
Impact of Aspect-Orientation on the Reliability of
Decentralized Multi-Agent System

UNDERTAKEN BY:

HIRA TABBASUhl

36-CS/AISSE/2003

SALMA JABEEX

37-CSfiISSE/2003

SUPERVISED BY:

DR. H. FAROOQ AH3IAD

Faculty of Basic & Applied Sciences

International Islamic University Islamabad

CENTRAL
LIBRARY
ISLAMABAD.

A dissertation submitted to the

Department of Software Engineering,

Faculty of Applied Sciences,

International Islamic University, Islamabad, Pakistan,

as a partial fUlfillment of the requirements for the award of the degree of

MS in Software Engineering

Nira 7abbmurn, Salma Jabeen 11

To
The Holiest Man Ever Born,

PROT3?T?'3lUH&M3lAD (+z &-&&I

To
OUR !?'ARTrnS AWD y m I L I I E S

We are most indebted to our parents and families, whose affection has
ahvays been the source of encouragement for us, and whose prayers have

always been a key to our success.

To
THOST HOLY STTKIER-5

Who give away their lives to make the stream of l$ejlow
Smoothly and with Justice.

And
To

OUR HONOU%LT TZACHTR-5
Who have been a beacon of knowledge and a constant source of inspiration,

for our whole life span.

Hira Tabbasurn and Salrna Jabeen iii

Declaration

We hereby declare and affirm that this software neither as a whole nor as apart
thereof has been copied out from any source. It is further declared that 11-e have
dewloped this software and accompanied report entirely on the basis of our
personal efforts, made under the sincere guidance of our teachers. If any part of
this project is proven to be copied out or found to be a reproduction of some other,
we shall stand by the consequences.

No portion of the work presented in this report has been submitted in support of an
application for other degree or qualification of this or any other University or
Institute of learning.

Hira Tabbasum
36-CSIMSSE/03
Salma Jabeen
37-CSNSSE/03

Hira Tabbasurn. Salma Jobeen iv

Acknowledgement

\ire besto\v all praises, acclamation and appreciation to Almighty Allah, The Most
Merciful and Compassionate, The Most Gracious and Beneficent, Whose bounteous
blessings enabled us to pursue and perceive higher ideas. of life, Who bestowed us good
health, courage, and knowledge to carry out and complete our work. Special thanks to our
Holy Prophet Muhammad (SAiv who enabled us to recognize our Lord and Creator'and
brought us the real source of knowledge from Allah (SWT), the Qur'b, and who is the
role model for us in every aspect of life.

We consider a proud privilege to express our deepest gratitude and deep sense obligation
to our reverend supen-isor Dr. H. Farooq Ahmad who kept our morale high by his
suggestions and appreciation. His motivation led us to this success. Without his sincere
and cooperative nature and precise guidance; we could never have been able to complete
this task.

It will not be out of place to express our profound admiration and gratitude for our teacher
Dr. Naveed lkram for his dedication, inspiring attitude and kind behavior throughout the
project efforts and presentation of this manuscript.

Finally we must mention that it was mainly due to o w parent's moral support and
financial help during our entire academic career that enabled us to complete our work
dsdicatedly. We owe all our achievements to our most loving parents, who mean most to
us, for their prayers are more precious before any treasure on earth. We are also thankful
to our lovinz brothers, sisters, friends, and class fellows who mean the most to us, and
\\.hose prayers have always been a source of determination for us.

Hira Tabbasum
36-CSh4SSWO3
Salma Jabeen
3 7 - C S ~ S S W 0 3

Hira Tabbasurn, Salma Jabeen v

Abstract

Aspect Oriented Prosramming (AOP) provides separation of concerns and encapsulates

crosscutting concerns into separate modules called 'aspects', thereby enhances the

software quality. This thesis presents a quantitative study that assesses the positive and

negative impacts of AOP on the reliability of a decentralized Multi-Agent System.

Comparison between aspect-oriented and object-oriented versions of the same

application, SAGE (scalable and fault tolerant agent grooming environment), is

performed. in order to explore to what extent each implementation provides a reliable

system. Reliability depends upon the internal attributes like coupling and cohesion and is

inversely proportional to complexity. Refinement of Chidamber and Kemerer metrics

suite is used to e\aluate aspect-oriented version and calculated coupling, cohesion and

complexin.. those are the basic error-prone in a system and afterwards Mean Time to

Failure is measured for both versions of the system. It is found that aspect-oriented

system uhich shoned good results for Chidamber and Kemerer metrics suite also showed

sood results for Mean Time to Failure.

Hira Tabbasurn, Salma Jabeen vi

Project Title:

Organization:

Undertaken By:

PROJECT IN BRIEF

Supemised By:

Starting Date:

End Date:

Tools Used:

System Used:

Impact of Aspect Orientation on the Reliability
of Decentralized Multi-Agent System

International Islamic University, Islamabad

Hira Tabbasum
Reg. No: 36-CStMSSEl03
Salma Jabeen
Reg. No: 37-CSlMSSEI03

Dr. Hafiz Farooq Ahmad
Associate Professor
Nust Institute of Information Technology,
Rawalpindi

October, 2007

August, 2008

Eclipse SDK (3.1.0), Rational Rose 2002,
AspectJ 1.5

Pentium IV

Hira Tabbasurn. Salma Jabeen vii

Table of Contents
Chapter No . Pace #

Introduction

... I . 1 Introduction

1.2 Background Information .. . r
1.2.1 Aspect-Oriented Programming

1.2.2 Multi-agent Systems (MAS)
1.2.3 Foundation for Intelligent Physical Agents (FIPA)

.................................. 1.2.4 Agent Management System

1.2.4.1 General Architecture

1.2.5 Decentralized Agent Management System
1.2.5.1 AMS-functionality

Literature Review

.. 2.1 Related Work

Problem Domain and Proposed Solution

... 3.1 Problem Domain

... 3.1.1 Nature

3.1.2 Proposed Research ..

3.2 Implementation Impacts of Proposed Research

3.3 Functions of Decentralized Agent-Management System
3.3.1 Roles & Responsibilities

3.3.1.1 Managing Authority
3.3.1.2 Maintaining Index
3.3.1.3 Maintaining Agent Descriptions
3.3.1.4 Searching Agent Descriptions
3.3.1.5 Mandatory Functions of AMS
3.3.1.6 Agent Lifecycle

... 3.4 Research Methodology

.. 3.5 Research Work

............................ 3.5.1 Object-Oriented Design of AMS

Hira Tabbasurn . Salrno Jobeen siii

3.5.2 Making an Aspect-Oriented Design

3.5.3 ldentification of modules in AMS

3.5.4 Identification of Crosscutting Behavior

4 . Software Design

....................................... 4.1 Aspect-Oriented Design of AMS

............ ... 4.2 Class Design ;

4.2.1 Object Oriented Class Design
4.2.2 Aspect Oriented Class Design
4.2.3 UML Design ...

.. 4.3 Tools to be Used

4.4 Resources Required ...

5 . Software Development and Evaluation

Software Development ...

5.1.1 Classes ..
.. 5.1.2 Aspects

5.1.3 Software Interfaces ...
.. 5.1.4 Class Code

... The Metrics

Evaluation ..
... 5.3.1 Reliability

5.3.2 Mean Time to Failure ..

6 . Conclusion

....................................... 6.1 Research Results and Conclusion

Appendices

Appendix A References

Appendix B Publication

Appendin C Interfaces

Appendix D Coding

Hiro Tabbasurn . Sdma Jobeen ix

Table of Figures

Fig . No . P a ~ e #

................................. General Architecture of SIulti-Agent Systems 4

.. Functionality of AMS 6

.. . Virtual Agent Cluster 15

.. Life Cycle of a FIPA Agent 17

............................... Object-Oriented Design of Decentralized AMS 19

.. Modules of Decentralized AMS 21

.................................. Crosscutting in Agent hlanagement Modules 22

.. Aspect-Oriented Design of AMS 24

.. Classes with Attributes and Methods 26

... Aspects in AMS 27

.. AMS Use case Model 28

.. Interaction Diagram of AMS 29

.................. Classes with Attributes and Methods on De\.elopment Time 37

... Aspects in Decentralized AMS 38

Hira Tabbasurn andSalma Jabeen X

Table of Tables
Table No . Page #

An Overview of Agency Properties ... 8

The Mctrics Suite ... 39

Metrics Obtained for 00 Design ... 40

Metncs Obtained for A 0 Design ... 41

Memory Usage of 00 system at the System Initialization point 42

Memory Usage and CPU Usage of 00 system on Sending messages 43

Memory Usage of A 0 system at the System Initialization point 43

Memory Usage and CPU Usage of A 0 system on sending messages 45

Comparison of Memory Usage for 00 and A 0 system of SAGE on

sending messages .. 45

Hira Tabbnrum. Solma Jabeen xi

Chapter 1

Chanter K 1

Chapter 1: Introduction

1.1 Introduction

Aspect Oriented Software Development (AOSD) is a nex emerging technology

that ptovides separation of concerns in software construction [I]. Separation of

concerns is a central software engineering principle that should be applied throughout

the development process, from requirement to implementation [2]. It states that a given

problem involves different kinds of concems, which should be identified and separated

in order to manage the complexity of the system [3]. Concerns can be classified into

tno categories those are core concerns and crosscutting concems. Core concerns deal

uith the basic functionality of a system while crosscutting concerns span multiple

modules and deal with non-functional requirements [4]. Aspect Oriented Programming

provides improved modularization which encapsulates crosscutting concerns into

separate modules knonn as 'aspects' [5].

Software engineering of multi-agent system involves the classifica~ion of

concems into two categories: agenthood concerns and additional concerns. Agenthood

concems include knowledge, interaction, adaptation, and autonomy. While additional

concerns include mobility, learning and collaboration. Out of these mobility,

interaction, learning, autonomy and collaboration are crosscuthg concerns [b]. A group

of researchers have worked on aspect-oriented architecture (61, modeling [7] and

engineering [l] of multi-agent systems but there is no empirical evidence nhether AOP

helps in improving the reliability of a decentralized Multi-Agent system. thereby

hindering the adaptation of AOP for such system.

This thesis presents a case-study in which we have compared the reliability of

aspect-oriented (AO) and object-oriented (0 0) design of decentralized Agent

Management System (AMS) of SAGE (scalable, fault tolerant agent gooming

environment). SAGE is FIPA [8] compliant decentralized multi-agent system [9]. In

SAGE, scalability and fault tolerance is achieved up to some extent through its

architecture but reliability is still a major issue due to the excess of tangling and

scattering of code in one of its components i.e., AMS. In addition, internal attributes

like coupling and cohesion also affect system's external anributes like reliability,

reusability and maintainability [lo] while SAGE is a highly coupled and complex

system because its code is not well optimized [I I].

Impact ofAspecr Orienralion on the Reliabiliry of Decenfralired Multi-Agent System I

Lnaprer n 1

This research also explains crosscutting concerns those come across the

development of a decentralized AMS and implemented those concerns with AspectJ

1121. It involves three sorts of crosscutting concerns. knowledge distribution, exception

handling and knowledge consistency and core concerns. such as agent management and

peer management. We also evduated both the versions of decentralized AMS through

metrics for reliability named Mean Time to Failure and on the basis of the results which

we got from evaluation, we compared both the systems.

1.2 Background Information

Since our research is based on convergence of two disciplines i.e., aspect-

oriented paradigm and agent-oriented systems so first of all we define some terms used

in this thesis and our research related to aspect-oriented programming and multi-agent

system respectively.

1.2.1 Aspect-Oriented Programming

Aspect Oriented Programming introduces concern abstraction. It's a common

accepted premise that the best way of dealing nith complexity is to simplify it. In

software design, the best way of simplifying a complex system is to identify the

concerns and then modularize them. In fact, the OOP methodology was developed as a

response to the need to modularize the concems of a software system. The reality is,

though, that although OOP is good at modularizing core concems. it falls short when it

comes to modularizing the crosscutting concems. The AOP methodology was

developed to address the shortfall. In AOP, the crosscutting concerns are modularized

by identifying a clear role for each one in the system. implementing each role in its own

module, and loosely coupling each module to a limited number of other modules [4].

The terminologies come under the Aspect-Oriented technology are as follows [13]:

Code tangling: If crosscutting concerns are implemented without being

noticed, the code for concerns becomes intermixed i.e., code for crosscutting concerns

finds itself scattered throughout multiple modules.

Aspects: A modular unit designed to implement a concern. It may contain some

code and the instructions on where, when and how to invoke it.

Join points: Join points are well-defined places in the structure or execution

flow of a program where additional behavior can be attached.

Impact ofAspecl Orientarion on the Reliabiliry ofDecen~ralired Jlul/i-Agent System 2

Advice: Advice is ths behavior to execute at a join point. Many aspect

languages provide mechanism to run ad\-ice before. after, instead of, or around join

points of interest.

Weaving: It is the proccss of composing the core functionality modules with

aspects, thereby yielding a working environment.

1.2.2 Multi-agent Syste~ns (MAS)

Multi-agent systems [I)] are systems composed of multiple agents, which

interact with one another, typically by exchanging messages through some computer

network infrastructure. MAS provide proper execution environment to agents so that

they can assure the provision of services to other agents by cooperating, coordinating,

and negotiating.

MAS represent virtual societies \vhere software entities (agents) acting on behalf

of their owners or controllers (-pople or organizations) can meet and interact for various

reasons (e.g., exchanging goods, combining services, etc.) and in various ways (e.g.,

creating virtual organizations: participating to auctions: etc.)

1.2.3 Foutzdntion for Zntelligent Plzysical Agents (FZPA)

Foundation for Intelligent Physical Agents (FIPA) is a standard governing body

for Agent development community. It provides abstract architecture of a complete

Multi-agent System. Concrete realization of the abstract architecture will be according

to the choice of the developer. Till now many FIPA compliant MAS have been

implemented, JADE is one of the examples of FIPA compliant MAS [S].

1.2.4 Agent Management System

An Agent Management System (AM) is a mandatory component of the Agent

Platform (AP). The AMS exerts supervisory control over access to and use of the AP.

Only one AMS nil1 exist in a single AP. The AMS maintains a directory of AIDS

(Agent ID'S). Every Agent d l 1 have a unique Agent ID. AID will contain Transport

Addresses (amongst other things) for agents to be registered with the AP [16].

impact ofAspect Orienrotion on fhe Reliabilify oJDecenfralized Multi-Agent System 3

Chapter # 1 lntroducfion

1.2.4.1 Gerzeral Architecture

Each agent must register with an AMS in order to get a valid AID. The AMS is

responsible for managing the operation of an AP.

General Architecture

Fig 1.1: General Architecture of Multi Agent System

Figure 1.1 shows the general architecture of a multi-agent system [8].

The Agent Platform has following components:

Agent Management System (AMS)

Directory Facilitator (DF)

Agent Communication Language (ACL)

Message Transport Service (MTS)

0 Encoding Service (ES)

Impart of Aspect Orientation on the Reliabiliiy ofDecentrolized Multi-Agent System 4

1.2.5 Decentralized Agent Management System

The basic idea of our proposal is application of aspect oriented software

development on a decentralized multi agent system i.e. SAGE (scalable, fault tolerant

agent grooming environment). SAGE is a FlPA compliant decentralized MAS [9].

Different developers . . worked on it in parallel while using different coding standards and

techniques which made it complex. I t is strongly coupled and code is not optimized as

well [I I]. Distributed multi agent systems lack fault tolerance because of centralized

registry and management. SAGE is following distributed architecture with

decentralized management for fault tolerance of multi-agent systems. Its architecture is

a blend of merits of clientkerver paradigm and peer-to-peer. Instead of havinp

centralized location for management the owner-ship rights have been distributed to peer

entities which are solely responsible for their roles and actions. These peer entities are

part of single Agent Platform and are managed by Agent Management System (AMS).

In this section we are going to describe the basic functionality of AMS.

The AMS represents the managing authority of an agent platform and if the

agent spans multiple machines, then the AMS represents the authority across

all machines. On a single agent platform only one AMS can exist.

Figure 1.2 shows the functionality of a typical AMS [16]. In SAGE, a typical

AMS is responsible for sharing knowledge with other peer machines which is done with

the help of peer manager. For instance, when a remote machine searches for a particular

agent: peer manager's server checks the registry information providing apent name as

the search criteria. If the agent is found the server responds by shoning success

othenvise it indicates failure.

The communication between peers is through AMS RMI layer and each RMI

has a server and client on the same machine. A typical server application creates some

remote objects (like miregistry), makes references to them accessible and waits for

client to invoke methods on these remote objects. A client application pets a remote

reference to one or more remote objects in the server and then invokes methods on

them. RMI provides the mechanism by which the server and the client communicate

and pass information back and forth. For instance, when a remote machine joins the

lmpucr of Aspect Orientorion on the Reliability ofDecentralized Multi-Agent System 5

platform, the client of the new machine calls the server of existing machine which on

receiving request adds it by updating information in local cache. The information about

the existing machines on the agent platform is given to the new machine and all the

othcr machines are also provided the infomlation about addition of new machine. So

peer manager provides interaction among psers in this Ivay. In addition, every peer

probes other peer in order to check existence of other. Probing is done dynamically on

every machine after a particular interval of time. A thread is created by agent directory

service (ADS) that probes every machine afrer particular interval of time. In case of

failure of remote machine the entry is removed from local as well as remote machine.

Fig 1.2: Functionality of AhlS

Impact ofAspect Orientation on the Reliabiliry of Decenrralized hlulri-Agent System 6

Chapter 2

Literature -view

Chapter = s

Chapter 2: Literature Review

2.1 Related Work
With the increase in size and complexity of multi-agent systems. the need for

concern-separation in agent based applications, early in design phase also increases.

Concerns like mobility, interaction, learning, autonomy and collaboration are crosscutting

concerns in nature. Several authors [15, 17, 18, 19, 20, 21, 221 have emphasized on the

separation of crosscutting and core concerns while designing a multi agent system. But so

far no \vork has been done on the aspect-orientation of decentralized multi-agent systems.

Some of the papers that write about aspect-oriented architecture, modeling and

engineering of multi-agent systems are discussed as under:

Engineering Multi-Agent Systems with Aspects and Patterns 111

When a complex problem can't be solved by a single agent and more agents are

needed to work with, such systems are called Multi-Agent systems. A multi-agent system

consists of multiple agents and objects. These are the abstractions used to model a

specific problem. Objects and agents have some concerns in common but agents are more

complex and have some additional cbncerns. Agents.have two characteristics those are

state and behavior. There state is determined by beliefs, goals, actions and plans while

their behavior consists of some properties those include interaction, adaptation, learning.

autonomy, mobility and collaboration. These concerns are not distinct in nature rather

they have an overlapping relationship with one another and also have communication

between them. This paper is based on a case-study of Portalware, a web-based

environment, which constructs and manages ecommerce portals. This paper presents an

Aspect-Oriented and Pattern based method for multi-agent system development and their

comparison to show that which system is better in terms of understandability,

maintainability and reusability.

Agents are of several types those are information agents, user agents and interface

agents. Each agent type includes agency concerns. These concerns can be classified into

three categories those are agent state, agency properties and agent role. Agent state is

determined by knowledge which is based on beliefs, goals, actions and plans. Agency

property and agent hood property forms behavior of an agent. Agenthood property

includes autonomy, interaction and adaptation while learning, mobility and collaboration

Impact of Aspect Orientation on the Reliabiliry of Decentralized Multi-Agent System i

Chapter # r

are not necessary for agent-oriented sl-stems. Agency properties are explained in Table

2.1 given below:

- -

Table 2.1: An Overview of Agency Properties

Agency Property -
Interaction

Adaptation

Autonomy

Learning

Mobility

Collaboration
-

Each agent application has a specific role for which it is developed. Agents co-

operate and co-ordinate with one another to perfom system's role. Agency properties like

interaction, adaptation, learning, autonomy and collaboration have crosscutting nature.

This paper applied Aspect-Oriented and Pattern Based Method for the development on a

Portalware case study, after comparison concluded that aspect-oriented method enhances

reusability, evolve-ability and writ-ability.

Delinition
An agent communicates with the environmen~ and other agents by means of
sensors and effectors
An agent adopldmodifies its mental state according to !he messases
received from the environment
An agent is capable of acting without direct intervention; it has its own
control thread and can accept or refuse a request message
An agent can learn based on previous experience while reacting and
interacting with its environment
An agent is able to transport itself from one environment in a network to
another
An agent can cooperate with other agents in order to achieve its goals and
the stem,s oa,s

A Generative Approach for Multi-Agent System Development 123)

This paper says that multi-agent system development invol\-es hvo types of

concerns those are core and crosscutting. Many of the concerns invoh ed in multi-a2ent

system development are crosscutting in nature. Existing methodoloeies are too high level

and do not deal with complexity. Implementation frameworks are not enough to deal xith

modeling and implementation of agent-oriented crosscutting concerns. This paper

resolves the above mentioned issues by presenting a generative approach for development

of multi-agent systems. This approach designs the agent-oriented system by using Agent-

DSL language, then it makes aspect-oriented architecture and at the end a code generator

generates the code for that multi-agent system. This paper also applied proposed approach

on a case-study of Expertcornmitee system.

Impact ofAspect Orientation on the Reliability of Decentralized Multi-Agent System 8 - . -

Chapter tt r

Aspectizing Multi-Agent Systems: From Architecture to

Implementation 161

Every agent architecture encompasses a set of agent properties: adaptation.

autonomy, knowledge, etc. These properties overlap and crosscut agent's basic

functionality. They should be designed differently from agent's basic behavior.

Architecture of multi-agent systems effects the composition of concerns. In addition i t

also affects the quality of multi-agent systems. Good quality architecture should be able

to support separate handling of multiple properties. No such design has been suggested

yet for the development of multi-agent systems that can reduce the complexity of system

and develop high quality multi-agent systems. hlost of the approaches for development of

multi-agent systems are attributed to poor architectural design and regardless of

modularizing agent properties in the initial stages. This paper shows how an aspect-

oriented architecture can be incorporated to previous object-oriented architecture from the

preliminary stages to the implementation stags. Separation of agenthood concerns is

achieved by 1) prescribing architectural guidelines for aspectizing agent concerns 2) a set

of guidelines to describe how aspect-oriented agent architectures can be designed and

implemented 3) finally a case study of multi-agent systems has been conducted to test the

approach.

The proposed solution is the aspectization of agent architectures at architectural

level. Aspect-orientation modularizes agent-specific concerns unlike the previous

approaches that use languages, methods and tools. The aspectization is done with a UML

extension named aSideML language that provides two views for representing aspects: 1)

architectural view and 2) detailed design view. The crosscutting among agent concerns is

separated with the help of architectural aspects whereas the modularization of basic

concern is achieved with Kemel component. The first stage of the approach is carried in a

stepwise fashion in which the configuration and composition of architectural components

is understood. In second phase, the architectural component is refined and the

corresponding crosscutting interface is also refined to obtain a detailed design. Finally the

system is implemented using an aspect-oriented programming language such as AspectJ.

This paper describes that architectural decisions have greater impact in improving

the maintainability of multi-agent systems. Aspect-oriented architecture is better than a

mediator-based architecture as it supports the functional encapsulation of the agent's basic

functionality. The crosscutting interfaces allow the incorporation of both agenthood and

Impact of Aspect Orienration on the Reliabiliry ofDecentra11ied Multi-Agent Sysrem 9

Chapfrr U 2

additional properties to the system's basic functionality in a non intrusive way. Therefore,

without having any change in the existing methods, simple object architecture can be

transformed into agent architecture. Other benefit of using this architecture is its language

independency which is helpful for a large number of developers to deploy it.

An Aspect-Oriented Modeling Framework for Designing Multi-Agent

Systems (71

Crosscutting concerns cannot be captured with the conventional modeling

approaches because concerns of a specific agent type have their own goals and actions

that crosscut goals and actions of other concerns associated with other agent. These

concerns encompass the internal and systemic properties of multi-agent systems. The

results of crosscutting are scattering and tangling that replicates goals (and actions) in

agent-oriented modeling. They are also anti-reuse and anti-evolution factors in the multi-

agent soft\vare lifecycle.

Similarly, the agenthood properties of multi-agent systems crosscut the multi-

agent system modeling elements: agents, goals, beliefs, actions, and plans. When these

properties are ignored in the development of multi-agent systems it results in such a

sJstem that lacks uniformity with unclear design and implementation decisions. In

addition these modeling approaches are proved to be incapable to cope with the

crosscutting nature of some multi-agent system concerns. Therefore, new composition

rules should be designed to encompass all crosscutting multi-agent system concerns.

Hence, a modeling framework is necessary for modular representation and reasoning of

crosscutting concerns in a multi-agent system to provide proper support to software

developers.

The traditional agent-oriented abstractions and composition mechanisms are

revolutionized with a new aspect-oriented meta-modeling framework. This framework, in

addition to be an alternative for previous approaches that are limited to object-oriented

and component-oriented paradigms, is independent of agent-oriented modeling languages

and consists of three models: the Aspect Model, Agent Model and Composition Model.

The Agent-hIodel consists of a set of fundamental agent-oriented design elements such as

goals, actions and plans. The Aspect Model is useful for the design of aspect-oriented

modeling languages with the help of concepts, relationships, and properties that are

organized around three interrelated conceptual models: 1) Component Model, 2) Core and

Impact of Aspect Orienfation on the Reliabiliry of Decenfralized Multi-Agent System 10

Cli~prrr 8 2

3) Join point Model. The last model Composition Model is helpful for pro\-iding

semantics description of the crosscutting composition mechanisms that is it reflects the

\\.a\-s the aspect affect the agents, their beliefs and actions.

With these models, the multi-agent system properties are explicitly modsled the

\\-a!. basic multi-agent system behaviors are modeled. An aspect-oriented notation has

been integrated into ANote language but there is no guarantee whether these sets of

composition rules are complete. For this purpose more case studies should be conducted

ro evaluate how much these composition operators can cover.

An Aspect-Based Object-Oriented Model for Multi-Agent Systems [31]

A heterogeneous environment can have multiple types of agents each having

different agency properties and collaborative capabilities. Though agents have states and

Dehmiors like those of objects but agent states comprise of beliefs, goals, actions. plans

and their behavior with autonomy, adaptation, learning, and mobility. When sofiware

agents are introduced into object models they create a number of complexities as these

ay-ent properties and capabilities are intrusive and non-orthogonal. There is a need to

nimipulate these properties and capabilities with the help of an agent model at he

beginning of design.

Existing agent models of software architectures focus on one type of azent. In

most of the architectures the agents are considered as objects that makes agent design and

implementation non understandable, poorly maintained and not reusable. The sofiware

agsnrs cannot be designed properly due to the occurrence of many agency properties at

the same time. The agency properties and collaborative capabilities of an agent must be

associated uith its core state and behavior by the help of special techniques and

disciplined ways.

So the agent model presented in this paper of object-oriented systems uses aspect-

oriented design and programming. As aspect-orientation is good for modularization, it

provides separation of crosscutting concerns among different agency properties and

collaborative capabilities. Agents are incorporated into the model in a disciplined and non

intrinsic fashion. Thus a multi-agent software is obtained whose d e s i p and

implementation solutions are properly structured for evolution and reuse. The model is

applied on a web-based environment that deals with the development of e-commerce

Impact of Aspect Orientation on the Reliabilify of Decenfralired Multi-Agent System 1 1

Chapter # L

portals to show the results. The model is good for handling tach agency aspects

separately and helps facilitate the development of a multi-agent sotiware that is easy to

understand, maintain and reuse.

Impact ofAspecf Orientation on the Reliabiliry of Decentralized ,Wi-Agent Sjstem 12

Problem Domain
&

Proposed Sohtion

Chapter 3: Problem Domain and Proposed Solution

3.1 Problem Domain

3.1.1 Nature

Decentralized Agent Platform distributes the services and can avoid the

centralized MAS bottleneck. A multi-agent system needs to be dynamically scalable

which assures flexibility in agent platforms. Fault tolerant architecture must be inherently

available in MASS for continuous service provision.

Considering the literature review, we see that all of the papers write about

separation of concems, aspect-oriented architecture, modeling and code generation for

crosscutting concems but none of them write about the decentralized multi-agent system

and crosscutting concems which come across its development.

Our aim is to put an effort to identify crosscutting concems in decentralized hMS

and their implementation in Aspectl. For this purpose we studied SAGE (Scalable. fault

tolerant Agent Grooming Environment), which is a decentralized MAS. It is developed in

JA\'A and is a highly coupled system. The crosscutting concems in its code are

identified. Aspect-Oriented Design (AOD) of above mentioned system is developed to

decrease un-necessary communication between modules. Afterwards, metrics are applied

that measure the reliability of both of the AMSs developed in JAVA and AspectJ

respecrively.

3.1.2 Proposed Research

The focus of this research is to analyze that can we achieve a more reliable system nhile

using AOSD for A1 based Agent System? It has been recognized that quality of a good

sofrware system is that it should obey the principle of loose coupling [lo]. Different

developers worked on SAGE in parallel while using different coding standards and

techniques ~ h i c h made it complex. At this moment it is very difficult to debug and

maintain the code of SAGE [I l l . Aspect Orientation is applied to autonomous

decentralized A1 system to observe the behavior of this new methodology.

Impact of Aspect Orientation on !he Reliability of Decentralized Multi-Agent System 13

Chapter # 3

3.2 Implementation Impacts of Proposed Research

The aim of the proposed research is to explore the behavior of Aspect-Oriented

Technology for decentralized Agent-Management System of S.4GE.

This research helps to improve the reliability of decentralized XIAS.

* This research is refusal to the idea of researcher or programmers who believe that

AOP is good just to modularize the crosscutting concerns like authentication,

logging, persistence.

The crosscutting concerns which we identified in decentralized multi-agent

system could never get the attention of researchers previously.

= The issues like code-tangling and code-scattering could be easily handled while

using Aspect-Oriented Software Development for an A1 based agent system.

Our research work gives a new dimension to other researchers.

3.3 Functions of Decentralized Agent-Management System

SAGE is following distributed architecture with decentralized management for

fault tolerance of multi-agent systems. Its architecture is a blend of merits of clientkewer

and peer-to-peer paradigm. Instead of having centralized location for management the

owner-ship rights have been distributed to peer entities which are solely responsibfe for

their roles and actions. These peer entities are part of single Agent Platform and are

managed by the Agent Management System. SAGE also introduces a notion of Virtual

Agent Cluster (VAC) which plays an important role for introducing fault tolerance within

the distributed multi-agent system. Figure 3.1 describes the concept of Virtual Agent

Cluster [16]. It proposes a design in which the components of AMS are distributed in

such a way that failure of one instance will not cause side effects on its peer instances.

AMS communicate with one another through RMI Communication Layer.

This system was ideal for our case study due to several reasons. First. it is the

only multi-agent system that has a decentralized agent management platform and Aspect-

Oriented programming behavior has not been proved in this context. Second, scalability

and reliability always remained a key attribute for multi-agent systems. Finally, its

realization involves a number of core and crosscutting concerns: those are of great

importance in case of decentralized multi-agent systems.

-

Impact ofAspect Orientation on the Reliabilify of Decentralized Multi-Agent System

Clioptrr # 3 Problem Domain and Proposed Solution

Figure 3.1: Virtual Agent Cluster

3.3.1 Roles & Resportsibilities

The AMS i5 responsible for managing the operation of an Agent Platform, such as

the creation of agents, the deletion of agents and overseeing the migation of agents to

and from the AP (if agent mobility is supported by the AF') [8]. Since different APs have

different capabilities, the AMS can be queried to obtain a description of its AP. A life

cycle is associated with each agent on the AF' that is maintained by the AMS.

The AMS represents the managing authority of an AP and if the AP spans

multiple machines, then the AMS represents the authority across all machines. An AMS

can request that an agent performs a specific management function, such as quit (that is,

terminate all execution on its AP) and has the authority to forcibly enforce the function if

such a request is ignored,

The AMS maintains an index of all the agents that are currently resident on an

AP, which includes the AID of agents. Residency of an agent on the AF' implies that the

agent has been registered with the AMS. Each agent, in order to comply with the FIPA

reference model, must register with the AMS of its HAP (Home Agent Platform).

Impact ofAspecl Orientation on the Reliabiliw of Decentralized Multi-Agent System I5

Chapter ff 5

3.3.1.3 Mainfairring Agent Descriptions

Agent descriptions can be later modified at any time and for any reason.

h4odification is restricted by authorization of the AMS. The life of an agent with an AP

terminates with it's deregistration from the AMS. After deregistration. the AID of that

agent can be removed by the directory and can be made available to other agents who

should request it.

3.3.1.4 Searclring Agent Descriptions

Agent description can be searched with the AMS and the AMS further controls

access to the directory of AMS agent descriptions; no default policy is specified by FIPA

regarding this issue. The AMS is also the custodian of the AP description that can be

retrieved by requesting the action get Description.

An AMS must be able to perform the following functions

register

deregister

modify

search

get-description

3.3.1.6 Agent Lifecycle

FIPA agents exist physically on an AP and utilise the facilities offered by the AP for

realising their functionalities. In this context, an agent, as a physical software process, has

a physical life cycle that has to be managed by the AP. This section describes a possible

life cycle that can be used to describe the states which it is believed are necessary and the

responsibilities of the AMS in these states.

Impact of Aspect Orientation on the Reliability of Decen~ralked Multi-Agent System 16

Figure 3.2: Life cycle of a FIPA Agent

In addition to the above methods exchanged between AMS and other agents,

.AMS can instruct the underlying platform to perform the following operations in order to

manage the Agent Life Cycle. Figure 3.2 explains the states of an agent in its Life Cycle

[81.

suspend Agent

Terminate Agent

Create Agent

Resume Agent

Invoke Agent

Execute Agent

3.4 Research Methodology

Our proposed approach is based on the extensive study in the field of multi-agent

systems. The basic methodology adopted for the research is:

Analyzing the decentralized multi-agent system

Studying SAGE (Scalable, fault tolerant agent grooming environment), its

working and design

Understanding implementation of its decentralized AMS

Identifying crosscutting concerns in the code of decentralized AMS

Impact of Aspect Orientalion on the Reliabiliry ofDecentralired Multi-Agent System 17

Cliaprer n s

Grouping those crosscutting concerns according to thsir naturs

Modularizing crosscutting concerns with Aspect-oriented soliware development

techniques

Implementing aspect-oriented design of decentralized AMS wirh AspectJ

Choosing suitable metrics tb evaluate reliabilip- of both the versions of

decentralized AMSs, one developed with JAVA and other one developed with

AspectJ

3.5 Research Work

3.5.1 Object-Oriented Design of AMS

The object-oriented version of decentralized AMS of SAGE was implemented

using Java programming language. However, Java is good to deal \\ith inheritance and

polymorphism, but it may also be the cause of introducing scattering and tangling in the

code. When the AMS of SAGE was reverse-engineered to obtain object-oriented design

thc same condition existed. We analyzed the system nith both class diagrams and

interaction diagrams. The result shoned that due to high inheritance between classes the

system became highly coupled. The methods were incoherentl) calling each other

making the flow of program more complex and not understandable. Xloreover, the system

has become decentralized to achieve fault tolerance and scalability but it was difficult to

organize system components into modules according to their functionality. Therefore,

there was a pressing need to implement the system with a technolog that could provide

linguistics mechanisn~s for separate expressions of concerns in AhIS and weaving these

concerns with the system's primary concems. Figure 3.3 shons the object-oriented

design of decentralized agent management system of SAGE which w\e made by reverse

engineering of the system.

Impact ofAspect Orienlalian an the Reliability of Decenrralired Mulri-.4genr Sysrem 18

Fig 3.3: Object-Oriented Design of Decentralized AhlS

Choprer # 3

3.5.2 Making an Aspect-Oriented Design

Aspect orientation is the recognisation of the development of software system

with respect to many concerns [12]. The development of so f t~~are s!-stem with rsspect to

concerns could be achieved by separating classes into concerns (or modules) according to

the agenthood properties they possessed. The Aspect Oriented Design (AOD) [?-!I was

developed then by identifying the crosscutting among these copcerns (or modules).

5.5.3 Idertt~Jication of mod111es in AMS

Every multi-agent system has a desired set of properties [6] (or agenthood

properties) and it is developed in order to achieve those properties. These properties are

knowledge, mobility, learning, etc. Therefore, there is a need to go through the AMS in

terms of these properties i.e., to see which part (module) of system is related to which

agenthood property. It is more likely to analyze properties in a single logical Agent

Management System distributed over multiple machines. Therefore. the basic modules or

concerns identified according to these properties are:

Peer Management

Knowledge Base

Agent Management

Here is the description of these modules:

Peer Management module:

The Peer Management module is responsible for managins all the operations of

peer entities:

1. It manages heartbeats or liveliness of peer machines after a fixed interval of time

provided it is done dynamically.

2. It provides interface to the peer entities through RMI (clientkerver) layer. So any

request to server made by the client of peer machines will be acknowledged by

the peer management module.

3. It helps peer components or entities to share knowledge with each other. For

example, searching and providing information about a certain agent on a peer

agent's request.

4. It also helps to manage the knowledge component in case of any sort of

modification in peer agent's information.

Impact of Aspect Orienlarion on the Reliabilil). of Decenrralized htlrlri-Agenr Sjsrem 20

Knon ledge Base module:

Though Knowledge base component manages local agent and remote a y l r

infom~ation. it is managed by Peer Management module. Its functions are:

1 . To keep information about agents i.e.. their state. life cycle. etc.

2.1 To perfom functions like searching information about a particular agent. deleting.

adding or modifying the agent infonation and providing the information about

Agent Platform (AP) description

Agent \lanagement module:

The responsibilities of Agent Management module are similar to those of A M ' S

responsibilities: register, deregister, managing life cycle and states of agents, etc.

Figurc 3.1 represents the functions of these modules.

Peer Management Module

=-wide Interface J

i Knowledge Base Module

oaent information

I
Agent Management
Module

Manage Agent Lifecycle

iilanage Agent states 1

tunctions

Fig 3.4: Peer management, Knowledge Base and Agent Rlanagement modules of
AhIS

3.5.4 Irlentificatiort of Crosscutting Belrmior

In order to identify the crosscutting behavior, the whole system of Ah'lS is revers?

engneered. Its code is analyzed keeping in mind the agenthood properties to identi6

ths modules (Peer management, Knowledge base and Agent management) and then

crosscutting is observed in the system. Thus we bring out the classes, members and

parts of code in methods/classes according to the behavior of modules. Figure 3.3

represents classes in each module and crosscutting among them.

lmpucr of Aspect Orienlalion on the Reliahiliy of Decentmli~ed Mu11i-Agent S j W m 21

Legends
; ...:......... ; -Knowledge s p e c i f i c c l a s s i s w .,,,,,, -Knowlea? spec i t l c >t"?rs *.
: - - -. :-Agent nanaqmenc spec i f i c classts T ~ ~ - - ~ ~ -Agent eanageaent s:e::fic n r 2 e r z Peer managemenr spec l f i c clazses irir?nr -Peer nanagement z e c i f l c mez'ria I..

... " ... *. .. -

Fig 3.5: Crosscutting Agent Concerns in Peer hlanagement, Knowledge Base and

i Peer
i Management -

Agent hlanagement hlodules

It could be observed that the set of classes belonging to a particular concern (peer

management, knowledge base, and agent management) are surrounded by dashed linss

.PeerSeiver&~ -i
&iiiir?&& 2 ,,):;ma
---rlUbcc,:w,,,,
*liatp-ms<,:--;

\\bile the crosscutting members in a particular class are highlighted with color of concern

. . . .
i Agent Managemsnt i

< . : i l ~ n ~ i r e c t o r ~ r . i m
: :

(to which they belong). The difference between crosscutting members and part of code

could be easily noted with some members a ~ i t t e n in Italic.

From the discussion of above section and through reverse enginesring of system.

it could be concluded that Knowledge Base is the concern whose functions are

crosscutting all the modules of AMS. The functions of Knonledge Bass concern are as

follows:

Impact of Aspect Orientation on /he Reiiabilip o/Dece~~rralized.Ll~~/ri-A~PNI Sysfenz 22
..

L ,,'l,,M 37 2

1. Updating the knowledze in case of any asent man~sement function

2. Informing other machines about this updated i;no\\-ledge

Inrpocr of Aspect Orienlalion on rhe Reliohililp of Decenrralized.!lnIri-Agent System 23

Chapter 4

Software Design

Chapter 4: Software Design

Fig 4.1: Crosscutting Agent Concerns in Peer management, Knowledge base and
Agent management modules

the issue of reliability. These issues were resolved by identifying three main aspects that

were Knowledge Distribution, Knowledge Consistency and Exception Handling aspects.

lmpacr of Aspecl Orientofion on the Reliability of Decenfralized Multi-Agent System 24

Lnaprer m,

Exception handling concern was selected because there were roughly 63 instances of

exception handling out of 25 classes in AMS. That is the percentage of Exception

Handling was 252% in the system. Therefore, it was necessary to select Exception

Handling as a crosscutting concern in order to reduce tangling from the code. The Figure

4.1 shows the AOD of AMS. It shows which class of a module aspect is crosscutting. For

example, KnowledgeConsistencyAspect crosscuts all the classes in Peer Management,

Knowledge Base and Agent Management modules. Note that classes in each module are

selected on the basis of percentage of functionality of a particular module they possessed.

The aspect-oriented version of decentralized agent-management system of SAGE was

implemented using AspecU [4].

4.2 Class Design
The purpose of Peer Management, Knowledge Base and Agent Management

functions of AMS is explained and that how they affect the system. NOW our focus is to

explain the purpose of each class in each module.

4.2.1 Object Oriented Class Design

As we know that 00 design of AMS is already developed [16] so the classes in

each module are as follows:

Dynamic Policy

Purpose: An important class of Peer Management module. This class is responsible

for the dynamic probing (peer to peer). It checks the status of the other machines on

the agent platform and in case of failure it removes the peer machine from the

platform.

= PeerServerImpl

Purpose:~This~is~class is also part of Peer Management concern. This is the server

class of AMS RMI.

ClientLookup

Purpose: This is class is also part of Peer Management concern. This is the Client

representative class of the AMS RMI, It calls the AMS Server Methods.

Impocf of Aspect Orientation on the Reliabiliry ofDecentralized Multi-Agent System 25

= LookupFactory

Purpose: This is class is also part of Knowledge Base concern. Lookup factory is used

in booting. LookupFactory is created by the ClientLookup. Lookup Factory is set and

can be obtained from RootSewice. It is rcquired by all the system Agents because

they need to communicate with other peer System Agents.

Rootsewice

Purpose: This class is also part of Knowledge Base concern. Its purpose is to provide

services to lower level services. In SAGE Rootsewice is responsible for prodding

services to Agent Platform Services such as AMS, DF, VMA and h4TS. Furthermore

it also sets service parameters. RootService is initiated at Bootstrap time.

RootService is set, in which the reference of the shared registry is passed on to the

root service instance. It sets the agent platform description. RootService sets the agent

platform name, which is obtained by the system and is the name of the system.

DynamicPolicy
strMacld: Suing
intSize: Int

probeMachime0
removeFault0

strName: String
strDesc: Suing
strTqpe: String

Rootservice I

ClientLookup

getLookUpFactor)-0

Fig 4.2: Classes with Attributes and Methods

4.2.2 Aspect Oriented Class Design

KnowledgeDistribuHonAspect

Purpose: This aspect is associated with the classes of Peer Management concern,

Knowledge Base concern, and Agent Management concern. It captures the joinpoints

Impact of Aspect Orientation on the Reliabiliry ofDecentralized Multi-Agent System 26

-,." y.-. .. .

of RootService AgentDirectoryService and LookupFactory classes from the whole

system.

= KnowledgeConsistencyAspect

Purpose: This aspect is associated with the classes of Peer Management concem,

Knowledge Base concern, and Agent Mariagement concem. It captures the joinpoints

of RootService and LookupFactory classes from the whole system.

ExceptionAspect

Purpose: This aspect is associated with the classes of Peer Management concern,

Knowledge Base concern, and Agent Management concem. It captures joinpoints of

exception handling from all the 25 classes of the sytem.

KnowledgeConsistencyAspect

getstatus0
getAPO
peerAMSO

-
Fig 4.3: Aspects in AMS

4.2.3 UML Design

UML methodology is selected to understand the working of decentralized AMS

and to identify the crosscutting between the modules. The following diagrams show the

basic design of decentralized AMS.

- - -

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System

Use-Case Diagram

,.--. Suspend Agent

Maimin AlD Index

0 .__....-
M a m p e b a l r I m k e agent

--..
<+fiend+ . . Man* &rd L#a Cyde- -._.

A $ =..
'..$:mad.>

0 ..
: <<aaend>> :. Search &st Desrrimn ,

0
Rawms/\grn#

, <<e*end>, ..
Mod6yageM hrrnptim

DP+ryen W i m i n n e 4 e n Emusagem

Fig 4.4: M I S Use case Model

Impact ofAspect Orientation on the Reliability of Decenrralized Multi-Agent System 28

Sequence Diagram

r 7 RootSeNice
I I : Hashtable

Fig 4.5(a): Interaction Diagram of Search Agent Description

lmpoct ofAspect Orientation on the Reliability of Decentralized Multi-Agent System 29-

act

Fig 4.5(b): Interaction Diagram of Activate (Agent State Transition)

Impact of Aspect Orienfation on the Reliability of Decentralized Multi-Agent System 30

Pee -

Fig 4.5(c): Interaction Diagram of Search Agent Description

ImpacI of Aspect OrientaIion on the Reliability of Decentralized Multi-Agent System 3 1

Chapter d 4 Sofnrorr Desi,rn

Fig 4.5(d): Interaction Diagram of Client Lookup

Impact ofAspect Orientation on the Reliability of Decentralized Multi-Agent System 32

Impact ofAspect Orientation on the Reliabiliry of Decentralized Mulfi-Agent Sysfem 33

Chapter # 4 Sofnvare Design

Fig 4.5(f): ~ngraetion Diagram of Remove Fault (Faulty Machine)

Impact ofAspect Orientation on the Reliabili~y of Decentratced Multi-Agent System 34

Fig 4.5(g): Interaction Diagram of Updating Machine Information

Impact ofAspect Orientation on the Reliabilify of Decentralized Multi-Agent System 35

Cha~ter " 4 Soffimre Design

Tools to be Used

Eclipse SDK 3.1.0

Rational Rose 2002.05.00

..\spectT Development Tool 1.3.3 for Eclipse 3.1

Resources Required

Internet Resources (journals, articles, research papers)

Books and Magazines

Printing Resources

Software CD's

Computer System

-

lmpact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 36

Software Development

Chapter # 5 Sofiare Development and Eval~ration

Chapter 5: Software Development and Evaluation

5.1 Software Development

5.1. I Classes

The following classes are created for the development of software.

strMacld: String
intSize: Int

removePeerAMS0
getListPeerAMS0

probeMachine0
removeFault0

AgentDirectoryService

hashRegistery: strAgentPlatformName: String
hashpeercache: strDesc: Strine strAgentPlatformAddress: String -
boollnstance: I . (strType: String I I harshPeerResolver
strMachineld:

Fig. 5.1: Classes with Attributes and Methods on Development Time

. Impact ofAspect Orientation on the Reliability of Decentralized Multi-Agent System 37

Chapter # j Sofhvare Development and Erahralion

5.1.2 Aspects

Fig 5.2: Aspects in Decentralized AMS

5.1.3 Software Interfaces

The graphical user interface of AMS visual manager, which allows AMS to

perform all of its management related functions, is composed of six main components.

These are:

Agent Tree

Menu Bar

Tool Bar

Popup Menu

Status Bar

Menu Bar

Using these components user can interact with the agent and can perform multiple

actions ahich are discussed later in user manual attached for reference. (Refer to

Appendix C)

5.1.4 Class Code

The sample code is attached for reference. (Refer to Appendix D)

Impact afAspecf Orientation on the Reliabilify of Decenlralired Multi-Agenl System 38

Chapter # 5 Sofworr Developn~e,rr a n d Evaluario~i

5.2 The Metrics
Reliability can be measured by measuring the internal attributes like coupling,

cohesion and complexity of a system [25] [26] [27]. Chidamber and Rsmerer metrics

suite [28] are best to capture the above mentioned attributes of software that is why we

are using a metric suite from [29], which is based on the refinement of CK metrics for

aspect-oriented systems and is reusing LOC metrics. These memcs capture the degree to

which a single system concern maps to design components (classes and aspects) and

operations (methods and advice) [5]. The chosen metrics were applied on class diagrams

of both the versions and where it was needed, behavioral diagrams were also consulted.

Table 5.1 briefly defines each metric and associates it with the relevant sohvare attribute.

We grouped the metrics to measure a certain attribute, according to our o m

requirements. The reason behind measuring above mentioned intemal anributes is, to see

which version has more error-prone and afterwards we applied mean Time to Failure on

both versions to see how these attributes affect system's reliability.

Attribute hletrics

Lack of Cohesion in Operations Measure the lack ofcohssion of a class or an aspect in terms
Cohesion I I (LCOO)

of the amount of method and advice pain that do not assess
the same instance variahlc.

Definition

Coupling

Coupling Betueen Components
(c w

Depth of Inheritance Tree (DIT)

Complexity

- - -

Impact ofAspect Orientation on the Reliability ofDecentralized Multi-Agenr System 39

Counts the number of other classes and q x c t s to which a
class or an aspect is coupled.

Counts hoa far down in the inheritanis hierarchy a class or
aspen is declared.

hlTTF

Weighted Operations per Component
(woe)

Lines of Cade (LOC)

Numberof Attributes (NOA)

Counts th; number ofmsthods and ad\ i;c of each class or
aspens or the number of i s paramet-.

Counts the lines of code.

Counts thenumber ofarnibutes ofeach class or aspect.

Table 5.1: The Metrics Suite

5.3 Evaluation
Table 5.2 and 5.3 present the computed metric values for both A 0 and 00

versions. We compared both A 0 and 00 systems on the basis of each metric value as

follows:

Coupling

Coupling Between Components (CBC)

Mean Time To Failure It measme the average time heween obxrved system failures.

Chapter # 5 Sofnvare Development and Evaluation

From the metric values, it can be noticed that in AOD the coupling is

increasing but if we observe the AOD in Figure 4.1, we can understand that the

coupling between core classes is decreasing and the coupling behveen core classes

and aspects is increqing.

Depth of Inheritance Tree @IT)

Only one class with the name of ServiceAgent has a subclass of

AgentDirectoryService which does not pay a remarkable effect on a system.

Cohesion

Lack of Cohesion in Operations (LCOO)

Values for the LCOO decreased in aspect-oriented design, which means the

A 0 version of the system is more cohesive as compared to 00 version. System

with more cohesion is more reliable and efficient.

Complexity

Weighted Operations per Component (WOC)

As it can be seen from the results of metrics, that in A 0 version, the number

of operations per classlaspect is reduced as compared to 00 version. Aspect-

oriented software development helps in decreasing the crosscutting between the

classes and reduces the number of tangled methods in the class. Therefore it

decreases the overall complexity of a system.

Lines of Code (LOC)

LOC is 1685 in the 00 implementation and 1486 in A 0 implementation. This

shows that 00 system is more complex in terms of LOC.

Number of Attributes (NOA)

It can be noted that object-oriented version is more complex in terms of NOA,

while NOA is reduced in aspect-oriented version.

Table 5.2: Metrics Obtained For 00 Design

Impact of Aspect Orienlafion on ihe Reliabiliry of Decentralized MuNi-Agenl System 40

Chapter = 5 Sofmare Development and Evaluation

Table 53: Metrics Obtained For A 0 Design

5.3.1 Reliability

Reliability is the probability of failure-free operation over a specified time in a

eiven environment for a specific purpose. It is a complex concept which should always -
be considered at the system rather than the individual component level. Software

reliability is the probability that how likely a software component will produce an

incorrect output. As the number of dependent components increase the overall probability

of system failure increases.

Reliability is a quality attribute and can be divided into two categories those are:

Fault tolerance

Maturity

Fault tolerance can be achieved by two ways, one is defensive programming and

other one is by fault tolerant architecture. In aspect-oriented version of decentralized

AMS of SAGE, fault tolerance is achieved by defensive programming and that's why

exception handling was - taken as primary cross-cutting concerns while Maturity which is

the second categov of reliability, is measured by using metrics Mean Time to Failure

(MTTF).

Reliability can be quantitatively measured by using probability of failure on

demand, rate of failure occurrence and mean time to failure. We used MTTF to evaluate

reliability of both the systems. MTTF is the average time between observed system

failures. An MTTF of 500 means that one failure can be expected every 500 times units.

This metric should be used for the systems where there are long transactions, i.e. where

Impact ofAspecl Orienfafion on the Reliabilily of Decentralized Multi-Agent System 41

Chapter # 5 Soffimre Development and E~aluario~~

people use system for a long time 1301. That is why we chose this metric to evaluate our

system. The next section explains the measurement of MTTF for our system.

5.3.2 Mean Time lo Failure

MTTF is calculated by observing how much longer resources SAGE occupies in a

platform at the time of its operation. We took Memory Usage and CPU Usage as the

main resource. So the readings for both 00 and A 0 systems were taken and evaluated.

Readings for Object Oriented Version of SAGE

Memory Usage at the point of System Initialization: 35028 KB.

Agents started at initial stage VMA, AMS and DF.

Additional Agents created DF GUI and Test Agents (23 in total).

Change in Memory Usage after creation of 27 agents: 39964 KB.

So the agents were as follows:

hlemory Usage at the start of GUI of 24th Test agent: 41448 KB.

At the point when all agents were selected to send messages 42044K. Table 5.4

shows the change in memory usage every time an action is being taken on SAGE

Table 5.4: Memory Usage of 00 system at the System Initialization point

Sending Messages:

First Message

Time Started 7:40 pm

Total Agents: 28 (1 itself to count how much messages were sent)

Total messages sent one time: 27

Memory Usage: 42316 K

CPU usage 11% from 4-5% normal

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 12

Cha~ter # 5 Sofncorr Develop~neri~ and Evaluation

Then a number of times messages were sent until the system became halted and

could not accept any more messages. The reading is as follows:

Halting Time 7:42 pm

No of times messages sent: 356

Top1 messages sent : 9612

Memory usage : 96832 K

CPU Usage : 100->72%

It was observed that system was not fully occupied by its resources even the CPU

usage reached loo%, the system would release itself decreasing the CPU usage to 72%.

Therefore, at this point some more messages were sent until CPU usage became constant

to 100% and system reached deadlocked state. These readings are shown in Table 5.5.

Table 5.5: Memory Usage and CPU Usage of 00 system on Sending Messages

Readings for Aspect Oriented Version of SAGE

For A 0 same system was restarted to take the fresh readings. Table 5.6 shows the

readings. Memory Usage at the start of SAGE GUI: 27952-964 KB at the time when 3

agents are created by default. The procedure was same for A 0 system as well.

Table 5.6: Memory Usage of A 0 system at the System Initialization point

Impact of Aspect Orientation on the Reliability of Decentralled Multi-Agent System 43

:. .."."-' ' " _. -.
"d:. .-.- -3 . . :-: -1-

'Start of.SACE%UI:.%=?2
?A&jitioral:ATg "6 cr7&-!a;"''-:;:
.-.*?< * . . - . - - Dl7 G-U: - .:+
' r .;i ..% . . . ; -. ;i
YC+: .L.-:&T&AgenW. .--
Start of CUI bf241h:T&tAgFntJ,

- - iNo'OfAgenti'Creafedr 1.

3

I
23
I

3
27

28

- -..-
' : ~ o ~ ~ h l ~ g ~ n ~ i ~ e m o ~ . U s a ~ e (KB

27961
30672

39084

Chapter # 5 Sofhoae Development and Evaluation

Sending Messages:

First Message

Time Started 8:06 pm

Total Agents: 28 (1 itself to count how much messages were sent)

Total messages sent one time: 27

Memory Usage: 39324 K

CPU usage 4-5%

Then a number of times messages were sent until the system reached its first deadlock

and could not accept any more messages. The readings are shown in Table 5.7. The time

at which the system halted was 8:08 pm and 362 messages were sent at that time

consuming memory to 86880KEl and increasing CPU usage from 4-5% (normal) to

100%. After a short while the system released its resources decreasing CPU usage to

72%. So some more messages were sent to see the \vorking of system. The CPU usage

decreased to 5% that would again rise up to 100% as more messages were sent. But see in

Table 5.7 that memory usage almost remained constant though it would rise a little bit but

it would again become constant. The performance of system decreased slowly each time

a message was sent until it finally reached deadlock state. The readings after the first'

deadlock are also sho\\n in Table 5.7.

The readings for both 00 and A 0 versions are shown in Table 5.8. The first

difference is observed from the Memory usage at the start of GUI of SAGE that is great

difference. In addition the A 0 system even after its first deadlock state was able to send

more messages than it 00 counterpart. Its performance was better for A 0 than 00

system. The 00 system failed to send more messages after it had sent 356 messages

while A 0 system had sent 362 messages at that time and A 0 system was still able to

send 25 more messages while 00 system could only send 6 more.

Impact of Aspect Orientorion on !he Reliability ofDecentralired Multi-Agent System J?

Chaprer = j Sofnuare Development and Eval~mtioti

Table 5.7: hlemory Usage and CPU Usage of A 0 system on sending messages

Start o f GUI 35028KB 27964KB
Memory Usage

After creation of 27" Test Agent 1 41448KB 1 39084KB

1 No of Times Messaces Sent 1 362 1 387 I

Table 5.8: Comparison of Memory Usage for 00 and A 0 system of SAGE on

sending messages

- I I

Impact ofAspect Orientation on the Reliability of Decentralized Multi-Agent System 4 j

No of Messages Sent 9774 10449

Chaprer # 6 Conclrrsio~i

Chapter 6: Conclusion

6.1 Research Results and Conclusion

In this research work. we hare compared aspect-oriented and object-oriented

versions of the same application, in order to explore to what extent each implementation

provides a reliable system. A group of researchers have worked on aspect-oriented

architecture, modeling and engineering of MASS, but there is no empirical evidence

whether AOP helps in improving the reliability of a Decentralized Multi-Agent System,

thereby hindering the adoption of AOP for such a system. This was the reason of

choosing Decentralized Multi-Agent System for this experiment. The research work is

based on a case-study in which we have compared the reliability of aspect-oriented and

object-oriented design of Decentralized Agent Management System (AMS) of SAGE.

SAGE (Scalable and fault tolerant agent grooming environment) is FIPA

compliant Decentralized MAS. It consists of modules those are large scaled and complex.

Our focus was to check the impacts of Aspect-Orientation on a non-trivial system, so we

took Decentralized AMS of SAGE. The system has got sub-modules as well. AMS is a

large module uhich was modified for fault-tolerance and scalability. If software

undergoes upgradation and changes. it suffers from high degree of failure rates and

complexity. Therefore this becomes necessary to make software reliable after

upgradation. As AMS was also upgraded for decentralization, it was more likely to be

checked for reliability. Fault-tolerance and scalability have incurred increase in failure

rates that lead to the maintenance of the system for reliability. Reliability can be achieved

if we re-design and re-implement this module of the system by using better engineering

approach. Therefore, we used AOP to see its impacts on the reliability of Decentralized

AMS, as it was considered better approach than OOP for the development of other

systems.

Reliability remained the main concern on which we focused in this research,

which is a by-product of quality that could be measured. It can be defined as 'extent to

which a program can be expected to perform its intended functions with required

precision'. There are a number of metrics those could be used to measure the reliability of

a system, which are, Probability of Failure on Demand (POFD), Rate of Failure

Occurrence (ROFO) and Mean Time to Failure (MlTF). We used MTTF to measure the

Impact oJAspect Orientation on the Reliabiliy oJDecenfralized Multi-Agent System 46

Chapter # 6 Coridiision

reliability of both the versions of the system because MTTF is best to measure the

maturity of a system and it is successfully being used for systems those run for longer

time. We evaluated the systems for reliability and observed how coupling and cohesion

affected reliability of 00 and A 0 versions of the system.

Aspect-Orientation basically talks about separation of concerns in software

construction. It states that a given problem involves different types of concerns, which

should be identified and separated in order to manage the complexity of the system. It

also provides loose coupling between modules. Here we have tried to relate the reliability

of aspect-oriented systems with the internal attributes like coupling, cohesion and

complexity. We have used refinement of CK metrics for aspect-oriented system and

measured the above mentioned internal attributes; those are basic error-prone and

aftenvards applied MTTF on both the versions of the system. We observed that aspect-

oriented system that showed good results for CK metrics also showed good results for

MTTF. By measuring MTTF we observed that Aspect-Oriented systems tries to tolerate

the failure as much as it could and keeps Memory Usage constant even when the CPU

Usage was very high. Hence it is proved that AOP improves the reliability of

Decentralized MAS and therefore software engineen should not be hesitant in using this

de\elopment technique for Decentralized MASS. This experiment resulted into good

impacts of Aspect-Orientation on the reliability of Decentralized MAS.

Impact ofAspecf Orienfafion on the Reliability of Decentralized MuNi-Agent System 47

Appendix A References

A. 1 References

Garcia, A., Silva, V., Chavez C., Lucena, C. Engineering Multi-Agent Systems with Aspects and
Patterns. Journal of the Brazilian Computer Societ); July 2002.
Araujo, J., A. Moreira, I. Brito and A. Rashid. Aspect-Oriented Requirements with UML. Workshop on
Aspect-Oriented Modeling with UML, 2002.
Iris Groher and Thomas Baumgarth. Aspect-Orientation from Design to Code. In Proceeding:
Workshop on Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design;
AOSD, March 2004.
Ramnivas Laddad.'AspectJ in Action. Pages (7-1 I), Oreilly & Associates Inc., 2003.
U. Kulesza, et al. Quantifying the Effects of Aspect-Oriented Programming: A Maintenance Study. In
Proceedings of the 9th International Conference on Software Reuse (ICSM'06). Philadelphia, USA.
September 2006.
Alessandro Garcia, et al. Aspectizing Multi-Agent Systems: From Architecture to Implementation.
PUC-Rio, Computer Science Deparnnenc LES, SoC+Agents Group, Rio de Janeiro, W, Brazil, 2004.
Garcia, A., Chavez C., Chore- R. An Aspect-Oriented Modeling Framework for Designing Multi-
Agent Systems. 7th Workshop on Agent-Oriented Software Engineering, AAMAS'06, Hakodate
Japan, May 2006.
Foundation for Intelligent Physical Agents. httpJ/w*w.fipa.org
Abdul Ghafoor, et al., SAGE: Next Generation Multi-Agent System, In Proceedings of the 2004
International Conference on Parallel and Distributed Processing Techniques and Applications (USA),
June 2004, pp. 139-145.

[lo] J. Zhao. Measuring Coupling in Aspect-Oriented Systems. Technical Report, SE-142-6, lnformation
Processing society of Japan (IPSJ), June 2003.

[I IIA. Ghafoor, A. Shibli and H. Farooq Ahmad SAGE, Open Source Fault Tolerant Architecture:
Enhancement, Refactoring and Debugging, 21* Assurance System Symposium, Hiroshima City
University, Hiroshima, Japan 2007.

[I21 Kiczales, G., Hilsdale, E., Hugunin et al., An O\ewiew of AspectJ, In Proceedings of ECOOP 2001,
Lecture Notes in Computer Science, Vol. 2072, Springer (2001) 327-353.

[I31 R. E. Filman, et al (Eds.) Aspect-Oriented SoFnwe Development, Addison-Wesley, 2005.
[14]Katia P. Sycara, Multi-Agent Systems, 1998.
[ISIN. Ubayashi, T. Tamai. Separation of Concerns in Mobile Agent Applications. In Proceeding of the 3rd

Conference Reflection 2001, LNCS 2192, Kyoto. September 2001, pp. 89-109.
[I6]Salman Shahid's "Agent Management System (AMS) for FlPA Compliant Multi-Agent System",

Distributed Computing Group NUST Institute of lnformation Technology, Rawalpindi, 2000.
[17]Garcia, A. From Objects to Agents: An Aspect-Oriented Approach. PhD Thesis, Computer Science

Department, PUC-Rio, Brazil, April 2004.
[ISIGarcia, A. Separation of Concerns in Multi-Agent Systems: An Empirical Study. In: C. Lucena et al

(Eds). Software Engineering for Multi-Agent Sjnems 11. Springer-Verlag, LNCS 2940, February 2004.
[19]M. D'Hondt, K. Gybels, V. Jonckers. Seamless Integration of Rule-Based Knowledge and Object-

Oriented Functionality with Linguistic Symbiosis. Proceedings of the 19th Annual ACM Symposium
on Applied Computing (SAC 2004), Nicosia, C > ~ m s , March 2004.

[20]Z. Guessoum, J. Briot. From Active Objects to Autonomous Agents. IEEE Concurrency, Special Series
on Actors and Agents, 1999, pp. 68-76.

[21]A. Amandi, A. Price. Building Object-Agents from a Software Meta-Architecture. In: Advances in
Artificial Intelligence, LNAI, vol. 1515, Springer-Verlag, 1998.

[22] Kendall, E. Role Model Designs and Implementations with Aspect-oriented Programming. OOPSLA
1999, pp. 353-369.

[23]Carlos Lucena, Paulo Alencar, Alessandro Garcia, A Generative Approach for Multi-Agent System
Development (2004).

[24]C. Von Flach and Carlos J.P., Design Level Support for Aspect-Oriented Development, Workshop on
Advanced Separation of Concerns in Object-Oriented Systems (ASOC) at OOPSLA' 2001, Tampa
Bay, Florida, USA, October 14,2001.

1251 Dr. Linda Rosenberg, et al, Software Metrics and Reliability, 9th International Symposium on Software
Reliability Engineering Germany, Nov 1998.

1261 Jubair J. Al-ja'afer, Khair E d d i M. Sabri, Chidamber-Kemerer(CK) And Lorenze-Kidd(LK) Metrics
T o Assess Java Programs, In Proceeding of International Workshop on Software Systems (IWSS),
2004.

Impact of Aspect Orientation on the Reliability ofDecentralized Multi-Agent System 48

Appendir A References

[27] Jacqueline A. hlc Quillan and James F. Power, On the Application of Soflwares Metrics to UML
Models.

[28]Chidamber, S. and Kemerer, C., A Metric Suite for Object Oriented Design, IEEE Transactions on
Software Engineering, 1994, pp. 476-493.

[29)C. Sant' ANNA, eta!., On the Reuse and Maintenance of Aspect-Oriented Software: An Assessment
Framework. In Proceeding of Brazilian Symposium. On Software Engineering, 2003, pp. 19-34.

[;O] Ian Sommervile, Solhvare Engineering, Pg. 373-375, Sixth edition, February 2000.
[3l]Alessandro F. Garcia & Carlos J. P. De Leucena. An Aspect-Based Object-Oriented Model for Multi-

Agent Systems. In Proceeding of the 20" Advanced Separation of Concerns Workshop at ICSE' 2001,
Toronto, Canada, May 2001.

Impact ofAspecr Orienlarion on [he Reliability of Decentralized Multi-Agenr S p f e m 49

.--- ~ .--. --""
4" IEEE International Conference on Emerging Technologies
Rawalpindi, Pakistan, 18'- 19"October. 2008

Impact of Aspect-Orientation on the Reliability of
Decentralized Multi-Agent System

Him Tabbasum, Salma Jabeen
Department of Computer Science
International Islamic University,

Islamabad, Pakistan
{btabbasum.iiui, sjabeen.iiui)@gmail.com

Abs/ract-Aspect Oriented Programming (AOP) provides
separation of concerns and encapsulates crosscutting concerns
into separate modules called 'aspects', thereby enhancing the
s o h a r e quality. This paper presents the impacts of aspect-
orientation on the reliability of a decentralized hlulti Agent
System (MAS). We compared aspect-oriented and ohject-
oriented versions of the same application in order to explore to
what extent each imp~ementationprovidr~ n reliable sysiem. We
evaluated both versions of the svstem and found that the as~ect-
oriented dcsign is more reliable as it has brought a lobsely
coupled and less complex system.

Keywords-crosscuning concerns; aspect-orientation;
decenhalircd multiogent systems

I. I~RODUCTION

Aspzct Oriented Sofhvare Development (AOSD) [I] is a
new emerging technology that provides separation of concerns
in sohvare consmction [2]. Separation of concerns is a
central software engineering principle that should be applied
throughout the development process, from requirement to
impiementation [3]. It states that a given problem involves
different kinds of concerns, which should be identified and
separated in order to manage the complexity o f the system [4].
Concerns can be classified into two categories those are core
concems and crosscutting concerns. Core concems deal with
the basic functionality of a system while crosscutting concerns
span multiple modules and deal with non-functional
requirements [5]. Aspect Oriented Programming (AOP) [6]
provides improved modularization that encapsulates
crosscutting concems into separate modules known as
'aspects' (71.

S o h a r e engineering of multi-agent system involves the
classification of concerns into two categories: agenthood
concems and additional concerns. Agenthood concems
include knowledge, interaction, adaptation, and autonomy.
While additional concern include mobility. learning and
collaboration. From these mobility, interaction, learning,
autonomy and collaboration are crosscutting concems [XI. A
group of researchers have worked on aspect-oriented
Brchitecture [8], modeling [9] and engineering [2] of MASS
but there is no empirical evidence whether AOP helps in
improving the reliability of a decentralized Multi-Agent

H. Farooq Ahmed, Abdul Ghafoor
Department of Computer Science

NUST Institute of Information Technology,
Rawalpindi, Pakistan

{drfarooq,abdul.ghafoor)~it.edu.pk

system, thereby hindering the adaptation of AOP for such
system.

This paper presents a case-study in which we have
compared the reliability of aspect-oriented (AO) and object-
oriented (0 0) design of decentralized Agent Management
System (AMS) of SAGE (Scalable, fault tolerant Agent
Grooming Environment). SAGE is FIPA [lo] compliant
decentralized multi-agent system [Il l . In SAGE, scalability
and fault tolerance is achieved up to some extent through its
architecture but reliability is still a major issue due to the
excess of tangling and scattering of code in one of its
components i.e., AMS. In addition, internal attributes like
coupling and cohesion also affect system's external attributes
like reliability, reusability and maintainability [I21 while
SAGE is a htghly coupled and complex system because its
code is not well optimized 1131.

This paper also explains those crosscutting concerns that
come across the development of a decentralized AMS and
implemented those concerns with Aspectl [14]. It involves
three sort of crosscutting concerns those are Knowledge
Distribution, Exception Handling and Knowledge Consistency
and core concern like Agent Management and Peer
Management We have also evaluated both venions of
decentralized AMS. - ... -

The rest of the paper is organized as follows. Section 2
presents the object-oriented design (OOD) of decentralized
AMS of SAGE. Section 3 describes the crosscutting modules
and aspect-oriented design (AOD) [I51 of decentralized AMS.
Section 4 explains the selected mehics to evaluate both
versions. Section 5 shows the results of metrics in tabular
form. Section 6 analyzes the results of metrics and section 7
has some concluding remarks.

11. DECCITIWIZED AGENT MANAG-EMENT SYSTEM

SAGE [I61 is following distributed architecture with
decentralized management for fault tolerance of multi-agent
systems. Its architecture is a blend of client/server paradigm
and peer-to-peer. Instead of having the centralized location for
management the ownership rights have been distributed to
peer entities which are solely responsible for their roles and
actions. These peer entities are part of a single Agent Platform

md are managed by AMS. This system was ideal for our case
study due to several reasons. First, it is the only multi-agent
jystem that has a decentralized agent management platform
and the behavior of Aspect-oriented programming has not yet
been proved in this context. Second, scalability and reliability
always remained a key attribute for multi agent systems.
Finally, its realization involves a number of core and
crosscutting concems; those are of great importance in case of
decentralized multi-agent systems.

A. Object-oriPnted design ofAgent Management Sysrem
The object-oriented version of decentralized AMS was

implemented using Java programming language. However,
Java is good to deal with inheritance and polymorphism, but it
may also be the cause of introducing scanering and tangling in
the code. When the AMS was reverse-engineered in order to
obtain object-oriented design the same condition was
observed. The system was analyzed with both class diagrams
and interaction diagrams. The result showed that due to high

inheritance between classes the system became highly
coupled. The methods were incoherently calling each other
making the flow of program more complex and not
understandable. Moreover, although the system has become
decenhaliued to achieve fault tolerance and scalability, but it
has become difficult to organize system components into
modules according to their functionality. Therefore, there was
a need to implement the system with a technology that could
provide linguistics mechanisms for separate expressions of
concerns in AMS and weaving these concerns with the
system's primary concerns. Figure 1 shows the object-oriented
class diagram of decentralized Agent Management System of
SAGE.

Aspect orientation is the recognisation of the development
of sofhvare system with respect to many concerns [17]. The
development of software system with respect to concerns

Peer Management Module
Knowledge Bare Nodule

Manage Heartbeats

Share Knowledge
Manage Agent states

Provide htertace
Other Management

Manage Knowledge
Component

Figme 2. Peer Management. Knowledge Barc a d Agcnt Management rnudules o f Agent Management System

could be achieved by separating classes into concerns (or
modules) according to the agenthood properties they possess.
The AOD [IS] is developed then by identifying the
crosscutting among these concerns (or modules).

A. Idenr3cation of modules in Agent hfanagement System
Every multi-agent system has a desired set of propetties 181
(or agenthood properties) and it is developed in order to
achieve those properties. These properties are howledge,
mobility, learning, etc. Therefore, there is a need to go through
the AMS in terms of these properties i.e., to see which part
(module) of system is related to which agenthood property. It
is more likely to analyze properties in a single logical khlS
distributed over multiple machines. Therefore, the basic
modules or concerns identified according to these properties
are:

I. Peer hlznagement
2. Knowledge Base, and
3. Agent hlanagement

Here is the description of these modules:

I) Peer Management module: The Peer management
module is responsible for managing all the operations of peer
entities:

1. It manages heartbeats or liveliness of peer
machines after a fixed interval of time provided it
is done dynamically.

2. It provides interface to the peer entities through
RMI (clienUse~er) layer. So any request to server
made by the client of peer machines will be
achowledged by the peer management module.

3. It helps peer components or entities to share
knowledge with each other. For example, searching
and providing information about a certain agent on
a peer agent's request.

4. It also helps to manage the howledge component
in case of any sort of modification in peer agent's
information.

2) Knowledge Base module: Though Knowledge base
component manages local agent and remote agent information.
it is also managed by Peer Management module. Its functions
are:

1. To keep information about agents i.e., their state,
life cycle, etc.

2. To perform functions like searching information
about a particular agent, deleting, adding or
modifying the agent information and providing the
information about Agent Platform (AP)
description.

3) Agent Management module: The responsibilities of
Agent Management module are similar to those of AMS's
responsibilities: register, deregister, managing life cycle and
states of agents, etc.

Figure 2 represents the functions of these modules.

B. Aspect-oriented design ofAgent Management System
The modules identified in previous section helped us to

identify the crosscutting in the system more appropriately. The
main root of crosscutting was Knowledge Base module whose
management functions were spread over Peer Management
and Agent Management modules. The reason was the shared
registry information due to which it was difficult to maintain
the distribution of information or updating the information in
case of a change in registry, in a peer-to-peer paradigm. Using
bidiuectional RMI with a combined clienUserver at both ends
does not help in reducing coupling. In addition, consistent
regisny information at all peer entities brought the issue of
reliability. These issues were resolved by identifying three
main aspects that were Knowledge Distribution, Knowledge
Consistency and Exception Handing aspects. Exception
Handling was selected as a primary crosscutting concern
because there were roughly 63 instances of exception handing
in 25 classes of AMS that makes its existence about 252% in
the system. That is, double the number of classes of AMS.
Therefore, it was necessary to choose it as a crosscutting
concern in order to reduce tangling from the code. The figure
3 shows the AOD of AMS. It shows which class of a module
aspect is crosscutting. For example,
KnowledgeConsistencyAspect crosscuts all the classes in Peer
Management, Knowledge Base and Agent Management
modules. Note that classes in each module are selected on the
basis of percentage of Functionality of a particular module they
possessed. The A 0 version of decentralized AMS of SAGE is
implemented using Aspecff [14].

The reliability can be measured by measuring the internal
attributes like coupling, cohesion and complexity of a system
[I81 [19]. Chidamber and Kemerer's (CK) metrics suite [20]
are best to capture the above-mentioned attributes of a

I Knc. r r l r4gs B a r e C e n c e r a / A g e n t M r n s 9 e n e n t C o n c e r n - i
I

Figure 3. Croascuning agcn: c c x m in Pcr; -gcmolI. Knowledge bass and Agent management modules

software. Therefore, we are using a metrics suite from [21],
which is based on the refinement of CK m d c s for aspect-
oriented development and reusing LOC memcs. These memcs
capture the degree to which a single system concern maps to
design components (classes and aspects) and operations
(methods and advice) [7]. The chosen memcs have been
applied on class diagrams of both the versiox where it was
necessary and behavioral diagrams were also consulted. TaXe
1 briefly defines each metric and associates it uith the relevant
software attribute. We grouped the mehics to measure a
certain attribute, according to our own requirements.

V. EVALUATION

Table 2 and 3 present the computed meti: values for both
A 0 and 00 versions. We compared both A0 and 00 systems
on the basis of each metric value as follows:

Coupling

Coupling Between Components (CBC)

From the metric values, it can be noticzd that in AOD,
coupling is increasing but if we observe the .\OD in Fi-m-e 3,

we can understand that the coupling between core classes is
decreasing and the coupling between core classes and aspects
is increasing.

Depth of Inheritance Tree @IT)

Only one class with the name of ServiceAgent has a
subclass a AgentDireclorySenice which does not pay a
remarkable effect on a system.

Cohesion

Lack of Cohesion in Operations (LCOO)

Values for the LCOO decreased in aspect-oriented design,
which means the A 0 version of the system is more cohesive
as compared to 00 version. System with more cohesion is
more reliable and efficient.

Complexity

Weighted Operations per Component (WOC)

It can be seen from the results of mehics, that in A 0
version, the number of operations per classlaspect is reduced

as compared to 00 version. AOSD helps in decreasing the . Lines of Code (LOC)
crosscutting between the classes a d reduces fk: number of
tangled methods in the class. Therefore, it decreases the LOC is 1685 in the 00 implementation and 1486 in A0

overall complexity of a system. implementation. This shows that 00 system is more complex
in terms of LOC.

TABLE I. T 3 XETRIC SUITE

Amihute hletrict

Coupling

Dqrh oJInhaifoncr Trrr (DIV

Cohesion Lack oJCohcrion in O p & m ILCOO)

DeIiiitioa .
Counts the numbcr of other classes and aspects to which a class or
ra a s p t is coupled

Counts how far dawn m the inheritance hierarchy a class or aspect
is decland

h i e m the lack of cohesion of a class or an aspect in t e r n of the
amount of method and advice pairs Ulat do not assess the m e
insame variable.

~ p - ~ ~ ~ ~ ~

I Opnmionspa woq I Counts the number of mcthods and advice of cach class or asp&
or the number of its mrameten.

Complexity I Lines of Code (7.W I Counts the liner of code.

fimbrr of Amibuur NOA) I Counts the numbcr of attributes of cach class or aspect.

TAB= 11. M E T R I C S C ~ ~ ~ R Z D FOROODZS~GN

hlETRICS COUPLLX COAESIOS C O M P L F X W
CBC DII L C 0 0 WOC LOC NOA

DynaakPolicy I 9 6 5 145 7

9 0 12 10 376 14 (

TABLE m. 51;E:CS OBThIMD FOR A 0 DESLON

It can be noted, that object-oriented version is more
complex in terms of NOA, while NOA is reduced in aspect-
oriented version.

VI. RESULTS

Coupling, cohesion and complexity plays a vital role in the
reliability o f a system at desip level. As w e can see from the
computed metrics, AOD of a decentralized A\lS resulted into
a lwse ly coupled, more cohesive and less complex system.
Coupling between core and aspectual classes increased in
AOD but other metrics showed good results for aspect-
oriented version of the system. SAGE has a scalable and fault
tolerant decentralized architechue but realization is equally
important to build a fault tolerant and reliable system. Our
experknentation resulted into a positive impact of aspect-
orientation on the reliability of a decentralized AMS.

This paper presented A 0 and 00 implementations of
decentralized agent-management system of SAGE. In this
study, we also mentioned the crosscutting concerns of
decentralized AW. Through this analysis, w e found that A O P

[lo] Foundation for Intelligent Physical Agem. -g

[I l l Abdul Ghafmr, ct al., "SAGE: next generation Multi-agcnt system",
Procecdiags of the 2004 inlcrnatioaal Confcrcnse on Panllcl ar
Distributed Processing Tcchniqucs and Applicatiom pp.139-I4
Vo1.l .PDPTA. Navada (USA). June 2001.

[I21 1. Zhao, "Mcaruring coupling in Aspect-Oriented ryrtcnu". Technic
Report, SE142-6, Information Roccssing socicty of Japan PSI) , Im
2003.

[I31 A. Ghafoor, A Shibli and H. F m q Ahmad, "SAGE, open som
' Fault Tolerant a r c h i t c c ~ : snhanccmmt, refactoring and debugging

2111 Asswance System Symposiuq Himshima City Universit
Hiroshima, Japan 2007.

[I41 Kinales, G., Hilsdale, E., Hugunin ct al., "An ovminv of A p V :
Proccsdings of ECOOP 2001, Lecfure Notes in Computer Scicncc. Vc
2072. Springer (2001) 327-353. . .

[IS] C. Von Fbch and Carlos J.P.. "Desip level support for Arpm-Oricnu
development", Workshop on Advmccd Scpantion of Concnns
Objcu-Oriented Systans (ASOC) at OOPSLA' 2001, Tampa Ba
Florida. USA October 14.2001. . .

1161 Salmao Shahi4 "Agent Mmgcmcnt S p c m (AMS) lor RPA complix
Multi.agcot sytcm", Dlrmbutcd C o m p ~ b g Gmup hVST Lnstitutc I
l d m a u a n Technology. RawalpmL 2000.

[I71 R. E. Filman, ct al (Eds.) Aspect-Oriented s o h d~clopmer
Addison-Wesley, 2005.

[I81 Dr. Linda Rosenberg, et al, "Sohare Mehicr and Rctiability", 9
Intcmational Symposium oa Software Reliability Enginming Gsrman
Nov 1998.

1191 Iubair I. Al-ia'afer. Khair Eddin M. Sabri. "Chidamta-KcmercdCI . .
is mpe5or to object orientatioo al design and implementation and L O ~ L C . ~ (~ ~ ~ (L K) Memrr to assess lava programs". In ~cocc&t
level. AOP helm ~1 imomvine soRwarc tnternal attributes and ofIntmationd Workshop on S o n m c Syrmcms (IWSSj. 2W1.
~~ ~~ ~ - - ~~~~ . ~ - ~ . ~~

leads to better values for soha re external attributes such as [20] Chidambcr, S. and Kcmercr, C.. "A memc suite for Object Orienf~

reliabilitv. AOP is eauallv helpful in achieving a aualitv design" IEEE Transactions on So&m Engineering 20(6)(1994) 478
.-A - . .

decentratzed hZlS as' it is heipful for other applications.
4YJ.

nere fo rc , sohm engineers should not be hesitant in using PI1 c. Sant' ANNA. al., "On the m c and dn-cc of A s ~ c
Orimted rofh*an: An assessment hamewrk", Roc. Brazili;

this new technique of implementation for decentralized MASS. Synposium On Software Engineering. 2003. 19-34.
Our e p e r i m e n t resulted into a good impact of Aspect-
orientation on the reliability of decentralized MAS.

RIFERR'CES

Ill T. Elud, R F l h a and A. Bder (cds.). %cmc section on Aspcct-
05cnled Ro.mzcing", CALM, L1(I0), 2001.

[2] Gmia, A.. Sdv: V.. ct al. "Ecgineering Multi-agmt systems with
ApccLs and Parons". I o d o f&c Bradlian Computer Socicty, July
2002. V. 8, no. 1 . n . 57-72.

[3] Amjo, J.. A .\larcira, st al, "Aspect-Oriented rcqvirrmentr with
LXL". Workstcp on Aspect-05cnltd Modcling uith UML, 2002.

(41 Lrs Gmhn and Tho- Bnumganh, "Aspect-Orien!atian fmm dcr ip to
cd:". In Rwcding of Workshop on Early Aspatr, Aspect-Oriented
Repkcmcntr Ec*ming and Architcchuc Design; AOSD. March
2004.

(51 Ramiw Laddzd. AspscU in d o % Pages (7-1 I), Oxilly & Asswiatcs
Icc..ZW3.

[n C. Kulerja, n d., "QuanLffyiug thc eff& of Aspect-Oriented
hgmming: A mtintcnancc study". In h e d i n g s of the 9th
lnvmational Confwcc on Sohaan Reuse (ICSY06). Philadciphia,
USA SeofembcrtW6.

[9] Wi A. Chavrs C., Chorq R, "An Aspfft-Oriented modeling
h e w * for &ping Multi-agmt s@ms". 7th Workshop on Agmt-
Oricntcd Softaax Engineering AAMAS'06, Hakodatc Japan, May
2W6.

210

 append^ C Intefices

C.l VMA

C 1.1 Visual Manager GUI

The graphical user interface of AMS Visual Manager is shown below:

Menn Bar
m

Tool Bn

Agent Tree Board

Stator Bar

Figure 1.1 AMS Visual Manager GUI

The graphical user interface is composed of six main components. These are:

Agent Tree.

Menu Bar.

. Tool Bar.

Popup Menu.

Status Bar.

Information Board.

Using these components user can interact with the agent and can perform multiple actions

which are discussed later in detail.

Impact ofAspect Orientation on the Reliability ofDecentralized Multi-Agent System 57

A ~ ~ e n d i r C Interfaces

1.2 Component Details

Agent Tree

Agent Tree is one of the most important components of AMS Visual Manager. Agent Tree .
is a three level hierarchic tree.

First level Cluster Name (Root Node)

Second level Machine Name

Third level Agent Name (LeafNode)

The fim level node or the root node shows the name of the cluster. The second level node

represents the machine on which the agents are created and registered. Third level node or

the leaf node represents the agents that are registered with the machine under which they

appear.

Cluster Name
n -

Machine Nam

Agent Name
- --

Figure 1.2 AMS Visual Manager's AgentTree

Whenever the AMS Visual Manager is started the Agent Tree is populated with the

machines comprising the platform and the agents residing on those machines.

Machine Name

The machine name is represented in terms of its IP address in reverse order.

Agent Name

\
Agent name is composed of three segments
- - -- - - - - -- -

Impact oJAspecl Orientation on the Reliability ofDecentralized Multi-Agent System

1. The agent name specified by the user

2. Reverse IP address of the machine on which the agent is to be created

3. Platform name

Full Agent Name = <agent n a m e : <reverse IP addreso @ <platform n a m e

e.g. VMA:1 OO72I@niit206

where Agent name = VMA (First segment)

Reverse IP address = 100721 (Second segment)

Platform name = niit206 (Thirdsegment)

Menu Bar

The Menu Bar is a very flexible component that adds to the user friendliness of any

graphical user interface. Using the Menu Bar the user can perform multiple actions. AMS

I97sirual Manager also provides Menu Bar to its users. It consists of

seven Menus that are:

General

Create

Action

Tools

View

Information

Help

General

The General Menu consists of two Menu Items

Close AMS Visual Manager

By using this option the user can close the AMS Visual Manager. When the user selects

this option, the user is asked for confirmation to close the AMS Visual Manager. After

confirnation a message is created by the AMS Visual Manager for AMS specifying to kill

the AMS Visual Manager. +fkr the creation the ACL message is sent to AMS via MTS.

Then the reply message is created and sent to AMS Visual Manager by AMS via MTS.

- --

Impact ofAspect Orientation on the Reliability of Decentralized Multi-Agent System

Appendix C lntefices

After receiving the reply message from Ah& AMS Visual Manager closes its graphical

user interface without causing any effect on the platform.

Shutdown Platform

By using this option the user can close the entire platform. When the user selects this

option, the user is asked for ~ o ~ n n a t i o n to close the platform. After confirmation a

message is created by AMS Visual Manager for A M specifying to close the platform.

After creation, the ACL message is sent to AMS via BITS. On receiving this message AMS

kills all the agents that are active at that time and then finally closes the application.

Create

The Create Menu consists of two Menu Item

DF Visual Manager

By using this option the user can launch the DF Visual Manager which provides a

graphical user interface for the management of Directory Facilitator (DF). When the user

selects this option, a message is created by the AMS Visual Manager for AMS specifying

to create the DF Visual Manager agent. After creation, the ACL message is sent to AMS

via MTS. On receiving this message AMS will create DF Visual Manager agent. The user

will be sho\vn the graphical user interface to interact with Directory Facilitafor. Then the

reply message is created and sent to AhfS Visual Manager by AMS via MTS. After

receiving the reply message from AMS, AMS Visual Manager updates its Agent Tree view

by adding the entry of DF Visual Manager agent in the Agent Tree.

TestAgent

By using this option the user can launch the TestAgent. When the user selects this option,

a message is created by the AMS Visual Manager for AMS specifying to create the

TestAgent. After creation, the ACL message is sent to AMS via MTS. On receiving this

message AMS will create TestAgent and its graphical user interface will be shown to the

user. Then the reply message is created and sent to AMS Visual Manager by AMS via

MTS. After receiving thereply me2age from A M , AMS Visual Manager updates its

Agent Tree view by adding the entry of TestAgent in the Agent Tree.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 59

Appendir C Interfaces

Action

The Action Menu consists of five Menu Items

Create Agent

By using this option the user can create a new agent. First the user has to specify the

machine on which the user wants to create the agent. After that when the user selects this

option, the user will be asked to provide the following information

Agent name

Class Path

Arguments

After getting all the necessary information from the user a message is created by the AMS

Visual Manager for AMS specifying to create a new agent with the name specified. After

creation, the ACL message is sent to A.MS via MTS. On receiving this message AMS will

create a new agent with the user specified name. Then the reply message is created and

sent to AMS Visual Manager by AMS via MTS. After receiving the reply message from

AMS, AMS Visual Manager updates its Agent Tree view by adding the entry of the agent

created in the Agent Tree.

Kill Agent

By using this option the user can kill the specified agent. First the user has to select a

particular agent from the Agent Tree. After that when the user selects this option, the user

is asked for confirmation to kill the specified agent. After confirmation a message is

created by AMS Visual Manager for AMS specifying to kill the specified agent. After
--

creation, theACL message IS sent to AMS via MTS. On receiving this message AMS will

kill the agent as specified by user. Then the reply message is created and sent to AMS

Visual Manager by AMS via MTS. After receiving the reply message from AMS, AMS

Visual Manager updates its Agent Tree view by eliminating the entry of the agent in the

Agent Tree.

Impact of Aspect Orienrarian on the Reliabilip of Decentralized Multi-Agent System 60

-

Suspend Agent

By using this option the user can suspend the specified agent. First the user has to select a

particular agent from the Agent Tree. After that when the user selects this option, the user

is asked for confirmation to suspend the specified agent. After confirmation a message is

created by AMS Visual Manager for AMS specifying to suspend the specified agent. After

creation, the ACL message is sent to AMS via MTS. On receiving this message AMS will

suspend the agent as specified by the user. Then the reply message is created and sent to

Ah4S Visual Manager by AMS via MTS. After receiving the reply message from AMS,

AMS Visual Manager notifies the user by showing the confirmation message in the Status

Bar that the agent has been suspended.

Resume Agent

By using this option the user can resume the specified suspended agent. First the user has

to select a particular suspended agent from the Agent Tree. After that when the user

selects this option, the user is asked for confirmation to resume the agent. After

confirmation a message is created by AMS Visual Manager for AMS specifying to resume

the specified agent. After creation, the ACL message is sent to AMS via IWS. On

receiving this message AMSwill resume the agent as specified by the user. Then the reply

message is created.

and sent to AMS Visual Manager by AMS via MTS. After receiving the reply message

from AIMS, AMS Visual Manager notifies the user by showing the confirmation message

in the Slatus Bar that the agent has been resumed.

Send Message

By using this option the user can send the messages to other specified agents. First the

user has to select a particular agent from the Agent Tree as the sender of the message.

After that, when the user selects this option the user will be shown the message creation

window through which the user can compose and send message(s). The window consists

of four fields which are:

1. Sender Name

When the message creation window starts up this field is already populated with the -
name of sender agent.

Impact ofAspect Orientation on the Reliability of Decentralized Multi-Agent System 61

Appendix C Interfaces

2. Receiver Name

In this field the user has to specify the name of the recipient agent. This field has two

buttons attached with it which are:

Add

By using this button a popup window is appeared showing the names of the agents

currently residing in the platform. User then selects the desired recipient of the message.

The recipient name is then added to the Receiver field.

Remove

By using this button the user can delete the selected recipient name from the Receiver

field. The user can specify multiple receivers for the message.

3. Communicative Act

Using this field the user can specify the type of communicative act for the message to be

sent to the specified recipient(s). . .

4. Contents

Using this field the user can specify the message contents. AAer specifying the inputs, the

user submits the request. After submission a message is created by AMS Visual iManager

for MTS specifying to send the message to the specified recipient(s). After creation, the

ACL message is sent to lMTS which is responsible for forwarding the message to the

desired recipient(s).

Tools

The Tools Menu consists of three Menu Items

Save Log

By using this option the user can save the contents of the Status Bar. When the user

selects this option, a save file dialog appears in which the user has to supply the name and

location of the file to be saved.

Impact o f l s p c t Orientation on the Reliability ofDecentralired Multi-Agent System 62

Aooendir C Interfaces

Refresh Status Bar

By using this option the user can refresh the Status Bar. When the user selects this option,

any contents in the Status Bar are cleared.

Change Status Bar Color

By using this option the user can change the color of the text shown in the Status Bar.

When the user selects this option, a Color chooser dialog appears in which the user

selects a particular color. After color selection the color of the text in the Status Bar is

updated.

View

The View Menu consists of two checkbox Menu Items

View Status Bar

By checking the Menu Item the user can view the Status Bar. If the user doesn't want to

view the Status Bar, the user can uncheck the Menu Item.

View Agent Tree

By checking the Menu Item the user can view the Agent Tree. If the user doesn't want to

view the Agent Tree, the user can uncheck the Menu Item.

Information

The Information Menu consists of three Menu Items

Platform Information

By using this option the user camview the informationabout the agent platform. When

the user selects this option the user will be shown the platform information window

through which the user can view the desired information that includes:

1. Platform creation time

It shows the time at which the platform was started.

2. Platform name

It shows the name of the platform.
E

Impact of Aspect Orientation on the Reliabiliy of Decentralized hfulti-Agent System 63

Appendix C Interfaces

3. Total machines in cluster

It shows the total number of machines in the cluster that form the agent platform.

4. Total agents created

It shows the total number of agents that have been created since the agent platform was
created.

5. Number of active agents

It shows the total number of agents that are currently active in the agent platform.

6. Total agents killed

It shows the total number of agents that have been killed since the agent platform was
created.

7. Number of suspended agents

It shows the total number of agents that are currently suspended in the agent platform.

. Machine Information

By using this option the user can view the information about a particular machine. First

the user has to select a particular machine from the Agent Tree. After that when the user

selects this option the user nil1 be shown the machine informalion window through which

the user can view the desired information that includes:

I. Machine start time

It shows the time at which the machine was started and made the part of the cluster.

2. Machine name

It shows the name of the particular machine.

3. JDK Version

It shows the version of Java Virtual Machine (JYM) mnning on that particular machine.

4. OS Version

It shows the version of Operating System (0s) running on thatparticular machine.

5. Total agents created

-
lmpod of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 64

Appendir C Interfaces

It shows the total number of agents that have been created since the machine was started.

6. Number of active agents

It shows the total number of agents that are currently active on thatparticular machine.

7. Total agents killed

It shows the total number of agents that have been killed since the machine was created.

8. Number of suspended agents

It shows the total n q b e r of agents that are currently suspended on that particular

machine.

Agent Information

By using this option the user can view the information about a particular agent. First the

user has to select a particular agent from the Agent Tree. After that when the user selects

this option the user will be shown the agent information window through which the user

can view the desired information that includes:

1. Agent Name

It shows the selected agent name.

2. Agent Owner

It shows the owner of the selected agent.

3. Agent State

It shows the state of the selected agent. An agent can be in one of 13 states that are:

Active

Suspend

Transit

Unknown

Create

Invoke

Destroy

Quit

Resume

Impact ofAspect Orientation on the Reliability of Decentralized Multi-Agent System 65

Appendix C Interfaces

Wait

Wakeup

Move

Execute

Help

The help Menu consists of one Menu Item

About

By using this option theuser can view the details about AMS Visual Manager.

Tool Bar

Tool Bar is a very flexible component that adds to the user friendliness of any graphical

user interface. Using the Tool Bar the user can perform multiple actions. AMS Visual

A4anager also provides Tool Bar to its users. As discussed in above section, the following

actions can be performed using the Tool Bar

Fig. 1.3 Visual Managrer's Too Bar

1. Shutdown Platform

2. Close AMS Visual Manager

3. Create new agent

4. Kill Agent

5. Suspend agent

6. Resume agent

7. Send Message to other agents

Popup Menu

AMS Visual Manager provides Popup Menu to its users. Following actions can be
pfrformed using the Popup Menu.

lmpact of Aspect Orientation on the Reliabilify of Decentralized Multi-Agent System 66

Fig. 1.4 Visual Manager's Pop Up Menu

1. Create new agent

2. Kill Agent

3. Suspend agent

4. Resume agent

5. Send Message to other agents

6 . View Platform information

7. View Machine information

8. View agent Information

The PopupMenu can be launched by selecting any node in the Agent Tree and then

pressing the right mouse button.

Status Bar

This component is used to inform the user about the current activities taking place in the

agent platform.

Information Board

This component shows the information ~ indows to the user on request that includes:

Platform information.

Machine information

Agent information.

Impact oJASpect Orientation on the Reliability afDecentralized Multi-Agent System 67

Coding

Appendix D Coding

D.l DynamicPolicy

This is class is fiom Peer Management concern. This class is responsible for the dynamic

probing (peer to peer). It checks the status of the other machines on the agent platform and in

case of failure it removes the peer machine from the platform.

package ams.probe.dynamic;

. -
import java.util.Enumeration;
import java.util.Hashtable;

import acl.ACLMessage;.
import acl.ACLPerformatives;
import acl.CFPredicate;
import acl.aclcodec.ACLCodec;
import acl.ontology.management.ManagementOntolog)
import acl.sl.codec.SLTokenizer,
import ams.AgentDirectoryService;
import ams.Agentld;
import ams.AgentStates;
import ams.RSFactory;
import ams.Utility;
import ams.peer.ActionStatus;
import ams.peer.PeerAMS;

public class DynamicPolicy extends Thread {

AgentDirectoryService objADS;
long interval = 2000;
PeerAMS peerAMS;
String strMacld;
Enumeration enum;
int intSize;

* Constructor for the DynamicPolicy class
* @param AgentDirectoryService
*/
public DynamicPolicy(AgentDirectoryService objADS) {

this.objADS = objADS;
this.start();

1

public void run() {
while (true) {

try {
sleep(interval);
enum = objADS.getRootService().getPeerResolver().keys();
this.probeMachine();

} catch (Exception e) {
e.printStackTrace0;

1
Impact ofAspect Orientation on the Reliability of Decentralized Multi-Agent System 68

.4upendir D Coding

private void probeMachine0 {
tly {

String strLocalAMS;
Utility objutility =new Utility();
strLocalAMS =

objUtility.setMacIDCjava.net.lnetAddress.get~al~ost().get~ost~dd~ess~);
ArrayList alMachineList = objADS.getRootSe~ice().getMachineList();

if (intSize != alMachineList.size()) {
for (int i = 0; i < alMachineList.size(); i*) {

trvl

) catch (Exception ex) {
ex.printStackTrace();

1
I

~t index = alh dachineList.indexOf(strLocalAMS);
if (index = alMachine~ist.size() - I) {

index = 0;
} else

index = index + 1;

boolean boolcheck = false;
strMacId = (String) alMachineList.get(index);

peerAMS =
o b j A D S . g e t R o o t S e ~ i c e () . g e t L o o k u p F a c t o ~ a c I d) ;

if (peerAMS = null) {
-

System.out.println("Peer AMS is null");
1
if (!strMacId.equals(strLocalAMS)) {

boolcheck = peerAMS.pingResponse();
if (boolcheck =true) {

for (int i = 0; i <
objADS.getRootService().getMachineList().si; i*) {

] else
System.out.println("Status is not OK " + strMac1d);

I

Impact ofAspect Orientation on the Reliabilify of Decentralized Multi-Agent System 69

A ~ ~ e n d i x D Coding
- -

intSize = objADS.getRootService0.getMachineList0.size();
} /I end try

catch (Exception e) {
removeFault(strMac1d);
e.printStackTrace0;

}
1

private void removeFault(String strMacld) {
ArrayList alMachineList;
Hashtable hashPeerResolvers = null;
System.out.println("---------------I m in the method to handle the error--------------

" + strMacId);
hashPeerResolvers = objADS.getRootService~.getPeerResolver();
hashPeerResolven.remove(strMacId);
objADS.getRootService().getMachineListO.remove(strMacId);

o b j A D S . g e t R o o t S e r v i c e ~ . g e t L o o k u p F a c t o r y 0 M a ~ I d) ;
System.out.println("Removed entry from local machine");
alMachineList = objADS.getRootService0.getMachineList0;
Enumeration e = hashPeerResolvers.keys0:
for (int i = 0; i < alMachineList.size0; i H) {

try {
peerAMS =

o b j A D S . g e t R o o t S e r v i c e () . g e t L o o k u p F a c t o ~)) ;
peerAMS.updateMachineList(alMachineList);
peerAMS.removeMachine(strMac1d);
System.out.println("******IIII////*********Removed from

machine" + e.toString0);
sendMsgVMA(strMac1d);

} catch (Exception ex) {
ex.printStackTrace();

1

) 11 end while

} N end method

private void sendMsgVMA(String strMacld) {
ArrayList alMachineList = .. - objADS.getRootService().ge_tMachir&ist(); -

Hashtable hash~eer~esolvers = null;

System.out.println("----------------I m in the method to handle the error--------------
" + strMacId);

hashPeerResolvers = objADS.getRootService().getPeerResolver();
Enumeration enum = hashPeerResolvers.keys();

ACLMessage objACLMessage = new
ACLMessage(ACLPerformatives.INF0RM);

ACLMessage objACLMessage1 = new
ACLMessage(ACLPerfomatives.INF0RM);

Impact of Aspect Orientation an the Reliability of Decentralized Multi-Agent System 70

A~oendix D Coding

obj ACLMessage.setSender(objADS.@Agentld());

while (enum.hasMoreElemenQ) {

objACLMessage.addReceiver(new Agentld("VMA:" +
enum.nextElement0.toStringO + "W + RSFactory.getPlatformName(), null, null, null,

enum.nextElement().toString() + "@" + ~ ~ ~ a c t o ~ . ~ e t ~ l a t f o m ~ a m e () , null, null, null,
AgentStates.ACTNE));

1-
CFPredicate obiFailure = new

strMacId);
SLTokenizer objSLTokenizer = new

SLTokenizer(ManagementOntology.getlnstance());

CFPredicate objFailurel = new
CFPredicate(Management0ntology.FAILUREMACHNE);

objFailurel .set(ManagementOntology.FAILUREMACHMEENAME,
strMacld);

SLTokenizer objSLTokenizer1 = new
SLTokenizer(ManagementOntology.getlnstance());

objACLMessage1 .setContent(objSLTokenizer.encode(objFailure I));

objACLMessage.setX~AuthenticationId(AgentDirecto~Se~ice.getFirstTok());
objADS.sendMessage(objACLMessage);
ACLCodec aclCodec = new ACLCodecO;
objADS.sendMessage(objACLMessage1);
System.out.println(acICodec.encode(objACLMes~ge));
System.out.println(aclCodec.encode(objACLMessage1));

) /I END TRY

catch (Exception ex) {
ex.printStackTraceO;

1
1

Impact ofAspec1 Orientation on the Reliability ofDecentrali-ed Multi-Agent System 71

Appendir D Coding

D.2 PeerServerImpl

This is class is also part of Peer Management concern. This is the server class of AMS

RMI.

package ams.peer;

import java.rmi.RemoteException;
importjavarmi.server.UnicastRemoteObject;
import java.util.AmyList;
import java.uti1.Enumeration;
import java.util.Hashtab1e;

import ams.AgentId;
import ams.AgentRegistry;
import ams.RootService;

public class PeerServerImpl extends UnicastRemoteObject implements PeerAMS
{
private Rootsenice objRootService =null;
private Hashtable hashRegktry = null;
private ActionStatus obj ActionStatus = new ActionStatusO;

* Constructor for the PeerSewerImpl Class
* @throws RemoteException
*I

public PeerSewerImplO throws RemoteException
{

supero;
System.out.println("sdfsdfsdfsdfsdfsdfsdfdsf");

1

I* * - -

This method is used to set Rootservice and shared registry Information
@param objRootService
@param hashRegistry
@throws RemoteException
*I

public void ActivatePeerSe~erImpl(RootSe~ice objRootService, Hashtable
hashRegistry)throws RemoteException

{

if (objRootService != null)
this.objRootService = objRootSewice;

lmpoct ofAspect Orientation on the Reliability of Decentralized Multi-Agent System 72

Auuendix D Coding

if (hashRegistry != null)
this.hashRegistry = hashRegistry;

I**
This method returns true if the pingResponse is successfull
@return
@throws RemoteException
*I

public boolean pingResponse0 throws RemoteException
{

return true;

This method accepts the name of the component, checks if its working and
returns the actionstatus of the ping.
@param strPeerComponent
@return
@?throws RemoteException
*I

public Actionstatus pingResponse(String strPeerComponent) throws RemoteException
1
tv
{

S~stem,out,pr~nt~n("****************"+strpeerComponent+"******************" 1;
if(strPeerComponent.equals("MTS"))
{

System.out.println("G0T PEERMTS");
I

else if(strPeerComponent.equals("peerAMS"))
{

System.out.println("G0T PEERAMS");
System.out.println("AMS REBINDED);

1

else if(strPeerComponent.equals("peerDF"))
{

System.out.println("G0T PEERDF");
}

else if(strPeerComponent.equals("peerVh4A"))
{

System.out.println("G0T PEERVMA");
I

1

Impact ofAspect Orientation on the Reliability of Decentralized Multi-Agent System 73

Appendir D Coding

1
System.out.println("1n the Server Method");
llnow here we have to rebind the Specific Component
//and send action status back to the sender that the machine is rebined now.
obj ActionStatus.setActionStatus("Rebinded');
return objActionStatus;

I

AMS is responsible for the searching of an Agent within the Platform.
Remote search should be performed by AMS rather than agent by itself.
@param %name .
@return
@throws RemoteException
*I

public Actionstatus searchAgent(String sttAgentName) throws RemoteException
{
System.out.println("1nside Search Agent on PeerServerImpl");
if (strAgentName != null)

else
objActionStatus.setActionStatus("DOESN0TEXIST");

1
else

objActionStatus.setActionStatus("NAMENULL");

System.out.println("1nside Search Agent on PeerServerImpl Before Return");
return objActionStatus;

1
I* *

AMS is responsible for the searching of agent description either on
local machine or on distributed machines.
@param agname
@return
@throws RemoteException
*I

public AgentId searchAgentDesc(String strAgentName) throws RemoteException
I
AgentRegistry agentReg = null;

if (strAgentName != null)
{

if (hashRegistry.containsKey(strAgentName))
I

agentReg = (AgentRegistry) hashRegistry.get(strAgentName);
objAgentId = agentReg.getAgentId0;

ImpactPfAspect Orientation on the Reliability of Decentralized h4ulti-Agent System 74

Appendix D Coding

return obj AgentId;
1
else
{

System.out.println("Inside Search Agent on PeerSewerImpl Returning 2 : " +
objAgentId.getAgentNarne0);

return null;
I

I
else
{

System.out.println("Inside Search Agent on PeerSewerImpl Before Flnal Return");
return null;

I
I
I** Name of faulty detected machines must be conveyed to other peer machines.

@param strMacId
@return
@throws RemoteException
*I

public ActionStatus removePeerAMS(String strMacId) throws RemoteException
{

if (strMacId != null)

{
System.out.println("Ser Side PeerRemoved form :

"+objRootSewice.getAgentPlatfonnAddress()+" : "+ strMacId);

1
else
objActionStatus.setActionStatus("DOESNOTEXISTS");

1
else - - - .. -

objActionStatus.setActionStatus("NULLNAME");
retum objActionStatus;

1

I* *
To add another PeerAMS to local peerResolver
@re-
@throws RemoteException
*I

public ActionStatus addPeerAMS(String strMacId, MainAddress objMainAddress)
throws RemoteException

{

~ m p a c / o f ~ s ~ e c t Orientation on the Reliability of Decenhalized Multi-Agent System 75

if ((strMacId != null) && (objMainAddress !=null))
{

System.out.println("Ser Side Adding the PeerAMS : " + strMacId);
obj Actionstatus = objRootSe~ice.addPeer(strMacId,objMainAddress);

1
else
objActionStatus.setActionStatus("NULLNAME");

return objActionStatus;
1

/* *
This method accepts the machineId of the machine and removes it from the local

machine
@param MacId
@throws RemoteException
*I

public void removeMachine(String MacId) throws RemoteException
{

System.out.println("1 am in the peer machine server method remove machine");
objRootSe~ice.getPeerResolverO.remove(Mac1d);
obj RootSenice.getLookupFactoryO.getPeerCache.remove(Mac1d);

1

I** Platform Name must be same among all the peer machines.
@return
@throws RemoteException . . .
*/

public String getPlatformNameO throws RemoteException
{

System.out.println("Server Side: Call recieved from remote in Get Platform Name");
if(objRootService.getAgentPlatformName()=null)
{
System.out.println("Agent Platform name is null");

1
return objRootService.getAgentPlatformNameO;

ACC Plaifom Address returned
@return
@throws RemoteException
*I

//@TODO new change mobility critical method not found
public String0 getACCPlatformAddressO throws RemoteException
{
if(objRootService.getIIOPAddress()==null)
{
System.out.println("P1atfom Address is null");

1
return objRwtService.getIIOPAddress0;

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 76

Appendix D Coding

}
I** Newly Linked peer sends its identity and receives peers list.

@param strMacId
@param peerAddress
@return
@throws RemoteException

*I
public Hashtable getListPeerAMS(String strMacId, MainAddress objMainAddress)

throws RemoteException
{

if ((strMacId != null) && (objMainAddress != null))
{

System.out.println("System is returning in getpeerlist " + strMacId);
objRootService.addPeer(strMacId,objMainAddress);
Enumeration enum = objRootSe~ice.getPeerResolve@.keys0;
while (enum.hasMoreElementsO)
{

System.out.println("Ser Side Inside getPeerList Host Server Side returning :
" + (Sting) enum.nextElement0);

1
retum objRootService.getPeerResolver0;

1
else

return null;
1

This method gets the String machineId ,adds the machine to the local machine
Information and returns the machine Information
@param strMacId
@return
@throws RemoteException

*I
public ArrayList getMachineList(String strMacId) throws RemoteException
{

objRootSe~ice.addMachineList(strMacId);
return objRootService.getMachineList0;

1

@param alMachineList
@throws RemoteException

*I
public void updateMachineList(ArrayList alMachineList) throws RemoteException
{

objRootSe~ice.setMachineList(alMachineList);
System.out.println("MACH1NE INFORMATION UPDATED");

1
1

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 77

Appendix D Codinn

D.3 ClientLookup

This is class is also part of Peer Management concern. This is the Client representative

class of the AMS RMI. It calls the AMS Server Methods.

package amspeer;

import java.util.ArrayList;
import java.util.Enumeration;
import java.util.Hashtable;

import ams.HostException;
import ams.RootService;

public class ClientLookup {
private LookupFactory objLookupFactory = null;

private ActionStatus objActionStatus = null;

private String strPlatfonnName = null;

private Rootservice objRootService = null;

I* *
Constructor for ClientLookup which accepts 3 parameters
@param objRootService
@param MacId
@param address
*I

public ClientLookup(RootService objRootService, String MacId, MainAddress address) {
objRootService.getPeerResolver0.put(MacId, address);
Enumeration enum = objRootService.getPeerResolverO.keys~;
while (enum.hasMoreElements0)

System.out.println("ClientLookup Constructor : " + (String)
enum.nextElement0);

this.objRootService = objRootService;
System.out.println("gdgdgfdgfddd);
objLookupFactory = new LookupFactory(objRootService,

objRootService.getAgentPlatformAddress0, objRootService.getAgentPlatfomName0);
1

Constructor for ClientLookup which accepts 1 parameter
@param objRootService
@param MacId

Impact of Aspect Orientation on the Reliabiliry of Decentralized hfulti-Agent System 78

Appendir D Coding

@param address
*I

public ClientLookup(RootService objRootService) {
this.objRootService = objRootService;

L o o k u p F a c t o r y (n . g e t P e e r R e s o l v e r 0 , t h i s . ~ d d r e s s () ,
this.rs.getAgentPlatformName0);

objLookupFactory = new LookupFactory(objRootService,
this.objRootService.getAgentPlatformAddressO,
this.objRootService.getAgentPlatformName0);

}

I**
This method returns the LookupFactory Object
@return
*/

public LookupFactory getLookupFactory0 {
return objLookupFactory;

1

I* *
This method pings the peer machine and returns the action status based on
the probe result.
@param strPeerMacId
@param strPeerComponent
@return
@throws HostException
*/

public Actionstatus pingPeer(String strPeerMacId, String strPeerComponent)
throws HostException {

try {
System.out.pMtln("1 am in the Client Lookup");
if (objLookupFactory.getPeerAMS(strPeerMac1d) = null) {

System.out.println("Peer ams is not null");
1
objActionStatus =

objLookupFactory.getPeerAMS(strPeerMacId).pingResponse(s~Pee~ompnent);
if (objActionStatus = null)

return (objActionStatus);
} catch (Exception e) {

System.out.println("Exception Raised in pingpeer : " +
e.toString0);

this.bindPeerAMS(strPeerMac1d);
1

return (null);
1

This method pings the machine name which is specified in the arguments
@param strPeerMacld

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 79

Auuendix D Coding

*I
public void pingPeerAuth(String strPeerMacId) {

try {
objActionStatus =

objLookupFactory.getPeerAMS(strPeerMacId).pingResponse(strPeerMacId);
} catch (Exception e) {

System.out.println("Exception Raised in pingPeerAuth : " +
e.toString0);

1

I* *
This methos accepts a String machineId of the peer machine and Updates the
peer machine registry information.
@param strPeerMacId
*I

public void getPeerList(String strPeerMacId) {
Hashtable hashPeerResolver = new Hashtableo;
String strPeerMacIds = new Stringo;

try {
hashPeerResolver =

obj LookupFactory.getPeerAMS(strPeerMacId).getListPeerAMS(objRootSe~ice.getAgen
tPlatformAddress0, new MainAddressO);

Enumeration enum = hashPeerResolver.keys0;

while (enum.hasMoreElements0) {
MainAddress ma = null;
ma = (MainAddress)

hashPeerResolver.get(enum.nextElement0);
System.out.println("Client Looku up =t+t " +

ma.getHostAddress0 + " : " + ma.getHostPort0);
1

} catch (Exception e) {
System.out.println("Exception Raised in getPeerList : " +

e.toString0);
1
System.out.println("Size of HashTable inside getPeerList : " +

hashPeerResolver.sizeQ);
this.objRootSe~ice.setPeerResolver~ashPeerReso1ver);

Enumeration ePeerResolver =

this.objRootSe~ice.getPeerResolver0.keys~;
System.out.println("Hello World inside Client lookup");
while (ePeerResolver.hasMoreElements0) {

strPeerMacIds = (String) ePeerResolver.nextElement0;
if

((strPeerMacIds.equaIs(this.objRootSe~ice.getAgentPlatformAddress())) 11
(strPeerMacIds.equals(strPeerMacId))) {

lmpacr of Aspect Orientation on the Reliabilityof Decentralized Multi-Agent System 80

Appendix D Coding

System.out.println("Already Done");
} else {

try{
System.out.println("Before Calling for gettingList and adding : " + strPeerMacIds);

objActionStatus =
objLookupFactory.getPeerAMS(strPeerMacIds).addPeer~S(this.objRootSe~ice.getAg
entPlatfonnAddress(), new MainAddressO);

objActionStatus.setActionStatus["DONE");
} catch (Exception e) {

System.out.println("Exception Raised in getPeerList
and Add to remote: " + e.toString0);

This method accepts the Strir -
local machine
@param strPeerMacId
*I

IE machine Id 2 ind remove s the machine from th

public void removePeer(String strPeerMacId) {
tN I . \

System.o~t.println("Calling for removing the PeerAMS : " +
strPeerMacId);

objActionStatus =

obj LookupFacto~y.getPeerAMS(strPeerMacId).removePeerA~1S(strPeerMacId);
} catch (Exception e) {

System.out.println("Exception Raised in removepeer : " +
e.toString0);

1
1

I* *
This method accepts a string machine Id and gets the Agent Platform ACC

Address
from that machine. ~- - - -

//@TODO New change mobility Critical
public void getACCSe~erAddress(String strPeerMacId) {

try {
System.out.println("Calling for getting AP Address : " +

strPeerMacId);

Impact ofAspect Orientation on the Reliability of Decentralized Multi-Agent System 81

Appendix D Coding

System.out.println("Gening agent Platform Address : " +
strAddress[O]);

} catch (Exception e) {
e.printStackTrace();

1
}

I* *
This method accepts a string machine Id and gets the Agent Platform Name
from that machine.
@param strPeerMacId
*/

public void getPlatformNarne(String strPeerMacId) {
try{ -

System.out.println("Cal1ing for getting APName : " +
strPeerMacId);

objRootSe~ice.setAgentPlatformNme(objLookupFacto.getPeerAMS(strPeerM
acId).getPlatformName0);

System.out.println("Getfing agent Platform Name : " +
objRootService.getAgentPlatformNme0);

} catch (Exception e) {
System.out.println("Exception Raised in getPlatformName : " +

e.toString());
1 . .

1

This method accepts the two String arguments and gets the machineList
from the peer machine.
@param strPeerMacId
@param strMacId
@return
*I

public ArrayList getMachineList(String strPeerMacId, String strMacId) {
ArrayList alMachineList = null;
try {

alMachineList =

objLookupFactory.getPeerAMS(strPeerMacId).getMachineList(strMacId);
) catch (Exception e) {

e.printStackTrace0;
1

public void bindPeerAMS(String strMacId) throws HostException {

Hashtable hashPeerResolvers = null;
System.out.println("--------------I m in the method to handle the error-----

--------- " + strMacId);

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 82

Appendb D Coding

hashPeerResolvers = objRootService.getPeerResolver();
hashPeerResolvers.remove(strMacId);
objRootService.getLookupFactoryO.getPeerCache~.remove(strMacId);
System.out.println("Removed entry from local machine");
Enumeration enum = hashPeerResolvers.keys();
while (enum.hasMoreElements()) {

try{

objRootSe~ce.getLookupFactory~.getPeerCache~.remove(strMacId);
System.out.~rintln("******////////*********Removed from

machine" + enum.toString0);
} catch (Exception ex) {

ex.printStackTrace();
throw new HostException("Host Machine not found");

I
I

}

D.4 LookupFactory

This is class is also part of Knowledge Base concern. This is class is also part of

Knowledge Base concern. Lookup factory is used in booting. LookupFactory is created

by the ClientLookup. Lookup Factory is set and can be obtained from RootService. It is

required by all the system Agents because they need to communicate with other peer

System Agents.

package ams.peer;
import java.miNaming;
import javautil.Enumeration;
import javautiLHashtable;

- -

import mts.peer.PeerMTS;
import vma.AMSGULPeerVMA;
import ams.RootService;
import ams.SingletonException;
import ams.Utility;
import df.peer.DFPeer;
public class LookupFactory
1

private Hashtable hashRegistery; //= new Hashtableo;
private RootService objRootService=null;
private Hashtable hashPeerCache = new Hashtableo;

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 83

Appendir D Coding

static boolean boolInstance=false;

private String strMahineID = null;

private String strLocalPlatform=null;

I* *
* @param hashRegistery
*I

public LookupFactoryO
{

if(bool1nstance) .
throw new SingletonException("Only one Lookup Factory is Allowed");
else

* @param hashRegistery
*I

public LookupFactory(RootService objRootService, String strLocalMacId, String
strPlatformName)

{
if(bool1nstance)
throw new SingletonException("0nly one Lookup Factory is Allowed"):
else
{

boolInstance=tme;
1

this.objRootService = objRootService;
this.strLocalPlatform = strPlatformName;
this.strMahine1D = strLocalMacId; -

System.out.println("Size in Side LookupFacotry constmctor " +
objRootService.getPeerResolver~.sizeO);

this.hashRegistery = objRootSe~ice.getPeerResolver0;
I

public Hashtable getPeerCache0
{

return this.hashPeerCache;
1
public void setPlatformName(String strPlatformName)

Impan of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 8$

Appendix D Coding

1

public String getPlatfomName0
{

return this.strLocalPlatfom;
1

public String getLocalMacId()
{

return this.strMahineID;
}

I**
* @param strMachineName
* @return
*I

public PeerMTS getPeerMTS(String strMachineName)
{

PeerCache objPeerCache = (PeerCache)hashPeerCache.get(strMachineName);

if(objPeerCache != null)
{

if(objPeerCache.getPeerMTS0 = null)
I

return((PeerMTS)lookup(strMachineName, "PeerMTS": objPeerCache));
1
else
{

retum(objPeerCache.getPeerMTS0);
1

1
else
{

objPeerCache = new PeerCacheO;
return((PeerMTS)lookup(strMachineName, "PeerMTS", objPeerCache));

1
1

I* *
* @param strMachineName
* @return
*I

public PeerVMA getPeerVMA(String strMachineName)
t

System.out.println("CHECK 1");
PeerCache objPeerCache = (PeerCache)hashPeerCache.get(strMachineNae);

if(objPeerCache != null)

Impact of Aspect Orientation on the Reliabilify of Decentralized Muhi-Agenf S ~ ~ t e m 85

Appendix D Coding

if(objPeerCache.getPeerVMAmull)
{

return((PeerVMA)lookup(strMachineName,"PeerVMA", objPeerCache));
1
else
System.out.println("CHECK 3");

retum(objPeerCache.getPeerVMA());
1
else
{

System.out.println("CHECK 4");
objPeerCache = new PeerCacheO;
return((PeerVMA)lookup(strMachineName, "PeerVMA", objPeerCache));

1
1

public PeerAMS getPeerAMS(String strMachineName)
{

PeerCache objPeerCache = new Peesache();
objPeerCache = (F'eerCache)hashPeerCache.get(strMachineName);

if(objPeerCache != null)
{

{
return((PeerAMS)lookup(strMachineName, "PeerAMS", objPeerCache));

1
else

{
return(objPeerCache.getPeerAMSO);

1
1
else
I -

objPeerCache = new PeerCacheO;
try

{
return((PeerAMS)lookup(strMachineName, "PeerAMS", objPeerCache));

{
System.out.println("Exception in returning PeerAMS Lookup "+e.toStringO);
return null;

1
1

1

Impact ofAspect Orientation on the Reliabilify of Decenfralued Multi-Agent System 86

Appendir D Coding

public DFPeer getPeerDF(String strMachineName)
{
PeerCache objPeerCache = new PeerCacheO;
objPeerCache = (PeerCache)hashPeerCache.get(strMachineName);
if(objPeerCache != null)
{
if(objPeerCache.getPeerDFO-null)
{
return((DFPeer)lookup(strMachineNarne, "PeerDF", objPeerCache));

1
else

1
else
{
objPeerCache = new PeerCacheO;
try
{
return(@FPeer)lookup(strMachineName, "PeerDF", objPeerCache));

1
catcb(Exception e)
{
System.out.println("Exception in returning PeerDF Lookup "+e.toString());
return null;

1
1

* @param strMachineName -
* @param strServiceName
* @param objPeerCache
* @return
*/

private Object lookup(String strMachineName, String strServiceName, PeerCache
objPeerCache)

{
try
{

System.out.println("CHECK 1 ");
System.out.println("Macvcvdfdfsdfdsfdsfdsf : " +strMachineName);

- - --

Impact ofAspect Orientation an the Reliability of Decentralized Multi-Agent System

Appendix D Coding

MainAddress objMainAddress =

(MainAddress)this.objRootSe~ice.getPeerResolver0.get(strMachineName);
System.out.println("CHECK 2");
System.out.println("Size in Side LookupFacotry Hash " +

this.objRootSe~ice.getPeerResolverQ.sizeQ);
System.out.println("CHECK 3");
System.out.println("Size inside LookupFacotry Root " +

this.objRootService.getPeerResolverQ.size0);
System.out.println("CHECK 4");
System.out.println("Lookup");
if(strSe~iceNarne.equals("PeerMTS"))
{

System.out.pnntln("CHECK 5");
objMainAddress.getHostAddress0 + ":" + objMainAddress.getHostPort0 + "1" +
strServiceName);

//PeerMTS peerMTSObject = (PeerMTS)Naming.lookup("mi://" +
objMainAddress.getHostAddress0 + ":" + objMainAddress.getHostF'ort0 + "I" +
strSewiceName);

System.out.println("rmi://" + objMainAddress.getHostAddress0 + ":" +
objMainAddress.getHostPortO + "/" + strServiceName);

System.out.println("nni://lO. 10.2.193: 1099"+"/"+ strServiceName):
// PeerMTS peerMTSObject =

(PeerMTS)Naming.lookup("rmi://10.10.2.193:099"+"/"+ strServiceName);
if (peerMTSObject=null)

System.out.println("Lookup 2");
else

System.out.println("Lookup 2 Not Null");
objPeerCache.setPeerMTS@eerMTSObject);
hashPeerCache.put(strMachineName, objPeerCache);
retum(peerMTS0bject);

1

else if(strServiceName.equals("PeerAMS"))
{

Enumeration ee = this.objRootService.getPeerResolver0.keys();
System.out.println("Size in Side LookupFacotry Hash " +

this.objRootSe~ice.getPeerResolverQ.sizeQ);
System.out.println("Size in Side LookupFacotry Root " +

this.objRootService.getPeerResolverQ.size0);
while (ee.hasMoreElements0)
{

MainAddress objMainAdd =null;
System.out.println("System HAsh She :

"+this.objRootSe~ice.getPeerResolverQ.size~);
System.out.println("System Root HAsh SIze :

"+this.objRootSe~ice.getPeerResolver0.sizeQ);
objMainAdd = (MainAddress)

this.objRootSe~ice.getPeerResolver0.get(ee.nextElement~);

/
Impact ofAspecf Orientation on the Reliabilify of Decentralized Multi-Agent System 88

Appendix D Coding

System.out.println("Si.ze in Side LookupFacotry Hash " +
this.objRootService.getPeerResolver0.size~);

System.out.println("Size in Side LookupFacotry Root " +
this.objRootService.getPeerResolve~size0);

System.out.println("Lookup FActory ++++=++-I "+
objMainAdd.getHostAddressO+ " : " + objMainAdd.getHostPort0);

t
I

PeerAMS peerAMSObject = (PeerAMS)Naming.lookup("rmi://" +
objMainAddress.getHostAddressO + ":" + objMainAddress.getHostPort() + "/" +
strServiceName);

if (peerAMSObject=null)
System.out.println("Lookup 2");

else System.out.println("Lookup 2 Not Null");
objPeerCache.setPeerAMS@eerAMSObject);
hashPeerCache.put(strMachineName, objPeerCache);
return(peerAh4SObject);

1

System.out.println("CHECK 6");
System.out.println("CHECK 6");
PeerVMA peerVMAObject = (PeerVMA)Naming.lookup("rmi://" +

objMainAddress.getHostAddress~ + ":" + objMainAddress.getHostPort() + "I" +
strSe~iceName);

else if(strServiceName.equals("PeerDF"))
{ ~~~. -- -- . -

System.out.println("CHECK 6");
Systern.out.println("CHECK 6");
DFPeer peerDFObject = (DFPeer)Naming.lookup("rmi:N" +

objMainAddress.getHostAddressO + ":" + objMainAddress.getHostPort() + "/" +
strServiceName);

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 89

Aupendir D Coding

hashPeerCache.put(strMachineName, objPeerCache);
System.out.println("CHECK 9");
return(peerDF0bject);

I
I
catch(Exception e)
{

System.out.println("Exception in LookupFactory in AMS :" + e);
System.out.println("have to bind again here");

public void removePeer(String macId)
{

public void KillVMA()
{
try {

System.out.println("About to remove the peer VMA from hash table");
PeerCache peerCache=null;
Utility utility =new Utility();
String macID =

utility.setMacID(java.net.InetAddress.getLocalHost~.getHos~ddress());
peerCache=(PeerCache)hashPeerCache.get(macID);
peerCache.removePeerVMA0;
System.out.println("Removed the peer VMA from hash table");
1

This class is also part of Knowledge Base concern. It is created at the time Agent

Platform is initiated. Rootservice is set, in which the reference of the shared registry is

passed on to the root service instance. It sets the agent platform description. Rootservice

sets the agent platform name, which is obtained by the system and is the name of the

system.

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 90

Appendir D Coding

package ams;
import java.util.ArrayList;
import java.util.Hashtable;
import java.util.Vector;

import mobi1ity.MigrationManager;
import mobility.SageClassLoader;
imPor t 'm t s .~~s~anage r ;
import mts.reception.CornrnunicationModu1e;
import mts.transmission.SendCommand;
import ams.peer.ActionStatus:
import ams.peer.LookupFactory;
import ams.peer.MainAddress;
//@TODO new change in mobility

public class Rootservice {
I** String Array used to store IIOP Address *I
private String[] strIIOPAddress;
I** String used to store Agent Platform's name *I
private String strAgentPlatformName;

I** String used to store Agent Platform's Description *I
private String strAgentPlatformDescription;

I** String used to store Agent Platform's Address (Unique Machine ID) *I
private String strAgentPlatformAddress;

I** Value object for peerResolvers *I
private MainAddress objPeerAddress = new MainAddressO;

I** Vector used to store Agent Id's of the Main Service of the Agent
Platform for example Agent Management System, Visual Management Agent. *I

private Vector vecAgentIDs;

I* * Actionstatus for the return values *I
private ActionStatus objActionStatus = new ActionStatusO;

I** This is used to store a reference of MTS Class. *I
private MTSManager objMTSManager;

I** Hash table which stores the machine id of itself and its peers. *I
private Hashtable hashPeerResolvers = new Hashtableo;

I** Array List used to store machine information and keep in consistent*/
private ArrayList alMachineList = new ArrayListO;

I* * Hash table which is shared between MTS and AMS , it stores the
reference of the agents against the agent names *I

private Hashtable hashMTSAMSreg = null;
I** Used to lookup the peer components on peer machines. *I

Impact ofAspect Orientation on the Reliability of Decentralized Multi-Agent System 91

Appendix D Coding

private LookupFactory objLookupFactory = null;

private MigrationManager MigrationManagerObj;
private SageClassLoader objClassLoader;

/** Constructor for Rootservice class */
public RootService(Hashtab1e hashMTSAMSreg) {

vecAgentIDs = new Vector(0);
this.setAgentPlatformAddress0;
this.hashMTSAMSreg = hashMTSAMSreg;
this.addPeer(this.getAgentP1atformAddress this.objPeerAddress);

1

/* * This method returns an instance of the MainAddress
@return
*I

public MainAddress getMainAddress0 {
return this.objPeerAddress;

1

/** This method accept the LookUpFactory object and sets it to the Local
LookupFactory attribute

@param objLookupFactory
*I

public void setLookupFactory(LookupFactory objLoohpFactory) {
this.objLookupFactory = objLookupFactory;

I

/** This method returns an instance of LookUpFactory
@return
*I

public LookupFactory getLookupFactory() {
return this.objLookupFactory;

1

/** This Method is used to add an AgentId of the Service to the List.
@param AgentId
*/

public void addAgentID(Agent1d aID) {
this.vecAgentIDs.add(a1D);

1

\lame and rt /** This method accepts an Agent I
particular

Agent.
@param String strName

* @return AgentId

s the AgentId of that

Impact of Aspect Orientation on the Reliabiliy of Decentralked Multi-Agent System 92

Appendix D Codhg

*I

public AgentId getAgentID(String &Name) {

AgentId objAgentId = null;
for (int i = 0; i < vecAgentIDssizeO; i U) {

objAgentId = (AgentId) vecAgentlDs.get(i);
if (objAgentId.getAgentNameO.equals(strName))

return objAgentld;
1

return null;
1

/* *
This method accepts the Agent Platform Name and sets it.
@param String
*/

public void setAgentPlatformName(String strAgentPlatformName) {
this.strAgentPlatformName = strAgentPlatformName;

1

I* *
* This method returns an instance of the Shared registry Information
* @return
*I

public Hashtable getSharedRegistq0 {

return this.hashMTSAMSreg;

/* *
This method is used to set the Platform Address when a new machine
joins the platform.
*/

private void setAgentPlatformAddress0 {
String sc = null;
StringBuffer sb;
try {

char c[] = sc.toCharArray();
int point1 = 0;
int point2 = 0;
int point3 = 0;
int count = 0;
for (int i = 0; i < c.length; i++) {

if (c[i] = I.') {

Impact of Aspect Orientation an the Reliability of Decentralized 4Mti-Agent System 93

Appendir D Coding

count*,
if (count = 1)

point1 = i;
if (count = 2)

point2 = i;
if (count = 3) {

point3 = i;
break,

I
I

I

sb = new StringBuffer(sc);

} catch (Exception e) {
System.out.println(e.toString());

I
this.strAgentPlatformAddress = sc;

}

I**
This method is used to get the Agent Platform Name.
@return String
*I

public String getAgentPlatformName0 {

return strAgentPlatformName;
I

I* *
This method is used to get the Agent Platform Address.
@return String
*I

public String getAgentPlatformAddress0 {
return strAgentPlatformAddress;

I

This method accepts the Agent Platforms Description and sets it.
@param agentPlatformDescription
*I

Impact ofAspect Orientarion on the Reliability of Decentralized Multi-Agent System 94

public void setAgentPlatformDescription(String strAgentPlatformDescription) {
this.strAgentP1atformDescription = strAgentPlatfomDescription;

I* *
This method is used to get the Agent Platform's Description
@return String
*I

public String getAgentPlatformDescriptionO {
retum strAgentPlatformDescription;

1

I* *
This method accents a reference of MTS and sets it.
@param MTS o b j ~ ~ ~ ~ a n a ~ e r
*I

public void setMessageTransportSe~ice(MTSManager objMTSManager) {
if (this.objMTSManager = null)

this.objMTSManager = objMTSManager;
} /lend of method setMTS

public MTSManager getMessageTransportSe~ce0 {
return thkobjMTSManager;

1
. .

I* *
This method returns the name of Agent Management System.
@return String
*I

public synchronized String getAMS() {
return retumName("AMS" + ":" + this.getAgentPlatformAddress() + "@"

+ this.getAgentPlatformNarne0);

} /lend of method getAMSO

I**
This method returns the name of Visual Management Agent.
@return String
*I
public synchronized String getVMA0 (

return retumName("VMA" + ":" + this.getAgentPlatformAddress0 + "@
+ this.getAgentPlatformName0);

} Nend of method getVMA0

I* *
This method returns the name of the Directory Facilitator.
@return String
*I

public String getDFO {

Impact ofAspect Orientation on the Reliabiliry of Decentralized Multi-Agent Syslem 9 j

Appendix D Coding

return returnName("DF" + ":" + this.getAgentPlatformAddressO + "@" +
this.getAgentPlatformNameO);

} //end of method getDF0

I* *
This method accepts the fiilly qualified name of the Agent and
ret-s the name of only the agent.
@param strAgentName
@return
*/

private String returnName(String strAgentName) {
AgentId objAgentID = null;

for (int i = 0; i < vecAgentIDs.size0; i++) {
obj AgentID = (AgentId) vecAgentIDs.get(i);

if (objAgentID.getAgentName().equals(strAgentName))
return objAgentID.getAgentNarne();

1 //end of for loop
//in the future code the arguments must be AgentId object instead of the string name

return null;
} //end of method returnName0

I* * . .

This method accepts an Agent Name and returns a reference of Communication
Module

associated with that Agent Name.
@param String strageit~ame
@return CommunicationModule -
*I

public CommunicationModule createCommunicatio~Module(String
strAgentName, ServiceAgent objAgent) {

return new CommunicationModule(objMTSManager, strAgentName,
obj Agent);

) //end of method createCommunicationModule0

/* *
This method returns a reference of Send command
@return
*/

public Sendcommand createsendcommando {
return new SendCommand(objMTSManager);

} //end of method createSendCommand0

/* *
Add peer entry in hash~eergsolvers
*I

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 96

Appendix D Coding

public ActionStatus addPeer(String strPeerMacID, MainAddress
objPeerMainAddress) {

if ((strPeerMacID != null) && (objPeerMainAddress != null)) {
hashPeerResolvers.put(strPeerMacID, objPeerMainAddress);
objActionStatus.setActionStatus("D0NE");

) else
objActionStatus.setActionStatus("NOTD0NE");

return objActionStatus;
1

I* *
get peer entry from hashPeerResolvers
*I

public MainAddress getPeer(String strPeerMacID) {
if (strPeerMacID != null) {

return (MainAddress) hashPeerResolvers.get(strPeerMac1D);

) else
return null;

I

I* *
Remove Peer from Resolver list.
@param peerMacID
@return
*/

public ActionStatus removePeer(String strPeerMacID) {
if (strPeerMacD != null) {

if @ashPeerResolvers.contains(strPeerMacID)) {
hashPeerResolvers.remove(strPeerMacID);
objActionStatus.setActionStatus("REM0VED");
this.objLookupFactory.removePeer(strPeerMac1D);

} else
objActionStatus.setActionStatus("DOESNOTEX1ST");

) else
~. objActionStatus.setActionStatus("NULLNAME");

return objActionStatus;
1

I**
get complete clone of PeerResolver
*I i public Hashtable getPeerResolverO {

/* *
Hashtable peersclone =new Hashtableo;
peersclone = (Hashtable) hashPeerResolvers.clone0;
return peersclone;
*/

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 97

Appendir D Coding

return hashPeerResolvers;
1
public void setPeerResolver(Hashtable hashPeerResolvers) {

System.out.println("RootService " + hashPeerResolvers.size0);
this.hashPeerResolvers = hashPeerResolvers;
System.out.print~n("RootSewice Peer" + this.hashPeerResolvers.size0);
1lthis.hashPeerResolvers = (Hashtable) ht.clone0;

I* *
This method accepts a machine Id and adds it to the ArrayList
@param macId
*I

public void addMachineList(String macId) {
alMachineList.add(mac1d);

1

I* *
This method is used to get the machine list of the platform
@return
*I

public ArrayList getMachineList0 {
return this.alMachineList;

1

This method accepts an attribute machineList of type ArrayList and
sets it to the local machinelist.
@param alMachineList
*I

public void setMachineList(ArrayList alMachineList) {
this.alMachineList = alMachineList;

I

I* *
Method for Setting the ACC Sewer Address
*I

public void setIIOPAddress(String[] strIIOP&ddress) {
this.strIIOPAddress = strIIOPAddress;

1

I**
Method for getting the ACC Sewer Address
@param strIIOPAddress
*I

public String[] getIIOPAddress0 {
retum strIIOPAddress;

1

l/llllMl//llllllll//lll//lllIIllIIlllIIIlI~ Mobility ////l//////l//l////l/lllIllIIIIllllIlIIIlIlIIIIIlIIlllIIIII

Impact ofAspect Orientation on the Reliability of Decentralized Multi-Agent System 98

Aooendir D Coding

public void setMigrationManager(Migrati0nManager migrationblanagerObj) {
this.MigrationManagerObj = migrationManagerObj;

1
public MigrationManager getMigrationManager0 {

return this.MigrationManagerObj;
1

public void setClassLoader(SageClassLoadcr objSageClassLoader) {
this.objClassLoader = objSageClassLoader;

} //end of class Rootservice

This is class is also part of Agent Management concern. This is the main Class of Agent

Management System, It contains the methods to supervise the agent Platform. More over

this is also responsible of taking actions to control the Life Cycle of the agents.

package ams;

import java.rmi.RemoteException;
import java.util.Enurneration;
import java.util.Hashtable;

import acl.ACLMessage;
import acl.ACLPerformatives;
import acLCFAggregate;
import acl.CFContent;
import acl.CFPredicate;
import acl.CFPrimitive;
import acl.ontology.BasicOntology; 4

import acl.ontology.management.Management0ntology;
import ac1.sl.codec.SLTokenizer;
import ams.1ifecycle.MessageTransceiver;
import ams.peer.ActionStatus;
import ams.peer.ClientLookup;
import ams.peer.PeerAMS;
import ams.peer.PeerServerImp1;
import ams.probe.dynarnic.DynamicPo1icy;

import df.DirectoryFacilitator;

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 00

Appendir D Coding

public class AgentDirectoryService extends ServiceAgent implements Services {

AgentLifeCycleManager objManageLifeCycle;
private String strName;
private String strDesc = null;
private String strType = null;
static boolean boollnstance = false;

static private String strToken;

II/N/NIIII CONTENTS OF ACL MESSAGEl/////////////////
String strFileName;
String strAgenWame;
String strTransportAddressesn;
String strlocator[];
String strDescription;
byte bytestate = AgentStates.ACm,

* This will contain the list of Agent Id's of the agents currently registered on the platform
*I

PeerSewerImpl AMSpeerSever;
private String strOwnerShip; //Owner of the agent platform
private String strStateAp; //State of the platform
private Rootservice objRootSe~ce;

I* *
* a shared registry of AMS and MTS
* AMS will k e e ~ AID and Aeents References
* in the ~ ~ e n t ~ k ~ i s t r ~ class i d put it in this hashtable shared among AMS and

MTS
*I

private AMSMachineInformation objMachineInformation;
private Hashtable hashAgentRef;
private ClientLookup objclientlookup;
I * * - . - - - - - -

* Constructor of AgentDirectoryService Class , it accepts an AgntId and
* sets it . It also activates the Service.
* @param aID
* @throws SingletonException
*I

I**
*This method is used to activate the Service. Its implemetation depends
*entirely upon the nature of the service and how it is going to be used.
*/

public void activate0 {
//overloaded method

Impact oJAspect Orientation on the Reliability oJDecen~ralized Multi-Agent System 100

Appendir D Coding

I* *
*This method accepts an Agent Id of an agent and registers it with AMS
*It returns a String indicating failure or success
* @param aTD
* @return
*I

private String registerAgent(Agent1d aID) {
/**the assumption is that agent is already created on the platform
/land now it wants to register with the platform
// But we will also need the reference of the Agent.

/**for next phase Resolvers behavior *I
I** Where an agent physically will exist on another *****I
I** HAP, but want to register with this platform, to make*/
/** this platform as Resolver*/
return null;

1

I**
This is a utility method which converts an arraylist to a string array
*I

public void run0 {
try { ..

while (true) {
I/ Waiting for Payload, upto that time in wait state.
ACLMessage obj ACLMessage = this.blockingReceive();
if (obj ACLMessage != null) {
System.out.println("Agent directory Service

..
objMessageTransceiver.AnalyzeMessage(objACLMessage);

1
I

) catch (Exception e) {
e.printStackTrace0;

//@TODO NEW Change mo6lity not understandable empty method
public void RebindPeerAMSO {

/**
This method accepts Peer component name , Peer Machine name , ClientLookup

Object. It then instantiates a new

Impact of Aspect Orienralion on the ReIiabiIify of DecenfraIized Multi-Agent System I O I

Appendir D Coding

Object of CheckPeer class, which is used to check the peer machine.
@param strPeerComponent
@param strMessageTransceiver
@param objClientLookup
*I

public void ProbeMachine(String strPeerComponent, S&ng
strMessageTransceiver, ClientLookup objClientLookup) {

CheckPeer checkpeer = new CheckPeerO;
checkPeer.CheckPeerMachine(strPeerComponent, strMessageTransceiver,

objClientLookup);
NThis method will be called in case of a fault in peer machine

1

I* *
This method accepts an Agent ID and de registers that agent from Agent

Directoryse~ice
@param aID
@return
*/

private String deRegisterAgent(Agent1d objAgentId) {
//Check for the reference of the Agent ID against the reference
//get the reference and delete the AgentId and its reference from the
Nlist and also stop the Agent
/I checking if the AgentID is valid
if (hashAgentRef.get(objAgentId.getAgentName()) = null) { .

.

. return "No Agent found with the corresponding AgentID";

}
hashAgentRef.remove(obj AgentId.getAgentName0);
return "Agent deregistered Successfully";

/* *
This method accepts and Agent ID and modifies that agents description
@param aID

@return string
*I

private String modifyAgentDescription(AgentId.objAgent1d) (

/I First of all get the AgentID object from hash table
AgentRegistry objAgentReg = (AgentRegistry)

hashAgentRef.get(objAgentId.getAgentN~0);
if (objAgentReg = null)

return " No Match found for AgentID";
else (

obj AgentRegsetAgentI d(objAgent1d); ,
hashAgentRef.put(objAgent1d.getAgentName obj AgentReg);

1
return "Description Modified";

1

Impact ofAspect Orienfation on the Reliabili~y of Decentralized Multi-Agent System rn7

Appendir D Coding

I* *
This method accepts the Agent Id and deletes the corresponding agent

@param aID
@returns string
*/

private String deleteAgent(AgentId objAgentId) (
//Check for the reference of the Agent ID against the supplied reference
//get the reference and delete the AgentId and its reference from the
//list and also stop the Agent
String strAgentName = null;
strAgentName =objAgentId.getAgentNameO;
ServiceAgent objServiceAgent = null;

if (strAgentName = null) {
return "Agent Not Found in the list";

1

if (hashAgentReEget(objAgent1d.getAgentNae) != null) {

objManageLifeCycle.teminateAgent(objAgent1d.geagenNmeO);
hashAgentRef.remove(objAgentId.getAgentName());
return "Agent Successfully deleted";

} else
return "Agent Could not be deleted";

}

I* *
This method will accept the Agent id and %ill search the agents description

@param aID
@return
*I

public AgentId searchAgentDescription(String strAgentName) throws
RemoteException {

Utility utility = new Utility@
String strMachineId = utility.getMachineName(strAgentName);

I Enumeration enum = objRootService.getPeerResolverO.keys0;
Actionstatus as;
AgentId objAgentId = null; \

PeerAMS peerams = null;
if (strMachineId.equaIs(objRootService.gegen1atfoddress)) {

AgentRegistry agentRegObj = (AgentRegistry)
hashAgentRef.get(strAgentName);

if (agentRegObj .getAgentIdO = null)
System.out.println("null");

else {

~

Impact of Aspect Orientation on the Reliabiliry of Decentralized hfulti-Agent System

Append*. D Coding

1
} else {

enum = objRootSe~ice.getPeerResolverO.keys0;

boolean boolKeys =

objRootService.getPeerResolve~contaimKey(strMac~ne1d);
if (o b j R o o t S e r v i c e . g e t P e e r R e s o l v e r ~ . c o n ~ n e I d)) {

objAgentId = (AgentId)
o b j R o o t S e r v i c e . g e t L o o k u p F a c t o r y ~ . g e t P e e r ~ g
entNarne);

1 else {
1

1
return objAgentId;

1

I**
This method will return the Agent Id of the Agent Management System

@returns Agent ID
*/

public AgentId getAgentId0 {
return this.objAgentId;

1

This method will accept the Agents Name and will return the Agent ID.
If no agent is found this method will return null.
@param strAgentName
@return
*/

private AgentId getAgentId(String strAgentNarne) {
AgentRegistry obj AgentReg = (AgentRegistry)

hashAgentRef.get(strAgentName);

if (objAgentReg != null) {
return objAgentReg.getAgentId0;

1
return null;

1

I* *
This method will accept the Agent Id and will return its description
@param aID
@return
*/

public AgentId getDescription(String strAgentName) {
11 check if local or remote ...

Impact ofAspect Orientation on the Reliability of Decentralized Multi-Agent System 1 04

Appendu D Coding

AgentRegistry objAgentReg = (AgentRegistry)
hashAgentRef.get(strAgentName);

if (objAgentReg != null)
return objAgentReg.getAgentId0;

retum null;

I .

I* *
This method will accept the Agent Id and a description of that agent.
It will storelreplace the description in the Agent Id. If no Agent is found
with the given Agent Id , it will return an error (STILL TO BE DECIDED)
@param strDescription
@param .
@re-
*/

private boolean setDescription(String strDescription, AgentId obj AgentId) {
AgentRegistry objAgentReg = (AgentRegistry)

if (objAgentReg = null) {
return false:

I
objAgentReg.getAgentId~.setDescription(stdhu$h);
hashAgentRef.put(objAgentReg.getAgentIdO.getAgenName0,

objAgentReg);
return true;

1

I* *
This method returns the name of the Service
@return
*/
public String getServiceName0 {

return this.strName;
I

This method sets the name of the service 9 t h the parameter passed by the
name
@param name
*I

public void setServiceName(String strName) {
this.strName = strName;

1

/* *
This method is used to activate the service and register with the platform
This method also creates the VMA and resgisters it a s well.

Impact ofAspect Oriewation on the Reliability of Decentralized Multi-Agent System I05

Appendir D Coding

*I
private void activate(Agent1d objAgentId) {

try {
objManageLifeCycle = new

AgentLifeCycleManager(this.hashAgentRef);
AgentRegistry objAgentReg = (AgentRegistry)

hashAgent~eEget(thi~.obj~~ent1d.&tA~entName0);
objAgentReg.setAgentId(objAgent1d);
objAgentReg.setOwner("Ownern);
hashAgentRef.put(this.objAgentId.getAgentName0,

obj AgentReg);

AgentId vmaID = new AgentId("VMAW, strTransportAddresses,
strlocator, "description of VMA", AgentStates.ACTIVE);

System.out.println("in activate method");
vmaID.setAgentName(vmaID.getAgentNarne() + ":" +

objRootSe~ce.getAgentPlatformAddressO + "@" +
objRootService.getAgentPlatformName0);

AgentId dfl D = new AgentId("DFn, strTransportAddresses,
strlocator, "description of VMA", AgentStates.ACTIVE);

dflD.setAgentName(dfID.getAgentName0 + ":" +
objRootSe~ice.getAgentPlatformAddressO + "@" +
objRootSe~ice.getAgentPlatformName0);

objAgentReg = (AgentRegistry)
hashAgentRef.get(vmaID.getAgentName0); - ---- . -.

objAgentReg.setOwner("0wnern);
objAgentReg.setAgentId(vmaID);
objAgentReg.setSe~iceAgent((ServiceAgent) vmaGui);

objAgentReg = (AgentRegistry)
hashAgentRef.get(dflD.getAgentName0);

objAgentReg.setAgentId(df1D);
objAgentReg.setOwner("Ownern);
objAgentReg.setSe~iceAgent((Se~iceAgent) df); .
System.out.println("In activate methid of VMA AND DF");

ACLMessage objACLMessage = new ACLMessage(ACLPerformatives.INFORh4);

Impact of Aspect Orientation on the Reliability of DecenbaluedMuNi-Agent System 106

Appendix D Coding

CFPredicate objRegisteredAgents = new
CFPredicate(ManagementOntology.REGISTERES);

~ F ~ ~ g e ~ a t e registeredAgents = new
CFAggregate(Basic0ntology.SEQUENCE);

)));
objRegisteredAgents.set(ManagementOntology.AGTNS, registereagents);

CFContent content = (CFContent) objRegisteredAgents;
SLTokenizer slt = new SLTokenizer(ManagernentOntology.getInstance());

ohjACLMessage.setContent(slt.encode(content));

this.sendMessage(objACLMessage);
DynamicPolicy dymnicPolicy = new DynamicPolicy(this);
this.start0;

} catch (Exception e) {
e.printStackTrace0;

1
1

I* *
This method is used to deactivate the service
*I

public void deActivate0 {
1
I

public static String ge tF iTok0 {
return strToken;

1
. .~

I* *
This method accepts Senice Description and is used to set it .
@param String
*I

public String getServiceDesc0 {
return this.strDesc;

1

I* *
This method accepts the description and sets the Service Description.
@param desc

Impact of Aspect Orientation - on the Reliability ofDecentralized Multi-Agent System 107

Appendix D Coding

* I
public void setServiceDesc(String strDesc) {

this.strDesc = strDesc;
1
I* *
This method returns the Service Type.
@return

* I
public Sling getServiceType0 {

return this.strType;
1
I* *
This method accepts the Service type and sets it .
@param *Type

*I
public void setServiceType(String strType) {

this.strType = strType;

This method returns the shared Hashtable reference
@return
*/

publicHashtable getHashAgentRef0 {
return this.hashAgentRef; . '

1

I* *
This method returns the current instance of RootService
@return

* /
public RootService getRootService0 {

return this.objRootService;
I
AMSMessageModel arnsMessageModel;

1

This is class is also part of Agent Management concern. Service Agent is basic class as all

agent classes extends from it.

package am;
import mts.reception.CommunicationModule;
import mts.transmission.SendCommand;
import acLACLMessage;

Impact of Aspect Orientation on the Reliability of Decentralized Multi-Agent System 108

public class SewiceAgent extends Thread implements Runnable, Cloneable
<
public Object clone0 throws CloneNotSupportedException
{
return super.clone0;
1

I** Used to store CommunicationModule.reference , which is required to
recieve Messages across platform. *I

private CommunicationModule commModule;

I** Used to store SendCommand reference, which is used to Send Messages
across Platform. *I

private SendCommand sendcommand;

I** Used to store the reference of the AgentId , which is unique across the
platform. *I
protected AgentId objAgentld;

public boolean boolWaitState;

public SeniceAgentO
{

j* *
Constructor for ServiceAgent Class , It accepts a AgentId reference and sets it to its own

AgentId. It gets the CommunicationModule and SendCommand reference and sets them
so that the Agent can send and recieve messages.

@param agentId
*I

public SewiceAgent(AgentId objAgentId)

commModule =

RSFactory.createCommunicationModule(objAgend.gegtNe , this);
sendcommand = RSFactory.createSendCommand0;: - - .- -

-

1
I* *

Sends the message to the Message Transport Service
so that it can be sent towards destination
@param payload
*I

public void sendMessage(ACLMessage message)
{

- -

Impact ofAspect Orientation on the Reliability of Decentralized Multi-Agent System

sendCommand.execute(message);

j* *
Returns the payload present in the queue of the Agent.
It returns null if there is no message in the queue
@return Payload
*/

protected ACLMessage getblessage0
{

return commModule.getMessage0;
1

public ACLMessage blockingReceive0
{

return getblessage();

}//end of method blockingReceive

public AgentId getAgentId0
{
return this.objAgentId;
1
public void Resume(){
1
public void tun0 {
1

I

D.8 KnowledgeDistributionAspect
- -

This aspect is associated with the classes of Peer Management concern, Knowledge Base

concern, and Agent Management concern. It captures the joinpoints of Rootservice

AgentDirectorySe~ice and LookupFactory classes from the whole system.

package a m ;

import java.util.ArrayList;
import java.util.Vector;

Impact of Aspect Orientation on the Reliabili~ of Decetdralized Multi-Agent System I10

import javautil.Enumeration;
import javautiLHashtable;
import java.io.Serializable;

aspect KnowledgeDistrib~tionAs~ect {

I* * setActionStatus method*/
. pointcut setStatus0:call (public void - -

ActionSatus.setActionStatus(String))%&!w; .

I* * getLookupFactory method *I
pointcut lookupo: call@ublic
RootSe~ce.getLookupFactoryO)&&!within~0~1edgeDistributionAspect);

I** getPeerResolver method *I
pointcut PeerRO: call(pub1ic
Hashtable.getPeerResolve~)&&!within(KnowledgeDistributionAspect);

around 0 : PeerRO {)

I** getpeercache method *I
pointcut PeerCO: call@ublic
Hashtable.getPeerCach~)&&!within(KnowledgeDistributionAspect);

Hashtable around 0 : PeerCO { 1

I** getRootService method *I
pointcut RSO: call(public RootService
AgentDirectoryService.getRootService0)&&!~~(~owledgeDistnbutionAspect~,

I** aspect ends here*/

This aspect is associated with the classes of Peer Management concern, Knowledge Base

concern, and Agent Management concern. It captures the joinpoints of RootService and

LookupFactory classes eom the whole system.

Impact ofAspect Orientalion on the Reliability ofDecenfralized Multi-Agent System 111

Appendix D Coding

package ams;
import ams.peer.ActionStatus;
import ams.probe.dynamic;
import ams.peer.lookupFactory;

import java.util.AnayList;
import java.util.Vector;
import javautil.Enumeration;
import java.util.Hashtable;
import javaio.Serializable;

aspect KnowledgeConsistencyAspect {

String around(): getstatus0 {}

/** getAgentPlatfoxmName and Address methods */
pointcut getAPO: call(pub1ic String
getAgentPlatfom*0)&&!within(KnowledgeConsistencyAspect);

I** get~eerAh4~ method */
pointcut PeerAMSO: call(public PeerAMS
L~kupFactory.getPeerAMS(String))&&!within(Kno~IedgeComi~ten~yA~pe~t);

around 0 : PeerAMSO {)

I** aspect ends here*/

1
D.10 ExceptionAspect

-.
This aspect is associated with the classes of Peer Management concem;Knowledge Based

concern, and Agent Management concern. It captures joinpoints of exception handling

fiom all the 25 classes of the sytem.

aspect ExceptionAspect {
after 0 throwing (Throwable ex) : call (* *.*(..)) && !within(ExceptionAspect)

ex.p~tStackTrace(System.err);
1

/** aspect ends here*/
}

Impad ofAspea Orientation on the Reliability of Decenhalized Multi-Agent System

