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Chapter 1 ‘
Introduction

The Exponentiated Pareto distribution (EPD) was introduced by Gupta et al.
(1998) in the same scttings that the Generalized Exponential distribution extends the
Exponential distribution. They showed that the EPD can be used quite effectively
in ‘analyzing many lifetime data. EPD can be defined by raising phe cumulative
distribution funcfion of a Pareto distribution to a positive power and used in life
testing experiment, when units are lost from that experiment while they are stili alive
e.g., testing of experiment of cancer. patients. Cummulative distribution function

(CDVF) of EPD i~s defined as:
Flz,o0)=[1-(1+z)°, 2> 0, o,0>0, | (1)
where o and 6 are both shape parameters. The probability d‘ensity function (PDF) is:
fl@,a,0) = a8l = (L+z)" " (1 +z) ", 250, ,0>0. (2)

Moreover, survival function of EPD can be expressed as:

S(x)=1=Flz,0,0)=1-1-(1+z)"" >0, o, 0>0, (3)
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Abstract

The present research develops Bayesian and non-Bayesian estimators for the parame-
ters of Exponentiated Pareto distribution (EPD) based on complete samples‘.v The
Bayesian estimators of EPD cannot-be obtained in closed form. For this purpose,
it is recommended Lindley’s approximation to compute the approximate Bayesian
estimators using Gamma and Levy priors as informative priors. As for the case of
non-informative priors, we utilize uniform prior. This is done with respect to symmet-
ric loss function (Squared Error) and asymmetric loss functions (linear equnential
(LINEX), General Entropy and Precautionary). The Bayesian estimators are then
compared with their maximum likelihood estimators (MLEs) for complete samples
using simulation study.

As for the case of complete samiples, it is concluded that Bayesian estimators
perform better than MLEs in terms of mean squared error (MSEs). However, MSEs of
Bayesian estimators are notably smaller than other estimators. Also for large sample
size the Bayes»ia\xln estimators and MLEs become clpser in terms of MSEs. Further, the
performances of Bayesian and MLEs become better when the samplé size increases.
Generally, the Bayesian estimators under different loss functions a#e closed to the true
values of parameters of EPD by increasing sample size. A Moﬁte Carlo simulation
study is carried out to compare the performances of different methods. The real data
set is also provided to illustrate the results for complete samplcs data.

For censored samples, Type-II censoting scheme is used. Under this censoring
scheme, different sample sizes and percentages of failures are fixed for calculating the
MLEs and their 90% and 95% confidence intervals (Cis) for both parameters of EPD.

From the results of Type-II censoring, it is concluded that MSEs of MLEs for both

shape parameters of EPD decreases due to increasing sample size. It is also observed




that the length of CIs becomes narrow by increasing simple size for fixed level of Type-II censoring. This
indicated that the MLEs are consistent and approaches true parameter values. Further, 1t 1s seen that
length of Cls becomes narrow by increasing percentages of failures (r) and sample sizes (n) this indicated
that the accuracy of the results. Furthermore, results of MLEs are calculated through simulation method.

A real data set 1s also used for illustration to compare the MLEs for censored samples.

Keywords: Exponentiated Pareto distribution, Maximum likelihood estimators, Bayesian
estimators, Lindley's approximation, Type-II censoring, LINEX Joss function, Squared Error loss

function, General Entropy loss function, Precautionary loss function, Type-Il censoring.
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that the length of CIs becomes narrow by increasing simple size for fixed level of Type-II censoring. This
indicated that the MLEs are consistent and approaches true parameter values. Further, it is seen that
length of Cls becomes narrow by increasing percentages of failures (r) and sample sizes (n) this indicated
that the accuracy of the results. Furthermore, results of MLEs are calculated through simulation method.

A real data set is also used for illustration to compare the MLEs for censored samples.
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Introduction

The' Exponent'iated Pafeto distribution (EPD) was"introduced by Gupta et al.
(1998) in the same settings tflat the Generalized Exponential distribution extends the
Exponential distribution. They showed tha{: the'EPD c“g,n be use;d quite effectively
in analyzing many lifetime aata EPD can be defined by raising the cumulative
distribution function of a Pareto distribution to a positive power and used in life
testi;lg experiment, when units are lost from that experiment while they are stivlll alive
e.g., testing of expertiment‘ of cancer patients. Cumm’ulaative distribution function

&

(CDF) of EPD is defined as:

F(‘T:a: 9) :[1 - (1 + xi)—a]0> x> 07 a, 0> 0) (1)

- v

where of and 6. are both shape parameters- The probability density function (PDF) is:

flz,0,0) =a bl —(1+ x,-)“‘]o»‘l' (1+ a;i)‘(ffﬂ), x>0 af>0. (2)

r

Moreover, survival function of EPD can be expressed as:

(. 4 )
S(x)=1-F(z,0,0) =1-[1-=(142)7%% >0, a, >0, (3)
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Figure 1(c): Graph of Survival function with different values of parameters of EPD.
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Figure 1(d): Graph of Hazard function with different values of parameters of EPD.
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AL-Hussaini and Hussein (2011) obtained Bayesian predictive probability density
function when the underlying population distribution was Exponentiated by tak-
ing subjective prior. The corresponding predictive survival function was obtained

and then used in constructing predictive interval by taking one and two sample schemes.

Ghafoori et al. (2011) considered some well known and useful models for obtaining
prediction bounds as well as Bayes predictive estimations under SELF for the S-thorder
statistic in a future random sample drawn from the parent population. independently

and with an arbitrary progressive censoring scheme.

Ali et al. (2010) obtained the method of MLEs of the threshold parameter 3
with known parameters a and c for the EPD. Further they obtained the MLEs of
the tail probability of the EPD. Finally, they considered MLEs of reliabilitv in two
independent EPD.

Afify (2010) discussed Bayesian estimators and MLEs for two parameters of EPD
when samples were available from complete samples. Type-I and Type-IT censored
samples. Bayesian cstimators were developed under SELF as well as under LINEX
loss function by using non-informative type of priors for the parameters of EPD. The
performance of the proposed estimators was compared on the basis of their simulated

risks obtained under SELF as well as under LINEX loss function.

Abu-Zinadah (2010) applied Bayesian and the methods of MLEs method for es-
timating the parameters of EPD. He used reliability and hazard functions of the
model under compiete samples and Type-II censored samples. He also used Lindley’s
approximation for obtaining the Bayesian estimators under SELF and LINEX loss

function.

11
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Chapter 3 f |
Materials and Methods

In this chapter, we derived MLEs, observed Fisher information matrix and different
Bayesian estimation methods using Lindley’s approximation taking informative and
non-informative types of priors for complete samples. As for the case of censored

samples, the MLEs and CIs for the parameters under Type-II censored are derived.

3.1 Classical -Estimation of parameters

In this estimation approach, parameters are considered to be fixed and unknown
quantity.  Hassan and Basheikh (2012) compared the MLEs with other classical
estimation methods and concluded that MLEs is the best method among others. Ali
et al. (2010) also concluded that MLEs is the best method as compared to other

classical estimation methods.

3.1.1 MLEs for complete samples

Suppose that z;, z3, 23, ..., I, be the set of n random lifetimes whose lifetimes

have EPD with parameters a and f). The likelihood function of equation (2) is:

L(e,0) = a" ¢" ﬁ 1-(1+ A e f[ (1 + ;)" (6)

14
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3.2.4 Levy prior (LP)

The Levy distribution is defines as:

fla,8) = -Z-%-T- 6732 em2/28 o 9> 0, (17)

joint prior distribution for « and § is:
m(a, 8) ox af? §73% g=o/28 (18)

and the log function and derivatives of log function with respect to o and @ are defined

in Appendix A.

3.2.5 Uniform prior (UP)

According to Laplace (1812) the UP is the most widely used non-informative prior.

Bayes (1763) give the knowledge of UP. In the case of restricted parametric range,

UP are easy to recognize. For the parameter 4, with range 0 to 1, the UP is:
7f)=1 0<6<L (19)

For the parameter range 0 to oc it is:

@) x1, 0<b<oo. ' (20)

‘And for the parametér range —oo to co, the UP is:

m(f) xx 1, —0 << 00, (21)

18
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here (20) and (21) are also known as improper priors and defined in Appendix A.

3.2.6 Posterior distribution

We can calculate posterior distribution by Density Kernal and Posterior method.
In Density Kernal method we just take product of likelihood function of EPD and
marginal distribution of o and @ respectively which is taken from GP, LP and UP.

General form of this method is as under
Pla | z) o« L(a,8) x f(a), o (22)

P | z)x La, ) x f(6). (23)

Posterior method can be defined as it is the ratio between product of marginal
distribution of a parameter which is taken from any prior distribution and likelihood

function of any distribution and integral of product of prior distribution and likelihood

o

function of any distribution as:

_ _P(o)L{=z,0) ,
P(CY ( $) - fooo P(CY)L(LE, a) (24)
P | ) = LOL0 )

Jo P(0)L(z,6)
3.2.7 Lindley’s approximation

Lindley’s approximation firstly familiarized by Lindley’s (1980) for computing
the approximate Bayes estimators. As expected the Bayes estimates of the unknown

parameters cannot be obtained in nice closed forms as:

g(a,0) = Jo Jo 8 (a,0) log(a, 8) x ma(0) x m(a) da 0

Il log a,0) x m(f) x m(a) da 80 (26)

19
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so we suggest Lindley’s approximations to compute the approximate Bayes estimates

of the unknown parameters of EPD. The general form of this procedure is:

2 2
- 1
g=28(a,0) + 3 Z ZvijTij + L3oBiz + LozB21 + La1Chz + L12Co | + Wi Az + Wa A,
= .

=1

where detail of all terms and explicit expressions of this procedure are provided in the

Appendix B.

3.2.8 LINEX loss function

The LINEX loss function was firstly introduced by Varian (1975) and this loss

function is expressed as:
L(A) x exp(kA)+ kA -1, k#0, (27)

where A = 0 — 6 is scalar estimation. Under this loss function the Bayes estimator of

0 is given as:
R 1 B
OLinex = - log [Eg(e™*9)] . S (28)

The sign and magnitude of shape parameter k reproduce the direction and degree of
asymmetry respcctively. If k > 0 the ovefestimation is more serious than underestima-
tion. If k = 0 then LINEX loss is approximately equal to SELF and therefore almost

symmetric. We will assume that « and 6 are independently distributed.

20
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. (33 Loy (e m) 0081 + )1 + )) (ko) 7

a3 — (1 _ﬁ’(l _*_mi)—d).'i
(20 ey 2 (S Az A log(L 4 @) ki (L,
(és)(kek) 2224-(; A= (i1 2)3)7 )(ke )(11 o

Bayesian estimators of & and @ under LINEX loss function using UP are:

. 1 ke, 1 k&
CYBLUP:“Elog[e k +§{(k25 S

~ n_ -& 3 -&\
“(211_}_(9_1)2(1‘}'(14‘371‘) )(log(1 + ;) (1+rf‘)» )(ke“’“") i

& — (1-(1+z)"%)3 h T
2n\ o _-ké = (1 +2;) "% (log(1 + 2,))* k&
| (33)
Oprup = —% log [e-ké + %{(k2 e ) 1y
) (%—? +O-1) ;:{ e xi();?((lfgflzrs—?))z L+ Ii)“g\ (k €7%) 71 712
_[(2n ok by -2 =\ (1 +72;)"% (log(1 + z;))? Y
X (7'117'22 + 2 7'122) }:l .
- (34)
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3.2.9 General Entropy Loss Function (GELF)

This loss function clearly estimates the natural parameter which is the canonical

form of the exponential family. The Calabria and Pulcini (1996) defined GELF as:

P

e(a,é)zE (g)k—kln<§)—1 . | (35)

The constant involved in (35), is its shape parameter. It reflects disappearance from
symmetry. When k > 0, it considers positive error to be more serious than negative
error and converse for k < 0.

The Bayes estimator 6 of # under GELF is given by

. -1
fpc = [Eo(a)_k] k. ' (36)
provided E4(6)~* exit and is finite. Bayesian estimators of « and # under GELF using
GP are:

]. 2 ~
&pcecp = [a*k + é{k(k +1) &) 7y - (E? +(60-1)

X - (1;I*(1+$i)_d)(105(1+zi))3(1+xi)—d &—(’H'll) 72— 2_n
2 (= [T+ o) Jeatn - ()

=1

X (k CT(kH)) T21 T22 — (Z(l _Zly:)—(:(}fiii—i)zz)) )(3 k &_(k+1)) T11 712}

i=1

_ (al — L _ bl) (k 6~ ®tDYy rp — (‘“é"l - bg) (k &~ (k+1) m] ,

=

o .
(37
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Bayesian estimators of a and ¢ under GELF using UP are:

S L+ (T4 3) %) (log(1+ 7)) (14272 < geenyy 2 _ (20
2 (1= (1+z:)7%)3 )(k )7 (93)

n

. (1 +2) 4(log(L+ )Y o+ o 1™
wka D + (S ) @)

(41)

2n A

fpcrup = |07F + ! k(k+1) 7%+ oy — [ 24 (1)
2 &3

N (L (L4 m) ™) (log(L+ @) P+ 7)™ ) o (2N
2 (1= (+ )0 o8 ()

LES

X n NG )2 N
« (k 0E0) 2y (Z 8! JE ;)" %(log(1 +Aac,))_ )(k DY, 1

1— (1+ ;) 9)?
+2 Tf,)}] . ‘ |

i=1

Lol

3.2.10 Sqguared Error Loss Function (SELF)

This loss function was proposed by Legendre (1805) to develop least squares
theory. The most common loss function used for Bayesian estimation is SELF also
known as quadratic loss function. The squared error loss denotes the error in using to
estimate any parameter. This loss function is just the squared value of the root mean

square error and general form of this loss function is mostly in the form of quadratic as:

LL(C;,Q);N(@-GY ) | - | iu | | (43)

x

25

=

3

o




T

—— T e T

General form of this loss function is:
6 = E, (a|z).

Bayesian estimators of o and 6 under SELF using GP are:

GpsEGP = [a - { (2—73 +(0-1) Zn: (1+ (1 + 2:)~*)(log(1 + ml)z"’(l +4.’L‘i)_d>

2\ @ (1-(1+2)79)
i () mo= (S o)

-1 -1 ‘
+ (al - = bl) T11 + <—A— - bg) T12:|,
& 0

(44)

Opsecp = [é + 1{ (2&? +(0-1) Z 1+ 1+ Ii()l _)((lfi(lmj :E,))zg’(l + xi)“d)

2
2n (14 ;)" *(log(1 + z4))?
X Ti1 Tig + (70:;) 7222 - (; (1 _ (1 + mi)“i)? (711722 +2 7122)

+<‘“_1-b1) 721+(“2'1—b2> ]
& 0

(45)

Bayesian estimators of a and 6 under SELF using LP are:

o 1(/2n A — (1 1x, lo Hz,31+xi-d )
(e f e )

|

() - (£
1
2

0—a\ +l a—30 .
&0»\ T11 9 é2 124

(46)
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may lead to serious consequences. General form of this loss function is:

after simplifving we have.

6= [R(6?)]% .

Bavesian estimators of « and () under PLF using GP arc:
5 1 2 .

(j.‘/gp(;}: = |:(:lz+ 5{2 Ty < AIZ: 1 (0 1)

o

n

=1 (1= (14 r,)8)

1=

i

5 —1 i
+ <(12 (} - b2> (2 (A)’) 7'12}

y Z (log(1 +a))* (1 +a) “ (1 +(1+ f"z‘)a)> (2 é 72

(H0)

" (log(1 4+ ) (1 + ay) 70N i

(ol

. A1 2n .
Uppep = |0°+ =927 + | — + {0 —1)
2 %
n 3 - e
y (log(l+z,))_(l+m,) <_l+<l+",’), ) Sy 1P TN
v (1= (L o)) (-
€8] *]

L (log(14 @)1 4278 . L 2 -
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BGEGP
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BPLLP
BLUP
BSEUP
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1.0854(0.0347)
1.0369(0.0258)
1.0348(0.0256)
1.0334(0.0241)
1.0313(0.0225)
1.0323(0.0219)

1.6275(0.0644)
1.5330(0.0426)
1.6066(0.0563)
1.6262(0.0660)
( )
( )
( )

1.5327(0.0679) .

1.5209(0.0416
1.5245(0.0423
1.5321(0.0415)
1.5297(0.0410)

2.1520(0.1659)
2.0488(0.0621)
2.1464(0.0916)
2.9008(0.1213)
2.0309(0.0559)
2.0523(0.0574)
2.0514(0.0590)
2.0141(0.0506)
2.0202(0.0497)

100

ML
BLGP
BLLP
BSEGP
BSELP
BGEGP
BGELP
BPLGP
BPLLP
BLUP
BSEUP
BGEUP
BPLUP

1.0309(0.0208)
1.0300(0.0201)
1.0304(0.0200)
1.0307(0.0203)
1.0789(0.0272
1.0302(0.0201
1.0774(0.0262
1.0692(0.0256
1.0305(0.0205

1.0306(0.0205
1.0303(0.0204
1.0308(0.0207

1.5270(0.0347)
1.5245(0.0344)
1.5264(0.0346)
1.5206(0.0338)
1.6017(0.0481)
1.5244(0.0345)
1.5855(0.0431)
1.6004(0.0490)
1.5207(0.0339)
1.5268(0.0340)
1.5237(0.0335)
1.5269(0.0343)
1.5234(0.0342

2.0387(0.0495)
2.0362(0. 0448)
2.0376(0.0481)
2.0357(0.0483)
2.1451(0.0757)
2.0378(0.0482)
2.1329(0.0640)
2.1355(0.0548)
2.0384(0.0477)
2.0379(0.0479)

2.0197(0.0274)
2.0275(0.0374)
2.0355(0.0390

130

ML
BLGP
BLLP
BSEGP
BSELP
BGEGP
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ML
BLGP
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BSEGP
BSELP
BGEGP
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1.0502(0.0156
1.0179(0.0121

(
(
(
(
(
1.0185(0.0127
(
(
(
(
(
1.0493(0.0152

)
)
)
)
)
)
1.0143(0.0124)
)
)
)
)
)

1.5302(0.0241)
1.5258(0.0209)
1.5292(0.0233)
1.5259(0.0239)
1.5801(0.0313)
1.5301(0.0236)
1.5692(0.0289)
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(0.0477)
(0.0390)
( )
2.0224(0.0381)
2.0202(0.0295).
2.0215(0.0368)
2.0217(0.0363)
2.0923(0.0495)
2.0222(0.0319)
2.0713(0.0444)
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nly a— 1 1.5 -2
BPLGP  1.0440(0.0149)  1.5796(0.0317)  2.0995(0.0524)
BPLLP  1.0152(0.0116)  1.5233(0.0240)  2.0215(0.0363)
BLUP 1.0182(0.0125)  1.5278(0.0211) 2.0301(0.0291)
BSEUP  1.0127(0.0124)  1.5280(0.0232) 2 0356(0.0359)
BGEUP 1.0119(0.0114) 1.5272(0.0249)  2.0220(0.0315)
BPLUP  1.0179(0.0123)  1.5216(0.0235) 2 ()294(0 0319)

200 ML 1.0106(0.0089)  1.5153(0.0155) 0190(0.0269)
BLGP 1.0100(0.05082) 1.5092(0.0146) 2 ()l()')(() 0230)
BLLP 1.0103(0.0087)  1.5093(0.0154)  2.0119(0.0255)
BSEGP  1.0105(0.0088)  1.5018(0.0153)  2.0189(0.0267)
BSELP 1.0136(0.0104)  1.5523(0.0188)  2.0714(0.0335)
BGEGP 1.0104(0.0088) 1.5138(0.0152) 2.0132(0.0059)
BGELP  1.0130(0.0090)  1.5440(0.0176)  2.0557(0.0306)
BPLGP  1.0192(0.0101) 1.5520(0.0190)  2.0773(0.0352)
BPLLP  1.0106(0.0088)  1.5124(0.01 )()) 2.0189(0.0265)
BLUP 1.0102(0.0088)  1.5107(0.01 48) 2 (Jl()()((] 0134)
BSEUP  1.0106(0.0089) 1.5133(0. 0145) 0188(0.0275)
BGEUP 1.0104(0.0086)  1.5152(0. 0155) 2 ()131(0 0269)
BPLUP 1.0101(0.0183)  1.5136(0.0151)  2.0172(0.0249)

Here we discussed about the results of parameter « for complete samples using
various sample sizes and different values of «v. Averages estimates and MSEs {within
parenthesis) are shown in Table 1. It is observed from Table 1 that BLUP gives
best estimates for @ = 1, 1.5 when sample size is 30 and 50. BLGP provide effective
result for & = 1.5 but BGEGP give superior result for o = 2 when sample size is 30.
For @ = 1.5 with sample size 50 and 150, BLGP contribute improved result whereas
BPLLP gives better result for @ = 2 with sample size is 50. Also BPLUP gives best
performance for all values of « those are taken with sample size 80. Further, BSEUP
also gives outstanding result for o = 2 with sample size 100. Furthermore. BLLP.
BGEUP and BLGP provide recovering outcome for oz = 1 when samples size is 100.
150 and 200 respectively. Morcover, BSEUP gives superior result for a = 1.5 and 2

with sample size 100 and 200. And results for parameter f are as under:
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Table 2: Average estimates for () and MSEs (within parenthesis).

ny 60— 1 1.5 2

30 ML 1.1082(0.1009)  1.6770(0.2803)  2.2753(0.5799)
BLGP  1.0554(0.0964)  1.5970(0.2661)  2.1634(0.5632)
BLLP  1.0127(0.0890) 1.5315(0.2632)  2.0737(0.5927)
BSEGP  1.0242(0.0647)  1.4887(0.1430)  1.9250(0.2273)
BSELP  0.9810(0.0552) 1.4161(0.1227) 1.8176(0.2022)
BCGEGP  1.0368(0.0786)  1.5592(0.2022)  2.0867(0.3731)
BGELP  0.9936(0.0670)  1.4866(0.1659) 1.9793(0.2945)
BPLGP  0.9547(0.0715) 1.3857(0.1554)  1.7650(0.2560)
BPLLP  1.0012(0.0717)  1.4598(0.1513)  1.8749(0.2301)
BLUP 1.0816(0.1075) 1.6511(0.3082) 2.2555(0.6700)
BSEUP  1.0495(0.0729)  1.5405(0.1665)  2.0130(0.2704)
BGEUP  1.0620(0.0880)  1.6110(0.2371)  2.1747(0.4594)
BPLUP  1.0740(0.0967)  1.5967(0.2256)  2.1016(0.3750)

50 ML 1.0539(0.0507)  1.6006(0.1329)  2.1451(0.2644)
BLGP 1.0259(0.0496)  1.5553(0.1270)  2.0830(0.2555)
BLLP 1.0022(0.0474) 1.5175(0.1232) 2.0327(0.2575)
BSEGP  1.0092(0.0395)  1.5003(0.0926) 1.9660(0.1663)
BSELP  0.9854(0.0362) 1.4604(0.0849) 1.9082(0.1542)
BGEGP 1.0136(0.0440) 1.5352(0.1102) 2 045%(() 2095)
BGELP  0.9897(0.0403)  1.4954(0.0989)  1.9875(0.1857)
BPLGP  0.9738(0.0415)  1.4486(0.0969) 8()56(() 1 /6))
BPLLP  0.9988(0.0418)  1.4889(0.0973) 1 9521(0.1728)
BLUP 1.0398(0.0528) 1.5842(0.1390) 2.1311(0.2849)
BSEUP  1.0229(0.0421)  1.5284(0.1003)  2.0126(0.1813)
BGEUP 1.0273(0.0468)  1.5633(0.1204)  2.0919(0.2338)
BPLUP  1.0376(0.0496) 1.5603(0.1196)  2.0638(0.2174)

80 ML 1.0378(0.0269)  1.5657(0.0736)  2.0036(0.1416)
BLGP 1.0218(0.0262) 1.5397(0.0712) 2.0551(0.1372)
BLLP 1.0072(0.0251) 1.5168(0.0690) 2.0233(0.1360)
BSEGP  1.0112(0.0231) 1.5070(0.0594) 1.9894(0.1072)
BSELP  0.9967(0.0219) 1.4830(0.0564) 1.9555(0.1020)
BGEGP 1.0132(0.0245)  1.5266(0.0655)  2.0346(0.1225)
BGELP  0.9987(0.0232)  1.5026(0.0614)  2.0006(0.1138)
BPLGP  0.9912(0.0234)  1.4785(0.0606) 1.9494(0.1109)
BPLLP  1.0062(0.0238)  1.5022(0.0613)  1.9832(0. ]105)
BLUP 1.0301(0.0273) 1.5567(0.0754) 2 (833( 73)
BSEUP  1.0194(0.0240)  1.5237(0.0624) T0(0, 1 1 a )
BGEUP  1.0214(0.0255)  1.5433(0.0692) 2. (J()Z (0.1311)
BPLUP  1.0293(0.0266)  15440(0.0695)  2.0471(0.1266)
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For large sample size BSELP shows incomparable results comparatively all other
Bayesian estimation methods and MLEs for § = 1, 1.5 and 2. Therefore, it is concluded
that BSELP is better selection for estimation of parameter of 6 of EPD for 6§ = 1,
1.5 and 2 with sample size 200. Also BLGP and BPLUP, BSEGP and BGELP.
BGEGP, BPLLP and BSEUP, BLUP and MLEs shows same performance but not
comparable with BSELP for § = 1 when sample size 200. MLEs and BLUP also
overestimate for # = 1 when sample size 200. Hence and concluded that MLEs and
BLUP are not performed very well as compared to others for § = 1 when sample size
200. Furthermore, BLLP and BGEUP, BGELP and BPLGP gave samc results but
not better from other Baycsian estimation methods for § — 1.5 when sample size 200.
Moreover, BGELP and BSEUP are also provide same outcomes for # = 2 with sample
size 200 but not superlative as compared to others Bayesian estimation methods. We
can see above all results of MSEs by graphical representation as given in figures 1-3

as under:
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Figure 1: Graph of MSEs when a=1and 1.5
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Figure 3: Graph of MSEs when 8 = 1.5 and 2
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In Figures 1-3, title bar showing the values of & and #, vertical bar represents
M_SEs of MLEs and different Baycsian estimators and horizental bar indicates various
values of sample sizes.

It is observed that MSEs of MLEs and Bayesian estimators arc decreases as sample
size increases. This indicates that the consistancy and accuracy of the results. It is
also noticed that when sample sizes goes to sufficiently large then MSEs of Bayesian
and MLEs are close to each other. Hence it can be concluded that for large sample

sizes Bayesian and MLEs are close to the true values of parameters.

4.1.1 Real data analysis for complete samples

In this section, we consider the real data set which is taken from Nichols and Padgett
(2006) and is presented in Table 3. The data gives 100 obscrvations on breaking stress
of carbon fibres in Gross Building Area (Gba). Here we considered an uncensored data
set corresponding censored data set from consisting of 100 observations on breaking
stress of carbon fibers (in Gba). This data was obtained from a process producing

carbon fibers and it was used in constructing fibrous composite materials.

Table 3: Breaking stress of carbon fibers

039 081 0.8 098 1.08 1.12 1.17 118 122 1.25 136 141 147
1.57 157 159 159 161 161 169 169 171 173 180 1.84 184
1.87 189 1.92 200 203 203 205 212 217 217 217 235 238
241 243 248 248 250 253 255 255 256 259 267 273 2.74
276 277 279 281 281 282 283 285 287 288 293 295 296
297 297 3.09 311 311 315 315 319 3.19 322 3.22 327 3.28
3.31 331 333 339 339 351 356 360 365 3.68 3.68 3.68 3.70
3.75 420 438 442 470 490 491 508 5.56
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different loss functions based on Gamma, Levy and Uniform priors also divulged that
"?"!e-.r
BSELP, BGELP and BPLGP has overestimate for different values of parameters of

EPD, so we can say that BSELP, BGELP and BPLGP overestimate the parameters’
for estimating the 6 while for the estimating the «, BSELP, BGELP and BPLGP
underestimate the parameters of EPD.

Bayesian estimators of EPD are obtained using Lindley’s approximation by taking
informative and non-informative types of priors. Therefore, Lindley’s approximation

is a good alternative for the case in which the Bayesian estimators of EPD cannot be

obtained in explicit forms. It appears from this study that the Bayesian estimators
using informative priors are superior to the method (?f MLEs.
From the results of Type-II censoring, MSEs of, MLEs for parameters of EPD

decreases as sample sizes increases, so that the bias tends to be worse for.the larger

S e T T T AT T T T

sample sizes with increasing percentages of failures. It;is also observed that the length
of Cls becomes narrow when sample size and pe’rceniiages of failures increases. This
, indicated that the MLEs are consistent and approaches true parameters value. In
terms of MSEs the MLEs are better for all level of Type-II censoring by increasing
sample sizes. Also for real data set MSEs of MLEs for.both parameters of EPD
decreases when we increase percentages of failures. éIs are also becomes narrow by
inqreasing percentages of failures. t ‘
Recommendations: Further, this research study can be extend for estimatirig
the Bayesian estimators of EPD under Type-I -and Typcg—II censoring schemes. Credible

3

intervals, Hypothesis testing can also be obtain for complete and Type-1 censored

samples. i
i

“ i
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Appendix B

Detail of all terms of Lindley’s approximation for complete samples are:

(&, 0) is taken from according to the simplified form of anv loss function.

2 2
E E DijTiy = U7 02T - 01T + UpaTos.

i=1 j=1
atig o
Li; = i g = 0, 1.2 3 i(+j=23 By= v, 7, 0,7
2 _ . .
Cij =3 v Tu Tij + Uy (Tu. Ty5 1 2 TU) A,’_}‘ ATy Uy Ty L)

0 logm(w, 0) A logm(a. 0)

W, = U, =—
' da ¢ o
9% log L, 0 n (1 @) %(log(1 + 4y))?
:_—-’——2*2 S 0-1)) , AT
dox 0 — (L—A(1 . a;) )
 PlogLla.0)
o0? A
~ Jlog L{a,0) — (1 +;) (log(1 + )
B a0 da — (1+ )"‘ '
Where explicit expressions are defined as:
q ) ! fhui ()
T = o T om0 Ty = Tay o :
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= L vy = Sl S e Uy
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& logl, 2n . (14 (1 + 279 (log(1 =) (1 4 @
Lyp=—7=—=—5+0-11) — — T e
Oa & (L—=(1~ ;) )

B P logl 2n I 9 log I

L()I} — _5‘0—5— = (7;— U ()‘(;;)?)2
& logL = (1+.1,)"" (log(l + 1))’
da? 6 (1 (14 2,)"%)

2 2
Bio = 1T, +vaT2Tin. Bap — taTgy + U172 Ton.

f - 1 5 2 i . .o 2
(,/12 =3 U 71y Tre =ty (T][ Too | 2 7'12). ( 91 3 Uy Top Top 0 U V700 T - 2 T
A = vy T11 + Ug T, Al — Vo Tog+ vy Ty 10 j — L 2.

Detail of terms for Type-II censoring arc:

9*log L, 0). r — (11 2,) “(logl(l 1)
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p Jda? 2 ( ) :
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