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Abstract

One of the advances that will be enabled by system-on-chip (SOC) technology is the
single-chip multiprocessor. As VLSI technology improves to allow us to fabricate
hundreds of millions of transistors on a single chip, it is also possible to put a complete
multiprocessor, including both CPUs and memory, on a single chip. The advent of single-
chip multiprocessors will require us to rethink multiprocessor architectures to fit the
advantages and constraints of VLSI implementation. This thesis is based on research in
this very direction. We propose a new single chip multiprocessor architecture that
concentrates specifically on improving operating system performance. This goal is
achieved by implementing two CPUs on a single chip, configured as a master and a slave.
Only the master processor will run the OS kernel, and only the slave processor will run

the user code.
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Chapterl Introduction

1. Introduction

For CPU design, a major movement in the 1980s was towards RISC instruction sets
which made it simpler and more efficient to design CPU cores. Although, not all the
RISC designs were that simple. During the 1990s the main focus was on boosting
instruction-tevel parallelism (ILP) and clock rates of single-core processors. As a result,
processors have become far more complex. However, there are various reasons why
performance doesn’t scale well with these techniques. Recent years have witnessed a shift
of focus to exploiting thread-level parallelism (TLP) with techniques like CMP and MT.
CMP/MT scales the performance of multi-threaded applications {or multiple running
processes/programs) through the integration of muitiple cores onto a single silicon die and
the execution of instruction streams from multiple hardware threads on each core.
Implementations of these technologies exist in the market today. Figure 1 shows the

architectural differences of a single-core processor and a dual-core dual-thread CMP/MT

processor.

single-care CPU CNP CPU

EE EE

EE AS

AS [AS | AS| As
L1l LiD L\ Juip {LiofLit

L2 Cache L2 Cache

Figure 1.1

1.1 OS Kernels

The part of OS critical to its correct operation execute in supervisor mode, while
other software, such as generic system software, and all applications programs execute in
user mode. The part of the system software executing in the supervisor mode is catled the
kernel of the operating system. The kernel operates as trusted software, meaning that
when it is designed and implemented, it is intended to implement protection mechanisms
that cannot be covertly changed through the actions of untrusted software executing in the

user mode.
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1.1.1 Monolithic Kernels

The older monolithic kernels are written as a mixture of everything the OS needs,
without much of an organization. The monolithic kemel offers everything the OS needs:
processes, memory management, multiprogramming, interprocess communication (IPC),

device access, file systems, network protocols.
1.1.2 Microkernel

This method structures the operating system by removing all nonessential
components from the kernel, and implementing them as system and user level programs.
The result is a smaller kernel. Microkernel typically provides minimal process and
memory management, in addition to a communication factlity. The main function of the
microkernel is to provide a communication facility between the client program and the

various services that are also running in the user space.
1.1.3 ExoKernel

Traditional operating systems limit the performance, flexibility, and functionality
of applications by fixing the interface and implementation of operating system
abstractions such as interprocess communication and virtual memory. The ExoKernel
operating system architecture addresses this problem by providing application-level
management of physical resources. In the ExoKernel architecture, a small kerne! securely
exports all hardware resources through a low level interface to untrusted library operating
systems. Library operating systems use this interface to implement system objects and
policies. This separation of resource protection from management allows application-
specific customization of traditional operating system abstractions by extending,

specializing, or even replacing libraries.
1.2 Parallelism

Traditionally computer has been viewed as a sequential machine. Most computer
programming languages require the programmer to specify algorithms as a sequence of
instructions. Processors execute the programs by executing the machine instructions in a
sequence and one at a time. This view of computer has never been entirely true. At the
micro-operation level, multiple contro! signals are generated at the same time. Instruction

pipelining, at least to the extent of overlapping fetch and execute operation, has been

A Novel p-Processor Architecture 2
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around for a long time. This approach is taken further with superscalar organization,

which exploits instruction level paralielism.
1.2.1 Instruction Level Parallelism

Since 1985, all processors use pipelining to overlap the execution of instructions
and improve performance. This potential overlap among instructions is catled instruction
level parallelism (ILP) because the instructions can be executed in parallel. There are two
basic approaches. Dynamic, hardware intensive api)roaches, and Static, compiter

intensive approaches.
1.2.2 Thread Level Parallelism

Thread level parallelism allows multiple threads to share the functional units of a
single processor in an overlapping faction. To permit this sharing, the processor must
duplicate the independent state of each thread. For example, a separate copy of register
file, a separate PC and a separate page table are required for each thread. The memory
itself can be shared through the virtual memory mechanisms, which already support
multiprogramming.

1.2.3 Processor Level Parallelism

The demand for ever faster computers seems to be insatiable. Instruction-level
parallelism helps a little, but pipelining and superscalar operations rarely win more than a
factor of five or ten. To get gains of 50, 100 or even more, the only way is to design
computers with multiple CPUs. There are quiet a few approaches of parallel organization.
For example: Symmetric Multiprocessors (SMPs), Cluster computers, and Non Uniform
Memory Access computers (NUMA).

1.2.4 Chip Multiprocessors

Chip Multiprocessors (CMPs) use relatively simple single-thread processor cores
to exploit only moderate amounts of parallelism within any one thread, while executing
multiple threads in parallel across multiple processor cores. If an application cannot be
effectively decomposed into threads, CMPs will be underutilized.

1.3 Literature Review

Bloch [Bloch 1959] and Bucholtz [Bucholtz 1962) describe a four stage pipeline
and its engineering tradeoffs, including the use of ALU bypass. Kunkel and Smith
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{Kunkel & Smith 1986] evaluate the impact of pipeline overhead and dependencies on the
choice of optimal pipeline depth. Smith and Pleszkun [Smith & Pleszkun 1988] evaluate a
variety of techniques for preserving precise exceptions. Weiss and smith [Weiss & smith
1984] evaluate a variety of hardware pipeline scheduling techniques and instruction issue
techniques. Killian [Kilfian 1991] and Heinrich [Heinrich 1993] describe MIPS R4000

which was one of the first deeply pipelined microprocessors.

J Smith [Smith 1981) described a 2-bit branch prediction technique. Yeh and Patt
[Yeh & Patt 1992, 1993] described multileve! predictors. Kaeli and Emma [Kaeli &
Emma 1991] described return address prediction. The 2-bit Branch prediction improves

implementation of branch predicition in super scalar processors.

Sohi [Sohi 1990] describes renaming and dynamic scheduling. Smith, Johnson
and Horowitz [Smith, Johnson & Horowitz 1989] described the use of speculation a
technique in multiple issue microprocessors. Dynamic scheduling and register renaming

improves performance of heavy superscalar designs.

Agarwal et al. [Agarwal 1993] describes SPARCLE a block multithreaded
processor. Laudon, Gupta and Horrowitz [Gupta & Horrowitz 1994] advocate fine
grained multithreading. Yamamoto et al [Yamamoto [994] proposed a design using
dynamic scheduling to mix instructions from different threads. Tullsen et al [Tullsen
1996] addresses questions about the challenges of scheduling ILP versus TLP. Lo et al.
[Lo 1997] gives an extenstve discussion of SMT concept. Lo at al [Lo 1998] evaluated

database performance on an SMT processor.

In 2000, IBM announced the first commercial chip with two general purpose
processors on a single die, the Power4 processor. Each Power4 contains two Power3

microprocessors, a shared secondary cache and a chip to chip communication system.

In 1997 [Lance Hammond, Basem A. Nayfeh, Kunle Olukotun 1997} provided
concrete evidence of the performance improvement possibilities using Single-Chip

Multiprocessors.

[Jan Gray 2000] proposed on using FPGA based prototyping systems for teaching
Micro Processor and Integrated Systems Design. Jan Gray. [Jan Gray 2001] proposed a
simple RISC CPU and System-on-a-Chip on a single FPGA.

Hsiao-Ping Juan, Nancy D. Holmes Smita Bakshi, Daniel D. Gajski [Hsiao-Ping
Juan, Nancy D. Holmes Smita Bakshi, Daniel D. Gajski 1992] proposed on Top Down
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Modeling of RISC Processors in VHDL. [Takayuki Morimoto, Kazushi Saito, Hiroshi
Nakamura, Taisuke Boku, Kisaburo Nakazawa] proposes a new hardware description
language ATDL for Advance Processor Design. Makiko ITOH [Makiko ITOH 2000}
proposed Synthesizable HDL Generation for Pipelined Processors from A Micro-

Operation Description.

Prof. Lizy Kurian John [Lizy Kurian John 2002] provided research on Hardware

Performance Evaluation: Techniques, Tools and Benchmarks.

Paul Kohout {Paul Kohout 2002] proposed on providing hardware support for

real-time operating Systems.

Jochen Liedtke [Jochen Liedtke 1993] Discusses in detail about improving JPC by
appropriate p-Kemel Design

[Jochen Liedtke [Jochen Liedtke 1995] provides a detailed discussion and
example implementation of high performance second generation p-Kernel operating

systems.

Jochen Liedtke, Hermann H artig, Michael Hohmuth, Sebastian Sch™onberg, Jean
Wolter [Liedtke, Hoartig, Hohmuth, Schonberg, Wolter 1997] researched on the
Performance of g#-Kernel-Based Systems.

Jochen Liedtke, Andreas Haeberlen, Yoonho Park, Lars Reuther, Volkmar Uhlig
[Jochen Liedtke, Andreas Haeberlen, Yoonho Park, Lars Reuther, Volkmar Uhlig 2000])
provide a detailed analysis and techniques for efficient Stub-Code for high performance p
-kernel based operating systems.

Jochen Liedtke [Jochen Liedtke 2001} discusses and evaluates the high
performance L4Ka p-kernel. L4Ka p-kernel is completely written in assembly language

and provides higher performance then the traditional 2™ generation u-kernel.

Benjamin Gamsa, Orran Krieger, Eric W. Parsons, Michael Stumm [Benjamin
Gamsa, Ormran Krieger, Eric W. Parsons, Michael Stumm 1995] discusses the

Performance Issues in Multiprocessor Operating Systems.
Dawson R. Engler [1998] provides detailed description of ExoKernel operating systems.

Joshua A. Redstone, Susan J. Eggers and Henry M. Levy {Joshua A. Redstone,
Susan J. Eggers & Henry M. Levy 2000} provided an Analysis of Operating System

Behavior on a Simultaneous Multithreaded Architecture.
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1.4 Academic CMPs

1.4.1 The Jamaica Project

The Jamaica project is investigating the design of chip multi-processors (CMPs)
and their accompanying paralle! software environments. CMP architectures have been
widely accepted by many processor chip manufacturers as a solution to the design
problems accompanying the scale-up to "billion transistor” chips. The rationale for this
choice is that designing logic to interconnect multiple cores based on existing designs is

enormously simpler than trying to build one core which will use all the available silicon.

Despite the widespread convergence on CMP as a promising design strategy, there are
many issues yet to be resolved in the design of both the hardware and its accompanying

software environment. In particular:

« The hardware must be able to efficiently support an operating system which can
distribute execution of application code to all the available cores. Distribution and
synchronization costs must be low and it must be easy to detect the presence of

idle cores.

« The operating system must, in turn, rely upon advanced compiler technology to
automate, as far as possible, this distribution of work. Most applications cannot
feasibly be designed (or rewritten) to allow for all possible CMP configurations,
coping with anything from, say, 2 to 64 cores. '

¢ A dynamic paralielizing compiler is essential if the distribution problem is to be
addressed. Both application and operating system code need to be optimized
appropriate to the CMP configuration found at runtime or even recompiled on the

fly using feedback directed recompilation.

All these elements of the CMP platform need to be designed together if the promise of
CMP architectures is to be fulfilled. The Jamaica project is organized into three
collaborating strands reflecting the interplay between computer architecture, compiler and

operating system.

Advances in silicon technology have provided designers with more on-chip
resources. However, this poses greater design problems in using the available silicon. The
Jamaica project is focusing on the design of chip multi-processors. Benchmarks run on -

cycle accurate simulators allow development of prototypes and determination of optimal
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configurations without incurring long development cycles. The project also carries out co-

design of architectural features and compiler optimizations.
1.4.2 The Hydra Project

Hydra is a new microarchitecture that combines shared-cache multiprocessor
architectures, innovative synchronization mechanisms, advanced integrated circuit
technology and parallelizing compiler technology to produce breakihroughs in
microprocessor cost/performance and parallel processor programmabitity. In Hydra, four
high performance processors are integrated on & single die. Hydra represents a new way
to build microprocessors that will demonstrate that it is possible for a multiprocessor to
achieve better performance and better cost/performance than wide superscalar
mircroarchitecture on sequential applications. Hydra will use a single chip shared cache
architecture to fundamentally improve the communication bandwidth and latency
between multiple processors. The shared-cache architecture takes advantage of the on-
chip bandwidth to provide an order of magnitude improvement in interprocessor
communication and synchronization latency compared to current-bus based
multiprocessor implementations. This will improve parallel processing efficiency to the
point that it is feasible to exploit fine-grained parallelism in sequential programs with a

multiprocessor.

The shared-cache architecture and the support for specialized synchronization
makes Hydra an ideal target for emerging parallelizing compiler technology. Most of this
technology has focused on parallelizing applications into large grains so they will work
efficiently on current multiprocessors. Hydra will have the ability to exploit fine grained
parallelism and so will allow development of parzlilelizing compiler technology that is

capable of extracting this sort of parallelism.

1.5 Commercial CMPs

1.5.1 IBM POWER4

This processor is meant for the maximum performance, for hi-end server and
supercomputer market, designed for 32-processor SMP systems. Development of high-
performance communication means for processors and memory was given much
attention. The POWER4 has a high fault-tolerance: criticel fails do not make the system
hang; instead, interrupts are generated and processed by the system. The POWER4 was
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developed for an efficient operation of commercial (server), scientific and technical
applications. TBM Power/Power PC processors were divided into server and scientific
ones - POWER and RS64. The POWER4 suits a wide range of hi-end applications and
uses all topical performance boosting ways (within the PowerPC instruction set). We
won't find there truncated caches and lacking FUs.

The POWER4 houses 2 processors each having an L1 cache for data and
instructions. The die has a single L2 cache of 1450 KBytes controlled by 3 separate
controllers connected to the cores via a CTU (Core Interface Unit). The controllers work
independently and can process 32 bytes per clock. Each processor uses two separate 256-
bit buses to connect the CTU for data fetching and data loading, as well as a separate 64-
bit bus to save the results; the L2 cache has a bandwidth of 100 GBytes/s. The L2 cache's
system looks well balanced and very powerful. Each processor has a special unit to
support noncachable operation. The L3 controller and the memory's one are located on
die as well. For connection with the L3 cache working at 1/3 of the processor's speed and
with the memory there are two 128-bit buses operating at 173 of the processor's
frequency.

1.5.2 Sun MAJC

With two identical and independent but cooperative processor cores, the MAJC-
5200 is one of the first microprocessors to implement chip multiprocessing (CMP),
though Sun prefers to classify the chip as a multiprocessor system on a chip (MPSOC). It
will offer a relatively high clock rate (500 MHz), eight powerful function units, a unique
geometry decompression engine, and copious amounts of off-chip data bandwidth. Future

MAIJC processors could incorporate hundreds of cores on the same die.
1.6 Microprocessor Design

20-50-MHz FPGA CPUs are perfect for many embedded applications. They can
support custormn instructions and function units, and can be reconfigured to enhance
system-on-chip (SoC) development, testing, debugging, and tuning. FPGA systems offer
high integration, short time-to-market, low NRE costs, and easy field updates of entire

systems.

FPGA CPUs may also provide new answers to old problems. Consider one

system, during self-test, its FPGA is configured as a CPU and it runs the tests. Later the
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FPGA is reconfigured for normal operation as a hardwired signal processing datapath.

The ephemeral CPU is free and saves money by eliminating test interfaces.

In the past, field programmable gate arrays (FPGAs) have been used to absorb
glue logic, perform signal processing, and even to prototype system-on-chip (SoC)
ASICs. Now with the advent of large, fast, cheap FPGAs, it is practical and cost-effective
to skip the ASIC and ship volume embedded systems in a single FPGA plus off-chip
RAM and ROM -- the FPGA implements all of the system logic including a processor
core. A soft CPU core enables custom instructions and function units, and can be
reconfigured to enhance SoC developr'nent, debugging, testing, and tuning. And if you
control your own “cores” intellectual property (IP), you will be less at the mercy of the
production and end-of-life decisions of chip vendors, and can ride programmable logic

price and size improvement curves.

Processor and SoC design is not rocket science, and is no longer the exclusive
realm of elite designers in large companies. FPGAs are now large and fast enough for
many embedded systems, with soft CPU core speeds in the 33-100 MHz range. HDL
synthesis tools and FPGA place-and-route tools are now fast and inexpensive, and open

source software tools help to bridge the compiler chasm.
1.6.1 Overview of a Microprocessor

The Von Neumann model of a computer, pictured in Figure 1, consists of four

main components: the input, the output, the memory, and the microprocessor.

Memory

Conirol
Ipu uar | O 'l Output

Microptocessor

Figure 1.2 Von Neumann modet of a computer.

The keyboard and mouse are examples of input devices. The CRT (cathode ray
tube) and speakers are examples of output devices. The different types of memory, cache,
read-only memory (ROM), random-access memory (RAM), and the disk drive are all

considered as part of the memory box in the model. The focus in these seminars is on the
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design of the digital circuitry of the microprocessor, the memory, and other supporting

logical circuits, and their implementation on FPGAs.

The circuit for the microprocessor can be divided into two parts: the datapath and
the control unit as shown in Figure 1. Figure 2 shows the details inside the control unit
and the datapath. The datapath is responsible for the actual execution of all operations
performed by the microprocessor, such as the addition inside the arithmetic logic unit
(ALU). The datapath also includes the registers for the temporary storage of your data.
The functional units inside the datapath (ALU, shifter, counter, etc.) and the registers are
connected together with multiplexers and buses to form one unit, the datapath.

Even though the datapath is capable of performing all the operations of the
microprocessor, it cannot, however, do it on its own. In order for the datapath to execute
the operations automatically, the contro} unit is required. The controf unit, also known as
the controller, controls the operations of the datapath, and therefore, the operations of the

entire Microprocessor.

Conlrol
Inputs
4
Wsuﬂrd it
Siatc ™
':‘:l:' \onn) :m
Layw rogivter oln-
v Sipnals v
Control Data
Cutputs Quiputs

Figure 1.3 Internal parts of a microprocessor

The controller is a finite state machine (FSM) because it is a machine that
executes by going from one state to another and the fact that there are only a finite
number of states for the machine to go to. The controller is made up of three parts: the
next-state logic, the state memory, and the output logic. The purpose of the state
memory is to remember the current state that the FSM is in. The next-state logic is the
circuit for determining what the next state should be for the machine. And the output
logic is the circuit for generating the actual control signals for controlling the datapath.
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1.7 Field programmable gate arrays

Field programmable gate arrays (FPGAs) are digital integrated circuits (ICs) that
contain configurable (programmable} blocks of logic along with configurable
interconnects between these blocks. Design engineers can configure (program) such
devices to perform a tremendous variety of tasks. Depending on the way in which they
are implemented, some FPGAs may only be programmed a single time, while others may
be reprogrammed over and over again. The “field programmable” portion of the FPGA’s
name refers to the fact that its programming takes place “in the field” (as opposed to
devices whose internal functionality is hardwired). This may mean that FPGAs are
configured in the laboratory, or it may refer to modifying the function of a device resident
in an electronic system that has already been deployed in the outside world. If a device is
capable of being programmed while remaining resident in a higher-level system, it is

referred to as being in-system programmable.

1.8 A Xilinx logic cell

The core building block in a modern FPGA from Xilinx is called a logic cell (LC).
Among other things, an LC comprises a 4-input LUT (which can also act as a 16 x 1

RAM or a 16-bit shift register), a multiplexer, and a register.

&bl SA
X
41 hput
o LUT
. & y
C - ma
LS tip-fop
o q
cbok - D
clock enabla
setreset

Figure 1.4 Architecture of a XILINX LC

In addition to the LUT, MUX, and register, the LC also contains a smattering of

other elements, including some special fast carry logic for use in arithmetic operations.
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1.8.1 Slicing and dicing

The next step up the hierarchy is what Xilinx calls a slice. A slice contains two

logic cells as shown below.

Slice
Logle Call {LC)
MUX  REQ

) Lagit Cell {LG)

&0

4input

LuT D

LT MUX  REG

Figure 1.5 A slice containing two logic cells.

1.8.2 CLBs

And moving one more level up the hierarchy, we come to what Xilinx calls a
configurable logic block (CLB). Using CLBs as an example, some Xilinx FPGAs have
two slices in each CLB, while others have four. A CLB equates to a single logic block in
our original visualization of “islands” of programmable logic in a “sea” of programmable
interconnect. There is also some fast programmable interconnect within the CLB. This

interconnect is used to connect neighboring slices.

Confgurabie §ogic block (CLE)
Skeo ko

=]
|Ton1c cel ] [ Logic mLI

| Logiceen || || Lomecan |

skce sike
| Loqk:mLI [ Logrecos |

| Lagiccen II [ Logecen |

Figure 1.6 A CLB containing four slices (the number of slices
depends on the FPGA famnily).
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The reason for having this type of logic-block hierarchy, LC— Slice (with two
LCs)— CLB (with four slices), is that it is complemented by an equivalent hierarchy in
the interconnect. Thus, there is fast interconnect between the LCs in a slice, then slightly
slower interconnect between slices in a CLB, followed by the interconnect between
CLBs. The idea is to achieve the optimum trade-off between making it easy to connect

things together without incurring excessive interconnect-related delays.

1.8.3 Distributed RAMSs and shift registers

We previously noted that each 4-bit LUT can be used asa 16 x 1 RAM. Assuming the
four-stices-per-CLB configuration ail of the LUTs within a CLB can be configured

together to implement the following:

Single-port 16 x 8 bit RAM
Stngle-port 32 x 4 bit RAM
Single-port 64 x 2 bit RAM
Single-port 128 x 1 bit RAM
Dual-port 16 x 4 bit RAM
Dual-port 32 x 2 bit RAM
7. Dual-port 64 x 1 bit RAM
Alternatively, each 4-bit LUT can be used as a 16-bit shift register. In this case, there

IS o L

are special dedicated connections between the logic cells within a slice and between the
slices themselves that allow the last bit of one shift register to be connected to the first bit
of another without using the ordinary LUT output. This allows the LUTSs within a single
CLB to be configured together to implement a shift register containing up to 128 bits..

1.8.4 Embedded RAMs

A lot of applications require the use of memory, so FPGAs now include relatively
large chunks of embedded RAM called e-RAM or block RAM. Depending on the
architecture of the component, these blocks might be positioned around the periphery of
the device, scattered across the face of the chip in relative isolation, or organized in

columns, as shown in Figure below.

A Novel u-Processor Architecture 13



Chapterl Introduction

Cdumns of erbedded
RaAM blocks

-.-a.j,j.—.‘. ;r‘w'le:ﬂs%d;*.;: A.'
- i LR - '!

et
|
™
i |
s
TH

Lo $ I Smean 1+
e r U NN I NN A RS R U NA R N AN
T IBINUARBS NS

31t
&
B

T
. 4
r 4
T
TIIXE
) 0 8 1 )

x
Il
11 . o

TITEITE:
1L I EEVE
X X

r s
5
»

44
H
:

.-

T
Tl
Iz

411 -+
i
-

1
¥
i
F

Figure 1.7 BRird's-eye view of chip with columns of
embedded RAM blocks.

Depending on the device, such a RAM might be able to hold anywhere from a few
thousand to tens of thousands of bits. Furthermore, a device might contain anywhere from
tens to hundreds of these RAM blocks, thereby providing a total storage capacity of a few
hundred thousand bits all the way up to several million bits. Each block of RAM can be
used independently, or mulitiple blocks can be combined together to implement larger
blocks. These blocks can be used for a variety of purposes, such as implementing
standard single- or dual-port RAMs, first-in first-out (FIFQ) functions, state machines,
and so forth.

1.9 HDL Based Design Flow for FPGAs

The idea behind a hardware description language is, perhaps not surprisingly, that
you can use it to describe hardware. In a wider context, the term hardware is used to refer
to any of the physical portions of an electronics system, including the ICs, printed circuit
boards, cabinets, cables, and even the nuts and bolts holding the system together. In the

context of an

HDL, however, “hardware” refers oﬁly to the electronic portions (components and
wires) of ICs and printed circuit boards. In the early days of electronics, almost anyone
who created an EDA tool created his or her own HDL to go with it. Some of these were
analog HDLs in that they were intended to rep resent circuits in the analog domain, while
others were focused on representing digital functionality. Here, we are interested in HDLs

only in the context of designing digital ICs in the form of FPGAs.
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1.9.1 Different levels of abstraction

The functionality of a digital circuit can be represented at different levels of
abstraction and that different HDLs support these levels of abstraction to a greater or

lesser extent.

The lowest level of abstraction for a digital HDL would be the switch level, which
refers to the ability to describe the circuit as 2 netlist of transistor switches. A slightly
higher level of abstraction would be the gate Jevel, which refers to the ability to describe
the circuit as a netlist of primitive logic gates and functions. Both switch-level and gate-
level netlists may be classed as sfructural representations. It should be noted, however,
that “structural” can have different connotations because it may also be used to refer to a
hierarchical block-tevel netlist in which each block may have its contents specified using

any of the levels of abstraction.

Fy
Behavioral
{Algorithmic) Loops
Processes

-

Functional
.

Structural
-

Figure 1.8 Different levels of abstraction.

The next level of HDL sophistication is the ability to support finctional representations,
which covers a range of constructs. At the lower end is the capability to describe a

function using Boolean equations.

The functional level of abstraction also encompasses register transfer level (RT1)
representations. The term R7L covers a multitude of manifestations, but the easiest way to
understand the underlying concept is to consider a design formed from a collection of

registers linked by combinational logic.
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The highest level of abstraction sported by traditional HDLs is known as behavioral,
which refers to the ability to describe the behavior of a circuit using abstract constructs
like loops and processes. This also encompasses using algorithmic elements like adders

and multipliers in equations.
1.9.2 A simple HDL-based FPGA flow

HDL-based flows featuring logic synthesis technology became fully available in
the FPGA world in the very early 1990s. The key feature of HDL-based design flows is
their use of Jogic synthesis technology, which began to appear around the mid-1980s.
These tools can accept an RTL representation of a design along with a set of timing
constraints. In this case, the timing constraints are presented in a side-file containing
statements along the lines of “the maximum delay from input X to output ¥ should be no
greater than NV nanoseconds”. The logic synthesis application automatically converts the
RTL representation into a mixture of registers and Boolean equations, performs a variety
of minimizations and optimizations (including optimizing for area and timing), and then
generates a gate-level netlist that can (or at least, should) meet the original timing

constraints.

Ragister Gate-lovel
transterlovel netlst

RTL hunctional Gatedevel hunctional
venfication verfication

| |

Fipure 1.9 Simple HDL-based FPGA flow.

There are a number of advantages to this type of flow. First of all, the productivity
of the design engineers rises dramatically because it is a lot easier to specify, understand,
discuss, and debug the required functionality of the design at the RTL level of abstraction
as opposed to working with reams of gate-level schematics. Also, logic simulators can

run designs described in RTL much more quickly than their gate-level counterparts.
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Once the synthesis tool have generated a gatelevel netlist, the gate-level netlist can
be simulated to ensure its functional validity, and it can also be used to perform timing
analysis based on estimated values for tracks and other circuit elements. The netlist can
then be used to drive the FPGA’s mapping, packing, and place-and-route software,
following which a more accurate timing report can be generated using real-world

(physical) values.
1.9.3 VHDL and VITAL

In 1980, the U.S. Department of Defense (DOD) launched the very high speed
integrated circuit (VHSIC) program, whose primary objective was to advance the state of
the art in digital IC technology. Under VHSIC, a project to develop a new hardware
description language called VHSIC HDL (or VHDL for short) was launched in 1981. The
first official release of VHDL occurred in 1985. DOD donated all rights to the VHDL
language definition to the IEEE in 1986. After making some modifications to address a
few known problems, VHDL was released as official standard IEEE 1076 in 1987. The
language was further extended in a 1993 release and again in 1999 giving VHDL-2001.

As a language, VHDL is very strong at the functional (Boolean equation and
RTL) and behavioral (algorithmic) levels of abstraction, and it also supports some
system-level design constructs. However, VHDL is a little weak when it comes to the
structural (switch and gate) level of abstraction, especially with regard to its delay
modeling capability. It quickly became apparent that VHDL had insufficient timing
accuracy to be used as a sign-off simulator. For this reason, the VITAL initiative was
launched at the Design Automation Conference (DAC) in 1992. VHDL Initiative toward
ASIC Libraries (VITAL) was an effort to enhance VHDL’s abilities for modeling timing
in ASIC and FPGA design environments. The end resuit encompassed both a library of
ASIC/FPGA primitive functions and an associated method for back-annotating delay
information into these library models, where this delay mechanism was based on the same

underlying tabular format used by Verilog.

1.10 FPAG Prototyping Kit

For this project BurchED FPGA boards and accessories have been selected
because of their flexibility and large capacity FPGA. The BurchED system consists of

following components.
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1.10.1 B5-X300 FPGA Board

« 300K gate Xilinx SpartanlIE device

e Access to all FPGA user I/Os

e Works with the Xilinx ISE design software

« Complete stand-alone system, including programming cable
¢ JTAG and serial mode configuration of the FPGA

« 1 to 100MHz header-programmable oscillator onboard

- ‘.-S!panaril‘l'E; Access to EPGA -
* 300K gate - user IfOs on '
-~/ header pins

power cable

Test LED and
.- pushbutton
switch

T~ 1to 100MHz
header-programmable
oscillator

Figure 1.10: The B5-X300, B5-X-Advanced-Download-Cable is included.

1.10.2 B5-SRAM plug-on module

» 2 MBits of very fast 15ns static RAM
e Accessible as 128K x 16, or 256K x 8
o Large storage, external to the FPGA, for data, code, images
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Figure 1.12: B5-Peripheral-Connectors

Connect standard PC peripherals to FPGA

VGA output, with 4 level resistor DAC on each of R, Gand B
Keyboard connectors - PS2 or 5-ptn DIN

Mouse connector - PS2

o RS232 leve! converter onboard
DB9 RS232 connector - serial communications to a PC

e Piezo buzzer for "system beep”, audible diagnostics and testing
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1.10.4 B5-X-Flash-Config plug-on module

S Xiink 18V02 JTAG - * Jumper cables for . -
. " reprogrammable flash ~-connecting to your
: configuratio " . FPGA board

V¥ B5-Oéwnload : y
. Pot Board | Hee A T - )
- Header shunt setting y - Reconfigure your
gives extra puliup on  DONE LED indicates  -FPGA at any time
DONE line required + that configuration ~ ‘with the RECONFIG -
- for Virtéx devices is complete- pushbutton

Figure 1.13: B5-X-Flash-Config
« Flash PROM automatically configures the FPGA on power up
« “Instant-on" configuration in less than 1 second
s JTAG reprogrammable

+ Xilinx 18V02 flash configuration PROM onboard
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2. Problem Definition

The basic problem is OS performance. In This section we present the problem

and its proposed solution.
2.1 Operating Systems

As modem applications become increasingly dependent on multimedia, graphics,
and data movement, they are spending an increasing fraction of their execution time in
the operating system (OS) kernel, an area of the system almost completely ignored by
traditional performance enhancement research. As an illustrative example, consider what
must undoubtedly be today’s leading server application: the web server. Web servers
have been shown to spend over 85% of their CPU cycles running operating system code;
in contrast, the near-ubiquitous SPEC benchmarks execute less than 9% of their

instructions in the OS kemel. fAaron B. Brown 1997]

For server-based environments, the operating system is a crucial component of the
workload. Previous research suggests that database systems spend 30 to 40 percent of
their execution time in the kernel, and measurements show that the Apache Web server
spends over 75% of its time in the kernel. Operating systems are also known to be more.
demanding on the processor than typical user code. [Joshua A. Redstone, Susan J. Eggers
& Henry M. Levy 2000]

Multi-server and component-based operating systems are promising architectural
approaches for handling the ever increasing complexity of operating systems.
Components or servers {and clients) communicate with each other through cross-domain
method invocations. Such interface method invocations, if crossing protection boundaries,
are typically implemented through the inter-process communication (IPC) mechanisms
offered by a microkemnel. Therefore, component interaction in such systems has to be
highly efficient. Thus inter-process communication (IPC) by message passing is one of
the central paradigms of most 1t-kernel based and other client/server architectures. It helps
to increase modularity, flexibility, security and scalability, and the key for distributed
systems and applications. IPC has to be fast and effective, otherwise programmers will
not be able to use remote procedure calls RPC, multithreading and multitasking
adequately. Thus IPC performance is vital for modern operating systems, especially p-

kernel based ones. Surprisingly, most p-kernels exhibit poor TPC performance. Since
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context and user/kernel mode switches are central to IPC operation, reducing them is a

critical factor in IPC performance improvement [Jochen Liedike 1993].
Also the following set of problems is caused by the operating systems.

i. Operating systems are huge programs that can overwhelm the cache and TLB due to

code and data size, thereby causing severe performance penalty for user programs.

ii. Operating systems may impact branch prediction performance, because of frequent

branches and infrequent loops.

iiti. OS execution is often brief and intermittent, invoked by interrupts, exceptions, or
system calls, and can cause the replacement of useful cache, TLB and branch

prediction state for little or no benefit.

iv. The OS may perform spin-waiting, explicit cache/TLB invalidation, and other

operations not common in user-mode code, affecting user code.

v. In current modularized kernels, every kernel invocation causes context switch, and in
case of p-kemnels every call means a couple of context switches, thus wasting a

considerable time in just switching processes.

vi. TPC-performance problems result from 64 bit architectures with large number of
registers and register stack engines. In short, the large number of registers contributes
to a potentially massive context (more than 2KB) to be stored on each thread context
switch. This added context switch overhead may prove fatal to microkernel systems.
A combined hardware/software solution is therefore required to reduce the amount of
information stored [Jochen Liedtke 2001].

vit. Overall, operating system code causes poor instruction throughput on a superscalar

microprocessor.

For these reasons, ignoring the operating system (as is typically done in
architectural & system simulations) may result in a misleading characterization of
system-fevel performance. Even for applications that are not OS-intensive, the
performance impact of the OS may be disproportionately large compared to the number

of instructions the OS executes.

To overcome these problems many techniques have been used, but each has its

disadvantages.
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i. Monolithic kernels cause most of the above cited disadvantages, except internal OS
function calls do not cause any context switches and System calls only cause a single

context switch, thus making kernel calling and return fast.

ii. To avoid many of these problems p-kernels have been designed, but they waste too

much time in message passing thus giving poor performance.

iii. ExoKernels try to make OS extendable and try to reduce many known performance

penalties,

A p-kemel can provide higher layers with a minimal set of appropriate
abstractions that are flexible enough to allow implementation of arbitrary operating
systems and allow exploitation of a wide range of hardware. Choosing the right
abstractions is crucial for both flexibility and performance. Some existing pt-kernels chose
inappropriate abstractions, or too many 6r specialized and inflexible ones. Similar to
optimizing code generators, p-kernels must be constructed per processor and are
inherently not portable. Basic implementation decisions, most algorithms and data
structures inside p-kernel are processor dependent. Their design must be guided by
performance prediction and analysis. Besides inappropriate basic abstractions, the most
frequent mistakes come from insufficient understanding of the combined hardware-

software system or inefficient implementation [Jochen Liedtke 1995].
2.2 Microprocessor Architecture

Internally microprocessors have limited support for operating systems besides the
features that are critical for current protected virtual memory based operating systems,
like p-kernel based operating systems. As we have seen that modern applications are
spending an increasing fraction of their execution time in the operating system (OS)
kernel. Techniques are required at the micro-architecture level to specifically improve OS'

performance,

Performance improvements at the micro-architecture level are only due to
superscalar architecture, speculative execution, speculative loading, branch prediction,
Simultaneous Multithreading, and Explicitly Parallel Instruction Computing etc. All these
techniques generally improve performance of executing code but are not intentionally

designed to improve OS performance.
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At the multi-processor lével performance improvement is due to SMP, NUMA or
clustering. In each of these techniques the processing nodes are either running a copy of
the kermel or the whole OS. None of these are aimed at improving OS performance
directly. Rather OS problems mentioned at section 2.1 appear at each node and further set

of problems appear due to multiple copies of the OS running simultaneously.

Integrated circuit processing technology offers increasing integration density,
which fizels microprocessor performance growth. It is becoming possible to integrate a
billion transistors on a reasonably sized silicon chip. At this integration level, it is
necessary to find parallelism to effectively utilize the transistors. Currently, processor
designs dynamically extract parallelism with these transistors by executing many
instructions within a single, sequential program in parallel. Future performance
improvements will require processors to be enlarged to execute more instructions per
clock cycle. However, reliance on a single thread of control limits the parallelism
available for many applications, and the cost of extracting parallelism from a single
thread is becoming prohibitive. This cost manifests itself in numerous ways, including
increased die area and longer design and verification times. In general, we see

diminishing returns when trying to extract paratlelism from a single thread.
2.3 Proposed System

Amdahl’s law tells us that if we want modern applications to run quickly, the
operating system must run quickly as well. Since traditional performance models
essentially ignore the operating system and modern OS-dependent applications, a need
has arisen for new tools and methodologies that direct their attention at the performance
of the OS kernel. fdaron B. Brown 1997]

The demand for ever faster computer systems seems to be insatiable. Instruction-
level parallelism helps a little, but pipelining and superscalar operations rarely win more
than a factor of five or ten. To get gains of 50, 100 or even more, the only way is to
design computers with multiple CPUs. Thus high level of gain is only promised by
parallelism at the processor level. Traditionally the processor level parallelism has used
discrete processors. Making one processor master and run the OS is attractive as it solves
most of the previously cited problems, but is prone to the bus latencies and hence poor

performance.
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As mentioned earlier OS kernel workload has significantly increased, especially
server based applications are putting heavy loads on the kernel. What must be realised is
that we have a huge potential for performance improvement. If some how the kernel runs
on an independent processor and the user code runs on another, without any bus latencies,
this master-slave processor architecture can improve performance significantly. This will
also open doors for future operating system improvements due to available processor

power at the disposal of the OS.

Researchers have proposed two microarchitectures that exploit multiple threads of
control: simultaneous multithreading (SMT) and chip multiprocessors (CMP). From a
purely architectural point of view, the SMT processor’s flexibility makes it superior.
However, the need to limit the effects of interconnect delays, which are becoming much
slower than transistor gate delays, will also drive the billion-transistor chip design.
Interconnect delays will force the microarchitecture to be partitioned into small, localized
processing elements. For this reason, the CMP is much more promising because it is
already partitioned into individual processing cores. Because these cores are relatively
simple, they are amenable to speed optimization and can be designed relatively easily
[Lance Hammond].

Programmers must find thread level parallelism in order to maximize CMP
performance. With current trends in parallelizing compilers, multithreaded operating
systems, and awareness of programmers about how to program paralle! computers, this
problem should prove less daunting in future. Additionally, having all of the CPUs on 2
single chip allows designers to exploit thread-level parallelism even when threads
communicate frequently. This has been a limiting factor on today’s multichip
multiprocessors, preventing some parallel programs from attaining speedups. The low
communication latencies inherent in single-chip microarchitecture allow speedup to occur

across a wide range of parallelism fLance Hammond)].

Therefore a new microprocessor architecture has been proposed that is specifically
designed to improve OS performance significantly as described below.

2.5 Design of Proposed Microprocessor.

In current multiprocessor architectures multiple independent microprocessors
form a system, and communicate with each other over a system buss. Each runs a copy of

the OS kernel, or, as in asymmetric multiprocessing, a single microprocessor runs the OS
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and acts as a master and controls the remaining microprocessors. This technique has an
inherent disadvantage of OS overload. Also the techniques used in SMP or NUMA are
indispensable and must be used in multiprocessor architectures, neither has specific
support for OS kernels. We will use a different technique, a modified form of chip
multiprocessors (CMP). The new microprocessor architecture consists of two tightly
coupled microprocessors. Both will be able to communicate with each other directly and

will be fabricated as a single chip in the same package.

T\System Data User Data BTT
Bus

L2 Cache L2 Cache
= Coherency e
Control |
L1 D <Cache | L1 [<Cache L1 D -Cache |LI I-Cache
Control Control
Bus ———
< :;" > System Core User Core
Set——~
Communication
H H 24 "t
¥ ¥ ¥ ¥
Shared Shared Shared Shared
Execution Execution Execution Execution
Unit Unit Unit Unit

Figure 2.1 Proposed p-Processor Architecture

One of the microprocessors will be the master processor and will implement
privileged instruction as well as rest of the instruction set. Operating system alone will
run on this microprocessor. The second microprocessor will only implement the non-
privileged instructions. Complex processor execution units like floating point units and
vector units will be shared among both processors to avoid over complex design and
waste of resources as these are seldom used by the OS kemels. Proposed design is

envisioned to remove earlier mentioned OS problems as follows.

1. Operating systems are huge programs that can overwhelm the cache and TLB due to code

and data size, thereby causing severe performance penalty for User programs.

The OS core has its own caches and TLB thus not affecting the user programs.

Also the system core caches will have OS instructions and data structures in them
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atall time thus removing cache contention faced by kernel in conventional
CPUs.

2. Operating systems may impact branch prediction performance, because of frequent
branches and infrequent loops.

Since the system core will have its own prediction logic, thus the user branch
prediction will not be effected. Also this issue will be handled in more detail
during OS design.

3. OS execution is often brief and intermittent, invoked by interrupts, exceptions, or system
calls, and can cause the replacement of useful cache, TLB and branch prediction state for
little or no benefit.

OS code will permanently reside on the system core thus avoiding the above to a

certain extent.

4. The OS may perform spin-waiting, explicit cache/TLB invalidation, and other operations

not common in user-mode code, again effecting user code.

0S code will permanently reside on the system core only thus again avoiding the

above for the user core.

5. In current modularized kernels, every kernel invocation causes context switch, and in
case of u-kernels every call means a couple of context switches, thus wasting a

considerable time in just switching processes.

The user and kernel code will be able to communicate directly by cross function
calls that will have no context switch latency. Therefore context and memory
space switches will be minimized by this architecture. This is one of the biggest

advantage of this design.

6. IPC-performance problems result from 64 bit architectures with there large
mumber of registers and register stack engines. In short, the large number of
registers contributes to a potentially massive context (more than 2KB} to be stored
on each thread context switch. This added context switch overhead may prove
Jatal to microkernel systems. A combined hardware/software solution is therefore

required to reduce the amount of information stored. {Jochen Liedtke 2001]

Since number of context and memory space switches will be dramatically reduced

by this architecture, therefore the scale of this particular problem will be reduced.
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But for the problem itself a few techniques are being developed including lazy
context switching, such techniques will be explored in the proposed architecture.

7. Overall, operating system code causes poor instruction throughput on a

superscalar microprocessor.

The system core will be designed specifically with OS code in mind. Thus, trying to
avoid the previously mentioned poor OS performance. Also this issue will be handled in
more detaif in OS design.
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3. Instruction Set Architecture

Much of the computer’s architecture/organization is hidden from a HLL
progremmer. In the abstract sense, the programmer should not care about the underlying
architecture. The instruction set is the boundary where the computer designer and the

computer programmer can view the same machine.

The operation of CPU is determined by the instructions it execute, referred to as
machine instructions or computer instructions. The collection of different instructions that
the CPU executes is referred to as the CPU’s instruction set. Each instruction must
contain the information required by the CPU for execution. Figure 3.1 Shows the steps

involved in instruction execution and.

Imtrtictind corplsies, Hetuen for siring
fetch nent instruction o vedor data

Figure 3.1 Instruction Cycle State Diagram {1}

The elements of machine instructions are as follows:

—

g? 1 Opcode: Opcode Specifies the operation to be performed. The
> OpCode is specified as a binary code.

2 Function: Function code specifies what particular operation is to
‘{\ be performed or OpCodes specifying a range of
]\ opergtions,

3 Source Operand: The Source Operand or Rs specifies the register that is

to be used in Input/Output Operations.

4 Source Operand 1: The Source Operand 1 or Rsl specifies the register that
is to be used as first operand in Arithmetic Operations.

5 Source Operand 2: The Source Operand 2 or Rs2 specifies the register that
is to be used as second operand in Arithmetic
Operations. .

6 Destination Operand: The Source Operand 1 or Rsl specifies the register that
is to be used as first operand in Arithmetic Operations.
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7 Immediate-16: Immediate-16 Specifies 16 bit Immediate data.
8 Immediate-20: Immediate-20 Specifies 20 bit Immediate data.
9 Direction: Specifies the Jump direction.

9 Port Address: Specifies the Port Address for /O operations.

3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the
bottom of the figure; addresses increase toward the top. Bit positions are numbered from
right to left. The numerical value of & set bit is equal to two raised to the power of the bit
position, MC-CPU processor is a “little endian™ machine; this means the bytes of a word

are numbered starting from the least significant byte. Figure 3.2 illustrates these

conventions.
o Data Structure
Highest o 2423 16 13 g 7 () ~at— Bil offset
Address
28
24
20
I6
12
S
’ 1 t
— — — — OWes
Byted | Byte2 | Bytel | Buted | O o000

Byte Ofset
Figure 3.2 Bit and Byte Order

3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as
reserved. When bits are marked as reserved, it is essential for compatibility with future
processors that software treat these bits as having a future, though unknown, effect. The
behavior of reserved bits should be regarded as not only undefined, but unpredictable.
Software should follow these guidelines in dealing with reserved bits:

e Do not depend on the states of any reserved bits when testing the values of
registers which contain such bits. Mask out the reserved bits before testing.

e Do not depend on the states of any reserved bits when storing to memory or to a

register.
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e Do not depend on the ability to retain information written into any reserved bits.

e When loading a register, always load the reserved bits with the values indicated in
the documentation, if any, or reload them with values previously read from the

same register.
3.3 Registers

There are 32 general purpose 32 Bit registers Ro to R31. A PC, Address Register,
Stack Pointer and Flag Register. Also there are 32 special purpose 32 bit registers SO to
S31.

3.4 Instructions Implementation

The important design phase when designing a processor is to decide which
instructions to include in the instruction set. The first step in deciding about instructions is
the types of instruction formats. Following Instructions formats have been defined. All of
the instructions have a 6-bit opcode which is used to determine the type of instruction to
be executed. Each of the register specifications in all of the instructions is 5-bits wide,

this means that the register file has 32 registers in it.

3.4.1 R-Type (Register to register)

« 32 BITS .
< GBITS 5 BITS 5 BITS SBITS , _ 6BIIS
31 26 25 2120 1615 1T 10 55

SOURCE SOURCE DESTINATI | Not
REG 1:R.l REG2:R2 |ONREG:Ry ‘| Used

Figure 3.3 R-TYPE Instruction Format

OPCODE FUNCTION

In an R-type instruction the first 6-bit specification is the Instruction opcode. The
following 5-bits specify function. These function bits specify what the acrual instruction
that will be performed is. This means for a single R-type opcode there can be up to 32
different instructions, as shown in figure 3.3.

In an R-type instruction the first 5-bit register specification is the source operand
register 1 or Rsl; the following 5-bit register specifies second source operand R.2. The
third 5-bit register specifies the destination register Rd. The final 6-bits from bit S downto
bit 0 in the instruction are not used.
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3.4.2 I-Type (Register & Immediate Value)

32 BITS

. | >

. GBITS _ . SBITS , , SBITS | _ 16 BITS .

31 26 25 2120 1615 0
SOURCE . A

OPCODE FUNCTION REG 1: R, Immediate 16 Bits

Figure 3.4 I-TYPE Instruction Format

In an I-type instruction the first 6-bit specification is the Instruction opcode. The
following S-bits specify function. These function bits specify the actual instruction that
will be performed. This means for a single I-type opcode there can be up to 32 different
instructions. In an I-type instruction only 5-bit register specification is the source operand
register 1 or R,1, which is also the destination register. The third 16-bit value is the

immediate value, as shown in figure 3 4.

3.4.3 J-Type (JUMP USING PC +/- IMMEDIATE VALUE)

In a J-type instruction first 6-bit specification is the Instruction opcode. The
following 5-bits specify function. These function bits specify the actual instruction that
will be performed. This means for a single J-type opcode there can be up to 32 different
instructions. In a J-type instruction the 1 bit field specification is the direction of jump i.e.
forward or backwards. The third 20-bit value is the immediate value, as shown in figure
3.5.

< 32 BITS .
3|1 6 BITS 2'5 2.5 5 BITS 2,}%%[1;9 20 BITS —+
OPCODE FUNCTION | D | Immediate 20 Bits
Figure 3.5 J-TYPE Instruction Format
3.4.4 N-Type (NO Operand)
< 32 BITS .
3'1 6 BITS 2.6 2.5 S BITS 2.1 50 21 BITS 45

OPCODE FUNCTION | Not Used

Figure 3.6 N-TYPE Instruction Format
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In an N-type instruction the first 6-bit specification is the Instruction opcode. The
following 5-bits specify function. These fisnction bits specify the actnal instruction that
will be performed. This means for a single I-type opcode there can be up to 32 different
instructions. In an N-type instruction the remaining 21 bits are not used, as shown in
figure 3.6.

3.4.5 I0-Type
32 BITS

< >
¢ 6 BITS > < 5 BITS » 4 13 BITS qu_Bﬂs_—b

31 26 25 2120 87 0
OPCODE R, .Not Used Port Address

Figure 3.7 IO-TYPE Instruction Format

In an IO-type instruction the first 6-bit specification is the Instruction opcode.
The following 5-bits specify the register. The next 13-bits are not used. The final 8 bits

specify the Device and Port address, as shown in figure 3.7.

3.4.6 OI-Type

. 32 BITS R
" GBITS , 2BMg, 16 BITS .. 8BTS
B3] 2%25 2433 7 3
OPCODE E‘S’;d Immediate Data Port Address

Figure 3.8 OI-TYPE Instruction Format

In an Ol-type instruction the first 6-bit specification is the Instruction opcode.
The following 2-bits are not used. The next 16-bits specify the immediate data to be sent
to the output port. The final 8 bits specify the Device and Port address, as shown in figure
38

3.5 Instruction OpCode Map

Instruction OpCode Function Operands T::——:;t?ig
No Operation
NOP | 000000 | 00000 | —_ | 0

Load to Rd From Memory Location Pointed By Rs

LOAD [ 000001 [ 00000 | RI,Rqs | 1

A Novel u-Processor Architecture 33



Chapter 3 Instruction Set Architecture

Load from Memory Location Immediately following this Instruction in Memory
LOADI i 000010 i 00000 | R,} [ 2
Load to Register Using PC + Imm Data
Rl, Imm
LOADIA 000011 00000 Address Value 3
Store Rd to Memory Location Pointed By R,
STORE | 000100 | 00000 [ RdRa | 4
Store Register Using PC + Imm Data
STOREIA 000101 00000 R.1, Imm 5
Address Value
Move from R, to R,
MOVE | 000110 | 00000 | RLRa | 6
Move Immediate Data to Register
MOVEI 000111 00000 Rl, Imm 7
Value
ALU Single Operand Instructions
- ALUS
NOT 001000 00011 R.l 8
IINC 001000 00111 R,1 8
DEC 001000 01000 R4l 8
ZERO 001000 01001 Rel 8
ALU Double Operand Instructions
ALUD
AND 001001 00001 R1, R2, Ry 9
OR 001001 00010 R.1, Re2, Ry 9
XOR 001001 00100 R.1, R2, Ry 9
ADD 001001 00101 R.l, Re2, Ry 9
SUB 001001 00110 R.1, R2 Ry 9
ALU Double Operand With Immediate Data Instructions
ALUDI
ANDI 001010 00001 R.l, Imm Data 10
ORI 001010 00010 R,], Imm Data 10
XORI 001010 00100 R,l, Imm Data 10
ADDI 001010 00101 R.1l, Imm Data 10
SUBI 601010 00110 R.l, Imm Data 10
MULTIPLY and DEVIDE Instructions
MULDIV
MUL [ o01011 | 00001 | ROR2Rs | 11
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DIV 001011 00010 R,1,R:2,Rq 11
MULI 001011 00011 R.l, Imm Data 11
DIVI 001011 00100 R,l, Imm Data 11
Shift and Rotate Instructions 1-Bit
SR
SHL 001100 00001 Rl 12
SHR 001100 00010 R,! 12
ROTL 001100 00011 Rl 12
ROTR 001100 00100 Rl 12
Register Comparison Instructions
RC
EQ 001101 00001 R.l, R2 13
NEQ 001101 00010 Rel, Rs2 13
GT 001101 00011 R.l, Ry2 13
GTE 001101 00100 Rql, Re2 13
LT 001101 00101 Rel, Rs2 13
LTE 001101 00110 Rsl, Re2 13
Register Comparison With Immediate Data Instructions
RCI
EQI 001110 00001 R.1, Imm Data 14
NEQI 001110 - 00010 R,l, Imm Data 14
GTI 001110 00011 R.], Imm Data 14
GTEI 001110 00100 R,1, Imm Data 14
LTI 001110 00101 R;1, Imm Data 14
LTEI 001110 00110 R,1, Imm Data 14
Unconditional Branch to Memory Address Contained at the Next Memory
Location
BRANCHI | 001111 | 00000 | — l 15
Conditional Branches to Memory Address Contained at the Next Memory
Location
BRANCHCI
BRANCHEQI 010000 00001 Rel, R2 16
BRANCHNEQI 010000 00010 R.l, R2 16
BRANCHGTI 010000 00011 Rel, Re2 16
BRANCHGTEI 010000 00100 Rel, R:2 16
BRANCHLTI 010000 00101 Rel, R2 16
BRANCHLTE! 010000 00110 R.1, R2 16
Branch Unconditionally to PC + Immediate Data
BRANCH | 010001 | 00000 | ImmData | 17
Branch Conditionally to PC + Immediate Data (BASED ON FLAG REGISTER)
BRANCHC
BRANCHEQ | 010010 [ 00001 | 18

| ImmData
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BRANCHNEQ 010010 00010 Imm Data 18
BRANCHGT 010010 00011 Imm Data 18
BRANCHGTE 010010 00100 Imm Data 18
BRANCHLT 010010 00101 Imm Data 18
BRANCHLTE 010010 00110 Imm Data 18
BRANCHZ 010010 00111 Imm Data 18
Input Data from Input Port to Register
INPUT | o1oo11 | 00000 | R4 19
Output Register Data to Output Port
OUTPUT | 010100 | 00000 I R. 20
Output Immediate Data to Qutput Port
OUTPUTI [ o10101 | 00000 [ Imm Value 21
Push Register Data on Top of Stack
PUSH 010110 00000 Rl 22
PUSHS 010110 00001 R,] 22
POP Data to Register from Top of Stack
POP 010111 00000 R4 23
POPS 010111 00001 R4 23
Function Call
CALL 011000 00000 Imm Address 24
Value :
CALLS 011000 00001 Imm Address 24
Value
Return from Function Call
RETURNC 011001 00000 - 25
RETURNCS 011001 00001 — 25
Return From Interrupt
RETURNI | 011010 | 00000 | - 26
Enable or Disable Interrupts
EDI
El 011011 00001 — 27
DI 011011 00010 - 27
Trap to OS Kernel
TRAP 011100 00000 [mm Address 28
Value
Wait for Interrupt
WAITI | 011101 | 00000 ] — 29
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Wait for Time (Given)
Imm Time
WAITT 011110 00000 Value 30
Halt Execution
HALT | 011111 | 00000 | - I 31

3.6

3.6.1

3.6.2

3.6.3

Figure 3.9 Instruction OP-Code Map

Instruction Implementation Detail

The following sections explain the implementation details of each instruction.

NOP
Instruction type: N-Type
Opcode: 000000
Function Code: 000000
Operation; No Operation

Figure 3.10 NOP Instruction

Description:
NOP performs no operation. It is used to consume a complete Fetch, Decode, and

Execute Cycle. Used normally by compilers to align load stores. And eliminate

pipeline hazards.

Load
Instruction type: R-Type
Opcode; 000001
Function Code: 000000

Source Register 1: Memory Address
Destination Register: | Destination for read data
Operation: Ry +— MEM [ R,1]
Figure 3.11 LOAD Instruction

Description:
Load uses register indirect memory addressing to load a 32 bit word from
memory. Memory address is provided in the Source register 1. Read data is placed

in the destination register

Loadl

[ Instruction type: | 1-Type
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Opcode: 000010

Function Code: 000000

Destination Register: | Destination for read data
Operation: R.1 «— MEM [ PC+1]

Figure 3.12 LOADI Instruction

Description:
Loadl uses address contained at the next memory location pointed to by Program

Counter + 1 to load a 32 bit word from memory. Read data is placed in the

Destination Register.

3.6.4 LoadlA

Instruction type: I-Type

Opcode: 000011

Function Code: 000000

Source Register 1: Destination for read data
Immediate-16 Memory address

Operation: R,! «— MEM [ Immediate-16]

Figure 3.13 LOADIA Instruction

Description:

LoadI uses address contained inside the instruction as 16 bit value to load a 32 bit
word from memory. Memory address is padded to make it 32 bits. Read data is
placed in the Source Register 1.

3.6.5 Store

Instruction type: R-Type

Opcode: 000100

Function Code: 000000

Source Register 1; Source Register Containing Data
Destination Register: | Destination Memory Address
Operation: MEM [Rg]—R.!

Figure 3.14 STORE Instruction

Description;
Store uses register indirect memory addressing to store a 32 bit word to memory.
Memory address is provided in the destination register. Data to be stored is

provided in Source Register 1.
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3.6.6 StorelA

Instruction type: 1-Type

Opcode: 000101

Function Code: 000000

Source Register 1; Source Register Containing Data
Immediate-16 Memory address

Operation: MEM [ Immediate-16] < Ryl

~ Figure 3.15 STOREIA Instruction

Description:
Storel A uses address contained inside the instruction as 16 bit value to store 32 bit

word to memory. Memory address is padded to make it 32 bits. Data to be stored

is provided in Source Register 1.

3.6.7 Move
Instruction type: R-Type
Opcode: 000110
Function Code: 000000
Source Register 1: Source Register Containing Data
Destination Register: | Destination Register for data
Operation: R4 «—R,1

Figure 3.16 MOVE Instruction

Description:
Move instruction is used to move data between two registers.

3.6.8 Movel
Instruction type: I-Type
Opcode: 000111
Function Code: 000000
Source Register 1: Destination Register for data
Immediate-16 Immediate Data
Operation: R,;1 < Immediate-16

Figure 3.17 MOVEI Instruction

Description:
Move instruction is used to move immediate data to a register. Immediate Data is
padded to make it 32 bits.
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3.69 ALUS

Instruction type: R-Type

Opcode: 001000

Function Code: NOT :00011
INC 101111
DEC :01000
ZERO :0i001

Source Register 1: Register to perform operation on

Operation: NOT - :Rsl « NOT Rl
INC :Rsl —INCR,i
DEC :R. < DECR.
ZERO :R,1 +— ZEROR,!

Figure 3.18 ALUS Instruction

Description:
ALUS or ALU Single Operand instructions use R;1 as the source and destination

register. 4 possible operations are specified by the function code.

3.6.10 ALUD

Instruction type: R-Type

Opcode: 001001

Function Code: AND :00001
OR : 00010
XOR :00100
ADD :00101
SUB 00110

Source Register 1: Source Operand 1

Source Register 2: Source Operand 1

Destination Register : | Destination for result

Operation: AND :Ri+« Rl ANDR2
OR :Ra+—R,1 ORR;2
XOR :Ra+«R,1 XORR:2
ADD :Rgq+ Rsl ADDR2
SUB  :Ra < R¢l SUB Rg2

Figure 3.19 ALUD Instruction

Description:
ALUD or ALU Double Operand instructions use Rs1 and R,2 as the source

Operands and Ry as destination register. 5 possible operations are specified by the

function code.
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3.6.11 ALUDI

Instruction type: I-Type

Opcode: 001010

Function Code: AND :00001

OR : 00010

XOR :00100

ADD :00101

SUB :00110

Source Register 1: Source Operand 1

Immediate-16 Immediate Data

Operation: AND : R;1 + R,1 AND Imm Data
OR :R,1 « R;1 OR Imm Data
XOR : Ryl + R;1 XOR Imm Data
ADD : R,1 «— R;1 ADD Imm Data
SUB : R;1 «— R,1 SUB Imm Data
Figure 3.20 ALUDI Instruction

Description:
ALUDI or ALU Double Operand instructions with Immediate data use R,1 as the

source and destination register. Immediate data provides the second operand. 5

possible operations are specified by the function code.

3.6.12 MULDIV

Instruction type: R-Type/I-TYPE
Opcode: 001011
Function Code: MUL :00001
DIV  : 00010
MULI :00011
DIVI . 00100
Source Register 1: Source Operand 1
Source Register 2: Source Operand 1
Destination Register : | Destination for result
Immediate-16 Immediate Data
Operation: MUL :Ry « R MULRs2
DIV :Ry4 < R, DIVRs2
MULI :R,l « R,1 MUL Imm Data
DIVI :R,l « R,1 DIV Imm Data

Figure 3.21 MULDIV Instruction

Description;
MULDIV OR Multiply Divide instructions use R;1 and R2 as the source
Operands and Ry as destination register OR R;1 as the source and destination
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register and Immediate data as second operand. 4 possible operations are specified

by the function code.
3.6.13 SR

Instruction type: R-Type

Opcode: 001100

Function Code: SHL  : 00001
SHR :00010
ROTL :00011
ROTR :00100

Source Register 1; Register to perform operation on

Operation: SHL :R.]+~ SHLR,]
SHR :R,1 «— SHRR;l
ROTL :R,1 « ROTL Rl
ROTR :R,1 «ROTRR,1

Figure 3.22 SR Instruction

Description:
SR or Shift Rotate Single Operand instructions use R;1 as the source and
destination register. 4 possible operations are specified by the function code.

3.6.14 RC

Instruction type: R-Type

Opcode: 001101

Function Code: EQ :00001
NEQ :00010
GT :00011
GTE :00100
LT :00101
LTE :00110

Source Register 1: Source Operand 1

Source Register 2: Source Operand 1

Flag Register Destination for Boolean result

Operation: EQ :FL-EQ« 1IFR,1=R;2
NEQ :FL-NEQ «— 1IFR,1 =R;2
GT :FL-GT < 1IFR,1>R,2
GTE :FL-GTE «— 1 IFR,l1 >=R;2
LT :FL-LT« 1IFR,l1 <Rg2
LTE :FL-LTE « 1 [FR;1<=R,2

Figure 3.23 RC Instruction

Description:
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RC or Register Compare Double Operand instructions use Rl and Ri2 as the
source Operands and Flag Register as destination register. 6 possible operations

are specified by the function code.

3.6.15 RC1
Instruction type: I-Type
Opcode: 001110
Function Code: EQ :00001
NEQ : 00010
GT 00011
GTE :00100
LT :00101
LTE :00110
Source Register 1: Source Operand 1
Immediate-16 Immediate Data
Operation: EQ :FL-EQ « 1IF R;l =Imm Data
NEQ : FL-NEQ « 1 IF R,1 /= Imm Data
GT :FL-GT <« 1IFR,]1 > Imm Data
GTE :FL-GTE « 1 IF R,1 >=Imm Data
LT :FL-LT « 1 IF R;1 <Imm Data
LTE :FL-LTE « 1IF R,1<=Imm Data

Figure 3.24 RCI Instruction

Description:
RC or Register Compare Single Operand instructions use R,1 and Immediate Data
as the source Operands and Flag Register as destination register. 6 possible

operations are specified by the function code.

3.6.16 Branchl

Instruction type: N-Type
Opcode: 001111
Function Code: 000000
Operation: PC «— MEM [PC+1]
Figure 3.25 BRANCH]I Instruction
Description:
Unconditional Branch to the memory address contained at the next memory
location pointed by PC+1.
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3.6.17 BranchClI

Instruction type: R-Type
Opcode; 010000
Function Code: BranchEQI  : 00001
BranchNEQI : 00010
BranchGTI  : 00011
BranchGTEI : 00100
BranchLLTT  : 00101
BranchLTEI : 00110
Source Register 1: Source Operand 1
Source Register 2: Source Operand 1
Flag Register Destination for Boolean result
Operation: BranchEQ! : PC « MEM [PC+1]
IF Rl =R,2
BranchNEQI : PC «— MEM [PC+1]}
IFR] /~=R:2
BranchGTI :PC « MEM [PC+1]
IFR.I >R,;2
BranchGTEI : PC +— MEM [PC+1]
’ IF R;1 >=R.2
BranchLTI :PC «— MEM [PC+1]
IF Rl <Rg2
BranchLTEI :PC «— MEM [PC+1]
IFR,1 <=R,2

Figure 3.26 BRANCHCI Instruction

Description:

Conditional Branch to the memory address contained at the next memory location
pointed by PC+1. BranchCI Double Operand instructions use R;! and R.2 as the
source Operands and branches on the base of comparison result. 6 possible

operations are specified by the function code.

3.6.18 Branch

Instruction type: J-Type

Opcode: 010001

Direction D Jump Direction

Immediate-20 20 Bit Immediate Address value

Function Code: 000000

Operation: PC «— MEM [Imm Address]
Figure 3.27 BRANCH Instruction

Description:
Unconditional Branch to the Immediate memory address.
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3.6.19 BranchC

Instruction type:

J-Type

Opcode:

010010

Function Code:

BranchEQI  : 00001
BranchNEQI : 00010
BranchGTI ;00011
BranchGTEI : 00100
BranchLTI + 00101
BranchLTEI :00110

BranchZ : 00111 '
Immediate-20 20 Bit Immediate Address value
Direction D Jump Direction
Flag Register Used for Jump Conditions
Operation: BranchEQ :PC«— MEMPC+1]
IFFL-EQ=1
BranchNEQ : PC «— MEM PC+1]
IF FL-NEQ =1
BranchGT :PC — MEMPC+1]
IF FL-GT =1
BranchGTE : PC «— MEM PC+1]
IFFL-GTE=1
BranchLT :PC «— MEM PC+1]
IFFL-LT=1
BranchLTE : PC «— MEM PC+1]
IFFL-LTE=1

Figure 3.28 BRANCHC Instruction

Description:

Conditional Branch to the immediate memory address. BranchC uses the flag

register to make conditional jumps. Therefore a register compare or ALU

operation should have been performed before this instruction. 6 possible

operations are specified by the function code.

3.6.20 Input

Instruction type: IO0-Type
Opcode: 010011
Source Operand: Destination Register for Input Data
Port Address: 8 bit port address
Operation: R; +— INPUT[Port Address]
Figure 3.29 INPUT Instruction
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Port Address Format
< 8 Bits .
« 4 Bits e 4 Bits .
7 43 0
| Device Address | Port Number I

Figure 3.30 Input Port Format

Total Devices: 16
Port per Device: 16

Description:

Reads Data from the input port and places it into the Source register Rs.

3.6.21 Qutput

Instruction type: I0-Type

Opcode: 010100

Source Operand: Source Register for output Data
Port Address: 8 bit port address

Operation: OUTPUT[Port Address] «— R,

Figure 3.32 OUTPUT Instruction

Port Address Format

< 8 Bits >
< 4 Bits e 4 Bits >
7 43 0

| Device Address | Port Number 1

Figure 3.32 Qutput Port Format

Total Devices: 16
Port per Device: 16

Description:

Outputs the data contained in the Source register R, to the output port.

3.6.22 Outputl

1 | Instruction type: O1-Type

2 | Opcode: 010101

3 | Immediate-16: QOutput Data

4 | Port Address: 8 bit port address

5 | Operation: OUTPUT[Port Address] «— Imm Data

Figure 3.33 OUTPUTI Instruction
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Port Address Format
. 8 Bits _
< 4 Bits e 4 Bits .
7 43 0
| Device Address | Port Number |

Figure 3.34 OUTPUTI Port Format

Total Devices: 16
Port per Device: 16

Description:

Outputs the Immediate data to the output port.

3.6.23 PUSH

Instruction type: R-Type
Opcode: 010110
Function Cade: PUSH : 00000

PUSHS : 00001

Source Register 1:

Register to push on top of stack

Operation:

PUSH : StackPointer++
Stack[StackPointer] «— R,1

PUSHS : SStackPointer++
SStack[SStackPointer] «—

Rl

Figure 3.35 PUSH Instruction

Description:

Pushes the source register on top of the stack or remote stack.

3.6.24 POP

Instruction type: R-Type

Opcode: 010111

Function Code: POP : 00000
POPS : 00001

Destination Register:

Destination Register for popped Data

Operation:

POP : R4+ Stack[StackPointer]
StackPointer--

POPS : Ry « SStack{SStackPointer]
SStackPointer--

Figure 3.36 POP Instruction

Description:

Pops data from top of stack or shared stack to the destination register.

A Novel u-Processor Architecture

47



Chapter 3 Instruction Set Architecture

3.6.25 CALL
Instruction type: I-Type
Opcode: 0110060
Function Code: CALL :00000
CALLS : 00001
Immediate-16: Function address
Operation: CALIL : StackPointer++
Stack[StackPointer] «— PC
PC « Imm Data
CALLS : CallCode « Imm Data
Assert CALLS

Figure 3.37 CALL Instruction

Description:
Calls function on the same processor or the remote processor.

3.6.26 RETURNC

Instruction type: N-Type

Opcode: 011001

Function Code: RETURNC : 00000
RETURNCS : 00001

Operation: RETURNC :PC+«

Stack[StackPointer]
StackPointer--

RETURNCS : Assert RETURNS

Figure 3.38 RETURNC Instruction

Description:
Retums from the function call on the same or remote processor.

3.6.27 RETURNI
Instruction type: N-Type
Opcode: 011010
Function Code: 00000
Operation: RETURNI : PC —
Stack[StackPointer]
StackPointer--
Figure 3.39 RETRUNI Instruction

Description:
Returns from the interrupt handler routine.
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3.6.28 EDI
Instruction type: N-Type
Opcode: 011011
Function Code: EI : 00001
DI : 00001
Operation: El :FL-1«<— 0
DI :FL-I 1
Figure 3.40 EDI Instruction

Description:
Enable or disable interrupts.

3.6.29 TRAP
Instruction type: N-Type
Opcode: 011100
Function Code: 00000
Immediate-16: Service Requested
Operation: CALL : StackPointer++
Stack[StackPointer] «— PC
PC —S1
Figure 3.41 TRAP Instruction
Description:
Traps to the kernel entry point.
3.6.30 WAITI
Instruction type: I-Type
Opcode: 011101
Function Code: 00000
Immediate-16: Interrupt Number
Operation: CALL : Wait until INT = 1 AND
INT CODE = Interrupt Num
Figure 3.42 WATI Instruction

Description:
Waits for specified interrupt.
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3.6.31 HALT

1 Instruction type: N-Type

2 | Opcode: 011111

3 Function Code: 00000

4 | Operation: Halts the CPU

Figure 3.43 HALT Instruction

Description:

CPU stops executing instructions.
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4. System Design

Design of a microprocessor is a complex task. On top of that, in order to test a
microprocessor a complete working set of peripherals is required. In this chapter, design

of the microprocessor and its associated peripherals is explained.
4.1 MultiCore Processor Architecture

The MC-CPU implements the Instruction Set Architecture defined in the previous
chapter. The Master processor implements all the privileged instruction as well as rest of
the instruction set. Caches and Shared execution units are not implemented in this
version. The Slave processor only implements the non-privileged instructions. Figure 4.1
gives the block diagram of MC-CPU.

4.1.1 MC-CPU Architecture

MC. CPU consists of Master CPU (CPU-1), Slave CPU (CPU-2) and Shared
Stack as shown in the figure 4.1. Each of these functional units and their operations are

explained individually in the following sections.
4.1.1.1 CPU1

CPU1 is the master CPU. Tt implements all the privilege instructions. Only the
master processor can access /O devices. Interrupt handling is performed only by the
master processor. Shared stack is also controlled by master processor. The master
processor can control the behavior of the slave processor by the means of INTS
interrupts. Slave processor implements special interrupt handlers for INTS rather than for

the normal interrupts.
4.1.1.2 CPU2

CPU2 is the slave CPU. It does not implement the privilege instructions. The
slave processor can not physically access I/0 devices. System level interrupt handling is
not performed by the Slave processor as it does not have an INT fine. Shared stack is
accessed by the slave processor when ever the master processor grants it access. Slave
processor implements special intermupt handlers for INTS rather than for the normal

interrupts. When ever the master processor asserts INTS, the slave processor immediately
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jumps to the particular interrupt based on INTSCODE. The INTSCODE is an 8-bit value

indicating particular interrupt.

Clock MC-CPU
:_ RBSC!
CPU-1 J CPU-2
! Clock ~ SStackPointerEn ‘::I 1 ,1 smcxmmml. gl:— L SStackPointerWr  Clock |
Reset SStackPointerWr | SStackPointerEn Reset
»l Ready - SStackPointerln N SStackPointerin ready >
o INT SStackaddr Addr
< Addr SStackEn Rw »
« Rw SStackWr Vma jg—
< Vma | I_— STACK Dataout >
< Dataout SStackEn Datain
| Datain Stackdatain
- DeviceEN :i}
<+ DeviceWE SStackaddr
< Portout SStackWr
- Portin SStackdatain
h 4
SStackdataout l [ SStackdataout
Request Request
INTS Grant —H Grant INTS
INTSCODE CALLS I‘ JCALI..S INTSCODE
RETURNS RETURNS
Figure 4.1 MC-CPU
4.1.1.3 Shared Stack

Shared Stack consists of the stack memory and the shared stack pointer. The
shared stack pointer is a 32 bit register. Its output value is constantly supplied to both
processors. It can only be modified by one processor at any given time. Shared stack
memory consists of single port 1024 bit distributed RAM, arranged as 32 X 32 bits. Only

one processor can push or pop from the shared stack at any given time.
4.1.1.4 Shared Stack Operation

Shared stack operates in the following manner:
i. Master processor has initial control of the shared stack

ii. Master processor can modify the shared stack pointer any time; only exception is

when it has granted control of the shared stack to the slave processor
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iti. Master processor can push or pop values from the shared stack any time; except when

it has granted control of the shared stack to the slave processor
iv. Slave processor can not directly access the shared stack
v. Slave processor must assert the REQUEST Signal to gain access to the shared stack

vi. Whenever REQUEST is asserted by the Slave processor, the master processor can

grant or disallow access to the shared stack

vii. Access is disallowed only when master processor is modifying or accessing the shared

stack itself
viii. Slave processor is blocked or in a wait state during this period

ix. When the master processor is not accessing the shared stack and the Slave processor

requests for it, request is granted by asserting the GRANT signal
x. When the GRANT signal is asserted Slave processor gets access to the shared stack
xi. Slave processor can now modify both shared stack pointer and shared stack

xii. After the slave processor has modified the stack it deasserts the GRANT signal to

indicate that the shared stack is now free

xtii. When the GRANT signal is deasserted the master processor deasserts the GRANT

signal and takes the control of shared stack back
4.1.1.5 Remote Call

All the communication between the master and slave processor is based on remote
calls. In fact these are not remote calls in the classic sense rather these are traps to the OS
kernel running on the master processor. Only the slave processor can trap to the master

processor by asserting CALLS signal. The remote calls work in the following manner.

i. When ever the user code running on the Slave processor needs some operating system

service it must invoke a remote call
ii. Remote call is invoked by the slave processor by asserting the CALLS signal

iii. Before asserting the CALLS signal slave processor must request access to the shared
stack, and at least place the 32 bit service code on top of the shared stack. It can also

place any parameters on the stack if there is any
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iv. After placing the service code and/or any parameters on the shared stack, the Slave

processor asserts the CALLS signal
v. On receiving the CALLS signal Master processor invokes the remote call handler

vi. Remote call handler checks for user access rights and proper parameters and then

calls the appropriate OS function. This is a normal function call
vii. Normally no context switch takes place during this whole procedure

viii. After servicing the call and placing return values onto the shared stack the Master

processor asserts the RETURNS signal

ix. On receiving the RETURNS signal, Slave processor request for the shared stack, gets
the return values, and deasserts the CALLS signal

4.1.1.6 Remote Interrupt

The Master processor controls the slave processor by using Remote Interrupts.
Only the Master processor can raise remote interrupts and only the slave processor serves
remote interrupts. Interrupt vector table and interrupt service routines for the remote
interrupts are placed in the Slave processor’s memory space by the Master processor.
These interrupts can range from memory management to context switching to process

cleanup. Remote interrupts work in the following manner.
i. Operating System running on the Master processor can raise remote interrupts
ii. A remote interrupt is raised by asserting the INTS signal
iil. Interrupt type is indicated by INTSCODE

iv. Upon receiving an INTS the Slave processor immediately jumps to the appropriate
handler based on INTSCODE '

v. After servicing the INTS the slave processor assert the SERVICED signal

Vi. Upon receiving the SERVICED signal the Operating System on the Master processor
considers the work done and deasserts the INTS signal

4.1.2 Base CPU Architecture

In this section we describe the base CPU architecture and its implementation. The

base CPU consists of the following main units.
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4.1.2.1 Internal TriState DataBus

The internal TriState DataBus is the main internal processor bus. All the datapath
components are connected to this bus. All datapath components have enable signals.
When the enable signal is low the component is disabled and has high impedance. Only
one component is enabled and driving the bus. Multiple components can act as

destination at any given time.
4.1.2.2 Registers

The CPU has a set of registers for normal operation. Since the design is based on
the principles of RISC, a large number of registers are provided. All registers are 32 bit
wide. There are 32 general purpose 32 Bit registers Ro to R31m, a 32 bit PC, Address
Register, Stack Pointer and Flag Register. Also there are 32 special purpose 32 bit
registers SO to S31.

4.1.2.3 ALU

The CPU has a single 32 bit ALU that performs all arithmetic and logic operations
except multiplication and division. The ALU performs the following operation on 32 bit

operands:

i. PASS
ii. AND
iii. OR
iv. NOT
v. XOR
vi. ADD
vii. SUBTRACT
viii. INCREMENT
ix. DECREMENT
x. ZERO
xi. ONE

4.1.2.4 Multiplier/Divider

The multiply/divide unit provides the CPU with hardware multiplication
capability. Full 32 bit X 32 bit multiplication and division are implemented.
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4.1.2.5 Comparator

The comparator unit provides the CPU with comparison operation. Only scalar
data comparisons are implemented. Following operations are available.
i >
ii. >=

ii. <

Internal TriState DataBus

L

Hardware Muly ALU Comp
STACK Drv

Emainder Register Shifter Flag Register

h 4

CONTROLLER
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—]
ol
-y
)
|
p

y . v I - ST e

Y

DataOu PC Stack Pointer Rw

Vma

J 3

Repgister 'Y DevictEN

. DeviceWE
File + P

Dataln : Portin
. Address Register SStackPointerEn

SStackPointerWr

Hr YYVYYYY

SStackPointerln [«

SStackaddr
IR Extfmder' SStackEn

4 SStackWr

\A A

- IR > Request [«

Grant

Address INTS

INTSCODE

A

YYe

CALLS

RETURNCS

4

CallCode
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Figure 4.3 CPU
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4,1.2.6 Shifter

The shifter unit provides the CPU with shift and rotate operation. Only scalar data
shift and rotates are implemented. Full 32 bit shifts and rotates are available. The

following operations are available.

i. shl
ii, shr
ill, roti

iv. rotr
4.1.2.7 IR extender

IR extender is used for the extraction of immediate data and address values from

the instructions.
4.1.2.8 Hardware Stack

The hardware stack allows for the storage of procedure return addresses and
parameters. It is implemented using single port distributed RAM. It is arranged as 64 X
32 bits. Data can be pushed or popped from the stack.

4.1.2.9 Register File

The register file provides for the main program variable storage. It is a 32 bit dual
port register file. Data read from the memory is brought straight to the register file. Data
stored to the memory is taken from the register file. Hence the register file is the main

component in implementing the load store architecture of the CPU.
4.1.2.10 Controller

Controller is the brain of the CPU. It is implemented as a Finite State machine. All

instruction decoding and sequencing takes place inside the controller.
4.2 System Architecture

The complete system is composed of multiple independent units that work together to
form a complete working system as shown below in the system level block diagram. The
whole system is implemented as 2 SoC on a single FPGA. The complete system utilizes
approximately 95% of a Spartan-IIE { XC28300pq208-¢ ). The complete system consists
of the following units.

A Novel p-Processor Architecture 57



Chapter 5

System Design

i. MC_CPU

MC_CPU architecture and working was explained in detail previously

SYSTEM
iqu Key Board [+ ’
1k Controller
JI‘QLE—L’M MEMORY [*
—
Interrupt | MC CPU \
! ll » D
M
N R M
X U
) > X
_’ —
VGA »| 7SEG
™ Controller N .| Controlier
cum. o Debounce » Controller
L™ 4k o =} andm _ -
sy HETSE
lsun Control o .
—lsws ) >
— W
> HSync
NSync >
RO R]1
B0 RI >
G, Gi ;

Figure 4.4 System Architecture Diagram
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ii.

iit.

iv.

vi.

vii.

vili,

ix.

xi.

xii.

MC_CrU

MC_CPU architecture and working was explained in detail previously
Memory

The memory is based on dual port RAM and is arranged as 512 X 32
MC_CPU

MC_CPU architecture and working was explained in detail previously
Memory

The memory is based on dual port RAM and is arranged as 512 X 32
MUX

MUX is the input multiplexer and is controlled by MC_CPU

DMUX

MUX is the output multiplexer and is controlled by MC_CPU.
Keyboard Controller -

Keyboard controller is used for interfacing to the st:ndard PS2 style keyboard
VGA Controller

VGA controller is used to contro! the standard VGA display at 640 pixels X 480
pixels, 60Hz refresh.

Interrupt Controller

Provides priority based interrupt handling. 8 interrupts are provided. Each is

individually maskable
Switch Debounce and Pulse Control

Switch Debounce and pulse control provides debouncing of external switch input.

Also it provides one-shot capability
7-Seg Controller

7-Seg Controller Controls the two 7-segment displays on the FPGA prototyping kit.
Also it switches between PC and Address register
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xiii. LED Controller

LED Controller Controls the two LED displays on the FPGA prototyping kit. It
switches between INSTRUCTION TYPES or INSTRUCTION REGISTER or ALU
OUTPUT or STACK POINTER

4.2.1 Memory

The memory of the system is built onto the FPGA chip. It is arranged as 512 X 32
bits. It is composed of using 4 dual port Xilinx 4096 bit block RAMs. The memory
provides two independent read/write ports. One port is used by master CPU while the
other is used by the slave CPU.

4.2.2 MUX

MUX is the input multiplexer and is controlled by MC_CPU. 1t currently provides
4 input ports but can be extended to support 16 input ports. Each port can be upto a
maximum of 32 bits wide. The first input port is used by the master CPU memory.

4.2.3 DMUX

DMUX is the output multiplexer and is controlled by MC_CPU. It currently
provides 4 output ports but can be extended to support 16 output ports. Each port can be
upto a maximum of 32 bits wide. The first output port is used by the master CPU

memory.

4.2.4 KEYBOARD Controller

The communication between the keyboard and the controller uses two signals,
KeyboardClock and KeyboardData. When there is no activity, that is, when there is no
key press on the keyboard, both KeyboardClock and KeyboardData are at 1. When a key
is pressed (or released), the keyboard sends a unique code for that key to the controller
serially over the KeyboardData line. The serial data on the KeyboardData line is
synchronized between the keyboard and the controller by clock pulses that the keyboard

sends over the KeyboardClock line.

The data for each key that is sent over the KeyboardData line consists of eleven
bits. These eleven bits are: a 0 for the start bit, 8 data bits for the key code starting with
the least significant bit to the most significant bit, an odd parity bit, and lastly a 1 for a
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stop bit. Figure 4.6 lists some of the key codes generated by the keyboard when the
corresponding key is pressed. When a key is released, a different code is generated. The
odd parity bit is set such that the total number of 1 bits in the eight data bits plus the

parity bit is an odd number.

Figure 4.5 shows a sample timing diagram for the data transmission of the key
code 4E (hex) or 01001110 (binary). Starting from the inactive state where both the
KeyboardData and KeyboardClock lines are at 1, the transmission begins by setting the
KeyboardData line low for the start bit. The keyboard then sends out the data and parity
bit on the KeyboardData line at a rate of one bit per clock cycle on the KeyboardClock
line. The clock pulses on the KeyboardClock line are generated by the keyboard. The
parity bit for the key code 4E is 1, since the eight data bits consist of an even number of 1

bits, therefore, to make the parity odd, the parity bit must be 1.

KeyboardClock

KeyboardData |

RN e M

1 1

Figure 4.5 Sample timing diagram for the data transmission of the key code 4E

Ke | Key Ke | Key Ke | Key Ke | Key
y | Code y | Code y | Code y Code
1 16 A |1C K |42 U j3C

2 |1E B (32 L |4B V |2A

3 126 C |21 M |3A W 1D

4 |25 D (23 N |31 X (22

5 |2E E (24 O (44 Y |35

6 |36 F (2B P |4D 4 1A

7 |3D 34 Q |15 Esc | 76

8 |3E 33 R |2B BS |66

A Novel p-Processor Architecture 61



Chapter 5 System Design

9 |46 I 43 S |iB CR | 5A

0 |45 J 3B T |2C Ctrl | 14

Figure 4.6 A partial list of key codes generated by the keyboard

The state diagram for keyboard controller is derived by following the timing
diagram shown in fig 4.5. In each of the eight data states, d0, d1, ..., d7, we will get one
corresponding data bit from the KeyboardDara input line. For example, suppose we use
an 8-bit register named keycode for storing the eight data bits. Then in state d0, we wiil
assign KeyboardData to keycode(0), in state dl, we will assign KeyboardData to
keycode(1), and so on for all eight data bits. This is possible because the transition of the
FSM from one state to another is synchronized by the keyboard clock signal
KeyboardClock. For simplicity, we will not check for the start bit, parity, and stop bits.

This controller circuit actually does not control the keyboard because it does not
generate control signals for the operation of the keyboard. Instead, it receives the serial
data signals from the keyboard, and packaged it into data bytes. The output of this
controller is simply the data bytes, which represent the key code of the keys being pressed
on the keyboard. In state d0, the bit on the KeyboardData line is loaded into bit O of the
Keycode register; in state d1, the bit on the KeyboardData line is loaded into bit 1 of the
Keycode register; and so on. Each bit of the Keycode register must, therefore, be able to
load in the KeyboardData independently, and each load enable line is asserted by the

corresponding state encoding
4.2.5 VGA Controller

The monitor screen for a standard VGA format contains 640 columns by 480 rows
of picture elements called pixels. An image is displayed on the screen by turning on or off
individual pixels. The monitor continuously scans through the entire screen turning on or
off one pixel at a time at a very fast speed. The scan starts from row 0, column 0 at the
top left corner, and moves to the right until it reaches the last column in the row. When
the scan reaches the end of a row, it continues at the beginning of the next row. When the
scan reaches the last pixel at the bottom right corner of the screen, it goes back to the top
left corner of the screen, and repeats the scanning process again. In order to reduce flicker
on the screen, the entire screen must be scanned 60 times per second or higher. During the

horizontal and the vertical retraces, all the pixels are turned off.
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640 pixels per row .
Colump 0 Column 639
Row 0 )
= )
N X N
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Figure 4.7 VGA monitor with 640 columns x 480 rows. Scan starts from
row 0, column 0, and moves to the right and down until row 479, column 639.

The VGA monitor is controlled by five signals: red, green, blue, horizontal
synchronization, and vertical synchronization. The three color signals, referred to
collectively as the RGB signal, are used to controt the color of a pixel at a location on the
screen. These three color signals on the FPGA board are connected such that they can
individually be either turned on or off, hence each pixel can display only one of eight
colors. In order to produce more colors, each analog color signal must be supplied with a
voltage between 0.7 to 1.0 volts for varying the intensities of the colors. The horizontal
and vertical synchronization signals are used to contro! the timing of the scan rate. The
horizontal synchronization signal determines the time to scan a row, while the vertical
synchronization signal determines the time to scan the entire screen. By manipulating
these five signals, images are formed on the monitor screen. Each analog color input can
be set to one of four levels by two digital outputs using a simple two-bit digital-to analog
converter. The four possible levels on each analog input are combined by the monitor to
create a pixel with one of 4 X 4 X 4 = 64 different colors. The six digital control lines let

us select from a palette of 64 colors.

The horizontal and vertical synchronization signals timing diagram is shown in
Figure 4.7. When inactive, both synchronization signals are at a 1. The start of a row scan
begins with the horizontal sync signal going low for 3.77 psec as shown by region B in
Figure 5.10. This is followed by a 1.79 usec high on the signal as shown by regton C.

Next, the data for the three color signals are sent, one pixel! at a time, for the 640 columns
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as shown in region D for 25.42 psec. Finally, after the last column pixel, there is another
0.79 usec of inactivity on the RGB signal lines as shown in region E before the horizontal
sync signal goes low again for the next row scan. The total time to complete one row scan

is 31.77nsec.

The timing for the vertical synchronization signal is analogous to the horizontal
sync signal. The 641sec active low vertical sync signal resets the scan to the top left
corner of the screen as shown in region P, followed by a 1020 psec high on the signal as
shown by region Q. Next, there are 480 row scans of 31.77usec each, giving a total of
15250usec as shown in region R. Finally, after the last row scan, there is another 450psec
as shown in region S before the vertical sync signal goes low again to start another
complete screen scan starting at the top left corner. The total time to complete one

complete scan of the screen is 16784usec.

Red, Groen, Blus LRI
e——————640 column pixes ————9
Horizontal Sync I
B C D E
p— —b— - —
Time and number of 3911"“ ;‘;’9'” 2342 02073:
25.175MHz clock cycles e oye 640eye
31.7TTs
— T
Red, Green, Blee TN
80 horizontal cycles ——————»-
Vertical Sync ] . |
P Q R s
p— —— —M
Time and number of 62:_;: lﬁ(;f: l::o?;: :i:;z
horizontal cyeles 16784
$28cye

Figure 4.9 Horizontal and vertical synchronization signals timing diagram.

In order to get the monitor to operate properly, we simply have to get the
horizontal and vertical synchronization signals timing correct, and then send out the RGB
data for each pixel at the right column and row position. It turns out that it is fairly simple
to get the correct timing for the two synchronization signals. The built-in clock crystal on
the UP2 board runs at a speed of 25.175MHz, which gives a period of 1 / 25.175x10°

which is about 0.0397psec per clock cycle. For region B in the horizontal synchronization
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signal, we need 3.77psec, which is approximately 3.77 / 0.0397 = 95 clock cycles. For
region C, we need 1.79usec, which is approximately 45 clock cycles. Similarly, we need
640 clock cycles for region D for the 640 columns of pixels, and 20 clock cycles for
region E. The total number of clock cycles needed for each row scan is, therefore, 800

clock cycles.

To get this timing correct, we can design FSM with 800 states running at a clock
speed of 25.175MHz. For the first 95 states, we will output a 0 for the horizontal sync
signal H Sync. For the next 45+640+20=705 states, we will output a 1 for H#_Sync. The
problem with this, however, is that it is difficult to manually derive the circuit for an 800
state FSM. A simple solution around this difficulty is to use just two states; one for when
H Sync is 0 in region B, and one for when it is 1 in regions C, D, and E. We will then use
a counter that runs at the same clock speed as the FSM to keep count of how many times
we have been in a state. For the first state, we will stay there for 95 counts before going to
the next state, and for the second state, we will stay there for 705 counts before going
back to the first state. In the first state, we will output a 0 for # Sync, and in the second
state, we will output 1 for H Sync.

The vertical sync timing is analogous to the horizontal sync timing, so we can do
the same thing using a second counter, and a second FSM. This second vertical FSM is
identical to the horizontal FSM. The only difference is in the timing. Looking at the times
for each region in the vertical synchronization signal in Figure 6.10, we see that 64 usec
for region P is approximately 2 times the total horizontal scan time of 31.77 psec each.
1020 psec for region Q is approximately 32 horizontal scan time (1020 / 31.77 ~ 32). For
region R, it is 480 horizonta! cycles, and for region S, it is approximately 14 horizontal
cycles. Hence, the clock for both the vertical counter and the vertical FSM can be derived
from the horizontal counter. The vertical clock ticks once for every 800 counts of the

horizontal clock.

We will need to use two instances of this FSM circuit; one for the horizontal FSM,
and one for the vertical FSM. The clock for the horizontal FSM is the 25MHz clock,
while the clock for the vertical FSM is derived from the roll over signal from the
horizontal counter. The four status signals for the four counter conditions are generated

from two counters: a horizontal counter, and a vertical counter.
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To display something on the screen, we simply have to check the current column
and row that the scan is at, and then assert the RGB signal if we want the pixel at that
location to be turned on. For example, if we simply assert the red signal continuously, al
the pixels will be red, and we will see the entire screen being red. On the other hand, if we
just want the first row of pixels to be red, then we need to assert the red signal only when
the counter Row = 0. To get a red border around the screen, we would assert the red signal
when Row = 0, or Row = 639, or Column = 0, or Column = 479. Figure 4.10 shows the

circuit to draw a red border around the entire screen using the VGA controller circuit

from.
HCount Roll over Horizontal FSM
(H_ent=8) BarP “Sync|——————» H_Sync_out
Clock (H_cnit = B+C) BCarPQ  Data_on
Clear (H _ent= B+C+D) BCDorPOR
(H_ent = B+C+D+E) BCDEarPQRS
Clock25MHz — Clack  FSM
r—{Reset
VCount Vertical FSM
(V_ent=P) BorP Sync » V Sync_out
Clock (V_cnt=P+Q) BCorPQ Data _on
Clear (V_cnt = P+(+R) BCDorPQR
(V_cat= P+QPR+S) BCDEorPORS
Clock  FSM
Reset —+ Reset
Red —» '_D—b Red _out
Green -+ ) Green_out
Blue — -—I} Blue_our
Column_ |

~{Count D,
Load 10-bit up connter
Clear  withload

Clock (27N
% Ci dum_ou[
*D000O00000™ 10
Row |

Load 10-bit wp counter
Clear  Withioa
Clock Oy

- - Rew_ouit
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Figure 4.10 Complete circuit for the VGA controller.
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4.2.6 Interrupt Controller

The interrupt controller provides priority based interrupt handling. 8 interrupts are
provided. Each is individually maskable. The interrupt controller is programmable and
can be read or written using the input and output multiplexers. Each interrupt can be
masked by setting the corresponding bit in the mask register. When ever there is an
interrupt the interrupt controller asserts the CPU INT pin. The CPU reads the interrupt

register to know which device has generated the interrupt.
4.2,7 Switch Debounce and Pulse Control

Switch Debounce and pulse control provides debouncing of external switch
inputs. It also provides one-shot capability for single stepping the MC_CPU. The basic
component in this controller is the 25MHz to 100KHz clock divider. Every input to the
device is debounced first. Two of the outputs are also one pulsed. In the case of one pulse
the system clock of 25MHz is used. No matter how long the button is pressed the one

pulse will only generate one pulse of the same time period as of the system clock.
4.2.8 7-Seg Controller

7-Seg Controller Controls the two 7-segment displays on the FPGA prototyping
kit. Also it switches between PC and Address register. Each 7-segment displays in turn
have two displays, giving a total of four displays. The basic building blocks of the
controller are the Hex to 7-segment decoders. Four of which are used. The

implementation schematic of interrupt controller is shown in figure 5.14.
4.2.9 LED Controller

LED Controller Controls the two LED displays on the FPGA prototyping kit. Also
it switches between INSTRUCTION TYPES or NSTRUCTION REGISTER or ALU
OUTPUT or STACK POINTER. The LED controller is basically a big multiplexer that

multiplexes between its four inputs based on two switch inputs.
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5. Conclusion

The whole system is implemented as a SoC on a single FPGA. The complete system
utilizes approximately 95% of a Spartan-IIE ( XC2S300pq208-¢ ).

5.1 Hardware Arrangement

The complete system was mounted on a chipboard base in the following
arrangement. It was interfaced with the computer using the parallel port. A test program,

given in Appendix A, was used to test proper operation of the system.

SRAM
H i1

| | )
Peripheral | T
eri
connectors [<a—1——> < —> LEDs

1 B5-X300 |

] B
Switches |[<l———""> b ————"— LEDs
Flash |4~ { ] ]
Config [NV i 1t

ﬁ & U
7-SEG | 7-SEG

Computer
Interface

Figure 5.1 Hardware Arrangement
5.2 Result

As a result of this research project we have been able to verify the benefits of the
MultiCore design. Specifically, a marked reduction in the context switch penalty. Since,
the code running on the master processor is never preempted, it is able to service user

requests more efficiently.
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This design has aflowed us to compare it against the current SMP and CMP
systems. When compared to the SMP systems the outcome is very clear that the main
bottle neck is the Interprocessor communication buss. In case Of MC-CPU there is no
such external Interprocessor communication buss and hence such latencies are avoided

altogether.

When compared to the other CMP processors the MC-CPU architecture does not
employ any packet protocol for communication among the two processors. This improves
the inter processor communication capability significantly. The downside is that it require

extensive hardware support.

The direct measure of MC-CPU performance comes from comparing a piece of
code that calls OS services, first on the Master CPU and then on the slave CPU. When the
code is run on the master processor, the system behaves just like a normal single
processor system. At every system call performed by the user routine there is a context
switch and the OS is switch back. The OS performance the necessary operation and then

preempts itself while making then user program active.

s 760
M
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sool” 520 ;
on - 450 : 1
Cycles ?ﬁ - 340 ¥
400 =
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200] 1 100
wo| % i %
BEE & : ; ] .
L 8! 321

Fig 5.2 No of parameters

In a context switch 43 registers are saved and then 43 registers are restored.
Saving a single register to memory takes 10 clock cycles. Saving 43 registers requires 430
clocks. In all a single context switch takes about 450G clock cycles on the master

processor. This is for an OS service that only requires the service code and no parameters.
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On the MC-CPU, when the user code is run on the slave processor and it performs
a system call then there is no need for a context switch to occur since the OS is running
on separate processor. A remote trap that only passes the service code to the master

processor requires only 20 cyclés

It can be easily seen from figure 5.2 that a single context switch requires at
least 500 clock cycles whereas a remote trap only requires 10 clock cycles. Thus it has
been shown that incorporating features at the microarchitecture level can improve IPC
performances significantly. Improvements in IPC performance improve OS performance

significantly.
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Test Code

Appendix-A Test Code
-—JUMP TO PROGRAM CODE

B"O10001_00000_0_000000000000000001 11",

-----INTERRUPT HANDLER CALLS

B"011000_00000_0_00000000000011100101",
B"011010_00000_0_00000000000000000000",
X"00000000",--03 RESERVED
X"00000000",-04 RESERVED
X*00000000" --05 RESERVED

X"00000000",--06 RESERVED

--—LOAD ALL DATA

B"000111_0000G_00000_10111100_01001000" --07 MOVEI TO R0
B"000111_00000_00001_10111100_01000001",~08 MOVEI TO R1
B"000111_00000_00010_10111100_01010010" --09 MOVEI TO R2
B"000111_00000_00011_10111100_01001111",--0A MOVEI TO R3
B"000111_00000_00100_10111100_01001111* 0B MOVEI TO R4
B"000111_00000_00101_10111100_01001110* —~0C MOVEI TO RS
B"000111_00000_00110_10111100_00000000",--0D MOVEI TO R6
B"000111_00600_00111_10111100_01001101" --0E MOVEI TO R7

B"000111_00000_01000_10111100_01010111" —0F MOVEI TO R8

B*000111_00000_01001_10111100_01001111" --10 MOVEI TO R9

B"000111_00000_01010_10111100_01010010",--11 MOVEI TO R10
B"000111_00000_01011_10111100_01001011",--12 MOVEI TO R11
B"000111_00000_01100_10111100_01001001" --13 MOVEI TO R12
B"000111_00000_01101_10111100_01001110" --14 MOVEI TO R13
B*000111_00000_01110_10111100_01000111",—15 MOVEI TO R14
B"000111_00000_01111_10111100_01011000",--16 MOVEI TO R15

-—ROUTINE 1
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B"011101_00006000000000000000000000™,

--DATA BUS

B"010101_00_000_01011_00_100000_0001_0001",
B"010101_00_10111100_00110001_0001_0000",
B"010101_00 000 01011 00_100001_0001_0001",
B"010101_00_10111100_01000011_0001_0000",
B"010101_00_000_01011_00_100010_0001_0001",
B"010101_00_10111100_00110000_0001_0000*,
B"010101_00_000_01011_00_100011_0001_0001",
B"010101_00_10111100_01000001_0001_0000",
B"010101 00 000 01011 00_100100_0001_0001",
B"010101_00_10111100_00110101_0001_0000",
B"010101_00 000 01011 00 100101 0001_0001",
B"010101_00 10111100 00110111 _0001_0000",
B"010101_00_000_01011_00_100110_0001_0001",
B"010101_00_10111100_00111001_0001_0000",
B"010101_00_000_01011_00_100111_0001_0001",
B"010101_00_10111100_00110000_0001_0000",

-ADDRESS BUS

B"010101_00_000_01101_00_100100_0001_0001”,
B"010101_00_10111100_00110000_0001_0000",
B"010101_00_000 01101 00 _100101_0001_0001",
B"010101 00 10111100_00110001_0001_0000",

B"010101_00_000_01101_00_100110_0001_0001",
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B"010101_00_10111100_00110000_0001_0000",
B"010101_00_000_01101_00_100111_0001_0001",
B"010101_00_10111100_01000110_0001_0000",

--CALL

B"010101_00_000_10001_00 100000_0001_0001",
B"010101_00_10111100_01011110_0001_0000",

-RETURN

B"010101_00_000_10010_00_100000_0001_0001",
B"010101_00_10111100_01011110_0001_0000",

--REQUEST

B"010101_00_000_10011_00_100000_0001_0001",
B"010101_00_10111100_01011110_0001_0000",

—-GRANT

B"010101_00_000_10100_00_100000_0001_0001",
B"010101 00 10111100_01011110_0001_0000",

-CALLR

B"010101_00_000_10101_00_100000_0001_0001",
B"010101_00_10111100_01011110_0001_0000",

--RETURNR

B"010101_00_000_10110_00_100000_0001_0001*,

B"010101_00 10111100 01011110 0001_0000",

~INT
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B"010101_00_10111100_00111001_0001_0000",
B"010101_00 000 01011 _00_100111_0001_0001*,
B"010101_00_10111100_00110000_0001_0000",

--ADDRESS BUS

B"010101_00_000_01 101'__00_100100_0001_0001”,
B"010101_00_10111100_00110000_0001_0000",
B"010101_00 000 01101_00 100101_0001_0001",
B"010101 00 10111100 _00110001_0001_0000",
B"010101_00_000_01101_00_100110_0001_0001",
B"010101_00 10111100 00110000 _0001_0000",
B"010101_00 000 01101_00_100111_000]_0001",
B"010101_00_10111100_01000110_0001_0000",

-CALL

B"010101_00_000_10001_00_100000_0001_0001",
B"010101_00 10111100 01011110_0001_0000",

--RETURN

B"010101_00_000_10010_00_160000_0001_0001",
B*010101_60_10111100_01011110_0001_0000",

--REQUEST

B"010101_00 000 _10011_00_100000_0001_0001",
B"010101_G0 10111100 01011110 0001 0000",

--GRANT
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B"010101_00_000_10100_00_100000_0001_0001",
B"010101_00_10111100_01011110_0001_0000",

--CALLR

B"010101_00_000 10101 00_100000_0001_0001",
B"010101_00_10111100_01011110_0001_0000",

-RETURNR

B"010101_00_000_10110_00_100000_0001_0001",
B"010101_00_10111100_01011110_0001_0000",

-INT

B"010101_00 000 10111 _00_100000_0001_0001",
B"010101_00 10111100 01011110_0001_0000",

--RETURNI

B*010101_00_000_11000_00_100000_0001_0001",
B"010101_00_10111100_01011110_0001_0000",

B"011101_00000000000000000000040000",
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Appendix-B Glossary of Terms

Address bus—A unidirectional set of signals used by a processor (or similar device) to
point to memory locations in which it is interested.

Analog—A continuous value that most closely resembles the real world and can be as
precise as the measuring technique allows.

Asynchronous—A signatl whose data is acknowledged or acted upon immediately and
does not depend on a clock signal.

Binary digit—A numeral in the binary scale of notation. A binary digit (typically
abbreviated to “bit™) can adopt one of two values: O or 1.

Binary encoding—A form of state assignment for state machines that requires the
minimum number of state variables.

Binary logic—Digital logic gates based on two distinct voltage levels. The two voltages
are used to represent the binary values O and 1 along with their logical equivalents False
and True.

Bit—Abbreviation of binary digit. A binary digit can adopt one of two values: O or 1.
Boolean algebra—A mathematical way of representing logical expressions.

Bus—A set of signals performing a common function and carrying similar data.
Typically represented using vector notation: for example, an 8-bit database might be
named data[7:0].

Byte—A group of eight binary digits, or bits.

Cache memory—A small, high-speed memory (usually implemented in SRAM) used to
buffer the central processing unit from any slower, lower-cost memory devices such as
DRAM. The high-speed cache memory is used to store the active instructions and datal
associated with a program, while the bulk of the instructions and data resides in the
slower memory.

Chip—Popular name for an integrated circuit (IC).
Circuit board—The generic name for a wide variety of interconnection techniques,
which include rigid, flexible, and rigid-flex boards in single-sided, double-sided,

multilayer, and discrete wired configurations.

CLB (configurable logic block)—The Xilinx term for the next logical partition/entity
above a slice. Some Xilinx FPGAs have two slices in each CLB, while others have four.
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CMOS (complementary metal oxide semiconductor)—Logic gates constructed using a
mixture of NMOS and PMOS transistors connected together in a complementary manner.

Combinational logic—A digital logic function formed from a collection of primitive
logic gates (AND, OR, NAND, NOR, etc.), where any output values from the function
are directly related to the current combination of values on its inputs. That is, any changes
to the signals being applied to the inputs to the function will immediately start to
propagate (ripple) through the gates forming the function until their effects appear at the
outputs from the function. Some folks prefer to say “combinatorial logic.”

CPLD (complex PLD)—A device that contains a number of SPLD (typically PAL)
functions sharing a common programmable interconnection matrix.

CPU (central processing unit}—The brain of a computer where all of the decision
making and number crunching are performed.

CRC (cyclic redundancy check)—A calculation used to detect errors in data
communications, typically performed using a linear feedback shift register (LFSR).
Similar calcuiations may be used for a variety of other purposes such as data
compression.

Data bus—A bidirectional set of signals used by a computer to convey information from
a memory location to the central processing unit and vice versa. More genera]ly, a set of
signals used to convey data between digital functions.

Data-path function—A well-defined function such as an adder, counter, or muitiplier
used to process digital data.

Digital—A value represented as being in one of a finite number of discrete states called
quanta. The accuracy of a digital value is dependent on the number of quanta used to
represent it.

Digital circuit—A collection of logic gates used to process or generate digital signals,

Diode-—A two-terminal device that conducts electricity in only one direction; in the other
direction it behaves like an open switch. These days the term diode is almost invariably
taken to refer to a semiconductor device, afthough alternative implementations such as
vacuum tubes are available.

DSP (digital signal processing)—The branch of electronics concerned with the
representation and manipulation of signals in digital form. This form of processing
includes compression, decompression, modulation, error comection, filtering, and
otherwise manipulating audio (voice, music, etc.), video, image, and other such data for
such applications like telecommunications, radar, and image processing (including
medical imaging).

Edge sensitive—An input to a logic function that only affects the function when it
transitions from one logic value to another.

EEPROM or E2PROM (electrically erasable programmable read-only memory)}—A
memory infegrated circuit (IC) whose contents can be electrically programmed by the

A Novel u-Processor Architecture B-2



Appendix-B Glossary of Terms

designer. Additionally, the contents can be electrically erased, allowing the device to be.
reprogrammed.

EPROM (erasable programmable read-only memory)—A memory integrated circuit
(IC) whose contents can be electrically programmed by the designer. Additionally, the
contents can be erased by exposing the die to witraviolet (UV) light through a quartz
window mounted in the top of the component’s package.

FIFO (first in first out)—A special memory device or function in which data is read out
in the same order that it was written in.

Firmware—Refers to programs or sequences of instructions that are loaded into
nonvolatile memory devices.

FLASH memory—An evolutionary technology that combines the best features of the
EPROM and E2PROM technologies. The name FLASH is derived from the technology’s
fast reprogramming time compared to EPROM.

FPGA (field-programmable gate array)—A type of digital integrated circuit (IC) that
contains configurable (programmable)} blocks of logic along with configurable
interconnect between these blocks. Such a device can be configured (programmed) by
design engineers to perform a tremendous variety of different tasks.

FSM (finite state machine}—The actual implementation (in hardware or software) of a
function that can be considered to consist of a finite set of states through which it
sequences.

Giga—Unit qualifier (symbol = G) representing one thousand million, or 109. For
example, 3 GHz stands for 3 x 109 hertz.

Glue logic—The relatively small amounts of simple logic that are used to connect
(“glue™) together—and interface between—Jarger logical blocks, functions, or devices.

Hardware—Generally understood to refer to any of the physical portions constituting an
electronic system, including components, circuit boards, power supplies, cabinets, and
monitors.

HDL (hardware description language)}—Today’s digital integrated circuits (ICs) can
end up containing hundreds of millions of logic gates, and it simply isn’t possible to
capture and manage designs of this complexity at the schematic (circuit-diagram) level.
Thus, as opposed to using schematics, the functionality of a high-end IC is now captured
in textual form using an HDL. Popular HDLs are Verdlog, SystemVerilog, VHDL, and
SystemC.

High-impedance state—The state associated with a signal that is not currently being
driven by anything. A highimpedance state is typically indicated by means of the “Z”
character.

Hz (hertz)}—Unit of frequency. One hertz equals one cycle, or one osciliation, per
second.
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IC (integrated circuit}—A device in which components such as resistors, diodes, and
transistors are formed on the surface of a single piece of semiconducting material.

ICR (in-circuit reconfigurabley—An SRAM-based or similar component that can be
dynamically reprogrammed on the fly while remaining resident in the system.

TP (intellectual property}—When a team of electronics engineers is tasked with
designing a complex integrated circuit (IC), rather than reinvent the wheel, they may
decide to purchase the plans for one or more functional blocks that have already been
created by someone else. The plans for these functional blocks are known as intellectual
property, or IP. IP blocks can range all the way up to sophisticated communications
functions and mlcroprocessors The more complex functions, like microprocessors, may
be referred to as “cores.”

ISP (in-system programmable)}—An E2-based, FLASH-based, SRAM-based, or similar
integrated circuit (IC) that can be reprogrammed while remaining resident on the circuit
board.

Kilo—Unit qualifier (symbol = K) representing one thousand, or 103. For example, 3
KHz stands for 3 x 103 heriz.

LC (logic cell}—The core building block in a modern FPGA from Xilinx is called a logic
cell (LC). Among other things, an L.C comprises a 4-input LUT, a multiplexer, and a
register.

LE (logic element)—The core building block in a modern FPGA from Altera is called a
logic element (LEj. Among other things, an LE comprises a 4-input LUT, a multiplexer
and a register.

Logic function—A mathematical function that performs a digital operation on digital
data and returns a digital value.

Logic gate—The physical implementation of a simple or primitive logic function.

Logic synthesis—A process in which a program is used to automatically convert a high-
level textual representation of a design (specified using a hardware description lenguage
(HDL) at the register transfer Jevel (RTL) of abstraction) into equivalent registers and
Boolean equations. The synthesis tool automatically performs simplifications and
minimizations and eventually outputs a gate-level netlist.

LSB—(1) (least-significant bit) The binary digit, or bit, in a binary number that
represents the least-significant value (typically the right-hand bit). (2) (least-significant
byte}—The byte in a multibyte word that represents the least-significant values (typically
the right-hand byte).

LUT (lookup table)}—There are two fundamental incarnations of the programmable logic
blocks used to form the medium-grained architectures featured in FPGAs: MUX
(multiplexer) based and LUT (lookup table) based. In the case of a LUT, a group of input
signals is used as an index (pointer) into a lookup table.
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Macroarchitecture definition—A design commences with an original concept, whose
high-level definition is determined by system architects and system designers. It is at this
stage that macroarchitecture decisions are made, such as partitioning the design into
hardware and software components, selecting a particular microprocessor core and bus
structure, and so forth. The resulting specification is then handed over to the hardware
design engineers, who commence their portion of the development process by performing
microarchitectitre definition tasks.

Mega—Unit qualifier (symbol = M) representing one million, or 106. For example, 3
MHz stands for 3 x 106 hertz.

Memory cell—A unit of memory used to store a single binary digit, or bit, of data.

Memory word—A number of memory cells logically and physically grouped together.
All the cells in a word are typically written to, or read from, at the same time.

Micro—Unit qualifier (symbol = 1) representing one millionth, or 10-6. For example, 3
1S stands for 3 x 10-6 seconds.

Milli—Unit qualifier (symbol = m) representing one thousandth, or 10-3. For example, 3
m$ stands for 3 x 10-3 seconds.

Moore’s law—In 1965, Gordon Moore (who was to cofound Intel Corporation in 1968)
noted that new generations of memory devices were released approximately every 18
months and that each new generation of devices contained roughly twice the capacity of
its predecessor. This observation subsequently became known as Moore’s Law, and it has
been applied to a wide variety of electronics trends.

MOSFET (metal-oxide semiconductor field-effect transistor}—A family of
transistors.

MSB—(1) (most-significant bit) The binary digit, or bit, in a binary number that
represents the most-significant vafue (typically the left-hand bit). (2) (most-significant
byte) The byte in 2 multibyte word that represents the mostsignificant values (typically
the left-hand byte).

Multiplexer (digital)—A logic function that uses a binary value, or address, to select
between a number of inputs and conveys the data from the selected input to the output.

Nano—Unit qualifier (symbol = n) representing one thousandth of one millionth, or 10—
9. For example, 3 nS stands for 3 x 10-9 seconds.

Noise—The miscellancous rubbish that gets added to an electronic signal on its journey
through a circuit. Noise can be caused by capacitive or inductive coupling or by
externally generated electromagnetic interference,

Nonvolatile—A memory device that does not lose its data when power is removed from
the system.
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Nybble—A group of four binary digits, or bits.

One-hot encoding—A form of state assignment for state machines in which each state is
represented by an individual state variable, and only one such variable may be
“onfactive” (“hot™) at any particular time.

Operating system—The collective name for the set of master programs that control the
core operation and the baselevel user interface of a computer.

OTP (one-time programmable}—A programmable device, such as an SPLD, CPLD, or
FPGA, that can be configured (programmed) only a single time.

PAL (programmable array logic)5—A programmable logic device in which the AND
array is programmable, but the OR array is predefined.

PCB (printed circuit board)}—A type of circuit board that has conducting tracks
superimposed, or “printed,” on one or both sides and may also contain internal signal
layers and power and ground planes.

Peta—Unit qualifier (symbol = P) representing one thousand million million, or 1015,
For example, 3 PHz stands for 3 x 1015 hertz.

Pico—Unit qualifier (symbol = p) representing one millionth of one millionth, or 10-12.
For example, 3 pS stands for 3 x 10-12 seconds.

PLA (programmable logic array)—The most user configurable of the traditional
programmable logic devices because both the AND and OR arrays are programmable.

PLD (programmable logic device}—An infegrated circuit (IC) whose internal
architecture is predetermined by the manufacturer, but which is created in such a way that
it can be configured (programmed) by engineers in the field to perform a variety of
different functions. For the purpose of this book, the term PLD is assumed to encompass
both simple PLDs (SPLDs) and complex PLDs (CPLDs). In comparison to an FPGA,
these devices contain a relatively limited number of logic gates, and the functions they
can be used to implement are much smaller and simpler.

Primitives—Simple logic functions such as BUF, NOT, AND, NAND, OR, NOR, XOR,
and XNOR. These may also be referred to as primitive logic gates.

PROM (programmable read-only memory)—A programmable logic device in which
the OR array is programmable, but the AND array is predefined. Usually considered to be
a memory device whose contents can be electrically programmed (once) by the designer.

RAM (random-access memory)—A data-storage device from which data can be read
out and into which new data can be written. Unless otherwise indicated, the term RAM is
typically taken to refer to a semiconductor device in the form of an integrated circuit

(IC).

ROM (read-only memory)—A data storage device from which data can be read out, but
into which new data cannot be written. Unless otherwise indicated, the term ROM is
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typically taken to refer to a semiconductor device in the form of an integrated circuit

(1C).

RTL (register transfer level)—A hardware description language (HDL) is a special
language that is used to capture (describe) the functionality of an electronic circuit. In the
case of an HDL intended to represent digital circuits, such a language may be used to
describe the functionality of the circuit at a variety of different levels of abstraction. The
simplest level of abstraction is that of a gate-level netlist, in which the functionality of the
digital circuit is described as a collection of primitive logic gates (AND, OR, NAND,
NOR, etc.) and the connections between them. A more sophisticated (higher) Jevel of
abstraction is referred to as register transfer level (RTL). In this case, the circuit is
described as a collection of storage elements (registers), Boolean equations, control logic
such as if~then-else statements, and complex sequences of events (e.g., “If the clock
signal goes from 0 to 1, then load register A with the contents of register B plus register
C”). The most popular languages used for capturing designs in RTL are VHDL and
Verilog (with SystemVerilog starting to gain a larger following).

Sequential logic—A digital function whose output vahies depend not only on its current
input values, but also on previous input values. That is, the output value depends on a
“sequence” of input values.

Silicon chip—Although a variety of semiconductor materials are available, the most
commonly used is silicon, and infegrated circuits (ICs} are popularly known as “silicon
chips,” or simply “chips.”

Slice—The Xilinx term for an intermediate logical partition/entity between a logic cell
(LC) and a configurable logic block (CLB). Why “slice”? Well, they had to call it
something, and—whichever way you look at it—the term slice is “something.” At the
time of this writing, a slice contains two LCs.

SoC (system on chip)—As a general rule of thumb, a SoC is considered to refer to an
integrated circuit (IC} that contains both hardware and embedded software elements. In
the not-so-distant past, an electronic system was typically composed of a number of ICs,
each with its own particular function (say a microprocessor, a communications function,
some memory devices, etc.). For many of today’s high-end applications, however, all of
these functions may be combined on a single device, such as an ASIC or FPGA, which
may therefore be referred to as a system on chip.

Software—Refers to programs, or sequences of instructions, that are executed by
hardware.

SPLD (simple PLD)—Originzlly all PLDs contained a modest number of equivalent
logic gates and were fairly simple. These devices include PALs, PLAs, PROMs, and
GALs. As more complex PLDs (CPLDs) arrived on the scene, however, it became
common to refer to their simpler cousins as simple PLDs (SPLDs).

SRAM (static RAM)—A memory device in which the core of each cell is formed from
four or six transistors configured as a latch or a flip-flop. The term static is used because,
once a value has been loaded into an SRAM cell, it will remain unchanged until it is
explicitly altered or until power is removed from the device.
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State dingram—A graphical representation of the operation of a sfare machine.

State variable-—One of a set of registers whose values represent the current state
occupied by a state machine.

Synchronous—(1) A signal whose data is not acknowledged or acted upon until the next
active edge of a clock signal. (2) A system whose operation is synchronized by a clock
signal,

Toggle—Refers to the contents or outputs of a logic function switching to the inverse of
their previous logic values.

Tri-state function—A function whose output can adopt three states: 0, 1, and Z (high
impedance). The function does not drive any value in the Z state and, when in this state,
the function may be considered to be disconnected from the rest of the circuit.

Truth table—A convenient way to represent the operation of a digital circuit as columns
of input values and their corresponding output responses.

nC (microcontroller)—A microprocessor augmented with special-purpose inputs,
outputs, and control logic like counter timers.

pP (microprocessor)—A general-purpose computer implemented on a single infegrated
circuit (IC) (or sometimes on a group of related chips called a chipser).

Verilog—A hardware description language (HDL) that was originally proprietary, but
which has evolved into an open standard under the auspices of the IEEE.

VHDL—A hardware description language (HDI) that came out of the American
Department of Defense (DoD) and has evolved into an open standard. VHDL is an
acronym for VHSIC HDL (where VHSIC is itself an acronym for “very high-speed
integrated circuit ).

VITAL—The VHDL language is great at modeling digital circuits at a high level of
abstraction, but it has insufficient timing accuracy to be used in sign-off simulation. For
this reason, the VITAL initiative was launched at the Design Aufomation Conference
(DAC) in 1992. Standing for VHDL Initiative toward ASIC Libraries, VITAL was an
effort to enhance VHDL’s abilities for modeling timing in ASIC and FPGA design
environments. The end result encompassed both a library of ASIC/FPGA primitive
functions and an associated method for back-annotating delay information into these
library models. '

Volatile—Refers to a memory device that loses any data it contains when power is
removed from the system, for example, random-access memory in the form of SRAM or
DRAM.

Word—A group of signals or logic functions performing a common task and carrying or
storing similar data; for example, a value on a computer’s data bus can be referred to as a
“data word” or “a word of data”
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Appendix-C User Manual

The programming and implementation of the system has been done using Xilinx
ISE Foundation 6.3i set of tools. These tools come with extensive user manuals which can

be consulted if desired.

The complete System is implemented in hardware. Following control inputs are

used for the control of hardware.

SWITCH CONTROL

SW1 :SYSTEM RESET

SW4 : TEST INTERRUPT

SW8 :DISBALE SINGLE STEP
SW13 : SWITCH CPU1 OR CPU2
SW16 : ADDRESS REG/PC SELECT

SWs8 SW9 | EFFECT

0 0 INST TYPE

0 1 IR

1 0 ALU OUT

1 1 STACKPOINTER
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Abstract: Operating system performance is not improving at the same rate as the speed of the execution
hardware. As a comsequence Operating systems are not keeping up with the demands placed on them.
Computational speed up due to the increase in processor clock frequency is reaching its limits as well. Chip
Multiprocessors arc now being investigated to harness the silicon resources now available dus to process
improvements in C hip mamfacturing. This research presents the study mto & specialized Chip Multiprocessor
for Stmultaneous execution of O3 kemel and user Code. SPE or Simultaneous Process Execution Architecture
aflows for contimious exceution of OS kemel and umer processes.
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INTRODUCTION

As modemn applications become increasingly
dependent on multimedia, graphics and data movement,
they are spending an increasing fraction of their execution
time in the operating system kemnel. Web servers have
been shown to spend over 85% of their CPU cycles
rnoming operating system code!™. For server-based
environments, the operating system & a crucial
component of the workload.

Multi-server and component-based operating systems
are promising architectural approaches for handling the
ever increasing complexity of operating systems.
Components or servers {and clients) communicate with
each other through cross-domain method invocations.
Such interface method invocations, if crossing protection
boundaries, are typically implemented through the
Inter-process Communication (IPC) mechanisms offered
by a microkemel. Therefore, component interaction in
such systems has to be highly efficient.

Thus Inter-process Communication {TPC) by message
passing is one of the centrat paradigms of most u-kernel
based and other client/server architectures. IPC
performance is vital for modemn operating systems;
especially u-kemnel based ones. Since context and
userfkerne]l mode switches are central to IPC operation,
reducing them is a critical factor in [PC performance
improvement.

A need exists to design a microprocessor that helps
to improve OS performance. Specifically by improving IPC
performance alone, OS performance can be improved
sipnificantly. User/kernel mode switches or context
switches are a key operation in IPC. By reducing or by

eliminating this context switch IPC performance can be
improved significantly.

The SPE architecture platform combines several
aspects of existing processor systems. The actual
execution of instructions on specialized hardware
originates from the earliest co-processar concept in Intel's
R08B6/R087 processor system 9, The use of a configurable
set of co-processors is a small step towards increasing
performance by adding more specialized hardware and
has been applied for mumerows processor systems. In
these architecture platforms, there is one master processor
coordimting the activities performed by the co-
processors. An example is the TniMedia architecture
platform™ eriginally developed Philips, which includes a
single (VLIW) master processor exploiting instruction
level parallelism.

SoC architecture platforms that allow true paralle]
exection of tasks on a number of independent master
processors are alto referred to as singlechip multi-
processors'®. The main design issues for such
systems emerge from the necessity of commumicating
information between tasks rurming on different
processors.

There are many academic and commercial CMP in
existence today. Specifically the architecture discussed by
Theelen and Verschueren® is an exceltent design example.
The MiP architecture platform™ exploits parallelism at the
task level

For more efficient utilization the offered processing
power could also be obtained through a higher integration
of software. Although, this approach can reduce
overhead and thus increase performance, it may restrict

the adaptability for a wide range of products.

Correspanding Auther: Haroon Muncer, Department of Compter Sciences, International Islamic University, Islamabad, Pekistan

192



Inform. Technol, I, 5 (1): 192-197, 2006

Comtacting  slave processors for  performing
application dedicated operations requires fast on-chip
intercormects. On-chip interconmects have become a very
important design issue for many SoCs. The challenge is to
reduce latencies for exchanging information between units
that ore located relatively far opart. The on-chip
intcreonnects of the SPR architecture platform can not be
compared to packet-based routing devices: beeamo the
onchip intercormeet is shared stack based and aflows
direct functon calls or OS trap invocatiors on the
connected processors.

Efficiently accessing (off chip) memory has also been
a design issue for many ycars. Stmilar to other processor
systems, the SPE architecture platform uses caches to
absorb memory access latencies. Main difference with
cther multi-processor systems is the absence of data
memary for the individual mester processors, With one
shered memory, much programming flexibility is offered to
the uger,

The SPE architecture platform exploits parallelism at
the task level by incorporating en independent master
processer and a mumber of slave processors. Ruming
multiple tasks in parallel requires sophisticated facilities
for inter task communication. The architecture platfarm
comidered by Theelen end Verschueren!! prescribes the
use of so-called wrapper units to allow commurnication
between processars. In SPE architacture platform, like
describe by Theelen and Verschuerenfd, communication
between tasks i3 enabled through the wse of
communication resources offered by an OS kemel
implemented on the master processer.

The main contribution of this study liss in the averall
concert of the SPE architecture platform and more specific
in the imegration of a Master processor specifically
designed for OS functiomality.

Operating system problems: A u-kemel cen provide
higher layers with a mimma] set of eppropriate
abstractions that ere floxible emowgh to allow
implementation of arbitrary operating systems and allow
exploitation of a wide range of hardwere.

Similer to optimizing code generators, u-kemels must
bo constructed per proccssor and are inherently not
portable. Basic implementation decisions, mest algorithms
and data structures imside a wkernel are processor
* dependent. Their design must be guided by performance
prediction end analysis. Besides inappropriate basic
abstractions, the most frequent mistakes come from
insuflicient understanding of the combined hardware-
software system or mefficient implementation.

For these reasons Operating Systems have heen
known to cause the following set of problems:

e Operating systems are hupe proprams that can
overwhelm the cache and TLB due to code and data
size, thereby causing severe performance pemalty for
User programs. '

» Operating systems may impact branch prediction
performance, becaime of frequent branches and
infrecquent loops.

= (OSexecution 13 often bnel and imtermittent, invoked
by interrupts, exceptions, or systemn calls and ean
cause the replacement of wselul cache, TLB end
branch prediction state for little or no benefit

s The OS may perform spin-waiting, explicit cache/TLB
invalidation and other operatioms not common in
user-mode code, again effecting user code.

* In curent modularized kemels, every kemel
invocation cmnes canmtext switch and in cese of
p-kernels every call means multiple context switches,
thus wasting a considerable time in switching
processes,

o [IPC-performance problams result from 64 bit
architectures with there large mumber of registers and
registar stack engines. The large number of registers
contributes to a potentially massive context (more
than 2 KB) 1o be stored on each thread contaxt
switch™.

*» Overall, operating system code cawses poor
mstruction  throughput on  a  superscalar
MICTOROCessOoT.

To overcome thess problems meny techmiques have
been used, but each had its disadvarnteges. Amdahl's law
tells us that if we wert modern epplications to nm quickly,
the opersting system must run quickly as well Since
traditional performance models easentially ignore the
operating systern and modem OS-dspendent applications,
a need has erisen for new designs and methodologies that
direct their attention at the performance of the OS kernel™,

As mentioned earlier OS5 kemel warkload has
significantly increased, especially server based
applications are putting heavy loads on the kernel. What
must be realised is thet we have a huge potentinl for
performance improvernent 1f same how the kernel runs on
an independent processor and the user cods nmuns on
ancther, without any bus latencies, this rmaster-slave
processor  architectars can  improve performance
significantly. Therefore we have designed a new CMP
architecture that is specifically designed to overcoms OS
problems.

Microprocessor architecture: Internally microprocessors
have limited support for operating systems besides the
features that are critical for current protected virtual
memory based operating systems, like p-kemnels base
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perating  systems. As we have seen that modemn
pplicatiorns are spending an increasing fraction of their
xecution time in the Operating System (OS) kemel.

At the multi-processor level performence
mprovements are due to SMP, NUMA or chustering. In
sach of these techniques the processing nodes are sither
umming a copy of the kemel or the whole OS. None of
hese are atmed at improving OS performanca directly.
tather ths earlier mentioned OS problems appear at
sach node.

Integrated circuit processing technology offers
noreasing  integration  demsity,  which  fuels
nicroprocessor  performancs growth It is becoming
yossible to integrate a billion tramsistars on a reasonably
ized silicon chip. At this integration level, it is necessery
o find parallslism to effectively utilize the tramsistors.
urrently, procsssor designs dynamically extract
»argllelism with these trensiztors by executing many
mstructions within a single, sequential program in perallel.

However, reliance on a single thread of control limits
he parallelism availshle for many applications and the
s03t of extracting: perallelism from a single thread 1s
>ecoming prohibitive!,

The demand for ever faster computer systems soems
o be irsatisbls. Instruction-level parallelism helps a little,
yut pipelining and superscalar operations rerely win mare
han a factor of five arten. To get gains of 50, 100 or even
more, the anly way i to design camputers with multiple
CFUs. Ttus high level of gain is only promised by
parallelism at the processor level Traditionally the
processor level parallelism has used discrete processors.
Making one processor master and run the O3 is ettractive
a3 it solves most of the previownly cited problemns, but is
prone o the bus latencies and hence poor perfermance.

Rescarchers have proposed two microerchitactures
hat exploit multiple threads of control: Simultanecus
Multithreading (SMT) and Chip Multiprocessars (CMP).
From & purely architectural point of view, the SMT
processor’s flexibility makes it superior. However, the
reed to limit the effects of interconnect delays, which are
b>ecoming much slower than tramsistor gate delays, will
11so drive the billicn-transistor chip design. Interconnect
detays will force the microarchitecture to be partitioned
nto sall, localized processing elements. For this reason,
he CMP* is much more promising becawse it is already
artitioned into individual processing cores™,

Programmers must find thread level parallelism in
order to maximize CMP performance. With ctorent trends
n parallelizing compilers, multithreaded operating systems
and awareness of programmers about how to program
varallel computers, this problem should prove less
launting in future. Additionally, having all of the CPUs
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on a single chip allows designers to exploit thread-level
parallelism even when threads cormnmumicate frequently.

SPE architectare: In designing our CMP we have wmeda
modified form of Chip Multiprocessors (CMP). The new
microprocessor  architecture consists of two  tightly
coupled microprocessors. Both are able to communicate
with each cther directly and are implemerted as a single
unit on a single FPGA..

Ono of the microprocessors is the master processor
and implements privileged instruction as well as rest of
the instruction set. Operating systermn alone runs an this
microprocessor. The second microprocessor  only
implements the non-privileged instnctions. Complex
processor execution units like flozting paint units and
vector units are shared among both processors to avoid
complex design end wastage of physical resources.

Only a single slave processor end no complex
execution urits as well as no caches were implemented to
simplify the research effort.

MC-CPU instruction set architectore: MC-CPU
instruction set was deigped from ground wp to
accommodate the new features of this architecture Itisa
32 bit RISC ISA. The SPE implements the MC-CPU
Imstruction Set Architecture. SPE consists of Master CPU
(CPU-1), Slave CPU (CPU-2) axnd Shared Stack as shown
in the Fig. 1. Bach of these functional units and therr
operations are explained individually in the following
subsections.

CPU 1: CPU 1 is the master CPU. It implements all the
privilege imstnxtions. Only the master processar can
access 170 devices. Interrupt hemdling is performed only
by the master processor. Shared stack is also controlled
by master processor. The master processor can comtrol
the behaviar of the slave processor by the mears of INTS
interrupts. Slave processor implements special internupt
handlers for INTS rather than for the normal interrupts.

CPU2: CPU 2 is the slave CPU. Tt does not implement the
privilege instructions. The slave processor cen not
physically access 1/0 devices. System level interrupt
handling is not perfarmed by the Slave processor as it
does not have an INT line. Shared stack iz accessed by
the slave processor when the master processor grants it
gccess. Slave processor implements special interrupt
handlers for INTS rather than for the normal interrupts.
When the master processor asserts INTS, the slave
processor immediately jumps to the particular interrupt
based on INTSCODE.
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Fig. 1: SPE processor

Shared stack: Shared Stack consists of the stack memory
and the shared stack pointer. The shared stack pomnter is
a 32 bit register. Its output vatue is constantty supplied to
both processors, It can only be modified by one
processor st eny given time. Shared stack memcry
consists of single port 1024 bit RAM, arranged as
32X 32 bits, Only one processor can push or pop from the
shared stack at any given time. Shared stack operates in
the following mamner:

» Master processor has inttial control of the shared
stack

s Master processor can modify the shared stack pointer
any time, only exception is when it has granted
control of the thared stack to the slave processer

s Master processor can push or pop vatues from the
shared stack any time; except when it has granted
control of the shared stack to the slave processor

» Slave processor can not directly access the shared
stack

» Slave processor must assert the REQUEST Sigmal to
gain access to the shared stack

*  Whenever REQUEST is asserted by the Slave
proceszor, the master processor can grant or disatlow
access to the shered stack

¢ Access is disallowed only when master processor is
modifymg or accessing the shared stack itself

» Slave processor is blocked or in a wait state during
this period

¢  When the master processor i3 not accessing the
shared stack and the Slave processor requests for it,
request is gramted by asserting the GRANT signal

*  When the GRANT signal is asserted, Slave processor
gets access to the shared stack

« Slave processor can now modify both shared stack
pointer and shared stack

o After the slave processor has modified the stack it
deasserts the REQUEST signal to indicate that the
shared stack i3 now fres

»  When the GRANT signal is deasserted the master
processor deasserts the GRANT signal and takes the
control of shared stack back

Remote call: Al! the communication between the master

“and slave processor is based on remote calls. In fact these

are not remaote calls in the classic serse rather these are
traps to the OS kernel nnning on the master processor.
Only the slave processor can trop to the master processor
by asserting CALLS signal. The remote calls work in the
following manner.

e When the user code running on the Slave processor
needs some operating system service it must mvoke
a remote cail

* Remote call is invoked by the slave processor by
agserting the CALLS signal

e Before asserting the CALLS signal slave processor
must request aceess to the shared stack and at least
place the 32 bit service code on top of the shared
stack. It can also place any parameters on the stack if
there is any

o After placing the service code and/or any parameters
on the shared stack, the Slave processor asserts the
CALLS signal
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e On receiving the CALLS signal Master processor
invokes tha remcte call handler

» Remote call handler checks for user access rights end
proper parameters and then calls the appropriate OS
function. This is a normal function call

» Nommally no context switch takes place during this
whole procedure

»  Afler servicing the call end placing return values onto
the shared stack the Master processor asserts the
RETURNS signal

»  On receiving the RETURNS signal, Slave processor
request for the shared stack, gets the return values
and deasserts the CALLS signal

Remote interrupt: The Master processor oontrols the
slave processor by using Remote Interrupts. Only the
Master processor can raiss remote interrupts and only the
slave processor serves remote interrupts. Interrupt factor
tabls and interrupt service routines for the remote
interrupts are placed in the Slave processor’s memory
space by the Master proceszor. These interrupts can
range from memary menagement to context switching to

process cleanup, Remote interrupts work in the following
marmer.

» Operating Syst=m running on the Master processor
can raise remote interrupts

» A remote mierrupt is raised by asserting tho INTS
signal

o Interrupt type is indicated by INTSCODE

o Upon receiving an INTS the Slave processor
immediately jumps to the appropriate handler based
onINTSCODE

e After servicing the INTS the slave procsssor assert
the SERVICED signal

» Upon receiving the SERVICED signa) the Operating
System on the Master processor considers the work
done and deasserts the INTS signal

Experimental setup: In order to test the SPE processor it
wes nocessary to have a complete computer system with
all microprocessor support devices designed and
implemented. So, memory, Input and Output multiplexers,
a VGA controller, a Keyboard controller end an interrupt
controller were also designed and implemented alang with
the SPE proceasor.

The whole system (Fig. 2) is implemented as a SoC an
a single FPGA. The complete system utilizes
approximately 95% of a Spartan-ITE.

The SPE processor achieved a clock speed of 25
MHZ. The system was mounted on a system board based
cn the arrengement shown in Fig. 3. It was interfeced with
the compuiter using the parallel port. A test program was
used to test proper cperation of the system.
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Fig. 2: System erchitecture diagram
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Fig. 3: Hardware arrangemert
RESULTS AND DISCUSSION

As a result of this research project we have been able
to verify the benefits of the MultiCore design.
Specifically, a marked reduction in the context switch
penalty. Smoe, the code running on the master processor
is never preempted; it is able to service user requests
more efficiently and quickly.

When compared to the SMP systems the cutcome is
very clear, the main baitla neck is the Interprocessor
communication buss. In case of SPE there is nosuch
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Fig. 4 No. of parameters versus clock cycles in a context
switch

external Interprocessor communication bwss and hence
such Iatencies are avoided altogether.

When compared to the other CMP processers the SPE
architecture does not employ any packet protocol for
commumication among the two processors. This improves
the inter processor commumication capability
significantly. The downside is that it requires extensive
hardware support.

The direct measure of SPE processor performance
comes from comparing a piece of code that calls OS
services, first on the Master CPU and then on the
slave CPU.

When the code is run on the master processor, the
system behaves just hke a nommal single processor
gystem. At every system call perfarmed by the user
routine there is a context switch and the OS is switch
back. The OS performance the necessary operation and
then preempts itsel{ while making the user program active.

In a context switch 43 registers are saved to memory.
Saving a single register to memory takes 10 clock cycles.
Saving 43 repisters requires 430 clocks. In all a single
context switch takes about 450 clock cycles on the master
processor. This is for en OS service that only requires the
service code and no parameters.

On the SPE processor, when the user code is nn on
the slave processor and it performs a system call then
there is no need for a context switch to occur since the OS
is running on a separate processor. A remote trap that
only pesses the service code to the master processor
requires only 20 cycles.

It can be easily seen fram Fig. 4 that a single context
switch requires at least 500 clock cycles whereas a remote
trap only requires 10 clock cycles. Thus it can be safely
concluded that mcorporating features at the
microarchitecture level can improve IPC performances
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significartly. Improvements in [PC performence improve
OS5 performance significantly.

FUTURE WORK

As next to investigeting possible extersions, we are
currently developing compiler tools capabls of handling
the offered flexibility. The ultimate goal would be to
develop tools that enable fast scftware compilation by
mepping specific perfamance requirements of an
gpplication into partitioned code. On of the code
partitions will run on the master processor as a service for
the bulk of code numing on the slave processors.

Our luttre research will also concentrate an a method
for analyzing which configuration of master processor and
Slave processors will meet the requirements for a specific
application in an optimal way.
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