

# **Computer Aided miRNA Target Prediction in Four Frequently Amplified and Mutated Genes in Lung Cancer**

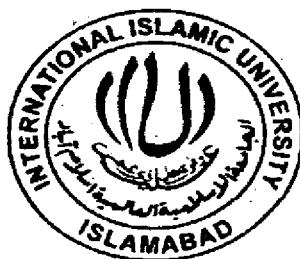


**By**  
**Maimoona Ali**  
**20-MSBI/FBAS/F08**

**Supervisor:**  
**Dr Sumbul Khalid**  
**Assistant Professor, DES**

**Department of Environmental Sciences**  
**Faculty of Basic and Applied Sciences**  
**International Islamic University**  
**Islamabad**  
**(2010)**

Accession No. TH-8559


M S  
628  
MAC

1. Environmental health Engineering
2. Environmental Engineering

DATA ENTERED

Angie  
12/04/13

# **Computer Aided miRNA Target Prediction in Four Frequently Amplified and Mutated Genes in Lung Cancer**



**Researcher**

**Maimoona Ali**

**12-FBAS/MSBI/F08**

**Department of Environmental Sciences  
Faculty of Basic & Applied Sciences,  
International Islamic University Islamabad  
(2010)**





**In the name of Allah Most Gracious and Most Beneficial**

## **Department of Bioinformatics and Biotechnology**

### **International Islamic University Islamabad**

**Dated: 15-12-2011**

### **FINAL APPROVAL**

It is to certify that we have read the thesis submitted by Ms. Maimoona Ali and it is our judgment that this research is of sufficient standard to warrant its acceptance by the International Islamic University, Islamabad for the award of M.S Degree in Bioinformatics

### **COMMITTEE**

#### **External Examiner**

Dr. Ghazala Kaukab Raja

Associate Professor

Department of Biochemistry

PMAS Arid Agriculture University, Islamabad.



#### **Internal Examiner**

Dr. Shaheen Shahzad

Chairperson

Department of Environmental Sciences,

International Islamic University, Islamabad

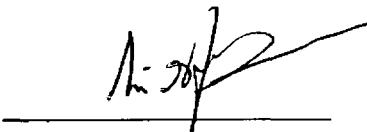


#### **Supervisor**

Dr. Sumbul Khalid

Assistant professor

Department of Environmental Sciences,


International Islamic University, Islamabad



#### **Dean, FBAS**

Dr. Irfan Khan

International Islamic University, Islamabad



A Thesis Submitted To Department of Environmental Sciences,  
International Islamic University, Islamabad as a Partial  
Fulfillment of Requirement for the Award Of The  
Degree of M.S in Bioinformatics

# DECLARATION

I hereby declare that the work presented in the following thesis is my own effort; all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

A handwritten signature in black ink, appearing to read "Maimoona Ali". The signature is written in a cursive style with a long, sweeping line.

Maimoona Ali.

**Dedicated to those who believe in Al-Quran and the  
endless healing powers of Al-Quran for the spiritual and  
physical sufferings of mankind as Allah (swt) says in Al-  
Quran: “We sent down (revealed) of the Qur'an that which is  
a healing and mercy to those who believe”**

# TABLE of CONTENTS

|                                              |      |
|----------------------------------------------|------|
| <b>Acknowledgements</b>                      | x    |
| <b>List of Figures</b>                       | xi   |
| <b>List of Tables</b>                        | xii  |
| <b>List of Abbreviations</b>                 | xiii |
| <b>Abstract</b>                              | xvi  |
| <b>1 INTRODUCTION</b>                        | 1    |
| <b>2 LITERATURE REVIEW</b>                   | 8    |
| 2.1 Cancer                                   | 8    |
| 2.1.1 Lung Cancer                            | 9    |
| 2.1.2 Clinical Features of Lung Cancer       | 10   |
| 2.1.3 Types of Lung Cancer                   | 11   |
| 2.1.3.1 Non-Small Cell Lung Cancer           | 11   |
| 2.1.3.2 Small Cell Lung Cancer               | 12   |
| 2.1.4 Environmental Factors                  | 12   |
| 2.1.5 Genetics of Lung Cancer                | 14   |
| 2.1.6 Treatment for Lung Cancer              | 15   |
| 2.1.7 Stages of Lung Cancer                  | 18   |
| 2.1.8 Complexity of Lung Cancer              | 18   |
| 2.2 miRNA                                    | 20   |
| 2.2.2 Locations of miRNAs                    | 20   |
| 2.2.3 Processing of miRNAs                   | 21   |
| 2.2.4 Functions of miRNAs                    | 23   |
| 2.2.5 miRNA Target Prediction                | 24   |
| 2.2.6 miRNA Implications for Cancer          | 25   |
| 2.2.7 Computer Aided miRNA Target Prediction | 26   |
| 2.2.8 Therapeutic Applications of miRNAs     | 26   |
| <b>3 METHODOLOGY</b>                         | 27   |
| 3.1 Genetic Analysis of Lung Cancer          | 27   |
| 3.2 Target Gene Selection                    | 28   |
| 3.3 Incorporating Mutations in Target Genes  | 28   |
| 3.4 Downloading Human miRNA Sequences        | 29   |
| 3.5 Target Prediction via miRanda            | 29   |
| 3.6 Shuffled Vs Non-shuffled Sequences       | 31   |
| 3.6.1 Calculation of Cut off Value           | 31   |
| 3.6.2 Data Parsing                           | 31   |
| 3.6.3 Data Plotting                          | 32   |
| 3.6.4 Data Analysis                          | 32   |
| 3.7 Filtering Results via miRanda            | 32   |
| 3.8 Gene Mapping                             | 33   |
| 3.9 miRNA Designing                          | 33   |
| <b>4 RESULTS AND DISCUSSIONS</b>             |      |
| 4.1 Genes Involved in Lung Cancer            | 35   |

|                                             |                                         |    |
|---------------------------------------------|-----------------------------------------|----|
| 4.2                                         | Target Genes                            | 38 |
| 4.2.1                                       | EGFR Gene                               | 38 |
| 4.2.2                                       | Tp53 Gene                               | 39 |
| 4.2.3                                       | Kras Gene                               | 40 |
| 4.2.4                                       | E5RBB Gene                              | 40 |
| 4.3                                         | Target Prediction of miRNAs             | 41 |
| 4.4                                         | Results of miRanda                      | 42 |
| 4.5                                         | miRanda predicted Targets for EGFR Gene | 43 |
| 4.6                                         | miRanda predicted Targets for Tp53 Gene | 45 |
| 4.7                                         | miRanda predicted Targets for Kras Gene | 47 |
| 4.8                                         | miRanda predicted Targets for ERBB Gene | 49 |
| 4.9                                         | miRNAs Targeting Multiple Genes         | 53 |
| 4.11                                        | Verifications of Results via RNAhybrid  | 58 |
| 4.12                                        | Multiple Sequence Alignment             | 60 |
| 4.13                                        | Designing miRNA                         | 62 |
| <b>Conclusion &amp; Future Enhancements</b> |                                         | 63 |
| <b>References</b>                           |                                         |    |
| <b>Appendix</b>                             |                                         |    |

# ACKNOWLEDGMENTS

The foremost and heartiest thanks to Allah (Subhana-o-Tahalla); the creator who created me a human being and the Sovereign and the All Knowing, who showered such a knowledge upon me; the Guider who guided me well and broaden my understanding to differentiate between right and wrong; the Source of Peace and Provider due to Whom I was able to perform my task even in the time of severe depression and hopelessness.

I pay my paramount and doubtless gratitude for my parents, who always sacrificed their own needs for mine and tried their level best to provide me full convenience at the cost of their own rest since my birth. Countless words of thanks to my sisters and the only brother Ahmed Saad they provided a very friendly and peaceful environment that ensured the accomplishment of my goal.

I extend my heartiest thanks to my supervisor Dr. Sumbul Khalid, Assistant Professor, International Islamic University Islamabad who guided me with patience and kindness and helped me all the way along.

I shall be failing my duty if I do not put forth heartiest gratitude to my whole class who cooperated with me and showed complete friendly attitude during this study period in International Islamic University Islamabad particularly Attia Mehmood for answering my endless queries and guiding me at each and every step.

I pray to Allah (Subhana-o-Tahallah) that may He bestow me with true success in all fields in both worlds and shower His blessed knowledge upon me for the betterment of all Muslims and whole Mankind. Ameen

Maimoona Ali

# LIST OF FIGURES

| <b>Figure No</b> | <b>Caption</b>                                                                        | <b>Page No</b> |
|------------------|---------------------------------------------------------------------------------------|----------------|
| 1.1              | Comparison of Rates for Lung and other Common Cancer Types                            | 3              |
| 1.2              | Comparison of Incident and Mortality Rates of Lung with other Cancer Types            | 4              |
| 2.1              | Contribution of Lung Cancer to Worldwide Mortality Rates for year 2010                | 8              |
| 2.2              | Common Symptoms Associated with Lung Cancer                                           | 9              |
| 2.3              | 30 year lag time between peak smoking and peak Lung Cancer from (1920-2005)           | 12             |
| 2.4              | A Complex Pathway that leads to the Development of Non-Small Cell Lung Cancer         | 14             |
| 2.5              | Five years Survival Rates for Different Classes of Lung Cancer                        | 16             |
| 2.6              | Different Locations of miRNAs in Genome                                               | 18             |
| 2.7              | Multiple Steps involved in the Maturation of a miRNA inside the Nucleus and Cytoplasm | 19             |
| 2.8              | Various Steps involved in RNA Interference Therapy                                    | 21             |

# LIST OF TABLES

| <b>Table No</b> | <b>Caption</b>                                             | <b>Page No</b> |
|-----------------|------------------------------------------------------------|----------------|
| 4.1             | All known genes involved in the development of lung cancer | 36             |
| 4.2             | miRNA Targets for EGFR Genes                               | 44             |
| 4.3             | miRNA Targets for Tp53 Gene                                | 44             |
| 4.4             | miRNA Targets for Kras Gene                                | 46             |
| 4.5             | miRNA Targets for ERBB Gene                                | 47             |
| 4.6             | miRNAs Targeting Multiple Genes                            | 55             |
| 4.7             | Scores and Positions of miRNA Targets                      | 56             |
| 4.8             | Comparison of miRanda and RNAhybrid Results                | 59             |

# LIST OF ABBREVIATIONS

**A:** Adenine

**AAT:** Anterior Axillary Thoracotomy

**ALT:** Anterior Limited Thoracotomy

**BRAF:** Serine/threonine-protein kinase B-Raf

**BAT3 and MSH5:** HLA-B associated transcript 3 and mutS homolog 5

**C:** Cytosine

**C-MET:** MNNG HOS Transforming gene

**CHRNA3 and CHRNA5:** Cholinergic Receptor, Neuronal Nicotinic, Alpha 3 and Cholinergic Receptor, Neuronal Nicotinic, Alpha 5

**CLPTM1L:** Cleft Lip and Palate Transmembrane Protein 1-Like Protein

**DLEC1:** Deleted in Lung and Esophageal Cancer 1

**EGFR:** Epidermal Growth Factor Receptor

**EML4-ALK:** Echinoderm microtubule-associated protein-like 4 (EML4) and anaplastic lymphoma kinase

**EPHA3:** Eph-like tyrosine kinase

**ERBB:** Erythroblastic Leukemia Viral Oncogene Homolog

**ERCC6:** Excision repair cross-complementing rodent repair deficiency, complementation group 6.

**G:** Guanine

**GSTM1:** Glutathione S-transferase M1

**HMOX1:** Heme Oxygenase (Decycling) 1

**ITGA9:** Integrin, Alpha 9

**KDR:** Kinase insert Domain Receptor (a type III receptor tyrosine kinase)

**KLC1:** Kinesin Light Chain 1

**KRAS:** v-Ki-ras2 Kirsten rat sarcoma viral Oncogene Homolog

**LINUX:** Linus' UNIX

**LKB1:** Serine/threonine kinase 11

**miRNAs:** Micro RNAs

**mRNA:** Messenger RNA

**MALAT1:** Metastasis associated lung adenocarcinoma transcript 1 (non-protein coding)

**MAP3K8:** Mitogen-Activated Protein Kinase 8

**MET:** Met Proto-Oncogene (Hepatocyte Growth Factor Receptor)

**MYCL1:** v-myc Myelocytomatosis viral Oncogene homolog 1, lung carcinoma derived (avian)

**MPO:** Myeloper Oxidase

**NKX2-1:** Homeobox Protein Nkx-2.1

**NTRK:** SLIT and NTRK-like family, member 6

**NSCLC:** Non Small Cell Lung Cancer

**PARK2:** Parkinson Protein 2, E3 Ubiquitin Protein Ligase (Parkin)

**PIK3CA:** Phosphoinositide-3-kinase, Catalytic Alpha Polypeptide

**PLT:** Posterolateral Thoracotomy

**RNA:** Ribose Nucleic Acid

**RNase III:** Ribonuclease III

**SCLC:** Small Cell Lung Cancer

**SOX2:** SRY (sex determining region Y)-box 2, also known as SOX2

**STK11:** Serine/Threonine kinase 11

**T:** Thymine

**TERT:** Telomerase Reverse Transcriptase

**Tp53:** Tumor protein 53

**TSG11:** Tumor suppressor gene on chromosome 11

**U:** Uracil

# ABSTRACT

---

The silent epidemic of lung cancer that has been claiming innumerable precious human lives across the globe persistently for the last many decades needs to be addressed seriously and unconventionally. The complexity of disease, involvement of multigenic factors and complicated signaling and molecular pathways, lack of affectivity of screening techniques and limitations of available treatment options and consistent high death tolls and low survival rates are harsh realities pertaining to lung cancer. The advent of miRNAs and their acknowledged role in post transcriptional gene expression and their requirement of partial complementarity to bind to their targets make them highly probable to be used as therapeutic agents to control gene expression in cancer. In this research work targets for human miRNAs have been identified in four frequently mutated genes i.e. EGFR, ERBB, Kras and Tp53 which lead to the development of lung cancer by using computer aided tools that predict targets on the basis of sequence complementarity and minimum free energy of the hybridized complex. Out of 721 human miRNAs six were identified to have targets in the normal and mutated forms of these genes. The target miRNA strand can be designed by analyzing the conserved sequences of these six identified miRNAs, namely: miR-939, miR-93, miR-765, miR-1273, miR-887 and miR-1285 and may be applied as a therapeutic agent to address the four commonly mutated genes involved in lung cancer.

# INTRODUCTION

Tobacco smoking is the only form of drug abuse that is socially acceptable among all classes of the society worldwide. It is rather accepted as a norm in society and for long we have watched adventurous and dramatic advertisements for various tobacco companies being openly advertised followed by a public service message that consumption of tobacco smoke is hazardous to human health. Throughout the late 19<sup>th</sup> century the tobacco industry targeted young people around the world through heavy advertisement campaigns on T.V, radio, billboards, etc. There was a rapid increase in consumption of tobacco smoke worldwide followed by distinct rise in incidence and mortality rates of lung cancer (Youlden *et al.*, 2008). A direct relationship existed between tobacco smoking trends and lung cancer prevalence but the exact nature of relation was far from clear. For nearly five decades tobacco smoking was considered as

the sole cause of lung cancer and it has not been very long that other environmental and genetic factors associated with lung cancer have been revealed. It has also been found that most people who develop cancer today have either stopped smoking years earlier or have never smoked. Furthermore not all people who consume tobacco smoke develop lung cancer (Michael *et al.*, 2002).

Like most forms of cancer, lung cancer normally occurs when two general classes of genes i.e. oncogenes and tumor suppressor genes become defected and are not able to perform their normal functions. These normal genes become cancerous as a result of exposure to environmental carcinogens or as a result of inherited DNA mutations (Peter *et al.*, 2000).

The inheritance of defected genes is a primary disposition of developing cancer and the risk increases many folds when an individual with such defected genes is exposed to environmental carcinogens. In case of lung cancer, the risk of developing cancer increases enormously when a person with defected genes is exposed to first and second hand tobacco smoke, asbestos or radon gas and has a history of lung diseases like asthma, emphysema and chronic bronchitis (Biesalski *et al.*, 1998).

Like the world, lung cancer is a major contributor of cancer related deaths in Pakistan as well. According to IARC (International Agency for Research on Cancer) fact sheet for the year 2008 the age standardized incident rate was 12.3 and mortality rate was 11.5 for men and for women 2.7 and 2.5 accordingly (<http://globocan.iarc.fr>). These high incidence and mortality rates for lung cancer show a grieve situation for a country like Pakistan whose more than 17.2% of the total population is living below the poverty line (<https://www.cia.gov>).

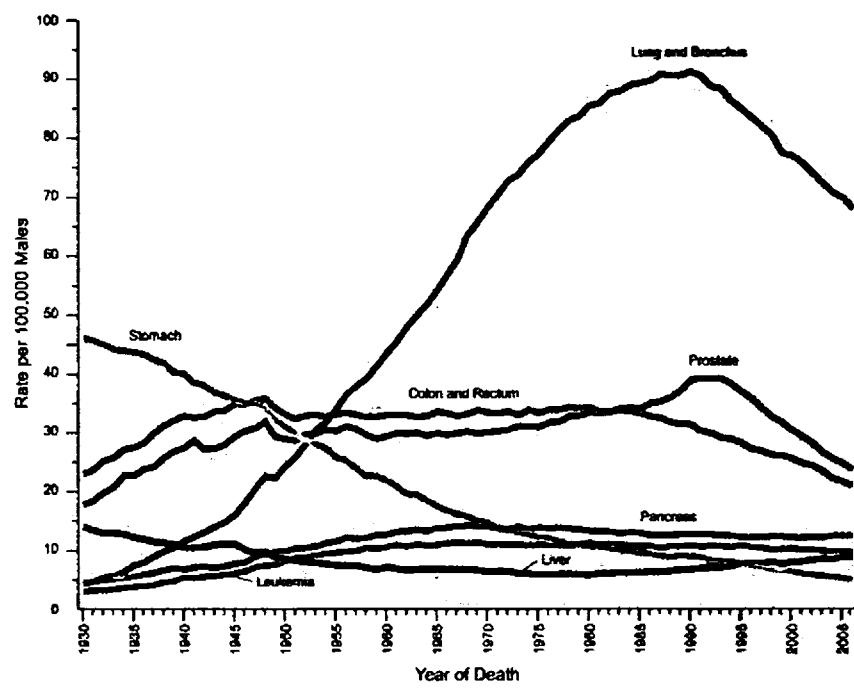



Figure 1.1: High rates for lung cancer compared with other common types of cancer.

The graph shows a sharp difference between death toll by lung cancer and other types of common human cancer (<http://i52.tinypic.com/r9euci.jpg>). These high death rates for lung cancer are attributed to tobacco consumption (Ezzati *et al.*, 2003). The rates of tobacco consumptions in Pakistan are relatively higher than other under developed countries of the same rank. About 40% of men and 8% of women in Pakistan consume tobacco smoke in different forms (Nighat *et al.*, 2007). Although tobacco smoke does not directly or solely causes lung cancer but this tobacco consuming population is at higher stake of developing lung cancer throughout their life span. Facts and figures developed so far show that nearly 90% of all lung cancer cases are attributed to tobacco smoking. (Biesalski *et al.*, 1998).

The incident rates for lung cancer across the world are devastating and show a persistent increase despite sanctions on tobacco cigarettes advertisements and promotion of awareness programs around the world. It remains to be the most common of all cancers and there were nearly 1.61 million new cases reported, that make approximately 12.7% of all the new cancer cases for the year 2008 (<http://globocan.iarc.fr/>). Another horrifying fact about lung cancer is that there is a minute difference between the incidence and mortality rates as is clearly shown by figure 1.2 which also shows high fatality rates for lung cancer as compared to other cancer types.

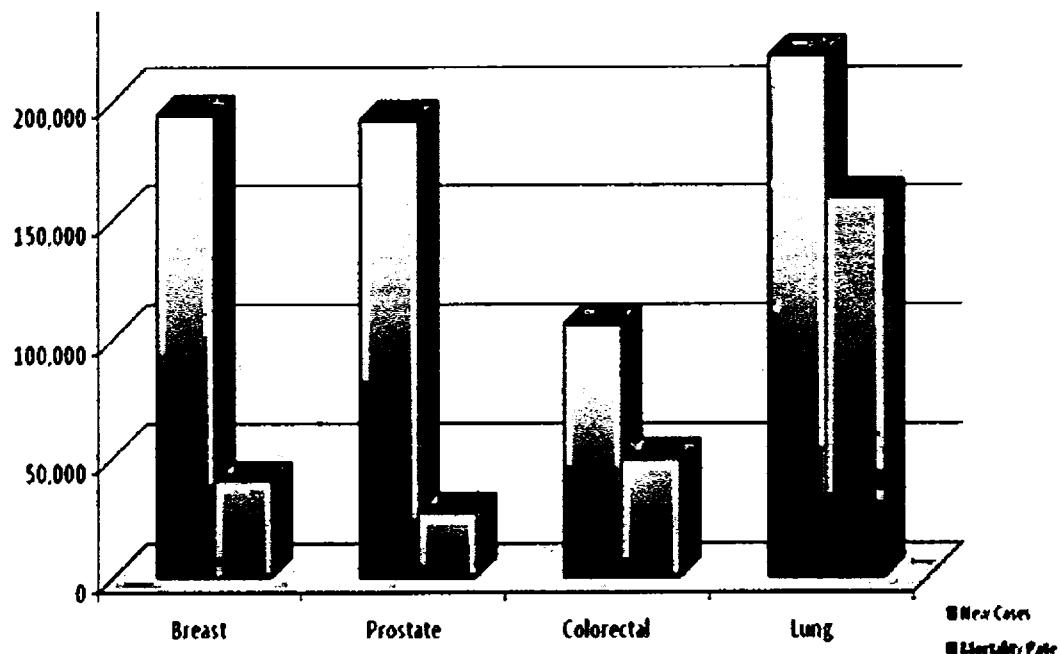



Figure 1.2: Comparison of Incidence and Mortality Rates of Lung and other Cancers.

These findings make us look into the treatments available for lung cancer. Like other types of cancer, treatment depends on type and stage of lung cancer (Schiller *et al.*, 2007). The traditional treatments available for lung cancer include surgery, chemotherapy, radiation therapy and target therapy. Like most of the other cancers lung cancer is usually treated with a combination of therapies (Sandler *et al.*, 2006).

Of all lung cancer cases, 88% are of non small cell type (Govindan *et al.*, 2006), and 75% of these cases are diagnosed at advance stages where they cannot be operated or addressed by other treatment options (Weiss *et al.*, 2006). Chemotherapy is pain-relieving and moderately effective for lung cancer (Weiss *et al.*, 2008). Surgery is a treatment of

choice but may not always result in cure of lung cancer. Although chemotherapy has shown adequate improvement for treatment of metastatic non small cell lung cancer there is still a dire need for better treatment options (Sandler *et al.*, 2006).

Understanding the genetic factor that attribute to lung cancer provides new horizons for the development of more effective treatment. There are a variety of genes that are directly or indirectly involved in the development of lung cancer (Herbst *et al.*, 2008). Some of these genes play a vital role in the development of lung cancer for example *BRAF*, *ERBB2*, *EGFR*, *Kras*, *Tp53* and *STK11*. (Ji *et al.*, 2007).

RNA-interference is a technique that is highly rated for its outstanding results for controlling gene expression in laboratory and provides new dimensions to the therapeutic application of miRNA. (Matthias *et al.*, 2005). miRNA are regulatory RNAs found in multicellular eukaryotes, including humans where they are involved in cancer (Johnson *et al.*, 2005). miRNAs either repress the translation of mRNA or enhance the instability of mRNA. The advent of miRNAs provides a new ray of hope for highly incurable lung cancer.

The prime focus of this study was:

- To identify all genes that have been reported to be involved in lung cancer through comprehensive literature review.
- To identify key genes and their mutated forms that are critical for prognosis and development of lung cancer through literature review.

- To identify targets for all known human miRNAs in these genes using computer aided tools and algorithms.
- Based on these identified targets designing a miRNA based therapy that will target the mutated genes and will silence them thus helping in suppression and control of lung cancer.
- Purpose is successful designing and implementation of a miRNA based therapy that can target more than one mutated genes.

# LITERATURE REVIEW

## 2.1 Cancer

Cancer, a leading cause of death, occurs when fundamental processes in building blocks of body i.e. cells go unchecked. Body loses control over cell growth and apoptosis (Croce, 2008). Cells grow uncontrolled, multiply to form tumors, break surrounding barriers to enter blood or lymph stream then invade other tissues and organs via metastasis. This whole phenomenon leads to cancer that is a common occurrence but hard to cure. In 2007, cancer claimed the lives of about 7.6 million people in the world (Seffrin *et al.*, 2009) and the death toll persists to rise in the subsequent years (Ahmedin *et al.*, 2008). There are more than hundred different types of cancer and they are usually named after the type of cell they initially affect. There are multiple causes of cancer like exposure to chemical and environmental carcinogens, errors in DNA replication or inherited mutations (Anand *et al.*, 2008). All these factors can cause abnormalities in genetic material, transforming normal cells to cancerous forms.

The end of the first decade of this century shows little change in cancer statistics around the world. Lung cancer stands persistently on its prime position as the most deadly cancer. Its low survival rates have not climbed and high incident and death rates worldwide continues to be more or less the same.

### 2.1.1 Lung Cancer

Lung cancer contributes heavily to worldwide cancer death toll for both of the genders (Weiss *et al.*, 2008). In 2010 lung cancer claimed lives of 1.38 million people around the world. Each year more women become victims of lung cancer than breast cancer and lose their lives (Minami *et al.*, 2000). Nearly 55% of the cases occur in the developing world. The death ratio to occurrence is that 0.86 which is clearly a very high fatality rate and there is little or no variability in survival rates for both developing and underdeveloped countries (<http://globocan.iarc.fr>) as is clearly shown in figure 2.1. that lung cancer causes highest mortality rate.

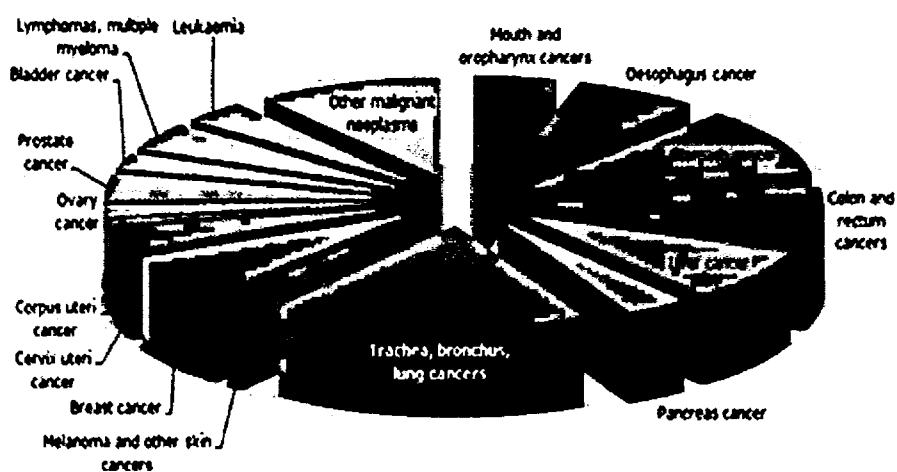



Figure 2.1: Contribution of Lung Cancer to Worldwide mortality rates for 2010

### 2.1.2 Clinical Features Of Lung Cancer

Multiple analysis have been conducted to clearly identify the symptoms that are unique to lung cancer and help medical personnel in its diagnosis. Symptoms that are distinct characteristic of lung cancer include haemoptysis i.e. coughing of blood, cachexia i.e. loss of weight, dyspnoea i.e. shortness of breath, thoracic pain, fatigue, loss of appetite and cough (Hamilton *et al.*, 2005). The most common and severe symptoms are pain, dyspnoea and anorexia. There is no differences in symptoms between males and females (Krech *et al.*, 1992). Lung cancer that has metastasized to the bones may produce unbearable pain at the sites where bones are involved. Psychological symptoms like depression and mood swings are also frequently observed (Hopwood *et al.*, 2000).

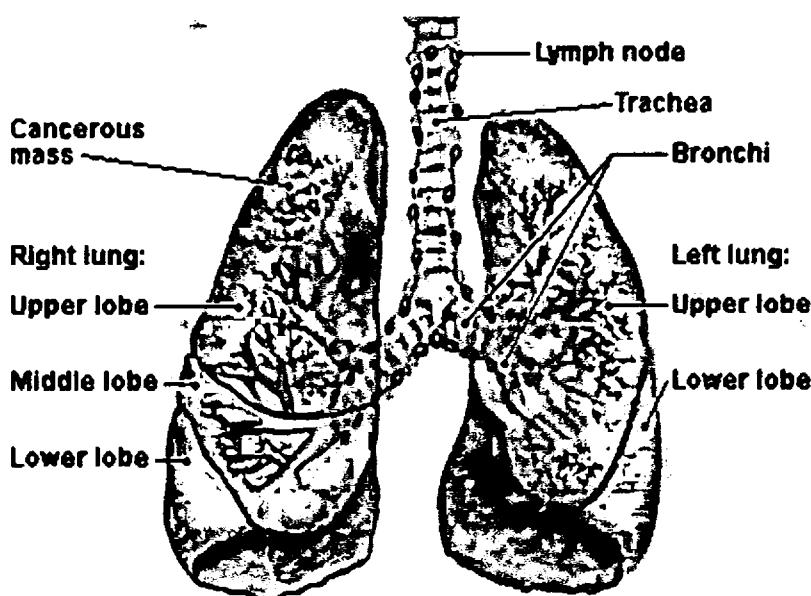



Figure 2.2: General appearance/ morphology of a cancerous lung

### 2.1.3 Types of Lung Cancer

Broadly lung cancer is divided into two classes, nonsmall cell lung cancer (NSCLC) and small cell lung cancer (SCLC). These account for 85% and 15% of all lung cancers, respectively (Birrer *et al.*, 1988) and are classified on the bases of size of tumor cells when viewed under a microscope.

#### 2.1.3.1 Non-Small Cell Lung Cancer

Nearly 88% of all the lung cancer cases are of NSCLC subtype (Weiss *et al.*, 2006). NSCLC is further divided into three subtypes “squamous cell lung carcinoma, adenocarcinoma, and large cell lung carcinoma”. The non-small-cell lung carcinomas (NSCLC) are grouped together because their diagnosis and treatment are quite related (Roth *et al.*, 1994). Each type of non-small cell lung cancer affects different kinds of cancer cells. The cancer cells of each type grow and spread in different ways. The types of non-small cell lung cancer are named for the kinds of cells found in the cancer and how the cells look under a microscope (Philippe *et al.*, 2000).

One fourth of total lung cancers is Squamous cell lung carcinoma (Travis *et al.*, 2000). Tumor usually develops near centre of bronchi and usually contains a hollow cavity. As compared to other types of lung cancer growth of Squamous cell lung carcinoma is slow (Vaporciyan *et al.*, 2004).

Adenocarcinoma contributes to 40% of NSCLC (Travis *et al.*, 2002). It is mostly found in peripheral lung tissues and is usually associated with smoking, however its occurrence is not infrequent in people who have never smoked. (Subramanian *et al.*, 2007).

Third type of NSCLC is large cell lung cancer and is relatively rare as compared to other types of NSCLC. Tumors are normally large when they are diagnosed. Extensive bleeding and tissue damage are characteristics of large cell lung cancer. Unlike other two types, tumors are undifferentiated, grow more quickly and metastasize to other parts of body (Pedersen *et al.*, 1994).

### **2.1.3.2 Small Cell Lung Cancer**

Occurrence of small cell lung cancer is less common as compared to NSCLC and accounts for nearly 15% of total lung cancer cases, but it is strongly associated with smoking (Barbone *et al.*, 1997). Tumors are very hostile and spread rapidly to other parts of the body. Tumors are mostly found in primary part of bronchi and quickly grow to become large in size (Collins *et al.*, 2007). The small cell lung cancer have vesicles containing neuroendocrine hormones (Rosti *et al.*, 2006). Lung cancer is very diversified and single case may have more than one types of tumors.

### **2.1.4 Environmental Factors**

Tobacco smoking is the major contributor of lung cancer cases worldwide (Biesalski *et al.*, 1998). Figure 2.3 depicts 30 year lagtime between smoking and development of lung cancer. Cigarette smoke is known to contain more than 60

carcinogens. Cigarette smoking not only amplifies the risk of lung cancer development but also put other people at risk who move in the close proximity and inhale the tobacco smoke via passive smoking (Field *et al.*, 2000). In this way cigarette smoke accounts for lung cancer in non smokers as well (Schick *et al.*, 2005).

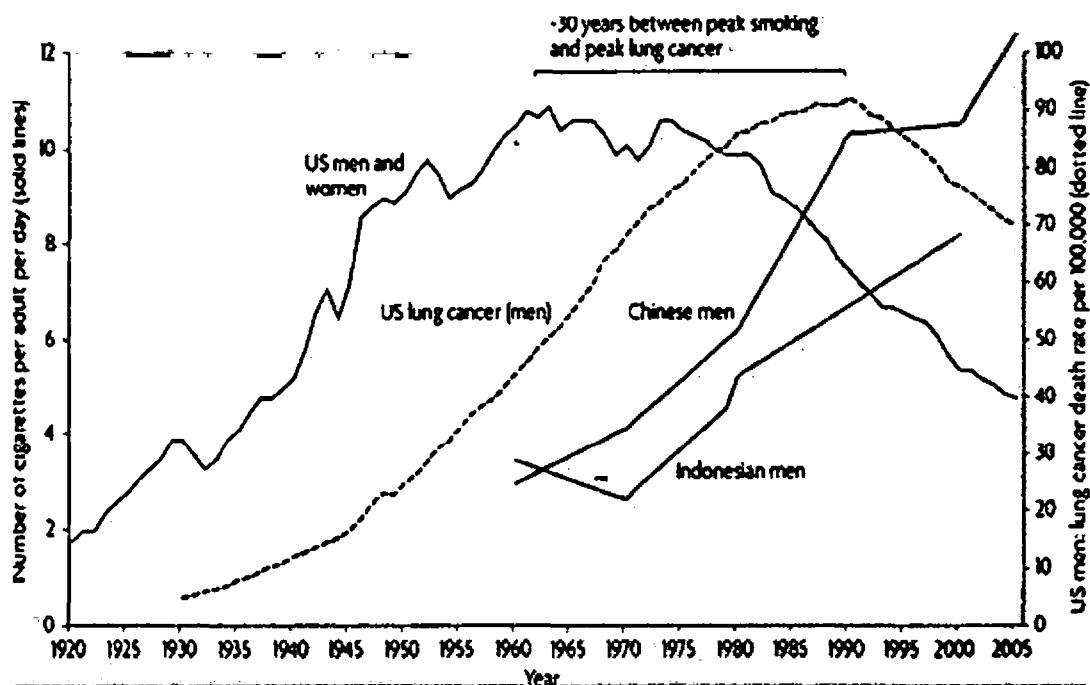



Figure 2.3: 30 Years Lag Time between Peak Smoking and Peak Lung Cancer from 1920-2005.

Besides smoking another environmental factor strongly associated with lung cancer is exposure to radon gas (Catelinois *et al.*, 2006). Meta-analysis suggests a significantly increased risk of lung cancer in people exposed to radon gas in their homes (Pavia *et al.*, 2003). Research indicate substantial danger from residential radon, predominantly for smokers and latest ex-smokers, and specify that it is accountable for about 2% of all deaths from cancer in Europe (Darby *et al.*, 2004).

Asbestos, another important factor is a ubiquitous, naturally occurring fiber that has been linked to the development of malignant and fibrotic diseases of the lung and pleura which may lead to the development of lung cancer (Christopher *et al.*, 2002). 2-3% of lung cancer cases and deaths are attributed to asbestos (Darnton *et al.*, 2006). Asbestos exposure and silica exposure are each related with inflammation of the lung and hence may contribute to the development of lung carcinoma (Karin *et al.*, 2007).

### **2.1.5 Genetics of Lung Cancer**

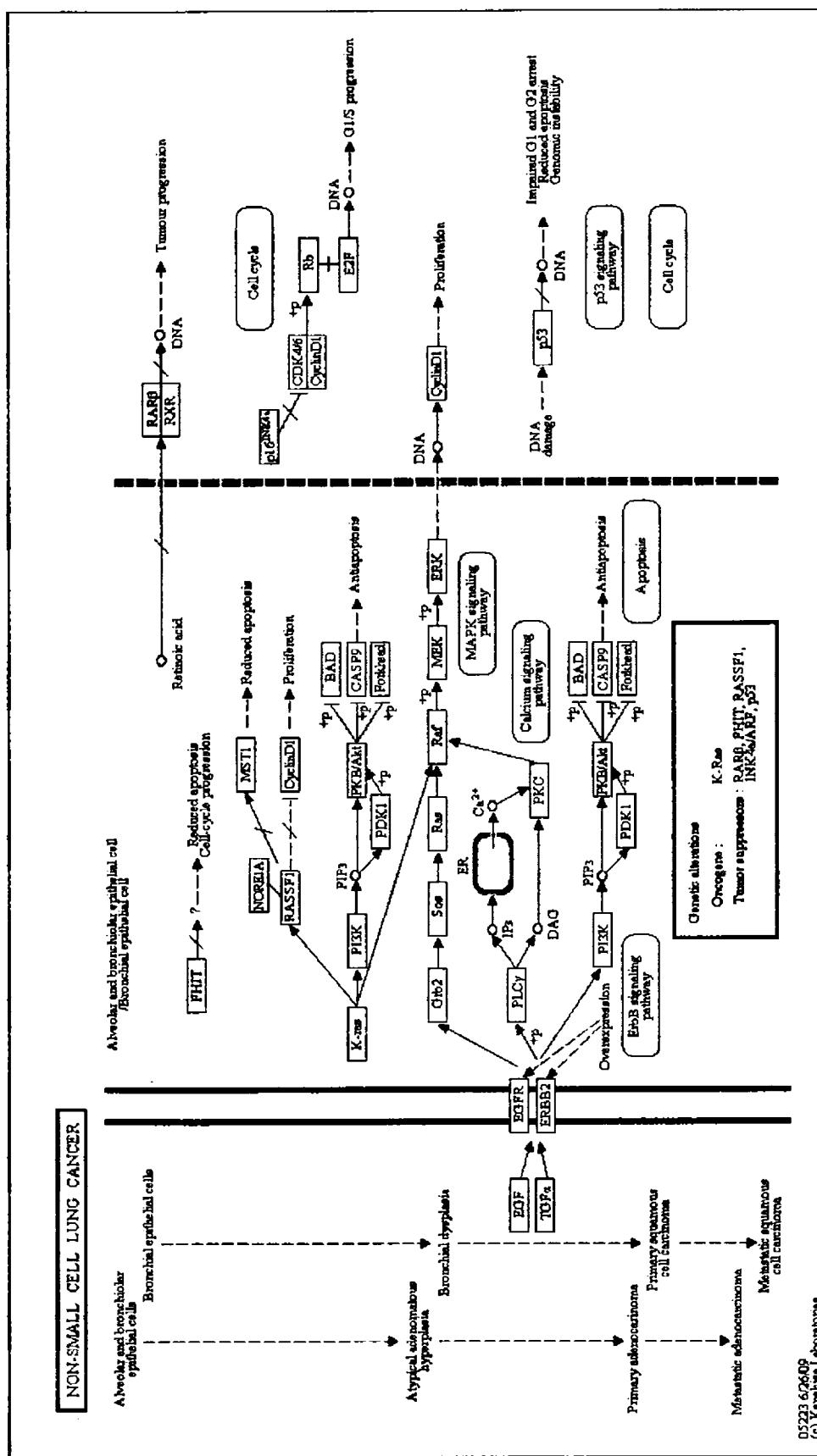
There are many genes with known or potential relationship with human lung cancer. Most commonly associated is *EGFR*. It is a member of the Erbb family and is mostly expressed in many cases of NSCLC, and its expression leads to the poor diagnosis of lung cancer (Lin *et al.*, 2010). Recently *EML4-ALK* fusion gene has been identified to be playing crucial role in the development of NSCLC ( Wong *et al.*, 2009).

*P53* is a tumor suppressor gene and its mutations are identified in many types of cancer. The risk of developing smoking induced lung cancer increases 1.7 folds with the presence of polymorphic *p53* gene that has proline instead of arginine at codon 72 (Kawajiri *et al.*, 1993). An amplified risk of a variety of histologic types of lung cancer was observed in people who carried *p53* mutations. The risk was 3.16 folds higher in smokers than non smokers (Hwang *et al.*, 2003). *Kras* mutations in codon 12 particularly conversion of glycine 12 to cystine is also observed in many cases of lung cancer (Ahrendt *et al.*, 2001).

Mutated *BRAF* gene particularly a serine replaced by threonine at codon 338 is a common occurrence in many cases of lung cancer (Naoki *et al.*, 2002). *STK11* and *PIK3CA* mutations are also related with human lung cancer (Samuels *et al.*, 2004). *NKX2-1* gene that encodes a transcription factor, acts as a proto oncogene and its expression is amplified in noteworthy cases of lung cancer (Weir *et al.*, 2007). Some of many other genes that are often mutated or show amplified expression in lung cancer are *c-MET*, *GSTM1*, *SOX2*, *HMOX1*, *LKB1* (Herbst *et al.*, 2008).

A complex pathway leading to the development of NSCLC shown in figure 2.4 below clearly shows the multigenic factors involved in the mutagenesis that results in carcinoma of lung.

### **2.1.6 Treatment For Lung Cancer**


Like other cancers there are multiple treatments available for lung cancer such as surgery, chemotherapy, radiotherapy and target therapy. The oncologists have to make most suitable choice after analyzing the stage of disease and types of tissues affected for every individual patient. Surgical resection of the tumor is mostly opted for cancer that is restricted inside the lung and there is general consensus that patients with NSCLC have best chance of cure with surgery and chances increases sufficiently with early diagnosis of disease (Fountain *et al.*, 1998).

The two standered methods used for lung cancer surgery are Thoractomy and median sternotomy . Thoractomy is performed via chest wall where as median sternotomy is performed by cutting the breast bone. Other approaches comprise of anterior limited thoractomy (ALT) performed via front of chest through a small

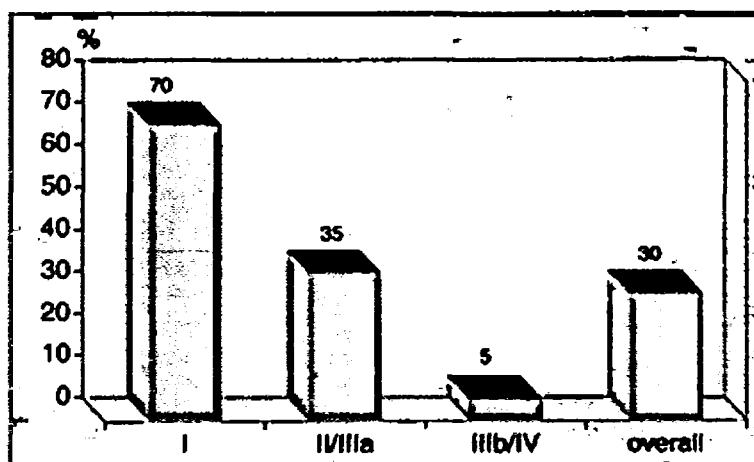
cut, anterioraxillary thoracotomy (AAT) performed on the front of chest near the underarm and posterolateral thoracotomy (PLT) performed on the back or side area of the chest ([www.oncologychannel.com](http://www.oncologychannel.com): 15-05-2010).

The effectiveness of surgery for NSCLC is inadequate if the disease is diagnosed at later stages. The median period of survival increases from 8 months to 26 months if patients with NSCLC are treated with chemotherapy along with surgery (Rosell *et al.*, 1994). Chemotherapy is modestly effective and is used along with radiotherapy for inoperable but curative NSCLC patients (Arriagada *et al.*, 2002).

Latest therapeutic advances use gefitinib and erlotinib for NSCLC patients which act as tyrosine kinase inhibitors and these belong to epidermal growth factor receptor family (Weiss *et al.*, 2008). So far use of these small target molecules have little significance to improve the survival rates of lung cancer (Bencardino *et al.*, 2007). Of all lung cancer subtypes small cell lung cancer is different because of its rapid growth and metastases. It also shows response to both radiotherapy and chemotherapy. Chemotherapy and radiotherapy are used in combination to patients who have limited SCLC (Perry *et al.*, 1989). If left untreated SCLC grows very rapidly, generally two to four months from the time of diagnosis, resulting in the shortest survival of any pulmonary neoplasm (Hinson *et al.*, 1993). Surgery is not a good option for SCLC patients, though some researchers have suggested that surgery adjunct to chemotherapy may improve local tumor control (Hinson *et al.*, 1993).



**Figure 2.4:** A complex pathway that leads to the development of non small cell lung cancer.


### 2.1.7 Stages of Lung Cancer

On the basis of number system lung cancer can be divided into four main groups

- Stage I – the cancer is small and only in one area of the lung (localised).
- Stage II and III – the cancer is larger and may have grown into the surrounding tissues and there may be cancer cells in the lymph nodes (locally advanced).
- Stage IIIa – cancer has not affected the lymph nodes yet whereas in IIIb lymph nodes are also affected.
- Stage IV – the cancer has spread to another part of the body (secondary or metastatic cancer). (Mountain, 1997)

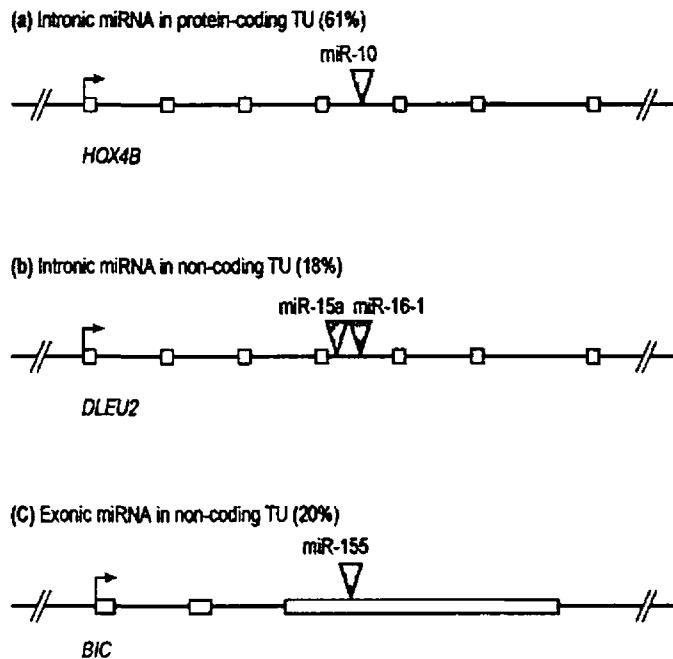
### 2.1.8 Complexity of Lung Cancer

Lung cancer continues to be the most challenging disease for the medical professionals because of its high occurrence and low survival rates. Majority of NSCLC cases are diagnosed at advanced inoperable stages (Weiss *et al.*, 2008). Chemotherapy and radiotherapy are not very effective options for NSCLC because of the involvement of multiple and complex genetic pathways and very late diagnosis (Eddy *et al.*, 1989). Despite its sensitivity to chemotherapy and radiotherapy, SCLC shows poor prognosis and many people die of the disease (Hinson *et al.*, 1993).



**Figure 2.5: Five year survival rates for different classes of lung cancer.**

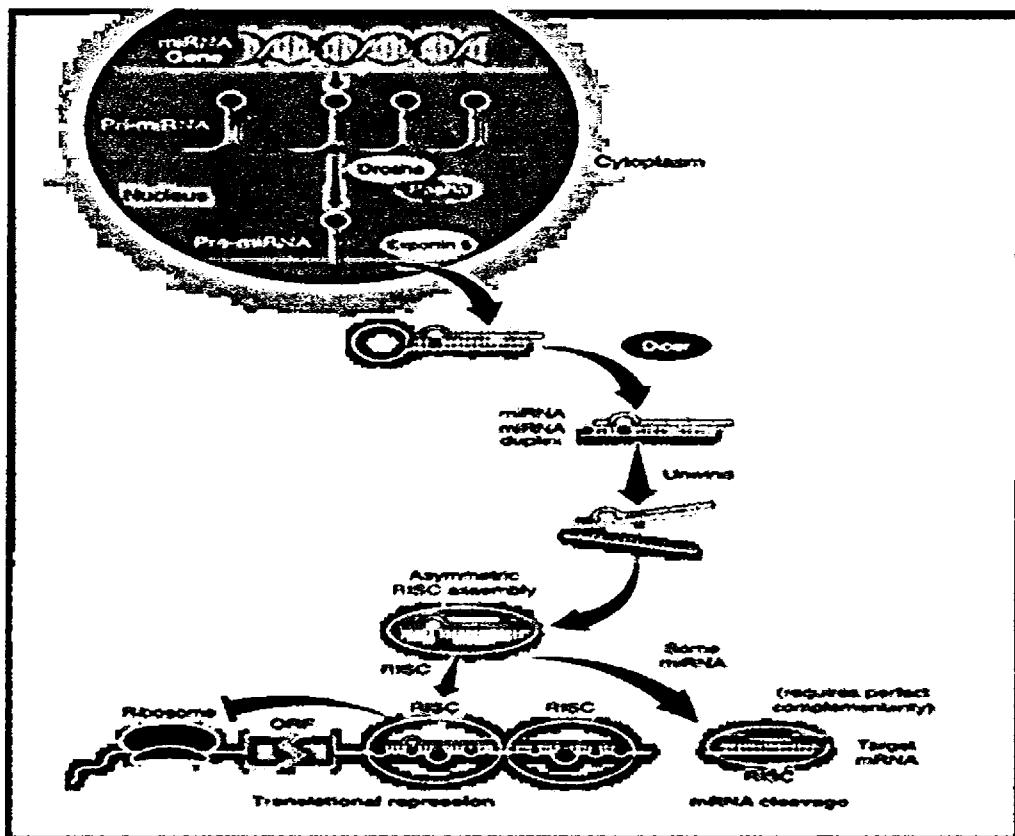
The average survival rate of people that are not treated and have advanced non small cell lung cancer is 6 months. Even the treatment shows little or no improvement. Figure 2.5 shows five year survival rate for different classes of lung cancer patients which is less than 1% (Travis *et al.*, 2002). These persistant low survival rates for lung cancer urges the researchers to investigate new dimensions for early diagnosis and effective therapies against lung cancer. It is therefore, necessary to develop a better and comprehensive understanding of the molecular basis of lung cancer and also the development of additional effective therapeutic agents (Hoffman *et al.*, 1984). Even though much improvement has been made like incidence rates have been stabilized, mortality rates have been reduced and survival rates have been improved, but lung cancer still accounts for more deaths than any other cancer type each year (Wingo *et al.*, 1995). Further development can be achieved by sustaining


new developments and applying already known techniques to control cancer on all classes of the general population (Jemal *et al.*, 2008).

### 2.2.1 Micro RNA

MicroRNAs (miRNAs) are classified as a unique class of RNA as they do not code protein and are nearly 22nt in length (Yoon *et al.*, 2010) They were first identified by Ambros and his colleagues in 1993 while they were studying the mode of functioning of heterochronic gene *lin 14* in *Caenorhabditis elegans* (Harris *et al.*, 2007) . They are involved in important biological functions such as cell maturity, cell propagation, differentiation, and cell death (Caldas *et al.*, 2007). Nearly 700 miRNAs that regulate protein coding genes in humans have been cloned (Griffiths *et al.*, 2008). Of all human genes 3% encode miRNAs and they in return regulate nearly 30% of human protein encoding genes (Filipowicz *et al.*, 2008).

### 2.2.2 Locations of miRNAs


miRNAs are located at various locations in genome as shown in figure 2.6. They may be located either in introns of genes that code proteins or they may be found in introns and exons of noncoding RNAs ( Zamore *et al.*, 2005) .



**Figure 2.6: Different locations of miRNAs in genome.**

### 2.2.3 Processing of miRNAs

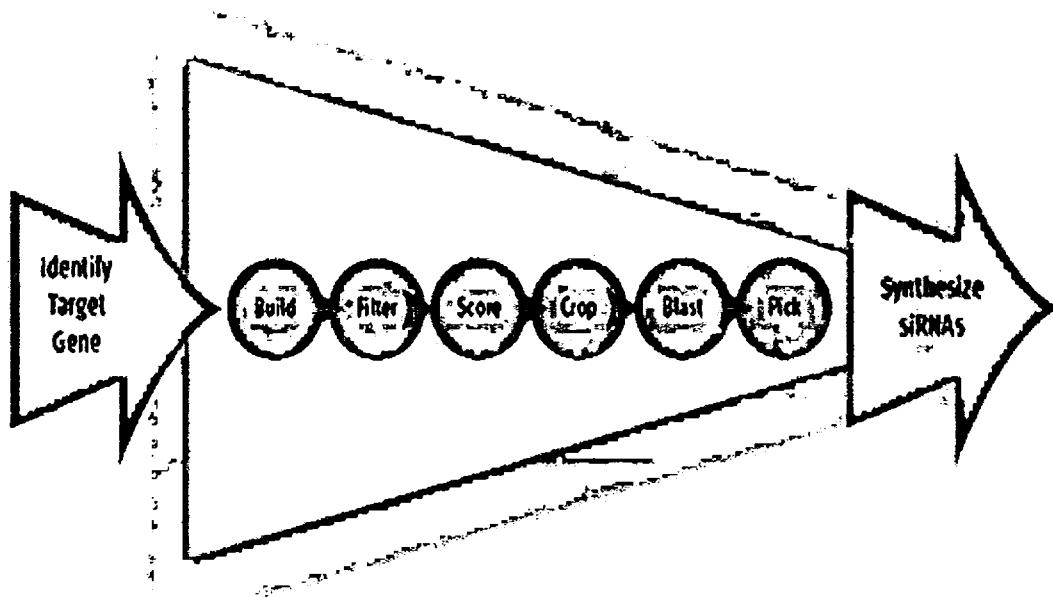
As illustrated in figure 2.7 RNA polymerase II transcribes miRNA into primary miRNAs (pri-miRNAs) inside the nucleus (Provost *et al.*, 2010). Pri-miRNAs are long primary transcripts that may have length of thousand nucleotides (Bartel, 2004). Inside the nucleus, Drosha, an RNase III, cleaves the two strands of the pri-miRNA (Serge *et al.*, 2009). This results in the formation of a stem loop which is 70 to 100 nucleotides in length known as the precursor miRNA (pre-miRNA) (Carmell *et al.*, 2004).



**Figure 2.7: Multiple steps involved in the maturation of miRNA inside the nucleus and cytoplasm.**

Cleavage by Drosha is important as it determines the structure of final miRNA product. Exportin 5 exports the pre-miRNA to cytoplasm from the nucleus (Kanellopoulou *et al.*, 2005). Inside the cytoplasm a second RNase III called Dicer cuts the pre-miRNA to generate nearly 22-nucleotide long RNA duplex of mature miRNA and its complement (Garcia *et al.*, 2005). Just one strand of the duplex enters the protein complex where as the other strand is destroyed in the cytoplasm (Murchison *et al.*, 2005).

## 2.2.4 Functions of miRNAs


The mRNA transcript that is being targetted by miRNA dictates the biology of function for that particular miRNA (Srivastava *et al.*, 2007). miRNAs bind to the complementary sequence of their mRNAs targets and this binding of miRNAs to their target mRNAs results either in repression of translation of target mRNA or induction of degradation of mRNA (Xiuying *et al.*, 2009). The mature miRNA combines with proteins and forms a complex known as the RNA-induced silencing complex. This miRNA is now active and pairs up with its target mRNA via sequence complementarity (Caldas *et al.*, 2007).

The two modes by which miRNA regulate gene expression in mammals i.e. suppression of translation and degradation of mRNA, require less complementarity (Soifer *et al.*, 2007). The base pairing between miRNAs and their mRNA targets in case of humans entertain some exemptions i.e. they do not require perfect complementarity (Xiuying *et al.*, 2009) The six nucleotides 2-8 in the 5' end of miRNA binds in the 3'UTR of mRNA targets (Doench *et al.*, 2004). This results in the repression of target mRNA. This 2-8 nucleotide sequence at the 5'end of miRNA is known as the “seed sequence”. In case of plants miRNAs bind in the coding region of mRNAs and result in the degradation of their targets (Chuck *et al.*, 2009). Along with repression miRNAs are observed to activate transcription by binding to the 5'UTR of mRNAs target (Henke *et al.*, 2008).

### 2.2.5 miRNA target prediction

miRNA target site prediction is complicated in humans as complementary sites of miRNA in 3' UTR regions of their target mRNA may not be functional in all cases (Vella *et al.*, 2004). mRNA sites with imperfect complementarity of miRNA seed region may also prove to be can very good targets for miRNA binding (Harris *et al.*, 2007). However in majority of cases complementarity of seed sequence is necessary for binding of miRNA to its mRNA target (Gaidatzis *et al.*, 2007). Other factors like sequence context of the target site, it's position in the 3' UTR and its distance from other neighbours are also crucial for the proper function of the target site (Saetrom *et al.*, 2007). Computer aided miRNA target prediction is progressing day by day and different steps involved in designing a short siRNA/miRNA that regulate target mRNA are shown in figure 2.8.

Many computational programs use bioinformatics tools to predicts the targets for miRNA but accuracy of these programs is low as they generate large number of targets making result validation hard ( Srivastava *et al.*, 2007). Rapid progress is being made as many bioinformatics programs and softwares have been designed for the putative target prediction of miRNAs. These approaches take into account the fact that miRNAs increase or decrease the expression of their target mRNAs .Microarray techniques are used to record changes in level of gene expression.



**Figure 2.8: Multiple steps involved in RNA interference therapy.**

## 2.2.6 miRNA Implications for Cancer

Some important interpretations in the beginning of miRNA discovery suggested their potential role in the development of cancer. First miRNAs discovered were thought to be controlling the proliferation and apoptosis of cells (Brennecke *et al.*, 2003). However first noteworthy proof of role of miRNAs in cancer progression was identified in year 1999 (Calin *et al.*, 2004). Deregulation of these miRNAs may therefore cause cancer. It was also observed that miRNA genes were mostly found in the fragile regions of the genome which were amplified or deleted in many cases of cancers in humans (Calin *et al.*, 2004). Further more a widespread deregulation of miRNA expression was observed in tumourous cell lines (Croce *et al.*, 2006). It is yet not well understood that if the changed expression of miRNAs seen in cancer is the cause or outcome of malignant transformation (Gaur *et al.*, 2007).

### 2.2.7 Computer Aided miRNA Target Prediction

The advent of miRNAs greatly influenced computational biological approaches along with traditional ones (Marc *et al.*, 2010). miRNA based computational programs are used for the prediction of genes encoding miRNAs and their mRNA targets (Hyeyoung *et al.*, 2010). Target prediction and biological validation of the results is major hinderence in miRNA research. Animal miRNAs show partial complementarity to their target sequences, therefore prediction of animal miRNA targets with high accuracy is a tough job (Bentwich, 2005). Computational algorithms used for the identification of miRNA target genes are designed on bases of rules miRNA take into account for recognizing their targets derived from experimental evidences (Brennecke *et al.*, 2005).

The programs for the identification of human miRNA targets are based on:

- 1) Pattern of base pairing between miRNA and their target mRNA
- 2) Thermodynamic stability of miRNA-mRNA hybrid
- 3) Comparative analysis for sequence conservation
- 4) Identification of multiple possible sites for the binding of miRNA in genome

### 2.2.7 Therapeutic Application of miRNAs

It is remarkable that in such short time period since miRNA's role was first identified in post transcriptional gene regulation such progress has been made and the

potential role of miRNAs as analytic markers for disease identification is well on its way (Takamizawa *et al.*, 2004).

Abnormal miRNA expression appears to be the characteristic of a wide variety of diseases. There is a great application of expression profiles of miRNAs in diagnosis of cancer and other diseases (Sethupathy *et al.*, 2006). miRNAs have therapeutic application as well. Unusually expressed miRNAs may prove to be significant targets for cancer therapies (Caldas *et al.*, 2007). miRNAs have improved our understanding of carcinogenesis. Along with oncogenes and tumor suppressor genes, we must now consider miRNAs and the networks that regulate them if we wish to understand the complicated phenomenon mystifying malignant transformation and address poorly curable and complex life threatening cancers such as lung cancer (Caldas *et al.*, 2007 and Harris *et al.*, 2007).

## METHODOLOGY

This study was aimed to propose a miRNA based therapy to regulate most commonly and frequently mutated genes in lung cancer. In order to achieve this goal a multistep approach was applied and following steps were taken during this study:

### **3.1 Genetic Analysis of Lung Cancer**

The prime step in this research work was to identify all genes reported till date, that are related to lung cancer. To achieve this purpose a comprehensive research was done utilizing all resources including published and printed research papers and review articles, books and online data bases. All genes that are directly or indirectly related to lung cancer were identified, listed and considered for further study and analysis. The prime focus was to study all genes that have been reported to mediate signaling pathways which result in the progression of lung cancer one way or another.

### 3.2 Target Gene Selection

After the identification of all the genes involved in lung cancer the genes that were most crucial to the development of lung cancer were short listed since it is not possible to cover all genes under the scope of this study. The cell signaling pathways and cascades were studied in detail to short list these genes.

The four genes selected were *EGFR*, *ERBB*, *p53* and *Kras*. According to the published resources available online on various databases, published research papers and articles, there was clear evidence that there are multiple mutated forms of these genes which play critical role in the development and progression of lung cancer.

### 3.3 Incorporating Mutations in Target Genes

The sequences for the normal forms of *EGFR*, *ERBB2*, *Kras* and *p53* genes were downloaded from *Entrez Gene*, an online database available on the site of *NCBI*.

Three mutated forms of *EGFR* genes have been reported to be involved in the development of lung cancer. These mutations were identified and incorporated manually in the normal sequence to get three mutated forms of *EGFR* gene. Similarly there were three mutated forms of *p53* and *ERBB* and a single mutated form of *Kras* which resulted in the progression of lung cancer. All these mutations were manually incorporated in the reference sequences to get the three mutated forms of *p53* and *ERBB* each and one mutated form of *Kras*.

TH-8559

### 3.4 Downloading Human miRNA Sequences

There were 721 mature human miRNA sequences downloaded from [www.mirbase.org](http://www.mirbase.org) in unaligned fasta format. The “*miRBase*” database incorporates interfaces that provide inclusive miRNA sequence data, their annotation and gene targets predicted for them. It not only provides sequences for human miRNAs but covers more than 36 species as well (Sam *et al.*, 2005). This database facilitates with both, sequences of miRNA precursors and sequences of mature miRNA. miRNAs can be searched using their names, keywords, annotations or references and a complete set of miRNAs for any organism can be downloaded in a matter of few clicks for free. The *miRBase* takes its attributes from “*miRNA Registry*” and provides a primary online source for all published mature miRNA sequences along with their hairpin precursors and annotations relating to their structures and functions (Sam *et al.*, 2005).

### 3.5 Target Prediction Via miRanda

A main step of this study was to find targets for the 721 human miRNAs in commonly mutated genes of lung cancer but miRNA target prediction is complicated in case of humans and poses many hurdles. miRNA sequences in humans are short and show partial sequence complementarity to their targets. The programs used for identification of target sites for human miRNAs take many features into account like pattern of complementarity between mRNA target sites and miRNA, thermodynamic stability of miRNA-mRNA hybrid, and identification of multiple possible sites for the

binding of miRNA in genome (Yoon *et al.*, 2010). There are a variety of computational methods for miRNA target prediction such as *DIANA-microT*, *PicTar*, *miRanda*, *Target Scan*, *e.t.c*. Out of many options *miRanda* was selected for miRNA target prediction. *miRanda* identifies target sites by considering complementarity of sequences , free energies of mRNA and miRNA duplexes, and conservation analysis of related genomes. *miRanda* uses a local alignment algorithm that assigns weights to positions and is based on a strict model that checks that binding site has almost complete complementarity in the seed region and allows only G:U wobble (Yoon *et al.*, 2010). After predicting the target sites it uses Vieena library to calculate the thermodynamic energy of miRNA and target duplex (Anton *et al.*, 2003).

*miRanda* is a *LINUX* based algorithm that is configured and then installed by using the shell commands. Two input files, one containing the 721 miRNA sequences and other having the target gene sequence were made and given as input to the algorithm and ran with standard parameters i.e. "Gap open penalty = -8.0, Gap extend = -2.0, Score threshold = 50.0, Energy threshold = -20.0 Kcal / mol, and the scaling parameter = 2.0". The output file contained alignment, alignment score, binding energy of the duplex, position of the target site and length of the duplex along with some other parameters. Algorithm was run for all target genes and their mutated forms.

### 3.6 Shuffled Vs Nonshuffled Sequences

miRanda generated large bulk of data, which showed all possible target sites against a single miRNA across the entire length of gene. A filter was needed to separate probable false positive hits and separate most suitable targets with high scores. To design the filter a cut off score was needed which filters the miRNA/mRNA pair. This cut off value was calculated as follows:

#### 3.6.1 Calculation of Cut off Value

In order to find cut off score, scores of shuffled and non shuffled sequences were plotted. miRanda had already been run against non shuffled gene sequences. To get shuffled sequences an online application DNA shuffle provided by the Sequence Manipulation Suit and maintained by Bioinformatics organization was used. The gene sequences were submitted in fasta format in segments of 10,000 base pairs only. This software shuffled the sequences by keeping their base composition constant. miRanda was run against these shuffled sequences of genes by keeping the parameters default.

#### 3.6.2 Data Parsing

The output files generated by miRanda contained many parameters but only alignment scores of shuffled and non shuffled sequences were needed to get the cut off value. In order to extract alignment scores of shuffled and non shuffled sequences from output files a data parsing application “*gawk*” was used. *Gawk* is the GNU implementation of *AWK*, a data driven programming language designed for processing

text based data (Siever *et al.*, 2009). Gawk extracts the particular parameter that had been specified in a text file format.

### 3.6.3 Data Plotting

To plot the alignment scores for shuffled and non shuffled sequences two tools *MS Excel* and *Mat lab* were used. *MS Excel* was unable to plot this huge bulk of data. No significant graph was generated by *Mat lab* as alignment scores for a large number of shuffled and non shuffled sequences had repetition of values thus the graph overlapped and therefore did not give a clear cut off value.

### 3.6.4 Data Analysis

miRanda outputs were analyzed and an average of shuffled and non shuffled alignment scores was used as a cut off value to filter the results. The miRNA pairs above the cut off score were selected for further analysis. A comparative analysis was done to find all the miRNAs that had targets in more than one gene. All these miRNAs were separated and selected for further processing.

## 3.7 Filtering Results via RNAhybrid

*RNAhybrid* finds the minimum free energy of hybridization for an elongated target sequence and a short miRNA sequence. *RNAhybrid* can take a sequence up to 1800 nucleotides long so the target sequence was cut into fragments of 1800 nucleotides. Since there was wide difference in length of miRNA sequence and its target sequence even in

fragments *RNACalibrate* was used to calculate length normalized free energy values for  $\varepsilon$  and  $\theta$ . These extreme value distribution parameters “ $\varepsilon$  and  $\theta$ .” were used as input parameters by RNAhybrid to calculate p-values of minimum free energy.

RNAhybrid functions in domain manner, i.e. the short miRNA sequence is hybridized to the part of the target sequence where it fits best therefore this software is primarily meant for miRNA target prediction. “The program calculates p-values based on extreme value distributions of length normalised energies along with minimum free energies”.

### 3.8 Gene Mapping

miRNAs were further short listed on the basis of minimum free energy values generated by RNAhybrid. The target regions were mapped on genome and target sites for selected miRNAs were aligned using *ClustalW*. *ClustalW* is a multiple sequence alignment program used for DNA or protein sequence alignment. It is available on EBI server of EMBL ([www.ebi.ac.uk](http://www.ebi.ac.uk)).

### 3.9 miRNA Designing

The conserved sequences in target sites of these four genes were analyzed and on the basis of conservation of base pairs in all mutated forms of these genes a miRNA strand was designed.

# RESULTS AND DISCUSSION

## 4.1 Genes Involved in Lung Cancer

The table 4.1 shows a list of genes that are directly and indirectly involved in lung cancer and play multivariate roles like some are involved in the mutagenesis and progression while others are associated with poor diagnosis, risk assessment and treatment of lung cancer.

This table presents just a small picture of molecular diversity that contributes to the development and progression of lung cancer. In 2008, Dinge and his colleagues sequenced 623 cancer causing genes that have evident or possible relationship to carcinogenesis in 188 human lung cancer cases. For this present study 30 genes were recognized to be mutated at high frequencies and potentially playing key role in lung carcinogenesis. Since it was not possible to detect miRNA targets in such wide variety of genes, genes that are most critical to the development and progression of lung cancer were selected.

The prime focus was on genes that are tumor suppressors and oncogenes that regulate cell signaling pathways as they are the most crucial ones. The mutations in these genes result in the malfunctioning of entire signaling cascades.

**Table 4.1: Some Important Genes Involved in Lung Cancer**

| S.NO | Genes                | Significance in Lung Cancer                                            | References                         |
|------|----------------------|------------------------------------------------------------------------|------------------------------------|
| 1    | ALK/EML4 fusion gene | Non-small cell lung cancer                                             | (Manabu <i>et al.</i> , 2007)      |
| 2    | BAT3 and MSH5        | Increases risk/reported in NSCLC                                       | ( Zhang <i>et al.</i> , 2009)      |
| 3    | BRAF                 | All lung cancer types                                                  | ( Davies <i>et al.</i> , 2002)     |
| 4    | CHRNA3 and CHRNA5    | Increases nicotine dependent risk                                      | (Saccone <i>et al.</i> , 2009)     |
| 5    | CLPTM1L and TRET     | Influence the risk of lung cancer                                      | (Wang <i>et al.</i> , 2010)        |
| 6    | DLEC1                | Poor prognosis of lung cancer                                          | (Hidefumi <i>et al.</i> , 2010)    |
| 7    | EGFR                 | Mutated and over expressed in all lung cancer types                    | (Suda <i>et al.</i> , 2009)        |
| 8    | EPHA3                | Adenocarcinoma of lung                                                 | (Li <i>et al.</i> , 2008)          |
| 9    | ERBB2                | Adenocarcinom a subtype of NSCLC                                       | (Stephens <i>et al.</i> , 2004)    |
| 10   | ERCC6                | Genetic variant of ERCC6 increases smoking related risk of lung cancer | (Ma <i>et al.</i> , 2009)          |
| 11   | HMOX1                | Drug induced toxicity in NSCLC                                         | (Fer <i>et al.</i> , 2010)         |
| 12   | ITGA9                | Squamous cell lung cancer and lung adenocarcinoma                      | (Anedchenko <i>et al.</i> , 2008)  |
| 13   | KDR                  | Non small cell lung cancer                                             | (Koukourakis <i>et al.</i> , 2000) |
| 14   | KLC1                 | Poor prognosis of lung cancer                                          | (Hidefumi <i>et al.</i> , 2010)    |
| 15   | KRAS                 | Mutations in NSCLC                                                     | (Bae <i>et al.</i> , 2007)         |
| 16   | MALAT1               | Associated with metastasis in NSCLC                                    | (Ping <i>et al.</i> , 2003)        |

|    |          |                                                                                      |                                    |
|----|----------|--------------------------------------------------------------------------------------|------------------------------------|
| 17 | MAP3K8   | Lung adenocarcinoma                                                                  | (Clark <i>et al.</i> , 2004)       |
| 18 | MET      | <i>MET</i> Amplification Leads to Gefitinib Resistance in Lung Cancer                | (Engelman <i>et al.</i> , 2007)    |
| 19 | MYCL1    | Genome wide allele typing of lung cancer                                             | (Dacic <i>et al.</i> , 2004)       |
| 20 | MPO      | The variant genotype of MPO increases asbestos related lung cancer risk              | (Schabath <i>et al.</i> , 2002)    |
| 21 | NKX2-1   | Associated with poor survival of lung cancer patients                                | (Hsua <i>et al.</i> , 2008)        |
| 22 | NTRK     | Lung adenocarcinoma                                                                  | (Li <i>et al.</i> , 2008)          |
| 23 | PARK2    | Intragenic deletions of PARK2 abrogate the growth-suppressive effects in lung cancer | (Veeriah <i>et al.</i> , 2010)     |
| 24 | PIK3CA   | Plays role in metastasis of tumor                                                    | (Okudela <i>et al.</i> , 2007)     |
| 25 | PPP2R1B  | Altered in 15% of lung tumors                                                        | (Wang <i>et al.</i> , 1998)        |
| 26 | SLC22A18 | A SNP found in lung cancer                                                           | (Sung <i>et al.</i> , 2006)        |
| 27 | STK11    | Loss of DNA repair                                                                   | (Adina <i>et al.</i> , 2010)       |
| 28 | TERT     | Increases the risk of lung cancer                                                    | (Rafnar <i>et al.</i> , 2009)      |
| 29 | TP53     | Non small cell lung cancer                                                           | (Cespedes <i>et al.</i> , 1999)    |
| 30 | TSG11    | Non small cell lung cancer                                                           | (Varinderpal <i>et al.</i> , 2003) |

## 4.2 Target Genes.

Germ line and somatic mutations have been recognized and reported in the *BRAF*, *EGFR*, *ERBB*, *Kras*, *MET*, *PIK3CA* and *p53* genes more frequently in lung cancer patients. Four genes were selected for this research work of target prediction and these are:

➤ *EGFR*

➤ *ERBB*

➤ *Kras*

➤ *P53*

### 4.2.1 EGFR Gene

*EGFR* gene encodes a glycol protein that is trans membrane and acts as a receptor for *EGF* (Epidermal Growth Factor) family members. When a ligand i.e. member of *EGF* family binds to this protein autophosphorylation of tyrosine takes place and receptors are dimerized. Mutations in this gene are a common incidence in lung cancer cases. There are multiple isoforms of *EGFR* gene like 60-kDa and 110-kDa isoforms in humans (Jill *et al.*, 2006).

A variety of mutated forms of *EGFR* gene have been reported out of which clearly associated with lung cancer are:

- Deletion of 18 base pairs i.e. deletion of six codons (747-753) at nucleotide position 2240 and insertion of a single Serine residue (Lynch *et al.*, 2004).
- Transversion of Guanine with Thymine at nucleotide position 2155 that results in the conversion of Glycine at codon 719 to Cystine (Paez *et al.*, 2004).
- Transversion of Thymine with Guanine at nucleotide position 2573 that result in the conversion of Leucine at codon 858 to Arginine (Paez *et al.*, 2004).

Mutations of *EGFR* are more common in NSCLC and particularly in adenocarcinoma subtype. *EGFR* mutations are relatively common in patients who have no background of smoking than those who have history of smoking.

#### 4.2.2 P53 Gene

The protein encoded by this gene is tumor protein 53 which is expressed when a cell goes under stress. This protein regulates multiple genes to act under stressful conditions by taking steps like arresting cell cycle, repairing DNA, inducing apoptosis, etc. Expression of this gene is low in normal cells as compared to cancerous cells. It acts as a tumor suppressor gene by inhibiting uncontrolled cell growth and binds to *p53* binding site of DNA (Patrick *et al.*, 1993).

There are many mutant forms of *p53* gene that are unable to bind to the binding site in DNA and hence cannot induce tumor suppression. *P53* mutations are a common occurrence in a variety of human cancers. Mostly related to lung cancer are following mutant types of *p53*:

- Transversion of GC to TA at codon number 245 resulting in missense mutation (Takahashi *et al.*, 1989).
- A point mutation, resulting in conversion of Arginine to Histidine at codon number 175 of mRNA (Hwang *et al.*, 2003).
- A point mutation resulting in conversion of Arginine to Histidine at codon number 273 of mRNA (Hwang *et al.*, 2003).

#### 4.2.3 Kras Gene

This gene belongs to *ras* gene family of mammals and encodes a small *GTPase* protein that is a member of *GTPase* super family. The *Ras* superfamily of GTP-binding proteins has more than 50 members and controls a varied range of intracellular processes. These comprise cellular proliferation and differentiation, intracellular vesicular trafficking, cytoskeletal control and NADPH oxidase function (Der *et al.*, 1993). Single substitution of an amino acid results in active mutation which is a common cause of many malignancies specially adenocarcinoma of lung in human (Galen *et al.*, 2001).

- Guanine at nucleotide position 34 is substituted by Thymine or Cytosine resulting in amino acid Cysteine or Arginine respectively (Ahrendt *et al.*, 2001).

#### 4.2.4 ERBB Gene

This gene encodes a tyrosine kinase protein that is member of epidermal growth factor receptor family. This protein lacks a ligand binding site and can only bind to already ligand bound members of EGF family. Its binding results in the formation of

hetrodimer which stabilizes the binding of ligand and triggers signaling pathways that are involved in cell growth and cell division . This gene is amplified and overexpressed in many human cancers like lung and breast cancer. In 2004 “ Cancer Genome project and Collaborative Group” identified following three mutant forms of ERBB gene in various lung cancer cell lines of humans:

- Insertion/ duplication of GCATACGTGATG at position 2322 resulting in insertion of 4 amino acids Alanine, Tyrosine,Valine and Methionine at codon number 774.
- Insertion of CTGTGGGCT at 2335 resulting in insertion of 3 amino acids Valine, Glycine and Serine at codon number 779.
- TT-CC base pair substitution at position 2263 and 2264 converting Leucine at codon number 755 to Proline.

On the basis of the clear evidence of involvement and importance of these genes in the development and progression of cancer of lungs in human, they are selected for target prediction of human encoded miRNAs.

### **4.3 Target Prediction of miRNAs**

Since the discovery of miRNAs a variety of tools and algorithms have been designed to predict their targets in different species. There are a variety of target prediction tools available like *TargetScan*, *TargetScanS*, *Pictar*, *DIANA-MicroT*, *miRanda*, *Support Vector machine* method and *statistical methods* (Praveen *et al.*,

2006) Of so many options available *miRanda* was selected because it selects targets taking into account multiple properties of miRNA and mRNA binding. Like *TargetScan* and *TargetScanS* *miRanda* checks sequence alignment using Vienna package but unlike them it does not seek perfect complementarity in seed region and allows G:U wobble which makes it more flexible and more suitable (Benjamin *et al.*, 2005). *Pictar* aligns sequences using *HMM* where as *DIANA-MicroT* only calculates minimum free energies of miRNA- mRNA duplexes. Statistical methods are also not very suitable as there is a large scale of sequence comparison (Praveen *et al.*, 2006).

The best choice in this scenario was *miRanda* that not only checks sequence complementarity but also calculates the thermodynamic stability of miRNA mRNA duplexes and assigns a score and weighted average to the target site on the basis of these features. The sites with the highest scores are the most suitable targets (Rajewsky, 2006).

#### 4.4 Results of miRanda

*miRanda* generates large bulks of data i.e all possible target sites for a single miRNA in the entire target sequence and the target sequence in this case were human genes commonly mutated in lung cancer. The number of miRNAs used in this research work were 721. Since miRanda predicted multiple target sites for a single miRNA the number of target sites for 721 miRNAs were enormous. In order to separate false positive results and select the most probable target sites a cut off value of 163 was selected. In most cases cut off value is predicted by plotting the alignment

scores generated by *miRanda* for shuffled and non shuffled sequences of target genes. The graphs plotted for scores of shuffled and non shuffled sequences for this study did not show any clear cut off point on the graph due to many repetitions for values of scores generated by *miRanda*, the graphs overlapped instead of intersecting or cutting at a clear point. Therefore cut off was calculated by taking the weighted average of top 50 scores of *miRanda* outputs as the targets with highest scores had highest weighted averages and showed more thermodynamic stability and hence had more chances of being the most suitable target. *miRanda* was run for the second time by changing the score threshold from 50 to 163 and the results were filtered and probable targets were subjected to further processing and analysis. The results for each of the selected four genes are discussed in coming sections.

#### 4.5 miRanda Predicted targets for EGFR Gene

miRanda was run separately for normal and three mutated forms of *EGFR* gene to predict targets. The filtered results of miRanda for *EGFR* gene are shown in table 4.2. Several interesting conclusions can be drawn from these results. Since the goal was to design a miRNA that can single handedly regulate multiple genes which are most commonly mutated in lung cancer therefore, only those miRNAs were selected that targeted normal and atleast one mutated form of *EGFR* gene and their score was above the threshold of 163.

| S.No | miRNA      | EGFR -N | EGFR-M1 | EGFR-M2 | EGFR-M3 |
|------|------------|---------|---------|---------|---------|
| 1    | miR-17     | ✓       | ✗       | ✗       | ✗       |
| 2    | miR-18b    | ✓       | ✓       | ✓       | ✓       |
| 3    | miR-20a    | ✓       | ✗       | ✗       | ✗       |
| 4    | miR-20b    | ✓       | ✗       | ✗       | ✗       |
| 5    | miR-24     | ✓       | ✓       | ✓       | ✓       |
| 6    | miR-30b*   | ✓       | ✗       | ✗       | ✗       |
| 7    | miR-34c-5p | ✓       | ✓       | ✓       | ✓       |
| 8    | miR-93     | ✓       | ✗       | ✗       | ✗       |
| 9    | miR-106a   | ✓       | ✗       | ✗       | ✗       |
| 10   | miR-106b   | ✓       | ✗       | ✗       | ✗       |
| 11   | miR-130b*  | ✓       | ✓       | ✓       | ✓       |
| 12   | miR-329    | ✓       | ✓       | ✓       | ✓       |
| 13   | miR-372    | ✓       | ✗       | ✗       | ✗       |
| 14   | miR-433    | ✓       | ✓       | ✓       | ✓       |
| 15   | miR-490-3p | ✓       | ✗       | ✗       | ✗       |
| 16   | miR-492    | ✓       | ✗       | ✗       | ✗       |
| 17   | miR-501-5p | ✓       | ✓       | ✓       | ✓       |
| 18   | miR-505*   | ✓       | ✓       | ✓       | ✓       |
| 19   | miR-574-5p | ✓       | ✓       | ✓       | ✓       |
| 20   | miR-593    | ✓       | ✓       | ✗       | ✓       |
| 21   | miR-593*   | ✗       | ✗       | ✓       | ✗       |
| 22   | miR-598    | ✓       | ✗       | ✗       | ✗       |
| 23   | miR-615-5p | ✓       | ✓       | ✓       | ✓       |
| 24   | miR-634    | ✓       | ✓       | ✓       | ✓       |
| 25   | miR-658    | ✓       | ✓       | ✓       | ✓       |
| 26   | miR-661    | ✓       | ✓       | ✓       | ✓       |
| 27   | miR-887    | ✗       | ✓       | ✓       | ✓       |
| 28   | miR-877*   | ✓       | ✗       | ✗       | ✓       |
| 29   | miR-914    | ✓       | ✗       | ✗       | ✗       |
| 30   | miR-922    | ✓       | ✓       | ✓       | ✓       |
| 31   | miR-939    | ✓       | ✓       | ✓       | ✓       |
| 32   | miR-1226   | ✓       | ✓       | ✓       | ✓       |
| 33   | miR-127-5p | ✓       | ✓       | ✓       | ✓       |
| 34   | miR-1228*  | ✓       | ✓       | ✓       | ✓       |
| 35   | miR-1276   | ✓       | ✓       | ✓       | ✗       |
| 36   | miR-1471   | ✓       | ✓       | ✓       | ✓       |
| 37   | miR-1469   | ✓       | ✓       | ✓       | ✓       |
| 38   | miR-1976   | ✓       | ✓       | ✓       | ✓       |

miRNAs with nearly identical sequences are annotated with an additional lower case letter in this table miR-20a and miR-20b are two closely related miRNAs. Pre-miRNAs that lead to 100% identical mature miRNAs but that are located at different places in the genome are indicated with an additional dash-number suffix. Species of origin is designated with a three-letter prefix, e.g., hsa-miR-123 is a human miRNA. When two mature miRNAs originate from opposite arms of the same pre-miRNA, they are denoted with a -3p or -5p suffix. When relative expression levels are known, an asteriek following the name indicates a miRNA expressed at low levels relative to the miRNA in the opposite arm of a hairpin. For example in this case miR-887 and miR-887\* share a pre-miRNA hairpin, but more miR-887 are found in the cell.

#### 4.6 miRanda Predicted Targets for P53 Gene

Table 4.3 shows targets predicted by *miRanda* for normal and two mutated forms of *p53* gene. There were 21 miRNAs that lie above the threshold score of 163 which targeted the normal and two mutated forms of *p53* gene. This shows that mutations did not alter binding of miRNAs to their target sites (as both mutations are single point mutations) and thus had no effect on binding of miRNAs with their target sites.

This table also has two pairs of closely related miRNAs 20a and 20b, and 106a and 106 b. miR-141\*, miR-143\*, 150\* and 225\* are expressed in lower level in cells with mutated genes as compared to normal cells.

**Table 4.3 miRNA Targets for P53 Gene**

|    | MiRNAs     | p53 Normal | P53-M1 | P53-M2 |
|----|------------|------------|--------|--------|
| 1  | miR-17     | ✓          | ✓      | ✓      |
| 2  | miR-20a    | ✓          | ✓      | ✓      |
| 3  | miR-20b    | ✓          | ✓      | ✓      |
| 4  | miR-93     | ✓          | ✓      | ✓      |
| 5  | miR-106a   | ✓          | ✓      | ✓      |
| 6  | miR-106b   | ✓          | ✓      | ✓      |
| 7  | miR-122    | ✓          | ✓      | ✓      |
| 8  | miR-141*   | ✓          | ✓      | ✓      |
| 9  | miR-143*   | ✓          | ✓      | ✓      |
| 10 | miR-146-5p | ✓          | ✓      | ✓      |
| 11 | miR-150*   | ✓          | ✓      | ✓      |
| 12 | miR-224*   | ✓          | ✓      | ✓      |
| 13 | miR-372    | ✓          | ✓      | ✓      |
| 14 | miR-542-5p | ✓          | ✓      | ✓      |
| 15 | miR-543    | ✓          | ✓      | ✓      |
| 16 | miR-708    | ✓          | ✓      | ✓      |
| 17 | miR-885-3p | ✓          | ✓      | ✓      |
| 18 | miR-936    | ✓          | ✓      | ✓      |
| 19 | miR-1285   | ✓          | ✓      | ✓      |
| 20 | miR-1304   | ✓          | ✓      | ✓      |
| 21 | miR-2276   | ✓          | ✓      | ✓      |

#### 4.7 miRanda Predicted Targets for Kras Gene

The targets predicted by *miRanda* for normal and two mutated forms of Kras gene are given in table 4.4. Seventy eight miRNAs lied above the threshold score of 163 and out of those only 30 bound to normal gene while failed to bind to either of the mutated forms of Kras gene. The miR-1207 was the vice versa case as it failed to bind to the normal Kras gene but targeted both mutated forms of Kras and if only these specific mutations were to be addressed in lung cancer patients than this miRNA would have played a significant role. The miRNAs that targeted both the normal and mutated forms of Kras were selected and their target sites were further analyzed. The remaining miRNAs were considered because the aim was to design a miRNA strand with a broad spectrum that can target both normal and all three mutated forms of *Kras* gene simultaneously for lung carcinoma.

**Table 4.4 miRNA Targets for Kras Gene**

| S.NO | miRNAs    | KRAS NORMAL | KRAS- M1 | KRAS- M2 |
|------|-----------|-------------|----------|----------|
| 1    | let-7a    | ✓           | ✓        | ✓        |
| 2    | let-7i    | ✓           | ✓        | ✓        |
| 3    | miR-9*    | ✓           | ✓        | ✓        |
| 4    | miR-16    | ✓           | ✗        | ✗        |
| 4    | miR-16-2* | ✓           | ✗        | ✗        |
| 6    | miR-17    | ✓           | ✓        | ✓        |
| 7    | miR-19b   | ✓           | ✗        | ✗        |
| 8    | miR-20a   | ✓           | ✓        | ✓        |
| 9    | miR-20b   | ✓           | ✓        | ✓        |
| 10   | miR-20b*  | ✓           | ✗        | ✗        |
| 11   | miR-27b*  | ✓           | ✗        | ✗        |
| 12   | miR-34a*  | ✓           | ✗        | ✗        |

|    |              |   |   |   |
|----|--------------|---|---|---|
| 13 | miR-92a*     | ✓ | ✗ | ✗ |
| 14 | miR-93       | ✓ | ✓ | ✓ |
| 15 | miR-106a     | ✓ | ✓ | ✓ |
| 16 | miR-106b     | ✓ | ✓ | ✓ |
| 17 | miR-127-5p   | ✓ | ✗ | ✗ |
| 18 | miR-128      | ✓ | ✗ | ✗ |
| 19 | miR-140-3p   | ✓ | ✓ | ✓ |
| 20 | miR-141      | ✓ | ✓ | ✓ |
| 21 | miR-141*     | ✓ | ✗ | ✗ |
| 22 | miR-143      | ✓ | ✗ | ✗ |
| 23 | miR-146a     | ✓ | ✓ | ✓ |
| 24 | miR-146b-5p  | ✓ | ✓ | ✓ |
| 25 | miR-148a*    | ✓ | ✗ | ✗ |
| 26 | miR-183      | ✓ | ✓ | ✓ |
| 27 | miR-185      | ✓ | ✓ | ✓ |
| 28 | miR-198      | ✓ | ✓ | ✓ |
| 29 | miR-217      | ✓ | ✓ | ✓ |
| 30 | miR-320a     | ✓ | ✓ | ✓ |
| 31 | miR-320b     | ✓ | ✓ | ✓ |
| 32 | miR-347a*    | ✓ | ✗ | ✗ |
| 33 | miR-363      | ✓ | ✓ | ✓ |
| 34 | miR-367      | ✓ | ✓ | ✓ |
| 35 | miR-373      | ✓ | ✗ | ✗ |
| 36 | miR-378      | ✓ | ✓ | ✓ |
| 37 | miR-453      | ✓ | ✗ | ✗ |
| 38 | miR-454      | ✓ | ✓ | ✓ |
| 39 | miR-484      | ✓ | ✗ | ✗ |
| 40 | miR-485-3p   | ✓ | ✓ | ✓ |
| 41 | miR-491-5p   | ✓ | ✗ | ✗ |
| 42 | miR-499*c    | ✓ | ✓ | ✓ |
| 43 | miR-507      | ✓ | ✗ | ✗ |
| 44 | miR-509-3-5p | ✓ | ✓ | ✓ |
| 45 | miR-548d-3p  | ✓ | ✗ | ✗ |
| 46 | miR-548m     | ✓ | ✓ | ✓ |
| 47 | miR-566      | ✓ | ✓ | ✓ |
| 48 | miR-576-3p   | ✓ | ✗ | ✗ |
| 49 | miR-580      | ✓ | ✗ | ✗ |
| 50 | miR-603      | ✓ | ✓ | ✓ |
| 51 | miR-613      | ✓ | ✓ | ✓ |

|    |             |   |   |   |
|----|-------------|---|---|---|
| 52 | miR-619     | ✓ | ✗ | ✗ |
| 53 | miR-630     | ✓ | ✗ | ✗ |
| 54 | miR-637     | ✓ | ✓ | ✓ |
| 55 | miR-641     | ✓ | ✗ | ✗ |
| 56 | miR-652     | ✓ | ✗ | ✗ |
| 57 | miR-665     | ✓ | ✓ | ✓ |
| 58 | miR-764     | ✓ | ✓ | ✓ |
| 59 | miR-765     | ✓ | ✓ | ✓ |
| 60 | miR-766     | ✓ | ✓ | ✓ |
| 61 | miR-937     | ✓ | ✓ | ✓ |
| 62 | miR-939     | ✓ | ✓ | ✓ |
| 63 | miR-1178    | ✓ | ✗ | ✗ |
| 64 | miR-1183    | ✓ | ✓ | ✓ |
| 65 | miR-1207    | ✗ | ✓ | ✓ |
| 66 | miR-1229    | ✓ | ✓ | ✓ |
| 67 | miR-1268    | ✓ | ✓ | ✓ |
| 68 | miR-1273    | ✓ | ✓ | ✓ |
| 69 | miR-1285    | ✓ | ✓ | ✓ |
| 70 | miR-1290    | ✓ | ✗ | ✗ |
| 71 | miR-1303    | ✓ | ✗ | ✗ |
| 72 | miR-1304    | ✓ | ✗ | ✗ |
| 73 | miR-1909    | ✓ | ✓ | ✓ |
| 74 | miR-1974    | ✓ | ✗ | ✗ |
| 75 | miR-1976    | ✓ | ✓ | ✓ |
| 76 | miR-12866   | ✓ | ✗ | ✗ |
| 77 | miR-1207-5p | ✓ | ✓ | ✓ |
| 78 | miR-1228*   | ✓ | ✗ | ✗ |

#### 4.8 miRanda Predicted Targets for ERBB Gene

In table 4.5 miRNA targets predicted by miRanda for normal and three mutated forms of *ERBB* genes are shown. There were 53 miRNAs whose targets had scores above the threshold of 163. There was a single miRNA (miR-320a) that bound to the normal sequence of *ERBB* gene but failed to bind to any of the three mutated forms of

gene. This failure of miRNA to *bind* to mutant *ERBB* sequences may indicate a contribution of these mutations in the development of malignancy. The 32 miRNAs that bound to the normal and the three mutated forms of *ERBB* were the most considerable ones.

Some of the miRNAs bound to the normal *ERBB* gene and either one of the three mutated forms while there were a few which did not bind to the normal gene but targeted one or any two of the three mutated forms of *ERBB*. miR-302a is unique that it only binds to the normal sequence of *ERBB* and fail to bind to any one of the mutated forms hence may be crucial for normal expression of *ERBB* gene. On the other hand 302a\* that is closely related to 302a binds to all three mutated forms but fails to bind the normal *ERBB* sequence. Hence in case of cells with normal *ERBB* gene 302a expression is high and in case of cancerous cell expression of 302a\* is high.

The table 4.5 shows that 13 mi-RNAs only bind to the normal and first mutated form of *ERBB* gene and hence are of little significance. Two miRNAs, miR-143\* and miR-216a bind to the normal and second and third mutated form of ERBB gene. miR-126 and miR216 only bind to the second and third mutated forms.

Table 4.5 miRNA Targets for ERBB Gene

|    | miRNAs | ERBB-NORMAL | ERBB-M1 | ERBB-M2 | ERBB-M3 |
|----|--------|-------------|---------|---------|---------|
| 1  | 17     | ✓           | ✓       | ✓       | ✓       |
| 2  | 20a    | ✓           | ✓       | ✓       | ✓       |
| 3  | 20b    | ✓           | ✓       | ✓       | ✓       |
| 4  | 29b    | ✓           | ✓       | ✓       | ✓       |
| 5  | 30b    | ✓           | ✓       | ✓       | ✓       |
| 6  | 30b*   | ✓           | ✓       | ✗       | ✗       |
| 7  | 30c    | ✓           | ✓       | ✓       | ✓       |
| 8  | 34c-5p | ✓           | ✓       | ✗       | ✗       |
| 9  | 93     | ✓           | ✓       | ✓       | ✓       |
| 10 | 106a   | ✓           | ✓       | ✓       | ✓       |
| 11 | 106b   | ✓           | ✓       | ✓       | ✓       |
| 12 | 126    | ✗           | ✗       | ✓       | ✓       |
| 13 | 138    | ✓           | ✓       | ✗       | ✗       |
| 14 | 143    | ✗           | ✓       | ✗       | ✗       |
| 15 | 143*   | ✓           | ✗       | ✓       | ✓       |
| 16 | 188-3p | ✓           | ✓       | ✓       | ✓       |
| 17 | 214*   | ✓           | ✓       | ✓       | ✓       |
| 18 | 216    | ✗           | ✓       | ✗       | ✗       |
| 19 | 216a   | ✓           | ✗       | ✓       | ✓       |
| 20 | 220b   | ✓           | ✓       | ✓       | ✓       |
| 21 | 302a*  | ✗           | ✓       | ✓       | ✓       |
| 22 | 320a   | ✓           | ✗       | ✗       | ✗       |
| 23 | 367    | ✓           | ✓       | ✓       | ✓       |
| 24 | 372    | ✓           | ✓       | ✓       | ✓       |
| 25 | 373    | ✓           | ✓       | ✓       | ✓       |

|    |         |   |   |   |   |
|----|---------|---|---|---|---|
| 26 | 378*    | ✓ | ✓ | ✓ | ✓ |
| 27 | 484     | ✓ | ✓ | ✓ | ✓ |
| 28 | 505*    | ✓ | ✓ | ✓ | ✓ |
| 29 | 508-5p  | ✓ | ✓ | ✓ | ✓ |
| 30 | 548a-3p | ✓ | ✓ | ✗ | ✗ |
| 31 | 566     | ✓ | ✓ | ✗ | ✗ |
| 32 | 574-5p  | ✓ | ✓ | ✓ | ✓ |
| 33 | 608     | ✓ | ✓ | ✓ | ✓ |
| 34 | 631     | ✓ | ✓ | ✗ | ✗ |
| 35 | 642     | ✓ | ✓ | ✗ | ✗ |
| 36 | 643     | ✓ | ✓ | ✓ | ✓ |
| 37 | 649     | ✓ | ✓ | ✓ | ✓ |
| 38 | 650     | ✓ | ✓ | ✗ | ✗ |
| 39 | 744     | ✓ | ✓ | ✓ | ✓ |
| 40 | 765     | ✓ | ✓ | ✓ | ✓ |
| 41 | 942     | ✓ | ✓ | ✓ | ✓ |
| 42 | 1207-5p | ✓ | ✓ | ✓ | ✓ |
| 43 | 1226    | ✓ | ✓ | ✗ | ✗ |
| 44 | 1226*   | ✓ | ✓ | ✓ | ✓ |
| 45 | 1236    | ✓ | ✓ | ✗ | ✗ |
| 46 | 1258    | ✓ | ✓ | ✗ | ✗ |
| 47 | 1260    | ✓ | ✓ | ✓ | ✓ |
| 48 | 1273    | ✓ | ✓ | ✓ | ✓ |
| 49 | 1285    | ✓ | ✓ | ✓ | ✓ |
| 50 | 1302    | ✓ | ✓ | ✗ | ✗ |
| 51 | 1910    | ✓ | ✓ | ✗ | ✗ |
| 52 | 1972    | ✓ | ✓ | ✓ | ✓ |
| 53 | 1978    | ✓ | ✓ | ✗ | ✗ |

#### 4.9 miRNAs Targeting Multiple Genes

Since the fact has been established that mutations in more than one gene lead to the development of lung cancer. This research work was primarily aimed to design a single miRNA that can target multiple genes most frequently mutated in lung cancer.

It has already been established that multigenic factors contribute to the development of lung cancer. Therefore, in this study only four important genes were considered and effort was made that only those miRNAs, which targeted the normal and all mutated forms of these four genes, were selected. All of these miRNAs lied above the threshold score of 163 and hence were selected as the potential miRNAs strands. As is shown in Table 4.6 that out of 721 miRNAs used, 16 had targets in normal and mutated

forms of more than one gene while of these 16, only five miRNAs targeted any three of the selected genes simultaneously. No one miRNA binds to all four of the genes.

The diversity and capacity to bind to target sites in multiple genes made these miRNAs highly potential therapeutic agents to be used against lung cancer. The alignment scores predicted by *miRanda* for these 16 miRNAs are given in table 4.7. *miRanda* also calculated minimum free energy values for miRNA-mRNA duplexes. *miRanda* also generated the positions of target sites, that is the number of nucleotide from which the target site starts and the number of nucleotide at which it ends.

The table 4.7 also shows miRNAs that target genes in different combinations. For instance miR-93, miR-20a, miR-20b, miR-106a and miR-106b targets normal and all

mutated forms of *ERBB*, *kras* and *p53*. miR-939 and miR-1976 have targets in normal and all mutated forms of *EGFR* and *kras* genes. miR-505\* targets normal and mutants of *EGFR* and *ERBB*. miR-373, miR-765 and miR-1273 targets *ERBB* and *kras* genes. miR-17 and miR-1285 targets normal and mutated forms of *kras* and *p53*. miR-372 and miR-302a\* target normal and mutated *ERBB* and *p53*. Only miR-887 targets the normal and mutated forms of *EGFR* along with *ERBB* and *p53*.

Table 4.7 shows scores, energy values of miRNA-mRNA duplex and position of their target sites within the gene sequences. In order to find out where these target sites were located within the sequence of genes, gene mapping was done. The sequence maps of the genes available on the *NCBI* data bases were used for this purpose. These maps gave details of all exons, introns, 3' UTR and 5'UTR regions that make up a gene. By mapping genes it was found that where the target sites of these miRNAs were exactly located.

It is clear from the table that most of the target sites of these 16 miRNAs out of the original 721, lies in the 3'UTR regions of these genes i.e. *EGFR*, *Kras*, *p53* and *ERBB*. Others lie within different exons of these genes. Whereas none of the target sites lie in the intron regions of these genes. As the duplex considered was with functional mRNA which does not have intron sequences therefore none of the miRNAs binds in the intron region of a gene.

Table 4.6 miRNAs Targeting Multiple Genes

| NO | MiRNAs    | EGFR | ERBB | Kras | P53 |
|----|-----------|------|------|------|-----|
| 1  | miR-17    | ✓    | ✗    | ✓    | ✗   |
| 2  | miR-20a   | ✗    | ✓    | ✓    | ✓   |
| 3  | miR-20b   | ✗    | ✓    | ✓    | ✓   |
| 4  | miR-93    | ✗    | ✓    | ✓    | ✓   |
| 5  | miR-106a  | ✗    | ✓    | ✓    | ✓   |
| 6  | miR-106b  | ✗    | ✓    | ✓    | ✓   |
| 7  | miR-302a* | ✗    | ✓    | ✗    | ✗   |
| 8  | miR-372   | ✗    | ✓    | ✗    | ✓   |
| 9  | miR-373   | ✗    | ✓    | ✓    | ✗   |
| 10 | miR-505*  | ✓    | ✓    | ✗    | ✗   |
| 11 | miR-765   | ✗    | ✓    | ✓    | ✗   |
| 12 | miR-887   | ✓    | ✗    | ✗    | ✗   |
| 13 | miR-939   | ✓    | ✗    | ✓    | ✗   |
| 14 | miR-1273  | ✗    | ✓    | ✓    | ✗   |
| 15 | miR-1285  | ✗    | ✗    | ✓    | ✓   |
| 16 | miR-1976  | ✓    | ✗    | ✓    | ✗   |

Table 4.7 Scores and Positions of miRNA Targets

| NO | MiRNAs   |          | EGFR      | ERBB      | KRAS        | TP53      |
|----|----------|----------|-----------|-----------|-------------|-----------|
| 1  | miR-939  | Score    | 166       | -         | 165         | -         |
|    |          | e-value  | -39.26    | -         | -31.87      | -         |
|    |          | position | 1186-1210 | -         | 824-851     | -         |
|    |          |          | exon-8    | -         | exon-9      | -         |
| 2  | miR-505* | Score    | 171       | 167       | -           | -         |
|    |          | e-value  | -26.7     | -22.48    | -           | -         |
|    |          | position | 6660-6681 | 367-391   | -           | -         |
|    |          |          | 3'UTR     | exon6     | -           | -         |
| 3  | miR-1976 | Score    | 166       | -         | 165         | -         |
|    |          | e-value  | -31.7     | -         | -24.07      | -         |
|    |          | position | 6447-6468 | -         | 7691-7710   | -         |
|    |          |          | 3'UTR     | -         | 3'UTR       | -         |
| 4  | miR-373  | Score    | -         | 171       | 168         | -         |
|    |          | e-value  | -         | -22.29    | -21.35      | -         |
|    |          | position | -         | 5792-5814 | 1214-1233   | -         |
|    |          |          | -         | 3'UTR     | 3'UTR       | -         |
| 5  | miR-765  | Score    | -         | 171       | 174         | -         |
|    |          | e-value  | -         | -27.98    | -28.48      | -         |
|    |          | position | -         | 918-936   | 441-462     | -         |
|    |          |          | -         | exon-8    | exon-6      | -         |
| 6  | miR-93   | Score    | -         | 165       | 165         | 169       |
|    |          | e-value  | -         | -29.07    | -28.48      | -30.3     |
|    |          | position | -         | 2671-2783 | 441-462     | 3555-3577 |
|    |          |          | -         | exon-24   | exon-6      | 3'UTR     |
| 7  | miR-1273 | Score    | -         | 171       | 203         | -         |
|    |          | e-value  | -         | -28.25    | -44.23      | -         |
|    |          | position | -         | 2132-2156 | 28774-28798 | -         |
|    |          |          | -         | exon-20   | 3'UTR       | -         |
| 8  |          | Score    | -         | 165       | 173         | 177       |
|    |          | e-value  | -         | -25.69    | -25.72      | -26.2     |

|    |                  |          |           |           |             |           |
|----|------------------|----------|-----------|-----------|-------------|-----------|
|    | <i>miR-20b</i>   | position | -         | 2764-2780 | 10784-10806 | 3555-3577 |
|    |                  |          | -         | exon-25   | 3'UTR       | 3'UTR     |
| 9  | <i>miR-106a</i>  | Score    | -         | 165       | 173         | 177       |
|    |                  | e-value  | -         | -21.45    | -22.15      | -21.96    |
|    |                  | position | -         | 2764-2786 | 10784-10806 | 3555-3577 |
|    |                  |          | -         | exon-25   | 3'UTR       | 3'UTR     |
| 10 | <i>miR-1285</i>  | Score    | -         | -         | 188         | 187       |
|    |                  | e-value  | -         | -         | -35.89      | -34.84    |
|    |                  | position | -         | -         | 1337-1358   | 3321-3342 |
|    |                  |          | -         | -         | exon-13     | 3'UTR     |
| 11 | <i>miR-17</i>    | Score    | -         | -         | 165         | 177       |
|    |                  | e-value  | -         | -         | -25.69      | -26.2     |
|    |                  | position | -         | -         | 20866-20891 | 3555-3577 |
|    |                  |          | -         | -         | 3'UTR       | 3'UTR     |
| 12 | <i>miR-20a</i>   | Score    |           | 165       | 173         | 177       |
|    |                  | e-value  | -         | -23.58    | -24.28      | -24.09    |
|    |                  | position | -         | 2764-2786 | 10784-10806 | 3555-3577 |
|    |                  |          | -         | exon-25   | 3'UTR       | 3'UTR     |
| 13 | <i>miR-106b</i>  | Score    | -         | 167       | 167         | 175       |
|    |                  | e-value  | -         | -20.7     | -22.89      | -22.67    |
|    |                  | position | -         | 2764-2786 | 2782-2802   | 3557-3577 |
|    |                  |          | -         | exon-25   | 3'UTR       | 3'UTR     |
| 14 | <i>miR-372</i>   | Score    | -         | 163       | -           | 167       |
|    |                  | e-value  | -         | -21.14    | -           | -21.2     |
|    |                  | position | -         | 2758-2780 | -           | 3549-3576 |
|    |                  |          | -         | exon-25   | -           | 3'UTR     |
| 15 | <i>miR-302a*</i> | Score    | -         | 169       | -           | -         |
|    |                  | e-value  | -         | -22.02    | -           | -         |
|    |                  | position | -         | 3532-3554 | -           | -         |
|    |                  |          | -         | exon-30   | -           | -         |
| 16 | <i>miR-887</i>   | Score    | 175       | -         | -           | -         |
|    |                  | e-value  | -35.64    | -         | -           | -         |
|    |                  | position | 6437-6457 | -         | -           | -         |
|    |                  |          | 3'UTR     | -         | -           | -         |

#### 4.10 Verification of Results using RNAhybrid

*RNAhybrid* was also used for target prediction of miRNAs. *RNAhybrid* finds the most suitable and favorable hybridization site between the two, miRNA and its target sequence. The number of false positive results generated by *RNAhybrid* is relatively low and it is efficient and flexible and offers a large choice of options and features that can be selected by user according to requirement (Rehmsmeier *et al.*, 2006).

The table 4.8 presents a comparison of minimum free energy values generated by *miRanda* and *RNAhybrid* for the miRNAs and their duplexes with their target mRNAs. The results of *RNAhybrid* differ from those of *miRanda* the reason could be that both the softwares consider different parameters for calculating the minimum free energy. The energy values calculated by *RNAhybrid* are considered more significant than those calculated by *miRanda*. *RNAhybrid* finds the energetically most favourable hybridization sites between miRNAs and their target mRNAs using integrated powerful statistical model (Verbeek *et al.*, 2010).

Lower the minimum free energy of miRNA and mRNA duplex stronger the binding and interaction between the two and most suitable the target site was. The energy value of -30 was considered as a good energy value for the hybridized duplex. A closer look at the table shows that the energy values generated by *RNAhybrid* for six miRNAs (that are highlighted in table) were below -30. The energy values calculated by *miRanda* and *RNAhybrid* for two miRNAs i.e. miR-505\* and miR-1976 differ widely. The values of minimum free energies calculated by *RNAhybrid* were consistent with the values

calculated by *miRanda* for rest of the miRNAs and were not significant as they were quite high and were not even close to -30.

**Table 4.8 Comparison of miRanda and RNAhybrid Results for mfe Values**

| S.NO | miRNAs    | mfe values miRanda | mfe values RNAhybrid |
|------|-----------|--------------------|----------------------|
| 1    | miR-939   | -37.92             | -44.7                |
| 2    | miR-505*  | -30.1              | -23.7                |
| 3    | miR-1976  | -31.7              | -21.97               |
| 4    | miR-373   | -22.25             | -21.35               |
| 5    | miR-765   | -28.48             | -31.2                |
| 6    | miR-93    | -30.3              | -32.9                |
| 7    | miR-1273  | -28.55             | -32.8                |
| 8    | miR-20b   | -24.32             | -25.01               |
| 9    | miR-106a  | -20.08             | -22.5                |
| 10   | miR-1285  | -35.89             | -37.9                |
| 11   | miR-17    | -26.2              | -24.22               |
| 12   | miR-20a   | -22.21             | -25.6                |
| 13   | miR-106b  | -20.77             | -22.67               |
| 14   | miR-302a* | -22.02             | -19.6                |
| 15   | miR-372   | -21.2              | -22.65               |
| 16   | miR-887   | -35.64             | -31.3                |

On the basis of the results produced by the two softwares six miRNAs were selected for designing the miRNA strand that can target the mutated *EGFR*, *ERBB*, *kras* and *p53* in lung cancer. Both of the software programs generated results using different parameters and giving results in the form of alignment scores and minimum free energy of hybridization. The six most appropriate miRNAs selected on the basis of these results are:

- hsa-miR-939
- hsa-miR-765
- hsa-miR-93
- hsa-miR-1273
- hsa-miR-1285
- hsa-miR-887

#### 4.11 Multiple Sequence Alignment

Multiple sequence alignment, MSA, of the target sites for these 6 miRNAs was done to check for conserved sequences. The binding of miRNA with incomplete complementarity increases their flexibility to bind to multiple target sites that do not show sequence complementarity. Some miRNAs like miR-93, miR-939 and miR-1285 varied in their length according to their target sites.

|          |                                           |    |
|----------|-------------------------------------------|----|
| miR-93   | -----ATAGCTGTCAT-TCCTT---AGC-ACTTGGTA-    | 22 |
| miR-93   | -----ATAGCTGTCAT-TCCTT---AGC-ACTTGGTA-    | 26 |
| miR-765  | ----GTTAATTCCTT-----TCCTT---CCCTCTT---CCC | 24 |
| miR-93   | ----GAAACGCTT-----TCCTT---CCCTCTT---CCC   | 24 |
| miR-765  | ----GGATCAGCC-----TTTC---TCCTCCCC---C--   | 22 |
| miR-939  | -----AATTCCGGGGACCCC---AGCTGCTT---C--     | 25 |
| miR-939  | -----CTTCTTCGAACT---GATTCCTCCCT---C--     | 30 |
| miR-1273 | -----GATTCCTCCCT---C--                    | 31 |
| miR-1285 | -----AGATTCCTCCCT---C--                   | 25 |
| miR-1285 | -----AGGATCTT---CACT---ATGTGCGCAGGCTG     | 26 |
| miR-887  | -----GACTG---CAGGGAAAG,GAAGGGAAAGG-       | 24 |

The MSA of the miRNAs that target these sites was also done to look for conserved sequences.

|            |                          |
|------------|--------------------------|
| ➤ miR-939  | GUGGGGGUCUCGGGUCGAGGGG   |
| ➤ miR-93   | UGGACGUGCGUCGUGAAAC      |
| ➤ miR-765  | UAGUGGGGAAGAGGGAGG       |
| ➤ miR-1273 | UCUUUUCAGAACGAACACAGCGGG |
| ➤ miR-887  | GAGCCCUACCGCGGGGUG       |
| ➤ miR-1285 | UCCAGAGUGACCGGGUG        |

All these miRNAs have more than 50% purine bases and have purine rich 3' ends. miR-939 has 22 nucleotides out of which 9 are purine and 7 are pyrimidine. miR-93 has 19 nucleotides out of which 11 are purine and 8 are pyrimidine. miR-765 has 17 nucleotides out of which 15 are purine and 2 are pyrimidine. miR-1273 has 22 nucleotides out of which 12 are purine and 10 are pyrimidine. miR-887 has 18

nucleotides out of which 10 are purine and 8 are pyrimidine. miR-1285 has 17 nucleotides out of which 10 are purine and 7 are pyrimidine.

Most of these have a purine to pyrimidine ratio between 54% to 68% except miR-765 where 88% nucleotides are purine. For primer binding in PCR 40-60% GC content ensures stable binding and presence of G or C base at the 3' end helps to promote correct binding at the 3' end due to stronger H bonding of G and C bases.

#### 4.12 Designing miRNA

The miRNA that can target multiple genes most frequently mutated in lung cancer should have:

Purine to pyrimidine ratio between 55-70%.

The GC to AU ratio should be around 60%.

The last base should be G or C.

Preferably the 3' end should be purine rich with two of the last three bases definitely be purine.

## CONCLUSION

An attempt had been made to design a miRNA that is diverse in its nature and can target and regulate multiple genes. As lung cancer in most of the cases is diagnosed at very late stages and involvement of multigenic factors make its treatment complicated and limited. This research work mainly focused on the designing of a miRNA, which may be applied for the gene knockdown mechanism like siRNA or may be used to design the RNA based therapy that may address four most commonly and frequently mutated genes which lead to the mutagenesis and progression of lung cancer. Out of 721 human miRNAs six were identified to have targets in the normal and mutated forms of the selected four genes. The target RNA strand was designed by analyzing the sequences of these six miRNAs, namely:

- miR-939
- miR-93
- miR-765
- miR-1273
- miR-887
- miR-1285

The scope of this study was limited and covered only four genes out of a large variety of genes associated with the development and progression of lung cancer. Similar work can be extended to other genes related to lung cancer. Furthermore this study only

suggests miRNA based therapy for lung cancer but it needs to be experimentally validated and therapeutically tested before it can be applied to any practical use.

## REFFERENCES

1. Alberg A. J. and J. M. Samet. 2003. Epidemiology of Lung Cancer. *Chest*; 123:21-49.
2. Alvarez-Garcia I. and E. A. Miska. MicroRNA functions in animal development and human disease. *Development*; 132: 4653-4662.
3. Anand P., A. B. Kunnumakara, C. Sundaram, K. B. Harikumar, S.T. Tharakan, O. S. Lai, B. Sung and B. B. Aggarwa. 2008. Cancer is a Preventable Disease that Requires Major Lifestyle Changes. *Pharmaceutical Research*; 25(9): 2097-2116.
4. Anedchenko A. E., A. A. Dmitriev, G. S. Krasnov, O. O. Kondrat'eva, E. P. Kopantsev, T. V. Vinogradova, M. V. Zinov'eva, I. B. Zborovskaya, B. E. Polotsky and O. V. Sacharova. 2008. Downregulation of *RBSP3/CTDSPL*, *NPRL2/G21*, *RASSF1A*, *ITGA9*, *HYAL1*, and *HYAL2* in non-small cell lung cancer. *Molecular Biology*; 42(6): 859-869.
5. Arriagada R. and G. Straw. 2002. *Oxford Textbook of Oncology*. Oxford University Press.
6. Bae N.C., M. H. Chae, M. H. Lee, K. M. Kim, E. B. Lee, C. H. Kim, T. Park, S. B. Han, S. Jheon, T. H. Jung and J. Y. Park. 006. EGFR, ERBB2, and KRAS mutations in Korean non-small cell lung cancer patients. *Cancer Genetics and Cytogenetics*; 173 (2): 107-113.
9. Barbone F., M. Bovenzi, F. Cavallieri and G. Stanta. 1997. Cigarette Smoking and Histologic Type of Lung Cancer in Men. *Chest*; 112 (6): 1474-1479.
10. Bartel D .P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function . *Cell*; 116(2): 281-297.

11. Bencardino K., M. Manzoni, S. Delfanti, A. Riccardi, M. Danova and G. R. Corazza. 2007. Epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small-cell lung cancer: results and open issues. Internal and Emergency Medicine; 2 (1): 3-12.
12. Bentwich I. 2005. Prediction and validation of microRNAs and their targets. FEBS Letters; 579 (26): 5904-5910.
13. Biesalski K. H., B. B. D. Mesquita , A. Chesson , F. Chytil , R. Grimble , R. J. J. Hermus, J. Köhrle , R. Lotan , K. Norpoth , U. Pastorino and D. Thurnham. 2008. European Consensus Statement on Lung Cancer: risk factors and prevention. CA Cancer Journal for Clinicians; 48(3): 167-176.
14. Boyle P. 2009. World Cancer Report 2009. Lyon, France: World Health Organization. International Agency for Research on Cancer.
15. Brennecke J., D. R. Hipfner, A. Stark, R. B. Russell and S. M. Cohen. 2003. bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila. Cell; 113(1): 25-36.
16. Brennecke J., A. Stark, R. B. Russell and S. M. Cohen. 2005. Principles of MicroRNA-Target Recognition. Plos Biology; 3(3): 404-418.
17. Calin A. G. and C. M. Croce. 1997. MicroRNA signatures in human cancers. Nature Reviews Cancer; 6: 857-866.
18. Calin A. G., C. Sevignani, C. D. Dumitru, T. Hyslop, E. Noch, S. Yendamuri , M. Shimizu, S. Rattan, F. Bullrich, M. Negrini, and C. M. Croce. 2004. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.

Proceedings of the National Academy of Sciences of the United States of America; 101(9): 2999-3004.

19. Carmell A. M. and G. J. Hannon. 2004. RNase III enzymes and the initiation of gene silencing. *Nature Structural & Molecular Biology*; 11: 214-218.

20. Catelinois O., A. Rogel, D. Laurier, S. Billon, D. Hemon, P. Verger and M. Tirmarche. 2006. Lung Cancer Attributable to Indoor Radon Exposure in France: Impact of the Risk Models and Uncertainty Analysis. *Environ Health Perspect*; 114(9): 1361-1366.

21. Clark M. A., S. H. Reynolds, M. Anderson and J. S. Wiest. 2004. Mutational activation of the *MAP3K8* protooncogene in lung cancer. *Genes, Chromosomes and Cancer*; 41(2): 99-108.

22. Collins L.G., C. Haines, R. Perkel and R.E Enck. Lung cancer: diagnosis and management. *American Family Physician*; 75(1): 56-63.

23. Croce M. C. 2008. Oncogenes and cancer. *The New England Journal of Medicine*; 358(5): 502-511.

24. Dacic S., E. Sasatomi, P. A. Swalsky, D. W. Kim, S. D. Finkelstein and S. A. Yousem. 2004. Loss of Heterozygosity Patterns of Sclerosing Hemangioma of the Lung and Bronchioloalveolar Carcinoma Indicate a Similar Molecular Pathogene. *Archives of Pathology & Laboratory Medicine*; 128(8): 880-884.

25. Daniel A. Haber. 2004. Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non-Small-Cell Lung Cancer to Gefitinib. *The New England Journal of Medicine*; 350(12): 2129-2139.

26. Darton J.A., D. M. McElvenny and J. T. Hodgson. 2006. Estimating the Number of Asbestos-related Lung Cancer Deaths in Great Britain from 1980 to 2000. *The Annals of Occupational Hygiene*; 50(1): 29-38.

27. Davies H., G. R. Bignell, C. Cox, P. Stephens, S. Edkins, S. Clegg, J. Teague, H. Woffendin, M. J. Garnett, W. Bottomley, N. Davis, E. Dicks, R. Ewing and Y. Floyd. 2002. Mutations of the *BRAF* gene in human cancer. *Nature*; 417: 949-954.

28. Ding L., G. Getz, D. A. Wheeler, E. R. Mardis, M. D. McLellan, K. Cibulskis, C. Sougnez, H. Greulich, D. M. Muzny, M. B. Morgan, L. Fulton, R. S. Fulton, Q. Zhang, M. C. Wendl, M. S. Lawrence, D. E. Larson, K. Chen, D. J. Dooling, A. Sabo, A. C. Hawes and H. Shen. 2008. Somatic mutations affect key pathways in lung adenocarcinoma. *Nature*; 455: 1069-1075.

29. Hamilton W., T. J. Peters, A. Round and D. Sharp. 2005. What are the clinical features of lung cancer before the diagnosis is made? A population based case-control study. *Thorax*; 60: 1059-1065.

30. Herbst S. R., J. V. Heymach, and S. M. Lippman. 2008. **Molecular Origins of Cancer: Lung Cancer.** *The new england journal of medicine*; 359: 1367-1380.

31. Hoffman C. P., K. S. Albain, J. D. Bitran and H. M. Golomb. 1984. Current Concepts in Small Cell Carcinoma of the Lung. *CA Cancer Journal for Clinicians*; 34: 269-281.

32. Hsua S. D., C. R. Acharyaa, B. S. Balakumarana, R. F. Riedela, M. K. Kima, M. Stevensonaa, S. Tuchmana, S. Mukherjeea, W. Barrya, H. K. Dressmana, J. R. Nevinsa, S. Powersd, D. Muf and Anil Pottia. 2009. Characterizing the developmental pathways TTF-1, NKX2-8, and PAX9 in lung cancer. *Proceedings of the National Academy of Sciences of the United States of America*; 106(13): 5312-5318

33. Hwang S., L. S. Cheng, G. Lozano, C. I. Amos, X. Gu and L. C. Strong. 2003. Lung cancer risk in germline p53 mutation carriers: association between an inherited cancer predisposition, cigarette smoking, and cancer risk. *Human Genetics*; 113(3): 238-243.

34. Engelman A. J., K. Zejnnullahu, T. Mitsudomi, Y. Song, C. Hyland, J. O. Park, N. Lindeman, C. Gale, X. Zhao, J. Christensen, T. Kosaka, A. J. Holmes, A. M. Rogers, F. Cappuzzo, T. Mok, C. Lee, B. E. Johnson, L.C. Cantley and P. A. Janne. 2007. MET Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating ERBB3 Signaling. *Science*; 316(5827): 1039-1043.

35. Field W. R, D. J. Steck, B. J. Smith, C. P. Brusl, E. L. Fisher, J. S. Neuberger, C. E. Platz, R. A. Robinson, R. F. Woolson and C. F. Lynch. 2000. Residential Radon Gas Exposure and Lung Cancer, the Iowa Radon Lung Cancer Study. *American Journal of Epidemiology*; 151 (11): 1091-1102.

36. Figl A, S. Dominique, N. Eduardo, B. J. Lorenzo, B. Rafael, G. Andreas, T. Ranjit , P. Dolores, H. Kari, S. Dirk and K. Rajiv. 2010. Single-nucleotide polymorphisms in DNA-repair genes and cutaneous melanoma. *Mutation research*; 702(1):8-16

37. Filipowicz W., S. N. Bhattacharyya and N. Sonenberg. 2008. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? *Nature Reviews Genetics*; 9:102-114.

38. Fountain S. W. 1998. Surgery for lung cancer. *Thorax*; 53: 441.

39. Gaidatzis D., E. Nimwegen, J. Hausser and M. Zavolan. 2007. Inference of miRNA targets using evolutionary conservation and pathway analysis. *BMC Bioinformatics*; 8: 69-75.

40. Gaur A., D. A. Jewell, Y. Liang, D. Ridzon, J. H. Moore, C. Chen, V. R. Ambros and M. A. Israel. 2007. Characterization of MicroRNA Expression Levels and Their Biological Correlates in Human Cancer Cell Lines. *Cancer Research*; 67: 2458.

41. Griffiths-Jones S., H. K. Saini, S. Dongen and A. J. Enright. 2007. miRBase: tools for microRNA genomics. *Nucleic Acid Research*; 36(1): 54-58.

42. Govindan R., N. Page, D. Morgensztern, W. Read, R. Tierney, A. Vlahiotis, E. L. Spitznagel and J. Piccirillo. 2006. Changing Epidemiology of Small-Cell Lung Cancer in the United States Over the Last 30 Years: Analysis of the Surveillance, Epidemiologic, and End Results Database. *Journal of Clinical Oncology*; 24(28): 4539-4544.

43. Jackman M. D. and B. E. Johnson. 2005. Small-cell lung cancer. *The Lancet*; 366(9494): 1385-1396.

44. Jemal A., R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray and M. J. Thun. 2008. Cancer Statistics. *CA Cancer Journal for Clinicians*; 58(2): 71-96.

45. Ji H., Matthew R. Ramsey, D. N. Hayes, C. Fan, K. McNamara, P. Kozlowski, C. Torrice, M. C. Wu, T. Shimamura, S. A. Perera, M. Liang, D. Cai, G. N. Meyerson, D. J. Kwiatkowski, D. H. Castrillon, N. Bardeesy, N. E. Sharpless and K. Wong. 2007. LKB1 modulates lung cancer differentiation and metastasis. *Nature*; 448: 807-810.

46. Ji P., S. Diederichs, W. Wang, S. Boing, R. Metzger, P.M. Schneider, N. Tidow, B. Brandt, H. Buerger, E. Bulk, M. Thomas, W. E Berdel, H. Serve and C. Müller-Tidow. 2003. MALAT-1, a novel noncoding RNA, and thymosin  $\beta$ 4 predict metastasis and survival in early-stage non-small cell lung cancer. *Oncogene*; 22: 8031-8041.

47. Johnson M. S., H. Grosshans, J. Shingara, M. Byrom, R. Jarvis, A. Cheng, E. Labourier, K. L. Reinert, D. Brown and F. J. Slack. 2005. RAS Is Regulated by the let-7 MicroRNA Family. *Cell*; 120(5): 635-647.

48. Kanellopoulou C., S. A. Muljo, A. L. Kung, S. Ganesan, R. Drapkin, T. Jenuwein, D. M. Livingston and K. Rajewsky. 2005. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. *Genes and Development*; 19: 498-501.

49. Kawajiri K., K. Nakachi, K. Imai, J. Watanabe and S. Hayashi. 1993. Germ line polymorphisms of p53 and CYP1A1 genes involved in human lung cancer. *Carcinogenesis*; 14 (6): 1085-1089.

50. Kenichi S., O., Ryoichi, Y. Yasushi and M. Tetsuya. 2009. EGFR T790M Mutation: A Double Role in Lung Cancer Cell Survival? *Journal of Thoracic Oncology*; (1): 1-4.

51. Kim N. V. 2005. MicroRNA biogenesis: coordinated cropping and dicing. *Molecular Cell Biology*; 6: 376-385.

52. Krüger J. and M. Rehmsmeier. 2006. RNAhybrid: microRNA target prediction easy, fast and flexible. *Nucleic Acid Research*; 34(2): 451- 454.

53. Lewis P. B., C. B. Burge and D.P. Bartel. 2005. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. *Cell*; 120(1): 15-20.

54. Lin C., K. Yeh, Y. Chang, N. C. Hsu and J. Chang. 2010. Research detection of epidermal growth factor receptor mutations with multiplex PCR and primer extension in lung cancer. *Journal of Biomedical Science*; 17(1): 37-42.

55. Lynch J. T., D. W. Bell, R. Sordella, S. Gurubhagavatula, R. A. Okimoto, B.W. Brannigan, P. L. Harris, S. M. Haserlat, J. G. Supko, F.G. Haluska, D. N. Louis, D. C. Christiani, J. Settleman and Patz F. E., P. C. Goodman and G. Bepler. 2000. Screening for Lung Cancer. *The New England Journal of Medicine*; 343(22): 1627-1633.

56. Maa H., Z. Hua, H. Wangb, G. Jina, Y. Wangb, W. Sunb, D. Chenc, T. Tiana, L. Jinbc, Q. Weid, D. Luc, W. Huangb and H. Shen. 2009. ERCC6/CSB gene polymorphisms and lung cancer risk. *Cancer Letters*; 273(1): 172-176.

57. M. B. Schabath, M. R. Spitz, G. L. Delclos, G. B. Gunn, L. W. Whitehead and X. Wu. 2002. Association between asbestos exposure, cigarette smoking, myeloperoxidase (MPO) genotypes, and lung cancer risk. *American Journal of Industrial Medicine*; 42(1): 29-37.

58. Minami H, M. Yoshimura, Y. Miyamoto, H. Matsuoka, N. Tsubota. 2000. Lung cancer in women: sex-associated differences in survival of patients undergoing resection for lung cancer. *Chest*; 118(6):1603-1609.

59. Mountain F. C., 1986. A New International Staging System for Lung Cancer. *Chest*; 89(4): 225-233.

60. Murchison P. E., J. F. Partridge, O. H. Tam, S. Cheloufi and G. J. Hannon. 2005. Characterization of Dicer-deficient murine embryonic stem cells. *Proceedings of the National Academy of Science of the United States of America*; 102(34): 12135-12140.

61. Naoki K., T. Chen, W. G. Richards, D. J. Sugarbaker and Matthew Meyerson. 2002. Missense Mutations of the BRAF Gene in Human Lung Adenocarcinoma. *Cancer Research*; 62: 7001-7003.

62. Nicole F., S. Robert and M. Anne. 2010. Adaphostin toxicity in a sensitive non-small cell lung cancer model is mediated through Nrf2 signaling and heme oxygenase 1. *Journal of Experimental & Clinical Cancer Research*; 29(1): 29- 91.

63. Okudela K., M. Suzuki, S. Kageyama, T. Bunai, K. Nagura, H. Igarashi, K. Takamochi, K. Suzuki, T. Yamada, H. Niwa, R. Ohashi, H. Ogawa, H. Mori, H. Kitamura, T. Kaneko, T. Tsuneyoshi, H. Sugimura1. 2007. PIK3CA mutation and amplification in human lung cancer. *Pathology International*; 57(10): 664-671.

64. Ouellet L. D. and P. Provost. 2010. Current Knowledge of MicroRNAs and Noncoding RNAs in Virus-Infected Cells. *Methods in Molecular Biology*; 623(1): 35-65.

65. Paez J. G., P. A. Janne, J. C. Lee1, Sean Tracy, H. Greulich, S. Gabriel, P. Herman, F. J. Kaye, N. Lindeman, T. J. Boggon, K. Naoki, H. Sasaki, Y. Fujii, M. J. Eck, W. R. Sellers, B. E. Johnson, and M. Meyerson. 2004. EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy. *Science*; 304(5676): 1497-1500.

66. Pedersen H., N. Brunner, D. Francis, K. Osterlind, E. Ronne, H. H. Hansen, K. Dano and J. Grondahl-Hansen. 1997. Prognostic Impact of Urokinase, Urokinase Receptor, and Type 1 Plasminogen Activator Inhibitor in Squamous and Large Cell Lung Cancer Tissues. *Cancer Research*; 54: 4671-4675.

67. Perry M.C., W. L. Eaton K. J., Propert , J. H. Ware , B. Zimmer, P Chahinian , A. Skarin, R. W. Carey , H. Kreisman and C. Faulkner. 1987. Chemotherapy with or without radiation therapy in limited small-cell carcinoma of the lung. *The New England Journal of Medicine*; 316(15):912-918.

68. Rajewsky N. 2006. microRNA target predictions in animals. *Nature Genetics*; 38: 8-13.

69. Roth A. J., F. Fossella, R. Komaki, M. B. Ryan, J. B. Putnam., J. S. Lee, H. Dhingra, L. D- Caro, M. Chasen, M. McGavran, E. N. Atkinson and W. K. Hong. 1994. A Randomized Trial Comparing Perioperative Chemotherapy and Surgery With Surgery Alone in Resectable Stage IIIA Non-Small-Cell Lung Cancer. *Journal of the National Cancer Institute*; 86(9): 673-680.

70. Saccone L. N., J. C. Wang, N. Breslau, E. O. Johnson, D. Hatsukami, S. F. Saccone, R. A. Grucza, L. Sun, W. Duan, J. Budde, R. C. Culverhouse, L. Fox, A. L. Hinrichs, J. H. Steinbach, M. Wu, J. P. Rice, A. M. Goate, and L. J. Bierut. 2009. The CHRNA5-CHRNA3-CHRN B4 Nicotinic Receptor Subunit Gene Cluster Affects Risk for Nicotine Dependence in African-Americans and in European-Americans. *Cancer Research*; 69(17): 6848-6856.

71. Sanchez-Cespedes M., A. L. Reed , M. Buta, L. Wu , W. H. Westra , J. G. Herman, S.C. Yang, J. Jen and D. Sidransky. 1999. Inactivation of the INK4A/ARF locus frequently coexists with TP53 mutations in non-small cell lung cancer. *Oncogene*; 18(43): 5843-5849.

72. Sandler A., R. Gray, M. C. Perry, J. Brahmer, J. H. Schiller, A. Dowlati, R. Lilenbaum, and D. H. Johnson. 2006. Carboplatin Alone or with Bevacizumab for Non- Small-Cell Lung Cancer. *The New England Journal o f Medicine*; 355:2542-50.

73. Sasaki H., Y. Hikosaka , O. Kawano , S. Moriyama , M. Yano and Y. Fujii. 2010. Methylation of the DLEC1 gene correlates with poor prognosis in Japanese lung cancer patients. *Oncology Letters*; 1(2): 283-287.

74. Sassen S., E. A. Miska and C. Caldas. 2007. MicroRNA—implications for cancer. *Virchows Archiv*; 452(1): 1-10.

75. Satrom P., B. S.E. Heale1, O. Snove, L. Aagaard, J. Alluin and J. J. Rossi. 2007. Distance constraints between microRNA target sites dictate efficacy and cooperativity. *Nucleic Acid Research*; 35(7): 2333-2342.

76. Schick S. and S. Glantz. 2005. Philip Morris toxicological experiments with fresh sidestream smoke: more toxic than mainstream smoke. *Tobacco Control*; 14: 396-404

77. Seffrin R. J, D. Hill , W. Burkart, I. Magrath, R. A. Badwe , T. Ngoma , A. Mohar and N. Grey. 2009. It Is Time to Include Cancer and Other Noncommunicable Diseases in the Millennium Development Goals. *CA Cancer Journal for Clinicians*; 59(5): 282-284.

78. Sekido Y., K. M. Fong and J. D. Minna. 2003. Molecular Genetics of Lung Cancer. *Annual Review of Medicine*; 54: 73-87.

79. Sethupathy P., M. Megraw and A. G. Hatzigeorgiou. 2006. A guide through present computational approaches for the identification of mammalian microRNA targets. *Nature Methods*; 3: 881-886.

80. Simon G., R. J.Ginsberg and J. C. Ruckdeschel. 2001. Small-cell lung cancer. *Chest*; 11(1):165-188.

81. Shih T. Y and M. T. Halpern. 2008. Economic Evaluations of Medical Care Interventions for Cancer Patients: How, Why, and What Does it Mean? *CA: A Cancer Journal for Clinicians*; 58(4): 231-244.

82. Soda M., Y. Lim Choi, M. Enomoto, S. Takada, Y. Yamashita, S. Ishikawa, S. Fujiwara, H. Watanabe, K. Kurashina, H. Hatanaka, M. Bando, S. Ohno, Y. Ishikawa, H. Aburatani, T. Niki, Y. Sohara, Y. Sugiyama and H. Mano. 2007. Identification of the transforming *EML4-ALK* fusion gene in non-small-cell lung cancer. *Nature*; 448: 561-566.

83. Soifer S.H., J. J. Rossi and P. Satrom. 2007. MicroRNAs in Disease and Potential Therapeutic Applications. *Molecular Therapy*; 15(12): 2070-2079.

84. Steven A. A., D. P. Anthony, E. A. Alawi, Y. Zhu, M. Sanchez-Cespedes, S. C. Yang, G. B. Haasler, A. Kajdacsy-Balla, M. J. Demeure and D. Sidransky. 2001. Cigarette smoking is strongly associated with mutation of the *Kras* gene in patients with primary adenocarcinoma of the lung. *Cancer*; 92(6): 1525–1530.

85. Stephens P., C. Hunter, G. Bignell, S. Edkins, H. Davies, J. Teague, C. Stevens, S. O'Meara, R. Smith, A. Parker, A. Bartherope, M. Blow, L. Brackenbury, A. Butler, O. Clarke, J. Cole, E. Dicks, A. Dike and A. Drozd. 2004. Lung cancer: Intragenic ERBB2 kinase mutations in tumours. *Nature*; 431: 525-526.

86. Subramanian J., and R. Govindan. 2007. Lung Cancer in Never Smokers: A Review. *Journal of Clinical Oncology*; 25(5): 561-570.

87. Sung S. J., Y. M. Whang, W. B. You, J. S. Jung, H. D. Shin, B. L. Park, L. H. Kim, H. S. Cheong, I. K. Choi, S. C. Oh, H. J. Sung, J. S. Kim and Y. H. Kim. 2006. SNPs study of lung cancer candidate genes in Korean lung cancer patients and normal population. *Cancer Research*; 47: 6315-6321.

88. Yong Zhao Y. and D. Srivastava. 2007. A developmental view of microRNA function. *Trends in Biochemical Sciences*; 32(4) : 189-197.

89. Veeriah S., B. S Taylor, S. Meng, F. Fang, E. Yilmaz, I. Vivanco, M. Janakiraman, N. Schultz, A. J. Hanrahan, W. Pao, M. Ladanyi, C. Sander, A. Heguy, E.C. Holland, P.B. Paty, P. S. Mischel, L. Liau, T. F Cloughesy, I. K Mellinghoff, D. B. Solit and T. A. Chan. 2010. Somatic mutations of the Parkinson's disease-associated gene *PARK2* in glioblastoma and other human malignancies. *Nature Genetics*; 42:77-82.

90. Vella C. M., E. Choi, S. Lin, K. Reinert and F. J. Slack. 2004. The *C. elegans* microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. *Genes and Development*; 18: 132-137.

91. Vella C. M., K. Reinert and F. J. Slack. 2004. Architecture of a Validated MicroRNA::Target Interaction. *Chemistry & Biology*; 11(12): 1619-1623.

92. Wang S. S., E. D. Esplin, J. L. Li, L. Huang, A. Gazdar, J. Minna and G. A. Evans. 1998. Alterations of the PPP2R1B Gene in Human Lung and Colon Cancer. *Science*; 282(5387): 284-287.

93. Weisse J. G., L. T. Bemis, E. Nakajima, M. Sugita, D. K. Birks, W. A. Robinson, M. Varella-Garcia, P. A. Bunn Jr, J. Haney, B. A. Helfrich, H. Kato, F. R. Hirsch and W. A. Franklin. 2008. EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. *Annals of Oncology*; 19 (6): 1053-1059.

94. W.H.O. 2007:12. Future health: projected deaths for selected causes to 2030. World Health Organization: In: *World Health Statistics 2007*.

95. Wingo A. P., T. Tong and S. Bolden. 1995. Cancer statistics. 1995. *CA Cancer Journal for Clinicians*; 45(1): 8-30.

| No. | ID            | Accession. | Cromosome | Start     | End       | Strand |
|-----|---------------|------------|-----------|-----------|-----------|--------|
| 1   | hsa-let-7a-1  | MI0000060  | 9         | 96938239  | 96938318  | +      |
| 2   | hsa-let-7a-2  | MI0000061  | 11        | 122017230 | 122017301 | -      |
| 3   | hsa-let-7a-3  | MI0000062  | 22        | 46508629  | 46508702  | +      |
| 4   | hsa-let-7b    | MI0000063  | 22        | 46509566  | 46509648  | +      |
| 5   | hsa-let-7c    | MI0000064  | 21        | 17912148  | 17912231  | +      |
| 6   | hsa-let-7d    | MI0000065  | 9         | 96941116  | 96941202  | +      |
| 7   | hsa-let-7e    | MI0000066  | 19        | 52196039  | 52196117  | +      |
| 8   | hsa-let-7f-1  | MI0000067  | 9         | 96938629  | 96938715  | +      |
| 9   | hsa-let-7f-2  | MI0000068  | X         | 53584153  | 53584235  | -      |
| 10  | hsa-let-7g    | MI0000433  | 3         | 52302294  | 52302377  | -      |
| 11  | hsa-let-7i    | MI0000434  | 12        | 62997466  | 62997549  | +      |
| 12  | hsa-mir-1-1   | MI0000651  | 20        | 61151513  | 61151583  | +      |
| 13  | hsa-mir-1-2   | MI0000437  | 18        | 19408965  | 19409049  | -      |
| 14  | hsa-mir-7-1   | MI0000263  | 9         | 86584663  | 86584772  | -      |
| 15  | hsa-mir-7-2   | MI0000264  | 15        | 89155056  | 89155165  | +      |
| 16  | hsa-mir-7-3   | MI0000265  | 19        | 4770682   | 4770791   | +      |
| 17  | hsa-mir-9-1   | MI0000466  | 1         | 156390133 | 156390221 | -      |
| 18  | hsa-mir-9-2   | MI0000467  | 5         | 87962671  | 87962757  | -      |
| 19  | hsa-mir-9-3   | MI0000468  | 15        | 89911248  | 89911337  | +      |
| 20  | hsa-mir-10a   | MI0000266  | 17        | 46657200  | 46657309  | -      |
| 21  | hsa-mir-10b   | MI0000267  | 2         | 177015031 | 177015140 | +      |
| 22  | hsa-mir-15a   | MI0000069  | 13        | 50623255  | 50623337  | -      |
| 23  | hsa-mir-15b   | MI0000438  | 3         | 160122376 | 160122473 | +      |
| 24  | hsa-mir-16-1  | MI0000070  | 13        | 50623109  | 50623197  | -      |
| 25  | hsa-mir-16-2  | MI0000115  | 3         | 160122533 | 160122613 | +      |
| 26  | hsa-mir-17    | MI0000071  | 13        | 92002859  | 92002942  | +      |
| 27  | hsa-mir-18a   | MI0000072  | 13        | 92003005  | 92003075  | +      |
| 28  | hsa-mir-18b   | MI0001518  | X         | 133304071 | 133304141 | -      |
| 29  | hsa-mir-19a   | MI0000073  | 13        | 92003145  | 92003226  | +      |
| 30  | hsa-mir-19b-1 | MI0000074  | 13        | 92003446  | 92003532  | +      |
| 31  | hsa-mir-19b-2 | MI0000075  | X         | 133303701 | 133303796 | -      |
| 32  | hsa-mir-20a   | MI0000076  | 13        | 92003319  | 92003389  | +      |
| 33  | hsa-mir-20b   | MI0001519  | X         | 133303839 | 133303907 | -      |
| 34  | hsa-mir-21    | MI0000077  | 17        | 57918627  | 57918698  | +      |
| 35  | hsa-mir-22    | MI0000078  | 17        | 1617197   | 1617281   | -      |
| 36  | hsa-mir-23a   | MI0000079  | 19        | 13947401  | 13947473  | -      |
| 37  | hsa-mir-23b   | MI0000439  | 9         | 97847490  | 97847586  | +      |
| 38  | hsa-mir-24-1  | MI0000080  | 9         | 97848303  | 97848370  | +      |
| 39  | hsa-mir-24-2  | MI0000081  | 19        | 13947101  | 13947173  | -      |
| 40  | hsa-mir-25    | MI0000082  | 7         | 99691183  | 99691266  | -      |
| 41  | hsa-mir-26a-1 | MI0000083  | 3         | 38010895  | 38010971  | +      |
| 42  | hsa-mir-26a-2 | MI0000750  | 12        | 58218392  | 58218475  | -      |

|    |                  |           |    |           |           |   |
|----|------------------|-----------|----|-----------|-----------|---|
| 43 | hsa-mir-26b      | MI0000084 | 2  | 219267369 | 219267445 | + |
| 44 | hsa-mir-27a      | MI0000085 | 19 | 13947254  | 13947331  | - |
| 45 | hsa-mir-27b      | MI0000440 | 9  | 97847727  | 97847823  | + |
| 46 | hsa-mir-28       | MI0000086 | 3  | 188406569 | 188406654 | + |
| 47 | hsa-mir-29a      | MI0000087 | 7  | 130561506 | 130561569 | - |
| 48 | hsa-mir-29b-1    | MI0000105 | 7  | 130562218 | 130562298 | - |
| 49 | hsa-mir-29b-2    | MI0000107 | 1  | 207975788 | 207975868 | - |
| 50 | hsa-mir-29c      | MI0000735 | 1  | 207975197 | 207975284 | - |
| 51 | hsa-mir-30a      | MI0000088 | 6  | 72113254  | 72113324  | - |
| 52 | hsa-mir-30b      | MI0000441 | 8  | 135812763 | 135812850 | - |
| 53 | hsa-mir-30c-1    | MI0000736 | 1  | 41222956  | 41223044  | + |
| 54 | hsa-mir-30c-2    | MI0000254 | 6  | 72086663  | 72086734  | - |
| 55 | hsa-mir-30d      | MI0000255 | 8  | 135817119 | 135817188 | - |
| 56 | hsa-mir-30e      | MI0000749 | 1  | 41220027  | 41220118  | + |
| 57 | hsa-mir-31       | MI0000089 | 9  | 21512114  | 21512184  | - |
| 58 | hsa-mir-32       | MI0000090 | 9  | 111808509 | 111808578 | - |
| 59 | hsa-mir-33a      | MI0000091 | 22 | 42296948  | 42297016  | + |
| 60 | hsa-mir-33b      | MI0003646 | 17 | 17717150  | 17717245  | - |
| 61 | hsa-mir-34a      | MI0000268 | 1  | 9211727   | 9211836   | - |
| 62 | hsa-mir-34b      | MI0000742 | 11 | 111383663 | 111383746 | + |
| 63 | hsa-mir-34c      | MI0000743 | 11 | 111384164 | 111384240 | + |
| 64 | hsa-mir-92a-1    | MI0000093 | 13 | 92003568  | 92003645  | + |
| 65 | hsa-mir-92a-2    | MI0000094 | X  | 133303568 | 133303642 | - |
| 66 | hsa-mir-92b      | MI0003560 | 1  | 155164968 | 155165063 | + |
| 67 | hsa-mir-93       | MI0000095 | 7  | 99691391  | 99691470  | - |
| 68 | hsa-mir-95       | MI0000097 | 4  | 8007028   | 8007108   | - |
| 69 | hsa-mir-96       | MI0000098 | 7  | 129414532 | 129414609 | - |
| 70 | hsa-mir-98       | MI0000100 | X  | 53583184  | 53583302  | - |
| 71 | hsa-mir-99a      | MI0000101 | 21 | 17911409  | 17911489  | + |
| 72 | hsa-mir-99b      | MI0000746 | 19 | 52195865  | 52195934  | + |
| 73 | hsa-mir-100      | MI0000102 | 11 | 122022937 | 122023016 | - |
| 74 | hsa-mir-101-1    | MI0000103 | 1  | 65524117  | 65524191  | - |
| 75 | hsa-mir-101-2    | MI0000739 | 9  | 4850297   | 4850375   | + |
| 76 | hsa-mir-103-1    | MI0000109 | 5  | 167987901 | 167987978 | - |
| 77 | hsa-mir-103-1-as | MI0007261 | 5  | 167987909 | 167987970 | + |
| 78 | hsa-mir-103-2    | MI0000108 | 20 | 3898141   | 3898218   | + |
| 79 | hsa-mir-103-2-as | MI0007262 | 20 | 3898149   | 3898210   | - |
| 80 | hsa-mir-105-1    | MI0000111 | X  | 151560691 | 151560771 | - |
| 81 | hsa-mir-105-2    | MI0000112 | X  | 151562884 | 151562964 | - |
| 82 | hsa-mir-106a     | MI0000113 | X  | 133304228 | 133304308 | - |
| 83 | hsa-mir-106b     | MI0000734 | 7  | 99691616  | 99691697  | - |
| 84 | hsa-mir-107      | MI0000114 | 10 | 91352504  | 91352584  | - |
| 85 | hsa-mir-122      | MI0000442 | 18 | 56118306  | 56118390  | + |
| 86 | hsa-mir-124-1    | MI0000443 | 8  | 9760898   | 9760982   | - |

|     |                |           |    |           |           |   |
|-----|----------------|-----------|----|-----------|-----------|---|
| 87  | hsa-mir-124-2  | MI0000444 | 8  | 65291706  | 65291814  | + |
| 88  | hsa-mir-124-3  | MI0000445 | 20 | 61809852  | 61809938  | + |
| 89  | hsa-mir-125a   | MI0000469 | 19 | 52196507  | 52196592  | + |
| 90  | hsa-mir-125b-1 | MI0000446 | 11 | 121970465 | 121970552 | - |
| 91  | hsa-mir-125b-2 | MI0000470 | 21 | 17962557  | 17962645  | + |
| 92  | hsa-mir-126    | MI0000471 | 9  | 139565054 | 139565138 | + |
| 93  | hsa-mir-127    | MI0000472 | 14 | 101349316 | 101349412 | + |
| 94  | hsa-mir-128-1  | MI0000447 | 2  | 136422967 | 136423048 | + |
| 95  | hsa-mir-128-2  | MI0000727 | 3  | 35785968  | 35786051  | + |
| 96  | hsa-mir-129-1  | MI0000252 | 7  | 127847925 | 127847996 | + |
| 97  | hsa-mir-129-2  | MI0000473 | 11 | 43602944  | 43603033  | + |
| 98  | hsa-mir-130a   | MI0000448 | 11 | 57408671  | 57408759  | + |
| 99  | hsa-mir-130b   | MI0000748 | 22 | 22007593  | 22007674  | + |
| 100 | hsa-mir-132    | MI0000449 | 17 | 1953202   | 1953302   | - |
| 101 | hsa-mir-133a-1 | MI0000450 | 18 | 19405659  | 19405746  | - |
| 102 | hsa-mir-133a-2 | MI0000451 | 20 | 61162119  | 61162220  | + |
| 103 | hsa-mir-133b   | MI0000822 | 6  | 52013721  | 52013839  | + |
| 104 | hsa-mir-134    | MI0000474 | 14 | 101521024 | 101521096 | + |
| 105 | hsa-mir-135a-1 | MI0000452 | 3  | 52328235  | 52328324  | - |
| 106 | hsa-mir-135a-2 | MI0000453 | 12 | 97957590  | 97957689  | + |
| 107 | hsa-mir-135b   | MI0000810 | 1  | 205417430 | 205417526 | - |
| 108 | hsa-mir-136    | MI0000475 | 14 | 101351039 | 101351120 | + |
| 109 | hsa-mir-137    | MI0000454 | 1  | 98511626  | 98511727  | - |
| 110 | hsa-mir-138-1  | MI0000476 | 3  | 44155704  | 44155802  | + |
| 111 | hsa-mir-138-2  | MI0000455 | 16 | 56892430  | 56892513  | + |
| 112 | hsa-mir-139    | MI0000261 | 11 | 72326107  | 72326174  | - |
| 113 | hsa-mir-140    | MI0000456 | 16 | 69966984  | 69967083  | + |
| 114 | hsa-mir-141    | MI0000457 | 12 | 7073260   | 7073354   | + |
| 115 | hsa-mir-142    | MI0000458 | 17 | 56408593  | 56408679  | - |
| 116 | hsa-mir-143    | MI0000459 | 5  | 148808481 | 148808586 | + |
| 117 | hsa-mir-144    | MI0000460 | 17 | 27188551  | 27188636  | - |
| 118 | hsa-mir-145    | MI0000461 | 5  | 148810209 | 148810296 | + |
| 119 | hsa-mir-146a   | MI0000477 | 5  | 159912359 | 159912457 | + |
| 120 | hsa-mir-146b   | MI0003129 | 10 | 104196269 | 104196341 | + |
| 121 | hsa-mir-147    | MI0000262 | 9  | 123007257 | 123007328 | - |
| 122 | hsa-mir-147b   | MI0005544 | 15 | 45725248  | 45725327  | + |
| 123 | hsa-mir-148a   | MI0000253 | 7  | 25989539  | 25989606  | - |
| 124 | hsa-mir-148b   | MI0000811 | 12 | 54731000  | 54731098  | + |
| 125 | hsa-mir-149    | MI0000478 | 2  | 241395418 | 241395506 | + |
| 126 | hsa-mir-150    | MI0000479 | 19 | 50004042  | 50004125  | - |
| 127 | hsa-mir-151    | MI0000809 | 8  | 141742663 | 141742752 | - |
| 128 | hsa-mir-152    | MI0000462 | 17 | 46114527  | 46114613  | - |
| 129 | hsa-mir-153-1  | MI0000463 | 2  | 220158833 | 220158922 | - |
| 130 | hsa-mir-153-2  | MI0000464 | 7  | 157367028 | 157367114 | - |

|     |                |           |    |           |           |   |
|-----|----------------|-----------|----|-----------|-----------|---|
| 131 | hsa-mir-154    | MI0000480 | 14 | 101526092 | 101526175 | + |
| 132 | hsa-mir-155    | MI0000681 | 21 | 26946292  | 26946356  | + |
| 133 | hsa-mir-181a-1 | MI0000289 | 1  | 198828173 | 198828282 | - |
| 134 | hsa-mir-181a-2 | MI0000269 | 9  | 127454721 | 127454830 | + |
| 135 | hsa-mir-181b-1 | MI0000270 | 1  | 198828002 | 198828111 | - |
| 136 | hsa-mir-181b-2 | MI0000683 | 9  | 127455989 | 127456077 | + |
| 137 | hsa-mir-181c   | MI0000271 | 19 | 13985513  | 13985622  | + |
| 138 | hsa-mir-181d   | MI0003139 | 19 | 13985689  | 13985825  | + |
| 139 | hsa-mir-182    | MI0000272 | 7  | 129410223 | 129410332 | - |
| 140 | hsa-mir-183    | MI0000273 | 7  | 129414745 | 129414854 | - |
| 141 | hsa-mir-184    | MI0000481 | 15 | 79502130  | 79502213  | + |
| 142 | hsa-mir-185    | MI0000482 | 22 | 20020662  | 20020743  | + |
| 143 | hsa-mir-186    | MI0000483 | 1  | 71533314  | 71533399  | - |
| 144 | hsa-mir-187    | MI0000274 | 18 | 33484781  | 33484889  | - |
| 145 | hsa-mir-188    | MI0000484 | X  | 49768109  | 49768194  | + |
| 146 | hsa-mir-190    | MI0000486 | 15 | 63116156  | 63116240  | + |
| 147 | hsa-mir-190b   | MI0005545 | 1  | 154166141 | 154166219 | - |
| 148 | hsa-mir-191    | MI0000465 | 3  | 49058051  | 49058142  | - |
| 149 | hsa-mir-192    | MI0000234 | 11 | 64658609  | 64658718  | - |
| 150 | hsa-mir-193a   | MI0000487 | 17 | 29887015  | 29887102  | + |
| 151 | hsa-mir-193b   | MI0003137 | 16 | 14397824  | 14397906  | + |
| 152 | hsa-mir-194-1  | MI0000488 | 1  | 220291499 | 220291583 | - |
| 153 | hsa-mir-194-2  | MI0000732 | 11 | 64658827  | 64658911  | - |
| 154 | hsa-mir-195    | MI0000489 | 17 | 6920934   | 6921020   | - |
| 155 | hsa-mir-196a-1 | MI0000238 | 17 | 46709852  | 46709921  | - |
| 156 | hsa-mir-196a-2 | MI0000279 | 12 | 54385522  | 54385631  | + |
| 157 | hsa-mir-196b   | MI0001150 | 7  | 27209099  | 27209182  | - |
| 158 | hsa-mir-197    | MI0000239 | 1  | 110141515 | 110141589 | + |
| 159 | hsa-mir-198    | MI0000240 | 3  | 120114515 | 120114576 | - |
| 160 | hsa-mir-199a-1 | MI0000242 | 19 | 10928102  | 10928172  | - |
| 161 | hsa-mir-199a-2 | MI0000281 | 1  | 172113675 | 172113784 | - |
| 162 | hsa-mir-199b   | MI0000282 | 9  | 131007000 | 131007109 | - |
| 163 | hsa-mir-200a   | MI0000737 | 1  | 1103243   | 1103332   | + |
| 164 | hsa-mir-200b   | MI0000342 | 1  | 1102484   | 1102578   | + |
| 165 | hsa-mir-200c   | MI0000650 | 12 | 7072862   | 7072929   | + |
| 166 | hsa-mir-202    | MI0003130 | 10 | 135061015 | 135061124 | - |
| 167 | hsa-mir-203    | MI0000283 | 14 | 104583742 | 104583851 | + |
| 168 | hsa-mir-204    | MI0000284 | 9  | 73424891  | 73425000  | - |
| 169 | hsa-mir-205    | MI0000285 | 1  | 209605478 | 209605587 | + |
| 170 | hsa-mir-206    | MI0000490 | 6  | 52009147  | 52009232  | + |
| 171 | hsa-mir-208a   | MI0000251 | 14 | 23857805  | 23857875  | - |
| 172 | hsa-mir-208b   | MI0005570 | 14 | 23887196  | 23887272  | - |
| 173 | hsa-mir-210    | MI0000286 | 11 | 568089    | 568198    | - |
| 174 | hsa-mir-211    | MI0000287 | 15 | 31357235  | 31357344  | - |

|     |                |           |          |           |           |   |
|-----|----------------|-----------|----------|-----------|-----------|---|
| 175 | hsa-mir-212    | MI0000288 | 17       | 1953565   | 1953674   | - |
| 176 | hsa-mir-214    | MI0000290 | 1        | 172107938 | 172108047 | - |
| 177 | hsa-mir-215    | MI0000291 | 1        | 220291195 | 220291304 | - |
| 178 | hsa-mir-216a   | MI0000292 | 2        | 56216085  | 56216194  | - |
| 179 | hsa-mir-216b   | MI0005569 | 2        | 56227849  | 56227930  | - |
| 180 | hsa-mir-217    | MI0000293 | 2        | 56210102  | 56210211  | - |
| 181 | hsa-mir-218-1  | MI0000294 | 4        | 20529898  | 20530007  | + |
| 182 | hsa-mir-218-2  | MI0000295 | 5        | 168195151 | 168195260 | - |
| 183 | hsa-mir-219-1  | MI0000296 | 6        | 33175612  | 33175721  | + |
|     |                | HSCHR6_MH | 33097238 | 33097347  |           | + |
|     |                | C_COX     |          |           |           |   |
|     |                | HSCHR6_MH | 33153522 | 33153631  |           | + |
|     |                | C_DBB     |          |           |           |   |
|     |                | HSCHR6_MH | 33329535 | 33329644  |           | + |
|     |                | C_MANN    |          |           |           |   |
|     |                | HSCHR6_MH | 33345976 | 33346085  |           | + |
|     |                | C_MCF     |          |           |           |   |
|     |                | HSCHR6_MH | 33104442 | 33104551  |           | + |
|     |                | C_QBL     |          |           |           |   |
| 184 | hsa-mir-219-2  | MI0000740 | 9        | 131154897 | 131154993 | - |
| 185 | hsa-mir-220a   | MI0000297 | X        | 122695946 | 122696055 | - |
| 186 | hsa-mir-220b   | MI0005529 | 19       | 6495959   | 6496045   | + |
| 187 | hsa-mir-220c   | MI0005536 | 19       | 49063529  | 49063611  | - |
| 188 | hsa-mir-221    | MI0000298 | X        | 45605585  | 45605694  | - |
| 189 | hsa-mir-222    | MI0000299 | X        | 45606421  | 45606530  | - |
| 190 | hsa-mir-223    | MI0000300 | X        | 65238712  | 65238821  | + |
| 191 | hsa-mir-224    | MI0000301 | X        | 151127050 | 151127130 | - |
| 192 | hsa-mir-296    | MI0000747 | 20       | 57392670  | 57392749  | - |
| 193 | hsa-mir-297    | MI0005775 | 4        | 111781738 | 111781803 | - |
| 194 | hsa-mir-298    | MI0005523 | 20       | 57393281  | 57393368  | - |
| 195 | hsa-mir-299    | MI0000744 | 14       | 101490131 | 101490193 | + |
| 196 | hsa-mir-300    | MI0005525 | 14       | 101507700 | 101507782 | + |
| 197 | hsa-mir-301a   | MI0000745 | 17       | 57228497  | 57228582  | - |
| 198 | hsa-mir-301b   | MI0005568 | 22       | 22007270  | 22007347  | + |
| 199 | hsa-mir-302a   | MI0000738 | 4        | 113569339 | 113569407 | - |
| 200 | hsa-mir-302b   | MI0000772 | 4        | 113569641 | 113569713 | - |
| 201 | hsa-mir-302c   | MI0000773 | 4        | 113569519 | 113569586 | - |
| 202 | hsa-mir-302d   | MI0000774 | 4        | 113569160 | 113569227 | - |
| 203 | hsa-mir-302e   | MI0006417 | 11       | 7255997   | 7256068   | + |
| 204 | hsa-mir-302f   | MI0006418 | 18       | 27878876  | 27878926  | + |
| 205 | hsa-mir-320a   | MI0000542 | 8        | 22102475  | 22102556  | - |
| 206 | hsa-mir-320b-1 | MI0003776 | 1        | 117214371 | 117214449 | + |
| 207 | hsa-mir-320b-2 | MI0003839 | 1        | 224444706 | 224444843 | - |
| 208 | hsa-mir-320c-1 | MI0003778 | 18       | 19263471  | 19263558  | + |

|     |                |           |    |           |           |   |
|-----|----------------|-----------|----|-----------|-----------|---|
| 209 | hsa-mir-320c-2 | MI0008191 | 18 | 21901650  | 21901699  | + |
| 210 | hsa-mir-320d-1 | MI0008190 | 13 | 41301964  | 41302011  | - |
| 211 | hsa-mir-320d-2 | MI0008192 | X  | 140008337 | 140008384 | - |
| 212 | hsa-mir-323    | MI0000807 | 14 | 101492069 | 101492154 | + |
| 213 | hsa-mir-324    | MI0000813 | 17 | 7126616   | 7126698   | - |
| 214 | hsa-mir-325    | MI0000824 | X  | 76225829  | 76225926  | - |
| 215 | hsa-mir-326    | MI0000808 | 11 | 75046136  | 75046230  | - |
| 216 | hsa-mir-328    | MI0000804 | 16 | 67236224  | 67236298  | - |
| 217 | hsa-mir-329-1  | MI0001725 | 14 | 101493122 | 101493201 | + |
| 218 | hsa-mir-329-2  | MI0001726 | 14 | 101493437 | 101493520 | + |
| 219 | hsa-mir-330    | MI0000803 | 19 | 46142252  | 46142345  | - |
| 220 | hsa-mir-331    | MI0000812 | 12 | 95702196  | 95702289  | + |
| 221 | hsa-mir-335    | MI0000816 | 7  | 130135952 | 130136045 | + |
| 222 | hsa-mir-337    | MI0000806 | 14 | 101340830 | 101340922 | + |
| 223 | hsa-mir-338    | MI0000814 | 17 | 79099683  | 79099749  | - |
| 224 | hsa-mir-339    | MI0000815 | 7  | 1062569   | 1062662   | - |
| 225 | hsa-mir-340    | MI0000802 | 5  | 179442303 | 179442397 | - |
| 226 | hsa-mir-342    | MI0000805 | 14 | 100575992 | 100576090 | + |
| 227 | hsa-mir-345    | MI0000825 | 14 | 100774196 | 100774293 | + |
| 228 | hsa-mir-346    | MI0000826 | 10 | 88024451  | 88024545  | - |
| 229 | hsa-mir-361    | MI0000760 | X  | 85158641  | 85158712  | - |
| 230 | hsa-mir-362    | MI0000762 | X  | 49773572  | 49773636  | + |
| 231 | hsa-mir-363    | MI0000764 | X  | 133303408 | 133303482 | - |
| 232 | hsa-mir-365-1  | MI0000767 | 16 | 14403142  | 14403228  | + |
| 233 | hsa-mir-365-2  | MI0000769 | 17 | 29902430  | 29902540  | + |
| 234 | hsa-mir-367    | MI0000775 | 4  | 113569030 | 113569097 | - |
| 235 | hsa-mir-369    | MI0000777 | 14 | 101531935 | 101532004 | + |
| 236 | hsa-mir-370    | MI0000778 | 14 | 101377476 | 101377550 | + |
| 237 | hsa-mir-371    | MI0000779 | 19 | 54290929  | 54290995  | + |
| 238 | hsa-mir-372    | MI0000780 | 19 | 54291144  | 54291210  | + |
| 239 | hsa-mir-373    | MI0000781 | 19 | 54291959  | 54292027  | + |
| 240 | hsa-mir-374a   | MI0000782 | X  | 73507121  | 73507192  | - |
| 241 | hsa-mir-374b   | MI0005566 | X  | 73438382  | 73438453  | - |
| 242 | hsa-mir-375    | MI0000783 | 2  | 219866367 | 219866430 | - |
| 243 | hsa-mir-376a-1 | MI0000784 | 14 | 101507119 | 101507186 | + |
| 244 | hsa-mir-376a-2 | MI0003529 | 14 | 101506406 | 101506485 | + |
| 245 | hsa-mir-376b   | MI0002466 | 14 | 101506773 | 101506872 | + |
| 246 | hsa-mir-376c   | MI0000776 | 14 | 101506027 | 101506092 | + |
| 247 | hsa-mir-377    | MI0000785 | 14 | 101528387 | 101528455 | + |
| 248 | hsa-mir-378    | MI0000786 | 5  | 149112388 | 149112453 | + |
| 249 | hsa-mir-379    | MI0000787 | 14 | 101488403 | 101488469 | + |
| 250 | hsa-mir-380    | MI0000788 | 14 | 101491354 | 101491414 | + |
| 251 | hsa-mir-381    | MI0000789 | 14 | 101512257 | 101512331 | + |
| 252 | hsa-mir-382    | MI0000790 | 14 | 101520643 | 101520718 | + |

|     |                |           |    |           |           |   |
|-----|----------------|-----------|----|-----------|-----------|---|
| 253 | hsa-mir-383    | MI0000791 | 8  | 14710947  | 14711019  | - |
| 254 | hsa-mir-384    | MI0001145 | X  | 76139698  | 76139785  | - |
| 255 | hsa-mir-409    | MI0001735 | 14 | 101531637 | 101531715 | + |
| 256 | hsa-mir-410    | MI0002465 | 14 | 101532249 | 101532328 | + |
| 257 | hsa-mir-411    | MI0003675 | 14 | 101489662 | 101489757 | + |
| 258 | hsa-mir-412    | MI0002464 | 14 | 101531784 | 101531874 | + |
| 259 | hsa-mir-421    | MI0003685 | X  | 73438212  | 73438296  | - |
| 260 | hsa-mir-422a   | MI0001444 | 15 | 64163129  | 64163218  | - |
| 261 | hsa-mir-423    | MI0001445 | 17 | 28444097  | 28444190  | + |
| 262 | hsa-mir-424    | MI0001446 | X  | 133680644 | 133680741 | - |
| 263 | hsa-mir-425    | MI0001448 | 3  | 49057581  | 49057667  | - |
| 264 | hsa-mir-429    | MI0001641 | 1  | 1104385   | 1104467   | + |
| 265 | hsa-mir-431    | MI0001721 | 14 | 101347344 | 101347457 | + |
| 266 | hsa-mir-432    | MI0003133 | 14 | 101350820 | 101350913 | + |
| 267 | hsa-mir-433    | MI0001723 | 14 | 101348223 | 101348315 | + |
| 268 | hsa-mir-448    | MI0001637 | X  | 114058017 | 114058127 | + |
| 269 | hsa-mir-449a   | MI0001648 | 5  | 54466360  | 54466450  | - |
| 270 | hsa-mir-449b   | MI0003673 | 5  | 54466474  | 54466570  | - |
| 271 | hsa-mir-449c   | MI0003823 | 5  | 54468090  | 54468181  | - |
| 272 | hsa-mir-450a-1 | MI0001652 | X  | 133674371 | 133674461 | - |
| 273 | hsa-mir-450a-2 | MI0003187 | X  | 133674538 | 133674637 | - |
| 274 | hsa-mir-450b   | MI0005531 | X  | 133674215 | 133674292 | - |
| 275 | hsa-mir-451    | MI0001729 | 17 | 27188387  | 27188458  | - |
| 276 | hsa-mir-452    | MI0001733 | X  | 151128100 | 151128184 | - |
| 277 | hsa-mir-453    | MI0001727 | 14 | 101522527 | 101522606 | + |
| 278 | hsa-mir-454    | MI0003820 | 17 | 57215119  | 57215233  | - |
| 279 | hsa-mir-455    | MI0003513 | 9  | 116971714 | 116971809 | + |
| 280 | hsa-mir-483    | MI0002467 | 11 | 2155364   | 2155439   | - |
| 281 | hsa-mir-484    | MI0002468 | 16 | 15737151  | 15737229  | + |
| 282 | hsa-mir-485    | MI0002469 | 14 | 101521756 | 101521828 | + |
| 283 | hsa-mir-486    | MI0002470 | 8  | 41517959  | 41518026  | - |
| 284 | hsa-mir-487a   | MI0002471 | 14 | 101518783 | 101518862 | + |
| 285 | hsa-mir-487b   | MI0003530 | 14 | 101512792 | 101512875 | + |
| 286 | hsa-mir-488    | MI0003123 | 1  | 176998499 | 176998581 | - |
| 287 | hsa-mir-489    | MI0003124 | 7  | 93113248  | 93113331  | - |
| 288 | hsa-mir-490    | MI0003125 | 7  | 136587914 | 136588041 | + |
| 289 | hsa-mir-491    | MI0003126 | 9  | 20716104  | 20716187  | + |
| 290 | hsa-mir-492    | MI0003131 | 12 | 95228174  | 95228289  | + |
| 291 | hsa-mir-493    | MI0003132 | 14 | 101335397 | 101335485 | + |
| 292 | hsa-mir-494    | MI0003134 | 14 | 101495971 | 101496051 | + |
| 293 | hsa-mir-495    | MI0003135 | 14 | 101500092 | 101500173 | + |
| 294 | hsa-mir-496    | MI0003136 | 14 | 101526910 | 101527011 | + |
| 295 | hsa-mir-497    | MI0003138 | 17 | 6921230   | 6921341   | - |
| 296 | hsa-mir-498    | MI0003142 | 19 | 54177451  | 54177574  | + |

|     |                |           |    |           |           |   |
|-----|----------------|-----------|----|-----------|-----------|---|
| 297 | hsa-mir-499    | MI0003183 | 20 | 33578179  | 33578300  | + |
| 298 | hsa-mir-500    | MI0003184 | X  | 49773039  | 49773122  | + |
| 299 | hsa-mir-501    | MI0003185 | X  | 49774330  | 49774413  | + |
| 300 | hsa-mir-502    | MI0003186 | X  | 49779206  | 49779291  | + |
| 301 | hsa-mir-503    | MI0003188 | X  | 133680358 | 133680428 | - |
| 302 | hsa-mir-504    | MI0003189 | X  | 137749872 | 137749954 | - |
| 303 | hsa-mir-505    | MI0003190 | X  | 139006307 | 139006390 | - |
| 304 | hsa-mir-506    | MI0003193 | X  | 146312238 | 146312361 | - |
| 305 | hsa-mir-507    | MI0003194 | X  | 146312502 | 146312595 | - |
| 306 | hsa-mir-508    | MI0003195 | X  | 146318431 | 146318545 | - |
| 307 | hsa-mir-509-1  | MI0003196 | X  | 146342050 | 146342143 | - |
| 308 | hsa-mir-509-2  | MI0005530 | X  | 146340278 | 146340368 | - |
| 309 | hsa-mir-509-3  | MI0005717 | X  | 146341170 | 146341244 | - |
| 310 | hsa-mir-510    | MI0003197 | X  | 146353853 | 146353926 | - |
| 311 | hsa-mir-511-1  | MI0003127 | 10 | 17887107  | 17887193  | + |
| 312 | hsa-mir-511-2  | MI0003128 | 10 | 18134036  | 18134122  | + |
| 313 | hsa-mir-512-1  | MI0003140 | 19 | 54169933  | 54170016  | + |
| 314 | hsa-mir-512-2  | MI0003141 | 19 | 54172411  | 54172508  | + |
| 315 | hsa-mir-513a-1 | MI0003191 | X  | 146294981 | 146295109 | - |
| 316 | hsa-mir-513a-2 | MI0003192 | X  | 146307344 | 146307470 | - |
| 317 | hsa-mir-513b   | MI0006648 | X  | 146280562 | 146280645 | - |
| 318 | hsa-mir-513c   | MI0006649 | X  | 146271222 | 146271305 | - |
| 319 | hsa-mir-514-1  | MI0003198 | X  | 146360765 | 146360862 | - |
| 320 | hsa-mir-514-2  | MI0003199 | X  | 146363461 | 146363548 | - |
| 321 | hsa-mir-514-3  | MI0003200 | X  | 146366159 | 146366246 | - |
| 322 | hsa-mir-515-1  | MI0003144 | 19 | 54182257  | 54182339  | + |
| 323 | hsa-mir-515-2  | MI0003147 | 19 | 54188263  | 54188345  | + |
| 324 | hsa-mir-516a-1 | MI0003180 | 19 | 54259995  | 54260084  | + |
| 325 | hsa-mir-516a-2 | MI0003181 | 19 | 54264387  | 54264476  | + |
| 326 | hsa-mir-516b-1 | MI0003172 | 19 | 54240099  | 54240188  | + |
| 327 | hsa-mir-516b-2 | MI0003167 | 19 | 54228696  | 54228780  | + |
| 328 | hsa-mir-517a   | MI0003161 | 19 | 54215522  | 54215608  | + |
| 329 | hsa-mir-517b   | MI0003165 | 19 | 54224330  | 54224396  | + |
| 330 | hsa-mir-517c   | MI0003174 | 19 | 54244567  | 54244661  | + |
| 331 | hsa-mir-518a-1 | MI0003170 | 19 | 54234260  | 54234344  | + |
| 332 | hsa-mir-518a-2 | MI0003173 | 19 | 54242587  | 54242673  | + |
| 333 | hsa-mir-518b   | MI0003156 | 19 | 54205991  | 54206073  | + |
| 334 | hsa-mir-518c   | MI0003159 | 19 | 54211989  | 54212089  | + |
| 335 | hsa-mir-518d   | MI0003171 | 19 | 54238131  | 54238217  | + |
| 336 | hsa-mir-518e   | MI0003169 | 19 | 54233092  | 54233179  | + |
| 337 | hsa-mir-518f   | MI0003154 | 19 | 54203269  | 54203355  | + |
| 338 | hsa-mir-519a-1 | MI0003178 | 19 | 54255651  | 54255735  | + |
| 339 | hsa-mir-519a-2 | MI0003182 | 19 | 54265598  | 54265684  | + |
| 340 | hsa-mir-519b   | MI0003151 | 19 | 54198467  | 54198547  | + |

|     |                |           |    |           |           |   |
|-----|----------------|-----------|----|-----------|-----------|---|
| 341 | hsa-mir-519c   | MI0003148 | 19 | 54189723  | 54189809  | + |
| 342 | hsa-mir-519d   | MI0003162 | 19 | 54216601  | 54216688  | + |
| 343 | hsa-mir-519e   | MI0003145 | 19 | 54183194  | 54183277  | + |
| 344 | hsa-mir-520a   | MI0003149 | 19 | 54194135  | 54194219  | + |
| 345 | hsa-mir-520b   | MI0003155 | 19 | 54204481  | 54204541  | + |
| 346 | hsa-mir-520c   | MI0003158 | 19 | 54210707  | 54210793  | + |
| 347 | hsa-mir-520d   | MI0003164 | 19 | 54223350  | 54223436  | + |
| 348 | hsa-mir-520e   | MI0003143 | 19 | 54178965  | 54179051  | + |
| 349 | hsa-mir-520f   | MI0003146 | 19 | 54185413  | 54185499  | + |
| 350 | hsa-mir-520g   | MI0003166 | 19 | 54225420  | 54225509  | + |
| 351 | hsa-mir-520h   | MI0003175 | 19 | 54245766  | 54245853  | + |
| 352 | hsa-mir-521-1  | MI0003176 | 19 | 54251890  | 54251976  | + |
| 353 | hsa-mir-521-2  | MI0003163 | 19 | 54219848  | 54219934  | + |
| 354 | hsa-mir-522    | MI0003177 | 19 | 54254465  | 54254551  | + |
| 355 | hsa-mir-523    | MI0003153 | 19 | 54201639  | 54201725  | + |
| 356 | hsa-mir-524    | MI0003160 | 19 | 54214256  | 54214342  | + |
| 357 | hsa-mir-525    | MI0003152 | 19 | 54200787  | 54200871  | + |
| 358 | hsa-mir-526a-1 | MI0003157 | 19 | 54209506  | 54209590  | + |
| 359 | hsa-mir-526a-2 | MI0003168 | 19 | 54230176  | 54230240  | + |
| 360 | hsa-mir-526b   | MI0003150 | 19 | 54197647  | 54197729  | + |
| 361 | hsa-mir-527    | MI0003179 | 19 | 54257272  | 54257356  | + |
| 362 | hsa-mir-532    | MI0003205 | X  | 49767754  | 49767844  | + |
| 363 | hsa-mir-539    | MI0003514 | 14 | 101513658 | 101513735 | + |
| 364 | hsa-mir-541    | MI0005539 | 14 | 101530832 | 101530915 | + |
| 365 | hsa-mir-542    | MI0003686 | X  | 133675371 | 133675467 | - |
| 366 | hsa-mir-543    | MI0005565 | 14 | 101498324 | 101498401 | + |
| 367 | hsa-mir-544    | MI0003515 | 14 | 101514995 | 101515085 | + |
| 368 | hsa-mir-545    | MI0003516 | X  | 73506939  | 73507044  | - |
| 369 | hsa-mir-548a-1 | MI0003593 | 6  | 18572015  | 18572111  | + |
| 370 | hsa-mir-548a-2 | MI0003598 | 6  | 135560298 | 135560394 | + |
| 371 | hsa-mir-548a-3 | MI0003612 | 8  | 105496597 | 105496693 | - |
| 372 | hsa-mir-548b   | MI0003596 | 6  | 119390212 | 119390308 | - |
| 373 | hsa-mir-548c   | MI0003630 | 12 | 65016289  | 65016385  | + |
| 374 | hsa-mir-548d-1 | MI0003668 | 8  | 124360274 | 124360370 | - |
| 375 | hsa-mir-548d-2 | MI0003671 | 17 | 65467605  | 65467701  | - |
| 376 | hsa-mir-548e   | MI0006344 | 10 | 112748684 | 112748771 | + |
| 377 | hsa-mir-548f-1 | MI0006374 | 10 | 56367634  | 56367717  | - |
| 378 | hsa-mir-548f-2 | MI0006375 | 2  | 213290987 | 213291084 | - |
| 379 | hsa-mir-548f-3 | MI0006376 | 5  | 109849530 | 109849616 | - |
| 380 | hsa-mir-548f-4 | MI0006377 | 7  | 147075109 | 147075213 | - |
| 381 | hsa-mir-548f-5 | MI0006378 | X  | 32659591  | 32659676  | - |
| 382 | hsa-mir-548g   | MI0006395 | 4  | 148265781 | 148265869 | - |
| 383 | hsa-mir-548h-1 | MI0006411 | 14 | 64561742  | 64561843  | - |
| 384 | hsa-mir-548h-2 | MI0006412 | 16 | 11400297  | 11400384  | - |

|     |                |           |    |           |           |   |
|-----|----------------|-----------|----|-----------|-----------|---|
| 385 | hsa-mir-548h-3 | MI0006413 | 17 | 13446846  | 13446963  | - |
| 386 | hsa-mir-548h-4 | MI0006414 | 8  | 26906370  | 26906480  | - |
| 387 | hsa-mir-548i-1 | MI0006421 | 3  | 125509247 | 125509395 | - |
| 388 | hsa-mir-548i-2 | MI0006422 | 4  | 9557789   | 9557937   | - |
| 389 | hsa-mir-548i-3 | MI0006423 | 8  | 7946463   | 7946611   | - |
| 390 | hsa-mir-548i-4 | MI0006424 | X  | 83480760  | 83480836  | - |
| 391 | hsa-mir-548j   | MI0006345 | 22 | 26951178  | 26951289  | - |
| 392 | hsa-mir-548k   | MI0006354 | 11 | 70130061  | 70130176  | + |
| 393 | hsa-mir-548l   | MI0006361 | 11 | 94199661  | 94199746  | - |
| 394 | hsa-mir-548m   | MI0006400 | X  | 94318140  | 94318225  | - |
| 395 | hsa-mir-548n   | MI0006399 | 7  | 34980372  | 34980446  | - |
| 396 | hsa-mir-548o   | MI0006402 | 7  | 102046189 | 102046302 | - |
| 397 | hsa-mir-548p   | MI0006420 | 5  | 100152186 | 100152269 | - |
| 398 | hsa-mir-548q   | MI0010637 | 10 | 12767253  | 12767352  | - |
| 399 | hsa-mir-549    | MI0003679 | 15 | 81134319  | 81134414  | - |
| 400 | hsa-mir-550-1  | MI0003600 | 7  | 30329410  | 30329506  | + |
| 401 | hsa-mir-550-2  | MI0003601 | 7  | 32772593  | 32772689  | + |
| 402 | hsa-mir-551a   | MI0003556 | 1  | 3477259   | 3477354   | - |
| 403 | hsa-mir-551b   | MI0003575 | 3  | 168269642 | 168269737 | + |
| 404 | hsa-mir-552    | MI0003557 | 1  | 35135200  | 35135295  | - |
| 405 | hsa-mir-553    | MI0003558 | 1  | 100746797 | 100746864 | + |
| 406 | hsa-mir-554    | MI0003559 | 1  | 151518272 | 151518367 | + |
| 407 | hsa-mir-555    | MI0003561 | 1  | 155316141 | 155316236 | - |
| 408 | hsa-mir-556    | MI0003562 | 1  | 162312336 | 162312430 | + |
| 409 | hsa-mir-557    | MI0003563 | 1  | 168344762 | 168344859 | + |
| 410 | hsa-mir-558    | MI0003564 | 2  | 32757220  | 32757313  | + |
| 411 | hsa-mir-559    | MI0003565 | 2  | 47604814  | 47604909  | + |
| 412 | hsa-mir-561    | MI0003567 | 2  | 189162219 | 189162315 | + |
| 413 | hsa-mir-562    | MI0003568 | 2  | 233037363 | 233037457 | + |
| 414 | hsa-mir-563    | MI0003569 | 3  | 15915278  | 15915356  | + |
| 415 | hsa-mir-564    | MI0003570 | 3  | 44903380  | 44903473  | + |
| 416 | hsa-mir-566    | MI0003572 | 3  | 50210759  | 50210852  | + |
| 417 | hsa-mir-567    | MI0003573 | 3  | 111831648 | 111831745 | + |
| 418 | hsa-mir-568    | MI0003574 | 3  | 114035322 | 114035416 | - |
| 419 | hsa-mir-569    | MI0003576 | 3  | 170824453 | 170824548 | - |
| 420 | hsa-mir-570    | MI0003577 | 3  | 195426272 | 195426368 | + |
| 421 | hsa-mir-571    | MI0003578 | 4  | 343946    | 344041    | + |
| 422 | hsa-mir-572    | MI0003579 | 4  | 11370451  | 11370545  | + |
| 423 | hsa-mir-573    | MI0003580 | 4  | 24521815  | 24521913  | - |
| 424 | hsa-mir-574    | MI0003581 | 4  | 38869653  | 38869748  | + |
| 425 | hsa-mir-575    | MI0003582 | 4  | 83674490  | 83674583  | - |
| 426 | hsa-mir-576    | MI0003583 | 4  | 110409854 | 110409951 | + |
| 427 | hsa-mir-577    | MI0003584 | 4  | 115577915 | 115578010 | + |
| 428 | hsa-mir-578    | MI0003585 | 4  | 166307394 | 166307489 | + |

|     |             |           |    |           |           |   |
|-----|-------------|-----------|----|-----------|-----------|---|
| 429 | hsa-mir-579 | MI0003586 | 5  | 32394484  | 32394581  | - |
| 430 | hsa-mir-580 | MI0003587 | 5  | 36147994  | 36148090  | - |
| 431 | hsa-mir-581 | MI0003588 | 5  | 53247334  | 53247429  | - |
| 432 | hsa-mir-582 | MI0003589 | 5  | 58999432  | 58999529  | - |
| 433 | hsa-mir-583 | MI0003590 | 5  | 95414842  | 95414916  | + |
| 434 | hsa-mir-584 | MI0003591 | 5  | 148441876 | 148441972 | - |
| 435 | hsa-mir-585 | MI0003592 | 5  | 168690605 | 168690698 | - |
| 436 | hsa-mir-586 | MI0003594 | 6  | 45165411  | 45165507  | - |
| 437 | hsa-mir-587 | MI0003595 | 6  | 107232000 | 107232095 | + |
| 438 | hsa-mir-588 | MI0003597 | 6  | 126805777 | 126805859 | + |
| 439 | hsa-mir-589 | MI0003599 | 7  | 5535450   | 5535548   | - |
| 440 | hsa-mir-590 | MI0003602 | 7  | 73605528  | 73605624  | + |
| 441 | hsa-mir-591 | MI0003603 | 7  | 95848974  | 95849068  | - |
| 442 | hsa-mir-592 | MI0003604 | 7  | 126698142 | 126698238 | - |
| 443 | hsa-mir-593 | MI0003605 | 7  | 127721913 | 127722012 | + |
| 444 | hsa-mir-595 | MI0003607 | 7  | 158325410 | 158325505 | - |
| 445 | hsa-mir-596 | MI0003608 | 8  | 1765397   | 1765473   | + |
| 446 | hsa-mir-597 | MI0003609 | 8  | 9599182   | 9599278   | + |
| 447 | hsa-mir-598 | MI0003610 | 8  | 10892716  | 10892812  | - |
| 448 | hsa-mir-599 | MI0003611 | 8  | 100548864 | 100548958 | - |
| 449 | hsa-mir-600 | MI0003613 | 9  | 125873825 | 125873922 | - |
| 450 | hsa-mir-601 | MI0003614 | 9  | 126164804 | 126164882 | - |
| 451 | hsa-mir-602 | MI0003615 | 9  | 140732871 | 140732968 | + |
| 452 | hsa-mir-603 | MI0003616 | 10 | 24564614  | 24564710  | + |
| 453 | hsa-mir-604 | MI0003617 | 10 | 29833933  | 29834026  | - |
| 454 | hsa-mir-605 | MI0003618 | 10 | 53059333  | 53059415  | + |
| 455 | hsa-mir-606 | MI0003619 | 10 | 77312216  | 77312311  | + |
| 456 | hsa-mir-607 | MI0003620 | 10 | 98588426  | 98588521  | - |
| 457 | hsa-mir-608 | MI0003621 | 10 | 102734742 | 102734841 | + |
| 458 | hsa-mir-609 | MI0003622 | 10 | 105978547 | 105978641 | - |
| 459 | hsa-mir-610 | MI0003623 | 11 | 28078362  | 28078457  | + |
| 460 | hsa-mir-611 | MI0003624 | 11 | 61559967  | 61560033  | - |
| 461 | hsa-mir-612 | MI0003625 | 11 | 65211929  | 65212028  | + |
| 462 | hsa-mir-613 | MI0003626 | 12 | 12917583  | 12917677  | + |
| 463 | hsa-mir-614 | MI0003627 | 12 | 13068763  | 13068852  | + |
| 464 | hsa-mir-615 | MI0003628 | 12 | 54427734  | 54427829  | + |
| 465 | hsa-mir-616 | MI0003629 | 12 | 57912946  | 57913042  | - |
| 466 | hsa-mir-617 | MI0003631 | 12 | 81226312  | 81226408  | - |
| 467 | hsa-mir-618 | MI0003632 | 12 | 81329515  | 81329612  | - |
| 468 | hsa-mir-619 | MI0003633 | 12 | 109230684 | 109230782 | - |
| 469 | hsa-mir-620 | MI0003634 | 12 | 116586365 | 116586459 | - |
| 470 | hsa-mir-621 | MI0003635 | 13 | 41384902  | 41384997  | + |
| 471 | hsa-mir-622 | MI0003636 | 13 | 90883436  | 90883531  | + |
| 472 | hsa-mir-623 | MI0003637 | 13 | 100008385 | 100008482 | + |

|     |              |           |    |           |           |   |
|-----|--------------|-----------|----|-----------|-----------|---|
| 473 | hsa-mir-624  | MI0003638 | 14 | 31483852  | 31483948  | - |
| 474 | hsa-mir-625  | MI0003639 | 14 | 65937820  | 65937904  | + |
| 475 | hsa-mir-626  | MI0003640 | 15 | 41983783  | 41983876  | + |
| 476 | hsa-mir-627  | MI0003641 | 15 | 42491768  | 42491864  | - |
| 477 | hsa-mir-628  | MI0003642 | 15 | 55665138  | 55665232  | - |
| 478 | hsa-mir-629  | MI0003643 | 15 | 70371711  | 70371807  | - |
| 479 | hsa-mir-630  | MI0003644 | 15 | 72879558  | 72879654  | + |
| 480 | hsa-mir-631  | MI0003645 | 15 | 75645952  | 75646026  | - |
| 481 | hsa-mir-632  | MI0003647 | 17 | 30677128  | 30677221  | + |
| 482 | hsa-mir-633  | MI0003648 | 17 | 61021576  | 61021673  | + |
| 483 | hsa-mir-634  | MI0003649 | 17 | 64783190  | 64783286  | + |
| 484 | hsa-mir-635  | MI0003650 | 17 | 66420592  | 66420689  | - |
| 485 | hsa-mir-636  | MI0003651 | 17 | 74732532  | 74732630  | - |
| 486 | hsa-mir-637  | MI0003652 | 19 | 3961412   | 3961510   | - |
| 487 | hsa-mir-638  | MI0003653 | 19 | 10829080  | 10829179  | + |
| 489 | hsa-mir-639  | MI0003654 | 19 | 14640355  | 14640452  | + |
| 490 | hsa-mir-640  | MI0003655 | 19 | 19545872  | 19545967  | + |
| 491 | hsa-mir-641  | MI0003656 | 19 | 40788450  | 40788548  | - |
| 492 | hsa-mir-642  | MI0003657 | 19 | 46178186  | 46178282  | + |
| 493 | hsa-mir-643  | MI0003658 | 19 | 52785050  | 52785146  | + |
| 494 | hsa-mir-644  | MI0003659 | 20 | 33054130  | 33054223  | + |
| 495 | hsa-mir-645  | MI0003660 | 20 | 49202323  | 49202416  | + |
| 496 | hsa-mir-646  | MI0003661 | 20 | 58883532  | 58883625  | + |
| 497 | hsa-mir-647  | MI0003662 | 20 | 62573984  | 62574079  | - |
| 498 | hsa-mir-648  | MI0003663 | 22 | 18463634  | 18463727  | - |
| 499 | hsa-mir-649  | MI0003664 | 22 | 21388465  | 21388561  | - |
| 500 | hsa-mir-650  | MI0003665 | 22 | 23165270  | 23165365  | + |
| 501 | hsa-mir-651  | MI0003666 | X  | 8095006   | 8095102   | + |
| 502 | hsa-mir-652  | MI0003667 | X  | 109298557 | 109298654 | + |
| 503 | hsa-mir-653  | MI0003674 | 7  | 93112072  | 93112167  | - |
| 504 | hsa-mir-654  | MI0003676 | 14 | 101506556 | 101506636 | + |
| 505 | hsa-mir-655  | MI0003677 | 14 | 101515887 | 101515983 | + |
| 506 | hsa-mir-656  | MI0003678 | 14 | 101533061 | 101533138 | + |
| 507 | hsa-mir-657  | MI0003681 | 17 | 79099076  | 79099173  | - |
| 508 | hsa-mir-658  | MI0003682 | 22 | 38240279  | 38240378  | - |
| 509 | hsa-mir-659  | MI0003683 | 22 | 38243685  | 38243781  | - |
| 510 | hsa-mir-660  | MI0003684 | X  | 49777849  | 49777945  | + |
| 511 | hsa-mir-661  | MI0003669 | 8  | 145019359 | 145019447 | - |
| 512 | hsa-mir-662  | MI0003670 | 16 | 820183    | 820277    | + |
| 513 | hsa-mir-663  | MI0003672 | 20 | 26188822  | 26188914  | - |
| 514 | hsa-mir-663b | MI0006336 | 2  | 133014539 | 133014653 | - |
| 515 | hsa-mir-664  | MI0006442 | 1  | 220373880 | 220373961 | - |
| 516 | hsa-mir-665  | MI0005563 | 14 | 101341370 | 101341441 | + |
| 517 | hsa-mir-668  | MI0003761 | 14 | 101521595 | 101521660 | + |

|     |              |           |          |           |           |   |
|-----|--------------|-----------|----------|-----------|-----------|---|
| 518 | hsa-mir-670  | MI0003933 | 11       | 43581206  | 43581303  | + |
| 519 | hsa-mir-671  | MI0003760 | 7        | 150935507 | 150935624 | + |
| 520 | hsa-mir-675  | MI0005416 | 11       | 2017989   | 2018061   | - |
| 521 | hsa-mir-708  | MI0005543 | 11       | 79113066  | 79113153  | - |
| 522 | hsa-mir-711  | MI0012488 | 3        | 48616335  | 48616410  | - |
| 523 | hsa-mir-718  | MI0012489 | X        | 153285371 | 153285440 | - |
| 524 | hsa-mir-720  | MI0006654 | 3        | 164059129 | 164059238 | + |
| 525 | hsa-mir-744  | MI0005559 | 17       | 11985216  | 11985313  | + |
| 526 | hsa-mir-758  | MI0003757 | 14       | 101492357 | 101492444 | + |
| 527 | hsa-mir-759  | MI0004065 | 13       | 53384185  | 53384275  | + |
| 528 | hsa-mir-760  | MI0005567 | 1        | 94312388  | 94312467  | + |
| 529 | hsa-mir-761  | MI0003941 | 1        | 52302016  | 52302074  | - |
| 530 | hsa-mir-762  | MI0003892 | 16       | 30905224  | 30905306  | + |
| 531 | hsa-mir-764  | MI0003944 | X        | 113873918 | 113874002 | + |
| 532 | hsa-mir-765  | MI0005116 | 1        | 156905923 | 156906036 | - |
| 533 | hsa-mir-766  | MI0003836 | X        | 118780701 | 118780811 | - |
| 534 | hsa-mir-767  | MI0003763 | X        | 151561893 | 151562001 | - |
| 535 | hsa-mir-769  | MI0003834 | 19       | 46522190  | 46522307  | + |
| 536 | hsa-mir-770  | MI0005118 | 14       | 101318727 | 101318824 | + |
| 537 | hsa-mir-802  | MI0003906 | 21       | 37093013  | 37093106  | + |
| 538 | hsa-mir-873  | MI0005564 | 9        | 28888877  | 28888953  | - |
| 539 | hsa-mir-874  | MI0005532 | 5        | 136983261 | 136983338 | - |
| 540 | hsa-mir-875  | MI0005541 | 8        | 100549014 | 100549089 | - |
| 541 | hsa-mir-876  | MI0005542 | 9        | 28863624  | 28863704  | - |
| 542 | hsa-mir-877  | MI0005561 | 6        | 30552109  | 30552194  | + |
|     |              | HSCHR6_MH | 30541958 | 30542043  |           | + |
|     |              | C_COX     |          |           |           |   |
|     |              | HSCHR6_MH | 30542353 | 30542438  |           | + |
|     |              | C_DBB     |          |           |           |   |
|     |              | HSCHR6_MH | 30596784 | 30596869  |           | + |
|     |              | C_MANN    |          |           |           |   |
|     |              | HSCHR6_MH | 30630566 | 30630651  |           | + |
|     |              | C_MCF     |          |           |           |   |
|     |              | HSCHR6_MH | 30541620 | 30541705  |           | + |
|     |              | C_QBL     |          |           |           |   |
|     |              | HSCHR6_MH | 30543533 | 30543618  |           | + |
|     |              | C_SSTO    |          |           |           |   |
| 543 | hsa-mir-885  | MI0005560 | 3        | 10436173  | 10436246  | - |
| 544 | hsa-mir-886  | MI0005527 | 5        | 135416177 | 135416297 | - |
| 545 | hsa-mir-887  | MI0005562 | 5        | 15935291  | 15935369  | + |
| 546 | hsa-mir-888  | MI0005537 | X        | 145076302 | 145076378 | - |
| 547 | hsa-mir-889  | MI0005540 | 14       | 101514238 | 101514316 | + |
| 548 | hsa-mir-890  | MI0005533 | X        | 145075793 | 145075869 | - |
| 549 | hsa-mir-891a | MI0005524 | X        | 145109312 | 145109390 | - |

|     |                |           |    |           |           |   |
|-----|----------------|-----------|----|-----------|-----------|---|
| 550 | hsa-mir-891b   | MI0005534 | X  | 145082571 | 145082649 | - |
| 551 | hsa-mir-892a   | MI0005528 | X  | 145078187 | 145078261 | - |
| 552 | hsa-mir-892b   | MI0005538 | X  | 145078716 | 145078792 | - |
| 553 | hsa-mir-920    | MI0005712 | 12 | 24365355  | 24365429  | + |
| 554 | hsa-mir-921    | MI0005713 | 1  | 166123980 | 166124035 | - |
| 555 | hsa-mir-922    | MI0005714 | 3  | 197401367 | 197401447 | - |
| 556 | hsa-mir-924    | MI0005716 | 18 | 37202087  | 37202139  | - |
| 557 | hsa-mir-933    | MI0005755 | 2  | 176032361 | 176032437 | - |
| 558 | hsa-mir-934    | MI0005756 | X  | 135633037 | 135633119 | + |
| 559 | hsa-mir-935    | MI0005757 | 19 | 54485561  | 54485651  | + |
| 560 | hsa-mir-936    | MI0005758 | 10 | 105807847 | 105807944 | - |
| 561 | hsa-mir-937    | MI0005759 | 8  | 144895127 | 144895212 | - |
| 563 | hsa-mir-938    | MI0005760 | 10 | 29891193  | 29891275  | - |
| 563 | hsa-mir-939    | MI0005761 | 8  | 145619364 | 145619445 | - |
| 564 | hsa-mir-940    | MI0005762 | 16 | 2321748   | 2321841   | + |
| 565 | hsa-mir-941-1  | MI0005763 | 20 | 62550794  | 62550882  | + |
| 566 | hsa-mir-941-2  | MI0005764 | 20 | 62551101  | 62551189  | + |
| 567 | hsa-mir-941-3  | MI0005765 | 20 | 62551213  | 62551301  | + |
| 568 | hsa-mir-941-4  | MI0005766 |    |           |           | - |
| 569 | hsa-mir-942    | MI0005767 | 1  | 117637265 | 117637350 | + |
| 570 | hsa-mir-943    | MI0005768 | 4  | 1988111   | 1988204   | - |
| 571 | hsa-mir-944    | MI0005769 | 3  | 189547711 | 189547798 | + |
| 572 | hsa-mir-1178   | MI0006271 | 12 | 120151439 | 120151529 | - |
| 573 | hsa-mir-1179   | MI0006272 | 15 | 89151338  | 89151428  | + |
| 574 | hsa-mir-1180   | MI0006273 | 17 | 19247819  | 19247887  | - |
| 575 | hsa-mir-1181   | MI0006274 | 19 | 10514134  | 10514214  | - |
| 576 | hsa-mir-1182   | MI0006275 | 1  | 231155574 | 231155670 | - |
| 577 | hsa-mir-1183   | MI0006276 | 7  | 21510676  | 21510764  | + |
| 578 | hsa-mir-1184   | MI0006277 | X  | 154115635 | 154115733 | - |
|     |                |           | X  | 154612749 | 154612847 | - |
|     |                |           | X  | 154687178 | 154687276 | + |
| 579 | hsa-mir-1185-1 | MI0003844 | 14 | 101509314 | 101509399 | + |
| 580 | hsa-mir-1185-2 | MI0003821 | 14 | 101510535 | 101510620 | + |
| 581 | hsa-mir-1197   | MI0006656 | 14 | 101491901 | 101491988 | + |
| 582 | hsa-mir-1200   | MI0006332 | 7  | 36958962  | 36959037  | - |
| 583 | hsa-mir-1201   | MI0006333 | 14 | 20794606  | 20794690  | - |
| 584 | hsa-mir-1202   | MI0006334 | 6  | 156267931 | 156268013 | + |
| 585 | hsa-mir-1203   | MI0006335 | 17 | 46233789  | 46233873  | - |
| 586 | hsa-mir-1204   | MI0006337 | 8  | 128808208 | 128808274 | + |
| 587 | hsa-mir-1205   | MI0006338 | 8  | 128972879 | 128972941 | + |
| 588 | hsa-mir-1206   | MI0006339 | 8  | 129021144 | 129021202 | + |
| 589 | hsa-mir-1207   | MI0006340 | 8  | 129061398 | 129061484 | + |
| 590 | hsa-mir-1208   | MI0006341 | 8  | 129162362 | 129162434 | + |
| 591 | hsa-mir-1224   | MI0003764 | 3  | 183959193 | 183959277 | + |

|     |                 |           |          |           |           |   |
|-----|-----------------|-----------|----------|-----------|-----------|---|
| 592 | hsa-mir-1225    | MI0006311 | 16       | 2140196   | 2140285   | - |
| 593 | hsa-mir-1226    | MI0006313 | 3        | 47891045  | 47891119  | + |
| 594 | hsa-mir-1227    | MI0006316 | 19       | 2234061   | 2234148   | - |
| 595 | hsa-mir-1228    | MI0006318 | 12       | 57588287  | 57588359  | + |
| 596 | hsa-mir-1229    | MI0006319 | 5        | 179225278 | 179225346 | - |
| 597 | hsa-mir-1231    | MI0006321 | 1        | 201777739 | 201777830 | + |
| 598 | hsa-mir-1233    | MI0006323 | 15       | 34674270  | 34674351  | - |
|     |                 |           | 15       | 34820491  | 34820572  | - |
| 599 | hsa-mir-1234    | MI0006324 | 8        | 145625476 | 145625559 | - |
| 600 | hsa-mir-1236    | MI0006326 | 6        | 31924616  | 31924717  | - |
|     |                 | HSCHR6_MH | 31912168 |           | 31912269  | - |
|     |                 | C_COX     |          |           |           |   |
|     |                 | HSCHR6_MH | 31906802 |           | 31906903  | - |
|     |                 | C_DBB     |          |           |           |   |
|     |                 | HSCHR6_MH | 32001063 |           | 32001164  | - |
|     |                 | C_MCF     |          |           |           |   |
|     |                 | HSCHR6_MH | 31915008 |           | 31915109  | - |
|     |                 | C_QBL     |          |           |           |   |
|     |                 | HSCHR6_MH | 31916468 |           | 31916569  | - |
|     |                 | C_SSSTO   |          |           |           |   |
| 601 | hsa-mir-1237    | MI0006327 | 11       | 64136074  | 64136175  | + |
| 602 | hsa-mir-1238    | MI0006328 | 19       | 10662798  | 10662880  | + |
| 603 | hsa-mir-1243    | MI0006373 | 4        | 114028019 | 114028111 | + |
| 604 | hsa-mir-1244    | MI0006379 | 2        | 232578024 | 232578108 | + |
|     |                 |           | 5        | 118310281 | 118310365 | + |
|     |                 |           | 12       | 9392063   | 9392147   | - |
|     |                 |           | 12       | 12264886  | 12264970  | + |
| 605 | hsa-mir-1245    | MI0006380 | 2        | 189842818 | 189842887 | + |
| 606 | hsa-mir-1246    | MI0006381 | 2        | 177465708 | 177465780 | - |
| 607 | hsa-mir-1247    | MI0006382 | 14       | 102026624 | 102026759 | - |
| 608 | hsa-mir-1248    | MI0006383 | 3        | 186504461 | 186504566 | + |
| 609 | hsa-mir-1249    | MI0006384 | 22       | 45596835  | 45596900  | - |
| 610 | hsa-mir-1250    | MI0006385 | 17       | 79106996  | 79107108  | - |
| 611 | hsa-mir-1251    | MI0006386 | 12       | 97885687  | 97885756  | + |
| 612 | hsa-mir-1252    | MI0006434 | 12       | 79813037  | 79813101  | + |
| 613 | hsa-mir-1253    | MI0006387 | 17       | 2651372   | 2651476   | - |
| 614 | hsa-mir-1254    | MI0006388 | 10       | 70519075  | 70519171  | + |
| 615 | hsa-mir-1255a   | MI0006389 | 4        | 102251459 | 102251571 | - |
| 616 | hsa-mir-1255b-1 | MI0006435 | 4        | 36427988  | 36428050  | - |
| 617 | hsa-mir-1255b-2 | MI0006436 | 1        | 167967898 | 167967964 | + |
| 618 | hsa-mir-1256    | MI0006390 | 1        | 21314807  | 21314925  | - |
| 619 | hsa-mir-1257    | MI0006391 | 20       | 60528602  | 60528718  | - |
| 620 | hsa-mir-1258    | MI0006392 | 2        | 180725563 | 180725635 | - |
| 621 | hsa-mir-1259    | MI0006393 | 20       | 47896847  | 47896957  | + |

|     |                |           |    |           |           |   |
|-----|----------------|-----------|----|-----------|-----------|---|
| 622 | hsa-mir-1260   | MI0006394 | 14 | 77732561  | 77732633  | + |
| 623 | hsa-mir-1261   | MI0006396 | 11 | 90602289  | 90602370  | - |
| 624 | hsa-mir-1262   | MI0006397 | 1  | 68649201  | 68649293  | - |
| 625 | hsa-mir-1263   | MI0006398 | 3  | 163889259 | 163889344 | - |
| 626 | hsa-mir-1264   | MI0003758 | X  | 113887130 | 113887198 | + |
| 627 | hsa-mir-1265   | MI0006401 | 10 | 14478575  | 14478660  | + |
| 628 | hsa-mir-1266   | MI0006403 | 15 | 52569314  | 52569397  | - |
| 629 | hsa-mir-1267   | MI0006404 | 13 | 108183519 | 108183596 | - |
| 630 | hsa-mir-1268   | MI0006405 | 15 | 22513229  | 22513280  | - |
| 631 | hsa-mir-1269   | MI0006406 | 4  | 67142542  | 67142646  | + |
| 632 | hsa-mir-1270   | MI0006407 | 19 | 20510081  | 20510163  | - |
|     |                |           | 19 | 20579240  | 20579322  | - |
| 633 | hsa-mir-1271   | MI0003814 | 5  | 175794949 | 175795034 | + |
| 634 | hsa-mir-1272   | MI0006408 | 15 | 65054586  | 65054714  | - |
| 635 | hsa-mir-1273   | MI0006409 | 8  | 101036210 | 101036312 | - |
| 636 | hsa-mir-1274a  | MI0006410 | 5  | 41475734  | 41475804  | + |
| 637 | hsa-mir-1274b  | MI0006427 | 19 | 58024375  | 58024441  | - |
| 638 | hsa-mir-1275   | MI0006415 | 6  | 33967749  | 33967828  | - |
| 639 | hsa-mir-1276   | MI0006416 | 15 | 86313727  | 86313809  | - |
| 640 | hsa-mir-1277   | MI0006419 | X  | 117520357 | 117520434 | + |
| 641 | hsa-mir-1278   | MI0006425 | 1  | 193105633 | 193105713 | + |
| 642 | hsa-mir-1279   | MI0006426 | 12 | 69666937  | 69666998  | - |
| 643 | hsa-mir-1280   | MI0006437 | 3  | 128081008 | 128081101 | + |
| 644 | hsa-mir-1281   | MI0006428 | 22 | 41488517  | 41488570  | + |
| 645 | hsa-mir-1282   | MI0006429 | 15 | 44085857  | 44085957  | - |
| 646 | hsa-mir-1283-1 | MI0003832 | 19 | 54191735  | 54191821  | + |
| 647 | hsa-mir-1283-2 | MI0006430 | 19 | 54261486  | 54261572  | + |
| 648 | hsa-mir-1284   | MI0006431 | 3  | 71591121  | 71591240  | - |
| 649 | hsa-mir-1285-1 | MI0006346 | 7  | 91833329  | 91833412  | - |
| 650 | hsa-mir-1285-2 | MI0006347 | 2  | 70480050  | 70480137  | - |
| 651 | hsa-mir-1286   | MI0006348 | 22 | 20236657  | 20236734  | - |
| 652 | hsa-mir-1287   | MI0006349 | 10 | 100154975 | 100155064 | - |
| 653 | hsa-mir-1288   | MI0006432 | 17 | 16185328  | 16185402  | + |
| 654 | hsa-mir-1289-1 | MI0006350 | 20 | 34041776  | 34041919  | - |
| 655 | hsa-mir-1289-2 | MI0006351 | 5  | 132763288 | 132763398 | - |
| 656 | hsa-mir-1290   | MI0006352 | 1  | 19223565  | 19223642  | - |
| 657 | hsa-mir-1291   | MI0006353 | 12 | 49048227  | 49048313  | - |
| 658 | hsa-mir-1292   | MI0006433 | 20 | 2633423   | 2633488   | + |
| 659 | hsa-mir-1293   | MI0006355 | 12 | 50627925  | 50627995  | - |
| 660 | hsa-mir-1294   | MI0006356 | 5  | 153726666 | 153726807 | + |
| 661 | hsa-mir-1295   | MI0006357 | 1  | 171070869 | 171070947 | - |
| 662 | hsa-mir-1296   | MI0003780 | 10 | 65132717  | 65132808  | - |
| 663 | hsa-mir-1297   | MI0006358 | 13 | 54886107  | 54886183  | - |
| 664 | hsa-mir-1298   | MI0003938 | X  | 113949650 | 113949761 | + |

|     |                |           |    |           |           |   |
|-----|----------------|-----------|----|-----------|-----------|---|
| 665 | hsa-mir-1299   | MI0006359 | 9  | 69002239  | 69002321  | - |
| 666 | hsa-mir-1301   | MI0003815 | 2  | 25551509  | 25551590  | - |
| 667 | hsa-mir-1302-1 | MI0006362 | 12 | 113132839 | 113132981 | - |
| 668 | hsa-mir-1302-2 | MI0006363 | 1  | 30366     | 30503     | + |
|     |                |           | 9  | 30144     | 30281     | + |
|     |                |           | 15 | 102500662 | 102500799 | - |
|     |                |           | 19 | 71973     | 72110     | + |
| 669 | hsa-mir-1302-3 | MI0006364 | 2  | 114340536 | 114340673 | - |
| 670 | hsa-mir-1302-4 | MI0006365 | 2  | 208133999 | 208134148 | - |
| 671 | hsa-mir-1302-5 | MI0006366 | 20 | 49231173  | 49231322  | - |
| 672 | hsa-mir-1302-6 | MI0006367 | 7  | 18166843  | 18166932  | - |
| 673 | hsa-mir-1302-7 | MI0006368 | 8  | 142867603 | 142867674 | - |
| 674 | hsa-mir-1302-8 | MI0006369 | 9  | 100125836 | 100125963 | - |
| 675 | hsa-mir-1303   | MI0006370 | 5  | 154065336 | 154065421 | + |
| 676 | hsa-mir-1304   | MI0006371 | 11 | 93466840  | 93466930  | - |
| 677 | hsa-mir-1305   | MI0006372 | 4  | 183090446 | 183090531 | + |
| 678 | hsa-mir-1306   | MI0006443 | 22 | 20073581  | 20073665  | + |
| 679 | hsa-mir-1307   | MI0006444 | 10 | 105154010 | 105154158 | - |
| 680 | hsa-mir-1308   | MI0006441 | X  | 22080259  | 22080312  | - |
| 681 | hsa-mir-1321   | MI0006652 | X  | 85090785  | 85090863  | + |
| 682 | hsa-mir-1322   | MI0006653 | 8  | 10682883  | 10682953  | - |
| 683 | hsa-mir-1323   | MI0003786 | 19 | 54175222  | 54175294  | + |
| 684 | hsa-mir-1324   | MI0006657 | 3  | 75679914  | 75680009  | + |
| 685 | hsa-mir-1468   | MI0003782 | X  | 63005882  | 63005967  | - |
| 686 | hsa-mir-1469   | MI0007074 | 15 | 96876490  | 96876536  | + |
| 687 | hsa-mir-1470   | MI0007075 | 19 | 15560359  | 15560419  | + |
| 688 | hsa-mir-1471   | MI0007076 | 2  | 232756952 | 232757008 | - |
| 689 | hsa-mir-1537   | MI0007258 | 1  | 236016300 | 236016360 | - |
| 690 | hsa-mir-1538   | MI0007259 | 16 | 69599711  | 69599771  | - |
| 691 | hsa-mir-1539   | MI0007260 | 18 | 47013743  | 47013792  | + |
| 692 | hsa-mir-1825   | MI0008193 | 20 | 30825598  | 30825650  | + |
| 693 | hsa-mir-1826   | MI0008194 | 16 | 33965508  | 33965592  | + |
| 694 | hsa-mir-1827   | MI0008195 | 12 | 100583662 | 100583727 | + |
| 695 | hsa-mir-1908   | MI0008329 | 11 | 61582633  | 61582712  | - |
| 696 | hsa-mir-1909   | MI0008330 | 19 | 1816158   | 1816237   | - |
| 697 | hsa-mir-1910   | MI0008331 | 16 | 85775227  | 85775306  | - |
| 698 | hsa-mir-1911   | MI0008332 | X  | 113997744 | 113997823 | + |
| 699 | hsa-mir-1912   | MI0008333 | X  | 113886019 | 113886098 | + |
| 700 | hsa-mir-1913   | MI0008334 | 6  | 166922842 | 166922921 | - |
| 701 | hsa-mir-1914   | MI0008335 | 20 | 62572818  | 62572897  | - |
| 702 | hsa-mir-1915   | MI0008336 | 10 | 21785491  | 21785570  | - |
| 703 | hsa-mir-1972   | MI0009982 | 16 | 15104178  | 15104254  | - |
|     |                |           | 16 | 70064249  | 70064325  | + |
| 704 | hsa-mir-1973   | MI0009983 | 4  | 117220881 | 117220924 | + |

|     |              |           |    |           |           |   |
|-----|--------------|-----------|----|-----------|-----------|---|
| 705 | hsa-mir-1974 | MI0009984 | 5  | 93905172  | 93905241  | - |
|     |              |           | MT | 14675     | 14744     | - |
| 706 | hsa-mir-1975 | MI0009985 | 7  | 148638580 | 148638654 | + |
| 707 | hsa-mir-1976 | MI0009986 | 1  | 26881033  | 26881084  | + |
| 708 | hsa-mir-1977 | MI0009987 | 1  | 566187    | 566265    | - |
|     |              |           | MT | 5638      | 5716      | - |
| 709 | hsa-mir-1978 | MI0009988 | 2  | 149639365 | 149639417 | - |
|     |              |           | MT | 622       | 674       | + |
| 710 | hsa-mir-1979 | MI0009989 | 4  | 166321814 | 166321889 | - |
| 711 | hsa-mir-2052 | MI0010486 | 8  | 75617928  | 75617982  | + |
| 712 | hsa-mir-2053 | MI0010487 | 8  | 113655722 | 113655812 | + |
| 713 | hsa-mir-2054 | MI0010488 | 4  | 126428414 | 126428462 | + |
| 714 | hsa-mir-2110 | MI0010629 | 10 | 115933864 | 115933938 | - |
| 715 | hsa-mir-2113 | MI0003939 | 6  | 98472407  | 98472497  | + |
| 716 | hsa-mir-2114 | MI0010633 | X  | 149396239 | 149396318 | + |
| 717 | hsa-mir-2115 | MI0010634 | 3  | 48357850  | 48357949  | - |
| 718 | hsa-mir-2116 | MI0010635 | 15 | 59463382  | 59463461  | - |
| 719 | hsa-mir-2117 | MI0010636 | 17 | 41522174  | 41522253  | + |
| 720 | hsa-mir-2276 | MI0011282 | 13 | 24736555  | 24736643  | + |
| 721 | hsa-mir-2277 | MI0011284 | 5  | 92956402  | 92956494  | - |