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1.1 Introduction 

Artificial neural networks (ANN) are among the newest signal-processing technologies in the 

electronics engineering. An Artificial Neural Network is an adaptive, most often nonlinear system 

that learns to perform a function (an input/output mapping) from data. The first artificial neuron 

was produced in 1943 by. the neurophysiologist Warren McCulloch and the logician Walter Pits. 

A neural network is a massivebparallel distribt/tedpmcessor made up ofsimplepmcessing units, which has a natural 

pmpe@for storing eqerimental knowledge and making it available for we. I t  resembles the brain in two respects 

1. The Knowledge is acquired by the network from its environment through a learning 

process. 

2. Interneuron connection strengths, known as synaptic weight, are used to store the acquired 

knowledge. 

The use of the neural networks offers the following useful properties and capabilities: 

1. Nonlinearity: An artificial neuron can be linear and non linear. A neural network made 

from the no linear neurons interconnection is itself non linear. Nonlinearity is a highly 

important property particularly if the undprrlymg physical mechanism responsible for 

generation of the input signals (speech signal, face recognition signal etc) are inheritally non 

linear. 

2. Input/ Output Mapping: Supervised learning is one of the most popular paradigm in 

learning that involves modification of the synaptic weights of neural network by applymg a 

set of labeled training samples, it consist of unique input signal and desired corresponding 

output signal. Supervised learning paradigm suggests a close analogy between the input 

output mapping performed by the neural network and nonparametric statistical interference. 

3. Adaptively: Neural network have a built-in capability to adopt their synaptic weights to 

change in the surrounding environment, if neural network is trained on a specific 

environment can be trained by itself with the minor changes. Their synaptic weights are 

modified by itself with the changes in the environment like it does in real time. This 

adaptability does not always robust; I mean it can go very opposite as well. 

4. Evidential Response: Neural networks particularly when implemented of pattern 

recognition systems can be designed to proviae information not only about which particular 



pattern to select, but also about confidence in the decision making. This latter information 

can reject the ambiguous patterns. 

Contextual Information: Knowledge is represented by the very structure and activation 

state of neural network. Every neuron in the network is potentially affected by the global 

activity of all other neurons in the network. Consequently, contextual information is dealt 

with naturally by a neural nemork. 

Fault Tolerance: Implementing a neural network on the hardware has the potential to be 

inherently fault tolerant or capable of robust computation, in the sense that its performance 

degrades gracefully under adverse operating conditions. In principle a neural network 

exhibits a graceful degradation in performance rather than catastrophic failure. 

From the various existed activation function; I use the linear activation function on the input 

and output layer of Differential Equation (DE) neural network, while log sigmoid activation 

hnction is used for mathematical linear mapping of non linear differential equation. The 

architecture is simple feed forward with the real numbers as the bias from the range -5 to 5, 

with some hidden layers. Details are their in rest of the chapters. Weights on the 

communication links are adjusted and upgraded by the genetic algorithms and pattern search 

which forms it as hybrid intelligent algorithm. 

Unsupervised learning is used to train the system is discussed in chapter 3. Learning has a 

primary significance in the neural networks which is supposed to be trained according to the 

environment. The performance can be improved by the learning of the neural net. A neural 

network is tmined due to the synaptic weights on the communication links and due to the 

bias, which keep on performing better by the learning on each iterative process about its 

environment that is the key point in an intelligent system. 

"Learning is a process b_r which the free parameters o f  a neural network are adopted thmugh a process of 
~imulation b_r the environment in which the network is embedded This &be ofthe learning is detmined b_y 

the manner in which the parameter changes hke  place. " 

Genetic algorithms are global search, an optimization technique model from the natural 

genetics, Exploring search space by incorporating a set of candidate solution in parallel. A 

genetic algorithm maintains a population of candidate solutions where each of the solution is 

usually coded as a binary string called a chromosome. A chromosome also referred as a 

genotype - encode a parameter set i.e. a candidate solution. For a set of variables being 



optimized, each encoded parameter in a chromosome is also called as gene. A decode 

parameter set is called phenotype. Our chromosome set contains the real values. A set of 

chromosome forms a population which is evaluated and ranked by a fitness evolution 

function. The evolution form from one generation to the next one evolves mainly three 

steps. 

9 Creation 

ii) Reproduction 

iii) Mutation & recombination 

Moreover the genetic algorithms alone are not so helpful for the searching for a global 

minimum; for this purpose I have incorp&ted the pattern search to form the hybrid 

intelligent algorithm whose convergence towards the answer is remarkable. 

1.2 Literature Survey 

Solutions of differential equations arise in a wide variety of enpeering applications in 

electromagnetic, signal processing, computational field dynamics, embedded systems, digital 

communication etc. These equations are typically solved using either analytical methods or 

numerical methods. Analytical solution method are however feasible only for simple 

geometries, which limit their applicability, in most practical problems with complex 

boundary conditions, numerical methods are required in order to obtain a reasonable 

solution. As the artificial neural ne'twork can approximate any continuous function more 

efficiently than any linear combination of fixed basic functions. However their learning 

structure is not yet classified due to the non linearity, abnormality and complexity. 

1 

1.3 Previous Work 

In nineteen sixties various scientists used unsuccessfully the feed forward neural network in 

the field of signal processing and computation. In 1971 people use successfully the feed 

forward neural network as an application in digital computers with the KBM methods. 

Previously people have applied the neural network on motion control methods for bipedal 

humanoid locomotion and their rectilinear path. Robot locomotion is a multi-objective 



problem in motion controls. To optimization of the parameters simultaneously cause 

explosion of search space and timings as well. The same techniques are used to measure the 

braking torques in the motion of the bodies; these applications involve solution of complex 

ordinary differential equations. Hydro system scheduling involves complex non linear 

equations that were solved using the artificial neural networks (ANN). 

1.4 Recent Research 

Artificial neural network have been recently shown that they can be successfully 

incorporated into solution methods for ordinary differential equations both for ordinary 

differential equation and partial differential equations. These solution methods rely on the 

fimction approximation capabilities of the feed forward neural network. A recent method 

for solving differential equation using feed forward neural network was applied to a non 

steady catalyst solid gas reactor. Due to ANN universal capabilities of approximation, it is 

possible to postulate them as a solution for a given DE problem that defines an 

unsupe~sed error. These problems are also solvable by traditional numerical methods 

which are slow and have more space complexity. Recently Riccati differential equation has 

been solved by using multilayer back propagation neural network. 

Unsupe~sed neural network is also used to solve non linear complex Schrodinger's 

equation in 2001. Lots of recent research has been done in this regard fiom which the 

versatility and scope of the thesis is dear as a reference, I have mentioned in the above 

passage. 

1.5 Problem statement 

Analyttcal methods to solve the non linear differential equation are very complex and tedious 

so analyttcal methods ark used to solve these equations but the time and space complexity is 

very high and slow as well. Previously researchers solve the non linear problems by 

ttansforming into the linear samples. The problem comes for the computation of parameters 

to be trained for particular task, different strategies are used previously like LMS, sparse tree 

etc. But no one has calculated these parameters by direct method as the optimal parameters 

are unique and can be directly calculated. A function approximate the differential equation 

automatically from the learning samples, but the learning methodology will be unsupervised 



in order to make our system versatile. Feed forward DENN (differential equation neural 

network) d produce the better results quantitatively with a MSE- lo-'. 

1.6 Objective of the project 

This research project aims at solving the non linear differential equation using neural 

network and hybrid intelligent algorithms. The objective is to process and analyze the 

complex non linear systems. The theme of the project is to design and develop new and 

advance algorithms and techniques to tackle various problems occur during the adjustment 

of the link weights, during the learning and their up gradation. The focus is to get the best 

chromosome set which approximate the smallest possible MSE or number of generations, 

which ever comes earlier. This project aims to the advancement in the field of signal 

processing in digital electronics. 

1.7 Scope and Plan of the Project 

Artificial neural network is one of the growing fields in digital electronics which can tackle 

the 80% of the non linear problems of the world, due to its versatility and compatibility of 

ANN using the heuristics and non sequential procedures intelligently. The system based on 

the research done in this thesis d play its major role in providing the help to 

mathematicians and scientists to calculate/approximate the solution of non linear complex 

differential equations like Bernoulli, Van der Pol, Weissinger's etc. 

The whole project is divided into four categories: 

Neural Network Architecture 

Our NN architecture is feed forward neural network 

Learning 

We perform the unsupervised learning 

Hybrid Intelligent Algorithm 

To avoid the clasping in the local minima and to search global minima we use genetic 

algorithm with pattern search 

Exact Solution 



To clarify over analytical method we find the complex exact solutions provided in 

the standard texts. 

1.8 Organization of Thesis 

Chapter 1 have a very brief introduction of the neural networks, leaming and intelligent 

algorithms, with a survey about the project is taken in this regard is also the part of this 

chapter. Chapter2 is related to the neural network architecture techniques and activations 

function in detail. Supervised and unsupervised leaming to train the network is in the 

chapter 3. Genetic algorithms and hybrid intelligent algorithms are one of the important 

segments in the learning of synaptic weights on the communication links of neural network 

is in chapter 4. Discussion of Non linear differential equations is the part of chapter 5. 

Proposed system is one of the important part of thesis in which the architecture and layers 

of the non linear differential equation have been discussed with the unsupervised learning 

rules. These non linear problems are solved and results are approximated with the neural 

network approach incorporated with genetic algorithms is discussed in chapter 6. Last 

chapter contain the results with the best cL-gmosomes and MSE obtained by proposed 

method run for 400 generations on a •’inite real domain of time. 





2.1 What is a Neural Network? 

An artificial neural network is a system based on the operation of biological neural networks, 

in other words, an emulation of biological neural system. The key elements of this paradigm 

are the novel structure of the information processing system. It is composed of a large 

number of highly interconnected processing elements (neurons) working in unison to solve 

specific problems. 
t 

Artificial neural networks (ANN) are among the newest signal-processing technologies in the 
d 

electronics enpeering. An artificial neural network is an adaptive, most often nonlinear 

system that learns to perform a function (an input/output mapping) from data. Adaptive 

means that the system parameters are changed during operation, normally called the training 

phase. After the training phase the Artificial Neural Network parameters are fixed and the 

system is deployed to sohe the problem at hand (the testing phase). The Artificial Neural 

Network is built with a systematic step-by-step procedure to optimize a performance 

criterion or to follow some implicit internal constraint, which is commonly referred to as the 

learning rule 

2.2 Historical Background: 

Neural network simulations appear to be a recent development. However, this field was 

established before the advent of computers, alrd has survived at least one major setback and 

several eras. Many important advances have been boosted by the use of inexpensive 
1 

computer emulations. Following an initial period of enthusiasm, the field survived a period 

of frustration and disrepute. During this period when funding and professional support was 

minimal, important advances were made by relatively few researchers. These pioneers were 

able to develop convincing technology which surpassed the limitations identified by Minsky 

and Papert. Minsky and Papert, published a book (in 1969) in which they summed up a 

general feeling of ftusmtion (against neural networks) among researchers, and was thus 

accepted by most without further analysis. Currently, the neural network field enjoys a 

resurgence of interest and a corresponding increase in funding. The &st artificial neuron was 

produced in 1943 by the neurophysiologist Warren McCulloch and the logician Walter Pits. 

But the technology available at that time did not allow them to do too much in this field. 



2.3 The Biological Model 

Artificial neural networks emerged after the introduction of simplified neurons by 

McCulloch and Pitts in 1943 (ILfcCulloch & Pitts, 1943). These neurons were presented as 
1 5 

models of biological neurons and as conceptual components for citcuits that could perform 

computational tasks. The basic model 6f the neuron is founded upon the functionality of a 

biological neuron. "Neurons are the basic signaling units of the nervous system" and "each 

neuron is a discrete cell whose several processes arise from its cell body". 

Figure 2.1 Biological model of neuron 

The neuron has four main regions to its structure. The cell body, or soma, has two offshoots 

from it, the dendrites, and the axon, which end in presynaptic terminals. The cell body is the 

heart of the cell, containing the nucleus and maintaining protein synthesis. A neuron may 

have many dendrites, which branch out in a treelike structure, and receive signals from other 

neurons. A neuron usually only has one axon which grows out from a part of the cell body 

called the axon hillock. The axon conducts electric signals generated at the axon hillock 

down its length. These electric signals are called action potentials. The other end of the axon 

may split into several branches, which end in a presynaptic terminal. Action potentials are 

the electric signals that neurons use to convey information to the brain. All these signals are 

14 



identical. Therefore, the brain determines what type of information is being received based 

on the path that the signal took. The brain analyzes the patterns of signals being sent and 

from that information it can interpret the tvpe of information being received. Myelin is the 

fatty tissue that surrounds and insulates the axon. Often short axons do not need this 

insulation. There are uninsulated parts of the axon. These areas are called Nodes of Ranvier. 

At these nodes, the signal traveling down the axon is regenerated. This ensures that the 

signal traveling down the axon travels fast and remains constant (i.e. very short propagation 

delay and no weakening of the signal). The synapse is the area of contact between tsvo 

neurons. The neurons do not actually physically touch. They are separated by the synaptic 

cleft, and electric signals are sent through chemical 13 interaction. The neuron sending the 

signal is called the presynaptic cell and the neuron receiving the signal is called the 

postsynaptic cell. The signals are generated by the membrane potential, which is based on 

the differences in concentration of sodium and potassium ions inside and outside the cell 

membrane. Neurons can be classified by their number of processes (or appendages), or by 

their function. If they are classified by the number of processes, they fall into three 

categories. Unipolar neurons have a single process (dendrites and axon are located on the 

same stem), and are most common in invertebrates. In bipolar neurons, the dendrite and 

axon are the neuron's two sepamte processes. bipolar neurons have a subclass called pseudo- 

bipolar neurons, which are used to send sensory information to the spinal cord. Finally, 

multipolar neurons are most common in mammals. Examples of these neurons are spinal 

motor neurons, pyramidal cells and Purkinje cells (in the cerebellum). If classified by 

function, neurons again fall into three separate categories. The first group is sensory, or 

afferent, neurons, which provide information for perception and motor coordination. The 

second group provides information (or instructions) to muscles and glands and is therefore 

called motor neurons. The last group, interneuronal, contains all other neurons and has hvo 

subclasses. One group called relay or projection interneurons have long axons and connect 

different parts of the brain. The other group called local interneurons are only used in local 

circuits. 

2.4 The Mathematical Model 



When creating a functional model of the biological neuron, there are three basic components of 

importance. First, the synapses of the neuron are modeled as weights. The strength of the 

connection between an input and a neuron is noted by the value of the weight. Negative weight 

values reflect inhibitory connections, while positive values designate excitatory connections 

[Haykin]. ?'he next two components model the actual activity witlin the neuron cell. An adder sums 

up all the inputs modified by their respectiye weights. This activiq is referred to as linear 

combination. Finally, an activation function controls the amplitude of the output of the neuron. An 

acceptable range of output is usually between 0 and 1, or -1 and 1. 

Mathematically, ths  process is described in the figure 

Figure2.2 I'vlathematical Model 

From this model the interval acti>lty of the neuron can be shown to be: 

The output of the 

2.1 

neuron yk would therefore be the outcome of some activation function 

on the value ofv, . 



2.5 Activation Functions 

There are a number of common activation functions in use with neural networks. This is not 

an exhaustive list. 

threshold 

weights 

activation 
functon 

net input 

Figure2.3 A simple neural network 

2.5.1 Step Function 

= Oi 
activation 

M'j 

A step function is a function like that used by the original Perceptron. The output is a certain 

h 

I 

' 9 3  
* 

value, A,, if the input sum is above a certain threshold and A, if the input sum is below a 

certain threshold. The values used by the Perceptron were A, = 1 and A, = 0. These kinds of 

step activation functions are useful for binary classification schemes. In other words, when 

we want to classify an input pattern into one of two groups, we can use a binary classifier 

with a step activation function. Another use for this would be to create a set of small feature 

identifiers. Each identifier would be a small network that would output a 1 if a particulat 

input feature is present and a 0 otherwise. Combining multiple feature detectors into a single 

network would allow a very complicated clustering or classification problem to be solved. 



Figure2.4 Step function 

2.5.2 Linear Combination 

A linear combination is where the weighted sum input of the neuron plus a linearly 

dependant bias becomes the system output. Specifically: 

In these cases, the sign of the output is considered to be equivalent to the 1 or 0 of the step 

function systems, which enables the two methods, be to equivalent if 

2.5.3 Continuous Log-Sigmoid Function 

A log-sigmoid function, also known as a logistic function, is given by the relationship: 



Where P is a slope parameter. This is called the log-sigmoid because a sigmoid can also be 

constructed using the hyperbolic tangent futlction instead of this relation. In that case, it 

would be called a tan-sigrnoid. Here, we will refer to the log-sigmoid as simply "sigmoid". 

The sigmoid has the property of being shnilar to the step function, but with the addition of a 

region of uncertainty. Sigmoid functions in this respect are very similar to the input-output 

relationships of biological neurons, although not exactly the same. Below is the graph of a 

sigmoid function. 

Figure 2.5 Log sigmoid activation function 

Sigmoid functions are also prized because their derivatives are easy to calculate, which is 

helpful for calculattng the weight updates in certain training algorithms. The derivative is 

given by: 

2.5.4 Continuous Tan-Sigmoid Function 

2.5.5 Softmax Function .I 



The softmax activation function is useful predominantly in the output layer of a clustering 

system. Softmax functions convert a raw value into a posterior probability. This provides a 

measure of certainty. The softmax activation function is given as: 

L is the set of neurons in the output layer. 

2.6 Architecture of Neural Networks 

Artificial Neural Networks are classified as either Feed-Forward, or Feedback networks. 

2.6.1 Single Layer Feed Forward Network: 

A Feed-Forward network allows traffic in one direction only, i.e. from input to output. There 

are no loops, and each output from a particular layer does not affect other neurons on the 

same layer. 

outputs 

Figure 2.6 Single layer feed forward network 

2.6.2 Multilayer Feed Forward Networks 

The package supports FF neural networks with any n ~ b e r  of hidden layers and any 

number of neurons (hdden neurons) in each layer. In Figure 2.6 a multi-output FF network 

with two hidden layers is shown. 



Figure 2.7 A multi-output feed forward network with two hidden layers. 

The number of layers and the number of hidden neurons in each hidden layer are user 

design parameters. The general rule is to choose these design parameters so that the best 

possible model with as few parameters as possible is obtained. This is, of course, not a very 

useid rule, and in practice you have to exper'ment with different designs and compare the 

results, to find the most suitable neural network model for the problem at hand. For many 

practick applications, one or two hiddenlayers will suffice. 

2.6.3 Feed Back Neural Networks: 

Feedback 'architectures allow loops in the network. This means that the output from one 

neuron can be sent to neurons that have already hred. Obviously, this architecture is much 

more complex, but it is also a more accurate representation to biological models. It is also 

much more powerful than the existed feed forward neural networks and recurrent neural 

networks. 



Figure 2 8  Feed back neural network 

In either structure, 3 distinct layers exist: an input layer, a "hidden" layer, and an output layer. 

The input layer represents the raw data that is fed into the system. The hidden layer does the 

"work" in a neural network and its output is generated based on the weights of the links it 

receives input from, and the threshold of each neuron. This output in turn is interpreted 

based on the links between the hidden layer and the output layer and creates a final output. 

In a single layer system, the process ends here. However, there are multiple layer systems 

which then use this output as input into another layer, essentially nesting several neural 

networks amongst each other. Again, this is a more complex implementation, but more 

closely resembles natural neural networks. 

To learn more about the history of neural networks 

2.6.4 Recurrent Neural Networks 

A recurrent neural network is a neural network where the connections between the units 

form a directed cycle. Recurrent neural networks must be approached differently from feed 

forward neural networks, both when analyzing their behavior and training them. Recurrent 

neural networks can also behave chaotically. 

2.7 Applications of Neural Networks: 

ANN are also used in the following specific paradigms: recognition of speakers in 

communications; diagnosis of hepatitis; recovery of telecommunications from faulty 

software; interpretation of multi meaning ~ h e s e  words; undersea mine detection; texture 

analysis; three-dimensional object reco.pnition; hand-written word recognition; and facial 

recognition. 

2.7.1 Neural Networks in Medicine 

Artificial Neural Networks (ANN) is currently a 'hot' research area in medicine and it is 

believed that they will receive extensive application to biomedical systems in the next few 



years. At the moment, the research is mostly on modeling parts of the human body and 

recognuing diseases &om various scans (e.g. cardiograms, CAT scans, ultrasonic scans, etc.). 

Neural networks are ideal in recognizing diseases using scans since there is no need to 

provide a specific algorithm on how to identify the disease. Neural networks learn by 

example so the details of how to recognize the disease are not needed. What is needed is a 

set of examples that are representative of a'l the variations of the disease. The quantity of 

examples is not as important as the 'quan~tyf. The examples need to be selected very 

carefully if the system is to perform reliably and efficiently. 

2.7.2 Modeling and Diagnosing the Cardiovascular System 

Neural Networks are used experimentally to model the human cardiovascular system. 

Diagnosis can be achieved by building a model of the cardiovascular system of an individual 

and comparing it with the real time physiological measurements taken from the patient. If 

this routine is carried out regularly, potential harmful medical conditions can be detected at 

an early stage and thus make the process of combating the disease much easier. 

A model of an individual's cardiovascular system must mimic the relationship among 

physiological variables (i.e., heart rate, systolic and diastolic'blood pressures, and breathing 

rate) at different physical activity levels. I! a model is adapted to an individual, then it 

becomes a model of the physical condition of-that individual. The simulator will have to be 

able to adapt to the features of any individual without the supervision of an expert. This calls 

for a neural network. 

Another reason that justifies the use of ANN technology is the ability of ANNs to provide 

sensor fusion which is the combining of values from several different sensors. Sensor fusion 

enables the ANNs to learn complex relationships among the individual sensor values, which 

would otherwise be lost if the values were individually analyzed. In medical modeling and 

diagnosis, this implies that even though each sensor in a set may be sensitive only to a 

specific physiological variable,  ANN^ are capable of detecting complex medical conditions 

by fusing the data from the individual biomedical sensors. 



2.7.3 Electronic Noses 

ANNs are used experimentally to implement electronic noses. Electronic noses have several 

potential applications in telemedicine. Telernedicine is the practice of medicine over long 

distances via a communication link. The electr&c nose would identify odours in the remote 

surgical environment. These identified odours would then be electronically transmitted to 

another site where a door generation system would recreate them. Because the sense of smell 

can be an important sense to the surgeon, tclesmell would enhance telepresent surgery. 

2.7.4 Instant Physician 

An application developed in the mid-1980s called the "instant physician" trained an auto 

associative memory neural network to store a large number of medical records, each of 

which includes information on symptoms, diagnosis, and treatment for a particular case. 

After training, the net can be presented with input consisting of a set of symptoms; it will 

then find the full stored pattern that represents the "best" diagnosis and treatment. 

2.8 Advantages 

A neural network can perform tasks that a h e a r  program can not. 

When an element of the neural network fails, it can continue without any problem by their 

parallel nature. 

A neural network learns and does not need to be reprogrammed. 

It can be implemented in any application. 

An ability to learn how to do tasks based on the data given for trainkg or initial experience. 

It can be implementedwithout any problem. 

2.9 Disadvantages 

The neural network needs training to operate. 

0 The architecture of a neural network is different from the architecture of microprocessors 

therefore needs to be emulated. 



Requires high processing time for large neural network 
$ 1  

2.10 Perceptrons 

Perceptrons are neural nets that change with "experience," using an error-correction rule 

designed to change the weights of each response unit when it makes erroneous responses to 

stimuli that are presented to the network. A simple perceptron is one in which the associator 

units are not interconnected, which means that it has no short-term memory. (If such 

connections are present, the perceptron is called cross coupled. A cross-coupled perceptron 

may have multiple layers and loops back from an "earlier" to a "later" layer.) If the associator 

units feed the pattern x = (x, + x, + x ,................ x,) to the output unit, then the response of 

that unit will be to provide the pattern discrimination. 

2.11 Neural Coding 

There are various existed methods for neural coding. 
, '  

Adaptive Spike Coding 

Integrated-And-Fire Neurons and Networks 

Localized Versus Distributed Representation 

Motor Cortex: Coding And Decoding of Directional 

Operations 

Optimal senso& Encoding 

Population Codes 

Rate Coding And Signal Processing 

Sensory Coding and Information Transmission 

Sparse Coding in the Primary Cortex 

Synchronization, Binding and Expectancy 

Synfire Chains 



Chapter 3 



A neural network has to be configured such that the application of a set of inputs produces 

(either 'direct' or via a relaxation process) the desired set of outputs. Various methods to set 

the strengths of the connections exist. One way is to set the weights explicitly, using a priori 

knowledge. Another way is to 'train' the neural network by feeding it teaching patterns 

and letting it change its weights according to some learning rule. 

We can categories the learning situations in two distinct sorts. These are: 

3.1 Supervised learning 

S u p e ~ s e d  learning is also called associative learning in which the network is trained by 

providing it with input and matching output patterns. These input-output pairs can be 

provided by an external teacher, or by the system which contains the neural network (self- 

supervised). During the learning process global information may be required. Paradigms of 

s u p e ~ s e d  learning include error-correction learning, reinforcement learning and stochastic 

learning. 

An important issue concerning s u p e ~ s e d  learning is the problem of error convergence, i.e. 

the minimization of error between the desired and computed unit values. The aim is to 

determine a set of weights which minimizes the error. One well-known method, which is 

common to many learning paradigms, is the least mean square (LMS) convergence. 

Figure 3.1 Supervised learning procedure 



3.2 Unsupervised learning 

It is also called Self-organization in which an (output) unit is trained to respond to clusters of 

pattern within the input. In this para* the system is supposed to discover statistically 

salient features of the input population. Unlike the supervised learning paradigm, there is no 

a priori set of categories into which the patterns are to be classified; rather 'the system must 
1 

develop its own representation of the input stimuli. uses no external teacher and is based 

upon only local information. It is also refecred to as self-organization, in the sense that it 

self-organizes data presented to the network and detects their emergent collective properties. 

Paradigms of unsupervised leaning are Hebbian learning and competitive learning. Ano2.2 

From Human Neurones to Artificial Neuronesther aspect of learning concerns the 

distinction or not of a separate phase, during which the network is trained, and a subsequent 

operation phase. We say that a neural network learns off-line if the learning phase and the 

operation phase are distinct. A neural network learns on-line if it learns and operates at the 

same time. Usually, supervised learning is performed off-line, whereas unsupervised learning 

is performed on-line. 

3.3 Reinforcement Learning 

This type of learning may be considered as an intermediate form of the above two types of 

learning. Here the leaning machine does some action on the environment and gets a 

feedback response from the enviroqent. The learning system grades its action good 

(rewardmgj or bad (punishable) based on the environmental response and accordmgly 

adjusts its parameters. Generally, parameter adjustment is continued until an equdibrium 

state occurs, following which there d be no more changes in its parameters. The self 

organizing neural learning may be categorized under this type of learning. 

3.4 Delta Rule 

Delta rule is also known as three other name which are as following: 

Adaline Rule 

Widrow-Hoff Rule 

Least Mean Squares (LMS) Rule 



3.4.1Change from Perceptron: 

Replace the step function in the with a con5.luous (differentiable) activation function, e.g 

linear 

For classification problems, use the step function only to determine the class and not to 

update the weights. 

Note: this is the same algorithm we saw for regression. All that really differs is how the 

are determine classes 

Out 

Teacher 1 

Delta Rule 

Figure3.2 Learning through delta rule 
F 

i 
% Delta Rule: Training by Gradient Descent Revisited ;I 

Construct a cost function E that measures how well dl: network has learned. For example 



(one output node) 

where 

n = number of examples 

ti = desired target value associated with the i-th example 

yi = output of network when the i-th input pattern is presented to network 

To train the network, we adjust the weights .in the network so as to decrease the cost (this is 

where we require differentiability). This is called gradient descent. 

3.4.2 Algorithm 

0 Initialize the weights with some small random value 

0 Until E is within desired tolerance, update the weights according to 

where E is evaluated at W(old), p is the learning rate 

and the gradient is 

3.5 Nonlinear Compression Techniques 



Two layer networks perform a projection of the data onto a linear subspace. In this case, the 

encoding and decoding portions of the network are really single layer linear networks. This 

works well in some cases. However, many datasets lie on lower dimensional subspaces that 

are not linear. 

3.5.1 Example 

A helix is I-D, however, it does not line on a 1-D linear subspace. 

Figure 3.3 I -D linear subspace 

To solve this problem we can let the encoding and decoding portions each be multilayer 

networks. In this way we obtain nonlinear projections of the data. 

3.5.2 5-Layer Networks 

nonlinear 9 0 9 f Decoding 

line? T- low dim representation 

Figure 3.4 5-layer networks 



3.5.3 Example: Hemisphere 

prom Fart Nonlinear Dimension Reduction, Nanda Karnbhatla,NIPS93) 

Compressing a hemisphere onto 2 dimensions 

Figure 3.5 Hemisphere on 2-dimension 

4 Example: Faces 

(from Fast N o h e a r  Dimension Reductiony Manda KambhatlayNIPS93) 

In the examples below, the on@ images consisted of 64x64 8-bit/pixel grayscale images. 

The first 50 principal components were extracted to fmm the image you see on the left. This 

was reduced to 5 dimensions using linear PCA to obtain the image in the center. The same 



imageon the left was also reduced to 5 dimensions using a 5-layer (50-40-5-40-50) network 

to produce the image on the right. 

Figure 3.6 Face1 

50 principal components 5 principal components 5 nonlinear components 

Figure 3.7 Face 2 

3.6 Bayesian Learning for Neural Networks: 

Artificial "neural networks" are now widely used as flexible models for regression and 

classification applications, but questions remain regarding what these models mean, and how 

they can safely be used when training data is limited. Bqesian Learningfor Neural Networks 

shows that Bayesian methods allow complex neural network models to be used without fear 

of the "overfitting" that can occur with traditional neural network learning methods. Insight 

into the nature of these complex Bayesian models is provided by a theoretical investigation 

of the priors over functions that underlie them. Use of these models in practice is made 

possible using Markov chain Monte Carlo techniques. Both the theoretical and 



computational aspects of this work are of wider statistical interest, as they contribute to a 

better understanding of how Bayesian methods can be applied to complex problems 

3.7 Kohonen's Self-organizing Map (SOM): 

Kohonon's SOMs are a type of unsupervised learning. The goal is to discover some 

underlying structure of the data. However, the kind of structure we are looking for is very 

different than, say, PCA or vector quantization. 

Kohonen's SOM is called a topology-preserving map because there is a topological structure 

imposed on the nodes in the network. A topol,3gical map is simply a mapping that preserves 

neighborhood relations 

3.7.1Algorithm for Kohonon's Self Organizing Map: 

Assume output nodes are connected in an array (usually 1 or 2 dimensional) 

Assume that the network is fully connected - all nodes in input layer are connected to all 

nodes in output layer. 

0 Use the competitive learning algorithm as follows: 

Randomly choose an input vector x 

0 Determine the "winning" output node i ,  where wi is the weight vector connecting the 

inputs to output node. 

Note: the above equation is equivalent to wix 2 wkx only if the weights are normalized. 

. . 
Iw, - X I  i Iw, - x l ~ k  3.5 

0 Given the winning node i , the weight update is 

wk (new) = wk (old) + @(i, k)(x - wk) 



where, N(i, k) is called the neighborhood function that has value 1 when i = k and falls off 

with the distance irk - r , l  between units i and k in the output array. Thus, units close to the 

winner as well as the winner itself, have their weights updated appreciably. Weights 

associated with far away output nodes do not change significantly. It is here that the 

topological information is supplied. Nearby units receive similar updates and thus end up 

responding to nearby input patterns. 

The above rule drags the weight vector wi and the weights of nearby units towards 

the input x. 

Figure 3.8 Nearby input patterns 

Up until now we have discussed how to train nets given a training set of input and target 

values. The target value is often called the teacher signal because it represents the "right 

answer". i.e. what the output of the net should be. Training with a teacher signal is 

called"Supe~sed learning". 

We can also train nets on inputs where there is no teacher signal. The purpose might be to 

a discover underlying structure of the data 

encode the data 

compress the data 

transform the data 

This kind of learning is called unsupervised learning because there is no explicit teacher signal. 



3.7.2 Examples of unsupervised learning 

Hebbian learning 

w(t + 1) = w(t) + w(t)x(t) 3.7 

This moves w toward infinity in the direction of the eigenvector with largest Eigen value of 

the correlation ma& 

A more stable version is Oja's rule 

principal component analysis 

competitive learning 

vector quantization 

3.8 Active Learning 

There are situations in which unlabeled data is abundant but labeling data is expensive. In 

such a scenario the learning algorithm can actively query the user/teacher for labels. This 

type of supervised learning is called active learning. Since the learner chooses the examples, 

the number of examples to learn a concept can often be much lower than the number 

required in normal supervised learning. With thk approach there is a risk that the algorithm 

might focus on unimportant or even invalid examples. 

3.9 Approaches and algorithms 

Analytical learning 

Artificial neural network 

Back propagation 

Boosting 

Bayesian statistics 

Case-based reasoning 

Decision tree learning 

Inductive logic programming 



Gaussian process regression 

Learning Automata 

Minimum message length (decision trees, decision graphs, etc.) 

Naive bayes classifier 

Nearest Neighbor Algorithm 

Probably approximately correct learning (PAC),.learning 

Ripple down rules, a knowledge acquisition methodology 

Symbolic machine learning algorithms 

Sub 'symbolic machine learning algorithms 

Support vector machines 

Random Forests 

Ensembles of Classifiers 

Ordinal Classification 

Data Pre-processing 

Handling imbalanced datasets 





4.1 Genetic Algorithms 

"Genetic Algorithms are good at taking large, potentially huge search spaces and navigating 

them, looking for optimal combinations of things, solutions you might not othenvise find in 

a lifetime." 

4.2 Introduction: 

This is an introduction to genetic algorithm methods for optimization. Genetic algorithms 

were formally introduced in the United States in the 1970s by John Holland at University of 

Michigan. The continuing price/performance improvements of computational systems have 

made them attractive for some types of optimization. In particular, genetic algorithms work 

very well on mixed (continuous and discrete), combinatorial problems. They are less 

susceptible to getting 'stuck' at local optima than gradient search methods. But they tend to 

be computationally expensive. 

To use a genetic algorithm, you must represent a solution to your problem as a genome (or 

cbromo~ome). The genetic algorithm then creates a population of solutions and applies genetic 

operators such as mutation and crossover to evolve the solutions in order to find the best 

one (s). 

This presentation outlines some of the basics of genetic algorithms. The three most 

important aspects of using genetic algorithms are: (1) dehnition of the objective function, (2) 

definition and implementation of the genetic representation, and (3) definition and 

implementation of the genetic operators. Once these three have been defined, the generic 

genetic algorithm should work fairly well. Beyond that you can try many different variations 

to improve performance, find multiple optima (species - if they exist), or parallelize the 

algorithms. 

4.3 Hierarchy of GA's 

The hierarchy diagram of the genetic algorithms is shown below to have a quick view on the 

evolution of genetic algorithms in the searching techniques. 



Search techniques 
I I 

I - 
- 

Calculus-based techniques I 
I 

Guided random search techoiques 

1 Indirect methods I -1 I Simulatedannealinp 1 

Figure 4.1 Genetic algorithm hierarchy 

Many human inventions were inspired by nature. Artificial neural networks is one example. 

Another example is Genetic Algon'thm~ (GA). GAS search by simulating evolution, starting 

from an initial set of solutions or hypotheses, and generating successive "generations" of 

solutions. This particular branch of A1 was inspired by the way living things evolved into 

more successful organisms in nature. The main idea is mrzival ofthejtte~t, a.k.a. natwal~election. 

A chromosome is a long, complicated thread of DNA (deoxyribonucleic acid). Hereditary 

factors that determine particular traits of an individual are strung along the length of these 

chromosomes, like beads on a necklace. Each trait is coded by some combination of DNA 

(there are four bases, A (Adenine), C (Cytosine), T (Thyme) and G (Guanine). Like an 

alphabet in a language, meaningful combinations of the bases produce specific instructions 

to the cell. 

Changes occur during reproduction. The chromosomes from the parents exchange 

randomly by a process called crossover. Therefore, the offspring exhibit some traits of the 

father and some traits of the mother. 

A rarer process called mutation also changes some traits. Sometimes an error may occur 

during copying of chromosomes (mitosis). The parent cell may have -A-C-G-C-T- but an 

accident may occur and changes the new cell to -A-C-T-C-T-. Much like a typist copying a 

book, sometimes a few mistakes are made. Usually this results in a nonsensical word and the 



cell does not survive. But over millions of years, sometimes the accidental mistake produces 

a more beautiful phrase for the book, thus producing a better species. The following basics 

term are used in genetic algorithms. 

Chromosome: A set of genes. Chromosome contains the solution in form of genes. 

Gene: A part of chromosome. il gene contains a part of solution. It determines the solution. 

E.g. 16743 is a chromosome and 1,6,7,4 and 3 are its genes. 

Individual: Same as chromosome. 

Population: No of individuals present with same length of chromosome. 

Fitness: Fitness is the value assigned to an individual. It is based on how far or close a 

individual is from the solution. Greater the fitness value better the solution it contains. 

Fimess function: Fitness function is a function which assigns fitness value to the individual. 

It is problem specific. 

Breeding: Taking two fit individuals and intermingling there chromosome to create new 

two individuals. 

Mutation: Changing a random gene in an individual. 

Selection: Selecang individuals for creating the next generation. 

4.4 Components of a GA: 

A problem to solve, and ... 

Encoding technique (gene, chromosome) 

Initialization procedure (mation) 

Evaluation function (environmect) 

Selection of parents (@reduction) 

e Genetic operators (mutation, recombination) 

Parameter settings bractice and art) 

4.4.1 Simple Genetic Algorithm 



initialize population; 

evaluate population; 

while TerrninationCriteriaNotSatisfied 

{ 

select parents for reproduction; 

perform recombination and mutation; 

evaluate population; 

4.5 Natural Selection 

In nature, the individual that has better survival traits will survive for a longer period of time. 

This in turn provides it a better chance to produce offspring with its genetic material. 

Therefore, after a long period of time, the entire population will consist of lots of genes 

from the superior individuals and less from the inferior individuals. In a sense, the fittest 

survived and the untit died out. This force of nature is called natural selection. 

The existence of competition among individuals of a species was recognized certainly before 

Darwin. The mistake made by the older theorists (ltke Lamarck) was that the environment 

had an effect on an individual. That is, the environment will force an individual to adapt to 

it. The molecular explanation of evolution praves that this is biologically impossible. The 

species does not adapt to the environment, rather, only the fittest survive. 

4.6 Simulated Evolution 



To simulate the process of natural selection in a computer, we need to define the following: 

A representation of an individual at each poict during the search process we maintain a 

"generation" of "individuals." Each individual is a data structure representing the "genetic 

structure" of a possible solution or hypothesis. Like a chromosome, the genetic structure of 

an individual is described using a fixed, finite alphabet. In GAS, the alphabet {O,1) is usually 

used. This string is interpreted as a solutim to the problem we are trying to solve. 

For example, say we want to find the optimal quantity of the three major ingredients in a 

recipe (say, sugar, wine, and sesame oil). We can use the alphabet {I, 2, 3 ..., 9) denoting the 

number of ounces of each ingredient. Some possible solutions are 1-1-1,2-1-4, and 3-3-1. 

As another example, the traveling salesperson problem is the problem of finding the optimal 

path to traverse, say, 10 cities. The salesperson may start in any city. A solution is a 

permutation of the 10 cities: 1-4-2-3-6-7-9-8-5-10. 

As another example, say we want to represent a rule-based system. Given a rule such as "If 

color=red and size=small and shape=round then object=applet' we can describe it as a bit 

string by first assuming each of the attributes can take on a fixed set of possible values. Say 

color= {red, green, blue), size= {small, big), shape= {square, round), and fruit= {orange, 

apple, banana, pear). Then we could represent the value for each attribute as a substring of 

length equal to the number of possible values of that attribute. For example, color=red 

could be represented by 100, color=green by 010, and color=blue by 001. Note also that we 

can represent color=red or blue by 101, and any color (i.e., a "don't care") by 111. Doing this 

for each attribute, the above .rule might then look like: 100 10 01 0100. A set of rules is then 

represented by concatenating together each rule's 11-bit string. 

For another example see page 620 in the textbook for a bit-string representation of a logical 

conjunction. 

Fitness function 



Given an individual, we must assess how good a solution it is so that we can rank individuals. This is 

usually a real number. For example, say we have individuals that are represented as a length-30 binary 

number. We can then use this mddividual as an integer, i in the range 0 to 230 - 1. A possible fitness 

function is Fifnessfi) = (i/P - 1)fO. This function has a value between 0 and 1 and is monotonically 

increasing. Note that fitness functions need not be monotonic and frequently have multiple local 

maxima 

For example, one can give a subjective judgment from 1 to 5 for the dish prepared with the 

recipe 2-1-4. 

Similarly, the length of the route in the traveling salesperson problem is a good measure, 

because the shorter the route, the better the solution. 

For classification problems, the fitness function could be the percent correct classification 

on a given training set. For example, Fitness@ = (comctfi]f. 
' 

Reproduction methods 

There are two basic methods of reprodupion, called mutation and crossover: 

i. Mutation 

Randomly change one or more digits in the string representing an individual. For 

example, the individual 1-2-3 may be changed to 1-3-3 or 3-2-3, giving two new 

offspring. How often to do mutation, how many digits to change, and how big a 

change to make are adjustable parameters. 

ii. Crossover 

Randomly pick one or more pairs of individuals as parents and randomly swap segments of the 

parents. For example, the individuals 1-3-3 and 3-2-3 may be chosen as parents. Suppose we 

select a crossover point after the first digit, then the above will generate two offspring: 3-3-3 and 

1-2-3. As another example, given two parents 101 1010 and 1100010, if the crossover point is 

between the third and fourth digits, then the two offspring are 1010010 and 1101010. This 

method is called l-point mssover. Similarly, we could deline Z-point mssover, which would select 

two points in each individual defining three intervals; the middle intervals are swapped to 



produce the two offspring. The rate of crossover, the number of parent pairs, the number of 

crossover points, and the positions of the crossover points are adjustable parameters. 

Selection 

From a population of individuals, we wish to give the fitter individuals a better chance to 

survive to the next generation. We do not wani to use the simple criterion "keep the best n 

individuals." It turns out nature does not kill all the unfit genes. They usually become 

recessive for a long period of time. But then they may mutate to something useful. 

Therefore, there is a tradeoff for better individuals and diversity. 

A simple selection method is each individual, i, has the probability Fitness@ / 

smover-aILindividt/aIsjd Fitnessli), where Fitnessfi) is the fitness function value for individual i. 

This method is sometimes called fimess proportionate selection. Other selection methods 

have also been used, e.g., rank selection, which soas all the individuals by fitness and the 

probability that an individual will be selected is proportional to its rank in this sorted list. 

One potential problem that can be associated with the selection method is called crowding. 

Crowding occurs when the individuals that are most fit quickly reproduce so that a large 

percentage of the entire population looks very similar. This reduces diversity in the 

population and may hinder the long-run progress of the algorithm. 

If only mutation is used, the algorithm is very"s1ow. Crossover makes the algorithm significantly 

faster. 

With the above defined, one way to define a Genetic Algorithm is as follows: 

proc GAPitness, theta, n, r, m) 

; Fitness is the fitness function for ranking individuals 

; theta is the fitness threshold, which is used to determine 

; when to halt 

; n is the population size in each generation (e.g., 100) 



; r is the fraction of the population generated by crossover (e.g., 0.6) 

; m is the mutation rate (e.g., 0.001) 

P := generate n individuals at random 

; initial generation is generated randomly 

while max Fitness@$ < theta do 

1 

; define the next generation S (also of size n) 

Reproduction s t q  Probabilistically select 

(1-r)n individuals of P and add them to S intact, where 

the probability of selecting individual,h; is 

Prob@;) = Fitness@,) / SUM Fitness@;) 

Crossozw step: Probabilistically select m/2 pairs 

of individuals from P according to Prob@;) 

foreach pair (h,, hJ, produce two offspring by applying 

the crossover operator and add these offspring to S 

Mutate step: Choose m% of S and randomly invert one 

bit in each 



end-while 

Find b such that Fitness@) = rnax Fitness@,) 

i 

return@) 

end-proc 

4.7 Benefits of Genetic Algorithms 

There are the following advantages to use the genetic algorithms. 

Concept is easy to understand 

Modular, separate from application 

Supports multi-objective optimization 

Good for "noisy" environments 

Always an answer; answer gets better with time 

Inherently parallel; easily distributed 

Many ways to speed up and improve a GA-based application as knowledge about 

domain is gained 

Easy to exploit previous or alternate solutions 

Flexible building blocks for hybrid applications 

Substantial history and range of use 

problem 



4.7.1 When to Use a GA 

e Alternate solutions are too slow or overly complicated 

Need an exploratory tool to examine new approaches 

Problem is similar to one that has already been successfully solved by using a GA 

Want to hybridize with an existing solution 

Benefits of the GA technology meet key problem requirements 

4.8 Conclusion 

Genetic Algorithms are easy to apply to a wide range of problems, from optimization 

problems like the traveling salesperson problem, to inductive concept learning, scheduling, 

and layout problems. The results can be very good on some problems, and rather poor on 

others. Genetic algorithms are rich - rich in application across a large and growing number 

of disciplines. If only mutation is used, the algorithm is very slow. Crossover makes the 

algorithm significantly faster. GA is a kind of hill-climbing search; more specifically it is 

very similar to a randomized beam search. 2,s with all hill-climbing algorithms, there is a 

problem of local maxima. Local maxima in a genetic problem are those individuals that get 

stuck with a pretty good, but not optimal, fitness measure. Any small mutation gives worse 

fitness. Fortunately, crossover can help them get out of a local maximum. Also, mutation is a 

random process, so it is possible that we may have a sudden large mutation to get these 

individuals out of this situation. (In fact, these individuals never get out. It's their offspring 

that get out of local maxima.) One significant difference between GAS and hill-climbing is 

that, it is generally a good idea in GAS to fill the local maxima up with individuals. Overall, 

GAS has fewer problems with local msucima than back-propagation neural networks. 





5.1 Differential Equation: 

A differential equation is an equation that involves the derivatives of a function as well as the 

function itself. If partial derivatives are involved, the equation is called a partial differential 

equation; if only ordinary derivatives are present, the equation is called an ordinary 

differential equation. Differential equations play an extremely important and useful role in 

applied math, engineering, and physics, and much mathematical and numerical machinery 

has been developed for the s olution of differential equations. 

A differential equation is an equation relating some function f to one or more of its 

derivatives. An examples is 

This particular equation involves a function f together with its first and second derivatives. 

Any given differential equation may or may not involve f or any particular derivative off . 

But, for an equation to be a differential equation, at least some derivative of f must appear. 

A few additional examples of differential equations are 

Here equation 1 is called Legendre's equation, equation2 is Bessel's equation and 3 is third 

order non linear differential equation. 

5.2 The Nature of Solutions 



An ordinary differential equation of order n is an equation involving an unknown function 

f together with its derivatives 

In a formal manner the above equation is written as following. 

The solution of this equation will be a function f in  term of x. 

5.3 Separable Equation 

A general class of equations with the property that 

i) We can immediately recognize members of this class of equations 

ii) We have a simple and direct method for solving such equations 

This is the class of separable equation.. 

A &st order ordinary differential equation is separable if it is possible; by elementary algebra 

manipulation to arrange the equation so hat all the dependant variables are on one side and 

independent variables are on the other side. 

5.4 First Order Linear Differential Equation 

This is another class of differential equation that is recognizable easily, an equation is said to 

be first order differential equation if it is in the form of 

Because it contain the &st derivative that's why it is called as first order differential equation. 

The linear aspect depends upon the fact that the left hand side involves a differential 

operator that acts Linearly on the space of differential functions. 



5.4.1 Examples 

Consider the differential equation 

After the solution we got the following exact solution 

Similarly for another simple first order differential equation 

~ ~ ~ ~ + x y = x  3 

Has the solution as 

5.5 Second Order Linear Differential Equation 

Second order linear differential equation is frequently used in physics and electronics for 

signal processing, for instance acceleration given by second derivative and force is mass time 

acceleration. A function that involves the second derivative in the equation is called second 

order linear differential equation. 

Is a second order linear while 

s i n ( y w ) - 2 y r + 2 y  = 0  

and 

y . y + 5 j , + 2 y = o  

are not. 



5.5.1 Examples 

The differential equation 

Has the following exact solution 

We have number of practical applications of first order and second order linear ODES like 

Bessel ,Legendre equation and Schrodinger equations which has complex solutions although 

the equations are linear. 

5.6 Non Linear Differential Equation: 

Non linear ordinary differential equations and non linear partial differential equations have 

many applications in mechanics, circuit theory, computational analysis, reaction kinetics, 

mathematical biology, economics and many other areas. In fact, in applications the most of 

the systems are non linear. I am here to introduce only the simple non linear differential 

equation and non linear coupled differential equation; however for detail studies of subject 

matter reader is referred to the reference books, nonlinear partial differential equations 1990 

Ams Chen Dibenedetto.djvu and introduction to numerical methods in differential 

equations (Springer, 2007.pdf). 

5.6.1 Examples 

Consider the following Newton's second law of motion for a particle of mass m moving in 

one dimension, 

Where F is a force depending upon the position and the velocity. 

Convert the above equation in linear first order system 



Because the above system is autonomous initial value problem (IVP) consists of the solving 

the system subject to the initial condition. 

Thus equilibrium solutions are found as solutions of the algebraic, simultaneous system of 

equations 

If an equilibrium point in the phase plane has the property that there is small neighborhood 

about the point where there are no other equlibira, then we say the equilibrium point is 

isolated. 

Non linear dynamics is most common in nature and almost 80% problems of the world are 

non linear in nature. These non linear systems are very complex than linear problems. 

Non linear differential equations are one of the hot issues in signal processing piratical 

examples, like Weissinger's non linear equations is used in mearning the turning effects in 

the wings of aeroplane. The solutions of the non linear differential equation are very difficult 

with respect to calculation, so researchers have made the numerical methods like Euler 

method, modified Euler method, Simpson method and Runge Kutta method All these 

methods have its own strengths and weakne:ses whose detail can be found in standard 

numerical computing reference books. 

These numerical methods are designed for the non linear system in which non linear systems 

are rarely be resolved analytically by finding solution formulas. So along with qualitative 

methods numerical method come to the front. 



I have produced a modern numerical technique for the continuous time solution for famous 

non linear differential equations such th2t, . ; 

1) Bernoulli 

2) Weissinger's 

3) Van der Pol 

Detail procedure for the solution of above differential equation is provided in next session. 





6.1 Bernoulli Equation: 

The network is called as DE-feed forward neural network. The first two layers have a bias; 

the last four layers have no bias. The biases in first two layers are bi . The activation functions 

for the first two layers are log sigrnoid and the first derivative of the log sigrnoid function. 

While linear function is used in the last four layers as the activation function. The numbers 

of neuron in the &st two layers is m and the number of neuron in he four three layers is 1. 

The input t is connected two first two layers. The connection weight of the input to the first 

layer to the second layer is equal to wi . The fist  layer is connected to the third layer with the 

connection weights ai and the second layer is connected to the fourth layer with the 

connection weights wiai . Third layer is connected to the fifth layer with the square factor as 

the connection weight. Third, fourth and fifth layers is connected to the six layer with a 

constant connection weight and the value of this constant is 1. 

The three networks have to train simultaneously as a consequence of the inter-relationship. 

It is a specific point of intention how to adjust the value of the weights of the DE-feed 

forward neural network. Although we can use the well known gradient decent method but as 

the weights of the DE-feed forward neural network are highly correlated, which feature is 

not easily incorporated into these gradient decent methods. So in order to find the values 

simultaneously we formed a highly powerful evolutionary algorithm called as hybrid 

intelligent algorithm to compute the connection weights. 

6.2 Weissinger's Equation: 

With following known conditions 



Weissinger's equation has the following exact solution. 

I form another DE feed forward network for a well known Weissinger's equation whose numerical 

solution is not existed but has a complex mathematical analytical solution. In the network 

cumulatively there are nine layers. In which layer one and layer2 have a bias; the last seven layers 

have no bias. The biases in first two layers areb, . The activation functions for the first two layers are 

log sigmoid and the first derivative of the log ~igmoidr~hction. While linear function is used in the 

last seven layers as the activation function. The numbers of neuron in the first two layers is m and 

the number of neuron in the last seven layers is 1. The input t is connected two first two layers. The 

connection weight of the input to the first layer to the second layer is equal to wi . The first layer is 

connected to the third layer with the connection weights ai and the second layer is connected to the 

fourth layer with the connection weights wiai .Third layer and fourth layer connected to the fifth 

layer with the square and cube of the previous values simultaneously. Layer three and layer four is 

connected to the layer six by the cube and square values of the previous connection link 

simultaneously. Layer five, six, seven and eight are connected to the layer nine with a constant 

connection weight and the value of this constant is 1,-1,1 and -1 respectively. The three networks 

have to train simultaneously as a consequence of the inter-relationship. It is a specific point of 

intention how to adjust the value of the weights of the DE-feed forward neural network. Although 

we can use the well known gradient decent method but as the weights of the DE-feed forward 

neural network are highly correlated, which feature ik not easily incorporated into these gradient 

decent methods. Weight sharing technique is also a good option for the parameters setting but due 

to the highly correlation in the adaptive parameters and the architecture so genetic algorithms are 

used for the optimization of the weights, in order to not struck in local minima I have used the 

pattern search so the exact minima is obtained from the whole solution set space. 



Figure 6.4 Weissinger's Neural Network Architecture 

6.3 Van Der Pol Equation 

Suppose p = 1 

Here we take the non stiff problem in order to reduce the complexity because in a stiff 

problem the behavior is abnormal with respect to time. In the van der pol equation we take 

the constant p as 1. The method I adopt to solve this is vary effective as compared to the 

existed analytical mathematical method and MATLAB method to solve it. Because DE-feed 

forward neural network can handle both of the stiff and non stiff problem easily without 

giving the large number of constraints. 



Figure 6.4 Van der Pol architecture 

DE feed forward network for Van Der Pol equation consist of eight layers. In which layer 

one, layer two and layer three have a bias; the last five layers have no bias. The biases in first 

three layers areb, . The activation functions for the first three layers are log sigrnoid, first 

derivative of the log sigrnoid function and second derivative of log sigrnoid function. While 

linear function is used in the remaining layers as the activation function. The numbers of 

neuron in the first three layers is m and the number of neuron in the last five layers is 1. The 

input t is connected to the first three layers. The connection weight of the input to the first 

layer to the third layer is equal to w, . The first layer is connected to the fourth layer with the 

connection weights a, ; the second layer is connected to the fifth layer with the connection 

2 
weights ai wi and third layer is connected to the layer six with the connection weight ai wi . 

Layer four 1 and five connected to the layer se;,-en. Layer four, five, six, seven are connected 

to the layer eight with a constant connec&on weight and the values of the constants are 1,-1, 

1 and 1 respectively. 

6.4 Mapping for DENN 



DENN has a approximation mapping that is the linear combination of functions here, I take 

the log sigmoid function as the activation function and its first and second derivative 

according to the non linear problem. This is the general mapping for the function, its first 

derivative and second derivative respectively. Here # ( t )  is the log sigmoid function, a;., wi 

are the weights on the communications links which are mined by the genetic algorithm 

incorporated with the pattern search cded' as hybrid intelligent algorithm. The values of 

these variable are vary from [-5 to 51 and are real in the finite whole domain. While bi is the 

values of the bias which also have the range as the range of alphas and weights. In feed 

forward DE neural network I have taken some fixed biases as 1 or -1 as well depending 

upon the architecture of the noon linear differential equation. The number of neurons is m 

with hidden layers. 

Figure 6.4 Log sigmoid function 

f (x) = z a i f l w , x +  bi) 
i-0 



d m 
2 d 2  - f (x)  = x a i w i  -((wix+ bi) 

dx2 i=o dx2 

There x is the running time taken in a finitz real domain x E {0.1,0.2,0.3,. . . .. . . .. .. . . . .4.0) . 

Our genetic algorithm conducts a randomized, parallel, hill-climbing search for hypothesis 

that optimizes our pre dehed  fitness function (fit-fun). 

GA (Fitness, Fitness-threshold, p, r, m) 

Where 

Fitness: A function that assigns an evaluation score, given a hypothesis. 

Fitness-threshold: A threshold specifymg the terminate criteria that is 0.0001. 

p: The number of the hypothesis inclined in population. 

r: The fraction of the population to be replaced by he crossover at each step. 

m: The mutation rate. 

Initialize population: P + generate 'p' hypotheses at random 

Evaluate: For each h in p, compute Fitness@) 

While(max Fitness@)) < Fitness-threshold do 

Create a new generation, Ps: 

1. Select: Probabilistically select (1-r)p members of P to add to Ps. The probability Pr(h1)of 

selecting hypothesis hi from P is given by 



2. Crossover: Probabilistically select - - pain of hypothesis from P, according to Pr@) 
2 

given above. For each (hl, h2) ,  produce two offspdng by applying the crossover 

operator. Add all offspring to Ps. 

3. Mutation: Choose m percent of members of Ps with uniform probability. 

4. Update: P t Ps. 

5. Evaluate: For each h in P, compute Fitness0 

Return the hypothesis from P that has the highest fitness. 





Simulation and Results 

Bernoulli 

% Main function provides the graphical comparison between exact analpcal solution and solution 

generated from DD-Neural Network incorporating the function fit-fun-sb and output function 

% Input is randomly selected vector of length 15 between -5 to 5 

% W1: the input vector of length fifteen randomly selected between -5 to 5. 

O/o a: Initial population is taken 160 and is divided inta eight sub populations each of length 20 

%Program runs for 400 generation or MSE < 10" which comes earlier 

W1 =rand(l,l5); 

a= [20,20,20,20,20,20,20,20] ; 

options = gaoptimset~FitnessLimit~,O.OOOOO1,'~~1~erations',400,'~o~dation~ize',a); 

[W 1, fval]=ga(@fit_fun_sb,15,options); 

x=O:-0.1:-3.9; 

aa=output(Wl); 

plot(x,aa,'o'); 

hold; 

syms z; 

y=l/(l-exp(z)/2); 

ezpWy,[-4,01); 



O/O This function defines the fit function which has to be satisfied for the correct approximation of 

the Bernoulli equation by the proposed method. 

% el: Defines the approximation of functional equation 

%e2: Defines the initial condition for the Bernoulli equation 

function e=fit-fun-sbo 

t=-rand0*4; 

[output,derivative,dderivativejn~value~zero,der~value~zero]=eq~parametersloop(t,M); 

el = (output-(output"2)+derivative)"2; 

t=O; 

[output,derivative,dderivativejnjnvalue~zero,der~value~zero] =eq-parametersloop(t,W); 

e2= (in-value-zero-2)"2; 

e=el +e2; 



% equation parameter function defines the derivative and double derivative of the log sigrnoid 

function with the initial conditions/ boundary value condition of the equation 
J 

%w: Defines the weights on the connection links between the neurons 

YoAlpha: these are the real constant in the neurons 

YoBeta: Defines the real values of the bias 

function [output,derivative,dderivative~jnvalue~zero,der~value~zero]=eq~parametersloop(t,~ 

for li=1 :n/3 

log&) =I /  (1 +exp(-~(k))); 

dlog_s(k) /(2+exp(xQ)+exp(-~(k))); 

ddlog_s(k) =(exp(-xQ)-exp (~(k))) / (2+exp(x@)) +exp(-x(k)))^Z 

end 

output=sum(Alpha.*log_s); 

derivative=surn(Mul.*dlogs); 

dderiva tive=sum(Mul2.*ddlogs); 

in-value-zero=output; 

der-valuezero=derivative; 



function our-output=output(W) . 

[m,n]=size(W); 

for j=l:m 

i=O; 

for t=O:-0.1:-3.9 

w=W(j,l:(n/3)); 

Alpha=W(i,(n/3)+1:(2*n/3)); 

beta=W(j,(2*n/3)+1:n); 

x=w*t+beta; 

for k=l:n/3 

l o g s  (k) = 1 / (1 +exp(-x(k))); 

end 

output1 (j ,i+ l)=sum(Alpha.*logs); 

i=i+ 1; 

end 

end 

our~output=outputl; 



Figure Al:  

Analytical & D E  NN Solution for Bernulle ODE 

Analyttcal& DENN solution for Bernoulli equation 
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Figure A2: Beast individuals in Bernoulli equation 



MSE Result 

MSE = 1.23e-~ 

Generations: 
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Figure A3: Fitness behavior after 100 generations 

Figure A4: Fitness behavior after 200 generation 



Fitness of E a ~ h  Individual 
300 

1 

Figure A5: Fitness behavior after 300 generations 
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0 

Figure A6: Fitness behavior after 400 generations 



Van Der Pol 

O/O Main function provides the graphical comparison between existed numerical method and solution 

generated from DD-Neural Network incorporating the fitness function and output function 

O/O Input is randomly selected vector of length 15 between -5 to 5 

O/O W1: the input vector of length fifteen randomly selected between -5 to 5 real numbers. 

% a: Initial population is taken 160 and is divided irto eight sub populations each of length 20 

%Program runs for 400 generation or MSE < lo4 which comes earlier 

W1 =rand(1,33); . . 

a=[20,20,20,20,20,20,20,20]; 

options = gaoptimset~Fitness~Jmit1,O.OOOOO1~Gcnera~ons',2OOO~l'opula~onSizc',a); 

vl , fval]=ga (@fit-fun-vdp733,0ptions); 



% Fitness function contain the values of the error which have the initial conditions 

function e=fit-fun-vdp(W) 

t=rand0*20; 

[output,derivative,dderivativejnjnvalue~zeroyder~value~zero] =eq-parametersloop(t,W); 

el  = (dderivative-(1 -outpu1?2)*derivative+output)~~ 

t=O; 

[output,derivative,dderiva tivejn-value-zero,der-value-zero] =eq-parametersloop(t,W); 

e2= (in-value-zero-2)^2; 

e3= (dervalue-zero) ^2; 

e=el +e2+e3; 



O/o Alpha: Contains the real variables from -5 to 5 

%beta: Are the bias to the DE-Neural network 

O/O Equation Parameter computes the Logsigmoid, hrst derivative of logsigmoid and second 

derivative of logsigmoid respectively 

function [output,derivative,dderivative~jnvdue~zero,der~vdue~zero]=eq~parametersloop(t,W) 

[m,n]=size(W); 

w=W(l :(n/3)); 

Alpha=W((n/3)+1:(2*n/3)); 

beta=W((2*n/3)+1 :n); 

Mul=Alpha.*w; 

Mul2=Alpha.*w."2; 

x=+t+beta; 

for k=l:n/3 

logs&) =l /(l +exp(-xQ)); 

dlogs*) =I /(2+exp(x&))+exp(-x*))); 

ddlog_s(k) =(exp(-x&))-exp(xQ)) 1 (2+exp(xO) +ex~(-xQ))"2; 

end 

ininvalue-zero= output; 

der-value-zero= derivative; 



function our-output=output(W) 

[m,n] =size 0; 
for j=l:m 

i=O; 

for t=0:0.1:19.5 

w=W(j,l:(n/3)); 

Alpha=W(j7(n/3)+1:(2*n/3)); 

beta=W(j7(2*n/3)+1:n); 

x=w*t+beta; 

for k=l:n/3 

log&) =l/(l+exp(-xQ)); 

end 

output1 (j,i+l)=sum(Alpha.*log_s); 

i=i+ 1; 

end 

end 

our~output=outputl; 
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Figure A7: 

Analytical & DE NN'Solution for Van Der Pol ODE 

Analytical & DENN solution for Van der Pol ODE 
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Figure A8: Beast individuals in Van Der Pol equation non Stiff problem 



MSE Result: 

MSE = 1.49e-~ 
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Figure A9: Fitness behavior after 50 generations 



Figure A10: Fitness behavior after 100 generations 
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Figure A1 1 : Fitness behavior after1 50 generations 
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Figure A12: Fitness behavior after 200 generations 
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Figure A13: Fitness behavior after 300 generations 
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Figure A14: Fitness behavior after 350 generations 
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Figure A15: Fitness behavior after 400 gener 



Weissinger 

Wes singer-main 

clc; 

close all; 

clear a& 

a=-4; b=4; 

Wl=a+(b-a).*rand(l,l5); 

subpop= [20,20,20,20,20,20,20,20]; 

options = gaoptimset('Fitr~essLimit1,0.000001,'Ge~ierations',800)t1'~p~1ationSize',s~bp~p); 

[Wl , fval]=ga(@fit-fun_wl ,I 5,options); 

x=0:0.1:3.9; 

plot(~,~qrt(x.~2+.5),'color','black~; 

xlabel('t');ylabel('y(t)'); 

hold; 

y l  =output(Wl); 

title('Analy tical & DE NN Solution for weissingers ODE') 

plot(x,yl ,'*l,'color','black?; 

legend('Exactl,'DE NN1,2); 



function e=fit-fun_wl (W) 

i=O; 

for t=0:0.2:4.0 

e r r o r ( i + l ) = ( t * ( o u t p u t " 2 ) * d e r i v a t i v e " 3 - ( o u t p u t A 3 ) * ~ e -  

(tA2)*output)"2; 

i=i+l; 

end 

el = sum(error) /i; 

t=O; 

[in-value] =eq_pararnetersw2(t,W); 

e2= (in-value-sqrt(.5)) "2; 

t=4; 

[in_value]=eq-parametersw2(t,W); 

e3=(in_value-sqrt(l6.5))"2; 

e=(el +e2+e3)/3; 



function [output,derivative]=eq-pararneterswl (t,W) 

[fmd=size(W); 

w=W(l:(n/3)); 

Alpha=W((n/3)+1:(2*n/3)); 

beta=W((2*n/3)+1 :n); 

Mul=Alpha.+, 

Mul2=Alpha.*w.^2; 

x=w*t+beta; 

for k=l:n/3 

l o g s  P) = I /  (1 +exp(-xp))); 

d b L s P )  =1/(2+exp(xP))+exp(-xP))); 

end 

output=sum(Alpha.*logs); 

derivative=sum(Mul.*dlogs); 



Wessingeroutput 

function out_output=output(W) 

[m,n] =size@'); 

for j=l:m 

i=O; 

for t=0:0.1:3.9 

w=W(j,l:(n/3)); 

Alpha=W(j,(n/3)+1:(2*n/3)); 

beta=W(j,(2*n/3)+1 :n); 

x=w*t+beta; 

for k=l:n/3 

l o g s  (k) =I /  (1 +exp (-xQ)); 

end 

output1 (j j+l)=sum(Alpha.*logs); 

i=i+l; 

end 

end 

our-output = output 1 ; 



Analytical & DE NN Solution for weissingers ODE 

Figure Al6: Analytical & DENN solution for Weissinger's ODE 
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Figure A17: Beast individuals in Weissinger's equation 



MSE Result: 

MSE = 7.72e-' 

Generations: 

400 

Figure A18: Fitness behavior after 100 generations 
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Figure A19: Fitness behavior after 200 generations 
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Figure A20: Fitness behavior after 300 generations 
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Figure A21: Fitness behavior after 400 generation 
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Nomenclature 

Neural Network 

Feed Forward Differential Equation Neural Network 

Mean Square Error 

Least Mean Square 

Artificial Neural Network 

Initial Value Problem 

Genetic Algorithm 

Self Organization Maps 

Machine Learning 

Differential Equation 

Range Kutta 

Probably Approximating Correct Learning 

Ordinary differential equation 

Log sigmoid 

Boundary value problem 

Artificial intelligence 

Genetic algorithm fitness function 

Equation parameter 



Glossary 

Activation: 

A node's level of activity; the result of applying the activation function to the net input to the node. 

A function that transforms the net input to a neuron into its activation, it is also called as transfer 

function. 

Architecture: 

Arrangement of the nodes and the pattern in the connection links in a neural network. 

Axon: 

Long fiber over, which a biological neuron transmits its output signal to other neuron. 

Bias: 

Bias is a weight on the connection between node j and a mythical unit. 

Binary Sigmoid: 

It is Continuous differentiable S-shaped activation function whose range is between 0 and 1. 

Bipolar Sigmoid: 

Its range is from -1 to 1 and is also continuous differentiable S-shaped activation function. 

Competitive Learning: 

It's an unsupervised learning in which a competitive neural network adjusts its weights after the 

winning node has been chosen 

Competitive Neural Network: 

A neural network in which, a group of neurons compete for right to become active. 

Convergence: 



A system is said to be converged if the neuron don't update in next few iterations. 

Delta Rule: 

Learning rule based on minimization of squared error for each training pattern. Used for single layer 

perceptron. It is also called LMS and Widrow-Hoff learning. 

Epoch: 

It is one presentation of each training pattern. 

Euclidean Distance: 

This is the distance defined between two vectors xl, x2, x3 ,....... xn and yl, y2, y3 ,....... yn as 

following 

Excitatory Connection: 

These are connection link between two neurons with a positive weight; its serves to increase the 

response of the unit hat receives the signal in contrast, inhibitory connection. 

Exemplar: 

A vector that represents the patterns placed on a cluster, this may be formed by the neural net 

during training as in SOM or specified in advance as in the hamming nets. 

Extended Delta Rule: 

Learning rule based on minimizing the eator of the single layered net in which the output inputs may 

have any differentiable function for their activation function. 

Fast Learning: 

This is the learning mode for ART in which it is assumed that all weights updates reach equilibrium 

on each leaming trial. 

Fault Tolerance: 

90 



A neural net is fault tolerant if removing some nodes from the net makes little difference in the 

computed output, also neural nets are in journal tolerant of noise in the input patterns. 

Feed Forward: 

A neural net in which, the signals pass from the input \units to the output units (possible through 

intermediate layers of hidden units) without any connection back to previous layers. In contrast 

recurrent nets have feed back connections. 

Fixed Weight Nets: 

Neural nets in which he weight don't change for example Hopfield nets. 

Hidden Units: 

Units that are neither input neither unit nor output units. 

Inhibitory Connections: 

Connection links between two neuron such that a signal sent over this link will reduce the activation 

of the neuron that receive the signal. This may result from the connection having the negative 

weight or Gom the signal received being used to reduce the activation of neuron by scaling the net 

input the neuron receive Gom other neurons. 

Input Unit: 

The units that; receive signals from out side the neurd net. Typically they transmit the input signal to 

all neurons to which they arte connection with performilg any change. They have identity function 

as the activation function. 

Kohonen Learning Rule: I 

Weight update rule in which the new weight is convex combination of the old weight and the 

current input pattem, the coefficient that multiplies the input pattem the learning rate is gradually 

reduced during learriing process. 

Kohonen Self Organizing Maps: 

A clustering neural net with topological structure among cluster units . 



Layer: 

Pattern of weighted connection between two slabs of neurons; in neural net literature the term layer 

is also used frequently for a group of neuron that function in the same way, a slab. 

Learning Rate: 

A parameter that controls the amount by which; weights are changed during training. In some nets 

the learning rate may be constant. 
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