
Class Testing From OCL Class Contract Specifications
Using Evolutionary Multi-Objective Genetic Algorithms

Supervised By

Mr. A tifAftab Ahmed Jilani

Assistant Professor, FAST NU

Co-Supervised By

Mr. Syed Muhammad Saqulain

Assistant Professor, IJUJ

Submitted By

Rehan Frooq

(119-FAS/MSSE/F06)

Department of
Computer Science and Software Engiiscerinj
International Islamic University, Islamabad

CENTRAL
LiORARY
ISLmuIABAD.

Accession Mn

D/\f\ 1^ ^ ^

o o f

T ^

1 , ^ O '̂ ^ a J U L -

l>

A thesis submitted to

The Department of Computer Science and Software Engineering,

International Islamic University, Islamabad
k

' as a partial fulfillment o f requirement for the award o f the degree of

MS in Software Engineering

DECLARATION

I hereby declare and affirm that this thesis neither as a whole nor as part thereof has been

copied out from any source. It is further declared that 1 have completed this thesis on the

basis of my personal efforts, made under the sincere guidance of my supervisors. If any

part of this report is proven to be copied out or found to be a reproduction of someone

else, I shall stand by the consequences. No portion of the work presented in this report

has been submitted in support of an application for other degree or qualification of this or

any other University or Institute of learning.

Rehan Farooq (119-FAS/MSSE/F06)

Acknowledgements

This is an opportunity to thank Allah Almighty, our creator the lord of the lieavens and

the earth, who gave me courage to stand all the difficulties, and blessed me with all His

blessings throughout my life. It is beyond any doubt, due to His blessings, that the

targets, once seemed unachievable were attained successfully.

It was only due to, continues support and guidance of my research supervisor Mr. Atif

Aftab Ahmad Jilani (Assistant Professor FAST NU) and co-supervisor Mr. Sycd

Muhammad Saqlain (Assistant Professor IIU). They were always there when needed

and supported me in any possible way they could. I am really grateful to both of them and

their contributions in my research are priceless, may Allah bless them both.

Acknowledge is also due to my family, wife and kids. I am what I am. at the moment due

to my parents and siblings, and their tangible and moral support. Without the support of

my wife I would not have been able to get enough time to work on my research, she and

my kids sacrificed their time for me so that I may concentrate on my research. Big

acknowledgement is due to my office Bahria Town Pvt (Ltd) and especially IT

Department, they relaxed me whenever I required, offered me their resources and

allowed me to complete my research.

Rehan Farooq (119-FAS/MSSE/F06)

Abstract

Trend of Software has been towards building bigger, more complex and highly reliable

systems. These trends turn Software failures into fatal and causing catastrophic damages

to human life and wealth. It obviously, becomes extremely important that we must

thoroughly test software systems, to be safe prior to being actually used. Testing of UML

Class models from their semiformal OCL specifications can help identification of defects

early in the software life cycle. Current approaches suffer from inherent problems of

exhaustive exploration of finite state machines (infeasible paths, exponential number of

test sequences and uncertainty o f completions of testing). Evolutionary algorithms can

greatly help by optimizing the test sequences to get optimal coverage, minimal cost and

higher quality.

Our new proposed approach can help improve the testing of UML model based software;

by testing the conformance to semi-formal class operation contract specifications

(specified in the form of OMG standard, OCL semiformal language). We achieve two

main goals (1) Automation of testing process and conformance to standards, of cuiTent

technique of test sequence generation, bridging the gap between the research and industry

(2) Improvements in the state of the art approach through the application of Multi-

Objective Genetic Algorithms (MOGA). Our Java based Testing tool, using our new

approach, gives Test Engineers, choice of selecting better quality test sequences,

optimized in terms of quality and coverage. Automation process makes possible the

adaptation to changed class contract specifications in a dynamic environment.

T A B L E O F C O N T E N T S

1. Introduction.. 1

1.1. Overview...2

1.2. Motivation.. ..5

1.3. Problem Statement..7

1.4. Research Objectives.. 8

1.5. Thesis Outline..9

2. Literature Review..11

2 .1 . Test Sequences Generation... 1 2

2 . 1 . 1 . Test sequences from State Models ... 1 2

2.1.2. Test sequences from UML Models .. 13

2 . 1 .3. Test Sequences from Software Specifications.. 14

2 .2 . Test Sequence Optim ization.. 18

2 .2 . 1 . Single Objective Optimization.. 18

2.2.2. Multi Objective Optim ization... 19

2.3.Literature Evaluation... 21

2.3.1. Conformance to Standards..21

2.3.2. Lack of Automation and difficulties while automating............................... 21

2.3.3. State-based Problems.. 22

2.3.4. The Need and Potential of Optimization...22

2.4.Summary.. 24

3. Proposed Approach... 26

3.1. Parsing of Class Contracts and Generation of Abstract Finite State Machine.................27

3.2. Coding of Test Sequences in Chromosomes and Optimization through MOGA........... 30

3.2.1. Coding of Solutions in Genes and Chromosomes .. 30

3.2.2. The Multi Objectives...32

3.2.2.1. Optimize Coverage..32

3.2.2.2. Test Sequence Order Optimization ... 32

3.3. The Genetic Evolutionary Process.. 33

3.3.1. Initialization of Test Sequence Population ..33

3.3.2. Selection for Reproduction... 33

3.3.3. Reproduction of Population.. 34

3.3.3.1. Crossover..34

3.3.3.2. Mutation ...35

3.3.4. Termination Condition ... 35

3.4.The Fitness Functions..................................:........................ ...36

3.4.1. Calculate Fitness By Coverage..36

3.4.2. Calculate Fitness By Test Sequence Order ...38

3.5..Expected Benefits of Proposed Approach ... 39

3.5.1. Adopting to Standards..39

3.5.2. Automation..40

3.5.3. Optimization of Test Sequences..41

3.6. Java based Tool for Research and Industry.. 42

3.7. Summary..42

4. Case Study and Experim ent.. 43

4.1. Problems with Previous Approach... 44

4.1.1. Deviation from Standard OCL Syntax... 44

4.1.2. Inherent Problems of Exhaustive Finite State Machine Exploration....................46

4.2. Application of our Approach... 47

4.3.Mutation Analysis..48

4.4..Advantages.. 50

4.5.Results and Discussion... 50

5. Conclusion and Future W ork..53

5.1.Conclusion 54

5.2.Future.Work... 55

Appendices56

Appendix A: Java Code for Test Sequence Optimization Fitness Functions........................ 57

Appendix B: Java Code for Context Class The Root Class of All OCL Elements60

Appendix C: Java Code of Abstract Finite State M achine... ...67

Appendix D: Java Code for Test Transition... 96

Appendix E: Java Code for Test Sequence Gene ... 102

References106

References...107

Class Testing from OCL Class Contract Specifications Figures & Tables
Using Evolutionary Multi-Objective Genetic Algorithms

List of Figures and Tables

Fig. 1.1. Generated Abstract state model for the CoinBox class................................15

Fig. 1.2. Mutations in M-GEOeval20

Fig. 3.1. Sample Partial Parse-Tree of OCL Operation Contract for Stack Class 28

Fig. 3.2. The Class Diagram of Mapping Objects of OCL Operation Contracts....29

Fig. 3.3. A Chromosome of length n, in our coding scheme.........................31

Fig. 3.4 Sample crossover process, Chromosomes A&B are changed to A’&B’34

Fig. 3.5 Sample mutation process, Genes T3 & T5 of Parent Chromosome mutated

to T’3 & T ’5 to create Offspring Chromosome.. 35

Fig. 3.6 Partial view of automatically generated, exhaustive search-based and

MOGA-based optimized test sequences... 41

Fig. 4.1. OCL Class Contract that does not comply with standard OCI>................ 45

Fig. 4.2. Actual Parse able OCL Class Contract.................................45

Fig. 4.3. Automated MOGA optimized, test sequence generation process.............. 48

Fig. 4.4. Comparison of fault identiHcation efficiency of both the approaches.......49

Table 2.1. Summary of Literature R eview .. 24

Table 4.1. Mutation Analysis of CoinBox, Stack and Circle Classes........................ 49

C h a pter i

Intr o d u c tio n

In this chapter, we present the background iaiowledge of our rcscarch including, unit-

testing from OCL class contract specifications, automation of lest scqucncc generation

process and optimization of generated state-based test sequences using evolutionary

approaches. In the same way, motivations and research objectives will be discussed in a

precise manner. We will also formulate the problems faced in the area, in order to apply

the current approach to the testing process. At the end of this chapter, the outline and

flow o f the thesis is explained.

1.1. Overview

This research targets testing of UML class Models from their Class contract

specifications. It lies at the intersection of Model Rased Testing, Specification Based

Testing and Evolutionary Testing, which are subject-areas of Software Testing, area of

Software Engineering. It specifically targets Optimization of Test sequences generated

from state-based approach, for unit testing of class, from semi formal OCL class contract

specifications. This introductory chapter gives the background of our work and its

significance in the domain of software engineering and software testing.

Software Testing is a discipline of Software Engineering which deals with the testing of

the software to reveal errors and indicate the quality of the software. Modern trends in

software engineering directly affect the software testing process. Test engineers and test

teams today face the challenges of testing large scale systems that might require

exponential time and resources while being built and tested. Changes in requirements are

quite often, and has risk of wrongly elicited (the tacit knowledge) or ill documented

requirements. All these factors point towards a strong need of automaton and

optimization for testing approaches. Due to large scale of built software and dynamic

Stake holder requirements; manual testing o f software bccomcs impossible [17J. Testing

o f software in turn becomes strong candidate o f automation along with a need to figure

out the ways by which we can efficiently test the software keeping within the limited

budgets o f time and cost. Many authors have worked towards automation and

optimization o f testing process as discussed in the literature review section, but there are

still many grayi areas where there are questions that need to be addressed by the research.

Specification-based testing refers to the area of software testing where software is tested

against its specification. It is a type of ftinctional black-box testing where software is

tested on its interfaces for the validation against the documented requirement

specifications. This discipline deals with generating test suites from the software

specifications, executing the test case scenarios against the actual software and then

checking the results against test oracles. One of the biggest plus of this type of testing is

that it allows building of testing environment for the software even before the existence

of the software [1], [11], [14] and [18],

Model-based testing is a sub-area of Model-based development and Model drive

engineering, where we represent software in terms of models. One of the famous

modeling techniques used is Unified Model Language (UML) where software is modeled

in the form of static structures (e.g. class diagrams) and dynamic structures (e.g. sequence

diagrams). Model-based development lets the engineers to focus on the actual domain

specific issues compared to technical issues of software development process itself A big

advantage of Model-based development and Model-based testing is the availability of

tools support. Tools are available that can help engineers model soft^vare. transform

software models from one representation to another and generate abstract test cases

extracted from the software model. These abstract test cases can then be transformed into

actual executable tests [1 1], [16].

Genetic algorithms are random search-based heuristics. They mimic the natural process

of evolution; they are also referred to as simulated genetic algorithms. As the theory of

evolution states, that living things get improved generation after generation and adopt

better quality combinations of genes. While using genetic algorithm for a problem

optimization the very first step is representation of the potential solutions in terms of

chromosomes. Each chromosome consists of number of genes; genes are part of a

potential solution to problem at hand. Together these genes and chromosomes form the

population of possible solutions. MOGA tools execute Genctic algorithms, applying

genetic operators on the input population.

The evolution process involves following steps:

• Initialization of the population, random or from some input.

• Selection of fittest individuals based on their calculated fitness values.

• Reproduction of the selected individuals.

• Termination of the evolutionary process based on selected criteria e.g. n number

o f generations o r/ta rg e t fitness values.

Reproduction involves application of the genetic operators based on probability.

• Crossover is a genetic operator where two or more than two solutions arc

combined to foim resulting child solution. A number o f techniques for crossover

are available in the literature. The simplest is called "'single point crossover".

where a part of first chromosome and the remaining part of the second, disjoined

at a point of crossover, is taken and combined to produce resulting child

chromosomes.

• Mutation is the random change in part of a chromosome that results in a new

individual with properties different from the parent. Depending upon the selected

probability one or more of the genes can be change at random by the GA

execution mechanism.

traditionally GAs has been used as a search heuristic for finding optimal set of solutions

to problems involving single objective. Recent advances in the field suggested usage of

GAs for multi objective optimization [16]. In principle Multi Objective GAs are the same

GA based tools, but the potential solutions are evaluated for multiple parameters and their

fitness values are evaluated by multiple fitness functions. MOGA evolulion process then

involves comparison of the multiple fitness values of candidate chromosomes. Multi

Objective optimization is particularly used with problems where no objective cai ̂ be

optimized without sacrificing the quality of the competitive objective(s). The solutions so

generated are referred to as Pareto-Optimal solutions. Test sequence optimization

involves trade-off between testing cost and achieved test coverage; hence the process is a

strong candidate of Multi-Objective Optimization [17].

1.2. Motivation

Since the earliest development of computer program, software has come a long way and

through many paradigms. It was journey fomi a few lines of computer instructions

punched on machine readable cards to millions of lines of code to develop high end

graphical user interfaces. The trends in the last three decades in software engineering

have been to build bigger solutions to bigger and more complex problems, from a single

user programs to multi-user, geographically distributed applications with multiple tiers

and from an application affecting a few users to the application affecting the humans all

over the world. Historical paper titled “No Silver Bullet" written by F.P. Brooks still

holds even after 3 decades of its publication [20], Brooks discusses inherent properties of

software like Complexity, Conformity, Changeability and Invisibility.

As the software has grown, became more and more complex and ultra dependable; the

need of finding and fixing problems, before the actual deployment and early in the

Software Development Life Cycle has grown enormously. Over the past decades the

trends in the software development have shifted from being considered as Art of

individual programmer towards establishment of Engineering grounds and principles.

A very first consequence o f the application of Engineering Principles to the world of

Software Development was the thinking of software as a product as any other industry

product. This raised questions about quality of the software and introduction of concept

of quality.

Quality of software must be tested against the intended behavior as specified by the

software requirement specifications. It raises major concerns Firstly, software

requirements should be specified so that they could formally be tested against the actually

developed software [1]. Secondly, requirement specification techniques should be

understandable by software developers and should be close to programming syntax in

order to be used in the industry (OMG's like Object Constraints Language OCL [21]).

Thirdly, some techniques should be devised to map these requirements "to the actual

functionally of the software. Finally, problem domain of testing has unlimited testing

combinations for different input variable values so testing sequence should be figured out

to the reveal most of the possible errors in the software implementation.

1.3. Problem Statement

Model Based Testing involves automation of testing process. Building a model of the

System Under Test (SUT) and then; generation, execution and evaluation of Test cases

for SUT. Operation contracts specify the class behavior in terms of invariants, pre and

post conditions, these class contracts are bindings that SUT must conform to. An obvious

advantage of using class contracts is that they can be written in form ofsemiformal OCL

constructs which are more precise compared to the natural language specifications and

also can be easily converted to a machine readable form. The survey of literature reveals

that class contracts have potential of revealing the test sequences for the unit testing of

classes [1], but to-date very little work has be done in this direction. State of the art

approaches also lack automation and conformance to industry standards.

Search based optimization algorithms on the other hand have been employed widely in

the field o f MBT but to date there is no evidence of their application for test sequence

identification from class contract specifications. Optimization techniques are promising

for optimization of number and quality of test sequences by overcoming the stale space

explosion problem.

1.4. Research Objectives

Our research targets improvement of the current OCL class contract specification

based test sequence generation process [1] in multiple ways by:

a. Applying current state of the art test sequence generation technique to the industry

standard OCL class contract specifications.

b. Automation of the current technique of test sequence generation from OCL class

contract specifications.

c. Improvement of the current specs based test sequence generation approach by

application of search-based techniques of Evolutionary, Multi Objective Genetic

Algorithms

a. Optimizing the test Coverage achieved by the generated test sequences.

b. Minimize the number of infeasible test sequences.

This research answers the following questions:

• How we can improve the Unit Testing of Class Models using OCL class Contract

specifications in terms of compliance to industry standards and automation of the

Test Sequence Generation Process?

• How state of the art techniques of Optimization (Evolutionary Genetic

Algorithms) can be applied to the problem of determination of Test Sequences

based on OCL Class Specifications to achieve reduction in number of infeasible

test sequences and improvement in test coverage?

1.5. Thesis outline

The rest of the thesis is organized as follows

> Chapter 1 describes the overview of Software Testing and Test Sequence

Generation, approaches of optimization using GA and MOGA, problems with

current approaches, motivation and the objectives of the thesis.

> Chapter 2 presents the literature review related to test sequence generation in

association with OCL, UML Models, GA and MOGA. In this chapter we discuss

numerous Test Sequence Generation techniques. Moreover, we present identified

limitation in the literature. At the end of the chapter, we present analysis of

literature in the form of a table.

> Chapter 3 defines the proposed approach based on the found limitations in the

literature. In this chapter, we present flow of proposed approach. We discuss the

different modules of the proposed approach. We also discuss the Genetic

Algorithm (GA) and the different operators of GA, Furthermore, we present

algorithm for the proposed approach that how we program the proposed model.

> Chapter 4 presents a detailed overview o f the results obtained after

implementation of the proposed approach. In this chapter, we present the

implementation of our approach in Eclipse IDE for Java as development tooL

Java 1.6 (Java 6) as programming language. Use of industry standard

DresdenOCL parser [22] for parsing OCL operation contracts, Java Genetic

Algorithm Package (JGAP) [23] for MOGA execution, JUnit [26] for unit testing

of Class Under Test (CUT) and Java Reflection API [27] for analyzing run-time

behavior o f the CUT. Finally, the claim is validated by comparing the proposed

approach with current approach in the literature.

Chapter 5 provides conclusion of the current research work. This chapter also

presents the future work direction to carry out further work in such an important

research area.

C h a p te r 2

L iter a tu r e R ev iew

It is notable that the work is diverse in nature and spans across boundaries of the areas of

software engineering. We have divided the review in sections as the work on test

sequence generation (from state and UML Models), test sequences generation from

formal specification (especially form operation contracts) and test sequence optimization

(by single and multi objective approaches).

2.1. Test Sequences Generation

Generation of test sequences (synonymous to test cases) is one o f the toughest tasks for a

test engineer. This testing phase involves trade-offs between number of test cases and the

desired test coverage, number of test cases and available resources, quality of test cases

and achieved coverage etc. This test sequence generation process can be quite tiresome if

done manually, so literature has quite a lot of work concerning automation and

optimization of the process.

2.1.1. Test sequences from State Models

Ruilian Zhao et al [3] aim to develop the infrastructure of automatic lest data generation

for EFSM models that produce real data to trigger feasible transition paths. It also

provides empirical results on efficiency analysis of test data generation for a set of state-

based models. In this paper, a GA-based system is presented to automatically generate

test data for feasible transition paths in EFSM models.

Karnig Derderian et al [13] present an approach for automated Unique Input Output

(UIO) sequences generation for finite state models. They take scquencc generation

problem as a search problem and generate test sequences based on Genetic Algoritlims

(GA). They use 11 real and 23 randomly generated FSMs as proof of concept experiment.

They also state that the problem of test sequence generation from an FSM is an NP-

Complete problem. The presented experimental results show that GAs give result

between the ranges of 62% better to at least as good as random search. They also propose

a new fitness function for evaluating fitness values of UIO test sequences and claim that

it is performance wise better than the previous approach. They suggest that at small

FSMs random search seems to outperform GA but for bigger FSM models GA are a far

better approximation.

2.1.2. Test sequences from UML Models

UML diagrams model static ^ d dynamic aspects of a system, techniques found in the

literature in general use one of the static diagrams to represent the static structure and one

of the dynamic diagrams to represent dynamic behavior o f the software, in order to

generate test sequences / test cases.

S. Asthana et al [6] have given an approach for generating test cases from class and

sequence diagrams the claim is that this is the novel approach which uses test cases from

class and sequence diagrams without transforming them into any intermediate model. The

approach claims that use of any intermediate form is avoided by the approach from

specification model to actual SUT, but XMI itself seems to be an intermediate form used

for representation of the model.

Chen Mingsong et al [12] present an approach of test case generation from UML activity

diagrams. In their approach they compare the dynamic behavior of the activity diagram to

the actual program execution and in this way the activity diagram behaves as a directed

graph. They use three test selection criteria activity coverage, all transition coverage and

simple path coverage. Code instrumentation is used for recording test data and the test

logging statements are inserted into the program itself. This approach is a white box

testing approach because it needs access to the program source for testing.

2.1.3. Test Sequences from Software Specifications

Atul Gupta [1] discusses an approach where class contracts are used to test class method

interactions. The approach is state based approach. Using an abstract state configuration

of class and initial abstract states, reachable states are incrementally generated by

searching for the methods which can be invoked in the current state and resulting abstract

states are computed. It lacks automation and syntax used does not conform to the industry

OCL standards and fails even to get parsed by standard OCL parsers. The approach uses

AFS traversal to generate test sequence paths, hence faces inherent problems of fmite

state traversal which we discuss in detail in our pitfalls section.

S tate V ariab les ; < S 1 ,S 2 , S 3 >
S 1 - int c u rQ tf {0, 1 ,> ~ 2 } ,
5 2 - boo lean a llow V end {T,F}
5 3 - Int quanrity {-0 , >0>

Fig. 1.1. Generated abstract state model for the class CoinBox [1].

This is the core reference paper used by us and hence we give a brief over view of the

approach here. Author has used the traditional searching approach for path traversal of

finite state machines and all transition coverage is used as sequence path generation, A

specification based testing approach is proposed, which uses class contracts specified in

the form of OCL constraints (class invariants, pre conqditions and post conditions). They

build an abstract state configuration for the class under test, for each initial abstract state,

corresponding reachable states are incrementally generated by traversing and searching

for the methods which are invoke-able in the current state and resulting abstract states are

generated. Author argues that state of an object, being specified by values of its variables

can lead to state explosion and hence notation of ‘"'abstract states” is introduced having

abstract object variable values.

Applying Transition Tree Coverage

Abstract State Machine ^ Test Sequences

Testing sequences were generated using Transition Tree coverage and Modified

Transition Tree coverage (by including additional test by for invalid inputs). The thing

which is lacking in the approach is that it is still not automated (author himself mentions

that in the conclusion section) and no too] has been suggested for automating the

suggested process.

T Miller and Paul Strooper [11] present a case study on specification based

implementation testing frame work. They have used Possum animation tool and Sum

specification language for modeling and specification of GSM 11.11 standard of mobile

communication. They claim that the framework gives almost equal performance

compared to BZ-Testing tools and inore cost effective than manual testing. Authors

suggest stepwise generation of a directed graph and then paths through that graph are the

test sequences.

Marie-Claude Gaudel [15] presents an approach for generation/ selection of test data

from the formal specifications. An exhaustive test set based on the formal specifications

and their correct implementation is proposed. After that selection of a finite test set is

proposed based on domain specific selection hypothesis. Author presents result of case

studies of application of the approach to algebraic specifications in the form of LOTOS

based specifications of ISO OSI based protocol specifications. A big constraint in the

application of this approach may be of manual work involved in order to decide to

i '-w

‘'Selection Hypothesis’" that varies from domain to domain and specifications to

specification.

Planning and execution of tests involves the analysis of the functionality of software

(functional specs), what are the inputs and outputs of the software and its execution

environment. This process is difficult, time taking and teclmically sophisticated. Role of a

tester requires him/her to have programming skills, grip on formal languages like OCL,

mathematical theory of graphs and good understanding and comprehension of computer

algorithms [1 0].

Literary survey reveals that most of state of the art research targets test sequence

generation using UML static diagrams(class diagram) and UML dynamic diagrams

(Sequence diagram and State Charts). UML diagrams are not sufficient enough for

specifying complete class behavior, most accurate details of a class are revealed from the

OCL class specifications in the form of OCL Class Contracts [1],

Test sequences generated using the OCL class contract specifications using state-based

techniqiie suffer from their inherent problems including infeasible-paths and exponential

number of generated test sequences. In this research we try to figure out solution to these

problems besides have automated and optimize the test sequences generated from the

OCL Class contracts specifications. Multi Objective Genetic Algorithms are used to

overcome the issues by their power of search based multi objective optimization as

discussed in [2], [4], [7] and [9].

2.2, Test Sequence Optimization

Shukatl AH et al [7] preset a systematic review of search-based test case generation

techniques. The plus is a comparison of different Meta Heuristic Search (MHS)

algorithms being'employed in search-based testing of software. They have assessed 450

papers out of 6 research repositories. They conclude that Genetic Algorithms are

promising for problem solving in the domain of software testing.

2.2.1. Single Objective Optimization

Mark Harman et al [4] propose three search-based algorithms for test data generation and

preset the result of a case study for the application of their approach. The claim made by

authors is that their approach can maximizes the coverage and minimizes the number of

test cases generated. The size of the software considered for case studies is as big as 144

lines of code, which might be good for a proof of concept.

Andrea Arcuri et al [5] focus on comparison o f 3 test automation strategies namely

Random Testing, Adaptive Random Testing and Search-based testing using Genetic

Algorithms and present their results. They present a comparative analysis of the

approaches and present the results of experiment on 3 SUTs.

S.K. Prasad et al [8] present GA based approach for test data generation and they present

their algorithm that takes the user input variables and using GA generates test data. They

claim that GA outperforms random testing on time measures [7], In another paper S.K.

Prasad et al present another search-based test sequence generation technique using Ant

Colony optimization algorithm where “Ants'" are used to explore CFG to fmd optimized

test sequences.

Compared to competitive optimization techniques, GAs, instead of searching a solution

by heuristic search methods, start with a random set of possible solutions and then

improve the solutions by simulation of evolutionary processes of crossover, mutation and

selection. This process is repeated generation after generation. That way an optimized set

of solutions is guaranteed, which can always be improved further by subsequent GA

implementation, as the optimization techniques give optimal solution(s) because exact

solution is not available [3].

GA techniques are independent from the problem domain; this is quite helpful for general

purpose optimization of the problem, because the GA implementation takes encoded

representation of the problem and yields the optimized results irrespective of the problem

at hand. Being random search algorithms, they avoid convergence to local minima and

the solutions are quite evenly distributed across the problem domain.

2.1.2. Multi-Objective Optimization

Thaise Yano et al [2] present an approach of test sequence generation using Evolutionary

Algorithms. The claim that search based approaches till then had been mostly proposed

for white-box testing. The paper presents, an evolutionary approach for test sequence

generation from a behavioral model, in particular, EFSM. A multi-objective evolutionary

algorithm, M-GEOvsl adopted from M-GEO is used, that can consider two objectives; to

search for a test sequence that covers a target transition, as well as to minimize the length

of this test sequence [2]. Authors present an approach of test sequence generation using

Evolutionary Algorithms. They claim that search based approaches till then had been

mostly proposed for white-box testing. The paper presents, an evolutionary approach for

test sequence generation from a behavioral model, in particular, EFSM. Problem of

Infeasible paths generations is covered by executable model. Transition of interest

coverage criterion is applied using Evolutionary Algorithm. System is modeled in form

of EFSM. Challenges listed by the authors while generating test for EFSM. An

Evolutionary Algorithm is also proposed, based on Pareto optimality. Each solution' is

non-dominating, that is, it can’t be improved in any objective without causing

degradation in at least one other objective. Future work of the authors suggest

improvements like addressing the limitation of the approach when there are no slices of a

model are found and validation of the approach is demonstrated by an experiment but

they sate that they are carrying out further experiments for the validation of the approach

[2].

.eq.
input seq. parameters

1 X I3 Z E 3 Z I3 Z C L] B I T n H - U
-m utntton munition

X I Z Q 3 X I Z I D G I I I j X L L I X I Z I a

Fig. 1.2. Mutations in M-GEOevai [2].

Multi Objective Genetic Algorithm (MOGA) go one step further, they support

optimization for multiple objectives, in our case optimization for two objectives,

minimize the number of test sequences and maximize achieved test coverage of the test

sequences is required[2].

MOGAs have a very good support by open source tools like Java Genetic Algorithm

Package (JGAP), JMetal (a multi-objective GA implementation tool) and Java APT for

_ _ _ _ _ — ̂ ■

Chapter 2 Literature Review

Genetic Algorithms (JAGA) [12],[13] and [14], These and similar tools, being used in the

industry and research, it makes them more practical to be used for the practical test

sequence optimization for industry usage.

2.3. Literature Evaluation

Approaches and techniques in the literate has different problems here we discuss these

identified problems as found in the literature.

2.3.1. Conformance to Standards

Class contract based test sequence generation technique found in the literature [1] does

not conform to industry standard OCL syntax so it makes the process impractical, while

being adopted by industry practitioners. Due to the same reason current technique lacks

automation. The first phase of the research focuses on adopting the technique to work on

standard OCL syntax. We take standard OCL syntax specs and apply the test sequence

generation technique to get the output test sequences. This kind of test sequence

generation approach is state-based as discussed [1].

2.3.2. Lack of Automation or difficulties while automating

Approaches found in the literature either don't provide any automation at all (assuming

the input in a predefined state) or Fail to comply with the state of the ait industry

standards like e.g. deviation for the standard syntax It makes it hard for test engineers to

used these techniques Software requirements and hence specification are quite often

volatile, automation can be a great help to regenerate the test sequences from new

specifications [1], [2], [4], and [15].

2.3.3. State-based problems

Almost all the approach used in the literature use Graph/State Machines as an

intermediate form of representation for the software before generation of test case /

sequence [1], [2], [6], [9], [12], [13] and [14], These State-based approaches suffer from

inherent state space exploration problems. A large number of possible test sequences may

require exponential time and effort for the testing process itself. Unfortunately resources

and time are limited for the Software Development Lifecycle (SDLC). Many of the state-

based generated test sequences might be Infeasible, repetitive, reoccurring possibly

several times or might not be required at all. It is not practical and, in general, impossible

to asses all the possible test sequences of program flows due to effort and time required

for execution. There is always a tradeoff between number of generated test sequences

(cost) and the achieved test coverage (coverage). It is quite difficult for a machine to

evaluate all test sequences within a reasonable amount of time. Exhaustive testing of all

the test sequences is impossible.

2.3.4. The Need and Potential for Optimization

Being state-based the techriique suffers from inherent problems of state-based test

sequence generation techniques [2], [3] and [4], and can be improved by applying search-

based optimization techniques. Multi Objective GA's are promising for the improvement

where we can remove infeasible test sequences using multiple fitness functions to achieve

maximum test coverage in minimum number of test sequences.

The next phase is to optimize the generated test sequences using Evolutionary Genetic

Algorithms using a multi objective approach where we have two conflicting objectives

first to minimize number of test sequences and second to maximize test coverage of

generated test sequences.

Approach discussed by [2] for test data generation using GA but a similar approach can

be used in our case for generating test sequences using Multi Objective Genetic

Algorithms.

2.4. Summary

Table 2.1 summarizes the comparison of different approaches found in the literature

along with the parameters most related to our research.

Table 2.1 Summary of Literature Review

A uthors Automation Specification

Based

Coverage state Based Optimization Multi

Objective

Atul Gupta 11],

Springer

(2010)

Automation is

hard due to

non-standard

OCL syntax

Yes. from OCL

specifications

-Transition

Tree Coverage

Yes. suffer

from State-

based problems

X X

Marie-Claude

Gaudel [14].

Springer

(2001)

Semi

Automation

Yes. LOTOS

based proof of

concept on

Possum.

-All paths

coverage

Yes. test

sequences are

generated from

directed graph

X X

Thaise Yano ct

al [2j. ICSTW.

IHEE (2010)

Partial

automation

docs not

discuss in

which form

the model will

be taken.

X -Target

Transition

Coverage

EFSM is used

as an

intermediate

form

Yes. an

Optimization

Algorithm,

which is

strictly not GA

based.

Yes

Mark Harman

et al [4],

ISCTW, IEEE

(2010)

X X X Yes an EFSM

based

representation

is used

Three Test data

optimization

algorithms arc

proposed

X

S. Asthana et al

[6], Springer

(2010)

Automation

without using

an

intermediate

model.

X X Y e s , and claim

to have avoided

state space

explosion

because their

model is

executable

X X

S.K. Prasad et

al [8]. ICISTM,

Springer

Claim

automatic

approach for

generating test

X X X Yes

optimization

through single

X

(2009) data objective GA

S.K. Prasad et

al [9J. JCISTM.

Springer

(2009)

Automation of

test sequence

generation

process is

claimed.

X -All state

coverage

Yes. FSM is

generated.

Yes - Ant

Colony based

Optimization

X

M. Prasannan

and K.R.

Chandran f JO].

ICSRS (2009)

Automation of

test case

generation is

claimed.

X X General Tree

and Tree

Structure are

built and depth-

first search

gi\ es test

sequences

Crossover step

of GA is used,

but

optimization is

not mentioned.

X

Chen

Mingsong et al

f 12], ACM

(2006)

Yes from

UML Activity

Diagram

X -Activity

-Simple Path

-All Transition

Yes. UML

Activity

Diagram as

Directed Graph.

X X

K. Derdcrian et

al [13J. ACM

(2006).

Yes X X Yes. Approach

is specitlcally

for FSMs

Yes. CjA based

optimization

X

C h a pt e r 3

P r o po sed A ppr o a c h

Our proposed approach caters for the hmitation of the current approach by using the

OMG’s standard OCL syntax and automation of the test sequence generation. In order to

improve testing effectiveness we apply a Multi-Objective approach using MOGA where

Optimization for test coverage and validity of the test sequences is a concern. Our goal is

to produce test sequences which are most effective in identification and revealing of

software implementation problems.

Our approach improves the previous approach in a number o f ways: here we explain the

actual functionality o f our approach and the advantages achieved. Our new ̂ approach is

divided in two main phases in first phase standard OCL parsing is done on the input OCL

class contracts and an Abstract Finite State Machine is generated using the rules specified

by the previous approach. Second phase involves optimization of state-based test

sequences, generated from the source AFSM using multi-objective GA.

3.1 Parsing of Class Contracts and Generation of Abstract Finite State Machine

We use standard OCL syntax and build the test sequences from the generated Abstract

Finite State Machine. We use standard OCL parser [22] for generating OCL pares tree of

input class contracts. This parser is frequently used with Eclipse IDE for Java [25] for

parsing of OCL constraints on UML Models. This parser is responsible for generating

OCL parse tree from the textual OCL class contracts.

111 .

1̂ ^ a r t "package ST cor^ext S ta ck :: Top : I n t e ^ miJ : 0 context S la c k :: isEmpty : Boolean in it ; t r w context St.Bck inv : Top < lO cor_
■ 3 - ^ OclFte “package ST context S ta ck :: Top : Integer r t t : 0 cortext S tack:: feErnpty ; Boolean ifH t: true context Stackin'-/: Top < I
c- ® -^ 5 P^kagedConstr&ntLi^tCs "package ST context X ac k :; Top : Integer init : 0 context S ta ck :: isEmpty : Boolean inst: true con
‘ PathNameCs “ST - t
[I • 5 mpfeIdentifierC5 “̂ T "
i ContextDedafatw iListCs "context S tack;: Top : Integer ir^ t: 0 context S ta c k is E m p tv : Boc^ean ; true context 3;af

3 AttrOrA550cContextDedarationC5 “context S tack;: Top : Integer h it : 0 "
' $ -^ P a th M a n ^ C s "Stack:; Top"

' 5 SiiipleTypeTypeSpecil'iet “Integer "
’ ̂ ^ In̂ InitOrDerVatû s "ir̂tl : 0 "

ContextDeclaratBnListCs “context S tack:: iiEmp^y : Bc<<iean in it: true context Stackinv : Top < 10 context Stack ;;
S H O AttrOrAssocCoritextDedarationCs “context S ta c k is E n ip ty ; Sooleari inst: tr ue "
3 - £) ContextC^claratkrd-iitCs "context Stack inv : Top < 10 context Stack :: Stack () post ; s e lf . Top = 0 arid self . i-:

K - ' t ^ CiassifietCortextDeciarationCs "coritext Stack in-v’ ; Top < 10"
CortextDeclarali«M.i5tC? "context S ta c k S ta c k C) p o s t: self . Top = 0 and self . isSmpty = TRUE context 5

S - a OperationCwitextDeclarationCs “context S:ack :: Stack () p o s t: self , Top = 0 and self . ii-Empty = TRUE
ContextDeclarstiw listCs "context Stack :: push C v a l ; Hit) : void pre ; self . Top < 10 p o s t; setf . Top =

C'perdUonContextDetlarationCs "context S ta ck :: push(v a ! : int > : void pie ; s e lf . Top < 10 post : s.
ContextDeci^atiortistCs "context S tack:: pop () : void pre : s e lf . isEmpty = FALSE and s e lf . Top >

tPr-P̂ C^er^»orContextDecterationCs "context Stack ;: pop {) ; void pre : s e lf . isEmf^y = FALSE and s

Fig. 3.1. Sample Partial Parse-Tree o f OCL Operation Contract for Stack Class

After generation o f parse tree is the process of semantic analysis of the output parse tree

and construction of domain specific objects in Java. Our OCL parse tree processor

transverses the parse tree and extract the Objects corresponding to the domain concepts

of OCL semantics.

CTInvariei«
CTiT(va'i«>SO
----1---

\̂ s

CTAttiibiitC

CTAttrgaJieO
getr-iwneO
getTyp'̂ O ;
setlypeO t gethlV̂ j I
setlriiv̂ I
getCc'fiJtxtNam̂)
selCof̂ erfNsWo
eetCTTvpeO /
êlTvpeO I

C TCotistraintbase

CTCooilrSiiifbaî
g«Ci5ftstr3nt5lis!0
ismconauKio
getiyoeOSetTvpeO
getVarVafrO
tjetVafVa!()

CoiistrainlType
rJVARSNT: Cons-lr;.ritType
PffE Coirtrairtlype
POST; Coristrart!Type
PARAMETER Corel!sufilType

CofiStrainfTypeO

CTComext
CTCorte/10
add̂itribaeO
ad'iA!tr4wte<)
9d(i0pet*toT()
BdcftivariertOa(fe)lriv̂ne(̂ —
getttOCtfibaeiO
getLstĈratior.sO
g«CTConie vtr4smeOsetCTCof!tex1N̂tTieO
cjet&Tvariefi()
selUvwfcrtO
ge:VsitafcfeNsmesOgetĈjeraJionNa ine JO
getstatevwabifso
ctr̂StaJeVarBWerNamesO
ge!AlV8Sje-Slrings<)
geirtv̂ icntiDescO
□e»iis{£0
geiSfateVarO V̂arefcteTyp̂

CTPreCondttion

CTPieOjftdtBoO
CT ConditionalPostCQ^ition

CT CondtnnsPostC i^K xiQ-------------^ ----------

ClPostCoiidrtioii
CtPoEtCoTiditi-;.r<)
getCorxllionan: wi sfr ainiO

CTOpeiaition

CICperatwi()
getC TOPE’S*. onNameQ

set e T Oper aiiorMsTjeogeî ri3tijr«0
(imei’irsO

g e lP c sK o n d it ic n sO

gel Pre Cords w.sO
'«yveCwid!!or.VariabteOisPoŝ’.'IjsfxJtionVattfibleO
gelVafVslijesO
getCcoslrairisO<MVsrV.iilueO
getVijirVrAitQ
getVarValueO
getVarVskieiO
isCccMtiuctotO
ji?tConstfit:̂C'tO
i£lf#ar8d̂etertt£ 0
getP ararnetei ByNameO
getParsJiietir Core'rairisO
selMeJhodNinberOgetMeJhodhkmbeif)
Jir̂ zeO
geiCwntO
g«tParamCcilr(!0

CTVaitableType
ir-iTEOER: CTVatiaWeiype
K>OLEA^^: CTVaris^eType
REAL: CTVariaVijTvps
SirarJG- CTVa:ia«eT-/pe
OTHER; CTVarsWsType

CTVafBb'eTypeOĝslData-̂avafceO
CTCIassV,iri,ih!e<T>

CTCt̂?sVarial;leO
CTasssVâisdjlefl
g6tMs[Tie()
setN-smef)
gdSti Type()

getVsW/isO
adrfVsKief)
reftioveValiji:At()

CTVafiableValne

CTVar'aKeVftKieO
CTVafiaKe-VaSueQ
ConipareT{<)
getV*'ue()

.jetTypeO
seSTyfieO

CTCondtlioiialConstraiirt

CTCotistiattrt

CT CctncllJOnatCcmtf aa-t()

getCondiwOR̂esuSHTruef)
ge1Re:̂ !̂fFalaeO
toSJiiTigC)

CTCcr̂ Lr̂ JOCTCon4;ts«rilO
gelCoriitrantNasfseO
seJC orijtr ai r i tN s m ^

getDescO
SclDescO
geiVsriatteNarneOgelVariafcteNsmeĴ îovirigSeJfO
£€lVar»ai:teNari€̂
ĝ tVariaWeV̂û
s«tV«ia(5teVa:iĵ)
toSit̂)

CTMeihotlPar.-trtietei

CT Me'.bo ciPararTiet er(l
CTMe;rio<iParajTieterO

CTM«hoiiPafa:rî 'TrC)getN«<me()
se lN a tn e f)

g ^ T '/p e O
s^Stt Iype()
getCcnsIrai-'IsO
S«Cofiit:air;ls()
adffCooi'.rariO
gctT eslfr ,pu1V alu e()

g stJ a v a T v p eO

Fig. 3.2. The Class Diagram of Mapping Objects of OCL Operation Contracts

After generation of parse tree tlie next step is of constructing the abstract finite state

machine applying the rules used by [1]. The abstract state model of the software from

specification is created starting from the class constructs. For each constmctor a new

initial state in the Abstract Finite State Machine is created. We then dynamically create

all the resulting states from the initial state onwards.

A deviation here is that previous approach suggest, using transition tree coverage

criterion i.e. test sequences are identified along with the simple paths. Simple paths

coverage misses the self reference transitions and it is quite possible that a method might

fail on subsequent invocations as the subsequent calls might bring the object in as state

(due to implementation faults) that it may behave anomalously; even the specifications

may suggest some other behavior.

But in case we have self transitions to a state then it might skip a valid step in the

sequence of method calls. So it is better if we have row test sequences from exhaustive

search of the AFSM. The test sequences generated in this step are used as an initial

population for the MOGA optimization.

3.2 Coding of Test Sequences in Chromosomes and Optimization through

MOGA

After buildup of the abstract finite sate machine the next phase is of generation and

optimization of the testing sequences. This phase involves coding of the test sequences in

tool specific Chromosomes, execution of MOGA and selection of best fit test sequences

after evolution.

3.2.1 Coding of Solutions in Genes and Chromosomes

We have devised a coding scheme where a potential solution (Chromosome) comprises

of Transition (Test Transition) from the built Abstract Finite State Machine. Each Test

Transition represents a transition in the Abstract Finite State Machine with additional

feature to be automatically executable on a class under test by calling the method

represented by this transition.

Generally solutions or chromosomes are coded in the fonn of binary string values

representing the potential solutions to the problem at hand. But our coding scheme is not

a binary coding were each gene is coded in terms of a binary representation. Modem day

tools allow usage o f custom, user defined genetic coding. Especially while working

within Object Oriented language like Java, where everything is in essence an Object, we

get infinitely many options for vales o f each Gene.

So a Chromosome of length n will have n Test Transition objects (genes). The JGAP tool

used by us allows specifying a mechanism of returning custom random genes values

while population is evolved for the purpose of mutation. To tell the MOGA

implementation system how to get random values we attach a mechanism which returns

random transitions firom the generated finite state machine. Here firstly a random state is

picked out of all state of the finite machine, after that one of the outgoing transitions is

selected at random. A potential chromosome in our solution set can be visualized as;

T, | t „

Fig. 3.3 A Chromosome of length n, in our coding scheme.

Each Transition Ti in the coding scheme, contains reference to an, initiating state

(Transition from state) from which that transition originated and a reference to a

terminating state, to which that transition is leading.

Where n is the length o f the chromosome and Tj is the i^ Transition in the test sequence

and i = l,2,3,...n , during the MOGA optimization mutation and crossover is applied on

the genes. While during mutation the changed gene value is randomly selected transition

from the built Abstract Finite State Machine.

3.2.2 The Multi Objectives

The test sequence generation process should be efficient enough to reveal the problems in

the implementation. In order to get quality test sequences we use two objectives they are

not totally in a conflict but optimization for one might decrease the fitness of the other

objective. We have following two objectives while optimizing the test sequences, it

should be noted that our aim here is to get the test sequences those are more revealing

and uncovering the problems in the class implementation.

3.2.2.1 Optimize Coverage

While testing we are interested to reveal all possible errors by applying all possible input

combinations to the method interface of the Class Under Test (CUT). Due to infinitely

many combinations of class state variables and method input parameter values it is

practically impossible to test all possibilities. We can only have as improved class test

coverage as possible so that ŵ e are sure of a level of the quality of our testing process. So

first o f the two objectives we have is the optimization of generated test sequences in

terms of the coverage. Our fitness function evaluates the number of transitions of the

finite state machine covered by the test sequence.

3.2.2.2 Test Sequence Order Optimization

Comprehensive testing of a class involves testing for both valid and invalid method

interactions [1]. By Inherent properties, MOGA searches through the solution space by

building random solutions based on the genetic operators. In the case of class unit testing

any sequence of method calls may be valid, but the question arises of getting test

sequences which are in sequence according their place in the finite sate model. Our

second of the muhi objectives is to make the test sequences as in order as possible.

Fitness value of solution by assessing its order often is in contrast with the fitness value

for over all coverage achievable by that solution.

3.3 The Genetic Evolutionary Process

The Evolutionary process in our approach is completed in the following steps; this

genetic evolution o f chromosomes is done automatically by Java Genetic Algorithms

Package (JGAP) [23], but as directed by our approach;

3.3.1 Initialization of Test Sequence Population

Initial population o f the test sequences can be generated either completely at random

where transitions from the generated AFSM are picked at random to create Genes of each

chromosome of the initial chromosome pool. While this way we can save the efforts

involved for traversing through the finite state machine but a comparatively better way is

to get the initial pool by exhaustive search of the AFSM. Because, on taking the first kind

of populafion, there is a possibility of evolution of the population tow^ards local maxima.

3.3.2 Selection for Reproduction

Process o f selection involves selection of fittest individuals for mating in the next

population. Here each gene is passed from the genetic Evolution tool to our fitness

function evaluator and is then assigned fitness values based on our fitness functions.

3.3,3 Reproduction of Population

Population crated in step one under goes Genetic processes of Crossover and Mutation

and gets evolved over generations. After each generation, chromosomes are assigned

fitness values according the fitness functions.

3.3.3.1 Crossover

Based on the selected crossover probability a single point crossover is performed on the

population chromosome where parts of the chromosomes are sv/apped and new offspring

are created for next generation selection.

Chromosome A

Chromosome B

Chromosome A ’

Chromosome B ’

T a i p r a 2 T a 3 T B 4 T a s I
i

 ̂ 1:

Jxbi j T b 2 | T b 3 T b 4 T b s f l

[X a , T a 2 I b 4 i T b ^ I

Tbi [Tb2 TbT T a 4

1

T a s j

Fig. 3.4 Sample crossover process. Chromosomes A&B are changed to A'&B'

3.3.3.2 Mutation

In this operation value(s) of Genes are mutated based on the mutation probability and

resulting chromosomes are constructed. Number of genes changed during the process,

depends on selected level of mutation and selected probability of mutation. Here some of

the Test Transition objects in the target chromosome are replaced with randomly selected

values form the AFSM. Our random transition selection mechanism plugs in with the

evolution tool and provides it random transitions when required for mutation purpose.

Parent Chromosome

Offspring Chromosome

' f ; i x r | T 3 | T 4 T , i

| T i 1 T 2 ' T ’ 3

F
i T ’ s l

Fig. 3.5 Sample mutation process, Genes T3 & T5 of Parent Chromosome mutated to T ' 3

& T ’ 5 to create Offspring Chromosome.

3.3.4 Termination Condition

Termination criteria in a genetic evolution process can be o f two types, firstly when we

evolve the population to reach a specific amount of fitness values and secondly where we

evolve the population to a specific number of generations. Second termination can be

used if we are sure of the required quality of the chromosomes, but while optimizing test

sequences unfortunately, that is not the case. So we select the termination criterion ol

evolving the population, specific number of times while reproducing the individuals.

3.4 The Fitness Functions

In order to optimize the test sequences through MOGA, the role o f efficiently defined

fitness functions is critical. The MOGA based tools use these user defined fitness to

assess the quality o f solutions (the chromosomes). The simulated genetic process of

evolution, assigns the fitness values to the chromosomes for cach generation and after

application of genetic operator only fittest chromosomes are selected for subsequent

generations. For test sequence optimization, we have devised the following fitness

functions:

3.4,1 Calculate Fitness By Coverage

Calculates the coverage of current chromosome by the number of transitions covered and

assigns the fitness value according to the following algorithm

n
Coverage Fitness (CF) = ^ (c o v e ra g e weight fo r call sequence)i

[=1

Description of calculation of coverage weights is

• If a transition is covered once chromosome is given additional positive weight-

age, it rewards a chromosome for covering a transition.

• If a transition is not covered at all by a chromosome it is given additional

negative weight-age, it reward a chromosome negatively for not covering a

transition.

• If a transition is covered more than twice by a chromosome it is given additional

negative weight-age, it rewards negatively due to repetition.

The fitness value for a chromosome by coverage can be calculated by the following

pseudo code:

Initialize CF:=0, wCoveredOnce, wCoveredTwice, wCoveredMoreThanTwice

For each Chromosome c in the current population

For each Gene g in c

I f g occurs once

CF = CF + wCoveredOnce

End

I fg occurs t\vice

CF = CF + wCoveredTwice

End

I fg occurs more than twice

CF = CF + wCoveredMoreThanTwice

End

End

Set coverage fitness o f c equals CF

End

wCoveredOnce, wCoveredTwice, wCoveredMoreThanTwice are, problem specific
arbitrary weight-ages, fo r at least one state coverage, a state covered twice and a state
covered more than two times.

3.4.2 Calculate Fitness By Test Sequence Order

This fitness ftinction assesses the fitness of a solution chromosome by assessing how

much that particular solution is in order according to the generated AFSM. A better test

sequence will be more in order than its competitive test sequence. We get fitness value as

weighted sum of all individual fitness values of each gene of a chromosomc.

Mathematically the fitness by sequence validity for a chromosome is calculated as

n
Fitness Order{OF') = initial state weight + ^ {sequence weight fo r call sequence'ji

i = l

Description o f the weight calculation for test sequence order fitness is

• Initial state weight, if the first gene of the chromosome has an initial state of

AFSM as from state then this weight is added else skipped.

• Sequence weight for call sequence, we calculate the quality of chromosome by

the sequence of method calls and reward each chromosome by following

formula

o If any of the method calls (genes) is in a valid sequence then a positive

weight is added to the second fitness value,

o If any of the method calls (genes) is not in a valid sequence then a

negative weight is added

The fitness value for a chromosome by validity can be calculatcd by the following pseudo

code;

Initialize O F ~0, wSStale, wlnSeq, wNotlnSeq

For each Chromosome c in the current population

I f c starts with an initial state

OF = OF + wSState

End

For each Gene g in c

I fg is in sequence

OF = OF + wlnSeq

Else

OF = OF + wNotlnSeq

End

Set order fitness o f c equals OF

End

wSState, wInSeq and wNotlnSeq are, problem specific arbitrary weight-ages, fo r starting
with initial state, being in sequence and not being in sequence respectively.

3.5 Expected Benefits of Proposed Approach

Proposed approach is expected to give following benefits over current approach of test

sequence generation and optimization.

3.5.1 Adopting to Standards

The Object Management Group (OMG) has clearly defined specification for standard

OCL syntax. As this thesis is written the current version is 2.3.1 as of January 2012,

which is available on OMG’s website for download. When OCL class contract, presented

in the literature, is compared to the industry standard OCL syntax; it is revealed that,

current approach deviates from the state of the art OCL used in the industry. As a matter

of fact no standard OLC parser accepts the syntax used in the literature. Current syntax is

more C-hh like which is not acceptable as OCL syntax according to the OMG OCL

specifications [22]. Since the approach deviated from the standards, it was quite unlikely

to be adopted by the industry practitioners. In order to build our testing tool we observed

that OCL syntax used by current approach fails to get parsed by standard OCL parsers

that follow OMG’s OCL class contract specification syntax. So we took the OCL Class

contracts in standard OCL format and then applied current approach to it for building

Abstract Finite State Machine (AFSM). Then we generated the test sequences by

traversal of AFSM, beginning from the start state. We call these test sequences as raw

test sequences because they suffer from the state-based path search problems. Now our

approach is able to generate test sequences directly from standard OCL.

3.5.2 Automation

Conformance to standards provides the benefit of automation for the process of test

sequence generatioii. Reading OCL class contract specifications, we automatically

construct OCL parse tree. After that our tool does semantic ^ a ly s is o f constructed OCL

parse tree and applying the rules defined in the literature build corresponding AFSM

automatically. Next step is automatic generation of the raw test sequences from

exhaustive search o f AFSM, these test sequences can be directly used by the test

engineers if they think raw test sequences test sequences are good enough and can be

used without optimization. In case when test engineers decide to go for Multi-Objective

GA based optimization for the test sequences, our tool automatically run MOGA over the

raw test sequences selecting a random population out o f them. This way the process of

generating test sequences from standard OCL is automated all the way to the MOGA

optimized test sequences.

m SBf

r«t Casw from Bdwtatwe Se»di
a d d lT in lf ! (» ; I n t e g e r) ;

adciDrln!:?! k ; Inceĝ r } ;
2ddJ>t i rifc? (K : Ifttegsr) :
s(3dS(finfc7(JE ; Intsyst / ;
addDt;nk7j as ; Incsgsr) :
Si1f!5c; nfc? (k ; X n ceg sr) ;

ad(!Di::,n ,̂7(m : Integer ; ;
^ddPcinkTi le ; Intigsr / :
sddDritik7(m ; Xnca^r ! :
9adDcintc7(B : Integer } :

sadlTinkTi m : ’ nt»gar) ;
addl!i:infc7f m ; Incager) ;
sMtirinkT I ji : Incsger) :
a^dPrit\t::7(m ; Integer r ;

vo id ,addC -r3 (I
v 3 id ,sd d ’; t r S ()
v o id , add 'ittS ()
vi3iii,addCxrS()
vo id ,sd d Q trS ; 1
void.6di}QtrSi I
void.siddC trSj j
void,sddCtr8(i
void.MaiC’t t S t I
V 3 id , id d O tr S f)

v o id ,i* » 0 ti:8 i)
v o id ,« k J 4 ’t f S #)

VDid,addC.tt3{)
T O id,a<SS-:tr8()

void,adaij;rB()
v o : d ,a d S C t r e f)

vcia.addC-'-rSC)
v-oici,ad5C'trS()
ira;d,adaO'r8()
void.addCtrSi)
void,adSOtrc{ !
vc id ^ a d d 'D trS j)

vQid,addOtrS()
TOid.adSCcrSf)
void,adi>;rSC 5
vc>id,adiiĈrgi !
voi<l,aadOci3(}
void,a;fefQir8(i

; v o id ,a d d Q c r S (I

; v c id ,a (Jc!0 tc5 ()

: v o id ,a d d 0 t r 3 ()

: v o) d , 3cJdOtr?()

: ViiG,addvCc3j J
: v ~ ic ,9 d d C t t :5 (5

; v o i t i ,a * i i : ' t r 3 (j

: v - id < a d d O tr 5 (j

: v s id .a d d C tir S i |

; T O id,aciciO trS()

: % -0tKraadQci3()

: ■.■cld,addCcrSi !
: v o id ,a d d O tE 3 ()

: V 5id ,a£jdC ^rS

; v o ; d , r e ' ' i t r s 9 ()

: v o i l ,4 id C - : t S ()

;)

; void ,sddQ -L -rS()

: v o id . f t d c ’v r r S i)

; v u : .d ,r e 'C ^ i3 ? l S

: v o id .^ td d O trS ;)

: v o id ,^ d d C t r 3 i J

: vo;d,5ddOt!;S; i
: v o id , r e tQ tr s S r)

; v Q id , ’.d d O trS i j

; vo id ,3ddC rrg |)
; v o id .a d d O tr S ! S

: v o id ,r £ tC t X 3 ? i)

; • / o ; d , a « ’> ,-e C j

v c id ,a d d ^ ' ir g ()

; V 0 'd ,3 d d 0 - r S t)

v :? id ,c s c O :r o 9 (i

v c i d , a d d ' ' r S ()

; v u ic ! ,3 d d j : '£ {]

v c -id , c e ! :0 'r 3 9 (;

v o id ,a d d C ir S j 1

void,aLSdOtrSf)
: v o :d ,sd d O tr S C i

v o id ,r ? :t ,C 'tr s9 ()

v o id ,a d c i> r 6 C)

v i id .a d d Q - r S i j

; '.'0 id ,3 d d C tr S s !

; v o id ,a d d O tr 5 ()

: v -id ,ed d O H :3 i; I

: void,-3'iiOt:r?()
; vjid.addOtiSt i

: v : - i f i ,3 d d v tc S {)
: vo!d,add'jt:rSt j
: vQiQ.sddOtcSi)
: vjid,::ecQccs9()
: v : ; d ,a d d C lr 3 (f

r Vild,
; vaid,5idd0tra()

: v i i ! i , r e i 0 t r 3 3 (i

; v o id ,5 d d 0 t t : 3 (i

: - w id , - i d d '^ r 8 f J

: vQid. iaaOT̂i;?
; v o id , a d d '^ rS I

; v o id . id f iC t r f

: ■y'OiXidtSC-.’-i
: V0id,s'id0i:6 I
; void,addQtc5
: v o id , iddC* t f

: v o id , iddO'^rS

; v o i d , it id 'j 'r S I

; vgid,addO T;r?

: v o id , 3dd':iti:£

: v o id , addC’.r f

L v o id ,r 4 ^ 0 'r 5 ^

; v o id ,a d d -5 ^ t£

i ‘
f « t C4SK A ller Muti O bjecbw Geiieth: Optinfc^Sion

r e iO t r s ? ! 1 : v o i d , 3 ddI’rinJr7 (3 ; I n t e g s r) : v - o id , 3 d iC ;r S (i ; \s c ld ,a d d C tr $ l) ; v o v d ,sd d G tt:3 (i ; v o id ,c t '^ 0 t r 2 9 (i ; v 6 i c , 5 ddOcrS {) ; va id ,ad d ';';E

a id D c :t ik 7 (» ; I n t s g i r) : v o i d , ad d C trS t) : v o id ,a d d Q 'r 3 C) : v o i d , ^ a O t r 3 [) ; v o id , r cS C crsS i) ; v o id .a d lC r .r S i 5 : v o id ,a d d ':c i:3 t) ; v o id ,

sd d D r:n fc7(m ; I n t e g e r 1 ; v o id ,^ d d '5 t t 5 {) ; vo id ,SM ldO -r8 C) : v c id ,a tid r 'i:ir if:7 (je : I n r ig e r) : void ,ad<lO i:i:3 (j ; v o ; d ,r e iQ ^ r 59 ;) ; v o id , t iC O t r s ? i i

a d d 0 ti:9 {) : v o :d ,a d d '> .r 8 () : v ii id ,a d d Q c c S () : v o id ,a d d C s r S ; > : v o id ,a d d O ir £ { 1 ; v o id jL e tC ’cr^S () : vG id ,^ d d O trS |) ; v c i d , addOt: 6 i i ; v o i d , 5 d<:

a d d S r in k 7 (n> ; T n t s g ir) : v s id .a d d C t t S i 5 : v o id ,a d d 0 ^ iS (j : v o id ,a (M 0 t t 3 (j : v o i d , i s - ,Q t r s 3 (i ; v o i d , s d i Q i r S \ }

=d d 5rin fc7(bi : I n c s g e r) : v o id ,a d d C c c S () : v o ; d ,« ^ C ^ r S (j : |« id ,a d (j[W .r g () : v o i d , r e i O t i t s ^ l j : ' .■ o :d ,a d d j ir 8 (5

addDriTi!^7(m : In tsc i? r 1 ; v o id ,r e T :’;T;irs9i j : v o id ,s d d O ir B [) ; v c id ,a d d O ? r t () ; v o ld .a d d ' ic r S i) : ‘.■o;d,addC:’ - f ()
s d d l'r in k ? ! » : In c e g ± r 1 : v o i d , s d d ' : t t 3 l) : v o id ,a d d O :; :S [) : v o id ,a d d Q ti:3 () : v o ld ,r = - .' ; t ! ;3 5 i f : v o id ,a d d C > :rS i !

vridjaddCcrS! i : vo id ,5dfi<:i.t€
v c id ,a « C ti:3 (i : vo id .sddC trf
.■■id,«d<Kc-r5i ! ; void, \ddC*r?
v ; id ,a d d O o L ;i ! ; v o id , id d O 'c ?

Fig. 3.6. Partial view of automatically generated, exhaustive search-based and MOGA-

based optimized test sequences.

3.5.3 Optimization of Test Sequences

The new proposed approach is a novel approach that uses multi-objective GA for test

sequence optimization, using an initial population of randomly selected exhaustive search

test sequences. State o f the art approaches found in the literature use random stochastic

initial populations. By nature of MOGAs, use of complete random sequences, gives a big

chance of getting the population evolved in a negative direction, because while

optimizing test sequences it might be quite important to have a valid sequence of method

invocations in accordance with AFSM. Starting with in order set of input test sequences

and applying MOGA using our fitness functions yield more useful test sequences.

3.6 Java based Tool for Research and Industry

While working on the research we have come up with a new tool which can be used as

baseline for research in FSM based testing. The tool is now open source and freely

available for subsequent researchers. This tool can build, save and load FSMs and run

MOGA with custom fitness functions for generating optimized test sequences.

3.7 Summary

In this chapter we have presented our new proposed approach and have described

different phases of the new approach. We have explained the process of parsing of OCL

class contracts and their semantic analysis to generate the corresponding Abstract Finite

State Machine. We have also explained the process o f process of generating optimized

test sequences from the generated AFSM. On the way we explain the coding scheme

used, details of MOGA process on the coded chromosome and definition and evaluation

of the fitness functions during the MOGA evolution process. At the end of the chapter we

have listed some of the foreseen benefits achieved by the new proposed approach. At the

end we include a discussion of the new tools developed using Java for implementation of

the new approach.

Ch apter 4

C ase stu dy A nd E x pe r im e n t

Generation o f test sequences is a critical part of testing phase of software development

life cycle. It is show by [1] that test sequences for unit testing of a class can be generated

from OCL class specifications, that is by mapping class specifications (OCL class

contracts) to the Class Model (specifically a Class in the class diagram).

Current test sequence generation process when applied to actual testing reveals some

critical issues, these issues and our proposed solution is presented in this case study.

CoinBox class is picked from a Drink Vending Machine’s class diagram; this class is

responsible for keeping record of number of available drinks and number of quarters

entered by the customer. We used this class because it was used by the reference paper; it

helps us to present a comparison. Two more classes Stack and Circle were tested.

4.1. Problems with previous Approach:

When we applied the previous approach to the generation o f test cases from CoinBox

class we observed the following problems. Current approach deviates from the actual

OCL standards in terms of syntax and semantics. Due to the lack of conformance to

standards o f OCL the approach lacks the ability of automation. Due to state space

exhaustive search the technique has inherent problems of the approach,

4.1.1. Deviation from standard OCL Syntax:

The example OCL code used by current approach [1] is not according to the Industry

standard OCL syntax and hence none of OCL parsers used in the industry accepts this

syntax e.g. the OCL example used is in the following format OCL Specs [11]:

Context ColnBox {
int curQtr, quantity, totalQtrs
boolean allowVend

imv : int cufOtr. quantity, totalQtrs >=0

:: CoinBoxO
post :self.curOtr =0

oolf.allovWend = FALSE
self.quantity = 0
seif.totaiOtrs - 0

addQlr():void // adJ a quarter in the machine
ore ; self.quantity > 0;
post : self-curQlr = ci.ifQtr(^pre+1

if (self.ctirQtrcapne- = 1) then
self.allowVend = TRUE

:: r^Qtrs():void // return quarters back to the user
pre : > 0;
post :solf.curOtr =0

s^.allcwvVend = FALSE
:: vend():vold // deliver a drink
ere : seW.altoyA êsxl == TRUE and

self.quantity > 0;
post ; seif.ajrOtr - 0

self.allowVend FALSE
setf.quantity = quantity<^pre -1
self.totalQtrs = totalCXrs@pre -r curOtr@pre

:: addDrink(m: int);void // add m unit of drink in
//the machine

fye : seif.quantity = 0 and m > 0;
post : self, quantity ^ quantityc^pre + m
}

Fig.4.1. OCL Class Contract that does not comply with standard OCL

The above example was not according to the OCL standards syntax and after

modification/adaptation we get the following OCL class contract that is acceptable

according to the OCL 2.0 standard;

p a c k a g e CB

c o n t e x t c o i n B o x
i n v : c u r Q t r >=0 a n d q u a n t i t y ^>=0 a n d t o t a l Q t r s >=0

c o n t e x t c o i n B o x : : c o i n B o x ()
p o s t : S e l f . c u r Q t r = 0 a n d s e l f . a l lo w v e n d FALSE a n d s e i f . q u a n t i t y = 0 a n d s e l f . t o t a l Q t r s

c o n t e x t c o i n B o x ; : a d d Q t r () : v o i d
p r e : s e l f . q u a n t i t y >0
p o s t : s e l f , c u r Q t r = c u r Q t r < ? p r e +1 a n d

i f (s e l f . c u r Q t r @ p r e = l; t h e n s e l f . a l l o w V e n d = t r u e e l s e s e l f . a l l o i-,vend = p a l s e e n d i i

c o n t e x t C o in B O X : : r e t Q t r s () : v o i d
p r e : s e l f . c u r Q t r >0
p o s t : s e l f . c u r Q t r = 0 a n d

s e l f . a l lo v A 'e n d * f a l s e

c o n t e x t C o i n B o x : ; v e n d () : v o i d
p r e : s e l f . a l lo v . v e n d = t r u e a n d

s e l f . q u a n t i t y > 0
p o s t : s i e f . c u r Q t r = 0 a nd

s e l f . a l l o w V e n d = f a l s e a n d
s e l f . q u a n t i t y = c u a n t it y 'C p r e - 1 a n d
s e l f . t o t a l Q t r s = t o t a l Q t r s f - p r e ^ c u r Q t r J p r e

c o n t e x t C o i n B o x a d d D r in k (m : i n t) ; v 'o id
p r e : s e l f . q u a n t i t y =0 a n d ni>0
p o s t : s e i f . q u a n t i t y = q u a n t it y @ p r e -r r.

^ en d p ackag e

Fig.4.2. Actual Parse able OCL Class Contract.

As the used syntax deviates from the standard OCL in many aspects like e.g. [11]:

• Each statement in each pre and post condition is joined by a logical operator e.g.

'and \ which is missing in the example.

• Standard OCL syntax does not allow the use of curly braces around the

context declarations.

• All the OCL contexts (equivalent to Class) must be declared inside a package and

endpackage stMement.

• Each constraint in the Invariant declaration must be separated by 'and' instead of

? *

• Writing just operator while declaring a method signatures is not enough, it

should be fully qualified with the context name being referred by the method.

• Each if must have an accompanying else in order to valid OCL statement.

4.1.1. Inherent Problems of Exhaustive Finite State Machine Exploration

Test sequences generated using the OCL class contract specifications using state-based

technique suffer from their inherent problems including infeasible-paths and exponential

number of generated test sequences. So we might get exponential number of test

sequences which might also be of indefinite length. Use o f these sequences might take

exponential time for execution and even then we might not be sure if they cover even all

the states of the object, along with that it is quite possible that a state is covered indefinite

number of time e.g. if a state has a method loop (transition to itself with a method) or if a

state is revisited again and again.

4.2. Application of our approach

Our approach works in following steps;

1. Generation of OCL Parse Tree: In our approach we take OCL class contract in the

form of .ocl (a text file) and generate the parse tree for that passed file using an

Industry standard OCL parser. At the moment we use Dresden OCL Parser [11].

This is a popular tool available both as standalone distribution and as an Eclipse

integrated plug-in.

2. Semantic Analysis and Generation o f AFSM: From the constructed parse tree, by

semantic analysis of the tree and applying rules of the previous approach [1], an

Abstract Finite State Machine is constructed.

3. Generation of Exhaustive search-based test sequences; By exhaustive search o f the

constructed AFSM, "Raw Test Sequences" are generated. These test sequences,

although applicable for testing purpose, suffer from the state-based problems.

4. Optimization using MOGA; In-order to be processed by MOGA Optimization tool

a. We have defined coding scheme for encoding solutions into genes and

chromosomes as explained in detail, in section 3.2.1.

b. We have plugged-in our custom mechanism to return random transitions

(corresponding to the genes in our coding scheme) picked from the

generated AFSM, used for mutation.

c. Our custom devised, fitness functions, calculate the fitness values of each

chromosome while selecting population for subsequent generation.

It is observed that the MOGA performance is highly dependent on the fitness

functions used. The detailed process is shown in Fig.4.3.

Optimized Test

Sequences

Fig.4.3. Automated MOGA optimized, test sequence generation process.

4.3. Mutation Analysis

We used mutation analysis for bench marking the performance of our approach. We used

Mu Java[28] for seeding fauhs in the classes imder test. It is important to be noted that

proper selection of number of generations is problems specific and is important e.g. a test

run of the tool over CoinBox Class gave 2 unique test sequences over 100 evolutions but

they got improved and diverse with 500 and 1000 generations.

Tabie 4.1. Mutation Analysis of CoinBox, Stack and Circle Classes

Class Under Test Total Faults

Seeded

Faults identified by

Previous Approach

Faults Identified by New

Approach

CoinBox 117 81 83

Stack 73 51 59

Circle 98 55 53

In this analysis predefined number of faults was seeded in the compiled class files. These

faults were based on predefined mutation operators [28]. The experiment reveals that our

approach either out-performs the previous approach or at least gives equal fault revealing

efficiency.

140

120

100

80

60

40

20

0

B CoinBox

B Stack

m Circle

Total Faults Seeded Faults identified by Faults Identified by
Previous Approach New Approach

Fig.4.4. Comparison of fault identification efficiency of both the approaches.

One of the reasons of variations seems to be that current approach just follows transition

tree coverage, which skips loops in the AFSM. Depending upon the nature of the class,

loops might reveal more implementation errors, e.g. a method might give erroneous

results on subsequent calls.

4.4. Advantages

Our approach improvements give following benefits to the research and industry

community:

• Automation o f the test sequence generation process, now test sequences can be

generated directly from the OCL specifications of a class automatically.

• Test sequence generation even before the implementation of the software is ready.

• Helpful visual representation of generated Abstract Finite State Machine.

• Improved test sequences with specified length and number, we produced optimized

test sequences of a certain length and having the maximum coverage of the states of

the class.

• Fine Tuned fitness functions, fine tuned specifically for Test Sequence Optimization

process.

• Less time and few resources required due to optimized test sequences, more reliable

results because in exhaustive searching of class states we may never know how

effective our testing is and when to stop.

4.5. Results and Discussion

Syntax of OCL used by current approach fails to be accepted as standard OCL syntax

and fails to get parsed by the available OCL parsers. It deviates from the standard of

writing OCL statements and hence cannot be employed in practical test sequence

generation scenarios. The very first import of class contract syntax used by cuirent

approach, revealed the syntax errors.

Our tool reads standard OCL class contracts and automatically generates the test

sequences applying the rules used by current approach. It also allows on demand

optimization of the test sequences if desired by the test engineer. An obvious advantage

of the automation along with effort saved from manual works is, automatic changes to

the test sequences on change of OCL specifications.

As observed in the experimental case study exhaustive state space search generated 872

test sequences o f maximum length 26 with redundant test sequence loops. Unnecessary

effort needs to be spent on executing all these test sequences. Application of MOGA

with population size 25, solution length 15 and over 1000 generations, yields 25 Test

sequences o f length 15 each; optimized for all transition coverage and ordered sequence

paths. It was also observed that more generations give more diverse test sequences with

higher fault revealing efficiency. Since we used a random population out of the seaich

based sequences, it minimizes the chances of bad genes and evolution in negative

direction

We did a mutation analysis of the class under test and found that MOGA based test

sequence seem to give at least comparative defect revealing efficiency and may

considerably outperform test sequence generated from the current approach. It is

important to be noted that proper selection of number of generations is important more

generations might give better results but with considerable MOGA execution time.

By nature, as o f all optimization techniques, we are never expecting that we might have

exact solution, but we get optimized solutions. MOGA being a subset of evolutionary

algorithms starts with a possible set of solutions and then try to optimize the set of

solutions generation after generation. Evolution as a mimicry o f the natural process of

evolution might not find suitable chromosomes (e.g. due to mutation) and might give

some useless test sequences, this can be controlled using better fitness functions. This is

obvious because in the nature if wrong genes get to the next generations then the

individuals may suffer from defects. After generation of AFSM we can:

• Either generate a stochastic random population where each chromosomc is a

constituted out of a completely random set of genes

• Or get a random population out of the population o f test sequences generated

from state-based test sequence generation approach

Second option seems to give better results.

While specifying MOGA Fitness Functions for Test sequence Optimization we must

take into account the sequence of Genes while calculating fitness vahies. Our approach

gives improvement in terms of Automation of test sequence generation process. MOGA

are quite effective while being used for test sequence optimization process but we

recommend use o f raw test sequences as initial population. MOGA optimized test

sequences give optimized coverage within limited test sequence length and numbers.

Chapter 5

C o n c l u sio n A n d F u t u r e W ork

5.1. Conclusion

The new proposed approach has improved the previous approach by conformance to

industry standard syntax and automation from OCL to the actual test sequence

generation. The new approach gives us benefits of optimization of lest sequences in terms

of minimum number and higher quahty along-with automation of test sequence

generation process and conformance to industry practiced OMG standard OCL syntax. It

can save the time and resources spent on a part o f testing process where selection of test

sequences is done. Our approach gives improvement in terms of Automation of test

sequence generation process.

Multi Objective Genetic Algorithms are quite effective while being used for test sequence

optimization process and our use of raw test sequences as initial population appears to

give better results compared to the completely random selection of initial population of

test sequence chromosomes. MOGA optimized test sequences give optimized coverage

(maximum transitions coverage) within limited test sequence length and numbers.

We have also presented a Java based Open source tool, which can be used with any type

of finite state machine while applying MOGAs; its scope is not just limited to the Class

testing from OCL operation contract specifications. This tool can be used either by

industry practitioner test engineers for creating test sequences while testing the software

or by researchers while experimenting with FSMS. GA and MOGAs.

Some of the future work we want to do, as an improvement in our research work, is

included in this section. We have automated the generation of test sequences from OCL

operation contracts but complex OCL constrains and operators m.ight need some

additional attention and we would like to improve further the complex constraints

handling functionally.

We have devised fitness functions very carefully but as there is always room for

improvement, while using optimization techniques. So another future work might be

improvement of the fitness functions to get better results in the generated test sequences.

Usage of variable length chromosomes seems to be a quite fantasizing phenomenon, but

it is inherently complex and optimization of chromosome length to reduce length of test

sequences needs investigation. An option is to add test sequence length optimization as

an additional objective. In that way, some work is needed to be done to investigate the

advantages and drawbacks of addition of length constraints.

We have tried our technique with experiments in the controlled laboratory environment.

Another future course o f research is to use our proposed approach to other industry

applications and get feedback for improvement. We have already progressed in that wa}'

and our developed tool is available on the sourceforge.net for freely distribution under

GNU license.

A ppen d ic es

Appendix A

Code for Test Sequence Optimization Fitness Functions

package pk.com.rsoft.ga.multiobjective;

import j ava. util.*;

import org.jgap.*;
import pk.com.rsoft.classcontractstestbed.testsequences.TestTransition;
import pk.com.rsoft.classcontractstestbed.util.graph.State;
import pk.com.rsoft.testsequenceoptimization.ga.*;

/-K *
* Fitness function for the test sequence problem.

" rmauthor Rebari Farooq

public class TestSequenceMOGAFitnessFunction extends BuIkFitncssFunction {

private static final \ong sehalVersionUID = IL;

public void evaluate(Popuiation a subject) {
Iterator<IChromosome> it = a_subject.getChromosomesO-iterator();
while (it.hasNextO) {
IChromosome a_chroml ^ it.nextQ;
// Evaluate values to fill vector o f multiobiectives with.
/ / — -------- --— -------------
List<Double> 1 ^ new Vector<Double>Q;
I ^ CalculateFitness(a_chroml);
((Chromosome) a_chroml).setMultiObjectives(l):A/ Set fitness value
// for the Chrosome
}
}

public static Vector<Double> getVector(IChromosome a_chrom) {
List<?> moList = ((Chromosome) a_chrom).getMultiObjectives();
Vector<Double> ret Vector = new' Vector<Double>();
retVector.add((Double) moList.get(O));
rctVector.add((Double) moList.get(l));
return ret Vector;
}

(^Override

public Object cloneQ {
return new TestSequenceMOGAFitnessFunctionQ;
}

public Vector<Double> CalculateFitness(IChromosome a Chromosome) {
Vector<Double> v = new Vector<Double>0;
v.add(getFitnessByTransitionOrder(a_Chromosome));// Fitness by validity
i f is in
/./ location indexed 0
v.add(calculateFitnessByCoverage(a_Chromosome)):^/ Fitness by Coverage

is in location
// indexed I
return v;
}

private Double calculateFitnessByCoverage(IChromosome a Chromosome) {
double retVal ^ 0;
State from;
State to;

Gene[] genes = a_Chromosome.getGenesO;
if (((TestTransition) genes[lj.getAllele()).getFromState()
•isStartStateO) {
retVal += 2 0 ;
}
int occuranceCount ^ 0 ;
for (State state : AFSMHolder.ge^KS'M().getStatesList()) {
occuranceCount = 0;

for (int index = 0 ; index < genes.length; index++) {
from = ((TestTransition) genes[index].getAllele())
.getFromStateO;

to ^ ((TestTransition) genes[index].getAllele()).getToStateO;
if (state.isSameAs(from)) {
occuranceCount-i-f:
}
if (state.isSameAs(to)) {
occuranceCount-H-;
}
}
if (occuranceCount == 1 || occuranceCount == 2) {
retVal += 3 * occuranceCount;
} else if (occuranceCount = 0 || occuranceCount > 2) {
retVal -=10;
}

}

return new Double(retVal);
}

private Double getFitnessByTransitionOrdef(IChromosome a_Chromosom) {

double retVai ^ 0 ;
Gene[] genes = a Chromosom.getGenesO;

if (((TestTransition) genes[0].getAllele()).getFromStateO
.isStartStateQ) {
retVal + - 2 0 ;
}
State next ((TestTransition) genes[0].getAliele()).getToState();
for (int index ^ 1; index < genes.length; index-H-) {
if (next.isReachable(((TestTransition) genes[index] .getAllelc())
.getToStateO)) {
retVal += 5;
} else {
retVal -= 5;
}
next ^ ((TestTransition) genes [index], get Allele()).getTo State ();
}
return new Double(retVal);

}
}

Appendix B

Java Code for Context Class, Root Class of All OCL Elements

package pk.com.rsoft.ciasscontractstestbed.classcontract;

import java.io.Serializable;
import javax.swing.tree.TreeNode;
import j a va.util. Array List;
import Java.util.HashSet;
import javax.swing. tree. DefaultMutableTreeNode;

import pk. c om. rsoft. c las scontractstestbed. util. graph. Cl as s Var i abl e ;
import pk.com.rsoft.classcontractstestbed.util.inequality.InEqualitySimplified;
import pk.com.rsoft.classcontractstestbed.util.parser.CTStringParser;

* @aiithor Rehan Farooq

public class CTContext implements Serializable {
private ArrayList<CTAttribute> IstAttributes;
private Array Li st<CTOperation> IstOperations;
private CTInvarient thelnvarient;
private String strCTContextName;
private TreeNode theContextNode;

public CTContext(TreeNode theNode) {
StrCTContextName =
IstAttributes = new ArrayList<CTAttribute>Q;
IstOperations = new ArrayList<CTOperation>();
theContextNode ^ theNode;
parseContextNode(theNode);
}

public void addAttribute(TreeNode attNode) {
CTAttribute atr ^ new CTAttribute(attNode);
this.addAttribute(atr);
}

public void addOperation(TreeNode optNode) {
CTOperation tempOp = new CTOperation(optNodc);
if (tempOp.getCTOperationName().equals(this.getCTContextName())) {
tempOp.setConstructor(true);
}
getLstOperations().add(tempOp);

}

public void addAttribute(CTAttribute anAttrib) {
if (!isDuplicateAttribute(anAttrib)) {
1st Attributes .add(anAttrib);
}
}
public void addOperation(CTOperation anOpp) {
getLstOpefationsQ .add(anOpp);
)
public void addInvarient(CTInvarient aninv) {
this. setlnvarient(anln v);
}
public void addInvarient(TreeNode invNode) {
this.setlnvarient(new CTInvarient(invNode));
}
private void parseContextNode(TreeNode ctNode) {
if (ctNode.isLeafQ) {
this.setCTContextName(ctNode.toString().trim());
this.setCTContextName(CTStringParser
.extraciNamefromQuoles{getCTConiext^eimQ{)));
} else {
DefaultMutableTreeNode tm = (DefaultMutableTreeNode) ctNode;
parseContextNode(tm.getChildAt(0));
}
}
/ ̂ ̂
* aretuiT! the 1st Attributes
*/
public Array Li st<CTAttribute> getLstAttributesQ {
return IstAttributes;
}

* -(^jeturn the IstOperations
t-//
public ArrayList<CTOperation> getLstOperations() {
return IstOperations;
}

* •'ff return the strCTContextName
 ̂/

public String getCTContextNameQ {
return strCTContextName;
}

^param. strCTCojitextName

* the strCTContexiName to set
*/
public void setCTContextName(String strCTContextName) {
tliis.strCTContextName = strCTContextName;
}

* @ return the thelnvarient
■^r
pubHc CThivarient getlnvarientQ {
return thelnvarient;
}

^parain thelnvarient
* the thelnvarient to set
V
public void setInvarient(CTInvarient thelnvarient) {
this.thelnvarient ~ thelnvarient;
}

public String getVaiableNamesQ {
/*

Very Very Important! This code extracts the varibale and methods frcmi
 ̂ the OCL but at the moment there is a constraint on the varibale
declartion that is only those variables are picked which are declared

* in the OCL Imt statements (in future there cau be a possibility of
 ̂ inferin^ fi-om the grc and post conditions but at the moment it is

* implemented that way)

StringBuilder strRetVai ~ new StringBuilder('”’);
if (this-lstAttributes != null) {
for (CTAttribute a t : this. 1st Attributes) {
StrRetVai.append(at.getType()).append(" ").append(at.getName())
.append(”/ ’);
I
} else {
System.owr.println("Variables Names list empt>'");
>I
return strRetVai. to String ();
}

public String getOperationNamesQ {
StringBuilder strRetVai ^ new StringBuiider(’"');
if (this.lstOperations !~null) {
for (CTOperation op : this.lstOperations)

strRetVal.append(op.getCTOperationName()).append(",");

}
return strRetVal.toStringO;
}

public ArrayList<CTAttribute> getStateVariablesQ {
ArrayList<CTAttribute> 1st ^ new ArrayList<CTAttribute>();
for (CT Attribute atr : this. 1st Attributes) {
for (CTOperation op : this.lstOperations) {
if (op.isPreCondtionVariable(atr.getName())) {
boolean duplicate = false;
for (CTAttribute a t : 1st) {
if (at.getName().equals(atr.getName())) {
duplicate ^ true;
}
}
if ([duplicate) {

Ist.add(atr);
}
}
}
}

return 1st:
}

public String getStatcVariableNamesQ {
HashSet<String> st = new HashSet<String>0;
for (CTAttribute atr : this. 1st Attributes) {
for (CTOperation op : this.lstOperations) {
if (op.isPreCondtionVariable(atr.getNameO)) {
st.add(atr.getNameO);
}
}

return st.toString();
}

public ArrayList<String> getAllValuesStrings(String strVarName) {

ArrayList<String> retVals new ArrayList<String>();
for (CTOperation op : this.lstOperations) {
for (String val : op.getVarValues(strVarName, ConstraintType./*/?£)) {

if (!Containts(retVals, val)) {
retVals.add(val.trimO);
}
}
for (String v a l : op.getVarValues(strVarName, ConstraintTypc./^O.'??)) {
if (!Containts(retVals, val)) {
ret V al s.add(val .trimQ);
}
}
}
for (CTConstraint ctx : this.thelnvarient.lstConstraints) {
if (ctx.getVariableName().equals(strVarName)
&& !ctx.getVariableValue().trim().equals("")) {
if (!Containts(retVals, strYarName)) {

ctx.getV ariable V alue(). trimQ);retVals.addC’lnv ”
)
}
}
return retVals;
}

private boolean Containts(ArrayList<String> 1st, String str) (
for (String s : 1st) {
if (s.equals(str)) {
return tme;
)
}
return false;
}

private boolean Containts(String strVal, ArrayList<InEqualitySimplified> 1st)
for (InEqualitySimplified s : 1st) {
if (s.getVariable().getValue().trimO-equals(strVal.trim())) {
return true:
}
}
return false:
}

public String getlnvarientsDescQ {
StringBuilder strBld = new StringBuilder();
for (CTConstraint c t : this.thelnvarient.getConstrantsList()) {
strB 1 d. append(ct. getV ariableNameQ). append(" '')
.append(ct.getVariableValueO).append(”, ");
)

return strBld.toStringQ;
}

public void ClearListsQ {
this.lst Attributes.clearQ;
this-lstOperations.clearQ;
this.thelnvarient.lstConstraints.clearO;
}

private boolean isDuplicateAttribute(CTAttribute atrib) {
for (CTAttribute a t : 1st Attributes) {
if (at.getNameO-equais(atrib.getName())) {
return ti'ue;
}
}
return false;
}

/*
* This method returns the state variables with simplified set of
* possible values These values should not include values having ’@pre' ctc
* but should have the refined possible set of values
*/
public ArrayList<ClassVariable> getStateVarQ {
// StateVaiable List to return
ArrayList<ClassVariable> IstStateVars ^ new ArrayList<ClassVariable>():
// Current variables of interest
ArrayList<CTAttribute> IstAttrib = getStateVariables();

for (CTAttribute atr : lstAttrib)6 ' for each attribute
{
// Create new ̂state variable to retum
ClassVariable stVar = new ClassVariable(atr.getName(),
atr.getlnitValO, atr.getTypeO);

// Get All the values attached w'ith this attribute
ArrayList<String> IstVals - getAllValuesStrings(atr.getName());
for (String str : IstVals)// for each attribute value
{
if (str.contains("@pre"))// if the value contains (iiipre tag try to asses possible output
valuefs)
{
String temp =
for (CTOperation op : this.lstOperations) {
if (op.isPreCondtionVariable(stVar.getName())) {
temp = str;

if (!Containts(temp, stVar.getValues())) V Add if to
// values if
// not
// already
/’/ added
{
InEqualitySimplified tempinq ^ new InEqualitySimplified(
atr.getNameQ + " " + temp,
getVariableType(atr.getNameO));
stV ar.addV alue(templnq);
}
}
}
} else // No frt)Pre tac
{
if (!Containts(str, stVar.getValues())) // Add it to values
// if not already
// added
{
InEqualitySimplified tempinq ^ new InEqualitySimplified(
atr.getNameQ + " ” + str,
getVariableType(atr.getNameO));
stVar.addV alue(templnq);
}
}
}

IstStateVars.add(stVar);
}
return IstStateVars;
}

public CTVariableType getVariableType(String strVarName) {
for (CTAttribute a t t : this.1st Attributes) {
if (att.getName().trim().equals(strVarName.trimO)) {
return att.getCTTypeQ;
}
}
return CTVariableType.077/£'y?;
}

public TreeNode getContextNodeQ {
return this.theContextNode;
}
}

Appendix C

Java Code of Abstract Finite State Machine
/*

* This is the class representing an Abstract State Machine

* it is responsible for creating, maintaining and running the AFSM Model

*/

package pk.com.rsoft.classcontfactstestbed.util. graph;

import java.awt. Graphics;

import java.io.FilelnputStream;

import java.io.FileOutputStream;

import java.io.ObjectlnputStream;

import java.io.ObjectOutputStream;

import java.io.Seriaiizable;

import java.util.ArrayList;

import j avax. swing JOptionPane;

import pk.com.rsoft.classcontractstestbed.ClassVarDialog;

import pk.com.rsoft.classcontractstestbed.classcontract.*;

import pk.com.rsoft.classcontractstestbed.testsequences.TestTransition;

import pk.com.rsoft.classcontractstestbed.testsequences.TestSequence;

import pk.com.rsoft.classcontractstestbed.util.graphics.Point;

import pk.com.rsoft.classcontractstestbed.util.graphics.Shape;

import pk.com.rsoft.classcontractstestbed.utiL inequality. InEquality Simplified;

import pk.com.rsoft.classcontractstestbed.util.inequality.InequalityOperatorType;

import pk.com.rsoft.classcontractstestbed.util.inequality.InequalitySolver;

import pk.com.rsoft.classcontractstestbed.util.inequality.InequationSolvcr;

import pk.com.rsoft.classcontractstestbed.util.parser. OperatorType;

* @author Rehan Farcoq

*/

public class AbstractFSM implements Shape, Serializable {

private static final long serialVersionUID ^ IL;

private ArrayList<State> IstStates;// The Array List containing all the

// states of the AFSM

static int intVal = 0 ;

II IMPORTANT: CLASS Variables are in the context of a Class and STATE

// Variables are in the context of AFSM State

private StringBuilder strLog = new StringBuilderQ;

private AfrayList<ClassVariable> IstStateVars;// The Array List containing

private CTContext ctx;// The Parsed Context for which AFSM is being built

ArrayList<TestSequence> testSequences;

fmai int START_X - 200;

final int XJNCREM ENT - 150;

final int START_Y = 200;

final int Y_INCREMENT - 150;

/+ +

* This Empty parameters constructor just initializes the state of AFSM with

* Empty values! Caution: AFSM might not be useful after just this

* initialization!

*/

public AbstractFSMO {

this(null);// class the other constructor the DRY principal!

}

public AbstractFSM(CTContext ct) {

this.setStatesList(new ArrayList<State>0);

this.lstStateVars = new ArrayList<ClassVariable>0;

if (ct ” null) {

return;// if ct CTContext is null no need to go further

}

this.setCtx(ct);// Record the this AFSM was buih using this ct

// Start of State Variables setup//

initializeStateVariablesQ;// Initialization of statate

System.out.println("\nNumber of variables —>" + IstStateVars.sizeQ);

System.out.printlri(”State Variables as initialized

System.out.println(this.lstStateVars);

ArrayList<ClassVariable> 1st ^ simp(ct.getLstOperations(),

this.lstStateVars);

System.out.println("\nList of states is Simplified:");// That is

// constraints

// having @pre

// are

11 simplified

System.out.println(lst);

1st = removeExtraEqual(lst);

System.out.println("\nAfter Removing unwanted EQUAL!");

System.out.println(lst);

1st = validateVariables(lst);

System.out.println("\nAfter Validation!");// That is removing unwanted

// and invalid values

System. out .println(l st);

this.lstStateVars ~ 1st;

1st ^ convertAllToAtomic(lst);

System.out.println("\nAutomic vals the fmal Class Variable List;”);

System.out.println(lst);

+ * + + + + + + +

// End of State Variables setup//

logAction(lst.toStringO);// log the value of state variabels after

// setup

IstStateVars ^ 1st;

}

public void EditClassVariablesQ {

ClassVarDialog dig = new ClassVarDialogC’Class Variables", true,

this.lstStateVars);

dig. set Visible(true);

}

public boolean buildAFSMQ {
*

buildlnitiaiStatesQ;// Now buildup states

if (this.lstStateVars.sizeO < 1) {

JOptionPane

.showMessageDialog(null,

"No Variables o f Interest found, this problems is not solveable!");

return false;

}

this.lstStates ^ processAllStates(lstStates);

adj ustS tatePositionsO;

return true;

}

private ArrayList<ClassVariable> simp(ArrayList<CTOperation> ctOps,

ArrayList<ClassVariable> theList) {

ArrayList<ClassVariable> IstStVars ^ new ArrayList<ClassVariable>():

for (ClassVariable var : theList) {

1 stStVars. add(simplyly(var, ctOp s));

}

return IstStVars;

}

private ClassVariable simplyfy(ClassVariable aVar,

ArrayList<CTOperation> ctOps) {

ClassVariable stVar = null;

if (aVar.getTypeQ CTVariableType.INTEGER

&& aVar.getTypeQ CTVariableType.REAL) (

stVar = aVar;

} else {

StVar = new ClassVariable(aVar.getName(), aVar.getTypeQ);

ArrayList<InEqualitySimplifieci> temlnqs = new ArrayList<InEqualitySimplified>Q;

for (CTOperation op : ctOps) {

ClassVariable ternpVar = getOutputValue(aVar, this.getContextQ,

op);

for (InEqualitySimplified inq : tempVar.getValuesQ) {

if (! inq. get V ari ab leQ. get V alue Q .toUpperC aseQ

.contains("@PRE")) {

inq. get Vari able (). setName(a V ar. getNameQ);

if (!InqContainedInList(inq, temlnqs)) {

temlnqs. add(inq);

}

}

}

)

stVar.setVarValues(temlnqs);

return stVar;

}

private void buildInitialStates() {

CTContext theContext ^ this-getContextQ;

IstStates.clearO;

// Get the List o f All Class Contract Operations

ArrayList<CTOperation> IstOpts = getContextQ.getLstOperationsQ;

// Get the List of All state variables

// For All Operations in the Class Contract try to construct Absrtact

// inital States

for (CTOperation o p t : IstOpts) {

if (opt.isConstructorQ) {

State state ^ createSate(theCoritext, opt, true);

IstStates.add(state);

}

}

}

* @param theContext

* @param opt

*/

private State createSate(CTContext theContext, CTOperation opt,

boolean isStartState) {

// This is a Constructor create a new Initial abstract state

State retState = new State(isStartState);

for (ClassVariable clsVar ; this.istStateVars) {

if (opt.isPostCondtionVariable(clsVar.getName())) {

11 it is in the post conditions so build it's output value

String theVal = this.getPostConditionValue(clsVar.getName(),

opt.getPostConditionsQ);

if(theVal !-n u ll) {

retState.addStateVariable(new InEqualitySimplified(theVal,

clsVar.getTypeO));

}

} else {//

// It is not in the post condition so it's value from

// defaults will be picked

InEqualitySimplified defaultval ^ Inequality Solver

.getDefaultValue(clsVar, theContext);

retState.addStateVariable(defaultval);// add this value to state

// variables of new

II state

}

}// End for(ClassVariable v : this.lstStateVars)

retState.setUnprocessedO;

return retState;

}

private ArrayList<State> getNextStates(State st, ArrayList<State> 1st Array) {

ArrayList<CTOperation> IstOps ^ getContextQ.getLstOperationsQ;

Array Li st<State> retList ^ new ArfayList<State>();

for (CTOperation ops : IstOps) {

if (isOperationExecutable(st, ops)) {

System.out.println("Operation being processed "

+ ops.getCTOperationNameO);

State tempSt = getNextState(st, ops, IstArray);

if (tempSt != null) {

st.addTransition(new Transition(st, tempSt, ops));

retList.add(tempSt);

} else {

System.out.println("No transition added ");

}

}

}

return retList;

}

private State getNextState(State st, CTOperation ops,

Array Li st<State> IstArray) {

State retState;

if (isOperationExecutable(st, ops)) {

Array List<InEqualitySimplified> next Vais = getNextValues(

st.getCurrentValuesQ, ops, true);

State stat ^ findInList(lstArray, nextVals);

if (stat == null) {

retState ^ new State(false);

System.out.println("Current State count --> " + intVal);

retState. setCurrentValues(nextVals);

} else {

retState ^ stat;

}

return retState;

}

return null;

}

private ArrayList<InEquaiitySimplified> getNextValues(

ArrayList<InEqualitySimplified> preValues, CTOperation ops,

boolean simplifylt) {

ArrayList<InEqualitySimplified> retlnqs ^ new ArrayList<InEqualitySimplified>Q;

for (InEqualitySimplified thelneq : preValues)// for each value of

// variables in the

// preValues

{

if (ops.isPostCondtionVariable(theIneq.getVariableName().trim()))

{

String strVal = ops.getVarValue(theIneq, preValues,

CoiistraintType.POST);// Get return constraint
value from the operation

if (simplifylt && strVal.toUpperCase().trim().contains(''@PRE"))// if

{

if (!OperatorType.isArithmeticExpression(strVal)) {

retlnqs,add(thelneq);

} else {

InEqualitySimplified newVal ~ new InEqualitySimplilied(

thelneq. getVariableNameQ + strVal,

thelneq. get V ariableT ypeQ);

newVai = InequalitySolver.simplify(newVal, ops,

getContextO, preValues, IstStateVars);

newVal.getVariable().setName(theIneq.getVariableName());

retlnqs.add(newVal);

} !

} else// Just return the InEqualitySimplified without

// simphfication if any

{

InEquahtySimplified newVal ^ new InEquaUtySimpHfied(

thehieq.getVariableNameQ + strVal,

thelneq. getVariabieTypeQ);

retlnqs. add(newV al);

}

} else// if it is not a post condition variable

{

retlnqs.add(thelneq);//just add it as unchanged value

}

}

r e t u r n r e t l n q s ;

}

private boolean isOperationExecutable(State s, CTOperation op) {

if (op.isConstructorO) {

return false;

}

ArrayList<InEqualitySimplified> IstCurrentVals = s.getCurrentValucs():// Stales

ArrayList<InEqualitySimplified> preconditions = Inequality Solver

.getPreValues(op, getContext());// Pre condition values of the

// variables

boolean retVal = true;

for (InEqualitySimplified varV al: IstCurrentVals)// for each current value

{

for (InEqualitySimplified p reV al; preconditions)// for each pre condition

{

if (varVal.getVariableName().trim()

.equals(preVal.getVariableName().trim()))

{

if (!InequationSolver.isTheSame(varVal, preVal)) {

String strPreOperator ^ InequalityOperatorType

.toS tring(pre VaL getTypeO);

if (strPreOperator.trimO-equals("=''))// if operator is

{

StrPreOperator += '

}

StrPreOperator = " '* + strPreOperator + ” //just add

Object obj 1 = InequationSolver

.evaluate(varVal.getVariable().getValue().toLowerCase() + strPreOperator

+ preVal. getVariable().getValue().toLowerCase());

if (obj 1 null) {

retVal ^ retVal && Boolean.valueOf(obj 1 .toStringO);

I

if (strPreOperator.trim().equals("” ")) {

String strPostOperator = nequalityOperatorType

■t o S tring(var V al. getT ype());

if (strPostOperator.equals("='’)) {

strPostOperator

}

objl = InequationSolver.evaluate(preVal.getVariable().getValue().toLowerCase() +
strPostOperator+ var V al. getV ariable(). get V alue(). toLowerCase());

if (objl !-nu ll) {

retVal ^ retVal && Boo lean, value Of(objl. to StringQ);

}

}}

}}

}

if (retVal = true)

System.out.println(op.getCTOperationName() + " is executable!");

else

System.out.println(op,getCTOperationName() + " is not executable!");

return retVal;

}

private void logAction(String strAction) {

strLog.append(strAction).append(’'\n");

}

public void clearLogQ {

setLog(new StringBuilderO-toStringO);

}

* @retum the strLog

public String getLog() {

return strLog.toStfingO;

}

- , ^ ------------------ 4 , . ^ ' - . V

Appendices Code

* @param strLog

* the StrLog to set

*/

public void setLog(String strLog) {

this.StrLog = new StringBuilder(strLog);

}

public Class Variable getOutputValue(ClassVariable currentVar,

CTContext context, CTOperation op) {

Cl ass Variable retVal ^ currentVar;

if (!op.isPostCondtionVariable(currentVar.getNameQ))// if that veriable

{

return retVal;

} else {

ClassVariable var = simplifyIt(currentVar, context, op);

return var;

}

}

private ClassVariable simplifyIt(C lass Variable currentVar,

CTContext context, CTOperation op) {

ClassVariable stVar = new ClassVariable(currentVar.getName(),

currentVar. getValueAt(0). to StringQ, currentVar. getTyp e ());

// No this is the variable in the post condition of current operation we

// need to

// if we need processing to asses @pre key words

for (InEqualitySimplified inq : currentVar.getValuesQ) {

if (inq.getVariable().getValue().toUpperCase().contains("@PRE")) {

stVar.addValue(InequalitySolver.simplify(inq, op, context));

} else {

stVar.addV alue(inq);

}

}

return stVar;

}

private void initializeStateVariablesQ {

if (this.getContextQ = null) {

return;

}

ArrayList<ClassVariable> IstVars = getContextQ-getStateVarQ;

InEqualitySimplified trueVal - new InEqualitySimplified(

"trueVal = TRUE", CTVariableType.BOOLEAN);

InEquality Simplified falseVal = new InEqualitySimplified(

"falseVal - FALSE", CTVariableType.BOOLEAN);

ArrayList<InEqualitySimplified> Istlnq - new ArrayList<lnEqualitySimplified>();

Istlnq.add(trueVal);

lstInq.add(falseV al);

for (ClassVariable var : IstVars) {

if (var.getTypeO = CTVariableType.BOOLEAN) {

true V al. get V ariableQ. setName(var. getNameQ);

falseVal.getVariableQ.setName(var.getNameQ);

var.setVarValues(lstlnq);

}

}

this.lstStateVars = IstVars;

}

public boolean containsIriPreCondition(CTOperation opt, ClassVariable var) {

for (CTPreCondition pre : opt.getPreConditions()) {

if (!pre.getVarVals(var.getName()).isEmptyO) {

return true;

}

}

return false;

}

public boolean containlnPostCondition(CTOperation opt, ClassVariable var) {

for (CTPostCondition p o s t: opt.getPostConditionsQ) {

if (post.isInCondition(var.getName())) {

return true;

}

}

return false;

}

private boolean lnqContainedInList(InEqualitySimplified inq,

AjTayList<lnEqualitySimplified> 1st) {

for (InEqualitySimplified simpinq : 1st) {

if (InequationSolver.isTheSame(ihq, simpinq)) {

return true;

}

}

return false;

}

private String RemoveEqualfromVal(String val) {

String retVal = val;

if (val.contains("EQUAL")) {

retVal - val.substring(val.lastIndexOf("EQUAL") + "EQUAL".lengthQ);

}

return retVal;

}

private ArrayList<InEqualitySimplified> convertToAtomic(

ArrayList<InEqualitySimplified> 1st) {

ArrayList<InEqualitySimplified> retList ^ new ArrayList<InEqualitySimplified>();

for (InEqualitySimplified inq : 1st) {

if (InequalityOperatorType.isComposit(inq.getTypeQ)) {

ArrayList<InEquaiitySimpIified> tempList = InequationSolver

■split(inq):

for (InEqualitySimplified simp : tempList) {

if (!InqContainedInList(simp, retList)) {

retList.add(simp);

}

j

} else {

if (!InqContainedInList(inq, retList)) {

retList.add(inq);

)}

}

return retList;

}

private String getPostConditionValue(String strName,

ArrayList<CTPostCondition> postCons) {

String retVal = null;

for (CTPostConditibn p o s t: postCons) {

retVal - post, getVarVal(strName).trini():

if (retVal != null && retVal != "") {

return strName + retVal.replace(",", ” ").trim();

}

}

return retVal;

}

private Array Li st<State> processAllStates(ArrayList<State> inputlst) {

ArrayList<State> retList ^ new ArrayList<State>();

retList.addAll(inputlst);

while (hasUnProcessedStates(retList)) {

for (int index ^ 0; ifidex < retList.size(); index+-5) {

State stTemp ^ retList.get(index);

if (!stTemp.isProcessedO) {

ArrayList<State> stNextStatesList = getNextStates(stTemp,

retList);

for (State state : stNextStatesList) {

if (!isStateInTheList(state, retList)) {

retList.add(state);

}}

stTemp.setProcessedQ;

}}

}

return retList;

}

private boolean hasUnProcessedStates(ArrayList<State> 1st) {

for (State st : 1st) {

if (Ist.isProcessedQ) {

return true;

}

}

return false;

}

private boolean isStateInTheList(State state, ArrayList<State> stateList) {

for (State s t : stateList) {

if (st.isSameAs(state)) {

return true;

}

return false:

* @param 1st States

* the IstStates to set

V

public void set State sList(ArrayList<State> IstStates) {

this.lstStates = IstStates;

}
4=

* @retum the IstStates

*/

pubhc ArrayList<State> getStatesListQ {

return IstStates;

}

@Override

pubhc String toStringQ {

StringBuilder retStr ^ new StringBuilderQ;

retStr.append('’['’);

for (State s : this.lstStates) {

retStr.append(s.toStringO);

retStr.append(",");

}

retStr.append('T');

return retStr.toStringO;

}

private ArrayList<ClassVariable> removeExtraEqual(

ArrayList<ClassVariable> 1st) {

for (Cl ass Variable var : 1st) {

if (var.getTypeO ^ CTVariableType.INTEGER

----- - -

II var.getTypeQ == CTVariableType.REAL)// form all integer

// and real

// variables

{

ArrayList<InEqualitySimplified> temList ^ new ArrayList<InEqualitySimplified>();

for (InEqualitySimplified inSmp : var.getValuesQ) {

if (inSmp.getVariable().getValue().contains("EQUAL"))// if

{

inSmp.getVariable().setValue(

RemoveEqualfromVal(inSmp.getVariable()

.getValueO));

)

if (!InqContainedInList(inSmp, temList)) {

temList.add(inSmp);

}

}

var. set V ar V alue s (temLi st);

}

}

ArrayList<ClassVariable> retList = 1st;

return retList;

}

private ArrayList<ClassVariable> validateVariables(

ArrayList<ClassVariable> 1st) {

for (ClassVariable avar : 1st)// This loop checks for the validity of

{

ArrayList<InEqualitySimplified> Istlnverients ^ Inequality Solver

. getlnvarients(avar, getContextQ);

ArrayList<InEqualitySimplified> temlnqs ^ new ArrayList<InEqualilySimplified>();

temlnqs.addAll(avar.getValuesO):

for (InEqualitySimpIified teminq : temlnqs) {

if (! Inequality Solver, is Valid(temlnq, Istlnverients)) {

avar.getValues().remove(temInq);

}}

}

ArrayList<ClassVariable> retLst ^ 1st;

return retLst;

}

private ArrayList<ClassVariable> convertAllToAtomic(

ArrayList<ClassVariable> 1st) {

for (ClassVariable vars : 1st)// This for loop splits the composite

// inequalities (having >= and <=) to

// atomic

{

ArrayList<InEqualitySimplified> temp = convertToAtomic(vars

■getValuesQ);

vars. set V ar V alue s (temp);

}

ArrayList<ClassVariable> retList ^ 1st;

return retList;

private State findl nList(Array Li st<State> 1st,

ArrayList<InEqualitySimplified> stateVals) {

for (State s t ; 1st) {

if (isStateSame(st, stateVals)) {

return st;

)

}

return null;

}

private boolean isStateSame(State s, ArrayList<InEqualitySimplified> list) {

boolean retVal ^ true;

for (InEqualitySimplified inq : s.getCurrentValuesQ) {

for (InEqualitySimplified inqFromList: list) {

if (inq.getVariableName().trim()

.equals(inqFromList.getVariableName().trimO))// have

// same

// variable

// names

{

if (!Inequationsolver.isTheSame(inq, inqFromList))// are

// they the same

{

// If not the same then return false here

retVal = false;

}}

)}

return retVal;

}

private void adjustStatePositionsQ {

int count = 1 ;

int xAxis = 1 0 0 ;

int yAxis = 60;

int xDistance - 200;

int yDistance = 0;

for (State s t : IstStates) {

st.setX((count) * xDistance + xAxis);

st.setY(yAxis + count++ * yDistance);

}}

public void generateTestSequencesQ {

testSequences = new ArrayList<TestSequence>();

ArrayList<TestSequence> copyList = new ArrayList<TestSequence>();

if (IstStates.sizeO > 0) {

int i ^ 0 ;

while (i-H- < 25) {

if (testSequences.sizeO < 1)// If this is the first test

// sequence

{

State firstState = 1 st States. get(O);

for (T r^sition trans ; firstState.getArNextStates()) {

Test Sequence tempSequence = new TestSequenceQ;

tempSequence.addToSequence(new TestTransition(trans

.getMethodO, trans.getFromState(), trans

.getToStateO));

testSequences.add(tempSequence);

}

} else // we have already got our first test sequence

{

copyList.addAll(testSequences);

for (TestSequence seq : copyList)// for each test sequence

// in the test sequences

{

TestTransition theCall = seq.getSequence().get(

seq.getSequenceQ.sizeO - 1);// get the last

// method call

Transition nextTrans ^ theCall.getToStateQ

•getNextState(O);

seq.getSequence().add(

new TestTransition(nextTrans.getMethod(),

nextTrans.getFromStateQ, nextTrans

.getToStateO));//just add this

// call the

// sequence

if (theCall.getToStateQ.getTransitionCountQ > 1) {

for (int index = 1; index < theCall.getToState()

.getTransitionCountQ - 1; index++) {

ArrayList<TestTransition> newSeq ^ new ArrayList<TestTransition>();

newSeq.addAll(seq.getSequenceO);

nextTrans = theCall.getToState().getNextState(

index);

newSeq. add(new T estT ransition(nextTrans

. getMethod0, nextTrans. getFrom StateQ,

nextT rans. getToState()));

testSequences.add(new TestSequence(newSeq));

}}

}

copyList.clearQ;

}}

}}

public ArrayList<TestSequence> getNTestSequences(int noSequences)

throws Exception {

if (noSequences > testSequences.sizeQ) {

throw new Exception(

"Desired number o f test sequnces is higher than the available sequences, available No : "

+ testSequences.sizeQ

+ ’’ desired No :"

+ noSequences);

}

return new ArrayList<TestSequence>(

testSequences.subList(0, noSequences));

}

public ArrayList<TestSequence> getGeneratedSequences() {

return testSequences;

}

@Override

public void draw(Graphics g) {

// TODO Auto-generated method stub

adjustStateCoordinates(20, 20, true);

for (State state ; this.lstStates) {

state.draw(g);

})

@Override

public void Move(int newX, int newY, Graphics g) {

// TODO Auto-generated method stub

//Not implemented!

}

public static AbstractFSM fromFile(String fileNamewithPath) {

FilelnputStream fm = null;

ObjectlnputStream objin— null;

try {

fin = new FilelnputStream(fileNamewithPath);

objin = new ObjectlnputStream(fm);

return (AbstractFSM) objln.readObjectQ;

} catch (Exception ex) {

JOptionPane.showMessageDialog(null, ex);

)

return null;

}

public static boolean toFile(AbstractFSM fsm, String fnameWithPath) {

FileOutputStream fout = null;

ObjectOutputStream oout = null;

try {

fout ^ new FileOutputStream(fnameWithPath);

oout = new dbjectOutputStream(fout);

oout.writeObject(fsm);

} catch (Exception ex) {

JOptionPane.showMessageDialog(nulF ex.toStringQ);

return false;

}

return true;

}

public CTContext getContextQ {

return ctx;

}

private void setCtx(CTContext ctx) {

this.ctx ^ ctx;

)

public ArrayList<String> getClassVariableNames() {

ArrayList<String> retList = new ArrayList<String>0;

for (ClassVariable var : this.lstStateVars) {

retList.add(var.getNameO);

}

return retList;

}

public void adjustStateCoordinates(int x, int y, boolean evenODD) {

int i = 1 ;

for (State s t : this.lstStates) {

if (evenODD) {

if (i++ % 2 = 0) {

st.setCenter(new Point(x, y));

}

} else {

st.setCenter(new Point(x, y));

}}

)

public void setLocationOiiScreen(int x, int y, boolean xConstant) {

int fixlncrement ^ 2 0 ;

int intStateCount ^ 1;

for (State s t : this.lstStates) {

if (IxConstant) {

st.setCenter(new Point(x + fixlncrement * (intStateCount), y

4 fixlncrement * (intStateCount)));

) else {

st.setCenter(new Point(x, y + fixlncrement * (intStateCount)));

}

intStateCount++;} }}

Appendix D

Java Code for Test Transition

package pk.com.rsoft.classcontractstestbed.testsequences;

import java.io. Serializable;

import java.util.ArrayList;

import jmetal.core. Variable;

import orgjgap.InvalidConfigurationException;

import pk.com.rsoft.classcontractstestbed.classcontract.CTConstraint;

import pk .com. rsoft. c 1 as scontractstestbed. clas scontract. CTMetho dParameter;

import pk.com.rsoft.ciasscontractstestbed.classcontract.CTOperation;

import pk.com. rsoft. classcontractstestbed. cl asscontr act. ConstraintType;

import pk.com.rsoft.classcontractstestbed.util.graph.ConsType;

import pk.com.rsoft.classcontractstestbed.util.graph.State;

import pk.com.rsoft.classcontractstestbed.util.graph.Transition;

import pk.com.rsoft.classcontractstestbed.util.inequality.InEqualitySimplified;

import pk.com.rsoft.classcontractstestbed.util.inequality.InequalitySolver;

import pk.com.rsoft.classcontractstestbed.util.parser.NumberPorcessor;

import pk.com.rsoft.testsequenceoptimization.ga.AFSMHolder;

* @author Rehan Farooq

*/

public class TestTransition implements Serializable {

private static final long serialVersionUID = IL;

private fmal int FIX NUMBER ^ 5;

private State preState ;

private State postState;

CTOperation opt;

public TestTransition(CTOperation op. State preState, State postState) {

this. setFromStMe(pre State);

this,setToState(postState);

this.opt = op;

}

public String toBooleanStringQ throws InvalidConfigurationException

{

String retVal ^
getBoolStateString(getFromState())+getMethodBoolString()+getBoolStateString(getToSt
ateO);

return retVal:

public int compareTo(Object o) {

if(o instanceof TestTransition)

{

TestTransition w - (TestTransition) o;

if(this.getFromState().isReachable(this.getToState()))

{

if(w.getFromState().isReachable(w.getToState()))

{

return 0 ;

}

else

{

return 1 ;

}

}

else if(w.getFromState().isReachable(w.getToState()))

{

return -1;

}

Xi

return 0;

}

private int getNumberOfBitsforStateQ

{

return FIX_NUMBER;

}

private int getNumberOfBitsforMethodNumber()

{

return FIX_NUMBER;

}

private String getBoolStateString(State st)

{

String retBoolVa! = st.toBooleanStringQ;

if(retBoolVal.length()<getNumberOfBitsforState())

{

retBoolVal ^
NumberPorcessor.padeZeros(retBoolVal,getNumberOfBitsforState() -
retBoolVal.lengthQ, true);

>

return retBoolVal;

}

private String getMethodBoolStringQ

{

String retBoolVal =Integer.toBinaryString(opl.getMethodNumber());

retBoolVal =
NumberPorcessor.padeZeros(retBooiVal,getNumberOfBitsforMethodNumber()-
retBoolVal.lengthQ, true);

return retBoolVal;

}

public State getFromStateQ {

return preState;

}

public void setFromState(State preState) {

this.preState = preState;

}

public State getToStateQ {

return postState;

)

public void setToState(State postState) {

this, post St ate = postState;

}

public String getMethodNameQ

{

State St = this.getFromStateO;

for(Transition t :st.getArNextStates())

{

if(t.getToState0.isSameAs(this.getToState()))

{

return t.getStrTitleQ;

}

}

return null;

}

public ArrayList<InEqualitySimplified> getParameterConstraintsQ

{

//ArrayList<InEquaiitySimplified> retVal = new
ArrayList<InEqual itySimplified>();

return
InequalitySolver.getOperationConstraintList(AFSMHolder.getOCLContext(), opt,
ConsType.PARAM);

}

public Object[] getParamValuesQ

(

if(opt.getParameters().sizeO==0
j|opt.getParameters(),get(0).getName().trim().equals(""))

{

return new 0bject[0];

ArrayList<Object> retList = new ArrayList<Object>();

for(InEqualitySimplified inq.getParameterConstraintsQ)

{

System.out.println(inq.toStringO);

retList.add(inq.getCurentValueO);

}

return retList.toArfayO;

}

public Class[] getParameterTypesQ

{

System.out.println(opt.getParameters().size());

if(opt.getParameters().size()~0
||opt.getParameters().get(0).getName().trim().equals(""))

{

return new Class[0];

}

System.out.println(opt.getParametersO-get(0).getName());

Class[] retParamTypes - new Class[this.opt.getParameters().sizeO];

int index =0;

for(CTMethodParameter pafam: opt.getParameters())

{

retParamTypes [index++] = param.getJavaTypeQ;

}

return retParamTypes;

)}

Appendix E

Java Code for Test Sequence Gene

package pk.com.rsoft.testsequenceoptimization.ga;

import java.io.Serializable;

import Java.util. ArrayList;

import org.jgap.BaseGene;

import org.jgap.Configuration;

import org.j gap.Gene;

import org.jgap.InvalidConfigurationException;

import org jgap.RandomOenerator;

import org.jgap.UnsupportedRepresentationException;

import pk.com.rsoft.classcontractstestbed.testsequences.TestTransition;

import pk.com.rsoft.classcontractstestbed.testsequences.TestSequence;

import pk.com.rsoft.classcontractstestbed.util.graph.AbstractFSM;

* @author Rehan Farooq

*/

public class TestSequenceGene extends BaseGene implements Gene,Serializable {

private static fmal long serialVersionUID = IL;

private TestTransition theCall;

public TestSequenceGene(TestTransition theCall, Configuration config) throws
InvalidConfigurationException

{

super(config);

this.theCall ^ theCall;

}

@Override

protected Object getlnternalValueQ {

return theCall;

)

@Override

protected Gene newGenelntemalQ {

try {

return new TestSequenceGene(AFSMHolder.getRandomMethod(),
getConfigurationQ);

I catch (InvalidConfigurationException ex) {

throw new IllegalStateException(ex.getMessage());

}

}

public void setAllele(Object a_newValue) {

this.theCall = (TestTransition) a newValue;

@Override

public Object getAllele()

{

return this.theCall;

}

public String getPersisteritRepresentationQ throws UnsupportedOpcrationException {

try {

return theCall.toBooleanStringQ;

} catch (InvalidConfigurationException ex) {

throw new IllegalStateException(ex.getMessageO);

}

}

public void setVaiueFromPersistentRepresentation(String a_represenlalion) throws
UnsupportedOperationException, UnsupportedRepresehtationException {

String [] parts = a_representation.spht(",");

if(parts.length<l j| parts.length>4)

(

throw new IilegalStateException("Invalid persistant representation +
a_representation);

}

Double.parseDouble(yPart[l]), Double.parseDouble(zPart[l]).
Boolean.valueOf(parts[3]), s);

}

public void setToRandomValue(RandomGenerator a_numberGenerator) {

theCall = AFSMHolder.getRandoniMethod(a_numberGenerator);

a_numberGenerator.nextInt((int)s.getHeight()),
a_numberGenerator.nextInt((int)s.getLength()), theCall.getHECNStatusQ, s);

}

public void applyMutation(int index, double a_percentage) {

setToRahdomValue(getConfiguration().getRandomGencrator());

}

public int compareTo(Object o) {

if(o instanceof TestSequenceGene)

{

return theCall.compareTo(((TestSequenceGene)o).theCall);

}

else

{

return -1;

}

}

@Override

public String toStringQ

{

try {

return theCall.toBooleanStringO;

} catch (InvalidConfigurationException ex) {

throw new IllegalStateException(ex.getMessageO); }

}

public static ArrayList<TestSequenceGene> toTestSequenceGenes(TestSequence
sequence,Configuration config) throws InvalidConfigurationException

{

ArrayList<TestSequenceGene> retList “ new
Array Li st<T estS equenc e Gene>Q;

for(TestTransition call: sequence.getMethodCalisQ)

{

retList. add (new TestSequenceGene (call, config));

}

return retList;}}

R efer en c es

References

1. Atul Gupta, “An Approach for Class Testing from Class Contracts”, Springer

2010.

2. Thaise Yano et al, “Generating Feasible Test Paths from an Executable Model

Using a Multi-Objective Approach’', ICSTW, IEEE (2010).

3. Ruilian Zhao et al, “Empirical study on the efficiency of search based test

generation for EFSM models” International Conference on Software Testing,

Verification, and Validation Workshops, IEEE (2010).

4. Mark Harman et al, “Optimizing for the Number of 1>sts Generated in Search

Based Test Data Generation with an Application to the Oracle Cost Problem",

ISCTW, IEEE (2010).

5. Andrea Arciiri et al, “Black-Box System Testing of Real-Time Embedded

Systems Using Random and Search-Based Testing", IFIP International Federation

for Information Processing (2010).

6. S. Asthana et al, “A Novel Approach to Generate Test Cases using Class and

Sequence Diagrams", IC3, Springer (2010).

7. Shaukat Ali et al, “A Systematic Review of the Application and Empirical

Investigation of Search-Based Test Case Generation”, IEEE Transactions on

Software Engineering (2010).

8. S.K. Prasad et al, “Optimization of Software Testing using Genetic Algorithm”,

ICISTM, Springer (2009).

9. S.K. Prasad et al, “An Ant Colony Optimization Approach to Test Sequence

Generation for Statebased Software Testing”, ICISTM, Springer (2009).

10. M. Prasannan and K.R. Chandran, “Automatic Test Case Generation for UML

Object diagrams using Genetic Algorithm'', Int J. Advanced Soft Computing

ICSRS (2009).

11. T. Miller and P. Strooper, “A case study in model-based testing of specifications

and implementations”, Wiley Internet Science (2007).

12. Chen Mingsong et al, “Automatic Test Case Generation for UML Activity

Diagrams”, ACM (2006).

13. K. Derderian et al, ‘'Automated Unique Input Output sequence generation for

conformance testing o f FSMs”, The Computer Journal, ACM (2006).

14. Konak et al, “Multi-objective optimization using genetic algorithms: A tutorial”,

Reliability Engineering and System Safety, Elsevier, available at

www.sciencedirect.com.

15. Marie-Claude Gaudel, 'Testing from Formal Specifications, a Generic

Approach”, Springer (2001).

16. Ying Gao, “Study on multi-objective genetic algorithm’', IEEE (2000).

17. James A. Whittaker, “What Is Software Testing? And Why Is It So Hard?", IEEE

Software (February 2000).

18. S. R. Dalai et al, “Model-Based Testing in Practice", Proceedings of ACM ICSE

(1999).

19. Murata, T., “MOGA: multi-objective genetic algorithms”, IEEE (1995).

http://www.sciencedirect.com

20. F. P. Brooks, “No Silver Bullet Essence and Accidents of Software Engineering".

IEEE (1987)

21. Object Management Group (OMG)'s Formally Released versions of Object

Constraint Language (OCL) available at http://www.omg.ore/spec/OCL/

22. The Dresden OCL parser version 3.1. available at http://www.drcsden-ocl.org/

23. Java Genetic Algorithm Package (JGAP) available at http://igap.sourceforge.net

24. Metaheuristic Algorithms in Java (jMetal) an API for CiA and MOGA based

optimization, available at http://imetal.sourceforge.net/

25. Eclipse IDE for Java Developers, available at http://www.eciipse.org/downloads/

26. JUnit a Unit Testing Framework for Java, available at http://www.iunit.org/

27. Java Reflection API for assessing runt time properties of Java Objects java doc

available online at http://docs.oracle.com/iavase/tutoriai/refiect/index.html

28. Mutation Java (pJava), a mutation system for Java programs, version 3 download

and documentation available at http://cs.gmu.edu/-offutt/muiava/

central
lib r a r y
ISLA,ViA3AD.

http://www.omg.ore/spec/OCL/
http://www.drcsden-ocl.org/
http://igap.sourceforge.net
http://imetal.sourceforge.net/
http://www.eciipse.org/downloads/
http://www.iunit.org/
http://docs.oracle.com/iavase/tutoriai/refiect/index.html
http://cs.gmu.edu/-offutt/muiava/

