Class Testing From OCL Class Contract Specifications
Using Evolutionary Multi-Objective Genetic Algorithms

Supervised By
Mr. Atif Aftab Ahmed Jilani
Assistant Professor, FAST NU

Co-Supervised By
Mr. Syed Muhammad Saqulain
Assistant Professor, HU!

Submitted By

Rehan Frooq

(119-FAS/MSSE/F06)

Department of
Computer Science and Seftware Engineering

International Islamic University, islamabad

CENTRAL .

LIERARY
ISLAMABAD.

Accession No _LL/'%" (‘?

MH /me

0oS

NS

1. go#u/a)z,e/ /’)677(0123%

A Softunre COWW"%’“W d

o

A thesis submitted td

The Department of (fomputer Science and Software Enginecririg,
-)

International Islamic University, Islamabad

g

"as a partial fulfillment of réquirement for the award of the degree of

MS in Software Engineering

ntA

Mg T

DECLARATION

I hereby declare and affirm that this thesis neither as a whole nor as part thereof has been
copied out from any source. It is further declared that I have completed this thesis on the
basis of my personal efforts, made under the sincere guidance of my supervisors. If any
part of this report is proven to be copied out or found to be a reproduction of someone
else, I shall stand by the consequences. No portion of the work presented in this report
has been submitted in support of an application for other degree or qualification of this or

any other Unmiversity or Institute of learning.

Rehan Farooq (119-FAS/MSSE/F06)

Acknowledgements

This is an opportunity to thank Allah Almighty, our creator the lord of the heavens and
the earth, who gave me courage to stand all the difficulties, and blcssed me with all His
blessings throughout my life. It is beyond any doubt, due to His blessings, that the

targets, once seemed unachievable were attained successfully.

It was only due to, continues support and guidance of my research supervisor Mr. Atif
Aftab Ahmad Jilani (Assistant Professor FAST NU) and co-supervisor Mr. Syed
Muhammad Saqlain (Assistant Professor I1U). They were always there when needed
and supported me in any possible way they could. [am really grateful to both of them and

their contributions in my research are priceless, may Allah bless them both.

Acknowledge is also due to my family, wife and kids. [am what I am, at the moment due
to my parents and siblings, and their tangible and moral support. Without the support of
my wife I would not have been able to get enough time to work on my rcsearch. she and
my kids sacrificed their time for me so that [may concentrate on my research. Big
acknowledgement is due to my office Bahria Town Pvt (Ltd) and especially IT
Department, they relaxed me whenever | required, offered me their resources and

allowed me to complete my research.

Rehan Farooq (119-FAS/MSSE/F06)

R R S B e (M . memerm

Class Testing from OCL Class Contrdct Specifications Abstract
Using Evolutionary Multi-Objective Genetic Algorithms

Abstract

Trend of Software has been towards building bigger, more complex and highly reliable
systems. These trends turn Software failures into fatal and causing catastrophic damages
to human life and wealth. It obviously, becomes extremely important that we must
thoroughly test software systems, to be safe prior to being actually used. Testing of UML
Class models from their semiformal OCL specifications can help identification of defects
early in the software life cycle. Current approaches suffer from inherent problems of
exhaustive exploration of finite state machines (infeasible paths, exponential number of
test sequences and uncertainty of completions of testing). Evolutionary algorithms can
greatly help by optimizing the test sequences to get optimal coverage, minimal cost and

higher quality.

Our new proposed approach can help improve the testing of UML model based software:
by testing the conformance to semi-formal class operation contract specifications
(specified in the form of OMG standard, OCL semiformal language). We achieve two
main goals (1) Automation of testing process and conformance to standards. of current
technique of test sequence generation, bridging the gap between the research and industry
(2) Improvements in the state of the art approach through the application of Multi-
Objective Genetic Algorithms (MOGA). Our Java based Testing tool, using our new
approach, gives Test Engineers, choice of selecting better quality test sequences,
optimized in terms of quality and coverage. Automation process makes possible the

adaptation to changed class contract specifications in a dynamic environment.

iii

AR R R R RS T T T .- -

TABLE OF CONTENTS

1. Introduction........................ OSSO PSPPI 1
) O 07T T 1= O OO PO RO PSSP PSP 2
L2 IMIOUIVALION. ...c.vvieiieieieree e eeeee e e e seaee e e st e e e e et b e sen e e eee oo s s st s s b e e s sanae s amn e e sesenneaass e aniraas 5
1.3. Problem Statement.............ccocecivirennnns e tae ettt ee e e n et reereseenereeeas 7
1.4. ReSEATCH ODBJECHIVES. ... ouieeeee ettt st 8
1.5 Thesis OWEHNE ...t 9

2. Literature ReVIEWccivcrircriisrssrnsemesitieniscssssnienessssiassssnrassansrossaseases s 11
2.1. Test Sequences GEenerationoo. it 12
2.1.1. Test sequences from State Models ... 12
2.1.2. Test sequences from UML Models ..., 13
2.1.3. Test Sequences from Software Specificationscco..cooeervererrcerrneennne. 14

2.2. Test Sequence OPHIMIZAtIONcocoveieviiierriieie it eere st 18
2.2.1. Single Objective OptiMIZAtionccociuieerieicicineiereecneee e eeseees 18
2.2.2. Multi Objective OptimizZationcccccceviiiiirniiiiiein i 19
2.3.Literature EVAlUationccoooiiiiiiviii et 21
2.3.1. Conformance to Standardscooveicciiiiiiiiiiii e 21
2.3.2. Lack of Automation and difficulties while automating 21
2.3.3. State-based PrOBIEMScovcueurrvirorreerreeeoereeseereeeessesreneseesseresmsecenseeee 22
2.3.4. The Need and Potential of Optimization............c.ccoooiiriiiriiiniiccn, 22

24 SUMIMIATYeuttent ettt et e ete et st e et e et eeae e sa e s s e esaeaseesneeimseas s e s aunen s eabsbe s 24
3. Proposed APProach . eiiceinrententn e siesie st st sne e e e e s saae 26
3.1. Parsing of Class Contracts and Generation of Abstract Finite State Machine................. 27
3.2.Coding of Test Sequences in Chromosomes and Optimization through MOGA 30

Mg

= - = \—;Ww"-_jf‘ mw« - S L R

3.2.1. Coding of Solutions in Genes and Chromosomes ..o 30
3.2.2. The Multi OBJECHIVES .oovuiieiiiieieeeii it 32
3.2.2.1. Optimize COVETAZEc.coooiiiiiieiiiiieie e rmii e 32
3.2.2.2. Test Sequence Order Optimizationcccooiiiiiii o 32

3.3. The Genetic EvOlutionary ProCesscocovvviiiiiiiiimiie o 33
3.3.1. Initialization of Test Sequence Population ... 33
3.3.2. Selection for Reproduction ..o 33
3.3.3. Reproduction of POPulation ... 34
3.3.3.1. CrOSSOVET cevitiitiiiice it e e ettt ea s s s e e be s en e st eas e s nee 34
3.3.3.2. MIIEALION .oeiiiviiese et et ettt et et sttt e be st na e eras s 35
3.3.4. Termination Conditionococeiimiirierreccinie et e e a e rarn e 35
3.4. The Fitness FUNCHONSovoccirieiiinirecrec b Auearssouansansanassannsssnassonas e 36
3.4.1. Calculate Fitness By COVEIage.......cooovriirei it e cacees 36
3.4.2. Calculate Fitness By Test Sequence Orderc..ocoooeeeiioiiiicnircciceiien 2 38
3.5.Expected Benefits of Proposed Approach ... 39
3.5.1. Adopting to Standards...........cooucioiriiiiin e 39
3,52, AULOMALION c..o..vcoceeeeees e eeeae e ees s essae s ense e ee e rs e es s as oot b e r et ee e 40
3.5.3. Optimization of TeSt SEQUENCESceuruveureiitiertescereeee ettt cesneneceseeeean 41
3.6.Java based Tool for Research and Industry ..o 42
3.7, SUIMMTIATY ooieieieteicre et eestae e st eer e et e e e ame e s eesbee e e eaas e s ae st e e soeeast s e aacamaeae e ok b s arnaannessanns s 42
4. Case Study and EXPerimentcueemininnieiieiisseranminntintissinesesssacsnasisosssssraseasssssssosaios 43
4.1. Problems with Previous Approach...........ccccovveioieiiiiieiie et 44
4.1.1. Deviation from Standard OCL Syntaxc.c.ccocoiiiiiiiinciiiiene e 44
4.1.2. Inherent Problems of Exhaustive Finite State Machine Exploration 46
4.2. Application of our Approach ... 47
4.3 MUtation ANALYSIS.......c..eioie e ea ettt et e et 48

A4, AAVANTAZES ..eeeii ittt et ca oo eeab et AL esaba ettt et 50

- T T T TOTEE e w7 B A S

4.5.Results and DISCUSSIONoiieiieiirrre ettt 50
5. Conclusion and FUture WOork ... eenmreieciminmemtonmieiiineieeimeremeriannais 53
5.1 CONCIUSION ottt ettt e st s e et st e e e en s ese e 54
5.2 FULUIE WOTK ettt e s ettt ettt 55
Appendices rreemtesstserstnesasissntsattent e s b et T e e e r s sananes 56
Appendix A: Java Code for Test Sequence Optimization Fitness Functions 57
Appendix B: Java Code for Context Class The Root Class of All OCL Elements 60
Appendix C: Java Code of Abstract Finite State Machine ... 67
Appendix D: Java Code for Test TransSitioncccovveviiieiniiin e 96
Appendix E: Java Code for Test Sequence Gene ... 102
Referencescccoivimecienniissicsisssminessssienssssnnn: essesrtesttnesrees e et s antse st e e o s deab e e et s anaanes 106

REECIEIICES ...ttt e e et e e et ee e e e et e s e e e e e ee e e e e e e e e e eaaeeaaae 107

Class Testing from OCL Class Contract Specifications Figures & Tables
Using Evolutionary Multi-Objective Genetic Algorithms

List of Figures and Tables

Fig. 1.1. Generated Abstract state model for the CoinBox classcoeevevsriscerrivsnane 15
Fig. 1.2. Mutations in M-GEQOEVAIceircrnmiennimnerrsnsisesssnsnsenssnssesessnsssnsassenssssases 20
Fig. 3.1. Sample Partial Parse-Tree of OCL Operation Contract for Stack Class 28
Fig. 3.2. The Class Diagram of Mapping Objects of OCL Operation Contracts....29
Fig. 3.3. A Chromosome of length n, in our coding scheme........ccovvrrimniiinniianennn, 31
Fig. 3.4 Sample crossover process, Chromosomes A&B are changed to A’&RB’34

Fig. 3.5 Sample mutation process, Genes T3 & T5 of Parent Chromosome mutated

to T°3 & T’5 to create Offspring Chromosome.......c...c.ccoeeviiniiiiiinriincinnciininiiennns 35
Fig. 3.6 Partial view of automatically generated, exhaustive search-based and

MOGA-based optimized test SEGUENCES...iienisrirnrenrrncrnsnsnesinisicesanenns rebssereessanseneenains 41
Fig. 4.1. OCL Class Contract that does not comply with standard OCL 45
Fig. 4.2. Actual Parse able OCL Class Contract.........cooeeecinieccinninnniennisssessiiens 45
Fig. 4.3. Automated MOGA optimized, test sequence gencration process.............. 48
Fig. 4.4. Comparison of fault identification efficiency of both the approaches....... 49
Table 2.1. Summary of Literature ReVIeWccvuiivecurerincrneneeccnreescncersesscseanrenne 24

Table 4.1. Mutation Analysis of CoinBox, Stack and Circle Classesc..cececereece 49

———

CHAPTER 1

INTRODUCTION

Chapter 1 Introduction and Background

In this chapter, we present the background knowledge of our rescarch including. unit-
testing from OCL class contract specifications, automation of test sequence generation
process and optimization of generated state-based test sequenccs using evolutionary
approaches. In the same way, motivations and research objectives will be discussed in a
precise manner. We will also formulate the problems faced in the area, in order to apply
the current approach to the testing process. At the end of this chapter, the outline and

flow of the thesis is explained.
1.1. Overview

This research targets testing of UML class Models from their Class contract
specifications. It lies at the intersection of Model Based Testing, Specification Based
Testing and Evolutionary Testing, which are subject-areas of Softwarc Testing. area of
Software Engineering. It specifically targets Optimization of Test sequences generated
from state-based approach, for unit testing of class, from semiformal OCL class contract
specifications. This introductory chapter gives the background of our work and its
significance in the domain of software engineering and software testing.
Software Testing is a discipline of Software Engineering which deals with the testing of
the software to reveal errors and indicate the quality of the software. Modern trends in
software engineering directly affect the software testing process. Test engineers and test
teams today face the challenges of testing large scale systems that might require
exponential time and resources while being built and tested. Changes in requirements are
quite often, and has risk of wrongly elicited (the tacit knowledge) or ill documented
requirements. All these factors point towards a strong need of automaton and

optimization for testing approaches. Due to large scale of built software and dynamic

Chapter 1 Introduction and Background

stake holder requirements; manual testing of software becomes impossible [17]. Testing
of software in turn becomes strong candidate of automation along with a need to figure
out the ways by which we can efficiently test the software keeping within the limited
budgets of time dnd cost. Many authors have worked towards automation and
optimization of testing process as discussed in the literaturc review section. but there are

still many grayi areas where there are questions that need to be addressed by the research.

Specification-based testing refers to the area of softwarc testing where software is tested
against its specification. It is a type of functional black-box testing where software is
tested on its interfaces for the validation against the documented requirement
specifications. This discipline deals with generating test suites from the software
specifications, executing the test case scenarios against the actual software and then
checking the results against test oracles. One of the biggest plus of this type of testing is
that it allows building of testing environment for the software even before the existence

of the software [1], [11], [14] and [18].

Model-based testing is a sub-area of Model-based development and Model drive
engineering, where we represent software in terms of models. One ot the famous
modeling techniques used is Unified Model Language (UML) where software is modeled
in the form of static structures (e.g. class diagrams) and dynamic structures (¢.g. sequence
diagrams). Model-based development lets the engineers to focus on the actual domain
specific issues compared to technical issues of software development process itself. A big
advantage of Model-based development and Model-bascd testing is the availability of
tools support. Tools are available that can help engineers model software, transform

software models from one representation to another and generatc abstract test cases

Chapter 1 Introduction and Background

extracted from the software model. These abstract test cases can then be transformed into

actual executable tests [11], [16].

Genetic algorithms are random search-based heuristics. They mimic the natural process
of evolution; they are also referred to as simulated genetic algorithms. As the theory of
evolution states, that living things get improved generation after generation and adopt
better quality combinations of genes. While using genetic algorithm for a problem
optimization the very first step is representation of the potential solutions in terms of
chromosomes. Each chromosome consists of number of genes; genes are part of a
potential solution to problem at hand. Together these genes and chromosomes form the
population of possible solutions. MOGA tools execute Genetic algorithms. applying

genetic operators on the input population.

The evolution process involves following steps:
o [Initialization of the population, random or from some input.
o Selection of fittest individuals based on their calculated fitness values.
e Reproduction of the selected individuals.
e Termination of the evolutionary process based on selected criteria e.g. n number
of generations or ftarget fitness values.
Reproduction involves application of the genetic operators based on probability.
e Crossover is a genetic operator where two or more than two solutions arc
combined to form resulting child solution. A number of techniques for crossover

are available in the literature. The simplest 1s called “single point crossover”,

Chapter | Introduction and Background

where a part of first chromosome and the remaining part of the second, disjoined
at a point of crossover, is taken and combined to produce resulting child
chromosomes.

e Mutation is the random change in part of a chromosome that results in a new
individual with properties different from the parent. Depending upon the selected
probability one or more of the genes can be change at random by the GA

execution mechanism.

Traditionally GAs has been used as a search heuristic for finding optimal set of solutions
to problems involving single objective. Recent advances in the field suggested usage of
GAs for multi objective optimization [16]. In principle Multi Objective GAs are the same
GA based tools, but the potential solutions are evaluated for multiple parameters and their
fitness values are evaluated by multiple fitness functions. MOGA evolution process then
involves comparison of the multiple fitness values of candidate chromosomes. Multi
Objective optimization is particularly used with problems wherc no objective can be
optimized without sacrificing the quality of the competitive objectivie(s). The solutions so
generated are referred to as Pareto-Optimal solutions. Test sequence optimization
involves trade-off between testing cost and achieved test coverage; hence the process is a

strong candidate of Multi-Objective Optimization [17].

1.2. Motivation

Since the earliest development of computer program, software has come a long way and

through many paradigms. It was journey formt a few lines of computer instructions

s R WSS, s =T v s - T Te ATEERSE S W _Cnoww 3

Chapter 1 Introduction and Background

punched on machine readable cards to millions of lines of code to develop high end
graphical user interfaces. The trends in the last three decades in software engineering
have been to build bigger solutions to bigger and more complex problems, from a single
user programs to multi-user, geographically distributed applications with multiple tiers
and from an application affecting a few users to the application affecting the humans all
over the world. Historical paper titled “No Silver Bullet” written by F.P. Brooks still
holds even after 3 decades of its publication [20]. Brooks discusses inherent properties of

software like Complexity, Conformity, Changeability and Invisibility.

As the software has grown, became more and more complex and ultra dependable; the
need of finding and fixing problems, before the actual deployment and early in the
Software Development Life Cycle has grown enormously. Over the past decades the
trends in the software development have shifted from being considered as Art of

individual programmer towards establishment of Engineering grounds and principles.

A very first consequence of the application of Engineering Principles to the world of
Software Development was the thinking of software as a product as any other industry
product. This raised questions about quality of the software and introduction ot concept

of quality.

Quality of software must be tested against the intended behavior as specified by the
software requirement specifications. It raises major concerns Firstly, software
requirements should be specified so that they could formally be tested against the actually
developed software [i]. Secondly, requirement specification techniques should be

understandable by software developers and should be close to programming syntax in

Chapter 1 Introduction and Background

order to be used in the industry (OMG’s like Object Constraints Language OCL [21]).
‘Thirdly, some techniques should be devised to map these requirements “to the actual
functionally of the software. Finally, problem domain of testing has unlimited testing
combinations for different input variable values so testing sequence should be figured out

to the reveal most of the possible errors in the software implementation.
1.3. Problem Statement

Model Based Testing involves automation of testing process. Building a model of the
System Under Test (SUT) and then; generation, execution and evaluation of Test cases
for SUT. Operation contracts specify the class behavior in terms of invariants, pre and
post conditions, these class contracts are bindings that SUT must conform to. An obvious
advantage of using class contracts is that they can be written in form of semiformal OCL
constructs which are more precise compared to the natural language specifications and
also can be easily converted to a machine readable form. The survey of literature reveals
that class contracts have potential of revealing the test sequences for the unit testing of
classes [1], but to-date very little work has be done in this direction. State of the art

approaches also lack automation and conformance to industry standards.

Search based optimization algorithms on the other hand have been employed widely in
the field of MBT but to date there is no evidence of their application for test sequence
identification from class contract specifications. Optimization techniques are promising
for optimization of number and quality of test sequences by ovcrcoming the state space

explosion problem.

Chapter 1 Introduction and Background

1.4.

Research Objectives

Our research targets improvement of the current OCL class contract specification

based test sequence generation process [1] in multiple ways by:

a.

Applying current state of the art test sequence generation technique to the industry
standard OCL class contract specifications.
Automation of the current technique of test sequence gencration from OCL class
contract specifications.
Improvement of the current specs based test sequence generation approach by
application of search-based techniques of Evolutionary, Multi Objective Genetic
Algorithms

a. Optimizing the test Coverage achieved by the generated test sequences.

b. Minimize the number of infeasible test sequences.

This research answers the following questions:

How we can improve the Unit Testing of Class Models using OCL class Contract
specifications in terms of compliance to industry standards and automation of the
Test Sequence Generation Process?

How state of the art techniques of Optimization (Evolutionary Genetic
Algorithms) can be applied to the problem of determination of Test Sequences
based on OCL Class Specifications to achieve reduction in number of infeasible

test sequences and improvement in test coverage?

Chapter 1 Introduction and Background

1.5.

Thesis outline

The rest of the thesis is organized as follows

>

\%

\¥4

Chapter 1 describes the overview of Software Testing and Test Scquence
Generation, approaches of optimization using GA and MOGA, problems with

current approaches, motivation and the objectives of the thesis.

Chapter 2 presents the literature r.eview related to test sequence generation in
association with OCL, UML Models. GA and MOGA. In this chapter we discuss
numerous Test Sequence Generation techniques. Moreover, we present identified
limitation in the literature. At the end of the chapter. we present analysis of

literature in the form of a table.

Chapter 3 defines the proposed approach based on the found limitations in the
literature. In this chapter, we present flow of proposed approach. We discuss the
different modules of the proposed approach. We also discuss the Genetic
Algorithm (GA) and the different operators of GA. Furthermore, we present

algorithm for the proposed approach that how we program the proposed model.

Chapter 4 presents a detailed overview of the results obtained after
implementation of the proposed approach. In this chapter, we present the
implementation of our approach in Eclipse IDE for Java as development tool.
Java 1.6 (Java 6) as programming language. Use of industry standard

DresdenOCL parser [22] for parsing OCL operation contracts, Java Genetic

= = e e o Rt S I T o

Chapter | Introduction and Background

Algorithm Package (JGAP) [23] for MOGA execution, JUnit [26] for unit testing
of Class Under Test (CUT) and Java Reflection API [27] for analyzing run-time
behavior of the CUT. Finally, the claim is validated by comparing the proposed

approach with current approach in the literature.

» Chapter 5 provides conclusion of the current research work. This chapter also
presents the future work direction to carry out further work in such an important

research area.

10

CHAPTER 2

LITERATURE REVIEW

e 5. E B

Chapter 2 Literature Review

It is notable that the work is diverse in nature and spans across boundaries of the areas of
software engineering. We have divided the review in sections as the work on test
sequence generation (from state and UML Models), test sequences generation from
formal specification (especially form operation contracts) and test sequence optimization

(by single and multi objective approaches).

2.1. Tést Sequences Generation

Generation of test sequences (synonymous to test cases) is one of the toughest tasks for a
test engineer. This testing phase involves trade-offs between number of test cases and the
desired test coverage, number of test cases and available resources, quality of test cases
and achieved coverage etc. This test sequence generation process can be quite tiresome 1f
done manually, so literature has quite a lot of work concerning automation and

optimization of the process.

2.1.1. Test sequences from State Models

Ruilian Zhao et al [3] aim to develop the infrastructure of automatic test data generation
for EFSM models that produce real data to trigger feasible transition paths. It also
provides empirical results on efficiency analysis of test data generation for a set of state-
based models. In this paper, a GA-based system is presented to automatically generate

test data for feasible transition paths in EFSM models.

Karnig Derderian et al [13] present an approach for automated Unique Input Output
(UIO) sequences generation for finite state models. They take sequence generation
problem as a search problem and generate test sequences based on Genetic Algorithms

12

Chapter 2 Literature Review

(GA). They use 11 real and 23 randomly generated FSMs as proof of concept experiment.
They also state that the problem of test sequence generation from an I'SM 1s an NP-
Complete problem. The presented experimental results show that GAs give result
between the ranges of 62% better to at least as good as random search. They also propose
a new fitness function for evaluating fitness values of UIO test sequences and claim that
it is performance wise better than the previous approach. They suggest that at small
FSMs random search seems to outperform GA but for bigger FSM models GA are a far

better approximation.

2.1.2. Test sequences from UML Models

UML diagrams model static and dynamic aspects of a system, tcchniques found in the
literature in general use one of the static diagrams to represent the static structure and onc
of the dynamic diagrams to represent dynamic behavior of the software, in order to

generate test sequences / test cases.

S. Asthana et al [6] have given an approach for generating test cases from class and
sequence diagrams the claim is that this is the novel approach which uses test cases {rom
class and sequence diagrams without transforming them into any intermediate model. The
approach claims that use of any intermediate form is avoided by the approach from
specification model to actual SUT, but XMI itself seems to be an intermediate form used

for representation of the model.

Chen Mingsong et al [12] present an approach of test case generation from UML activity
diagrams. In their approach they compare the dynamic behavior of the activity diagram to

the actual program execution and in this way the activity diagram behaves as a dirccted

13

L al St

Chapter 2 Literature Review

graph. They use three test selection criteria activity coverage, all transition coverage and
simple path coverage. Code instrumentation is used for recording test data and the test
logging statements are inserted into the program itself. This approach is a white box

testing approach because it needs access to the program source for testing.

2.1.3. Test Sequences from Software Specifications

Atul Gupta [1] discusses an approach where class contracts are used to test class method
interactions. The approach is state based approach. Using an abstract state configuration
of class and initial abstract states, reachable states ar¢ incrementally generated by
searching for the methods which can be invoked in the current state and resulting abstract
states are computed. It lacks automation and syntax used does not conform to the industry
OCL standards and fails even to get parsed by standard OCL parsers. The approach uses
AFS traversal to generate test sequence paths, hence faces inherent problems of finite

state traversal which we discuss in detail in our pitfalls section.

14

CTORMERPT T TNEITT S TR e e - - Tezem v -—cw L] [2

sy s ma® e eem

Chapter 2 Literature Review

vend{) [quantity > 1)

addOtr{)

addOtr(}
—— addotr()

addDrink{m) (m>0]

o,oretQtrs()

e_._

W

State Variables: «§1,82, S3»>
S1- int corQir == {0, 1, >=2},

S2 - boolean allowVend = {TF}
S3 - int quantity = {=0. >0}

\

vend(} [quantity=1]}

Fig.1.1. Generated abstract state model for the class CoinBox [1].

This is the core reference paper used by us and hence we give a brief over view of the
approach here. Author has used the traditional searching approach for path traversal of
finite state machines and all transition coverage is used as sequence path generation. A
specification based testing approach is proposed, which uses class contracts specified in
the form of OCL constraints (class invariants, pre conqditions and post conditions). They
build an abstract state configuration for the class under test, for each initial abstract state,
corresponding reachable states are incrementally generated by traversing and searching
for the methods which are invoke-able in the current state and resulting abstract states are
generated. Author argues that state of an object, being specified by values of its variables
can lead to state explosion and hence notation of “abstract states™ is introduced having

abstract object variable values.

15

o R Taem w edfor, R T -

Chapter 2 Literature Review
Applying Transition Tree Coverage
Abstract State Machine > Test Scquences

Testing sequences weré generated using Transition Tree coverage and Modified
Transition Tree coverage (by including additional test by for invalid inputs). The thing
which is lacking in the approach is that it is still not automated (author himself mentions
that in the conclusion section) and no tool has been suggested for automating the

suggested process.

T Miller and Paul Strooper [11] present a case study on specification based
implementation testing frame work. They have used Possum animation tool and Sum
specification language for modeling and specification of GSM 11.11 standard of mobile
communication. They claim that the framework gives almost equal performance
compared to BZ-Testing tools and more cost effective than manual testing. Authors
suggest stepwise generation of a directed graph and then paths through that graph are the

test sequences.

Marie-Claude Gaudel [15] presents an approach for generation/ selection of test data
from the formal specifications. An exhaustive test set based on the formal specifications
and their correct implementation is proposed. After that selection of a finite test set is
proposed based on domain specific selection hypothesis. Author presents résult of case
studies of application of the approach to algebraic specifications in the form of LOTOS
based specifications of ISO OSI based protocol specifications. A big constraint in the

application of this approach may be of manual work involved in order to decide to

16

T AR ST T T A,

Chapter 2 Literature Review

“Selection Hypothesis™ that varies from domain to domain and specifications to

specification.

Planning and execution of tests involves the analysis of the functionality of sofiware
(functional specs), what are the inputs and outputs of the software and its execution
environment. This process is difficult, time taking and technically sophisticated. Rolc of a
tester requires him/her to have programming skills, grip on formal languages like OCL,
mathematical theory of graphs and good understanding and comprehension of computer

algorithms {10].

Literary survey reveals that most of state of the art research targets test sequence
generation using UML static diagrams(class diagram) and UML dynamic diagrams
(Sequence diagram and State Charts). UML diagrams are not sufficient enough for
specifying complete class behavior, most accurate details of a class are revealed from the

OCL class specifications in the form of OCL Class Contracts [1].

Test sequences generated using the OCL class contract specifications using state-bascd
technique suffer from their inherent problems including infeasible-paths and exponential
number of generated test sequences. In this research we try to figure out solution to these
problems besides have automated and optimize the test sequences generated from the
OCL Class contracts specifications. Multi Objective Genetic Algorithms are used to
overcome the issues by their power of search based multi objective optimization as

discussed in [2], [4], [7] and [9].

17

i oipm LIRS T

Chapter 2 Literature Review

2.2. Test Sequence Optimization

Shukatl Ali et al [7] preset a systematic review of search-based test case generation
techniques. The plus is a comparison of different Meta Heuristic Search (MHS)
algorithms being"employed in search-based testing of software. They have assessed 450
papers out of 6 research repositories. They conclude that Genetic Algorithms are

promising for problem solving in the domain of software testing.

2.2.1. Single Objective Optimization

Mark Harman et al [4] propose three search-based algorithms for test data generation and
preset the result of a case study for the application of their approach. The claim made by
authors is that their approach can maximizes the coverage and minimizes the number of
test cases generated. The size of the software considered for case studies is as big as 144

lines of code, which might be good for a proof of concept.

Andrea Arcuri et al [5] focus on comparison of 3 test automation strategies namely
Random Testing, Adaptive Random Testing and Search-based testing using Genetic
Algorithms and present their results. They present a comparative analysis of the

approaches and present the results of experiment on 3 SUTs.

S K. Prasad et al [8] present GA based approach for test data generation and they present
their algorithm that takes the user input variables and using GA generates test data. They
claim that GA outperforms random testing on time measures [7]. In another paper S.K.
Prasad et al present another search-based test sequence generation technique using Ant
Colony optimization algorithm where “Ants™ are used to explore CFG to find optimized
test sequences.

18

»

Chapter 2 Literature Review

Compared to competitive optimization techniques. GAs, instead of searching a solution
by heuristic search methods, start with a random set of possible solutions and then
improve the solutions by simulation of evolutionary processes of crossover, mutation and
selection. This process is repeated generation after generation. That way an optimized set
of solutions is guaranteed, which can always be improved further by subscquent GA
implementation, as the optimization techniques give optimal solution(s) because exact

solution is not available [3].

GA techniques are independent from the problem domain; this is quite helpful for general
purpose optimization of the problem, because the GA implementation takes encoded
representation of the problem and yields the optimized results irrespective of the problem
at hand. Beinig random search algorithms, they avoid convergence to local minima and

the solutions are quite evenly distributed across the problem domain.

2.1.2. Multi-Objective Optimization

Thaise Yano et al [2] present an approach of test sequence generation using Evolutionary
Algorithms. The claim that search based approaches till then had been mostly proposed
for white-box testing. The paper presents, an evolutionary approach for test sequence
generation from a behavioral model, in particular, EFSM. A multi-objcctive evolutionary
algorithm, M-GEOvsl adopted from M-GEQ is used, that can consider two objectives: to
search for a test sequence that covers a target transition, as well as to minimize the length
of this test sequence [2]. Authors present an approach of test sequence generation using
Evolutionary Algorithms. They claim that search based approaches till then had been

mostly proposed for white-box testing. The paper presents, an evolutionary approach for

19

e mremm— s

Chapter 2 Literature Review

test sequence generation from a behavioral model, in particular, EFSM. Problem of
Infeasible paths generations is covered by executable model. Transition of interest
coverage Criterion is applied using Evolutionary Algotithm. System is modeled in form
of EFSM. Challenges listed by the authors while generating test for EFSM. An
Evolutionary Algorithm is also proposed, based on Pareto optimality. Each solution'is
non-dominating, that is, it can’t be improved in any objective without causing
degradation in at least one other objective. Future work of the authors suggest
improvements like addressing the limitation of the approach when there are no slices of a
model are found and validation of the approach is demonstrated by an experiment but

they sate that they are carrying out further experiments for the validation of the approach

[2].

S2q.

siza Input sey, paramolens
o el

AR O Ea i B ©) RN R

mutation 4 mutation

N NN I R O B A A

Fig. 1.2. Mutations in M-GEQO.q [2].

Multi Objective Genetic Algorithm (MOGA) go one step further, they support
optimization for multiple objectives, in our case optimization for two objectives,
minimize the number of test sequences and maximize achieved test coverage of the test

sequences is required[2].

MOGASs have a very good support by open source tools like Java Genetic Algorithm

Package (JGAP), JMetal (a multi-objective GA implementation tool) and Java APT for

20

g - - T = SER - ES) R H . '
we T - T o P e T -

Chapter 2 Literature Review

Genetic Algorithms (JAGA) [12],[13] and [14]. These and similar tools, being used in the
industry and research, it makes them more practical to bc used for the practical test

sequence optimization for industry usage.

2.3. Literature Evaluation

Approaches and techniques in the literate has different problems here we discuss these

identified problems as found in the literature.

2.3.1. Conformance to Standards

Class contract based test sequence generation technique found in the literature [1] does
not conform to industry standard OCL syntax so it makes the process impractical, while
being adopted by industry practitioners. Due to the same reason current technique lacks
automation. The first phase of the research focuses on adopting the technique to work on
standard OCL syntax. We take standard OCL syntax specs and apply the test sequence
generation technique to get the output test sequences. This kind of test sequence

generation approach is state-based as discussed {1].

2.3.2. Lack of Automation or difficulties while automating

Approaches found in the literature either don’t provide any automation at all (assuming
the input in a predefined state) or Fail to comply with the statc of the art industry
standards like e.g. deviation for the standard syntax It makes it hard for test engineers to
used these techniques Software requirements and hence specification are quite often
volatile, automation can be a great help to regenerate the test sequences from new

specifications [1], [2], [4], and [15].

21

PRI, ~rCereaTTd TR 4 wowrend &9.5‘;’ - [e - T

Chapter 2 Literature Review

2.3.3. State-based problems

Almost all the approach used in the literature use Graph/State Machines as an
intermediate form of representation for the software before generation of test case /
sequence [1], [2], [6], [9], [12], [13] and [14]). These State-based approaches suffer from
inherent state space exploration problems. A large number of possible test sequences may
require exponential time and effort for the testing process itself. Unfortunately resources
and time are limited for the Software Development Lifecycle (SDLC). Many of the state-
based generated test sequences might be Infeasible, repetitive, reoccurring possibly
several times or might not be required at all. It is not practical and, in general. impossible
to asses all the possible test sequences of program flows due to effort and time required
for execution. There is always a tradeoff between number of gencrated test sequences
(cost) and the achieved test coverage (coverage). It is quite difficult for a machine to
evaluate all test sequences within a reasonable amount of time. Exhaustive testing of all

the test sequences is impossible.

2.3.4. The Need and Potential for Optimization

Being state-based the technique suffers from inherent problems of state-based test
sequence generation techniques [2]. [3] and [4], and can be improved by applying search-
based optimization techniques. Multi Objective GA’s are promising tor the improvement
where we can remove infeasible test sequences using multiple fitness functions to achieve

maximum test coverage in minimum number of test sequences.

22

e SRR AT AT !"”f:'eu’-é:, e . ;‘

Chapter 2 Literature Review

The next phase is to optimize the generated test sequences using Evolutionary Genetic
Algorithms using a multi objective approach where we have two conflicting objectives
first to minimize number of test sequences and second to maxiinize test coverage of

generated test sequences.

Approach discussed by [2] for test data generation using GA but a similar approach can

be used in our case for generating test sequences using Multi Objective Genetic

Algorithms.

23

Chapter 2

24.

R N

Summary

-

PIRTRET. 192200 TR SE
=

CE 1

Literature Review

Table 2.1 summarizes the comparison of different approaches found in the literature

along with the parameters most related to our research.

Table 2.1 Summary of Literature Review

Authors Automation Specification Coverage State Based Optimization Multi
Based _ Objective

Awul Gupta [1]. | Automation is | Ycs. from OCL | -Transition Yes. suffer X X
Springer hard due to specifications | Tree Coverage | from State-
(2010) non-standard based problems

OCL syntax
Marie-Claude Semi Yes. LOTOS -All paths - Yes. test X X \
Gaudel [14]. Automation based proof of | coverage sequences are
Springer concept on generated from
{2001) Possum. directed graph
Thaise Yano ¢t | Partial X -Target EFSM is used Yes. an Yes
al [2]. ICSTW. { automation Transition 4s an Optimization
IEEE (2010) docs not Coverage intermediatc Algorithm.

discuss in form which is

which form strictly not GA

the model will based.

be taken.
Mark Harman | X X X Yes an EFSM ‘Three Test data | X
et al [4]. based optimization
ISCTW. IEEE representation algorithms arc
(2010) is used proposed
S. Asthana et al | Automation X X Yes. and claim | X X
{6]. Springer without using to have avoided
(2010) an statc space

intermediate explosion

model. because their

model is
cxecutable

S.K.Prasad et | Claim X X X Yes . X
al [8]. ICISTM, | automatic optimization
Springer approach for through single

gencrating test

24

TR S B o~
Chapter 2 Literature Review
(2009) data objective GA
S.K.Prasad et | Automation of -All state Yes. FSMis Yes Ant
al [9). ICISTM. | test sequence coverage generated. Colony based
Springer generation Optimization
(2009) process is
claimed.
M. Prasannan Automation of X General Tree Crossover step
and K.R. test case and Tree of GA is used.
Chandran [10]. | generation is Structure are but
ICSRS (2009) | claimed. built and depth- | optimization is
first search not mentioned.
gives test
sequences
Chen Yes from -Activity Yes. UML X
Mingsong etal | UML Activity -Simple Path Activity
[12]. ACM Diagfam -All Transition | Diagram as
(2006) Directed Graph.
K. Derderian et | Yes X Yes. Approach | Yes. GA based

al [13). ACM
(2006).

is specifically

for FSMs

optimization

25

CHAPTER 3

PROPOSED APPROACH

————— . —_ = = “Wm B o : ;'{- - e

Chapter 3 Proposed Approach

Our proposed approach caters for the limitation of the current approach by using the
OMG’s standard OCL syntax and automation of the test sequence generation. In order to
improve testing effectiveness we apply a Multi-Objective approach using MOGA where
Optimization for test coverage and validity of the test sequences is a concemn. Our goal is
to produce test sequences which are most effective in identification and revealing of

software implementation problems.

Our approach improves the previous approach in a number of ways: here we explain the
actual functionality of our approach and the advantages achieved. Our new approach is
divided in two main phases in first phase standard OCL parsing is done on the input OCL
class contracts and an Abstract Finite State Machine is generated using the rules specitied
by the previous approach. Second phase involves optimization of state-based test

sequences, generated from the source AFSM using multi-objective GA.

3.1 Parsing of Class Contracts and Generation of Abstract Finite State Machine

We use standard OCL syntax and build the test sequences from the generated Abstract
Finite State Machine. We use standard OCL parser [22] for generating OCL pares tree of
input class contracts. This parser is frequently used with Eclipse IDE tor Java [25] for
parsing of OCL constraints on UML Models. This parser is responsible for generating

OCL parse tree from the textual OCL class contracts.

27

Chapter 3 Proposed Approach

O Start package ST éantext Stack :: Top : Integer ink : O context Stack :: isEmpty : Baolean init ¢ brue context Stackiny : Top < 10 c::xr;
- .';}b OclFile “packane ST context Stack :: Top : Integer init : 0 context Stack :: isEmpty : Bocl=an init : true conteldt Stackiny : Top < |

e E;@ PackagedConstraintListCs "package ST context Stack :: Top : Integer init @ G context Stack 2 isEmply : Booleanink : true cc'r[

; =€y PathNameCs 5T " q
’ i <~ @ SimpleIdentifierCs "51" 7

1 7@ ContextDeclarstionlistCs “context Stack :: Top : Integer int : 0 context Stack o1 isEmpty : Bool2an mit @ true context Sta;

2 @ AttrorAssecContextDedarationCs “context Stack :: Top : Intenzrinit : 0" {
. Py pathiameCs "Stack 1 Top ")
{ F-0Y SimpleTypeTypeSpecition “Integer "
; { Ay InkInitOrDerVakeCs init 1 0
”.:}E-@ CortextDeclarationlistCs “context Stack i1 isEmpty @ Boclzan inil © true context Stackiav @ Top < 10 context Stack
) AttrOrassocContextDedar ationCs “context Stack :: isEwpty : Baolean init ; true ™
3—&3 ContextDeckarationUistCs “rontext Stackiny @ Top < 10 context Shack 1t Stack{) post © saff . Top = 0 and self L ic
- Classifizr ContextDeclarationCs “corkext Stack i : Top < 1"
F@ ContextDeclarationListCs "context Stack :: Stack (Jpost ; seff . Top = 0 and <=l | isEmpty = TRUE context 3
&t-&j OperationContextDeclarationCs “context Stack 1 Steck{) post : self | Top = 0 end self . sEmpty = TRUE
S+ ContextDeclarationtistCs "context Stack : push {val t int) @ void pre : self . Top < 10 past : self | Top =
3@ OperationContextBeclarationCs “"cantext Stack 1 push { val : int j: void pre @ self . Top < 10 past @ s
;%ﬁ ContextDeclarationtistCs "rontext Stack :: pop { } @ void pre : self | isEmply = FALSE and s2lf . Tap >

: #-3) OperationContextDeckarationCs "cortext Stack 1 pop {) 2 void pre : self . isEmply = FALSE and s
ey eictamen R L I R . o

e V= Tt e =y s -

= o
——

Fig. 3.1. Sample Partial Parse-Tree of OCL Operation Contract for Stack Class

After generation of parse tree is the process of semantic analysis of the output parse tree
and construction of domain specific objects in Java. Our OCL parse tree processor
transverses the parse tree and extract the Objects corresponding to the domain concepts

of OCL semantics.

28

. - T TR DR A T e S ot

Chapter 3 Proposed Approach
) :
CTinvarieit CTContext CIOperation CTVariableType
CTrvarient() Clooete Al ClOperationl) NTE‘.}ET. CTVaistielype
] W wicAtriute0 petCTOperatonidame() &OO;'E.:ff Civer '_a"’{ﬂy"e CTVariableValue
! o addOperstion() setCTOperationiiamep) | [REAL: CTvanabliype = : .
e sddAltriute() getSignatu=() _WSTRRO Clvaibielype || |CTvoratievihis)
CIAttribute adOper s 5,3!%@9,/'.3 1 I IOTHER: CTVariahieType o3 \er\fs:ial'f:-\faue()
CTatirkade) addnvarient()] g Pareneters() CiVariateType0 wr.np:afe To(}
ertf -] AtPestCondtions() DS 1atVakie() eEtvetue()
gettiame() setcdvvariend!) ———" geiPest! o vt
setiame() nal CHAey getPrecordtionsQ . . ian in
aeiType0 ‘ / geiLsiOperations(fshec?na‘mnv”ble() CiClassVariable<i> fnype()
zetiype(} e ol T ContextiName() isPostConttionYanaie() - i}‘___J
getntVal() (B T satCTConte i ame() getVarVabies() ’
selirad/) ! et arient(y [~y wetlonctraitsn)
getContaxtNamed) sefimvarient() getVarv.ahe} et
setCorextNandl) aetvsiableNames() getvarvauel) o
’ GeACTIype)) | getOperationName 20 getVarvatueD) getSii T5e)
g H i i h AUV T/
el Type(y f netSiateVanables() getvarystieo() vkl
/ o#tStateVarishieNames() isConstructer() e Ak
¥) Gt AR BlueSrings() / setConstruztae) removevahz2i()
1y getinvarients DeseQ EinParametzrliz()
CTConsbaintbase Cieart, ist2() / getParametet ByMams()
getStaleVarQ getParametzrConglrant=()
CTConstrantbased} gelvarisbleTyp=0 seliethodbtantery
netCanstrantstisi(y e CortedNod Q;D:. {getd=thoidhiumier ()
isinConabon() - fioakzeQ) \
‘ getiype() Q\\«_ CTPreCondition getCount()
d SetType(getParamCouri()
| aetvarYals() CTFreCondtion)
' getvarvaly i . CTCondnionalConstraitt \
CTConditionalPostCofittion
CiCondtonal onstrart() \
CTCondbonalPostCorlion]) getCondtiong)
[PA getResRlfTrus0) \g]
Vi /O(Z'QiRe’ﬁfﬂlfFals—?U -
. 31 ClPostCondition R CTHethodParameter
ConstrainiType CIPostCondtiond)
BIVARENT: ConstramtType getCondtionalConstraint()
FRE Conttrairtiype geAvarVat) p
% POST ConsteantTyge N e sttamad)
\0 PARAMETER ConstraiedType CTConstramt “e.” ;:?afo)
Ci i =0 ATy pe
NI ConsveniTaeel CiCanstract(y etz Type0
T CTComstesird) e gConstants()
k petConciarttianes e setConsts airds(}
' setConstrairti{amef) e acddCone!s
getDesc() a.r getTestinput Yaiue()
getbesc() getdavalype}
getYariableName()
getYarableNameRemavingSelf()
se{VanablzName()
getVariahie Value(}
sedYariahie Value(y
toStrieg)

Fig. 3.2. The Class Diagram of Mapping Objects of OCL Operation Contracts

After generation of parse tree the next step is of constructing the abstract finite state
machine applying the rules used by [1]. The abstract state model of the software from
specification is created starting from the class constructs. For each constructor a new
initial state in the Abstract Finite State Machine is creatéd. We then dynamically create

all the resulting states from the initial state onwards.

29

Chapter 3 Proposed Approach

A deviation here is that previous approach suggest. using transition tree coverage
criterion i.e. test sequences are identified along with the simple paths. Simple paths
coverage misses the self reference transitions and it is quite possible that a method might
fail on subseqiient invocations as the subsequent calls might bring the object in as state
(due to implementation faults) that it may behave anomalously; even the specifications

may suggest some other behavior.

But in case we have self transitions to a state then it might skip a valid step in the
sequence of method calls. So it is better if we have row test sequences {rom exhaustive
search of the AFSM. The test sequences generated in this step are used as an initial

population for the MOGA optimization.

3.2 Coding of Test Sequences in Chromosomes and Optimization through

MOGA

After buildup of the abstract finite sate machine the next phase is of gencration and
optimization of the testing sequences. This phase involves coding of the test sequences in
tool specific Chromosomes, execution of MOGA and selection of best fit test sequences

after evolution.

3.2.1 Coding of Solutions in Genes and Chromosomes

We have devised a coding scheme where a potential solution (Chromosome) comprises
of Transition (Test Transition) from the built Abstract Finite State Machine. Each Test
Transition represents a transition in the Abstract Finite State Machine with additional
feature to be automatically executable on a class under test by calling the méthod

represented by this transition.

30

Chapter 3 Proposed Approach

Generally solutions or chromosomes are coded in the form of binary string values
representing the potential solutions to the problem at hand. But our coding scheme is not
a binary coding were each gene is coded in terms of a binary representation. Modern day
tools allow usage of custom, user defined genetic coding. Especially while working
within Object Oriented language like Java, where everything is in essence an Object, we

get infinitely many options for vales of each Gene.

So a Chromosome of length n will have n Test Transition objects (genes). The JGAP tool
used by us allows specifying a mechanism of returning custom random genes values
while population is evolved for the purpose of mutation. To tell the MOGA
implementation system how to get random values we attach a mechanism which returns

random transitions from the generated finite state machine. Here firstly a random state is

‘picked out of all state of the finite machine, after that one of the outgoing transitions is

selected at random. A potential chromosome in our Solution set can be visualized as:

i
R it

:'1"1

4%

Fig. 3.3 A Chromosome of >length n,m our coding scheme.

Each Transition Ti in the coding scheme, contains reference to an, initiating state
(Transition from state) from which that transition originated and a reference to a

terminating state, to which that transition is leading.

Where n is the length of the chromosome and T; is the i™ Transition in the test sequence
and i = 1,2,3,...n. during the MOGA optimization mutation and crossover is applied on
the genes. While during mutation the changed gene value is randomly selected transition

from the built Abstract Finite State Machine.

31

v

T Rt

e W T

v rvRsEero: cacrur T U SR . .

[S Read

Chapter 3 Proposed Approach
3.2.2 The Multi Objectives

The test sequence generation process should be efficient enough to reveal the problems in
the implementation. In order to get quality test sequences we use two objectives they are
not totally in a conflict but optimization for one might decrease the fitness of the other
objective. We have following two objectives while optimizing the test sequences, it
should be noted that our aim here is to get the test sequences those are more revealing

and uncovering the problems in the class implementation.

3.2.2.1 Optimize Coverage

While testing we are interested to reveal all possible errors by applying all possible input
combinations to the method interface of the Class Under Test (CUT). Due to infinitely
many combinations of class state variables and method input parameter values it is
practically impossible to test all possibilities. We can only have as improved class test
coverage as possible so that we are sure of a level of the quality of our testing process. So
first of the two objectives we have is the optimization of generated test sequences in
terms of the coverage. Our fitness function evaluates the number of transitions of the

finite state machine covered by the test sequence.

3.2.2.2 Test Sequence Order Optimization

Comprehensive testing of a class involves testing for both valid and invalid method
interactions [1]. By Inherent propertics, MOGA searches through the solution space by
building random solutions based on the genetic operators. In the case of class unit testing
any sequence of method calls may be valid, but the question arises of getting test
sequences which are in sequence according their place in the finite sate model. Our

32

oo Ce - - = e ade L

Chapter 3 Proposed Approach

second of the multi objectives is to make the test sequences as in order as possible.
Fitness valué of solution by assessing its order often is in contrast with the fitness value
for over all coverage achievable by that solution. P

3.3 The Genetic Evolutionary Process

The Evolutionary process in our approach is completed in the following steps: this
genetic evolution of chromosomes is done automatically by Java Genetic Algorithms

Package (JGAP) [23], but as directed by our approach:
3.3.1 Initialization of Test Sequence Population

Initial population of the test sequences can be generated either completely at random
where transitions from the generated AFSM are picked at random to create Genes of each
chromosome of the initial chromosome pool. While this way we can save the efforts
involved for traversing through the finite state machine but a comparatively better way is
to get the initial pool by exhaustive search of the AFSM. Because, on taking the first kind

of population, there is a possibility of evolution of the population towards local maxima.

3.3.2 Selection for Reproduction
Process of selection involves selection of fittest individuals for mating in the next
population. Here each gene is passed from the genetic Evolution tool to our fitness

function evaluator and is then assigned fitness values based on our fitness functions.

33

HA

Chapter 3 Proposed Approach

3.3.3 Reproduction of Population

Population crated in step one under goes Genetic processes of Crossover and Mutation
and gets evolved over generations. After each generation, chromosomes are assigned
fitness values according the fitness functions.

3.3.3.1 Crossover

Based on the selected crossover probability a single point crossover is performed on the
population chromosome where parts of the chromosomes are swapped and new offspring

are created for next generation selection.

Chromosome A Ta, ﬁi‘aj Taj Ta_4 Tas ;
- L]

e . ¢ et

Chromosome B H:lilm)lerbz !Tl”lj”b‘ "
; : Li |

Chromosome A’

Chromosome B’

Th, “G Tbs

ti‘bi

Fig. 3.4 Sample crossover process, Chromosomes A&B are changed to A’&B’.

%’Ta.‘

_{!

34

Chapter 3 Proposed Approach

3.3.3.2 Mutation

In this operation value(s) of Genes are mutated based on the mutation probability and
resulting chromosomes are constructed. Number of genes changed during the process,
depends on selected level of mutation and selected probability of mutation. Here some of
the Test Transition objects in the target chromosome are replaced with randomly selected
values form the AFSM. Our random transition selection mechanism plugs in with the

evolution tool and provides it random transitions when required for mutation purpose.

p—

Parent Chromosome T1 gTz Eﬁ; |

L

¥

Offspring Chromosome

i

Fig. 3.5 Sample mutation process, Genes T5 & Ts of Parent Chromosome mutated to T3

& T’sto create Offspring Chromosomc.

3.3.4 Termination Condition

Termination criteria in a genetic evolution process can be of two types, firstly when we
evolve the population to reach a specific amount of fitness values and secondly where we
evolve the population to a specific number of generations. Second termination can be

used if we are sure of the required quality of the chromosomes, but while optimizing test

35

i iiio — SIS gy

Chapter 3 Proposed Approach

sequences unfortunately, that is not the case. So we sclect the termination criterion of

evolving the population, specific number of times while reproducing the individuals.

3.4 The Fitness Functions

In order to optimize the test sequences through MOGA, the role of efficiently defined
fitness functions is critical. The MOGA based tools use these user defined fitness to
assess the quality of solutions (the chromosomes). The simulated genetic process of
evolution, assigns the fitness values to the chromosomes for cach generation and after
application of genetic operator only fittest chromosomes are selected for subsequent
generations. For test sequence optimization, we have devised the following fitness

functions:

3.4.1 Calculate Fitness By Coverage
Calculates. the coverage of current chromosome by the number of transitions covered and

assigns the fitness value according to the following algorithm

n
Coverage Fitness (CF) = Z(covemge weight for call sequence)i

=1

Description of calculation of coverage weights is

e If a transition is covered once chromosome is given additional positive weight-
age, it rewards a chromosome for covering a transition.

e If a transition is not covered at all by a chromosome it is given additional
negative weight-age, it reward a chromosome negatively for not covering a

transition.

36

Chapter 3 Proposed Approach

e Ifatransition is covered more than twice by a chromosome it is given additional

negative weight-age, it rewards negatively due to repetition,

The fitness value for a chromosome by coverage can be calculated by the following

pseudo code:

Initialize CEF:=0, wCoveredOnce, wCoveredTwice, wCoveredMoreThanTwice
For each Chromosome c in the current population
For each Gene ginc
If g occurs once
CF = CF + wCoveredOnce
End
If g occurs twice
CF = CF + wCoveredTwice
End
If g occurs more than twice
CF = CF + wCoveredMoreThanTwice
End
FEnd
Set coverage fitness of ¢ equals CF
End

wCoveredOnce, wCoveredTwice, wCoveredMoreThanTwice are, problem specific
arbitrary weight-ages, for at least one state coverage, a state covered twice and a state
covered more than two times.

37

Chapter 3 Proposed Approach

Sl af S 4

3.4.2 Calculate Fitness By Test Sequence Order

This fitness function assesses the fitness of a solution cliromosome by assessing how
much that particular solution is in order according to the generated AFSM. A better test
sequence will be more in order than its competitive test sequence. We get fitness value as

weighted sum of all individual fitness values of cach gene of a chromosome.

i

Mathematically the fitness by sequence validity for a chromosome is calculated as

n
Fitness Order(OF) = initial state weight + Z(sequence weight for call sequence)i
i=1

- Description of the weight calculation for test sequence order fitness is

e Initial state weight, if the first gene of the chromosome has an initial state of
AFSM as from state then this weight is added else skipped.

e Sequence weight for call sequence. we calculate the quality of chromosome by
the sequence of method calls and reward each chromosome by f{ollowing
formula

o If any of the method calls (genes) is in a valid sequence then a positive
weight is added to the second fitness value.
o If any of the method calls (genes) is not in a valid sequence then a

negative weight is added

The fitness value for a chromosome by validity can be calculated by the following pseudo

code:

Initialize OF:=0, wSState, winSeq, wNotinSeq

38

- Welw WV ®

— PN - - eEmwoToneTIYTETesT e M 4 e o

Chapter 3 Proposed Approach

For each Chromosome c in the current population
If ¢ starts with an initial state
OF = OF + wSState
End
For each Gene ginc
If g is in sequence
OF = OF + winSeq
Flse
OF = OF + wiNotInSeq
End
Set order fitness of ¢ equals OF
End

wSState, winSeq and wNotinSeq are, problem specific arbitrary weight-ages. for starting
with initial state, being in sequence and not being in sequence respectively.

3.5 Expected Benefits of Proposed Approach

Proposed approach is expected to give following benefits over current approach of test

sequence generation and optimization.

3.5.1 Adopting to Standards

The Object Management Group (OMG) has clearly defined specification for standard
OCL syntax. As this thesis is written the current version is 2.3.1 as of January 2012,
which is available on OMG’s website for download. When OCL class contract, presented
in the literature, is compared to the industry standard OCL syntax; it is revealed that,
current approach deviates from the state of the art OCL used in the industry. As a matter

of fact no standard OLC parser accepts the syntax used in the literature. Current syntax is

39

ErAl "]

Chapter 3 Proposed Approach

more C++ like which is not acceptable as OCL syntax according to the OMG OCL
specifications [22]. Since the approach deviated from the standards, it was quite unlikely
to be adopted by the industry practitioners. In order to build our testing tool we observed
that OCL syntax used by current approach fails to get parsed by standard OCL parscrs
that follow OMG’s OCL class contract specification syntax. So we took the OCL Class
contracts in standard OCL format and then applied current approach to it for building
Abstract Finite State Machine (AFSM). Then we generated the test sequences by
traversal of AFSM, beginning from the start state. We call these test sequences as raw
test sequences because they suffer from the state-based path search problems. Now our

approach is able to generate test sequences directly from standard OCL.

3.5.2 Automation

Conformance to standards provides the benefit of automation for the process of test
sequence generation. Reading OCL class contract specifications, we automatically
construct OCL parse tree. After that our tool does semantic analysis of constructed OCL
parse free and applying the rules defined in the literature build corresponding AFSM
automatically. Next step is automatic generation of the raw test sequences from
exhaustive search of AFSM, these test sequences can be directly used by the test
engineers if they think raw test sequences test sequences are good enough and can be
used without optimization. In case when test ¢ngineers decide to go for Multi-Objective
GA based optimization for the test sequences, our tool automatically run MOGA over the

raw test sequences selecting a random population out of them. This way the process of

40

Syt on

R

Chapter 3

Proposed Approach

generating test sequences from standard OCL is automated all the way to the MOGA

optimized test sequences.

- . » .

ﬁe Lbﬁu:hl‘ Lo
fest Cases (mm Eadaam!rve Smd]

addlrink7{ m @
addbrink?i x
308Dy ink?{ &

eqdbeink7{ & 1 I
addbrinki{ ® ; I
sdaprinkTim ; I

addbrinki{ m 3
SAdPeinkTi w !

=ddbrink?(w 2

B T T —— —

214, a8d7zr3(}

Integer

Intayger

addPreink?(m : Inte

2dPrinkTi m 2
eddDrink?(m :
addbrinki| ®
addPrinkT(m

(ot ——r i -
A . - M)

Intagar
Incager
nceger

Intager |

)

&, sddiz;

4, additr8]

013, 2645t 1

T void,acd(red(
; yourd, 33AGTrE !
: void, s8d0trBi
: void, add(teSi)

i
H
)
}
3
!
void, ad@Crr3i g
]
H
li
}

void, add(ted{)

: void, sddtrd{ } ¢

)
)
1
1 void, s33d)
: void, add’bt:E(]
1 void, 2337 LB)
4

)

}

i

: w014, addctrB()
: vo:d,adifnrg
2 woid,addy

: 4, a30Ctr8! ¥ : void, ad

: woid, zd@0tr8t 3 ¢ void,addl

: yeid, sddCrr8{) - veord, addy
3 vould, adsd

void, adddrzsy
void,add(nrE{

r ovosd, addfm o (

© void, addirrs(§

)
)
H
: voig, sder3i)
1 void, addle2l)
1

3

)

)

= Tl—
void, addlees{ |
&, addQre3 (

4, 3ddQue3(
vzic, addirrsy

woid, sddfresi

1 veid, additody
1 veid, addQer3(
: void,adddtrs(
: Voif, addcrrs
1 veid, addirrd{ }
3 wnid,addfiri(

:ovoid, retQrrsar)
i ovosd, addCrI8i 1 o1 N
¢ ovosd, sddlredd § ;o
s vold, addltrd § ¢ v
:oyord, resfIradd) o

void,rerd

g adaltrd(3 0 vol

¢ ovoid, agcltrE]) ¢
v ovoid, T
1 volid, 3ddTosl)
@ void, ad

CLr3df) o

geaddRe2(§ o vel

A add0trdi 1 ¢ vold, a‘x‘.‘_:r‘
34,2830t 3 () valid, addltrE
2id, retQuessf 1 void, «
QACLedi 1
t void, sdderaf)

vo.d, aE6T
T ovold, &dﬂ-}::&(o
void, rer{nyed()

HOGH
word, ad3dmrsi) T woid, adddirf

= ep et

(est Cases Alter Muti Gbijective Gienetit Optimization

reuftrsd|) :
addDeinki(w
edabrinki(m ¢
agdutesf)
adddrinki(w
085rinETl m
aiEhrink?{ m @
addbzinkTi m

@ woid, addr

Intege:

intager
Integer
Iinpager

Integer

Ing2ger)

void,zidlrink?! @
s void, addCre3y)
2¢eqrs } ¢
cid, sdd3trs(
:ovold,addleBl) @ vo
: void, addtteB!)
s voud, renitrs®i i
: vold,sddtyd] 1 ¢

3
)
i

)

)
i
)

: void,
w81 :

Inreger) : voi
o void, ad 3¢}
void,addnrdt j
r voul, addives

T void, a
HELL

1d,addog()

o, adlcrBl)

: weid, addles i 1

1 ovoad, sd8Gerd{ 1
¢ ovold,=dd00rs() ¢ v
void sadbransyi m o I
Vo void, addfirE{) ¢
1 veld,addQrzd() ¢
i :!ﬁ:id,&d&i’.‘ttﬁ() T ¥
weid, addftes() ¥
¢+ void, edddeesg | o

H *:ﬁm,addx“i }
13, 8dd00e3)
7)o ogeid,xeeln
cid, adddersi | o

1d,add0er § o1 v
18, a0 { | o vaid, ddCerE
16, AGBTcI() ¢ vazd, xéd(Ird
vi1g, 8ddCecd i 1t void, addoned

t ¥eid, T @ vaid, addic

T woid, A

Fig. 3.6. Partial view of automatically generated, exhaustive scarch-based and MOGA -

based optimized test sequences.

3.5.3 Optimization of Test Sequences

The new proposed approach is a novel approach that uses multi-objective GA for test

sequence optimization, using an initial population of randomly selected exhaustive search

test sequences. State of the art approaches found in the literaturc use random stochastic

initial populations. By nature of MOGAs, use of complcte random sequences. gives a big

chance of getting the population evolved in a negative direction, because while

optimizing test sequences it might be quite important to have a valid sequence of method

invocations in accordance with AFSM. Starting with in order set of input test sequences

and applying MOGA using our fitness functions yield more useful test sequences.

41

R T

Y

e N o S A, d ’ .

Chapter 3 Proposed Approach

3.6 Java based Tool for Research and Industry

While working on the research we have come up with a new tool which can be used as
baseline for research in FSM based testing. The tool is now open source and freely
available for subsequent researchers. This tool can build, save and load FSMs and run

MOGA with custom fitness functions for generating optimized test sequences.

3.7 Summary

In this chapter we have presented our new proposed approach and have described
different phases of the new approach. We have explained the process of parsing of OCL
class contracts and their semantic analysis to generate the corresponding Abstract Finite
State Machine. We have also explained the process of process of generating optimized
test sequences from the generated AFSM. On the way we explain the coding scheme
used, details of MOGA process orn the coded chromosome and definition and cvaluation
of the fitness functions during the MOGA evolution process. At the end of the chapter we
have listed some of the foreseen benefits achieved by the new proposed approach. At the

end we include a discussion of the new tools developed using Java for implementation of

the new approach.

42

TR CTE s YR e RG-S 7 - -
o .

CHAPTER 4

CASE STUDY AND EXPERIMENT

ewREwT s ST LIV TP T IR

Chapter 4 Case Study and Expertment

Generation of test sequernces is a critical part of tésting phase of software development
life cycle. It is show by [1] that test sequences for unit testing of a class can be generated
from OCL class specifications, that is by mapping class specifications (OCL class

contracts) to the Class Model (specifically a Class in the class diagram).

Current test sequence generation process when applicd to actual testing reveals some
critical issues, these issues and our proposed solution is presented in this case study.
CoinBox class is picked from a Drink Vending Machine’s class diagram; this class is
responsible for keeping record of number of available drinks and number of quarters
entered by the customer. We used this class because it was used by the reference paper; it

helps us to present a comparison. Two more classes Stack and Circle were tested.

4.1. Problems with previous Approach:

When we applied the previous approach to the gencration of test cases from CoinBox
class we observed the following problems. Current approach deviates from the actual
OCL standards in terms of syntax and semantics. Due to the lack of conformance to
standards of OCL the approach lacks the ability of automation. Due to state space

exhaustive search the technique has inherent problems of the approach.

4.1.1. Deviation from standard OCL Syntax:
The example OCL code used by current approach [1] is not according to the Industry
standard OCL syntax and hence none of OCL parsers used in the industry accepts this

syntax e.g. the OCL example used is in the following format OCI. Specs [11]:

44

Chapter 4 Case Study and Experiment
Context CoinBox { .
int curQtr, quantity, totalQtrs 1= retQitrs():void // return quarters back {o the user
boolean allowVend e seffourQr > G
post rself.curClr =0
inv :int curQtr, quantity, totalQtrs >=0 seff.allowVend = FALSE
:zvend():void // deliver a drink
2 CoinBox() pre self.allovVend == TRUE and
post :self.curQr =0 self.quantity > 0;
sell.allowvend = FALSE post :self.curQtr =0
seff.quantity = 0 self allowVend = FALSE
self.totalQirs = 0 self.quantity = quantity@pre — 1
:: addOtr():void /7 add a quarter in the machine self.totalQbrs = totalOtrs@pre + curQr@pre
e self.quantity > 0; :zaddDrink(m: int):void /7 add m unit of drink in
post :seff.eurQtr = crQr@pre +1 # the machine
if {self curQlr@pre = 1) then pre cself.quantity =0 andm >
self.allowVend = TRUE post : self. guantity = quantity@pre + m
!

Fig.4.1. OCL Class Contract that does not comply with standard OCL

The above example was not according to the OCL standards syntax and after
modification/adaptation we get the following OCL class contract that is acceptable

according to the OCL 2.0 standard:

package CB

context Coingox .
ity @ curQur >=0 and quantity >=0 and totalQtrs>=0

context Coingox::Coinsox(}
post: self.curqir = 0 and self.allowvend = FALSE and self.guantity = 0 and self.totalgurs = 0

context Coingox::addqQrr () :void
pre : seif.guantity>0
post : self.curQur = curQurdpre +1 and
if{self.curQtr@pre=1) then self.allowvend = TRUE else self.allowvend = FALSE endif

context Coingox::retQirs{):void

pre: self.curQrr>0

post: self.curqtr = 0 and
self.allowvend = FALSE

context ¢oingox::vend{): void
pre: self.allowvend = TRUE and

self.quantity > ©
post: sief.curQer = 0 and

self.allowvend = FALSE and

self.quantity = quantity@pre - 1 and

self. totalQtrs = rotalQirsfpre + curQirdpre

context CoinBox::addorink(m:int): void
pre: self. quantity=0 and m>0
post: self.quantity = guantity@Gpre + m

endpackage

Fig.4.2. Actual Parse able OCL Class Contract.

45

<3 R St I . e

Chapter 4 Case Study and Experiment

As the used syntax deviates from the standard OCL in many aspects like e.g. [11]:

Each statement in each pre and post condition is joincd by a logical operator e.g.
‘and’, which is missing in the example.

Standard OCL syntax does not allow the use of curly braces *{} around the
context declarations.

All the OCL contexts (equivalent to Class) must be declared inside a package and
endpackage statement.

Each constraint in the Invariant declaration must be scparated by “and’ instead of
Writing just *::° operator while declaring a method signatures is not enough, it
should be fully qualified with the context name being referfed by the method.

Each if must have an accompanying else in otder to valid OCL statement.

4.1.1. Inherent Problems of Exhaustive Finite State Machine Exploration

Test sequences generated using the OCL class contract specifications using state-based

technique suffer from their inherent problems including infeasible-paths and exponential

number of generated test sequences. So we might get exponential number of test

sequences which might also be of indefinite length. Use of these sequences might take

exponential time for execution and even then we might not be sure if they cover even all

the states of the object, along with that it is quite possible that a state is covered indefinite

number of time e.g. if a state has a method loop (transition to itself with a method) or if a

state is revisited again and again.

46

TN rag s

Chapter 4 Case Study and Experiment

4.2.

Application of our approach

Our approach works in following steps:

('S

Generation of OCI. Parse Tree: In our approach we take OCL class contract in the
form of .ocl (a text file) and generate the parse tree for that passed file using an
Industry standard OCL parser. At the moment we use Dresden OCL Parser [11].
This is a pt;f)ular tool available both as standalone distribution and as an Eclipse
integrated plug-in.
Semantic Analysis and Generation of AFSM: From the constructed parse tree, by
semantic analysis of the tree and applying rules of the previous approach [1], an
Abstract Finite State Machine is constructed.
Generation of Exhaustive search-based test sequences: By exhaustive search of the
constructed AFSM, “Raw Test Sequences™ are gencrated. These test sequences,
although applicable for testing purpose, suffer from the state-based problems.
Optimization using MOGA: In-order to be processed by MOGA Optimization tool
a. We have defined coding scheme for encoding solutions into genes and
chromosomes as explained in detail, in section 3.2.1.
b. We have plugged-in our custom mechanism to return random transitions
(corresponding to the genes in our coding scheme) picked from ‘the
generated AFSM, used for mutation.

c. Our custom devised, fitness functions, calculate the fitness values of each

chromosome while selecting population for subsequent generation.

It is observed that the MOGA performance is highly dependent on the fitness

functions used. The detailed process is shown in Fig.4.3.

a7

Chapter 4 Casc Study and Experiment

= QCL Parse

oCL Class> , I Standard OCL w Tree _ (OCL Semantic
Contracts Parser j 'L Analysis

Abstract Raw Test
Finite State Exhaustive Sequences ‘ Multi Objective
Genetic

Machine Search >
J L Algorithm

l

Optimized Test

Sequences

Fig.4.3. Automated MOGA optimized, test sequence generation process.

4.3. Mutation Analysis

We used mutation analysis for bench marking the performance of our approach. We used
Mu Java[28] for seeding faults in the classes under test. It is important to be noted that
proper selection of number of generations is problems specitic and 1s important e.g. a test
run of the tool over CoinBox Class gave 2 unique test sequences over 100 evolutions but

they got improved and diverse with 500 and 1000 generations.

48

w»

i

2

R

Chapter 4 Case Study and Experiment
Table 4.1. Mutation Analysis of CoinBox, Stack and Circle Classes
Class Under Test | Total Faults Faults identifiecj by Faults Identified by New
Seeded Previous Approach Approach
CoinBox 117 81 83
Stack 73 51 59
Circle 98 55 53

In this analysis predefined number of faults was seeded in the compiled class files. These

faults were based on predefined mutation operators [28]. The experiment reveals that our

approach either out-performs the previous approach or at least gives equal fault revealing

efficiency.

140

120

100 +—

80

60

40

20

CoinBox

® Stack

® Circle

S

T

Total Faults Seeded Faulits identified by Faults Identified by
New Approach

Previous Approach

Fig.4.4. Comparison of fault identification efficiency of both the approaches.

One of the reasons of variations seems to be that current approach just follows transition

tree coverage, which skips loops in the AFSM. Depending upon the nature of the class,

45

Chapter 4 Case Study and Experiment

loops might reveal more implementation errors, e.g2. a method might give erroneous

results on subsequent calls.

4.4. Advantages
Our approach improvements give following benefits to the research and industry

community:

e Automation of the test sequence generation process, now test scquences can be
generated directly from the OCL specifications of a class automatically.

o Test sequence generation even before the implementation of the software is ready.

o Helpful visual representation of generated Abstract Finite State Machine.

e Improved test sequences with specified length and number, we produced optimized
test sequences of a certain length and having the maximum coverage of the states of
the class.

e Fine Tuned fitness functions, fine tuned specifically for Test Sequence Optimization
process.

e Less time and few resources required due to optimized test sequences, more reliable
results because in exhaustive searching of class states we may never know how

effective our testing is and when to stop.

4.5. Results and Discussion

Syntax of OCL used by current approach fails to be accepted as standard OCL syntax
and fails to get parsed by the available OCL parsers. It deviates from the standard of

writing OCL statements and hence cannot be employed in practical test sequence

50

Chapter 4 Case Study and Experiment

generation scenarios. The very first import of class contract syntax used by current

approach, revealed the syntax errors.

Our tool reads standard OCL class contracts and automatically generates the test
sequences applying the rules used by current approach. It also allows on demand
optimization of the test sequences if desired by the test engineer. An obvious advantage
of the automation along with effort saved from manual works is, automatic changes to

the test sequences on change of OCL specifications.

As observed in the experimental case study exhaustive state space search generated 872
test sequences of maximum length 26 with redundant test sequence loops. Unnccessary
effort needs to be spent on executing all these test sequences. Application of MOGA
with population size 25, solution length 15 and over 1000 generations, vields 25 Test
sequences of length 15 each; optimized for all transition coverage and ordered sequence
paths. It was also observed that more generations give more diverse test sequences with
higher fault revealing efficiency. Since we used a random population out of the search
based sequences, it minimizes the chances of bad genes and evolution in negative

direction

We did a mutation analysis of the class under test and found that MOGA based test
sequence seem to give at least comparative defect revealing cfficiency and may
considerably outperform test sequence generated from the current approach. It is
important to be noted that proper seléction of number of generations is important motre

generations might give better results but with considerable MOGA execution time.

51

Chapter 4 Case Study and Experiment

By nature, as of all optimization techniques, we are never expecting that we might have
exact solution, but we get optimized solutions. MOGA being a subset of evolutionary
algorithms starts with a possible set of solutions and then try to optimize the set of
solutions generation after generation. Evolution as a mimicry of the natural process of
evolution might not find suitable chromosomes (e.g. due to mutation) and might give
some useless test sequences, this can be controlled using better fitness functions. This is
obvious because in the nature if wrong genes get to the next gencrations then the
individuals may suffer from defects. After generation of AFSM we can:
e Either generate a stochastic random population where each chromosome is a
constituted out of a completely random set of genes
e Or get a random population out of the population of test sequences generated
from state-based test sequence generation approach
Second option seems to give better results.
While specifying MOGA Fitness Functions for Test sequence Optimization we must
take into account the sequence of Genes while calculating fitness values. Our approach
gives improvement in terms of Automation of test sequence generation process. MOGA
are quite effective while being used for test sequence optimization process but we
recommend use of raw test sequences as initial population. MOGA optimized test

sequences give optimized coverage within limited test sequence length and numbers.

52

CHAPTER 5

CONCLUSION AND FUTURE WORK

wom ower P wm o ™ % mow . DI)

5.1. Conclusion

The new proposed approach has improved the previous approach by conformance to
industry standard syntax and automation from OCL to the actual test sequence
generation. The new approach gives us benefits of optimization of test sequences in terms
of minimum number and higher quality along-with automation of test sequence
generation process and conformance to industry practiced OMG standard OCL syntax. It
can save the time and resources spent on a part of testing process where selection of test
sequences is done. Our approach gives improvement in terms of Automation of test

sequence generation process.

Multi Objective Genetic Algorithms are quite effective while being used f{or test sequence
optimization process and our use of raw test sequences as initial population appears to
give better results compared to the completely random selection of initial population of
test sequence chromosomes. MOGA optimized test sequences give optimized coverage

(maximum transitions coverage) within Jimited test sequence length and numbers.

We have also presented a Java based Open source tool, which can be used with any type
of finite state machine while applying MOGAs; its scope is not just limited to the Class
testing from OCL operation contract specifications. This tool can be used either by
industry practitioner test engineers for creating test sequences while testing the software

or by researchers while experimenting with FSMS. GA and MOGAs.

54

& T

—— VR W oy, Sem = : [S 4

5.2. Future Work

Some of the future work we want to do, as an improvement in our research work, is
included in this section. We have automated the generation of test sequehces from OCL
operation contracts but complex OCL constrains and operators might need some
additional attention and we would like to improve further the complex constraints

handling functionally.

We have devised fitness functions very carefully but as there is always room for
improvemeiit, while using optimization techniques. So another future work might be

improvement of the fitness functions to get better results in the generated test sequences.

Usage of variable length chromosomes seems to be a quite fantasizing phenomenon, but
it is inherently complex and optimization of chromosome length to reduce length of test
sequences needs investigation. An option is to add test séquence length optimization as
an additional objective. In that way. some work is needed to be done to investigate the

advantages and drawbacks of addition of length constraints.

We have tried our technique with experiments in the controlled laboratory environment.
Another future course of research is to use our proposed approach to other industry
applications and get feedback for improvement. We have already progressed in that way
and our developed tool is available on the sourceforge.net for freely distribution under

GNU license.

55

S RS e e S e

APPENDICES

oL TN
T S T S e I e

Appendices Java Code

Appendix A

Code for Test Sequence Optimization Fitness Functions

package pK.com.rsoft.ga.multiobjective;
import java.util.*;

import org.jgap.*;

import pk.com.rsoft.classcontractstestbed.testsequences. Test Transition;
import pk.com.rsoft.classcontractstestbed.util.graph.State;

import pk.com.rsoft.testsequenceoptimization.ga.*;

Ix 33
* Fitness tunction for the test sequence problem.
%

* reauthor Reban Faroog

B

public class TestSequenceMOGATFitnessFunction extends BulkFitnessFunction §
private static final long serialVersionUID = 1L;

public void evaluate(Population a_subject) {
Iterator<IChromosome> it = a_subject.getChromosomes().iterator();
while (it.hasNext()) {

IChromosome a_chrom!1 = it.next();

// Evaluate values to fill vector of multiobjectives with.

I = CalculateFitness(a_chroml);

((Chromosome) a_chrom1).setMultiObjectives(l);’/ Set fitness value
/7 for the Chrosome

h

}

public static Vector<Double> getVector(IChromosome a_chrom) {
List<?> moList = ((Chromosome) a_chrom).getMultiObjectives():
Vector<Double> retVector = new Vector<Double>();
retVector.add((Double) moL.ist.get(0));

retVector.add((Double) moList.get(1));

return retVector;

}

aOverride

57

R

Appendices Java Code

public Object clone() {
return new TestSequenceMOGAFitnessFunction();

}

public Vector<Double> CalculateFitness(IChromosome a_Chromosome) §
Vector<Double> v = new Vector<Double>();
v.add(getFitnessByTransitionOrder(a_Chromosome)):’/ Fitness by validity
Aisin

// Jocation indexed 0

v.add(calculateFitnessByCoverage(a_Chromosome));// Fitness by Coverage
/s in location

/i mdexed |

return v,

}

private Double calculateFitnessByCoverage(IChromosome a_Chromosome) {
double retVal = 0;

State from;

State to;

Gene[] genes = a_Chromosome.getGenes();

if (((TestTransition) genesf1].getAllele()).getFromState()
.isStartState()) {

retVal += 20,

}

int occuranceCount = 0;

for (State state : AFSMHolder.get FSM().getStatesList()) {
occuranceCount = 0;

for (int index = 0; index < genes.length; index++) {

from = ((TestTransition) genes[index].getAllele())
.getFromState();

to = ((TestTransition) genes[index].getAllele()).getToState();
if (state.isSameAs(from)) {

occuranceCount++;

}

if (state.isSameAs(to)) {

occuranceCount++;

h
}

if (occuranceCount == 1 || occuranceCount == 2} {
retVal += 3 * occuranceCount;
} else if (occuranceCount == 0 || occuranceCount > 2) {

-retVal -=10;

}

58

A

Appendices

}

return new Doublé(retVal):

}

private Double getFitnessByTransitionOrder(IChromosome a_Chromosom) {

double retVal = 0;
Gene[] genes = a_Chromosom.getGenes();

if (((TestTransition) genes[0].getAllele()).getFromState()
AsStartState()) {

retVal += 20;

}

State next = ((TestTransition) genes[0].getAllele()).getToState():
for (int index = 1; index < genes.fength; index++) {

if (next.isReachable(((TestTransition) genes[index].getAllele())
.getToState())) {

retVal +=5;
} else {
retVal -=5;

1
i

next = ((TestTransition) genes[index].getAllele()).getToState();

}

return new Double(retVal);

b
}

Java Code

59

FEIN | TETER RGN e SR R a? A e T
Appendices Java Code

Appendix B
Java Code for Context Class, Root Class of All OCL Elements

package pk.com.rsoft.classcontractstestbed.classcontract;

import java.io.Serializable;

import javax.swing.tree. TreeNode;

import java.util. ArrayList;

import java.util. HashSet;

import javax.swing.tree. DefaultMutable TreeNode;

import pk.com.rsoft.classcontractstestbed.util.graph.ClassVariable;
import pk.com.rsoft.classcontractstestbed.util.inequality.InEquality Simplified;
import pk.com.rsoft.classcontractstestbed.util.parser.CTStringParser:

g 3%

* @author Rehan Faroog

%%

public class CTContext implements Serializable {
private ArrayList<CTAttribute> IstAttributes;
private ArrayList<CTOperation> IstOperations;
private CTInvarient thelnvarient;

private String strCTContextName;

private TreeNode theContextNode;

public CTContext(TreeNode theNode) {
strCTContextName = "";

IstAttributes = new ArrayList<CTAttribute>();
IstOperations = new ArrayList<CTOperation>();
theContextNode = theNode;
parseContextNode(theNode);

}

public void addAttribute(TreeNode attNode) {
CTAttribute atr = new CTAttribute(attNode);
this.add Attribute(atr);

}

public void addOperation(TreeNode optNode) {

CTOperation tempOp = new CTOperation(optNode);

if (tempOp.getCTOperationName().equals(this.getCTContextName())) {
tempOp.setConstructor(true);

J
getLstOperations().add(tempOp);

}

60

R @2 awe . e T A R AN O o T E -
. F i & kst - : fadad

Appendices Java Code

public void addAttribute(CTAttribute anAttrib) {
it (tisDuplicateAttribute(anAttrib)) {
IstAttributes.add(anAttrib);

¥

}
public void addOperation(CTOperation anOpp) {

getLstOperations().add(anOpp);

)

public void addInvarient(CTInvarient anInv) {
this.setInvarient(anlnv);

¥

public void addInvarient{ TreeNode invNode) {
this.setlnvarient(new CTlInvarient(invNode)):

j

private void parseContextNode(TreeNode ctNode) {
if (ctNode.1sLeaf(}) {
this.setCTContextName(ctNode.toString().trim());
this.setCTContextName(CTStringParser
.extractName FromQuotes(getCTContextName()));
} else {

DefaultMutableTreeNode tm = (DefaultMutableTreeNode) ctNode;
parseContextNode(tm.getChildAt(0));

}

}

FEx

* ‘areturn the IstAttributes

*/

public ArrayList<CTAttribute> getLstAttributes() {
return IstAttributes;

}

SRk

* Yretumn the [stOperations

*/

public ArrayList<CTOperation> getLstOperations() {
return IstOperations;

}

3%

* return the strCTContextName

y. §
1

public String getCTContextName() {
return strCTContextName;

}

* wparam strCTContextName

61

T A P ot

Appendices Java Code
* the sttCTContextName to set
£y

public void setCTContextName(String strCTContextName) {
this.strCTContextName = strCTContextName;

}

* @return the thelnvarient

¥

public CTInvarient getInvarient() {
return thelnvarient;

!
s

* {aparam thelnvarient

* the thelnvarient to set
*/

public void setInvarient(CTInvarient thelnvarient) {
this.thelnvarient = thelnvarient;

}

public String getVaiableNames() {
/*

* Very Very Important! This code extracts the varibale and methods from
* the OCL but at the moment there is a constraint on the variba'e

* declartion that is only those variables are picked which are declared

* in the OCL [nit statements (in future there can be a possibility of

* infering from the pre and post conditions but at the moment it is

* implemented that way)

StringBuilder strRetVal = new StringBuilder("");
if (this.IstAttributes = null) {

for (CTAttribute at : this.IstAttributes) {
strRetVal.append(at.getType()).append(

.append(".");

j

}else {

System.out.println("Variables Names list empty");
Y

).append(at.getName())

3
return strRetVal.toString();
1

J

public String getOperationNames() {
StringBuilder strRetVal = new StringBuilder("");
it (this.IstOperations '= null) {

for (CTOperation op : this.IstOperations)

62

ST T TR 0

. . vt
ot al It S s S ; Rt s od

Appendices

strRetVal.append(op.getCTOperationName()).append(”.");

}
return strRetVal.toString();

1
i)

public ArrayList<CTAttribute> getStateVariables() {

ArrayList<CTAttribute> Ist = new ArrayList<CTAttribute>();

for (CTAttribute atr : this.IstAttributes) {

for (CTOperation op : this.lstOperations) {

if (op.isPreCondtionVariable(atr.getName())) {
boolean duplicate = false;

for (CTAttribute at : Ist) {

it (at.getName().equals(atr.getName())) {
duplicate = true;

)

}
if ('duplicate) {

Ist.add(atr);
j

}
}
}

return Ist;

b

public String getStateVariableNames() {
HashSet<String> $t = new HashSet<String>();
for (CTAttribute atr : this.IstAttributes) {

for (CTOperation op : this.IstOperations) {

if (op.isPreCondtionVariable(atr.getName())) {
st.add(atr.getName());

[P AN)

return st.toString();

}

public ArrayList<String> getAllValuesStrings(String strVarName) {

ArrayList<String> retVals = new ArrayList<String>();
for (CTOperation op : this.IstOperations) {

for (String val : op.getVarValues(strVarName, ConstraintType.PRE)) {

Java Code

63

— e \ao L gaa. o R i S =
oy o -

Appendices Java Code

if (!Containts(retVals, val)) {
retVals.add(val.trim());

}

j
for (String val : op.getVarValues(strVarName, ConstraintType. 7OST)) {

if (!Containts(retVals, val)) {
retVals.add(val.trim());

)
}
}

for (CTConstraint ctx : this.thelnvarient.IstConstraints) {
if (ctx.getVariableName().equals(strVarName)

&& !ctx.getVariableValue().trim().equals("")) {

if (!Containts(retVals, strVarName)) {

retVals.add("Inv " + ctx.getVariableValue().trim()):

3
h
b

return retVals;

}

private boolean Containts(ArrayList<String> Ist, String str) {
for (String s : Ist) {

if (s.equals(str)) {

return true;

j

}

return false;

}

private boolean Containts(String strVal, ArrayList<InEqualitySimplified> st} {
for (InEqualitySimplified s : Ist) {
if (s.getVariable().getValue().trim().equals(strVal.trim())) {

return {rue;

}

j

return false;

3

public String getInvarientsDesc() {

StringBuilder strBld = new StringBuilder();

for (CTConstraint ct : this.thelnvarient.getConstrantsList()) {
strBld.append(ct.getVariableName()).append(" ")
.append(ct.getVariableValue()).append(”, ");

}

64

R T S

T—T s ® e e L
4 e ok T =T ‘ ~

Appendices Java Code

return strBld.toString();

}

public void ClearLists() {
this.IstAttributes.clear();
this.IstOperations.clear();
this.thelnvarient.IstConstraints.clear();

}

private boolean isDuplicateAttribute(CTAttribute atrib) {
for (CTAttribute at : IstAttributes) {
it (at.getName().equals(atrib.getName())) {

return true;

¥
}
retufn false;

}

%

* This method returns the state variables with simplitied set of

* possible values These values should not include values having "@pre’ ete
* but should have the refined possible set of values

public ArrayList<ClassVariable> getStateVar() {

// StateVaiable List to return

ArrayList<ClassVariable> IstStateVars = new ArrayList<ClassVariable>();
// Current variables of interest

ArrayList<CTAttribute> IstAttrib = getState Variables();

for (CTAttribute atr : IstAttrib)// for each attribute

{

// Create new state variable to return

ClassVariable stVar = new ClassVariable(atr.getName().
atr.getlnitVal(), atr.getType());

/7 Get All the values attached with this attribute
ArrayList<String> IstVals = getAllValuesStrings(atr.getName());
for (String str : IstVals)// for each attribute value

{

if (str.contains("@pre"))7 if the value contains {pre tag try (o asses possibie ouiput
value(s)

{

String temp ="";

for (CTOperation op : this.IstOperations) {

if (op.isPreCondtionVariable(stVar.getName())) {

temp = str;

65

e i T e
Appendices Java Code

if (!Containts(temp. stVar.getValues()))”” Add if to

i/ values it

#/ 0ot

/f already

/f added

{

InEqualitySimplified templInq = new InEqualitySimplified(
atr.getName() + " " + temp,
getVariableType(atr.getName()));
stVar.addValue(témplnq);

}
}
§
} else // No (@Pre tag
f
1

if (!Containts(str, stVar.getValues())) // Add it to values

/7 if not already

/7 added

{

InEqualitySimplified templng = new InEqualitySimplified(
atr.getName() + " " + str,
getVariableType(atr.getName())):
stVar.addValue(templnq);

}
}
}

IstStateVars.add(stVar);
}

return IstStateVars;

;

public CTVariableType getVariable Type(String strVarName) {
for (CTAttribute att : this.IstAttributes) {

if (att.getName().trim().equals(strVarName.trim())) {

return att.getCTType();

}

}

return CTVariableType. OTHER;

}

public TreeNode getContextNode() {
return this.theContextNode;

}
}

66

Eha

Appendices Java Code

Appendix C

Java Code of Abstract Finite State Machine
/*

* This is the class representing an Abstract State Machine
* jt is responsible for creating, maintaining and running the AFSM Model
*/

package pk.com.rsoft.classcontractstestbed.util.graph;

import java.awt.Graphics;

import java.io.FileInputStream;
import java.io.FileOutputStream;
impoit java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

import java.util. ArrayList;

import javax.swing.JOptionPane;

import pk.com.rsoft.classcontractstestbed.ClassVarDialog:

import pk.com.rsoft.classcontractstestbed.classcontract. *;

import pk.com.rsoft.classcontractstestbed.testsequences. Test Transition;

import pk.com.rsoft.classcontractstestbed.testsequences. TestSequence;

import pk.com.rsoft.classcontractstestbed.util.graphics.Point;

import pk.com.rsoft.classcontractstestbed.util.graphics.Shape:

import pk.com.rsoft.classcontractstestbed.util.inequality. JnEqualitySimplified:
import pk.com.rsoft.classcontractstestbed.util.inequality.InequalityOperator Type;

import pk.com.rsoft.classcontractstestbed.util.inequality.InequalitySolver;

67

Appendices Java Code

import pk.com.rsoft.classcontractstestbed.util.inequality.InequationSolver;

import pk.com.rsoft.classcontractstestbed.util.parser.Operator T'ype:

/* *

* (@author Rehan Farooq

*/

public class AbstractFSM implements Shape, Serializable {

private static final long serialVersionUID = 1L;

private ArrayList<State> IstStates;// The Array List containing all the

// states of the AFSM

static int intVal = 0;

// IMPORTANT: CLASS Variables are in the context of a Class and STATE
// Variables are in the context of AFSM State

private StringBuilder strLog = new StringBuilder();

private AfrayList<ClassVariable> IstStateVars;// The Array List containing
private CTContext ctx;// The Parsed Context for which AFSM is being built
ArrayList<TestSequence> testSequences;

final int START_X = 200;

final int X INCREMENT = 150;

final int START Y = 200;

final int Y INCREMENT = 150;

Vi

* This Empty parameters constructor just initializes the state of AFSM with
* Empty values! Caution: AFSM might not be useful after just this
* initialization!

*/

68

Sropm ‘Bey . L -

Appendices Java Code

public AbstractFSM() {

this(null);// class the other constructor the DRY principal!

}

public AbstractFSM(CTContext ct) {
this.setStatesList(new ArrayList<State>());
this.IstStateVars = new ArrayList<ClassVariable>();
if (ct = nul}) {

return;// if ct CTContext is null no need to go further
}

this.setCtx(ct);// Record the this AFSM was built using this ct

J] FEFRE A AR KRR Ak Rk]

// Start of State Variables setup//

// ******************************[/

initializeStateVariables().// Initialization of statate

System.out.printin("\nNumber of variables -->" + IstStateVars.size());
System.out.println("State Variables as initialized :");

System.out.println(this.IstState Vars);

ArrayList<ClassVariable> Ist = simp(ct.getLstOperations(),

this.IstStateVars);

System.out.println{"\nList of states is Simplified:");// That is
/f constraints
// having @pre

// are

69

g e =8 2 T A

Appendices

// simplified

System.out.println(lst);

Ist = removeExtraEqual(lst);
System.out.println("\nAfter Removing unwanted EQUAL!");

System.out.printlﬁ(lst);

Ist = validateVariables(lst);
System.out.println("\nAfter Validation!");// That is removing unwanted
// and invalid values

System.out.println(lst);
this.IstStateVars = Ist;

Ist = convertAllToAtomic(lst);
System.out.println("\nAutomic vals the final Class Variable List:");
System.out.println(lst);

J] FHE KR KRR KRR Kok ko ok [

// End of State Variables setup//

J] FEFEAE R kR kR Rk kR kR K

logAction(lst.toString()).// log the value of state variabels after
// setup

IstStateVars = Ist;

}

public void EditClassVariables() {

Java Code

70

Yo

- TR ev— SoRT = - rowar 3 -

Appendices

ClassVarDialog dlg = new ClassVarDialog("Class Variables", true,
this.IstState Vars);

dlg.setVisible(true);
}

public boolean build AFSM() {

buildInitialStates();// Now buildup states

if (this.IstStateVars.size() < 1) {

JOptionPane

.showMessageDialog(null,

"No Variables of Interest found, this problems is not solveable!"):
return false;

}

this.IstStates = processAllStates(IstStates);

adjustStatePositions();

return true;

}

private ArrayList<ClassVariable> simp(ArrayList<CTOperation> ctOps.
ArrayList<ClassVariable> theList) {

ArrayList<ClassVariable> IstStVars = new ArrayList<ClassVariable>():
for (ClassVariable var : theList) {

IstStVars.add(simplyfy(var, ctOps));

}

return IstStVars;

}

Java Code

71

A AT RTAT TR IR mme— T TR e s -

4
1!
f
!
i
i
i

Appendices Java Code

private ClassVariable simplyfy(ClassVariable aVar,
ArrayList<CTOperation> ctOps) {

ClassVariable stVar = null;

if (aVar.getType() != CTVariableType.INTEGER
&& aVar.getType() != CTVariableType. REAL) {
stVar = aVar;

}else {

stVar = new ClassVariable(aVar.getName(), aVar.getType());
ArrayList<InEqualitySimplified> temIngs = new ArrayList<InEqualitySimplified>():
for (CTOperation op : ctOps) {

ClassVariable tempVar = getOutputValue(aVar, this.getContext(),

op);

for (InEqualitySimplified inq : tempVar.getValues()) {

if (!ing.getVariable().getValue().toUpperCase()

.contains("@PRE")) {

inq.getVariable().setName(aVar.getName());

if (!IngContainedInList(ing, temIngs)) {
temIngs.add(ing);

}
:)
)

——

stVar.setVarValues(temlngs);

72

PR g ———— = - P . s v e e e A TSy Ao, AT W LA
A e s T P i) e st

N o wE T
Appendices Java Code

return stVar;

b

private void buildInitialStates() {

CTContext theContext = this.getContext();

IstStates.clear();

// Get the List of All Class Contract Operations
ArrayList<CTOperation> IstOpts = getContext().getLstOpecrations():
// Get the List of All state variables

// For All Operations in the Class Contract try to construct Absrtact
// inital States

for (CTOperation opt : IstOpts) {

if (opt.isConstructor()) {

State state = createSate(theContext, opt, true);
IstStates.add(state);

}

}

}

/**

* (@param theContext

* @param opt

*/

private State createSate(CTContext theContext, CTOperation opt,
boolean isStartState) {

// This is a Constructor create a new Initial abstract state

State retState = new State(isStartState);

for (ClassVariable clsVar : this.IstStateVars) {

73

T o = 2 coa L
Oy A, BR-EED "? < &

Appendices Java Code

if (opt.isPostCondtionVariable(cls Var.getName())) {

// 1t is in the post conditions so build it's output value

String theVal = this.getPostConditionValue(clsVar.getName().
opt.getPostConditions());

if (theVal !=null) {

retState.addState Variable(new InEqualitySimplified(theVal,
clsVar.getType()));

}

}else {//

// Tt is not in the post condition so it's value from

// defaults will be picked

InEqualitySimplified defaultval = InequalitySolver
.getDefaultValue(clsVar, theContext);
retState.addStateVariable(defaultval);// add this value to state
// variables of new

// state

}

}// End for(ClassVariable v : this.IstStateVars)

retState.setUnprocessed();

return retState;

}

private ArrayList<State> getNextStates(State st, ArrayList<State> IstArray) {
ArrayList<CTOperation> IstOps = getContext().getLstOperations();
ArrayList<State> retList = new ArrayList<State>();

for (CTOperation ops : IstOps) {

if (isOperationExecutable(st, ops)) {

74

- ST ST T T W IRE Ty P " ROE gEEEow mow . -
F P %, - —— T VPR

Appendices

System.out.println("Operation being processed "
+ ops.getCTOperationName());

2 State tempSt = getNextState(st, ops, IstArray);

| it (tempSt != null} {

st.addTransition(new Transition(st, tempSt, ops));
retList.add(tempSt);

} else {

System.out.println("No transition added "};

}

}

}

return retList;

}

private State getNextState(State st, CTOperation ops,
ArrayList<State> IstArray) {

State retState;

if (isOperationExecutable(st, ops)) {
ArrayList<InEqualitySimplified> nextVals = getNextValues(
st.getCurrentValues(), ops, true);

State stat = findInList(IstArray, nextVals);

if (stat ==null} {

retState = new State(false);
System.out.printIn("Current State count --> " + intVal);
retState.setCurrentValues(nextVals);

} else §{

retState = stat;

}

L Al

Java Code

75

Bl = eder S
Appendices Java Code

return retState;

}

return null;

3

private ArrayList<InEqualitySimplified> getNextValues(
ArrayList<InEqualitySimplified> preValues. CTOperation ops,

boolean simplifylt) {

ArrayList<InEqualitySimplified> retIngs = new ArrayList<InEqualitySimplified>();
for (InEqualitySimplified thelneq : preValues)// for each valuc of

// variables in the

// preValues

(
if (ops.isPostCondtionVariable(thelneq.getVariableName().trim()))

{
String strVal = ops.geiVarValue(thelneq, preValues,

ConstraintType.POST);// Get return constraint
value from the operation

if (simplifylt && strVal.toUpperCase().trim().contains("@PRE"))// if
{

if ('Operator Type.isArithmeticExpression(strVal)) {
retngs.add(thelneq);

} else {

InEqualitySimplified newVal = new InEqualitySimplified(
thelneq.getVariableName() + strVal,

thelneq.getVariableType());

newVal = InequalitySolver.simplify(newVal, ops,

getContext(), preValues, IstStateVars);

76

ow T X B T s T S e .

~

Appendices Java Code

newVal.getVariable().setName(theIneq.getVariableName());
retIngs.add(newVal);

; !

} else// Just return the InEqualitySimplified without

// simplification if any

{

InEqualitySimplified newVal = new InEqualitySimplified(
thelneq.getVariableName() + strVal,

thelneq.getVariable Type());

retlngs.add(newVal);
}

} else// if it is not a post condition variable

{

retings.add(thelneq);// just add it as unchanged valte

}

}

return retIngs;

}

private boolean isOperationExecutable(State s, CTOperation op) {
if (op.isConstructor()) {

return false;

;

ArrayList<InEqualitySimplified> IstCurrentVals = s.getCurrentValucs():// Statcs
ArrayList<InEqualitySimplified> preConditions = InequalitySolver
.getPreValues(op, getContext()),// Pre condition values of the

// variables

77

R M
Appendices

boolean retVal = true;
for (InEqualitySimplified varVal : IstCurrentVals)// for each current value

{
for (InEqualitySimplified preVal : preConditions)// for each pre condition

{

if (varVal.getVariableName().trim()
.equals(preVal.getVariableName().trim()))

{

if (!InequationSolver.isTheSame(varVal, preVal)) {
String strPreOperator = InequalityOperatorType
toString(preVal.getType());

if (strPreOperator.trim().equals("="))// if operator is
d

strPreOperator += "=";

}

strPreOperator =" " + strPreOperator + " "; // just add

Object obj1 = InequationSolver

.evaluate(varVal.getVariable().getValue().toLowerCase() + strPreOperator

+ preVal.getVariable().getValue().toLowerCase());

if (obj1 '=null) {

retVal = retVal && Boolean.valueOf{objl.toString());
]

if (strPreOperator.trim().equals("==")) {

String strPostOperator = nequalityOperatorType
toString{varVal.getType());

if (strPostOperator.equals("=")) {

Java Code

78

Appendices Java Code

}

objl = InequationSolver.evaluate(preVal.getVariable().getValue().toLowerCase() +
strPostOperator+ varVal.getVariable().getValue().toLowerCase()):

if (obj1 !'=null) {
retVal = retVal && Boolean.valueOf(obj1.toString(});

1
J

1

3

3

if (retVal = true)

System.out.printIn(op.getCTOperationName() + " is executable!");
else

System.out.println{op.getCTOperationName() + " 1s not executable!");
return retVal;

]

private void logAction(String strAction) {
strLog.append(strAction).append(™\n");

}

public void clearLog() {

setLog(new StringBuildef().toString(});

}

JE*

* @return the strLog

*/

public String getLog() {

return strLog.toString();

3

[*®

79

Appendices

* @param strLog

* the strLog to set

*/

public void setLog(String strLog) {

this.sttLog = new StringBuilder(strLog):
}

public ClassVariable getOutputValue(ClassVariable currentVar,
CTContext context, CTOperation op) {

ClassVariable retVal = currentVar;

if (!op.isPostCondtionVariable(currentVar.getName()))// if that veriable

{

return retVal;
} else §{
ClassVariable var = simplifylt(currentVar, context, op);

return var;

}
i

private ClassVariable simplifylt(ClassVariable currentVar,
CTContext context, CTOperation op) {
ClassVariable stVar = new ClassVariable(currentVar.getName(),

currentVar.getValueAt(0).toString(), currentVar.getType());

// No this is the variable in the post condition of current operation we

// need to
/1 if we need processing to asses @pre key words

for (InEqualitySimplified inq : currentVar.getValues()) {

Java Code

80

el TSR e L e)
Appendices

if (inq.getVariable().getValue().toUpperCase().contains("@PRE")) {
stVar.addValue(InequalitySolver.simplify(inqg, op, context)):

} else

stVar.addValue(ing);

}

}

return stVar;

}

private void initializeStateVariables() {

if (this.getContext() == null) {

return;

}

ArrayList<ClassVariable> IstVars = getContext().getStateVar();
InEqualitySimplified trueVal = new InEqualitySimplified(
"trueVal = TRUE", CTVariableType. BOOLEAN);
InEqualitySimplified falseVal = new InEqualitySimplified(
"falseVal = FALSE", CTVariableType. BOOLEAN);

Java Code

ArrayList<InEqualitySimplified> Isting = new ArrayList<InEqualitySimplified>();

IstIng.add(trueVal);

IstIng.add(falseVal);

for (ClassVariable var : IstVars) {

if (var.getType() == CTVariableType. BOOLEAN) {
trueVal.getVariable().setName(var.getName()),
falseVal.getVariable().setName(var.getName());

var.setVarValues(Istlnq);

1

81

TR oS o e e . BT T R T -

Appendices Java Code

}

this.IstStateVars = IstVars;

}

public boolean containsInPreCondition(CTOperation opt, ClassVariable var) {
for (CTPreCondition pre : opt.getPreConditions()) {
if (pre.getVarVals(var.getName()).isEmpty()) {

return true;

}
}

return false;

}

public boolean containInPostCondition(CTOperation opt, ClassVariable var) {
for (CTPostCondition post : opt.getPostConditions()) {

if (post.isInCondition(var.getName())) {

return true;

}

}

return false;

}

private boolean InqContainedInList(InEqualitySimplified inq,
ArrayList<InEqualitySimplified> Ist) {

for (InEqualitySimplified simplnq : 1st) {

if (InequationSolver.isTheSame(ing, simplnq)) {

return true;

82

*

Appendices Java Code

}
3

return false;

}

private String RemoveEqualfromVal(String val) {

String retVal = val;

if (val.contains("EQUAL™")) {

retVal = val.substring(val.lastIndexOf("EQUAL") + "EQUAL" length());
}

return retVal;

}

private ArrayList<InEqualitySimplified> convertToAtomic(
ArrayList<In]§quaiitySimpliﬁed> Ist) {
ArrayList<InEqualitySimplified> retList = new ArfayList<InEqualitySimplified>():
for (InEqualitySimplified inq : Ist) {

if (InequalityOperator Type.isComposit(ing.getType())) {
ArrayList<InEqualitySimplified> tempList = InequationSolver
.split(inq):

tfor (InEqualitySimplified simp : tempList) {

if ('InqContainedInList(simp, retList)) {

retList.add(simp);

h

)

) else {

if ({InqContainedInList(ing, retList)) {
retList.add(ing);

83

) TR e weer: e Cpen L 2 <pagems

Appendices

3

3

return retList;

}

private String getPostConditionValue(String strName,
AnayList<CTPostConditi0n> postCons) {

String retVal = null;

for (CTPostCondition post : postCons) {

retVal = post.getVarVal(strName).trim();

if (retVal '= null && retVal !="") {

return strName + retVal.replace(",", " ").trim();

}
}

return retVal;

}

private ArrayList<State> processAllStates(ArrayList<State> inputlst) {
ArrayList<State> retList = <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>