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Abstract

The present research develops Bayesian and non-Bayesian estimators for the parame-

ters of Exponentiated Pareto distribution (EPD) based on cornplete samples. The

Bayesian estimators of EPD cannot be obtained in closed form. For this purpose,

it is recommended Lindley's approximation to comptrte the approximate Bayesian

estimators using Gamma and Levy priors as informative priors. As for the case of

non-informative priors, we utilize uniform prior. This is done with respect to symmet-

ric loss function (Squared Error) and asymmetric loss functions (linear exponential

(LINEX). General Entropy and Precautionary). The Bayesian esttmators are then

compared with their maximum likelihood estimators (MLEs) for complete samples

using simulation study.

As for the case of complete samples, it is concluded thair Bayesian estimators

perform better than MLEs in terms of mean squared error (MSEs). However, MSEs of

Bayesian estimators are notably smaller than other estimators. Also for large sample

size the Bayesian estimators and MLEs become closer in terms of MSEs. Further, the

performances of Bayesian and MLEs become better when the sarnpie size increases.

Generally, the Bayesian estimators under different loss functions are closed to the true

values of parameters of EPD by increasing sample size. A Molte Carlo simulation

study is carried out to compare the performances of different r4cthods. The real data

set is also provided to illustrate the results for complete sampl,:s data.

For censored samples, Type-II censoring scheme is used. Under this censoring

scheme, different sample sizes and percentages of failures are fixed for calculating the

MLEs and their 90% and 95% confidence intervals (CIs) for both parameters of EPD

From the results of Typ+'II censoring, it is concluded that MSljs of MLEs for both

shape parameters of EPD decreases due to increasing sample size. It is also observed



1\f th* the leng*r of CIs becomes narrow by increasing simple size for fxed level of Tlpe-II censoring. This

indicated that the MLEs are consistent and approaches true puameter values. Furttrcr, it is seen that

lengtr of Cls becomes nalrowby increasing percenages of failtres (r) and sample sizes (z) this indicated

that ttre accuracy of the results. Furthermore, results of MLEs are calculated &rough simulation method.

A real daa set is also used for illustrationto comptre the MLEs for ce,lrsoed sa4les.

Kcywords: Exponentiated Pueto distributiorl Ma:rimum likelihood estfonators, Bayesian

estimators, Lindley's approximatio,n, Tlpe-II censoring LINEX loss function, SArared Error loss

finrctioq General Entropy loss functiorl Precautionary loss functiorL Type-II censoring.
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Chapter 1

Introduction

The Exponentiated Pareto distribution (EPD) was introduced by Gtpta et al.

(1998) in the same settings that the Generalized Exponential distribution extends the

Exponential distribution. They showed that the EPD can be use,l quite effectively

in'analyzing many lifetime data. EPD can be defined by raising the cumulative

distribution function of a Pareto distribution to a pobitive power and used in hfe

testing experiment, when units are lost from that experiment while they are still alive

e.g., testing of experiment of cancer patients. Cummulative distribution function

(CDF) of EPD is defined as:

F(r,a,d) : [1 - (t + r,)-"]e, a,0 > 0,

where o and d are both shape parameters. The probability density function (PDF) is:

f (*,o,0) : o 0ll - (1+ ra)-"]0-t 1t + rn)-("+r) a,0 > 0.

Moreover, survival function of EPD can be expressed as:

S(r) : 7 - F(r,a,0) :1 - [1 - (1 + rt)-"]o, a,0>0,

g

(1)

(2)



\-

when d : 1 then equation (2) becomes,

f (',*,1) : o (1 +zn;-("+')' '> 0, a ) 0'

which is Standard

h(r,a,0) --

Pareto distribution of second kind. And ahazarJ function is:

(4)

(5)a d [1 - (t + rn)-"](0-1) (l +.rn)-('+t)
1-[1 -(t+r)-')o

v

EpD is widely used for skewed data, modeling and reliability theory. It is also used

for analyzing the skewed data and a model for the distribution of income. Purther, it

has also played a vital role for investigations of population sizes, accurance of natural

resoulces, insurance risks and business failures. Applications of the EPD in various

fields are given in Green et al. (1994) and Zaharim etal. (2008).

several estimation methods have been proposed to estimat',' the parameters of

life time models. Selection of suitable method to estimate the parameters of one life

time model might not be necessarily as efficient and in predicting for another model

is given by Al-Baidhani and sinclair (1987). The method of ma:cimum likelihood is

widely popular in terms of theoretical prospective and the least squares method is

easier then other methods computationally'

Afify (2010) obtained Bayesian and classical estimators for two parameters of EPD,

when samples are available from complete samples, Type-I and Type-II censoring

scheme. Bayesian estimators were developed under sELF as well as LINEX loss

function by taking non-informative type of priors. Furthermore, comparisons are made

for the performance of estimators on the basis of their simulate<i risks obtained under

SELF as well as LINEX loss function. In addition, differeni; shapes of EPD can be

observed using different values of a and 0 from the following figures.Y
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Abstract

The present research develops Bayesian and non-Bayesian estimators for the parame-

ters of Exponentiated Par'eto distribution (EPD) based on cornplete samples. The

Bayesian estimators of EPD cannot"be obtained in closed form. For this purpose,

it is recommended Lindley's approximation to compute the approximate Bayesian

estimators using Gamma and Levy priors as informative priors. As for the case of

non-informative priors, we utilize uniform prior. This is done with respect to symmet-

ric loss function (Squared Error) and asymmetric loss functions (lineer exponential

(LINEX), General Entropy and Precautionary). The Bayesian eEtimators are then

compared with their maximum likelihood estimators (MLEs) for complete samples

using simulation study

As for the case of complete samples, it is concluded tha-t Bayesian estimators

perform better than MLEs in terms of mean squared error (MSEs). Hoi,ever, MSEs of

Bayesian estimators are notably smaller than other estimators. Also for large sample

size the Bayes.iln estimators and MLEs become closer in terms of MSEs. Further, the

performances of Bayesian and MLEs become better wheh the sampib size increases.

Generally, the Bayesian estimators under different loss functions aie closed to the true

values of parameters of EPD by increasing sample size. A Monte Carlo simulation

study is carried out to compare the performances of different nlethods. Thc real data

set is also provided to illustrate the results for completc sampl,js data.

For censored samples, Type-II censo?ing scheme is used. Under this censoring

scheme, different sample sizes and percentages of failures are fixed for calculating the

MLEs and their 90% and.95% confidenie intervals (CIs) for both pa,rameters of EPD.

From the results of Type-II censoring, it is concluded that MSIjS of MLEs for both

shape parameters of EPD decreases due to increasing sample size. It is also observed

t4



? that the leng& of cls becomes narro\^, by increasing simple size for fxed revel of rype-Il censoring' This

indicatedthattheMLEsareconsistentandapproachestrueparametervalues.Fudher'itisseenthat

length of cls becomes narrow by increasing percentages of failtrres (r) and sarrple sizes (n) this indicated

that ttre accuracy of the results. Furthermore, resurB of MLEs are calculated througlr simulation method'

ArealdatasetisalsousedforillusfiationtocomparetheMLEsforcensoredsarnples.

Keywords: Exponerrtiated Preto distnbution, Malrimum likelihood estirnators, Bayesian

estimators,Lindley,sapproximatiorr,TypeJlcerrsoringLlNExlossfurrctiorr.,SquaredErrorloss

furrctioru General Bnuopy loss firnctiorl Precautionary loss firnction, Type.II censoring.
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The shape parameters of distribution determines the shape of distribution function.

Shape parameter defines how our data is distributed but does not affect the location

and scale of our distribution. Figures t(a)-t(d) shows the effect of the different values

of the shape parameters of EPD and it is observed from figures 1(a)-1(d) that shapes

of graph of CDF, PDF, Survival function and Hazard.function are mostly same when

a:1,1.5 and 2 and,0:1.5 and 2 but different bend in shapes when cv: 1 and 2

and d : 1.5. Hence, it is concluded that when there is change in values of a then this

highly effect on shapes of graphs of CDF, PDF, Survival and Hazard function when a

and d are 1, 1.5 and 2.

Hossain and Zimmer (2003) studied about the comparison of estimation method

for complete and censored samples based on Weibull distribution Similarly. Hossaiu

and Howlader (1996) gave comparison about least square estimalors and the method

of MLEs for complete samples. Moreover, The estimators of the parameters of EPD

were obtained by Shawky and Abu-Zinadah (2009) under different estimation methods

for complete sample case.

A great deal of research has been done on estimating the parameters of the EPD

using both classical and Bayesian techniques. Gupta et al. (1998) strowed that the

EPD can be used quite effectively in analyzing many lifetime data.. Moreover, Pandey

and Rao (2009) also studied about the shape parameters of the Generalized Pareto

distribution (GPD) by using quasi, inverted gamma and uniform prior distributions

using LINEX loss function, PLF and GELF.

As expected the Bayesian estimators of the unknown parameters cannot be obtained

in closed forms so, we suggest Lindley's approximation to compute the approximate

Bayesian estimators of EPD. Hassan and Basheikh (2012) used Bayr.'sian and non-

Bayesian estimation of reliability of S-out-of-K system. They assurn*d both stress and

strength had an EPD with common and known shape parameter and studied about

the Bavesian estimation under SELF and LINEX loss functir.,n by using Lindley's

\r'
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&at the length of CIs becomes narrow by increasing simple size for fixed level of Type-II censoring. This

indicated that the MLEs are consistent and approaches true parameter values. Further, it is seen that

length of Cls becomes narow by increasing percentages of failures (r) and sample sizes (n) this indicated

that the accuracy of the results. Furthermore, resul8 of MLEs are calculated through simulation method.

A real dak set is also used for illustation to compare the MLEs for censored samples.

Keywords: Exponentiated Pareto distribution, Maximum likelihood estimators, Bayesian

estimators, Lindley's approximation, Tlpe-II censbring, LINEX loss fi.rnction, Squared Error loss

function, General Entropy loss function, Precautionary loss firnction; Type-II censoring.
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Chapter 1

r*,

Introduction

Th.'E*porentiated Paieto tlistribution (EPD) was.introduced by Grpta et al.

(1998) in the same settings that the Generalized Exponential distribution extends the

Exponential distribution. They showed ttat tfre'ppD can be use,i quite effectively

in analirzing many lifetime iaia. bPD .a, be defined by rai.iing the cumulative

distribution function of a Pareto distribution io a positive power and used in life

testiig experiment, when units are lost fiom that experiment while they are still alive
il

e.g., testrng ot experiment'of bancer patients. Cummulative distii6ution function

(CDF) of EPD is defined as: L

where o'and 0.are both shape parameters." The probability density function (PDF) is:

f(r,o,0) = 
o 0 [l -(1 +rn)-"]o- t' (l+rn)-("+t), r ] 0, a,0 > 0. (2)

Moreover, survival function of EPD ca, be expressed as:

(1)

-=\
tB'

i
S(r) : 7 - F(r,a,0) :1 - [1'- (t + r;)-')0,

'!!, r i

!

r)0, a,0>A, (3)
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The shape parameters of distribution determines the shape of distribution function'

Shape parameter defines how our data is distributed but does not affect the location

and scale of our distribution. Figures 1(a)-1(d) shows the effect of the different values

of the shape parameters of EPD and it is observed from figures 1(a)-1(d) that shapes

of graph of CDF, PDF, Survival function and Hazard function are mostly same when

a:1,1.5 and 2 and 0:t.5 and 2 but difierent bend in shapes when o:1and 2

and d : 1.5. Hence, it is concluded that when there is change in values of a then this

highly effect on shapes of graphs of CDF, PDF, Survival and Hazard function when a

and 0 are 1, 1.5 and 2.

Hossain and Zimmer (2003) studied about the comparison of estimation method

for complete and censored samples based on Weibull distribution. Similarly. Hossaiu

and Howlader (1996) gave comparison about least square estimators and the method

of MLEs for complete samples. Moreover, The estimators of the parameters of EPD

were obtained by Shawky and Abu-Zinadah (2009) under different estimation methods

for complete sample case.

A great deal of research has been done on estimating the parameters of the EPD

using both classical and Bayesian techniques. Gupta et al. (1998) showed that the

EPD can be used quite effectively in analyzing many lifetime data. Moreover, Pandey

and Rao (2009) also studied about the shape parameters of the Generalized Pareto

distribution (GPD) by using quasi, inverted gamma and uniform prior distributions

using LINEX loss function, PLF and GELF.

As expected the Bayesian estimators of the unknown parameters cannot be obtained

in closed forms so) we suggest Lindley's approximation to compute the approximate

Bayesian estimators of EPD. Hassan and Basheikh (2012) used Bayr-'sian and nOn-

Bayesian estimation of reliability of S-out-of-K system. They assum':d both stress and

strength had an EPD with common and known shape parametet and studied about

the Bayesian estimation under SELF and LINEX loss functicrn by using Lindley's

I

I

I

i
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in Chapter 3. Furthermore, Chapter 4 presents, results and discussion. Finally,

summary, conclusions and suggestions are given in Chapter 5.
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Chapter 2

Review of Literature

Lot of research work is already being conducted relevant to this objective of re-

search on EPD with different loss functions. The most related review of literatirre is

as under:

Singh et al. (20L3) proposed MLEs and Bayesian estimators of parameters of EPD

under GELF and SELF for Progressive TlpeII censored data with binomial removals.

The method of MLEs and corresponding Bayesian estimators were compared in terms

of their risks based on simulated samples from EPD.

Shams (2013) introduced Kumaraswamy Generalized EPD and analyzed that this

distribution could have a decreasing and upsidedorun bathtub failure rate function

depending on the value of its parameters. He included some special submodel like

EPD and its original form. Some structural properties of the proposed distribution

were studied including explicit expressions for the moments. F\rrther, he provided the

density functions of the order Statistics and obtained their moments. Also MLEs was

used for estimating the model parameters. Moreover, the observed Fisher information

matrix was also found for above mentioned distribution. The real data was provided

to illustrate the theoretical results in the complete data.
v
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Al-Hussaini and Hussein (2011) obtained Bayesian predictive probability density

function when the underlying population distribution was Exponentiated by tak-

ing subjective prior. The corresponding predictive survival function was obtained

and then used in constructing predictive interval by taking one and two sample schemes.

Ghafoori et al. (2011) considered some well known and useful models for obtaining

prediction bounds as well as Bayes predictive estimations under SELF for the S-thorder

statistic in a future random sample drawn from the parent population, independentlv

and with an arbitrary progressive censoring scheme.

Ali et al. (2010) obtained the method of MLEs of the threshold parameter B

with known parameters o and c for the EPD. Further they obtained the MLEs of

the tail probability of the EPD. Finally. they considered MLEs of reliability in two

independent EPD.

Afify (2010) discussed Bayesian estimators and MLEs for two parameters of EPD

when samples were available from complete samples. Type-I and Type-II censored

samples. Bayesian estimators were developed under SELP as well as under LINEX

loss function by using non-informative type of priors for the parameters of EPD. The

performance of the proposed estimators wa.s compared on the basis of their simulated

risks obtained under SELF as well as under LINEX loss functiorr.

Abu-Zinadah (2010) applied Bayesian and the methods of MLEs method for es-

timating the parameters of EPD. He used reliability and hazard functions of the

model under complete samples and Type-II censored samples. He also used Lindley's

approximation for obtaining the Bayesian estimators under SELF and LINEX loss

function.

I'

tP
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Chapter 3

Materials and Methods

In this chapter,'we derived MLEs, observed Fisher information matrix and different

Bayesian estimation methods using Lindley's approximation taking informative and

non-informative types of priors for complete samples. As for the case of censored

samples, the MLEs and CIs for the parameters under Type-II censored are derived'

3.1 Classical Dstimhtion of parameterS

In this estimation approach, parameters are considered to be fixed and unknown

quantity. Hassan and Basheikh (2012) compared the MLEs with other classical

estimation methods and concluded that MLEs is the best method among others' AIi

et al. (2010) also concluded that MLEs is the best method as compared to other

classical estimation methods.

3.1.1 MLEs for comPlete samPles

suppose that a1, fr2, fr3, , rn be the set of n random lifetimes whose lifetimes

have EPD with parameters a and 0. The likelihood function of equation (2) is:

n

L(a,0) : an 0n ff t, - (1 + r;)-"]0-'ff (1 + zn;-("+r) '

'"i=\ i=L.

(6)

(--
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The logJikelihood function is:

tos L(a, 0) : ntoe@) + n log(0) + (e - Di a* f , - t 1 * r; ) 
-') - (a+ 1 ) f tog( t + r1 ),

i=l

where

(7)

(11)

?loeL(a,0) : ? + (0 _ t\$ (t +zi)-"loe(r + ct)
0a 0,\- _,? 

1_(1 1*n)_" ! log(r + ni),
d=1

(al

(e)#+ : ] +!log(r - (1 + r)-").0'z-i=l

The MLEs of o and 0 say d and 0 can be obtained as the solution of

z*tt-1)Dffi trog(l 
+rt) :0. (10)

i:.

and

; -Dlos(l - (1 + ro)-") : e.

| _a2ulsr,!a,q _o2tosL(a,o)
I(o.e\: | ---u"=- ---6dF-

[ _ A'zqs4(o,0) _02tosL(a,o\
\ a0 Eo dF-

?logL(a,O) rz . f

u

As normal equations (10) and (11) cannot be expressed in closed form, therefore for

this purpose we use Newton-Rophson method to compute MLEs. The Observed Fisher

information matrix is obtained by taking the second and partial derivatives of (8) and

(9) with respect to o and 0. Therefore, the observed Fisher information matrix may

be written as:

F

15



where

02log L(a,0) -(0-1)t
i=1

(1 +za)-"(log(1 +r;))2
(1 - (1 -t r;)-af

(12)

(13)

(14)

0a2

02log L(a,0)

a?

n
02'a02

02 log L(a, 0) _ 02 log L(a, 0)

0a 00 00 0a

\y

3.2 Bayesian Estimation

The fundamental difference between Bayesian and classical estimation is that the

parameters are considered random variables whereas these are fixed and unknown

quantities in classical estimation.

In this section, we developed the Bayesian estimators of EPD based on complete

and censored samples under different loss functions by taking informative and non-

informative priors. In order to obtain the Bayesian estimators) we assume that the

parameters a and 0 are random variables and independently distributed. For Bayesian

estimations we need prior distributions for the parameters. For obtaining the Bayesian

estimators, we mainly used LINEX loss function, GELF, SELF and PLF by taking

Gamma, Levy and Uniform priors.

3.2.L Prior distributions

The prior knowledge of parameter before the data collected is changed into quanti-

tative form. Such a quantitative form is called the prior distribution. The parameters

of prior distribution are acknowledged as hyper parameters generally represented by

small English alphabets. The selection of prior distribution is an important part of

Bayesian statistical inference because the selection of an inappropriate prior may leads

16
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to the misleading results. The prior distribution is multiplied by likelihood function

then normalized to obtain the posterior distribution of given parameters which is

elementary tool in Bayesian statistical inference to compute the Bayesian estimators.

3.2.2 Types of prior distributions

The prior distribution have commonly classified into two types: informative prior

(IP) and non-informative priors (NIP). For the selection of informative priors we

considered Gamm'a and Levy priors and for non-informative type of priors we take

Uniform prior.

3.2.3 Gamma prior (GP)

A random variable X is said to have a gamma distribution with the shape parameter

a > 0 and the scale parameter 0 > 0, if X has the following probability density functibn

V
f (r,o,q: #, *a-1"-oa, a, o > o, ( 15)

and it is denoted as X - gamma (o,0).

Let a and 0 are the'independent GP distributions as Gamma(o1, fu) and Gamma(a2,b2),

then joint prior distribution for a and d is:

r(a,0) o( aor -l e-h q goz-t 
"-bz 

o 
, (16 )

where arr a2t D1 and bz xe knonrn and non-negative. Also log function and derivatives

of log function with respect to a and d are given in Appendix A.

t7
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3.2.4 Levy prior (LP)

The Levy distribution is defines as:
(]
-

f (o'd) : ,f * o-3/2 e-d/2e, a, o > o,

joint prior distribution for a and 0 is:

r(a,0) x a'/' g-s/2 ,-al2o,

( 17)

(18)

and the log function and derivatives of log function with respect to a and d are defined

in Appendix A.

3.2.5 Uniform prior (UP)

According to Laplace (1812) the UP is the most widely used non-informative prior.

Bayes (1763) give.the knowledge of UP. In the case of restricted parametric range,

UP are easy to recognize. For the parameter 0, with range 0 to 1, the UP is:

n(0):1, 0<d<1.

For the parameter range 0 to oo it is:

r(0) aL, 0 < d < oo.

And fbr the paiameter range -oo to oo, the UP is:

( 1e)

( 20)

r(0) a l, -m<g( (21)
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here (20) and (21),are also knowir as improper priors and defined in Appendix A.

3.2.6 Posterior distribution

We can calculate posterior distribution by Density Kernal

In Density Kernal method we just take product of likelihood

marginal distribution of a and d respectively which is taken

General form of this method is as under

' P(" lr) o L(a,O\x f (a),

P(0lr)c;-L(a,0)xf(0).

and Posterior method.

function of EPD and

from GP, LP and UP.

(22)

(23)

(25)

Posterior method can be defined as it is the ratio between product of marginal

distribution of a parameter which is taken from any prior distribution and likelihood

function of any distribution and integral of product of prior distribution and Iikelihood

function of any distribution as:

P(alt): P(a)L(r, a)
(24)

P(0lr):

ff, P(a)L(r,a)

P@)L(r,0)

Fa@mc

3.2.7 Lindley's approximation 
r

Lindley's approximation firstly familiarized by Lindley's (1980) for computing

the approximate Bayes estimators. As expected the Bayes estimates of the unknown

parameters cannot be obtained in nice closed forms as:

19
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so we suggest Lindley's approximations to compute the approximate Bayes estimates

of the unknown parameters of EPD. The general form of this procedure is:

.f 2 , 
1

e: B(4, Al * i LII 
u;irii * LsoBtz* LssB21]- L21cp+ Ltrc2t)+wtAt2rwzAzt,

where detail of all terms and explicit expressions of this procedure are provided in the

Appendix B.

3.2.8 LINEX loss function

The LINEX loss function was firstly introduced by Varian (1975) and this loss

function is expressed as:

l,(A) x exp(kA) +kA-7,k+0, (27)

where L : A - 0 is scalar estimation. Under this loss function the Bayes estimator'of

0 is given as:

0", * r* : -i1os lDok-k \) . ( 28)

The sign and magnitude of shape parameter k reproduce the direction and degree of

asymmetry respcctivelv If k > 0 the oveiestimation is more serious than underestima-

tion. If ,k = 0 then LINEX loss is approximately equal to SELF and therefore almost

symmetric. we will assume that a and d are independently distributed.

20
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Bayesian estimators of a and 0 under LINEX loss function using GP and LP

respectively are:

Arr"o:

(1-(1*z,)-a;s k e-xA,

-i.* [,--, . ;{
(T.(.,-')E

(k' e-ka) rn

(1 + (1 * ri)-a) (log(1 + ri))3 (1 + ri)-a

ABLLP: -i'o* 
["--' 

. ]{

(T.ta-'rI

1k2 e-ka) r,

)o,urta
,,*(fffi)rr*"-ou),,,-G)(ke-ka)r21

!-

""') -;(X) ,u"--u)',,-;(+) ,*'--') ",],

21,



(31)

(32)

(k e-k a) r!,

,$

trr)] ,

(33)

)

)
-k

(B k e-k a) ny

Bayesian estimators of o and

ABLUP:

0,,,,:

0 under LINEX loss function using UP are:

(k2e-k a) 
n1

(1 + (1 + r;)-a)(los(1 + rr))3(t + n)-a

",*(t

-i'",["--^.]{

(T.(.,-')I

@ 
(k e-ka) r21

v
*

lr
(k' e-ko) r22

(r + (r + ri)-a)(loe(1 + rr))3(1+ rn)-'\

),* "

? (1 - (1 * r)-a1zz=t

(k 
"-re) 

r1 rrz

a)

-r),

1+

-)-")

)

{
i

lrt
(log

*r

(1

-a

T

(r-
t'*n)

T:
(1 ))'fr.i

T.(r

-i ,"* [,--' * ]{

(#.(.,-')I

@Qe e-ka)r|,

('u"".'"t))]Ii+h,v
(34)
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3.2.9 General Entrbpy Loss F\rnction (GELF)

This loss function clearly estimates the natural parameter which is the canonical

form of the exponential family. The Calabria aird Pulcini (1996) defined GELF as:

r (e,a): , ((3)-

The constant involved in (35), is its shape para"meter. It reflects disappearance from

symmetry. When k > 0, it considers positive error to be more serious than negative

error and converse for k < 0.

The Bayes estimator A of 0 under GELF is given by

i,r" : ler1r1-*1-i (s6)

provided Ee@)-r exit and is finite. Bayesian estimators'of a and g under GELF using

GP are:

QBGEGP:
t^

L"i
d-l

-!r{rW* 1) 6-(r+z) ,,, - (# .
+ (1 + z1)-a)(log(1 + z4))3(1 a *n)

(35)- k,n (;) ,)

1)

66-(*i); *-(T)
(o-

t),x
(1-(1+zt)-d)3

23
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Bayesian estimators of o and 0 under GELF using UP are:

L

dacoup: 
[r-* 

.i{ar*.1) 6-(t+z) ,,, - (T .(0 - r)

"f ){*r-,0*')),?,-G),=l

x(k6_(,t+r))rz,rzz-(Iffi)t,*6-(*.ir);,,,,,,}]i,
(41)

0scnup

3.2.10 Squared Error Loss F\rnction (SELF)

This loss function was proposed by Legendre (1805) tr.r develop least squares

theory. The most common loss function used for. Bayesian estimation is SELF also

known as quadratic loss function. The squared error loss denotes the cr:ror in using.to

estimate any parameter. This loss function is just the squared val.iie of the root mean

square error and general form of this loss function is mostly in the t'orm of quadratic as:

- 1)

){* 
.n-,*n', ) rtt rrz - (:;)

- - ;{ k@ + | ,-&+zt 
", - (ff * ra

(1 + (t + r;)-a)(log(1 + 16))3(1 + ri)-a

: 
[a-
TL

"Di=l

ge 0-{r+t)1 ;

,*,\)-r

(1 - (1

.(r fr
-)'

+
-a

los(1

a *r)

)-r),
r)-a(
1- (1

Ii

+

I
+

(1

){* 
a-,0*,, )(.r11r22

to
(42)
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General form of this loss function is:

0: Eq("1").

Bayesian estimators of a and d under SELF using GP are:

dBsBcp: 
[^ 

* ;{(# + @ -1) t %H+L.@-1)
x r!,+ ff) rz, rzz (I ffi) rr',,,,,1)

. (l.# -,') ,,, . (';- t) 
",],

(44)

a,,u.,: 
l, 

* ;{(T+ (o - rrD
(t + (t + r;)-a)(log(1+ rn))'(1 * *n)-"

(1 -.(1 * 16)-a;s

/2 n\
x r1r12 * (a/

.(+-u,)

Bayesian estimatorS of a and 0 under SELF using LP are:

ABSELP:
(l + (t * r;)-a)(los(1 r- rn))'(1 1 ,n)-^

)"l
.n

+@-tlD
. i=l

. G) rz, rzz (Iffi)rr,',,,,1)
,,*;(=#) 

",1

[,.i{(x

.;(#)

(1-(1*zi)-a;s



()u,u,,: 
[u*;{G *G-,rD(r { r,('.1'11i":J', 

|:,,i]"r 
; r,) n)

x r11r12. (T) * (I tlr'! il,,"lli ,:,,',,r ),,,,,,, , ,:, )
t/0-a\ r/,i-sa\ l.'\-;T)rztt'i ( -n-l "ul

(i;)

Bayesian estimators of a and 0 under SELF using Ul' are:

_ ,,I (1 + (1 +,./,,^llil
i.-l

i- tt + :r:1)-d(log(l + .r:;),12 \2- (1n-,--'..,);l- )

UBSEI] P _
, ,,) "),,,,(1. i ,l 'l ) 1r.1

.t,) 'i''1:l

(il 11 r,: )I
)

[,.]{(};'-,,

@,un-(

,i\
i

)-
-, \:!-r ( :

)t

, lltt

;{(T;,
,.(T)

(lr)

^ t^
ansnup: lo +

L

X 1|11 T1

I *:t',1

'2

3.2.LL Precautionarv loss function (PLF)

Norstrom (1996) introduced an alternative asvmrnetric loss frrur'liorl ,irld ;,rl;;,r

presented a general class ol'precautionarv loss functiorr wilh quadrat.i<' ioss lrrrrr tiorr ,,s

a special case. This loss function approach infinitcli'ncar thc origin to prcvcrrt urrtlcr-

estimation therefore giving predictable estimators. cspreciallv whcn low failrrrt) I'atcir

arc bcing cstirnatcd. 'Ihcsc cstirtatorr ar'('vcr"\'iip[)l('( iirt,.. ablt, ,,r'lrcri ritrrk,rr,.t.llrritrr.ri

0 - t) i g +lrj-'lJ 
-'l)(!"-q!-l 

'i r,)l:Ji

r..r (l - ti -r;t';1 ''):'
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may lead to serious consequences. General form of this loss function is:

(o- o)'
L(o,o) -- -\ T-t-,

(50)

&

after simplifying we have,

a : pp'11i

Bayesian estimators of o and d under PLF using GP are:

dapcp : 
l^, 

-i{r,,, * (T+ (o - r)

.f )r,rl ,?,*(T) t",, n,)
i:1

(Iffi)rurr rL,r,z) .(5:-,,) (2dr11)

lar-L f li. (=. -a,)QQrn) :

(51)

-(r;-,,) rzo),,)

(52)

r/

28



Bayesian estimators of a and 0 under PLF using LP and UP respectivelv are:

.*{r,,, * (T+ (.a - r)

Iog(1 +ri)3(1 +11)-a(1 +(1 + r)-a)

* ",)-^)) z Aktzrrr) *

t Bftr, r22 * 2"r?rll) *

dapcp: 
[r'

,aitt o)r?r-(T)

.(?) 
^.,

),,

ff)*
(#)'*

TztTtt

(53)

(54 )

"r)
(6 d) r11

r;)d)3

rr)-d \T)

.'u{r," * (T+ 1.9 - r;
Iog(1 + er)3 (1 1 ,o)-^ (1 + (1

(1-(1+

+ z1))2(1 +
- (1 + ,n)-^

tL

^rrr),
+

i=1

(rstr
("#')

r)

(1

(2

|apcp:

x

+
tr

N
3
:9

t
J-
t-

lr.;{,,,.(T+@-
$ log(1 + 0i)3(t + ri)-a(l ++re
/$ (tog(l + z;))2(1 a r,)-^.\fr@,
(#)u,,)'

1*r)-^

^ t^,anpup: lu'
L

.n
*\-Z-r (1 -(1 +ui)a)3 d,i). (#) rz, rrr

(55 )

,rr)] ',
(ios(1 + zr))2 (1 + rr)-a

(6 o) 11(1 -(1 *x)-aY

i=L

(r
*
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i=l

(los

ou,u, : 
le 

.;{, ",. (T+ (o - r)

x2,l12rrr) * (#),;,-(r

log(1 + z,)' (1 * rrl)-a (1 + (1 * :r1) d

l
ll

)

T
))'
+

ir. i

G
I(1

G

(1 -(1 :rr1)"):t

(1_!. 
L')_l) rz ,;1 r, r,rr)-'t1z )' ,)] '

\t
t2

(56)

3.3 MLEs for Type-II censoring

Suppose X : (Xt I Xz I Xt (, ..., ( X,) is a Tvpe-II censored snmple of sizc

r obtained from a life test on n itcms whosc lifc timcs havc thc EPD '*'ith shapc

parameters a and d. The likelihood function of r failures and (n - ,) censored values

is:

nlL(a,0): -+ (o 0)' II t, - (t +:r1)"10-1lI (i + rn;-(o+t)
\n, - r ). i:r i:r

" [r - (r - (t + rz)-o;a]n-r.

U the log-likelihood function is:

logtr(a, 0):rlog(a) + rtog(a) - ilog [1 - (1 + ,)-')t-'
i:l

- ilog[1 -r r,]-('+r) + ros [r (r (t | ,,) ,,) ')"-'
i=1

this may be written as:

(57)

(58)

log.L(a,0): rlog(o) +rlos(0) + (e - 1)Ilog (1 - (1 + *,)-")
i=1

-(.,*1)ilog(l i t:i) + ln-r)log [, - (, - (1 i,\-,),')'] 
(5e)

i=r L \ /)
tr
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(60)- f los(r
i=1

)-" log(1 +

)

rX
\3

,-(,-(1 +",-")'

,-(,-(1 + *r-")'

Where

?loe L(a,0)
0a

0log L(a,0)
a0

+
-0

+

g
,)

(1

log

*r
e-r

,n)-"
- (1

,)-")

L+@-1)I
0

i=1

/
0(n- r)(1- (t

\

+
1

+X

+ f,)

xr)
+

: 
f, 
+! roglr - (1 + r)-*)

i=l

/ \0
(n, - r)(, - f, * x,)-" ) log(1 - (1 + .K)-")

(61)

(r;l 
)u

The MLEs of o and 0 for a and 0 can be obtained as the solution of

I* tt- l)tffi trog(1 
-r-r,)

/ t'p-t
0(n,- r)(, - 1r + &)-") (1 + x,)-" los(t + x,.)

-0.

L, *Dlog(l - (1 + 11)-") -
i:l

(n,-r)(r - (r + x")-') ros(r - fr + x,)-')

, - (, ,, , y,r ,,)'
-0

J-

(63)

Since normal equations are not in closed form so we used zrn alternativc nrcrlrori

Broyden Fletcher GoldFarb Shanno (BFGS) which is used bv Battiti and Masulli

31



Y

(1990) of Newton Rophson methorl. And elements of'obscrvcd Fistrcr infolrnaliotr

matrix for ccnsorcd samplc arc:

021ogL(o,0) : _L _ (0 _t) i (1 + r,)-"(los(I I "r,))2

a", a2 ' ?- (t - (t t r,1 ..rz

02log[,(a,0) : _'r'
a02 0'2

Art:Stly.0)._itog(]J_,,.,,,1 ,,,,)-" _ [,, r;log1 I r r,1
dcr d0 u,=, 1 - (l .r',)-"

Here a and 0 are the MLEs of EPD for o and g respectivelr'. And rip and //3 rtrt'

Bayesian estimators of EPD.

\=
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Chapter 4

Results and Discussion

In this chapter, we will discuss about the results of simulation study. For complete

samples results are shown in Tables 1-8 for o and 0. For Type-II censorcd sarnplcs.

results of MSEs of MLEs and CIs are also shown in Tables 9-19.

4.1 Simulation study

As we know that performance of the different methods cannot be cornparcd

theoretically, hence we performed Monte Carlo Simulation to compare the performance

of presented MLEs and Bayesian estimators of EPD using various samples sizes and

various parameters values. For Type-II censoring schcmc, wc havc fixcd difi'crcnt

sample sizes (n) and predetermined different percentages of failures (r'). In rctrl data

analysis, we have fixed different percentages of failures (r) and sample size (n.) -- 100

for Type-II censoring scheme for parameters. In all Tables, it is assumed that the

parameters are random variables and generated through simulation mcthod.

For computing the estimates, we generated 1000 samples from the EPD using t hc

inverse transformation as Xi: (l-Ul10)-tl" - 1. Where U, is uniformly distribr-rted

random variable. We replicated the process 1000 times and estimate the MLEs. We

have also obtained Bayesian estimators under symmetric and asvmmctric loss functions

using Lindley's approximation. Further, we used informative and non-informative

v

v
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types of priors for estimating Bayesian estimators. Moreover, comparisons are made

in terms of MSEs. And the rcsults are summarized in Tables 1-12. Finallv. graphical

representations of MSEs of MLEs and Bayesian estimators arc also made lor compkrte

samples shown in Figures l-3.

Results for complete samples for o are as under:

Table 1: Average estimates for a and MSEs (within parerrthcsis)
nI a-) 15

1.0859(0.0859) 1.6031(0 1468) 2 t-185(0 2;J3ei

1.0609(0.0745) 1.6021(o.L2e7) 2 r2ee(0.2335)
1.0700(007e7) 1.602e(0.13e5) 21470(0.2:t37')
1.0850(0.0803) 1.6030(0.13e7) 21487 (0.2338)

1 2559(0.1rje7) 1.8708(0 3331) 2.13e8(0 rj2,1e)

10854(0.0840) 7.6027(0.13e3) 2.1374(0.2308)
1 2452(0.1518) 1 8067(0.2587) 2.41,13(0.4414)
1.2180(0.1501) 1.8591(0.3404) 2 5640(0 7002)
1.06e8(0.0774) 1.6026(0 13e1) 2 1 ,177(0 2333)
1.0761(0.0605) 1.6028(0.12e7) 2.145e(0.232e)
1.0670(0.0840) 1.6020(0 1358) 21471(0 233rj1

1.075e(0.0804) 1.6025(0.1355) 2.137e(0.2330)
1 0847(0.0861) 1.6023(0.135e) 2 13e6(0 23tJ l)
t o+-os1o.oa:z; I so.x;(t075i)'.- u ritrlrl() n lTr
1.0384(0.0430) 1.561e(0.06e5) 2.0623(0.1073)
1.0396(0.0435) i.5655(0.0748) 2 0630(0 1110)
1.04e0(0.0406) 1.5654(0.0711) 2 0624(0 10e0)
1.2473(0.0706) 1.7210(0.1373) 2 2833(0.2208)
1.048e(0.0436) 1.5642(0.0747\ 2 062e(0.1115)
1.1433(0.065e) 1 6856(0 1138) 2 2\52(0 t6ee)
1 1261(0 0640) 1 7167(0 1408) 2 3018(0 215e)
1 0480(0.0433) 1 56,17(0.073e) 2 0,1s.r(0.1023)
1.03e3(0.038e) 15652(0.06e8) 2 0611(0 1036)
1.0412(0.04:t2) 1.5637(0.0745) 2 0625(0 1115)
1.0470(0.042e) 1.5483(0.0736) 2 0627(0.1028)
10471(0.0434) 1.5618(0.0740) 2 0628(0 I I I l)
i.oszr@lzOJ- 1 s331 (ixx.{f-, 0.'16 ( ixtoz.: r

1 0362(0.0255) 1.5176(0.0424) 2 0,199(00'r88;
1 0365(0.0260) 7.5317(0.0427\ 2 0521(0 0ri27)
1.0359(0 0230) 1 5312(0 0420) 2 0516(0 0.r90 j

30 ML
BLGP
BLLP
BSEGP
BSELP
BGEGP
BGELP
BPLGP
BPLLP
BLUP
BSEUP
BGEUP
BPLUP

\a 50 ML
BLGP
BLLP
BSEGP
BSELP
BGEGP
BGELP
BPLGP
BPLLP
BLUP
BSEUP
BGEUP
BPLUP

80 ML
BLGP
BLLP
BSEGP
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BSELP
BGEGP
BGELP
BPLGP
BPLLP
BLUP
BSEUP
BGEUP
BPLUP

1.0e75(0.0371)
1 0368(0.0254)
1 0e53(0 0354)

1 0854(0 0347)

1 036e(0.0258)
1 0348(0.0256)
1.0334(0 0241)

1.0313(0.0225)
1 0323(o.021e)

1.6275(0 0644)

1.5330(0.0426)
1.6066(0 0563)

1 6262(0 0660)

1.5327(o.067e)
1.520e(0.0416)
1.5245(0.0423)
1 5321(0 0415)

1 52e7(o.0410)

2.1520(0.165e)
2 0488(0.0621)
2 1464(o.oe16)
2 2008(0 12r3)
2.030e(0.055e)
2.0523(0 057,1)

2.0514(0 05e0)

2 0141(0 0506)

2 0202(0.o4e7)
1OO ML

BLGP
BLLP
BSEGP
BSELP
BGEGP
BGELP
BPLGP
BPLLP
BLUP
BSBUP
BGEUP
BPLUP

1 o3oe(o.o2o8)
1.0300(0.0201)

1.0304(o.o2oo)
1 0307(o.0203)
1 078e(0.0272)
1 0302(0.0201)
t 0774(0.0262)
1 06e2(0.0256)
1 0305(0 0205)

1 0304(0 0206)

1.0306(0.0205)
1 0303(0 0204)

1.0308(o.o207)

1 5270(0 0347)

1.5245(0.0344)
1 5264(0 0346)

1.5206(0.0338)
1.60i7(0.048r )
1.5244(0 0345)
1.5855 (0.0431)
1.6004(o.o4eo)
1.5207(o.033e)
1.5268(0.0340)

1 5237(0.0.335)
1 526e(0 0343)

1.5234(0.0342)

2 0387(0 o4e5)

2 0362(0 0448)

2.0376(0 0481)

2 0357(0 0483)
21451(0.0757)
2.0378(0 0482)
2.132e(0 0640)

2.1355(0.0548)
2 0384(0 04,77)

2 0379(0 04,79)

2 0197 (o.o27 4)
2 0275(0 0374)
2 0355(o.o3eo)

I3O ML
BLGP
BLLP
BSEGP
BSELP
BGEGP
BGELP
BPLGP
BPLLP
BLUP
BSEUP
BGEUP
BPLUP

1 030e(0 0r 72)

1.0300(0.0101)
1.0304(o.o102)

1.0307(o.o1oo)
1 078e(o.o1o1)
1.0302(0.0120)

1.0774(o.0t o0)
1 06e2(0.0101)
1 0305(0 0101)

1 0304(o.0103)
1 0306(0 01 02)

1.0303(o 0104)

1 0308(o ol 05)

1.5270(o o40o)

1.5245(0.0304)
1.5264(0.0301)
i.5206(0 0303)

1.6017(0.0301)
1 5244(0 0321)
1.5855 (o.o30o)
1.6004(0.0302)
1.5207(0 0400)

1 5268(o.03oo)
1 5237(0 0401 )

1.526e(0 0302)

1.5234(0 o3o2)

2 0387(0 0416)

2,0362(0.0448)
2 0376(0.0481)
2 0357(o.o47e)
2.t45t (0.0482)
2 0378(0.0640)
2 132e(0 0374)

2.1355(0 0483)
2 0384(0.0274)
2.037e(0 0548)
2 01s7(0 0477)
2 0275(o 03eo)

2 0355(0 03.r2)
150 ML

BLGP
BLLP
BSEGP
BSELP
BGEGP
BGtrLP

1.0185(o.ot 27) 15302(0.0241)
l 5258(0.020e)
1.52e2(0 0233)

1.525e(0 023e)
i.5801(0 0313)
1.5301(0 0236)
1.56e2(0.028e)

2 0224(0.0381)
2.0202(0 o2e5),
2 0215(0 0368)
2 0217(0.0363)
2 0e23(0.04e5)
2 0222(0 0319)
2.0713(0.0444)

1 0143(0.0124
10154(0 0r25
r 0183(0 0r 26

r 0502(0 0r 56

1 017e(0.0121
1.0493(0.0152
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I

BPLGP 1 0440(0 014e)
BPLLP 10152(0.0116)
BLUP 1 0182(0 0125)
BSEUP t.ot27(0.0t24)
BGEUP 1.0119(0.0114)
BPLUP 1.0r7e(0.0123)

1.57e6(0.03r 7) 2.0ee5(0 0524)

1.5233(0 0240)

1.5278(0.0211)
1.5280(0 0232)

1.5272(0.024e)
1.5216(0.0235)

2 0215(0.0363)
2 0301(o.o2e1)
2 0356(0 035e)
2 0220(0 0315)

2 02e4(0 031e)

2OO ML l ot 06(0.ooSe) 2Ltrenftn26ei*
BLGP 1.0100(o.oo82)
BLLP 1 0103(0 0087)

BSEGP 1.0105(0.0088)
BSELP 1.0136(0 0104)

BGEGP 1.0104(o.oo88)
BGELP 1 0130(0.ooeo)
BPLGP 1 01e2(0.0101)
BPLLP 1 0106(0.0088)
BLUP 1 0102(0 0088)

BSEUP 1.0106(0.008e)
BGEUP 1.0104(0 0086)
BPLUP 1.0101(0.0183)

1 .5,153(0 0155)

1.50e2(0 0146)
1.50e3(0.0154)
1 50i8(0.0153)
1.5523(0.0188)
1.5138(0 0152)

1.5440(0 0176)
1.5520(0 01e0)

1 5124(0 0r 50)
I .,'rl07(0.01-1U)

r sraslb.ora{)
1 5152(0.0155)
1.5136(0 0151)

2 0r02(0.0236)
2 0119(0 O2rrir)

2.018e(0 0267)

2.0714(0.0335)
2 0132(o.oo5e)
2 0557(o.0306)
2 0773(0 0352)
2 01 ,39(0.0265)

2 oloo(o o l3.r)
2.0188(0 0275)

2.0131(0 026e)

2 0172(0 024,e)

lnu
Here we discussed about the results of parametcr a for cornplt:i.c s,inrltlcs rrsirrg

various sample sizes and different valrres of rv. Averages est'imat<ts arr<l

parenthesis) are shown in Table 1. It is obscrved from Tablc 1 that BLUP givos

best estimates for a:7, 1.5 when sample size is 30 and 50. BLGP pr:ovide efl'ective

result for a: 1.5 but BGEGP give superior result for a:2 when sample size is 30

For cv : 1.5 with sample size 50 and'150, BLGP contribute improvc:r.l rcsrrlt. u,hr)rcas

BPLLP gives better result lbr a:2 with sanrplc siz<t is 50. l\lso IJt.'l,U[) givcs bcst

performance for all values of cr thosc are taken with sarnple srzo 80. I:ulther. IISEUP

also gives outstanding result fbr a : 2 with sample size 100. Furthermor"e. Rt,l,P.

BGEUP and BLGP provide recovering outcome fbr rr : 1 when samplcs size is 100.

150 and 200 respectively. Nlolcovcl. BSEUP givcs supcrior rcsrrit fs1 11 =.: 1.5 arrcl 2

with sample size 100 and 200. And lesults for parameter 0 are as rrncler:
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Table 2: Average estimates for 0 and MSEs (within parenthcsis)

n{ 0-+ 15

30 ML
BLGP
BLLP
BSEGP
BSELP
BGEGP
BGELP
BPLGP
BPLLP
BLUP
BSEUP
BGtrUP
BPLUP

1.1082(0.100e)
1 0554(0.0e64)
1 0127(o.08eo)
1 0242(0 0647)

0 e810(0.0552)
1 0368(0.0786)
o.ee36(0 0670)

0.e547(0.07r.5)
1,0012(0.0717)
1 0816(0.1075)
1 04e5(0.072e)
I 0620(0 0880)

1.0740(o.oe67)

1.6770(0.2803)
1.5e70(0 2661)

1.5315(0.2632)
14887(0.1430)
1.4161(0.L227)
t 55e2(0.2022)
1.4866(o I65e)
1.3857(0 1554)

1.45e8(0.1513)
1.6511(0.3082)
1.5405 (0.1665)
1 6:110(0 237r )

1.5967(0 2256)

2.2753(0 57ee)

2 1634(0 5632)

2.0737(0 5e27)

1 s250(0 227',3)

7.8176(0.2022)
2 0,$67(0 373r )

1 e7e3(0 2e45)

i 7650(0 2560)

r 874e(0 230.r)

2 2555(0 6700)

2.0130(0 2704)

2 1747(0 4se4)
2.1016(0.3750)

:l*
tJfJ,Y

50 N{L
BLGP
BLLP
BSEGP
BSELP
BGEGP
BGELP
BPLGP
BPLLP
BLUP
BSEUP
BGEUP
BPLUP
ML
BLGP
BLLP
BSEGP
BSEI,P
BGEGP
BGELP
BPLGP
BPLLP
BLUP
BSEUP
BGEUP
BPLUP

1 0539(0 0507)

1.025e(0.04e6)
L.oo22(0.0474)
1.00e2(o.o3e5)

0.9854(0.0362)
1 0136(o.0440)
0 e8e7(o 0403)

0.e738(0.04,15)

o ee88(0.0418)
i 03e8(0 0528)

1.022e(0.0421)
1.0273(0.0468)
1 0376(0.0496
1 0378(0.026e)
I 02r 8(0.0262)
1 0072(0 0251)

10112(0.0231)
0 ee67(0.021e)
1.0132(0.0245)
o.ee87(0.0232)
o.ee12(0.0234)
1 0062(0.0238)
10301(0.0273)
l 0re4(0 0240)

1.0214(0.0255)
1.02e3(0.0266)

1 6006(0 132e)

i.5553(0 1270)
1 5175(o 1232)

1.5003(o.oe26)
1.4604(o.o84e)
1 5352(0 1102)
1 4e54(o 0e8e)

1 4486(0 oe6e)

1 488e(0 0e73)

1 5842(o t3eo)
1.5284(0.1003)
1.5633(0.1204)
1 5603(0.11e6)
1 5657(0 0736)

1 53e7(0.0712)
1 5168(0 06e0)

1.5070(0.05e4)
1 4830(0.056a)
1 5266(0.0655)
1.5026(0.0614)
1.4785(0 0606)
1 5022(0 0613)
1.5567(0 0754 )

l 5237(0 062.r)

1.5433(0.06e2)
1 5440(0 06e5)

2 1451(0 2644)
2.0830(0 2555)

2 0327(0.2575)
1 e660(0.1663)
1.e082(0.1542)
2 0453(0 2t)9-r)

r e875(0 18171

I 8e56(o r 7rj5)

1 e521 (0 r728)
2 r:'iil(0 284!r)

2 0126(0 r 813)

2.oe1e(0 2338)

2.0638(0.2174)
2.0e36(o r 416)

2 0551 (0.1 372)

2 0233(0 1 360)

I e8e4(0 1072)

I 95i;5 (0.1020)
2 0346(0.1225)
2.0006(0.1138)
1 e4e4(o 1loe)
I e832(o r I05)
2 0833(0 1473)

2 0r7(i(0 rr30)
2 06',2210 r311)
2 047t(o l266)
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n{ 0'+ 15
1OO ML

BLGP
BLLP
BSEGP
BSELP
BGEGP
BGELP
BPLGP
BPLLP
BLUP
BSEUP
BGEUP
BPLUP

1 0270(0.0205)
1 0144(o o2o1)

1.oo2e(o.o1e5)
1.0062(0.0183)

0.9e48(0.0176)
1 0076(0 orel)
o.ee62(0.0184)
0.ee62(0 0186)

1 0024(0.0188)
1.020e(o.0208)
1.0127(0.0188)
1.0140(o o1e7)

1 0204(0.0203)

1.5419(0 0557) 2 0615(0.1014)

1.520e(0.0547) 2.0310(0.0ee5)

1.5027(0.0537) 2.0056(o.oeel)
1.4e66(0.047e) 1e815(0.0831)
1.478t(0.0462) 1 e553(o.o8o8)
15114(0 0514) 2 ot;tl(0 0!ll t1

1.4e28(0.04e1) 1 e8e5(0 086e )

1.4739(0 04e1) 1 e505(0 0865)

1.4e26(0.04e2) 1.e76e(0.0857)
1.5341(0.0570) 2.0528(0.10.,1e)

1.50e6(0.04e5) 2.002e(0.0863)
1 5244(0.0534) 2 037t (0.oe6o)

1.5248(0.0537) 20260(o.oe3e)

I3O ML
BLGP
BLLP
BSEGP
BSELP
BGEGP
BGELP
BPLGP
BPLLP
BLUP
BSEUP
BGEUP
BPLUP

t 0227(0 0162)
1.0137(0.0160)
1.004e(0.0156)
1.006e(0 0148)

0.9e81(0.0143)
1.0078(o.oi53)
o eeeo(O 0148)

0 ee56(0.0150)
1 0015(0.01 5t )

1.0186(0.0164)
1 or18(o or51)
1.0127(0.0156)
1.0183(0.0i62)

1 1116(tlo itt ) tli,fitltt os t;7
1.5256(0.0403) 2.037e(0.07e8)
1.5115(0 0394) 2 01,5(0.0789)
1,5070(0.0362) 1.eee8(0.06e0)
14e28(o.o35o) 1.e7e6(0.0668)
r.5182(0.0383) 2.025e(0.0717)
1 5040(0.0368) 2 0057(0 0713)

1.48e8(0.0366) r s767(0 0702)

1.50-11(0 0369) I !)!)6Si0 070 I ,

i.5356(0 0118) 2 0545(o 0ti36)

1 516e(0 0373) 2 016 1 (0 071 3)

1.5282(0.03e7) 2.0423(0.077e)
1.5287(0.03e8) 20342(0.0765)

I5O ML
BLGP
BLLP
BSEGP
BSELP
BGEGP
BGELP
BPLGP
BPLLP
BLUP
BSEUP
BGEUP
RPI,UP

1 0176(0.0121)
1 00e6(0 0120)

1 0021(0.0117)
1.0040(0 01 13)

0 ee65(o.o1ro)
1 0047(0.0116)
0 ee72(0.0113)
o.ee42(0.0114)
1.0018(0.0114)
1 013e(0 0122)

1.0082(0.01 l5)
1 oo8e(o ot 18)

1 0137(0 0121)

1.5353(0.0347) 20327(0.0687)
1.5213(0 0340) 2 0127(0 0680)

1.50e1(0.0333) 1.ee60(00rj77)
1.5055(0 031 o) l e812(o 06r 3)

1.4933(0.0301) 1 erj.l2(0.060:r)
1.5151(0.0326) 2 oo3o(0 0647)

1.502e(0.0315) 1.e860(0062e)
1.4e06(00313) 1.e614(0.0628)
1.5030(0 0315) 1 9786(0 062,1)

1 5299(0 0351 ) 2 0268(0 0701 )

1.5140(0 0318) I 9e50(0.Otr2ir)

r.5236(0 0335) 2 0r68(0 0666)

1.52110(0.0337) 2.0101(0.(Xi,r7)
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rLt 0-+ 2

-2- 03eSaaj^os)s;2OO ML 1 0143(0.00e1) t.5247(0.0245)
BLGP 1.0086(0 00e0) L.5t45(0.0242) 2.0247(0.0520)
BLLP 1.0030(0.0088) 1.5055(0.023e) 2.0122(0.05i5)
BSEGP 1.0042(0 0085) 1.5027(0.0226) 2.0007(0 0474)
BSELP 0.ee86(0.0084) 1.4e36(0.0221) 1 e878(0.0464)
BGEGP 1.0047(0.0087) 1.50e7(0.0234) 2 0170(0 04e8)
BGELP 0.eee0(0.0085) 1.5006(0.022s) 2.0042(0.1)4ti+)
BPLGP 0 ee71(0.0086) 1.4e20(0 022s) 1 e863(0.0478)
BPLLP 1 0028(0 0087) 1.5011(0 022e) r eeel(0 0480)
BLUP 1.0117(0.00e1) 1.520e(0.0248) 2.0352(0.0535)
BSEUP 1.0073(0.0087) 1.50e1(0.0230) 2 0111(0.0484)
BGEUP 1.0078(0.008e) 1.5160(0.023e) 2 0275(0.0512)
BPLUP 1 0116(0.00e0) 1.5167(0.0240) 2.0227(0.0506)

Here we discussed about the rcsults of paramctcr 6 of EPD thosc are found through

simulation study for compiete samples using different samplc sizes and changing values

of 0. Averages estimates of d and MSEs (within parenthesis) are shown in l'ables 2

We observed the following results:

Estimating of d from Tables 2, it is noticcd that BSELP providc plccrnincut

outcom from all other Bayesian estimators and MLEs for different values of [/ u,ith

different sample sizes but \4LEs offer paramount results comparativcly LILUP for 0

: 1. BPLUP also overestimate for 0: l. Furthermore. BSELP undcrcstirnatc as

compared to all othcr Baycsian estitnation mcthods f.or 0:1, 1.5 and 2. Morcovcr.

BLUP overestimate from all other Bayss16, estimation methods f<';r 0 -. 1...r arrcl 2 11

is also seen that BLUP overestimate among all Bavesian methods and N4T,Es {br //

: 1, 1.5 and 2 with various samplc sizes. I'urther. tsPLLP and fiStrlUP gi\'cs sauu(l

performance, in other words these cstimators are satrre MStrs but not ltctti:r than

BGEGP whcn 0 : \. BLLP and BPLUP pcrform cqually, BGELP and BpLGp also

performed equally f"or 0:1.5 when sample size is 100. Furthermor€r. RSIICP rrrrr'l

BGELP, BSEUP and BPLLP contributed equal performance for d = I whcn sample

size is 130.

15
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For large sample size BSELP shows incomparable results comparatively all other

Bayesian estimation methods and MLEs for 0 :1, 1.5 and 2. Therefore, it is concludcd

that BSELP is better selection for estimation of parameter of 0 of EPD for 0 : l,

1.5 and 2 with sample size 200. AIso BLGP and BPLUP, BSEGP and BGELI'.

BGEGP, BPLLP and BSEUP, BLUP and MLEs shows same performance but not

comparable with BSELP f.or 0 : 1 when sample sizc 200. MLEs and BLUP also

overestimate for 0 : 1 when sample size 200. Hence and concluded that MLEs and

BLUP are not performed very well a"s compared to others f.or 0 : 1 when sample size

200. Furthermore, BLLP and BGEIIP, BGELP and RPLCP ga\'c sarnc rcsults ]rut

not better from other Bayesian estimation mcthods for 0 :1.5 whcn sarnplc sizc 200.

Moreover, BGELP and BSEUP are also provide same outcomes for 0 :2 with sample

size 200 but not superlative as compared to others Bayesian estimation methods. We

can see above all results of MSEs by graphical representation as given in figures l-3

as under:

ttr

4
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Flgurc ft Graph of MSEs rrhcn a = 1 and 1.5
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Figure 3: Graph of MSEs when 0 = 1.5 and 2
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In Figures 1-3, title bar showing the values of a and 0, vertical bar represents

MSEs of MLEs and different Baycsian estimators and horizcntal bar iudicaLcs t,ar iotts

values of sample sizes.

It is observed that MSEs of MLEs and Bayesian estimators arc dccrciiscs as sarnplcr

size increases. This indicates that the consistancy and accuracy of the results. It is

also noticed that when sample sizes goes to sufficicntly large then MSEs of Baycsran

and MLEs are close to each other. IIence it can be concluded that fbr largc samplc

sizes Bayesian and MLEs are close to the true values of pararncters.

4.L.L Real data analysis for complete samples

In this section, we consider the real data set which is taken frorn Nrchols ancl Padgctt,

(2006) and is presented in Tabic 3. Thc data givcs 100 obscrvations orr brcaking strcss

of carbon fibres in Gross Building Arca (Gba). Here we considered an uncensored data

set corresponding censored data set from consisting of 100 observatrons ori bleziking

stress of carbon fibers (in Gba). This data was obtained from a process producing

carbon fibers and it was used in constlucting fibrous cornpositc matr:rials.

Table 3: Breakrng stress of carbon fibers

0.39 0.81

7.57 t.57
1.87 1.89

2.41 2.43
2.76 2.77

2.97 2.97
3.31 3.31

3.75 4.20

0.85 0.98
1.59 1.59

7.92 2.00

2.48 2.48
279 28t
3.09 3.11

3.33 3.39

4.38 4.42

1.08 7 72 7.17

1.61 1.61 1 69

2.03 2 03 2.05

2.50 2.53 2.55
281 282 283
3 11 3.15 3 15

3 39 3 51 3.56
4.70 4 90 4.97

1.18 t.22 1.25

i 69 t 7t 1.73

2 72 2.17 2.77
2 55 2.56 2.59
2 85 2.87 2 88

3.19 3.19 3.22
3 60 3.65 3 68

5 08 5.56

136 141 147
I80 184 t84
21,7 2.35 2 38

2.67 2.73 2.74
293 295 296
:3:)z 3.27 3.28
368 368 370
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Table 4: Average estimates and MSEs of cv and
'ltr: :

N4SEEstimators MSE

V

ML
BLGP
BLLP
BSEGP
BSELP
BGEGP
BGELP
BPLGP
BPLLP
BLUP
BSBUP
BGEUP
BPLUP

3.0698

3.4019

3.4673
3 3778
3.4232
3.1 566

3.2585

3.6108
4.0944
3.3584

3 3458

3.1736

3 5835

0,0507

0.0495

0.0504

0.0483

0.0435
0 0502

0.0507
0 0523

0.0602
0 0501

0.0520

0 0505

0.0493

27 6963
24.296s
25 8123
20 100r

18.7756

23 4999

22 5835

i8.8168
18.\42r
24 3350
27.22t7
24 3360

21.5553

43 I 718

:J9.1880
.13 1ri09

40 l:13;l

36.1996
42 869:i

43 1718

42 1609

4t.1287
.t0. 1812

421:t67
41 9716

43.1277

It is observed from Table 4 that MSEs of BSELP is lowest fiorn all othr:r ilar.<,siarr

and non-Bayesian estimators. Hcncc it is concludcd that Baycsian appr"oar.lr rrsirrg

SELF taking LP is best for both o and d from all other estimation methods. lt is also

concluded that Bayesian estimation methods are best as compared to MLEs.

4.2 Type-II censoring

Type-II censoring scheme is the most popular censoring schemc used rn thc

rcliability and lifc tcsting cxpcrimcnts. In this ccnsoring schcrnc thc cxpcruncut

n items are set first and placed on test and th<,r'nl-nl>t,r of rrnccrrsorr,rl rl;rtir r is

predetermined. Instead of continuing experiments until all n itcnrs htrvc liiilcr] thc

experiment is terminated when the rth item fails. The remaining (n - r) items arc

regardcd as ccnsored data. This ccnsoring schcmc is applicd bv scvcral scholar.s :rs

Abu-Zinadah (2010), Ahmadi et al. 12010), Balakrishnan and Sandiru (t995). \'rrcros

and Balakrishnan (1994). Thoma^s and Wilson (1972) ancl N,[ann (1971) I.irr tlris

censoring scheme MLEs and their CIs are found with diffcrcnt pcrccntagcs oi failurcs
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(r) and various sample sizes (n). Furthermore, data is generated through simulatiori

study and MLEs are cstimatcd using BFGS algorithcm. Avcragc cstimatcs fbr both

parameters, MSEs (within parenthesis) and CIs are shown in Tables 5-12 for 'fvpr:-lT

censoring as under:

Table 5: Average estimates for a : 1, MSEs (within parenthcsis) and CIs
rL + r(%) { MLE e5%

30 30

40

50

1.6e03(1.88e4)
t.3ee2(0.e267)
1.25e4(0.3ee1)

(-2,e394 6 3201)
(-4.2430. 7 .0416)
(-4.e88e. 7 5078)

Fgrzo+.-ziozit)
(-5.3240. 8.1225)
(-6 185e 8.7048)

-- 
i-o.uso6, u.7.17u,150 30

40

50

r.3456(0.7477)
1.2157(0 3173)

1.174e(0.1e21)

(-4.8665, 7.5578)
(-6.0077. 8.4392) (-7.3e15. e 8230)
(-6.7999. 9.1499) (-8.3277, r0.6777 

1

80 30

40

50

1.2408(0 3350) (-6.5777. e.0594) (-8 0755 10.5572)
1.1 14e(0.1527)

2.0999(0.0e43
0.1646(0.2255)
1.1168(0 1235)
1.0785(0.076e)

(-8.1803,
(-e 1215,

(-7.6784.
(-e i015,

(-10.3866,

10.4103) (-9.9611.12.1910)
11.3213) (-11 0796, 13 2795)
10.0077) (-9.3725, I1 7018)r.00 30

40

50
11.3351) (-i 1.05e0. 13.2e27)
12.5138) (-12.5831 , t4 7402)

150 30

40

50

1.1251(0.1330) (-e.685e,
1.0645(0.06e1) (-11.6167.

1.0347(0.03e1 -13.2588.
1.0832(0.0832)
1.0587(0.0531)
1.0336(0.0344)

1i .9363) (-\1 7571 1 4 0074 )

13.7.1,"18) (-1.1 0161 I(j l7:rl;
15.3282) (-15 9971 t8 0ri65)
13.6826) (-13 e2e9.16 0e6.r)
15.6428) (-16.31e3. 18 4367)

Y 200 30

40

50

(-11.5162,

(-13 5253.
(-15.3615, 17.4288) (-18.5024 20 56e7)

300 30

40

50

1.0501(0 0553)
1.0384(0 0312)
1.0217(0.01e4)

(-14.4e78,

(-16.8005.

(-1e.0581.

16.5e82) (-17.4765. 1e 57rj8)
18 8773) (-20 217.c).'2',)')9 t81

2i 1016) (-22.s04e. 24.e48'3)
400 30

40

50

500 30

40

50

1.01e2(0.0175)
1.0147(0.0120)

(-22.2527.
(-24.e0e0.

1.040e(00364) (-16.8630.
t.02e7(0.022e) (-1e.6205,

18 9-149) (-20 2930 22 t7lel
21 6800) (-23 5765. 25 6361 )

1.0168(o.o16o) (-22.22e3. 24.2630) (-26 6827. 28.7t64)
1.0334(0.02e5) -19.0140, 21 0809) (-22,8545. 24.e214\

24.2912) (-26 7110. 28 71eo)
26 9385) (-29 8753. :11 90,18)
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nt r(%)I MLE 90% e5%

v
30 30

40

50

2.21.38(2.4e2e) (-2.0066. 6.4343)

2.0352(7 1790) (-2.6722. 6.7 4',27)

1.8540(0.6281) (-3.4028, 7.1110)

(-2 8151 .7 2428)
(-3 5740. 7 644rt)

(-4 4099, 8.i181)
50 30

40

50

1.8572(0.7685) (-3 6550. 7.36e5)

1.9162(0.9757) (-3.5728,7.4053)
1.76e8(0.45e2) (-4.4812.8.020e)

(-47tl0. 8-1255)

(-4.6243,8 4568)
(-5.6787. e 2185)

80 30

40

50

1.6951(0.2612) (-5.2045,8.5947) (-6.5263,9.9163)
1.7163(0 3e48) (-5.3223.8.7551) (-6 6707 10 1035)

1.6637(0.2323) (-6.3025. e 6301) (-7 8287. 11 15r'2)

1r145rcr56e 1-tl , 10 4r56f [a s-z: 12 n r 2 )

1.6926(0.2916) (-6.1130. 9.4e83) (-7 r'081 10 ee.371

1.6312(0.1717) (-7.2866, 10.5490) (-8 9950, 12 2574)
1.5790(0.1111) (-8.2977,11.4559) (-101898, 13.3180)
1.5e11(0.1732) (-8.1776,11 3600) (-10 04e1 . 13.2314)
r.5770(0.0e7e) (-9.4206, 12.5746) (-r..5274, 14 6815)

100 30

40

50

150 30

40

50

200 30

40

50

1.5662(0 0750) (-10 4879. 13.6204) (-127e71 t5 e2e6)

1.5761(0.1141) (-9.6328, 12.7850) (-11 7801. I1.e324)
r.5627(O.O745) (-11.1255. 14 2510) (-13 5562, 16.6818)

t 5459reJ53e)1.tz+3n,1552314-(- ts 1 gs7. t s 2t)gtr l

t.561.2(0.0777) (-t2.1729,15 2954) (-14 8040. t7.9265)
1.5337(0.046e) (-14.0e48 77.1622) (-17.0888 2015(;',2)

300 30

40

50

400 30

40

50

i.5205(0.0340) (-15.7098. 18 750e) (-ie 0107. 22 05I8)
1.5436(0.0600) (-14.32i0. 17.4083) (-17.3603,',204.r7:.;)
1.5313(0.0375) (-16 5065. 1e.56e3) (-re e0Zr 23 024e)

1.5209(0.0235) (-18.3116. 21 3535) (-'22 11 1 0. 2.r l .-r2!,, )

1.5295(0.0402) (-16 2577 . 19 3168) (-1 e.6652 2',) 7',).+:))

t.5221(0.02e7) (-18 61 '25. ',21 6567) (-'2'2 46e7 25 51 t0)

500 30

40

50

in parenthesis) and CIs-- -:

30 30

40

50

2 7610(2.5e74)
2.5e55(1.6317)

2.4174(o.e65e)

(-1.0330. 6.5551)
(-1 5998, 6.7910)
(-2.2476. 7.0825)

(-1 7598 7 2811))

(-2.1036. 7 s.L)47)

(-ll t+t:t, T 976'2)
--C3A750- 8.2glst

(-4 44e7.8 e376)
(-5 1022, 9 5115)

50 30
40

50

2 4112(0.e708)
2.243e(0.5e:t4)
2.2046(0.3e66)

(-2 5286.7.3511)
(-3.3735. 7 8615)
(-3 e274. 8.33rj7)

80 30

40
2 2e01(0.5653) (-3.9e4e. 8 5753) (-5 1eeO. e 77e3)

(-6 31 57 10 6777)2 1810(0 3230) (-4 9496, 9.3116)
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'n I r(%) I MLE e0% gs7,

50 2.t027(o.Leze)

\,,

100 30

40

50

2.1741(0.36e5)
2.t27e(0.2299\
2.tt2t (0.1754)

(-4.9719,9.3203) (-6.3409, i06893)
(-5 8576, 10 1135) (-7 3874 1r 6433)

(-6.5215, 10.7458) (-8 1755, I2.3ee7)

150 30

40

50

2.1304(0 22e7)

2.0e65(0.1506)
2.0728(0.LO32\

(-6.5751, 10.8360) (-8.2428. 12

(-7.6658, 11.8589) (-9.5360 13

5038 )

72e2)
/ 0r),r )(-8.5792,12.7249) (-10 6199, r,1

200 30

40

50

2.1034(0.1846)
2.0628(0.1054)
2.0551(0.0726)

(-7.9810, 12.1878) (-9.9129, 14.1198)
(-9.2495, 13.3753) (-11 4167. 15.5424)

(-10.2717 , 14.3820) (-12 63:t2. 1rj 7{35)
300 30

40

50

2.0688(0.1026)
2.0512(0.066e)

2 0364(0.0476\

(-10.3002, t4.437e) (-12.66e8. 16 8075)

(-11.7947.15.8971) (-1,1,1t72. 1s ., l1)7)

(-13.03e8. 17.1128) (-15 e281 20 00i e)

400 30

40
50

2.0532(o.o7ee)
2.0385(o.o48o)

2.0297(O.Os52)

(-t2.2225, 16.3291) (-14.9574, 19 06i10)

(-13.e7e5 i8.0565) (-17.0481 . 21 1252)
(-15.3970. 19 4564) (-18 7355. ',z',z.7e4s)

500 30

40

50

2.0427(o.0605)
2.0308(0.0407)
2.0245(0.0287)

(-13.9169, 18 0023) (-16 0023. 21 0598)
(-i5.859e. re e216) (-1e 2873. 23 3-le0)

(-17 .4332. 2r.4823) (-21 .1608. 25 20ee)

v
Discussion of the results for parameter a are as under:

Tables 5-7 shows that the average estimates for a, MSEs (with in paranthesis) and

CLs. For cy, we taken different perccntages of failures for each samplr: sizcs

It is seen that when sample size and different percentages of failures increases tlierr

MSEs of MLEs decreases. This shows that the consistencv of erstiuraLors. It is als<r

noticed that width of 90% and 95% CIs are also becomes narrow when we increasc

sample sizes. This shows that the accuracv of the results. And the results fbr shtilrc

parameter d are as under:
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Table 8: Average estimates for I : 1, MSEs (within parcnthesis) and Cls.

nt r(%)I MLE e0% 95%

F?

30

40
50

30 1.4177(0.7703) (-6.0544, 8 889e)

1.3205(0.6341) (-6.6193, e 2605)
1.2151(0.26e1) (-7.1000, e 5302)

(-7.4858. lo ;r21 1)

(-8 1404, 10 7816)
(-u oo.J(r r r2;i2 i

50 30

40

50

1.1943(0.2439) (-9.1824, rt.5720)
1.1486(0.1540) (-9.6095, 11.e068)

1.1267(0.1065) (-9.7557, 12.0093)

(-11.1704, 13 5600)
(-11.6705. 13.e678)
(-11.8405, 14 0941)

80 30

40
50

1.1356(01201) (-12.1368,14.4080)
1.0871(0 7770) (-12.8340, 15 0083)
r.0679(0.04e6) (-13.0679, 15203e)

64sTe4; io uBo;)
(-15 5010. t7 67i2)
(-15 7760, 17 e120)

100 30

40
50

1.0836(0.0748) (-14.2219, 16.3892)
1.0684(0.0489) (-14.5649, 16.701e)
1.0513(0.0405) (-14.9306, 17.0332)

(-17.1540, 19 3211)
(-17 5599 1e 6eri9)
(-L7.9923,20 0950)

150 30

40

50

1.0652(0.0415) (-77.6445, Le.7750)
1.0415(0.02e3) (-18.3813, 20.4643)
1.0317(0.0218) (-18.6732, 20.7366)

(-2t.2288, 23.3593)
(-22.t022.24 1853)
(-22.1181 2l .r1 l6)

200 30

40
50

1.0438(0 0264) (-20.8144, 22.e021)
1.0386(0.0228) (-21.3214,233e86)
1.0224(0.0176) (-21.8603, 23.9052)

(-25 0018. 27 08e6)
(-25 6050. 27 6822)
(-26 2440.28 28e0)

300 30

40
50

1.0255(0.0171) (-26.0471, 28.0e81)
1.0197(0.0132) (-26.6781, 28.7r75)
1.0144(0.0108) (-27.0725, 29.1015)

(-31 2334 33 2845)
(-31 9842 34 0237)
(-32.4533, 34.4822)

v 400 30

40

50

1.0214(0.0121) (-30.2304, 32.2733)
1.0153(0 0088) (-30.e872.33 017e)
1.0121(0.0076) (-31.4050, 33.4292)

(-36.2174,38 2604)
(-37 11 81. 3e 1 187)

(-37.6153, 39 6395)
500 30

40

50

1.0182(0.0094) (-33.950e, 35.e874)
1.0152(0.0073) (-34.7159, 367465)

Lq!1(0.09q3) _ _ 
(-ss.arOe, 37 3284)

(-41 5610 43 5e16)
(-42.2688. 44',2863)

Table 9: Average estimates for 0 :1.5, MSEs (within parcnthesis)and CIs.

30 30 e :ligaj
40 2.1003(1.9077) (-3 0513, 7.2520) (_4 0383. 8 23e0)
50 1 e114(0.e665) (_3 5035. 7.3263) (_1.5408, 8 3637)

50 30

40
50

1 8283(0 644e) (-5 0810 8.7376) (_6 40,111 tm61:])

80 30

40

1.9021(0.9631,) (-4.8792,8.6834) (_rj t783, e eE25)
1.7899(0.4e26) (-5 27t1, 8.8509) (_6.6238 10 2036)
1.7261(0.3260) (-5.4691,8@
1.6819(0.27e,1) (-7.3433, 10.7072) (_s 0723.12 4362)
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50 1 6630(0.204rr) (-7.5150, 10.8411) (-9 27:3:1, 12 599'1)

) . 
-rz.srzg)

40 1.6560(0.1853) (-8.4007, 11 7128) (-10 3273, 13.63e4)

50 1.6248(0.1355)_ (-8.7140, 11.e637) (-10!qag_, 1j_,zaa:l)

150 30

40

t sffi e O 1 085 ) -ry 
L z g--e.i 4 ze;s t

1.5807(0 1159) (-tt.rZZS. 14 2887) (-13 5618. rrj 72iJ2)

50 1.5762(0.0806) (-11 3055 14 1580) (-13 7733. 16 e2-,8)

)- 
-(-115032-t+SlO7 (-14 0071. l7 tl0;r)

40 1.5612(0.0706) (-13.1110. 16 2334) (-15 e218 1e 0"1.r2)

50 1.5575(0.0564) (-13.3800, 16.4952) (-16.24t7, i9.3569)
1.5471(0.0488) (-13.6193, 16.7t37) (-16 5248, 19 61e2)
1.5536(0.0490) (-16.3676, te.4748) (-19.8008, 22.e080)

1 5348(0.0361) (-16.9085 1e.e781) (-20.4417, 23 ,r;1 14)

1.5273(0.0311) (-t7.t77e, 20.2325) (-20.7614. 23.s160)
1.5315(0 0344 ) (- r e.3756 22.4386) (-23 3808. 26 ,1 1:J8)

1.5327(0.026e) (-t9.7212.'22.7868) (-2:t.792e, 26 85185)

300 30

40

50

400 30

40

50

500 30

40

50

1.5235(0.0208) (-20 0350, 23.0821) (-24.1651.27 2t22)
1.5341(0.0236) (-21.8608 24.e}st) (-26.3407, 2e 38e1)
1.5170(0.0202) (-22.4407. 25.1748) (-27.0303, 30 06-15)

\r
&49_1!_4lrygqestimatcs f.or 0 :2, MSEs (within parcrrthcsis) .urd Crls

3 1003(6 e538) (-0 64e6 6 8504) (-1 3680. 7 568s)
2 8488(4.7047) (-1.048:1, 6.745e) (-17e4e.7 4e'25)
2.6536(2.4542) (-1.374t 6 6814) (-2.1458,7 4531)

50 30 2.4918(t.4203) (-2.6148.7.5985) (-3.5932, 8.5768)
40 2.3218(0.9420) (-3 1785, 7.8222) (_4.2:t23.8 875e)
50 2.2984(0.6552) (-3 1685 7.7654) (_-1 2158, rt 8t27)

7)--Cfie2 8.e@tir;l
40 2.2463(0 447.t) (-4.6007. 9.0e33) (_5 et24. 10 4050)
50 2 1405(0.25135) (-4.ee72. e.2783) (_6 36.1rj 10 6 r57)- jxt:jl
40 2.1605(0.2680) (-5 6639, 9.9850) (_7 1rj2s 11 1810)
50 2.1298(0.2383) (-5 8564, 10.1162) (_7 3864, 11 6lrjL)

-Gg 06jr-t:l :J t-,1 )

40 2.1t54(0.1782) (_7,5284, 11.7594) (_e 375e. 13 606e)
2.0e40(0.1287) (-7!!02, 11.868:l) (_e 5527.13 7108)

30 30

40

50

50

50



nl ,(%)I MLF] e0% \tti/
200 30

40

50

2 1153(0 r780)
2.0704(0.1057)

2 0770(o.e1eo)

C8so3r l3!33s,1 Ctrxga&l'iiz55 r

(-9 1890, 13.3298) (-11 3460, r5 4868)
(-9.2233,13.3773) (-11 3881 .16 5422)

300 30

40
50

2.074e(0.0874)
2 05ee(0.066e)
2.0423(0.0582)

(-1t.3444, t6.4e44) (-13 ei52. 18 Ori52)

(-11.6986. 15 8186) (-14 3344.18 4544)
(-i1 e550. 16.03e6) (-14 6365. 18 721 2)

400 30

40

bU

2.0535(o o6e3)

2 0476(0 0495)
2.0353(o.04o2)

(-13.5565, 17 6635) (-16 5470. 20 65-10)

(-13.8633. 17.9.'185) (-lri 1)ll l. ll t)0{fti;

(-14.1i49, 18.1856) (-17.2088, 21.2795)
500 30

40

50

2.0481(0.0523)
2.0322(0.0414)
2.0229(0.0328)

(-15.4653, 19.546e) (-18 81e0. 22 e007\
(-i5.8678, 19.9323) (-1e 2e70. 23 361o)
(-16.1196 20 1655) (-1e.5952.23 611 I )

\

Discussion of the results for parameter (/ are as undcr:

Tables 8-10 show that the average estimates for 0, MSEs (with in paranthesis)

and CLs. For d, wc also takcn diffcrcnt pcrccntagcs of failuros fbr cach saurplc sizos.

We found the results of MLEs and their 90% and 95%CIs using'f1'pc-llrcnsonrrg

for parameter 0. It is observed tha1. when sample sizcs and perccntagcs ol lirilrrrcs

increases then MSEs of MLEs decreases for both parameters of FIPD. Tliis rndicatcs

that thc consistency and cfficicncv of MLEs. Widths of 90% and g57c (lls iuc also

becomes narrow by increasing sample sizes and perccntagcs of failurcs. This slio,uvs

the accuracy of the results.

4.2.1 Real data analysis fbr Type-II censoring

For this censoring scheme same reai data set is used for censored samples which rs

given in Tablc 3. Rcsults fiom that data sct using this ccnsoring schcrnc arc as undcr
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Table Average estimatcs for o, MSEs within parcnthcsis)

LEn!
100

t\-

20

30

40

50

60

70

80

90

1 8414(0 1648)

2.0255(0.1157)
2.0335(0.0838)
2.2224(0 0718)
2.4474(0.0652)
2.6r 5e(0 05e8)

2.8086(0.0565)
2.9626(0.0534

(-t2.9975,16.6803)
(-14.0133, 18 0644)

(-15.1602, 19.2273)
(-15.2663, 19.7113)
(-15.055e. 1e.e50e)
(-14.e300. 20 1620)
(-14 6405, 20.2577)
(-14.4086, 20.3340)

(-15 8,102 1e 5231)

(-17 0860 21 1;J70)

(-18.6167. 23 0617)

(-18.6167. 23 0617)
(-18 1091 2:l 30,11)

(-l8.291 I 2.J i2:J I

(-17 e833. 23 6005)

(-r7.7365. 23 661e)

Table 12: Average estimates fbr 0, MSEs (within parenthesis) and CIs

nI ,(%) I MLE e0% 9sc/L

100 20
30

40

50

60

70

80

90

9.2e56(18.7554)
10.8110(14.01e7)
10.871e (13.3055)
12.8766(t2.6025)
15 .7714(1r .7 667)

18.348e(11.0371)
21.82e4(10.381 7)

25.0818( 1o.ooe3)

(7.6714,. 10.9199)
(9.3539, t2.2682)
(9.3911, 12.3527)
(11.6134, 14.1399)

(t4.7345, 16.8083)

(t7 .4548, 19.2429)
(21.0767, 22.5820)
(24.4261, 25.737 4)

(7.3602. r I 23lo)
(9.0747, 12.547{)
(9.107-1, 12.636 1)

(11.3713, 14 381 9)

(14 5:359 I 7 (X)70 
r

(r7 2835. re l142)
(20 9325 22 7',262)

(24 3005 25 ri6;)0)

\

Tables 11 and 12 show.= bhat the average estimates for o and 0 their N{SIis (with

in paranthesis) and CIs taking diffcrcnt pcrccntagcs of failurt:s. It is obscn'ccl that

MSEs of MLEs are decreases when percentages of failures increases. This is congurent

to the consistency of the estimators. It is also noticed that 90% and 95% Cis ltccomcs

narrow when percentages of failurcs increases. It indicatcs thal tltc iit'cttt'itcr, ttl tht'

rcsults.
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\.
Chapter 5

Summary and Conclusion

The present research proposes classical and Bayesian zrpproaches to sstirnlti: thl
two unknown shape parameters of EPD for complete samples. And for the r:nsc o1'

ccnsored samplcs MLEs and thcir CIs arc considcrccl for chr:ckriig thc bchai,iour el

parameters of given distribution. MLEs are calculatecl through BFGS zrlgorithern

Current research work developed BaSresian estimators of EpD under drfferent ioss

functions using Lindley's approximation taking informative and non-rnfbrrn?rtrvr t.\.pcs

of priors. Detail of abbreviations of Bayesian cstimators arc as follows:

Bayesian estimators as Bayesian LINEX Gamma Prior (tsL()p). [3apsrarr l-l\1..\
Levy Prior (BLLP), Bayesian LINEX Uniform Prior (BLllP). Raycsian (]encral

Entropy Gamma Prior (BGEGP), Bayesian General Entropv Lervy prior (B(;Fll,p)

Bayesian General Entropy Uniform Prior (BGEUP), Baycsian Squarcd lilr.r'or- (iapurrzr

Prior (BSEGP), Bayesian Squarerl Error Levy prior (BSELp). Bavcsian Srlunrt,r.l

Error Uniform Prior (BSEUP). Bavesian Prccautionary Gilnrrna pr-ior (lll,l.CI,r
Bayesian Precautionart'Levy Prior (BPLLP) and Rarresian prccautiona.r, Ii.if.rrn
Prior (BPLUP).

Results of simulation study illustrated in Table 1-4 for completer sarnpkrs Flsrirulrps

of both shape parameters of EPD revealed that MSEs decrerases as samplc siz. irr:r.r,rrs.s

for different values of parameters, which is congrucnt to thc propositi.rr of t;rrr"rsrt,., r

of estimators' Bayesian estimators of EPD using l,indlev's approxirnatron und.r

>





different loss functions based on Gamma, Lgvy and Uniform priors also divulged that
-a*.
gTpt p, BGELP and BPLGP has overestimate for different values of parameters of

EPD, so we can say that BSELP, BGELP and BPLGP overestimate the parameters

for estimating the g while for the estimating the a, BSELP, BGELP and BPLGP

underestimate the parameters of EPD.

Bayesian estimators of EPD are obtained using Lindley's approximation by taking

informative and non-informative types of priors. Therefore, Lindley's approximation

is a good alternative for the case in which the Bayesian estimators of EPD cannot be

obtained in explicit forms. It appears from this studg that the Bayesian estimators

using informative priors are superior to the method Jf Ir'tl,B..
I

FYom the results of Type-II censoring, MSEs of,MLEs for parameters of EPD
t

decreases as sample sizes increases, so that the bias tends to be worse forJhe larger

sample sizes with increasing percentages of failures. It is also observed that the length

I

of CIs becomes narrow when sample size and percentages of failures increases. This

indicated that the MLEs are consistent and upp.oulhu. true parameters value. In
I

terms of MSEs the MLEs are better for all level of Typu-tt censoring by increasing
I

sample sizes. Also for real data set MSEs of MLE3 for,both parameters of EPD
1'

decreases when we increase percentages of failures. CIs are also becomes narrow by

increasing percentages of failures I 
I

Recommendations: Further, this research stud| can be extend for estimating
i

the Bayesian estimators of EPD under Type-I and Typqtl censoring schemes. Credible

intervals, Hypothesis testing can also be obtain for complete and Type-I censored
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, Appendix A

t Gamma prior (GP)

Logfunction from Gamma prior mav be written as:

:\i

logzr(o, 0) : (q - 1)log(a) - btcr * (o, - 1)log(0) - bz 0,

?logr(a,O) _a1 - 1 
A

a" 
:-;-ot'

?logn(a,O) _or-l _^^a0 0 "''

Levy prior (tP)

log zr(o, 0) : 
*tog(o) - Xrrrf, - #,

?loer(a,0) : 1 1P- r\ 0toelT(a,O) _ /rt - 3 0\
0a 2\"e)' A0 -\ zez )

Improper prior (IP)

The Improper prior zr(d) is one which satisfied the equation

f@
I r(0)d0: oo.

J-a

For example, zr(0) x 1, -oo < 0 I x, is an improper prior. In Bayesian inf'erence

by employing an improper prior, proper postcrior distributiorr carl bc obtaiuccl ald

inference based on such posterior distribution wilr be valicl.

\;



Appendix B

, 
U Detail of all terms of Lindley's approximation for complete samples are:

' O@,il is taken from according to the simplified form of any loss function

22
t t u,1jTtj : urtTtt * 1tpT12 *tt21r21* 1)22122,

i=L j=L

' Ai+j 0L;j: ffi, i, i:0, 1,2, 3. i+ i:3. Bu: (rtrrn*ui rii) rii,

gii :3ui166r;i *ui (nrrii +2ril, AU : "uirii*'ui rit, i, j : 1, 2.

wL - ry, wz - o losr(u'o) 
.

E2log ry9 : : + (e _1)i (1 + nd)-"(los(l + {i))2

o: _02logL(a,0) _ n
' 002 02'

02los L(a,0) _ $ ft + ui)-o(log(l + z;))
'-- A0Ao --k@

Where explicit expressions are defined as:

,rr: 
-! ,, 722: O , Tr2:rrr: -4, l)r - 1g(ll,-()pq-r' pq*r. pq-r" du

,r:ur[X,t, url : ry,u22:Y#,u12:W,
,u21::W

u

g



' o3 togL =fr *(0 - r)E (l + r1)-a

,rr- 
I'30: 

-F- 
= * i=l

t

, 03 logL 2n , 03 logL
t'03 : A0, 

: 
0, 

, I't2: Tu 69, 
: u.

t,^. _ 03 togL: _ + (1 + rr)-a (tog(l + rr))2-'L 0o,2 00 ?_ (1 - (1 * r)-ay

Bn : u1rl, +'u2T12711, Bzr : ,rrl, * u1r21r22.

Cn:3u1 11 Tp*u2(r1-rzz*2rlr), Czr:3u2r22721 * ts1 (rzzrtt r )rj,)

An -- I)t Ttt * u2 T21, Azt : 't)z Tzz * u1 q2 i, j : L, 2.

Detail of terms for Type.II censoring are:

, : -u"oru#r"'t) : # + @ -1) I q?#l"fl oY
i=l \r - \r 1 zr) ")2

02log L(a,0) ru--- aor-:@'
02log L(a,0) _ ,. . tt + ui)-a(log(1 + zi))r : ---fr a;- -- - Lffi * (rr - r')log(1 a *,)

[,311:E3-logl' :?:+(A-1)i(1+(1 +r';)-") (l"g1t L!))"-(l ' ,,) 'i

dar ar ' \- -' 
?. (1 - (1 * .r;)-a)3

r _ 0s logL 2r _ 03 logLLo3: -@- : 0r, Ln: ffi : o-

Lo, : 03 logL : _ S (1 +:r,r)-a (log(1 + :r,r))2
0a2 00 3 (1 _ (1 * q)-ay

J




