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ABSTRACT
With the advent o f Computer-aided drug designing and discovery, bioinformatics 

become the major tool for designing and discovering most potent leads against different 

targets. A Pharmacophore is built from knowledge o f the structure o f the novel drugs. 

Ligand-based Pharmacophore modeling was carried out on a set o f 10 compounds using 

Ligand Scout. All o f the compounds shared six common features. The Merged feature 

model : 2 Hydrogen Bond Acceptors, I Hydrogen Bond Donor, 1 aromatic ring, 2 

hydrophobic volumes, 1 Positive ionizable and 30 exclusion features whereas a shared 

feature model contains: 1 Hydrogen Bond Acceptor, 1 Hydrogen Bond Donor, 1 aromatic 

ring, 1 hydrophobic volume and 1 Positive ionizable respectively . In-silico approaches 

have been used to determine the Pharmacophore triangle.

Molecular docking was the test vector for the current studies. Docking studies 

were carried out in order to identify the lead compound among the selected 

Butyrylcholinesterase inhibitors. AutoDock Vina was used for docking studies. The 

binding interactions o f the active conformations o f the ligands and the target protein have 

been identified by using VMD. Lead compound showed strong ligand-protein interaction 

which includes 3 ionic interactions and 15 hydrophobic interactions and IC50 value 0.011 

)iM and Binding energy is -lO.lKcal/mol. Four analogues o f the lead compound were 

made. They were also docked in order to predict their bioactivity.

Quantitative structure-activity relationship was established to find dependency 

trend in Choi inesterase Inhibitors and various molecular descriptors. Molecular 

descriptors were calculated and plotted against the IC50 for predicting the biological 

activities o f selected dataset.



On the base o f extensive computational studies some active compounds were 

identified that were involved in the considerable number o f  binding interactions and 

showed lower binding affinities. Analogues were designed fi-om the potential lead 

compound and Molecular Docking studies of analogues were carried out in order to 

suggest the most appropriate compound that has the potential to act as potent 

Butyrylcholinesterase inhibitors.
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1. INTRODUCTION

About 100 years ago, Alzheimer’s disease (AD) was identified. Since its 

identification the global fight for a world without Alzheimer's disease has been launched 

by researchers. AD is being the main focal point for many researchers. Many different 

Alzheimer’s Associations, Alzheimer’s disease Education and Referral (ADEAR) Center 

and Alzheimer societies has been established for helping people affected by AD. Still 

more efforts are required in order to prevent AD fi"om developing. According to Facts 

and Figuresy an annual report released by the Alzheimer’s Association in 2011 an 

estimated 5.4 million people are victims o f AD. Among people o f different ages, AD is 

the sixth-leading cause o f death while it is the fifth-leading cause of death for those aged 

65 and older in United States (Minino et al, 2010). In World Alzheimer Report 2009, 

Alzheimer’s disease International reported that in 2010 35.6 million people living with 

dementia worldwide. This number will be increasing to 65.7 million by 2030 and 115.4 

million by 2050. Among the estimated AD patients nearly two-thirds live in low and 

middle income countries, where the sharpest increases in numbers are set to occur.

Among the developing nations 4.6% of population is facing mental retardation 

issues (Gadit et al., 1998). In Pakistan the conditions are equally bleak where the 

percentage o f mental disorders depicts a gloomy image. 6% of population is suffering 

from depression, 1.5% from schizophrenia, 1 -2 %  from eplisy and 1% from Alzheimer’s 

disease (Gadit et a l, 1999).



*
The main reason for selecting Cholinesterase Inhibitors as a drug target for 

ciirrent study is that ChEIs are the only therapeutic agents reported so far that 

consistently proven to be effective in treatment of AD but currently available drugs for 

treating AD only mask the symptoms of Alzheimer’s, but do not treat the underlying 

cause o f disease. In addition that’s drugs cause severe hepatic complications and 

cholinergic side effects. Although The U.S. Food and Drug Administration (FDA) has 

approved four ChEIs for treatment o f AD, there is still a need of Alzheimer's drug that 

would not only overcome the sever hepatic complications but would also treat the 

underlying disease and stop or delay the cell damage that eventually leads to the 

worsening o f symptoms.

Using in-silico drug designing techniques it is promised that novel drug and 

effective drug for the treatment o f Alzheimer’s disease will be developed in short time 

span.

During this study a Pharmacophore model is generated using the information 

derived from data set, as yet there is not a single confined Pharmacophore model 

identified for the AD Cholinesterase inhibitors. Therefore it will contribute positively 

towards more accurate treatment o f AD.

Secondly, a protocol is designed that will help in the in-silico drug development. 

This protocol incorporates Pharmacophore modeling, molecular docking and quantitative 

structure-activity relationship (QSAR). This investigation resulted in identification of



lead compound and its analogue formation having tendency to be next potential drug 

candidate.

2D QSAR Multiple linear Regression Analysis was also observed in which 

molecular descriptors were calculated and correlation was determined which resulted in 

finding biological activities o f ligands and providing insight o f which relevant and 

consistent chemical properties are important relationship for the biological activity o f  

selected compounds

Effectiveness o f work states: Lead compound was identified that enhance the 

therapeutic ability and will help to cure Alzheimer’s disease by increasing the binding 

interactions and its bioavailability.
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2. LITERATURE REVIEW

Alzheimer’s disease (AD) is the most common cause of dementia among the older 

people. AD is characterized by progressive and long-lasting loss and declines in memory, 

everyday tasks performance, communication proficiency and language, conceptual 

thinking and ability to learn and carry out mathematical calculations. Other symptoms o f  

AD include personality changes and destruction of judgments (Caroline, 1997). Dementia 

is because o f different diseases and conditions that are responsible for damaged brain 

cells or links between brain cells (William Thies and Laura Bleiler, 201 l).The history o f  

AD begins about 100 years ago when AD's first case was reported by Alois Alzheimer 

on November 3, 1906, in Tubingen, Germany. Alois presented that case on the 37th 

meeting of the Society o f Southwest German Psychiatrists (Godert et a l, 2006).

The pathogenic grounds of the disease are not recognized so far, but the obvious 

neuro-pathological alterations like neurofibrillary tangles and amyloid plaques are 

reported in the Alzheimer’s patient brain. Similarly, there are neuro-chemical and 

biochemical variations which are also linked with AD. In case o f AD, the decrease in the 

choline acetyltransferase (ChAT) enzyme activity has been reported as the major 

biochemical change. The decrease in ChAT enzyme activity occurs in the major regions 

of basal forebrain cholinergic neurons, particularly in the neocortex (Rossor et a l, 1982). 

As a result, this decrease reported intense breakdown o f cholinergic neurons (Whitehouse 

et a l, 1981). Moreover, it has been reported that the decrease in ChAT activity in the 

cerebral cortex is associated to the severity of the dementia (Perry et a l, 1978). Different



Alzheimer’s patients show different sign and symptoms, but the most common symptom 

starts with steadily annoyance difficulty in remembering new information. Such 

condition occurs because of the interruption of brain cell function in those regions which 

are mainly involved in forming new memories. With the increase o f damage, persons 

face other complications including loss of memory, poor judgment and change in 

personality, difficulties in scheduling or resolving issues and trouble in completing 

known tasks, confusion with time or place, difficulty in understanding visual images and 

spatial relationships, speaking or writing issues, and misplacing things and difficulty in 

retracing (William Thies and Laura Bleiler, 2011).

Alzheimer’s disease is of both types, sporadic as well as familial. Majority o f  

Alzheimer’s disease cases are sporadic but to some extent the disease is inherited by an 

autosomal dominant mechanism of inheritance. Four different gene mutations have been 

reported for the familial form of the disease (M-M Mesulam, 1993).

The etiology of the AD is not well-known. Many studies are carried out and 

documented possible risk and protective factors responsible for AD. The most obvious 

and undisputed factor amongst the risk factors associated with AD is age. AD being the 

most common type o f dementia accounts for 50 % to 60% o f all cases. Dementia shows a 

direct relation with age. It accounts for less than 1% in persons aged 60 to 64 years, but in 

persons aged 85 years or so the rate is between 24% and 33% in the Western world (Ferri 

et a l, 2005). More than 24 million cases o f dementia have been reported in 2001.



Because o f  the estimated increase in life expectancy, this number is expected to double 

every 20 years up to 81 million in 2040, (Ferri et al., 2005).

Besides ageing other genetic risk factors that are possible agents o f AD are: AD’s 

family history (Payami et a l, 1977), having history of depression (Speck et a l, 1995), 

apolipoprotein E gene-e4 allele presence (Payami et a l, 1977; Kukull et a i, 1996), race 

(Schoenberg et a l, 1985) and Down’s syndrome (Brayne, 1991; Van Duijn et a l, 1991). 

Along with these other possible agents are hypertension (Kokmen et a l, 1991), head 

trauma with loss o f consciousness (Chandra et a l, 1989; Brayne, 1991), low serum 

vitamin B12 and vascular disease (McCaddon and Kelly, 1994), lower education (Beard 

et a l, 1992), electromagnetic fields (Sobel et a l, 1995), gender (Schoenberg et a l, 1985), 

antacid consumption (Graves et a l, 1990a) and aluminum absorption (McLachlan et a l,

1996). Finally, some factors arousing debate include maternal age at birth (Van Duijn 

and Hofman, 1992), diabetes (Leibson e ta l,  1997) occupational exposure to solvents and 

glues (Gun et a l,  1997), and alcohol consumption (Graves et a l, 1991).

Along with risk factors, protective factors have also been studied. Protective 

factors include cigarette smoking (Brayne, 1991; Graves et a l, 1991), non-steroidal anti­

inflammatory drugs, arthritis (McGeer et al, 1996), and estrogen intake (Lemer et a l,

1997). Other factors such as severe headache, blood transfusion (Brayne, 1991), 

apolipoprotein E e2 allele (Bickeboller et al, 1997) and physical activity (Yoshitake et 

a l,  1995) are assumed to be the protective factors of AD.

8



Three clinical stages o f AD with functional and cognitive decrease extending over

5 to 8 years have been reported. The early or mild stage mostly lasts for 2 to3 years and is 

characterized by short-term memory impairment often along with symptoms of 

depression and anxiety. The symptoms o f depression and anxiety o f mild stage appear to 

abate as neuropsychiatric signs, such as visual delusions, false beliefs and reversal of 

sleep patterns emerge in the moderate stage. The last and severe stage is distinguished by 

motor signs, for example motor rigidity and prominent cognitive decline. Throughout the 

above mentioned stages o f AD, the cognitive and functional decrease tend to be linear, 

while during sever stage caregiver burden increases with the appearance of 

neuropsychiatric symptoms and decreases to some extent, when the patient is more 

sedentary (Gauthier, 2002).



Celk wthin the bnJn (neurons) transport ekctrical 
messages to olher parts of the body using chemical 
transmitters (neurotmnstmttm).

Damaged 
A  (or lost) 
^  brain tissue

\n AUhdmer^sDhease, areas of the brain tissue 
are damaged and some nwssages do not transmit, 
causing the s>Tnptoms of the disease.

Figure 2.1: Comparison of Normal Brain verse Alzheimer’s Patient Brain



For the treatment o f different stages o f AD, the use o f  cholinesterase inhibitors 

(ChEIs) has been documented to be effective (Doody, 2003; Rockwood et a l, 2003). In 

1993 tacrine was the first ChEI to be approved by the Food and Drug Administration 

(Davies et a l, 1989) which is now rarely used because o f  toxicity associated with it and 

the introduction of safer ChEIs (Ritchie et a l, 2004). Donepezil, galantamine, and 

rivastigmine are the commonly used ChEIs. These three ChEI have been proven to lower 

or stabilize cognitive decline o f  AD (Ritchie et a l, 2004; Briks, 2006; Hansen, 2008). 

Besides ChEIs, in 2004 the FDA approved an NMDA antagonist named as memantine, 

for treating dementia symptoms in moderate to severe cases o f AD (Lleo et at., 2006).

11



Table 2.1: List o f Drugs Approved by FDA

DRUG NAME DRUG TYPE &USES HOW IT WORKS SIDE EFFECTS

Namenda®
(memantlDe)

N-methyl D>aspartate 
(NMDA) antagonist 
approved for treating 
moderate to severe AD 
symptoms

By Blocking the toxic effects 
linked with excess glutamate. 
It also regulates glutamate 
activation.

Causes Constipation, 
dizziness, headache and 
confusion

Razadyne ® 
(galantamine)

ChEI approved for 
treating mild to moderate 
AD symptoms.

By preventing the breakdown 
of acetylcholine and 
simulates the nicotine 
receptors to release more 
acetylcholine in brain

Causes Vomiting, 
Nausea, loss of 
appetite, weight loss 
and diarrhea

Exelon ® 
(rivastigmine)

ChEI approved for 
treating mild to moderate 
AD symptoms.

By preventing of 
acetylcholine and 
butyrylcholine in brain.

Causes Vomiting, 
Nausea, loss of 
appetite, weight loss, 
d i^ h e a  and muscle 
weakness

Aricept ® 
(donepezil)

ChEI approved for 
treating mild to moderate 
and moderate to severe 
AD

By preventing the breakdown 
of acetylcholine in brain

Causes Vomiting, 
nausea and diarrhea



The known ChEIs can cause severe hepatic complications (Sequeira et a l, 2008). 

Therefore, the development o f new more effective drugs having lesser side effects is still 

a main preference.

Cholinesterases (ChEs) are family of the most efficient enzymes identified. Based 

on inhibitor sensitivities and substrate specificities, ChEs are further classified into two 

types: i) acetylcholinesterase (AChEl; EC 3.1.1.7) and ii) butyrylcholinesterase (BChE; 

EC 3.1.1.8) (Massoulie et a l, 1993). Both ChEs shared 65% of sequence homology. 

Both have catalytic triad for substrate hydrolysis.

A membrane-bound enzyme, AChE is mostly found in the brain, cholinergic 

neurons, muscles and erythrocytes. AChE hydrolysis the neurotransmitter acetylcholine 

(ACh) in cholinergic synapses (Massoulie et a l, 1993; Silman et a i, 2005) and as result 

plays an important role in the regulation of several physiological actions (Milatovicet et 

a i, 1996; Schetinger et a l, 2000).

BChE present in the serum, heart, lung, intestine, liver and kidney plays an 

important role in the metabolism of ester containing compounds (Dave et a l, 2000; 

Prody, 1987; Ecobicon, 1973).



' ^ 6

r A

- ^ 1 '

Figure 2.2: Ribbon Diagram of Human BChE from PDB entry IPOI.

Figure 23: Active site o f BChE



Even though the accurate role o f BChE is not fully known so far, its function in 

morphogenesis, cytogenesis and tumorigenesis, regulation o f cell proliferation and onset 

of differentiation during early neuronal development, as a scavenger in the detoxification 

of certain chemicals, and in lipoprotein (VLD) metabolism has been reported (Giacobini, 

2003).

Besides this, several neuronal groups solely shovî  the activity o f BChE in the 

human brain (Wright et a l, 1993), such as in the inhibition or absence o f AChE, BChE 

can replace AChE in the degradation of acetylcholine Ach (Li B et a l, 2000; Chatormet 

et a l, 2003). Such replacement in Alzheimer's patient brains renders BChE as a more 

effective drug target than AChE (Carreiras et a l, 2004).

BChE involvement in the disruption o f cholinergic neurotransmission in AD has 

been supported by biological facts (Combarros et a l, 2005). AD-related neurofibrillary 

tangles are also linked with the processing of a-amyloid protein to p-amyloid peptide 

(Carreiras et a l, 2004). The disease’s eitology is further complicated because o f an 

association between AD and the formation o f p-amyloid plaques. It is believed by many 

researchers that AD is a consequence o f increased production or accumulation o f a- 

amyloid in the brain which in turns results nerve cell death. Recently it has been reported 

that in the AD patient’s brains, there is a significant reduction in the level o f  AChE 

whereas the level of BChE increases which in turn aggravates the toxicity o f p-amyloid 

peptide. In AD AChE and BChE activity is expressed by neurofibrillary tangles and 

amyloid plaques (Wright et a l, 1993).In AD patient’s brain, this abnormal expression has



been detected around the amyloid plaques and neurofibrillary tangles (Small et a l, 1996). 

It has also been documented that AChE and BChE co-localize within the brain in amyloid 

plaques to form insoluble p-amyloid fibrils (Diamant et a l, 2006).
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Fig 2.4; Pathogenesis o f Alzheimer’s disease



AChE inhibition has been proven as effective drug target against Alzheimer's 

disease but use o f BChE as a drug remains a matter o f concern in treating Alzheimer's 

disease. Even though little literature is available on the inhibition of 

butyrylcholinesterase, studies have revealed that BChE is a genetically authorized drug 

target and its selective inhibition lessens the beta-amyloid plaques formation (Ul-Haq et 

a l, 2010).

, Table 2.2: Similarities and Differences between BChE and AChE 

BuChE verse AChE

• In brain represents 20% total ChE activity, mostly glial.

• In human brain is present also in specific neurons.

• 65% amino-acid sequence homology.

• Chromosome 3 (BuChE) vs. chromosome 7 (AChE).

• Catalytic site: valine-leucine replacing phenylalanine.

• No substrate inhibition.

• Most efficient, at high substrate concentration.

• Less substrate specific than AChE.

(Ezio Giacobini., 2004)

In the current studies, BChE would be used as a drug target.

Up till novif the only therapeutic agents that consistently proven to be efficacious 

in treating the cognitive and fimctional symptoms o f AD is cholinesterase inhibitors 

(Weinstock, 1999). ChEIs are basis o f AD therapy. Four ChEIs namely tacrine (an 

aminoacridine), dohepezil (a benzylpiperidine), rivastigmine (a carbamate) and 

galantamine (a tertiary alkaloid) have been approved for the symptomatic treatment o f



mild to moderate AD. As these compounds show likeness in efficacy (Weinstock, 1999; 

Wilkinson et a l, 2002), their clinical differentiation may base on variations in tolerability 

profiles and ease o f use. The variations in the tolerability profiles o f ChEIs may occur as 

a result o f selectivity difference for AChE and BChE (Rogers et a l, 1998; Rogers and 

Friedhoff, 1998). AChE and BChE both are linked with cholinergic dysfunction. Central 

cholinergic systems play a very important part in a wide variety o f brain functions such 

as memory and learning. Thus, the development o f AChE and BChE inhibitors for the 

improvement o f cholinergic signalling and overall cognition in patients is very important 

in the treatment o f AD (Rook et a l, 2010).

The studies and efforts for the development o f  a drug are costly, prolonged, risky 

and comprehensive. It is projected that the development o f  a drug from an idea to a 

standard finished product would take 12 years and on an average cost more than US $800 

million (DiMasi et a l, 2003). In order to shorten the time consvmiing research efforts and 

to lessen the expenses, numerous advance technologies have hence been developed and 

applied in drug research and development (R&D). Among these technologies. Computer- 

aided drug design (CADD) is one such revolutionary technology (Jorgensen, 2004/

2.4 Computer-Aided Drug Designing

In the field o f drug design, both computational and experimental approaches are 

used and present complementary approaches. Nowadays, computational techniques are 

gaining rapid popularity and implementation in drug designing and discovery. Computer-



aided drug design (CADD), computer aided molecular modeling (CAMM), computer- 

aided molecular design (CAMD), computer-aided rational drug design, computational 

drug design, in silico drug design and rational drug design are the different terms applied 

to this area (Kapetanovic., 2008)..

Molecular simulations play different roles in different disciplines of science in 

various research areas. In bioinformatics and drug designing, the focus is on two parallel 

areas. The first approach focuses on the use o f mathematical algorithms currently used in 

the field of molecular biology examples include simulating protein-protein interactions or 

protein-ligand interactions. The results are then used for further experimentation. The 

second approach obviously is the focus on designing new algorithms with much effective 

outcomes (Huang et a l, 2010).

The process o f drug development is demanding, time consuming, costly, and 

requires many aspects to be considered. According to a study, the cost ranges from $800 

million to $1.8 billion in the drug discovery process (Hileman, 2006). However, 

depending on the type and nature o f the disease being targeted and the drug, considerable 

variation is seen both in time and cost. Bharath and co-workers summarized the overall 

drug development process and the cost incurring at each step (Bharath et al., 2011).



Table 2,3: The costs incurring in each step in overall drug development process

Cost Co(t% TInwfnyMrt
______________________________________________ USSMUliop_____________________________________________________

Biology
TarfMSdMittflcadon 16S 18L6 1.0
TarsKVjbdadon 20S 23.3 2.0 
Ch«iohtTy
ScTMOlBf 40 4 ^  4 5
OpdialxadoD 120 13^ 2.7
D«v«lopia»i]t
P n -d la ia J  90 10.2
d ln k al 260 29^ 7A
Totil________________________________________ §80________________________ 100.0__________________ 14;7_________

Furthermore, out o f 40,000 compounds tested in animals only 5 reach human 

testing and the number o f compounds which is approved for reaching clinical studies is 

just 1 out o f 5. This depicts a huge investment in terms o f time, money and other 

resources (Kapetanovic, 2008). A report suggests that extensive usage o f bioinformatics 

and in silico technologies would cause reduction up to 50% in the overall drug 

development cost (PricewaterhouseCoopers, 2007). Current work is all in silico and it 

suggests a new drug for the treatment of Alzheimer’s disease.

Application areas where CADD technologies work are two: structure based drug 

design and ligand based drug design. In structure-based drug design, we should have 

complete knowledge o f the target protein structure and its active sites for finding the 

binding pocket, the binding energy and the steric properties of ligand and protein. It 

includes de novo ligand design and docking among other topics. While in ligand-based 

drug design, focus is on ligands which interact with the target protein. The technologies 

include pharmacophore, QSAR and 3D-QSAR. Both the techniques produce lead 

compound as a final product. CADD process flowchart is given as drawn by Huang and 

collaborators in their review about CADD.
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Figure 2.5: Computer Aided Drug Designing flow chart



In strucUire based drug design, we should have a protein structure at hand. Two 

physical methods o f obtaining structure are NMR spectroscopy and X-ray diffraction. 

Numerous protein structures are found at RCSB PDB. Those that are not included in the 

PDB database can be modelled. Homology Modelling is a technique used to predict 

unknown protein structure by sequence similarity to known protein structure(s). If the 

protein sequence has 30% similarity with its template (homologous protein) it can be 

modelled (Marti-Renom et a l, 2000). Ab initio modeling and threading are other two 

methods for protein structure prediction.

In early 1960s the idea o f CADD emerged as a quantitative structure-activity 

relationship (QSAR) analysis but later the concept o f CADD has developed very quickly. 

Along with other CADD technologies, molecular modeling and simulation have proven 

successful and productive in drug discovery. Usage o f computational techniques along 

with bioinformatics techniques in drug discovery and development process is quickly 

gaining popularity and appreciation (Kapetanovic., 2008). Using CADD technology, 

rational design o f selective inhibitors of p90 ribosomal protein S6 kinase is designed 

successfully (Cohen et a l ,  2005).

In order to considerably reduce time and resource required for drug development 

and testing, CADD is employed. From 1997 to 2004, the rapid growth o f virtual 

screening is reported as the number o f citations increase from 4 to 302 (Pozzan, 2006).

In this study different in silico techniques like molecular docking, QSAR and 

Pharmacophore modeling are used to design a new noval cholinesterase inhibitor for AD.



Molecular docking is a computational procedure o f searching for an appropriate 

ligand that fits both energetically and geometrically the protein’s binding site. In other 

words, it is a study o f how two or more molecules e.g. ligand and protein, fit together. 

The problem is like solving a 3D puzzle (Aatu et a l, 2002).

During past decade for understanding the formation o f intermolecular complexes, 

the application of computational methods in this area has been subjected to intensive 

research. It is commonly known that molecular binding o f one molecule (the ligand) to 

the pocket o f another, usually macromolecule (the receptor), which is commonly a 

protein is responsible for accurate drug activity. Molecular docking has been proved very 

efficient tool for novel micro molecule drugs discovery for targeting protein (Wang et al.,

1999). Among different fields o f docking, protein-ligand docking is o f special interest, 

because o f its application in medicinal industry (Muegge et a l, 2001). Protein-ligand 

docking refers to search for the accurate ligand conformations within a targeted protein 

when the structure o f protein is known or can be estimated (Sousa et a l, 2006).

Docking procedures are basically the grouping o f search algorithms and scoring 

fimction. Large number of search algorithms and scoring functions are available. Search 

algorithms predict the ligand biding orientation and confirmations commonly refer as 

posing (Sousa et a l, 2006). Some common search algorithms are (Aatu et a l, 2002):

• Molecular dynamics

• Monte Carlo methods

• Genetic algorithms



•  Fragment-based methods

• Point complementary methods

• Distance geometry methods

• Tabu searches

• Systematic searches

In order to differentiate the active and random compounds the scoring functions are 

employed. The scoring functions predict binding free energies in ligand-protein docking 

generally in 7- 10 kJ/mol (Bissantz et a l, 2000). The three major classes o f scoring 

functions are (Sousa et al., 2006):

• Fore filed based

• Empirical

• Knowledge based scoring functions.

Numbers of-different molecular docking softwares are employed in drug research 

industry (Aatu et a l, 2002). The most popular and commonly use softwares for molecular 

docking are AutoDock (Morris et a l. 1998; Goodsell et a l, 1990; Morris et a l, 1996) 

GOLD (Jones et a l, 1997; Jones et a l, 1995) FlexX (Rarey et a l, 1996) along with 

DOCK (Ewing et a l, 1997) and ICM (Abagyan et a l, 1994).

In some cases for reproducing crystallographic conformations and orientations o f ligand- 

protein complexes. Autodock has been produced better results than DOCK, FlexX, and 

GOLD (Park era/., 2006).



For docking purpose, AutoDock pre calculate energy grids on target around a site 

of interest (Morris et a l, 1998). While considering the target energy grids, Lamarkian 

Genetic Algorithm (LGA) (stochastic search algorithm), for exploring the grid space is 

employed to perform energy evaluations o f the position of the ligand (Morris et a l,

1998). LGA investigate all the possible ligand-protein poses relative to the energy grids 

and returns the lowest energy conformation in the target site (Morris et a l, 1998). The 

LGA is o f great importance for modeling systems having maximum numbers of rotatable 

bonds and possible numbers o f conformations (Morris, 1998).

DOCK and FlexX both employed" an incremental construction algorithm. 

Incremental construction algorithm attempts to reconstruct the bound ligand by first 

placing a rigid anchor in the binding site and later using a greedy algorithm to add 

fragments and complete the ligand structure.

GOLD (Genetic Optimization for Ligand Docking) considers degrees o f freedom 

in the binding site that correspond to reorientations o f hydrogen bond donor and acceptor 

groups. These degrees o f freedom represent only a very small firaction o f the total 

conformational space that is available but should account for a significant difference in 

binding energy values (Shih- Ching Ou et al., 2005).



Figure 2.6: Different Softwares for Molecular Docking (Sousa et a l, 2006)



AutoDock Vina is an upgraded version o f Auto Dock 4 and it is a ligand to 

protein docking and virtual screening simulator. It is compatible with the Auto Dock 

PDBQT file format and offers the following advantages over Auto Dock 4; while using 

AutoDock Vina grid computation is not necessary which was a complex process 

elsewhere, it gives higher accuracy of binding mode, and it is considerably faster, 

moreover it is available for each operating system and use iterated local search algorithm 

(Chang era/., 2010).

Pharmacophore is one of the most lasting ideas of computer-aided drug design. 

Historically, the concept o f a Pharmacophore is presented, from its initial articulation by 

Kier in 1967 (Kier, 1967) and uses the term m a publication in 1971 (Kier, 1971).

In recent years the term Pharmacophore has been increasingly use in medicinal 

chemistry. Pharmacophore are often attributed as the structural fragments or functional 

groups o f a chemical compounds. However, the lUPAC gave an accurate definition o f  

Pharmacophore in 1998. Accordmg to lUPAC; “Pharmacophore is an ensemble o f steric 

and electronic features that is necessary to ensure the optimal supra molecular 

interactions with a specific biological target and to trigger (or block) its biological 

response (Kapetanvoic, 2008).

Pharmacophore does not represent the real association o f functional groups but it 

gives abstract concept about common molecular interaction capacities o f a group o f  

compounds towards their target structure. Typical Pharmacophore features include 

regions where molecule is hydrophobic, aromatic, a hydrogen bond acceptor, a hydrogen



bond donor, a cation, or an anion. These features need to match different chemical groups 

with similar properties, in order to identify novel ligands. Best pharmacophore model 

formed must include both hydrophobic volumes and hydrogen bond vectors (Kapetanovic 

etaL, 2008).

In the current era. Pharmacophore modelling has become an integrated part of 

drug development and designing (Cheng Chang et a l, 2005). A Pharmacophore 

highlights the 3D arrangement o f structural features o f a compound that are required for a 

certain biological activity. The Pharmacophore model leads to the generation and 

identification o f the nev̂  ̂ compounds that shares the same Pharmacophoric features. For 

limited structure activity data availability for few compounds, the medicinal chemist can 

easily generate manually a common featured Pharmacophore model. However, an 

availability o f diverse data makes the manual computation o f Pharmacophore features 

difficult. To overcome this difficulty, Computational approaches prove helpful for 

generating Pharmacophore (Venkatarajan S Mathura et a l, 2010).

Steps involved in Pharmacophore identification are to find a number o f ligands 

known to interact with a single target, then finding similarities between the ligands 

ci^ leading to the creation o f Pharmacophore and at the end using Pharmacophore for virtual 

screening.

Numerous softwares are available for the Pharmacophore identification such as: 

Ligand Scout (Judith et al., 2009) Catalyst, Phase, Sybyl including Galahad, GASP, 

DISCO tech, UNITY 3D and MOE (Kapetanovic et al., 2008).

I



Ligand Scout has become an integrated platfonn for building pharmacophore 

models either based on a protein structure or ligand (Cambridge MedChem et a l, 2009). 

Ligand Scout is software that allows to rapidly deriving 3D chemical featured 

Pharmacophore from structural data o f macroraolecule or ligand in a fully automated and 

convenient way (Judith et a l, 2009). Upon several mouse clicks the entire characteristic 

features critical for drug activity are determined and along with it Ligand Scout enable 

user to align several compounds having similar Pharmacophore (Judith et a l, 2009; 

Cambridge Med Chem et a l, 2009). Unlike other programs, the alignment is based on 

Pharmacophore points rather than on atomic contributions and is reflected better the way 

the small molecule presents itself to the active site o f the macromolecule (Judith et a l, 

2009). From several molecules or Pharmacophore, a shared feature Pharmacophore can 

be derived to determine common features by setting reference point, thus making 

Pharmacophore modelling convenient and easy.

Lastly Virtual screening can be done by Quantitative Structure- Activity 

Relationship (QSAR) studies. According to Hansch (1969) Quantitative Structure 

Activity Relationship (QSAR) is a mathematical technique which links chemical 

structure and activity o f chemical compounds in a quantitative manner. It is commonly 

used computational method in predicting toxicology (Kapetanovic et a l, 2008). 

Independent variables represent molecular descriptors, e.g. electronic, conformational 

and thermo-dynamical etc. The aim of QSAR techniques is to develop correlations 

between biological activity and the physiochemical properties o f the set o f molecules



related to same class. Softwares such as COMFA and COMSIA (Klebe et a l,  1998), 

Chem Draw (Zielesny et a l, 2005), Hyper Chem (Tsuji et a l, 2010) and many more are 

used for finding molecular descriptors.

Chem Draw Ultra, using an add-on, Chem Prop/Draw, calculates predicted values 

for physical and thermodynamic properties of a selected structure o f up to 100 atoms. 

(Loren et a l, 2004) Chem draw software package is a chemical structure drawing tool 

which enables several features upon the drawing o f structure which includes boiling 

point, melting point, and critical volume, heat of formation, Log P and molar refractivity 

(MR). Minimization o f the energy of the compound is done by using Hyper Chem. 

Energy minimization alters molecular geometry to lower the energy o f the system, and 

yields a more stable conformation. It generates a log file using computational chemistry 

techniques such as semi-empirical formula, molecular mechanics etc (hypercube et a l, 

2002).

Molecular dynamics (MD) simulation is one o f the important tools in the 

theoretical study of biological molecules. Because molecular systems generally contain a 

large number o f particles, it is impossible to analyze such complex systems. By using 

numerical methods, molecular dynamics simulation can avoid such analytic intractability. 

During simulation, atoms and molecules are allowed to interact for a period o f time. The 

motion for every atom is calculated and can be played to examine the overall behaviour 

(Mccammon et al., 1977). Overall, the background algorithm for a MD simulation 

includes: (1) the determination of the initial positions and velocities o f every atom; (2)



the calculation o f forces applied on the investigated atom using inter-atomic potentials; 

(3) the progression o f atomic positions and velocities through a short- time period. These 

new positions and velocities are then turned into new inputs to step 2, and when steps 2 

and 3 are repeated, each repetition forms an additional time step.
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3. METHODOLOGY

3.1 Protocol for the Insilco Drug Designing

The stepwise protocol for Insilco drug designing for the cure of Alzheimer’s disease is 

described in figure 3.1:

DLSEASE^^LECTION

PROTEIN TARGET 
------------ ------------------

DATA SET COLLECTION 
-------^

COMPOUND DRAWING

PHARMACOPHORE IDENTIRCATION
& GENERATION

]  [

MOLECULAR DOCKING

QSAR STUDIES

LEAD COMPOUND IDENTIFICATION

ANALOGUE DESIGNING

Figure 3.1: Protocol for the Insilco drug designing and development



As the pioneer step disease was identified leading to the potential protein target. 

Further data collection was incorporated; it was followed by drawing o f drugs using 2D 

view. Later Pharmacophore identification and generation was done it led to the docking 

of compounds which resulted in the lead compound identification and analogues 

formations after this QSAR analysis was done. Each step o f  the protocol along with the 

challenges faced is discussed below.

3.2 Disease Selection

Alzheimer's disease was selected for current study because it is the major reason 

of dementia and is considered as a major killer that slowly destroys 

a person’s memory until the person dies from forgetting how to perform routine tasks. 

Approximately 24 million people worldwide have dementia o f which the majority 

(•^0%) is due to Alzheimer’s. According to Alzheimer's Drug Discovery 

Foundation more than 5 million patients in the US and more than 35 million individuals 

worldwide are suffering from Alzheimer's disease. The disease is believed to have an 

annual impact o f $172 billion on health care in the United States and is projected to 

increase rapidly in the near fiature. AD is not only brutal on the person who has this 

condition, family members suffer as well. In an attempt to combat this major killer and 

make a novel drug this study is a subsequent contribution.



3.3 Protein Target

There are multiple protein targets that can be considered to cure Alzheimer’s 

disease. Among several targets, BChE is considered and protein structure was taken from 

Protein Data Bank by PDB ID: IPOI. BChE is a key acetylcholine hydrolyzing enzyme in 

the blood (Darvesh et a l. 2003), Besides acylcholines, it can degrade a large number o f  

ester containing compounds. Consequently, it plays noteworthy pharmacological and 

toxicological roles. BChE played an important role in the pathological progression o f AD 

by depleting acetylcholine. It attenuates amyloid fibril formation in vitro (Diamant et al., 

2006). As BChEIs enhance ACh availability, they have been used to delay symptoms of 

AD (Campbell et al., 2007). BChE can exist as monomers, dimers, or tetramers (Darvesh 

et al., 2003).

3.4 Data Set Formation

Data set was made keeping in mind some considerations such as all the 

compounds had passed through bioassay and have reported IC50 value. The range of IC50 

value up to 100 fiM was only considered. Secondly it was considered that data set must 

be composed o f different classes o f compounds having numerous functional groups so 

that highly active and potent lead is identified from a vast data set lastly all the selected 

compounds for this study must not be reported earlier than 2005.Various anti-Alzheimer 

Cholinesterase Inhibitors were studied and selected for this study, these drugs belongs to 

different classes having distinct fimctional groups. Along with these compounds some 

FDA approved anti-Alzheimer ChEIs were also incorporated to be taken as standard



drugs. The data consisting o f 26 compounds (Decker et a l, 2005; Schott et a l, 2006 ; 

Dillon et a l ,2009-10; Liang Yu et a l, 2010; Tkakhas et al,2011) along with two the 

standard compounds namely Donepezil and Rivastigmine (Isabelle Tomassoli et a l. 

2010) along with IC50 values are shown in Table3.1.

3.5 Compounds Drawing

The compounds were drawn using Chem Draw Ultra Version 8,0 

(Cambridgesoft.com) (Loren et a l, 2004). ChemDraw is a computational tool for 

generating and managing drawings o f chemical structures. The structures o f two standard 

drugs along with 26 compounds were drawn using it and saved with .cdx extension. 

Then using Chem3D Ultra the structures o f compounds and two standard drugs were 

modeled in pdb format.



T ab le  3.1: 2D view o f selected Compounds and their IC^q values







3.6 2D and 3D Pharmacophore Generation

Pharmacophore model o f the data set was generated using Ligand Scout (Wolber 

et a l, 2005). Ligand Scout version 3.02(inteligand.com) was used in the studies. It 

generates ligand based as well as structure based Pharmacophore models based on 

sophisticated algorithms for performing alignments and interpreting ligand- 

macromolecule interactions. It generates customized and highly specific 2D as well as 3D 

Pharmacophore models. Ligand derived Pharmacophore was generated for the selected 

data. This approach employs the conformational flexibility o f ligands and searches for a 

common feature pattern that shared in an active ligand set.

For Pharmacophore generation, the pdb files of the data set were provided as an 

input. PDB flies o f the data set were obtained from ChemDraw Ultra. A pdb file was 

opened in a structures based view. The imported ligand was then copied to ligand based 

view using data exchange widget. This process was repeated for all the ligand from each 

class and also for the two standard drugs. After loading, all candidate ligands for the 

Pharmacophore model generation were set to ‘training set’ by choosing ‘Ligand-Set -> 

Flag Selected Molecules as Training Set’. Different conformations for loaded data set 

were generated by using ‘Apply Best Settings’ instead o f default. The training set was 

then was clustered according to 3D Pharmacophore characteristics of the ligands using 

the ‘cluster’ button on the bottom of the 3D view. By keeping default parameter in the 

dialog box, the clustering process started by pressing the ‘OK’ button. Espresso created a 

new column in the ligand table called ‘Cluster ID’. The ligand table was sorted by using



column header ‘Cluster ID*. After sorting, all ligands with cluster ID ‘ 1 ’ were selected as 

test set by using the table controls. Next, the merged Pharmacophore model was 

generated by clicking the button ‘Create ligand-based Pharmacophore’ using the default 

values. Thus a merged feature Pharmacophore was generated and displayed in the 3D 

view. Same procedure was repeated for getting the shared Pharmacophore. In case o f  

shared feature Pharmacophore, the Pharmacophore model was generated by checking the 

“shared feature Pharmacophore’ while keeping the other parameters same. Based on 

these Pharmacophores, common and merged features were calculated. At the end unique 

merged and shared Pharmacophores has been predicted for anti-Alzheimer 

Cholinesterase.

3.7 Molecular Docking using AutoDock 4.0

Docking phase is meaningless without its two components target protein and. 

ligand. For docking studies a suitable target protein for chosen anti-Alzheimer’s disease 

cholinesterase inhibitors was recognized (Nicolet et al., 2003). Recently reported Human 

Butryl cholinesterase (pdb id: IPOI) was chosen as a target for current study. Pdb file o f  

IPOI was downloaded from the protein data bank (rscb.org). Docking was done using 

software AutoDock 4.0 and its patch AutoDock Vina (Chang et a l, 2010).

Autodock 4.0 reads the pdb files o f the target protein and ligand as an input. The 

3D structures o f the data set were generated as pdb files with Chem3D Ultra and were 

placed in the same directory containing installed software.



3.7.1 Steps for Molecular Docking

The complete docking procedure could be stated as follows: first o f all the 

water molecules were eliminated from the protein. After the removal o f water 

molecules the pdb file o f the macromolecule 1POI was provided as an input to the 

software. Kollman and Gasteiger charges were automatically computed for the 

macromolecule by AutoDock. Then the macromolecule was checked for the 

missing atoms and repaired. After repairing missing atoms, the hydrogens were 

added by keeping all the parameters at default settings. The macromolecule after 

all these modification was saved as RH.pdb in the same directory. Then the 

ligand preparation was carried out. Like macromolecule, Kollman and Gasteiger 

charges were automatically computed for the ligand. Then some o f the torsions of 

the ligands were defined. The root was detected; the rotatable bonds were 

converted in to non-rotatable bonds and vice versa and the number o f active 

torsions was set to most atoms rather than fewest. A pdbqt file was then created 

for the modified ligand.

After the preparation of a macromolecule and ligand, rigid residue was 

prepared using GRID module provided in AutoDock 4.0. Grid module employed 

RH.pdb file. AutoDock automatically added charges and merged hydrogens for 

rigid residue. The flexible macromolecule was then saved with .pdbqt extension.

For docking purpose AutoDock Vina (Trott et a l, 2010) was used. Vina is 

an open source program. It employed a conf file referring pdbqt files of



macromolecule and ligands prepared using AutoDock and Grid properties. As an 

output Vina generated log files and pdbqt files of energy models for selected data 

set. The output file contained different energy models. Among these models, the 

lowest energy model against each ligand was selected and appended at the end of 

original protein file. As a result of this step docked files for the selected set 

generated.

3.7.2 Ligand-Protein Interaction

The ligand- protein interactions were visualized using Visual Molecular 

Dynamics (VMD). The docked file prepared using AutoDock Vina was provided 

as input to the VMD. After this the interactions (ionic, hydrogen and 

hydrophobic) between the ligand and the active site o f the target were drawn 

selecting atoms within 5 “A.

3.7.3 Lead Identification

Most active or lead compound was identification afler finding interactions. 

Lead identification was done while considering three properties:

• Number o f interactions, most importantly Ionic.

•  IC-50 values.

• Energy values o f the model generated through docking.



3.7.4 Analogue Designing

Four structural analogues o f the lead were made by introducing or 

eliminating various functional groups in it, focusing on increasing and decreasing 

hydrophobicity and hydrophilicity. Docking studies on the analogue were then 

performed using the same process using Auto Dock Vina.

3.8 Quantity Structure Activity Relationship

A quantitative structure activity relationship (QSAR) simple linear regression 

analysis was performed for BChE inhibitors by computing electronic and steric 

descriptors. Set o f selected 27 compounds, drawn using ChemDraw were used for QSAR 

studies (Liang Yu et a l, 2010). Data set is shown in table 3. For computing descriptors 

Chem Draw and Hyper Chem Professional 8.0 (HyperCube, Inc.) were used. Then QASR 

equation was calculated by correlating the descriptors and activity value (IG50). A QSAR 

generally takes the form of a linear equation:

Biological Activity = Const + (SI W l) + (S2 W2) + (S3 W3) + ...+ (Sn Wn)

Where the parameters Wl through Wn are computed for each molecule in the series and 

the coefficients SI through Sn are calculated by fitting variations in the parameters and 

the biological activity. After that a graph was generated using GRAPH software.



Table3.2: Chemical Structure and IC50 values of Compounds for QSAR studies.
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4.  R E S U L T S  A N D  D I S C U S S I O N S

Through this work, I aim to identify the lead compound, i.e., the most active 

compound from our data set and the analogue designing with the help o f techniques of  

computer aided drug designing.

4.1 Rule of Five

Although all the drugs have vmdergone the bioassay, to counter check the drug- 

likeness properties, In-Silico techniques i.e. rule o f 5 or Lipinski rule was applied lo 

incorporate the pharmacokinetics o f the drug. The results are given in Table 4.1.

The results show that all the compoimds including data for molecular docking and 

QSAR follow the HBA, HBD and MW constraints o f Lipinski’s rule (Rule o f Five) but 

some compounds from QSAR data set deviate from the LogP constraint.



Table 4.1: Lipinski’s rule (Rule o f  Five) applied to data set

Rule of Five for Ligands
Ligand No. No more than 5 HBD No more than 10 HBA MW(under 500Da) Log P less than 5
RIV 3 7 250.34 2.36
DO 1 3 379.49 4.01
SW l 0 1 264.32 4.96
SW2 1 0 250.34 3.21
SW3 1 0 252.35 2.69
SW4 2 0 238.33 2.33
SW5 0 1 225.29 3.06
SW6 2 1 213.25 1.40
SW7 1 1 227.28 1.76
SW8 2 1 227.28 1.98
SW9 3 1 213.25 2.05
SWIO 2 1 227.28 2.41
S W ll 4 4 318.28 4.37
SW12 2 5 291.26 -0.28
SW13 1 4 275.26 4.76
SW14 2 5 396.39 1.53
SW15 2 6 307.26 0.61
SW16 1 6 306.27 0.11
SW17 2 1 362.59 5
SW18 2 1 402.66 5.1
SW19 3 1 398.62 4.05
SW20 3 1 375.59 3.60
SW21 2 320.51 3.75
SW22 2 304.47 2.99
SW23 2 2 455.59 7.29
SW24 2 2 483.64 7.99
SW25 2 2 497.67 8.41
SW26 2 2 500 8.13
SAl 2 1 290.44 2.88
SA2 2 1 305.46 1.99
SA3 2 1 304.47 2.99
SA4 2 1 318.5 3.39
SA5 3 1 333.51 2.47
SA6 2 1 306.49 3.35
SA7 2 1 318.5 3.39
SA8 2 1 332.52 3.78
SA9 2 1 348.57 4.68
SAIO 2 1 376.62 5.48
S A ll 2 1 332.52 3.78
SA12 2 1 334.54 4.14

50



SA13 2 1 362.59 5.08
SA14 2 1 390.65 5.87
SA15 2 1 360.58 4.58
SA16 2 1 374.6 4.97
SA17 3 1 389.62 4.05
SA18 3 1 403.64 4.39
SA19 2 1 362.59 4.94
SA20 2 1 -390.65 5.87
SA21 2 1 418.7 6.67
SA22 2 1 402.66 5.76
SA23 3 1 417.67 4.84
SA24 3 1 431.7 5.19
SA25 2 1 390.65 5.73
SA26 2 1 418.7 6.67
SA27 2 1 446.75 7.46
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Figure 4.1: Bar Chart showing detailed analysis o f Rule o f Five in percentage form



4.2 Pharmacophore Modeling

In the current era. Pharmacophore modeling has become an integrated part o f  

drug development and designing (Cohen et a l, 200S). A Pharmacophore highlights the 

3D arrangement of structural features o f a compound that are required for a certain 

biological activity. Identification of Phannacophoric features o f  the ligands, I used in this 

study, was carried out using Ligandscout. It identified a Merged Feature Pharmacophore 

as well as the Shared Feature Pharmacophore. For current studies ’Merged Feature 

Pharmacophore’ as well as ‘Shared Feature Pharmacophore’ has been created.

The methodology for creating the Pharmacophores is explained shortly. After 

loading the ligands, conformations of the Training-Set are generated. After ranking the 

molecules according to their number o f conformations (flexibility). Pharmacophore 

features are projected on these molecules and all their confomations. A ll conformations 

o f the two top ranked (i.e. the least flexible) molecules are then aligned using Inter 

Ligand’s molecular alignment algorithm. For a configurable number o f  best alignment 

solutions common Pharmacophoric features are interpolated and intermediate 

Pharmacophore models are created and stored for further processing. These intermediate 

Pharmacophore models are now ranked using several adjustable scoring functions taking 

into account chemical feature overlap, steric overlap, or both. The intermediate 

Pharmacophore models are then aligned to all conformations o f  the third molecule, etc., 

and a new set o f intermediate combined feature Pharmacophores is created until all 

molecules have been processed. If at any stage no conformation can be found that can be



matched on any intermediate solution, the process is stopped. If at least three common 

chemical features can be identified throughout the whole alignment and interpolation 

process, the feature Pharmacophore combination is considered to be successful.

As a resuh o f this, Ligandscout calculates the number o f features matched, 

Pharmacophore fit and 10 Pharmacophore models. Among these models the BChE-1 

(model-1) was selected for calculating the merged features present among all the selected 

ligands. Likewise for Shared Pharmacophore prediction among the 10 generated models 

‘M odel-l’was elected for computing the shared features among the data set. For ‘Merged 

Pharmacophore, the calculated feature patterns. Pharmacophore fit for selected data set 

and models with scores are shown in figure 4.2a and b and for ‘Shared Pharmacophore” 

all o f these calculations are shown in figures 4,3a and b. The common features that are 

present in all compounds are; Hydrophobic volumes. Hydrogen Bond Acceptors, 

Hydrogen Bond donors and positive ionizable. The 2D and 3D Pharmacophore o f oner 

compound from all the different classes and standard drugs too are shown in figure 4.4 

and 4.5.



Figure 4.3a: Feature Pattern, best Conformations, Cluster ID and Pharmacophore Fit for

Selected Dataset

Figure 4Jb: Feature Pattern, best Conformations, Cluster ID and Pharmacophore Fit for

Selected Dataset
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Figure 4.2a: Feature Pattern, best Conformations, Cluster ID and Pharmacophore Fit for

Selected Dataset
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Figure 4.2b: Pharmacophore Models generated for Selected Dataset



Feature Pattern in the table shown in figure 4.2a signifies, which features are 

met by which ligand. A click on a colored square indicates which feature is linked 

to the corresponding square. The cluster ID shows the different number of 

conformations for selected data set. The main purpose o f clustering is to select those 

compounds that are similar in terms o f 3D Pharmacophore characteristics and 

therefore bear a higher chance for delivering a large overlap o f chemical features. 

The 3D clustering algorithms performs fast alignments and clusters based on a 

similarity value between 0 and 1. Since this algorithm basically performs 

combinatorial alignments of all conformations o f  all compounds, a low  number o f  

conformations (1-3) is recommended. The Pharmacophore fit signifies the chemical 

fearture overlap, steric overlap, or both score. The higher the value o f  

Pharmacophore fit, better it would be.
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Figure 4.4: 2D Pharmacophore Models of Selected Data along with Standard Drugs

Figure 4.5: 3D Pharmacophore Models of Selected Data along with Standard Drug



The green color in the figures show HBDs, red are HBAs, yellow are hydrophobic 

and aromatic features and blue star like illustrate positive ionizable. Both 2D and 3D 

views show consistency. All Pharmacophoric features o f each class along with 

Rivastigmine and Donepezil are summarized in the following table.

Table 4.2: Pharmacophoric Features o f Data Set

Compounds HBDs HBAs Ar/HY Positive ionizable
4-[(diethylamino) methyl]- 
phenol

Three One Four Two

(3-carbolines Two One Three One
N -substituted norcymserine Two Two Eight One
Isosorbide-based Four Four Two Two
Rivastigmine (Exelon) Three Seven Two One
Donepezil (Aricept) One Three Two One

After determining individual Pharmacophore, all the compounds v êre clustered in 

3D and merged and shared Pharmacophores were generated through LigandScout using 

its ‘Merged Feature Pharmacophore’ and ‘Shared Feature Pharmacophore’ options 

respectively. The merged Pharmacophore is shown figure 4.6 and shared is shovm in 4.7:



Ah
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Figure 4,6a: Merged Pharmacophore of selected ligands, Donepezil and Rivastigmine

generated by LigandScout

;

Figure 4.6b: Merged Pharmacophore showing 2 Hydrogen Bond Acceptors, 1 Hydrogen 

Bond Donor, 1 aromatic ring, 2 hydrophobic volumes and 1 Positive ionizable
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Figure 4.7a: Shared Pharmacophore of selected ligands, Donepezil and Rivastigmine

generated by LigandScout

Figure 4.7b: Shared Pharmacophore showing 1 Hydrogen Bond Acceptor, 1 Hydrogen 

Bond Donor, 1 aromatic ring, 1 hydrophobic volume and 1 Positive ionizable



The best merged feature Pharmacophore model selected for the four classes of 

Butyrylcholinesterase inhibitors against the Alzheimer’s disease is as; one aromatic ring 

and two hydrophobic volumes (shown by yellow circles), two Hydrogen Bond Acceptors 

(shown by red), one Hydrogen Bond donor (shown by green) one positive ionizable 

(shown by blue) and a set o f 30 exclusion volumes. Likewise, the best shared feature 

Pharmacophore model o f selected dataset is as: one aromatic ring and one hydrophobic 

volume (shown by yellow circles), one Hydrogen Bond Acceptor (shown by red), one 

Hydrogen Bond donor (shown by green) one positive ionizable (shown by blue) and a set 

of 30 exclusion volumes. These calculated Pharmacophoric features help in the 

identification o f more active and improved anti-Alzheimer’s disease drug.

In order to gain a deep insight of cholinesterase inhibitors, a ligand based 3D 

QSAR model o f dihydropyridine-Iike compounds using Phase program was indentified 

and evaluated. The model consists of two hydrogen acceptor vector sites, one hydrogen 

donor vector, one aromatic ring vector and one hydrophobic group (Davies et a l, 1989). 

Another 3D Pharmacophore model based on eight potent and structurally diverse AChE 

inhibitors leading to the discovery of dual binding site AChE inhibitors was documented. 

This Pharmacophores consists o f two hydrogen-bond acceptor lipid, one hydrophobe, and 

two hydrophobic aliphatic features (David et a l, 1994). Lastly, using a congeneric 

carbamate class o f AChE inhibitors, scientist’s generated quantitative Pharmacophore 

models. HypoGen program of Catalyst was employed in this study. It has been reported 

that the best Pharmacophores model comprised of three hydrophobic, one hydrogen bond 

donor and a set o f 34 excluded volumes (Diamant et al, 2006). In our current studies, a 

3D Pharmacophore model is developed in order to assist the discovery o f type specific



and potent Butyrylcholinesterase inhibitors for the treatment o f Alzheimer’s disease 

which has not been reported earlier. Number of previous citations reported the 

Pharmacophore models employing only AChE inhibitors specific compounds. Current 

studies involved the Pharmacophore generation of compounds belonging to major groups 

ofBChEIs.

4.2.1 Pharmacophore Triangle

The distance triangle measured between the common Pharmacophoric features of 

each group of compound using VMD is shown:

Figure 4.8: Three featured Pharmacophoric Triangle of Butyl Cholinesterase inhibitor 

The distance ranges from minimum to maximum and have been measured 

between the HBA and HBD, HBA and aromatic ring and HBD and aromatic ring. 

The distances between hydrophobic and HBD range from 2.2 A to 2.8 A, between 

hydrophobic to HBA range from 3.2 A to 3.7 A and between HBA to HBD range 

from 4.2 A to 4.8 A.
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4.3 Molecular Docking

Molecular docking studies were carried out using 26 compounds of five different 

classes of cholinesterase inhibitors along with two standard drugs. Autodock Vina was 

employed for molecular docking studies. As a result of docking different conformations 

of the ligands docked into the target protein IPOI were obtained. For each ligand 10 

different conformations have been generated. These conformations were automatically 

ranked in ascending order on the basis o f the binding affinities of the ligand with the 

target protein. Among these conformations, the most active conformation was chosen 

based on the binding affinity of the ligand with the target protein.

4.3.1 Active Site of Cholinesterases

Both ChEs have their active sites at the base o f enzyme cleft of about 20A depth. 

Complete data set was docked and found to bind at the same active site position. 

The active site amino acids were identified by looking the sA vicinity. The 

residues found were TIO>82, HIS438, GLY439, ALA328, TYR332, GLU197, 

PHE329, GLV115, GLY116, GLY117, PHE398, LEU286, TRP231, TRP430, 

TYR 440, ASP70, GLY121, MET437, TYR128, TRP83, THR120, GLN119, 

PR0285, ILE69, VAL233 and ASN6 8 . The study revealed that TRP28, HIS438, 

ALA328, TYR332, GLU197, PHE329, GLY115, GLY116, GLY117, LEU286, 

TRP231, TRP40, THR120 ASP70 AND PR0285 amino acids are significant for 

binding interactions.



The docked conformation o f two ligands from the selected data of 26 compounds, 

obtained through Autodock Vina i.e. ligand N o .8  and ligand No. 16 have been 

shown in figures 4,9 and 4.10. These figures show the 3D structures o f active 

conformations o f the ligands docked into the target protein. The ligands in both 

figxires have been shown as in bonds while target protein has been shown in Hnes. 

The active conformations were used for the identification o f ligand-protein 

interaction using VMD,



Table 4.3: Amino acids within 5 A of the target protein where + and -  signs indicate the presence

and absence of amino acid

Amino 

Acids

TRP82

HIS438

GLY439

ALA328

TYR332

GLUI97

PHE329

GLY115

GLY116

GLY117

PHE398

LEU286

TRP231

TRP430

TYR440

ASP70

GLY121

MET437

TYR128

Ligands

+

+

+

+

4-

+

+

+

4-

10 11

+

+

+

12

+

+

13

+



TRP83

THR120

GLNI19

ILE69

ASN68

PR0285

TRP238

ALPail

THR532

ASP304

VAL233

PR0303

PHE227

LEU307

ASN228

PR0230

TYR396

PR0401

PR0527

THR284

ILE356

TYR282

+



Amino 

Acids

TRP82

HIS438

GLY439

ALA328

TYR332

GLU197

PHE329

GLY115

GLY116

GLY117

PHE398

LEU286

TRP231

TRP430

TYR440

ASP70

GLY12I

MET437

TYR128

TRP83

THR120

Ligands

14 15 16

+

17 18

Inactive

19 20

+

+

+

21

+

+

+

+

+

22 23

+

+

24 25

+

26

+

+



GLN119

ILE69

ASN68

PR0285

TRP238

+

+

+

+

+

+ +

+

+

ALA227 +

THR532 +

ASP304

\^AL233

PR0303

PHE227

LEU307

ASN228

PR0230

TYR396

PR040!

+

+

+

+

+

+

PR0527

THR284

ILE356

TYR282

+

+

+

+



4.3.2 Docking Of Standard Drugs:

Docking o f standard drugs with IPOI was carried out using the AutoDock4 and 

AutoDock Vina in the S2im e manner. A detailed 3D analysis o f the docked site of 

these drugs indicated that they bind to same active site. Figure 4.11-4.12 shows 

the hydrogen, hydrophobic and ionic interactions o f the standard drugs Donepezil 

and Rivastigmine.

In case of Donepezil there were two types o f interactions 3 ionic and 

11 hydrophobic. Ionic interactions were between O o f  GLY116 at a distance of 

3.75 with N o f Donepezil and N of TRP82 at a distance o f 3.67 and o f GLY116 at 

a distance of 3.97 with O of Donepezil. No hydrogen bonds have been identified. 

Hydrophobic interactions were between C o f TYR440, TYR440, TRP430, 

TRP430, PHE398, PHE329, PHE329, LEU286, LEU286, TRP231, TRP231 and 

TRP231 at distances o f 3.39, 3.74, 3.42, 3,70, 3.74, 3.59, 3.55, 3.92, 3.69, 3.67 

and 3.76 with C o f Donepezil respectively.

Rivastigmine shows 4 ionic and 15 hydrophobic interactions. No hydrogen bonds 

have been identified. N of HIS438, of GLY116 and o f GLY117 shows ionic 

interactions with O of Rivastigmine at distances o f 3.56, 3.81 and 3.62 

respectively. O o f SERI 98 makes ionic bond with N o f Rivastigmine at a distance 

of 3.56. C of TRP231 at distances o f 3.82, 3.815, 3.57, 3.77, 3.56 and 3.81, o f 

GLY117 at a distance o f 3.40, of VAL288 at a distance of 3.67, of LEU286 at 

distances of 3.72 and 3.78, o f SERI98 at distances o f 3.73, o f HIS438 at a



distance o f 3.96 and 3.86 and of TRP82 at distances o f 3.96 and 3.81 shows 

liydrophobic interactions with C of Rivastigmine.

4.3.3 Docking Of Inactive Compound

Docking o f inactive compound was done but no active interaction was deduced 

and the binding site was also slightly different from the rest data set showing that 

the amino acids in the near vicinity are THR532, ASP304, VAL233, PR0303, 

PR0230, PHE227, LEU307, ASN228, TYR396, PR0401 AND PR0527 as 

shown in figure 4.13. These amino acids were not appeared for any other 

compound or standard drugs.

4.3.4 Interactions of Ligands and Target Protein

The interactions o f the active conformations o f the ligands o f  the selected data 

and the target protein have been identified and marked using VMD and are shown 

in Table3. VMD provides the facility o f labeling and computing distances 

between atoms. Checking one by one all amino acids in the active site o f  target 

and the atoms o f the ligands, the interactions were identified. The important 

identified interactions in a data set and two standard drugs include the ionic, 

hydrogen and hydrophobic interactions. This exercise o f  manually selecting one 

by one all atoms and identifying the interactions, avoiding the mistakes was the 

most important step o f this study.

While checking the amino acids in the target protein pocket one by one, actually 

the amino acids within SA of the pocket has been identified. The amino acids with



in 5A have been shown in Table 3.5. The amino acids within SA of the pocket 

have been found to be involved in the binding interactions.



Figure 4,9: Binding Interactions o f SW8 with IPOI

Figure 4.10: Binding Interactions of SW16 with IPOI



\
S  I

Figure4,ll: Binding interactions o f Donepezil with IPOI

Figure4.12: Binding interactions of Rivastigmine with IPOI



Figure 4.13: Binding Interactions o f SW18 (Inactive compound) with IPOI



Table 4.4a: Energies of Ligands and Inhibition Concentration

Compound
Energy value 
(kcal/mol)

ICso(nM) Compound
Energy value 
(kcal/mol)

IC50 (nM)

SWI -9.5 >500 SW15 -9.8 0.56

SW2 -9.4 11.9 SW16 -8 .6 0.4

SW3 -9.4 >500 SW17 -8.8 2.52

SW4 -9.5 50.1 SW18 -6 .6 0.078

SW5 -8 .0 17.4 SWI 9 - 10.1 0 .0 1 1

SW6 -7.4 17.5 SW20 -6 .6 2 .2 0

SW7 -8.2 20.9 SW21 -9.0 4.42

SW8 -7.4 1.2 SW22 -8.8 1.40

SW9 -8.2 L6 SW23 -11.4 0.51

SWIO -8.3 2.7 SW24 -9.8 0.51

SW ll -9.6 0.504 SW25 -9.4 0.55

SW12 -8.3 0.46 SW26 -10.5 0.5

SWI 3 -9.2 10.25 Donepezil -10.9 14.8

SW14 -9.8 0.88 Rivastigmine -8 .0 2 .0



To predict compound activeness IC50 value and binding interactions were also 

incorporated. It is evident from Table 4.4b that compounds SW12, SW16, SW18, SW19 

and SW26 had hydrophobic interactions. Among these selected compounds, SW12, 

SW16 and SW26 had hydrogen bonding while SW18 and SW19 no hydrogen bonding. 

Standards drugs also showed no hydrogen bonding. Similarly ionic interactions, which 

observed in both standard drugs, are present in compounds SW12, SW18, SW19 and 

SW26. All the distances and interactions along with the residues involved in interactions 

are mentioned in Table 4.4b.

A detailed 3D study o f docked files revealed that all the compounds o f  dataset have the 

same amino acids with the 5 A o f the ligand and all the interactions were calculated after 

selecting the best conformation based on energy values.



Table4.4b: Amino Acids within sA of the target Protein Pocket

Ligand

No.

Hydrogen Bonding Ionic Interactions Hydrophobic Interactions IC50

pM

Amino Acids Distance Amino Acids Distance Amino Acids Distance

SWl None H-TRP82:NE1 3.72 C-TRP82: CD2
C-HIS438: CD2
C-H1S438:CD2
C-TRP82;CE2
C-TRP82:CE2
C-TRP82:CD2
C-TRP82.CZ3
C-TRP82;CH2
C-TRP82:CZ2
C-TRP82:CZ2
C-TRP82:CE3
C-GLY439: CA
C-GLY 439: CA
C-ALA328: C
C*TYR332;CE1
C-GLU197:CD
C-PHE329; CD2
C-PHE329; CD2
C-PHE329: CD2
C-ALA328: CB
C-TYR332; CZ
C-TYR332:CD2
C-TYR332;CE1
C-TYR332;CD1
C-TYR332; CG

3.69
3.88S
3.83
3.66
3.66
3.94
3.63
3.88 
3.65 
3.98 
3.86
3.72
3.75
3.76
3.68 
3.40
3.72
3.89
3.63 
3.71
3.94
3.95
3.68 
3.54
3.69

>500

SW2 None None C-PHE329:CE2 
C-PHE329:CE2 
C^HE329:CE2 
C-PHE329:CD2 
C-ALA328: C 
C-ALA328; CB 
C-TYR332;CE1 
C-TYR332:CE1 
C-H1S438:CD2 
C-HIS438;CD2 
C-TRP82: CE2 
C-TRP82: CG 
C-TRP82; CE3 
C-TRP82: CE3 
C-TRP82: CZ3 
C-TRP82: CB 
C-TRP82: CB 
C-TRP82: CE3 
C-TRP82: CB 
C-TRP82: CE3 
C-TRP82: CD2 
C-GLYH5:C 
C-GLY 116: CA 
C-GLY116;CA 
C-TYR332: CDl 
C-PHE329: CD2

3.63
3.83
3.78
3.73
3.84 
3.355
3.50
3.75
3.73
3.97
3.78
3.92 
3.88 
3.56
3.92 
3.61
3.98 
3.42 
3.81 
3.94
3.87
3.88
3.76 
3.86 
3.68
3.51

11.9
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SW3 None None C- TYR332: CEl 3.52 >500
C-TYR332: CEl 3.82
C-TYR332; CDl 3.86
C-TYR332; CDl 3.96
C-PHE329: CE2 3.70
C*PHE329; CE2 3.91
C-PHE329; CE2 3.77
C-PHE329: CD2 3.62
C-ALA328: CB 3.41
C-ALA328: C 3.92
C-HIS438;CD2 3.66
C-HIS438;CD2 3.95
C-TRP82: CE2 3.87
C-TRP82;CE3 3.79
C-TRP82: CE3 3.56
C-TRP82; CE3 3.50
C-TRP82: CB 3.93
C-TRP82; CB 3.57
C-TRP82: CB 3.76
C-TRP82; CG 3.94
C-GLY 116: CA 3.85
C-GLY 116; CA 3.86
C^LY115:C 3.89
C-GLY 115;C 3.95

SW4 C- TRP82: CZ3 3.92 50.1
H-SER198:OG 2.92 C-TRP82: CE3 3.63

N-SER198:OG 3.42 H-GLY 116: N 3.23 C-TRP82: CD2 3.52
H-GLY117:N 3.3 J C-TRP82: CE2 3.72
H-HIS438;NE2 3.98 C-HIS438:CD2 3.74

C-HIS438.CD2 3.84
C-SER198;CZ 3.73
C-PHE398:CZ 3.80
C-PHE398:CZ 3.78
C-PHE398;CE2 3.71
C-PHE398;CE2 3.82
C-PHE398:CZ 3.92
C-LEU286: CD2 3.59
C-LEU286;CD2 3.73
C-LEU286: C 3.83
C-LEU286: CA 3.83
C-GLY 117; CA 3.99
C-GLY 117; CA 3.39
C-TRP321;CE3 3.96
C-TRP321:CD2 3.71
C-TRP321;CG 3.73
C-TRP321 ;CG 3.89
C-TRP321:CD2 3.53

SW5 None None C- TYR 332: CDl 3.80 17.4
C-TYR 332: CDl 3.61
C-TYR 332: CG 3.81
C-TYR 332; CD2 3.57
C-TYR 332: CZ 3.97
C-PHE 329; CE2 3.66
C-PHE 329; CE2 3.74
C-PHE 329; CE2 3.72
C-PHE 329: CE2 3.86
C-PHE 329; CD2 3.89
C-PHE 329: CD2 3.75
C-HIS 438:CD2 3.86
C-HIS 438;CD2 3.84
C-TYR 440; CEl 3.87
C-TRP 430: CZ2 3.76
C-TRP82:CD1 3.75
C-TRP 82; CZ2 3.74
C-TRP82 :CE2 3.61
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SW6
N-TYR332: OH 
N-ASP70: ODl

3.89
3.21 None

C-TYR 332: CEl
C-GLY I15:C 
C-TRP82 : CE3 
C-TRP82 : CE3 
C-TRP82: CE3 
C-TRP82: CE3 
C-TRP82; CD2 
C-TRP82; CD2 
C-TRP82: CD2 
C-TRP82: CG 
C-TRP82 : CB 
C-TRP82: CG 
C-TRP82: GDI 
C-TRP82; CE2 
C-TRP82: CE2 
C-TRP82 : GZ2 
C-TRP82 : CZ2 
C-TRP82: CH2 
C-TRP82: CZ3 
C-TRP82: CZ3 
C-TRP82: CB 
C-HIS438:CD2 
C-HIS 438:CD2 
C-GLY 439:CA 
C-TYR 332:CZ 
C-TYR 332;CE2 
C-ASP 70: CG 
C-ASP70: CB 
C-ASP70: CB

3.90
3.67
3.79 
3.60
3.95
3.96
3.77
3.84 
3.88 
3.99
3.85
3.86
3.95
3.70
3.65 
3.64
3.86
3.70
3.79
3.87
3.66 
3.84
3.95 
3.69
3.76
3.78
3.76
3.96 
3.86

17.5

SW7 C- TRP82: CZ3 3.80
C-TRP82: C7.3 3.97
C-TRP82: CE3 3.94
C-TRP82: CD2 3.81
C-TRP82: CZ3 3.94
C-TRP82: CZ2 3.92
C-TRP82: CE2 3.70
C-HIS438; CD2 3.91
C-HIS438: CD2 3.91
C-GLY439: CA 3.69
C-GLYI15:C 3.68
C-TRP82:CG 3.85
C-TRP82:CG 3.85
C-TRP82:CD1 3.92
C-TRP82:CB 3.64
C-TRP82:CB 3.82
C-TRP82: CH2 3.74
C-ASP70: CB 3.86
C-ASP70: CB 3.87
C-ASP70: CG 3.78
C-TYR 332: CZ 3.78
C-ALA328: CB 3.71
C-TRP82: CE3 3.62
C-TRP82:CE2 3.63
C-TRP82:CZ2 3.59
C-TRP82:CD2 3.73
C-TRP82:CD2 3.88

20.9

SW8

N-GLY115:0 3.94
H-GLU197:OE2
H*GLU197:0E1

3.80
3.96

C-ALA328:CB 3.9
C-ALA 328;C 3.92
C-ALA 328:CB 3.24
C-ALA 328:CA 3.75
C-TRP430:CZ2 3.37
C-TRP430:CE2 3.95
C-TRP430.CH2 3.61
C-TRP82:CD1 3.63
C-TRP82;CD1 3.51
C-TRP82:CD1 3.90
C-TRP82:CD1 3.84

1.2



SW9

None

H-GLU197:0E1 
H-GLU197:OE2 
H-TYR I28;OH

230
333
3.72

C-TRP82:CG 3.67
C-TRP82:CG 3.48
C-TRP82:CG 3.80
C-TRP82:CD2 3.81
C-TRP82:CD2 3.60
C-TRP82: CB 3.73
C-TRP823: CE3 3.70
C-TRP82:CD2 3.95
C-TRP82:CE2 3.66
C-TRP82:CE3 3.95
C-TRP82:CE3 3.76
C-TYR 332: CEl 3.60
C-GLY 116: CA 3.75
C-GLY 116:CA 3.50
C-GLY 115: C 3.60
C-GLYI2J:CA 3.69
C-MET437:CE 3.90
C- TRP 430: CZ2 3.70
C-TYR 332:CE1 3.96
C-ALA 328: CB 3.77
C-TYR 332: CZ 3.68
C-TRP 82: CDl 3.98
C-TRP 82:CDI 3.94
C-TRP 82: CB 3.71
C-TRP 82: CD2 3.95
C-TRP 82: CD2 3.65
C-TRP 82:CD2 3.77
C-TRP 82:CE3 3.46
C-TRP 82:CE3 3.54
C-TRP 82:CZ3 3.59
C-TRP 82:CZ3 3.71
C-TRP 82: CG 3.40
C-TRP 82:CG 3.82
C-TRP 82:CG 3.74
C-TRP 82: CE3 3.75
C-GLY 115: C 3.68
C-GLY 116:CA 3.89
C-GLY 116: CA 3.75
C-HIS 438: CD2 3.64
C-HIS 438: CD2 3.47

1.6

SWIO

None

H-GLU197;OEl 1.99
H-GLU197:OE2 3.71
H-GLU197: 0 3.99
H-TYR128: OH 3.59
H-GLY 115:N 3.76

C-GLY 116:CA 
C-GLY 116:CA 
C-GLY 115.C 
C-HIS 438: CD2 
C-HIS 438: CD2 
C-TRP82: CZ3 
C-TRP82: CZ3 
C-TRP82: CE3 
C-TRP82: CE3 
C-TRP82: CE3 
C-TRP82; CE3 
C-TRP82: CD2 
C-TRP82: CD2 
C-TRP82: CD2 
C-TRP82: CG 
C-TRP82: CG 
C-TRP82: CG 
C-TRP82; CG 
C-TRP82; CE2 
C<TRP82: CDl 
C-TRP82:CD! 
C-TRP82; CB 
C-TRP82: CB 
C-ALA 328: CB 
C-ALA 328:CB 
C-TYR 332: CZ

3.76
3.84
3.63 
3.44 
3.57
3.63 
3.67
3.80 
3.50 
3.52
3.78 
2.59
3.86
3.78
3.69 
3.90
3.87
3.80 
3.99 
3.92
3.79 
3.66 
3.95 
3.74 
3.98
3.70

2.7

81



SWll

SWI2

None

0-HIS438: NE2 
0-GLY117:N 
0-TRP82: NEl 
0-TRP430:NE1 
0-GLYil6;N

3.91
3.32
3.11
3.82
3.21

None

H-HIS438: NE2 3.28

C-TRP231:CG 3.70
C-TRP231;CD2 3.79
C-TRP231:CD2 3.64
C-TRP231:CE3 3.88
C-TRP231:CE2 3.87
C-TRP321;CG 3.66
C-LEU286; CD2 3.61
C-LEU286; CD2 3.65
C-LEU286: C 3.93
C-PHE329; CZ 3.80
C-PHE329: CE2 3.80
C-PHE398; CZ 3.89
C-PHE398:CZ 3.67
C<jLY117:CA 3.86
C-GLY117: CA 3.71
C-TRP82: CG 3.90
C-TRP82; CDl 3.49
C- ALA328; CB 3.97
C-TRP231:CE2 3.73
C-TRP231:CD2 3.48
C-TRP321:CG 3.98
C-TRP321:CG 3.77
C-LEU286: CD2 3.52
C-LEU286: CD2 3.65
C-LEU286: CA 3.98
C-LEU286; CA 3.86
C-LEU286: C 3.91
C-LEU286; C 3.96
C-GLY117:CA 3.97
C-GLYn7;CA 3.71
C*GLYn7:CA 3.90
C-PHE398;CZ 3.94

0.504

0.46

SW13

0-TRP82:NEl 3.24 None

C-TRP82:CE2 3.87
C-TRP82:CD2 3.81
C-TRP82:CD2 3.89
C-TRP83; CG 3.63
C-TRP82: CDl 3.72
C-GLY117:CA 3.94
C-GLY117:CA 3.80
C-GLYH7; CA 3.96
C-TRP231:CE2 3.99
C-TRP231:CD2 3.68
C-TRP231:CE3 3.76
C-PHE329: CE2 3.60
C-LEU286: CD2 3.94
C-LEU286: CD2 3.61
C-LEU286:CA 3.75

10.25

SWI4 None H-GLYl 17: N 3.76 C-PHE398:CE2 3.93
C-PHE398: CZ 3.84
C-PHE398: CZ 3.87
C-TRP231:CZ2 3.98
C-TRP238: CE3 3.98
C-TRP23I:CE2 3.96
C-TRP231:CE2 3.83
C-TRP231:CD2 3.74
C-TRP231:CD2 3.85
C-TRP231:CZ 3.87
C-PHE329;CE2 3.87
C-PHE329: CE2 6.84
C-PHE329:CE2 3.94
C-LEU286; CD2 3.23
C-LEU286: CD2 3.28
C-LEU286: CG 3.87
C-GLY117;CA 3.47
C-GLYI17; CA 3.68
C-GLY116;C 3.98

0.88



SW15 0-HIS438; NE2 
0-TRP82: NEl 
0-TRP82: NE 1

3.98
3.16
3.69

None

C-TYR332; CEl 3.82
C-TYR332: CEl 3.76
C-TYR332: CZ 3.80
C-TRP82. CB 3.48
C.TRP82; CB 3.62
C-TRP82; CG 3.56
C-TRP83; CG 3.71
C-TRP82: CD I 3.78
C-ALA328: CB 3.47
C-TRP430:CZ2 3.65
C-TRP231.CE3 3.80
C-TRP231:CD2 3.58
C-TRP231:CE2 3.81
C-TRP23I:CG 3.97
C-LEU286; CD2 3.47
C-LEU286: CD2 3.91
C-LEU286: CD2 3.92
C-LEU286; CA 3.68
C-LEU268: C 3.87
C-PHE329:CE2 3.74
C-PHE329: CE2 3.84
C*TRP82;CD! 3.88
C-TRP82:CG 3.86

0.56

SW16 None H-ALA328: O 
H-TYR332:OH 
H-SER19S: OG 
H-HIS438: NE2

3.33 C- LEU286; CD2 3.78
32\ C-LEU286:CD2 3.45
2.83 C-LEU286: CA 3.83
2.58 C-LEU286: C 3.80

C-TRP231:CD2 3.71
C-TRP231:CD2 3.69
C-TRP231: CG 3.71
C-PHE398:CZ 3.75
C-GLY117: CA 3.82
C-GLYII7:CA 3.64
C-GLTl 16: C 3.94
C-GLYI16;CA 3.80
C-HIS438: CD2 3.54
C-ALA328: CB 3.68
C-TRP82: CE2 3.67
C-TRP82: CD2 3.73
C-TRP82:CD1 3.74

0.4

SW17 None None C-TRP82;CZ3 3.77
C-TRP82: CE3 3.48
C-TRP82: CD2 3.81
C-TRP82: CG 3.77
C-TRP82: CB 3.47
C-TRP82.CB 3.68
C-GLU197:CD 3.87
C-HIS438: CD2 3.80
C-GLYl 16: CA 3.73
C-ALA227: CB 3.60
C-ALA227: CB 3.77
C-ALA227: CB 3.90
C-ALA227: CB 3.74
C-ALA227; CA 3.90

2.52

SW18
0-THR523: N 3.45 None

C-ASP304: CB 
C-ASP304:CB 
C-VAL233: CG2 
C-VAU33: CB 
C>PR0303:CG 
C-PHE227; CD2 
C-PHE227: CE2 
C-LEU307: CD2 
C-ASN228: CA 
C-ASN228: CA 
C-ASN228: CB 
C-ASP304: CA

3.61
3.69
3.90
3.83
3.73 
3.71 
3.96 
3.86 
3.60
3.84
3.74 
3.88

0.078



C h a p t e r  4 1 R e s u l t s  A n d  D i s c u s s i o n s

C-ASP304; CB 3.70
C*PR0230: CA 3.68
C-PR0230; CD 3,32
C-PR0230: CD 3.84
C-PR0230: CG 3.71
C-PR0230:CB 3.83
C-PR0230: CB 3.93
C-TYR396: CDl 3.77
C.TYR396: CEl 3.92
C-TYR396: CEl 3.95
C-TRP522; CB 3.92
C-PR0401;CG 371
C-PR040I;CG 3 64
C-PR0527; CG 3.77

SW19 C- PHE329: CZ 3.99 0.0 M

0-GLY116:N
CMj LY116:N

334
3.30

C-HIS438: CD2 
C-HIS438: CD2 
C-HIS438: CD2

3.60
3.59
3.72

0-HIS438; NE2 3.89 None C-H1S438: CD2 
C-HIS438:CD2 
C-HIS348: CD2 
C-GLY1I6: CA 
C-GLY1I6:C 
C-GLY116;C 
C-GLYU7; CA 
C-GLY117;CA 
C-GLY117:CA 
C-TRP82: CDl 
C-TRP82: CE2

3.86
3.88
3.75
3.94
3.54
3.85
3.77
3.67
3.65
3.97
3.80

SW20 C-TRP231:CD2 3.72 2.20
C-TRP231:CE2 
C-TRP231; CE3 
C-GLY117:CA 
C-GLYl 16: C 
C-GLYM6:C

3.92
3.91
3.78 
3.96
3.79

None
C-LUE286: CD2 3.94

None C-GLN119; CB 
C-THR120; CG2 
C-THR120: CG2 
C-TYR332: CDl 
C-TYR332: CEl 
C-TYR332: CZ 
C-TYR332:CE1 
C-TYR332: CZ 
C-ALA328: CB 
C-TYR332: CEl 
C-TRP 430; CH2 
C-TRP 430: CZ2 
C-TRP 430; CH2 
C-TRP82: CD2 
C-TRP82: CG 
C-TRP82: CDl 
C-TRP82: CG

3.99
3.82
3.97
3.84
3.74
3.96
3.92
3.93 
3.65 
3.58 
3.80 
3.46 
3.63
3.96
3.79
3.79
3.80

SW2I C- TYR440: CEl 
C-TRP430: CE2 
C-TRP430: CZ2 
C-PHE329: CE2 
C-PHE329: CE2 
C-PHE329; CE2

3.78
3.86
3.73
3.92
3.61
3.61

4.42

None
C-GLY116;C 3.85

None C-GLY117:CA 
C-GLY117;CA 
C-THRI20: CG2 
C-THR120: CG2 
C*ILE69: C 
C-ILE69: C 
C-ASP70; CB

3.87 
3.90 
3.75
3.87 
3.94 
3.51 
3.80



C ^ 6 S : C  
C-«T437: CE

3.85
3.68

SW22 None None
C-fHE329: CE2 
C-JHE329; CE2 
C-nffi329; CD2 
C-TKPS2:CD2 
C-TW82: CE2 
C-1KP82: CE2 
C-HP82; CG 
C-TRP82; CDl 
C-TfR332; CDl 
C-TYR332: CEl 
C-TTO332: CEI 
C-m332:CG 
C-TTR332: CD2 
C-m332: CE2 
C-TfR332: CE2 
C-TrR332: CD2 
C-TTR332: CDl

3.92 
3.89
3.77
3.75
3.77
3.93 
3.65 
3.60
3.76
3.76 
3.91 
3.81 
3.73 
3.86 
3.71
3.98
3.98

1.40

S\V23 C-TO»«2: CG 3.90 0.51
C-1RW2: CE2 3.60
C-HP82: CEl 3.65
C -lSm : CD2 3.69
C-HP82: CD2 3.55
C-TSP82: CH2 3.91
C-im 2:CZ2 3.84
C.T*PS2: CZ2 3.81

N-THR120:OG 3.40 None C4BS438: CD2 3.88
C-IHR120: CG2 3.58
C-1HR120; CG2 3.70
C-ASR70; CA 3.90
C-ASP70: CB 3.73
C-IIE69:C 3.93
C-ASK68: CB 3.43
C-ASN68:CB 3.81

SW24 C-1tP82:CE3 3.79 0.51
C-Pffi329; CE2 3.98
C-TW82: CD2 3.82
C-T»82:CE3 3.80
C-TTR332: CEl 3.56
C-GLN119:CB 3.88
C-imi20: CG 3.63
C-CI.Yn5:C 3.83
C-O.Yil5:C 3.78

N-PR0285:0 3.45 H-TRP82:NE1 3.04 C-1«P82:CG 3.66
C-TK>82:CDI 3.63
C-TRP82: CDl 3.76
C-PBB29: CD2 3.85
C -im 2 ; CG 3.57
C*HP82:CD2 3.86
C-TtPC: CD2 3.99
C-T1PS2: CE2 3.98
C-T»82:CE2 3.66
C-TW82;CZ2 3.99
C->«A328: CB 3.89
C-11P*2: CD2 3.85
C-Pffi329: CE2 3.51
C-PIE129: CE2 3.78
C-HJtU9;CE2 3.53

SW25 C*AA328:CB 3.85 0.55
0-PR0285: N 3.84 H-THR284: 0 3.46 C-ALA328: CB 3.94
N-GLY 116:0 3.73 C->dA328: CB 3.43

C-ILE356: CDl 3.84
NTHRI20;CXj 1 3.41 C-TW282: CZ 3.987



SW26

N-THR284:0

N-GLYI16:0 
N-PR0285; O

3.29

3.75
3.45 H-TRP82:NE1 3.03

C-TYR282: CE2 3.63
C-GLY283: C 3.90
C-PR0285: CA 3.73
C-PR0285: CA 3.73
C-THR284: C 3.80
C-PHE329: CE2 3.84
C-H1S438; CD2 3.63
C-GLYI16:C 3.83
C*PR0285:C 3.90
C-THR284; C 3.93
C-ILE356:CD1 3.89
C- GLN119.CB 3.58
C-GLNl 19: CB 3.77
C-THR120:CXj 3.61
C-GLYI16:CA 3.87
C-0LY1I6:C 3.82
C-GLYII5:C 3.78
C-GLYM6: CA 398
C-TRP82;CD2 3.90
C-TRP82. CD2 3.80
C-TRP82: CD2 3.81
C-TRP82:CD1 3.62
C-TRP82: CE2 3.68
C-TRP82: CE2 3.99
C-GLNl 19: CG 3.80
C-GLNil9: CB 3.82
C-ASN68: CE 3.56
C-ALA328: CB 3.88
C-GLY116:C 3.64
C-TYR332; CZ 3.99
C-TYR332;CE1 3.52
C-TYR332; CDl 3.74
C-PHE329; CZ 3.82
C-PHE329: CE2 3.78
C-PHE329: CE2 3.92
C-PHE329; CD2 3.84
C-PHE329: CD2 3.79
C-PHE329: CD2 3.98
C-TRP82: CB 3.68
C-TRP82: CB 3.93
C-TRP82: CG 3.61
C-TRP82: CG 3.58
C-TRP82: CG 3.88
C-TRP82: CD! 3.55
C-TRP82: CE3 3.80
C-TRP82:CE3 3.85

0.5

Donepezil

CK}LY116;N
0-TRP82:NEl
0-GLY116:N

3.97 
3.75
3.97

None

C-TYR440:CE1
C-TRP430:CE2
C-TRP430:CZ2
C-PHE398:CZ
C-PHE329;CE2
C-PHE329:CE2
C-LEU286:CD2
C-LEU286;CD2
C-TRP231:CD2
C-TRP231:CD2
C-TRP231:CE3

3.39
3.74 
3.42 
3.70
3.74 
3.59 
3.55 
3.92 
3.69 
3.67 
3.76

14.8



B
CO

a:

0-HIS438:NE2
0-GLY116N
0-GLY117:N
N-SER198:OG

3.56 
3.81 
3.62
3.56

None

C-TRP231:CZ3 3.82
C-TRP231:CE3 3.815
C-GLY117:CA 3.40
C-TRP231:CD2 3.57
C-TRP231:CE3 3.77
C-VAL288;CG2 3.67
C-TRP23I;CG 3.56
C-TRP231;CB 3 81
C-LEU286:CD2 3.72
C-LEU286;CD2 3.78
C-SER198:CB 3.73
C-HIS438;CD2 3.96
C-HIS438:CD2 3.86
C-TRP82:CD1 3.96
C-TRP82:CE2 3.81

2.0

87



4.4 Lead Compound Identification

The binding interactions of all ligands have been analyzed. Five compounds have 

been identified as the most active from the set o f 26 ligands. These ligands are SW12, 

SW16, SW18, SW19, SW23 and SW26. These ligands have shown strong ionic, 

hydrogen and hydrophobic interactions with the target protein than the rest o f ligands. 

These five active ligands along with their interactions, binding affinities and IC50 values 

are shown in Table 4.5. From the table it is clear that the number o f ionic bonds in SW12, 

SW16, SW18, SW19, SW23 and SW26 are 5, 0, I, 3, 1 and 2 respectively, number of 

hydrogen bonds in SW12, SW16, SW18, SW19 and SW26 are 1, 4, 0, 0, 0 and 1 

respectively and lastly number of hydrophobic bonds in SW12, SW16, SW18, SW19 and 

SW26 are 15, 17, 26, 15,16 and 35.

But the binding affinity o f the following compounds was least in the data set S W 16, 

SW19, SW23 and SW26 i.e. -8 .6 , -10.1, -lL4and -10.5 KcaVmol respectively reducing 

the hits to two i.e. SW19 and SW23. Although IC50 value have 30% role in identifying 

the lead compound but when the IC50 value of SW19 and SW23were compared and a 

remarkable difference was observed as the IC50 value o f SW19 was 0 .011  ĵ M and that of  

SW23 is 0.5 luM .

All these calculations led to the conclusion that SW19 was the lead compound 

having binding affinity -lO.OKcal/mol (2 "‘̂ lowest binding affinity), IC50 value 0.011 |xM 

(lowest IC50 value) and 3 ionic and 15 hydrophobic interaction as shown in Table 4.4a 

and Table 4.4b.



The interactions shown in figure 4.15 highhght the important amino acids o f the 

target protein pocket and the atoms of the Ugands. Figure as well shows the bonding 

distances clearly. In case of ionic interactions the O o f lead compound form ionic bonds 

with N of GLY116 at a distance of 3.34A, of GLY116 at a distance o f 3.30A and o f  

HIS438 at a distance o f 3.89A.

In hydrophobic interactions the C o f PHE329 at a distance o f 3.99, o f HIS438 at 

distances of 3.60, 3.59, 3.72, 3.86, 3.88 and 3.75, of GLY116 at a distance o f 3.94, 3.54 

and 3.85, of GLY117 at a distance of 3.77, 3.67 and 3.65, o f TRP82 at a distance o f 3.97, 

3.83 and 3.80, o f TRP430 at a distance o f 3.83 and 3.34, o f MET437 at a distance o f  

3.96, of TYR332 at a distance of 3.58 and 3.77, o f ALA328 at a distance o f  3.74 and o f  

PR0285 at a distance of 3.76 n different conformations are identified with the carbons o f  

the lead.
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Figure 4.14: Binding interactions o f SW19 (Lead Compound) with IPOI



Table4.5: Active Ligands their interactions, IC50 values and Binding Affinity

L igand

S\V!2

SW16

SW18

S truc tu re Ionic Bonding

0-HIS438:NE2(3.91)
0-GLY117:N(3.32)
0-TRP82:NEl(3.11)
0-TRP430:NE1(3.82)
0-GLYH6:N(3.21)

None

0-THR532:N(3.45)

H ydrogen
Bonding

H-H1S438:NE2(3.28)

H-ALA328: O (3.33) 
H-TYR332;OH(3.21) 
H-SER198:OG(2.83) 
H-HIS438:NE2(3.58)

None

H ydrophobic
Interactions

C- ALA328: CB (3.97) 
C-TRP23I: CE2 (3.73) 
C-TRP231: CD2 (3.48) 
C-TRP321:CG(3.98) 
C-TRP321: CG (3.77) 
C-LEU286: CD2 (3.52) 
C-LEU286: CD2 (3.65) 
C-LEU286: CA (3.98) 
C-LEU286:CA(3.86) 
C-LEU286;C(3.91) 
C-LEU286: C (3.96) 
C-GLYU7: CA (3.97) 
C-GLYU7:CA(3.71) 
C-GLY117:CA(3.90) 
C-PHE398: CZ (3.94)

C-LEU286: CD2 (3.78) 
C-LEU286:CD2(3.45) 
C-LEU286: CA(3.83) 
C-UEU286: C (3.80) 
C-TRP231;CD2(3.71) 
C-TRP231: CD2 (3.69) 
C-TRP231:CG(3.71) 
C-PHE398:CZ(3.75) 
C-GLYI17:CA(3.82) 
C-GLY117; CA(3.64) 
OGLTll6:C(3.94) 
C-GLY116;CA(3.80) 
C-HIS438: CD2 (3.54) 
C-ALA328: CB (3.68) 
C-TRP82: CE2 (3.67) 
C-TRP82: CD2(3.73) 
C-TRP82: CDl (3.74)

C*ASP304:CB (3.6J) 
C-ASP304:CB (3.69) 
C-VAL233: CG2 (3.90) 
C-VAL233: CB (3.83) 
C^R0303:CG(3.73) 
C-PHE227: CD2 (3.71) 
C-PHE227: CE2 (3.96) 
C-LEU307; CD2 (3.86) 
C-ASN228: CA (3.60) 
C-ASN228: CA (3.84) 
C-ASN228: CB (3.74) 
C-ASP304: CA (3.88) 
C-ASP304: CB (3.70) 
C-PR0230: CA (3.68) 
C-PR0230; CD (3 J2) 
C-PR0230:CDp.84) 
C-PR0230: CG (3.7i) 
C.PR0230:CB (3.83) 
C.PR0230: CB (3.93) 
C-TYR396: CDl (3.77) 
C-TYR396: CEl (3.92) 
C-TYR396: CEl (3.95) 
C-TRP522: CB (3.92) 
C-PR0401:CG(3.71)

IC 50

0.46

0.4

0.078

Affinity
(kcal/mol)

-8.3

- 8.6

- 6.6



SW19

J

nI I-
y

0-GLY116:N (3.34) 
0-GLY116:N (3.30) 
OHIS438:NE2(3.98)

None

C-PR0401:CG (3.64) 
C>PR0527: CG (3.77)
C- PHE329: CZ (3.99)
C-H1S438: CD2 (3.60)
C-HIS438: CD2 (3.59)
C-HIS438:CD2 (3.72)
C-HIS438: CD2 (3.86)
C-HIS438:CD2 (3.88)
C*HIS348: CD2 (3.75)
C-GLYU6; CA (3.94)
C-GLYU6:C(3.54)
C-GLYn6:C(3.85)
C-GLY1I7: CA(3.77)
C-GLY1I7:CA(3.67)
C-GLYn7:CA(3.65)
C-TRP82: CD I (3.97)
C-TRP82; CE2 (3.80)
C-TRP430;CE2(3.83)
C-TRP82:CD1(3.83)
C-MAT437:CE(3.96)
C-TYR332:CE1(3.58)
C-TYR332:CZ{3.77)
C-PR0285;C(3.76)
C-TRP430:CZ2(3.34)
C-ALA328;CB(3.74)

0.011 - 10.1

SW23

A '

N-THR120:OG (3.40) None

II

C- TRP82: CG (3.90) 
C-TRP82: CE2 (3.60) 
C-TRP82: CE2 (3.65) 
C-TRP82: CD2 (3.69) 
C-TRP82: CD2 (3.55) 
C-TRP82: CH2 (3.9i) 
C-TRP82; CZ2 (3.84) 
C-TRP82; CZ2 (3.81) 
C-HIS438: CD2 (3.88) 
C-THR120: CG2 (3.58) 
C-THR120; CG2 (3.70) 
C-ASP70: CA (3.90) 
C-ASP70: CB (3.73) 
C-ILE69: C (3.93) 
C-ASN68: CB (3.43) 
C-ASN68:CB(3.81)

0.51 -11.4



SW26

V.,Vv
in

U' N-GLYi 16; 0(3.75) 
N-PR0285: O (3.45)

H-TRP82:NE1 (3.03)

C-GLN119: CB (3.58) 
C-GLN119; CB (3.77) 
C-THR120: CG (3.61) 
C-GLY116: CA (3.87) 
C-GLY116:C(3.82) 
C-GLY115:C(3.78) 
C-GLYII6: CA (3.98) 
C-TRP82:CD2 (3.90) 
C-TRP82: CD2 (3.80) 
C-TRP82: CD2 (3.81) 
C-TRP82;CD1 (3.62) 
C-TRP82: CE2 (3.68) 
C-TRP82: CE2 (3.99) 
C-GLN119: CG (3.80) 
C-GLNU9: CB (3.82) 
C-ASN68:CE (3.56) 
C-ALA328: CB (3.88) 
C-GLY116:C(3.64) 
C-TYR332: CZ (3.99) 
C-TYR332;CE1 (3.52) 
C-TYR332:CDI(3.74) 
C-PHE329.cz (3.82) 
C-PHE329; CE2(3.78) 
C-PHE329; CE2(3.92) 
C-PHE329: CD2(3.84) 
C-PHE329; CD2(3.79) 
C-PHE329; 0020.98) 
C*TRP82: CB (3.68) 
C-TRP82: CB (3.93) 
C-TRP82: CG (3.61) 
C-TRP82: CG (3.58) 
C-TRP82: CG (3.88) 
C-TRP82; CD1(3.55) 
C-TRP82: CE3(3.80) 
C-TRP82: CE3 (3.85)

-9 8 0 5



4.5 Analogue Designing

On the basis o f binding interactions, binding affinity and IC50 value compound 

SW19 had been considered as the lead compound in this study. Analogues were made of 

this compound in order to get most active compound to use as BChE inhibitors.

Four analogues o f the Lead compound have been designed after detailed study and 

analysis. Keeping in view the chemical structure o f Lead i.e. the hydrophobic features, 

HBDs, HBAs the analogues have been designed. The analogues o f the Lead have been 

shown in Figure 4.15.



Analogue 1 (Amide Formation) 

(4-{[8-(3-methyl-l, 3-diazinan-l-yl) octyl] oxy} phenyl) methanamine

N N-

V J

Analogue 2 (Ring Reduction)

Diacetyl [(4-{[8-(3-methyl-l, 3-diazinan-l-yl) octyl] oxy} cyclohexy) methyl) amine



Analogue 3 (Oxidation)

N, N-diacetyl- 4-{[8-(3-methyl-l, 3-diazinan-l-yl) octyl] oxy) benzamide

‘0(CH2]

I  r

w

Analogue 4 (Amine Formation) 

N-acetyl-N-[(4-{[8-(3-methyl-l, 3-diazinan-l-yl) octyl] oxy} phenyl) methyl) acetaminde

Figure 4.15: Analogues o f the Lead Compound and their lUPAC names



The analogues have been developed by the introduction or elimination o f various 

functional groups. The first analogue o f the lead has been made by replacing NH- CH- 

CH2 with NH-CO-CH2. In this way the hydrophobic character has been decreased in 

order to observe the impact o f decreased hydrophobicity. The hydrophobic character has 

been increased by replacing the cyclic benzene with cyclo-hexane. In case of third 

analogue the hydrophobicity has been decreased by the introduction o f CO instead of 

CH2. With increase in hydrophilicity and liydrophobicity by the introduction of NH2 

instead of CH3-CH2-N-CH2-CH3, the fourth analogue has been made.

4.6 Docking and Interactions of Analogues with the Target 

Protein

Docking o f the analogues through Autodock Vina has been performed in order to 

get the active conformations o f  the analogues. The interactions o f the active 

conformations o f each o f  the analogue bound into the active site o f protein have been 

obtained using VMD.

The important interactions found in the analogue like the Lead are again ionic, 

hydrogen and hydrophobic interactions. The interactions in the analogue proved to be 

stronger than the lead due to which they show positive signs towards their being active. 

The interactions o f each analogue and the target protein have been found by taking in 

account the amino acids with in 5 A o f the active site o f target protein. Each amino acid 

of the active site was noted and the interactions o f them with the ligand have been 

identified. The interactions o f the analogue with the protein have been shown in Table



4.6, The binding interactions o f  each analogue bound in the active site of the protein have 

been shown in Figures 4.16, 4.17, 4.18 and 4.19.

Figure4.16 shows the binding interactions o f the first analogue within the active 

site o f the target protein. Ionic interactions exist between N o f GLY117 at a distance of 

3.41 A, of GLY116 at a distance o f 3.80 A, o f HIS438 at a distance o f 3.90 A and of 

TRP82 at a distance o f 3.20 A with the O o f analogue 1 . Analogue 1 shows no hydrogen 

bonding. The hydrophobic interactions have been identified between C o f ASN 68  at a 

distance o f 3.76A, of PR0285 at a distance o f 3.94 A, of LEU286 at distance o f 3.90 A 
and 3.85 A, o f SER287 at a distance o f 3.94 A, of ALA328 at distance of 3.85 A and 3.45 

A, of PHE329 at distance o f 3.89 A and 3.68 A, of GLYl 17 at distance o f 3.82 A and 

3.72 A, o f TRP82 at a distance o f  3.86 A, of MET437 at a distance o f 3.08A, o f HIS438 

at distances o f 3.88,3-83 and 3.97 and o f TRP430 at distance o f 3.42 A, 3.93 A, 3.40 A 
and 3.88 A in different conformations with the C o f analogue 1 .

The binding interactions o f analogue 2 with the target protein are shown in Figure 

4.17. Among the interactions, ionic bonding has been identified between the N of 

GLYl 16 at a distance o f 3.17 A, o f GLYl 17 at a distance o f 3.93 A, of HIS438 at a 

distance o f 3.88 A and O ofSER287 at a distance of 3.58 A with the O and N o f analogue

2 respectively. No hydrogen interaction has been observed in the closer vicinity of the 

analogue2. The hydrophobic interactions include carbon atoms from the amino acids, like 

TRP430 at a distance o f  3.61 A, o f ALA328 at distance of 3.75 A, 3.70 A and 3.91 A, of  

PHE329 at distance o f 3.72 A, 3.78 A, 3.87 A and 3.76 A, of TRP82 at distance of 3.74

A, 3.83 A, 3.74 A, 3.80 A, 3.66 A, 3.87 A, 3.87 A, of GLYl 16 at distance o f 3.71 A and



3.95 A, of GLY117 at a distance of 3.86 A, of SER198 at a distance o f 3.96 A, of 

TRP231 at a distance of 3.78 A, 3.83 A, 3.92 A,3.83 A, of GLN119 at distances of 3.91 

and 3.91 A, of LEU286 at distance o f 3.68 A, 3.62 A,3.94 A,3.72 A and 3.85 A in 

different conformations with the C of analogue 2.

Figure 4.18 depicts the binding interactions o f analogue 3 with the target protein. 

The 2 Ionic interactions have been observed between N of TRP82 at a distance of 3.26 A 
and o f GLY117 at a distance of 3.23 A with 0  o f analogue 3. No hydrogen bonding has 

been identified in case o f analogue 3. The 19 closely identified hydrophobic interactions 

contain carbons belonging to amino acids such as ASN68 at a distance of 3.52 A, 
SER287 at distances of 3.86 A and 3.86 A, LEU286 at distance of 3.76 A and 3.92 A, 
GLY117 at distances o f 3.66 A and 3.66 A, GLYl 16 at a distance o f 3.97 A, TRP82 at a 

distance o f 3.81 A, TRP430 at a distance of 3.66 A, TYR332 at a distance o f 3.71 A, 
HIS438 at distnaces o f 3.83 A and 3.93 A, ALA at distances of 3.87 A, 3.59 A and 3.50 

A and to PHE329 at distances of 3.38 A,3.74 A and 3.75 A in different conformations 

with the C o f analogue 3.

Figure 4.19 shows the binding interactions o f the ligand fourth analogue and the 

target protein. The interactions include 3 ionic interactions between O o f GLYl 15 and of 

TYR128 at a distance of 3.19A and 3.10A respectively with N and of N o f TRP82 at a 

disatnce of 3.56 with O of analogue 4. 6 hydrogen bonds between O o f GLYl 15 at 

distances o f 3.1 sA and 2.39A, of TYR128 at a distance o f 2.7SA and between N o f  

GLYl 15 at a distance of 3.56A, of GLYl 16 at distances of 3.56A and 3.57A with the H 

of the analogue 4. The hydrophobic interactions exist between C of HIS438 at a distance



of 3 .72A, of GLY439 at distance of 3.89 A and 3.59A, of TRP82 at a distance of 3.70A, 

3 .86A, 3.79k, 3.62A, 3.98A, 3.88A, 3.82A. 3.8SA, 3.66A, 3.74A, 3.9SA, 3.69A, 3.60A\ 

3.76A, 3.93A, 3.82A, 3.8sAand 3.59A, ofG L Y llS  at a distance of 3.63A, of GLY116 

at distance of 3.5?A and 3.87A, of ALA32sA at a distance of 3.6sA, of TYR 332 at a 

distance of 3.95A, 3.84A, 3.93 A ,3.5sA, 3.65 A and 3.64A and of PHE 329 at a distance 

of 3 .65A with the C of analogue 4.

Analogues like lead compound showed the binding interactions which are closer 

to the standard Rivastigmine, so the designed analogues are also active like the Lead.



C h a p t e r  4

Figure 4.16: Binding interactions o f Analogue with IPOI

Figure 4.17: Binding interactions o f 2"*̂  Analogue with IPOI



Figure 4.18: Binding interactions o f 3rd Analogue with IPOI
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Figure 4.19: Binding interactions o f 4^ Analogue with IPOI



Table4.6: Binding Interactions of Analogues with the target protein.

Comp.

Amide
Formation

Ring
Reduction

Structure Ionic
Interactions

C ' D
0-GLY117:N(3.41)
0-GLYn6:N(3.80)
0-H1S438:NE2{3.90)
0-TRP82:NE(3.20)

N-SER287: 0(3.58) 
0-HIS438:NE2(3.88) 
0-GLY116:N(3.17) 
0-GLY117:N(3.93)

Hydrogen
Bonds

None

None

Hydrophobic
Interactions
C-ASN68:CB(3.76)
C-PR0285:C(3.94)
C-LEU286:CA(3.90)
C-LEU286;C(3.85)
C-SER287:CB(3.94)
C-ALA328;C{3.85)
C-ALA328;CB(3.45)
C-PHE329:CE2(3.89)
C-PHE329:CE3(3.68)
C-GLY116:C(3.82)
C-GLY117:CA(3.72)
C-TRP82:CD1(3.860
C-TRP430;CZ2(3.42)
C-TRP430;CZ2(3.93)
C-TRP430:CH2{3.40)
C'TRP430:CE2{3 88)
C-MET437;CE(3.80)
C-HIS438:CD2(3.88)
C-HIS438:CD2(3.83)
C-KIS438:CD2(3,97)

C-TRP430;CZ2(3.6l)
C-ALA238:CB(3.75)
C-ALA238:CB(3.70)
C-ALA238;C(3.91)
C-PHE329;CE2(3.72)
C*PHE329:CD2(3.78)
C-PHE329;CE2(3.87)
C-PHE329;CZ(3.76)
C-TRPS2.CD 1(3.74)
C-TRP82;CD1(3.83)
C*TRP82:CG(3.74)
C-TRP82:CE2(3.80)
C-TRP82;CD2{3.66)
C-TRP82;CD2(3.87)
C-TRP82;CE3(3.87)
C-GLY116:CA(3.7I)
C-GLY116:CA{3.95)
C-GLYII7:CA(3.86)
C-SERI98:CB(3.96)
C-PHE398:CZ(3.85)
C-TRP23l:CD2(3.78)
C-TRP231:CD2(3.83)
C-TRP231:CE2(3.92)
C-TRP231:CG(3.83)
C-GLN119;CB{3.91)
C-GLN1I9:CG(3.91)
C-LEU286:CD2{3.57)
C-LEU286:CD2(3.68)
C-LEU286:CA(3.62)
C.LEU286:CA{3.94)
C-LEU286;C(3.72)
C-LEU286:C(3.85)
C-TRY332:CE1(3.79)

Binding
Affinity
-10.7

-7.4



Oxidation

Amine
Formation

OTRP82:NEl(3.26)
0-GLYU7:N(3.23)

N-GLYl 15: 0(3.19)
N-TYR128:OH(3.10)
0-TRPS2:NEl(3.56)

None

H-GLY115:
0(3.13)
H-GLY115;
0(2.39)
H-GLY1I6:N(3.56)
H-GLY115:N(3.56)
H-
TYR128:OH(2.78)
H-GLYI16:N(3.57)

C-ASN68:CB(3.52)
C-SER287:C(3.86)
C-SER287:CB(3.86)
C-LEU286:C(3.76)
C-LEU286:CA(3.92)
C-GLY117:CA(3.66)
C-GLY117;CA(3.66)
C-GLY116:CA(3.97)
C-TRPS2.CD1(3.81)
C-TRP430;CZ2(3.66)
C-TYR332:CE1(3.71)
C-ALA328;C(3.87)
C-ALA328;CB(3.59)
C-ALA328:CB(3.50)
C-PHE329;CE2(3.38)
C-PHE329;CE2(3.74)
C-PHE329;CZ(3.75)
C-H1S438:CD2(3.96)
C-H1S438:CD2(3.93)
C- HIS438:CD2(3.72)
C- GLY439;CA(3.89)
C- GLY439:CA(3.59)
C-TRP82:CZ3(3.70)
C-TRP82:CZ3(3.86)
C-TRP82:CE3(3.79)
C-TRP83:CE3(3.62)
C-TRP82;CE3(3.98)
C- TRP82:CH2(3.88)
C- TRP82;CH2(3.82)
C-TRP82:CD2(3.88)
C-TRP82:CD2(3.66)
C-TRP82:CD2(3.74)
C-TRP82;CD2(3.98)

C-TRP82:CZ2(3.69)
C-TRP82:CE2(3.60)
C-TRP82:CE2(3.76)
C-TRP82;CE2(3.93)

C-TRP82:CD1(3.82)
C- TRP82:CG(3.88)
C-TRP82:CG(3.59)
C- GLY115;C(3.63)
C-GLYI16;C(3.57)
C-GLY116:C(3.87)
C-ALA328;CB{3.68)
C*TYR332;CZ(3.95)
C-TYR332:CG(3.84)
C-TYR332:CEl(3.58)
C-TYR332:CD2(3.64)
C-TYR332:CE2(3.65)
C-TYR332;CD1(3.93)
C-PHE329:CE2(3.65)

- 10.2

-7.4



4.7 Quantitative Structure Activity Relationship (QSAR)

QSAR model was built for describing how some descriptors were directly or 

indirectly related to the biological activity i.e. phannacokinetics o f a compound. A set o f  

descriptor was chosen and this set was then applied to data set. These descriptors were 

assumed to influence whether a given compound will succeed or fail in binding to the 

target protein (Barrat et ai,  1995). The data of 27 compounds was chosen for QSAR 

studies. The descriptors chosen for QSAR studies o f the data o f the ligands include 

partition coefficient i.e. Log P, Highest occupied molecular orbital (HOMO), Lowest 

unoccupied molecular orbital (LUMO), Molar refractivity, Total binding energy o f the 

ligand(TE), Heat of formation(HF) and Critical volume (CV). These descriptors were 

calculated using Hyper Chem and Chem Draw.



Table 4.7; QSAR Descriptors of Ligands

IC50 LogP ^Homo ELomo MR

(craVmol)

ETotal

(kcal/mol)

EForraation

(kcal/mol)

CV

(cmVmoP

10.10 3.26 -1.03918 0.924167 91.27 -70706.86992 3375.40198 746,76

20.27 2.28 -0.29049 0.951345 95.45 -69077-25215 9106334656 747.69

1.40 3.4 -8.99708 0.158148 95.87 -89336.62128 188.7725522 995.92

0.71 3.82 >8.99794 0.18974 100.47 -89798.85826 169.6575099 104333

9.73 2.84 -9.0274 0.124194 104.74 -84866.76925 203.0614264 1059.95

2.74 3.76 -8.93088 0.232264 98.15 -85830.67732 401.8734203 1005.95

1.54 3.82 -8.74162 0.218668 100.47 -90785.35426 183.1615072 1042.12

0.67 4.24 -8.73844 0.221426 105.07 -89230.56846 181.0692503 1075.28

1.78 5.15 -8.68176 0.23022 111.95 -9422529531 336.6212368 1135.4

1.90 5.99 -8.68176 0.230048 121.15 -95121.89916 ' 326.2612639 1233.12

1.28 4.24 -8.62111 0.309906 105.07 -90228.04406 183.5936399 1088.55

1.66 4.6 -8.70507 0.204516 107.35 -94682.81344 435.9811703 1056.6

1.34 5.57 -8.7098 0.199298 116.55 -9657733033 427.7081553 1143.36

0.23 6.4 -8.71003 0.198814 125.74 -98474.00664 417.2757165 1240.74

0.015 5.07 -8.96335 0.194380 114.27 -99130.13088 167.7507035 1209.36

0.0073 5.49 -8.95737 0.200304 118.87 -99593.84263 147.1608826 1255.18

0.011 4.51 -8.97695 0.179734 123.13 -98660.1234 182.1950184 1272.54

0.014 4.85 -8.97608 0.180621 127.93 -1021062852 179.1552059 1318.59

0.048 5.43 -9.00658 0.185247 116.55 -100713.9589 291.0795518 1247.64

0.0091 6.4 -9.00936 0.185253 125.74 -98610.14145 281.140904 1353.53

0.017 7.24 -9.00859 0.185194 134.94 -105506.9998 270.5264662 1451.78

0.078 6.32 -8.9522 0.206553 128.07 -101489.484 137.7633626 1362.23

0.033 5.34 -8.96668 0.190833 132.33 -105556.7599 171.8024408 1379.5

0.19 5.68 -8.96607 0.191460 137.13 -109002.9307 168.7535403 1425.58

0.027 6.27 -9.00303 0.188839 125.74 -9861033059 280.9517634 135435

0,026 7.24 -9.00559 0.188794 134.94 -1055063291 271.197176 1460.24

1.52 8.01 -9.00542 0.188688 144.14 -112403-181 260.5891417 1559.23



The total binding energy, CV, HOMO, LUMO and heat o f formation were 

calculated using Hyper Chem. The LogP and the molar refractivity were obtained using 

Chem Draw. The values of the calculated descriptors have been shown in Table 4.7. 

Calculated descriptor has been plotted against the ICso values o f the ligands in order to 

check the correlation o f the ligand’s activity with the chosen descriptor. Based on these, a 

QSAR equation has been calculated. Figure 4.20 shows the calculated equation for 

QSAR expressing the multivariate mathematical relationship between the calculated 

descriptor and the biological activity (IC50);



r
IC50 =  4.731415482255E+001 + -2.732492020898E+000*(LogP)
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The statistical analysis o f the calculated equation shows that the RSQ value is 

92.22% so it shows that current calculate QSAR is a good QSAR model, hence better 

predictions it will provide for new test data. The high difference in RSQ and Adjusted 

RSQ indicates stronger overall prediction. The F statistics show the measure of strength 

of regression. The higher F statistics than Critical F means more efficient the equation. 

Table 4.8 shows the statistics o f the analysis. The correlation o f descriptors with activity 

and correlation among descriptors shows the trend o f relatedness. Based on calculated 

correlation among descriptors, high correlating descriptor pairs identify. The high 

correlating descriptor pairs are: ET*MR, CV*LogP, CV*MR, CV*ET, HOMO*HF, 

LUMO*HOMO Mol.Wt*MR, MoLWt*ET, Mol.Wt*CV. Table 4.9 shows the correlation 

of descriptors wdth activity and correlation among descriptors.



Table 4.8; Statistics o f the Analysis

SSr 473.93 RSQ 92.22%

SSe 40.00 Adjusted RSQ 88.76%

SSt 513.93 F Statistics 26.66

Table 4.9a: Correlation among Descriptors

LogP MR CV HF LOMO HOMO Mol.Wt ET

LogP - - - - ■“ - - -

MR 0.89 - - - - - - -

CV 0.94 0.99 - ‘0.42 - - - -0.91

HF 0.45 -0.39 - - - - - 0.66

LUMO -0.47 -0.48 -0.49 0.89 “ 0.99 - 0.74

HOMO -0.48 -0.47 -0.49 0.91 - - - 0.74

MoKWt 0.86 1.00 0.98 -0.38 -0.47 -0.46 - -0.90

ET -0.85 -0.91 - - - - - “

Table4.9b: Correlation of Descriptors with Activity

(LogP) = -0.62

(MR) = -0.53

(ET) = 0.78

(HF) = 0.90

(CV) = -0.56

(HOMO) = 0.86

(LOMO) = 0.82

(MoI.Wt) = -0.51



Percentage Contribution

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

I Percentage

Figure 4.21: Percentage Contribution o f Each Descriptor to Activity



Further a plot was generated for the training data that was generated by the QS AR 

equation. This shows the relationship betw'een the actual IC-50 values and those 

predicted by the QSAR model. This will prove how much rightly the equation is fitting 

the data. Table 4.10 shows the actual IC-50 values and the predicted values alongside. 

Figure 4.22 shows the plot between the actual and predicted values.



Table 4.10: Actual Values and Predicted Values

Comp. Actual Predicted Corap. Actual Predicted

SA l 10.1 10.07 SA15 0.01 0.17

SA2 20.27 20.25 SA16 0.01 -0.61

SA3 1.4 2.26 SA17 0.01 2.3

SA4 0.71 0.87 SA18 0.01 1.17

SA5 9.73 6.27 SA19 0.05 -0.33

SA6 2.74 2.11 SA20 0.01 1.3

SA7 1.54 1.46 SA21 0.02 -0.13

SA8 0.67 1.53 SA22 0.08 -0.26

SA9 1.78 0.87 SA23 0.03 0.66

SAIO 1.9 1.71 SA24 0.19 -0.46

S A ll 1.28 0.44 SA25 0.03 1-59

SA12 1.66 2.62 SA26 0.03 -0.2

SA13 1.34 1.32 SA27 1.52 -1.44

SA14 0.23 1.84



Figure 4.22: Plot of Actual values verses Predicted Value
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Conclusion

The present study was aimed at finding novel drug for the treatment of 

Alzheimer’s disease that had best Pharmacophore features and reversible binding 

interaction.

It has been inferred from current studies that for generating a good 

Pharmacophore model, a set o f compounds along with their activities ranging over 

several orders can be used. The resulted Pharmacophore in turn can be used for effective 

calculation o f the activity o f a wide number o f chemical scaffolds and as a 3D query in 

database searches for identifying the compounds that can be effectively use as potent 

inhibitors. Prior to any further research. Pharmacophore model can also use as a standard 

for checking the behavior o f newly designed compounds by the interpretation of their 

mapping on Pharmacophore.

Current study showed that the best model o f BChE inhibitors were made up of  

two Hydrogen Bond Acceptors, one Hydrogen Bond Donor and two Hydrophobic/ 

Aromatic features and 1 Positive ionizable. The active compound / lead compound from 

the selected data perfectly match the resulted Pharmacophore.

Molecular docking has been used as added tools. Docking study resulted in the 

important interactions between the potent BChE inhibitors and target protein’s active site 

residues.

Current studies showed that 27 4-[(diethylamino) methyl]-phenol derivatives 

selected for QSAR studies have prominent anti-Alzheimer activity. Moreover, the main



governing physicochemical factors for Alzheimer’s disease include LUMO, HOMO, total 

energy (TE) and heat of formation (HF) and LogP as it has negative co-relation. Such a 

QSAR evaluation would open fixture perspectives to use these compounds as new lead 

compounds in clinical trials.

The combination o f different computational techniques like Pharmacophore 

modeling, QSAR, and molecular docking used in present study lead to the successfiil 

identification of putative novel BChE inhibitors, which can be further evaluated by in 

vitro and in vivo biological tests.
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Future Enhancements
With computational techniques like Molecular Dynamics (MD), the limitations 

imposed by the availability o f crystal structures are overcome and a large number of 

different conformations can be generated. After docking o f our dataset, now it is 

possible to perform MD simulations on this system. It will validate and optimize the 

Docked Complexes. QSAR descriptors can be investigated for other classes to 

propose specific descriptors important as BChEIs.

Furthermore, additional efforts shall be directed to extend the use o f docking 

tools to facilitate a better drug designing approach for the benefits o f bioinformatics 

group. In the future, as even more structural information becomes readily available, 

the use o f the target structure to screen large databases o f compounds and virtual 

libraries vwll become increasingly important in the drug discovery process. Large 

virtual libraries will bie constructed based on available chemistry or a set of existing 

combinatorial scaffolds, as well as known drug properties.
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