
Stable Information Structure for Inherent
Flexibility in Information Systems

Research Dissertation Submitted By

Islam Ali
Reg. No. 270-FBASA,ISSE/F09

Supervisor
Dr. Muhammad Wasif Nisar

Associate Professor, Department of Computer Science,
COMSATS Institute of Information Technology, Wah

Co-Supervisor
Mr. Shahbaz Ahmed Khan

Assistant Professor, Department of Computer Science &
Software Engineering, Faculty of Basic and Applied Sciences,

Intemational Islamic University, Islamabad

Department of Computer Science & Software Engineering
Faculty of Basic and Applied Sciences

International Islamic University Islamabad
20t2

M

nx!it"'li"Q

6gru"lonfloW

M9t
oot4 ^

19s

$,b*J;'
d;A" Y*d"$

DAr* -"r-"Wf,rp1,,

Final Approval

International Islamic University, Islamabad

:

Dated: 18 Oct 201 2

Final Approval

;

This is ,to certify that we have read the thesis submitted by Islam Ali,

Reg # 270-FBAS/MSSE/F09. It is our judgment that this project is of standard to warrant its

acceptance by the Intemational Islamic University, Islamabad, for the Degree of MS in

Software Engineering.

Thesis Evaluation Committee

Extertral Examiner:
Dr. Aamdr Nadeem
Associate]Professor.
Department of Computer Science,
MAJU, Express Way, Kahuta Road, Zone Y ,

Islamabad

Intern al Examiner:
Mr. Muhhmmad Usman,
Assistant Professor
Department of Computer Science

Intemational Islamic University
Islamabad

External Supervisor:
Dr. Muhammad Wasif Nisar
Associate Professor
Department of Computer Science,

COMSATS [nstitute of Information Technology
Wah 'l

I

Internal $upervisor:
Mr. Shahbaz Ahmed Khan GhaYYur
Assistant Professor

r- Department of Computer Science and Software Engineering
Intemational Islamic Universitv
Islamabad

Stable ltfonnatiott Slnrclro e for Inheren Flewbility irt Infornlqlion Syste N t .. Illll
t, _-.'

.ii

Dedication

DEDICATION

I dedicate this research project to my beloved Prophet

Hazrat Muhammad

(Sallalaho Alaehe wa Aalehi wa Sallam)

Who demonstrated the righteous path to whole mankind

and drag it out from the nastiest depths of ignorance to

the preeminent level of humanity.

StobLe lnformation Structure Jor lnherent Flexibilirr in htformation S!*stems lr

Dissertation

A Dissertation submitted to

Department of Computer Science & Software Engineering,

Faculty of Basic and Applied Sciences,

International Islamic University, Islamabad

As a partial Fulfillment of Requirements for the Award of the

Degree of

MS in Sofiware Engineering

[r

Declarotion

DECLARATION

I hereby declare that this thesis 'Stable lnformation Structure for Inherent

Flexibitity in Information Systems" neither as a whole nor as a part has been copied

out from any source. It is further declared that I have done this research with the

accompanied repon endrely on the basis of my personal efforts, under the proficient

guidance of my teachers and my friends especially my supervisor

Dr. Muhammad Wasif Nisar and Co-Supervisor Shahbaz Ahmed Khan.

If any of the system is proved to be copied out of any source or found to be

reproduction of any project from any of the trarning or educational institutions, I shall

stand by the consequences.

StabLe lnJormation Stucture for lnherent FLexibilin' in Informttion Svstems L-I

Islam Ali

ACKNOWLEDGEMENT

All praises to AJm.ighty ALLAH PAK, the most Gracious and Beneficent, Whose

copious blessings enable me to pursue and perceive higher ideals of life, Darood and

salaam for His beloved Prophet MUHAMMAD (Sdlalaho Alaehe wa Aahlehi wa

Sallam) Who demonstrated the righteous path to whole mankind and drag it out from

the nastiest depths of ignorance to the preeminent level of humanity.

I am proud to express my deep sense of obligation and special appreciation to my

reverend supervisor honorable Dr. Muhammad Wasif Nisar and co-supervisor

Shahbaz Ahmed Khan for their dexterous guidance and krnd behavior during the

project. Their encouragement, moral support and motivation helped me a lot to get

through any problem or difficulty during each step.

I am much grateful to all my respected teachers for their guidance and help

throughout my life which resulrs in letting me to reach at this stage. I am a.lso thankful

to whole administration and management team of Intemationa.l Islamic University

especially of Computer Science & Software Engineering Department for their

managerial and adminisrative suppon at every step. I would like to say thanks to my

boss Waqar Ahmed, Director IT for his cooperation and moral support he extended

during stress days I was passing through.

Furthermore I must highlight that it was mainly due to my family's moral support

during my entire academic career which enabled me to complete my work

dedicatedly. Their endless efforts, care and prayers are always around me to keep me

safe in every difficulty and help me in attaining every success. I am also thankful to

my life partner who encouraged me at those moments when I got exhausted.

Finally, I am whole heartedly than-kful to all the fellows who have helped me during

Islam Ali

achieving this degree.

Reg. # 2 ASA,ISSE/F09

Stable lnJormation Structure for lnherent Flexibilitf in Informarion Srstens

Abstract

ABSTRACT

It's a known fact that change is immortal. The dictum "change or die" insinuates that

the ability to change or adapt according to situation is the key to survival. lnformation

System (InfoSys) is certainly not an exception. Typical InfoSys are inflexible' rigid

and change-averse especially for those, emerging from the changing business

requirements. Structural changes in InfoSys can justifiably be referred to as

aftershocks, where a business-driven change triggers technical-oriented chain of

changes wh.ich in turn creates ripple-effect and possibly avalanche'effect. We propose

change-driven framework for stabilit,t of information slructure contributing to

inherent Jlexibiliry in information systerns thereby rendering software really softer

able to welcome modifications warnrJy. The objective is to render modifying InfoSys

as easy as the corresponding business systems lend itself to change. This includes how

to break through the Bruce Johnson's Limits to flexible design.

Behind the approach, Murphy's Law is in action i.e. if something can potentially

change, it will certainly change. Most of the potential changes come from the

assumptions we make while designing where requisite information is not available by

the time. Carry coordinated attack against potential technical sources of change before

it attacks our allies (end-users) and ultimately us. So it's a proactive approach to

address changes before they come out of the Pandora-box to play havoc. It's not about

how to do changes but how not to do i.e. render the lnfoSys more user-modifiable and

less developer-modifiable. It's not only shifting of modification responsibilities from

software-engineers to domain-experts but making developer's job easier doing

charges with lesser effons / dme comparatively. As a proof-of-concept, re-design and

re-implementation of FlexlnfoSys has been carried out to demonstrate the viability of

the proposed framework for inherent flexibility in lnfoSys.

The results of case study show that the proposed framework, comprising of ten pair of

enablers, provides a concrete foundation for inherent flexibility in information

systems. It contributes to avoid chain of changes (fupple and Avalanche effects)

including how to address the Bruce Johnson's Lim.its-to-Flexible Design through

conceptual inheritance in information suucrure. ln other words it extends, a bit more,

the limrts of flexible design in information systems marked by Brue Johnson.

Stable lnformation Structure Jor lnherent Flexibilio irt Information Systems

TABLE OF CONTENTS

1. rNTRODUCTION............. 19

1.i lnformation Systems "19

1.1.1 Classification of lnformation Systems............. ...'."""'21

1.1.2 Real World and Automated World Systems.....'.'23

1.2 Software Flexibility.........-..-..-.--.23

1.3 Types of Flexibility in lnformation Systems"""24

1.4 Characteristics of a Flexible Information System......--.-..-..."'24

1.5 Motivation for the Study....-..-.-25

1.6 Goals and Objectives.........'26

1.'7 Scope of the Research-...26

1.8 Problem Statement ...-..-...26

1.8.1 Chain of Changes - fupple and Avalanche Effects...............-..26

1.8.2 Bruce Johnson's Limits to Design Flexibility " 30

1.9 Research Questions.........'30

1.10 Contribution of the thesis.................30

1.ll Organization of Thesis3i

1.12 Summary...........

2. RELATEDWORK 33

Stable Informarion Struciure for lnherent FLexibilin in Infurmation Ststems

Table of Contents

3. FRAMEWORK FOR STABILITY OF INFORMATION STRUCTURE........ 't4
3.1 First Pair of Rig-Flex Enablers""45

3.1.1 RigEnabler-l (Attributed, Composed, Married Character Identifiers) 45

3.1.2 Generic Chain of Changes fugEnabler-1 Causes.......................-........-.45

3.1.3 FlexEnabler-1 (Un-anributed, Un-composed, Un-married and Auto
Generated Identifiers) ..-..-..-.-.46

3.1.4 How to Use Guidelines........-..46

3.2 Second Pair of fug-Flex Enablers. -..-..-.--..47

3.2.1. RigEnabler-2 (Half-baked Hierarchies)...... -..-.-.---.....-.41

3.2.2 Generic Chain of Changes RigEnabler-2 Causes.....................-..-.-..-..-.47

3.2.3 FlexEnabler -2 (Nth lrvel Recursive Hierarchies)48

3.2.4 How to Use Guidelines........48

3.3 Third Pair of Rig-Flex Enablers..".48

3.3.1 RigEnabler -3 (Business Rules via Code).............................48

3.3.2 Generic Chain of Changes RigEnabler-3 Causes..............'..-....49

3.3.3 FlexEnabler-3 (Business Rules via ER)-.......-..-..-...49

3.3.4 How to Use Guidelines........ .-.--.-'--..-.49

3.4 Fourth Pair of fug-Flex Enablers...........50

3.4.1 fugEnabler - 4 (Stiff-Hook ER lntegration)50

3.4.2 Generic Chain of Changes RigEnabler--4 Causes..........50

3.4.3 FlexEnabler - 4 (Flex-Chain ER Integration)50

Stable lnformation Stucture for lnherent FlexibiLin* in lnformation S1'stems

Table o! Conunts

Table of Contents

3.4.4 How to Use Guidelines51

3.5 Fifth Pair of Rig-Flex Enablers..51

3.5.1 RigEnabler-5 (Write-Over ERs)51

3.5.2 Generic Chain of Changes RigEnabler - 5 Causes51

3.5.3 FlexEnabler-5 (lVrite-History ERs)51

3.5.4 How to Use Guidelines........52

3.6 Sixth Pair of fug-Flex Enablers52

3.6.1 RigEnabler-6 (Provincial ERs).................52

3.6.2 Generic Chain of Changes fugEnabler - 6 Causes52

3.6.3 FlexEnabler-6 (Cross-Cutting ERs).................53

3.6.4 How to Use Guidelines........53

3|l Seventh Pair of Rig-Flex Enablers53

3.7.1 tugEnabler-7 (Rock ERs)53

3.7.2 Generic Chain of Changes RigEnabler-7 Causes53

3.7.3 FlexEnabler-7 (Fine-grained ERs).................54

3.7 .4 How to Use Guidelines54

3.8 Eighth Pair of Rrg-Flex Enablers54

3.8.1 RigEnabler-S (Corpse ER)......54

3.8.2 Generic Chain of Changes fugEnabler-S Causes..................................54

3.8.3 FlexEnabler-S (Breathing ERs)..................55

3.8.4 How to Use Guidelines55

3.9 Ninth Pair of fug-Flex Enablers............55

3.9. I RigEnabler-9 (Diverging Competing FKs)..55

3.9.2 Genenc Chain of Changes RigEnabler-9 Causes55

3.9.3 FlexEnabler-9 (Converging Competing FKs)..55

3.9.4 How to Use Guidelines56

3.10 Tenth Pair of Rig-Flex Enablers............56

3.10.1 RigEnabler-10 (Bruce Limit's to Flexible Design)56

3.10.2 Generic Chain of Changes RigEnabler-10 Causes56

3.10.3 RigEnabler- 10 (Conceptual Inheritance in ER).....................................56

3.10.4 How to Use Guidelines........57

3.11 Limitations of the Proposed Framework....57

3.12 Applicability of Flexibility Enablers............57

3.13 lmpact of Flexibility Enablers on Quaiity of Data.58
3.14 lmpact of Flexibility Enablers on Program CompIexity...............................59

Stable lnformation Structure for Inherent Flexibilin in lnformation Slsrcms

3.15 Summary60

4. FLEXINTOSYS - A CASE STUDY -.--'-.-.........62

4.1 What is Case Sody?...............-..-..-.62

4.2 Rationale for Selection of Case Study as a Research Methodology-...62

4.3 Main Activities of Case Study63

4.4 Change Scenarios........................U

4.5 Change-Driven ER-Oriented Rigidity Enablers and their Redress Flexibiliry
Enablers.U

4.5.1 Use Non-Attributed, Un-Married Auto-Generated Numeric Keys instead

of Attributed, Composed Character Keys.--..-...-.....--.&

4.5.2 Invest in Nth kvel Hierarchies and lrave Ha]f-baked Hierarchies66

4.5.3 L.eave the Rigid Way of Achieving Business Rules via Code for more

Flexible Business Rules via ERs... 68

4.5.4 Go for Flex Charn Instead of Stiff Hook Integration between ModulesT0

4.5.5 Opt for Write-History over Write-Over Entities. -.--.....72

4.5.6 Say Well come to Cross-Cutting and Goodbye to Provincial Entities. T4

4.5.'7 Crush Entities to Fine-grained lrvel - Not leaving it as Rock. --......-...77

4.5.8 Choose to Define Breathing over Corpse Endties............78

4.5.9 Vote for Convergent FKs instead of Divergent FK by adding TableID as

Afiribute 80

4.5. 10 Use Conceprual lnheritance When Facing Bruce Limrts+o-Flexibility 82

4.6 Summary84

5. VIABILITY OF THE PROPOSED FRAMEWORK -......."... E6

5.1 Bruce Johnson's Criteria for evaluating Rigiditymexibility of an InfoSys .86

5.2 Graphs showing comparative analysis of Rigid / Flexible Practices 87

5.2.1 Evaluating Attributed VS Non-Attributed Keys:............87

5.2.2 Evaluating Half-baked VS Recursive Nth kvel Hierarchies................87

5.2.3 Evaluating BR via Code VS BR via ER Design....................................88

5.2.4 Evaluating Stiff-Hook VS Flex-Chain Inte9ration................................88

5.2.5 Evaluating Write-Over VS Write-History ERs......................................88

5.2.6 Evaluating Provincia.l ERs VS Separation of Cross-cutting ERs89

5.2.7 EvaJuating Rock VS Fine-grained Entities..89

5.2.8 Evaluating Corpse VS Breathing Entities........................ 90

5.2.9 Evaluating Divergent VS Convergent Entities......................................90

5.2.10 Evaluating Bruce Limits to Flexible Design VS lnheritance in ERs.....90

Table of Contents

5.2.11 Overall Companson of Rigidity and Flexibility Enablers.....................91 F--rI{J'
Stable Informatrcn Structure for lnherent Fle bilin in lnformation S\stems

Tahle of Contenu

6. CONCLUSIONANDFUTUREWORK

Stable Information Structure for Inherent Flexibilin' in lnlormation S)-ste'7.s

LIST oF FIGURES

Figures Page No.

Figure 1-l: Differentiating IS from other IT-related Disciplines-.20

Figure l-1: S1-stem can be built quick or big or righr but not all the three........... 21

Figure 1-3: Pyrzrnid of Systenrs ..-.......-'.... 12

Figure l-4: Classification Hierarchv of Information S1'stems............-...22

Figure l-5: Informarion S1'stem Li1'e Cycle................'.......23

Figure 1-6: Detinine appointments and its charn of changes in rigid InfoSl's .----..... .)l
Figure l-7: Emplol'ee Categones and relevant business rules-.28

Figure l-8: Trade and Quajifications of an emplo-vee a change......-.. --...29

Figure 2-l: A Relerence Workl'lou' \4odel used b1' Xiaoping Qiu-38

Figrre 4-l: Case Methodolog-v- Uscd6i
Figure 4-2: Use of Anributed. Composed Character ke1's....-.............65

Figure 4-3: Non-Attnbuted. Un-N{anied and Auto-generated Numeric kel's..-....66

Figure 4-5: Recursive definition of Hierarchies - Organogram. Religion' Region. .. 68

Figure 4-7: Business rules via ER Design e.g. Busines ntles for lraves........70

Figure 4-10: Use of Write-Over Entities73

Figure 4-l l Use o[wrile - Histon ERs-........-.-...---71

Figure 4-.12: Rigid Structule for Condemnation Board Proceedings.75

Figure 4-13: Scparation of Crosscutting Concerns - Worktlo\r'Management........... 76

Figure 4-15: Use of Rclck Entities e.g. .{ddress as one attribute---- -.1'7

Figure.l-16: Fine-grained entitres e.g. split addless into fine-grained pieces..-.... ... 78

Figure 4- 17: Use of Corpse Entities i.e. entities witi unknou'n living status..-........ ..78

Figure -1-18: Defining Breathing Entities e.g. Appointnlcnt .-...........79

Figure 4- l9: U se of Foreign Keys - Variou s entities of Events N4anagement S1''stem 80

Figure 4-20: Use of Multiple FKs - Family Nominations for various t1'pes of
employee's Funds................80

Figr-rre 4-21 : Convergent Competing Foreign Kcl''s - Event Management S).'stem. ...8 l

Figure 4-22: Converse multiple foreign ke1''s into one by inuoducing tltble name as a

database fielcl-.......82

Figure 4-33: Bruce Johnson's Lrnr.rts to Design Flexibility - Ceiling Effect for
Employee Types..-.............82

Figure 4-25: Solving Bruce Johnson's Limits to Flexible Design via Inheritance in

ERs...................-..............................84

Stable lnformation Strlcture for lnherent Flexibiliq' in lDfornation S\stems

List of Graphs

Graphs Paee No.

Craph 5-1 : Attributed/Composed Character VS Non-Anributed. Auto-generated

LIST oF Gnapus

Numeric Keystt7
Graph 5-3: Business rules via Code VS Business rules via ERs Design.....................88
Graph 5-1: Stiff-Hook VS FIex-Chain Integration........88
Graph 5-5: Write-Over VS Write-History Entities.............89
Graph 5-6: Provincial ERs VS Separation of Cross-cutting ERs................................89
The effons consumed both in rigid and flexible enahlers while incorporating the

changes shr.rrvn in Table 4-7 is displayed in....................... -...............89
Graph 5-7: Rock Entities VS Fine-grained Entities..............-.89
Graph 5-8: Corpse VS Breathing Enrities..............,,.......90
The efforts consumed both in rigid and flexible enablers while incorporating the

changes sho'*'n in Table.4-9 is displaved in Graph 5-9...90
Graph -5-9: Divergent VS Convergent FKs...................90
Graph 5-10: Limits to Flerible Design VS lnhentance in ERs...............90
Graph 5- I l: Overall comparison of Rigid and Flexible ER Enablers9l

StabLe lnformation Structure for Inherent FLexibilii\ in lnformation S\sIems

lnt of Tabbs

LrsrorTau.Bs

Tables Pase No.

Table l-1: Change lmpact AnaJl.sis for Example - I-.,...................................27
Table l-2: Change lmpact ,{nalvsis for Example - I ...-....28
Table l-3: Change ln.rpact Analysis for Exarnple -3,...19
Table 2-l: Flexibilitl enablers to address foreseen and unforeseen changes..............34
Table 3- I : Generic Chain of Changes caused b;.- RigEnabler-l ..,............,..................46
Table 3-2: Gcncric Chain of Changcs caused h--v RigEnabler-2.........................-.........18
Table 3-3: Generic Chain of Changes caused by' RigEnabler-3....19
Table 3-4: Generic Chain of Changes caused by' RigEnablerJ..................................50
Table 3--5: Generic Chain of Changes caused b1'RigEnabler-5.......................-..........-5.1
Table 3-6: Generic Charn of Changes caused bv RigEnablcr-6..................................52
Table 3-7: Generic Chain of Changes caused b1' RigEnahler-7.........,........................53
Table -3-8: Generic Charn of Changes caused b1, RigEnabler-8..................................54
Table 3-9: Generic Chain of Changes caused bl,RigEnabler-9...................-..............55
Table 3-10: Generic Chain of Changes caused b1- RigEnablcr-10..............................56
Table 3-l l: Applicabilitl Relationship among Enablers,...58
Table 3- l2: Impact of Flexibility' Enablers on Qualit-v of Data...................................59
Table 3- li: Impact of Flexibilitl Enablers on Program Complexit.v-.60
Table.l-l: Set ofChange Scenarios - I65
Table 4-2: Set of Change Scenarios - 2-................67
Table -1-3: Set of change Scenarios - 369
Table 4-4: Set ofChange Scenarios - 471
Table 4--i: Set of Change Scenarios-5'73
Table 4-6: Set of Chiinge Scenarios - 6.....................15
Table 4-7: Set of Change Scenarios - 777
Table 4-8: Set of Change Scenarios - 8.....................78
Table.l-9: Set of Chanee Scenanos - 9.....................81
Table 4-10: Set of Change Scenarios - 10................... . .83

Stable lnformation Structure for Inherenr Flexibilia in lnformotion S,-stems

I t of Tert Boxes

Lrsr or TBxr BoxBs

Text Box Page No.

Text Box il- l: A _seneric function for auto-generation of nexr non-attributed numeric
ke1.. Usc of database provided identifier ha-s been found cven bettcr than the above
nrenlioned function.66
Text Box 4-2: A business rules provides privilege that an employee can avail 48

Ieaves uith full pay., per -vear. \ow fbrm a panicular date onward this privilege is
reduced to 40 per year........68
Text Box 4-4: lnregrarion of two l\{odules e.g. Integration of Er,ent N'lanagement and

eProfile - Probadon Termrnation Process in Event Manaeement S)'steln shou'ing posL-

elTects on eProfile.'7 |
Text Box 4--5: Generic procedure of replacing e mplovee information e.g. appointrnent
on pronrotion of an emplo-vee-.....--.--.-.---.....--.--...'7 3

Stable lnformation Strucrure for lnherent FLetibiLin in Information Sysrems

l,Jl,l ol Abbreviations

Llst or AnsREvhtroNs, AcnoNyMS AND DEFIMTIoNS

s# Abbreviation/ Acronym
/ Term

Explanation/Definition

I SCSs Set of Change Scenarios

2 InfoSys / IS hformation Systems

J fugInfoSys Rigid Information Systems

4 FlexlnfoSys Flexible lnformation Systems

5 BR Business Rules

6 tupple Effect

The problems faced or the series of conective
actions one has to take, within a module itself,
to accornmodate a requested change is

referred to as ripple effect

'7 Avalanche Effect

The problems faced or tle series of corrective
actions one has to take in allied (integrated)
modules to accommodate a requested change
is referred to as avalanche effect

8 UI User Interface

9 CoC Chain of Changes

l0 ER Entity Relationship

l1 lnformation Structure & ER These are two interchargeable terms

t2 ICT lnformation & Communication Technology

l3 eProfile Employee Prohle

t4 UC University of Cincinnati

l5 ERD Entity Relat.ionship Diagram

l6 DWH Data Warehouse

t7 DDPCS Database-Driven Product Catalog System

l8 TSAFE
Tactica.l Separation Assisted Flight
Environment

19 API Application Program lnterface

20 MMT Management Monitoring Tool

21 OWES Other WorkJlow Executive Service
)) WCAP Workflow Client Application Procedure

23 CAP Called Application Procedure

24 NADRA National Database Registration Authority

25 CNIC Computerized National Identrty Cards

26 Corpse Entity Whose living status is unknown

2'7 MIS Management lnformation System

28 FK Foreign Key

29 RWBS Rea.l World Business System

30 AWIS Automated World lnformation Svstem

3l SCAMPI
Standard CMMI Assessment Model for
Process Improvement

StabLe Information Structure for lnherent Flexibilitv in lnformation S\stems

Chapter - 1

INTRODUCTION

Stable lnformatiort Structure for lnherent Flexibilin- in lnformation Ststems [C

Chapter ll Introduction

1. INTRODUCTION

As it is clear from the title of the proposal, this research activity is about introducing

inherent flexibility in information systems by focusing on the change-driven

ER-Oriented design strategies for stability of information sEucture.

Literature acknowledges the predominance of flexibility in software whether it is

design or implementation. Plethora of design strategies e.g. structured design,

modular design, object-oriented design, software architecture, design patterns,

component-based software engineering among others are aimed at to increase

flexibility. Flexibility has therefore become a core issue in software engineering

generally and software design research particularly.

1.1 InformationSystems

Information system [16] is defrned as "the effective design, delivery, use and impact

of information (and communication) technologies in organizations and society." This

definition captures an important part of InfoSys, that is the development of IT

applications, and it recognizes that successful applications of ICT require broader

aftention than just that on the technology. The InfoSys discipline has steadily

developed from its initial 'tech-no-centric' focus to a more integrated technology,

management, organizational and social focus. But this definition does not capture the

excitement of the discipline.

We are now in a period of great transformation, as organizations change to address

their challenges or achieve their goals. It is also a period of structural transformation

of the global economy. ICT supports and enables most of these changes, and InfoSys

is the only discipline with a primary focus to study the applications of technology by

organizations and society. It is therefore pafticularly relevant during this period of

great change.

The following definition suggested by the UK Academy for Information Systems,

taken from book " lnformation Systems - The State of the Field' of Wiley Series [16],

is somewhat broader than the definition looked at previously:

Stable Information Structure for Inherent Flexibil y in lnJormation Systems

Chapter 11 Intoduction

"The study of information systems and their development is a multidisciplinary

subject and addresses the range of strategic, managerial and operational activities

involved in the gathering, processing, storing, distributing and use of information, and

its associated technologies, in society and organizations". The above defrnition .is,

however, somewhat passive about lnfoSys as it does not give a sense of the creativity

and innovative effon that is part of the potential contribution of InfoSys.

On the technoiogy side of information systems, it is differentiated from computer and

IT disciplines by its focus. As illustrated graphically in the Figure t.1 below, compared

with two other IT-related disciplines, computer science and computer systems

engineering, InfoSys emphasizes the applications of technology rather than a focus on

fundamental technologies and theories [6]. It focuses more on interactions

between

Figure l-l: Differentiating IS from other lT-related Disciplines

people and organizations (the 'soft' issues) and technology rather than on the

technologies (the 'hard' issues) themselves. It should be noted that figure represent

the focus of the different disciplines, not the quantum of work conducted in or

contributed by any of the disciplines.

Stable Information Structure for Inherent FlexibiliO in Inform^ation S\]stems

Chtpbr #I I ntroduction

"Systems can be built quickly or big or right - but not all thee together. They are

bound to be sma.ll or wrong, if we build them quickJy. Building big systems will

definitely be either late or wrong and for really big systems; they are guaranteed to be

late and wrong" [12]. This fact is illustrated in Figure /-2 below.

Figure l-2: System can be built quick or big or right but nor all the rhree

As per Bruce Johnson [2], Successful information system is not the one that usually

generate few, if any modification requesm but the one that is used more, generally

generates continuous demand for modification and having the ability to keep up with

demands for modification. This is because as the users get more used to tle software,

they try to get more out of it by experimenting witl new scenarios not included in the

scope specified in the first place.

l.l.l Classification of Information Systems

lnformation systems used to be classified in 1980s as pyramid of sysrems resembling

organrzational hierarchy, stafling with transaction processing systems at dre lower end

of the pyramid, moving up management InfoSys & decision support systems are next

levels respectively and executive information systems at the pinnacle as

depicted in Figure.l-3.

Stable Information Structure lor Inherent Flexibilin in lnfonnation S\stems

Chapter #1 I*roduction

Executive lnfomation System

(Executives)

Decision Suppon System

(Scnior Managers)

Managemenr Information System

(Middle Managers)

Tr-aDMclion Processing System

(Workers)

Figure l-3: Pyamid of Systems

However, lnformation systems can be classified into the following classes as depicted
in diagram Figure 1-4 below.

Figure 1-4: Classihcation Hierarchy of Information Systems

Some of other information systems are:

. Expert Systems

o End-User Computing Systems

. Integrated Information Systems

r Krowledge Management Systems

. Business lnformation Systems

. Strategic lnformation Systems

StabLe Information Structure for lnherent FlexibiLity in lnform.otion Systems

Chaptcr #l I ntroducti.on

1.1.2 Real World and Automated World Systems

In order to clearly differentiate, the business system is termed as Real World Systems

whereas when the same is computerized, it is known as Automated World System. In

fact, Real World Business Systems are changed and Automated World Information

Systems are modified 1121, 114). lnformation system changes/modifications stem

from two main sources business and technology, hence refened to as business-&iven

and technology-oriented changes. When InfoSys faces (structural) changes, it is

flexibility and modifiability that keep things in order. Bruce Johnson t 121, t23l

defines flexibiliry as: "Flexibility in system means the ability to accommodate a

change in business requirement with a minimum of modifications to system

components". Delivering functionality and focusing on potential change i.e. flexibility

are competing factors. One is visible whereas the other is hidden and intangible.

Owing to self-imposed time pressure and other factors the later one is ignored for

which all involved have to pay later on in maintenance phase. Business people are not

supposed to give such requirements in advanced. Software designers and developers

should take on this responsibility to foresee such potential possibilities in advance to

avoid manifold effons as well as downtime of the system.

Generically, information system development cycle has four steps as illustated in the

Figure 1-5 given below. Over the entire life cycle of lnfosys. maintenance is more

important than development and within maintenance, resynchronization is

overwhelmrng than debugging" I l2].

Figure I -5: Information System Life Cycle

1.2 SoftwareFlexibility

The term flexibility is deemed as vague because of its polymorphous nature and has

been found with many different connotations t9l ard [11]. Nanre of the problem ald

setup to be investigated are among factors that affects meaning of flexibility [9].

It can be viewed as:

Stable Infonnation Structure for lnherent Flexibili4' in lnlormation Slstems

Design ;

Chapler #1 Introduction

. Inherent property of an entity e.g. IS, Organization etc.

. Response capability to foreseen or unforeseen changes.

. Temporal aspect - How quickly the response should be for an entity to be

labelled as "Flexible".

. Capacity to adapt - Adaptive Capabilty

Bruce Johrrson [12], [41] defines flexibiliy as: "Flexibility in system means the

ability to accommodate a change in business requirement with a minimum of

modifications to system components" . Delivering functionality vis-e-vis focusing

on potential change i.e. flexibility are two competing factors. One is visible

whereas the other is hjdden and intangible. Owing to self-imposed time

pressure and other factors the Iater one is ignored for which all involved have

to pay later on in maintenance phase

1.3 Types of Flexibility in Information Systems

Two basic approaches [12] have been taken to address flexibility in information

systems. Boogard characterizes these as active flexibility and passive flexibility.

o Active flexibility is basically fast modifications. It also includes automadc

program modification. Improving modihcation process is the center of attention in

Active flexibility.

o Passive flexibility is built-in and inherent. The InfoSys is designed to require

inherently less modifications. Contrarily, Inherent flexibility focuses on the system

itself.

1,4 Characteristics of a Flexible Information System

Bruce Johnson's group [41] and [14] suggested a set of characteristics for a flexible

information system. A flexile information system is integrated with other relevant

modules in a bigger perspective and nol functioning in isolation. It shares common

information structure with a super system or community of InfoSys. lt has stable

structure. The information structure is presented in a manner to provide maximum

flexibility model of things, their attributes and relationships should support present as

well as requirements of time-to-come. Those characteristics of a business system that

are subject to change are embodied in InfoSys in a manner that change in any of it

Stable Information Structure for Inherent Flexibili^' in lnformttion S1'stems

Chapter #l Inhoduction

does not warrant modification in data or procedure. The system identifiers represent

no system attribute and are meaningless. All hierarchical enriries e.g. bill-of-materiais,

organization structure and chart-of-accounts be recursively structured. lt is open to

extensions i.e. new entities / processing feature can be added without changing the

old ones. It is regulalablc initially incorporaring and then maintaining the business

rules / policies through its information structure and able to change system's behavior

through changing regulatory values by user insread of modifying the code by

developers. lt has defined threshoW to maintenance limils i.e. software designers are

sure of when code maintenance and changes to information structures will be

necessary. A checklist, based on these charactenstics, has been developed for flexible

information systems placed as Annex 'A'.

Banking upon the hard experiences with rigid systems, we focus on stability of

information structure via des.ign strategies to introduce inherent flexibility and to

prevent the costly chain of changes and hence its ripple & avalanche effects in

InfoSys. Furthermore, we seek to break the ceiling effect being observed for so long.

1.5 Motivation for the Study

Following motivators are active behind this research study.

. The essence of adaptability to charge, chiefly in lnfoSys, lies in design of

information structure. Usually if the requirements change, the information

structure needs to be changed as well. Therefore the prime source of inflexibility

in InfoSys is the unstable information structure. So attacking core seems to be

logical answer to the problem.

o A sensibly designed stable information structure keeping flexibility in view

provides a concrete foundation for all other kind of flexibilities. On the other

hard, one cannot exploit and reap the full benefits of any flexibilitytechnique if
stable-information-structure is not in place. It is worth mentioning here that

modiircation in information structure [14] that can ruin a raditional Infosys can

similarly destabilize an object-oriented system.

. Last but not least, software flexibility help minimize the maintenance cost in

terms of time, effons as well instrumental in hard times.

Stable Information Structure for Inherent Flexibilin. in Information Systems

Chtpter #1 Introductbn

1.6 Goals and Objectives

The mentionable objectives set-up for the FlexlnfoSys research project, are as

follows: -

o Creating change-absorbing capability in ISs to obviate the ongoing adaptive-

maintenance - a biack hole engulfing precious resources that in tum waste away

the development-capacity sharply.

o Forestall the formation of costly chain of changes, resulting into ripple effect

triggered by a business-driven change in requirements, making use of "Change-

Driven and Structure-Oriented" design strategies rather than indulging i-n

expensive corrective actions.

o Build capacity for change by rendering the lnfoSys more user-modifiable and

less developer-modifiable and thus rescuing development capacity for more

creative undertakings.

o Enabling re-synchronization of the automated world lnfoSys with its counterpart

real-world business system more effective and efficient i.e. to respond gracefully

to changes more easily ard with fewer resources.

o Keeping the maintenance-backlog in the manageable threshold.

1.7 Scope of the Research

Generically scope of the research is limited to software designing for changing

business requirements and specifically to the following:

o Change-tolerant ER-Oriented design strategies for stability of information

structure [1].

o Breakirg the Bruce's Limits-to-Design Flexibiliry tl2l, 1231.

1.8 Problem Statement

The two-fold problem elucidated, with examples from a case study carried out for the
purpose, is as under:

1.8.1 Chain of Changes - Ripple and Avalanche Effects

In one of the information systems renamed as fuglnfoSys, a table for "Designation"

was defined. On arising need, appointments were entered by the user in the same table

and being used. This gave a way for designations and appointments to jumble up.

Stable lnformation Stucture for Inherent Flexibilif in lnformation Ststems

Action on user request to address this problem leads to charge the information-

structure as below.

Example 1: Changes in Designations

In old rigid InfoSys, a table for "Designation" was defined. On arising need,

appohtments were entered by the user in the same table as shown in Figure 1-6 and its

relevant chain of changes is depicted in Table 1-1.

with the of old code

i AII integrated systems ,naking use of designations/ apporntrnents were affected e.g. User
i Management System and Worldlow System and their rclevant developer had to take series
i of corrective actions

Examp.le 2: The definition of employee-categories

Appointment
OldCode
ValidFrom
ValidUpto
AuthoritylD
AppointSequence
ActiveStatus
Remarks

DesciplinelD
AppointmentlD
ValidFrom
ValidUpto
A ct ive S tatus
Rem arks

EmpChangelD
EmplD
AppointFieldlD
DateFrom
DateTo
ActiveStatus
Remarks

Figure 1-6: Defining appointmenr and irs chain of changes in rigid InfoSys

Table 1-1: Change ImpactAnalysis for Example - 1

StabLe Information Structure for Inherent Flexibilin- in Informotion Systems

Create)
I
4 Create PiSAppoinfinent table as appoints of an employee can be more over the

of time.

for

Choptet #1 Introd.Lction

The defrn.ition of employee-caregories was hard coded in a function using if-then-else

structure. But when more calculations/repons were demanded regarding the

categories e.g. display category II employees, two problems arose. First, one could

not have a history of an employee category. Secondly, the function is called hundreds

of thousand times and brings down the performance beyond affordable level. The

relevant chain of changes is illustrated in Table t-2. The flexible design for the

purpose is illustrated in Figure /-7 given below.

Figure l-7: Employee Categories and relevant business rules

Table 1-2: Change Impact Analysis for Example - 2

€F&OFILE_EMP_INFO.1+S_:iqlaEGORY_a'r.rLEs

FKT

Empld
PersNum
DesiglD
PayScaleID
TradeID
DepdD
Appointm entstattlsID
AvailDelailID
ProbationSlatus
JoiningDate
EmpTypelD
CategoryID
DateFrom
DateTo
ActiveSIatus

EmpTlpe
AppoinmrentstaruslD
Redrementsrarus
AgeFrom
AgeTo
CategoryID
ActiveStatus
Remarks

gElf9g&!99-rr]9!-q=E popylr-1.diI9.Iisc"l9s".y$&s.
_

Process an employee to determine hiVher category by matching the employees data
: and

Stable Information Struoure for Inherent Flexibili** in lnJormtttion Systems

r-t
'j-

*

Chapter #1 I ntroduction

Example 3: Emplovee Courses

Making assumptions is the root cause of potentia.l changes. Here in this example, it

was assumed that Trade can provide the possible values for quaiification field and

was linked with transactional course table. l,ater on it transpired that it is not tle case

ard results into the following ripple effect. This is illustrated in Figure /-S. Its ripple

and avalanche effects are tabulated in Table 1-3.

Figure 1-8: Trade and Qualifications ofan employee a change

Table 1-3: Change Impact Analysis for Example -3

with the old IDs.

Update the PiS_COURSE.FieIdID values by relevalt

.r!*@3icqfisE.:

EmpID
EmplnfolD
CourseID
DaleFrom
DaleTo
InstirurelD
Divtson
SponsoredB!
TotMa*s
ObtainedMaks
Position

QualCourselD
Fi.ldII)
Compleu onsEtus
CeflificateNo
IssueDare
Resuh

Tradecode
TradcNane
Sequence
TradeType
Paran(Trade
Au$onB'
CadreID
ValidFrotn
ValidUpto
Livingstar6
Remarks

EmPID
EmplnfolD
CoufielD
Datelrom
DateTo
InsritulelD
Divrson
SponsoredB]
ToMarks
ObtainedMarks
Positron

Quel CourseID
FicldlD
Compl ehonStatus
CcnificateNo
lssueDarc
Result

QualFieldName
Sequenc€

QualFieldType
DateFrom
Dateupro
LivinBStarus
Remarks

, Transfer the already existing trades in HiSTRADE table into HiS-QUAL-FIELD table

i--,.qiq-au3lj
Ls,j{i*'..<!.
i6 ,Do3&4for

values.

on transactional tables as well.

All integrated systems making use of Trade as qualification/course freld were affected e.g.
Mgq"lSjlgqgo IgL""*t a.".top.. Ua to t t" gyg actron!: _,_,

Furthermore, change-resistant information-structure does not allow breaking this

chain once formed and proves more stubbom & costly. It's because you can bu.ild a

new building but can't modify the past. Secondly this chain viciously erodes the

development capacity as precious resources are drowned in fire-fighting maintenance-

backlog. The challenge is to prevent this chain-formation process instead of fighting

Stable Information Structure for Inherent FLexibil y in lnformation Ststems

:2

against its resulting ripplc and avalanche effects. Designing stable information

structure, enabling flexibility in IS, will help render the adaptive maintenance more

cost-effective.

1.8.2 Bruce Johnson's Limits to Design Fleibility

Bruce Johnson ll2), l23l highlights that rhere is limits-to-flexible design. For

exampie, in a human resource system, there may be two ty,pes of employees hourly

and salaried. Certarn information would be recorded for each t)pe. lrt us say that a

new t)pe, contractor, was introduced. Simply adding a new value to the list of

employee tlpes does not work. It is likely rhar new field(s) specific ro contractors

would need to be added. Most of the emerging changes necessitates information

structure and programs to be modified. This is termed as Bruce Johnson's limits-to-

flexible-design. This is diagrammatically depicted in 4.5.10. So we have ro:

o Prevent/avoid aforementioned chain-formation process instead of fighting against its

resulting ripple and avalanche effects.

o Addressing Bruce's Limits+o-Flexible-Desrgrr.

1.9 Research Questions

This work include delving into and digging our the following:

o What are the ER-Oriented Rigidity Enablers responsible for fostering rigidity in

InfoSys?

o How to avoid the chain ofchanges (ripple & Avalanche effects) caused by rigidity

enablers by making use of ER-Oriented flexibility enablers?

. How to break the limits+o-flexible design (ceiling-effect) marked by Bruce

Johnson, while dealing with inherent flexibility in InfoSys?

1.10 Contribution of the thesis

The contributions of the thesis are given briefly as follows:

. Brought the ER Oriented rigidity / flexibility enablers inro a coherent

framework for stability of information structure.

o Figured out generic chain of changes each rigidity enabler causes.

. Extended the limits of inherent flexibiliry by adding 8s, 96 and 10d pair of

flexibility enablers in the proposed framework including devising FlexEnab-10

Stable lnformotion Structure for lnherent Flexibilia' in Information Slstems

Chapter#l Inboduction

Chapler #l Inlroduction

to address Ceiling Effect (RigEnab-l0) marked by Bruce Johnson as limits to

design flexibility.

Defined "How to Use Guidelines" for each flexibility enabler.

1.11 Organization of Thesis

Th.is thesis is organized as per the guidelines of institution. lntroduction provides

definition of lnfoSys, its types, software flexibility. Introduction concludes with

characteristics of flexible infosys. A problem statement, to be addressed, is elucidated

with examples. Literature review throws light on vanous approaches adopted by

different authors, critical summary of the publications of other researcher, who

worked in the same domain. A framework has been proposed for stability of

information stucture to infuse flexibility in information systems subsequently. A case

study "FlexlnfoSys" conducted is narrated. The viability of the framework is

demonstrated based on criteria set out and change scenarios provided in case study.

The conclusion drawn, lessons learned and potential future work is presented at the

end.

1.12 Summary

ln this introductory chapter, information system is defined. Information system can be

developed big or right or quick but not all the three simultaneously. Increasing

number of development professional is not the answer. The bigger the team, the more

coordination and monitoring overhead get involved. Classification hierarchy of

InfoSys is depicted graph.ically. The difference between the "Real World" and

"Automated World System" is elucidated. lnformation system lifecycle is sketched

with the help of a diagram. Flexibility is defined briefly along with its basic type.

Bruce Johnson's characteristics of a flexible information system are numerated

subsequently. Motivation, goals and objective ard scope of the study is narrated

respectively. The two-fold problem is elucidated with the examples from case study

carried out for the purpose. Research questions and contribution of the study

presented. The chapter concludes with elaboration of thesis organization.

StabLe lnformation Structure for lnherent Flexibilin' in hformorion Svtems E

Chapter - 2

RELATED WORK

Stable Information Structure for Inherent Flexibilit in Information Systems

2. RELATED WORK

In today's ruthless and cut-throat competition and changing business environments,

requirements never remain unchanged. Managing this change in requirements poses a

real chal.lenge.

Unfortunately, it transpires from closely-related lirerature review that research

devoted to this panicular issue is rare and insufficient. There is a pressing need to

look into it in concrete and comprehensive way. ln the area of software flexibiliry, my

co-authored paper [15], elaborating and comparing deployment strategies to figure out

the optimal one for a re-engineered flexible InfoSys in conrext of legacy system is

published in research joumal of applied sciences, engineering and technology. The

releyant research work camed out so fal is being highlighted here in chronological

order and organized as abstract, contribution, methodology used as well as limitations.

2.1 Laura Jacome's Approach (2011)

2.1.1 Abstract

Laura Jacome [i1] explores the potential flexibility in the use of information

technology. l:ura ried to reconcile varying standpoints of flexibility by presenting a

flexibility model for information systems after in-deprh analysis of those standpoints

and definitions of flexibility. The model focuses only eficient versatiliO,utd robust

responsiveness accommodating foreseen and unforeseen changes respectively. The

author fufiher proposes flexibility enablers for both types of flexibiliry. However

Laura evaluates the viability of robust responsiveness flexibility only by conducting a

case study on IS meant for competitive industry to accommodate unforeseen changes.

2.1.2 Contribution

[,ara Jacome's and co-authors proposed following twenty one flexibility enablers to

accommodate foreseen and unforeseen changes as tabulated in Table 2-1.

Stable lnformation Structure for Inherent Flexibilin in lnlormation Systems

Cfupar #2 Related Work

Chaptcr #2 ReLaled Work

able 2- I : Flexibility enablers to address foreseen and unforese€n

Type of
FlexibiIty

Business Proess Information Technologr Data

!rrytri:gtgr
......]...:1'1.]:.]-':...'.:.

\

2. Deep Knowledge 2. Indepth embedded
knowledge on selected
feattrre

2. Expansive data
Dictionary

F.OEGIffi ecu

SE
:::...

-3. ra{ell rDteArated seua rc
moas fee[es

4. Good 4. Application

.i:j..:R
'::r--. .r1. r
ludt --:- :

. L . Meta krirurle<tge. -. I. Modular-ityanong
.'in&tsty l&el.standards

2. Loose Coupling 2. Industry level
standardized process and
content interfaces

2. Inter-orgalizational
structured data

3, Decor@!: 3. Echdvelylpeedy ,

. fute8raD@d:rcv/-- .

' :software.mdlide :' .: ' '

3: lnih*jlavel.data
. '=anitiidization

4. Technology and
then Suategy

2.1.3 Methodology Used

As elucidated, the presented model has two major parts, flexibiiity enablers for

accommodating foreseen and flexibility enablers for addressing unforeseen changes.

A case study was carried out on a data warehouse information system to exarnine the

later pan i.e. flexibility enablers for unforeseen changes. The study was conducted in

a telecom industry of Latin American. As DWH of the firm served decision makers,

the changes were supposed to respond swiftly. The changes were not only limited to

interfaces, databases, DWH services, business rules, regulations but similar

information available in the system. Because of its nature, the changes were not

simply predictable well before, hence, the data warehouse software was supposed to

be capable of accornmodating these unforeseen changes in a robust manner.

2.1.4 Limitations

The study focus is quite broad focusing on two rypes of changes i.e. foreseen and

unforeseen changes. Though highlighting some of the relevant flexibility enablers

such as well-integrated structures, application parameterization and data scalabil.ity

but not delved deeply on how to provide flexible ER sructures. Furthermore, it's not

addressing the Bruce's limits to design flexibility. Encircled is the focus of the

research.

Stable Information Structure for lnherent Fleribil)^ in Information Systems E

,, ,'

2.2.1

Asma Alkalbani and Kinh Nguyen Approach (2010)

Abstract

Asma Alkalbani and Kinh Nguyen Il] present some techniques to implant the bu.ilt-in

flexibility in information system. The real challenge is not to meet the demanded

requirements but to accommodate a handful of potential ones in the time to come. The

root cause behind the rigidity lies in setting traditional objective of system design i.e.

functional accuracy only. Sacrificing long term objectives i.e. flexibility and

maintainability for the shon term objectives i.e. current requirements, result into

fragile information systems. System's flexibility does not come for free: it takes

deliberate effort to enable system capable of accommodating potendal changes. The

essence of adaptability to change lies in information sysrem data structure. Usually if
the requirements change, the data structure design needs to be changed as well.

Therefore, the source of problems lies on data structure design.

2.2.2 Contribution

Asma Alkalbani and Kinlr Nguyen studied the problem of inflexible information

systems carefully to clarify:

o What exactly is meant by inflex.ibility, and

o To what extent can inflexibility be avoided, and how.

They identified some of the main sources Il] of the problem that lead to inflexibility

in information systems: These are weaknesses in:

. Designing identifiers

o Designing entities

o Designrelat.ionships

o Business rules suppon

Secondly, they carried out a comprehensive review of past research work, especia y

researches that try to deal with the problem by designing information structure with

built-in flexibiliry. They examined in derail the existing flexible information syslem

design approach by Bruce, Walrer, Robert and Cindy (Bruce Johnson's Group) and

suggested a flexible design solution for the product line of producr Cata.logue that

requires mult.i-language support.

StabLe lnformation Structure for lnherent Flexibilin in lnformotion Systems
l=-t''' I

Chtptet #2 Rcbted rtVork

-

Chapter #2 Relntcd llork

Finally, they presented a technique to further enhance the flexibiliry. The technique

allows the user to enter a relationship type by entering some appropriate data. To

define a new relationship rype, one needs to create two tables; one with attributes

(Relation-ID, Relation_Degree) and another with attributes (Relation_ID, Role,

Entiry_Type, Min_Bound, Max_Bound). To store the relationship instance, create a

third table with three auributes (Rlation_Instance_ID, Relation_ID, Entiry_ID). This

technique, one can observe, is the extension of the technique to design generic

structure of an organization capable of absorbing changes to its organogram.

2.2.3 Methodology Used

The Case Study was carried out to validate the proposed techniques. A flexible

Product Catalog Database known as Database-Driven Product Catalog System

(DDPCS) was designed using the proposed technique to provide multilingual support.

2.2.4 Linttations of the approach

The following limitations were observed in his approach.

o Sources/mistakes identified are generic & limited

. Not addressing the Bruce Johnson's Limits+o-Flexibility

o No framework for InfoSys flexibility

2.3 Christopher Ackermann, Mikael Lindall & Greg Dennis

Approach (2009)

2.3.1 Abstract

The objective of the software maintenance is to modify it without harming its

integiry. Structures that let you do easy and quick modifications are referred to as

flexible. Contrarily, rigidiry thwarts an effon to synchronize a system to modified

requirements or extensions. Christopher Ackermann and co-authors [2] studied

architecture of such rigid system inherited from another party. They brought well-

known principles of design into play to figure out what to change, improving

flexibility, in order to accomplish planned extensions. They shared the lessons leamed

about flexibility issues experienced along with how to cope with the issues by

Stable lnformation Structule Jor Inherent Flexibilin in Information Systems

Chzptet #2 Related t)lork

redesign and reimplementation. The srudy shows that the same well-established

design principles are equally effective to redesign software.

2.3.2 Contribution

Basic & well-established design concepts can be used to guide the design and re-

design of software. The detailed description of the changes and reasoning based on

basic design principles can be useful when applying redesign to other software

systems lacking flexibiliry. The modifications can also serve as examples of how to

prepare software systems for adopt.ion of future changes.

2.3.3 Methodology Used

In this paper, the authors descr.ibe how they analyzed a working software prototype

referred to as "Tactical Separation Assisted Flight Environment (TSAFE)" wtuch was

used as a basis for a software test bed. The rigid system was analyzed with respect to

conceptual view, structural view and progmm flow. Some problems were found to be

hurdles in the way of implementing proposed changes. The TSAFE-I was redesigned

and re-implemented named as TSAFE-tr. The specifications for which was carried out

by NASA AMES Research Center where as the development was accomplished by

Greg Dennis at MIT. It was a main component of a bigger Automated Airspace

Computing system aimed at shifting load from person to computers. The prototype

ensures that flights adhere to flight plans. Moreover, predicting "To be trajectories" as

well as displaying output on a map as its functions. The two prototypes though were

different strucrurally but enjoyed same behavior and matching graphical user

interface.

2.3.4 Limita;tions of the approach

o Not addressing the Limits-to-Flexibility in InfoSys

. No framework for InfoSys flexibility

Stable Information Structure for Inherent Flexibili|, in Information Systems IE

Chapter #2 Re/aled Work

2.4 Xaoping Qiu, Li Tan and Jianbin Chen Approach (200E)

2.4.1 Abstract

Xiaoping Qiu, Li Tan and Jianbin Chen [27] used workflow technology to render the

procurement process flexible, enabling today's enterprise to cope with its rapid

changes in requirements. A stable data structure, supporting flexible workflow based

on reference workflow model, was presented. ln order to testify the fact, the author

executed an experiment, that workflow technology can unequivocally be used as

flexibility enabler in infosys.

2.4.2 Contribution

The author proposed a flexible information structure for the workflow reference

model as depicted in Figure 2-t. Experiment was carried out to validate the viability of

advanced technical idea (stable information structure) for worMow. The workflow

was used to render the procurement process flexible enabling it to accommodate

emerging process changes in a today's enterprise. When the logic of application and

worHlow was separated. it allowed user to simply modify a process model rather thaa

to rework tle whole system.

Figure 2-l: A Reference Workflow Model used by Xiaoping Qiu

A stable data structure has been proposed for the reference workflow model illustrated
above.
o Process definition

PD (NoID, Name, Description, Version, CreatedTime, ModifiedTime, ParentNo,

ValidFrom, Va.lidTo, StanUpTime, CancelTime,ExceprionalTime)

. Activiry definition

Stable lnformation Structure for lnherent Flexibilin in lnJormation S...stems

AD (ProcID, NoID, Name, Description, Type, MaxTime, MinTime, Join, Split,

MaxWait, ValidFlag)

o The activities and roles

AR (ProcCode, ActCode, RoleCode, Description)

o The activ t^ and leorWow data

AW (ProcCode, ActCode, DataCode, Name, Description, TableName,

FieldName, Type, kngth, ValidRelation, DefaultValue)

o The Activit) and Application

AP @rocCode, ActCode, AppID, Name, Type, Description, Path)

. The activity and transition information

AT(ProcCode, Actcodel,Actcode2, InforID, Name, Description, Ifstarement,

hoP)

2.4.3 Methodology Used

Two experiments were carried out. First experiment was carried out for workflow

relevant data structure in coordination with a series of workflow-oriented applications

duly controlled by workflow engine. The results received were as expected. The

worldlow engine, supponed by workflow relevant data structures, allocates the tasks

automatically. User, acting as different role, can assume duty of varying narure on

different times. The notions that appropriate user assume a suitable role and can

retrieve the relevant tasks any point in time depends largely on how exactly the

process logic works.

Second experiment was conducted to fine-tune the procurement process making use

of workJlow technology. Two procurement processes having varying sequence of

activities were taken. It was assumed that activities in the both the processes have the

same operation requirements. The successful demonstration implies that applications

can be reused.

2.4.4 Limitanons of the approach

Although the author has provided a flexible information structure for workflow

oriented procurement information system and is good contribution of its own kind,

but it hasn't addressed the limrts to flexible design marked by Bruce Johnson.

Stable Infomation Structure for lnherenl Fleribili6' in Informo.tion Ststems

Cfupler #2 Rebted Work

Chapler *2 Related r ork

2.5 Bruce Johnson's Group Approach (2N2,,2005)

2.5.1 Abstract

An initial set of flexibiliry characteristics [41] were proposed by this group. They

worked on [39] information free identifiers in 2001 and consider it a key to flexible

information systems but only talk of making the identifier free of meaning. ln fact,

keys should be auto-generated, unmarried and numeric one. The aforementioned

authors also worked on Generic Entity Clouds [13] in 2001. They claim that GEC

[13] is a stable information structure for flexible computer systems. Stable

information structure lays down the core ard most critical pan of the flexible

information system. Typical information systems a-re inflexible, not easily

accommodating changes in business requirements. As per Bruce [23], "the ideal

system would be one in which changes in system behavior result entirely from

business staff modifying data values rather than from IT staff modifying file

definitions or program code. In those cases requinng coding changes, they are

restricted to local modifications that do not result in a chain of reaction of

compensating modifi cations".

In 2005, Bruce Johnson's group came up with a book on "Flexible Software Design -
System Development for Changing Requirements" published by Auerbach

Publications I l2]. This book includes the author's new as well as old research work.

2.5.2 Contribution

Bruce Johnson's group suggested specific steps that developers can take to achieve

system flexibility. Guidelines suggested are as under:

. Conceptualize the system as a whole dynamic entity, not as a set of connected

pieces.

o Define and enforce consistent design standards for both technical requirements

ard the user interface.

. Separate tle user interface, business rules, and data (n-tiered architecture)

o Identify logical data entities and entity ty'pes, and maintain them as individual

objects.

o Eliminate meaning from record keys

StabLe lnformation Structure Jor lnherent Flexibilin. h lnformation S,-stems E

Chapter #2 Related \lork

Store business rules as data,

Code reusable logic in callable routines.

Develop genera.l purpose, reusable business processes whenever possible.

He furthermore examined the impact of flexible design on business and technical

staff. The benefits ach.ieved through the case study by following principle of flexible

design were increased business control over system behavior, reuse of system solution

and enabling business people to manage change in requirements without or litrle

involvement of IT people.

2.5.3 Methodology Used

A case study was conducted in the university of Cincinnati (UC) needing to replace its

old rigid SIS (Student Information System) comprising of un-integrated modules

being used by specific business functions for specific processes. The system was

redesigned keeping principles of flexibility in view. UniverSIS was implemented. As

expected, flexible design of UniverSIS ler enhancements to be accommodated in the

days to come entirely by business people or with minimum help from development

experts.

2.5.4 Littttations of the approach

This work, though uncovers many of the relevant issues, is silent about the flexible

information-structure support for InfoSys integration, workflow and l.ife statusftristory

of an entity etc. It also highlights that there is limrts-to-flexible design explained in

4.5.10

2.6 Conclusion of Literature Review

It has been observed, after an extensive survey and contemporary literature review,

that although different effons have been made to render information system flexible

by making information structures more stable and change-absorbent. Some offered

new techniques to make information structure more dynarnic and some focused on a

particular aspect like dynamic information-structure support for flexible workflow.

Bruce Johnson earmarked the limits to (information-structure oriented) flexible design

Stable lnformation Structure for lnherent Flexibilin in lryformotion S,-stems

a

a

a

Chapar #2 Rebtcd t ork

and no one has tried to break this ceiling effect. As, today, most of the information

systems are developed in relational databases, there is a pressing need to overcome

this ceiling effect and maximrze the area under the curve of information system

flexibiliry.

2.7 Summary

Literature review throws light on the contemporary work about the topic and provides

a sort of context to the thesis work. A tota.l of more than seventy research papers were

downloaded from various digital research libraries, among which about fony have

been referred in the thesis. The mote closely related

work [1],[2],[l 1],t121,t141,t231,t271 and t4llt40l has been thrown light on -

highlighting the author's contribution, methodology used and limitations in the

context of the proposed framework. It may be highlighted that references are

alphabetically ordered by first character of the author's second name. The chapter is

concluded with the pressing need for the proposed work.

StabLe Information Structure for Inherent FLexibiLity in lnfoftnation S\stems

Chapter - 3

FRAMEWORK
For

STABILITY
OF

INFORMATION
STRUCTURE

StabLe lnformation Structure for lnherent Flexibilin in lnformation Ststems trI

Ch4pter # 3 proposed. Fmmework

3. FRAMEWORK FOR STABILITY OF INFORMATION

STRUCTURE

In order to devise proposed framework, like CMMI, architecture of the framework

illustrated in Figure 3-l was established in first place.

Figure 3-1: Architecture of the Proposed Framework

Based on the literature review and experience, a framework for stability of

information structure is presented in Figure 3-2 below:

Figure 3-2: Framerrork for Snbility of Infomration Suucture

. FlerEnabler-3 t l!v6t itr BuliD6 RulG vi. ERs
L..:-..-:_.---.-.........

FlexEnabler6 ' S.y r+.hob. ro Cro3s<!ni!! ERs

Crurh Eiiiti6 ro rirc-lnircd Irvcl

\irrc lirr (oDr€rEcEr Compcring FKs

(rll Con.elltrrl lnh.rn.r.. [Ls

Stable lnformation Stucture for lnherent Flexibilirl* in lnformation Slstems Itr

lnformation System's lnherent Flexibility

Key
Rigidity Areas

Key
Flexibility Areas

Flcxibility Enablers Rigidity Enablers

Flexibility Activities
Itlow ro{rlr 6urdeiLnes)

Rigidity Activities
iRionle I Avilon.hc Efie.tsl

Chopt2r # 3 Proposed Framewo*

The framework adheres to this architecture illustrated in Figure 3-l systemically. The

framework comprises of ten pairs of rigidity / flexibility enabling practices and there

is one-to-one relationship between them. Rig.idity enabling practices are krown as

Rifuiq Ernblers lead you to rigid InfoSys whereas flexibility enabling practices as

Fleribilill Enabkrs that guide you to flexible lnfoSys.

lRigEnablers = fugid lnformation Structure => Fragile Information Sysrem.......(l)

EFlexEnablers = Flex.ible Information Structure=>Flexible Information System.(2)

The provided rigid and flexible enablers resemble the parrems and anti-patterns.

Avoiding the rigid one or following the flexible once will lead you to stable

information structure and ultimately to flexible information systems. If for any reason

someone needs a fragile / rigid information system, the Rigid ERs is the right rrack to

follow.

It also suggests when to use which flexible enabler. ln case more than one rigidity

enablers are involved, as many relevart flexibility enablers will apply. The framework

can equally be used for both engineering as well as re-engineering information system

projects. The framework is extensible as and when more rigid and their redress

flexible enablers are identified.

3.1 First Pair of Rig-Flex Enablers

3.1.1 RigEnabler-l (Attributed, Composed, Married Character ldentifiers)

Using attribured ilentifiers is rigidity enabler. Moreover rhis exacerbates the situation

when identifiers are defined as character ard ler users feed-in the identifiers.

Modifying identifier is the most cosrly acriviry in mainrenance because it is used time

and again as foreign-keys by other tables of the same as well as other modules.

Married key is the combined effect of more than one key enabling someone to locate

a record. Married keys do nothing but increase joins.

3.1.2 Generic Chain of Changes RigEnabler-l Causes

The activities tabulated in Table 3-l are bound to be carried out, if set of change

scenarios - I or similar others are applied that proves the existing key to be

changeable.

Stoble Information Struoure for lnherent Flexibilin, in lnlormation Systems

Chapter # 3 Proposed Fmmework

Table 3- I : Generic Charn of Changes caused by Ri

Generic Chsin of Changes
Married Character Identifi ers

i Following activities will have to carry out, if the existing key proves to be changeable.

to te*iitible as gimay *ey.
:aI .;an s mibue

Create additiond FK in all tables of module

4 . Test t1s data f6; Inlsgjty /quality

Avdr*EC*t

3.1.3 FlexEnabler-l (Un-attributed, Un-composed, Un-married and Auto

Generated Identifiers)

Oppositely, un-attributed, un-composed, un-married and auto-generated identifiers

enable flexibility.

3.1.4 How to Use Guidelines

U nattribuled /M eaning-free Identifiers

o Make sure that no identifier remains attribute of an entity or in any sense

have some business meaning/ value. Tomorrow if not today, attribute(s) of

an entity will change, so don't keep an attribute as an identifier no matter

how much it is suitable to be an identifier. A rule of thumb is - don't even

look for business entity as an identifier.

o A simple series should be used for numbering employees. No maner what

the label of key is it must be perrnanent an unchangeable.

Un-Composed Identifi ers

o Make sure that your key is single and not composed of characters from

various attributed e.g. tacking first two characters from Personal Number

and last two digits of a year.

Unmarried / Un-composite Identifi ers

o Find our the composite / married Keys

. Add third numeric field and define it a primary key.

. Treat the composite keys as attributes

Stable lnlormation Structure for lnherent Flexibilin' in Information Slstems

Chapler # 3 Proposcd Framewo*

. Use the primary key as FK whenever required

Auto-Generated and Numeric

. Auto-generated Keys does not give chance to user to play havoc with keys

- thus chuming out maintenance work for programmer.

. Promote only numeric keys. Character keys can also be auto-generated

but go for numeric only.

3.2 Second Pair of Rig-Flex Enablers

3.2.1 RigEnabler-2 (Half-baked Hierarchies)

The notion to address only current requirements drives the software engineers to

define entities e.g. organizational structure like division and departments as fields of

table. I-ater on, when organizational matures or expands as a result new level(s) in

org: hierarchy is introduced e.g. subsections or groups. Especially when company

undergoes a process of reorganization, some departments/divisions are merged, others

are created as new and some of old ones no longer exist. l-ater on, when

organizational matures or expands as a result new level(s) in org: hierarchy is

introduced e.g. subsections or groups. Especially when company undergoes a process

of reorganizadon, some departrnents/divisions are merged, others are created as new

and some of old ones no longer exist. As organizations change, so the system's

requirements change. As signihcant parts of these requirements lie in the time to

come hence obtainable by the time the InfoSys is designed [].

Usually, in information systems, no due care is taken in appreciating the hierarchical

business entities and designed horizontally as attributes of an entity. This becomes a

potential earth quack center and shakes everyhing creating ripple effect within and

avalanche effect across modules. Another example is approval chain. This chain may

expand or contract as per the criticahty or importance of the approval process or

entities involved. This rigid stucture may be referred to as Half-baked Hierarchies.

3.2.2 Generic Chain of Changes RigEnabler-2 Causes

Each time new layer is added in hierarchical structure, the chain of activities bound to

be carried out in case rigid half-baked hierarchies are in place is tabulated in Table 3-2.

Stable lnformation Stucture Jor lnherent Flexibilin' in lnJormation Ststems

Chapter I 3 Proposed Framework

Each tirne new layer is added, the following activities will have to car4/ out.

CrEate a new field in the transactional table(s) for accommodating foreign key. Even
then no link in various layers will exist e.g. Which section works under which

3.2.3 FlexEnabler -2 (Nth f,evel Recursive Hierarchies)

This, one of the potential sources of future changes, can be eliminated by structuring

hierarchy recursively i.e. interlinking different levels with .its parent by putting a

"ParentlD" field in the same table. They may be referred to as Recursive Nth bvel
Hierarchies.

How to Use Guidelines

Define all business attribute of an entity in first place.

Define a specific attribute of ParentlD pointing to its parent instance of an

entity. Remember don't define child attribute.

Include Type/l.,lature fi eld to differentiate parent -chi ld.

Add the following fields to make it breathing.

o ValidFrom, ValidUpto, Living Starus, Sequence.

3.2.4

a

a

3.3 Third Pair of Rig-Flex Enablers

3.3.1 RigEnabler -3 @usiness Rules via Code)

It's the business rules that drives the system whether manual or automated. InfoSys

remains alive as long as it is synchronized with the business rules. Business rules are

susceptible and more prone to charge. Business rules go unchanged for a limited

duration. They get changed or new rules replace it or vanished without replacement.

The notion to code everlthing is one of the major sources of rigidity. If these rules are

totally encapsulated in code, such scenarios are indicators of inflexibility and

AvrtetrEEet

Stable Information Structure for lnherent Flexibilitl. itt InJomulion S)stems

IgU. 11 !g!g"g Chain of Changes caus4_by RigEnabler-2

Generic Chain of Changes
Hierarchies

Amend the existing queries / triggers / routines etc involving new type especially the
table/attributes names

Framework

contribute to generate major portion of the maintenance and are terned as Business

Rules via Code.

3.3.2 Generic Chain of Changes RigEnabler-3 Causes

Each time a change in rules happen, following problems transpires, in turn some

activities will have to carry out as shown in Table 3-3.

Rules via Code

have to

Stil.l one does not know which rule was applied for which duration.

Enrrgence of new rules even of similar pafiems means anrending code that requires

3.3.3 FlexEnabler-3 (Business Rules via ER)

Contrarily, well-designed information structure for business rules provides end-user

much flexibility and may be called x Business Rules via ERs.

How to Use Guidelines

Understand business rules.

Make pattern of business rules.

Identify parameters to fine-grained level.

Make relationships keeping business rules in view.

3.3.4

Table 3-3: Genenc Chain of Changes caused by RigEnabler-3

G€n".tc Chai" .f Changes

AveldEEoct

Stable lnformation Structure Jor lnherent Flexibili4 in lnformation Svstems E

s irvolvement.

a

Chapter # 3 Proposed Fmmework

3.4 Fourth Pair of Rig-FIex Enablers

3.4.1 RigEnabler - 4 (Stiff-Ilook ER Integration)

No business function can operate in space. Output of one becomes input for other

which provides a reason for sysrem/module integration. In MIS serup, where each

developer is responsible for development/maintenance of his assigned module, each

developer is concerned with the smooth operation of his/her module and less careful

about otlers. They use the data of each other by just picking the desired data directly

and similarly drop data by directly into tle relevart tables/fields of other modules. ln

case an information structure changes later on while other modules are hooked. The

result will be dysfunctional systems. This may be termed u Stiff-Hook integration.

3.4.2 Generic Chain of Changes RigEnabler-4 Causes

A change in information structure causes the allied modules including self go down.

What's in the way is tabulated in Table 3-4.

Table 3-4: Generic Chain of Changes caused by RigEnabler:l
, G€neric Ch,in of Changes

'-Hook ER

3.4.3 FlexEnabler - 4 (Flex-Chain ER Integration)

In fact, the module itself should be responsible to provide the desired data requested

by other module and also for keeping the data providing objects synchronized when

any of its information strucrure changes. This may be termed u Ftex-Chain

Integration.

A change in Shared Information Strucrure (SIS) causes the allied modules to go down.

The frequency of change in common infornration strucu.rre and the number & nature of

Stable lnformation Srructure for lnherent Flexibilin. in Information St,stems
lE

2 | Amend the integration code to synchronize it with the amended information structure.

4 r Brilg the module(s) including tbe allied one up.

i -1==ll:.,=ffi=-:-=:=:=:..:=:--r.
,

I integration defines_the or avalanche effect.

Chapar # i Proposed Framework

3.4.4 How to Use Guidelines

As a rule of thumb, never permit others to select, update, save etc in tables of

your module(s). Make sure, these operations be performed by the module

itself. Allow other only to access module's views, interfaces, functions etc for

the purpose.

Analyze, design, implement and make it available for others to use.

Make sure don't update, save, and access information structure of other

module directly.

3.5 Fifth Pair of Rig-Flex Enablers

3.5.1 RigEnabler-S(Write-OverERs)

When an entity is structured in a way that important old information are updated

whether configurational or transactional is a source of changes, later or sooner user

will demand for histonc information not available. This leaves the user with no option

to know the history. This may be refened to as Write-Over ER.

3.5.2 Generic Chain of Changes RigEnabler - 5 Causes

Table 3-5: Genenc Cha-rn of caused

Generic Chain of Changes
rite-Over ERs

Each time user updates the old inforrnation witb
, information lost.

referred to as 'scattered pieces of hisory' not linked to make sense-
Moreover, in case ER is changed to accomfidate historic info, allied modules will
have to be cbanged accordingly.

3.5.3 FlexEnabler-S (Write-HistoryERs)

For keeping such information this point onward you have to do major structurai

changes. such structures may be referred to as write-over whereas the opposite as

Write-History ERs.

Stable Information Structure for lnherent Flexibilin in Information Systems

3.5.4 How to Use Guidelines

. As a rule of thumb, use Write-History ERs when change in data is expected or

visible even if it's not the user's requirements.

. One can maintain history in many forms. Select one of them depending on the

scenario or cnticality of the historic information.

3.6 Sixth Pair of Rig-Flex Enablers

3.6.1 RigEnabler-6@rovincialERs)

In "Get things done on the fly" environment, a little aftention is given to what could

be reused to avoid rework and so waste of energy and effons. In the absence of
cenEalized technical control, developers oblivious of what is going on around starts

reinvent what has already been accomplished by another colleague. This may be

termed as " Provincial ERs" .

3.6.2 Generic Chain of Changes RigEnabler - 6 Causes

Each time a new entity with srmilar nature is needed, the activities bound to carrv out

is tabulated in Table 3-6.

Table 3-6: Genenc Charn of Changes caused by Rig.Enabler_6 '-] *""H*11r"!*i"'*

tIn Rigid Systenl each
, activities will have to ca

tirne a new entity with
out.

similar needed, the following

Develop user-interface for the reinvented ER.

etc will have to be
xRs

t6 More thar n x tirne's effons will be required ro transform all reinvented ERs into
uniform one.

the

Stable Information Structure for lnherent Flexibility in tnformation Systems

Especial additional efforts are required each time new reinvented ER is added for

out in each rdule.

In this case an avalanche effect of little magnitude is nvolvea as each module has its own
reinvented ERs. However ir case of a generic change, nec amendrrents will have to carry

Chaptct # 3 Proposed Framcvork

-.

3.6.3 FlexEnabler-6(Cross-CuttingERs)

Watch out for recurring and cross-cutting ERs which can be shared across MIS,

design it thoroughly once aDd for a.ll. These can be called as Cross-cutting ERs.

How to Use Guidelines

Establish a cenfalized organizational control over design activity as well as

incorporat.ion of change in the same.

Monitor the overall information structure and separate cross-cutting ERs.

Design, develop generic modules and enforce all to use the same.

3.6.4

ERs

3.1 Seventh Pair of Rig-Flex Enablers

3.7.1 RigEnabler-7 (Rock ERs)

Defrning rock entities is another source of potential changes. For example putting

complete address of an employee into one held of database provides reason for clients

to raise change requests in the days to come.

3.7.2 Generic Chain of Changes RigEnabler-7 Causes

Table 3-7: Genenc Chain of Chanses caused

Generic Chain of Changes

: Transforming rock endty into fine-grained one takes the followirg;

n:*iltiisin i:ndry

-a nr t**r, ,;-*"*"a *u"

Re-engineer the rock entiry by concalenaling the constituent attributes.

Arneld the existing routines / views / procedures / triggers / repons accordingly

Amend all the allied modules to be comparible with the fme-grahed entity insunie.

Stable Informarion Structure for Inherent FlexibiLin^ in lnformation S,-srems

3.7.3 FlexEnabler-7 (Fine-grainedERs)

Generally a whole entiry can be fabricated by concatenating its constituent pieces but

not the vice versa. So crush the rock entities into more fine-grained attributes provide

you more flexibility in searchirg and reporting and also storing it in concarenared

form not let performance go down.

3.7.4 How to Use Guidelines

o Don't rush for coarse-grained entity design. Test every entity you design for
atomiciry.

o Crush an entity to fine-grain level if ir lends itself for subdivision.

o Concatenate all constituent fine-grained attributes and store it as a whole

in the same table as rock held.

o Use flexibiiity enabler - 2 in case it forms bill-of-materiaj like structure.

3.8 Eighth Pair of Rig-Flex Enablers

3.8.1 RigEnabler-8 (Corpse ER)

Definition of entities does nor remain valid for ever. They live their life. They born

and die like living things. They get changed. Entities with unknown living staos may

be termed as corpse Entities. Moreover, this is a redefinition of what entity is also not

traceable. They are referenced in tmnsactional tables and must not be deleted or
changed.

3.8.2 Generic Chain of Changes RigEnabler-8 Causes

_-- Table fq&!gf,. Chri,
"f

C!4I'_... "q BigF.qlE. S

' Generic Chain of Changes
ERs

it into breathins entitv tales:

"- .:. ;rryj=jaijl_:'**!.Yry9l:1.:ryn{[q,c! 9trc_. ::. .,. .::
?=.'k:"*:,I::!ggry1|9lTi-q94y revening back thioiJ-".rf,ffi,".- "

again

nesr
Find out & arnend the FKs of alt transactional tables

",here
tn. e"t, y -.t nce is

fCfg-o4.If"$4 Ripp!"-E-ffect - 4! separatirg affected old & new records is difficult.

f : Link rhe revised with old definition.

Stable lnJormatiott Structure for Inherent Flexibil y* in lnformation S$tems

out the $nell of

3.8.3 FlexEnabler-8 @reathingERs)

Oppositely, the entities with its birth, death dates as well as living status may be

termed as Breathing Entities.

3.E.4 How to Use Guidelines

' Add the following fields in all entities generally and in configurational files

especially.

o Sequence,ValidFrom. ValidUpto, LivingStaos, Linkedwith

o Fill / update the ValidFrom, ValidUpto fileds automatically wirh system

dates.

3.9 Ninth Pair of Rig-Flex Enablers

3.9.1 RigEnabler-9 @iverging Competing FKs)

ln case when more compet.ing foreign keys are coming from different tables, usually

they are kept separate. This may be termed as Divergent Competing FKs.

3.9.2 Generic Chain of Changes RigEnabler-9 Causes

Each time new FK is added because of adding new entity type i.e. tabre, the foltowing
activities will have to carry out.

Table 3-9: Generic Chain of ler-9
Generic Chain of Changes

, k9h l* new FK is added because of adding ne", intiry
activities wiU have lo car-ry out.

; 2 : flsr.;r, User-interface for ttre ne",ty aaaea enrlry.

ittatl€
4 I A;nd thJ *o-iit".fi6 to""iornt te rf," *.*ry*Jdid entiry.

l-i@re* f"n *r;;irirg th"
"J*iy "dd.d;rti[

3.9.3 FlexEnabler-9 (Converging Competing FKs)

Table name as identifier of the foreign key may minim.ize he the number of FKs. This
may be termed as Convergent Competing FKs.

Stable lnformation Stucture for Inherent Flexibilim in lnformation Slstems E

I fl "xi{ modules integrared with this m.dute, *itiLre .iffi;ath";rcg.t.r .-C;
by considering tables(s) / attributes,-of new entity wherever Sg@4. I

3.9.4 How to Use Guidelines

e Look for other competing FKs whenever you making a relationship via FK.

. Keep all tables in schema with necessary info in a separate table

. Reduce the number of FKs by combining compering FKs.

o Add a filed named "TableID" to locate the origin of each FK.

3.10 Tenth Pair of Rig-Flex Enablers

3.10.1 RigEnabler-l0 @ruce Limit's to Flexible Design)

When emerging types of entities have varying information structure, designing it

necessitates adding more tables, fields as well as new user interfaces. This is, as

mentioned in problem statement, is called Bruce Johnson's Limits to Design

Flexibility. Actually, a concept drift occurs when a new type emerges for an entity.

3.10.2 Generic Chain of Changes RigEnabler-10 Causes

Each time new ty,pe emerges with different attributes, the activities Io carry out is

tabulated in Table 3-10.

Table 3-'10: Generic Chain of Changes caused by RigEnabler-I0
Generic Chair of Changes

Limits to Flexible Dtsien i.e.

F'^h time new type ernerges, the following activities will have to carD/ out.

E:--:- ' --:: " ..-- ' '
i Develop User-interface for the new type.

Effect

Amend the existing queries / triggers / routines etc involving new type especially the

Avrlr&EEcct

3.10.3 RigEnabler-10 (Conceptual Inheritance in ER)

The Johnson's limits-to-flexible design can be overcome by adopting a coordinated

hybrid approach by InfoSys & business domain experts of the organization and

employing Conceptual Inheritance. Provision of linked tables by developers for

additiona.l fields and dynamically spec.ifying on the base of type selected where to

Stable Information Structure for lnherent Flexibilit_t in lnformarion S:lstems

: summarv reoons tAddins tabl€r'aftributes names

Chaotet # 3 Proposed Franework

interface dynamically at runtime necessitates keeping record of all tables in schema

ard interface artifacts i.e. forms. This definitely increases the complexity and calls for

expert programming skills. However, as it is one-time effort but provides flexibility at

user-end as well as makes developer's life easier in the time to come.

3.10.4 How to Use Guidelines

o You may go for conceptual inheritance when you are dealing with tyPes,

subtypes that form hierarchicaJ shape.

o Evaluate the effons involved in realizing the conceptual in}erirance against the

flexibility required.

. Keep all tables of schema with necessary information in a table.

. Keep all interface artifacts i.e. forms, repons etc of all modules in with

necessary information in a separate table.

. Put two fields SubtypelD and TableID in each table of hierarchy to locate

where further information about a panicular tlpe are stored.

. Use the same linking path for retrieval of relevart information.

3.11 Limitations of the Proposed Framework

The framework has the following limitations:

o Limired to InfoSys only

o Addresses stability of information-structure only

o More ER-based flexibility results in more program complexity. There is a

pressing need to strike a delicate balance between the two.

. Not tested for other than MIS Setup.

o Not meant for web-based lnformation Systems.

3.12 Applicability of Flexibility Enablers

There is one-to-one relationship between rigidity enablers and flexibility enablers.

This implies that choose flexibility enabler when relevant rigidity enabler.is involved.

fn case more than one rigidity enablers are in action, as many relevant flexibility

enablers will apply e.g. solving the Bruce Johnson's limits to design flexibility

(ceiling effect) involves, by design, the Nd level hierarchy enabler besides conceptual

inhentance itself.

Stable Information Structure for lnherent Flexibili1' in lnformation Slstems

Though the framework may partially be used as a guide while engineering IS, it

applies specific ally how to re-engineer (transform) rigid 'lS' into a flexible one.

Furthermore, the name of the flexibiliry enablers also suggest the situation / scenarios

when to apply one or more flexibiliry enabler(s). However, based on expenence,

when a need to call another enabler arises is illustrated below in Table 3-l l:

Table 3- I l: Applicabiliry Relationship among Enablers

ar!'i?riol\a.'iiiiLLrI;a..a-iaEE?a.caaE a-_r_r!_r_.!E--E--Z-..2E
Enablers

tlalfi.b-a

tL*li.ls

f*df c"U r.r*nr FtrxEnebhr Q u6,t r c.tt ttr" rclernt FhrEnabhr

3.13 Impact of Flexibility Enablers on Quality of Data

Data populated in the re-engineered stable information sructure, which was designed

keeping flexibiliry enablers in view, is appraised against the following quality

parameters by experts and drawn in Table 3-12. The purpose of evaluation is to
determine the quality (positivity / negativity) of the impact and not the quandry of the

impact. The table shows that flexibility enablers have overall positive impact on data

quality.

Stable lnlormation Structure for Inherent Flexibilin in Informorion Systems EI

Cfupter # 3 Proposed Fmmework

Fhrth.${

F=r'1X!

FhItn*E

Ctupter # 3 Proposed Framework

Table 3- 12: Impact of Flexibility Enablers on Quality of Data

,nrara0FGcr9
oteDtuaat)-aaaaaaa2acccaaaca=

,|!aaaaoooaal
Enrblcrd

D.hQrr.W

Da$l&&lilr ++*+
fn hht?tf

t L.Et \ta.f h
:I{ry

&ri-ilvto06.
Ottttf.Do.l:

Eitfrclh +

tStDF.tiw to bt
YEaleE tf

A..n*rdofr *
Coiltlen sol D.i.

&mo$}tt arl.lylir +++++-
Lqends> + Poshiv? lmpac\ ++ tb.r[h Posit* hprct, - NQtatiI? lme.ct t tto tmpact

3.14 Impact of Flexibility Enablers on Program Complexity

It is highlighted that program complex.ity has been analyzed from software

implementation point of view. The nature of parameters evaluated is indicative of the

same. The results, drawn in Table 3-13, are based on the case study data thoroughly

judged by experts. The overwhelming negatives in the table show that inherent

flex.ibility increases the program complexity. However, the experience demonstrates

that this complexity decreases gradually as the progarnmer's programming skills

sharpens. The objective here is to determine the quality (nature) of impact and not to

measure the quantity of impact i.e. program complexity.

Stable lnJormotion Structure for lnherent Flexibilin in lnformation Systems IE

++|t

++r

Cfupter # 3 Proposed Framcwo*

Table 3-13: Impact of Flexibility Enablers on Program Complexity

1!?9r?f??9
'OAD8'DoD;aloaaaata2cEacEtcgcitl,rtIsaar:ttraxxtrl=ooaa00aoa;
EEEsEEEL'E

Enrbhn/

IhhQtallty

hrldr

llrddStudnr

Drildqilb

h0df 6.nrcb.t

E{hSludrft

Code SiI!

t$

te6dr> t $mdtaty, - Comphrity, --Mon Complui$ ' ttormality

3.15 Summary

This chapter presents the proposed framework, comprising of ten parrs of rigidity &

flexibility enablers, for stability of information structure. The framework depicts one-

to-one relationship between rigid and its relevart flexibility enabler. Generic chain of

changes is tabulated for rigidity enabler concerned whereas "How-to-Use" guidelines

are provided with each flexibility enabler. Rigidity and flexibility enablers are

explained with examples. The chapter concludes with Lim.itations of the framework,

applicability of the flexibility enablers and impact of the same on both dau quality &

program complexity.

lr

Stable lnJormation Structure for Inherent Flexibilin in lnlomution Slstems

Chapter - 4

FlexlnfoSys

A CASE STUDY

Stable lnformation Stucture for lnherent FlexibiLity in I4fonnation Svstems E

Chapter # 4 FbxlnJoSys

4. FLE)ilNFOSYS - A CASE STUDY

In this chapter the implementation details of our research work has been discussed.

Case srudy has been carried out to appraise the effectiveness of the proposed

framework. Two change-averse legacy InfoSys have been chosen for study of rigidity.

We rename these systems as RiglnfoSys, as non-disclosing measure. One belongs to

Govt. organization whereas the other taken from private Ltd company. Name of the

organization/company is also not being made public owing to non-disclosure

agreement. One of the rigid systems, covering the scope, has been re_engineered,

named as FlexlnfoSys, making use of the proposed change-driven information-

structure-oriented design strategies. The reason for selection of RiglnfoSys is that all

its modules are integrated within as well as with other business modules. Moreover,

the Employee Prohle InfoSys abbreviated as eprofrle is the core module acting as a

foundation for mosr of the modules comprising the bespoke small ERp.

4.1 What is Case Study?

As per Robert K. Yin "The case study research method is an empirical inquiry that

investigates a phenomenon under scrutiny, within its realJife context; when the

boundaries between phenomenon and context are not clearly drawn; and in which

multiple sources of evidence are used". It brings ro light actua.l story what led to the

results or outcome. It is useful for testi-ng whether scientific theories and models really

work in the real world environment. Suppose a scientist or engineer formulate a

wonderful computer model explain how the ecosystem of a rock pool works. It is case

study which is used ro try ir out on a rea.l life pool to see its effectiveness. case study

is preferrcd to be use for its flexibility. Sometimes, while trying to testify a

hlpothesis, it brings about unusua.l results thereby leading to new directions or open

new dimensions.

4.2 Rationale for Selection of Case Study as a Research

Methodology

Case study t301, t33l is appropriate methodology for research in software engineering

as it provides an opportunity to investigate phenomena in its rea-1 rife context.

Basically, this study is aimed at analyzing rhe comrnon Rigid ER practices and

Stable Information Structure for lnherent Flexibilit| in lnformarion Sysrems

proposes a framework for stability of information structure to infuse flexibility in

information systems. Generally, software engineering and especially design of

information systems takes place for a given business or industry having customer's /

sponsor's requirements or expectations including certain assumptions and constraints

on software / information system design. It was also not appropriate to establish a lab

environment, so expenment research methodology was not considered for this

research work.

The other strong candidate research methodology was to conduct a survey. Because

tle survey is a non-experimental, descriptive research method, conducting survey can

be useful when data needs to be collected on phenomena that cannot be directly

observed. Last but not least, the most of the closely related research work has been

carried out as case studies. The literature review in Chapter-2 testifies the same.

4.3 Main Activities of Case Study

The major activities are illustrated in the Figure 4-.t as under:

Figure 4- l: Case Me$odology Used

Stable lnformation Stucture for lnherent Flexibility in lnformation Ststems

4.4 Change Scenarios

Change scenarios are generally used to test the rigid.ity or flexibility of a system.

Following change scenarios have been designed based on a decade experience and in-

depth analysis of change requests raised by end-users in real business environment.

These scenarios relate to problems faced by business people and/or developers over a

decade period. Careful selection ensures that most of InfoSys charges fall in one of

the scenarios. These scenarios are used in conjunction with the Bruce Johnson's

criteria to judge the effectiveness of the proposed framework. These change scenarios

are interspersed in the case study with relevant rigidity / flexibility enablers.

4.5 Change-Driven ER-Oriented Rigidity Enablers and their

Redress Flexibility Enablers.

The case study was carried out taking various steps in its logical order as depicted in

Figure 4-l. However the two enablers i.e. the rigidity enablers identrfied while

analyzing the RiglnfoSys and the Flexibility Enablers employed in re-engineering

FlexlnfoSys are given under one heading for increased understandability and ease of

comparison. The chains of changes i.e. ripple & avalanche effects have been shown

with relevant rigidity enabler.

4.5.1 Use Non-Attributed, Un-Married Auto-Generated Numeric Keys instead

of Attributed, Composed Character Keys

Usually IDs are composed to form IDs of entities. ln eProfile, personal number was

used as pnmary key in first place. l-ater on, a new business rule that a new personal

number will be allotted to an employee on re-recruitment and also once staff

employees goes into officer category. This led to change the ID. Next time, a national

identity card was selected as a primary key with the assumption that it is not going to

change. This is depicted in Figure 4-2. Larer on, National Database Registration

Authority (NADRA) introduced a new computerized Cards referred to as CNIC

leading to the same situation. This suggests that no information/attribute is exception

to change.

Stable Information Srructure for Inherent Flexibilitl. in lnJormation Systems

ChaDter 14 FbtlnJoSYs

Choptcr # 4 Fle nloSys

PK PersNum

Name
IDCard
DoB
BirthPlace
JoinDate
Religion
Sect

Cast
Appointment
Category

PK CNIC

PersNum
Name
DoB
BirthPlace
JoinDate
Religion
Sect
Cast
Appointment
Category

Figure 4-2; Use of Attributed, Composed Character keys

If the change scenarios tabulated in Table 4-l or similar others are applied on

aforementioned ERs, the generic charns of changes i.e. ripple and avalanche effects

given in Table 3-l unravel. The more specific effects are certainly more deep and

adverse.

Table 4-l: Set of Chanee Scenarios - I
Change Scenarios for Evaluating first Pair of Rig-Flex Enablers
(Atributed & Compooite VS Non-Attributed & Non-Composite Keys)

oo When an employee is re-recmited in the same company e.g. a regular officer is
U re-recruited as contract employe€; he,/she will be allotted a new service-id

E : whercas service-id is being used as primary key in the RiglnfoSys.

Bruce Johnson group [2], t231, t39l and Asma Alkalbani [] have worked a lot on

this issue. It is further revea.led from experience that single un-composed auto-

generated numeric keys should be encouraged because of performance issues.

Moreover, composite keys should be discouraged. Here EmpID is a numeric key other

than employee personal number shown in Figure 4--r.

Stable lnformation Structure for lnherent Flexibilin- in lnformation Systems

Chaptcr i 4 FlexlnfoSYs
,

tPEOEtrE=EBiPIfYEE

PK EmoID

PersNum
Name
FatherName
NameTitle
CMC
PlaceOfBirth
CastlD
DomicilelD
Weight
Height
Build
ColorOfEyes
BloodGroup
SectID

Figure 4-3: Non-Anributed, Un-Married and Auto'generated Numeric keys

FUNCTION NonAttributedAutoNumericKey(vTargetTable VARCHARI, vTargetColum.

VARCFIAR2) RETURN NUIVIBER IS
KeyMaxID NUMBER:=l:

Query_Str VARCHAR2(2000):
BEGIN

Query_Str := 'select nvl(mar('llvTargetColumll').0) -l from 'llvTargetTable:

execute immediate Query_Str into KeyMaxlD:
RETURN(KeyMaxID):

END:

Text Box 4-l: A generic function for aulo-generation of nexl non-attributed numeric key. Use of
daubase provided identifier has been found even bener than the above mentioned function

4.5.2 Invest in Nth Level llierarchies and Leave Half-baked Hierarchies

In fuglnfoFlex, the Organizational structure i.e. the Directorates and Branches and

regions as City, District. Province and Country x in Figure 4-4'.

Stable lnformation Structure for Inherent Flexibili* in hformation S\stems

FKt
FK9
rxl
FKI
FXf,
FX4
FI(5
FK6
FK1

Name
Des'gCod.
PayScale

lDcard
Car

JornDare
DoB
Brnh?lac!
Cast

Appolntcodc
Datehes€nlPosl
ReApponrDarc
R.litbrID
S.trID
Counlr-vlD
TchsilID
Provircrll)
DinrlctlD
Cir-YlD
Errochld
D.p(ld

Figure 4-4: Def.ning Half-baked Hierarchies

These hierarchies were used by other modules. Other operations were critically

dependent on it hence got disrupted and chain of unrequested amendments staned

unraveling.

If Set of Change Scenarios - 2 tabulated in Table 4-2 or similar orher scenarios are

applied, the chain of changes illustrated in Table 3-2 unravel.

Table 4-2: Ser of Change Scenarios - 2

oo(r,
N

Change Scenarios for Evaluating Second Pair of Rig-Flex Enablers
'-baked VS Recursive Hierarchies

CEO takes over, the company undergoes reorganization. New layer of Sections and./or
Groups are added. Some departrnents are split and others merged. New departrnents
arc introduced and sorne old ones are dissolved .

lNotc:- other business modules iDtegraEd with this corc rnodule should Dol be disruprcd c.g. a user of an
nodule aacqsses

Stable lnformatioa Structure for lnherent Flexibilin in lnformation Systems

Chapter # 4 FlerlnfoSYs

ln FlexlnfoSys, the organizational structure, regions and religions given in Figure 4-5

were designed as depicted in following diagram. Workflows and chart of accounts are

among other examples.

.ss:P.E@oI

PK RcsionID

RegionCode
RegionName
RegionT)T€
Prr.ntRcgionID
ShonName
Sequenc€

ValidFrom
ValidUpto
LrvrngStarus

PK R.lisionID

ReligionName
P.r.ntR.ligionlD
Sequenct
ValidFrcm
ValidUpto
LivingStarus

Figure 4-5: Recursive definition of Hierarchies - OrSanogram, Religion. Region

4.5.3 l,eave the Rigid Way of Achieving Business Rules via Code for more

Flexible Business Rules via ERs.

In RiglnfoFlex, the lrave Rules were hardcoded. Some are shown here in Text

Box 4-2. Promotion policy is among other representative examples.

IF v_old_EmplD rs null AND _oldJdate rs not null THEN
LFPs =round(months_beM'een(last_&\ (svsdale-30).v_oldJda&))'4.

EI-SIF \-old_EmptD is nol null AND !_oldjdatc is null TI{EN
LFPs =ound(Elonths_berwten(lasr_dav(s),sdate-30).rec J_dalc))'4.

ELSIF (v_old_EmplD is not null ,{ND v_oldJdatc is nor null) OR (_old_EmplD 15 Dull .4,\D _old_Jdare rs null) THEN
LFPS =ound(mondl(_bcr*€en(I&sr_dav{ s\ sda&)-rcc J_date))'4.

Text Box 4-2: A business rules provides privilege that an employee can avail 48 leaves with full pav

IF :leave_dctail.lc.vc_rypc ='lvlTli and uppe(:Slobal.ap_slat) nor like'SCH(Xll STAFF9i" THEN
:l€av€_derail to_dar€:=rleave-dclail from_darc-f 89.

:lcave-d€tail no_of_daysi=m:

ELSIF leavc_dclall lcrve_t\,pe ='M I \ and upp€n.global ap_sta)like 'SCIJCX)L S'l AI,f"," THEN
rlesvc_dcEil ro_dal.:=:l.ave_dctail.fiom_darc+44i
: Icave_dela il. no_o f_d4,s:=4 5 i

END IF.

. Now form a pani date onward this Dri is reduced to 40

Text Box 4-3: A business rules to cater for varying number of leaves for different employee type e.g. if
matemity leaves for school smff is less than other employees in lhe same enterprise

,ss-oicANocR{1il

DeprCode
DepNarne
ShonName
P.rcntDcptlD
DeptTypelD
Aurhoriry
Sequenc€
ValidFrom
validUpto
LivingSatus
Remarks
D.ptNslur.lD

Stable lnformotion Structure for lnherent Flexibili\' in lnJormanion St,stems

i*^!ii* i-:+.;c

PK Dcu-tlturclD PX D.ptlD

DeptNdure
NaturcS€quence

FKI

If Set of Change Scenarios - 3 given in Table 4-3 or similar other scenarios are

appl.ied, the chain of changes illustrated in Table 3-3 unleash.

Table 4-3: Set of Scenarios - 3
Change Scenarim for Evaluating Third Pair of Rig-Flex Enablers

Rules via Code VS BR via ER

ao
<h changed. In another case caregory of

paranrters tle category depends on.

in RiglnfoSys. Definition of a category isl
an employee is changed because of changing

0oo
t

Contract fernale teachers of schools run by the company can avail the matemity leave
of two montbs twice a life whereas company regular female employees can avail threc
months thrice a life.

In FlexlnfoSys, the business rules for leave policy and employee caregories were

designed as depicted Figure 4-6 and Figure 4-7 respectively. Rules are not being narrated

but only depicted in diagrams for brevity.

... i.'.?rs:BP-IliIFi9.::::. ii

EmpType
AppoinrmentStatuslD
ArRetiredStatus
AgeFrom
AgeTo
CategorylD
ActiveStatus
Remarks

FKI

EmpID
PNo
DesigID
PayScaleID
TradeID
DeptID
AppointmentStatuslD
DateFrom
DateTo
ActiveStatus
AvailDetailID
ProbationStatus
JoinDare
EmpTypelD
EmpCategoryID
InfoChangelD
ChangeReferencelD
P-IINo
P-IIDate
CategoryID

Category
DateFrom
DateTo
ActiveStatus
Remarks

Figure 4-6; Emplotee categoies and irs design Jor its business rules

Slable ldormation Srructure for lnherent Flexibil y* in lnformttion Ststems

LEAvE_.aExr_DErirLS

krvcTypGlD
SanctionAuth
ValidFrom
Val idUpto
LivingSratus
Remaiks

lrrvcAuthlD
DesiglD
Duratron
ValidFrom
ValdUpto
LivingStatus
Remarks

Par6mName
ParamCode
rr'alidFrom
validUpto
LrvingStatus
Remarks

LeaweType
ShortNam€
ConvenableToLFP
Sequence
LivingStatus

PolicyApplic.billtylD
I,rvcPrramID
LeaveDaysAuthorized
ValidForm
ValidUpto
LivingStatus
Remarks

IJrvcTypcID
l-crv.PoltcyID
EmpTypelD
ApptStatuslD
Applic€bleON
ValidFrom
validUpto
LivingStatus
Remarks

PolicyDare
PolicyDescrip
Authoriry
vdidFrom
rr'alidUpto
LivingSratus

Figure 4-7; Business rules via ER Design e.g. Busines rules for kaves

4.5.4 C,o for Flex Chain Instead of Stiff Hook Integration between Modules

h fuglnfoFlex, the integration w.rs caried out as depicted by rhe Figue 4-8 below and

a piece of code how developer of one module hooked to another module's

information structure picking or dropping data directly is shown as Texr Box 4-4

subsequently.

Figure 4-8. Stiff-Hook lntegration - Just pick & drop data direct\.

Srable lnformation Structure for lnherent Flexibiliq, in Informarion S:vstems

Chtplct 14 FbrlnfoSvs

Ilis:IEAVE_j IITI{ORIZATIO
PK I-,€.v.AuthID PK 4urhnctiillD

FKI FKT

{fisi:E .FrE .?:\tlAME! ss.:iEAvE:?i?Es
PK | €rvcPrnmln PI< l.iveThcf n

t-Es ,ftt tli.tz rDll.rr:iDfl riv
'lis_IEirle_noLrcYPK Poli.vncirillD PK PolicvAnplicrbilituID PK I GrvcPolicwll)

FKI
FK2

FKI
Fl<2

-- Selcctine dan.{iont Eycnts ,llunogerntnt S1'stem

SELECT emp_info_id, emp_id,with_effect_from. date_upto.probation starus
FROM HRM.EMS_Prob_Terminate
WHERE Evnt_id = EMSID

- Uplorittg PLS

IF i. probation_status ='Termination' THEN
UPDATE HiS.ePROFILT EMPLOYEE.Probation
SET date_to = i.with_effect_from- probation_status='Complered'
WHERE emp_id = i.emp_id and emp_info_id = i.emp_info_id
AND probation_status='A cri ve':

END IF:

Chaplzr # 4 FlexlnJoSys

-

Text Box 4-4: lntegrarion of two Modules e.g. Integrarion of Event Management and eProfile -
Probation Termination hocess in Event Managemenr Sysrcm showing post-effecs on eProfile.

Pick & Drop integation increases the maintenance and rigidity by the rate "how

many other modules are hooked. If a developer changes his/her table structure and

even if he/she conxnunicate these changes to all relevant, the concemed developer

will have to change his/her code/query ro adjust his new structure. Otherwise efforts

involved become twofold, the relevart artifacVobjecr responsible for integration with

a particular module becomes invalid and the concemed developer will have to trace

out where the problem lies.

If Set of Change Scenarios - 4 tabulated in Table 4-4 or similar other scenarios are

applied, the chain of changes illustrated in Table 3-4 un.leashes.

Table 4-4: Set of Scenarios - 4

VS Flex-Cbain

U,o(,
Organizational hierarchy includes 'Reports-To' field. This field is accessed by

: wormow, budget allocation, ACR writing and similar other modules that need to
: use hierarchy. In case of reorganization, change in this field leaves all other

modules dysfunctional.

Cbange in any of above rierrioned field will render the inlegrared modules nor functioning as

Change Scenarios for Eyaluating Fourth Pair of Rig-flex Enablers

StabLe Informotion Structure Jor Inherent Flexibilitt- in lnformolion S,-stenls

r ; expecred m6er error will Fompt.

In FlexlnfoSys, Integration between modules was rendered flexible by:

o A module provides data to the requester instead of the requester fetch the

requisite data directly.

o A module takes the data provided by others and manages to save it by self instead

of allowing other modules to drop data directly.

In this case, any change in information structure did not disrupt the other module.

4.5.5 Opt for Write-History over Write-Over Entities

An appointment of an employee was changed from Manager to Senior Manager; the

user remained unable to know what the employee's earlier appointment was.

€PRoEII;E;-Ei@IPIEE
PK E.eriNll.E'

N arne
IDcard
DoB
BinlPlace
JoinDate
Religion
Sect
Cast
Appointrnent
PayScale
Deptcode
SubDeptCode

Figure 4-9: Flex Chain lntegration

Stable lnformation Structure for lnherent Flexibili\' in InJormation S,-stems

Ctuptcr # 4 FkxlnfoSys

Figure 4- 10: Use of Write-Over Entiries

PROCEDURE DI SSIMINATE-CHANGE-IMPACTS(vOLD-VALUE NUMBER,
VNEW-VALUE NU M BER, vTARGET-COLUMN V ARCH AR2) I S

Query_Str VARCHAR2(2000):

BEGIN

Query_Str :='UPDATE HRM.ePROFILE_EMPLOYEE
SET'l IvTARGET_COLUlvfNl l'='llvNEw_VALUEII
WHERE

ACTIVE_STATUS='ll"'Active"'ll'AND'IIvTARCET_COLUMNII'='llvOLD_VALUE:
EXECUTE IMMEDIATE Query_Str:

END DISSIMINATE_CHANGE-EMPACTS ;

Text Box 4-5: Generic procedure ofreplacing employee rnformation e.g. appointment on promotion of
an employee

If set of change scenarios - 5 given below or similar other scenarios are applied, the

chain of changes illusrated in Table 3-5 unravel.

Table 4--5: Set of Change Scenarios--5

ahoo

Change Scenarios for Evaluating Fifth Pair of Rig-Flex Enablers
rite4ver VS Write-Ilistory ERs

,chaaeed
accordingly. The system shoutd maintain and be accessible an employee's

! current as well as old historic inforrration.

ln FlexlnfoSys, replacing old information was avoided by marntaining double-keys in

transactional tables, one permanenr (EmpID) having attributes of permanent nature

but not unique whereas the other temporal (EmpChangelD) with changing

Address of an employee is changed.

StabLe Information Structure for lnherent Flexibilin in lnformation Systems

ano
U,

U

information

traceability.

as and when change happened. Both keys were interlinked

Figure 4-l l: Use of Wrire - History ERs

4.5.6 Say Well come to Cross-Cutting and Goodbye to Provincial Entities

In this particular case study, built-in workJlow, l.imited to 2 or 3levels, has been

developed by each developer for his own module. Condemnation board is another

representative example.

DoB
PlaceOfBirth
CastlD
DomicilelD
SectID
BloodGroup

FKI EmpID
PersNum
DesiglD
PayScalelD
DeptlD
ApptS tatuslD
AvailDetailID
ProbationSatus
JoinDate
EmpTypeID
DateFrom
DateTo
ActiveStats
OrganoUnitID

StabLe lnformation Structure Jor lnherent Flexibilin' in lnformttion Systems

- :
=r'aitai$:MAtr\I,'-r.

PK Condem Boerd No

BoardPlace
BoardAuth
BoardProceedingDate
PresidID
PresidName
PresidDepn
Memberl ID
MemberlName
MemberlDesig
Memberl Deptt
Member2ID
Member2Name
Member2Desig
Member2Deptt
Member3ID
Member3Name
Member3Desig
Member3Deptt
Member4ID
Member4Name
Member4Desig
Member4Deptt
Member5ID
MemberSName
MembersDesig
MembersDeptt
Member6lD
Member6Name
Member6Desig
Member6Depn

Figure 4- 12: Rigid Structure for Condemnarion Board Proceedings

If set of change scenarios - 6 tabulated in Table 4-6 or similar other scenarios are

applied, the chain of changes illustrated in Table 3-6 unravels.

Table 4-6: Set of Change Scenarios - 6

StobLe lnformotion Structure for Inherent Flexibil y in hfomation Slsrcms

Chaplerl4 FlerlnfoSys

ERs

Chapt2r # 4 FlzxInJoSys

ln FlexlnfoFlex, workflow between modules was built once illusrrared in Figure 4-.lJ

and used by all instead of crearing built-in workflow in each module. Similarly

constituting boards by different departments of the organization for different purposes

should be designed once and used for all as illustrated in subsequent figure.

Figure 4- 13: Separation ofCrosscutting Concerns - Workfow Managemenr

Org: Duty Rosters. Board Proceedings

ColorlD
Dat€From
Dat€Upto
LrvrngSlatus

TaslJD
Araif.ciID
Priona.vlD
S.r€mplov..ID
ScfltEmployeclnfo
Scnl,q.slD
ScnrTo
ScrltDatc
TransStatus
R€a€rvcdDarc
R€c.rv€dEmpID
Rcc!r v.d Empl nfo
ApprovalSlatus

Rcmarks
FlorTyp.ID
DocAnifr ID

D.ptD6ID
FIowType
Trrlc
FlowNarure
Lrvrngstatlls
PrcpDate
PrepBf
VelrdFrom
ValrdUpro
Remarks

DcpdD
AnrfactlD
Trde
Pr.pB]
Pr.pDar.

VaLdUpto
Lrvrngstatus
Rcmars

TnosID
SentDate
Rc.€rvcd Drtc
R€c€r ved Emplnfo
Re..rvdEmplD
SBtus

FlouDctriUD
PosrlionlD
PosSequcncc
VaIdFrom
VdrdUpro
Lrvrngslarus
Rcmarl(s

Figure 4- 14: Separation of cross-cuttrng concerns e.g. Board Proceedings. Workflows, Org: Calendars.

Stable Informotion Structure for lnherent Flexibili^'in lnformation Svstems

Cn S:re:r mFrct
PK Fltr_.Tlffrrtl

An,facdD
DoclD
LrvrngSlarus

Ab}t-floerr" {/rrs_1IrN}itcEo{ ttls floErrYPE ruldtjIE"rylDoc
PK Prio"i.vm PX Trtr!ID PK ErrIrDrID PX I)cntDorrn

FXI

Ftu
Ft3

FKI

PK II|IICCID

FKI m6-Eiw:.rET/$s lN tEiixEloi{
PX ElltiFfirrtl PK Zlltz'lnfir,rrr]

FKI FIosTypcID
Ord€ro1rIoq
Dcpd D
Pos,t,onlD
A uthon!'tTy p€

Remarks

FXI

BoardID
PositionlD
BoardTypelD
OwnerlD
Living

SetupDate

A uthority
Remarks
LivingStatus

BoardID
EmplD
EmpChangelD
MemberName

OrglD
MemberType
MemberNature
Sequence

ActiveSlatus
Remarks

4.5.7 Crush Entities to Fine-grained Level - Not leaving it as Rock.

In RiglnfoSys, the address was dehned as under:

PK PersNum

Name
IDCard
DoB
BirthPlace
JoinDate
Religion
Sect
Cast

CompleteAddress

Figure 4-15: Use of Rock Enriries e.g. Address as one aftriburc

If Set of Change Scenarios - 7 tabulated in Table 4-7 or sim.ilar other scenarios are

applied, the chain of changes illustrated in Table 3-7 unleashes.

Table 4-7: Set of Change Scenanos - 7
Change Scenarioa for Evaluating Seventh Pair of Rig.FIex Enablers

VS Fine.erahed Entities

update address of all those employees who belong to Province-'X' accordi.ogly. City /

Country narre bas been fcd in various fornats e.g. USA, United States, US, Anrerica

In FlexlnfoSys, the Rock Enti4'(ad&ess) was crushed to hne-grained level as

illustrated in FigIr.e 4-t6 and linked to more generalize hierarchical region structure.

(n

o
an{

StabLe Information Structure for Inherent FlexibiLin' in Infonnation Systems

Chapter # 4 FbxlnfoSys

EmpID
EmplnfoID
AddressTypelD
HouseNo
PostomcelD
Policstatior D
RegionID
DaIeFrom
DateTo
ActiveSratus
ConcatenatedAddress

RegionCode
RegionName
RegionType
ParentRegionlD
ShonName
Sequence
ValidFrom
ValidUpto
LivingStanls

Figure 4- 16: Fine-grained endties e.g. splrr address into fine-grained pieces

4.5.8 Choose to Define Breathing over Corpse Entities

In RiglnfoSys, an appointment "Senior Manager" for an employee in a company

existed and become obsolete after quite some time. It was referenced in transactional

tables and cannot be deleted as per referential integriry rule, nor could it be changed

/updated. No one was able to determine for which duration this appointment was

under use or what appointment in the past was actual.ly equivalent to "Principle

Manager" now. Appointmenr enrity was defined with no birth /death dates or living

status as under.

PK AppointmentlD

AppointrnentTitle

Figure 4-17: Use ofCorpse Enrides i.e. enriries with unknown living smrus

If Set of Change Scenarios - 8 tabulated in Table 4-8 or similar other scenarios are

applied, the chain of changes illustrated in Table 3-8 unleashes.

Table 4-8: Set of Chanee Scenarios - 8
i Change Scenarios for Evaluating Eight Pair of Rig-Ftex Enablem

Stable lnformation Structure for lnherent Flexibility in Information Systems

In FlexlnfoSys, the Corpse enriry was transformed into Breathrng by adding following

highlighted features illustmted in Figure 4-i8. Ir tells when an entity rook birth, is it

currently alive? and when it became inactive or dead e.g. appointments.

PK AonointID

AppointlD
Appointment
Sequence
ValidFrom
ValidUpto
LivingStatus
LinkedWith
Remarks

Figure 4- 18: Defining Breathing Entiries e.g- Appointment

It's worth mentioning that if definition of a configurable enriry changes, create a new

one with new definition and render the old one inactive instead of changing its

definition and link the two endties, otherwise the transactional enriries featured with

this configurable entity will always be displayed with the new one even if the

transactional entity was defined before the definitron of configurable entity.

Stable lnformation Structure for lnherent Flexibili4. in Information Svstems

Chaptzr # 4 FlerlnfoSys

tES=,'f,PPOEIIMEilII.

4.5.9 Vote for Convergent FKs instead of Divergent FK by adding TableID as

Attribute

Defining multiple competing foreign keys only limits the dynamic nature of program.

The less dynamic programming defines the more rigid InfoSys e.g.

EmpID
EmpInfoID
EventID
SpouseName
SpouseFName
MarriageDate
UnderLawID
Authority
AuthDate

PrevRe1igionlD
NewReligionID
ChangeDate
EmpID
EmplnfoID
Authority
AuthDate
Remarks

EventOrderlD
SeriaNo
MarriagelD
SubGroupID
Colu-ruName
ChangeReliglD
DeathlD
BfuthID

Figure 4-19: Use ofForeign Keys - Various enrities ofEvenr Management System

OrgName
OrgTypelD
OrgNaturelD
Field-m
Field-n
Field-o

EmplD
EmplnfolD
NOKOTgID
DateFrom
DateTo
TransDate
ActiveStatus
NOKFamMemID

FMName
FMRelationlD
FMDOB
EmplD
EmpInfolD
AliveStatus

Figure 4-20: Use of Mulriple FKs - Family Nominadons for various types of employee's Funds

Stable lnJormarion Structure for lnherent Flexibilio* in lnformation S.tsrems

If Set of Change Scenarios - 9 tabulated in Table 4-9 or similar others are applied, the

chain of changes illustrated .in Table 3-9 unleashes.

t,o
(n
rc
t!

Table 4-9: Set ofChange Scenarios - 9
Change Scenarios for Evaluating Ninth Pair of Rig-Flex Enablers

In FlexlnfoSys, this was designed using the table-name i.e. Marriage, Binh etc as a

database field to trace foreign key as illustrated in Figure 4-21 al';td, Figure 4-22. The

result is to minimize FKs and increase program dynamicity simultaneously.

EventlD
EmplD
EmpChangelD
DeathDate
CertificateNo
Authority
AuthorityDate
DeathPlacelD
Remarks

PrevReligionlD
NewReligionlD
ChangeDate
EmPID
EmpChangelD
Authoriry
AuthDate
Remarks

EmplD
EmpChangelD
SpouseName
SpouseFName
MarriageDate
UnderLawID
Authority
AuthDate

FK2,FK3,FK4,FK5
FKI

EventOrderlD
SerialNo
EyentID
Tableld
ColumnName
SubGroupIDTableName

TableType
LivingStatus
DareFrom
DateTo

EmplD
EmpChangelD
ChildName
BirthDate
BinhPlancelD
RelationlD
Authoriry
AuthDate

Figure 4-21 : Convergent Competing Foreign Keys - Event Managemenr System

Stable lnformation Structure for lnherent FLetibilin- in lnformation Ststems

Chryrer # 4 FbxlnJoSys

--

-:'r,'3rRTI{, -

FK1,FK2

EmplD
EmplnfoID
NextOfKinID
DateFrom
DareTo
TransDate
ActiveStatus
OrglD
FamilyMemberlD

OrgName
OrgTypeID
OrgNatuelD
Field-m
Field-n
Field-o

FMName
FMRelationlD
FMDOB
EmpID
EmpChargeID
AliveStatus

Chapler#4 FlexlnloSys

-

Figwe 4-22: Converge mulriple foreign keys inro one by infioducing table name as a dambase field

4.5.10 Use Conceptual Inheritance When Facing Bruce Limits-to-Flexibility

As explained in the problem sratement, here .it is diagrammatically illustrated by two

examples emergence of new employee t)?es and keeping record of more rypes of

organizations e.g. vendors, institutes, banks etc.

Figure 4-23: Bruce Johnson's Limits to Design Flexibility - Ceiling Effecr for Employee Types

JoinDare

ConFact-From

ConEaclUFo
IDCsd
DoB
BiahPlacc
D€sigCode

CategorylD
f,mpTlTElD
ReliEon
Secr

Namc

BasicP.y
lDCard

DoB
B'nIPla.€
Rehgion

DesrgnCode

Pa! Scalecode

Dcptcode
EmpT}?cID
IDCard

Naln€

NoolHours
HourlyRare

DaleFrom

DareTo

DoB
BlrlhPlace

ReLFon
EmpTlTcID
ID

Stable Information Structure for lnherent Flexibility in lnfomation Systems

Nam€

IDCard

DoB
BinllPlacf,
JornDaie

EopTyFID
R.liSion
S€.i

Figure 4-24: Bruce Johnson s Limirs ro Design Flexibiliry - Ceiling Effecr for Organization Tlpes

When we applied Set of Change Scenarios - 9 tabulated in Table 4-lO, the chain of
changes illustrated in Table 3-10 unleashes. Same is the case for other similar

scenarios.

Table 4-10: Set of Scenarios - 10

Change Scenarios for Evaluating TeDth Pair of Rig-FIex Enablers
Efiect VS Inheritance in ERs

oot,

t

Stable lnformation Structure lor lnherent Fletibiliry* in lnformntion Systems

OrgName
OrgShortName
Phone

OrgTypeID
DateFrom
DateTo
LivingStatus

OrgTypelD
VendorName
Performancelndex
IsBlackListed
NatureOfBusiness
Email
PhoneFax

OrgTypelD
BankName
BranchCode
ShortName
ActiveStatus
Address
C ontactPe rson
PhonFax
Country

OrgTypelD
Name
Address
lnstiruteType
Speciality
ContactPerson
AfliliationlD
EducationRanJring

'tu-s6ha.

Tbe organization is currently keeping record of its organizationa t i"rarctty. lt no,,,

wants to keep record of some comnrercial, private, Govt. Organizations, NGOs and

Educational institutions each having different aflributes

ln FlexlnfoSys, the ceiling effect was dispelled by employing rhe conceptual

inheritance by puttilg the common/generic attributes in initial level of hierarchy and

as the concept drift occurs, put the more specific attributes deep down the hierarchy.

The employee and orgaaization has been designed as illusEated in Figwe 4-25:

Figure 4-25: Solving Bruce Johnson's Limits ro Flexible Design via Inheritance in ERs

4.6 Summary

In this chapter, the case study, camed out to validate the proposed framework, is spelt

out. Rat.ionale for selection of case study as methodology is provided. Main acrivities

of the case smdy are elaborated diagrammatically. Change case scenarios, extracted

from the analysis of the two rigid sysrems, ar.e narrated. All rigidity and flexibil.ity

enablers are explained with examples from case study carried out. One of the two

rigid systems was redesigned and redeveloped using the proposed framework. The

chapter is concluded with the case study design keeping flexibility enablers in view.

IDCr.d
DoB

5€tlD
CatID

DcarSlD

DqxrD

SsbTrbLlD
Tll,clD

E-prD
hrscaletD

Cer&rc.rqrc!{D
SFrElitvII

CoD trd.(-.rcsqY D

Stable Information Structure for lnherent Flexibiliry in Information Systems

PX Pcir6nNE
PX anil..tlD

Fl(3
fxt
FX:

Pti T.hlclD

r:lPE3ary::
6 .El PK E.bID

FI(l

FX2
fll:r

T\frIl,

@
Pl<

"ldilfrIfllI;;I
I

,*a Irx: I

nir I

T!pcIl)

R@Frol D EErc[drID
f_r ! rl(t

$rfs.=
CoElr.rrl r, PX PEiEmtI)

FKI FXr

Chapter - 5

VIABILITY

OF THE

PROPOSED

FRAMEWORK

Stable lnformation Srrucrure for lnherent FLexibilirr. in Infurmation Sysrems r

5. VIABILITY OF THE PROPOSED FRAMEWORK

When amount of efforts required to modify a system is out of proportions in

comparison to the change requested, it's a first sign of rigidity in InfoSys. In order to

examine the viability of the framework presented, we have used the aforement.ioned

change-scenarios. Secondly as we address the Bruce Johnson's limits to flexible

design, we prefer to use his criteria for the purpose as given in 5.1. The case study

was designed fur a manner to keep the results impartial and nullify or ar least minimize

the impact of factors affecting ir. The following major porential factors were

considered and kept constant for the said study both for rigid as well as re-engineered

flexible InfoSys:

o DevelopmentEnvironment

o Information System Development Life Cycle

o Skills of Information System Professionals i.e. Architects, Designers, Analysts

and Developers etc.

o Development Tools

o lnformation System Users

o Networklnfrastructure

o Hardware and Computing Machines Used

5.1 Bruce Johnson's Criteria for evaluating

Rigidity/Flexibility of an InfoSys

Illedium Flexibilitr. Next Most Cosdv

We have even further rehned his criteria for validating the effectiveness of proposed

strategies as under:

. Watch for ripple ard avalanche effects involved in change scenarios.

o Count the steps and heaviness of the steps involved

. Generally, steps involved in avalanche are heavier than ripple as many

times as the number of allied,/integrated systems

Stable Information Structure for lnherent Flexibilin'in Information Systems

IJast Most

Cost io Terns of
EIforts

Changcs in 0ueges in Chaoges in
Inforrnation ProgramCode Datal'alues
Stroctnre

5.2 Graphs showing comparative analysis of Rigid / Flexible

Practices

The graphs shown depend on the data collected against change-scenarios before and

after applying the proposed framework i.e. for flexible ER practices against each rigid

ER and also taking expert judgment.

Note: - In following comparative graphs, the x-axis shows the sets of change-

scenarios for both rigid and flexible InfoSys(s) whereas the y-axis depicts the efforts

involved in terms of man-hours for both rigid y and flexibility enabters.

5.2.1 Evaluating Attributed VS Non-Attributed Keys:

The set of changes shown in Table 4-l can be incorporated by various ways. The fact

is that by either way attributed keys takes more efforts to change. This is depicted in

Graph 5- I .

Set of Change Scenarios - 1

scs-1 (A) scs-1(B) scs-1 (c)
Set of change scenarions givne in table 4- l are aDplied on Firsr Pair of Ris-FlexEnablers

Graph 5-l: Atfibured,/Composed Character VS Non-Atrributed, Auto-generated Numeric Keys

5.2.2 Evaluating llalf-baked VS Recursive Nth Level Ilierarchies

The efforts consumed both in rigid and flexible enablers while incorporating

changes shown in Table 4-2 is displayed in Graph 5-2.

Set gf Change Scenarios - 2

9alo
-i€ zo
aC

€> 10
t!

0

!40()^
:830>o
E:E20
aC

EE'oqlo

SCS-2 (A) . SCS.2 (B) SCS-2 (C)
Set of change scenarios givin in table 4-2 are appTii[6n Second pair 6f-i{g--Fle-x'Enablers

Graph 5-2: Half-baked VS Recursive Nrh kvel Hierarchies

StabLe Information Structure for lnherent Flexibility in Information Systems

Rigid

Flex

Chopar I 5 Viabiliry of the Proposed Franevork

.-a
v1 cE6
€E
I{

5.2.3 Evaluating BR via Code VS BR via ER Design

The efforts involved in incorporating the changes shown in Table 4-3 is displayed in

Graph 5-3.

Set of Scenarios - 3
30
25
20
15

10

5

0

igid

scs-3(A) scs-3(B) scs-3(c) scs-3(D)
Set of change scenarios siven in table 4-3 are aoolied on Third Pair of Ris-FlexEnableB

Graph 5-3: Business rules via Code VS Business rules via ERs Desrgn

5.2.4 Evaluating Stiff-Hook VS Flex-Chain Integration

The efforts consumed in incorporating the changes shown in Table 4-4 is displayed in

Graph 5-4.

scs-4 (A) scs-4(B) scs4(c)
Set of change scenanos given in uble 4-4 are applied on Founh Pair of Rig-FlexEnablers

Graph 5-4: Stiff-Hook VS Flex-Chain Inrceration

Note: The effons involved depend on the number of modules integrared with
module where the changes have occurred. However, the maintenance generated
rigid system if ER is changed is always greater than flexibly designed system.

5.2.5 Evaluating Write-Over VS Write-History ERs

The effons consumed both in rigid and flexible enablers while incorporating

changes shown in Table 4-5 is displayed in Graph 5.5.

:l Flex

E20o^
o=
E:c l0
\,, c
EZh- 0

the
by

the

StabLe lnJormation Structure for Inherent Flexibilin. in lnformation Ststems

Chapter # 5 Viability of the Proposed Fmmework

15
o^
E!10
aC
EG)p>
ul

o

scs-5(A) scs-s(B) scs-s(c) scs-5(D)
Set of chanse scenarios given in table 4-5 are aoolied on Fifth Pair of Ris-FlexEnablers

Craph 5-5: Write-Over VS write-Hisrory Enriries

5.2.6 Evaluating Provincial ERs VS Separation of Cross-cutting ERs

The efforts consumed both in rigid and flexible enablers while incorporating the

changes shown in Table 4-6 is displayed in Graph 5.6.

scs-6(A) scs-6(B) scs-6(c)
Set of chaage scenarios given in table 4-6 are applied on Sixth Pair of Rig-FlexEnablers

Craph 5-6: Provincial ERs VS Separauon of Cross-cuning ERs

5.2.7 Evaluating Rock VS Fine-grained Entities

The effons consumed both in rigid and flexible enablers while incorporating the
changes shown in Table 4-7 is d.isplayed in

Graph 5-7.

a Rigid
I Flex

scs-7(A) scs-7(B) scs-7(c)
Set of change scenarios given in table 4-7 are applied on Seventh Pair of Rie-FlexEnablers

Graph 5-7: Rock Entities VS Fine-grained Entiues

!40o^
E5?o> o --
urc20

E=ro
0

40
o^
i\ 30>o
z; 20

€e roql

0

Stable Information Structure for Inherent Flexibil y in Information Svstems

Choptzr # 5 Viability of the Proposed Franework

5.2.8 Evaluating Corpse VS Breathing Entities

The efforts consumed both in rigid and flexible enablers while incorporadng rhe

changes shown in Table z1-8 is displayed in craph 5-8.

o^

>c

&>
E]

30

20

10

0

Y Rigid

Rigid

Flex

scs-8(A) scs-8(B)
Set of change scenarios given in tablc 4-8 are applied on Eight Pair of Rig-FlexEnablers

Craph 5-8: Corpse VS Breathing Entities

5.2.9 Evaluating Divergent VS Convergent Entities

The efforts consumed both in rigid and flexible enablers while incorporating the
changes shown in Table 4-9 is displayed in Graph 5-9.

E Flex

40

30

20

10

0

scs-9(A) scs-9(B)
Set of change scenarios given in table 4-9 are applied on Ninrh Parr of Rig-FlexEnablers

Graph 5-9: Divergent VS Convergenr FKs

5.2.10 Evaluating Bruce Limits to Flexible Design VS Inheritance in ERs

The efforts consumed botlr in rigid and flexible enablers while incorporating the

changes shown in Table 4- 10 is displayed in Graph 5- t 0.

40

30

20

l0
0

scs-10(A) scs-10(B)
Set of change scenarios grven in table 4- 10 are applied on Tenth Parr of Rig-FlexEnablers

Graph 5-10: Limirs ro Flexible Design VS Inheritance in ERs

!o^
>o
.aE

EZ
IJ.]

o^

aE

E3
E]

e Scenarios

Stable lnJormation Structure for Inherent Flexibilio* in lnformation Svstems

G H--

Chq"r # 5 Vfrilq rf frr h"prt

5.2.11 Overall Comparison of Rigidity and Flexibility Enablers

This graph shows the combined efforts consumed by all rigidity enablers for all
scenarios in brown color in comparison to combined efforts consumed by all
flexibility enablers for the same scenarios in blue color.

z tugid

r Flex

Graph 5-l l: Ovcrall comparison of Rigid and Flexible ER Enablers

This shows the viabil.ity of the proposed framework comprising of rigidity enablers

and flexibility enablers in information systems.

5.3 Summary

ln this chapter, viabiliry of the proposed framework is vatidated by using Bruce

Johnson's criteria and sets of change scenarios for each flexibility / rigidity enabler.

Firstly, Bruce Johnson's criterion is articulated. Secondly, the same crirerion is further

refined by taking the steps of ripple / avalanche effect as well as heaviness of the steps

involved into account. The criterion is applied in conjunction with the change case

scenarios narrated in the case study (chapter - 4). The data collected against the

criteria while accommodating the change case scenarios for each rigidity / flexibility

enablers duly authenticated by rwo teams - each compnsing of fifteen professiona.ls.

This data is shown graphically to compare the efforts consumed against each rigidity

enabler and the relevant flexibility enabler. Finally, an overall comparison of rigid and

flexible enablers is depicted through a graph. The graph exhibits that flexibility

enablers takes less effons when implemented than rig.idity enablers. This

demonstrated the viabiliry of the framework.

Stable lnformation Srructure for lnherent FLexibilili in lnformntion S1'stems

Chapter - 6

CoxCLUSION
AND

FuruREWonr

Stable Informotion Structure for lnherent Flexibility in Information Sl,stems

Chaptet 6 Concbsion and Future Work

6. CONCLUSION AND FUTURE WORK

6.l Conclusion

In this thesis, we propose a framework for stability of information sructure

contributes to inherent flexibility in information systems. It shows that this framework

provides a concrete foundation to stop chain of changes i.e. ripple and avalanche

effects including how to address the Bruce Johnson's Lim.its+o-Flexible Design i.e.

Ceiling Effect via introducing inheritance in information structure. This assisted to

maxim2e the area under the curve of inherent-flexibility in InfoSys ard hence

minimizing the area under the curve of inherent rigidity in InfoSys. In other words

extended, a bit more, the limits of flexible design in information systems marked by

Brue Johnson.

However, the framework is limited to lnfoSys and furthermore addresses only

stability of informadon-structure.

6.2 f,essons Learned

Besides the framework for stability of information structure and ultimately flexibility

in information systems, the following lessons were leamt, as a bi-product, through the

case study.

. Always think bigger and generic.

o Don't forget fuore while designing and anticipate potential changes.

o Develop a common integrated information structure for entire system firstly and

may opt for "one-at-a-time" incremental development afterwards.

o Irave running after "finished requirements" - they are never finished as change

is immortal instead try to render lnfoSys flexible enough to accommodate

changes gracefully.

. Dry run your information structure for potentiai changes.

o Always opt for quality of information structure over deadlines whenever you

have option to choose among the two.

o Use m: n association between entities where association information is distant to

klow as it provides one-to-one, one-to-many as well as many-to-many

association.

Stable Inlormation Structure for lnherent Flexibility in lnformation Systems

Chapttr 6 Conclusion and Future Work

r Revisit an entrty and revise it to fit the continuing changing requtemens.

o Always accord priority, while designing, to flexibility over functionality, as

focusing functional requirements only work against flexibility.

o Flexible ER design, renders programming complex, don't be afraid as it is one-

time activity and let you enjoy all the times to come.

o Like functional requirements are the user's business, infusing flexibility, most

of the times, is software designer's concern.

o Transforming a legacy rigid InfoSys into flexible one is manifold harder than

engineering flexible system for the first time.

. Testing phase should necessarily include ensuring the flexibility characteristics

along with testing business features.

o ln MIS setup, creation of information strucrures i.e. ERs must be centrally

controlled instead of letting developer play havoc with information system

foundation.

6.3 Future Work

TOP is always vacant, it's very rare when there comes an end in research of any freld,

unless some new or more attractive filed is introduced which gasp the features of

parent or child field. The future work includes:

o Balancing flexibility in information systems with other quality atrributes e.g.

performance, u sability etc

o CMMI like framework, FMMI (Flexibility Maturity Model for lnformation

Systems) -Defining Levels, Key Flexibility Areas,- Generic Goals / Generic

Practices, Specihc Goals / Specific Practices, SCAMPI like flexibility

assessment methodology for information systems.

. lmpact of flexibility on quality ofdata in IS.

6.4 Summary

This chapter concludes overall thesis highlighting that the proposed framework

provides a concrete foundation for stable information srructure and in turn contributes

to flexibility of information system, on one hand, future work is hightighted

subsequently for researchers. On the other hand, lessons learned while carrying out

the case study, have been shared for practitioner's community.

Stable lnformation Structure for Inherent FlexibiliO in lnJormation Systems

Chapler 7 Reterences

REFERENCES

Note: The references are arranged alphnbetically in order of the first character of
last namz offirst author and then by year of publication.

[1] A. AlKalbani and K. Niguyen, "Designing flexible business information system

for modem-day business requirement changes," in Proc. of 2nd Intemational

Conference on Software Technology and Engineeing, vol. 2, Oct 2010, pp. 112-

118,

[2] C. Ackermann, M. Lindvall and G. Dennis, "Redesign for flexibiliry and

maintainability: A case study", in Proc. of the European Conference on Software

Maintenance and Reengineering, IE.EE Computer Society, Mar 2@9, pp. 259-

262.

[3] K. Andresen and N. Gronau, "Adjustment Strategies for Managing

Unanticipated Changes in Software Development", in Proc. of

Wirtshafiinformn Iift, Berlin, Germany, Jan 2009, no. 12, pp. 717-'126.

[4] E. Byme, "Using action research in information systems desiga to address

change - A south African health informalion system case srudy", in Proc. of

SNCSIT, pp. I 3 1-141, 2005.

[5] C. Coronel, S. Morris and P. Rob, Database Systems - Design, Implementation

and Management, 9th ed, Cengage lraming, 20 Channel Center Street Boston,

MA 02210 USA, 2010.

[6] C. Chen and P.C. Chen, "A holistic approach to managing software change

impact", Jountal of Systems and Software, vol. 82, no. 12, pp.2O51-2067,

Jun 20O9.

[7] A. Eden and T. Mens, "Measuring Software Flexibility", IEEE Software, vol.

153, no. 3, pp. 113-126, Jun 2006.

[8] J. Gebauer and F. Schober, "Information System Flexibility and the Cost

Efficiency of Business Processes", Journal of the Association for Information

Systems, vol. 7, no. 3, pp. 122-147, Mar 20O6.

[9] W. Golden and P. Powell, "Towards a Definition of Flexibility: in Search of the

Holy Grail?" The International Joumal of Management Science, vol. 28, no. 4,

pp.373-384, Aug 2000.

Stable Information Structure for Inherent Flexibility in Infornation S\stems

Chapter 7 References

[10] O. Hollschke, J. Rake, P. Offermann and U. Bub, "Improving Software

Flexibility for Business Process Changes", Business & Information System

Engineering, vol. 2, no. 1, pp. 3-13, Oct 2010.

[11] L. Jacome, T. A. Byrd and L. W. Byrd, "An Examination of Information

Systems Flexibility", International Joumal of Information Processing and

Manoqement, vol. 2, no. 2, pp. 69-77, Apr 2011.

[12] B. Johnson, W. Woolfolk, R. Miller and C. Johnson, Flexible Software Design -
System Development for Changing Requirements, "t ed, Boca Raton, Auerbach

Publications, 2005.

[3] B. Johnson and W. Woolfolk, "Generic Entity Clouds: A stable Information

Structure for Flexible Computer Systems", System Development Mangement,

Oct 2001.

[14] B. Johnson, W. Woolfolk, and P. L.igezinski, "Counterinoitive Management of

Information Systems Technology", MagaTine Business Horizon, pp. 29-36,

Apr 1999.

[15] M. Khan, W. Nisar, E. Munir, W. Anwar and I. Ali, "Deployment Strategies for

a Reengineered Information System in Context of l.egacy System", Research

Journal of Applied Sciences, Engineering and Technologl,, vol. 4, no. 3, pp. 178-

185,2012.

[16] L. King and K. Lyytinen , " lnformation S)rstems - The State of the Field', lohn

Wiley and Sons Ltd, The Atnum Southern Gate Chichester, West Sussex PO19

8SQ, England,2006, ch. 1, pp. l-15.

[17] W. Kadir and P. l-oucopoulos, "Relating evolving business rules to software

design", Joumal of System Architecture, Manchester UK, vol. 50, no. 7 pp.367-

382,2004.

[18] E. Kirda, M. lazayei, C. Kerer and M. Schranz, "Experiences in Engineering

Flexible Web Services", IEEE Computer Society,vol.8, no. 1, pp.58-65,2002.

[19] F. Ire and J. Gebauer, "The Role of Is-Flexibility for the Management of an E-

Procurement System: A Case Study", in Proc. of Twelfth Americas Conference

on Information Systems (AMCIS), Acapulco Mexico, Aug 2006, pp. 1895-1901.

[20] R. Molero, M. Barry, H.A. Hunter and T. Shunnar, "Flexible Darabase

Structures for Land Records", in Proc. of the FIG Congress - Facing the

Challenges - Building the Capacity, Sydney Australia, , Apr 2010, pp. 1-18.

Stable lnformation Structure for lnherent Flexibility in InJormntion Systems

Chrptur? nq"r"rr^

[21] H. Mubarak, "Developing Flexible Software Using AgenrOriented Software

Engineering", IEEE Sofiware, vol. 25, no. 5, pp. 12-15, 2008.

[22] S. Mary, "Writing Good Software Engineering Research Papen", IEEE

Computer Soc.iety, in Proc of the 25'h International Conference on Software

Engineering, IEEE Computer Sociery,20O3, pp. 726-736.

[23] R. Miller, B. Johnson and W. Woolfolk, "Flexible information system, easy to

change", Educause Quarterly, vol. 25, no. 3, pp. 44-51, 2N2.

[24] S. Oliver., Helge K. and Volker W., "How to Make Software Softer - Designing

Tailorable Applications", \n Proc of the 2nd conference on Designing Interactive

Systems: Processes, Practices, Methods, and Techniques, ACM New York, NY,

usA, 1997.

[25] T. Pusalti and M. Sanjay, "A discussion on IS and Software Measurement

Terminology - Flexibiliry as an example", \n Proc. of the International

conference on Computational Science and lts Applications, IEEE Computer

Society, Mt 2010, pp.250-254.

[26] S. Peng, L. Shen, H. Liu and F. Li, "User-oriented Measurement of Software

Flexibility", in Proc. of the WorA Congress on Computer Science and

Information Engineering, IEEE Computer Society, ,2@9, pp.629-634.

[27] X. Qiu, Li. Tang, Z. He and J. Chen, "The development of procuremenr

management information System based on workJlow technology", in Proc. of

the World Congress on Computer Science and lnformation Engineering, Lns

Angeles, CA, vol. 3,2W,pp 470474.

[28] A. Rashid, W. Y. C. Wang and F. B. Tan, "Information Systems Maintenance: A

key driver of Business Process lnnovation", itr Proc. of the Sixteenth Americas

Conference on Information Systems, Lima Peru, Aug 2010, pp. l-9.

[29] D. Robert and L. Devin, "Weighing the Benefits and Costs of Flexibility in

Making Software: Towards a Contingency Theory of Determinants of

Development Process Design", Information Systems Research, vol. 20, no. 3,

pp.462477, Sep 2009.

[30] P. Runsen, M. Host, Guidelines for conducting and reporting case study research

in software engineering, Empirical Software Engineering, vol. 14, no.2,
pp. 131-164,2008.

Stoble Information Structure for lnherent Fletibility in lnformation S_"-stems

Chaprer 7 Ref*ences

[31] F. Schober and J. Gebauer, "How Much to Spend on Flexibility? Determining

the Va.lue of Information System Flexibility", Decision Support Systems, vol. 51,

no. 3, pp. 638-@7, Jun 2011.

[32] S. Truren, Improving software flexibility in a smart business network, M.S.

thesis, Faculty of Technology, Policy and Management Section Information and

communication Technology, Delft University of Technology, Netherland, 2010.

[33] W. Tellis,, "lntroduction to case study", The Qualitative Reporl [On-line seria]1,

vol. -J, no. 2, hl 1997 . (http://www.nova.edu/ssss/OR/OR-l-2/tellis Lbrml)

[3a] Wikrpedia, The Free Encyclopedia (Online, Mar 2Ol2),

(http://en.rvikipedia.org/u,ikrA{ain Page).

[35] M. Wemer, C. Loebbecke and R. Baskerville, "Moderating Effects of

Requirements Uncertainty on Flexible Software Development Techniques," in

Proc. of the 5'h Intemational Research Workshop on IT Project Management

(IRWITPM), St. Louis, Missouri, Dec 2010, pp. 91-106.

[36] T. Wang, J. J. Pei-Hung and G. Klein," The effects of change control and

management reviews on software flexibility and project performance",

I nfo rmat ion and M ana g e ment, no. 45, pp. 438443, 20[J,8.

[37] B. Weber, M. Reichen and S. Rinderle-Ma, "Change pattems and change

suppon features - Enharcing flexibility in process-aware information systems,"

Data & Knowledge Engineering, vol. 66, no. 3, pp.438466,20[,8.

[38] V. Wulf, V. Pipek, M. Von, "Component-based tailorability: Enabling highly

flexible software applications", International Journal of Human Computer

Interface, vol.66, no. 1,pp. 1-22, Alg2OO7.

[39] W. Woolfolk and B. Johnson, "Information Free Identifiers - A key to flexible

information systems" Ddra Base Management, Au'g2001.

[40] F. Walter, "Should Computer Scientists Experiment More'!" IEEE Computer

Society,vol.3l, no. 5, pp.324O, May 1998.

[41] W. Woolfolk, P. Ligezinski and B. Johnson, "The Problem of the Dynamic

Organization and the Static System: Principles and Techniques for Achieving

Flexibility," in Proc. of the 29th Annual Hawaii Intemational Conference on

System Sciences, Wailea, HI, USA, Jan 1996, vol. 3, pp. 482491.

[42] D. Z.eng and, L. Ztao, "Achieving Software Flexibility via lntelligent Workflow

Techniques" rn Proc. of the 35th Hawaii International Conference on System

Sciences, IEEE Computer Society, Jan 2AO2, pp.606 - 615.

Stable Information Structure for Inherent Flexibilin* in lnformation Systems

Chcck-list StruchEe Anner - "A"

Checklist for Valuating Stability of Information-Srructure.

Remarks

2 i Are of character or non-numeric?

6 lDo transactional tables allow updating the attributes Y/N
: without the old values as historic information?

t ils any information of hierarchical naturc is not
as recursive?

Can the basic association rules of business be changed j Y/l.l
by end-users? If the system enforces the rule e.g. one
person/position or one supervisor can be changed to
multiple positions, supervisors etc without i

Are the business-rules are designed as information j YA.i
jsructure and business rules data stored as records in i

i inforrnation structure to the frne-rrained level. i

The design of information structurc depics topdown I Y/N
or bottom up approach i.e. each information stnrcture is
in its

data necd to be entered more than once?

Do you see any entity that seems to be rock and can be i YA.l
I crushed into more

I Z) i Are there more than one FKs which can be minimized i V/l.I
, I to one by adding table name as attribute?

' 1,: \

'-t

Stable lnlormation Structure for Inherent FleribitiD, in lnfomation Sysrems

1

\.

