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ABSTRACT

With the advent of Computer-aided drug designing and discovery, bioinformatics

Abstract

become the major tool for designing and discovering most potent leads against different
targets. A Pharmacophore is built from knowledge of the structure of the novel drugs.
Ligand-based Pharmacophore modeling was carried out on a set of 10 compounds using
Ligand Scout. All of the compounds sharcd_ six common features. The Merged feature
model : 2 Hydrogen Bond Acceptors, 1 Hydrogen Bond Donor, 1 aromatic ring, 2
hydrophobic volumes, 1 Positive ionizable and 30 exclusion features whereas a shared
feature model contains: 1 Hydrogen Bond Acceptor, 1 Hydrogen Bond Donor, 1 aromatic
ring, 1 hydrophobic volume and 1 Positive ionizable respectively . In-silico approaches
have been used to determine the Pharmacophoré triangle.

“ Molecular docking was the test vector for the current studies. Docking studies.
were carried out in order to identify the lead compound among the selected
Butyrylcholinesterase inhibitors. AutoDock Vina was used for docking studies. The
binding interactions of the active conformations of the ligands and the target protein have
been identified by usiqg VMD. Lead compound showed strong ligand-protein interaction
which includes 3 ionic interactions and 15 hydrophobic interactions and ICs value 0.011
pM and Binding energy is -10.1Kcal/mol. Four analogues of the lead compound were
made. They were also docked in order to predict their bioactivity.

Quantitative. structure-activity relationship was established to find dependency
trend in Cholinesterase Inhibitors and various molecular descriptors. Molecular
descriptors were calculated and plotted against the ICso for predicting the biological

activities of selected dataset.
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On the base of extensive computational studies some active compounds were
identified that were involved in the considerable number of binding interactions and
showed lower binding affinities. Analogues were designed from the potential lead
compound and Molecular Docking studies of analogues were carried out in order to
suggest the most appropriate compound that has the potential to act as potent

Butyrylcholinesterase inhibitors.
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1. INTRODUCTION

About 100 years ago, Alzheimer’s disease (AD) was identified. Since its
identification the global fight for a world without Alzheimer's disease has been launched
by researchers. AD is being the main focal point for many researchers. Many different
Alzheimer’s Associations, Alzheimer’s disease Education and Referral (ADEAR) Center
and Alzheimer societies has been established for hcipiﬁg people affected by AD. Still
more efforts are required in order to prevent AD from developing. According to Facts
and Figures, an anmial report released by the Alzheimer’s Association in 2011 an
estimated 5.4 million people are victims of AD. Among people of different ages, AD is
the sixth-leading cause of death while it is the fifth-leading cause of death for those aged
65 and older in United States (Minino et al, 2010). In World Alzheimer Report 2009,
Alzheimer’s disease International reported that in 2010 35.6 miilion people living with
dementia worldwide. This number will be increasing to 65.7 million by 2030 and 115.4
million by 2050. Among the estimated AD patients nearly two-thirds live in low and
middle income countries, where the sharpest increases in numbers are set to occur.

Among the de\‘/elopin‘g nations 4.6% of population is facing mental retardation
issues (Gadit et al., 1998). In Pakistan the conditions are equally bleak where the
percentage of mental disorders depicts a gloomy image. 6% of population is suffering
from depression, 1.5»% from schizophrenia, 1 —2% from eplisy and 1% from Alzheimer’s

disease (Gadit et al., 1999).
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The main reason for seie&ting Cholinesterase Inhibitors as a drug target for
current study is that ChEIs are the ‘only therapeutic agents reported so far that
consistently proven to be effective in treatment of AD but currently available drugs for
treating AD only mask the symptoms of Alzheimer’s, but do not treat the underlying
cause of disease. In addition that’s drugs cause severe hepatic complications and
cholinergic side effects. Although The U.S. Food and Drug Administration (FDA) has
approved four ChEIs for treatment of AD, there is still a need of Alzheimer's drug that
would not only overcome the sever hepatic complications but would also treat the

underlying disease and stop or delay the cell damage that eventually leads to the

worsening of symptoms.

Using in-silico drug designing techniques it is promised that novel drug and
effective drug for the treatment of Alzheimer’s disease will be developed in short time

span.

During this study a Pharmacophore model is generated using the information
derived from data set, as yet there is not a single confined Pharmacophore model
identified for the AD Cholinesterase inhibitors. Therefore it will contribute positively
towards more accurate treatment of AD.

Secondly, a protocol is designed that will help in the in-silico drug development.
This protocol incorporates Pharmacophore modeling, molecular docking and quantitative

structure-activity relationship (QSAR). This investigation resulted in identification of
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lead compound and its analogue formation having tendency to be next potential drug
candidate.

2D QSAR Multiple linear Regression Analysis was also observed in which
molecular descriptors were calculated and correlation was determined which resulted in
finding biological activities of ligands and providing insight of which relevant and
consistent chemical properties are important relationship for the biological activity of
selected compounds

Effectiveness of work states: Lead compound was identified that enhance the
therapeutic ability and will help to cure Alzheimer’s disease by increasing the bihding

interactions and its bioavailability.
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2. LITERATURE REVIEW

Alzheimer’s disease (AD) is the most common cause of dementia among the older
people. AD is characterized by progressive and long-lasting loss and declines in memory,
everyday tasks performance, communication proficiency and language, conceptual
thinking and ability to learn and carry out mathematical calculations. Other symptoms of
AD include personality changes and destruction of judgments (Caroline, 1997). Dementia
is because of different diseases and conditions that are responsible for damaged brain
cells or links between brain cells (William Thies and Laura Bleiler, 2011).The history of
AD begins about 100 years ago when AD’s first case was reported by Alois Alzheimer
on November 3, 1906, in Tubingen, Germany. Alois presented that case on the 37th
meeting of the Society of Southwest German Psychiatrists (Godert ez al., 2006).

‘The pathogenic grounds of the disease are not recognized so far, but the obvious
neuro-pathological alterations like neurofibrillary tangles and amyloid plaques are |
reported in the Alzheimer’s patient brain. Similarly, there are neuro-chemical and
biochemical variations which are also linked with AD. In case of AD, the decrease in the
choline acetyltransferase (ChAT) enzyme activity has been reported as the major
biochemical change. 'I;he decrease in ChAT enzyme activity occurs in the major regions
of basal forebrain cholinergic neurons, particularly in the neocortex (Rossor er al., 1982).
As a result, this decrease reported intense breakdown of cholinergic neurons (Whitehouse
et al., 1981). Morquer, it has been reported that the decrease in ChAT activity in the

cerebral cortex is associated to the severity of the dementia (Perry et al., 1978). Different
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Alzheimer’s patients show different sign and symptoms, but the most common symptom
starts with steadily annoyance difficulty in remembering new information. Such
condition occurs because of the interruption of brain cell function in those regions which
are mainly involved in forming new memories. With the increase of damage, persons
face other complications including loss of memory, poor judgment and change in
personality, difficulties in scheduling or resolving issues and trouble in completing
known tasks, confusion with time or place, difficulty in understanding visual images and
spatial relationships, speaking or writing issues, and misplacing things and difficulty in
retracing (William Thies and Laura Bleiler, 2011).

Alzheimer’s disease is of both types, sporadic as well as familial. Majority of
Alzheimer’s disease cases are sporadic but to some extent the disease is inherited by an
autosomal dominant mechanism of inheritance. Four different gene mutations have been
reported for the familial form of the disease (M-M Mesulam, 1993).

The etiology of the AD is not well-known. Many studies are carried out and
documented possible risk and protective factors responsible for AD. The most obvious
and undisputed factor amongst the risk factors associated with AD is age. AD being the
most common type of dementia accounts for 50 % to 60% of all cases. Dementia shows a
direct relation with age. It accounts for less than 1% in persons aged 60 to 64 years, but in
persons aged 85 years or so the rate is between 24% and 33% in the Western world (F erri

et al, 2005). More than 24 million cases of dementia have been reported in 2001.
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Because of the estimated increase in life expectancy, this number is expected to double
every 20 years up to 81 million in 2040. (Ferri et al., 2005).
Besides ageing other genetic risk factors that are possible agents of AD are: AD’s
family history (Payami ef al., 1977), having history of depression (Speck er al., 1995),
apolipoprotein E gene-e4 allele presence (Payami ef al., 1977; Kukull e al., 1996), race
(Schoenberg et al., 1985) and Down’s syndrome (Brayne, 1991; Van Duijn ef al,, 1991).
Along with these other possible agents are hypertension (Kokmen et al., 1991), head
trauma with loss of consciousness (Chandra er al, 1989; Brayne, 1991), low serum
vitamin B12 and vascular disease (McCaddon and Kelly, 1994), lower education (Beard
et al., 1992), electromagnetic fields (Sobel et al., 1995), gender (Schoenberg et al., 1985),
antacid consumption (Graves ef al., 1990a) and aluminum absorption (McLachlan et al.,
1996). Finally, some factors arousing debate include maternal age at birth (Van Duijn
and Hofman, 1992), diabetes (Leibson et al., 1997) occupational é'xposure to solvents and |
glues (Gun ez al., 1997), and alcohol consumption (Graves et al., 1991).
| Along with risk factors, protective factors have also been studied. Protective
factors in_clude cigarette smoking (Brayne, 1991; Graves ef al., 1991), non-steroidal anti-
inflammatory drugs, a'rthn'tisz (M.cGeer et al,, 1996), and estrogen intake (Lerner et al.,
1997). Other factors such as severe headache, blood transfusion (Brayne, 1991),
apolipoprotein E €2 allele (Bickeboller et al., 1997) and physical activity (Yoshitake et

al., 1995) are assumed to be the protective factors of AD.
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Three clinical stages of AD with functional and cognitive decrease extending over
5 to 8 years have been reported. The early or mild stage mostly lasts for 2 to3 years and is
characterized by short-term memory impairment often along with symptoms of
depression and anxiety. The symptoms of depression and anxiety of mild stage appear to
abate as neuropsychiatric signs, such as visual delusions, false beliefs and reversal of
sleep patterns emerge in the moderate stage. The last and severe stage is distinguished by
motor signs, for example motor rigidity and prominent.cognitive decline. Throughout the
above mentioned stages of AD, the cognitive and functional decrease tend to be linear,
while during sever stage caregiver burden- increases with the appearance of
neuropsychiatric symptoms and decreases to some extent, when the patient is more

_sedentary (Gauthier, 2002).

O
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Cells within the brain (nexrons) transport electrical
messages to other parts of the body using chemical
transmitters (neurotransmitters).

Damaged
(or lost)
brain tissue

D “!\‘tﬁ,&

In Alsheimer’s Discase, areas of the brain tissue
are damaged and some messages do not transmit,
causing the symptoms of the disease.

.s,
)

Figure 2.1: Comparison of Normal Brain verse Alzheimer’s Patient Brain
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For the treatment of different stages of AD, the use of cholinesterase inhibitors
(ChEIs) has been documented to be effective (Doody, 2003; Rockwood et al., 2003). In
1993 tacrine was the first ChEI to be approved by the Food and Drug Administration
(Davies er al., 1989) which is now rarely used because of toxicity associated with it and
the introduction of safer ChEIs (Ritchie et al, 2004). Donepezil, galantamine, and .
rivastigmine are the commonly used ChEls. These three ChEI have been proven to lower
or stabilize cognitive decline of AD (Ritchie et al, 2004; Briks, 2006, Hansen, 2008).
Besides ChEIls, in 2004 the FDA approved an NMDA antagonist named as memantine,

for treating dementia symptoms in moderate to severe cases of AD (Lleo et at., 2006).
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Table 2.1: List of Drugs Approved by FDA
DRUG NAME DRUG TYPE &USES | HOW IT WORKS SIDE EFFECTS
Namenda® N-methyl  D-aspartate { By Blocking the toxic effects | Causes  Constipation,
{memantine) (NMDA) antagonist | linked with excess glutamate. | dizziness, headache and
approved for treating | It also regulates glutamate | confusion
moderate to severe AD | activation.
symptoms
Razadyne ® ChEI  approved for | By preventing the breakdown | Causes Vomiting,
(galantamine) treating mild to moderate | of acetylcholine and | Nausea, loss of
AD symptoms. simulates  the  nicotine | appetite, weight loss
receptors to release more | and diarrhea
acetylcholine in brain
Exelon ® ChEI  approved for | By preventing of |.Causes Vomiting,
(rivastigmine) treating mild to moderate | acetylcholine and | Nausea, loss of
AD symptoms. butyrylcholine in brain. appetite, weight loss,
diarthea and  muscle
) weakness
Aricept ® ChEl  approved for | By preventing the breakdown | Causes Vomiting,
(donepezil) treating mild to moderate | of acetylcholine in brain nausea and diarrhea

and moderate to severe
AD

12
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The known ChEIs can cause severe hepatic complications (Sequeira er al., 2008).
Therefore, the development of new more effective drugs having lesser side effects is still
a main preference.

Cholinesterases (ChEs) are family of the most efficient enzymes identified. Based
on inhibitor sensitivities and substrate specificities, ChEs are further classified into two
types: i) acetylcholinesterase (AChEl; EC 3.1.1.7) and ii) butyrylcholinesterase (BChE; .
EC 3.1.1.8) (Massoulie et al., 1993). Both ChEs shared 65% of sequence homology.
Both have catalytic triad for substrate hydrolysis.

A membrane-bound enzyme, AChE is mostly found in the brain, cholinergic
neurons, muscles and erythrocytes. AChE hydrolysis the neurotransmitter acetylcholine
(ACh) in cholinergic synapses (Massoulie ef al., 1993; Silman et al., 2005) and as result
plays an important role in the regulation of several physiological actions (Milatovicet ef
al., 1996; Schetinger et al., 2000).

BChE present in the serum, heart, lung, intestine, liver and kidney plays an
important role in the metabolism of ester containing compounds (Dave et al, 2000,

Prody, 1987; Ecobicon, 1973).
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Figure 2.3: Active site of BChE

s
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Even though the accurate role of BChE is not fully known so far, its function in
morphogenesis, cytogenesis and tumorigenesis, regulation of cell proliferation and onset
of differentiation during early neuronal development, as a scavenger in the detoxification
of certain chemicals, and in lipoprotein (VLD) metabolism has been reported (Giacobini,
2003).

Besides this, several neuronal groups solely show the activity of BChE in the
human brain (Wright et al., 1993), such as in the inhibition or absence of AChE, BChE
can replace AChE in the degradation of acetylcholine Ach (Li B et al., 2000; Chatonnet
et al.,, 2003). Such replacement in Alzheimer's patient brains renders BChE as a more
effective drug target than AChE (Carreiras et al., 2004).

BChE involvement in the disruption of cholinergic neurotransmission in AD has
been supported by biological facts (Combarros et al., 2005). AD-related neurofibrillary
tangles are also linked with the processing of a-amyloid protei>n to B-amyloid peptide |
(Carreiras er al,, 2004). The disease’s eitology is further complicated because of an
association between AD and the formation of f-amyloid plaques. It is believed by many -
researchers that AD is a consequence of increased production or accumulation of a-
amyloid in the brain which in turns results nerve cell death. Recently it has been reported
that in the AD patient’s brains, there is a significant reduction in the level of AChE
whereas the level of BChE increases which in turn aggravates the toxicity of B-amyloid
peptide. In AD AChE and BChE activity is expressed by neurofibrillary tangles and

amyloid plaques (Wright ef al., 1993).In AD patient’s brain, this abnormal expression has

15
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been detected around the amyloid plaques and neurofibrillary tangles (Small et al.,, 1996).

It has also been documented that AChE and BChE co-localize within the brain in amyloid

plaques to form insoluble B-amyloid fibrils (Diamant er al., 2006).

<
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Fig 2.4: Pathogenesis of Alzheimer’s disease

s
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AChE inhibition has been proven as effective drug target against Alzheimer's
disease but use of BChE as a drug remains a matter of concern in treating Alzheimer's
disease. Even though little literature is available on the inhibition of
butyrylcholinesterase, studies have revealed that BChE is a genetically authorized drug
target and its selective inhibition lessens the beta-amyloid plaques formation (Ul-Haq et

al., 2010).
_ Table 2.2: Similarities and Differences between BChE and AChE

BuChE verse AChE

¢ In brain represents 20% total ChE activity, mostly glial.
¢ In human brain is present also in specific neurons.

®  65% amino-acid sequence homology.

e Chromosome 3 (BuChE) vs. chromosome 7 (AChE).

o (Catalytic site: valine—leucine replacing phenylalanine.
¢ No substrate inhibition.

¢ Most efficient, at high substrate concentration.

¢ Less substrate specific than AChE.
(Ezio Giacobini., 2004)

In the current studies, BChE would be used as a drug target.

Up till now the only therapeutic agents that consistently proven to be efficacious
in treating the cognitive and functional symptoms of AD is cholinesterase inhibitors
(Weinstock, 1999). ChEls are basis of AD therapy. Four ChEIs namely tacrine (an
aminoacridine), donepezil (a benzylpiperidine), rivastigmine (a carbamate) and

galantamine (a tertiary alkaloid) have been approved for the symptomatic treatment of
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mild to moderate AD. As these compounds show likeness in efficacy (Weinstock, 1999;
Wilkinson ef al., 2002), their clinical differentiation may base on variations in tolerability
profiles and ease of use. The variations in the tolerability profiles of ChEls may occur as
a result of selectivity difference for AChE and BChE (Rogers et al, 1998; Rogers and
Friedhoff, 1998). AChE and BChE both are linked with cholinergic dysfunction. Central
cholinergic systems play a very important part in a wide variety of brain functions such
as memory and learning. Thus, the development of AChE and BChE inhibitors for the
improvement of cholinergic signalling and overall cognition in patients is very important
in the treatment of AD (Rook et al., 2010).

The studies and efforts for the development of a drug are costly, prolonged, risky
and comprehensive. It is projected that the development of a drug from an idea to a
sta_ndard finished product would take 12 years and on an average cost more than US $800
million (DiMasi ef al., 2003). In order to shorten the time consu:ﬁing research efforts and
to lessen the expenses, numerous advance technologies have hence been developed and
applied in drug research and development (R&D). Among these technologies, Computer-

aided drug design (CADD) is one such revolutionary technology (Jorgensen, 2004).
2.4 Computer-Aided Drug Designing

In the field of drug design, both computational and experimental approaches are
used and present complementary approaches. Nowadays, computational techniques are

gaining rapid popularity and implementation in drug designing and discovery. Computer-
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aided drug design (CADD), computer aided molecular modeling (CAMM), computer-
aided molecular design (CAMD), computer-aided rational drug design, computational

drug design, in silico drug design and rational drug design are the different terms applied

to this area (Kapetanovic., 2008)..

Molecular simulations play different roles in different disciplines of science in
various research areas. In bioinformatics and drug designing, the focus is on two parallel
areas. The first approach focuses on the use of mathematical algorithms currently used in
the field of molecular biology examples include simulating protein-protein interactions or
protein-ligand interactions. The results are then used for further experimentation. The

second approach obviously is the focus on designing new algorithms with much effective

outcomes (Huang ef al., 2010).

.The proces.s of drug development is demanding, time consuming, costly, and -
requires many aspects to be considered. According to a study, the cost ranges from $800
millib»n to $1.8 billion in the drug discovery process (Hileman, 2006). However,
depending on the type and nature of the disease being targeted and the drug, considerable
variation is seen both in time and cost. Bharath and co-workers summarized the overall

drug development process and the cost incurring at each step (Bharath er al., 2011).
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Table 2.3: The costs incurring in each step in overall drug development process

Cost Cost % Time in years
US $ Million
Biclogy
Target identification 165 188 1.0
Target validation 205 233 20
Chemistry
Screening 40 45 45
Optimization 120 135 2.7
Development .
Pre—ciinical 90 102 16
Clindcal 260 295 7.0
Total 880 100.0 14.7

Furthermore, out of 40,000 compounds tested in animals only 5 reach human -
testing and the number of compounds which is approved for reaching clinical studies is
just 1 out of 5. This depicts a huge investment in terms of time, money and other
resources (Kapetanovic, 2008). A report suggests that extensive usage of bioinformatics
and in silico technologies would cause reduction up to 50% in the overall drug
development cost (PricewaterhouseCoopers, 2007). Current work is all in silico and it

suggests a new drug for the treatment of Alzheimer’s disease.

Application areas where CADD technolog}‘es work are two: structure based drug
design and ligand based drug design. In structure-based drug design, we should have
complete knowledge of the target protein structure and its active sites for finding the
binding pocket, the binding energy and the steric properties of ligand and protein. It
includes de novo ligand design and docking among other topics. While in ligand-based
drug design, focus is on ligands which interact with the target protein. The technologies
include pharmacophore, QSAR and 3D-QSAR. Both the techniques produce lead
compound as a final product. CADD process flowchart is given as drawn by Huang and

collaborators in their review about CADD.
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In structure based drug design, we should have a protein structure at hand. Two
physical methvods of obtaining structure are NMR spectroscopy and X-ray diffraction.
Numerous protein structures are found at RCSB PDB. Those that are not included in the
PDB database can be modelled. Homology Modelling is a technique used to predict
unknown protein structure by sequence similarity to known protein structure(s). If the
protein sequence has 30% similarity with its template (homologous protein) it can be .
modelled (Marti-Renom et al., 2000). Ab initio modeling and threading are other two

methods for protein structure prediction.

In early 1960s the idea of CADD emerged as a quantitative structure-activity
relationship (QSAR) analysis but later the concept of CADD has developed very quickly.
Along with other CADD technologies, molecular modeling and simulation have proven
successful and productive in drug discovery. Usage of computational techniques along
with bioinformatic§ techniques 'in-drug discovery and development process is quickly.
gaining popularity and appreciation (Kapetanovic., 2008). Using CADD technology,
rational design of selective inhibitors of p90 ribosomal protein S6 kinase is designed
successfully (Cohen er al., 2005).

In order to con;siderably reduce time and resource required for drug development
and testing, CADD is employed. From 1997 to 2004, the rapid growth of virtual.
screening is reported as the number of citations increase from 4 to 302 (Pozzan, 2006).

In this study ‘different in silico techniques like molecular docking, QSAR and

Pharmacophore modeling are used to design a new noval cholinesterase inhibitor for AD.
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Molecular docking is a computational procedure of searching for an appropriate
ligand that fits both energetically and geometrically the protein’s binding site. In other
words, it is a study of how two or more molecules e.g. ligand and protein, fit together.
The problem is like solving a 3D puzzle (Aatu ef al., 2002).

During past decade for understanding the formation of intermolecular complexes,
the application of computational methods in this area has been subjected to intensive
research. It is commonly known that molecular binding of one molecule (the ligand) to
the pocket of another, usually macromolecule (the receptor), which is commonly a
protein is responsible for accurate drug activity. Molecular docking has been proved very
efficient tool for novel micro molecule drugs discovery for targeting protein (Wang et al.,
1999). Among different fields of docking, protein-ligand docking is of special interest,
because of its application in medicinal industry (Muegge et al., 2001). Protein-ligand
docking refers to search for the accurate ligand conformations within a targeted protein’
when the structure of protein is known or can be estimated (Sousa et al., 2006).

Docking procedures are basically the grouping of search algorithms and scoring
function..i,arge number of search algorithms and scoring functions are available. Search
algorithms predict the ligand biding orientation and confirmations commonly refer as
posing (Sousa ef al., 2006). Some common search algorithms are (Aatu ef al., 2002):

e Molecular dynamics

e Monte Carlo methods

e Genetic algorithms

—————————— e
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¢ Fragment-based methods

e Point complementary methods

¢ Distance geometry methods

e Tabu searches

e Systematic searches

In order to differentiate the active and random compounds the scoring functions are
employed. The scoring functions predict binding free energies in ligand-protein docking
generally in 7- 10 k)/mol (Bissantz et al., 2000). The three major classes of scoring
functions are (Sousa et al., 2006):

e Fore filed based

e Empirical

- o Knowledge based scoring functions.

Numbers of different molecular docking softwares are employed in drug research~
industry (Aatu ef al., 2002). The most popular and commonly use softwares for molecular
docking are AutoDock (Morris ef al., 1998; Goodsell ef al.,, 1990; Morris et al., 1996)
GOLD (Jones et al, 1997; Jones et al., 1995) FlexX (Rarey et al., 1996) along with
DOCK (Ewing et al., 1997) and ICM (Abagyan et al., 1994).

In some cases for reproducing crystallographic conformations and orientations of ligand-
protein complexes, -Autodock has been produced better results than DOCK, FlexX, and.

GOLD (Park et al., 2006).
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For docking purpose, AutoDock pre calculate energy grids on target around a site
of interest (Morris ef al,, 1998). While considering the target energy grids, Lamarkian
Genetic Algorithm (LGA) (stochastic search algorithm), for exploring the grid space is
employed to perform energy evaluations of the position of the ligand (Morris ef al.,
1998). LGA investigate all the possible ligand-protein poses relative to the energy grids
and returns the lowest energy conformation in the target site (Morris et al., 1998). The
LGA is of great importance for modeling systems having maximum numbers of rotatable
bonds and possible numbers of conformations (Morris, 1998).

DOCK and FlexX both employed an incremental construction algorithm.
Incremental construction algorithm attempts to reconstruct the bound ligand by first
placing a rigid anchor in the binding site and later using a greedy algorithm to add
fragrnents and complete the ligand structure.

GOLD (Genetic Optimization for Ligand Docking) coﬁsiders degrees of freedom |
in the binding site that correspond to reorientations of hydrogen bond donor and ac:eptor
groups. These degrees of freedom represent only a very small fraction of the total
conformational space that is available but should account for a significant difference in

binding energy values (Shih- Ching Ou ef al., 2005).
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Figure 2.6: Different Softwares for Molecular Docking (Sousa et al., 2006)
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AutoDock Vina is an upgraded version of Auto Dock 4 and it is a ligand to
protein docking and virtual screening simulator. It is compatible with the Auto Dock
PDBQT file format and offers the following advantages over Auto Dock 4; while using
AutoDock Vina grid computation is not necessary which was a complex process
elsewhere, it gives higher accuracy of binding mode, and it is considerably faster,
moreover it is available for each operating system and use iterated local search algorithm
(Chang et al., 2010).

Pharmacophore is one of the most lasting ideas of computer-aided drug design.
Historically, the concept of a Pharmacophore is presented, from its initial articulation by
Kier in 1967 (Kier, 1967) and uses the term in a publication in 1971 (Kier, 1971).

In recent years the term Pharmacophore has been increasingly use in medicinal
chemistry. Pharmacophore are often attributed as the structural fragments or functional
groups of a chemical compounds. However, the IUPAC gave an accurate definition of
Pharmacophore in 1998. According to IUPAC: “Pharmacophore is an ensemble of steric
and .electronic features that is necessary to ensure the optimal supra molecular
intcractio;as with a specific biological target ax;d to trigger (or block) its biological
response (Kapetanvoic, 2008).

Pharmacophore does not represent the real association of functional groups but it
gives abstract concept about common molecular interaction capacities of a group of

compounds towards their target structure. Typical Pharmacophore features include

regions where molecule is hydrophobic, aromatic, a hydrogen bond acceptor, a hydrogen
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bond donor, a cation, or an anion. These features need to match different chemical groups
with similar properties, in order to identify novel ligands. Best pharmacophore model
formed must include both hydrophobic volumes and hydrogen bond vectors (Kapetanovic
et al., 2008).

In the current era, Pharmacophore modelling has become an integrated part of
drug development and designing (Cheng Chang ef al, 2005). A Pharmacophore
highlights the 3D arrangement of structural features of a compound that are required for a
certain biological activity. The Pharmacophore model leads to the generation and
identification of the new compounds that shares the same Pharmacophoric features. For
limited structure activity data availability for few compounds, the medicinal chemist can
easily generate manually a common featured Pharmacophore model. However, an
availability of diverse data makes the manual computation of Pharmacophore features
difficult. To overcome this difficulty, Computational approa:ches prove helpful for
generating Pharmacophore (Venkatarajan S Mathura et al., 2010)..

Steps involved in Pharmacophore identification are to find a number of ligands
known to interact with a single target, then finding similarities between the ligands
leading to the creation of Phannaacophore- and at the end using Pharmacophore for virtual
screening.

Numerous soﬂware; are available for the Pharmacophore identification such as:
Ligand Scout (Judith et al., 2009) Catalyst, Phase, Sybyl including Galahad, GASP,

DISCO tech, UNITY 3D and MOE (Kapetanovic et al., 2008).
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Ligand Scout has become an integrated platform for building pharmacophore
models either based on a protein structure or ligand (Cambridge MedChem et al., 2009).
Ligand Scout is software that allows to rapidly deriving 3D chemical featured
Pharmacophore from structural data of macromolecule or ligand in a fully automated and
convenient way (Judith ez al.,, 2009). Upon several mouse clicks the entire characteristic
features critical for drug activity are determined and along with it Ligand Scout enable
user to align several compounds having similar Pharmacophore (Judith et al, 2009,
Cambridge Med Chem et al, 2009). Unlike other programs, the alignment is based on
Pharmacophore points rather than on atomic contributions and is reflected beﬁer the way
the small molecule presents itself to the active site of the macromolecule (Judith ef al,
2009). From several molecules or Pharmacophore, a shared feature Pharmacophore can
be derived to determine common features by setting reference point, thus making
Pharmacophore modelling convenient and easy. .

Lastly Virtual screening can be done by Quantitative Structure- Activity
Relalltionfship (QSAR) studies. According to Hansch (1969) Quantitative Structure
Activity Relationship (QSAR) is a mathematical technique which links chemical
structure and activity of chémical compounds in a quantitative manner. It is commonly
used computational method in predicting toxicology (Kapetanovic et al, 2008).
Independent variables represent molecular descriptors, e.g. electronic, conformational
and thermo-dynamical etc. The aim of QSAR techniques is to develop correlations

between biological activity and the physiochemical properties of the set of molecules
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related to same class. Softwares such as COMFA and COMSIA (Klebe ef al., 1998),
Chem Draw (Zielesny et al., 2005), Hyper Chem (Tsuji ef al.,, 2010) and many more are
used for finding molecular descriptors.

Chem Draw Ultra, using an add-on, Chem Prop/Draw, calculates predicted values
for physical and thermodynamic properties of a selected structure of up to 100 atoms.
(Loren ef al., 2004) Chem draw software package is a chemical structure drawing tool
which enables several features upon the drawing of structure which includes boiling
point, melting point, and critical volume, heat of formation, Log P and molar refractivity
(MR). Minimization of the energy of the compound is done by using Hyper Chem.
Energy minimization alters molecular geometry to lower the energy of the system, and
yields a more stable conformation. It generates a log file using computational chemistry
teghnigues such as semi-empirical formula, molecular mechanics etc (hypercube et al.,
2002).

Molecular dynamics (MD) simulation is one of the important tools in the
theo'retical study of biological molecules. Because molecular systems generally contain a
large number of particles, it is impossible to analyze such complex systems. By using
numerical methods, molecular dynamics simulation can avoid such analytic intractability.
During simulation, atoms and molecules are allowed to interact for a period of time. The
motion for every atom is calculated and can be played to examine the overall_behavioui
(Mccammon et al., 1977). Overall, the background algorithm for a MD simulation

includes: (1) the determination of the initial positions and velocities of every atom; (2)
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the calculation of forces applied on the investigated atom using inter-atomic potentials;
(3) the progression of atomic positions and velocities through a short- time period. These
new positions and velocities are then turned into new inputs to step 2, and when steps 2

and 3 are repeated, each repetition forms an additional time step.
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3. METHODOLOGY

3.1 Protocol for the Insilco Drug Designing

The stepwiée protocol for Insilco drug designing for the cure of Alzheimer’s disease is

described in figure 3.1:

[ DISEASE SECLECTION I

PROTEIN TARGET
~

| DATA SET COLLECTION l

COMPOUND DRAWING

PHARMACOPHORE IDENTIFICATION
& GENERATION .

~ =

MOLECULAR DOCKING
- .QL/_,
 QSAR STUDIES
=5
LEAD COMPOUND IDENTIFICATION

ANALOGUE DESIGNING

Figure 3.1: Protocol for the Insilco drug designing and development
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As the pioneer step disease was identified leading to the potential protein target.
Further data collection was incorporated; it was followed by drawing of drugs using 2D
view. Later Pharmacophore identification and generation was done it led to the docking
of compounds which resulted in the lead compound identification and analogues
formations after this QSAR analysis was done. Each step of the protocol along with the

challenges faced is discussed below.
3.2 Disease Selection

Alzheimer's disease was selected for current study because it is the major reason
of dementia and 1is considered asa major killerthat slowly destroys
a person’s memory until the person dies from forgetting how to perform routine tasks.
Approximately 24 million people worldwide have dementia of which the majority
(~60%) is due to Alzheimer’s. According to Alzheix_ner’s Drug Discovery
Foundation more than 5 million patients in the US and more than 35 million indi\fiduals"
worldwide are suffering from Alzheimer's disease. The disease is believed to have an
annual imj)act of $172 billion on health care in the United States and is projected to
increase rapidly in the near future. AD is not only brutal on the person who has this
condition, family merﬁbers suffer as well. In an attempt to combat this major killer and

make a novel drug this study is a subsequent contribution.
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3.3 Protein Targét

There are multiple protein targets that can be considered to cure Alzheimer’s
disease. Among several targets, BChE is considered and protein structure was taken from
Protein Data Bank by PDB ID: 1P0I. BChE is a key acetylcholine hydrolyzing enzyme in
the blood (Darvesh et al., 2003). Besides acylcholines, it can degrade a large number of
ester containing compounds. Consequently, it plays noteworthy pharmacological and
toxicological roles. BChE played an important role in the pathological progression of AD
by depleting acetylcholine. It attenuates amyloid fibril formation in vitro (Diamant ef al.,
2006). As BChEIs enhance ACh availability, they have been used to delay symptoms of
AD (Campbell et al., 2007). BChE can exist as monomers, dimers, or tetramers (Darvesh

et al., 2003).

3.4 Data Set Formation

Data set was made keeping in mind some consideArations such as all the
compounds had passed through bioassay and have reported ICso value. The range of ICsp
value up to 100 uM was only considered. Secondly it was considered that data set must
be composed of different classes of compounds having numerous functional groups so
that highly active and potent lead is identified from a vast data set lastly all the selected
compounds for this study must not be reported earlier than 2005.Various anti-Alzheimer
Cholinesterase Inhibitors were studied and selected for this study, these drugs belongs to
different classes having distinct functional groups. Along with these compounds some

FDA approved anti-Alzheimer ChEIs were also incorporated to be taken as standard

K s s
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drugs. The data consisting of 26 compounds (Decker ef al.,, 2005; Schott ef al.,, 2006
Dillon et al.,2009-10; Liang Yu et al., 2010; Tkakhas ef al.,2011) along with two the
standard compounds namely Donepezil and Rivastigmine (Isabelle Tomassoli ef al.,

2010) along with ICsg values are shown in Table3.1.
3.5 Compounds Drawing

The compounds were drawn using Chem Draw Ultra Version 8.0
(Cambridgesoft.com) (Loren et al, 2004). ChemDraw is a computational tool for
generating and managing drawings of chemical structures. The structures of two standard
drugs along with 26 compounds were drawn using it and saved with .cdx extension.
Then using Chem3D Ultra the structures of compounds and two standard drugs were

modeled in pdb format.

37

Different Computational Approaches to Explore Protein Ligand Interaction of Cholinesterase Inhibitor
Jor Alzheimer's Disease



Chapter 3 [Methodology
Table 3.1: 2D view of selected Compounds and their ICso values
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3.6 2D and 3D Pharmacophore Generation

Pharmacophore model of the data set was generated using Ligand Scout (Wolber
et al., 2005). Ligand Scout version 3.02(inteligand.com) was used in the studies. It
generates .ligand based as well as structure based Pharmacophore models based on
sophisticated algorithms for performing alignments and interpreting ligand-
macromolecule interactions. It generates customized and highly specific 2D as well as 3D
Pharmacophore models. Ligand derived Pharmacophore was generated for the selected
data. This approach employs the conformational flexibility of ligands and searches for a
common feature pattern that shared in an active ligand set.

For Pharmacophore generation, the pdb files of the data set were provided as an
input. PDB files of the data set were obtained from ChemDraw Ultra. A pdb file was
opened in a structures based view. The imported ligand was the{l copied to ligand based
view using data exchange widget. This process was repeated for all the ligand from each'
class and also for the two standard drugs. After loading, all candidate ligands for the
Pharmacophore model generation were set to ‘training set’ by choosing ‘Ligand-Set ->
Flag Selected Molecules as Training Set’. Different conformations for loaded data set
were generated by usiﬁg ‘Apply Best Settings’ instead of default. The training set was
then was clustered according to 3D Pharmacophore characteristics of the ligands using
the ‘cluster’ button on the bottom of the 3D view. By keeping default parameter in the
dialog box, the clustgring process started by pressing the ‘OK’ button. Espresso created a

new column in the ligand table called ‘Cluster ID’. The ligand table was sorted by using
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column header ‘Cluster ID’. After sorting, all ligands with cluster ID ‘1’ were selected as
test set by using the table controls. Next, the merged Pharmacophore model was
generated by clicking the button ‘Create ligand-based Pharmacophore’ using the default
values. Thus a merged feature Pharmacophore was generated and displayed in the 3D
view. Same procedure was repeated for getting the shared Pharmacophore. In case of
shared feature Pharmacophore, the Pharmacophore model was generated by checking the
“shared feature Pharmacophore’ while keeping the other parameters same. Based on
these Pharmacophores, common and merged features were calculated. At the end unique
merged and shared Pharmacophores has been predicted for anti-Alzheimer

Cholinesterase.

3.7 Molecular Docking using AutoDock 4.0

Docking phase is meaningless without its two components target protein and
ligand. For docking studies a suitable target protein for chosen anti-Alzheimer’s disease.
cholinesterase inhibitors was recognized (Nicolet et al., 2003). Recently reported Human
Butryl cholinesterase (pdb id: 1P0I) was chosen as a target for current study. Pdb file of
1P0I was downloaded from the protein data bank (rscb.org). Docking was done using
software AutoDock 4.0 and its patch AutoDock Vina (Chang et al., 2010).

Autodock 4.0 reads the pdb files of the targef protein and ligand as an input. The
3D structures of the data set were generated as pdb files with Chem3D Ultra and were

placed in the same directory containing installed software.
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3.7.1 Steps for Molecular Docking

The complete docking procedure could be stated as follows: first of all the
water molecules were eliminated from the protein. After the removal of water
molecules the pdb file of the macromolecule 1P0I was provided as an input to the
software. Kollman and Gasteiger charges were automatically computed for the
macromolecule by AutoDock. Then the macromolecule was checked for the
missing atoms and repaired. After repairing missing atoms, the hydrogens were
added by keeping all the parameters at default settings. The macromolecule after
all these modification was saved as RH.pdb in the same directory. Then the
ligand preparation was carried out. Like macromolecule, Kollman and Gasteiger
charges were automatically computed for the ligand. Then some of the torsions of
the ligands were defined. The root was detected; the rotatable bonds were
converted in to non-rotatable bonds and vice versa aﬂd the number of active
torsions was set to most atoms rather than fewest. A pdbqt file was then created
fqr’the modified ligand.

After the preparation of a macromolecule and ligand, rigid residue was
prepared using' GRID module provided in AutoDock 4.0. Grid module employed
RH.pdb file. AutoDock automatically added .charges and merged hydrogens for
rigid residue. The flexible macromolecule was then saved with .pdbqt extension.

For docking purpose AutoDock Vina (Trott et al.,, 2010) was used. Vina is

an open source program. It employed a conf file referring pdbqt files of

43

Different Computational Approaches to Explore Protein Ligand Interaction of Cholinesterase Inhibitor
Jor Alzheimer's Disease



Chapter 3 |Methodology

macromolecule and ligands prepared using AutoDock and Grid properties. As an
output Vina generated log files and pdbqt files of energy models for selected data
set. The output file contained different energy models. Among these models, the
lowest energy model against each ligand was selected and appended at the end of
original protein file. As a result of this step docked files for the selected set
generated.
3.7.2 Ligand-f’rotein Interaction
The ligand- protein interactions were visualized using Visual Molecular

Dynamics (VMD). The docked file prepared using AutoDock Vina was prov'ided
as input to the VMD. After this the interactions (ionic, hydrogen and
hydrophobic) between the ligand and-the active site of the target were drawn
selecting atoms within 5 °A.
3.7.3 Lead 1dentification | -

Most active or lead compound was identification after finding interactions.
Lead identification was done while considering three properties:

e Number of interactions, most importantly Ionic.

e IC-50 \;alues.

e Energy values of the model generated through docking.
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3.7.4 Analogue Designing

Four structural analogues of the lead were made by introducing or
eliminating various functional groups in it, focusing on increasing and decreasing
hydrophobicity and hydrophilicity. Docking studies on the analogue were then

performed using the same process using Auto Dock Vina.

3.8 Quantity Structure Activity Relationship

A quantitative structure activity relationship (QSAR) simple linear regression
analysis was performed for BChE inhibitors by computing electronic and steric
descriptors. Set of selected 27 compounds, drawn using ChemDraw were used for QSAR
studies (Liang Yu ef al., 2010). Data set is shown in table 3. For computing descriptors
Chem Draw and Hyper Chem Professional 8.0 (HyperCube, Inc.) were used. Then QASR
equation was calculated by correlating the descriptors and activitj-l value (IC50). A QSAR

generally takes the form of a linear equation:
Biological Activity = Const + (81 W1) + (82 W2) + (S3 W3) + ...+ (Sn Wn)

Where the parameters. W1 through Wn are computed for each molecule in the series and
the coefficients S1 through Sn are calculated by fitting variations in the parameters and

the biological activity. After that a graph was generated using GRAPH software.
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Table3.2: Chemical Structure and ICs, values of Compounds for QSAR studies.

N\

___/N
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SA6 |4 ) 2.74 SA20 |8 /_/ 0.0091
N\— N\__\
SA7 S| n 1.54 SA21 | 8 /_ﬁ 0.017
N
SAS 5 0.67 SA22 |10 0.078
sa9 |61 178 SA23 | 10| [\ 0.033
NR N Ne—
SAI0 |6 /_ﬁ 1.90 SA24 [10] [\ 0.19
N\i N »J
SA1l 6], Q 1.28 SA25 10 /(0027
N
SAI2 |6 S 1.66 SA26 |10 0.026
N . s N/_/
SAI3 |6 ~ 1.34 SA27 |10 0.015
SAl4 |6 /_/ 0.23
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4. RESULTS AND DISCUSSIONS

Through this work, I aim to identify the lead compound, i.e., the most active
compound from our data set and the analogue designing with the help of techniques of

-

computer aided drug designing.
4.1 Rule of Five

Although all the drugs have undergone the bioassay, to counter check the drug-
likeness properties, In-Silico techniques i.e. rule of 5 or Lipinski rule was applied to

incorporate the pharmacokinetics of the drug. The results are given in Table 4.1.

The results show that all the compoundé including data for molecular docking and
QSAR follow the HBA, HBD and MW constraints of Lipinski’s rule (Rule of Five) but

some compounds from QSAR data set deviate from the LogP constraint.
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Table 4.1: Lipinski’s rule (Rule of Five) applied to data set

Rule of Five for Ligands
' Ligand No. | No more than 5§ HBD | No more than 10 HBA | MW(under 500Da) | Log P less than 5
RIV 3 7 250.34 2.36
DO 1 3 379.49 4.01
SW1 0 1 264.32 4.96
SW2 1 0 250.34 3.21
SW3 1 0 252.35 2.69
Sw4 2 0 238.33 233
SW5 0 1 225.29 3.06
SWé 2 1 213.25 1.40
SW7 1 1 227.28 1.76
Sws 2 1 227.28 1.98
SW9 3 1 213.25 2.05
SW10 2 1 227.28 241
SWi11 4 4 318.28 4.37
SW12 2 5 291.26 -0.28
SW13 1 4 275.26 4.76
SWi14 2 5 396.39 1.53
SW15 2 6 307.26 0.61
SW16 1 6 306.27 0.11
SW17 2 1 362.59 5
SW18 2 1 402.66 5.1
SW19 3 1 398.62 4.05
SwW20 3 1 375.59 3.60
Sw21 2 1 320.51 3.75
SW22 2 1 304.47 2.99
Swa3 2 2 455.59 7.29
Sw24 2 2 483.64 7.99
SW25 2 2 497.67 8.41
SW26 2 2 500 8.13
SA1 2 1 290.44 2.88
SA2 2 1 305.46 1.99
SA3 2 1 304.47 2.99
SA4 2 1 318.5 3.39
SAS 3 1 333.51 2.47
SA6 2 1 306.49 3.35
SA7 2 1 318.5 3.39
SA8 2 1 332.52 3.78
SA9 2 1 348.57 4.68
SA10 2 1 376.62 5.48
SA11 2 1 332.52 3.78
SA12 2 1 334.54 4.14
O
50

Different Computational Approaches to Explore Protein Ligand Interaction of Cholinesterase Inhibitor for

Alzheimer’s Disease



Chapter 4 | Results And Discussions
SA13 2 11 362.59 5.08
SAl14 2 1 390.65 5.87
SA15 2 1 360.58 4.58
SA16 2 1 374.6 4.97
SAl17 3 1 389.62 4.05
SA18 3 1 403.64 4.39
SA19 2 1 36259 4.94
SA20 2 1 -(-390.65 5.87
SA21 2 1 418.7 6.67
SA22 2 1 402.66 5.76
SA23 3 1 417.67 4.84
SA24 3 1 431.7 5.19
SA25 2 1 390.65 5.73
SA26 2 1 418.7 6.67
SA27 2 1 446.75 7.46
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Figure 4.1: Bar Chart showing detailed analysis of Rule of Five in percentage form
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- 4.2 Pharmacophore Modeling

In the current era, Pharmacophore modeling has become an integrated part of
drug development and designing (Cohen er al., 2005). A Pharmacophore highlights the
3D arrangement of structural features of a compound that are required for a certain
biological activity. Identification of Pharmacophoric features of the ligands, I used in this 7
study, was carried out using Ligandscout. It identified a Merged Feature Pharmacophore
as well as the Shared Feature Pharmacophore. For current studies ‘Merged Feature

Pharmacophore’ as well as ‘Shared Feature Pharmacophore’ has been created.

The methodology for creating the Pharmacophores is explained shortly. After
loading the ligands, conformations of the Training-Set are generated. After ranking the
molecules according to their number of conformations (ﬂ_exibility), Pharmacophore
features are projected on these molecules and all their confon_na;ions; All confonnat@ns .
of the two top ranked (i.e. the least flexible) moiecules are then aligned using Inte:
Ligand’svmolecular alignment algorithm. For a configurable number of best alignment
solutions common Pharmacophoric features are interpolated and intermediate
Pharmacophore mociefs are created and stored for further processing. These intermediate
Pharmacophore models are now ranked using several adjustable scoring functions taking
into account chemical feature overlap, steric overlap, or both. The intcrmediaté
Pharmacophore models are then aligned to all conformations of the third molecule, etc.,
and a new set of iﬁtemediate combined feature Pharmacophores is created until all

molecules have been processed. If at any stage no conformation can be found that can be
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matched on any intermediate solution, the process is stopped. If at least three common
chemical features can be identified throughout the whole alignment and interpolation

process, the feature Pharmacophore combination is considered to be successful.

As a result of this, Ligandscout calculates the number of features matched,
Pharmacophore fit and 10 Pharmacophore models. Among these models the BChE-1
(model-1) was selected for calculating the merged features present among all the selected
ligands. Likewise for Shared Pharmacophore prediction aﬂlong the 10 generated models
‘Model-1’was elected for computing the shared features among the data set. For ‘Merged
Pharmacophore, the calculated feature patterns, Pharmacophore fit for selected data set
and models with scores are shown in figure 4.2a and b and for ‘Shared Pharmacophore”
all of these calculations are shown in figures 4.3a and b. The common features that are
present in all compounds are; Hydrophobic volumes, Hydrogen Bond Acceptors,
Hydrogen Bond donors and positive ionizable. The 2D and 3D Pharmacophore of one*
compound from all the different classes and standard drugs too are shown in figure 4.4

and 4.5. -
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Feature Pattern in the table shown in figure 4.2a signifies, which features are
met by which ligand. A click on a colored square indicates which feature is linked
to the corresponding square. The cluster ID shows the different number of
conformations for selected data set. The main purpose of clustering is to select those
compounds that are similar in terms of 3D Pharmacophore characteristics and
therefore bear a higher chance for delivering a large overlap of chemical features.
The 3D clustering algorithms performs fast alignments and clusters based on a
similarity value between 0 and 1. Since this algorithm basically performs
combinatorial alignments of all conformations of all compounds, a iow number of
conformations (1-3) is recommended. The Pharmacophore fit signifies the chemical
fearture overlap, steric overlap, or both score. The higher the value of

vPharmacophore fit, better it would be.

.
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Figure 4.5: 3D Pharmacophore Models of Selected Data along with Standard Drug
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The green color in the figures show HBDs, red are HBAs, yellow are hydrophobic
and aromatic features and blue star like illustrate positive ionizable. Both 2D and 3D
views show consistency. All Pharmacophoric features of each class along with
Rivastigmine and Donepezil are summarized in the following table.

Table 4.2: Pharmacophoric Features of Data Set

Compounds HBDs | HBAs Ar/HY | Positive ionizable
4-[(diethylamino)  methyl]- [ Three [ One Four Two

phenol

B-carbolines Two | One Three One
N'-substituted norcymserine | Two | Two Eight One
Isosorbide-based Four { Four Two Two
Rivastigmine (Exelon) Three | Seven Two One

Donepezil (Aricept) One | Three Two One

After determining individual Pharmacophore, all the compounds were clustered in
g 3D and merged and shared Pharmacophores were generated through LigandScout usin‘g’
its ‘Merged Feature Pharmacophore’ and ‘Shared Feature Pharmacophore’ options

respectively. The merged Pharmacophore is shown figure 4.6 and shared is shown in 4.7:

59

Different Computational Approaches to Explore Protein Ligand Interaction of Cholinesterase Inhibitor for
Alzheimer’s Disease



Chapter 4 f Results And Discussions_

Figure 4.6a: Merged Pharmacophore of selected ligands, Donepezil and Rivastigmine

generated by LigandScout

Figure 4.6b: Merged Pharmacophore showing 2 Hydrogen Bond Acceptors, 1 Hydrogen

Bond Donor, 1 aromatic ring, 2 hydrophobic volumes and 1 Positive ionizable
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Figure 4.7a: Shared Pharmacophore of selected ligands, Donepezil and Rivastigmine

generated by LigandScout

Figure 4.7b: Shared Pharmacophore showing 1 Hydrogen Bond Acceptor, 1 Hydrogen

Bond Donor, 1 aromatic ring, 1 hydrophobic volume and 1 Positive ionizable

N
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The best merged feature Pharmacophore model selected for the four classes of
Butyrylcholinesterase inhibitors against the Alzheimer’s disease is as; one aromatic ring
and two hydrophobic volumes (shown by yellow circles), two Hydrogen Bond Acceptors
(shown by red), one Hydrogen Bond donor (shown by green) one positive ionizable
(shown by blue) and a set of 30 exclusion volumes. Likewise, the best shared feature
Pharmacophore model of selected dataset is as: one aromatic ring and one hydrophobic
volume (shown by yellow circles), one Hydrogen Bond Acceptor (shown by red), one
Hydrogen Bond donor (shown by green) one positive ionizable (shown by blue) and a set
of 30 exclusion volumes. These calculated Pharmacophoric features help in the

identification of more active and improved anti-Alzheimer’s disease drug.

In order to gain a deep insight of cholinesterase inhibitors, a ligand based 3D
QSAR model of dihydropyridine-like compounds using Phase program was indentified
and evaluated. The model consists of two hydrogen acceptor vector sites, one hydrogen |
donor vector, one aromatic ring vector and one hydrophobic group (Davies et al., 1989).
Another 3D Pharmacophore model based on eight potent and structurally diverse AChE
inhibitors leading to the discqvery of dual binding site AChE inhibitors was documented.
This Pharmacophores éonsists of two hydrogen-bond acceptor lipid, one hydrophobe, and
two hydrophobic aliphatic features (David ef al., 1994). Lastly, using a congeneric
carbamate class of AChE inhibitors, scientist’s generated quantitative Pharmacophore
models. HypoGen program of Catalyst was employed in this study. It has been reported
that the best Pharmacophores model comprised of three hydrophobic, one hydrogen bond
donor and a set of 34 excluded volumes (Diamant et al., 2006). In our current studies, a

3D Pharmacophore model is developed in order to assist the discovery of type specific
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and potent Butyrylcholinesterase inhibitors for the treatment of Alzheimer’s disease
which has not been reported earlier. Number of previous citations reported the
Pharmacophore models employing only AChE inhibitors specific compounds. Current
studies involved the Pharmacophore generation of compounds belonging to major groups

of BChEIs.
4.2.1 Pharmacophore Triangle

The distance triangle measured between the common Pharmacophoric features of

each group of compound using VMD is shown:

Figure 4.8: Three featured Pharmacophoric Triangle of Butyl Cholinesterase inhibitor

The distance ranges from minimum to maximum and have been measured:
between the HBA and HBD, HBA and aromatic ring and HBD and aromatic ring.
The distances between hydrophobic and HBD range from 2.2 A to 2.8 A, between
hydrophobic to HBA range from 3.2 A to 3.7 A and between HBA to HBD range

from4.2 Ato4.8 A.
N
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4.3 Molecular Docking

Molecular docking studies were carried out using 26 compounds of five different
classes of cholinesterase inhibitors along with two standard drugs. Autodock Vina was
employed for molecular docking studies. As a result of docking different conformations
of the ligands docked into the target protein 1P0OI were obtained. For each ligand 16
different conformations have been generated. These conformations were automatically
ranked in ascending order on the basis of the binding affinities of the ligand with the
target protein. Among these conformations, the most active conformation was chosen

based on the binding affinity of the ligand with the target protein.
4.3.1 Active Site of Cholinesterases

vBoth ChEs have their active sites at the base of enzyme cleft of about 20A depth. -
Complete data set was docked and found to bind at the same active site position.
The active site amino acids were identified by looking the sA vicinity, The
residues found were TRP82, HIS438, GLY439, ALA328, TYR332, GLU197,
PHE329, GLY115, GLY116, GLY117, PHE398, LEU286, TRP231, TRP430,
TYR 440, ASP70, GLY121, MET437, TYR128, TRP83, THR120, GLN119,
PRO285, ILE69, VAL233 and ASN68. The study revealed that TRP28, HIS438,
ALA328, TYR332, GLUI197, PHE329, GLY115, GLY116, GLY117, LEU286,
TRP231, TRP40, THR120 ASP70 AND PRO285 amino acids are significant for

binding interactions.
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The docked conformation of two ligands from the selected data of 26 compounds,
obtained through Autodock Vina i.e. ligand No.8 and ligand No.16 have been
shown in figures 4.9 and 4.10. These figures show the 3D structures of active
conformations of the ligands docked into the target protein. The ligands in both
figures have been shown as in bonds while target protein has been shown in lines.
The active conformations were used for the identification of ligand-protein

interaction using VMD.

S ——
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Table 4.3: Amino acids within SA of the target protein where + and — signs indicate the presence

and absence of amino acid

Amino Ligands
Acids

112]3]4 S 16 |7 {819 1)t {12}13
TRP82 + |+ +]+ s |+ [+ ][+ |+ (s |F
HIS438 +l+l+f+(+ |+ + -4+ + - |+ 1-
GLY439 |+ |--|-1-{1+1+-|-}|-[|-+4{~- |-
ALA328 1+ |+l +F---|+|+1+|+1}- |+ ]-
TYR332 [+ |+ |[+]|- 1+ |+ T+ |+ 1+ |- |- |-
GLU197 |+ - |-}~ {-|-1-[|+1+ ]|+ |- |- |-
PHE329 [+ |+t+]- |+ |- 1{-4~-|-}- |+ 1]- |+
GLY115 |- |+|+}- - |+ s+ =+ - |- -
GLYIll6 |- {+]+{i+ |- |-t-f+ 1+t ]+ |- 1+]-
gLynnz [-1-1-§F+1t-4-1-14-1-1-[|+1+ |+
PHE398 |- !.{-}+]-]-|~-]=-|-1-t+]+]-
LEU286 |- |-|-V+1-}--]-t-}|-1+]+]|+
TRP231 |- |- |-+ |-]|-|-|=-|l=-&-1+|+]|+
TRP430 |- 1|~ -{+|-f-|+}+]|-]-1+1]-
TYR440 |- - |- |- |+|-1-1-|-}t« 1=~ 1|-|-
ASPT0 |- |-l d- T+ 1+1-1-1-1-1-1-
GLYI21 -] {-|-|-4=-"1+|-}-1-1-1-
MET437 |- |- l-t- |- 1-1-[+1-1[-1-1-1-
TYRI28 |- | _ |- |-{~-|=-]-|+{+]|-1~-1-
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TRP83 |- 1. |-|-|-|-}l-ta]-d-1-1+

THRI20 {- . |-¢-j-|t-{-{-1{1-1-1<1~1-

GLNI19 j - |-|-|--|-1-|-1|-1|-1-1-

ILE6Y -1 -|-|-|-|-|-{1-{-1-1|-1-1-

ASN68 |- . |-|-|-|-]-t-§=-]=-1=-1-1-

PRO285 |- |-}l |-t j-f-tet=-1-1-1-

TRP238 |- |- |-|-|--}-|-|-1-1}1-1]-1]-

ALA227 -t --|-{-|-|-|=-1-|~-1]-1]-

THR532 |- |- -1 - df- bt fada -]~ |-

ASP304 |- |- |-|--|="t-|--}-1-1-1-

VAL233 {- . {-|-|-|-|-f-]-1-1|-1]-1-

PRO30O3 |- |- }-f{-fj-1-t1alfaij-d-1]-1=-1-

PHE227 |- |-|-j-|-|-|=-|~-|~-1-]-1|-]-

LEU307 |- ).-f-f-0-|=-1=-|-}=-}-1|-1-1-

ASN228 {-{|-1-|-{-|=-[-(~-]-1-1|-]-~-

PRO230 |- |- |-t-}|-|-}-|-|=-1)-¢%-1]~- |~

TYR39 |- {.-|-1-1-4{--1{-1-1-1-1~-1-

PRO4OY (- J.t-f-=-}=-t-}-|=-1~1-3-1]-~

PRO527 1~ 1ol (- - - 1=-1-T1-

THR284 (- |- (-t - |-t} }-1=-14=- |- |-

ILE356 |- |-|-|-(-|l-|-}{-1-1-1-1{-1-

TYR282 |- |- -}~ [|-|-}t-]-|-1-1-1~-1[|-
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Amino Ligands
Acids

14 |15 [16 |17 |18 19 20 [2t 22 |23 |2 [25 |26

Inactive

TRP82 + + |+ |+ - . + |- + + + . +
HIS438 - + + |+ |- + |- - - + - + -
GLY439 |- |- (|- |- |- - - |- - |- - - -
ALA328 |+ |- |+ |- |- R S T T 1
TYR332 |+ |- |+ |- |- T T I B D -
GLU197 | - - - + - - - - - - - - -
PHE329 |+ [+ |- |- |- + (- |+ + f- + + -
GLY115 | - - - - - - - - - - + - +
GLY116 | + - + |+ + {1+ |+ - - - + +
GLY117 |+ |- + - - + |+ |+ - - - - -
PHE398 | - - + |- - - - - - - - - -
LEU286 |- |- |+ |- |- I - |- - . +
TRP231 - + 14+ |- - - + . - - - - -
TRP430 | + - - - - - + |+ - - - - -
TYR440 | - - - - - - - + - - - - -
ASP70 - - - - - - - + - + - - -
GLYI12t | - - - - - - - - - - - - -
MET437 | - - - - - - - + - - - - -
TYRI28 |- |- |- |- |- - 1= 1= - |- |- [- |-
TRP83 + - - - - - - - - - - - -
THRI20 - . - |- |- e

68

Different Computational Approaches to Explore Protein Ligand Interaction of Cholinesterase Inhibitor for
Alzheimer’s Disease



Chapter 4 | Results And Discussions_

GINID |- - [- [- 1- 1+ 1. 1. T1- [+ |- [+
{
HLEG9 - - - - - - s |+ - + - - -
ASNGS |- |- |- |- |- - T+ - I+ - 1- T-
PRO285 | - - - - - - - - - - + + +
TRP238 |+ |- 1. |- |- 1 - - - - T-
ALA227 |- |- |- 1+ |- oo - - - - T-
THR32 |- |- |- |- |+ - - - - - |-
ASP304 |- |- |- |- |+ - 1. - - - I- T-
VAL233 |- |- |- |- |+ - - - - - 1- T-
PRO303 |- |- |- |- |+ o - 12 - |- |-
PHE227 |- |- |- 1- |+ o - - - - -
LEU307 |- |- 1- |- |+ 1. - - - - [-
ASN228 |- |- 1- |- |+ - 1. (- 1- - |- [-
PRO230 |- |- |- |- |+ T - 1- - [- |-
TYR3% |- |- |- |- |+ NN I U IS DU U I I
PROZOT |- |- |- I- |+ T - - - - T
PRO527 |- |- |- |- 1+ - - - 1 - - |-
THR284 |- |- |- |- |- 1o 1. 1- 1- 1- [+ |-
LEsss |- |- |- |- |- o 0. - - T+ T
TYR282 |- | . - - - - - - - - - + -
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4.3.2 Docking Of Standard Drugs:

Docking of standard drugs with 1POI was carried out using the AutoDock4 and
AutoDock Vina in the same manner. A detailed 3D analysis of the docked site of
these drugs indicated that they bind to same active site. Figure 4.11-4.12 shows
the hydrogen, hydrophobic and ionic interactions of the standard drugs Donepezil

and Rivastigmine.

In case of Donepezil there were two types of interactions 3 ionic and
11hydrophobic. Ionic interactions were between O of GLY116 at a distance of
3.75 with N of Donepezil and N of TRP82 at a distance of 3.67 and of GLY116 at
a distance of 3.97 with O of Donepezil. No hydrogen bonds have been identified.
Hydrophobic interactions were between C of TYR440, TYR440, TRP430,
TRP430, PHE398, PHE329, PHE329, LEU286, LEUZSS, TRP231, TRP231 and
TRP231 at distances of 3.39, 3.74, 3.42, 3.70, 3.74, 3.59, 3.55, 3.92, 3.69, 3.67
and 3.76 with C of Donepezil respectively.

kivastigmine shows 4 ionic and 15 hydroi)hobic interactions. No hydrogen bonds
have been idehtiﬁed.‘ N of HIS438, of GLY116 and of GLY117 shows ionic
interactions with O of Rivastigmine at distances of 3.56, 3.81 and 3.62
respectively. O of SER198 makes ionic bond with N of Rivastigmine at a distance
of 3.56. C of TRP231 at distances of 3.82, 3.815, 3.57, 3.77, 3.56 and 3.81, of
GLY117 at -aA distance of 3.40, of VAL288 at a distance of 3.67, of LEU286 at

distances of 3.72 and 3.78, of SER198 at distances of 3.73, of HIS438 at a
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distance of 3.96 and 3.86 and of TRP82 at distances of 3.96 and 3.81 shows

hydrophobic interactions with C of Rivastigmine.
4.3.3 Docking Of Inactive Compound

Docking of inactive compound was done but no active interaction was deduced
and the binding site was also slightly different from the rest data set showing that
the amino acids in the near vicinity are THR532, ASP304, VAL233, PRO303,
PRO230, PHE227, LEU307, ASN228, TYR396, PRO401 AND PROS527 as
shown in figure 4.13. These amino acids were not appeared for any other

compound or standard drugs.

4.3.4 Interactions of Ligands and Target Protein

The interactions of the active conformations of the ligands of the selected data
and the target protein have been identified and marked using VMD and are shown
in Table3. VMD provides the facility of labeling and computing distances
between atoms. Checking one by one all amino acids in the active site of target
and the atoms of the ligands, the interactions were identified. The important
identified interactions in a data set and two standard drugs include the ionic,
hydrogen and hydrophobic interactions. This exercise of manually selecting one
by one all atoms and identifying the interactions, avoiding the mistakes was the
most important step of this study.

While checking the amino acids in the target protein pocket one by one, actually

the amino acids within 5A of the pocket has been identified. The amino acids with
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in 5A have been shown in Table 3.5. The amino acids within 5A of the pocket

have been found to be involved in the binding interactions.

s
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Figure 4.10: Binding Interactions of SW16 with 1P0I
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Figure4.12: Binding interactions of Rivastigmine with 1P0I

R ———
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Figure 4.13: Binding Interactions of SW18 (Inactive compound) with 1P0OI

et
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Table 4.4a: Energies of Ligands and Inhibition Concentration

Compound ICso (uM) | Compound

Energy value Energy value | ICsq (uM)

(kcal/mol) (kcal/mol)
SW1 -9.5 >500 SW15 -9.8 0.56
SwW2 -94 11.9 SW16 -8.6 0.4
SW3 -94 >500 SW17 -8.8 2.52
SW4 -9.5 50.1 SWI8 -6.6 0.078
SW5 -8.0 17.4 SWI19 -10.1 0.011
SWé -74 17.5 SW20 -6.6 2.20
SW7 -8.2 20.9 SW21 -9.0 442
SW8 -74 1.2 Sw22 -8.8 1.40

SW9 -8.2 1.6 Sw23 -11.4 0.51

SWI0 -8.3 2.7 SW24 9.8 — 0.51
SWI11 -9.6 0.504 SW25 -9.4 0.55
SW12 -8.3 0.46 SW26 -10.5 0.5
SW13 -9.2 10.25 Donepezil -10.9 14.8
SW14 -9.8 - 0.88 Rivastigmine | -8.0 2.0
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To predict compound activeness ICso value and binding interactions were also
incorporated. It is evident from Table 4.4b that compounds SW12, SW16, SW18, SW19
and SW26 had hydrophobic interactions. Among these selected compounds, SW12,
SW16 and SW26 had hydrogen bonding while SW18 and SW19 no hydrogen bonding.
Standards drugs also showed no hydrogen bonding. Similarly ionic interactions, which
observed in both standard drugs, are present in compounds SW12, SW18, SW19 and -
SW26. All the distances and interactions along with the residues involved in interactions

are mentioned in Table 4.4b.

A detailed 3D study of docked files revealed that all the compounds of dataset have the
same amino acids with the 5 A of the ligand and all the interactions were calculated after

selecting the best conformation based on energy values.
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Tabled.4b: Amino Acids within 5A of the target Protein Pocket

Ligand | Hydrogen Bonding Ionic Interactions Hydrophobic Interactions | ICsq
No. uM
Amino Acids Distance Amino Acids Distance | Amino Acids Distance

SW1 None H-TRP82:NEI] 372 C-TRP32: CD2 3.69 >500
C-HIS438: CD2 3.888
C-HIS438:CD2 3383
C-TRP82:CE2 3.66
C-TRP82:CE2 3.66
C-TRP82:CD2 394
C-TRP82:.CZ3 3.63
C-TRP82:CH2 388
C-TRP82:CZ2 365
C-TRP82:CZ2 3.98
C-TRP82:CE3 3.86
C-GLY439: CA 372
C-GLY 439: CA 375
C-ALA328:C 376
C-TYR332:.CEl 3.68
CGLU197:CD 340
C-PHE329: CD2 in
C-PHE329. CD2 3.89
C-PHE329: CD2 3.63
C-ALA328: CB 37
C-TYR332: CZ 394
C-TYR332:CD2 395
C-TYR332:CEl 3.68
C-TYR332:CDlI 354
C-TYR332: CG 3.69

Sw2 None None C-PHE329.CE2 3.63 11.9
C-PHE329:CE2 3.83
C-PHE329:CE2 3.78
C-PHE329:CD2 3.73
C-ALA328:C 3.84
C-ALA328: CB 3.355
C-TYR332.CEl 3.50
C-TYR332:CEl 375
C-HIS438:CD2 3.73
C-HIS438:CD2 397
C-TRP82: CE2 378
C-TRP82: CG 392
C-TRP82: CE3 3.88
C-TRP32: CE3 3.56
C-TRP82: CZ3 3.92
C-TRP82: CB 3.61
C-TRP82:CB 398
C-TRP82: CE3 342
C-TRP82: CB 381
C-TRP82: CE3 3.94
C-TRP82: CD2 3.87
C-GLY!15:C 3.88
CGLY 116: CA 3.76
C-GLY116: CA 3.86
C-TYR332:CD1 3.68
C-PHE329: CD2 3.51

s :
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SW3 None None C-TYR332:CEl | 3.52 >500
C-TYR332:CE1 | 3.82
C-TYR332:CD1 | 3.86
C-TYR332:CD1 | 3.96
C-PHE329:CE2 | 3.70
C-PHE329:CE2 | 391
C-PHE329:CE2 | 3.7
C-PHE329:CD2 | 3.62
C-ALA328: CB 341
C-ALA328:C 39
C-HIS438:CD2 3.66
C-H!S438:CD2 395
C-TRP82: CE2 387
C-TRP82: CE3 379
C-TRP82: CE3 3.56
C-TRP82: CE3 3.50
C-TRP82: CB 393
C-TRP82: CB 357
C-TRP82: CB 3.76
C-TRP82: CG 3.94
C-GLY 116:CA | 3.85
C-GLY 116:CA | 3.86
C-GLY 115:C 389
C-GLY 115:C 395
SW4 C- TRP82: CZ3 3.92 501
H-SER198:0G 292 C-TRP82: CE3 3.63
N-SER198:0G 342 H-GLY 116: N 323 C-TRP$2: CD2 352
H-GLY 117:N 331 C-TRPS$2: CE2 in
H-HIS438:NE2 3.98 C-HIS438:CD2 3.74
. C-HIS438:CD2 3.84
C-SER198: CZ 373
C-PHE398:CZ 3.80
C-PHE398:CZ 3.78
C-PHE398:CE2 3.71
C-PHE398:CE2 382
C-PHE398:CZ 392
C-LEU286:CD2 | 3.59
C-LEU286:CD2 [ 3.73
C-LEU286: C 3.83
C-LEU286: CA 383
C-GLY 117:CA | .3.99
C-GLY117:CA | 3.39
C-TRP321:CE3 3.96
C-TRP321:CD2 3.71
C-TRP321:CG 373
C-TRP321:CG 3.89
C-TRP321:CD2 | 3.53
SW5§ None None C-TYR332:CDI | 3.80 174
C-TYR 332: CDI | 3.61
C-TYR332:CG ] 3381
C-TYR332:CD2 | 3.57
C-TYR332:CZ | 3.97
C-PHE 329: CE2 | 3.66
C-PHE329:CE2 | 3.74
C-PHE 329:CE2 | 3.72
C-PHE 329: CE2 | 3.86
C-PHE 329:CD2 | 3.89
C-PHE 329:CD2 | 3.75
C-HIS 438:CD2 | 3.86
C-HIS 438:CD2 | 3.84
C-TYR 440: CE1 | 3.87
C-TRP430:CZ2 | 3.76
C-TRP 82:CDI 3.75
C-TRP 82: CZ2 3.74
C-TRPS2 :CE2 3.61
L
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C-TYR 332: CEl 3.90
SW6 C-GLY 115:C 3.67 17.5
N-TYR332: OH 3.89 C-TRP82 : CE3 3.79
N-ASP70: OD1 3.21 None C-TRPS82 : CE3 3.60
C-TRP82: CE3 395
C-TRP82 : CE3 3.96
C-TRP82 . CD2 3.77
C-TRP82: CD2 3.84
C-TRP82: CD2 3.88
C-TRP82 : CG 3.99
C-TRP82:CB 3.85
C-TRP82: CG 3.86
C-TRP82 : CDI 3.95
C-TRP82: CE2 3.70
C-TRP82: CE2 3.68
C-TRP82 :CZ2 3.64
C-TRP82 : CZ2 3.86
C-TRP82 : CH2 3.70
C-TRP82:CZ3 3.79
C-TRP82 : CZ3 3.87
C-TRP82: CB 3.66
C-HIS 438:CD2 3.84
C-HIS 438.CD2 3.95
C-GLY 439:CA 3.69
C-TYR 332:.CZ 3.76
C-TYR 332:CE2 378
C-ASP 70: CG 376
C-ASP70: CB 3.96
C-ASP70; CB 3.86
SW7 C- TRP82: CZ3 380 209
C-TRP82: CZ3 397
C-TRP82: CE3 394
C-TRP82: CD2 3381
C-TRP$2: CZ3 3.94
C-TRP82: CZ2 392
C-TRP82: CE2 3.70
C-HiS438: CD2 391
C-HIS438:CD2 | 391
C-GLY439:CA 3.69
C-GLY115:C 3.68
C-TRP82:CG 385
C-TRP82:CG 385
C-TRP82:CD1 392
C-TRP82:CB 364
C-TRP82:CB 3.82
C-TRP82: CH2 3.74
C-ASP70: CB 3.86
C-ASP70: CB 3.87
C-ASP70: CG 3.78
C-TYR 332: CZ 378
C-ALA328:CB 37
C-TRP82: CE3 3.62
C-TRP82:CE2 363
C-TRP82:CZ2 3.59
C-TRP82:CD2 3.73
C-TRP§2:CD2 3.88 .
SWs C-ALA328:CB 39 12
H-GLU197.0E2 | 3.80 C-ALA 328:C 3.92
N-GLY115: O 394 H-GLU197:OE1 3.96 C-ALA 328:-CB 3.24
' C-ALA328:CA | 3.75
C-TRP430:CZ2 337
C-TRP430:CE2 | 395
C-TRP430:CH2 3.61
C-TRP82:CDI 3.63
C-TRP82:CD1 3.51
C-TRP82:CD] 390
C-TRP82:CDI 3.84
. ——
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C-TRP82:CG 3.67
C-TRP82:CG 3.48
C-TRP82:CG 3.80

C-TRP82:CD2 3.81
C-TRP82:CD2 3.60
C-TRP82: CB 373
C-TRP823: CE3 3.7
C-TRP82:CD2 3.95
C-TRP82:CE2 3.66
C-TRP82:CE3 3.95
C-TRP82:CE3 3.76
C-TYR 332:CEl | 3.60
C-GLY 116: CA 375
C-GLY 116:CA 3.50
C-GLY 115:C 3.60
C-GLY121.CA 3.69
C-MET 437.CE 3.90

SwW9 C-TRP430:CZ2 | 3.70 1.6
C-TYR 332:CEl 396
None C-ALA 328:CB 3.77

C-TYR 332: CZ 3.68
C-TRP 82: CD1 398

chmfom 230 CTRP 82.CD1 398

H-GLU197:0E2 333 :

H-TYR 128:0H 372 C-TRP 82: CB 3.71
’ ' C-TRP 82: CD2 3.95

C-TRP 82: CD2 3.65
C-TRP 82:CD2 N
C-TRP 82:CE3 346
C-TRP 82:CE3 3.54
C-TRP 82:CZ3 3.59
C-TRP 82:CZ3 N
C-TRP 82: CG 340
C-TRP 82:CG 3.82
C-TRP 82:CG 3.74
C-TRP 82: CE3 3.75
C-GLY 115:C 3.68
C-GLY 116:CA 3.89
C-GLY 116:CA 375
C-HIS 438: CD2 364
C-HIS 438: CD2 347

SWI0
: C-GLY 116:CA ggj 27
CGLY 1I6CA |35

C-GLY 115:C :
- C-HIs 438:cp2 | 344

H-GLUIS7:0El | 1.99 C-HIS438:CD2 4 33
H-GLUI97:-0E2 | 371 C-TRP82: CZ3

N , ; : 3.67
one ; C-TRP82: CZ3

, H-GLU197: 0 399 3.80
: C-TRP82: CE3

H-TYRI28:OH | 3.59 350

HGLY 115:N | 3.76 C-TRP82:CE3 | 37,

: ' C-TRPE2CE3 | 352

C-TRPRZCE} | 318

CTRPE2CD2 | 237

C-TRP82:CD2 | 35¢

C-TRPR2:CD2 | 375

C-TRP82: CG e

C-TRP82: CG 3

C-TRP82: CG 38

C-TRP82: CG 35

C-TRPE2CE2 | 33

C-TRP&2:CDI | 35

C-TRPE2:CDI | 379

C-TRP82: CB 366

C-TRP82: CB 3o

C-ALA38:CB | 378

Cc-ALA_ 328:CB | 398

cTyrR»2Ccz |

S
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Swll C-TRP231: CG 3.70 0.504
C-TRP231: CD2 379
C-TRP231: CD2 3.64
C-TRP231: CE3 3.88
C-TRP231: CE2 3.87
None None C-TRP321: CG 3.66
C-LEU286: CD2 361
C-LEU286:CD2 | 3.65
C-LEU286: C 393
C-PHE329: CZ 3.80
C-PHE329: CE2 3.80
C-PHE398: CZ 3.89
C-PHE398: CZ 367
C-GLY117:CA 3.86
C-GLYI17:CA 371
C-TRP82: CG 3.90
C-TRP82: CD1 349
Swi2 C-ALA328:CB | 397 046
O-HIS438: NE2 | 3.91 C-TRP231:CE2 | 3.3
OGLYIIT:N | 332 C-TRP231: CD2 ) 3.48
O-TRP82:NE! | 3.11 C-TRP321:CG | 3.98
OTRPAIONEL | 382 H-HIS438:NE2 | 328 CTRP321:CG | 377
: C-LEU286:CD2 | 3.65
C-LEU286: CA 398
C-LEU286: CA 3.86
C-LEU286:C 391
C-LEU286. C 3.96
C-GLYI117:CA 397
C-GLYI117:CA 3
C-GLY117:CA 3.90
C-PHE398: CZ 3.94
Swi3 C-TRPS2:CE2 | 3.87 10.25
- C-TRP82: CD2 3.81
O-TRP82:NEI 3.24 None C-TRP82: CD2 3.89
C-TRP83: CG 3.63
C-TRP82: CD1 372
C-GLY117:CA 394
C-GLY117:CA 3.80
C-GLYI17:CA 3.96
C-TRP231: CE2 399
C-TRP231: CD2 3.68
C-TRP231: CE3 3.76
- C-PHE329: CE2 3.60
. C-LEU286: CD2 394
C-LEU286: CD2 3.61
C-LEU286:CA 3.75
SWi4 None H-GLYII7:N 3.76 C-PHE398: CE2 | 3.93 0.88
C-PHE398: CZ 3.84
C-PHE398: CZ 3.87
C-TRP231: CZ2 3.98
C-TRP238: CE3 398
C-TRP231: CE2 3.96
C-TRP231: CE2 383
C-TRP231: CD2 3.74
C-TRP231: CD2 3.85
C-TRP231: CZ 3.87
C-PHE329: CE2 3.87
C-PHE329: CE2 6.84
C-PHE329: CE2 394
C-LEU286:CD2 [ 3.23
C-LEU286:CD2 | 328
C-LEU286:CG | 3.87
C-GLYNT:CA | 347
CGLYHT:CA | 368
C-GLY116:C 3.98
. —————
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C-TYR332: CEl 3.82
C-TYR332: CEl 3.76
C-TYR332:CZ 3.80
C-TRP82: CB 3.48
C-TRP82: CB 3.62
C-TRP82: CG 3.56
C-TRP83. CG 3
C-TRP$2: CDI 3.78
C-ALA328:CB 3.47
C-TRP430:CZ2 3.65

SWI5 O-HIS438: NE2 | 398 None C-TRP231:CE3 | 3.80 0.56
O-TRP82: NEl | 3.16 C-TRP231: CD2 358
O-TRP82: NE 1 3.69 C-TRP231: CE2 3.81
C-TRP231: CG 3.97
C-LEU286:CD2 | 347
C-LEU286:CD2 | 391
C-LEU286:CD2 | 3.92
C-LEU286:CA | 3.68
C-LEU268:C 387
C-PHE329: CE2 3.74
C-PHE329: CE2 | 3.84
C-TRP82: COt 388
C-TRP82:CG 3.86

SWi6 None H-ALA328: 0 333 C-LEU286:CD2 | 3.78 0.4
C H-TYR332: OH 321 C-LEU286:CD2 345
H-SER198: OG 2.83 C-LEU286: CA 3.83
H-HIS438: NE2 2.58 C.LEU286: C 3.80
C-TRP231: CD2 an
C-TRP231:CD2 | 3.69
C-TRP231: CG 3.7t
C-PHE398:CZ 375
C-GLY117:CA 3.82
C-GLYIIT:CA | 3.64
CGLTII6:C 3.94
CGLYI6:CA | 3.80
C-HIS438: CD2 3.54
C-ALA328:CB 3.68
C-TRP82: CE2 3.67
C-TRP82: CD2 3.73
C-TRP82:CDI 3.74
SWI17 Nene None C- TRP82: CZ3 377 2.52

C-TRP82: CE3 348
C-TRP$2: CD2 3.81
- C-TRP82: CG 3.77
C-TRP82: CB 347
C-TRP82:CB 3.68
C-GLU197:CD 3.87
C-HI5438: CD2 3.80
C-GLY116:CA 3.73
C-ALA227:CB 3.60
C-ALA227:CB 3.7
C-ALA227:CB 390
C-ALA227:CB 3.74
C-ALA227:CA 3.90

SWI18 C- ASP304:CB 3.61 0.078
O-THR523: N 345 None C-ASP304:CB 3.69
C-VAL233:CG2 | 3.90
C-VAL233:CB 383
C-PRO303: CG 373
C-PHERT7:CD2 | 3.71
C-PHE227:CE2 | 3.96
C-LEU307: CD2 3.86
- C-ASN228: CA 3.60
C-ASN228: CA 3.84
C-ASN228: CB 3.74
C-ASP304: CA 3.88

i
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C-ASP304.CB | 3.70
C-PRO230:CA | 3.68
C-PRO230:CD | 3.32
C-PRO230:CD | 3.84
C-PRO230:CG | 3.71
C-PRO20:CB | 3.83
C-PRO230:CB | 3.93
C-TYR396:CDI | 3.77
C-TYR396:CEl | 3.92
C-TYR396:CEl | 395
C-TRPS22:CB | 392
C-PRO40I1:CG | 3.71
C-PRO401:CG | 3.64
C-PRO527:CG | 3.77

SWIS C-PHE329:CZ | 399 .01t
C-HIS438: CD2 | 3.60
O-GLY116: N 334 C-HIS438: CD2 | 3.59
O-GLY116: N 330 C-HIs438:CD2 | 3.72
O-HIS438: NE2 | 3.89 None C-HIS438:CD2 | 3.86
C-HIS438:CD2 | 3.88
C-HIS348:CD2 | 375
C-GLY116:CA | 3.94
C-GLY116:C 3.54
C-GLY116:C 3.85
C-GLYIIT:CA | 377
C-GLYIIT:CA | 367
C-GLY117:CA | 3.65
C-TRP82:CD1 | 3.97
C-TRP82:CE2 | 3.80

SW20 C-TRPBL:CD2 | 372 220
C-TRP231:CE2 | 392
C-TRP231:CE3 | 391
C-GLYIT:CA | 3.78
C-GLY116:C 3.96
C-GLY116:C 3.79
C-LUE286:CD2 | 3.94
None None C-GLNI19:CB | 3.99
C-THR120:CG2 | 3.82
C-THRI20:CG2 | 3.97
C-TYR332:CD1 | 3.84
C-TYR332:CEl | 3.74
C-TYR332:CZ | 3.96
C-TYR332:CEl | 3.92
C-TYR332:CZ | 3.93
C-ALA328:CB | 3.65
C-TYR332: CEl | 3.58
C-TRP 430:CH2 | 3.80
C-TRP 430:CZ2 | 3.46
C-TRP430:CH2 | 3.63
C-TRP82:CD2 | 3.96
C-TRP82: CG 379
C-TRPS2:CD1 | 3.79
C-TRP82: CG 3.80

SwW2i C-TYR440:CE1 | 3.78 342
C-TRP430: CE2 | 3.86
C-TRP430:CZ2 | 3.73
C-PHE329:CE2 | 392
C-PHE329:CE2 | 3.61
C-PHE329:CE2 | 3.61
. C-GLYI16:C 385
Nene None C-GLY1IT:CA | 387
C-GLY117:CA | 3.90
C-THR120:CG2 | 3.75
C-THRI20:CG2 | 3.87
C-ILE69: C 394
C-ILE69: C 351
C-ASP70: CB 3.80
L
84

Different Computational Approaches to Explore Protein Ligand Interaction of Cholinesterase Inhibitor for
Alzheimer's Disease




| Results And Discussions

Chapter 4

C-ASN6S: C 385
CMET437:CE | 3.68

SW22 N N C-PHE329:CE2 | 392 140
one one C-PHE329: CE2 | 3.89
C-PHE9:CD2 | 3.717
Cp82:CD2 | 3.75
C-TRP82: CE2 377
C-TRP82: CE2 393
C-TRPE2: CG 3.65
C-TRP$2: CDI 3.60
C-TYR332:CD1 | 3.76
C-TYR332: CE! | 3.76
C-TYR332: CEl | 391
CTYR332:CG | 3.8
C-TYR332:CD2 | 3.73
C-TYR332: CE2 | 3.86
C-TYR332:CE2 | 3.71
C-TYR332:CD2 | 3.98
C-TYR332:CDI | 398

SW23 C-1RP82: CG 3.90 0.51
C-TRPS2: CE2 3.60
CIRP82: CE2 365
C-TRPR2:CD2 | 3.69
CTRP82:CD2 | 3.55
C-TRP82:CHZ | 391
C-TRPS2: CZ2 3.84
C-TRP82: CZ2 3.8
N-THR120: OG 3.40 None C-H5438:CD2 | 3.88
C-TBRI20:CG2 | 3.58
C-THRI20:CG2 | 3.70
C-ASP70; CA 3.90
C-ASP70: CB 3.73
C-ILE69: C 393

C-ASN6S: CB 343

C-ASN68:CB 3.81

SW24 C-1RP82:CE3 | 3.9 0.51
C-PEE329:CE2 | 398
C-TRPR2:CD2 | 3.82
C-TRPE2: CE3 3.80
C-TYR332: CEl | 3.56
- C-@N!9:CB | 3.88
C-THRI20:CG | 3.63
C-@YIIS:C 3.83
. C@AY1IS:C 3.78
N-PRO285:0 345 H-TRP82: NEI | 3.04 CTRFR2CG | 366
C-TRP82: CDI 3.63
C-TRP82: CDI 3.76
C-PHE329:CD2 | 3.85
C-TRP82: CG 3.57
C-TRPE2:CD2 | 3.86
c-mere2:CD2 | 3.99
C-TRPR2: CE2 3.98
: C-TRrE2: CE2 3.66
C-TRPS2: CZ2 3.99
C-ALA328:CB | 3.89
C-TRPR2:CD2 | 3385
C-PHE329:CE2 | 3.51
C-PEE329:CE2 | 3.78
C-PEE329:CE2 | 3.53

SW25 C-ALA328:CB | 3.85 0.55
O-PRO285: N 3.84 H-THR284: O 346 C-ALA328:CB | 3.94
N-GLY116: O 3.73 C-ALA328:CB | 343
C-ILE3S6:CD1 | 3.84

NTHR120:0G1 3.41 C-TYR282:CZ | 3.987
K
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N-THR284: O 329 C-TYR282: CE2 3.63
C-GLY283:C 3.90
C-PRO285: CA 373
C-PRO285: CA 373
C-THR284.C 3.80
C-PHE329: CE2 3.84
C-H1S438: CD2 3.63
C-GLYI16:C 383
C-PRO285.C 390
C-THR284.C 393
C-ILE356:CD1 3.89

SW26 C-GLN119: CB 3.58 05
N-GLY116: O 375 ] C-GLNI19:CB 377
N-PRO285: O 345 H-TRP82:NEI 3.03 C-THR120: CG 3.61
C-GLYH16: CA 187
C-GLYI16:C 382
C-GLY115:C 3.78

C-GLY16:CA 398
C-TRP82:CD2 3.90
C-TRP82: CD2 3.80
C-TRP82: CD2 331
C-TRP82:CD1 3.62
C-TRP82: CE2 3.68
C-TRP82: CE2 3.99
C-GLN119: CG 3.80
C-GLN119:CB 382
C-ASNé3: CE 3.56
C-ALA328: CB 3.88
C-GLY116:C 3.64
C-TYR332: CZ 3.99
C-TYR332: CEl 352
C-TYR332:CD1 | 3.74
C-PHE329: CZ 3.82
C-PHE329: CE2 3.78
C-PHE329: CE2 392
C-PHE329:CD2 | 3.84
C-PHE329:CD2 | 3.79
C-PHE329:CD2 | 3.98
C-TRP82: CB 368
- C-TRP82: CB 393
C-TRP82: CG 3.6t
C-TRP82: CG 358
C-TRP82: CG 3.88
C-TRP82: CDi 3.55
C-TRP82: CE3 3.80
C-TRP82:CE3 3.85

Donepezil

pe: C-TYR440:CEl 339 14.8
’ C-TRP430:CE2 3 ’ 42
C-TRP430:CZ2 3'7 0
C-PHE398:CZ

OGLYII&N | 397 C-PHE329-CE2

O-TRP82:NEI 375 None C-PHER9:CE2 | 399

O-GLY116:N 3.97 C-LEU286CD2 | 333
C-LEU286:CD2 | 3%
CTRP3ICD2 | 350
CTRP23ICD2 | 357
C-TRPDICE3 |~
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C-TRP231:CZ3 3.82 20
C-TRP231:CE3 3815
C-GLY117.CA 3.40
C-TRP231:CD2 3.57
C-TRP231:CE3 3.37
C-VAL288:CG2 3.67
O-HIS438:NE2 3.56 C-TRP231:CG 3.56
O-GLYI16:N 3.81 None C-TRP231:CB 381
O-GLYIITN 3.62 C-LEU286:CD2 372
N-SER198:0G 356 C-LEU286:CD2 | 3.78
o C-SER198:CB 313
£ C-HIS438:CD2 396
5 C-HIS438:CD2 | 3.86
g C-TRP82:CDI 396
é C-TRP82:CE2 3.81

e ———
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4.4 Lead Compound Identification

The binding interactions of all ligands have been analyzed. Five compounds have
been identified as the most active from the set of 26 ligands. These ligands are SW12,
SW16, SWI18, SW19, SW23 and SW26. These ligands have shown strong ionic,
hydrogen and hydrophobic interactions with the target protein than the rest of ligands.
These five active ligands along with their interactions, binding affinities and IC50 values .
are shown in Table 4.5. From the table it is clear that the number of ionic bonds in SW12,
SW16, SW18, SW19, SW23 and SW26 are 5, 0, I, 3, 1 and 2 respectively, number of
hydrogen bonds in SW12, SW16, SW18, SW19 and SW26 are 1, 4, 0, 0, 0 and 1
respectively and lastly number of hydrophobic bonds in SW12, SW16, SW18, SW19 and
SW26 are 15, 17, 26, 15, 16 and 35. |

But the binding affinity of the following compounds was least in the data set SW16,
SW19, SW23 and SW26 i.e. -8.6, -10.1, -11.4and -10.5 Kcal/mol respectively reducing
the hits to two i.e. SW19 and SW23. Although ICsy value have 30% role in identifying
the lead .compound buft when the ICsqo value of SW19 and SW23were compared and a
remarkable difference was observed as the ICsq value of SW19 was 0.011 pM and that of

SW23is 0.51 uM.

All these calculations led to the conclusion that SW19 was the lead compound
having binding affinity -10.0Kcal/mol (2™ lowest binding affinity), ICso value 0.011 pM
(lowest ICsq value) and 3 ionic and 15 hydrophobic interaction as shown in Table 4.4a

and Table 4.4b.
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The interactions shown in figure 4.15 highlight the important amino acids of the
target protein pocket and the atoms of the ligands. Figure as well shows the bonding
distances clearly. In case of ionic interactions the O of lead compound form ionic bonds
with N of GLY116 at a distance of 3.34A, of GLY116 at a distance of 3.30A and of
HIS438 at a distance of 3.89A.

In hydrophobic interactions the C of PHE329 at a distance of 3.99, of HIS438 at -
- distances of 3.60, 3.59, 3.72, 3.86, 3.88 and 3.75, of GLY116 at a distance of 3.94, 3.54
and 3.85, of GLY117 at a distance of 3.77, 3.67 and 3.65, of TRP82 at a distance of 3.97,
3.83 and 3.80, of TRP430 at a distance of 3.83 and 3.34, of MET437 at a distance of
3.96, of TYR332 at a distance of 3.58 and 3.77, of ALA328 at a distance of 3.74 and of
PRO285 at a distance of 3.76 n different conformations are identified with the carbons of

the lead.
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Figure 4.14: Binding interactions of SW19 (Lead Compound) with 1P0I

R ——
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Tabled.5: Active Ligands their interactions, IC50 values and Binding Affinity

Ligand | Structure

Tonic Bc;nding

Hydrogen
Bonding

Hydrophobic
Interactions

ToM

Affinity
{kcal/mol)

SWi2

O-HIS438:NE2(3.91)
O-GLY117: N(332)
O-TRPSZ:NEI (3.11)
O-TRP430:NE1(3.82)
O-GLY116: N (3.21)

H-HIS438:NE2(3.28)

C-ALA328:CB (397
C-TRP231: CE2 (3.73)
C-TRP231: CD2 (3.48)
C-TRP321: CG (3.98)
C-TRP321: CG (3.77)
C-LEU286: CD2 (3.52)
C-LEU286: CD2 (3.65)
C-LEU286: CA (3.98)
C-LEU286: CA (3.86)
C-LEU286: C (3.91)
C-LEU286: C (3.96)
C-GLY117: CA (3.97)
C-GLY117:CA (3.71)
C-GLY117: CA (3.90)
C-PHE398: CZ (3.94)

0.46

-83

SWlié H

None

H-ALA328: O (3.33)
H-TYR332:0H(3.21)
H-SER198:0G(2.83)
H-HIS438:NE2(3.58)

C-LEUZ86: CD2 (3.78)
C-LEU286:CD2(3.45)
C-LEU286: CA(3.83)
C-LEU286: C (3.80)
C-TRP231: CD2(3.71)
C-TRP231: CD2 (3.69)
C-TRP231: CG (3.71)
C-PHE398: CZ (3.75)
C-GLY117: CA (3.82)
CGLY!17: CAG.64)
C-GLT116:C (3.94)
C-GLY116: CA (3.80)
C-HIS438: CD2 (3.54)
C-ALA328: CB (3.68)
C-TRP82: CE2 (3.67)
C-TRP82: CD2(3.73)
C-TRP82: CD1 (3.74)

0.4

sWis | -

O-THR532:N(3.45)

None

C- ASP304: CB (3.61)
C-ASP304: CB (3.69)
C-VAL233: CG2 (3.90)
C-VAL233: CB (3.83)
C-PRO303: CG (3.73)
C-PHE227: CD2 3.71)
C-PHE227: CE2 (3.96)
C-LEU367: CD2 (3.86)
C-ASN228: CA (3.60)
C-ASN228: CA (3.84)
C-ASN228: CB (3.74)
C-ASP304: CA (3.88)
C-ASP304: CB (3.70)
C-PRO230: CA (3.68)
C-PRO230: CD (3.32)
C-PRO230: CD (3.84)
C-PRO230: CG (3.71)
C-PRO230:CB (3.83)
C-PRO230: CB (3.93)
C-TYR396: CDI (3.77)
C-TYR396: CE1 (3.92)
C-TYR396: CE1 (3.95)
C-TRP522: CB (3.92)
C-PRO401: CG (3.71)

0.078
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C-PRO401: CG (3.64)
C-PRO527: CG (3.77)

SW19

O-GLY116:N (3.34)
O-GLY116:N (3.30}
OHIS438:NE2(3.98)

None

C- PHE329: CZ (3.99)
C-HIS438: CD2 (3.60)
C-HIS438: CD2 (3.59)
C-HIS438: CD2 (3.72)
C-HIS438: CD2 (3.86)
C-HIS438:CD2 (3.88)
C-HIS348: CD2 (3.75)
C-GLY116: CA (3.94)
C-GLY116:C (3.54)
C-GLY116: C (3.85)
C-GLYI17: CA(3.77)
C-GLY117: CA (3.67)
C-GLY117: CA (3.65)
C-TRP82: CD1 (3.97)
C-TRP82: CE2 (3.80)
C-TRP430:CE2(3.83)
C-TRP82:CDI(3.83)
C-MAT437:CE(3.96)
C-TYR332:CE1(3.58)
C-TYR332:CZ(3.77)
C-PRO285:C (3.76)
C-TRP430:CZ2(3.34)
C-ALA328:CB(3.74)

0.011

-101

Sw23

N-THR120:0G (3.40)

None

C- TRP82: CG (3.90)
C-TRP82: CE2 (3.60)
C-TRP82: CE2 (3.65)
C-TRP82: CD2 (3.69)
C-TRP82: CD2 (3.55)
C-TRP82: CH2 (3.91)
C-TRP82: CZ2 (3.84)
C-TRP82: CZ2 (3.81)
C-HIS438: CD2 (3.88)
C-THR120: CG2 (3.58)
C-THR120: CG2 (3.70)
C-ASP70: CA (3.90)
C-ASP70: CB (3.73)
C-ILE69: C (3.93)
C-ASN68: CB (3.43)
C-ASN68: CB (3.81)

0.51

-114
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