingredients in a
recipe (say, sugar, wine, and sesame oil). We can use the alphabet {1, 2, 3 ..., 9} denoting the

number of ounces of each ingredient. Some possible solutions are 1-1-1, 2-1-4, and 3-3-1. -

As another example, the traveling salesperson problem is the problem of finding the optimal
path to traverse, say, 10 cities. The salesperson may start in any city. A solution is a

permutation of the 10 cities: 1-4-2-3-6-7-9-8-5-10.

As another example, say we want to represent a rule-based system. Given a rule such as "If
color=red and size=small and shape=round then object=apple" we can describe it as a bit
string by first assuming each of the attributes can take on a fixed set of possible values. Say
color={red, green, blue}, size= {small, big}, shape={square, round}, and fruit={orange,
apple, banana, pear}. Then we could represent the value for each attribute as a substring of
length equal to the number of possibl;. values of that attribute. For example, color=red
could be represented by 100, color=gtreen by 010, and color=blue by 001. Note also that we
can represent color=red or blue by 101, and any color (i.e., a "don't care") by 111. Doing this
for each attribute, the above rule might then look like: 100 10 01 0100. A set of rules is then

represented by concatenating together each rule's 11-bit string.

For another example see page 620 in the textbook for a bit-string representation of a logical

conjunction.

e Fitness function

43

Given an individual, we must assess how good a solution it is so that we can rank individuals. This is
usually 2 real number. For example, say we have individuals that are represented as a length-30 binary
number. We can then use this individual as an integet, 7, in the range 0 to 2% - 1. A possible fitness
function is Fitness(i) = (i/2%° - 1)"°. This function has a value between 0 and 1 and is monotonically
increasing. Note that fitness functions need not be monotonic and frequently have multiple local

maxima.

For example, one can give a subjective judgment from 1 to 5 for the dish prepared with the

recipe 2-1-4.

Similatly, the length of the route in the traveling salesperson problem is a good measure,

because the shorter the route, the better the solution.

For classification problems, the fitness function could be the percent correct classification

on a given training set. For example, Fitnesst) = (correct(i))’.
Reproduction methods
There are two basic methods of reprodugtion, called mutation and crossover:

1. Mutation
Randomly change one or more digits in the string representing an individual. For
example, the individual 1-2-3 may be changed to 1-3-3 or 3-2-3, giving two new
offspring. How often to do mutation, how many digits to change, and how big a
change to make are adjustable parameters.

i. Crossover

Randomly pick one or more pairs of individuals as parents and randomly swap segments of the

patents. For example, the individuals 1-3-3 and 3-2-3 may be chosen as parents. Suppose we

select a crossover point after the first digit, then the above will generate two offspring: 3-3-3 and

1-2-3. As another example, given two parents 1011010 and 1100010, if the crossover point is
between the third and fourth digits, then the £wo offspring are 1010010 and 1101010. This
method is called 7-point crossover. Similatly, we could define 2-point crossover, which would select

two points in each individual defining three intervals; the middle intervals are swapped to

44

produce the two offspring. The rate of crossover, the number of parent pairs, the number of

crossover points, and the positions of the crossover points are adjustable parameters.

Selection

From a population of individuals, we wish to give the fitter individuals a better chance to
survive to the next generation. We do 7of wani to use the simple criterion "keep the best #
individuals." It turns out nature does not kill all the unfit genes. They usually become
recessive for a long period of time. éut then they may mutate to something useful.

Therefore, there 1s a tradeoff for better individuals and diversity.

A simple selecion method is each individual, 7 has the probability Fitness(i) /

sum_over_all_individuals_j Fitness(j), where Fitness(i) is the fitness function value for individual 7.
This method is sometimes called fitness proportionate selection. Other selection methods
have also been used, e.g., rank selection, which sorts all the individuals by fitness and the
probability that an individual will be selected is proportional to its rank in this sorted list.

One potential problem that can be associated with the selection method is called ctowding.
Crowding occurs when the individuals that are most fit quickly reproduce so that a large
petcentage of the entire population looks very similar. This reduces diversity in the

population and may hinder the long-run progress of the algorithm.

If only mutation is used, the algorithm is very slow. Crossover makes the algotithm significantly

faster.

With the above defined, one way to define a Genetic Algorithm is as follows:

proc GA(Fitness, theta, n, r, m)

; Fitness is the fitness function for ranking individuals

; theta is the fitness threshold, which is used to determine

; when to halt

; nis the population size in each generation (e.g., 100)

45

; r is the fraction of the population generated by crossover (e.g., 0.6)

; mis the mutation rate (e.g., 0.001)

P := generate n individuals at random

; initial generation is generated randomly
while max Fitness(h;) < theta do

; define the next generation S (also of size n)
>R¢mdmﬁorz step: Probabilistically select

(1-)n individuals of P and add them to S intact, where

the probability of selecting individual h; is

Prob(hj) = Fitness(hj) / SUM Fitness(h;)
Crossoer step: Probabilistically select rn/2 pairs
of individuals from P according to Prob(h;)

foreach pair (4, 4,), produce two offspring by applying

the crossover operator and add these offspring to S

Mutate step: Choose m% of S and randomly invert one

bit in each

46

end_while
Find 4 such that Fitness(b) = max Fitness(h;)
return(b)

end_proc

4.7 Benefits of Genetic Algorithms

There are the following advantages to use the genetic algorithms.

e Concept is easy to understand

e Modular, separate from application

¢ Supports multi-objective optimization

e Good for “noisy” environments

e Always an answer; answer gets better with time

e Inherently parallel; easily distributed

e Many ways to speed up and improve a GA-based application as knowledge about problem
domain is gained

e Easy to exploit previous or alternate solutions

® Flexible building blocks for hybrid applications

e Substantial history and range of use

47

4.7.1 When to Use a GA

o Alternate solutions are too slow or ovetly complicated

e Need an exploratory tool to examine new approaches

® Problem is similar to one that has already been successfully solved by using 2 GA
e Want to hybridize with an existing so'lution

e Benefits of the GA technology meet key problem requirements

4.8 Conclusion

Genetic Algorithms are easy to apply to a wide range of problems, from optimization
problems like the traveling salesperson problem, to inductive concept learning, scheduling,
and layout problems. The results can be very good on some problems, and rather poor on
others. Genetic algorithms are rich - rich in application across a large and growing number
of disciplines. If only mutation is used, the algorithm is very slow. Crossover makes the
algorithm significantly faster. GA is a kind of hill-climbing search; more specifically it is
very similar to a tandomized beam search. /s with all hill-climbing algorithms, there is a
problem of local maxima. Local maxima in a genetic problem are those individuals that get
stuck with a pretty good, but not optimal, fitness measure. Any small mutation gives worse
fitness. Fortunately, crossover can help them get out of a local maximum. Also, mutation is a
random process, so it is possible that we may have a sudden large mutation to get these
individuals out of this situation. (In fact, these individuals never get out. It's their offspring
that get out of local maxima.) One significant difference between GAs and hill-climbing is
that, it is generally a good idea in GAs to fill the local maxima up with individuals. Overall,

GAs has fewer problems with local maxima than back-propagation neural networks.

48

Cl apter 5
Non Linear ODE

5.1 Differential Equation:

A differential equation is an equation that involves the derivatives of a function as well as the
function itself. If partial derivatives are involved, the equation is called a partial differential
equation; if only ordinary derivatives are present, the equation is called an ordinary
differential equation. Differential equations play an extremely important and useful role in
applied math, engineering, and physics, and much mathematical and numerical machinery

has been developed for the s olution of differential equations.

A differential equation is an equation relating some function f to one or more of its

derivatives. An examples is

—:x_zzf(x)+2x%f(x5+f2(x)=sinx‘ 5.1

This particular equation involves a function f together with its first and second denivatives.
Any given differential equation may or may not involve f or any particular derivative of f .

But, for an equation to be 2 differential equation, at least some derivative of f must appear.

A few additional examples of differential equations are

—ey 4, 94)y =0
(x)dxzy 2xdxy+p(p+)y—

5.2
2
ngx—2y+x%y+(x2 -p)y=0
5.3
d—3y+(iy)2 =y’ +sinx
dc’ " \dx 5.4

Here equation 1 is called Legendre’s equation, equation2 is Bessel’s equation and 3 is third

order non linear differential equation.

5.2 The Nature of Solutions

50

An ordinary differential equation of order n is an equation involving an unknown function

f together with its derivatives

d d d’
dxf’-zx?f, ’dxnf 5'5

In a formal manner the above equation is written as following.

d . d* . d& d"
F(x,f,‘—ix—f,*d—x?f,-d—x?f, " fj=0

5.6

The solution of this equation will be a function f in term of x.

5.3 Separable Equation

A general class of equations with the property that

i) We can immediately recognize members of this class of equations

11) We have a simple and direct method for solving such equations
This is the class of separable equation..

A first order ordinary differential equation is separable if it is possible; by elementary algebra
manipulation to arrange the equation so hat all the dependant variables are on one side and

independent variables are on the other side.

5.4 First Order Linear Differential Equation

This is another class of differential equation that is recognizable easily, an equation is said to

be first order diffetential equation if it is in the form of

%+a(x)y<r)=b<x) y

Because it contain the first derivative that’s why it is called as first order differential equation.
The linear aspect depends upon the fact that the left hand side involves a differential

operator that acts linearly on the space of differential functions.

51

5.4.1 Examples

Consider the differential equation
y+2ay=x | 5.8

After the solution we got the following exact solution

| 2
y=—+Ce™
2 5.9
Similatly for another simple first order differential equation
X’y +xy=x° 5.10
Has the solution as
x> C
y=—_+-
3 x 5.11

5.5 Second Order Linear Differential Equation

Second order linear differential equation is frequently used in physics and electronics for
signal processing, for instance acceleration given by second derivative and force is mass time

acceleration. A function that involves the second derivative in the equation is called second

order linear differential equation.
y'=5y"+9y=0 5.12

Is a second order linear while

sin(y")~2y"+2y=0 5.13
and

y.y+5y+2y=0 5.14
are not.

52

5.5.1 Examples
The differential equation

Has the following exact solution

A (3+5)x/2 (-3-V5)x/2
y = Ae + Be 516

We have number of practical applications of first order and second order linear ODEs like
Bessel ,Legendre equation and Schrodinger equations which has complex solutions although

the equations are linear.

5.6 Non Linear Differential Equation:

Non linear ordinary differential equations and non linear partial differential equations have
many applications in mechanics, circuit theoty, computational analysis, reaction kinetics,
mathematical biology, economics and many other areas. In fact, in applications the most of
the systems are non linear. I am here to introduce only the simple non linear differential
equation and non linear coupled differential equation; however for detail studies of subject
matter reader is referred to the reference books, nonlinear partial differential equations 1990
Ams Chen Dibenedetto.djvu and introduction to numerical methods in differential

equations (Springer, 2007.pdf).

5.6.1 Examples

Consider the following Newton’s second law of motion for a particle of mass m moving in

one dimension,

mx = F(x,) 5.17
Where F is a force depending upon the position and the velocity.

Convert the above equation in linear first order system

x=y 5.18

53

.1
y=—F(xy)
m 5.19
Because the above system is autonomous initial value problem (IVP) consists of the solving

the system subject to the initial condition.

x(t,)=x,
() =1y,

Thus equilibrium solutions are found as solutions of the algebraic, simultaneous system of

equations
S(x,y)=0,g(x,»)=0 5.20

If an equilibrium point in the phase plane has the property that there is small neighborhood
about the point where there are no other equlibira, then we say the equilibrium point is

isolated.

Non linear dynamics is most common in nature and almost 80% problems of the world are

non linear in nature. These non linear systems are very complex than linear problems.

Non linear differential equations are one of the hot issues in signal processing piratical
examples, like Weissinger’s non linear equations is used in mearning the turning effects in
the wings of aeroplane. The solutions of the non linear differential equation are very difficult
with respect to calculation, so researchers have made the numerical methods like Euler
method, modified Euler method, Simpson method and Runge Kutta method. All these
methods have its own strengths and weaknesses whose detail can be found in standard

numetical computing reference books.

These numerical methods are designed for the non linear system in which non linear systems
are rarely be resolved analytically by finding solution formulas. So along with qualitative

methods numerical method come to the front.

54

I have produced a modern numerical technique for the continuous time solution for famous

non linear differential equations such thit,

1) Bernoulli
2) Weissinger’s
3) Van der Pol

* Detail procedure for the solution of above differential equation is provided in next session.

55

& § IH ’
iy]
o 4
i 4 %
: H b

Proposed Numerical
Method for Solution

of Non Linear ODE

56

6.1 Bernoulli Equation:

The network is called as DE-feed forward neural network. The first two layers have a bias;
the last four layers have no bias. The biases in first two layers are b, . The activation functions
for the first two layers are log sigmoid and the first derivative of the log sigmoid function.
While linear function is used in the last four layers as the activation function. The numbers
of neuron in the first two layets is m and the number of neuron in he four three layers is 1.
The input t is connected two first two layers. The connection weight of the input to the first

layer to the second layer is equal to w;. The fisst layer is connected to the third layer with the
connection weights @, and the second layer is connected to the fourth layer with the

connection weights w,@; . Third layer is connected to the fifth layer with the square factor as

the connection wéight. Third, fourth and fifth layers is connected to the six layer with a

constant connection weight and the value of this constant is 1.

The three networks have to train simultaneously as a consequence of the inter-relationship.
It is a specific point of intention how to adjust the value of the weights of the DE-feed
forward neural network. Although we can use the well known gradient decent method but as
the weights of the DE-feed forward neural netwotk are highly correlated, which feature is
not easily incorporated into these gradient decent methods. So in order to find the values
simultaneously we formed a highly powerful evolutionary algorithm called as hybrd

intelligent algorithm to compute the connect.on weights.

d
= +y(0)-y'@)=0
t 6.1

6.2 Weissinger’s Equation:

(DY _ e DY s @ 2 -
ty (t)(dt) y(t)(dt) +t(t" +1) & t'y@)=0 s

With following known conditions

57

6.3

y(4) = \/? 6.4

Weissinger’s equation has the following exact solution.

y= 2l

2 6.5
I form another DE feed forward network for a well known Weissinget’s equation whose numerical
solution is not existed but has a complex mathematical analytical solution. In the network
cumulatively there are nine layers. In which layer one and layer2 have a bias; the last seven layers

have no bias. The biases in first two layers areb, . The activation functions for the first two layers are

log sigmoid and the first derivative of the log sigmoid-function. While linear function is used in the
last seven layers as the activation function. The numbers of neuron in the first two layers is m and

the number of neuron in the last seven layers is 1. The input t is connected two first two layers. The

connection weight of the input to the first layer to the second layer is equal to w;. The first layer is
connected to the third layer with the connection .weights &, and the second layer is connected to the

fourth layer with the connection weights w,r; Third layer and fourth layer connected to the fifth

layer with the square and cube of the previous values simultaneously. Layer three and layer four is
connected to the layer six by the cube and square values of the previous connection link
simultaneously. Layer five, six, seven and eight are connected to the layer nine with a constant
connection weight and the value of this constant is 1,-1,1 and -1 réspectively. The three networks
have to train simultaneously as a consequence of the inter-relationship. It is a specific point of
intention how to adjust the value of the weights of the DE-feed forward neural network. Although
we can use the well known gradient decent method but as the weights of the DE-feed forward
neural network are highly correlated, which feature is not easily incorporated into these gradient
decent methods. Weight sharing technique is also a good option for the parameters setting but due
to the highly correlation in the adaptive parameters and the architecture so genetic algorithms are
used for the optimization of the weights, in order to not struck in local minima I have used the

pattern search so the exact minima is obtained from the whole solution set space.

58

Sq
t w o
——— z F Cube
Cube
F
b
aw "
Sq

TV m

Cube fé\

Sq

Figure 6.4 Weissinger’s Neural Network Architecture

6.3 Van Der Pol Equation

2

d’y 20 DY
——u(l-y*@)—+y(@)=0
e ul-y ())dt ()

6.6

Suppose u =1

Here we take the non stiff problem in order to reduce the complexity because in a stiff

problem the behavior is abnormal with respect to time. In the van der pol equation we take

the constant # as 1. The method I adopt to solve this is vary effective as compared to the
existed analytical mathematical method and MATLAB method to solve it. Because DE-feed
forward neural network can handle both of the stiff and non stiff problem easily without

giving the large number of constraints.

59

=]

1€

*
b acw

F'

o *w?

Fl! ‘

Figure 6.4 Van der Pol architecture

DE feed forward network for Van Der Pol equation consist of eight layers. In which layer

one, layer two and layer three have a bias; the last five layers have no bias. The biases in first
three layers ared,. The activation functions for the first three layers are log sigmoid, first
derivative of the log sigmoid function and second derivative of log sigmoid function. While

linear function is used in the remaining layers as the activation function. The numbers of
neuron in the first three layers is m and the number of neuron in the last five layers is 1. The

input t is connected to the first three layers. The connection weight of the input to the first

layer to the third layer is equal tow,. The first layer is connected to the fourth layer with the

connection weights @, ; the second layer is connected to the fifth layer with the connection

weights &, w, and third layer is connected to the layer six with the connection weighta,w;” .

Layer four |l and five connected to the layer sesven. Layer four, five, six, seven are connected
to the layer eight with a constant connection weight and the values of the constants are 1,-1,

1 and 1 respectively.

6.4 Mapping for DENN

60

DENN has a approximation mapping that is the linear combination of functions here, I take

the log sigmoid function as the activation function and its first and second derivative

according to the non linear problem. This is the general mapping for the function, its first

derivative and second derivative respectively. Here ¢(¢) is the log sigmoid function, a,,w;

are the weights on the communications links which are trained by the genetic algorithm

incorporated with the pattern search called as hybrid intelligent algorithm. The values of

these variable are vary from [-5 to 5] and are real in the finite whole domain. While b, is the

values of the bias which also have the range as the range of alphas and weights. In feed

forward DE neural network I have taken some fixed biases as 1 or -1 as well depending

upon the architecture of the noon linear differential equation. The number of neurons is m

with hidden layers.
1
X)=——"—
#x) 1+exp(—x)
- %t —
s 0.
Y] o 05

Figure 6.4 Log sigmoid function

f(x)= ia,yﬁ(w,.x+ b))

SUE)=3am L gonxrh)

6.7

6.8

6.9

61

d? =z, d? .
Sz f®= AT S Pwx+h) E 6.10
i=0

There x is the running time taken in a finite real domain x € {0.1,0.2,0.3,............... 4.0}.

Our genetic algorithm conducts a randomized, parallel, hill-climbing search for hypothesis
that optimizes our pre defined fitness function (fit_fun).

GA (Fitness, Fitness_threshold, p, r, m)

Where

Fitness: A function that assigns an evaluation score, given a hypothesis.
Fitness_threshold: A threshold specifying the terminate criteria that is 0.0001.
p: The number of the hypothesis inclined in\thc population.

t: The fraction of the population to be replaced by he crossover at each step.

m: The mutation tate.

@ [Initialize population: P «—— generate ‘p’ hypotheses at random
® Evaluate: For each h in p, compute Fitness(h)

® While(max Fitness(h)) < Fitness_threshold do
Create a new generation, Ps:

1. Select: Probabilistically select (1-£)p membets of P to add to Ps. The probability Pr(hi)of
selecting hypothesis hi from P is given by

Fitness(h;)
Zj;l Fitness(h;)

Pr(h,) =
. 6.11

62

2. Crossover: Probabilistically select . pairs of hypothesis from P, according to Pr(hi)

r-p
2
given above. For each pair (hl, h2) , produce two offspring by applying the crossover

operator. Add all offspring to Ps.

3. Mutation: Choose m percent of members of Ps with uniform probability.

4. Update: P «—Ps.

5. Evaluate: For each h in P, compute Fitness ()

Return the hypothesis from P that has the highest fitness.

63

64

Simulation and Results

Bernoulli

Main_simple_bernulee

% Main function provides the graphical comparison between exact analytical solution and solution

generated from DD-Neural Network incorporating the function fit_fun_sb and output function
% Input is randomly selected vector of length 15 between -5 to 5
% W1: the input vector of length fifteen randomly selected between -5 to 5.

% a: Initial population is taken 160 and is divided into eight sub populations each of length 20

%Program runs for 400 generation ot MSE <10~ which comes earlier

Wi1=rand(1,15);

a=[20,20,20,20,20,20,20,20];

options = gaoptimset('Fitnesinnﬂt',0.000001,'Génerations',400,'PopulationSize',a);

[W1, fval]=ga(@fit_fun_sb,15,0ptions);
x=0:-0.1:-3.9;

aa=output(W1);

plot(x,aa,'0");

hold;

syms z;

y=1/(1-exp(2)/2);

ezplot(y,[-4,0]);

65

fit_fun_ bernoulli

% This function defines the fit function which has to be satisfied for the correct approximation of

the Bernoulli equation by the proposed method.
% e1: Defines the approximation of functional equation
%e2: Defines the initial condition for the Bernoulli equation

function e=fit_fun_sb(W)

t=-rand()*4;
[output,detivative,ddetivative,in_value_zero,der_value_zero]=eq_parametersloop(t,W);
e1=(output-(output”2)+derivative)"2;

t=0;

[output,detivative,dderivative,in_value_zero,der_value_zero] =eq_parametersloop(t,W);
e2=(in_value_zero-2)"2;

e=el+e2;

66

Eq_parameter_bernullee

% equation parameter function defines the derivative and double denivative of the log sigmoid

function with the initial conditions/ boundary value condition of the equation
%w: Defines the weights on the connection links between the neurons
%Alpha: these are the real constant in the neurons

%Beta: Defines the real values of the bias

function [output,derivative,dderivative,in_value_zero,der_value_zero]=eq_parametersloop(t,W)
% W=rand(1,15);
[m,n]=size(W);
w=W(1:(n/3));
Alpha=W((n/3)+1:(2*n/3));
beta=W((2*n/3)+1:n);
Mul=Alpha. *w;
Mul2=Alpha *w."2;
x=w*t+beta;
for k=1 n/3
log s(k) =1/(1+exp(-x(K)));
dlog s(k) =1/(2+exp(x(k))+exp(x(K)));
ddlog_s(k) =(exp(x(k))-exp(x(K)))/ (2+exp(x(k))+exp(-x(k)))"2;
end
output=sum(Alpha.*log_s);
derivative=sum(Mul.*dlog_s);
dderivative=sum(Mul2.*ddlog_s);
in_value_zero=output;

der_value_zero=derivative;

67

Output_bernullee

function our_output=output(W) .
[m,n]=size(W);
forj=1:m
1=0;
for t=0:-0.1:-3.9
w=W(,1:(n/3));
Alpha=W(j,(n/3)+1:(2*n/3));
beta=W(j,(2*n/3)+1:n);
x=w*t+beta;
for k=1:n/3
log s() =1/(I+exp(x(9));

end

outputl(j,i+1)=sum(Alpha.*log_s);
i=i+1;
end
end

our_output=outputl;

68

Analytical & DE NN Solution for Bernulle ODE
3.5) T T T T T T
Exact

% DE NN

y(t)

4
t
Figure Al: Analytical & DENN solution for Bernoulli equation
Chromosomes:
35 — T J T T v T T T T u T
| R Weights |
3} b -

Best ndividuals

I 1 1] 1] E |

1 ' t 1 L _ 1 s 1 1
’ : ¢ 43 4 5. B 7 8 9 10 11 12 13 14 15
Mo of Individuals

Figure A2: Beast individuals in Bernoulli equation

69

MSE Result

MSE =1.23¢°°
Generations:
400

Fitness of Each individual

1400 — . . — : — .
1200 r
41000 L
soot
500 |
400 -

200}

Figure A3: Fitness behavior after 100 generations

Fitness. of Each Individual

450. - — . T : v —
400 “
350
300+
2501
200,y
150+
100}

-

50

|

+

i

Figure A4: Fitness behavior after 200 generation

120 140; B0

70

Fitness of Each Individual®

300 B T T- T: T T T
250 4
200+ -

150

1
-
]

10

L a_J l‘l. Al con. %&)

Figure A5: Fitness behavior after 300 generations

Fithess of Each individual

140 . - . . : . :
120} - b
100} 4
-8k .
sl |y . -

Figure AG: Fitness behavior after 400 generations

60 BO “100 120 140 160

80 00 120 140, 160"

71

Van Der Pol

% Main function provides the graphical comparison between existed numerical method and solution

generated from DD-Neural Network incorporating the fitness function and output function
% Input is randomly selected vector of length 15 between -5 to 5
% W1: the input vector of length fifteen randomly selected between -5 to 5 real numbers.

% a: Initial population is taken 160 and is divided ir:to eight sub populations each of length 20
pop g pop

%Program runs for 400 generation or MSE < 10~ which comes earlier

Main_Van_dar_pol

Wi1=rand(1,33);

a=[20,20,20,20,20,20,20,20];

options = gaoptimset(FitnessLimit',0.000001,'Generations', 2000, PopulationSize',a);
[W1, fval]=ga(@fit_fun_vdp,33,0ptions);

x=0:0.1:3.9;

yl1=output(W1);
plot(y1,”*''color','black’);

72

% Fitness function contain the values of the error which have the initial conditions

Fit_fun_van_dar_Pol

function e=fit_fun_vdp(W)

t=rand()*20;
[output,derivative,dderivative,in_value_zero,der_value_zero]=eq_parametersloop(t,W);
el=(ddenvative-(1-output”™2)*denvative+output)"2;

t=0,
[output,derivative,dderivative,in_value_zero,der_value_zero]=eq_parametersloop(t,W);
e2=(in_value_zero-2)"2;

e3=(der_value_zero)"2;

e=el+e2+e3;

73

% Alpha: Contains the real vanables from -5 to 5
%beta: Are the bias to the DE-Neural network

% Equation Parameter computes the Logsigmoid, first derivative of logsigmoid and second

derivative of logsigmoid respectively

eq_parameter_van_dar_pol

function [output,detivative,dderivative,in_value_zero,der_value_zero]=eq_parametersloop(t,\)
[m,n]=size(W);
w=W(1:(n/3));
Alpha=W((n/3)+1:(2*n/3));
beta=W((2*n/3)+1:n);
Mul=Alpha.*w;
Mul2=Alpha *w."2;
x=w*t+beta;
for k=1:n/3
log sk) =1/(1+exp(-x(K);
dlog s(k) =1/(2+exp(x(k))*+exp(x(K)));
ddlog_s(k) =(exp(-x(k))-exp(x(k)))/ (2 +exp(x(k))+exp(-x(K)))"2;
end
output=sum(Alpha.*log_s);
derivative=sum(Mul.*dlog_s);
dderivative=sum(Mul2.*ddlog_s);
in_value_zero=output;

der_value_zero=derivative;

74

Output_van_dar_pol

function our_output=output(W)
[m,n]=size(W);
forj=1:m
1=0;
for t=0:0.1:19.5
w=W(,1:(n/3));
Alpha=W(j,(n/3)+1:(2*n/3));
beta=W(j,(2*n/3)+1:n);
x=w*t+beta;
for k=1:n/3
log_s()) =1/(1+exp(x(k);
end
outputl (j,i+1)=sum(Alpha.*log_s);
i=it1;
end
end

our_output=outputl;

75

Analytical & DE NN Solution for Van Der-Pol ODE

4 T n T T T T T T— T —
Exact .
35H + DENN
3H -

1 1 I 1 1] i,
200 40 B0 BD 100 120 140- 160 180 200
t

Figure A7:: Analytical & DENN solution for Van der Pol ODE

Graphs of Adaptive paramstafs.for VAN DER POL
10 e : : s

Best Individuals’

No of Individulas

Figure A8: Beast individuals in Van Der Pol equation non Stiff problem

-4 : 1) 1 - .
: 5 10 15 20 25

76

MSE Result:

MSE =1.49¢7°
Generations:
400
Fitness of Each Individual
2500 L] 1 L LA] L) L 1
2000 -
1500 ,
1000 .
500 W
ol B s o %—J--L ', IRy ! é P
0 20 40 B0 -80 1000 120 140. 160 180 200

Figure A9: Fitness behavior after 50 generations

77

Fitnegs of Each Individual

1 800 T T T T L

1

1600

1400
1200}

1000

T

800 |
600 |
400}

200:

ol] faia _, L nll- I

0. 20: 40 60 80, 100D

Figure A10: Fitness behavior after 100 generations

i 7]
120

140

Fitness-af Each Individual-

1800 180 200

350 — : r : T
300}
250
200 |
450 -

100 |

Figure A11: Fitness behavior after]150 generations

g

78

Fitnass of Each Individual -
250 N r T T L) LI T -1 T L T

200 2

150 + ~

1
1

100

L

Figure A12: Fitness behavior after 200 generations

Fitness of Each Individual-

2DD L T N T T T l L T T 3

1801 J

160} -

140 o B

120} i
|

100+ .

Figure A13: Fitness behavior after 300 generations

79

Fitness of Each Individual:

120 - T T T T T T —T
100} .
80 ~ -~
60
a0t
L20F
3 . H i
Iy 5ed m AR ‘o % fad ..Fg
0 1000 426 160. 80 .200-
Figure A14: Fitness behavior after 350 generations
Fitness of Each Individual
10; T — T T B T T !
gt 7
i J

Figure A15: Fitness behavior after 400 gener

80

Weissinger
Wessinger_main

cle;

close all;

clear all;

a=-4; b=4;

W1=a+(b-a).*rand(1,15);

subpop=[20,20,20,20,20,20,20,20];

options = gaoptimset(FitnessLimit',0.000001,'Generations',800, PopulationSize',subpop)
(W1, fval]=ga(@fit_fun_w1,15,0ptions);

x=0:0.1:3.9;

plot(x,sqrt(x."2+.5),'color','black’);

xlabel('t));ylabel(y(t)");

hold;

y1=output(W1);

title(Analytical & DE NN Solution for weissingers ODE))
plot(x,y1,*,'color’, black’); ’
legend(Exact',)DE NN'2);

b

81

Wessinger_fit_function

function e=fit_fun_w1(W)
1=0;

for t=0:0.2:4.0
[output,derivative] =eq_parametersw1(t,W);

error(i+1)=(t*(output*2)*derivative™3-(output3)*derivative“2+t*(t*2+1)*derivative-
(t*2)*output)™2; |
i=i+1;
end
el= sum(error)/ij;
t=0;
[in_value]=eq_parametersw2(t,W);
e2=(in_value-sqrt(.5))"2;
t=4;
[in_value]=eq_parametersw2(t,W);
e3=(in_value-sqrt(16.5))"2;
e=(el+e2+e3)/3;

Wessinger_eq_parameter

function [output,derivative] =eq_parametersw1(t,%)
[=size(W);
w=W(1:(n/3));
Alpha=W((n/3)+1:(2*n/3));
beta=W((2*n/3)+1:n);
Mul=Alpha.*w;
Mul2=Alpha *w."2;
x=w*t+tbeta;
fork=1:n/3

log s(k) =1/(1+exp(-x(k));

dlog s(k) =1/Q2+exp(x(k)+exp(-x(K)));
end
output=sum(Alpha.*log_s);
detivative=sum(Mul.*dlog_s);

83

Wessinger_output

function our_output=output(W)
[m,n]=size(W);
forj=1:m
1=0;
for t=0:0.i:3.9
w=W(,1:(n/3));
Alpha=W(j,(n/3)+1:(2*n/3));
beta=W(j,(2*n/3)+1:n);
x=w*t+beta;
for k=1:n/3
log s() =1/(1+exp(-x());
end
outputl(j,i+1)=sum(Alpha.*log_s);
i=i+1;
end
end

our_output=output1;

84

Analytical & DE NN Solution for weissirigers ODE

\

4 B L] T T T v, L] T . N
Exact *
* :
35 DE NN ..—
4
Figure A16: Analytical & DENN solution for Weissinger’s ODE
Weissinger’s Chromosome Table
0.65 | 0.61 | 0.41 |-031 - 0.63 | 3.61 | 1.301 { - -0.62 |- -2.21 0.2 0.801
0.71 0.71 0.42
1.9
7
= 6
2 4
a.
2

-3

—_—

iy

3

4 5/

6: 7 B> 9 10 11 1213 14"
Noof Individuals

Figute A17: Beast individuals in Weissinger’s equation

2

85

MSE Result:

MSE =17.72¢”°
Generations:
400
o X 10t [_ Fit:ness of Es;u?h Indivic:ual." ‘ .
= i
1.5 - -
b 2
0.5 =1
P A LIS | PR W . aoy B E
20 40 B0 80 100 120 140 160

Figure A18: Fitness behavior after 100 generations

Fitness-of.Each Individual
3500 T T T T T T RE

3000

¥

2500 -

2000

1500 F -

1
¢

1000

500

o 20. 40] 60 80 100 120 180"

Figure A19: Fitness behavior after 200 generations

86

7 Fitness of Each Individual-
6001 =T T T T T T L

1

500

400

300

200

100

Figure A20: Fitness behavior after 300 generations

Fitness of Each Individial

BUU T i T. . T i L
500} -
400 -

1
) I

300

200

100:

o 90 40 "~ B0 100 120 140

Figure A21: Fitness behavior after 400 generation

: ST =) _y 100 -

87

NN
FFDENN
MSE

LMS

ANN

GA

SOM

ML

DE

RK

PAC Learning
ODE
Logsig
BVP

Al

GA Fit_fun

Eq_parameter

Nomenclature

Neural Network

Feed Forward Differential Equation Neural Network

Mean Square Error

Least Mean Square

Artificial Neural Network

Initial Value Problem

Genetic Algon'thmv

Self Organization Maps
Machine Learning

Differential Equation

Range Kutta

Probably Approximating Correct Learning
Ordinary differential equation
Log sigmoid |
Boundary value problem

Artificial intelligence

Genetic algorithm fitness function

Equation parameter

88

Glossary
Activation:
A node’s level of activity; the result of applying the activation function to the net input to the node.
Activation Function:

A function that transforms the net input to a neuron into its activation, it is also called as transfer

function.

Architecture:

Arrangement of the nodes and the pattern in the connection links in a neural network.
Axon:

Long fiber over, which a biological neuron transmits its output signal to other neuron.
Bias:

Bias is a weight on the connection between node j and a mythical unit.

Binary Sigmoid:

It is Continuous differentiable S-shaped activation function whose range is between 0 and 1.
Bipolar Sigmoid:

Its range is from -1 to 1 and is also continuous differentiable S-shaped activation function.
Competitive Learning:

It’s an unsupervised learning in which a competitive neural network adjusts its weights after the

winning node has been chosen
Competitive Neural Network:
A neural network in which, a group of neurons compete for right to become active.

Convergence:

89

A system is said to be converged if the neuron don’t update in next few iterations.
Delta Rule:

Learning rule based on minimization of squated error for each training pattem. Used for single layer

perceptron. It is also called LMS and Widrow-Hoff learning.
Epoch:

It is one presentation of each training pattemn.

Euclidean Distance:

This is the distance defined between two vectors x1,x2,x3,......xn and yl, y2,y3,.....ynas

following
D =Y (xi-yi)*.
i=1

Excitatoty Connection:

These are connection link between two neurons with a positive weight; its serves to increase the

response of the unit that receives the signal in contrast, inhibitory connection.
Exemplar:

A vector that represents the pattemns placed on a cluster; this may be formed by the neural net

during training as in SOM or specified in advance as in the hamming nets.
Extended Delta Rule:

Learning rule based on minimizing the error of the singie layered net in which the output inputs may

have any differentiable function for their activation function.
Fast Learning:

This is the learning mode for ART in which it is assumed that all weights updates reach equilibrium

on each learning trial.

Fault Tolerance:

90

A neural net is fault tolerant if removing some nodes: from the net makes little difference in the

computed output , also neural nets are in journal tolerant of noise in the input patterns.

Feed Forward:

A neural net in which, the signals pass from the input \units to the output units (possible through
intermediate layers of hidden units) without any connection back to previous layers. In contrast

recurrent nets have feed back connections.

Fixed Weight Nets:

Neural nets in which he weight don’t change for example Hopfield nets.
Hidden Units:

Units that are neither input neither unit nor output units.

Inhibitory Connections: |

Connection links between two neuron such that a signal sent over this link will reduce the activation
of the neuron that receive the signal. This may result from the connection having the negative
weight or from the signal received being used to reduce the activation of neuron by scaling the net

input the neuron receive from other neurons.
Input Unit:

The units that; receive signals from out side the neursl net. Typically they transmit the input signal to
all neurons to which they arte connection with performing any change. They have identity function

as the activation function.
Kohonen Learning Rule: ‘

Weight update rule in which the new weight is convex combination of the old weight and the
current input pattern, the coeffident that multiplies the input pattem the learning rate is gradually

reduced during learning process.
Kohonen Self Organizing Maps:

A clustering neural net with topological structure among cluster units .

91

Layer:

Pattern of weighted connection between two slabs of neurons; in neural net literature the term layer

is also used frequently for a group of neuron that function in the same way, a slab.
Learning Rate:

A parameter that controls the amount by which; weights are changed during training. In some nets

the learning rate may be constant.

92

10.

11.

12.
13.

14.
15.

&

References

A. Barto, A. Sutton, &R. Anderson,“Neuron like adaptive elements that can solve difficult
lerning control problems,” IEEE transaction on systems, Man, and Cybernetics., 13(5), 834-846.
1983

R. Crites, & A. Barto “Improving elevator performance using reinforcement learning,” In
D.S. Touretzky, M.C.Hasselmo(eds), advances in neural information processing systems, 8. 1996

LJ. Lin., “Self improving reactive agents based on reinforcement learning, planning and
teaching,” Machine I earning, 8,293-321, 1992.

W.F Allman, “Apprentices of wonder: Inside the neural network revolution,” New York:
Bantam Books, 1989.

W.E Boyce, and R.C. DiPrima, “Elementary differential equations and boundary value
problems,” Fifth edition, john Willey ¢>sons, Inc,New York, 1992.

H.D. Block,“The Perceptron: A Modal for Brain Functionaing,l,”.“Review of
ModernPhysics”, 34:123-135, 1962. Reprinted in Andersond>Rosenfild,pp.138-150,1988.

J- Von Neumann, “The Computer and the Brain,” New Heaven:Yale University Press. Pages 66-
82, 1958, are reprinted in_Anderson &Rosenfreld, pp.83-89, 1988.

B. Ph van Milligen, V.Tribaldos, J.A.Jimenez, “Neural network differential equation and
plasma equilibrium solver,” Physical Review Letters 75(1995) 3594-3597.

H. Kesten, “Accelerated Stochastic Approximation,” Annals of mathematical statistics, 29:41-59,
1958.

T. Kohonen, “Self Organization and associative memory,” (3" ed.), Berlin:Springer-Verlag,
1989a.

S. Lee “Supervised learning with Gaussian potentials,” In B.Kosko (ed.), neural networks for signal
processing. Englewood Cliffs, NJ:prentice-Hall, pp.189-228, 1992.

R.J. MacGregor, “Neural network and brain modeling,” San Diego Academic press, 1987.

R.P. Lippmann, “An Introduction to computing with neural nets,” IEEE ASSP magazine,
4:4-22,1987.

Tom M.Mitchell, “Machine Learning,” web/ McGraw-Hill.

S. Haykin, Neural Networks, “A compr;:hensive foundation,” Prentice Hall, New York, 1999
2"Ed.

93

16.

17.

M. Quito, Jr.,C. Monterola, C. Saloma, “ Solving N-Body problem with neural network
Physical,” Review 86 pp.4741-4744, 2001.

H.D. Block.H.D, “The Perceptron: A Modal for Brain Functionaing,1.” Review of
ModernPhysics, 34:123-135, 1962. Reprinted in Andersond>Rosenfild, pp.138-150, 1988.

18.].Von Neumann, “The Computer and the Brain,” New Heasen:Yale University Press. Pages 66-

19.

20.

21.

22

23.

24,

25.

26.

217.

28.

29.

30.

31.

82, 1958, are reprinted in Anderson &Rosenfield ,pp.83-89, 1988.

Hetch-Nielsen R. Kolmogorov’s, “Mapping neural netwotrk existence theorem,” 7“ IEEE
inter. Conf. on nenral networks, San Diego CA, 3(1987)11.

K.I. Funahashi, “On the approximate realization of continnous mappings by neural
networks,” Nexural Networks 2 (1989) 183.

R. Hetch-Nielsen, “Theory of backpropagation neural network,” proc. Int. Joint Conf. on nenral
networks, Washington D.C New York, IEEE prwi, “pp- 1.593-1.605, 1989.

K. Hornik, M. Stinchcombr and H. White, “Universal approximation of an unknown
mapping and its derivatives using rnultilz;.yer teed forward networks,” Neural Networks 3, 551-
560, 1990.

C.M. Bishop, “Neural networks for pattern recognition,” Clarendon Press, Oxford, 1995.

D. Ridder, “Shared weights neural networks in itmage analysis,” Master Thesis, Delft University
of Technology, Delft, 1996.

X.Yao, “Evolving artificial neural networks,” processing of IEEE 87(9), 1423-1447, 1999.

C.R. Houck, J.A Joines and M.G. Kay, “A genetic algorithm for function optimization,” A
matlab implementation, Technical Report NCSU-IE TR 95-09, North Carolina State University,
Raleigh NC,1995.

H. Pohlheim, “Documentation for genetic and Evolutionary algorithm toolbox for use
with matlab (GEATbX),” version 1.92, http:/ [www geatbx.com, 1999.

D. Whitley, “Applying genetic algorithms to neural network problems,” International neural
network soctety p. 230, 1988. |

Zbigniew Michalewicz, “Genetic algorithms + data structure= Evolution programs,” 2nd
edition, Springer-verlag, Berlin; New York, 1994.

W.E. Boyce and R.C. DiPrima, “Flementary differential equations and boundary value
problems,” Fifth edition, jobn Willey <rsons, Inc,New York, 1992.

C. Monterola, C. Saloma, “Characterizing the dynamics of constraints physical systems with

unsupervised neural network,” Physical Review E 57, 124TR-1250R, 1998.

94

32. C. Monterola, C. Saloma, “Solving the non linear Schrodinger equation with an unsupervised
neural network,” Optics Express 9, 72-84, 2001.

33. LRivals and L.Personnaz, “Mono—La);er polynomials and multi-layer Perceptrons for
nonlinear modeling,” journal of machine learning research 3, 1383-1398, 2003.

34. P. Koduru, HW. Hsu, S. Das, S. Welch, J.L. Roe, “Dynamic system prediction using
temporal artificial neural networks and multi-objective genetic algorithms,” Proceeding of the
LASTED International Conference on Computational Intelligence, pp. 214-219, 2005.

35. J. Gao, B. Liu, “Fuzzy multilevel programming with a hybrid intelligent algorithm,” computers
and mathematics with applications, 49(9-10), pp.1539-1548, 2005. Cited 12 times. Uncertainty Theory
Laboratory, Department of Mathematical Sciences, Tsinghua University, Beijing 100080, China

36. Adamiec-Wojcik,l.,Warnas, K.,Wojciech,S, “Braking torque optimization in time domain”
proceeding of the 2004 International Conference on Nuise and Vibration Engineering, ISMA, pp.1981-
1995,2004. |

37. H.C. Fayad, R.C. Peralta, “Multi—Objec:civc conjunctive use optimization,” Processing of 2004
World Water and Environmental resources Congress: Critical Transition in water and Environmental
resources Management,pp.1800-1809, 2004.

38. T. Kanamaru, M. sekin, “Detecting chaétic structures noisy pulse trains based on interspike

interval reconstruction,” Biological Cybernetics, 92 (5), pp. 333-338, 2005.

CEnN:RAL

LiByARY
ISLAMABAD,

95

