
A Model for ReusabOity of Software
Architectural Knowledge

A Thesis Presented to

Department of Computer Science and Software Engineering
Faculty of Basic & Applied Sciences

In Partial Fulfillment

of the requirement for the degree

Of

Master of Sciences (Software Engineering)

By

Fawad Ahmad Khan

(109-FAS-MSSE/F-06)

Accession No.

fO S
O O S . I L

2 , JX̂ AAiix!̂

f t ”y >'1
'^ 'i i J - i £.-vj j g-î

,,5*>

International Islamic University, Islamabad

 ̂ Faculty of Basic & Applied Sciences,

Department of Computer Science and Software Engineering

FINAL APPROVAL

ROJECT EVALUATION COMMITTEE

External Examiner:

Dr.Arshad Ali Shahid

Professor, Department of Computer Science,

Mational University of Computer & Emerging Sciences,

NU-FAST, Islamabad, Pakistan

Internal Examiner: ^

Mr.Shahbaz Ahmed Kiian I_____________

Associate Professor,

Department of Computer Science and Software Engineering,

international Islamic University,

Islamabad, Pakistan.

Supervisor:

Dr.Naveedlkram

Associate Professor,

Faculty of Computing,

Riphah International University,

Islamabad, Pakistan.

A Dissertation submitted as

Partial Fulfillment of Requirements

For the degree of Master of Science in

Software Engineering

Declaration

I hereby declare and affirm that this thesis neither as a whole nor as part thereof has been copied

out from any source. It is further declared that I have completed this thesis entirely on the basis

of my personal effort, made under the sincere guidance of my supervisor. If any part of this

report is proven to be copied out or found to be a reproduction of some other, I shall stand by the

consequences. No portion of the work presented in this report has been submitted in support of

an application for other degree or qualification of this or any other University or Institute of

learning.

Fawad Ahmad Khan

109-FAS/MSS E/F-06

Acknowledgment

This thesis has been in many aspects the ultimate confrontation with some of my own

limitations. Happily enough, I have fought and overcome them, but I couldn’t have done this

without the help of many people. Some of them I would like to especially acknowledge here.

First of all, I would like to thank my supervisors: Dr.Naveedlkram for his guidance and

demonstrating to me that no research goal is too high to aim for. Mr. Muhammad Usman, for

bringing reality to my vision, who initially introduced me about the stafe^of practice in this area

of research and Mr. Shahbaz Ahmad Khan for always having wise advice available when I was

stuck, to Mr. Adnan Ashraf, for providing intelligent comments during finalization of proposal

for this thesis.

I would also like to express my gratitude to all my MS fellows for their moral support.

Finally, to wrap-up this acknowledgement, I would like to thank my mother for her

unconditional love and support during all these years.

Abstract

This research work aims at improving reusability of software architectural knowledge. In

knowledge management literature software architectural knowledge is categorized as technical

knowledge e.g. architecture styles, tactics and reference architecture etc and contextual

knowledge of software architecture that concerns why the things are like the way they are.

Software architectural decisions are based on experience, knowledge, intuition and exposure of

software architect. Therefore a case study was conducted to identify contextual knowledge

elements that influence software architects in decisions of selecting appropriate software

architecture knowledge elements. The outcome of conducting the case ^tudy is the identification

of contextual knowledge elements that drives software architects in selection of appropriate

technical knowledge element. Based on analysis of case study results a model for reusability of

software architectural knowledge has been proposed.

Table of Contents
1 Jntroduction...10

1.1 Software Architecture... 10

1.2 Knowledge Management.. 11

1.2.1 Personalization.. 12

1.2.2 Codification..12

1.3 Software Architectural Knowledge..12

1.4 Classification of Software Architecture Knowledge... 12

1.5 Research Problem..13

1.6 Research Methodology..<................................14

1.7 Research Rationale...14

2 Literature Review.. 15

2.1 Decision Goal and Alternatives DDR Framework (DGA-DDR)... 15

2.1.1 Characteristics..15

2.1.2 Limitations...15

2.2 A Core Model of Architectural Knowledge...16

2.2.1 Characteristics......... ..16

2.2.2 Limitation...16

2.3 Variability Modeling Principles to Capture Architectural Knowledge (COVAMOF Framework) 16

2.3.1 Characteristics..17

2.3.2 Limitations...17

2.4 Evolution Tailored with Architectural Knowledge (ETAK).................. 17

2.4.1 Characteristics..17

2.4.2 Limitations.. 18

2.5 Process-centric Architecture Knowledge Management Environment (PAKME)...................... 18

2.5.1 Characteristics..18

2.5.2 Limitation...19

2.6 Architecture Design Decision Support System (ADDSS)... 19

2.6.1 Characteristics..19

2.6.2 Limitation...20

2.7 ARCHIUM... 20

2.7.1 Characteristics..20

2.7.2 Limitation...20

2.8 AQUA.. '..................................... 21

2.8.1 Characteristics... 21

2.8.2 Limitation...21

2.9 Automatic Architecture Knowledge Extraction Tool (AAKET).. 22

2.9.1 Characteristics... 22

2.9.2 Limitation...23s
2.10 Summary of Survey Techniques...23

3 Case Study Design............ ."..28

3.1 What is Case Study?...28

3.2 Rationale for Selection of Case Study as a Research Methodology..28

3.3 Objective of Case Study:.. 29

3.4 The Case:...29

3.5 Method (Data Collection):... 29

3.6 Main Research Activities... 30

4 Identification of Contextual Knowledge Elements...31

4.1 Findings of Case Study... 31

4.1.1 Application Type.. 31

4.1.2 Time... 31

4.1.3 Software Process.. ...31

4.1.4 Implementation Technology..31

4.1.5 Deployment Environment..32

4.1.6 Project Development Team.. 32

4.1.7 Organization Processes.. 32

4.1.8 Global Software Development.. .*.................................... 32

4.1.9 Cost.... :.. 32

4.1.10 Stakeholders..33

4.1.11 Deployment Topologies... 33

'4.1.12 Application Domain... 33

4.2 Finding Details...33

4.2.1 Application Type as Assumption or Constraint..33

4.2.2 Time as Assumption or Constraint...35

4.2.3 Software Process as Assumption or Constraint..37

4.2.4 Implementation Technology as Assumption or Constraint..39

4.2.5 Deployment Environment as Assumption or Constraint.. 41

4.2.6 Organization Processes as Assumption or Constraint.. 43

4.2.7 Project Development Team as Assumption or Constraint...45

4.2.8 Globa! Software Development as Assumption or Constraint...47

4.2.9 Cost as Assumption or Constraint..49

4.2.10 Stakeholders as Assumption or Constraint...51

4.2.11 Deployment topologies as Assumption or Constraint.. 53

4.2.12 Application domain as Assumption or Constraint.. 55

4.3 Design Decisions..57

5 Model.. 62

5.1 A Model for Reusability of Software Architectural Knowledge......... 62

5.1.1 Description of Proposed Model.. .. 63

5.1.2 Characteristics of Proposed Model..63

5.1.3 Limitation...63

5.2 Proof of Concept..64

6 Conclusion and Future Work... 65

6.1 Summary...65

6.2 Contribution..65

6.3 Future work...66

7 References......... ... 67

8 Glossary... 71

Organization of Questions on the Basis of Goals & Sub-Goals...........................’..s,................................. 73

Questions.. 74

1 Introduction

1.1 Software Architecture : -
One sub-discipline within software engineering is software architectures, which is a kind of high-

level design of the software of one or more systems. Currently, there is no agreement to what

exactly software architecture involves. A review of the published literatureindicates that a

unified view of software architecture has not been approaching [30]. Software architectures

shiftdeveloper’sfocus from linesof-code to architectural elements and their interconnection

structure [31]. One popular definition is from [13]:

The software architecture o f a program or computing system is the structure or structures o f

the system, which comprise software elements, the externally visible properties o f those

elements, and the relationships among them.

It is generally accepted that the constituents of the software architecture are components,

connections, constraints, styles and patterns [36]. A software architecture design provides early

system foundation for subsequent detailed design and implementation [37].Software architecture

are created, evolved, and maintained in a complex environment. The architecture business cycle

[13] of figure 1.1 illustrates this. On the left hand side, the figure presents different factors that

influence software architecture through an architect. It is the responsibility of the architect to

manage these factors and architecture of the system. An important factor is formed by

requirements, which come from stakeholders and the developing organization.

The architecture business cycle [13] contains a feedback loop, within which the architect’s

influences are influenced by both the system and architecture. This feedback loop exists, since

the perception of the system and the architecture influences the stakeholders.

Stakeholders

ArchifecVs Influences

Developing
Organization

Requirements

Technical
Environment

Architect’s
Experience

Architect(s)

Architecture

f

System

Figure 1.1: The architecture business cycle from [13]

1.2 Knowledge Management
Knowledge Management is defined as:

''The process o f selectively applying knowledge from previous experiences o f decision-making to

current and future decision making activities with the express purpose o f improving the

organization's effectiveness [27],

Therefore major goals of knowledge management are defined in [27] as:

• Identify Critical Knowledge

• Acquire Critical Knowledge in a Knowledge Base or Organizational Memory

• Share the stored Knowledge

• Apply the Knowledge to appropriate situations

• Determine the effectiveness of using the applied knowledge

• Adjust Knowledge use to improve effectiveness

The major purpose of knowledge management is to improve business processes and practices by

utilizing individual and organizational knowledge resources. These include skills, capabilities,

experiences, routines, cultural norms, and technologies [12]. Applying knowledge management

techniques to project activities can improve productivity and reduce risks of failures. In the

knowledge management literature, a distinction is often made between the personalization

strategy and the codification strategy [1, 11,12].

1.2.1 Personalization

The personalization strategy emphasizes interaction between knowledge workers. The

knowledge itself is kept by its creator.

1.2.2 Codification

In the codification strategy, the knowledge is codified and stored in a repository. The repository

may be unstructured, or structured according to some model.

1.3 Software Architectural Knowledge
Architectural knowledge includes the knowledge involved with software architectures.

Architectural knowledge is vital for the architecting process, as it improves the quality of this

process and of the architecture [28]. What precisely the view of AK involves is still a topic of

ongoing research and debate [7]. Some define ''AK as AK = design decisions + design'" [29],

others as ""AK = drivers, decisions, analysis'' [8], and some take a broader perspective by

including processes and people aspects [19]. Most researchers agree that at least one part of AK

is about the rationale, assumptions, and context of decisions that lead to a particular design.

1.4 Classification of Software Architecture Knowledge
The knowledge can be technical (such as patterns, tactics, and quality attribute analysis models)

this type of knowledge is required to identify, assess, and select suitable design options for

design decisions. ''The knowledge can be contextual, also called design rationale, such as design

options considered, tradeojfs made, assumptions, and design reasoning [2]

Similarly, types of software architecture knowledge are described in [10]. The application-

generic knowledge that architects have implicitly in their heads, from their experience in

working in one or more domains.This is like library of knowledge, which consists of

architectural patterns, tactics or reference architectures or even other software engineering

techniques, e.g. in requirements engineering. This type of knowledge can be generally applied in

several applications regardless of the domain.

The application-specific knowledge, of a specific application during the initial development or

evolution of that application. This involves all the decisions that were taken during the

architecting process of a particular system and the architectural solutions that implemented the

decisions.

“Architects require topic knowledge (learned from text books and courses) and episodic

knowledge (experience with the knowledge) [12], to design software architectures. ”

Based on the above categorization of knowledge, software architecture knowledge can be

broadly categorized as general knowledge of software architecture and knowledge which is

applied in particular project during architecture design process.

1.5 Research Problem
Software architecture design is knowledge intensive process that, produces and requires

knowledge. Commonly during the architecture development process, decisions are not

documented explicitly but are reflected by the models the architects build, consequently, useful

knowledge attached to the decisions and its process is lost. The software architecture knowledge

can be categorized as technical knowledge [2] (such as patterns, tactics, and quality attribute

analysis models) and contextual knowledge (design rationale) [2].

Software architecture embodies significant decisions, these decisions are in the form of tacit

knowledge, but rationales behind the decisions are not available. This causes two main problems:

• Design decisions vaporize.

• The reusability of technical knowledge applied in designing similar software architecture

is difficult.

This research is related to the field of Software Architecture Knowledge Management and will

answer the following question:

What contextual knowledge software architects require for reusability of technical

knowledge of software architecture?

1.6 Research Methodology
The research method was comprised of following components in the given order:

• Detailed literature review and critical analysis was conducted, in order to identify state of

practice and knowledge management approaches in software architecture knowledge

management to identify characteristics, effectiveness and limitation of each.

• After detailed literature review an exploratory case study was'conducted to identify

contextual knowledge elements used by software architects in designing software

architecture.

• Based on the results of case study a thorough analysis of results was performed in order

to identify reusability needs for selection of appropriate technical knowledge elements.

• Proposed a model for reusability of softwarearchitectural knowledge.

• A prototype for proof of concept was built in order to validate results.

• Recommendations for the future work.

1.7 ResearchRationale
The outcome of this research is the identification of reusability needs in form of contextual

knowledge elements that software architects require for new architectural decisions. In

addition,outcome also includes a model for reusability of software architectural knowledge.

2 Literature Review

2.1 Decision Goal and Alternatives DDR Framework (DGA-DDR)
The DGA DDR framework [9]attempts to document the reason for design decision. The

Decision Goal and Alternatives (DGA) DDR [9] is motivated by the decision goals and design

alternative available.” Decision Type describes problem to be solved and Decision Alternative

(DA) corresponds to an available alternative with respect to a Decision Type (DT). “The

rationale behind a design decision documents the attributes of CBAM [9]. According to DGA,

whatever the software context might be, design decisions depend on basic decision goals and

inter-decision relationships. The entities that influences design decision rationales are functional

requirements, non-functional requirements, business goals and decision relationships [9].

2.1.1 Characteristics

This framework supports in making new decisions as the framework decomposes the concept of

decision into Decision Type (DT) and Decision Alternative (DA) [9].The framework improved

design quality and reusability and also explicit domain knowledge [9]is available to be used by

other employees. The framework exploits value based-principles for use of systematic use of

design decision rationale [9].The framework analyzes scenarios on the basis of context, matrix

and required design decision information [9].

2.1.2 Limitations * *

1. The framework does not provide any type of tool support.

2. The framework does not relate decisions with contextual factors influencing the decision.

Therefore rationales for the decisions are not structured resulting limited reuse of existing

decisions.

3. The framework does not relate influences of contextual factors considered as assumption

or as constraints on selection of specific technical knowledge element i.e. architecture

style of tactics. Hence maintaining knowledge in such a way only benefits for the life

^ cycle of current project.

4. The framework does not associate classification of non-functional requirements with

technical knowledge elements and contextual elements.

2.2 A Core Model of Architectural Knowledge
The main aim of core model [19] of AK is to give a common frame of reference for architectural

knowledge sharing [19]. This research work proposes a model of architectural knowledge that

has maxima! expressivity in the architectural knowledge domain and functions as a reference

model for sharing architectural knowledge [19].

2.2.1 Characteristics
The aim of this research work and model is to provide minimalistic set of vocabulary that

describes software AK [19]. This research work helps improves knowledge management

practices as it recordsoptions and selected option by proposing and ranking [19]. The software

knowledge management applications are analyzed regarding four perspectives of sharing,

compliance, discovery and traceability [19].

2.2.2 Limitation
1. The core model does not provide any type of tool support [19].

2. The core model does not relate decisions with contextual factors influencing the decision.

Therefore rationales for the decisions are not structured resulting limited reuse of existing

decisions.

3. The core model does not relate influences of contextual factors considered as assumption

or as constraints on selection of specific technical knowledge element i.e. architecture

style of tactics. Hence maintaining knowledge in such a way only benefits for the life

cycle of current project,

4. The core model does not associate classification of non functional requirements with

technical knowledge elements and contextual elements.

2.3 Variability Modeling Principles to Capture Architectural Knowledge

(COVAMOF Framework)
COVAMOF [18] is a variability modeling framework that consists of models, tooling and

processes that support engineers in the development o f product families in addition to the

configuration of individual products from a product family [18]. The vision is use variability

modeling philosophy to storeAK [18]. The idea behind COVAMOF is that it gives several views

on the variability that is presented by the product family artifacts [18].

2.3.1 Characteristics

The proposal behind COVAMOF framework [18] exploitation in software architecture

knowledge management is that it provides several views on the variability that is provided by the

product family artifacts [18].The framework deals with the imprecise and incomplete nature of

the effect of decisions on quality attributes [18].It enables tool support to manage complexity of

software architecture design activity [18].

2.3.2 Limitations

1. The COVAMOF framework does not relate decisions with contextual factors influencing

the decision. Therefore rationales for the decisions are not structured resulting limited

reuse of existing decisions.

2. The COVAMOF framework does not relate influences of contextual factors considered

as assumption or as constraints on selection of specific technical knowledge element i.e.

architecture style of tactics. Hence maintaining knowledge in sudh a way only benefits

for the life cycle of current project.

3. The COVAMOF framework does not associate classification of non ftinctional

requirements with technical knowledge elements and contextual elements.

2.4 Evolution Tailored with Architectural Knowledge (ETAK)
Evolution Tailored with Architectural Knowledge), ETAK [38] approach of software

architecture knowledge management facilities the software architect for software evolutions

needs. The architect can specify properties to be considered, which are described as traits for

inclusion in the evolution. ETAK investigate the architectural knowledge to ascertain relevancy,

facilitating the software architect in deciding whether traits are important for the architecture

[38],

2.4.1 Characteristics

ETAK examines the architectural knowledge to determine the relevance of evolutions traits

required for software architecture design process. Using ETAK software architect can adjust a

number of inputs, like traits, scope, and architectural knowledge and process again ETAK.

ETAK enables software architect to leverage, according to relevance results and/or tailored

evolution attained.

2.4.2 Limitations

1. The framework does not provide any type of tool support [38].

2. The framework is mainly "targets software architect needs to address software architecture

evolution needs.

3. The framework does not relate decisions with contextual factors influencing the decision.

Therefore rationales for the decisions are not structured resulting limited reuse of existing

decisions.

4. The framework does not relate influences of contextual factors considered as assumption

or as constraints on selection of specific technical knowledge element i.e. architecture

style of tactics. Hence maintaining knowledge in such a way only benefits for the life

cycle of current project.

5. The framework does not associate classification of non functional requirements with

technical knowledge elements and contextual elements.

2.5 Process-centric Architecture Knowledge Management Environment

(PAKME)
The framework is founded onnotion "from knowledge management, experience factory,

andpattern-mining [12]”. It consists of various approaches to capture design decisions and

contextual information. The knowledge repository is logically divided into knowledge-based

artifacts, generic knowledge, and project-based artifacts [12]. “PAKME is composed of four

components [12]; knowledge acquisition, knowledge maintenance, knowledge retrieval, and

knowledge presentation [12].

2.5.1 Characteristics

This framework entails an approach to document architectural information from patterns, and

engage a data model to explain architectural constructs, their attributes and relationships [12], It

provides support for design and analysis methods [12]. The frameworkprovides limited

reusability of technical knowledge of software architecture independent of contextual factors

[12],

. ...

2.5.2 Limitation

1. As software architecture design is an iterative process this framework does not supports

such nature o f software architecture design. This result in loss of valuable knowledge of

why the particular decision is changed and its corresponding rationales.

2. This tool is not open source and also lacks groupware support. ■ ,

3. It caters the need for basic reusability from software architecture knowledge repository

besides performing other common tasks of knowledge management.

4. The framework does not relate decisions with contextual factors influencing the decision.

Therefore rationales for the decisions are not structured resulting limited reuse of existing

decisions.

5. The framework does not relate influences of contextual factors considered as assumption

or as constraints on selection of specific technical knowledge element i.e. architecture

style of tactics. Hence maintaining knowledge in such a way only benefits for the life

cycle of current project.

6. The framework does not associate classification of non fiinctional requirements with

technical knowledge elements and contextual elements.

2.6 Architecture Design Decision Support System (ADDSS)
ADDSS [21] is a web-based tool for storing architectural design decisions. ADDSS makes the

architecture by iterative process where one or more design decisions are made for each of the

iterations [21]. This tool is founded on the meta-model for software architecture knowledge

management [21].

2.6.1 Characteristics

ADDSS tools supports gradual formalization i.e helps in leaming[21]. It enables multi­

perspective support for different stakeholders. Further, this tool is an open source tool [21]. It

allows the storage of several projects and architectures [21], It enables multi-perspective support

for different stakeholders [21], as differenttypes of users with different roles (e.g.: project

managers, architects, etc.) can be registered by filling a simple form and the system emails them

a username and a password. The meta-model of ADDSS relate influence of assumptions in

decisions [21].The meta-model of ADDSS consider affects of contextual factors on technical

knowledge elements [21].

2.6.2 Limitation

1. The meta-model o f ADDSS does not relate decisions with contextual factors influencing

the decision. Therefore rationales for the decisions are not structured resulting limited

reuse of existing decisions.

2. The meta-model of ADDSS does not relate influences of contextual factors considered as

constraints on selection of specific technical knowledge element i.e. architecture style of

tactics. Hence maintaining knowledge in such a way only benefits for the life cycle of

current project.

3. The meta-model of ADDSS does not associate classification of non functional

requirements with technical knowledge elements and contextual elements.

4. The tool is not tested in an industrial setting [21].

2.7 ARCHIUM
The Archium tool [17] is a prototype implementation of the knowledge grid presented in the

Griffin project [1, 17]. A meta-model has been defined by Archium which is build from three

sub-models [17]: an architectural model, a design decision model, and a composition model

which compose design fragments (an architectural firagment defining a collection of architectural

entities). The prototype contains a compiler and a supportive run-time environment [22].

2.7.1 Characteristics

The Archiumunite an architectural description language (ADL) with Java language [17] to

express the elements from a component and connector view and making precise the design

decisions and its rationale.‘T/;/i' includes a code transformation process, which analyzes the

architectural elements and transforminto Java classes. "[17]Jh\s makes sure implementation to

design consistency.

2.7.2 Limitation

1. The Archium tool has not been tested yet in an industrial setting [17],

2. As the tool employs ADL [17], with Java, so its applicabijity for a knowledge

management tool is limited because of underlying ADL.

3. Since tool supports component and connector view so it lacks multi perspective and

iteration support [21].

4. This tool is more applicable in environments where architects are more experienced and

development environment is Java based. The reusability of knowledge is limited. And

also this tool is not open source.

5. The tool does not provide any type of tool support[17].

6. The tool does not relate decisions with contextual factors influencing the decision.

Therefore rationales for the decisions are not structured resulting limited reuse of existing

decisions.

7. The tool does not relate influences of contextual factors considered as assumption or as

constraints on selection of specific technical knowledge element i.e. architecture style of

tactics. Hence maintaining knowledge in such a way only benefits for the life cycle of

current project.

8. The tool does not associate classification of non functional requirements with technical

knowledge elements and contextual elements.

2.8 AQUA
AQUA [14]is an approach for decision centric architecture designwhich is based on the proposed

model. The proposed model represents architectural design decisions for building architectural

design decisions clear [14]. AQUA defines decision-centric [14] process o f finding, evaluating,

and changing the decisions. During the decision-centric process, the AQUA involved works of

architectural evaluation and transformation [14].

2.8.1 Characteristics

“The integrated approach AQUA [14] supports finding, analyzing and changing decisions. It

supports architects in evaluation phase.AQUA integrated the activities relevant to quality

achievement at the architectural level, which include architectural evaluationand transformation

[14].“

2.8.2 Limitation
1. AQUA [14] includes important concept but theeffort for facilitation is more focused to

help architect in software architecture evaluation phase.

2. AQUA[14] does not provide any type of tool support.

3. The AQUAdoes not relate decisions with contextual factors influencing the decision.

Therefore rationales for the decisions are not structured resulting lilnited reuse of existing

decisions.

4. The AQUA ’does not relate influences of contextual factors considered as assumption or

as constraints on selection of specific technical knowledge element i.e. architecture style

of tactics. Hence maintaining knowledge in such a way only benefits for the life cycle of

current project.

5. The AQUAdoes not associate classification of non functional requirements with technical

knowledge elements and contextual elements.

2.9 Automatic Architecture Knowledge Extraction Tool (AAKET)
AAKET [16] is tool that collects architectural knowledge from documents and electronic mails

and records it in structured manner in knowledge repositories, by minimum user intervention

[16]. The research goal for AAKET is to achieve an appropriate mean of capturing architectural

knowledge, and transforms this knowledge into software architecture knowledge management

tools [16]. AAKET addresses the knowledge management issues like structured information is

not available and lack o f motivation to put efforts for knowledge management [16]. The main

focus is on reducing the effort to capture design decisions. To achieve performance up to desired

level AAKET is developed using Visual C++ 6.0 [16]. In addition, AAKET employed best

algorithms to address performance issues [16].

2.9.1 Characteristics

AAKET address the issues of manually transferring architecture knowledge from documents to

knowledge repositories [16]. AAKET perform most of the lengthy and* laborious tasks semi-

automatically with minimum human intervention [16]. It manages the authentication by storing

all the authentication related data in a remote machine [16]. It extracts the information stored in

electronic mails and other documents based on a set o f rules, and hands it over to the next layer

component for persistence of knowledge. [16]. AAKET uses PAKME [20] (Process-based

architecture knowledge management environment) as knowledge repository [16].

2.9.2 Limitation

1. Although this tool minimize the effort required for storing and managing software

architecture knowledge but currently its utility is limited in terms of features and also

organizations store their documents and artifacts in different file formats but this tool is

currently good for MS word and MS-outlook [16], ; .

2. This tool extracts architectural knowledge so it is more applicable where need is to share

architecture knowledge among various stakeholders. This tool is more applicable for

managing post architecture knowledge for sharing purposes.

3. This tool is not yet used by industry practitioners [16].

4. This tool is not open source and also lacks groupware support [16],

5. The tool does not relate decisions with contextual factors influencing the

decision.Therefore rationales for the decisions are not structured resulting limited reuse

of existing decisions.

6. The tool does not relate influences of contextual factors considered as assumption or as

constraints on selection of specific technical knowledge element i.e. architecture style of

tactics. Hence maintaining knowledge in such a way only benefits for the life cycle of

current project.

7. The tool does not associate classification of non functional requirements with technical

knowledge elements and contextual elements.

8. Currently this tool only stores its information to repository of PAKME [16].

2.10 Summary of Survey Techniques
No Technique Characteristics Limitations
1 Decision Goal and

Alternatives DDR
Framework (DGA-DDR)

• Decomposes the concept
of decision into Decision
Type (DT) and Decision
Altemative (DA).

• The framework exploits
value based-principles for
use of systematic use of
design decision rationale

• No tool support.

• Not relate decisions

'with contextual factors.

• Not relate influences of

contextual factors

considered as

assumption or as

constraints.

A Core Model of
Architectural Knowledge

Variability Modeling
Principles to Capture
Architectural Knowledge
(COVAMOF Framework)

Evolution Tailored with
Architectural Knowledge
(ETAK)

Provide minimalistic set
of vocabulary.
Consider four
perspectives of sharing,
compliance, discovery
and traceabiiity of
software architecture.

Support in the

development of product

families in addition to

the configuration of

individual products from

a product family using

variability modeling.

Facilities the software

architect for software

evolutions needs.

Examines the

architectural knowledge

to determine the

relevance of evolutions

traits required for

software architecture

design process:

Enables architect to

leverage, according to

relevance results and/or

tailored evolution

attained.

No tool support.

Not relate decisions

with contextual factors.

Not relate influences of
contextual factors
considered as
assumption or as
constraints.
Does not relate

decisions with

contextual factors

influencing the

decision.

Does not relate

influences of

contextual factors

considered as

assumption

No tool support.

Not relate decisions

-with contextual factors.

Not relate influences of

contextual factors

considered as

assumption or as

constraints.

Process-centric
Architecture Knowledge
Management
Environment (PAKME)

• Founded on notion from

knowledge

management, experience

factory, and pattern-

mining.

• Consists of various

approaches to capture

design decisions and

contextual information.

• Logically divided into

knowledge-based

artifacts, generic

knowledge, and project-

based artifacts.

• ^Does not support

iterative process this

framework.

• This tool is not open

source and also lacks

groupware support.

• Does not relate

decisions with

contextual factors

influencing the

decision.

• "Not relate decisions

with contextual factors.

• Not relate influences of

contextual factors
considered as

assumption or as

constraints.

Architecture Design
Decision Support System
(ADDSS)

• Web-based ■ tool for • The meta-model of

storing architectural ADDSS does not

design decisions. relate decisions with

• ADDSS makes the contextual factors

architecture by iterative 'influencing the

process where one or decision.

more design decisions • Does not relate

are made for each of the influences of

iterations contextual factors

• Founded on the meta­ considered as

model for software constraints.

architecture knowledge • Does not associate

management. classification of non-

functional

^requirements with

technical knowledge

elements and

contextual elements.

ARCHIUM Unite an architectural

description language

(ADL) with Java.

This includes a code

transformation process,

which analyzes the

architectural elements

and transform into Java

classes.”[17] This makes

sure implementation to

design consistency.

AQUA • Supports finding,

analyzing and changing

decisions.

• Supports architects in

evaluation phase.

Not relate decisions

with contextual factors.

Not relate influences of
contextual factors
considered as
assumption or as
constraints.

AAKET Perform most of the

lengthy and laborious

tasks semi-automatically

with minimum human

intervention.

Extracts the information

stored in electronic

mails and other

documents based on a

No tool support.

„Not relate decisions

with contextual factors.

Not relate influences of
contextual factors
considered as
assumption or as
constraints.

set of rules, and hands it

over to the next layer

component for

persistence of

knowledge.

3 Case Study Design

This research is intended to identify the contextual knowledge elements used by software

architects during software architecture design, so as we address their reusability needs during

architecture design.The primary ftinction of identification is to improve reusability of software

architecture technical knowledge based on contextual knowledge as there is growing interest in

methods for capturing the rationale behind software architectures [34]. Case Study research is an

idea! methodology when a holistic and in depth analysis is required for such situation. In our

study we want to identifycontextual knowledge elements that determine the selection of

particular technical knowledge element.

3.1 What is Case Study?
The analytical research is not adequate for investigating difficult real life issues, involving

humans and their interactions with technology [23],The case study gives the story behind the

result by capturing what happened to bring it about, and can be a good opportunity to highlight a

project’s success, or to bring attention to a particular challenge or difficulty in a project [33].

Case study is a suitable research methodology for software engineering research since it studies

contemporary phenomena in its natural context [23].

3.2 Rationale for Selection of Case Study as a Research Methodology
The rationale for selection of case study as a research methodology for this research was to

explore designing of software architecture design process in terms of what guides selection of

decisions, and factors that determine reusability needs of software architects.The main objective

of this research thesis is identification of software architectural knowledge elements that

influences the software architects in determining the right technical knowledge element in a

given context. As software architecture design phenomenon takes place for a given industrial

project or system having definite customer, sponsor’s requirements or expectations including

certain assumptions and constraints on group of software architects designing software

architecture. Therefore it was notappropriate to develop any environment in lab settings where

industry software architects design software architecture for some real industry project with

definite requirements and constraints, so experiment [39] research methodology was not

considered for this research work. In addition, this research lacks any preUminary hypothesis

required to conduct experiment.

When it is hard to experiment due to high cost, complexity, and inconvenienceor impossible to

experiment due to any reason, another strong candidate i.e. simulation[40]research methodology

was considered. Since in this research workit was inconvenient to collect a required group of

people i.e. software architects and impossible as to simulate enVironment for not real

requirements, assumptions and constraints. Therefore simulation is not considered for this

research.

The other strong candidate research methodology considered for this research was to conduct a

survey[41] because the survey is a non-experimental, descriptive research method.Conducting

surveys can be useful when data needs to be collected on phenomena that cannot be directly

observed.Since the subject of investigation for this research was software architecture design

process and we wanted to gain a deep understanding of this phenomenon to identify right

contextual knowledge elements used. Therefore conducting survey for identification of reusable

software architectural contextual knowledge elements was ruled out.

3.3 Objective of Case Study:
To determine reusability needs of software architecture technical knowledge. The case study for

the research is an exploratory case study. The unit of analysis for this case study is software

project.

^ 3.4 The Case;
 ̂ The case for this case study is software architecture design process.

3.5 Method (Data Collection):
Preliminary interview of participants were conducted to elicit contextual knowledge elements of

software architectural knowledge. Comprehensive questionnaire, attached in appendix A, was

evolved during the case study and at the end of case study participants filled that questionnaire.

On the basis of case study results, a thorough analysis was performed for identification of

reusable technical knowledge constructs.

3.6 Main Research Activities
The diagram depicts the research methodology activities.

\/
Preliminay Interview

\/
Case Execution

\/
f Software Architecture
\ Design

Activity vras conducted in order to gain ^
understanding of software archtiecture
design process and indentifiction of
contextual knowledge elements._____

Activity of software architecture
design.

Compilation of Findings
(Design Decisions)

V
Analysis

Documentation
of Findings

\/

Activity was performed to analyze ^
findings in order to impro\e reusabiltiy of
software architectural knowledge.

4 Identification of Contextual Knowledge Elements

This research is intended to identify the contextual knowledge elements used by software

architects during software architecture design and determining how to preserve contextual

elements to enhance reusability of software architectural knowledge. This section also describes

the findings of case study in terms of design decisions taken during case study.

4.1 Findingsof Case Study
Following are the software architecture contextual knowledge elementsidentified [32].

4.1.1 Application Type
This contextual element determines type of application based on requirements and infrastructure

limitation. For example web application, mobile application, rich internet client, real time

application etc. During software architecture design this contextual element is either assumption

or constraint for software architect.

4.1.2 Time
This contextual element concerns about development and maintenance time.Constraints on time

arepre-defmed time linesfrom stakeholders and assumptions on tinje are considered as

supposition of available time for software project.

4.1.3 Software Process
This contextual element describes software process followed during life cycle of application.

Constraints on software architect regarding software process are to follow certain software

process e.g. water fall, iterative or incremental etc for the underlying application in architecture

design. An assumption regarding software process during software architecture design refers

supposition of software process to be followed.

4.1.4 Implementation Technology
This contextual element describes tools and technologies catering all development needs of

"^software engineers, for example Java, .Net, Oracle, or open source technologies. Constraints on

software architecture regarding implementation technology are to follow certain technology. An

A Model for Reusability of Software Architectural Knowledge

assumption regarding! mplementation techno logy during software architecture design refers

supposition of implementation technologyto be used.

4.1.5 Deployment Environment
This contextual element describes target environment in terms of platform and hardware for

example, sun oracle machines, Intel family servers and consideration of operating system as

Microsoft, UNIX or Linux. Constraints regarding deployment environment are to go with certain

hardware platform and operating system. An assumption regardingdeployment

environmentduring software architecture design refers supposition o f certain deployment

environment.

4.1.6 Project Development Team
This contextual element describes experience, skill set and number of team members of software

development project. Constraints regarding project development team are team with specific skill

for example java team will be free after at time of development so constraint is project

development team. Assumptions on project development team are suppositions of software

architect regarding experience and skill set of team members responsible for development of

software.

4.1.7 Oi^anization Processes
This contextual element describes development organization processes for example ISO, CMMl

and SPICE etc. Constraints are specific organization process say CMMI to be followed. An

assumption regardingorganization processesduring software architecture design refers

supposition of certain organization processes.

4.1.8 Global Software Development
This contextual element describes whether software development activities for the underlying

project to be conducted collocated or in distributed settings. Constraints on software architect are

either collocated or in distributed settings. Assumptions on global software development are the

supposition of software architect for either mentioned possibility.

4.1.9 Cost
This contextual element describe available project budget. Constraints on cost for software

architect regarding cost are either high or low cost. Assumptions on costare the supposition of

software architect for either mentioned possibility.

4.1.10 Stakeholders
This contextual element describes different people influence software architecture design other

than software architecture design group.

4.1.11 Deployment Topologies
This contextual element describes target environment in terms network arrangement for example

wired or wireless or star bus, ring topology. Constraints regarding deployment environment are

to go with certain topology. Assumptions on deployment environment are the supposition of

software architect regarding target environment network topologies.

4.1.12 Application Domain
This contextual element describes domain of application as financial, health care,

telecommunications, defense or any generic component. Constraint regarding application domain

is clear understating regarding domain. Assumptions on application domain are the supposition

of software architect, which otherwise means not clarity of domain of application to be

developed, for example development of certain general purposecomponent.

4.2 Finding Details

4.2.1 Application Typeas Assumption or Constraint

4.2.1.1 Application Type as Consideration

Influenceon Selection of Architecture Style
• Participant A considered application type consideration as medium for product

requirement, high for organization requirement and medium for external requirement.

• Participant B considered application type consideration as medium for product

requirement,organization requirementand external requirement.

Influence on Selection of Tactics
• Participant A considered application type consideration as high for product requirement

and organization requirement and medium for external requirement.

• Participant B considered application type consideration as high for product requirement

and organization requirement and medium for external requirement.

Influence on Reference Architecture
• Participant A considered application type consideration as high for product requirement,

medium for organization requirement and high for external requirement.

• Participant B considered application type consideration as medium for product

requirement, organization requirement and external requirement.

4.2.1.2 Application Type as Constraint

Influence on Selection of Architecture Style
• Participant A considered application type as constraint as high for product requirement,

organization requirement and external requirement.

• Participant B considered application type as constraint as medium for product

requirement, organization requirement and external requirement.’ '

Influence on Selection of Tactics
• Participant A considered application type as constraint as high for product requirement,

organization requirement, and external requirement.

• Participant B considered application type as constraint as high for product requirement

and organization requirement and medium for external requirement.

Influence on Selection Reference Architecture
• Participant A considered application type as constraint as medium for product

requirements, organization requirements, and external requirement.

• Participant B consideredapplication type as constraint as high for product requirements,

medium for organization requirements and high for external requirements.

4.2.1.3 Application Type as Assumption

Influence on Selection of Architecture Style
• Participant A considered application type as assumption as high for product requirements,

and low for organization requirements and external requirement.

• Participant B considered application type consideration as low for product requirement

and medium for organization requirement and external requirement.

Influence on Selection of Tactics
• Participant A considered application type as assumption as high for product requirements

and low for organization requirements and external requirement.

• Participant B considered application type consideration as low for product requirement

and medium for organization requirement and external requirement.

Influence on Reference Architecture
• Participant A considered application type as assumption as lowfor product requirements,

organization requirements and external requirement.

• Participant B considered application type as assumption as medium for product

requirements, organization requirements and external requirement.

Conclusion
Application type influences in selection of any software architectural decision. This contextual

element is consideredin both types of influences i.e. as an assumption and constraint. Since there

exist a likelihood of considering certain application type as a generic product, therefore

participants strongly consider application type in design decisions durfng software architecture

design.

4.2.2 Time as Assumption or Constraint

4.2.2.1 Time as Consideration

influence on Selection of Architecture Style
• Participant A considered time as medium for product requirement, high for organization

requirement and low for external requirement.

• Participant B considered time as high for product requirement, organization requirement

and external requirement.

Influence on Selection of Tactics
• Participant A considered time as medium for product requirement and organization

requirement and low for external requirement.

• Participant B considered time as high for product requirement and organization

requirement and medium for external requirement.

Influence on Reference Architecture
• Participant A considered time as medium for product requirement and organization

requirement and low for external requirement.

• Participant B considered time as high for product requirement, organization requirement

and external requirement.

4.Z.2.2 Time as Constraint

Influence on Selection of Architecture Style
• Participant A considered time as constraint as high for product requirement, organization

requirement and external requirement.

• Participant B considered time as constraint as medium for product requirement,

organization requirement and external requirement.

Influence on Selection of Tactics
• Participant A considered timeconstraint as high for product requirement, organization

requirement and external requirement.

• Participant B considered time constraint as medium for product requirement, organization

requirement and external requirement.

Influence on Reference Architecture

• Participant A considered time constraint as medium for product requirements, high for

organization requirements and medium external requirement.

• Participant B considered time as constraint as mediumfor product requirements and

organization requirements and high for external requirements.

4.2.2.3 Time as Assumption

Influence on Selection of Architecture Style
• Participant A considered time as assumption as medium for product requirements,

medium for organization requirements and low for external requirement.

• Participant B considered time as assumption as low for product requirement and medium

for organization requirement and external requirement.

Influence on Selection of Tactics
• Participant A considered time as assumption as high for product requirements,

organization requirements and medium for external requirement.

• Participant B considered time as assumption as high for product requirement,

organization requirement and external requirement.

Influence on Reference Architecture

• Participant A considered time as assumption as medium for product requirements,

organization requirements and external requirement.

• Participant B considered time as assumption as low for product requirements, and

medium for organization requirements and external requirement.' -

Conclusion

Time influences in selection of any software architectural decision. There is consensus of

both participants that value of time is mostly known at the time of decision but if value of

time is not known or will be known after software architectural decisions, in both cases

time influences software architect in any software architectural decision. The rationale for

consideration is significance of time factor in activity definition, activity sequencing and

in effort estimation.

4.2.3 Software Process as Assumption or Constraint

4.2.3.1 Software Process as Consideration

Influence on Selection of Architecture Style
• Participant A considered software process consideration as low for product requirement,

and medium for organization requirement and external requirement.

• Participant B considered software process consideration as medium for product

requirement, organization requirement and external requirement.

Influence on Selection of Tactics
• Participant A considered software process consideration as high for product requirement,

medium for organization requirement and high for external requirement.

• Participant B considered software process consideration as medium for product

requirement, organization requirement and external requirement.

Influence on Reference Architecture
• Participant A considered software process consideration as medium for product

requirement and organization requirement and high for external requirement.

• Participant B considered software process consideration as high for product requirement

and medium for organization requirement and external requirement.

4.2.3.2 Software Process as Constraint

Influence on Selection of Architecture Style
• Participant A considered software process as constraint as mediumfor product

requirement, organization requirement and external requirement.

• Participant B considered software process as constraint as -medium for product

requirement, organization requirement and external requirement.

Influence on Selection of Tactics

• Participant A considered software process as constraint as medium for product

requirement, organization requirement and high for external requirement.

• Participant B considered software process as constraint as medium for product

requirement, organization requirement and external requirement.

Influence on Reference Architecture
• Participant A considered software process as constraint as medium for product

requirements and organization requirements and high forextemal requirement.

• Participant B considered software process as constraint as medium for product

requirements and organization requirements and high for external requirement.

4.2.33 Software Process as Assumption

Influence on Selection of Architecture Style
• Participant A considered software process as assumption as medium for product

requirements, organization requirements and external requirement.

• Participant B considered software process consideration as medium for product

requirement, low for organization requirement and external requirement.

Influence on Selection of Tactics
• Participant A considered software processas assumption as medium for product

requirements, and high for organization requirements and external fequirement.

• Participant B considered software process consideration as low for product requirement,

organization requirement and external requirement.

Influence on Reference Architecture
• Participant A considered software process as assumption as low for product requirements,

medium for organization requirements and low for external requirement.

• Participant B considered software processas assumption as mediumfor product

requirementsand low for organization requirements and external requirement.

Conclusion

Software process influences in selection of any software architectural decision.The

rationale for consideration of software process in software architectural decisions is to

devise proper iteration planning and effective management of development and

deployment phases.

4.2.4 Implementation Technology as Assumption or Constraint

4.2.4.1 Implementation Technology as Consideration

Influence on Selection of Architecture Style
• Participant A considered implementation technology consideration as medium for

product requirement, high for organization requirement and medium for external

requirement.

• Participant B considered implementation technology consideration as high for product

requirement, organization requirement and external requirement..

Influence on Selection of Tactics

• Participant A considered implementation technology consideration as low for product

requirement and medium for organization requirementfor external requirement.

• Participant B considered implementation technology consideration as high for product

requirement, organization requirement and external requirement.

Influence on Reference Architecture
• Participant A considered implementation technology consideration as high for product

requirement, medium for organization requirement and high for external requirement.

• Participant B considered implementation technology consideration as high for product

requirement, organization requirement and external requirement.

4.2.4.2 Implementation Technology as Constraint

Influence on Selection of Architecture Style ^
• Participant A considered implementation technology as constraint as high for product

requirement and medium for organization requirement and external requirement.

• Participant B considered implementation technology as constr^nt as high for product

requirement and medium for organization requirement and external requirement.

Influence on Selection of Tactics
• Participant A considered implementation technology as constraint as high for product

requirement, organization requirement, and external requirement.

• Participant B considered implementation technology as constraint as high for product

requirement and organization requirement and medium for external requirement.

Influence on Reference Architecture
• Participant A considered implementation technology as constraint as medium for product

requirements high for organization requirements and medium for external requirement.

• Participant B considered implementation technology as constraint as high for product

requirements, medium for organization requirements and external requirements.

4.2A.3 Implementation Technology as Assumption

Influence on Selection of Architecture Style
• Participant A considered implementation technology as assumption as high for product

requirements, medium for organization requirements and low for external requirement.

• Participant B considered implementation technology consideration as medium for

product requirement, organization requirement and external requirement.

Influence on Selection of Tactics
• Participant A considered implementation technology as assumption as high for product

requirementsand organization requirements and low for external requirement.

• Participant B considered implementation technology consideration as high for product

requirement and medium for organization requirement and external requirement.

Influence on Reference Architecture
• Participant A considered implementation technology as assumption as mediumfor

product requirements, low for organization requirements and medium for external

requirement. • -

• Participant B considered implementation technology as assumption as medium for

product requirements, organization requirements and external requirement.

Conclusion
Implementation technology influences in selection of software architectural decision. The

rationale for consideration is due to availability of certain programming language

constructs like object orientation, memory management and multithreading etcrequired to

efficiently implementing particular architecture style, tactics and reference architecture.

4.2.5 Deployment Environment as Assumption or Constraint

4.2.5.1 Deployment Environment as Consideration

Influence on Selection of Architecture Style
• Participant A considered deployment environment consideration as medium for product

requirement, high for organization requirement and external requirement.

• Participant B considered deployment environment consideration as medium for product

requirement, organization requirement and high for external requirement.

Influence on Selection of Tactics
• Participant A considered deployment environment consideration as high for product

requirement, medium for organization requirement and high for external requirement.

• Participant B considered deployment environment consideration as medium for product

requirement and organization requirement and low for external requirement.

Conclusion
1. Deployment environmentis considered in selection of tactics for product requirements.

2. Deployment environmentis considered in selection of tactics ’style for organization

requirements.

3. Deployment environmentis considered in selection of tactics for external

requirements.Despite disagreement among participants the rationale for consideration is

due to likelihood of considering application as a generic product and goal is to achieve

platform independence.

Influence on Reference Architecture
• Participant A considered deployment environment consideration as medium for product

requirement, high for organization requirement and medium for external requirement.

• Participant B considered deployment environment consideration as high for product

requirement, medium for organization requirement and high external requirement.

4.2.5.2 Deployment Environment as Constraint

Influence on Selection of Architecture Style
• Participant A considered deployment environmentas constraint as high for product

requirement, organization requirement andextemal requirement. • ,

• Participant B considered deployment environmentas constraint as low for product

requirement and medium for organization requirement and external requirement.

Influence on Selection of Tactics
• Participant A considered deployment environment as constraint as high for product

requirement, organization requirement and external requirement.

• Participant B considered deployment environment as constraint as low for product

requirement, high for organization requirement and medium for external requirement.

Influence on Reference Architecture
• Participant A considered deployment environmentas constraint as medium for product

requirements andorganization requirements and high for extemal-requirement.

• Participant B considered deployment environmentas constraint as low for product

requirements medium for organization requirements and external requirements.

4.2.5.3 Deployment Environment as Assumption

Influence on Selection of Architecture Style
• Participant A considered deployment environmentas assumption as medium for product

requirements, and high for organization requirements and low for external requirement.

• Participant B considered deployment environmentconsideration as medium for product

requirement, organization requirement andextemal requirement.

Influence on Selection of Tactics
• Participant A considered application type as assumption as high for product requirements,

and low for organization requirements and externa! requirement.

• Participant B considered application type consideration as medium for product

requirement and medium for organization requirement and external requirement.

Influence on Reference Architecture
• Participant A considered deployment enviroimientas assumption as mediumfor product

requirements and low for organization requirements and external requirement.

• Participant B considered depJoyment environmentas assumption as mediumfor product

requirements low for organization requirements and medium for external requirement.

Conclusion

Deployment environmentinfluences in selection of software architectural decision. The

rationale for consideration is due to exploitation of certain available features exhibited by

certain deployment environment which otherwise needs to be developed like user

management or access control from active directories ratlier custom build user

management system.

4.2.6 Organization Processes as Assumption or Constraint

4.2.6.1 Organization Processes as Consideration

Influence on Selection of Architecture Style
• Participant A considered organization processes consideration as medium for product

requirement, low for organization requirement and medium for external requirement.

• Participant B considered organization processes consideration as low for product

requirement, medium for organization requirement and low for external requirement.

Influence on Selection of Tactics
• Participant A considered organization processes consideration as high for product

requirement, low for organization requirement and high for external requirement.

• Participant A considered organization processes consideration as medium for product

requirement, low for organization requirement and high for medium requirement.

Influence on Reference Architecture
• Participant A considered organization processes consideration as medium for product

requirement, high for organization requirement and external requirement.

• Participant B considered organization processes consideration as low for product

requirement, medium for organization requirement and low for external requirement.

4.2.6.2 Organization Processesas Constraint

Influence on Selection of Architecture Style
• Participant A considered organization processesas constraint as medium for product

requirement, organization requirement and external requirement.

• Participant B considered organization processesas constraint as medium for product

requirement, organization requirement and high for external requirement.

Influence on Selection of Tactics
• Participant A considered organization processes as constraint as medium for product

I

requirement, organization requirement and external requirement.

• Participant B considered organization processesas constraint as low for product

requirement and organization requirement and medium for external requirement.

Influence on Reference Architecture
• Participant A considered organization processesas constraint as high for product

requirements and medium for organization requirements and external requirement.

• Participant B considered organization processesas constraint as medium for product

requirements and organization requirements and high for external requirements.

4.2.6.3 Organization Processesas Assumption

Influence on Selection of Architecture Style
• Participant A considered organization processesas assumption as low for product

requirements, organization requirements and external requirement.

• Participant A considered organization processes as assumption as medium for product

requirements, organization requirements and external requirement.

Influence on Selection of Tactics
• Participant A considered organization processesas assumption as low for product

requirements, and high for organization requirements and low for external requirement.

• Participant B considered organization processesconsideration as low for product

requirement, organization requirement and external requirement.

Influence on Reference Architecture
• Participant A considered organization processesas assumption as low for product

requirements, medium for organization requirements and low for external requirement.

• Participant B considered organization processesas assumption as medium for product

requirements, organization requirements and external requirement.

Conclusion

Organization processes influences in selection of software architectural decision. The

rationale for consideration is because organization processes are mostly concerned with

what to achieve rather how to accomplish the objectives. As quality software product is

aim of organization so participants considerthis factor influences in all decisions

regardless of software architectural decision or any other decision in life cycle of product.

4.2.7 Project Development Team as Assumption or Constraint

4.2.7.1 Project Development Team as Consideration.

Influence on Selection of Architecture Style
• Participant A considered project development team consideration as medium for product

requirement, organization requirement and high for external requirement.

• Participant B considered project development team consideration as medium for product

requirement, organization requirement and low for external requirement.

Influence on Selection of Tactics
• Participant A considered project development team consideration as high for product

requirement and organization requirement and low for external requirement.

• Participant B considered project development team consideration as low for product

requirement, medium for organization requirement and low for external requirement.

Influence on Reference Architecture
• Participant A considered project development team consideration as medium for product

requirement, low for organization requirement and medium for external requirement.

• Participant B considered project development team consideration as medium for product

requirement, organization requirement and low for external requirement.

4.2.7.2 Project Development Team as Constraint

Influence on Selection of Architecture Style
• Participant A considered project development team as constraint as high for product

requirement, organization requirement and external requirement.

• Participant B considered project development team as constraint as medium for product

requirement, organization requirement and external requirement.

Influence on Selection of Tactics
• Participant A considered project development team as constraint as high for product

requirement, organization requirement andextemai requirement.

• Participant B considered project development team as constraint as medium for product

requirement and organization requirement and medium for external requirement.

Influence on Reference Architecture
• Participant A considered project development team as constraint as medium for product

requirements, organization requirements, and external requirement.

• Participant B considered project development team as constraint as medium for product

requirements, organization requirements, and external requirement.

The rationale for consideration is in case of constraints on team members application of

reference architecture decision will be on the basis of skill set and capabilities of team

members.

4.2.7.3 Project Development Team as Assutnption

Influence on Selection of Architecture Style
• Participant A considered project development team as assumption-as medium for product

requirements and low for organization requirements and high for external requirement.

• Participant B considered project development team consideration as low for product

requirement and medium for organization requirement and external requirement.

Influence on Selection of Tactics
• Participant A considered project development team as assumption as high for product

requirements, organization requirements and external requirement.

• Participant B considered project development team consideration as low for product

requirement and medium for organization requirement and external requirement.

Influence on Reference Architecture
• Participant A considered project development team as assumption ̂ as medium for product

requirements and organization requirements and high for external requirement.

• Participant B considered project development team as assumption as medium for product

requirements, organization requirements and external requirement.

Conclusion

Project development team influences in selection of software architectural decision. The

rationale for consideration is due to skill set and experience requirements in certain

implementation technologies in order to develop quality product.

4.2.8 Global Software Development as Assumption or Constraint

4.2.8.1 Global Software Development as Consideration

Influence on Selection of Architecture Style
• Participant A considered global software development consideration as medium for

product requirement, high for organization requirement and external requirement.

• Participant B considered global software development consideration as medium for

product requirement, organization requirement and external requirement.

Influence on Selection of Tactics
• Participant A considered global software development consideration as high for product

requirement, medium for organization requirement and low for external requirement.

• Participant B considered global software development consideration as medium for

product requirement, organization requirement and external requirement.

The rationale for consideration in all requirements is to effective management of project

life cycle as selection of appropriate tactics helps in effort distribution in global settings.

Influence on Reference Architecture
• Participant A considered global software development consideration as medium for

product requirement, high for organization requirement and medium for external

requirement.

• Participant B considered global software development consideration as medium for

product requirement, high for organization requirement and medium for external

requirement.

4.2.5.2 Global software development as Constraint

Influence on Selection of Architecture Style
• Participant A considered global software development as constraint as high for product

requirement and organization requirement and medium for external requirement.

• Participant B considered global software development as constraint as medium for

product requirement, organization requirement and external requirement.

Influence on Selection of Tactics
• Participant A considered global software development as constraint as medium for

product requirement and highfor organization requirement and external requirement.

• Participant B considered global software development as constraint as medium for

product requirement, organization requirement and external requirement.

Influence on Reference Architecture
• Participant A considered global software development as constraint as medium for

product requirements low for organization requirements and high for external

requirement. * '

• Participant B considered global software development as constraint as medium for

product requirements, organization requirements and external requirements.

4.2.8.3 Global software development as Assumption

Influence on Selection of Architecture Style
• Participant A considered global software development as assumption as medium for

product requirements, and low for organization requirements and medium for external

requirement.

• Participant B considered global software development consideration as medium for

product requirement,organization requirement and external requirement.

Influence on Selection of Tactics
• Participant A considered global software development as assumption as low for product

requirements, medium for organization requirements and external requirement.

• Participant B considered global software development consideration as medium for

product requirement, organization requirement and external requirement.

Influence on Reference Architecture
• Participant A considered global software development as assumption as mediumfor

product requirements low for organization requirements and external requirement.

• Participant B considered global software development as assumption as low for product

requirements and medium for organization requirements and external requirement.

Conclusion

Global software development influences in selection of software architectural decision.

4.2.9 Cost as Assumption or Constraint

4.2.9.1 Cost as Consideration

Influence on Selection of Architecture Style
• Participant A considered cost consideration as high for product requirement, medium for

organization requirement and external requirem'ent.

• Participant B considered cost consideration as medium for product requirement, high for

organization requirement and medium for external requirement.

Influence on Selection of Tactics
• Participant A considered cost consideration as high for product requirement and

organization requirement and low for external requirement.

• Participant B considered cost consideration as high for product requirement, organization

requirement and external requirement.

Influence on Reference Architecture
• Participant A considered cost consideration as medium for product requirement and

organization requirement and high for external requirement.

• Participant B considered cost consideration as high for product requirement and

organization requirement and medium for external requirement.

4.2.9.2 Cost as Constraint

Influence on Selection of Architecture Style
• Participant A considered cost as constraint as high for product requirement and

organization requirement and medium for external requirement.

• Participant B considered cost as constraint as medium for product requirement and

organization requirement and medium for external requirement.

Influence on Selection of Tactics
• Participant A considered cost as constraint as high for product requirement, medium for

organization requirement and high for external requirement.

• Participant B considered cost as constraint as medium for product requirement,

organization requirement and extemal requirement.

Influence on Reference Architecture
• Participant A considered cost as constraint as high for product Requirements, low for

organization requirements and high for extemal requirement.

• Participant B considered cost as constraint as medium for product requirement,

organization requirement and external requirement.

4.2.9.3 Cost as Assumption

Influence on Selection of Architecture Style
• Participant A considered cost as assumption as medium for product requirements, low for

organization requirements and medium for extemal requirement.'

• Participant B considered cost as constraint as medium for product requirement,

organization requirement and extemal requirement.

Influence on Selection of Tactics
• Participant A considered cost as assumption as low for product requirementsand medium

for organization requirements and extemal requirement.

• Participant B considered cost as constraint as medium for product requirement,

organization requirement and extemal requirement.

Influence on Reference Architecture
• Participant A considered cost as assumption as mediumfor product requirements and low

for organization requirements and extemal requirement.

• Participant B considered cost as constraint as medium for product requirement,

organization requirement and extemal requirement.

Conclusion

Cost influences in selection of software architectural decision. The rationale for

consideration of cost is due to determination of licenses cost of implementation

technology and deployment environment including cost of software development team

therefore requirement of making budgets.

4.2.10 Stakeholders as Assumption or Constraint

4.2.10.1 Stakeholders as Consideration

Influence on Selection of Architecture Style
• Participant A considered stakeholders consideration as medium for product requirement,

organization requirement and external requirement,

• Participant B considered stakeholders consideration as low for product requirement,

medium for organization requirement and high external requirement.

Influence on Selection of Tactics
• Participant A considered stakeholders consideration as medium for product requirement,

high for organization requirement and medium for external requirement.

• Participant B considered stakeholders consideration as high for product requirement, low

for organization requirement and high for external requirement.

Influence on Reference Architecture
• Participant A considered stakeholder consideration as medium for product requirement,

organization requirement and external requirement.

• Participant B considered stakeholder consideration as"high for product requirement,

organization requirement and external requirement.

4.2.10.2 Stakeholders as Constraint

Influence on Selection of Architecture Style
• Participant A considered stakeholders as constraint as medium for product requirement,

organization requirement and external requirement.

• Participant B considered stakeholders as constraint as high for product requirement and

organization requirement and medium for external requirement.

Influence on Selection of Tactics
• Participant A considered stakeholders as constraint "as medium for product requirement,

and high for organization requirement and externa! requirement.

• Participant B considered staiceholders as constraint as high for product requirement,

organization requirement and external requirement.

Influence on Reference Architecture
• Participant A considered stakeholders as constraint as high for product requirements, low

for organization requirements and high external requirement.

• Participant B considered stakeholders as constraint as high for product requirements,

organization requirements and external requirements.

4.2.10.3 Stakeholders as Assumption

Influence on Selection of Architecture Style
• Participant A considered stakeholders as assumption as mediumfor product requirements,

organization requirements and external requirement.

• Participant B considered stakeholders as assumption as medium for product

requirements, organization requirements and external requirement.

Infliience on Selection of Tactics
• Participant A considered stakeholders as assumption as low for product requirements,

medium for organization requirements and high for external requirement.

• Participant B considered stakeholders consideration as medium for product requirement,

organization requirement and external requirement.

Influence on Reference Architecture
• Participant A considered stakeholders as assumption as mediumfor product requirements

and low for organization requirements and external requirement.

• Participant B considered stakeholders as assumption as* medium for product

requirements, organization requirements and external requirement.

Conclusion

Stakeholders influences in selection of software architectural decision. The rationale for

consideration of stakeholders is due to interest or investment in certain architectures due

to existing systems, or reusing existing hardware infrastructure or already purchased extra

licenses of certain implementation technology or deployment environment.

4.2.11 Deployment topologies as Assumption or Constraint

4.2.11.1 Deployment topologies as Consideration

Influence on Selection of Architecture Style

• Participant A considered deployment topologies consideration as high for product

requirement, medium for organization requirement and external requirement.

• Participant B considered deployment topologies consideration as high for product

requirement, medium for organization requirement and high for external requirement.

Influence on Selection of Tactics

• Participant A considered deployment topologies consideration as high for product

requirement and organization requirement and low for external requirement.

• Participant B considered deployment topologies consideration as medium for product

requirement and organization requirement and low for external requirement.

Influence on Reference Architecture

• Participant A considered deployment topologies consideration as medium for product

 ̂ requirement, high for organization requirement and mediumfor external requirement.

• Participant B considered deployment topologies consideration as high for product

requirement and medium for organization requirement and external requirement.

4.2.11.2 Deployment topologies as Constraint

Influence on Selection of Architecture Style

• Participant A considered deployment topologies as constraint as medium for product

requirement, organization requirement and external requirement.

• Participant B considered deployment topologies as constraint as high for product

requirement and medium for organization requirement and external requirement.

Influence on Selection of Tactics

• Participant A considered deployment topologies as constraint as high for product

requirement and organization requirement and medium for external requirement.

• Participant B considered deployment topologies as constraint as high for product

requirement and medium for organization requirement andextemal requirement.

Influence on Reference Architecture

• Participant A considered deployment topologies as constraint as high for product

requirement and medium for organization requirement and external requirement.

• Participant B considered deployment topologies as constraint as high for product

requirement and organization requirement and medium for external requirement.

4.2.11.3 Deployment topologies as Assumption

Influence on Selection of Architecture Style

• Participant A considered deployment topologies as assumption as medium for product

requirements and low for organization requirements and external requirement.

• Participant B considered deployment topologies consideration as medium for product

requirement, low for organization requirement and medium for external requirement.

Influence on Selection of Tactics

• Participant A considered deployment topologies as assumption as high for product

requirements and low for organization requirements and external requirement.

• Participant B considered deployment topologies consideration'as medium for product

requirement, organization requirement and external requirement.

Influence on Reference Architecture

• Participant A considered deployment topologies as assumption as low for product

requirements, organization requirements and external requirement.

• Participant B considered deployment topologies as assumption as medium for product

requirements low for organization requirements and medium for external requirement.

Conclusion

Deployment topologiesinfluences in selection of software architectural decision. The

participants declared the rationales for this factor is same as that of deployment

environment.

4.2.12 Application domain as Assumption or Constraint

4.2.12.1 Application Domain as Consideration

Influence on Selection of Architecture Style^

• Participant A considered application domain consideration as high for product

requirement organization requirement,and external requirement.

• Participant B considered application domain consideration as medium for product

requirement and high for organization requirement and external requirement.

Influence on Selection of Tactics

• Participant A considered application domain consideration as high for product

requirement and organization requirement and medium for external requirement.

• Participant B considered application domain consideration as high for product

requirement and organization requirernent and external requirement.

Influence on Reference Architecture

• Participant A considered application domain consideration as medium for product

requirement and high for organization requirement and external requirement.

• Participant B considered application domain consideration as high for product

requirement, organization requirement and external requirement.

4.2.12.2 Application domain as Constraint

Influence on Selection of Architecture Style

• Participant A considered application domain as constraint as high for product

requirement medium for organization requirement and high for external requirement.

• Participant B considered application domain as constraint as medium for product

requirement, organization requirement and external requirement.

Influence on Selection of Tactics

• Participant A considered application domain as constraint as high for product

requirement medium for organization requirement and high for external requirement.

• Participant B considered application domain as constraint as high fbr product requirement

medium for organization requirement and high for external requirement.

Influence on Reference Architecture

• Participant A considered application domain as constraint as high for product

requirements, organization requirements, and external requirement.

• Participant A considered appHcation domain as constraint as medium for product

requirements, organization requirements, and external requirement.

4.2.123 Application Domain as Assumption

Influence on Selection of Architecture Style

• Participant A considered application domain as assumption as medium for product

requirements and low for organization requirements and external requirement.

• Participant B considered application domain consideration &s medium for product

requirement, organization requirement and external requirement.

Influence on Selection of Tactics

• Participant A considered application domain as assumption as high for product

requirements, and low for organization requirements and external requirement.

• Participant B considered application domain consideration as low for product

requirement and medium for organization requirement and external requirement.

Influence on Reference Architecture

• Participant A considered application domain as assumption as low for product

requirements, organization requirements and external requirement.

• Participant B' considered application domain as assumption as- medium for product

requirements, organization requirements and external requirement.

Conclusion

Application domain influences in selection of software architectural decision. The

rationale for consideration is due to criticality of certain domains like financial, e-

commerce based web site or certain real timesystems have certain mission critical

needs.The decision whether to go with certain reference architecture or not is solely

dependent on application domain.

4.3 Design Decisions
This section describes the design decisions taken during software architecture design process.

Design Decision #1

Reference architecture will be not applied related to the domain of application. A thorough

assessment was conducted in order to find the best suitable reference architecture. A reference

architecture which is the closest match was considered. A brainstorming session was conducted

in order to decide whether to go with the reference architecture or not. After series of

examination it was decided as reference architecture will not be applied. The rationale for not

applying reference architecture is due to:

1. tligh cost of implementation.

2. It is difficult to achieve iterations plan within defined time which is agreed upon by all

the stakeholders.

3. The reference architecture requires certain components that need to develop with a

particular implementation technology, which is beyond the skill set of project

development teams available within organization.

4. As the system will be comprised of various application types like windows, web and

mobile so architects based on their analysis finalized that it requires an agent component

on top of reference architecture, which results addition of another layer on reference

software architecture.

Design Decision # 2

There is a need that different components of different application type of the system

communicate with each other in a real time fashion with certain defined’business goals. Message

Bus Architecture style was decided to be used in order to receive and send messages using one

or more communication channels, so that application of different application type can interact

without having to know specific details about each other. The rationales for using this decision

are:

1. The stakeholders require a flexible solution that is capable of adding and removing

features as components in their final product.

2. The communication channels are required to consider different transport protocols like

TCP/IP and UDP as per business rules of same application types i.e. windows

application.

3. By using a message-based communication mode the resulting system will interact with

applications types as well as domains developed for different deployment environments,

using different implementation technologies like Microsoft .NET and Java.

Design Decision # 3

The software application produces and consumes data. This data is of two types one a temporary

data used for communication among components and secondly a persistent data. In addition the

need for the availability of persistent data is of high degree importance. So to achieve this goal

client-server architecture style was used, for interaction between data repository and

components requiring data.

1. A database server was used to serve data based on demands. The reason for introducing

proper database management system as a server in this case is due to internal mechanisms

of concurrency management of database system. Also data requirement originates from

various different application types.

2. The reason for introducing client server architecture style is also due to savetime as in

case of using flat files as a data repository requires additional programming to manage

multithreading. In addition multithreading programming requires more experienced

programmers in software development team.

3. The application requires centralize data storage, backup for effective management

functions.

Design Decision U 4

Service oriented architecture style was used for such communication of components.

1. As the tiers hosting components have different deployment environment like operating

systems.

2. The development team has expertise in implementation technology by using which they

can achieve use cases in less time thus saving cost.

Design Decision # 5

There is a need of high reliability and integrity of data which is served by data server. The

application components communicating with the server requires complete acknowledgements of

their successful transactions. So TCP/IP communication protocol was used in order to achieve

reliability consideration. In addition there are certain components that are communicating but

require quick response. Therefore UDP protocol was used in that case. The rationales for the

decisions are as follows:

1. The application components hosted on mobile devices have windows mobile edition

which offers very limited support for hosting complex application capable of managing

queue, therefore to achieve fast communication in order to achieve performance goal

UDP is used. ,

2. Certain components will be operating wireless environment.

Design Decision # 6

There is a need of back up and monitoring system by various stakeholders. This system is
1̂ .

declared as a sub system which of application type of LAN based windows application. The sub

stem is also responsible in case of disaster recovery. The architecture style for this sub system

was fmalized as N-Tier Architecture. The rationale for this decision is:

Application type for this component was windows based data driven application. This

component incorporated certain business rules required for deployment of application to

new sites with respect to different application types and deployment environments.

Design Decision # 7

There is a need of high availability and to achieve this goal ping/echo tactics is used for the

components operating under wired network.The rationale for this decision is:

Considering criticality of application domain the tactics is implemented as software

development team have already experience of implementation' o f ping/echo tactics by

using required implementation technology targeting desired deployment environment.

Design Decision U 8

There isneed of high availability and to achieve this goal heartbeat tactics is used for

components operating under wireless network on mobile devices. The rationale for this decision

is:

Considering criticality of application domain the tactics is implemented as the target

component will be residing on mobile device which has windows mobile operating

system. In addition, deployment topologies areadhoc wireless network. Therefore

deployment environment and topology are the basis for using heartbeat tactics.

Design Decision # 9

There is a need of high performance and to achieve this goal increase computational efficiency

tacticswas used. The rationale for this decision is;

Considering criticality of application domain the tactics is implemented so as to develop

a product that is capable of high and fast performance on machines with low

specifications, therefore reducing the cost of deployments.

Design Decision # 10

There is a need of fastresponse time and availability to achieve this goal concurrency tactics

was used. The rationale for this decision is:

Considering criticality of application domain the tactics is implemented so as to fully

 ̂ utilize the available computational resources smartly as per wish of an influential

stakeholder. This also eliminates the excessive use of queuing mechanisms which

required extra development time and system software from specific vendors.

Design Decision #11

There is a security need to achieve goals of resistance of attacks. Therefore authenticate tactics

is used. The rationale for this decision is:

Considering criticality of application domain the tactics is implemented so as to meet the

future need of biometric identification of users which is currently achieved by passwords.

Design Decision # 12

There is a security need to achieve goals providing limited access to features of application.

Therefore authorize tactics is used. The rationale for this decision is:

Considering criticality of application domain the tactics is implemented so as meet the

requirement in less amount of time as software development team has already vast

experience of incorporating this tactics to various applicMion types.

Design Decision # 13

There is a requirement from software development organization that software must be

maintainable and scalable.Object oriented architecture stylewas considered to meet this goal.

The rationale for this decision is:

1. Software development team is using implementation technologies which are based on

object oriented principles. In addition, certain APIs need to be used by software

development team which all are developed using object oriented principles and can be

reused only with implementation technology supporting object orientation.

2. Stakeholders envisioned a system dynamic enough to operate with or without certain

components. In addition, theversions of different components rnust operate.

Note:

Organization processes and global software development factors regarding the case are known to

participants at the time of decision and both participants have the agreement that these two

factors influence software architectural decisions.

5 Model

This research answers the following question:

What contextual knowledge software architects require for reusability of technical

knowledge of software architecture?

Case study was conducted for identification of contextual knowledge elements. A thorough

analysis on case study results and design decisions was performed to identify the

relationships of contextual knowledge elements with other constructs of software architecture

knowledge elements. On the basis of analysis of results and design decisions following

model has been proposed that improves the reusability of software architecture knowledge.

5.1 A Model for Reusability of Software Architectural Knowledge

Figure 5.1 A Model for Reusability of Software ArchitecturalKnowledge

5.1.1 Description of Proposed Model

The goal describes goals of applicationunderconsideration and three types of goals are product,

organization and external.Contextual elements describefactors that determine selection of

software architecture knowledge. The constituents of knowledge" elements are cost,

implementation technology, application domain, organization process, deployment environment,

deployment topology, project development team, time, application type, stakeholders, global

software development and software process. These contextual knowledge elements are either of

two type assumptions or constraints. The decision influences determines selection of decision

which includes architecture style, reference architecture or tactics. In order to enhance reusability

the decisions are categorized as candidate decision or selected decision.The model is represented

by semantic network [42] way of knowledge representation.

5.1.2 Characteristics of Proposed Model

The proposed model helps improve reusability of software architectural knowledge.The model

associates contextual factors with the software architecture decision. This association

incorporates influences of decisions in form of structured contextual knowledge elements. In

literature all the available models of software architecture knowledge management offers limited

reusability as all models lacks association of decisions with contextual knowledge elements. The

focus of this model is effective management of knowledge in such a way that helps architects in

making new more informed decisions. This helps in organizational learning asavailability of

such structured knowledge empowers even less experienced architects to make correct decisions.

5.1.3 Limitation

Although the proposed model serves the basic needs of reusability, this model have the following

limitations:

1. Degree of influence on decision of all the contextual factors needs* to be determined. The

determination of degree of influences improves the associations.

2. As software architecture design process is an iterative process, so this model currently

stores only final decisions and does not associates decision with respect to different

iterations.

3. The proposed model currently lacks complete and final version of tool support.

5.2 Proof of Concept
Based on the model a prototype proof of concept was developed in order to validate the

implementation of model. In this screen contextual knowledge elements are captured against

each technical knowledge element. In addition, after selection of contextual element and possible

value proof of concept also generates suggestions. The suggestions help the architect to apply the

best available solution to meet the requirement.

ContedLMJ KixwHedge Efements

AppScation Type ' j WebAppication

Tn»(W eekt)

SodxMie Piocew

Itnpleniefyaiion Technoloo*

Deployment Etivioomeni

■ Project Developmonl Team Enperienced [Less thefi 5years |,v |

‘ ' BNo

ItNtiative

.Net (Ftamewoik 3.0)

Linux

Global Sdtwaie Development

"11501-2000

Stakehdden

Deploymer^ Topobgpet

No 3
Unknowi

Oigarization Pioce** | CMMI L 3 AfSfkcition Domain Unknown *

H F R

Product Reqiitemerts! Efficiency”

OrgarizaljooReqiiemenl |oelivefj>

ExtetnalRBquitemeol j Ethbal

T echntcaJ KnovAedge Ele.'Twnt j

Archiectue Style

Tactct

Refetence Aichkectue

3] ^ Suggettiorafo(A ;ditectueSt^

[y . Suggejtion* foi A(chitectire T actc*

Suggestions fot Re<e<ence A f^ ectu re

Figure 5.2 Screen of POC that stores decisions and elaboration of reusability

6 Conclusion and Future Work

In this section, the summary of this research has been explained alongwith the thesis

contributions. Moreover, the research questions have also been answered. Enhancements that can

be done in this work are also suggested.

6.1 Summary
Software architecture design is knowledge intensive process that produces and requires

knowledge. Commonly during the architecture development process, decisions are not

documented explicitly but are reflected by the models the architects build, consequently, useful

knowledge attached to the decisions and its process is lost. The software architecture knowledge

can be categorized as technical knowledge [2] (such as patterns, tactics, and quality attribute

analysis models) and contextual knowledge (design rationale) [2].

Software architecture embodies significant decisions, these decisions are in the form of tacit

knowledge, but rationales behind the decisions are not available. This causes two main

problems:design decisions vaporize;reusability of technical knowledge applied in designing

similar software architecture is difficult.

This research work has answered followingthe following question:

1. What contextual knowledge software architects require for reusability of technical

knowledge of software architecture?

2. How to preserve contextual knowledge for reusability of software architecture technical

knowledge?

6.2 Contribution
This research is intended to identify the contextual knowledge elements used by software

architects during software architecture design. This research also included influences of

assumptions and constraints of these identified contextual knowledge elements in selection of

technical knowledge elements i.e. architecture style, tactics or reference architecture. The

contextual knowledge elements are identified on the basis of analysis performed on case study

results. The proposed model depicts arrangements of these software* architecture knowledge

elements. Hence decision'and rationales are codified which results in reusability of technical

knowledge elements in other related scenarios. The research identified the reusability needs of

software architects.

Although the proposed model serves the basic needs of reusability, this model have the following

limitations, degree of influence on decision of all the contextual factors needs to be

determined.As software architecture design process is an iterative process, so this model

currently stores only final decisions and does not associates decision with respect to different

iterations. The proposed model currently lacks complete and final version of tool support.

6.3 Future work

Future work for this research is to study:

• The degreeon which each identified contextual knowledge element influences in selection

^ of technical knowledge element.

• To study any type of non functional requirement and to determine what type of non

functional requirements are given more importance during trade off analysis.

• To develop a full version tool for software architecture knowledge management based on

the proposed model.

7 References

1. Hans van VIiet.Software Architecture Knowledge Management, 19 Australian
Conference on Software Engineering. 2008

2. Muhammad Ali Babar . The Apphcation of Knowledge-Sharing Workspace Paradigm
for Software Architecture Process. SHARK 08, 2008

3. Muhammad Ali Babar, Ian Gorton and Ross Jeffery. Capturing and Using Software
Architecture for Architecture Based Software Development. Proceedings of the Fifth
International Conference on Quality Software (QSIC’05), 2005

4. Anton Jansen, Jan Bosch. Software Architecture as a Set of Architectural Design
Decisions, Proceedings of the 5th lEEE/IFIP Working Conference on Software
Architecture (WICSA 2005), pp. 109-119, November 2005. * -

5. Patricia Lago, Paris Avgeriou, Rafael Capilla, Philippe Kruchten, Wishes and
Boundaries for a Software Architecture Knowledge Community, Seventh Working
lEEE/IFlP Conference on Software Architecture 2008

6. Muhammad Ali Babar, Ian Gorton Architecture Knowledge Management:
Challenges, Approaches, and Tools, 29th International Conference on Software
Engineering (ICSE'07 Companion), 2007

7. Remco C. de Boer, RikFarenhorst In Search of Architectural Knowledge. SHARK
08, 2008

8. Ibrahim Habli, Tim Kelly Capturing and Replaying Architectural Knowledge through
Derivational Analogy SHARK 07, 2007

9. David Falessi, Martim Becker, Giovanni Cantone, Design Decision Rationale:
Experiences and Steps Ahead Towards Systematic Use. SHARK 06, 2006

10. Patricia Lago, Paris AvgeriouFirst Workshop on Sharing and Reusing Architectural
Knowledge. SHARK 06, 2006

11. Muhammad Ali Babar, Remco C. de Boer, TorgeirDingS0yr, RikFarenhorst
Architectural Knowledge Management Strategies: Approaches in Research and
Industry. SHARK 07. 2007

12. M. Ali Babar, I. Gorton, and R. Jeffery. Toward a Framework for Capturing and
Using Architecture Design Knowledge. Technical report, The University of New
South Wales, June 2005.

13. Len Bass, Paul Clements, Rick Kazman , Software Architecture in Practice, Second
Edition

14. H. Choi, Y. Choi, and K. Yeom, An Integrated Approach t̂o Quality Achievement
with Architectural Design Decisions, Journal of Software, vol' Volume 1, pp. 40-49,
2006.

15. T. Al-Naeem, I. Gorton, M. A. Babar, F. Rabhi, and B. Benatallah, A quality-driven
systematic approach for architecting distributed software applications, in Software
Engineering, 2005. ICSE 2005. Proceedings. 27thIntemational Conference on, 2005,
pp. 244-253. 2005

16. Aman-ul-haq, Muhammad Ali Babar, Tool Support for Automating Architectural
Knowledge Extraction SHARK May 2009

17. Anton G. J. Jansen, Jan van der Ven, Paris Avgeriou, Dieter K. Hammer, Tool
support for Architectural Decisions, Proceedings o f the Sixth Working lEEE/IFIP
Conference on Software Architecture (WICSA 2007), January 2007.

18. M. Sinnema, J. S. van der Ven, S. Deelstra, Using Variability Modeling Principles to
Capture Architectural Knowledge, Proceedings of the Workshop on Sharing and
Reusing architectural Knowledge (SHARK2006), June 2006 .

19. Remco C. de Boer, Rik Farenhorstl, Patricia Lago, Hans van Vliet, Viktor Clerc, and
Anton Jansen, Architectural Knowledge: Getting to the Core, QoSA 2007, LNCS
4880, pp. 197-214, 2007.Springer-Verlag Berlin Heidelberg 2007.

20. Muhammad Ali Babar, Ian Gorton A Tool for Managing Software Architecture
Knowledge. 29th Intemational Conference on Software Engineering
Workshops(ICSEW'07)

21. R. Capilla, F. Nava, S. P'erez, and J. C. Due'^nas. A Web-based Tool for Managing
Architectural Design Decisions. In 1st ACM Workshop on Sharing Architectural
Knowledge (SHARK), Torino, Italy, 2006.

22. http://www.archium.net

23. Per Runesn, Martin Host, Guidelines for conducting and reporting case study research
in software engineering. This article is published with open access at
springerlink.com, 2008

24. Bjom Regnell, Martin Host, Johan Nattoch Dag, An industrial Case Study on
Distributed Prioritization in Market Driven Requirements Enfineering for Packeged
Software. Requirement Eng (2001) Springer-Verlag London. 2001

http://www.archium.net

25. Software engineering institute software architecture definition page:
http://www.sei.cmu.edu/architecture/defmitions.html.

2 6 .1. Sommerville. Software Engineering. Addision-Wesley, 8 edition, 2007.

27. Murray Jennex. Case Studies in Knowledge Management.

28. D. Falessi, G. Cantone, and M. Becker. Documenting design decision rationale to
improve individual and team design decision making: an experimental
evaluation.ACM/IEEE international symposium on International symposium on
empirical software engineering (ISESE ’06), pages 134-143, New York, NY, USA,
2006. ACM Press. 2006

29. P. Kruchten, P. Lago, and H. van Vliet. Building up and reasoning about architectural
knowledge. In Proceedings of the Second International Conference on the Quality of
Software Architectures (QoSA 2006), 2006.

30. Jason Baragry and Karl Reed. Why Is It So Hard To Define Software Architecture?
School of Computer Science and Computer Engineering La Trobe University
Bundoora, Vic 3083, Australia

31. Yujian Fu, Zhijiang Dong and Xudong He. An Approach to Validation of Software
Architecture Model. Proceedings of the 12th Asia-Pacific ^Software Engineering
Conference (APSEC’05), 2005

32. Microsoft Application Architecture Guide 2.0 Patterns and Practices.

33. Winston Tellis ,Introduction to Case Study, The Qualitative Report, Volume 3,
Number 2, July, 1997

34. Charles L. Chen, Danhua Shao, Dewayne E. Perry. An Exploratory Case Study Using
CBSP and Archium. Proceedings of the Workshop on Sharing and Reusing
architectural Knowledge (SHARK2006), 2006.

35. William J. Koscho, William Ries. Identifying and Proactively Managing Architecture
Risk. LMSA’09, Vancouver, Canada. 2009

36. Nary Subramanian, Lawrence Chung “Relationship between the Whole of Software
Architecture and its Parts: An NFR Perspective”Proceedings o f the Sixth International
Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing and First ACIS International Workshop on Self-
Assembling Wireless Networks (SNPD/SAWN), 2005

http://www.sei.cmu.edu/architecture/defmitions.html

37. Yujian Fu, Zhijiang Dong A Method for Realizing Software Architecture Design,
Proceedings of the Sixth International Conference on Quality Software (QSIC’06)
2006

38. JoostNoppen , DaHlaTamzaht, ETAK: Tailoring Architectural Evolution by (re-
)using Architectural Knowledge, SHARK’10 May 2, Cape Town, South Africa, 2010

39. Walter F. Tichy, Should Computer Scientists Experiment More? IEEE 1998.

40. Dooley, K. “Simulation Research Methods,” Companion to Organizations,

Joel Baum (ed.), 2002, London: Blackwell, p. 829-848.

41. http://www.wordiq.com/deflnitionySurvey_research

42. Stephan Grimm, Pascal Hitzler, Andreas Abecker, Knowledge Representation and

Ontologies Logic, Ontologies and SemanticWeb Languages.

43. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=l 0.1.1.71.8581

http://www.wordiq.com/deflnitionySurvey_research
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=l

8 Glossary

AK - Architectural Knowledge

KM - Knowledge Management

NFR-Non-Functional Requirements

CMMl-Capability Maturity Model Integration

Appendix A

Questionnaire

Organization of Questions on the Basis of Goals & Sub-
Goals

This reseach work is to answer following questions:

1. What contextual knowledge software architects require for reusability of technical knowledge

of software architecture?

2. How to preserve contextual knowledge for reusability of software architecture technical

knowledge?

In order to answer first question, a case study was executed and a questioner is formed with following

goal and sub goals:

What contextual knowledge software architects require for reusability of
software architecute technical knowledge?

Questions
T

- ^ ijdentificatiorfof technfcal knowledge Elemen^^
-Ji _ ■

No Questions

Answer Options

f sO a
i : <

SJ

3“
w
3
V
z

OJ
0>w
bO
nlA

Q

bo 2
C b
O nW V

C

1 Is selection of particular tactics involves in architecture design?

2 Is selection of particular architecture style occurs in
architecture design?

3 Is consideration of reference architecture occurs in architecture
design?

4. Up to what degree following factors influences selection of particular software architecture
knowledge elennent to satisfy particular non-functional requirement of type product requirement

(efficiency, reliability, portability, usability, performance etc)

No Factor

Tactics Architecture Style Reference Architecture

Low Medium High Low Medium High Low Medium High

1 Application Type

2 Time

3 Software Process

4 Implementation Technology

5 Deployment Environment

6 Organization Processes

7 Project Development Team

8 Global Softw/are Development

9 Cost

10 Stakeholders

11 Deployment Topologies

12 Application Domain

5. Up to what degree following factors Influences selection of particular software architecture
knowledge element to satisfy particular non-functional requirement of type organizational
requirement (delivery, implementation, standards etc)

No Factor

Tactics Architecture Style Reference Architecture

Low Medium High Low Medium High Low Medium High

1 Application Type

2 Time

3 Software Process

4 Implementation Technology

5 Deployment Environment

6 ' Organization Processes

7 Project Development Team

8 Global Software Development -

9 Cost -

10 Stakeholders

11 Deployment Topologies

12 Application Domain

6. Up to what degree following factors Influences selection of particular software architecture
knowledge element to satisfy particular non-functional requirement of type external requirement
(interoperability, ethical, legislative, safety etc)

No Factor

Tactics Architecture Style Reference Architecture

Low Medium High Low Medium High Low Medium .High

1 Application Type

2 Time

3 Software Process

4 Implementation Technology

5 Deployment Environment

6 Organization Processes

7 Project Development Team

8 Global Software Development

9 Cost

10 Stakeholders

11 Deployment Topologies

12 Application Domain

7-Mark as H for high, M for medium or L for low against the following factors when considered as an

assumption or constraint in selection of particular knowledge element to satisfy particular non­
functional requirement of type product requirement (efficiency, reliability, portability, usability,

performance etc)

No Factor

Tactics Architecture Style Reference Architecture

Assumption Constraint Assumption Constraint Assumption Constraint

1 Application Type

2 Time

3 Software Process -

4 Implementation Technology

5 Deployment Environment

6 Organization Processes

7 Project Development Team

8 Global Software Development ■ '

9 Cost

10 Stakeholders

11 Deployment Topologies

12 Application Domain

8-Mark as H for high, M for medium or L for low against the following factors when considered as an
assumption or constraint in selection of particular knowledge element to satisfy particular non­
functional requirement of type organizational requirement (delivery, implementation, standards etc)

No Factor

Tactics Architecture Style Reference Architecture

Assumption Constraint Assumption Constraint Assumption Constraint

1 Application Type
-

♦

2 Time

3 Software Process

4 Implementation Technology

5 Deployment Environment

5 Organization Processes

7 Project Development Team

8 Global Software Development

9 Cost

10 Stakeholders

11 Deployment Topologies

12 Application Domain

9-Mark as H for high, M for medium or L for low against the following factors when considered as an
assumption or constraint in selection of particular knowledge element to satisfy particular non­

functional requirement of type external requirement (interoperability, ethical, legislative, safety etc)

No Factor

Tactics Architecture Style Reference Architecture

Assumption Constraint Assumption Constraint Assumption Constraint

1 Application Type

2 Time

3 Software Process

4 Implementation Technology '

5
1

Deployment Environment

6 Organization Processes

7 Project Development Team

8 Global Software Development

9 Cost

10 Stakeholders

11 Deployment Topologies - ’■

12 Application Domain

