Stable Information Structure for Inherent
Flexibility in Information Systems

Research Dissertation Submitted By

Islam Ali
Reg. No. 270-FBAS/MSSE/F09

Supervisor
Dr. Muhammad Wasif Nisar
Associate Professor, Department of Computer Science,
COMSATS Institute of Information Technology, Wah

Co-Supervisor
Mr. Shahbaz Ahmed Khan
Assistant Professor, Department of Computer Science &
Software Engineering, Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad

Department of Computer Science & Software Engineering
Faculty of Basic and Applied Sciences i,
International Islamic University Islamabad =" 2\
2012 f E

‘: j
i Lt ;
\L' \

THA?

Accesslon No

MmSse
OOLf
15
1ie Mq ij,y/yﬁz)

Final Approval

International Islamic University, Islamabad

Dated: 18 Oct 2012
Final Approval

This is -to certify that we have read the thesis submitted by Islam Al
Reg # 270-FBAS/MSSE/F09. It is our judgment that this project is of standard to warrant its
acceptance by the International Islamic University, Islamabad, for the Degree of MS in

Software Engineering.

Thesis Evaluation Committee

External ﬁxaminer: ' /

Dr. Aamer Nadeem W
Associate Professor, 7

Department of Computer Science,

MAJU, Express Way, Kahuta Road, Zone V,

Islamabad

Internal Examiner: L/L/,
Mr. Muhammad Usman, _

Assistant Professor

Department of Computer Science
International Islamic University
Islamabad

External Supervisor:

Dr. Muhammad Wasif Nisar

Associate Professor

Department of Computer Science,

COMSATS Institute of Information Technology

Wah ;%__‘

Internal Supervisor:

Mr. Shahbaz Ahmed Khan Ghayyur e
Assistant Professor

Department of Computer Science and Software Engineering
International Islamic University

Islamabad

Stable Information Structure for Inherent Flexibility in Information Systems T

{:

Dedication

DEDICATION

I dedicate this research project to my beloved Prophet
Hazrat Muhammad
(Sallalaho Alaehe wa Aalehi wa Sallam)
Who demonstrated the righteous path to whole mankind
and drag it out from the nastiest depths of ignorance to

the preeminent level of humanity.

Stable Information Structure for Inherent Flexibility in Information Systems

ot

Dissertation

St —

A Dissertation submitted to
Department of Computer Science & Software Engineering,
Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad
As a partial Fulfiliment of Requirements for the Award of the
Degree of
MS in Software Engineering

Stable Information Structure for Inherent Flexibility in Information Systems

Declaration

DECLARATION

I hereby declare that this thesis ‘“‘Stable Information Structure for Inherent
Flexibility in Information Systems” neither as a whole nor as a part has been copied
out from any source. It is further declared that I have done this research with the
accompanied report entirely on the basis of my personal efforts, under the proficient
guidance of my teachers and my friends especially my supervisor

Dr. Muhammad Wasif Nisar and Co-Supervisor Shahbaz Ahmed Khan.

If any of the system is proved to be copied out of any source or found to be
reproduction of any project from any of the training or educational institutions, I shall

stand by the consequences.

)
1
— .. -

Islam Ali 3’

Reg. # 270-FBAS/MSSE/F09

Stable Information Structure for Inherent Flexibility in Information Svstems

Acknowledgement

R ———eeeeeee—— s — D —

ACKNOWLEDGEMENT

All praises to Almighty ALLAH PAK, the most Gracious and Beneficent, Whose
copious blessings enable me to pursue and perceive higher ideals of life, Darood and
salaam for His beloved Prophet MUHAMMAD (Sallalaho Alaehe wa Aahlehi wa
Sallam) Who demonstrated the righteous path to whole mankind and drag it out from

the nastiest depths of ignorance to the preeminent level of humanity.

I am proud to express my deep sense of obligation and special appreciation to my
reverend supervisor honorable Dr. Muhammad Wasif Nisar and co-supervisor
Shahbaz Ahmed Khan for their dexterous guidance and kind behavior during the
project. Their encouragement, moral support and motivation helped me a lot to get

through any problem or difficulty during each step.

I am much grateful to all my respected teachers for their guidance and help
throughout my life which results in letting me to reach at this stage. I am also thankful
to whole administration and management team of International Islamic University
especially of Computer Science & Software Engineering Department for their
managerial and administrative support at every step. I would like to say thanks to my
boss Waqar Ahmed, Director IT for his cooperation and moral support he extended

during stress days I was passing through.

Furthermore I must highlight that it was mainly due to my family’s moral support
during my entire academic career which enabled me to complete my work
dedicatedly. Their endless efforts, care and prayers are always around me to keep me
safe in every difficulty and help me in attaining every success. I am also thankful to

my life partner who encouraged me at those moments when I got exhausted.

Finally, I am whole heartedly thankful to all the fellows who have helped me during

achieving this degree.

Islam Ali f
Reg. # 270-FBAS/MSSE/F09

Stable Information Structure for Inherent Flexibility in Information Svsterms

e

Abstract

ABSTRACT

It’s a known fact that change is immortal. The dictum “change or die” insinuates that
the ability to change or adapt according to situation is the key to survival. Information
System (InfoSys) is certainly not an exception. Typical InfoSys are inflexible, rigid
and change-averse especially for those, emerging from the changing business
requirements. Structural changes in InfoSys can justifiably be referred to as
aftershocks, where a business-driven change triggers technical-oriented chain of
changes which in turn creates ripple-effect and possibly avalanche-effect. We propose
change-driven framework for stability of information structure contributing to
inherent flexibility in information systems thereby rendering software really softer
able to welcome modifications warmly. The objective is to render modifying InfoSys
as easy as the corresponding business systems lend itself to change. This includes how

to break through the Bruce Johnson's Limits to flexible design.

Behind the approach, Murphy's Law is in action i.e. if something can potentially
change, it will certainly change. Most of the potential changes come from the
assumptions we make while designing where requisite information is not available by
the time. Carry coordinated attack against potential technical sources of change before
it attacks our allies (end-users) and ultimately us. So it’s a proactive approach to
address changes before they come out of the Pandora-box to play havoc. It’s not about
how to do changes but how not to do i.e. render the InfoSys more user-modifiable and
less developer-modifiable. It’s not only shifting of modification responsibilities from
software-engineers to domain-experts but making developer’s job easier doing
changes with lesser efforts / time comparatively. As a proof-of-concept, re-design and
re-implementation of FlexInfoSys has been carried out to demonstrate the viability of

the proposed framework for inherent flexibility in InfoSys.

The results of case study show that the proposed framework, comprising of ten pair of
enablers, provides a concrete foundation for inherent flexibility in information
systems. It contributes to avoid chain of changes (Ripple and Avalanche effects)
including how to address the Bruce Johnson's Limits-to-Flexible Design through
conceptual inheritance in information structure. In other words it extends, a bit more,

the limits of flexible design in information systems marked by Brue Johnson.

Stable Information Structure for Inherent Flexibiliry in Information Systems

Table of Contents

%—-’

TABLE OF CONTENTS
Contents Page No.
1. INTRODUCTION...cocrcricressamsmsssssassssssassassssrasassamssssstssssssnsssssesssonassessussaasansssasssasss 19
1.1 Information SYSIEMSc.oovvmieoiiiieteii et 19
1.1.1 Classification of Information SyStems ..o, 21
1.1.2 Real World and Automated World Systems.......ccocoeieecinenncnicinnns 23
1.2 Software FlexibilitY oottt 23
1.3 Types of Flexibility in Information SYSIEIMScoommininisnien: 24
1.4 Characteristics of a Flexible Information System ..o 24
1.5 Motivation for the STUAY ...c..covriii e 25
1.6 Goals and ObJeCIVES......oveiciciiiiieie et 26
1.7 Scope of the ReSearchcoouuiimiiiiec s 26
1.8 Problem StAtemMENTcoveireeeirre ettt s e et st 26
1.8.1 Chain of Changes - Ripple and Avalanche Effects............ccovnnne. 26
1.8.2 Bruce Johnson’s Limits to Design Flexibility ..o 30
1.9 Research QUESHIONS ..c.oovvrieriireriercee et es it s e st 30
1.10 Contribution Of the theSiSveeirieii it 30
1.11 Organization of TRESIScoviriiiiiiii e 31
1,12 SUIMITIATY ..oovioeeioreececeeeentiisisanssinaes s s s shessa st et na s 31
2. RELATED WORKccccvirmressmerassuesssssasssssrsssssnssasassssssmsssssssssssasssasens .33
2.1 LauraJacome’s Approach (2011) .cocovuiionini 33
2. 1.1 ADSITACE .ecuviieeiceerre e e eiee et nstn e st e s e e e e e e as e naa s e sr et 33
2.1.2 COMTIDUION vt inveecerereve e sceemss s tseseasresranssnasresacosst e s nnn e rmasas 33
2.1.3 Methodology Used......coooriiiiiiiici e 34
2,14 LAMULATIONS ..oeeetierreeomeeeseesseensreermeesnsssaeeeemeeesssassssesesnssrassreesncoenssiassnnes 34
2.2 Asma Alkalbani and Kinh Nguyen Approach (2010) ..o 35
2.2.1 ADSITACE ..ottt e e eee et ae e e et e e 35
222 CONADULION oot ieeeeeireerire e ececrce e ias s s e s bene st sn s ase s m e e e sstsanne s 35
223 Methodology Used ... 36
2.2.4 Limitations of the approach ... 36
2.3 Christopher Ackermann, Mikael Lindall & Greg Dennis Approach (2009).36
2.3.1 ADSIAC oottt e e s 36
2.3.2 CONTIDULION ..oovvii ittt eeeeee e e e et e e e e e e et beesab e s an e rsn s se s e e ne e st 37
Stable Information Struciure for Inherent Flexibility in Information Systems ;:]-:

Table of Contents

R E—————eee—e—e—rm—s—ser e
e —————————— e e ——————

233 Methodology Used......ccocoiimiiiirc e 37
2.3.4 Limitations of the approach ... 37
2.4 Xiaoping Qiu, Li Tan and Jianbin Chen Approach (2008}ccoovrininnn. 38
241 ADSITACE ..o eieieieitvieeeeeerreneea e eeeseisssssassasa s e asssreamnees s et s ans g st e sn e 38
2.4.2 CONTIDULON ...veeveiieuieericee e cete e e et s rres s rme e eae e sba s b a e an e ae s rac s ne et 38
243 Methodology Used.......cooiiimiiniree et 39
2.4.4 Limitations of the approach ... 39
2.5 Bruce Johnson’s Group Approach (2002, 2005)......coooniiinninnni 40
2.5.1 ADSIAC.cueiuvietirieeeeeeereeeresse s sense s sresse e s ae et b e b e b e s e e s et 40
2.5.2 CONIDULION ...eeeveitrecereeeeeeestesert e eet st nreesee s e en e s sabne s e saaannn e rac s e aas s 40
2.5.3 Methodology USed.....covvroiciiiiiiiiiiiieis s 41
2.5.4 Limitations of the approachc.ocuoovmvoii 41
2.6 Conclusion of Literature ReVIEW ..ot 41
P BN 1141 T\ o O OO OO SO PSSRSO PO OR PPV P POET S SIS TS RIS 42
FRAMEWORK FOR STABILITY OF INFORMATION STRUCTURE........
3.1 First Pair of Rig-Flex Enablers ..o 45
3.1.1 RigEnabler-1 (Atributed, Composed, Married Character Identifiers) .45
3.1.2 Generic Chain of Changes RigEnabler—1 Causes.........ccccocovnivenicn. 45
3.1.3 FlexEnabler-1 (Un-attributed, Un-composed, Un-married and Auto
Generated TAENtIfIEIS) ...ooioviieireee ettt rer s e b e s et se e et en 46
3.1.4 How 1o Use GUIdElINeS ...o.ooviriiiiiriier et 46
3.2 Second Pair of Rig-Flex Enablers ..o 47
3.2.1 RigEnabler-2 (Half-baked Hierarchies)cococvmiiniiiinin, 47
3.2.2 Generic Chain of Changes RigEnabler—2 Causes........coccoviveiennciiciis 47
3.2.3 FiexEnabler -2 (Nth Level Recursive Hierarchies) ..., 48
324 How to Use GUIAEINESveeeeeiiiiiiiiiiiiinir it 48
3.3 Third Pair of Rig-Flex Enablers..........ccoooviiiii 48
3.3.1 RigEnabler -3 (Business Rules via Code).......coooivniiiiin, 48
3.3.2 Generic Chain of Changes RigEnabler-3 Causes.........cccoecenmniennncnne 49
3.3.3 FlexEnabler-3 (Business Rules via ER).......cocoiv 49
334 Howto Use Guidelinescocoovimeeiiiiiiiiiiiieee e 49
3.4 Fourth Pair of Rig-Flex Enablers ..o 50
3.4.1 RigEnabler - 4 (Stiff-Hook ER Integration)ccocourvriivininnnnnnans 50
342 Generic Chain of Changes RigEnabler—4 Causes..........occocoivinieien 50
3.4.3 FlexEnabler - 4 (Flex-Chain ER Integration)cocoeveerenirrnncnincnns 50

Stable Information Structure for Inherent Flexibility in Information Systems

Table of Contents

344 How to Use GUIdelinesocoeeriiriiiiiiniiniiini i e e 51
3.5 Fifth Pair of Rig-Flex Enablers ... 51
3.5.1 RigEnabler-5 (Write-Over ERS)ooooviiim 51
3.5.2 Generic Chain of Changes RigEnabler - 5 Causesc..c.coeevrninene 51
353 FlexEnabler-5 (Write-History ERS) ...cccoooviiniiiiiiiies e 51
3.5.4 How to Use GUIAEIINEScoeouiiimiiriiiieecr et 52
3.6 Sixth Pair of Rig-Flex Enablerscccoocvvviiniiin s 52
3.6.1 RigEnabler-6 (Provincial ERS) ... 52
3.6.2 Generic Chain of Changes RigEnabler - 6 Causesccooceeeiinn 52
3.6.3 FlexEnabler-6 (Cross-Cutting ERS) ..o 53
3.64 How to Use GUIAElINeSc.veecceiieeiieieiiiecir i 53
3.7 Seventh Pair of Rig-Flex Enablersccocoooiiiiiiiiiii e 53
3.7.1 RigEnabler-7 (ROck ERS) .cccooriimiiiiiiiiiirce e 53
3.7.2 Generic Chain of Changes RigEnabler-7 Causesccocovvveiinnnnnes 53
3.7.3 FlexEnabler-7 (Fine-grained ERS)....ccccoiiiiiiiniiiieeneeeee 54
3.7.4 How to Use GUIdelinesccoouiiiioicoirerieeierinr oo 54
3.8 Eighth Pair of Rig-Flex Enablers ..o, 54
3.8.1 RigEnabler-8 (Corpse ER).......ccooiiii 54
3.8.2 Generic Chain of Changes RigEnabler-8 Causes ... 54
3.83 FlexEnabler-8 (Breathing ERS)}......ccooiciiiiniiiiiie e 55
3.84 How to Use GUIdelinescoeooveniinniiiniriiiiin i 55
3.9 Ninth Pair of Rig-Flex Enablers.............. 335
3.9.1 RigEnabler-9 (Diverging Competing FKS).......cocovmm 55
3.9.2 Generic Chain of Changes RigEnabler-9 Causescccooeviieiiie, 55
3.9.3 FlexEnabler-9 (Converging Competing FKS).....ccoooomiiininiiinin 55
394 Howto Use GUIdelinescooveeciiiiiiiiiiiiiiiiiie et e 56
3.10 Tenth Pair of Rig-Flex Enablers.........c.ccoooviiniiii e, 56
3.10.1 RigEnabler-10 (Bruce Limit’s to Flexible Design)ccccoiiniiiis 56
3.10.2 Generic Chain of Changes RigEnabler-10 Causesc.cccoeveeiiennnnn, 56
3.10.3 RigEnabler-10 (Conceptual Inheritance in ER) ...l 56
3.10.4 How to Use GUIdelinesccooriiiiiiiiiiiciii i, 57
3.11 Limitations of the Proposed Framework...............c.c.cooiiiinnn 57
3.12 Applicability of Flexibility Enablers.........cccocooiiiiiniiiiienns 57
3.13 Impact of Flexibility Enablers on Quality of Data._.............cccooniin 58
3.14 Impact of Flexibility Enablers on Program Complexityc.cccevininiiniaannns 59

Stable Information Structure for Inherent Flexibility in Information Systems

Table of Contents

T ,—§—eeee—e—s—™/>m/"——————— — e
e e —————— e ————————

3,15 SUITHMATY ..ovoereeieeieceicrie et et sre st e s ceteababs e b ea e b e s a s s sd b st 60
4. FLEXINFOSYS — A CASE STUDY ..cctoicnrnrrnremernsssissssssssssssssssssnsassnsss
4.1 What is Case StUAYT ..ot 62
4.2 Rationale for Selection of Case Study as a Research Methodology 62
4.3 Main Activities of €Case Studycoooriiiiiii s 63
4.4 Change SCENATIOSccevrritvieeiie ettt e e 64
4.5 Change-Driven ER-Oriented Rigidity Enablers and their Redress Flexibility
R iT: o) = c- T OO PO USRS VOUOOUO PP PPRSPRPP 64
45.1 Use Non-Attributed, Un-Married Auto-Generated Numeric Keys instead
of Attributed, Composed Character Keys ..o 64
4.5.2 Invest in Nth Level Hierarchies and Leave Half-baked Hierarchies66
4.53 Leave the Rigid Way of Achieving Business Rules via Code for more
Flexible Business Rules via ERS.....cooiiiiiiiiiiiin e, 68
4.5.4 Go for Flex Chain Instead of Stiff Hook Integration between Moduies 70
455 Opt for Write-History over Write-Over Entities........cooociveeninnnnn, 72
456 Say Well come to Cross-Cutting and Goodbye to Provincial Entities .. 74
4.5.7 Crush Entities to Fine-grained Level — Not leaving it as Rock. 77
4.5.8 Choose to Define Breathing over Corpse Entities ... 78
459 Vote for Convergent FKs instead of Divergent FK by adding TableID as
AMIIDULE ...ttt et e v e st sh s sr s s smemes bbb b et 80
4510 Use Conceptual Inheritance When Facing Bruce Limits-to-Flexibility 82
4.6 SUIMINIATY .oovreeieieieeeeecerenie e reeterae e r s e e eama e aa e s e e es s e et s s 84
5. VIABILITY OF THE PROPOSED FRAMEWORK.........
5.1 Bruce Johnson’s Criteria for evaluating Rigidity/Flexibility of an InfoSys .86
5.2 Graphs showing comparative analysis of Rigid / Flexible Practices 87
5.2.1 Evaluating Attributed VS Non-Attributed Keys:.......coooovniiiinninn. 87
5.2.2 Evaluating Half-baked VS Recursive Nth Level Hierarchies................ 87
5.2.3 Evaluating BR via Code VS BR via ER Design......cccocoiininnne 38
5.2.4 Evaluating Stiff-Hook VS Flex-Chain Integrationcccoooeinininis 88
5.2.5 Evaluating Write-Over VS Write-History ERS........ccooiinn 88
5.2.6 Evaluating Provincial ERs VS Separation of Cross-cutting ERs 89
5.2.7 Evalvating Rock VS Fine-grained Entities ... 89
5.2.8 Evaluating Corpse VS Breathing Entities.........ocoooviiiin, 90
5.2.9 Evaluating Divergent VS Convergent Entities ... 90
5.2.10 Evaluating Bruce Limits to Flexible Design VS Inheritance in ERs.....90
5.2.11 Overall Comparison of Rigidity and Flexibility Enablers...................... 91

Stable Information Structure for Inherent Flexibility in Information Systems

86

Table of Contents

5.3 SUIMMDATY oovverieeeieceeirt et cmreneaessenseae s seees e bebasarss b e s e raseestsa s sas st sa bbbt 91
6. CONCLUSION AND FUTURE WORKccoicoiiimrmrerscmnimsaissasssssnsassensassssessosarnaes 93
0.1 CODC S O L. oot ieteeeeeeeeeeeeseeeee e ae e e s ibtissssassansnsernasnsseranrasnnnaiaasbanassaenararares 93
6.2 Lessons Leammed . ..ottt ee e iteeeeee s s esev s eeeeaaesabs e e e r st ranarrrs e 93
6.3 FIIUIE W OTK o ooenoeeee oot e ettt eeeeee e ettt s srrsaaeeeeeeesmmssseeseasanrnebrassesanersmnnenssamses 94
6.4 SUITITIATY .ouooiirreneeereeeeiresns e s reea e ee e iss et aa e snesn et aae e s 94
REFERENCES reesessssnrentEnEteEeTISSRaRRR SRS S e san e ENTEeRTeREREETEISIEP ISR RRSE e s anan 95
i
‘ X1t

Stable Information Structure for Inherent Flexibilirv in Information Systems =

List of Figures

%

LIST OF FIGURES
Figures Page No.
Figure 1-1: Differentiating IS from other IT-related Disciplinesocoovvivininn. 20
Figure 1-2: Systemn can be built quick or big or right but not all the three 21
Figure 1-3: Pyramid of Systems SO OO TOP PO SO 4.
Figure 1-4: Classification Hierarchy of Information Systems..........coooiinnnnnn 22
Figure 1-5: Information System Life Cyele...ooovviininiinicnneenn 23
Figure 1-6: Defining appointments and its chain of changes in rigid InfoSys........... 27
Figure 1-7: Employee Categories and relevant business rules ..., 28
Figure 1-8: Trade and Qualifications of an employee a change ..., 29
Figure 2-1: A Reference Workflow Model used by Xiaoping Qu ..., 38
Figure 4-1: Case Methodology Used ...t 63
Figure 4-2: Use of Attributed. Composed Character Keys.....cooooinn 65
Figure 4-3: Non-Attributed. Un-Married and Auto-generated Numeric keys............. 66
Figure 4-5: Recursive definition of Hierarchies — Organogram. Religion, Region.....68
Figure 4-7: Business rules via ER Design e.g. Busines rules for Leaves 70
Figure 4-10: Use of Write-Over ERtItIes ... 73
Figure 4-11: Use of Write — HiSIory ERS oo 74
Figure 4-12: Rigid Structure for Condemnation Board Proceedings............c...cconne. 75
Figure 4-13: Separation of Crosscutting Concerns — Worktlow Management............ 76
Figure 4-15: Use of Rock Entities e.g. Address as one attribute ..o 77
Figure 4-16: Fine-grained entities e.g. split address into {ine-grained pieces 78
Figure 4-17: Use of Corpse Entities i.e. entities with unknown living status.............. 78
Figure 4-18: Defining Breathing Entities e.g. ApPOINIMENT oo 79

Figure 4-19: Use of Foreign Keys — Varjous entities of Events Management System8Q0
Figure 4-20: Use of Multiple FKs - Family Nominations for various types of

emPlovee’s FUNAS ..ocoiiiiiiee e 80
Figure 4-21: Convergent Competing Foreign Keys — Event Management System..... 81
Figure 4-22: Converge multiple foreign keys into one by introducing table name as a
database F1E1A ooiviiie i 82
Figure 4-23: Bruce Johnson's Limits to Design Flexibility - Ceiling Effect for
EMPIOVEE TYPES. .ottt 82
Figure 4-25: Solving Bruce Johnson’s Limits to Flexible Design via Inheritance in

28 = OO OOV PO PP PRSPPI 84

Stable Information Structure for Inherent Flexibility in Information Systems

xiii

List of Graphs

LIST OF GRAPHS

Graphs Page No.
Graph 5-1. Attributed/Composed Character VS Non-Attributed. Auto-generated

NUIMETIC KOS oot 87
Graph 5-3: Business rules via Code VS Business rules via ERs Design................... 88
Graph 5-4: Stiff-Hook VS Flex-Chain Imtegration ... 88
Graph 5-5: Write-Over VS Write-History Entitiescoocoovvvoiiironinis e 89
Graph 5-6: Provincial ERs VS Separation of Cross-cutting ERs ..., 89
The efforts consumed both in rigid and flexible enablers while incorporating the

changes shown in Table 4-7 is displaved 1D ..o, 89
Graph 5-7: Rock Entities VS Fine-grained Entities......coccooiviiiie i, 89
Graph 5-8: Corpse VS Breathing Entities. ..., 90
The efforts consumed both in rigid and flexible enablers while incorporating the

changes shown in Table 4-9 is displayed in Graph 5-9. ..o 90
Graph 5-9: Divergent VS Convergent FKS ..., 90
Graph 5-10: Limits to Flexible Design VS Inheritance in ERs ... 90
Graph 5-11: Overall comparison of Rigid and Flexible ER Enablers 9]

Stable Informarion Structure for Inherent Flexibiliiv in Information Svstems Xiv

List of Tables

LIST OF TABLES
Tables Page No.
Table 1-1: Change Impact Analysis for Example - 1 oo 27
Table 1-2: Change Impact Analysis for Example - 2 . 28
Table 1-3: Change Impact Analysis for Example -3 ... 29
Table 2-1: Flexibility enablers to address foreseen and unforeseen changes 34
Table 3-1: Generic Chain of Changes caused by RigEnabler—1..... ... 46
Table 3-2: Generic Chain of Changes caused by RigEnabler-2...._._................. 48
Table 3-3: Generic Chain of Changes caused by RigEnabler-3.......ccc.coooiievieeinn, 49
Table 3-4: Generic Chain of Changes caused by RigEnabler—4............................ 50
Table 3-5: Generic Chain of Changes caused by RigEnabler-5............cccoevinn 51
Table 3-6: Generic Chain of Changes caused by RigEnabler—6........ccoooii.52
Table 3-7: Generic Chain of Changes caused by RigEnabler—7............o. 53
Table 3-8: Generic Chain of Changes caused by RigEnabler-8............................ 34
Table 3-9: Generic Chain of Changes caused by RigEnabler-9..........c.oocvcvvinnnnn 55
Table 3-10: Generic Chain of Changes caused by RigEnabler—10........cccccooveininenn, 56
Table 3-11: Applicability Relationship among Enablers ... 58
Table 3-12: Impact of Flexibility Enablers on Quality of Data ..o 59
Table 3-13: Impact of Flexibility Enablers on Program Complexityc..cccccoeiiniennn, 60
Table 4-1: Set of Change Scenarios - 1 ... 65
Table 4-2: Set of Change Scenarios - 2 oo 67
Table 4-3: Set of change SCenarios - 3 e 69
Table 4-4: Set of Change Scenarios - 4 .. 71
Table 4-3: Set of Change Scenarios-5 ..o e 73
Table 4-6: Set of Chunge SCENUNOs - 6 oo e 75
Table 4-7: Set of Change SCENATIOs = 7 .oviviciireiecie et e e aar s 77
Table 4-8: Set of Change Scenarios - 8 ... 78
Table 4-9: Set of Change Scenarios - 9 ..ot 81
Table 4-10: Set of Change Scenarios - 10 ... 83
Stable Information Structure for Inherent Flexibility in Information Svstems I xv

C———y

List of Text Boxes

LIST OF TEXT BOXES

Text Box Page No.

Text Box 4-1: A generic function for auto-generation of next non-attributed numeric
key. Use of database provided identifier has been found even better than the above
MENTONE FUNCUON. ..ottt iceeeic et e e et eeee e e et 66
Text Box 4-2: A business rules provides privilege that an employee can avail 48
leaves with full pay per vear. Now form a particular date onward this privilege is
reduced 10 40 PEI FEAT. ..ooiiiiiiti ettt 68
Text Box 4-4: Integration of two Modules e.g. Integration of Event Management and
eProfile - Probation Termination Process in Event Management System showing post-

effects on eProfile. ... 71
Text Box 4-3: Generic procedure of replacing employee information e.g. appointment
on promotion of an eMPIOYEE ... 73

Stable Information Structure for Inherent Flexibilirv in Information Svstems

Xvi

List of Abbreviations

LIST OF ABBREVIATIONS, ACRONYMS AND DEFINITIONS

Abbreviation/ Acronym

Explanation/Definition
/ Term

1 | SCSs Set of Change Scenarios

2 | InfoSys /1S Information Systems

3 | RiginfoSys Rigid Information Systems

4 | FlexinfoSys Flexible Information Systems

5 |BR Business Rules
The problems faced or the series of corrective

6 | Ripple Effect actions one has to take, within a module 1tscl.f,
to accommodate a requested change 1s
referred to as npple effect
The problems faced or the series of corrective
actions one has to take in allied (integrated

7 | Avalanche Effect modules to accommodate a retqt(lies(tcd ghangc)
is referred to as avalanche effect

g8 | Ul User Interface

9 [CoC Chain of Changes

10 | ER Entity Relationship

11 | Information Structure & ER | These are two interchangeable terms

12 {ICT Information & Communication Technology

13 | eProfile Employee Profile

14 1 UC University of Cincinnati

15 | ERD Entity Relationship Diagram

16 | DWH Data Warehouse

17 | DDPCS Database-Driven Product Catalog System

18 | TSAFE Tact.ical Separation Assisted Flight
Environment

19 | API Application Program Interface

20 | MMT Management Monitoring Tool

21 | OWES Other Workflow Executive Service

22 | WCAP Workflow Client Application Procedure

23 | CAP Called Application Procedure

24 | NADRA National Database Registration Authonty

25 | CNIC Computerized National Identity Cards

26 | Corpse Entity Whose living status is unknown

27 | MIS Management Information System

28 | FK Foreign Key

29 | RWBS Real World Business System

30 | AWIS Automated World Information System

31 | SCAMPI Standard CMMI Assessment Model for

Process Improvement

Stable Information Structure for Inherent Flexibility in Information Svstems

Xvil

Chapter - 1

INTRODUCTION

Stabie Information Structure for Inherent Flexibiliry in Information Svstems

Chapter #1 Introduction

1. INTRODUCTION

As it is clear from the title of the proposal, this research activity is about introducing
inherent flexibility in information systems by focusing on the change-driven

ER-Oriented design strategies for stability of information structure.

Literature acknowledges the predominance of flexibility in software whether 1t 1s
design or implementation. Plethora of design strategies e.g. structured design,
modular design, object-oriented design, software architecture, design patterns,
component-based software engineering among others are aimed at (0 increase
flexibility. Flexibility has therefore become a core issue in software engineering

generally and software design research particularly.

1.1 Information Systems

Information system [16] is defined as “the effective design, delivery, use and impact
of information (and communication) technologies in organizations and society.” This
definition captures an important part of InfoSys, that is the development of IT
applications, and it recognizes that successful applications of ICT require broader
attention than just that on the technology. The InfoSys discipline has steadily
developed from its initial ‘techno-centric’ focus to a more integrated technology,
management, organizational and social focus. But this definition does not capture the

exciternent of the discipline.

We are now in a period of great transformation, as organizations change to address
their challenges or achieve their goals. It is also a period of structural transformation
of the global economy. ICT supports and enables most of these changes, and InfoSys
is the only discipline with a primary focus to study the applications of technology by
organizations and society. It is therefore particularly relevant during this period of

great change.

The following definition suggested by the UK Academy for Information Systems,
taken from book “Information Systems — The State of the Field” of Wiley Series [16],

1s somewhat broader than the definition looked at previously:

Stable Information Structure for Inherent Flexibility in Information Systems

19

Chapter #1 Introduction

“The study of information systems and their development is a multidisciplinary
subject and addresses the range of strategic, managerial and operational activities
involved in the gathering, processing, storing, distributing and use of information, and
its associated technologies, in society and organizations”. The above definition is,
however, somewhat passive about InfoSys as it does not give a sense of the creativity

and innovative effort that is part of the potential contribution of InfoSys.

On the technology side of information systems, it is differentiated from computer and
IT disciplines by its focus. As illustrated graphically in the Figure I-1 below, compared
with two other IT-related disciplines, computer science and computer systems
engineering, InfoSys emphasizes the applications of technology rather than a focus on
fundamental technologies and theories [16]. It focuses more on interactions

between

‘Fundamenta]’

Computer Science

‘Apnlied’

v

‘Soft’
‘Hard’

Figure 1-1: Differentiating IS from other IT-related Disciplines

people and organizations (the ‘soft’ issues) and technology rather than on the
technologies (the ‘hard’ issues) themselves. It should be noted that figure represent
the focus of the different disciplines, not the quantum of work conducted in or

contributed by any of the disciplines.

Stable Information Structure for Inherent Flexibility in Information Systems !_._

Chapter #1 Introduction

“Systems can be built quickly or big or right - but not all three together. They are
bound to be small or wrong, if we build them quickly. Building big systems will
definitely be either late or wrong and for really big systems; they are guaranteed to be

late and wrong™ [12]. This fact is illustrated in Figure /-2 below.

Figure 1-2: System can be built quick or big or right but not all the three

As per Bruce Johnson [12], Successful information system is not the one that usually
generate few, if any modification requests but the one that is used more, generally
generates continuous demand for modification and having the ability to keep up with
demands for modification. This is because as the users get more used to the software,
they try to get more out of it by experimenting with new scenarios not included in the

scope specified in the first place.

1.1.1 Classification of Information Systems

Information systems used to be classified in 1980s as pyramid of systems resembling
organizational hierarchy, starting with transaction processing systems at the lower end
of the pyramid, moving up management InfoSys & decision support systems are next
levels respectively and executive information systems at the pinnacle as

depicted in Figure /-3.

Stable Information Structure for Inherent Flexibiliry in Information Svstems

Chapter #1 Introduction

- ™~
Executive Information System

{Executives))
i w— N
Decision Support System
(Senior Managers)
J
~

Management Information System
(Middle Managers)

Transaction Processing System
{Workers)

Figure 1-3: Pyramid of Systems

However, Information systems can be classified into the following classes as depicted
in diagram Figure /-4 below.

Transaction Office . l Management Decision Executive
processing Automation Information Support Information
systems | Systems J Systems Systems System

Figure 1-4; Classification Hierarchy of Information Systems

Some of other information systems are:
+ Expert Systems
¢ End-User Computing Systems
¢ Integrated Information Systems
» Knowledge Management Systems
e Business Information Systems

e Strategic Information Systems

Stable Informarion Structure for Inherent Flexibiliry in Information Systems S—

Chapter #1 Introduction

1.1.2 Real World and Automated World Systems

In order to clearly differentiate, the business system is termed as Real World Systems
whereas when the same is computerized, it i1s known as Automated World System. In
fact, Real World Business Systems are changed and Automated World Information
Systems are modified [12], [14]. Information system changes/modifications stem
from two main sources business and technology, hence referred to as business-driven
and technology-oriented changes. When InfoSys faces (structural)} changes, it is
flexibility and modifiability that keep things in order. Bruce Johnson [12], [23]
defines flexibility as: “Flexibility in system means the ability to accommodate a
change in business requirement with a minimum of modifications to system
components”. Delivering functionality and focusing on potential change i.e. flexibility
are competing factors. One is visible whereas the other is hidden and intangible.
Owing to self-imposed time pressure and other factors the later one is ignored for
which all involved have to pay later on in maintenance phase. Business people are not
supposed to give such requirements in advanced. Software designers and developers
should take on this responsibility to foresee such potential possibilities in advance to

avoid manifold efforts as well as downtime of the system.

Generically, information system development cycle has four steps as illustrated in the
Figure I-5 given below. Over the entire life cycle of Infosys, maintenance 1s more
important than development and within maintenance, resynchronization 1is

overwhelming than debugging” [12].

" RW)

P System i

Figure 1-5: Information System Life Cycle
1.2 Software Flexibility

The term flexibility is deemed as vague because of its polymorphous nature and has
been found with many different connotations [9] and [11]. Nature of the problem and
setup to be investigated are among factors that affects meaning of flexibility [9].

It can be viewed as:

Stable Information Structure for Inherenr Flexibility in Information Systems

23

Chapter #1 Introduction

» Inherent property of an entity e.g. IS, Organization etc.
+ Response capability to foreseen or unforeseen changes.

¢ Temporal aspect — How quickly the response should be for an entity to be
labelled as “Flexible”.

¢ Capacity to adapt — Adaptive Capabilty

Bruce Johnson [12], [41] defines flexibility as: “Flexibility in system means the
ability to accommodate a change in business requirement with a minimum of
modifications to system components”. Delivering functionality vis-a-vis focusing
on potential change i.e. flexibility are two competing factors. One is visible
whereas the other is hidden and intangible. Owing to self-imposed time
pressure and other factors the later one is ignored for which all involved have

to pay later on in maintenance phase

1.3 Types of Flexibility in Information Systems

Two basic approaches [12] have been taken to address flexibility in information

systems. Boogard characterizes these as active flexibility and passive flexibility.

o Active flexibility is basically fast modifications. It also includes automatic
program modification. Improving modification process is the center of attention in
Active flexibility.

e Passive flexibility is built-in and inherent. The InfoSys is designed to require
inherently less modifications. Contrarily, Inherent flexibility focuses on the system

itself.

1.4 Characteristics of a Flexible Information System

Bruce Johnson’s group [41] and [14] suggested a set of characteristics for a flexible
information system. A flexile information system is integrated with other relevant
modules in a bigger perspective and not functioning in isolation. It shares common
information structure with a super system or community of InfoSys. It has stable
structure. The information structure is presented in a manner to provide maximum
flexibility model of things, their attributes and relationships should support present as
well as requirements of time-to-come. Those characteristics of a business system that

are subject to change are embodied in InfoSys in a manner that change in any of it

Stable Information Structure for Inherent Flexibility in Information Systems

24

Chapter #1 Introduction
e ——

does not warrant modification in data or procedure. The system identifiers represent
no system attribute and are meaningless. All hierarchical entities e.g. bill-of-materials,
organization structure and chart-of-accounts be recursively structured. It is open to
extensions i.c. new entities / processing feature can be added without changing the
old ones. It is regulatable initially incorporating and then maintaining the business
rules / policies through its information structure and able to change system’s behavior
through changing regulatory values by user instead of modifying the code by
developers. It has defined threshold to maintenance limits i.e. software designers are
sure of when code maintenance and changes to information structures will be
necessary. A checklist, based on these characteristics, has been developed for flexible

information systems placed as Annex ‘A’.

Banking upon the hard experiences with rigid systems, we focus on stability of
information structure via design strategies to introduce inherent flexibility and to
prevent the costly chain of changes and hence its ripple & avalanche effects in

InfoSys. Furthermore, we seek to break the ceiling effect being observed for so long.

1.5 Motivation for the Study

Following motivators are active behind this research study.

e The essence of adaptability to change, chiefly in InfoSys, lies in design of
information structure. Usually if the requirements change, the information
structure needs to be changed as well. Therefore the prime source of inflexibility
in InfoSys is the unstable information structure. So attacking core seems to be

logical answer to the problem.

A sensibly designed stable information structure keeping flexibility in view
provides a concrete foundation for all other kind of flexibilities. On the other
hand, one cannot exploit and reap the full benefits of any flexibility-technique if
stable-information-structure is not in place. It i1s worth mentioning here that
modification in information structure [14] that can ruin a traditional Infosys can

similarly destabilize an object-oriented system.

Last but not least, software flexibility help minimize the maintenance cost in

terms of time, efforts as well instrumental in hard times.

Stable Information Structure for Inherent Flexibiliry in Information Systems

o

Tw————

Chapter #1 Introduction

1.6 Goals and Objectives

The mentionable objectives set-up for the FlexInfoSys research project, are as

follows: -

* Creating change-absorbing capability in ISs to obviate the ongoing adaptive-
maintenance - a black hole engulfing precious resources that in turn waste away
the development-capacity sharply.

e Forestall the formation of costly chain of changes, resulting into ripple effect
triggered by a business-driven change in requirements, making use of “Change-
Driven and Structure-Oriented” design strategies rather than indulging in
expensive corrective actions.

e Build capacity for change by rendering the InfoSys more user-modifiable and
less developer-modifiable and thus rescuing development capacity for more
creative undertakings.

¢ Enabling re-synchronization of the automated world InfoSys with its counterpart
real-world business system more effective and efficient i.e. to respond gracefully
to changes more easily and with fewer resources.

¢ Keeping the maintenance-backlog in the manageable threshold.

1.7 Scope of the Research

Generically scope of the research is limited to software designing for changing

business requirements and specifically to the following:

. Change-tolerant ER-Oriented design strategies for stability of information
structure [1].

. Breaking the Bruce’s Limits-to-Design Flexibility [12], [23].

1.8 Problem Statement

The two-fold problem elucidated, with examples from a case study carried out for the
purpose, is as under:

1.8.1 Chain of Changes - Ripple and Avalanche Effects

In one of the information systems renamed as RiglnfoSys, a table for “Designation”

was defined. On arising need, appointments were entered by the user in the same table

and being used. This gave a way for designations and appointments to jumble up. =— ——

26
Stable Information Structure for Inherent Flexibility in Information Systems _— ﬁ._,L

Chapter #1 Introduction
- = @ _—_— — — ——— —— — — — ————————————————————————————
Action on user request to address this problem leads to change the information-

structure as below.

Example 1: Changes in Designations
In old rigid InfoSys, a table for “Designation” was defined. On arising need,
appointments were entered by the user in the same table as shown in Figure /-6 and its

relevant chain of changes is depicted in Table 1-1.

PK | AppointFieldID PK | DesciplipelD
Appointment FK2 | DesciplineID —P ValidFrom
OldCode < FK1 | AppointmentID ValidUpto
ValidFrom ValidFrom ActiveStatus
ValidUpto ValidUpto Remarks
AuthorityID ActiveStatus
AppointSequence Remarks
ActiveStatus
Remarks T
PK (E in
EmpChangelD
EmplD
AppointFieldID
DateFrom
DateTo
ActiveStatus
Remarks

Figure 1-6: Defining appointments and its chain of changes in rigid InfoSys

Table 1-1: Change Impact Analysis for Example - 1

and update the apj

All intccd éyems g use of esiaons? ppomtmems were affected e.g. User :
: Management System and Workflow System and their relevant developer had to take series
! of corrective actions

Example 2: The deﬁn—i_i‘ion of employee-categories

Stable Information Structure for Inherent Flexibilitv in Information Systems

27

Chapter #1 Introduction

The definition of employee-categories was hard coded in a function using if-then-else
structure. But when more calculations/reports were demanded regarding the
categories e.g. display category II employees, two problems arose. First, one could
not have a history of an employee category. Secondly, the function is called hundreds
of thousand times and brings down the performance beyond affordable level. The
relevant chain of changes is illustrated in Table 1-2. The flexible design for the

purpose is illustrated in Figure /-7 given below.

S CATEGORY -RULES - HiS_CATEGORY -cPROFILE_EMP_INFO. '
PK |CategorvRaulelD PK |CategorylD PK | EmpChange]lD
EmpType —— Category — Empld
AppointmentStatusiD DateFrom PersNum
RetirementStatus DateTo DesiglD
AgeFrom ActiveStatus PayScalell}
AgeTo Remarks TradelID
FK1 | CategorylD DeptlD
ActiveStatus AppointmentStatusID
Remarks AvailDetaillD
ProbationStatus
JoiningDate
EmpTypelD
FK1 | CategoryvID
DateFrom
DateTo
ActiveStarus

Figure 1-7: Employee Categories and relevant business rules

Table 1-2: Change Impact Analysis for Example - 2

Process an employee to deterrmne'hls/her category by matchmg the emp]oyees data
and category ru]es

Stable Information Structure for Inherent Flexibility in Information Systems e

TH 917

Chapter #1 Introduction

Example 3: Employee Courses

Making assumptions is the root cause of potential changes. Here in this example, it
was assumed that Trade can provide the possible values for qualification field and
was linked with transactional course table. Later on it transpired that it is not the case
and results into the following ripple effect. This is illustrated in Figure /-8. Its ripple

and avalanche effects are tabulated in Table 1-3.

PK | EmpCousc]DD PK | TradeJD PK |EmpCousclD PK | QuaFieldID
EmpID TradeCode EmpID QualFieldName
EmplInfolD TradeName EmplnfolD ! Sequence
CourseID Sequence CourselD QualFieldTvpe
DateFrom L TradeType DateFrom DateFrom
DateTo ParantTrade DateTo DateUpto
InstituteID Authonty Insunute]D LivingStatus
Divison CadrelD Divison Remarks
SponsoredBy ValidFrom SponsoredBy
TotMarks ValidUpto TotMarks
ObtainedMarks LivingStatus ObtainedMarks
Position Remarks Position
QualCourselD QualCourselD

FK1 | FieldID FK1 | Field1D
CompletionStatus CompletionStatus
CentificateNo CertificateNo
IssueDate IssueDate
Result Resuht

Figure 1-8: Trade and Qualifications of an employee a change

Table 1-3: Change Impact Analysis for Example -3

2 Transfer the already ex1stmg trades in HlSTRADE table into HlS_QUAL FIELD table
© : along with the old IDs. ;
:’3".1 “Map the new felevant. }Dsmth helpofoldDs e B o

4 . Update the PiS COURSE FieldID values by relevant new
‘ HIS _QUALFIELD. QualFlcldID valucs
57 Tink the HiS 0 e with PiS CGU'RSE&de-hnkm
6 Do 3 ., { for Quahﬁcatlon tran ct nal tables as well.

ysiems use of Trade as quaiiﬁca'ltiocou'e'ld were affected e.g.
- Training Module and their relevant developer had to take series of corrective actions. 3

Furthermore, change-resistant information-structure does not allow breaking this
chain once formed and proves more stubborn & costly. It's because you can build a
new building but can’t modify the past. Secondly this chain viciously erodes the

development capacity as precious resources are drowned in fire-fighting maintenance-

backlog. The challenge is to prevent this chain-formation process instead of fighting s

29
Stable Information Structure for Inherent Flexibility in Information Syvstems er—

Chapter #1 Introduction
m

against its resulting ripple and avalanche effects. Designing stable information
structure, enabling flexibility in IS, will help render the adaptive maintenance more

cost-effective.

1.8.2 Bruce Johnson’s Limits to Design Flexibility
Bruce Johnson [12], [23] highlights that there is limits-to-flexible design. For

example, in a human resource system, there may be two types of employees hourly
and salaried. Certain information would be recorded for each type. Let us say that a
new type, contractor, was introduced. Simply adding a new value to the list of
employee types does not work. It is likely that new field(s) specific to contractors
would need to be added. Most of the emerging changes necessitates information
structure and programs to be modified. This is termed as Bruce Johnson’s limits-to-
flexible-design. This is diagrammatically depicted in 4.5.10. So we have to:

o Prevent/avoid aforementioned chain-formation process instead of fighting against its

resulting ripple and avalanche effects.

* Addressing Bruce’s Limits-to-Flexible-Design.

1.9 Research Questions

This work include delving into and digging out the following:

* What are the ER-Oriented Rigidity Enablers responsible for fostering rigidity in
InfoSys?

* How to avoid the chain of changes (ripple & Avalanche effects) caused by rigidity
enablers by making use of ER-Oriented flexibility enablers?

» How to break the limits-to-flexible design (ceiling-effect) marked by Bruce

Johnson, while dealing with inherent flexibility in InfoSys?

1.10 Contribution of the thesis

The contributions of the thesis are given briefly as follows:

. Brought the ER Oriented rigidity / flexibility enablers into a coherent
framework for stability of information structure.

o Figured out generic chain of changes each rigidity enabler causes.

e Extended the limits of inherent flexibility by adding 8", 9™ and 10™ pair of

flexibility enablers in the proposed framework including devising FlexEnab-10

Stable Information Structure for Inherent Flexibilitv in Information Systems

30

Chapter #1 Introduction

to address Ceiling Effect (RigEnab-10) marked by Bruce Johnson as limits to
design flexibility.

. Defined “How to Use Guidelines” for each flexibility enabler.

1.11 Organization of Thesis

This thesis is organized as per the guidelines of institution. Introduction provides
definition of InfoSys, its types, software flexibility. Introduction concludes with
characteristics of flexible infosys. A problem statement, to be addressed, s elucidated
with examples. Literature review throws light on various approaches adopted by
different authors, critical summary of the publications of other researcher, who
worked in the same domain. A framework has been proposed for stability of
information structure to infuse flexibility in information systems subsequently. A case
study “FlexInfoSys” conducted is narrated. The viability of the framework is
demonstrated based on criteria set out and change scenarios provided in case study.
The conclusion drawn, lessons learned and potential future work is presented at the

end.

1.12 Summary

In this introductory chapter, information system is defined. Information systemn can be
developed big or rnight or quick but not all the three simultaneously. Increasing
number of development professional is not the answer. The bigger the team, the more
coordination and monitoring overhead get involved. Classification hierarchy of
InfoSys is depicted graphically. The difference between the *“Real World” and
“Automated World System” 1s elucidated. Information system lifecycle 1s sketched
with the help of a diagram. Flexibility is defined briefly along with its basic type.
Bruce Johnson’s characteristics of a flexible information system are numerated
subsequently. Motivation, goals and objective and scope of the study is narrated
respectively. The two-fold problem is elucidated with the examples from case study
carried out for the purpose. Research questions and contribution of the study

presented. The chapter concludes with elaboration of thesis organization.

Stable Information Structure for Inherent Flexibility in Information Systems

Chapter - 2

RELATED WORK

Stable Information Structure for Inherent Flexibilirv in Information Svstems

32

Chapter #2 Related Work
m

2. RELATED WORK

In today’s ruthless and cut-throat competition and changing business environments,
requirements never remain unchanged. Managing this change in requirements poses a

real challenge.

Unfortunately, it transpires from closely-related literature review that research
devoted to this particular issue is rare and insufficient. There is a pressing need to
look into it in concrete and comprehensive way. In the area of software fiexibility, my
co-authored paper [15], elaborating and comparing deployment strategies to figure out
the optimal one for a re-engineered flexible InfoSys in context of legacy system is
published in research journal of applied sciences, engineering and technology. The
relevant research work carried out so far is being highlighted here in chronological

order and organized as abstract, contribution, methodology used as well as limitations.

2.1 Laura Jacome’s Approach (2011)

2.1.1 Abstract

Laura Jacome [11] explores the potential flexibility in the use of information
technology. Laura tried to reconcile varying standpoints of flexibility by presenting a
flexibility model for information systems after in-depth analysis of those standpoints
and definitions of flexibility. The model focuses only efficienr versatility and robust
responsiveness accommodating foreseen and unforeseen changes respectively. The
author further proposes flexibility enablers for both types of flexibility. However
Laura evaluates the viability of robust responsiveness flexibility only by conducting a

case study on IS meant for competitive industry to accommodate unforeseen changes.

2.1.2 Contribution

Lara Jacome’s and co-authors proposed following twenty one flexibility enablers to

accommodate foreseen and unforeseen changes as tabulated in Table 2-1.

Stable Information Structure for Inherent Flexibility in Information Systems :

Chapter #2 Related Work

Table 2-1: Flexibility enablers to address foreseen and unforeseen changes

Type of E Business Process | Information Technology Data
p wyw ; ;;

P2, In-depth cmbedded“ 2. Expansive data
knowledge on selected Dictionary

2. Industry level >
standardized process and structured data
content mtexfaces connectlvny

2. Loose Coupling

. Inter orgamzauona]

""-'-Inansuy'}eveldata

a Téchnology a.ndv
then Strategy

2.1.3 Methodology Used

As elucidated, the presented model has two major parts, flexibility enablers for
accommodating foreseen and flexibility enablers for addressing unforeseen changes.
A case study was carried out on a data warehouse information system to examine the
later part i.e. flexibility enablers for unforeseen changes. The study was conducted in
a telecom industry of Latin American. As DWH of the firm served decision makers,
the changes were supposed to respond swiftly. The changes were not only limited to
interfaces, databases, DWH services, business rules, regulations but similar
information available in the system. Because of its nature, the changes were not
simply predictable well before, hence, the data warehouse software was supposed to

be capable of accommodating these unforeseen changes in a robust manner.

2.1.4 Limitations

The study focus is quite broad focusing on two types of changes i.e. foreseen and
unforeseen changes. Though highlighting some of the relevant flexibility enablers
such as well-integrated structures, application parameterization and data scalability
but not delved deeply on how to provide flexible ER structures. Furthermore, it’s not
addressing the Bruce’s limits to design flexibility. Encircled is the focus of the

research.

Stable Information Structure for Inherent Flexibiliry in Information Systems s

34

Chapter #2 Related Work
e ————

2.2 Asma Alkalbani and Kinh Nguyen Approach (2010)
2.2.1 Abstract

Asma Alkalbani and Kinh Nguyen [l] present some techniques to implant the built-in

flexibility in information system. The real challenge is not to meet the demanded
requirements but to accommodate a handful of potential ones in the time to come. The
root cause behind the rigidity lies in setting traditional objective of system design i.e.
functional accuracy only. Sacrificing long term objectives ie. flexibility and
maintainability for the short term objectives i.e. current requirements, result into
fragile information systems. System’s flexibility does not come for free: it takes
deliberate effort to enable system capable of accommodating potential changes. The
essence of adaptability to change lies in information system data structure. Usually if
the requirements change, the data structure design needs to be changed as well.

Therefore, the source of problems lies on data structure design.

2.2.2 Contribution

Asma Alkalbani and Kinh Nguyen studied the problem of inflexible information
systems carefully to clarify:

° What exactly is meant by inflexibility, and

. To what extent can inflexibility be avoided, and how.

They identified some of the main sources [1] of the problem that Jead to inflexibility
in information systems: These are weaknesses in:

. Designing identifiers

) Designing entities

. Design relationships

. Business ruies support

Secondly, they carried out a comprehensive review of past research work, especially
researches that try to deal with the problem by designing information structure with
built-in flexibility. They examined in detail the existing flexible information system
design approach by Bruce, Walter, Robert and Cindy (Bruce Johnson’s Group) and
suggested a flexible design solution for the product line of Product Catalogue that

requires multi-language support.

Stable Information Structure for Inherent Flexibiliry in Information Systems

35

Chapter #2 Related Work
— e, ——

Finally, they presented a technique to further enhance the flexibility. The technique
allows the user to enter a relationship type by entering some appropriate data. To
define a new relationship type, one needs to create two tables; one with attributes
(Relation-ID, Relation_Degree) and another with attributes (Relation_ID, Role,
Entity_Type, Min_Bound, Max_Bound). To store the relationship instance, create a
third table with three attributes (Rlation_Instance_ID, Relation_ID, Entity_ID). This
technique, one can observe, is the extension of the technique to design generic

structure of an organization capable of absorbing changes to its organogram.

2.2.3 Methodology Used
The Case Study was carried out to validate the proposed techniques. A flexible

Product Catalog Database known as Database-Driven Product Catalog System

(DDPCS) was designed using the proposed technique to provide multilingual support.

2.2.4 Limitations of the approach

The following limitations were observed in his approach.
¢ Sources/mistakes identified are generic & limited
» Not addressing the Bruce Johnson’s Limits-to-Flexibility

¢ No framework for InfoSys flexibility

2.3 Christopher Ackermann, Mikael Lindall & Greg Dennis
Approach (2009)

2.3.1 Abstract

The objective of the software maintenance is to modify it without harming its
integrity. Structures that let you do easy and quick modifications are referred to as
flexible. Contrarily, rigidity thwarts an effort to synchronize a system to modified
requirements or extensions. Christopher Ackermann and co-authors [2] studied
architecture of such rigid system inherited from another party. They brought well-
known principles of design into play to figure out what to change, improving
flexibility, in order to accomplish planned extensions. They shared the lessons learned

about flexibility issues experienced along with how to cope with the issues by

Stable Information Structure for Inherent Flexibilitv in Information Systems

36

Chapter #2 Related Work
m

redesign and reimplementation. The study shows that the same well-established

design principles are equally effective to redesign software.

2.3.2 Contribution

Basic & well-established design concepts can be used to guide the design and re-
design of software. The detailed description of the changes and reasoning based on
basic design principles can be useful when applying redesign to other software
systems lacking flexibility. The modifications can also serve as examples of how to

prepare software systems for adoption of future changes.

2.3.3 Methodology Used

In this paper, the authors describe how they analyzed a working software prototype
referred to as “Tactical Separation Assisted Flight Environment (TSAFE)” which was
used as a basis for a software test bed. The rigid system was analyzed with respect to
conceptual view, structural view and program flow. Some problems were found to be
hurdies in the way of implementing proposed changes. The TSAFE-I was redesigned
and re-implemented named as TSAFE-II. The specifications for which was carried out
by NASA AMES Research Center where as the development was accomplished by
Greg Dennis at MIT. It was a main component of a bigger Automated Airspace
Computing system aimed at shifting load from person to computers. The prototype
ensures that flights adhere to flight plans. Moreover, predicting “To be trajectories” as
well as displaying output on a map as its functions. The two prototypes though were
different structurally but enjoyed same behavior and matching graphical user

interface.

2.3.4 Limitations of the approach
e Not addressing the Limits-to-Flexibility in InfoSys

* No framework for InfoSys flexibility

Stable Information Structure for Inherent Flexibiliry in Information Systems g

Chapter #2 Related Work

24 Xiaoping Qiu, Li Tan and Jianbin Chen Approach (2008)

2.4.1 Abstract

Xiaoping Qiu, Li Tan and Jianbin Chen [27] used workflow technology to render the
procurement process flexible, enabling today’s enterprise to cope with its rapid
changes in requirements. A stable data structure, supporting flexible workflow based
on reference workflow model, was presented. In order to testify the fact, the author
executed an experiment, that workflow technology can unequivocally be used as

flexibility enabler in infosys.

2.4.2 Contribution

The author proposed a flexible information structure for the workflow reference
model as depicted in Figure 2-1. Experiment was carried out to validate the viability of
advanced technical idea (stable information structure) for workflow. The workflow
was used to render the procurement process flexible enabling it to accommodate
emerging process changes in a today’s enterprise. When the logic of application and
workflow was separated. it allowed user to simply modify a process model rather than

to rework the whole system.

~ Process Definition

Workflow Executive Service

Figure 2-1: A Reference Workflow Mode] used by Xiaoping Qiu

A stable data structure has been proposed for the reference workflow model illustrated
above.

® Process definition
PD (NolID, Name, Description, Version, CreatedTime, ModifiedTime, ParentNo,
VahidFrom, ValidTo, StartUpTime, CancelTime,Exceptional Time)

* Activity definition

Stable Information Structure for Inherent Flexibiliry in Information Svstems !

38

Chapter #2 Related Work

AD (ProcID, NoID, Name, Description, Type, MaxTime, MinTime, Join, Split,
MaxWait, ValidFlag)

o The activities and roles
AR (ProcCode, ActCode, RoleCode, Description)

o The activity and workflow data
AW (ProcCode, ActCode, DataCode, Name, Description, TableName,
FieldName, Type, Length, ValidRelation, DefaultValue)

e The Activity and Application
AP (ProcCode, ActCode, AppID, Name, Type, Description, Path)

o The activity and transition information
AT(ProcCode, ActCodel,ActCode2, InforID, Name, Description, IfStatement,
Loop)

2.4.3 Methodology Used

Two experiments were carried out. First experiment was carried out for workflow
relevant data structure in coordination with a series of workflow-oriented applications
duly controlled by workflow engine. The results received were as expected. The
workflow engine, supported by workflow relevant data structures, allocates the tasks
automatically. User, acting as different role, can assume duty of varying nature on
different times. The notions that appropriate user assume a suitable role and can
retrieve the relevant tasks any point in time depends largely on how exactly the

process logic works.

Second experiment was conducted to fine-tune the procurement process making use
of workflow technology. Two procurement processes having varying sequence of
activities were taken. It was assumed that activities in the both the processes have the
same operation requirements. The successful demonstration implies that applications

can be reused.

2.4.4 Limitations of the approach

Although the author has provided a flexible information structure for workflow
oriented procurement information systemn and is good contribution of its own kind,

but it hasn’t addressed the limits to flexible design marked by Bruce Johnson.

Stable Information Structure for Inherent Flexibiliry in Information Systems

Chapter #2 Related Work
e g —

2.5 Bruce Johnson’s Group Approach (2002, 2005)

2.5.1 Abstract

An initial set of flexibility characteristics [41] were proposed by this group. They
worked on [39] information free identifiers in 2001 and consider it a key to flexible
information systems but only talk of making the identifier free of meaning. In fact,
keys should be auto-generated, unmarried and numeric one. The aforementioned
authors also worked on Generic Entity Clouds [13] in 2001. They claim that GEC
[13] is a stable information structure for flexible computer systems. Stable
information structure lays down the core and most critical part of the flexible
information system. Typical information systems are inflexible, not easily
accommodating changes in business requirements. As per Bruce [23], “the 1deal
system would be one in which changes in system behavior resuit entirely from
business staff modifying data values rather than from IT staff modifying file
definitions or program code. In those cases requiring coding changes, they are
restricted to local modifications that do not result in a chain of reaction of

compensating modifications”.

In 2005, Bruce Johnson’s group came up with a book on “Flexible Software Design —
System Development for Changing Requirements” published by Auerbach

Publications {12]. This book includes the author’s new as well as old research work.

2.5.2 Contribution

Bruce Johnson’s group suggested specific steps that developers can take to achieve

system flexibility. Guidelines suggested are as under:

o Conceptualize the system as a whole dynamic entity, not as a set of connected
pieces.

s Define and enforce consistent design standards for both technical requirements
and the user interface.

¢ Separate the user interface, business rules, and data (n-tiered architecture)

s Identify logical data entities and entity types, and maintain them as individual
objects.

¢ Eliminate meaning from record keys

! 4
Stable Information Structure for Inherent Flexibilirv in Information Svstems 0

Chapter #2 Related Work
. . e s - s

e Store business rules as data.
¢ Code reusable logic in callable routines.

¢ Develop general purpose, reusable business processes whenever possible.

He furthermore examined the impact of flexible design on business and technical
staff. The benefits achieved through the case study by following principle of flexible
design were increased business control over system behavior, reuse of system solution
and enabling business people to manage change in requirements without or little

involvement of IT people.

2.5.3 Methodology Used

A case study was conducted in the university of Cincinnati (UC) needing to replace its
old rigid SIS (Student Information System) comprising of un-integrated modules
being used by specific business functions for specific processes. The system was
redesigned keeping principles of flexibility in view. UniverSIS was implemented. As
expected, flexible design of UniverSIS let enhancements to be accommodated in the
days to come entirely by business people or with minimum help from development

experts.

2.5.4 Limitations of the approach

This work, though uncovers many of the relevant issues, is silent about the flexible
information-structure support for InfoSys integration, workflow and life status/history
of an entity etc. It also highlights that there is limits-to-flexible design explained in
4.5.10.

2.6 Conclusion of Literature Review

It has been observed, after an extensive survey and contemporary literature review,
that aithough different efforts have been made to render information system flexible
by making information structures more stable and change-absorbent. Some offered
new techniques to make information structure more dynamic and some focused on a
particular aspect like dynamic information-structure support for flexible workflow.

Bruce Johnson earmarked the limits to (information-structure oriented) flexible design

Stable Information Structure for Inherent Flexibility in Information Svstems |

41

Chapter #2 Related Work

and no one has tried to break this ceiling effect. As, today, most of the information
systems are developed in relational databases, there is a pressing need to overcome
this ceiling effect and maximize the area under the curve of information system

flexibility.

2.7 Summary

Literature review throws light on the contemporary work about the topic and provides
a sort of context to the thesis work. A total of more than seventy research papers were
downloaded from various digital research libraries, among which about forty have
been referred in the thesis. The more closely related
work [11,[2].[11],[121,[14),[23},[27] and [41]{40] has been thrown light on -
highlighting the author’s contribution, methodology used and limitations in the
context of the proposed framework. It may be highlighted that references are
alphabetically ordered by first character of the author’s second name. The chapter is

concluded with the pressing need for the proposed work.

Stable Information Structure for Inherent Flexibiliry in Information Svstems

42

Chapter -3

FRAMEWORK
For
STABILITY
OF
INFORMATION
STRUCTURE

Chapter # 3 Proposed Framework

3. FRAMEWORK FOR STABILITY OF INFORMATION
STRUCTURE

In order to devise proposed framework, like CMMI, architecture of the framework

illustrated in Figure 3-1 was established in first place.

— e
i

nformation System’s Inherent Flexibility

_ Flexibitity Areas 4 __Rigidity Areas

Flexibility Enablers felaupnsiups Rigidity Enablers

l)

Flexibility Activities Rigidity Activities

o

{How-to-ute Guideimes) {Rippie 7 Avalanche Bifects)

Figure 3-1: Architecture of the Proposed Framework

Based on the literature review and experience, a framework for stability of

information structure is presented in Figure 3-2 below:

* Use Un-attributed, Un-Composed & 3% . P> Attributed, Composed, Muarried . 1.
P amarricd Auto-Numeric 1Ds " lstcad of < Composite Character 1Ds ng»Enablerl -

! FlexEnabler-1

IF}EP(En?_big_f-Z : P(mo .ecnrstve il € ‘ {ver :;-’:" H.Ij‘-bal(Hierarchies l ngE-n;bJer-Z
_F!exE_q_a_bl_e_r_-_S P Iovest in Business Rules via E‘. T Lewving . B BunRu]es via Code j Ri_gEr?a.p!erf%.
. FlexEnabler-4 | Choose Flex-Chain ER lnegnrion S B Stiff-Hook ER Integration | Rigenabler-a
Tm——— R
FlexEnabler-5 |- Define Write-Historv Entities ARSI Write-Over Entities I RigEnabler-5
& —— TEEnEEr:

;;.'FF_‘ewapnggr.s » Say Welcome 1o Cross—cutting ERs ERENEIEE Proviscial ERs RigEnabler-6

ettt

. FlexEnabier-7 * Crush Entities to Fine-grained Level {gRESCRINES :‘ RigEnabler-7

; FlexEnabler-8 P Build Breathing Entities
- , FlexEnabler-9. ¥ Vore far Conversear Competing FKs GRS guy Divergent Campeting FKs RigEnabler-9._ jur

t RigEnabler-10.

; FlexEnabler-10 Ev Call Conceptual Inberitance ERs RS i Limits-ta-Flexibic Design

S

Figure 3-2: Framework for Stability of Information Structure

Stable Information Structure for Inherent Flexibiliry in Information Svstems

Chapter # 3 Proposed Framework

The framework adheres to this architecture illustrated in Figure 3-1 systemically. The
framework comprises of ten pairs of rigidity / flexibility enabling practices and there
is one-to-one relationship between them. Rigidity enabling practices are known as
Rigidity Enablers lead you to rigid InfoSys whereas flexibility enabling practices as
Flexibility Enablers that guide you to flexible InfoSys.

2 RigEnablers = Rigid Information Structure => Fragile Information System....... (D

2 FlexEnablers = Flexible Information Structure=>Flexible Information System.....(2)

The provided nigid and flexible enablers resemble the patterns and anti-patterns.
Avoiding the rigid one or following the flexible once will lead you to stable
information structure and ultimately to flexible information systems. If for any reason
someone needs a fragile / rigid information system, the Rigid ERs is the right track to
follow.

It also suggests when to use which flexible enabler. In case more than one rigidity
enablers are involved, as many relevant flexibility enablers will apply. The framework
can equally be used for both engineering as well as re-engineering information system
projects. The framework is extensible as and when more rigid and their redress

flexible enablers are identified.

3.1 First Pair of Rig-Flex Enablers

3.1.1 RigEnabler-1 (Attributed, Composed, Married Character Identifiers)

Using attributed identifiers is rigidity enabler. Moreover this exacerbates the situation
when identifiers are defined as character and let users feed-in the identifiers.
Modifying identifier is the most costly activity in maintenance because it is used time
and again as foreign-keys by other tables of the same as well as other modules.
Married key is the combined effect of more than one key enabling someone to locate

a record. Married keys do nothing but increase joins.

3.1.2 Generic Chain of Changes RigEnabler-1 Causes

The activities tabulated in Table 3-1 are bound to be carried out, if set of change
scenarios - 1 or similar others are applied that proves the existing key to be

changeable.

Stable Information Structure for Inherent Flexibility in Information Svstems

45

Chapter ¥ 3 Proposed Framework

Table 3-1: Generic Chain of Changes caused by RigEnabler-1

Generic Chain of Changes

(Attrlbuted Composed Marned Character Idenuﬁers) o

3.1.3 FlexEnabler-1 (Un-attributed, Un-composed, Un-married and Auto
Generated Identifiers)

Oppositely, un-attributed, un-composed, un-married and auto-generated identifiers

enable flexibility.

3.1.4 How to Use Guidelines
Unattributed /Meaning-free Identifiers

e Make sure that no identifier remains attribute of an entity or in any sense
have some business meaning/ value. Tomorrow if not today, attribute(s} of
an entity will change, so don’t keep an attribute as an identifier no matter
how much it is suitable to be an identifier. A rule of thumb is - don’t even
look for business entity as an identifier.

e A simple series should be used for numbering employees. No matter what
the label of key is it must be permanent an unchangeable.

Un-Composed Identifiers

e Make sure that your key is single and not composed of characters from
various attributed e.g. tacking first two characters from Personal Number
and last two digits of a year.

Unmarried / Un-composite Identifiers

¢ Find out the composite / married Keys

e Add third numeric field and define it a primary key.

e Treat the composite keys as attnibutes

Stable Information Structure for Inherent Flexibility in Information Svstems

e

—

Chapter # 3 Proposed Framework

e Use the primary key as FK whenever required

Auto-Generated and Numeric

e Auto-generated Keys does not give chance to user to play havoc with keys
— thus churning out maintenance work for programmer.

* Promote only numeric keys. Character keys can also be auto-generated

but go for numeric only.

3.2 Second Pair of Rig-Flex Enablers

3.2.1 RigEnabler-2 (Half-baked Hierarchies)

The notion to address only current requirements drives the software engineers to
define entities e.g. organizational structure like division and departments as fields of
table. Later on, when organizational matures or expands as a result new level(s) in
org: hierarchy is introduced e.g. subsections or groups. Especially when company
undergoes a process of reorganization, some departments/divisions are merged, others
are created as new and some of old ones no longer exist. Later on, when
organizational matures or expands as a result new level(s) in org: hierarchy is
introduced e.g. subsections or groups. Especially when company undergoes a process
of reorganization, some departments/divisions are merged, others are created as new
and some of old ones no longer exist. As organizations change, so the system’s
requirements change. As significant parts of these requirements lie in the time to

come hence obtainable by the time the InfoSys is designed [1].

Usually, in information systems, no due care is taken in appreciating the hierarchical
business entities and designed horizontally as attributes of an entity. This becomes a
potential earth quack center and shakes everything creating ripple effect within and
avalanche effect across modules. Another example is approval chain. This chain may
expand or contract as per the criticality or importance of the approval process or

entities involved. This rigid structure may be referred to as Half-baked Hierarchies.

3.2.2 Generic Chain of Changes RigEnabler-2 Causes

Each time new layer is added in hierarchical structure, the chain of activities bound to

be carried out in case rigid half-baked hierarchies are in place is tabulated in Table 3-2.

Stable Information Structure for Inherent Flexibility in Information Svstems

Chapter # 3 Proposed Framework

Table 3-2: Generic Chain of Changes caused by RigEnabler-2

Generic Chain of Changes
(Half-baked Hlerarchles)

2 | Create a new ﬁeld in the u-ansacnonal table(s) for accommodatmg foreign key. Even :
‘ then no link in various layers will exist e.g. Which section works under whlch

: Amend the ex:stmg quenes / mggers / routines etc mvolvmg new type especially the
summary reports [Addlng tab}efattnbutes names]. :

3.2.3 FlexEnabler -2 (Nth Level Recursive Hierarchies)

This, one of the potential sources of future changes, can be eliminated by structuring
hierarchy recursively 1.e. interlinking different levels with its parent by putting a
“ParentID” field in the same table. They may be referred to as Recursive Nth Level

Hierarchies.

3.2.4 How to Use Guidelines

. Define all business attribute of an entity in first place.

. Define a specific attribute of ParentID pointing to its parent instance of an
entity. Remember don’t define child attribute.

. Include Type/Nature field to differentiate parent-child.

. Add the following fields to make it breathing.
o ValidFrom, ValidUpto, Living Status, Sequence.

3.3 Third Pair of Rig-Flex Enablers

3.3.1 RigEnabler -3 (Business Rules via Code)

It’s the business rules that drives the system whether manual or automated. InfoSys
remains alive as long as it is synchronized with the business rules. Business rules are
susceptible and more prone to change. Business rules go unchanged for a limited
duration. They get changed or new rules replace it or vanished without replacement.

The notion to code everything is one of the major sources of rigidity. If these rules are

totally encapsulated in code, such scenarios are indicators of inflexibility and — -
| 48

Stable Information Structure for Inherent Flexibiliry in Information Systems ——

Chapter # 3 Proposed Framework
e ————————

contribute to generate major portion of the maintenance and are termed as Business

Rules via Code.

3.3.2 Generic Chain of Changes RigEnabler-3 Causes

Each time a change in rules happen, following problems transpires, in turn some

activities will have to carry out as shown in Table 3-3.

Table 3-3: Generic Chain of Changes caused by RigEnabler-3

Generic Chain of Changes
(Busmais Rules v1a Code)

E;ichumea changc 1n ru]eé happcn, fol]owmg problems emcrge, m:urn some activities will
. have to carry out.
3 Q_cgmﬂukandmdﬁecodemzﬁmmechangemmles

4 Emergencé of new rulcs even of snmlar panems means amendmg code that requlres
programmer’s involvement.
’Fest Datafor%negmy { Quality_

3.3.3 FlexEnabler-3 (Business Rules via ER)

Contrarily, well-designed information structure for business rules provides end-user

much flexibility and may be called as Business Rules via ERs.

3.3.4 How to Use Guidelines

. Understand business rules.

. Make pattern of business rules.

. Identify parameters to fine-grained level.

. Make relationships keeping business rules in view.

Stable Information Structure for Inherent Flexibiliry in Information Systems T

Chapter # 3 Proposed Framework
3.4 Fourth Pair of Rig-Flex Enablers

34.1 RigEnabler - 4 (Stiff-Hook ER Integration)

No business function can operate in space. Output of one becomes input for other
which provides a reason for system/module integration. In MIS setup, where each
developer 1s responsible for development/maintenance of his assigned module, each
developer is concerned with the smooth operation of his/her module and less careful
about others. They use the data of each other by just picking the desired data directly
and similarly drop data by directly into the relevant tables/fields of other modules. In
case an information structure changes later on while other modules are hooked. The

result will be dysfunctional systems. This may be termed as Stiff-Hook integration.

3.4.2 Generic Chain of Changes RigEnabler—4 Causes

A change 1n information structure causes the allied modules including self go down.

What’s in the way is tabulated in Table 3-4.

Table 3-4: Generic Chain of Changes caused by RigEnabler-4

Generic Chain of Changes
(Stiﬂ'-Hoqk ER In__t_ggration)

wm&mluperﬁm ﬁndmmthepmbmhcs

2 | Amend the integration code to synchronize it with the amended mformanon sl:mcturc '

The frei;uéncy of changem common information structure and the number & nature of
__integration defines the magnitude of the ripple or avalanche effect.

3.4.3 FlexEnabler - 4 (Flex-Chain ER Integration)

In fact, the module itself should be responsible to provide the desired data requested
by other module and also for keeping the data providing objects synchronized when
any of its information structure changes. This may be termed as Flex-Chain

Integration.

Stable Information Structure for Inherent Flexibility in Information Systems

Chapter # 3 Proposed Framework
E ——— = e
3.44 How to Use Guidelines

® As a rule of thumb, never permit others to select, update, save etc in tables of
your module(s). Make sure, these operations be performed by the module

itself. Allow other only to access module’s views, interfaces, functions etc for

the purpose.
. Analyze, design, implement and make it available for others to use.
. Make sure don’t update, save, and access information structure of other

module directly.

3.5 Fifth Pair of Rig-Flex Enablers

3.5.1 RigEnabler-5 (Write-Over ERs)

When an entity is structured in a way that important old information are updated
whether configurational or transactional is a source of changes, later or sooner user
will demand for historic information not available. This leaves the user with no option

to know the history. This may be referred to as Write-Over ER.

3.5.2 Generic Chain of Changes RigEnabler - 5 Causes

Table 3-5: Generic Chain of Changes caused by RigEnabler—5

Generic Chain of Changes
(Write-Over ERs)

- Each time user updates the old information with new one, substantial irreversible
informa’gion get lost '

Other alhed modules starr.s savmg relevant hlstonc mfo w1th them ThlS is can be .
: referred to as ’scattered pieces of history” not linked to make sense.

' e Moreover, in case ER is changed to accommodate historic info, allied modules will

: have to be changed accordingly. '

3.53 FlexEnabler-5 (Write-History ERs)

For keeping such information this point onward you have to do major structural
changes. Such structures may be referred to as Write-Over whereas the opposite as

Write-History ERs.

Stable Information Structure for Inkerent Fiexibility in Information Systems =

Chapter # 3 Proposed Framework

3.5.4 How to Use Guidelines

. As a rule of thumb, use Write-History ERs when change in data is expected or
visible even if it’s not the user’s requirements.

. One can maintain history in many forms. Select one of them depending on the

scenario or criticality of the historic information.

3.6 Sixth Pair of Rig-Flex Enablers

3.6.1 RigEnabler-6 (Provincial ERs)

In “Get things done on the fly” environment, a little attention is given to what could
be reused to avoid rework and so waste of energy and efforts. In the absence of
centralized technical control, developers oblivious of what is going on around starts
reinvent what has already been accomplished by another colleague. This may be

termed as “Provincial ERs”.

3.6.2 Generic Chain of Changes RigEnabler - 6 Causes

Each time a new entity with similar nature is needed, the activities bound to carry out

is tabulated in Table 3-6.

Table 3-6: Generic Chain of Changes caused by RigEnabler—6

Generic Cham of Changes

a vmes will have to carry out.

In R:gld System, . each tlme a new ennty w1th smnlar narure 18 needed thc following)

: Especial additional efforts are required each time new reinvented ER is added for
amcndmg the summary routines, triggers, procedures etc will have io be changed. _
Por. genesthangemmdi:cedémerﬂn aliremmtedﬂlswﬂ havetobezm:nded

i More than n x time’s efforts will be reqmred to transform all reinvented ERs into
uniform one.

! In this case an avalanche effect of httle magmtude is mvolved as each module has 1ts own
. reinvented ERs. However in case of a generic change, nec amendments will have to carry
{ out in each module.

Stable Information Structure for Inherent Fi lexibility in Information Systems

Chapter # 3 Proposed Framework
e ————————— = ——————
3.6.3 FlexEnabler-6 (Cross-Cutting ERs)

Watich out for recurring and cross-cutting ERs which can be shared across MIS,

design it thoroughly once and for all. These can be called as Cross-cutting ERs.

3.6.4 How to Use Guidelines

. Establish a centralized organizational control over design activity as well as

incorporation of change in the same.

Monitor the overall information structure and separate cross-cutting ERs.

Design, develop generic modules and enforce all to use the same.

3.7 Seventh Pair of Rig-Flex Enablers

3.7.1 RigEnabler-7 (Rock ERs)

Defining rock entities is another source of potential changes. For example putting
complete address of an employee into one field of database provides reason for clients

to raise change requests in the days to come.

3.7.2 Generic Chain of Changes RigEnabler-7 Causes

Table 3-7: Generic Chain of Changes caused by RigEnabler—7

Generic Chain of Changes
(Rock ERs)

Transforrmng rock ennty mto ﬁne-gramed one takes the follovvmg

' Amend all the allied modules vto be comﬁétiblé w1th ﬁ;e ﬁne-gramed e;ilty. mstance E

Stable Information Structure for Inherent Flexibility in Information Systems ey

Chapter # 3 Proposed Framework
3.7.3 FlexEnabler-7 (Fine-grained ERs)

Generally a whole entity can be fabricated by concatenating its constituent pieces but
not the vice versa. So crush the rock entities into more fine-grained attributes provide
you more flexibility in searching and reporting and also storing it in concatenated

form not let performance go down.

3.7.4 How to Use Guidelines

. Don’t rush for coarse-grained entity design. Test every entity you design for
atomicity.

. Crush an entity to fine-grain level if it lends itself for subdivision.

¢ Concatenate all constituent fine-grained attributes and store it as a whole again
in the same table as rock field.

° Use flexibility enabler - 2 in case it forms bill-of-material like structure.

3.8 Eighth Pair of Rig-Flex Enablers

3.8.1 RigEnabler-8 (Corpse ER)

Definition of entities does not remain valid for ever, They live their life. They born
and die like living things. They get changed. Entities with unknown living status may
be termed as Corpse Entities. Moreover, this is a redefinition of what entity is also not
traceable. They are referenced in transactional tables and must not be deleted or

changed.

3.8.2 Generic Chain of Changes RigEnabler-8 Causes

Table 3-8: Generic Chain of Changes caused by RigEnabler—8
Generic Chain of Changes
(Corpse ERs)

e

i_Spraymg out the smeIl of Corpse and transfomnng it mto breath ing entity takes: ‘
Find out-what old definition-of an entity mbﬂngmsplayed with the new 0@ S
Preserve the old entity definition by reverting back the old configuration.

3 Redefine the entity imstance {revised eiitity) by creating new master record. ~ SETE
4 Fmd out & amend the FKs of all transactional tables where the entity instance is -
_ referred. Nested Ripple Effect — as separating affected old & new records i is chfﬁcult
5 Alsoadd DateFrom / DateTo and EivingStatus. anrihutesfcrnmﬁbﬁny;_ :
. 6 Link the revised entity w:th old ennty deﬁmtmn

Stable Information Structure for Inherent Flexibiliry in Information Svstems ———

Chapter # 3 Proposed Framework
3.8.3 FlexEnabler-8 (Breathing ERs)
Oppositely, the entities with its birth, death dates as well as living status may be

termed as Breathing Entities.

3.84 How to Use Guidelines

. Add the following fields in all entities generally and in configurational files
especially.
© Sequence, ValidFrom, ValidUpto, LivingStatus, Linkedwith
o Fill / update the ValidFrom, ValidUpto fileds automatically with system

dates.

3.9 Ninth Pair of Rig-Flex Enablers

3.9.1 RigEnabler-9 (Diverging Competing FKs)
In case when more competing foreign keys are coming from different tables, usually

they are kept separate. This may be termed as Divergent Competing FKs.

3.9.2 Generic Chain of Changes RigEnabler-9 Causes

Each time new FK is added because of adding new entity type i.e. table, the following

activities will have to carry out.

Table 3-9: Generic Chain of Changes caused by RigEnabler-9

Generic Chain of Changes
(Dlvergent Competmmg FKs) N

Each time new FK-IS added becausc of addmg new emlty typc i.e. table, the foliowmg
j acnv1t1es will have to carry out. '

, "fﬂﬂe{ﬁforthemwiype@f enfity. -
Develop Uscr—mterface for the newly added enmy

émmétmems% queries? triggers/ yomtines etc involving newiy added entity.
Write new quenes / tnggers etc for new features mvolvmg the newly added ennty

All allied modules mtegra:ed w1th this module w1ll have to amend the mtegrahon routines
. by considering tables(s) / attributes of new entity wherever needed.

3.9.3 FlexEnabler-9 (Converging Competing FKs)

Table name as identifier of the foreign key may minimize he the number of FKs. This

may be termed as Convergent Competing FKs.

55

Stable Information Structure for Inherent F lexibility in Information Svstems Tom—

Chapter # 3 Proposed Framework
3.94 How to Use Guidelines

. Look for other competing FKs whenever you making a relationship via FK.
. Keep all tables in schema with necessary info in a separate table
. Reduce the number of FKs by combining competing FKs.

. Add a filed named *“TableID” to locate the origin of each FK.

3.10 Tenth Pair of Rig-Flex Enablers

3.10.1 RigEnabler-10 (Bruce Limit’s to Flexible Design)

When emerging types of entities have varying information structure, designing it
necessitates adding more tables, fields as well as new user interfaces. This is, as
mentioned in problem statement, is called Bruce Johnson’s Limits to Design

Flexibiliry. Actually, a concept drift occurs when a new type emerges for an entity.

3.10.2 Generic Chain of Changes RigEnabler-10 Causes

Each tume new type emerges with different attributes, the activities to carry out is

tabulated in Table 3-10Q.

Table 3-10: Generic Chain of Changes caused by RigEnabler—10
Generic Chain of Changes
(Bruce Lumts to Flexnble legn_l €. Cellmg Effect)

b 4 7 Amend the e:ustmg queries / tnggers / routmes etc mvolvmg new type espec;auy the
summary repon;s IAddmg table/attnbutes names]
‘ Avalandn Eﬁea

3.10.3 RigEnabler-10 (Conceptual Inheritance in ER)

The Johnson’s limits-to-flexible design can be overcome by adopting a coordinated
hybrid approach by InfoSys & business domain experts of the organization and
employing Conceptual Inheritance. Provision of linked tables by developers for

additional fields and dynamically specifying on the base of type selected where to

56
Stable Information Structure for Inherent Flexibiliry in Information Svstems ‘-—f —

Chapter # 3 Proposed Framework

save additional fields of a particular entity of new type. Invoking relevant table and
interface dynamically at runtime necessitates keeping record of all tables in schema
and interface artifacts i.e. forms. This definitely increases the complexity and calls for
expert programming skills. However, as it is one-time effort but provides flexibility at

user-end as well as makes developer’s life easier in the time to come.

3.10.4 How to Use Guidelines

. You may go for conceptual inheritance when you are dealing with types,
subtypes that form hierarchical shape.

. Evaluate the efforts involved in realizing the conceptual inheritance against the
fiexibility required.

. Keep all tables of schema with necessary information in a table.

. Keep all interface artifacts i.e. forms, reports etc of all modules in with
necessary information in a separate table.

. Put two fields SubtypelD and TableID in each table of hierarchy to locate
where further information about a particular type are stored.

. Use the same linking path for retrieval of relevant information.

3.11 Limitations of the Proposed Framework

The framework has the following limitations:

. Limited to InfoSys only

. Addresses stability of information-structure only

. More ER-based flexibility results in more program complexity. There is a
pressing need to strike a delicate balance between the two.

. Not tested for other than MIS Setup.

. Not meant for web-based Information Systems.

3.12 Applicability of Flexibility Enablers

There is one-to-one relationship between rigidity enablers and flexibility enablers.
This implies that choose flexibility enabler when relevant rigidity enabler is involved.
In case more than one rigidity enablers are in action, as many relevant flexibility
enablers will apply e.g. solving the Bruce Johnson’s limits to design flexibility
(ceiling effect) involves, by design, the N Jevel hierarchy enabler besides conceptual

inheritance itself.

Stable Information Structure for Inherent Flexibility in Information Systems

57

Chapter # 3 Proposed Framework

e —— ———— ————— — — ———— — ———— ——————————— ——
Though the framework may partially be used as a guide while engineering IS, it
applies specifically how to re-engineer (transform) rigid ‘IS’ into a flexible one.
Furthermore, the name of the flexibility enablers also suggest the situation / scenarios

when 1o apply one or more flexibility enabler(s). However, based on experience,

when a need to call another enabler arises is illustrated below in Table 3-11:

Table 3-11: Applicability Relationship among Enablers

£
Rigénah-1
igEnah-2
IgEnab-3
igEnah

O M
I —
X M

FiexEnab-10 : | : :f-

K shall Call relevant Flexenabler () Might Call the relevant FlexEnabler

3.13 Impact of Flexibility Enablers on Quality of Data

Data populated in the re-engineered stable information structure, which was designed
keeping flexibility enablers in view, is appraised against the following quality
parameters by experts and drawn in Table 3-12. The purpose of evaluation is to
determine the quality (positivity / negativity) of the impact and not the quantity of the

impact. The table shows that flexibility enablers have overall positive impact on data
quality.

]
58
Stable Information Structure for Inherent Flexibiliry in Information Svstems :

Chapter # 3 Proposed Framework

Table 3-12: Impact of Flexibility Enablers on Quality of Data

"N m . » © " « =« g

(- I T T I . -

Enablers/ E & & § § &£ & & £ @
Data Quality s & £ F ¥ ¥ & : %
Data Standardiration * + + + + + ++ o+ o+ o+

Data Integrity + + * + + + + 0+ . ¥
Resilience to Wrong Data * * + + + * + e ¥ +*
Bntry . I
Amenability to Cross- * ++ * + + ++ F L
Data Relationships + + + * + + + + + +
Supportive to Data + - + LA SRR N .

Warehousing

AccussbityofDsa 4+ ¢ o+ o+ k.

Completeness of Data .(.- ++.-. * * ++ * ' * s *

AmepablitytoAnaysis 4 4 o+ ¢+ o+ 0+ .
“Legend:> + Positiveimpact, ++ Double Positive Impact, - Negative Impact, * No Impact

3.14 Impact of Flexibility Enablers on Program Complexity

It is highlighted that program complexity has been analyzed from software
implementation point of view. The nature of parameters evaluated is indicative of the
same. The results, drawn in Table 3-13, are based on the case study data thoroughly
Judged by experts. The overwhelming negatives in the table show that inherent
flexibility increases the program complexity. However, the experience demonstrates
that this complexity decreases gradually as the programmer’s programming skills
sharpens. The objective here is to determine the quality (nature) of impact and not to

measure the quantity of impact i.e. program complexity.

Stable Information Siructure for Inherent Flexibiliry in Information Svstems

59

Chapter # 3

Proposed Framework

Table 3-13: Impact of Flexibility Enablers on Program Complexity

- " " ¢ » © ~ e o £

5 4 & 4 4 4 £ £ & 5

fabes/ £ 0§ 0§ 0§ 0§ 0§ 5§ % i
Dqualy & ¢ ¢ P 0} P %P &
Mm + - ‘ ¥ - + - ¥ - -
—] +_— : [
Mdm + - - ¥ - - - - - L3
Report Generation J . . R .
MiySws ¢ . . L . . b L .
Code Size v+ . VoL e ... e
m + - - ‘ - - a - - -
Legend:> + Simplicity, - Complexity, - - More Complexity * Normality

3.15 Summary

This chapter presents the proposed framework, comprising of ten pairs of rigidity &

flexibility enablers, for stability of information structure. The framework depicts one-

to-one relationship between rigid and its relevant flexibility enabler. Generic chain of

changes 1s tabulated for rigidity enabler concerned whereas “How-to-Use” guidelines

are provided with each flexibility enabler. Rigidity and flexibility enablers are

explained with examples. The chapter concludes with Limitations of the framework,

applicability of the flexibility enablers and impact of the same on both data quality &

program complexity.

Stable Information Structure for Inherent Flexibiliry in Information Systems

Chapter -4

FlexInfoSys

A CASE STUDY

1

Stable Information Structure for Inherent Flexibilitv in Information Svstems ! 61

Chapter #4 FlexInfoSys
m

4. FLEXINFOSYS - A CASE STUDY

In this chapter the implementation details of our research work has been discussed.
Case study has been carried out to appraise the effectiveness of the proposed
framework. Two change-averse legacy InfoSys have been chosen for study of rigidity.
We rename these systems as RigInfoSys, as non-disclosing measure. One belongs to
Govt. organization whereas the other taken from Private Ltd company. Name of the
organization/company is also not being made public owing to non-disclosure
agreement. One of the rigid systems, covering the scope, has been re-engineered,
named as FlexInfoSys, making use of the proposed change-driven information-
structure-oriented design strategies. The reason for selection of RigInfoSys is that all
its modules are integrated within as well as with other business modules. Moreover,
the Employee Profile InfoSys abbreviated as eProfile is the core module acting as a

foundation for most of the modules comprising the bespoke small ERP.

4.1 What is Case Study?

As per Robert K. Yin “The case study research method is an empirical inquiry that
investigates a phenomenon under scrutiny, within its real-life context; when the
boundaries between phenomenon and context are not clearly drawn; and in which
multiple sources of evidence are used”. It brings to light actual story what led to the
results or outcome. It is useful for testing whether scientific theories and models really
work in the real world environment. Suppose a scientist or engineer formulate a
wonderful computer model explain how the ecosystem of a rock pool works. It is case
study which is used 1o try it out on a real life pool to see its effectiveness. Case study
is preferred to be use for its flexibility. Sometimes, while trying to testify a
hypothesis, it brings about unusual results thereby leading to new directions or open

new dimensions.

4.2 Rationale for Selection of Case Study as a Research
Methodology
Case study {30], [33] is appropriate methodology for research in software engineering

as it provides an opportunity to investigate phenomena in its real life context.

Basically, this study is aimed at analyzing the common Rigid ER Practices and

Stable Information Structure for Inherent Flexibiliry in Information Systems

62

Chapter # 4 FlexInfoSys
proposes a framework for stability of information structure to infuse flexibility in
information systems. Generally, software engineering and especially design of
information systems takes place for a given business or industry having customer’s /
sponsor’s requirements or expectations including certain assumptions and constraints
on software / information system design. It was also not appropriate to establish a lab
environment, so experiment research methodology was not considered for this

research work.

The other strong candidate research methodology was to conduct a survey. Because
the survey is a non-experimental, descriptive research method, conducting survey can
be useful when data needs to be collected on phenomena that cannot be directly
observed. Last but not least, the most of the closely related research work has been

carried out as case studies. The literature review in Chapter-2 testifies the same.

4.3 Main Activities of Case Study

The major activities are illustrated in the Figure 4-/ as under:
- e i o -

Figure 4-1: Case Methodology Used

Stable Information Structure for Inherent Flexibilitv in Information Systems

Chapter # 4 FlexinfoSys

——— &
4.4 Change Scenarios

Change scenarios are generally used to test the rigidity or flexibility of a system.
Following change scenarios have been designed based on a decade experience and in-
depth analysis of change requests raised by end-users in real business environment.
These scenarios relate to problems faced by business people and/or developers over a
decade period. Careful selection ensures that most of InfoSys changes fall in one of
the scenarios. These scenarios are used in conjunction with the Bruce Johnson’s
criteria to judge the effectiveness of the proposed framework. These change scenarios

are interspersed in the case study with relevant rigidity / flexibility enablers.

4.5 Change-Driven ER-Oriented Rigidity Enablers and their
Redress Flexibility Enablers.

The case study was carried out taking various steps in its logical order as depicted in
Figure 4-1. However the two enablers ie. the rigidity enablers identified while
analyzing the RiginfoSys and the Flexibility Enablers employed in re-engineering
FlexInfoSys are given under one heading for increased understandability and ease of
comparison. The chains of changes i.e. ripple & avalanche effects have been shown

with relevant rigidity enabler.

4.5.1 Use Non-Attributed, Un-Married Auto-Generated Numeric Keys instead
of Attributed, Composed Character Keys

Usually IDs are composed to form IDs of entities. In eProfile, personal number was
used as primary key in first place. Later on, a new business rule that a new personal
number will be allotted to an employee on re-recruitment and also once staff
employees goes into officer category. This led to change the ID. Next time, a national
identity card was selected as a primary key with the assumption that 1t 1s not going to
change. This is depicted in Figure 4-2. Later on, National Database Registration
Authority (NADRA) introduced a new computerized Cards referred to as CNIC
leading to the same situation. This suggests that no information/attribute is exception

to change.

Siable Information Structure for Inherent Flexibility in Information Svstems

Chapter # 4 FlexInfoSys

PK | PersNum PK | CNIC
Name PersNum
IDCard Name
DoB DoB
BirthPlace BirthPlace
JoinDate JoinDate
Religion Religion
Sect Sect
Cast Cast
Appointment Appointment
Category Category

Figure 4-2: Use of Attributed, Composed Character keys

If the change scenarios tabulated in Table 4-1 or similar others are applied on
aforementioned ERs, the generic chains of changes i.e. ripple and avalanche effects
given in Table 3-1 unravel. The more specific effects are certainly more deep and

adverse.

Table 4-1: Set of Change Scenarnios - |

Change Scenarios for Evaluating First Pair of Rig-Flex Enablers
(Attnbuted & Composxte VS Non-Attnbuted & Non Composlte Keys)

When an 7ev:mployce is re-recrmtcdm ihe same company e:g; 2 regu]ar ofﬁ‘o.::-er: IS
_re-recruited as contract employee; he/she will be allotted a new service-id
| whereas service-id is being used as primary key in the RiginfoSys.

Bruce Johnson group [12], [23], [39] and Asma Alkalbani [1] have worked a lot on
this issue. It is further revealed from experience that single un-composed auto-
generated numeric keys should be encouraged because of performance issues.
Moreover, composite keys should be discouraged. Here EmpID is a numeric key other

than employee personal number shown in Figure 4-3.

Stable Information Structure for Inherent Flexibilitv in Information Systems —

Chapter # 4 FlexInfaSys

PersNum
Name
FatherName
NameTitle
CNIC
PlaceOfBirth
CastID
DomicilelD
Weight
Height

Build
ColorOfEves
BloodGroup
SectID

Figure 4-3: Non-Attributed, Un-Married and Auto-generated Numeric keys

”

FUNCTION NonAttributed AutoNumericKey(vTargetTable VARCHARZ, vTargetColum.
VARCHAR2) RETURN NUMBER IS
KevMaxlD NUMBER:=1;

Query_Str VARCHARZ2(2000):
BEGIN
Query_Str := 'select nvi{max('||vTargetColum|{).0) =1 from '||vTargetTable:
execute immediate Query_Str into KeyMaxID:
RETURN(KeyMaxID):

END:

Text Box 4-1: A generic function for auto-generation of next non-attributed numeric key. Use of
database provided identifier has been found even better than the above mentioned function.

4.5.2 Invest in Nth Level Hierarchies and Leave Half-baked Hierarchies

In RigInfoFlex, the Organizational structure i.e. the Directorates and Branches and

regions as City, District. Province and Country as in Figure 4-4:

Stable Information Structure for Inherent Flexibility in Information Systems H—

Chapter # 4 FlexInfoSys
e L ————— e

o . ki I
l¢—| PK | Pershum

ReligionName Name CountrvName
DesigCode
PavScale
[DCard | PROVINCE -]
Cat e
JoinDate » PK | ProvincelD
— DoB
PK | BranchiD BirthPlace ProvinceName
Cast — —
BranchName AppointCode - DISTRICT .~
DatePresentPost i
PK

ReAppomtDate | DistrictID
FK38 | ReligionID
FK9 | SectID

FK1 | CountryID
FK2 | TehsiliD ——— T
FK3 | ProvinceID p{ PK | CitylD
FK4 | DistrictlD
FKS5 | CityID CrtvName
FKé | Branchld
FK7 | Depttid

- STERSIE
PK | IchsillD
TehsilName

Figure 4-4: Defining Half-baked Hierarchies

DistnictName

These hierarchies were used by other modules. Other operations were critically
dependent on it hence got disrupted and chain of unrequested amendments started

unraveling.

If Set of Change Scenarios — 2 tabulated in Table 4-2 or similar other scenarios are

applied, the chain of changes illustrated in Table 3-2 unravel.

Table 4-2: Set of Change Scenarios - 2

Change Scenarios for Evaluating Second Pair of Rig-Flex Enablers
‘ (Half-baked VS Recursnve Hlerarchnes)

Company_ Y™ is organizauonally structured as D1v1510ns and Depanmcnts As new
i CEO takes over, the company undergoes reorganization. New layer of Sections and/or *
Groups are added. Some departments are split and others merged. New departments -

are introduced and some old ones are dissolved .
i [Note:- Other business modules integrated with this core module should not be disrupted e.g. a user of an
! mvemory module accesses employee of a secnon]

Stable Information Structure for Inherent Flexibility in Information Systems

Chapter ¥ 4 FlexInfoSys

In FlexInfoSys, the organizational structure, regions and religions given in Figure 4-5
were designed as depicted in following diagram. Workflows and chart of accounts are

among other examples.

. S y 1 A | —
PK | DeptlD PK | RegionlD PK | ReligionlD
DeptNature DeptCode RegionCode ReligionName
NatureSequence DeptName RegionName ParentReligionID
ShortName RegionType Sequence
ParentDeptlD ParentRegionlD ValidFrom
DeptTvpelD ShortName ValidUpto
Autherity Sequence LivingStatus
Sequence ValidFrom
ValidFrom ValidUpto
ValidUpto LivingStatus
LivingSatus
Remarks
FK1 | DeptNaturelD

Figure 4-5: Recursive definition of Hierarchies - Organogram, Religion, Region

4.5.3 Leave the Rigid Way of Achieving Business Rules via Code for more

Flexible Business Rules via ERs.

In RigInfoFlex, the Leave Rules were hardcoded. Some are shown here in Text
Box 4-2. Promotion policy 1s among other representative examples.

IF v_old_EmplD is null AND v_old_jdate is not null THEN
LFPs=round{months_berween(last_dav(svsdate-30).v_old jdate))*4:

ELSIF v_old_EmpID is not null AND v_old_jdate is null THEN
LFPs =round{months_between(last_dav(svsdate-30).rec)_date))*4:

ELSIF (v_old_EmplID is not null AND v_old_idate is not null} OR (v_old_EmpID is null AND v_old_jdate 15 null) THEN
LFPs:=round{months_betweenilast_day(svsdate}.rec)_date)}*4:

J

Text Box 4-2: A business rules provides privilege that an employee can avail 48 leaves with full pay
per year. Now form a particular date onward this privilege 1s reduced to 40 per year.

IF leave_detail leave_type = "MTN’ and upper(:global.ap_stat) not like 'SCHOO: STAFFY THEN
‘leave_detail.to_date:=:leave_detail from_date+89:
‘leave_detail.no_of_davs:=%0:

ELSIF ‘leave_detail leave_tvpe ='MTN' and uppert:global ap_stay) like 'SCHOOL STAFF% THEN
:leave_detail.to_date:=:lcave_detail. from_date+44;
-leave_detail.no_of days:=45:

END IF:

\

Text Box 4-3: A business rules to cater for varying number of leaves for different employee type e.g. if

maternity leaves for school staff is less than other employees in the same enterprise

Stable Information Structure for Inherent Flexibility in Information Systems i

Chapter # 4 FlexinfoSys
—_— . fiexinfooys
If Set of Change Scenarios — 3 given in Table 4-3 or similar other scenarios are

applied, the chain of changes illustrated in Table 3-3 unleash.

Table 4-3: Set of change Scenarios - 3
Change Scenarios for Evaluating Third Pair of Rig-Flex Enablers
_ (Busmess Rules v1a Code VS BR vm ER Desngn)

————

- ; Empioyee categones are hard coded in nglnfoSys Deﬁnmon of a category is :
i i changed. In another case category of an employee is changed because of changmg
paramelers the category depends on.

w | Contract female teachers of schools run bymthe company can avail the iﬁafenﬁty leave -
{3 i of two months twice a life whereas company regular female employees can avail three -
%@ : months thrice a life.
=

In FlexInfoSys, the business rules for leave policy and employee categories were
designed as depicted Figure 4-6 and Figure 4-7 respectively. Rules are not being narrated

but only depicted in diagrams for brevity.

SHES -1 PIS EMPINFOS
PK PK | EmplnfolD
EmpType - Category L EmpID
AppointmentStatusID DateFrom PNo
ArRetiredStatus DateTo DesiglD
AgeFrom ActiveStatus PayScalelD
AgeTo Remarks TradelD
FK1| CategoryID DeptlD
ActiveStatus AppointmentStatusiD
Remarks DateFrom
DateTo
ActiveStatus

AvailDetaillD
ProbationStatus
JoinDate
EmpTypelD
EmpCategorylD
InfoChangelD
ChangeReferencelD
P-IINo

P-1IDate

FK 1| CategoryID

Figure 4-6: Emplovee caregories and its design for its business rules

Stable Information Structure for Inherent Flexibiliry in Information Systems —-

Chapter # 4 FlexInfoSys
—_——— e

HIS LEAVE_AUTHORIZATION A LEAVE AUTH_DETAILS]
PK |LcaveAuthID PK | AuthDetailiD
FK1 |LeaveTypelD FKI1 | LeaveAuthlID
SanctionAuth] DesiglD
ValidFrom Duration
ValidUpto ValidFrom
LivingStatus ValidUpto
Remarks LivingStatus
& Remarks
HiS IEAVE PARAMETERS| [BiS_iEAVETYPES |
PK | LeaveParamID PK |LeaveTvpelD
ParamName LeaveType
ParamCode ShortName
ValidFrom ConvertableToLFP
ValidUpto Sequence
LivingStatus LivingSiatus
Remarks
PK | PolicyDetaillD PK | PolicvApplicabilitvyID PK | LeavePolicviD
FK1 | PolicyApplicabilityID FKI1 | LeaveTypelD PolicyDate
FK2 (LeaveParamID gl FIK2 | LeavePolicylD et PolicyDescrip
LeaveDaysAuthorized EmpTypelD Authority
ValidForm ApptStatusID ValidFrom
ValidUpto ApplicableON ValidUpto
LivingStatus ValidFrom LivingStatus
Remarks ValidUpto
LivingStatus
Remarks

Figure 4-7: Business rules via ER Design e.g. Busines rules for Leaves

4.5.4 Go for Flex Chain Instead of Stiff Hook Integration between Modules

In RigInfoFlex, the integration was carried out as depicted by the Figure 4-8 below and
a piece of code how developer of one module hooked to another module’s

information structure picking or dropping data directly is shown as Text Box 4-4

subsequently.
Application - 1 Applicanq’ n-2
y |
odule- - 1 | Module-
1 2
“Fable 1 Tabie § Table |} Tabie'§ Table | | Table:
F Y
o
| Applica.t.i.r.]n - =
Module- = Module-
n § 3
=4
“Table] Table. 'Table‘ Table {[Table || Table |=
Figure 4-8: Stiff-Hook Integration — Just pick & drop data directly PN
i 70

Stable Information Structure for Inherent Flexibiliry in Information Svstems

Chapter # 4 FlexInfoSys

e T e—————— — ——————————————————————————————————— —————————1

PR RE _PROBATION_ A MSI NU)

- Selecting data from Events Management Svstem

SELECT emp_info_id, emp_id,with_effect_from. date_upto.probation_status
FROM HRM.EMS_Prob_Terminate

WHERE Evnt_id = EMSID

- Updating PIS

IF i.probation_status ='Termination' THEN
UPDATE HiS.ePROFILE_EMPLOYEE.Probation
SET date_to = i.with_effect_from, probation_status='"Completed’
WHERE emp_id = i.emp_id and emp_info_id = i.emp_info_id
AND probation_status="Active’.

END IF;

_END J

Text Box 4-4: Integration of two Modules e.g. Integration of Event Management and eProfile -
Probation Termination Process in Event Management System showing post-effects on eProfile.
Pick & Drop integration increases the maintenance and rigidity by the rate “how
many other modules are hooked. If a developer changes his/her table structure and
even if he/she communicate these changes to all relevant, the concerned developer
will have to change his/her code/query to adjust his new structure. Otherwise efforts
involved become twofold, the relevant artifact/object responsible for integration with
a particular module becomes invalid and the concerned developer will have to trace

out where the problem lies.

If Set of Change Scenarios — 4 tabulated in Table 4-4 or similar other scenarios are

applied, the chain of changes illustrated in Table 3-4 unleashes.

Table 4-4: Set of Change Scenarios - 4

Change Scenarios for Evaluating Fourth Pair of Rig-Flex Enablers

(St:ff-l-look VS Flex-Cham lntggrahon)

; Orgamzanonal hlerarchy mcludcs ‘Reports-To ﬁeld Thzs ﬁeld is accessed hy

. workflow, budget allocation, ACR writing and similar other modules that need to |
| use hierarchy. In case of reorganization, change in this field leaves all other :
. modules dysfunctional. :

()r-S08

;Note Change in any of above mentioned ﬁeld will render Lhe inlegrazéci modules ndt-funéﬁoning as .

Stable Information Structure for Inherent Flexibiliry in Information Svstems

Chapter # 4 FlexInfoSys
“

‘ : expected rather error will prompt.

In FlexInfoSys, Integration between modules was rendered flexible by:

* A module provides data to the requester instead of the requester fetch the
requisite data directly.

e A module takes the data provided by others and manages to save it by self instead

of allowing other modules to drop data directly.

In this case, any change in information structure did not disrupt the other module.

~———nData Provider Application — — — — ~

N THIH R AR DTt

(—Dala Receiver Applicatons

ez prommn e T e A S sy e W e

Application - 1 % Application - 2 E Application - n
= T = - =
Module-1 % Module-1 ,' T Module-n [
Hﬁ_ —~— F H—' m 2 - St h—lﬁ 3 -
 Tabie] ' Table] [Table] | |Tableq | Tab :1 Mable | [= DT 00T [Teble] [Table || Table:
\. : J

Figure 4-9: Flex Chain Integration

4.5.5 Opt for Write-History over Write-Over Entities

An appointment of an employee was changed from Manager to Senior Manager; the

user remained unable to know what the employee’s earlier appointment was.

PK | PersNum

Name
I1DCard

DoB
BirthPlace
JoinDate
Religion
Sect

Cast
Appointment
PayScale
DeptCode
SubDeptCode

Stable Information Structure for Inherent Flexibility in Information Systems e

FlexInfoSys

Chapter # 4
e e

Figure 4-10: Use of Write-Over Entities

TN

PROCEDURE DISSIMINATE_CHANGE_IMPACTS(vOLD_VALUE NUMBER,
vNEW_VALUE NUMBER, vTARGET_COLUMN VARCHAR2) IS

-

Query_Str VARCHARZ2(2000);

BEGIN
Query_Str .= "UPDATE HRM.ePROFILE EMPLOYEE

SET WTARGET_COLUMN]||='[yNEW_VALUE||

WHERE
ACTIVE_STATUS='|"Active”|'AND'|[VTARGET_COLUMN|'='vOLD_ VALUE;

EXECUTE IMMEDIATE Query_Str;

END DISSIMINATE CHANGE_EMPACTS;

v

\

Text Box 4-5: Generic procedure of replacing employee information e.g. appointment on promotion of
an employee

If set of change scenarios — 5 given below or similar other scenarios are applied, the
chain of changes illustrated in Table 3-5 unravel.
Table 4-5: Set of Change Scenarios-5

Change Scenarios for Evaluating Fifth Pair of Rig-Flex Enablers
(erte-Over VS Wnte-Hxstory ERs)

{ An employee is promoted from Junior Manager to Senior Manager. Pay-scale is also -

i changed accordingly. The system should maintain and be accessible an employee’s -

i current as well as old historic information.

4**
Address of an employee is changed

(a)s-s:)s :

In FlexInfoSys, replacing old information was avoided by maintaining double-keys in
transactional tables, one permanent (EmpID) having attributes of permanent nature

but not unique whereas the other temporal (EmpChangelD) with changing

s,

Ll;,

Stable Information Structure for Inherent Flexibility in Information Svstems

Chapter # 4 FlexInfoSys
—e L EXIOOYS

information as and when change happened. Both keys were interlinked for

traceability.
<PROFILE_EMPLOYEE 'ePROFILE INFOCH:
PK | EmplD PK |EmpChan
DoB FK1 | EmpID
PlaceOfBirth p PersNum
CastiD DesigID
DomicilelD PayScalelD
SectID DeptID
BloodGroup ApptStatusID
AvailDetailID
ProbationSatus
JoinDate
EmpTypelD
DateFrom
DateTo
ActiveStats
OrganoUnitID

Figure 4-11: Use of Write - History ERs

4.5.6 Say Well come to Cross-Cutting and Goodbye to Provincial Entities

In this particular case study, built-in workflow, limited to 2 or 3 levels, has been
developed by each developer for his own module. Condemnation board is another

representative example.

Stable Information Structure for Inherent Flexibility in Information Svstems

Chapter # 4 FlexInfoSys
B e T ———————————————L e e

BoardPlace
BoardAuth
BoardProceedingDate
PresidID
PresidName
PresidDeptt
MemberllD
MemberlName
MemberlDesig
MemberlDeptt
Member2ID
Member2Name
Member2Desig
Member2Deptt
Member3ID
MemberiName
Member3Desig
Member3Deptt
MemberdID
MemberdName
Memberd4Desig
Member4Deptt
Member5ID
Member5Name
Member5SDesig
Member5Deptt
MemberslD
Member6Name
Member6Desig
Member6Deptt

Figure 4-12: Rigid Structure for Condemnation Board Proceedings

If set of change scenarios — 6 tabulated in Table 4-6 or similar other scenarios are

applied, the chain of changes illustrated in Table 3-6 unravels.

Table 4-6: Set of Change Scenarios - 6
: Change Scenarios for Evaluating Sixth Pair of Rig-Flex Enablers
I (Provmc:al ERs VS Separate Cross-cutting ERs)

; : Static “Condemnation Board” mformatlon structure is de51gned mn mventory module
: for writing-off inventory items. Now it is also required in recruitment, mqulry, :

(ﬂ)9'SOS

promotion, purchasing etc.

Stable Information Structure for Inherent Flexibiliry in Information Svstems

Chapter #4 FlexInfoSys
Bt et EEEEEEEE——S—S——————d e

In FlexInfoFlex, workflow between modules was built once illustrated in Figure 4-13
and used by all instead of creating built-in workflow in each module. Similarly
constituting boards by different departments of the organization for different purposes

should be designed once and used for all as illustrated in subsequent figure.

PK | RocArtifactiD
ArtifactlD
DoclD
LivingStatus
ADM.FRIORITY | | WMS TRANSACTION| |WMS FLOWTYPE WMS :DEPTT DOC
PR |PrioriyID PK | XransiD PK |ElowTypelD PK | DeptDoclD
Prionty L TaskID FK1 (DeptDocID DeptID
ColoriD ArtifactlD FlowTvpe ArtifactID
DateFrom FK1 | PriorityID Title o Title
DateUpto SentEmploveel D H> FlowNature PrepBy
LivingStatus SentEmploveelnfo LivingStatus PrepDate
SentAsID PrepDate ValidFrom
SentTo PrepBy ValidUpto
SentDate ValidFrom LivingStatus
m mm@i_ﬁc TransSiatus ValidUpto Remars
— ReceivedDrate Remarks
PK | IransCCID ReceivedEmpID A
ReceivedEmplnfo | [ogps rROW-DETATLS] [WMS ALTERNATE POSIEION
FK1 | TransID Hamt ApprovalStatus = e : BN e
SentDate ViewStatus PK | ElowDetaillD PK | AltPositiopID
RecervedDate Remarks
ReceivedEmplinfo FK2 | FlowTypelD FK1 | FlowTypeID FK1 | FlowDetaillD
RecervedEmpID FK3 | DocArtifactiD OrderofFlow - PositionID
Status DeptD PosSequence
PositionlD ValidFrom
AuthonvtTvpe ValhidUpto
Remarks LivingStatus
Remarks

Figure 4-13: Separation of Crosscutting Concerns — Workflow Management

PK | BoardOwnerID PK | BoardID
FK1 | BoardID P | SetupDate “4— FK1 | BoardID
Position]D Authority EmpID
BoardTypelD Remarks EmpChangelD
QOwnerlD LivingStatus MemberName
Living OrgID
MemberType
MemberNature
Sequence
ActiveStatus
Remarks

Figure 4-14: Separation of cross-cutting concerns e.g. Board Proceedings. Workflows, Org: Calendars,

Org: Duty Rosters. Board Proceedings

Stable Information Structure for Inherent Flexibiliry in Information Svstems ——

Chapter # 4 FlexInfoSys
ﬁ

4.5.7 Crush Entities to Fine-grained Level — Not leaving it as Rock.

In RigInfoSys, the address was defined as under:

PK (PersNum

Name

IDCard

DoB

BirthPlace
JoinDate

Religion

Sect

Cast
CompleteAddress

Figure 4-15: Use of Rock Entities e.g. Address as one atiribute

If Set of Change Scenarios — 7 tabulated in Table 4-7 or similar other scenarios are

applied, the chain of changes illustrated in Table 3-7 unleashes.

Table 4-7: Set of Change Scenarios - 7

i

Change Scenarios for Evaluating Seventh Pair of Rig-Flex Enablers
(qu:k VS E@ne:gpained Entities)_ 7

find %0 -City

Country name has been fed in various formats e.g. USA, United States, US, America.

=y I T L e A ety ey L, KA

In FlexInfoSys, the Rock Entity (address) was crushed to fine-grained level as

illustrated in Figure 4-/6 and linked to more generalize hierarchical region structure.

Stable Information Structure for Inherent Flexibility in Information Systems T—

Chapter # 4 FlexInfoSys
m
PK | EmplD PK | EmpAddressiD PK | RegionlD
EmpInfolD FK1 | EmpID RegionCode
EmpName EmpinfolD RegionName
AddressTypelD RegionType
HouseNo ParentRegionID
PostOfficelD ShortName
PolicStationlD Sequence
FK2 | RegionID ValidFrom
DateFrom ValidUpto
DateTo LivingStatus
ActiveStatus
Concatenated Address

Figure 4-16: Fine-grained entities e.g. split address into fine-grained pieces

4.5.8 Choose to Define Breathing over Corpse Entities

In RignfoSys, an appointment “Senior Manager” for an employee in a company

existed and become obsolete after quite some time. It was referenced in transactional

tables and cannot be deleted as per referential integrity rule, nor could it be changed

fupdated. No one was able to determine for which duration this appointment was

under use or what appointment in the past was actually equivalent to “Principle

Manager” now. Appointment entity was defined with no birth /death dates or living

status as under.

PK

AppointmentID

AppointmentTitie

Figure 4-17: Use of Corpse Entities i.e. entities with unknown living status

If Set of Change Scenarios - 8 tabulated in Table 4-8 or similar other scenarios are

applied, the chain of changes illustrated in Table 3-8 unleashes.

Table 4-8: Set of Change Scenarios - 8

Change Scenarios for Evaluating Eight Pair of Rig-Flex Enablers
(Corpse VS Breathmg Entltles)

L@ i Junior Manager will be termed as “Deputy Manager” and Senior Managers as “Ciuef
A ; Manager” from this time onward. An entity changes its status.
=

Mot Tl syatem shou be able 1o ow a paicls iaplyes s bocn wht1n & pociiod peiod o k]~

Stable Information Structure for Inherent Flexibility in Information Systems

Chapter # 4 FlexInfoSys
m

In FlexInfoSys, the Corpse entity was transformed into Breathing by adding following
highlighted features illustrated in Figure 4-78. It tells when an entity took birth, is it

currently alive? and when it became inactive or dead e.g. appointments.

PK | AppoeintlD

AppointiD
Appointment
Sequence
ValidFrom
ValidUpto
LivingStatus
LinkedWith
Remarks

Figure 4-18: Defining Breathing Entities e.g. Appointment

It’s worth mentioning that if definition of a configurable entity changes, create a new
one with new definition and render the old one inactive instead of changing its
definition and link the two entities, otherwise the transactional entities featured with
this configurable entity will always be displayed with the new one even if the

transactional entity was defined before the definition of configurable entity.

Stable Information Structure for Inherent Flexibility in Information Svstems

Chapter # 4 FlexInfoSys
%
4.5.9 Vote for Convergent FKs instead of Divergent FK by adding TablelD as

Attribute

Defining multiple competing foreign keys only limits the dynamic nature of program.

The less dynamic programming defines the more rigid InfoSys e.g.

PK | MarriagelD PK | ChangeReligIlD
EmpID PrevReligionID
EmplinfolD NewReligionID

i ———P
EventID ChangeDate
SpouseName EmpID
SpouseFName EmplnfolD
MarriageDate Authority
UnderLawID AuthDate
Authority Remarks
AuthDate
PK |SeriallD -
Death EventOrderID Biothl
PK |DeathlD |g— f~~——p PK | BirthID
SeriaiNo
DeathDate FK1 | MarriagelD BirthDate
SubGroupID
ColumnName
FK2 | ChangeReligID
FK4 | DeathID
FK3 | BirthID

Figure 4-19: Use of Foreign Keys - Various entities of Events Management System

SPROFILE NOMINATIONSY | ¢PROFILE FAMILY
PK |NominationID PK |FamilvMemberID
OrgName EmpiD FMName
OrgTypelD [EmplnfolD —> FMRelationiD
OrgNaturelD FK1 | NOKOrgID FMDOB
Field-m DateFrom EmpID
Field-n DateTo EmplInfolD
Field-o TransDate AliveStatus
ActiveStatus
FK2 | NOKFamMemID

Figure 4-20: Use of Muliiple FKs - Family Nominations for various types of employee's Funds

Stable Information Structure for Inherent Flexibility in Information Svstems

Chapter # 4 FlexInfoSys
————————————e e e

If Set of Change Scenarios - 9 tabulated in Table 4-9 or similar others are applied, the

chain of changes illustrated in Table 3-9 unleashes.

Table 4-9: Set of Change Scenarios - 9

Change Scenarios for Evaluating Ninth Pair of Rig-Flex Enablers
(D“’el'glng VS Convergent FKs)

E:mploynwnt-lExpencnce and Edﬁééﬁon?eéo?& of an -ét'nployee 1§ l;elng mamtamed :
! Now the company wants to record the same for employee’s dependants and in-laws as
weﬂ for security and ease of recruiting suitable individuals for a position. '

In FlexInfoSys, this was designed using the table-name i.e. Marriage, Birth etc as a
database field to trace foreign key as illustrated in Figure 4-27 and Figure 4-22. The

result is to minimize FKs and increase program dynamicity simultaneously.

PK | MarriagelD
EventiD PrevReligionID EmpiD
EmplID NewReligionlD EmpChangelD
EmpChangelD ChangeDate SpouseName
DeathDate EmplID SpouseFName
CertificateNo EmpChangelD MarriageDate
Authority Authority UnderLawID
AuthorityDate AuthDate Authority
DeathPlacelD Remarks AuthDate
Remarks
EventOrderlD
SCHEMA_TABLES SerialNo SE
FK2,FK3,FK4,FK5 | EventlD :
PK | TablelD ¢—] FK1 Tableld
ColumnName
TableName SubGrouplD EmplD
TableType EmpChangelD
LivingStatus ChildName
DateFrom BirthDate
DateTo BirthPlancelD
RetlationID
Authonty
AuthDate

Figure 4-21: Convergent Competing Foreign Keys — Event Management System

Stable Information Structure for Inherent Flexibility in Information Svstems ———

Chaptler # 4 FlexInfoSys
m

PK | FamilvMemberID

OrgName EmpID FMName
OrgTypelD [EmplnfolD — FMRelationiD
OrgNaturelD FK1,FK2 | NextOfKinID FMDORB
Field-m DateFrom EmplID
Field-n DateTo EmpChangelD
Field-o TransDate AliveStatus

ActiveStatus

OrglD

FamilyMemberiD

Figure 4-22: Converge multiple foreign keys into one by introducing table name as a database field

4.5.10 Use Conceptual Inheritance When Facing Bruce Limits-to-Flexibility

As explained in the problem statement, here it is diagrammatically illustrated by two
examples emergence of new employee types and keeping record of more types of

organizations e.g. vendors, institutes, banks etc.

R TS |
p{PK |EmpTypelD Ly
EmploveeTyvpe
PK | ContractorlD PK | ConsultaptiD PK | SalaricdEmpNum PK |SaslaredEmpNum
JoinDate Name Name Name
ContractFrom IDCard BasicPay NoOfHours
ContractUpio DoB {DCard HourlyRate
IDCard BirthPlace DoB DateFrom
DoB JoinDate BirthPlace DaweTo
BirthPlace FK1 | EmpTypelD Religion DoB
DesigCode Religion DesignCode BirthPlace
CategorviD Sect PayScaleCode Religion
FK1 { EmpTypelD DepttCode FK1 | EmpTypeiD
Religion FK1 | EmpTypelD D
Sect IDCard

Figure 4-23: Bruce Johnson’s Limits to Design Flexibility - Ceiling Effect for Employee Types

Stable Information Structure for Inherent Flexibility in Information Systems

Chapter # 4 FlexInfoSys

OrgName
OrgShortName
Phone
OrgTypelD
DateFrom
DateTo
LivingStatus
PK | YendorID BankID
OrgTypelD OrgTypelD
VendorName BankName
Performancelndex BranchCode
IsBlackListed ShortName
NatureOfBusiness ActiveStatus
Email Address
PhoneFax OrgTypelD ContactPerson
Name PhonFax
Address Country
InstituteType
Speciatity
ContactPerson
AffiliationID
EducationRanking

Figure 4-24: Bruce Johnson's Limits 1o Design Flexibility - Ceiling Effect for Organization Types

When we applied Set of Change Scenarios - 9 tabulated in Table 4-10, the chain of
changes illustrated in Table 3-10 unleashes. Same is the case for other similar

scenarios.

Table 4-10: Set of Change Scenarios - 10

Change Scenarios for Evaluating Tenth Pair of Rig-Flex Enablers
i (Celhng-Effect VS Inhentance in ERs)

i The organization is currently keeping record of its organizational hierarchy. It now
wants to keep record of some commercial, private, Govt. Organizations, NGOs and -

- Educational institutions each having different attributes

(2)o1-S08

Stable Information Structure for Inherent Flexibility in Information Svstems ey

Chapter # 4 FlexInfoSys
“

In FlexInfoSys, the ceiling effect was dispelled by employing the conceptual

inheritance by putting the common/generic attributes in initial level of hierarchy and
as the concept drift occurs, put the more specific attributes deep down the hierarchy.

The employee and organization has been designed as illustrated in Figure 4-25:

HNTERTACGE ARTIFALTS PK | Personhnm
PK ifact] eTsoRMN 2
- B Narne coeriny A 3
— I v SOHEMA TABUES
Art ‘atMame DoB P | Iab
ArifactType DD BirthPlance
Stored Al
! . SectlD — TableNarne
:'.ahcﬁ- rom CastiD TabicType
‘ahd T, e FK3 | PersTypelD SchemalD
l_,:vmg§ra:u> FKf | TabielD ValidFrom
Remarks FR2 | ArtifactID ValidTo
- LivingStatus
bl Remarks
A
PK | TypelD e E::;;m
) Jojni;:gDam
TypeTrite ot .
TymeCaregory Ap;u’;mchD
ValidFrom P FK? | Artifsct
VahdTo et
Ve FK3 |SubTablelD
IvingStatus F4 | TypelD
Remarks s
PK |Com 1 £ Bt | DARLY WAKGERS
PK (WaigckmolD
FKY | EmpID
DesiglD FKI |EmgID
CuniractFrom WaigeRae
ContractTo NoOfHours
ComractStatus DateFrom
FK4 | TvpelD? DateTo
FK2 | SubTabicelD Remarks
FR3 | ArtifactiD

ConusctCategoryID

Speciality Ty
Remmarks

ContractEmplD FKi1

ContractCategoryl D
ProjectiD

Remarks
ContractEmplD

Figure 4-25: Solving Bruce Johnson’s Limits 10 Flexible Design via Inheritance in ERs

4.6 Summary

In this chapter, the case study, carried out to validate the proposed framework, is spelt

out. Rationale for selection of case study as methodology is provided. Main activities

of the case study are elaborated diagrammatically. Change case scenarios, extracted

from the analysis of the two rigid systems, are narrated. All rigidity and flexibility

enablers are explained with examples from case study carried out. One of the two

rigid systems was redesigned and redeveloped using the proposed framework. The

chapter is concluded with the case study design keeping flexibility enablers in view.

Stable Information Structure for Inherent Flexibility in Information Systems

Chapter - 5

VIABILITY
OF THE
PROPOSED
FRAMEWORK

Chapter # 5 Viability of the Proposed Framework
m

3. VIABILITY OF THE PROPOSED FRAMEWORK

When amount of efforts required to modify a system is out of proportions in

comparison to the change requested, it’s a first sign of rigidity in InfoSys. In order to

examine the viability of the framework presented, we have used the aforementioned

change-scenarios. Secondly as we address the Bruce Johnson’s limits to flexible

design, we prefer to use his criteria for the purpose as given in 5.1. The case study

was designed in a manner to keep the results impartial and nullify or at least minimize

the impact of factors affecting it. The following major potential factors were

considered and kept constant for the said study both for rigid as well as re-engineered

flexibie InfoSys:

. Development Environment

e Information System Development Life Cycle

. Skills of Information System Professionals i.e. Architects, Designers, Analysts
and Developers etc.

o Development Tools

o Information System Users

¢ Network Infrastructure

. Hardware and Computing Machines Used

5.1 Bruce Johnson’s Criteria for evaluating
Rigidity/Flexibility of an InfoSys

”i“lexibility Taxonomy ~ Costin Terms of Changes in I Changes in Chnu'g'es in -

Structare

Efforts Information Program Code Data Valnes

. Weak Flexibility Most Costly v v v
' Medium Flexibility =~ Next Most Costly v v
{ Strong Flexibility Least Most Costly v

We have even further refined his criteria for validating the effectiveness of proposed

strategies as under:

. Waich for ripple and avalanche effects involved in change scenarios.
. Count the steps and heaviness of the steps involved
. Generally, steps involved in avalanche are heavier than ripple as many

times as the number of allied/integrated systems

Stable Information Structure for Inherent Flexibility in Information Systems

Chapter # 5 Viability of the Proposed Framework
M

5.2

Graphs showing comparative analysis of Rigid / Flexible

Practices

The graphs shown depend on the data coliected against change-scenarios before and

after applying the proposed framework i.e. for flexible ER practices against each rigid

ER and also taking expert judgment.

Note: - In following comparative graphs, the x-axis shows the sets of change-

scenarios for both rigid and flexible InfoSys(s) whereas the y-axis depicts the efforts

involved in terms of man-hours for both rigidiry and flexibility enablers.

5.2.1 Evaluating Attributed VS Non-Attributed Keys:

The set of changes shown in Table 4-1 can be incorporated by various ways. The fact

is that by either way attributed keys takes more efforts to change. This is depicted in

Graph 5-1.

Efforts Involved

(Man Hours)
[
<

Set of Change Scenarios — 1

w
[ae}

-
o

(=)

SCS-1 (A) SCS-1 (B) SCS-1(C)

Set of change scenarions givne in table 4-1 are applied on First Pair of Rig-FlexEnablers

Graph 5-1: Attributed/Composed Character VS Non-Attributed, Auto-generated Numeric Keys

5.2.2 [Evaluating Half-baked VS Recursive Nth Level Hierarchies

The efforts consumed both in rigid and flexible enablers while incorporating the

changes shown in Table 4-2 is displayed in Graph 5-2.

Set of Change Scenarios - 2

- 40
S
> O
S T 20
£ g
o) 10
S 2
H 0
SCS-2 (A) . SCS-2 (B) _ SCS_-ZF{C)
Set of change scenarios givén in table 4-2 are applied on Second Pair of Rig-Flex Enablers
Graph 5-2: Half-baked VS Recursive Nth Level Hierarchies TS
1 87

Stable Information Structure for Inherent Flexibility in Information Systems e————

Chapter # 5 Viability of the Proposed Framework
5.2.3 Evaluating BR via Code VS BR via ER Design

The efforts involved in incorporating the changes shown in Table 4-3 is displayed in

Graph 5-3.

Set of Change Scenarios - 3

(8]
<

Ch

—_— e b D
(=

Efforts Involved
(Man Hours)
R R=NT

SCS-3(A) SCS-3(B) SCS-3(C) SCS-3(D)

Set of change scenarios egiven in table 4-3 are applied on Third Pair of Rig-FlexEnablers

Graph 5-3: Business rules via Code VS Business rules via ERs Design

5.2.4 Evaluating Stiff-Hook VS Flex-Chain Integration
The efforts consumed in incorporating the changes shown in Table 4-4 is displayed in

Graph 5-4.

b2
o

et
th

Efforts Involved
{Man Hours)
S

[== IRV

SCS-4 (A) SCS-4(B) SCS-4(C)
Set of change scenarios given in table 4-4 are applied on Fourth Pair of Rig-FlexEnablers

Graph 5-4: Suiff-Hook VS Flex-Chain Integration

Note: The efforts involved depend on the number of modules integrated with the
module where the changes have occurred. However, the maintenance generated by
rigid system if ER is changed is always greater than flexibly designed system.

5.2.5 Evaluating Write-Over VS Write-History ERs

The efforts consumed both in rigid and flexible enablers while incorporating the

changes shown in Table 4-5 1s displayed in Graph 5-5.

Stable Informarion Structure for Inherent Flexibility in Information Svstems

Chapter # 5 Viability of the Proposed Framework

RIUS =

Efforts Involved
(Man Hours)

SCS-5(A) SCS-5(B) SCS-5(C) SCS-5(D)

Set of change scenarios given in table 4-5 are applied on Fifth Pair of Rig-FlexEnablers

Graph 5-5: Write-Over VS Write-History Entities

5.2.6 [Evaluating Provincial ERs VS Separation of Cross-cutting ERs

The efforts consumed both in rigid and flexible enabiers while incorporating the

changes shown in Table 4-6 is displayed in Graph 5-6.

[T e
o o O

Efforts Involved
(Man Hours)

SCS-6(A) SCS-6(B) SCS-6(C)
Set of change scenarios gaven 1n table 4-6 are applied on Sixth Pair of Rig-FlexEnablers

Graph 5-6: Provincial ERs VS Separation of Cross-cutting ERs

3.2.7 Evaluating Rock VS Fine-grained Entities

The efforts consumed both in rigid and flexible enablers while incorporating the
changes shown in Table 4-7 is displayed in
Graph 5-7.

40
30
20
10

0

u Rigid
¥ Flex

Efforts Involved
(Man Hours)

SCS-7(A) SCS-7(B) SCS-7(C)

Set of change scenarios given in table 4-7 are applied on Seventh Pair of Rie-FlexFnablers

Graph 5-7: Rock Entities VS Fine-grained Entities

Stable Information Structure for Inherent Flexibility in Information Systems

Chapter # 5 Viability of the Proposed Framework
5.2.8 Evaluating Corpse VS Breathing Entities

The efforts consumed both in rigid and flexible enablers while incorporating the
changes shown in Table 4-8 is displayed in Graph 5-8.
Set of (hange Scenario
30 -
20 -
10 '"j
o !

Lo

w

Efforts Involved
{Man Hours)

SCS-8(A) SCS-8(B)

Set of change scenarios given in table 4-8 are applied on Eight Pair of Rig-FlexEnablers

Graph 5-8: Corpse VS Breathing Entities

5.2.9 Evaluating Divergent VS Convergent Entities

The efforts consumed both in rigid and flexible enablers while incorporating the
changes shown in Table 4-9 is displayed in Graph 5.9.

40
30
20 -~
10

0

Efforts Involved
(Man Hours)

SCS-9(A) SCS-9(B)
Set of change scenarios given in table 4-9 are applied on Ninth Pair of Rig-FlexEnabiers

Graph 5-9: Divergent VS Convergent FKs

5.2.10 Evaluating Bruce Limits to Flexible Design VS Inheritance in ERs

The efforts consumed both in rigid and flexible enablers while incorporating the

changes shown in Table 4-10 is displayed in Graph 5-10.

Set of Change Scenarios - 10

£
o

L
<o

(Man Hours)
L
o o

Efforts Involved

<

SCS-10(A) SCS-10(B)

Set of change scenarios given in table 4-10 are applied on Tenth Pair of Rig-FlexEnablers

Graph 5-10: Limits to Flexible Design VS Inheritance in ERs

Stable Information Structure for Inherent Flexibility in Information Systems

Chapter # 5 Viability of the Proposed Framework
. 0 @ — - -

5.2.11 Overall Comparison of Rigidity and Flexibility Enablers

This graph shows the combined efforts consumed by all rigidity enablers for all
scenartos in brown color in comparison to combined efforts consumed by all
flexibility enablers for the same scenarios in blue color.

Graph 5-11: Overall comparison of Rigid and Flexible ER Enablers

This shows the viability of the proposed framework comprising of rigidity enablers

and flexibility enablers in information systems.

5.3 Summary
In this chapter, viability of the proposed framework is validated by using Bruce

Johnson’s criteria and sets of change scenarios for each flexibility / rigidity enabler.
Firstly, Bruce Johnson’s criterion is articulated. Secondly, the same criterion is further
refined by taking the steps of ripple / avalanche effect as well as heaviness of the steps
involved into account. The criterion is applied in conjunction with the change case
scenarios narrated in the case study (chapter - 4). The data collected against the
critenia while accommodating the change case scenarios for each rigidity / flexibility
enablers duly authenticated by two teams — each comprising of fifteen professionals.
This data is shown graphically to compare the efforts consumed against each rigidity
enabler and the relevant flexibility enabler. Finally, an overall comparison of rigid and
flexible enablers is depicted through a graph. The graph exhibits that flexibility
enablers takes less efforts when implemented than rigidity enablers. This

demonstrated the viability of the framework.

Stable Information Structure for Inherent Flexibiliry in Information Systems

Chapter - 6

CONCLUSION
AND
FUTURE WORK

Stable Information Structure for Inherent Flexibility in Information Systems e

Chapter 6 Conclusion and Future Work

6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we propose a framework for stability of information structure
contributes to inherent flexibility in information systems. It shows that this framework
provides a concrete foundation to stop chain of changes i.e. ripple and avalanche
effects including how to address the Bruce Johnson’s Limits-to-Flexible Design i.e.
Ceiling Effect via introducing inheritance in information structure. This assisted to
maximize the area under the curve of inherent-flexibility in InfoSys and hence
minimizing the area under the curve of inherent rigidity in InfoSys. In other words
extended, a bit more, the limits of flexible design in information systems marked by

Brue Johnson.

However, the framework is limited to InfoSys and furthermore addresses only

stability of information-structure.

6.2 Lessons Learned

Besides the framework for stability of information structure and ultimately flexibility
in information systems, the following lessons were learnt, as a bi-product, through the
case study.

. Always think bigger and generic.

. Don’t forget future while designing and anticipate potential changes.

. Develop a common integrated information structure for entire system firstly and
may opt for “one-at-a-time” incremental development afterwards.

. Leave running after “finished requirements” - they are never finished as change
is immortal instead try to render InfoSys flexible enough to accommodate
changes gracefully.

. Dry run your information structure for potential changes.

. Always opt for quality of information structure over deadlines whenever you
have option to choose among the two.

. Use m: n association between entities where association information is distant to
know as it provides one-to-one, one-to-many as well as many-to-many

association.

Stable Information Structure for Inherent Flexibility in Information Systems

Chapter 6 Conclusion and Future Work

. Revisit an entity and revise it to fit the continuing changing requirements.

. Always accord priority, while designing, to flexibility over functionality, as
focusing functional requirements only work against flexibility.

. Flexible ER design, renders programming complex, don’t be afraid as it is one-
time activity and let you enjoy all the times to come.

. Like functional requirements are the user’s business, infusing flexibility, most
of the times, is software designer’s concern.

. Transforming a legacy rigid InfoSys into flexible one is manifold harder than
engineering flexible system for the first time.

. Testing phase should necessarily include ensuring the flexibility characteristics
along with testing business features.

. In MIS setup, creation of information structures i.e. ERs must be centrally
controlled instead of letting developer play havoc with information system

foundation.

6.3 Future Work

TOP is always vacant, it’s very rare when there comes an end in research of any field,

unless some new or more attractive filed is introduced which grasp the features of

parent or child field. The future work includes:

. Balancing flexibility in information systems with other quality attributes e.g.
performance, usability etc

. CMMI like framework, FMMI (Flexibility Maturity Model for Information
Systems) -Defining Levels, Key Flexibility Areas,— Generic Goals / Generic
Practices, Specific Goals / Specific Practices, SCAMPI like flexibility
assessment methodology for information systems.

. Impact of flexibility on quality of data in IS.

6.4 Summary

This chapter concludes overall thesis highlighting that the proposed framework
provides a concrete foundation for stable information structure and in turn contributes
to flexibility of information system, on one hand, future work is highlighted
subsequently for researchers. On the other band, lessons learned while carrying out

the case study, have been shared for practitioner’s community.

Stable Information Structure for Inherent Flexibiliry in Information Systems

Chapter 7 References

REFERENCES

Note: The references are arranged alphabetically in order of the first character of
last name of first author and then by year of publication.

(1]

[2]

(3]

[4]

[3]

{6]

(7]

[8]

(9]

A. AlKalbani and K. Niguyen, “Designing flexible business information system

H

for modern-day business requirement changes,” in Proc. of 2nd International
Conference on Software Technology and Engineering, vol. 2, Oct 2010, pp. 112-
118,

C. Ackermann, M. Lindvall and G. Dennis, “Redesign for flexibility and
maintainability: A case study”, in Proc. of the European Conference on Software
Maintenance and Reengineering, IEEE Computer Society, Mar 2009, pp. 259-
262.

K. Andresen and N. Gronau, *“Adjustment Strategies for Managing
Unanticipated Changes in Software Development”, in Proc. of
Wirtshaftinformatik, Berlin, Germany, Jan 2009, no. 12, pp. 717-726.

E. Byme, “Using action research in information systems design to address
change - A south African health information system case study”, in Proc. of
SAICSIT, pp. 131-141, 2005.

C. Coronel, S. Mormns and P. Rob, Database Systems — Design, Implementation
and Management, 9th ed, Cengage Leamning, 20 Channe] Center Street Boston,
MA 02210 USA, 2010.

C. Chen and P.C. Chen, “A holistic approach to managing software change
impact”, Journal of Systems and Software, vol. 82, no. 12, pp.2051-2067,
Jun 2009.

A. Eden and T. Mens, "Measuring Software Flexibility”, IEEE Software, vol.
153, no. 3, pp. 113-126, Jun 2006.

J. Gebauer and F. Schober, “Information System Flexibility and the Cost
Efficiency of Business Processes”, Journal of the Association for Information
Systems, vol. 7, no. 3, pp. 122-147, Mar 2006.

W. Golden and P. Powell, “Towards a Definition of Flexibility: in Search of the
Holy Grail?” The International Journal of Management Science, vol. 28, no. 4,

pp. 373-384, Aug 2000.

Stable Information Structure for Inherent Flexibility in Information Svstems

Chapter 7 References
[10] O. Hollschke, }. Rake, P. Offermann and U. Bub, “Improving Software

Flexibility for Business Process Changes”, Business & Information System
Engineering, vol. 2, no. 1, pp. 3-13, Oct 2010.

[11] L. Jacome, T. A. Byrd and L. W. Byrd, “An Examination of Information
Systems Flexibility”, International Journal of Information Processing and
Management, vol. 2, no. 2, pp. 69-77, Apr 2011.

[12] B. Johnson, W. Woolfolk, R. Miller and C. Johnson, Flexible Software Design —

Ist ed, Boca Raton, Auerbach

System Development for Changing Requirements,
Publications, 2005.

[13] B. Johnson and W. Woolfolk, “Generic Entity Clouds: A stable Information
Structure for Flexible Computer Systems”, System Development Management,
Oct 2001.

[14] B. Johnson, W. Woolfolk, and P. Ligezinski, “Counterintuitive Management of
Information Systems Technology”, Magazine Business Horizon, pp. 29-36,
Apr 1999.

[15] M. Khan, W. Nisar, E. Munir, W. Anwar and 1. Ali, “Deployment Strategies for
a Reengineered Information System in Context of Legacy System™, Research
Journal of Applied Sciences, Engineering and Technology, vol. 4, no. 3, pp. 178-
185,2012.

[16] L. King and K. Lyytinen, “Information Systems — The State of the Field”, John
Wiley and Sons Ltd, The Atrium Southern Gate Chichester, West Sussex PO19
8SQ, England, 2006, ch. 1, pp. 1-15.

[17] W. Kadir and P. Loucopoulos, “Relating evolving business rules to software
design”, Journal of System Architecture, Manchester UK, vol. 50, no. 7 pp.367-
382, 2004.

[18] E. Kirda, M. Jazayeri, C. Kerer and M. Schranz, “Experiences in Engineering
Flexible Web Services”, IEEE Computer Society, vol. 8, no. 1, pp.58-65, 2002.

[19] F. Lee and J. Gebauer, “The Role of IS-Flexibility for the Management of an E-
Procurement System: A Case Study”, in Proc. of Twelfth Americas Conference
on Information Systems (AMCIS), Acapulco Mexico, Aug 2006, pp. 1895-1901.

[20] R. Molero, M. Barry, H.A. Hunter and T. Shunnar, “Flexible Database
Structures for Land Records”, in Proc. of the FIG Congress — Facing the
Challenges — Building the Capacity, Sydney Australia, , Apr 2010, pp. 1-18.

Stable Information Structure for Inherent Flexibiliry in Information Systems

Chapter 7 References

[21] H. Mubarak, “Developing Flexible Software Using Agent-Oriented Software
Engineening”, IEEE Software, vol. 25, no. 5, pp. 12-15, 2008.

[22] S. Mary, "Wrnting Good Software Engineering Research Papers”, IEEE

Computer Society, in Proc of the 25" International Conference on Software
Engineering, IEEE Computer Society, 2003, pp. 726-736.

[23] R. Miller, B. Johnson and W. Woolfolk, “Flexible information system, easy to
change”, Educause Quarterly, vol. 25, no. 3, pp. 44-51, 2002.

[24]) S. Oliver., Helge K. and Volker W, “How to Make Software Softer - Designing
Taijorable Applications”, in Proc of the 2nd conference on Designing Interactive
Systems: Processes, Practices, Methods, and Technigques, ACM New York, NY,
USA, 1997.

[25] T. Pusalti and M. Sanjay, “A discussion on IS and Software Measurement
Terminology — Flexibility as an example”, in Proc. of the International
conference on Computational Science and Its Applications, IEEE Computer
Society, Mar 2010, pp.250-254.

[26] S. Peng, L. Shen, H. Liu and F. Li, “User-oriented Measurement of Software
Flexibility”, in Proc. of the World Congress on Computer Science and
Information Engineering, IEEE Computer Society, , 2009, pp.629-634.

{271 X. Quu, Li. Tang, Z. He and J. Chen, “The development of procurement
management information System based on workflow technology”, in Proc. of
the World Congress on Computer Science and Information Engineering, Los
Angeles, CA, vol. 3, 2009, pp 470-474.

[28] A. Rashid, W. Y. C. Wang and F. B. Tan, “Information Systems Maintenance: A
key driver of Business Process Innovation”, in Proc. of the Sixteenth Americas
Conference on Information Systems, Lima Peru, Aug 2010, pp. 1-9.

[29] D. Robert and L. Devin, “Weighing the Benefits and Costs of Flexibility in
Making Software: Towards a Contingency Theory of Determinants of
Development Process Design”, Information Systems Research, vol. 20, no. 3,
pp-462-477, Sep 2009.

[30] P. Runsen, M. Host, Guidelines for conducting and reporting case study research
in software engineering, Empirical Software Engineering, vol. 14, no. 2,

pp. 131-164, 2008.

Stable Information Structure for Inherent Flexibility in Information Systems

Chapter 7 References
{31] F. Schober and J. Gebauer, “How Much to Spend on Flexibility? Determining

the Value of Information System Flexibility”, Decision Support Systems, vol. 51,
no. 3, pp. 638-647, Jun 2011.

[32] S. Truren, Improving software flexibility in a smart business network, M.S.
thesis, Faculty of Technology, Policy and Management Section Information and
communication Technology, Delft University of Technology, Netherland, 2010.

[33] W. Tellis, , “Introduction to case study”, The Qualitative Report [On-line serial],
vol. 3, no. 2, Jul 1997. (htip://www.nova.edu/ssss/OR/OR3-2/tellis | .htmD)

[34] Wikipedia, The Free Encyclopedia (Online, Mar 2012),

(http://fen.wikipedia.org/wiki/Main Page).
[35] M. Wemer, C. Loebbecke and R. Baskerville, “Moderating Effects of

Requirements Uncertainty on Flexible Software Development Techniques,” in
Proc. of the 5" International Research Workshop on IT Project Management
(IRWITPM), St. Louis, Missouri, Dec 2010, pp. 91-106.

[36] T. Wang, J. J. Pei-Hung and G. Klein,” The effects of change control and
management reviews on software flexibility and project performance”,
Information and Management, no. 45, pp. 438-443, 2008.

[37] B. Weber, M. Reichert and S. Rinderle-Ma, “Change patterns and change
support features — Enbancing flexibility in process-aware information systems,”
Data & Knowledge Engineering, vol. 66, no. 3, pp.438-466, 2008.

[38] V. Wulf, V. Pipek, M. Von, “Component-based tailorability: Enabling highly
flexible software applications”, International Journal of Human Computer
Interface, vol. 66, no. 1, pp. 1-22, Aug 2007.

[39] W. Woolfolk and B. Johnson, “Information Free Identifiers — A key to flexible
information systems” Data Base Management, Aug 2001.

(40] F. Walter, “Should Computer Scientists Experiment More?” JEEE Computer
Society, vol. 31, no. 5, pp. 32-40, May 1998.

[41] W. Woolfolk, P. Ligezinski and B. Johnson, “The Problem of the Dynamic
Organization and the Static System: Principles and Techniques for Achieving
Flexibility,” in Proc. of the 29th Annual Hawaii International Conference on
System Sciences, Wailea, H1, USA, Jan 1996, vol. 3, pp. 482-491.

[42] D. Zeng and L. Zhao, “Achieving Software Flexibility via Intelligent Workflow
Techniques™ in Proc. of the 35th Hawaii International Conference on System

Sciences, IEEE Computer Society, Jan 2002, pp. 606 — 615.

Stable Information Structure for Inherent Flexibility in Information Svstems

98

Check-list for valuating Stability of Information Structure

Annex - “A”

Checklist for Valuating Stability of Information-Structure.

7 Parameters to be Checked

Remarks ,

P 6 | Do transachonal tables allow updating the attributes

thhout kccpmg the old values as h.lStOl'lC mformatmn"

- Is any mformatmn of hierarchical nature is not
? de51gned as recursive?

10 Can the basu: association rules of business be changed
j by end-users? If the system enforces the rule e.g. one :
person/posmon Or one supervisor can be changed to !
multlple positions, supervisors etc without

Y/N

12 Are thc busmess-rules are dc51gncd as information
i structure and business rules data stored as records in !
* mformanon st.mcturc o the ﬁnc-gramed level :

14 The dcs1gn of 1nformat10n structurc dep1cts top—down
: or botiom up approach i.e. each information structure is
{___linits proper place?

. . 18 | Do jl;o_u see ény 'emJty that rsccﬁis“ to be rock and can be !
i | crushcd into more ﬁne gramcd one. N .

! 20 : Are there more “than one FKs which can be minimized |
‘ ' to one by adding table name as attribute? :

Y/N

Stable Information Structure for Inherent Flexibiliry in_f]n'formarion Systems

\.

