
Value-Based Software Architecture Knowledge
Management

Developed by:

Nida Ahmad
Reg # 132-FAS/MSSE/F06

Supervised by:

Dr. Naveed Ikram

Co. Supervised by:

Mr.Muhammad Usman

Department of Computer Science
Faculty of Basic and Applied Sciences

International Is1

CENTRAL \ Ltbt31\RY
ISLAMABAD.

7njr3a3w l SO W 3H1
f N33Id3N38 I SOW 3H1
HV77V d0 3WVN 3H1 N I

. r . . . r - Y ~ ~ ~ wjIware Architecture Knowledge Management Final Approval

International Islamic University, Islamabad

Faculty of Basic and Applied Sciences
Department of Computer Science

Dated: 28-03-2009

FINAL APPROVAL

It is certified that we have read the thesis submitted by Nida Ahmad Reg No. 132-
FASIMSSEIF06. It is our judgment that this thesis is of sufficient standard to warrant
its acceptance by the International Islamic University, Islamabad for the degree of Master
of Science in Software Engineering.

Committee

External Examiner
Dr. Arshad Ali Shahid
Associate Professor,
Chairman, Department of Computer Science,
FAST-NU, Islamabad.

Internal Examiner
Mr. Usman Nasir
Lecturar,
Department o f Computer Science,
Faculty of Basic and Applied Sciences,
International Islamic IJniversity, Islamabad.

Supervisor
Dr. Naveed lkram
Associate Professor,
Department of Computer Science,
Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad

Co-Supervisor
Mr. Muhammad Usman
Lecturar,
Department of Computer Science,
Faculty o f Basic and Applied Sciences,
International Islamic University, Islamabad.

Value-BasedSofnuare Architecture Knowledge Management Dedications

Dedicated

To my Dear Parents
Who are an embodiment of diligence and honest,

Without their prayers and support
This dream could have never come true.

Also t o my beautiful,
Extraordinary Daughter Hiba,

Who makes everything worthwhile,
And t o whom I love the most.

Value-Based Sofhvare Architecture Knowledge Management Dissertation

A Dissertation submitted as

Partial Fulfillment of Requirements

For the degree of Master of Science in

Software Engineering

Value-BasedSofmare Architecture Knowledge Management Declaration

DECLARATION

I hereby declare and affirm that this thesis neither as a whole nor as part thereof has

been copied out from any source. It is further declared that I have completed this

thesis and accompanied software application on the basis of my personal efforts,

made under the sincere guidance of my supervisors. Where as necessary references

and acknowledgment has been made. If any part of this report is proven to be copied

out or found to be a reproduction of some other, I will stand by the consequences.

No portion of the work presented in this report has been submitted in support of an

application for other degree or qualification of this or any other University or

Institute of learning.

Nida Ahmad

132-FASlMSSElF06

Value-Based Sofware Architecture Knowledge Management Acknowledgement

ACKNOWLEDGEMENT

In times of acknowledgement all too often we forget the one who is behind it all Allah.

The author deepest gratitude and appreciation goes to Almighty Allah who gave her

power and wisdom to work and plan with full devotion.

The author expresses her most sincere appreciations to Mr.Muhammad Usman

Co.Supervisor/Lecturar (IIUI), for his invaluable guidance and endless support during the

research. Thanks are due to Mr.Muhammad Usman for suggesting the topic. He gave her

full support whenever she needed and showed his personal interest in this research.

Mr.Usman's supervision and suggestions at all stages of the work made this report

possible.

With a debt of gratitude, this cannot be adequately expressed in words, the author thanks

to Dr. Naveed Ikram Supe~isor/Associate Professor (IIUI), for his advice, guidance and

encouragement. His practical and sharp vision in research has been invaluable for

author's work on this thesis. Dr. Naveed's supervision and insightful comments at all

stages of the work made this report possible.

The author wishes to extend her deep appreciation towards her family members

especially her parents and parents-in law who did their best to make the world a better

place for the author. For their inspiration, love and endurance, the author thanks them and

expresses her everlasting love and gratitude.

Lastly, the author is deeply indebted to her husband, Salman Alarn, who gave her an

unconditional support and love through all this long process. It would not have been

possible to write this thesis without his support and wonderful advice. Thanks for the

encouragement, patience, support and for always believing in me. Thank you for being

my best friend and a great husband.

Value-Based Sofnuare Architecture Knowledge Management Thesis In Brief

THESIS IN BRIEF

Thesis Title: Value-Based Software Architecture Knowledge Management

Organization: International Islamic University, Islamabad, Pakistan.

Objective: The objective of this research work is to improve efforts of tool

support for managing, sharing and storing architectural knowledge.

Undertaken By: Nida Ahmad

Supervised By: Dr. Naveed Ikram (Associate Professor)

Mr. Muhammad Usman (Lecturer)

Department of Computer Science,

Faculty of Basic & Applied Sciences,

International Islamic University, Islamabad.

Started On: February 2008

Completed On: March 2009

Research Area: Managing, Sharing and Storing Architectural Knowledge.

Tools: ADDSS,PAKME,AREL-Tool-Set,Archium,Knowledge Word

Plug-in,MySQL,Enterprise Architect..

Value-Based Sofware Architecture Knowledge Management Abstract

ABSTRACT

Proper management of architectural knowledge (AK) is essential in order

to reduce high evolution and maintenance costs and to avoid architectural

erosion. Architecture Knowledge is an important piece during the

architecting process that must be explicitly documented. Researchers have

proposed different tools and techniques for managing, sharing and storing

architectural knowledge, but practitioners are reluctant in applying such

tools and techniques because of certain inhibitors such as extra time and

effort required, unclear benefits for documenting AK etc. To deal with

such inhibitors, there is a need to manage architectural knowledge in a

value based manner. This thesis describes a Value-Based approach for

managing architectural knowledge. Value-Based approach takes into

account value consideration of stakeholders and only documents the

information required by stakeho1ders.h this thesis, a web-based tool is

described which is able to manage, share and store AK in a value-based

manner. The main work is the application of Value-Based Software

Engineering principles on an existing tool. Moreover, i t also describes

some other features implemented to an existing tool which are missing

from that tool found during the survey.

vii

Value-Bared Sofhvare Architecfure Knowledge Management Table of Contents

Table of Contents

FINAL APPROVAL ... i

..
DEDICATIONS ... 11

... DISSERTATION .. 111

DECLARATION ... iv

ACKNOWLEDGEMENT ... v

THESIS IN BRIEF ... vi

.. ABSTRACT .. VII

...
Table of Contents .. VIII

List of Figures .. xi

. .
List of Tables .. XII

CHAPTER 1 .. 1

1. INTRODUCTION .. 1

1.1 Software Architecture .. 1

1.1 .I Architectural Knowledge ... 2

1.2 Architectural Knowledge Management and its importance 5

1.3 Problems .. 6

1.4 Sub-discipline in Architectural knowledge: Tools and techniques 8

1.5 Inhibitors in managing architectural knowledge ... 8

1.6 Value-Based Software Architecture Knowledge Management and its

importance .. 10

1.7 Research Problem .. 1 1

1.8 Research Methodology ... 12

1.9 Survey Outcomes ... 13
. .

1.10 Thesis Contnbutions .. 13

... 1.1 1 Thesis outline 15

CHAPTER 2 ... 16

2. LITERATURE SURVEY AND ANALYSIS OF TECHNIQUES 16

Value-Based Sofmare Architeclure Knowledge Management Table of Contents

2.1 Review of Existing Techniques / Frameworks /Method /Approach 16

2.1.1 Decision Goal and Alternatives DDR Framework @GA-DDR) 16

2.1.2 COVAMOF Framework [Variability Modeling Principles to Capture

Architectural Knowledge] .. 17

2.1.3 METHOD [Flag, Filter, and Form] ... 19

2.1.4 Derivational Analogy: An approach for Capturing and Replaying

Architectural Knowledge ... 21

2.1.5 Extensibility Approach [Exploring Extensibility of Architectural Design
. . Deciwons] .. 22

2.1.6 Using Patterns to Capture Architectural Design Decisions 23

2.1.7 A Value-Based Approach for Documenting Design Decisions Rationale

(VB-DDRD) ... 25

CHAPTER 3 ... 27

3 . LITERATURE SURVEY AND EVALUATION OF TOOLS 27
. .

3.1 Evaluation Criteria for exlstlng tools ... 27
. .

3.2 Review of Ex~stlng Tools ... 31

3.2.1 PAKME (Process-based knowledge management environment) 31

3.2.2 ADDSS (Architecture Design Decision Support System) 35

... 3.2.3 ARCHIUM 38

.................................. 3.2.4 KNOWLEDGE ARCHITECT WORD PLUGIN 41

3.2.5 AREL (Architecture Rationale and Element Linkage) 44

3.3 Limitations .. 54
. .

3.3.1 PAKME Limitat~ons .. 54
. . . 3.3.2 ADDSS Limitat~ons ... 55
. 3.3.3 Archium Limtations 55

3.3.4 Knowledge Architect Word Limitations .. 56

3.3.5 AREL Limitations .. 57

CHAPTER 4 .. 5 9

4 . VALUE-BASED SOFTWARE ARCHITECTURE KNOWLEDGE

MANAGEMENT TOOL ... 59

4.1 Features .. 60

4.1.1 Support of Value-Based Software Engineering Principles 60

Value-Based Sofhvare Architecture Knowledge Management Table of Contents

............................. 4.1.2 Provide catalogue of architecture and design tactics 73

4.1.3 Differentiates the functional requirements and non functional

requirements ... 75

........................... 4.1.4 Capture and present scenarios (general and concrete) 76
. .

4.1.5 Captures pnnclples ... 77

4.1.6 Captures Artifacts .. 78

4.1.7 Captures architecture patterns .. 79

4.1.8 Multiple Views ... 80

.. 4.1.9 Categorizes risk and non risks for decisions 81

4.1.1 0 Other Features .. 81

4.2 Evaluation of Value-Based Software Architecture Knowledge Management

tool ... 82

CHAPTER 5 ... 89

... 5 . CONCLUSION AND FUTURE WORK 89

5.1 Summary .. 89
. .

5.2 Contnbutlons .. 90

5.3 Limitations ... 95

5.4 Future Work ... 95

...
APPENDIX-A .. XIII

...
A-1 Glossary .. XIII

REFERENCES & BIOBLIOGRAF'HY .. xiv

...
ABOUT AUTHOR .. x v ~ n

Value-Bused Sofmore Architecture Knowledge Management List of Figures

List of Figures

Figure 4.1. Identifying success critical stakeholders 65

Figure 4.2. Rating of design decision attributes 66

Figure 4.3. Selecting design decisions attributes 69

Figure 4.4. Recording of design decisions .. 70

Figure 4.5. Report criteria for design decisions 71

Figure 4.6. Design decision report .. 71

Figure 4.7. Template for recording tactics .. 74

Figure 4.8. Catalogue of tactics ... 74

Figure 4.9. Showing requirements type .. 76

Figure 4.10. Capturing scenarios ... 77

Figure 4.11 : Capturing principles .. 78

Figure 4.12. Capturing artifacts .. 79

Figure 4.13. Catalogue of architectural patterns 80

Figure 4.14. Recording multiple views with single architecture 80

Figure 4.15.Template for recording riskslnon-risks 81

Figure 4.16. Warning from the violations of the decisions 82

Value-Based Sof iare Architecture Knowledge Management List ofTables

List of Tables

Table 1.1 Architectural Knowledge Attributes ... 3

Table 3.1 Evaluation Criteria for tools .. 48

Table 3.2 Compares and Contrast the features of each tool .. 49

.. Table 4.1 List of Used Architectural Knowledge attributes 67

Table 4.2 Evaluation Criteria of Value-Based Software Architecture Kno\vledge

Management (VB-SAKM) tool ... 86

xii

CHAPTER 1

INTRODUCTION

Chapter I Introduction

1. INTRODUCTION

In current research period, more and more things rely on software-intensive systems. The

number of systems that become software-intensive is ever increasing and so are the

demands that are put on them. This means that the quality of these systems becomes

increasingly dependent on the quality of the software. Software architectures are a vessel

which can be used to reason about the expected quality of a software system. They can be

used by engineers to predict the consequences of design decisions for an envisioned or

existing software system before such design decisions are actually implemented [I]. This

means that engineers can use architectural analysis as a means to investigate which kind

of system would best fit their needs without having to implement the various candidate

systems first.

Software architecture provides a high-level abstraction of a system. It is an important area

of research in recent years because it lays the structural foundation of a system. In this

thesis the basic discussion is about one of the discipline of software architecture i.e.

Architectural Knowledge. This chapter includes research area, problems in that area,

research problems, research questions, thesis contributions etc.

1.1 Software Architecture

Software architecture plays an important role in developing high quality software

intensive system. It represents the design for describing the main parts of a software

system. Traditionally, "soffivare architectures have been considered as a set of

interrelated components and connectors" [I]. This means that the functionality of a

software system is mainly described by means of a set of interrelated components and

connectors [2],[3]. Software architecture has become the principal means by which

requirements are transformed into a working, implemented system. Recently, research [4]

shows that the software architecture plays a significant role in organizing the complex

interactions as well as dependencies between stakeholders. Moreover, software

architecture also provides an essential artifact that can be used for reference.

Chapter I Introducfion

The Rational Unified Process@ (RUP)[S] defines software architecture as "the set of

significant decisions about the organization of a sofmare system: selection of the

sbuctural elements and their interfaces by which a system is composed behavior as

specified in collaborations among those elements, composition of these structural and

behavioral elements into larger subsysrem, architectural style that guides this

organization". Software architecture also involves usage, functionality, performance,

resilience, reuse, comprehensibility, economic and technology constraints and tradeoffs,

and aesthetic concerns [3].

The Perry/Wolf model of software architecture defines software architecture as

"elements, form, and rationale" [6] . This model described the rationale and principles that

guide the design and evolution of software architectures. This rationale is considered

when adopting an architecture centric approach. However, the main goal for representing

architectural design decisions is to bridge the gap between software requirements and

architectural products.

1.1.1 Architectural Knowledge

Nowadays, the research trends in software architecture focus on the treatment of

architectural design decisions as first-class entities and their explicit representation in

architectural documentation [4]. From this point of view, software architecture is no

longer perceived as interacting components and connectors only, but also as a set of

architectural decisions that convey the architectural principles underlying a particular

design 141. Software architecture is not only just a diagram but also contains architectural

design decisions, their rationales and alternatives etc.

'ilrchitectural Knowledge (AK) is defined as the integrated representation of the sofhvare

architecture of a sofhvare-intensive system (or a family of systems), the architectural

design decisions and their rationale, and the influences of the external context

/environment' [7].

According to Kructhen[8] , AK = "Design + Design decisions + Assumptions + Context"

Chapter I Introduction

1.15. Cause [46]

1.16. Context [27,28,29]

1.17. Notes [27,28,29]

1 .I 8. DateNersions of decision made18.91

1 .I 9. Obsolete decision [8,9]

1.20. Consequences [I 71

1.21. Validity of decision 181

1 1.22. Related decisions[27,28,29] I
2. Design Decision rationales [21] 1

1 2.1. Reasons behind design decisions I
- - -

2.2. Justification for it

2.3. Other alternatives considered

2.4. Tradeoffs evaluated

1 2.5. Argumentation that led to the decision I
1 2.6. Past rationales I

4. Design pattern [23]

1 5. Architectural views 181 1
6. Architecture diagrams/images/ figures [8] 1
7. Architectural pattern [23]

8. Architectural tactics [23]

9. Architectural styles [8]

10. Scenarios [23]

10.1. General Scenarios

10.2. Concrete Scenarios

1 1 1. Quality Attribute [231 1
12. Requirements [8,9,23,27]

13. Analysis models [23]

1 14. Issues 127,28,361 I

Value-Based Sofhvare Architecture Knowledge Management 4

Chapter 1 Introduction

- ~ ~p - ~ -

16. Choice[36]

17. Reference architecture 181

18. Design options [23]

19. Design History [8]

20. Tradeoff made [23,36]

21. Architecture variation points[23]

22. Domain analysis [23]

23. Assumptions any other1271

24. TraceLinks[46]

25. Relationships [23]

26. Ranking [23]

27. RisksNon Risks [23]

28. Architecture environrnent[l7]

] 29. Architecture description[8] I
30. Stakeholder/Decision Maker Name [8]

31. Stakeholder role and responsibilities [8]

1.2 Architectural Knowledge Management and its
importance

The subject of architectural knowledge is complex and covers many issues, both general

and domain-specific. Managing and Sharing architectural knowledge is very important

issue these days and main area of my research. The software architecture community has

recently gained an increasing interest in managing, sharing and storing architectural

knowledge [15]. Management of architectural knowledge is clearly related to

management of knowledge in general. Architectural knowledge management is defined as

"Soffware architecture knowledge management is an approach to improving sofhvare

architecture process outcomes by introducing practices for identrjjing and capturing

architecture knowledge and expertise, and making it available for reuse across

projects"./ IS]

Value-Baed S o f i a r e Archilecture Knowledge Manaaemenf z

Chspter I Introduction

Architectural Knowledge consists of architectural design as well as design decisions, their

assumptions and context. It supports the development of the architectural design. During

this development, issues arise. These issues lead to architectural choices between two or

more alternatives. Bascd on rationale, engineers make a decision for an architectural

choice. Making these decisions often involves making trade-offs between quality

attributes. However, the design decisions and their underlying rationales are usually

ignored at architectural level and during the development life cycle. Existing notational

and documentation approaches to software architecture typically focus on the components

and connectors and provides less focus on documenting the design decisions and the

rationale underlying the design decisions. Architectural knowledge that is not shared

eventually dissipates, as people tend to forget it. So my problem area is how to manage,

share and store Architectural Knowledge.

The need for documenting, sharing and managing design decisions has been recognized

in recent workshops especially in workshops and conferences [4][7][16][52]. The truth

that design decisions are rarely recorded complicates architecture reconstruction. This

difficulty to recreate lost or non documented decisions is one of the main reasons to

record them. Hence, documenting AK enables not only to track the overall architecture

along the construction process, but also Lo support future maintenance and evolution

activities.

1.3 Problems

Problems arise if we don't manage architectural knowledge properly are:

1. High evolution and maintenance costs (71:

During the evolution of any software system, architecture erosion may cause high

maintenance and evolution costs because the decisions made in the past were not

documented, and this architectural knowledge is vaporized.

2. Poor stakeholder communication [7] :

The stakeholders come Gom different backgrounds and have different concerns

that the architecture document must address. If the architectural decisions are not

documented and shared among the stakeholders, it is difficult to perform

tradeoffs, resolve conflicts, and set common goals, as the reasons behind the

architecture are not clear to everyone [17].

Value-Based Sofmore Architecture Knowledge Management c

Chapter 1 In froduction

3. Limited reusability of architectural assets 171:

It is difficult to perform architectural reuse when the architectural decisions and

their underlying rationales are implicitly hidden in the architecture.

4. Complicates architecture reconstruction[l8l:

The fact that design decisions are never recorded complicates architecture

reconstruction. This difficulty to recreate lost or non documented decisions is one

of the main reasons to record them.

5. Poor traceability behveen requirements, architecture and implementation

I71:

As design decisions are ignored, traceability between requirements, architectural

design decisions and architectural solutions are also ignored.

6. Precludes organizations from growing their architectural capabilities

[19]:

Existing notational and documentation approaches to software architecture

typically focus on the components and connectors and provides less focus on

documenting the design decisions that resulted in the architecture as well as the

organizational, process and business rationale underlying the design decisions [7].

7. Changes on existing teams:

Change of team member from the project also causes problem as the new member

have to rethink why this decision w ~ a d e .

8. Explain the rationale by which the decisions were made:

If the design decisions are not documented then we cannot explain the rationale by

which the decisions were made.

9. Efficiency of architectural processes becomes low (201:

One of the main problems in architecture processes is the lack of capture and

access to knowledge underpinning the design decisions and the processes leading

to those decisions. This causes the efficiency of architecture process low.

10. Difficult to identify design errors [Zl]:

Architecture knowledge when not managed properly, we are unable to identify

design errors which occur during the construction and maintenance phase.

11. Difficult to track the overall architecture along the construction process

1221:

By not storing Architecture knowledge, it is difficult to track the overall

architecture along the construction process.

Value-Based Sojiware Archifecfure Knowledge Managemenf 7

12. Decisions quality becomes worst 1201:

Lack of documentation of design decisions causes the design decision's quality

worst.

13. Maximize architectural risks and much time consumed:

As architectural knowledge is not properly managed, this maximizes architectural

risks. It takes so much time for understanding any architecture and especially

during construction phase.

1.4 Sub-discipline in Architectural knowledge: Tools and
techniques

Current research shows that architectural knowledge has brought along some promising

research directions. One of which is tools and techniques. Nowadays, there has been an

increased demand for suitable techniques and tools that support organizations in

capturing, sharing and managing architecture design decisions [4][7].

Proper methodological and tool support for managing AK helps to solve the above

mentioned problems. The complex role of architectural decisions requires systematic and

partially automated approaches that can explicitly document. As design decisions and

their rationale were not rigorously documented. One of the main reasons for this was lack

of suitable methodological and tool support. Due to lack of methodological support, some

effort has been spent now on developing techniques and tools for effectively managing

knowledge pertaining to software architecture [8, 9,17,23,27,28,36] as discussed in

chapter 2 and 3. The main focus of this research is on tools and techniques for managing

architectural knowledge.

1.5 Inhibitors in managing architectural knowledge

There are different ways for managing architectural knowledge [4,7,52].Researchers and

practitioners have proposed various tools [8,17,23,33,35] and techniques [27,28,36,37,38]

for its management. Indeed there are certain tools and techniques for architecture

knowledge management, practitioners still avoid to do so due to certain inhibitors

[27,28,29]. These are:

Value-Based Sofware Architecture Knowledge Management 8

Chapter 1 Introduction

1. Critical timing [27,28,29]:

The period in which design decisions are taken is usually critical for the success of

the software project. The project deadline or project pressure is one of the main

reasons for not documenting the design decisions and its rationale. Suggesting

people for documenting design decisions and their rationale at that critical time is

perceived useless.

2. Extra effort and time required:

Several architectural knowledge documentation techniques that already exist

usually focused on maximizing the consumer (people who are in charge to evolve

a system) benefits rather than minimizing the producer (original designers) effort.

As a result of this people involved in the documentation and maintenance

activities are supposed to spend a lot effort and time for recording and

documenting the architecture knowledge.

3. Overhead [27,28,29]:

As people who are involved in the documentation and maintenance activities are

supposed to spend a lot effort and time for recording and documenting the

architectural knowledge. This more effort and time increases the effect of

overhead.

4. Unpredictable information [27,28,29j:

l h e architecture knowledge documentation consumer and producer are often

different persons. Therefore, it is not clear which Architecture Knowledge

information for the project would be relevant for whom.

5. Unclear benefit [27,28,29]:

Decision-makers do not know many times for which purpose it is useful to learn

the rationale of a design decision. Therefore, some previous training is particularly

needed, as the users can perceive the usefulness of documenting the architectural

knowledge.

6. Lack of motivation [27,28,29]:

People who developed the system for the first time don't act in the role of

maintainers. This inhibitor is usually caused by the absence of personal interest

because the people who developed the system do not perceive the expected

benefits to waste time recording the design decisions.

Vahe-BasedSof~ure Architecture Knowledge Management o

Chapter I Introduction

7. Owner of the knowledge [27,28,29]:

The producer of architectural knowledge sometimes doesn't want to transfer or

communicate this knowledge to others.

8. Potential inconsistencies [27,28,29]:

Architectural knowledge documentation implicitly represents the results of the

design. If Architectural Knowledge documentation is not well updated, potential

inconsistencies in case of decision changes might occur.

1.6 Value-Based Software Architecture Knowledge
Management and its importance

Current research trends in software architecture focus on the proper management of

architectural knowledge [4,7,52]. However, due to above mentioned inhibitors;

practitioners are reluctant to manage architectural knowledge. A lot of architectural

knowledge is there to document and maintain, but the benefit of managing all

architectural knowledge is not clear. If benefits for managing AK are not clear, the above-

mentioned inhibitors like critical timing, overhead etc will have an impact.It will take

more time and effort which also increases the overhead in order to manage AK. From this

it is concluded that to get to know the benefit of managing AK, there is a need to manage

architectural knowledge in a value' based manner which will also mitigate the effects of

these mentioned inhibitors [27,28,29].

This idea has been taken from Boehm's work [26], who proposed a Value-Based

Software Engineering (VBSE) agenda and from Davide Falessi's work [27,28,29] who

used Boehm's idea for documenting design decisions rationale(value-Based Design

Decision Rationale Documentation). Boehm [26] proposed a Value-Based Software

Engineering agenda with the objective of integrating value considerations into the full

range of existing and emerging software engineering concepts and practices e.g. value-

based requirements engineering, architecting & design etc, and of developing an overall

framework in which they compatibly reinforce each other.

Basically, Value-Based Software Architecture Knowledge Management is an emerging

trend in software architecture community. By managing architecture knowledge in a

value based manner is one of the most valuable steps for advancing the software

Value-BasedSofhvare Architecture Knowledge Management ~n

Chapter 1

architecture state of the art by preventing its high costs of change and diminishes the

effort and time required [28,29]. This diminished effort has the effect of mitigating the

overhead. A Value-Based approach helps to document only the set of required

information based on the choice of different stakeholders. With this approach one doesn't

need to manage AK which is not required at that time for that stakeholder. Value-Based

Software Architecture Knowledge Management basically focuses on the choice of all the

stakeholders who are involved in specific project and will have a choice to get only that

type of information which they required.

1.7 Research Problem

As the above study shows that there are tools and techniques for managing, sharing and

storing architectural knowledge but practitioners are reluctant in applying such tools and

techniques because of certain inhibitors such as extra time md effort required, unclear

benefits for documenting AK etc. Therefore, we need to introduce an approach which

mitigates the effect of above mentioned inhibitors. With this context, the problem

statement of this research involves the following questions. Also, in order to establish the

usefulness of this research, 1 aim to investigate the following questions:

I. How to make architecture knowledge management tools and techniques practical?

2. How to reduce time and effort for managing and storing architectural knowledge?

3. How to reduce overhead for managing and storing architectural knowledge?

4. How to make knowledge capture cost-effective?

The above-mentioned research questions will be addressed by Value-Based

approach.Three workshops on Sharing and Reusing Architectural Knowledge have been

held on 2006 [4] ,2007 [7] and 2008 [51] by Lago, P. & Avgeriou. All of them focused

on current approaches, tackling above mentioned problems: methods, languages,

notations, tools, techniques to extract, represent, share, use and re-use architectural

knowledge. As these workshops held in 2006, 2007 and, 2008, so this area is not an old

one and 1 can do further research in this area as it provides a lot of research directions.

The other reason of choosing this area is that, it is necessary to solve the above mentioned

inhibitors as it plays an important role in making projects successful and in understanding

the benefits of managing AK and if we don't mitigate the effect of above mentioned

inhibitors, it causes other problems like lack of resources, management issues, financial

Value-Bused Sofiare Architecfure Knowledge Management 11

Chapter I Introduclron

problems etc. Authors like Muhammad Ali Babar [21,23,24,19,20], Remco C. de Boer

[22,24] , Rik Farenhorst [24,25], Rafael Capilla [8,9,26] and others have done a lot of

work in this area and also address the importance of sharing ,managing, documenting and

reusing AK.

1.8 Research Methodology

In order to answer the research questions a qualitative and human-centered approach has

been used. The research process consists of three stages:

a) A literature survey and analysis of techniques and tools for managing, sharing and

storing Architectural Knowledge.

b) Evaluation of the surveyed tools.

c) Build a working prototype of an architecture knowledge management tool that

incorporates value based concepts to address research questions discussed in

section 1.7.

Since the above mentioned research questions are inter-related, they need to be examined

together in a holistic way. The research approach in this thesis is to first survey and

analyes the existing techniques for managing, sharing and storing architecture

knowledge. As a result of this survey, a Value-Based approach has been found for

Documenting Design Decisions Rationale, known as Value-Based Design Decision

Rationale Documentation (VB-DDRD). This is a useful approach as it documents the set

of required information based on its purpose. Existing tools for managing Architectural

Knowledge have also been studied and evaluated on the basis of certain attributes. It has

been observed that none of the tools supports Value-Based Software Engineering

concepts. Therefore, an open source tool is selected that covers additional features

relative to other tools. This tool has been used to develop a Value-Based Software

Architecture Knowledge Management tool. Certain other limitations have been found

during the survey and evaluation of tools. Special features have been added to overcome

various limitations as discussed in chapter 3.111 this way we are providing a working

prototype.

Vnlrro-Rnrod Sofhvore Archifeclure Knowledge Manogemenr 12

1.9 Survey Outcomes

This section summarizes the results of the literature survey. Seven techniques and five

tools have been studied and surveyed for managing, sharing and storing Architectural

Knowledge. Different techniques, frameworks, methods, approaches have been

investigated for managing AK. From the survey of techniques, a Value-Based Design

Decision Rationale Documentation(VB-DDRD) technique [27,28,29] has been found as a

useful technique that focuses on documenting the set of required information based on its

purpose. Basically in that technique, Value-Based Software Engineering principles have

been applied to document Design Decisions Rationale. Moreover, the existing tools have

been analyzed and studied. The features of each tool have been compared with others and

there are certain features which one tool is covering but not the other one. Tools are

evaluated on the basis of certain attributes like usability, open source etc. It has been

observed that Architecture Design Decision Support System (ADDSS) is only an open-

source tool and it covers additional features relative to other tools. Moreover, by

comparing and evaluating tools, certain limitations and drawbacks have been found in all

the tools. Limitations like no tool is supporting for Value-Based software engineering

principles, no support for software product families etc are found.

The results indicate that there are tools for managing and storing architectural knowledge

but none of these tools support Value-Based Software Engineering principles. So for

managing architectural knowledge, a Value-Based tool should be implemented.

Moreover, certain limitations found during survey must be implemented. Details are

mentioned in chapter 2 and 3.

1.10 Thesis Contributions

This thesis enhances the understanding of architectural knowledge. The main focus is on

providing some methodological support for managing, sharing and storing architecture

knowledge. There are two major contributions of this thesis: Survey of tools and

techniques and modification of a tool to make it value-based. This work is implemented

on an existing tool Architecture Design Decision Support System (ADDSS) [8,9] which

is an open source tool and covers more features relative to other tools. Basically certain

Value-Based Sofrware Architecture Knowledge Management 13

Chapter I ~ntroaucrron

features found from the literature survey have been incorporating into the tool which is

missing from the tool.

The thesis makes the following specific contributions:

1. A literature survey and analysis of tools and techniques and the evaluation of tools on

the basis of certain attributes. This is one of the major contributions of this thesis.

2. Application of Value-Based Software Engineering principles into ADDSS tool. A

Value-Based Software Architecture Knowledge Management (VB-SAKM) process

has been proposed which focuses on documenting only the set of required information

based on choice of different stakeholders. This concept has been taken from Davide

Falessi's work [27, 28, 291 who proposes a Value-Based approach to DDRD (VB

DDRD) based on Boehm work [26] studied in the literature survey of techniques; this

thesis proposes a Value-Based approach to ADDSS. Modified tool provides the

opportunity to all the stakeholders to choose the required design decisions information

by giving score to each attribute of design decisions. Architect can mark these

attributes as requited, useful or optional on the basis of the score provided by each

stakeholder. This is the other major contribution of this work as this feature is not

present by any of the studied tool and due to this feature; the modified tool is Value-

Based and named as Value-Based Software Architecture Knowledge Management

Tool.

3. Provides a set of templates to document architecture and design tactics as an artifact of

architecture knowledge. Also provides a catalogue of architecture and design tactics.

Records the functional requirements and non functional requirements according to

their type.

4. Captures scenarios (general or concrete), which can be elicited from a stakeholder or

extracted from a pattern. Also captures principles and artifacts for some particular

architecture.

5. Captures architecture patterns and supports multiple views with each single

architecture. Also shows the categorization of risks and non risks associated with each

design decisions.

6. Evaluation of modified tool i.e. Value-Based Software Architecture Knowledge

Management (VB-SAKM) tool on the basis of certain attributes.

- . n f m a r e Archifecfure Knowledge Management 14

Chapter I Introduction

1.11 Thesis outline

The rest of this thesis is organized as follows:

Chapter 2 explores the related work of techniques for managing, sharing and storing

architecture knowledge published in the literature .In this chapter, the techniques1

method, concept/ framework are studied and surveyed along with certain limitations.

Chapter 3 explores the related work of tools for managing, sharing and storing

architecture knowledge published in the literature. In this chapter, these tools are also

evaluating on the basis of certain attributes. A comparison is made to highlight the merits

and limitations of these tools.

Chapter 4 describe the main contribution i.e. implementing the work in some existing tool

to make that tool more mature for managing, sharing and storing Architecture

Knowledge. In this chapter, the features which are implemented in the tool have been

described. Details of each feature along with the figures are described in this chapter.

Chapter 5 concludes this thesis by outlining the major contributions and benefits

of this work. It also discusses the future work in this area.

Value-Based Sofhvare Architecture Knowledge Management 15

CHAPTER 2

LITERATURE SURVEY AND ANALYSIS OF
TECHNIQUES

LrsUprr i Literature Survey and Analysis of Techniques

2. LITERATURE SURVEY AND
ANALYSIS OF TECHNIQUES

There are different ways to manage and store architectural knowledge. Current research

shows the importance of documenting and managing design decisions along with their

rationales. Recently, researchers [27,28,37,38] have proposed various ways to capture

architecture knowledge. There are different techniques for managing, sharing and storing

architectural knowledge. Different terms are used for techniques as framework, method,

approach or concept. This thesis is using a general term Yechniques" for all above

mention terms.

This chapter provides a brief description about the work done in managing, sharing and

storing architectural knowledge as techniques alongwith their main limitations. The

surveyed techniques, framework, method or approaches are discussed below:

2.1 Review of Existing Techniques / Frameworks 1 Method
/Approach

Seven techniques have been studied and reviewed in this thesis which is as follows:

2.1.1 Decision Goal and Alternatives DDR Framework @GA-DDR)

Main Feature: For documenting design decision rationales.

Falessi et a1.[27,52] have proposed a framework that focuses on the reasons why design

decisions have been taken. The framework contains a specific design decision rationale

documentation technique called DGA DDR, which is driven by the decision goals and

design alternatives available. In DGA DDR technique, the rationale behind a design

decision documents the attributes of CBAM. According to DGA, no matter what the

software context might be, design decisions depend on basic decision goals and inter-

decision relationships. These decision goals include Functional requirements, Non-

Value-Based Sofmare Architecture Knowledge Managentent 16

Chapter 1 ~~

functional requirements (quality attributes and constraints), Business goals, Decision

relationships.

The framework [27] aims not only to document decisions previously taken, but also to

support decision makers in taking these decisions. According to DGA, DDR

documentation consists of two stages i.e. it consists of two main activities, which aim to:

(i) understand what to document and (ii) enact the documentation, respectively. In the

first activity the project objectives and constraints are defined and it is investigated which

decision relationships are appropriate for the project. In the second activity the knowledge

is further refined and described in phases and tables. However, this framework does not

take into account the influence of certain factors like granularity, hierarchies, architectural

pattern, and architectural styles.

Certain limitations have been found by studying and analyzing the research papers and

technical reports [27,52] as discussed below:

1) Decision Goal and Alternatives DDR Framework doesn't provide any type of tool

support.

2) Value-Based Software Engineering (VBSE) [26] principles play an important role

while capturing architecture knowledge. It doesn't support VBSE principles. This

technique doesn't documents only the required set of information based on a priori

understanding of who will benefit later on, from what set of information, and in which

amount.

3) Software product families 1431 [44] are recognized as an effective approach to reuse

in software development. Architectural knowledge plays an important role for the

architectures in software product families. This technique/hework is not useful for

software product families as it has been checked from the research papers and other

documentation.

2.1.2 COVAMOF Framework [Variability Modeling Principles to
Capture Architectural Knowledge]

Main Feature: For capturing architectural knowledge.

Value-Based Sofhvare Architecture Knowledge Management 17

Chaprer 2 Literature Survey and Analysis of 12chnrques

2.1.2.1 DESCR~PTION

COVAMOF 1301 is a framework which is useful for managing variability.COVAM0F

framework solves the issues that arise when the practitioners are relating quality attributes

to architectural design decisions. Basically, the effects of architectural decisions on the

fi~nctional and quality aspects of a system are often hard to make explicit. Researchers

mentioned that the same issues arise in the field of product families, as arises when

configuring products. The COVAMOF variability modeling framework was developed

which should be able to deal with the imprecise and incomplete nature of the effect of

decisions on quality attributes. The problems with incomplete and imprecise knowledge

do not only occur in the context of architectural knowledge, but have also been identified

in the field of software product families. COVAMOF consists of models, tools and

processes that support engineers in the development of product families as well as the

configuration of individual products from a product family.

Researchers [30] argue that the concepts of COVAMOF can be used to capture the

architectural knowledge. According to them, this mapping makes it possible to use the

COVAMOF tool suite and method for capturing architectural knowledge. It has been

shown how the concepts and issues of architectural knowledge map to concepts and

issues that are addressed by COVAMOF. By using the approach adopted by COVAMOF

for capturing AK, it is possible to explicitly deal with the implications attached to tacit,

documented and formalized architectural knowledge, as it does not require a complete

and fully formalized model in order to be usehl during architecture design.

The idea behind COVAMOF is to enable tool support to manage complexity and reduce

the dependency of organizations on experts. The first benefit of COVAMOF is

incremental externalization which includes documenting expert knowledge,incorporating

existing documentation,collecting reference data,fonnalizing documented

knowledge.Second benefit is to reduce derivation cost which includes reducing expert

involvement,providing structured documentation,configuration guidance,automatic

inference,automatic consistency checking and automatic QA estirnation.However, this

approach is time consuming. The actual taking of decisions will slowly move from

architecture time, to development time and eventually to runtime.

v"Jw-Rnwol .Sofmare Architecture Knowledge Managemenf
18

./,.Up.C, - "'.C'Y'Y,C YY. .CJ Ull" '.,.YIp..I "J I ~ C l l r . I . , * U

Certain limitations have been found by studying and analyzing the research paper [30] as

discussed below:

1) Value-Based Software engineering (VBSE)[26] principles play an important role

while capturing architecture knowledge. It doesn't support VBSE principles. This

framework doesn't captures only the required set of information based on a priori

understanding of who will benefit later on, from what set of information, and in which

amount.

2) As it documents all the architectural knowledge in a framework, which is useful for

communicating stakeholders but it is difficult to access by all stakeholders. So this

framework is not useful for building stakeholder communication.

2.1.3 METHOD [Flag, Filter, and Form]

Main Feature: For capturing architectural design decisions.

A method [37] has been proposed which aimed to make the process of capturing

architectural design decisions easier by dividing it into three steps: Flag, Filter, and Form.

This method reduces the amount of work needed to capture design decisions. It allows

software designers to casually flag decisions in various documents like e-mail, webpages,

books, and pictures, so that a software designer could spend less time creating the list of

decisions and more time on manipulating and evaluating captured decisions. Flagging is

the capture of candidate decisions "in the raw". Filtering is sifting through the captured

decisions to find applicable decisions to a project. The designer would collect a set of

decision references when the time is over. Once the designer identifies a decision

reference to be valid, the designer promotes the decision to represent a part of the

software design, which is represented as a formal decision entity. Forming creates a

formal decision entity for the decision and provides descriptive attributes such as priority,

category, or state for each decision. The designer generates a first-class representation of

the design decision, once a decision has been approved. The formed decision is stored

into a decision repository for manipulation, association and analysis.

Value-Based Sofware Architecture Knowledge Management 19

Chapter 2 Literalure Survey and A ~ U ~ Y S I S oj I rcrwrryu~o

Researchers mentioned that the method[37] is iterative and each step can span across

multiple sessions; Supports decision and design traceability; Provides immediate benefit

to those capturing their design decisions by acting as a "memory-aid" service; and finally,

applies to other areas of software development, such as coding, testing, and support. A

tool is being developed that will assist designers in capturing software architectural

design decisions using the three-step method described above. An empirical validation of

the method has been planned by evaluating a tool that implements the proposed method.

A main issue revolves around the architectural knowledge itself, as AK can be considered

as intellectual property, and hence are highly confidential. Moreover, decisions can also

be personal or political, in which legal issues may arise if they were documented. The

method may be unintuitive or overly complicated. Complications arise when the source of

many design decisions are directly from the designer. The documentation of sources

across various mediums is challenging.

2.1.3.2 LIhllT~T10Ns

Certain limitations have been found by studying and analyzing the research paper 1371 as

discussed below:

4 1) This method does not being applied industrially.

2) Method doesn't support VBSE principles. This method doesn't documents only the

required set of information based on a priori understanding of who will benefit later

on, from what set of information, and in which amount instead this is recording all the

architectural knowledge information.

3) Architectural knowledge plays an important role for the architectures in software

product families. This method is not useful for software product families and it has

been checked from the research paper.

4) As the information is flagged and filtered through different sources, sometime if one

cannot access the information from any source it might be difficult to communicate

with stakeholders. Complications arise when the source of many design decisions are

directly from the designer.

vnlw-RmedSofware Architecture Knowledge Management 20

Chapter 2 LiterolureSurvey and Analysis of Techniques

2.1.4 Derivational Analogy: An approach for Capturing and Replaying
Architectural Knowledge.

Main Feature: For capturing and replaying Architectural Knowledge mainly

architectural design decisions.

2.1.4.1 DESCRIPTION

Ibrahim Habli and Tim Kelly [38] tackle the topic of recovering architectural knowledge

in existing system architecture. They propose to use derivational analogy to reconstruct

the decision-making process and document architectural drivers, decisions, and

subsequent analysis. Instead of reusing past solutions directly, derivational analogy

replays the process leading to these past solutions. In doing so, particular design steps or

routes are skipped if the design assumptions do not hold in the context of the new

problem. An approach [38] to define new software architectures through the use of

derivational analogy.

The main actions in architecture design replay using derivational analogy can be

summarized as follows: 1) Capturing and Representing Architecture Knowledge: Not

only does derivational analogy require the recording of the final design decisions, but also

the goals, requirements, constraints, preconditions, rationale, assumptions, dependencies ,

and alternatives of thc chosen design. Three steps for capturing and representing

architectural knowledge: (1) recording architectural drivers, (2) recording architectural

design decisions, and (3) recording the analysis of these decisions in achieving the

architectural drivers. In order to capture and analyze the architectural knowledge, three

methods have been used, developed by the SEI, namely: Quality Attribute Scenarios,

Attribute Driven Design Method (ADD) and Architecture Tradeoff Analysis Method

(ATAM). 2) Architecture Derivation through Process Replay: A new architecture is

derived by replaying the architectural knowledge captured as described in step 1. The

replay of the architectural process entails the retrieval of the design decisions and their

rationale. Then, a gap analysis is carried out where only relevant design sequences are

reapplied in the context of the new architecture. Adaptation is required when mismatches

are encountered. Finally, the new architecture is evaluated against its own specific

requirements. Three steps are: (1) Relevance and Retrieval (2) Adaptation (3) Evaluation.

Vulue-Bnsed Sofware Archifechrre Knowledge Munagemen! 21

Although it produces an analyzable architecture but this concept is a time-consuming

activity.

Certain limitations have been found by studying and analyzing the research paper [38] as

discussed below:

1) Derivational Analogy approach doesn't provide any tool support. This approach

should be applied on any tool.

2) Approach doesn't support VBSE principles. This approach doesn't documents only

the required set of information based on a priori understanding of who will benefit

later on, from what set of information, and in which amount instead this is recording

all the architectural knowledge information.

3) Architectural knowledge plays an important role for the architectures in software

product families. This approach is not useful for software product families and it has

been checked from the research paper [38].

2.1.5 Extensibility Approach [Exploring Extensibility of Architectural
Design Decisions]

Main Feature: For documenting and reusing architectural design decisions.

Explores how design decisions can be documented, and how they affect the synthesis

architecture. This approach [I81 explores extensibility ideas from software product lines

to show how synthesis architectures can be extended on the basis of design decisions.

Researchers [18] introduce design decision documentation in such synthesis architectures.

An approach for product line synthesis architecture, where design decisions are

introduced to promote its reuse.

This work focuses on how systems are synthesized in FOMDD. Feature Oriented Model

Driven Development (FOMDD) is a blend of FOP and MDD that shows how products in

a software product line can be synthesized in an MDD way by composing features to

create models, and then transforming these models into executables. Synthesis in

Value-Based Sofhvare Architecture Knowledge Management 22

FOMDD 1) initially using scripting (repetitive, time-consuming and cumbersome),2)

recently, new approach (scripts generated from abstractions).

The documentation of design decisions constitutes a first step towards AK reuse, but

documentation alone does not imply reuse. Approach basically documents the design

decisions that happen along synthesis and use step-wise refinement to extend synthesis

architectures and their design decisions. Architecture Extensibility includes steps:

Synthesis Architecture, Extensibility, Architecture Composition, Documenting Design

Decisions, Traceability and Design Decisions. This approach documents the decisions but

basically useful for reusing architectural knowledge.

2.1.5.2 LlnllTATIONS

Certain limitations have been found by studying and analyzing the research paper [I81 as

discussed below:

1) Approach doesn't provide any tool support. This approach should be applied on any

tool.

2) Approach doesn't applied industrially and it has been checked from the research

paperil 81.

3) This approach doesn't helps building stakeholder communication as it is quite

complex approach as compared to other approaches.

4) Approach doesn't support VBSE principles. it doesn't documents only the required

set of information based on a priori understanding of who will benefit later on, from

what set of information, and in which amount instead this is recording all the

architectural knowledge information.

2.1.6 Using Patterns to Capture Architectural Design Decisions

Main Feature: For capturing architectural design decisions.

Architecture patterns [39] are suggested here for capturing structural and behavioral

information. The relation between patterns and decision making are discussed here and it

is described that how architects can use patterns to capture certain architectural design

Value-Based Software Architecture Knowledge Managenrent 23

Chapter 2 Literature Survey and Analysts o) 1 ecnnrques

decisions in practice. Architecture patterns make information easier and faster to

document architectural decisions. In applying architecture patterns, architects make

decisions that encourage them to both reflect on those decisions and consider related

issues. Pattern selection is indispensable to the architecting process, so architects can

record related decisions with little effort. Patterns follow an easily understood form,

which is highly compatible with proposed description templates for architectural

decisions.

This approach[39] first compares the Patterns and Architectural decisions and then

explains the pattern-decision relationship. Using a pattern in system design is, in fact,

selecting one of the alternative solutions and thus making the decisions associated with

the pattern in the target system's specific context. Although patterns and decisions have

different origins, one can investigate their relation by comparing how they're

documented.

Patterns have potential for providing very useful AK that architects can turn into

application-specific knowledge and can document as an architectural asset. However,

patterns can't help the architect of all the responsibility for documenting decisions.

Firstly, the architect must still document application- specific decisions. Secondly, not all

decisions have appropriate patterns. One can't capture some architectural decisions in

terms of panems because these patterns depend on the project's concrete scope and

domain. An important challenge there is with patterns is what to do if developers use the

wrong pattern but don't discover this until well into the implementation phase. As with

any architectural decision, backing out is difficult.

Certain limitations have been found by studying and analyzing the research paper [39] as

discussed below:

1) Approach doesn't provide any tool support. It should be applied on any tool.

2) Approach doesn't support Value-Based Software Engineering principles. It doesn't

documents only the required set of information based on a priori understanding of

who will benefit later on, from what set of information, and in which amount instead

this is recording all the architectural knowledge information.

Value-BasedSofmare Architecture Knowledge Management 24

Chapter 2 Literature Survey and Analysis OJ 1 ecnnrquu

3) Architectural knowledge plays an important role for the architectures in software

product families. This approach currently is not useful for software product families

but if its drawbacks will be removed then it might be useful for software product

families.

2.1.7 A Value-Based Approach for Documenting Design Decisions
Rationale (VB-DDRD)

Main Feature: For documenting design decisions rationales using value based approach.

An approach [27,28, 29] for systematic DDR use that follows value-based software

engineering principles. A value-based approach is proposed for documenting the reasons

behind design decision (VB DDRD), based on a priori understanding of who will benefit

later on, from what set of information, and in which amount. The basic idea of this

approach is that all the information included in a design decision rationale documentation

(DDRD) might be useful but sometimes some information are mere optional. Basically,

researchers focuses on an approach which says not all the information is required to

document all the time to relevant persons. Only required design decisions rationale

infom~ation must be documented according to the choice of relevant person. Moreover,

the amount of importance related to the information included in the DDRD depends on

the DDRD Use-Case (DDRD UC). The adoption of a tailored DDRD, consisting only of

the required set of information, would mitigate the effects of DDKD inhibitors. Several

usage scenarios for DDRD (i.e. DDRD Use-Case) are considered/provided and

characterized by specific payees, business context and product characteristics, type of

DDR activity, benefits, and required DDR information. A set of thirteen scenarios have

been selected.

Researchers[28,29] analyzed the feasibility of this approach, which includes certain

aspects relevant for every software engineering practice, such as: Where (project context),

Who (the beneficiary stakeholders), When (DDRD type of use), Why (process and product

metrics) and How (DDRD required information), through a replicated experiment which

adopts this approach and the importance of different DDRD information categories. This

applied experiment employs 50 subjects, 25 decisions, 5 different DDRD UC(s), and 250

Vnho-Raved Sofhvare Architecture Knowledge Managentent 25

DDRD UC(s) executions. Each subjects practically used the documentation to enact all

the five Use Case(s) by providing an answer and a level of utility for each category of

DDRD. Researchers observed several difficulties in the reasoning activity to answer the

questions that motivated each DDRD UC. Thus, from the reasoning activity of the

subjects it is deduced that a good description of the decisions is needed in order to avoid

confusion when reusing decisions made by others.

Researchers mentioned that DDRD consumers require specific categories of DDRD

information according to the DDRD UC to enact. This suggests that the DDRD producer

should include only the information required for the specific DDRD UC(s) that is

expected to be enacted (i.e. the value-based approach). This concludes that for the use of

DDRD that should be captured and used according to the user or organizational needs and

use agile methods to reduce the effort both in creating and consuming such relevant

architectural knowledge. Thus, documenting this tailored architectural knowledge explicit

may be seen as a "new" cross-cutting architecture view i.e. "Decision View".

Certain limitations have been found by studying and analyzing the research papers [27,28,

291 as discussed below:

1) Approach doesn't provide any tool support. VBSE principles have not yet applied to

any tool.

2) Approach currently not being applied to software product families but it can be useful

for software product families, as to get only the required information for product line

software, this approach saves time and effort.

The above study shows the work in techniques/framework/method/approaches for

managing, sharing and storing architectural knowledge. From this survey, a Value-Based

approach has been found for documenting the Design Decisions Rationale, known as

Value-Based Design Decision Rationale Documentation (VB-DDRD). Basically in that

approach, researchers [27,28,29] have been applying Value-Based Software Engineering

principles for documenting design decisions rationale. This is a useful approach as it

documents only the set of required information based on its purpose, so we can do further

work with this approach.

Va/ue-Based Software Architecfure Know/edge Managemenf 26

CHAPTER 3

LITERATURE SURVEY AND EVALUATION OF
TOOLS

3. LITERATURE SURVEY AND
EVALUATION OF TOOLS

Recently various studies show that the software architecture community has begun to

recognize that knowledge management is vital for improving an organization's

architectural capabilities [21]. There has been an increased demand for suitable methods,

techniques, and tools that support organizations in capturing and maintaining the

architecture design decisions and their rationales [15]. Architectural knowledge can be

valuable throughout the software development lifecycle. Researchers and practitioners

have proposed various approaches to capture and manage architectural knowledge

[8,23,27]. Many of these approaches have been adapted from knowledge extraction

techniques used in artificial intelligence and in social science disciplines. One of the main

objectives of these approaches is to help making explicit what is known by architects or

implicitly embedded in architecture. This may include knowledge about the domain

analysis, architectural patterns used, design alternatives evaluated, and assumptions

underpinning design decisions [21].

This chapter includes the study and review of existing tools for managing and storing

architectural knowledge. Evaluation of existing tools for managing Architecture

Knowledge is one of the contributions of this thesis has also been discussed in this

chapter. Tools are evaluated on the basis of different attributes. Following section

describe the evaluation criteria defined for existing tools:

3.1 Evaluation Criteria for existing tools

This section describes the attributes which have been taken to evaluate the studied tools.

These attributes consists of general attributes which are usually taken to evaluate the tools

as well as the specific attributes related to architectural knowledge [8,9,23,27,31]. The

evaluation criteria attributes have been taken out after the literature mapping. First the

Architectural Knowledge itself has been defined. The attributes of architectural

knowledge has been listed down as shown in Table 1.1.It has been checked either the

tools are covering the AK attributes or not. Table 3.2 that compares and contrasts the

features of each tool is also helpful for providing few attributes. Further, some of the

attributes have taken out by reading and surveying the area related papers, Knowledge

Value-BasedSofmare Archileelure Knowledge Management 27

Chapter 3 Literature Survey and Evaluatron OJ I 001s

Management literature have been proposed out few things e.g. we come to know about

Value-Based Software Engineering concept that the tools must support. General attributes

have also been considered as there are some things which the tools must have e.g.

usability attribute etc. Following are evaluation criteria attributes:

1. Usability: Usability is a quality attribute that assesses how easy user interfaces are to

use[47]. It also refers to methods for improving ease-of-use during the design process.

Usability is defined by five quality components: Learnability, Efficiency of use,

Memorability, Error Prevention, Satisfaction. This attribute has been added to check

how usable and learnable the selected tools are. Usability attribute is an important

attribute and helps to get to know how learnable, efficient, memorable, safe and

pleasant the tools are. Usability is a necessary condition for survival. It is important to

find usability of any tool because if a tool is difficult to use, people leave. If users get

lost on a tool, they leave. If a tool's information is hard to read or doesn't answer

users' key questions, they leave. By using all the studied tools personally, it is

possible to proof how learnable, efficient, memorable, safe, and satisfling these tools

are for a given set of users. For evaluating tools with usability attribute, the main

focus is on the interface of tools, Usable interfaces must possess five basic atbibutes :

a. Learnabi1ity.-Tools must be easy to learn. Novice users must be able to

complete basic tasks in a short period of time, with a minimum of training.

b. Eficiency of use.- Once experienced users have learned the design, they

must perform the task quickly.

c. Memorability.-Tools must be easy to remember. Users can return to them

after an absence and complete tasks without retraining.

d. Error Prevention.-Users must experience only few errors while using the

tools, and recover quickly from them.

e. Satisfaction.-Tools must be pleasant to use.

2. Industrially used: This attribute shows that the selected tools are industrially used.

This attribute is important because if the tool is not industrially used then it is

impossible to find any evaluation report from the researchers and impossible to

validate it through case studies. From the research papers and tools' website, it is easy

to get to know either the tools are industrially used or only a research prototype.

3. Open Source: This attribute shows either the source code is available to the general

public for use and/or modification from its original design free of charge or not. This

Value-Based Sofnuare Architecture Knowledge Management 28

Chapter 3 Literature Survey and Evaluation o] I 001s

attribute is important if we want to do further iterations in the source code.

Availability of code for a particular tool validates this attribute. Tool's website or

researcher's website can be helpful for this attribute.

4. Coverage: Coverage attributes shows how much the selected tools covers

architectural knowledge attributes as well as other features of these tools. For

evaluating tools related to this area, coverage attribute plays an important role. This

attribute is important to find limitations of each tool. From the research papers,

technical reports and by using the tools personally it is possible to get to know how

much these tools covers architectural knowledge attributes as well as the other

features of these tools. A table 3.2 is developed that compares and contrast different

features of each tool with one another as mentioned in the end of the chapter. The

coverage attribute is evaluated on the basis of this table.

5. Useful for sofhvare product families: Software product families [43] [44] are

recognized as an effective approach to reuse in software development. The basic reuse

philosophy of software product families is intra-organizational reuse through the

explicitly planned exploitation of the commonalities between related products. As

architectural knowledge plays an important role for the architectures in software

product families, this attribute tells either tools are useful for software product

families or not and it has been checked from the research papers, web sites and other

documentation of these tools.

6. Support of Value-Based software engineering principles: Value-Based Software

Engineering agenda has emerged, with the objective of integrating value

considerations into the full range of existing and emerging software engineering

h principles and practices, and of developing an overall framework in which they

h. compatibly reinforce each other [26]. VBSE principles play an important role while

capturing architecture knowledge. The importance of this attribute is that with this

one can get required set of AK information that benefits different persons. Also saves

a lot time and effort. This attribute tells us either these tools support this concept or

not. This attribute has been evaluated on the basis of research papers, personal usage

and other documentation.

7. Useful in evolution and maintenance activities: Software evolution is used to refer

to the activity of adding new functionality to existing software [45]. Maintenance

refers to the activity of modifying software after it has been put to use in order to

maintain its usefulness [45]. Evolution and maintenance activities are very much

Value-Based Sofiare Architecture Knowledge Munagemenf 29

important for a particular architecture, as whenever some change occurs to existing

software, the architecture of that software also changed, this is the reason why this

attribute has been taken. From the research papers and personal usage, it is easy to get

to know either these tools are useful in evolution and maintenance activities or not.

8. Integrated with other modeling tools: This attribute tells that either the tools are a

separate tool or integrated with any other tool. The importance of this attribute is that

from this one can check is it easy to use tool or a complicated tool. This attribute has

been checked from research papers and personal usage. Personal usage involves either

these tool are integrated within any other modeling tools or either some other tool are

integrated in these tools.

9. Accessible for geographically distributed stakeholders: Stakeholders comes from

different background and have different concerns. As stakeholders are distributed in

different areas, this attribute tells either these tools are accessible for different

stakeholders placed at different places or not. This attribute is important to check as

stakeholder plays an important role for the projects and they can be distributed all

over the world. If the tool is web-based then all the stakeholders can easily access that

tool. From the research papers, this attribute have been validated for all the tools.

10. Performance: Performance is about timing [I]. Performance refers to responsiveness:

either the time required responding to specific events or the number of events

processed in a given interval of time [47]. Performance attribute plays an important

role to check how efficient the tools are and how much time tools take to complete the

task. By personally using the studied tools the performance of the tools has been

checked. By providing same set of data and same actions to all the tools, we can

evaluate tools with performance attribute on the basis of following requirements:

a. Time the user takes to complete basic flow.

b. Time to perform any process/flow of operation i.e. to save data, delete any

data.

c. Response time of any flow of operation i.e. retrieve data from the database.

d. Time to start the application.

11. Security: Security attribute is a measure of system's ability to resist unauthorized

attempts at usage or behavior modification, while still providing service to

legitimate users. Security attribute is an important attribute that has been added in

order to check how secure these tools are. In this case, Authentication property

has only been checking either these tools possess this property or not. This

Value-BasedSofware Archifecfure Knowledge Management 30

Chapter 3 Literature Survey and Evaluation of Tools

attribute has been checked by personally using the tools and from the research

papers.

3.2 Review of Existing Tools

There are five tools for managing, sharing and storing architectural knowledge which

have been evaluated by personally using these tools. Research papers, technical reports

and other documentation have also been used for evaluating the studied tools.

3.2.1 PAKME (Process-based knowledge management environment)

An architectural knowledge management framework [21,23] has been proposed by the

researchers of National ICT Australia (NICTA). This framework incorporates concepts

from knowledge management, experience factory, and pattern-mining. It consists of

various approaches to capture design decisions and contextual information. This

framework involves an approach to distill and document architecturally significant

information from patterns, and also involves a data model to characterize architectural

constructs, their attributes and relationships. A web-based architecture knowledge

management tool, called Process based Architecture Knowledge Management

Environment (PAKME) [23,48], has been developed to support the proposed framework.

PAKME is a tool for providing knowledge management for software architecture

development. It has been built on the top of Hipergate, an open source groupware

platform which includes collaborative features, project management facilities and online

collaboration tools.

Some of the features and components of PAKME [21,23,48] are as follows:

1) PAKME consists of five components:

a. Knowledge acquisition service: the user interface implemented with JSP and

HTML pages.

b. Knowledge maintenance sewice: knowledge management component

provides the services necessary to store and update AK.

c. Knowledge retrieval service: the search component which defines three

different searching mechanisms (i.e.: keywords, logical operators, and

navigation).

Value-Baed Sofhvare Architecture Knowledge Management 31

Chapter 3 Literature Survey and Evaluation of Tools

d. Knowledge presentation service: for retrieving artifacts, the reporting

component provides services for representing AK and describing the

relationships between different architectural artifacts. Generates automatically

PDF documents1 Web based report for describing decisions etc.

e. Repository Management: Offers the services needed to maintain the data

which is currently implemented in PostgreSQL.

2) Captures Architectural Design Decisions and their underlying rationales i.e. it

captures both Contextual Information (Design Rationale) and Technical Information

(Patterns, Styles, Tactics, Analysis models, Scenarios).

3) PAKME divides AK into organizational (generic) and project-specific (concrete).

a. Generic: including general scenarios, patterns, quality attributes, design

options.

b. Project specific: including concrete scenarios, contextualized patterns, quality

factors, and architecture decisions.

4) Incorporates A W features for geographically distributed stakeholders involved in

the software architecture process.

5) Improves architecture-based software development.

6) Provides different templates, knowledge repository, and various features to capture,

manage, and present architectural knowledge.

7) Capture, manage, use, reuse and retrieve AK captured from Human Sources and

patterns.

8) Capture and present scenarios.

9) Support for design and analysis methods.

10) In PAKME, architecture decisions were categorized as risk or nonrisks.

11) Supports the architecture evaluation process and systematizes evaluation process of an

industrial collaborator.

3.2.1.1 EVALUATING PAKME

1. Usability:

PAKME is user-friendly tool. One can learn the tool easily as it provides proper user-

interfaces which enables user to addlretrieve knowledge easily. User can easily

complete task in a short period of time as PAKME provides different templates,

knowledge repository, and various features to capture, manage, and present

Value-Based Software Architecture Knowledge Management 32

~naprer 1 L~terature Survey and Evaluation of Tools

architectural knowledge easily. Moreover, as PAKME provides proper templates to

capture and manage architecture knowledge, also provides Knowledge maintenance,

acquisition, retrieval, presentation and repository management services so an

experience user can easily use this tool. Moreover proper menu and navigation

services are provided with this the tool become more efficient.

As proper interfaces are provided so one can easily remember this tool. With the

knowledge retrieval senice, one can easily return to this tool and get the required data

after an absence. PAKME generates automatically PDF documentdWeb based report

for describing decisions etc which enables users to easily found architecture design

decisions as well as their rationales for a particular architecture of any project. Only

few errors have been found due to the absence of JSP server and found duplication of

workload of requirements. Besides few errors, PAKME is pleasant to use tool. The

usability of P A W has been checked and evaluated by personally using the tool.

2. Industrially used:

PAKME has been tested industrially for an aircraft system. PAKME is trialled to help

systematize the architecture knowledge management and evaluation process of an

industrial collaborator. The opinion about this attribute has been formed from the

research papers [23,48], technical and evaluation reports[21,48].

3. Open Source:

PAKME is not an open source tool as tool's source code is not available. The opinion

about this attribute has been formed from the research papers [23], technical reports

[21] and from the PAKME's developers.

4. Coverage:

Table 3.2 that compares and contrast the features of each tool with one another can be

useful to evaluate PAKME with this attribute. PAKME captures Architectural Design

Decisions and their underlying rationales. Also captures both Contextual and

Technical Information. This tool covers many features like searching, presenting

knowledge, support for evaluation process etc. Table 3.2 shows PAKME covers many

features which other tools except ADDSS are not covering.

5. Useful for software product families:

Papers [23] shows that tool is not useful for software product families as there is not

anythmg mentioned in the paper about the usage of this tool for software product

Value-Bared Sofnvare Architecture Knowledge Management 33

Chapter 3 Literature Survey and Evaluation of loois

families. This attribute has been checked from the research papers [23,48], evaluation

report and other documentation of PAKME 1211.

6. Support of value-based software engineering principles:

PAKME doesn't support the VBSE concept as tool doesn't capture design decisions

information according to user's choice. User's have no choice to capture required

design decisions information. All the design decision information has been captured

not focusing only on required set of information. This attribute has been evaluated

with the help of research papers [23,48] and technical reports [21].

7. Useful in evolution and maintenance activities:

Fully supports the evolution and maintenance activities and this attribute have been

checked from the research papers [48] and its technical report [21].

8. Integrated with other modeling tools:

Tool is not integrated with other modeling tools. This attribute has been checked from

research papers [23] and personal usage.

9. Accessible for geographically distributed stakeholders:

PAKME incorporates AKM features for geographically distributed stakeholders

involved in the software architecture process. From the research papers[23,48], this

attribute have been validated and this tool fully supports it.

10. Performance:

PAKME is good performance wise as it provides proper templates so with less time

one can easily store and retrieve architecture knowledge information, but due to few

problems as discussed below, it is concluded that PAKME partially supports the

performance atbibute. Although tool takes less time to complete basic flow but there

is one drawback i.e. duplication of workload of requirements which some times slows

down its performance. PAKME needs to be designed to be heavily customized at

deployment time. PAKME takes 4-5 seconds to save information whenever we press

the save button. It takes 1-2 seconds for deleting information. PAKME takes time

while retrieving knowledge. Whenever we gave command for viewing architecture

knowledge information, system responses in 20-30 seconds. Improving the speed of

knowledge retrieval by using the task-based retrieval techniques is needed in this tool.

PAKME has proper interface so its takes few seconds to start the tool. The

performance of PAKME has been measured by personally using the studied tool

Value-BasedSofhvare Architecture Knowledge Managemenr 34

Chapier 3 Literature Survey and Evaluation of Tools

11. Security:

Tool doesn't support this attribute. Tool doesn't ask for any login/password. This

attribute has been checked by personally using this tool.

3.2.2 ADDSS (Architecture Design Decision Support System)

The Architecture Design Decision Support System (ADDSS) 1.0, was available at [36],

developed in 2005-2006 [8]. ADDSS [8,9] is an open web-based tool developed with

PHP, HTML and MySQL. ADDSS is an open source tool whose code is also available at

their website [36]. Tool focuses on recording, managing and documenting architectural

design decisions under an iterative development process. ADDSS creates the architecture

under an iterative process and where one or more design decisions are made for each of

the iterations.The new ADDSS 2.0,[9] which has been released, supports the status of

decisions and the date when the decision was made. Also, supports vers io~ng for

recording and tracking the history of a particular decision and supports the decision

making process. Tool describe a flexible approach in the form of mandatory and optional

attributes for characterizing architectural design decisions that can be tailored to the

specific needs of each particular organization. Researchers [9] are fixing these mandatory

and optional attributes according to their choice.

Some of the features of this tool [8,9] are:

1) Supports the creation, use, maintenance, and documentation of architectural design

decisions. Enables to document design decisions as first class entities under an

iterative approach.

2) Design decisions easily visualized understood and replayed.

3) Supports the implementation of decision view.

4) An easy web interface provides access to the functionality of the tool.

5) Tool can access through username and a password.

6) Users can upload figures from external files representing architectures. For each of

the iterations, a thumbnail image of the architecture is shown to the user.

7) Allows the storage of several projects and architectures. Multi-perspective support for

different stakeholders.

8) Add or remove well-known architecture and design patterns and architectural styles to

the database.

Value-Based Sofware Archireclure Knowledge Management 35

Chapter 3 Literature Survey and Evaluofion of Tools

9) PDF documents containing the project and architecture descriptions with the design

decisions can be automatically generated.

10) Support for functional and non-functional requirements and for different architectural

views.

11) Support the decision making process.

12) Supports traceability between requirements, decisions, and architectures, but detecting

inconsistencies of decisions is not implemented.

13) Useful for maintenance and evolution activities. Supports modeling and documenting

the evolution of ADD.

3.2.2.1 EVALUATING ADDSS

1. Usability:

ADDSS is a user fiiendly tool. One can easily learn the tool as it provides an easy

web interface which offers access to the functionality of the tool. ADDSS is quite

usable but as the code is in Spanish language so at some places in the interface

Spanish language is used which is difficult for the users to understand the tool. User

can easily complete task in a short period of time as the tool provides different

templates to capture, manage, and present architectural knowledge easily. A simple
\ user interface using web tec~~~ologies are used for representing the decisions and '.

architectures as well as the mult>perspective support. This tool provides proper

knowledge management, retrieval and presentation services for managing and storing

architecture knowledge. Design decisions easily visualized understood and replayed.

Moreover proper menu and navigation facilities are provided with this the tool

become more efficient.

As proper interfaces are provided so one can easily remember this tool. With the

knowledge retrieval service, one can easily return to this tool and get the required data

after an absence. The decisions made by the user can be visualized afterwards in order

to understand the rationale behind them. Users can easily visualize the history of the

architecture and the iterations performed. Few errors have been found in saving like

saving architecture information, images etc. 'Page cannot displayed" error appears on

certain pages. Besides few errors, ADDSS is pleasant to use tool. The usability of

ADDSS has been checked and evaluated by personally using the tool.

Value-Based Sofmare Architecture Knowledge Management 36

Chapter 3 Literature Survey and Evaluation of Tools

2. Industrially used:

ADDSS is a research prototype. The opinion about this attribute has been formed by

visiting tool's website[36].

3. Open Source:

ADDSS is an open-source tool because tool's source code is available from the

website [36]. Although the code of the tool is available but it is written in Spanish

language so this make sometimes difficult for the developers who do not understand

this language. This attribute has been validated by personally visiting the website

WI.
4. Coverage:

Table 3.2 that compares and contrast the features of each tool with one another can be

useful to evaluate ADDSS with this attribute. ADDSS supports the creation, use,

maintenance, and documentation of architectural design decisions. Enables to store

and document design decisions as fust class entities under an iterative approach.

Support for integrated representation of architecture. Tool captures the rationales

underlying the design decisions. This tool covers many features like searching,

presenting knowledge, support for evaluation process etc. Table 3.2 shows ADDSS

covers more features as compared to other tools. Table 3.2 also shows there are few

features which other tools are covering and doesn't support by ADDSS.

5. Useful for software product families:

ADDSS is not useful for software product families as there is not any thing mentioned

in the paper about the usage of this tool for software product families. This attribute

has been checked from the research papers[8,9] and web sites[36] .
6. Support of Value-based software engineering principles:

ADDSS doesn't support the VBSE [26] concept as tool is not capturing design

decisions information according to user's choice. Although ADDSS provides a

flexible approach of mandatory and optional attributes for characterizing design

decisions information but they are fixed by the researcher's and users don't have the

choice to mark fields as required, useful according to their choices. One cannot mark

the mandatory field as optional or optional field to mandatory. This attribute has been

evaluated with the help of research papers [8,9].

7. Useful in evolution and maintenance activities:

ADDSS supports modeling and documenting the evolution of ADD. This attribute

have been checked from the research papers [8,9].

Value-BasedSofhvare Architecture Knowledge Management 37

Chapter 3 Literalure Survey and Evaluation of Tools

1) Retrieve architectural decision and their rationales. Allows for run-time addition of

additional design decisions.

2) Tool's compiler translates Archiurn code in a combination of Java and ArchJava code,

which is then transformed into Java byte code.

3) Also a component language, which extends Java for describing components,

connectors, and design decisions with tool support.

4) Provides visualization facilities for the decisions made using a dependency graph

5) Archium also captures consequences of an architectural decision.

6) Supports the tracing of requirements to architectural decisions and is able to check

which of these requirements are addressed in one or more decisions.

7) Checks implementation against architectural design decisions. Weaves architectural

decisions into architectural models and connects them to the implementation.

8) Check for consistency and for completeness. Check for superfluous architectural

decisions and circularity of set of decisions is also provided (not automatically).

9) Captures rationale in customizable rationale elements.

10) It decreases the effects of knowledge vaporization.

3.2.3.1 EVALUATING ARCHJUM

1. Usability:

ARCHIUM is not a user-friendly tool. Novice user cannot learn tool easily as it

doesn't provide user-interface. The tool is not usable because sometimes one doesn't

want to learn the coding language or to install the whole J2EE environment.

ARCHIUM integrates an architectural description language (ADL) with Java to

describe the elements from a component & connector view and making explicit the

design decisions and its rationale that lead to a particular architecture description[l7].

For novice user it is difficult to use this tool without having knowledge of Java

language. A lot of training is required for them to understand this tool. One need to

first setup java environment, its path etc. User without having knowledge of java

cannot access this tool. Novice user cannot set java path easily. This makes also

difficult for experienced users.

Although one can retrieve architectural decision and their rationales from Archium

but as there is no proper interface, it is difficult to remember the tool. As every time to

start the application one have to set path and have to go through from code. this

Value-BawdSofiurr Architecture Knowledge Management 39

Chapter 3 Literature Survey and Evaluarion of Tools

makes difficult to remember the tool if one is absent for a while. Archium provides a

visualization of an architectural decision but the way to view these decisions is

difficult which makes hard to remember the tool. Many errors have been found during

compilation and at run time. Run time addition of design decisions is a difficult task.

ARCHIUM is not a pleasant to use tool. The usability of ARCHIUM has been

checked and evaluated by personally using the tool.

2. Industrially used:

ARCHIUM tool has not being tested yet in an industrial setting. The opinion about

this attribute has been formed from the research paper [17] and tool's website [34].

3. Open Source:

ARCHIUM is not an open-source tool because tool's source code is not available.

This attribute has been validated by t?om the research paperr1 71 and website[34].

4. Coverage:

Table 3.2 that compares and contrast the features of each tool with one another can be

useful to evaluate Archium with this attribute. Tool captures architecture design

decisions and their rationales. Partially support for integrated representation of

architecture. Table 3.2 shows tool covers less number of features as compared to other

features.

5. Useful for sofhvare product families:

Tool is not useful for software product families as it is difficult to set path etc for

software product families as this tool is time consuming and require much effort. This

attribute has been checked from the research paper[l7] and web site[34] .
6. Support of Value-based sofhvare engineering principles:

ARCHIUM doesn't support the VBSE concept as we are not capturing design

decisions information according to user's choice. User's have no choice to capture

required design decisions information. All the design decision information has been

captured not focusing only on required set of information. From the research paper,

this attribute has been checked.

7. Useful in evolution and maintenance activities:

ARCHIUM is partially useful in evolution and maintenance activities. Design

decisions and their rationales are recorded in this tool at compile time which causes

difficult for the maintainers as all the maintainers are not familiar with the java

language. This attribute have been checked from the personal usage and research

paper [17].

Value-Based Sofhuare Architecture Knowledge Management 40

Chapter 3 Literature Survey and Evaluation of Tools

8. Integrated with other modeling tools:

Tool is not integrated with other modeling tools. This attribute has been checked from

research paper [17] and personal usage.

9. Accessible for geographically distributed stakeholders:

Tool doesn't support this feature. As this tool is not a web-based tool this makes

difficult for geographically distributed stakeholders to access the tool. From the

research paper[l7], this attribute have been validated.

10. Performance:

ARCHIUM is not good performance-wise as it doesn't provide proper interface. To

perform any task one need to compile and run the code which takes a lot of time. To

save information it takes 4-5 minutes. Similarly retrieving data is also a difficult task.

Whenever we send command, system responses in 1-2 minutes. Every time to start

the application the compiler translates Archium code in a combination of Java and

Archlava code, which is then transformed into Java byte code. Compiling and running

the code takes a lot of time to start the application. The performance of ARCHIUM

has been measured by personally using the studied tool

11. Security:

Tool doesn't support the security attribute. No security feature is added in this tool

like username etc. The opinion about this attribute has been formed from the research

paper[l7] and tool's website[34].

3.2.4 KNOWLEDGE ARCHITECT WORD PLUGIN

It is the part of Griffin project [33]. Griffin project consists of methods, tools, and

techniques to manage architectural knowledge. It is a software architecture project

memory to manage know-why and know-how. Knowledge Architect Word [32] is a tool

to capture Architectural knowledge. This tool allows architects to make their

Architectural Knowledge (AK) explicit in architecture documents written in Microsoft

Word. Installing the Knowledge Architect Word Client creates a button bar in Microsoft

Word. Tool connects to a server before you can use the other features of the client.

Some of the features of this tool [32] are:

1) It is a .Net tool and easy to use tool.

Value-BasedSofmare Architecture Knowledge Management 41

Chapter 3 Literature Survey and ~aruarrurr uj 1 w...

2) This Plug-in covers the following attributes of Architectural knowledge: Knowledge

Entity, Concern, Requirement, Risk, Decision Topic, Alternative, Decision, Quick

Decision, Specification.

3) Knowledge Entity Form in this plug-in allows users to give name of knowledge entity

and the Knowledge Entity type can be selected.

4) The user can specify a custom status, or select one that is predefined. User can add

notes to a Knowledge Entity.

5) Allows creating Knowledge Entity table. Specified tables can be generated by

specifying what Knowledge Entity types should be shown and what connections to

show.

6) Tool shows summaries of all Annotations and their connections. Can export the

Annotations to an XML file or import all Annotations into the backend.

7) Allows customizing the default colors for knowledge entities. You can specify both

font color as well as the background color.

8) Provides different context menus depending on what user selects,

a. Plain text selection ,Single Annotation ,Overlapping Annotations ,Annotation

with Completeness Coloring.

9) Shows multiple errors if occur. Different error level is shown by colored flags, with

higher level errors on top in the list.

10)Provides the facility of Completeness Check. Completeness is based on a number of

tests.

3.2.4.1 EVALUATING KNOWLEDGE ARCHITECT WORD PLUG-IN

1. Usability:

Knowledge Architect Word is a user friendly tool. One can easily learn the tool as it

allows architects to make their Architectural Knowledge (AK) explicit in architecture

documents written in Microsoft Word. Novice users can easily work in Microsoft

word document so they can easily complete their basic task with this tool with

minimum training. Little training is required as there are certain terms which the tool

is using from which a common user is not familiar.

Knowledge Architect Word is integrated within Microsoft word so this does not

provide separate interface. Tool provides screen within the word document so

Value-Based Sofhvare Architecture Knowledge Management 42

Chapter 3 Literature Survey and Evaluation of Tools

experience users can produce their work but with little effort and it take some time

first to understand this tool. As tool documents the relevant architecture knowledge

within word document, so the tool is easy to remember as the previous documented

AK is saved and retrieved easily. Users can return to it after an absence and complete

tasks without retraining. Error occurs when the Word plug-in cannot find the web

services on the server. With this one cannot able to run the tool. Due to above error

and training required, this tool is partially pleasant to use. The usability of tool has

been checked and evaluated by personally using the tool.

2. Industrially used:

Tool is partially industrially used as its developers are currently applying this tool on

industrial case studies. It is partially industrially used as case studies from industry are

applying on it. The opinion about this attribute has been formed from the tool's

website and the tool's developers [32].

3. Open Source:

Tool is not an open-source tool because tool's source code is not available. This

attribute has been validated by from the website[32].

4. Coverage:

Table 3.2 that compares and contrast the features of each tool with one another can be

useful to evaluate tool with this attribute. Tool captures architecture design decisions.

It partially covers the architectural knowledge attributes. Table 3.2 shows tool covers

less number of features as compared to other features.

5. Useful for software product families:

Tool is not useful for software product families as this is installed in MS Word and it

might be difficult to use MS Word document to capture AK for software product

families. This attribute has been checked from website [32] and other documentation

of this tool.

6. Support of Value-based software engineering principles:

Tool doesn't support the VBSE concept as we are not capturing design decisions

information according to user's choice. User's have no choice to capture required

design decisions information. All the design decision information has been captured

not focusing only on required set of information. This attribute has been validated by

personally using the tool.

Value-BasedSoJWare Archrlec~ure Knowledge hfanagement 43

Chapter 3 Literature Survey and Evaluation of Tools

7. Useful in evolution and maintenance activities:

Tool is partially useful for maintenance and evolution activities as tool is integrated

within the word document so to make changes within an already developed tool

sometimes create problem. This attribute has been checked by personally using the

tool.

8. Integrated with other modeling tools:

Tool is integrated with Microsoft word. This attribute has been validated from tool's

website [32] and personal usage.

9. Accessible for geographically distributed stakeholders:

Tool doesn't support this feature as tool is integrated within the word document and it

might be possible as all the stakeholders have not the latest document. Moreover, tool

is not a web-based tool which creates problems for geographically distributed

stakeholders. From the personal usage and tool's website[32], this attribute have been

validated for the tool.

10. Performance:

Performance wise it is partially good as it works in a document some times it is

difficult to look into document. Moreover, tool is using certain terms which are not

familiar to novice user. User takes time to complete the basic task. As the tool is

integrated into Microsoft word, it takes 1-3 minutes to store information on a given

set of data. However, the response time of a system for retrieving data is very good

and i.e. 1-2 seconds. Tool provides a user friendly interface, so it takes few seconds to

start the tool. The performance of tool has been measured by personally using the

studied tool.

11. Security:

Tool doesn't support this feature. No security feature is added in this tool like

usemarne etc. This attribute has been checked by personally using this tool.

3.2.5 AREL (Architecture Rationale and Element Linkage)

AREL Tool set [35,46] is a tool set comprises of three components, Enterprise Architect,

Netica, and custom-built AREL Tool. This tool set enables the capture of architecture

design and its design rationale. It provides an approach named as AREL. AREL approach

is a model which relates decisions, architecture products and design rationale. It

implements a conceptual model to relate ADD, architectures and the rationale of the

Value-Based Sofiware Architecture Knowledge Management 44

Chapter 3 Literature Survey and Evaluation of Tools

decisions. First, the Enterprise Architect tool is used to construct the AREL models and to

capture design rationale by using extended UML profiles. Secondly, the complementary

approach eAREL supports decision evolution and their tracing by means of versioning

links. It supports backward and forward tracing through history. Each decision

encapsulates its rationale, but there is only one link type, i.e. "depends-on", defined in

this method.

Some of the features [35,46] are:

1) By using extended UML profiles one can capture architecture design rationale and

architecture design.

2) Integrates a commercially available BBN tool to reason about the architecture design.

3) Improves the representation of design rationale for architecture development.

4) Improves and estimate change impact analysis.

5) Support consistency checking of the AREL models and AREL model tracing.

6) Captures qualitative rationale, quantitative rationale and alternative architecture

rationale. Captures Requirements, Assumptions, Constraints, Design Objects.

7) Enables architects to have a better understanding of the problem, the associated costs

and complexity of the design before committing to development.

8) Facilitates verification by peer review and stakeholders review.

9) By using the stereotype extension in Enterprise Architect, provides a convenient way

to input design rationale using the design rationale capture templates.

10)Displays a screen to show any errors or warnings. A detailed error report is also

produced.

3.2.5.1 EVALUATING AREL TOOL SET:

1. Usability:

It is not a user friendly tool. No proper user interface available for capturing design

rationales. Three different tools are comprises here, difficult to use for a common

user. Certain errors found like AREL operations cannot be tightly integrated with

Enterprise Architect. For instance, the AFGL operations cannot be directly activated

from the Enterprise Architect menu options to fully integrate AREL functionalities

into Enterprise Architect. Second, we have no access to the source code of either

Enterprise Architect or Netica, therefore there cannot be a seamless integration where

Value-Based Sofhvare Architecture Knowledge Managemenl 45

Chapter 3 Literature Survey and Evaluation of Tools

not focusing only on required set of information. This attribute has been checked &om

the documentation [35] of the tool.

7. Useful in evolution and maintenance activities:

AREL tool-set is partially useful for maintenance and evolution activities. Tool-set

compromises three different tools and it is difficult sometimes for the maintainers to

use the tool-set as they found hard to work on three different tools. This attribute has

been checked from the tool's documentation [35].

8. Integrated with other modeling tools:

Tool is integrated with Enterprise architect and Netica. The tool-set itself also requires

better integration between UML modeling and BBN computation. This attribute has

been checked from documentation [35] and personal usage.

9. Accessible for geographically distributed stakeholders:

Tool doesn't support this feature. AREL Tool-set compromises three different tools

and it is difficult to access geographically by different stakeholders. From the

documentation [35], this attribute has been validate for the tool

10. Performance:

Performance wise it is not good a s we have to first capture rationale by designing it in

enterprise architect which consumes a lot of time to complete the basic task. For a

given set of information tool takes 10-15 minutes to capture design rationale.

Similarly for retrieving the information, system responses in 4-5 minutes. No proper

user interface available for capturing design rationales. AREL operations cannot be

tightly integrated with Enterprise Architect i.e. the AREL operations cannot be

directly activated from the Enterprise Architect menu options to fully integrate AREL

functionalities into Enterprise Architect. As there are three different tools are

comprises here, difficult to use for a common user. Tool takes a lot of time to run this

tool-set. The performance of tool has been measured by personally using the studied

tool.

11. Security:

Security attribute has not being supported by AREL tool-set. No security feature is

added in this tool like usemame etc. This attribute has been checked by personally

using the tool.

Chapter 3 Literature Survey and Evaluation of Tools

Table 3.1 shows the evaluation criteria for the existing tools in summary form. For

evaluating tools, ratings are defined. J shows that the attribute is fully supported by the

tool, a shows that the tool partially supports that attribute and X shows the tool doesn't

support that attribute.

Table 3.1 Evaluation Criteria for tools

*Ratings: J: Fully supported, a: Partially supported, X: Unsupported

Attributes

1. Usability

2. Industriallv used

3. Ooen Source

1. Coverage* *
4- Architectural
Knowledge

Integrated
representation of
the software
architecture
Architecture
design decisions
Rationales
underlying the
design decision
External context1
environment

: Features

5 . Useful for software
product families

. Support of value-based
s o h a r e engineering
principles

7. Useful in evolution and
maintenance activities

J I J

PAKME ADDSS AREL ARCHUIM

Value-BasedSofrware Architecture Knowledge Management 48

KNOWLEDGE

WORD

.J.upLCI _I Literature Survey and Evaluation of Tools

7

8. Not Integrated with
other modeling tools

9. Accessible for
geographically
distributed stakeholders

**Coverage attributes shows the coverage of architectural knowledge attributes as well

as other features each tool possess. Features attribute and architectural knowledge

attributes are evaluated on the basis of table 3.2 which compares and contrasts the

features of each tool with other. In this way we can easilyfmd which tool covers more

features then others.

J

10. Performance

1 1. Security

The following table shows the comparison and contrast between the features of each tool.

J

Features have been divided into groups. For these features, ratings are defined. J shows

that the feature is fully supported by the tool, l shows that the tool partially supports that

feature and X shows the tool doesn't support that feature.

J

X

Table 3.2 Compares and Contrast the features of each tool

J

*Ratings: J : Fully supported, 0: Partially supported, X: Unsupported

J

J

J

and documentation of

X

Value-BasedSofmare Architecture Knowledge Management 49

X

X

X

X

X X

0

X

X

X

Chapter 3 Literarure Survey and Evaluation of Tools

architectural design decisions

Captures rationales for design
decisions.

Captures Technical Information
(Patterns, Styles, Tactics,
Analysis models & Scenarios)

Support and store design
decisions as first class entities
under an iterative approach

Group 2: Supports
architectural knowledge reuse

Reusing architectural
knowledge

Reuse AK through different
projects

Possible to reconstruct
architecture

Group 3: Improves the
efficiency of software
architecting process

Support for the software
architecture process

Improves architecture-based
software devcloprnent.

Decrease the effect of
knowledge vaporization.

Lmproves the representation of
design rationale for architecture
development

Improves and estimate change
impact analysis

Effective communication of
jesign rationale

Zornplexity control

Highlight design complexity
2efore implementation

Group 4: Knowledge

Value-BasedSoflware Architecture Knowledge Management 50

Chapter 3 Literature Survey and Evaluation of Tools

acquisition service

User Interface

Users can upload
figuredimages

Templates to capture, manage,
store and present architectural
knowledge

Capture architecture design
rationale and architecture
design by using extended UML
profiles

Add Knowledge Entity,
Context

Create Knowledge Entity table

Group 5: Knowledge
maintenance sewice

--

Knowledge management

Repository Management

Allows the storage of several
projects and architectures

Group 6: Knowledge retrieval
service

Search

Design Decisions easily
replayed

Group 7: Knowledge
presentation service/
Reporting

Generates automatically PDF
documents/ Web based report
for describing decisions,
architectural products etc

Presents knowledge using
representation mechanisms like
utility, results, decision trees or
network

Visual representation (explicit

Value-Based Sofhvare Archifecture Knowledge Management 5 1

Chapter 3 Literature Survey and Evaluation of Tools

graphical notation)

Design decisions
visualized

Shows annotations lists and
Context Menu

Establish dependencies and
constraints between decisions.

Colors for knowledge entities

Group 8: Support for
different stakeholders

Different categories of users &
permissions I m I J I I I X
Multi-perspective support for
different stakeholders

J

x

J

I I

J

Group 9: Support for
Patterns & Styles

J

x

J

AK captured from Human
Sources and patterns

J

J

Add or remove well-known
design patterns and
architectural styles to the
database

Implementation of decision / / I I
view I X

X

.

Group 10: Support for
different architectural views

X

X

J

J

Useful for evolution
maintenance activities I

J

X

X

.
Group 11: Support for
architecture evaluation
process

Modeling and documenting the
evolution of ADD

x

X

X

X

J

X

X

J

J

X

X

X

I I I I I

Value-BasedSofhvare Architecture Knowled~e Mananentent 52

X

X l X
X

J

Group 12: Supports
traceability

x

X

J

J

X

!

Categorizes as risk or nonrisks. x J

J

x

J J J

Chapter 3 Literature Survey and Evaluation of Tools

Several types of relationships
among ADD can be handled I J I d I I x I
Improves traceability between
requirements, architecture and
implementation

 upp port for aIternatives / J I J I 1 decisions

J

Validate the set of ADD against
the requirements

Group 13:Support for
alternative decisions and
requirements

Support for design and analysis
methods I J I X I I 1 . 1

J

J

J

Support for functional and non-
functional requirements

Group 14:Support methods
and processes

Supports Decision making I I J I J I
activity I J I

J

J

.'

J

Relates decisions, architecture
products and design rationale I J I J I I I J I

J

Support design reasoning
process

Binds architecture decisions,
models and system
implementation.

J

J

J

0

X

X

Represents design rationale,
design objects and their
relationships

J

a

J

a

Check for superfluous
obsolete decisions I I .' I I X I

J

a

X

x

a

a

I I I I

Check for consistency

J

X

Value-Based Sofhvare Architecture Knowledge Management 53

J

J

X

J

4 a

X

Check for completeness

Get consequences of an ADD

l a Group 15: General Checks

X

x

a

x
x

X

x

J

x

J

X

x

J

x

J

J

x

J

x
X

x

~ n a p f e r 3 Literature Survey and Evaluation of Tools

Shows multiple errors

3.3 Limitations

Support consistency checking
of the AREL models and to
support AREL model tracing

To sum up the above study, certain limitations have been found from the above

mentioned tools. There are some features which one tool is covering but the other tool is

not covering those features. By evaluating each tool as discussed in section 3.2 on the

basis of different attributes, the major limitations and drawbacks of each tool have been

found. Table 3.1 clearly shows which tool has some limitations or drawbacks. Moreover

I I I

X

by comparing and contrasting features of each tool with one another a s discussed in Table

3.2, certain limitations have been found. Research papers, technical reports and other

documentation of each tool have also been very useful for listing down the limitations of

each tool. Every tool has some limitations some of which are mentioned below:

v

X

3.3.1 PAKME Limitations

w

Although PAKME covers a lot of features but still certain limitations have been found.

Some of these [21,23,48] are:

1) No support of Value-Based software engineering principles.

2) PAKME's templates should be configurable based on organizational needs.

Templates need to be configurable by users based on their needs.

3) Duplication of workload of requirements.

4) Does not supports diagrammatic modeling of design decisions rather its focus is on

providing a handbook of architecture knowledge.

X

5) Should be integrated with their requirements management tool, if it is to be widely

used within large environment.

6) PAKME needs to be designed to be heavily customized at deployment time.

7) Does not enable to store and document design decisions as first class entities under an

iterative approach like ADDSS tool.

8) Not useful for software product families.

J

Value-BasedSofmare Architecture Knowledge Management 54

X

J

X J

Chapter 3 Literature Survey and Evaluation of Tools

9) PAKME doesn't provide any security features. Need to improve the speed and

accuracy of knowledge retrieval.

10)Does not check implementation against architectural decisions. Does not get

consequences of an architectural decision.

11) Does not check for consistency, completeness and for superfluous decisions.

12)Does not differentiate the functional requirements and non functional requirements.

Quality Attributes should be captured.

3.3.2 ADDSS Limitations

ADDSS tool is quite stable tool as compared to other four tools. This covers a lot of

features which other tool doesn't cover but there are still some limitations in this tool

which are as follows [8,9]:

1) ADDSS is a research prototype; this tool should be tested in an industrial setting.

2) No support of Value based software engineering in this tool.

3) Tool should allow the connection to other existing analysis and design tools in

order to import/export requirements and architectures.

4) No proper templates to capture, manage, and present architectural knowledge like

PAKME tool, it only contains web-forms.

5) Does not differentiate the functional requirements and non functional

requirements. Quality Attributes should be captured.

6) No catalogue of architecture and design tactics.

7) Does not capture and present scenarios (general and concrete).

8) Does not support for design and analysis methods

9) Does not categorize risk and non risks

10)Does not check implementation against architectural decisions. Does not get

consequences of an architectural decision

11) Does not check for consistency and for completeness.

12)Not useful for software product families.

3.3.3 Archium Limitations

Archium tool doesn't cover certain features which ADDSS and PAKME covers. So these

are the limitations in that tool [17].

Value-Based Software Architecture Knowledge Management 55

Chapter 3 Literature Survey and Evaluation ofTools

1) The Archiurn tool has not been tested yet in an industrial setting, so empirical

verification data is not yet available.

2) No support of value based software engineering in this tool.

3) No proper templates to capture, manage, and present architectural knowledge like

PAKME tool.

4) No catalogue of architecture and design tactics.

5) Does not capture and present scenarios (general and concrete).

6) Does not store architectural documents.

7) Does not support for design and analysis methods.

8) Does not support for standards such as IEEE 1471-2000 as PAKME.

9) Does not categorize risk and non risks.

10)Not useful for software product families.

11)Not a user-friendly tool as user interface has not provided. Difficult to understand

tool as it is in Java and common user does not know how to set environment for

the tool.

12) Does not provide any security features. Performance wise not good.

13) Does not provide multi-perspective support for different stakeholders.

14)Does not differentiate the functional requirements and non functional

requirements. Quality Attributes should be captured.

3.3.4 Knowledge Architect Word Limitations

Knowledge word architect has certain linlitations which are as follows [33]:

1) No support of Value Based Software Engineering in this tool.

2) No proper templates to capture, manage, and present architectural knowledge like

PAKME tool, it captures AK in word document.

3) Does not enable to store and document design decisions as first class entities

under an iterative approach.

4) Does not support diagrammatic modeling of design decisions.

5) No catalogue of architecture and design tactics.

6) Does not capture and present scenarios (general and concrete).

7) Does not support for design and analysis methods.

8) Does not store architectural documents.

9) Does not categorize risk and non risks.

Value-BasedSofhvare Architecture Knowledge Management cc

Chapter 3 Liferarure Survey and Evaluation of Tools
-

10)Does not check implementation against architectural decisions. Does not get

consequences of an architectural decision.

11) Does not check for consistency and for superfluous decisions.

12)Not useful for software product families.

13)Does not provide any security features and performance wise not good. Need to

improve the speed and accuracy of knowledge retrieval.

14)Does not differentiate the functional requirements and non functional

requirements.

3.3.5 AREL Limitations

Literature review of above mentioned tools show that AREL tool has a lot of limitations

as compared to other tools. Some of these are [35,46]:

1) AREL operations cannot be tightly integrated with Enterprise Architect. For

instance, the AREL operations cannot be directly activated from the Enterprise

Architect menu options to fully integrate AREL functionalities into Enterprise

Architect.

2) The AREL tool-set is a proof-of-concept and it is immature for real-life

applications. This is because a number of usability features must be implemented

if it is to be widely used in a commercial setting.

3) No support of value based software engineering in this tool.

4) No proper templates to capture, manage, and present architectural knowledge like

PAKME tool.

5) Does not support properly the creation, capturing, use, maintenance, and

documentation of architectural design decisions. Does not enable to store design

decisions as first class entities under an iterative approach.

6) No catalogue of architecture and design tactics.

7) Does not capture and present scenarios (general and concrete).

8) Does not store architectural documents.

9) Does not support for design and analysis methods.

10)Does not check implementation against architectural decisions. Does not get

consequences of an architectural decision.

11) Does not check for consistency and for superfluous decisions.

12)Not useful for software product families.

Value-BasedSofiare Architecture Knowledge Management 57

chapter 3 Literature Survey and Evaluation of Tools

13)Does not differentiate the functional requirements and non functional

requirements.

14) Does not provide any security features and performance-wise not good. Need to

improve the speed and accuracy of knowledge retrieval.

Value-Based Software Architechrre Knowledge Management c o

CHAPTER 4

VALUE-BASED SOFTWARE ARCHITECTURE
KNOWLEDGE MANAGEMENT TOOL

Chapter 4 Value-BaredSofhvare Architecture Knowledge Management Tool

4. VALUE-BASED SOFTWARE
ARCHITECTURE KNOWLEDGE
MANAGEMENT TOOL

Architecture Knowledge Management [21] is very important for improving an

organization's architectural capabilities Value-Based Software Architecture Knowledge

Management is an emerging trend in software architecture community. By managing

architectural knowledge in a value-based manner is one of the most valuable steps for

advancing the software architecture state of the art by preventing its high costs of change

and diminishes the effort and time required [28,29]. This diminished effort has the effect

of mitigating the overhead. Value-Based approach takes into account value considerations

of stakeholders and only documents the information required by stakeholders. Different

techniques have been studied and analyzed for managing, sharing and storing

architectural knowledge in Chapter 2. As a result of techniques survey, a Value-Based

approach for Documenting Design Decisions Rationale (VB-DDRD)[27,28,29] has been

found as a useful technique as it focuses on documenting only the set of required

information based on its purpose. Moreover, existing tools for managing and sharing

Architectural Knowledge have been studied and evaluated in Chapter 3.These tools are

evaluated on the basis of certain attributes. It has been found that none of the surveyed

tools supports Value-Based Software Engineering concepts. Therefore, an open source

tool was selected and has been used to develop a Value-Based Software Architecture

Knowledge Management tool. The selected tool is Architecture Design Decision Support

System (ADDSS)[8,9], which covers additional features relative to other tools as studied

during survey. Certain other limitations have been found during the survey and evaluation

of tools as discussed in chapter 3. Special features have been added to overcome these

limitations.

This chapter involves the contribution of this thesis i.e. application of Value-Based

Software Engineering principles [26] into ADDSS [8,9] tool along with the

implementation of certain features which are missing from the tool. This chapter also

describes the evaluation of Value-Based Software Architecture Knowledge Management

tool i.e. the modified tool on the basis of different attributes. Certain features have been

Value-Bared Sofhvare Architecture Knowledge Management co

Chapter 4 Value-Based Sofiare Archilecture Knowledge Management Tool

added in this tool which is listed down below along with their benefits of adding in the

tool.

4.1 Features

These features are listed down one by one:

4.1.1 Support of Value-Based Software Engineering Principles

Because architectures have high costs for change and may erode during the evolution of

the system [ll], architectural design decisions should be captured and documented to

avoid knowledge vaporization. Hence, in order to prevent the erosion of software design

and knowledge vaporization, we need to capture these decisions and their underlying

reasons that led to any particular architecture. As Architectural Knowledge consists of

architectural design as well as design decisions, and their underlying reasons that led to

any particular architecture. So this means we need to manage and store architectural

knowledge.

There are different ways to manage and store architecture knowledge. Different studies

show the importance of documenting and managing design decisions along with their

rationales [4,7,52]. Recently, various researchers [8,9,23,27] have proposed different

tools and techniques to capture architectural knowledge. However the applicability of

this work for managing AK in software engineering activities can be inhibited by certain

factors [27,28, 291. One of the main inhibitor for recording design decision and its

rationales is that it takes a lot of time to record all the information about design decisions

and its rationales. Nowadays during development or when the deadline is near no one has

the time to enter all the information about architecture knowledge. That's why design

decisions and their rationales are usually not properly documented. Following are the

inhibitors for recording all the information about design decisions also mentioned in [27,

28,291 are:

1. Critical timing: The period in which design decisions are taken is usually critical for

the success of the software project. The project deadline or project pressure is one of

the main reasons for not documenting this design decisions and its rationale.

Value-BmedSafhvare Architecture Knowledge Mana~ement 60

Chapter 4 Value-Based Sofmare Architecture Knowledge Management Tool

10.Potential inconsistencies: Architectural knowledge documentation implicitly

represents the results of the design. If Architectural Knowledge documentation are not

well updated, potential inconsistencies in case of decision changes might occur.

These and other inhibitors may hamper capturing, using, and documenting the design

decisions and its rationa1e.A lot of architectural knowledge is there and we have to

document and maintain all the architectural knowledge.But the benefit of managing all

architectural knowledge is not clear. It is not clear what information is required to save

that will benefit whom. If benefits are not understandable whilst one has to manage all the

architectural knowledge, the already defined inhibitors like critical timing, time and effort

required and overhead will have an impact. It will take more time and effort which also

increases the overhead in order to manage AK. From this it is concluded that not all the

information is needed all the time as different people need different information. So there

is a need to decide what information is required to save that will benefit whom. For this

we have applied Value-Based Software Engineering principles on an architecturL

knowledge management activity in order to mitigate the effect of above-mentioned

inhibitors which also helps to get to know the benefit of managing AK. The idea has been

taken from Boehm's work [26], who proposed a Value-Based Software Engineering

(VBSE) agenda and from Davide Falessi's work [27,28,29] who used Boehm's idea for

documenting design decisions rationale i.e. used a Value-Based approach to DDRD (VB

DDRD).

This thesis applies the principles of Value-Based Software Engineering (VBSE) into an

open-source tool; Architecture Design Decision Support System (ADDSS)[8,9] which

was available at [36].Basically here architectural knowledge documentation has been

tailored. The adoption of tailored architectural knowledge documentation, consisting only

of the required set of information, would mitigate the effects of above mentioned

inhibitors. ADDSS and other studied tools don't support the concept of value based

software engineering. This is the main feature which is incorporated in ADDSS.

The basic idea of this approach is that all the information included in a documenting

design decisions might be useful but sometimes some information are mere optional. The

idea to prioritize attributes for the AK is similar to the use of mandatory and optional

attributes for design decisions as in ADDSS [9]; it differs in the fact that the proposed

Value-Based Sofmare Architecture Knowledge Management 62

Chapter 4 Value-Based Sofiare Architecture Knowledge Management Tool

Value-Based Software Architecture Knowledge Management tool is focused on the

choice of all the persons (beneficiary stakeholders) who are involved in specific project

and will have a choice to get only that type of information which they required. In

ADDSS mandatory and optional attributes are fixed, we cannot change any of the

mandatory attribute to optional and optional to mandatory attribute. The researchers of

ADDSS are making distinction between the mandatory and optional attributes by

themselves. However, in this work, all the related stakeholders have the choice for

selecting required set of design decisions information along with the architect. Besides

moving towards working and applicability of this concept into ADDSS; we first need to

understand the concept of value based software engineering.

Most software engineering activities are practiced in a value neutral approach in which

every fault, user requirement, test case, use case, risk etc. is treated equally [26]. The

Standish Group CHAOS report [40] describes that value-oriented shortfalls like lack of

user input, changing requirements, lack of resources and unrealistic time frames etc, are

the common causes of most software project failures. A value-based software engineering

(VBSE) agenda has emerged. The focus is to integrate value considerations into current

and emerging software engineering principles and practices e.g. value-based requirements

engineering, architecting & design etc, and to develop an overall framework in which

they compatibly reinforce each other [26].

Basically, value based software engineering is an extension in traditional software

engineering, as it tries to introduce value considerations into previously defined software

engineering concepts and practices.In traditional software engineering (SE) the whole

development process focuses mainly on successful development of the final product with

lesser attention to the fulfillment of the values of stakeholders.On the otherhandjn VBSE

the focus is taken(or atleast tried to be taken) beyond just the development of the software

product.Here the main focus is on the value that the software has added/will be adding to

the system.The traditional software engineering approach considers only the

production/development whereas value-based approach also considers the system in

which that software will be implemented. In this present work, a Value-Based approach

has been proposed to Architecture Design Decision Support System[8,9], which focuses

Value-Bared Sofhare Architecture Knowledge Management 63

Chapter 4 Value-Bused Sofnvare Architecture Knowledge Management Tool

on documenting only the set of required information based on the choice of different

stakeholders.

4.1.1.2 APPLYING VALUE-BASED SOF~VARE ENGINEERING TO ADDSS TOOL

This section discusses how the Value-Based Software Engineering principles are applied

on ADDSS. A process has been developed to manage architectural knowledge named as

Value-Based Software Architecture Knowledge Management (VB-SAKM). Five steps

are involved in the process which are as follows:

i. Identify success critical stakeholders.
. .
11. Elicit stakeholder preferences.
. . .
111. Prioritize stakeholder preferences.

iv. Record design decisions information.

V. View of recorded design decisions information.

Process detail along with the working of tool is discussed as follows:

i. Identify success critical stakeholders

There are different stakeholders who are associated with each project. In s o h a r e

domain, stakeholder can be anyone who can affect or get affected by the system in any

means (financially, personally etc). Basically, stakeholder is a general term that represents

everyone having a stake in system e.g., developer, project manager, consumer or

customer etc. For the successful completion of any project, it is important to bring-in all

the Success-Critical stakeholders (SCSs).Moreover, every stakeholder doesn't need to

store or use all the design decisions information. Therefore, it is important first to identify

the success-critical stakeholders (SCSs) i.e. Who will get profit (beneficiary stakeholders)

[27,28,29]. So the first step of this process is to identify success-critical stakeholders

(SCSs). Architect can only identify the SCSs. Input of first step is a list of stakeholders

involved in a specific project and the output is a list of the identified success-critical

stakeholders. Value-based approach is aimed at making SCSs the winners and to ensure

stakeholder satisfaction besides just focusing the successful product development [26,49].

To identify success-critical stakeholders (SCSs), tool is not concern about the technique

the architect adopts. The modified tool is independent of any technique for identifying

success critical stakeholders. However, architect can identify success-critical stakeholders

by the Dependency theory as mentioned by Boehrn [49].A key technique is the Results

Value-Based S o f ~ u r e Architecture Knowledge Management M

Chupter 4 Value-Based Sofiare Architecture Knowledge Managemen! Tool

Chain [50]. The Results Chain is a valuable framework by which software project

members can work with their clients to identify additional non-sohare initiatives that

may be needed to realize the potential benefits enabled by the software/IT system

initiative. These may also identify some additional success-critical stakeholders who need

to be represented and "bought into" the shared vision. Success-critical stakeholders have

goals. Results chain is used to see what software and other initiative are required to fulfill

goals of SCSs. But it is not necessary to identify success-critical stakeholders with the

above mentioned technique, architect can identify with any other technique as well.

Figure 4.1 shows how success-critical stakeholders are identified in this tool. The tool

opens a form that contains the privileges of each stakeholder along with their category.

By checking the Critical Stakeholder option in front of any user, we can identify a

stakeholder as success-critical stakeholder.

- .- . . . -- a-~- p- =-

a- ykd-
Figure 4.1: Identifying success critical stakeholders

ii. Elicit stakeholder preferences

The second step of VB-SAKM process involves the elicitation of stakeholder preferences.

The identified success-critical stakeholders' gives preferences by providing value to each

design decision attributes. According to the 'Theory of Value (economics)' [53,54],

"value is meant as economic worth of gooh and services'' and it mes to explain the

Value-BasedSojiware Architecture Knowledge Management LC

Chapter 4 Value-BasedSoftwoe Architecture Knowledge Management Tool

worth of goods and services provided by some entity from different angles.This theory

suggests that the value of some entity can be seen in different perspectives[54]. For

example, it can be seen from intrinsic, subjective or objective angle. In this step, we are

following Boehm's idea [26] for eliciting stakeholder preferences as the value of each

design decision attribute purely depends on the stakeholders' perception and their

choices.

Basically here the stakeholder preferences are elicitcd in the form of rating of each design

decision attribute by giving score to each attribute. The input of second stcp is a list of

identified succcss-critical stakeholders and output is stakeholders preferences for each

design decision attributes. Stakeholder proposition value plays an important role for

selecting required set of information.

For selecting only required set of information, the tool provides the facility to rate the

design decision attributes a s shown in Figure 4.2. The identified success-critical

stakeholders can rate each design decision attribute by scoring each attribute fiom the

scale 0-5.Five is the highest while zero is the lowest score. They can rate the attributes

whatever information they think useful for them. SCSs can leave any field if he doesn't

want to score that attribute, zero will be the default value for them.

Value-BasedSufmare Archirecrure Knowledge Mana@ment 66

Chapter 4 Value-Based Sofiare Architecture Knowledge Managenrent Tool

A design decision (DD) has many attributes like rationale, alternatives etc.The attributes

for design decision has been taken from different sources. The main focus is on the

attribute which are used in [27,28,29]. Moreover some of the attribute has been

considered which ADDSS tool has already been taken whilst others have been taken by

reviewing all the other tools as studied above. These studied tools are considering these

attributes for recording architecture knowledge. There are 29 attributes which tool is

using. These attributes are dynamically added so one can add any attribute or can remove

any of attribute from the list. The list of attributes which are using in this tool is as

follows:

Table 4.1 List of Used Architectural Knowledge attributes

I 19. Design Decision Rationales I 20. Justification for the reasons
behind design decisions

Attribute Names

1. Decision Name

3. Pattern

5. Decision Date

7. Category

9. Related Requirements

1 1. Issues

13. Constraints

1 5. Argument

17. Related Artifacts

2. Type of Pattern

4. Responsible

6. Status

8. Description

10. Decision Dependent

12. Assumptions

14. Positions

16. Implications

18. Related Principles

21. Other alternatives considered
23. Argumentation that led to the

decision

-

22. Tradeoff evaluated

24. Notes

25. ProsICons

iii. Prioritize stakeholder preferences

~ - -

26. Alternative Decisions

I
The elicited stakeholder preferences are prioritized here. Architect can only prioritize

27. Views

design decision attributes into required, useful or optional on the basis of total of each

28. Tactics

score associated with each attribute collected from different success-critical stakeholders.

29. Consequences

Value-Based Sofiare Architecture Knowledge Management f.7

Chapter 4 Value-Based Sofhvare Architecture Knowledge Management Tool

For giving priority to required set of information, the following terms has been used as

described in [28,29]:

A. "Required information" refers to that kind of information without which the

meaning of something cannot be understood to the readers

B. "Useful information", is a kind of information that helps to a small or large extent

the readers to understand the meaning of something;

C. "Optional information" means information that is not required to understand

something, but it can be useful.

Architect has all the scores associated with each design decision attribute from all

success-critical stakeholders and total of each score associated with each attribute.

Architect finalizes the prioritization of the DD attributes based on two factors, the total

score associated with each attribute and the category of success-critical stakeholder. A

mechanical process can be just to focus on total score for each attribute and treat all

stakeholders equally important. But this can be unrealistic in a scenario where overall

total score is in lower range and some important SCS e.g. project manager gives high

score to an attribute. Architect is given discretion to prioritize the Attributes. In that case,

he can prioritize the attribute as useful, no matters other stakeholders don't give

preference to that attribute. Other stakeholders can neglect the useful attribute while

recording design decision, if they don't require that. However, if architect does not

prioritize that attribute as required or useful than it's an architect mistake. The input of

this step is stakeholders preferences for each design decision attributes and output is

prioritized stakeholders preferences for each design decision attributes.

The tool facilitates the process and the associated decision making by providing total

scores for each attribute and individual stakeholder scores for attributes as well. Figure

4.3 shows a form that displays stakeholder's name, attributes and score associated with

them, total of each score and priority choices in different colors. Architect has only the

privilege to prioritize design decision attributes. Identified success critical stakeholders

don't have the privileges to select design decision attributes. Architect must have to see

the total score of each attribute and the category of success-critical stakeholder while

prioritizing the design decision attributes. If there is no score provided for any attribute,

architect can mark the attribute on his own choice. If the total score is in higher level then

Value-BasedSofhare Architecture Knowledge Management XQ

Chapter 4 Vulue-Based Sofhume Architecture Knowledge Munugemem Tool

it should be mark as "required". If the total score is greater then lowest level but not come

under some higher level then it can be mark as useful.

prioritize Design Dedsion Atfributerl_Human Resource Inlormatian Svrtcm

Figure 4.3: Selecting design decisions attributes

iv. Recording design decisions information

Architect or Success-Critical stakeholder can store only the required set of information

after the design decision attributes have been prioritized, no need to store that information

which is not required at that time. The input is the prioritized design decision attributes

and output is stored required set of design decision information.

For recording design decision information a dynamic form is generated that contains only

those fields which are marked as required or useful by architect as shown in Figure 4.4.

'Optional' fields are not visible in the form. 'Required' fields should be entered other

wise the tool doesn't allow to save the information. For 'Useful' fields it is a user's

choice either to fill them or not. The tool has provided a proper template like PAKME

[23] to capture, manage and present architectural knowledge.

Value-Based Sofhvare Architecture Knowledge hfunugemem 69

Chapter 4 Value-Based Software Architecture Knowledge Management Tool

nairame tom hmruo
tallout

Insert a new decision: Human Resource Information System - Arch-HRIS - Iteration 1

-- - - B
3 ymalrb&

Figure 4.4: Recording of design decisions

v. View of recorded design decisions information

Architect or Success-Critical stakeholder has the choice to view any design decision

information which is already stored. The input of this step is the recorded design decision

information and output is view of recorded design decision information. User can choose

from the list of fields which are prioritized as required and useful. One can view the entire

field's information or can view any of them. Tool provides the choice of those fields as

shown below.

Value-Based Sofnuare Architecture Knowledge Management 70

Chapter 4 Value-BasedSoftware Architecture Knowledge Management Tool

Figure 4.5:Report criteria for design decisions

After selecting any field of user's choice, a dynamically report is generated which shows

the set of required information. Basically web based report is automatically generated for

describing decisions. The more fields the user selects, the more fields will be displayed

horizontally in the report. Figure 4.6 shows the report.

Figure 4.6: Design decision report

Value-BaredSofnare Architecture Knowledge Management 7 1

Chapfer 4 Value-Based Software Archilecfure Knowledge Manogemenf loo1

The above mentioned Value-Based Software Architecture Knowledge Management (VB-

SAKM) process shows how to make architecture knowledge Value based. Moreover, this

above discussion shows how the tool works by incorporating this process into the

ADDSS tool. In this way we are determining a priority, who will profit from what

information in which amount later on, in order to cope with the additional effort that has

to be spend on recording design decisions and its rationale.

4.1.1.3 BENEFITS OF APPLYING VALUE-BASED SOFTWARE ENGINEERING

Following are the benefits of applying this approach into ADDSS are:

1) Less Time: By recording only the required set of information for any architecture

saves a lot of time as related persons are also performing other activities. The

possibility to spend less time to produce the architecture knowledge documentation

highly increases the possibility that people, who are busy to meet their projects

deadlines, find enough time to develop such documentation.

2) Less Effort: By recording only the set of required information for any architecture,

implies less information to document and maintain; hence less effort is required.

3) Overhead: A tailored architectural knowledge implies less information to document

and maintain; hence, a diminished effort has the effect of mitigating the overhead.

4) Lack of motivation: The clear definition of who will profit from who allows the

existence of a role (performed by real person or virtually) in charge of controlling that

the specific producers provide, and the relate consumers use, the expected AK

documentation.

5) Delayed Benefit: By recording only the required and useful information for any

architecture according to the choice of different persons will not only help them for

that architecture or project but also helps them in future projects. This will also helps

building the organizational capabilities.

6) Helpful for other persons: By recording only the required and usehl information for

any architecture of some specific project can be helpful for the newcomers, who will

associate with the same project or with any other project

7) Potential inconsistencies: The tailored architecture knowledge implies less

information and hence less documentation. Less documentation implies both less

required effort for architecture knowledge maintenance and less probability of

Value-Based Soflare Archifecfure Knowledge Monagemenl 72

Chapter 4 Value-BasedSopvare ~rcnrrecrure nnuwrcugr i n u r r u ~ m r s r i r . uur

inconsistencies occurrence. In this way we can make knowledge capture cost-

effective.

8) Information unpredictability: As the fields have been chosen on the basis of score

given by different stakeholders so the producer can easily estimate what the consumer

wants.

9) Maturity: As the literature survey shows ADDSS has more features as compared to

other tools; this tool now covers VBSE principles so it is now quite mature and

valuable tool.

10)No conflict between stakeholders: As for choosing the design decision attributes,

right of choice is given to all critical stakeholders who are associated with that

project, so there is no chance of conflict between them.

11) Tells what type of architectural knowledge is useful: As we know this support tells

what type of architectural knowledge is required, useful or optional on the basis of

scores given by all the stakeholders i.e. we are marking attributes as required, useful

or optional. From this we get to know what type of architectural knowledge is useful.

4.1.2 Provide catalogue of architecture and design tactics

A set of templates have been designed to document different units of architecturally

significant information (i.e. general scenarios, quality anributes, tactics) as an artifact of

architecture knowledge. Figure 4.7 presents one of these templates. The template used to

capture architecture and design tactics.

Value-Based Sofnoare Architecture Knowledge Management 73

Chapter 4 Value-Based Software Architecture Knowledge Management Tool

Figure 4.7: Template for recording tactics

A catalogue of architecture and design tactics has been provided to users as shown in

Figure 4.8. Architect or stakeholders can select any tactic from the catalogue while

recording design decision information.

7 - - .
~ - ~

.. .~ ~ - -_i E
de. 9-ne

Figure 4.8: Catalogue of tactics

An architecture tactic is a transformation of the system from one state to other that affects

one of the parameters defined by quality attributes [I]. A large number of tactics have

been identified and catalogued in Bass et a1 [1,41]. The tactics are based on the quality

Value-BasedSofhvare Architecture Knowledge Management 74

Chapter 4 varue-ouseu ~ojnvurr nr~nrrrwvrr n n u w r r u ~ r ivrur.u6r,r8crl. uv.

attribute addressed. Annotating the architecture documents with architectural tactics used

while making architectural decisions helps to answer queries such as 1) did we use these

tactics before and what was the result?

1) Helpful in recording design decision information: It is helpful for the users to

select the related tactics while recording the design decision information from the

catalogue as sometimes users doesn't know about tactics name. Also it answers did

we use these tactics before and what was the result?

2) Time Saving: Selecting tactics from the catalogue saves a lot of time of each user as

he doesn't have time to enter tactics and their description.

3) Helpful for stakeholders: Different stakeholders who are not related to this field, this

catalogue helps them a lot as they can read and understand from this catalogue instead

of reading from the book.

4.1.3 Differentiates the functional requirements and non functional
requirements

Requirements play an important role for any architecture. Requirements are already taken

in this tool but they are not differentiating the requirements by type i.e. either these

requirements are functional or non-functional or business requirements. The existing form

has been modified and now the requirements are recorded according to the type as shown

in below Figure.

Value-BasedSof~are Architecture Knowledge Management 7 5

Chapter 4 Value-Bared Software Architecture Knowledge Managemen! loor

Taking requirements according to the type will be helpful while recording the design

decision information as quality attributes should be taken separately so that we must

know what quality attributes are affecting the design decision or have impact on them.

Quality requirements are the architecture drivers for any successful development of the

system. Also helpful while capturing scenario's as scenarios are used to characterize

required quality attributes. Requirements along with their types helps the related persons

understand the specific architecture.

4.1.4 Capture and present scenarios (general and concrete)

Figure 4.10 shows a form for capturing a general or concrete scenario, which can be

elicited from a stakeholder or extracted from a pattern. Each scenario can have several

attributes attached to it including scenario name, source type, quality attribute etc. Tool's

repository can contains hundreds of general or concrete scenarios.

Value-Bared Sofiare Architecture Knowledge Management 76

Chaprer 4 Value-Baseds~rware Architecture Knowledge Management loo1

I n s e r t New Scenario: Human Resource lnlormation S y t e r n - HRIS-ARCH

,SLen.llO *.ma

~ - ~ . . .

SO".<.

. ~~,

I - 1

Capturing scenarios helps the users to understand the requirements easily. These are an

artifact to architecture knowledge. Scenarios are helpful in characterizing required quality

attributes. The use of quality attribute scenarios is one of the core techniques for SEI's

methods to characterize stakeholders' concerns. Tool can providc several hundred general

scenarios, which can be concretized to specify quality attributes for a given system as

implemented in [23],

4.1.5 Captures principles

A template is designed to capture principles for each architecture. Figure 4.1 1 shows the

form that captures principles that guide decisions for an architecture. These principles are

enterprise principles (business or others). Tool displays a catalogue of principles that

creates a link between architecture design decisions and enterprise principles.

Value-Based SofWare Architecture Knowledge Management 77

Chapter 4 Value-BasedSofiware Architecture Knowledge Management Tool

I Inserf n e e principle:: Human Res~u~ce~l f io~rnat ion System - HRIS-ARCH

Principles are captured which helps recording the design decisions as these principles

helps guiding the design decisions i.e. it develops a link between the design decisions and

these principles. One can easily select related principles from the catalogue of principles

while recording design decision information.

4.1.6 Captures Artifacts

A template is designed to capture artifacts for architecture of a specific project. Figure

4.12 shows the form that captures artifacts that have an impact on architecture design

decisions. Tool displays a list of catalogue of artifacts.

Value-Bared Sofhare Architechire Knowledge Munagement 78

Chapter 4 Value-Baxed Soflware Architechire Knowledge Management Tool

-
0 - - O B @ 6 P - & - - - 0 B - 9 a 3 8 Z l . O ' s

w.1-m. tom ha",""

Insert new actifact: Human R c s ~ u ~ ~ l ~ f o r m a f i o n System - HRIS-ARCH

Figure 4.12: Capturing artifacts

Artifacts are stored which helps recording the design decisions as these artifacts have an

impact on the design decisions. One can easily select related artifact from the catalogue

while recording design decision information.

4.1.7 Captures architecture patterns

ADDSS captures only design patterns. Modified version now also captures architecture

patterns. Figure 4.13 shows a catalogue which now also contains architecture patterns.

Value-Based Sofnvare Architecture Knowledge Management 79

Chapter 4 Value-Based Software Architecture Knowledge Management Tool

Pattern helps in documenting design decisions. Similarly, architecture patterns also

helpful in documenting design decisions. They are also helpful in capturing scenarios.

4.1.8 Multiple Views

Figure 4.14 shows multiple views associated with single architecture. ADDSS tool

associates each architecture with single view however this tool now provides multiple

views associated with single architecture.

- - -
~ ..~. - ~ - ~ ~ ~ 1 2

1- .4-a-

Figure 4.14: Recording mult iple v iews with s ing le architecture

Value-Based Sojiware Architecture Knowledge Management 80

Chapter 4 Value-Based Sofrware Architecture Knowledge Management I ool
~ ~ ~- ~

Multiple views with each single architecture helps recording design decisions information

as design decisions have an impact on these views.

4.1.9 Categorizes risk and non risks for decisions

Figure 4.15 shows the risks associated with design decisions. It also shows the

categorization of risks and non risks.

~ i ~ u r e X 5 : ~ e m & t e for rGording riskslnon-risks

With this we can get to know which decision is better to take. We can rank the design

decisions as well.

4.1.100ther Features

There are some small features which are also added, these are:

Tool warns and prohibits violations of the decisions on which other decisions are

dependent. Figure 4.16 shows how it warns the users whenever he wants to delete that

decision.

Value-Based Sofrware Architecture Knowledge Management 8 1

Chapter 4 Value-Based Sofhare Architecture Knowledge Management Tool

By this check one doesn't lost data if some decision is depending on it.

All checks are provided for required and useful fields. Tool warns if the required fields

are not filled. Numerous checks also implemented to ensure consistency. Tool is also

getting consequences of design decisions as taken in Archuim [17].

4.2 Evaluation of Value-Based Software Architecture
Knowledge Management tool

This section describes the evaluation of currently modified tool i.e. Value-Based Software

Architecture Knowledge Management (VB-SAKM) tool. VB-SAKM tool has been

evaluated on the basis of certain attributes like usability, performance etc. These attributes

are the same as mentioned and used in Chapter 3 for evaluating the surveyed tools.

Description about each attribute has also been mentioned in Chapter 3.By evaluating the

modified tool personally and from the literature ,we can easily find either this tool

provides better support of discussed attributes as compared to other surveyed tools or not.

As discussed in the thesis that the developed tool is the modified form of existing tool

ADDSS, so the modified tool also supports evaluation criteria attributes which is already

supported by ADDSS. In the last of this section, a table is described which shows the

evaluation of Value-Based Software Architecture Knowledge Management tool in

Value-Based Sofnvoe Architecture Knowledge Management 82

4. Coverage:

Table 3.2 shows ADDSS covers many features which other tools are not covering.

VB-SAKM is the modified form of ADDSS. So this covers all the features of ADDSS

along with the newly implemented features. The modified tool is a value-based tool. It

supports the Value-Based Software Engineering concept. This tool also covers certain

other features which are missing from the tool i.e., catalogue of tactics, capturing of

principles, artifacts, architectural pattern etc. The above discussion about this attribute

shows that this tool covers more features as compared to all the other studied tools as

none of the other tool is Value-Based. This attribute has been checked from the tool's

thesis.

5. Useful for sofhvare product families:

VB-SAKM tool is not useful for software product families as this feature has not yet

being implemented into this tool. This attribute has been checked Gom the tool's

thesis.

6. Support of Value-based sofhvare engineering principles:

This is the main feature which is supported by Value-Based Software Architecture

Knowledge Management (VB-SAKM) tool. Tool supports the Value-Based Software

Architecture principles. It helps to document only the set of required information

based on its purpose. Also focuses on the choice of all the stakeholders who are

involved in specific project and will have a choice to get only that type of information

which they required. With this tool, we are determining a priori, who will profit from

what information in which amount later on, in order to cope with the additional effort

that has to be spend on recording design decisions and its rationale. This attribute has

been evaluated with the help of tool's thesis.

7. Useful in evolution and maintenance activities:

Value-Based Software Architecture Knowledge Management tool supports modeling

and documenting the evolution of ADD as it is the modified form of ADDSS and

ADDSS supports this feature. This attribute have been checked from the tool's thesis.

8. Integrated with other modeling tools:

Modified tool is not integrated with other modeling tools, decisions can be stored in

parallel at the same time the designers use modeling tools to depict the architecture. In

future there is a plan to integrate this tool with other modeling tools. This attribute has

been validated from the future work of tool as mentioned in tool's thesis and by

personally using the tool.

Value-Based Soffware Architecture Knowledge Management 84

Chapter 4 Value-Based Software Architecture Knowledge ~onagemenr 1 uur

9. Accessible for geographically distributed stakeholders:

Value-Based Software Architecture Knowledge Management tool incorporates AKM

features for geographically distributed stakeholders involved in the software

architecture process. VB-SAKM tool provides the choice to all the stakeholders to

document design decisions information. From the tool's thesis, this attribute has been

validated.

10. Performance:

Modified tool is good performance-wise as it provides proper template for capturing

and sharing design decisions so with less time one can easily store and retrieve

information from the well-defined templates. User with less time can complete the

basic task. As the tool is value-based, this makes easy for a common user as he only

stores and retrieves the relevant information. No need to confuse with irrelevant

information. VB-SAKM tool takes 1-2 seconds to save information whenever we

press the save button. Same time is consumed for deleting data. As only required

information is saving so it saves a lot of time of user. Tool takes less time while

retrieving knowledge. Whenever we gave command for viewing any information,

system responses in 1-3 seconds. Time depends upon the choice of user's. As we can

retrieve information about design decisions on the choice of user if he wants to

retrieve information of all the design decision attributes, system responses in more

time as compared to if we choose less number of design decision attributes. Tool has

proper interface so its takes few seconds to start the tool. The performance of tool has

been measured by personally using the studied tool.

11. Security:

Tool can access through username and a password. Registered users have different

permissions for accessing the information. Security attribute has been evaluated by

personally using the tool.

Following table shows the evaluation of Value-Based Software Architecture Knowledge

Management (VB-SAKM) tool in summarized form. For evaluating VB-SAKM tool,

ratings are defined. 4 shows that the attribute is fully supported by the tool, shows that

the tool partially supports that attribute and X shows the tool doesn't support that

attribute.

Value-Based Software Architecture Knowledge Management 85

Chapter 4 Value-Based Sojiware Architecture Knowledge Management loo1

Table 4.2 Evaluation Criteria of Value-Based Software Architecture Knowledge

Management (VB-SAKRQ tool

"Ratings: J : Fully supported, e : Partially supported, X: Unsupported

Attributes

1. Usability

2. Industriallv used

3. Open Source

: Architectural
Knowledge

Integrated
representation
of the software
architecture
Architecture
design
decisions
Rationales
underlying the . -
design decision
External
context1
environment

-3 Features

5 . Useful for software
product families

5. Support of value-
based software
engineering
principles

7. Useful in evolution
and maintenance
activities

I. Not Integrated with
other modeling tools

PAKME ADDSS
KNOWLEDGE
ARCHITECT

WORD

Value-Based Sofware Archifeclure Knowledge Management 86

Chapter 4 Value-BawdSofWare Architecture Knowledge Management Tool

9. Accessible for
geographically
distributed I / I I I X I J

** Coverage attributes shows the coverage of architectural knowledge attributes as weii

as other features each tool possess. Features attribute and architectural knowledge

attributes are evaluated on the basis of the features mentioned in the Chapter 4 as weil us

the features ofADDSS tool as described in table 3.2. In this way we can easilyfind which

tool covers more features then others.

stakeholders

10. Performance

11. Security

This chapter discusses a Value-Based Software Architecture Knowledge Management

process and its applicability on an open source tool. Value-Based Software Architecture

Knowledge Management is recently recognized to be one of the most valuable trends in

software architecture community. A value-based approach has been applied to

Architecture Design Decision Support System (ADDSS). Modified form of ADDSS is

known as Value-Based Software Architecture Knowledge Management (VB-SAKM)

Tool. Different tools and techniques have been studied and reviewed for Architecture

Knowledge Management. Certain limitations of tools have been found. These limitations

have been incorporated in ADDSS tool. The main feature is to provide the support of

Value-Based Software Engineering principles to ADDSS. Different benefits are already

discussed above. Basically we are determining a priori, who will profit from what

information in which amount later on, in order to cope with the additional effort that has

to be spend on recording design decisions and its rationale. It is suggested that the use of

such tailored architecture knowledge documentation would mitigate the effects of

inhibitors as mentioned above and emphasize on the effects of its benefits. Besides this

feature, some more features have also been implemented like the tool now provides a

catalogue of tactics, and requirements are separately captured. Multiple views are

associated with single architecture etc. The implementation of all the above mentioned

features helps us in managing, sharing and storing architecture knowledge. By evaluating

the modified tool, we found that Value-Based software architecture knowledge

management (VB-SAKM) tool is a user-•’riendly tool. Moreover, it a value-based tool

Value-Based Sofinre Architecture Knowledge Management 87

X

J

J

X

X X

X

X

J

J

~napter 4 value-lrarea Software Arcnrtecture Knowledge Management Tool

which focuses on documenting the required set of information based on the choice of

relevant stakeholder. Modified tool covers more features for architecture knowledge

management as compared to other tools and it is good performance wise. From the above

discussion it is concluded that, with this tool we can manage and store AK with little

effort and in a short time.

Value-Based Software Architecture Knowledge Management 88

CHAPTER 5

CONCLUSION AND FUTURE WORK

Chapter 5 Condusron ana rurure rrvrn

5. CONCLUSION AND FUTURE WORK

In this chapter, the summary of this research has been explained alongwith the thesis

contributions. Moreover, the research questions have also been answered. Enhancements

that can be done in this work are also suggested

5.1 Summary

Software architectures have been considered as a set of interrelated components and

connectors [I]. Research trends in software architecture focus on the treatment of

architectural decisions as first-class entities and their clear representation in architectural

documentation. From this point of view, a software system's architecture is no longer

perceived as interacting components and connectors only, but also as a set of architectural

decisions that convey the architectural principles underlying a particular design [7].

Within architectural analysis, architectural knowledge (AK) [2, 421 plays an important

role. Architectural Knowledge consists of architectural design as well as design decisions,

their assumptions and context. Design decisions and their underlying rationales are

usually ignored at architectural level and during the development life cycle.

Proper management of architectural knowledge (AK) is essential in order to reduce high

evolution and maintenance costs and to avoid architectural erosion. The quality of system

and software architecture design can be highly dependent on the person who designs it.

How architecture is designed depends on an architect's experience, knowledge and

decision making abilities. As such, design decisions and its rationale directly affect the

architecture design and its quality. By not properly managing, sharing and storing

architecture knowledge, it affects architecture design in three ways: first, design decisions

information might be incorrect or incomplete but there is no explicit information or

documented information for its verification; second, once the system development has

been completed, the architecture design can be costly and difficult to change at that stage

if it is incorrect or not optimal; finally, it is sometimes difficult to understand the

architecture design for maintenance purposes if the architecture knowledge is not

documented.

Vnlue-Based Safhvare Architecture Knowledge Managentent 89

Chapter 5 Conclusion and F u m e Work

Problem domain of this research is to manage, share and store Architecture Knowledge

and the main focus is on tools and techniques for managing, sharing and storing

Architecture Knowledge. There has been an increased demand for suitable techniques and

tools that support organizations in documenting, sharing and managing architecture

knowledge. The complex role of architectural decisions requires a systematic and

partially automated approach that can explicitly document.

There are different ways for managing architectural knowledge [4,7,52].Researchers and

practitioners have proposed various tools [8,17,23,33,35] and techniques [27,28,36,37,38]

for its management. Indeed there are different tools and techniques for architecture

knowledge management, practitioners do not like to apply them due to certain factors e.g,

critical timing, extra effort and time required, overhead etc. A lot of architectural

knowledge is there to document and maintain, but the benefit of managing all the

architectural knowledge is not clear. Therefore, in order to mitigate the effect of above-

mentioned factors and to understand the benefits of managing AK, there is a need to

manage architectural knowIedge in a value-based manner [27,28,29].

The research questions will be reiterated here along with the results from the analysis and

the main work which is done that can be used to provide answers for them. In summary,

the following research questions have been addressed in this thesis.

1. How to make architecture knowledge management tools and techniques practical?

2. How to reduce time and effort for managing and storing architectural knowledge?

3. How to reduce overhead for managing and storing architectural knowledge?

4. How to make knowledge capture cost-effective?

5.2 Contributions

As a result of addressing the above mentioned research questions, we have achieved the

following.

Firstly, a literature survey has been performed to study existing techniques and tools for

managing, sharing and storing Architecture Knowledge. Seven techniques have been

studied and surveyed in chapter 2. Different techniques, method, framework, process

Value-Based Sofhvare Architecture Knowledge Management 90

Chapter 5 Conclusion and Future Work

have been investigated for managing, sharing and storing architecture knowledge. From

the survey of techniques, a useful techniquelapproach has been found named as Value-

Based Design Decision Rationale Documentation which focuses on documenting only the

required set of information based on its purpose.[27,28,29].Basically in that technique,

Value-Based Software Engineering principles have been applied for documenting Design

Decisions Rationale.This technique is better as compared to other techniques because it's

the only technique which helps to mitigates the effects of mentioned inhibitors. Moreover,

five existing tools have been analyzed and studied in chapter 3. The features of each tool

have been compared with others and there are certain features which one tool is covering

but not the other one. Tools are evaluated on the basis of certain attributes like usability,

open source etc. By comparing and evaluating tools, certain limitations and drawbacks

have been found in all the tools. Limitations like no tool is supporting for Value-Based

software engineering principles, no support for software product families etc are found. In

this work, some of the features which are missing from the tool have been implemented.

Secondly, special features have been implemented to the existing tool i.e. Architecture

Design Decision Support System(ADDSS) in order to overcome the limitations and

drawbacks found from the literature survey. The reason for selecting ADDSS tool for

fiuther enhancements is that this tool is only an open-source tool and it covers additional

features relative to other tools. Value-Based Software Architecture Knowledge

Management Tool is the modified form of Architecture Design Decision Support System

(ADDSS).

A Value-Based approach has been proposed to Architecture Design Decision Support

System that takes into account value considerations of stakeholders and only documents

the information required by stakeholders.

There are many inhibitors as described in chapter 4 which may hamper capturing, using,

and documenting the design decisions and its rationale. Also not all the information is

needed all the time as different people need different information. Basically, the benefit

of managing AK is not clear.So there is a need to decide what information is required to

save that will benefit whom, for this we have taken the idea of Boehm [26], who proposed

a Value-Based Software Engineering (VBSE) agenda and from Davide Falessi's work

[27,28,29] who used Boehm's idea for documenting design decisions rationale i.e.

Value-Based Sofware Architecture Knowledge Management 9 1

Chapter 5 Conclusion and Future Work
- ---

proposed a Value-Based approach to DDRD (VB DDRD). In the present work, Value-

Based Software Engineering principles have been applied on an open-source tool

Architecture Design Decision Support System[8,9]. This tool provides the opportunity to

all the stakeholders to choose the required design decisions information by giving score to

each attribute of design decisions.In this tool the value provided to each design decision

attribute purely depends on the stakeholders' perception and their choices Architect can

prioritize these attributes as required, useful or optional on the basis of the score provided

by each stakeholder. ADDSS and other studied tools don't support the concept of value

based software engineering. This is the main feature which is incorporated in ADDSS and

this feature mainly answers the mentioned research questions.

There are certain inhibitors e.g. increase of overhead, potential inconsistencies, extra

effort and time required etc as discussed in chapter 4 hampers managing architecture

knowledge. Due to these inhibitors practitioners are reluctant to manage architecture

knowledge. This is the reason why the architecture knowledge management tools and

techniques are not practical. A Value-Based approach helps to make architecture

knowledge management tools and techniques practical as this approach helps to mitigate

the effect of above mentioned inhibitors. By applying VBSE principles to some tool

makes the tool more effective, valuable and useful as it helps to document only set of

required information based on its purpose.

Tailored architecture knowledge implies less information to document and maintain;

hence, a diminished effort has the effect of mitigating the overhead. As the architecture

knowledge is properly managed and documented i.e. decisions made in the past were

properly managed and documented, so less effort is required at the time of maintenance

phase and during evolution of any software system. This means we don't need to put

extra effort and it saves a lot of time.

By recording only the required set of information for any architecture saves a lot of time

as related persons are also performing other activities. The possibility to spend less time

to produce the architecture knowledge documentation highly increases the possibility that

people, who are busy to meet their projects deadlines, find enough time to develop such

documentation.

Value-Based Sofmare Architecture Knowledge Management 92

Chapter 5 Conclusion and Future Work

The tailored architecture knowledge implies less information and hence less

documentation. Less documentation implies both less required effort for architecture

knowledge maintenance and less probability of inconsistencies occurrence. In this way

we can make knowledge capture cost-effective.

As we know the stakeholders come from different backgrounds and have different

concerns that the architecture document must address. With this approach, one can

resolve conflict. As for choosing the design decision attributes, right of choice is given to

all critical stakeholders who are associated with that project, so there is no chance of

conflict between them. This approach also helps building the organizational capabilities

as by recording only the required and useful information for any architecture according to

the choice of different persons not only help them for that architecture or project but also

helps them in future projects.

Basically as we know this support tells what type of architecture knowledge is required,

useful or optional on the basis of scores given by all the stakeholders i.e. we are

prioritizing attributes as required, useful or optional. From this we get to know what type

of architecture knowledge is useful. . It is suggested that the use of such tailored

architecture knowledge documentation would mitigate the effects of inhibitors as

mentioned above and emphasize on the effects of its benefits.

Besides applying VBSE principles to ADDSS tool, a catalogue of architecture and design

tactics has also been implemented in this tool. A set of templates has been developed to

document catalogues of architecture and design tactics. This will helpful in recording

design decision information as well as saves times and helpful for stakeholders.

Moreover tool is taking requirements according to the type which will be helpful while

recording the design decision information as quality attributes should be taken separately

so that we must know what quality attributes are affecting the design decisions or have

impact on them. Also helpful while capturing scenario's as scenarios are used to

characterize required quality attributes.

The other contribution is that this tool is capturing a general or concrete scenario, which

can be elicited fiom a stakeholder or extracted from a pattern. Capturing scenarios helps

Value-BmedSofware Architecture Knowledge Management 93

Chapter 5 -".

the users to understand the requirements easily. These are an artifact to architecture

knowledge. Scenarios are helpful in characterizing required quality attributes.

Moreover, a template is designed that captures principles which guide decisions for an

architecture. These principles are enterprise principles (business or others). Tool displays

a list of catalogue of principles that creates a link between architecture design decisions

and enterprise principles. Principles are captured which helps recording the design

decisions as these principles helps guiding the design decisions i.e. it develops a link

between the design decisions and these principles. One can easily select related principles

from the catalogue of principles while recording design decision information.

Modified tool also captures artifacts that have an impact on architecture design decisions.

Tool displays a list of catalogue of artifacts. Artifacts are stored which helps recording the

design decisions as these artifacts have an impact on the design decisions. One can easily

select related artifact from the catalogue while recording design decision information.

Architecture patterns are also helpful in documenting design decisions. Tool now captures

architecture pattern also. ADDSS tool associates each architecture with single view

however our tool now provides multiple views associated with single architecture.

Multiple views with each single architecture helps recording design decisions information

as design decisions have an impact on these views. Moreover, tool is showing the

categorization of risks and non risks.

Value-Based Software Architecture Knowledge Management (VB-SAKM) tool is also

evaluated on the basis of certain attributes. These attributes are the same as mentioned in

Chapter 3. From the evaluation, it is found that the tool supports Value-Based S o h a r e

Engineering principles.Moreover; it is a user-friendly tool and performance-wise good.

By implementing Value-Based Sofhvare Engineering principles and other features into

ADDSS tool, the modified tool is now quite valuable, mature and u s e l l for managing,

sharing and storing architecture knowledge.

"-'.,=--RmedSofware Architecture Knowledge Management 94

5.3 Limitations

The main limitation of this work is that surveyed tools and the modified tool i.e

VBSAKM-tool has not evaluated on a large scale.These tools are evaluated only by the

author of this thesis not by multiple persons or any team.The results of evaluation of tools

had not been checked by some other persons or by any pjoect team.Moreover, the

modified tool has not tried out into a real project.So we are not aware of the limitations

which can be found out if the modified tool has been tried out into a project.

5.4 Future Work

In future, we plan to deploy and use the Value-Based Software Architecture Knowledge

Management (VB-SAKM) tool into a project and would perform analysis within that

industrial setting. Based on the feedback from the analysis, the limitations encountered

and subsequent enhancements would be applied on the currently modified tool.

Moreover, there is a plan to develop a comprehensive tool for managing architectural

knowledge that will cover all the limitations already found from the literature survey. The

limitations and enhancements resulted from the deployment of VB-SAKM tool into some

real life project would also be implemented in the newly developed comprehensive tool.

This comprehensive tool would be a value-based tool.

Currently, no tool for managing architectural knowledge is integrated with any existing

case tools or with development phases. For this direction, there is a need for integration of

AK management tools with other case tools (e.g. requirements management tools) to

provide an integrated and unified environment to software engineers.

Value-Based Software Architecture Knowledge Management 95

APPENDIX-A

GLOSSARY

A-1 Glossary

A-1.1 Acronyms and Abbreviations

A K I Architectural Knowledge

ADD I Architectural Design Decisions

1 VBSE I Value-Based Software Engineering

I ADDSS I Architecture Design Decision Support System

SCS

PAKME

Success-Critical Stakeholders

Process-based Knowledge Management Environment

Table A-1: Acronyms and Abbreviations

DDRD

VB-SAKM

...
Value-Based Sofhvare Architecfure Knowledge Management X I ~ I

Design Decision Rationale Documentation

Value-Based Software Architecture Knowledge Management

Value-Bared Sofhvare Archirecture Knowledge Management References & Biobliography

REFERENCES & BIOBLIOGRAPHY

[l] Len Bass, Paul Clements, and Rick Kaunan. Sofhvare arclritecture in practice 2nd
ed. Addison Wesley, 2003.

[2] Kruchten, P., Lago, P., van Vliet, H. and Wolf, T. Building up and Exploiting
Arclritectural K~rowledge, 5th IEEEOFIP Working Conference on Software Architecture,
(2005).

[3] P. Kruchten. Architectural Blueprints. The 4+1 View Model of Software
Arclritectrrre. IEEE Sofhuare, 12(6):42-50, 1995.

[4] Lago, P. and Avgeriou, P. First Workslrop on Slraring and Reusing Arcltitectural
Knowledge, To appear in ACM Software Engineering Notes, ACM SIGSOFT S o h e
Engineering Notes, 3(5), 32-36 (2006).

[5] IBM (2003). Rational UniJed Process, Version 2003.Cupertin0, CA: IBM Rational
Software.

[6] Perry, D.E. and Wolf, A.L. Foufrdations for the Study of Software Arclritecture.
ACM SIGSOFT Software Engineering Notes, 17 (4). 40-52.

[7] Lago, P. and Avgeriou, P. ,Second lvorkshop orr SHAring arid Reusing arclritectural
K~rowledge Arclritectrrre, Rationale, and Design Ifitent (SHARWADI'07: ICSE
Workshops 2007) ,20-26 May 2007

[8] R. Capilla, F. Nava, S. P'erez, and J. C. Duehas. A Web-based Tool for Managing
Arcltitectural Design Decisio~zs. In 1st ACM Workshop on Sharing Architectural
Knowledge (SHARK), Torino, Italy, 2006.

[9] R. Capilla, F. Nava,and J. C. Duebas. Modeling and Documenting the Evolutiorz of
Arclritectural Desigrt Decisions accepted in the 2nd Workshop on SHAring and Reusing
architecture knowledge. Architecture, Rationale, and Design Intent, 2007, Minneapolis,
USA.

[lo] R. C. de Boer, R. Farenhorst, V. Clerc, J. S. van der Ven, P. Lago, H. van Vliet, A
Model for structuring Software Architecture Project Memories, Proceedings of the 8h
International Workshop on Learning Software Organizations, 2006.

[I 11 J. Tyree and A. Akerman, Arclrifeefure decisions: Denrystifing arclritecture. IEEE
Software, 22(2): 19-27,2005.

[12] J. S. van der Ven, A. G. J. Jansen, J. A. G. Nijhuis, J. Bosch, Design decisions: The
bridge between rationale and architecture, In A. H. Dutoit, R. McCall, I. Mistrik, and B.
Paech (Editors), Rationale Management in Software Engineering, Chapter 16, Springer-
Verlap, March 2006.

xiv

Value-Based Software Architeclure Knowledge Management References & Biobliography

[I31 J. Bosch, Sofhvare arclritecture: Tlre nertstep, Proceedings of the First European
Workshop on Software Architecture (EWSA), Volume 3047 of LNCS, Springer, pp. 194-
199,2004.

[I41 A.G.J. Jansen, J., Bosch, Soffware arclritectrrre as a set of arclritectural design
decisions. Proceedings of the 5" IEEEAFlP Working Conference on Software

[15] Ali Babar, M., Boer, R., Dingsoyr, T., Farenhorst, R., Arclritectural Knowledge
Managenrent Strategies: Approaclres in Research and Industry, accepted in the 2nd
Workshop on SHAring and Reusing architecture knowledge . Architecture, Rationale,
and Design Intent, 2007, Minneapolis, USA.

[16] 5th Working IEEE / IFIP Conference on Sofmare Architecture (FYICSA 2005), 6-10
November 2005, Pittsburgh, Pennsylvania, USA. IEEE Computer Society, 2005.

[17] Anton G. J. Jansen, Jan van der Ven, Paris Avgeriou, Dieter K. Hammer, Tool
support for Arclritectural Decisions, Proceedings of the Sixth Working IEEEAFIP
Conference on Software Architecture (WICSA 2007).

[I 81 S Trujillo, M Azanza, 0 Diaz,R. Capilla. Exploring Extensibility ofArclritectural
Design Decisions accepted in the 2nd Workshop on SHAring and Reusing architecture
knowledge . Architecture, Rationale, and Design Intent, 2007, Minneapolis, USA.

[19] Ali Babar, M., Gorton, I., Arclritecture Knowledge Marragerne~rf: Concepts,
Teclrrrologies, Clrallenges, Presented at the 6th working IEEEAFIP conference on
software architecture (WICSA) 2007, Mombai, India.

[20] Ali Babar, M., Gorton, I., Arclritecture Knowledge Managenrent: Clrallenges,
Approaclres, and Tools, presented at the 29th International conference on software
engineering, 2007,Minneapolis, USA.

[21] Ali Babar, M., Gorton, I., Jeffery, R., Toward a Framework for Capturing and
Using Architecture Design K~rowledge, Tehnical Report.

[22] Remco de Boer : Arclritectural Knowledge Discovery, W h y and How? In 1st ACM
Workshop on Sharing ARchitectural Knowledge (SHARK), Torino, Italy,2006.

[23] Ali Babar, M., Gorton, I, A Tool for Soflware Arclrifecture Kno~vledge
Management, accepted in the 2nd Workshop on SHAring and Reusing architecture
knowledge . Architecture, Rationale, and Design Intent, 2007, Minneapolis, USA.

[24] Ali Babar, M., Boer, R., Dingsoyr, T., Farenhorst, R., Architectural Knowledge
hifanagentent Strategies: Approaclres in Researclr and Industry, accepted in the 2nd
Workshop on SHAring and Reusing architecture knowledge . Architecture, Rationale,
and Design Intent, 2007, Minneapolis, USA.

[25] Rik Farenhorst. "Tailoring Kno~vledge Slraring to tire Arclritecting Process"
Presented at the 1st ACM Workshop on SHAring and Reusing architectural Knowledge
(SHARK), Torino, Italy, 2006.

Value-Based Sofware Architecture Knowledge Management References & Biobliography

[26] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P.Griinbacher. 2006 Value-Based
Software Engineering. Springer.

[27] D. Falessi, M. Becker, and G. Cantone. Design Decision Rationale: Experiences
and Steps Ahead Towards Systematic Use. In I st ACM Workshop on Sharing
ARchitectural Knowledge (SHARK), Torino, Italy,2006.

[28] Davide Falessi, Rafel Capilla, Giovanni Cantone, Value-Based Design Decision
Rationale Docunrentation: A Replicated Experiment, Third Workshop on SHAring and
Reusing architectural Knowledge (SHARK2008) In conjunction with the 30th Int. Conf.
on Software Engineering (ICSE2008), Leipzig, Germany, 10 - 18 May 2008.

[29] Davide Falessi, Giovanni Cantone, Philippe Kruchten, Value-Based Design
Decision Rationale Docicmeritatio~t:Pri~~cipIes and Et~tpiricul Feasibility Study, Seventh
Working IEEEDFIP Conference on Software Architecture, (WICSA 2008), Vancouver,
Canada, 18-22 February 2008.

[30] M. Sinnerna, J. S. van der Ven, S. Deelstra, Using Variability Modeling Principles
to Capture Architectural Kno~vledge, Proceedings of the Workshop on SHAring and
Reusing architectural Knowledge (SHARK2006), June 2006 .
[3 11 http://www.softwaretestinghelp.com/what-are-the-quali~-a~butes/

[32h Knowle$ge Architect Word plug-in,. ttp://www.~ d ~ n omatic~onderzoeklprogrammas/soAwareengineerin~~fi~
o w l e d g e ~ r c h ~ ~ ~ c t ~ o r d ~ l u ~ - m .

[33] Griffin project website, . http://grifin.cs.vu.nl.

[34] Archium website, . http://www.archium.net.

[35] AREL website,. http://www.ict.swin.edu.au~personaVatan9/

[36] ADDSS website,. http://triana.escet.urjc.es/ADDSS/

[37] Larix Lee Kruchten, P., Capturi~g Soflware Architectural Design Decisions,
appear on Electrical and Computer Engineering, 2007. CCECE 2007. Canadian
Conference on, April 2007.

[38]Ibrahim Habli,Tim Kelly, Capturing and Replaying Arclritectural Knowledge
tlrrouglr DerivationalAnalogy, accepted in the 2nd Workshop on SHAring and Reusing
architecture knowledge . Architecture, Rationale, and Design Intent, 2007, Minneapolis,
USA.

[39] Neil B. Harrison, Paris Avgeriou, Uwe Zdun, Using Patterns to Capture
Architectural Decisions, July/August 2007 (Vol. 24, No. 4) JEEE.
[40] The-Standish-Group, CHAOS Report 1995,www.standishgroup.com, 1995.

[41] Design Patterns, Quality Attributes and Sofhvare Arclritectural Tactics, Felix
Bachmann,Len Bass, Mark Klein.

[42] Remco C. de Boer, Rik Farenhorst, Patricia Lago, Hans van Vliet, and Anton G. J.
Jansen. Arclritectriral Kno~vledge: Gefting to the Core. In Proceedings of the Third
International Conference on the Quality of Software Architectures (QoSA 2007), volume
4880 of LNCS, pages 197-214, July 2007.

xvi

Value-Based Sofhvare Architecture Knowledge Management About Authors

ABOUT AUTHOR

The author, Nida Ahmad, daughter of Mrs. Talmeez Ahmad and Mr. Mohammad Ahmad,

was born in Islamabad on February 1983.She got married to Mr. Salman Alam in 2007

and now has a daughter named Hiba Alam. The author did her matriculation securing first

division from Islamabad Model College for Girls, F-714 (Pakistan) in 1999. She passed

her Higher Secondary School Certificate Examination in first division from the Islamabad

College for Girls, Islamabad, in 2001. She did her Bachelor of Science in Computers

Science from International Islamic University, Islamabad, Pakistan in 2006. The author

got admitted in International Islamic University, Islamabad, Pakistan, to earn Master of

Science Degree in Software Engineering in 2006. Her current fields of interest are

Software Architecture, Web-based applications, Knowledge Management, Project

Management and Software Engineering.

(xviii

