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ABSTRACT

The first principle calculations established on density functional theory (DFT) are
the most contemporary influential techniques to study the ground state properties of solid
materials. In this research work, we analyzed the structural, electrical and optical
properties for Zn;.,Cd,O alloys for x =0 to 75% in the zinc blende (ZB) phase. For this
purpose, we adopted the full-potential linearized angmented plane wave plus local
orbitals (FP-LAPW + lo) method based on the DFT within the generalized gradient
approximation (GGA) scheme, especially the Wu-Cohen GGA formalism,

In the structural properties, we find that the lattice constant ‘a’, bulk modulus ‘B’
and its derivative with respect to pressure ‘B” are in enough accordance with the
experimental results for ZnO. In electrical properties, the density of states (DOS) and the
direct band gap (BG) are very close to the experimental results showing that ZnO isa

semiconductor.

e

The structural properties of the Zn;,CdO alloys reveal that the lattice constant in
these alloys goes on increasing with the increase in the cadmium (Cd) concentration into
ZnO while the bulk modulus decreases correspondingly and its derivative as well. In
electrical properties, we calculate the electron charge density ‘p(r)’, DOS and BG of the
Zn;«Cd,O alloys to analyze the bonding character, orbital hybridization and encrgy
states. The bonding character of Zn;Cd,O alloys reveals that the Zno75Cdo2s0 alloy
possesses the semiconductor behavior while the BG calculations indicate that the
Zno.50Cdo 50 and Zng2sCdg 75O alloys are metallic in nature. The optical analysis of the
ZnxCdO alloys reveals that the imaginary part ‘ex(w)’ of the dielectric function
decreases with the increase in energy while the real one ‘g (@)’ increases
correspondingly. The joint density of states (JDOS) and the conductivity ‘C* decrease
with the fall in the energy. The energy loss function ‘L’ and the refractive index ‘n’
increase with the increase in the energy. The optical transition between the uppermost
valence band and the lowest conduction band was found to be shifted towards the low

energy range with the increasing concentration x of cadmium.
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Chapter 1

INTRODUCTION

This dissertation comprises the Strucwral, Electrical and Optical properties and
their statistics in the zinc blende (ZB) phase for the zinc oxide (ZnO) binary compound
and changes produced in its properties by its substitution with cadmium (Cd) to make
Zn,4Cd,O tertiary alloys. As zinc belongs to Group H of the Periodic Table while oxygen
does Group VI, so ZnO is called a Group II-VI compound having semiconductor
properties due to consisting of a direct and wide band gap (BG). Changes in the BG of
the Zn; .Cd,O compounds have also been investigated and it is observed that the BG of a
ternary alloy decreases as we increase the doping of Cd in the range x = 0 - 75%.
However, the optical properties concerned with the contraction of the band gap of the
Zn;.<CdO alloys have not fully been determined and we still have not unveiled an optical
transition completely. In this respect, the First-Principles formalism is charming to
rescarch on the optical properties of the Zn;.Cd,O compounds. In our calculation
procedure, the full potential lincarized augmented plane wave (FP-LAPW) method in the
WIEN2K software package [1] will be used for our solid material under the first
principles method.

There are immense applications of ZnQ in many fields. It is used as a substrate in
solar cells, varistors, heterojunctions, transparent conductors, thin film gas sensors,
surface electroacoustic wave devices, light emitting diodes (LEDs), ultraviolet (UV) solid
state emitters and detectors, UV LASERs, LASER diodes, etc. [2). There is marvelous
attraction for the optical properties of ZnO in the commercial ficlds which require the
optoelectronic instruments that can be operated in the spectral or deep blue region. In the
optoelectronic applications, there is the great importance of heterostructures of ZnO
formed with the Group II-B oxides (CdO, HgO, etc.) having the little band gaps than that
of ZnO [3]. We hope that our theoretical results would help the experimentalists in the
optoelectronic industry for the fabrication of devices.




1.1. Zine Oxide

The chemical properties of zinc oxide indicate that it is an inorganic compound. It
is also called Plaster of Paris. It is found in the form of white powder which rarely
dissolves in water. The powder is usuvally used as an additive into various things and
products like glass, ceramics, plastics, rubbers, paints, lotions, cintments, cosmetics,
lubricants [4], adhesives, pigments, scalants, batteries, fire retardants, food, and the first-
aid equipment, etc. It is found in the natural form as Zincite — a mineral, but its major

production is commercially {5]. ZnO is inflammable.

Table 1.1 - Experimental calculations about zine oxide

STATISTICS ABOUT ZINC OXIDE
ELEMENT VALUE
Appearance Whiie Solid
Smell Qdorless
Molar Mass 81.41 g/mol
Density (Specific Gravity) 5.607 g/cmy’ at 20 °C [6]
Agqueous Solubility 0.16 mg/100 mL at 30 °C
Melting Point 1975 °C [7)
Boiling Point 2360 °C
Refractive Index 2.004
Band Gap (Direct) 337V
European Union Classification Dangerous 1o Atmosphere

1.1.1. Properties
1.1.1.1. Structural Properties

Hexagonal Wurtzite Structure

It is the most found common compound due to having a stable structure under the
confined conditions [8). The centers of both zinc and oxide lie at a tetrahedral. The
polymorphs of the hexagonal wurtzite have no inversion symmetry which means that the
reflection of this crystal about a certain point cannot convert it into itself. This property
along with other symmetry properties of the lattice concludes the Piezoelectricity and
Pyroelectricity of the hexagonal structure of ZnO. The piczoelectricity means the




generation of electricity when a crystal or a specific substance is compressed and the
pyroelectricity is the production of the electricity through a material due to change in its
temperature.

Due to the ionic bonding in ZnO with the Zn*? radius of 0.074 nm and 0.140 nm
of 02, the major formation is of the wurtzite structure rather than the zincblende one [9]
and a high value of piezoelectricity can be detected. Duc to the polar bonding in ZnO, the
zinc and oxygen planes contain positive and negative electric charges respectively, which
are naturally smooth, constant and they don’t need to reform themselves to keep electrical
neutrality like the other materials whose surfaces themselves rebuild at the atomic level
in order to maintain the electrical neutrality. Hence, we need to completely describe this
inconsistent behavior of ZnO [10].

The point group of the structure is 6 mm according to the Hermana-Mauguin
notation or Csy in the Schoenflies notation and the space group is P6yme or Cg,. Tts
Strukturbericht designation is B4 [11].

The lattice constants are a= 3.2501 A and ¢ = 5.2071 A and their ratio c/a of the
hexagonal cell as 16021 is near to the ideal c/a ratio equal to 1.633 {12]. A unit cell of
the Wurtzite ZnO phase with the atomic positions Zn (1/3, 2/3, 0) & (2/3, 1/3, 1/2) and O
(173, 2/3, p) & (273, 1/3, p+ 1/2) having p = c/a as a certain parameter is shown below:

Figure 1 - Unit cell structure of ZoO in the Wartzite phase
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Cubic Zincblende Structare

It is a temporary structure appearing during the fabrication of the wurizite
structure of ZnO and was named by the mineral Sphalerite, also called Zincblende [13]. It
can be alleviated by mounting ZnO on substrates with the cubical lattice shapes. The
centers of both zinc and oxygen position at the tetrahedral and this property along with
other symmetry properties of the lattice, results in the piezoelectricity of the zincblende
structure of ZnO. The closest neighbors of every atom comprise four contrary atoms
placed at the four corners of the systematic tetrahedral. In this structure, the arrangement
of atoms is that of the diamond cubic structure but the atom types at latfice sites lie
alternately. Also, the polymorphs of zinc blende have no inversion symmetry.

Its space group is F43m according to the Herman-Mauguin notation or “number
216" according to International Tables for Crystallography [14, 15]. Its Strukturbericht
designation is B3 [11]. A ZnO zincblende unit cell with the atomic positions Za (0, 0, 0)
and O (1/4, 1/4, 1/4) has been shown in the following figure:

Figure 1.2 - Unit cell structure of ZnO Zincblende

Cubic Rocksalt Structure

This structure is like that of sodium chloride (NaCl) or Halite and is visible at
high pressure of 10 GPa [16]. In this structure, each of two atom types builds a detached
face-centered lattice and two lattices pierce mutually to construct a 3-dimentional

checkerboard arrangement. The structure can be formed more possibly if the size of the

4




cation is little bit smaller than that of the anion such that the ratio of the radii of cation
and anion may have a value from 0.414 to 0.732. The interatomic distance beiween the
cation and anion (half the length of the unit cell) is 2.8 A for NaCl [17). Every atom in
this structure has a coordination number of 6, i.¢., every cation is organized with 6 anions
and every anion is coordinated to 6 cations on the corners of an octahedron.

Its space group according to the Herman-Mauguin notation is Fm3m or 225 in
International Tables for Crystallogarphy. Its Strukturbericht designation is B1 {11]. A
unit celi of the rocksalt structure with atomic positions Zn (0, 0, 0) and O (172, 172, 1/2) is

shown below:

Figure 1.3 - Unit cell stracture of Rocksalt ZoO

The crystal structure of ZnO in three phases has been shown below:

Rocksalt (B1) Zinc blende (B3) Wurizite (B4)

Figure 1.4 - ZnO structure in three phases B, B3 and B4 [16]
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1.1.1.2. Electrical Properties

ZnO being a semiconductor is high electron mobile, vast band gapped, transparent
and intensively luminescent at room-temperature. At this temperature, the value of the
ZnO band gap (BG) is 3.37 eV or 375 nm which facilitates us attain low noise in
clectronics, high values of breakdown voltage, persistent wide electric fields, higher
temperatures and bigger power operations. The BG can be upgraded to 4 ¢V by alloying
ZnO with cadmium oxide (CdO) or any other binary compound [16].

ZnO compounds often behave as N-type materials even we don’t perform its
planned doping. The N-type behavior appears due to non-Stoichiometry, but the matter is
debatable [18). A substitute grounded on the theoretical measurements has been
described for this controversy indicating that the unintentional hydrogen impurities cause
this behavior {19]. We can also obtain the manageable N-type doping simply on the
substitution of Zn in the Group III elements like aluminum (Al), galliuni (Ga), Indium
(In), etc. or oxygen with the Group VII elements as chlorine (C1) or iodine (I) [20].

A P-type doping of ZnQ is unreliable because P-type dopants are less soluble and
have less reimbursement with abundant N-type impurities. In intrinsic N-type materials,
measurement of the P-type doping is obscure due to inhomogeneity of the sample
materials [21]. Electronic and optoelectronic uses of ZnO, which normally need PN-
Junctions, are not limited by the comstrained P-doping. The discovered P-type dopants
comprise of the Group-I elements [lithium (Li), sodium (Na), potassium (K), etc.] and the
Group-XV elements [nitrogen (N), phosphorus (P), arsenic (As), etc.) as well as the
Group-XI elements [copper (Cu), silver (Ag), etc.]. Among these dopants several being
deep acceptors are unable to generate apparent conduction of P-type at room temperature
[16]. In ZnO, mobility of the electrons is highly temperature dependent having maximum
value of 2000 cm®(V.s) at 80 K [22]. The mobility of holes has meager calculations and
some determined values range 5—30 cm%/(V.s) [23].




1.1.2. Applications
1.1.2.1. Optical Usage

Diodes

Because of the wide direct band gap of ZnO, this compound is mostly applicable
in the light emitting diodes (LEDs) and LASER diodes [24, 25] which are emerging
technologies of the past year, 2009.

Bright Emission

The exciton binding energy (EBE) of ZnO is 60 meV. It is 2.4 times of its thermal
energy at room temperature which causes a bright emission from ZnO as compared to
GaN having a band gap of 3.4 eV near that of ZnO but with the lower EBE at room
temperature. Therefore, due to resemblance a few optoelectronic uses of ZnQ

supetimpose with those of GaN and we can mix GaN in ZnO for different applications of

the LEDs [26].
Radiation Resistor

ZnO being highly stable is a good resistive target for high energy radiations [27].
It is also applicable to researches in Space Science [28]. It decomposes at 1975 °C [7]
into Zn vapours and O molecules showing its high stability.

Random LASERS

The electronically pumped ultra-violet (UV) LASER sources in the area of
Random LASERS [29, 30] are generated by ZnO.

Transpareni Electrodes

The ZnO layers doped with Al work as transparent electrodes. Commerciaily,
7nO is used as transparent electrode in liquid crystal displays (LCDs) [31], face contacts

for solar cells and energy saving windows.




Photocopying

The largest application of ZnO was in photocopy in which ZnO of high quality
manufactured by the French process was used as a filter in the photocopying paper but
was soon replaced [32].

1.1.2.2. Electrical Usage

Electric Field Emitters

Nano-rods of ZnQO are used as field emitters because their point tips work as

levers of the intense electric field [33].

Field Effect Transistors

ZnO having the negligible P-type doping can be used in the formation of field-
effect transistors (FETs) because they don’t need 2 PN-junction. A few of the FETs use

ZnO nano-rods as the conducting media [34).
Spintronics

If we dope ZnO with 1-10% of magnetic ions of iron (Fe), manganese (Mn),
cobalt (Co), etc., then it becomes a ferromagnetic substance ¢ven at room femperature.
The ferromagnetism of ZnO and Mn occurs at room temperature but is doubtful about its
origin whether it is from the matrix itself or from the phases of a secondary oxide {35].

Piezoelectricity

In semiconductors, bonded tetrahedral, ZnO has the highest piezoelectric tensor
which makes it important technologically for several piezoclectrical applications
demanding large electromechanical couplings [36]. Fibers coated with ZnO are able to
fabricate "self-powered nano-systems” [37] and generate piezoelectricity by activities of

our body or every day mechanical stresses caused by wind {38].




Biosensors

ZnO having fast kinetics to transport the electrons and high bio-compatibility is

applied as a bio-mimic membrane to halt and transform bio-molecules [39].

1.2, Cadmium

It is a bluish-white, ductile, malleable and soft bivalent metal. It is diamagnetic
[40]. Tt resembles zinc and mercury in various aspects but forms complex compounds

[41]. The electronic configuration of Cd is 1s%, 257 2p°, 357, 3p°, 3d'"°, ag*, 4pt, 44", 5¢%.

Table 1.2 - Statistics about cadmium

DATA ABOUT CADMIUM
Classification Transitional Metal & Toxic
Atomic Number 48
Periodic Group 12
Block d
Space Group 194, P63/mmc
Atomic Mass
Density 8.65 g/om” at 293 K
Oxidation State +2
Melting Point 320.9°C
Boiling Point 765 °C
Lattice Constants | a=b=297.94 & c=561.86 pm
Crystal Angles a=p=90°&y=120°

Its structure is hexagonal closed pack (HCP) [42] as shown in the following figure:

Figure 1.3 - Strueture of cadmium [42}]
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1.2.1. Applications
1.2.1.1. Electrical Applications

Batteries

Cd is mostly used in batteries, especially in the rechargeable Ni-Cd batteries. In
2009, the world used 86% of Cd in batieries. A nickel-cadmium cell is made up of a
nickel hydroxide anode and a cadmium cathode separated by a potassium hydroxide
(KOH) alkaline electrolyte. The European Union (EU) forbade the cadmium usage in
Electronics in 2004 with numerous exemptions but permitted the quantity of the Cd usage
in Electronics up to 0.002% [43].

Electroplating

In electroplating, 6% cadmium is used. The Cd electroplating is often used in the
Aircraft Industry because the Cd-plated steel objects offer the excellent corrosion
resistance [44]. The passivation can occur in the Cd coating by using the chromate salts
[45). The hydrogen embrittlement of the high-strength steels is restricted by the Cd
plating which occurs during the electroplating method. The steels, having the tensile
strength above 1300 MPa/200 ksi obtained after the heat treatment, must be coated by the
physical vapor deposition method or the special low-embrittlement cadmium
electroplating technique. The titanium (Ti) embrittlement, produced due to the cadmium-
plated tool residues, was banished dug to these tools and the routine tool testing programs
for finding the Cd contamination were also banned by U-2; 12/SR-71 and the successive

aircraft programs consuming Ti [46].
Soldering

Cadmium is used in solders [44). A solder is an alloy of metals having the melting
point ranging from 90 to 450 °C. The solder is fused to join the metallic surfaces and is
especially used in Electronics and Plumbing. '
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Solar Cells

A few compound semiconductors used for light detection contain Cd as a
constituent in the forms of cadmium selenide, cadmium telluride and cadmium sulfide
materials [44]. When light falls on these materials, they start conducting currents.

1.2.1.2. Optical Applications
LASER and Lab Experiments

The helium-cadmium (He-Cd) LASERs, operating at 325 or 422 nm, are a good
mutual source of the blue UV LASER light. They are applied in fluorescence
microscopes and several laboratory experiments {47, 48].

Quantum Dots

Quantum dots (QDs) of cadmium selenide under the ultraviolet (UV) excitation in
the He-Cd LASER produce an intense luminescence which may have yellow, green or
red colour depending upon the sizes of the particles. The QDs are the solid state
structures consisting of metals or semiconductors which contain a countable small
quantity of electrons in a narrow space. The electrons are confined by introducing the
insulating materials which surround the central conducting areas. The QDs colloidal
solutions are used for imaging purposes in Biclogy, and make solutions by a fluorescence

microscope [49].
Television Picture Tubes

The black and white television picture tubes use cadmium oxide (CdO) as the
black and white phosphors and the coloured television picture tubes comprise CdO as
red, green and blue (RGB) phosphors [50].

Photocopier

The surfaces of photocopier drums are coated by cadmium sulfide (CdS) for the
photoconductive purposes [51].
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Infra-Red Light Detectors

Sensitivity of mercury cadmium telluride (HgCdTe) to the infra-red light applies
that it can be used as an infra-red light detector in [52] or it can be a switch in the remote

control devices.
Stabilizer

In the Polyvinyl Chloride Industry, cadmium is used as the heat, light, and
weathering stabilizer [44, 53].

Blocker

Tn Molecular Biology, Cd is used to block voltage-dependent calcium channels

from fluxing calcium ions.

1.3. Zn,,Cd,0 Alloys

1.3.1. Photoluminescent Properties of the Zn,;,Cd,0 Alloys

The Zn;+CdO alloys are considered as the ideal solids for making instruments
based on ZnO. On alloying with CdO having a narrow BG of 2.3 eV, we can red-shift the
band gap (BG) of ZnO to the blue and green light spectral regions. Resemblance of Zn
and Cd in their radii and the other fundamental properties demands a suitable constituent
of CdO into ZnO for the fabrication of Zn;,Cd;O or ZnO heterojunctions or super-
lattices which are the main entities in the ZnO based light emiiting and light detecting
devices. However, the mosi researches on thin films of the Zm»Cd<O alloys are not
congenial because there coexist multiphases or polycrystalline shapes with the undesired
orientations. Hence, there are a very few reports on the photoluminescence properties of

the Zm.xCd,O alloys [54].
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1.3.2. Optical Behavior of the Zny.,CdyO Alloys Developed by the Molecular Beam
Epitaxy (MBE)

During the formation of Zny,CdO alloys, the heterostructures and quantum
structures are produced which are the indicators of the energy Eg of the band structures.
The Zn,;.,Cd,O compounds are the proper nominees for realization of the band gap
engineering (BGE) due to the slight energy value of the direct band gap of the CdO
compound. If we want to get the full recognition of the BGE of the Zn;,Cd\O
compounds, then we will have to get comprehensive knowledge of the basic parameters
{(compositional and temperature dependences of energy bands) of these compounds.

As the Cd content x is increased, Eg decreases and the compositional dependences
have been found deviating prominently among the different researches. Also effects on
the temperature dependences of the band gaps of the Zn,.,Cd,O alloys with the increasing

Cd concentration x are rarely known.

Now we will use the temperature depending reflection and optical absorption
statistics to study the compositional and temperature dependences of the BGs of the
Zn1<CdO compounds with Cd compositions x up to 15.7% [55]. The following figure
shows the absorption spectrum for epilayers of the Zn; «CdyO alloys at room temperature

it (ahv)? versus hv coordinates:

6 L] L3 L)
300K

- — 22%

2 L 9%

B weere 187%

£

L

Sp®

g.d 36 28 30 32 34
Photon Energy (¢V)

Figure 1.6 - Spectral dependences of the absorption coefficient for the ZnCdO alloys under the
certain Cd concentrations at room temperature [55)
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The linear part of the plot has been inferred to zero to get BG energies in the
Zn;,Cd,0 alloys. The alloys which absorb the Cd contents of 2.2% or 9%, their spectra
display the desired linear dependence, otherwise the alloys with Cd content x = 15.7%
exhibit a strong deviation from the linear relation. It occurs due to the tough
compositional non-uniformity or the phase separation for the Cd composition x with high
quantity which makes it uncertain to find the BG energy E; for the alloys. Figure 1.6
expresses the compositional dependence of the calculated fundamental E; of the
Zn).xCd,0 atloys.
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Figure 1.7 - Changes in the band energy of ZoCdO as a fanction of the Cd doping x {55]

Here, the circles describe the values derived from the absorption calculations. The
triangles display consequences of the performed complementary reflectance statistics.
The results from two measurements are in accordance with one another and spotlight the
reliability of the preassumed values. The bowing parameter in the BG energy of the
alloys is found when the experimental measurements fit in the conventional equation as

given below:

EZ8€d0 = (1 = )ES90 + XxEZ — bx(1—%). (1.n
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Here, EZn€d0, EZn0 4nd ESIO are the BG energies of the Zny.«Cd,O0, ZnO and
CdO compounds respectively and ‘b’ is called the bowing coefficient. The equivalent
results have been shown in the above figure by the solid line. Egdo = 1.5 eV for the
Wurtzite phase of CdO has been assumed theoretically which gives b = 0.45 eV because
we don’t know the properties of CdO in this phase. The experimental value computed for
b is specific for the semiconducting compounds having a short difference in the
clectronegativity of the end binaries and is acceptable for the Zn,CdxO alloys [55].

The absorption and reflectance data was also used to observe the effects of the Cd
substitution X in the ZnO compound on the variations in temperature in the elementary
band gap of the investigated ZnCdO compounds. The alloys with high Cd contents
showed a decrease in the variation of the BG energy with the increase in the temperature.

We applied the optical absorption and reflectance data to compute the
compositional and temperature dependences of the energics of the band gaps in the Zny.
.Cd,0 alloys developed by the MBE. The compositional dependence of the BG energy of
a ZnCdO compound was exposed to follow the style [55] given by:

Eg(x) = 3.28 — 2.23x + 0.45x%, (1.2)

The inferiority in the quality of a Zn,..CdO alloy because of the proper phase
separation produced a quicker red shift of absorption edge. It was also revealed that the
Cd concentration slightly slowed down the variation in the BG energics with respect to
the changes in temperature and it might be valuable for future applications of ZnO-based
instruments [55].
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Chapter 2
DENSITY FUNCTIONAL THEORY

2.1. Introduction

Density functional theory (DFT) is a quantum mechanical modeling tool by which
we examine the electronic structure, energy states and optical properties of many-body
system models (atoms, molecules and condensed matter phases) in Physics, Chemistry
and Materials Science. Especially, the ground-states of solids are investigated by the
DFT. It is adaptable and being most popular, it is contemporarily widely applicable in
Computational Physics, Condensed Matter Physics and Computational Chemistry. The
DFT is generally applied for the interacting Fermions (quarks, electrons, muons and

neutrinos) but we will consider here the electrons only.

The electrons are not expressed by their many-body wave functions but by their
densities only. A solid consisting of N electrons which obey Pauli’s exclusion principle
(PEP) and undergo Coulomb’s repulsive potential (CRP), depends on the spatial
fundamental variables x, y and z only despite the 3N degrees of freedom.

This theory comprises functionals (functions of the other functions) for revealing
properties of the many-electron sample materials. The functional used here is the electron
density depending on space. Therefore, the title “Density Functional Theory” was
proposed due to the consumption of the functionals of the electron density. This
technique comprises dual rewards of being capable of solving various issues up to

satisfactory accuracy and being computationally easy.

2.L.1. History of the DFT

The DFT has been dormant in simulations of the periodic phenomena in Quantum
Mechanics since last 35 years about. Since 1970, the DFT has become a charismatic
technique for computations in Solid State Physics and Electronics. It has been probated in
severe cases and was found that the calculations by the DFT under the local density
approximation (LDA) displayed the desired results at lower computational prices than the
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other methods used to solve the quantum mechanical many-body problems based on the
complex wave functions. However, the DFT was found sufficiently imprecise in deriving
satisfactory results in Quantum Chemistry till 1990s. Then approximations used in the
DFT were sophisticated to describe effective models of exchange and correlation
interactions for calculations of solids to verify experimental results.

In these days, the DFT has excelled in both the fields for structural, electrical and
optical properties of solids. Although the DFT has been given various improvements, yet
it comprises a few ambiguities like the proper expression of intermolecular interactions
e.g., Van der Waal’s forces, band gap calculations in semiconductors [56], excitations in
charge transfer, transition states, global potential energy surfaces, intense correlated
systems, systems ruled by dispersion, e.g., interacting atoms of noble gases [57] and
overwhelming of dispersion on the other effects as in biomolecules [58].

Contemporarily, construction of better approximations, changes in’ functionals
[59], inctusion of additive terms and modernization of the DFT methods with sound
applications to control these issues is a major field of the current research [60, 61, 62].

2,1.2. Methodology of the DFT

The Electronic structure theory (EST) comprises the formal methods based on the
complex many-electron wave function like the Hartree-Fock theory (HFT) and its
posterities but the motto of the DFT encloses a replacement of the wave function of a
many-electron system by its electron density being a basic entity in the computations of

properties of solids.

Also, the many-body wave function depends on 3N variables according to
Lagrangian Mechanics, i.e., there are three spatial variables (x, y, z) for everyone of N
electrons, that is, XN, yN, zN = (x, y, z)N independent coordinates are required, while the
electron density depends only on the spatial variables x, y and z under the use of the
functionals of the ¢lectron density.
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The Ancient theory of molecules in a sofid contains the non-uniform electron
clouds, also called the inhomogeneous electron gases. According to the Bom-
Oppenheimer approximation (BOA), an inhomogeneous electron gas consists of a
combination of interacting electrons which travel quantum mechanically through a
potential field produced by the collection of the stationary nuclei of atoms. A solution of
such a model bases on the approximation patterns, like the independent electron
approximation (IEA), Hartree theory (HT) and HFT but the DFT has become extremely
widespread method for the solution of such an issue [63] as supported by the following
figure:

10L.. . . - . :
1970 1975 1980 1985 1850 1985
year

Figure 2.1 - Graph for the increased use of the DFT by & number of the Information Services for
Physics, Electronics and Computing (INSPEC) databases, IET, UK for a certain year [63]

The Hohenberg-Kohn (HK) first theorem expresses properties of the ground state
of a many-electron system model calculated by the help of the ¢lectron density depending
on three spatial coordinates only. It provides us with a milestone for converting a
problem of N electrons having 3N spatial coordinates to 3 spatial coordinates on using

the electron density functional.

We can enhance the theorem to an arena depending on time in order to model
time-dependent density functional theory (TDDFT) which can be applied to demonstrate
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the excited states. The HK second theorem describes a functional for the energy of the
system and verifies that this energy functional is minimized by an accurate electron

density of the ground state.

The DFT bagically runs on the Kohn-Sham (KS) method also called the Kohn-
Sham density functional theory (KSDFT) as its best pillar, In the KSDFT, we reduce 2
stubborn problem of many interacting electrons undergone a static potential field into a
controflable many non-interacting electrons issue experiencing an affective potential. The
effective potential is a combination of the external potential (EP) due to the nuclei and
Coulomb’s potential (CP) due to the electrons. It means that we concern with both the
exchange and correlation interactions. The KSDFT suffers from troubles in shaping the
exchange and correlation interactions. To overcome these issues, an easy approximation
based on the exact exchange energy for a uniform electron gas cailed the LDA was
deveioped from the Thomas-Fermi model {TFM) and the fittings to the correlation energy
for a homogeneous electron gas system.

Recently, the DFT is being formulated without the HK theorems on the basis of
the Legendre theory (L.T) which transforms the external potential into the electron density
[63]. There is a book “The Fundamentals of Density Functional Theory” by Helmut
Eschrig (2003) comprising the detailed mathematical deliberations about the DFT. In it,
the mathematical problems in a finite periodic system do not occur but the problems
appear when we deal with an N-particle systern having infinite volume.

2.2. DFT - A Solution of Quantum Many-Body Problems

A solid is considered to be an assembly of the massive positively charged
particles (Nuclei) and the slight negatively charged particles (Electrons). For N nuclei, we
have to deal with N+NZ particles which interact elecromagnetically, termed as a many-
body problem. The Hamiltonian for such a system is described by the following equation:

ZR. f el 32
- _ETR_gpaen_ ;&Eﬁﬁf_z;ll o B a;_z;{‘,,ﬁ%% @.1)
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Here M; is mass of any nucleus lying at a displacement R, and m is the mass of
any electron at a position T where T; = Iy, T2, T3, «, Tn- Z is charge on a nucleus. We will

write all the vectors in the bold notation throughout the thesis.

In the above equation, the first term is an operator form for the kinetic energy (KE) of
the nuclei; the second term is the KE of the electrons and the remaining three terms
specify the Coulomb interaction between the nuclei and electrons, among the electrons
themselves and with the electrons of the other atoms, and the nucleus of one atom with

the other nuclei.

We are unable to solve this problem truly, but we will determine the suitable

approximate eigenstates for which we will have to make approximations.

2.2.1. Born-Oppenheimer Approximation

“As the nuclei are too much massive and the ¢lectrons are slight, therefore the
nuclei are supposed to freeze at the specific positions due to slow motion and the
electrons are supposed to be in a sudden dynamic equilibrium with them.”

In this Born and Oppenheimer approximation (BOA) [64], the nuclei are
dispossessed of being actors in this many-body problem and concluded only as 2 certain
source of positive charge exterior to the electron cloud which is a true player in this
probiem. Therefore, we have to deal with NZ electrons moving through the external
potential produced by N nuclei.

As nuclei don’t displace, so they have zero KE and the first term in equation (2.1)
vanishes. The last term adopts a shape of a constant. So, Eq. (2.1) reduces to:

_ M NVE 022 &
f= -;Z?‘f—ﬁ;l‘.ﬁm_q i e, 2o Irenyl’ @2
or
B=T+V+ V. (2.3)
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The above equation shows that the KE and the electron-electron interactions are
due to the many-electron system, not due to the many-proton system, experiencing an
external nuclear potential due to the protons. The first two terms in the above equation
are independent of a specific many-electron system to constitute a universal part being
independent of the electrons of any solid material and a particular information about the

system arrives us totally from the second term, Vey:.

Qur main focus is on the features of the DFT. Therefore, we are neglecting the
spin coordinate throughout this topic for the simplification purposes.

2.2.2. Solution by the DFT

The many-body problem received after the BOA is too simpler than the original
one but is still complicated to be solved. There are various methods to solve Eq. (2.2) to
an approximate but a manageable form. The historic HF method, described in the
condensed matter literature, performs nicely for atoms and molecules and is thus widely
used in Quantum Chemistry but it is less precise for solids. Therefore, in spite of the HF
method, we are going to apply a more sophisticated and influential method called the
density functional theory DFT. It is a common technique to elucidate many-body
problems. It is applicable to the electron gas but also to the proton and neutron gases for
constructing the nuclear models or to the nucleus and the electron gas without the BOA
to define solids with light elements as well.

2.2.3. Hohenberg-Kohn Theorems
In 1964, Hohenberg and Kohn provided us with two theorems called the
Hohenberg-Kohn (HK) theorems [65] as discussed below:

Theorem 1
“Electron density under an additive constant, determines external potential.”

In the other words, there is one to one correspondence between the ground state

charge density p(r) of a many-electron system and the external potential, Veq, Its abrupt
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outcome reveals that the expectation value of any observable quantity { at the ground
state is a unique functional of the exact ground state electron density as follows:

{(P[Q ¥} = Qlpl. (24)

The statement of the first theorem indicates that the 1-1 correspondence between
the density p at ground state and the external potential V. is fascinating. It emphasizes
on the electron density which retrieves the Hamiltonian operator. The Hamiltonian is
identified by the external potential and the total number of electrons N which may be
determined by the density simply on integrating it over the whole space. We know that a
certain many-electron system has a sole external potential that produces a many-particle
ground state wave function ¥ with the Hamiltonian in Eq. (2.2). The wave function
reveals us all the material properties. We can easily find the respective electron density
p(r) from the wave function ¥. Thus, the external potential helps us calculate its
equivalent unique ground-state density, but it seems as the density confines less

informations than the wave function does.

If it is true, then it is impossible to compute a unique extemal potential from a
given ground-state density only unless more parameters are given. This 1% theorem of
Hohenberg and Kohn gives us an exact possibility that the density contains all the
informations as the wave function does. Therefore, informations can be derived uniquely
from the density and they may be expressed as functionals of the density p(r).

A straight forward proof of the First HK theorem was generalized to add systems
having the degenerate states by Levy in 1979 [66]. The theoretical spectroscopist, EB
Wilson, introduced a direct proof of this theorem in 1962 which described that the
electron density p revealed positions and charges of the nuclei uniquely resulting in the
computation of the Hamiltonian trivially [67]. The reality behind this proof bases on the

electron density which suffers a cusp near a nucleus such that;

_ A [
2= 2159, =
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Here,  is the spherical average of p(Iy) whose careful analysis gives the external
potential from which the Hamiltonian can be computed. The Wilson’s proof has less
generalization than that of Levy, but is valid for the interactions among the electrons and

nuclei.

From this discussion, we conclude that the energy is a functional of the charge

density E[p].
Theorem 2

For  being fi, the ground state total energy functional H[p] = Ev__[p] will shape

as:
Ev..[ol = (#|T+V [P} + (V] Vexe [¥) (2.6)
= Fuxlp] + f p(r) Vexe(r) dr. Q7D
Here, Fux[p] is the Hohenberg-Kohn density functional defined by:
(| T + V]¥) = Fuxlo), (Hohenberg-Kohn density functional)
and
(%] Vet |¥) = § p(0) Vere (¥ dr. (External potential)

The Hohenberg-Kohn density functional is universal for all the many-electron
systems because it is free from the informations about nuclei and their locations.
Therefore, its obvious description has to be revealed. Ey_ [p] attains its minimum value

which is the ground state total energy for the ground state density corresponding to Vex.

The first HK theorem also indicates that afier finding a positive definite trial
density pi, a unique Hamiltonian can be determined if f p(r) dr = N, which can give the
corresponding trial wave function ¥, and we can get the relevant energy functional as

foltows:
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Efpd = (¥|A]¥,) 2 E,. (2.8)

The second HK theorem is invalid for the DFT to analyze the ground state but a
small addition in it can cause variation in the excited states of the electrons which are
surely perpendicular to the ground state. We can study this variation exactly from the
statistics of the wave function which describes the ground state.

Using the density operator for N particles, and assuming that the ground state
density has been determined, a contribution to the total energy from the external potential
can accurately be computed. The density operator for N electrons is:

P =FN,8(r 1) (2.9)

If we estimate this density operator for a many-particle wave function ¥, then we

get the density as follows:
p(r) = (¥ (ry, vz, O3, e, ) B ¥ (19, 72 T3y o0 s WD} (2.10)
= (W (ry, T2 T3 e s i) Ty 8 (0 — DY (P, T2 T3, 0 s W) (211
=¥ (9 (ry, B, BT, Ty) W02 W (ST TN)
dry drp ...dn ...dry.  (2.12)

This second theorem also generates a possibility of using the Variational principle
- the Rayleigh-Ritz approximation [68] to compute the ground state density. We get
numerous values of the conceivable densities but the density value which minimizes
Ev,,.[¢] bappens as the ground state density equivalent to the external potential, Veu(r).
We can find it if we know an approximation to Fyx[p]. But after finding p(r), ail the

informations about the system can be grasped.

When Ey, . [p] is determined for p(r) relating to a specific Ve for a solid, we get
the ground state energy and when it is derived for any other density, the result is vague. A
density pi(r) which maximizes By, [p] is an excited state density other than the ground
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state one with the corresponding energy E; = Ey,_[p = pi]. Its converse is false because
all the excited states don’t extremalize Ey,_[p]. If pi(r) is this density, then Ej=
Ev,,.[P = p;] is 2 lower bound for the energy in an excited state.

These theorems together conclude the basic statement of the DFT as follows:
S{Elp] — ([ p(r) dr—N)] = 0. (2.13)

Here the density and energy of the ground state represent the lowest value of E[p]
under the constraint which confines the density to have the correct quantity of electrons.
The Lagrange multiplier of this constraint gives the electrochemical potential p. At the
end, we conclude that we may have a umiversal functional Efp) independent of the
external potential and which denotes a specific system of interest, If we know the form of
E[p], we can reduce the above equation to receive the exact ground state density and

energy.

2.2.4. Kohn-Sham Equations

The approximations for the KE and electron-electron interactions were proposed
by Kohn and Sham in 1965 which paved the DFT as a practical gadget and were termed
as Kohn-Sham (KS) equations which helped in determining the ground-state density [69].
These equations provide us with the practical solution of the Hohenberg-Kohn functional
Fux[p] as described in Eq. (2.7).

We start by rewriting the Hohenberg-Kohn functional in the proper form such that
the correlation energy is a part of the total energy which lies in the exact solution but
vanishes in the HF solution. The functionals of the total energy Eixfp] and that of the HF
energy Eyr[p] compatible with the Exact and HF Hamiltonians are given by:

Hioilp) = Ewelpl = T+ V, 2.14)

and

Ayrlpl = Exelp) = To + Vu + V4,
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=T, +V, 2.15)
where
V=VW+V. (2.10)

Here T, V and T, are respectively the exact KE of the interacting electrons, the
electron-electron PE and the KE of the non-interacting electrons functionals while Vu
and V, are the Hartree and the Exchange potential contributions respectively. Subtracting
Eq. (2.15) from (2.14), we get the following functional for the correlation contribution

potential:

Evot —Bur = T—T,, 217)
or

Ve=T-T,, (2.18)
where

Eyor — Enr = V.

Here V_ is the correlation energy.

Now the exchange energy is a contribution to the total energy to be occurring in
the HF solution but lacking of the Hartree solution. The Hartree energy functional is
given by:

Eulpl = To + Vi (2.19)
The corresponding exchange PE is:
Ve =V—Vy (2.20)

With help of the above data, we can rearrange the Hohenberg-Kohn functional as

follows:

FHK[P] =(T+V)+T, - T,
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=T, +V+(T—T,).
=T, +V+V.
=Ty +V+ V. +Vq— Vi
=Ty + Vu+ Vo + (V- Vy)
=Ty +VW+Ve+ V.
=Ty + Vg + (Vx — Vo).
= Fuxfe] = To[p] + Vule] + Veclpl. (2.21)

Here the energy functional V([p] is accurately unknown because it comprises

only the complex exchange and correlation contributions.

Now wsing the second HK theorem to caleulate the ground state density, we will
achieve nothing from our alteration but we may deduce the above equation which will be
the energy functional of a non-interacting classical electron gas undergone two external
potentials: one of which is due to the nuclei and the other is because of the exchange and

correlation effects.

The respective Hamiltonian, termed as the KS Hamiltonian, is given by:

s = To+ W + Vee + Verr- (2.22)
h? a? & ,
=_,2_;v12 +Efl‘yldr + Ve + Vexr: (2.23)

Here the exchange-correlation potential Vi is defined by the exchange-

correlation potential functional V. as follows:

&V,
Ve = 5—;“'] 2.24)

According to the above computations, the KS theorem can be framed by

presenting a fictitious system model of N non-interacting electrons, which was denoted
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by a single determinant wave function in N orbitals $i(r). These KS orbitals are expanded
to get a pure numerical solution but in practice the most applications of Kohn-Sham
density functional theory (KSDFT) use an expansion of ¢(r) into the basis functions @
given by:

$i(r) = Thoy i Pbs (2.25)
where

Pp = et 0T, (2.26)

Here k is the wave propagation vector within the first Brillovin zone (BZ), K is

i KF represent plane

the reciprocal lattice vector, r is the position vector and €™ and e

waves in the real and reciprocal spaces respectively. V is the volume of the unit cell.

Actually, the expansion of ¢;(r) truncates and the number of @, really needed to
get the nice expression of ¢; potently depends upon the basis set which is constructed
according to the problem. The startle of calculations also depends upon whether the
boundary conditions are applied.

From these orbitals, the wave function, KE and ¢lectron density are completely

acknowledged as:

War = gdet(®; & 3 e ul. 2.27)
T[] = =S Ny (i3I, (2.28)

This KE is not real and is only of the non-interacting clectrons to regenerate the

real density at the ground state as follows:
p(r) = ZiL, ¢ (r) dy(r)
= Tl (2. (2.29)




TH-u,“q

The single-particle wave functions ¢i(r) being the lowest energy solutions of the
KS equations are given by:

Hysdi = ady, (2.30)

where e,(r) represents the energy per electron, i.e., energy density of the uniform electron

gas.

The explicit setup of the density from these orbitals favors the legality that it has
been built from an anti-symmetric wave function ¥. For finding the ground-state density,
we are leaving the use of the second HK theorem further and are solving the Schrodinger-
like non-interacting single-body equations. This alternate of the SWE results in a
complex system of the coupled differential equations due to the electron-electron
interactions. ¢y(r) are not only the wave functions of the single-electrons but they also
secretly define the mathematical quasi-particles. It is believed that the entire density of
the particles may only be equal to the electron density, p. Further, energies €; of the
single-particles are not the energies of the single-electrons. Vi and V. depend upon p(r)
which internally depend upon ¢; to be calculated. It means that our problem is self-
consistent in which the solutions ;(r) shape Eq. (2.22) which is impossible to write and

solve unless its selution is known.

We suppose an initial density po(r) and construct a Hamiltonian Hks; with it.
Then we solve the cigenvalue problem which yields a set of ¢ from which we derive a
density pi(r) such that p; differs from p,. Now from p), we construct Hysy which will
generate px(r) and so on. The process is managed such that the series converges 1o p(r)
which produces Hksr that generates pragain as a solution which is consistent with the
Hamiltonian [70]. Moreover, we notice that an apparent part of an €lectron-electron
interaction is the classical Coulomb interaction or the Hartree energy. Therefore, the
Hartree potential can be expressed as follows:
Vylp] = = 862208 4y, g, 231)

Iry=rsz}

The energy functional is being managed as follows:
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Elp) = To[p] + Vu[p] + Vexlp] + Exclpl, (2.32)

where E,.[p] is the functional of the exchange-correlation energy given by:

Exc[p] = (Tlp] = T. [p]) + (Vee[p] = VialoD). 2.33)

Exc is only the addition of the error occurred in the use of the non-interacting KE
and the error appeared in reckoning the electron-electron interaction classically. If we
express the functional of the above equation in place of the density constructed explicitly
from the non-interacting orbitals of Eq. (2.29) and implementing the VT from Eq. (2.13),
we get the orbitals which minimize the total energy and satisfy the following equation:

[~Z97 + Ve (0) + [ EE3dr + Ve (D) 0D = @) 1)) 234)

This combination of equations is termed as Kohn-Sham (KS) equations. In these
equations, a local multiplicative potential Vi(r) has been described, which is the
derivative of the functional of the exchange-comrelation energy with respect to the

electron density and is given by:
Vye(r) = 22 (2.35)

The set of the KS equations represents behavior of the non-interacting electrons in
the effective local potential. So, on choosing an accurate functional and the exact local
potential, the orbitals result the true-ground-state density through Eq. (2.13) and the true
ground-state energy via the Eq. (2.31). The structure of the KS equations resembles that
of the HF equations rejecting the non-local exchange potential substituted by the local
exchange-correlation potential V,.. This is a vague use and vulgar reproduction of the
structure but we have already approximated that V. is not an addition of the exchange
and correlation energies as considered in case of the HFT and correlated wave function
theory (WFT) but it only comprises a component of the KE.
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The KS density functional theory (KSDFT) exactly corresponds to the ground-
state density, energy of the non-interacting Fermions and realistic many-body systems
defined by the SWE [71] as shown in Figure 2.2:

& 1
rl LA A v, () +v,.(r)
q‘(rllrjr-u)rﬂ ) ¢'(l')

Figure 2.2 - Relation between the real many-body system (Leftwards) and the non-interacting
system of the KSDFT (Rightwards) [71]

The cotrespondence is true only if we know the accurate functional of the charge
density and energy of the non-interacting many-body system which implies that the
KSDFT is an empirical tool, not a systematic theory because we have still not determined
the exact functional. Although the KSDFT is realistic, yet the functional is universal, i.e.,
independent of the materials under observation. Hence, in principle, we solve the SWE
precisely and calculate the total energy functional and its respective potential.

In these calculations, we make a tiring utmost as compared to that made in the
direct energy solution. Ability of finding the true properties, often related to the ab initio
formalism, of the Universal functional in several systems never permitted the admirable
approximations to the functional under construction and was applied in the unbiased and
analytical studics of a large quantity of materials. Due to this reason, approximations
made in the DFT are considered as the “ab initio” or “first principles” techniques.

The solution of the KS equations (2.34) bears a computational cost scaling
initially as N in order to preserve the orthogonality of N orbitals but in the recent
methods, this cost descends towards N' via the abuse of the locations of the otbitals. For
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the initial energy surface computations, the DFT represents a practical and exact potential
substitute to the wave function methodology but practically the theory depends upon the
approximation imposed for Ex[p].

The DFT suffers from the main problem of unknowing the exact functional for
the exchange and correlation functions. These are known only for the free electron gas
but there occur approximations that allow the computations of the specific physical
quantities precisely. Although the DFT reveals sound information about the ground-state
properties in principle, yet the practical applications of the DFT reside in the exchange

and correlation potentials.

An exchange-correlation potential expresses the effects of Covlomb potential
(CP) and Pauli Exclusion Principle (PEP) far from the pure electrostatic interactions of
the electrons. A solid can’t represent its true inner picture, so we can’t solve the many-
body problems in solids exactly. To find an exact solution of a many-body problem, we
get the exact exchange-correlation potential which can be applied in parallel to the free

electron gas in which the electrons don’t interact with one ancther.

P i3 selfeonsisient densiry
-

Flow chant for the Hartree-Fock o Kolm- Sham exuatioos

Figure 2.3 - Flow chart for the Hartee-Fock or Kohn Sham equations during the 2" iferation [70]
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2.2.5. Local Density Approximation

In the DFT, we vastly use an approximation to hypothesize the exchange-
comrelation functional called local density approximation (LDA). Approximation
structures for Ex[p] are a large and quickly growing field of research in the DFT. In
literature, there exist several tangs of this functional which are suitable or less proper for
a specific field of the research, yet the greatest importance is that we need to be familiar
with the derivation and structure of a functional to be selected for a certain research. The
homogencous electron gas system was an initial conception paving the way of the

practical implementation of the DFT.

The homogeneous electron gas, uniform ¢lectron gas or Jellium model (JM)
comprises a fictional solid in which charge of nuclei has uniformly been distributed over
the whole space. The system electrons are imposed to an invariant external potential such
that the electronic charge density is also constant. This charge density completely

describes the homogeneous electron gas.

In the ecarly 1920s, Thomas and Fermi researched independently on the
homogeneous electron gas by considering the orbitals of the system as plane waves under
the symmetry formalism [71]. If we estimate the interactions among the electrons with
the classical Hartree potential (CHP) in which the exchange and correfation effects have
been neglected, we can easily calculate the total energy functional [72]. These constraints
show that the dependency of the kinetic and exchange energies on the charge density of
the electron gas can be determined and described in terms of a local density function [73,
74, 75].

From here, we conclude that we can approximate the energy functional by
integrating it over this local density function. We can solve the free clectron gas
analytically in the direct manner and it is very tough for an inieracting electron gas. The
arithmetical computations for the total energy can be done with the Variational Quantum
Monte Carlo approach (VQMCA) only [76]. The subtraction of the non-interacting

kinetic and Hartree energies yields a numerical value for the exchange-correlation energy
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per particle ex(p) of a system with the uniform charge density and is achieved after

working for various densities p(r).

We conclude the kinetic and exchange energy densities of a system of the non-

interacting uniform electron gas as follows:

Tlp] = (2.87) f p3 (r)dr, (2.36)

and

Exlp] = (0.74) f o3 (r)dr. @37
These two equations can help in determining E[p] in a non-uniform system.

Here, we are approximating the local exchange-correlation energy per electron as
a function of the local charge density £« (p) as described below:

Ex?A[p(r)] = [ p(r) £x2*(p) dr (238

The above equation shows that we have to vividly adopt the function e;0* as the
exchange-correlation energy density of the homogencous clectron gas of the charge
density p(r). The postulate described by Eq. (2.38) is the LDA.

This assumption for the LDA is a little bit realistic because we see that the
exchange-corr¢lation energy due to a certain density p(r) can be calculated on
apportioning the specimen material into a large number of infinitesimal volumes each
having an invariant density. Every infinitesimal volume element donates the total
exchange-correlation energy a quantity equal to the exchange-correlation energy of a
similar volume element stuffed with the uniform electron gas. This quantity has the same
entire charge density as that of the genuine material in this volume clement [70].

It is only a sensible idea that the law of nature assures that the real ELPA[p] is of
the form mentioned above. Further construction of the LDA is expected to accomplish
well for the systems with slowly fluctuating densities. Also, it has been found that the
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LDA has shown surprising results proving its accuracy in the several other realistic
systems.

In the LDA, €:44(p) is only the function of the local density and can be split into

the exchange and cormrelation contributions as follows:

ebdA(p) = ex1A(p) + et (p) (2.39)

We can express &x(p) in the Dirac formalism with reference to Eq. (2.37) as

follows:
eiPA(p) = — C p(r)¥/? (2.40)

This functional is largely applicable and can be set up from the ascending opinions [71].
C is a free constant other than that computed for the Jellium model.

The functional of the correlation energy density e/(p) is determinable and its
simulation for the uniform electron gas in the quantum Monte Carlo computations
displays the accurate results [77]. The subsequent ex(p) has been adjusted by several
analytical forms [78, 79, 80] and all of them practically showed the similar consequences.
All these forms were collectively termed as the LDA functionals.

2.2.6. Generalized Gradient Approach

The LDA runs on the exchange-comrelation energy at every point in the
homogeneous system of the electrons imespective of homogeneity of the real charge
density but this energy can deviate apparently from the calculated homogeneous results.
The systems in which the charge density varies slowly the generalized gradient
approximation (GGA) excels over the LDA. Generalized means that 2 straightforward
gradient may conclude a functional that deviates from the certain relationships whose
precision may be verified for the genuine functional and for the LDA as well. In the
GGA, a certain form of a functional depending upon both the charge density and its
gradient is taken to ensure the normalization [81].
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A distinctive GGA functional is given below:
EZSA = [ p(r) eS5A(p, Vp) dr 2.41)

The LDA is deliberated as the Zero™ order approximation (ZOA) to the semi-
classical progression of the density matrix in place of the density and its derivatives [82].
An improvement in the LDA demands logical stages under which we can cause the
exchange and correlation contributions of each tiny volume element depend on the local
density in that volume but also on the densities in the neighboring volume elements.
Although the GGA acts generally somewhat superior to the LDA, yet it comprises some

demerits as mentioned below:

“There is a unique exchange and correlation functional for the LDA because there
is a sole demarcation for ££%4(p). However, there is freedom to include something in the
density gradient and hence, various savors of the GGA exist. Usually, a nominee GGA
functional with free parameters is fitted to a vast set of experimental statistics on atoms,
molecules and solids. Then these parameters are bound by the fixed values and the
functional is finished for applying to the solids in routine. Such a GGA computation is
restricted not to be called an Ab Initio computation because the particular experimental
information is used. Moreover, the GGAs never happen without a parameter.”

Here, we cover up the discussion by concluding that the GGA is significantly
better than the LDA in explaining the binding energy (BE) of the molecules and hence,
the DFT was widely accepted in early 1990°s. The bond dissociation energies were
overestimated at most 10% by the LDA whereas the GGA gave ambiguities specifically
about order of 10% or less. Many functionals have been constructed in the GGA family
and their performances have been probated on the different systems [83, 84, 85, 86).

2.3. General Remarks on the DFT

We see that the DFT is a proficient and impartial technique to calculate the
ground state energy of the solid materiais in the bulk phases and their surfaces as well.
By knowing the ground state energy being the function of the positions of the atomic
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nuclei, we can compute the molecular and crystal structures and the forces acting on the
nuclei when they leave their mean positions. The truthfulness of these computations
bases on the approximations of the exchange-correlation energy functional depending on
the local density gradients and the semi-local calculations of the density.

In Atomic and Molecular Physics, the DFT is contemporarily being used to solve
issues like the computations of ionization potentials [87], investigation of chemical
reactions, vibrational spectra structure of biomolecules [88] and nature of dynamic places
in catalysts [89].

In Condensed Matter Science, the DFT helps to examine problems as the lattice
structures [90], phase transitions in solids [91], liquid metals [92] and evolution of the
true molecular dynamics pattemns in which the forces are reckoned quanium mechanically
[93] by the practical applications of the DFT founded on uncontrolled applications like
the LDA method whose validity lies in its capability of regenerating the experimental
results. For the atoms and tiny molecules, the simplest LDA has already shown the nice
qualitative and semi-quantitative results. It is a surprising success over the Thomas-Fermi
mode! (TFM) and the Hartree-Fock (HF) method which overestimate the strength of the
molecular bonds. An improvement can be made if an isolated atom or molecule is
considered as an inhomogeneous electron system in which the electronic correlations are

poor and resemble averagely to those of a homogeneous electron gas.

The Configuration Interaction (CI) method [94] of Quantum Chemistry can solve
the many-body quantum states with high accuracy. So, the quantum chemists don’t
recommend the use of the DFT at the initial stage. Such techniques use the locally
controlled approximations and the accuracy in results can be enhanced. For the bigger
molecules, the DFT is an essential tool {95]. In traditional Quantum Chemistry, the
computational method comprises the expansion of a variable exponentially with the
number of electrons under process, while in the DFT this variable grows roughly about
the third power of this number. It concludes that the DFT is applicable to the bigger
molecules with hundreds of atoms and fails for smaller ones, while with the CI method,

we are confined by a few atoms.

37




In Solid State Physics, the DFT can determine the lattice constants of the simple
crystals with an accuracy of about 1% under the LDA in which the electronic structure of
a single unit cell is studied under the periodic boundary conditions [96]. The GGA gives
the nice manifestation of the structural and electronic properties of the most solids like
the lattice parameters within 1-2%, qualitatively accurate band structure, metal-insulator
and magnetism, etc. This application can also be used for the investigation of a super cell
which comprises several unit cells with a single defect or impurity [97]. This super cell
approach (SCA) is also applicable for more complicated issues like the anti-
ferromagnetism and systems suffering from intense electronic correlation. The local
approximations can’t find the work-functions of metals because of the displacement of
the exchange-correlation hole from the original position and the production of image
forces which are 1/r performance of Vi(r, r) that is non-local where r is a small

distance from the metal surface. We can diminish this discrepancy [98].

In general, the LDA and GGA have shown a consistent level of accuracy and
inaccuracy in various problems contrary to the approximations using the free parameters
which are optimized empirically to fit a specific data and thus we can use them reliably
for interpolation. For dealing with the image and Vander Waal’s forces [99], especially in
biomolecules, these approximations fail because both of these forces are the descriptions
of the non-local correlations (non-locality) which are absent from the LDA and its

instantaneous extensions.

This failure along with the uncontrolled approximations paves the research
towards the modern and precise exchange-correlation energy functionals. The
consistency of the DFT computations bases on the progress in the approximations for the
functionals of the exchange and correlation energy. The evident advancements in the
quality of the exchange-correlation functionals depending upon the gradients of the local
charge density, semi-local measurements of the charge density and non-local exchange
functionals. The approximation of the local charge density is simple and significantly
truthful for the structure, elastic moduli, phase stability and tramsition states but is less
reliable for the binding energy (BE).
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In Electronics, the Time-dependent density functional theory (TDDFT) links the
interacting and non-interacting systems undergoing the time dependent potentials, and the
Relativistic density functional theory (RDFT) calculates the Kohn-Sham states by using
the Dirac equation (DE) instead of the Schrodinger wave equation (SWE) [100].

In Nuclear Physics, the DFT calculates the densities of the protons and neutrons
and their comresponding energies are studied [101].
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Chapter 3
FULL POTENTIAL AUGMENTED PLANE WAVE

METHODS

A Full potential augmented plane wave (FP-APW) method comprises the
developed augmented plane wave (APW) methods which start from the Slater's APW
method to the Linearized augmented plane wave (LAPW) method and the fresh
Augmented plane wave plus Local orbitals (APW + lo) method mentioned in the
Schwarz et al. (2001) and will run under the WIEN2k software package [102]. First, we

will discuss the Plane wave (PW) method.

3.1. Plane Wave Method

In a crystalline solid, the electrons travel through a periodic effective potential
Veir produced by the electron-nuclei and electron-electron interactions. The nuclei are
periodically managed in the crystat and reflect the symmetry of the crystal as given

below:

Verr(r + Ra) = Vere(T), (3.1)
where

Rp = nya; + na, + naags.

R, is called the translational lattice vector; n is the number of the Brillouin zone

(BZ) where R lies and as are the unit cell vectors in the crystal.

According to Andre Bloch, the eigenfunctions which are actually the wave
functions of the electrons deduced from the SWE comprising the periodic potential in the
Hamiltonian, are expressed by a product of a symmetric lattice periodic function ug(r)

fler

and a plane wave e*“" as follows:

PE(r) = ud(r) e, (3.2)

where




UR(r) = Ty e,
Now Eq. (3.2) becomes:
V@) = (Bxcite®)er
= Ty Kt (3.3)

Here, k is the wave propagation vector within the first Brillovin zone (BZ), K is

ilr iKr

the reciprocal lattice vector, r is the position vector and e™" and € represent plane

waves in the real and reciprocal spaces respectively. cf® are coefficients to be

determined. Eq. (3.2) reveals that the selection of a basis set comprising the basis
functions to expand the Kohn-Sham (KS) wave functions comprises the PWs,

These PWs are periodic and mathematically easy but the expansion of the PWs
demands a huge number of the basis functions for a suitable representation of the wave
functions of the valence electrons. The valence electrons are distributed spatially in a vast
region and are the major entities of the bonding among the atoms while the core electrons

are confined intensely by the nuclei and are restricted in a smaller core region.

The wave functions within the core region are oscillating forcefully while in the
valence region they are much smoother. The strong oscillations are produced due to the
orthogonalization of the wave functions of the valence electrons to those of the core
electrons. This problem can be solved by applying the Pseudopotential (PP) method [103}
according to which the core electrons are not treated separately but are considered to be
merged with the nuclei to form the PP. The wave functions of the valence electrons
traveliing through this PP are enough smoother and can be expressed by a tiny number of
the PWs,

There is another method, except the PP method, which can involve all the
clectrons. This approach splits up the real space into a number of regions near the nucleus
and in between each region. The KS orbitals are expanded differently in every region.
These expansions are done under the APW method coming next.
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3.2. Augmented Plane Wave Method

Although the augmented plane wave (APW) method has been founded on the
basis set of the APWs, yet it has been discarded from the practical use these days. Here,
we are using it only for the devotion to the LAPW and APW + lo methods.

The APW method was developed by J. C. Slater in 1937 [104). Its basis set was
constructed on the concepts which were behind the formation of the pseudopotential. He
started setting up the basis set from the Muffin-Tin approximation (MTA) [104] which
comprises a combination of the PWs in the regions where the potential varies slowly and
the atomic-like functions in these regions where the wave functions vary fast. Far from
the nucleus, the electrons are loosely bound or can move freely and these free electrons
are manifested by the PWs being the eigenfunctions of the Hamiltonian having zero
potential. Near the nucleus, the electrons are so tightly bound that they are believed to be
in a free atom and can be represented by the atomic-like functions.

Therefore, according to the MTA, space around an atom in the crystal has been
divided into two regions: the first region is a sphere of radius R, around every atom,
called the MT sphere denoted by S, and a portion of space under S, is termed as the MT
region denoted by II. We label different atoms in a unit cell by a which differs for all the
atoms in that unit cell, and not only for unlike atoms. The rest of the space is termed as
the Interstitial region 1 [105] as shown below:

i 2l rom

Figure 3.1 - Muffin-tin and Interstitial regions around an atom [105]
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In an MT sphere, potential can be defined as follows:

Constant rel
Var (1) = [V(ru) r €S, G.4)
The plane wave basis st is ¢ which is joined with the atomic partial waves
TimA Ku“(r E)YL (). uf'(r",E) are the solutions of the radial SWE for a certain
energy E and Ah‘n are the expansion coefficients which are commensurate with the wave

functions ¢;(r) at the boundary between the MT and interstitial regions, which match the
PWs as well.

The radial SWE is given by:

_1d (o df(r E)) r(l-u) + V() - ] ruf(r',E) = 0. (3.9)

r2 dr

An APW used for the expansion of i in Eq. (3.2) is defined by:

“(""0 ¥ rel
$E(r,E) = (3.6)
¢ z..,,a“"‘*" o E)WL(P)  reS.
where
| ot (k+K) Fg .
Au‘]"K %W"(Ik + K| Ra)Y}n(k + K). 3.7
Al Mk g uniquely defined and we will have to contract any value I as well,

called an angular function; ji(r) is the Bessel function of order I; and V is the volume of

the unit cell.

As uff(r',E) are equivalent to the exact MT potential eigenstate of the
eigenenergy and as these depend upon E, therefore the eigenvalue problem is non-linear
in the energy. It demands an iterstive solution to adapt E which bears a high
computational price [105] as shown in Figure 3.2.
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Figure 3.2 - Flow chart for the APW method [105]

It makes the APW method naturally lazy. In order to handle this issue the
linearized forms of the APW method were established in which the energy E is adjusted
to a static value E; and the basis functions are reformed to attain the additional flexibility
in order to deal with a large region of the energy around the linearization energy.

3.3. Linearized Augmented Plane Wave Method

It was a customary method developed in early 1970s to linearized augmented plane wave
(LAPW) method [106]. Basis functions are grown in the same manner as in Eq. (3.6) in
the interstitial region I, but within the MT region II. These functions are not only

| f g
dependent upon uft(r', E) but also on its derivative v (r’,E} = aﬂ};—’q.
The LAPW method is precise to perform calculations for the electronic structure
of crystals. It solves the KS equations for the ground state charge density, total energy

and energy bands (the KS eigenvalues) in the many-electron system on introducing a
basis set reformed for the problem of dealing with the exchange and correlation
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approximations and their uses. An adaptation can be achieved in the MT and the
interstitial regions. In these two kinds of regions, distinct basis sets are spent.

Relativistic effects occurring in the valence states may be incorporated either by
the scalar relativistic behavior (Koelling and Harmon 1977) [107] or by the second
Variational method including the spin-orbit (SO) coupling (Macdonald 1980) [108]. The
core states are treated completely by the relativistic fashion (Desclaux 1969) [109].

In literature, there are many descriptions of the LAPW method to lincarize the
Slater’s old APW method and the further programming hints have been given in the
references: Andersen 1975 [110]; Koelling and Arbman {975 [111]; Wimmer et al. 1981
{112); Weinert et al. 1982 [113]; Blaba et al. 1985 [114]; the Wei et al. 1985 [115];
Mattheiss and Hamann 1986 [116]); Schwarz and Blaha 1996 [117]. There is also an
excellent book by D. I. Singh and Lars Nordstrom 2006, which mentions all the details of
the PWs, PPs and LAPW method [118]. Here the basics have been discussed only
avoiding of the details.

We will review the LAPW method in two ways: the Regular LAPW and LAPW +
LO methods described ahead.

3.3.1. Regular LAPW Method

In the APW method, we found a difficulty that we had to set up uy(r’,E) at the
eigenenergy E = e} of the determined eigenstate. If we were able to discover ui'(r', eg)
from the derived quantities, then it was best and then the method helped us do so [119].
The calculation of u*(r',€]}) at the encrgy E = ¢f can help us use the Taylor’s Series
(TS) to determine it at the other energy values (say E = Eo) which are not too away from

it as given below:
[+ ¥
uf(r', &F) = uf'(r',E.} + (E. ~ £k) 93'% +O(E. — £8)%,

or writing the derivative in the reduced form:

ui(r, €f) = uf(r',E,) + (E. — ) 0f(r',E.) + O(E. — gf)2.  (3.8)
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If we put the first two terms of series in the APW for the given E, in Eq. (3.8),
then we pet the definition of the LAPW. The additive term O(E, — £)% allocates the
second order error in the wave function and the fourth order ambiguity in the cigenenergy
such that E, — ¢} is to determine first. Now we are adding a coefficient Bi*¥ in Eq.
(3.6) at the given E, such that it defines an LAPW as:

etk rel

Ok(rE) = sz[ AREHGE(p! E,) + BERTROE(r, E)]YL () re€ S, G2

The determination of both the coefficients Af;.!“x and Bﬂ;lk""( does not happen by
the TS but demands that the function should be commensurate with the PWs at the sphere
boundary both in value and the slope. It can be achieved by using Eq. (3.7) and its radial
derivative. It is an ultimate of a 2 x 2 matrix from which we can get both the coefficients.
We still could not get the final definition of an LAPW.,

Suppose that we express an eigenstate W) (r, E,) which already possesses the p-

k+K
A‘(!I =1)m-

character for atom a at | = 1. The expansion of Wy in LAPWs gives a large
Hence, we benefit if we choose E, close to the mid of the p-band and the term O(E, -~
£5)% in Eq. (3.8) will lie less so that we may surely cut-off after the linear term. This
opinion can be repeated for every physically important quantity | up to 3 units, i.c.,
s—, p— d — and f —states. It can be applied for all the atoms. It also concludes that we
should avoid of selecting one E, and should select a collection of the worthy-selected Ef,
up to 1 = 3 where the index ‘1” indicates the highest valence state. We can store a fixed

value for a larger |. Then the final definition of the LAPW becomes:

..1'._ e"ﬂ“l‘m‘r re I

ErE) =¥ 3.10
Per:E) Tl A ¥ uf (r, ES) + BE ol (r', ES )]Y}.,(f’) r € Sg. (3.10)

Here uf(r’, E§ ) is the regular solution at the origin of the radial SWE for the
energy ET, lying ordinarily at the center of the respective band with the l-like character
and inside the sphere Gf*(r’, ES,) being a spherical chunk of the potential and reserves at
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the identical energy. The functions uf* and f* are calculated under the numerical
integration of the radial SWE over a radial network inside the sphere and their linear
combination establishes the lincarization of the radial function {119].

3.3.2., LAPW With Local Orbitals Method

Local orbitals are denoted by LO. We construct an LO for a special value of 1 and
m and for a certain atom a and the interstitial regions I and the MT regions II of the
spheres of the other atoms having no LO. The LO includes an additional radial function
at the new linearization energy E;[119].

The regular LAPW method does not reveal which electron states have been
computed. It also fails to calculate the electrons in a core state in which the electrons are
extremely destined across the nucleus and they act as residing in free atoms. As a core
state does not take part in the chemical bonding directly with the other atoms, so it must
lie completely in the MT sphere. States which can escape from the MT si:hej'e are termed
as the valence states. Since these states join in the chemical bonding, therefore the regular
LAPW method is applicable on the valence states. Although the core states are handled
like they are in the free atoms, yet they undergo the potential produced by the valence
states. During the processing, we find the states which have the same 1 but the different n
and both these states are called the valence states [119].

To enhance the elasticity of the basis, i.e., to improve the linearization and to
produce the stable behavior of the semi-core and the valence states in 2 single energy
window to guarantee the orthogonality, the surplus k-independent basis functions may be
included which are named the local orbitals (LOs) [120]. We construct an LO for a
special value of I and m and for a certain atom « and the interstitial regions I and the MT
regions II of the spheres of the other atoms having no Los, thus being called the local
orbital. The LO comprises a linear combination of a pair of radial functions, two distinct
energy sublevels 3s and 4s, and an energy derivative of one of these energies and an

additional radial function at the new lincarization energy E3) [119, 120] as expressed in

Eq. (3.11):
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¢l{,“;.o(r) =
res,

0

The same uf'{r',EY,) and 4f*(r’,Ef;) are used in the MT sphere of the atom &
with the linearization energy E{, being a value of the higher of two valence states as done
in the LAPW basis set. The linearization energies are considered to be identical for two
equivalent atoms. The lower valence state is like a free-atom and its sharp peak lies at the
energy E3) such that a single radial function uf(r’,E%,) is enough to express it. The
coefficients A%%, B*LC and CO are calculated under the necessity of the LO being
normalized and possessing no value and slope at the boundary of the MT sphere which
means that the LO can’t escape from the MT sphere.

The addition of LOs enlarges the size of the LAPW basis set. If we include more
atoms in the unit cell, then we have to add more LOs while contrarily the number of the
LAPWSs is independent of the quantity of the atoms in the unit cell. The more atoms mean
that we just add more sets of coefficients. If we include the LOs in p- and d-states, then
the basis set enhances by 3 functions per atom for the p-states and 5 functions per atom
for the d-states in the unit cell. Such a basis set is quite smaller than the basis set sizes
comprising hundreds of the functions. Although the LOs present slightly larger
computational time implying a small increment in the price, yet it yields the better
accuracy. This method may also practice the LO to compensate for the linearization
errors, especially in case of the narrow d- or f-band [119]. The LAPW + LO method
converges like the LAPW method [120].

3.4. APW +lo METHOD

3.4.1. Pure APW + lo Method

We observed that the standard LAPW method with an extended constraint on the
PWs which match in value and slope with the solution inside the sphere, could not prove
the most competent technique for the linearization of the Slater's APW method as
mentioned by Sjdstedt, Nordstrom and Singh (2000) [121].
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In the APW method, the basis set depends upon the energy which creates a
problem for us. It should be energy independent. We have removed this energy
dependence by applying the LAPW + LO method for the price of a bit larger size of the
basis set. Using a standard APW basis, anyone can make it more efficient by keeping
uf*(r', E) at a fixed energy level E for the maintenance of the linear eigenvalue dilemma.

Now we are introducing the APW + lo method [122] whose basis set is energy
independent and of equal size like that used in the APW method. It concludes that this
method assembles the nice configurations of both the APW and LAPW + LO methods.
Actually, the APW + lo basis set comprises two types of the functions in which the first
function contains the APWs with a set of the fixed energies Ef, given by:

¢k ) [% ei(kﬂq'r rel 3.12)
T} = .
T B ARG (', BS) YA () res,.

This basis set with the fixed energies gives a fake expression of the
eigenfunctions. So, we are amplifying this basis set with a second kind of the functions,
called the local orbital, denoted by ‘lo’ instead of the LO, and is defined as:

res,

0
3,00 = { (e, E5) + e AP v O

The new Io resembles the old LAPW basis set. The coefficients A% and Bf® are
k-independent and calculated by the normalization of the lo under the requirement that
the lo contains zero value but non-zero slope at the boundary of the Muffin Tin sphere.
Therefore, both the APW and the lo are continuous at the sphere boundary but are not
continuous for both of their first derivatives. In order to meet this condition, we constitute
the basis functions having ‘kinks’ on the sphere boundary. These basis functions
essentially add the surface expressions in the KE part of the Hamiitonian but the ultimate

wave function remains flat and differentiable.
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The same energies E have been used here as done in the APWs. The APW + lo

basis set size must be similar to that of the APW but is smaller than that vsed in the
LAPW + LO method.

3.42. Mixed APW + lo / LAPW Method
The LAPW method requires a bigger Koy than that used in the APW + lo method
because it fails to determine the valence states of d- and f-orbitals and the states in an

atom which comprise a very smaller MT sphere than the other ones in the unit cell.

We will use the APW + lo method for the above states and will keep applying the
LAPW method for the other states. The application of the APW + lo method on a single
state implies that we add 21+1 lo,s per atom in its basis set. Hence, the APW + Jo basis set
becomes significantly larger than that of the LAPW for the same cut-off parameter

RPInK .. but it is concluded that a compensation can be made by using a smaller value
of RMnK .. for the accurate outcomes because the addition of these extra basis

functions for the purpose to apply on a state where they can be useful is always bad.

Therefore, a new approach came to hand leading us use a mixture of the LAPW
and APW + lo basis sets for all the atoms « and all the values of | under Eq. (3.9} [122].
One or more atoms ¢, where r € Sg,and one or more l, will use Eq. (3.12). Then 4).1'.'"(1')
obtained from Eq. (3.13) are added to the basis set. This mixed basis set is applicable in
WIEN2k. This new criterion converges practically to the desired results but allows the
cut-off parameter RMP K., reduce by 1 about. It leads to a vividly smaller basis sct up
to 50% and the respective time for computations is severely lowered to a multiple of a
certain value. In a calculation, we can use a “Mixed LAPW / APW + lo basis” for the
different atoms and even though for the unique l-values of the same atom as described in
the Madsen et al. (2001) [123].

3.43. APW +lo+ LO Method

We confronted the same problem for the semi-core states on using the APW + lo
basis functions like that in the LAPW + LO method. In general, we describe those
orbitals from APW + lo which converge extremely slowly with the atoms having the
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small spherical sizes or with the certain quantities of the PW's like the transition metals
(TM) 3d-states and remaining with the ordinary LAPWSs. Now we will add the second
type local orbitals (LO) at a diverse energy value to describe both the semi-core and
valence states concurrently [122). The corresponding basis function is defined as:

re¢sS,

Im —
Palo(r) = { [ AfRCu(r', ESy) + Cliy ®uf(r', ES) ) Y (F) res,.

(3.14)

This APW + lo + LO method does not contain the derivative of uf(r’,ES, ) as in
the LAPW + LO method. The coefficients A%° and Cfa© are caiculated under the

aitment of the LO being normalized and preserving zero value but non-zero slope at the
boundary of the MT sphere.

3.5. General Considerations about the FP-LAPW Method
1) The general LAPW method expands the potential as follows:

Zim Vi (O (F) Inside the sphere

v = { Tk Vg e Outside the sphere. 3.13)

The charge densities are expanded analogously. No approximations are made for
shapes of the potential and the procedure is called the ‘“Full Potential” method.

2) The Muffin Tin approximation is only for the components I = 0 and m = 0 in the first
expression of Eq. (3.15) and for the K = 0 component only in the second expression of ,
this equation. It is a very old method used to take the spherical average in the inner of the
MT sphere and the volume average in the interstitial region.

3) The total energy is calculated by vsing the Weinert et al. (1982) [113].

4) The Rydberg atomic units are applied everywhere excluding the interior of the atomic
like programs as LSTART and LCORE in the sub-routine out wins LAPW1 and LAPW?2.
Although the Hartree units are taken in these regions, yet the output always appears in the
Rydberg units.
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5) The forces on the atoms are computed by the Yu et al. (2001) [124]. This method is
used in WIEN2k according to the Kohler et al. (1996) [125] and the Madsen et al. (2001)
{123]. An Alternative method proposed by Soler and Williums (1989) [126], efficient in
computations and accurate in numeric, is also equivalently useful but the corresponding
code is taken from M. Fahnle in the Krimmel et al. (1994) [127].

6) The Fermi energy and the weights of every energy band are calculated by the
Modified Tetrahedron method described in the Blochl et al. (1994) [128]. In this method,
the Gaussian or temperature functions are varied according to the requirement. The spin-
orbit (SO) interactions are due to a second Variational step when we use the scaler-
relativistic eigrfunctions as the basis [107, 116, 129]. To control this difficulty arising
due to the absent py/, radial basis function equivalent to p3/; in the scalar relativistic
basis, we have added an extra p,s, —LO in the standard LAPW basis. This LO is

summed in the spin-orbit (SO) calculation at the second Variational step [130].

7) The LDA and GGA methods are not encugh precise for a proper portrayal of the
localized electrons as in the 4f-states in the Lanthanides or the 3d-states in some TM-
oxides. So, we have applied several shapes of the “LDA + U” method alon;g with the
Orbital Polarization (OP) method under Novak (2001) [129]. The interactions can be
conceived by an applied external magnetic [129] or electric ficld through the Super cell
approach (SPA) under the Stahn et al. (2000) [131].

3.6. Properties of the Full Potential APW Method
1 — The density of states (DOS) is computed by the Modified Tetrahedron method in the
Blochal et al. (1994) [128).

2 — The electron density can be analyzed by the Bader’s Theory of atoms in molecules
using a program of J. Sofo and J. Fuhr (2001) [132].

3 — The X-Ray spectra between a core and a valence or conduction energy band can be
viewed by the Fermi’s Golden Rule and the elements of the dipole matrix [133].

4 — The Fourier transform of the charge density reveals the structural aspects of X-rays.
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5 — The optical properties are grabbed by the Joint density of states (JDOS) modified by
the corresponding dipole matrix elements [134, 135). This modification can also be
achieved by the Kramers-Kroning transformation [136].

3.7. Super Cell Approach

It is a universal approach for the study of solids by modeling their surfaces under
the periodic boundary conditions, In this approach [137, 138], a superficial periodicity is
imposed on the simulation cell for modeling the continuum properties of a solid. Then the
Bloch's theorem may be applicable to the wave functions in the solid. A super cell must

be large enough to overcome interactions among atoms in the cell.

In principle, we will apply the 2D possible periodicity but we will also use the
additional identical constraints to find the deterioration of the PWs in LAPW + lo
method. Also, this 2D approach is not essentially useful for the systems absorbing
oxygen. Our criterion applied here models the surfaces under the periodic boundary
conditions in all the 3D spaces. We express the semi-infinite surfaces with the slabs
which are infinite in the xy-plane and comprise many layers along the z-axis. In the z-
direction, the periodicity of layers is retained artificially by help of a super cell which

consists of a slab and a vacuum region.

A super cell will give the trustworthy outputs if we consider two major
parameters as the number of layers in the slab and vacuum thickness. The surfaces which
are at the top and bottom of a slab comprise a sufficient number of layers to block the
interactions between them. The atoms lying at the center of the slab express the physical
properties of the atoms in the bulk phase. There is a large vacuum area between the
surfaces of the successive slabs to avoid of the interactions between them. The surface
calculations of the solids may become computationally very expensive in the LAPW + lo
method because a vacuum region is expressed by the PWs, which enhances the PW basis
set significantly as shown in Figure 3.3 [139):
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Figure 3.3 - Supercell of AL,O3 comprising 2x2x1 hexagonal unit cells with 120 atoms! The left

hand figure gives a side view along the a-axis and the right hand figure gives the view from top to
bottom along the c-axis {139].

Figure 3.4 - A 128 less 25 atoms super cell for the perous silicon (Si) {140]
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To escape from this problem, there is an equivalent approach, not based on
periodic boundary conditions, called the Clustering method [141, 142, 143] within which
a surface is sculpted by a big cluster, In principle, a solid is approximated by a huge
cluster. In such a cluster, Quantum Mechanics of the center-most atoms approximates all
the other atoms in a solid. In this approach, the decisive parameter is the cluster size
which toughly affects both the accuracy and computational cost. The size which
approximates a solid is bigger due to the supremacy of the surface over the bulk atoms in
the small and medium clusters. This concept is applicable to all the electronic structure
methods (ESM) and the best general solution is obtained by using the restricted

repetitions of a primitive cell along with the boundary conditions.
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Chapter 4
CALCULATIONS BY WIEN2K

4.1. WIEN2k Software Package

Figure 4.1 - Logo of the WIEN2k sofiware package

4.1.1. Introduction of WIENZk

The best method to compute the electronic structure of solids, using the density
functional theory (DFT), is the linearized augmented plane wave (LAPW) method. More
than 25 years ago, a full potential linearized augmented plane wave (FP-LAPW) code
was set up for the calculations of the crystalline solids. Its first published legal version
was named WIEN [144]. The preceding years displayed the remarkably upgraded and
updated versions of the WIEN programming codes as WIEN93, WIEN95, WIEN97 and
WIEN2k [145]. The WIEN2k code bases on an alternative basis set. It has been improved

in speed, user-friendliness, new features and universality.
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This programming sofiware package is used for simulation results obtained from
the DFT to make calculations for electronic structure, electrical and optical properties,
and energy gaps in the solids. It depends upon the full-potential linearized augmented
plane-wave (FP-LAPW) plus local orbitals (lo) method which is the most exact scheme
to calculate the band structures of the solid materials. The FP-LAPW + lo basis set is
used to solve the Kohn-Sham (KS) equationsofthe DFT. It is an all-electron
arrangement comprising the relativistic effects and has several features. It adds the DFT a

new dimension for the calculations of the solids.

4.1.2. Features of WIEN2k
WIEN2k comprises independent programs of the FORTRAN9Q programming
language. These programs have been connected together via the C-Shell scripts.

WIEN2K can be operated by applying the short special commands and can be run
by a web browser and the W2Web (WIEN to WEB) interface. W2Web is a web server.
This graphical user interface (GUT) facilitates for producing or adjusting inputs for
several applications and it directs to implement many jobs.

The WIEN2k code mainly involves two parts: the initialization and leading self-
consistent field (SCF) cycle. Each part is further compiled by various independent
programs which have been linked by shell-scripts. Also, several analytical tools have
been implemented to calculate the structural, electrical and optical properties of the solids
like the band structure, density of states, charge densities, and UV, blue ray, X-ray and
infrared spectra, etc.

The current version, WIEN2k_13.1, released on June 25, 2013 is a very important
update which fixes many bugs and introduces to many new features. The upgrading is
highly recommended. It will be installed in Linux for its working and to get the

simulation results,

As the FP-LAPW + lo method is accepted as the most exact one in the DFT, so
results received from this method are usually considered as a yardstick. The high
accoracy in the results demands a big computational price. To calculate propertics of a
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solid in the bulk form, WIEN2k performs ricely but the calculations of a solid surface by

the super cell approach are too much time consuming.

4.1.3. Registration of WIEN2k

WIEN2k can be had via a minor fee after filling out the Online Request Form at
www.wien2k.at. Iis license is given to a group, which contains the source cod¢ and free
updates. Only the group members can run it on many computers as they wish. The group
comprises a research leader along with its co-workers. It can’t be a whole department,
university or company. The license is issued to the person whose name is given on the
Registration form. A person can use this license on some other place but can’t reuse
WEIN2k on the old location.

The WIEN2K registration fee is 4000 Euros for industry and commerce, 1000 €
for Govt. institutions / Labs and 400 € for academic institutions. The fee is paid
according to the indication on the Registration form. An cmail is sent to confirm the
regisiration of a user and then the User Id and Password are given the registered user to
download the WIEN2k code via the web browser.

There are more than 2000 registered user groups of WIEN2k all over the world.

4.1.4. WIEN2k Woarkshops
The WIEN2k Workshop is held every year at least once, where the new and
experienced users learn more about the WIEN2k code, get the practical training,

exchange ideas and share experiences. The conference fee is nominal.
The first workshop was held in 1993 in Vienna, Austria.

The 21% WIEN2k workshop was held at Nantes, France from July 02-09, 2014
with the International conference on advanced matetials modeling (ICAMM).

4.1.5. Computer Reguirements
1. WIENZk works under Unix at all the platforms like IBM RS6000 (International
Business Machine), Linux-PCs {Personal computers), Compac-Alpha, HP (Hewlett
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Packard), Sun and SGI (Soka Gakkai International). It can hopefully be operated on the
latest Unix / Linux system.

2. By the passage of time, 2 most efficient platform changes swiftly and we can imagine
that the best cost and performance ratio will be in 2 Linux PC based on an Intel
architecture. We have to install the Intel iFort compiler along with the Intel MKL (Math
Kernel Library).

3. The hardware needs change according to the system. A 128 MB RAM is required for
smaller computers for processing about 10 atoms per unit cell and for the powerful PCs
or workstations with 1GB or a few GBs hard disk space, a 256 MB RAM (preferably 512
MB) is recommended. The workstations with 1-2 GB RAM have processed the systems
up to 100 atoms per unit cell about and more than 1000 atoms per unit cell on clusters
with 64-1024 cores and a high speed network. 10-1000 GB of hard dislg is required for
the big cases. Contemporarily, it is recommended a multicore CPU (Central Processing
Unit) with 1-2 GB memory per core and the swap space to be the double of the PC

memory.

4. If we use a Gbit network on a cluster of PCs comprising a mutual NFS (Network file
system) and correctly constructed login RSH (Remote Shell Host) and SSH (Secure Shell
Host), then parallelization of k-points is possible and proficient even for the loosely

coupled computers connected with a slow network.

5. If we have the fast communication, e.g., the shared memory or the fast networks as
InfiniBand, FFTW (Fastest Fourier Transform in the West), MPI (Message Passing
Interface) and ScaLAPACK (Scalable Linear Algebra Package), then an adequate grain
parallelization for a single k-point can also be obtained. The Gb ethernet is less sufficient.

6. If someone wants to use all the options comprising the GUI or XCrysDen (X
Crystalline Structures and Densities), then the packages as Ghost View with PNG
(Portable Network Graphics) support; GNU Plot (+ PNG (Portable Network Graphics)
support); Acro Read (or similar), Emacs or another editor, Graphical Web Browser, Perl,
Octave and OpenDX must be installed on the PC. The MPI (Message Passing Interface)
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+ ScaLAPACK (Scalable Linear Algebra Package) is only for the parallel computers for
the parallelization of 100 or more than 100 atoms per unit cell.

No principal component of WIEN2k needs these packages and these are required
only for the advanced features or for W2Web.

4.1.6. Material Properties Computed by WIEN2k

i.  Energy Bands and Total Energy
ii.  Electron Density, Density of States (DOS) and Spin Density
iii. Bader’s concept of atoms in a molecule
iv. Molecular Dynamics
v.  Structure Optimization
vi. Interacting Forces and Equilibrium Geometries
vii. Fermi Surfaces
viii.  Electric field gradients, Hyperfine Fields and 1somer Shifts
ix.  Spin Polarization, Orbital Polarization and Spin-Orbit Coupling
x.  Optical Properties
xi.  X-ray Spectra and Electron Energy Loss Spectra
xii. LDA, LDA+U, GGA, Meta-GGA Approximations
xiii.  Centro- or Non-centro-Symmetric Cell Analysis
xiv.  All the 230 Space Groups

4.2. Running the WIEN2k Program

The WIEN2k package can be run using any web browser and the w2web
interface, but at the command line in an xterm program as well. Inputs are created by the
init_lapw and StructGen files. W2Web acts as the web server on a user defined port.

4.2.1. Connecting to the W2Web Server
We start w2web on all our hosts and then login a desired host as the Secure shell
host (SSH) by inserting the usemame and password, port-number, (master-) hostmame. It

generates the ~/.w2web directory. We use our web browser (Firefox) and connect to the
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(master-) host: port-number. Every “case” runs in its own directory as /case. The “master
p ery ry

input”’ directory is termed as case.struct as shown in Figures 4.2 and 4.3,
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Figure 4.2 - Login desired host
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Figure 4.3 - User at the desired host connected to w2web
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4.2.2, Creating the New Session _
We create a new session at the desired host or select an old session as follows:
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Figure 4.4 - Creation of a uew session
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Figure 4.5 - Current working directory of the new / old session
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4.2.3. Creating the Structure Generator

Now we set up a structure generator (StructGen) by importing the cif or xyz file
for the initial structure. A structure file creates a template in which we will enter the
structural data. It is then used to create the y.struct file.

Then we specify the lattice type, space group, lattice parameters, angles, nature
and number of atoms, and their atomic positions for a special element or compound. Then
we click the “Save Structure” button. The atomic number (Z) will automatically be
updated and then we press “Set automatically Rut and continue editing” which will
determine the distances among the nearest neighbor atoms by using the nn program and
then setrmt_lapw will calculate the optimum values of the Muffin-tin radii (Ryy) for the

atomic spheres.

Then we specify a suitable reduction of the nn distances, make the non-
overlapping as large as possible but not larger than 3 bohrs to save the computational
time. We reduce Ryr 10-20 % smaller for the sp(d) elements than for the d(f) elements.
The largest sphere should not be more than 50% larger than the smallest sphere. We
should not change the Ryt during a series of calculations. The Ry should be equal for
the same atoms. After finishing, we exit the StructGen by pressing the “Save and claen
up” button.

[t will create the y.struct file displayed in the vie;w-only genre having the distinct
colour of the background, which is the Master input file for all the successive programs.
This operation also automatically creates the input file for the free atom program LStart
dealing with the configurations of the atoms. It updates Z, r, and the equivalent positions
automatically, and also generates the case.inst file for the atomic configurations.
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Figure 4.8 - Saving the stracture generator

4.2.4. Initialization of A Computation
It is done under the init_lapw program. This program helps us detect symmetry
and generates the input file under the defaults, Its cost and calculation time depend on the

k-mesh and RypKmax Which finds the number of the plane waves (PWs).

X nn

The Xnn program detects the nearest neighbor distances in a certain range
described by the distance factor f, and assists us compute radii of the atomic spheres. This
program is also beneficial for a surplus check of the case.struct file which describes

equivalency of the atoms.
X Sgroup

It is for finding the point group and space group for a certain structure.
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Viewing the Y.OutputSGroup File

We can see a structure based on a given point or space group. We either
acknowledge the x.struct file created by SGroup or can keep our default file.

X Symmetry

It is created from the raw case.struct file to perform the symmetry operations of a
space group. It finds the point group for the distinct atomic sites; yields the LM

expansion for the lattice harmonics and defines the local rotation matrices.
X Lstart

It creates densities of the free atoms and finds the manner in which the unlike
orbitals are indulged in the band structure computations comprising the core or band
states having the local orbitals or not.

X KeyGen

It produces a k-mesh and reduces to the irreducible segment of the Brillowin zone
using the symmetry. An inversion is added automatically in the mesh except in the spin
orbit (SO) computations of a magnetic material. The time inversion is valid hare, i,
F(k) = E(-k). We always shift the k-mesh for the self-consistence field (SCF) cycle
because the gaps usually exist at the I' symmetry point in the mesh but it is not in every

k-mesh.

A k-mesh for the small unit cells and metals is large containing 1000-100000 k-
points while a k-mesh for the large unit cells and insulators contains 1-10 k-points only.
Initially, we should use a fairly rough k-mesh for the SCF cycle and continue later with a
fine k-mesh. For the density of states, spectra and optics, we apply an even finer k-mesh.

X DStart

It creates an initial density for the SCF cycle by superposing the densities of the
atoms produced in the LStart program.
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Volume Optimization
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4.2.5. Seli-Consistence Ficld (SCF) Computations

It is a self-consistent ficld cycle started and repeated to get the convergence
criteria (energy, charge, forces). It works under the run_lapw or runsp_lapw programs.
We can run the SCF cycle optionally along with the spin-orbit (SO) coupling or the
LDA+U approach. case.scf is a master output file, which consists of history of the SCF
cycle. We will calculate the band structure, the electron density, the density of states
(DOS), the joint density of states (JDOS) and the optical properties, etc.

An SCF cycle is raised up by a script file run_lapw and comprises the steps as

follows:
LAPWO (Potential Generator)

It produces the potential from a certain density. The Lapw0 program calculates
the total potential as the addition of the Coulomb potential and the exchange-correlation
potential under the total electron spin density taken as the input. It produces the spherical
part (1 = 0) of the potential as case.vsp and the non-spherical component as case.vns. In
the spin polarized systems, case.cimup and case.clmdn represent the spin densities and
guide to two couples of the potential files as (case.vspup, case.vnsup) and (case.vspdn,

case.vnsdn).
LAPWI1 (Eigenvalues And Eigenvectors Finder)

The cigenvalues and the eigenvectors are found by the diagonalization of the
Hamiltonian and the overlap matrix elements established by the Lapw1 program. These
eigenvalues and eigenvectors are saved in the case.vector file. This program also
determines the valence bands specified by the cigenvalues and the eigenvectors. A full

potential computation is carried out if the case.vas file occurs.
LAPW?2 (Valence Charge Density Expansions Generator)

It calculates the valence densities from the specific eigenvectors. The Lapw2
program uses the case.energy and case.vector files. It calculates the Fermi-energy and
directs the expansions of the charge densities for every filled state and every k-point and
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the related partial charges are computed inside the atomic spheres by integration. For the
systems depriving the inversion symmetry, we use the lapw2¢ program joined with

lapwlc for the complex analysis of the Hamiltonian and overlap matrix elements.
LCore (Core States Generator)

The LCore program is an improved version of the relativistic LSDA atomic code
to determine core states comprising SO coupling relativistically or non-relativistically if
NREL has been adjusted in the case.struct file for the contemporary spherical portion of
the potential specified by the case.vsp file. Leare generates the case.clmcor file for the

relevant core densities, eigenvalues and core contribution to forces concerning the atoms.
Mixer (Charge Densities Adder and Mixer)

It mingles the input and output densities. It uses the LMarks program. In the
mixer, the charge densities of the valence and semi-core states are added to produce the
total new output densities and their normalization is observed and imposed because the
simple new densities cause instabilities in the iterative SCF cycle which is esseniial to be
stabilized by mixing the output densities with the old input densities to yield the new
densities for using in the next iteration. Its running cycle is 30-50% less than that of an
SCF. It is very stable and gives the real convergence because there is no pseudo-
convergence due to the small mixing. In the mixer, the atomic forces and the total energy
are determined by the case.scf file and then adding several contributions calculated in the
previous steps of the last iteration. Therefore, the case.scf file must be given an iteration
number once and it must be less than 999. The spin-polarized systems are automatically
perceived by xmixer in the presence of the case.clmvalup file because the 1 and m values

and the K-vectors are always read from the case.clmval file.
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4.2.5.1. Band Structure Calculation

—-—— -

e, e . e . . )
R R I SN - ST TR PR Y R R R
- : Ty &3

v

Figure 4.14 - Fluding the band structure
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4.2.5.2. Electron Charge Density
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Figure 4.16 - Calculation of the electron charge density [146)
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Figure 4.17 - Plot of the electron charge density along with the contour plots [146]

4.2.5.3. Density of States
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Figure 4.18 - Density of states {DOS) caleulation [146)
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Data flow during a SCF cyde (programX def, casestruct, casainX, sase.outputX and
optinnal filss are amilted)

Figure 4.19 - Data flowing daring an SCF eycle [146]
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Chapter §
RESULTS, DISCUSSIONS AND CONCLUSIONS

Information Technology has prevailed almost in every field of life comprising the
Numerical modeling as an influential tool to understand structures of materials on behalf
of the low cost high performance persoral computers (PCs). Calculations of the
electronic structures of the solids can be carried out through several ways by using the

classical to quantum mechanical approaches.

The DFT is a comprehensive technique to determine the ground state properties of
the systems of the interacting electrons. It represents an electronic system by its density
(one-body problem) rather than its wave function (many-body problem) providing us
with the precise results at the low computational price. Initially, the DFT was dealt as an
exact theory but later, its practical implementation was based on the approximations
known as the exchange and correlation potentials which by their combined application
became the exchange-correlation potential. The DFT can handle from a single up to 200
atoms. It can also deal with the transition metals. The DFT approximations are
trustworthy and computationally nice techniques to investigate the solids. So, in this
concern, we have researched on the structural, electrical and optical properties of zinc
oxide (ZnO) and its doping with Cd to form the tertiary compounds Zn,..Cd;O depending
on the conceniration x of cadmium (Cd).

For the computational applications, we used the full potential linearized
augmented plane wave (FP-LAPW) method founded on the DFT and executed in
WIEN2k software package under the Wu-Cohen GGA scheme [2] to research on the
mentioned properties. Under WIEN2k, the Kohn-Sham functions are grown in terms of
the spherical harmonic functions inside the non-overlapping Muffin-tin (MT) spheres of
the radii Ryy which encompass the atomic sites, while the Fourier series (FS) is applied
in the interstitial regions. Inside an MT sphere, the l-expansion was made up 10 lpax = 10
and the Fourier expansion of the charge density was Gmax = 16. For the convergence of an
energy eigenvalue, the wave function in the interstitial region is grown in the form of the
plane waves (PWs) with the cut-off value as RyrKugx = 8 where K is the maximum

76




magnitude of the reciprocal lattice vector. The total energy computations were made by
taking the energy as the function of the volume of a unit cell. The volume optimization
(VO) was done for ZnO and Zn;.xCdyO in the zincblende (ZB) phase under the GGA
scheme by using a calculated lattice constant a. A volume energy curve came to hand on
determining the total energy at the volume surrounding the equilibrium and the fitting
determined the value of the Mamaghan equation of state [147]. We also evaluated the
bulk modulus B in gigapascals (GPa); its derivative with respect to the pressure B, the
bond lengths and the bond angles for the ZnO and Zny..Cd,O alloys.

The first step of the procedure comprises VO for the ZnO and Zn;..CdyO alloys in
the ZB phase by using the experimental lattice constant under the GGA. Then we
determined the electronic charge density p, density of states (DOS), band structure and
space group for all the compounds.

5.1. Properties Of Zn0O-ZB

5.1.1, Structural Properties
For Zn0-ZB, the experimental lattice constant was a = 4.62 A [148] which on the
calculation by the WIEN2k software resulted as 4.54 A according to the following figure:
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Figure 5.1 - Volume optimization curve for ZnQ in the ZB phase in the Wu-Coben (WC) GGA
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Optimal volume =V, = 136.89 (au)® = 157.88 x (0.53)3 = 23.5 (A)3

=13
Vg == a°

F R

Therefore, our calculated lattice constant is:
al} = (4v, )13,
Putting value of V,, we get:
all = (4 x 157.88)1/2 = (631.52)1/3 = 8.58 au.
=858au x0.53 =4544
5.1.2. Electrical Properties

5.1.2.1, Electronic Charge Density

The 3D charge density p(r) has been plotted in the (110) plane for ZnO in the ZB
phase. Figure 5.2(a) reveals that Zn atoms have more core electrons near the nuclei
giving higher electron charge density in the vicinity of the nuclei while O atoms contain
more valence electrons and are more spread out than those of Zn. The electronegativities
of the Zn and O atoms are highly different, therefore the charges transfer is also different.
The difference in the charge tramsfer between an anoin and a cation is directly
proportional to the difference of the electronegativities of both the atoms. In Figure
5.2(b), the contour plot shows that the bonds between Zn and O atoms are covalent with
tense ionic character, The clectrons are gathered along a Zn-O bond and then repelled

towards the O atom.

A 3-diemnsional plot for ZnOin the ZB phase has been shown in Figure 5.2.
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Figure 5.2 - (a) My 3D Plot of ZoO in the ZB phase for the clectron density p(r) at plane (110} in
the Wu-Cohen GGA scheme and (b) Relevant contour plot

5.1.2.2. Density of States

We computed the total density of states (TDOS) at the equilibrium volume 20.38
(A) under the Wu-Cohen GGA scheme for ZnO-ZB. The lowest energy states -16 eV to
onward containing O s-orbitals are catled the core states, the states ranging from -6.5 to 0
eV (Fermi Level) consisting of O p- and Zn d-states are termed as the semi-core states
and the states ranging from 2 ¢V and above are called valence states. There is small
hybridization between Zn 3d- and O 2p-states at about -4.5 eV due to which the band gap
(BG) of ZnO increases somewhat. The density of states helps us determine the angular

momentum behavior of several structures.
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Figure 5.3 - My total density of states (TDOS) spectra for the ZnO-ZB phase in the GGA
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5.1.2.3. Band Structure
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Figure 5.4 - My encrgy band structure of the ZnO-ZB alloy by the Wa-Coben GGA scheme

The undermined band gap may be because of the selection of the exchange-
correlation energy. The valence band mostly comprises the 2p- and 2s-states of O and 3d-
and 4s-states of Zn. In the valence band, the O 2s-states are found from -16 to -19 ¢V and
O 2p-states lie between -4 and 0 eV being very close to the previous results.

It appears from the graph that the Zn 3d-states generate a few bands in the range
of 7-9 ¢V under the valence band maximum (VBM) showing the fragmentation and the
dispersion of the wave vector k exterior to the maximum symmetry point I'. The lowest
conduction band is occupied by the Zn 4d-states and it initially emerges out of the O 2p-
and Zn-4s states. The huge peak in the valence band at T is basically due to the Zn 3d-
states. These states affect the band structure unreliably due to the abhorrence of the p-
and d-states triggered by the hybridization of the corresponding states. Therefore, the
band gap in ZnO is more underestimated because of the hybridization of the Zn 3d- and
O 2p-states.
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Table 5.1 - My calcolated values for Zn0Q-ZB under the Wa-Cohen GGA scheme

Review Research Work
ZnO-ZB Compound
CLEMENT | o | THIS OTHERS | EXPERIMENTAL
UNIT WORK | THEORETICAL WORKS
Scheme GGA nggilen GGA
Phase ZB /B3 Zincblende Zincblende
Space Group SG 216, F-43m
Muffin-Tin Zn=1.78
Radius | o™ @9 | o-58
imal
3‘;‘&2 vV, A 235 |2486  [149) | 24.65 [148]
Latti
Co“ oo X a (A 4.54 463 [149] | 4.62 [148)
Bulk Modulus | B, (GPa) | 156.36 | 133.73 _ [149]
Derivative of ,
Bulk Modulus | Be  (GP®) 433 479 [149]
Optimal
Energy E, (Ry) | -3741.67
| Zn3d=18.5 | Zn3d=78
Total Density T]EJSS at-5.6eV at-5.5eV
of Sates | eecievy | O2p=63 | O2p=24
at-12¢V |at-1.5eV [150]
Band Gap | BG/E, (eV) 0.62 0.65 [149] | 3.44 151

5.2. Properties of Zn.,Cd,0 Alloys

We made the volume optimization for the Zn,.,Cd,O alloys in the ZB phase with
help of the Wu-Cohen GGA scheme. We calculated the optima! volume, theoretical
lattice parameter, bulk modulus B, derivative of the bulk modulus with respect to
pressure B” and the Muffin-tin radius Ry

For the investigation of the optical band gap and optical transition of the
Zn1.,Cd0 alloys, it is essential to study the imaginary part of the dielectric function £2(w)
because it is too significant in describing the optical properties and the photon energics,
E = hw {152] of a material. We are well-versed by the fact that the photon interaction
with the electrons of the material may be expressed in terms of the time-dependent
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perturbations of the electrons occupied states at the ground level. The optical transitions
between the filled and empty states occur due to the electric field by a photon and the
respective spectra may be expressed like the joint density of states (JDOS) between the
valence and conduction bands. The momentum matrix elements are determined between
the occupied and unoccupied states. The real part of the dielectric function can be
determined from the imaginary part with the help of Kramers-Kronig relation [136]. We
will study the optical properties of the Zn;,Cd,O alloys in energy range from 0 to 50 ¢V.

Equations to Calculate the Optical Properties

s(w) = &(w) +j £2(w), (5.1
where

£, () = n(w)? + k(w)? (5.2)
and

£2(w) = 2n(w) k(w). (5.3)

Here

n(m) = [el(m)2+83((;)z]”z+£1(w) (5.4)
and

k(m) = [tl(“"):""z(m)z]lfz-cl(m} . (55)

2

The complex refractive index is defined by:

n*{w) = n(w) + j k{w)

= J&, () +j £2(w) = e(w). (5.6)

The absorption coefficient is given by:

a(w) = V2o f[81(@)? + ez ()] /2 — £, ()
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= ZEk(w). G.7)
The reflectivity is defined by:

_ (m{w)=1)*+k(w)*
R( ) T (m{w)+ 12 +k{w)E
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52.1. Znp75CdoasO Alloy
5.2.1.1. Structural Properties
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Figure 5.5 - My volume optimization curve of ZaysCdo2sO in the ZB pbase in the WC GGA
Lattice constant = a = (V)/? = (705.22)*/3 = 8.901 au = 8.901 au X 0.53 = 4.72A

5.2.1.2. Electrical Properties
52.1.2.1. Electron Charge Density

We computed the volume charge density for the Zno75Cdo2sO alloy in the ZB
phase along the (110) plane applying the Wu-Kohn GGA scheme shown in Figure 5.6(a).
Figure 5.6(b) gives the contour plot for the Zng 75Cdy 250 alloy indicating the collection of
electrons along the Zn-O and Cd-O bonds and deflect towards the O atom due to
electronegativity differences among Zn, Cd and O atoms. The O atoms bond covalently
with both the Zn and Cd atoms with strong ionic behavior such that the Zn-O bond is
stronger than Cd-O one.
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Figure 5.6 - (a) My 3D plot of Zng»sCdy240 in the ZB phase for electron density p(r) at plane (1
in the Wu-Cohen GGA scheme, (b) Relevant contour plot and {c) Combined 3D and contosr plots
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5.2.1.2.2. Density of States

The density of states (DOS) is computed for observing the bonding character and
the orbital hybridization in the Zng75Cdozs0 alloy in the ZB phase. The bonding
character gives the semiconducting behavior as shown in Figure 5.7. The Cd 4d-states are
analyzed in the energy range 12 to 13.5 eV beneath the valance band maximum (VBM)
and these states increase gradually with the increasing concentration of Cd for x = 0.0625
to 0.25 while the Zn 3d-states decrease slightly between -5 to -4 ¢V. The Zn 3d-states
have the maximum peak value of 57 at -5 eV. A VBM always lies in the Fermi level
having no clear shift and has a magnified spectrum between 0 to 5 eV. For a given range
of x at the bottom of the conduction band, this band shifts to the low energy range.

This shift assigns the clear variations in the electronic properties of the ZnxCd,O
alloys. The bottom of conduction band comprises the Zn 4s-states and O 2p-states where
the Zn 4s-states are dormant. The O 2p-states have the maximum value of 10 at about -1
eV. There is high orbital hybridization between Zn 3d- and O 2p-states at about -5 eV
causing a huge decrease in the band gap (BG) of ZnO. An increase in the Cd
concentration increases the s-states and these states go on becoming stronger and stronger
resulting in the shift of the conduction band and the narrowing of the band gap due to the

increase in X.
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Figure 5.7 - My total density of states (TDOS) of Zng 14Cdo2+0 in the ZB phase in the WC GGA
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5.2.1.2.3. Band Structure

The band structure of the Zny75Cdo2sO alloy in the ZB phase was calculated by
WIEN2k in the Wu-Cohen GGA. We found a band gap of 0.2 eV at the Fermi energy Er
that is less than that of pure ZnO due to the doping of Cd at 25% as shown below:
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Figure 5.8 - My band structure of ZngsCdo1s0 in the ZB phase in the Wo-Cohen GGA
5.2.1.3. Optical Properties
5.2.1.3.1. Dielectric Function

The dielectric function helps us determine the optical properties of the system,
The imaginary part £x() of the dielectric function with the peak value of 2.9 increases
from 9.5 to 14.5 eV and then sharply decreases after it. The real part £y(w) of the
dielectric function has a maximum value of 3.75 at 1.5 ¢V. Then slightly decreases from
1.5 to 7.5 eV and then quickly decreases after this range for x = 0.25 as shown in Figure
59:
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Figure 5.9 - (a) My Imaginary part €;(@) of the diclectric function for Zny;5Cdp 50 in the ZB phase
in the Wu-Cohen GGA scheme and (b) Real part £,(t) of the diclectric fonction

5.2.1.3.2. Joint Density of States

The excited state spectra may be expressed as the joint density of states (JDOS)
between the valence and conduction bands of the material. The JDOS increases from 10-
15 eV over the low energy range and then sharply decreases after it. [ts maximum peak
value is 3.8 at 15.2 eV.
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Figure 5.10 - My joint density of states (JDOS) spectra for Zng;sCd,+0 in the ZB phase

5.2.13.3. Conductivity

The following figure describes the effect on the conductivity C of the
Zno7sCdoasO alloy. We see that the Cd incorporation x is faint in the low range of the
energy while the conductivity having a maximum peak value of 3.4 Qlem™ at 15.1 eV

quickly reduces above 15 eV corresponding to a change in £;(®).
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Figure 5.11 . My conductivity spectra for Zn, sCds 25O in the ZB phase in the GGA
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5.2.1.3.4, Energy Loss Function

Figure 5.12 shows the energy loss function L that represents the energy loss of a

fast electron navigating in Zng 75Cdo250 in the ZB phase. The peak values of 1.95 eV at

20.5 eV and 1.3 eV at 27 eV in L describe the plasma resonance peak assigning the

points of the transition from the metallic property to the dielectric properties for
Znp 75Cdo250. The doping of Cd for x = 25% in ZnO persuades the blue shift of 20.3 eV

peak with a high fall in the spectra of the energy loss function.
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Figure 5.12 - Calculated energy loss fonction spectra for Zng;sCdy <O in the ZB phase in the Wu-

Cohen GGA scheme

5.2.1.3.5. Refractive Index

The refractive index n of the Zng75Cdg2s0O alloy in the ZB phase helps in
modeling and designing devices exactly, We see in the following figure that n enhances

in the low energy range indicating a decrease in the band spacing of Zng75Cdp250. It is

due to the doping of Cd into ZnO which may lift up the s-states in the conduction band

concluding an increase in the optical transition between the highest valence and the
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towest conduction bands in Zng 75Cdy2s0. The maximum value of n comes out to be 1.2

at about 15.3 ¢V and the corresponding peak concerns with the optical transition close to
the band gap as shown below:

n {arb. units]
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Figure 5.13 - My Refractive index spectra for Zng;4Cdy 250 in the ZB phase in the Wu-Cohen GGA
scheme
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Table 5.2 - Measured valnes for Zn) ;sCd, 250 in the ZB phase by the Wu-Cohea GGA scheme

Recent Research Work
Zng75Cdo1s0
ELEMENT SYMBU%';T“ ITH THIS WORK OTHERS WORK
Scheme GGA Wu-Cohen GGA
Phase ZB Zincblende
Space Group SG 215, P-43m
. n= 1.78
Mufhe- Tin Ryr  (au) cd=1.78
0=1.58
Optimal Volume Vo (au)’ 705.22
Lattice Constant a (A) 4.72
Bulk Modulus B, {GPa) 129.19
Derivative of Bulk .
Modulus B, (GPa) 4.52
Optimal Energy Eo (Ry) -22565.92
Band Gap BG/E; (V) 0.2 0.13 [152]
Real Part of DF = &){®) 37at1.3eV
Dielectric
Function Imaginary Part = £,() 29at14.5eV 273at12eV [152)
T4at103eV [153]

Total Density of

TDOS (¢ states/eV)

Cd4d =27 at-6.7eV

Zn3d=34at-54 eV

Cd4d=57at-8.3 eV
Zn3d=86at-6.2 eV
O2p=28at-1eV [152]

States Cdad=112at-93 eV
02p=105at-0.5¢V | Zn3d=99at-9.5¢V
0 2p=7.2 at -5.7 eV [153]
foint Density of | 1pos (¢ statestev) 38at15eV
Conductivity ) S4atl5 eV 13a166¢V [152]
E'l‘f’gy Loss L (V) 195at21 eV 196at127eV  [152)
unciion
Refractive Index n 1.2at153 eV 248 at0.02 eV [152])
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5.2.2. ZngsCdys5o0 Alloy
5.2.2.1. Structural Properties
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Figure 5.14 - Volume optimization for the Zngs/Cdo50-ZB in the Wu-Cohen GGA

5.2.2.2. Electrical Properties
5.2.2.2.1. Charge Density

We computed the volume charge density for the Zng75CdoasO alloy in the ZB
phase along the (110) plane applying the Wu-Cohen GGA scheme shown in Figure
5.15(a). Figure 5.15(b) gives the contour plot for Zng 50Cdg 5O indicating the collection
of electrons along the Zn-O and Cd-O bonds and deflect towards the O atom due to
electronegativity differences among Zn, Cd and O atoms, The O atoms bond covalently
with both the Zn and Cd atoms with strong ionic character such that the Zn-O and Cd-O
bonds are almost equally stronger. Both the figures are combined in Figure 5.15(c).
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Figure 5.15 - (a) My 3D plot of Zn; 5,Cdy.50 in the ZB phase for the electron density p(r) at plane (110) in
the Wu-Kohn GGA scheme, (b) Relevant contour plot and (<) Combined 3D and contour plots
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5.2.2.2.2. Density of States

The density of states (DOS) is computed for watching bonding character and
hybridization in the Znp 50Cdo s00-ZB alloy. This bonding character provides the metallic
behavior. The Zn d-states have maximum peak value of 62 at -5.7 eV and that of the O-p
states is 17.5 at -0.3 eV. No orbital hybridization occurs between Zn 3d- and O 2p-states.
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Figure 5.16 - TDOS of the Zny5CdosO-ZB alloy in the Wu-Coben GGA scheme
5.2.2.2.3. Band Structure

The band structure of the Zng 5¢Cdg 500-ZB alloy was computed by the WIEN2k
program applying the Wu-Kohn GGA scheme. We determined an overlapping of the
valence and conduction bands at the Fermi energy Er, which shows that Zng50Cdo 500

possesses metallic properties as shown in Figure 5.17:
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Figure 5,17 - Band structure of the Znys,Cdy50-ZB alloy in the Wu-Coben GGA scheme

5.2.2.3. Optical Properties

5.2.2.3.1. Dielectric Function

The optical properties of the Zngs0CdosyO-ZB alloy are determined by the
dielectric function. The imaginary part (@) of the dielectric function has a maximum
value of 2.5 at 5 ¢V and then falls immediately after it. The real part & (@) of the
dielectric function has the maximum peak value of 3.7 at 2 ¢V and then quickly decreases

after it for x = 50% as shown in Figure 5.18.
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Figure 5.18 - (a) My Imaginary part e,(®) of the dielectric function for Zn, s Cdos0 in the ZB
phase in the Wu-Cohen GGA and (b) Real part g,(w) of the dielectric function
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5.2.2.3.2. Conductivity

Figure 5.19 expresses the effect on the conductivity C of the Zngs5¢Cdo50-ZB
alloy. We find that the Cd impurity x is apparent in the low energy range. Its maximum
value is 1.6 Q'cm™ at 30 eV. It slightly increases from 5-30 eV and then quickly

decreases over 30 eV corresponding to the deviation of £;(®).
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Figure 5.19 - My conduetivity spectra for the Zn, Cd, 50-ZB alloy in the Wu-Colien GGA

5.2.2.3.3. Energy Loss Function

The energy loss function L that describes the energy loss of a fast electron passing
through Zng 50Cdo 500-ZB. The peaks of 1.18 eV at 5.6 ¢V and 1.0 eV at 12 ¢V in L are
the plasma resonance peak assigning the points of the transition from the metallic
property to the dielectric properties of the system, The doping of Cd for x = 50% in ZnO
causes a blue shift of 30 €V peak with a higher decrease in the loss function spectrum as
expressed in Figure 5.20.
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Figure 5.20 - My energy loss function spectra for the Zny.sCdy0-ZB alloy in the GGA
5.2.2.3.4. Refractive Index

The refractive index n of the Zngs0Cdys00-ZB alloy helps in sculpting and
manipulating instruments precisely. We see in the following figure that n enhances in the
low energy range indicating a decrease in the band interval of the system. It is because of
the doping of Cd into ZnO which may lift up the s-states in the conduction band resulting
in an increase in the optical transition between the uppermost valence band and lowest
conduction band in the Zng 50Cdg 500-ZB alloy. The maximum value of n comes out to be
-0.1 at 5.5 eV about and the equivalent peak is linked with the optical transition close to
the band spacing.

Figure 5.21 - My Refractive index spectra for ZryCdysO-ZB in the Wu-Colen GGA scheme
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Table 5.3 - My statistics for Zng5CdesO-ZB in the Wu-Cohen GGA scheme

Contemporary Resecarch Work
Zn9.50Cdo50-ZB Compound
ELEMENT SYMBOL WITH UNIT THIS WORK OTHERS WORK
Scheme GGA Wu-Cohen GGA
Phase ZB Zincblende
Space Group SG 115 P-43m
. Zn= 178
Mufhe-Tin Rur  (aw) Cd=1.78
0=1.58
Optimal Volume Vo (au)’ 383.90
Lattice Constant a (A 4.34
Bulk Modulus B, (GPa) 119.92
Derivative of .
Bulk Modulus B, (GPa) 4.20
Optimal Energy E, {Ry) -15082.57
Band Ga BG/E, (V) 0.09 1.65 [133]
P ; ' 0.0 [154]
Diclectric Real Part of DF = g(®) | 365at2.2eV
Function Imaginary Part = ex(@) | 251496V | 5.3at9.7 eV [153]
Zn3d =60 Zn3d=72
. at-58ev at-9.1ev
T°ta’stt):t‘;2"” of | 1DOS (¢ states/eV)
02p=16 02p=66
at-17 ¢V at-5.6eV [153]
Joint Density of .
States JDOS (e states/eV)
Conductivity C @'cm™) 1.6at31 eV
Energy Loss
Function L (V) 1.18at5 eV
Refractive Index n -2.8at283 eV
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5.2.3. leo,zsto,‘;so Alloy
5.2.3.1. Structural Properties
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Figure 5.22 - Volume optimization for the zine blende Zn;sCde+s0 compound

5.2.3.2. Electronic Properties
5.2.3.2.1. Charge Density

We computed the volume charge density for the Zng75Cdo2sO alloy in the ZB
phase along the (110) plane applying the Wu-Cohen GGA scheme shown in Figure
5.23(a). Figure 5.23(b) gives the contour plot for the Zng25Cd, 750 alloy indicating the
collection of electrons along the Zn-O and Cd-O bonds and deflect towards the O atom
due to electronegativity differences among Zn, Cd and O atoms. The O atoms bond
covalently with both the Zn and Cd atoms with strong ionic behavior such that the Zn-O
bond is weaker than Cd-O one. Both the figures have been combined in Figure 5.23(c).
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Figure 5.23 - (a) My 3D plot of Zng;sCd, 750 in the ZB phase for the clectron density p(r) at plane
(110} in the Wu-Cohen GGA, (b) Relevant contonr plot aad (¢) Combined 3D and contour plots
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3.2.3.2.2. Density of States

The density of states (DOS) is computed for analyzing the bonding character and
hybridization in zinc blende ZngsCdo7s0. The bonding character offers the
semiconducting behavior as shown in the figure below. The maximum peak value of the
Zn-d states is 44.7 at -4.8 ¢V while that of the O-p states is 44.5 at -2 ¢V. There is
negligible orbital hybridization at -0.49 eV between Zn 3d- and O 2p-states which had no
effect on the band gap (BG) value of Zng 50Cdp 500 due to increase in x.
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Figure 5.24 - My computed total density of states (TDOS) of the zinc blende ZagsCdy 150
compound in the Wo-Cohen GGA scheme

5.2.3.2.3. Band Structure

The band structure of the zinc blende Zng:sCdp 750 alloy was determined by the
WIENZk program applying the Wu-Cohen GGA scheme. The valence and conduction
bands overlap at the Fermi energy Er in the GGA scheme due to the doping of Cd at 75%
in ZnO showing that the Zny2sCdo7sC alloy is of the metallic nature according to Figure
5.25.

102




8.0
70 3
60
30
10
30
20
10
00
-1.0
20
+30 5
-0

.slo o
— _\.‘__:-:

=

Energy (eV)

4.0 _
3.0 e s
50 2
£.0
-10.0 3
1.0
12,0
-13.0

HORF—X T AXZMT<ZIT T
Symmetry Points

Figure 5.25 - My computed band structuve of the zine blende Zug,5Cd;50 compound in the Wa-
Coben GGA scheme

5.2.3.3. Optical Properties
5.2.3.3.1, Diclectric Function

The dielectric function helps us determine the optical properties of the zinc blende
Zny25Cdg 750 compound. The imaginary part &) of the dielectric function increases
slightly in the energy range of 9-14.7 ¢V. It has the maximum value of 2.83 at 14.6 ¢V
and then falls immediately after it. The real part £(®) of the dielectric function has the
extreme value of 3.77 at 1.5 eV and then quickly decreases after it up till the minimum
value of -0.8 for x = 75% as shown in Figure 5.26.
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Figure 5.26 - (a) Imaginary part ¢;(w) of the dielectric fanction for Zn5Cd, 750 In the ZB phase In
the Wu-Cohen GGA scheme and (b) Real part e,(w) of the dielectric fanction
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5.2.3.3.2. Joint Density of States

The excited state may be expressed as the joint density of states (JDOS) between
the valence and conduction bands of the zinc blende Zng2sCdp7s0O compound. The
maximum peak value of the JDOS is 3.5 at 14.5 ¢V. Then it slightly increases from 9-
14.5 eV in the low energy range and then sharply decreases afier it for x = 0.75 as in the
following figure:
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Figure 5.27 - My joint density of states (JDOS) for the zinc blende ZnesCdo7:0 compound in the
Wuo-Colen GGA scheme

5.2.3.3.3. Conductivity

Figure 5.28 describes the effect on the conductivity C of the zinc blende Zny3z5Cdo 750
alloy. We see that the cadmium (Cd) concentration X is invisible in the low energy range.
The conductivity slightly increases from 9-15 eV and then quickly decreases after it with
respect to the variation of £, (). The maximum peak value is 5.2 at 14.7 eV as displayed
in Figure 5.28;
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Figure 5.28 - My computed conductivity for the zinc blende Zn ;sCd.2s0 alloy in the WC GGA
5.2.3.3.4. Energy Loss Function

The energy loss function L describes the loss of energy when a fast electron
moves in the zinc blende Znp2;Cdo 75O alloy. The peaks of 1.65 eV at 13.7 eV and 3.85
eV at 29 eV in L are the plasma resonance peaks assigning the points of the transition
from the metallic property to the diclectric properties of the system. The doping of Cd for
X = 75% in ZnO induces the blue shift of the 29 eV peak with a slight decrease in L as

shown in the following figure:
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Figure 5.29 - My computed energy loss function for the zine blende ZngsCd, ;50 compound in the
Wu-Cohen GGA scheme
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5.2.3.3.5. Refractive Index

The refractive index n of zinc blende Zng25Cdy 750 alloy helps in modeling and
designing devices exactly. We analyze in the following figure that refractive index n
enhances in the low energy range indicating decrease in band gap of the system. It is due
to the doping of Cd into ZnQO which may raise s-states in conduction band resulting in
increase in optical transition between the uppest valence and the lowest conduction bands
in Zno35Cdo7s0. The maximum value of n comes out to be 1.35 at 15 eV. The peak
relates to the optical transition near the band gap.
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Figure 5.30 - My computed refractive index speetra for the zinc blende ZngsCdp7s0 compound by
the Wu-Cohen GGA scheme
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Table 5.4 - My data for tbe zinc blende Zny2:Cdp 740 compound in the Wu-Kohn GGA scheme

Current Research Work
Zng35Cda7:0-ZB
ELEMENT S ”“‘BU%‘T“‘ ITH | TS WORK | OTHERS WORK
Wu-Cohen
Scheme GGA GGA
Phase ZB Zincblende
Space Group 5G 215, P-43m
. Zn= 178
M;Td‘;g‘“ Rur  (an) Cd=178
0=1.58
Optimal Volume Vo {(auy £20.10
Lattice Constant a (A 4,96
Bulk Modulus B, (GPa) 118.70
Derivative of .
Bulk Modulus B,  {GPs) 3.95
Optimal Energy _ E.  (Ry) -37764.39
Band Gap BG/E, {eV) 0.0 1.28 [153]
Dielectric Real Part of DF =¢g;(w) | 3.77 at L.5eV
Function | 11vaginary Part=g{w) | 2.8at142eV 2.7at9.3 ¢V
Cd4d=48 Cd4d=3.7at-10.4eV
at-7eV
Total Density of . Zn3d =36 In3d=38at-8.4¢eV
States TDOS (¢ states/eV) at -6 oV
02p=17 O2p=3.74at-62¢V
at-1.5¢eV [153)
Joint Dersity of | 1pos (e statesteV) | 3.45a14.3 eV
Conductivity C (Q'em™) 52at14eV
Energy Loss
Function L (eV) 385at28eV
Refractive Index n 1.35at15eV
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5.3. CONCLUSIONS

We applied the FP-LAPW method under the DFT to investigate the structural,
electrical and optical properties of the Zn).,Cd,O tertiary compounds in the zinc blende
(ZB/B3) phase fabricated from zinc oxide (ZnO) by its doping with cadmium (Cd) under
the GGA scheme, especially the Wu-Cohen GGA scheme by considering the 3d-states of
zinc (Zn) as the valence states of the electrons.

The first-principles formalism was applied to investigate the mentioned properties
of the ZnO binary compound and the Zn;xCdyO temary alloys. We find that the
structural parameters are in nice accordance with the experimental results. The values of
our calculated band structure are in good agreement with the experimental and theoretical

calculations.

Our calculated value of the volume optimization V, = 23.5 (A)’ computed by the
Wu-Cohen GGA is 5.47% and 4.66% less than the theoretical and experimental values of
24.86 and 24.65 (AY respectively. The lattice constant a = 4.54 A is 1.94% and 1.73%
less than the theoretical and experimental ones as 4.63 and 4.62 A respectively, which is
very accurate. The corresponding value of the bulk modulus B, = 156.36 GPa is 16.92%
~ greater than the theoretical value of 133.73, and its derivative B, = 4.83 GPa is 0.83%
larger than the theoretical value of 4.79 GPa for ZnO, which are in enough accordance
with the theoretical results. The density of states (DOS) and the corresponding direct
band gap (BG) of 0.62 ¢V which is 4.61% and 81.98% less than the theoretical and
experimental values of 0.65 and 3.44 eV respeciively, very close to the theoretical value
reveal that ZnO is a semiconductor.

We also observe that the lattice constant ¢ in the Zn, ,Cd,O compounds went on
increasing with the increase in the concentration x of Cd while the bulk modulus was
monotonically decreasing and its derivative as well. As we increased x from 25% to 75%
in the ZnQO compound, the band gap of the Zn;.,CdxO compounds decreased from (.62
eVio0.0eV.
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Then we studied the electron charge density p(r), DOS and BG of the Zn;xCdxO
alloys to observe the bonding character and orbital hybridization. The bonding character
of Zn.,Cd;O alloys revealed that the Zng75Cd2sO alloy possesses the semiconductor
behavior while the BG indicates that the Zno s0Cdy 500 and Zny25sCdyg 75 alloys are metallic
in nature. The orbital hybridizations happen in the Zn;.CdxO compounds.

In the optical analysis of the Zn;.xCdyO alloys, we found that the imaginary part
of the dielectric function first decreased for x = 50% and then increased for x =75% with
the increase in the energy with respect to the increase in x while the real one happened
correspondingly; the total density of states (TDOS) first increased for x = 50% and then
decreased for x = 75% shifting the curves towards the low energy range; joint density of
states (JDOS) decreased with the decrease in the energy; the conductivity felt down for x
= 50% and then enhanced for x = 75% with the fall of the cnergy; the energy loss
function decreased for x = 50% and then enhanced for x =75% with an increment in the
energy; and the refractive index increased first decreased for x = 50% and then increased

with the decrease in the energy.

The optical transition between the uppermost valence band and the lowest
conduction band was found to be shifted to the low energy range with the increasing
concentration x of cadmium, Also, the Zn;_,CdO compounds proved metastable
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