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ABSTRACT 

Biometric authentication systems have evolved significantly during recent times, with 

signature verification still used in conjunction with other modalities, including, 

fingerprint, facial recognition, and iris scan for identity verification purposes. The aim of 

signature verification is to determine whether the given signature is real or not, via 

comparison with reference signature stored in the database. Signature verification is 

categorized in to two types, online which involves verifying signatures in real-time, and 

offline which involves verifying signatures from static image. Offline signature 

verification is a challenging task, since real-time information about signing process is not 

available, and the most important drawback associated with them is intra-class 

variability. In the literature, various deep learning techniques have been employed. These 

architectures required a substantial time and computational resources due to their 

complex architectures. This study introduces a writer-independent offline system based 

on explainable lightweight convolutional neural network, which uses generalized 

fractional order based optimization strategy. The proposed approach leverages the 

strength of lightweight CNN architecture to reduce computational resources, and 

incorporates explainable framework to enhance transparency, as opposed to established 

models which lack in computational efficiency and interpretability. Moreover the 

suggested model outshines current state of the art (SOTA) architectures on benchmark 

CEDAR database with 98% classification accuracy, and is also evaluated interms of F1-

score, precision, and recall. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

This chapter deeply elaborates the need, importance, and valuable applications of 

biometrics and its modes. It also describes signature verification along with its 

modes, as well as the advantages associated with it, such as its versatility and 

ease of implementation. This chapter further discusses solutions to signature 

verification, which include various artificial intelligence techniques. This 

chapter also discusses various challenges associated with signature verification 

task and emphasizes on deep learning for signature verification tasks, especially 

the convolutional neural networks which offers better accuracy in contrast to 

traditional machine learning approaches. This chapter also necessitates the 

development of lightweight convolutional neural network model in order to cater 

to computational complexity and reduce resource intensive requirements and 

training time. Finally, an introduction of the proposed light weight convolutional 

neural network for signature verification task is presented. 

1.2 Inspiration and Background 

Biometrics deals in automatically recognizing individuals based on physical or 

behavioral traits, such as facial features, fingerprints, iris patterns, hand, voice, 

gait, and signatures to automatically recognize and identify individuals [1]. 

Biometrics finds tremendous applications in various fields and industries, 

including Identity Verification [2], Time and Attendance Tracking [3], Forensic 

Identification [4], Healthcare [5], Financial Services [6], Government Services 

[7], Education [8] and Customer Services [9], etc. One mode of biometric 

authentication is via signature verification, which involves analyzing and 

comparing the unique characteristics of individual’s handwritten signatures to 

authenticate their identity. 
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Signature Verification process determines, whether the given signature matches 

known or reference signature for particular individual. It is used for 

authentication and fraud detection ensuring that the signature is genuine and 

made by authorized person. Signature verification typically involves comparing 

various features, e.g., stroke patterns, shape, size, pressure, and timing, with a 

reference signature stored in a database. There are two modes associated with 

verification of signatures, “offline” and “online”. Offline verification mode 

involves analyzing a static image, without any real-time interaction with the 

signer i.e., captured on physical documents, such as paper forms, contracts, or 

checks, while online mode involves capturing the signature dynamically as it is 

being written, often using specialized hardware such as digitizing tablets or 

touchscreens. This mode allows for the analysis of additional features such as 

pen pressure, velocity, and acceleration, providing more detailed information for 

authentication. 

The main advantages of signature verification over other biometrics are its 

versatility and ease of implementation in various scenarios. Signature 

verification does not require direct contact with a sensor or device, unlike 

fingerprints or iris scans. This non-intrusive nature makes it more user-friendly, 

both offline and online signature verification can be seamlessly integrated into 

existing document-based workflows, such as signing contracts, authorizing 

transactions, or verifying identity. This convenience makes it ideal for various 

applications, from banking to legal documentation. Implementing signature 

verification systems, particularly offline methods, can be relatively low-cost 

compared to biometric systems that require specialized hardware like fingerprint 

scanners or iris readers. Offline signature verification relies on digital scanners 

or cameras, which are often more affordable and widely available. Signature 

verification systems can adapt to different use cases and scenarios. Offline 

signature verification, for example, allows individuals to verify signatures on 

paper documents, while online verification enables real-time authentication in 

digital environments such as e-commerce platforms or online forms. Overall, the 

flexibility, convenience, and cost-effectiveness of signature verification, in both 
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offline and online modes, make it a preferred choice for many applications, 

offering advantages over other biometric modalities in certain scenarios. 

Solutions for the recognition and verification of signatures can be classified as, 

Machine Learning (ML) techniques, that rely on manually crafted feature 

extraction mechanisms [10], and deep learning methods [11, 12] that involve 

neural networks such as Convolutional Neural Networks (CNNs) [13, 14] or 

Recurrent Neural Networks (RNNs) [15, 16], to learn hierarchical 

representations of signatures directly from raw pixels. These models 

automatically gather discriminative features from signatures, and can potentially 

achieve higher accuracy compared to traditional handcrafted feature-based 

methods [10]. Deep learning (DL) methods are regarded as very promising due 

to their mindblowing capability in image recognition and detection [17]. Hand-

crafted techniques for the extraction of features include, Discrete cosine 

transform (DCT), Local Features (Speeded-Up Robust Features (SURF), Scale-

Invariant Feature Transform (SIFT), Local Binary Patterns (LBP), etc.) [18, 19], 

Global Features (Shape Matrices, Invariant Moments etc.) [20], Gaussian 

Mixture Model (GMM) [21], Curvelet transform [22], Contourlet Transform 

(CT) [23], and Gabor wavelet [24], etc. While DL techniques involve neural 

networks to extract features, autonomously discovering useful representations or 

features within the data without the need for manual annotation or supervision 

[12, 25]. 

DL is branch of ML that focuses on neural networks and their ability to learn 

and make decisions that replicate the brain of human being, which consists of 

neurons, each receiving an input signal, processing it, and producing an output 

signal and than transmitting it to next one. Similarly in neural networks, artificial 

neurons (nodes) which are termed as perceptron receive inputs, apply an 

activation function, and produce an output signal which is moved on to the 

subsequent layers. Fig-1 provides a general overview of machine learning and 

deeplearning, indicating handcrafted feature extraction mechanisms in machine 

learning while the deep learning approach automatically extract features via 
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deep neural network. 

 

 

 

Fig-1: General overview of Machine Learning vs Deep learning 

 

 

Now a days DL has surfaced as pivotal tool in pattern recognition, Natural 

Language Processing (NLP), and Computer vision, etc. One of the deep learning 

approach is CNNs, which are tailored for processing data in structured patterns 

e.g., images and videos. CNNs compromise of series of convolutional, pooling, 

and fully connected (FC) layers, responsible for extraction of useful featues, 

reduction in dimentionality, and classification purposes, Where FC layers 

receives feature maps as a one-dimensional flattened array. Block diagram of 

simple CNN architecture comprising of two layers is presented in Fig-2. 
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Fig-2: Block diagram of CNN 

 

Convolutional Neural Networks (CNNs) were first introduced in the late 1980s. 

In 1998, Yann LeCun, along with his collaborators, proposed the pioneering 

LeNet-5 architecture, which was one of the earliest implementations of CNNs, 

achieving SOTA performance on MNIST database, a dataset comprising of 

handwritten digits. LeNet-5 architecture comprised of three convolutional layers 

with filter size of 5x5, two average pool and two FC layers, with final FC layer 

comprising of 10 neurons, representing digit classes from 0 to 9. CNN 

architecture have undergone various modifications from 1989 until today, which 

include structural reformulation, regularization, parameter optimizations, etc. 

LeNet-5 and subsequent developments in CNNs significantly contributed in 

advancing the realm of pattern recognition. Since then, CNNs have evolved 

significantly, with refinements in architectural designs, training techniques, and 

applications across diverse fields. 

Up to date, several CNN architectures have been introduced, each having unique 

design characteristics and achieving SOTA performance on various image 

processing tasks. These architectures have significantly advanced the field of 

artificial intelligence and have been instrumental in solving challenging 

problems in image recognition, object detection, segmentation, and more. Some 
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of the notable CNN architectures include AlexNet, ResNet, Visual Geometry 

Group (VGG), Inception and High-resolution Network (HRNet) [26-31], etc. 

Table-1 illustrates some of the CNN architectures, taking in to consideration the 

number of convolutional layers, pooling layers, strides, kernel size, and 

activation functions utilized in these architectures starting from AlexNet to much 

deeper networks such as Inception-ResNet-v2 and ResNext-50. 

 

 

Table-1: Overview of CNN architectures 

Model Year Variants Architecture kernel 
size 

Strides      Activation 

     Function 

AlexNet 2012  

       ------ 

Convolutional layers: 5,            

Pooling layers: 3, 
Fully Connected layers: 3 

11x11 

5x5  
3x3 

4 Relu, Softmax 

VGG 2013 VGG-16       

VGG-19 

Convolutional layers:13,16 

Pooling:5 

Fully Connected: 3 

 

3x3 

1 Relu, Softmax 

ResNet 2015 ResNet-18, 
34, 50,101, 

110,152,164 

Convolutional layers:17 up to 166 in 
ResNet-164 

Pooling layers: 2  

Fully connected: 1  

 
7x7 

1x1 

 3x3 

2 
  

Relu, Softmax 

Inception 2014 Inception-v1, 
v2, v3,v4, 

Inception-

ResNet-v2  

59 convolutional layers (57 in stem 
and inception modules), 15 pooling, 

6 fully connected layers in inception-

v1 up to 244 convlolutional layers in 

Inception-ResNet-v2 

1x1        
3x3        

5x5        

1x7        

7x1        
1x3        

3x1 

2,1 
  

  

Relu, Softmax 

ResNeXT-50 2017  
 

       ------ 

Convolutional layers: 53 
Pooling layers: 2         

 Fully Connected: 1 

 
1x1        

3x3 

7x7 

2 Relu,Softmax 

 

 

A lot of work has been done on Signature verification, Signature verification just 
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like other biometric verification is performed by various means, traditional 

machine learning approaches which include preprocessing, handcrafted feature 

extraction techniques for feature extraction, feature learning and then 

classification via support vector machines or K Nearest neighbour (KNN) to 

characterize signature as genuine or  forged, Fully connected feed forward 

neural network (FCFNNs) also known as Artificial Neural Network  can also be 

utilized for feature extraction along with it  KNN or SVMs for classification. 

CNNs which are specially designed to handle grid like structures, have become 

very popular in image and video processing, can also be utilized , and have 

demonstrated SOTA performance in signature verification, outperforming ML 

and other deep learning methods. Transfer Learning approaches  utilizing pre-

trained models, such as VGG-16, Inception, ResNet, etc. which were initially 

trained on large image datasets, are fine-tuned by applying certain modifications 

are also utilized for signature verification tasks. RNNs designed to handle time-

series or ordered data, have also been explored recently for signature 

verification, but their performance is not up to the mark as compared to CNNs. 

Hybrid approaches utilizing the strength of CNNs and RNNs have also shown 

promising results. The choice among all these methods hinges upon specific 

application requirements, available resources, and the desired level of accuracy. 

1.3 Problem Statement 

Verification of handwritten signatures is difficult task to accomplish due to 

human hand writing which varies over time hence individuals may exhibit 

differences in signatures resulting in complications to establish single reference 

model. Forgeries or imitations by anyone trying to trick the verification 

mechanism are possible with signatures, furthermore signature verification 

system requires large no of genuine samples for training to ensure good 

generalization on data which is never seen before by model. Since the access to 

genuine signatures is limited due to privacy concerns while forgeries are 

common hence leading to imbalances in data. Complexities can also be 

introduced by low-quality or low-resolution samples, thus introducing noise that 
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leads the model to learn from noisy gradients, resulting in reduced accuracy and 

an increased error rate. To tackle these problems successfully, SOTA artificial 

intelligence (AI) based algorithms must frequently be developed, in addition to 

this large and varied datasets containing signatures of varied languages, 

background and  hand writing styles should be gathered for training purposes. 

Moreover, to enhance robustness of systems devoted to handwritten signature 

verification, techniques such as data augmentation must be employed to handle 

variability to input data. The computational complexity associated with existing 

models is also one of the key problems, since most of CNN models are resource-

intensive, require substantial training time and computational resources, this 

necessitates the development of lightweight CNN model, having simple 

architecture and less parameter count. 

This study proposes an ultralight CNN for verification of handwritten signatures, 

having a customized feature extraction mechanism, incorporating several 

convolutional, pooling and normalization layers. An interpretable artificial 

intelligence (XAI)-based local interpretable model-agnostics explanation 

(LIME) technique is also utilized to offer insights into the predictions by the 

suggested model. Data augmentation is exploited in order to enhance the 

suggested model’s ability to generalize effectively for varied signature samples. 

The architectures studied previously remain quite laudable, but are very complex and 

resource intensive as opposed to the proposed strategy which seems to be 

resource friendly. In addition to this, the fractional calculus based optimization 

strategy is adopted, i.e. the fractional stochastic gradient descent (FSGD) which 

has shown promising results in recommender systems disciplines [32-34], 

speeding up the convergence of SGD by adaptively adjusting the learning rate. 

Recently introduced generalized version of FSGD, i.e., GFSGD [35] is also 

implemented to solve recommender system problem [36], which provides 

greater fractional order range in comparison to FSGD, where it lies between 0 

and 1. 
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1.4 Goals and Objectives 

 To accurately differentiate between signatures and forgeries for secure and 

reliable identity verification. 

 To employ a customized ultralight CNN variant specifically designed for 

signature verification, delivering a thorough analysis through its capacity for 

autonomous feature extraction and learning. 

 To explore the impact of fractional calculus in enhancing the robustness and 

accuracy of signature verification. 

 To accelerate the speed of convergence by exploiting novel FA-SGD 

optimization algorithm for verification of signatures. 

 To investigate LIME approach for generating interpretable predictions by 

suggested ultralight CNN, offering transparency and reliability in signature 

verification domain. 

1.5 Thesis Organization 

Chapter 1: provides a conceptual overview of the entire thesis, consisting of 

research gaps, statements, and definitions that clearly define research goals and 

hypotheses, as well as background and motivations for the determination of 

problematic issues and research problem definitions. 

Chapter 2: provides detail of the work done so far by discussing the advantages 

and disadvantages of already suggested methods in literature. 

Chapter 3: describes the methodology of conducted research by elaborating the 

suggested ultralight model along with FA-SGD optimization strategy. It also 

contains the pseudocode of the proposed model. 

Chapter 4: provides simulation results in terms of tables and learning curves for 

a detailed comparison of the suggested ultralight CNN with the standard SGD 

and the novel FA-SGD optimization algorithm using benchmark CEDAR 

dataset. 
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Chapter 5: holds the conclusions deduced from the conducted research work, 

also includes future initiatives which can be taken for the extension of conducted 

research.. 

 

 

.
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Chapter 2 

LITERATURE REVIEW 

 

2.1 Introduction 

This chapter includes AI models deployed by various authors for task of 

signature verification on benchmark datasets. Some of the previous work 

regarding signature verification is described below. Additionally, this chapter 

also includes our contributions and a summary at the end. 

2.2 Previous Work 

In recent years, significant strides have been made in developing classifiers for 

signature recognition and verification, using various machine learning and deep 

learning algorithms. Deep learning approach has emerged powerful, and has 

demonstrated notable improvement for signature verification tasks interms of 

accuracy on various datasets. Some of the previous work has been described 

below. 

Stauffer, M., et al. [37] integrated both the local and global changes utilizing 

Dynamic Time Warping, previous methods regarding this employ global 

matchings where the entire graph structures representing handwritten entities 

were compared directly. Sharif, M., et al. [38] proposed an offline signature 

verification system utilizing Genetic algorithm for feature selection from 

extracted set of features and Support Vector Machines for classification. 

Radhika, K.S., and Gopika, S. [39] both modes to form an integrated approach. 

In order to explore the applications of shape and size based features, i.e. 

geometric, Chandra, S., and Maheskar, S. [40] proposed an offline verification 

system based on Artificial Neural Network. 

Verification system based on 15 global features and remaining extracted from 

freeman chain Code is presented in [41], while utilizing  k-nearest neighbour  for 

classification and was tested on MCYT dataset. Dey, Sharma, N., et al. [42] 
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presented a framework known as Siamese Network consisting of identical 

subnetworks which work by minimizing and maximizing Euclidean distance 

between similar and dissimilar pairs. Since forgeries are not available in real 

world scenarios to train the model, Shariatmadari, S., et al. [43] suggested deep 

learning based approach which aimed at capturing local variations with in 

signatures and model was trained on single class, i.e. genuine. Wei, P., Li, H., 

and Hu, P. [44] introduced an inverse discriminative network employing four 

weight-shared streams to extract features. Recent advancements in signature 

verification include work such as recurrent neural networks [16] based approach, 

graph neural network [45] utilizing graph structures to learn representations, 

combining CNNs with Capsule Networks [46] and encoder-decoder architecture 

for self-supervised learning,  i.e.“SURDS” [47]. 

Sanmorino, A., and Yazid, S. [48] advocated for Artificial Neural Networks and 

hidden Markov models (HMM) for verification, considering factors like data 

availability and budget. To enhance feature extraction stage in offline 

verification Alsuhimat, F., and Mohamad, F. S. [49] proposed hybrid method 

combining features from CNN and HOG and used Long Short-Term Memory 

(LSTM), K Nearest Neighbour (KNN), and SVM as classifiers. Hybrid 

architectures [50] combining CNN and RNN, utilizing strength of CNN for 

extraction of features, and RNNs for gathering long range dependencies from 

signature image have also been popular these days. Researchers have also 

worked on feature fusion, integrating  features from both writer independent and 

writer dependent classifiers earlier work done regarding this was hybrid WI-WD 

[51] scheme, later work included further investigation of robustness on GPDS 

signature database [52]. 

Signature verification system requires significant amount of training samples, 

contradicting this notion Kao, H.-H., and Wen, C.-Y. [53] indicated that 

accuracy up to 99.96% can be obtained by utilizing single genuine signature for 

training through local features. Hirunyawanakul, A., et al. [54] compared 

accuracies from transfer learning using pretrained VGG-16, and AlexNET with 
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CNN developed from scratch and traditional ML approach, transfer learning 

approach outperformed others with 100% accuracy. Mitchell, A., et al. [55] 

obtained accuracy of 86.7% using pre-trained VGG-16 on balanced dataset that 

underwent through data augmentation. Mersa, O., et al. [56] obtained EER of 

3.98% on MCYT-75 utilizing pretrained weights of ResNet-8. Jampour, M., et 

al. [57] integrated the regularized Capsule Networks (CapsNet) with ResNet, 

utilizing feature extraction strength of ResNet, and positional understanding 

capabilities of CapsNet, the integrated approach lead to accuracy of 99.85% on 

CEDAR and 99.24% on MCYT. 

In 2019 Jahandad, S., et al. [58] used pretrained models, Inception-v1 and 

Inception-v3 for signature verification on GPDS Synthetic, and achieved 83% 

validation accuracy using samples from 20 users via Inception-v1 as opposed to 

75% through Inception-v3, which indicated overfitting of ultradeep 42 layered 

Inception-v3. In 2019 Gumusbas, D., and Yildirim, T. [59] demonstrated that 

Capsule Network significantly outperform CNN-based model for offline 

signature verification, achieving higher accuracy with minimal data, and 

maintaining effective feature extraction even at lower resolution. In 2023 

Muhtar, Y., et al. [60] reduced computational cost and parameter size of  

ResNet-18 by fusing it with convolutional block attention modules with this 

approach accuracy was increased to 96% from initial 95% on CEDAR dataset. 

In 2023 Tanko, O., et al. [61] achieved accuracy of 91.3% and absolute error rate 

of 7.45% on CEDAR the proposed method utilized VGG-16 for feature 

extraction along with it SVM was used as classifier. 

Researchers have made significant strides to speed up CNNs, that is divided into 

three categories which include, optimization implementation [62], which enables 

learning in few iterations, binarization and parameter quantization [63] and 

architectural simplification [64] . He, Y., et al. [65] introduced new channel 

pruning technique to quicken deep CNNs, the proposed approach speeded up 

VGG-16 five times with only 0.3% increment in error. Taking into consideration 

the structural simplicity a cutting-edge ultralight convolutional neural network 
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for efficient verification of handwritten signatures is presented in this study, 

along with it a novel fractionally accelerated stochastic gradient decent (FA-

SGD) optimization strategy is employed, inspired by its effectiveness in solving 

recommender systems task [36], has prompted us to investigate its capabilities in 

image classification, specifically in signature verification. The suggested 

ultralight CNN with novel FA-SGD optimization approach has shown significant 

performance as compared to the SOTA models by using simple architecture, 

innovative pooling strategy and unexplored optimizer. 

2.3 Our Work 

The task of signature verification for authentication brings us to a model, which 

verifies the signature in two classes i.e., genuine or forged. The summary of our 

contributions are: 

 A novel Ultralight CNN architecture is proposed, with a less number of 

layers hence less computational cost. 

 Robust CNN model, incorporating data augmentation and customized 

feature extraction mechanism via Channel split dual attention and mixed 

pooling. 

 To enhance the speed of convergence to achieve optimal parameters by 

exploiting novel FA-SGD optimizer for classification of signature 

images. 

 LIME is exploited to provide explainable predictions. 

 The ultralight CNN outperforms already present SOTA models in 

various evaluation metrics on benchmark CEDAR database. 

2.4 Summary 

This chapter has provided detailed overview of Literature on signature 

verification. The next chapter provides the methodology of conducted research  
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Chapter 3 

Proposed Methodology 

3.1 Introduction 

This chapter provides a comprehensive overview of the suggested ultralight 

CNN model for verification of handwritten signatures, based on generalized 

fractional optimization. The methodology consists of several stages, including: 

 Dataset description 

 Data preprocessing 

 Lightweight CNN model development 

 Evaluation metrics selection 

 LIME 

 FA-SGD 

3.2 Dataset discription 

CEDAR database comprise of offline signatures, having signatures from 55 

distinct signers, with each individual contributing 24 authentic samples, and 24 

meticulously crafted forgeries. Therefore accommodating 2640 signature 

samples. Each signature in CEDAR database is scanned at 300 dpi resolution, 

than converted to binary image using a grayscale histogram. Every signature was 

produced by using black pen. In this study we have splitted dataset in to train, 

validation, and test sets. Seventy percent of samples are allocated to training set, 

and remaining thirty percent are split equally (15% each) for the validation and 

test sets. Fig-4, presents some samples from CEDAR database utilized in the 

study. 
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Fig-3: Graphical Workflow of the Proposed Study 

3.3 Data Preprocessing 

Preprocessing is a crucial phase [66] in preparing raw data to be effectively used 

by machine learning algorithms. To ensure the effectiveness of machine learning 

strategy, data preprocessing needs to be done adequately for learning latent 

features from signature images. To make our study robust and adaptable, several 

pre-processing steps are exploited on the benchmark CEDAR database for 

reducing variability in image quality and size, enhancing discriminative power 

of signature images, and improving generalization ability of deep learning 

model. These preprocessing steps include: 

 Splitting database into train set, validation set, and test set. 

 Creating data generators for efficient loading, and augmentation of 

images. 

 Resizing images to a fixed size of (224, 224) pixels. 

 Normalizing or transforming pixel values to fall in range [0, 1]. 

 Converting class labels to categorical values. 

 Performing data augmentation on the training set, including horizontal 
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flipping of images. 

Table-2, shows the data pre-processing steps exploited in the study. 

 

Fig-4: Sample Images from benchmark CEDAR database at random 

 

3.4 Ultralight CNN 

CNN has been exploited in computer vision related problems because of its 

exceptional capabilities in dimentionality reduction, and feature extraction, 

enabling effective image analysis and processing. Given their exceptional 

performance in feature extraction and dimentionality reduction, CNNs have 

emerged as a pillar in computer vision, driving breakthroughs in image 

classification, segmentation and various other image analysis tasks. This study 

suggests an ultralight CNN for handwritten signature’s verification. 

Architectural depiction of suggested architecture is presented in Fig-5. The 

architecture comprise of four blocks, first three comprise of three convolutional 

layers, having custom built dynamic separable convolution with default filter size of 3x3 

for depthwise convolution, with 16 filters in first block and 32 in second and third blocks. 

Depthwise convolution is followed by pointwise convolution which performs channel-

wise convolution and generate final output. All first three blocks comprise of relu 

activation function to introduce non-linearity, batch normalization to normalize the 

outputs of activation function, max pooling layer that downamples the output of 

batch normalization having a pool size of 3x3 and strides of 2x2 and a drop out 

layer that randomly drops 20% of output units to prevent overfitting. Custom 
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built channel split dual attention is also incorporated in third block which 

comprise of two convolutional layers, i.e. avg and max. Avg layer generates 

attention weights that focuses on the average features, while max layer generates 

attention weights that focuses on the most important features. The output of both 

is fed in to sigmoid activation function for normalization of attention weights. 

The input tensor is then element-wise multiplied with attention weights to 

generate weighted inputs. The weighted inputs are concatenated along the 

channel axis, combining both attention stream outputs. Fourth block comprises a 

flatten layer, followed by two FC layers with 128 and 64 units respectively, 

using ReLU activation and dropout with a rate of 0.2. Last one is output layer, 

i.e., Softmax with two units, representing the two signature classes. The last 

block comprise of a flatten layer followed by two FC layers, where first FC has 

128 units along with batch normalization, dropout and a relu, and second FC is 

the output layer, consisting of 2 units corresponding to no of classes in the 

classification task, which in our case are genuine class and forged class, having 

SoftMax as activation operator to produce class probabilities. The class with the 

highest probability output by the softmax function will be considered as 

predicted class. The structural representation of  ultralight CNN model is 

presented in Fig-6 and the detailed overview of parameters accommodated by 

proposed model for signature classification on benchmark CEDAR dataset is 

tabulated in Table-3 
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Table-2: Data Preprocessing steps 

Input: Database with full_org and full_forg directories. 

 The dataset is loaded from the "/content/signatures" directory. 

 Check class distribution for forged and genuine signature images. 

 Check for null-values residing in dataset. 

 Dataset is split into train, validation, and test with ratio of  7:1.5:1.5 by using 

train_test_split function from Scikit-learn. 

 Data generators are created for all three using the ImageDataGenerator from 

Keras. The generators are used to load and preprocess the images in batches. 

 Data augmentation is applied using ImageDataGenerator on train, test and 

validation sets. The augmentation includes horizontal flipping of images. 

 Following parameters are specified for train, validation and testing sets 

through ImageDataGenerator: 

 Color Space: ‘rgb’ 
 Class Mode: ‘Categorical’ 
 Shuffle: ‘True’(train, validation), ‘False’(test) 
 Image Shape: (224,224) 
 Batch Size: 16 

 Generated data generators to provide preprocessed images to model 
in batches  

 

3.5 Evaluation Metrics 

The suggested ultralight model’s performance is accessed via multiple 

evaluation metrics, i.e. Recall, Precision, F1-score and Accuracy enumerated in 

Table-4. Where trpos refers to true positives which are correctly predicted 

positive instances and trneg refers to correctly predicted negative instances, i.e. 

true negatives, where as flpos and flneg represent false positives and false 

negatives, respectively. Which are incorrectly predicted positive and negative 

instances respectively. 

3.6 Local Interpretable Model-Agnostics Explanation (LIME) 

ML models are regarded as black boxes [67-69] by the researchers, due to their 

decision making processes being difficult to understand and interpret, hence 

lacking transparency and explainability. Therefore, the deployment of 

explainable artificial intelligence (XAI) [67] is essential in order to explain their 
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inner workings to provide understanding of model’s output. Regarding this a 

powerful technique, i.e. LIME is used, which explains the predictions made by 

machine learning models in a transparent and interpretable way . It is an 

explainable artificial intelligence (XAI) [67] technique which explains the 

behaviour of a ML model  for a specific instance and does not employ any back-

propogation or model specific steps, making it a model-agnostic approach  [70, 

71]. Fig-7 illustrates visual representation of LIME workflow. LIME technique 

interprets the decision making process of AI models, and effectively bridges the 

gap between complex neural network architectures and explainability by 

explaining the predictions of complex models by utilizing a local surrogate 

model [72] 

 

 

Fig-5: Proposed Ultralight Architecture’s Block diagram 
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Fig-6: Structural Depiction of Ultralight CNN Architecture 

 

Table.3: Architecture Parameters of Ultralight CNN model 

Layer (type) Output-Shape Parameters 

Separable Dynamic Conv-2D (None,222,222,16) 91 

Activation (None,222,222,16) 0 

Batch-Norm (None,222,222,16) 64 

Max-Pooling2D (None,110,110,16) 0 

Drop-out (None,110,110,16) 0 

Separable Dynamic Conv-2D-

1 

(None,108,108,32) 688 

Activation-1 (None,108,108,32) 0 

Batch-Norm-1 (None,108,108,32) 128 

Max-Pooling2D-1 (None,53,53,32) 0 

Drop-out-1 (None,53,53,32) 0 

Separable Dynamic Conv-

2D-2 

(None,51,51,32) 1344 

Activation-2 (None,51,51,32) 0 

Channel Split Dual Attention (None,51,51,64) 18496 

Batch-Norm-2 (None,51,51,64) 256 

Max-Pooling2D-2 (None,25,25,64) 0 

Drop-out-2 (None,25,25,64) 0 

Flatten (None,40000) 0 

Dense (None,128) 5120128 

Activation-3 (None,128) 0 

Batch-Norm-3 (None,128) 512 

Drop-out-3 (None,128) 0 
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Dense-1 (None,2) 258 

Total-params: 5141965 (19.62 MB) 
Trainable-params: 5141485 (19.61 MB) 

Non-trainable-params: 480 (1.88 KB) 

 

3.7 Fractionally Accelerated Stochastic Gradient Descent (FA-SGD) 

In SGD optimization approach, the parameters of model are updated iteratively 

to minimize loss function 𝐿(𝜃). The update rule is: 

1 ( )
t t t

L        (1) 

Where t
  and 1t

   are the model parameters at epoch t and t+1,   is the learning 

rate and ( )
t

L   is the gradient of loss w.r.t.   at iteration t. 

FA-SGD introduces fractional calculus, where the conventional integer-order 

derivative is replaced with a fractional [35, 73, 74]. The Caputo fractional 

derivative of order  for a function ( )f t is defined as: 
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Where 1n n    and ( )( )f n   is the nth  derivative of  ( ).f   For 0 1  , 
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Gradient descent algorithm is modified using Caputo fractional derivative, 

where ( )L   is the loss function which is to be minimized, and   represents 

model parameters. The fractional gradient of ( )L   with respect to   is given by: 

0
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Using the Caputo fractional derivative, standard gradient ( )
t

L   is replaced by 
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fractional gradient )(
t

L

  . The update rule becomes:  

1 ( )
k k t

L

        (5) 

Now computing the fractional gradient for a given t
  in order to derive the 

update rule in FASGD. For a given t
 , the fractional gradient is: 
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Let 
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 , substituting the loss function gradient eq (6) becomes: 
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Discretizing the interval [ 0,
t
 ] in to n small steps of size . The integral is 

numerically approximated as:  
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Where 
Δ

k
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, the fractional gradient then becomes: 
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Finally, substituting the approximate fractional gradient back in to update rule: 
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Eq (10) shows the update rule for FA-SGD depicting the integration of fractional 

calculus in traditional SGD to form fractionally accelerated SGD algorithm. The 

fractional order   in fractional stochastic gradient descent (FSGD) typically 
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ranges between 0 and 1, while FA-SGD provides range beyond unity, when 

1   algorithm simplifies to traditional SGD. 

 

Fig-7: Graphical Abstract of LIME 

 

Pseudocode for FA-SGD optimizer is given below, which assumes a 

modification to standard gradient decent to handle non-convex loss functions by 

incorporating adaptive learning rates, similar to those employed in Adam or 

RMSprop. 
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FA-SGD – Pseudocode 

 Input: 

1. Learning rate ( )  

2. Momentum hyperparameter ( )  

3. Epsilon ( )  

4. Fractional order ( )  

5. Weight vector ( )w  

6. Gradient vector ( )g  

 Output: 

 Updated weight vector 

 Implimentation steps: 

1. Initialize Learning rate, Momentum hyperparameter, Epsilon, 
Fractional order, Weight vector, and Gradient vector. 

2. Compute the momentum variable: 

m m g    

3. Compute the fractional term: 
1_( )w previous w
   ò∣ ∣  

4. Update the weight vector( w), using learning rate, fractional 

term, and momentum variable: 

w w m      

5. Update the previous weight vector ( _ )previous w w  

6. Return the updated weight vector 

 

 

Table-4: Evaluation Metrics 

Accuracy (AC) 

( )

trpos trneg

trpos trneg flpos flneg


  

 

Precision (PC) 

( )

trpos

trpos flpos
 

Recall (RC) 

( )

trpos

trpos flneg
 

F1-Score (FS) 
2

+

PC RC

PC RC


  
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3.8 Summary 

The detailed description of the suggested ultralight CNN and FA-SGD 

optimization strategy is presented in this chapter, along with its derivation, by 

integration of “Fractional Calculus”, which transforms standard SGD to FA-

SGD. Additionaly Local Interpretable Model-Agnostics Explaination (LIME) is 

also briefly discussed. 

The following chapter shows the simulation and analysis result of suggested 

ultralight CNN, along with the both the SGD, and FA-SGD optimization 

strategies. 
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Chapter 4 

Simulations and Analysis 

4.1 Introduction 

The chapter outlines the implementation of the suggested ultralight CNN for 

signature classification on benchmark CEDAR dataset, involving both the 

standard SGD and fractional calculus based FA-SGD optimization methods. The 

suggested model is implemented with learning rate of 0.001 and a batch size of 

128 over 30 iterations after comprehensive hyperparameter optimization. Tuned 

parameters are applied consistently to proposed CNN model through out entire 

study, with sole variation being distinct alpha ( ) values in each study. The 

results are segmented into four studies, each featuring variations in fractional 

order values i.e.  . 

4.2 Study-Ⅰ 

Initially, the suggested ultralight CNN with optimal parameters, is implemented 

with SGD. Afterwards, the model is trained with FA-SGD optimization 

approach, by varying fractional order alpha ( ) from 0.1 to 0.5 to investigate 

the impact of fractional order on performance criterion of ultralight CNN. The 

performance overall is evaluated interms of test accuracy, bias and variance. The 

suggested ultralight CNN shows reasonable performance with standard SGD, 

achieving a test accuracy of 92.1% on Test Set, alongside low bias and variance 

of 0.0218 and 0.3738 respectively, i.e. training and validation loss on Train and 

Validation sets during model’s training. While FA-SGD optimization approach 

depicts varied performance interms of bias, variance and test accuracy for 

distinct alpha ( ) values, achieving optimal performance at 0.5   with test 

accuracy of 97.2% and very low bias and variance of 0.0428 and 0.089 

respectively. At   value of 0.2 model shows worst performance exhibiting low 

bias and slightly higher variance, hence indicating the potential overfitting and 
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poor generalization on unseen data. Explicitly, the FA-SGD optimizer achieved 

accuracies ranging from 52.9% to 97.2%, with associated bias and variance 

ranging from 0.0428 to 0.0873 and 0.089 to 0.4137 respectively. Table-5 

provides detailed performance comparison of ultralight CNN, contrasting SGD 

with FA-SGD algorithm with varying   values from 0.1 to 0.5. The accuracy, 

loss plots and confusion matrices related with study-I are presented in Fig-[8-13]. 

The results of study-Ⅰ indicate that SGD model performs better than FA-SGD 

with  values ranging up to 0.4, while only being outperformed by FA-SGD 

with fractional order value of 0.5, achieving highest test accuracy and very low 

bias and variance on training and validation sets. 

4.3 Study-Ⅱ 

In this study, the suggested model is implemented with FA-SGD optimization 

algorithm with   varying from 0.6 to 1.0, where fractional order value of 1.0 

reduces FA-SGD to SGD operations. The performance of FA-SGD is further 

improved with   values ranging from 0.6 to 1.0, reaching best test accuracy of 

98% at 0.7  , with associated bias and variance as low as 0.0492 and 0.0126 

respectively. The FA-SGD displays exceptional performance, except for one 

instance at 0.6  , achieving a test accuracy of merely 60.5%. The accuracies 

for FA-SGD with   values ranging from 0.6 to 1.0 is 60.5% to 98%, while the 

associated bias and variance ranges span from 0.0149 to 0.0492 and 0.0126 to 

0.7426 respectively. A thorough critical evaluation of the suggested ultralight 

CNN is tabulated in Table-6, with focus on its performance in conjunction with 

FA-SGD at   values ranging from 0.6 to 1.0. The accuracy, loss plots and 

confusion matrices related with study-Ⅱ are shown in Fig-[14-18]. The learning 

curves in Fig-8 and Fig-18 corroborate the claim that standard SGD and FA-

SGD operate similarly with alpha of unity. However, it should be highlighted 

that FA-SGD is more effective in terms of achieving higher accuracy while 

minimizing bias and variance. 
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Fig-8: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNNwith SGD 
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Fig-9: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNN with FA-SGD (α =0.1) 
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Fig-10: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNN with FA-SGD (α =0.2) 
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Fig-11: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNN with FA-SGD (α =0.3)
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Fig-12: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNN with FA-SGD (α =0.4 )
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Fig-13: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNN with FA-SGD (α =0.5)
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Table-5: Performance analysis of Study-I (Precision (PS), Recall (RC), F1-Score (FS) on 

test set, along with Loss (LS) and Accuracy (AC) on train, validation and test sets 

Optimizer Label 
PC, RC and FS Training Set Validation Set Test Set 

PC RC FS LS AC LS AC LS AC 

SGD 
Forged 1 0.85 0.92 0.021

8 
95.1% 

0.373

8 
93.3% 0.357 

92.

1% Genuine 0.86 1.00 0.92 

FA-SGD 

(alpha=0.1) 

Frorged 0.85 0.48 0.61 0.087

3 
86.7% 

0.413

7 
77% 0.398 

69

% Genuine 0.63 0.91 0.75 

FA-SGD 

(alpha=0.2) 

Forged 0.50 0.00 0.01 0.034

2 
78.9% 

1.461

4 
50.9% 1.457 

52.

9% Genuine 0.52 1.00 0.69 

FA-SGD 

(alpha=0.3) 

Forged 1.00 0.78 0.88 0.054

6 
98.2% 

0.241

1 
88.1% 0.231 

88.

7% Genuine 0.81 1.00 0.90 

FA-SGD 
(alpha=0.4) 

Forged 0.71 0.45 0.55 0.060
2 

78.% 
0.332

1 
74.7% 0.335 

64
% Genuine 0.61 0.82 0.70 

FA-SGD 

(alpha=0.5) 

Forged 1.00 0.95 0.97 0.042

8 
98.3% 0.089 98.2% 0.111 

97.

2% Genuine 0.95 1.00 0.97 

 

 

Table-6: Performance analysis of Study-Ⅱ (Precision (PS), Recall (RC), F1-Score (FS) on 

test set, along with Loss (LS) and Accuracy (AC) on train, validation and test sets 

Optimizer Label 
PC, RC and FS Training Set Validation Set Test Set 

PC RC FS LS AC LS AC LS AC 

FA-SGD 

(alpha=0.6) 

Frorged 1.00 0.23 0.37 0.035

0 
78.9% 

0.742

6 
60.6% 0.788 

60.

5% Genuine 0.55 1.00 0.71 

FA-SGD 
(alpha=0.7) 

Forged 1.00 0.97 1.00 0.049
2 

98.6% 
0.012

6 
98.5% 0.010 

98
% Genuine 0.97 1.00 1.00 

FA-SGD 

(alpha=0.8) 

Forged 1.00 0.90 0.95 0.014

9 
97.7% 

0.139

4 
94.6% 0.140 

95

% Genuine 0.91 1.00 0.95 

FA-SGD 
(alpha=0.9) 

Forged 1.00 0.56 0.72 0.022
9 

89.1% 
0.451

6 
81.1% 0.473 

79.
1% Genuine 0.71 1.00 0.83 

FA-SGD 

(alpha=1.0) 

Forged 1.00 0.96 0.98 0.015

4 
98.4% 

0.139

6 
98.4% 0.121 

97.

9% Genuine 0.96 1.00 0.98 
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Fig-14: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNN with FA-SGD (α =0.6 )
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Fig-15: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNN with FA-SGD (α =0.7)



38 

 

 

 

 

Fig-16: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNNwith FA-SGD (α =0.8 )



39 

 

 

 

 

Fig-17: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNN with FA-SGD (α =0.9)
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Fig-18: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNNwith FA-SGD (α =1.0 )
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4.4 Study-Ⅲ 

Study-Ⅲ, presents the performance of ultralight CNN with   value beyond 

unity, ranging up to 1.5. Table-7 provides detailed performance assessment of 

suggested CNN with   values ranging from 1.1 to 1.5. Accuracy range for the 

suggested model with   value varying from 1.1 to 1.5 span from 52.2% to 

97.9%, while the associated bias and variance range span from 0.0089 to 0.0156 

and 0.1394 to 2.2135 respectively, as tabulated in Table-7. The accuracy, loss 

plots and confusion matrix affiliated with Study-Ⅲ are displayed in Fig-[19-23]. 

Optimal performance is achieved by the suggested model with fractional order 

value of 1.3, attaining a generalized accuracy of 97.9%, bias and variance of 

0.0097 and 0.2240. Overall, the model displays below average performance with 

fractional order alpha ranging from 1.1 to 1.5 except two instances, at alpha 

values of 1.3 and 1.5, where it converges to test accuracy above 90%. 

4.5 Study-Ⅳ 

Finally, the suggested ultralight CNN is implemented with   values spanning 

from 1.6 to 1.9. Table-8 depicts the performance assessment of ultralight CNN 

with FA-SGD optimizer, varying the fractional order alpha from 1.6 to 1.9. 

From Table-8 it is evident that the suggested CNN performs worst with alpha 

values ranging from 1.6 to 1.9, not converging to even 60% accuracy in a single 

instance, and exhibiting very high biases and variances. Test accuracy range 

span from 48.2% to 55.3% for   values of 1.6 to 1.9, whereas bias and variance 

range span from 0.0192 to 11.3214 and 2.4658 to 4.9981 respectively, which can 

be inferred from Table-8. The accuracy, loss plots and confusion matrix 

associated with Study-Ⅳ are presented in Fig-[24-27]. After the comprehensive 

analysis of ultralight CNN with FA-SGD optimization approach across 

fractional order variations, it is determined that the most favourable outcomes 

occur with alpha rate of 0.7, achieving best test accuracy of 100% for 

classification of handwritten signature images using benchmark CEDAR dataset. 
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Fig-19: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNNwith FA-SGD (α =1.1)
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Fig-20: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNN with FA-SGD (α =1.2)
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Fig-21: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNN  with FA-SGD (α =1.3)
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Fig-22: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNNwith FA-SGD (α =1.4 )
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Fig-23: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNN with FA-SGD (α =1.5)
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Table-7: Performance analysis of Study-Ⅲ (Precision (PS), Recall (RC), F1-Score (FS) on 

test set, along with Loss (LS) and Accuracy (AC) on train, validation and test sets 

Optimizer Label 
PC, RC and FS Training Set Validation Set Test Set 

PC RC FS LS AC LS AC LS AC 

FA-SGD 

(alpha=1.1) 

Forged 1.00 0.01 0.01 
0.0156 99.4% 2.2135 49.6% 2.103 

52.2

% Genuine 0.52 1.00 0.68 

FA-SGD 

(alpha=1.2) 

Forged 1.00 0.49 0.66 
0.0089 99.7% 0.5095 75.7% 0.450 

75.4

% Genuine 0.68 1.00 0.81 

FA-SGD 

(alpha=1.3) 

Forged 1.00 0.96 0.98 
0.0097 99.9% 0.2240 97.6% 0.156 

97.9

% Genuine 0.96 1.00 0.98 

FA-SGD 
(alpha=1.4) 

Forged 1.00 0.30 0.47 
0.0137 99.6% 0.6678 67.2% 0.639 

65.7
% Genuine 0.60 1.00 0.75 

FA-SGD 

(alpha=1.5) 

Forged 1.00 0.90 0.95 
0.0149 99.7% 0.1394 94.6% 0.140 95% 

Genuine 0.91 1.00 0.95 

 

 

Table-8: Performance analysis of Study-Ⅳ (Precision (PS), Recall (RC), F1-Score (FS) on 

test set, along with Loss (LS) and Accuracy (AC) on train, validation and test sets 

Optimizer Label 
PC, RC and FS Training set 

Validation 

Set 
Test Set 

PC RC FS LS AC LS AC LS AC 

FA-SGD 
(alpha=1.6) 

Forged 0.00 0.00 0.00 
0.0192 

99.4
% 

4.998
1 

49.
9% 

4.761 
50.7
% Genuine 0.51 1.00 0.67 

FA-SGD 

(alpha=1.7) 

Forged 1.00 0.07 0.13 
1.5942 

55.5

% 

2.465

8 

51.

5% 
2.351 

55.2

% Genuine 0.54 1.00 0.70 

FA-SGD 

(alpha=1.8) 

Forged 0.00 0.00 0.00 11.321

4 

49.9

% 

3.301

1 

50.

4% 
3.432 

48.2

% Genuine 0.48 1.00 0.65 

FA-SGD 

(alpha=1.9) 

Forged 0.50 1.00 0.67 
7.7622 

50.2

% 

2.750

7 

50.

8% 
2.783 

50.2

% Genuine 0.00 0.00 0.00 
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Fig-24: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNN with FA-SGD (α =1.6 ) 
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Fig-25: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNN with FA-SGD (α =1.7)
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Fig-26: Acc and Loss Plots, along  with Confusion Matrix for 

Ultralight CNN with FA-SGD (α =1.8 )
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Fig-27: Acc and Loss Plots, along  with Confusion Matrix 

for Ultralight CNN with FA-SGD (α =1.9)
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4.6 Discussion 

This study addresses challenge of signature verification by combining ultralight 

CNN model with novel FA-SGD optimization algorithm. Following a thorough 

performance investigation of the suggested model using standard SGD and novel 

FA-SGD optimization strategy, it can be inferred that Ultralight CNN model 

coupled with FA-SGD achieves best test accuracy of 98% with low bias and 

variance at   value of 0.7. The best computed hyperparameters are incorporated 

after extensive hyperparameter tuning to execute lightweight CNN model with 

above-mentioned optimization strategies which include SGD and FA-SGD with 

varying alpha on the benchmark CEDAR dataset. Combined learning cuve for 

each study, focusing on model’s loss and accuracy is illustrated in Fig-[28-43]. 

4.7 Comparison with existing Benchmark Models 

The suggested CNN model demonstrates exceptional performance to accurately 

classify genuine and forged signatures. The comparison of the suggested 

ultralight model with existing benchmark models interms of test accuracy on 

benchmark CEDAR dataset is tabulated in Table-9. The performance 

comparison demonstrates that the proposed lightweight model based on novel 

FA-SGD optimization strategy outperforms existing SOTA models on 

benchmark CEDAR database interms of test accuracy, computational efficiency 

and interpretability. 
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Table-9: Comparative Analysis with existing benchmark models on CEDAR 

database 

Authors Technique Accuracy(%) 

[44] Inverse Discriminative Network (IDN) 95.32 

 

[49] 

CNN + HOG + LSTM 

CNN + HOG + KNN 
CNN + HOG + SVM 

93.7 

91.3 
94.1 

[60] FC-ResNet 96.21 

[61] VGG-16 + One Class Support Vector Machine (OC-

SVM) 

91.3 

Proposed Lightweight CNN + FA-SGD 98 

 

 

4.8 Predictive Strength 

The proposed approach accurately distinguishes between signatures and 

forgeries, thus demonstrating substantial predictive capabilities.Transparency is 

very essential to ensure trust and reliability in biometric domain, hense this 

study employs LIME to offer insights in to the decision making process of the 

suggested Ultralight model for verification of handwritten signatures. Basically 

the LIME approach decodes decision making process of ML models by 

highlighting important features in image. By critically visualizing the 

highlighted portions of the image, it becomes evident that which region is 

essential for accurate classification. Fig-32 depicts few predictions made by the 

suggested ultralight CNN model and the subsequent interpretable explanations 

generated by LIME on unseen images of CEDAR dataset. 
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Fig-28: Combined Learning Curve visualization of training accuracy trends for Study-Ⅰ 

 

 

Fig-29: Combined Learning Curve visualization of validation accuracy trends for Study-Ⅰ
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Fig-30: Combined Learning Curve visualization of training loss trends for Study-Ⅰ 

 

 

Fig-31: Combined Learning Curve visualization of validation loss trends for Study-Ⅰ
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Fig-32: Combined Learning Curve visualization of training accuracy trends for Study-Ⅱ 

 

 

Fig-33: Combined Learning Curve visualization of validation accuracy trends for Study-Ⅱ
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Fig-34: Combined Learning Curve visualization of training loss trends for Study-Ⅱ 

 

 

Fig-35: Combined Learning Curve visualization of validation loss trends for Study-Ⅱ
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Fig-36: Combined Learning Curve visualization of training accuracy trends for Study-Ⅲ 

 

 

Fig-37: Combined Learning Curve visualization of validation accuracy trends for Study-Ⅲ
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Fig-38: Combined Learning Curve visualization of training loss trends for Study-Ⅲ 

 

 

Fig-39: Combined Learning Curve visualization of validation loss trends for Study-Ⅲ
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Fig-40: Combined Learning Curve visualization of training accuracy trends for Study-Ⅳ 

 

 

Fig-41: Combined Learning Curve visualization of validation accuracy trends for Study-Ⅳ
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Fig-42: Combined Learning Curve visualization of training loss trends for Study-Ⅳ 

 

 

Fig-43: Combined Learning Curve visualization of validation loss trends for Study-Ⅳ



62 

 

4.9 Summary 

This chapter contains the simulations of the proposed strategy for signature 

classification on benchmark CEDAR dataset, after the selection of tuned 

hyperparameters, which are consistently applied to the proposed model 

throughout entire study. Also includes the performance analysis of suggested 

model with the standard SGD and the novel FA-SGD in terms of Precision, 

Recall, Accuracy, and F1-Score. The next chapter reviews the results obtained in 

Chapter 4 in relation to original problem. 

 

 
Fig-44: Interpretable Predictions by Ultralight CNN Architecture 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Introduction 

This chapter outlines conclusions deduced from suggested CNN model along 

with FA-SGD optimization strategy for signature verification task, discussed in 

the previous chapters. Apart from conclusions, it also provides guidelines to 

scholars for future endeavours. They can apply proposed method or variations in 

it for various image classification tasks. 

5.2 Conclusions 

The main aim of conducted research is to analyze and accentuate the abilities of 

fractional calculus based FA-SGD optimization algorithm and the ultralight 

CNN model for authentication of handwritten signatures. The conclusions 

deduced from research are as follows. 

 The combination of ultralight CNN model and fractionally accelerated 

SGD optimizer has demonstrated notable performance in signature 

verification task. 

 Ultralight CNN model has resulted in significant decrease in 

computational resources due to its simple architecture as opposed to 

complex architectures mentioned in the literature, making it a suitable 

option to be deployed in resource-limited devices.  

 The robust capabilities of fractional calculus and DL is highlighted for 

achieving accurate and efficient classification of signatures. 

 It is depicted that the suggested CNN model with FA-SGD optimizer, 

learning rate of 0.001, alpha value of 0.7 and with the batch size of 128 

has outperformed the present SOTA models on benchmark CEDAR 

database. 
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 This study offers robust, reliable, efficient, resource friendly and accurate 

model for classification of handwritten signatures. 

5.3 Future Work 

 The vital research direction is to merge FA-SGD optimizer with various 

other deep learning models for image classification tasks. 

 The proposed ultralight CNN model can be redesigned to further reduce 

computational complexity by reducing no of filters, employing smaller 

Kernel size, employing mobile inverted bottleneck blocks to reduce 

dynamic separable convolutions with out compromising on feature 

extraction, employing knowledge distillation technique, and by 

employing model quantization and weight sharing. 

 The proposed FA-SGD optimization strategy can be redesigned using 

Fractional Calculus-based concepts (fractional-order gradients), as it 

employs fractional order derivatives; thus, it can potentially provide 

faster convergence and more accurate imageclassification. 
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