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ABSTRACT

Biometric authentication systems have evolved significantly during recent times, with
signature verification still used in conjunction with other modalities, including,
fingerprint, facial recognition, and iris scan for identity verification purposes. The aim of
signature verification is to determine whether the given signature is real or not, via
comparison with reference signature stored in the database. Signature verification is
categorized in to two types, online which involves verifying signatures in real-time, and
offline which involves verifying signatures from static image. Offline signature
verification is a challenging task, since real-time information about signing process is not
available, and the most important drawback associated with them is intra-class
variability. In the literature, various deep learning techniques have been employed. These
architectures required a substantial time and computational resources due to their
complex architectures. This study introduces a writer-independent offline system based
on explainable lightweight convolutional neural network, which uses generalized
fractional order based optimization strategy. The proposed approach leverages the
strength of lightweight CNN architecture to reduce computational resources, and
incorporates explainable framework to enhance transparency, as opposed to established
models which lack in computational efficiency and interpretability. Moreover the
suggested model outshines current state of the art (SOTA) architectures on benchmark
CEDAR database with 98% classification accuracy, and is also evaluated interms of F1-

score, precision, and recall.
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CHAPTER 1

1.1

1.2

INTRODUCTION

Introduction

This chapter deeply elaborates the need, importance, and valuable applications of
biometrics and its modes. It also describes signature verification along with its
modes, as well as the advantages associated with it, such as its versatility and
ease of implementation. This chapter further discusses solutions to signature
verification, which include various artificial intelligence techniques. This
chapter also discusses various challenges associated with signature verification
task and emphasizes on deep learning for signature verification tasks, especially
the convolutional neural networks which offers better accuracy in contrast to
traditional machine learning approaches. This chapter also necessitates the
development of lightweight convolutional neural network model in order to cater
to computational complexity and reduce resource intensive requirements and
training time. Finally, an introduction of the proposed light weight convolutional

neural network for signature verification task is presented.
Inspiration and Background

Biometrics deals in automatically recognizing individuals based on physical or
behavioral traits, such as facial features, fingerprints, iris patterns, hand, voice,
gait, and signatures to automatically recognize and identify individuals [1].
Biometrics finds tremendous applications in various fields and industries,
including Identity Verification [2], Time and Attendance Tracking [3], Forensic
Identification [4], Healthcare [5], Financial Services [6], Government Services
[7], Education [8] and Customer Services [9], etc. One mode of biometric
authentication is via signature verification, which involves analyzing and
comparing the unique characteristics of individual’s handwritten signatures to

authenticate their identity.



Signature Verification process determines, whether the given signature matches
known or reference signature for particular individual. It is used for
authentication and fraud detection ensuring that the signature is genuine and
made by authorized person. Signature verification typically involves comparing
various features, e.g., stroke patterns, shape, size, pressure, and timing, with a
reference signature stored in a database. There are two modes associated with
verification of signatures, “offline” and “online”. Offline verification mode
involves analyzing a static image, without any real-time interaction with the
signer i.e., captured on physical documents, such as paper forms, contracts, or
checks, while online mode involves capturing the signature dynamically as it is
being written, often using specialized hardware such as digitizing tablets or
touchscreens. This mode allows for the analysis of additional features such as
pen pressure, velocity, and acceleration, providing more detailed information for

authentication.

The main advantages of signature verification over other biometrics are its
versatility and ease of implementation in various scenarios. Signature
verification does not require direct contact with a sensor or device, unlike
fingerprints or iris scans. This non-intrusive nature makes it more user-friendly,
both offline and online signature verification can be seamlessly integrated into
existing document-based workflows, such as signing contracts, authorizing
transactions, or verifying identity. This convenience makes it ideal for various
applications, from banking to legal documentation. Implementing signature
verification systems, particularly offline methods, can be relatively low-cost
compared to biometric systems that require specialized hardware like fingerprint
scanners or iris readers. Offline signature verification relies on digital scanners
or cameras, which are often more affordable and widely available. Signature
verification systems can adapt to different use cases and scenarios. Offline
signature verification, for example, allows individuals to verify signatures on
paper documents, while online verification enables real-time authentication in
digital environments such as e-commerce platforms or online forms. Overall, the

flexibility, convenience, and cost-effectiveness of signature verification, in both
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offline and online modes, make it a preferred choice for many applications,

offering advantages over other biometric modalities in certain scenarios.

Solutions for the recognition and verification of signatures can be classified as,
Machine Learning (ML) techniques, that rely on manually crafted feature
extraction mechanisms [10], and deep learning methods [11, 12] that involve
neural networks such as Convolutional Neural Networks (CNNs) [13, 14] or
Recurrent Neural Networks (RNNs) [15, 16], to learn hierarchical
representations of signatures directly from raw pixels. These models
automatically gather discriminative features from signatures, and can potentially
achieve higher accuracy compared to traditional handcrafted feature-based
methods [10]. Deep learning (DL) methods are regarded as very promising due
to their mindblowing capability in image recognition and detection [17]. Hand-
crafted techniques for the extraction of features include, Discrete cosine
transform (DCT), Local Features (Speeded-Up Robust Features (SURF), Scale-
Invariant Feature Transform (SIFT), Local Binary Patterns (LBP), etc.) [18, 19],
Global Features (Shape Matrices, Invariant Moments etc.) [20], Gaussian
Mixture Model (GMM) [21], Curvelet transform [22], Contourlet Transform
(CT) [23], and Gabor wavelet [24], etc. While DL techniques involve neural
networks to extract features, autonomously discovering useful representations or
features within the data without the need for manual annotation or supervision

[12, 25].

DL is branch of ML that focuses on neural networks and their ability to learn
and make decisions that replicate the brain of human being, which consists of
neurons, each receiving an input signal, processing it, and producing an output
signal and than transmitting it to next one. Similarly in neural networks, artificial
neurons (nodes) which are termed as perceptron receive inputs, apply an
activation function, and produce an output signal which is moved on to the
subsequent layers. Fig-1 provides a general overview of machine learning and
deeplearning, indicating handcrafted feature extraction mechanisms in machine

learning while the deep learning approach automatically extract features via



deep neural network.

Traditional machine learning

@wéw-—w = [l

Raw input Feature engineering  Features Traditional ML model Output

Deep learning

S — e

Raw input DNN based representation learning Output

Fig-1: General overview of Machine Learning vs Deep learning

Now a days DL has surfaced as pivotal tool in pattern recognition, Natural
Language Processing (NLP), and Computer vision, etc. One of the deep learning
approach is CNNs, which are tailored for processing data in structured patterns
e.g., images and videos. CNNs compromise of series of convolutional, pooling,
and fully connected (FC) layers, responsible for extraction of useful featues,
reduction in dimentionality, and classification purposes, Where FC layers
receives feature maps as a one-dimensional flattened array. Block diagram of

simple CNN architecture comprising of two layers is presented in Fig-2.
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Fig-2: Block diagram of CNN

Convolutional Neural Networks (CNNs) were first introduced in the late 1980s.
In 1998, Yann LeCun, along with his collaborators, proposed the pioneering
LeNet-5 architecture, which was one of the earliest implementations of CNNs,
achieving SOTA performance on MNIST database, a dataset comprising of
handwritten digits. LeNet-5 architecture comprised of three convolutional layers
with filter size of 5x5, two average pool and two FC layers, with final FC layer
comprising of 10 neurons, representing digit classes from 0 to 9. CNN
architecture have undergone various modifications from 1989 until today, which
include structural reformulation, regularization, parameter optimizations, etc.
LeNet-5 and subsequent developments in CNNs significantly contributed in
advancing the realm of pattern recognition. Since then, CNNs have evolved
significantly, with refinements in architectural designs, training techniques, and

applications across diverse fields.

Up to date, several CNN architectures have been introduced, each having unique
design characteristics and achieving SOTA performance on various image
processing tasks. These architectures have significantly advanced the field of
artificial intelligence and have been instrumental in solving challenging

problems in image recognition, object detection, segmentation, and more. Some



Model

AlexNet

VGG

ResNet

Inception

ResNeXT-50

Year

2012

2013

2015

2014

2017

of the notable CNN architectures include AlexNet, ResNet, Visual Geometry
Group (VGG), Inception and High-resolution Network (HRNet) [26-31], etc.

Table-1 illustrates some of the CNN architectures, taking in to consideration the

number of convolutional layers, pooling layers, strides, kernel size, and

activation functions utilized in these architectures starting from AlexNet to much

deeper networks such as Inception-ResNet-v2 and ResNext-50.

Variants

VGG-16
VGG-19

ResNet-18,
34, 50,101,
110,152,164

Inception-vl1,
v2, v3,v4,
Inception-
ResNet-v2

Table-1: Overview of CNN architectures

Architecture

Convolutional layers: 5,
Pooling layers: 3,

Fully Connected layers: 3
Convolutional layers:13,16
Pooling:5

Fully Connected: 3

Convolutional layers:17 up to 166 in
ResNet-164

Pooling layers: 2

Fully connected: 1

59 convolutional layers (57 in stem
and inception modules), 15 pooling,
6 fully connected layers in inception-
v1 up to 244 convlolutional layers in
Inception-ResNet-v2

Convolutional layers: 53
Pooling layers: 2
Fully Connected: 1

kernel

size

11x11

5x5
3x3

3x3

Tx7
1x1
3x3

1x1
3x3
5x5
1x7
7x1
1x3
3x1

1x1
3x3
Tx7

Strides

4

2,1

Activation
Function

Relu, Softmax

Relu, Softmax

Relu, Softmax

Relu, Softmax

Relu,Softmax

A lot of work has been done on Signature verification, Signature verification just



like other biometric verification is performed by various means, traditional
machine learning approaches which include preprocessing, handcrafted feature
extraction techniques for feature extraction, feature learning and then
classification via support vector machines or K Nearest neighbour (KNN) to
characterize signature as genuine or forged, Fully connected feed forward
neural network (FCFNNSs) also known as Artificial Neural Network can also be
utilized for feature extraction along with it KNN or SVMs for classification.
CNNs which are specially designed to handle grid like structures, have become
very popular in image and video processing, can also be utilized , and have
demonstrated SOTA performance in signature verification, outperforming ML
and other deep learning methods. Transfer Learning approaches utilizing pre-
trained models, such as VGG-16, Inception, ResNet, etc. which were initially
trained on large image datasets, are fine-tuned by applying certain modifications
are also utilized for signature verification tasks. RNNs designed to handle time-
series or ordered data, have also been explored recently for signature
verification, but their performance is not up to the mark as compared to CNNs.
Hybrid approaches utilizing the strength of CNNs and RNNs have also shown
promising results. The choice among all these methods hinges upon specific

application requirements, available resources, and the desired level of accuracy.

1.3 Problem Statement

Verification of handwritten signatures is difficult task to accomplish due to
human hand writing which varies over time hence individuals may exhibit
differences in signatures resulting in complications to establish single reference
model. Forgeries or imitations by anyone trying to trick the verification
mechanism are possible with signatures, furthermore signature verification
system requires large no of genuine samples for training to ensure good
generalization on data which is never seen before by model. Since the access to
genuine signatures is limited due to privacy concerns while forgeries are
common hence leading to imbalances in data. Complexities can also be

introduced by low-quality or low-resolution samples, thus introducing noise that



leads the model to learn from noisy gradients, resulting in reduced accuracy and
an increased error rate. To tackle these problems successfully, SOTA artificial
intelligence (Al) based algorithms must frequently be developed, in addition to
this large and varied datasets containing signatures of varied languages,
background and hand writing styles should be gathered for training purposes.
Moreover, to enhance robustness of systems devoted to handwritten signature
verification, techniques such as data augmentation must be employed to handle
variability to input data. The computational complexity associated with existing
models is also one of the key problems, since most of CNN models are resource-
intensive, require substantial training time and computational resources, this
necessitates the development of lightweight CNN model, having simple

architecture and less parameter count.

This study proposes an ultralight CNN for verification of handwritten signatures,
having a customized feature extraction mechanism, incorporating several
convolutional, pooling and normalization layers. An interpretable artificial
intelligence (XAl)-based local interpretable model-agnostics explanation
(LIME) technique is also utilized to offer insights into the predictions by the
suggested model. Data augmentation is exploited in order to enhance the
suggested model’s ability to generalize effectively for varied signature samples.
The architectures studied previously remain quite laudable, but are very complex and
resource intensive as opposed to the proposed strategy which seems to be
resource friendly. In addition to this, the fractional calculus based optimization
strategy is adopted, 1.e. the fractional stochastic gradient descent (FSGD) which
has shown promising results in recommender systems disciplines [32-34],
speeding up the convergence of SGD by adaptively adjusting the learning rate.
Recently introduced generalized version of FSGD, i.e., GFSGD [35] is also
implemented to solve recommender system problem [36], which provides
greater fractional order range in comparison to FSGD, where it lies between O

and 1.



1.4

1.5

Goals and Objectives

e To accurately differentiate between signatures and forgeries for secure and

reliable identity verification.

e To employ a customized ultralight CNN variant specifically designed for
signature verification, delivering a thorough analysis through its capacity for

autonomous feature extraction and learning.

e To explore the impact of fractional calculus in enhancing the robustness and

accuracy of signature verification.

e To accelerate the speed of convergence by exploiting novel FA-SGD

optimization algorithm for verification of signatures.

e To investigate LIME approach for generating interpretable predictions by
suggested ultralight CNN, offering transparency and reliability in signature

verification domain.

Thesis Organization

Chapter 1: provides a conceptual overview of the entire thesis, consisting of
research gaps, statements, and definitions that clearly define research goals and
hypotheses, as well as background and motivations for the determination of

problematic issues and research problem definitions.

Chapter 2: provides detail of the work done so far by discussing the advantages

and disadvantages of already suggested methods in literature.

Chapter 3: describes the methodology of conducted research by elaborating the
suggested ultralight model along with FA-SGD optimization strategy. It also

contains the pseudocode of the proposed model.

Chapter 4: provides simulation results in terms of tables and learning curves for
a detailed comparison of the suggested ultralight CNN with the standard SGD
and the novel FA-SGD optimization algorithm using benchmark CEDAR

dataset.



Chapter 5: holds the conclusions deduced from the conducted research work,
also includes future initiatives which can be taken for the extension of conducted

research..
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Chapter 2

2.1

2.2

LITERATURE REVIEW

Introduction

This chapter includes Al models deployed by various authors for task of
signature verification on benchmark datasets. Some of the previous work
regarding signature verification is described below. Additionally, this chapter

also includes our contributions and a summary at the end.

Previous Work

In recent years, significant strides have been made in developing classifiers for
signature recognition and verification, using various machine learning and deep
learning algorithms. Deep learning approach has emerged powerful, and has
demonstrated notable improvement for signature verification tasks interms of
accuracy on various datasets. Some of the previous work has been described

below.

Stauffer, M., et al. [37] integrated both the local and global changes utilizing
Dynamic Time Warping, previous methods regarding this employ global
matchings where the entire graph structures representing handwritten entities
were compared directly. Sharif, M., et al. [38] proposed an offline signature
verification system utilizing Genetic algorithm for feature selection from
extracted set of features and Support Vector Machines for classification.
Radhika, K.S., and Gopika, S. [39] both modes to form an integrated approach.
In order to explore the applications of shape and size based features, i.e.
geometric, Chandra, S., and Maheskar, S. [40] proposed an offline verification

system based on Artificial Neural Network.

Verification system based on 15 global features and remaining extracted from
freeman chain Code is presented in [41], while utilizing k-nearest neighbour for

classification and was tested on MCYT dataset. Dey, Sharma, N., et al. [42]
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presented a framework known as Siamese Network consisting of identical
subnetworks which work by minimizing and maximizing Euclidean distance
between similar and dissimilar pairs. Since forgeries are not available in real
world scenarios to train the model, Shariatmadari, S., et al. [43] suggested deep
learning based approach which aimed at capturing local variations with in
signatures and model was trained on single class, i.e. genuine. Wei, P., Li, H.,
and Hu, P. [44] introduced an inverse discriminative network employing four
weight-shared streams to extract features. Recent advancements in signature
verification include work such as recurrent neural networks [16] based approach,
graph neural network [45] utilizing graph structures to learn representations,
combining CNNs with Capsule Networks [46] and encoder-decoder architecture

for self-supervised learning, i.e.“SURDS” [47].

Sanmorino, A., and Yazid, S. [48] advocated for Artificial Neural Networks and
hidden Markov models (HMM) for verification, considering factors like data
availability and budget. To enhance feature extraction stage in offline
verification Alsuhimat, F., and Mohamad, F. S. [49] proposed hybrid method
combining features from CNN and HOG and used Long Short-Term Memory
(LSTM), K Nearest Neighbour (KNN), and SVM as classifiers. Hybrid
architectures [50] combining CNN and RNN, utilizing strength of CNN for
extraction of features, and RNNs for gathering long range dependencies from
signature image have also been popular these days. Researchers have also
worked on feature fusion, integrating features from both writer independent and
writer dependent classifiers earlier work done regarding this was hybrid WI-WD
[51] scheme, later work included further investigation of robustness on GPDS

signature database [52].

Signature verification system requires significant amount of training samples,
contradicting this notion Kao, H.-H., and Wen, C.-Y. [53] indicated that
accuracy up to 99.96% can be obtained by utilizing single genuine signature for
training through local features. Hirunyawanakul, A., et al. [54] compared

accuracies from transfer learning using pretrained VGG-16, and AlexNET with

12



CNN developed from scratch and traditional ML approach, transfer learning
approach outperformed others with 100% accuracy. Mitchell, A., et al. [55]
obtained accuracy of 86.7% using pre-trained VGG-16 on balanced dataset that
underwent through data augmentation. Mersa, O., et al. [56] obtained EER of
3.98% on MCYT-75 utilizing pretrained weights of ResNet-8. Jampour, M., et
al. [57] integrated the regularized Capsule Networks (CapsNet) with ResNet,
utilizing feature extraction strength of ResNet, and positional understanding
capabilities of CapsNet, the integrated approach lead to accuracy of 99.85% on
CEDAR and 99.24% on MCYT.

In 2019 Jahandad, S., et al. [58] used pretrained models, Inception-vl and
Inception-v3 for signature verification on GPDS Synthetic, and achieved 83%
validation accuracy using samples from 20 users via Inception-v1 as opposed to
75% through Inception-v3, which indicated overfitting of ultradeep 42 layered
Inception-v3. In 2019 Gumusbas, D., and Yildirim, T. [59] demonstrated that
Capsule Network significantly outperform CNN-based model for offline
signature verification, achieving higher accuracy with minimal data, and
maintaining effective feature extraction even at lower resolution. In 2023
Muhtar, Y., et al. [60] reduced computational cost and parameter size of
ResNet-18 by fusing it with convolutional block attention modules with this
approach accuracy was increased to 96% from initial 95% on CEDAR dataset.
In 2023 Tanko, O., et al. [61] achieved accuracy of 91.3% and absolute error rate
of 7.45% on CEDAR the proposed method utilized VGG-16 for feature

extraction along with it SVM was used as classifier.

Researchers have made significant strides to speed up CNNss, that is divided into
three categories which include, optimization implementation [62], which enables
learning in few iterations, binarization and parameter quantization [63] and
architectural simplification [64] . He, Y., et al. [65] introduced new channel
pruning technique to quicken deep CNNs, the proposed approach speeded up
VGG-16 five times with only 0.3% increment in error. Taking into consideration

the structural simplicity a cutting-edge ultralight convolutional neural network
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for efficient verification of handwritten signatures is presented in this study,
along with it a novel fractionally accelerated stochastic gradient decent (FA-
SGD) optimization strategy is employed, inspired by its effectiveness in solving
recommender systems task [36], has prompted us to investigate its capabilities in
image classification, specifically in signature verification. The suggested
ultralight CNN with novel FA-SGD optimization approach has shown significant
performance as compared to the SOTA models by using simple architecture,

innovative pooling strategy and unexplored optimizer.

2.3 Our Work

The task of signature verification for authentication brings us to a model, which
verifies the signature in two classes i.e., genuine or forged. The summary of our

contributions are:

e A novel Ultralight CNN architecture is proposed, with a less number of

layers hence less computational cost.

e Robust CNN model, incorporating data augmentation and customized
feature extraction mechanism via Channel split dual attention and mixed

pooling.

e To enhance the speed of convergence to achieve optimal parameters by
exploiting novel FA-SGD optimizer for classification of signature

images.
e LIME is exploited to provide explainable predictions.

e The ultralight CNN outperforms already present SOTA models in

various evaluation metrics on benchmark CEDAR database.

24  Summary

This chapter has provided detailed overview of Literature on signature

verification. The next chapter provides the methodology of conducted research
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Chapter 3

3.1

3.2

Proposed Methodology

Introduction

This chapter provides a comprehensive overview of the suggested ultralight
CNN model for verification of handwritten signatures, based on generalized

fractional optimization. The methodology consists of several stages, including:
e Dataset description
e Data preprocessing
e Lightweight CNN model development
e Evaluation metrics selection
e LIME

e FA-SGD

Dataset discription

CEDAR database comprise of offline signatures, having signatures from 55
distinct signers, with each individual contributing 24 authentic samples, and 24
meticulously crafted forgeries. Therefore accommodating 2640 signature
samples. Each signature in CEDAR database is scanned at 300 dpi resolution,
than converted to binary image using a grayscale histogram. Every signature was
produced by using black pen. In this study we have splitted dataset in to train,
validation, and test sets. Seventy percent of samples are allocated to training set,
and remaining thirty percent are split equally (15% each) for the validation and
test sets. Fig-4, presents some samples from CEDAR database utilized in the

study.
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Fig-3: Graphical Workflow of the Proposed Study
3.3  Data Preprocessing

Preprocessing is a crucial phase [66] in preparing raw data to be effectively used
by machine learning algorithms. To ensure the effectiveness of machine learning
strategy, data preprocessing needs to be done adequately for learning latent
features from signature images. To make our study robust and adaptable, several
pre-processing steps are exploited on the benchmark CEDAR database for
reducing variability in image quality and size, enhancing discriminative power
of signature images, and improving generalization ability of deep learning

model. These preprocessing steps include:
e Splitting database into train set, validation set, and test set.

e Creating data generators for efficient loading, and augmentation of

images.
e Resizing images to a fixed size of (224, 224) pixels.
e Normalizing or transforming pixel values to fall in range [0, 1].
e Converting class labels to categorical values.

e Performing data augmentation on the training set, including horizontal
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flipping of images.

Table-2, shows the data pre-processing steps exploited in the study.

Genuine £1 Genuine #32 Ganuine #3 Genuine 24 Genuine #5 Genuine £6 Genuine 27 Geruine 28 Genuine 25

Forged #1 Fomged #2 Forged #3 Forged #4 Forped &5 Forged #6 Forged &7 Farged #8 Forger #%

F

Fig-4: Sample Images from benchmark CEDAR database at random

3.4  Ultralight CNN

CNN has been exploited in computer vision related problems because of its
exceptional capabilities in dimentionality reduction, and feature extraction,
enabling effective image analysis and processing. Given their exceptional
performance in feature extraction and dimentionality reduction, CNNs have
emerged as a pillar in computer vision, driving breakthroughs in image
classification, segmentation and various other image analysis tasks. This study
suggests an ultralight CNN for handwritten signature’s verification.
Architectural depiction of suggested architecture is presented in Fig-5. The
architecture comprise of four blocks, first three comprise of three convolutional
layers, having custom built dynamic separable convolution with default filter size of 3x3
for depthwise convolution, with 16 filters in first block and 32 in second and third blocks.
Depthwise convolution is followed by pointwise convolution which performs channel-
wise convolution and generate final output. All first three blocks comprise of relu
activation function to introduce non-linearity, batch normalization to normalize the
outputs of activation function, max pooling layer that downamples the output of
batch normalization having a pool size of 3x3 and strides of 2x2 and a drop out

layer that randomly drops 20% of output units to prevent overfitting. Custom
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built channel split dual attention is also incorporated in third block which
comprise of two convolutional layers, i.e. avg and max. Avg layer generates
attention weights that focuses on the average features, while max layer generates
attention weights that focuses on the most important features. The output of both
is fed in to sigmoid activation function for normalization of attention weights.
The input tensor is then element-wise multiplied with attention weights to
generate weighted inputs. The weighted inputs are concatenated along the
channel axis, combining both attention stream outputs. Fourth block comprises a
flatten layer, followed by two FC layers with 128 and 64 units respectively,
using ReLLU activation and dropout with a rate of 0.2. Last one is output layer,
i.e., Softmax with two units, representing the two signature classes. The last
block comprise of a flatten layer followed by two FC layers, where first FC has
128 units along with batch normalization, dropout and a relu, and second FC is
the output layer, consisting of 2 units corresponding to no of classes in the
classification task, which in our case are genuine class and forged class, having
SoftMax as activation operator to produce class probabilities. The class with the
highest probability output by the softmax function will be considered as
predicted class. The structural representation of ultralight CNN model is
presented in Fig-6 and the detailed overview of parameters accommodated by
proposed model for signature classification on benchmark CEDAR dataset is

tabulated in Table-3
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3.5

3.6

Table-2: Data Preprocessing steps

Input: Database with full_org and full_forg directories.

The dataset is loaded from the "/content/signatures" directory.
Check class distribution for forged and genuine signature images.
Check for null-values residing in dataset.
Dataset is split into train, validation, and test with ratio of 7:1.5:1.5 by using
train_test_split function from Scikit-learn.
e Data generators are created for all three using the ImageDataGenerator from
Keras. The generators are used to load and preprocess the images in batches.
e Data augmentation is applied using ImageDataGenerator on train, test and
validation sets. The augmentation includes horizontal flipping of images.
e Following parameters are specified for train, validation and testing sets
through ImageDataGenerator:
» Color Space: ‘rgb’
» Class Mode: ‘Categorical’
» Shuffle: ‘True’(train, validation), ‘False’(test)
» Image Shape: (224,224)
» Batch Size: 16
e Generated data generators to provide preprocessed images to model
in batches

Evaluation Metrics

The suggested ultralight model’s performance is accessed via multiple
evaluation metrics, i.e. Recall, Precision, F1-score and Accuracy enumerated in
Table-4. Where trpos refers to true positives which are correctly predicted
positive instances and trneg refers to correctly predicted negative instances, i.e.
true negatives, where as flpos and flneg represent false positives and false
negatives, respectively. Which are incorrectly predicted positive and negative

instances respectively.

Local Interpretable Model-Agnostics Explanation (LIME)

ML models are regarded as black boxes [67-69] by the researchers, due to their
decision making processes being difficult to understand and interpret, hence
lacking transparency and explainability. Therefore, the deployment of

explainable artificial intelligence (XAI) [67] is essential in order to explain their
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inner workings to provide understanding of model’s output. Regarding this a
powerful technique, i.e. LIME is used, which explains the predictions made by
machine learning models in a transparent and interpretable way . It is an
explainable artificial intelligence (XAI) [67] technique which explains the
behaviour of a ML model for a specific instance and does not employ any back-
propogation or model specific steps, making it a model-agnostic approach [70,
71]. Fig-7 illustrates visual representation of LIME workflow. LIME technique
interprets the decision making process of Al models, and effectively bridges the
gap between complex neural network architectures and explainability by
explaining the predictions of complex models by utilizing a local surrogate

model [72]

: Dylnamicl selparggte BiEh lax Pooling 2D
i g ”'_"; ] Paol size : 33 Dropout (0.2)
F ilter - 1 ormalization Stride : 252
Kernel : 3x3
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3 ! RELU T Pool size ; 3x3 Dropout (0.2)
= Filter: 32 Normalization i
@ Stride : 2x2
Kernel : 3x3
@ Dynamic separable Attention Max Pooling 2D
E convelution 2D Meachanism Batch Fi
o _ RELLY T i Poolsize : 3x3 Drapout (0.2)
= Filter : 32 Filter: 32 Mormalization ;
o Stride : 2x2
Kernel 1 3x3 Kernel : 3x3
= Dense Batch Dropout Penes
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Fig-5: Proposed Ultralight Architecture’s Block diagram
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Fig-6: Structural Depiction of Ultralight CNN Architecture

Table.3: Architecture Parameters of Ultralight CNN model

Separable Dynamic Conv-2D
Activation
Batch-Norm
Max-Pooling2D
Drop-out
Separable Dynamic Conv-2D-
1
Activation-1
Batch-Norm-1
Max-Pooling2D-1
Drop-out-1
Separable Dynamic Conv-
2D-2
Activation-2
Channel Split Dual Attention
Batch-Norm-2
Max-Pooling2D-2
Drop-out-2
Flatten
Dense
Activation-3
Batch-Norm-3
Drop-out-3

(None,222,222.16)
(None,222,222.16)
(None,222,222.16)
(None,110,110,16)
(None,110,110,16)
(None,108,108,32)

(None,108,108,32)
(None,108,108,32)
(None,53,53,32)
(None,53,53,32)
(None,51,51,32)

(None,51,51,32)
(None,51,51,64)
(None,51,51,64)
(None,25,25,64)
(None,25,25,64)
(None,40000)
(None,128)
(None,128)
(None,128)
(None,128)
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Dense-1 (None,2) 258

Total-params: 5141965 (19.62 MB)
Trainable-params: 5141485 (19.61 MB)
Non-trainable-params: 480 (1.88 KB)

3.7  Fractionally Accelerated Stochastic Gradient Descent (FA-SGD)

In SGD optimization approach, the parameters of model are updated iteratively

to minimize loss function L(68). The update rule is:

0.=0-1v,L(0) (1)

+1

Where 6, and 6, are the model parameters at epoch t and t+1, 7 is the learning
rate and V,L(6) is the gradient of loss w.r.t. @ at iteration t.
FA-SGD introduces fractional calculus, where the conventional integer-order

derivative is replaced with a fractional [35, 73, 74]. The Caputo fractional

derivative of order « for a function f(¢)is defined as:

1 J" S (n)(7)
I'n—a)do@E—o)* "

D F(t) = )

Where n—1<a<n and f(n)(r) is the nth derivative of f (7). For O<a <1,

we use n=1 and I'(n—«) is the Gamma function evaluated at n—«

C e _ 1 r f'(o
= b f(t)_l“(l—a);[(t—r)“ dz )

Gradient descent algorithm is modified using Caputo fractional derivative,

where L(6) is the loss function which is to be minimized, and & represents

model parameters. The fractional gradient of L(€) with respect to @ is given by:

LD o gyear

VeL(O) =
oHE) Il-a)’ or )

Using the Caputo fractional derivative, standard gradient V,L(6)) is replaced by
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fractional gradient V;L(6 ). The update rule becomes:
0,.,=6,—nV,L(6) &)

Now computing the fractional gradient for a given 6, in order to derive the

update rule in FASGD. For a given 8,, the fractional gradient is:

1 o OL(7) i}
VoL(O) = 0-1)°d
MO =ri gl 5, @ ©)
Let g(7)= oL@ , substituting the loss function gradient eq (6) becomes:

1 o .
ViL(@)=———| "¢@)8-7)“dz

I(l-a) (7)

Discretizing the interval [ 0,6, ] in to n small steps of size Az.The integral is

numerically approximated as:

0 n—1

jﬂ g@NG-1)“dr~ Y g(ek)( -tk At ®
k=0
Where “* = kAt , the fractional gradient then becomes:
a 1 n-1 -a
VHL(Ht) ~ mzkzog(fk)(et— Tk) At 9)

Finally, substituting the approximate fractional gradient back in to update rule:

1 .1 OL(Tk) w
. — k) A

Eq (10) shows the update rule for FA-SGD depicting the integration of fractional
calculus in traditional SGD to form fractionally accelerated SGD algorithm. The

fractional order « in fractional stochastic gradient descent (FSGD) typically
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ranges between O and 1, while FA-SGD provides range beyond unity, when

a =1 algorithm simplifies to traditional SGD.

- TTI

‘ . .

Yo > > ) 1 2

Test Dataset Test Instance Random Data New Sample Labels Predictions
Perturbation Weightages For New Samples

Ae o f=d]
DCil €

User Explanation Feature Selection Model Training

Fig-7: Graphical Abstract of LIME

Pseudocode for FA-SGD optimizer is given below, which assumes a
modification to standard gradient decent to handle non-convex loss functions by
incorporating adaptive learning rates, similar to those employed in Adam or

RMSprop.
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FA-SGD — Pseudocode

Input:
Learning rate (1)
. Momentum hyperparameter (f)
Epsilon (&)

1
2
3
4. Fractional order ()
5. Weight vector (w)

6

. Gradient vector (g)

Output:
e Updated weight vector
Implimentation steps:
1. Initialize Learning rate, Momentum hyperparameter, Epsilon,
Fractional order, Weight vector, and Gradient vector.
2. Compute the momentum variable:
m=p-m+g
3. Compute the fractional term:
¢ =( w— previous _w| +0)"™“

4. Update the weight vector(w), using learning rate, fractional

term, and momentum variable:
W=w-n-¢-m

5. Update the previous weight vector (previous_w)=w
Return the updated weight vector

Table-4: Evaluation Metrics

Accuracy (AC) trpos +trneg
(trpos +trneg + flpos + flneg)

Precision (PC) trpos

(trpos + flpos)
Recall (RC) trpos
(trpos + flneg)

F1-Score (FS) 2 PCxRC
PC+RC
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3.8 Summary

The detailed description of the suggested ultralight CNN and FA-SGD
optimization strategy is presented in this chapter, along with its derivation, by
integration of “Fractional Calculus”, which transforms standard SGD to FA-
SGD. Additionaly Local Interpretable Model-Agnostics Explaination (LIME) is

also briefly discussed.

The following chapter shows the simulation and analysis result of suggested
ultralight CNN, along with the both the SGD, and FA-SGD optimization

strategies.
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Chapter 4

4.1

4.2

Simulations and Analysis

Introduction

The chapter outlines the implementation of the suggested ultralight CNN for
signature classification on benchmark CEDAR dataset, involving both the
standard SGD and fractional calculus based FA-SGD optimization methods. The
suggested model is implemented with learning rate of 0.001 and a batch size of
128 over 30 iterations after comprehensive hyperparameter optimization. Tuned
parameters are applied consistently to proposed CNN model through out entire
study, with sole variation being distinct alpha (« ) values in each study. The
results are segmented into four studies, each featuring variations in fractional

order values i.e. «.
Study-1I

Initially, the suggested ultralight CNN with optimal parameters, is implemented
with SGD. Afterwards, the model is trained with FA-SGD optimization
approach, by varying fractional order alpha (¢ ) from 0.1 to 0.5 to investigate
the impact of fractional order on performance criterion of ultralight CNN. The
performance overall is evaluated interms of test accuracy, bias and variance. The
suggested ultralight CNN shows reasonable performance with standard SGD,
achieving a test accuracy of 92.1% on Test Set, alongside low bias and variance
of 0.0218 and 0.3738 respectively, i.e. training and validation loss on Train and
Validation sets during model’s training. While FA-SGD optimization approach
depicts varied performance interms of bias, variance and test accuracy for
distinct alpha () values, achieving optimal performance at « =0.5 with test
accuracy of 97.2% and very low bias and variance of 0.0428 and 0.089
respectively. At « value of 0.2 model shows worst performance exhibiting low

bias and slightly higher variance, hence indicating the potential overfitting and
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poor generalization on unseen data. Explicitly, the FA-SGD optimizer achieved
accuracies ranging from 52.9% to 97.2%, with associated bias and variance
ranging from 0.0428 to 0.0873 and 0.089 to 0.4137 respectively. Table-5
provides detailed performance comparison of ultralight CNN, contrasting SGD
with FA-SGD algorithm with varying « values from 0.1 to 0.5. The accuracy,
loss plots and confusion matrices related with study-I are presented in Fig-[8-13].
The results of study-I indicate that SGD model performs better than FA-SGD
with ¢ values ranging up to 0.4, while only being outperformed by FA-SGD
with fractional order value of 0.5, achieving highest test accuracy and very low

bias and variance on training and validation sets.

4.3  Study-II

In this study, the suggested model is implemented with FA-SGD optimization
algorithm with « varying from 0.6 to 1.0, where fractional order value of 1.0
reduces FA-SGD to SGD operations. The performance of FA-SGD is further
improved with « values ranging from 0.6 to 1.0, reaching best test accuracy of
98% at « =0.7, with associated bias and variance as low as 0.0492 and 0.0126
respectively. The FA-SGD displays exceptional performance, except for one
instance at ¢ =0.6, achieving a test accuracy of merely 60.5%. The accuracies
for FA-SGD with « values ranging from 0.6 to 1.0 is 60.5% to 98%, while the
associated bias and variance ranges span from 0.0149 to 0.0492 and 0.0126 to
0.7426 respectively. A thorough critical evaluation of the suggested ultralight
CNN is tabulated in Table-6, with focus on its performance in conjunction with
FA-SGD at « values ranging from 0.6 to 1.0. The accuracy, loss plots and
confusion matrices related with study-II are shown in Fig-[14-18]. The learning
curves in Fig-8 and Fig-18 corroborate the claim that standard SGD and FA-
SGD operate similarly with alpha of unity. However, it should be highlighted
that FA-SGD 1is more effective in terms of achieving higher accuracy while

minimizing bias and variance.
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Fig-8: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNNwith SGD
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Training and Validation Accuracy with alpha=0.1
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Fig-9: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNN with FA-SGD (a=0.1)
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Training and Validation Accuracy with alpha=0.2
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Fig-10: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNN with FA-SGD (a =0.2)
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Training and Validation Accuracy with alpha=03
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Fig-11: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNN with FA-SGD (a =0.3)
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Training and Validation Accuracy with alpha=0.4
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Fig-12: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNN with FA-SGD (a =0.4)
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Training and Validation Accuracy with alpha=0.5
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Fig-13: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNN with FA-SGD (a =0.5)
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Table-5: Performance analysis of Study-I (Precision (PS), Recall (RC), F1-Score (FS) on
test set, along with Loss (L.S) and Accuracy (AC) on train, validation and test sets

Optimizer Label PC, RC and FS Training Set | Validation Set Test Set

PC | RC | FS | LS AC LS AC LS |AC
SO | Genuine [ 086 [ 100 [092 | 8 | 91% | g | 983% 0357 | i
S e | |45 001 00Ty 0455 | e o
s | e [0 [0 001005 7y | 147 | 0 |10 32
(iphac0) | Gensine [081 | 100 0507 6 | %52% | 1" | 88.1% 0231 | 7
asop | g [o71 [0 [058 {0000 7y | 077 |77 s |
(iphac0) | Gensine [ 095 | 100 [057] 8 | 983% | 0089 | 982% |0t | oy

Table-6: Performance analysis of Study-1I (Precision (PS), Recall (RC), F1-Score (FS) on
test set, along with Loss (LLS) and Accuracy (AC) on train, validation and test sets

Optimizer | Label PC, RC and FS Training Set | Validation Set Test Set

PC | RC | FS LS AC LS AC LS |AC
(iphac06) [ Gemine [ 055 | To0[071] 0 | 759% | 6 | 605% | 0788 | 5
s et [10[09 00005 || 09 g5 000 %
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Training and Validation Accuracy with alpha=0.6
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Fig-14: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNN with FA-SGD (a=0.6)
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Training and Validation Accuracy with alpha=0.7
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Fig-15: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNN with FA-SGD (a =0.7)
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Training and Validation Accuracy with alpha=0.8

0.9 B

08 &

Accuracy

0.7 B

0.6 B

~&— Training Accuracy
0.5 8 1 - 1 ! —@- Validation Accuracy

Epoch

Training and Validation Loss with alpha=0.8

=& Tiaining |oss
=8~ ‘alidation loss

Epoth

Test Set Confusion Matrix

True labels

Predicted labels

Fig-16: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNNwith FA-SGD (a =0.8)
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Tralning and Validation Accuracy with alpha=0.9
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Fig-17: Acc and Loss Plots, along with Confusion Matrix for

Ultralight CNN with FA-SGD (a =0.9)
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Training and Valldation Accuracy with alpha=1.0
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Fig-18: Acc and Loss Plots, along with Confusion Matrix for

Ultralight CNNwith FA-SGD (a =1.0)
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4.4

4.5

Study-11I

Study-III, presents the performance of ultralight CNN with « value beyond
unity, ranging up to 1.5. Table-7 provides detailed performance assessment of
suggested CNN with « values ranging from 1.1 to 1.5. Accuracy range for the
suggested model with ¢ value varying from 1.1 to 1.5 span from 52.2% to
97.9%, while the associated bias and variance range span from 0.0089 to 0.0156
and 0.1394 to 2.2135 respectively, as tabulated in Table-7. The accuracy, loss
plots and confusion matrix affiliated with Study-III are displayed in Fig-[19-23].
Optimal performance is achieved by the suggested model with fractional order
value of 1.3, attaining a generalized accuracy of 97.9%, bias and variance of
0.0097 and 0.2240. Overall, the model displays below average performance with
fractional order alpha ranging from 1.1 to 1.5 except two instances, at alpha

values of 1.3 and 1.5, where it converges to test accuracy above 90%.

Study-1V

Finally, the suggested ultralight CNN is implemented with ¢ values spanning
from 1.6 to 1.9. Table-8 depicts the performance assessment of ultralight CNN
with FA-SGD optimizer, varying the fractional order alpha from 1.6 to 1.9.
From Table-8 it is evident that the suggested CNN performs worst with alpha
values ranging from 1.6 to 1.9, not converging to even 60% accuracy in a single
instance, and exhibiting very high biases and variances. Test accuracy range
span from 48.2% to 55.3% for o values of 1.6 to 1.9, whereas bias and variance
range span from 0.0192 to 11.3214 and 2.4658 to 4.9981 respectively, which can
be inferred from Table-8. The accuracy, loss plots and confusion matrix
associated with Study-IV are presented in Fig-[24-27]. After the comprehensive
analysis of ultralight CNN with FA-SGD optimization approach across
fractional order variations, it is determined that the most favourable outcomes
occur with alpha rate of 0.7, achieving best test accuracy of 100% for

classification of handwritten signature images using benchmark CEDAR dataset.
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Fig-19: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNNwith FA-SGD (a =1.1)
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Training and Validation Accuracy with alpha=1.2
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Fig-20: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNN with FA-SGD (a=1.2)
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Fig-21: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNN with FA-SGD (a=1.3)
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Training and Validation Accuracy with alpha=1.4
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Fig-22: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNNwith FA-SGD (a=1.4)
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Fig-23: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNN with FA-SGD (a =1.5)
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Table-7: Performance analysis of Study-III (Precision (PS), Recall (RC), F1-Score (FS) on
test set, along with Loss (L.S) and Accuracy (AC) on train, validation and test sets

Optimizer | Label PC, RC and FS Training Set | Validation Set Test Set

PC|RC|FS | LS | AC | LS | AC | LS | AC
(alil‘;fjﬁ) g:;ﬁffe (1):(5)(2) (1):8(1) 8:2; 0.0156 | 99.4% | 2.2135 | 49.6% | 2.103 5;;2
(alil‘;fjg) g:;ﬁffe (1):(6)2 ?:gg 8:2? 0.0089 | 99.7% | 0.5095 | 75.7% | 0.450 7;;4
(alil‘;fjg) g:;ﬁffe (1):(9)(6) (1):(9)(6) 8:32 0.0097 | 99.9% | 0.2240 | 97.6% | 0.156 9;;9
(afgfjﬁ) gg;ﬁffe (1):28 (1):88 8:‘7‘; 0.0137 | 99.6% | 0.6678 | 67.2% | 0.639 6;;7
(afgfjg) g:;ﬁffe (1):8? ?:gg 8:22 0.0149 | 99.7% | 0.1394 | 94.6% | 0.140 | 95%

Table-8: Performance analysis of Study-1V (Precision (PS), Recall (RC), F1-Score (FS) on
test set, along with Loss (LLS) and Accuracy (AC) on train, validation and test sets

Optimizer Label PC, RC and FS Training set Vallsd:ttlon Test Set
PC RC | FS LS AC LS |AC| LS | AC
FA-SGD Forged | 0.00 | 0.00 | 0.00 0.0192 99.4 | 4.998 | 49. 4761 50.7
(alpha=1.6) | Genuine | 0.51 | 1.00 | 0.67 | % 1 9% | %
FA-SGD Forged 1.00 | 0.07 | 0.13 1.5942 55.5 | 2.465 | 51. 7351 55.2
(alpha=1.7) | Genuine | 0.54 | 1.00 | 0.70 | % 8 5% | %
FA-SGD Forged | 0.00 | 0.00 | 0.00 | 11.321 | 49.9 | 3.301 | 50. 3.430 48.2
(alpha=1.8) | Genuine | 0.48 | 1.00 | 0.65 4 % 1 4% |~ %
FA-SGD Forged | 0.50 | 1.00 | 0.67 50.2 | 2.750 | 50. 50.2
(alpha=1.9) | Genuine | 0.00 | 0.00 | 0.00 7.7622 % 7 8% 2.783 %
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Fig-24: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNN with FA-SGD (a=1.6)
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Training and Validation Accuracy with alpha=1.7
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Fig-25: Acc and Loss Plots, along with Confusion Matrix for
Ultralight CNN with FA-SGD (a =1.7)
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Training and Validation Accuracy with alpha=1.8
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Fig-26: Acc and Loss Plots, along with Confusion Matrix for

Ultralight CNN with FA-SGD (a¢ =1.8)
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Training and Validation Accuracy with alpha=1.9
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Fig-27: Acc and Loss Plots, along with Confusion Matrix
for Ultralight CNN with FA-SGD (a=1.9)
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4.6

4.7

Discussion

This study addresses challenge of signature verification by combining ultralight
CNN model with novel FA-SGD optimization algorithm. Following a thorough
performance investigation of the suggested model using standard SGD and novel
FA-SGD optimization strategy, it can be inferred that Ultralight CNN model
coupled with FA-SGD achieves best test accuracy of 98% with low bias and
variance at ¢ value of 0.7. The best computed hyperparameters are incorporated
after extensive hyperparameter tuning to execute lightweight CNN model with
above-mentioned optimization strategies which include SGD and FA-SGD with
varying alpha on the benchmark CEDAR dataset. Combined learning cuve for

each study, focusing on model’s loss and accuracy is illustrated in Fig-[28-43].

Comparison with existing Benchmark Models

The suggested CNN model demonstrates exceptional performance to accurately
classify genuine and forged signatures. The comparison of the suggested
ultralight model with existing benchmark models interms of test accuracy on
benchmark CEDAR dataset is tabulated in Table-9. The performance
comparison demonstrates that the proposed lightweight model based on novel
FA-SGD optimization strategy outperforms existing SOTA models on
benchmark CEDAR database interms of test accuracy, computational efficiency

and interpretability.
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Table-9: Comparative Analysis with existing benchmark models on CEDAR

database
Authors Technique Accuracy(% )
[44] Inverse Discriminative Network (IDN) 95.32
CNN + HOG + LSTM 93.7
[49] CNN + HOG + KNN 91.3
CNN + HOG + SVM 94.1
[60] FC-ResNet 96.21
[61] VGG-16 + One Class Support Vector Machine (OC- 91.3
SVM)
Proposed Lightweight CNN + FA-SGD 98

4.8  Predictive Strength

The proposed approach accurately distinguishes between signatures and
forgeries, thus demonstrating substantial predictive capabilities. Transparency is
very essential to ensure trust and reliability in biometric domain, hense this
study employs LIME to offer insights in to the decision making process of the
suggested Ultralight model for verification of handwritten signatures. Basically
the LIME approach decodes decision making process of ML models by
highlighting important features in image. By critically visualizing the
highlighted portions of the image, it becomes evident that which region is
essential for accurate classification. Fig-32 depicts few predictions made by the
suggested ultralight CNN model and the subsequent interpretable explanations
generated by LIME on unseen images of CEDAR dataset.
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Fig-32: Combined Learning Curve visualization of training accuracy trends for Study-11
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Fig-35: Combined Learning Curve visualization of validation loss trends for Study-II
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Fig-36: Combined Learning Curve visualization of training accuracy trends for Study-III
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4.9
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Fig-44: Interpretable Predictions by Ultralight CNN Architecture

Summary

This chapter contains the simulations of the proposed strategy for signature
classification on benchmark CEDAR dataset, after the selection of tuned
hyperparameters, which are consistently applied to the proposed model
throughout entire study. Also includes the performance analysis of suggested
model with the standard SGD and the novel FA-SGD in terms of Precision,
Recall, Accuracy, and F1-Score. The next chapter reviews the results obtained in

Chapter 4 in relation to original problem.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Introduction

This chapter outlines conclusions deduced from suggested CNN model along

with FA-SGD optimization strategy for signature verification task, discussed in

the previous chapters. Apart from conclusions, it also provides guidelines to

scholars for future endeavours. They can apply proposed method or variations in

it for various image classification tasks.

5.2 Conclusions

The main aim of conducted research is to analyze and accentuate the abilities of

fractional calculus based FA-SGD optimization algorithm and the ultralight

CNN model for authentication of handwritten signatures. The conclusions

deduced from research are as follows.

The combination of ultralight CNN model and fractionally accelerated
SGD optimizer has demonstrated notable performance in signature

verification task.

Ultralight CNN model has resulted in significant decrease in
computational resources due to its simple architecture as opposed to
complex architectures mentioned in the literature, making it a suitable

option to be deployed in resource-limited devices.

The robust capabilities of fractional calculus and DL is highlighted for

achieving accurate and efficient classification of signatures.

It is depicted that the suggested CNN model with FA-SGD optimizer,
learning rate of 0.001, alpha value of 0.7 and with the batch size of 128
has outperformed the present SOTA models on benchmark CEDAR

database.
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This study offers robust, reliable, efficient, resource friendly and accurate

model for classification of handwritten signatures.

5.3 Future Work

The vital research direction is to merge FA-SGD optimizer with various

other deep learning models for image classification tasks.

The proposed ultralight CNN model can be redesigned to further reduce
computational complexity by reducing no of filters, employing smaller
Kernel size, employing mobile inverted bottleneck blocks to reduce
dynamic separable convolutions with out compromising on feature
extraction, employing knowledge distillation technique, and by

employing model quantization and weight sharing.

The proposed FA-SGD optimization strategy can be redesigned using
Fractional Calculus-based concepts (fractional-order gradients), as it
employs fractional order derivatives; thus, it can potentially provide

faster convergence and more accurate imageclassification.
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