
A Novel pProcessor Architecture for Concurrent
Execution of OS Kernel and User mode Code

Developed by

Haroon Muneer

International Islamic University Islamabad
Faculty of Applied Sciences

Department of Computer Science
(2005)

In the name of ALMIGHTY ALLAH,
The most Beneficent, the most

Merciful.

International Islamic University Islamabad
Faculty of Applied Sciences

Department of Computer Science
48 lo 2005 -9 2

Final Approval

It is certified that we have read tha thosis, entitled "A Novel p-Processor Architecture

for Concurrent Execution of OS Kernel and User mode Code" submitted by Haroon

Muneer, University Reg. No. 72-CSIMS102. It is our judgment that this thesis is of

sufficient standard to warrant its Rcccptance by the International Islamic University,

Islamabad, for the Degree of MS Computer Science.

Committee

External Examiner
Mr. Shaftab Ahmed
Senior Faculty Member,
Bahria University Islamabad.

Internal Examiner
Engr. Dr. Syed Afaq Hussain
Head Dep-ent of Computer Enginecdnf;,
International Islamic University, Islamnhnd.

Supervisors

IW '. .) @ Prof. Dr. Khalid Rahsid .
Dean Faculty of Applied Sciences,
International Islamic University, Islamahntl.

Dr. S. Tauseef-ur-Rehman
Head Department of Telecom Engineering, \ '

International Islamic University, Islamahntl.

A N o d p-Proccmr Architecture Dedication

Dedication

Dedicated to The Holy Prophet Muhammad (SAW) and to my family.

A Novel p-Processor Archifechm Disnrtation

A dissertation submitted to the
Department of Computer Science,

International Islamic University, Islamabad
as a partial hlfillment of the requirements

for the award of MS in
Computer Science

Declaration

I hereby declare that this software, neither as a whole nor as a part thereof has been

copied out from any source. It is further declared that I have developed this software

entirely on the basis of my personal efforts made under the sincere guidance of our

teachers. No portion of the work presented in this report has been submitted in support of

any application for any other degree or qualification of this or any other university or

institute of learning.

Haroon Muneer
72-CSIMSlO2

iii

A Novel p-Processor Aditechrrr Acknowle&ements

Acknowledgements

All praise to the Almighty Allah, the most Mercifid, the most Gracious, without whose

help and blessings, I was unable to completethe project.

Thanks to my Parents who helped me during my most difficult times and it is due to their

unexplainable care and love that I am at this position today.

Thanks to my project supervisors Prof: Dr. Khalid Rnshid and Dr. Tauseef Ur

Rehman, their sincere efforts helped me to complete my project successfully.

1 acknowledge teachers and friends for their help in the project,

Haroon Muneer

A Nowlp-PmcemrArchitechrrc - Project in Brief

Project in Brief

Project Title:

Objective:

Undertaken By:

Supervised By:

Software Used:

Hardware Used:

System Used:

Operating System Used:

Date Started:

Date Completed:

A Novel pProcessor Architecture for
Concurrent Execution of OS Kernel and
User mode Code

To Develop a new Chip Multiprocessor
Architecture to execute both OS Kernel and
User programs Concurrently.

llnroon Muneer
72-csms/02

Prof. Dr. Khalid Rahsid
Dean Faculty of Applied Sciences.
International Islamic University, Islamabad

Dr. S. Tauseef-ur-Rehman
Head Department of Telecom Engineering,
International Islamic University, Islamabad

Xilinx ISE Foundation 6.3i and ModelSim
X E 5.86

Xilinx Spartan IIE 300 mounted on the
Burched FPGA prototyping Kit

Microso&@ Windows@ XP Professional

15' March, 2004

I* January, 2005

Abstract
One of the advances that will be enabled by system-on-chip (SOC) technology is the

single-chip multiprocessor. As VLSI technology improves to allow us to fibricate

hundreds of millions of transistors on a single chip, it is also possible to put a complete

multiprocessor, including both CPUs and memory, on a single chip. The advent of single-

chip multiprocessors will require us to rethink multiprocessor architectures to fit the

advantages and constraints of VLSI implementation. This thesis is based on research in

this very direction. We propose a new single chip multiprocessor architecture that

concentrates specifically on improving operating system performance. This goal is

achieved by implementing two CPUs on a single chip, configured as a master and a slave.

Only the master processor will run the OS kernel, and only the slave processor will run

the user code.

A Novel p-Processor Architecture Toble of Contmfr

Table of Contents .

1 . Introduction ... 1

1.1 OSKEmEIs .. 1
1.1.1 Monolithic Kernels ... 2

.. 1.1.2 Mmokemel 2
.. 1.1.3 EroKerneL ... 2

... 1.2 PAR\LLELISM : 2
J.2.I Instruelion Level PamJlehn .. 3
1.12 Thread LeveI Paralkr~t .. 3
1.23 Procesy)r Level ParaUelism .. 3
1.14 Chip M u l i i p m ~ ~ ~) r s .. 3

... 1.3 LITI?RATURE REW.~ v 3
1.4 ACADEMIC CMPs .. 6

1.4.1 7%eJmnaMRojee ... 6
.. 1.4.2 The Hydra h j e d 7

.. 1.5 C O ~ I ~ ~ C I A L C M P S 7
].XI IBM POWER4 .. 7
1.X2SunMJC ... 8

1.6 MICROPROCESSOR DESIGN .. 8
1.61 Ovmkv o/aMipmccsw)r ... 9

... 1.7 PROCRAnlRL&BLB GATE ARRAYS 11
1.8AxlLIhx~oacCELL .. 11 I . B 1 SI~ang and d d n ~ 12

1.82 CLBs 12
I.B3LXr&ibrriedRAMsandshi/tr&trn .. 13

.. 1.84 Embedded RAMS 13
.. 1.9 FIDL BASED DFSCN FLOW FOR FPGAs 14

... 1.9.1 Diff- levels of abslmdlon 15
1.9.2AsimpIeHDL-bmalFPGAjbv .. 16
1.9.3 VHD I. and VITAL .. 17

.. 1.10 FPAG P R O T ~ I N G KIT 17
1.10.1 RS-X300FFG+Bwrd .. 18
1.10.2 RSSRAMplug+n module .. 18
1.10.3 BS-&riphemI-Connedorspl~n module .. 19
1.10.4 BS-X-Rash-ConfigpIug-on module ... 20

2 . Problem Definition ... 21

3 . Instruction Set Architecture .. 29

3.1 B I T A N D ~ O I ~ D E R ... : .. 30
3.2 RESERVED Brrs rn S O ~ A R E C O ~ W . ~ ~ I I X C V ... 30
3 3 R e c r m ~ s ... 31

.. 3.4 ! ~ s m u n ~ o n s IMPLEMENTATION 31
3.4.1 R-Qpe(Register:orrgirter) ... 31
3.42 I-T,'p (R&er & Immediate Value) .. 32

. 3.4.3 CQpe (JUMP USING PC+/- IMMEDlA TE VAL LIE) .. 32
3.6.4 N-7)p (NO Opemnd) .. 32
3.4.5 IO-Qp ... 33
3.4.6 01-7)p ... 33

vii

A Novel p-Pmcemr Architechrre Table of Contents

Lou dl ... 37
LoadlA .. 38
Store ... 38
SioreIA .. 39
Move .. 39
Move1 .. 39
ALUS 40

ALLID .. 40
ALUDI .. 41
MULDIV ... 41
SR ... 42
RC ... 42
RCI ... 43
Branch1 ... 43
BranchCI .. 41
Branch .. 44
BmnchC .. 45
Input ... 45
Output ... 46
Ou@utI ... 46
PUSH .. 47
POP .. 47
CALL .. 48
RETURh'C .. 48
RETURN1 ... 48
ED2 ... 49

.. TRAP 49
WAITI ... 49
HALT .. 50

4 . System Design .. 51

4.1.1.3 Shared Stack .. 52
4.1.1.4 Shared Stack Operation ... 52
4.1.1.5 Remote Call .. 53
4.1.1.6 Remote Interrupt ... 54

4.1.2 Bosp CPUArchUcdUre ... 54
4.1.21 Internal TriSIntcD.taBus .. 55
4.1.22 Rqistcn 55

.. 4.1.23AI.U 55
4.1.24 Multiplier7"ivider .. 55
4.1.25 Comparator .. 56

... 4.1.26 Shifter 57
4.137 IR extender ... 57

... 4.1.28 Hardware Stack 57
4.1.29 Register FVe .. 57
4.1.210 Controller ... 57

4.2 S Y ~ M A R ~ E C N R E .. 57
4.21 Memory .. 60
4.22 MUX ... 60
4.23 DMVX .. 60
I 2 4 gEI'BOARD Contro& .. 60
4.25 VCA Controller .. 62
4.26 Iniem,pl Controller .. 67

A NovelpFmcemrArchitechcre Table of Contents

427 S&h Debounce and Rdse Control ... 67
4.28 7Seg Coniroller ... : ... 67
629 LED Controller ... 67

5 . Conclusion ... 68

5.1 HARDWARE ARRANGEMENT .. 68
5.2 RESULT .. 68

References and Bibliogrnphy .. 71

Appendix-A Test Code .. A-1

Appendix-B Glossary of Terms ... B-1
Appendix4 User Manual ... C-1

A Novel p-Rocemr Architecture Abbreviations

ASIC

CMP

CPLD

CF'U

FF'GA

FSM

HDL

HLL

ILP

P C

MT

N U M A

RTL

SMP

s o c

TLB

VHDL

W S I C

VITAL

VLSI

Abbreviations

Application Specific Integrated Circuit

Chip Multiprocessor

Complex Programmable Logic Device

Central Processing Unit

Field Programmable Gate Array

Finite State Machine

Hardware Description Language

Higher Level Language

Instruction Level Parallelism

Inter Process Communication

Multi Threading

Non Uniform Memory Access

Register Transfer Level

Symmetric Multiprocessing

System on a Chip

Translation Look Aside Buffer

VHSIC Hardware Description Language

Very High Speed Integrated Circuit

VHDL Initiative Toward ASIC Libraries

Very Large Scale Integration

1. Introduction

For CPU design, a major movement in the 1980s was towards RISC instruction sets

which made it simpler and more efficient to design CPU cores. Although, not all the

RISC designs were that simple. During the 1990s the main focus was on boosting

instruction-level parallelism (ILP) and clock rates of single-core processors. As a result,

processors have become far more complex. However, there are various reasons why

performance doesn't scale well with these techniques. Recent years have witnessed a shift

of focus to exploiting thread-level parallelism (TLP) with techniques like CMP and MT.

CMPIMT scales the performance of multi-threaded applications (or multiple running

processeslprograms) through the integration of multiple cores onto a single silicon die and

the execution of instruction streams from multiple hardware threads on each core.

Implementations of these technologies exist in the market today. Figure 1 shows the

architectural differences of a single-core processor and a dual-core dual-thread CMP/MT

processor.

single-care CPU ChP CPU

L2 Cache L2 Cache

Figure 1.1

1.1 OS Kernels

The part of OS critical to its correct operation execute in supervisor mode, while

other software, such as generic system software, and all applications programs execute in

user mode. The part of the system software executing in the supervisor mode is called the

kernel of the operating system. The kernel operates as trusted soha re , meaning that

when it is designed and implemented, it is intended to implement protection mechanisms

that cannot be covertly changed through the actions of untrusted software executing in the

user mode.

A Novel p--or Archifedwe 1

1.1.1 Monolithic Kernels

The older monolithic kernels are written as a mixture of everything the OS needs,

without much of an organization. The monolithic kernel offers everything the OS needs:

processes, memory management, multiprogramming, interprocess communication (IPC),

device access, file systems, network protocols.

1.1.2 Microkernel

This method structures the operating system by removing all nonessential

components fiom the kernel, and implementing them as system and user level programs.

The result is a smaller kernel. Microkernel typically provides minimal process and

memory management, in addition to a communication facility. The main hnction of the

microkernel is to provide a communication ficility between the client program and the

various services that are also running in the user space.

1.1.3 ExoKernel

Traditional operating systems limit the performance, flexibility, and hnctionality

of applications by fixing the interface and implementation of operating system

abstractions such as interprocess communication and virtual memory. The EroKernel

operating system architecture addresses this problem by providing application-level

management of physical resources. In the ExoKernel architecture, a small kernel securely

exports all hardware resources through a low level interface to untrusted library operating

systems. Library operating systems use this interface to implement system objects and

policies. This separation of resource protection from management allows application-

specific customization of traditional operating system abstractions by extending,

specializing, or even replacing libraries.

1.2 Parallelism

Traditionally computer has been viewed as a sequential machine. Most computer

programming languages require the programmer to specify algorithms as a sequence of

instructions. Processors execute the programs by executing the machine instructions in a

sequence and one at a time. This view of computer has never been entirely true. At the

microoperation level, multiple control signals are generated at the same time. Instruction

pipelining, at least to the extent of overlapping fetch and execute operation, has been

around for a long time. This approach is taken firther with superscalar organization,

which exploits instruction level parallelism.

1.2.1 Instruction Level Parallelism

Since 1985, all processors use pipelining to overlap the execution of instructions

and improve performance. This potential overlap among instructions is called instruction

level parallelism (ILP) because the instructions can be executed in parallel. There are two

basic approaches. Dynamic, hardware intensive approaches, and Static, compiler

intensive approaches.

1.2.2 Thread Level Parallelism

Thread level parallelism allows multiple threads to share the finctional units of a

single processor in an overlapping faction. To permit this sharing, the processor must

duplicate the independent state of each thread. For example, a separate copy of register

file, a separate PC and a separate page table are required for each thread. The memory

itself can be shared through the virtual memory mechanisms, which already support

multiprogramming.

1.2.3 Processor Level Parallelism

The demand for ever faster computers seems to be insatiable. Instruction-level

parallelism helps a little, but pipelining and superscalar operations rarely win more than a

factor of five or 'ten. To get gains of 50, 100 or even more, the only way is to design

computers with multiple CPUs. There are quiet a few approaches of parallel organization.

For example: Symmetric Multiprocessors (SMPs), Cluster computers, and Non Uniform

Memory Access computers (NUMA).

1.2.4 Chip Multiprocessors

Chip Multiprocessors (CMPs) use relatively simple single-thread processor cores

to exploit only moderate amounts of parallelism within any one thread, while executing

multiple threads in parallel across multiple processor cores. If an application cannot be

effectively decomposed into threads, CMPs will be underutilized.

1 3 Literature Review

Bloch ploch 19591 and Bucholtz pucholtz 19621 describe a four stage pipeline

and its engineering tradeoffs, including the use of ALU bypass. Kunkel and Smith

A Novel p-Processor Architecture 3

wunkel& Smith 19861 evaluate the impact of pipeline overhead and dependencies on the

choice of optimal pipeline depth. Smith and Pleszkun [Smith & Pleszkun 19881 evaluate a

variety of techniques for preserving precise exceptions. Weiss and smith [Weiss & smith

19841 evaluate a variety of hardware pipeline scheduling techniques and instruction issue

techniques. Killian [Killian 19911 and Heinrich weinrich 19931 describe MIPS R4000

which was one of the first deeply pipelined microprocessors.

J Smith [Smith 19811 described a 2-bit branch prediction technique. Yeh and Patt

[Yeh & Pan 1992, 19931 described multilevel predictors. Kaeli and Emma vae l i &

Emma 19911 described return address prediction. The 2-bit Branch prediction improves

implementation of branch predicition in super scalar processors.

Sohi [Sohi 19901 describes renaming and dynamic scheduling. Smith, Johnson

and Horowitz [Smith, Johnson & Horowitz 19891 described the use of speculation a

technique in multiple issue microprocessors. Dynamic scheduling and register renaming

improves performance of heavy superscalar designs.

Aganval et al. [Aganval 19931 describes SPARCLE a block multithreaded

processor. Laudon, Gupta and Homwitz [Gupta & Horrowitz 19941 advocate fine

grained multithreading. Yamamoto et al vamamoto 19941 proposed a design using

dynamic scheduling to mix instructions from different threads. Tullsen et al IJullsen

19961 addresses questions about the challenges of scheduling U P versus TLP. Lo et al.

[Lo 19971 gives an extensive discussion of SMT concept. Lo at al b o 19981 evaluated

database performance on an SMT processor.

In 2000, Il3M announced the first commercial chip with two general purpose

processors on a single die, the Power4 processor. Each Power4 contains two Power3

microprocessors, a shared secondary cache and a chip to chip communication system.

In 1997 w n c e Hammond, Basem A. Nayfeh, Kunle Olukotun 19971 provided

concrete evidence of the performance improvement possibilities using Singlechip

Multiprocessors.

[Jan Gray 20001 proposed on using FPGA based prototyping systems for teaching

Micro Processor and Integrated Systems Design. Jan Gray. [Jan Gray 20011 proposed a

simple RlSC CPU and System-on-a-Chip on a single FPGA.

Hsiao-Ping Juan, Nancy D. Holmes Smita Bakshi, Daniel D. Gajski wsiao-Ping

Juan, Nancy D. Holmes Smita Bakshi, Daniel D. Gajski 19921 proposed on Top Down

Modeling of RISC Processors in VHDL. [Takayuki Morimoto, Kezushi Saito, Hiroshi

Nakamura, Taisuke Boku, Kisaburo Nakazawa] proposes a new hardware description

language ATDL for Advance Processor Design. Makiko ITOH Wakiko ITOH 20001

proposed Synthesizable HDL Generation for Pipelined Processors from A Micro-

Operation Description.

Prof. Lizy Kurian John pizy Kurian John 20021 provided research on Hardware

Performance Evaluation: Techniques, Tools and Benchmarks.

Paul Kohout Paul Kohout 20021 proposed on providing hardware support for

real-time operating Systems.

Jochen Liedtke [Jochen Liedtke 19931 Discusses in detail about improving P C by

appropriate p-Kernel Design

[Jochen Liedtke [Jochen Liedtke 19951 provides a detailed discussion and

example implementation of high performance second generation p-Kernel operating

systems.

Jochen Liedtke, Hermann H-artig, Michael Hohmuth, Sebastian Sch-onberg, Jean

Wolter piedtke, H-artig, Hohmuth, Sch'onberg, Wolter 19971 researched on the

Performance of p-Kernel-Based Systems.

Jochen Liedtke, Andreas Haeberlen, Yoonho Park, Lars Reuther, Volkmar Uhlig

[Jochen Liedtke, Andreas Haeberlen, Yoonho Park, Lars Reuther, Volkmar Uhlig 20001

provide a detailed analysis and techniques for efficient Stub-Code for high performance p

-kernel based operating systems.

Jochen Liedtke [Jochen Liedtke 20011 discusses and evaluates the high

performance U K a p-kernel. L4Ka p-kernel is completely written in assembly language

and provides higher performance then the traditional zDd generation p-kernel.

Benjamin Gamsa, Orran Krieger, Eric W. Parsons, Michael Stumm [Benjamin

Gamsa, Orran Krieger, Eric W. Parsons, Michael Stumm 19951 discusses the

Performance Issues in Multiprocessor Operating Systems.

Dawson R. Engler [I9981 provides detailed description of ExoKernel operating systems.

Joshua A. Redstone, Susan J. Eggers and Henry M. Levy [Joshua A. Redstone,

Susan J. Eggers & Henry M. Levy 20001 provided an Analysis of Operating System

Behavior on a Simultaneous Multithreaded Architecture.

Chapter1 Inlmdunion

1.4 Academic C W s

1.4.1 The Jamaica Project

The Jamaica project is investigating the design of chip multi-processors (CMPS)

and their accompanying parallel s o h a r e environments. CMP architectures have been

widely accepted by many processor chip manufacturers as a solution to the design

problems accompanying the scaleup to "billion hansistorn chips. The rationale for this

choice is that designing logic to interconnect multiple cores based on existing designs is

enonnous& simpler than trying to build one core which will use all the available silicon.

Despite the widespread convergence on CMP as a promising design strategy, there are

many issues yet to be resolved in the design of both the hardware and its accompanying

s o h a r e environment. In particular:

The hardware must be able to efficiently support an operating system which can

distribute execution of application code to all the available cores. Distribution and

synchronization costs must be low and it must be easy to detect the presence of

idle cores.

The operating system must, in turn, rely upon advanced compiler technology to

automate, as far as possible, this distribution of work. Most applications cannot

feasibly be designed (or rewritten) to allow for all possible CMP configurations,

coping with anything From, say, 2 to 64 cores.

A dynamic parallelizing compiler is essential if the distribution problem is to be

addressed. Both application and operating system code need to be optimized

appropriate to the CMP configuration found at runtime or even recompiled on the

fly using feedback directed recompilation.

All these elements of the CMP platform need to be designed together if the promise of

CMP architectures is to be fulfilled. The Jamaica project is organized into three

collaborating strands reflecting the interplay between computer architecture, compiler and

operating system.

Advances in silicon technology have provided designers with more on-chip

resources. However, this poses greater design problems in using the available silicon. The

Jamaica project is focusing on the design of chip multi-processors. Benchmarks run on

cycle accurate simulators allow development of prototypes and determination of optimal

configurations without incumng long development cycles. The project also carries out co-

design of architectural features and compiler optimizations.

1.4.2 The Hydra Project

Hydra is a new microarchitecture that combines shared-cache multiprocessor

architectures, innovative synchronization mechanisms, advanced integrated circuit

technology and parallelizing compiler technology to produce breakthroughs in

microprocessor cost/performance and parallel processor programmability. In Hydra, four

high performance processors are integrated on a single die. Hydra represents a new way

to build microprocessors that will demonstrate that it is possible for a multiprocessor to

achieve better performance and better cost/performance than wide superscalar

mircroarchitecture on sequential applications. Hydra will use a single chip shared cache

architecture to findamentally improve the communication bandwidth and latency

between multiple processon. The shared-cache architecture takes advantage of the on-

chip bandwidth to provide an order of magnitude improvement in interprocessor

communication and synchronization latency compared to current-bus based

multiprocessor implementations. This will improve parallel processing efficiency to the

point that it is feasible to exploit fine-grained parallelism in sequential programs with a

multiprocessor.

The shared-cache architecture and the support for specialized synchronization

makes Hydra an ideal target for emerging parallelidng compiler technology. Most of this

technology has focused on parallelizing applications into large grains so they will work

efficiently on current multiprocessors. Hydra will have the ability to exploit fine grained

parallelism and so will allow development of parallelizing compiler technology that is

capable of extracting this sort of parallelism.

1.5 Commercial CMPs

1.5.1 IBM POWER4

This processor is meant for the maximum performance, for hi-end server and

supercomputer market, designed for 32-processor SMP systems. Development of high-

performance communication means for processors and memory was given much

attention. The POWER4 has a high fault-tolerance: critical fails do not make the system

hang; instead, interrupts are generated and processed by the system. The POWER4 was

A Novelp-Procaror Architecl~re 7

Chapter! Intnrdudion

developed for an efficient operation of commercial (server), scientific and technical

applications. IBM PowerlPower PC processors were divided into server and scientific

ones - POWER and RS64. The POWER4 suits a wide range of hi-end applications and

uses all topical performance boosting ways (within the PowerPC instruction set). We

won't find there truncated caches and lacking FUs.

The POWER4 houses 2 processors each having an L1 cache for data and

instructions. The die has a single L2 cache of 1450 KBytes controlled by 3 separate

controllers connected to the cores via a CIU (Core Interface Unit). The controllers work

independently and can process 32 bytes per clock. Each processor uses two separate 256-

bit buses to connect the CIU for data fetching and data loading, as well as a separate 64-

bit bus to save the results; the L2 cache has a bandwidth of 100 GByteds. The L2 cache's

system looks well balanced and very powerhl. Each processor has a special unit to

support noncachable operation. The L3 controller and the memory's one are located on

die as well. For connection with the L3 cache working at 1/3 of the processo?~ speed and

with the memory there are two 128-bit buses operating at 113 of the processor's

Frequency.

1.5.2 Sun MAJC

With two identical and independent but cooperative processor cores, the MAJC-

5200 is one of the first microprocessors to implement chip multiprocessing (CMP),

though Sun prefers to classify the chip as a multiprocessor system on a chip (MPSOC). It

will offer a relatively high clock rate (500 MHz), eight powerhl finction units, a unique

geometry decompression engine, and copious amounts of off-chip data bandwidth. Future

MAJC processors could incorporate hundreds of cores on the same die.

1.6 Microprocessor Design

20-50-MHz FPGA CPUs are perfect for many embedded applications. They can

support custom instructions and fhnction units, and can be reconfigured to enhance

system-on-chip (SoC) development, testing, debugging, and tuning. FPGA systems offer

high integration, short time-to-market, low NRE costs, and easy field updates of entire

systems.

FPGA CPUs may also provide new answers to old problems. Consider one

system, during self-test, its FPGA is confi yred as a CPU and it runs the tests. Later the

FPGA is reconfigured for normal operation as a hardwired signal processing datapath.

The ephemeral CPU is free and saves money by eliminating test interfaces.

In the past, field programmable gate arrays (FPGAs) have been used to absorb

glue logic, perform signal processing, and even to prototype system-on-chip (SoC)

ASICs. Now with the advent of large, fast, cheap FPGAs, it is practical and cost-effective

to skip the ASIC and ship volume embedded systems in a single FPGA plus off-chip

RAM and ROM -- the FPGA implements all of the system logic including a processor

core. A soft CPU core enables custom instructions and fkction units, and can be

reconfigured to enhance SoC development, debugging, testing, and tuning. And if you

control your own "cores" intellectual property (IP), you will be less at the mercy of the

production and end-of-life decisions of chip vendors, and can ride programmable logic

price and size improvement curves.

Processor and SoC design is not rocket science, and is no longer the exclusive

realm of elite designers in large companies. FPGAs are now large and fast enough for

many embedded systems, with soft CPU core speeds in the 33-100 MHz range. HDL

synthesis tools and FPGA place-and-route tools are now fast and inexpensive, and open

source software tools help to bridge the compiler chasm.

1.6.1 Overview of a Microprocessor

The Von Neumann model of a computer, pictured in Figure 1, consists of four

main components: the input, the output, the memory, and the microprocessor.

Figure 1.2 Von Neumann model of a computer.

The keyboard and mouse are examples of input devices. The CRT (cathode ray

tube) and speakers are examples of output devices. The different types of memory, cache,

read-only memory (ROM), random-access memory (RAM), and the disk drive are all

considered as part of the memory box in the model. The focus in these seminars is on the

design of the digital circuitry of the microprocessor, the memory, and other supporting

logical circuits, and their implementation on FPGAs.

The circuit for the microprocessor can be divided into two parts: the datapath and

the control unit as shown in Figure 1. Figure 2 shows the details inside the control unit

and the datapath. The datapath is responsible for the actual execution of all operations

performed by the microprocessor, such as the addition inside the arithmetic logic unit

(ALU). The datapath also includes the registers for the temporary storage of your data.

The hnctional units inside the datapath (ALU, shifter, counter, etc.) and the registers are

connected together with multiplexers and buses to form one unit, the datapath.

Even though the datapath is capable of performing all the operations of the

microprocessor, it cannot, however, do it on its own. In order for the datapath to execute

the operations automatically, the control unit is required. The control unit, also known as

the controller, controls the operations of the datapath, and therefore, the operations ofthe

entire microprocessor.

Figure 1.3 Internal parts of a microprocessor

The controller is a finite state machine (FSM) because it is a machine that

executes by going from one state to another and the fact that there are only a finite

number of states for the machine to go to. The controller is made up of three parts: the

next-state logic, the state memory, and the output logic. The purpose of the state

memory is to remember the current state that the FSM is in. The next-state logic is the

circuit for determining what the next state should be for the machine. And the output

logic is the circuit for generating the actual control signals for controlling the datapath.

1.7 Field programmable gate arrays

Fieldprogrommahle gate arrays (FPGAs) are digital integrated circuits (7Cs) that

contain configurable (programmable) blocks of logic along with configurable

interconnects between these blocks. Design engineers can configure (program) such

devices to perform a tremendous variety of tasks. Depending on the way in which they

are implemented, some FPGAs may only be programmed a single time, while others may

be reprogrammed over and over again. The "field programmable" portion of the FPGA's

name refers to the fact that its programming takes place "in the field" (as opposed to

devices whose internal functionality is hardwired). This may mean that FPGAs are

configured in the laboratory, or it may refer to modifying the hnction of a device resident

in an electronic system that has already been deployed in the outside world. If a device is

capable of being programmed while remaining resident in a higher-level system, it is

referred to as being in-system programmobfe.

1.8 A Xilinx logic cell

The core building block in a modem FPGA ffom Xilinx is called a logic ceN (ZC).

Among other things, an LC comprises a 4-input LUT (which can also act as a 16 x 1

RAM or a 16-bit shift register), a multiplexer, and a register.

Figure 1.4 Architecture of a X I L N LC

In addition to the LUT, MUX, and register, the LC also contains a smattering of

other elements, including some special fast carry logic for use in arithmetic operations.

A Novel p-Rooeessor Ardi iedure 11

1.8.1 Slicing and dicing

The next step up the hierarchy is what Xilinx calls a slice. A slice contains two

logic cells as shown below.

Sloe

LW W X REG

Figure 1.5 A slice containing two logic c

1.8.2 CLBs

And moving one more level up the hierarchy, we come to what Xilinx calls a

configumbZe logic block (CLB). Using CLBs as an example, some Xilinx FPGAs have

two slices in each CLB, while others have four. A CLB equates to a single logic block in

our original visualization of "islands" of programmable logic in a "sea" of programmable

interconnect. There is also some fast programmable interconnect within the CLB. This

interconnect is used to connect neighboring slices.

I
Figure 1.6 A CLBcontaining four slicer (the number of slicer

depends on the FPCA fatnily).

The reason for having this type of logic-block hierarchy, LC+ Slice (with two

L C s F CLB (with four slices), is that it is complemented by an equivalent hierarchy in

the interconnect. Thus, there is fast interconnect between the LCs in a slice, then slightly

slower interconnect between slices in a CLB, followed by the interconnect between
. .

CLBs. The idea is to achieve the optimum trade-off between making it easy to connect

things together without incurring excessive interconnect-related delays.

1.8.3 Distributed RAMS and shift registers

We previously noted that each 4-bit LUT can be used as a 16 x I RAM. Assuming the

four-slices-per-CLB configuration all of the LUTs within a CLB can be configured

together to implement the following:

1. Single-port 16 x 8 bit RAM

2. Single-port 32 x 4 bit RAM

3. Single-port 64 x 2 bit RAM

4. Single-port 128 x 1 bit RAM

5. Dual-port 16 x 4 bit RAM

6. Dual-port 32 x 2 bit RAM
7. Dual-port 64 x 1 bit RAM

Alternatively, each 4-bit LUT can be used as a 16-bit shift register. In this case, there

are special dedicated connections between the logic cells within a slice and between the

slices themselves that allow the last bit of one shift register to be connected to the first bit

of another without using the ordinary LUT output. This allows the LUTs within a single

CLB to be configured together to implement a shift register containing up to 128 bits..

1.8.4 Embedded RAMS

A lot of applications require the use of memory, so FPGAs now include relatively

large chunks of embedded RAM called e-RAM or block RAM. Depending on the

architecture of the component, these blocks might be positioned around the periphery of

the device, scattered across the face of the chip in relative isolation, or organized in

columns, as shown in Figure below.

Chnpterl Introduction

Figure 1.7 Bitch-eve view of chip with columns of
embdded RAM blocks.

Depending on the device, such a RAM might be able to hold anywhere from a few

thousand to tens of thousands of bits. Furthermore, a device might contain anywhere from

tens to hundreds of these RAM blocks, thereby providing a total storage capacity of a few

hundred thousand bits all the way up to several million bits. Each block of RAM can be

used independently, or multiple blocks can be combined together to implement larger

blocks. These blocks can be used for a variety of purposes, such as implementing

standard single- or dual-port RAMS, first-in f i r s t a t (FIFO) finctions, state machines,

and so forth.

1.9 HDL Based Design Flow for FPGAs

The idea behind a hardware description language is, perhaps not surprisingly, that

you can use it to describe hardware. In a wider context, the term hardware is used to refer

to any of the physical portions of an electronics system, including the ICs, printed circuit

boards, cabinets, cables, and even the nuts and bolts holding the system together. In the

context of an

HDL, however, "hardware" refers only to the electronic portions (components and

wires) of ICs and printed circuit boards. In the early days of electronics, almost anyone

who created an EDA tool created his or her own HDL to go with it. Some of these were

analog HDLs in that they were intended to rep resent circuits in the analog domain, while

others were focused on representing digital functionality. Here, we are interested in HDLs

only in the context of designing digital ICs in the form of FPGAs.

1.9.1 Different levels of abstraction

The functionality of a digital circuit can be represented at different levels of

abstraction and that different HDLs support these levels of abstraction to a greater or

lesser extent.

The lowest level of abstraction for a digital HDL would be the switch level, which

refers to the ability to describe the circuit as a netlist of transistor switches. A slightly

higher level of abstraction would be the gate level, which refersto the ability to describe

the circuit as a netlist of primitive logic gates and functions. Both switch-level and gate-

level netlists may be classed as sfrvchrral representations. It should be noted, however,

that "structural" can have different connotations because it may also be used to refer to a

hierarchical block-level netlist in which each block may have its contents specified using

any of the levels of abstraction.

Beharioral
(Algorittnliic)

Functional

St~aural

Fire 1.8 Different levels of abstraction.

The next level of HDL sophistication is the ability to supportfunclional representations,

which covers a range of constructs. At the lower end is the capability to describe a

hnction using Boolean equations.

The functional level of abstraction also encompasses register transfer level @TI.)

representations. The term R7Z covers a multitude of manifestations, but the easiest way to

understand the underlying concept is to consider a design formed fiom a collection of

registers linked by combinational logic.

A Novel p-Proesror Arehirectum 15

Chopterl Introdu&n

The highest level of abstraction sported by traditional HDLs is known as behavioral,

which refers to the ability to describe the behavior of a circuit using abstract constructs

like loops and processes. This also encompasses using algorithmic elements like adders

and multipliers in equations.

1.9.2 A simple HDL-based FPGA flow

HDL-based flows featuring logic synthesis technology became fully available in

the FPGA world in the very early 1990s. The key feature of HDL-based design flows is

their use of logic synthesis technology, which began to appear around the mid-1980s.

These tools can accept an RTL representation of a design along with a set of timing

constraints. In this case, the timing constraints are presented in a side-file containing

statements along the lines of "the maximum delay from input Xto output Y should be no

greater than N nanoseconds". The logic synthesis application automatically converts the

RTL representation into a mixture of registers and Boolean equations, performs a variety

of minimizations and optimizations (including optimizing for area and timing), and then

generates a gate-level netlist that can (or at least, should) meet the original timing

constraints.

G a e W fundional 1 " ,din

F'ipnrc 1.9 Simple HDL-based FPCAflow.

There are a number of advantages to this type of flow. First of all, the productivity

of the design engineers rises dramatically because it is a lot easier to specify, understand,

discuss, and debug the required functionality of the design at the RTL level of abstraction

as opposed to working with reams of gate-level schematics. Also, logic simulators can

run designs described in RTL much more quickly than their gate-level counterparts.

-~

A Novel pProcessor Archit-re 16

Chopterl Inbodvaion

Once the synthesis tool have generated a gatelevel netlist, the gate-level netlist can

be simulated to ensure its hnctional validity, and it can also be used to perform timing

analysis based on estimated values for tracks and other circuit elements. The netlist can

then be used to drive the FPGA's mapping, packing, and place-and-route software,

following which a more accurate timing report can be generated using real-world

(physical) values.

1.9.3 VHDL and VITAL

In 1980, the U.S. Department of Defen.~e (DOD) launched the very high speed

integrated cirntit (VHSIC) program, whose primary objective was to advance the state of

the art in digital IC technology. Under VHSIC, a project to develop a new hardware

description language called VHSIC HDL (or VHDL for short) was launched in 1981. The

first official release of VHDL occurred in 1985. DOD donated all rights to the VHDL

language definition to the IEEE in 1986. After making some modifications to address a

few known problems, VHDL was released as official standard IEEE 1076 in 1987. The

language was hrther extended in a 1993 release and again in 1999 giving VI-DL-2001.

As a language, VHDL is very strong at the hnctional (Boolean equation and

RTL) and behavioral (algorithmic) levels of abstraction, and it also supports some

system-level design constructs. However, VHDL is a little weak when it comes to the

structural (switch and gate) level of abstraction, especially with regard to its delay

modeling capability. It quickly became apparent that VHDL had insufficient timing

accuracy to be used as a sign-off simulator. For this reason, the VITAL initiative was

launched at the Design Afttomation Conference (DAC) in 1992. VHDL Initiative toward

ASIC Libraries (VITAL) was an effort to enhance VHDL's abilities for modeling timing

in ASIC and FPGA design environments. The end result encompassed both a library of

ASICIFPGA primitive functions and an associated method for back-annotating delay

information into these library models, where this delay mechanism was based on the same

underlying tabular format used by Verilog.

1.10 FPAG Prototyping Kit

. . For this project BurchED FPGA boards and accessories have been selected

because of their flexibility and large capacity FPGA. The BurchED system consists of

following components.

1.10.1 B5-X300 FPGA Board

. 300K gate Xilinx SpartanIIE device

Access to all FPGA user VOs . Works with the Xilinx ISE design software . Complete stand-alone system, including progamming cable . JTAG and serial mode configuration of the FPGA . 1 to lOOMHz header-programmable oscillator onboard

Figure 1 .lo: The B5-X300, BS-X-Advanced-Download-Cable is included.

1.10.2 BS-SRAM plug-on module

. 2 MBits of very fast 15ns static RAM

Accessible as 128K x 16, or 256K x 8

Large storage, external to the FPGA, for data, code, images

Figure 1.1 1: BS-SRAM

1.10.3 BS-Peripheral-Connectors plug-on module

Fi y r e 1.12: B5-Peripheral-Connectors

Connect standard PC peripherals to FPGA

VGA output, with 4 level resistor DAC on each of R, G and B

Keyboard connectors - PS2 or 5-pin DIN

Mouse connector - PS2

RS232 level converter onboard

DB9 RS232 connector - serial communications to a PC

Piezo buzzer for "system beep", audible diagnostics and testing

A Novel p-?+ocessor Arch i tbre 19

Chopter 1 Inirmiudion

1.10.4 B5-X-Flash-Config plug-on module

Figure 1.13: BS-X-Flash-Config

Flash PROM automatically configures the FPGA on power up

"Instant-on" configuration in less than 1 second

JTAG reprogrammable

Xilinx l8VO2 flash confi guration PROM onboard

A Novel p-hxmsor Archiredure 20

Chapter 2 Problem Definition

2. Problem Definition

The basic problem is OS performance. In This section we present the problem

and its proposed solution.

2.1 Operating Systems

As modern applications become increasingly dependent on multimedia, graphics,

and data movement, they are spending an increasing fraction of their execution time in

the operating system (0s) kernel, an area of the system almost completely ignored by

traditional performance enhancement research. As an illustrative example, consider what

must undoubtedly be today's leading server application: the web server. Web servers

have been shown to spend over 85% of their CPU cycles running operating system code;

in contrast, the near-ubiquitous SPEC benchmarks execute less than 9% of their .

instructions in the OS kernel. (Aaron B. Brown 19971

For server-based environments, the operating system is a crucial component of the

workload. Previous research suggests that database systems spend 30 to 40 percent of

their execution time in the kernel, and measurements show that the Apache Web server

spends over 75% of its time in the kernel. Operating systems are also known to be more.

demanding on the processor than typical user code. [Joshua A. Redstone, S m J. Eggers

& Henry M. 'Levy 20001

~ulti-server and component-based operating systems are promising architectural

approaches for handling the ever increasing complexity of operating systems.

Components or servers (and clients) communicate with each other through cross-domain

method invocations. Such interface method invocations, if crossing protection boundaries,

are typically implemented through the inter-process communication (PC) mechanisms

offered by a microkernel. Therefore, component interaction in such systems has to be

highly efficient. Thus inter-process communication (PC) by message passing is one of

the central paradigms of most p-kernel based and other client/server architectures. It helps

to increase modularity, flexibility, security and scalability, and the key for distributed

systems and applications. P C has to be fast and effective, otherwise programmers will

not be able to use remote procedure calls RPC, multithreading and multitasking

adequately. Thus P C performance is vital for modern operating systems, especially p-

kernel based ones. Surprisingly, most ykernels exhibit poor P C performance. Since

A Novel p-R-or Archifecture 2 1

Choptcr 2 Problem Definition

context and userkernel mode switches are central to IPC operation, reducing them is a

critical factor in P C performance improvement [Jochen Liedfke 19931.

Also the following set of problems is caused by the operating systems.

i. Operating systems are huge programs that can overwhelm the cache and TLB due to

code and data size, thereby causing severe performance penalty for user programs.

ii. Operating systems may impact branch prediction performance, because of frequent

branches and infrequent loops.

iii. OS execution is often brief and intermittent, invoked by interrupts, exceptions, or

system calls, and can cause the replacement of usefbl cache, TLB and branch

prediction state for little or no benefit.

iv. The OS may perform spin-waiting, explicit cachdI'LB invalidation, and other

operations not common in user-mode code, affecting user code.

v. In current modularized kernels, every kernel invocation causes context switch, and in

case of p-kernels every call means a couple of context switches, thus wasting a

considerable time in just switching processes.

vi. PC-performance problems result from 64 bit architectures with large number of

registers and register stack engines. In short, the large number of registers contributes

to a potentially massive context (more than 2KB) to be stored on each thread context

switch. This added context switch overhead may prove fatal to microkernel systems.

A combined hardwardsoftware solution is therefore required to reduce the amount of

information stored (Jochen Liedfke 2001].

vii. Overall, operating system code causes poor instruction throughput on a superscalar

microprocessor.

For these reasons, ignoring the operating system (as is typically done in

architectural & system simulations) may result in a misleading characterization of
. . system-level performance. Even for applications that are not OS-intensive, the

performance impact of the OS may be disproportionately large compared to the number

of instructions the OS executes.

To overcome these problems many techniques have been used, but each has its

disadvantages.

A Novel p-Processor Architedure 22

Chapter 2 Pmblem Defnition

i. Monolithic kernels cause most of the above cited disadvantages, except internal OS

fhction calls do not cause any context switches and System calls only cause a single

context switch, thus making kernel calling and return fast.

ii. To avoid many of these problems p-kernels have been designed, but they waste too

much time in message passing thus giving poor performance.

iii. ExoKernels try to make OS extendable and try to reduce many known performance

penalties.

A p-kernel can provide higher layers with a minimal set of appropriate
. . abstractions that are flexible enough to allow implementation of arbitrary operating

systems and allow exploitation of a wide range of hardware. Choosing the right

abstractions is crucial for both flexibility and performance. Some existing p-kernels chose

inappropriate abstractions, or too many or specialized and inflexible ones. Similar to

optimizing code generators, p-kernels must be constructed per processor and are

inherently not portable. Basic implementation decisions, most algorithms and data

structures inside p-kernel are processor dependent. Their design must be guided by

performance prediction and analysis. Besides inappropriate basic abstractions, the most

frequent mistakes come from insufficient understanding of the combined hardware-

software system or inefficient implementation [Jochen Liedtke 19951.

2.2 Microprocessor Architecture

Internally microprocessors have limited support for operating systems besides the

features that are critical for current protected virtual memory based operating systems,

like p-kernel based operating systems. As we have seen that modem applications are

spending an increasing fraction of their execution time in the operating system (0s)

kernel. Techniques are required at the micro-architecture level to specifically improve OS

performance.

Performance improvements at the micro-architecture level are only due to

superscalar architecture, speculative execution, speculative loading, branch prediction,

Simultaneous Multithreading, and Explicitly Parallel Instruction Computing etc. All these

techniques generally improve performance of executing code but are not intentionally

designed to improve OS performance.

A Novel fl-Processor Architedure 23

At the multi-processor level performance improvement is due to SMP, NUMA or

clustering. In each of these techniques the processing nodes are either running a copy of

the kernel or the whole 0s. None of these are aimed at improving OS performance

directly. Rather OS problems mentioned at section 2.1 appear at each node and further set

of problems appear due to multiple copies of the OS running simultaneously.

Integrated circuit processing technology offers increasing integration density,

which fuels microprocessor performance growth. It is becoming possible to integrate a

billion transistors on a reasonably sized silicon chip. At this integration level, it is

necessary to find parallelism to effectively utilize the transistors. Currently, processor

designs dynamically extract parallelism with these transistors by executing many

instructions within a single, sequential program in parallel. Future performance

improvements will require processors to be enlarged to execute more instructions per

clock cycle. However, reliance on a single thread of control limits the parallelism

available for many applications, and the cost of extracting parallelism from a single

thread is becoming prohibitive. This cost manifests itself in numerous ways, including

increased die area and longer design and verification times. In general, we see

diminishing returns when trying to extract parallelism from a single thread.

2.3 Proposed System

Amdahl's law tells us that if we want modem applications to run quickly, the

operating system must run quickly as well. Since traditional performance models

essentially ignore the operating system and modem 0s-dependent applications, a need

has arisen for new tools and methodologies that direct their attention at the performance

of the OS kernel. [Aaron B. Brown 19971

The demand for ever faster computer systems seems to be insatiable. Instruction-

level parallelism helps a little, but pipelining and superscalar operations rarely win more

than a factor of five or ten. To get gains of 50, 100 or even more, the only way is to

design computers with multiple CPUs. Thus high level of gain is only promised by

parallelism at the processor level. Traditionally the processor level parallelism has used

discrete processors. Making one processor master and run the OS is attractive as it solves

most of the previously cited problems, but is prone to the bus latencies and hence poor

performance.

Chapter 2 Problem Dejinition

As mentioned earlier OS kernel workload has significantly increased, especially

server based applications are putting heavy loads on the kernel. What must be realised is

that we have a huge potential for performance improvement. If some how the kernel runs

on an independent processor and the user code runs on another, without any bus latencies,

this master-slave processor architecture can improve performance significantly. This will

also open doors for future operating system improvements due to available processor

power at the disposal of the OS.

Researchers have proposed two microarchitectures that exploit multiple threads of

control: simultaneous multithreading (SMT) and chip multiprocessors (CMP). From a

purely architectural point of view, the SMT processor's flexibility makes it superior.

However, the need to limit the effects of interconnect delays, which are becoming much

slower than transistor gate delays, will also drive the billion-transistor chip design.

Interconnect delays will force the microarchitecture to be partitioned into small, localized

processing elements. For this reason, the CMP is much more promising because it is

already partitioned into individual processing cores. Because these cores are relatively

simple, they are amenable to speed optimization and can be designed relatively easily

f h c e H m o n d] .

Programmers must find thread level parallelism in order to maximize CMP

performance. With current trends in parallelizing compilers, multithreaded operating

systems, and awareness of programmers about how to program parallel computers, this

problem should prove less daunting in future. Additionally, having all of the CPUs on a

single chip allows designers to exploit thread-level parallelism even when threads

communicate frequently. This has been a limiting factor on today's multichip

multiprocessors, preventing some parallel programs from attaining speedups. The low

communication latencies inherent in single-chip microarchitecture allow speedup to occur

across a wide range of parallelism [Lance Hammond].

Therefore a new microprocessor architecture has been proposed that is specifically

designed to improve OS performance significantly as described below.

2.5 Design of Proposed Microprocessor.

In current multiprocessor architectures multiple independent microprocessors

form a system, and communicate with each other over a system buss. Each runs a copy of

the OS kernel, or, as in asymmetric multiprocessing, a single microprocessor runs the OS

Chapter 2 Pmblem &/inition

and acts as a master and controls the remaining microprocessors. This technique has an

inherent disadvantage of OS overload. Also the techniques used in SMP or NUMA are

indispensable and must be used in multiprocessor architectures, neither has specific

support for OS kernels. We will use a different technique, a modified form of chip

multiprocessors (CMP). The new microprocessor architecture consists of two tightly

coupled microprocessors. Both will be able to communicate with each other directly and

will be fabricated as a single chip in the same package.

I I I I

J2 Cache 1
,

I.2 Cache

. 3
Ll D Cache LI I G Q c LI D .Cache LI 1 G c h c

Comd P

canlrol
Wu

System Core User Core
C 3
Ccmmonlotka

Figure 2.1 Proposed p-Processor Architecture

One of the microprocessors will be the master processor and will implement

privileged instruction as well as rest of the instruction set. Operating system alone will

run on this microprocessor. The second microprocessor will only implement the non-

privileged instructions. Complex processor execution units like floating point units and

vector units will be shared among both processors to avoid over complex design and

waste of resources as these are seldom used by the OS kernels. Proposed design is

envisioned to remove earlier mentioned OS problems as follows.

I . Operating systems are huge programs that can overwhelm the cache and TLB due to code

and data size, thereby cmrsing severe performance penallyfor User programs.

The OS core has its own caches and TLB thus not affecting the user programs.

Also the system core caches will have OS instructions and data structures in them

A Novel p-ProrrSmr Arrhifedure 26

Chopfer 2 Problem Dejinition

at all time thus removing cache contention faced by kernel in conventional

CPUs.

2. Operating systems may impact branch prediction performance, because of figuent

branches and infrequent loops.

Since the system core will have its own prediction logic, thus the user branch

prediction will not be effected. Also this issue will be handled in more detail

during OS design.

3. OS exeartion is offen brief and intermittent, invoked by intemrpts. exceptions, or system

calls, and can cmse the replacement of icsefirl cache, 7ZB and branch prediction state for

little or no benefit.

OS code will permanently reside on the system core thus avoiding the above to a

certain extent.

4. The OS may pcrfrm spin-waiting, explicit cache/TLB invalidation, and other operations

not common in user-mode code, again effecting user code.

OS code will permanently reside on the system core only thus again avoiding the

above for the user core.

5. In czrrrcnt modularized kernels, ewry kernel invocation causes context switch, and in

case of p-kernels ewry call means a couple of context switches, thus wasting a

considerable time in just switchingprocesses.

The user and kernel code will be able to communicate directly by cross function

calls that will have no context switch latency. Therefore context and memory

space switches will be minimized by this architecture. This is one of the biggest

advantage of this design.

6. IPC-performance problems rend! from 64 bit architectrrres with there large

mrmber of regisfers and register stack engines. In short, the large mrmber of

registers confribtifes to apofentially massive context (more than 2KB) to be stored

on each thread context switch. This added context switch overhead may prove

fatal to microkernel sysfems. A combined hardware/sofiare soltrtion is therefore

reqrrired to reduce the amount of iflormation stored [Jochen Liedtke 20011

Since number of context and memory space switches will be dramatically reduced

by this architecture, therefore the scale of this particular problem will be reduced.

Chapter 2 13.oalrm mni t ion

But for the problem itself a few techniques are being developed including lazy

context switching, such techniques will be explored in the proposed architecture.

7. Owrall, operaiing vstern code e m s poor instruction throrrghp~l on a

srrperscalar microprocessor.

The system core will be designed specifically with OS code in mind. Thus, trying to

avoid the previously mentioned poor OS performance. Also this issue will be handled in

more detail in OS design.

A Novel p-Procenor Architecture 28

3. Instruction Set Architecture

Much of the computer's architecturdorganization is hidden from a HLL

programmer. In the abstract sense, the programmer should not care about the underlying

architecture. The instruction set is the boundary where the computer designer and the

computer programmer can view the same machine.

The operation of CPU is determined by the instructions it execute, referred to as

machine instructions or computer instructions. The collection of different instructions that

the CPU executes is referred to as the CPU's instruction set. Each instruction must

contain the information required by the CPU for execution. Figure 3.1 Shows the steps

involved in instruction execution and.

lamnlna mmplcie.

Figure 3.1 Instruction Cycle State Diagram [I]

The elements of machine instructions are as follows:

1 Opcode:
3

Opcode Specifies the operation to be performed. The

S-
OpCode is specified as a binary code.

2 Function: Function 'code specifies what particular operation is to

$ be performed or OpCodes specifying a range of
operations.

3 SaumOperand: The Source Operand or Rs specifies the register that is
to be used in Input/Output Operations.

4 Source Operand 1: The Source Operand 1 or Rsl specifies the register that
is to be used as first operand in Arithmetic Operations.

5 Source Operand 2: The Source Operand 2 or Rs2 specifies the register that
is to be used as second operand in Arithmetic
Operations. .

6 Destination Operand: The Source Operand 1 or Rsl specifies the register that
is to be used as first operand in Arithmetic Operations.

7 Immediate-16: Immediate-16 Specifies 16 bit Immediate data
8 Immediate-20: Immediate-20 Specifies 20 bit Immediate data.
9 Direction: Specifies the Jump direction.
9 Port Address: Specifies the Port Address for I/O operations.

3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the

bottom of the figure; addresses increase toward the top. Bit positions are numbered h m

right to left. The numerical value of a set bit is equal to two raised to the power of the bit

position. MC-CPU processor is a "little endian" machine; this means the bytes of a word

are numbered starting fiom the least significant byte. Figure 3.2 illustrates these

conventions.

. .
D;lta Structurr

lli~licsl 24 2 3 16 I5 S 7 0 1111 01Ywt
Address

2s
21
20
1 6
9 I,

S

1
I.n\wsl ' Address

13yk OlhcI
Figure 3.2 Bit and Byte Order

3.2 Resewed Bits and Software Compatibility
In many register and memory layout descriptions, certain bits are marked as

mserved. When bits are marked as reserved, it is essential for compatibility with fiture

processors that software treat these bits as having a future, though unknown, effect. The

behavior of reserved bits should be regarded as not only undefined, but unpredictable.

Software should follow these guidelines in dealing with resewed bits:

Do not depend on the states of any resewed bits when testing the values of

registers which contain such bits. Mask out the resewed bits before testing.

Do not depend on the states of any reserved bits when storing to memory or to a

register.

Chapter 3 Instruction Set Architecture

Do not depend on the ability to retain information written into any reserved bits.

When loading a register, always load the reserved bits with the values indicated in

the documentation, if any, or reload them with values previously read from the

same register.

3.3 Registers

There are 32 general purpose 32 Bit registers Ro to R31. A PC, Address Register,

Stack Pointer and Flag Register. Also there are 32 special purpose 32 bit registers SO to

S31.

3.4 Instructions Implementation

The important design phase when designing a processor is to decide which

instructions to include in the instruction set. The first step in deciding about instructions is

the types of instruction formats. Following Instructions formats have been defined. All of

the instructions have a 6;bit opcode which is used to determine the type of instruction to

be executed. Each of the register specifications in all of the instructions is 5-bits wide,

this means that the register file has 32 registers in it.

3.4.1 R-Type (Register to register)

&aS 5BITS 5 BITS 5 BITS 6 BITS
31 26 25 21 20 I; i ~ l i 70 a
I

I I I I I I I
Figure 3.3 R-TYPE Instruction Format

In an R-type instruction the first &bit specification is the Instruction opcode. The

following 5-bits specify function. These function bits specify what the a c h d instruction

that will be performed is. This means for a single R-type opcode there can be up to 32

different instructions, as shown in figure 3.3.

In an R-type instruction the first 5-bit register specification is the source operand

register 1 or Rsl; the following 5-bit register specifies second source operand K2. The

third 5-bit register specifies the destination register Rd. The final &bits from bit 5 downto

bit 0 in the instruction are not used.

Chapter 3 Instrunion Set Architecture.

3.4.2 I-Type (Register & Immediate Value)

32 BITS : 6BITS , , 5BITS ,- 5BITS . b
I6 BITS

3 1 26 25 21 20 16 13 'b

In an I-type instruction the first 6-bit specification is the Instruction opcode. The

following 5-bits specify function. These function bits specify the acfual instruction that

will be performed. This means for a single I-type o p d e there can be up to 32 different

instructions. In an I-type instruction only 5-bit register specification is the source operand

register 1 or RJ, which is also the destination register. The third]&bit value is the

immediate value, as shown in figure 3.4.

OPCODE

3.4.3 J-Type (JUMP USING PC +I- IMMEDIATE VALUE)

In a J-type instruction first 6-bit specification is the Instruction opcode. The

following 5-bits specify function. These function bits specify the achral instruction that

will be performed. This means for a single J-type opcode there can be up to 32 different

instructions. In a J-type instruction the 1 bit field specification is the direction ofjump i.e.

forward or backwards. The third 20-bit value is the immediate value, as shown in figure

3.5.

Figure 3.4 I-TYPE Instruction Format

REG 1: RJ Immediate 16 Bits

3.4.4 N-Type (NO Operand)

32 BITS
f 6BITS , , 5BlTS 20 BITS

b - -
3 1 26 25 8

- - . -
32 BITS : 6BlTS , , 5BITS ,, 21 BITS

b

31 26 25 21 20 b
I

OPCODE

1 OPCODE I FUNCTION (Not Used
I I

Figure 3.6 N-TYPE Instruction Format

Figure 3.5 J-TYPE Instruction Format ,

FUNCTION D Immediate 20 Bits

Ln an N-type instruction the first &bit specification is the Instruction opcode. The

following 5-bits specify function. These function bits specify the achta/ instruction that

will be performed. This means for a singIe I-type opcade there m be up to 32 different

instructions. In an N-type instruction the remaining 21 bits are not used, as shown in

figure 3.6.

In an 10-type instruction the first &bit specification is the Instruction opcode.

The following 5-bits specify the register. The next 13-bits are not used. The final 8 bits

specify the Device and Port address, as shown in figure 3.7.

3.4.5 10-Type
32 BITS

6BITS . SBITS ,-+.
3 1 26 25 21 20 8 7 0

3.4.6 01-Type
4 32 BITS . 6BITS ,m4 b

16 BITS , , 8 BITS
P - b

3 1 2625 2423 8 7 0

Port Address

In an 01-type instruction the first &bit specification is the Instruction opcode.

The following 2-bits are not used. The next 16-bits specify the immediate data to be sent

to the output port. The final 8 bits specify the Device and Port address, as shown in figure

3.8.

Figure 3.7 10-TYPE Instruction Format

.Not Used OPCODE

OPCODE
.

3.5 Instruction OpCode Map

R

Figure 3.8 01-TYPE Instruction Format

Not

-
Instruction

A Novel P-Processor Architeclure 33

Immediate Data

Load to Rd From Memory Location Pointed By Rs

Port Address

LOAD

OoCode

No Operation

Onerands Function

OOOOO1 1 00000

Test Flap
Position

NOP -

&I. Rd

0 000000

1

00000

Load from Memory Loution Immediately following this Instroction in Memory
LOAD1 000010 I 00000 R1 I 2

Load to Register Using PC + Imm Data

Store Register Using PC + Imrn Data

STOREIA 000101 00000 Rl, 5

Store Rd to Memory Location Pointed By R

3 %I,
Address Value

4

Move from R. to %

moo LOADIA

k1, %

Move Immediate Data to Register

ALU Double Operand Instructions

om11

00000 STORE

6

-
ALU Single Operand Instructions

ALUS

000100

MOVE

7
-

00000 0001 10

R1, Imrn
Value MOVE1

NOT
IINC
DEC

ZERO

ALUD

MULTIPLY and DEVIDE Instructions

Rl, Rd

0001 1
001 1 1
01000
01001

OOlOOO
001OOO
001000
001OOO

AND
OR

XOR
ADD
SUB

ALU Double Operand With Immediate Data Instructions
ALUDI

000111

A Navel p-Roce.uor Architedure 34

00000

R1
I/1
%I
R1

001001
001001
001001
001001
001001

AND1
ORI

XORI
ADD1
SUB1

MULDIV

8
8
8
8

001010
001010
001010
001010
001010

00001
00010
00100
00101
001 10

MUL

OOOO1
00010
00100
00101
001 10

R1, Imm Data
%I. Imm Data
RJ, Imm Data
R1, Imm Data
Rl, Imm Data

001011

RL R2, %
Rl, R3, %
%I, R.2, %
R1. R3.h
Rl, R3.h

10
10
10
10
10

00001 I RlJu,% I 1 1

9
9
9
9
9

Chapter 3 Instruction Set Alchitecture

Shift and Rotate Instructions 1-Bit

Register Comparison Instructions

SR

I Register Comparison With Immediate Data Instiuctions 1

Conditional Branches to Memory Address Contained at the Next Memory
Location

%1
&I
%1
Igl

00001
00010
0001 1
00100

SHL
SHR

ROTL
ROTR

Unconditional Branch to Memory Address Contained at the Next Memory
Location

12
12
12
12

001100
001100
001 100
001 100

BRANCHI I 001111

1 Branch Conditionally to PC + Immediate Data (BASED ON FLAG REGISTER) I

Branch Unconditionally to PC + Immediate Data
BRANCH

15 00000

-
BRANCHC

-

010001 I 00000 1 Imm Data

BRANCHEQ 1 010010 I 00001

17

Imm Data 18

Chapter 3 Instruction Set Architecture

18
18
18
18
18
18

Input Data from Input Port to Register

Output Immediate Data to Output Port
OUTPUTI I 010101 00000 I ImmValue 1 21

Imm Data
Imm Data
Imm Data
Imm Data
Imm Data
Imm Data

Output Register Data to Output Port

00010
00011
00100
00101
001 10
001 1 1

BRANCHNEQ
BRANCHGT

BRANCHGTE
BRANCHLT

BRANCHLTE
BRANCHZ

INPUT I 01001 1

010010
010010
010010
010010
010010
010010

Rd 00000

20

Push Register Data on Top of Stack

19

00000 I R. OUTPUT

POP Data to Register from Top of Stack

010100

PUSH

Function Call

00000 010110

23

CALL

CALLS

Return from Function Call

I Enable o r Disable In t e r ru~ t s

POP

RETURNC I 01 1001 I 00000 1 --

Return From Interrupt

%1
22

00000 010111
POPS

011000

01 1000

25

R E m I 011010

22
PUSHS

Rd

00000 I - 1 26

Trap to OS Kernel

0000 1 010110

00000

00001

RETURNCS I 01 1001 00001

Wait for Interrupt

%1

010111

TRAP

Rd 00001

Imm Address
Value

Imm Address
Value

-

Imm Address
Value

29 WAIT1

23

24

24

25

28 011100 00000

01 1101 00000 1 -

Chapter 3 Instruction Set Architecture

Halt Execution
HALT 011111 00000 -- 1 31 1

Figure 3.9 Instruction OP-Code Map

Wait for Time (Given)

3.6 Instruction Implementation Detail

The following sections explain the implementation details of each instruction.

3.6.1 NOP

30

Descri~tion:

NOP performs no operation. It is used to consume a complete Fetch, Decode, and

Execute Cycle. Used normally by compilers to align load stores. And eliminate

Imm Time
Value

Instruction type:
Opcode:
Function Code:
Operation:

pipeline hazards.

00000 WAITT

N-Type
000000
000000
No Operation

3.6.2 Load

011110

Figure 3.10 NOP Instruction

Descri~tion:

Load uses register indirect memory addressing to load a 32 bit word from

memory. Memory address is provided in the Source register 1. Read data is placed

in the destination register

Instruction type:
Opcode:
Function Code:
Source Register 1:
Destination Register:
Operation:

3.6.3 Loadl

R-Type
00000 1
000000
Memory Address
Destination for read data
%+MEM[Rsll

(Instruction type: 1 I-Type

Fi y r e 3.1 1 LOAD Instruction

-

A Novel p-Rocessor Architedure 37

chapter 3 lnshuction Set Architecture

Description:

LoadI uses address contained at the next memory location pointed to by Program

Counter + 1 to load a 32 bit word from memory. Read data is placed in the

Destination Register.

Opcode:
Function Code:
Destination Register:
Operation:

LoadIA

7

000010
000000
Destination for read data
R.1 -- MEM [PC+l]

Figure 3.12 LOAD1 Instruction

Description:

LoadI uses address contained inside the instruction as 16 bit value to load a 32 bit

word from memory. Memory address is padded to make it 32 bits. Read data is

placed in the Source Register 1.

Instruction type:
Opcode:
Function Code:
Source Register 1:
Immediate-16
Operation:

Store

I-Type
00001 1
000000
Destination for read data
Memory address
R.1 + MEM [Immediate-161

Figure 3.14 STORE Instruction

Figure 3.13 LOADIA Instruction

Descrintion:

Store uses register indirect memory addressing to store a 32 bit word to memory.

Memory address is provided in the destination register. Data to be stored is

provided in Source Register 1.

Chapter 3 Instruction Set Architecture

StoreIA

I Instruction type: 1 EType
- -

Opcode: 000101
Function Code: 000000
Source Register 1: Source Register Containing Data
Immediate16 I Memory address
Operation: (MEM [Immediate16] + RJ

Figure 3.15 STOREIA Instruction

Description:

StoreIA uses address contained inside the instruction as 16 bit value to store 32 bit

word to memory. Memory address is padded to make it 32 bits. Data to be stored

is provided in Source Register 1.

Move

Figure 3.16 MOVE Instruction

Description:

Move instruction is used to move data between two registers

Description:

Move instruction is used to move immediate data to a register. Immediate Data is

padded to make it 32 bits.

-
Instruction type:
Opcode:
Function Code:
Source Register 1:
Immediate-16
Operation:

I-Type
0001 11
000000
Destination Register for data
Immediate Data
RJ + Immediate16

Figure 3.17 MOVE1 Instruction

Chapter 3 Instruction Set Architecture

3.6.9 ALUS

I I DEC : 01000 1

Instruction type:
Opcode:
Function Code:

R-Type
001000
NOT : 00011
INC :01111

(ZERO : R 1 +ZERORl
Figure 3.18 ALUS Instruction

Source Register 1:
Operation:

Description:

ALUS or ALU Single Operand instructions use R.1 as the source and destination

ZERO :01001
Register to perform operation on
NOT - : Rl +NOT Rl
INC : R l + I N C % l

register. 4 possible operations are specified by the hnction code

3.6.10 ALUD

:&+-R1 ORR2
R : & + I t l X O R W

Figure 3.19 ALUD Instruction

Description:

ALUD or ALU Double Operand instructions use h1 and R,2 as the source

Operands and % as destination register. 5 possible operations are specified by the

function code.

A Novelp-Romsor Architecture 40

Chapter 3 Instruction Set Architecture

3.6.11 ALUDI

ALUDI or ALU Double Operand instructions with Immediate data use %1 as the

source and destination register. Immediate data provides the second operand. 5

Instruction type:
Opcode:
Function Code:

Source Register 1:
Immediate-16
Operation:

possible operations are specified by the function code.

I-Type
001010
AND : 00001
OR :00010
XOR : 00100
ADD : 00101
SUB :00110
Source Operand 1
Immediate Data
A N D : R l --RJANDImmData
OR : R,1+ R 1 OR Irnm Data
XOR : &I-- l7J XOR Imm Data
ADD : RJ-- R.1 ADD Irnm Data
SUB : RJ + R 1 SUB Imm Data

3.6.12 MULDIV

Figure 3.20 ALUDI Instruction

001011
Function Code: MUL : 00001

MULI :00011
D M : 00100

Source Register 1: Source Operand 1
Source Rqister 2: Source Operand 1
Destination Register : Destination for result
Immediate-16 Immediate Data
Operation: MUL :& --R,,lMULRsZ

DIV :& c R I D I V R s 2 .
MULI : RJ +- I&l MUL Imm Data

1 I DIVI :&I -- RJ DIV Irnm Data
Figure 3.21 MULDIV Instruction

Descriotion:

MULDIV OR Multiply Divide instructions use RJ and %2 as the source

Operands and Rd as destination register OR k l as the source and destination

A Novel p-Processor Architesfure 4 1

Chapter 3 Inmudion Set Architecture

register and Immediate data as second operand. 4 possible operations are specified

by the function code.

Instruction type:
Opcode:
Function Code:

Source Register 1:
Operation:

001100
SHL : 00001 =
S H R : 00010

ROTL :00011

ROTL : R.1 + ROTL RJ I
(ROTR : ROTR RJ

Figure 3.22 SR Instruction

Description:

SR or Shift Rotate Single Operand instructions use RJ as the source and

destination register. 4 possible operations are specified by the function code.

I

Figure 3.23 RC Instnrctic

Descri~tion:

N ~ Q :00010
GT :00011
GTE :00100
LT : 00101
LTE :00110
Source Operand 1
Source Operand 1
Destination for Boolean result
EQ :FL.-EQ+-IIFR.I=R&?
NEQ :FLNEQ+IIFRJ/=R,,2
GT : F L - G T + I I F R J > u
GTE :FL-GTE-IIFR,l>=W
LT : F L L T + I I F R . l < u
LTE :FLLTE+ 1 IFRl<=RJ

Chapter 3 INtrucrion Set Architecture

RC or Register Compare Double Operand instructions use %1 and R 3 as the

source Operands and Flag Register as destination register. 6 possible operations

are specified by the function code.

3.6.15 RCI

Instruction type:
Opcode:
Function Code:

1 LTE : FL-LTE + 1 IF &I<= Imm Data I
F igre 3.24 RCI Instruction

I-Type
001 110
EQ :00001
NEQ : 00010

Source Register 1:
Immediate16
Operation:

Descriotion:

RC or Register Compare Single Operand instructions use R 1 and Immediate Data

-
GT :00011
GTE : 00100
LT : 00101
LTE : 00110
Source Operand 1
Immediate Data
EQ :FL-EQ+IIFRJ=ImmData
NEQ : FL-NEQ +- 1 IF RJ I= Irnm Data
GT : FL-GT +- 1 IF RJ > Imm Data
GTE : FL-GTE + 1 IF R1>= Imm Data
LT :FL-LT+lIFRJ<ImmData

as the source Operands and Flag Register as destination register. 6 possible

operations are specified by the function code.

Descrintion:

Unconditional Branch to the memory address contained at the next memory

location pointed by PC+I.

Instruction type:
Opcode:
Function Code:
Operation:

A Novel p-Prooes~or Archifecture 43

N-Type
001111
000000
PC +- MEM [PC+I]

Figure 3.25 BRANCHI Instruction

Chapter 3 lnstntclion Set Architecture

3.6.17 BranchCI

Instruction type:
Opcode:
Function Code:

Description:

R-Type
010000
BranchEQI : 00001
BranchNEQI : 00010

Source Rep;ister 1:
Source Register 2:
Flag Register
Operation:

Conditional Branch to the memory address contained at the next memory location

B ~ ~ ~ G T I ' : 0001 1
BranchGTEI : 00100
BranchLTI : 00101
BranchLTEI : 001 10
Source Operand 1
Source Operand 1
Destination for Boolean result
BranchEQI : PC + MEM [PC+l]

lFR1 =RJ
BranchNEQI : PC + MEM [PC+1]

IFRl /=R'2
BranchGTI : PC + MEM [PC+l]

I F R l > R J
BranchGTEI : PC + MEM [PC+l]

I F s 1 >=R'2
BranchLTI : PC + MEM [PC+I]

I F R 1 < R J
BranchLTEI : PC + MEM [PC+1]

I F R 1 <=RJ

pointed by PC+I. BranchCI Double Operand instructions use R.1 and R2 as the

Figure 3.26 BRANCHCI Instruction

source Operands and branches on the base of comparison result. 6 possible

operations are specified by the function code.

3.6.18 Branch

Description:

Unconditional Branch to the Immediate memory address.

Instruction type:
Opcode:
Direction D
Immediate20
Function Code:
Operation:

A Novel p-Roeessor ArchYechire 44

J-Type
010001
Jump Direction
20 Bit Immediate Address value
000000
PC + MEM Dmm Address]

Figure 3.27 BRANCH Instruction

Chapter 3 Instruction Set Architecture

hstruction type:
Ipcode:
?unction Code:

Direction D
Flag Register
3peration:

i y re 3.28 BRANCHC

BranchZ : 00111
20 Bit Immediate Address value
Jump Direction
Used for Jump Conditions
BranchEQ : PC + MEM PC+l]

JFFL-EQ= 1
BranchNEQ : PC + MEM PC+l]

IF FL-NEQ =1
BranchGT : PC +- MEM PC+l]

IFFL-GT= 1
BranchGTE : PC + MEM PC+l]

IF FL-GTE = 1
BranchLT : PC + MEM PC+l]

IFFL-L.T=l
BranchLTE : PC + MEM PC+l]

IF FL-LTE = 1
mction

Conditional Branch to the immediate memory address. BranchC uses the flag

register to make conditional jumps. Therefore a register compare or ALU

operation should have been performed before this instruction. 6 possible

operations are specified by the hnction code.

3.6.20 Input

A Novel p-Processor Architecture 45

Instruction type:
Opcode:
Source Operand:
Port Address:
Operation:

10-Type
010011
Destination Register for Input Data
8 bit port address
R, + INPUTFort Address]

Fi y r e 3.29 INPUT Instruction

Chapter 3 Instruction Set Architecture

Port Address Format
8 Bits

4 *
+ 4 Bits . 7 - - 4 Bits -P

7 4 3 0
I Device Address (Port Number
Figure 3.30 Input Port Format

Total Devices: 16
Port per Device: 16

Description:

Reads Data from the input port and places it into the Source register %.

3.6.21 Output

Port Address Format

4
8 Bits F

4 4 Bits 4 Bits - - b
7 4 1 0

Instruction type:
Opcode:
Source Operand:
Port Address:
Operation:

. -
[Device Address I Port Number 1
Figure 3.32 Output Port Format

10-Type
010100
Source Register for output Data
8 bit port address
OUTPUT[Port Address] + R.

Total Devices: 16
Port per Device: 16

Fiy re 3.32 OUTPUT Instruction

Descrivtion:

Outputs the data contained in the Source register R, to the output port.

A Novel p - R o m o r Arrhitedure 46

01-Type
010101
Output Data
8 bit port address
OUTPUTPort Address] +- Imrn Data

-
1
2
3
4
5

Figure 3.33 OUTPUTI Instruction

Instruction type:
Opcode:
Immediate-16:
Port Address:
Operation:

Chapter 3 Instruction Set Mtecture

Port Address Format
8 Bits

4 b

4 4 Bits -- 4 Bits
7 A '2 n

7 a "

I Device Address I Port Number 1
Figure 3.34 OUTPUT1 Port Format

Total Devices: 16
Port per Device: 16

Description:

Outputs the Immediate data to the output port.

3.6.23 PUSH

Instruction type:
Opcode:
Function Code:

PUSHS : SStackPointeW
SStacklSStackPointerl +

R-Type
0101 10
PUSH : 00000

Source Register 1:
Operation:

-
K1

Figure 3.35 PUSH Instruction

PUSHS : 00001
Register to push on top of stack
PUSH : StackPointer+

Description:

Pushes the source register on top of the stack or remote stack.

3.6.24 POP 1 1n;tmction -
0 code:
Function Code:

Figure 3.36 POP Instruct

Description:

R-Type
0101 11
POP : 00000
POPS : 00001
Destination Register for popped Data
POP : % + StacklStackPointerl

POPS : % + SStack[SStackPointer]
SStackPointer--

n

Pops data from top of stack or shared stack to the destination register.

A Nwel p -Roce~~or ArchYedrrre 47

Chapter 3 lrtst~~ction Sa Architecture

5 CALL
I Instruction type:

Opcode:
Function Code:

I

Figure 3.37 CALL Instructi

Dcscri~tion:

I-Type
011000
CALL : 00000
CALLS : 00001
Function address
CALL : StackPointeW

Stack[StackPointer] +- PC
PC +- Imrn Data

CALLS : Callcode + Imrn Data
Assert CALLS

ion

Calls function on the same processor or the remote processor.

3.6.26 RETURNC 1 1n;truction type:
0 code:
Function Code:

Operation: r
I
Figure 3.38 RETURNC I

Descrintion:

N-Type
011001
RETURNC : 00000
RETURNCS : 00001
RETURNC :PC+

Stack[StackPointer]
StackPointer-

RETURNCS : Assert RETURNS
;tnrction

Returns from the function call on the same or remote processor.

3.6.27 RETURN1

-
Descri~tion:

Returns from the interrupt handler routine

Instruction type:
Opcode:
Function Code:
Operation:

A Novel p-Processor Architecture 48

N-Type
011010
00000
RETURNI:PC+-

Stack[StackPointer]
StackPointer-

Figure 3.39 RETRUNI Instruction

Chapter 3 lnshuction Set Anhitectu~

Instruction type:
Opcode:
Function Code:

Descrintion:

Enable or disable interrupts.

N-Type
011011
EI : 00001

Operation:

3.6.29 TRAP

DI : 00001
EI :&I+ 0
DI : n-I + 1

Figure 3.40 ED1 Instruction

Description:

Traps to the kernel entry point.

Instruction type:
Opcode:
Function Code:
Immediate-16:
Operation:

N-Type
011100
00000
Service Requested
CALL : StackPointer++

StackjStackPointer] + PC
P C t S 1

Description:

Waits for specified interrupt.

Figure 3.41 TRAP Instruction

Instruction type:
Opcode:
Function Code:
Immediate-16:
Operation:

A Novel p-Roceaor Architmiire 49

I-Type
011101
00000
Interrupt Number
CALL : Wait until INT = 1 AND

INT CODE = Intempt Num
Figure 3.42 WATI Instruction

Chaptei 3 Insbuction Set Architecture

3.6.31 HALT

Descrintion:

CPU stops executing instructions.

1
2
3
4

A Novel p-I+-or Architecture 50

Figure 3.43 HALT Instruction

Instruction type:
Opcode:
Function Code:
Operation:

N-Type
011111
00000
Halts the CPU -

Chapter 5 System Design

4. System Design

Design of a microprocessor is a complex task. On top of that, in order to test a

microprocessor a complete working set of peripherals is required. In this chapter, design

of the microprocessor and its associated peripherals is explained.

4.1 MultiCore Processor Architecture

The MC-CPU implements the Instruction Set Architecture defined in the previous

chapter. The Master processor implements all the privileged instruction as well as rest of

the instruction set. Caches and Shared execution units are not implemented in this

version. The Slave processor only implements the non-privileged instructions. Figure 4.1

gives the block diagram of MC-CPU.

4.1.1 MC-CPU Architecture

MC-CPU consists of Master CPU (CPU-I), Slave CPU (CPU-2) and Shared

Stack as shown in the figure 4.1. Each of these functional units and their operations are

explained individually in the following sections.

4.1.1.1 CPUl

CPUl is the master CPU. It implements all the privilege instructions. Only the

master processor can access YO devices. Interrupt handling is performed only by the

master processor. Shared stack is also controlled by master processor. The master

processor can control the behavior of the slave processor by the means of INTS

interrupts. Slave processor implements special interrupt handlers for INTS rather than for

the normal interrupts.

CPU2 is the slave CPU. It does not implement the privilege instructions. The

slave processor can not physically access 110 devices. System level interrupt handling is

not performed by the Slave processor as it does not have an INT line. Shared stack is

accessed by the slave processor when ever the master processor grants it access. Slave

processor implements special interrupt handlers for INTS rather than for the nonnal

interrupts. When ever the master processor asserts INTS, the slave processor immediately

Chnpter 5 Systm Design

jumps to the particular interrupt based on INTSCODE. The INTSCODE is an &bit value

indicating particular interrupt.

c~odr MC-CPU ,

Figure 4.1 MC-CPU

4.1.1.3 Shared Stack

-

Shared Stack consists of the stack memory and the shared stack pointer. The

shared stack pointer is a 32 bit register. Its output value is constantly supplied to both

processors. It can only be modified by one processor at any given time. Shared stack

memory consists of single port 1024 bit distributed RAM, arranged as 32 X 32 bits. Only

one processor can push or pop from the shared stack at any given time.

4.1.1.4 Shared Stack Operation

Sstackdaraout

-INTS
Resuat

k t
INTSCODE CALLS

RElURNS
W c e d

Shared stack operates in the following manner:

i. Master processor has initial control of the shared stack

4 I I I I I
I I) ' I

'

ii. Master processor can modify the shared stack pointer any time; only exception is

. . when it has granted control of the shared stack to the slave processor

SStackdataout
Resuat

)Grant INTS
'CALLS INTSCODE
IRETWJS
Serviced

+
4

iii. Master processor can push or pop values from the shared stack any time; except when

it has granted control of the shared stack to the slave processor

iv. Slave processor can not directly access the shared stack

v. Slave processor must assert the REQUEST Signal to gain access to the shared stack

vi. Whenever REQUEST is asserted by the Slave processor, the master processor can

grant or disallow access to the shared stack

vii. Access is disallowed only when master processor is modifying or accessing the shared

stack itself

viii. Slave processor is blocked or in a wait state during this period

ix. When the master processor is not accessing the shared stack and the Slave processor

requests for it, request is granted by asserting the GRANT signal

x. When the GRANT signal is asserted Slave processor gets access to the shared stack

xi. Slave processor can now modify both shared stack pointer and shared stack

xii. After the slave processor has modified the stack it deasserts the GRANT signal to

indicate that the shared stack is now free

xiii. When the GRANT signal is deasserted the master processor deasserts the GRANT

signal and takes the control of shared stack back

4.1.1.5 Remote Call

All the communication between the master and slave processor is based on remote

calls. In fact these are not remote calls in the classic sense rather these are traps to the OS

kernel running on the master processor. Only the slave processor can trap to the master

processor by asserting CALLS signal. The remote calls work in the following manner.

i. When ever the user wde running on the Slave processor needs some operating system

service it must invoke a remote call

ii. Remote call is invoked by the slave processor by asserting the CALLS signal

iii. Before asserting the CALLS signal slave processor must request access to the shared

stack, and at least place the 32 bit service code on top of the shared stack. It can also

place any parameters on the stack if there is any

A Novel p-Rooe~sor Architecture 53

iv. After placing the service code andlor any parameters on the shared stack, the Slave

processor asserts the CALLS signal

v. On receiving the CALLS signal Master processor invokes the remote call handler

vi. Remote call handler checks for user access rights and proper parameters and then

calls the appropriate OS function. This is a normal function call

vii. Normally no context switch takes place during this whole procedure

viii. After servicing the call and placing return values onto the shared stack the Master

processor asserts the RETURNS signal

ix. On receiving the RETURNS signal, Slave processor request for the shared stack, gets

the return values, and deasserts the CALLS signal

4.1.1.6 Remote Interrupt

The Master processor controls the slave processor by using Remote Interrupts.

Only the Master processor can raise remote interrupts and only the slave processor serves

remote interrupts. Interrupt vector table and interrupt service routines for the remote

interrupts are placed in the Slave processor's memory space by the Master processor.

These interrupts can range from memory management to context switching to process

cleanup. Remote interrupts work in the following manner.

i. Operating System running on the Master processor can raise remote interrupts

ii. A remote interrupt is raised by asserting the INTS signal

iii. Interrupt type is indicated by INTSCODE

iv. Upon receiving an INTS the Slave processor immediately jumps to the appropriate

handler based on INTSCODE

v. Atter servicing the INTS the slave processor assert the SERVICED signal

~ i . Upon receiving the SERVICED signal the Operating System on the Master processor

considers the work done and deasserts the INTS signal

4.1.2 Base CPU Architecture

In this section we describe the base CPU architecture and its implementation. The

base CPU consists of the following main units.

A Novel p-Rocerror ArchitEcture 54

Chapter 5 System Dcsip~

4.1.2.1 Internal TriState DataBus

The internal TriState DataBus is the main internal processor bus. All the datapath

components are connected to this bus. All datapath components have enable signals.

When the enable signal is low the component is disabled and has high impedance. Only

one component is enabled and driving the bus. Multiple components can act as

destination at any given time.

4.1.2.2 Registers

The CPU has a set of registers for normal operation. Since the design is based on

the principles of RISC, a large number of registers are provided. All registers are 32 bit

wide. There are 32 general purpose 32 Bit registers Ro to R31m, a 32 bit PC, Address

Register, Stack Pointer and Flag Register. Also there are 32 special purpose 32 bit

registers SO to S3 1.

4.1.2.3 ALU

The CPU has a single 32 bit ALU that performs all arithmetic and logic operations

except multiplication and division. The M U performs the following operation on 32 bit

operands:

i. PASS

ii. AND

iii. OR

iv. NOT

v. XOR

vi. ADD

vii. SUBTRACT

viii. INCREMENT

ix. DECREMENT

x. ZERO

xi. ONE

The multiply/divide unit provides the CPU with hardware multiplication

capability. Full 32 bit X 32 bit multiplication and division are implemented.

A Novel p-Roccrror Architecture 55

Chapter 5 .ywSm Duip

4.1.2.5 Comparator i

The comparator unit provides the CPU with comparison operation. Only scalar

data comparisons are implemented. Following operations are available

i. >
ii. >=

iii. <

iv. <=

v. =

vi. !=

Mull/ ALU

STACK

emainder Regist Shifter Flag Register

Output Register

PC Stack Pointer
Register

File
&

CONTROLLER

RW
vms

IXviccEN
Dsvicc WE

SStackPointab
SSWoi*Wr
SStlcvointcrh

INTSCODE
CALLS

RETIRNCS

Figure 4.3 CPU

A Novel p-Processor Architechrre 56

4.1.2.6 Shifter

The shifter unit provides the CPU with shift and rotate operation. Only scalar data

shift and rotates are implemented. Full 32 bit shifts and rotates are available. The

following operations are available.

i. shl

ii. shr

iii. rot1

iv. rotr

4.1.2.7 IR extender

IR extender is used for the extraction of immediate data and address values 6om

the instructions.

4.1.2.8 Hardware Stack

The hardware stack allows for the storage of procedure return addresses and

parameters. It is implemented using single port distributed RAM. It is arranged as 64 X

32 bits. Data can be pushed or popped from the stack.

4.1.2.9 Register File

The register file provides for the main program variable storage. It is a 32 bit dual

port register file. Data read ftom the memory is brought straight to the register file. Data

stored to the memory is taken from the register file. Hence the register file is the main

component in implementing the load store architecture of the CPU.

4.1.2.10 Controller

Controller is the brain of the CPU. It is implemented as a Finite State machine. All

instruction decoding and sequencing takes place inside the controller.

4.2 System Architecture

The complete system is composed of multiple independent units that work together to

form a complete working system as shown below in the system level block diagram. The

whole system is implemented as a SoC on a single FPGA. The complete system utilizes

approximately 95% of a Spartan-IIE (XC2S30Opq208-e). The complete system consists

of the following units..

MC - CPU architecture and working was explained in detail previously

Controller

L

A Novel p-Rocesror Arch&dure 58

ii. MC-CPU

MC-CPU architecture and working was explained in detail previously

iii. Memory

The memory is based on dual port RAM and is arranged as 512 X 32

iv. MC-CPU

MC - CPU architecture and working was explained in detail previously

v. Memory

The memory is based on dual port RAM and is arranged as 512 X 32

vi. MUX

MUX is the input multiplexer and is controlled by MC-CPU

vii. DMUX

MUX is the output multiplexer and is controlled by MC-CPU.

viii. Keyboard Controller -
\.

Keyboard controller is used for interfacing to the standard PS2 style keyboard

ix. VGA Controller

VGA controller is used to control the standard VGA display at 640 pixels X 480

pixels, 60Hz refresh.

x. Interrupt Controller

Provides priority based interrupt handling. 8 interrupts are provided. Each is

individually maskable

xi. Switch Debounce and Pulse Control

Switch Debounce and pulse control provides debouncing of external switch input.

Also it provides one-shot capability

xii. 7-Seg Controller

7-Seg Controller Controls the two 7-segment displays on the FPGA protoiyping kit.

Also it switches between PC and Address register

A Novel p-Rooxsor Architecture 59

Chapter S System Design

xiii. LED Controller

LED Controller ~ontrhls the two LED displays on the FPGA prototyping kit. It

switches between INSTRUCTION TYPES or INSTRUCTION REGISTER or ALU

OUTPUT or STACK POINTER

4.2.1 Memory

The memory ofthe system is built onto the FPGA chip. It is amnged as 512 X 32

bits. It is composed of using 4 dual port Xilinx 4096 bit block RAMS. The memory

provides two independent readtwrite ports. One port is used by master CPU while the

other is used by the slave CPU.

4.2.2 MUX

MUX is the input multiplexer and is controlled by MC-CPU. It currently provides

4 input ports but can be extended to support 16 input ports. Each port can be upto a

maximum of 32 bits wide. The first input port is used by the master CPU memory.

4.23 DMUX

DMUX is the output multiplexer and is controlled by MC - CPU. It currently

provides 4 output ports but can be extended to support 16 output ports. Each port can be

upto a maximum of 32 bits wide. The first output port is used by the master CPU

memory.

4.2.4 KEYBOARD Controller

The communication between the keyboard and the controller uses two signals,

KeyboardCIock and KeybourdData. When there is no activity, that is, when there is no

key press on the keyboard, both KeyboardClock and KeyboardData are at 1. When a key

is pressed (or released), the keyboard sends a unique code for that key to the controller

serially over the KeyboardData line. The serial data on the KeyboardLhfa line is

synchronized between the keyboard and the controller by clock pulses that the keyboard

sends over the Keyboardclock line.

The data for each key that is sent over the KeyboardData line consists of eleven

bits. These eleven bits are: a 0 for the start bit, 8 data bits for the key code starting with

the least significant bit to the most significant bit, an odd parity bit, and lastly a 1 for a

A Novel p-Rocssor Architecture 60

stop bit. Figure 4.6 lists some of the key codes generated by the keyboard when the

corresponding key is pressed. When a key is released, a different code is generated. The

odd parity bit is set such that the total number of 1 bits in the eight data bits plus the

parity bit is an odd number.

Figure 4.5 shows a sample timing diagram for the data transmission of the key

code 4E (hex) or 01001110 (binary). Starting from the inactive state where both the

KeyboardData and KeyboardCIock lines are at 1, the transmission begins by setting the

KeyboardData line low for the start bit. The keyboard then sends out the data and parity

bit on the KeyboardData line at a rate of one bit per clock cycle on the KeyboardCIock

line. The clock pulses on the KeybwrdCIock line are generated by the keyboard. The

parity bit for the key code 4E is 1, since the eight data bits consist of an even number of 1

bits, therefore, to make the parity odd, the parity bit must be 1.

Figure 4.5 Sample timing diagram for the data transmission of the key code 4E

Chapter 5 S y d m Dcsip

Figure 4.6 A partial list of key codes generated by the keyboard

The state diagram for keyboard controller is derived by following the timing

diagram shown in fig 4.5. In each of the eight data states, do, dl , ..., d7, we will get one

corresponding data bit From the KeybmdDaia input line. For example, suppose we use

an 8-bit register named keycode for storing the eight data bits. Then in state do, we will

assign KeybwrdData to keycode(0). in state dl , we will assign KeybomdDaia to

keycode(l), and so on for all eight data bits. This is possible because the transition of the

FSM from one state to another is synchronized by the keyboard clock signal

Keyboardclock. For simplicity, we will not check for the start bit, parity, and stop bits.

This controller circuit actually does not control the keyboard because it does not

generate control signals for the operation of the keyboard. Instead, it receives the serial

data signals from the keyboard, and packaged it into data bytes. The output of this

controller is simply the data bytes, which represent the key code of the keys being pressed

on the keyboard. In state do, the bit on the KeybourdDa/a line is loaded into bit 0 of the

Keycode register, in state dl , the bit on the KeyboardDaia line is loaded into bit 1 of the

Keycode register; and so on. Each bit of the Keycode register must, therefore, be able to

load in the Keybuurdllata independently, and each load enable line is asserted by the

corresponding state encoding

4.2.5 VGA Controller

The monitor screen for a standard VGA format contains 640 columns by 480 rows

of picture elements called pixels. An image is displayed on the screen by turning on or off

individual pixels. The monitor continuously scans through the entire screen turning on or

off one pixel at a time at a very fast speed. The scan starts From row 0, column 0 at the

top left comer, and moves to the right until it reaches the last column in the row. When

the scan reaches the end of a row, it continues at the beginning of the next row. When the

scan renches the last pixel at the bottom right comer of the screen, it goes back to the top

left comer of the screen, and repeats the scanning process again. In order to reduce flicker

on the screen, the entire screen must be scanned 60 times per second or higher. During the

horizontal and the vertical retraces, all the pixels are turned off.

Chapter 5 D e n

640 pixels per mw

Row1

Row 47

Monitor
Screen

A

480 pixels
per column

"

Figure 4.7 VGA monitor with 640 columns x 480 rows. Scan starts from

row 0, column 0, and moves to the right and down until row 479, column 639.

The VGA monitor is controlled by five signals: red, green, blue, horizontal

synchronization, and vertical synchronization. The three color signals, referred to

collectively as the RGB signal, are used to control the color of a pixel at a location on the

screen. These three color signals on the FPGA board are connected such that they can

individually be either turned on or off, hence each pixel can display only one of eight

colors. In order to produce more colors, each analog color signal must be supplied with a

voltage between 0.7 to 1.0 volts for varying the intensities of the colors. The horizontal

and vertical synchronization signals are used to control the timing of the scan rate. The

horizontal synchronization signal determines the time to scan a row, while the vertical

synchronization signal determines the time to scan the entire screen. By manipulating

these five signals, images are formed on the monitor screen. Each analog color input can

be set to one of four levels by two digital outputs using a simple two-bit digital-to analog

converter. The four possible levels on each analog input are combined by the monitor to

create a pixel with one of 4 X 4 X 4 = 64 different colors. The six digital control lines let

us select fiom a palette of 64 colors.

The horizontal and vertical synchronization signals timing diagram is shown in

Figure 4.7. When inactive, both synchronization signals are at a 1. The start of a row scan

begins with the horizontal sync signal going low for 3.77 pec as shown by region B in

Figure 5.10. This is followed by a 1.79 psec high on the signal as shown by region C.

Next, the data for the three color signals are sent, one pixel at a time, for the 640 columns

A Novel p-Processor Amhiredure 63

as shown in region D for 25.42 psec. Finally, after the last column pixel, there is another

0.79 psec of inactivity on the RGB signal lines as shown in region E before the horizontal

sync signal goes low again for the next row scan. The total time to complete one row scan

is 3 1.77psec.

The timing for the vertical synchronization signal is analogous to the horizontal

sync signal. The 64psec active low vertical sync signal resets the scan to the top left

comer of the screen as shown in region P, followed by a 1020 psec high on the signal as

shown by region Q. Next, there are 480 row scans of 31.77psec each, giving a total of

15250psec as shown in region R. Finally, after the last row scan, there is another 450psec

as shown in region S before the vertical sync signal goes low again to start another

complete screen scan starting at the top left comer. The total time to complete one

complete scan of the screen is 16784psec.

Figure 4.9 Horizontal and vertical synchronization signals timing diagam

. .

In order to get the monitor to operate properly, we simply have to get the

horizontal and vertical synchronization signals timing correct, and then send out the RGB

data for each pixel at the right column and row position. It tums out that it is fairly simple

to get the correct timing for the two synchronization signals. The built-in clock crystal on

the UP2 board runs at a speed of 25.17SMHq which gives a period of 1 1 25.175~10~

which is about 0.0397psec per clock cycle. For region B in the horizontal synchronization

-640 collmm pix&
--

D
- zs .42p

Mayo

3 1 . n ~

I

A Novetp-hoeenor Architecture 64

-

C .

4s-

Red. Green. Blue

-
Horizontal Sync

Time and numbsr of
25.17SMHz clock cycles

E
0 . 7 9 ~ ~
2%

-480 horizmtal cycles-
I

:I

480cyo
1 6 7 8 4 ~

B
-3.np-1.79p

9sv .
r

Q

Red, Green, Blue

-
Vatical Sync

Tunc md number of
zsyc 32cyc hori20111.I @a .
P

Chapter 5 System Design

signal, we need 3.77psec, which is approximately 3.77 I 0.0397 = 95 clock cycles. For

region C, we need 1.79psec, which is approximately 45 clock cycles. Similarly, we need

640 clock cycles for region D for the 640 columns of pixels, and 20 clock cycles for

region E. The total number of clock cycles needed for each row scan is, therefore, 800

clock cycles.

To get this timing correct, we can design FSM with 800 states running at a clock

speed of 25.175MHz. For the first 95 states, we will output a 0 for the horizontal sync

signal H-Sync. For the next 45+640+20=705 states, we will output a 1 for H-Sync. The

problem with this, however, is that it is difticult to manually derive the circuit for an 800

state FSM. A simple solution around this difficulty is to use just two states; one for when

H - Sync is 0 in region B, and one for when it is 1 in regions C, D, and E. We will then use

a counter that runs at the same clock speed as the FSM to keep count of how many times

we have been in a state. For the first state, we will stay there for 95 counts before going to

the next state, and for the second state, we will stay there for 705 counts before going

back to the first state. In the first state, we will output a 0 for H-Sync, and in the second

state, we will output 1 for H - Sync.

The vertical sync timing is analogous to the horizontal sync timing, so we can do

the same thing using a second counter, and a second FSM. This second vertical FSM is

identical to the horizontal FSM. The only difference is in the timing. Looking at the times

for each region in the vertical synchronization signal in Figure 6.10, we see that 64 psec

for region P is approximately 2 times the total horizontal scan time of 31.77 psec each.

1020 psec for region Q is approximately 32 horizontal scan time (1020 131.77 32). For

region R, it is 480 horizontal cycles, and for region S, it is approximately 14 horizontal

cycles. Hence, the clock for both the vertical counter and the vertical FSM can be derived

from the horizontal counter. The vertical clock ticks once for every 800 counts of the

horizontal clock.

We will need to use two instances of this FSM circuit; one for the horizontal FSM,

and one for the vertical FSM. The clock for the horizontal FSM is the 25MHz clock,

while the clock for the vertical FSM is derived from the roll over signal from the

horizontal counter. The four status signals for the four counter conditions are generated

from two counters: a horizontal counter, and a vertical counter.

Chapter 5 System Design

To display something on the screen, we simply have to check the current column

and row that the scan is at, and then assert the RGB signal if we want the pixel at that

location to be turned on. For example, if we simply assert the red signal continuously, all

the pixels will be red, and we will see the entire screen being red. On the other hand, if we

just want the first row of pixels to be red, then we need to assert the red signal only when

the counter Row = 0. To get a red border around the screen, we would assert the red signal

when Row = 0, or Row = 639, or Colrrmn = 0, or Column = 479. Figure 4.10 shows the

circuit to draw a red border around the entire screen using the VGA controller circuit

from.

I HCom! Horizontal FSM

Red : Red-our

Green

Bluc

Figure 4.10 Complete circuit for the VGA controller.

A Novel p-Rocesor Archiredure 66

Chapter 5 Syslan I . g n

4.2.6 Interrupt Controller

The interrupt controller provides priority based intermpt handling. 8 interrupts are

provided. Each is individually maskable. The interrupt controller is programmable and

can be read or written using the input and output multiplexers. Each intempt can be

masked by setting the corresponding bit in the mask register. When ever there is an

intermpt the interrupt controller asserts the CPU INT pin. The CPU reads the interrupt

register to know which device has generated the interrupt.

4.2.7 Switch Debounce and Pulse Control

Switch Debounce and pulse control provides debouncing of external switch

inputs. It also provides one-shot capability for single stepping the MC-CPU. The basic

component in this controller is the 25h4Hz to lOOKHz clock divider. Every input to the

device is debounced first. Two of the outputs are also one pulsed. In the case of one pulse

the system clock of 25MHz is used. No matter how long the button is pressed the one

pulse will only generate one pulse of the same time period as of the system clock.

4.2.8 7-Seg Controller

7-Seg Controller Controls the two 7-segment displays on the FPGA prototyping

kit. Also it switches between PC and Address register. Each 7-segment displays in turn

have two displays, giving a total of four displays. The basic building blocks of the

controller are the Hex to 7-segment decoders. Four of which are used. The

implementation schematic of interrupt controller is shown in figure 5.14.

4.2.9 LED Controller

LED Controller Controls the two LED displays on the FPGA prototyping kit. Also

it switches between INSTRUCTION TYPES or NSTRUCTION REGISTER or ALU

OUTPUT or STACK POINTER. The LED controller is basically a big multiplexer that

multiplexes between its four inputs based on two switch inputs.

A Novel p-J'rocessor Archifedure 67

Chapter 6 Condusion

5. Conclusion

The whole system is implemented as a SoC on a single FPGk The complete system

utilizes approximately 95% of a Spartan-IIE (XC2S300pq208-e).

5.1 Hardware Arrangement

The complete system was mounted on a chipboard base in the following

arrangement. It was interfaced with the computer using the parallel port. A test program,

given in Appendix 4 was used to test proper operation of the system.

SRAM

Fi yre 5.1 Hardware Arrangement

5.2 Result

As a result of this research project we have been able to verify the benefits of the
. .

MultiCore design. Specifically, a marked reduction in the context switch penalty. Since,

the code running on the master processor is never preempted, it is able to service user

requests more efficiently.

Chapter 6 Conclusion

This design has allowed us to compare it against the current SMP and CMP

systems. When compared to the SMP systems the outcome is very clear that the main

bottle neck is the Interprocessor communication buss. In case Of MC-CPU there is no

such external Interprocessor communication buss and hence such latencies are avoided

altogether.

When compared to the other CMP processors the MC-CPU architecture does not

employ any packet protocol for communication among the two processors. This improves

the inter processor communication capability significantly. The downside is that it require

extensive hardware support.

The direct measure of MC-CPU performance comes from comparing a piece of

code that calls OS services, first on the Master CPU and then on the slave CPU. When the

code is run on the master processor, the system behaves just like a normal single

processor system. At every system call performed by the user routine there is a context

switch and the OS is switch back. The OS performance the necessary operation and then

preempts itself while making then user program active.

t 760

No
Clock
Cycles

Fig 5.2 No of parameters

In a context switch 43 registers are saved and then 43 registers are restored.

Saving a single register to memory takes 10 clock cycles. Saving 43 registers requires 430

clocks. Tn all a single context switch takes about 450 clock cycles on the master

processor. This is for an OS sewice that only requires the service code and no parameters.

A Novel p-J'rocessor Archilecture 69

Chapter 6 Condudon

On the MC-CPU, when the user code is run on the slave processor and it performs

a system call then there is no need for a context switch to occur since the OS is running

on separate processor. A remote trap that only passes the service code to the master

processor requires only 20 cycles

It can be easily seen fiom figure 5.2 that a single context switch requires at

least 500 clock cycles whereas a remote trap only requires 10 clock cycles. Thus it has

been shown that incorporating features at the microarchitecture level can improve P C

performances significantly. Improvements in P C performance improve OS performance

significantly.

A Novel p-Bocesor Architecture 70

References and Bibliography

References and Bibliography

1. The Designer's Guide to VHDL, 2nd Edition 2002, Peter J. Ashenden

2. VHDL Programming by Example, Fourth Edition 2002, Douglas L. Perry.

3. Microprocessor Design Principles and Practices With VHDL, 2004, Enoch 0 . Hwang

4. Computer Architecture A Quantitative Approach, Third Edition 2003, John L.

Hennessy & David A. Patterson.

5. Computer Organization and Architecture, 6th Edition 2003, William Stallings.

6. DEDICATED DIGITAL PROCESSORS Methods in Hardwardsohare System

Design, 2004, F. Mayer-Lindenberg

7. Operating Systems Concepts, Sixth Edition2003, Silberschatz Galvin Gagne

8. Operating Systems, Forth Edition2001, William Stallings

9. [Aaron B. Brown 19971 A Decompositional Approach to Computer System

Performance Evaluation, Center for Research in Computing Technology Harvard

University Cambridge, Massachusetts.

10. menjamin Gamsa, Oman Krieger, Eric W. Parsons, Michael Stumm 19951

Performance Issues of Multiprocessor Operating Systems.

. . 11. [Chu Xia & Josep Torrellas 19991 Comprehensive Hardware and Software Support

for Operating Systems to Exploit MF' Memory Hierarchies.

12. pawson R. Engler 19981 The ExoKernel operating systems architecture.

13. wsiao-Ping Juan, Nancy D. Holmes Smita Bakshi, Daniel D. Gajski 19921 Top Down

Modeling of RISC Processors in VHDL.

14. [Jan Gray 20011 Designing a Simple FPGA-Optimized RISC CPU and System-on-a-

Chip.

15. [Jan Gray 20001 Hands-on Computer Architecture - Teaching Processor and

Integrated Systems Design with FPGAs.

16. [Jochen Liedtke 19931 Improving IPC by Kernel Design

17. [Jochen Liedtke 19951 On u-Kernel Construction

A Novel p-Rocesor Archaedure 71

R e f m m and Bibliography

18. [Jochen Liedtke , Hermann H-artig. Michael Hohmuth, Sebastian ScKonberg, Jean

Wolter 19971 The Performance of p-Kernel-Based Systems.

19. [Jochen Liedtke, Andreas Haeberlen, Yoonho Park, Lars Reuther, Volkmar Uhlig
. .

20001 Stub-Code Performance is Becoming Important

20. [Jochen Liedtke 20011 J. Liedtke, U. Dannowski, K. Elphinstone, G. Lieflander, E.

Skoglund, V. Uhlig, C. Ceelen, A, Haeberlen, and M. Volp. The L4Ka Vision.

21. [Joshua A. Redstone, Susan J. Eggers & Henry M. Levy 20001 Analysis of Operating

System Behavior on a Simultaneous Multithreaded Architecture.

22. [Kunkel & Smith 19861 Optimal pipelining in supercomputers.

23. Lance Hammond, Basem A. Nayfeh, Kunle Olukotun 19971 A Single-Chip

Multiprocessor.

24. [Makiko ITOH 20001 Synthesizable HDL Generation for Pipelined Processors from A

Micro-Operation Description.

25. Paul Kohout 20021 Hardware Support for Red-Time Operating Systems

26. prof. Lizy Kurian John 20021 Performance Evaluation: Techniques, Tools and

Benchmarks.

27. [Takayuki Morimoto, Kazushi Saito, Hiroshi Nakamura, Taisuke Boku, Kisaburo

Nakazawa] Advance Processor Design Using Hardware Description Language AIDL.

28. [Tao Li, Lizy Kurian John, Anand Sivasubramaniam, N. Vijaykrishnan, Juan Rubio

20021 Understanding and Improving Operating System Effects in Control Flow

Prediction.

29. [Todd Austin, Eric Larson, Dan Ernst 20021 SimpleScalar: An Infrastructure for

Computer System Modeling.

30. @3loch 19-59], [Bucholtz 19621, Funkel & Smith 19861, [Smith & Pleszkun 19881,

[Weiss & smith 19841, [Killian 19911, [Heinrich 19931, [Smith 19811, [Yeh & Patt

1992,19931, [Kaeli &Emma 19911, [Sohi 19901, [Smith, Johnson & Horowitz 19891,

[Agarwal 19931, [Gupta & Homwitz 19941, [Yamamoto 19941, [Tullsen 19961, [Lo

19971, [Lo 19981. References From Computer Architecture A Quantitative

Approach, Third Edition 2003, John L. Hennessy & David A. Patterson.

A Novel p-hocessor Architecture 72

Appendix-A Test Code
----JUMP TO PROGRAM CODE

B"010001 - 00000 - 0 - 00000000000000000111",

---INTERRUPT HANDLER CALLS

B"011000 - 00000 - 0 - 00000000000011100101",

B"011010~00000~0~00000000000000000000",

X"OOOOOOOOn,--03 RESERVED

X"OOOOOOOO",--04 RESERVED

X"OO000000",--05 RESERVED

X"OOOO0000",--06 RESERVED

----LOAD ALL DATA

B"000111 00000 00000 101 11 100 01001000",--07 MOVEI TO RO
B " O O O ~ ~ ~ ~ O O O O - O O O O ~ - ~ O ~ ~ ~ ~ O O ~ ~ O O O O O ~ " . - O ~ MOVEI TO R1
B"000111 00000~00010~10111100~01010010",-09MOVEITOR2
~"000111~00000~00011-10111100 01001 11 In,--0AMOVEI TO R3
BnOOO1 11~00000~00100~10111100~0100111 la',--OB MOVEI TO R4
B"000111~00000~00101 ~ o ~ ~ ~ ~ o o ~ o ~ o o ~ ~ ~ o ~ , - o c M O V E I T O R ~
BnOOO1 1120~)0-00110-10111 100~00000000",-OD MOVEI TO R6
B"000111 - 00000-00111-10111100 - - - 01001101",-4EMOVEI TOR7

BnOOO1 11-00000 01000 101 11 100-010101 1 I",--OF MOVEI TO R8
~~000l11~00000~1001~10111100 01001 11 In,-10 MOVEI TO R9
BNOOO1 11 00000 01010 1011 1100~01010010",-11 MOVEI TO R10
BHOOOl 11~00000~01011~10111100~01001011",--12 MOVEI TO R11
BW000111 00000-01100 10111100~1001001",--13 MOVEI TOR12
BnOOO1 1 l ~ 0 0 0 0 ~ 0 l 1 0 1 ~ 1 0 1 1 I100 01001 1 1ON,--14MOVEITO R13
~"000111~00000~01110~10111 I W ~ I O O O I 1 I",--15 MOVEI TO Rl4
BnOOO1 11 - 00000 - 01111-1011 1100 - 01011000",--16MOVEI TO R15

B"011101 - 00000000000000000000000000",

--DATA BUS

B"010101~00~10111 l00~01000011~0001~0000",

B"010101 - - 00 000 - 01011~00~100010~0001~0001",

B"010101 - 00 - 10111100 - 00110000~0001~0000",

B"010101~00~000~01011~00~100011~0001~0001",

B"010101 - 00~10111100~01000001~0001~0000",

B"010101~00~000~01011~00~100100~0001~0001",

B"Ol0101 - 00 - 10111100 - 00110101~0001~0000",

BnolO1O1~OO~OOO~olO1l~oO~lOO1O1~OOO1~OOO1",

B"010101 - 00~10111100~00110111~0001~0000",

B"010101~00~000~01011~00~100110~0001~0001",

B"010101 - 00 - 101 11 100 - 001 11001~0001~0000",

B"010101~00 - 000~01011~00~100111~0001~0001",

B"010101~00~10111100~00110000~0001~0000",

--ADDRESS BUS
--- - - -- - -- - -

B"010101 - 00-000 - 01 101-00-100100 - 0001-00017',

B"010101 - 00 - 10111100 - 00110000 - 0001 - OOOO",

B"010101 - - 00 000 - 01101 - 00 - 100101 - 0001 - 0001",

B"010101 - 00 - lOllllO0 - 00110001 - 0001 - OOOOn,

B"010101 - - 00 000 - 01101 - 00 - 100110 - 0001 - 0001",

A Novel p-Processor Archifccturc A-2

Appendh.A Ted Code

',,0oo0-10w-11101100-00111101-~-101010,,8

' . r o o o ~ ~ o o o ~ ~ o ~ o o r ~ w ~ r ~ o r o ~ o o o ~ w ~ ~ o r o ~ o , , a

'.oooo~rooo~roro~~oo~oo~ I r roro-IOIOIO.~

' . ~ o o o r o o o ~ o o ~ o o ~ o ~ r r o ~ o ~ o o o ~ o o ~ ~ o ~ o ~ o . a

'.oooo-root-I ooooo~o-OOI I r roro-roro~o.a

',, 1000-rooo-I ~ o o o r o - I roro~ooo~oo~~oro~o,,a

'.oooorooo~oooor roo-ooi I I roi-00-roror 0.8

',1000~1oo0~010001~001 ~ o ~ o ~ o o o ~ o o ~ o ~ o ~ o . a

'.oooo~rooo~~ rooooro-OOI I I [or-00-ro~oro.a

',,~ooorooo~oooor~oo~r roro~ooo~oo~ro~o~o,a

'.oooo~rooo~~ooo~ roooor I I 101-oo-ro~oro.a

',I o o o r o o o ~ o o o o o ~ o r r o r o ~ w o ~ o o ~ ~ o r o 10.8

sna v~va--

'"00000oo0000000000000000000-101 11oua

z m.LnolI--

BnOl0lOl - 00 - 10111 100-00111001-0001-000ON,

B"ololol~oo~ooo~ololl~oo~lool1 l~oool~oooln,

B"010101 - 00_10111100~00110000~0001~0000",

--ADDRESS BUS

B"010101-00 - 000 - 01101-00 - 100100 - 0001-0001",

B"010101 - 00 - 101 1 1 100 - 001 10000~0001~0000",

B"010101~00~000~01101~00~100101~0001~0001",

B"010101 - 00 - 10111100 - 00110001~0001~0000",

B"010101-00 - 000~01101~00~100110~0001~0001",

B"010101 - 00 - 10111100 - 00110000 - 0001-OOOOn,

B"010101~00 - 000 - 01 101 - 00 - 100111 - 0001~0001",

B"010101-00 - 10111100 - 01000110~0001~0000",

--CALL

A Novel p-Processor Architecture A-5

Appendix-B Glossary of Terms

Address bus-A unidirectional set of signals used by a processor (or similar device) to
point to memory locations in which it is interested.

Analog--A continuous value that most closely resembles the real world and can be as
precise as the measuring technique allows.

Asynchronous-A signal whose data is acknowledged or acted upon immediately and
does not depend on a clock signal.

Binary digit-A numeral in the binary scale of notation. A binary digit (typically
abbreviated to "bit") can adopt one of two values: 0 or 1.

Binary encoding-A form of state assignment for state machines that requires the
minimum number of state variables.

Binary logic-Digital logic gates based on two distinct voltage levels. The two voltages
are. used to represent the binary values 0 and 1 along with their logical equivalents False
and True.

Bit-Abbreviation of binary digit. A binary digit can adopt one of two values: 0 or 1.

Boolean algebra-A mathematical way of representing logical expressions.

Bus-A set of signals performing a common function and carrying similar data.
Typically represented using vector notation: for example, an 8-bit database might be
named data[7:0].

Byte-A group of eight binary digits, or bits.

Cache memory-A small, high-speed memory (usually implemented in SRAM) used to
buffer the central processing unit from any slower, lower-cost memory devices such as
DRAM. The high-speed cache memory is used to store the active instructions and data1
associated with a program, while the bulk of the instructions and data resides in the
slower memory.

Chip--Popular name for an integrated circuit (IC)

Circuit board-The generic name for a wide variety of interconnection techniques,
which include rigid, flexible, and rigid-flex boards in single-sided, double-sided,
multilayer, and discrete wired configurations.

CLB (configorable logic block)-The Xilinx term for the next logical partitiodentity
above a slice. Some Xilinx FPGAs have two slices in each CLB, while others have four.

A Novel p-Processor Architechrre &I

CMOS (complementary metal oxide semiconductor)-logic gates constructed using a
mixture of NMOS and PMOS transistors connected together in a complementary manner.

Combinational I o g i c A digital logic function formed from a collection of primitive
logic gates (AND, OR, NAND, NOR, etc.), where any output values from the function
are directly related to the current combination of values on its inputs. That is, any changes
to the signals being applied to the inputs to the hnction will immediately start to
propagate (ripple) through the gates forming the function until their effects appear at the
outputs from the function. Some folks prefer to say "combinatorial logic."

CPLD (complex PLD)-A device that contains a number of SPLD (typically PAL)
functions sharing a common programmable interconnection matrix.

CPU (central processing unit)-The brain of a computer where all of the decision
making and number crunching are performed.

CRC (cyclic redundancy check)-A calculation used to detect errors in data
communications, typically performed using a Iinear feedback shiff register (USR).
Similar calculations may be used for a variety of other purposes such as data
compression.

Data bus-A bidirectional set of signals used by a computer to convey information from
a memory location to the central processing unit and vice versa. More generally, a set of
signals used to convey data between digital functions.
Data-path function-A well-defined function such as an adder, counter, or multiplier
used to process digital data.

Digital-A value represented as being in one of a finite number of discrete states called
qtmta. The accuracy of a digital value is dependent on the number of quanta used to
represent it.

Digital circuit-A collection of logic gates used to process or generate digital signals.

D i o d o A two-terminal device that conducts electricity in only one direction; in the other
direction it behaves like an open switch. These days the term diode is almost invariably
taken to refer to a semiconductor device, although alternative implementations such as
vacuum tubes are available.

DSP (digital signal processing)-The branch of electronics concerned with the
representation and manipulation of signals in digital form. This form of processing
includes compression, decompression, modulation, error correction, filtering, and
othenvise manipulating audio (voice, music, etc.), video, image, and other such data for
such applications like telecommunications, radar, and image processing (including

. . medical imaging).

Edge sensit iveAn input to a logic hnction that only affects the knction when it
transitions from one logic value to another.

EEPROM or E2PROM (electrically erasable programmable read-only memory)-A
memory integrated cirntit (IC) whose contents can be electrically programmed by the

A Novel p-Processor Architechrrp B-2

designer. Additionally, the contents can be electrically erased, allowing the device to be
reprogrammed.

EPROM (erasable programmable read-only memory)-A memory integrated cirmif
(IC) whose contents can be electrically programmed by the designer. Additionally, the
contents can be erased by exposing the die to t~Ifraviolet (m3 light through a quartz
window mounted in the top of the component's package.

FIFO (first in first out)--A special memory device or function in which data is read out
in the same order that it was written in.

Firmware-Refers to programs or sequences of instructions that are loaded into
nonvolatile memory devices.

FLASH memory-An evolutionary technology that combines the best features of the
EPROM and E2PROM technologies. The name FLASH is derived from the technology's
fast reprogramming time compared to EPROM.

FPGA (field-programmable gate array)--A type of digital integrated circuit (IC) that
contains configurable (programmable) blocks of logic along with confiyrable
interconnect between these blocks. Such a device can be configured (programmed) by
design engineers to perform a tremendous variety of different tasks.

FSM (finite state machine)-The actual implementation (in hardware or software) of a
function that can be considered to consist of a finite set of states through which it
sequences.

Giga-Unit qualifier (symbol = G) representing one thousand million, or 109. For
example, 3 GHz stands for 3 x 109 hertz.

Glue logic-The relatively small amounts of simple logic that are used to connect
("glue") together-and interface between-larger logical blocks, functions, or devices.

Hardware--Generally understood to refer to any of the physical portions constituting an
electronic system, including components, circuit boards, power supplies, cadinets, and
monitors.

HDL (hardware description language)--Today's digital integrated cirnrits (iCs) can
end up containing hundreds of millions of logic gates, and it simply isn't possible to
capture and manage designs of this complexity at the schematic (circuit-diagram) level.
Thus, as opposed to using schematics, the functionality of a high-end IC is now captured
in textual form using an HDL. Popular HDLs are Verilog, SystemVerilog, VHDL, and
SystemC.

High-impedance state-The state associated with a signal that is not currently being
driven by anything. A highimpedance state is typically indicated by means of the "Z"
character.

Hz (hertz)--Unit of frequency. One hertz equals one cycle, or one oscillation, per
second.

A Novel p-Pmcessor Archifechrre B-3

IC (integrated circuit)-\ device in which components such as resistors, diodes, and
tiansistors are formed on the surface of a single piece of semiconducting material.

TCR (in-circuit reconfigumble~An SRAM-based or similar component that can be
dynamically reprogrammed on the fly while remaining resident in the system.

IP (intellectual property)-When a team of electronics engineers is tasked with
designing a complex inlegruled circuit (IC), rather than reinvent the wheel, they may
decide to purchase the plans for one or more hnctional blocks that have already been
created by someone else. The plans for these functional blocks are known as intellectual
property, or IP. IP blocks can range all the way up to sophisticated communications
functions and microprocessors. The more complex hnctions, like microprocessors, may
be referred to as "cores."

ISP (in-system programmable)-An E2-based, FLASH-based, SRAM-based, or similar
integrated circuit (IC) that can be reprogrammed while remaining resident on the circuit
board.

Kilo-Unit qualifier (symbol = K) representing one thousand, or 103. For example, 3
KHz stands for 3 x 103 hertz.

LC (logic cell)-The core building block in a modem n G A from Xilinx is called a logic
cell (LC). Among other things, an LC comprises a 4-input LUT, a multiplexer, and a
register.

LE (logic element)-The core building block in a modem FPGA from Altera is called a
logic element (LE). Among other things, an LE comprises a 4-input LUT, a multiplexer
and a register.

Logic function-A mathematical hnction that performs a digital operation on digital
data and returns a digital value.

Logic gate-The physical implementation of a simple or primitive logic hnction.

Logic synthesis-A process in which a program is used to automatically convert a high-
level textual representation of a design (specified using a hurdware description language
(71DL) at the register transfer level (RTL) of abstraction) into equivalent registers and
Boolean equations. The synthesis tool automatically performs simplifications and
minimizations and eventually outputs a gate-level netlist.

LS-I) (least-significant bit) The binary digit, or bit, in a binary number that
represents the least-significant value (typically the right-hand bit). (2) (least-significant
byte)--The byte in a multibyte word that represents the least-significant values (typically
the right-hand byte).

LUT (lookup table)-There are two hndamental incarnations of the programmable logic
blocks used to form the medium-grained architectures featured in FPGAs: h4UX
(multiplexer) based and LUT (lookup table) based. In the case of a LUT, a goup of input
signals is used as an index (pointer) into a lookup table.

Macroarchitecture definition-A design commences with an original concept, whose
hieh-level definition is determined by system architects and system designers. It is at this " . -
stage that macroarchifechrre decisions are made, such as partitioning the design into
hardware and software components, selecting a particular minoprocessor core and bus
structure, and so forth. The resulting specification is then handed over to the hardware
design engineers, who commence their portion of the developmeni process by performing
microarchitecfrrre dejnjtion tasks.

Mega-Unit qualifier (symbol = M) representing one million, or 106. For example, 3
MHz stands for 3 x 106 hertz.

Memory cell-A unit of memory used to store a single binary digit, or bit, of data.

Memory word-A number of memory cells logically and physically grouped together.
All the cells in a word are typically written to, or read from, at the same time.

Micro-Unit qualifier (symbol = p) representing one millionth, or 10-6. For example, 3
pS stands for 3 x 10-6 seconds.

MiUi-Unit qualifier (symbol = m) representing one thousandth, or 10-3. For example, 3
mS stands for 3 x 10-3 seconds.

Moore's law-In 1965, Gordon Moore (who was to cofound Intel Corporation in 1968)
noted that new generations of memory devices were released approximately every 18
months and that each new generation of devices contained roughly twice the capacity of
its predecessor. This observation subsequently became known as Moore's Lmv, and it has
been applied to a wide variety of electronics trends.

MOSFET (metal-oxide semiconductor field-effect transistor)-A family of
transistors.

MS-1) (most-significant bit) The binary digit, or bit, in a binary number that
represents the most-significant value (typically the left-hand bit). (2) (most-significant
byte) The byte in a multibyte word that represents the mostsignificant values (typically
the left-hand byte).

Multiplexer (digital)-A logic hnction that uses a binary value, or address, to select
between a number of inputs and conveys the data from the selected input to the output.

Nano-Unit qualifier (symbol = n) representing one thousandth of one millionth, or 1&
9. For example, 3 nS stands for 3 x 10-9 seconds.

No i scThe miscellaneous ~ b b i s h that gets added to an electronic signal on its journey
through a circuit. Noise can be caused by capacitive or inductive coupling or by
externally generated electromagnetic interference.

Nonvolatile-A memory device that does not lose its data when power is removed from
the system.

A Novel p-Processor Architechrre B-5

N y b b l t A group of four binary digits, or bits.

Onehot encoding-A form of state assignment for state machines in which each state is
represented by an individual state variable, and only one such variable may be
"on/active" ("hot") at any particular time.

Operating system-The collective name for the set of master programs that control the
core operation and the baselevel user interface of a computer.

OTP (onetime programmable)-A programmable device, such as an SPLD, CPLD, or
FPGA, that can be configured (programmed) only a single time.

PAL (programmable array 1ogic)S-A programmable logic device in which the AND
array is programmable, but the OR army is predefined.

PCB (printed circuit b o a r d k A type of circuit board that has conducting tracks
superimposed, or "printed," on one or both sides and may also contain internal signal
layers and power and ground planes.

Peta-Unit qualifier (symbol = P) representing one thousand million million, or 1015.
For example, 3 PHz stands for 3 x 101 5 hertz.

Pic-Unit qualifier (symbol = p) representing one millionth of one millionth, or 10-12.
For example, 3 pS stands for 3 x 10-12 seconds.

PLA (programmable logic a r r ayFThe most user configurable of the traditional
programmable logic devices because both the AND and OR arrays are programmable.

PLD (programmable logic device)-An integrated circuit (IC) whose internal
architecture is predetermined by the manufacturer, but which is created in such a way that
it can be configured (programmed) by engineers in the field to perform a variety of
different functions. For the purpose of this book, the term PLD is assumed to encompass
both simple PLDs (XPLDs) and complex PLDs (CPLDs). In comparison to an FPGA,
these devices contain a relatively limited number of logic gates, and the functions they
can be used to implement are much smaller and simpler.

Primitives-Simple logic functions such as BUF, NOT, AND, NAND, OR, NOR, XOR,
and XNOR. These may also be referred to asprimitive logic gates.

PROM (programmable read-only memory)-A programmable logic device in which
the OR arrav is vrommmable. but the AND arrav is vredefined. Usually considered to be
a memory &vice whose contents can be electricaily programmed (oncej by the designer.

RAM (random-access memory)-A data-storage device from 'which data can be read
out and into which new data can be written. Unless otherwise indicated, the t m RAM is
typically taken to refer to a semiconductor device in the form of an integrated cirmii
K) .

ROM (read-only memory)-A data storage device from which data can be read out, but
into which new data cannot be written. Unless otherwise indicated, the term ROM is

typically taken to refer to a semiconductor device in the form of an integrated circuit
LC).

RTL (register trnnsfer level)-A hardware descripion language O L) is a special
language that is used to capture (describe) the hnctionality of an electronic circuit. In the
case of an HDL intended to represent digital circuits, such a language may be used to
describe the functionality of the circuit at a variety of different levels of abstraction. The
simplest level of abstraction is that of a gatelevel netlist, in which the functionality of the
digital circuit is described as a collection of primitive logic gates (AND, OR, NAND,
NOR, etc.) and the connections between them. A more sophisticated (higher) level of
abstraction is referred to as register trrmsfer level (RE). In this case, the circuit is
described as a collection of storage elements (registers), Boolean equations, control logic
such as if-then-else statements, and complex sequences of events (e.g., "If the clock
signal goes fiom 0 to 1, then load register A with the contents of register B plus register
C"). The most popular languages used for capturing designs in RTL are VHDL and
Verilog (with SystemVerilog starting to gain a larger following).

Sequential logic-A digital function whose output values depend not only on its current
input values, but also on previous input values. That is, the output value depends on a
"sequence" of input values.

Silicon chip-Although a variety of semiconductor materials are available, the most
commonly used is silicon, and integrated circrrits (ICs) are popularly known as "silicon
chips," or simply "chips."

S l i c t T h e Xilinx term for an intermediate logical partitiodentity between a logic c>l
(LC) and a configrtrable Iogic block (CLB). Why "slice"? Well, they had to call it
something, and-whichever way you look at it-the term slice is "something." At the
time of this writing, a slice contains two LCs.

SoC (system on chip)--As a general rule of thumb, a SoC is considered to refer to an
integrated circuit (IC) that contains both hardware and embedded software elements. In
the not-sodistant past, an electronic system was typically composed of a number of ICs,
each with its own particular function (say a microprocessor, a communications function,
some memory devices, etc.). For many of today's high-end applications, however, all of
these functions may be combined on a single device, such as an ASIC or FeGA, which
may therefore be referred to as a system on chip.

Software-Refers to programs, or sequences of instructions, that are executed by
hardware.

SPLD (simple PLD)--Originally all PLDs contained a modest number of equivalent
logic gates and were fairly simple. These devices include PALS, PLAs, PROMS, and
GALS. As more complex PLDs (CPLD) amved on the scene, however, it became
common to refer to their simpler cousins as simple PLDs (SPLDs).

SRAM (static RAM)-A memory device in which the core of each cell is formed from
four or six transistors configured as a latch or a flip-flop. The term static is used because,
once a value has been loaded into an SRAM cell, it will remain unchanged until it is
explicitly altered or until power is removed from the device.

State diagram-A graphical representation of the operation of a sfate machine.

State v a r i a b l 4 n e of a set of registers whose values represent the current state
occupied by a state machine.

Synchronous-31) A signal whose data is not acknowledged or acted upon until the next
active edge of a clock signal. (2) A system whose operation is synchronized by a clock
signal.

Toggle-Refers to the contents or outputs of a logic function switching to the inverse of
their previous logic values.

Tri-state function-A function whose output can adopt three states: 0, 1, and Z (high
impedance). The function does not drive any value in the Z state and, when in this state,
the function may be considered to be disconnected from the rest of the circuit.

Truth table-A convenient way to represent the operation of a digital circuit as columns
of input values and their corresponding output responses.

pC (microcontroller)--A microprocessor augmented with special-purpose inputs,
outputs, and control logic like counter timers.

pP (microprocessor)-A general-purpose computer implemented on a single integrmed
circtrit (IC) (or sometimes on a group of related chips called a chipset).

Verilog--A hardware description lunguage (HDL) that was originally proprietary, but
which has evolved into an open standard under the auspices of the IEEE.

V H D G A hurdware description language (HDL) that came out of the American
Depurfntent of Defense (DUD) and has evolved into an open standard. VHDL is an
acronym for VHSIC HDL (where VHSIC is itself an acronym for "very high-speed
integrated circuit '3.

VJTAGThe VHDL language is great at modeling digital circuits at a high level of
abstraction, but it has insufiicient timing accuracy to be used in sign-off simulation. For
this reason, the VITAL, initiative was launched at the Design Automation Conference
(DAC) in 1992. Standing for VHDL Initiative toward ASIC Libraries, VITAL, was an
effort to enhance VHDL's abilities for modeling timing in ASIC and FPGA design
environments. The end result encompassed both a library of ASIClFPGA primitive
functions and an associated method for back-annotating delay information into these
library models.

Volatile-Refers to a memory device that loses any data it contains when power is
removed from the system, for example, random-access memory in the form of SRAM or
DRAM.

. .
Word-A group of signals or logic functions performing a common task and carrying or
storing similar data; for example, a value on a computer's data bus can be referred to as a
"data word" or "a word of data."

A Novelp-Processor Architecture B-8

Append& User Mtm~aJ

Appendix-C User Manual

The programming and implementation of the system has been done using Xilinx

ISE Foundation 6.3i set of tools. These tools come with extensive user manuals which can

be consulted if desired.

The complete System is implemented in hardware. Following control inputs are

used for the control of hardware.

SWITCH CONTROL

SWI : SYSTEM RESET
SW4 : TEST INTERRUPT
SW8 : DISBALE SINGLE STEP
SW13 : SWITCH CPUl OR CPU2
SW16 : ADDRESS REG /PC SELECT

-1
STACKPOINTER

. .

A Novel p-Processor Architecture C- 1

SWS (SW9 I EFFECT
0 (0 I INST TYPE

Research Punblicatiam

0 2006 Asian Netmork for Scientific Information

SPE Architecture for Concurrent Execution OS Kernel and User Code

'Haroon Munee and m a l i d Rashid
'Department of Computer Sciences. International Islamic University. Islamabad. Pakistan

2Faculty of Applied Sciences. Inlanational Islamic University. Islamabad, Pakistan

Abstrnck Opaating system pdamance is not impwing at the same rate as the speed of the execution
hardware. As a comequenee Operating systems are w t keeping up with the demands placed on them.
Computational @up due to the increase in -lor clock frequency is reaching its limits as well. Chip
Multiprccessm are now being investigated to hamess &e silicon mmces now availabk due to p e a s
improvemenia m Chip manufachaiog. 'Ihio researchpraen~i the study mto n specialized Chip Multiproassa
for Simulheow execlltim of OS kerncl and user C&. SPE or S i m u l b ~ ~ 1 ~ 9 Process Executioo Architecture
allows for c m t i m m execution of OS kernel and uner processes.

Key words: OS, kernel CMP. FPOA

As modem applications bxcme i-ingly
dewdent on multimedia, graphics and data movement
t h y are sparding afl increasii fractim o f h u execution
timc in the c p r a t q system kernel. Web semen h e
been s h to s p d over 85% of their CF'U cycles
npming operatiq~ system code"'. For server-bed
emirumnenB, the operating system is a crucial
annpcnBb of the workld

Multi-senrer and urmponent-basedoperating system
are Fccrmisirg architechnal approaches f a h d h g the
ever h a s k g complexity of opera* systems.
Compmem or semen (and clients) aommunicate with
each dher through cnas-domain method invocatim.
Such interface method iwocati~1~. if mmiq prdntim
boundaries, are typically implemented h x g h the
Intcr-pro~?~~ Communicstim mechanisms offered
by a micmkcmel. hf' urmponent hemaion in
such systems has to be highly efficient

Thm Mer-process CommImication 0 by mesage
passing is m c of the central paradigms of m a t u-kernel
b a e d and &cr client~server archit-s. IPC
performance is vital f a modern operating systems:
especially u-kcnrl based ones. Since cad rd and
wrkemel mode switches are central to IPC opemth~
reducing them is a critical factor m IPC performance
i m ~ w r m c r b

A d exists to design a micropmmsa that helps
to impwe 0s pcrfamancc. Specifically by i m m g P C
performance alone. OS performance can be improved
signirmtly. User/kemel mode switches or cootext
swi t ch an a key operation in IPC. By reduciug m by

eliminating this context switch IPC pertormance can be
impwvcd si&irady.

The SPE architecture platform combines several
aspecb of existing pmcessa systems. The actual
executim of insbuctiora on specialized hardware
originates fran the ernliest cqxocessor -pt in Inters
8086/8087 v s o r system I". The use ofa dgurable
set of co-pccsxm is a small step towards increasing
performance by adding more specialized hardware and
has been appl i i for mmlE procmsor SYJtems. In
these archiaochpe platforms, there is one master processor
c d i t i s g the activities perfarmed by the co-
proaesxm. An example is the TriMedia architecture
pladm'%ginally developed Philips, which includes a
single (VLIW) master ~roce~sor exploiting instruction
level parallelism.

SoC zuchitecture platforms that allow truc parallel
exenaim of tarh on a number of indepcndcnt master
prorrsso~l arc also rcfcrrcd to a single-chip multi-
pro~essm'4. The main design issues f a such
systems emerge from the nomsity of commImicati.S
infamation between lash running on different
pmceum.

There are many academic and crmmercial CMP in
adstmx today. Specifically thc arehitatun discused by
Theflm arid V a s c h u d ig an exallen! design example.
The MIP archkcme platform" exploia parallelism at the
task level

For more efficient utilintiun the offmd processing
power odd also be obtained through a higher integration
of s o h . Although this approach can reduce
overheod and thus increase pfam~l l~e , it may d c t
the a*bility for a wide range of producb.

Conbcting slave paron fm performing
application dedicated op~atiom mquk fast on-chip
intmrmech. On-chip intercome& have becans avery
impatad designism for many SoCs. The challerrp is to
r r b latencies fa e x d m q q infomtationbehveenrmits
that ere located relatively fnr opal. Tho on-chip
intcrcornccn of the SPP. architochae platfwm can not bc
comparcd to packet-based rcuting devices: becamc the
onchip mtarornvct is s h a d stack based and allows
direct function calls or OS trap invaatiw on the
cormectedprocessm.

E5 i c idy accesskg (off chip) memay bas also been
a design Lsue for many yearn. Similar to 0 t h pmcssa
1ystcmS. the SPE anhitectue platform uses cadla to
a.tmcrb memuy aacsr laicncies. Main diff- with
other multi-pmarcr h tho a h of data
meincry f u tb indivihral marto pracusar. With me
skmdmemoq, dp-ogramminrj flsaaility h off& to
the uwr.

Tho SPE a r c h i m platform sxploib p d e l i u n at
the task lwel by mccrparatisg an idepdmt marta
p m c e s a und a mm~ba of rlavs procssrax. Rumkg
multiple truh in parallel rcquim s q h i s h t c d fncilies
for h e x truk mmmurication Ihe architectmu patfa-m
ccuuidmd by 'Zhoalm uud Vmcbmcd" p e ~ a i b s s tb
use d 4 e d w r q p ~ unhr to allow ~~mmunicatian
batwean prooarsas In SPE anhitcchm platform, like
desnibc by Theelen and V e n c h d , communication
between taPlu is enabbd tInuugb tb IW of
communioatioo res- o f r d by all 0s b l
implmaated onthe master ~ c . x ~ r r .

The main amlributicmof~r sbdy lies inthe a d 1
unDept o f b !iPE anhitsdlrn platfarm d mom specific
in the intcgrntion of a Mmkr : r r s p k i f d i y
deJigned fos 0s hmclionality.

Opcnthrg aptem probkrnr: A u-kamel can p v i &
high01 layas with a minimal set of o f t s
ablractiarrs bi ere flexiia amugh to allow
implamcrhtb of arbitrary operating sydmu and allow
uploastim ofa wida range of hardwars.

Simiier to oFlimLirg code genamm, u-Inmela must
be cz~huclDd pcr pmassor and am hJarordly m t
portable. h i c i m p l a n d o n &iau, mcst algorithm
and data s b m t n m imido a wkemel am pmma
depcrwtent Their design must tm guided by performance
pradiction wd eralysu. &id= inappropriate beric
abstracticms. tho m a t frqwnt mistxhs cane frrm
insuflicient undsrstandi of the m b i kdmre-
softw;irc system a inefficient i m p l a m d o n .

Far them reasons Operating Systems tave been
known to came the following set of pblems:

Operating systems an huge progirms that can
overwhelm the cache and TLB due to ccde and data
size. lhcrcby causing sevm pcrformarse paalty fm
Ussr programs. - Operating systems may impact b m h prdction
porformancs, h s n ~ ~ e nf f q m t hmnchs. and
infrequent Imp.
OS execution h often brier md ktmnitter9 invoked
by interrupts, excephbns or v t e m calls and can
cause tho replacement of meful cache. TLB wd
branch prediction state for little or rn k f i t
The OS may d o r m spin-waitirg, explicit cache/TLB
invalidatim and o h r operatiom m t common in
wu-mods cah, again effecQg l ~ e r code.
In nmrmt m d h i z d kern& way h l
invocation m e a ant& switch and m case d
p-kamals wsry callmeam multiplo con(& Swachss.
thus wnsiiq a coluiderable time in switching

praxsr-
IPC-pformam problems d t 6an 64 bit
nrchitechIR3 with them t q e sumbm of rcgiatm and
register stack englm. Tim large m b c r of rsgistera
c o & h k s to a pdentially massive context (mcm
than2KB)tabssmredmsachthrsadcontMt
switch". - Overall, oporaiing systsrn code causes pocr
instruetian Urarghput cn a supascnh
miaopaesrca.

To ovaarmc thw pmblems many taclmiqun have
bsen 4 M each had ih diladvaraages. Amdabl'a law
teUsusthatifwewantmodemapplicaticms(onmcpckly.
the opsratisB y t e m mlat rm quickly a. well Sim
traditianal pafamwa, models essentdiy igwa tho
opauh? ry.tam andmodem OSdapandd applicatiora.
a netd h ariaun f o r m design and mahodDlogiea that
dLat fhirattmticnatthe pufiormaar o f t b 0s kcmel"'.

As mcntianed d i c r OS kernel wukbnd haa
signif~cantly iuxuwd, npaially SONCZ b e d
applicatiam am pmirg heavy I d m tho kernel What
must be is that we bavo a h q e po tadd f a
pafmnfura i m ~ m m t i fsans b t h o h l rum on
an indepaedamt p r o c ~ o s sod tho upsr cnde nnr, on
andhsr. withold my hu larancies. this mnsttsr-slava
promsaar architatua can impmve paCormance
sigmficantly. Therefore we have designed a new Ch.8
architcchrro that is spccifrcally dnigncdto ovorunno OS
problems.

MIcruprawor a r r h i t e h IntanaY, micropucesors
have limited support for operating systems besides the
featum that me critical for current ptected virhral
memory based operatins systems, like p-kernels bare

I n f o n T e c W . J.. 5 (1): 192-197.2006

peperating systems. As we have seen b t modem
~ p p l i d an spending an increa?ling h&on of theu
xeclrtiontime inthe Opera* System (0s) kemcl.

At the multi-pratssor level &ormarae
mpmvemem an due to SMP, NUMA or chaterig. In
9ach of Ums tectmiques the processing nodes am ei t la
~acqyofthekcme1athewhdeOS.Ncmof
hose nre aimed at impvirg OS psrfmance dire*.
iathsr tha earlier m e b d OS pmblcms a p at
xlch nods.

Intepted circuit prccassing ttchmlogy offers
ma.+ idegratim &ty, which i d s
n icmpccaw perfmsnca gmwth It is bxcfning
v i M a to irdcgrate a billion tmmistan on a &ly
13 silicon chip At this integration 1eveS it ip m s a r y
a fd parallelism to effectivaly utiliiza tho h-a~~irtcss.
kmntly, pcassm d a i p dynamicdiy axtract
mllelism with these transintan by ex& many
m b d a n within a sequential lrogwn in parallel.

However. rslianc~ m a single thread dmnbol limb
he parallelism arailahls f u many applicatiorn end the
:at of ah* ~ l e l i m fmm n s k l e thrad u
leccrming pmtuitive'".

Ths damand f a aver fastet comprtm system somns
!oh irsatiabls. Jmkwtk-laval parallelism b l p a little,
n~! pipel* and superscalar opreti~1~ mly win m a
~afadaof6veartenTogetgair . of50.100aevcn
nom the only way h to d m i canputm with rnuQ1e
CPUs. l h high lave1 of ~ a i n is d y premised by
parallaliam at the pmesaor level T r a d i t i w tho
pmot~~or lave1 psralleliw has d b t n pooasols.
~olsp~ceosormastcrsndnmthsOSkamastive
is it solves most of the prsvianly cited problems. but is
prom to the bru latencia end hum poor

Rorcarchen have prqms.3 two miumrchi-
hat exploit multiple dmAs of c-1: Siultamms
Multithreading (ShCT) and Chip Multiprocrma. (CMP).
From a p l y anhitcchral p o d of vim. tlm SMT
proceuor's flexitdity mska it supmior. However, tlm
2ced to limit tht effects of inlcrunmat delays which are
kcomkg much slower than ~ O T gate delays, will
~ l s o drive the billion-tmmista chip design Imenamect
ielays will force the microarchitcctllre to be pattitioned
mto small. localized processing elements. For this reasoo.
he CMP is much more promising h a m e it is already
mtiticned into individd pressing cod"'.

Progr;lmmm mupt f d thread level parallelism in
xdcr to mzimizc CMP perfonnmm. With nmmt trcds
nparalleljrmg canpila~.multitlae;oded opraticg systems
md awarcnns of prgmmem ahoa how to program
mallel mmputcrs. this problem should pmvc less
hunting in future. Add i t idy , having all of the CPUs

on a single chrp allow &sip- to exploit head-level
parallelism wen when threads canmunicate fmpntly.

SPE architednre: In designing aur CMP we have mcda
modified f m of Chip Multiprccasom (W). The new
mimpmccssor mhitecture consists of two tightly
coupled microprocessors. Both are able to communicate
with each other directly and are implemented as a single
unit on a single FPGA.

Om of the m i n c p n r u o m is rhs mmta p m n a
and implemats privileged im&m as wsll as rest of
tha instruction set. Operating system almo nrm a this
micmpnxasor. Th -d mimproosrua only
implamanta the mn-privilegsd instructiaa. fkUnplu
pmcaunr execution units like flcatirg paint units and
vector mils are shared mang both pocalco m avoid
complex design and -tap of phypical remmccs.

Only a single slave pmccsu and no complex
extartimunib as well w m, cachw wm implemonredto
simplify tho m d e f f d

MC-CPU instructan at Mhitutnn: MGCPU
instruction set was dsigmd fmm gmmd up to
acmmmodata the mw f e a h of this architsctum. It is a
32 bit RISC ISA Ths SF'E implements the MCGPU
Imkuction Set Arrhaschlre. SPE roosiPLs of Mwta CPU
(CPU-1). Slave CPU (CPU-2) Bnd Shsnd SLacL aa a h
in tha Fig. 1. Each of thmo funccicmal units and thou
opuatiom are u p l a i n d individuaUy in the following
nubracticm*

CPU 1: CPU 1 is the master CPU. I t impkmmts all the
privilege imhucClhucCl~. Only the madm p o a s s a can
sccus YO devices. Irdanrpt hwdling is performed only
by the master prcessca. Sharsd sbck is also c W b d
by mstcr paessca. Ths mastex pucassor can mrdrol
the behavior of the rlava processca by tb meam of INTS
intcmrptr. Slavs puxssm implamenu spacial iatarmpt
handlm for INTS rather thw for dx normal intern+.

CPU 1: CPU 2 is the slave CPU. It be not implement the
pfivilcge instruction. The slave p m r s s a can not
physically a m s s devices. System level m t m q t
handling is not perfanned by the Slave procraa m it
d m n d have an INT line Shand stack is accnstd by
the slave pucessor whm the msJtEr pmassa granh it
access. Slme pavsso r implemenb special interrupt
handlem for INTS rather lhm for the normal intmups.
Whm the master prccessor ass- INTS. thc slave
pnmnor immediately jumps t o the particular mtarmpt
based 0nIN'rscODE.

Infirm. Technol. 1 - 5 (1): 192-I97.2Wd

Fig. I : SPE prccessoe

S h a d stack Shard Stack c&ts of the stack memory
and the h d stack pointer. The shred slack pointer is
a 32 bit register. Iti ourput vahx is a m m d y suppliedto
both pvccsas. It can only be modified by om
processor at any given time. Shared stack memory
consists of single pat 1024 bitRAM, med a~

32 X 32 him. Only oncpmcessor can push or p p frm the
shared stack at any given lime. Shntd stack operates in
the followk m m e r

Master pro~ssor h initial c o m l of the shared
stack
Masts V s o r m modify the shared stack pointer
any time; only exception is when it h s granted
cantrol ofthe sharedstack to the slave processu
Master prowssor can push u pop values horn the
s h d stack my time; except when it has gmled
conml of the shared slack to the slave p r m s r r
Slave prooesror can not directly access the s h e d
stack
Slave praxssa murt assert the REQUEST S i i to
gain access to the shared stack
Whenever REQUEST is iasarted by ths Slave
processu. the m a s t e r v s m can p n l or disallow
access to the shared stack
Acceu is disallowed only when master pvcessor is
modifying maaxssing the d n d stack itself
Slave processor is blocked or m a wait state dmhg
thiP paid
When the master processor is not accessirg the
shared stack and the Slave proassor requesb fcr it,
request is gnmkd by asserting the ORANT signal

. When the GRANT signal is asserled, Slave prccmu
gee access to the shared stsck
Slave peessor can now modify both shared stack
pointer and s h a d stack
ARer the slave prccmor hos modified the stack it
deaswts the REQUEm s i g d to indicate that the
shared stack is now free
Whm the GRANT signal is &asserted the master
processor densserla the ORANT s i d and trikes the .
control of shared stuck b c k

Remote call: All Ule communication between the master
andslave pvcessor is based on remote calls. In fact these
are not remote calls in the classic same rather these am
traps to the OS kernel running m the master ~+oassor.
Only the slave processor can bnp to the master pmcesscr
by asserting CALLS signaL 'Ihe remote Cans work m the
following marma.

When the user code running on the Slave prmessa
needs some opratisg system s&ce it must invoke
a m o t e call . Remota d l is invoked by the slave proxwx by
ass* the CALLS signal
Before asserting the CALLS signal slave prazssor
must nquest access to the shared stack and at least
place the 32 bit service code m top of the s h e d
stack. It can also phce any plrameters m the stack if
there is m y
After placiq the service code andlor any parameten
on the skmd stack the Slave p c c w o r assem the
CALLS signal

Inform, Techd. J., 5 (1): 192-197.2M

On receiving the C W S signal Maatcr ploaua
invokes tha remote call handla
Remote call handlerchDcks for user scam riBhtr and
proper pmxmeteFJ wd then calls tha appopriats OS
~oaThisisamrmalhmcticmcal l . Namally no context switch takcs p b this
whole pmcedum . Afb~theca l l endplac i rgmtrrmvalumdo
ths ahmud stack tho Master puwsor assrta tha
RETURNS signal

m~ing ths m S SlRW pwDssU

requart for the sharad stack. gets tlm retrrm values
and deesscw tho CALLS rigral

Remots intempt: Th+ Master pceam K&& the
slave pmassor by using Remote Idcm+b. Only the
Mastm procss~or can rake m o t s in- and d y the
slave pceasor serves m o t s ktmn#s. lntcrmpt faotar
tablo and intermpt service r o u t k fa tho ran&
intempts an plamd in tha Slave pwasw's memay
s p a r by the MsNlr prem~. T h e mtermpb can
range h memay management to amtext s m to
praesa cleanup. Remots intmqda work in the fonowing
m m r .

Fig. 2 *tern urchitscbmr diagram
operating Syrm c n the Master pmxmx
can raise m o t s int-
A m o t s mtnrupt is raised by a~latiqg tho INTS
signal
~ t y p e i s i n d i c a t e d b y I N T S C O D E
u p r a r ~ ~ i n g an INTS tho Skv0 pra;essOr
immediately jump to tlm q m p i a t e hendler bared
on INTSCODE
A h smvicirg tho INTS tlm slave pc@scf suwt
the SERVICEDsipl
U p m i v i q the SERVICED signal the O p a h g
S y t m on tlm Master procesror mnrih the work
dam and &ass& the INTS s i p d

ErprhnnW rctnp: In cador to tat tfie SPE proxasar it
w i naassary to have a -plate mmpltsr &tan with
all microprarsm suppmt devices designed and
implmd So, memay, Inpd and multiplexen.
a VGA eonhdler. a K e y b a d mntroller and an inlmqt
ecn& were aLto dargned and implemented alcng with
tho SF'E pmcwsor.

Ths whde systan (Fig 2) is implemerPsd as a SoC on
a single FPOA. The complete system utilizes
approximately 95% of a Spartan-IIE

The SPE p m s a achieved a clock sped of 25
MHz. l 3 ~ system was mamted on a system board based
on the smqement showD inFig. 3. It wss in te r f id with
the m w e r using the parallel pat. A test =ram was
used to test pmper opemtion of the system.

As a muit ofthis nreanh project we have been abls
to verify tho benefits of the MultiCors duiin
Specificatiy. a marked reduction in the context switch
penalty. Since. th: a d e nmning an tho master proccsa
is never pmmptcd; it is able to s w i m user requests
m m e f f i c i d y a d quickly.

When armparad to the SMF' systems the outenme is
vsry clear, the main W e neck is lhe hterpmenor
mmmmication b. In m e of SPE there is nosuch

Fig. 4: No. ofpameters versus clock cycles in a ccntat
switch

cxteml Imerpmcessor communication bms and h e m
such latencies w: avoided altogether.

Wben mmpiredtothe ahm CMP procmsors the SF73
d t e c b n e doeJ rpDt employ any packet protocol for
~canmuuicationamoqg thetwopcemrs. This improves
the inter procesror commmication opabilily
significwtly. The downside is that it requiren extensive
*support

, The direct measure of SF'E pmassor performance
comes fmm c a m p k g a pieca-of Mde that calls OS
senrices, fust on the Master CF'U andthen onthe
slave CPU.

When the code is nm on the master pmcmor. the
system behaves just like a mrmal sir& processor
systam. At every system call perfumed by the user
routine there is a wntext switch and the OS is switch
back The 0s perfamam the necessaty qmation and
thmpreempb itselfwhile making the userpmgr;rm active.

In a wntext switch 43 registers am saved to memory.
Saving a single register to memory lakes 10 clock cycles.
S a v i ~ 43 registen q u k a 430 clocks. In all a single
m e s w i t c h lakes abmt150 clock cycles onthe master
pmcmm. This is far an 0s service that only requires the
service code and m pameters.

On the SPE processor, when the user code is nm on
the slave processor and it p e d m s a system call then
there is nonecd for a eontat switch to occur since the OS

\ is rurming on a wpsrste pmcessor. A remote trap that
only passes the service code to tfre master pracessor
q u k only 20 cycle&

It can be easiIy seen 6an Fig. 4 that a single wntext
switchnquins at least 500 clock cycles w b a m o t e
trap only requires 10 clock cycles. Thus it can be safely

I concluded that incapmling feahrres at the
rnimaditechm level can i m p e IPC prformance~

FUTURE WORK

As next to investignting possible scteraiollp, we am
mmatly dsvelcpiq compiler tools capable of handhg
the offered flexibility. Tlm ultimate goal would bs to
develop tools &at amble fast soh eompilatim by
m q i n g specific perfamanos repthane of w
application into parhticnsd code. On of the code
partitiom will m om the msstcrproassor as a service f a
thcbu l l ;o foodsrurmingonthcs lave~ .

Om fuhue -h will also mnccnhte on a method
far maiyzkg which omlipdm of masterprocessm and
Slave processas will meet the requimnmts far a specific
application man oltirnal way.

REFERENCES

1. Brown, A.B.. 1997. A Deoompcaitional A p h to
Camprta system Pafamance Evaluation Center for
Research in Computing Technology Haward
University Cambridge, Mmachetts.

2. Intel Corp.. 1993. Micqrocesson Volume 4
w 74-1-30 and 7-93-7-1 11.

3. Ratham. S. and 0. Slavenburg, 1996. An architectual
overview of the programmable multimedia pracessm
TM-I. In' Fkxednp of COMPCON 95, Santa Clam,
Califania. USA. 25- 28 Febraury. IEEE Compm
Society, Los Alamitm. C a l i f d USA.. pp: 319-326.

4. Theelm B.D. and AC. VarSmuere, 2203. Arctdtechw .
design of a scalable sirgle-chip multi-processa. J.
Sys. Architectwe. Special Issue an S p m s and
Verificatias 49: 619-639.

5. Theelen. B.D, A.C. Venchuera~ V.V. Suaiw.
M.P.J. SLcvars wdA. Nuncz 2003. A scalnble single-
chip multi-procmsor ;nchitecbne with on-chip RTOS
kanel. J. Sp . Arch ime . pp: 619639.

6. Bergmnaschi a. I. BOISCIB, R a ~ p k R ~m wd
A Jenaya et 01.. 2001. Arc Siilc-chip
Multipmcessors in Reach? In: W d f W, K Roy Eds.),
IEFE DBign ard Test of Cornputas IEEE Cornpta
Society. Lm Alamitce. California, USA. 18: 82-89.

7. Liedtke, J, U. Damx,mki K Elphiratone. G.
Lieflander and E Skoghmd et 01.. 2001. The L4Ka
Vision (White. pper).

8. Lance. K. B A Nayfeh and K. O b n m , 1997. A
Single-Cnip Muhipmcessor. In Proceeding of the
7th~ernatiualaollfsnnwonhrchitechnalSupport
for Progwomins -ges rmd Systems.
pp: 2-11.

