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ABSTRACT

The first principle calculations established on density functional theory @FT) are

the most contemporary influential techniques to study the ground state properties of solid

materials. In this research work, we analyzed the structural, electrical and optical

properties for Znr-*Cd*O atloys for x = 0 to 75% in the zinc blende (ZB) phase. For this

purpose, we adopted the full-potential linearized augmented plane wave plus local

orbitals (FP-LAPW + lo) method based on the DFT within the generalized gradient

approximation (GGA) scheme, especially the Wu-Cohen GGA formalism.

In the sfuctural properties, we find that the lattice constant 'a', bulk modulus 'B'

and its derivative with respect to pressure '8" ate in enough accordance with the

experimentat resulrc for ZnO.In electrical properties, the density of states (DOS) and the

direct band gap (BG) are very close to the experimental results showing that ZnO is a

semiconductor.

The structural properties of the Znr-xCd*O alloys reveal that the lattice constant in

these alloys goes on increasing with the increase in the cadmium (Cd) concentration into

ZnO while the bulk modulus decreases correspondingly and its derivative as well. [n

electrical properties, we calculate the electon charge density 'p(r)',pOS and BG of the

Znr-*CdO alloys to analyze the bonding character, orbital hybridization and energy

states. The bonding character of Znr-*CdO alloys reveals that the ZU.tsCdn.zso alloy

possesses the semiconductor behavior while the BG calculations indicate that the

Zno.soCdo.soO and Zno.zsCdn.tso alloys are metallic in nature. The optical analysis of the

Zu-*CdO alloys reveals that the imaginary part 'e2(o)' of the dielectric function

decreases with the increase in energy while the real one 'tt(o)' increases

correspondingly. The joint density of states (JDOS) and the conductivity 'C' decrease

with the fall in the energy. The energy loss function 'L' and the refractive index 'n'

increase with the increase in the energy. The optical transition between the uppermost

valence band and the lowest conduction band was found to be shifted towards the low

energy range with the increasing concentration x of cadmium.
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Chapter 1

INTRODUCTION

This dissertation comprises the Stuctural, Elecfiical and Optical properties and

their statistics in the zinc blende (ZB) phase for the zinc oxide (ZnO) binary compound

and changes produced in its properties by its substitution with cadmium (Cd) to make

Znt-*Cd*O tertiary alloys. As zinc belongs to Group tr of the Periodic Table while oxygen

does Group VI, so ZnO is called a Group II-VI compound having semiconductor

properties due to consisting of a direct and wide band gap (BG). Changes in the BG of

the Znr-*Cd*O compounds have also been investigated and it is observed that the BG of a

ternary alloy decreasies as we increase the doping of Cd in the range x = 0 ' 75%o.

However, the optical properties concerned with the confiaction of the band gap of the

Znr-xCd*O alloys have not fully been determined and we still have not unveiled an optical

transition completely. In this respec! the First-Principles formalism is charming to

research on the optical properties of the Znl-xCdxo compounds. ln our calculation

procedure, the full potential linearized augmented plane wave (FP-LAPW) method in the

WIEN2k software package [1] will be used for our solid material under the first

principles method.

There are immense applications of ZnO in many fields. It is used as a substrate in

solar cells, varistors, heterojunctions, tansparent conductors, thin film gas sensors,

surface electroacoustic wave devices, light emitting diodes (LEDs), ulfiaviolet (UV) solid

state emitters and detectors, W LASERs, LASER diodes, etc. l2l. There is marvelous

attraction for the optical properties of 7nO in the commercial fields which require the

optoelectronic insfuments that can be operated in the spectral or deep blue region. ln the

optoelectronic applications, there is the great importance of heterostructures of ZnO

formed with the Group tr-B oxides (CdO, HgO, etc.) having the little band gaps than that

of ZnO [3]. We hope that our theoretical results would help the experimentalists in the

optoelectronic industry for the fabrication of devices.



1.1. Zinc Oride

The chemical properties of zinc oxide indicate that it is an inorganic compound. It

is also called Plaster of Paris. It is found in the forrr of white powder which rarely

dissolves in water. The powder is usually used as an additive into various things and

products like glass, ceramics, plastics, rubbers, paints, lotions, ointments, cosmetics,

lubricants [4], adhesives, pigments, sealants, batteries, fire retardants, food, and the first-

aid equipmen! etc. It is found in the natural form as Zncite - a mineral, but its major

production is commercially [5]. ZnO is inflammable.

Table 1.1 - Erperlmental calculatlons about zlnc oride

STATISTICS ABOUT ZINC OXIDE
ELEMENT VALUE

Annearance white solid
Smell Odorless

MolarMass 81.41 s/mol

Densi8 (Specific Gravi8) 5.607 slcm'at20"C 16l
Aoueous Solubilitv 0.16 mdl00 mL at 30 oC

Meltins Point t975"C lTl
Boilins Point 2360"C

Refractive Inder 2.004

Band Gap (Direct) 3.37 eV

Euronean Union Classification Daneerous to Atmosphere

1.1.1. Properties

1.1.1.1. Structural Properties

Ileragonal Wurtrite Structure

It is the most found common compound due to having a stable structure under the

confined conditions [8]. The centers of both zinc and oxide lie at a tetrahedral. The

polymorphs of the hexagonal wurtzite have no inversion symmetry which means that the

reflection of this crystal about a certain point cannot convert it into itself. This property

along with other symmetry properties of the lattice concludes the Piezoelecficity and

Pyroelectricrty of the hexagonal structure of ZnO. The piezoelectricity means the



generation of electicity when a crystal or a specific substance is compressed and the

pyroelectricity is the production of the electricity through a material due to change in its

temperature.

Due to the ionic bonding nZnO with the Zrf2 radius of 0.074 nm and 0.140 nm

of O-2, the major formation is of the wurtzite stnrcture rather than the zincblende one [9]

and a high value of piezoelectricity can be detected. Due to the polar bonding in ZnO, the

zinc and oxygen planes contain positive and negative electric charges respectively, which

are nafurally smooth, constant and they don't need to reform themselves to keep electrical

neutrality like the other materials whose surfaces themselves rebuild at the atomic level

in order to maintain the elecfiical neutality. Hence, we need to completely describe this

inconsistent behavior of ZnO [0].

The point Soup of the structure is 6 mm according to the Hermann-Mauguin

notation or Co, in the Schoenflies notation and the space group is P6rmc or Cfr. Its

Strukturbericht designation is 84 [l l].

The lattice constants are a:3.2501A and c= 5.2071A and their ratio c/a of the

hexagonal cell as l.602l is near to the ideal c/a ratio equal to 1.633 U2]. A unit cell of

the WurEite ZaO phase with the atomic positions Zn (113,A3,0) &, (213, ll3,ll2) and O

(113,213,1r\ & (2t3,ll3, yt+ lt})havlrrgp= claas a certain parameter is shown below:

Figure I - Unit cell structure of ZnO in the Wurtzite phase



Cubic Zincblende Structure

It is a temporary structure appearing during the fabrication of the wurtzite

structure of ZnO and was named by the mineral Sphalerite, also called Zincblende [3]. It

can be alleviated by mountingZnO on substrates with the cubical lattice shapes. The

centers of both zinc and oxygen position at the tetrahedral and this property along with

other symmetry properties of the lattice, results in the piezoelectricity of the zincblende

structure of ZnO. The closest neighbors of every atom comprise four contrary atoms

placed at the four corners of the systematic tetrahedral. In this structure, the amangement

of atoms is that of the diamond cubic structure but the atom types at lattice sites lie

alternately. Also, the polymorphs of znc blende have no inversion symmetry.

Its space goup is F43m according to the Herman-Mauguin notation or "number

216" according to International Tables for Crystallography [4, 15]. [ts Stukturbericht

designation is 83 [ ll. A ZnO zincblende unit cell with the atomic positions Zn (0, 0, 0)

andO (ll4,ll4,ll4) has been shown in the following figure:

Figure 1.2 - Unit cell structure of ZnO Zlncblende

Cubic Rocksalt Structure

This structure is like that of sodium chloride (NaCl) or Halite and is visible at

high pressure of l0 GPa [16].In this sfiucture, each of two atom types builds a detached

face-centered Iattice and two lattices pierce mutually to construct a 3-dimentional

checkerboard arrangement. The structure can be formed more possibly if the size of the



cation is little bit smaller than that of the anion such that the ratio of the radii of cation

and anion may have a value from 0.414 to 0.732. The interatomic distance between the

cation and anion (half the len4h of the unit cell) is 2.E A for NaCl [lfl. Every atom in

this structure has a coordination number of 6, i.e., every cation is organized wittr 6 anions

and every anion is coordinated to 6 cations on the corners ofan octahedron.

Its space Soup according to the Hennan-Mauguin notation is Fm3m or 225 in

International Tables for Crystallogaryhy. Its Strukturbericht designation is 81 [l l]. A

unit cell of the rocksalt structure with atomic positions 7-n (0,0, 0) and O (112,ll2,ll2) is

shown below:

Figure 13 - Unit ccll structure of Rocksalt ZnO

The crystal structure of ZnO in three phases has been shown below:

Rocksalt (Bl) Wwtzite (B4)

(e)(b)(o)

Zinc blsnde (83)

Figure 1.4 -Z.tO structurc in threc phases B1' 83 and 84 [16]



1.1.1.2. Electrical Properties

ZnO being a semiconductor is high electon mobile, vast band gapped, transparent

and intensively luminescent at room-temperature. At this temperature, the value of the

ZnO band gap (BG) is 3.37 eV or 375 nm which facilitates us attain low noise in

electronics, high values of breakdown voltage, persistent wide electric fields, higher

temperatures and bigger power operations. The BG can be upgraded to 4 eV by alloying

ZnO with cadmium oxide (CdO) or any other binary compound [16].

ZnO compounds often behave as N-type materials even we don't perform its

planned doping. The N-type behavior appears due to non-stoichiometry, but the matter is

debatable tl8]. A substitute grounded on the theoretical measurements has been

described for this controversy indicating that the unintentional hydrogen impurities cause

this behavior [9]. We can also obtain the manageable N-tlpe doping simply on the

substitution of Zn in the Group III elements like aluminum (Al), gallium (Ga), Indium

(In), etc. or oxygen with the Group VII elements as chlorine (Cl) or iodine (D t20].

A P-type doping of ZnO is unreliable because P-tlpe dopants are less soluble and

have less reimbursement with abundant N-Upe impurities. In intrinsic N-type materials,

measurement of the P-type doping is obscure due to inhomogeneity of the sample

materials [21]. Electonic and optoelecfionic uses of ZnO, which normally need PN-

Junctions, are not limited by the consfained P-doping. The discovered P-type dopants

comprise of the Group-I elements [lithium (Li), sodium (Na), potassium (K), etc.] and the

Group-XV etements [nitogen (N), phosphorus (P), arsenic (As), etc.] as well as the

Group-XI elements [copper (Cu), silver (Ag), etc.]. Among these dopants several being

deep acceptors are unable to generate apparent conduction of P-type at room temperature

tl6]. In ZnO, mobility of the elecfions is highly temperature dependent having maximum

value of 2000 cm2l(V.s) at 80 Kl22l. The mobility of holes has meager calculations and

some determined values range 5-30 cm2(V.s) [23].



1.1.2. Applications

1.1.2.1. Optical Usage

Diodes

Because of the wide direct band gap of ZnO, this compound is mostly applicable

in the light emitting diodes (LEDs) and LASER diodes 124, 251which are emerging

technologies of the past year, 2009.

Bright Emission

The exciton binding energy (EBE) of ZnO is 60 meV. ltis2.4 times of its thennal

energy at room temperature which causes a bright emission from ZnO as compared to

GaN having a band gap of 3.4 eV near that of ZnO but with the lower EBE at room

temperature. Therefore, due to resemblance a few optoelectronic uses of ZnO

superimpose with those of GaN and we can mix GaI.I in ZnO for different applications of

the LEDs [26].

Radiation Resistor

ZnO being highly stable is a good resistive target for high energy radiations [27].

It is also applicable to researches in Space Science I2El. It decomposes at 1975'C [7]

into Znvapours and Oz molecules showing its high stability.

Random LASERS

The electronically pumped ultra-violet (UV) LASER sources in the area of

Random LASERS 129,307 are generatedby ZnO.

Transparent Electrodes

The ZnO layers doped with Al work as transparent electrodes. Commercially,

ZnO is used as transparent electrode in liquid crystal displays (LCDs) [31], face contacts

for solar cells and energy saving windows.



Photocopying

The largest application of ZnO was in photocopy in which ZnO of hig! quality

manufactured by the French process was used as a filter in the photocopying paper but

was soon replaced [32].

1.1.2.2. Electrical Usage

Electric Field Emitters

Nano-rods of ZnO are used as field emitters because their point tips work as

levers of the intense elecfic field [33].

Field Effect Transistors

ZnO having the negligible P-type doping can be used in the formation of field-

effect hansistors (FETs) because they don't need a PN-junction. A few of the FETs use

ZnO nano-rods as the conducting media [34].

Spintronics

If we dope ZnO with l-l}% of magnetic ions of iron (Fe), manganese (Mn),

cobalt (Co), etc., then it becomes a ferromagnetic substance even at room temperature'

The ferromagnetism of ZnO and Mn occurs at room temperature but is doubtful about its

origin whether it is from the matrix itself or from the phases of a secondary oxide [35].

Piezoelectricity

In semiconductors, bonded tefahedral, ZnO has the highest piezoelectric tensor

which makes it important technologically for several piezoelectrical applications

demanding large electromechanical couplings [36]. Fibers coated with ZnO are able to

fabricate "self-powered nano-systems" [37] and generate piezoelectricity by activities of

our body or every day mechanical stresses caused by wind [38].



Biosensors

ZnO having fast kinetics to fransport the elecfions and high bio-compatibility is

applied as a bio-mimic membrane to halt and transform bio-molecules [39].

1.2. Cadmium

It is a bluish-white, ductile, malleable and soft bivalent metal. It is diamagnetic

t40]. It resembles zinc and mercury in various aspects but forms complex compounds

[41]. The electronic configuration of Cd is ls2, 2s2,2p6,3s2,3p6,3d10, 4s2, 4p6,4d10, 5* '

Table 1.2 - Statistics about cadmium

DATA ABOUT CADMII.'M
Classification Transitional Metal & Toxic

Atomic Number 48

Periodic Group t2
Block d

Space Group l94,P63lmmc
Atomic Mass

Density 8.65 e/cm' at293 K
Oxidation State +2

Meltine Point 320.9oC
Boiline Point 765 0C

Laffice Constants a = b = 297.94 & c = 561.86 pm

Crvstal Aneles o=B=90"&y=120o

lts structure is hexagonal closed pack (HCP) l42l as shown in the following figure:

Figure 1.5 - Structure of cadmium [421

9
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1.2.1. Applications

1.2.1.1. Electrical Applications

Batteries

Cd is mostly used in batteries, especially in the rechargeable Ni-Cd batteries. In

2009, the world used 86% of Cd in batteries. A nickel-cadmium cell is made up of a

nickel hydroxide anode and a cadmium cathode separated by a potassium hydroxide

GO1D alkaline elecfiolyte. The European Union (EU) forbade the cadmium usage in

Electronics 111-2}O4with numerous exemptions but permitted the quantity of the Cd usage

in Electronics up to 0.002%1431.

Electroplating

In electroplathg,6Yo cadmium is used. The Cd elecfioplating is often used in the

Aircraft Industry because the Cd-plated steel objects offer the excellent coirosion

resistance [44]. The passivation can occur in the Cd coating by using the chromate salts

[a5]. The hydrogen embrittlement of the high-strength steels is restricted by the Cd

plating which occurs during the elecfioplating method. The steels, having the tensile

strength above 1300 MPa/200 ksi obAined after the heat teatmen! must be coated by the

physical vapor deposition method or the special low-embrittlement cadmium

electroplating technique. The titanium (Ti) embrittlemen! produced due to the cadmium-

plated tool residues, was banished due to these tools and the routine tool testing programs

for finding the Cd contamination were also banned bylJ-21' l2lSR-71 and the successive

aircraft progams consuming Ti [46].

Soldering

Cadmium is used in solders t44].A solder is an alloy of metals having the melting

point ranging from 90 to 450 oC. The solder is fused to join the metallic surfaces and is

especially used in Electonics and Plumbing.

10



Solar Cells

A few compound semiconductors used for light detection contain Cd as a

constituent in the forms of cadmium selenide, cadmium telluride and cadmium sulfide

materials [44]. When light falls on these materials, they start conducting currents.

1.2.1.2. Optical Applications

LASER and Lab Erperiments

The helium-cadmium (He-cd) LASERS, operating at325 or 422 nm, are a good

mutual source of the blue UV LASER light. They are applied in fluorescence

microscopes and several laboratory experiments [47,481.

Quantum Dob

Quantum dos (QDs) of cadmium selenide under the ultraviolet (UV) excitation in

the He-Cd LASER produce an intense luminescence which may have yellow, green or

red colour depending upon the sizes of the particles. The QDs are the solid state

structures consisting of metals or semiconductors which contain a countable small

quantity of electons in a narrow space. The elecfions are confined by infioducing the

insulating materials which surround the cenftal conducting areas. The QDs colloidal

solutions are used for imaging purposes in Biology, and make solutions by a fluorescence

microscope [49].

Television Picture Tubes

The black and white television picture tubes use cadmium oxide (CdO) as the

black and white phosphors and the coloured television picture tubes comprise CdO as

red, green and blue (RGB) phosphors [50].

Photocopier

The surfaces of photocopier drums are coated by cadmium sulfide (CdS) for the

photoconductive purposes [5 I ].



Infra-Red Light Detectors

Sensitivity of mercury cadmium telluride (HgCdTe) to the infra-red light applies

that it can be used as an infra-red light detector in [52] or it can be a switch in the remote

control devices.

Stabilizer

In the Polyvinyl Chloride Industry, cadmium is used as the heag light, and

weathering stabilizer 144, 531.

Blocker

In Molecular Biology, Cd is used to block voltage-dependent calcium channels

from fluxing calcium ions.

1.3. Zn1-,Cd'O Alloys

1.3.1. Photoluminescent Properties of the Znl-rCdrO Alloys

The Znl-*CdO alloys are considered as the ideal solids for making instruments

based on ZnO. Onalloying with CdO having a narrow BG of 2.3 eV, we can red-shift the

band gap (BG) of ZnO to the blue and green light spectral regions. Resemblance of Zn

and Cd in their radii and the other fundamental properties demands a suitable constituent

of CdO into ZnO for the fabrication of Znr-*CdrO or ZnO heterojunctions or super-

lattices which are the main entities in the ZnO based light emitting and light detecting

devices. However, the most researches on thin films of the Znr-*Cd*O alloys are not

congenial because there coexist multiphases or polycrystalline shapes with the undesired

orientations. Hence, there are a very few reports on the photoluminescence properties of

the Znr-*Cd*O alloys [54].
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13.2. Optical Behavior of the Znl-rcdro Alloys Developed by the Molecular Beam

Epitaxy (MBE)

During the formation of Znr-*CdO alloys, the heterostructures and quantum

structures are produced which are the indicators of the energy Eu of the band structures.

The Znr-*Cd*O compounds are the proper nominees for realization of the band gap

engineering (BGE) due to the slight energy value of the direct band gap of the CdO

compound. If we want to get the full recognition of the BGE of the Znt-*CdxO

compounds, then we will have to get comprehensive knowledge of the basic parameters

(compositional and temperature dependences of energy bands) of these compounds.

As the Cd content x is increased, Eg decreases and the compositional dependences

have been found deviating prominently among the different researches. AIso effects on

the temperature dependences of the band gaps of the Znr-*CdO alloys with the increasing

Cd concenfation x are rarely known.

Now we will use the temperature depending reflection and optical absorption

statistics to study the compositional and temperature dependences of the BGs of the

Znr-xcdxg compounds with Cd compositions x up to l5.7Yo [55]. The following figure

shows the absorption specfium for epilayers of the Znl-xcdxo alloys at room temperature

in (ohv)2 versus hv coordinates:
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The linear part of the plot has been inferred to zero to get BG energies in the

Zu-*Cd*O alloys. The alloys which absorb the Cd contents of 2.2% or 9Yo, their spectra

display the desired linear dependence, otherwise the alloys with Cd content x:15.7%o

exhibit a strong deviation from the linear relation. It occurs due to the tough

compositional non-uniformity or the phase separation for the Cd composition x with high

quantity which makes it uncertain to find the BG enerry E for the alloys. Figure 1.6

expresses the compositional dependence of the calculated fundamental Eu of the

Znl-xcdxo alloys.

3.4
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Figure 1.7 - Chaugcs ln thc band encrgr of ZnCdO as a functlon of thc Cd doptng r [551

Here, the circles describe the values derived from the absorption calculations. The

triangles display consequences of the performed complementary reflectance statistics.

The results from two measiurements are in accordance with one another and spotlight the

reliability of the preassumed values. The bowing pararneter in the BG energy of the

alloys is found when the experimental measurements fit in the conventional equation as

given below:

Efncao = (1 - 
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+ xEano - bx(1 - x).
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Here, Efncdo, Er'no and Ercdo are the BG energies of the Znr-*CdO, Zno md

CdO compounds respectively and 'b' is called the bowing coefficient. The equivalent

results have been shown in the above figure by the solid line. ESoo = 1.5 eV for the

Wurtzite phase of CdO has been assumed theoretically which gives b = 0.45 eV because

we don't know the properties of CdO in this phase. The experimental value computed for

b is specific for the semiconducting compounds having a short difference in the

electronegativity of the end binaries and is acceptable for the Znl-xcdxo alloys [55].

The absorption and reflectance data was also used to observe the effects of the Cd

substitution x in the ZnO compound on the variations in temperature in the elementary

band gap of the investigated ZnCdO compounds. The alloys with high Cd contents

showed a decrease in the variation of the BG enerry with the increase in the temperature.

We applied the optical absorption and reflectance data to compute the

compositional and temperature dependences of the energies of the band gaps in the Znr-

*CdO alloys developed by the MBE. The compositional dependence of the BG energy of

aZnCdO compound was exposed to follow the style [55] given by:

Er(x) = 3.28'2.23x* 0.45x2. (r.2)

The inferiority in the quality of a Znr-xCd*O alloy because of the proper phase

separation produced a quicker red shift of absorption edge. It was also revealed that the

Cd concentration slightly slowed down the variation in the BG energies with respect to

the changes in temperature and it might be valuable for future applications of ZnO-based

instruments [55].
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Chapter 2

DENSITY FI]NCTIONAL TMORY

2.1. Introduction

Density functional theory @FT) is a quantum mechanical modeling tool by which

we examine the elecfionic structure, energy states and optical properties of many-body

system models (atoms, molecules and condensed matter phases) in Physics, Chemistry

and Materials Science. Especially, the ground-states of solids are investigated by the

DFT. It is adaptable and being most popular, it is contemporarily widely applicable in

Computational Physics, Condensed Matter Physics and Computational Chemistry. The

DFT is generally applied for the interacting Fermions (quarks, electons, muons and

neutrinos) but we will consider here the electrons only.

The elecfions are not expressed by their many-body wave functions but by their

densities only. A solid consisting of N electons which obey Pauli's exclusion principle

(PEP) and undergo Coulomb's repulsive potential (CRP), depends on the spatial

fundamental variables x, y and zonly despite the 3N degrees of freedom.

This theory comprises functionals (functions of the other functions) for revealing

properties of the many-elecfon sample materials. The functional used here is the elecfron

density depending on space. Therefore, the title "Density Functional Theory" was

proposed due to the consumption of the functionals of the elecron density. This

technique comprises dual rewards of being capable of solving various issues up to

satisfactory accuracy and being computationally easy.

2.1.1. History of the DFT

The DFT has been dormant in simulations of the periodic phenomena in Quantum

Mechanics since last 35 years about. Since 1970, the DFT has become a charismatic

technique for computations in Solid State Physics and Elecfionics. It has been probated in

severe cases and was found that the calculations by the DFT under the local density

approximation (LDA) displayed the desired results at lower computational prices than the
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other methods used to solve the quantum mechanical many-body problems based on the

complex wave functions. However, the DFT was found sufficiently imprecise in deriving

satisfactory results in Quantum Chemistry till 1990s. Then approximations used in the

DFT were sophisticated to describe effective models of exchange and correlation

interactions for calculations of solids to veriff experimental results.

In these days, the DFT has excelled in both the fields for sfiuctural, electrical and

optical properties of solids. Although the DFT has been given various improvements, yet

it comprises a few ambiguities like the proper expression of intermolecular interactions

e.g., Van der Waal's forces, band gap calculations in semiconductors [56], excitations in

charge ftansfer, tansition states, global potential energy surfaces, intense correlated

systems, systems ruled by dispersion, e.g., interacting atoms of noble gases [57] and

overwhelming of dispersion on the other effects as in biomolecules [58].

Contemporarily, construction of better approximations, changes in'functionals

[59], inclusion of additive terms and modernization of the DFT methods with sound

applications to confol these issues is a major field of the current research 160,61,621.

2.1.2. Methodology of the DFT

The Electronic structure theory @ST) comprises the formal methods based on the

complex many-elecfion wave function like the Harfiee-Fock theory (ItrT) and its

posterities but the motto of the DFT encloses a replacement of the wave function of a

many-electron system by its electon density being a basic entity in the computations of

properties of solids.

Also, the many-body wave function depends on 3N variables according to

Lagrangian Mechanics, i.e., there are three spatial variables (x, y, z) for everyone of N

electrons, that is, xN, yN, d = (:r, y, z)N independent coordinates are required, while the

electon density depends only on the spatial variables x, y and z under the use of the

functionals of the electron density.
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The Ancient theory of molecules in a solid contains the non-uniform elecfron

clouds, also called the inhomogeneous elecfion gases. According to the Born-

Oppenheimer approximation @OA), an inhomogeneous electron gas consists of a

combination of interacting elechons which travel quantum mechanically through a

potential field produced by the collection of the stationary nuclei of atoms. A solution of

such a model bases on the approximation patterns, like the independent electron

approximation (IEA), Harfiee theory (HT) and HFT but the DFT has become extremely

widespread method for the solution of such an issue [63] as supported by the following

figure:
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The Hohenberg-Kohn (HK) first theorem expresses properties of the ground state

of a many-elecfon system model calculated by the help of the electron density depending

on three spatial coordinates only. It provides us with a milestone for converting a

problem of N elecfons having 3N spatial coordinates to 3 spatial coordinates on using

the electron density functional.

We can enhance the theorem to an arena depending on time in order to model

time-dependent density functional theory (TDDFT) which can be applied to demonsfate



the excited states. The HK second theorem describes a functional for the energy of the

system and verifies that this enerry functional is minimized by an accurate electon

density ofthe ground state.

The DFT basically runs on the Kohn-Sham (KS) method also called the Kohn-

Sham density functional theory 6SDFT) as its best pillar. In the KSDFT, we reduce a

stubborn problem of many interacting electrons undergone a static potential field into a

controllable many non-interacting electrons issue experiencing an affective potential. The

effective potential is a combination of the external potential @P) due to the nuclei and

Coulomb's potential (CP) due to the elecfions. It means that we concern with both the

exchange and correlation interactions. The KSDFT suffers from toubles in shaping the

exchange and correlation interactions. To overcome these issues, an easy approximation

based on the exact exchange enerry for a uniform electron gas called the LDA was

developed from the Thomas-Fermi model (TFM) and the fittings to the correlation energy

for a homogeneous electron gas system.

Recently, the DFT is being formulated without the HK theorems on the basis of

the Legendre theory (LT) which fiansforms the external potential into the electron density

[63]. There is a book "The Fundarnentals of Density Functional Theo4y'' by Helnaut

Eschrig (2003) comprising the detailed mathematical deliberations about the DFT. In it,

the mathematical problems in a finite periodic system do not occur but the problems

appear when we deal with an N-particle system having infinite volume.

2.2. DFT - A Solution of Quantum Many-Body Problems

A solid is considered to be an assembly of the massive positively charged

particles (Nuclei) and the slight negatively charged particles @lectrons). For N nuclei, we

have to deal with N+NZ particles which interact electromagnetically, termed as a many-

body problem. The Hamiltonian for such a system is described by the following equation:

n = -fril# - fx*-#xt,ffi +,,*.rurffi *#x[,##. e.t)
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Here Mi is mass of any nucleus lying at a displacement Ei and m is the mass of

any elecfion at a position f, where t = t,Etr-, ...,ffi. Z is charge on a nucleus. We will

write all the vectors in the bold notation throughout the thesis.

In the above equation, the fust term is an operator forrr for the kinetic energy (KE) of

the nuclei; the second term is the KE of the elecfons and the remaining three terms

speciff the Coulomb interacfion between the nuclei and electrons, among the electons

themselves and with the elecfons of the other atoms, and the nucleus of one atom with

the other nuclei.

We are unable to solve this problem truly, but we will determine the suitable

approximate eigenstates for which we will have to make approximations.

2,2.1. Born-Oppenheimer Approximation

"As the nuclei are too much massive and the elecEons are slight, therefore the

nuclei are supposed to freeze at the specific positions due to slow motion and the

electrons are supposed to be in a sudden dpamic equilibrium with them."

In this Born and Oppenheimer approximation @OA) [64], the nuclei are

dispossessed of being actors in this many-body problem and concluded only as a certain

source of positive charge exterior to the electron cloud which is a true player in this

problem. Therefore, we have to deal with NZ elecfions moving through the external

potential produced by N nuclei.

As nuclei don't displace, so they have zero KE and the first term in equation (2.1)

vanishes. The last term adopts a shape of a constant. So, Eq. (2.1) reduces to:

rrN e'Zl , l srN ezziiiETi ? iif zr*li-,r-"r 
l,

(2.2)

H=T+%o+%". (2.3)

H = -EyYv'"r2-r m

or
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The above equation shows that the KE and the elecfion-electron interactions are

due to the many-electon system, not due to the many-proton system, experiencing an

external nuclear potential due to the protons. The first two terms in the above equation

are independent of a specific many-elecfion system to constitute a universal part being

independent of the elecfions of any solid material and a particular information about the

system arrives us totally from the second term, 9"o.

Our main focus is on the features of the DFT. Therefore, we are neglecting the

spin coordinate throughout this topic for the simplification purposss.

2.2.2. Solution by the DFT

The many-body problem received after the BOA is too simpler than the original

one but is still complicated to be solved. There are various methods to solve Eq. (2.2) to

an approximate but a manageable form. The historic IIF method, described in the

condensed matter literature, performs nicely for atoms and molecules and is thus widely

used in Quantum Chemistry but it is less precise for solids. Therefore, in spite of the HF

method, we are going to apply a more sophisticated and influential method called the

density functional theory DFT. It is a common technique to elucidate many'body

problems. It is applicable to the elecfion gas but also to the proton and neufion gases for

constructing the nuclear models or to the nucleus and the elecfion gas without the BOA

to define solids with light elements as well.

2.2.3. Hohenberg-Kohn Theorems

In 1964, Hohenberg and Kohn provided us with two theorems called the

Hohenberg-Kohn (HK) theorems [65] as discussed below:

Theorem I

"Electron density under an additive constan! determines external potential."

In the other words, there is one to one correspondence between the ground state

charge density p(r) of a many-electron system and the external potential, Vext Its abrupt
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outcome reveals that the expectation value of any observable quantity Q at the ground

state is a unique functional of the exact ground state elecfton density as follows:

(vlQ lv) = Qlpl. (2.4)

The statement of the first theorem indicates that the 1-l correspondence between

the density p at ground state and the external potential V",c is fascinating. It emphasizes

on the electron density which retrieves the Hamiltonian operator. The Hamiltonian is

identified by the external potential and the total number of electrons N which may be

determined by the density simply on integrating it over the whole space. We know that a

certain many-electron system has a sole external potential that produces a many-particle

ground state wave function Y with the Hamiltonian in Eq. (2.2). The wave function

reveals us all the material properties. We can easily find ttre respective electon densrty

p(r) from the wave function Y. Thus, the external potential helps us calculate its

equivalent unique ground-state density, but it seems as the density confines less

informations than the wave function does.

If it is true, then it is impossible to compute a unique external potential from a

given ground-state density only unless more parameters are given. This ltt theorem of

Hohenberg and Kohn gives us an exact possibility that the density contains all the

informations as the wave function does. Therefore, informations can be derived uniquely

from the density and they may be expressed as functionals of the density p(r).

A straight fonvard proof of the First HK theorem was generalized to add systems

having the degenerate states by Levy in 1979 1661. The theoretical spectroscopist, EB

Wilsoru infioduced a direct proof of this theorem in 1962 which described that the

electron density p revealed positions and charges of the nuclei uniquely resulting in the

computation of the Hamiltonian fiivially [67]. The reality behind this proof bases on the

electron density which suffers a cusp near a nucleus such that:

z,=-#[#],,-o
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Here, p is the spherical average of p(q) whose careful analysis gives the external

potential from which the Hamiltonian can be computed. The Wilson's proof has less

generalization than that of Levy, but is valid for the interactions among the elecfrons and

nuclei.

From this discussion, we conclude that the energy is a functional of the charge

density E[p].

Theorem 2

For Q being H, the ground state total energy frrnctional H[p] = Ev"o[p] will shape

AS:

Ev"olpl = (vl T+9lv) + (vl%* lv)

= Fnxlpl + J p(r)V"o(r) dr.

(2.6)

(2.7)

and

Here, Fs6[p] is the Hohenberg-Kohn density functional defined by:

(Wl T + ? lW) = Fnr[p], (Hohenberg-Kohn density functional)

(vl%* lv) = Jp(r)v"*1(r) dr. (External potential)

The Hohenberg-Kohn density functional is universal for all the many-elecfron

systems because it is free from the informations about nuclei and their locations.

Therefore, its obvious description has to be revealed. Ev"r,[p] attains its minimum value

which is the ground state total energy for the ground state density corresponding to Vsxt.

The frrst HK theorem also indicates that after finding a positive definite rial

density p1, a unique Hamiltonian can be determined if J ps(r) dr = N, which can give the

corresponding trial wave function Ys and we can get the relevant energy functional as

follows:
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ElpJ = (v,lHlv,) > s". (2.8)

The second HK theorem is invalid for the DFT to analyze the ground state but a

small addition in it can cause variation in the excited states of the elecfions which are

surely perpendicular to the ground state. We can study this variation exacfly from the

statistics of the wave function which describes the ground state.

Using the density operator for N particles, and assuming that the ground state

density has been determined, a contribution to the total energy from the external potential

can accurately be computed. The density operator forN electrons is:

0(r) = XIlr 6 (rr - r). Q.e)

If we estimate this density operator for a many-particle wave function Y, then we

get the density as follows:

p(r) = (Y (rr, t2, t3,... ..., ru) !0(r)l V (Q, 12, rs, ... ..., rN)) (2.10)

= (w 1q, t2, tst......,ru)lXIlr6(q - r)ltP (r1,t2,r3,......,r*1) 1z.tt)

= Xllr -[ V' (rr., t2t -. t rr = r, ... , ru) Y([, 12, ..., rr E r, ... , rru)

dq dr2...dq...drp. (2.12)

This second theorem also generates a possibility of using the Variational principle

- the Rayleigh-Ritz approximation [68] to compute the ground state density. We get

numerous values of the conceivable densities but the density value which minimizes

Ev"o[p] happens as the ground state density equivalent to the external potential, V."(r).

We can find it if we know an approximation to Frx[p]. But after finding p(r), all the

informations about the system can be grasped.

When Ev"o[p] is determined for p(r) relating to a specific Vem for a solid" we get

the ground state energy and when it is derived for any other density, the result is vague. A

density pi(r) which maximizes Ev"o[p] is an excited state density other than the ground
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state one with the corresponding energy Er = Evo.[p = pi]. Its converse is false because

all the excited states don't exfiemalize Ev"o[p]. If p;(r) is this density, then E; =

Eu.,,[p = p1] is a lower bound forthe enerry in an excited state.

These theorems together conclude the basic s&atement of the DFT as follows:

6[Elp] - p(.t p(r) dr - N)l = o.

Here the density and energy of the ground state represent the lowest value of E[p]

under the consfiaint which confines the density to have the correct quantlty of electrons.

The Lagrange multiplier of this consfiaint gives the elecfochemical potential p. At the

end we conclude that we may have a universal functional E[p] independent of the

external potential and which denotes a specific system of interest. If we know the form of

E[p], we can reduce the above equation to receive the exact ground state density and

enerry.

2.2.4. Kohn-Sham Equations

The approximations for the KE and electon-electron interactions were proposed

by Kohn and Sham in 1965 which paved the DFT as a practical gadget and were termed

as Kohn-Sham (KS) equations which helped in determining the ground-state density [69].

These equations provide us with the practical solution of the Hohenberg-Kohn functional

Frx[p] as described in Eq. (2.7).

We start by rewriting the Hohenberg-Kohn functional in the proper form such that

the correlation energy is a part of the total energy which lies in the exact solution but

vanishes in the HF solution. The functionals of the total energy Erc,[p] and that of the tIF

energy Em[p] compatible with the Exact and IIF Hamiltonians are given by:

H,or[p]=Etot[p]=T*v,

(2.13)

(2.14)

and

Hrr[P] = Enr[P] = To +vs *V1,
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= TO +V, (2.1s)

where

V=Vlr*Vx. (2.16)

Here T, V and To are respectively the exact KE of ttre interacting elecfrons, the

electron-electron PE and the KE of the non-interacting elecfons functionals while Vu

and V* are the Hartree and the Exchange potential contributions respectively. Subfracting

Eq. (2.15) from (2.14), we get the following functional for the conelation contribution

potential:

Etot-Enr= T-To, (2.17)

%=T-To, (2.18)

where

Etot-EHr=V".

Here V" is the correlation energy.

Now the exchange energy is a contribution to the total energy to be occurring in

the tIF solution but lacking of the Harfee solution. The Hartree energy functional is

given by:

or

EH[p]=To*Vn

The corresponding exchange PE is:

V*=V-Vn.

(2.te)

(2.20)

With help of the above data, we can rearrange the Hohenberg-Kohn functional as

follows:

Fnr[p]=(T+V)+To-To.
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=To+V+(T-To).

=To+V+%.

=To+V+Vc*Vg-Vs.

=To+Vn+%+(V-VH).

=To+VH+%+Vx.

=To+VH+(Vx-%).

=, Fnr[p] = To[p] + vn[p] + vo[p]. (2'21)

Here the energy functional V*.[p] is accurately unknown because it comprises

only the complex exchange and correlation contributions.

Now using the second HK theorem to calculate the ground state density, we will

achieve nothing from our alteration but we may deduce the above equation which will be

the energy functional of a non-interacting classical electron gas undergone two external

potentials: one of which is due to the nuclei and the other is because of the exchange and

correlation effects.

The respective Hamiltonian, termed as the KS Hamiltonian, is given by:

Hxs= T,+?"+Q.+%o. (2.22)

(2.23)= -*o? * *Ifg,{dr' + v*. * %*t.

Here the exchange-correlation potential V*" is defined

correlation potential functional ?r. as follows:

9*t = 
6v*clp]

6p

According to the above computations, the KS theorem

presenting a fictitious system model of N non-interacting electrons,

by the exchange-

(2.24)

can be framed by

which was denoted
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by a single determinant wave function in N orbitals $1(r). These KS orbitals are expanded

to get a pure numerical solution but in practice the most applications of Kohn-Sham

density functional theory 6SDFT) use an expansion of Q(r) into the basis functions gb

given by:

Qi(r) = XuL=r ciu gu, (2.2s)

where

Here k is the wave propagation vector within the first Brillouin zone @Z), K is

the reciprocal lattice vector, r is the position vector and eikt and eiKt represent plane

waves in the real and reciprocat spaces respectively. V is the volume of the unit cell.

Actually, the expansion of $;(r) truncates and the number of 96 really needed to

get the nice expression of $; potently depends upon the basis set which is constructed

according to the problem. The startle of calculations also depends upon whether the

boundary conditions are applied.

From these orbitals, the wave function, KE and electron density are completely

acknowledged as:

go = ftsz(k+r)'r

Ynr = ftdet[Q1 0z 0s ... ... ...0N].

r.[p] = -f; f[rtOilv,lOi].

p(r) = Xllrqi(r) Qi(r)

= Er!0i(r)12.

(2.26)

(2.27)

(2.28)

(2.2e)

This KE is not real and is only of the non-interacting electrons to regenerate the

real density at the ground state as follows:
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The single-particle wave functions Q;(r) being the lowest energy solutions of the

KS equations are given by:

H,<r0i = trOt, (2.30)

where e;(r) represents the enerry per elecfion, i.e., energy density of the uniform electron

gas.

The explicit setup of the density from these orbitals favors the legality that it has

been built from an anti-syrnmetric wave function Y. For finding the ground-state density,

we are leaving the use of the second HK theorem further and are solving the Schrodinger-

like non-interacting single-body equations. This alternate of the SWE results in a

complex system of the coupled differential equations due to the electon-electron

interactions. 0(r) are not only the wave functions of the single-electrons but they also

secretly define the mathematical quasi-particles. It is believed that the entire density of

the particles may only be equal to the elecfion density, p. Further, energies ei of the

single-particles are not the energies of the single-electons. fi1 and ?r" depend upon p(r)

which internally depend upon {; to be calculated. It means that our problem is self-

consistent in which the solutions Q;(r) shape Eq. (2.22) which is impossible to write and

solve unless its solution is known.

We suppose an initial density po(r) and construct a Hamiltonian Hrsr with it.

Then we solve the eigenvalue problem which yields a set of 0r from which we derive a

density p1(r) such that pr differs from po. Now from pr, we construct Hrsz which will

generate p2(r) and so on. The process is managed such that the series converges to p(r)

which produces Hrsr that generates pr again as a solution which is consistent with the

Hamiltonian [70]. Moreoyer, we notice that an apparent part of an elecfron-electron

interaction is the classical Coulomb interaction or the Hartree energy. Therefore, the

Hartree potential can be expressed as follows:

vnlpl = *tffidqdr2
The enerry functional is being managed as follows:
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E[p] = Tolp] + VHlpl + V"olpl * E*.[p],

where E*.[p] is the functional of the exchange-correlation energy given by:

(2.32)

E*"[p] = (Tlpl - T, tpD + (%"[p] - vnlpl). (2.33)

Q. is only the addition of the eror occured in the use of the non-interacting KE

and the error appeared in reckoning the electron-electron interaction classically. If we

express the functional of the above equation in place of the density constructed explicitly

from the non-interacting orbitals of Eq. Q.29) and implementing the VT from Eq. Q.l3),

we get the orbitals which minimize the total energy and satisff the following equation:

l-*ol + %*t(r) + Jffiar' + v,"(r)]0r(r) = er(p) 0r(r) (2.34)

This combination of equations is termed as Kohn-Sham (KS) equations. In these

equations, a local multiplicative potential Vo(r) has been described, which is the

derivative of the functional of the exchange-correlation enerry with respect to the

elecfion density and is given by:

v,.(r)=ry (2.3s)

The set of the KS equations represents behavior of the non-interacting electrons in

the effective local potential. So, on choosing an accurate functional and the exact local

potential, the orbitals result the true'ground-state density through Eq. (2.13) and the true

ground-state energy via the Eq. (2.31). The sfiucture of the KS equations resembles that

of the FIF equations rejecting the non-local exchange potential substituted by the local

exchange-correlation potential V*.. This is a vague use and vulgar reproduction of the

structure but we have already approximated that V*" is not an addition of the exchange

and correlation energies as considered in case of the IIFT and correlated wave function

theory OVFT) but it only comprises a component of the KE.
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The KS density functional theory 6SDFT) exactly corresponds to the ground-

state density, energy of the non-interacting Fermions and realistic many-body systems

defined by the SWE [71] as shown in Figure 2.2:

Jtl\-
ft14-r,l
Y(rrrr,,...rr,y )

tE

!

a

Figure 2.2 - neUtion bctwccn the rcal many-body system (Lcftwards) and the non-interactlng

systcm of thc KSDFT (Rlghtwards) [7ll

The correspondence is true only if we know the accurate functional of the charge

density and energy of the non-interacting many-body system which implies that the

KSDFT is an empirical tool, not a systemafic theory because we have still not deternrined

the exact functional. Although the KSDFT is realistic, yet the functional is universal, i.e.,

independent of ttre materials under observation. Hence, in principle, we solve the SWE

precisely and calculate the total enerry functional and its respective potential.

In these calculations, we make a tiring utmost asi compared to that made in the

direct energy solution. Ability of finding the true properties, often related to the ab initio

formatism, of the Universal functional in several systems never permitted the admirable

approximations to the functional under construction and was applied in the unbiased and

analytical studies of a large quantity of materials. Due to this reason, approximations

made in the DFT are considered as the "ab initio" or "ftrst principles" techniques.

The solution of the KS equations (2.34) bears a computational cost scaling

initially as N3 in order to preserve the orthogonality of N orbitals but in the recent

methods, this cost descends towards NI via the abuse of the locations of the orbitals. For

ffi
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the initial energy surface computations, the DFT represents a practical and exact potential

substitute to the wave function methodolory but practically the theory depends upon the

approximation imposed for E*r[p].

The DFT suffers from the main problem of unknowing the exact functional for

the exchange and correlation functions. These are known only for the free electron gas

but there occur approximations that allow the computations of the specific physical

quantities precisely. Although the DFT reveals sound information about the ground-state

properties in principle, yet the practical applications of the DFT reside in the exchange

and correlation potentials.

An exchange-correlation potential expresses the effects of Coulomb potential

(CP) and Pauli Exclusion Principle (PEP) far from the pure electostatic interactions of

the electrons. A solid can't represent its true inner picfure, so we can't solve the many-

body problems in solids exactly. To find an exact solution of a many-body problem, we

get the exact exchange-correlation potential which can be applied in parallel to the free

electron gas in which the electrons don't interact with one another.

Floo chrfu 6s lluse-Fa& q Kofia-S1,.- cryaiw

the Hartee-Fock or Kohn Sham equations during the nrh iteration [?01
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2.2.5. Local Density Approximation

In the DFT, we vastly use an approximation to hypothesize the exchange-

correlation functional called local density approximation (LDA). Approximation

structures for Eo[p] are a large and quickly growing field of research in the DFT. In

literature, there exist several tangs of this functional which are suitable or less proper for

a specific field of the research, yet the greatest importance is that we need to be familiar

with the derivation and sfiucture of a functional to be selected for a certain research. The

homogeneous elecfion gas system was an initial conception paving the way of the

practical implementation of the DFT.

The homogeneous elecfion gas, uniform elecfion gas or Jellium model (JM)

comprises a fictional solid in which charge of nuclei has uniformly been dishibuted over

the whole space. The system elecfions are imposed to an invariant external potential such

that the electronic charge density is also constant. This charge density completely

describes the homogeneous electron gas.

In the early 1920s, Thomas and Fermi researched independently on the

homogeneous elecfion gas by considering the orbitals of the system as plane waves under

the symmetry formalism [71]. If we estimate the interactions among the electrons with

the classical Hartree potential (CHP) in which the exchange and correlation effects have

been neglected, we can easily calculate the total energy functional [72]. These constraints

show that the dependency of the kinetic and exchange energies on the charge density of

the electron gas can be determined and described in terms of a local density function [73,

74,757.

From here, we conclude that we can approximate the energy functional by

integrating it over this local density function. We can solve the free electron gas

analytically in the direct manner and it is very tough for an interacting electron gas. The

arithmetical computations for the total enerry can be done with the Variational Quantum

Monte Carlo approach (VQMCA) only [76]. The subtaction of the non-interacting

kinetic and Hartee energies yields a numerical value for the exchange-correlation energy



per particle eo@) of a system with the unifornr charge density and is achieved after

working for various densities p(r).

We conclude the kinetic and exchange energy densities of a system of the non-

interacting uniform electron gas as follows:

rlpl = (2.87) 1pi 1r1ar, (2.36)

and

E*[p] = (0l4) 1p31r;ar. (2.37)

These two equations can help in detennining E.rtp] in a non-uniform system.

Here, we are approximating the local exchange-correlation energy per electon as

a function of the local charge density eo(P) as described below:

E,.LPAlp(r)l o .[ p(r) *PA(p) dr Q.38)

The above equation shows that we have to vividly adopt the function erLfA as the

exchange-correlation energy density of the homogeneous electon gas of the charge

density p(r). The postulate described by Eq. Q.38) is the LDA.

This assumption for the LDA is a little bit realistic because we see that the

exchange-correlation enerry due to a certain density p(r) can be calculated on

apportioning the specimen material into a large number of infinitesimal volumes each

having an invariant density. Every infinitesimal volume element donates the total

exchange-correlation enerry a quantity equal to the exchange-correlation energy of a

similar volume element stuffed with the uniform electron gas. This quantlty has the same

entire charge density as that of the genuine material in this volume element [70].

It is only a sensible idea that the law of nature asisures that the real E|'.DA[p] is of

the form mentioned above. Further construction of the LDA is expected to accomplish

well for the systems with slowly fluctuating densities. Also, it has been found that the
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LDA has shown surprising results proving its accuracy in the several other realistic

systems.

In the LDA, elfA(p) is only the function of the local density and can be split into

the exchange and correlation contributions as follows:

el$A(p) = elil(p) + rlu(p) (2.3e)

we can express eo(p) h the Dirac formalism with reference to Eq. Q.37) as

follows:

elDA(p)=-f,p(r)t/3 (2.40)

This functional is largely applicable and can be set up from the ascending opinions [71].

C is a free constant other than that computed for the Jellium model.

The functional of the correlation energ:y density s.(p) is determinable and its

simulation for the uniform electron gas in the quantum Monte Carlo computations

displays the accurate results 1771.1\e subsequent e*r(p) has been adjusted by several

analytical forms UE,79, tOl and all of them practically showed the similar consequences.

All these forms were collectively termed as the LDA functionals.

2.2.6. Generalized Gradient Approach

The LDA runs on the exchange-correlation energy at every point in the

homogeneous system of the elecfions irrespective of homogeneity of the real charge

density but this energy can deviate apparently from the calculated homogeneous results.

The systems in which the charge density varies slowly the generalized gradient

approximation (GGA) excels over the LDA. Generulized means that a sfiaightforward

gradient may conclude a functional that deviates from the certain relationships whose

precision may be verified for the genuine functional and for the LDA as well. In the

GGA, a certain form of a functional depending upon both the charge density and its

gradient is taken to ensure the normalization [El].
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A distinctive GGA functional is given below:

Ef"oo = I p(r) ef"m( p, Vp) dr Q.4t)

The LDA is deliberated as the Zeroh order approximation (ZOA) to the semi-

classical progression of the density matrix in place of the density and its derivatives [82].

An improvement in the LDA demands logical stages under which we can cause the

exchange and correlation contibutions of each tiny volume element depend on the local

density in that volume but also on the densities in the neighboring volume elements.

Although the GGA acts generally somewhat superior to the LDA, yet it comprises some

demerits as mentioned below:

"There is a unique exchange and correlation functional for the LDA because there

is a sole demarcation for elSA(p). However, there is freedom to include something in the

density gradient and hence, various sayon of the GGA exist. Usually, a nominee GGA

functional with free parameters is fitted to a vast set of experimental statistios on atoms,

molecules and solids. Then these parameters are bound by the fxed values and the

functional is finished for applying to the solids in routine. Such a GGA computation is

resfticted not to be called an Ab Initio computation because the particular experimental

information is used. Moreover, the GGAs never happen without a parameter."

Here, we cover up the discussion by concluding that the GGA is significantly

better than the LDA in explaining the binding energy @E) of the molecules and hence,

the DFT was widely accepted in early 1990's. fire bond dissociation energies were

overestimated at most l0% by the LDA whereas the GGA gave ambiguities specifically

about order of l0o/o or less. Many functionals have been constructed in the GGA family

and their perfiormances have been probated on the different systems [83, t4, 85, E6].

2.3. General Remarks on the DF'T

We see that the DFT is a proficient and impartial technique to calculate the

ground state energy of the solid materials in the bulk phases and their surfaces as well.

By knowing the ground state enerry being the function of the positions of the atomic
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nuclei, we can compute the molecular and crystal structures and the forces acting on the

nuclei when they leave their mean positions. The truthfirlness of these computations

bases on the approximations of the exchange-correlation energy functional depending on

the local density gradients and the semi-local calculations of the density.

In Atomic and Molecular Physics, the DFT is contemporarily being used to solve

issues like the computations of ionization potentials [87], investigation of chemical

reactions, vibrational specta sfiucture of biomolecules [88] and nature of dynamic places

in catalysts [t9].

In Condensed Matter Science, the DFT helps to examine problems as the laftice

structures [90], phase transitions in solids [91], liquid metals [92] and evolution of the

true molecular dynamics patterns in which the forces are reckoned quantum mechanically

[93] by the practical applications of the DFT founded on unconfolled applications like

the LDA method whose validity lies in its capability of regenerating the experimental

results. For the atoms and tiny molecules, the simplest LDA has already shown the nice

qualitative and semi-quantitative results. It is a surprising success over the Thomas-Fermi

model (TFM) and the Hartree-Fock (tIF) method which overestimate the sfiength of the

molecular bonds. An improvement can be made if an isolated atom or molecule is

considered as an inhomogeneous elecfion system in which the elecfionic correlations are

poor and resemble averagely to those of a homogeneous electron gas.

The Configuration Interaction (CI) method [94] of Quantum Chemistry can solve

the many-body quantum states with high accuracy. So, the quantum chemists don't

recommend the use of the DFT at the initial stage. Such techniques use the locally

controlled approximations and the accuracy in resuls can be enhanced. For the bigger

molecules, the DFT is an essential tool t951. In traditional Quantum Chemistry, the

computational method comprises the expansion of a variable exponentially with the

number of electrons under process, while in the DFT this variable grows roughly about

the third power of this number. It concludes that the DFT is applicable to the bigger

molecules with hundreds of atoms and fails for smaller ones, while with the CI method,

we are confined by a few atoms.



In Solid State Physics, the DFT can determine the lattice constants of the simple

crystals with an accuracy of about 1% under the LDA in which the electronic structure of

a single unit cell is studied under the periodic boundary conditions [96]. The GGA gives

the nice manifestation of the structural and electronic properties of the most solids like

the lattice parameters within l-Zyo, qualitatively accurate band structure, metal-insulator

and magnetism, etc. This application can also be used for the investigation of a super cell

which comprises several unit cells with a single defect or impurity [97]. This super cell

approach (SCA) is also applicable for more complicated issues like the anti-

fenomagnetism and systems suffering from intense electronic correlation. The local

approximations can't find the work-functions of metals because of the displacement of

the exchange-correlation hole from the original position and the production of image

forces which are L/r performance of Vr.(r, r) that is non-local where r is a small

distance from the metal surface. We can diminish this discrepancy [98].

ln general, the LDA and GGA have shown a consistent level of accuracy and

inaccuracy in various problems contrary to the approximations using the free parameters

which are optimized empirically to fit a specific data and thus we can use them reliably

for interpolation. For dealing with the image and Vander Waal's forces [99], especially in

biomolecules, these approximations fail because both of these forces are the descriptions

of the non-local correlations (non-locality) which are absent from the LDA and its

instantaneous extensions.

This failure along with the unconfiolled approximations paves the research

towards the modem and precise exchange-correlation energy functionals. The

eonsistency of the DFT computations bases on the progress in the approximations for the

functionals of the exchange and correlation energy. The evident advancements in the

quality of the exchange-correlation functionals depending upon the gradients of the local

charge density, semi-local measurements of the charge density and non-local exchange

functionals. The approximation of the local charge density is simple and significantly

truthful for the structure, elastic moduli, phase stability and fiansition states but is less

reliable for the binding energy (BE).



In Electronics, the Time-dependcnt density functional theory (TDDFT) links the

interacting and non-interacting systems undergoing the time dependent potentials, and the

Relativistic density functional theory (RDFT) calculates the Kohn-Sham states by using

the Dirac cquation @E) instead of the Schrodinger wave equation (SWE) [00].

In Nuclear Physics, the DFT calculates the densities of the protons and neutrons

and their corresponding energies are studied [01].
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Chapter 3

FT]LL POTENTIAL AUGMENTED PLAI\E WAVE

METHODS

A Full potential augmented plane wave (FP-APW) method comprises the

developed augmented plane wave (APW) methods which start from the Slater's APW

method to the Linearized augmented plane wave (LAPW) method and the fresh

Augmented plane wave plus Local orbitals (APW + lo) method mentioned in the

Schwarz et al. (2001) and will run under the WIEN2k software package [102]. First, we

will discuss the Plane wave @W) method.

3.1. Plane Wave Method

In a crystalline solid, the elecfions travel through a periodic effective potential

V.6 produced by the electron-nuclei and electron-electron interactions. The nuclei are

periodically managed in the crystal and reflect the symmetry of the crystal as given

below:

%r(r*Ro)=V"n(r), (3.1)

where

Rrr=n1a1 *n2a2*n3il3.

Ro is called the translational lattice vector; n is the number of the Brillouin zone

(BZ) where R lies and as are the unit cell vectors in the crystal.

According to Andre Bloch, the eigenfunctions which are actually the wave

functions of the electrons deduced from the SWE comprising the periodic potential in the

Hamiltonian, are expressed by a product of a symmetric lattice periodic function u[(r)

and a plane wave e4kt as follows:

U[(r) = ufl(r) eak, (3.2)

where
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u[(r) = 2scftre/k.

Now Eq. (3.2) becomes:

rlt(r) = (Xr cftre'4Kr)erkr

- X*.fle"'(k+ror (3.3)

Here, k is the wave propagation vector within the first Brillouin zone @Z), K is

the reciprocal lattice vector, r is the position vector and eik' and eiKt represent plane

waves in the real and reciprocal spaces respectively. .ftI are coefficients to be

determined. Eq. (3.2) reveals that the selection of a basis set comprising the basis

functions to expand the Kohn-Sham (KS) wave functions comprises the PWs.

These PWs are periodic and mathematically easy but the expansion of the PWs

demands a huge number of the basis functions for a suitable representation bf the wave

functions of the valence elecfions. The valence elecfions are distributed spatially in a vast

region and are the major entities of the bonding among the atoms while the core electrons

are confined intensely by the nuclei and are restricted in a smaller core region.

The wave functions within the core region are oscillating forcefully while in the

valence region they are much smoother. The strong oscillations are produced due to the

orthogonalization of the wave functions of the valence electrons to those of the core

electrons. This problem can be solved by applying the Pseudopotential @P) method [103]

according to which the core elecfions are not teated separately but are considered to be

merged with the nuclei to form the PP. The wave functions of the valence elecfons

travelling through this PP are enough smoother and can be expressed by a tiny number of

the PWs.

There is another method, except the PP method, which can involve all the

electrons. This approach splits up the real space into a number of regions near the nucleus

and in between each region. The KS orbitals are expanded differently in every region.

These expansions are done underthe APW method coming next.
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3.2. Augmented Plane Wave Method

Although the augmented plane wave (APW) method has been founded on the

basis set of the APWs, yet it has been discarded from the practical use these days. Here,

we are using it only for the devotion to the LAPW and APW + lo methods.

The APW method was developed by J. C. Slater n 1937 [04]. Its basis set was

constructed on the concepts which were behind the formation of the pseudopotential. He

started setting up the basis set from the Muffin-Tin approximation (MTA) [04] which

comprises a combination of the PWs in the regions where the potential varies slowly and

the atomic-like functions in these regions where the wave functions vary fast. Far from

the nucleus, the elecfions are loosely bound or can move freely and these free electrons

are manifested by the PWs being the eigenfirnctions of the Hamiltonian having zero

potential. Near the nucleus, the electrons are so tightly bound that they are believed to be

in a free atom and can be represented by the atomic-like functions.

Therefore, according to the MTA, space around an atom in the crystal has been

divided into two regions: the fnst region is a sphere of radius Ro around every atom,

called the MT sphere denoted by Sn and a portion of space under So is termed as the MT

region denoted by II. We label different atoms in a unit cell by a which differs for all the

atoms in that unit cell, and not only for unlike atoms. The rest of the space is termed as

the Interstitial region I [105] as shown below:

Figure 3.1 - tUumn-tin rnd Intcrstltial rcglons around an atom [051
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In an MT sphere, potential can be defined as follows:

(3.4)

The plane wave basis set is ei(ko'' which is joined with the atomic partial waves

Xr,rA|*fufl(r',E)Yil(f').uf(r',E) are the solutions of the radial SWE for a certain

energy E and Ai,f are the expansion coeffrcients which are commensurate with the wave

functions Si(r) at the boundary between the MT and interstitial regions, which match the

PWs as well.

The radial SWE is given by:

- i* (r, 
d'ru#) + fP + v(r) - r] ruf (r,, E) = o. (3.s)

An APW used for the expansion of r[[ in Eq. (3.2) is defined by:

( 1-a(r+r).r
oh("' E) = 

t fl-or*.-uf(r', E)Yrn(r')

vrur(r) = [$ilT,*
r€l
rCSo.

r€l
resa.

(3.6)

where

(3.7)

AIr** is uniquely defined and we will have to contract any value lr* as well,

called an angular function; j1(r) is the Bessel function of order l; and V is the volume of

the unit cell.

As uf (r', E) are equivalent to the exact MT potential eigenstate of the

eigenenergy and as these depend upon E, therefore the eigenvalue problem is non-linear

in the energy. It demands an iterative solution to adapt E which bears a high

computational price [105] as shown in Figure 3.2.

Af-rr+r = ffiir(lk+ K! RJyl;G+ K).
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Figure 32 - trtow chart for the APW mcthod [051

It makes the APW method naturally luy. ln order to handle this issue the

linearized forms of the APW method were established in which the energy E is adjusted

to a static value Er and the basis functions are reformed to attain the additional flexibility

in order to deal with a large region of the energy around the linearization energy.

3.3. Linearized Augmented Plane Wave Method

It was a customary method developed in early 1970s to linearized augmented plane wave

(LAPW) method tl06l. Basis functions are grown in the same manner as in Eq. (3.6) in

the interstitial region I, but within the MT region II. These functions are not only

dependent upon uf (r', E) but atso on its derivative tf(r', r1 = 
a'fl-(I"e).

The LAPW method is precise to perform calculations for the elecftonic stucture

of crystals. It solves the KS equations for the ground state charge density, total enerry

and enerry bands (the KS eigenvalues) in the many-electron system on infoducing a

basis set reforrred for the problem of dealing with the exchange and correlation



approximations and their uses. An adaptation can be achieved in the MT and the

interstitial regions. In these two kinds of regions, distinct basis sets are spent.

Relativistic effects occurring in the valence states may be incorporated either by

the scalar relativistic behavior (Koelling and Harmon 1977) [07] or by the second

Variational method including the spin-orbit (SO) coupling (Macdonald 1980) [0t]. The

core states are fieated completely by the relativistic fashion @esclaux 1969) [09].

In literature, there are many descriptions of the LAPW method to linearize the

Slater's old APW method and the further programming hints have been given in the

references: Andersen 1975 Ul0l; Koelling and Arbman 1975 [l I U; Wimmer et al. l98l

|l2l; weinerr etal. 1982 [l13];Blahaetal. 1985 [lla];theweietal. 1985 [ll5];
Mattheiss and Hamann 1986 [16]; Schwarz and Blaha 1996 [17]. There is also an

excellent book by D. J. Singh and Lars Nordsftom 2006, which mentions all the details of

the PWs, PPs and LAPW method [18]. Here the basics have been discussed only

avoiding of the details.

We will review the LAPW method in nuo ways: the Regular LAPW and LAPW +

LO methods described ahead.

3.3.1. Regular LAPW Method

In the APW method, we found a difficulty that we had to set up ufl(r', E) at the

eigenenergy E = et of the determined eigenstate. If we were able to discover uf (r', e[)

from the derived quantities, then it was best and then the method helped us do so U191.

The calculation of ul(r', e[) at the energy E = et can help us use the Taylor's Series

(TS) to determine it at the other energy values (say E = Eo) which are not too away from

it as given below:

uf (r', s[) = ufl(r', E.) + (E. - eil tu'i;lr') + o(E. - €[)2,

or writing the derivative in the reduced form:

(3.8)uf (r', E[) = uf (r', E.) + (E. - e[) tf (r', E.) + o(E. - e[)2.



If we put the frst two terms of series in the APW for the given Eo in Eq. (3.8),

then we get the definition of the LAPW. The additive term O(E. - e[)2 allocates the

second order error in the wave function and the fourth order ambiguity in the eigenenergy

such that E. - et is to deterrrine fnst. Now we are adding a coeffrcient B,H** in Eq.

(3.6) at the given Eo such that it defines an LAPW as:

rel
O[tr'' = 

[g:il#-,ra',,E.) +nff+Krii1r,,E.)]yL(n,) r e So. 
(3'e)

The determination of both the coefficients Af$+K and B,$+K does not happen by

the TS but demands that the function should be commensurate with the PWs at the sphere

boundary both in value and the slope. It can be achieved by using Eq. (3.7) and its radial

derivative. It is an ultimate of a2 x 2 matrix from which we can get both the coefficients.

We still could not get the final definition of an LAPW.

Suppose that we express an eigenstate Vfl(r, E.) which already possesses the p
character for atom s.atl: l. The expansion ofYfr in LAPWs gives a trg.aftI|fi.
Hence, we benefit if we choose Eo close to the mid of the p-band and the term O(E" -
et)2 io Eq. (3.8) will lie less so that we may surely cut-off after tlre linear term. This

opinion can be repeated for every physically important quantity I up to 3 units, i.e.,

S-, p-, d - and f -states. It can be applied for all the atoms. It also concludes that we

should avoid of selecting one Eo and should select a collection of the worttry-selected El,1

up to I = 3 where the index 'l' indicates the highest valence state. We can store a fxed

value for a larger l. Then the final definition of the I-APW becomes:

rGI
o[(r' t' = [r;#*r(r,,Ef,,) + n,ff*Krifl(r,, Err)]y[(f,) r € so. 

(3'10)

Here uf (r', El,,) is the regular solution at the origin of the radial SWE for the

energy Efi lying ordinarily at the center of the respective band with the l-like character

and inside the sphere Ufl(.', ff,) being a spherical chunk of the potential and reserves at



the identical energy. The functions uf and tif are calculated under the numerical

integration of the radial SWE over a radial network inside the sphere and their linear

combination establishes the linearization of the radial function [l l9].

3.3.2. LAPW With Local Orbitals Method

Local orbitals are denoted by LO. We construct an LO for a special value of I and

m and for a certain atom a and the interstitial regions I and the MT regions II of the

spheres of the other atoms having no LO. The LO includes an additional radial function

at the new linearization enerry Ez I l9].

The regular LAPW method does not reveal which electron states have been

computed. It also fails to calculate the electrons in a core state in which the electrons are

extremely destined across the nucleus and they act as residing in free atoms. As a core

state does not take part in the chemical bonding directly with the other atoms, so it must

lie completely in the MT sphere. States which can escape from the MT sphere are termed

as the valence states. Since these states join in the chemical bonding, therefore the regular

LAPW method is applicable on the valence states. Although the core states are handled

like they are in the free atoms, yet they undergo the potential produced by the valence

stiates. During the processing, we find the states which have the same I but the different n

and both these states are called the valence states [l 19].

To enhance the elasticity of the basis, i.e., to improve the linearization and to

produce the stable behavior of the semi-core and the valence states in a single energy

window to guarantee the orthogonality, the surplus k-independent basis functions may be

included which are named the local orbitals (LOs) U201. We constuct an LO for a

special value of I and m and for a certain atom o and the interstitial regions I and the MT

regions II of the spheres of the other atoms having no Los, thus being called the local

orbital. The LO comprises a linear combination of a pair of radial functions, two distinct

energy sublevels 3s and 4s, and an energy derivative of one of these energies and an

additional radial function at tle new linearization energy Ef,r [1 19, l20l as expressed in

Eq. (3.1l):
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[Lo(.) =

{roorf'rr,r', E[,) + n,[,Loti(r', Eir) + c,[Loufl(r', El,,)]v[19 I : ::. (3'l l)

The same uf (r', Efi) and,ifl(t', f[,r) * used in the MT sphere of the atom c

with the linearization energy Efi being a value of the higher of two valence states as done

in the LAPW basis set. The linearization energies are considered to be identical for two

equivalent atoms. The lower valence state is like a free-atom and its sharp peak lies at the

energy El,1 such that a single radial function uf (r', nfi) is enough to express it. The

coefficients Af;ilo, Bfr;Lo and Cftfo are calculated under the necessity of the LO being

normalized and possessing no value and slope at the boundary of the MT sphere which

means that the LO can't escape from the MT sphere.

The addition of [,Os enlarges the size of the LAPW basis set. If we include more

atoms in the unit cell, then we have to add more LOs while confarily the number of the

LAPWs is independent of the quantity of the atoms in the unit cell. The more atoms mean

that we just add more sets of coefficients. If we include the LOs in p- and d-states, then

the basis set enhances by 3 functions per atom for the p-states and 5 functions per atom

for the d-states in the unit cell. Such a basis set is quite smaller than the basis set sizes

comprising hundreds of the functions. Although the LOs present slightly larger

computational time implying a small increment in the price, yet it yields the better

accuracy. This method may also practice the LO to compensate for the linearization

errors, especially in case of the nalrow d- or f-band tllgl. The LAPW + LO method

converges like the LAPW method [120].

3.4. APW + lo METEOD

3.4.1. Pure APW + lo Method

We observed that the standard LAPW method with an extended constraint on the

PWs which match in value and slope with the solution inside the sphere, could not prove

the most competent technique for the linearization of the Slater's APW method as

mentioned by Sj0stedt, Nordstrom and Singh (2000) U2U.



In the APW method, the basis set depends upon the energy which creates a

problem for us. It should be enerry independent. We have removed this energy

dependence by applying the LAPW + LO method for the price of a bit larger size of the

basis set. Using a standard APW basis, anyone can make it more efficient by keeping

uf (r', E) at a fixed enerry level E for the maintenance of the linear eigenvalue dilemma.

Now we are introducing the APW + lo method [22] whose basis set is energy

independent and of equal size like that used in the APW method. It concludes that this

method assembles the nice configurations of both the APW and LAPW + LO methods.

Actually, the APW + Io basis set comprises two types of the firnctions in which the fnst

function contains the APWs with a set of the fixed energies Efr given by:

r€l
r€So.

(3.t2)

This basis set with the fxed energies gives a fake expression of the

eigenfunctions. So, we are ampliffing this basis set with a second kind of the functions,

called the local orbital, denoted by 'lo' instead of the LO, and is defined as:

',Efi)lY,l,(r') ;El, (3'r3)

The new lo resembles the old LAPW basis set. The coefficients Aflo and B,!lo are

k-independent and calculated by the normalization of the lo under the requirement that

the lo contains zero value but non-zero slope at the boundary of the Muffrn Tin sphere.

Therefore, both the APW and the lo are continuous at the sphere boundary but are not

continuous for both of their first derivatives. [n order to meet this condition, we constitute

the basis functions having 'kinks' on the sphere boundary. These basis functions

essentially add the surface expressions in the KE part of the Hamiltonian but the ultimate

wave function remains flat and differentiable.

( -L -aG+r).r
o[t"l = 

1fl,',^m**ufl(.', Efr) Yh(r')
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The same energies Efi have been used here as done in the APWs. tlrt 6p1y + lo

basis set size must be similar to that of the APW but is smaller than that used in the

LAPW + LO method.

3.4.2. Mixed APW + lo / Il\PlY Method

The LAPW method requires a bigger Krr. than that used in the APW + lo method

because it fails to determine the valence states of d- and f-orbitals and the states in an

atom which comprise a very smaller MT sphere than the other ones in the unit cell.

We will use the APW + lo method for the above states and will keep applying the

LAPW method for the other states. The application of the APW + lo method on a single

state implies that we addzl+l lo,s per atom in its basis set. Hence, the APW + lo basis set

becomes significantly larger than that of the LAPW for the sarne cut-off parameter

R[inKn,o but it is concluded that a compensation can be made by using a smaller value

ofRftnK.r, for the accurate outcomes because the addition of these exfia basis

functions for the purpose to apply on a state where they can be useful is always bad.

Therefore, a new approach came to hand leading us use a mixture of the LAPW

and APW + lo basis sets for all the atoms a and all the values of I under Eq. (3.9) U22}

One or more atoms co where r e So.and one or more L will use Eq. (3.12). Then Q|t(r)
obtained from Eq. (3.13) are added to the basis set. This mixed basis set is applicable in

WIEN2k. This new criterion converges practically to the desired results but allows the

cut-off parameter REln K-o reduce by I about. It leads to a vividly smaller basis set up

to 50Yo and the respective time for computations is severely lowered to a multiple of a

certain value. [n a calculation, we can use a'Mixed LAPW / APW + lo basis" for the

different atoms and even though for the unique l-values of the same atom as described in

the Madsen et al. (2001) [23].

3.43. APW * lo * LO Method

We confronted the same problem for the semi-core states on using the APW + lo

basis functions like that in the LAPW + LO method. In general, we describe those

orbitals from APW + lo which converge extremely slowly with the atoms having the



small spherical sizes or with the certain quantities of the PWs like the ffansition metals

(TM) 3d-states and remaining with the ordinary LAPWs. Now we will add the second

type local orbitals (LO) at a diverse energy value to describe both the semi-core and

valence states concurrently U221. The corresponding basis function is defined as:

0[Io(r) = 
{lor**rfl(",,Ei,r) + cffouf(r,,n!,)]v[1E,; IE l" (3'14)

This APW + lo + LO method does not contain the derivative of uf(r',Ef;1) as in

the LAPW + LO method. The coefficients Affo and C,So are calculated under the

ailment of the LO being normalized and preserving zero value but non-zero slope at the

boundary ofthe MT sphere.

3.5. General Considerations about the FP-LAPW Method

1) The general LAPW method expands the potential as follows:

v(r) = t 
,r'J#:,9]Y,-(f) Inside the sphere

Outside the sphere.
(3.15)

The charge densities are expanded analogously. No approximations are made for

shapes of the potential and the procedure is called the'Tull Potential" method.

2) The Muffin Tin approximation is only for the components I = 0 and m = 0 in the first

expression of Eq. (3.15) and for the K = 0 component only in the second expression of ,

this equation. It is avery old method used to take the spherical average in the inner of the

MT sphere and the volume average in the interstitial region.

3) The total energy is calculated by using the Weinert et al. (1982) [l l3].

4) The Rydberg atomic units are applied everywhere excluding the interior of the atomic

like programs as LSTART and LCORE in the sub-routine out wins LAPWI and LAPW2.

Although the Harffee units are taken in these regions, yet the output always appears in the

Rydberg units.
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5) The forces on the atoms are computed by the Yu et al. (2001) Uz4l.This method is

used in WIEN2k according to the Kohler etal. (1996) [25] and the Madsen et al. (2001)

U231. An Alternative method proposed by Soler and Williums (1989) U267,efficient in

computations and accurate in numeric, is also equivalently useful but the corresponding

code is taken from M. Fahnle in the Krimmel et al.(1994)U271.

6) The Ferrri energy and the weighs of every energy band are calculated by the

Modified Tetrahedron method described in the Blochl et al. (1994) [128]. In this method,

the Gaussian or temperature functions are varied according to the requirement. The spin-

orbit (SO) interactions are due to a second Variational step when we use the scaler-

relativistic eigrnfunctions as the basis [07, 116,l29l. To control this difficulty arising

due to the absent prlz radial basis function equivalent to Pstz in the scalar relativistic

basis, we have added an extra Ptlz-LO in the standard LAPW basis. This LO is

summed in the spin-orbit (SO) calculation at the second Variational step [130],

7) The LDA and GGA methods are not enough precise for a proper portrayal of the

localized elecfions as in the 4f-states in the Lanthanides or the 3d-states in some TM-

oxides. So, we have applied several shapes of the *LDA * U" method along with the

Orbital Polarization (OP) method under Novak (2001) ll29l. The interactions can be

conceived by an applied external magnetic [29] or electic field through the Super cell

approach (SPA) under the Stahn et al. (2000) [3U.

3.6. Properties of the Full Potential APW Method

I - The density of states (DOS) is computed by the Modified Tefiahedron method in the

Blochal etal. (1994) [2t].

2 - The elecfion density can be analyzed by the Bader's Theory of atoms in molecules

using a program of J. Sofo and J. Fuhr (2001) U321.

3 - The X-Ray specfa between a core and a valence or conduction energy band can be

viewed by the Fermi's Golden Rule and the elements of the dipole matrix [133].

4 - The Fourier fansform of the charge density reveals the structural aspects of X-rays.



5 - The optical properties are grabbed by the Joint density of states (JDOS) modified by

the corresponding dipole matrix elements [134, 135]. This modification can also be

achieved by the Kramers-Kroning transformation [36].

3.7. Super Cell Approach

lt is a universal approach for the study of solids by modeling their surfaces under

the periodic boundary conditions. In this approach [137, 138], a superficial periodicity is

imposed on the simulation cell for modeling the continuum properties of a solid. Then the

Bloch's theorem may be applicable to the wave functions in the solid. A super cell must

be large enough to overcome interactions among atoms in the cell.

In principle, we will apply the 2D possible periodicity but we will also use the

additional identical consfaints to find the deterioration of the PWs in LAPW + lo

method. Also, this 2D approach is not essentially useful for the systenis absorbing

oxygen. Our criterion applied here models the surfaces under the periodic boundary

conditions in all the 3D spaces. We express the semi-infinite surfaces with the slabs

which are infinite in the xy-plane and comprise many layers along the z-axis.In the z-

direction, the periodicrry of layers is retained artificially by help of a super cell which

consists of a slab and a vacuum region.

A super cell will give the trustworthy outputs if we consider two major

parameters as the number of layers in the slab and vacuum thickness. The surfaces which

are at the top and bottom of a slab comprise a sufftcient number of layers to block the

interactions between them. The atoms lyrng at the center of the slab express the physical

properties of the atoms in the bulk phase. There is a large vacuum area between the

surfaces of the successive slabs to avoid of the interactions between them. The surface

calculations of the solids may become computationally very expensive in the LAPW + lo

method because a yacuum region is expressed by the PWs, which enhances the PW basis

set significantly as shown in Figure 3.3 [139]:
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Super cell

Figure 3.3 - Supercell of AtzOrcomprisitrg 2x2xlhe$gonal unit cells with 120 atoms! The left

hand ligure gives a side view along the a-aris and the right hand figure gives the view from top to

bottom along the c-ails [1391.

Supercell

Figure 3.4 - S 128 less 25 atoms super cell for the porous silicon (Si) [1401



To escape from this problem, there is an equivalent approach, not based on

periodic boundary conditions, called the Clustering method U4l,l42,l43l within which

a surface is sculpted by a big cluster. In principle, a solid is approximated by a huge

cluster. In such a cluster, Quantum Mechanics of the center-most atoms approximates all

the other atoms in a solid. In this approach, the decisive parameter is the cluster size

which toughly affects both the accuracy and computational cost. The size which

approximates a solid is bigger due to the supremacy of the surface over the bulk atoms in

the small and medium clusters. This concept is applicable to all the electronic structure

methods (ESM) and the best general solution is obtained by using the restricted

repetitions of a primitive cell along with the boundary conditions.
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Chapter 4

CALCULATIONS BY WIEN2K

4.1. WIEN2k Software Package

Figure 4.1 - l,ogo of the lYIEN2k software packagc

4.1.1. Introduction of \ilIEN2k

The best method to compute the electronic structure of solids, using the density

functional theory (DFT), is the linearized augmented plane wave (LAPW) method. More

than 25 years ago, a full potential linearized augmented plane wave (FP-LAPW) code

was set up for the calculations of the crystalline solids. Its first published legal version

was named WIEN UMl.The preceding years displayed the remarkably upgraded and

updated versions of the WIEN programming codes as WIEN93, WIEN95, WIEN97 and

WIEN2k tl45]. The WIEN2k code bases on an alternative basis set. It has been improved

in speed, user-friendliness, new features and universality.
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This programming softnare package is used for simulation results obtained from

the DFT to make calculations for electronic structure, electrical and optical properties,

and energy gaps in the solids. It depends upon the full-potential linearized augmented

plane-wave (FP-LAPW) plus local orbitals (lo) method which is the most exact scheme

to calculate the band structures of the solid materials. The FP-LAPW + lo basis set is

used to solve the Kohn-Sham (KS) equations of the DFT. It is an all-electron

arrangement comprising the relativistic effects and has several features. It adds the DFT a

new dimension for the calculations of the solids.

4.1.2. Features of YYIEN2k

WIEN2k comprises independent programs of the FORTRAN90 programming

language. These programs have been connected together via the C-Shell scripts.

WIEN2k can be operated by applying the short special commands and can be run

by a web browser and the W2Web (WIEN to WEB) interface. W2Web is'a web seler.

This graphical user interface (G[ID facilitates for producing or adjusting inputs for

several applications and it directs to implement many jobs.

The WIEN2k code mainly involves two parts: the initialization and leading self-

consistent field (SCF) cycle. Each part is further compiled by various independent

programs which have been linked by shell-scripts. Also, several analytical tools have

been implemented to calculate the structural, elecfiical and optical properties of the solids

like the band structure, density of states, charge densities, and UV, blue ray, X-ray and

infrared spectra" etc.

The cunent version, WIEN2k_13.1, released on June 25,2013 is a very important

update which fixes many bugs and infioduces to many new features. The upgrading is

highly recommended. It will be installed in Linux for its working and to get the

simulation results.

As the FP-LAPW + lo method is accepted as the most exact one in the DFT, so

results received from this method are usually considered as a yardstick. The high

accuracy in the results demands a big computational price. To calculate properties of a



solid in the bulk form, MEN2k performs nicely but the calculations of a solid surface by

the super cell approach are too much time consuming.

4.13. Registration of WIEN2k

WIEN2k can be had via a minor fee after filling out the Online Request Form at

www.wien2k.at. Its license is given to a group, which contains the source code and free

updates. Only the group members can mn it on many computers as they wish. The goup

comprises a research leader along with its co-workers. It can't be a whole deparfrrent

university or company. The license is issued to the person whose name is given on the

Registration form. A person can use this license on some other place but can't reuse

WEIN2k on the old location.

The WIEN2k registation fee is 4000 Euros for industry and commerce, 1000 €

for Govt. institutions / Labs and 400 € for academic institutions. The fee is paid

according to the indication on the Registration form. An email is sent to confirm the

regisfiation of a user and then the User Id and Password are given the registered user to

download the WIEN2k code via the web browser.

There are more than 2000 registered user groups of WIEN2k all over the world.

4.1.4. WIEN2k Workshops

The WIEN2k Workshop is held every year at least once, where the new and

experienced users learn more about the WIEN2k code, get the practical taining,

exchange ideas and share experiences. The conference fee is nominal.

The first workshop was held in 1993 in Vienna, Austria.

The 2l$ WIEN2k workshop was held at Nantes, France from July 02-09,2014

with the lnternational conference on advanced materials modeling (ICAMM).

4.1.5. Computer Requirements

l, WIEN2k works under Unix at all the platforms like IBM RS6000 (International

Business Machine), Linux-PCs @ersonal computers), Compac-Alph4 HP (Hewlett
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Packard), Sun and SGI (Soka Gakkai International). It can hopefully be operated on the

latest Unix / Linux system.

2. By the passage of time, a most effrcient platform changes swiftly and we can imagine

that the best cost and performance ratio will be in a Linux PC based on an lntel

architecture. We have to insall the Intel iFort compiler along with the Intel MKL (Math

Kernel Library).

3. The hardware needs change according to the system. A 128 MB RAM is required for

smaller computers for processing about l0 atoms per unit cell and for the powerful PCs

or workstations with IGB or a few GBs hard disk space, a256MB RAM (preferably 512

MB) is recommended. The workstations with 1-2 GB RAM have processed the systems

up to 100 atoms per unit cell about and more than 1000 atoms per unit cell on clusters

with 64-1024 cores and ahigh speed network. 10-1000 GB of hard disk is required for

the big cases. Contemporarily, it is recommended a multicore CPU (Central Processing

Unit) with l-2 GB memory per core and the swap space to be the double of the PC

memory.

4. If we use a Gbit network on a cluster of PCs comprising a mutual NFS (Network file

system) and conectly constructed login RSH @emote Shell Host) and SSH (Secure Shell

Host), then parallelization of k-points is possible and proficient even for the loosely

coupled computers connected with a slow network.

5. If we have the fast communication, e.g., the shared memory or the fast networks as

InfiniBand, FFTW (Fastest Fourier Transform in the West), MPI (Message Passing

Interface) and ScaLAPACK (Scalable Linear Algebra Package), then an adequate grain

paralleliz.ation for a single k-point can also be obtained. The Gb ethernet is less sufficient.

6. If someone wants to use all the options comprising the GLII or XCrysDen (X

Crystalline Structures and Densities), then the packages as Ghost View with PNG

(Portable Network Graphics) support; GNU Plot (+ PNG @ortable Network Graphics)

support); Acro Read (or similar), Emacs or another editor, Graphical Web Browser, Perl,

Octave and OpenDX must be installed on the PC. The MPI (Message Passing Interface)



+ ScaLAPACK (Scalable Linear Algebra Package) is only for the parallel computers for

the parallelizationof 100 or more than 100 atoms per unit cell.

No principal component of WIEN2k needs these packages and these are required

only for the advanced features or for W2Web.

4.1.6. Material Properties Computed by WIEN2k

i. Energy Bands and Total EnergY

ii. Electron Density, Density of States (DOS) and Spin Density

iii. Bader's concept of atoms in a molecule

iv. Molecular Dynamics

v. Structure Optimization

vi. lnteracting Forces and Equilibrium Geometries

vii. Fermi Surfaces

viii. Electric field gradients, Hyperfine Fields and lsomer Shifts

ix. Spin Polarization, Orbital Polarization and Spin'Orbit Coupling

x. Optical Properties

xi. X-ray Spectra and Electron Energy Loss Specfa

xii. LDA, LDA+U, GGA, Meta-GGA Approximations

xiii. Centro- or Non-centro-symmetric Cell Analysis

xiv. All the 230 Space Groups

4.2. Running the WIEN2k Program

The WIEN2k package can be run using any web browser and the w2web

interface, but at the command line in an xterm program as well. Inputs are created by the

init_lapw and StrucGen files. W2Web acts as the web server on a user defined port.

4.2.1. Connecting to the W2Web Server

We start w2web on all our hosts and then login a desired host as the Secure shell

host (SSH) by inserting the usemame and password, port-number, (master-) hostname. It

generates the -l.w2web directory. We use our web browser (Firefox) and connect to the



(master-) host: port-number. Every "case" runs in its own directory as -/case. The "master

input" directory is termed as case.struct as shown in Figures 4.2 and 4.3.

Figure 4.2 -Logia dcsired host

Figure 4.3 - User at the desired host connected to w2web
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42.2. Creating the New Session

We create a new session at the desired host or select an old session as follows:

Figure 4.4 - Crcatlon of a ncw scsslon
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Figure 4.5 - Currcnt worklng dircctory of thc ncry / old scsslon
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4.23. Crqting the Structure Generator

Now we set up a structure generator (StructGen) by importing the cif or xyz file

for the initial structure. A structure file creates a template in which we will enter the

structural data. It is then used to create the y.struct file.

Then we speciff the lattice qpe, space gouP, lattice parameters, angles, nature

and number of atoms, and their atomic positions for a special element or compound. Then

we click the "Save Structureo' button. The atomic number (Z) will automatically be

updated and then we press "Set automatically Rur and continue editing" which will

determine the distances among the nearest neighbor atoms by using the nn program and

then setnnt]apw will calculate the optimum values of the Muffrn-tin radii @6) for the

atomic spheres.

Then we speciff a suitable reduction of the nn distances, make the non-

overlapping as large as possible but not larger than 3 bohrs to save the computational

time. We reduce Rrrr 10-20 % smaller for the sp(d) elements than for the d(f) elements.

The largest sphere should not be more than 50Yo larg* than the smallest sphere. We

should not change the Ry1 during a series of calculations. The Rrrrr should be equal for

the same atoms. After finishing, we exit the StnrctGen by pressing the "Save and claen

up" buffon.

It will create the y.stiuct file displayed in the view-only genre having the distinct

colour of the background, which is the Master input file for all the successive programs.

This operation also automatically creates the input file for the free atom program LStafi

dealing with the configurations of the atoms. It updates Z, roand the equivalent positions

automatically, and also generates the case.inst file for the atomic configurations.
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4.2,4. hinalization of A Computafion

It is done under the inillapw program. This program helps us detect symmetry

and generates the input file under the defaults. Its cost and calculation time depend on the

k-mesh and R161K6q which finds the number of the plane waves (PWs).

Xnn

The Xnn program detects the nearest neighbor distances in a certain range

described by the disunce factor f, and assists us compute radii of the atomic spheres. This

program is also beneficial for a surplus check of the case.struct file which describes

equivalency of the atoms.

X Sgroup

It is for finding the point goup and space group for a certain structure.
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Viewing the Y.OutputfiGroup File

We can see a structure based on a given point or space group. We either

acknowledge the x.sfiuct file created by SGroup or can keep our default file.

X Symmetry

It is created from the raw case.sfiuct file to perform the syrnmetry operations of a

space group. It finds the point group for the distinct atomic sites; lelds the LM

expansion for the lattice harmonics and defines the local rotation matices.

X Lstart

It creates densities of the free atoms and finds the manner in which the unlike

orbitals are indulged in the band structure computationsr comprising the core or band

states having the local orbitals or not.

X KeyGen

lt produces a k-mesh and reduces to the ineducible segment of the Brillouin zone

using the symmetry. An inversion is added automatically in the mesh except in the spin

orbit (SO) computations of a maguetic material. The time inversion is valid hare, i.e.,

E(k) = EGk). We always shift the k-mesh for the self-consistence field (SCF) cycle

because the gaps usually exist at the F syrrmetry point in the mesh but it is not in every

k-mesh.

A k-mesh for the small unit cells and metals is large containing 1000-100000 k-

points while a k-mesh for the large unit cells and insulators contains l-10 k-points only.

Initially, we should use a fairly rough k-mesh for the SCF cycle and continue later with a

fine k-mesh. For the density of states, specfa and optics, we apply an even finer k-mesh.

X Dstart

It creates an initial density for the SCF cycle by superposing the densities of the

atoms produced in the LStart program.
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Initialization
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Volume Optimization
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4.2.5. Self-Consistence Field (SCD Computations

It is a self-consistent field cycle started and repeated to get the convergence

criteria (energy, charge, forces). It works under the run-lapw or runsp-lapw Programs.

We can run the SCF cycle optionally along with the spin-orbit (SO) coupling or the

LDA+U approach. case.scf is a master output file, which consists of history of the SCF

cycle. We will calculate the band structure, the electron density, the density of states

(DOS), the joint density of states (JDOS) and the optical properties, etc.

An SCF cycle is raised up by a script file rurylapw and comprises the steps as

follows:

LAPWO @otential Generator)

It produces the potential from a certain density. The Lapw0 program calculates

the total potential as the addition of the Coulomb potential and the exchange-correlation

potential under the total elecfion spin density taken as the input. lt produces the spherical

part (l = 0) of the potential as case.vsp and the non-spherical component as case.vns. In

the spin polarized systems, case.clmup and case.clmdn represent the spin densities and

guide to two couples of the potential files as (case.vspup, case.vnsup) and (case.vspdn,

case.vnsdn).

LAPWI @igenvalues And Eigenvectors Finder)

The eigenvalues and the eigenvectors are found by the diagonalization of the

Hamiltonian and the overlap matrix elements established by the Lapwl program. These

eigenvalues and eigenvectors are saved in the case.vector file. This program also

determines the valence bands specified by ttre eigenvalues and the eigenvectors. A full

potential computation is carried out if the case.vns file occurs.

LAPW2 (Valence Charge Density Erpansions Generator)

It calculates the valence densities from the specific eigenvectors. The Lapw2

program uses the case.energy and case.vector files. It calculates the Fermi-energy and

directs the expansions of the charge densities for every filled state and every k-point and



the related partial charges are computed inside the atomic spheres by integration. For the

systems depriving the inversion s)mrmetry, we use the lapw2c program joined with

lapwlc for the complex analysis of the Hamiltonian and overlap matrix elements.

LCore (Core States Generator)

The LCore program is an improved version of the relativistic LSDA atomic code

to determine core states comprising SO coupling relativistically or non-relativistically if

NREL has been adjusted in the case.struct file for the contemporary spherical portion of

the potential specified by the case.vsp file. Lcore generates the case.clmcor file for the

relevant core densities, eigenvalues and core contibution to forces concerning the atoms.

IVIirer (Charge Densities Adder and Mirer)

It mingles the input and ouput densities. It uses the LMarks program. In the

mixer, the charge densities of the valence and semi-core states are added to produce the

total new output densities and their nornralization is observed and imposed because the

simple new densities cause instabilities in the iterative SCF cycle which is essential to be

stabilized by mixing the output densities with the old input densities to yield the new

densities for using in the next iteration. Its running cycle is 30-50% less than that of an

SCF. It is very stable and gives the real convergence because there is no pseudo-

convergence due to the small mixing. In the mixer, the atomic forces and the total energy

are determined by the case.scf file and then adding several confiibutions calculated in the

previous steps of the last iteration. Therefore, the case.scf file must be given an iteration

number once and it must be less than 999. The spin-polaized systems are automatically

perceived by xmixer in the presence of the case.clmvalup file because the I and m values

and the K-vectors are always read from the case.clmval file.
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4,2.5.1. Band Structure Calculation
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4.2.5.2. Electron Charge Density
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Figure 4.17 - Ptot of thc etcctron chargc dcnslty along with thc contour plots [1461

4.2.5.3. Density of States

Figure 4.1t - Dcnslty of states (DOS) calculrtlon [1451

73



I
!
I
I
!
I

t-!ti
I
I
I

I

I

bi
!
I

Ilab 0ow during e ss cyd€ (progrdldtdef, e*strud, case-trrX, rsseoutpuL\ snd
optionel 6les erc oriH)

Figure 4.19 - Data flowing during an SCF cyclc [1461

74



It llir0

uttS *4 la
u;{Ct Ulr

--.------ra
a
a
I
a

ttrs
ril+L-cllhi

ftngnnewtsiUtEEt

Figure 4.20 -Programs flowlng ln WIEN2k [f461

75



Chapter 5

RESULTS, DTSCUSSTONS AI\D CONCLUSTONS

Inforrration Technology has prevailed almost in every field of life comprising the

Numerical modeling as an influential tool to understand structures of materials on behalf

of the low cost high performance personal computers (PCs). Calculations of the

electronic structures of the solids can be carried out through several ways by using the

classical to quantum mechanical approaches.

The DFT is a comprehensive technique to determine the ground state properties of

the systems of the interacting elecfions. It represents an electronic system by its density

(one-body problem) rather than its wave function (many-body problem) providing us

with the precise results at the low computational price. Initially, the DFT was dealt as an

exact theory but later, its practical implementation was based on the approximations

known as the exchange and correlation potentials which by their combined application

became the exchange-correlation potential. The DFT can handle from a single up to 200

atoms. [t can also deal with the transition metals. The DFT approximations are

trustworthy and computationally nice techniques to investigate the solids. So, in this

concern, we have researched on the stuctural, electrical and optical properties of zinc

oxide (ZnO) and its doping with Cd to form the tertiary compounds Znr-xCdO depending

on the concentration x of cadmium (Cd).

For the computational applications, we used the full potential linearized

augmented plane wave (FP-LAPW) method founded on the DFT and executed in

WIEN2k software package under the Wu-Cohen GGA scheme [2] to research on the

mentioned properties. Under WIEN2k, the Kohn-Sham functions are grcwn in terms of

the spherical harmonic functions inside the non-overlapping Muffin-tin (MT) spheres of

the radii Rur which encompass the atomic sites, while the Fourier series (FS) is applied

in the interstitial regions. Inside an MT sphere, the l-expansion was made up to lo-, = l0

and the Fourier expansion of the charge density was G,,o: 16. For the convergence of an

energy eigenvalue, the wave function in the interstitial region is grown in the form of the

plane waves (PWs) with the cut-off value as R1,rrKr* = I where Ko,,. is the maximum



magnitude of the reciprocal lattice vector. The total energy computations were made by

taking the energy as the function of the volume of a unit cell. The volume optimization

(VO) was done for ZnO and Znr-*CdO in the zincblende (ZB) phase under the GGA

scheme by using a calculated lattice constant a. A volume energy curve came to hand on

determining the total energy at the volume surrounding the equilibrium and the fitting

determined the value of the Marnaghan equation of state U471. We also evaluated the

bulk modulus B in gigapascals (GPa); its derivative with respect to the pressure B', the

bond lengths and the bond angles for the ZnO and Znr-.Cd*O alloys.

The first step of the procedure comprises VO for theZnO and Znr-*Cd*O alloys in

the ZB phase by using the experimental lattice constant under the GGA. Then we

determined the electronic charge density p, density of states (DOS), band structure and

space group for all the compounds.

5.1. Properties Of ZnO-ZB

5.1.1. Structural Properties

For ZnO-ZB. the experimental lattice constant was a = 4.62 A tt+g] which on the

calculation by the WIEN2k software resulted as 4.54 A according to the following figure:

ts 16{, 105 lTll
vdume la-u^31

176

Figure 5.1 - Volume optimization cune for ZnO in theZB phase in the Wu-Cohen (WC) GGA
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Optimal votume = Vo = 136.89 (ru)' - 157.88 x (0.53)3 = 23.5 (A)3

Therefore, our calculated lattice constant is:

a(1) = (ggoytz

Puffing value of Vo, we get:

,(r) = (4 x 157.88)L/3 = (6lt.S21tt3 = 8.58 au.

= 8.58 au x 0.53 = 4.54 A

5.1.2. Electrical Properties

5.1.2.1. Electronic Charge Density

The 3D charge density p(r) has been plotted in the (l l0) plane for ZnO inthe ZB

phase. Figure 5.2(a) reveals that Zn atoms have more core electrons near the nuclei

giving higher electron charge density in the vicinity of the nuclei while O atoms contain

more valence electrons and are more spread out than those of Zn. The electronegativities

of the Zn andO atoms are highly different, therefore the charges transfer is also different.

The difference in the charge transfer between an anoin and a cation is directly

proportional to the difference of the electronegativities of both the atoms. In Figure

5.2(b), the contour plot shows that the bonds between Zn and O atoms are covalent with

tense ionic character. The electrons are gathered along a Zn-O bond and then repelled

towards the O atom.

A 3-diemnsional plot for ZnOin theZB phase has been shown in Figure 5.2.

Vo=fa3.
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Figure 5.2 - (a) My 3D Ptot of ZnO lnthcZB phasc for thc clectron dcnsity p(r) at plane (ll0) in

the Wu-Cohen GGA schemc and (b) Relevant contour plot

5.1.2.2. Density of States

We computed the total density of states (TDOS) at the equilibrium volume 20.38

(A)3 under the Wu-Cohen GGA scheme for ZnO-ZB. The lowest enerry states -16 eV to

onward containing O s-orbitals are calld the core states, the states ranging from -6.5 to 0

eV (Fermi Level) consisting of O p- andZnd-states are termed as the semi-core states

and the states ranging from 2 eV and above are called valence states. There is small

hybridization between Zn3d- and O 2p-states at about 4.5 eV due to which the band gap

(BG) of ZnO increases somewhat. The density of states helps us determine the angular

momentum behavior of several sffuctures.

Figure 53 - fUy total density of states CIDOS) spectra for the ZnO-ZB phase in the GGA
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5.1,23. Band Structure

Figure 5.4 - wty cnerg:f band structure of thcZnO-7iB alloy by the Wu-Cohen GGA schcme

The undermined band gap may be because of the selection of the exchange-

correlation enerry. The vatence band mostly comprises the2p- and 2s-states of O and 3d-

and 4s-states of Zn.In the valence band, the O 2s-states are found from -16 to -l9 eV and

O 2p-states lie between -4 and 0 eV being very close to the previous results.

It appears from the graph that theZn 3d-states generate a few bands in the range

of 7-9 eV under the valence band maximum (VBM) showing the fragmentation and the

dispersion of the wave vector k exterior to the maximum symmetry point f. The lowest

conduction band is occupied by the Zn M-states and it initially emerges out of the O 2p-

and Zn-4s states. The huge peak in the valence band at I is basically due to the Zn 3d'

states. These states affect the band structure unreliably due to the abhorrence of the p-

and d-states triggered by the hybridization of the corresponding states. Therefore, the

band gap n ZrlO is more underestimated because of the hybridization of the Zn 3d' and

O 2p-states.
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Table 5.1 - Uy calculated values for 7nO-7;B under thc VYu-Cohen GGA scheme

Review Research Work
ZuO-ZB Comnound

ELEMENT
SYMBOL

wm{
IJMT

THIS
WORK

OTHERS
TIIEORETICAL

EXPERIMENTAL
WORKS

Scheme GGA
Wu-Cohen

GGA
GGA

Phase ZBIB3 Zincblende Zincblende

Space Group SG 216.F43m
Muffrn-Tin

Radius
Rr.rrr (au)

7-n= l.7E
O = 1.58

Optimal
Volume

VO (A), 23.5 24.86 U4eI 24.6s [l48]

Lattice
Constant

a (A) 4.54 4.63 U4el 4.62 [l48]

Bulk Modulus B^ (GPa) 156.36 133.73 11491

Derivative of
Bulk Modulus

Bo' (GPa) 4.83 4.79 tl4e]

Optimal
Enerw

Eo Gv) -3741,.67

Total Density
of States

TDOS
(e

states/eV)

Zn3d = 18.5

at -5.6 eV

O2p=6.3
at-1.2 eY

Zn3d=7.E
at -5.5 eV

O2P=2.4
at-1.5 eV [l50l

Band Gan BG/E. (eV) 0.62 0.6s 11491 3.44 tlsll

5.2. Propertis of Zn1-'Cd'O Alloys

We made the volume optimization for the Zh-*CdxO alloys in the ZB phase with

help of the Wu-Cohen GGA scheme. We calculated the optimal volume, theoretical

lattice parameter, bulk modulus B, derivative of the bulk modulus with respect to

pressure B'and the Muffin-tin radius Rvrr.

For the investigation of the optical band gap and optical tansition of the

Znr-*CdO alloys, it is essential to study the imaginary part of the dielectric function ez(o)

because it is too significant in describing the optical properties and the photon energies,

E = hro [152] of a material. We are well-versed by the fact that the photon interaction

with the electrons of the material may be expressed in terms of the time-dependent



and

perturbations of the electrons occupied states at the ground level. The optical ffansitions

between the filled and empty states occur due to the electric field by a photon and the

respective spectra may be expressed like the joint density of states (JDOS) between the

valence and conduction bands. The momentum matrix elements are determined between

the occupied and unoccupied states. The real part of the dielectic function can be

determined from the imaginary part with the help of Kramers-Kronig relation [136]. We

will study the optical properties of the Znr-xcdxo alloys in energy range from 0 to 50 eV.

Equations to Calculate the Optical Properties

e(ro)-er(o)*je2(o), (s. 1)

where

er(to)=n(o)z+k(o)z (s.2)

ez(or) = 2n(ro) k(o). (s.3)

Here

n(o) = (s.4)

and

(s.s)

The complex refractive index is defined by:

n'(o)=n(to)+jk(or)

(s.6)

The absorption coefficient is given by:

a(<o) = rlZ^

[er (ro) 2 +ez (o)211 / 2 + e {a)



= f r<1o).

The reflectivity is defined by:

R(o) = 
(n(<o)-r)2+k(<'r)1-

(n(o)+r)2+k(ro)2'

5.2.1. ZnotsCdo.zsO Alloy

5.2.1.1. Structural Properties

(5.7)

(s.8)

!00 6lD 700 760 too c50 9@

vdm [."u^31

Figure 5.5 - wty votume optimizrtion cur"r,e of Zno.zscdg.xO ln the ZB phrsc in the WC GGA

Lattice constant = a =(V.)rZe = (705.22)t/3 = 8.90|au = 8.901 au x 0.53 = 4.72 A

5.2.1.2. Electrical Properties

5.2.1.2.1. Electron Charge Density

We computed the volume charge density for the Zno.tsCdo.xO alloy in the ZB

phase along the (l l0) plane applying the Wu-Kohn GGA scheme shown in Figure 5.6(a).

Figure 5.6(b) gives the contour plot for the ZU.tsCds.25O alloy indicating the collection of

electrons along the Zn-O and Cd-O bonds and deflect towards the O atom due to

electronegativity differences among Zn, Cd and O atoms. The O atoms bond covalently

with both the Zn and Cd atoms with strong ionic behavior such that the Zn-O bond is

stronger than Cd-O one.
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Figure 5.6 - (a) My 3D ptot of Zns.75Cdo2sO in theZB phasc for elcctron density p(r) at plare (lf 0)
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5.2.122. Density of States

The density of states (DOS) is computed for observing the bonding character and

the orbital hybridization in the Zno.tsChxO alloy in the ZB phase. The bonding

character gives the semiconducting behavior as shown in Figure 5.7. The Cd 4d-states are

analyzed in the enerry range 12 to 13.5 eV beneath the valance band maximum (VBM)

and these states increase gradually with the increasing concentration of Cd for x = 0.0625

to 0.25 while the Zn 3d-*ates decrease slightly between -5 to -4 eV. The Zn 3d-states

have the ma:rimum peak value of 57 at -5 eV. A VBM always lies in the Fermi level

having no clear shift and has a magnified spectrum between 0 to 5 eV. For a given range

of x at the bottom of the conduction band, this band shiffs to the low enerry range.

This shift assigns the clear variations in the electronic properties of the Znr-xCdO

alloys. The bottom of conduction band comprises the Zn 4s-states and O 2p-states where

the Zn 4s-states are dormant. The O 2p-states have the maximum value of l0 at about -l

eV. There is high orbital hybridization between Zn 3d- and O 2p-states at about -5 eV

causing a huge decrease in the band gap (BG) of ZnO. An increase in the Cd

concentration increases the s-states and these states go on becoming sfionger and stonger

resulting in the shift of the conduction band and the narrowing of the band gap due to the

increase in x.
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Figure 5.7 - wty totel density of statcs (TDOS) of Zn6.75Cde25O in the ZB phase ln the WC GGA



5.2.1.23. Band Structure

The band structure of the Zw.tsChzsO alloy in the ZB phase was calculated by

WIEN2k in the Wu-Cohen GGA. We found a band gap of 0.2 eV at the Fermi energy Ep

that is less than that of pure ZnO due to the doping of Cd at25%o as shown below:

Figure 5.t - Vfy band structurc of Zmo.zsCdo:sO ln thc ZB phrse in the IYU-Cohcn GGA

5.2.13. Optical Properties

5.2.13.1. Dielectric Function

The dielectic function helps us determine the optical properties of the system.

The imaginary part ez(o) of the dielectric function with the peak value of 2.9 increases

from 9.5 to 14.5 eV and then sharply decreases after it. The real part tr(6)) of the

dielectric function has a maximum value of 3.75 at 1.5 eV. Then slightly decreases from

1.5 to 7.5 eV and then quickly decreases after this range for x : 0.25 as shown in Figure

5.9:
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Figure 5.9 - (a) My Imaginary part e2(co) of thc dielectric function for Zn6.7sCds25O in the ZB phase

in the Wu-Cohen GGA schemc and (b) Rea! part e1(or) of thc dlelectric function

5.2.13.2. Joint Density of States

The excited state spectramay be expressed as the joint density of states (JDOS)

between the valence and conduction bands of the material. The JDOS increases from 10-

15 eV over the low energy range and then sharply decreases after it. Its ma:rimum peak

value is 3.8 at 15.2 eV.
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Figure 5.10 - My joint density of states (JDOS) spectra for Zn6.75Cds.25O in the ZB phase

5.2.1.3.3. Conductivity

The following figure describes the effect on the conductivity C of the

Zno.tsCdo.zsO alloy. We see that the Cd incorporation x is faint in the low range of the

energy while the conductivity having a maximum peak value of 5.4 Cr-lcm-l at l5.l eV

quickly reduces above l5 eV corresponding to a change in ez(ol).
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Figure 5.11 - lUy conductivity spectra for Zno.zsCdo2sO ln the ZB phasc in the GGA
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5.2.1.3.4. Energy Loss Function

Figure 5.12 shows the energy loss function L that represents the energy loss of a

fast electron navigating in Zno.tsCdo.zsO in the ZB phase. The peak values of 1.95 eV at

20.5 eV and 1.3 eV at 27 eY in L describe the plasma resonance peak assigning the

points of the fiansition from the metallic property to the dielecnic properties for

Zno.tsCdo.zsO. The doping of Cd for x = 25Yo n ZnO persuades the blue shift of 20.3 eV

peak with a high fall in the spectra of the energy loss function.
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Figure 5.12 - Calculated energy loss function spectra for Zno.zsCdosO in the ZB phase in the !Yu-

Cohen GGA scheme

5.2.1.3.5. Refractive Index

The refractive index n of the ZnotsCdn.zsO alloy in the ZB phase helps in

modeling and designing devices exactly. We see in the following figure that n enhances

in the low energy range indicating a decrease in the band spacin E of Zno.tsCdo.zsO. It is

due to the doping of Cd into ZnO which may lift up the s-states in the conduction band

concluding an increase in the optical fiansition between the highest valence and the

50



lowest conduction bands nZno.tsCdnzsO. The ma:rimum value of n comes out to be 1.2

at about 15.3 eV and the corresponding peak concerns with the optical transition close to

the band gap as shown below:
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Figure 5.13 - tUy Rcfractive inder spcctra for Zno.zsCdo:sO in thc ZB phase ln thc lVu-Cohcn GGA

scheme
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Table 5.2 'Measurcd valucs for Zne.75Cdp5O ln thc ZB phase by the \to{ohcn GGA schcme

Recent Research Work
Zno-zsCdo:sO

ELEMENT
SYMBOL WITII

TJNIT
THIS WORK OTIIERS WORK

Scheme GGA Wu-Cohen GGA
Phase ZB Zincblende

Space Group SG 215. P-43m

Muffin-Tin
Radius

Rur (au)
Zn= 1.78

Cd = 1.78

O: 1.58

Optimal Volume V^ (au)' 70s.22
Lattice Constant a A) 4.72
Bulk Modulus Bo (GPa) 129.19

Derivative of Bulk
Modulus

Bo (GPa) 4.52

OotimalEnerw Eo (Rv) -22s65.92
Band Gao BG / E, (eV) 0.2 0.13 lrszl

Dielectric
Function

Real Part of DF = er(o)

knagrnary Part = ez(o)

3.74 at 1.3 eV

2.9 atl4.5 eY 2.73 atl.2 eY U52l
7.4 at 10.3 eV [l53l

Total Density of
States

TDOS (e- stateVev)

Cd 4d :27 at-6.7 eY

Zn3d:34 at-5.4 eV

O2p= 10.5 at-0.5 eV

Cd 4d = 57 at-8.3 eV
Zn3d=86 at-6.2 eY

O2P:2Eat'l eY U52l

Cd 4d : ll.2 at-9.3 eY
Zn3d=9.9 at-9.5 eV

O2o:7.2at-5.7 eV tl53l
Joint Density of

States
JDOS (e stateJev) 3.t at 15 eV

ConductiviW C (Q-'cm-') 5.4 at l5 eV 1.3 at 6.6 eV 11521

Energy Loss
Function

L (eV) 1.95 at 2l eY 1.96at12.7 eY lL52l

Refractive Index n l.2atl5.3 eY 2.48 at 0.02 eV 11521
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5.2.2. Zno.soCdo.soO Alloy

5.2.2.1. Structural Properties
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Figure 5.14 - Votumc optimization for the ZnosoCdosoo-ZB iu thc Wu-Cohcn GGA

5.2.2.2. Electrical Propertie.s

5.2.2.2.1. Charge Density

We computed the volume charge density for the Zno.tsCdo.zsO alloy in the ZB

phase along the (ll0) plane applying the Wu-Cohen GGA scheme shown in Figure

5.15(a). Figure 5.15(b) gives the contour plot for Zno.soCdo.soO indicating the collection

of electrons along the Zn-O and Cd-O bonds and deflect towards the O atom due to

electronegativity differences among Zn, Cd and O atoms. The O atoms bond covalently

with both the Zn and Cd atoms with strong ionic character such that the Zn-O and Cd-O

bonds are almost equally stronger. Both the figures are combined in Figure 5.15(c).
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Figure 5.15 - (a) My 3D ptot of Z,nsj,CdsroO ln thcZB phasc for the electron denslty p(r) at plene (110) in

the Wu-Kohn GGA schcme, (b) Relcvant cotrtour plot and (c) Combined 3D end contour plots
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5.2.2.2.2. Density of States

The density of states (DOS) is computed for watching bonding character and

hybridization in the Zno.soCdo.soO-ZB alloy. This bonding character provides the metallic

behavior. T\e Zn d-states have ma:rimum peak value of 62 at -5.7 eV and that of the O-p

states is 17.5 at-0.3 eV. No orbital hybridization occurs between Zn3d- and O 2p-states.

d,

Figure 5.16 - TOOS of the ZnosoCdss6O-ZB atloy in the Wu-Cohen GGA scheme

5.2.2.2.3. Band Structure

The band structure of the Zno.soCdo.so0-B alloy was computed by the WIEN2k

program applying the Wu-Kohn GGA scheme. We determined an overlapping of ttre

valence and conduction bands at the Fermi enerry Ep, which shows that Zno.soCdo.soO

possesses metallic properties as shown in Figure 5.17:

6l-
olO
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Figure 5.17 - Bandstructureof theZnosoCdoso0-ZBalloy lnthcWu-CohenGGAscheme

5.2.2.3. Optical Properties

5.2.2.3.1. Dielectric Function

The optical properties of the Zno.soCdo.so}-ZB alloy are determined by the

dielectric function. The imaginry part e2(ro) of the dielectric function has a manimum

value of 2.5 at 5 eV and then falls immediately after it. The real part El(o) of the

dielectric function has the maximum peak value of 3.7 at2 eY and then quickly decreases

after it for x = 50Yo as shown in Figure 5.1t.
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Figure 5.18 - (a) My Imaginary part e2(ro) of thc dietectric function for ZnqrgCdoigO in the ZB

phase in thc \Yu-Cohcn GGA and (b) Rcel part e1(o) of thc dlclcctric frrnction
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5.2.2 3.2. Conductivity

Figure 5.19 expresses the effect on the conductivity C of the Zno.soCdo.soo'ZB

alloy. We frnd that the Cd impurity x is apparent in the low energy range. Its maximum

value is 1.6 O-rcm'l at 30 eV. It slightly increases from 5-30 eV and then quickly

decreases over 30 eV corresponding to the deviation ofe2(ro).

a
fllf t l|

Figure 5.19 - My conductivity spectra for thc ZnosoCdosoO-ZB alloy in the Wu-Cohen GGA

5.2.2.3.3. Energy Loss Function

The energy loss function L that describes the energy loss of a fast electron passing

through Zno.soCdo.so}-ZB. The peaks of l.l8 eV at 5.6 eV and 1.0 eV at 12 eY in L are

the plasma resonance peak assigning the points of the transition from the metallic

property to the dielectric properties of the system. The doping of Cd for x = 50% in ZnO

causes a blue shift of 30 eV peak with a higher decrease in the loss function spectrum as

expressed in Figure 5.20.
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0

Figure 5.20 - tuy encr$/ loss function spectra for the Znqs0Cd6.s0O-ZB alloy io the GGA

5.2.2.3.4. Refractive Index

The refractive index n of the Zno.soCdo.soO-ZB alloy helps in sculpting and

manipulating instruments precisely. We see in the following figure that n enhances in the

low energy range indicating a decrease in the band interval of the system. It is because of

the doping of Cd into ZnO which may lift up the s-states in the conduction band resulting

in an increase in the optical tansition between the uppermost valence band and lowest

conduction band in the Zno.soCdo.soO-ZB alloy. The ma:rimum value of n comes out to be

-0.1 at 5.5 eV about and the equivalent peak is linked with the optical fansition close to

the band spacing.

Figure 5.21 - My Refractive index spectra for ZnosoCdo.soO-ZB in the Wu-Cohen GGA schcmc
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Table 53 - Uy statlstlcs for ZnsrgCdgioO-ZBlt thc Wu-Cohcn GGA schemc

ContemporarY Research lVork
ZnosoCdoso O-ZB Compound

ELEMENT SYMBOL WITH IJMT THIS WORK OTHERS WORK
Scheme GGA Wu-Cohen GGA
Phase B Zincblende

Space Group SG tl5 P-43m

Muffin-Tin
Radius

Rur (au)
Zn: 1.78

Cd = 1.78

O: l.5E

Optimal Volume V. (au)' 383.90

Lattice Constant a A) 4.84

Bulk Modulus B^ (GPa) t19.92
Derivative of
Bulk Modulus

Bo (GPa) 4.20

Ontimal Enersv E. (Rv) -t5082.57

Band Gap Bc / Es (eV) 0.09
t.6s [l53]
0.0 tl541

Dielecfric
Function

Real Part of DF = er(o)

Imasinarv Part = er(o)

3.65 at2.2 eY

2.5 at4.9 eY 5.3 at9.7 eV [l53l

Total Density of
States

TDOS (e states/eV)

Zn3d=60
at - 5.8 eV

O2P= 16

at-17 eY

Zn3d:7.2
at -9.1 eV

O2P= 5'6
at-5.6 eV tl53l

Joint Density of
States

JDOS (e states/eV)

Conductivity C (O''cm 1.6 at 3l eV
Energy Loss

Function
L (eD l.l8 at 5 eV

Refractive Index n -2.8 at 2t.3 eV

99



5.2.3. ZnoesCdo.zsO Alloy

5.2.3.1. Structural Properties
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Figure 5.22 - Volumc optimlzatlon for the zinc blcnde Zno.zsCdo.zsO compound

5.2.3.2. Electronic Properties

5.2.3.2.1. Charge Density

We computed the volume charge density for the Zno.tsCdo.zsO alloy in the ZB

phase along the (l l0) plane applying the Wu-Cohen GGA scheme shown in Figure

5.23(a). Figure 5.23(b) gives the contour plot for the Zno.zsCdo.zsO alloy indicating the

collection of electrons along the Zn-O and Cd-O bonds and deflect towards the O atom

due to electronegativity differences among Zn, Cd and O atoms. The O atoms bond

covalently with both the Zn and Cd atoms with stong ionic behavior such that the Zn-O

bond is weaker than Cd-O one. Both the figures have been combined in Figure 5.23(c).
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At plane (110):

Figure 5.23 - (a) My 3D plot of ZnqrsCdazso ln thcZB phasc for thc electron dcnstty p(r) at planc

(l l0) in the Wu-Cohen GGA, (b) Relcvant contour plot and (c) Combined 3D and contour plots
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5.2.3.22. Density of States

The density of states (DOS) is computed for analyzing the bonding character and

hybridization in zinc blende Zu.xCdo.tsO. The bonding character offers the

semiconducting behavior as shown in the figure below. The maximum peak value of the

Zn-d states is 44.7 at -4.8 eV while that of the O-p states is M.5 at -2 eY. There is

negligible orbital hybridization at-0.49 eV between Zn3d- and O 2p-states which had no

effect on the band gap @G) value of Zno.soCdo.soO due to increase in x.

03
Elfry d,

Figure 5.24 - My computcd total density of states (TDOS) of the zlnc blendc ZnszsCilslsO

compound ln the lYu-Cohcn GGA schemc

5.2.3.2.3. Band Structure

The band structure of the zinc blende Zno.zsCdo.tsO alloy was determined by the

WIEN2k program applying the Wu-Cohen GGA scheme. The valence and conduction

bands overlap at tlre Fermi energy Er in the GGA scheme due to the doping of Cd atl1Yo

in ZnO showing that the Zno.zsCdo.tsO alloy is of the metallic nature according to Figure

5.25.
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Figure 525 - My computcd band structure of thc dnc blcnde 7no,,Cds.1s0 compound in the TYU-

Cohen GGA schcmc

5.2.3.3. Optical Properties

5.2.33.1. Dielectric Function

The dielectric function helps us determine the optical properties of the zinc blende

Zno.zsCdn.tsO compound. The imaginary part r2(o) of the dielectric function increases

slightly in the enerry range of 9-14.7 eV. It has the maximum value of 2.83 at 14.6 eY

and then falls immediately after it. The real part e1(ro) of the dielectric function has the

extreme value of 3.77 at 1.5 eV and then quickly decreases after it up till the minimum

value of -0.t for x :75%o as shown in Figure 5.26.
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Figure 5.26 - (a) Imaginary part e2(or) of tlc dielecHc function for Znss0Cd6.73O ln the ZB phase ln

tbe Wu-Cohen GGA scheme and (b) RcaI part e1(or) of the dielecffic functlon
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5.2.3.3.2. Joint Density of States

The excited state may be expressed as the joint density of states (JDOS) between

the valence and conduction bands of the zinc blende Zno.zsCdo.tsO compound. The

maximum peak value of the JDOS is 3.5 at 14.5 eV. Then it slightly increases from 9-

14.5 eV in the low enerry range and then sharply decreases after it for x = 0.75 as in the

following figure:
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Figure 5.27 -ltly ioint density of states (JDOS) for the zinc blendc ZnorsCdo.zs0 compound in the

Wu-Cohen GGA scheme

5.2.3.3.3. Conductivity

Figure 5.28 describes the effect on the conductivity C of the zinc blende Zno.zsCdotsO

alloy. We see that the cadmium (Cd) concentration x is invisible in the low energy range.

The conductivity slightly increases from 9-15 eV and then quickly decreases after it with

respect to the variation of e2(ol). The ma:rimum peak value is 5.2 at 14.7 eV as displayed

in Figure 5.28:

g0.10
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Figure 5.28 - My computed conductivity for the zlnc blende Zto.zsCdo.tsO alloy in the WC GGA

5.2.3.3.4. Energy Loss Function

The energy loss function L describes the loss of energy when a fast electron

moves in the zinc blende Zno.zsCh.tsO alloy. The peaks of 1.65 eV at 18.7 eV and 3.85

eY at 29 eV in L are the plasma resonance peaks assigning the points of the transition

from the metallic properly to the dielectric properties ofthe system. The doping of Cd for

x: 75%o in ZnO induces the blue shift of the 29 eY peak with a slight decrease in L as

shown in the following figure:

Figure 5.29 - My computed energy loss function for the zinc blende Zn625Cde.750 compound in the

Wu-Cohen GGA scheme
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5.2.3.3.5. Refractive Inder

The refractive index n of zinc blende Zno.zsCdo.tsO alloy helps in modeling and

designing devices exactly. We analyze in the following figure that refractive index n

enhances in the low energy range indicating decrease in band gap of the system. It is due

to the doping of Cd into ZnO which may raise s-states in conduction band resulting in

increase in optical ransition between the uppest valence and the lowest conduction bands

inZno.zsCdotsO. The maximum value of n comes outto be 1.35 at 15 eV. The peak

relates to the optical transition near the band gap.

x=7596

20 25 30

Ersgrtrvl

Figure 5.30 - wty computed refractive index spectra for the zinc blende Zno.zsCdo.zsO compound by

the Wu-Cohen GGA scheme
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Current Research lYork
Znn:r.Cilo.tsGT,B

ELEMENT SYMBOL WTII{
I'MT THIS WORK OTTIERS WORK

Scheme GGA
Wu-Cohen

GGA
Phase ZB Zincblende

Space Group SG 215.P43m

Muffrn-Tin
Radius

Rnlr (au)
Zn= 1.78

Cd = 1.78

O: 1.58

Ootimal Volume V^ (au)' 820.10

Lattice Constant a (A) 4.96

Bulk Modulus B^ (GPa) 118.70

Derivative of
Bulk Modulus

Bo (GPa) 3.9s

Ootimal Enerw E (Rv) -37764.39

Band Gao BG / E" (eV) 0.0 1.28 n53l

Dielectric
Function

Real Part of DF = er(ro)

Imaeinarv Part = r2(o)

3.77 at 1.5 eV

2.t atl4.2 eY 2.7 at9.3 eY

Total Density of
States

TDOS (e- states/eV)

Cd4d=48
at-7 eY

Zn3d=36
at -6 eV

O2p:17
at -1.5 eV

Cd 4d :3.7 at -10.4 eV

7^3d:3.8 at -8.4 eV

O 2P = 3.74 at'6.2 eY
tls3l

Joint Density of
States

JDOS (e stateJeV) 3.45 at 14.3 eV

Conductivity c (O''cm-') 5.2 atl4 eY
Energy Loss

Function
L (eD 3.E5 at 28 eV

Refractive Index n 1.35 at 15 eV

Table 5.4 - wty data for thc zinc blendc Zns2lP,ilq1sO compound ln thc lYu-Kohn GGA schcmc
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53. CONCLUSIONS

We applied the FP-LAPW method under the DFT to investigate the structural,

electrical and optical properties of the Znl-*Cd*O tertiary compounds in the zinc blende

(ZBth) phase fabricated from zinc oxide (ZnO) by its doping with cadmium (Cd) under

the GGA scheme, especially the Wu-Cohen GGA scheme by considering the 3d-states of

zinc (Zn) as the valence states of the elecfrons.

The first-principles formalism was applied to investigate the mentioned properties

of the ZnO bnary compound and the Znr-*CdO ternary alloys. We find that the

structural parameters are in nice accordance with the experimental results. The values of

our calculated band structure are in good ageement with the experimental and theoretical

calculations

Our calculated value of the volume optimizatior Vo = 23.5 (A)3 computed by the

Wu-Cohen GGA is 5.47% and 4.66% less than the theoretical and experimental values of

24.86 and 24.65 (A)t respectively. The lattice constant a = 4.54 A is t.gqm and 1.73%

less than the theoretical and experimental ones as 4.63 and 4.62 A respectively, which is

very accurate. The corresponding value of the bulk modulus Bo: 156.36 GPa is 16.92%

greater than the theoretical value of 133.73, and its derivative Bo' = 4.83 GPa is 0.83%

larger than the theoretical value of 4.79 GPa for ZnO, which are in enough accordance

with the theoretical results. The density of states (DOS) and the corresponding direct

band gap (BG) of 0.62 eV which is 4.61% and E1.98% less than the theoretical and

experimental values of 0.65 and 3.M eV respectively, very close to the theoretical value

reveal thatZnO is a semiconductor.

We also observe that the laffice constant a in the Znr-.CdO compounds went on

increasing with the increase in the concentation x of Cd while the bulk modulus was

monotonically decreasing and its derivative as well. As we increased x from 25% to 75%

in the ZnO compound, the band gap of the Znl-xcdxo compounds decreased from 0.62

eV to 0.0 eV.



Then we studied the electon charge density p(r), DOS and BG of the Znr-xcdxO

alloys to observe the bonding character and orbital hybridization. The bonding character

of Znr-xCdO alloys revealed that the Tno.tsCdozsO alloy possesses the semiconductor

behavior while the BG indicates that the Zno.soC6.soO and Zu.zsCh.ts alloys are metallic

in nature. The orbital hybridizations happen in the Znr-*CdrO compounds.

In the optical analysis of the Znl-*CdxO alloys, we found that the imaginary part

of the dielectric function first decreased for x: 50Yo and then increased for x =75% with

the increase in the energy with respect to the increase in x while the real one happened

correspondingly; the total density of states (TDOS) first increased for x = 50%o and then

decreased for x = 75% shifting the curves towards the low energy range; joint density of

states (JDOS) decreased with the decrease in the energy; the conductivity fell down for x

: 50%o and then enhanced for x : 75% with the fall of the energ:f; the energy loss

function decreased for x: 50% andthen enhanced for x:75Yo with an increment in the

energy; and the refractive index increased first decreased for x = 50% and then increased

with the decrease in ttre energy.

The optical fiansition between the uppermost valence band and the lowest

conduction band was found to be shifted to the low energy range with the increasing

concenfiation x of cadmium. Also, the Znr-rCdO compounds proved metastable
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