Value-Based Software Architecture Knowledge
Management

Developed by:

Nida Ahmad
Reg # 132-FAS/MSSE/F06

Supervised by:
Dr. Naveed lkram

Co. Supervised by:

Mr.Muhammad Usman

Department of Computer Science
Faculty of Basic and Applied Sciences

b

International Islamic Unive gltys
(2009) /¢

CENTRAL

LiIbRARY
3% ISLAMABAD.

INJI293IW LSOW FH.L
ANFOISINIE LSOW FHL
HVYITVY 40 IWVYN FHL NI

,,,,,, wuscu wupware Architecture Knowledge Management Final Approval

International Islamic University, Islamabad
Faculty of Basic and Applied Sciences
Department of Computer Science

Dated: 28-03-2009

FINAL APPROVAL

It is certified that we have read the thesis submitted by Nida Ahmad Reg No. 132-
FAS/MSSE/F06. 1t is our judgment that this thesis is of sufficient standard to warrant
its acceptance by the International Islamic University, Islamabad for the degree of Master
of Science in Software Engineering.

Committee

External Examiner 4
Dr. Arshad Ali Shahid w
Associate Professor, ~

Chairman, Department of Computer Science,
FAST-NU, Islamabad.

Internal Examiner
Mr. Usman Nasir P
Lecturar, =

Department of Computer Science,
Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad.

Supervisor
Dr. Naveed Ikram - AN\
v N

Associate Professor,

Department of Computer Science,

Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad.

Co-Supervisor
Mr. Muhammad Usman ,!ﬂ/
!

Lecturar,

Department of Computer Science,

Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad.

Value-Based Software Architecture Knowledge Management Dedications

Dedicated

To my Dear Parents
Who are an embodiment of diligence and honest,
Without their prayers and support
This dream could have never come true.

Also to my beautiful,
Extraordinary Daughter Hiba,
Who makes everything worthwhile,
And to whom I love the most.

ii

Value-Based Software Architecture Knowledge Management Dissertation

A Dissertation submitted as
Partial Fulfillment of Requirements
For the degree of Master of Science in

Software Engineering

Value-Based Software Architecture Knowledge Management Declaration

DECLARATION

I hereby declare and affirm that this thesis neither as a whole nor as part thereof has
been copied out from any source. It is further declared that I have completed this
thesis and accompanied software application on the basis of my personal efforts,
made under the sincere guidance of my supervisors. Where as necessary references
and acknowledgment has been made. If any part of this report is proven to be copied
out or found to be a reproduction of some other, I will stand by the consequences.
No portion of the work presented in this report has been submitted in support of an
application for other degree or qualification of this or any other University or

Institute of learning.

Nida Ahmad
132-FAS/MSSE/F06

Value-Based Software Architecture Knowledge Management Acknowledgement

ACKNOWLEDGEMENT

In times of acknowledgement all too often we forget the one who is behind it all Allah.
The author deepest gratitude and appreciation goes to Almighty Allah who gave her

power and wisdom to work and plan with full devotion.

The author expresses her most sincere appreciations to Mr.Muhammad Usman
Co.Supervisor/Lecturar (11U]), for his invaluable guidance and endless support during the
research. Thanks are due to Mr.Muhammad Usman for suggesting the topic. He gave her
full support whenever she needed and showed his personal interest in this research.
Mr.Usman’s supervision and suggestions at all stages of the work made this report

possible.

With a debt of gratitude, this cannot be adequately expressed in words, the author thanks
to Dr. Naveed Tkram Supervisor/Associate Professor (IIUI), for his advice, guidance and
encouragement. His practical and sharp vision in research has been invaluable for
author’s work on this thesis. Dr. Naveed’s supervision and insightful comments at all

stages of the work made this report possible.

The author wishes to extend her deep appreciation towards her family members
especially her parents and parents-in law who did their best to make the world a better
place for the author. For their inspiration, love and endurance, the author thanks them and

expresses her everlasting love and gratitude.

Lastly, the author is deeply indebted to her husband, Salman Alam, who gave her an
unconditional support and love through all this long process. It would not have been
possible to write this thesis without his support and wonderful advice. Thanks for the
encouragement, patience, support and for always believing in me. Thank you for being

my best friend and a great husband.

Value-Based Software Architecture Knowledge Management Thesis In Brief

THESIS IN BRIEF
Thesis Title: Value-Based Software Architecture Knowledge Management
Organization: International Islamic University, Islamabad, Pakistan.
Objective: The objective of this research work is to improve efforts of tool

support for managing, sharing and storing architectural knowledge.

Undertaken By: Nida Ahmad

Supervised By: Dr. Naveed lkram (Associate Professor)
Mr. Muhammad Usman (Lecturer)
Department of Computer Science,
Faculty of Basic & Applied Sciences,

International Islamic University, Islamabad.

Started On: February 2008

Completed On: March 2009

Research Area: Managing, Sharing and Storing Architectural Knowledge.

Tools:; ADDSS, PAKME,AREL-Tool-Set,Archium,Knowledge Word
Plug-in,MySQL,Enterprise Architect..

vi

Value-Based Software Architecture Knowledge Management Abstract

ABSTRACT

Proper management of architectural knowledge (AK) is essential in order
to reduce high evolution and maintenance costs and to avoid architectural
erosion. Architecture Knowledge 1s an important piece during the
architecting process that must be explicitly documented. Researchers have
proposed different tools and techniques for managing, sharing and storing
architectural knowledge, but practitioners are reluctant in applying such
tools and techniques because of certain inhibitors such as extra time and
effort required, unclear benefits for documenting AK etc. To deal with
such inhibitors, there is a need to manage architectural knowledge in a
value based manner. This thesis describes a Value-Based approach for
managing architectural knowledge. Value-Based approach takes into
account value consideration of stakeholders and only documents the
information required by stakeholders.In this thesis, a web-based tool is
described which is able to manage, share and store AK in a value-based
manner, The main work is the application of Value-Based Software
Engineering principles on an existing tool. Moreover, it also describes
some other features implemented to an existing tool which are missing

from that tool found during the survey.

vii

Value-Based Software Architecture Knowledge Management Tabie of Contents

Table of Contents

FINAL APPROVAL...ccitiiianeinsisssssississnacnisisssissssssssasssssssasisssssssssassarasastassssnsasssssesassasasss i
DEDICATIONS ..coiiiriiinniiroscensissesmsassssssssssossosasasssssssasssssssessssassssssstsssnstnsassassnssorssnssrssssns ii
DISSERTATION ouociiveiriessisascsssiossosmsssssssssssresnossassrssssasssssssssssssasssssasssssssassssassassssssssassasse iii
DECLARATION....... . SeesessssserarshIEeeREsasLaNs i dassre S S EeSAs bR RS AT e eRaRaRe s e R RS SRR s e iv
ACKNOWLEDGEMENTcoconiiicianiisssinisnmssmssensemmsmssssersstsassssessssssasnrssssssssnassasssssssssonss v
THESIS IN BRIEFccoiiiiiininrnseearsccssssstssssinmmrscssstissssssssnassosssssssssssnsassisssssanssssssssassanns vi
ABSTRACT couierivesncensassrassssssessossossrons troestssaseinratertesasaas bt r At r et s e st edasbas RS R s R errese vii
Table Of COMEIS vurereerveiieresinnsersssrcnssnsariossssssassssaosenessrnesaressarsessesessasssensnassssssanssssssssssans viii
List of Figures....c.ccceecnsnna. rereesMEeEiEeraeeree Lo i SN et L e aaseeeaea et EReTER R S rNTTIRSRSe SRR Ee bR L baeE xi
List of Tablescinicninirisnrrisisssnsinnnsienissiie eneressasnisesassssasressansssenes xii
CHAPTER 1 coreniiricecseriisnsesssrissasissmsssssissssnossssnnissossssssssssnisnssssasasassssnsssssssassssssastsssssanss 1
1. INTRODUCTION...cociicrinmsersnmaisasssssssonsosissssassassassssressassssssssassrossasansonssresassayrncs 1
1.1 Software ArChItECIUTE ...c.ooeiviice e et s 1
1.1.1 Architectural Knowledgecovvrionciiiirirnnnen i 2
1.2 Architectural Knowledge Management and its importance.cco.occecevmeuenens 5
1.3 PIOBICIIIS L.vvvieieeieir sttt e s e s s n e e 6
1.4 Sub-discipline in Architectural knowledge: Tools and techniques.................. 8
1.5 Inhibitors in managing architectural knowledge.........ccccoviemvrnimniiincnneenne. 8

1.6 Value-Based Software Architecture Knowledge Management and its
INIPOTTAIICE. ...ttt et ese e e e s s et e se s eaesa s s a e n e sas eesonssanssranssasensaranas 10
1.7 ReSearch Problemoovveoiecreieneeneeiseie et e erae e an e eeen s 11
1.8 Research MethodOLOZY ..cccoeiveeveveveieciiinicceccvcrsis st 12
1.9 SUIVEY OULCOITIESeevvereerieisiree e cceteeer e srar v earesaeaesesereesibasas sesanesvasesiasesrssnsanas 13
1.10 Thesis COnribULIONS ...coceiiieiirccreeierceete st ecsr s ser e et a s se s sse e s e 13
.11 ThesisS OULHNE ...cccovviiueeeicverienceene e se s eccesan e se e se e s s ssn e e nesnerbaseas 15
CHAPTER 2uiireeiveisssstsssssicnnencessssstissssssssssssssssssissssnasstssassansssossessnnanssns sasassasssssesssn 16
2. LITERATURE SURVEY AND ANALYSIS OF TECHNIQUESccoec.. 16

viii

Value-Based Software Architecture Knowledge Management Table of Contents

2.1 Review of Existing Techniques / Frameworks / Method /Approach............. 16
211 Decision Goal and Alternatives DDR Framework (DGA-DDR).......... 16
2.1.2 COVAMOF Framework [Variability Modeling Principles to Capture
Architectural Knowledge]......o..ocveererereieicrecennecete et ens 17
213 METHOD [Flag, Filter, and Form]......cccocmmemninccninriinncnnn 19
2.14 Derivational Analogy: An approach for Capturing and Replaying
Architectural Knowledge. ..ot 21
2.15 Extensibility Approach [Exploring Extensibility of Architectural Design
DIECISIONS]vvvvrereenieetesnee e seereas et st e s et e sase s se st e st nasn e e e bhsanessmrsabasnsassrbasssabiaes 22
2.1.6 Using Patterns to Capture Architectural Design Decisions................... 23
2.1.7 A Value-Based Approach for Documenting Design Decisions Rationale
(VB-DDRID).co.eoooeeeeeeeeesereommeeseeeseeesesstessemessesssssssssssssesersssseeseses s sesssssasessssns 25

CHAPTER 3.ttt nncsissessssssssssisssssssasssssssssssssessassosssssnssssssssssessesssssonas sessesansenasas 27
3. LITERATURE SURVEY AND EVALUATION OF TOOLSccccoevernvenene 27

3.1 Evaluation Criteria for existing t001S......cceoemimimnensnniic e 27

3.2 Review Of EXiSNE TOOIS. ... v icimirrrieiirrersessrtnrseeeseence s essa e st seeseaseaessnsnes 31
3.2.1 PAKME (Process-based knowledge management environment).......... 31
322 ADDSS (Architecture Design Decision Support System).....cc.....o...... 35
323 ARCHIUM.....cooiiiiiiiitciee et ss s e sss s et beasas e e 38
3.24 KNOWLEDGE ARCHITECT WORD PLUGIN..........ccccviniiiiniinnns 4]
325 AREL (Architecture Rationale and Element Linkage).......cccccoonii. 44

3.3 LIMITALIONS ceeuterireevecetetenseetesesesesteraeesaessessrerses e anas e st eesrnsnesenessomnesanasemeensesain 54
3.3.1 PAKME Limitationsccceviisierierieicsiiesrmnesnrnrssesscnensssessesessssssnssssassnes 54
332 ADDSS LIMItationscoeecoeeiieneecicecaecnrinrasnessesesesesecseerssessmseessssssssaes 55
333 Archium Limitations.........coceeimrieciiiciiresnrrsnesee e esssnes s ssssssssssranss 55
334 Knowledge Architect Word Limitations.........ccoceeeereremennvicisiesicenrenenins 56
3.3.5 AREL LIMItatIONS .ov.vveieeeeeeeeeircteeesneertesseceresses e s saesesseessssaomsesesssnes 57

CHAPTER d...ciiiiiiiiiisiiisinannissssiesisnissstissatssssssssnsssnsssasesssnsssassssssasssssnnanssssssssssrssosssorsassss 59

4. VALUE-BASED SOFTWARE ARCHITECTURE KNOWLEDGE

MANAGEMENT TOOL u..riiieniisiasissssonnisisresassssisrsessssessasssmssssssassasisastisasarassssssse 59
4.1 FRALUTES.....ecceiceriecre ettt r e caas s e s b e s et e s e s ean s n e snnnnas 60
4.1.1 Support of Value-Based Sofiware Engineering Principles................... 60

Value-Based Software Architecture Knowledge Management Table of Contents

4.1.2 Provide catalogue of architecture and design tactics.......covvveceeeeennnis 73

413 Differentiates the functional requirements and non functional

TEQUITEIMIENES 1. v vuerereeiree st taeeaee b e bt eer st as s e bbb s asabe s eeas s aeasevessanssnbennnansans 75
4.14 Capture and present scenarios (general and CONCIee)ooveuerreenreennnnas 76
4.1.5 Captures principles.....c..co it 77
4.1.6 Captures ATHFACEScocovveiieicreene et 78
4.1.7 Captures architectire Patterns......coocvieieeernicscnriins s et ensesessensaas 79
4.1.8 MUILIPLIE VIEWS.cocoiiiiiiiriiiieeiacienren e et eesiessrren e sae s st sa s st 80
419 Categorizes risk and non risks for decisions........ccocovrviivrnnniinnennnn. 81
4.1.10 Other FEatures.......ceovcrueriieereersnerenisiarcvenssisicsnsisessasasessasasrassesersseeas 81

4.2 Evaluation of Value-Based Software Architecture Knowledge Management
B00L. . oo ettt ettt ne e e sas s e aeer s eae s et snea b s et R peassaneas 82
CHAPTER 5.uirrrrneiisinrecsssisiimessssssstnsmssasssssimsssssnssississsrssnssssssisasssnasssssonssssssonsatosstnnsesss 89
5. CONCLUSION AND FUTURE WORKoivimrrissesrinmrinsssssssssssisnssssssressanes 89
5.1 SUMNIALIY . ereeveeieeverrenes et saseiae s ass s et e e anee s shbe e sraae s e a e s ssneabassraes 89
5.2 CODIIIDULIONS. c..oe et re et e e v e e er g e sen b sesmree s r e s e b 90
5.3 LIMELALIONS 1irtieiiieiirereieasreeerancsse s inseeecsmreseerseeesesant st sreennasbe s crabssssesssssesanns 95
5.4 FUUIE WOIK ..oooviiiiiiiciiceeie ettt s e sen e e e s ens bt sn s s st ens 95
APPENDIX-A ... otitimrrciissinienscsiisssimmsssissssssisssssssssssassssissasansssssassssasssonnessssbnorassensassssessnss xiii
Al GlOSSATY criveercsssrerisssrssssnsissrsssacsssssasessesssnssssssasessrasasssssssssnsssssssasssssssssssnssansssassins xiii
REFERENCES & BIOBLIOGRAPHYuuuciineiciisiisnnsenssorisssssnsssssnersenssssssesssessnanassssns xiv
ABOUT AUTHOR.....coimeceinrecccsscsriorisessssssssasssressansissssssessssestassssssssesssrsssssssessassassas xviii

Value-Based Software Architecture Knowledge Management List of Figures

List of Figures

Figure 4.1: Identifying success critical stakeholders...................l 65
Figure 4.2: Rating of design decision attributes...................oool, 66
Figure 4.3: Selecting design decisions attributes ..., 69
Figure 4.4: Recording of design decisions..........cocoiiiiiiiiiiiiiniiinnnn 70
Figure 4.5: Report criteria for design decisions.............ooovveivieinnininnn. 71
Figure 4.6: Design deciSion report........cooiiiiiiiiiinininiiiii i eieea s 71
Figure 4.7: Template for recording tactics.......cooovviiiiiiiiiniiniiiiinnnnns, 74
Figure 4.8: Catalogue of tactics..cc.oooviiiiiiiiiiiii i s 74
Figure 4.9: Showing requireéments tYPe .coouvriiiiiiiiiiii i ciaeeeaees 76
Figure 4.10: Capturing SCENATIOS .oovviuieiiiiiininntini it eaesreesieaerianns 77
Figure 4.11: Capturing principles ..o 78
Figure 4.12: Capturing artifacts.......cooooviiiiiiiiiiiinni e, 79
Figure 4.13: Catalogue of architectural patternscooieinennnn, 80
Figure 4.14: Recording multiple views with single architecture............. 80
Figure 4.15:Template for recording risks/non-risks...........ooiniinn. 81
Figure 4.16: Warning from the violations of the decisions..................... 82

xi

Yalue-Based Software Architecture Knowledge Management List of Tables

List of Tables

Table 1.1 Architectural Knowledge Attributes...ciceiiciiniiniciiisscnsssranessasosnses versesanans 3
Table 3.1 Evaluation Criteria for t0ol8 i 48
Table 3.2 Compares and Contrast the features of each to0huucrincciinnniiivssiecinnees, 49
Table 4.1 List of Used Architectural Knowledge attributesucevvssrsecciensncncusrnisannns 67

Table 4.2 Evaluation Criteria of Value-Based Software Architecture Knowledge
Management (VB-SAKM) tool.............. ©ereeesrmsestssuserstsassstsniasatassnisssustasResRRe b aarbtenarsaanry 86

xii

CHAPTER 1

INTRODUCTION

Chapter 1 Introduction

1. INTRODUCTION

In current research period, more and more things rely on software-intensive systems. The
number of systems that become software-intensive is ever increasing and so are the
demands that are put on them. This means that the quality of these systems becomes
increasingly dependent on the quality of the software. Software architectures are a vessel
which can be used to reason about the expected quality of a software system. They can be
used by engineers to predict the consequences of design decisions for an envisioned or
existing software system before such design decisions are actually implemented [1). This
means that engineers can use architectural analysis as a means to investigate which kind
of system would best fit their needs without having to implement the various candidate

systems first.

Software architecture provides a high-level abstraction of a system. It is an important area
of research in recent years because it lays the structural foundation of a system. In this
thesis the basic discussion is about one of the discipline of software architecture i.e.
Architectural Knowledge. This chapter includes research area, problems in that area,

research problems, research questions, thesis contributions etc.

1.1 Software Architecture

Software architecture plays an important role in developing high quality software
intensive system. It represents the design for describing the main parts of a software
system. Traditionally, “software architectures have been considered as a set of
interrelated components and connectors” [1]. This means that the functionality of a
software system is mainly described by means of a set of interrelated components and
connectors [2],[3]. Software architecture has become the principal means by which
requirements are transformed into a working, implemented system. Recently, research [4]
shows that the software architecture plays a significant role in organizing the complex
interactions as well as dependencies between stakeholders. Moreover, software

architecture also provides an essential artifact that can be used for reference.

Valun Racad Cofhuare dvchitarture Knowledoe Management 1

Chapter 1 Introduction

The Rational Unified Process® (RUP)[5] defines software architecture as “the set of
significant decisions about the organization of a software system: selection of the
structural elements and their interfaces by which a system is composed, behavior as
specified in collaborations among those elements, composition of these structural and
behavioral elements into larger subsystem, architectural style that guides this
organization”. Software architecture also involves usage, functionality, performance,
resilience, reuse, comprehensibility, economic and technolegy constraints and tradeoffs,

and aesthetic concerns [3].

The Perry/Wolf model of sofiware architecture defines software architecture as
“elements, form, and rationale” [6]. This model described the rationale and principles that
guide the design and evolution of software architectures. This rationale is considered
when adopting an architecture centric approach. However, the main goal for representing
architectural design decisions is to bridge the gap between software requirements and

architectural products.

1.1.1 Architectural Knowledge

Nowadays, the research trends in software architecture focus on the treatment of
architectural design decisions as first-class entities and their explicit representation in
architectural documentation [4]. From this point of view, software architecture is no
longer perceived as interacting components and connectors only, but also as a set of
architectural decisions that convey the architectural principles underlying a particular
design [4]. Software architecture is not only just a diagram but also contains architectural

design decisions, their rationales and alternatives etc.

“Architectural Knowledge (4K) is defined as the integrated representation of the software
architecture of a software-intensive system (or a family of systems), the architectural
design decisions and their rationale, and the influences of the external confext

Jenvironment” (7.

According to Kructhen[8], AK = “Design + Design decisions + Assumptions + Context”

Vealite- Raced Snfiware Architecture Knowledoe Manavement i~

Chapter 1

Introduction

1.14, Motivation[46]

1.15. Cause [46]

1.16. Context [27,28,29]

1.17. Notes [27,28,29]

1.18. Date/Versions of decision made[8,9]

1.19. Obsolete decision [8,9]

1.20. Consequences [17]

1.21. Validity of decision {8]

1.22. Related decisions[27,28,29]

2. Design Decision rationales [21]

2.1. Reasons behind design decisions

2.2, Justification for it

2.3. Other alternatives considered

2.4. Tradeoffs evaluated

2.5. Argumentation that led to the decision

2.6. Past rationales

3. Architectural ruies [8]
4. Design pattern [23]
5. Architectural views [8]
6. Architecture diagrams/images/ figures [§]
7. Architectural pattern [23]
8. Architectural tactics [23]
9. Architectural styles [8]
10. Scenarios [23]
10.1. General Scenarios
10.2. Concrete Scenarios
11. Quality Attribute [23]
12. Requirements {8,9,23,27]
13. Analysis models [23]
14. Issues [27,28,36]
15. Concerns[36]

Value-Based Software Architecture Knowledge Management

Chapter | Introduction

16. Choice[36]

17. Reference architecture 8]

18. Design options [23]
19. Design History [8]
20. Tradeoff made {23,36]

21. Architecture variation points[23]

22. Domain analysis [23]

23. Assumptions any other[27]
24. TraceLinks[46]

25. Relationships [23]

26. Ranking [23]

27. Risks/Non Risks [23]

28. Architecture environment[17]

29. Architecture description[8]

30. Stakeholder/Decision Maker Name (8]

31. Stakeholder role and responsibilities [8]

1.2 Architectural Knowledge Management and its
importance

The subject of architectural knowledge is complex and covers many issues, both general
and domain-specific. Managing and Sharing architectural knowledge is very important
issue these days and main area of my research. The software architecture community has
recently gained an increasing interest in managing, sharing and storing architectural
knowledge [15]. Management of architectural knowledge is clearly related to

management of knowledge in general. Architectural knowledge management is defined as

“Software architecture knowledge management is an approach to improving software
architecture process outcomes by introducing practices for identifying and capturing
architecture knowledge and expertise, and making it available for reuse across

projects ”.[15]

Value-Based Sofiware Architecture Knowledoe Management c

Chapter I Introduction

Architectural Knowledge consists of architectural design as well as design decisions, their
assumptions and context. It supports the development of the architectural design. During
this development, issues arise. These issues lead to architectural choices between two or
more alternatives. Bascd on rationale, engineers make a decision for an architectural
choice. Making these decisions often involves making trade-offs between quality
attributes. However, the design decisions and their underlying rationales are usually
ignored at architectural level and during the development life cycle. Existing notational
and documentation approaches to software architecture typically focus on the components
and connectors and provides less focus on documenting the design decisions and the
rationale underlying the design decisions. Architectural knowledge that is not shared
eventually dissipates, as people tend to forget it. So my problem area is how to manage,

share and store Architectural Knowledge.

The need for documenting, sharing and managing design decisions has been recognized
in recent workshops especially in workshops and conferences [4][7][16][52]. The truth
that design decisions are rarely recorded complicates architecture reconstruction. This
difficulty to recreate lost or non documented decisions is one of the main reasons to
record them. Hence, documenting AK enables not only to track the overall architecture
along the construction process, but also to support future maintenance and evolution

activities.

1.3 Problems

Problems arise if we don’t manage architectural knowledge properly are:
1. High evolution and maintenance costs {7]:
During the evolution of any software system, architecture erosion may caunse high
maintenance and evolution costs because the decisions made in the past were not
documented, and this architectural knowledge 1s vaporized.
2. Poor stakeholder communication [7] :
The stakeholders come from different backgrounds and have different concerns
that the architecture document must address. If the architectural decisions are not
documented and shared among the stakeholders, it is difficult to perform
tradeoffs, resolve conflicts, and set common goals, as the reasons behind the

architecture are not clear to everyone [17].

Value-Based Software Architecture Knowledge Management p

Chapter | Introduction

3. Limited reusability of architectural assets [7]:

It is difficult to perform architectural reuse when the architectural decisions and

their underlying rationales are implicitly hidden in the architecture.

4. Complicates architecture reconstruction[18]:

The fact that design decisions are never recorded complicates architecture

reconstruction. This difficulty to recreate lost or non documented decisions is one

of the main reasons to record them.

5. Poor traceability between requirements, architecture and implementation
[7]:

As design decisions are ignored, traceability between requirements, architectural

design decisions and architectural solutions are also ignored.

6. Precludes organizations from growing their architectural capabilities
[19]:

Existing notational and documentation approaches to software architecture

typically focus on the components and connectors and provides less focus on

documenting the design decisions that resulted in the architecture as well as the

organizational, process and business rationale underlying the design decisions [7].

7. Changes on existing teams:

Change of team member from the project also causes problem as the new member

have to rethink why this decision wga(nade.

8. Explain the rationale by which the decisions were made:

If the design decisions are not documented then we cannot explain the rationale by

which the decisions were made.

9. Efficiency of architectural processes becomes low [20]:

One of the main problems in architecture processes is the lack of capture and

access to knowledge underpinning the design decisions and the processes leading

to those decisions. This causes the efficiency of architecture process low.

10. Difficult to identify design errors [21]:

Architecture knowledge when not managed properly, we are unable to identify

design errors which occur during the construction and maintenance phase.

11. Difficult to track the overall architecture along the construction process
[22]:

By not storing Architecture knowledge, it is difficult to track the overall

architecture along the construction process.

Value-Based Software Architecture Knowledge Management ~

Chaprer Fi AFEF Uassn s rvr e

12. Decisions quality becomes worst [20]:

Lack of documentation of design decisions causes the design decision’s quality
worst.

13. Maximize architectural risks and much time consumed:

As architectural knowledge is not properly managed, this maximizes architectural
risks. 1t takes so much time for understanding any architecture and especially

during construction phase.

1.4 Sub-discipline in Architectural knowledge: Tools and
techniques

Current research shows that architectural knowledge has brought along some promising
research directions. One of which is tools and techniques. Nowadays, there has been an
increased demand for suitable techniques and tools that support organizations in

capturing, sharing and managing architecture design decisions [4][7].

Proper methodological and tool support for managing AK helps to solve the above
mentioned problems. The complex role of architectural decisions requires systematic and
partially automated approaches that can explicitly document. As design decisions and
their rationale were not rigorously documented. One of the main reasons for this was lack
of suitable methodological and tool support. Due to lack of methodological support, some
effort has been spent now on developing techniques and tools for effectively managing
knowledge pertaining to software architecture [8, 9,17,23,27,28,36] as discussed in
chapter 2 and 3. The main focus of this research is on tools and techniques for managing

architectural knowledge.

1.5 Inhibitors in managing architectural knowledge

There are different ways for managing architectural knowledge [4,7,52).Researchers and
practitioners have proposed various tools {8,17,23,33,35] and techniques]|27,28,36,37,38]
for its management. Indeed there are certain tools and techniques for architecture
knowledge management, practitioners still avoid to do so due to certain inhibitors

[27,28,29]. These are:

Value-Based Software Architecture Knowledge Management 8

Chapter 1 Introduction

1. Critical timing [27,28,29]:

The period in which design decisicns are taken is usually critical for the success of
the software project. The project deadline or project pressure is one of the main
reasons for not documenting the design decisions and its rationale. Suggesting
people for documenting design decisions and their rationale at that critical time is
perceived useless.

2. Extra effort and time required:

Several architectural knowledge documentation techniques that already exist
usually focused on maximizing the consumer (people who are in charge to evolve
a system) benefits rather than minimizing the producer (original designers) effort.
As a result of this people involved in the documentation and maintenance
activities are supposed to spend a lot effort and time for recording and
documenting the architecture knowledge.

3. Overhead [27,28,29]:

As people who are involved in the documentation and maintenance activities are
supposed to spend a lot effort and time for recording and documenting the
architectural knowledge. This more effort and time increases the effect of
overhead.

4. Unpredictable information [27,28,29]:

The architecture knowledge documentation consumer and producer are often
different persons. Therefore, it is not clear which Architecture Knowledge
information for the project would be relevant for whom.

5. Unclear benefit {27,28,29]:

Decision-makers de not know many times for which purpose it is useful to learn
the rationale of a design decision. Therefore, some previous training is particularly
needed, as the users can perceive the usefulness of documenting the architectural
knowledge.

6. Lack of motivation [27,28,29]:

People who developed the system for the first time don’t act in the role of
maintainers. This inhibitor is usually caused by the absence of personal interest
because the people who developed the system do not perceive the expected

benefits to waste time recording the design decisions.

Value-Based Software Architecture Knowledge Management 9

Chapter ! Introduction

7. Owner of the knowledge [27,28,29]:

The producer of architectural knowledge sometimes doesn’t want to transfer or
communicate this knowledge to others.

8. Potential inconsistencies [27,28,29]:

Architectural knowledge documentation implicitly represents the results of the
design. If Architectural Knowledge documentation is not well updated, potential

inconsistencies in case of decision changes might occur.

1.6 Value-Based Software Architecture Knowledge
Management and its importance

Current research trends in software architecture focus on the proper management of
architectural knowledge [4,7,52]. However, due to above mentioned inhibitors;
practitioners are reluctant to manage architectural knowledge. A lot of architectural
knowledge is there to document and maintain, but the benefit of managing all
architectural knowledge is not clear. If benefits for managing AK are not clear, the above-
mentioned inhibitors like critical timing, overhead etc will have an impact.It will take
more time and effort which also increases the overhead in order to manage AK. From this
it is concluded that to get to know the benefit of managing AK, there is a need to manage
architectural knowledge in a value based manner which will also mitigate the effects of

these mentioned inhibitors [27,28,29].

This idea has been taken from Bochm’s work {26], who proposed a Value-Based
Software Engineering (VBSE) agenda and from Davide Falessi’s work [27,28,29] who
used Boehm’s idea for documenting design decisions rationale(Value-Based Design
Decision Rationale Documentation). Boehm [26] proposed a Value-Based Software
Engineering agenda with the objective of integrating value considerations into the full
range of existing and emerging software engineering concepts and practices e.g. value-
based requirements engineering, architecting & design etc, and of developing an overall

framework in which they compatibly reinforce each other.

Basically, Value-Based Software Architecture Knowledge Management is an emerging
trend in software architecture community. By managing architecture knowledge in a

value based manner is one of the most valuable steps for advancing the software

Value-Based Software Architecture Knowledge Management 1

Chapter 1

architecture state of the art by preventing its high costs of change and diminishes the
effort and time required [28,29]. This diminished effort has the effect of mitigating the
overhead. A Value-Based approach helps to document only the set of required
information based on the choice of different stakeholders. With this approach one doesn’t
need to manage AK which is not required at that time for that stakeholder. Value-Based
Software Architecture Knowledge Management basically focuses on the choice of all the
stakeholders who are involved in specific project and will have a choice to get only that

type of information which they required.

1.7 Research Problem

As the above study shows that there are tools and techniques for managing, sharing and
storing architectural knowledge but practitioners are reluctant in applying such tools and
techniques because of certain inhibitors such as extra time and effort required, unclear
benefits for documenting AK etc. Therefore, we need to introduce an approach which
mitigates the effect of above mentioned inhibitors. With this context, the problem
statement of this research involves the following questions. Also, in order to establish the
usefulness of this research, I aim to investigate the following questions:

1. How 1o make architecture knowledge management tools and techniques practical?

2. How to reduce time and effort for managing and storing architectural knowledge?
3. How to reduce overhead for managing and storing architectural knowledge?
4

. How to make knowledge capture cost-effective?

The above-mentioned research questions will be addressed by Value-Based
approach.Three workshops on Sharing and Reusing Architectural Knowledge have been
held on 2006 {4] , 2007 [7] and 2008 [51] by Lago, P. & Avgeriou. All of them focused
on current approaches, tackling above mentioned problems: methods, languages,
notations, tools, techniques to extract, represent, share, use and re-use architectural
knowledge. As these workshops held in 2006, 2007 and, 2008, so this area is not an old
one and I can do further research in this area as it provides a lot of research directions.
The other reason of choosing this area is that, it is necessary to solve the above mentioned
inhibitors as it plays an important role in making projects successful and in understanding
the benefits of managing AK and if we don’t mitigate the effect of above mentioned

inhibitors, it causes other problems like lack of resources, management issues, financial

Value-Based Software Architecture Knowledge Management 11

Chapter | Introduction

problems etc. Authors like Muhammad Ali Babar [21,23,24,19,20], Remco C. de Boer
[22,24] , Rik Farenhorst [24,25], Rafael Capilla [8,9,26] and others have done a lot of
work in this area and also address the importance of sharing ,managing, documenting and

reusing AK.

1.8 Research Methodology

In order to answer the research questions a qualitative and human-centered approach has
been used. The research process consists of three stages:
a) A literature survey and analysis of techniques and tools for managing, sharing and
storing Architectural Knowledge.
b) Evaluation of the surveyed tools.
¢) Build a working prototype of an architecture knowledge management tool that
incorporates value based concepts to address research questions discussed in

section 1.7.

Since the above mentioned research questions are inter-related, they need to be examined
together in a holistic way. The research approach in this thesis is to first survey and
analyzes the existing techniques for managing, sharing and storing architecture
knowledge. As a result of this survey, a Value-Based approach has been found for
Documenting Design Decisions Rationale, known as Value-Based Design Decision
Rationale Documentation (VB-DDRD). This is a useful approach as it documents the set
of required information based on its purpose. Existing tools for managing Architectural
Knowledge have also been studied and evaluated on the basis of certain attributes. It has
been observed that none of the tools supporis Value-Based Software Engineering
concepts. Therefore, an open source tool is selected that covers additional features
relative to other tools. This tool has been used to develop a Value-Based Software
Architecture Knowledge Management tool. Certain other limitations have been found
during the survey and evaluation of tools. Special features have been added to overcome
various limitations as discussed in chapter 3.In this way we are providing a working

prototype.

Valuo-Rased Software Architecture Knowledge Management 12

Widpier ¢+ e Ve T

1.9 Survey Outcomes

This section summarizes the results of the literature survey. Seven techniques and five
tools have been studied and surveyed for managing, sharing and storing Architectural
Knowledge. Different techniques, frameworks, methods, approaches have been
investigated for managing AK. From the survey of techniques, a Value-Based Design
Decision Rationale Documentation(VB-DDRD) technique [27,28,29] has been found as a
useful technique that focuses on documenting the set of required information based on its
purpose. Basically in that technique, Value-Based Software Engineering principles have
been applied to document Design Decisions Rationale. Moreover, the existing tools have
been analyzed and studied. The features of each tool have been compared with others and
there are certain features which one tool is covering but not the other one. Tools are
evaluated on the basis of certain attributes like usability, open source etc. It has been
observed that Architecture Design Decision Support System (ADDSS) is only an open-
source tool and it covers additional features relative to other tools. Moreover, by
comparing and evaluating tools, certain limitations and drawbacks have been found in all
the tools. Limitations like no tool is supporting for Value-Based software engineering

principles, no support for software product families etc are found.

The results indicate that there are tools for managing and storing architectural knowledge
but none of these tools support Value-Based Software Engineering principles. So for
managing architectural knowledge, a Value-Based tool should be implemented.
Moreover, certain limitations found during survey must be implemented. Details are

mentioned in chapter 2 and 3.

1.10 Thesis Contributions

This thesis enhances the understanding of architectural knowledge. The main focus is on
providing some methodological support for managing, sharing and storing architecture
knowledge. There are two major contributions of this thesis: Survey of tools and
techniques and modification of a tool to make it value-based. This work is implemented
on an existing tool Architecture Design Decision Support System (ADDSS) [8,9] which

is an open source tool and covers more features relative to other tools. Basically certain

Value-Based Software Architecture Knowledge Management 13

Chapter { Introquction

features found from the literature survey have been incorporating into the tool which is

missing from the tool.

The thesis makes the following specific contributions:

1.

A literature survey and analysis of tools and techniques and the evaluation of tools on
the basis of certain attributes. This is one of the major contributions of this thesis.
Application of Value-Based Software Engineering principles into ADDSS tool. A
Value-Based Software Architecture Knowledge Management (VB-SAKM) process
has been proposed which focuses on documenting only the set of required information
based on choice of different stakeholders. This concept has been taken from Davide
Falessi’s work [27, 28, 29] who proposes a Value-Based approach to DDRD (VB
DDRD) based on Boehm work [26] studied in the literature survey of techniques; this
thesis proposes a Value-Based approach to ADDSS. Modified tool provides the
opportunity to all the stakeholders to choose the required design decisions information
by giving score to each attribute of design decisions. Architect can mark these
attributes as required, useful or optional on the basis of the score provided by each
stakeholder. This is the other major contribution of this work as this feature is not
present by any of the studied tool and due to this feature; the modified tool is Value-
Based and named as Value-Based Software Architecture Knowledge Management
Tool.

Provides a set of templates to document architecture and design tactics as an artifact of
architecture knowledge. Also provides a catalogue of architecture and design tactics.
Records the functional requirements and non functional requirements according to
their type.

Captures scenarios (general or concrete), which can be elicited from a stakeholder or
extracted from a pattern. Also captures principles and artifacts for some particular
architecture.

Captures architecture patterns and supports multiple views with each single
architecture. Also shows the categorization of risks and non risks associated with each
design decisions.

Evaluation of modified tool ie. Value-Based Software Architecture Knowledge
Management (VB-SAKM) tool on the basis of certain attributes.

Voluo. Racod Software Architecture Knowledge Management 14

Chapter | Introduction

1.11 Thesis outline

The rest of this thesis is organized as follows:
Chapter 2 explores the related work of techniques for managing, sharing and storing
architecture knowledge published in the literature .In this chapter, the techniques/

method/ concept/ framework are studied and surveyed along with certain limitations.

Chapter 3 explores the related work of tools for managing, sharing and storing
architecture knowledge published in the literature. In this chapter, these tools are also
evaluating on the basis of certain attributes. A comparison is made to highlight the merits

and limitations of these tools.

Chapter 4 describe the main contribution i.e. implementing the work in some existing tool
to make that tool more mature for managing, sharing and storing Architecture
Knowledge. In this chapter, the features which are implemented in the tool have been

described. Details of each feature along with the figures are described in this chapter.

Chapter 5 concludes this thesis by outlining the major contributions and benefits

of this work. It also discusses the future work in this area.

Value-Based Saoftware Architecture Knowledge Management 15

CHAPTER 2

LITERATURE SURVEY AND ANALYSIS OF
TECHNIQUES

reupier & Luterature Survey and Analysis of Techniques

2. LITERATURE SURVEY AND
ANALYSIS OF TECHNIQUES

There are different ways to manage and store architectural knowledge. Current research
shows the importance of documenting and managing design decisions along with their
rationales. Recently, researchers {27,28,37,38] have proposed various ways to capture
architecture knowledge. There are different techniques for managing, sharing and storing
architectural knowledge, Different terms are used for techniques as framework, method,
approach or concept. This thesis is using a general term “techniques” for all above

mention terms.

This chapter provides a brief description about the work done in managing, sharing and
storing architectural knowledge as techniques alongwith their main limitations. The

surveyed techniques, framework, method or approaches are discussed below:

2.1 Review of Existing Techniques / Frameworks / Method
{Approach

Seven techniques have been studied and reviewed in this thesis which is as follows:

2.1.1 Decision Goal and Alternatives DDR Framework (DGA-DDR)

Main Feature: For documenting design decision rationales.

2.1,1.1 DESCRIPTION

Falessi et al.[27,52] have proposed a framework that focuses on the reasons why design
decisions have been taken. The framework contains a specific design decision rationale
documentation technique called DGA DDR, which is driven by the decision goals and
design alternatives available. In DGA DDR technique, the rationale behind a design
decision documents the attributes of CBAM, According to DGA, no matter what the
software context might be, design decisions depend on basic decision goals and inter-

decision relationships. These decision goals include Functional requirements, Non-

Vaiue-Based Software Architecture Knowledge Management 16

Chapter 2 e e - - .

functional requirements (quality attributes and constraints), Business goals, Decision

relationships.

The framework [27] aims not only to document decisions previously taken, but also to
support decision makers in taking these decisions. According to DGA, DDR
documentation consists of two stages i.e. it consists of two main activities, which aim to:
(i)} understand what to document and (ii) enact the documentation, respectively. In the
first activity the project objectives and constraints are defined and it is investigated which
decision relationships are appropriate for the project. In the second activity the knowledge
is further refined and described in phases and tables. However, this framework does not
take into account the influence of certain factors like granularity, hierarchies, architectural

pattern, and architectural styles.

2.1.1.2 LIMITATIONS

Certain limitations have been found by studying and analyzing the research papers and

technical reports [27,52] as discussed below:

1) Decision Goal and Alternatives PDR Framework doesn’t provide any type of tool
support.

2) Value-Based Software Engineering (VBSE) [26] principles play an important role
while capturing architecture knowledge. It doesn’t support VBSE principles. This
technique doesn’t documents only the required set of information based on a priori
understanding of who will benefit later on, from what set of information, and in which
amount.

3) Software product families [43] [44] are recognized as an effective approach to reuse
in software development. Architectural knowledge plays an important role for the
architectures in software product families. This technique/framework is not useful for
software product families as it has been checked from the research papers and other

documentation.

2.1.2 COVAMOF Framework [Variability Modeling Principles to
Capture Architectural Knowledge]

Main Feature: For capturing architectural knowledge.

Value-Based Sofiware Architecture Knowledge Management {7

Chapter 2 Literature Survey and Analysis of Techmaques

2.1.2.1 DESCRIPTION

COVAMOF [30] is a framework which is useful for managing variability. COVAMOF
framework solves the issues that arise when the practitioners are relating quality attributes
to architectural design decisions. Basically, the effects of architectural decisions on the
functional and quality aspects of a system are often hard to make explicit. Researchers
mentioned that the same issues arise in the field of product families, as arises when
configuring products. The COVAMOF variability modeling framework was developed
which should be able to deal with the imprecise and incomplete nature of the effect of
decisions on quality attributes. The problems with incomplete and imprecise knowledge
do not only occur in the context of architectural knowledge, but have also been identified
in the field of software product families. COVAMOF consists of models, tools and
processes that support engineers in the development of product families as well as the

configuration of individual products from a product family.

Researchers [30] argue that the concepts of COVAMOF can be used to capture the
architectural knowledge. According to them, this mapping makes it possible to use the
COVAMOF tool suite and method for capturing architectural knowledge. It has been
shown how the concepts and issues of architectural knowledge map to concepts and
issues that are addressed by COVAMOF. By using the approach adopted by COVAMOF
for capturing AK, it is possible 1o explicitly deal with the implications attached to tacit,
documented and formalized architectural knowledge, as it does not reguire a complete

and fully formalized model in order to be useful during architecture design.

The idea behind COVAMOF is to enable tool support to manage complexity and reduce
the dependency of organizations on experts. The first benefit of COVAMOF is
incremental externalization which includes documenting expert knowledge,incorporating
existing documentation,collecting reference data,formalizing documented
knowledge.Second benefit is to reduce derivation cost which includes reducing expert
involvement,providing structured documentation,configuration guidance,automatic
inference,automatic consistency checking and automatic QA estimation.However, this
approach is time consuming. The actual taking of decisions will slowly move from

architecture time, to development time and eventually to runtime.

Vahua.Rased Software Architecture Knowledge Management 18

A ErBELF LARLAT T LIMT T OY LBEL CLFSE YO D U A BETIFRIL ALY

2.1.2.2 LIMITATIONS

Certain limitations have been found by studying and analyzing the research paper {30] as

discussed below:

1) Value-Based Software engineering (VBSE)[26] principles play an important role
while capturing architecture knowledge. It doesn’t support VBSE principles. This
framework doesn’t captures only the required set of information based on a priori
understanding of who will benefit later on, from what set of information, and in which
amount.

2) As it documents all the architectural knowledge in a framework, which is useful for
communicating stakeholders but it is difficult to access by all stakeholders. So this

framework is not useful for building stakeholder communication.

2.1.3 METHOD [Flag, Filter, and Form]

Main Feature: For capturing architectural design decisions.

2.1.3.1 DESCRIPTION

A method [37] has been proposed which aimed to make the process of capturing
architectural design decisions easier by dividing it into three steps: Flag, Filter, and Form.
This method reduces the amount of work needed to capture design decisions. It allows
software designers to casually flag decisions in various documents like e-mail, webpages,
books, and pictures, so that a software designer could spend less time creating the list of
decisions and more time on manipulating and evaluating captured decisions. Flagging is
the capture of candidate decisions “in the raw”. Filtering is sifting through the captured
decisions to find applicable decisions to a project. The designer would collect a set of
decision references when the time is over. Once the designer identifies a decision
reference to be valid, the designer promotes the decision to represent a part of the
software design, which is represented as a formal decision entity. Forming creates a
formal decision entity for the decision and provides descriptive attributes such as priority,
category, or state for each decision. The designer generates a first-class representation of
the design decision, once a decision has been approved. The formed decision is stored

into a decision repository for manipulation, association and analysis.

Value-Based Sofiware Architecture Knowledge Management 19

Chapter 2 Literature Survey and Anaiysis of 1 ecririyucs

Researchers mentioned that the method[37] 1s iterative and each step can span across
multiple sessions; Supports decision and design traceability; Provides immediate benefit
to those capturing their design decisions by acting as a “memory-aid” service; and finally,
applies to other areas of software development, such as coding, testing, and support. A
tool is being developed that will assist designers in capturing software architectural
design decisions using the three-step method described above. An empirical validation of

the method has been planned by evaluating a tool that implements the proposed method.

A main issue revolves around the architectural knowledge itself, as AK can be considered
as intellectual property, and hence are highly confidential. Moreover, decisions can also
be personal or political, in which legal issues may arise if they were documented. The
method may be unintuitive or overly complicated. Complications arise when the source of
many design decisions are directly from the designer. The documentation of sources

across various mediums is challenging.

2.1.3.2 LIMITATIONS

Certain limitations have been found by studying and analyzing the research paper [37] as

discussed below:

1) This method does not being applied industrially.

2) Method doesn’t support VBSE principles. This method doesn’t documents only the
required set of information based on a priori understanding of who will benefit later
on, from what set of information, and in which amount instead this is recording all the
architectural knowledge information.

3) Architectural knowledge plays an important role for the architectures in software
product families. This method is not useful for software product families and it has
been checked from the research paper.

4) As the information is flagged and filtered through different sources, sometime if one
cannot access the information from any source it might be difficult to communicate
with stakeholders. Complications arise when the source of many design decisions are

directly from the designer.

Velue-Rased Software Architecture Knowledge Management 20

Chapter 2 Literature Survey and Analysis of Techniques

2.1.4 Derivational Analogy: An approach for Capturing and Replaying
Architectural Knowledge.

Main Feature: For capturing and replaying Architectural Knowledge mainly

architectural design decisions.

2.1.4.1 DESCRIPTION

Tbrahim Habli and Tim Kelly [38] tackle the topic of recovering architectural knowledge
in existing system architecture. They propose to use derivational analogy to reconstruct
the decision-making process and document architectural drivers, decisions, and
subsequent analysis. Instead of reusing past solutions dircetly, derivational analogy
replays the process leading to these past solutions. In doing so, particular design steps or
routes are skipped if the design assumptions do not hold in the context of the new
problem. An approach {38] to define new software architectures through the use of

derivational analogy.

The main actions in architecture design replay using derivational analogy can be
summarized as follows: 1) Capturing and Representing Architecture Knowledge: Not
only does derivational analogy require the recording of the final design decisions, but also
the goals, requirements, constraints, preconditions, rationale, assumptions, dependencies ,
and alternatives of the chosen design. Three steps for capturing and representing
architectural knowledge: (1) recording architectural drivers, (2) recording architectural
design decisions, and (3) recording the analysis of these decisions in achieving the
architectural drivers. In order to capture and analyze the architectural knowledge, three
methods have been used, developed by the SEI, namely: Quality Attribute Scenarios,
Attribute Driven Design Method (ADD) and Architecture Tradeoff Analysis Method
(ATAM). 2) Architecture Derivation through Process Replay: A new architecture is
derived by replaying the architectural knowledge captured as described in step 1. The
replay of the architectural process entails the retrieval of the design decisions and their
rationale. Then, a gap analysis is carried out where only relevant design sequences are
reapplied in the context of the new architecture. Adaptation is required when mismatches
are encountered. Finally, the new architecture is evaluated against its own specific

requirements. Three steps are: (1) Relevance and Retrieval (2) Adaptation (3) Evaluation.

Value-Based Sofiware Architecture Knowledge Management 21

LAdLer o LAlCT WU QWYY Wi AA7TT yats U LECTHGRES

Although it produces an analyzable architecture but this concept is a time-consuming

activity.

2.1.4.2 LIMITATIONS

Certain limitations have been found by studying and analyzing the research paper [38] as

discussed below:

1) Derivational Analogy approach doesn’t provide any tool support. This approach
should be applied on any tool.

2) Approach doesn’t support VBSE principles. This approach doesn’t documents only
the required set of information based on a priori understanding of who will benefit
later on, from what set of information, and in which amount instead this is recording
all the architectural knowledge information.

3) Architectural knowledge plays an important role for the architectures in software
product families. This approach is not useful for software product families and it has

been checked from the research paper [38].

2.1.5 Extensibility Approach [Exploring Extensibility of Architectural
Design Decisions]

Main Feature: For documenting and reusing architectural design decisions.

2.1.5.1 DESCRIPTION

Explores how design decisions can be documented, and how they affect the synthesis
architecture. This approach [18] explores extensibility ideas from software product lines
to show how synthesis architectures can be extended on the basis of design decisions.
Researchers [18] introduce design decision documentation in such synthesis architectures.
An approach for product line synthesis architecture, where design decisions are

introduced to promote its reuse.

This work focuses on how systems are synthesized in FOMDD. Feature Oriented Model
Driven Development (FOMDD) is a blend of FOP and MDD that shows how products in
a software product line can be synthesized in an MDD way by composing features to

create models, and then transforming these models into executables. Synthesis in

Value-Based Software Architecture Knowledge Management 27

Chapter 2 LUETULUIE Ol vEy wrme casmmepmms vy — =,

FOMDD 1) initially using scripting (repefitive, time-consuming and cumbersome),2)

recently, new approach (scripts generated from abstractions).

The documentation of design decisions constitutes a first step towards AK reuse, but
documentation alone does not imply reuse. Approach basically documents the design
decisions that happen along synthesis and use step-wise refinement to extend synthesis
architectures and their design decisions. Architecture Extensibility includes steps:
Synthesis Architecture, Extensibility, Architecture Composition, Documenting Design
Decisions, Traceability and Design Decisions. This approach documents the decisions but

basically useful for reusing architectural knowledge.

2.1.5.2 LIMITATIONS

Certain limitations have been found by studying and analyzing the research paper [18] as

discussed below:

1) Approach doesn’t provide any tool support. This approach should be applied on any
tool.

2) Approach doesn’t applied industrially and it has been checked from the research
paper|18].

3) This approach doesn’t helps building stakeholder communication as it is quite
complex approach as compared to other approaches.

4) Approach doesn’t support VBSE principles. it doesn’t documents only the required
set of information based on a priori understanding of who will benefit later on, from
what set of information, and in which amount instead this is recording all the

architectural knowledge information.

2.1.6 Using Patterns to Capture Architectural Design Decisions

Main Feature: For capturing architectural design decisions.

2.1.6.1 DESCRIPTION

Architecture patterns [39] are suggested here for capturing structural and behavioral
information. The relation between patterns and decision making are discussed here and it

is described that how architects can use patterns 1o capture certain architectural design

Value-Based Software Architecture Knowledge Management 23

Chapter 2 Literature Survey and Analysis of {ecnniques

decisions in practice. Architecture patterns make information easier and faster to
document architectural decisions. In applying architecture patterns, architects make
decisions that encourage them to both reflect on those decisions and consider related
issues. Pattern selection is indispensable to the architecting process, so architects can
record related decisions with little effort. Patterns follow an easily understood form,
which is highly compatible with proposed description templates for architectural

decisions.

This approach(39] first compares the Patterns and Architectural decisions and then
explains the pattern-decision relationship. Using a pattern in system design is, in fact,
selecting one of the alternative solutions and thus making the decisions associated with
the pattern in the target system’s specific context. Although patterns and decisions have
different origins, one can investigate their relation by comparing how they’re

documented.

Patterns have potential for providing very useful AK that architects can turn into
application-specific knowledge and can document as an architectural asset. However,
patterns can’t help the architect of all the responsibility for documenting decisions.
Firstly, the architect must still document application- specific decisions. Secondly, not all
decisions have appropriate patterns. One can’t capture some architectural decistons in
terms of patterns because these patterns depend on the project’s concrete scope and
domain. An important challenge there is with patterns is what to do if developers use the
wrong pattern but don’t discover this until well into the implementation phase. As with

any architectural decision, backing out is difficult.

2.1.6.2 LIMITATIONS

Certain limitations have been found by studying and analyzing the research paper {39] as

discussed below:

1} Approach doesn’t provide any tool support. It should be applied on any tool.

2) Approach doesn’t support Value-Based Software Engineering principles. It doesn’t
documents only the required set of information based on a priori understanding of
who will benefit later on, from what set of information, and in which amount instead

this is recording all the architectural knowledge information.

Value-Based Software Architecture Knowledge Management 24

Chapter 2 Literature Survey and Analysis ¢f 1 ecnmiques

3) Architectural knowledge plays an important role for the architectures in software
product families. This approach currently is not useful for software product families
but if its drawbacks will be removed then it might be useful for software product

families.

2.1.7 A Value-Based Approach for Documenting Design Decisions
Rationale (VB-DDRD)

Main Feature: For documenting design decisions rationales using value based approach.

2.1.7.1 DESCRIPTION

An approach [27,28, 29] for systematic DDR use that follows value-based software
engineering principles. A value-based approach is proposed for documenting the reasons
behind design decision (VB DDRD), based on a priori understanding of who will benefit
later on, from what set of information, and in which amount. The basic idea of this
approach is that all the information inciuded in a design decision rationale documentation
(DDRD) might be useful but sometimes some information are mere optional. Basically,
researchers focuses on an approach which says not all the information is required to
document all the time to relevant persons. Only required design decisions rationale
information must be documented according to the choice of relevant person. Moreover,
the amount of importance related to the information included in the DDRD depends on
the DDRD Use-Case (DDRD UC). The adoption of a tailored DDRD, consisting only of
the required set of information, would mitigate the effects of DDRD inhibitors. Several
usage scenarios for DDRD (i.e. DDRD Use-Case) are considered/provided and
characterized by specific payees, business context and product characteristics, type of
DDR activity, benefits, and required DDR information. A set of thirteen scenarios have

been selected.

Researchers[28,29] analyzed the feasibility of this approach, which includes certain
aspects relevant for every software engineering practice, such as: Where (project context),
Who (the beneficiary stakeholders), When (DDRD type of use), Why (process and product
metrics) and How (DDRD required information), through a replicated experiment which
adopts this approach and the importance of different DDRD information categories. This
applied experiment employs 50 subjects, 25 decisions, 5 different DDRD UC(s), and 250

Vahie.Rased Software Architecture Knowledge Management 25

LHETWUNe QUITVEY UNW A2TH Y0 U 1 oUTHTIEES

DDRD UC(s) executions. Each subjects practically used the documentation to enact all
the five Use Case(s) by providing an answer and a level of utility for each category of
DDRD. Researchers observed several difficulties in the reasoning activity to answer the
questions that motivated each DDRD UC. Thus, from the reasoning activity of the
subjects it is deduced that a good description of the decisions is needed in order to avoid

confusion when reusing decisions made by others.

Researchers mentioned that DDRD consumers require specific categories of DDRD
information according to the DDRD UC to enact. This suggests that the DDRD producer
should include only the information required for the specific DDRD UC(s) that is
expected to be enacted (i.e. the value-based approach). This concludes that for the use of
DDRD that should be captured and used according to the user or organizational needs and
use agile methods to reduce the effort both in creating and consuming such relevant
architectural knowledge. Thus, documenting this tailored architectural knowledge explicit

may be seen as a “new” cross-cutting architecture view i.e. “Decision View”.

2.1.7.2 LIMITATIONS

Certain limitations have been found by studying and analyzing the research papers [27,28,

29] as discussed below:

1) Approach doesn’t provide any tool support. VBSE principles have not yet applied to
any tool.

2) Approach currently not being applied to software product families but it can be useful
for software product families, as to get only the required information for product line

software, this approach saves time and effort.

The above study shows the work in techniques/framework/method/approaches for
managing, sharing and storing architectural knowledge. From this survey, a Value-Based
approach has been found for documenting the Design Decisions Rationale, known as
Value-Based Design Decision Rationale Documentation (VB-DDRD). Basically in that
approach, researchers [27,28,29] have been applying Value-Based Software Engineering
principles for documenting design decisions rationale. This is a useful approach as it
documents only the set of required information based on its purpose, so we can do further

work with this approach.

Value-Based Software Architecture Knowledge Management 26

CHAPTER 3

LITERATURE SURVEY AND EVALUATION OF
TOOLS

LAHCHULUT © DU VEY WU LavWiledesurn v 1 uuis

3. LITERATURE SURVEY AND
EVALUATION OF TOOLS

Recently various studies show that the software architecture community has begun to
recognize that knowledge management is vital for improving an organization’s
architectural capabilities [21]. There has been an increased demand for suitable methods,
techniques, and tools that support organizations in capturing and maintaining the
architecture design decisions and their rationales [15]. Architectural knowledge can be
valuable throughout the software development lifecycle. Researchers and practitioners
have proposed various approaches to capture and manage architectural knowledge
[8,23,27]. Many of these approaches have been adapted from knowledge extraction
techniques used in artificial intelligence and in social science disciplines. One of the main
objectives of these approaches is to help making explicit what is known by architects or
implicitly embedded in architecture. This may include knowledge about the domain
analysis, architectural patterns used, design alternatives evaluated, and assumptions

underpinning design decisions [21].

This chapter includes the study and review of existing tools for managing and storing
architectural knowledge. Evaluation of existing tools for managing Architecture
Knowledge is one of the contributions of this thesis has also been discussed in this
chapter. Tools are evaluated on the basis of different attributes. Following section

describe the evaluation criteria defined for existing tools:

3.1 Evaluation Criteria for existing tools

This section describes the attributes which have been taken to evaluate the studied tools.
These attributes consists of general attributes which are usually taken to evaluate the tools
as well as the specific attributes related to architectural knowledge [8,9,23,27,31]. The
evaluation criteria attributes have been taken out after the literature mapping. First the
Architectural Knowiedge itself has been defined. The attributes of architectural
knowledge has been listed down as shown in Table 1.1.It has been checked either the
tools are covering the AK attributes or not. Table 3.2 that compares and contrasts the
features of each tool is also helpful for providing few attributes. Further, some of the

attributes have taken out by reading and surveying the area related papers, Knowledge

Value-Based Software Architecture Knowledge Management 27

Chapter 3 Literature Survey and Evaluation o] 1cois

Management literature have been proposed out few things e.g. we come to know about
Value-Based Software Engineering concept that the tools must support. General aftributes
have also been considered as there are some things which the tools must have e.g.

usability attribute etc. Following are evaluation criteria attributes:

1. Usability: Usability is a quality attribute that assesses how easy user interfaces are to
usef[47). 1t also refers to methods for improving ease-of-use during the design process.
Usability is defined by five quality components: Learnability, Efficiency of use,
Memorability, Error Prevention, Satisfaction. This attribute has been added to check
how usable and learnable the selected tools are. Usability attribute is an important
attribute and helps to get to know how learnable, efficient, memorable, safe and
pleasant the tools are. Usability is a necessary condition for survival. It is important to
find usability of any tool because if a tool is difficult to use, people leave. If users get
lost on a tool, they leave. If a tool’s information is hard to read or doesn't answer
users' key questions, they leave. By using all the studied tools personally, it is
possible to proof how learnable, efficient, memorable, safe, and satisfying these tools
are for a given set of users. For evaluating tools with usability attribute, the main
focus is on the interface of tools, Usable interfaces must possess five basic atiributes :

a. Learnability.—Tools must be easy to learn. Novice users must be able to
complete basic tasks in a short period of time, with a minimum of training.

b. Efficiency of use.— Once experienced users have learned the design, they
must perform the task quickly.

c. Memorability.—Tools must be easy to remember. Users can return to them
after an absence and complete tasks without retraining.

d. Error Prevention.—Users must experience only few errors while using the
tools, and recover quickly from them.

e. Satisfaction.—Tools must be pleasant to use,

2. Industrially used: This attribute shows that the selected tools are industrially used.
This attribute is important because if the tool is not industrially used then it is
impossible to find any evaluation report from the researchers and impossible to
validate it through case studies. From the research papers and tools’ website, it is easy
to get to know either the tools are industrially used or only a research prototype.

3. Open Source: This attribute shows either the source code is available to the general

public for use and/or modification from its original design free of charge or not. This

Value-Based Software Architecture Knowledge Management 28

7H - SE36

Chapter 3 Literature Survey and Evaluation of 10015

o

attribute is important if we want to do further iterations in the source code.
Availability of code for a particular tool validates this attribute. Tool’s website or
researcher’s website can be helpful for this attribute.

Coverage: Coverage attributes shows how much the selected tools covers
architectural knowledge attributes as well as other features of these tools. For
evaluating tools related to this area, coverage attribute plays an important role. This
attribute is important to find limitations of each tool. From the research papers,
technical reports and by using the tools personally it is possible to get to know how
much these tools covers architectural knowledge attributes as well as the other
features of these tools. A table 3.2 is developed that compares and contrast different
features of each tool with one another as mentioned in the end of the chapter. The
coverage attribute is evaluated on the basis of this table.

Useful for software product families: Software product families [43] [44] are
recognized as an effective approach to reuse in software development. The basic reuse
philosophy of software product families is intra-organizational reuse through the
explicitly planned exploitation of the commonalities between related products. As
architectural knowledge plays an important role for the architectures in software
product families, this attribute tells either tools are useful for software product
families or not and it has been checked from the research papers, web sites and other
documentation of these tools.

Support of Value-Based software engineering principles: Value-Based Software
Engineering agenda has emerged, with the objective of integrating value
considerations into the full range of existing and emerging software engineering
principles and practices, and of developing an overall framework in which they
compatibly reinforce each other [26). VBSE principles play an important role while
capturing architecture knowledge. The importance of this attribute is that with this
one can get required set of AK information that benefits different persons. Also saves
a lot time and effort. This attribute tells us either these tools support this concept or
not. This attribute has been evaluated on the basis of research papers, personal usage
and other documentation.

Usefu! in evolution and maintenance activities: Software evolution is used to refer
to the activity of adding new functionality to existing software [45]. Maintenance
refers to the activity of modifying software after it has been put t-o use in order to

maintain its usefulness [45]. Evolution and maintenance activities are very much

Value-Buased Software Architecture Knowledge Management 29

Chapter 3 Literarure SUrvey unu cvussuwives vy s

10,

important for a particular architecture, as whenever some change occurs to existing
software, the architecture of that software also changed, this is the reason why this
attribute has been taken. From the research papers and personal usage, it is easy to get
to know either these tools are useful in evolution and maintenance activities or not.
Integrated with other modeling tools: This attribute tells that either the tools are a
separate tool or integrated with any other too). The importance of this attribute is that
from this one can check is it easy to vse tool or a complicated tool. This attribute has
been checked from research papers and personal usage, Personal usage involves either
these tool are integrated within any other modeling tools or either some other tool are
integrated in these tools.
Accessible for geographically distributed stakeholders: Stakeholders comes from
different background and have different concerns. As stakeholders are distributed in
different areas, this attribute tells either these tools are accessible for different
stakeholders placed at different places or not. This attribute is important to check as
stakeholder plays an important role for the projects and they can be distributed all
over the world. If the tool is web-based then all the stakeholders can easily access that
tool. From the research papers, this attribute have been validated for all the toois.

Performance: Performance is about timing [1]. Performance refers to responsiveness:

either the time required responding to specific events or the number of events

processed in a given interval of time [47)]. Performance attribute plays an important
role to check how efficient the tools are and how much time tools take to complete the
task. By personally using the studied tools the performance of the tools has been
checked. By providing same set of data and same actions to all the tools, we can
evaluate tools with performance attribute on the basis of following requirements:
Time the user takes to complete basic flow.
b. Time to perform any process/flow of operation i.e. to save data, delete any
data.
¢. Response time of any flow of operation i.e. retrieve data from the database.
d. Time to start the application.

11. Security: Security attribute is a measure of system’s ability to resist unauthorized
attempts at usage or behavior modification, while still providing service to
legitimate users. Security attribute is an important attribute that has been added in
order to check how secure these tools are. In this case, Authentication property

has only been checking either these tools possess this property or not. This

Value-Based Software Architecture Knowledge Management 30

Chapter 3 Literature Survey and Evaluation of Tools

attribute has been checked by personally using the tools and from the research

papers.

3.2 Review of Existing Tools

There are five tools for managing, sharing and storing architectural knowledge which
have been evaluated by personally using these tools. Research papers, technical reports

and other documentation have also been used for evaluating the studied tools.

3.2.1 PAKME (Process-based knowledge management environment)

An architectural knowledge management framework [21,23] has been proposed by the
researchers of National ICT Australia (NICTA). This framework incorporates concepts
from knowledge management, experience factory, and pattern-mining. It consists of
various approaches to capture design decisions and contextual information. This
framework involves an approach to distill and document architecturally significant
information from patterns, and also involves a data model to characterize architectural
constructs, their attributes and relationships. A web-based architecture knowledge
management tool, called Process based Architecture Knowledge Management
Environment (PAKME) [23,48], has been developed to support the proposed framework.
PAKME is a tool for providing knowledge management for software architecture
development. It has been built on the top of Hipergate, an open source groupware
platform which includes collaborative features, project management facilities and online
collaboration tools.
Some of the features and components of PAKME [21,23, 48] are as follows:
1) PAKME consists of five components:
a. Knowledge acquisition service: the user interface implemented with JSP and
HTML pages.
b. Knowledge maintenance service: knowledge management component
provides the services necessary fo store and update AK.
c. Knowledge retrieval service: the search component which defines three
different searching mechanisms (i.e.. keywords, logical operators, and

navigation).

Value-Based Software Architecture Knowledge Management 31

Chapter 3 Literature Survey and Evaluation of Tools

2)

3

4)

3)
6)

7)

8)
9)

d. Knowledge presentation service: for retrieving artifacts, the reporting
component provides services for representing AK and describing the
relationships between different architectural artifacts, Generates automatically
PDF documents/ Web based report for describing decisions ete.

e. Repository Management: Offers the services needed to maintain the data
which is currently implemented in PostgreSQL.

Captures Architectural Design Decisions and their underlying rationales ie. it
captures both Contextual Information (Design Rationale) and Technical Information
(Patterns, Styles, Tactics, Analysis models, Scenarios).

PAKME divides AK into organizational (generic) and project-specific (concrete).

a. Generic: including general scenarios, patterns, quality attributes, design
options.

b. Project specific: including concrete scenarios, contextualized patterns, quality
factors, and architecture decisions.

Incorporates AKM features for geographically distributed stakeholders involved in
the software architecture process.

Improves architecture-based software development.

Provides different templates, knowledge repository, and various features to capture,
manage, and present architectural knowledge.

Capture, manage, use, reuse and retrieve AK captured from Human Sources and
patterns.

Capture and present scenarios.

Support for design and analysis methods.

10) In PAKME, architecture decisions were categorized as risk or nonrisks.

11) Supports the architecture evaluation process and systematizes evaluation process of an

industrial collaborator.

3.2.1.1 EVALUATING PAKME

1.

Usability:

PAKME is user-friendly tool. One can learn the tool easily as it provides proper user-
interfaces which enables user to add/retrieve knowledge easily. User can easily
complete task in a short period of time as PAKME provides different templates,

knowledge repository, and various features to capture, manage, and present

Value-Based Software Architecture Knowledge Management 32

Chapter 3 Literature Survey and Evaluation of Tools

architectural knowledge easily. Moreover, as PAKME provides proper templates to
capture and manage architecture knowledge, also provides Knowledge maintenance,
acquisition, retrieval, presentation and repository management services so an
experience user can casily use this tool. Moreover proper menu and navigation

services are provided with this the tool become more efficient.

As proper interfaces are provided so one can easily remember this tool. With the
knowledge retrieval service, one can easily return to this tool and get the required data
after an absence. PAKME generates automatically PDF documents/Web based report
for describing decisions etc which enables users to easily found architecture design
decisions as well as their rationales for a particular architecture of any project. Only
few errors have been found due to the absence of JSP server and found duplication of
workload of requirements. Besides few errors, PAKME is pleasant to use tool. The
usability of PAKME has been checked and evaluated by personally using the tool.

2, Industrially used:
PAKME has been tested industrially for an aircraft system. PAKME is trialled to help
systematize the architecture knowledge management and evaluation process of an
industrial collaborator. The opinion about this attribute has been formed from the
research papers [23,48], technical and evaluation reports[21,48].

3. Open Source:
PAKME is not an open source tool as tool’s source code is not available. The opinion
about this attribute has been formed from the research papers [23], technical reports
[211 and from the PAKME’s developers.

4. Coverage:
Table 3.2 that compares and contrast the features of each tool with one another can be
useful to evaluate PAKME with this attribute. PAKME captures Architectural Design
Decisions and their underlying rationales. Also captures both Contextual and
Technical Information. This tool covers many features like searching, presenting
knowledge, support for evaluation process etc. Table 3.2 shows PAKME covers many
features which other tools except ADDSS are not covering.

5. Useful for software product families:
Papers [23] shows that tool is not useful for software product families as there is not

anything mentioned in the paper about the usage of this tool for software product

Value-Based Software Architecture Knowledge Management 33

Chapter 3 Literature Survey and Evaluation of Toois

10.

families. This attribute has been checked from the research papers [23,48], evaluation
report and other documentation of PAKME [21].

Support of value-based software engineering principles:

PAKME doesn’t support the VBSE concept as tool doesn’t capture design decisions
information according to user’s choice. User’s have no choice to capture required
design decisions information. All the design decision information has been captured
not focusing only on required set of information. This attribute has been evalvated
with the help of research papers [23,48] and technical reports [21].

Useful in evolution and maintenance activities:

Fully supports the evolution and maintenance activities and this attribute have been
checked from the research papers [48] and its technical report {211.

Integrated with other modeling tools:

Tool is not integrated with other modeling tools. This attribute has been checked from
research papers |23} and personal usage.

Accessible for geographically distributed stakeholders:

PAKME incorporates AKM features for geographically distributed stakeholders
involved in the software architecture process. From the rescarch papers[23,48], this
attribute have been validated and this tool fully supports it.

Performance:

PAKME is good performance wise as it provides proper templates so with less time
one can easily store and retrieve architecture knowledge information, but due to few
problems as discussed below, it is concluded that PAKME partially supports the
performance attribute. Although tool takes less time to complete basic flow but there
is one drawback i.e. duplication of workload of requirements which some times slows
down its performance. PAKME needs to be designed to be heavily customized at
deployment time. PAKME takes 4-5 seconds to save information whenever we press
the save button. It takes 1-2 seconds for deleting information. PAKME takes time
while retrieving knowledge. Whenever we gave command for viewing architecture
knowledge information, system responses in 20-3C seconds. Improving the speed of
knowledge retrieval by using the task-based retrieval techniques is needed in this tool.
PAKME has proper interface so its takes few seconds to start the tool. The
performance of PAKME has been measured by personally using the studied tool

Falue-Rased Software Architecture Knowledge Management 34

Chapter 3 Literature Survey and Evaluation of Tools

11. Security:
Tool doesn’t support this attribute. Tool doesn’t ask for any login/password. This
attribute has been checked by personally using this tool.

3.2.2 ADDSS (Architecture Design Decision Support System)

The Architecture Design Decision Support System (ADDSS) 1.0, was available at [36],
developed in 2005-2006 [8). ADDSS [8,9] is an open web-based tool developed with
PHP, HTML and MySQL. ADDSS is an open source tool whose code is also available at
their website [36]. Tool focuses on recording, managing and documenting architectural
design decisions under an iterative development process. ADDSS creates the architecture
under an iterative process and where one or more design decisions are made for each of
the iterations.The new ADDSS 2.0,[91 which has been released, supports the status of
decisions and the date when the decision was made. Also, supports versioning for
recording and tracking the history of a particular decision and supports the decision
making process. Tool describe a flexible approach in the form of mandatory and optional
attributes for characterizing architectural design decisions that can be tailored to the
specific needs of each particular organization. Researchers [9] are fixing these mandatory
and optional attributes according to their choice.

Some of the features of this tool [8,9] are:

1) Supports the creation, use, maintenance, and documentation of architectural design
decisions. Enables to document design decisions as first class entities under an
iterative approach.

2) Design decisions easily visualized understood and replayed.

3) Supports the implementation of decision view.

4) An easy web interface provides access to the functionality of the tool.

5) Tool can access through username and a password.

6) Users can upload figures from external files representing architectures. For each of
the iterations, a thumbnail image of the architecture is shown to the user.

7) Allows the storage of several projects and architectures. Multi-perspective support for
different stakeholders.

8) Add or remove well-known architecture and design patterns and architectural styles to

the database.

Value-Based Software Architecture Knowledge Management 35

Chapter 3 Literature Survey and Evaluation of Tools

9) PDF documents containing the project and architecture descriptions with the design
decisions can be automatically generated.

10} Support for functional and non-functional requirements and for different architectural
views,

11) Support the decision making process.

12) Supports traceability between requirements, decisions, and architectures, but detecting
inconsistencies of decisions is not implemented.

13) Useful for maintenance and evolution activities. Supports modeling and documenting

the evolution of ADD.

3.2.2.1 EVALUATING ADDSS

1. Usability:
ADDSS is a user friendly tool. One can easily learn the tool as it provides an easy
web interface which offers access to the functionality of the tool. ADDSS is quite
usable but as the code is in Spanish language so at some places in the interface
Spanish language is used which is difficult for the users to understand the tool. User
can easily complete task in a short period of time as the tool provides different
templates to capture, manage, and present architectural knowledge easily. A simple
user interface using web teémo\logies are used for representing the decisions and
architectures as well as the multi'perspective support. This tool provides proper
knowledge management, retrieval and presentation services for managing and storing
architecture knowledge. Design decisions easily visualized understood and replayed.
Moreover proper menu and navigation facilities are provided with this the tool

become more efficient.

As proper interfaces are provided so one can easily remember this tool. With the
knowledge retrieval service, one can easily return to this tool and get the required data
after an absence. The decisions made by the user can be visualized afterwards in order
to understand the rationale behind them. Users can easily visualize the history of the
architecture and the iterations performed. Few errors have been found in saving like
saving architecture information, images etc. ‘Page cannot displayed™ error appears on
certain pages. Besides few errors, ADDSS is pleasant to use tool. The usability of

ADDSS has been checked and evaluated by personally using the tool.

Value-Based Software Architecture Knowledge Management 36

Chapter 3 Literature Survey and Evaluation of Tools

2. Industrially used:
ADDSS is a research prototype. The opinion about this attribute has been formed by
visiting tool’s website[36].

3. Open Source:
ADDSS is an open-source tool because tool’s source code is available from the
website [36]. Although the code of the tool is available but it is written in Spanish
language so this make sometimes difficult for the developers who do not understand
this language. This attribute has been validated by personally visiting the website
[36].

4. Coverage:
Table 3.2 that compares and contrast the features of each tool with one another can be
useful to evaluate ADDSS with this attribute. ADDSS supports the creation, use,
maintenance, and documentation of architectural design decisions. Enables to store
and document design decisions as first class entities under an iterative approach.
Support for integrated representation of architecture. Tool captures the rationales
underlying the design decisions. This tool covers many features like searching,
presenting knowledge, support for evaluation process etc. Table 3.2 shows ADDSS
covers more features as compared to other tools. Table 3.2 also shows there are few
features which other tools are covering and doesn’t support by ADDSS.

3. Useful for software product families;
ADDSS is not useful for software product families as there is not any thing mentioned
in the paper about the usage of this tool for software product families. This attribute
has been checked from the research papers[8,9] and web sites[36] .

6. Support of Value-based software engineering principles:
ADDSS doesn’t support the VBSE [26] concept as tool is not capturing design
decisions information according to user’s choice. Although ADDSS provides a
flexible approach of mandatory and optional attributes for characterizing design
decisions information but they are fixed by the researcher’s and users don’t have the
choice to mark fields as required, useful according to their choices. One cannot mark
the mandatory field as optional or optional field to mandatory. This attribute has been
evaluated with the help of research papers [8,9].

7. Useful in evolution and maintenance activities:
ADDSS supports modeling and documenting the evolution of ADD. This attribute

have been checked from the research papers [8,9].

Value-Based Software Architecture Knowledge Management 37

Chapter 3 Literature Survey and Evaluation of Tools

1)

2)

3)

4

5)

6)

7

8)

9)

Retrieve architectural decision and their rationales. Allows for run-time addition of
additional design decisions.

Tool’s compiler translates Archium code in a combination of Java and ArchJava code,
which is then transformed into Java byte code.

Also a component language, which extends Java for describing components,
connectors, and design decisions with tool support.

Provides visualization facilities for the decisions made using a dependency graph
Archium also captures consequences of an architectural decision.

Supports the tracing of requirements to architectural decisions and is able to check
which of these requirements are addressed in one or more decisions.

Checks implementation against architectural design decisions. Weaves architectural
decisions into architectural models and connects them to the implementation.

Check for consistency and for completeness. Check for superfluous architectural
decisions and circularity of set of decisions is also provided (not automatically).

Captures rationale in customizable rationale elements.

10) It decreases the effects of knowledge vaporization.

3.2.3.1 EVALVATING ARCHITM

1.

Usability:

ARCHIUM is not a user-friendly tool. Novice user cannot learn tool easily as it
doesn’t provide user-intterface. The tool is not usable because sometimes one doesn’t
want to learn the coding language or to install the whole J2EE environment.
ARCHIUM integrates an architectural description language (ADL) with Java to
describe the elements from a component & connector view and making explicit the
design decisions and its rationale that lead to a particular architecture description{17].
For novice user it is difficult to use this tool without having knowledge of Java
language. A lot of training is required for them to understand this tool. One need to
first setup java environment, its path etc. User without having knowledge of java
cannot access this tool. Novice user cannot set java path easily. This makes also

difficult for experienced users.

Although one can retrieve architectural decision and their rationales from Archium
but as there is no proper interface, it is difficult to remember the tool. As every time to

start the application one have to set path and have to go through from code, this

Value-Based Softiware Architecture Knowledge Management 39

Chapter 3 Literature Survey and Evaluation of Tools

makes difficult to remember the tool if one is absent for a while. Archium provides a
visualization of an architectural decision but the way to view these decisions is
difficult which makes hard to remember the tool. Many errors have been found during
compilation and at run time. Run time addition of design decisions is a difficult task.
ARCHIUM is not a pleasant to use tool. The usability of ARCHIUM has been

checked and evaluated by personally using the tool.

. Industrially used:

ARCHIUM tool has not being tested yet in an industrial setting. The opinion about
this attribute has been formed from the research paper [17] and tool’s website [34].
Open Source:

ARCHIUM is not an open-source tool because tool’s source code is not available.
This attribute has been validated by from the research paper[17] and website[34].
Coverage:

Table 3.2 that compares and contrast the features of each tool with one another can be
useful to evaluate Archium with this attribute. Tool captures architecture design
decisions and their rationales. Partially support for integrated representation of
architecture. Table 3.2 shows tool covers less number of features as compared to other
features.

Useful for software product families:

Tool is not useful for software product families as it is difficult to set path etc for
software product families as this tool is time consuming and require much effort. This
attribute has been checked from the research paper[17] and web site[34] .

Support of Value-based software engineering principles:

ARCHIUM doesn’t support the VBSE concept as we are not capturing design
decisions information according to user’s choice. User’s have no choice to capture
required design decisions information. All the design decision information has been
captured not focusing only on required set of information. From the research paper,
this attribute has been checked.

Useful in evelution and maintenance activities:

ARCHIUM is partially useful in evolution and maintenance activities. Design
decisions and their rationales are recorded in this tool at compile time which causes
difficult for the maintainers as all the maintainers are not familiar with the java

language. This attribute have been checked from the personal usage and research

paper [17].

Value-Based Software Architecture Knowledge Management 40

Chapter 3 Literature Survey and Evaluation of Tools

10.

11.

Integrated with other modeling tools:

Tool is not integrated with other modeling tools. This attribute has been checked from
research paper [17] and personal usage.

Accessible for geographically distributed stakeholders:

Tool doesn’t support this feature. As this tool is not a web-based tool this makes
difficult for geographically distributed stakeholders to access the tool. From the
research paper[17], this attribute have been validated.

Performance:

ARCHIUM is not good performance-wise as it doesn’t provide proper interface. To
perform any task one need to compile and run the code which takes a lot of time. To
save information it takes 4-5 minutes. Similarly retrieving data is also a difficult task.
Whenever we send command, system responses in 1-2 minutes. Every time to start
the application the compiler translates Archium code in a combination of Java and
Archlava code, which is then transformed into Java byte code. Compiling and running
the code takes a lot of time to start the application. The performance of ARCHIUM
has been measured by personally using the studied tool

Security:

Tool doesn’t support the security attribute. No security feature is added in this tool
like username etc. The opinion about this attrtbute has been formed from the research

paper[17] and tool’s website[34].

3.2.4 KNOWLEDGE ARCHITECT WORD PLUGIN

It is the part of Gniffin project [33]. Griffin project consists of methods, tools, and

techniques to manage architectural knowledge. It is a software architecture project

memory to manage know-why and know-how. Knowledge Architect Word [32] is a tool

to

capture Architectural knowledge. This tool allows architects to make their

Architectural Knowledge (AK) explicit in architecture documents written in Microsoft

Word. Installing the Knowledge Architect Word Client creates a button bar in Microsoft

Word. Tool connects to a server before you can use the other features of the client.

Some of the features of this tool [32] are:

)

It is a .Net tool and easy to use tool.

Value-Based Software Architecture Knowledge Management 41

Chapter 3 Literature Survey and bvatuaiion o 1uwmas

2)

3)

4)

5)

6)

7

8)

9

This Plug-in covers the following attributes of Architectural knowledge: Knowledge
Entity, Concern, Requirement, Risk, Decision Topic, Alternative, Decision, Quick
Decision, Specification.
Knowledge Entity Form in this plug-in allows users to give name of knowledge entity
and the Knowiedge Entity type can be selected.
The user can specify a custom status, or select one that is predefined. User can add
notes to a Knowledge Entity.
Allows creating Knowledge Entity table. Specified tables can be generated by
specifying what Knowledge Entity types should be shown and what connections to
show.
Tool shows summaries of all Annotations and their connections. Can export the
Annotations to an XML file or import all Annotations into the backend.
Allows customizing the default colors for knowledge entities. You can specify both
font color as well as the background color.
Provides different context menus depending on what user selects,

a. Plain text selection ,Single Annotation ,Overlapping Annotations ,Annotation

with Completeness Coloring.

Shows multiple errors if accur. Different error level is shown by colored flags, with

higher level errors on top in the list.

10) Provides the facility of Completeness Check. Completeness is based on a number of

tests.

3.2.4.1 EVALUATING KNOWLEDGE ARCHITECT WORD PLUG-IN

1.

Usability:

Knowledge Architect Word is a user friendly tool. One can easily leamn the tool as it
allows architects to make their Architectural Knowledge (AK) explicit in architecture
documents written in Microsoft Word. Navice users can easily work in Microsoft
word document so they can easily complete their basic task with this tool with
minimum training. Little training is required as there are certain terms which the tool

is using from which a common user is not familiar.

Knowledge Architect Word is integrated within Microsoft word so this does not

provide separate interface. Tool provides scrcen within the word document so

Value-Based Software Architecture Knowledge Management 42

Chapter 3 Literature Survey and Evaiuation of Tools

experience users can produce their work but with little effort and it take some time
first to understand this tool. As tool documents the relevant architecture knowledge
within word document, so the tool is easy to remember as the previous documented
AK is saved and retrieved easily. Users can return to it after an absence and complete
tasks without retraining. Error occurs when the Word plug-in cannot find the web
services on the server. With this one cannot able to run the tool. Due to above error
and training required, this tool is partially pleasant to use. The usability of tool has
been checked and evaluated by personally using the tool.

2. Industrially used:
Tool is partiaily industrially used as its developers are currently applying this tool on
industrial case studies. 1t is partially industrially used as case studies from industry are
applying on it. The opinion about this attribute has been formed from the tool’s
website and the tool’s developers {32].

3. Open Source:
Tool is not an open-source tool because tool’s source code is not available. This
attribute has been validated by from the website[32].

4. Coverage:
Table 3.2 that compares and contrast the features of each tool with one another can be
useful to evaluate tool with this attribute. Tool captures architecture design decisions.
It partially covers the architectural knowledge attributes. Table 3.2 shows tool covers
less number of features as compared to other features.

5. Useful for software product families:
Tool is not useful for software product families as this is installed in MS Word and it
might be difficult to use MS Word document to capture AK for software product
families. This attribute has been checked from website [32] and other documentation
of this tool.

6. Support of Value-based software engineering principles:
Tool doesn’t support the VBSE concept as we are not capturing design decisions
information according to user’s choice. User’s have no choice to capture required
design decisions information. Al the design decision information has been captured
not focusing only on required set of information. This attribute has been validated by

persanally using the tool.

Value-Based Software Architecture Knowledge Management 43

Chapter 3 Literature Survey and Evaluation of Tools

10,

11,

Useful in evolution and maintenance activities:

Tool is partially useful for maintenance and evolution activities as tool is integrated
within the word document so to make changes within an already developed tool
sometimes create problem. This attribute has been checked by personally using the
tool.

Integrated with other modeling tools:

Tool is integrated with Microsoft word. This attribute has been validated from tool’s
website [32] and personal usage.

Accessible for geographically distributed stakeholders:

Tool doesn’t support this feature as tool is integrated within the word document and it
might be possible as all the stakeholders have not the latest document. Moreover, tool
is not a web-based tool which creates problems for geographically distributed
stakeholders. From the personal usage and tool’s website[32], this attribute have been
validated for the tool.

Performance:

Performance wise it is partially good as it works in a document some times it is
difficult to look into document. Moreover, tool is using certain terms which are not
familiar to novice user. User takes time to complete the basic task. As the tool is
integrated into Microsoft word, it takes {-3 minutes to store information on a given
set of data. However, the response time of a system for retrieving data is very good
and i.e. 1-2 seconds. Tool provides a user friendly interface, so it takes few seconds to
start the tool. The performance of tool has been measured by personally using the
studied too).

Security:

Tool doesn’t support this feature. No security feature is added in this tool like

username ete. This attribute has been checked by personally using this tool.

3.2.5 AREL (Architecture Rationale and Element Linkage)

AREL Tool set [35,46] is a tool set comprises of three components, Enterprise Architect,

Netica, and custom-built AREL Tool. This tool set enables the capture of architecture

design and its design rationale. It provides an approach named as AREL. AREL approach

is a model which relates decistons, architecture products and design rationale. It

implements a conceptual model to relate ADD, architectures and the rationale of the

Value-Based Software Architecture Knowledge Management 44

Chapter 3 Literature Survey and Evaluation of Tools

decisions. First, the Enterprise Architect tool is used to construct the AREL models and to

capture design rationale by using extended UML profiles. Secondly, the complementary

approach eAREL supports decision evolution and their tracing by means of versioning

links. It supports backward and forward tracing through history. Each decision

encapsulates its rationale, but there is only one link type, i.e. “depends-on”, defined in

this method.

Some of the features [35,46] are:

1) By using extended UML profiles one can capture architecture design rationale and
architecture design.

2) Integrates a commercially available BBN tool to reason about the architecture design.

3) Improves the representation of design rationale for architecture development.

4) Improves and estimate change impact analysis.

5) Support consistency checking of the AREL models and AREL model tracing.

6) Captures qualitative rationale, quantitative rationale and alternative architecture
rationale. Captures Requirements, Assumptions, Constraints, Design Objects.

7) Enables architects to have a better understanding of the problem, the associated costs
and coraplexity of the design before committing to development.

8) Facilitates verification by peer review and stakeholders review.

9) By using the stereotype extension in Enterprise Architect, provides a convenient way
to input design rationale using the design rationale capture templates.

10) Displays a screen to show any errors or warnings. A detailed error report is also

produced.

3.2.5.1 EVALUATING AREL TOOL SET:

1. Usability:
It is not a user friendly tool. No proper user interface available for capturing design
rationales. Three different tools are comprises here, difficult to use for a common
user. Certain errors found like AREL operations cannot be tightly integrated with
Enterprise Architect. For instance, the AREL operations cannot be directly activated
from the Enterprise Architect menu options to fully integrate AREL functionalities
into Enterprise Architect. Second, we have no access to the source code of either

Enterprise Architect or Netica, therefore there cannot be a seamless integration where

Value-Based Software Architecture Knowledge Management 45

Chapter 3 Literature Survey and Evaluation of Tools

prior probabilities and conditional probability tables can be captured and computed
within the UML tool.

Experience user finds this tool-set difficult as it requires a lot of training to understand
it and its usage is quite time-consuming. One cannot remember this tool if he is absent
for a while as he have to construct model for capturing design rationale and have
nothing to write as text this makes it difficult to understand to complete task later on
as he don’t understand where he were. The above discussion concludes it is not
pleasant to use tool. The usability of tool has been checked and evaluated by
personally using the tool.

2. Industrially used:
AREL tool-set has been partially tested industrially as researchers have applied case
study on it. However researchers [35,46] mentioned that the AREL tool-set is only a
proof-of-concept, its effectiveness in practice requires a formal evaluation. The
opinion about this attribute has been formed from the research paper [46] and tool’s
website [35]

3. Open Source:
Tool is mot an open-source tool because tool’s source code is not available. This
attribute has been validated by from the tool’s documentation [35].

4, Coverage:
Table 3.2 that compares and contrast the features of each tool with one another can be
useful to evaluate tool with this attribute. Tool captures design rationale and partially
architecture design decisions. Support for integrated representation of architecture.
Table 3.2 shows tool covers less number of features as compared to other features.

5. Useful for software product families:
Tool is not useful for software product families as AREL is a tool-set in which three
tools are involved and each tool works separately which causes difficult working for
software product families. This attribute has been checked from the documentation
[35] of the tool.

6. Support of Value-based software engineering principles:
Tool doesn’t support the VBSE concept as we are not capturing design decisions
information according to user’s choice. User’s have no choice to capture required

design decisions information. All the design decision information has been captured

Value-Based Software Architecture Knowledge Management 45

Chapter 3 Literature Survey and Evaluation of Tools

10.

11.

not focusing only on required set of information. This attribute has been checked from
the documentation [35] of the tool.

Useful in evolution and maintenance activities:

AREL tool-set is partially useful for maintenance and evolution activities. Tool-set
compromises three different tools and it is difficult sometimes for the maintainers to
use the tool-set as they found hard to work on three different tools. This attribute has
been checked from the tool’s documentation [35].

Integrated with other modeling tools:

Tool is integrated with Enterprise architect and Netica. The tool-set itself also requires
better integration between UML modeling and BBN computation. This attribute has
been checked from documentation [35] and personal usage.

Accessible for geographically distributed stakeholders:

Tool doesn’t support this feature. AREL Tool-set compromises three different tools
and it is difficult to access geographically by different stakeholders. From the
documentation [35], this attribute has been validate for the tool

Performance:

Performance wise it is not good as we have to first capture rationale by designing it in
enterprise architect which consumes a lot of time to complete the basic task. For a
given set of information tool takes 10-15 minutes to capture design rationale.
Similarly for retrieving the information, system responses in 4-5 minutes. No proper
user interface available for capturing design rationales. AREL operations cannot be
tightly integrated with Enterprise Architect i.e. the AREL operations cannot be
directly activated from the Enterprise Architect menu options to fully integrate AREL
functionalities into Enterprise Architect. As there are three different tools are
comprises here, difficult to use for a common user. Tool takes a lot of time to run this
tool-set. The performance of tool has been measured by personally using the studied
tool.

Security:

Security attribute has not being supported by AREL tool-set. No security feature is
added in this tool like username etc. This attribute has been checked by personally

using the tool.

Value-Based Software Architecture Knowledoe Manacement 47

Chapter 3

Literature Survey and Evaluation of Tools

Table 3.1 shows the evaluation criteria for the existing tools in summary form. For

evaluating tools, ratings are defined. v~ shows that the attribute is fully supported by the

tool, ® shows that the tool partially supports that attribute and X shows the tool doesn’t

support that attribute.

Table 3.1 Evaluation Criteria for tools

*Ratings: v': Fully supported, o: Partially supported, X: Unsupported

KNOWLEDGE
Attributes PAKME | ADDSS | ARCHUIM | ARCHITECT | AREL
WORD
1. Usability v v X . X
2. Industrially used v X X . .
3. Open Source X 3 X X
4. Coverage**
% Architectural
Knowledge
* Integrated
representation of v v v
the software X X
architecture
. Arc.hltectm.'e. v v v v .
design decisions
Rationales
underlying the v v v v v
design decision
Extc?mal context/ v . . . X
environment
% Features . . X X X
5. Useful for software
product families X X X X X
6. Support of value-based
software engineering X X X X X
principles
7. Us§-ful in evolut%op_and v v . . .
maintenance activities
48

Value-Based Software Architecture Knowledge Management

rsprer o Literature Survey and Evaluation of Tools

8. Not Integrated with v v
other modeling tools v X X

9. Accessible for
geographically 4 v X X X
distributed stakeholders

10. Performance P v X . X

11. Security X v X X X

**Coverage attributes shows the coverage of architectural knowledge attributes as well
as other features each tool possess. Features aitribute and architectural knowledge
attributes are evaluated on the basis of table 3.2 which compares and contrasts the
Jeatures of each tool with other. In this way we can easily find which tool covers more

Sfeatures then others.

The following table shows the comparison and contrast between the features of each tool.
Features have been divided into groups. For these features, ratings are defined. v~ shows
that the feature is fully supported by the tool, ® shows that the tool partially supports that

feature and X shows the tool doesn’t support that feature.

Table 3.2 Compares and Contrast the features of each tool

*Ratings: v': Fully supported, »: Partially supported, X: Unsupported

KNOWLEDGE
Features PAKME | ADDSS | ARCHIUM | ARCHITECT | AREL
WORD
Group 1: Managing v v
Architectural Knowledge y ¢ ¢
Capture, manage, present and
retrieve Architectural v v 'Y . °
knowledge
Share and Store architectural v v . . .
knowledge
Supports the creation,
capturing, use, maintenance, v v b * o
and documentation of

Value-Based Sofiware Architecture Knowledge Management 49

Chapter 3

Literature Survey and Evaluation of Tools

architectural design decisions

Captures rationales for design
decisions.

Captures Technical Information
(Patterns, Styles, Tactics,
Analysis models & Scenarios)

Support and store design
decisions as first class entities
under an iterative approach

Group 2: Supports
architectural knowledge reuse

Reusing architectural
knowledge

Reuse AK through different
projects

Possible to reconstruct
architecture

Group 3: Improves the
efficiency of software
architecting process

Support for the software
architecture process

Improves architecture-based
software devclopment.

Decrease the effect of
knowledge vaporization.

Improves the representation of
design rationale for architecture
development

Improves and estimate change
impact analysis

Effective communication of
design rationale

Complexity control

Highlight design complexity
before implementation

Group 4: Knowledge

Vaiue-Based Software Architecture Knowledge Management

e v v
. X X
. X X
. . X
v v X
X X X
X X X
. . .
. . X
® \/ [
v v X
. X v
° X v
. X v
X X X
X X v
. . .

50

Chapter 3

Literature Survey and Evaluation of Tools

acquisition service

User Interface

Users can upload
figures/images

Templates to capture, manage,
store and present architectural
knowledge

Capture architecture design
rationale and architecture
design by using extended UML
profiles

Add Knowledge Entity,
Context

Create Knowledge Entity table

Group 5: Knowledge
maintenance service

Knowledge management

Repository Management

Allows the storage of several
projects and architectures

Group 6: Knowledge retrieval
service

Search

Design Decisions easily
replayed

Group 7 Knowledge
presentation service/
Reporting

Generates automatically PDF
documents/ Web based report
for describing decisions,
architectural products etc

Presents knowledge using
representation mechanisms like
utility, results, decision trees or
network

Visual representation (explicit

Value-Based Software Architecture Knowledge Management

X v X
X X X
. X .
X X v
X v X
X v X
X X X
X X X
. . X
. . X
e X .
. o °
X X X
. 'y X
v X v
51

Chapter 3 Literature Survey and Evaluation of Tools
graphical notation)

Design decisions easily . X .
visualized

Establish dependencies and v . X
constraints between decisions.

Shows annotations lists and v

Context Menu X X
Colors for knowledge entities ° v X
Group 8: Support for

different stakeholders X X X
Multi-perspective support for X X X
different stakeholders

Different categories of users & X X X
permissions

Group 9: Support for

Patterns & Styles X X X
AK captored from Human

Sources and patterns X X X
Add or remove well-known

design patterns and

architectural styles to the X X X
database

Group 10: Support for

different architectural views X X X
Implementation of decision X X X
view

Group 11: Support for

architecture evaluation] o ®
process

Useful for evolution and o . o
maintenance activities

Modeling and documenting the

evolution of ADD X X X
Categorizes as risk or nonrisks. X v X
Group 12: Supports v v v
traceability

Va!ue-Baked Software Architecture Knowledge Management 52

Chapter 3

Literature Survey and Evaluation of Tools

Improves traceability between
requirements, architecture and
implementation

Several types of relationships
among ADD can be handled

Validate the set of ADD against
the requirements

Group 13:Support for
alternative decisions and
requirements

Support for alternatives
decisions

Support for functional and non-
functional requirements

Group 14:Support methods
and processes

Support for design and analysis
methods

Supports Decision making
activity

Support design reasoning
process

Binds architecture decisions,
models and system
implementation.

Relates decisions, architecture
products and design rationale

Represents design rationale,
design objects and their
relationships

Group 15: General Checks

Check for consistency

Check for superfluous &
obsolete decisions

Check for completeness

Get consequences of an ADD

Value-Based Software Architecture Knowledge Management

v v v
v v X
v v v
v . .
v X .
v v v
° X v
° X .
v X v
X X v
v X X
v ° v
. ° v
v ° .
v X X
v X X
v v
v X

53

Chagpter 3 Literature Survey and Evaluation of Tools

Shows multiple errors X i . v v ®
Support consistency checking

of the AREL models and to X X X X v
support AREL model tracing

3.3 Limitations

To sum up the above study, certain limitations have been found from the above
mentioned tools. There are some features which one tool is covering but the other tool is
not covering those features. By evaluating each tool as discussed in section 3.2 on the
basis of different attributes, the major limitations and drawbacks of each tool have been
found. Table 3.1 clearly shows which tool has some limitations or drawbacks. Moreover
by comparing and contrasting features of each tool with one another as discussed in Table
3.2, certain limitations have been found. Research papers, technical reports and other
documentation of each tool have also been very useful for listing down the limitations of

each tool. Every tool has some limitations some of which are mentioned below:

3.3.1 PAKME Limitations

Although PAKME covers a lot of features but still certain limitations have been found.

Some of these [21,23,48] are:

1) No support of Value-Based software engineering principles.

2) PAKME’s templates should be configurable based on organizational needs.
Templates need to be configurable by users based on their needs.

3) Duplication of workload of requirements,

4) Does not supports diagrammatic modeling of design decisions rather its focus is on
providing a handbook of architecture knowledge.

5) Should be integrated with their requirements management tool, if it is to be widely
used within large environment.

6) PAKME needs to be designed to be heavily customized at deployment time.

7) Does not enable to store and document design decisions as first class entities under an
iterative approach like ADDSS tool.

8) Not useful for software product families,

Value-Based Software Architecture Knowledge Management 54

‘..1'!

Chapter 3 Literature Survey and Evaluation of Tools

9) PAKME doesn’t provide any security features. Need to improve the speed and
accuracy of knowledge retrieval.

10) Does not check implementation against architectural decisions. Does not get
consequences of an architectural decision.

11) Does not check for consistency, completeness and for superfluous decisions.

12} Does not differentiate the functional requirements and non functional requirements.

Quality Attributes should be captured.

3.3.2 ADDSS Limitations

ADDSS tool is quite stable tool as compared to other four tools. This covers a lot of
features which other too! doesn’t cover but there are still some limitations in this 100l
which are as follows [8,9]:
1) ADDSS is a research prototype; this tool should be tested in an industrial setting.
2) No support of Value based software engineering in this tool.
3) Tool should allow the connection to other existing analysis and design tools in
arder to import/export requirements and architectures.
4) No proper templates to capture, manage, and present architectural knowledge like
PAKME tool, it only contains web-forms.
5) Does not differentiate the functional requirements and non functional
requirements. Quality Attributes should be captured.
6) No catalogue of architecture and design tactics.
7y Does not capture and present scenarios (general and concrete).
8) Does not support for design and analysis methods
9) Does not categorize risk and non risks
10) Does not check implementation against architectural decisions. Does not get
consequences of an architectural decision
11} Does not check for consistency and for completeness.

12) Not useful for software product families.

3.3.3 Archium Limitations

Archium tool doesn’t cover certain features which ADDSS and PAKME covers. So these

are the limitations in that tool [17].

Value-Based Software Architecture Knowledge Management 58

Chapter 3 Literature Survey and Evaluation of Tools

1y

2)
3)

4
5)
6)
7)
8)
9)

The Archium tool has not been tested yet in an industrial setting, so empirical
verification data is not yet available.

No support of value based software enginecring in this tool.

No proper templates to capture, manage, and present architectural knowledge like
PAKME tool.

No catalogue of architecture and design tactics.

Does not capture and present scenarios (general and concrete).

Does not store architectural documents.

Does not support for design and analysis methods.

Does not support for standards such as IEEE 1471-2000 as PAKME.

Does not categorize risk and non risks.

10) Not useful for software product families.

11)Not a user-friendly tool as user interface has not provided. Difficult to understand

tool as it is in Java and commeon user does not know how to set environment for

the tool.

12) Does not provide any security features. Performance wise not good.

13) Does not provide multi-perspective support for different stakeholders.

14)Does not differentiate the functional requirements and non functional

334

requirements. Quality Attributes should be captured.

Knowledge Architect Word Limitations

Knowledge word architect has certain limitations which are as follows [33]:

)
2)

3)

4)
=)
6)
7)
8)
9

No support of Value Based Software Engineering in this tool.

No proper templates {o capture, manage, and present architectural knowledge like
PAKME tool, it captures AK in word document.

Does not enable to store and document design decisions as first class entities
under an iterative approach.

Does not support diagrammatic modeling of design decisions.

No catalogue of architecturc and design tactics.

Does not capture and present scenarios (general and concrete).

Does not support for design and analysis methods.

Does not store architectural documents,

Does not categorize risk and non risks.

Value-Based Software Architecture Knowledge Management

K&

Chapter 3 Literature Survey and Evaluation of Tools

10) Does not check implementation against architectural decisions. Does not get

consequences of an architectural decision.

11) Does not check for consistency and for superfluous decisions.

12) Not useful for software product families.

13) Does not provide any security features and performance wise not good. Need to

improve the speed and accuracy of knowledge retrieval.

14)Does not differentiate the functional requirements and non functional

3.3.5

requirements.

AREL Limitations

Literature review of above mentioned tools show that AREL tool has a lot of limitations

as compared to other tools. Some of these are [35,46]:

1y

2)

3)
4)

3)

6)
7)
8)
9)

AREL operations cannot be tightly integrated with Enterprise Architect. For
instance, the AREL operations cannot be directly activated from the Enterprise
Architect menu options to fully integrate AREL functionalities into Enterprise
Architect.

The AREL tool-set is a proof-of-concept and it is immature for real-life
applications. This is because a number of usability features must be implemented
if it is to be widely used in a commercial setting.

No support of value based software engineering in this tool.

No proper templates to capture, manage, and present architectural knowledge like
PAKME tool.

Does not support properly the creation, capturing, use, maintenance, and
documentation of architectural design decisions. Does not enable to store design
decisions as first class entities under an iterative approach.

No catalogue of architecture and design tactics.

Does not capture and present scenarios {general and concrete).

Does not store architectural documents.

Does not support for design and analysis methods.

10) Does not check implementation against architectural decisions. Does not get

consequences of an architectural decision.

11) Does not check for consistency and for superfluous decisions.

12) Not useful for software product families.

Value-Based Software Architecture Knowledge Management 57

Chapter 3 Literature Survey and Evaluation of Tools

13)Does not differentiate the functional requirements and npon functional
requirements.
14) Does not provide any security features and performance-wise not good. Need to

improve the speed and accuracy of knowledge retrieval.

Vaiue—Based Software Architecture Knowledge Management <o

CHAPTER 4

VALUE-BASED SOFTWARE ARCHITECTURE
KNOWLEDGE MANAGEMENT TOOL

Chapter 4 Value-Based Software Architecture Knowledge Management Tool

4. VALUE-BASED SOFTWARE
ARCHITECTURE KNOWLEDGE
MANAGEMENT TOOL

Architecture Knowledge Management [21} is very important for improving an
organization’s architectural capabilities. Value-Based Software Architecture Knowledge
Management is an emerging frend in software architecture community, By managing
architectural knowledge in a value-based manner is one of the most valuable steps for
advancing the software architecture state of the art by preventing its high costs of change
and diminishes the effort and time required [28,29]. This diminished effort has the effect
of mitigating the overhead. Value-Based approach takes into account value considerations
of stakeholders and only documents the information required by stakeholders. Different
techniques have been studied and analyzed for managing, sharing and storing
architectural knowledge in Chapter 2. As a result of techniques survey, a Value-Based
approach for Documenting Design Decisions Rationale (VB-DDRD)[27,28,29] has been
found as a useful technique as it focuses on documenting only the set of required
information based on its purpose. Moreover, existing tools for managing and sharing
Architectural Knowledge have been studied and evaluated in Chapter 3.These tools are
evaluated on the basis of certain attributes. It has been found that none of the surveyed
tools supports Value-Based Sofiware Engineering concepts. Therefore, an open source
tool was selected and has been used 10 develop a Value-Based Software Architecture
Knowledge Management tool. The selected tool is Architecture Design Decision Support
System (ADDSS)(8,9], which covers additional features relative to other tools as studied
durtng survey. Certain other limitations have been found during the survey and evaluation
of tools as discussed in chapter 3. Special features have been added to overcome these

limitations.

Ths chapter involves the contribution of this thesis i.e. application of Value-Based
Software Engineering principles [26] into ADDSS [8,9] tool along with the
implementation of certain features which are missing from the tool. This chapter also
describes the evaluation of Value-Based Sofiware Architecture Knowledge Management

tool i.e. the modified tool on the basis of different attributes. Certain features have been

Value-Based Software Architecture Knowledge Management o

Chapter 4 Value-Based Software Architecture Knowledge Management Tool

added in this tool which is listed down below along with their benefits of adding in the

tool,

4.1 Features

These features are listed down one by one:

4.1.1 Support of Value-Based Software Engineering Principles

Because architectures have high costs for change and may erode during the evolution of
the system [11], architectural design decisions should be captured and documented to
avoid knowledge vaporization. Hence, in order to prevent the erosion of software design
and knowledge vaporization, we need to capture these decisions and their underlying
reasons that led to any particular architecture. As Architectural Knowledge consists of
architectural design as well as design decisions, and their underlying reasons that led to
any particular architecture. So this means we need to manage and store architectural

knowledge.

There are different ways 1o manage and store architecture knowledge. Different studies
show the importance of documenting and managing design decisions along with their
rationales [4,7,52]. Recently, various researchers [8,9,23,27] have proposed different
tools and techniques to capture architectural knowledge. However the applicability of
this work for managing AK in sofiware engineering activities can be inhibited by certain
factors [27,28, 29]. One of the main inhibitor for recording design decision and its
rattonales is that it takes a lot of time to record all the information about design decisions
and its rationales. Nowadays during development or when the deadline is near no one has
the time to enter all the information about architecture knowledge. That’s why design
decistons and their rationales are usually not properly documented. Following are the
inhibitors for recording all the information about design decisions also mentioned in [27,
28, 29] are:
1. Critical timing: The period in which design decisions are taken is usually critical for
the success of the software project. The project deadline or project pressure is one of

the main reasons for not documenting this design decisions and its rationale.

Value-Based Software Architecture Knowledge Management 60

Chapter 4 Value-Based Software Architecture Knowledge Management Tool

10. Potential inconsistencies: Architectural knowledge documentation implicitly
represents the results of the design. If Architectural Knowledge documentation are not

well updated, potential inconsistencies in case of decision changes might occur.

These and other inhibitors may hamper capturing, using, and documenting the design
decisions and its rationale.A lot of architectural knowledge is there and we have to
document and maintain all the architectural knowledge.But the benefit of managing all
architectural knowledge is not clear. It is not clear what information is required to save
that will benefit whom. If benefits are not understandable whilst one has to manage all the
architectural knowledge, the already defined inhibitors like critical timing, time and effort
required and overhead will have an impact. It will take more time and effort which also
increases the overhead in order to manage AK. From this it is concluded that not all the
information is needed all the time as different people need different information. So there
is a need to decide what information is required to save that will benefit whom. For this
we have applied Value-Based Software Engineering principles on an architecturL
knowledge management activity in order to mitigate the effect of above-mentioned
inhibitors which also helps to get to know the benefit of managing AK. The idea has been
taken from Boehm’s work [26], who proposed a Value-Based Software Engineering
(VBSE) agenda and from Davide Falessi’s work [27,28,29] who used Boehm’s idea for
documenting design decisions rationale i.e. used a Value-Based approach to DDRD (VB

DDRD).

This thesis applies the principles of Value-Based Software Engineering (VBSE) into an
open-source tool; Architecture Design Decision Support System (ADDSS)[8,9] which
was available at [36].Basically here architectural knowledge documentation has been
tailored. The adoption of tailored architectural knowledge documentation, consisting only
of the required set of information, would mitigate the effects of above mentioned
inhibitors. ADDSS and other studied tools don’t support the concept of value based

software engineering. This is the main feature which is incorporated in ADDSS.

The basic idea of this approach is that all the information included in a documenting
design decisions might be useful but sometimes some information are mere optional. The
idea to prioritize attributes for the AK is similar to the use of mandatory and optional

attributes for design decisions as in ADDSS [9]; it differs in the fact that the proposed

Value-Based S ofnvére Architecture Knowledge Mdnagemem 62

Chapter 4 Value-Based Software Architecture Knowledge Management Fool

Value-Based Software Architecture Knowledge Management tool is focused on the
choice of all the persons (beneficiary stakeholders) who are involved in specific project
and will have a choice to get only that type of information which they required. In
ADDSS mandatory and optional attributes are fixed, we cannot change any of the
mandatory attribute to optional and optional to mandatory attribute. The researchers of
ADDSS are making distinction between the mandatory and optional attributes by
themselves. However, in this work, all the related stakeholders have the choice for
selecting required set of design decisions information along with the architect. Besides
moving towards working and applicability of this concept into ADDSS; we first need to

understand the concept of value based software engineering.

4.1.1.1 VALUE-BASED SOFTWARE ENGINEERING

Most software engineering activities are practiced in a value neutral approach in which
every fault, user requirement, test case, use case, risk etc. is treated equally [26]. The
Standish Group CHAOS report [40] describes that value-oriented shortfalls like lack of
user input, changing requirements, lack of resources and unrealistic time frames etc, are
the common causes of most software project failures. A value-based software engineering
(VBSE) agenda has emerged. The focus is to integrate value considerations into current
and emerging software engineering principles and practices e.g. value-based requirements
engineering, architecting & design etc, and to develop an overall framework in which

they compatibly reinforce each other [26].

Basically, value based software engineering is an extension in traditional software
engineering, as it tries to introduce value considerations into previously defined software
engineering concepts and practices.In traditional software engineering (SE) the whole
development process focuses mainly on successful development of the final product with
lesser attention to the fulfillment of the values of stakeholders.On the otherhand,in VBSE
the focus is taken(or atleast tried to be taken) beyond just the development of the software
product.Here the main focus is on the value that the software has added/will be adding to
the system.The traditional software engineering approach considers only the
production/development whereas value-based approach also considers the system in
which that software will be implemented. In this present work, a Value-Based approach

has been proposed to Architecture Design Decision Support System[8,9], which focuses

Value-Based Software Architecture Knowledge Management 63

Chapter 4 Value-Based Saftware Architecture Knowledge Management Tool

on documenting only the set of required information based on the choice of different
stakeholders.

4.1.1.2 APPLYING VALUE-BASED SOFTWARE ENGINEERING TO ADDSS ToOL

This section discusses how the Value-Based Software Engineering principles are applied
on ADDSS. A process has been developed to manage architectural knowledge named as
Valye-Based Software Architecture Knowledge Management (VB-SAKM). Five steps
are involved in the process which are as follows:
1. Identify success critical stakeholders.
ii. Elicit stakeholder preferences.
ili. Prioritize stakeholder preferences.
iv. Record design decisions information.
v. View of recorded design decisions information.

Process detail along with the working of tool 1s discussed as follows:

i. Identify success critical stakeholders
There are different stakeholders who are associated with each project. In software
domain, stakeholder can be anyone who can affect or get affected by the system in any
means (financially, personally etc). Basically, stakeholder is a general term that represents
everyone having a stake in system e.g., developer, project manager, consumer or
customer etc. For the successful completion of any project, it is important to bring-in ail
the Success-Critical stakeholders (SCSs).Moreover, every stakeholder doesn’t need to
store or use all the design decisions information. Therefore, it is important first to identify
the success-critical stakeholders (SCSs) i.e. Who will get profit (beneficiary stakeholders)
[27,28,29]. So the first step of this process is to identify success-critical stakeholders
(SCSs). Architect can only identify the SCSs. Input of first step is a list of stakeholders
involved in a specific project and the output is a list of the identified success-critical
stakeholders. Value-based approach is aimed at making SCSs the winners and to ensure

stakeholder satisfaction besides just focusing the successful product development [26,49].

To identify success-critical stakeholders (SCSs), tool is not concern about the technique
the architect adopts. The modified tool is independent of any technique for identifying
success critical stakeholders. However, architect can identify success-critical stakeholders

by the Dependency theory as mentioned by Boehm [49].A key technique is the Results

Value-Based Software Architecture Knowledge Management

Chapter 4 Value-Based Sofiware Architecture Knowledge Management Tool

Chain {50]. The Results Chain is a valuable framework by which software project
members can work with their clients to identify additional non-software initiatives that
may be needed to realize the potential benefits enabled by the software/IT system
initiative. These may also identify some additional success-critical stakeholders who need
to be represented and “bought into” the shared vision. Success-critical stakeholders have
goals. Results chain is used to sec what software and other initiative are required to fuifill
goals of SCSs. But it is not necessary to identify success-critical stakeholders with the

above mentioned technique, architect can identify with any other technique as well.

Figure 4.1 shows how success-critical stakcholders are identified in this tool. The tool

opens a form that contains the privileges of each stakeholder along with their category.

By checking the Critical Stakeholder option in front of any user, we can identify a

stakeholder as success-critical stakeholder.

3 hnp:lllucklhuslmmssﬂﬂmi_cndaﬁndu.plw‘ Microsoft Jmerner [xplore) 5
Be {2 few Fpote ok teb &
Ow-0 NEAG PPt @ 358 JRAD 3
u l”ui !u ML TTTS H Re amun “Pmern “ agll + "Rem.,m l
Weicome tom hansun
—hogoul
List of privileges: Human Resource Information System
Show Users:
® Organization nortel networks”
[« 1]
! User Lr ategory JI' Read ! mdlf: 3 Delete J n:"’i:::ﬂ" ;
idastd transice i - Braject manaser - - E E E M ' .-_
1ennlfe! charles develsper & & 73] 5] | -
Hichard thaa Peest =} 0 0 u] '
Iilnn hansam architact/admin [E] Lz [m] I 1
l'!r_l.lluu rebert wuality acsacance manager |z Fl &l) | l
4
i :
. |
¢ - ~ |
Back Save
rom—— v — — e e e e o ey gt i e —y 14
&) oore W Localrtranes

Figure 4.1: Identifying success critical stakeholders

ii. Elicit stakeholder preferences

The second step of VB-SAKM process involves the elicitation of stakeholder preferences.
The 1dentified success-critical stakeholders’ gives preferences by providing value to each
design decision attributes. According to the ‘Theory of Value (economics)’ {53,54],

"value is meant as economic worth of goods and services” and it tries to explain the

Value-Based Software Architecture Knowledge Management “

Chapter 4 Value-Based Software Architecture Knowledge Management Tool

worth of goods and services provided by some entity from different angles.This theory
suggests that the valuc of some entity can be seen in different perspectives{54]. For
example, it can be seen from intrinsic, subjective or objective angle. In this step, we are
following Boehm’s idea [26) for eliciting stakeholder preferences as the value of each
design decision attribute purely depends on the stakeholders’ perception and their

choices.

Basically here the stakeholder preferences are elicited in the form of rating of each design
decision attribute by giving score to each attribute. The input of second step is a list of
identified success-critical stakeholders and output is stakeholders preferences for each
design decision attributes. Stakcholder proposition value plays an important role for

selecting required set of information.

For selecting only required set of information, the tool provides the facility to rate the
design decision attributes as shown in Figure 4.2. The identified success-critical
stakeholders can rate each design decision attribute by scoring each attribute from the
scale 0-5.Five is the highest while zero is the lowest score. They can rate the attributes
whatever information they think useful for them. SCSs can leave any field if he doesn’t

want to score that attribute, zero will be the default value for them.

e T—mr m o
& httpifocalhost ADDSSIADDSS_cadefindex. php Wierysolf Inter act Depiaren

O B pe reem D e 3
O © AB6 Pamhem 0 BB A UJRADS
fﬂ?é:r,mw — - 1‘]9‘-:_

A OS] e 0a5e0 Somwd Sk

u !n St “A: L. e une- Rt nr ” Daftery ”_-..mr 1)
Woleeme jeaniflar charlas
Lpgopt
Design Decision Attributes for preject:Human Resource Information System F“f
S Scyring vange i3; B-3
e i o e e PSS PP SN E P
-\ SHe : Design Oeclision , $are i
Il . Decision Mame ltg E‘E
TZ "Type of Pattern X1 [
.? battars 5 i
P L] sitls 5 i
| v —, L
5 Decision Dats W5 1
;i Status 1 y
T b
7 Categary 4 I
3 ;
'lu Deserigtion 15 .
? nq;«'rcrncnts W 5 X
[I
I;U Depasdenty - IL _}
I — il f— — - — ol g} B
— A =
Py — - —~ - ot pirlinalii e Tt = i i) 5
S = = == == = Polifnliors \vomn Nyl gyl
&) pore N tocel kvt

Figure 4.2: Rating of design decision attributes

Value-Based Software Architecture Knowledge Management 66

Chapter 4

Value-Based Software Architecture Knowledge Management Tool

A design decision (DD) has many attributes like rationale, alternatives etc.The attributes
for design decision has been taken from different sources. The main focus is on the
attribute which are used in [27,28,29]. Moreover some of the attribute has been
considered which ADDSS tool has already been taken whilst others have been taken by
reviewing all the other tools as studied above. These studied tools are considering these
attributes for recording architecture knowledge. There are 29 attributes which tool is
using. These attributes are dynamically added so one can add any attribute or can remove

any of attribute from the list. The list of attributes which are using in this tool is as

follows:

Table 4.1 List of Used Architectural Knowledge attributes

Attribute Names
1. Decision Name 2. Type of Pattern
3. Pattern 4. Responsible
5. Decision Date 6. Status
7. Category 8. Description
9. Related Requirements 10. Decision Dependent
11. Issues 12. Assumptions
13. Constraints 14. Posttions
15. Argument 16. Implications
17. Related Artifacts 18. Related Principles
19. Design Decision Rationales 20. igi?f;?;ggﬁ;;i;:ﬁjons
21, Other alternatives considered 22. Tradeoff evaluated
23, g;;gtsl;zintation that led to the 24 Notes
| 25. Pros/Cons 26. Alternative Decisions
27. Views 28. Tactics
29. Consequences

Prioritize stakeholder preferences

The elicited stakeholder preferences are prioritized here. Architect can only prioritize
design decision attributes into required, useful or optional on the basis of total of each

score associated with each attribute collected from different success-critical stakeholders.

Value-Based Software Architecture Knowledge Management

Chapier 4 Value-Based Software Architecture Knowledge Management Tool

For giving priority to required set of information, the following terms has been used as
described in [28, 29]:
A. “Required information” refers to that kind of information without which the
meaning of something cannot be understood to the readers
B. “Useful information”, is a kind of information that helps to a small or large extent
the readers to understand the meaning of something;
C. *Optional information” means information that is not required to understand

something, but it can be useful.

Architect has all the scores associated with each design decision attribute from all
success-critical stakeholders and total of each score associated with each attribute.
Architect finalizes the prioritization of the DD attributes based on two factors, the total
score associated with each attribute and the category of success-critical stakeholder. A
mechanical process can be just to focus on total score for each attribute and treat all
stakeholders equally important. But this can be unrealistic in a scenario where overall
total score is in lower range and some important SCS e.g. project manager gives high
score to an attribute. Architect is given discretion to prioritize the Attributes. In that case,
he can prioritize the attribute as useful, no matters other stakeholders don’t give
preference to that attribute. Other stakeholders can neglect the useful attribute while
recording design decision, if they don’t require that, However, if architect does not
prioritize that attribute as required or useful than it’s an architect mistake. The input of
this step is stakeholders preferences for each design decision attributes and output is

prioritized stakeholders preferences for each design decision attributes,

The tool facilitates the process and the associated decision making by providing total
scores for each attribute and individual stakeholder scores for attributes as well. Figure
4.3 shows a form that displays stakeholder’s name, attributes and score associated with
them, total of each score and priority choices in different colors. Architect has only the
privilege to prioritize design decision attributes. Identified success critical stakeholders
don’t have the privileges 1o select design decision attributes. Architect must have to see
the total score of each aftribute and the category of success-critical stakeholder while
prioritizing the design decision attributes. If there is no score provided for any atiribute,

architect can mark the attribute on his own choice. If the total score is in higher level then

Value-Based Software Architecture Knowledge Management A2

iv.

Chapter 4 Value-Based Software Architecture Knowledge Management Tool

it should be mark as “required”. If the total score is greater then lowest level but not come

under some higher level then it can be mark as useful.

N Mip:/fotalhostADDSS/ADDSS_codefindex. php | Microsaft Imecnet fxplores i I S m

o £t Wew Fpeins Joos el ﬂ
O~ O RRG S=pme 358 URHBS |
| gt () e thcabntincossiacoss it 7 _ __ VMBe
u i IP - " Aleie 7 il " [T ” Paern: ”* b ” R . :ull
Welgome tom hansan o
kagiut
Prioritize Design Decision Attributes;Human Resource Infarmation System f
'Decision Name @ required Ousetul Qaptianal et
breT — —— . — -——Qﬂ
itnnifur 5]
willson $;
i"” s Pattors C required @ useful O Optionaf "
o — e e e
'Iin-n %)
stnnifer 5 !
:uillsnn 3 -l
P T ey N |
:Fcﬂ:rt Olcquir.d@b-nlulonntillll .
e — !
Ko el — - N " — - —_ﬂgJ
Back Sawe
¥
T e S —————— w1 &
& oo i Qiocadrpont

Figure 4.3: Selecting design decisions attributes

Recording design decisions information
Architect or Success-Critical stakeholder can store only the required set of information
after the design decision attributes have been prioritized, no need to store that information
which is not required at that time. The input is the prioritized design decision attributes

and output is stored required set of design decision information.

For recording design decision information a dynamic form is generated that contains only
those fields which are marked as required or useful by architect as shown in Figure 4.4.
‘Optional’ fields are not visible in the form. ‘Required’ fields should be entered other
wise the tool doesn’t allow to save the information. For ‘Useful’ fields it is a user’s
choice either to fill them or not. The tool has provided a proper template like PAKME
[23] to capture, manage and present architectural knowledge.

Value-Based Software Architecture Knowledge Management 69

Chapter 4 Value-Based Software Architecture Knowledge Management Too{

;’3 I;[lp;l;ixa-g:,ihu_slIADI!SéQDDSS_cnde!index.php ‘icrosoff lnternet Cxplorer,

Be ER Yew Favortes Tok Meb . ﬂ
— -
u o &
I Ptscts " Arnoonere JI Iterations " Patterns " Vool 8 JI Rizitel I
Welcame tom hansun
Lagout
. 0 . 3 e
Insert a new decision: Human Resource Information System - Arch-HRIS - Tteration 1 M
S R e — o e —
Name * IDeustofrUl I
l[lype of Pattern 1 Architactural ¥
e e , - - T R . . o - R
" I _J
Gl = —. |]
T N
’Iespnlslhle * Jtem
[— - _ . _ I ——
JDate * IZS{'[I! {2009 I
Irshtus . IAppmved 'v;
- e e e =2 . i e . . e e
Categery Mam [wd
,— A pipe apd filter acyle bhas been epplied
Description *
View * lﬁlyswd E'_u
1 : i T) N The teol should be |
; functional able te extract i
1A 101 (0) Reguirement formulae from the
; ., S vt mmw Bxcebshest,
h " T 7" "The tool shoutd be
E " . Functional able to burld »
Requiremants 1 E] roz (u) Requitement dependency graph
. e .pfrom the formulae |
L - = *The toot should
. represent the graph
[\l ro3 (u) ;L::zf:?;nrzlent acquired inr0Zin 2| _;
wisually attractive ¥
l Issuss arises when ve apply pipe end filter style as it might complicate the o
iluues working gf excel plug-in
I This decision is taken in order to understend why #¢ have applied the pips and]
'Daslgn Decision Rationales * filter stgle, .]
Back Save EL .
A ——— e e e ol N . . 2
3] N Locd bt 3

Figure 4.4: Recording of design decisions

v. View of recorded design decisions information
Architect or Success-Critical stakeholder has the choice to view any design decision
information which is already stored. The input of this step is the recorded design decision
information and output is view of recorded design decision information. User can choose
from the list of fields which are prioritized as required and useful. One can view the entire
field’s information or can view any of them. Tool provides the choice of those fields as

shown below.

Value-Based Software Archirectire Knowledge Management 70

Chapter 4 Value-Based Software Architecture Knowiedge Management Tool

3 Mg HflacalhestFADDSSIADYSS “todefindex. php | Microsolt internet Fxplorer "
B B ye fouwm Dokt 3
Cw=-Q NIAL P me=@ S- 58 JKAO-S

-lmns!

Walcomes tom hansun
Logayt

REPORT CRITERIA FOR DESIGN DECISIONS

ey
El1vps of Patrarn
B¢ attern
_D-'_kn_p_nnsnbu
Blosasion bate
Edstetus
ElCsregory
ﬂ_l}_u_i_nr_i_ntmn
ljluulumn[rur
leplndln:y
Dh!uu
Ewaiated artfacts
o etared principtas

|;|D¢mn Oecisian Rationales
L . — F)

1
£

Figure 4.5:Report criteria for design decisions

After selecting any field of user’s choice, a dynamically report is generated which shows
the set of required information. Basically web based report is automatically generated for
describing decisions. The more fields the user selects, the more fields will be displayed

horizontally in the report. Figure 4.6 shows the report.

23 htip:ifocalhost/ADDSSIADDSS _codefindex. php y Mictosoflt Intermet {xplorer, it il -
C &y

Be X You Fpwim Tk o
Q= - © NG Pmg--@ @3-S m [JRHULOS
adoress [) x = do B
Welcome tom hansun
Aegavy
DESIGN DECISTON REPORT
P atters Respensibls Dechsian Data Atatus 4

T Th Tis09-02-01 Pending Imm »

)| l:-‘;:gur]j:._.mi.i’!n 1 zs09-02-61 [aopraved Naia I

1 Pipes and Fitters { david 12000-02-01 {panding L

Back

o— e ——————— el el S e A T —r i — [t
&) borse S Loca nivanat

Figure 4.6: Design decision report

Value-Based Software Architecture Knowledge Management 71

Lhnapter 4 vailue-pased agjiware Archaiectire Anowiedage nvianagemeni 1001

The above mentioned Value-Based Software Architecture Knowledge Management (VB-
SAKM) process shows how to make architecture knowledge Value based. Moreover, this
above discussion shows how the tool works by incorporating this process into the
ADDSS tool. In this way we are determining a priority, who will profit from what
information in which amount later on, in order to cope with the additional effort that has

to be spend on recording design decisions and its rationale.

4.1.1.3 BENEFITS OF APPLYING VALUE-BASED SOFTWARE ENGINEERING

Following are the benefits of applying this approach into ADDSS are:

1) Less Time: By recording only the required set of information for any architecture
saves a lot of time as related persons are also performing other activities. The
possibility to spend less time to produce the architecture knowledge documentation
highly increases the possibility that people, who are busy to meet their projects
deadlines, find enough time to develop such documentation.

2) Less Effort: By recording only the set of required information for any architecture,
implies less information to document and maintain; hence less effort is required.

3) Overhead: A tailored architectural knowledge implies less information to document
and maintain; hence, a diminished effort has the effect of mitigating the overhead.

4) Lack of motivation: The clear definition of who will profit from who allows the
existence of a role (performed by real person or virtually) in charge of controlling that
the specific producers provide, and the relate consumers use, the expected AK
documentation.

5) Delayed Benefit: By recording only the required and useful information for any
architecture according to the choice of different persons will not only help them for
that architecture or project but also helps them in future projects. This will also helps
building the organizational capabilities.

6) Helpful for other persons: By recording only the required and useful information for
any architecture of some specific project can be helpful for the newcomers, who will
associate with the same project or with any other project

7) Potential inconsistencies: The tailored architecture knowledge implies less
information and hence less documentation. Less documentation implies both less

required effort for architecture knowledge maintenance and less probability of

Value-Based Software Architecture Knowledge Management 72

Chapter 4 Value-Based Software Arcrileciure ANOWIeuse iVIUrUgemicns 1 vu

inconsistencies occurrence. In this way we can make knowledge capture cost-
effective.

8) Information unpredictability: As the fields have been chosen on the basis of score
given by different stakeholders so the producer can easily estimate what the consumer
wants.

9) Maturity: As the literature survey shows ADDSS has more features as compared to
other tools; this tool now covers VBSE principles so it is now quite mature and
valuable tool.

10) No conflict between stakeholders: As for choosing the design decision attributes,
right of choice is given to all critical stakeholders who are associated with that
project, so there is no chance of conflict between them.

11) Tells what type of architectural knowledge is useful: As we know this support tells
what type of architectural knowledge is required, useful or optional on the basis of
scores given by all the stakeholders i.e. we are marking attributes as required, useful

or optional. From this we get to know what type of architectural knowledge is useful.

4.1.2 Provide catalogue of architecture and design tactics

A set of templates have been designed to document different units of architecturally
significant information (i.e. general scenarios, quality attributes, tactics) as an artifact of
architecture knowledge. Figure 4.7 presents one of these templates. The template used to

capture architecture and design tactics.

Value-Based Software Architecture Knowledge Management 13

Chapter 4 Value-Based Sofiware Architecture Knowledge Management Tool

— ——— = o ———————
)hﬂp ot alkostIADDSSIADDSS _codefindex. pilpMu:rmﬂ__ ernel [xphrer
Dv GN S Fpoms Juk ek [-]
: ! I = 2y
u i lAu e "Iq P "Paﬂeru! “ Lt "Rn,..-e. l
weleams tom hansun oo
_Logoyt
Madity Tactic
u-mc DEFER BNDING TIME i
_ - — b i imsmemi o o on: o < e i |
':I‘yns uf Tach: Mlockhesbity VI E
,,,,,, L _ s e e = - .
H Eany tamctica wre intehded to have impact at losduise or runtime, such an the following.Runtime Eod
Deseription Jregistracion aupports plug-and-play operation at the root of mdditicos]l ovechead ©o manege the 29
regiacration. Publish/subacribe registration, for exemple, cap be implewented ar either ructime or loed ?
G o - = - — e = — =
i“’““ |(Browss_] ‘
| ‘-I-I_l
T
= == '
I =
1
! -
Back Sawé
i — — T wur v — Wy—— il T ——r-—]
B & Local rerane

Figure 4.7: Template for recording tactics

A catalogue of architecture and design tactics has been provided to users as shown in
Figure 4.8. Architect or stakeholders can select any tactic from the catalogue while

recording design decision information.

X hitp:fiocalhostFADISS IADNSS _cndefindex. php | Microsoll Intermet Fxplores]

Bo Gt few Fpois Lok top &

Qo - O EIBO,OM*#:FWQB%I DIﬁ.

\ymhb Based SoftwaTeR - -
u !D e " Michite - " LB " Bunen H e

welcomae david fransics

Hew ViewModHy Deleie

List of Tactics

- - e m - - =

Name f Type of Tactics i Descriptisn

T Toadtime or runtmer such as tha ol o

falloming.Runtime registration supports plug-and- ——

play operabion st the cost of additional overkead -

te manage the regiiiration. Publish/subscribe = s

registratien, for axampis, cen be inplemented at .

wither runtime or load time Configuranor filas ara = =
= ol
=
=

=30/

DEFER BINDING TIME Wodifiability
intended 1o set parametors st

-

C

Al

startup Palymorghism sllows Ists bindng of

methed calls.Compenant replecement allgws load =
time binding.Adherence to dehnvd protacels

allows ruztieyvs binding of degengent processes.

*Spparata the ussr interfaca from the rest of the
application, Lecalizing arpactad changes is the
rationala for samanuc caharanca. Since ths user
interface is aypactad ta change fragyendy both
during the devalopment snd after daglayment,

DESIGN-TIME TACTICS Usability maintaining tha user interface cads separately will

localire changss to it. The softwars architeciure

patterns davefeped to implemaent this eactic and to
supgart tha modification of the user intzrface

vt Madel-Vien-Controller, Pr P ————

“Fl‘i}[:
[y

J'ij E|

| i
! i [t

i ir—urr r — ———— . o ——

e bjl.miwm

Figure 4.8: Catalogue of tactics

-

An architecture tactic is a transformation of the system from one state to other that affects
one of the parameters defined by quality attributes [1]. A large number of tactics have
been identified and catalogued in Bass et al [1,41]. The tactics are based on the quality

Value-Based Software Architecture Knowledge Management 74

Chapter 4 VQiue-Based DOJITWUre ArCileCiure MivWIEUEE iVIunugoinicis 1 uus

attribute addressed. Annotating the architecture documents with architectural tactics used
while making architectural decisions helps to answer queries such as 1} did we use these

tactics before and what was the result?

4.1.2.1 BENEFITS:

1) Helpful in recording design decision information: It is helpful for the users to
select the related tactics while recording the design decision information from the
catalogue as sometimes users doesn’t know about tactics name. Also it answers did
we use these tactics before and what was the result?

2) Time Saving: Selecting tactics from the catalogue saves a lot of time of each user as
he doesn’t have time to enter tactics and their description.

3) Helpful for stakeholders: Different stakeholders who are not related to this field, this
catalogue helps them a lot as they can read and understand from this catalogue instead

of reading from the book.

4.1.3 Differentiates the functional requirements and non functional
requirements

Requirements play an important role for any architecture. Requirements are already taken
in this tool but they are not differentiating the requirements by type i.e. either these
requirements are functional or non-functional or business requirements. The existing form
has been modified and now the requirements are recorded according to the type as shown

in below Figure.

Value-Based Sofiware Architecture Knowledge Management 75

Chapter 4 Value-Based Software Architecture Knowledge Management 1ool

.a‘ilt;‘:Mur‘almnllDDSSMDDSSJudr.l'ind-:npnp icryoft internet txpiorer SN = —r

Be ER Vem Fpeonin [ods el _ﬂ
O - O HAO Pom e @ S-C B JRUO S 7
cvess) g Aabost NSNS ke phy _ -~ riBw

Welcoms tom bansen
Legqaut

Insert new requirement: Human Ressurce Information System - HRIS-ARCH

[e - 1
Requirement Name ! 1

'Reguiramnent Type
e e wm

Descriplion

[R i

b s i

Back Save

Taking requirements according to the type will be helpful while recording the design
decision information as quality attributes should be taken separately so that we must
know what quality attributes are affecting the design decision or have impact on them.
Quality requirements are the architecture drivers for any successful development of the
system. Also helpful while capturing scenario’s as scenarios are used to characterize
required quality attributes. Requirements along with their types helps the related persons
understand the specific architecture,

4.1.4 Capture and present scenarios (general and concrete)

Figure 4.10 shows a form for capturing a general or concrete scenario, which can be
elicited from a stakeholder or extracted from a pattern. Each scenario can have several
attributes attached to it including scenario name, source type, quality attribute etc. Tool’s

repository can contains hundreds of general or concrete scenarios.

Value-Based Software Architecture Knowledge Management 76

Chapter 4 Value-Based Software Architecture Knowledge Management 1ool

3 hitp:iilocaliost/ADDSS/ADDSS codefindex. php | Micrasoft Intermet Fxplorer —— —— (= e
He &R Yen Fpeottes Jook pep &
OM-O D@G,@Ms‘?rmme 9 a8 JKags
B . W e
u] areRochi . Khgwiel
Ipu ieds " A hite e ” tterationx “ Patt g ” L J:
walcomes david fransito
Logput
Insert New Scenario: Human Resource Information System - HRIS-ARCH &
fs_cenmn Name J i
:;mnari- Tros | Chopsa L: |
EQuality Attribute ‘] Choose ot i j
:Snurc- | Choose E i’ l
Tpattarn ' Choose [+ i
U . - 1
Deaseription
!
Stlmulus J
|Amhnr _ JCroose |v
Env-runment _I
— . .. - . e e F
Rs.ipnnsn }
Rnponsa — = 2 = = .
cMmeasyre —l g
O T e e e 3 ¥
& Do .] ’ dtocs mtranet

Figure 4.10: Capturing scenarios

Capturing scenarios helps the users to understand the requirements easily. These are an
artifact to architecture knowledge. Scenarios are helpful in characterizing required quality
attributes. The use of quality attribute scenarios is one of the core techniques for SEI's
methods to characterize stakeholders’ concerns. Tool can provide several hundred general
scenarios, which can be concretized to specify quality attributes for a given system as

implemented in {23].

4.1.5 Captures principles

A template is designed to capture principles for each architecture. Figure 4.11 shows the
form that captures principles that guide decisions for an architecture. These principles are
enterprise principles (business or others). Tool displays a catalogue of principles that

creates a link between architecture design decisions and enterprise principles.

Value-Based Software Architecture Knowledge Management 71

Chapter 4 Value-Based Sofiware Architecture Knowledge Management Tool

2 ritp:Hocalhost/ADDSSFADDSS _cadelindex, php g Microsofl Internet Explorer
Be ER Yow Fgrokes Jook pep

X
&

O © a@,@mf:ms s JR403

u I Paifedis 'JI AL tuser “ rar.mun. ” fattaons ” actt ~ Il Regiaten I

Walcoma tom hansun

Logout
__Insert new principle:: Human Resource Information System - HRIS-ARCH

Prml::nl. Naml l i

===) B N

o)

Description

L b e i et il B

&) bore)) %3 Local intranet

Figure 4.11: Capturing principles

Principles are captured which helps recording the design decisions as these principles
helps guiding the design decisions i.e. it develops a link between the design decisions and
these principles. One can easily select related principles from the catalogue of principles

while recording design decision information.

4.1.6 Captures Artifacts

A template is designed to capture artifacts for architecture of a specific project. Figure
4.12 shows the form that captures artifacts that have an impact on architecture design
decisions. Tool displays a list of catalogue of artifacts.

Value-Based Sofiware Architecture Knowledge Management 78

Chapter 4 Value-Based Software Architecture Knowledge Management Tool

7Y http:ifiacalhost/ADDSSIADDSS codefindex. phall Micretoft Internct Explarer

e G dem Fovordes Dok beb z
Qe - 90@0,9%?’:""“08&3 .‘ﬁﬁﬁ
';' mmfiased SoftwaTERichg 1
“ o lPl o !I Ri :huaecduce: “ #Herath. Ny ” Partern:. [Fn.: Hes ” Reqinter l
Welcoms tom hansun —
Ligaug
insert new artifact; Human Resource Information System - HRIS-ARCH >
'Anifac} Name [gsmm y - __[- - - f
L T Jystem is an artifact . ’ = i ,
1
{
.Dlscripllon
1
]
b
1
‘Back Save
LTy T ey —— ey iy — 1
L& oone: — 8 Loca nranet

Figure 4.12: Capturing artifacts

Artifacts are stored which helps recording the design decisions as these artifacts have an
impact on the design decisions. One can easily select related artifact from the catalogue

while recording design decision information.

4.1.7 Captures architecture patterns

ADDSS captures only design patterns. Modified version now also captures architecture

patterns. Figure 4,13 shows a catalogue which now also contains architecture patterns.

Value-Based Software Architecture Knowledge Management 79

Chapter 4 Value-Based Software Architecture Knowledge Management Tool

X hitp:ifiocathostIADDSSIADDSS_cadefindex.php 4 Microsoft fnternzt Explarery v bl o e
Oe [You Fpaorims Jook b F-]

- O 330,@”*“*“88 'ﬁﬂﬂgﬂﬁﬂ

Waleame david frensice

Mem View Modify Delete

Pattern List]

_ et i i R e i

= = = g ¥ 14
Nams ‘ Type of Patteen Descriptinm i image

functicnality. h - it
1n tha Adagtar patearn, an abject pravides an
impleamentation of an interface used by ather g
wbjocts in & cansistent way. The adaptas abjeet

wraps difterant disparate implamantangns of tha
intarface and prasents 3 unified imterfacs far #
sthar phjetts to sccais, A qaad exampla af this is -]
#daprer Structurel a databate dnvar lika an QDAC (Opan Qatabase
Ceahnacheiy) os IDBE (lava Database
Conngobvity) diiver um wram the cuftam =]
datab. atioa Fae diffaraat R T

databases and yet, presents a cansistant interfacs
that is a publiched and standardized APL.
T T Yha dfackboard pattéta 1s ataful tir problams for IR
shich no deterministc solubion sirategies are
Blackboard Aschitactural knnnn In Blackbaard tavaral :p-nnlnld
e:r k ledge tn Build a

Thl Bridge nnum |: unﬁal whth thers it »

hiszarchy of abitractiohs and a corresponding T = . M
Lerere i ik L T T _--{;3-—1::[— = =)

F TR .=

I~

— - - L]
e Lacal ntranet

IR
§

Figure 4.13: Catalogue of architectural patterns

Pattern helps in documenting design decisions. Similarly, architecture patterns also

helpful in documenting design decisions. They are also helpful in capturing scenarios.

4.1.8 Multiple Views

Figure 4.14 shows multiple views associated with single architecture. ADDSS tool
associates each architecture with single view however this tool now provides multiple

views associated with single architecture.

2 ntip:MacathastADDSSIADDSS_codefindex. phy § Micratofl Internet Fxplorer el el S i ¥ bl = b&g
&

Pl R yYew Fyokw Ionk taip
O=-Q HiFC ﬂw'ﬁ"me &L J.ﬂﬂ 3
sie G = - k. W
u !.D- Joe Il & ite e I]h a2 Irﬂaluwr ”_-’acucw " Rrgmul
Walcams tem handun
Loagut
Please insert a new architecture &
Project hame JHuman Pesourcy inkemetion System o [2]
= Slatie] .
Lagicat
= Lagicat] i
[0 Physical
Viger m v alopmen
[0 usaCases F|
weme [ARCHHRIS]
= h
Burinesy/Component Tier will Pullo & QUErY UWiag lhwsw tcilwria Veiuss (as ssationed sbove far s
presentacion layer] and vill call & stored procedww of che deia leywr to sxecnte this quacy.
Deseription
Pate Tier vill exscute tbe srored procedwes uod rwiurn the resulke back to the Aoeiness/Cosponent
Timr Thi= Timr milh ndss heeh ke mamwbr vh rhe reemeserinm temms theameh e clar shar w111 demedas g
| - p————— —— T Y T ST ST E— s
£ bore S Locd inbranet

Figure 4.14: Recording multiple views with single architecture

Value-Based Software Architecture Knowledge Management 80

Chapter 4 Value-Based Sofiware Architecture Knowledge Management 1ool

Multiple views with each single architecture helps recording design decisions information

as design decisions have an impact on these views.

4.1.9 Categorizes risk and non risks for decisions

Figure 4.15 shows the risks associated with design decisions. It also shows the

categorization of risks and non risks.
T} ap:locathost/ABOSS/ADDSS codafinder.php [Microsaft internet Lxplorer — P e — e

th GR Yew Fyots Dok beo [
00 RNEG Pk 0 @D a JKEHOS
% ; 7 I, ‘_@E-Based Softwdre R 'R%e‘hﬂanagemeni oS

u) 'n:-,- - ” A wite "n i || parisrne u * e E'Ru B l -
Walcome tem hansun . . o
. Logoyn
Modify Risks/Non Risks of architectural design decision: H Resource Information System - HRIS-ARCH #
R pirmoe i —
I —
i L

e S = = = =
Risk pecurs ia case of web wpplicaciom if no N-Tier axchitecture hms been selected
Description

LEF - I vl el pr—y T i34

EDors - e — - — u\'-ju::im-l

Figure 4.15:Template for recording risks/non-risks

With this we can get to know which decision is better to take. We can rank the design

decisions as well.

4,1.100ther Features

There are some small features which are also added, these are:
Tool warns and prohibits violations of the decisions on which other decisions are
dependent. Figure 4.16 shows how it wamns the users whenever he wants to delete that

decision.

Value-Based Software Architecture Knowledge Management 81

Chapter 4 Value-Based Software Architecture Knowledge Management Tool

o =i
Tie Edt VYew Favoiles s Help
0.0 B30 =t @ B8 TRHOS]
e) (& - 5 3 Te ’ -
u l P orec " [VR T o ” el diza: II Pt “ Tt + }I Re gigsi, } l
Welcome tom hansun - . i
Loaout
Hew ViewModily Dalete RiskaMonRliks Reperi
Decision List: Human Resauu;ce_}n[ormation Systern - HRIS-ARCH - Iteration 1
! N;m; ,Etot’egnr’y J- Status ’ 'D;lcriptlc!-- . iD p:nln-ty“ ’Ln e i .Islﬁllllbrli 1‘
o S S e e e e R
i
'
3
I
BRk Save i
= e e et — Sei————— EJ 2
@_"1 > Pocahost HODSSIADOSS SlonfdacEines. Hho. fa 1 4 Local intraner

Figure 4.16: Warning from the violations of the declslons

By this check one doesn’t lost data if some deciston is depending on it.
All checks are provided for required and useful fields. Tool warns if the required fields
are not filled. Numerous checks also implemented to ensure consistency. Tool is also

getting consequences of design decisions as taken in Archuim f17).

4.2 Evaluation of Value-Based Software Architecture
Knowledge Management tool

This section describes the evaluation of currently modified tool i.e. Value-Based Software
Architecture Knowledge Management (VB-SAKM) tool. VB-SAKM tool has been
evaluated on the basis of certain attributes like usability, performance etc. These attributes
are the same as mentioned and used in Chapter 3 for evaluating the surveyed tools.
Description about each attribute has also been mentioned in Chapter 3.By evaluating the
modified tool personally and from the literature ,we can easily find either this tool
provides better support of discussed attributes as compared to other surveyed tools or not.
As discussed in the thesis that the developed tool is the modified form of existing tool
ADDSS, so the modified tool also supports evaluation criteria attributes which is already
supported by ADDSS. In the last of this section, a table is described which shows the
evaluation of Value-Based Software Architecture Knowledge Management tool in

Value-Based Software Architecture Knowledge Management 82

F Ul C—is4dTie AFLIFEFF L) © L0 Wt 330N LA & LT/ PP ER IR ITILM SV i Wil bres & Lraer

4. Coverage:
Table 3.2 shows ADDSS covers many features which other tools are not covering.
VB-SAKM is the modified form of ADDSS. So this covers all the features of ADDSS
along with the newly implemented features. The modified tool is a value-based tool. It
supports the Value-Based Software Engineering concept. This tool also covers certain
other features which are missing from the tool i.e., catalogue of tactics, capturing of
principles, artifacts, architectural pattern etc. The above discussion about this attribute
shows that this tool covers more features as compared to all the other studied tools as
none of the other tool is Value-Based. This attribute has been checked from the tool’s
thesis.

5. Useful for software product families:
VB-SAKM tool is not useful for software product families as this feature has not yet
being implemented into this tool. This attribute has been checked from the tool’s
thesis.

6. Support of Value-based software engineering principles:
This is the main feature which is supported by Value-Based Software Architecture
Knowledge Management (VB-SAKM) tool. Tool supports the Value-Based Software
Architecture principles. It helps to document only the set of required information
based on its purpose. Also focuses on the choice of all the stakeholders who are
involved in specific project and will have a choice to get only that type of information
which they required. With this tool, we are determining a priori, who will profit from
what information in which amount later on, in order to cope with the additional effort
that has to be spend on recording design decisions and its rationale. This attribute has
been evaluated with the help of tool’s thesis.

7. Useful in evolution and maintenance activities:
Value-Based Software Architecture Knowledge Management tool supports modeling
and documenting the evolution of ADD as it is the modified form of ADDSS and
ADDSS supports this feature. This attribute have been checked from the tool’s thesis.

8. Iategrated with other modeling tools:
Modified tool is not integrated with other modeling tools, decisions can be stored in
parallel at the same time the designers use modeling tools to depict the architecture. In
future there is a plan to integrate this tool with other modeling tools. This attribute has
been validated from the future work of tool as mentioned in tool’s thesis and by

personally using the tool.

Value-Based Sofiware Architecture Knowledge Management 84

Chapter 4 Value-Based Saftware Architecture Knowleage Managemeni 1owm

9.

10.

11.

Accessible for geographically distributed stakeholders:

Value-Based Software Architecture Knowledge Management tool incorporates AKM
features for geographically distributed stakeholders involved in the software
architecture process. VB-SAKM tool provides the choice to all the stakeholders to
document design decisions information. From the tool’s thesis, this attribute has been
validated.

Performance:

Modified tool is good performance-wise as it provides proper template for capturing
and sharing design decisions so with less time one can easily store and retrieve
information from the well-defined templates. User with less time can complete the
basic task. As the too! is value-based, this makes easy for a common user as he only
stores and retrieves the relevant information. No need to confuse with irrelevant
information. VB-SAKM tool takes 1-2 seconds to save information whenever we
press the save button. Same time is consumed for deleting data. As only required
information is saving so it saves a lot of time of user. Tool takes less time while
retrieving knowledge. Whenever we gave command for viewing any information,
system responses in 1-3 seconds. Time depends upon the choice of user’s. As we can
retrieve information about design decisions on the choice of user if he wants to
retrieve information of all the design decision attributes, system responses in more
time as compared to if we choose less number of design decision attributes. Tool has
proper interface so its takes few seconds to start the tool. The performance of tool has
been measured by personally using the studied tool.

Security:

Tool can access through username and a password. Registered users have different
permissions for accessing the information. Security attribute has been evaluated by

personally using the tool.

Following table shows the evaluation of Value-Based Software Architecture Knowledge
Management (VB-SAKM) tool in summarized form. For evaluating VB-SAKM tool,

ratings are defined. v shows that the attribute is fully supported by the tool, ® shows that

the tool partially supporis that attribute and X shows the tool doesn’t support that

attribute.

Value-Based Sofiware Architecture Knowledge Management 85

Chapter 4 Value-Based Software Architecture Knowledge Management ool

Table 4.2 Evaluation Criteria of Value-Based Software Architecture Knowledge

Management {VB-SAKM) tool

*Ratings: v': Fully supported, ®: Partially supported, X: Unsupported
P P

KNOWLEDGE
Attributes PAKME | ADDSS | ARCHUIM | ARCHITECT | AREL | VB-
WORD SAKM
1. Usability v v X o X 4
2. Industrially used v X X . . X
3. Open Source X . X X X 4
4, Coverage**
% Architectural
Knowledge
» [ntegrated
representation
of the software X Y v X Y v
architecture
= Architecture
design v v v v e v
decisions
= Rationales
underlying the v v v v v v
design decision
v External
context/ v » . . X .
environment
** Features . . X X X v
5. Useful for sc.)f.tware X X X X X X
product families
6. Support of value-
based software X X X X X | v
engineering
principles
7. Useful in evolution
and maintenance v v o . . v
activities
8. Not Integrat.ed with v v v X X v
other modeling tools

Value-Based Software Architecture Knowledge Management 86

Chapter 4 Value-Based Software Architecture Knowledge Management Tool

9. Accessible for
geographically v
distributed Y X X X
stakeholders
10. Performance ° v X ° X
11. Security X v X X X

** Coverage attributes shows the coverage of architectural knowledge attributes as well
as other features each tool possess. Features attribute and architectural knowledge
attributes are evaluated on the basis of the features mentioned in the Chapter 4 as well as
the features of ADDSS tool as described in table 3.2. In this way we can easily find which

tool covers more features then others.

This chapter discusses a Value-Based Software Architecture Knowledge Management
process and its applicability on an open source tool. Value-Based Software Architecture
Knowledge Management is recently recognized to be one of the most valuable trends in
software architecture community. A value-based approach has been applied to
Architecture Design Decision Support System (ADDSS). Modified form of ADDSS is
known as Value-Based Software Architecture Knowledge Management (VB-SAKM)
Tool. Different tools and techniques have been studied and reviewed for Architecture
Knowledge Management. Certain limitations of tools have been found. These limitations
have been incorporated in ADDSS tool. The main feature is to provide the support of
Value-Based Software Engineering principles to ADDSS. Different benefits are already
discussed above. Basically we are determining a priori, who will profit from what
information in which amount later on, in order to cope with the additional effort that has
to be spend on recording design decisions and its rationale. [t is suggested that the use of
such tailored architecture knowledge documentation would mitigate the effects of
inhibitors as mentioned above and emphasize on the effects of its benefits. Besides this
feature, some more features have also been implemented like the tool now provides a
catalogue of tactics, and requirements are separately captured. Multiple views are
associated with single architecture etc. The implementation of all the above mentioned
features helps us in managing, sharing and storing architecture knowledge. By evaluating
the modified tool, we found that Value-Based software architecture knowledge

management (VB-SAKM) tool is a user-friendly tool. Moreover, it a value-based tool

Value-Based Software Architecture Knowledge Management 87

Chapler 4 Value-Based doJtware Architecture Knowledge Management ool

which focuses on documenting the required set of information based on the choice of
relevant stakeholder. Modified tool covers more features for architecture knowledge
management as compared to other tools and it is good performance wise. From the above
discussion it is concluded that, with this tool we can manage and store AK with little

effort and in a short time.

Value-Based Software Architecture Knowledge Management 88

CHAPTER 5

CONCLUSION AND FUTURE WORK

Chaprer j Conclusion ana ruture rurs

5. CONCLUSION AND FUTURE WORK

In this chapter, the summary of this research has been explained alongwith the thesis
contributions. Moreover, the research questions have also been answered. Enhancements

that can be done in this work are also suggested

5.1 Summary

Software architectures have been considered as a set of interrelated components and
connectors [1]. Research trends in software architecture focus on the treatment of
architectural decisions as first-class entities and their clear representation in architectural
documentation. From this point of view, a software system’s architecture is no longer
perceived as interacting components and connectors only, but also as a set of architectural
decisions that convey the architectural principles underlying a particular design (7].
Within architectural analysis, architectural knowledge (AK) [2, 42] plays an important
role. Architectural Knowledge consists of architectural design as well as design decisions,
their assumptions and context. Design decisions and their underlying rationales are

usually ignored at architectural level and during the development life cycle.

Proper management of architectural knowledge (AK) is essential in order to reduce high
evolution and maintenance costs and to avoid architectural erosion. The quality of system
and software architecture design can be highly dependent on the person who designs it.
How architecture is designed depends on an architect’s experience, knowledge and
decision making abilities. As such, design decisions and its rationale directly affect the
architecture design and its quality. By not properly managing, sharing and storing
architecture knowledge, it affects architecture design in three ways: first, design decisions
information might be incorrect or incomplete but there is no explicit information or
documented information for its verification; second, once the system development has
been completed, the architecture design can be costly and difficult to change at that stage
if it is incorrect or not optimal; finally, it is sometimes difficult to understand the
architecture design for maintenance purposes if the architecture knowledge is not

documented.

Value-Based Software Architecture Knowledge Management 89

Chapter 5 Conclusion and Future Work

Problem domain of this research is to manage, share and store Architecture Knowledge
and the main focus is on tools and techniques for managing, sharing and storing
Architecture Knowledge. There has been an increased demand for suitable techniques and
tools that support organizations in documenting, sharing and managing architecture
knowledge. The complex role of architectural decisions requires a systematic and

partially automated approach that can explicitly document.

There are different ways for managing architectural knowledge [4,7,52] Researchers and
practitioners have proposed various tools [8,17,23,33,35] and techniques [27,28,36,37,38]
for its management. Indeed there are different tools and techniques for architecture
knowledge management, practitioners do not like to apply them due to certain factors e.g,
critical timing, extra effort and time required, overhead etc. A lot of architectural
knowledge is there to document and maintain, but the benefit of managing all the
architectural knowledge is not clear. Therefore, in order to mitigate the effect of above-
mentioned factors and to understand the benefits of managing AK, there is a need to

manage architectural knowledge in a value-based manner [27,28,29].

The research questions will be reiterated here along with the results from the analysis and
the main work which is done that can be used to provide answers for them. In summary,

the following research questions have been addressed tn this thesis.

How to make architecture knowledge management tools and techniques practical?
How to reduce time and effort for managing and storing architectural knowledge?

How to reduce overhead for managing and storing architectural knowledge?

o

How to make knowledge capture cost-effective?

5.2 Contributions

As a result of addressing the above mentioned research questions, we have achieved the

following.

Firstly, a literature survey has been performed to study existing techniques and tools for
managing, sharing and storing Architecture Knowledge. Seven techniques have been

studied and surveyed in chapter 2. Different techniques, method, framework, process

Value-Based Software Architecture Knowledge Management 90

Chapter 5 Conclusion and Future Work

have been investigated for managing, sharing and storing architecture knowledge. From
the survey of techniques, a useful technique/approach has been found named as Value-
Based Design Decision Rationale Documentation which focuses on documenting only the
required set of information based on its purpose.[27,28,29].Basically in that technique,
Value-Based Software Engineering principles have been applied for documenting Design
Decisions Rationale.This technique is better as compared to other techniques because it’s
the only technique which helps to mitigates the effects of mentioned inhibitors. Moreover,
five existing tools have been analyzed and studied in chapter 3. The features of each tool
have been compared with others and there are certain features which one tool is covering
but not the other one. Tools are evaluated on the basis of certain attributes like usability,
open source ete. By comparing and evaluating tools, certain limitations and drawbacks
have been found in all the tools. Limitations like no tool is supporting for Value-Based
software engineering principles, no support for software product families etc are found. In

this work, some of the features which are missing from the tool have been implemented.

Secondly, special features have been implemented to the existing tool i.e. Architecture
Design Decision Support System(ADDSS) in order to overcome the [imitations and
drawbacks found from the literature survey. The reason for selecting ADDSS tool for
further enhancements is that this tool is only an open-source tool and it covers additional
features relative to other tools. Value-Based Sofiware Architecture Knowledge
Management Tool is the modified form of Architecture Design Decision Support System
(ADDSS).

A Value-Based approach has been proposed to Architecture Design Decision Support
System that takes into account value considerations of stakeholders and only documents

the information required by stakeholders.

There are many inhibitors as described in chapter 4 which may hamper capturing, using,
and documenting the design decisions and its rationale. Also not all the information is
needed all the time as different people need different information. Basically, the benefit
of managing AK is not clear.So there is a need to decide what information is required to
save that will benefit whom, for this we have taken the idea of Boehm [26], who proposed
a Value-Based Software Engineering (VBSE) agenda and from Davide Falessi’s work

[27,28,29] who used Boehm’s idea for documenting design decisions rationale i.e.

Value-Based Saftware Architecture Knowledge Management 91

Chapter 5 Conclusion and Future Work

proposed a Value-Based approach to DDRD (VB DDRD). In the present work, Value-
Based Software Engineering principles have been applied on an open-source tool
Architecture Design Decision Support System[8,9]. This tool provides the opportunity to
all the stakeholders to choose the required design decisions information by giving score to
each attribute of design decisions.In this tool the value provided to each design decision
attribute purely depends on the stakeholders® perception and their choices Architect can
prioritize these attributes as required, useful or optional on the basis of the score provided
by each stakeholder. ADDSS and other studied tools don’t support the concept of value
based software engineering. This is the main feature which is incorporated in ADDSS and

this feature mainly answers the mentioned research questions.

There are certain inhibitors e.g. increase of overhead, potential inconsistencies, extra
effort and time required etc as discussed in chapter 4 hampers managing architecture
knowledge. Due to these inhibitors practitioners are reluctant to manage architecture
knowledge. This is the reason why the architecture knowledge management tools and
techniques are not practical. A Value-Based approach helps to make architecture
knowledge management tools and techniques practical as this approach helps to mitigate
the effect of above mentioned inhibitors. By applying VBSE principles to some tool
makes the tool more effective, valuable and useful as it helps to document only set of

required information based on its purpose.

Tailored architecture knowledge implies less information to document and maintain;
hence, a diminished effort has the effect of mitigating the overhead. As the architecture
knowledge is properly managed and documented i.e. decisions made in the past were
properly managed and documented, so less effort is required at the time of maintenance
phase and during evolution of any software system. This means we don’t need to put

extra effort and it saves a lot of time.

By recording only the required set of information for any architecture saves a lot of time
as related persons are also performing other activities. The possibility to spend less time
to produce the architecture knowledge documentation highly increases the possibility that
people, who are busy to meet their projects deadlines, find enough time to develop such

documentation.

Value-Based Software Architecture Knowledge Management 92

Chapter 5 Conclusion and Future Work

The tailored architecture knowledge implies less information and hence less
documentation. Less documentation implies both less required effort for architecture
knowledge maintenance and less probability of inconsistencies occurrence. In this way

we can make knowledge capture cost-effective.

As we know the stakeholders come from different backgrounds and have different
concerns that the architecture document must address. With this approach, one can
resolve conflict. As for choosing the design decision attributes, right of choice is given to
all critical stakeholders who are associated with that project, so there is no chance of
conflict between them. This approach also helps building the organizational capabilities
as by recording only the required and useful information for any architecture according to
the choice of different persons not only help them for that architecture or project but also

helps them in future projects.

Basically as we know this support tells what type of architecture knowledge is required,
useful or optional on the basis of scores given by all the stakeholders ie. we are
prioritizing attributes as required, useful or optional. From this we get to know what type
of architecture knowledge is useful. . It is suggested that the use of such tailored
architecture knowledge documentation would mitigate the effects of inhibitors as

mentioned above and emphasize on the effects of its benefits.

Besides applying VBSE principles to ADDSS tool, a catalogue of architecture and design
tactics has also been implemented in this tool. A set of templates has been developed to
document catalogues of architecture and design tactics. This will helpful in recording

design decision information as well as saves times and helpful for stakeholders,

Moreover tool is taking requirements according to the type which will be helpful while
recording the design decision information as quality attributes should be taken separately
so that we must know what quality attributes are affecting the design decisions or have
impact on them. Also helpful while capturing scenario’s as scenarios are used to

characterize required quality attributes.

The other contribution is that this tool is capturing a general or concrete scenario, which

can be elicited from a stakeholder or extracted from a pattern. Capturing scenarios helps

Value-Based Softiware Architecture Knowledge Management 93

Chapter 5 NV

the users to understand the requirements easily. These are an artifact to architecture

knowledge. Scenarios are helpful in characterizing required quality attributes.

Moreover, a template is designed that captures principles which guide decisions for an
architecture. These principles are enterprise principles (business or others). Tool displays
a list of catalogue of principles that creates a link between architecture design decisions
and enterprise principles. Principles are captured which helps recording the design
decisions as these principles helps guiding the design decisions i.e. it develops a link
between the design decisions and these principles. One can easily select related principles

from the catalogue of principles while recording design decision information.

Modified tool also captures artifacts that have an impact on architecture design decisions.
Tool displays a list of catalogue of artifacts. Artifacts are stored which helps recording the
design decisions as these artifacts have an impact on the design decisions. One can easily

select related artifact from the catalogue while recording design decision information.

Architecture patterns are also helpful in documenting design decisions. Tool now captures
architecture pattern also. ADDSS tool associates each architecture with single view
however our tool now provides multiple views associated with single architecture.
Multiple views with each single architecture helps recording design decisions information
as design decisions have an impact on these views. Moreover, tool is showing the

categorization of risks and non risks.

Value-Based Software Architecture Knowledge Management (VB-SAKM) tool is also
evaluated on the basis of certain attributes. These attributes are the same as mentioned in
Chapter 3. From the evaluation, it is found that the too] supports Value-Based Software

Engineering principles.Moreover; it is a user-friendly tool and performance-wise good.

By implementing Value-Based Software Engineering principles and other features into
ADDSS tool, the modified tool is now quite valuable, mature and useful for managing,

sharing and storing architecture knowledge.

Vnluo-Rased Software Architecture Knowledge Management 94

Chapler 5 L UTICEERIILIE MIsna 4 Mesrs v rr s e

5.3 Limitations

The main limitation of this work is that surveyed tools and the modified tool i.e
VBSAKM-tool has not evaluated on a large scale.These tools are evaluated only by the
author of this thesis not by multiple persons or any team.The results of evaluation of tools
had not been checked by some other persons or by any prjoect team.Moreover, the
modified tool has not tried out into a real project.So we are not aware of the limitations

which can be found out if the modified too! has been tried out into a project.

5.4 Future Work

[n future, we plan to deploy and use the Value-Based Software Architecture Knowledge
Management (VB-SAKM} tool into a project and would perform analysis within that
industrial setting. Based on the feedback from the analysis, the limitations encountered

and subsequent enhancements would be applied on the currently modified tool.

Moreover, there is a plan to develop a comprehensive tool for managing architectural
knowledge that will cover all the limitations already found from the literature survey. The
limitations and enhancements resulted from the deployment of VB-SAKM tool into some
real life project would also be implemented in the newly developed comprehensive tool.

This comprehensive tool would be a value-based tool.

Currently, no tool for managing architectural knowledge is integrated with any existing
case tools or with development phases. For this direction, there is a need for integration of
AK management tools with other case tools (e.g. requirements management tools) to

provide an integrated and unified environment to software engineers.

Value-Based Software Architecture Knowledge Management 95

APPENDIX-A

GLOSSARY

Appendix-A

Glossary

A-1 Glossary

A-1.1

Acronyms and Abbreviations

{iDescriptionis = = 209 -

A e

Architectural Knowledge

ADD Architectural Design Decisions

VBSE Value-Based Software Engineering

SCS Success-Critical Stakeholders

PAKME Process-based Knowledge Management Environment

ADDSS Architecture Design Decision Support System

DDRD Design Decision Rationale Documentation -
VB-SAKM Value-Based Software Architecture Knowledge Management

Table A-1: Acronyms and Abbreviations

Value-Based Software Architecture Knowledge Management

xiil

Value-Based Software Architecture Knowledge Management References & Biobliography

REFERENCES & BIOBLIOGRAPHY

[1] Len Bass, Paul Clements, and Rick Kazman. Software arclitecture in practice 2nd
ed. Addison Wesley, 2003.

f2] Kruchten, P., Lago, P., van Vliet, H. and Wolf, T. Building up and Exploiting
Architectural Knowledge, 5th IEEE/IFIP Working Conference on Software Architecture,
(2005).

[3] P. Kruchten. Architectural Blueprints. The 4+1 View Model of Software
Architecture. IEEE Software, 12(6):42-50, 1995.

[4] Lago, P. and Avgeriou, P. First Workshop on Sharing and Reusing Architectural
Knowledge, To appear in ACM Software Engineering Notes, ACM SIGSOFT Software
Engineering Notes, 3(5), 32-36 (2006).

[5] IBM (2003). Rational Unified Process, Version 2003.Cupertino, CA: IBM Rational
Software.

[6] Perry, D.E. and Wolf, A.L. Foundations for the Study of Software Architecture.
ACM SIGSOFT Software Engineering Notes, 17 (4). 40-52.

[7] Lago, P. and Avgeriou, P. Second Workshop on SHAring and Reusing architectural
Knowledge Architecture, Rationale, and Design Intent (SHARK/ADI'07: ICSE
Workshops 2007) , 20-26 May 2007

[8] R. Capilla, F. Nava, S. P'erez, and 1. C. Due™nas. A Web-based Tool for Managing
Architectural Design Decisions. In 1st ACM Workshop on Sharing Architectural
Knowledge (SHARK), Torino, Italy, 2006.

[9] R. Capiila, F. Nava,and J. C. Due™nas. Modeling and Documenting the Evolution of
Architectural Design Decisions accepted in the 2nd Workshop on SHAring and Reusing
architecture knowledge. Architecture, Rationale, and Design Intent, 2007, Minneapolis,
USA.

[10] R. C. de Boer, R. Farenhorst, V. Clerc, J. S. van der Ven, P. Lago, H. van Vliet, 4
Model for structuring Software Architecture Project Memories, Proceedings of the g*
International Workshop on Learning Sofiware Organizations, 2006.

[11]J. Tyree and A. Akerman, Architecture decisions: Demystifying architecture. ITEEE
Software, 22(2):19-27,2005.

[12] J. S. van der Ven, A. G. J. Jansen, J. A. G. Nijhuis, J. Bosch, Design decisions: The
bridge between rationale and architecture, In A. H. Dutoit, R. McCall, I. Mistrik, and B.
Paech (Editors), Rationale Management in Software Engineering, Chapter 16, Springer-
Verlag, March 2006.

Xiv

Value-Based Software Architecture Knowledge Management References & Biobliography

[13] J. Bosch, Software architecture: The next step, Proceedings of the First European
Workshop on Software Architecture (EWSA), Volume 3047 of LNCS, Springer, pp. 194-
199, 2004.

[14] A.G.J. Jansen, J., Bosch, Software architecture as a set of architectural design
decisions, Proceedings of the 5™ IEEE/IFIP Working Conference on Software
Architecture (WICSA 5), 2005.

[15] Ali Babar, M., Boer, R., Dingsoyr, T., Farenhorst, R., Architectural Knowledge
Management Strategies: Approaches in Research and Industry, accepted in the 2nd
Workshop on SHAring and Reusing architecture knowledge . Architecture, Rationale,
and Design Intent, 2007, Minneapolis, USA.

[16] 5th Working IEEE / IFIP Conference on Software Architecture (WICSA 2005), 6-10
November 2005, Pittsburgh, Pennsylvania, USA. IEEE Computer Society, 2005.

[17] Anton G. J. Jansen, Jan van der Ven, Paris Avgeriou, Dieter K. Hammer, Tool
support for Architectural Decisions, Proceedings of the Sixth Working I[EEE/IFIP
Conference on Software Architecture (WICSA 2007).

[18] S Trujitlo, M Azanza, O Diaz,R. Capilla. Exploring Extensibility of Architectural
Design Decisions accepted in the 2nd Workshop on SHAring and Reusing architecture
knowledge . Architecture, Rationale, and Design Intent, 2007, Minneapolis, USA.

[19] Ali Babar, M., Gorton, L., Architecture Knowledge Management: Concepfs,
Technologies, Challenges, Presented at the 6th working IEEE/IFIP conference on
software architecture (WICSA) 2007, Mombai, India.

[20] Ali Babar, M., Gorton, 1., Architecture Knowledge Management: Challenges,
Approaches, and Tools, presented at the 29th International conference on software
engineering, 2007, Minneapolis, USA.

[21] Ali Babar, M., Gorton, L., Jeffery, R., Toward a Framework for Capturing and
Using Architecture Design Knowledge, Tehnical Report.

[22] Remco de Boer : Architectural Knowledge Discovery, Why and How? In 1st ACM
Workshop on Sharing ARchitectural Knowledge (SHARK), Torino, Italy,2006.

[23] Ali Babar, M., Gorton, I, A Teol for Software Architecture Knowledge
Management, accepted in the 2nd Workshop on SHAring and Reusing architecture
knowledge . Architecture, Rationale, and Design Intent, 2007, Minneapolis, USA.

[24] Ali Babar, M., Boer, R., Dingsoyr, T., Farenhorst, R., Architectural Knowledge
Management Strategies: Approaches in Research and Industry, accepted in the 2nd
Workshop on SHAring and Reusing architecture knowledge . Architecture, Rationale,
and Design Intent, 2007, Minneapolis, USA.

[25] Rik Farenhorst. " Tailoring Knowledge Sharing to the Architecting Process"
Presented at the Ist ACM Workshop on SHAring and Reusing architectural Knowledge
(SHARK), Torino, Italy, 2006.

XV

Value-Based Software Architecture Knowledge Management References & Biobliography

[26] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P.Griinbacher. 2006 Value-Based
Software Engineering. Springer.

[27] D. Falessi, M. Becker, and G. Cantone. Design Decision Rationale: Experiences
and Steps Alead Towards Systematic Use. In 1st ACM Workshop on Sharing
ARchitectural Knowledge (SHARK), Torino, [taly,2006.

[28] Davide Falessi, Rafel Capilla, Giovanni Cantone, Value-Based Design Decision
Rationale Documentation: A Replicated Experiment, Third Workshop on SHAring and
Reusing architectural Knowledge (SHARK2008) In conjunction with the 30th Int. Conf.
on Software Engineering (ICSE2008), Leipzig, Germany, 10 - 18 May 2008.

[29] Davide Falessi, Giovanni Cantone, Philippe Kruchten, Value-Based Design
Decision Rationale Documentation:Principles and Empirical Feasibility Study, Seventh
Working IEEE/IFIP Conference on Software Architecture, (WICSA 2008}, Vancouver,
Canada, 18-22 February 2008.

[30] M. Sinnema, J. S. van der Ven, S. Deelstra, Using Variability Modeling Principles
to Capture Architectural Knowledge, Proceedings of the Workshop on SHAring and
Reusing architectural Knowledge (SHARK?2006), June 2006 .

[31] http:/fwww, soﬁwaretestinghelp com/what-are-the-quality-attributes/

Architect Word lug-in,
3]ntt Swww. rug nl/ln on%atlca/onderzoek/programmas/soﬂwareengmeenng/grlljfﬁnﬂ(n
owledgeArchl ectWordPlug-in.

[33] Griffin project website, . http://gniffin.cs.vu.nl.

[34] Archium website, . http://www.archium.net.

[35] AREL website,. http://www.ict.swin.edu.au/personal/atang/
[36] ADDSS website,. http://triana.escet.urjc.es/ADDSS/

[37] Larix Lee Kuruchten, P., Capturing Software Architectural Design Decisions,
appear on Electrical and Computer Engineering, 2007. CCECE 2007. Canadian
Conference on, April 2007.

[38]Ibrahim Habli,Tim Kelly, Capturing and Replaying Architectural Knowledge
through Derivational Analogy, accepted in the 2nd Workshop on SHAring and Reusing
architecture knowledge . Architecture, Rationale, and Design Intent, 2007, Minneapolis,
USA.

[39] Neil B. Harrison, Paris Avgenou, Uwe Zdun, Using Patterns to Capture
Architectural Decisions, July/August 2007 (Vol. 24, No. 4) ,IEEE.
[40] The-Standish-Group, CHAOS Report 1995, www.standishgroup.com, 1995.

[41] Design Patterns, Quality Attributes and Software Architectural Tactics, Felix
Bachmann,Len Bass, Mark Klein.

[42] Remco C. de Boer, Rik Farenhorst, Patricia Lago, Hans van Vliet, and Anton G. J.
Jansen. Architectural Knowledge: Getting to the Core. In Proceedings of the Third
International Conference on the Quality of Software Architectures (QoSA 2007), volume
4880 of LNCS, pages 197-214, July 2007.

Xvi

v g
£ w -

-

Value-Based Software Architecture Knowledge Management About Authors

ABOUT AUTHOR

The author, Nida Ahmad, daughter of Mrs. Talmeez Ahmad and Mr. Mohammad Ahmad,
was bom in Islamabad on February 1983.She got married to Mr. Salman Alam in 2007
and now has a daughter named Hiba Alam. The author did her matriculation securing first
division from Islamabad Model College for Girls, F-7/4 (Pakistan) in 1999. She passed
her Higher Secondary School Certificate Examination in first division from the Islamabad
College for Girls, Islamabad, in 2001. She did her Bachelor of Science in Computers
Science from International Islamic University, Islamabad, Pakistan in 2006. The author
got admitted in International Islamic University, [slamabad, Pakistan, to earn Master of
Science Degree in Software Engineering in 2006. Her current fields of interest are
Software Architecture, Web-based applications, Knowledge Management, Project

Management and Software Engineering.

Libxary 3
ISLAMABRAD. /

xviii

