Impact of Aspect-Orientation on the Reliability of
Decentralized Multi-Agent System

UNDERTAKEN BY:

HIRA TABBASUM

36-CS/MSSE/2003

SALMA JABEEN

37-CS/MSSE2603
SUPERVISED BY:

DR. H. FAROOQ AHMAD

Faculty of Basic & Applied Sciences

International Islamic University Islamabad

CENTRAL

LIBRARY
ISLAMABAD.

e t———— .- =

P W— ——— -

A dissertation submitted to the
Department of Software Engineering,
Faculty of Applied Sciences,
International Islamic University, Islamabad, Pakistan,

as a partial fulfiliment of the requirements for the award of the degree of

MS in Software Engineering

Hira Tabbasum, Salma Jabeen

if

To
The Holiest Man Ever Born,

PROPHET MUHAMMAD (A 24ebs B oo

7o
OUR PARENTS AND FAMILIES
We are most indebted to our parents and families, whose affection has
always been the source of encouragement for us, and whose prayers have
always been a key to our success.

To
THOSE HOLY SEFEKERS

Who give away their lives to make the stream of life flow
Smoothly and with Justice.

And
To
OUR HONORABLE TEACHERS
Who have been a beacon of knowledge and a constant source of inspiration,
Jfor our whole life span.

Hira Tabbasum and Salma Jabeen ifi

Declaration

We hereby declare and affirm that this software neither as a whole nor as a. part
thereof has been copied out from any source. It is further declared that we have
developed this software and accompanied report entirely on the basis of our
personal efforts, made under the sincere guidance of our teachers. If any part of
this project is proven to be copied out or found to be a reproduction of some other,
we shall stand by the consequences.

No portion of the work presented in this report has been submitted in support of an
application for other degree or qualification of this or any other University or
Institute of learning.

Hira Tabbasum
36-CS/MSSE/03
Salma Jabeen.
37-CS/MSSE/Q3

Hira Tabbasum, Salma Jabeen v

Acknowledgement

We bestow all praises, acclamation and appreciation to Almighty Allah, The Most
Merciful and Compassionate, The Most Gracious and Beneficent, Whose bounteous
blessings enabled us to pursue and perceive higher ideas of life, Who bestowed us good
health, courage, and knowledge to carry out and complete our work. Special thanks to our
Holy Prophet Muhammad (SAW) who enabled us to recognize our Lord and Creator and
brought us the real source of knowledge from Allah (SWT), the Qur’an, and who is the
role model for us in every aspect of life.

We consider a proud privilege to express our deepest gratitude and deep sense obligation
to our reverend supervisor Dr. H. Farcoq Ahmad who kept our morale high by his
suggestions and appreciation. His motivation led us to this success. Without his sincere
and cooperative nature and precise guidance; we could never have been able to complete
this task.

It will not be out of place to express our profound admiration and gratitude for our teacher
Dr. Naveed lkram for his dedication, inspiring attitude and kind behavior throughout the
project efforts and presentation of this manuscript.

Finally we must mention that it was mainly due to our parent’s moral support and
financial help during our entire academic career that enabled us to complete our work
dedicatedly. We owe all our achievements to our most loving parents, who mean most to
us, for their prayers are more precious before any treasure on earth. We are also thankful
to our loving brothers, sisters, friends, and class fellows who mean the most to us, and
whose pravers have always been a source of determination for us.

Hira Tabbasum
36-CS/MSSE/03
Salma Jabeen

37-CS/MSSE/03

Hira Tabbasum, Salma Jabeen v

Abstract

Aspect Oriented Programming (AOP) provides separation of concerns and encapsulates
crosscutting concerns into separate modules called ‘aspects’, thereby enhances the
software quality: This thesis presents a quantitative stﬁdy that assesses the positive and
negative impacts of AOP on the reliability of a decentralized Multi-Agent System.
Comparison between aspect-oriented and object-oriented versions of the same
application, SAGE (scalable and fault tolerant agent grooming environment), Is
performed, in order to explore to what extent each implementation provides a reliable
system. Reliability depends upon the internal attributes like coupling and cohesion and is
inversely proportional to complexity. Refinement of Chidamber and Kemerer metrics
suite is used to evaluate aspect-oriented version and calculated coupling, cohesion and
complexity. those are the basic error-prone in a system and afterwards Mean Time to
Failure is measured for both versions of the system. It is found that aspect-oriented
svstem which showed good results for Chidamber and Kemerer metrics suite also showed

good results for Mean Time to Failure.

Hira Tabbasum, Salma Jabeen vi

PROJECT IN BRIEF

Project Title:

Organization:

Undertaken By:

Supervised By:

* Starting Date:

End Date:

Tools Used:

System Used:

Impact of Aspect Orientation on the Reliability
of Decentralized Multi-Agent System '

International Islamic University, [slamabad

Hira Tabbasum

Reg. No: 36-CS/MSSE/03
Salma Jabeen

Reg. No: 37-CS/MSSE/03

Dr. Hafiz Farooq Ahmad
Associate Professor
Nust Institute of Information Technology,

Rawalpindi
October, 2007

August, 2008

Eclipse SDK (3.1.0), Rational Rose 2002,
Aspect]) 1.5

Pentium 1V

Hira Tabbasum, Salma Jabeen

vii

Table of Contents

Chapter No. Page #
1. Introduction 1
1.1 Introduction covee i i 1
1.2 Background Informationooiiiiiiiiiinicei e 2
1.2.1 Aspect-Oriented Programming.......c....ccovieninnnninnene 2
1.2.2 Multi-agent Systems (MAS)oovviiiiiiiia, 3
1.2.3 Foundation for Intelligent Physical Agents (FIPA) 3
1.2.4 Agent Management Systemocoviiiinin 3
1.2.4.1 General Architecture e 4
1.2.5 Decentralized Agent Management System 3
1251 AMS-functionalitycocooiiiiiiniiiiin. 5
2. Literature Review 7
21 Related WOrK coeeneeieiee e e e 7
3. Problem Domain and Proposed Solution | . - 13
3.1 Problem Domaimnc..cooenriiiiiie e 13
K70 B8 B 111 ¢ PSPPSR 13
3.1.2 Proposed Researchc.coooviiiiianniiinin 13
3.2 Implementation Impacts of Proposed Research 14
3.3 Functions of Decentralized Agent-Management System 14
33.1 Roles & Responsibilitiesc.coovvieiiiiiiiiiiin e 15
3.3.1.1 Managing Authorityc..oooiviiiniiininn 15
3.3.1.2 Maintaining Indexoocoiiiiiininienn, 15
3.3.1.3 Maintaining Agent Descriptions 16
3.3.14 Searching Agent Descriptions 16
3.3.1.5 Mandatory Functions of AMS 16
33.1.6 Agent Lifecycle ..o 16
3.4 Research Methodologycocoviniiiiii 17
3.5 Research Work ... i 18
3.5.1 Object-Oriented Design of AMS ... 18

Hira Tabbasum, Salma Jabeen viii

3.5.2 Making an Aspect-Oriented Designiin.
3.5.3 Identification of modules in AMS ...l

3.5.4 Identification of Crosscutting Behavior

4. Software Design

4.1 Aspect-Oriented Design of AMS ferrremrmarar s
82 ClaSSDESIEN .. ovvveeecseeveeeeeeceeseieeeees e e
42.1 Object Oriented Class Designocoeeveeviniiiiinn.n.
422 Aspect Oniented Class Designcoooeeiviiiieninnin,
423 UMLDESIZR ..ot e anas
43 Toolstobe Used ..ot ceeaee e
44 Resources Requiredoooiiiiin it

5. Software Development and Evaluation

5.1 Software Developmentoovviviiiiinii i e e
S5.0.1 0 Classes coueiiniiie v e
NI B - U o =T £ U PSPPI
5.1.3 Software Interfacesoocoiiviiiiiiinic e
504 ClassCode oo

52 TRhe Metrics «eoviiii i e e i

5.3 Evalualion ..o e
53.1 Reliability....c.oooviiiii e
532 MeanTimeto Faillure ...,

6. Conclusion

6.1 Research Results and ConclusSioncoivviriiviiriinierriaeeennens

Appcendices

Appendix A References
Appendix B Publication
Appendix C Interfaces

Appendix D Coding

46
46

48

56
68

Hira Tabbasum, Salma Jabeen

Table of Figures

Fig. No. Page #
1.1 General Architecture of Multi-Agent Systems...........oooociiiiinennne. 4
1.2 Functionality of AMS. ..o 6
31 Virtual Agent CluSter.......ooovvvivivieriarinnieres e 150
32 Life Cycle of a FIPA Aent.........overimmiiiieiiiiicinciicee e 17
3.3 Object-Oriented Design of Decentralized AMS.........oooooviininnnn 19
34 Modules of Decentralized AMS................ ettt et 21
3.5 Crosscutting in Agent Management Modules............oovine 22
4.1 Aspect-Oriented Design of AMS.........o 24
42 Classes with Attributes and Methods.........coooiin 26
4.3 Aspects I AMS ..o 27
44 AMS Usecase Model........oooviiiiiieiin, eeeneas e ieeaneaara 28
4.5 Interaction Diagram of AMS. ..o 29
3.1 Classes with Attributes and Methods on Development Time.................37

Aspects in Decentralized AMS. ... 38

Hira Tabbaswm and Salma Jabeen

B B

Table of Tables

Table No. Page #
2.1 An Overview of Agency Properties..........ovvvevioierenniirieie e 8
5.1 The Metrics SUIte ..o e e aeaeaanne 39
5.2 Metrics Obtained for OO Design...........ccvvvvivieiinennnnnnnns e 40
53 Metrics Obtained for AO Design.....coovviiiiiiiiiie Al
5.4 Memory Usage of OO system at the System Initialization point............ 42
55 Memory Usage and CPU Usage of OO system on Sending messages.......43
5.6 Memory Usage of AO system at the System Initialization point............. 43
5.7 Memory Usage and CPU Usage of AO system on sending messages......, 45
5.8 Comparison of Memory Usage for OO and AO system of SAGE on

SENAING MESSAES. ... eriieienercaenreieareteantveiraeie e cere v ern e s e anenaeane 45

Hira Tabbasum, Salma Jabeen

Chapter 1

Introduction

Chapter # ¢

Chapter 1: Introduction

1.1 Introduction

Aspect Oriented Software Development (AOSD) is a new emerging technology
that provides separation of concerns in software construction [1]. Separation of
concerns is a central software engineering principle that should be applied throughout
the development proceéé, from requirement to implementation [2]. It states that a given
problem involves different kinds of concerns, which should be identified and separated
in order to manage the complexity of the system [3]. Concerns can be classified into
two categories those are core concerns and crosscutting concerns. Core concerns deal
with the basic functionality of a system while crosscutting concerns span multiple
modules and deal with non-functional requirements [4]. Aspect Oriented Programming
provides improved modularization which encapsulates crosscutting concerns into
separate modules known as ‘aspects’ |5).

Sofiware engineering of multi-agent system involves the classification of
concemns into two categories: agenthood concerns and additional concerns. Agenthood
concerns include knowledge, interaction, adaptation, and autonomy. While additional
concerns include mobility, learning and collaboration. Out of these mobility,
interaction, learning, autonomy and collaboration are crosscutting concerns [6]. A group
of researchers have worked on aspect-oriented architecture {6], madeling [7] and
engineering [1] of multi-agent systems but there is no empirical evidence whether AOP
helps in improving the reliability of a decentralized Multi-Agent system. thereby
hindering the adaptation of AOP for such system.

This thesis presents a case-study in which we have compared the reliability of
aspect-oriented (AQO) and object-oriented (OQ) design of decentralized Agent
Management System (AMS) of SAGE (scalable, fault tolerant agent grooming
environment). SAGE is FIPA [8] compliant decentralized multi-agent system [9]. In
SAGE, scalability and fault tolerance is achieved up to some extent through its
architecture but reliability is still a major issue due to the excess of tangling and
scattering of code in one of its components i.e.,, AMS. In addition, internal attributes
like coupling and cohesion also affect system’s external attributes like reliability,
reusability and maintainability [10] while SAGE is a highly coupled and complex

system because its code is not well optimized [11].

Impact of Aspect Orientation on the Reliability of Decentralized Mulii-dgent System

Uhaprer & ¢

This research also explains crosscutting concerns those come across the
development of a decentralized AMS and implemented those concerns with Aspect]
[12]. It involves three sorts of crosscutting concerns, knowledge distribution, exception
handling and knowledge consistency and core concerns. such as agent management and
peer management. We also evdluated both the versions of decentralized AMS through
metrics for reliability named Mean Time to Failure and on the basis of the results which

we got from evaluation, we compared both the systems.

1.2 Background Information

Since our research is based on convergence of two disciplines i.e., aspect-
oriented paradigm and agent-oriented systems so first of all we define some terms used
in this thesis and our research related to aspect-oriented programming and multi-agent

system respectively.

1.2.1 Aspect-Oriented Programming

Aspect Oriented Programming introduces concern abstraction. It’s a common
accepted premise that the best way of dealing with complexity is to simplify it. In
software design, the best way of s1mpllfy1ng a complex sysitem is to 1dent1fy the
concerns and then modularize them. In fact, the QOP methodo]ogy was developed as a
response to the need to modularize the concerns of a sofiware system. The reality is,
though, that although OOP is good at modularizing core concerns, it falls short when it
comes to modularizing the crosscutting concems. The AOP methodology was
developed to address the shortfall. In AOP, the crosscutting concerns are modularized
by identifying a clear role for each one in the system, implementing each role in its own
module, and loosely coupling each module to a limited number of other modules [4].
The terminologies come under the Aspect-Oriented technology are as follows [13]:

Code tangling: If crosscutting concemns are implemented without being
noticed, the code for concerns becomes intermixed i.e., code for crosscutting concerns
finds itself scattered throughout multipie modules.

Aspects: A modular unit designed to implement a concern. It may contain some
code and the instructions on where, when and how to invoke 1t

Join points: Join points are well-defined places in the structure or execution

flow of a program where additional behavior can be attached.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

Soritdpraes oo

Advice: Advice is the behavior to execute at a join point. Many aspect
languages provide mechanism to run advice before, after, instead of, or around Join
points of interest.

Weaving: [t is the process of composing the core functionality modules with

aspects, thereby vielding a working environment.

1.2.2 Multi-agent Systems (MAS)

Multi-agent systems [14] are sysiems composed of multiple agents, which
interact with one another, typically by exchanging messages through some computer
network infrastructure. MAS provide proper execution environment to agents so that
they can assure the provision of services to other agents by cooperating, coordinating,
and negotiating.

MAS represent virtual societies where software entities (agents) acting on behalf
of their owners or controllers (people or organizations) can meet and interact for various
reasons {e.g., exchanging goods, combining services, etc.) and in various ways (e.g.,

creating virtual organizations, participating to auctions, etc.)

1.2.3 Foundation-for Intelligent Physical Agents (FIPA)

Foundation for Intelligent Physical Agents (FIPA) is a standard governing body
for Agent development community. It provides abstract architecture of a complete
Multi-agent System. Concrete realization of the abstract architecture will be according
to the choice of the developer. Till now many FIPA compliant MAS have been
implemented, JADE is one of the examples of FIPA compliant MAS [8].

1.2.4 Agent Management System

An Agent Management System (AMS) is a mandatory component of the Agent
Platform (AP). The AMS exerts supervisory control over access to and use of the AP.
Only one AMS will exist in a single AP. The AMS maintains a directory of AIDs
(Agent 1D’s). Every Agent will have a unique Agent ID. AID will contain Transport
Addresses (amongst other things) for agents to be registered with the AP [16].

fmpact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

Chapter # 1 Introduction

1.2.4.1 General Arcliitecture

Each agent must register with an AMS in order 1o get a valid AID. The AMS is

responsible for managing the operation of an AP.

General Architecture

e

Fig 1.1: General Architecture of Multi Agent System

Figure 1.1 shows the general architecture of a multi-agent system [8].
The Agent Platform has following components:

o* Agent Management System (AMS)

o* Directory Facilitator (DF)

® Agent Communication Language (ACL)

g Message Transport Service (MTS)

. Encoding Service (ES)

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

Cnidpner o

1.2.5 Decentralized Agent Management System

The basic idea of our proposal is application of aspect oriented software
development on a decentralized multi agent system i.e. SAGE (scalable, fault tolerant
agent grooming environment). SAGE is a FIPA compliant decentralized MAS [9].
Different developers worked on it in paraltel while using different coding standards and
techniques which made it complex. It is strongly coupled and code is not optimized as
well [11]. Distributed multi agent systems lack fault tolerance because of centralized
registry and management. SAGE is following distributed architecture with
decentralized management for fault tolerance of multi-agent systems. Its architecture is
a blend of merits of client/server paradigm and peer-to-peer. Instead of having
centralized location for management the owner-ship rights have been distributed to peer
entities which are solely responsible for their roles and actions. These peer entities are
part of single Agent Platform and are managed by Agent Management System (AMS).

In this section we are going to describe the basic functionality of AMS.

1.2.5.1 AMS-functionality

The AMS represents the managing authority of an agent platform and if the
agent platform spans multiple machines, then the AMS represents the authority across

all machines. On a single agent platform only one AMS can exist.

Figure 1.2 shows the functionality of a typical AMS [16]. In SAGE, a typical
AMS is responsible for sharing knowledge with other peer machines which 1s done with
the help of peer manager. For instance, when a remote machine searches for a particular
agent, peer manager’s server checks the registry information providing agent name as
the search criteria. If the agent is found the server responds by showing success

otherwise it indicates failure.

The communication between peers is through AMS RMI layer and each RMI
has a server and client on the same machine. A typical server application creates some
remote objects (like rmiregisiry), makes references to them accessible and waits for
client to invoke methods on these remote objects. A client application gets a remote
reference to one or more remote objects in the server and then invokes methods on
them. RM] provides the mechanism by which the server and the client communicate

and pass information back and forth. For instance, when a remote machine joins the

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

A

platform, the client of the new machine calls the server of existing machine which on
receiving request adds it by updating information in local cache. The information about
the existing machines on the agent platform is given to the new machine and all the
other machines are also provided the information about addition of new machine. So
peer manager provides interaction among peers in this way. In addition, every peer
probes other peer in order to check existence of other. Probing is done dynamically on
every machine after a particular interval of time. A thread is created by agent directory
service (ADS} that probes every machine afier particular interval of time. In case of

failure of remote machine the entry is removed from local as well as remote machine.

Jocal mgstry

N

@ Local azerds MAC!

101 4l

Fig 1.2: Functionality of AMS

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

Chapter 2

Literature Review

Chapter = £

Chapter 2: Literature Review

2.1 Related Work

With the increase in size and complexity of multi-agent systems. the need for
concern-separation in agent based applications, early in design phase also increases.
Concemns like mobility, interaction, learning, autonomy and collaboration are crosscutting
concerns in nature. Several authors [15, 17, 18, 19, 20, 21, 22] have emphasized on the
separation of crosscutting and core concerns while designing a multi agent system. But so
far no work has been done on the aspect-orientation of decentralized multi-agent systems.
Some of the papers that write about aspect-oriented architecture, modeling and

engineering of multi-agent systems are discussed as under:

Engineering Multi-Agent Systems with Aspects and Patterns [1]

When a complex problem can’t be solved by a single agent and more agents are
needed to work with, such systems are called Multi-Agent systems. A multi-agent system
consists of multiple agents and objects. These are the abstractions used to model a
‘specific problem. Objects and agents have some concerns in common but agents are more
complex and have some additional concerns. Agents have two characteristics those are
state and behavior. There state is determined by beliefs, goals, actions and plans while
their behavior consists of some properties those include interaction, adaptation, learning,
autonomy, mobility and collaboration. These concerns are not distinct in nature rather
they have an overlapping relationship with one another and also have communication
between them. This paper is based on a case-study of Portalware, a web-based
environment, which constructs and manages ecommerce portals. This paper presents an
Aspect-Oriented and Pattern based method for multi-agent system development and their
comparison to show that which system is better in terms of understandability, .
maintainability and reusability.

Agents are of several types those are information agents, user agents and interface
agents. Each agent type includes agency concerns. These concerns can be classified into
three categories those are agent state, agency properties and agent role. Agent state is
determined by knowledge which is based on beliefs, goals, actions and plans. Agency
property and agent hood property forms behavior of an agent. Agenthood property

includes autonomy, interaction and adaptation while learning, mobility and collaboration

~

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

Chapter # £

are not necessary for agent-oriented systems. Agency properties are explained in Table

2.1 given below:

Agency Property Definition
. An agent communicates with the environment and other agents by means of
Interaction 2
sensors and effectors
. An agent adopts/modifies its mental state according to the messages
Adaptation : . <
received from the environment
Autonom An agent is capable of acting without direct intervention; it has its own
y control thread and can accept o refise_a request message
Learnin An agent can learn based on previous experience while reacting and
& interacting with its environment
- An agent is able to transport itself from one environment in a network to
Mobility
another
. An agent can cooperate with other agents in order to achieve its goals and
Collaboration sent P & &
the system’s goals

Table 2.1: An Overview of Agency Properties

Each agent application has a specific role for which it is developed. Agents co-
operate and co-ordinate with one another to perform system’s role. Agency properties like
interaction, adaptation, learning, autonomy and collaboration have crosscuiting nature.
This paper applied Aspect-Oriented and Pattern Based Method for the development on a
Portalware case study, after comparison concluded that aspect-oriented method enhances

reusability, evolve-ability and writ-ability.

A Generative Approach for Multi-Agent System Development 23]

This paper says that multi-agent system development involves two types of
concerns those are core and crosscutting. Many of the concerns involved in muhi-agent
system development are crosscutting in nature. Existing methodologies are too high level
and do not deal with complexity. Implementation frameworks are not enough to deal with
modeling and implementation of agent-oriented crosscutting concerns. This paper
resolves the above mentioned issues by presenting a generative approach for development
of multi-agent systems. This approach designs the agent-oriented system by using Agent-
DSL language, then it makes aspect-oriented architecture and at the end a code generator
generates the code for that multi-agent system. This paper also applied proposed approach

on a case-study of ExpertCommitee system.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 8

Chapter # 2

Aspectizing Multi-Agent Systems: From Architecture to
Implementation [6]

Every agent architecture encompasses a set of agent properties: adaptation.
autonomy, knowledge, etc. These properties overlap and crosscut agent's basic
functionality. They shouid be designed differently from agent’s basic behavior.
Architecture of multi-agent systems effects the composition of concerns. In addition it
also affects the quality of multi-agent systems. Good quality architecture should be able
to support separate handling of multiple properties. No such design has been suggested
yet for the development of multi-agent systems that can reduce the complexity of system
and develop high guality multi-agent systems. Most of the approaches for development of
multi-agent systems are attributed to poor architectural design and regardless of
modularizing agent properties in the initial stages. This paper shows how an aspect-
oriented architecture can be incorporated to previous object-oriented architecture from the
preliminary stages to the implementation stage. Separation of agenthood concerns is
achieved by 1) prescribing architectural guidelines for aspectizing agent concerns 2) a set
of guidelines to describe how aspect-oriented agent architectures can be designed and
implemented 3) finally a case study of multi-agent systems has been conducted to test the
approach.

The proposed solution is the aspectization of agent architectures at architectural
level. Aspect-orientaiion modularizes agent-specific concemns unlike the previous
approaches that use languages, methods and tools. The aspectization is done with a UML
extension named aSideML language that provides two views for representing aspects: 1)
architectural view and 2) detailed design view. The crosscutting among agent concerns is
separated with the help of architectural aspects whereas the modularization of basic
concern is achieved with Kernel component. The first stage of the approach is carried in a
stepwise fashion in which the configuration and composition of architectural components
is understood. In second phase, the architectural component is refined and the
corresponding crosscutting interface is also refined to obtain a detatled design. Finally the
system is implemented using an aspect-oriented programming language such as Aspectl.

This paper describes that architectural decisions have greater impact in improving
the maintainability of muiti-agent systems. Aspect-oriented architecture is better than a
mediator-based architecture as it supports the functional encapsulation of the agent's basic

functionality. The crosscutting interfaces allow the incorporation of both agenthood and

Impact of Aspect Orientation on the Reliabiiity of Decentralized Multi-Agent Sysiem 9

Chapter # 2

additional properties to the system's basic functicnality in a non intrusive way. Therefore,
without having any change in the existing methods, simple object architecture can be
transformed into agent architecture. Other benefit of using this architecture is its language

independency which is helpful for a large number of developers to deploy it.

An Aspect-Oriented Modeling Framework for Designing Multi-Agent
Systems {7}

Crosscutting concerns cannot be captured with the conventional modeling
approaches because concems of a specific agent type have their own goals and actions
that crosscut goals and actions of other concerns associated with other agent. These
concerns encompass the internal and systemic properties of multi-agent systems, The
results of crosscutting are scattering and tangling that replicates goals (and actions) in
agent-oriented modeling. They are also anti-reuse and anti-evolution factors in the mult-
agent software lifecycle.

Similarly, the agenthood properties of multi-agent systems crosscut the multi-
agent system modeling elements: agents, goals, beliefs, actions, and plans. When these
properties are ignored in the development of muiti-agent systems it results in such a
syvstem that lacks uniformity with unclear design and implementation decisions. In
addition these modeling approaches are proved to be incapable to cope with the
crosscutting nature of some multi-agent system concerns. Therefore, new composition
rules should be designed to encompass all crosscutting multi-agent system concerns.
Hence, a modeling framework is necessary for modular representation and reasoning of
crosscutting concerns in a multi-agent system to provide proper support to software
developers.

The traditional agent-oriented abstractions and composition mechanisms are
revolutionized with a new aspect-oriented meta-modeling framework. This framework, in
addition to be an alternative for previous approaches that are limited to object-oriented
and component-oriented paradigms, is independent of agent-oriented modeling languages
and consists of three models: the Aspect Model, Agent Model and Composition Model.
The Agent-Model consists of a set of fundamental agent-oriented design elements such as
goals, actions and plans. The Aspect Model is useful for the design of aspect-oriented
modeling languages with the help of concepts, relationships, and properties that are

organized around three interrelated conceptual models: 1) Component Model, 2) Core and

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 10

Chapter # 2

3) Join point Model. The last model Composition Model is helpful for providing
semantics description of the crosscutting composition mechanisms that is it reflects the
wavs the aspect affect the agents, their beliefs and actions.

With these models, the multi-agent system properties are explicitly modeled the
way basic multi-agent system behaviors are modeled. An aspect-oriented notauon has
been integrated into ANote language but there is no guarantee whether these sets of
;:omposition rules are complete. For this purpose more case studies should be conducted

1o evaluate how much these composition operators can cover.

An Aspect-Based Object-Oriented Model for Multi-Agent Systems [31]

A heterogeneous environment can have multiple types of agents each having
different agency properties and collaborative capabilities. Though agents have states and
behaviors like those of objects but agent states comprise of beliefs, goals, actions. plans
and their behavior with autonomy, adaptation, leaming, and mobility. When software
agents are introduced into object models they create a number of complexities as these
acent properties and capabilities are intrusive and non-orthogonal. There is a need to
manipulate these properties and capabilities with the help of an agent model at he
beginning of design.

Existing agent models of software architectures focus on one type of agent. In
most of the architectures the agents are considered as objects that makes agent design and
implementation non understandable, poorly maintained and not reusable. The software
agents cannot be designed properly due to the occurrence of many agency properties at
the same time. The agency properties and collaborative capabilities of an agent must be
associated with its core state and behavior by the help of special techniques and

disciplined ways.

So the agent model presented in this paper of object-oriented systems uses aspect-
oriented design and programming. As aspect-orientation is good for modularization, it
provides separation of crosscutting concerns among different agency properties and
collaborative capabilities. Agents are incorporated into the model in a disciplined and non
intrinsic fashion. Thus a multi-agent software is obtained whose design and
implementation solutions are properly structured for evolution and reuse. The model is

applied on a web-based environment that deals with the development of e-commerce

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 11

Chapter # 2

portals to show the results. The model is good for handling each agency aspects
separately and helps facilitate the development of a multi-agent software that is easy to

understand, maintain and reuse.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 12

Chapter 3

Problem Domain
&
Proposed Solution

Chapter = 3

Chapter 3: Problem Domain and Proposed Solution

3.1 Problem Domain

3.1.1 Nature

Decentralized Agent Platform distributes the services and can avoid the
centralized MAS bottleneck. A multi-agent system needs to be dynamically scalable
which assures flexibility in agent platforms, Fault tolerant architecture must be inherenily
available in MASs for continuous service provision.

Considering the literature review, we see that all of the papers write about
separation of concerns, aspect-oriented architecture, modeling and code generation for
crosscutting concerns but none of them write about the decentralized multi-agent system
and crosscutting concerns which come across its development.

Qur aim is to put an effort to identify crosscutting concerns in decentralized MAS
and their implementation in Aspect). For this purpose we studied SAGE (Scalable, fault
tolerant Agent Grooming Environment), which is a decentralized MAS. It is developed in
JAVA and is a highly coupled system. The crosscutting concerns in its code are
identified. Aspect-Oriented Design (AOD) of above mentioned system is &evelopecl 1o
decrease un-necéssary communication between modules. Afterwards, metrics afe applied
that measure the reliability of both of the AMSs developed in JAVA and Aspect

respectively.
3.1.2 Proposed Research

The focus of this research is to analyze that can we achieve a more reliable system while
using AOSD for Al based Agent System? It has been recognized that quality of a good
software system is that it should obey the principie of loose coupling (10]. Different
developers worked on SAGE in parallel while using different coding standards and
techniques which made it complex. At this moment it is very difficult to debug and
maintain the code of SAGE [11). Aspect Orientation is applied to autonomous

decentralized Al system to observe the behavior of this new methodology.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 13

Chapter # 3

3.2 Implementation Impacts of Proposed Research

The aim of the proposed research is to explore the behavior of Aspect-Oriented
Technology for decentralized Agent-Management System of SAGE.

» This research helps to improve the reliabi]ity of decentralized MAS.

* This research is refusal to the idea of researcher or programmers who believe that
AOP is good just to m_oduiarize_ the crosscutting concerns like authentication,
logging, persistence.

= The crosscutting concerns which we identified in decentralized multi-agent
system could never get the attention of researchers previously.

= The issues like code-tangling and code-scattering could be easily handled while
using Aspect-Oriented Software Development for an Al based agent system.

® QOur research work gives a new dimension to other researchers.

3.3 Functions of Decentralized Agent-Management System

SAGE is following distributed architecture with decentralized management for
fault tolerance of multi-agent systems. {ts architecture is a blend of merits of client/server
and peer-to-peer paradigm. Instead of having centralized location for management the
owner-ship rights have been distributed.to peer entities which aré sblely responsible for
their roles and actions. These pee;' entities are part of single Agent Platform and are
managed by the Agent Management System. SAGE also introduces a notion of Virtual
Agent Cluster (VAC) which plays an important role for introducing fault tolerance within
the distributed multi-agent system. Figure 3.1 describes the concept of Virtual Agent
Cluster [16). It proposes a design in which the components of AMS are distributed in
such a way that failure of one instance will not cause side effects on its peer instances.
AMS communicate with one another through RMI Communication Layer.

This system was ideal for our case study due to several reasons. First, it is the
only multi-agent system that has a decentralized agent management platform and Aspect-
Oriented programming behavior has not been proved in this context. Second, scalability
and reliability always remained a key attribute for multi-agent systems. Finally, its
realization involves a number of core and crosscutting concemns; those are of great

importance in case of decentralized multi-agent systems.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System i

Chapter # 3 . Problem Domain and Proposed Solution

o Vn*tnal"Acenngmte:

Wmc »

Ag nvesPo ol@@
Bplication, Az

Figure 3.1: Virtual Agent Cluster
3.3.1 Roles & Responsibilities

The AMS is responsible for managing the operation of an Agent Platform, such as
the creation of agents, the deletion of agents and overseeing the migration of agents to
and from the AP (if agent mobility is supported by the AP) [8]. Since different APs have
different capabilities, the AMS can be queried to obtain a description of its AP. A life
cycle is associated with each agent on the AP that is maintained by the AMS.

3.3.1.1 Managing Authority

The AMS represents the managing authority of an AP and if the AP spans
multiple machines, then the AMS represents the authority across all machines. An AMS
can request that an agent performs a specific management function, such as quit (that is,
terminate all execution on its AP) and has the authority to forcibly enforce the function if

such a request is ignored.

3.3.1.2 Maintaining Index

The AMS maintains an index of all the agents that are currently resident on an
AP, which includes the AID of agents. Residency of an agent on the AP implies that the
agent has been registered with the AMS. Each agent, in order to comply with the FIPA
reference model, must register with the AMS of its HAP (Home Agent Platform).

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 15

Chapter # 3

3.3.1.3 Maintaining Agent Descriptions

Agent descriptions can be later modified at any time and for any reason.
Modification is restricted by authorization of the AMS. The life of an agent with an AP
terminates with it’s deregistration from the AMS. After deregistration, the AID of that

agent can be removed by the directory and can be made available to other agents who

should request it.

3.3.1.4 Searching Agent Descriptions

Agent description can be searched with the AMS and the AMS further controls
access to the directory of AMS agent descriptions; no default policy is specified by FIPA
regarding this issue. The AMS is also the custodian of the AP description that can be

retrieved by requesting the action get Description.

3.3.1.5 Mandatory Functions of AMS

An AMS must be able to perform the following functions
e register
e deregister
e modify
s scarch

e get-description

3.3.1.6 Agent Lifecycle

FIPA agents exist physically on an AP and utilise the facilities offered by the AP for
realising their functionalities. In this context, an agent, as a physical sofiware process, has
a physical life cycle that has to be managed by the AP. This section describes a possible
life cycle that can be used to describe the states which it is believed are necessary and the

responsibilities of the AMS in these states.

Impact of Aspect Qrientation on the Reliability of Decentralized Multi-Agent System 16

Lhnapier - 2

Unknown

Figure 3.2: Life cycle of a FIPA Agent

In addition to the above methods exchanged between AMS and other agents,

AMS can instruct the underlying platform to perform the following operations in order to

manage the Agent Life Cycle. Figure 3.2 explains the states of an agent in its Life Cycle

(8.

3.4

- Susﬁend Agent
» Terminate Agent

- Create Agent

» Resume Agent

» Invoke Agent

L Execute Agent
Research Methodology

Qur proposed approach is based on the extensive study in the field of multi-agent

svstems. The basic methodology adopted for the research is:

Analyzing the decentralized multi-agent system

Studying SAGE (Scalable, fault tolerant agent grooming environment), its
working and design

Understanding implementation of its decentralized AMS

Identifying crosscutting concerns in the code of decentralized AMS

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 17

Chapter # 3

= Grouping those crosscutting concerns according to their nature

* Modularizing crosscutting concerns with Aspect-oriented software development
techniques

» Implementing aspect-oriented design of decentralized AMS with Aspectd

* Choosing suitable metrics tb evaluate reliabilitv of both the versions of
decentralized AMSs, one developed with JAVA and other one developed with
Aspect] ..

3.5 Research Work

3.5.1 Object-Oriented Design of AMS

The object-oriented version of decentralized AMS of SAGE was implemented
using Java programming language. However, Java is good to deal with inheritance and
polymorphism, but it may also be the cause of introducing scattering and tangling in the
code. When the AMS of SAGE was reverse-engineered to obtain object-oriented design
the same condition existed. We analyzed the system with both class diagrams and
interaction diagrams. The result showed that due to high inheritance between classes the
system became highly coupled. The methods were incoherently calling each other
making the flow of program more complex and not undlerstandableﬁ Moreover, the system
has become decentralized to achieve fault tolerance and scalability but it was difficult to
organize system components into modules according to their functionality. Therefore,
there was a pressing need to implement the system with a technology that could provide
linguistics mechanisms for separate expressions of concemns in AMS and weaving these
concerns with the system’s primary concems. Figure 3.3 shows the object-oriented
design of decentralized agent management system of SAGE which we made by reverse

engineering of the system.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-4gent System i8

SeniceAgent
Mo)
i ohoulwh t5igls Boglean

Peersarecwnpl
ey paar) (
SvhashRegistry: java utt Mashtatie = ndl

} Swane
SSeraceigent()
S3endMessage(

TyetMessaged
SyiockingReceive()
*Resumal)

Sunp
Ssenicesgent()
'uew_;enudo

J— _,___-"

T
|
1
i

AgeniDirecrySenice AMSpe

Oram whi|

SererSenermpl()
SectiatePeerSarverim pig
SoingR e ponteg
SsearchagenDesch
ScemoveMachinad)
getPlatorm Hame(y

ool C Platism Addrass
Sgatiachinelist)

W pdateMachineList)
SpingResponsel
“gaarchagent)
SremoveResAMS])
*addPeerabsh

SyetlisPeer s
3

ISever,

'hmamo Swing

‘dpstDest 1 Sting = nutt
i%ﬂf‘fype String = null
Toboelinstance - boolean = falsy
18palrTaken ; Sinng

. LsuFitefame : Suing
TstrigentName : String
BsrTramponAddrasses]; Sing
st ocalon] : String
syDestrpbon : Sting

I TobyteState : byle = AgeniSiales ACTVE
"8 strOwnerShip : Sting
‘BystStatedp - Striag

i®&hashAgentRel : Java ulil.Hashtable

*activaie)
Srunf)
SRAD NG P eerAMSH
*FrobeMachine()
SgeiSeniceNamed
*setSenviceName()
*1esctvaled)
SqelFirsiTok)
*etSeniceDesc)
Ssa1SeniceDesc)
wrerSenice Type()
*setSenicaTye()
“*yetHashagentRet)
_ *AgenDirectorySenice()
HregiserAgemi)
aeRegisierdgeny)
SmodihgentDescripbon()
Suecietesgeni)
*seartnAgentescription()
SzetAgentidl)
Pyetigentiag
SgetDescrphion()
s eDescription()
Pacoate(y
'gelFlootSemceo

F _‘;’Avo bjActionSiatus

(from pear}
SysiractionStatys ; String =

*satactonStatus
SgetictionSratus

\ -ObjsctonSutus

e

ClienfLaskup
Ll k] .
EMMammName - String = nufl
. j SChentLookupl)
\\“-\,. *pingPaerauth)
-ah]Chenﬂ_oohup ‘QﬂPeerLlsto

T SremowPeer(
| YgRACCSeneridiress)
'i *getfatiormName])
§ getMachineList()

DynamicPolicy
tlmwmnn)
maml long = 2000
YestMack . Siring

TpeniSize i

I
ShynarmicPoticy) i
un)

@ probehaching)
SremoveFault)
Lfsendmg\ﬁﬁo .

-obmonaam

RopiZe-sz2
o =4

23 awa .t Vecar

- s‘c"nﬁddres s{}
P atmbDescripbon)

NG T2)
-tz A2ciSenice TTETESe"2ZImmand()

L.+ -2 F00tSerac
E3

| *bindPeeransg
H ‘Chenu_uokupo
! gt ookupFaciang
. . 1 “pingPeer))
| PR Skl AN - ‘
*, SBADS
—_ eojLookup=as:ey
* -chjLookup W———~_——_:_-

L1t

%hu'%qrcache |a &
|"‘a|:=: Fsiance - boolgs
Spstrta=ne - Stng
S5t zsaPatim ST gL

3=ale =new Has~—=:t s %
3

MooesFactang
Factory()
e:"eerCached
e atarmName])
*ge=gormName(}
‘g!" sealMatid)

“-eerDFQ
"e'— s aPeen)
il

Fig 3.3: Object-Oriented Design of Decentralized AMS

= 250lers Jjava il —zs~iale = new Hashtatle ()

Impaci of Aspect Orientation on the Reliability of Decentralized Multi-Ager: System

19

Chapter # 3

3.5.2 Making an Aspect-Oriented Design

Aspect orientation is the recognisation of the development of software system
with respect to many concerns [12]. The development of software system with respect to
concerns could be achieved by separating classes into concerns {or modules) according to
the agenthood properties they possessea. The Aspect Oriented Design (AOD) [24] was

developed then by identifying the crosscutting among these concerns (or modules).

3.5.3 [Identification of modules in AMS

Every multi-agent system has a desired set of properties {6] (or agenthood
properties) and it is developed in order to achieve those properties. These properties are
knowledge, mobility, learning, etc. Therefore, there is a need to go through the AMS in
terms of these properties i.e., to see which part (module) of system is related to which
agenthood property. It is more likely to analyze properties in a single logical Agent
Management System distributed over multiple machines. Therefore. the basic modules or

concerns identified according to these properties are:

e Peer Management
» Knowledge Base

o Agent Management

Here is the description of these modules:

Peer Management module:
The Peer Management module is responsible for managing all the operations of
peer entities:

1. It manages heartbeats or liveliness of peer machines afier a fixed interval of time
provided it is done dynamically.

2. It provides interface to the peer entities through RMI (client/server) laver. So any
request to server made by the client of peer machines will be acknowledged by
the peer managenment module.

3. It helps peer components or entities to share knowledge with each other. For
example, searching and providing information about a certain agent on a peer
agent’s request.

4. It also helps to manage the knowledge component in case of any sort of

modification in peer agent’s information.
p

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 20

d

Knowledge Base module:
Though Knowledge base component manages local agent and remote agent
information, it is managed by Peer Management module. Its functions are:
1.2 To keep information about agents i.e.. their state. life cycle. etc.
2.2 To perform functions like searching information about a particular agent. deletinz.
adding or modifying the agent information and providing the information about

‘Agent Platform (AP) description

Agent Management module:
The responsibilities of Agent Management module are similar to those of AMS’s

responsibilities: register, deregisier, managing life cycle and states of agents, etc.

Figure 3.4 represents the functions of these modules.

/PeerManugementModuie\ a:ow!edgeBuseModule \ ﬂgentMcnugemeni 1

Module

r:.' anage Heartbeats l
LMonoge local J fMono_qe Agzant Lifecyclej

agent Intformatfiaon
(i-zre Knowledge]

[Manage Agent siaies j
r:':wide interfoce 1 ! LMcnoge remote J

oaent Information

' znage Knowledge]

-z I
\{ mponen

Lother Mancgement]
functions
N AU J

Fig 3.4: Pecer management, Knowledge Base and Agent Management modules of
AMS

3.5.4 Identification of Crosscutting Behavior
In order to identify the crosscutting behavior, the whole system of AMS is reverse
engineered. Its code is analyzed keeping in mind the agenthood properties to identify
the modules (Peer management, Knowledge base and Agent management) and then
crosscutting is observed in the system. Thus we bring out the classes, members and
parts of code in methods/classes according to the behavior of modules. Figure 3.3

represents classes in each module and crosscutting among them.

Impact of Aspect Orieniation on the Reliability of Decentralized Multi-Agent System 21

_PeerSer verImpl i

Agent Management

e T L T L T L L I Ea PR RN EEE Y PR PP LY

actnratel’eem:ﬁ:plt) woid
aﬁil’eexmo RetionStatue .
getmst:?eex‘MS(b :Hashtable"

! Peer
! Management
il checkreer . -

qeu(xhilﬂ.ist() lmyl.:.st‘

ChechbPear tHachine {} tvoid]

getmtomﬂm L9 4 String

adnrutiraes

PynamicPolicy .
 Dynamfcholicy{§:void

PeerSe rverIml {):void
A Kachine {

‘Femave $woid T
! renovefeerAMS (3: ActionStatys |

seaxchﬂgmneac() l'qentId

arleaavsses
'

lgcnt.Dl.recto ryService

qetlgard.Idt) BgentTd

-get Descyriptisng) :RgentId
gecPirstTok () - ricy
gebnootServlcet} Kook Service

P:’@M() wod.d
Mﬂrmﬂ void

amavrsssumaas

: probeﬂachlne(}ivoid

@datellax:‘lﬁiéhst(yyodd

¢ . removeFault () ;pid*

{
i seamhlg'ent () :ActionStatus
}
]

T T e T Y I N T T C

"Tmmwmmwmmr

getbgest Xd! ¥: FerkId

searchigentDescriprion{):AgencId)}

i SddeeTAHS() mmnsiaa:-é ,
4 ge:l-:.s!:?eexmt) sHashtabla.

b pmgneeponsen bobleahY iﬂ’“»

erl’eart)'md
Look@!act.nqrt) vu:ui
.l.ookup : q‘bjecc

H
H
H
H
h
-
.
"
H
H
.
N
>
"

*aa-me:u {BctionStatns

ferbear(y:

IKainRddress

geu.qem?lattomﬂa:se’) Scring
'getmﬂ Strang”
getLockupFac:.ory() :LediupFactory
-getl’eerlwulverﬂ ¥a=it able
getHach.neLlsc() Arzeyiist
getMainAddress(] :Na‘riddress
setpm.rﬁesl:)lm() yvaid

: I <__.,.._.:::::::::::':: nodi fyAjerkDescr iption(): String
: e e L i| tegistexhgere ():Scring
il ClientLookun K !... ____________ = -':i:' gﬁ{gﬁﬁnptmnn :hgentId
i ga: m" Jl.rtayl.st. ' E N i_-.. e
: getl’eert:st() yoid 1 ¢,\ J{ ST P teeerbsntrbensariban
}| gerPatfomNane(): mdi S P
i pafigheer (P AcrionSteuss [+ {LookipFactory nootService
i} pingPeerkmhl): | 11] geclocallacTd (): Strmw Jadddzere D) poid
i ‘remavebesr() ' %ﬁ’»&mm‘ 2 || addttackirelisT (1 :veid
: Wil acka{)i H’ash&.ahle qet.s.g-emm“ m;{d
: : Get?istioﬂﬂameﬂ String géCEgerc Plat formAt dress () 1 String
] Peerias i
'3

gets:nared.‘r“ueglstr?() Fasixzshle

........ thauvdanntrintiaerrannuntasn v rarsrasnnnye.t

Legends

pm—ee

"I -Fnowledge specific

Fig 3.5: Crosscutting Agent Concerns in Peer Management, Knowledge Base and

--Pesr management specific classes

rml’eg'() ActionSt sus
"RootService {)Void

‘qmplatiombescnptimu Sering

E rmlad:uet) wid’ H -

: ml’eaﬂﬁ() kﬁbgnsutm%__ PeerCache

i cearchigest ():RotionStatus '[! GATPEaTAMS () Pea TAItS,

i searchigestDesc() RRitId | 1 paoateazsts ()- FoeAls
: upuatenacnmmu) vedd) REERGAZARCE) TRodd

- T ClientImpl ii | RctionStatus.

: I G ACL 10RCL Btu (] 15T

: ch.eckUniqhaHama(r "‘.-;> geb.ﬁztignStatgsuﬂ véigg
! fAccionStac il

: gecPeerhiME0) : bidledn i: Knowl edge Base

R L T T PP TR P T R S PP R T N T IR L LT LTI

classes R AXXTLX

-knowieds speciific azx*ers

rxxxixrxz -Peer nanagement Sr=ciflc menrsrs

Agent Management Modules

It could be observed that the set of classes belonging to a particular concern (peer
management, knowledge base, and agent management) are surrounded by dashed lines
whife the crosscutting members in a particular class are highlighted with color of concern

(to which they belong). The difference between crosscutting members and part of code

could be easily noted with some members written in falic.

From the discussion of above section and through reverse engineering of svstem,
it could be concluded that Knowledge Base is the concern whose functions are

crosscutting all the modules of AMS. The functions of Knowledge Base concern are as

foliows:

Pessaneratann

epmannr

Agant management apecific classes 'xximExxxr -AUENT Danagement :yelific nexhers

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

CHdiner w2

1. Updating the knowledge in case of anyv agent management function

2. Informing other machines about this updated knowledge

Impact of Aspect Orientation an the Reliability of Decentralized Multi-Agent System

Chapter 4

Software Design

Lhnapier w4

Chapter 4: Software Design

4.1 Aspect-Oriented Design of Decentralized AMS

The modules jdentiﬁed in previous section 3.5.2 helped us to identify the
crosscutting in the system more appropriately. The main root of crosscutting was
Knowledge Base module whose management functions were spread over Peer
Management and Agent Management modules. The reason was the shared registry
information due to which it was difficult to maintain the distribution of information or
updating the information in case of a change in registry, in a peer-to-peer paradigm.
Using bidirectional RMI with a combined client/server at both ends does not help in

reducing coupling. In addition, consistent registry information at all peer entities brought

BEer Managemant Coaeern’

DOynanicPolicy {7
(m mm))| ParrServarmpl Clie mtLookop
" ijzum pae feorn peen)
‘1F*hashRegtstry :: YstrPiatlormbame ;»
*Paerseey e}ln:dlo ClmmLoukupo :
h e SramovaPaarAMS() ‘qed.ankupFamaryo
grobeMachined | | .gttLisPeecAMSo pingPaerQ.
remoyeraut(’ i T
_________ |__

T "T_ _:F - —

f.:;::::..'-{..,“ ‘*_—'_ﬁ

% - s e R e AR R .
"K“DMG"R'D"‘”WIT‘J"ASPQC A mextaptmnA:pect» <<Knowledas LonsisténcyAspect>>.
umaruso — -gusmus(n

Lok vre -g:,u?l:sn

P:::EE; !-lthm(EtcepﬂonAspect) —_—_—

RE()iE . f———— A::Joasuiuﬁaoulniunsuws()
———'___"—’ - ata() ‘b"'“‘i(E“‘P!!ﬂ_'! 4 RooiService. petAgeni Platferm® ().
.,:etlo;“!lt“ tLAcgmgtawsc()r{g }‘ — LookipFactery: wnemus:smng), »
‘RaotSarvioe.garloskupFactoty() s E :

'Hlshtablt‘ecthctﬂupoinro = L Taithta (Ko wledge Consisteaty Aspect)

Hashiabie.getPedrCachel) ‘ —— _._._._.L_ =
AgemDifestory Salyige: gqﬂut nr[n;) HE r__..._.r,:.._..l_____:] _@_.:,-

| T T s
'

tlwithingKn'awled uo‘l:uibmlo AEpeaty —— m———p
1

e] 1
" 1 ——
— s I I A
13 D) e e e H a1 ' '
¥ Bt Tace Sttt SN AN, AN :
LookupF actory AganiDiectaryServide
=(from peerj - T ¢roa 2u4)] s —
hashRegiste ty.s; | RootSernce rRZme ; String: ervice Agent
‘hzshPearCzeh: : ;. Qrom mms) Mosicfiese : Steing, = null Mow im ;)
Rhsolnmmee . | (Cagemnormams TG ATy nen| [oM v
"std;oealplmf;srh"‘ F1iA gente batfo ddregs S'mrla W5 ¢ rvice Agent()
. "hashEe 5’5'_‘9_['_‘!?' s :Gﬂ'ﬂeo - l—{ YResume()
getPeerCacheo e N a-u\aennd[}, »
qetplaﬁomﬁameo .nﬂ“"""'UPF actoryQ . *gatDascriptio nﬁf)’ gsu:r?,“ Agent()
mnme?;leéo gxg::;:gg:m:mg,o éacmzuo . \gctﬁ\ge PHO
ﬂe;::;gk 0 ‘DQ‘P!RrResower ntﬁonnn’iceo _______
) Knoyrl,ql_g'e'éa'i'i‘ilic'fiteni, Ageni ManagemeniConce

Fig 4.1: Crosscutting Agent Concerns in Peer management, Knowledge base and
Agent management modules

the issue of reliability. These issues were resolved by identifying three main aspects that

were Knowledge Distribution, Knowledge Consistency and Exception Handling aspects.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 24

Uhaprer =+

Exception handling concern was selected because there were roughly 63 instances of
exception handling out of 25 classes in AMS. That is the percentage of Exception
Handling was 252% in the system. Therefore, it was necessary to select Exception
Handling as a crosscutting concern in order to reduce tangling from the code. The Figure
4.1 shows the AOD of AMS. It shows which class of a module aspect is crosscutting. For
example, KnowledgeConsistencyAspect crosscuts all the classes in Peer Management,
Knowledge Base and Agent Management modules. Note that classes in each module are

selected on the basis of percentage of functionality of a particular module they possessed.

The aspect-oriented version of decentralized agent-management system of SAGE was

implemented using Aspect] [4].

4.2 Class Design
The purpose of Peer Management, Knowledge Base and Agent Management

functions of AMS is explained and that how they affect the system. Now our focus is to

explain the purpose of each class in each module.

4.2.1 Object Oriented Class Design

As we know that OO design of AMS is already developed [16] so the classes in
each module are as follows:
* Dynamic Policy
Purpose: An important class of Peer Management module. This class is responsible
for the dynamic probing (peer to peer). It checks the status of the other machines on
the agent platform and in case of failure it removes the peer machine from the
platform.
= PeerServerImpl
Purpose: Thisis class is also part of Peer Management concern. This is the server
class of AMS RML.
s ClientLookup
Purpose: This is class is also part of Peer Management concern. This is the Client
representative class of the AMS RML 1t calls the AMS Server Methods.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 25

LookupFactory

Purpose: This 1s class is also part of Knowledge Base concern. Lookup factory 1s used
in booting. LookupFactory is created by the ClientLookup. Lookup Factory is set and
can be obtained from RoorService. It is required by all the system Agents because
they nced to communicate with other peer System Agents.

RootService '

Purpose: This class is also part of Knowledge Base concern. Its purpose is to provide
services to lower level services. In SAGE RootService is responsible for providing
services to Agent Platform Services such as AMS, DF, VMA and MTS. Furthermore
it also sets service parameters. RootService is initiated at BootStrap time.
RootService is set, }n which the reference of the shared registry is passed on to the
root service instance. It sets the agent platform description. RootService sets the agent

platform name, which is obtained by the system and is the name of the systemn.

DynamicPolicy AgentDirectoryService RootService
Id: Sui
isrt‘rg}::ﬁmSmng strName: String strAgeniPlatformNarme: String
' strDesc: String strAgentPlatformAddress: String
strType: String harshPeerResolver
nn)
probeMachine()
; getLookUpFactory()
removeFault(} activate()) getA gentPlatformName()
getAgent.I 0 getAgentPlatformAddress)
LookUpFactory getDescription() getPeerResolver()
hashRegistery:
hashPeerCache: .
boollnstance: PeerServerimpl ClientLookup
strMachineld:
hashRegisterv: strPlatFormName:
getPeerCache() gistery: .
getPlatformName() cerServerlmpl() clientLookUp()
removePeer() femoveP eer AII')\JSO gt':tLgokUpFactoUO
getPeerAMS() getListPeerAMS() pingPeer()
lnokuny

Fig 4.2: Classes with Attributes and Methods

4.2.2 Aspect Oriented Class Design

KnowledgeDistributionAspect
Purpose: This aspect is associated with the classes of Peer Management concern,

Knowledge Base concern, and Agent Management concern. It captures the joinpoints

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 26

N FRLAp A

of RootService AgentDirectoryService and LookupFactory classes from the whole
system. T

= KnowledgeConsistencyAspect
Purpose: This aspect is associated with the classes of Peer Management concern,
Knowledge Base concern, and Agent Marlagement concern. It captures the joinpoints
of RootService and LookupFactory classes from the whole system.

= ExceptionAspect |
Purpose: This aspect is associated with the classes of Peer Management concern,
Knowledge Base concern, and Agent Management concern. It captures joinpoints of

exception handling from all the 25 classes of the sytem.

KnowledgeDistributionAspect _| KnowledgeConsistencyAspect
setStatus()ILookUp) getStatus()
peerR(getAP(
peerCQ peerAMS()
RSO
ActionStatus.getActionStatus()

ActionStatus.setActionStatus(String) RootService.getAgentPlatform*()
RootService.getLogkUpFactory(} LockupFactory.getPeerAMS(String)
HastTable.getPeerResolver() HastTable.getPeerResolver()
AgentDirectoryService.getRootService() twithin(KnowledgeConsistency Aspect)

ExceptionAspect

* XD

lwithin(ExceptionAspect)

After() throwing(Exception e)

Fig 4.3: Aspects in AMS

4.2.3 UML Design

UML methodology is selected to understand the working of decentralized AMS
and to identify the crosscutting between the modules, The following diagrams show the
basic design of decentralized AMS.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 27

Use-Case Diagram

Do Ragister Age-t Register Agent O

get A Descrigtion

[T o

\

Maintain AID Index / 2gent Manage AP .‘_,._..
O __,...—' <<exiend>> O
\ “_—' ETREEN
Manage Agents Q ------- Imvoke Agent
f& ®, e <<ertend>>
<<extend>> * Manage Pqem Life Cycle T

:' <<ax18nd>> . & -~ .
<<e nend>> by ..,
Search Agert Description <<erf¢nd>>"-_ "‘-‘_ Resuma Agant

\, <<extend>>

Madify Agent Descrption H O O

Crexe Agent GuiUTemminate Agent Execute Agent

Fig 4.4: AMS Use case Model

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

28

» Sequence Diagram

A . : RootServea |
. AgentDirectory Senvce f : RootSenice | - Hashtable
!

i
1
1 I
searchAgentDescription(String) }
|

|

D — getPeerResolver() Keys()
hashfPeerResohers
e - e -
1
I
getagentPlatformAddress() :
'
getAgentPlatformAddress() l | i
;
i
getPeerRescolver() . Keys() :
hashPeerResclvers l .—l
e e e :
1
etPeerik | T
getPeerResolver() — | containsKey() |
_I.
hashPeerResolvers Lr]
Tt]
|
P
getPeerResolver() >I containsKey () :
hashPeerResaoilvers -
e ettt \
i
ne t
getlLookupFactory{) t :
I
objLookupFactory !
L~ T e e e i
I
L
L !
_ - m a4 1 3

Fig 4.5(a): Interaction Diagram of Search Agent Description

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

- _: RootService
AgentDireclorySenvice
i

|

1 |

] |
activate(ams.Agentid) :
= !
getAgentPlatformAddress() !

. : =
- strAgentPlatformAddress
{E ____________________

.

getAgentPlatformName()

strAgentPlatformName
< _______ U

addAgentiD(ams. Agentld) H
T
getAgentPlatformAddress() T

strAgentPlatformAddress
.<_ ____________________

getAgentPlatformName()

strAgentPlatfiormName
<_ _______________ I

addAgentiD(ams.Agentld) |]

——————e

Fig 4.5(b): Interaction Diagram of Activate (Agent State Transition})

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

T : - LookupFactory' - :
= . - LookupFactory - =
{A entDi e RoctSenvce ashiahle 1 PeerCache | _ PeerServ.,
y i [) | i L
: : 1 | |l {
- . i | i
searchAgeD esaipton(Sting) I 1 | 1 i
P 1 : | i 1
| ' L I !
getPeerAMS{String) | b o+ obiPeerCache: | I
v t ; getd i _PeerCache | 1
' e] i) '
}
T e - i getPearAMS()I :
|] ‘
- {
I i erAMSRef I
1 1 25 _____ f
, : | { }
t r ' I
. | 1 j 1 f
' | I)) I
I 1 | I !
1 i i { I
1 }] | I
1| : l I :
i | _gePecResoer) mkw“’ ring, String. arhs. peer.PeerCache) |
AT st - G i !]
' |- Get)” < 1 i |
e 1 I]
-] I i
i | | |
T i J |
; " RasPaemescher] .' | :
1 J i i
I 1 1 1
R : : :
-] | f 1
_sz=0] i I
- — 1 | I
!) I
| I 1
hashPeerResolver 1 t !
T e — = 1 ! 1
| I I i
) { I 1 I
i getPeerResaher() ! I 1
rel i 1 i
Hoosz=0 | l 1
- ' 1 i
: 1 !
rastPeerResoler ! ! :
***** J' TTTT T T 1 1 1
1 | I !
y i] I i
i I 1 I |
', gePeerResoher) | X |
restPeerResolver | [|
—————— T ———m— 3 | 1
| setPeefAMS(ams peer PeerAMS) |
i I : |
; ! [T 2 .
: peemhsoma 3 ; i |
‘,€ ———————————————————)] 1 {
i I | t [} H
i i I I i t
i | l i]]
; seardﬂgeﬂDesc(Smm) | | |]]
P e e e e —— | -1 A Ll :
o i obAgemid; b\ _
; i i i T i
i | I | f i
H t | | I | v
= |] 1 | 1 !
1 1 t ! | | !
)] 3 1 1 1 i
Fig 4.5(c): Interaction Diagram of Search Agent Description
impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 31

Chapter 4 4 Software Design

. . Hashtaht
Gienmookup(ams,RLmSeMca. String, ams.peer. MainAddress) l

getFPeerRasolver() I Put() |
e

hashPeerResolver 1

petPeerReas over() |]

L keys(Q 1 .

hashFPeerResotver

)
eetAgentPlatform Address (L i

strAgentPlatformAddress
e—

getAgentFiatforrnNamaea() I

_ | lobibooku QFgctor_\gl

=1
r
|
I
I

&

ClientLookLp(ams .RootService)

I
. I
I
getApentPlarform Address() I

L
I
I
I

StrAgentRlatorrnAdaress _D I
|
|
|
|
I
I
I
I

getAgentPlatforrmName()
strAgentPladormName

[objLogkup= =cto]

=
!
0]
|
|

I
I
I
|
I
|
|

Fig 4.5(d): Interaction Diagram of Client Lookup

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 32

Chapter # 4

Software Design

ini

< Hashiable

pangResponse(ams peerMa:Mddress)

- ClientLogkup’ " LookwoFactory’ T'Feer(:ache |
' — [I : ——] i +— _
1
pmgPeelr(Slnng String} : {
b f i
getPeerAMS{String) Il 1
o —— . ﬁ]PESI‘Cﬂ :
; | eerCagrg f
: ¢
I
! getPeerAMS() |
1 -
| peerAMSRef
i< ———————
) getd)
L . DO
l
|
lookun(String, String, nams peer, PeerCache)
|
{ i getPeerResol\er()
v = t
F f
i ; !
i{ } tlasrPeeIResoher
_— _: __________ l ________
1 ! !
i gelPeerF;.esoher()
i |
I I
I |
3{7 _ : hasrPeeIResoher
: ! "
. l
i) : ge!PeerResoIver()
\ . { tBshPeerResoher
e s
! _PeerAMSObJeci ! setherAMS(arm peer. Peen’AMS)
getPeerAMS{Smrggr U
A i
j ! !
PeerAMSObjed i ! !
__________ | |
I
. .
o |
i
! | !

Fig 4.5(e): Interaction Diagram of Ping Peer (Machines)

!
|
!
|
i
I
|
I
}
I
]

S S S P

~Rcifenice - Senerint

PR

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

33

Chapter # 4 Software Design

_: DynamicPolicy Pohgl [= AgentDirectoryService - RootService @ r t gokupFagtory : PeerAMS'

|
3 ;

I
{
!
1
I
’l
updateMachmeL:st(]dva util. ArrayList)

: Hashtable |
_{ i t : - i
1 }
remove Fault(Stnng) t || I !
B | | | :
‘getRootService(2) getPeerResalver(L | ! {
T _— !
i objRootService hashP_eerResolver I 1 |
,<—g—f—f—#-f-,-4‘” __________ : { I‘
|] }
| i i
i I ; { f
'1__getRootService() T getMachineList{)} removely ! l {
>
C oy _ 1 i
objRootService {1 _ Almachinelist T : }
(! i
' b 1
{ t)
t i !
] ! \ |
) | !
i i i f
! ! I
: | : 1
getRootService() >j getlookupFactory()l ! getpeercachegl 1
; - —_——— - - L]
: ! remove() !
i [P LA]
; i i
i1 objLookupFacto 1 hashPeerCache
_ SbiRootsenica | <OTICTPIRY, o mn e o o I
| f
t t
R] 1
L i [
i : 1 :
y T ! I l
gelRootSenvice() i gemachinelist()_} i i f
abjRootService ! e 2lMachinelist - : L !
v o ! l '.
' i ? ! '.
stRootService) ' i '
s O .getl-ookupFactory(; getPeerAMS(Stnng>| {
ohbjRootService f objlookupFactory < _} PeerAMSObject i
_______________ ! o __ YEETMSARS]
I
1
I
i
!
|
L
:

re_rno_veMEEhme{Smng)
l
I
!

Vv

i
i
[
|
|
!

Fig 4.5(f): Interaction Diagram of Remove Fault (Faulty Machine)

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent Sysiem 34

Laapter # 4 wOfIWAre LJesigh

L]

- M i i
: PeerSenenmpl :, _: RootSendce 1 : Hashtable

;
getPlatformiName()
P —
getAgentPlatfornName()

b e

stragentPlatformName
e L

getAgentPlatformName()

stragentPlatformName
e

L
getListPeerAMS(Sfring, ams.peer.MainAddress)

n

%ddPeer(Stﬂng. ams.peer.MainAddress)

getPeerResolver()

hashPeerResolver
e e e e

ny getPeerResohver()

Keys(

T

N
Y

hashPeerResolver

L getMachinelist(String)

addMachinelList(String)

getMachineList()

alMachinelist
g

T updateMachinelist(java.util ArrayList)
B ——

setMachinelist(java.util. Arraylist)

__.._—q_..._-.__-.—._-——_-—_-gﬁ.gv——4‘_—_...__._..-:‘

Fig 4.5(g): Interaction Diagram of Updating Machine Information

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 35

Chapter £ 4

Sofrware Design

4.3 Tools to be Used
* Eclipse SDK 3.1.0
* Rational Rose 2002.05.00
» Aspect] Development Tool 1.3.3 for Eclipse 3.1

4.4 Resources Required

= Internet Resources (journals, articles, research papers)
* Books and Magazines

* Printing Resources

* Software CD’s

» Computer System

Impuct of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

36

Chapter 5

Software Development
. P
Fvaluation

Chapter # 5

Software Development and Evaluation

Chapter 5: Software Development and Evaluation

5.1 Software Development

5.1.1 Classes

The following classes are created for the development of software.

— PeerServerlmpl

DynamicPolicy ClientLookup

strMacld: String hashRegistery:

intSize: Int strPlatFormName:

. peerServerlmpl()
removePeerAMS() clientLookUpQ)

run{) getListPeerAMS() getLookUpFactory()

probeMachine() pingPeer()

removeFault()

AgentDirectoryService RootService

LookUpFactory
hashRegistery: striName: String strAgentPlatformName: String
hashPeerCache: strDesc: String strAgentPlatformAddress: String
boollnstance: strType: String harshPeerResolver
strMachineld:
gétPeerCache() activate() ge:kook:]lgi’;(:tor{? 0
getPlatformName() getAgentld() getAgentPlatformName
removePeer() getDescription() getAgentPlatformAddress()
getPeerAMS(Q) getPeerResolver()
Innknnfy

Fig. 5.1: Classes with Attributes and Methods on Development Time

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System ~ ~ 37

Chapter £ 5

Software Development and Evaluation

5.1.2 Aspects

KnowledgeDistributionAspect KnowledgeConsistencyAspect

setStatus()ILookUp() getStatus(}

peerR() getAP() .

peerCQ peerAMS()

RS() .
ActionStatus.getActionStatus()

ActionStatus.setActionStatus(String) RootService.getAgentPlatform*()

RootService getLookUpFactory() LookupFactory.getPeerAMS(String)

HastTable.getPeerResolver() HastTable.getPeerResolver()

AgentDirectoryService.getRootService() lwithin(KnowledgeConsistencyAspect)

ExceptionAspect
* kR

Iwithin(ExceptionAspect)

Afler() throwing(Exception €)

Fig 5.2: Aspects in Decentralized AMS

.5.1.3 Software Interfaces

“The graphical user interface of AMS visual manager, which allows AMS to

perform all of its management related functions, is composed of six main components.

These are:

Agent Tree
Menu Bar
Tool Bar
Popup Menu
Status Bar

Menu Bar

Using these components user can interact with the agent and can perform multiple

actions which are discussed later in user manual attached for reference. (Refer to

Appendix C)

5.1.4 Class Code

The sample code is attached for reference. (Refer to Appendix D)

Ta

Impact of Aspect Grientation on the Reliability of Decentralized Multi-Agent System 38

Chapter # 5 Software Developmenr and Evaluation

5.2 The Metrics

Reliability can be measured by measuring the intemnal attributes like coupling,

cohesion and complexity of a system [25] [26] {27]. Chidamber and Kemerer metrics
suite [28] are best to capture the above mentioned attributes of software that is why we
are using a metric suite from [29], which is based on the refinement of CK metrics for
aspect-oriented systems and is reusing LOC metrics. These metrics capture the degree to
which a single system concern maps to design components {classes and aspects) and
operations {methods and advice) [5]. The chosen metrics were applied on class diagrams
of both the versions and where it was needed, behavioral diagrams were also consulted.
Table 5.1 briefly defines each metric and associates it with the relevant sofiware attribute.
We grouped the metrics to measure a certain attribute, according to our own
requirements. The reason behind measuring above mentioned internal attributes is, to see
which version has more error-prone and afterwards we applied Mean Time to Failure on

both versions to see how these attributes affect system’s reliability.

Attribute Metrics ' Definition
Coupling Between Components Counts the aumber of other classes and aspects to which a
(CBC) class or an aspect is coupled.
Coupling -

Counts how far down in the inheritance hierarchy a class or

Depth of Inheritance Tree (DIT) aspect is declared

Measures the lack of cohesion of a class or an aspect in terms

L ion i i . :
ack of Cohesion in Operations of the amount of method and advice pairs that do not assess

Cohesion

(LCOO) the same instance variable.
Weighted Operations per Component | Counts the number of methods and advice of each class or
(WOOC) aspects or the number of its parameters.
Complexity Lines of Code (LOC) Counts the lines of code.
Number of Attributes (NOA) Counts the number of attributes of each class or aspect.
MTTF Mean Time To Failure It measures the average time between observed sysiem failures.

Table 5.1: The Metrics Suite
5.3 Evaluation

Table 5.2 and 5.3 present the computed metric values for both AO and OO
versions. We compared both AO and OO systems on the basis of each metric value as
follows:

Coupling
¢ Coupling Between Components (CBC)

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 39

Chapter # 5 Software Development and Evaluation

From the metric values, it can be noticed that in AOD the coupling is
increasing but if we observe the AOD in Figure 4.1, we can understand that the
coupling between core classes is decreasing and the coupling between core classes
and aspects is increasing.

e Depth of Inheritance Tree (DIT)
'Only one class ‘with - the name’ of ' ServiceAgent has a subclass of
AgentDirectoryService which does not pay a remarkable effect on a system.
Cohesion
o Lack of Cohesion in Operations (LCOO)

Values for the LCOO decreased in aspect-oriented design, which means the
AO version of the system is more cohesive as compared to OO version. System
with more cohesion is more reliable and efficient.

Complexity
e Weighted Operations per Component (WOC)

As it can be seen from the results of metrics, that in AO version, the number
of operations per class/aspect is reduced as compared to OO version. Aspect-
oriented software development helps in decreasing the crosscutting between the
classes and reduces the number of tangled methods in the class. Therefore it
decreases the overall complexity of a system.

e Lines of Code (LOC)

LOC is 1685 in the OO implementation and 1486 in AO implementation. This

shows that OO system is more complex in terms of LOC.
e Number of Attributes (NOA)
It can be noted that object-oriented version is more complex in terms of NOA,

while NOA is reduced in aspect-oriented version.

[G=] COHESIONZ. .COMPLEXITY: . :t
Sl LCO0 .| WOCTELOG [.NOAY

6 5 | 145 | 7

12 10_| 376 | 14

11 14 [227 [1

22 35 | 347 | 8

5 [159 [1

15 13 29| 5

4 9 [132] 1

Table 5.2: Metrics Obtained For OO Design

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 40

Chapter = 3 Sofiware Development and Evaluation

il %7]I COUPLING _|{COHESION? |5 COMPLEXITYY. -
& IR CBEE] DIL.IE - ECOOL — iWOCEEOGE[ENOAS
2 3 0 2 3 133 5
f;ﬁ, 3 0 9 6 302 11
g}f" 3 0 5 9 192 ..
iﬁ;g 2 0 13 22 258 5
R 3 0 2 7 | 133 | 1
;égz; e 3 0 8 11 | 231 5
;ﬁ 0 1 9 13 130 1
AR 6 0 5 6 48 5
k| &R 5 0 3 1 22 3
ii 6 0 7 4 37 3

Table 5.3: Metrics Obtained For AO Design
5.3.1 Reliability

Reliability is the probability of failure-free operation over a specified time in a
given environment for a specific purpose. It is a complex concept which should always
be considered at the system rather than the individual component level. Software
reliability is the probability that how likely a software component will produce an
incorrect output. As the number of dependent components increase the overall probability

of system failure increases.
Reliability is -a quality attnibute and can be divided into two categories those are:
e Fault tolerance
o Maturity

Fault tolerance can be achieved by two ways, one is defensive programming and
other one is by fault tolerant architecture. In aspect-oriented version of decentralized
AMS of SAGE, fault tolerance is achieved by defensive programming and that’s why
exception handling was taken as primary cross-cutting concerns while Maturity which is
the second category of reliability, is measured by using metrics Mean Time to Failure
(MTTF).

Reliability can be quantitatively measured by using probability of failure on
demand, rate of failure occurrence and mean time to failure. We used MTTF to evaluate
reliability of both the systems. MTTF is the average time between observed system
failures. An MTTF of 500 means that one failure can be expected every 500 times units.

This metric should be used for the systems where there are long transactions, i.e. where

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 41

Chapter # 5 Software Development and Evaluation

people use system for a long time [30]. That is why we chose this metric to evaluate our

system. The next section explains the measurement of MTTF for our system.

5.3.2 Mean Time to Failure

MTTF is calculated by observing how much longer resources SAGE occupies in a
platform at the time of its operation. We took Memory Usage and CPU Usage as the

main resource. So the readings for both OO and AQ systems were taken and evaluated.

Readings for Object Oriented Version of SAGE

Memory Usage at the point of System Initialization: 35028 KB.
Agents started at initial stage VMA, AMS and DF.

Additional Agents created DF GUI and Test Agents (23 in total).
Change in Memory Usage after creation of 27 agents: 39964 KB.

So the agents were as follows:

Memory Usage at the start of GUI of 24th Test agent: 41448 KB.
At the point when all agents were selected to send messages 42044K. Table 5.4

shows the change in memory usage every time an action is being taken on SAGE

?oﬁ,w nfs% «Mem NwUsaE?ﬁéﬁf,a
3 35028
27 39964
28 41448

Table 5.4: Memory Usage of OO system at the System Initialization point

Sending Messages:

First Message

Time Started 7:40 pm

Total Agents: 28 (1 itself to count how much messages were sent)
Total messages sent one time: 27

Memory Usage: 42316 K

CPU usage 11% from 4-5% normal

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 42

Chapter # 5

Software Development and Evaluation

Then a number of times messages were sent until the system became halted and

could not accept any more messages. The reading is as follows:

Halting Time 7:42 pm

No of times messages sent: 356

Total messages sent 19612
Memory Usage £ 96832 K
CPU Usage : 100->72%

It was observed that system was not fully occupied by its resources even the CPU

usage reached 100%, the system would release itself decreasing the CPU usage to 72%.

Therefore, at this point some more messages were sent until CPU usage became constant

to 100% and system reached deadlocked state. These readings are shown in Table 5.5.

H°§f§mﬁ§ﬁ% :No nts »Tobfﬂ Wﬁ%&mg GQ) ﬁﬁé{:" é?ﬁ'Usage
1 27 42316 7:40 pm 11%
356 28 9612 96832 7:42 pm 100%
358 28 9666 96840 100%
362 28 9774 96892 100%

Table 5.5: Memory Usage and CPU Usage of OO system on Sending Messages

Readings for Aspect Oriented Version of SAGE

For AQ same system was restarted to take the fresh readings. Table 5.6 shows the

readings. Memory Usage at the start of SAGE GUIL: 27952-964 KB at the time when 3

agents are created by default. The procedure was same for AO system as well.

TimeFe e 5 2wy oS0 N0 OTAgents Creafed! % [¢Total Agentd:Meriory. Usige (KBY
Start af SAGE GUI%. 5ernioony] 3 3 27964
*A"d“d't' ial 5 Created:™ 5 27 30672
i nona,Agents;_ ﬂ&g l
23
1 28 39084

Table 5.6: Memory Usage of AQ system at the System Initialization point

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

43

Chaprer # 3 Saftware Development and Evaluation

Sending Messages:

First Message

Time Started 8:06 pm

Total Agents: 28 (1 itself to count how much messages were sent)
Total messages sent one time: 27

Memory Usage: 39324 K

CPU usage 4-5%

Then a number of times messages were sent until the system reached its first deadlock
and could not accept any more messages. The readings are shown in Table 5.7. The time
at which the system halted was 8:08 pm and 362 messages were sent at that time
consuming memory to 86880KB and increasing CPU usage from 4-5% (normal) to
100%. After a short while the system released its resources decreasing CPU usage to
72%. So some more messages were sent to see the working of system. The CPU usage
decreased to 5% that would again rise up to 100% as more messages were sent. But see in
Table 5.7 that memory usage almost rematned constant though it would rise a little bit but
it would again become constant. The performance of system decreased slowly each time
a message was sent until it finally reached deadlock state. T-he readings after the first’

deadlock are also shown in Table 5.7.

The readings for both OO and AO versions are shown in Table 5.8. The first
difference is observed from the Memory usage at the start of GUI of SAGE that is great
difference. In addition the AO system even after its first deadlock state was able to send
more messages than it OO counterpart. Its performance was better for AO than OO
system. The OO system failed to send more messages after it had sent 356 messages
while AO system had sent 362 messages at that time and AO system was still able to

send 25 more messages while OO system could only send 6 more.

Impact of Aspect Orientation on the Refiability of Decentralized Multi-Agent System 44

Chapter = 5

Saftware Development and Evaluation

NoofTies) <0t} N0 Of Agents}|STotal MesSages: | iMemory Usage (KB); | iTimé 22 |1CPY Usige
28 27 39324 8:06 pm 4-5%
362 28 9774 86880 B:08 pm 100%
368 28 9936 88320 2%
376 28 10152 90240 23%
380 28 10260 - 08264 5%
381 28 . 10287 098264 100%
382 28 10314 98300 100%
384 28 10368 98265 21%
385 28 10395 98240 100%
386 28 10422 98272 106%
387 28 10499 98272 100%

Table 5.7: Memory Usage and CPU Usage of AO system on sending messages

e R ‘00 Systém?{ FAO Systeni:
Start of GUI 35028KB 27964KB
Memory Usage After creation of 27" Test Agent | 41448KB 39084KB
No of Times Messages Sent 362 387
No of Messages Sent 9774 10449

Table 5.8: Comparisen of Memory Usage for OO and AO system of SAGE on

sending messages

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

Chapter # 6 Conclusion

Chapter 6: Conclusion

6.1 Research Results and Conclusion

In this research work, we have compared aspect-oriented and obj'ect-oriented
versions of the same application, in order to exp]o:;e to what extent each implementation
provides a reliable system. A group of researchers have worked on aspect-oriented
architecture, modeling and engineering of MASs, but there is no empirical evidence
whether AOP helps in improving the reliability of a Decentralized Multi-Agent System,
thereby hindering the adoption of AOP for such a system. This was the reason of
choosing Decentralized Multi-Agent System for this experiment. The research work is
based on a case-study in which we have compared the reliability of aspect-oriented and

object-oriented design of Decentralized Agent Management System (AMS) of SAGE.

SAGE (Scalable and fault tolerant agent grooming environment) is FIPA
compliant Decentralized MAS. It consists of modules those are large scaled and complex.
Our focus was to check the impacts of Aspect-Orientation on a non-trivial system, so we
took Decentralized AMS of SAGE. The system has got sub-modules as well. AMS is a
large module which was modified for fault-tolerance and scalabi]ity. If software
undergoes upgradation and changes, it suffers from high degree of failure rates and
complexity. Therefore this becomes necessary to make software reliable after
upgradation. As AMS was also upgraded for decentralization, it was more likely to be
checked for reliability. Fault-tolerance and scalability have incurred increase in failure
rates that lead to the maintenance of the system for reliability. Reliability can be achieved
if we re-design and re-implement this module of the system by using better engineering
approach. Therefore, we used AOP to see its impacts on the reliability of Decentralized
AMS, as it was considered better approach than OOP for the development of other

systems.

Reliability remained the main concern on which we focused in this research,
which is a by-product of quality that could be measured. It can be defined as ‘extent to
which a program can be expected to perform its intended functions with required
precision’. There are a number of metrics those could be used to measure the reliability of
a system, which are, Probability of Failure on Demand (POFD), Rate of Failure
Occurrence (ROFO) and Mean Time to Failure (MTTF). We used MTTF to measure the

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 46

Chapter #6 Conclusion

reliability of both the versions of the system because MTTF is best to measure the
maturity of a system and it is successfully being used for systems those run for longer
time. We evaluated the systems for reliability and observed how coupling and cohesion

affected reliability of OO and AO versions of the system.

Aspect-Orientation basically talks about separation of concerns in software
construction. It states that a given problem involves different types of concerns, which
should be identified and separated in order to manage the complexity of the system. It
also provides loose coupling between modules. Here we have tried to relate the reliability
of aspect-oriented systems with the internal attributes like coupling, cohesion and
complexity. We have used refinement of CK metrics for aspect-oriented system and
measured the above mentioned internal attributes; those are basic error-prone and
afterwards applied MTTF on both the versions of the system. We observed that aspect-
oriented system that showed good results for CK metrics also showed good results for
MTTE. By measuring MTTF we observed that Aspect-Oriented systems tries to tolerate
the failure as much as it could and keeps Memory Usage constant even when the CPU
Usage was very high. Hence it is proved that AOP improves the reliability of
Decentralized MAS and therefore software engineers should not be hesitant in using th}s '
developrﬁent technique fm; Decentralized MASs. This experiment resulted into good

impacts of Aspect-Orientation on the reliability of Decentralized MAS.

impact of Aspect Orientation on the Reliability of Decentralized Multi-Agzent Systent 47

Appendix A

Referencés

Appendix A References

A. 1 References

{11 Garcia, A., Silva, V., Chavez, C., Lucena, C. Engineering Multi-Agent Systems with Aspects and
Patterns. Journal of the Brazilian Computer Society, July 2002.

[2] Araujo, J., A. Moreira, I. Brito and A. Rashid. Aspect-Oriented Requirements with UML. Workshop on
Aspect-Oriented Modeling with UML, 2002.

[3] Iris Groher and Thomas Baumgarth, Aspect-Orientation from Design to Code. In Proceeding:
Workshop on Early Aspects: Aspect -Oriented Requirements Engineering and Architecture Design;
AOSD, March 2004.

{4] Ramnivas Laddad. Aspect] in ACI]OH Pages (7-11), Oreilly & Associates Inc., 2003.

[5] U. Kulesza, et al. Quantifying the Effects of Aspect-Oriented Programming; A Maintenance Study. In
Proceedings of the 9th International Conference on Software Reuse (ICSM'06), Philadelphia, USA,
September 2006.

[6) Alessandro Garcia, et al. Aspectizing Multi-Agent Systems: From Architecture to Implementation.
PUC-Rio, Computer Science Department, LES, SoC+Agents Group, Rio de Janeiro, RJ, Brazil, 2004.

[7] Gareia, A, Chavez, C., Choren, R. An Aspect-Oriented Modeling Framework for Designing Multi-
Apgent Systems. 7th Workshop on Agent-Oriented Software Engineering, AAMAS’06, Hakodate
Japan, May 2006.

[8] Foundation for Intelligent Physical Agents. http://www.fipa.org

[9] Abdul Ghafoor, et al.,, SAGE: Next Generation Multi-Agent System, In Proceedings of the 2004
International Conference on Paralle]l and Distributed Processing Techniques and Applications (USA),
June 2004, pp. 139-1435,

(10] J. Zhao. Measuring Coupling in Aspect-Oriented Systems. Technical Report, SE-142-6, [nformation
Processing society of Japan (IPSJ), June 2003,

(11]A. Ghafoor, A. Shibli and H. Farooq Ahmad, SAGE, Open Source Fault Tolerant Architecture:
Enhancement, Refactoring and Debugging, 21 Assurance System Symposium, Hiroshima City
University, Hiroshima, Japan 2007.

[12]Kiczales, G., Hilsdale, E., Hugunin et al,, An Overview of Aspect], In Proceedings of ECOOP 2001,
Lecture Notes in Computer Science, Vol. 2072, Springer (2001) 327-353.

[13]R. E. Filman, et al (Eds.) Aspect-Oriented Software Development, Addison-Wesley, 2005.

[U4] Katia P. Sycara, Multi-Agent Systems, 1998.

[15]N. Ubayashi, T. Tamai. Separation of Concerns in Mobile Agent Applications. In Proceeding of the 3rd
Conference Reflection 2001, LNCS 2192, Kyoto, September 2001, pp. $9-109.

[16]Salman Shahid’s “Apent Management System (AMS) for FIPA Compliant Multi-Agent System”,
Distributed Computing Group NUST Institute of Information Technology, Rawalpindi, 2000.

[17]Garcia, A. From Objects to Agents: An Aspect-Oriented Approach. PhD Thesis, Computer Science
Department, PUC-Rio, Brazil, April 2004,

(18] Garcia, A. Separation of Concerns in Multi-Agent Systems: An Empirical Study. In: C. Lucena et al
(Eds). Software Enginecring for Multi-Agent Systems 11, Springer-Verlag, LNCS 2940, February 2004.

[19]M. D'Hondt, K. Gybels, V. Jonckers. Seamless Integration of Rule-Based Knowledge and Object-
Oriented Functionality with Lingnistic Symbiosis. Proceedings of the 19th Annual ACM Symposium
on Applied Computing (SAC 2004), Nicosia, Cyprus, March 2004.

[20]) Z. Guessoum, J. Briot. From Active Objects 1o Autonomous Agents. IEEE Concurrency, Special Series
on Actors and Agents, 1999, pp. 68-76.

[21]A. Amandi, A. Price. Building Object-Agents from a Software Meta-Architecture. In: Advances in
Artificial Intelligence, LNAI, vol. 1515, Springer-Verlag, 1998.

[22]Kendall, E. Role Model Designs and Implementations with Aspect-oriented Programming. QOPSLA
1999, pp. 353-369.

[23]Carlos Lucena, Paulo Alencar, Alessandro Garcia, A Generative Approach for Multi-Agent System
Development (2004).

[24]C. Von Flach and Carlos L.P., Design Level Support for Aspect-Oriented Development, Workshop on
Advanced Separation of Concemns in Object-Oriented Systems (ASOC) at QOPSLA” 2001, Tampa
Bay, Florida, USA, October 14, 2001.

[25] Dr. Linda Rosenberg, et al, Software Metrics and Reliability, 9th International Symposium on Software
Reliability Engineering Germany, Nov 1998.

[26])Jubair J. Al-ja’afer, Khair Eddin M. Sabri, Chidamber-Kemerer(CK) And Lorenze-Kidd{LK) Metrics
To Assess Java Programs, In Proceeding of International Workshop on Software Systems (IWSS),
2004,

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 48

Appendix A References

[27]Jacqueline A. Mc Quillan and James F. Power, On the Application of Softwares Metrics to UML
Models.

[28]Chidamber, S. and Kemerer, C., A Metric Suite for Object Oriented Design, IEEE Transactions on
Software Engineering, 1994, pp. 476-493.

[29]C. Sant® ANNA, et al,, On the Reuse and Maintenance of Aspect-Oriented Sofiware: An Assessment
Framework, In Proceeding of Brazilian Symposium. On Software Engineering, 2003, pp. 19-34.

[30]1an Sommervile, Software Engineering, Pg. 373-375, Sixth edition, February 2000. '

[31)Alessandro F. Garcia & Carlos J. P. De Leucena. An Aspect-Based Object-Oriented Model for Multi-

Agent Systems. In Proceeding of the 20® Advanced Separation of Concerns Workshop at ICSE’ 2001,
Toronto, Canada, May 2001,

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 49

Appendix B

- Publication

T . ¥ e

4" IEEE International Conference on Emerging Technologies
Rawalpindi, Pakistan, 18" - 19" October, 2008

Impact of Aspect-Orientation on the Reliability of
Decentralized Multi-Agent System

Hira Tabbasum, Salma Jabeen

Department of Computer Science
International Islamic University,
Islamabad, Pakistan
{ktabbasum.iiui, sjabeen.iiui}@gmail.com

Abstract—Aspect Oriented Programming (AOP) provides
separation of concerns and encapsulates crosscutting concerns
into separate modules called ‘aspects’, thereby enhancing the
software quality. This paper presents the impacts of aspect-
orientation on the reliability of a decentralized Multi Agent
System (MAS). We compared aspect-oriented and object-
oriented versions of the same application in order to explore to
what extent each implementation provides a reliable system. We
evaluated both versions of the syster and found that the aspect-
oriented design is more reliable as it has brought a loasely
coupled and less complex system.

Keywords-crosscutting
decentralized multiagent systems

concerns; aspect-orientation;

I. INTRODUCTION

Aspect Oriented Software Development (AOSD) [1] is a
new emerging technology that provides separation of concerns
in software construction [2]. Separation of concerns is a
central software engineering principle that should be applied
throughout the development process, from requirement to
impiementation [3], It states that a given problem involves
different kinds of concerns, which should be identified and
separated in order to manage the complexity of the system [4].
Concems can be classified into two categories those are core
concerms and crosscutting concerns. Core concerns deal with
the basic functionality of a system while crosscutting concerns
span multiple modules and deal with non-functional
requirements [5]. Aspect Orented Programming (AOP) [6]
provides improved modularization that encapsulates
crosscutting concerns into separate modules known as
‘aspects’ (7).

Software engineering of multi-agent system involves the
classification of concerns into two categories: agenthood
concerns and additional concerns. Agenthood concemns
include knowledge, intcraction, adaptation, and autonomy.
While additional concerns include mobility, learning and
collaboration. From these mobility, interaction, leaming,
autonomy and collaboration are crosscutting concerns [8]. A
group of researchers have worked on aspect-oriented
architecture [8], modeling [9] and engineering [2] of MASs
but there is no empircal evidence whether AOP helps in
improving the reliability of a decentralized Multi-Agent

978-1-4244-2211-1/08/$25.00 ©2008 [EEE

H. Farooq Ahmed, Abdul Ghafoor

Department of Computer Science
NUST Institute of [nformation Technology,
Rawalpindi, Pakistan
{drfaroog,abdul ghafoor} @niit.edu.pk

system, thereby hindering the adaptation of AOP for such
system.

This paper presents a case-study in which we have
compared the reliability of aspect-oriented (AO) and object-
oricated (00) design of decentralized Agent Management
System (AMS) of SAGE (Scalable, fault tolerant Agent
Grooming Environment). SAGE is FIPA [10] compliant
decentralized multi-agent system [11]. In SAGE, scalability
and fault tolerance is achieved up to some extent through its
architecture but reliability is still a major issue due to the
excess of tangling and scattering of code in one of its
components i.e., AMS. In addition, internal attributes like
coupling and cohesion also affect systern's external attnibutes
like reliability, reusability and maintainability [12] while
SAGE is a highly coupled ard complex system because its
code is not well optimized [13).

This paper also explains those crosscutiing concerns that
come across the development of a decentralized AMS and
implemented those concerns with AspectS [14]. It involves
three sort of crosscutting concemns those are Knowledge
Distribution, Exception Handling and Knowledge Consistency
and core concerns like Agent Management and Peer
Management. We have also evaluated hoth versions of
decentralized AMS. e

The rest of the paper is organized as follows. Section 2
presents the object-onented design (OOD) of decentralized
AMS of SAGE. Section 3 describes the crosscutting modules -
and aspect-oriented design (AOD) [15] of decentralized AMS.
Section 4 cxplains the selected metrics to evaluate both
versions. Section § shows the results of metrics in tzbular
form. Section 6 analyzes the results of metrics and section 7
has some concluding remarks.

II. DECENTRALIZED AGENT MANAGEMENT SYSTEM

SAGE [16] is following distributed architecture with
decentralized management for fault tolerance of multi-agent
systems. [ts architecture is a blend of clieot/server paradigtn
and peer-to-peer. Instead of having the centralized location for
management the ownership rights have been distributed to
peer entities which are solely responsible for their roles and
actions, These peer entities are part of a single Agent Platform

205

ind are managed by AMS. This system was ideal for our case
study due to several reasons. First, it is the only multi-agent
systemn that has a decentralized agent management platform
and the behavior of Aspect-oriented programming has not yet
heen proved in this context. Second, scalability and reliability
always remained a key attribute for multi agent systems.
Finally, its realization involves a number of core and
crosscutting concerns; those are of great importance in case of
dzcentralized muiti-agent systems.

4. Object-oriented design of Agent Management System

The object-oriented version of decentralized AMS was
implemented using Java programming language. However,
Java is good to deal with inheritance and pelymorphism, but it
may also be the cause of introducing scattering and tangl'mg in
the code. When the AMS was reverse-engineered in order to
obtain object-oriented design the same condition was
shserved. The system was analyzed with both class diagrams
and interaction diagrams. The result showed that due to high

inheritance between classes the system became highly
coupled. The methods were incoherently calling each other
making the flow of program more complex and not
understandable. Moreover, although the system has become
decentralized to achieve fault tolerance and scalability, but it
has become difficult to organize system components into
modules according to their functionality, Therefore, there was
a need to implement the system with a technology that could
provide linguistics mechanisms for separate expressions of
concerns in AMS and weaving these concerns with the
system’s primary cencemns. Figure 1 shows the object-oriented
class diagram of decentralized Agent Management System of
SAGE.

M. MAKING AN ASPECT-ORIENTED DESIGN

Aspect orientation is the recognisation of the development
of software system with respect to many concerns [17]. The
development of software system with respect to concerns

Sendcefgent RostSenice
B H
Mta ut PeerServertmpl >
obooMvaitState : boolean Ao e {‘S:m’}o ﬁ;?:;ssn HSlﬂng ot
- wstiagentPlaffaemdame :Strin
N ChazhRegitry : java.ublH ashitable = null " g ?
clone) VS 1rgentPlatformDescription : Sting
:Sewiceﬂgento QPeanerverlmplj \'bhiRooE -y wttﬁgenﬂ’l&formﬁddress Sting
- = ‘J = 1y
el 1M_as_s .f;geg ——— SpstivatePeer Seprertmpl) T "'PooiSemceo .
r :s earchAgent) _ geﬂ_odc upF acton(}
¢'rerm:nnePeerﬁ-‘uﬁ’o Ty s#tﬁgent?fa‘formhfameo
;ddF_‘eerNuﬁO‘ | gﬂt&gﬂn‘lPutformNameo
getlis i eerAMS() i *gebrgentPl ath rmAddres sQ)
AgentDirectorySenice | Jflm————————¢———— = = *addPeer)
et da o /NvaeerSe‘uer, . t —~ ¥octPear()
; e ' ARdSpeerSever " & L ____
DstrToken : Shing R oG enice o
s tFileName : String s UIROTISENACE, /7 bi R
TostAgenttame : Sting “objRootSenice
‘‘‘‘‘‘‘‘‘ -objActionStatus -objRy‘et5 envice
getRootSemceO __.,-// -objLoskupF actory
gefSemceTypeo #etionStatus o
""'s elSenice Type() PNt ekt -chiActionStats LodiupFactory
getH ashagentRef) DsirActonStatus : String="" . T peer
_Agerl'o_ugdimfe_mieg hasbRegistery - java.ufilH = htable
y\\ biADS ~ @5 etfetionStatus() "Sboolinstance : boolean= fakse
ebjAD \"_ "‘getﬁ:tionsutuso ——————————
\ Y . obitch // gﬁ’PeerC ache()
DynaicP olicy - objAeiion Status 5 efPlatformName()
“iers dyromlc \\ getPlaﬁormNarneO
Tointerval long=2000| -objCRerdodwp ™5y a— | YgetLocaimacid0
s tbacld : Sting v / ;?Qeﬂ‘eerﬂuso
N o NstiPlatformN ame : Sting = null ..If.d_(.uio. _____
Dym amicP olicy)
PprobeMaching) A jientiookrpl) " -objLookupF acory
PremoveF aul) S ingPeeruthy) / .
"getPeerUst{)
"getP!aﬁmmNam()
getMschmeLnst)
BbindP ee A0S0
*ClientLookupO
*getLookupFacbr;()
pmgl'-"ee:()

Figure 1.

Object-priented Class diagram of decentralized Agent Management System,

/f Peer Management Module \ /_ Knowledge Base Module \ /A-geni Management Module \\

LManoge Heartbeats |

[Share Knowledge]

Managelocal agent
Infermation

] [Mcnoge Agent Lifecycle]

(Provide Intertace |

(Manage Agent states |

Manage remote

_ [Component \\

Marage Know[edgeJ (agent Information I

Other Management]

). \[funcfiorlxs y

Figure 2. Peer Management, Knowledge Base and Agent Management modules of Agent Management System

could be achieved by separating classes into concerns (or
modules) according to the agenthood properties they possess.
The AOD [15] is developed then by identifying the
crosscutting among these concerns (or modules).

A. Identification of modules in Agent Management System
Every multi-agent system has a desired set of properties [8]
{or agenthood properties) and it is developed in order to
achieve those properties. These properties are knowledge,
mobility, learning, etc. Therefore, there is a need to go through
the AMS in terms of these properties i.e., to see which part
{module) of system is related to which agenthood property. It
is more likely to analyze properties in a single logical AMS
distributed over multiple machines. Therefore, the basic
modules or concerns identified according to these properties
are:

1. Peer Management

2. Knowledge Base, and

3. Agent Management

Here is the description of these modules:

I) Peer Management module: The Peer management
module is responsible for managing all the operations of peer
entities:

I. Tt manages heartbeats or liveliness of peer
machines after a fixed interval of time provided it
is done dynamically.

2. It provides interface to the peer entities through
RMI (client/server) layer. Sc any request to server
made by the client of peer machines will be
acknowledged by the peer mznagement module.

3. It helps peer components or entities to share
knowledge with cach other. For example, searching
and providing information about a certain agent on
a peer agent’s request.

4. It also helps to manage the knowledge component
in case of any sort of modification in peer agent’s
information.

2) Knowledge Base module: Though Knowledge base
component manages local agent and remote agent information,
it is also managed by Peer Management module. Its functions
are:

1. To keep information about agents i.e., their state,
life eycle, etc.

2. To perform functions like searching information
about a particular agent, deleting, adding or
modifying the agent information and providing the
information about Agent Platform (AP)
description.

3) Agent Management module: The responsibilities of
Agent Management module are similar to those of AMS’s
responsibilities: register, deregister, managing life cycle and
states of agents, etc.

Figure 2 represents the functions of these modules.

B. Aspect-oriented design of Agent Management System

The modules identified in previous section helped us to
identify the crosscutting in the system more appropriately. The
main root of crosscutting was Knowledge Base module whose
management functions were spread over Peer Management
and Agent Management modules. The reason was the shared
registry information due to which it was difficult to maintain
the distribution of information or updating the information in
case of a change in registry, in a peer-to-peer paradigm. Using
bidirectional RMI with a combined client/server at both ends
does not help in reducing coupling. In addition, consistent
registry information at all peer entities brought the issue of
reliability. These issues were resolved by identifying three
main aspects that were Knowledge Distribution, Knowledge
Consistency and Exception Handlmg aspects. Exception
Hardling was sclected as a primary crossculting concern
because there were roughly 63 instances of exception handling
in 25 classes of AMS that makes its existence about 252% in
the system. That is, double the number of classes of AMS.
Therefore, it was necessary to choose it as a crosscutting
concern in order to reduce tangling from the code. The figure
3 shows the AOD of AMS. It shows which class of a module
aspect is crosscutting. For example
KnowledgeConsistency Aspect crosscuts all the classes in Peer
Management, Knowledge Base and Agent Management
modules. Note that classes in cach module are selected on the
basis of percentage of functionality of a particular moedule they
possessed, The AQ version of decentralized AMS of SAGE is
implemented using AspectJ [14].

IV. THEMETRICS

The reliability can be measured by measuring the internal
attributes like coupling, cohesion and complexity of a system
(18] [19]. Chidamber and Kemerer's (CK) metrics snite [20]
are best to capture the above-mentioned atiributes of a

207

Peer Managerient Coancern

Dy namicPolicy

(Yom dynamic) PasrServernnpl

Chemblookup

from peer: (Morm peer)
‘S‘IIMdE‘IU String *hashRegisry - FAarPIatlormidame -
intSee sint "PaerSerr erlmptd) *Clientbo ckupl)
*rund) lrernovePeerr SH) Qeﬂ.Oé"'UrrF actery()
! - inmPeerANS P
1 | Fprobetachned P geiinPreAMS0 ‘pingPeery
remeyef aul() * 3 A

ccHnowledgeDistribulionAspect==

se2S1atus(}
fookUp()
FeerR{)
Peerl()

RS

L O

arvaecy (hrowing(Esteprian)

AETIOASTITUS SLTACLIONS1ItUI (SIra])
Rogtfsrvice .getlookupFactory() :
Hashiable.getFaerResatver() ;
Hashiable.getPecrCache()

«cfxceptionfepectsa,

torthir (ExceptionAzpet)

ccKnowledaeConsistencytspect=»

getSi1atus()
gatAP()
Pauar AMS(}

Action$tatus . getActionStatus()
Root§service getAgantPiatfarm ()
LeokupFactery aetPrerAAMS{S5trnng)
lrithin(¥aauledge CORSistencyAspest)

b e ——
AgentDirectory Service gelRootServiza() : S A
!unhm(lnouledgeﬂ--lnhutmnt‘---c:;; _____ ——— —p —— - H I
———e T ' t i 1
l 1 i —_———
— T TTe———m g — = ; ! P
1 b o ey s e —— e — ; 1 v
i 3 1 T T T T v I
LookupF actory . : AQANtOitector S ervice
(from pees) | —— P S . mism an:s -)
hashRegustery . S ilSkrve e Toprri ama ; String “f"““ﬁ"‘
(*hashPgerCache 4 20Z) :,:"g,“ S1ring = nult LT
JhonlhRangs - Il genir izt s rmbame | SR g 2T ype Sleang = Aull whoolaititzle : boslean
"""It‘:m?l;ltof 4 "'s:rAvenv"a'formmjdre“ Simg || NS ervice Ageni()
sriocalPlaiform ‘&Pgs_hl:’_cg_r:c_sq_!r_ars a2 ctivate g [SResumes
tgEiPesrCache) getagent UG L
gctPh!fortrNameo ‘9‘*"-0""\”;"’73“0“”0 : “getDezcription() NG ervice Azeni()
Jemovepeerl) A e oA darecs i {Macinateg sgetAgenti ()
‘getPecrASQ) Jgeiagent? SrarmAddres ! Yge1R0 015 ervice ()
Py okup gfff’_ecfpt’i":fﬂ g | Feimesirermmtl 0 Limmm e
HKnovwledge Base Concern iAgeM Management Concern N

Figure 3, Crosscutting agent cozcems in Peer rmanagement, Knowledge base and Agent management modules

software. Therefore, we are using a metrics suite from [21),
which is based on the refinement of CK metrics for aspect-
oriented development and reusing LOC metrics. These metrics
capture the degree to which a single system concern maps to
design components (classes and aspects) and operations
(methods and advice) [7). The chosen metrics have been
applied on class diagrams of both the versions where it was
necessary and behavioral diagrams were also consulted. Table
1 briefly defines each metrc and associates it with the relevant
software attribute. We grouped the melrics to measurz a
certain attribute, according to our own requirements.

V. EVALUATION

Table 2 and 3 present the computed metriz values for toth
AQ and OO versions, We compared both AQ znd OO systems
on the basis of each metric value as follows:

Coupling
¢ Coupling Between Components (CBC)

From the metric values, it can be noticed that in AOD,
coupling is increasing but if we observe the AOD in Figure 3,

we can understand that the coupling between core classes is
decreasing and the coupling between core classes and aspects
is increasing,

o Depth of Inheritance Tree (DIT)

Only one class with the name of ServiceAgent has a
subclass a AgentDirectoryService which does not pay a
remarkable effect on a system.

Cohesion
¢ Lack of Cohesion in Operations (LCOO)

Values for the LCOO decreased in aspect-oriented design,
which means the AO version of the system is more cohesive
as compared to OO version. System with more cohesion is
more reliable and efficient.

Complexity
e Weighted Operations per Component (WOC)

It can be seen from the results of metrics, that in AO
version, the number of operations per class/aspect is reduced

as compared to OO version. AOSD helps in dacreasing the
crosscutting between the classes and reduces the number of
tangled methods in the class. Therefore, it cecreases the

overall complexity of a system.

+ Lines of Code (LOC)

LOC is 1685 in the OO implementation and 1486 in AQ
implementation. This shows that QO system is more complex
in terms of LOC.

TABLEL Tz MEeTRIC SUITE
Attribute Metrics Definition "
Coupling Between Components (CBC) E::.?;c tl:l; 1:;1:.}34.;; of other class.es and aspects to which a class ot |
Conpling
Depik of Inheritance Tree (DIT) lscodﬁt]s;;? far down in the inheritance hierarchy a class or aspect
Measures the lack of cohesion of a class or an aspect in terms of the
Cohesion Lack of Cohesion in Operazions (LCOQ) amount of method and advice pairs that do not assess the same
instance variable.
Weighted Operations per Companent (WOC) OCro:;x;tsn lt]};; br;rm::irs :1; rr:r;t:tc;:!: and advice of each class or aspects
Complexity Lines of Code (LOG) Counts the lines of code.
‘umber of Attributes (YOA) Counts the number of attributes of each class or aspect.
TABLZIl. METRICS L3TAINED FOR OO DESIGN
e .
DynamicPolicy 1 9 6 5 145 7
AgentDirectoryService 9 0 12 10 376 14
o) PeerServerimp 3 D 3 14 -227 1
i RootService 8 1] 22 35 347 8
§ CliertLookup 3 0 5 1 159 I
LookpFactory 2 b} 15 13 299 5
Servicedgent 0 1 4 9 132 1
TABLE IL. Mz77.C5 OBTAINED FOR AQ DESIGN
DynamicPolicy 3 0 2 3 133 5
AgentDirectoryService 3 0 9 6 302 11
PeerServerlmp 3 0 5 9 192 1
RootService 2 0 13 22 258 5
g ClientLookup 3 0 2 7 133 1
E LockupFactory 3 0 8 1 231 5
) ServiccAgent 0 1 9 13 130 1
KnowledgeDistributionAspect 6 0 5 6 43 3
ExceptionAspect 5 0 3 1 22 3
KnowledgeConsistancyAspect 6 0 7 4 37 3

209

o Number of Awributes (NOA)

It can be noted, that object-oriented version is more
complex in terms of NOA, while NOA is reduced in aspect-
oriented version.

VL. RESULTS

Coupling, cohesion and complexity plays a vital role in the
reliability of a system at design level. As we can see from the
computed metrics, AOD of a decentralized AMS resulted into
a loosely coupled, more cohesive and less complex system.
Coupling between core and aspectual classes increased in
AOD but other metrics showed good results for aspect-
orented version of the system. SAGE has a scalable and fault
tolerant decentralized architecture but realization is equally
important to build a fault tolerant and reliable system. Our
experimentation resulted into a positive impact of aspect-
orientation on the reliability of a decentralized AMS.

VII. CONCLUSIONS

This paper presented AQ and OO implementations of
decentralized agent-management system of SAGE. In this
study, we also mentioned the crosscutting concerns of
decentralized AMS. Through this analysis, we found that AQP
is superior to cbject orientation at design and implementation
level. ACP helps in improving software internal attributes and
leads to better values for software external attributes such as
relizbility. AOP is equally helpful in achieving a quality
decentraiized MAS as it is helpful for other applications.
Therefors, software engineers should not be hesitant in using

this new technique of implementation for decentralized MASs. .

QOur experiment resulted into a good impact of Aspect-
orientation on the reliability of decentralized MAS.

REFERENCES

{11 T. Elard, R. Filman, and A. Bader (eds.), “Theme section on Aspect-
Orisnted Prograzming™, CACM, 44(10), 2001.

[2] Gamia, A, Silva, V., et al, “Ecgineering Multi-agent Systems with
Aspects and Pezemns”, Journal of the Brazilian Computer Society, July
2002, V. 8, mo. 1, pp. 57-72.

[3] Arujo, 1, A Moreira, et al, “Aspect-Oriented requirements with
UML", Werkskep on Aspect-Oriented Modeling with UML, 2002.

(4] Ins Groher and Thomas Baumgarth, “Aspect-Orientation from design to
cods”, In Proceeding of Workshop on Early Aspects, Aspect-Oriented
Requirements Ecgmeering and Architecture Design; AOSD, March
2004.

{5] Ramnivas Laddad, Aspect] in action, Pages (7-11), Oreilly & Associates
Inc,, 2003,

[6] G. Kiczales, et al, “Aspect-Oriented Programming™, [n Proceedings of
the Furopean Conference on Object-Oriented Programming (ECCOP),
Fialand. Springer Verlag LNCS 1241, June 1997.

{71 U. Kulesza, et al, “Quantifying the effects of Aspect-Oriented
Programming: A maintenance study”, In Proceedings of the %h
Intermationat Conference on Software Reuse (ICSM'06), Philadelphia,
USA, September 2006.

(8] A- Garcia, et al, “ Aspectizing Multi-agent systems: from architecture to
implementation™, PUC-Rio, Computer Science Department, LES,
SoC+Agents Group, Rio de Janeiro, RJ, Brazil, 2004,

{9] Geria, A., Chavez, C., Chormn, R, *An Aspect-Oriented modeling
framework for designing Multi-agent systems™, 7th Workshop on Agent-
Oriented Software Engineering, AAMAS’06, Hakodate Japan, May
2006.

[10] Foundation for Inteiligent Physical Agents. http:/fwww.fipa.org

(11] Abdul Ghafoor, et al,, “SAGE: next generation Multi-agent system™,]
Proceedings of the 2004 International Confercace on Parallel an
Distributed Processing Techniques and Applications pp.13%-14:
Vol.1.PDPTA, Navada (USA), June 2004.

[12] 1. Zhao, “Measuring coupling in Aspect-Oriented systems”, Technic:
Report, SE-142-6, Information Processing society of Japan (IPSJ), Jur
2003, *

[13] A. Ghafoor, A. Shibli and H. Farooq Ahmad, “SAGE, open sourc

" Fault Tolerant architecture: enhancement, refactoring and debugging’

2ist Assurance System Symposium, Hiroshima City Universit:
Hiroshima, Japan 2007. :

{t4] Kiczales, G., Hilsdale, E.,, Hugunin et al,, "An overview of Aspect]™, 1
Proceedings of ECOOP 2001, Lecture Notes in Computer Science, Va
2072, Springer (2001) 327-353.

[15] C. VonFlach and Carlos J.P., “Design level support for Aspect-Oriente
development”, Workshop on Advanced Separation of Concerns |
Object-Oriented Systems (ASOC) at OOPSLA® 200), Tampa Ba;
Fiorida, USA, October 14, 2001,

[16] Salman Shahid, “"Agent Management System (AMS) for FIPA compliar
Multi-agent system”, Distributed Computing Group NUST Institute ¢
Information Technology, Rawalpindi, 2000.

[i7]1 R. E. Filman, et al (Eds.) Aspect-Orienied software developmen
Addison-Wesley, 2005,

[18] Dr. Linda Rosenberg, et al, “Software Metrics and Reliability”, 91
Intematicnal Symposium op Software Reliability Ergincering German;
Nov 1998.

{19] lubair §. Al-ja’afer, Khair Eddin M. Sabri, “Chidamber-Kemerer(CK
and Lorenze-Kidd(LK) Metrics 10 assess Java programs™, In Proceedin
of Interpational Workshop on Software Systerns (TWSS}, 2004,

[20] Chidamber, S. and Kemerer, C., “A metric suite for Object Oriente
design" [EEE Transactions on Software Engincering 20(6)(1994) 47¢
493,

[2{] C. Sant” ANNA, et al, “On the reuse and maintenagce of Aspec

" Oriented software: An assessment framework™, Proc. Brazilia
Symposium. On Software Engineering, 2003, 19-34.

210

Appendix C

~ Interfaces

Appendix C Interfaces

C.1 VYMA

C 1.1 Visual Manager GUI

The graphical user interface of AMS Visual Manager is shown below:

Menu Bar

Tool Bars prasssssTy

N

[Rw=ilcoel

Agent Tree 1‘_‘:) ion Board

e

i tonn Croxtun THom Bon Jun 25 1Y o 13 DT LE 2034
o8 T ER T il i vl SLche 50l vpiied 22 Gun Mo BT 1T 0898 GWT L0 00

AT T21 @l 04 e MLCS ATy Dol 80 Som i 2113 63 14 OWTE00 1004
ah 1072k s YT S Ib iy Py S dse 76 13 W14 TR 08 3500

T -
Status Bar

Figure 1.1 AMS Visual Manager GUI

The graphical user interface is composed of six main components. These are:

» Agent Tree.

» Menu Bar.

* Tool Bar.

* Popup Menu.
» Status Bar.

» Information Board.

Using these components user can interact with the agent and can perform multiple actions

which are discussed later in detail.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 57

Appendix C Interfaces

1.2 Component Details
Agent Tree

Agent Tree is one of the most important components of AMS Visual Manager. Agent Tree

is a three level hierarchic tree.

* First level Cluster Name (Root Node)
« Second level Machine Name

o Third level Agent Name (Leaf Node)

The first level node or the root node shows the name of the cluster. The second level node
represents the machine on which the agents are created and registered. Third level node or

the leaf node represents the agents that are registered with the machine under which they

appear.

Cluster Name

I

YOOV AR B

Agent Name

Figure 1.2 AMS Visual Manager’s AgentTree

Whenever the AMS Visual Manager is started the Agent Tree is populated with the
machines comprising the platform and the agents residing on those machines.

Machine Name
The machine name is represented in terms of its IP address in reverse order.
Agent Name

\
Agent name is composed of three segments

Impacl of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 57

Appendix C Interfaces

1. The agent name specified by the user
2. Reverse IP address of the machine on which the agent is to be created

3. Platform name

Full Agent Name = <agent name> : <reverse IP address> @ <platform name>
e.0.VMA:100721@niit206 '

where Agent name = VMA (First segment)

Reverse IP address = 100721 (Second segment)

Platform name = niit206 (Third segment)

Menu Bar

The Menu Bar is a very flexible component that adds to the user friendliness of any
graphical user interface. Using the Menu Bar the user can perform multiple actions. AMS
Visual Manager also provides Menu Bar to its users. It consists of

seven Menus that are:

e General

» Create

= Action

» Tools

» View

¢ Information

* Help
General

The General Menu consists of two Menu Items

* Close AMS Visual Manager

By using this option the user can close the AMS Visual Manager. When the user selects
this option, the user is asked for confirmation to close the AMS Visual Manager. After
confirmation a message is created by the AMS Visual Manager for AMS specifying to kill
the AMS Visual Manager. Qﬂer the creation the ACL message is sent to AMS via MTS:
Then the reply message is created and sent to AMS Visual Manager by AMS via MTS.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 58

Appendix C Interfaces

After receiving the reply message from AMS, AMS Visual Manager closes its graphical

user interface without causing any effect on the platform.

¢ Shutdown Platform

By using this option the user can close the entire platform. When the user selects this
option, the user is asked for confirmation to close the platform. After conﬁnnatibn a
message is created by AMS Visual Manager for AMS specifying to close the platform.
After creation, the ACL message is sent to AMS via MTS. On receiving this message AMS

kills all the agents that are active at that time and then finally closes the application.

Create
The Create Menu consists of two Menu Items
e DF Visual Manager

By using this option the user can launch the DF Visual Manager which provides a
graphical user interface for the management of Directory Facilitator (DF). When the user
selects this option, a message is created by the AMS Visual Manager for AMS specifying
to create the DF Visual Manager agent. After créaiion, the ACL message is sent to AMS
via MTS. On receiving this message AMS will create DF Visual Manager agent. The user
will be shown the graphical user interface 1o interact with Directory Facilitator. Then the
reply message is created and sent to AMS Visual Manager by AMS via MTS. After
receiving the reply message from AMS, AMS Visual Manager vupdates its Agent Tree view
by adding the entry of DF Visual Manager agent in the Agent Tree.

* TestAgent

By using this option the user can launch the Test4gent. When the user selects this option,
a message is created by the AMS Visual Manager for AMS specifying to create the
TestAgent. After creation, the ACL message is sent to AMS via MTS. On receiving this
message AMS will create Test4gent and its graphical user interface will be shown to the
user. Then the reply message is created and sent to AMS Visual Manager by AMS via
MTS. After receiving thereply message from AMS, AMS Visual Manager updates its
Agent Tree view by adding the entry of TestAgent in the Agent Tree.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 59

Appendix C Interfaces

Action
The Action Menu consists of five Menu ftems
* Create Agent

By using this option the user can create a new agent. First the user has to specify the
machine on which the user wants to create the agent. After that when the user selects this

option, the user will be asked to provide the following information

» Agent name
* Class Path
¢ Arguments

After getting all the necessary information from the user a message is created by the AMS
Visual Manager for AMS specifying to create a new agent with the name specified. After
creation, the ACL message is sent to AMS via MTS. On receiving this message AMS will
create a new agent with the user specified name. Then the reply message is created and
sent to AMS Visual Manager by AMS via MTS. After receiving the reply message from
AMS, AMS Visual Manager updates its VAgem‘ Tree view by'édding the entry of the agent

created in the Agent Tree.

 Kill Agent

By using this option the user can kill the specified agent. First the user has to select a
particular agent from the Agent Tree. After that when the user selects this option, the user
is asked for confirmation to kill the specified agent. After confirmation a message is
created by AMS Visual Manager for AMS specifying to kill the specified agent. After
creation, the ACL message is sent to AMS via MTS. On receiving this message AMS will
kill the agent as specified by user. Then the reply message is created and sent to AMS
Visual Manager by AMS via MTS. Afier receiving the reply message from AMS, AMS
Visual Manager updates its Agent Tree view by eliminating the entry of the agent in the
Agent Tree.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 60

Appendix C Interfaces

* Suspend Agent

By using this option the user can suspend the specified agent. First the user has to select a
particular agent from the Agent Tree. After that when the user selects this option, the user
is asked for confirmation to suspend the specified agent. After confirmation a message is
created by AMS Visual Manager for AMS specifying to suspend the specified agent. After
creation, the ACL message is sent to AMS via MTS. On receiving this message AMS will
suspend the agent as specified by the user. Then the reply message is created and sent to
AMS Visual Manager by AMS via MTS. After receiving the reply message from AMS,
AMS Visual Manager notifies the user by showing the confirmation message in the Status

Bar that the agent has been suspended.

* Resume Agent

By using this option the user can resume the specified suspended agent. First the user has
to select a particular suspended agent from the Agent Tree. After that when the user
selects this option, the user is asked for confirmation to resume the agent. After
_confirmation a message is created by AMS Visual Manager for AMS specifying to resume
the specified agent. After creation, the ACL message is sent to AMS via MTS. On
receiving this message AMS will resume the agent as specified by the user. Then the reply
message is created.
and sent to AMS Visual Manager by AMS via MTS. After receiving the reply message
from AMS, AMS Visual Manager notifies the user by showing the confirmation message

in the Status Bar that the agent has been resumed.

« Send Message

By using this option the user can send the messages to other specified agents. First the
user has to select a particular agent from the Agent Tree as the sender of the message.
After that, when the user selects this option the user will be shown the message creation
window through which the user can compose and send message(s). The window consists

of four fields which are:

1. Sender Name

When the message creation window starts up this field is already populated with the

name of sender agent.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 61

Appendix C Interfaces

2. Receiver Name

In this field the user has to specify the name of the recipient agent. This field has two
buttons attached with it which are: .

* Add

By using this button a popup window is appeared showing the names of the agents
currently residing in the platform. User then selects the desired recipient of the message.

The recipient name is then added to the Receiver field.

* Remove

By using this button the user can delete the selected recipient name from the Receiver
field. The user can specify multiple receivers for the message.

3. Communicative Act

Using this field the user can specify the type of communicative act for the message to be
sent to the specified recipient(s).

4. Contents

Using this field the user can specify the message contents. After specifying the inputs, the
user submits the request. After submission a message is created by AMS Visual Manager
for MTS specifying to send the message to the specified recipient(s). After creation, the
ACL message is sent to MTS which is responsible for forwarding the message to the

desired recipient(s).

‘Tools

The Tools Menu consists of three Menu Items
* Save Log

By using this option the user can save the contents of the Starus Bar. When the user
selects this option, a save file dialog appears in which the user has to supply the name and

location of the file to be saved.

Imnact of Aspect Orientation on the Reliahilitv of Decentralized Multi-Avent Svstem 62

Appendix C Interfaces

* Refresh Status Bar

By using this option the user can refresh the Status Bar. When the user selects this option,
any contents in the Status Bar are cleared.

¢ Change Status Bar Color

By using this option the user can change the color of the text shown in the Status Bar.
When the user selects this option, a Color chooser dialog appears in which the user
selects a particular color. After color selection the color of the text in the Status Bar is
updated.

View

The View Menu consists of two checkbox Menu Items

* View Status Bar

By checking the Menu Item the user can view the Status Bar. If the user doesn’t want to
view the Stafus Bar, the user can uncheck the Menu Item.

* View Agent Tree

By checking the Menu Item the user can view the Agenr Tree. If the user doesn’t want to

view the Agent Tree, the user can uncheck the Menu Item.

Information
The Information Menu consists of three Menu ltems

 Platform Information

By using this option the user can-view the information about the agent platform. When
the user selects this option the user will be shown the platform information window

through which the user can view the desired information that includes:

1. Platform creation time
It shows the time at which the platform was started.
2. Platform name

It shows the’r_name of the platform.

Impact of Aspect Oriertation on the Reliability of Decentralized Multi-Agent System 63

Appendix C Interfaces

3. Total machines in cluster
It shows the total number of machines in the cluster that form the agent platform.
4. Total agents created

It shows the total number of agents that have been created since the agent platform was
created.

5. Number of active agents
It shows the total number of agents that are currently active in the agent platform.
6. Total agents killed

It shows the total number of agents that have been killed since the agent platform was
created.

7. Number of suspended agents

It shows the total number of agents that are currently suspended in the agent platform.

» Machine Information

By using this option the user can view the information about a particular machine. First
the user has to select a particular machine from the Agent Tree. After that when the user
selects this option the user will be shown the machine information window through which

the user can view the desired information that includes:

1. Machine start time

It shows the time at which the machine was started and made the part of the cluster.

2. Machine name

It shows the name of the pahicular machine.

3. JDK Version

1t shows the version of Java Virtual Machine (J¥M) running on that particular machine.
4. OS Version

It shows the version of Operating System {OS) running on thatparticular machine.

5. Total agents created

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 64

Appendix C Interfaces

It shows the total number of agents that have been created since the machine was started.
6. Number of active agents

It shows the total number of agents that are currently active on that'particular machine.
7. Total agents killed

It shows the total number of agents that have been killed since the machine was created.
8. Number of suspended agents

it shows the total number of agents that are currently suspended on that particular
machine.

» Agent Information

By using this option the user can view the information about a particular agent. First the
user has to select a particular agent from the Agent Tree. After that when the user selects
this option the user will be shown the agent information window through which the user
can view the desired information that includes:

1. Agent Name

it shows the selected agént name.

2. Agent Owner

It shows the owner of the selected agent.

3. Agent State

It shows the state of the selected agent. An agent can be in one of 13 states that are:

* Active

» Suspend
* Transit

* Unknown
* Create

* Invoke

* Destroy

¢ Quit

¢ Resume

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 65

Appendix C Interfaces

» Wait
* Wakeup
* Move

* Execute

Help
The help Menu consists of one Menu Item
* About

By using this option the user can view the details about AMS Visual Manager.

Tool Bar

Tool Bar is a very flexible component that adds to the user friendliness of any graphical
user interface. Using the Tool Bar the user can perform multiple actions. AMS Visual
Manager also provides Tool Bar to its users. As discussed in above section, the following

actions can be performed using the Too! Bar

Fig. 1.3 Visual Managrer’s Too Bar

1. Shutdown Platform

2. Close AMS Visual Manager

3. Create new agent T
4. Kill Agent

5. Suspend agent

6. Resume agent

7. Send Message to other agents

Popup Menu

AMS Visual Manager provides Popup Menu to its users. Following actions can be
pgriormed using the Popup Menu.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 66

Appendix C Interfaces

Fig. 1.4 Visual Manager’s Pop Up Menu

1. Create new agent

2. Kill Agent

3. Suspend agent

4. Resume agent

5. Send Message to other agents
6. View Platform information
7. View Machine information

8. View agent Information

The PopupMenu can be launched by selecting any node in the Agent Tree and then

pressing the right mouse button.

Status Bar

This component is used to inform the user about the current activities taking place in the
agent platform.

Information Board

This component shows the information windows to the user on request that includes:

» Platform information.
» Machine information.

 Agent information.

Impact of ASpect Orientation on the Reliability of Decentralized Multi-Agent System 67

Appendix D

Coding -

Appendix D Coding

D.1 DynamicPolicy

This is class is from Peer Management concern. This class is responsible for the dynamic
probing (peer to peer). It checks the status of the other machines on the agent platform and in

case of failure it removes the peer machine from the platform.

. package ams.probe.dynamic;

import java.util. ArmayList;
import java.util. Enumeration;
import java.util. Hashtable;

import acl. ACLMessage;

import acl. ACLPerformatives;
import acl.CFPredicate;

import acl.aclcodec. ACLCodec;
import acl.ontology.management.ManagementOntology;
import acl.sl.codec.SLTokenizer;
import ams.AgentDirectoryService;
import ams.Agentld;

import ams.AgentStates;

import ams.RSFactory;

import ams.Utility;

import ams.peer.ActionStatus;
import ams.peer.PeerAMS;

| pﬁblic class DynamicPolicy extends Thread {

AgentDirectoryService objADS;
long interval = 2000,

PeerAMS peerAMS;

String strMacld;

Enumeration enum;

int intSize;

[+

* Constructor for the DynamicPolicy class

* @param AgentDirectoryService

* .

public DynamicPolicy(AgentDirectoryService obJADS) {
this.objADS = objADS;
this.start();

}

public void run() {
while (true) {

try {
sleep(interval);
enum = objADS.getRootService().getPeerResolver().keys();
this.probeMachine();
} catch (Exception €) {
e.printStackTrace();

/

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 68

Appendix D Coding

}
}
}
private void probeMachine() {
try {
String strLocal AMS;
Utility objUtility = new Utility();
strLocal AMS = '

objUtility.setMac[D(java.net.inetAddress.getLocalHost().gétHostAddfess());
ArrayList alMachineList = objADS.getRootService().getMachineList();

if (intSize != alMachineList.size(}) {
for (int i = 0; i < alMachineList.size(); i++) {

try
peerAMS =
objADS.getRootService().getLookupFactory().getPeerAMS(alMachineList.get(i).toString());
peerAMS.updateMachineList(alMachineList);
System.out.println("
Machine Information Updated "%

} catch (Exception ex) {
ex.printStackTrace();
¥

}
}

int index = alMachineList.indexOf{strLocal AMS);
if (index = alMachineList.size() - 1) {

index = 0;
} else

index = index + 1;

ActionStatus objActionStatus;

boolean boolCheck = false;
strtMacld = (String) alMachineList.get(index);

peerAMS =
0bjADS getRootService().getLookupFactory().getPeerAMS(strMacld);
if (peerAMS = null) {
System.out.println("Peer AMS is null");
}

if (!strtMacld.equals(strLocalAMS)) {
boolCheck = peerAMS.pingResponse();
if (boolCheck == true) {
for(inti=0;i<
objADS.getRootService().getMachineList().size(); i++) {

Systemn.out.printin(objADS.getRootService().getMachineList().get(i));
}

System.out.println{"'Status is not OK " + strMacld);

} else

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 69

Appendix D Coding

intSize = objADS.getRootService().getMachineList().size();
} // end try

catch (Exception e} {
removeFauit(strMacld};
e.printStackTrace();

}

private void removeFault(String sttMacld) {
ArrayList alMachineList;
Hashtable hashPeerResolvers = null;
System.out.printIn("----r-vr-----~-- I m in the method to handle the error-----v--------

" + strMacld);

hashPeerResolvers = objADS.getRootService().getPeerResolver();
hashPeerResolvers.remove(strMacld);
objADS.getRootService().getMachineList().remove(sttMacld);

objADS.getRootService().getLookupFactory().getPeerCache().remove(strMacld);
System.out.printin("Removed entry from local machine™);
alMachineList = objADS.getRootService().getMachineList();
Enumeration e = hashPeerResolvers.keys();
for (int i = 0; i <alMachineList.size(}; i+¥) {
try {
peerAMS =
objADS.getRootService().getLookupFactory().getPeerAMS(alMachineList.get(i).toString());
peerAMS.updateMachineList{alMachineList);
peerAMS.removeMachine(strMacld),
System.out.println("******////////****¥*****Removed from
machine" + e.toString());

sendMsgVMA(strMacld);
} catch (Exception ex) {
ex.printStackTrace();
h
} // end while

} // end method

private void sendMsgVMA(String strMacld) {
ArrayList alMachineList = objADS.getRootService().getMachineList(};
Hashtable hashPeerResolvers = nul};

System.out.println("------------~--- I m in the method to handle the error--------------
" + strMacld),

hashPeerResolvers = objADS.getRootService().getPeerResolver();

Enumeration enum = hashPeerResolvers.keys();

ACLMessage obJACLMessage = new
ACLMessage(ACLPerformatives. INFORM);

ACLMessage objACLMessage] = new
ACLMessage(ACLPerformatives.INFORM);

objACLMessage.setOntology{ManagementOntology.NAME);

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 70

Appendix D Coding

objACLMessage.setSender{objADS.getAgentld(});

objACLMessage.setOntology(ManagementOntology. NAME);
objACLMessagel.setSender(objADS.getAgentld());
try {

while (enum.hasMoreElements()) {

obJACLMessage addReceiver(new Agentld("VMA:" +
enum.nextElement().toString(} + "@" + RSFactory.getPlatformName(), null, null, null,
AgentStates. ACTIVE)),

objACLMessagel.addReceiver(new Agentld("VMA:" +

enum.nextElement().toString() + "@" + RSFactory.getPlatformName(), null, null, null,
AgentStates. ACTIVE));

v
CFPredicate objFailure = new
CFPredicate(ManagementOntology. FAILUREMACHINE);
objFailure.set(ManagementOntology. FAILUREMACHINE _NAME,
strMacld);
SLTokenizer objSLTokenizer = new
SLTokenizer(ManagementOntology.getinstance());

CFPredicate objFailurel = new
CFPredicate{ManagementOntology. FAILUREMACHINE};
objFailurel .set(ManagementOntology . FAILUREMACHINE_NAME,
strMacld); -
SLTokenizer objSLTokenizer] = new
SLTokenizer(ManagementOntology.getinstance());

objACLMessage.setContent(objSLTokenizer.encode(objFailure));
objACLMessage 1 .setContent(cbjSLTokenizer.encode(objFailurel));

objACLMessage.setX_Authenticationld(AgentDirectoryService.getFirstTok());
objADS.sendMessage(objACLMessage);
ACLCodec aclCodec = new ACLCodec();
objADS . sendMessage(objACLMessagel);
System.out.printin(aclCodec.encode(objACLMessage));
System.out.println{aclCodec. encode(ob_]ACLMessagel)),
}//ENDTRY

catch (Exception ex) {
ex.printStackTrace();
h

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 7]

Appendix D Coding

D.2 PeerServerlmpl

This is class is also part of Peer Management concern. This is the server class of AMS
RMI.

package ams.peer;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;
import java.util. ArrayList;

import java.util. Enumeration;

import java.util. Hashtable;

import ams.Agentld,
import ams.AgentRegistry;
import ams.RootService;

public class PeerServerImpl extends UnicastRemoteObject implements PeerAMS
{

private RootService objRootService = null;
private Hashtable hashRegistry = null;
private ActionStatus objActionStatus = new ActionStatus();

Agentld objAgentId = new Agentld();
PeerServerImpl AMSpeerSever;
/*t
* Constructor for the PeerServerImpl Class
* (@throws RemoteException
*/
public PeerServerlmpl() throws RemoteException
{
super();
System.out.printIn("sdfsdfsdfsdfsdfsdfsdfdsf™);
}

1%* - i —

This method is used to set RootService and shared registry Information
(@param objRootService

@param hashRegistry
@throws RemoteException
¥/
public void ActivatePeerServerImpl(RootService objRootService, Hashtable
hashRegistry)throws RemoteException

{

if (objRootService != null)
this.objRootService = objRootService;

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 72

Appendix D Coding

if (hashRegistry != null)
this.hashRegistry = hashRegistry;

}

JE*
This method returns true if the pingResponse is successfull
 @return
@throws RemoteException
*
public boolean pingResponse() throws RemoteException

{

return irue;

}

I* *
This method accepts the name of the component , checks if its working and
returns the actionStatus of the ping.
(@param strPeerComponent
@return
f@throws RemoteException
*/
public ActionStatus pingResponse(String strPeerComponent) throws RemoteException
{
try

S\‘stem.oﬁt.println(';* sk * * * **l*** ok ok Kk "+strPeerComponent+"* Sk kk R kkokkkok Rk E ");
if(strPeerComponent.equals("MTS"))

{
System.out.println("GOT PEERMTS");

}

else if(strPeerComponent.equals("peerAMS"))

{
System.out.printin("GOT PEERAMS");
System.out.printin("AMS REBINDED");
}

else if(strPeerComponent.equals("peerDF"))

{
System.out.println("GOT PEERDF"),

}

else if(strPeerComponent.equals("peerVMA™))

{
System.out.println("GOT PEERVMA™");

}
}

catch(Exception ¢)

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 73

Appendix D

Coding

{
e.printStackTrace();

}
System.out.println("In the Server Method");
//mow here we have to rebind the Specific Component
//and send action status back to the sender that the machine is rebined now.
objActionStatus.setActionStatus("Rebinded")
return objActionStatus;

}

J¥*

AMS is responsible for the searching of an Agent within the Platform.
Remote search should be performed by AMS rather than agent by itself.
(@param agname
@return
@throws RemoteException
*/
public ActionStatus searchAgent(String strAgentName) throws RemoteException
{
System.out.println("Inside Search Agent on PeerServerImpl");
if (strAgentName != null)
{
if(hashRegistry.containsKey(strAgentName))
objActionStatus.setActionStatus("EXISTS™);
else <
objActionStatus.setActionStatus("DOESNOTEXIST");
}
else
objActionStatus.setActionStatus("NAMENULL");

System.out.printIn("Inside Search Agent on PeerServerlmpl Before Return™);
return objActionStatus;

}
/**
AMS is responsible for the searching of agent description either on
local machine or on distributed machines.
(@param agname
(@return
@throws RemoteException
*
public Agentld searchAgentDesc(String strAgentName) throws RemoteException

{
AgentRegistry agentReg = null;

if (strAgentName != null)

if (hashRegistry.containsKey{strAgentName))

{
agentReg = (AgentRegistry) hashRegistry.get(strAgentName};
objAgentld = agentReg.getAgentld();

Impactfof Aspect Orientation on the Reliability of Decentralized Multi-Agent System

74

Appendix D Coding

return objAgentld;

}

else

{ -

System.out.println("Inside Search Agent on PeerServerlmpl Returning 2 : " +
objAgentld.getAgentName());
return null;
}

}

else
{
System.out.printin("Inside Search Agent on PeerServerlmpl Before Flnal Return");
return null;
}
}

/** Name of faulty detected machines must be conveyed to other peer machines.
@param strtMacld
{@return

@throws RemoteException
*/

public ActionStatus removePeerAMS(String strMacld) throws RemoteException

{
if (strtMacld-!= null)
{ L : .
if(objRootService.getPeerResol ver().containsKey(strMacld))
{

System.out.printin{"Server Side PeerRemoved form :
"+objRootService.getAgentPlatformAddress()+" : "+ strMacld);

objActionStatus.setActionStatus(objRootService.removePeer(strMacld).getActionStatus(
)
}

else
objActionStatus.setActionStatus("DOESNOTEXISTS");
}

else — S
objActionStatus.setActionStatus{"NULLNAME");
return objActionStatus;

}

/**

To add another PeerAMS to local peerResolver
(@return

@throws RemoteException
*/
public ActionStatus addPeerAMS(String strtMacld, MainAddress objMainAddress)
throws RemoteException

{

Impac/of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 75

Appendix D Coding

if ((strMacld '= null) && (objMainAddress != null))
{
System.out.printn("Server Side Adding the PeerAMS : " + strMacld),
objActionStatus = objRootService.addPeer(strMacld,objMainAddress);
}
else
objActionStatus.setActionStatus("NULLNAME");
return objActionStatus;

}

/*t

This method accepts the machineld of the machine and removes it from the local
machine
@param Macld .
@throws RemoteException
*/
public void removeMachine(String Macld) throws RemoteException
{
System.out.println("I am in the peer machine server method remove machine");
objRootService.getPeerResolver().remove(Macld);
objRootService.getLookupFactory().getPeerCache().remove(Macld);

}

/** Platform Name must be same among all the peer machines.
@return _
@throws RemoteException
¥/

public String getPlatformName() throws RemoteException

{
System.out.println("Server Side: Call recieved from remote in Get Platform Name");
if(objRootService.get AgentPlatformName()==null)
{

System.out println(" Agent Platform name is null");

3
return objRootService.getAgentPlatformName();

b

JE*]

ACC Platform Address returned
@return
@throws RemoteException
*/
//@TODO new change mobility critical method not found
public String[] getACCPlatformAddress() throws RemoteException

{
if(objRootService.getllOPAddress()==null)

{
System.out.println("Platform Address is null");

}
return objRootService.getllOPAddress();

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 75

Appendix D Coding

}

/** Newly Linked peer sends its identity and receives peers list.
{@param strMacld
@param peerAddress
@return
@throws RemoteException
*/ X
public Hashtable getListPeerAMS(String strMacld, MainAddress objMainAddress)
throws RemoteException '

{
if ((sttMacld 1= null) && (objMainAddress = null))

{
System.out.println("System is returning in getpeerlist " + strMacId);
objRootService.addPeer(strMacld,objMainAddress);
Enumeration enum = objRootService.getPeerResolver().keys();
while (enum.hasMoreElements())

{
System.out.printIn("Server Side Inside getPeerList Host Server Side returning :
" + (String) enum.nextElement());
}

return objRootService.getPeerResolver();

}

else
return null;
}

/* *
This method gets the String machineld ,adds the machine to the local machine
Information and returns the machine Information
(@param strMacld
@return
@throws RemoteException
*/
public ArrayList getMachineList(String strMacld) throws RemoteException

{
objRootService.addMachineList(strMacid);

return objRootService.getMachineList();
}

[*

(@param alMachineList
{@throws RemoteException
*/
public void updateMachineList(ArrayList alMachineList) throws RemoteException
{
objRootService.setMachineList(alMachineList);
System.out.printin{"MACHINE INFORMATION UPDATED"),
}
3

Impact of Aspect Qrientation on the Reliability of Decentralized Multi-Agent System 77

Appendix D Coding

D.3 ClientLookup

This is class is also part of Peer Management concern. This is the Client representative

class of the AMS RMIL. It calls the AMS Server Methods.

package ams.peer;

import java.util. ArrayList;
import java.util. Enumeration;
import java.util. Hashtable;

import ams.HostException;
import ams.RootService;

public class ClientLookup {
private LookupFactory objLookupFactory = null;

private ActionStatus objActionStatus = null;
private String strPlatformName = null;

private RootService objRootService = null;

/**

Constructor for ClientLookup which accepts 3 parameters
@param objRootService
@param Macld
@param address
*/
public ClientLookup(RootService objRootService, String Macld, MainAddress address) {
objRootService.getPeerResolver().put(Macld, address);
Enumeration enum = objRootService.getPeerResolver().keys();
while (enum.hasMoreElements())
System.out.println("ClientLookup Constructor : " + (String)
enum.nextElement());

System.out.println("gdgdgfdgfd");

this.objRootService = objRootService;

System.out.println("gdgdgfdgfd™);

objLookupFactory = new LookupFactory{objRootService,
objRootService.getAgentPlatformAddress(), objRootService.getAgentPlatformName());

}

[

Constructor for ClientLookup which accepts 1 parameter
(@param objRootService
(@param Macld

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 28

Appendix D Coding

(@param address
¥
public ClientLookup(RootService objRootService) {
this.objRootService = objRootService;
LookupFactory(rs.getPeerResolver(),this.rs.getAgentPlatform Address(),
this.re.getAgentPlatformName());
objLookupFactory = new LookupFactory{objRootService,
this.objRootService.getAgentPlatformAddress(),
this.objRootService.getAgentPlatformName());

}

It*

This method returns the LookupFactory Object
@return .
*/
public LookupFactory getLookupFactory() {
return objLookupFactory;
}

Jr*

This method pings the peer machine and returns the action status based on

the probe result.

(@param strPeerMacld

@param strPeerComponent

@return

@throws HostException

¥/

public ActionStatus pingPeer(String strPeerMacld, String strPeerComponent)

throws HostException {
try {
System.out.println("l am in the Client Lookup™);
if (objLookupFactory.getPeerAMS(strPeerMacld) == null) {
System.out.println("Peer ams is not null");

}

objActionStatus =
objLookupFactory.getPeerAMS(strPeerMacld).pingResponse(strPeerComponent);
if (objActionStatus = null)
retumn (objActionStatus);
-} catch (Exception ¢) {

System.out.println("Exception Raised in pingPeer : " +

e.toString());
this.bindPeerAMS(strPeerMacld);
}
return {null);
}
JE*

This method pings the machine name which is specified in the arguments
(@param strPeerMacld

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

79

Appendix D Coding

*/
public void pingPeerAuth(String strPeerMacld) {
try {
objActionStatus =
objLookupFactory.getPeerAMS(strPeerMacld).pingResponse(strPeerMacld);
} catch (Exception €) {)
System.out.println("Exception Raised in pingPeerAuth : " +
e.toString()); : ' '
}
}

J**

This methos accepts a String machineld of the peer machine and Updates the
peer machine registry information.
@param strPeerMacld
*/
public void getPeerList(String strPeerMacld) {
Hashtable hashPeerResolver = new Hashtable();
String strPeerMaclds = new String();

try {
hashPeerResolver =
objLookupFactory.getPeerAMS(strPeerMacid).getListPeerAMS(objRootService.getAgen
tPlatformAddress(), new MainAddress(});

Enumeration enum = hashPeerResolver.keys();

while (enum.hasMoreElements()) {
MainAddress ma = null;
ma = (MainAddress)
hashPeerResolver.get(enum.nextElement());
System.out.printin("Client Looku up ==—=+++" +
ma.getHostAddress() + " : " + ma.getHostPort());
}
} catch (Exception €) {
System.out.printin("Exception Raised in getPeerList : " +
e.toString());
)
System.out.println("Size of HashTable inside getPeerList : " +
hashPeerResolver.size());
this.objRootService.setPeerResolver(hashPecrResolver);

Enumeration ePeerResolver =
this.objRootService.getPeerResolver().keys();
System.out.println("Hello World inside Client lookup");
while (ePeerResolver.hasMoreElements()) {
strPeerMaclds = (String) ePeerResolver.nextElement();
if
((strPeerMaclds.equals(this.objRootService.getAgentPlatformAddress())) ||
(strPeerMaclds.equals(strPeerMacld))) {

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 80

Appendix D Coding

System.out.printin("Already Done");
}else {

try {
System.out.printIn("Before Calling for gettingList and adding : " + strPeerMaclds);

objActionStatus =
objLookupFactory.getPeerAMS(strPeerMaclds).addPeerAMS(this.objRootService.getAg
entPlatformAddress(), new MainAddress());
objActionStatus.setActionStatus("DONE");
} catch (Exception e) {
System.out.println("Exception Raised in getPeerList
and Add to remote: " + e.toString());

}
}-
}

/**
This method accepts the String machine Id and removes the machine from the
local machine
(@param strPeerMacld
*/
public void removePeer(String strPeerMacld) {
try { .
System.out.println("Calling for removing the PeerAMS : " +
. strPeerMacld); - ' ‘
objActionStatus =
objLookupFactory.getPeerAMS(strPeerMacld).removePeerAMS(strPeerMacld);
3 catch (Exception €) {
System.out.printin("Exception Raised in removePeer: " +
e.toString());

}

Jx*

This method accepts a string machine Id and gets the Agent Platform ACC
Address

from that machine. B

(@param strPeerMacld

*/

}

f@TODO New change mobility Critical
public void getACCServerAddress(String strPeerMacld) §
try {
System.out.println("Calling for getting AP Address : " +
strPeerMacld),

objRootService.setllOPAddress(objLookupFactory.getPeerAMS(strPeerMacld).g
etACCPlatformAddress());

String[} strAddress = objRootService.getiIOPAddress();

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 81

Appendix D Coding

System.out.printIn("Geting agent Platform Address : " +

strAddress[0]);
} catch (Exception e) {
e.printStackTrace();
!
}
[+

This method accepts a string rnacﬁine 1d and gets the Agent Platform Name

from that machine.

(@param strPeerMacld

*/
public void getPlatformName(String strPeerMacld) {

try { .

System.out.println("Calling for getting APName : " +
strPeerMacId);

objRootService.setAgentPlatformName(objLookupFactory.getPeerAMS(strPeertM
acld).getPlatformName());
System.out.printIn("Getting agent Platform Name : " +
objRootService.getAgentPlatformName());
} catch (Exception e) {

System.out.printin("Exception Raised in getPlatformName : " +
e.toString());

}
} .

/**
This method accepts the two String arguments and gets the machineList
from the peer machine .
(@param strPeerMacld
@param strMacld
@return
*/
public ArrayList getMachineList(String strPeerMacld, String strMaclId) {
ArrayList alMachineList = null;
try {
alMachineList=
objLookupFactory.getPeerAMS(strPeerMacld).getMachineList(strMacld);
} catch (Exception €) {
e.printStackTrace();
}

return alMachineList;
}

public void bindPeerAMS(String strMacld) throws HostException {
Hashtable hashPeerResolvers = null;

System.out.pl‘iﬂﬂn(""'““’""""l m in the memOd to haﬂdle the CITor=----
......... " + strMacld);

Impact of Aspect Orientation on the Reliability of Decertralized Multi-Agent System 82

Appendix D Coding

hashPeerResolvers = objRootService.getPeerResolver();
hashPeerResolvers.remove(strtMacld);
objRootService.getLookupFactory().getPeerCache().remove(strMacld);
System.out.printin("Removed entry from local machine");

Enumeration enum = hashPeerResolvers.keys();

while (enum.hasMoreElements()) {

try {

ob) LookupFactory.getPeefAMS(enum.nextElement().toStriﬁg()).remdveMachine(
strMacld);

objRootService.getLookupFactory().getPeerCache().remove(strMacld);
System.out.println("******////////*********Removed from
machine" + enum.toString());
} catch (Exception ex) {
ex.printStackTrace();
throw new HostException("Host Machine not found");

D.4 LookupFactory

This is class is also part of Knowledge Base concern. This is class is also part of
Knowledge Base concern. Lookup factory is used in booting. LookupFactory is created
by the ClientLookup. Lookup Factory is set and can be obtained from RootService. It is
required by all the system Agents because they need to communicate with other peer

System Agents.

package ams.peer;

import java.rmi.Naming;

import java.util.Enumeration;

import java.util.Hashtable;

import mts.peer.PeerMTS;

import vina. AMSGULPeerVMA;

import ams.RootService;

import ams.SingletonException;

import ams. Utility;

import df.peer.DFPeer;

public class LookupFactory

{
private Hashtable hashRegistery; /= new Hashtable();
private RootService objRootService=null;
private Hashtable hashPeerCache = new Hashtable();

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 83

Appendix D Coding

static boolean boollnstance=false;

private String strMahinelD = null;

private String strLocalPlatform=null;

/**
* @param hashRegistery
*/
public LookupFactory(}
{
if(boollnstance) .
throw new SingletonException("Only one Lookup Factory is Allowed");
else
{
boollnstance=true;
}
}

/**

*

* @param hashRegistery

*/ : L
. public LookupFactory(RootService objRootService, String strLocalMacld, Stning
strPlatformName)

{

if(boolinstance)

throw new SingletonException("Only one Lookup Factory is Allowed"}).
else

{

boollnstance=true;

}

this.objRootService = objRootService;
this.strLocalPlatform = strPlatformName;
this.strMahinelD = strl.ocalMacld; - -
System.out.printn("Size in Side LookupFacotry constructor " +
objRootService.getPeerResolver().size());
this.hashRegistery = objRootService.getPeerResolver();
H

public Hashtable getPeerCache()
{

return this.hashPeerCache;

}
public void setPlatformName(String strPlatformName)

{

this.strLocalPlatform = strPlatformName;

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 84

Appendix D

}

Coding

public String getPlatformName(}
{

}

return this,strLocalPlatform;

‘public String getLocalMacld()

{
return this.strMahinelD;
}

JE*

* @param strMachineName
* @return

*/

public PeerMTS getPeerMTS(String strtMachineName)
{
PeerCache objPeerCache = (PeerCache)hashPeerCache.get(sttMachineName),

if{objPeerCache != null)

{
if(objPeerCache.getPeerMTS() == null)

{
}

else

{
return(objPeerCache.getPeerMTS());
}

return((PeerMTS)lookup(sttMachineName, "PeerMTS", objPeerCache));

}

else

{
objPeerCache = new PeerCache();

return((PeerMT S)lookup(strMachineName, “PeerMTS", objPeerCache));
}
}

JE*
* @param strMachineName
* @return
*/
public PeerVMA getPeerVMA(String strMachineName)

{
System.out.println("CHECK 1");

PeerCache objPeerCache = (PeerCache)hashPeerCache.get(strtMachineName);

if(objPeerCache != null)

{
System.out.println("CHECK 2");

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 85

Appendix D Coding

if(objPeerCache.getPeer VMA()==null)
{

return((PeerVMA)lookup(strtMachineName,"PeerVMA", objPeerCache));
t

else
System.out.println("CHECK 3"},
return{objPeerCache.getPeerVMA());
}

else

{
System.out.println("CHECK 4");
objPeerCache = new PeerCache();
return((PeerVMA)lookup(strMachineName, "PeerVMA®", objPeerCache));

} .

}

JE*

* @param strMachineName
* @retum
*/
public PeerAMS getPeerAMS(String strtMachineName)
{
PeerCache objPeerCache = new PeerCache();
objPeerCache = (PeerCache)hashPeerCache.get(strMachineName);

iflobjPeerCache != null)
{
if{objPeerCache.getPeer AMS()==nuil)
{
return((PeerAMS)lookup(strtMachineName, "PeerAMS", objPeerCache));
}
else
{
return{objPeerCache.getPeerAMS());
}
}
else
{ o J— -
objPeerCache = new PeerCache();
try
{
return((PeerAMS)ookup(sttMachineName, "PeerAMS", objPeerCache));
}
catch(Exception €)
{

System.out.println("Exception in returning PeerAMS Lookup "+e.toString());
return null;
}
3
}

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 86

Appendix D Coding

Jr*

*

* @param strtMachineName
* @return

*/

public DFPeer getPeerDF(String strMachineName)

{
PeerCache objPeerCache = new PeerCache();
objPeerCache = (PeerCache)hashPeerCache.get(strtMachineName);
if(objPeerCache != null)

{
if{objPeerCache.getPeerDF()==null)

{
return((DFPeer)lookup(strMachineName, "PeerDF", objPeerCache));

}

else

{
return(objPeerCache.getPeerDF());
}
3

else

{ _
objPeerCache = new PeerCache();
try ' - .
{
retum((DFPeer)lookup(strMachineName, "PeerDF", objPeerCache));

}

catch(Exception €)

{
System.out.println{"Exception in returning PeerDF Lookup "+e.toString(});
return null;

}
}
}
l**
* @param strMachineName -
* (@param strServiceName
* @param objPeerCache
* @return
*/
private Object lookup(String strMachineName, String strServiceName, PeerCache
objPeerCache)
{
try
{
System.out.printin("CHECK 1");
System.out.println{"Macvcvdfdfsdfdsfdsfdsf : ¥ +strMachineName);

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 87

Appendix D Coding

MainAddress objMainAddress =
(MainAddress)this.objRootService.getPeerResolver().get(strMachineName);

System.out.println("CHECK 2");

System.out.printin("Size in Side LookupFacotry Hash " +
this.objRootService.getPeerResolver().size());

System.out.println("CHECK 3");

System.out.printIn("Size in Side LookupFacotry Root " +
this.objRootService.getPeerResolver().size(});

System.out.println("CHECK 4");

System.out.println("Lookup™);

if(strServiceName.equals("PeertMTS"))

{

System.out.printin(*CHECK 5");
objMainAddress.getHostAddress() + ":" + objMainAddress.getHostPort() + /" +
strServiceName);

//PeertMTS peerMTSObject = (PeerMTS)Naming.lookup("rmi://" +
objMainAddress.getHostAddress() + ":" + objMainAddress.getHostPort() + "/" +
strServiceName};

System.out.printn("rmi://" + objMainAddress.getHostAddress() + ™" +
objMainAddress.getHostPort() + "/" + strServiceName);
System.out.printIn{"rmi://10.10.2.193:1099"+"/"+ strServiceName),
// PeerMTS peerMTSObject =
(PeerMTS)Naming.lookup("rmi://10.10.2.193:1099"+"/"+ strServiceName);
if (peetMTSObject=null) C
System.out.printIn("Lookup 2");
else
System.out.printIn{("Lookup 2 Not Null");
objPeerCache.setPeerMTS(peerMTSObject);
hashPeerCache.put(strMachineName, objPeerCache);
return(peerMTSObject);

}

else if(strServiceName.equals("PeerAMS™))
{

Enumeration ee = this.objRootService.getPeerResolver().keys();
System.out.printin("Size in Side LookupFacotry Hash " +
this.objRootService.getPeerResolver().size());
System.out.printIn("Size in Side LookupFacotry Root " +
this.objRootService.getPeerResolver().size());
while (ee.hasMoreElements())
{
MainAddress objMainAdd =null;
System.out.println{"System HAsh Slze :
"+this.objRootService.getPeerResolver().size(});
System.out.printIn("System Root HAsh Slze :
"+this.objRootService.getPeerResolver().size());
objMainAdd = (MainAddress)
this.objRootService.getPeerResolver().get(ee.nextElement());

Impact of. AspeEOrientation on the Reliability of Decentralized Multi-Agent System 88

Appendix D

Coding

System.out.println("Size in Side LookupFacotry Hash " +
this.objRootService.getPeerResolver().size(});

System.out.println("Size in Side LookupFacotry Root " +
this.objRootService.getPeerResolver().size());

System.out.println("Lookup FActory ++++=—=+++ "+
objMainAdd.getHostAddress()+ " : " + objMainAdd.getHostPort());

yo
PeerAMS peerAMSObject = (PeerAMS)Naming.lookup("rmi://" +

objMainAddress.getHostAddress() + ":" + objMainAddress.getHostPort() + "/" +

strServiceName);
if (peerAMSObject=null)
System.out.println("Lookup 2");
else System.out.printin("Lookup 2 Not Null");
objPeerCache.setPeerAMS(peerAMSObject);

hashPeerCache.put(strMachineName, objPeerCache);
return{peerAMSObject);

}

else if(strServiceName.equals("PeerVMA™))

{

System.out.println("CHECK 6");
System.out.printIn{("CHECK 6");
PeerVMA peerVMAODbject = (PeerVMA)Naming.lookup("rmi://" +

objMainAddress. getHostAddress() + ™"+ objMamAddress getHostPort() + "/" +
strServiceName);

if(peerVMAODbject!=null)
System.out.println("NOT NULL"+peerVMAObject);
System.out.printin("CHECK 7");
objPeerCache.setPeerVMA(peer VMAObject);
System.out.printIn("CHECK 8");
hashPeerCache.put(strMachineName, objPeerCache);
System.out.printin("CHECK 9"},
return{peerVMAObject);

}

else 1[(strServ1ceName equals("PeerDF"))
{ e ————— I

System.out.println("CHECK 6");
System.out.println("CHECK 6");
DFPeer peerDFObject = (DFPeer)Naming.lookup(“rmi://" +

objMainAddress.getHostAddress() + ":" + objMainAddress.getHostPort() + "/" +

strServiceName);

if(peerDFObject!=null)

System.out.println("NOT NULL"+peerDFObject);
System.out.printin("CHECK 7");
objPeerCache.setPeerDF(peerDF Object);
System.out.printin("CHECK 8");

-

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

89

Appendix D Coding

hashPeerCache.put(strMachineName, objPeerCache);
System.out.println("CHECK 9");
retum(peerDFObject);
}
¥

+ catch(Exception ¢)

{ :
System.out.println{"Exception in LookupFactory in AMS " +¢);

System.out.println{"have to bind again here");

3

return(null);

}

public void removePéer(String macld)

{
if (hashPeerCache.contains(macld))

hashPeerCache.remove{macld);

}

public void KillVMA()

{
try{
System.out.println(" About to remove the peer VMA from hash table");

PeerCache peerCache=null;
Utility utility =new Utility(};-
String maciD =

utility setMacID(java.net.InetAddress.getLocalHost().getHostAddress());
peerCache=(PeerCache)hashPeerCache.get(maclD);
peerCache.removePeerVMA(Q);
System.out.println{"Removed the peer VMA from hash table");

}

catch(Exception ¢)

{

e.printStackTrace();

}

}
}

D.5 RootService

This class is also part of Knowledge Base concern. It is created at the time Agent
Platform is initiated. RootService is set, in which the reference of the shared registry is
passed on to the root service instance. It sets the agent platform description. RootService
sets the agent platform name, which is obtained by the system and is the name of the

system.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 90

Appendix D Coding

package ams;

import java.util. Arrayl ist;
import java.util. Hashtable;
import java.util.Vector;

import mobility. MigrationManager;

import mobility. SageClassLoader;

import mts.MTSManager;

import mts.reception.CommunicationModule;
import mts.transmission.SendCommand;
import ams.peer.ActionStatus;

import ams.peer.LookupFactory;

import ams.peer.MainAddress;

/{@TODO new change in mobility

public class RootService {
** String Array used to store IIOP Address */
private String[] strIIOPAddress;
1** String used to store Agent Platform's name */
private String strAgentPlatformName;

[* String used to store Agent Platform's Description */
private String strAgentPlatformDescription;

/** String used to store Agent Platform's Address (Umque Machine ID) */
private String strAgentPlatformAddress;

[** Value object for peerResolvers ¥/
private MainAddress objPeerAddress = new MainAddress();

1** Vector used to store Agent Id's of the Main Service of the Agent
Platform for example Agent Management System , Visual Management Agent. */
private Vector vecAgentIDs;

[** ActionStatus for the return values */
private ActionStatus objActionStatus = new ActionStatus();

- [¥* This is used to store a reference of MTS Class. *f
private MTSManager objMTSManager;

[¥* Hash table which stores the machine id of itself and its peers. */
private Hashtable hashPeerResolvers = new Hashtable();

[** Array List used to store machine information and keep in consistent*/
private ArrayList alMachineList = new ArrayList();

[¥* Hash table which is shared between MTS and AMS , it stores the
reference of the agents against the agent names */

private Hashtable hashMTSAMSreg = null;

/** Used to lookup the peer components on peer machines. */

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System o1

Appendix D Coding

private LookupFactory objLookupFactory = null;
I < Mobility ST T T T

private MigrationManager MigrationManagerObj;
private SageClassLoader objClassLoader;

1** Constructor for RootService class */
public RootService(Hashtable hashMTSAMSreg) {
vecAgentIDs = new Vector(0);
this.setAgentPlatformAddress();
this.hashMTSAMSreg = hashMTSAMSreg;
this.addPeer(this.getAgentPlatformAddress(), this.objPeerAddress);

}

f** This method returns an instance of the MainAddress
@return
*/

public MainAddress getMainAddress() {
return this.objPeerAddress;
}

[* This method accept the LookUpFactory object and sets it to the Local
LookupFactory attribute
@param objLookupFactory
*/ . .
public void setLookupFactory(LookupFactory objLookupFactory) {
this.objLookupFactory = objLookupFactory;

}
[** This method returns an instance of LookUpFactory
@return
*/
public LookupFactory getLookupFactory() {
return this.objLookupFactory;
}
[r* This Method is used to add an Agentld of the Service to the List.
@param Agentld
*/

public void addAgentID(Agentld alD) {
this.vecAgentIDs.add(aID);
Y

[** This method accepts an Agent Name and retumns the Agentld of that
particular
Agent.
@param String strName
* @return Agentld

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 92

Appendix D

Coding

*/
public Agentld getAgent]D(String strName) {

Agentld objAgentld = null;
for (int i = 0; i < vecAgentIDs.size(); i++) {
objAgentld = (Agentld) vecAgentIDs.get(i);
if (objAgentld.getAgentName().equals(strtName))

return objAgentld;
}
return null;
}
/**
This method accepts the Agent Platform Name and sets it.
(@param String
*/

public void setAgentPlatformName(String strAgentPlatfonnName) {
this.sttAgentPlatformName = strAgentPlatformName;

}
/* *
* This method returns an instance of the Shared registry Information
* @return -
* _ .
public Hashtable getSharedRegistry() {
return this.hashMTSAMSreg;
}
/**

This method is used to set the Platform Address when a new machine
joins the platform.

*/
private void setAgentPlatformAddress() {
String sc¢ = null;
StringBuffer sb;
try {

sc = java.net.InetAddress.getLocalHost().getHostAddress();

char c[] = sc.toCharArray();

int pointl = (;

int point2 = 0;

int point3 = 0;

int count = 0;

for (int i = 0; i < c.length; i++) {
if (cfi] =" {

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

93

Appendix D Coding

count++;
if (count = 1)
pointl = i;
if (count = 2)
point2 = i;
if (count == 3) {
point3 =1i;
break;
t
}
H
sb = new StringBuffer(sc);
sb.deleteCharAt(point3);
sb.deleteCharAt(point2);
sb.deleteCharAt(point1);

sb = sb.reverse();
sc = sb.toString();

System.out.printIn(sc);

} catch (Exception) {
System.out.printIn(e.toString()};

3
this.strAgentPlatformAddress = sc;
}
/**
This method is used to get the Agent Platform Name.
@return String
*/

public String getAgentPlatformName() {

return strAgentPlatformName;
}

/* *
This methed is used to get the Agent Platform Address.
(@return String
*/
public String getAgentPlatformAddress() {
return strAgentPlatformAddress;
}

JE*

This method accepts the Agent Platforms Description and sets it.
@param agentPlatformDescription
*/

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 94

Appendix D Coding

public void setAgentPlatformDescription(String strAgentPlatformDescription) {
this.strAgentPlatformDescription = strAgentPlatformDescription;
}

/ *¥
This method is used to get the Agent Platform’s Description
@return String
*/
public String getAgentPlatformDescription() {
return strAgentPlatformDescription;
}

/**

This method accepts a reference of MTS and sets it.
(@param MTS objMTSManager
*/

public void setMessageTransportService(MTSManager objMTSManager) {
if {this.objMTSManager = null)
this.objMTSManager = objMTSManager;
} //end of method setMTS

public MTSManager getMessageTransportService() {
return this.objMTSManager;
}

ik
This method returns the name of Agent Management System.
@return String
*

public synchronized String getAMS() {

return returnName("AMS" + ™:" + this.getAgentPlatformAddress() + "@"
+ this.getAgentPlatformName());

} /fend of method getAMS()

[* :
This method returns the name of Visual Management Agent.

@return String

*/

public synchronized String getVMA(Q) {

return returnName("VMA" + ":" + this.getAgentPlatformAddress(} + "@"

+ this.getAgentPlatformName());

} //end of method getVMA()

/*#

This method retums the name of the Directory Facilitator.
@return String

*

public String getDF() {

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 95

Appendix D Coding

return returnName("DF" + ":" + this.getAgentPlatformAddress() + "@" +
this.getAgentPlatformName());

} //end of method getDF()

/ ¥k
This method accepts the fully qualified name of the Agent and
returns the name of only the agent.
@param strAgentName '
{@return
*/

private String returnName(String strAgentName) {
Agentld objAgentID = nuli;

for (int i = 0; i < vecAgentIDs.size(); i++) {
objAgentID = (Agentld) vecAgentIDs.get(i);

if {objAgentID.getA gentName().equals(strAgentName))
return objAgentID.getAgentName();

} /fend of for loop

/fin the future code..... the arguments must be Agentld object instead of the string name
return null;

} //end of method returnName()

/* *
. This method accepts an Agent Name and returns a reference of Cornmunication
Module
associated with that Agent Name.
@param String stragentName
@return CommunicationModule
*/
public CommunicationModule createCommunicationModule(String
strAgentName, ServiceAgent objAgent) {
return new CommunicationModule(objMTSManager, strAgentName,
objAgent);
} //end of method createCommunicationModule()

Jr*

This method returns a reference of Send Command
@return
*/
public SendCommand createSendCommand() {
return new SendCommand(objMTSManager);

} //end of method createSendCommand()

[E*
Add peer entry in hashPeerKesolvers
*/

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 2%

Appendix D Coding

public ActionStatus addPeer(String strPeerMacID, MainAddress
objPeerMainAddress) {
if ((strPeerMacID != null) && (objPeerMainAddress != null)) {
hashPeerResolvers.put(strPeerMacID, objPecerMainAddress);
objActionStatus.setActionStatus("DONE");

~}else _ :
objActionStatus.setActionStatus("NOTDONE"); -

return objActionStatus;

}

/**
get peer entry from hashPeerResolvers
*/
public MainAddress getPeer(String strPeerMacID) {
if (strPeerMacID != null) {
return (MainAddress) hashPeerResolvers.get(strPeerMacID);

} else
return null;

}

/**

- Remove Peer from Resolver list.
@param peerMacID -
@return
*
public ActionStatus removePeer(String strPeerMacID) {
if (sttPeerMacID = nuli) {
if (hashPeerResolvers.contains(strPeerMacID)) {
hashPeerResolvers.remove(strPeerMacID);
objActionStatus.setActionStatus("REMOVED"),;
this.objLookupFactory.removePeer(strPeerMaciD);
} else
objActionStatus.setActionStatus("DOESNOTEXIST");
} else
- objActionStatus.setActionStatus("NULLNAME");
return objActionStatus;
}

ks
get complete clone of PeerResolver
* / .
public Hashtable getPee}'ResolverO {
/ %
Hashtable peersclone = new Hashtable();
peersclone = (Hashtable) hashPeerResolvers.clone();

return peersclone; /
*/

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System o7

Appendix D Coding

return hashPeerResolvers;

}

public void setPeerResolver(Hashtable hashPeerResolvers) {
System.out.printin("RootService " + hashPeerResolvers.size(});
this.hashPeerResolvers = hashPeerResolvers;
System.out.println("RootService Peer" + this.hashPeerResolvers.size());
{/this.hashPeerResolvers = (Hashtable) ht.clone();

}

JE*

This method accepts a machine Id and adds it to the ArrayList
@param macld
X/
public void addMachineList(String macld) §{
alMachineList.add(macld);
}

JE*

This method is used to get the machine list of the platform
@return
*/
public ArrayList getMachineList(} {
return this.alMachineList;
}

Jx*)) .
This method accepts an attribute machineList of type ArrayList and
sets it to the local machineList.
(@param alMachineList
*/
public void setMachineList{ArrayList alMachineList) {
this.alMachineList = alMachineList;
}

I* *
Method for Setting the ACC Server Address
*/
public void setllOPAddress(String|] strlIOFAddress) { S
this.strlIOPAddress = strIIOPAddress;
}

Jr*

Method for getting the ACC Server Address
(@param strllOPAddress
*/
public String[] getlIOPAddress() {
return strllIOPAddress;
}

HIHHRITTT T < Mobility (I T

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System oR

Appendix D

Coding

public void setMigrationManager(MigrationManager migrationManagerObj) {

this.MigrationManagerObj = migrationManagerObj;

}

public MigrationManager getMigrationManager() {

return this.MigrationManagerObyj;
} :

pﬁblic void setClaésLoader(SageClassLoader objSageClassLoader) {
this.objClassLoader = objSageClassLoader;

}
public SageClassLoader getClassLoader() {
return this.objClassLoader;

}
T T T TN T T T L T

} //end of class RootService

D.6 AgentDirectoryService

This is class is also part of Agent Management concern. This is the main Class of Agent

Management System, It contains the methods to supervise the agent Platform. More over

this is also responsible of taking actions to control the Life Cycle of the agents.

package ams;

import java.rmi.RemoteException;
import java.util. Enumeration;
import java.util. Hashtable;

import vma. AMSGULVMAGUI,

import acl. ACLMessage;

import acl. ACLPerformatives;

import acl.CFAggregate;

import acl.CFContent;

import acl. CFPredicate;

import acl. CFPrimitive;

import acl.ontology.BasicOntology; -
import acl.ontology.management.ManagementOntology;
import acl.sl.codec.SLTokenizer;

import ams.lifecycle.MessageTransceiver;
import ams.peer.ActionStatus;

import ams.peer.ClientLookup;

import ams.peer.PeerAMS;

import ams.peer.PeerServerimpl;

import ams.probe.dynamic.DynamicPolicy;

import df. DirectoryFacilitator;

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

aa

Appendix D Coding

public class AgentDirectoryService extends ServiceAgent implements Services {

AgentLifeCycleManager objManageLifeCycle;
private String stfName;

private String strDesc = null;

private String strType = null;

static boolean boollnstance = false;

static private String strToken;

Hinttiiii CONTENTS OF ACL MESSAGE/HHINTTTIITT
String strFileName;

String strAgentName;

String strTransportAddresses[];

String strLocator{];

String strDescription;

byte byteState = AgentStates. ACTIVE;

/*#

* This will contain the list of Agent Id's of the agents currently registered on the platform
*/

PeerServertmpl AMSpeerSever;

private String strOwnerShip; /Owner of the agent platform
private String strStateAp; //State of the platform

private RootService objRootService;

JE¥

* a shared registry of AMS and MTS

* AMS will keep AID and Agents References

* in the AgentRegistry class and put it in this hashtable shared among AMS and

MTS

*/

private AMSMachineinformation objMachineInformation;

private Hashtable hashAgentRef’
private ClientLookup objClientLookup;
/*# - - e — — JE—

* Constructor of AgentDirectoryService Class , it accepts an Agentld and

* sets it . It also activates the Service.

* @param alD

* (@throws SingletonException

*/

-

J¥*

*This method is used to activate the Service. Its implemetation depends
*entirely upon the nature of the service and how it is going to be used.
*/
public void activate() {
/loverloaded method

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 100

Appendix D Coding

}

ok

*This method accepts an Agent Id of an agent and registers it with AMS
*It returns a String indicating failure or success
* (@param alD
* @return
*/ .
private String registerAgent(Agentld aID) {
/**the assumption is that agent is already created on the platform
/fand now it wants to register with the platform
// But we will also need the reference of the Agent.

/**for next phase Resolvers behavior */

/** Where an agent physically will exist on another **¥*%/
/** HAP, but want to register with this platform, to make*/
/** this platform as Resolver*/

return null;

}

/**

This is a utility method which converts an arraylist to a string array
*f

public void run() {
try { :
/**/
while (true) {
/f Waiting for Payload, upto that time in wait state.
ACLMessage objACLMessage = this.blockingReceive();
if (objACLMessage !=null) {

System.out.println{"Agent directory Service
*****#************************t*******#*****************"x
objMessageTransceiver. AnalyzeMessage(objACLMessage);

} catch (Exception ¢) {
e.printStackTrace();
) :

}

/*#**********#*#**********************************&*/

/{@TODO NEw Change mob’ility not understandable empty method
public void RebindPeerAMS() {

}

/*#

This method accepts Peer component name , Peer Machine name , ClientLookup
Object. It then instantiates a new

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 101

Appendix D Coding

Object of CheckPeer class , which is used to check the peer machine,
(@param strPeerComponent
(@param strMessageTransceiver
@param objClientLookup
*/
public void ProbeMachine(String strPeerComponent, String
strMessageTransceiver, ClientLookup objClientLookup) {
CheckPeer checkPeer = new CheckPeer();
checkPeer.CheckPeerMachine(strPeerComponent, strMessageTranscelver
objClientLookup);

/fThis method will be called in case of a fault in peer machine
} .

f**)
This method accepts an Agent ID and de registers that agent from Agent
DirectoryService
@param alD
@return
*/

private String deRegisterAgent(Agentld objAgentld) {

/fCheck for the reference of the Agent ID against the reference
{/get the reference and delete the Agentld and its reference from the
//list and also stop the Agent
// checking if the AgentID is valid
if (hashAgentRef.get(objAgentld.getAgentName()) ==null) { ~ ~

" return "No Agent found with the corresponding AgentID";
}

hashAgentRef remove(objAgentld.getAgentName());
return "Agent deregistered Successfully";

}
Jx*

This method accepts and Agent ID and modifies that agents description
@param alD

@return string

*f

private String modifyAgentDescription(Agentld objAgentld) {

/1 First of all get the AgentID object from hash table
AgentRegistry objAgentReg = (AgentRegistry)
hashAgentReﬂget(objAgentId.getAgentNiLmeO);

if (objAgentReg == null)
return " No Match found for AgentiD";

else {
objAgentReg.setAgentld(objAgentld); g
hashAgentRef.put(objAgentld.getAgentName(), objAgentReg);

}
return "Description Modified";

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

e

Appendix D Coding

/**

This method accepts the Agent Id and deletes the corresponding agent

@param alD
@returns string
*/

private String deleteAgent(Agentld objAgentld) {
//Check for the reference of the Agent ID against the supplied refercnce
//get the reference and delete the Agentld and its reference from the
/Nlist and also stop the Agent
String strAgentName = null;
strAgentName =objAgentld.getAgentName();
ServiceAgent objServiceAgent = null;

if (strAgentName = null) {
return "Agent Not Found in the list";
}

if (hashAgentRef. get(objAgentld.getAgentName()) = null) {

objManageLifeCycle.terminateAgent(objAgentld.getAgentName());
hashAgentRef.remove(objAgentld.getAgentName());
return "Agent Successfully deleted";
} else _
return "Agent Could not be deleted";
} - '

JE¥

This method will accept the Agent id and will search the agents description

@param alD
@return
*f

public Agentld searchAgentDescription(String strAgentName) throws
RemoteException {

Utility utility = new Utility();
String strMachineld = utility.getMachineName(strAgentName);

Enumeration enun'l = objRootService.getPeerResolver().keys();
ActionStatus as;
Agentld objAgentld = null;
PeerAMS peerams = null;
if (sttMachineld.equals(objRootService.getAgentPlatformAddress())) {
AgentRegistry agentRegODbj = (AgentRegistry)
hashAgentRef.get(strAgentName),
if (agentRegObj.getAgentld() = null)
System.out.printin("null”);

N\

else {

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 103

Appendix D Coding

}
} else {

enum = objRootService.getPeerResolver(}.keys();

boolean boolKeys =
objRootService.getPeerResolver().containsKey(strMachineld);
if (objRootService.getPeerResolver().containsKey(strtMachineld)) {
objAgentld = (Agentld)
objRootService.getLookupFactory().getPeerAMS(strMachineld).searchAgentDesc(strAg
entName);

} else {
) :
}
return objAgentld;
}
/#*

This method will return the Agent Id of the Agent Management System

@returns Agent ID
*/

public Agentld getAgentld() {
return this.objAgentld;

JE*

This method will accept the Agents Name and will return the Agent ID.
If no agent is found this method will return null.
@param strAgentName)
@return
*/
private Agentld getAgentld(String strAgentName) {
AgentRegistry objAgentReg = (AgentRegistry)
hashAgentRef.get(strAgentName);

if (objAgentReg !=null) {
rreturn objAgentReg.getAgentId();

} s
return nufl;
3
/* *
This method will accept the Agent Id and will return its description
@param alD
@return
*/

public Agentld getDescription(String strAgentName) {
/f check if local or remote ...

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 104

Appendix D Caoding

AgentRegistry objAgentReg = (AgentRegistry)
hashAgentRef.get(strAgentName);
if (objAgentReg != null)
return objAgentReg.getAgentld();

return null;
}

It#
This method will accept the Agent Id and a description of that agent.
It will store/replace the description in the Agent Id. If no Agent is found
with the given Agent Id , it will return an error { STILL TO BE DECIDED)
@param strDescription
@param alD

@return
*/

private boolean setDescription(String strDescription, Agentld objAgentld) {
AgentRegistry objAgentReg = (AgentRegistry)
hashAgentRef.get(objAgentld.getAgentName());

if (objAgentReg = null) {
return false;
)

objAgentReg.getAgentld().setDescription(strDescription);
hashAgentRef put(objAgentReg.getAgentld().getAgentName(),
objAgentReg);
return true;
}

J5*
This method returns the name of the Service
@return
¥/
public String getServiceName() {
return this.strName;
}

{*#
This method sets the name of the service with the parameter passed by the
name
@param name
¥/
public void setServiceName(String strtiName) {
this.strName = striName;

}

I*#
This method is used to activate the service and register with the platform
This method also creates the VMA and resgisters it as well.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 105

Appendix D Coding

*/
private void activate(Agentld objAgentld) {

try {

objManageLifeCycle = new
AgentLifeCycleManager(this.hashAgentRef);

AgentRegistry objAgentReg = (AgentRegistry)
hashAgentRef.get(this.objAgentld.getAgentName());
objAgentReg.setAgentld(objAgentld);
objAgentReg.setOwner("Owner");
hashAgentRef.put(this.objAgentld.getAgentName(),
objAgentReg); :

Agentld vmalD = new Agentld("VMA", strTransportAddresses,
strLocator, "description of VMA", AgentStates. ACTIVE);

System.out.println("in activate method");

vmalD.setAgentName(vmalD.getAgentName() + ™" +
objRootService.getAgentPlatformAddress() + "@" +
objRootService.getAgentPlatformName());

objRootService.addAgentID(vmalD);
objMachinelnformation.add AgentActive();
objMachineInformation.addAgentCreated();
objMachinelnformation.addAgentCreated();
objMachineInformation.addAgentActive(); -

Agentld dfID = new Agentld("DF", strTransportAddresses,
strLocator, "description of VMA", AgentStates. ACTIVE);

dfID.setAgentName(dfiD.getAgentName(} + ":" +
objRootService.getAgentPlatformAddress() + "@" +
objRootService.getAgentPlatformName());

objRootService.addAgentID(dfID);
objMachinelnformation.add AgentCreated();
objMachinelnformation.addAgentActive();

objAgentReg = (AgentRegistry)
hashAgentRef . get(vmalD.getAgentName()); -
objAgentReg.setOwner("Owner");
objAgentReg.setAgentld(vimalD);
objAgentReg.setServiceAgent((ServiceAgent) vmaGui);

objAgentReg = (AgentRegistry)
hashAgentRef.get(dfiD.getAgentName());

objAgentReg.setAgentld(dfID);

objAgentReg.setOvwmer("Owner™);

objAgentReg setServiceAgent({ServiceAgent) df);

System.out.println("In activate methid of VMA AND DF");
ACLMessage objACLMessage = new ACLMessage(ACLPerformatives.INFORM);

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 106

Appendix D Coding

objACLMessage.setOntology(ManagementOntology.getInstance().getName(});
objACLMessage.addReceiver(vmalD);
objACLMessage.setSender(objAgentld);

CFPredicate objRegisteredAgents = new
CFPredlcate(ManagementOntology REGISTEREDAGENTS);
CFAggregate registered Agents = new
- CFAggregate(BasicOntology. SEQUENCE);

registered Agents.add(CFPrimitive.getCFPrimitiveFor(dfID.getAgentName(}));
registered Agents.add(CFPrimitive.getCFPrimitiveFor(vmalD.getAgentName()));

registeredAgcnté.add(CFPrimitive.getCFPrimitiveFor(objAgent]d. getAgentName(
D))
objRegistered Agents.set{tManagementOntology. AGENT NAMES, registered Agents);
CFContent content = (CFContent) objRegisteredAgents;
SLTokenizer sit = new SLTokenizer(ManagementOntology.getInstance());
objACLMessage.setContent(slt.encode(content));

this.sendMessage(objACLMessage);
DynamicPolicy dynamicPolicy = new DynamicPolicy(this);
this.start();

} catch (Exception e) {

: e.printStack Trace();

}

}

/**
This method is used to deactivate the service
*/
public void deActivate() {
}
public static String getFirstTok() {
return strToken;

}

JE*

This method accepts Service Description and is used to set it .
@param String
*/

public String getServiceDesc() {
return this.strDesc;
}

/**

This method accepts the description and sets the Service Description.
(@param desc

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 107

Appendix D Coding

*/
public void setServiceDesc(String strDesc) §
this.strDesc = strDesc;
}

/**
This method returns the Service Type.
@return - . .
*/) .

public String getServiceType() {
return this.strType;
)

/**
This method accepts the Service type and sets it .
@param strType
*
public void setServiceType(String strType) {
this.strType = strType;

}

[E®
This method returns the shared Hashtable reference
@return
*/
public Hashtable getHashAgentRef() {
return this.hashAgentRef; .~
}

[

This method returns the current instance of RootService
@return
*/
public RootService getRootService() {
return this.objRootService;
}

AMSMessageModel amsMessageModel;

D.7 ServiceAgent

This is class is also part of Agent Management concern. Service Agent is basic class as all

agent classes extends from it.

package ams;

import mts.reception.CommunicationModule;
import mts.transmission.SendCommand;
import acl. ACLMessage;

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 1ng

le WALA LN YY willdllpe lllUUl“ly
public class ServiceAgent extends Thread implements Runnable, Cloneable

public Object clone() throws CloneNotSupportedException
{

return super.clone();

]

{** Used to store CommunicationModule reference , which is required to
recieve Messages across platform. */

private CommunicationModule commModule;

/** Used to store SendCommand reference , which is used to Send Messages
across Platform. */

private SendCommand sendCommand;

/** Used to store the reference of the Agentld , which is unique across the
platform. */
protected Agentld objAgentld;

public boolean boolWaitState;

public ServiceAgent()

{
H

‘ /**

Constructor for ServiceAgent Class , it accepts a AgentId reference and sets it to its own
Agentld. It gets the CommumcatlonModuIe and SendCommand reference and sets them
so that the Agent can send and recieve messages.

(@param agentid
*/
public ServiceAgent(Agentld objAgentld)

{
this.objAgentld=objAgentld;

commModule =
RSFactory.createCommunicationModule(objAgentld.getAgentName() , this)
sendCommand = RSFactory.createSendCommand(); — — —

}
/* *
Sends the message to the Message Transport Service
so that it can be sent towards destination
@param payload
* / -
public void sendMessage(ACLMessage message)
{

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 109

et LA
APPETIUIA L7 t=3

message.setSender(this.objAgentld);

try

{

sendCommand.execute(message);
catch(Exception ¢)
¢
e.printStackTrace();

R
}
/*#

Returns the payload present in the queue of the Agent.
1t returns null if there is no message in the queue
@return Payload

* / .

protected ACLMessage getMessage()

{

}

public ACLMessage blockingReceive()
{

return commModule.getMessage();

return getMessage();
}/end of method blockingReceive

public Agentld getAgentId()

{
return this.objAgentld;

}
public void Resume(){

}
public void run(){

}
}

D.8 KnowledgeDistributionAspect

This aspect is associated with the classes of Peer Management concern, Knowledge Base
concern, and Agent Management concern. It captures the joinpoints of RootService

AgentDirectoryService and LookupFactory classes from the whole system.

package ams;

import java.util. ArrayList;
import java.util.Vector;

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 110

ﬂ.uycuuu s L,U(Hﬂg

import java.util. Enumeration;

import java.util. Hashtable;

import java.io.Serializable;

aspect KnowledgeDistributionAspect {

/** setActionStatus method*/
pointcut setStatus():call (public void _ —
ActionSatus. setActlonStatus(Smng))&&'mtth(KnowledgeDlstnbunonAspect)

after(): setStatus() {}

/** getlookupFactory method */

pointcut lookup{): call(public
RootService.getLookupFactory())&&!within(KnowledgeDistributionAspect);

. after() : lookup(} {3

/** getPeerResolver method */
pointcut PeerR(): call(public
Hashtable.getPeerResolver())&&!within(KnowledgeDistributionAspect);

around () : PeerR() { }

/** getPeerCache method */

pointcut PeerC(): call(public

Hashtable. getPeerCache())&&'mﬂnn(KnowledgeDlsmbutlonAspect)

Hashtable around () : PeerC() { }

/** getRootService method */

pointcut RS(): call(public RootService
AgentDirectoryService.getRootService()) & &!within(KnowledgeDistributionAspect),
around () : RSQ) { }

/** aspect ends here*/

}

D.9 KnowledgeConsistencyAspect

This aspect is associated with the classes of Peer Management concemn, Knowledge Base
concern, and Agent Management concern. It captures the joinpoints of RootService and
LookupFactory classes from the whole system.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System i

Appendix D Coding

package ams;

import ams.peer.ActionStatus;
import ams.probe.dynamic;
import ams.peer.LookupFactory;

import java.util. ArrayList;
import java.util. Vector;
import java.util. Enumeration;
‘import java.util. Hashtable;
import java.io.Serializable;

aspect KnowledgeConsistencyAspect {

/** getActionStatus method*/
pointcut getStatus():call (*
ActionSatus.getActionStatus())&& ! within{KnowledgeConsistencyAspect);

String around(): getStatus() {}

/** getAgentPlatformName and Address methods */
pointcut getAP(): call(public String
getAgentPlatform* ())& &!within(KnowledgeConsistencyAspect);

around() : getAP() {}

/** getPeerAMS method */
pointcut PeerAMS(): call(public PeerAMS
LookupFactory.getPeer AMS(String))& & !within{KnowledgeConsistencyAspect);

around () : PeerAMS() { }
/** aspect ends here*/

}
D.10 ExceptionAspect

This aspect is associated with the classes of Peer Management concern; Knowledge Base™ -
concern, and Agent Management concern. It captures joinpoints of exception handling
from all the 25 classes of the sytem.

aspect ExceptionAspect {
after () throwing (Throwable ex) : call (* *.*(..)) && !within(ExceptionAspect)

{
ex.printStack Trace(System.err);
}
/** aspect ends here*/
} Y
ISLAMABAD.
Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 112 /

