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Abstract 
One of the advances that will be enabled by system-on-chip (SOC) technology is the 

single-chip multiprocessor. As VLSI technology improves to allow us to fibricate 

hundreds of millions of transistors on a single chip, it is also possible to put a complete 

multiprocessor, including both CPUs and memory, on a single chip. The advent of single- 

chip multiprocessors will require us to rethink multiprocessor architectures to fit the 

advantages and constraints of VLSI implementation. This thesis is based on research in 

this very direction. We propose a new single chip multiprocessor architecture that 

concentrates specifically on improving operating system performance. This goal is 

achieved by implementing two CPUs on a single chip, configured as a master and a slave. 

Only the master processor will run the OS kernel, and only the slave processor will run 

the user code. 
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1. Introduction 

For CPU design, a major movement in the 1980s was towards RISC instruction sets 

which made it simpler and more efficient to design CPU cores. Although, not all the 

RISC designs were that simple. During the 1990s the main focus was on boosting 

instruction-level parallelism (ILP) and clock rates of single-core processors. As a result, 

processors have become far more complex. However, there are various reasons why 

performance doesn't scale well with these techniques. Recent years have witnessed a shift 

of focus to exploiting thread-level parallelism (TLP) with techniques like CMP and MT. 

CMPIMT scales the performance of multi-threaded applications (or multiple running 

processeslprograms) through the integration of multiple cores onto a single silicon die and 

the execution of instruction streams from multiple hardware threads on each core. 

Implementations of these technologies exist in the market today. Figure 1 shows the 

architectural differences of a single-core processor and a dual-core dual-thread CMP/MT 

processor. 

single-care CPU ChP CPU 

L2 Cache L2 Cache 

Figure 1.1 

1.1 OS Kernels 

The part of OS critical to its correct operation execute in supervisor mode, while 

other software, such as generic system software, and all applications programs execute in 

user mode. The part of the system software executing in the supervisor mode is called the 

kernel of the operating system. The kernel operates as trusted soha re ,  meaning that 

when it is designed and implemented, it is intended to implement protection mechanisms 

that cannot be covertly changed through the actions of untrusted software executing in the 

user mode. 

A Novel p--or Archifedwe 1 



1.1.1 Monolithic Kernels 

The older monolithic kernels are written as a mixture of everything the OS needs, 

without much of an organization. The monolithic kernel offers everything the OS needs: 

processes, memory management, multiprogramming, interprocess communication (IPC), 

device access, file systems, network protocols. 

1.1.2 Microkernel 

This method structures the operating system by removing all nonessential 

components fiom the kernel, and implementing them as system and user level programs. 

The result is a smaller kernel. Microkernel typically provides minimal process and 

memory management, in addition to a communication facility. The main hnction of the 

microkernel is to provide a communication ficility between the client program and the 

various services that are also running in the user space. 

1.1.3 ExoKernel 

Traditional operating systems limit the performance, flexibility, and hnctionality 

of applications by fixing the interface and implementation of operating system 

abstractions such as interprocess communication and virtual memory. The EroKernel 

operating system architecture addresses this problem by providing application-level 

management of physical resources. In the ExoKernel architecture, a small kernel securely 

exports all hardware resources through a low level interface to untrusted library operating 

systems. Library operating systems use this interface to implement system objects and 

policies. This separation of resource protection from management allows application- 

specific customization of traditional operating system abstractions by extending, 

specializing, or even replacing libraries. 

1.2 Parallelism 

Traditionally computer has been viewed as a sequential machine. Most computer 

programming languages require the programmer to specify algorithms as a sequence of 

instructions. Processors execute the programs by executing the machine instructions in a 

sequence and one at a time. This view of computer has never been entirely true. At the 

microoperation level, multiple control signals are generated at the same time. Instruction 

pipelining, at least to the extent of overlapping fetch and execute operation, has been 



around for a long time. This approach is taken firther with superscalar organization, 

which exploits instruction level parallelism. 

1.2.1 Instruction Level Parallelism 

Since 1985, all processors use pipelining to overlap the execution of instructions 

and improve performance. This potential overlap among instructions is called instruction 

level parallelism (ILP) because the instructions can be executed in parallel. There are two 

basic approaches. Dynamic, hardware intensive approaches, and Static, compiler 

intensive approaches. 

1.2.2 Thread Level Parallelism 

Thread level parallelism allows multiple threads to share the finctional units of a 

single processor in an overlapping faction. To permit this sharing, the processor must 

duplicate the independent state of each thread. For example, a separate copy of register 

file, a separate PC and a separate page table are required for each thread. The memory 

itself can be shared through the virtual memory mechanisms, which already support 

multiprogramming. 

1.2.3 Processor Level Parallelism 

The demand for ever faster computers seems to be insatiable. Instruction-level 

parallelism helps a little, but pipelining and superscalar operations rarely win more than a 

factor of five or 'ten. To get gains of 50, 100 or even more, the only way is to design 

computers with multiple CPUs. There are quiet a few approaches of parallel organization. 

For example: Symmetric Multiprocessors (SMPs), Cluster computers, and Non Uniform 

Memory Access computers (NUMA). 

1.2.4 Chip Multiprocessors 

Chip Multiprocessors (CMPs) use relatively simple single-thread processor cores 

to exploit only moderate amounts of parallelism within any one thread, while executing 

multiple threads in parallel across multiple processor cores. If an application cannot be 

effectively decomposed into threads, CMPs will be underutilized. 

1 3  Literature Review 

Bloch ploch 19591 and Bucholtz pucholtz 19621 describe a four stage pipeline 

and its engineering tradeoffs, including the use of ALU bypass. Kunkel and Smith 
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wunkel& Smith 19861 evaluate the impact of pipeline overhead and dependencies on the 

choice of optimal pipeline depth. Smith and Pleszkun [Smith & Pleszkun 19881 evaluate a 

variety of techniques for preserving precise exceptions. Weiss and smith [Weiss & smith 

19841 evaluate a variety of hardware pipeline scheduling techniques and instruction issue 

techniques. Killian [Killian 19911 and Heinrich weinrich 19931 describe MIPS R4000 

which was one of the first deeply pipelined microprocessors. 

J Smith [Smith 19811 described a 2-bit branch prediction technique. Yeh and Patt 

[Yeh & Pan 1992, 19931 described multilevel predictors. Kaeli and Emma vae l i  & 

Emma 19911 described return address prediction. The 2-bit Branch prediction improves 

implementation of branch predicition in super scalar processors. 

Sohi [Sohi 19901 describes renaming and dynamic scheduling. Smith, Johnson 

and Horowitz [Smith, Johnson & Horowitz 19891 described the use of speculation a 

technique in multiple issue microprocessors. Dynamic scheduling and register renaming 

improves performance of heavy superscalar designs. 

Aganval et al. [Aganval 19931 describes SPARCLE a block multithreaded 

processor. Laudon, Gupta and Homwitz [Gupta & Horrowitz 19941 advocate fine 

grained multithreading. Yamamoto et al vamamoto 19941 proposed a design using 

dynamic scheduling to mix instructions from different threads. Tullsen et al IJullsen 

19961 addresses questions about the challenges of scheduling U P  versus TLP. Lo et al. 

[Lo 19971 gives an extensive discussion of SMT concept. Lo at al b o  19981 evaluated 

database performance on an SMT processor. 

In 2000, Il3M announced the first commercial chip with two general purpose 

processors on a single die, the Power4 processor. Each Power4 contains two Power3 

microprocessors, a shared secondary cache and a chip to chip communication system. 

In 1997 w n c e  Hammond, Basem A. Nayfeh, Kunle Olukotun 19971 provided 

concrete evidence of the performance improvement possibilities using Singlechip 

Multiprocessors. 

[Jan Gray 20001 proposed on using FPGA based prototyping systems for teaching 

Micro Processor and Integrated Systems Design. Jan Gray. [Jan Gray 20011 proposed a 

simple RlSC CPU and System-on-a-Chip on a single FPGA. 

Hsiao-Ping Juan, Nancy D. Holmes Smita Bakshi, Daniel D. Gajski wsiao-Ping 

Juan, Nancy D. Holmes Smita Bakshi, Daniel D. Gajski 19921 proposed on Top Down 



Modeling of RISC Processors in VHDL. [Takayuki Morimoto, Kezushi Saito, Hiroshi 

Nakamura, Taisuke Boku, Kisaburo Nakazawa] proposes a new hardware description 

language ATDL for Advance Processor Design. Makiko ITOH Wakiko ITOH 20001 

proposed Synthesizable HDL Generation for Pipelined Processors from A Micro- 

Operation Description. 

Prof. Lizy Kurian John pizy Kurian John 20021 provided research on Hardware 

Performance Evaluation: Techniques, Tools and Benchmarks. 

Paul Kohout Paul Kohout 20021 proposed on providing hardware support for 

real-time operating Systems. 

Jochen Liedtke [Jochen Liedtke 19931 Discusses in detail about improving P C  by 

appropriate p-Kernel Design 

[Jochen Liedtke [Jochen Liedtke 19951 provides a detailed discussion and 

example implementation of high performance second generation p-Kernel operating 

systems. 

Jochen Liedtke, Hermann H-artig, Michael Hohmuth, Sebastian Sch-onberg, Jean 

Wolter piedtke, H-artig, Hohmuth, Sch'onberg, Wolter 19971 researched on the 

Performance of p-Kernel-Based Systems. 

Jochen Liedtke, Andreas Haeberlen, Yoonho Park, Lars Reuther, Volkmar Uhlig 

[Jochen Liedtke, Andreas Haeberlen, Yoonho Park, Lars Reuther, Volkmar Uhlig 20001 

provide a detailed analysis and techniques for efficient Stub-Code for high performance p 

-kernel based operating systems. 

Jochen Liedtke [Jochen Liedtke 20011 discusses and evaluates the high 

performance U K a  p-kernel. L4Ka p-kernel is completely written in assembly language 

and provides higher performance then the traditional zDd generation p-kernel. 

Benjamin Gamsa, Orran Krieger, Eric W. Parsons, Michael Stumm [Benjamin 

Gamsa, Orran Krieger, Eric W. Parsons, Michael Stumm 19951 discusses the 

Performance Issues in Multiprocessor Operating Systems. 

Dawson R. Engler [I9981 provides detailed description of ExoKernel operating systems. 

Joshua A. Redstone, Susan J. Eggers and Henry M. Levy [Joshua A. Redstone, 

Susan J. Eggers & Henry M. Levy 20001 provided an Analysis of Operating System 

Behavior on a Simultaneous Multithreaded Architecture. 
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1.4 Academic C W s  

1.4.1 The Jamaica Project 

The Jamaica project is investigating the design of chip multi-processors (CMPS) 

and their accompanying parallel s o h a r e  environments. CMP architectures have been 

widely accepted by many processor chip manufacturers as a solution to the design 

problems accompanying the scaleup to "billion hansistorn chips. The rationale for this 

choice is that designing logic to interconnect multiple cores based on existing designs is 

enonnous& simpler than trying to build one core which will use all the available silicon. 

Despite the widespread convergence on CMP as a promising design strategy, there are 

many issues yet to be resolved in the design of both the hardware and its accompanying 

s o h a r e  environment. In particular: 

The hardware must be able to efficiently support an operating system which can 

distribute execution of application code to all the available cores. Distribution and 

synchronization costs must be low and it must be easy to detect the presence of 

idle cores. 

The operating system must, in turn, rely upon advanced compiler technology to 

automate, as far as possible, this distribution of work. Most applications cannot 

feasibly be designed (or rewritten) to allow for all possible CMP configurations, 

coping with anything From, say, 2 to 64 cores. 

A dynamic parallelizing compiler is essential if the distribution problem is to be 

addressed. Both application and operating system code need to be optimized 

appropriate to the CMP configuration found at runtime or even recompiled on the 

fly using feedback directed recompilation. 

All these elements of the CMP platform need to be designed together if the promise of 

CMP architectures is to be fulfilled. The Jamaica project is organized into three 

collaborating strands reflecting the interplay between computer architecture, compiler and 

operating system. 

Advances in silicon technology have provided designers with more on-chip 

resources. However, this poses greater design problems in using the available silicon. The 

Jamaica project is focusing on the design of chip multi-processors. Benchmarks run on 

cycle accurate simulators allow development of prototypes and determination of optimal 



configurations without incumng long development cycles. The project also carries out co- 

design of architectural features and compiler optimizations. 

1.4.2 The Hydra Project 

Hydra is a new microarchitecture that combines shared-cache multiprocessor 

architectures, innovative synchronization mechanisms, advanced integrated circuit 

technology and parallelizing compiler technology to produce breakthroughs in 

microprocessor cost/performance and parallel processor programmability. In Hydra, four 

high performance processors are integrated on a single die. Hydra represents a new way 

to build microprocessors that will demonstrate that it is possible for a multiprocessor to 

achieve better performance and better cost/performance than wide superscalar 

mircroarchitecture on sequential applications. Hydra will use a single chip shared cache 

architecture to findamentally improve the communication bandwidth and latency 

between multiple processon. The shared-cache architecture takes advantage of the on- 

chip bandwidth to provide an order of magnitude improvement in interprocessor 

communication and synchronization latency compared to current-bus based 

multiprocessor implementations. This will improve parallel processing efficiency to the 

point that it is feasible to exploit fine-grained parallelism in sequential programs with a 

multiprocessor. 

The shared-cache architecture and the support for specialized synchronization 

makes Hydra an ideal target for emerging parallelidng compiler technology. Most of this 

technology has focused on parallelizing applications into large grains so they will work 

efficiently on current multiprocessors. Hydra will have the ability to exploit fine grained 

parallelism and so will allow development of parallelizing compiler technology that is 

capable of extracting this sort of parallelism. 

1.5 Commercial CMPs 

1.5.1 IBM POWER4 

This processor is meant for the maximum performance, for hi-end server and 

supercomputer market, designed for 32-processor SMP systems. Development of high- 

performance communication means for processors and memory was given much 

attention. The POWER4 has a high fault-tolerance: critical fails do not make the system 

hang; instead, interrupts are generated and processed by the system. The POWER4 was 
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developed for an efficient operation of commercial (server), scientific and technical 

applications. IBM PowerlPower PC processors were divided into server and scientific 

ones - POWER and RS64. The POWER4 suits a wide range of hi-end applications and 

uses all topical performance boosting ways (within the PowerPC instruction set). We 

won't find there truncated caches and lacking FUs. 

The POWER4 houses 2 processors each having an L1 cache for data and 

instructions. The die has a single L2 cache of 1450 KBytes controlled by 3 separate 

controllers connected to the cores via a CIU (Core Interface Unit). The controllers work 

independently and can process 32 bytes per clock. Each processor uses two separate 256- 

bit buses to connect the CIU for data fetching and data loading, as well as a separate 64- 

bit bus to save the results; the L2 cache has a bandwidth of 100 GByteds. The L2 cache's 

system looks well balanced and very powerhl. Each processor has a special unit to 

support noncachable operation. The L3 controller and the memory's one are located on 

die as well. For connection with the L3 cache working at 1/3 of the processo?~ speed and 

with the memory there are two 128-bit buses operating at 113 of the processor's 

Frequency. 

1.5.2 Sun MAJC 

With two identical and independent but cooperative processor cores, the MAJC- 

5200 is one of the first microprocessors to implement chip multiprocessing (CMP), 

though Sun prefers to classify the chip as a multiprocessor system on a chip (MPSOC). It 

will offer a relatively high clock rate (500 MHz), eight powerhl finction units, a unique 

geometry decompression engine, and copious amounts of off-chip data bandwidth. Future 

MAJC processors could incorporate hundreds of cores on the same die. 

1.6 Microprocessor Design 

20-50-MHz FPGA CPUs are perfect for many embedded applications. They can 

support custom instructions and fhnction units, and can be reconfigured to enhance 

system-on-chip (SoC) development, testing, debugging, and tuning. FPGA systems offer 

high integration, short time-to-market, low NRE costs, and easy field updates of entire 

systems. 

FPGA CPUs may also provide new answers to old problems. Consider one 

system, during self-test, its FPGA is confi yred as a CPU and it runs the tests. Later the 



FPGA is reconfigured for normal operation as a hardwired signal processing datapath. 

The ephemeral CPU is free and saves money by eliminating test interfaces. 

In the past, field programmable gate arrays (FPGAs) have been used to absorb 

glue logic, perform signal processing, and even to prototype system-on-chip (SoC) 

ASICs. Now with the advent of large, fast, cheap FPGAs, it is practical and cost-effective 

to skip the ASIC and ship volume embedded systems in a single FPGA plus off-chip 

RAM and ROM -- the FPGA implements all of the system logic including a processor 

core. A soft CPU core enables custom instructions and fkction units, and can be 

reconfigured to enhance SoC development, debugging, testing, and tuning. And if you 

control your own "cores" intellectual property (IP), you will be less at the mercy of the 

production and end-of-life decisions of chip vendors, and can ride programmable logic 

price and size improvement curves. 

Processor and SoC design is not rocket science, and is no longer the exclusive 

realm of elite designers in large companies. FPGAs are now large and fast enough for 

many embedded systems, with soft CPU core speeds in the 33-100 MHz range. HDL 

synthesis tools and FPGA place-and-route tools are now fast and inexpensive, and open 

source software tools help to bridge the compiler chasm. 

1.6.1 Overview of a Microprocessor 

The Von Neumann model of a computer, pictured in Figure 1, consists of four 

main components: the input, the output, the memory, and the microprocessor. 

Figure 1.2 Von Neumann model of a computer. 

The keyboard and mouse are examples of input devices. The CRT (cathode ray 

tube) and speakers are examples of output devices. The different types of memory, cache, 

read-only memory (ROM), random-access memory (RAM), and the disk drive are all 

considered as part of the memory box in the model. The focus in these seminars is on the 



design of the digital circuitry of the microprocessor, the memory, and other supporting 

logical circuits, and their implementation on FPGAs. 

The circuit for the microprocessor can be divided into two parts: the datapath and 

the control unit as shown in Figure 1. Figure 2 shows the details inside the control unit 

and the datapath. The datapath is responsible for the actual execution of all operations 

performed by the microprocessor, such as the addition inside the arithmetic logic unit 

(ALU). The datapath also includes the registers for the temporary storage of your data. 

The hnctional units inside the datapath (ALU, shifter, counter, etc.) and the registers are 

connected together with multiplexers and buses to form one unit, the datapath. 

Even though the datapath is capable of performing all the operations of the 

microprocessor, it cannot, however, do it on its own. In order for the datapath to execute 

the operations automatically, the control unit is required. The control unit, also known as 

the controller, controls the operations of the datapath, and therefore, the operations ofthe 

entire microprocessor. 

Figure 1.3 Internal parts of a microprocessor 

The controller is a finite state machine (FSM) because it is a machine that 

executes by going from one state to another and the fact that there are only a finite 

number of states for the machine to go to. The controller is made up of three parts: the 

next-state logic, the state memory, and the output logic. The purpose of the state 

memory is to remember the current state that the FSM is in. The next-state logic is the 

circuit for determining what the next state should be for the machine. And the output 

logic is the circuit for generating the actual control signals for controlling the datapath. 



1.7 Field programmable gate arrays 

Fieldprogrommahle gate arrays (FPGAs) are digital integrated circuits (7Cs) that 

contain configurable (programmable) blocks of logic along with configurable 

interconnects between these blocks. Design engineers can configure (program) such 

devices to perform a tremendous variety of tasks. Depending on the way in which they 

are implemented, some FPGAs may only be programmed a single time, while others may 

be reprogrammed over and over again. The "field programmable" portion of the FPGA's 

name refers to the fact that its programming takes place "in the field" (as opposed to 

devices whose internal functionality is hardwired). This may mean that FPGAs are 

configured in the laboratory, or it may refer to modifying the hnction of a device resident 

in an electronic system that has already been deployed in the outside world. If a device is 

capable of being programmed while remaining resident in a higher-level system, it is 

referred to as being in-system programmobfe. 

1.8 A Xilinx logic cell 

The core building block in a modem FPGA ffom Xilinx is called a logic ceN (ZC). 

Among other things, an LC comprises a 4-input LUT (which can also act as a 16 x 1 

RAM or a 16-bit shift register), a multiplexer, and a register. 

Figure 1.4 Architecture of a X I L N  LC 

In addition to the LUT, MUX, and register, the LC also contains a smattering of 

other elements, including some special fast carry logic for use in arithmetic operations. 
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1.8.1 Slicing and dicing 

The next step up the hierarchy is what Xilinx calls a slice. A slice contains two 

logic cells as shown below. 

Sloe 

LW W X  REG 

Figure 1.5 A slice containing two logic c 

1.8.2 CLBs 

And moving one more level up the hierarchy, we come to what Xilinx calls a 

configumbZe logic block (CLB). Using CLBs as an example, some Xilinx FPGAs have 

two slices in each CLB, while others have four. A CLB equates to a single logic block in 

our original visualization of "islands" of programmable logic in a "sea" of programmable 

interconnect. There is also some fast programmable interconnect within the CLB. This 

interconnect is used to connect neighboring slices. 

I 
Figure 1.6 A CLBcontaining four slicer (the number of  slicer 

depends on  the FPCA fatnily). 



The reason for having this type of logic-block hierarchy, LC+ Slice (with two 

L C s F  CLB (with four slices), is that it is complemented by an equivalent hierarchy in 

the interconnect. Thus, there is fast interconnect between the LCs in a slice, then slightly 

slower interconnect between slices in a CLB, followed by the interconnect between 
. . 

CLBs. The idea is to achieve the optimum trade-off between making it easy to connect 

things together without incurring excessive interconnect-related delays. 

1.8.3 Distributed RAMS and shift registers 

We previously noted that each 4-bit LUT can be used as a 16 x I RAM. Assuming the 

four-slices-per-CLB configuration all of the LUTs within a CLB can be configured 

together to implement the following: 

1. Single-port 16 x 8 bit RAM 

2. Single-port 32 x 4 bit RAM 

3. Single-port 64 x 2 bit RAM 

4. Single-port 128 x 1 bit RAM 

5. Dual-port 16 x 4 bit RAM 

6. Dual-port 32 x 2 bit RAM 
7. Dual-port 64 x 1 bit RAM 

Alternatively, each 4-bit LUT can be used as a 16-bit shift register. In this case, there 

are special dedicated connections between the logic cells within a slice and between the 

slices themselves that allow the last bit of one shift register to be connected to the first bit 

of another without using the ordinary LUT output. This allows the LUTs within a single 

CLB to be configured together to implement a shift register containing up to 128 bits.. 

1.8.4 Embedded RAMS 

A lot of applications require the use of memory, so FPGAs now include relatively 

large chunks of embedded RAM called e-RAM or block RAM. Depending on the 

architecture of the component, these blocks might be positioned around the periphery of 

the device, scattered across the face of the chip in relative isolation, or organized in 

columns, as shown in Figure below. 
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Figure 1.7 Bitch-eve view of chip with columns of 
embdded RAM blocks. 

Depending on the device, such a RAM might be able to hold anywhere from a few 

thousand to tens of thousands of bits. Furthermore, a device might contain anywhere from 

tens to hundreds of these RAM blocks, thereby providing a total storage capacity of a few 

hundred thousand bits all the way up to several million bits. Each block of RAM can be 

used independently, or multiple blocks can be combined together to implement larger 

blocks. These blocks can be used for a variety of purposes, such as implementing 

standard single- or dual-port RAMS, first-in f i r s t a t  (FIFO) finctions, state machines, 

and so forth. 

1.9 HDL Based Design Flow for FPGAs 

The idea behind a hardware description language is, perhaps not surprisingly, that 

you can use it to describe hardware. In a wider context, the term hardware is used to refer 

to any of the physical portions of an electronics system, including the ICs, printed circuit 

boards, cabinets, cables, and even the nuts and bolts holding the system together. In the 

context of an 

HDL, however, "hardware" refers only to the electronic portions (components and 

wires) of ICs and printed circuit boards. In the early days of electronics, almost anyone 

who created an EDA tool created his or her own HDL to go with it. Some of these were 

analog HDLs in that they were intended to rep resent circuits in the analog domain, while 

others were focused on representing digital functionality. Here, we are interested in HDLs 

only in the context of designing digital ICs in the form of FPGAs. 



1.9.1 Different levels of abstraction 

The functionality of a digital circuit can be represented at different levels of 

abstraction and that different HDLs support these levels of abstraction to a greater or 

lesser extent. 

The lowest level of abstraction for a digital HDL would be the switch level, which 

refers to the ability to describe the circuit as a netlist of transistor switches. A slightly 

higher level of abstraction would be the gate level, which refersto the ability to describe 

the circuit as a netlist of primitive logic gates and functions. Both switch-level and gate- 

level netlists may be classed as sfrvchrral representations. It should be noted, however, 

that "structural" can have different connotations because it may also be used to refer to a 

hierarchical block-level netlist in which each block may have its contents specified using 

any of the levels of abstraction. 

Beharioral 
(Algorittnliic) 

Functional 

St~aural  

Fire 1.8 Different levels of abstraction. 

The next level of HDL sophistication is the ability to supportfunclional representations, 

which covers a range of constructs. At the lower end is the capability to describe a 

hnction using Boolean equations. 

The functional level of abstraction also encompasses register transfer level @TI.) 

representations. The term R7Z covers a multitude of manifestations, but the easiest way to 

understand the underlying concept is to consider a design formed fiom a collection of 

registers linked by combinational logic. 
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The highest level of abstraction sported by traditional HDLs is known as behavioral, 

which refers to the ability to describe the behavior of a circuit using abstract constructs 

like loops and processes. This also encompasses using algorithmic elements like adders 

and multipliers in equations. 

1.9.2 A simple HDL-based FPGA flow 

HDL-based flows featuring logic synthesis technology became fully available in 

the FPGA world in the very early 1990s. The key feature of HDL-based design flows is 

their use of logic synthesis technology, which began to appear around the mid-1980s. 

These tools can accept an RTL representation of a design along with a set of timing 

constraints. In this case, the timing constraints are presented in a side-file containing 

statements along the lines of "the maximum delay from input Xto output Y should be no 

greater than N nanoseconds". The logic synthesis application automatically converts the 

RTL representation into a mixture of registers and Boolean equations, performs a variety 

of minimizations and optimizations (including optimizing for area and timing), and then 

generates a gate-level netlist that can (or at least, should) meet the original timing 

constraints. 

G a e W  fundional 1 " ,din 

F'ipnrc 1.9 Simple HDL-based FPCAflow. 

There are a number of advantages to this type of flow. First of all, the productivity 

of the design engineers rises dramatically because it is a lot easier to  specify, understand, 

discuss, and debug the required functionality of the design at the RTL level of abstraction 

as opposed to working with reams of gate-level schematics. Also, logic simulators can 

run designs described in RTL much more quickly than their gate-level counterparts. 

-~ 
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Once the synthesis tool have generated a gatelevel netlist, the gate-level netlist can 

be simulated to ensure its hnctional validity, and it can also be used to perform timing 

analysis based on estimated values for tracks and other circuit elements. The netlist can 

then be used to drive the FPGA's mapping, packing, and place-and-route software, 

following which a more accurate timing report can be generated using real-world 

(physical) values. 

1.9.3 VHDL and VITAL 

In 1980, the U.S. Department of Defen.~e (DOD) launched the very high speed 

integrated cirntit (VHSIC) program, whose primary objective was to advance the state of 

the art in digital IC technology. Under VHSIC, a project to develop a new hardware 

description language called VHSIC HDL (or VHDL for short) was launched in 1981. The 

first official release of VHDL occurred in 1985. DOD donated all rights to the VHDL 

language definition to the IEEE in 1986. After making some modifications to address a 

few known problems, VHDL was released as official standard IEEE 1076 in 1987. The 

language was hrther extended in a 1993 release and again in 1999 giving VI-DL-2001. 

As a language, VHDL is very strong at the hnctional (Boolean equation and 

RTL) and behavioral (algorithmic) levels of abstraction, and it also supports some 

system-level design constructs. However, VHDL is a little weak when it comes to the 

structural (switch and gate) level of abstraction, especially with regard to its delay 

modeling capability. It quickly became apparent that VHDL had insufficient timing 

accuracy to be used as a sign-off simulator. For this reason, the VITAL initiative was 

launched at the Design Afttomation Conference (DAC) in 1992. VHDL Initiative toward 

ASIC Libraries (VITAL) was an effort to enhance VHDL's abilities for modeling timing 

in ASIC and FPGA design environments. The end result encompassed both a library of 

ASICIFPGA primitive functions and an associated method for back-annotating delay 

information into these library models, where this delay mechanism was based on the same 

underlying tabular format used by Verilog. 

1.10 FPAG Prototyping Kit 

. . For this project BurchED FPGA boards and accessories have been selected 

because of their flexibility and large capacity FPGA. The BurchED system consists of 

following components. 



1.10.1 B5-X300 FPGA Board 

. 300K gate Xilinx SpartanIIE device 

Access to all FPGA user VOs . Works with the Xilinx ISE design software . Complete stand-alone system, including progamming cable . JTAG and serial mode configuration of the FPGA . 1 to lOOMHz header-programmable oscillator onboard 

Figure 1 .lo: The B5-X300, BS-X-Advanced-Download-Cable is included. 

1.10.2 BS-SRAM plug-on module 

. 2 MBits of very fast 15ns static RAM 

Accessible as 128K x 16, or 256K x 8 

Large storage, external to the FPGA, for data, code, images 



Figure 1.1 1: BS-SRAM 

1.10.3 BS-Peripheral-Connectors plug-on module 

Fi y r e  1.12: B5-Peripheral-Connectors 

Connect standard PC peripherals to FPGA 

VGA output, with 4 level resistor DAC on each of R, G and B 

Keyboard connectors - PS2 or 5-pin DIN 

Mouse connector - PS2 

RS232 level converter onboard 

DB9 RS232 connector - serial communications to a PC 

Piezo buzzer for "system beep", audible diagnostics and testing 
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1.10.4 B5-X-Flash-Config plug-on module 

Figure 1.13: BS-X-Flash-Config 

Flash PROM automatically configures the FPGA on power up 

"Instant-on" configuration in less than 1 second 

JTAG reprogrammable 

Xilinx l8VO2 flash confi guration PROM onboard 
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2. Problem Definition 

The basic problem is OS performance. In This section we present the problem 

and its proposed solution. 

2.1 Operating Systems 

As modern applications become increasingly dependent on multimedia, graphics, 

and data movement, they are spending an increasing fraction of their execution time in 

the operating system (0s)  kernel, an area of the system almost completely ignored by 

traditional performance enhancement research. As an illustrative example, consider what 

must undoubtedly be today's leading server application: the web server. Web servers 

have been shown to spend over 85% of their CPU cycles running operating system code; 

in contrast, the near-ubiquitous SPEC benchmarks execute less than 9% of their . 

instructions in the OS kernel. (Aaron B. Brown 19971 

For server-based environments, the operating system is a crucial component of the 

workload. Previous research suggests that database systems spend 30 to 40 percent of 

their execution time in the kernel, and measurements show that the Apache Web server 

spends over 75% of its time in the kernel. Operating systems are also known to be more. 

demanding on the processor than typical user code. [Joshua A. Redstone, S m  J.  Eggers 

& Henry M. 'Levy 20001 

~ulti-server and component-based operating systems are promising architectural 

approaches for handling the ever increasing complexity of operating systems. 

Components or servers (and clients) communicate with each other through cross-domain 

method invocations. Such interface method invocations, if crossing protection boundaries, 

are typically implemented through the inter-process communication (PC) mechanisms 

offered by a microkernel. Therefore, component interaction in such systems has to be 

highly efficient. Thus inter-process communication (PC) by message passing is one of 

the central paradigms of most p-kernel based and other client/server architectures. It helps 

to increase modularity, flexibility, security and scalability, and the key for distributed 

systems and applications. P C  has to be fast and effective, otherwise programmers will 

not be able to use remote procedure calls RPC, multithreading and multitasking 

adequately. Thus P C  performance is vital for modern operating systems, especially p- 

kernel based ones. Surprisingly, most ykernels exhibit poor P C  performance. Since 
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context and userkernel mode switches are central to IPC operation, reducing them is a 

critical factor in P C  performance improvement [Jochen Liedfke 19931. 

Also the following set of problems is caused by the operating systems. 

i. Operating systems are huge programs that can overwhelm the cache and TLB due to 

code and data size, thereby causing severe performance penalty for user programs. 

ii. Operating systems may impact branch prediction performance, because of frequent 

branches and infrequent loops. 

iii. OS execution is often brief and intermittent, invoked by interrupts, exceptions, or 

system calls, and can cause the replacement of usefbl cache, TLB and branch 

prediction state for little or no benefit. 

iv. The OS may perform spin-waiting, explicit cachdI'LB invalidation, and other 

operations not common in user-mode code, affecting user code. 

v. In current modularized kernels, every kernel invocation causes context switch, and in 

case of p-kernels every call means a couple of context switches, thus wasting a 

considerable time in just switching processes. 

vi. PC-performance problems result from 64 bit architectures with large number of 

registers and register stack engines. In short, the large number of registers contributes 

to a potentially massive context (more than 2KB) to be stored on each thread context 

switch. This added context switch overhead may prove fatal to microkernel systems. 

A combined hardwardsoftware solution is therefore required to reduce the amount of 

information stored (Jochen Liedfke 2001]. 

vii. Overall, operating system code causes poor instruction throughput on a superscalar 

microprocessor. 

For these reasons, ignoring the operating system (as is typically done in 

architectural & system simulations) may result in a misleading characterization of 
. . system-level performance. Even for applications that are not OS-intensive, the 

performance impact of the OS may be disproportionately large compared to the number 

of instructions the OS executes. 

To overcome these problems many techniques have been used, but each has its 

disadvantages. 
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i. Monolithic kernels cause most of the above cited disadvantages, except internal OS 

fhction calls do not cause any context switches and System calls only cause a single 

context switch, thus making kernel calling and return fast. 

ii. To avoid many of these problems p-kernels have been designed, but they waste too 

much time in message passing thus giving poor performance. 

iii. ExoKernels try to make OS extendable and try to reduce many known performance 

penalties. 

A p-kernel can provide higher layers with a minimal set of appropriate 
. . abstractions that are flexible enough to allow implementation of arbitrary operating 

systems and allow exploitation of a wide range of hardware. Choosing the right 

abstractions is crucial for both flexibility and performance. Some existing p-kernels chose 

inappropriate abstractions, or too many or specialized and inflexible ones. Similar to 

optimizing code generators, p-kernels must be constructed per processor and are 

inherently not portable. Basic implementation decisions, most algorithms and data 

structures inside p-kernel are processor dependent. Their design must be guided by 

performance prediction and analysis. Besides inappropriate basic abstractions, the most 

frequent mistakes come from insufficient understanding of the combined hardware- 

software system or inefficient implementation [Jochen Liedtke 19951. 

2.2 Microprocessor Architecture 

Internally microprocessors have limited support for operating systems besides the 

features that are critical for current protected virtual memory based operating systems, 

like p-kernel based operating systems. As we have seen that modem applications are 

spending an increasing fraction of their execution time in the operating system (0s) 

kernel. Techniques are required at the micro-architecture level to specifically improve OS 

performance. 

Performance improvements at the micro-architecture level are only due to 

superscalar architecture, speculative execution, speculative loading, branch prediction, 

Simultaneous Multithreading, and Explicitly Parallel Instruction Computing etc. All these 

techniques generally improve performance of executing code but are not intentionally 

designed to improve OS performance. 
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At the multi-processor level performance improvement is due to SMP, NUMA or 

clustering. In each of these techniques the processing nodes are either running a copy of 

the kernel or the whole 0s. None of these are aimed at improving OS performance 

directly. Rather OS problems mentioned at section 2.1 appear at each node and further set 

of problems appear due to multiple copies of the OS running simultaneously. 

Integrated circuit processing technology offers increasing integration density, 

which fuels microprocessor performance growth. It is becoming possible to integrate a 

billion transistors on a reasonably sized silicon chip. At this integration level, it is 

necessary to find parallelism to effectively utilize the transistors. Currently, processor 

designs dynamically extract parallelism with these transistors by executing many 

instructions within a single, sequential program in parallel. Future performance 

improvements will require processors to be enlarged to execute more instructions per 

clock cycle. However, reliance on a single thread of control limits the parallelism 

available for many applications, and the cost of extracting parallelism from a single 

thread is becoming prohibitive. This cost manifests itself in numerous ways, including 

increased die area and longer design and verification times. In general, we see 

diminishing returns when trying to extract parallelism from a single thread. 

2.3 Proposed System 

Amdahl's law tells us that if we want modem applications to run quickly, the 

operating system must run quickly as well. Since traditional performance models 

essentially ignore the operating system and modem 0s-dependent applications, a need 

has arisen for new tools and methodologies that direct their attention at the performance 

of the OS kernel. [Aaron B. Brown 19971 

The demand for ever faster computer systems seems to be insatiable. Instruction- 

level parallelism helps a little, but pipelining and superscalar operations rarely win more 

than a factor of five or ten. To get gains of 50, 100 or even more, the only way is to 

design computers with multiple CPUs. Thus high level of gain is only promised by 

parallelism at the processor level. Traditionally the processor level parallelism has used 

discrete processors. Making one processor master and run the OS is attractive as it solves 

most of the previously cited problems, but is prone to the bus latencies and hence poor 

performance. 
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As mentioned earlier OS kernel workload has significantly increased, especially 

server based applications are putting heavy loads on the kernel. What must be realised is 

that we have a huge potential for performance improvement. If some how the kernel runs 

on an independent processor and the user code runs on another, without any bus latencies, 

this master-slave processor architecture can improve performance significantly. This will 

also open doors for future operating system improvements due to available processor 

power at the disposal of the OS. 

Researchers have proposed two microarchitectures that exploit multiple threads of 

control: simultaneous multithreading (SMT) and chip multiprocessors (CMP). From a 

purely architectural point of view, the SMT processor's flexibility makes it superior. 

However, the need to limit the effects of interconnect delays, which are becoming much 

slower than transistor gate delays, will also drive the billion-transistor chip design. 

Interconnect delays will force the microarchitecture to be partitioned into small, localized 

processing elements. For this reason, the CMP is much more promising because it is 

already partitioned into individual processing cores. Because these cores are relatively 

simple, they are amenable to speed optimization and can be designed relatively easily 

f h c e  H m o n d ] .  

Programmers must find thread level parallelism in order to maximize CMP 

performance. With current trends in parallelizing compilers, multithreaded operating 

systems, and awareness of programmers about how to program parallel computers, this 

problem should prove less daunting in future. Additionally, having all of the CPUs on a 

single chip allows designers to exploit thread-level parallelism even when threads 

communicate frequently. This has been a limiting factor on today's multichip 

multiprocessors, preventing some parallel programs from attaining speedups. The low 

communication latencies inherent in single-chip microarchitecture allow speedup to occur 

across a wide range of parallelism [Lance Hammond]. 

Therefore a new microprocessor architecture has been proposed that is specifically 

designed to improve OS performance significantly as described below. 

2.5 Design of Proposed Microprocessor. 

In current multiprocessor architectures multiple independent microprocessors 

form a system, and communicate with each other over a system buss. Each runs a copy of 

the OS kernel, or, as in asymmetric multiprocessing, a single microprocessor runs the OS 
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and acts as a master and controls the remaining microprocessors. This technique has an 

inherent disadvantage of OS overload. Also the techniques used in SMP or NUMA are 

indispensable and must be used in multiprocessor architectures, neither has specific 

support for OS kernels. We will use a different technique, a modified form of chip 

multiprocessors (CMP). The new microprocessor architecture consists of two tightly 

coupled microprocessors. Both will be able to communicate with each other directly and 

will be fabricated as a single chip in the same package. 

I I I I 
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Figure 2.1 Proposed p-Processor Architecture 

One of the microprocessors will be the master processor and will implement 

privileged instruction as well as rest of the instruction set. Operating system alone will 

run on this microprocessor. The second microprocessor will only implement the non- 

privileged instructions. Complex processor execution units like floating point units and 

vector units will be shared among both processors to avoid over complex design and 

waste of resources as these are seldom used by the OS kernels. Proposed design is 

envisioned to remove earlier mentioned OS problems as follows. 

I .  Operating systems are huge programs that can overwhelm the cache and TLB due to code 

and data size, thereby cmrsing severe performance penallyfor User programs. 

The OS core has its own caches and TLB thus not affecting the user programs. 

Also the system core caches will have OS instructions and data structures in them 
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at all time thus removing cache contention faced by kernel in conventional 

CPUs. 

2. Operating systems may impact branch prediction performance, because of figuent 

branches and infrequent loops. 

Since the system core will have its own prediction logic, thus the user branch 

prediction will not be effected. Also this issue will be handled in more detail 

during OS design. 

3. OS exeartion is offen brief and intermittent, invoked by intemrpts. exceptions, or system 

calls, and can cmse the replacement of icsefirl cache, 7ZB and branch prediction state for 

little or no benefit. 

OS code will permanently reside on the system core thus avoiding the above to a 

certain extent. 

4. The OS may pcrfrm spin-waiting, explicit cache/TLB invalidation, and other operations 

not common in user-mode code, again effecting user code. 

OS code will permanently reside on the system core only thus again avoiding the 

above for the user core. 

5. In czrrrcnt modularized kernels, ewry kernel invocation causes context switch, and in 

case of p-kernels ewry call means a couple of context switches, thus wasting a 

considerable time in just switchingprocesses. 

The user and kernel code will be able to communicate directly by cross function 

calls that will have no context switch latency. Therefore context and memory 

space switches will be minimized by this architecture. This is one of the biggest 

advantage of this design. 

6. IPC-performance problems rend! from 64 bit architectrrres with there large 

mrmber of regisfers and register stack engines. In short, the large mrmber of 

registers confribtifes to apofentially massive context (more than 2KB) to be stored 

on each thread context switch. This added context switch overhead may prove 

fatal to microkernel sysfems. A combined hardware/sofiare soltrtion is therefore 

reqrrired to reduce the amount of iflormation stored [Jochen Liedtke 20011 

Since number of context and memory space switches will be dramatically reduced 

by this architecture, therefore the scale of this particular problem will be reduced. 
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But for the problem itself a few techniques are being developed including lazy 

context switching, such techniques will be explored in the proposed architecture. 

7. Owrall, operaiing vstern code e m s  poor instruction throrrghp~l on a 

srrperscalar microprocessor. 

The system core will be designed specifically with OS code in mind. Thus, trying to 

avoid the previously mentioned poor OS performance. Also this issue will be handled in 

more detail in OS design. 
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3. Instruction Set Architecture 

Much of the computer's architecturdorganization is hidden from a HLL 

programmer. In the abstract sense, the programmer should not care about the underlying 

architecture. The instruction set is the boundary where the computer designer and the 

computer programmer can view the same machine. 

The operation of CPU is determined by the instructions it execute, referred to as 

machine instructions or computer instructions. The collection of different instructions that 

the CPU executes is referred to as the CPU's instruction set. Each instruction must 

contain the information required by the CPU for execution. Figure 3.1 Shows the steps 

involved in instruction execution and. 

lamnlna mmplcie. 

Figure 3.1 Instruction Cycle State Diagram [I ]  

The elements of machine instructions are as follows: 

1 Opcode: 
3 

Opcode Specifies the operation to be performed. The 

S- 
OpCode is specified as a binary code. 

2 Function: Function 'code specifies what particular operation is to 

$ be performed or OpCodes specifying a range of 
operations. 

3 SaumOperand: The Source Operand or Rs specifies the register that is 
to be used in Input/Output Operations. 

4 Source Operand 1: The Source Operand 1 or Rsl specifies the register that 
is to be used as first operand in Arithmetic Operations. 

5 Source Operand 2: The Source Operand 2 or Rs2 specifies the register that 
is to be used as second operand in Arithmetic 
Operations. . 

6 Destination Operand: The Source Operand 1 or Rsl specifies the register that 
is to be used as first operand in Arithmetic Operations. 



7 Immediate-16: Immediate-16 Specifies 16 bit Immediate data 
8 Immediate-20: Immediate-20 Specifies 20 bit Immediate data. 
9 Direction: Specifies the Jump direction. 
9 Port Address: Specifies the Port Address for I/O operations. 

3.1 Bit and Byte Order 

In illustrations of data structures in memory, smaller addresses appear toward the 

bottom of the figure; addresses increase toward the top. Bit positions are numbered h m  

right to left. The numerical value of a set bit is equal to two raised to the power of the bit 

position. MC-CPU processor is a "little endian" machine; this means the bytes of a word 

are numbered starting fiom the least significant byte. Figure 3.2 illustrates these 

conventions. 

. . 
D;lta Structurr 

lli~licsl 24 2 3  16 I5 S 7 0 1111 01Ywt 
Address 

2s 
21 
20 
1 6 
9 I, 

S 

1 
I.n\wsl ' Address 

13yk OlhcI 
Figure 3.2 Bit and Byte Order 

3.2 Resewed Bits and Software Compatibility 
In many register and memory layout descriptions, certain bits are marked as 

mserved. When bits are marked as reserved, it is essential for compatibility with fiture 

processors that software treat these bits as having a future, though unknown, effect. The 

behavior of reserved bits should be regarded as not only undefined, but unpredictable. 

Software should follow these guidelines in dealing with resewed bits: 

Do not depend on the states of any resewed bits when testing the values of 

registers which contain such bits. Mask out the resewed bits before testing. 

Do not depend on the states of any reserved bits when storing to memory or to a 

register. 
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Do not depend on the ability to retain information written into any reserved bits. 

When loading a register, always load the reserved bits with the values indicated in 

the documentation, if any, or reload them with values previously read from the 

same register. 

3.3 Registers 

There are 32 general purpose 32 Bit registers Ro to R31. A PC, Address Register, 

Stack Pointer and Flag Register. Also there are 32 special purpose 32 bit registers SO to 

S31. 

3.4 Instructions Implementation 

The important design phase when designing a processor is to decide which 

instructions to include in the instruction set. The first step in deciding about instructions is 

the types of instruction formats. Following Instructions formats have been defined. All of 

the instructions have a 6;bit opcode which is used to determine the type of instruction to 

be executed. Each of the register specifications in all of the instructions is 5-bits wide, 

this means that the register file has 32 registers in it. 

3.4.1 R-Type (Register to register) 

&aS 5BITS 5 BITS 5 BITS 6 BITS 
31 26 25 21 20 I; i ~ l i  70 a 
I 

I I I I I I I 
Figure 3.3 R-TYPE Instruction Format 

In an R-type instruction the first &bit specification is the Instruction opcode. The 

following 5-bits specify function. These function bits specify what the a c h d  instruction 

that will be performed is. This means for a single R-type opcode there can be up to 32 

different instructions, as shown in figure 3.3. 

In an R-type instruction the first 5-bit register specification is the source operand 

register 1 or Rsl; the following 5-bit register specifies second source operand K2. The 

third 5-bit register specifies the destination register Rd. The final &bits from bit 5 downto 

bit 0 in the instruction are not used. 
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3.4.2 I-Type (Register & Immediate Value) 

32 BITS : 6BITS , , 5BITS ,- 5BITS . b 
I6 BITS 

3 1 26 25 21 20 16 13 'b 

In an I-type instruction the first 6-bit specification is the Instruction opcode. The 

following 5-bits specify function. These function bits specify the acfual instruction that 

will be performed. This means for a single I-type o p d e  there can be up to 32 different 

instructions. In an I-type instruction only 5-bit register specification is the source operand 

register 1 or RJ, which is also the destination register. The third ]&bit value is the 

immediate value, as shown in figure 3.4. 

OPCODE 

3.4.3 J-Type (JUMP USING PC +I- IMMEDIATE VALUE) 

In a J-type instruction first 6-bit specification is the Instruction opcode. The 

following 5-bits specify function. These function bits specify the achral instruction that 

will be performed. This means for a single J-type opcode there can be up to 32 different 

instructions. In a J-type instruction the 1 bit field specification is the direction ofjump i.e. 

forward or backwards. The third 20-bit value is the immediate value, as shown in figure 

3.5. 

Figure 3.4 I-TYPE Instruction Format 

REG 1: RJ Immediate 16 Bits 

3.4.4 N-Type (NO Operand) 

32 BITS 
f 6BITS , , 5BlTS 20 BITS 

b - - 
3 1 26 25 8 

- -  . - 
32 BITS : 6BlTS , , 5BITS ,, 21 BITS 

b 

31 26 25 21 20 b 
I 

OPCODE 

1 OPCODE I FUNCTION ( Not Used 
I I 

Figure 3.6 N-TYPE Instruction Format 

Figure 3.5 J-TYPE Instruction Format , 

FUNCTION D Immediate 20 Bits 



Ln an N-type instruction the first &bit specification is the Instruction opcode. The 

following 5-bits specify function. These function bits specify the achta/ instruction that 

will be performed. This means for a singIe I-type opcade there m be up to 32 different 

instructions. In an N-type instruction the remaining 21 bits are not used, as shown in 

figure 3.6. 

In an 10-type instruction the first &bit specification is the Instruction opcode. 

The following 5-bits specify the register. The next 13-bits are not used. The final 8 bits 

specify the Device and Port address, as shown in figure 3.7. 

3.4.5 10-Type 
32 BITS 

6BITS . SBITS ,-+. 
3 1 26 25 21 20 8 7 0 

3.4.6 01-Type 
4 32 BITS . 6BITS ,m4 b 

16 BITS , , 8 BITS 
P - b 

3 1 2625 2423 8 7 0 

Port Address 

In an 01-type instruction the first &bit specification is the Instruction opcode. 

The following 2-bits are not used. The next 16-bits specify the immediate data to be sent 

to the output port. The final 8 bits specify the Device and Port address, as shown in figure 

3.8. 

Figure 3.7 10-TYPE Instruction Format 

.Not Used OPCODE 

OPCODE 
. 

3.5 Instruction OpCode Map 

R 

Figure 3.8 01-TYPE Instruction Format 

Not 

- 
Instruction 
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Immediate Data 

Load to Rd From Memory Location Pointed By Rs 

Port Address 

LOAD 

OoCode 

No Operation 

Onerands Function 

OOOOO1 1 00000 

Test Flap 
Position 

NOP - 

&I. Rd 

0 000000 

1 

00000 



Load from Memory Loution Immediately following this Instroction in Memory 
LOAD1 000010 I 00000 R1 I 2 

Load to Register Using PC + Imm Data 

Store Register Using PC + Imrn Data 

STOREIA 000101 00000 Rl, 5 

Store Rd to Memory Location Pointed By R 

3 %I, 
Address Value 

4 

Move from R. to % 

moo LOADIA 

k1, % 

Move Immediate Data to Register 

ALU Double Operand Instructions 

om11 

00000 STORE 

6 

- 
ALU Single Operand Instructions 

ALUS 

000100 

MOVE 

7 
- 

00000 0001 10 

R1, Imrn 
Value MOVE1 

NOT 
IINC 
DEC 

ZERO 

ALUD 

MULTIPLY and DEVIDE Instructions 

Rl, Rd 

0001 1 
001 1 1 
01000 
01001 

OOlOOO 
001OOO 
001000 
001OOO 

AND 
OR 

XOR 
ADD 
SUB 

ALU Double Operand With Immediate Data Instructions 
ALUDI 

000111 
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00000 

R1 
I/1 
%I 
R1 

001001 
001001 
001001 
001001 
001001 

AND1 
ORI 

XORI 
ADD1 
SUB1 

MULDIV 

8 
8 
8 
8 

001010 
001010 
001010 
001010 
001010 

00001 
00010 
00100 
00101 
001 10 

MUL 

OOOO1 
00010 
00100 
00101 
001 10 

R1, Imm Data 
%I. Imm Data 
RJ, Imm Data 
R1, Imm Data 
Rl, Imm Data 

001011 

RL R2, % 
Rl, R3, % 
%I, R.2, % 
R1. R3.h 
Rl, R3.h 

10 
10 
10 
10 
10 

00001 I RlJu,% I 1 1  

9 
9 
9 
9 
9 
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Shift and Rotate Instructions 1-Bit 

Register Comparison Instructions 

SR 

I Register Comparison With Immediate Data Instiuctions 1 

Conditional Branches to Memory Address Contained at  the Next Memory 
Location 

%1 
&I 
%1 
Igl 

00001 
00010 
0001 1 
00100 

SHL 
SHR 

ROTL 
ROTR 

Unconditional Branch to Memory Address Contained at  the Next Memory 
Location 

12 
12 
12 
12 

001100 
001100 
001 100 
001 100 

BRANCHI I 001111 

1 Branch Conditionally to PC + Immediate Data (BASED ON FLAG REGISTER) I 

Branch Unconditionally to PC + Immediate Data 
BRANCH 

15 00000 

- 
BRANCHC 

- 

010001 I 00000 1 Imm Data 

BRANCHEQ 1 010010 I 00001 

17 

Imm Data 18 
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18 
18 
18 
18 
18 
18 

Input Data from Input Port to Register 

Output Immediate Data to Output Port 
OUTPUTI I 010101 00000 I ImmValue 1 21 

Imm Data 
Imm Data 
Imm Data 
Imm Data 
Imm Data 
Imm Data 

Output Register Data to Output Port 

00010 
00011 
00100 
00101 
001 10 
001 1 1 

BRANCHNEQ 
BRANCHGT 

BRANCHGTE 
BRANCHLT 

BRANCHLTE 
BRANCHZ 

INPUT I 01001 1 

010010 
010010 
010010 
010010 
010010 
010010 

Rd 00000 

20 

Push Register Data on Top of Stack 

19 

00000 I R. OUTPUT 

POP Data to Register from Top of Stack 

010100 

PUSH 

Function Call 

00000 010110 

23 

CALL 

CALLS 

Return from Function Call 

I Enable o r  Disable In t e r ru~ t s  

POP 

RETURNC I 01 1001 I 00000 1 -- 

Return From Interrupt 

%1 
22 

00000 010111 
POPS 

011000 

01 1000 

25 

R E m  I 011010 

22 
PUSHS 

Rd 

00000 I - 1 26 

Trap to OS Kernel 

0000 1 010110 

00000 

00001 

RETURNCS I 01 1001 00001 

Wait for Interrupt 

%1 

010111 

TRAP 

Rd 00001 

Imm Address 
Value 

Imm Address 
Value 

- 

Imm Address 
Value 

29 WAIT1 

23 

24 

24 

25 

28 011100 00000 

01 1101 00000 1 - 
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Halt Execution 
HALT 011111 00000 -- 1 31 1 

Figure 3.9 Instruction OP-Code Map 

Wait for Time (Given) 

3.6 Instruction Implementation Detail 

The following sections explain the implementation details of each instruction. 

3.6.1 NOP 

30 

Descri~tion: 

NOP performs no operation. It is used to consume a complete Fetch, Decode, and 

Execute Cycle. Used normally by compilers to align load stores. And eliminate 

Imm Time 
Value 

Instruction type: 
Opcode: 
Function Code: 
Operation: 

pipeline hazards. 

00000 WAITT 

N-Type 
000000 
000000 
No Operation 

3.6.2 Load 

011110 

Figure 3.10 NOP Instruction 

Descri~tion: 

Load uses register indirect memory addressing to load a 32 bit word from 

memory. Memory address is provided in the Source register 1. Read data is placed 

in the destination register 

Instruction type: 
Opcode: 
Function Code: 
Source Register 1: 
Destination Register: 
Operation: 

3.6.3 Loadl 

R-Type 
00000 1 
000000 
Memory Address 
Destination for read data 
%+MEM[Rsll 

( Instruction type: 1 I-Type 

Fi y r e  3.1 1 LOAD Instruction 

- 
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Description: 

LoadI uses address contained at the next memory location pointed to by Program 

Counter + 1 to load a 32 bit word from memory. Read data is placed in the 

Destination Register. 

Opcode: 
Function Code: 
Destination Register: 
Operation: 

LoadIA 

7 

000010 
000000 
Destination for read data 
R.1 -- MEM [ PC+l] 

Figure 3.12 LOAD1 Instruction 

Description: 

LoadI uses address contained inside the instruction as 16 bit value to load a 32 bit 

word from memory. Memory address is padded to make it 32 bits. Read data is 

placed in the Source Register 1. 

Instruction type: 
Opcode: 
Function Code: 
Source Register 1: 
Immediate-16 
Operation: 

Store 

I-Type 
00001 1 
000000 
Destination for read data 
Memory address 
R.1 + MEM [ Immediate-161 

Figure 3.14 STORE Instruction 

Figure 3.13 LOADIA Instruction 

Descrintion: 

Store uses register indirect memory addressing to store a 32 bit word to memory. 

Memory address is provided in the destination register. Data to be stored is 

provided in Source Register 1. 
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StoreIA 

I Instruction type: 1 EType 
- - 

Opcode: 000101 
Function Code: 000000 
Source Register 1: Source Register Containing Data 
Immediate16 I Memory address 
Operation: ( MEM [ Immediate16] + RJ 

Figure 3.15 STOREIA Instruction 

Description: 

StoreIA uses address contained inside the instruction as 16 bit value to store 32 bit 

word to memory. Memory address is padded to make it 32 bits. Data to be stored 

is provided in Source Register 1. 

Move 

Figure 3.16 MOVE Instruction 

Description: 

Move instruction is used to move data between two registers 

Description: 

Move instruction is used to move immediate data to a register. Immediate Data is 

padded to make it 32 bits. 

- 
Instruction type: 
Opcode: 
Function Code: 
Source Register 1: 
Immediate-16 
Operation: 

I-Type 
0001 11 
000000 
Destination Register for data 
Immediate Data 
RJ + Immediate16 

Figure 3.17 MOVE1 Instruction 
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3.6.9 ALUS 

I I DEC : 01000 1 

Instruction type: 
Opcode: 
Function Code: 

R-Type 
001000 
NOT : 00011 
INC :01111 

(ZERO : R 1  +ZERORl 
Figure 3.18 ALUS Instruction 

Source Register 1: 
Operation: 

Description: 

ALUS or ALU Single Operand instructions use R.1 as the source and destination 

ZERO :01001 
Register to perform operation on 
NOT - : Rl +NOT Rl 
INC : R l + I N C % l  

register. 4 possible operations are specified by the hnction code 

3.6.10 ALUD 

:&+-R1 ORR2 
R : & + I t l X O R W  

Figure 3.19 ALUD Instruction 

Description: 

ALUD or ALU Double Operand instructions use h1 and R,2 as the source 

Operands and % as destination register. 5 possible operations are specified by the 

function code. 

A Novelp-Romsor Architecture 40 
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3.6.11 ALUDI 

ALUDI or ALU Double Operand instructions with Immediate data use %1 as the 

source and destination register. Immediate data provides the second operand. 5 

Instruction type: 
Opcode: 
Function Code: 

Source Register 1: 
Immediate-16 
Operation: 

possible operations are specified by the function code. 

I-Type 
001010 
AND : 00001 
OR :00010 
XOR : 00100 
ADD : 00101 
SUB :00110 
Source Operand 1 
Immediate Data 
A N D : R l  --RJANDImmData 
OR : R,1+ R 1  OR Irnm Data 
XOR : &I-- l7J XOR Imm Data 
ADD : RJ-- R.1 ADD Irnm Data 
SUB : RJ + R 1  SUB Imm Data 

3.6.12 MULDIV 

Figure 3.20 ALUDI Instruction 

001011 
Function Code: MUL : 00001 

MULI :00011 
D M  : 00100 

Source Register 1: Source Operand 1 
Source Rqister 2: Source Operand 1 
Destination Register : Destination for result 
Immediate-16 Immediate Data 
Operation: MUL :& --R,,lMULRsZ 

DIV :& c R I D I V R s 2  . 
MULI : RJ +- I&l MUL Imm Data 

1 I DIVI :&I -- RJ DIV Irnm Data 
Figure 3.21 MULDIV Instruction 

Descriotion: 

MULDIV OR Multiply Divide instructions use RJ and %2 as the source 

Operands and Rd as destination register OR k l  as the source and destination 

A Novel p-Processor Architesfure 4 1 
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register and Immediate data as second operand. 4 possible operations are specified 

by the function code. 

Instruction type: 
Opcode: 
Function Code: 

Source Register 1: 
Operation: 

001100 
SHL : 00001 = 
S H R  : 00010 

ROTL :00011 

ROTL : R.1 + ROTL RJ I 
( ROTR : ROTR RJ 

Figure 3.22 SR Instruction 

Description: 

SR or Shift Rotate Single Operand instructions use RJ as the source and 

destination register. 4 possible operations are specified by the function code. 

I 

Figure 3.23 RC Instnrctic 

Descri~tion: 

N ~ Q  :00010 
GT :00011 
GTE :00100 
LT : 00101 
LTE :00110 
Source Operand 1 
Source Operand 1 
Destination for Boolean result 
EQ :FL.-EQ+-IIFR.I=R&? 
NEQ :FLNEQ+IIFRJ/=R,,2 
GT : F L - G T + I I F R J > u  
GTE :FL-GTE-IIFR,l>=W 
LT : F L L T + I I F R . l < u  
LTE :FLLTE+ 1 IFRl<=RJ 
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RC or Register Compare Double Operand instructions use %1 and R 3  as the 

source Operands and Flag Register as destination register. 6 possible operations 

are specified by the function code. 

3.6.15 RCI 

Instruction type: 
Opcode: 
Function Code: 

1 LTE : FL-LTE + 1 IF &I<= Imm Data I 
F igre  3.24 RCI Instruction 

I-Type 
001 110 
EQ :00001 
NEQ : 00010 

Source Register 1: 
Immediate16 
Operation: 

Descriotion: 

RC or Register Compare Single Operand instructions use R 1  and Immediate Data 

- 
GT :00011 
GTE : 00100 
LT : 00101 
LTE : 00110 
Source Operand 1 
Immediate Data 
EQ :FL-EQ+IIFRJ=ImmData 
NEQ : FL-NEQ +- 1 IF RJ I= Irnm Data 
GT : FL-GT +- 1 IF RJ > Imm Data 
GTE : FL-GTE + 1 IF R1>= Imm Data 
LT :FL-LT+lIFRJ<ImmData 

as the source Operands and Flag Register as destination register. 6 possible 

operations are specified by the function code. 

Descrintion: 

Unconditional Branch to the memory address contained at the next memory 

location pointed by PC+I. 

Instruction type: 
Opcode: 
Function Code: 
Operation: 
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N-Type 
001111 
000000 
PC +- MEM [PC+I] 

Figure 3.25 BRANCHI Instruction 
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3.6.17 BranchCI 

Instruction type: 
Opcode: 
Function Code: 

Description: 

R-Type 
010000 
BranchEQI : 00001 
BranchNEQI : 00010 

Source Rep;ister 1: 
Source Register 2: 
Flag Register 
Operation: 

Conditional Branch to the memory address contained at the next memory location 

B ~ ~ ~ G T I '  : 0001 1 
BranchGTEI : 00100 
BranchLTI : 00101 
BranchLTEI : 001 10 
Source Operand 1 
Source Operand 1 
Destination for Boolean result 
BranchEQI : PC + MEM [PC+l] 

lFR1 =RJ 
BranchNEQI : PC + MEM [PC+1] 

IFRl /=R'2  
BranchGTI : PC + MEM [PC+l] 

I F R l > R J  
BranchGTEI : PC + MEM [PC+l] 

I F s 1  >=R'2 
BranchLTI : PC + MEM [PC+I] 

I F R 1  < R J  
BranchLTEI : PC + MEM [PC+1] 

I F R 1  <=RJ 

pointed by PC+I. BranchCI Double Operand instructions use R.1 and R2 as the 

Figure 3.26 BRANCHCI Instruction 

source Operands and branches on the base of comparison result. 6 possible 

operations are specified by the function code. 

3.6.18 Branch 

Description: 

Unconditional Branch to the Immediate memory address. 

Instruction type: 
Opcode: 
Direction D 
Immediate20 
Function Code: 
Operation: 
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J-Type 
010001 
Jump Direction 
20 Bit Immediate Address value 
000000 
PC + MEM Dmm Address] 

Figure 3.27 BRANCH Instruction 
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hstruction type: 
Ipcode: 
?unction Code: 

Direction D 
Flag Register 
3peration: 

i y re  3.28 BRANCHC 

BranchZ : 00111 
20 Bit Immediate Address value 
Jump Direction 
Used for Jump Conditions 
BranchEQ : PC + MEM PC+l] 

JFFL-EQ= 1 
BranchNEQ : PC + MEM PC+l] 

IF FL-NEQ =1 
BranchGT : PC +- MEM PC+l] 

IFFL-GT= 1 
BranchGTE : PC + MEM PC+l] 

IF FL-GTE = 1 
BranchLT : PC + MEM PC+l] 

IFFL-L.T=l 
BranchLTE : PC + MEM PC+l] 

IF FL-LTE = 1 
mction 

Conditional Branch to the immediate memory address. BranchC uses the flag 

register to make conditional jumps. Therefore a register compare or ALU 

operation should have been performed before this instruction. 6 possible 

operations are specified by the hnction code. 

3.6.20 Input 
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Instruction type: 
Opcode: 
Source Operand: 
Port Address: 
Operation: 

10-Type 
010011 
Destination Register for Input Data 
8 bit port address 
R, + INPUTFort Address] 

Fi y r e  3.29 INPUT Instruction 
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Port Address Format 
8 Bits 

4 * 
+ 4 Bits . 7 - - 4 Bits -P 

7 4 3 0 
I Device Address ( Port Number 
Figure 3.30 Input Port Format 

Total Devices: 16 
Port per Device: 16 

Description: 

Reads Data from the input port and places it into the Source register %. 

3.6.21 Output 

Port Address Format 

4 
8 Bits F 

4 4 Bits 4 Bits - - b 
7 4 1 0 

Instruction type: 
Opcode: 
Source Operand: 
Port Address: 
Operation: 

. - 
[Device Address I Port Number 1 
Figure 3.32 Output Port Format 

10-Type 
010100 
Source Register for output Data 
8 bit port address 
OUTPUT[Port Address] + R. 

Total Devices: 16 
Port per Device: 16 

Fiy re  3.32 OUTPUT Instruction 

Descrivtion: 

Outputs the data contained in the Source register R, to the output port. 
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01-Type 
010101 
Output Data 
8 bit port address 
OUTPUTPort Address] +- Imrn Data 

- 
1 
2 
3 
4 
5 

Figure 3.33 OUTPUTI Instruction 

Instruction type: 
Opcode: 
Immediate-16: 
Port Address: 
Operation: 
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Port Address Format 
8 Bits 

4 b 

4 4 Bits -- 4 Bits 
7 A '2 n 

7 a " 

I Device Address I Port Number 1 
Figure 3.34 OUTPUT1 Port Format 

Total Devices: 16 
Port per Device: 16 

Description: 

Outputs the Immediate data to the output port. 

3.6.23 PUSH 

Instruction type: 
Opcode: 
Function Code: 

PUSHS : SStackPointeW 
SStacklSStackPointerl + 

R-Type 
0101 10 
PUSH : 00000 

Source Register 1: 
Operation: 

- 
K1 

Figure 3.35 PUSH Instruction 

PUSHS : 00001 
Register to push on top of stack 
PUSH : StackPointer+ 

Description: 

Pushes the source register on top of the stack or remote stack. 

3.6.24 POP 1 1n;tmction - 
0 code: 
Function Code: 

Figure 3.36 POP Instruct 

Description: 

R-Type 
0101 11 
POP : 00000 
POPS : 00001 
Destination Register for popped Data 
POP : % + StacklStackPointerl 

POPS : % + SStack[SStackPointer] 
SStackPointer-- 

n 

Pops data from top of stack or shared stack to the destination register. 
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5 CALL 
I Instruction type: 

Opcode: 
Function Code: 

I 

Figure 3.37 CALL Instructi 

Dcscri~tion: 

I-Type 
011000 
CALL : 00000 
CALLS : 00001 
Function address 
CALL : StackPointeW 

Stack[StackPointer] +- PC 
PC +- Imrn Data 

CALLS : Callcode + Imrn Data 
Assert CALLS 

ion 

Calls function on the same processor or the remote processor. 

3.6.26 RETURNC 1 1n;truction type: 
0 code: 
Function Code: 

Operation: r 
I 
Figure 3.38 RETURNC I 

Descrintion: 

N-Type 
011001 
RETURNC : 00000 
RETURNCS : 00001 
RETURNC :PC+ 

Stack[StackPointer] 
StackPointer- 

RETURNCS : Assert RETURNS 
;tnrction 

Returns from the function call on the same or remote processor. 

3.6.27 RETURN1 

- 
Descri~tion: 

Returns from the interrupt handler routine 

Instruction type: 
Opcode: 
Function Code: 
Operation: 
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N-Type 
011010 
00000 
RETURNI:PC+- 

Stack[StackPointer] 
StackPointer- 

Figure 3.39 RETRUNI Instruction 
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Instruction type: 
Opcode: 
Function Code: 

Descrintion: 

Enable or disable interrupts. 

N-Type 
011011 
EI : 00001 

Operation: 

3.6.29 TRAP 

DI : 00001 
EI :&I+ 0 
DI : n-I + 1 

Figure 3.40 ED1 Instruction 

Description: 

Traps to the kernel entry point. 

Instruction type: 
Opcode: 
Function Code: 
Immediate-16: 
Operation: 

N-Type 
011100 
00000 
Service Requested 
CALL : StackPointer++ 

StackjStackPointer] + PC 
P C t S 1  

Description: 

Waits for specified interrupt. 

Figure 3.41 TRAP Instruction 

Instruction type: 
Opcode: 
Function Code: 
Immediate-16: 
Operation: 
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I-Type 
011101 
00000 
Interrupt Number 
CALL : Wait until INT = 1 AND 

INT CODE = Intempt Num 
Figure 3.42 WATI Instruction 
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3.6.31 HALT 

Descrintion: 

CPU stops executing instructions. 

1 
2 
3 
4 
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Figure 3.43 HALT Instruction 

Instruction type: 
Opcode: 
Function Code: 
Operation: 

N-Type 
011111 
00000 
Halts the CPU - 
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4. System Design 

Design of a microprocessor is a complex task. On top of that, in order to test a 

microprocessor a complete working set of peripherals is required. In this chapter, design 

of the microprocessor and its associated peripherals is explained. 

4.1 MultiCore Processor Architecture 

The MC-CPU implements the Instruction Set Architecture defined in the previous 

chapter. The Master processor implements all the privileged instruction as well as rest of 

the instruction set. Caches and Shared execution units are not implemented in this 

version. The Slave processor only implements the non-privileged instructions. Figure 4.1 

gives the block diagram of MC-CPU. 

4.1.1 MC-CPU Architecture 

MC-CPU consists of Master CPU (CPU-I), Slave CPU (CPU-2) and Shared 

Stack as shown in the figure 4.1. Each of these functional units and their operations are 

explained individually in the following sections. 

4.1.1.1 CPUl 

CPUl is the master CPU. It implements all the privilege instructions. Only the 

master processor can access YO devices. Interrupt handling is performed only by the 

master processor. Shared stack is also controlled by master processor. The master 

processor can control the behavior of the slave processor by the means of INTS 

interrupts. Slave processor implements special interrupt handlers for INTS rather than for 

the normal interrupts. 

CPU2 is the slave CPU. It does not implement the privilege instructions. The 

slave processor can not physically access 110 devices. System level interrupt handling is 

not performed by the Slave processor as it does not have an INT line. Shared stack is 

accessed by the slave processor when ever the master processor grants it access. Slave 

processor implements special interrupt handlers for INTS rather than for the nonnal 

interrupts. When ever the master processor asserts INTS, the slave processor immediately 
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jumps to the particular interrupt based on INTSCODE. The INTSCODE is an &bit value 

indicating particular interrupt. 

c~odr MC-CPU , 

Figure 4.1 MC-CPU 

4.1.1.3 Shared Stack 

- 

Shared Stack consists of the stack memory and the shared stack pointer. The 

shared stack pointer is a 32 bit register. Its output value is constantly supplied to both 

processors. It can only be modified by one processor at any given time. Shared stack 

memory consists of single port 1024 bit distributed RAM, arranged as 32 X 32 bits. Only 

one processor can push or pop from the shared stack at any given time. 

4.1.1.4 Shared Stack Operation 

Sstackdaraout 

-INTS 
Resuat 

k t  
INTSCODE CALLS 

RElURNS 
W c e d  

Shared stack operates in the following manner: 

i. Master processor has initial control of the shared stack 

4 I I I  I I 
I I ) ' I 

' 

ii. Master processor can modify the shared stack pointer any time; only exception is 

. . when it has granted control of the shared stack to the slave processor 

SStackdataout 
Resuat 

)Grant INTS 
'CALLS INTSCODE 
IRETWJS 
Serviced 

+ 
4 



iii. Master processor can push or pop values from the shared stack any time; except when 

it has granted control of the shared stack to the slave processor 

iv. Slave processor can not directly access the shared stack 

v. Slave processor must assert the REQUEST Signal to gain access to the shared stack 

vi. Whenever REQUEST is asserted by the Slave processor, the master processor can 

grant or disallow access to the shared stack 

vii. Access is disallowed only when master processor is modifying or accessing the shared 

stack itself 

viii. Slave processor is blocked or in a wait state during this period 

ix. When the master processor is not accessing the shared stack and the Slave processor 

requests for it, request is granted by asserting the GRANT signal 

x. When the GRANT signal is asserted Slave processor gets access to the shared stack 

xi. Slave processor can now modify both shared stack pointer and shared stack 

xii. After the slave processor has modified the stack it deasserts the GRANT signal to 

indicate that the shared stack is now free 

xiii. When the GRANT signal is deasserted the master processor deasserts the GRANT 

signal and takes the control of shared stack back 

4.1.1.5 Remote Call 

All the communication between the master and slave processor is based on remote 

calls. In fact these are not remote calls in the classic sense rather these are traps to the OS 

kernel running on the master processor. Only the slave processor can trap to the master 

processor by asserting CALLS signal. The remote calls work in the following manner. 

i. When ever the user wde running on the Slave processor needs some operating system 

service it must invoke a remote call 

ii. Remote call is invoked by the slave processor by asserting the CALLS signal 

iii. Before asserting the CALLS signal slave processor must request access to the shared 

stack, and at least place the 32 bit service code on top of the shared stack. It can also 

place any parameters on the stack if there is any 
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iv. After placing the service code andlor any parameters on the shared stack, the Slave 

processor asserts the CALLS signal 

v. On receiving the CALLS signal Master processor invokes the remote call handler 

vi. Remote call handler checks for user access rights and proper parameters and then 

calls the appropriate OS function. This is a normal function call 

vii. Normally no context switch takes place during this whole procedure 

viii. After servicing the call and placing return values onto the shared stack the Master 

processor asserts the RETURNS signal 

ix. On receiving the RETURNS signal, Slave processor request for the shared stack, gets 

the return values, and deasserts the CALLS signal 

4.1.1.6 Remote Interrupt 

The Master processor controls the slave processor by using Remote Interrupts. 

Only the Master processor can raise remote interrupts and only the slave processor serves 

remote interrupts. Interrupt vector table and interrupt service routines for the remote 

interrupts are placed in the Slave processor's memory space by the Master processor. 

These interrupts can range from memory management to context switching to process 

cleanup. Remote interrupts work in the following manner. 

i. Operating System running on the Master processor can raise remote interrupts 

ii. A remote interrupt is raised by asserting the INTS signal 

iii. Interrupt type is indicated by INTSCODE 

iv. Upon receiving an INTS the Slave processor immediately jumps to the appropriate 

handler based on INTSCODE 

v. Atter servicing the INTS the slave processor assert the SERVICED signal 

~ i .  Upon receiving the SERVICED signal the Operating System on the Master processor 

considers the work done and deasserts the INTS signal 

4.1.2 Base CPU Architecture 

In this section we describe the base CPU architecture and its implementation. The 

base CPU consists of the following main units. 
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4.1.2.1 Internal TriState DataBus 

The internal TriState DataBus is the main internal processor bus. All the datapath 

components are connected to this bus. All datapath components have enable signals. 

When the enable signal is low the component is disabled and has high impedance. Only 

one component is enabled and driving the bus. Multiple components can act as 

destination at any given time. 

4.1.2.2 Registers 

The CPU has a set of registers for normal operation. Since the design is based on 

the principles of RISC, a large number of registers are provided. All registers are 32 bit 

wide. There are 32 general purpose 32 Bit registers Ro to R31m, a 32 bit PC, Address 

Register, Stack Pointer and Flag Register. Also there are 32 special purpose 32 bit 

registers SO to S3 1. 

4.1.2.3 ALU 

The CPU has a single 32 bit ALU that performs all arithmetic and logic operations 

except multiplication and division. The M U  performs the following operation on 32 bit 

operands: 

i. PASS 

ii. AND 

iii. OR 

iv. NOT 

v. XOR 

vi. ADD 

vii. SUBTRACT 

viii. INCREMENT 

ix. DECREMENT 

x. ZERO 

xi. ONE 

The multiply/divide unit provides the CPU with hardware multiplication 

capability. Full 32 bit X 32 bit multiplication and division are implemented. 
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4.1.2.5 Comparator i 

The comparator unit provides the CPU with comparison operation. Only scalar 

data comparisons are implemented. Following operations are available 

i. > 
ii. >= 

iii. < 

iv. <= 

v. = 

vi. != 

Mull/ ALU 

STACK 

emainder Regist Shifter Flag Register 

Output Register 

PC Stack Pointer 
Register 

File 
& 

CONTROLLER 

RW 
vms 

IXviccEN 
Dsvicc WE 

SStackPointab 
SSWoi*Wr 
SStlcvointcrh 

INTSCODE 
CALLS 

RETIRNCS 

Figure 4.3 CPU 
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4.1.2.6 Shifter 

The shifter unit provides the CPU with shift and rotate operation. Only scalar data 

shift and rotates are implemented. Full 32 bit shifts and rotates are available. The 

following operations are available. 

i. shl 

ii. shr 

iii. rot1 

iv. rotr 

4.1.2.7 IR extender 

IR extender is used for the extraction of immediate data and address values 6om 

the instructions. 

4.1.2.8 Hardware Stack 

The hardware stack allows for the storage of procedure return addresses and 

parameters. It is implemented using single port distributed RAM. It is arranged as 64 X 

32 bits. Data can be pushed or popped from the stack. 

4.1.2.9 Register File 

The register file provides for the main program variable storage. It is a 32 bit dual 

port register file. Data read ftom the memory is brought straight to the register file. Data 

stored to the memory is taken from the register file. Hence the register file is the main 

component in implementing the load store architecture of the CPU. 

4.1.2.10 Controller 

Controller is the brain of the CPU. It is implemented as a Finite State machine. All 

instruction decoding and sequencing takes place inside the controller. 

4.2 System Architecture 

The complete system is composed of multiple independent units that work together to 

form a complete working system as shown below in the system level block diagram. The 

whole system is implemented as a SoC on a single FPGA. The complete system utilizes 

approximately 95% of a Spartan-IIE ( XC2S30Opq208-e ). The complete system consists 

of the following units.. 



MC - CPU architecture and working was explained in detail previously 

Controller 

L 
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ii. MC-CPU 

MC-CPU architecture and working was explained in detail previously 

iii. Memory 

The memory is based on dual port RAM and is arranged as 512 X 32 

iv. MC-CPU 

MC - CPU architecture and working was explained in detail previously 

v. Memory 

The memory is based on dual port RAM and is arranged as 512 X 32 

vi. MUX 

MUX is the input multiplexer and is controlled by MC-CPU 

vii. DMUX 

MUX is the output multiplexer and is controlled by MC-CPU. 

viii. Keyboard Controller - 
\. 

Keyboard controller is used for interfacing to the standard PS2 style keyboard 

ix. VGA Controller 

VGA controller is used to control the standard VGA display at 640 pixels X 480 

pixels, 60Hz refresh. 

x. Interrupt Controller 

Provides priority based interrupt handling. 8 interrupts are provided. Each is 

individually maskable 

xi. Switch Debounce and Pulse Control 

Switch Debounce and pulse control provides debouncing of external switch input. 

Also it provides one-shot capability 

xii. 7-Seg Controller 

7-Seg Controller Controls the two 7-segment displays on the FPGA protoiyping kit. 

Also it switches between PC and Address register 
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xiii. LED Controller 

LED Controller ~ontrhls the two LED displays on the FPGA prototyping kit. It 

switches between INSTRUCTION TYPES or INSTRUCTION REGISTER or ALU 

OUTPUT or STACK POINTER 

4.2.1 Memory 

The memory ofthe system is built onto the FPGA chip. It is amnged as 512 X 32 

bits. It is composed of using 4 dual port Xilinx 4096 bit block RAMS. The memory 

provides two independent readtwrite ports. One port is used by master CPU while the 

other is used by the slave CPU. 

4.2.2 MUX 

MUX is the input multiplexer and is controlled by MC-CPU. It currently provides 

4 input ports but can be extended to support 16 input ports. Each port can be upto a 

maximum of 32 bits wide. The first input port is used by the master CPU memory. 

4.23 DMUX 

DMUX is the output multiplexer and is controlled by MC - CPU. It currently 

provides 4 output ports but can be extended to support 16 output ports. Each port can be 

upto a maximum of 32 bits wide. The first output port is used by the master CPU 

memory. 

4.2.4 KEYBOARD Controller 

The communication between the keyboard and the controller uses two signals, 

KeyboardCIock and KeybourdData. When there is no activity, that is, when there is no 

key press on the keyboard, both KeyboardClock and KeyboardData are at 1. When a key 

is pressed (or released), the keyboard sends a unique code for that key to the controller 

serially over the KeyboardData line. The serial data on the KeyboardLhfa line is 

synchronized between the keyboard and the controller by clock pulses that the keyboard 

sends over the Keyboardclock line. 

The data for each key that is sent over the KeyboardData line consists of eleven 

bits. These eleven bits are: a 0 for the start bit, 8 data bits for the key code starting with 

the least significant bit to the most significant bit, an odd parity bit, and lastly a 1 for a 
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stop bit. Figure 4.6 lists some of the key codes generated by the keyboard when the 

corresponding key is pressed. When a key is released, a different code is generated. The 

odd parity bit is set such that the total number of 1 bits in the eight data bits plus the 

parity bit is an odd number. 

Figure 4.5 shows a sample timing diagram for the data transmission of the key 

code 4E (hex) or 01001110 (binary). Starting from the inactive state where both the 

KeyboardData and KeyboardCIock lines are at 1, the transmission begins by setting the 

KeyboardData line low for the start bit. The keyboard then sends out the data and parity 

bit on the KeyboardData line at a rate of one bit per clock cycle on the KeyboardCIock 

line. The clock pulses on the KeybwrdCIock line are generated by the keyboard. The 

parity bit for the key code 4E is 1, since the eight data bits consist of an even number of 1 

bits, therefore, to make the parity odd, the parity bit must be 1. 

Figure 4.5 Sample timing diagram for the data transmission of the key code 4E 
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Figure 4.6 A partial list of key codes generated by the keyboard 

The state diagram for keyboard controller is derived by following the timing 

diagram shown in fig 4.5. In each of the eight data states, do, dl ,  ..., d7, we will get one 

corresponding data bit From the KeybmdDaia input line. For example, suppose we use 

an 8-bit register named keycode for storing the eight data bits. Then in state do, we will 

assign KeybwrdData to keycode(0). in state dl ,  we will assign KeybomdDaia to 

keycode(l), and so on for all eight data bits. This is possible because the transition of the 

FSM from one state to another is synchronized by the keyboard clock signal 

Keyboardclock. For simplicity, we will not check for the start bit, parity, and stop bits. 

This controller circuit actually does not control the keyboard because it does not 

generate control signals for the operation of the keyboard. Instead, it receives the serial 

data signals from the keyboard, and packaged it into data bytes. The output of this 

controller is simply the data bytes, which represent the key code of the keys being pressed 

on the keyboard. In state do, the bit on the KeybourdDa/a line is loaded into bit 0 of the 

Keycode register, in state dl ,  the bit on the KeyboardDaia line is loaded into bit 1 of the 

Keycode register; and so on. Each bit of the Keycode register must, therefore, be able to 

load in the Keybuurdllata independently, and each load enable line is asserted by the 

corresponding state encoding 

4.2.5 VGA Controller 

The monitor screen for a standard VGA format contains 640 columns by 480 rows 

of picture elements called pixels. An image is displayed on the screen by turning on or off 

individual pixels. The monitor continuously scans through the entire screen turning on or 

off one pixel at a time at a very fast speed. The scan starts From row 0, column 0 at the 

top left comer, and moves to the right until it reaches the last column in the row. When 

the scan reaches the end of a row, it continues at the beginning of the next row. When the 

scan renches the last pixel at the bottom right comer of the screen, it goes back to the top 

left comer of the screen, and repeats the scanning process again. In order to reduce flicker 

on the screen, the entire screen must be scanned 60 times per second or higher. During the 

horizontal and the vertical retraces, all the pixels are turned off. 
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640 pixels per mw 

Row1 

Row 47 

Monitor 
Screen 

A 

480 pixels 
per column 

" 

Figure 4.7 VGA monitor with 640 columns x 480 rows. Scan starts from 

row 0, column 0, and moves to the right and down until row 479, column 639. 

The VGA monitor is controlled by five signals: red, green, blue, horizontal 

synchronization, and vertical synchronization. The three color signals, referred to 

collectively as the RGB signal, are used to control the color of a pixel at a location on the 

screen. These three color signals on the FPGA board are connected such that they can 

individually be either turned on or off, hence each pixel can display only one of eight 

colors. In order to produce more colors, each analog color signal must be supplied with a 

voltage between 0.7 to 1.0 volts for varying the intensities of the colors. The horizontal 

and vertical synchronization signals are used to control the timing of the scan rate. The 

horizontal synchronization signal determines the time to scan a row, while the vertical 

synchronization signal determines the time to scan the entire screen. By manipulating 

these five signals, images are formed on the monitor screen. Each analog color input can 

be set to one of four levels by two digital outputs using a simple two-bit digital-to analog 

converter. The four possible levels on each analog input are combined by the monitor to 

create a pixel with one of 4 X 4 X 4 = 64 different colors. The six digital control lines let 

us select fiom a palette of 64 colors. 

The horizontal and vertical synchronization signals timing diagram is shown in 

Figure 4.7. When inactive, both synchronization signals are at a 1. The start of a row scan 

begins with the horizontal sync signal going low for 3.77 pec  as shown by region B in 

Figure 5.10. This is followed by a 1.79 psec high on the signal as shown by region C. 

Next, the data for the three color signals are sent, one pixel at a time, for the 640 columns 
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as shown in region D for 25.42 psec. Finally, after the last column pixel, there is another 

0.79 psec of inactivity on the RGB signal lines as shown in region E before the horizontal 

sync signal goes low again for the next row scan. The total time to complete one row scan 

is 3 1.77psec. 

The timing for the vertical synchronization signal is analogous to the horizontal 

sync signal. The 64psec active low vertical sync signal resets the scan to the top left 

comer of the screen as shown in region P, followed by a 1020 psec high on the signal as 

shown by region Q. Next, there are 480 row scans of 31.77psec each, giving a total of 

15250psec as shown in region R. Finally, after the last row scan, there is another 450psec 

as shown in region S before the vertical sync signal goes low again to start another 

complete screen scan starting at the top left comer. The total time to complete one 

complete scan of the screen is 16784psec. 

Figure 4.9 Horizontal and vertical synchronization signals timing diagam 

. . 

In order to get the monitor to operate properly, we simply have to get the 

horizontal and vertical synchronization signals timing correct, and then send out the RGB 

data for each pixel at the right column and row position. It tums out that it is fairly simple 

to get the correct timing for the two synchronization signals. The built-in clock crystal on 

the UP2 board runs at a speed of 25.17SMHq which gives a period of 1 1 25.175~10~ 

which is about 0.0397psec per clock cycle. For region B in the horizontal synchronization 
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signal, we need 3.77psec, which is approximately 3.77 I 0.0397 = 95 clock cycles. For 

region C, we need 1.79psec, which is approximately 45 clock cycles. Similarly, we need 

640 clock cycles for region D for the 640 columns of pixels, and 20 clock cycles for 

region E. The total number of clock cycles needed for each row scan is, therefore, 800 

clock cycles. 

To get this timing correct, we can design FSM with 800 states running at a clock 

speed of 25.175MHz. For the first 95 states, we will output a 0 for the horizontal sync 

signal H-Sync. For the next 45+640+20=705 states, we will output a 1 for H-Sync. The 

problem with this, however, is that it is difticult to manually derive the circuit for an 800 

state FSM. A simple solution around this difficulty is to use just two states; one for when 

H - Sync is 0 in region B, and one for when it is 1 in regions C, D, and E. We will then use 

a counter that runs at the same clock speed as the FSM to keep count of how many times 

we have been in a state. For the first state, we will stay there for 95 counts before going to 

the next state, and for the second state, we will stay there for 705 counts before going 

back to the first state. In the first state, we will output a 0 for H-Sync, and in the second 

state, we will output 1 for H - Sync. 

The vertical sync timing is analogous to the horizontal sync timing, so we can do 

the same thing using a second counter, and a second FSM. This second vertical FSM is 

identical to the horizontal FSM. The only difference is in the timing. Looking at the times 

for each region in the vertical synchronization signal in Figure 6.10, we see that 64 psec 

for region P is approximately 2 times the total horizontal scan time of 31.77 psec each. 

1020 psec for region Q is approximately 32 horizontal scan time (1020 131.77 32). For 

region R, it is 480 horizontal cycles, and for region S, it is approximately 14 horizontal 

cycles. Hence, the clock for both the vertical counter and the vertical FSM can be derived 

from the horizontal counter. The vertical clock ticks once for every 800 counts of the 

horizontal clock. 

We will need to use two instances of this FSM circuit; one for the horizontal FSM, 

and one for the vertical FSM. The clock for the horizontal FSM is the 25MHz clock, 

while the clock for the vertical FSM is derived from the roll over signal from the 

horizontal counter. The four status signals for the four counter conditions are generated 

from two counters: a horizontal counter, and a vertical counter. 
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To display something on the screen, we simply have to check the current column 

and row that the scan is at, and then assert the RGB signal if we want the pixel at that 

location to be turned on. For example, if we simply assert the red signal continuously, all 

the pixels will be red, and we will see the entire screen being red. On the other hand, if we 

just want the first row of pixels to be red, then we need to assert the red signal only when 

the counter Row = 0. To get a red border around the screen, we would assert the red signal 

when Row = 0, or Row = 639, or Colrrmn = 0, or Column = 479. Figure 4.10 shows the 

circuit to draw a red border around the entire screen using the VGA controller circuit 

from. 

I HCom! Horizontal FSM 

Red : Red-our . .. .. 

Green 

Bluc 

Figure 4.10 Complete circuit for the VGA controller. 
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4.2.6 Interrupt Controller 

The interrupt controller provides priority based intermpt handling. 8 interrupts are 

provided. Each is individually maskable. The interrupt controller is programmable and 

can be read or written using the input and output multiplexers. Each intempt can be 

masked by setting the corresponding bit in the mask register. When ever there is an 

intermpt the interrupt controller asserts the CPU INT pin. The CPU reads the interrupt 

register to know which device has generated the interrupt. 

4.2.7 Switch Debounce and Pulse Control 

Switch Debounce and pulse control provides debouncing of external switch 

inputs. It also provides one-shot capability for single stepping the MC-CPU. The basic 

component in this controller is the 25h4Hz to lOOKHz clock divider. Every input to the 

device is debounced first. Two of the outputs are also one pulsed. In the case of one pulse 

the system clock of 25MHz is used. No matter how long the button is pressed the one 

pulse will only generate one pulse of the same time period as of the system clock. 

4.2.8 7-Seg Controller 

7-Seg Controller Controls the two 7-segment displays on the FPGA prototyping 

kit. Also it switches between PC and Address register. Each 7-segment displays in turn 

have two displays, giving a total of four displays. The basic building blocks of the 

controller are the Hex to 7-segment decoders. Four of which are used. The 

implementation schematic of interrupt controller is shown in figure 5.14. 

4.2.9 LED Controller 

LED Controller Controls the two LED displays on the FPGA prototyping kit. Also 

it switches between INSTRUCTION TYPES or NSTRUCTION REGISTER or ALU 

OUTPUT or STACK POINTER. The LED controller is basically a big multiplexer that 

multiplexes between its four inputs based on two switch inputs. 
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5. Conclusion 

The whole system is implemented as a SoC on a single FPGk The complete system 

utilizes approximately 95% of a Spartan-IIE ( XC2S300pq208-e ). 

5.1 Hardware Arrangement 

The complete system was mounted on a chipboard base in the following 

arrangement. It was interfaced with the computer using the parallel port. A test program, 

given in Appendix 4 was used to test proper operation of the system. 

SRAM 

Fi yre  5.1 Hardware Arrangement 

5.2 Result 

As a result of this research project we have been able to verify the benefits of the 
. . 

MultiCore design. Specifically, a marked reduction in the context switch penalty. Since, 

the code running on the master processor is never preempted, it is able to service user 

requests more efficiently. 
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This design has allowed us to compare it against the current SMP and CMP 

systems. When compared to the SMP systems the outcome is very clear that the main 

bottle neck is the Interprocessor communication buss. In case Of MC-CPU there is no 

such external Interprocessor communication buss and hence such latencies are avoided 

altogether. 

When compared to the other CMP processors the MC-CPU architecture does not 

employ any packet protocol for communication among the two processors. This improves 

the inter processor communication capability significantly. The downside is that it require 

extensive hardware support. 

The direct measure of MC-CPU performance comes from comparing a piece of 

code that calls OS services, first on the Master CPU and then on the slave CPU. When the 

code is run on the master processor, the system behaves just like a normal single 

processor system. At every system call performed by the user routine there is a context 

switch and the OS is switch back. The OS performance the necessary operation and then 

preempts itself while making then user program active. 

t 760 

No 
Clock 
Cycles 

Fig 5.2 No of parameters 

In a context switch 43 registers are saved and then 43 registers are restored. 

Saving a single register to memory takes 10 clock cycles. Saving 43 registers requires 430 

clocks. Tn all a single context switch takes about 450 clock cycles on the master 

processor. This is for an OS sewice that only requires the service code and no parameters. 
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On the MC-CPU, when the user code is run on the slave processor and it performs 

a system call then there is no need for a context switch to occur since the OS is running 

on separate processor. A remote trap that only passes the service code to the master 

processor requires only 20 cycles 

It can be easily seen fiom figure 5.2 that a single context switch requires at 

least 500 clock cycles whereas a remote trap only requires 10 clock cycles. Thus it has 

been shown that incorporating features at the microarchitecture level can improve P C  

performances significantly. Improvements in P C  performance improve OS performance 

significantly. 
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Appendix-A Test Code 
----JUMP TO PROGRAM CODE 

B"010001 - 00000 - 0 - 00000000000000000111", 

---INTERRUPT HANDLER CALLS 

B"011000 - 00000 - 0 - 00000000000011100101", 

B"011010~00000~0~00000000000000000000", 

X"OOOOOOOOn,--03 RESERVED 

X"OOOOOOOO",--04 RESERVED 

X"OO000000",--05 RESERVED 

X"OOOO0000",--06 RESERVED 

----LOAD ALL DATA 

B"000111 00000 00000 101 11 100 01001000",--07 MOVEI TO RO 
B " O O O ~ ~ ~ ~ O O O O - O O O O ~ - ~ O ~ ~ ~ ~ O O ~ ~ O O O O O ~ " . - O ~  MOVEI TO R1 
B"000111 00000~00010~10111100~01010010",-09MOVEITOR2 
~"000111~00000~00011-10111100 01001 11 In,--0AMOVEI TO R3 
BnOOO1 11~00000~00100~10111100~0100111 la',--OB MOVEI TO R4 
B"000111~00000~00101 ~ o ~ ~ ~ ~ o o ~ o ~ o o ~ ~ ~ o ~ , - o c M O V E I T O R ~  
BnOOO1 1120~)0-00110-10111 100~00000000",-OD MOVEI TO R6 
B"000111 - 00000-00111-10111100 - - - 01001101",-4EMOVEI TOR7 

BnOOO1 11-00000 01000 101 11 100-010101 1 I",--OF MOVEI TO R8 
~~000l11~00000~1001~10111100 01001 11 In,-10 MOVEI TO R9 
BNOOO1 11 00000 01010 1011 1100~01010010",-11 MOVEI TO R10 
BHOOOl 11~00000~01011~10111100~01001011",--12 MOVEI TO R11 
BW000111 00000-01100 10111100~1001001",--13 MOVEI TOR12 
BnOOO1 1 l ~ 0 0 0 0 ~ 0 l 1 0 1 ~ 1 0 1 1  I100 01001 1 1ON,--14MOVEITO R13 
~"000111~00000~01110~10111 I W ~ I O O O I  1 I",--15 MOVEI TO Rl4 
BnOOO1 11 - 00000 - 01111-1011 1100 - 01011000",--16MOVEI TO R15 



B"011101 - 00000000000000000000000000", 

--DATA BUS 

B"010101~00~10111 l00~01000011~0001~0000", 

B"010101 - -  00 000 - 01011~00~100010~0001~0001", 

B"010101 - 00 - 10111100 - 00110000~0001~0000", 

B"010101~00~000~01011~00~100011~0001~0001", 

B"010101 - 00~10111100~01000001~0001~0000", 

B"010101~00~000~01011~00~100100~0001~0001", 

B"Ol0101 - 00 - 10111100 - 00110101~0001~0000", 

BnolO1O1~OO~OOO~olO1l~oO~lOO1O1~OOO1~OOO1", 

B"010101 - 00~10111100~00110111~0001~0000", 

B"010101~00~000~01011~00~100110~0001~0001", 

B"010101 - 00 - 101 11 100 - 001 11001~0001~0000", 

B"010101~00 - 000~01011~00~100111~0001~0001", 

B"010101~00~10111100~00110000~0001~0000", 

--ADDRESS BUS 
--- - - -- - -- - - 

B"010101 - 00-000 - 01 101-00-100100 - 0001-00017', 

B"010101 - 00 - 10111100 - 00110000 - 0001 - OOOO", 

B"010101 - -  00 000 - 01101 - 00 - 100101 - 0001 - 0001", 

B"010101 - 00 - lOllllO0 - 00110001 - 0001 - OOOOn, 

B"010101 - -  00 000 - 01101 - 00 - 100110 - 0001 - 0001", 

A Novel p-Processor Archifccturc A-2 



Appendh.A Ted Code 



',,0oo0-10w-11101100-00111101-~-101010,,8 

' . r o o o ~ ~ o o o ~ ~ o ~ o o r ~ w ~ r  ~ o r o ~ o o o ~ w ~ ~ o r o ~ o , , a  

'.oooo~rooo~roro~~oo~oo~ I r roro-IOIOIO.~ 

' . ~ o o o r o o o ~ o o ~ o o ~ o ~ r  r o ~ o ~ o o o ~ o o ~ ~ o ~ o ~ o . a  

'.oooo-root-I ooooo~o-OOI I r roro-roro~o.a 

',, 1000-rooo-I ~ o o o r o - I  roro~ooo~oo~~oro~o,,a 

'.oooorooo~oooor roo-ooi I I roi-00-roror 0.8 

',1000~1oo0~010001~001 ~ o ~ o ~ o o o ~ o o ~ o ~ o ~ o . a  

'.oooo~rooo~~ rooooro-OOI I I [or-00-ro~oro.a 

',,~ooorooo~oooor~oo~r roro~ooo~oo~ro~o~o,a 

'.oooo~rooo~~ooo~ roooor I I 101-oo-ro~oro.a 

',I o o o r o o o ~ o o o o o ~ o r  r o r o ~ w o ~ o o ~ ~ o r o  10.8 

sna v~va-- 

'"00000oo0000000000000000000-101 11oua 

z m.LnolI-- 



BnOl0lOl - 00 - 10111 100-00111001-0001-000ON, 

B"ololol~oo~ooo~ololl~oo~lool1 l~oool~oooln, 

B"010101 - 00_10111100~00110000~0001~0000", 

--ADDRESS BUS 

B"010101-00 - 000 - 01101-00 - 100100 - 0001-0001", 

B"010101 - 00 - 101 1 1  100 - 001 10000~0001~0000", 

B"010101~00~000~01101~00~100101~0001~0001", 

B"010101 - 00 - 10111100 - 00110001~0001~0000", 

B"010101-00 - 000~01101~00~100110~0001~0001", 

B"010101 - 00 - 10111100 - 00110000 - 0001-OOOOn, 

B"010101~00 - 000 - 01 101 - 00 - 100111 - 0001~0001", 

B"010101-00 - 10111100 - 01000110~0001~0000", 

--CALL 
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Appendix-B Glossary of Terms 

Address bus-A unidirectional set of signals used by a processor (or similar device) to 
point to memory locations in which it is interested. 

Analog--A continuous value that most closely resembles the real world and can be as 
precise as the measuring technique allows. 

Asynchronous-A signal whose data is acknowledged or acted upon immediately and 
does not depend on a clock signal. 

Binary digit-A numeral in the binary scale of notation. A binary digit (typically 
abbreviated to "bit") can adopt one of two values: 0 or 1. 

Binary encoding-A form of state assignment for state machines that requires the 
minimum number of state variables. 

Binary logic-Digital logic gates based on two distinct voltage levels. The two voltages 
are. used to represent the binary values 0 and 1 along with their logical equivalents False 
and True. 

Bit-Abbreviation of binary digit. A binary digit can adopt one of two values: 0 or 1. 

Boolean algebra-A mathematical way of representing logical expressions. 

Bus-A set of signals performing a common function and carrying similar data. 
Typically represented using vector notation: for example, an 8-bit database might be 
named data[7:0]. 

Byte-A group of eight binary digits, or bits. 

Cache memory-A small, high-speed memory (usually implemented in SRAM) used to 
buffer the central processing unit from any slower, lower-cost memory devices such as 
DRAM. The high-speed cache memory is used to store the active instructions and data1 
associated with a program, while the bulk of the instructions and data resides in the 
slower memory. 

Chip--Popular name for an integrated circuit (IC) 

Circuit board-The generic name for a wide variety of interconnection techniques, 
which include rigid, flexible, and rigid-flex boards in single-sided, double-sided, 
multilayer, and discrete wired configurations. 

CLB (configorable logic block)-The Xilinx term for the next logical partitiodentity 
above a slice. Some Xilinx FPGAs have two slices in each CLB, while others have four. 
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CMOS (complementary metal oxide semiconductor)-logic gates constructed using a 
mixture of NMOS and PMOS transistors connected together in a complementary manner. 

Combinational I o g i c A  digital logic function formed from a collection of primitive 
logic gates (AND, OR, NAND, NOR, etc.), where any output values from the function 
are directly related to the current combination of values on its inputs. That is, any changes 
to the signals being applied to the inputs to the hnction will immediately start to 
propagate (ripple) through the gates forming the function until their effects appear at the 
outputs from the function. Some folks prefer to say "combinatorial logic." 

CPLD (complex PLD)-A device that contains a number of SPLD (typically PAL) 
functions sharing a common programmable interconnection matrix. 

CPU (central processing unit)-The brain of a computer where all of the decision 
making and number crunching are performed. 

CRC (cyclic redundancy check )-A calculation used to detect errors in data 
communications, typically performed using a Iinear feedback shiff register (USR). 
Similar calculations may be used for a variety of other purposes such as data 
compression. 

Data bus-A bidirectional set of signals used by a computer to convey information from 
a memory location to the central processing unit and vice versa. More generally, a set of 
signals used to convey data between digital functions. 
Data-path function-A well-defined function such as an adder, counter, or multiplier 
used to process digital data. 

Digital-A value represented as being in one of a finite number of discrete states called 
qtmta.  The accuracy of a digital value is dependent on the number of quanta used to 
represent it. 

Digital circuit-A collection of logic gates used to process or generate digital signals. 

D i o d o A  two-terminal device that conducts electricity in only one direction; in the other 
direction it behaves like an open switch. These days the term diode is almost invariably 
taken to refer to a semiconductor device, although alternative implementations such as 
vacuum tubes are available. 

DSP (digital signal processing)-The branch of electronics concerned with the 
representation and manipulation of signals in digital form. This form of processing 
includes compression, decompression, modulation, error correction, filtering, and 
othenvise manipulating audio (voice, music, etc.), video, image, and other such data for 
such applications like telecommunications, radar, and image processing (including 

. . medical imaging). 

Edge sensit iveAn input to a logic hnction that only affects the knction when it 
transitions from one logic value to another. 

EEPROM or E2PROM (electrically erasable programmable read-only memory)-A 
memory integrated cirntit (IC) whose contents can be electrically programmed by the 
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designer. Additionally, the contents can be electrically erased, allowing the device to be 
reprogrammed. 

EPROM (erasable programmable read-only memory)-A memory integrated cirmif 
(IC) whose contents can be electrically programmed by the designer. Additionally, the 
contents can be erased by exposing the die to t~Ifraviolet (m3 light through a quartz 
window mounted in the top of the component's package. 

FIFO (first in first out)--A special memory device or function in which data is read out 
in the same order that it was written in. 

Firmware-Refers to programs or sequences of instructions that are loaded into 
nonvolatile memory devices. 

FLASH memory-An evolutionary technology that combines the best features of the 
EPROM and E2PROM technologies. The name FLASH is derived from the technology's 
fast reprogramming time compared to EPROM. 

FPGA (field-programmable gate array)--A type of digital integrated circuit (IC) that 
contains configurable (programmable) blocks of logic along with confiyrable 
interconnect between these blocks. Such a device can be configured (programmed) by 
design engineers to perform a tremendous variety of different tasks. 

FSM (finite state machine)-The actual implementation (in hardware or software) of a 
function that can be considered to consist of a finite set of states through which it 
sequences. 

Giga-Unit qualifier (symbol = G) representing one thousand million, or 109. For 
example, 3 GHz stands for 3 x 109 hertz. 

Glue logic-The relatively small amounts of simple logic that are used to connect 
("glue") together-and interface between-larger logical blocks, functions, or devices. 

Hardware--Generally understood to refer to any of the physical portions constituting an 
electronic system, including components, circuit boards, power supplies, cadinets, and 
monitors. 

HDL (hardware description language)--Today's digital integrated cirnrits (iCs) can 
end up containing hundreds of millions of logic gates, and it simply isn't possible to 
capture and manage designs of this complexity at the schematic (circuit-diagram) level. 
Thus, as opposed to using schematics, the functionality of a high-end IC is now captured 
in textual form using an HDL. Popular HDLs are Verilog, SystemVerilog, VHDL, and 
SystemC. 

High-impedance state-The state associated with a signal that is not currently being 
driven by anything. A highimpedance state is typically indicated by means of the "Z" 
character. 

Hz (hertz)--Unit of frequency. One hertz equals one cycle, or one oscillation, per 
second. 
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IC (integrated circuit)-\ device in which components such as resistors, diodes, and 
tiansistors are formed on the surface of a single piece of semiconducting material. 

TCR (in-circuit reconfigumble~An SRAM-based or similar component that can be 
dynamically reprogrammed on the fly while remaining resident in the system. 

IP (intellectual property)-When a team of electronics engineers is tasked with 
designing a complex inlegruled circuit (IC), rather than reinvent the wheel, they may 
decide to purchase the plans for one or more hnctional blocks that have already been 
created by someone else. The plans for these functional blocks are known as intellectual 
property, or IP. IP blocks can range all the way up to sophisticated communications 
functions and microprocessors. The more complex hnctions, like microprocessors, may 
be referred to as "cores." 

ISP (in-system programmable)-An E2-based, FLASH-based, SRAM-based, or similar 
integrated circuit (IC) that can be reprogrammed while remaining resident on the circuit 
board. 

Kilo-Unit qualifier (symbol = K) representing one thousand, or 103. For example, 3 
KHz stands for 3 x 103 hertz. 

LC (logic cell)-The core building block in a modem n G A  from Xilinx is called a logic 
cell (LC). Among other things, an LC comprises a 4-input LUT, a multiplexer, and a 
register. 

LE (logic element)-The core building block in a modem FPGA from Altera is called a 
logic element (LE). Among other things, an LE comprises a 4-input LUT, a multiplexer 
and a register. 

Logic function-A mathematical hnction that performs a digital operation on digital 
data and returns a digital value. 

Logic gate-The physical implementation of a simple or primitive logic hnction. 

Logic synthesis-A process in which a program is used to automatically convert a high- 
level textual representation of a design (specified using a hurdware description language 
(71DL) at the register transfer level (RTL) of abstraction) into equivalent registers and 
Boolean equations. The synthesis tool automatically performs simplifications and 
minimizations and eventually outputs a gate-level netlist. 

LS-I) (least-significant bit) The binary digit, or bit, in a binary number that 
represents the least-significant value (typically the right-hand bit). (2) (least-significant 
byte)--The byte in a multibyte word that represents the least-significant values (typically 
the right-hand byte). 

LUT (lookup table)-There are two hndamental incarnations of the programmable logic 
blocks used to form the medium-grained architectures featured in FPGAs: h4UX 
(multiplexer) based and LUT (lookup table) based. In the case of a LUT, a goup  of input 
signals is used as an index (pointer) into a lookup table. 



Macroarchitecture definition-A design commences with an original concept, whose 
hieh-level definition is determined by system architects and system designers. It is at this " . - 
stage that macroarchifechrre decisions are made, such as partitioning the design into 
hardware and software components, selecting a particular minoprocessor core and bus 
structure, and so forth. The resulting specification is then handed over to the hardware 
design engineers, who commence their portion of the developmeni process by performing 
microarchitecfrrre dejnjtion tasks. 

Mega-Unit qualifier (symbol = M) representing one million, or 106. For example, 3 
MHz stands for 3 x 106 hertz. 

Memory cell-A unit of memory used to store a single binary digit, or bit, of data. 

Memory word-A number of memory cells logically and physically grouped together. 
All the cells in a word are typically written to, or read from, at the same time. 

Micro-Unit qualifier (symbol = p) representing one millionth, or 10-6. For example, 3 
pS stands for 3 x 10-6 seconds. 

MiUi-Unit qualifier (symbol = m) representing one thousandth, or 10-3. For example, 3 
mS stands for 3 x 10-3 seconds. 

Moore's law-In 1965, Gordon Moore (who was to cofound Intel Corporation in 1968) 
noted that new generations of memory devices were released approximately every 18 
months and that each new generation of devices contained roughly twice the capacity of 
its predecessor. This observation subsequently became known as Moore's Lmv, and it has 
been applied to a wide variety of electronics trends. 

MOSFET (metal-oxide semiconductor field-effect transistor)-A family of 
transistors. 

MS-1) (most-significant bit) The binary digit, or bit, in a binary number that 
represents the most-significant value (typically the left-hand bit). (2) (most-significant 
byte) The byte in a multibyte word that represents the mostsignificant values (typically 
the left-hand byte). 

Multiplexer (digital)-A logic hnction that uses a binary value, or address, to select 
between a number of inputs and conveys the data from the selected input to the output. 

Nano-Unit qualifier (symbol = n) representing one thousandth of one millionth, or 1& 
9. For example, 3 nS stands for 3 x 10-9 seconds. 

No i scThe  miscellaneous ~ b b i s h  that gets added to an electronic signal on its journey 
through a circuit. Noise can be caused by capacitive or inductive coupling or by 
externally generated electromagnetic interference. 

Nonvolatile-A memory device that does not lose its data when power is removed from 
the system. 
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N y b b l t A  group of four binary digits, or bits. 

Onehot encoding-A form of state assignment for state machines in which each state is 
represented by an individual state variable, and only one such variable may be 
"on/active" ("hot") at any particular time. 

Operating system-The collective name for the set of master programs that control the 
core operation and the baselevel user interface of a computer. 

OTP (onetime programmable)-A programmable device, such as an SPLD, CPLD, or 
FPGA, that can be configured (programmed) only a single time. 

PAL (programmable array 1ogic)S-A programmable logic device in which the AND 
array is programmable, but the OR army is predefined. 

PCB (printed circuit b o a r d k A  type of circuit board that has conducting tracks 
superimposed, or "printed," on one or both sides and may also contain internal signal 
layers and power and ground planes. 

Peta-Unit qualifier (symbol = P) representing one thousand million million, or 1015. 
For example, 3 PHz stands for 3 x 101 5 hertz. 

Pic-Unit qualifier (symbol = p) representing one millionth of one millionth, or 10-12. 
For example, 3 pS stands for 3 x 10-12 seconds. 

PLA (programmable logic a r r ayFThe  most user configurable of the traditional 
programmable logic devices because both the AND and OR arrays are programmable. 

PLD (programmable logic device)-An integrated circuit (IC) whose internal 
architecture is predetermined by the manufacturer, but which is created in such a way that 
it can be configured (programmed) by engineers in the field to perform a variety of 
different functions. For the purpose of this book, the term PLD is assumed to encompass 
both simple PLDs (XPLDs) and complex PLDs (CPLDs). In comparison to an FPGA, 
these devices contain a relatively limited number of logic gates, and the functions they 
can be used to implement are much smaller and simpler. 

Primitives-Simple logic functions such as BUF, NOT, AND, NAND, OR, NOR, XOR, 
and XNOR. These may also be referred to asprimitive logic gates. 

PROM (programmable read-only memory)-A programmable logic device in which 
the OR arrav is vrommmable. but the AND arrav is vredefined. Usually considered to be 
a memory &vice whose contents can be electricaily programmed (oncej by the designer. 

RAM (random-access memory)-A data-storage device from 'which data can be read 
out and into which new data can be written. Unless otherwise indicated, the t m  RAM is 
typically taken to refer to a semiconductor device in the form of an integrated cirmii 
K ) .  

ROM (read-only memory)-A data storage device from which data can be read out, but 
into which new data cannot be written. Unless otherwise indicated, the term ROM is 



typically taken to refer to a semiconductor device in the form of an integrated circuit 
LC). 

RTL (register trnnsfer level)-A hardware descripion language O L )  is a special 
language that is used to capture (describe) the hnctionality of an electronic circuit. In the 
case of an HDL intended to represent digital circuits, such a language may be used to 
describe the functionality of the circuit at a variety of different levels of abstraction. The 
simplest level of abstraction is that of a gatelevel netlist, in which the functionality of the 
digital circuit is described as a collection of primitive logic gates (AND, OR, NAND, 
NOR, etc.) and the connections between them. A more sophisticated (higher) level of 
abstraction is referred to as register trrmsfer level (RE). In this case, the circuit is 
described as a collection of storage elements (registers), Boolean equations, control logic 
such as if-then-else statements, and complex sequences of events (e.g., "If the clock 
signal goes fiom 0 to 1, then load register A with the contents of register B plus register 
C"). The most popular languages used for capturing designs in RTL are VHDL and 
Verilog (with SystemVerilog starting to gain a larger following). 

Sequential logic-A digital function whose output values depend not only on its current 
input values, but also on previous input values. That is, the output value depends on a 
"sequence" of input values. 

Silicon chip-Although a variety of semiconductor materials are available, the most 
commonly used is silicon, and integrated circrrits (ICs) are popularly known as "silicon 
chips," or simply "chips." 

S l i c t T h e  Xilinx term for an intermediate logical partitiodentity between a logic c>l 
(LC) and a configrtrable Iogic block (CLB). Why "slice"? Well, they had to call it 
something, and-whichever way you look at it-the term slice is "something." At the 
time of this writing, a slice contains two LCs. 

SoC (system on chip)--As a general rule of thumb, a SoC is considered to refer to an 
integrated circuit (IC) that contains both hardware and embedded software elements. In 
the not-sodistant past, an electronic system was typically composed of a number of ICs, 
each with its own particular function (say a microprocessor, a communications function, 
some memory devices, etc.). For many of today's high-end applications, however, all of 
these functions may be combined on a single device, such as an ASIC or FeGA, which 
may therefore be referred to as a system on chip. 

Software-Refers to programs, or sequences of instructions, that are executed by 
hardware. 

SPLD (simple PLD)--Originally all PLDs contained a modest number of equivalent 
logic gates and were fairly simple. These devices include PALS, PLAs, PROMS, and 
GALS. As more complex PLDs (CPLD) amved on the scene, however, it became 
common to refer to their simpler cousins as simple PLDs (SPLDs). 

SRAM (static RAM)-A memory device in which the core of each cell is formed from 
four or six transistors configured as a latch or a flip-flop. The term static is used because, 
once a value has been loaded into an SRAM cell, it will remain unchanged until it is 
explicitly altered or until power is removed from the device. 



State diagram-A graphical representation of the operation of a sfate machine. 

State v a r i a b l 4 n e  of a set of registers whose values represent the current state 
occupied by a state machine. 

Synchronous-31) A signal whose data is not acknowledged or acted upon until the next 
active edge of a clock signal. (2) A system whose operation is synchronized by a clock 
signal. 

Toggle-Refers to the contents or outputs of a logic function switching to the inverse of 
their previous logic values. 

Tri-state function-A function whose output can adopt three states: 0, 1, and Z (high 
impedance). The function does not drive any value in the Z state and, when in this state, 
the function may be considered to be disconnected from the rest of the circuit. 

Truth table-A convenient way to represent the operation of a digital circuit as columns 
of input values and their corresponding output responses. 

pC (microcontroller)--A microprocessor augmented with special-purpose inputs, 
outputs, and control logic like counter timers. 

pP (microprocessor)-A general-purpose computer implemented on a single integrmed 
circtrit (IC) (or sometimes on a group of related chips called a chipset). 

Verilog--A hardware description lunguage (HDL) that was originally proprietary, but 
which has evolved into an open standard under the auspices of the IEEE. 

V H D G A  hurdware description language (HDL) that came out of the American 
Depurfntent of Defense (DUD) and has evolved into an open standard. VHDL is an 
acronym for VHSIC HDL (where VHSIC is itself an acronym for "very high-speed 
integrated circuit '3. 

VJTAGThe VHDL language is great at modeling digital circuits at a high level of 
abstraction, but it has insufiicient timing accuracy to be used in sign-off simulation. For 
this reason, the VITAL, initiative was launched at the Design Automation Conference 
(DAC) in 1992. Standing for VHDL Initiative toward ASIC Libraries, VITAL, was an 
effort to enhance VHDL's abilities for modeling timing in ASIC and FPGA design 
environments. The end result encompassed both a library of ASIClFPGA primitive 
functions and an associated method for back-annotating delay information into these 
library models. 

Volatile-Refers to a memory device that loses any data it contains when power is 
removed from the system, for example, random-access memory in the form of SRAM or 
DRAM. 

. . 
Word-A group of signals or logic functions performing a common task and carrying or 
storing similar data; for example, a value on a computer's data bus can be referred to as a 
"data word" or "a word of data." 
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Append& User Mtm~aJ 

Appendix-C User Manual 

The programming and implementation of the system has been done using Xilinx 

ISE Foundation 6.3i set of tools. These tools come with extensive user manuals which can 

be consulted if desired. 

The complete System is implemented in hardware. Following control inputs are 

used for the control of hardware. 

SWITCH CONTROL 

SWI : SYSTEM RESET 
SW4 : TEST INTERRUPT 
SW8 : DISBALE SINGLE STEP 
SW13 : SWITCH CPUl OR CPU2 
SW16 : ADDRESS REG /PC SELECT 

-1 
STACKPOINTER 

. . 
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Abstrnck Opaating system pdamance is not impwing at the same rate as the speed of the execution 
hardware. As a comequenee Operating systems are w t  keeping up with the demands placed on them. 
Computational @up due to the increase in -lor clock frequency is reaching its limits as well. Chip 
Multiprccessm are now being investigated to hamess &e silicon mmces now availabk due to p e a s  
improvemenia m Chip manufachaiog. 'Ihio researchpraen~i the study mto n specialized Chip Multiproassa 
for Simulheow execlltim of OS kerncl and user C&. SPE or S i m u l b ~ ~ 1 ~ 9  Process Executioo Architecture 
allows for c m t i m m  execution of OS kernel and uner processes. 

Key words: OS, kernel CMP. FPOA 

As modem applications bxcme i-ingly 
dewdent on multimedia, graphics and data movement 
t h y  are sparding afl increasii fractim o f h u  execution 
timc in the c p r a t q  system kernel. Web semen h e  
been s h  to s p d  over 85% of their CF'U cycles 
npming operatiq~ system code"'. For server-bed 
emirumnenB, the operating system is a crucial 
annpcnBb of the workld 

Multi-senrer and urmponent-basedoperating system 
are Fccrmisirg architechnal approaches f a  h d h g  the 
ever h a s k g  complexity of opera* systems. 
Compmem or semen (and clients) aommunicate with 
each dher through cnas-domain method invocatim. 
Such interface method iwocati~1~.  if mmiq prdntim 
boundaries, are typically implemented h x g h  the 
Intcr-pro~?~~ Communicstim mechanisms offered 
by a micmkcmel. hf' urmponent hemaion in 
such systems has to be highly efficient 

Thm Mer-process CommImication 0 by mesage 
passing is m c  of the central paradigms of m a t  u-kernel 
b a e d  and &cr client~server archit-s. IPC 
performance is vital f a  modern operating systems: 
especially u-kcnrl based ones. Since cad rd  and 
wrkemel  mode switches are central to IPC opemth~ 
reducing them is a critical factor m IPC performance 
i m ~ w r m c r b  

A d exists to design a micropmmsa that helps 
to impwe 0s pcrfamancc. Specifically by i m m g  P C  
performance alone. OS performance can be improved 
signirmtly. User/kemel mode switches or cootext 
swi t ch  an a key operation in IPC. By reduciug m by 

eliminating this context switch IPC pertormance can be 
impwvcd si&irady. 

The SPE architecture platform combines several 
aspecb of existing pmcessa systems. The actual 
executim of insbuctiora on specialized hardware 
originates fran the ernliest cqxocessor -pt in Inters 
8086/8087 v s o r  system I". The use ofa  dgurable 
set of co-pccsxm is a small step towards increasing 
performance by adding more specialized hardware and 
has been appl i i  for mmlE procmsor SYJtems. In 
these archiaochpe platforms, there is one master processor 
c d i t i s g  the activities perfarmed by the co- 
proaesxm. An example is the TriMedia architecture 
pladm'%ginally developed Philips, which includes a 
single (VLIW) master ~roce~sor exploiting instruction 
level parallelism. 

SoC zuchitecture platforms that allow truc parallel 
exenaim of tarh on a number of indepcndcnt master 
prorrsso~l arc also rcfcrrcd to a single-chip multi- 
pro~essm'4. The main design issues f a  such 
systems emerge from the nomsity of commImicati.S 
infamation between lash running on different 
pmceum. 

There are many academic and crmmercial CMP in 
adstmx today. Specifically thc arehitatun discused by 
Theflm arid V a s c h u d  ig an exallen! design example. 
The MIP archkcme platform" exploia parallelism at the 
task level 

For more efficient utilintiun the offmd processing 
power odd also be obtained through a higher integration 
of s o h .  Although this approach can reduce 
overheod and thus increase pfam~l l~e ,  it may d c t  
the a*bility for a wide range of producb. 



Conbcting slave paron fm performing 
application dedicated op~atiom mquk fast on-chip 
intmrmech. On-chip intercome& have becans avery 
impatad designism for many SoCs. The challerrp is to 
r r b  latencies fa e x d m q q  infomtationbehveenrmits 
that ere located relatively fnr opal. Tho on-chip 
intcrcornccn of the SPP. architochae platfwm can not bc 
comparcd to packet-based rcuting devices: becamc the 
onchip mtarornvct is s h a d  stack based and allows 
direct function calls or OS trap invaatiw on the 
cormectedprocessm. 

E5 i c idy  accesskg (off chip) memay bas also been 
a design Lsue for many yearn. Similar to 0 t h  pmcssa  
1ystcmS. the SPE anhitectue platform uses cadla to 
a.tmcrb memuy aacsr laicncies. Main diff- with 
other multi-pmarcr h tho a h  of data 
meincry f u  tb indivihral marto pracusar. With me 
skmdmemoq, dp-ogramminrj flsaaility h off& to 
the uwr. 

Tho SPE a r c h i m  platform sxploib p d e l i u n  at 
the task lwel by mccrparatisg an idepdmt marta 
p m c e s a  und a mm~ba of rlavs procssrax. Rumkg 
multiple truh in parallel rcquim s q h i s h t c d  fncilies 
for h e x  truk mmmurication Ihe architectmu patfa-m 
ccuuidmd by 'Zhoalm uud Vmcbmcd" p e ~ a i b s s  tb 
use d 4 e d  w r q p ~  unhr to allow ~~mmunicatian 
batwean prooarsas In SPE anhitcchm platform, like 
desnibc by Theelen and V e n c h d ,  communication 
between taPlu is enabbd tInuugb tb IW of 
communioatioo res- o f r d  by all 0s b l  
implmaated onthe master ~ c . x ~ r r .  

The main amlributicmof~r sbdy lies inthe a d 1  
unDept o f b  !iPE anhitsdlrn platfarm d mom specific 
in the intcgrntion of a Mmkr : r r  s p k i f d i y  
deJigned fos 0s hmclionality. 

Opcnthrg aptem probkrnr: A u-kamel can p v i &  
high01 layas with a minimal set of o f t s  
ablractiarrs bi ere flexiia amugh to allow 
implamcrhtb of arbitrary operating sydmu and allow 
uploastim ofa wida range of hardwars. 

Simiier to oFlimLirg code genamm, u-Inmela must 
be cz~huclDd pcr pmassor and am hJarordly m t  
portable. h i c  i m p l a n d o n  &iau, mcst algorithm 
and data s b m t n m  imido a wkemel am pmma 
depcrwtent Their design must tm guided by performance 
pradiction wd  eralysu. &id= inappropriate beric 
abstracticms. tho m a t  frqwnt mistxhs cane frrm 
insuflicient undsrstandi of the m b i  kdmre- 
softw;irc system a inefficient i m p l a m d o n .  

Far them reasons Operating Systems tave been 
known to  came the following set of pblems: 

Operating systems an huge progirms that can 
overwhelm the cache and TLB due to ccde and data 
size. lhcrcby causing sevm pcrformarse paalty fm 
Ussr programs. - Operating systems may impact b m h  prdction 
porformancs, h s n ~ ~ e  nf f q m t  hmnchs. and 
infrequent Imp. 
OS execution h often brier md ktmnitter9 invoked 
by interrupts, excephbns or v t e m  calls and can 
cause tho replacement of meful cache. TLB wd 
branch prediction state for little or rn k f i t  
The OS may d o r m  spin-waitirg, explicit cache/TLB 
invalidatim and o h r  operatiom m t  common in 
wu-mods cah, again effecQg l ~ e r  code. 
In nmrmt m d h i z d  kern& way h l  
invocation m e a  ant& switch and m case d 
p-kamals wsry callmeam multiplo con(& Swachss. 
thus wnsiiq a coluiderable time in switching 

praxsr- 
IPC-pformam problems d t  6an 64 bit 
nrchitechIR3 with them t q e  sumbm of rcgiatm and 
register stack englm. Tim large m b c r  of rsgistera 
c o & h k s  to a pdentially massive context (mcm 
than2KB)tabssmredmsachthrsadcontMt 
switch". - Overall, oporaiing systsrn code causes pocr 
instruetian Urarghput cn a supascnh 
miaopaesrca.  

To ovaarmc thw pmblems many taclmiqun have 
bsen 4 M each had ih diladvaraages. Amdabl'a law 
teUsusthatifwewantmodemapplicaticms(onmcpckly. 
the opsratisB y t e m  mlat rm quickly a. well Sim 
traditianal pafamwa, models essentdiy igwa tho 
opauh? ry.tam andmodem OSdapandd applicatiora. 
a netd h ariaun f o r m  design and mahodDlogiea that 
dLat fhirattmticnatthe pufiormaar o f t b  0s kcmel"'. 

As mcntianed d i c r  OS kernel wukbnd haa 
signif~cantly iuxuwd, npaially SONCZ b e d  
applicatiam am pmirg heavy I d  m tho kernel What 
must be is that we bavo a h q e  po tadd  f a  
pafmnfura i m ~ m m t  i fsans b t h o  h l  rum on 
an indepaedamt p r o c ~ o s  sod tho upsr cnde nnr, on 
andhsr. withold my hu larancies. this mnsttsr-slava 
promsaar architatua can impmve paCormance 
sigmficantly. Therefore we have designed a new Ch.8 
architcchrro that is spccifrcally dnigncdto ovorunno OS 
problems. 

MIcruprawor a r r h i t e h  IntanaY, micropucesors 
have limited support for operating systems besides the 
featum that me critical for current ptected virhral 
memory based operatins systems, like p-kernels bare 
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peperating systems. As we have seen b t  modem 
~ p p l i d  an spending an increa?ling h&on of theu 
xeclrtiontime inthe Opera* System (0s) kemcl. 

At the multi-pratssor level &ormarae 
mpmvemem an due to SMP, NUMA or chaterig. In 
9ach of Ums tectmiques the processing nodes am ei t la  
~acqyofthekcme1athewhdeOS.Ncmof 
hose nre aimed at impvirg OS psrfmance dire*. 
iathsr tha earlier m e b d  OS pmblcms a p  at 
xlch nods. 

Intepted circuit prccassing ttchmlogy offers 
ma.+ idegratim &ty, which i d s  
n icmpccaw perfmsnca gmwth It is bxcfning 
v i M a  to irdcgrate a billion tmmistan on a &ly 
13 silicon chip At this integration 1eveS it ip m s a r y  
a fd parallelism to effectivaly utiliiza tho h-a~~irtcss. 
kmntly, pcassm d a i p  dynamicdiy axtract 
mllelism with these transintan by ex& many 
m b d a n  within a sequential lrogwn in parallel. 

However. rslianc~ m a  single thread dmnbol limb 
he parallelism arailahls f u  many applicatiorn end the 
:at of ah* ~ l e l i m  fmm n s k l e  thrad u 
leccrming pmtuitive'". 

Ths damand f a  aver fastet comprtm system somns 
!oh irsatiabls. Jmkwtk-laval parallelism b l p  a little, 
n~! pipel* and superscalar opreti~1~ mly win m a  
~afadaof6veartenTogetgair .  of50.100aevcn 
nom the only way h to d m i  canputm with rnuQ1e 
CPUs. l h  high lave1 of ~ a i n  is d y  premised by 
parallaliam at the pmesaor level T r a d i t i w  tho 
pmot~~or lave1 psralleliw has d b t n  pooasols. 
~olsp~ceosormastcrsndnmthsOSkamastive 
is it solves most of the prsvianly cited problems. but is 
prom to the bru latencia end hum poor 

Rorcarchen have prqms.3 two miumrchi- 
hat exploit multiple dmAs of c-1: Siultamms 
Multithreading (ShCT) and Chip Multiprocrma. (CMP). 
From a p l y  anhitcchral p o d  of vim. tlm SMT 
proceuor's flexitdity mska it supmior. However, tlm 
2ced to limit tht effects of inlcrunmat delays which are 
kcomkg much slower than ~ O T  gate delays, will 
~ l s o  drive the billion-tmmista chip design Imenamect 
ielays will force the microarchitcctllre to be pattitioned 
mto small. localized processing elements. For this reasoo. 
he CMP is much more promising h a m e  it is already 
mtiticned into individd pressing cod"'. 

Progr;lmmm mupt f d  thread level parallelism in 
xdcr to mzimizc CMP perfonnmm. With nmmt trcds 
nparalleljrmg canpila~.multitlae;oded opraticg systems 
md awarcnns of prgmmem ahoa how to program 
mallel mmputcrs. this problem should pmvc less 
hunting in future. Add i t idy ,  having all of the CPUs 

on a single chrp allow &sip- to exploit head-level 
parallelism wen when threads canmunicate fmpntly. 

SPE architednre: In designing aur CMP we have mcda 
modified f m  of Chip Multiprccasom (W). The new 
mimpmccssor mhitecture consists of two tightly 
coupled microprocessors. Both are able to communicate 
with each other directly and are implemented as a single 
unit on a single FPGA. 

Om of the m i n c p n r u o m  is rhs mmta p m n a  
and implemats privileged im&m as wsll as rest of 
tha instruction set. Operating system almo nrm a this 
micmpnxasor. Th -d mimproosrua only 
implamanta the mn-privilegsd instructiaa. fkUnplu 
pmcaunr execution units like flcatirg paint units and 
vector mils are shared mang both pocalco m avoid 
complex design and -tap of phypical remmccs. 

Only a single slave pmccsu and no complex 
extartimunib as well w m, cachw wm implemonredto 
simplify tho m d  e f f d  

MC-CPU instructan at  Mhitutnn: MGCPU 
instruction set was dsigmd fmm gmmd up to 
acmmmodata the mw f e a h  of this architsctum. It is a 
32 bit RISC ISA Ths SF'E implements the MCGPU 
Imkuction Set Arrhaschlre. SPE roosiPLs of Mwta CPU 
(CPU-1). Slave CPU (CPU-2) Bnd Shsnd SLacL aa a h  
in tha Fig. 1. Each of thmo funccicmal units and thou 
opuatiom are u p l a i n d  individuaUy in the following 
nubracticm* 

CPU 1: CPU 1 is the master CPU. I t  impkmmts all the 
privilege imhucClhucCl~. Only the madm p o a s s a  can 
sccus YO devices. Irdanrpt hwdling is performed only 
by the master prcessca. Sharsd sbck is also c W b d  
by mstcr paessca. Ths mastex pucassor can mrdrol 
the behavior of the rlava processca by tb meam of INTS 
intcmrptr. Slavs puxssm implamenu spacial iatarmpt 
handlm for INTS rather thw for  dx normal intern+. 

CPU 1: CPU 2 is the slave CPU. It be not implement the 
pfivilcge instruction. The slave p m r s s a  can not 
physically a m s s  devices. System level m t m q t  
handling is not perfanned by the Slave procraa m it 
d m  n d  have an INT line Shand stack is accnstd by 
the slave pucessor whm the msJtEr pmassa granh it 
access. Slme pavsso r  implemenb special interrupt 
handlem for INTS rather lhm for the normal intmups. 
Whm the master prccessor ass- INTS. thc slave 
pnmnor immediately jumps t o  the particular mtarmpt 
based 0nIN'rscODE. 
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Fig. I : SPE prccessoe 

S h a d  stack Shard Stack c&ts of the stack memory 
and the h d  stack pointer. The shred slack pointer is 
a 32 bit register. Iti ourput vahx is a m m d y  suppliedto 
both pvccsas. It can only be modified by om 
processor at any given time. Shared stack memory 
consists of single pat 1024 bitRAM, med a~ 

32 X 32 him. Only oncpmcessor can push or p p  frm the 
shared stack at any given lime. Shntd stack operates in 
the followk m m e r  

Master pro~ssor h initial c o m l  of the shared 
stack 
Masts V s o r  m modify the shared stack pointer 
any time; only exception is when it h s  granted 
cantrol ofthe sharedstack to the slave processu 
Master prowssor can push u pop values horn the 
s h d  stack my time; except when it has gmled 
conml of the shared slack to the slave p r m s r r  
Slave prooesror can not directly access the s h e d  
stack 
Slave praxssa murt assert the REQUEST S i i  to 
gain access to the shared stack 
Whenever REQUEST is iasarted by ths  Slave 
processu. the m a s t e r v s m  can p n l  or disallow 
access to the shared stack 
Acceu is disallowed only when master pvcessor is 
modifying maaxssing the d n d  stack itself 
Slave processor is blocked or m a wait state dmhg 
thiP paid 
When the master processor is not accessirg the 
shared stack and the Slave proassor requesb fcr it, 
request is gnmkd by asserting the ORANT signal 

. When the GRANT signal is asserled, Slave prccmu 
gee access to the shared stsck 
Slave peessor  can now modify both shared stack 
pointer and s h a d  stack 
ARer the slave prccmor hos modified the stack it 
deaswts the REQUEm s i g d  to indicate that the 
shared stack is now free 
Whm the GRANT signal is &asserted the master 
processor densserla the ORANT s i d  and trikes the . 
control of shared stuck b c k  

Remote call: All Ule communication between the master 
andslave pvcessor is based on remote calls. In fact these 
are not remote calls in the classic same rather these am 
traps to the OS kernel running m the master ~+oassor. 
Only the slave processor can bnp to the master pmcesscr 
by asserting CALLS signaL 'Ihe remote Cans work m the 
following marma. 

When the user code running on the Slave prmessa 
needs some opratisg system s&ce it must invoke 
a m o t e  call . Remota d l  is invoked by the slave proxwx by 
ass* the CALLS signal 
Before asserting the CALLS signal slave prazssor 
must nquest access to the shared stack and at least 
place the 32 bit service code m top of the s h e d  
stack. It can also phce any plrameters m the stack if 
there is m y  
After placiq the service code andlor any parameten 
on the skmd stack the Slave p c c w o r  assem the 
CALLS signal 
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On receiving the C W S  signal Maatcr ploaua 
invokes tha remote call handla 
Remote call handlerchDcks for user scam riBhtr and 
proper pmxmeteFJ wd then calls tha appopriats OS 
~oaThisisamrmalhmcticmcal l  . Namally no context switch takcs p b  this 
whole pmcedum . Afb~theca l l endplac i rgmtrrmvalumdo  
ths ahmud stack tho Master puwsor assrta tha 
RETURNS signal 

m~ing ths m S  SlRW pwDssU 

requart for the sharad stack. gets tlm retrrm values 
and deesscw tho CALLS rigral 

Remots intempt: Th+ Master pceam K&& the 
slave pmassor by using Remote Idcm+b. Only the 
Mastm procss~or can rake m o t s  in- and d y  the 
slave pceasor serves m o t s  ktmn#s. lntcrmpt faotar 
tablo and intermpt service r o u t k  fa tho ran& 
intempts an plamd in tha Slave pwasw's memay 
s p a r  by the MsNlr prem~. T h e  mtermpb can 
range h memay management to amtext s m  to 
praesa cleanup. Remots intmqda work in the fonowing 
m m r .  

Fig. 2 *tern urchitscbmr diagram 
operating Syrm c n  the Master pmxmx 
can raise m o t s  int- 
A m o t s  mtnrupt is raised by a~latiqg tho INTS 
signal 
~ t y p e i s i n d i c a t e d b y I N T S C O D E  
u p  r a r ~ ~ i n g  an INTS tho Skv0 pra;essOr 
immediately jump to tlm q m p i a t e  hendler bared 
on INTSCODE 
A h  smvicirg tho INTS tlm slave pc@scf suwt 
the SERVICEDsipl 
U p  m i v i q  the SERVICED signal the O p a h g  
S y t m  on tlm Master procesror mnrih the work 
dam and &ass& the INTS s i p d  

ErprhnnW rctnp: In cador to tat tfie SPE proxasar it 
w i  naassary to have a -plate mmpltsr &tan with 
all microprarsm suppmt devices designed and 
implmd So, memay, Inpd and multiplexen. 
a VGA eonhdler. a K e y b a d  mntroller and an inlmqt 
ecn& were aLto dargned and implemented alcng with 
tho SF'E pmcwsor. 

Ths whde systan (Fig 2) is implemerPsd as a SoC on 
a single FPOA. The complete system utilizes 
approximately 95% of a Spartan-IIE 

The SPE p m s a  achieved a clock sped of 25 
MHz. l 3 ~  system was mamted on a system board based 
on the smqement showD inFig. 3. It wss in te r f id  with 
the m w e r  using the parallel pat. A test =ram was 
used to test pmper opemtion of the system. 

As a muit ofthis nreanh project we have been abls 
to verify tho benefits of the MultiCors duiin 
Specificatiy. a marked reduction in the context switch 
penalty. Since. th: a d e  nmning an tho master proccsa 
is never pmmptcd; it is able to s w i m  user requests 
m m  e f f i c i d y  a d  quickly. 

When armparad to the SMF' systems the outenme is 
vsry clear, the main W e  neck is lhe hterpmenor 
mmmmication b. In m e  of SPE there is nosuch 



Fig. 4: No. ofpameters versus clock cycles in a ccntat 
switch 

cxteml Imerpmcessor communication bms and h e m  
such latencies w: avoided altogether. 

Wben mmpiredtothe ahm CMP procmsors the SF73 
d t e c b n e  doeJ rpDt employ any packet protocol for 
~canmuuicationamoqg thetwopcemrs. This improves 
the inter procesror commmication opabilily 
significwtly. The downside is that it requiren extensive 
*support 

, The direct measure of SF'E pmassor performance 
comes fmm c a m p k g  a pieca-of Mde that calls OS 
senrices, fust on the Master CF'U andthen onthe 
slave CPU. 

When the code is nm on the master pmcmor. the 
system behaves just like a mrmal sir& processor 
systam. At every system call perfumed by the user 
routine there is a wntext switch and the OS is switch 
back The 0s perfamam the necessaty qmation and 
thmpreempb itselfwhile making the userpmgr;rm active. 

In a wntext switch 43 registers am saved to memory. 
Saving a single register to memory lakes 10 clock cycles. 
S a v i ~  43 registen q u k a  430 clocks. In all a single 
m e s w i t c h  lakes abmt150 clock cycles onthe master 
pmcmm. This is far an 0s service that only requires the 
service code and m pameters. 

On the SPE processor, when the user code is nm on 
the slave processor and it p e d m s  a system call then 
there is nonecd for a eontat switch to occur since the OS 

\ is rurming on a wpsrste pmcessor. A remote trap that 
only passes the service code to tfre master pracessor 
q u k  only 20 cycle& 

It can be easiIy seen 6an Fig. 4 that a single wntext 
switchnquins at least 500 clock cycles w b  a m o t e  
trap only requires 10 clock cycles. Thus it can be safely 

I concluded that incapmling feahrres at the 
rnimaditechm level can i m p e  IPC prformance~ 

FUTURE WORK 

As next to investignting possible scteraiollp, we am 
mmatly dsvelcpiq compiler tools capable of handhg 
the offered flexibility. Tlm ultimate goal would bs to 
develop tools &at amble fast soh eompilatim by 
m q i n g  specific perfamanos repthane of w 
application into parhticnsd code. On of the code 
partitiom will m om the msstcrproassor as a service f a  
thcbu l l ;o foodsrurmingonthcs lave~ .  

Om fuhue -h will also mnccnhte on a method 
far maiyzkg which omlipdm of masterprocessm and 
Slave processas will meet the requimnmts far a specific 
application man oltirnal way. 
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