NOVEL ADAPTIVE STRATEGIES FOR NON-
LINEAR SYSTEM IDENTIFICATION

Naveed Ishtiaq Chaudhary
60-FET/PHDEE/F13

Submitted in partial fulfillment of the requirements for the PhD degree in Electronic
Engineering at the Department of Electrical Engineering
Faculty of Engineering and Technology

International Islamic University,

Islamabad

Supervisor

Dr. Syed Zubair May, 2018




Accession M¢

9.
3.
<8

THoobS £ e

A s
j{a["/.yg Sfre /ac’ﬁa k
eutial ¢ ”‘f"ﬂ'w

Hown limean o] mm(/

///Mz AN D



Copyright © 2018 by Naveed Ishtiaq Chaudhary

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without the

permission from the author.



1

iii

DEDICATED TO

My Teachers,
Parents,
Wife, Kids,

and Sisters



1.,

CERTIFICATE OF APPROVAL

v

Title of Thesis: Novel Adaptive Strategies for Non-linear System Identification

Name of Student: Naveed Ishtiaq Chaudhary
Registration No: 60-FET/PHDEE/F13

Accepted by the Department of Electrical Engineering, Faculty of Engineering and

Technology, International Islamic University, Islamabad, in partial fulfillment of the

requirements for the Doctor of Philosophy degree in Electronic Engineering.

Viva voce committee;

Dr. Suheel Abdullah Malik (Chairman)
Associate Professor

Department of Electrical Engineering
International Islamic University, Islamabad.

Prof. Dr. Ijaz Mansoor Qureshi (External Examiner)
Department of Electrical Engineering
Air University, Islamabad.

Dr. Aamer Saleem Choudhry (External Examiner)
Associate Professor

Hamdard Institute of Engineering & Technology
Hamdard University, Islamabad.

Prof. Dr. Muhammad Amir (Internal Examiner)
Dean, Faculty of Engineering & Technology
International Islamic University, Islamabad.

Dr. Syed Zubair (Supervisor)

Assistant Professor

Department of Electrical Engineering
International Islamic University, Islamabad

May 3, 2018




ABSTRACT

The Hammerstein model in which a static nonlinear function is followed by a linear
dynamic block has been used extensively to model a variety of nonlinear problems. The
traditional algorithms for Hammerstein system identification are based on stochastic
gradient and least squares methods. The present work may consider to be an advancement
in designing an accurate, alternate, and convergent computing mechanism based on deep
rooted fractional calculus concepts for Hammerstein system identification. Fractional
calculus is a branch of mathematics that deals with non-integer order derivatives and
integrals. The concepts of fractional order calculus are exploited to develop fractional least
mean square (FLMS), modified FLMS-1 and 2, normalized FLMS, sliding window based
FLMS and momentum FLMS algorithms. The computational cost of FLMS is reduced in
MFLMS-1 and 2, convergence made smoother in NFLMS, while SW-FLMS and mFLMS
increases the convergence speed of standard FLMS by effectively utilizing the previous
information. The correctness of the designed fractional adaptive algorithms is established
by efficiently optimizing the parameters of different nonlinear system identification models
based on Hammerstein structure. The effective application of proposed momentum FLMS
for accurate parameter estimation of electrically stimulated muscle model, as well as,
identification of power signals with unknown amplitude and phase further establishes the
worth and efficacy of the method. Besides the accurate identification, the other advantages
of proposed fractional adaptive strategies include, availability of more controlling
parameters, wider applicability domain and flexibility in the design procedure based on

fractional integrals or derivatives
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Chapter 1.

Introduction

In this chapter, significance of nonlinear system identification problem in signal
processing and control is briefly overviewed along with the need of exploring and
exploiting strong mathematical concepts of fractional calculus in developing an alternate,
accurate, reliable, and robust computing mechanism. The main contributions of the study
are presented in terms of designing novel adaptive strategies for parameter estimation of
nonlinear systems, as well as, their applications to muscle modeling and power signal

estimation.
1.1  Background

System identification or parameter estimation deals with learning internal details that
govern overall characteristics of a system. Most practical systems exhibit nonlinear
characteristics outside a limited linear range and these characteristics are frequently
encountered in the form of hysteresis, limit cycle, harmonic distortion, bifurcation and
chaos [1], [2] . Nonlinear dynamic processes are considered as inherently complex and can
be approximated by nonlinear block oriented models such as Wiener and Hammerstein
models. In Wiener models, a linear dynamic block is followed by a static nonlinear

function, while a static nonlinear function is followed by a linear dynamic block for



Hammerstein models [3]. Applications of Hammerstein models have been reported in
diverse fields such as, identification of nonlinear biological systems [4], nonlinear model
predictive control [5], modelling and identification of heat processes [6], vibrating devices
[7], fuel control of gas turbine engine [8], emulation of electro-thermal models for power

electronic devices [9], wind speed prediction [10] and peak load forecasting [11].

1.2 Research Problem

Many algorithms are used for identification purpose that adaptively learn parameters
of Hammerstein nonlinear systems. For instance, least squares and stochastic gradient
based algorithms using multi-innovation theory [12], [13], data filtering approach [14],
[15], hierarchical principle [16], [17] and parameter separation idea [18]. The increasing
complexity of these systems require continuous search for the development of alternate
algorithms that could identify the system in a more accurate and reliable way. The
commonly used algorithms for Hammerstein systems are based on first order gradient.
Recently, the concepts of fractional calculus are applied in different areas of engineering,
science and technology to achieve better results [19]-[23]. Therefore, the present study
aims to investigate in fractional order adaptive algorithms by exploiting the strong
mathematical foundations of fractional calculus for Hammerstein nonlinear system
identification and their application to practical parameter estimation problems of power

signal modeling.



1.3  Philosophy of the Work

The exploitation of fractional calculus concepts provides better performance for
solving different engineering problems in comparison with traditional integer order
calculus. Thus, developing fractional gradient based adaptive algorithms for nonlinear

system identification may give more accurate and robust performance.

1.4  Research Hypothesis

The research hypotheses formulated for the study are:

e The addition of fractional calculus concepts in standard adaptive strategies may

results in faster convergence and better estimation accuracy.

e The fractional calculus based novel adaptive methods may provide an alternate,
accurate, reliable and robust computing mechanism for parameter estimation of

nonlinear systems.

1.5 Research Methodology

The standard adaptive methods for system identification such as, least mean squares
algorithm is based on steepest descent approach and uses the first order gradient to estimate
the unknown parameters. While the fractional adaptive algorithms use the concept of

fractional order gradient in their optimization mechanism.

e The fractional least mean squares (FLMS) adaptive algorithm is proposed for

parameter estimation of Hammerstein systems. FLMS algorithm exploits the



strength of both first and fractional order gradients to optimize the system
parameters.
e Modified FLMS-1 and 2 methods are proposed to reduce the computational cost of
standard FLMS without compromising the accuracy.
¢ Normalized FLMS is proposed for automatic adjustment of the step size parameter.
e Sliding window based FLMS algorithm is developed by using finite length of recent
data instead of current data to increase the rate of convergence of standard FLMS.
e Momentum FLMS is designed by incorporating the concept of momentum term to

increase the convergence speed and avoid trapping in local minima.

1.6 Contribution of the Research

Our research contributions are in two directions.

1. Design of novel fractional adaptive algorithms based on strong mathematical
foundations of fractional calculus for nonlinear system identification.
e Fractional Least Mean Squares (FLMS)
¢ Modified FLMS-1
¢ Modified FLMS-2
¢ Normalized FLMS
¢ Sliding window based FLMS
e  Momentum FLMS
2. Applications of proposed fractional algorithms to parameter estimation of different

nonlinear systems.



e The designed fractional adaptive techniques are applied on Hammerstein

models for different noise and fractional order variations.

e The fractional adaptive algorithms are applied for identification of electrically

stimulated muscle model required for rehabilitation of paralyzed muscles.

e The proposed fractional adaptive strategies are also employed for parameter

estimation of power signals with unknown amplitude and phase.

1.7  Research Scope

The present study utilizes the strength of fractional calculus for developing adaptive
algorithms to estimate the parameters of nonlinear systems based on block oriented
Hammerstein structure. This research does not cover the identification of other block

oriented structures such as Wiener and Hammerstein-Wiener models.

1.8  Thesis Organization

The organization of the thesis is as follows; the introduction, problem statement,
scope of the research and contribution of the dissertation are given in Chapter 1. Chapter 2
provides the brief description of nonlinear system identification problem based on
Hammerstein structure. The proposed fractional adaptive strategies for parameter
estimation of Hammerstein nonlinear systems are introduced in Chapter 3. The results of
the simulations for different case studies of Hammerstein systems are given in Chapter 4

along with necessary discussion. Application of the proposed methodology for parameter



estimation of the power signals is presented in Chapter 5. We conclude our finding in the

last chapter 6 along with few future research directions in this domain.



Chapter 2.

Critical Literature Review

2.1 Introduction

This chapter presents necessary details about nonlinear systems based on block
oriented structures (BOS). The applications of BOS to model variety of nonlinear
problems arising in engineering, science and technology are given in this chapter.
Moreover, the existing methods for parameter estimation of BOS are presented here.
At the end of this chapter, identification model for parameter estimation of BOS based
on Hammerstein control autoregressive (HCAR) and HCAR moving average
(HCARMA) systems are presented before going to introduce novel adaptive strategies

in the next chapter.

2.2 Nonlinear System Identification

Nonlinear systems are more complex and hard to analyze because many basic
questions are difficult to answer in nonlinear paradigm. For example, linear
superposition theorem is no longer available, solution existence and uniqueness are not
sure and numerical approximations are not always adequately accurate in nonlinear
regime. Nonlinearity is ubiquitous in physical phenomena. Numerous physical
processes like fluid mechanics, gas dynamics, ecology, plasma physics, relativity,
combustion, chemical reactions, elasticity and biomechanics etc. are described by

nonlinear equations [24]. In general, most real-life systems are nonlinear in nature and



their parameter estimation/identification is more challenging due to inherent stiffness,
complex system representation and applications to real time environment. The
graphical representation of general nonlinear system identification problem is given in

Fig. 2.1
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Fig. 2.1 Block diagram of nonlinear system identification

2.2.1 Block Oriented Models

Nonlinear processes can be effectively modelled through BOS that are composed
of a concatenation of static nonlinear blocks and linear time invariant (LTI) dynamic
subsystems. The linear subsystems are normally parametric (transfer functions, state
space representations, input/output models), whereas the nonlinear blocks can be with

or without memory [18].

The BOS are categorized into four major types; Hammerstein, Wiener,
Hammerstein-Wiener and Weiner-Hammerstein. Hammerstein type, a class of input
nonlinear systems consisting of a static nonlinear block followed by a linear dynamic
subsystem. Wiener type, a class of output nonlinear systems consisting of linear block

preceding some static nonlinear block. Hammerstein-Wiener model, a class of input-



output nonlinear systems consisting of linear block sandwiched by two static nonlinear
blocks and Wiener-Hammerstein model which consists of a static nonlinearity
sandwiched between two dynamic linear elements. In this dissertation, we shall restrict
our study to Hammerstein model. Block diagram of Hammerstein structure is given in

Fig. 2.2

() %) o

--+~ « « Nonlinear -~ - Linear

Hammerstein ;
Structure :

Fig. 2.2 Block diagram of Hammerstein structure

2.2.2 Applications of Hammerstein Model

The BOS based Hammerstein systems have been used effectively to model
different nonlinear problems arising in a spectrum of fields. Few potential applications
are biological processes [4], model predictive control [25], wind speed forecasting [10],
peak load forecasting [11], gas turbines [8], chemical processes [26]{27], turntable
servo system [28], power electronic devices [9], mechanical systems [29],
physiological processes [30], vibrating devices [7], software systems [31] and
electrically stimulated muscle modeling [32]. These illustrative applications of
Hammerstein model motivate to investigate and develop alternate, accurate, robust and

reliable computing platforms for its identification.



10

2.3 Hammerstein Control Autoregressive Model

In this section, identification model for Hammerstein control autoregressive
systems (HCAR) is presented. In HCAR structure, normally the nonlinear block is
given through polynomial and linear dynamics are represented with exogenous noise

autoregressive model. The block diagram of the HCAR model is given in Fig. 2.3

, (1) 1
\\\\\ %
z

0 ), ERL0)

3
H
)

. Hammerstein Control Autoregressive Model f

Fig. 2.3 Hammerstein Control Autoregressive Model

The governing mathematical relation for HCAR model is written as [33], [34]:

A(2)y(t)= B(2)x(r)+ 9(r), (2.1)

here y(f) represents the output of system, 9(¢) is the disturbance noise, x(z) is defined

as a nonlinear function of m known basis (f7, 2, , fu) of the system input x(f):
#(0)= fx@]= e il O]+ o £ [x@)+ -+ ¢, £, [x()]. 22)

A(z) and B(z) are predefined polynomials and their expression in term of unit backward

shift operator z=* [z71y(t) = y(t — 1)], are given as:
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A(z)z 1+az" +a,z” +---+anaz'"“, (2.3)

B(z)=blz_1 +bz” +etb, 27", (24)

where a=[a1,a2,---,ana]T and b=[b,b,, ", ,,] € R"are the constant

coefficient vectors. Rearranging equation (2.1) as:
W0 =[1— AG)0) + BE)EE)+ 90). @5

Using (2.2) to (2.4) in (2.5) then

m

——Zayt -+ 3 S he, £, [+ -i)l+ 90). 2.6)

=1 y=1

Expanding (2.6) one gets

= —lnzaa,y(t - i)+ b, f, [x(t — l)]+ be,f, [x(t - 1)]+ -+ be, f, [x(t _ 1)]

e Sl Db flle- 2 b £l D e O
+b, ¢ f[x(t = n,)]+ b, . folx(t - n, )]+ + b, ¢, £, [t = 1,)]+ 9()
Equation (2.7) in vector form is written as:
y(@)=w" )8+ (), 2.8)
where the parameter vector 8 and information vector w(t) are defined as:
0=[a",bc" by’ -, "] e R"™", (2.9)

w(t)=[w, W] O, @)y O e R, (2.10)
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wo(e)= [yt 1)~ pe =2) = y(e=n, ) € R™, 2.11)

v, (0)={f, [ -0 £, Ixle =20}, £ [t =, Wers j=12..m @12
Equation (2.8) represents the generic identification model for HCAR systems.
2.4 Hammerstein Control Autoregressive Moving Average Model

In this section, the identification model for Hammerstein control autoregressive
moving average (HCARMA) model is presented. In HCARMA structure, normally the
nonlinear block is given through polynomial and linear dynamics are represented with
exogenous noise autoregressive moving average model. The block diagram of

HCARMA structure is given in Fig. 2.4

A 1C)

v 7 A((z)
X WO 0 R0
SRR FQ) e o

Hammerstein Control Autoregressive
Moving Average Model

Fig. 2.4 Hammerstein Control Autoregressive Moving Average Model

The governing mathematical relation for HCARMA model is written as [35], [36]:

Az)y(e)=B)x(0)+ DI2)(). @.13)
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here y(¢) represents the output of system, S(t) is the disturbance noise, i(t) is defined

as a nonlinear function of m known basis (fi 2, , f) of the system input x(¢) and given
in Eq. (2.2). 4(z) and B(z) are given in Eq. (2.3) and (2.4) respectively, while D(2) is

defined as:
D(z)=1+a'lz_l +d,z? +eetd, 27 (2.14)
d

Rearranging equation (2.13) as:

W)=t - A2)]y(e)+ B(z)x(e)+ D(2)3(¢). 2.15)

Using (2.2) to (2.4) and (2.14) in (2.15), then

(o) = _z Wi-i)+ >3 be, £ [xle —i)]+§:dl.9(t _)+80).  @16)

1=l y=1

The main equation for identification model of HCARMA system is same as HCAR
model that is given in Eq. 2.8, except that parameter vector and information vector in

case of HCARMA model are respectively defined as:

0 — [aT,bICT,bZCT,"',bnbcT,dT]T e Rna+nbm+nd ) (217)
w(t)=[wi (O] .5 @), Wl O, O e R™™", (2.18)
wo ()= [ —1)— 3 =2)-. =yt —n,)] e R™, (2.19)

wj(t)= {f/ [x(t—l)],fj[x(t—Z)l,---,fj [x(t—nb)]}T eER™,j=1,2..m (2.20)
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v, (0)=[9(—1) 8 ~2)-, 8=, )] € R™ .21

2.5  Adaptive Strategies for Non-linear System Identification

Parameter estimation or identification of BOS has been a field of great interest for
researchers all around the world. The Hammerstein system identification has been
studied extensively since 1960’s [37]-[44]. The global search methodologies based on
nature and bio-inspired heuristics have been proposed for parameter identification of
Hammerstein systems. For instance, genetic algorithms [45], particle swarm
optimization [46]-[48], cuckoo search optimization [49], hybrid backtracking search
[50] and gravitational search algorithm [51]. The commonly used Hammerstein
identification algorithms are based on gradient descent and least squares methods [35],
[36], [52]-[55]. The gradient methods have less computational cost but suffer from
slow convergence speed as compared to least squares [56]. Multi innovation theory
(MIT) [56] is proposed to improve the convergence speed. MIT uses not only the
current data but also the past data at each iteration, thus provides better estimation
accuracy and convergence speed [12], [13], [341, [57], [58]. The over parameterization
methods also estimate redundant parameters in addition to useful parameters and are
computationally heavy [59]. To avoid identifying redundant parameters, key term
separation procedure is proposed but the parameterized system contains the
unmeasurable internal variables [14], [15]. The auxiliary model (AM) idea [60] deals
with identification problems having unknown internal variables in information vector.
The basic idea in AM is to replace the unknown internal variables with the output of
auxiliary model [33], [60]-[62]. The hierarchical identification algorithm requires
reduced computational burden by decomposing a nonlinear system into several

subsystems with smaller dimension [16], [17], [63], [64].
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In this thesis, we apply fractional calculus concepts to develop alternate and
accurate adaptive algorithms for nonlinear system identification based on Hammerstein
structure. We apply the proposed fractional adaptive algorithms for parameter
estimation of HCAR and HCARMA systems to demonstrate their worth and

effectiveness.

2.6 Summary

This chapter presented the detailed overview of nonlinear system identification
problem based on block-oriented Hammerstein structure. The comprehensive review of
modeling nonlinear identification problems using HCAR and HCARMA structures was
given along with the standard identification procedures to identify parameters of these
Hammerstein structures. Finally, the need for developing alternate identification

algorithms based on fractional calculus concepts was discussed.
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Chapter 3.

Adaptive Strategies for Hammerstein Systems

In this chapter, design of novel adaptive strategies based on fractional calculus

is presented for parameter estimation of Hammerstein systems.

3.1 Introduction

Fractional calculus is a branch of mathematics that deals with non-integer order
derivatives and integrals [65] [66]. It has equally evolved in parallel with integer order
calculus in the field of mathematics [67]. Chen explored its applications in the field of
control engineering [21], [23], [68], [69], while Machado and Ortigueira presented the
idea of fractional signal processing [20], [70]-[73]. Raja gave the new concept of
fractional adaptive algorithms in the domain of fractional order control and signal

processing by using the fractional gradient in standard adaptive methods [74].

3.2  Fractional adaptive algorithms

The newly evolved fractional adaptive algorithms borrow their ideas from LMS
algorithm and its variants by introducing different ways for step size calculation and
weights updating mechanisms. For example, fractional least mean square (FLMS)
identification algorithm was developed by exploiting the theories of fractional calculus
for weights update in standard LMS [75]. The standard FLMS update equation includes
integer order gradient as well as the fractional order gradient. The trade-off between
these two gradients is suggested in [76] that adds a proportion of each gradient

according to the value of adjustable gain parameter. This results in better convergence
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as compared to the original FLMS in [75]. A variable power FLMS (VP-FLMS), and
further a robust VP-FLMS methods are given in [77], [78] that dynamically adapt the
fractional power of the FLMS to obtain high rate of convergence with low steady state
error. A complex variant of FLMS is developed in [79] to deal with the problem of
complex system identification. A fractional variant of Volterra LMS is also proposed

for system identification [80], [81].

The fractional order used in the algorithms so far lies in the range € (0,1). An
innovative fractional order LMS (IFLMS) based on variable initial value and gradient
order is proposed in [82] for fractional order € (0,1.5). A variable initial value is
suggested to guarantee the convergence of IFLMS by attenuating the non-local
property of fractional calculus. A larger value of the gradient order provides faster
convergence rate but at the cost of more steady state error. A variable gradient order
concept is incorporated in IFLMS to remove this contradiction between rapidity and
accuracy. This behavior of rapidity and accuracy was further studied in [83], [84] for
fractional order € (0,2). A novel variable order FLMS algorithm is developed for spline
adaptive filter in [85]. Modified LMS [86] is extended to fractional version in [87]. A
fractional steepest descent method is proposed and fractional quadratic energy norm is
studied in [88]. A comprehensive study on convergence behavior of different fractional

methods including standard FLMS [75] is presented in [89].

These fractional adaptive strategies have been exploited to solve different signal
processing, communication and control problems including parameter estimation [90],
[91], channel equalization [92]-[94], echo cancellation [95], speech enhancement [96]-

[98], chaotic time series prediction [76], [99], neural network optimization [100] and



4

18

active noise control [101]-{103]. The fractional adaptive methods outperform standard

adaptive approaches in these illustrative applications.

In this dissertation, first, standard FLMS [75] is applied to Hammerstein system
identification, then different variants of standard FLMS are developed to increase the
convergence rate and estimation accuracy. All the algorithms presented in this chapter

are based on our published research articles.
The algorithms exploited for parameter estimation of Hammerstein systems are:

1. Fractional Least Mean Squares (FLMS)
2. Modified FLMS-1

3. Modified FLMS-2

4. Normalized FLMS

5. Sliding window based FLMS

6. Momentum FLMS

3.3  Fractional LMS

In this section, the detail of fractional LMS is given for Hammerstein system
identification. The FLMS algorithm is developed by using the concept of fractional
derivative in standard LMS method. The recursive parameter update expression of
standard FLMS incorporates the strength of both integer order and fractional order

gradients to minimize the cost function.

3.3.1 Mathematical Formulation

The objective function for the system is given below:

J(t)=E[e*(1)], G.1)
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where E(-) is an expectation operator, e(¢) is the error term, i.e., difference between the

desired and estimated response, and is given by:

elt)=d(t)-y(t), (32)
where d(f) is the desired response of the system and the estimated output y(z) is written

as:

we)=w" (), (3.3)

where y is the information vector and 8 is the estimated parameter vector. The

iterative update rule of FLMS uses both integer and fractional order derivatives and is

given as:

{#; ) t Lj(t)} ; G4

P IEAPY

where, 4, and [ are the leaning rates corresponding to the first order and fractional

order gradients, respectively while fr is the order of fractional derivative. Taking the

first order derivative of cost function (3.1) with respect to 8 gives

;[J(t)]= 2e(t) ; [d(t) - w’(t)é(t)]. (3.5)

Simplifying (3.5) as in [104], then obtains

a%(](t))=—2e(t)\|l(t), (3.6)

The iterative parameter update relation for parameter estimation of Hammerstein

systems using LMS is written as:
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0t +1)=0(t)+ et (). (3.7)
A variety of fractional order derivative definitions are available in the fractional

calculus literature including Caputo, Riesz, Riemann-Liouville, Hadamard and

Griinwald-Letnikov [19], [66], [105], [106] and accordingly, the fractional derivative

of a function g(t)=t" is generally defined as

, Llp+1)
D7g(t)= Pl 0,p>-1
g(t) F(p—fr+l)t Jr>0,p>-1, (3.8)

where, D/T is the fractional derivative operator of order fr and I' is the gamma

function, defined as:

I(t)=(e-1). (3.9)

Now, computing the fractional order derivative of a cost function, with the assumption
that the fractional derivative of a constant is zero, then fractional derivative in (3.5)is

calculated as:

cafly -2elw) 2

0"

0(). (3.10)

Using (3.8) and (3.9) in (3.10), the fractional derivative of the cost function is written

as

20 el ey 6D

Substituting the values of the integer order derivative (3.6) and fractional order

derivative (3.11) in (3.4), the weight update relation of FLMS is written as

0( +1) = 0(:)+ et () + —L— ( )

)i (3.12)
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where the symbol o denotes an element-by-element multiplication of vectors and the

absolute value of the vector ¢ is used to avoid complex values.
3.3.2 Convergence Analysis

Define the parameter error vector for performing convergence analysis of the

FLMS algorithm as:

AB()=8( -8, (3.13)

where 6, represents the optimum value of the parameter vector. For simplicity,

suppose 4, /F(Z —fl’)= M, =l in (3.12), and rearranging as

8 + 1) = 6(:) + ,ue(t)lu(t)[l + |é(t)|“f’]. (3.14)

The parameter update relation in terms of the parameter error vector is then given by

A8t +1)= 40(e) + sop(1)d (1)~ w(e)' [0, + 20()JHi + [0, +20()] "} (3.1 5)

Expanding (3.15) obtains

AO(r+1)= A0(¢) + sap (1) 1)+ () (20, +A0(1)]

~ (O w(e) 0., — 1o (e 20()- (W) o, , + a0 1

Using the binomial expansion

b, +20()y =Z(J]( 0%, ) aB()y ™. 3.17)

and

(sz(j—l)../.cgj—kﬂ)

(3.18)

Using (3.17) in (3.16),
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20(1-+1)= A0(0) - ap () e) sy D0 0, ~ i (e 50()
+ () (0)a0(r) ™ + /Av(t)d(t)i[1 kf j(ﬂ’épt) AB(r) "

k=\

~ oy (e e A0 —,u\ll(t)\u(t)r(z—l F j 0 )7 0()”

k=1

(3.19)

If the parameters are statistically independent of output and input, and the output and

input are uncorrelated, then applying expectation on both sides of (3.19) and equating

E[a0()]=w(),

wi(t+1)=w()+ up ~ 4RO ,— uRw(z)

+ 1pE[A6(r) lfr]+,up2( - })opt E[n6(e) "+ |- uRE[a0() |,
—/JR(z 1f] opt [ 1fr] RZ( }ISS:E[AG lfr—

where R is the auto-correlation matrix, and p is the cross-correlation vector between

(3.20)

the input and desired parameters. For optimal values of the parameters, p—R8_, =0,

and (3.20) becomes:

wit +1)= wir) - Rw(¢)+ upE|6(1) ” |
- RE[6() |- uR[2 _1f j o' E[re(r) "] (3.2)

Let

,upE[AB(t)' f’] yRE[Ae(tY f’] (2 1f j OptE[AO(t)' f’]
= uE[AO()[F[26(c), /7]

so that using (3.22) in (3.21) gives

(3.22)
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wie+1)=w(e)- Rw(t)+ uE[A0()F[A0(), fr]

3.23
w(t+1)= w(t)— Rw(z)+ (e F[A0(). 7] (3-23)
Simplifying (3.23),
w(e+1)=w(t)i - R-F(a0() /)] (3.2
The condition for stability or convergence of the algorithm is
~1<1-u[R-F(a0(), /)] <1, (3.25)
which results in
O<ux 2 3.26
HSR-F[a00), /]’ (3.26)
or
O<pu< 2 (3.27)

ﬂ’max - F[Ae(t)’ fr]min ’
where 4 is the maximum eigenvalue of the covariance matrix and F[A6(¢), fr]is the

factor affecting the learning rate of the fractional LMS and it is a function of

instantaneous error.

3.4 Modified Fractional LMS-1

The standard FLMS algorithm provides better convergence performance than
LMS [96], [98], but suffers from computational burden because of evaluating the
complex gamma function in its weight update mechanism. Therefore, to avoid the
gamma function evaluation at each iteration, a modified form of standard FLMS is
proposed. In modified fractional LMS-1 (MFLMS-1) adaptive algorithm, two changes

are introduced in the standard FLMS method

1. A new parameter i.e., adjustable gain parameter /8 is introduced in the weight

update relation of the standard FLMS method.



2. The Gamma function of the standard FLMS approach is absorbed in the
fractional step size parameter due to which the MFLMS-1 method requires less

computational cost while not compromising the performance.

34.1 Mathematical Formulation

The weight update expression of MFLMS-1 is given as:

B(0-+1)=8(e)+ Busele0)+ (1= D, el ()

6(tjl-ﬂ, (3.28)

where

KMy

“r T,

(3.29)

and f is an adjustable parameter between 0 and 1. If # < 0.5, fractional part of

the equation (3.28) is dominant while, if 8> 0.5, integer order derivative prevails.

Now, if # =1 in (3.28), the MFLMS-1 algorithm reduces to the standard LMS
algorithm (3.7). The weight adaptation procedure of MFLMS-I requires less

computational budget that makes it an efficient alternative fractional adaptive method.

3.5 Modified Fractional LMS-2

The standard FLMS algorithm is better than LMS in accuracy but requires more
computational burden [96], [98]. To address this limitation of the FLMS algorithm,
another modification in the standard FLMS is proposed. In this modified FLMS-2
(MFLMS-2) algorithm, instead of taking both first and fractional order derivatives of
cost function, only fractional order derivative is used. This reduces the computational

cost of the FLMS while not compromising the accuracy.
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3.5.1 Mathematical Formulation

The weight update expression in case of the MFLMS-2 algorithm is given by:

0t +1)= 6(t)—l{yf aﬁAJ (t)} (3.30)

2 00"

Putting equation (3.11) in (3.30), the recursive weight update relation in case of the

MFLMS-2 is written as:

8(c +1)=6(r)+ ( )e(t)\.,(f) )" (3.31)

If we put fr = 1 in equation (3.31), the recursive expression of the MFLMS-2

algorithm reduces to the standard LMS method (3.7).

3.6 Normalized FLMS

The implementation of standard FLMS adaptive scheme and its modified
versions require an appropriate value of the step size parameter that affects the stability,
convergence speed and steady state performance of the method. It is difficult to select
a step size that is guaranteed to lie within the stability region. We design normalized
versions of FLMS, MFLMS-1 and MFLMS-2 algorithms i.e., NFLMS, NMFLMS-1
and NMFLMS-2 methods to address the problem of step size selection by choosing a
time varying learning rate as NLMS is developed from standard LMS algorithm [107]-

[110].

3.6.1 Mathematical Formulation

The parameter update rule of NFLMS for Hammerstein system identification is

given as:
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et O . ¥ e
)-8 el - Oy 21 03

The update rules of NMFLMS-1 and NMFLMS-2 algorithms for Hammerstein

system identification are respectively given as:

(e +1)=06(c)+ /BMe(t)”w( Y +(1- ,B)ﬂfre(t) “::Ilgil o ’ﬁ(tx_ﬁ . (3.33)

elt) \I’(t)o
F( f) )

6(+1)=6(:)+ o) " (3.34)

3.7 Sliding window based FLMS

The standard FLMS algorithm (3.12) is a memory-less algorithm, as it uses the
data available at the current iteration only. This results in poor convergence rate of the
algorithm. We propose a sliding window approximation based FLMS (SW-FLMS)
algorithm to increase the convergence rate of the standard FLMS. The SW-FLMS
method uses not only the current data points but also the past data at each iteration. The
SW-FLMS uses sliding-window approximation of the expectation where the length of

data used by SW-FLMS algorithm determines the size of sliding window.

3.7.1 Mathematical Formulation
For FLMS algorithm, the criterion function is to reduce the error in mean square

SE€Nse as:

J(t)= E[ez (z)} = E[d(t)— vy’ (t)é]2 (3.35)

In the early 1960s, Windrow-Hoff introduced an approximation of averaging
operator. This popular approximation is a memory-less estimation based only on the

current data points [104], [111]:



~[a)-wT (8] (.36)

An alternative to time-averaging operator is the incorporation of sliding-
window approximation [112}-{114]. In sliding-window approximation, we use the

recent L data points {d(i), y):t-L+1=<i< t}:

{

% Z Z[d ]z (3.37)

t—L+1 tlL+1

where L represents the memory of the approximation or the size of the window. Taking
the gradient of cost function (3.37) with respect to 8, given as:
ZL01=--7 T wlaO-v @) 63%)
1=t—L+1
Taking the fractional derivative of the cost function (3.38) using (3.11):

) - 2 S w0 - v 05—

aef’ r=t—L+1 Iﬂ(2 f)

o). (339

Since FLMS uses both first and fractional order derivatives for parameter update,

substituting (3.38) and (3.39) in equation (3.4) results in:

o+ )=00)+2 3 wola®)-v (z)e(t)]{ur«zg )‘;)} 6.40)

where it is assumed that 4 =, = . Equation (3.40) can be written as:

0(r +1)=0()+ % ,=,_tL \y(z)e(z)[l + (g)l ; )il (3.41)

Equation (3.41) is the parameter update rule of SW-FLMS algorithm.
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3.8 Momentum Fractional LMS

An alternative way to increase the convergence speed of the standard FLMS is
to use the concepts of momentum term for gradient caiculation, as has been used for
standard LMS [115], [116]. The momentum term takes care of the proportion of
previous updates and adds it to the current weights. This helps in speeding up the
optimum search and avoids trapping in local minima. The momentum FLMS updates
the weights by incorporating the proportion of the previously calculated gradients in

the current update step. Thus, increasing the rate of convergence of standard FLMS.

3.8.1 Mathematical Formulation

The parameter update expression of the momentum FLMS (mFLMS) method is

written as:

0 +1)=0(r)+ v(t+1), (3.42)

where v(z +1) is the velocity term which contains previously calculated gradients

v(t + 1) = av(t)+ g(t), (3.43)

while, g(¢) is the gradient part of the FLMS equation given by:

8= el W)+ s elw O[] (3.44)

Here a is between 0 and 1. It controls the proportion of previous gradients that is added
in the current update. In case of standard momentum LMS, (3.42) and (3.43) remain

same but the gradient term g(z) is computed as:

2(1) = 1), (3.45)
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3.8.2  Convergence analysis

For simplicity, suppose H, / I (2— ﬁ’) = M, = M in (3.12), and rearranging as

8(r + 1) = 8() + a[B(r) — 8(c — 1))+ ue(t)\.,(t)[l 4 16(4”’] C(346)

Now, defining the parameter error vector, as defined for standard FLMS in (3.13), then

the parameter update relation of mFLMS in terms of the parameter error vector is given

by

AB(t +1)= A68(r)+ aA6(¢)~ A6( —1)]

O - (e o, + 20+ [o,,, + a0} ©47)
Expanding (3.47) obtains:

AB(¢ +1)= AB(¢)+ o[ AB(t)— AB(t —1)]+ sap(¢)d ()

+ 0y (e) d(0)f0, + 00 — (D) 0, (348)
— (D) 20(0)— s (e (e)" [0, + AOCF .

Using the binomial expansion (3.17), the equation (3.48) updates as:

AB( +1) = AB(¢)+ +a[AB(r)— AB(t — 1)]+ 2ap(t)d (¢)

— g (1) 0, — () () 40(e)+ pap(e) a(e)ae(e) ™"

w(t)d(t)i(l_ ]( 0% ) 4B ~ (e hw(e) n0()"
(3.49)
_ w(t)\.,(t)f[ j 0!)" 40(1)"

sl 3 oty an)

If the parameters are statistically independent of output and input, and the output and

input are uncorrelated, then applying expectation on both sides of (3.49) and equating

Ela0()]=w0).
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w(e+1)=w(e)+ a[w(t)- wle 1)} + 1 — 1RO, - pRw(2)
+ ﬂpE{Ae(t)l‘f’ }+ ,upZ( _kf r})'gptE[AB(t)l—fr_k ]— yRE[Ae(t)Z‘f’], 5.50)

i g s

where R shows the auto correlation matrix, p is cross cotrelation vector between input

and desired parameters. For optimal values of parameters; p—RO_, =0, (3.50)

becomes:

wit+ 1) =w(t)+ a[w(t)— w(t - 1)]— LRV ()

+ ipEae(r) " |- RE[AO( Y |- ,uR(z _1f j 0! E[r0()~" | =D
Let
1pEA8() |- yRE[AO(t)2_f']— ,uR(z _1f ) OptE[AB ()" ] 65.52)
= uE[AO(1)IF[a6(0). f7]
using (3.52) in (3.51) gives
w(t+1)= w(t)+ alw(t)-w(e—1)]- iRw(r)+ LE[28(:)[F[A0(). f7] 653
w(z+1)=w(t)+ afw(r) - wlt —1)]- zRw(z)+ w(t)F[A8(e), 1]~
Simplifying (3.53),
wit+1)=w(t\1+a - u{R-F[A8(¢), f]}) - awlt -1). (3.54)
Defining a 2N dimensional state vector as,
M(r+1)= {wv(:(:r )1)}, (3.55)

we have the following recursion
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I — iR - F|AO(z), -
M(t+1)= {(1 ra)l-p : [a0(e) 7} g‘ :\M(t) (3.56)
The stability of the method is governed by the roots r of the determinant
—rji- —-F|A0 -al
det[(l +a-r) ﬂ{IR [ae(e). fr] aJ o .57
=t

for which the necessary and sufficient condition is |r;| < 1,i = 1,2,...,2M.

Using the following result for block matrices A, B, C, and D [117]

A B
det[c D} = det|D]det[A - BD'C]=det[A]detD-CA™B] (358
Assuming that D! exists, we arrive at the following characteristics equation.

(-r) det[D]det[(l +a-r)l-u{R-F[A0(), fr]}- %1} =0. (3.59)

The stability of the method is governed by the roots r of the determinant. To determine

the 2N roots, we need to investigate the typical quadratic form

r2—r(1+a— it —F[A8(), fr]})+a =0, (3.60)
where A; are the eigen value of R. Applying the Jury’s stability test to determine the

step size bound [118]

1+
A —F[a6(), /]

0<pu< (3.61)

Thus equation (3.61) gives the bound for the learning rate in case of mFLMS where
0<a<l

3.9 Summary

In this chapter, first the latest literature of fractional adaptive algorithms was

presented and then, the design of novel adaptive strategies based on variants of standard



FLMS, i.e., modified FLMS-1, modified FLMS-2, normalized FLMS, sliding-window |

FLMS and momentum FLMS is presented for Hammerstein system identification.
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Chapter 4.

Simulation and Analytical Studies

In this chapter, results of simulations are presented for different case studies of
Hammerstein system identification using proposed adaptive algorithms. The results

presented in this chapter are mostly based on our published research articles.

4.1 Introduction

The parameter estimation of HCAR and HCARMA structures discussed in
Chapter 2 is carried out using proposed adaptive algorithms by taking different levels
of noise variance, learning rate parameter and fractional order. The input x(¢) is taken

as a zero mean and unit variance signal, while noise 9(¢) is a Gaussian signal with zero

mean and constant variance o®. Simulations are performed in MATLAB software
version 2012b in Windows 10 operating system running on HP ProBook model 4530s,

with 2.30GHz Core-i3 processor and 4.00 GB RAM.

Performance indices based on fitness &, mean square error (MSE), Nash-
Sutcliffe efficiency (NSE) and Variance account for (VAF) are used for comparative
study of the results. These performance measures are based on estimation error and are
defined as:

lé(t) - OH

5:’—, @0

lo]

MSE = mean [é(t) — 6]2, (4.2)
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NSE =1- mean|i(0)-of bt (4.3)
mean[ﬂ - mean(B)]
ENSE =1—NSE, 4.4)
VAF ={1—M}x100, (4.5)
var (8)
EVAF =100—VAF , (4.6)

where, 8() is an estimated or adaptive parameter vector based on ™ iteration of

the proposed algorithm and 0 is the desired parameter vector. In case of perfect model
MSE, NSE and VAF values are zero, one and hundred, respectively, while, optimal

values of ENSE, and EVAF are zero.

4.2 Casestudy 1: LMS and mLMS algorithms

In this case study, standard least mean square (LMS) and momentum LMS
(mLMS) algorithms are applied to HCAR system identification. The iterative parameter
update relation of standard LMS for HCAR systems is given in (3.7), while the update

procedure of standard mLMS is given in (3.42), (3.43) and (3.45).

The HCAR system for simulation study is taken as follows [119]:

Al2)e)= BlzJx)+ )
Az)=1+az" +a,z? =1+1357" =075,

B(z)=hz" +bz? =27 +1.68z7,

x(0)= flx0)]= e A+ o [x0)]+ ¢, £x(0)]
= x(t)+0.50x% (£)+0.20x (¢)



0=[6,6,,6,,6,,6,,6,6, 6]
0=[a,, a,, ¢, ¢, €y, byci, bycy, bycy I , 4.7
0 =[— 1 .35,0.75,1.00,0.50,0.20,1.68,O.84,0.336]T

The mLMS algorithm is investigated for three different strategies of alpha a
(proportion of previous gradients). Initially, for 10% of the iterations smaller value of
a is taken and then larger value is used, i.e., [0.1,0.9],[0.3, 0.7] and [0.5, 0.5]. The step
size for standard LMS and mLMS algorithms is selected after performing a set of trials
to achieve the best MSE value after the convergence. For initial 10% iterations step size
is taken as 107 for faster convergence and then 107 is used for stability purposes. The
mLMS approach is examined for three values of noise variance i.e., o = 0.012, 0.05*
and 0.12.

The learning curves based on fitness (4.1) against iterations are given in Fig. 4.1
for all noise variations. The results presented in Fig. 4.1 are averaged on 10 iterations.
It is observed that all variants of mLMS method are faster in convergence than standard
LMS algorithm, while the mLMS with a = [0.5, 0.5] has faster convergence among all
proposed variants of mLMS.

The performance comparison of proposed algorithm is also conducted based on
number of iterations required to achieve the specific value of fitness. Two values of
fitness i.e., 0.1 and 0.01 are used to analyze the working of the design scheme and
results are presented in Table 4.1 for all noise variances. It is seen that the LMS
algorithm requires 7056 and 25294 iterations to achieve the fitness of 0.1 and 0.01
respectively while respective iterations in case of MLMS with a = [0.5, 0.5] are 3453
and 12750 for o= 0.012. It is observed that all mLMS variants require less number of

iterations than standard LMS.
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The design variables of HCAR system obtained by LMS and mLMS methods are
presented in Appendix 4.1 for all noise variations. It is observed that the mLMS
algorithm achieves the MSE values of the order 10, 10°and 107 for 6* = 0.012, 0.05>
and 0.12, respectively, while respective values in case of standard LMS are of the order
10, Generally, it is seen that mLMS algorithm with a = [0.5, 0.5] gives more accurate
results than other mLMS variants. It is observed that the methods are accurate and
convergent for each scenario but the performance of mLMS algorithm with o = [0.5,
0.5] is better in terms of both convergence and accuracy.

In order to investigate the scheme in terms of initial convergence, the fitness (4.1)
obtained in first 10000 iterations is given in Appendix 4.2 for all three noise variances.
It is seen that the variants of mLMS algorithm have better rate of convergence than
standard LMS and mLMS algorithm with a = [0.5, 0.5] has faster convergence rate
among all mLMS variants for all noise variations.

The single good run of an algorithm is not enough for drawing concrete
conclusions about the performance of the design scheme. Therefore, statistical analyses
through 100 independent runs of the scheme are performed for HCAR system
identification. The results of statistics based on minimum (MIN), mean and standard
deviation (SD) through MSE and NSE performance measures using equations (4.2) and
(4.4), respectively, are given in Appendix 4.3 for all variations. It is seen that if an
algorithm achieves smaller value of MSE, then the corresponding value of ENSE is
also small and vice versa. The MSE and Ensg values of mLMS for a = [0.5, 0.5] are of
the order 10%, while for LMS the corresponding values are of the order 10" for o°=
0.052. It is observed that the values of both performance metrics are very close to
desired values of HCAR system in each case, which validates the consistency of the

mLMS approach for different performance indices.
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Table 4.1 Performance comparison based on iterations required to achieve specific
fitness value in case study 1

Method| @ 5=0.1 5=0.01
a?=0.012] 62= 0.05? | 6>= 0.12 | 6>= 0.012 | = 0.05? | 6?= 0.1
LMS 7056 7031 7015 25294 25219 25151

mLMS (0.1,0.9) 4915 4912 4906 14031 14054 14062
mLMS (0.3,0.7) 4287 4285 4281 13118 13022 12989
mLMS (0.5,0.5) 3453 3411 3370 12750 12860 12371

4.3 Case study 2: FLMS, MFLMS-1 and MFLMS-2 algorithms

In this case study, FLMS, MFLMS-1 and MFLMS-2 algorithms are applied to
parameter estimation of HCAR system given in equation (4.7). The step size is selected

after performing a set of trials to achieve the best MSE value after the convergence.
Same value is used for both y, and /i, parameters. For initial 10% iterations step size

is taken as 107 for faster convergence and then 107 is used for stability purposes. The
design approaches are evaluated for three different noise variances i.e., o* = 0.1%, 0.5
and 0.9%2. Two values of fractional order (f) are incorporated in the simulations for all
three FLMS, MFLMS-1 and MFLMS-2 algorithms, i.e., fir = 0.25 and 0.75, while two
values of adjustable gain parameter f are used in MFLMS-1 algorithm, i.e., 8 = 0.25

and 0.75.

[terative results of proposed fractional adaptive algorithms based on values of
fitness are shown in Figs. 4.2 and 4.3 for fir = 0.25 and 0.75 respectively. It is seen from
learning curves that the final convergence of MFLMS-1 for f = 0.25 and MFLMS-2
algorithms are superior than FLMS and MFLMS-1 with = 0.75 in almost all the cases,

while these algorithms converge rapidly in initial iterations. There is no noticeable
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difference seen between the performance of MFLMS-1 for = 0.25 and MFLMS-2 on
the basis of learning curve.

In order to show the level of accuracy, the adaptive values of each algorithm are
given in Appendices 4.4, 4.5 and 4.6 along with values of mean square error (MSE) fo‘r
6*=10.1%, 0.5? and 0.9% respectively. The results presented show that in terms of MSE
values, MFLMS-2 algorithm provides relatively better from the rest of the algorithms.
Moreover, with an increase in the value of noise variance, decrease in the performance
of each algorithm is observed and still the results with reasonable accuracy are achieved

by the proposed fractional adaptive algorithms.

Reliability and effectiveness of the proposed algorithms are examined through
results of statistical analysis based on hundred independent runs of each fractional
adaptive algorithm for parameters identification of HCAR model. Results in terms of
MIN, mean and SD values calculated for 100 independent runs of each algorithm are
given in Table 4.2 for MSE metric, while, for ENSE and EVAF performance measures,
results are presented in Appendices 4.7 and 4.8 respectively. Generally, small values of
statistical indicators are obtained which show that all three algorithms are consistently
providing accurate results; however, relatively better results are obtained by MFLMS-

2 algorithm in term of precision and convergence.
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4.4  Case study 3: Normalized FLMS algorithms

In this case study, the proposed NFLMS, NMFLMS-1 and NMFLMS-2
algorithms are applied to estimate the parameters of HCAR system (4.7) for sufficient
number of iterations i.e., t = 20000. The proposed normalized adaptive strategies are
evaluated for three values of noise variance i.e., 6% = 0.22, 0.5? and 0.8%. The NMFLMS-

1 method is studied for two values of adjustable gain parameter i.e., f# = 0.25 and 0.75.

The step size plays a very important role in convergence and stability of adaptive
algorithms. In order to select an appropriate value of step size parameter, the standard
and normalized fractional algorithms are tested for four step size values i.e., 102, 10"
0310 and 10-%. Ten independent runs of the methods are performed and results in
terms of mean value and standard deviation are given in Appendix 4.9 for fractional
order 0.5 and noise variance 0.5%. It is evident from the results that 10 and 10" are

the suitable step size values for standard and normalized fractional methods

respectively. Same value is used for both p; and [, parameters.

In proposed fractional adaptive algorithms, one important variable is fractional
order. The proposed normalized methods are examined for nine different values of
fractional orders i.e., [0.1, 0.2, ..., 0.9] and results based on 10 independent runs of the
algorithms in terms of MSE are given in Appendix 4.10. It is observed that all the
proposed normalized fractional strategies are convergent for all values of fractional
orders but standard FLMS provides divergent behavior for lower value of fractional
order i.e., fr =0.1. It is seen that there is very small difference among different values
of fractional orders for HCAR system identification (4.7) using normalized fractional

adaptive strategies. So, it is reasonable to take fr = 0.5 in rest of this case study.
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The iterative plots of fitness function (4.1) using NFLMS and NMF LMS-2 given
in Fig. 4.4 while for NMFLMS-1 algorithm respective plots are given in Fig. 4.5 for all
noise variations. It is seen that all the proposed fractional order adaptive methods are
correct and convergent but the convergence speed of proposed normalized fractional

strategies is faster than the standard counterparts.

The performance of the proposed methods is examined through MSE (4.2), and
results are given in Appendices 4.11, 4.12 and 4.13 for ¢ = 0.2%, 0.5% and 0.82
respectively. It is observed that all schemes give better results for lesser standard
deviation i.e., 6> = 0.22 and relatively degraded results are obtained for higher noise
deviation i.e., o = 0.8%. It is seen that the accuracy of NFLMS, NMFLMS-1 and
NMFLMS-2 algorithms is better than standard FLMS, MFLMSI and MFLMS2
methods. However, negligible difference is observed among proposed normalized

algorithms.

The proposed normalized fractional adaptive algorithms are examined through
statistics calculated for MSE, NSE and VAF (4.2) - (4.6) performance measures based
on hundred independent runs. The results of statistical parameters based on MIN, mean
and SD values are presented in Table 4.3 for MSE evaluation metric, while, for ENSE
and EVAF performance measures results are presented in Appendices 4.14 and 4.15
respectively. Generally, it is seen that all the proposed normalized fractional algorithms
are accurate and convergent, while standard FLMS algorithm provides few divergent
runs. Moreover, it is observed that proposed normalized methods give better results
than standard adaptive strategies which validates the performance of the normalized

algorithms on different performance metrics.
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In order to show the extent of divergence i.e., number of divergent runs, results
of statistical analyses are also plotted in ascending order in Fig 4.6 for standard FLMS
and normalized FLMS algorithms. It is clear from Fig 4.6 that FLMS shows divergent
behavior for all noise levels, but number of divergent runs increases with an increase in
noise standard deviation i.e., one, two and twelve divergent runs for 6 = 0.22, 0.5% and

0.82 respectively, while this behavior is not seen in normalized version.
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4.5 Case study 4: Sliding window based FLMS algorithm

In this case study, sliding window based FLMS (SW-FLMS) algorithm is applied
to Hammerstein nonlinear system based on HCARMA model given in section 2.3. The

HCARMA system for simulation study is taken as follows [35], [36]:

Alz)ye)=B(zJi(e)+ D(z)ok),
Alz)=1+az" +a,z7 =1-1.60z" +0.8z7,
B(z)=bz"+b,z? =085z +0.6527,
D(z)=1-dz" =1-0.64z"

%(6)= fIx0)]= e O] o fu 6O +es /s [x(0)

= x(£)+0.50x% (£)+0.25x°(¢)
0=[6,6,,6,,0,,6,,6,,6,,6,,6,]
0= [al, a,, be,, b, by, by, bey, byey, d ]T

0=[1.60,-0.80,085,0.65,0.425,0325,02125,0.1625,-0.64]  (43)

Simulations are performed by taking different levels of noise variances i.e., o’=

0.1, 0.4 and 0.8. The learning parameter is taken as 10 that is selected after performing
a set of trials to obtain the best MSE after convergence. Moreover, comparative
analyses of the results are also given with standard FLMS algorithm to determine the
effectiveness of proposed modification. The fitness versus iterations are used for
performance evaluation. We intend to use SW-FLMS algorithm with different window

lengths to estimate the parameters of HCARMA system given in (4.8).
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Fig. 4.7 shows the learning curves for FLMS and SW-FLMS. Each learning curve
is obtained by averaging the results of 30 independent runs with stopping criteria of
estimation errors 8 < 0.05. In this way, all algorithms are comparable in terms of mean
behavior to reach an estimation error of 5 percent. Fig. 4.8 shows the number of
iterations to reach an estimation error of 5 percent for 200 independent runs. Some

interesting observations from Figs. 4.7 and 4.8 are:

e Foro?=0.1, 0.4 and 0.8, the standard FLMS takes the most number iterations
to reach an estimation error of 5 percent as can be seen in Figs. 4.7 and 4.8.

e Itis clear from Fig. 1(a) and 2(a) that for 6> = 0.1, the standard FLMS requires
almost 2.5 times more iterations than SW-FLMS with L = 3, and 6 times more
iterations than SW-FLMS with L = 7.

¢ For 6= 0.4 and 0.8, the standard FLMS requires 3 times more iterations than
SW-FLMS with L = 3, and 6 times more iterations than SW-FLMS with L = 7
to reach an estimation error of 5 percent as shown in Fig. 4.7(b)-(c) and Fig.
4.8(b)-(c).

e Foro®=0.1, 0.4 and 0.8, the standard FLMS takes the most number iterations
to reach an estimation error of 5 percent.

e All the above-mentioned observations are equally valid for fr = 0.5 and 0.7.
Also, the iterations with fr = 0.5 are more than the iterations for fr = 0.7

irrespective of the algorithm used.
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4.6 Case study 5: Momentum FLMS algorithm

In this case study, momentum FLMS ie, mFLMS is applied to parameter
estimation of HCAR system given in (4.7). The results obtained through mFLMS
algorithm are compared with standard FLMS to show the effectiveness of the proposed

modification. The learning parameters are taken as 10~ that is selected after performing

a set of trials to obtain the best MSE after convergence. Same value is used for both 4,

and /i, parameters. The robustness of the scheme is studied by taking the noise with

different variance i.e., o> = 0.012, 0.052 and 0.12. The performance of the method is
examined for different values of a and fractional order, i.e., 0.2, 0.4, 0.6, and 0.25, 0.50,

0.75 respectively.

To study the convergence properties of mFLMS scheme, the fitness J achieved
in first 10000 iterations is presented in Appendices 4.16, 4.17 and 4.18 for 6?= 0.012,
0.05? and 0.1% respectively. It is seen from the results that proposed mFLMS method
provides faster convergence than standard FLMS for all values of a. It is also observed

that convergence speed increases by increasing the proportion of momentum term.

The performance of the design scheme is analyzed through iterations required for
obtaining specific fitness value. The number of iterations required to achieve 0.1 and
0.05 fitness values are given in Table 4.4 for all noise and a variations. It is seen that
the standard FLMS algorithm requires 4070 and 6352 iterations for 0.1 and 0.05 fitness
values respectively, while the respective iterations for mFLMS algorithm with a = 0.6
are 1127 and 2145, for ? = 0.12, It is inferred from the results that proposed mFLMS

algorithm has faster convergence and requires less iterations for specific fitness value.
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The number of iterations required decreases with an increase in value of a, i.e. the

convergence speed increases by increasing the a.

The performance of the method is investigated through MSE metric. The HCAR
system parameters along with MSE values are given in Appendices 4.19, 4.20 and 4.21
for 62 = 0.012, 0.052 and 0.12, respectively. It is seen from Appendix 4.19 that MSE
values given by FLMS are of the order 10** for all fractional orders. The MSE values
through proposed mFLMS algorithm are of the order 10, 10 and 107 for a = 0.2, 0.4
and 0.6 respectively. It is inferred from the results that design scheme is accurate and
convergent for all values of fractional orders. It is also inferred that proposed method
is robust against different noise values. However, slight degradation in performance is

seen for higher noise variance.

The learning curves based on fitness are presented in Fig. 4.9 for all noise
variances and fractional order = 0.50. It is observed that mFLMS algorithm is faster in
convergence than standard FLMS for all values of a. It is observed from the learning
curves that higher value of a i.e., higher proportion of momentum term increases the
speed of convergence but at the cost of steady state performance. It is inferred from the
plots that the middle value of a ie., a = 0.4 is a good compromise between fast

convergence and minimum steady state error.

Table 4.4 Performance comparison based on iterations required for specific fitness
value in case study 5

Method o o=0.1 S =0.05
o*=0.012] 6?= 0.05?| 6= 0.12| 6*= 0.01?| 6% = 0.05? | ¢* = 0.1?
FLMS 4019 4034 4070 6243 6275 6352

mFLMS 0.2 2882 2901 2912 4657 4761 4888
mFLMS 04 1909 1915 1945 3204 3215 3260
mFLMS 0.6 1139 1130 1127 2071 2095 2145
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4.7 Case study 6: Comparison of proposed fractional algorithms

In this case study, the comparison of proposed fractional adaptive strategies based
on MFLMS-1, MFLMS-2, NFLMS, SW-FLMS and mFLMS is presented with standard

FLMS for HCAR system identification (4.7) with 6* = 0.5%.

The parameters of the proposed algorithms are selected based on the observations
from the previous case studies. It is observed in the previous case studies that fractional
adaptive algorithms normally provide relatively better results for higher values of
fractional order. Therefore, the algorithms are compared for fractional order fr = 0.75.
In case study 3, it is seen that mFLMS provides faster convergence rate for higher value
of a, but with more steady state error. Therefore, in this case study, initially the higher
value of a i.e., 0.5 is used for faster convergence and then lower value of a i.e., 0.1 is
taken for better steady state performance. In SW-FLMS algorithm, the length of

window used is 5.

The iterative adaptation of fitness function (4.1) using FLMS, MFLMS-1,
MFLMS-2, NFLMS, SW-FLMS and mFLMS algorithms is presented in Fig. 4.10(a)
for 4 =0.001. It is seen that NFLMS algorithm is stable and convergent while, the

other algorithms do not provide smooth convergence for # =0.001. In order to reduce

these fluctuations, the step size is reduced to 0.0005 for the FLMS, MFLMS-I,
MFLMS-2, mFLMS and SW-FLMS algorithms and results are presented in Fig. 4.10
(b). The results show that the SW-FLMS method provide smooth convergence while,
the FLMS, MFLMS-1, MFLMS-2, mFLMS algorithms do not produce smooth learning
curves for 4 = 0.0005. The standard FLMS and mFLMS algorithms provide faster
convergence than other variants, while, the MFLMS-1 and MFLMS-2 methods give

lower steady state error. The step size parameter is further reduced to 0.0001 for FLMS
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and mFLMS algorithms, and 0.0002 for MFLMS-1 and MFLMS-2 algorithms. Thus,

the learning curves presented in Fig.4.10 (c) are based on # = 0.0001, 0.0001, 0.0005,

0.0002, 0.0002 and 0.001 for FLMS, mFLMS, SW-FLMS, MFLMS-1, MFLMS-2 and
NFLMS algorithms, respectively. It is clearly seen that the proposed algorithms provide
smooth learning curves for these values of learning rate parameters. It is observed that

the proposed mFLMS algorithm is more accurate and convergent than other variants.

The proposed adaptive algorithms are also evaluated based on MSE metric and
results are presented in Table 4.5 for different variations in learning rate parameter. It
is observed form the results that mFLMS and NFLMS algorithms are more accurate
than other proposed variants of standard FLMS, while there is no much difference
among FLMS, MFLMS-1, MFLMS-2 and SW-FLMS algorithms in terms of final
accuracy for optimal values of step size parameter. However, MFLMS-2 and SW-

FLMS algorithms provide better results than standard FLMS.
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4.8 Case study 7: Application to muscle modeling

It is seen in the case study 6 that the proposed mFLMS algorithm provide better
results than other proposed variants of FLMS for parameter estimation of Hammerstein
systems. Therefore, in this case study, the mFLMS algorithm is applied to identify the
parameters of electrically stimulated muscle model. The HCAR structure, discussed in
Chapter 2 has been used to model dynamics of stimulated muscle required for
rehabilitation of paralyzed muscles by automatically controlled stimulations. The static
nonlinear block shows the isometric recruitment curve, defined as the static gain
relation between the stimulus activation level and the output torque when muscle is at
a fixed length. The linear block of Hammerstein structure represents the dynamic
response of electrically stimulated muscle [32]. The electrically stimulated muscle is

modeled using HCAR structure with the following parameters [120]:

Alz)y(e)= Blz)x(e)+ 5(),
A(z): 1+ alz_l + azz_2 =1-z"+0.827
B(z)=bz" +byz” =27 40627,

%(t)= 0] = e AR+ eofu [60)] ¢, 0]
=2.8x(t)-4.8x7()+5.7°(t)

0= [915 6,, 65, 6,, 6, 6, 6;, Bs]T
0= [al, a,, ¢, ¢y, C3, by, byc,y, bycy ]T _ 4.9
0 =[-1.00,0.80,2.80,—4.80,5.70,1.68,—2.88,3.42]

The step size is taken as 10 that is selected after performing a set of trials to

obtain the best MSE after convergence. Same variations in noise variance 6, proportion
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of previous gradients & and fractional order f are used as in case study 3, i.e., c?=0.01%

0.05%2 and 0.12, a = 0.2, 0.4, 0.6, and fr = 0.25, 0.50, 0.75.

The iterative convergence of the fitness function for first 10000 iterations is
presented in Appendix 4.22, for all a and fi variations. It is seen from the results that
proposed mFLMS method provides faster convergence than standard FLMS for
identification of muscle model. It is also observed that convergence speed increases by

increasing the value of a.

The number of iterations required for obtaining specific fitness value of 0.1 and
0.05 are given in Table 4.6 for all noise and « variations. It is seen that the standard
FLMS algorithm requires 36239 and 153910 iterations for 0.1 and 0.05 fitness values
respectively, while the respective iterations for mFLMS algorithm with a = 0.6 are
19552 and 37559 for 6% = 0.12. It is inferred from the results that proposed mFLMS
algorithm has faster convergence and requires less iterations for HCAR system

representing stimulated muscle model.

The MSE values for estimation of muscle model are given in Appendix 4.23 and
it is observed from the results presented that mFLMS method is accurate and
convergent for all values of fractional orders and higher value of fractional order

provides relatively better results.

The learning curves based on fitness (4.1) and MSE (4.2) performance measures
are presented in Fig. 4.11 for fr = 0.50 and ¢* = 0.05%. It is observed that mFLMS
algorithm is faster in convergence than standard FLMS for all values of a. It is inferred
from the learning curves that proposed scheme is accurate and convergent for

identification of electrically stimulated muscle model for all variations of a and fr.
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Table 4.6 Performance comparison based on iterations required for specific fitness
value in case study 6

5=0.1 5=0.05
Method | a
o> = 0.012| &= 005! 62 = 0.12 6 = 0.01 | 0* = 0.05* | 6?= 0.1
FLMS 36241 36239 36236 154142 154058 153910

mFLMS 0.2 28919 28918 28917 107743 107732 107731
mFLMS 0.4 23490 23491 23493 65031 65036 65043
mFLMS 0.6 19544 19549 19552 37515 37544 37559

4.9 Summary

In this chapter, proposed fractional adaptive algorithms were applied to
different case studies of Hammerstein system identification and simulations results
were presented in a variety of graphical illustrations. From case study 6, it was
concluded that momentum FLMS provides better results in comparison with other
proposed fractional adaptive algorithms. Finally, the momentum FLMS scheme is
applied to parameter estimation problem of stimulated muscled model represented

through HCAR structure.
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Chapter 5.

Application to Power Signal Modeling

It is observed from the results of case studies presented in the last chapter that all
the proposed variants of FLMS are accurate and convergent for identification of the
Hammerstein systems. Moreover, the mFLMS algorithm is better than other proposed
methods in terms of convergence. To further demonstrate the promising properties of
the mFLMS algorithm, we consider another application based on signal modeling and

parameter estimation of sinusoidal signals.

In this chapter, first an introduction to power signal modeling is presented, then
identification model for parameter estimation of power signals is given. Finally, the
proposed mFLMS algorithm is applied to parameter estimation of power signal having
unknown amplitude and phase. The results obtained through mFLMS are compared
with standard LMS, mLMS and FLMS algorithms to show the worth and effectiveness

of the design method.

5.1 Introduction

Signal modeling and parameter estimation of sinusoidal signals are important for
reliability assessment and quality monitoring of power systems. Frequency, as one of
the parameters, is important to be estimated for harmonic measurement and
compensation [121] and in phase lock loops for grid signal synchronization with system
output [122]. The amplitude estimate is used in fault detection algorithms [123] and in

under/over voltage protection algorithms [124]. The phase estimate is used in different
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scenarios such as PLL algorithms [125] and in the generation of control signals in a
controller [126]. Recently, stochastic gradient based algorithms have been proposed for
estimating the parameters of the sine combination signal modeling [127]. Before

applying the proposed mFLMS to power signal, the identification model is given first.

5.2  Signal Modeling

Parameter estimation of the sinusoidal signals is very important as it helps in
assessing the reliability of power systems. Here we consider a sampled multi-harmonic

sinusoidal signal with different amplitudes and phase:

POE iak (sinte, +4, )+ (). (5.1)

k=1

Using trigonometric identity, (5.1) can be represented as:

N

y(t) = Zak (sintw, cosg, +costw, sing, )+ ). (5.2)

k=1

We assume that the frequency of the signal is known, then (5.2) can be written as:

N
)= Zbk sintw, +c, costam, +9(t), (5.3)

k=1

where
b, =a,cos §, and ¢, =a,SIng,.

We will estimate parameters b, and ¢; since these can give us ¢; and ¢, using

relations:

4 C
a, =4b, +¢, ¢, =tan” £ (5.4)

b,

Defining the parameter vector 8 as:
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0=[bl,cl,bz,CZ,---,bN,cN]TeRzN, (5.5
and the corresponding information vector as:
y(t)=[sinot, cosm,sinmyt,cosayt, . sinwyt,coswyt]” €R™, (5.6)

using equations (5.5) and (5.6) in (5.3), the identification model for power signals is

same, as given in (2.8) for Hammerstein system identification.:

5.3 Modeling of power signals

To show the performance of the proposed algorithm, the mFLMS is applied to
estimate magnitude and phase of a sinusoidal signal which is a combination of different
sinusoidal harmonics having different amplitudes and phases. We compare its
performance with standard FLMS, mLMS and LMS algorithms under different noise
conditions. Consider the following combination of sine signals with four different
frequencies [127]:

(t)=1.8sin(0.07 +0.95)+2.9sin(0.5¢ + 0.8) + 4sin(2¢ +0.76)
+2.5sin(1.6¢ +1.1)+ 9(¢) ' (5.7)

The parameter vector (amplitude and phase) of the power signal is:

0=a,,a,,a,,a,,0,, 0,00, =[1.8,2.9,4,2.5,0.95,0.8,0.76,1.1]'. 58)

The mFLMS and mLMS algorithms are investigated for three different values of
a (proportion of previous gradients), i.e., [0.2, 0.5, 0.8], as only these two algorithms
have momentum terms. The step size for all the algorithms is selected empirically after
performing a set of trials to achieve the best MSE value after the convergence, i.e., 1073,

In case of fractional order algorithms, the values for both step size parameters are same,

ie., [y =M =M. For higher values of step size, algorithms either did not converge
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smoothly or had higher value of MSE. The value of o was also chosen on the similar
basis. It is observed that the convergence speed of the mFLMS method increases by
increasing the value of a but at the cost of steady state performance, i.e., the higher
value of o provides faster convergence while lower value gives better steady state
performance. The fractional order based methods are studied for three different
fractional orders i.e., fir = 0.25,0.50 and 0.75. All the algorithms are examined for three
values of Gaussian noise variance i.e., 62 = 0.3, 0.6> and 0.9%. The adaptation process
is performed for 4000 iterations.

The learning efficiency of the algorithms for different values of parameters is
shown in Figs.5.1 and 5.2. All the subfigures of Figs. 5.1 and 5.2 show plots of fitness
function against the number of iterations for fractional order fr = 0.5. Detailed results
for other values of fi are given in the tables. The comparison of the proposed mFLMS
algorithm with standard LMS, mLMS and FLMS methods for a = 0.2, 0.5 and 0.8 are
given in Fig. 5.1 (a), (b) and (c) respectively for noise variance o? = 0.3%, while the
respective plots in case of o? = 0.9% are presented in Fig. 5.2 (a), (b) and (c). It is
observed that convergence of mLMS and mFLMS methods is faster than their
counterparts, i.e., standard LMS and FLMS algorithms, and by increasing the value of
a, the momentum versions provide faster convergence. It is also seen that the proposed
mFLMS algorithm outperforms all other algorithms in terms of convergence for
different variations in parameter values.

The performance of the proposed scheme is also evaluated for initial convergence
rate and results of fitness adaptation for first 1000 iterations are presented in
Appendices 5.1-5.3 for 6? = 0.3%,0.62 and 0.9° respectively, for various o and fractional

order values. It is seen from the results presented in Appendices 5.1-5.3 that initial
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convergence of mFLMS is much faster than standard adaptive strategies and rate of
convergence increases by increasing the proportion of previous gradients (o).

The performance of the proposed mFLMS algorithm is further verified through
MSE metric. The results obtained through mFLMS are compared with standard
adaptive schemes and given in Table 5.1 for o* = 0.32, while, for 6> = 0.6 and 0.9 the
results are presented in Appendices 5.4 and 5.5 respectively, for different variations in
o and fractional order. It is observed that all algorithms are accurate and convergent but
accuracy of the methods decreases by increasing noise variance. It is seen that fractional
adaptive algorithms ie., FLMS and mFLMS remain stable for all variations of
fractional order and not much difference in accuracy is observed among different
fractional orders. However, higher value of fractional order ie., fr = 0.75 gives
relatively better results. It can be observed from the results in Appendices 5.1 5.5 and
Table 5.1 that mFLMS algorithm provides faster convergence for higher proportion of
previous gradients i.e., o = 0.8, while it gives better steady state performance for lower
value of alpha ie, o = 0.2. Thus, the middle value ie., a = 0.5 seems to be an
appropriate choice that is a good compromise between faster convergence and better
steady state performance.

The curve fitting plot for the sinusoidal signal by mFLMS for a = 0.2, fir=0.5 and
o”=0.6% is given in Fig. 5.3. It can be noticed from the figure that the proposed mFLMS
algorithm accurately follows the original power signal with high precision which

validates the correctness and effectiveness of the proposed method.
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54 Summary

This chapter presented the application of proposed momentum FLMS algorithm to !
parameter estimation of power signals with unknown amplitude and phase. The resuits
obtained through the momentum FLMS were also compared with standard FLMS, LMS

and mLMS algorithms to show the worth and effectiveness of the proposed scheme.
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Chapter 6.

Conclusion and Future Work

In this chapter, conclusions drawn for the proposed schemes are presented based
on the material presented in last chapters. Few future research directions are also mentioned

for researchers interested to work in this field.

6.1 Conclusions

Following are the conclusions drawn from this study:

e The present work may consider to be an advancement in designing an accurate,
alternate, and convergent computing mechanism based on deep rooted fractional
calculus concepts for nonlinear system identification.

e The mathematical concepts and theories of fractional order calculus are exploited
to develop modified FLMS-1 and 2, normalized FLMS, sliding window based
FLMS and momentum FLMS algorithms.

e The computational cost of FLMS is reduced in MFLMS-1 and 2, convergence made
smoother in NFLMS, while SW-FLMS and mFLMS increases the convergence
speed of standard FLMS by effectively utilizing the previous information.

e The correctness of the designed fractional adaptive algorithms is established by
efficiently optimizing the parameters of different nonlinear system identification

models based on Hammerstein structure.
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The FLMS, MFLMS-1, MFLMS-2, NFLMS, SW-FLMS and MFLMS algorithms
estimated the parameters of HCAR system with the MSE values of 3.37x10°%,
4.12x10%, 2.28x10%, 9.67x10%, 1.82x10* and 6.50x10"* respectively for o’ =
0.52. The mFLMS is better among all other variants in terms of convergence speed
and accuracy.

The effective application of proposed momentum FLMS for accurate parameter
estimation of power signals with unknown amplitude and phase further establishes
the worth and efficacy of the methods.

The design methods are evaluated for different values of fractional order and it is
observed that the proposed fractional methods remain convergent for all fractional
orders.

The fractional adaptive methods are accurate and convergent for different noise
levels ranging from low to high, which establish their robustness. However,
optimization capability of all proposed algorithms decreases with an increase in
noise variance.

The consistency and reliability of the design methods is proven through the results
of statistical analyses based on sufficient independent runs of the algorithms for
different performance measures including mean square error, variance account for
and Nash-Sutclifte efficiency.

Besides the accurate identification, the other advantages of proposed fractional
adaptive strategies include, availability of more controlling parameters, wider
applicability domain and flexibility in the design procedure based on fractional

integrals or derivatives.



i

76

6.2 Future Work
Following are few research directions for future development of work in this

domain:

e The proposed algorithms may be exploited to address parameter identification
problem of input and output nonlinear systems, including Hammerstein CARAR,
CARARMA, Box-Jenkins and Weiner models etc.

e The design methods can also be applied to solve other signal processing problems,
like, image denoising, image classification, noise removal from biomedical signals,
channel estimation, channel equalization and adaptive beamforming.

e This study considered to be a step further for designing new fractional adaptive
algorithms such as fractional recursive least square method, fractional kalman
filtering approach, fractional diffusion, p-power, leaky and block LMS algorithms
etc.

o One may explore the application of latest fractional derivative operators to develop
new fractional order adaptive strategies for problems arising in communication,

signal processing and control systems.
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