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Preface
Let T: X! X be a mapping. A point x 2 X is called a xed point of T'if x = Tx:
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Let xo be an arbitrarily chosen point in X: De ne a sequence fx»g in X by a simple iterative
method given by xn+1 = Txn; Where n 2 f0;1,2;:::g: Such a sequence is called a Picard

iterative sequence and its convergence plays an important role in proving existence of a xed
point of a mapping T: A self mapping T on a metric space X is said to be a Banach contraction

mapping if d(Tx; Ty) kd(x;y) holds for all x;y 2 X where 0 k< 1: The Banach xed

point theorem is commonly known as Banach contraction principle, which states that if X is a
complete metric space and T is a Banach contraction mapping on X, then T has a unique xed
point in X. This theorem looks simple but plays a fundamental role in the eld of xed point
theory and has become even more important because being based on iteration, it can easily be
implemented on a computer. The Banach contraction principle implies that T is uniformly
continuous on X. It is natural to ask if there is a contractive de nition which does not force T
to be continuous. It was answered in a¢ rmative by Kannan [45], who established a xed point

theorem for a self mapping T satisfying, d(Tx;Ty) k[d(x;Tx) + d(y;Ty)], for all x;y 2 X; where
0<k <y, Chatterjea [26], proved a similar result for a self mapping satisfying,
d(Tx;Ty) k[d(x;Ty) + d(y; Tx)] for all x;y 2 X where 0 < % < 3: It is important to note

that these three theorems are independent of each other and have laid down the foundation of
modern xed point theory for contractive type mappings.

Fixed point results of mappings satisfying certain contractive condition on the entire domain
have been at the centre of rigorous research activity, for example (see [10, 19, 20, 22, 27, 28, 29,
38, 39, 59, 84, 75]) and they have a wide range of applications in dierent areas such as nonlinear
and adaptive control systems, parameterize estimation problems, computing magnetostatic
elds in a nonlinear medium and convergence of recurrent networks. (see [53, 69, 82, 83]).

Ran and Reurings [64] proved an analogue of Banach s xed point theorem in a metric space
endowed with a partial order and gave applications to matrix equations. In this way, they
weakened the usual contractive condition. Subsequently, Nieto et. al. [60] extended the results in
[64] for nondecreasing mappings and applied it to obtain a unique solution for a 1st order

ordinary dierential equation with periodic boundary conditions. Samet and Vetro [71]



generalized the results in ordered metric spaces and introduced the concept of contractive type
mappings and established xed point theorems for such mappings in complete

metric spaces.
On the other hand, the notion of a partial metric space was introduced by Matthews in [55].

In partial metric spaces, the distance of a point from itself may not be zero. Partial metric spaces
have applications in theoretical computer science (see [42]). Altun et. al. [6], Samet et. al. [70]
and Paesano et. al. [62] used the idea of partial metric space and partial order and gave some xed
point theorems for contractive condition on ordered partial metric spaces. To generalize partial
metric space, Hitzler et. al. [37] introduced the concept of a dislocated topologies and its
corresponding generalized metric space named as dislocated metric space (metric-like space [8])
and have established a xed point theorem in complete dislocated metric spaces which generalizes
the celebrated Banach contraction principle. The notion of dislocated topologies has useful
applications in the context of logic programming semantics (see [36]). For further related results
see ([1, 8, 44, 46, 47, 50, 54, 66, 72, 81]). Furthermore, dislocated quasi metric space (quasi-
metric-like space) (see [1, 23, 73, 84, 85]) generalized the idea of dislocated

metric space and quasi-partial metric space(see [33, 48, 57, 74, 76]).
A multivalued function is a set valued function. In the last thirty years, the theory of

multivalued functions has advanced in a variety of ways. In 1969, the systematic study of Banach
type xed theorems of multivalued mappings had been started with the work of Nadler [57], who
proved that a multivalued contractive mapping of a complete metric space X into the family of
closed bounded subsets of X has a xed point. His ndings were followed by many authors (see [17,
18]). Asl et al. [14] generalized the notion of ( ) contractive mapping by introducing the concepts
of () contractive multifunctions and obtained some xed point

results for these multivalued contractive mapping (see also [5, 40, 41]).

This thesis deals with the xed point results of locally, globally, single and multivalued
contractive mappings in ordered spaces. This dissertation consists of four chapters. Each

chapter begins with a brief introduction which acts as a summery of the material there in.
Chapter 1, is a survey, aimed at clarifying the terminology to be used and recalls basic
de nitions and facts.
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Chapter 2, is devoted to study the existence of coincidence and common  xed points of
mappings satisfying generalized contractive conditions. Some xed point results have been
established in the frame work of partial metric space. Moreover, we initiate the concept of an
ordered 0-complete left/right K-sequentially quasi-partial metric space and prove some
results

for dominated mappings in these spaces.

Chapter 3, deals with an ordered complete left K-sequentially as well as right K-sequentially
dislocated quasi metric spaces. Moreover, we introduce the concept of -dominated mapping.
Some coincidence and common Xxed point results have been established for -dominated map-
pings in left/right K-sequentially dislocated quasi metric spaces.

Chapter 4, deals with the multivalued contractive mappings. We establish xed point
results for -admissible multivalued mappings satisfying generalized - -contractive conditions
in complete left K-sequentially dislocated quasi metric space. A theorem on xed point of mul-

tivalued locally contractive mappings in a fuzzy metric space is also established.
I would like to express my sincere gratitude to my supervisor Dr. Muhammad Arshad.

Without his sincere pieces of advice and valuable guidance this thesis could never have become a
reality. The department of Mathematics remained encouraging and supportive during my Ph.D.
studies for which I am grateful. Finally, I thank my family for their aection and

support throughout my research.
Abdullah Shoaib
July, 2015

Pakistan.

Chapter 1
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Preliminaries

The aim of this chapter is to present some basic concepts and to explain the terminology used
throughout this dissertation. Some previously known results are given without proof. Section 1.1,
is devoted to the introductory material on the notions of partial and quasi-partial metric spaces.
Section 1.2, is concerned with the introduction of dislocated and dislocated quasi metric spaces
which are the natural generalizations of metric spaces. Section 1.3, deals with the concepts of
fuzzy metric and hausdor/ fuzzy metric spaces. Section 1.4, introduces some other basic relevant

concepts.

1.1 Partial and Quasi-partial Metric Spaces
1.1.1 De nition [48]
A quasi-partial metric is a function, g : X X! R* satisfying:

(i) 1T 0q(xx) = q(xy) = q(v;y); then x = y (equality),

(i) q(x:x) q(y;x) (small self-distances),

(iii) q(x:x) q(x;y) (small self-distances),

(iv) q(x:z) + q(v;y) q(xy) + q(v;z) (triangle inequality), for all x;y;z 2 X: Then the

pair (X;q) is called a quasi-partial metric space.

Note that, if g(x;y) = q(y;x) for all x;y 2 X; then (X;q) becomes a partial metric space (X;p).
Moreover if g(x;x) = 0; for all x 2 X; then (X;q) and (X;p) become a quasi metric

space and a metric space respectively. Also,Pa(*:%) = 3[2(z.y) + (¥, %)]. where x;y 2 Xis a
partial metric on X. The function dp,: X X! R*de ned by dp.(x;y) = q(x;y) + q(y;X)

q(x;x) q(y;y) is a (usual) metric on X: The ball Bq(x;&); where Bq(x;&) =fy 2 X : q(x;y)

& +q(x;x)gand Bp(x;&) =y 2 X : p(x;y) & + p(x;x)g are closed balls in a quasi-partial metric

space and a partial metric space respectively, for some x 2 Xand &> 0:
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1.1.2 Examples
Let X=[0,1), then
(i) [55] p(x;y) = maxfx;yg for all x;y 2 X; de nes a partial metric p on X.

(i) q(x;y)=maxfy x;0g + x for all x;y 2 X; de nes a quasi-partial metric q on X.

1.1.3 De nition [55]

Let (X;p) be a partial metric space, then

(i) A sequence fxag in (X;p) converges to a point x 2 X if and only if limn!1p(X;xn)

p(x:x).
(ii) A sequence fxag in (X;p) is called a Cauchy sequence if the limn;m!1p (Xn;xm)
exists (and is nite). (iii) [68] A sequence fxng in (X;p) is called 0-Cauchy if lim
p(xn;xm) = 0. nmi1
The space (X;p) is called 0-complete if every 0-Cauchy sequence in X converges to a point x
2 X, such that p(x;x) = 0. If (X;p) is a partial metric space, then ps(x;y) = 2p(x;y) p(x;x) p(V;y), Xy

2 X, is a metric on X:

1.1.4 Lemma [55]

Let (X;p) be a partial metric space, then
(i) fxng is a Cauchy sequence in (X;p) if and only if it is a Cauchy sequence in the
metric space (X;ps).
(ii) (X;p) is complete if and only if the metric space (X;ps) is complete.
(iii) [68] Every 0-Cauchy sequence in (X;p) is Cauchy in (X;ps).
(iv) [68]If (X;p) is complete, then it is 0-complete.

(v) [59] Every closed subset of a 0-complete partial metric space is 0-complete.
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Romaguera [68] has given an example which proves that converse assertions of (iii) and (iv)
do not hold.

1.1.5 De nition [48]

Let (X;q) be a quasi-partial metric, then (i) A sequence fxg in (X;q) converges to a point x 2
X; if and only if lim q(x;xx) = ™1
lim g(xn;x) = q(x;X).
m1 (i) A sequence fxag in (X;q) is called a Cauchy sequence, if the lim q(xn;xm) and n;mi1

lim q(xm;xn) exists, (and are nite).

nm!l

(iii) The space (X;q) is said to be complete, if every Cauchy sequence fx»g in (X;q) con-

] gz, z) = Im ¢qlx,, )= lm gz, T,
verges to a point x 2 X, such thatj( )= A (T Tm) = B q(@m, Zn)

1.1.6 Lemma [48]

Let (X;q) be a quasi-partial metric space, let (X;pq) be the corresponding partial metric space,
then these statements are equivalent. (i) The sequence fxag is Cauchy in (X;q). (ii) The
sequence fxng is Cauchy in (X;pq). (iii) The sequence fxng is Cauchy in (X;dp,). These
statements are also equivalent. (i) (X;q) is complete. (ii) (X;pq) is complete. (iii) (X;dp,) is

complete.

1.1.7 De nition [76]

Let X be a nonempty set, then (X; ;q) is called an ordered quasi-partial metric space if:

(i) g is a quasi-partial metric on X and (ii) is a partial order on X.

1.2 Dislocated and Dislocated Quasi Metric Spaces

1.2.1 De nition [84]

Let X be a nonempty set and let dq: X X! [0,1) be a function, called a dislocated quasi

14



metric (or simply dg-metric) if the following conditions hold for any x;y;z 2 X : (i)
If dg(x;y) = dq(y;x) = 0; then x = y;

(i) dq(x;y) dq(x;2) + dq(z;y):
The pair (X;dq) is called a dislocated quasi metric space. It is clear that if dq(x;y) =

dq(y;x) = 0, then from (i), x = y. But if x = y; then dq(x;y) or dq(y;x) may not be 0: It is
observed that if dq(x;y) = dq(y;x) for all x;y 2 X; then (X;dq) becomes a dislocated metric

space (X;di). Moreover, if dq(x;x) = 0 for all x 2 X; then (X;dq) and (X;di) become

a quasi metric space (X;q) and a metric space (X;d) respectively. The ball Bag(x;&); where

Bdaqg(x;&) =1y 2 X : dq(x;y) &g; is a closed ball in dislocated quasi metric space, for some x 2 X and
&> 0: Recently, Sarm and Kumari [72] proved results that establish existence of a topology
induced by a dislocated metric and that this topology is metrizable. This topology has as a base

the family of sets fB(x;&) [ fxg : x 2 X;&> 0g, where B(x;&) is an open ball

and B(x;&) =fy 2 X : di(x;y) <&g for some x 2 X and &> 0. Also, Bag(x,&) =fy 2 X :
di(x;y) &g is a closed ball.

Also, Harandi [8] de ned the concept of metric like space which is similar to dislocated
metric space. Each metric-like on X generates a topology on X whose base is the family

of open -balls

B(x&)=fy2X:j(xy) (x;x)j <&g:

1.2.2 Examples
Let X = Q* [ fOg; then
(i)

15



[ Oife=y=0
if
dz(x;y)=<l 2ife=y#01 x=6y

de nes a dislocated metric dion X.
(i) dq(x;y) = x+ 2y de nes a dislocated quasi metric dqon X.

(iii) dq(x;y) = x + maxfx;yg de nes a dislocated quasi metric dqon X.

1.2.3 De nition [84]

Let (X;dq) be a dislocated quasi metric space.
(1) A sequence fxag in (X;dq) is called Cauchy if 8 &> 0, 9 no 2 N, such that 8 m;n no;

dq(xm;xn) <& or dq(xn;xm) <&: (ii) A sequence fxng dislocated quasi-converges (for short dq -
converges) to x if lim dq(xs,x) = m11lim dq(x;xn) = 0: In this case x is called a dg-limit of fx.g:

mq
(iii) A dislocated quasi metric (X;dg) is called complete if every Cauchy Sequence in it is

dq -convergent.

1.3 Fuzzy Metric and Hausdor/Fuzzy Metric Spaces

1.3.1 De nition [32]
A binary operation  :[0;1] [0;1] ! [0,1] is a continuous t-norm if ([0,;1]; ) is a topological

monoid with unit 1, such that
a b cdwhenever acand bd (a;b;c;d 2 [0;1]).

1.3.2 De nition [31]

The 3-tuple (X;M; ) is said to be a fuzzy metric space if X an arbitrary set, IS a continuous

16



t-norm and M is a fuzzy set on X2 (0,1) satisfying the following conditions:

(i) M(xyt)>0;

(i) M(x;y;t)=1ifandonlyifx=y;

(iii) M(x;y;t) = M(y;x;t);

(iv) M(x;y;t) M(y;z; S) M(x;z;t + s);

(v) M(x;y;:):(0;1)![0,1] is continuous x;y;z 2 X and t; S> 0:

133 Remark [31]
M(x;y;t) can be thought of as the degree of nearness between x and y with respect to t: We
identify x = y with M(x;y;t) = 1 for t> 0 and M(x;y;t) = 0 when ¢ = 1: In this context

we modify the above de nition in order to introduce a Hausdor/topology on the fuzzy metric

space.
1.3.4 Lemma [32]

M(x;y;:) is nondecreasing for all x;y in X.

1.3.5 De nition [32]

Let (X;M; ) be a fuzzy metric space. (i) A sequence fx;g in X is said to converge to point x 2 X
if lim M(x;x;t) = 1, for all in
t> 0: (ii) A sequence fxig in X is said to be Cauchy sequence in X if lim M(x;xi+;t) = 1, for i1
all t> 0;j> 0:
(iii) A fuzzy metric space in which every Cauchy sequence is convergent is called complete.
George and Veeramani [31] proved that every fuzzy metric (M; ) on X generates a topology

mon X which has as a base the family of sets of the form fBu(xo,;r;t) : x 2 X; 0 <r< 1; t> 0g;
where Bu(xo;r;t) =fy 2 X : M(x;y;t) > 1 rg:

For a given fuzzy metric space (X;M; ), we shall denote Ko(X); the set of non empty compact
subsets of (X; m), where (X; ») is a metrizable topological space, generated by fuzzy metric space

(XM; ):

17



1.3.6 De nition [67]

Let B be non empty subset of a fuzzy metric space (X;M; ) for a 2 X and t > 0; then M(a;B;t) =

supfM(a;b;t) : b 2 Bg:

1.3.7 Lemma [67]

Let (X;M; ) be a fuzzy metric space, then for each a 2 X;B 2 Ko(X) and t> 0, there is bo 2 B,

such that M(a;B;t) = M(a;bo;t):

1.3.8 Lemma [67]
Let (X;M; ) be a fuzzy metric space, then for each a 2 X;B 2 Ko(X) the function ¢!

M(a;B;t) is continuous on (0,1):
1.3.9 Lemma [67]

Let (X;M; ) be a fuzzy metric space, then for each A 2 Ko(X) and for any non empty subset B of

X and t> 0; then there exists ao 2 A, such that inf M(a;B;t) = M(ao;B;t):

azA

1.3.10 De nition [67]
Let (X;M; ) be a fuzzy metric space. We de ne a function Hyon Ko(X) Ko(X) (0,1)

by Hu(A;B;t) = minfinf M(a;B;t); inf M(4;b;t)g;

a2A b2B

for all 4;B 2 Ko(X) and t> 0:

1.3.11 Lemma [67]

Let (X;M; ) be a fuzzy metric space, then for each a 2 X;B;C 2 Ko(X) and t; S> 0, then

18



M(a;C;t + s) M(a;B;t) M(bq;C;S);

where bq 2 B satis es M(a;B;t) = M(a;bq;t):

1.3.12 Theorem [67]

Let (X;M; ) be a fuzzy metric space, then (Ko(X),;Hw; ) is a fuzzy metric space, known as

Hausdor/ fuzzy metric space on Ko(X):

1.4  Some Basic Concepts

1.4.1 De nition [84]

Let X be a non empty set and T;f: X! X. A point u 2 X is said to be common xed point of the
pair (T;f) if Tu = fu = u: A point y 2 X'is called point of coincidence of T and f; if there exists
a point x 2 X, such that y = Tx = fx, here x is called coincidence point of T'and f. The
mappings T;f are said to be weakly compatible if they commute at their coincidence point
(i.e. Tfx = fTx whenever Tx = fx):

1.4.2 Lemma [22]

Let X be a non empty set and f: X! X be a function, then there exists E X, such that fE = fX'and f

: E! Xis one to one.

1.4.3 Lemma [10]

Let X be a non empty set and the mappings S;T;f: X! X have a unique point of coincidence v in
X; If (S;f) and (T;f) are weakly compatible, then S; T;f have a unique common xed

point.

Let denote the family of all non-decreasing functions : [0;+1) ! [0,+1), such that

19



400 ST . .
D a1 (L) < +o0, for all t> 0; where nis the nth iterate of :

1.4.4 Lemma [69]

If 2 ; then (¢t) <t for all t> 0:

145 De nition
LetS: X! Xand : XX ![0,+1) be two functions and A X. We say that S is

-admissible mapping on 4; if x;y 2 A, such that (x;y) 1,thenwehave (Sx;Sy) 1.

1.4.6 De nition
Let (X;d) be metric space. The ball B(x;&); where B(x;&) = fy 2 X : d(x;y) &g is a closed ball in

metric space, for some x 2 X and &> 0.

1.4.7 Theorem [52]

Let X be a non empty set and B(xo,;r) be a closed subset of X. LetS: X! Xbeaa

mapping satisfying:
d(Sx;Sy) kd(x;y):

for all x;y 2 B(xo;r); where 0 k< 1, then S has a unique xed point in B(xo,1).
1.4.8 De nition [52]

Let (X; ) be a partial ordered set, then x;y 2 X are called comparable if xy or y x

holds.

1.4.9 De nition [3]

Let (X; ) be a partially ordered set. A self mapping fon X is called dominated if fx x for each x
in X:

20



1.4.10 Example [3]

Let X = [0,1] be endowed with the usual ordering and f: X! X be de ned by fx = x" for some n 2

N: Since fx = x"x for all x 2 X; therefore fis a dominated map.

1.4.11 De nition

Let (X; ) be a preordered setand T': X! X: If A X;x;y 2 A; with x y implies Tx Ty, then the

mapping T is said to be non-decreasing on A.

1.4.12 De nition [57]
Let (X;d) be a metric space. For A;B 2 CB(X) and &> 0; the sets N(&;A) and Exzare

de ned as follows:

N(&A) = fx 2 X : d(x;A) <&g;

Eap=1&: A N(&B);B N(&A)g;

where d(x;A) = inffd(x;y) : y 2 Ag. The distance function H on CB(X) induced by d is
de ned as

H(A;B) = inf EaB;

which is known as Hausdor/ metric on X:
1.4.13 Lemma [17]

Let (X;d) be a metric space. If A;B 2 CB(X); then for each y 2 A, d(y;B) H(A;B):

1.4.14 De nition [57]
A mapping T: X! CB(X) is said to be multivalued contraction if there exists a constant

; 0 <1, such that for all x;y 2 X;
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H(Tx;Ty) d(x;y):

Nadler [57] generalized Banach contraction principle and proved the following important
xed point result for multivalued contractions.

1.4.15 Theorem [57]

Let (X;d) be a complete metric space, T: X! CB(X) is a multivalued contraction, then

Thasa xed point.
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Chapter 2

Fixed Point of Contractive Mapping in an
Ordered Partial and

Quasi-Partial Metric Spaces

2.1 Introduction

The de nitions given in this section have been published in [76, 79].

Recently, many results related to the xed point in complete metric spaces endowed with a
partial ordering appeared in the literature. Indeed, they all deal with a monotone mapping (either
order-preserving or order-reversing mapping) and such that for some xo 2 X, either xo fxo or fxo xo,
where fis a self-map on metric space. To obtain unique solution they used an additional
restriction that each pair of element has a lower bound and an upper bound. In this chapter, we
introduce a new condition of partial order instead of monotone mapping and restriction for
uniqueness. We take dominated mapping to approximate the unique solution to non linear
functional equations. We will exploit this concept for self, two, three and four, locally and
globally, contractive mappings on an ordered complete space X to generalize/improve and extend
several classical xed point results. Also, we will not nd common xed points for three or four
mappings in a standard way. Instead of usual technique, we will nd common xed points for three

or four mappings via common xed point for two mappings.

Our results will not only extend some classical theorems to ordered spaces but also restrict

the contractive conditions in a closed ball only. Our analysis is based on the simple observation
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that xed point results can be deduced from xed point theory of mappings on closed balls.
Practically speaking there are many situations in which the mappings are not contractive on the
whole space but instead they are contractive on its subsets. However, by imposing a subtle
restriction, one can establish the existence of a xed point of such mappings. We feel that this
aspect of nding the xed points via closed balls was overlooked and our work will bring a lot of
interest into this area. Furthermore, the concept of dominated mappings and weaker conditions in
the process of investigating the existence of unique xed point of locally and

globally contractive conditions in the settings of ordered metric spaces is applied in this
chapter.

Recently, Karap«nar et. al. [48] introduced the concept of quasi-partial metric space (see also
[33, 48, 57, 74, 76]) and generalized the idea of partial metric space (see [2, 6, 15, 55, 62, 70]).
Romaguera [68] has given the idea of 0-complete partial metric space. Nashine et. al. [59] used
this concept and proved some classical results. Reilly et al. [65] introduced the notion of left
(right) K-Cauchy sequence and complete left (right) K-sequentially spaces (see also [21, 30]).

In this chapter, we introduce a new concept of an ordered 0-complete left/right K-
sequentially quasi-partial metric space. Some better and interesting results are explored. Our
results improve several well-known conventional results. Section 2.2 deals with an ordered 0-
complete left/right K-sequentially quasi-partial metric space and the existence of xed points of
self mappings satisfying contractive conditions of Banach, Kannan, Chatterjea and Reich type.
In section 2.3, coincidence and common xed point results of mappings satisfying contractive

conditions of Hardy Roger type in an ordered 0-complete partial metric space are discussed.
Consistent with [76, 79], the following de nitions and results will be needed in the sequel.

2.1.1 De nition [76]

Let (X;q) be a quasi-partial metric space. (i) A sequence fx»g in (X;q) is called 0-Cauchy if
lim q(xn;xm) = lim q(Xm;xn) = 0: n;m!1 nmi1
(if) The space (X;q) is called 0-complete if every 0-Cauchy sequence in X converges to a

point x 2 X, such that q(x;x) = 0.
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It is easy to see that every 0-Cauchy sequence in (X;q) is Cauchy in (X;dp,) and if (X;q) is
complete, then it is 0-complete but the converse assertions do not hold. For example, the
space X =[0;,+1) \ Q with g(x;y) = jx yj + jxj is a 0-complete quasi-partial metric space but it

is not complete (since dp.(x;y) = 2jx yj and (X;dp,) is not complete).

2.1.2 De nition [79]

Let (X;q) be a quasi-partial metric space. (i) A sequence fxng in (X;q) is called left (right) K-0-

Cauchy if 8 n>m; lim q(xm;xn) = nmi1

0 (respectivelylim q(xn;xm) = 0): m;mi1
(if) The space (X;q) is called 0-complete left(right) K-sequentially if every left (right) KO-

Cauchy sequence in X converges to a point x 2 X, such that g(x;x) = 0.

One can easily observe that every 0-complete quasi-partial metric space is also a 0-
complete left K-sequentially quasi-partial metric space but the converse does not hold always.
Also, every closed subset of a 0-complete left K-sequentially quasi-partial metric space is a

0-complete left K-sequentially quasi-partial metric space.

2.2 Fixed Points of Reich, Banach, Kannan and Chatterjea Type Mappings
in an Ordered 0-Complete Left K-Sequentially Quasi-Partial Metric
Spaces

The results given in this section have been published in [13, 76, 79].

2.2.1 Theorem [79]

Let (X; ;q) be an ordered 0-complete left K-sequentially quasi-partial metric space, S be a self

dominated mapping on X and xo 2 X. Suppose that for a;b 2 [0,;1), such that a + 2b< 1
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and
q(Sx:5y) aq(x;y) + blq(x;:5x) + q(v;Sy)]; (2.1)

for all comparable elements x;y in Bq(xo;r): Also,

q(xo0,;5x0) (1 K)[r + q(x0;x0)]; (2.2)

a+b -
where” | — b. If for a nonincreasing-seguence fxig in Bg(xo,;7); fxng ! implies

that x», then there exists a point w™in Bq(xo;r), such that dq(w;* w”) = 0 and w” = Sw:*

Moreover, w?

is unique, if for any x;y 2 Bq(xo,1); the set Axy = fz 2 Bq(xo,;7) : z x and z yg is non
empty and

q(x0;5x0) + q(z;52) q(x0;2) + q(Sx0;5z); for all z Sxo: (2.3)

Proof. Consider a Picard sequence, xn+1 = Sxn» With initial guess xo. AS Xn+1= Sxnxnfor all n

2 fOg [ N: By the inequality (2.2), we have

q(x0;x1) (1 k)[r + q(x0;x0)]

r + q(xo,;x0):

Therefore, x1 belongs to the closed ball: Now, let xi 2 Bg(xo,;r) for some i = 1;2;::;j 2 N. AS xn+1

Xn; SO by using the inequality (2.1), we obtain

q(x;xj+1) = q(Sxj1,5%))
alq(xj;x))] + b[q(xj 1;x;) + q(x;xj+1)];
q(x;xj+1) kq(xj 1;x));
which implies that
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q(xjxj+1) k2q(xj2,x1) kiq(xo;x1): (2.4)

Now,
q(xo;xj+1) q(zo, 1) + -+ qlxj, xj1) — [g(z, z1) + - - + gz, 25)]
gzo,x1)[L+ ..+ K L+ 1], (by (2.4))
(1 — kIt

qroxpr) (=Rl Faleo o) (by (22))

Thus, xj+1 2 Bg(x0,7). Hence, x» 2 Bq(xo;r) for all n 2 N. Also, xn+1xnfor all n 2 N: It
implies that q(Xn;xn+1) knq(xo;x1) foralln 2 N:

It follows that

q (Xn;xn+i) q(xn;xn+1) + + q(xn+i 1, xn+i) q(xn+1;Xn+1) q(xn+i1;xn+i1)

q(Xn;Xn+i) knq(xo;x1)[1 + +kiz+ki1]!0asn!1:

Notice that, the sequence fxng is a left K-0-Cauchy sequence in (Bg(xo0;r);q): AS, Bq(x0,;1) iS

closed and so it is 0-complete left K-sequentially quasi-partial metric space. Therefore, there
exists a point w” 2 Bg(xo;r) with

qw; wh) =lim q(x,,w") =lim q(w;x* »n) =0: (2.5) ™1 i
Now,

q(w; SN wh) q(w;x™ n) + q(Sxn1,SW") q(Xn;xn):

On taking limit as n ! 1 and using the fact that w” xn xn 1; when x! w;* we have
qw;S" wh)  lim [q(w;x™ n) + aq(xn1,w") + bfq(xn 1;Sxn1) + q(w;S"
wh)g] milim [q(w;x" n) + aq(xn 1,w”) + bfkn 1q(xo;x1)

+q(w;S™ wh)g]:
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m1

Then by the inequality (2.5), we have

(1b)g(w;S*wh) O:

Similarly, we have
q(Sw;* w™) 0:

Hence, w” = Sw”. Now, we will prove that w” is the unique xed point of S in Bq(xo;r). Let y

qy) =q(Sy;Sy) aq(y;y) + btq(y;Sy) + q(v;Sy)g
(1a2b)q(yy) 0;

and hence, we have
q(viy) = 0: (2.6)

Now, if w" y. Then, we have
qlwy™ )=

q(Sw;Sy* ) aq(w;y” ) + b[q(w;S?
wh) +q(;8y)];

(1a)gwy™ )  0.(by(2.5)and(2.6))

Similarly, g(y,w") 0: This proves that w” is the only xed point in By(xo,7). Now, it is possible

that w” y and y w;” then there exists a point z 2 X, such that z w” and z y: Now, we
be another point in Bq(xo;r), such that y = Sy. Then, we have

will prove that Sz 2 Bq(xo;r): By assumptions z w” x»:: xoand hence, we have
q(Sx0;5z) aq(xo;z) + b[q(xo;x1) + q(252)]
aq(xo;z) + b[q(x0;2) + q(x1,52)]; by (2.3)
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q(x1;52) kq(xo;2): (2.7)

Now, we have

q(x0;52)

q(xo:x1) + q(x1,52) q(x1;x1) q(xo;x1) +
kq(xo0;2); by (2.7)
q(x0,52) (1 K)[r+ q(xo;x0)] + k[r + q(x0;x0)] =1
" m1 n—1_ ¢on., m—1_ ¢n m,, gntl,
q(S"z, 8" z) < aq(S™ Tz, 5"z) +blg(S™ 2z, 8"z) +q(S"z, 5" 2)),

which implies that

q(Snz;Sn*1z) kq(Sn1z;5nz)
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It follows that Sz 2 B,(xo,7): Let §27;::; Siz 2 By(xo;1) for some j 2 N: As Siz Si1z

2 ZWN X Xo; then

q(x1,5+1z) = aq(x0;5z) + b[q(x0;x1) + q(S5z;S*12)]

aq(xo;52) + b[q(x0;52) + q(x1;5+12)]; (by 2.3)

which implies that

q(x1:512) kq(x0;57) K[r + q(x0:x0)] (as Sz 2 By(xo;1). (2.8)

Now, we have

q(x0;5%1z) q(xo;x1) + q(x1,5+12)

(1 K)[r+ q(xo;x0)] + k[r + q(x0;x0)] =T
It follows that $/*1z 2 By(xo,1); and hence, S"z 2 By(xo;r): As, Snz Sn1z : zand

SO
k:zq(S” 2, 8" lz) < ... <k"q(z,82) — 0 as n — oo (2.9)

Now, we have

q(wy” ) =q(Sw;Sy™ )
q(Sw;S™  m1z) + q(S"1z:Sy) q(S" 1S 1z):

As, Sn1z wh and Sn1z y; S'wh = w” and Sty =y for all n 2 N: It implies that S7 1z S"w” and S»
1z Sny; for all n 2 N, then

q(w;y" ) aq(w;S" nz) + bfg(w;S" wh) +
q(S"z;S"1z)g

+aq(Snz;y) + bfq(S"z;S"*1z) + q(y;Sy)g:

On taking limit as n ! 1, and by using the inequalities (2.6) and (2.9), we have

) lim [ag(w, S"z) + aq(S"z,y)]

n—00

q(wy”
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lim [a2q(w;S" "1z) + a2q(S"1z;y)]
m1

lim [a"g(w;Sz" ) + a"q(Sz;y)]! O:

n1

Similarly, q(y;w”) 0:Hence,w"=y.m

2.2.2 Example [79]
Let X =[0,+1)\Q be endowed with order, x y if q(x;x) q(y;y) and let g : X X! R*

be an ordered 0-complete left K-sequentially quasi-partial metric on X de ned by q(x;y) =
maxfy x;0g + x: De ne
i:I: ifxe€[0,1]NQ

Sr = 10
-3 ifze(l,00)NQ.

7 1 1 1
Clearly, S is dominated mapping. Take, © — BT 5T 5 then
Bq(XO,'r):
(@ 1)—1 k_a+b_é
[0;1]\ Q; we have’ ™™ = 2 ¥ = T4 = 9 with
4.1 1. 5
(1 =#)lr + (o, x0)] = (1 = J)I5 + 51 =73
and
. 1. 1. 1 1. 1 5
q(wo, Swo) = Q(§e5(§)) = Q(§1 %) =5 < 9:

Also, if x;y 2 (1,1) \ Q; then

4 4 4 4
q(Sx, Sy) = max{y — 9 T+ 9’ 0} +x— 9= max{y —x,0} +x — 9:

Now, if x = y; then

4 > 5,.
xr 9 = QJL.
Now, if x>y, then
4 16 1
9= TRy



Now, if x<y; then

So the contractive condition does not hold on the whole space in each case:

Now, if x;y 2 Bq(x0,1) \ Q; then

1 1 7
q(Sx,Sy) = 11’1ax{Ey — E:E,O} -+ 0% = Eq(ﬂ:,y} < Eq(a:,y)

< aq(z,y) + blg(z, Sx) + q(y, Sy)].
Also,
q(x0;Sx0) + q(z;52) q(xo0;z) + q(Sx0;Sz) for all z Sxo:
Hence, all the conditions of Theorem 2.2.1 are satis ed. Moreover, 0 is equal to S(0) and

q(0;0) = 0:

In Theorem 2.2.1, the condition for a nonincreasing sequence fx»g ! implies that x», the
existence of lower bound and the condition (2.3) are imposed to restrict the condition (2.1)

only for comparable elements: However, the following result relax these restrictions but

impose the condition (2.1) for all elements in Bq(xo;7):
2.2.3 Theorem [79]

Let (X;q) be a 0-complete left K-sequentially quasi-partial metric space, S : X! X be a self

map and xo 2 X. Suppose that for a;b 2 [0,;1), such that a + 2b< 1 with

q(Sx;:Sy) aq(x;y) + b[q(x;5x) + q(y;Sy);
for all elements x;y in Bq(xo,;r) and

q(xo0;Sx0) (1 K)[r + q(x0;x0)];
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o _a+ b
where™ 1 — b, then there exists a unique  xed point w” in Bg(xo;r), such that w” = Sw” and
qw;» wh) =0:

In Theorem 2.2.1, the condition (2.2) and (2.3) are imposed to restrict the condition (2.1)

only for x;y in Bg(xo,r) and Example 2.2.2 explains the utility of these restrictions. However, the
following result relax the condition (2.2) and (2.3) but impose the condition (2.1) for all

comparable elements in the whole space X.

2.2.4 Theorem [79]

Let (X; ;q) be an ordered 0-complete left K-sequentially quasi-partial metric space, S be a self

dominated mapping on X and xo 2 X. Suppose that for a;b 2 [0,;1), such that a + 2b< 1

with

q(Sx:8y) aq(x;y) + b[q(x:5x) + q(;Sy)];

for all comparable elements x;y in X:

if for a nonincreasing sequence fxngin X; fxng ! implies that x», then there exists a point w” in X,
such that w” = Sw” and q(w;* w”) = 0: Moreover, w” is unique, if for any x;y 2 X;

the set Axy=fz 2 X : zx and z yg is non empty:

In Theorem 2.2.1, the conditions (2.3) is imposed to obtain unique xed point of a
contractive mapping satisfying conditions (2.1). However, the following result relax restriction
(2.3) but impose the condition (2.1) for b = 0: Also, we can replace an ordered 0-complete left
Ksequentially quasi-partial metric space by an ordered 0-complete quasi-partial metric space to

obtain Theorem 10 of [76] as a corollary of Theorem 2.2.1.

2.2.5 Corollary [76]

Let (X; ;q) be an ordered 0-complete quasi-partial metric space, S be a self dominated map-

ping on X and xo 2 X. Suppose that there exists a 2 [0;1), such that
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q(Sx;8y) aq(x;y)
for all comparable elements x;y in Bq(xo,;r) and
q(x0;5xo0) (1 a)[r + q(xo0;x0)]:

if for a nonincreasing sequence fxng in Bq(xo,7); fxng ! implies that x», then there exists a point

w” in Byfxos#); such that dg(w; w”) = 0 and w” = Sw:” Also, w” is unique, if for any
X;y 2 Bq(xo;1); the set Axy = fz 2 Bg(xo;r) : zx and z yg is non empty:

2.2.6 Corollary [76]

Let (X; ;q) be an ordered 0-complete quasi-partial metric space, S be a self dominated map-

ping on X and xo 2 X. Suppose there exists k 2 [0;1) with

q(Sx;Sy) kq(x;y), for all comparable elements x;y in X:

If for a nonincreasing sequence fxngin X; fx»g ! implies that x», then there exists a point w” in
X, such that w” = Sw” and q(w;” w”) = 0: Moreover, w” is unique, if for any x;y 2 X;

the set Axy=fz 2 X : zx and z yg is non empty:
2.2.7 Corollary [76]

Let (X;q) be a 0-complete quasi-partial metric space, S: X! X be a map and xo 2 X.

Suppose there exists k 2 [0;1) with

q(Sx;Sy) kq(x;y); for all elements x;y in Bq(xo,1)

and

q(xo0;Sx0) (1 K)[r + g(x0;x0)]
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then there exists a unique point w” in Bg(xo,;r), such that w” = Sw:» Further q(w;* w") = 0:

2.2.8 Remark

By taking a = 0 and an ordered 0-complete quasi-partial metric space instead of an ordered 0-
complete left K-sequentially quasi-partial metric space in Theorem 2.2.1 and in Theorem

2.2.4, we can obtain Theorem 15 and Theorem 17 of [76].

2.2.9 Corollary [76]

Let (X;;q) be an ordered 0-complete quasi-partial metric space, S be a self dominated map-

1
ping on X and xo 2 X. Suppose that there existsb €l 5), such that

q(Sx;Sy) blq(x:Sx) + q(v;y)]
for all comparable elements x;y in Bq(xo,;r) and

q(xo0;5x0) (1 K)[r + q(x0;x0)];

b
k=—o . . - .
where 1 — b: If for a nonincreasing-seqtence fxag in Bq(xo;r); fxng !

implies that xx», then there exists a point w” in Bq(xo;r), such that dq(w;* w”) = 0 and w” =

Sw:”* Moreover, w”

IS unique, if for any x;y 2 Bq(xo,;1); the set Axy = fz 2 Bq(x0,;7) : zx and z yg is non
empty and
q(x0;Sx0) + q(z;52) q(xo0;z) + q(Sx0;5z) for all z Sxo:

2.2.10 Corollary [76]

Let (X; ;q) be an ordered 0-complete quasi-partial metric space, S: X! X be a dominated
1
ol € {0 T)
map. Suppose that there exists 27, such that
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q(Sx;8y) blq(x:5x) + q(y;Sy)]

for all comparable elements x;y in X: If for a nonincreasing sequence fxng in X; fxag ! implies
that xn, then there exists a point w” in X, such that w* = Sw” and q(w;* w”) = 0: Moreover,
w” is unique, if for any x;y 2 X; the set Axy=fz 2 X: zxand z yg is non

empty:

2.2.11 Corollary [13]

Let (X; ;p) be a complete ordered partial metric space, S be a self dominated mapping on X

and xo 2 X. Suppose there exists® € [0.3) with

p(Sx;Sy) k[p(x;5x) + p(y;Sy);
for all comparable elements x;y in By(xo,;r) and

p(xo;Sx0) (1 )[r+ p(xo;x0)];

_ _k . . L
where = 1 &: If for a nonincreasing sequence in Bp(x0;r); fxng !

then there exists a point w” in Bp(xo;r), such that dy(w;* w”) = 0 and w” = Sw:* Also, if for
any -

x;y 2 Bp(xo;1r); the set Axy = fz 2 Bp(xo;r) : zx and z yg is non empty and

p(x0;5x0) + p(z;5z) p(x0,z) + p(Sx0;52);

then w” is unique.
2.2.12 Example [13]
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Let X = R*[ fOg and Bp(xo,r) = [0,;1] be endowed with the usual ordering and let p be the
complete partial metric on X de ned by p(x;y) = maxfx;yg for all x;y 2 X: Let S: X! X be de

ned by

3x . 1
% lf'LG [05),

v

o ZI.- 1
Sz = =0 if x € [3,1]

l :n—%if.re(l,oo):

Clearly, Sxxforall x 2 Xthatis,is S dominating map. For all comparable elements with

k= % < [0,%), xTp = % r= % p(xo, o) = max{%,%} = % 0= IL =1

E— 4
1.1 1 3
(1= 0) +p(ro.z)] = (1 - DL +21=2
1 1 11 11 1 3
p(z0, Sz0) = p(=,S=) = p(=, —) = max{=, —} = = < =
Also,
z,y € (1,00), p(Sz,Sy) = max{z 11 l}
If.,,J ,00), p(Sz,Sy) = max{z 2,!; 5
> l[;':+ ]
< 3 Y

= Hlmax{ze — 1} + mex{y,y — 3]

p(Sz,Sy) = k[p(z,Sx) + p(y, Sy)|.

So the contractive condition does not hold on (1,1): For the closed ball [0;1]; the four cases

arrises:
(i) If 2,y €10, 3). we have
3r 3 3
p(Sz,Sy) = max{%,% = — max{z,y}
1
< zlz+yl

5

1 3z 3
= g[max{a':, 7—5(:} + max{y, T—g}]

= klp(z, Sz) + p(y, Sy)].

37



(i) For® €[0,3),y € [3. 1]: we have

e B 2y L
p(Sz,Sy) = max{ 0700 = 70 max {3z, 2y}
1
< gletyl
1 3z 2

_ 2 . <Y
= z [max{z, 70} + max{y, =0 1]
klp(x, Sx) + p(y, Sy)].

(iii) When? € [0.3), @ € [5. 1], we have

p(Sx,Sy) = max{%, % = 7—10 max{2z, 3y}
1 1 2z 3y
< Z(pdqyl == T, — ax{y, —
=N [z + y] 5[111211({1 70} + max{y =0 H
= k[p(z,Sz) + p(y, Sy)].
. ey € [l 1] ;
(iv) And if*>¥ < 13, 1> we obtain
2x 2y 2
p(Sz,Sy) = max =0 %} =70 max{z,y}
1
< gletyl
1 2x 2y
= g[max{ﬂr, %} + max{y, %}]

= klp(z, Sz) + ply, Sy)].

Hence, all conditions of the above theorem are satis ed and O is the unique  xed point of S:
2.2.13 Theorem [76]

Let (X; ;q) be an ordered 0-complete quasi-partial metric space, S be a self dominated map-

. . ce0,=
ping on X and xo 2 X. Suppose that there exists” o 2 ), such that

q(Sx:8y) c[q(x:8y) + q(Sx;y)] (2.10)
for all comparable elements x;y in By(xo,7) and

q(x0;Sx0) (1 9)[r + q(xo;x0)]; (2.11)
c

where k = . If for a nonincreasing sequence fxag in Bq(xo;r); fxng ! implies that
1c
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Xn, then there exists a point w” in Bq(xo;r), such that w” = Sw:* Further g(w;* w”) = 0:
Proof. Consider a Picard sequence xn+1 = Sx» With initial guess xo. AS xn+1= Sxnxnfor all n 2

fOg [ N: By using the inequality (2.11), we have

q(x0;x1) r + q(xo0;X0):
Therefore, x1 2 Bq(xo0;r): Now, let x2; ;x;j 2 Bq(xo;r) for some j 2 N. As xa+1Xn; SO by using the
inequality (2.10), we obtain
q(xi;xj+1) cla(xux) + qxpxi) cq(x q(x5%) + q(x5x))]

1;Xj);

which implies that
q(xi;xj+1) c2q(xj2;xj1) ciq(xo;x1):

Now,

q(xo;xj+1) q(xo, 1) + -+ qlxj,xj01) — [glzr, 21) + - - + gz, 25))

_ 1
- (1 - Ol + alzo 2} 2. (by 2.11)
q(xo;xj+1) I—c

Thus, xj+1 2 Bqg(x0,7): Hence, xa 2 Bq(xo;r) for all n 2 N. Also, xa+1xafor all n 2 N: It
implies that

q(xn;xn+1) cq(xo;x1) forall n 2 N:
It follows that

q(Xn;Xn+i) q(xn;xn+1) + + q(xn+i 1;xn+i)

q(Xn;Xn+i) cnq(xo;x1)[1 + +ci2+cil]!0asn!1:

Notice that the sequence fx»g is a 0-Cauchy sequence in (Bq(xo0;r);q): AS Bq(xo,r) is closed
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and so is 0-complete Therefore there exists a point w” 2 Bq(xo,r) with

qw;* wh) =lim q(x,,w”) =lim q(w;x* »n) =0: (2.12) m i

Now,

qw;S™ wh) q(w;x” n) + q(Sxn1,SW") q(Xn;xn):
On taking limit as n ! 1 and using the fact that w” x» xn1, when x» ! w;* we have

q(w;S" w™)  lim [q(w;x™n) + cfq(xn 1,SW") + q(xn;Ww")g]

m1

lim [cfq(xn1,Ww") + g(w;S™ w™) q(w;* wh) + q(xn;Ww™)g]
iy
(1 <aqw;s*w™) 0: (by2.12)

Similarly,
q(Sw;* wn) 0:

Hence, w" = Sw™. m

2.2.14 Remark [79]

(i) The above results can easily be proved in an ordered 0-complete right K-sequentially
quasipartial metric space. (ii) We can obtain the quasi-metric and metric version of all

theorems which are still not present in the literature.

2.3 Common Fixed Points of a Pair of Hardy Rogers Type Mappings in a
Closed Ball in Ordered Partial Metric Spaces

The results given in this section have been published in [12, 77].

2.3.1 Theorem [77]
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Let (X; ;p) be an ordered 0-complete partial metric space, xo2 X, r>0and S;T: X! X be two
dominated mappings. Suppose that for a;b 2 [0;1);c 2 [0;1), such that a + 2b + 2c< 1
and

p(Sx;Ty) ap(x;y) + b[p(x;5x) + p(y; Ty)] + c[p(y;Sx) + p(x; Ty)]; (2.13)

for all comparable elements x;y in By(xo,;r) and

p(xo;Sx0) (1 )[r+ p(xo;x0)]; (2.14)

a+b+c -
where 1 —b — ¢, then there exists a point w” in Bp(xo;r), such that dp(w;» w?) = 0: If for a

nonincreasing sequence fxag in Bp(xo;r); fxng ! implies that  x», then w” = Sw” = Tw:?

Proof. Choose a point x1 in X, such that x1 = Sxo: AS Sxoxoand so x1 xo: Let x2 = Tx1. Now,
Tx1x1gives x2 x1, Continuing this process and having chosen x»in X, such that

X2k+1 = Sx2kand x2k+2 = Tx2k+1; Where k = 0;1;2;::::

By using the inequality (2.14), we have

p(xo;x1) 1 + p(Xo;X0):
Ifj=2k+1, then

Therefore, x1 2 Bp(Xo,1): Let x2,::;%; 2 Bp(xo;1) for some j 2 N.

X2k+1 = SX2k X2k; where k = 0,1,2/-* i21: So using the inequality
(2.13), we obtain
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D(X2k+1;X2k+2) = p(Sx2k; Tx2k+1)
a[p(x2k;x2k+1)] + b[p(x2k;Sx2k) + p(x2k+1; Tx2k+1)] +
c[p(x2k; Tx2i+1) + p(x2k+1;5x2k)] a[p(x2kXx2k+1)] +
b[p(x2k;x2k+1) + p(X2k+1;x2k+2)] + c[p(X2k;X2k+1) +

p(x2k+1;X2k+2)];

which implies that

p(sz+1,'sz+2) p(sz,’sz+1) b 2k+1p(X0,'X1).' (2-15)

If j = 2k + 2, then as x1,X2...,X; 2 By(x0;7) and Xaie2 Xak+1, (k= 0;1,2;:::; 152); we obtain

2k+2

p(x2k+2;X2k+3) p(x0;x1): (2.16)

Thus, from the inequality (2.15) and (2.16), we have

p(x;xj+1) jp(x0;x1) for some j 2 N: (2.17)
Now,
p(x0;xj+1) p(x0;x1) + 12 + p(xj;Xj+1) [p(x1,x1) + 2 + p(x5;%))]
p(zo,z1)[L+ ..+ X 1+ M), (by 2.17)
1— Aj-b—l)

p(x0;x+1) *)‘)["'pr(fﬂﬂawﬂ)]ﬁ' (1

Thus, xj+1 2 Bp(xo,7). Hence, x» 2 Bp(xo,;r) for all n 2 N. Also, xn+1xnfor all n 2 N: It
implies that

n
P(XnXn+1) p(x0;x1) foralln 2 N: (2.18)
So, we have

P (Xn+i;Xn) P(TnyisTori 1) + .+ P(@ny1,Tn)

APy (g, 1) + o 4 Ap(o, 21)
(1 =A%
1—A

—s0asn— oo

Np (o, 1)
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Hence, the sequence fxng is a 0-Cauchy sequence in (Bp(xo;r);p): AS Bp(xo;7) is closed and

so is 0-complete partial metric space. Therefore, there exists a point w” 2 Bp(xo;r) with

p(w;* wh) =lim p(xn,,w") = 0: (2.19)
n1

Now,

p(W,'SA WA) p(W,'XA 2n+2) + p(X2n+2,'SWA) p(X2n+2,'X2n+2).'

On taking limit as n ! 1 and by assumptions w” x»as x»! w;* therefore, we have

pw;S* wr)  lim [p(w;x” 2n+2) + ap(x2n+1,W") + bfp(Xx2n+1, TX2n+1)
mq
+p(w;S" wh)g + cfp(x2n+1,SW) + p(w; Tx"
2n+1)g] lim [p(w;x™  2n+2) + ap(x2ns,;wh) +

bfp(x2n+1;x2n+2)

n1

+p(w;S" wh)g + cfp(xzn+1,Ww") + p(w;S* wh) + p(w;x?
2n+2)g]: By using the inequality (2.18) and (2.19), we obtain
(Lb)pw;S*wn) 0;
which implies that w” = Sw”. Similarly, from

p(w; T w™) p(W;x" 2n+1) + p(X2n+1; TW?) p(X2n+1;X2n+1);
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we can obtain w” = Tw:~ Hence, S and T have a common xed point in Bp(xo;r). ™
2.3.2 Example [77]

Let X = [0,+1)\Q be endowed with order, x y if p(x;x) p(y;y) and let p : X X | R*

be an ordered 0-complete partial metric on X de ned by p(x;y) = maxfx;yg: De ne

Elf;ﬂé[ﬂ,l}ﬂ@ ﬁlfi,e[(),l]ﬁQ
Sz = Tx =

1‘f €(l,o0)NQ x l‘ff-e(l )NQ

T 61 T , 00 and x 71 T , 00 J.
a—lb—i(‘—ifr—liﬂ—
Clearly, Sand T are dominated mappings. Take, 5’ 1’ 5 20 = 9
— (0, 20) = max{3, 3} = 3, A = (2 EC
Bp(xo;r) = [0;1] \ Q: We have! "0 = M5 50 = 5 A= I

(1= Nl + p(wo,20)] = 5=

25

and
11 1
p(zo, Szo) :P(§= @) =5 < (1= +P(I07$0)]:
Also, if x;y 2 (1,1) \ Q; then
(52,Ty) = max{e -5y}
p\ox, Ly = maxyx 6:9‘ 7

v

1 1 1 1
5 max{z,y} + m[max{a),:}: - a} + max{y,y — ?}]

1 1 1
+E[1rmx{m, Y- ?} + max{y,z — 6}]

v

ap(z,y) + b[p(z, Sz) + p(y, Ty)] + c[p(y, Sz) + p(x, T'y)];

So the contractive condition does not hold on the whole space:

S x by
i Sx.Ty) = L2y
Now, if xiy 2 By(xo;r); then” (Sz, Ty) = max{ e, 1=
1 1 ’ .
< g max{ﬁ‘?‘: ?}} + m[max{.?:, %} + me{y! %}]
1 51 .
Jrﬁ[IllaX{ZL‘, %} + max{y, %}]

= ap(z,y) + blp(x, Sz) + ply, Ty)] + clp(y, Sx) + p(z, Ty));
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Hence, all the conditions of Theorem 2.3.1 are satis ed. Moreover, 0 is equal to S(0) = T(0)
and p(0,;0) = 0:

If we take a = b = 0 in Theorem 2.3.1, then we obtain the following theorem.

233 Theorem
Let (X; ;p) be an ordered 0-complete partial metric space, xo2 X, r>0and S;T: X! X

be two dominated mappings. Suppose that there exists® € [0, %), such that
p(Sx;Ty) c[p(y;Sx) + p(x; Ty)];
for all comparable elements x;y in By(xo,;r) and

p(x0;Sxo0) (1 )[r+ p(xo;x0)];

C -
where 1 — ¢, then there exists a point w” in By(xo;r), such that dp(w;» w”) = 0: If for a

nonincreasing sequence fxag in Bp(xo;r); fxng ! impliesthat  x», then w” = Sw” = Tw:?

234 Example

Let X=10,+1) \ Qand p : X2 X2! R*be an ordered 0-complete partial metric on X2 de ned by
p((x1y1); (x2;y2)) = Mafx1;y1;x2;y28. Let X2 be endowed with order, (x1;y1) (x2;y2) if

p((x1y1);(x1,v1)) p((x2;y2);(x2;y2)): Let S;T: X2! X2 be de ned by

(;%) if 2,y € [0, 1]
S(z,y) =
1 3. .
(x — 39~ g) if z,y ¢ [0,1]

and
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Az 2y, ..
(B*?) if T,y € [O* H
T(z,y) =
1 1
(@ —py—z)ifzy &[0, 1]

3
Clearly, S and T are dominated mappings. Let (20,50) = (7: 7)™ = 7' then

Bp((x0,y0);r) =f(x;y) 2 X2: x;y 2 [0;1]g

1 1 C 1
- = = U, — ], A = = —
with® = 5 € [0:3) l—c 4
1.3 4 3
(1= X)[r + p((zo,0); (0, 9y0))] = (1 — Z}[§+§] =1
; 2 4 2 12 4 3
p((z0,y0), S(zo,y0)) = max{? 779 ﬁ} 7 < 1

Putting x1=y1=x2=y2 = 3; we obtain

» 8 21 11 14, 14
;()(53(3,3),7-‘(3, 3)) = I‘nax{j g I F} = E
1 G w s Al & G " i G
g[p((ii) 1 (3 3)) +p((3,3),5(3,3))]
1 8 21 6 1
= g[max{3 3, — —}erax{S 3, 33 —}= <3,

So the contractive condition does not hold on the whole space: Now, if (x1,y1);(x2;y2) 2

Byp((x0;y0);r); then
ry 3 4y 2
p(S(a1y1), Twa,p2)) = max{SH, 24, 222 22
117157 7
1 Aoy 2 Ty 3
< [IIIdX{.’L] Y1, Jrz, ’ljz}+ {JL Al 2,12}
5 15 7117

= clp((z1,y1), T(w2,92)) + p(S(x1,51), (x2,92))].

Hence, all the conditions of Theorem 2.3.3 are satis ed. Moreover, (0,0) is the common xed
point of Sand T:
2.3.5 Theorem [77]

Let (X; ;p) be an ordered 0-complete partial metric space, xo2 X, r>0and S: X! X be
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two dominated mapping. Suppose that for a;b;c 2 [0,;1) 2 [0;1), such that a+2b+2c< 1 and

p(Sx;Sy) ap(x;y) + b[p(x;5x) + p(y;Sy)] + c[p(y;SX) + p(x;5y)];
for all comparable elements x;y in By(xo,;r) and

p(xo;Sx0) (1 )[r+ p(xo;x0)];

a+b+c -
where 1 —b — ¢, then there exists a point w” in Bp(xo;r), such that dp(w;* w”) = 0: If for a

nonincreasing sequence fxag in Bp(xo;r); fxng ! implies that  x», then w” = Sw:*

Proof. In Theorem 2.3.1 take T=Sto get  xed point w” 2 Bp(xo;r), such that w" = Sw:”

In Theorem 2.3.1,the condition for a nonincreasing sequence fx»g ! implies that xx»; is

imposed to restrict the condition (2.13) only for comparable elements: However, the

following result relax this restriction but impose the condition (2.13) for all elements in
Bp(x0;r): In Theorem 2.3.1, the common xed point of S and T may not be unique, whereas
without order we can obtain unique xed point of S and T separately, which is proved in the
following

theorem.

2.3.6 Theorem [77]
Let (X;p) be a 0-complete partial metric space, xo2 X, r>0and S;T: X! X be two

dominated mappings. Suppose that for a;b;c 2 [0,;1) 2 [0;1), such that a + 2b + 2c< 1 and

p(Sx;Ty) ap(x;y) + b[p(x;5x) + p(y; Ty)] + c[p(y;Sx) + p(x; Ty)];
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for all elements x;y in Bp(xo,;r) and

p(xo;Sx0) (1 )[r+ p(xo;x0)];

a+b+c -
where 1 — b — ¢, then there exists a unique point w” in By(xo;r), such that w” =
Swh =Tw”?

and p(w;* w”) = 0: Moreover;S and T have noxed point other than w:*

Proof. By following similar arguments of Theorem 2.3.1, we can obtain a point w” in

Bp(x0;r), such that w» = Sw” = Tw:” Lety = Ty, then yisthe  xed point of T and it may not
be the xed point of S, then

p(wy" ) =p(Sw;Ty" )
ap(w;y™ ) + b[p(w;" wh) + p(y;y) + c[p(wy” ) +

psw")] (a+b+2cp(wy”™ ):

This shows that w” = y: Hence, Thasno  xed point other than w:* Similarly, Shasno xed
point other than w:" m

In Theorem 2.3.1, the condition (2.14) is imposed to restrict the condition (2.13) only for x;y

in Bp(xo,r) and Example 2.3.2 explains the utility of this restriction. However, the following
result relax the condition (2.14) but impose the condition (2.13) for all comparable elements
in the whole space X. Moreover, we introduce a weaker restriction to obtain unique common

xed point.

2.3.7 Theorem [77]
Let (X; ;p) be an ordered 0-complete partial metric space, xo2 Xand S;T: X! X be
two dominated mappings. Suppose that there exists there exists a;b;c 2 [0,1), such that

a+2b+2c<1and

p(Sx;Ty) ap(x;y) + b[p(x;5x) + p(y; TY)] + clp(y;5x) + p(x; Ty)];
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for all comparable elements x;y in X: If for a nonincreasing sequence fxng in X; fx»g ! implies
that x», then there exists a point w” in X, such that w» = Sw” = Tw” and p(w;* w”) = 0:
Moreover, the point w” is unique if for any two points x;y in X there exists a point zo 2 X,
such that zow” and zo .

Proof. By following similar arguments of Theorem 2.3.1, we can obtain a point w” in X, such
that w” = Sw” = Tw:” By Theorem 2.3.4, w” is unique common xed point for all comparable
elements. Now, if w” and y are not comparable, such that y = Sy = Ty, then there exists a
point zo 2 X, such that zo w” and zoy: Choose a point z1in X, such that z1 = Tzo: As Tzo zo and
so z1zoand let zz = Sz1. Now, Sz1 z1 gives z2 z1, continuing this process and having chosen z»

in X, such that
z2i+1 = Tz2i; z2i+2 = Sz2iv1and z2i+1 = Tz2i zziwhere i = 0;1;2;::::
It follows that zn+1zn :: zo w:” Following similar arguments as we have used to prove the

inequality (2.18), we have

P(Zn;Zn+1) np(zo;z1) for alln 2 N: (2.20)

As Zo
w” and zoy; it follows that z, Tw” and z, Ty for all n 2 N, then for i 2 N;

p(Tw;Sz" 2i1) ap(w;z" 2i1) + b[p(W; T w™) + p(22i1,522i1)]

+c[p(w;Sz" 2i1) + p(22i 1, TW™)]; (1
c)p(w;Sz” 2i1) (a + c)p(w;z" 2i1) + bp(22i1,221); p(W;SZ" 2i1)
p(w;z" 2i1) + p(22i1,221);

_a+tec B b )
(where ~ 1-—cand 1-¢
p(w;Sz"2i1) ep(w;z™ 2i2) + p(z2i2,22i1) + p(Z2i1,22i)
2i 2i1
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p(w;z"o) + p(zo;z1) +

+p(22i2;22i1) + p(22i1,22i):

On taking limitas i ! 1 and by the inequality (2.20), we have

p(w;S5z"2i1) = 0: (2.21)
Similarly,
p(Sz2i,y) ! 0asn!1: (2.22)

Now, by using the inequality (2.21) and (2.22), we have

p(w;y") p(w;Sz" 2i1) + p(Sz2i1,y) p(Sz2i1,5z2i1) ! 0asn ! 1:

sowt=y:m

2.3.8 Remark [77]

In Theorem 2.3.1, the common xed point of S and T may not be unique. However, xed point is

unique in Theorem 2.3.1, if for every pair of elements x;y in Bp(xo,r) there exists a point

70 2 Bp(xo;r), such that zox and zo y and the sequence z» 2 Bp(xo,1), such that

z2i+1 = Tz2i; z2iv2 = Sz2i+1, Where i = 0;1,2;::::

Metric version of Theorem 2.3.1 is given below.

2.3.9 Theorem [77]
Let (X; ;d) be a ordered complete metric space, xo2 X, r>0and S;T: X! X be two
dominated mappings. Suppose that for a;b;c 2 [0,;1) 2 [0;1), such that a + 2b + 2c< 1 and

50



d(Sx;Ty) ad(x;y) + b[d(x;Sx) + d(y; Ty)] + c[d(y;Sx) + d(x; Ty)];

for all comparable elements x;y in B(xo,;r) and

d(xo;Sx0) (1 )y

a+b+c

where 1 —b— e. If for a nonincreasing sequence fx,g in B(xo,;1); fxng !

Xn, then there exists a point w” in B(xo,;r), such that w” = Sw” = Tw:*
Now, we apply our Theorem 2.3.7 to obtain unique common xed point of three mappings

in an ordered 0-complete partial metric space.

2.3.10 Theorem [77]

Let (X; ;p) be a ordered partial metric space and S; T self mapping and fbe a dominated
mapping on X, such that SX [ TX fX with Tx; Sx fx: Assume that the following

conditions holds for a;b;c 2 [0;1), such that a + 2b + 2¢c< 1:

p(Sx;Ty) ap(fx;fy) + b[p(fx;5x) + p(fy; Ty)]
+c[p(f:5x) + (X TY) (2.23)
for all comparable elements fx;fy 2 fX:
If for a nonincreasing sequence fxng in fX; fxng ! implies that x». Also, for any two points z and
x in fX there exists a point y 2 fX, such that y z;y x: If the subset fX is

complete and (T;f); (S;f) satis es the condition of weakly compatible pair of functions, then
there exists fz 2 fX, such that S(fz) = T(fz) = f(fz) = fz. Moreover p(fz;fz) = 0:

Proof. By Lemma 1.4.2, there exists E X, such that fE = fX and f: E ! X is one-toone. Now,

since SX [ TX fX; we de ne two mappings g;h : fE'! fE by g(fx) = Sx and
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h(fx) = Tx respectively. Since fis one-to-one on E, then g;h are well-de ned. As Sx fx implies
that g(fx) fx and Tx fx implies that h(fx) fx therefore g and h are dominated maps. Let yo = fxo;
choose a point y1in fX, such that y1 = h(yo): As h(yo) yo; SO y1yoand let y2=g(y1). Now,
g(y1) y1gives y2y1. Continuing this process and having chosen

ynin fX, such that

y2ir1 = h(y2i) and yziv2 = g(y2i+1); where i = 0;1,2;::;

then yn+1ynfor all n 2 N. Note that for fx;fy 2 fX, where fx and fy are comparable and a;b;c 2
[0,1), such that a + 2b + 2¢c< 1, then by using the inequality (2.23), we have

pg(x);h(5)) ap(fxfy) + blp(fxg (X)) + p(f;h(H))]
+c[p(f:g(&)) + p(foh())]:

As fX is a 0-complete space and so that all the conditions of Theorem 2.3.7 are satis ed, we
deduce that there exists a unique common xed point fz 2 fX of g and h: Also, p(fz;fz) = 0: The
rest of the proof is similar to the proof given in Theorem 4 [12] (see also [22]) and so we

write it, as it is in inverted commas.
"Now, fz = g(fz) = h(fz) or fz = Sz = Tz = fz. Thus, fz is the point of coincidence of S;T and f.

Let v 2 fX be another point of coincidence of £.S and T, then there exists u 2 fX, such that v = fu =
Su = Tu; which implies that fu = g(fu) = h(fu): A contradiction, as, fz 2 fX is a unique common
xed point of g and h: Hence, v = fz: Thus, S;T and fhave a

unique point of coincidence fz 2 fX. Now, since (S;f) and (T;f) are weakly compatible, by

Lemma 1.4.3 fz is a unique common  Xed point of S;Tand "' m

2.3.11 Example

Let X =[0,4] and x y if x y be the order and let p : X X! R* be the complete
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T 2z
ordered partial metric on X de ned by p(x;y) = maxfx;yg: De ne 5 =17 T = 17 and
3r

4

Jr= 11: Clearly, S and T are self mappl)ing and fbe a dominated mapping on X, such that
SX[ TX fX with T Sx fi: Take,” ~ "~ = 7: Also, if x;y 2 X: then
+;[‘“‘“{H ) max( if f

= ap(fx, fy)+ blp(fx,Sz) + p(fy,Ty)]

+c[p(fy, Sz) + p(fz, Ty)].
Hence, all the conditions of Theorem 2.3.10 are satis ed. Moreover, 0 is equal to S(0) = T(0) =

f(0). Also, p(0,0) =0:

One cannot proof the above theorem for mappings satisfying locally contractive conditions in
a closed ball in an ordered 0-complete partial metric space in a similar way by using Theorem
2.3.1. In order to prove unique common xed point of three mappings satisfying locally
contractive conditions in a closed ball in an ordered 0-complete partial metric space, rst we

should prove that S and T have a unique common xed point, in Theorem 2.3.1. Common
xed point result of three mappings in a closed ball in 0-complete partial metric space is given
below which can be proved with the help of Theorem 2.3.6 in a similar way to that of the
above

theorem.

2.3.12 Theorem [77]
Let (X;p) be a partial metric space and S;T and f be self mappings on X, such that SX[TX

fX. Assume that the following conditions holds:

p(Sx;Ty) ap(fx;fy) + b[p(fx;5x) + p(fy; Ty)]
+c[p(fy;Sx) + p(fx: Ty);
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for all elements fx;fy 2 Bp(fxo;r); where a;b;c 2 [0;1), such that a + 2b + 2c< 1 and

p(fxo;Txo) (1 )[r+p(frofxo)l;

a+b+c
forr>0and ~ 1—1b—c: If the subset fX is complete and (T;f); (S;f) satis es the

condition of weakly compatible pair of functions, then there exists fz 2 Bp(fxo;r), such that

S(fz) = T(fz) = f(fz) = fz. Moreover, p(fz;fz) = 0:

In the following theorem we use Theorem 2.3.6 to establish a new way of nding the
existence of a unique common xed point of four mappings on closed ball in 0-complete partial
metric

space.
2.3.13 Theorem [77]

Let (X;p) be a partial metric space and S;T;g and f be self mappings on X, such that SX; TX fX =

gX: Assume that the following condition holds:

p(Sx;Ty) ap(fx;gy) + b[p(fx;Sx) + p(gy; Ty)]
+c[p(gy;Sx) + p(fx; Ty); (2.24)

for all elements fx;fy 2 Bp(fxo;r) fX; with a;b;c 2 [0,;1), such that a + 2b + 2c< 1 and

p(fxo;Sxo) (1 )[r + p(fxo;fxo)]; (2.25)
_a+ b+ ¢
forr>0and ~ 1 —b— c: If the subset fX is 0-complete and (T;g); (S;f) satis es the

condition of weakly compatible pair of functions, then there exists fz 2 Bp(fxo;r), such that

S(fz) = T(fz) = f(fz) = g(fz) = fz. Moreover, p(fz;fz) = 0:
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Proof. By Lemma 1.4.2, there exists E1;E2 X, such that fE1= fX=gX=gE» f: E1! X; g : E2!

X are one to one. Now, de ne the mappings A;B: fE1! fE1 by
A(fx) = Sx and B(gx) = Tx respectively. Since f;g are one to one on E1,; and E2 respectively,

then the mappings A;B are well-de ned. As fxo 2 Bp(fxo,; 1) fX; then fxo 2 fX: Let yo = fxo; choose
a point y1in fX, such that y1 = A(yo) and let y2 = B(y1). Continuing this process and having

chosen ynin fX, such that
yais1 = A(y2i) and yzi+2 = B(yz2i+1); where i = 0;1,2;:::

Following similar arguments of Theorem 2.3.1, yn 2 Bp(fxo,;r): Also, by the inequality (2.25),

we have

pifxoA(fx)) (1 )[r+ pfxofxo)]:

By using the inequality (2.24), for fx;gy 2 Bp(fxo;r) and a + 2b + 2c< 1 we have

p(A(fx);B(gy)) ap(fx;,gy) + b[p(fA(fx)) + p(gy;B(gy))]
+c[p(gy;A(fx)) + p(fx;B(gy))]:

As fX is a 0-complete space, all the conditions of Theorem 2.3.6 are satis ed, we deduce that
there exists a unique common xed point fz 2 Bp(fxo;r) of and B: Further and B have no xed
point other than fz: Also, p(fz;fz) = 0: The rest of the proof is similar to the proof

given in Theorem 2.8 [11] (see also [22]) and so we write it, as it is in inverted commas.
"Now, fz = A(fz) = B(fz) or fz = Sz = fz: Thus, fz is a point of coincidence of fand S:

Let w 2 Bp(fxo;r) be another point of coincidence of S and f, then there exists u 2 Bp(fxo;1),
such that is w = fu = Su; which implies that fu = A(fu): A contradiction as fz 2 Bp(fxo,;r) is a

unique xed point of A: Hence, w = fz: Thus, S and fhave a unique point of coincidence
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fz 2 Bp(fxo;r). Since (S;f) are weakly compatible, by Lemma 1.4.3 fz is a unique common

xed point of Sand f. As fX = gX, then there exists v 2 X, such that fz = gv: Now, as A(fz) =
B(fz) = fz implies that A(gv) = B(gv) =gv) Tv = gv: Thus, gv is the point of coincidence of T
and g. Now, if Tx = gx; then we have B(gx) = gx; a contradiction. This implies that gv = gx:
As (T;g) are weakly compatible, we obtain that gv is the unique common

xed point for T and g: But gv = fz: Thus, S;T;g and fhave a unique common xed point
fz 2 Bp(fxo;r)." ™

One cannot prove the above theorem for an ordered 0-complete partial metric space in a
similar way by using Theorem 2.3.7. In order to prove unique common xed point of four
mappings in an ordered 0-complete partial metric space, rst we should prove that S and T have no
xed point other than w” in Theorem 2.3.7. Coincidence point results of three and four

mappings can be obtained as a corollaries of Theorem 2.3.10 and Theorem 2.3.13.

In the following result, we obtain common xed for a pair of Kannan type contractive
dominated mapping in a closed ball. Here, we also prove the uniqueness of the xed point with
the weaker conditions. One cannot prove the uniqueness of the xed point in Theorem 2.3.1

with these weaker conditions.

2.3.14 Theorem [12]

Let (X; ;p) be a complete ordered partial metric space, xo;x;y 2 X, r>0and S;T: X! X be two

dominated mappings. Suppose that there existst € [0, %), such that following conditions hold:

p(Sx;Ty) tlp(x:5x) + p(y; Ty)]; for all (x;y) in (Bp(x0;1) Bp(xo;r))\ 17 (2.26)

and
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p(xo;Sx0) (1 )[r + p(x0:x0)]; (2.27)

t
where r = f(x;y) 2 X X j x and y are comparableg and ~ 1 —t, then there exists a point

w*, such that dp(w;* w”) = 0: Also, if for a nonincreasing sequence fxag in Bp(xo;r); fxng !

implies that x», then w” = Sw” = Tw:” Moreover, w” is unique, if for any x;y 2 Bp(xo;r); the
set Axy = fzo0 2 Bp(xo;r) : zox and zo yg is non empty and

p(x0;5x0) + p(z;Tz) p(x0,2) + p(Sx0;TZ) (2.28)

for all z 2 Bp(xo;1), such that z Sxo:

Proof. Take a = ¢ = 0 in Theorem 2.3.1, we obtain a point w*, such that dp(w;" w*) = 0 and

wh = Sw” = Tw:” Let y be another point in Bp(xo;7), such that y = Sy = Ty: If w” y, then

p(w;y” )=p(Sw;Ty" )
tip(w;S™ wh) + p(y; Ty)]
=t[p(w;* w*) + pyy)]
tp(y:y) pv:y):
Using the fact that p(y;y) p(w;y" ); we have w” =y. Now, if w” y, then there exists a

point zo 2 Bp(xo;r), such that (zo,w”) 2 r and (zo,;y) 2 r: Choose a point z1in X, such that z1 =
Tzo: As Tzozoand SO (z1,2z0) 2 r: Let z2 = Sz1z1 gives (z2;z1) 2 r. Continuing

this process and having chosen z» in X, such that
z2i+1 = Tz2i; z2iv2 = Sz2iv1and z2i+1 = Tz2izziwhere i = 0;1;2;::::

It follows that zn+1 zn :: Zo w” xn:: xo: We will prove that z» 2 Bp(xo,r) for all
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n 2 N by using mathematical induction. For n = 1: Now, (xo;zo0) 2 Bp(xo;7) Bp(x0;r) \ T

p(Sxo; Tzo) t[p(xo;:x1) + p(2o; T2o)]
tlp(x0,20) + p(x1,Tz0)] (by 2.28)
p(x0;20) (2.29)
and
p(xo0;21) p(x0;x1) + p(x1,21) p(x1,x1)

(1 )[r + p(x0;x0)] + p(x0;2z0) (by 2.27 and 2.29)

(1)r+ (1)p(xo;x0) + [r + p(x0;x0)] (aS zo 2 Bp(x0;1)) r + p(X0,X0)

implies that z1 2 Bp(xo;r): Let z2;z3;::;2 2 Bp(xo;r) for some j 2 N: Following similar

arguments as we have used to prove the inequality (2.18), we have

p(zj;zj+1) Jp(z0;21) for some j 2 N: (2.30)

Note that, if j is odd, then we have

p(Tx;5z) tlp(x;Tx;) + p(2;52)] t]
Ip(x0;x1) +Ip(z0;21)] ( by 2.30) t/[p(x0;Z0)
+ p(x1,21)] (by 2.28) t/[p(x0;20) +

p(xj+1,zj+1)

p(Xo;zo)]
j*+1 p(X0;20): (2.31)
Similarly, if j is even, then we obtain
p(Xj+1;2j+1) j+1p(X0;20): (2.32)

Now,

p(x0,zj+1)
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p(x0,x1) + p(x1,x2) + 2 + p(xj+1,zj+1) p(x0;x1) + p(Xo0;x1) + 22 +
J*1p(x0,z0) (by 2.31 and 2.32)
p(xo, z1)[L 4+ A+ . N] + N + p(xo, 20)]

(1—XNTh

T + ML 4 )\‘Hlp(z:o, xo)

(1= A)[r + p(xo, z0)]

=r + p(xo,;x0)

gives zj+1 2 Bp(xo,7): Hence, zn 2 Bp(xo;r) for all n 2 N. Now, the inequality (2.30) can be

written as

p(2n;Zn+1) np(zo,;z1) for all n 2 N: (2.33)

AS (zo,w™);(zo;y) 2 (Bp(xo;r) By(xo0;r)) \ r and so it follows that (z,;w”) and (z»;y) are in

(Bp(x0,7) Bp(x0;r)) \ r for all n 2 N, then for i 2 N;

p(w;y" ) =p(Tw; Ty" )

p(Tw;Sz" 2i1) + p(522i1,Ty) p(Sz2i1,572i1) tp(w;
wh) + 2tp(z2i1,22i) + tp(y;y)

2t 211d(z0;z1) + tp(y;y): (by 2.33)

On taking limit as i ! 1, we obtain

p(wy”™ )tp(yy) p(y:y):
A contradiction, so w” = y: Hence, w” is a unique commonxed point of Tand S in Bp(xo;r): ®

2.3.15 Example [12]
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Let X = R*[fOg be endowed with order x y if p(x;x) p(y;y) and let p : X X ! R*[fOg be the

complete ordered partial metric on X de ned by p(x;y) = maxfx;yg and S;T: X! X as follows:

"
— ifzel0,1
sz{ 171?6{J}

x—%ifa:e(l,oo)

and
3z .
T — I—TIfLE[O,I]
z—tifwe (1,00).
3 1 1 1
:76[0,5),1}0:2 f_i,
Clearly, S and T are dominated mapplngs Take, 10 we have
p(xo, z0) = 11130({2,2}—l A=7 t=7 and

Bp(x0;1) = [0,1]. Also,

3.1 1 4
(L= Nl +plzo,m0)] = (1= D)5 + 5] = =
: L. 1 11 1 4
p(xo, Szo) —p(é,&r ) = p(z 17) mdx{2 17} 3 < -
x,y € (1,00), p(Sz,Ty) = max{z 1 i}
Also, if "” pioz, 1Y Mz -2y -5

> — | .
> 10[r +y
= %[max{:r;,:c - é} + max{y,y — é}}

p(Sz,Ty) = tp(z, Sz) +py, Ty)].

So the contractive condition does not hold on the whole space: Now, if x;y 2 Bp(xo;r), then

- B x 3y 1
p(Sz,Ty) = max{-— T 17} 7 max{z, 3y}
< oletyl
= 10 Ly
3 x 3y
= 5 [max{:r } + max{y, ﬁ}]

= t[p(x, Sz) +p(y;Ty)1-
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Also, for all z 2 Bp(xo;r), such that z Sxo,; then

p(x0;5x0) + p(z;TZ) p(x0;2) + p(Sx0;TZ):
Hence, all the conditions of Theorem 2.3.14 are satis ed. Moreover, 0 is the unique common

xed point of Sand T:

In Theorem 2.3.14, the conditions (2.27) and (2.28) are imposed to restrict the condition

(2.26) only for x;y in Bp(xo,;r) and Example 2.3.15 explains the utility of these restrictions.
However, the following result relax the conditions (2.27) and (2.28) but impose the condition

(2.26) for all comparable elements in the whole space X.

2.3.16 Theorem [12]

Let (X; ;p) be a complete ordered partial metric space and S;T: X! X be two dominated

mappings. Suppose that there exists’ € [0, %), such that following condition holds for x;y 2 X,
p(Sx;Ty) t[p(x;Sx) + p(y; Ty)]; for all (x;y) inr:

then there exists a point w”, such that dp(w;* w”) = 0: Also, if for a nonincreasing sequence
ang

in X; fxag ! implies that x», then w” = Sw” = Tw:» Moreover, w” is unique, if for any x;y 2 X;

the set Axy = fzo2 X: zox and zoyg is non empty:

In Theorem 2.3.14, the condition for a nonincreasing sequence fxng ! implies that x», the
existence of zoand the condition (2.28) are imposed to restrict the condition (2.26) only for

comparable elements: However, the following result relax these restrictions but
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impose the condition (2.26) for all elements in By(xo;r):

2.3.17 Theorem [12]
Let (X;p) be a complete partial metric space, xo;x;y 2 X, r>0and S;T: X! X be two

mappings. Suppose that there existst € [0:3), such that following conditions hold

p(Sx; Ty) t[p(x;5x) + p(y; Ty)], for all x;y in Bp(xo;1)

and

p(x0;Sx0) (1 )[r + p(x0;x0)]
t

where — 1 — ¢, then there exists a unique point w” in Byp(x0;r), such that w” =
Sw” = Tw: Also, p(w;» w”) = 0: Further S and T have no xed point other than w:”

Now, we apply our Theorem 2.3.14 to obtain unique common xed point of three
mappings in a closed ball in complete partial ordered metric space. One can easily prove this

result.

2.3.18 Theorem [12]

Let (X; ;p) be a ordered partial metric space, xo;x;y 2 X, r > 0 and S; T self mapping

and fbe a dominated mapping on X, such that SX [ TX fX; By(fxo;r) fX and

(Tx;fx); (Sx;fx) 2 r: Assume that the following conditions hold:

p(Sx;Ty) k[p(fx;Sx) + p(fy; Ty)]

for all (fx;fy) 2 (Bp(fxo;r) Bp(fxo;r)) \ 1; where 0 k< 1=2;

p(fxo;Sx0) + p(fy; Ty) p(fxo;fy) + p(Sxo; Ty)
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for all fy 2 Bp(fxo,; 1), such that fy Sxo;

p(fxo;Txo) (1 )[r + p(fxo;fx0)]
where = % Iffora nonincreasing sequence fxag in Bp(fxo,r); fxng ! implies that
xnand if for any x;z 2 Bp(fxo;r); the set Ax;z=fy 2 Bp(fxo;r) : y zand y xg
is non empty: If the subset fX is complete and (T;f), (S;f) satis es the condition of weakly

compatible pair of functions, then there exists fz 2 Bp(fxo,;r), such that S(fz) = T(fz) =

flfz) = fz: Also, p(fz;fz) = 0:

Now, we can apply our Theorem 2.3.16 to obtain unique common xed point result of
three mappings in complete partial ordered metric space. One can easily prove this result.
2.3.19 Theorem [12]

Let (X; ;p) be a ordered partial metric space, x;y 2 X and S; T self mapping and fbe a
dominated mapping on X, such that SX [TX fX and (Tx;fx);(Sx;fx) 2 r: Assume that

the following conditions hold:

p(Sx;Ty) k[p(fx;Sx) + p(fy; Ty)]

for all (fx;fy) 2 r; where 0 k< 1=2:
If for a nonincreasing sequence fxag in fX; fxng ! implies that x» and if for any z;x 2 fX; the set
Azx=1y 2 fX:y zand y xg is non empty: If the subset fX'is

complete and (T:f); (S;f) satis es the condition of weakly compatible pair of functions, then
there exists fz 2 fX, such that S(fz) = T(fz) = f(fz) = fz. Also, p(fz;fz) = 0:
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Now, we can apply our Theorem 2.3.17 to obtain uniqgue common xed point of three
mappings on closed ball in complete partial metric space.
2.3.20 Theorem [12]

Let (X;p) be a partial metric space, xo;x;y 2 X, r> 0 and S; T and fbe the self mappings

on X, such that SX [TX
SfX;Bp(fxo;r) fX: Assume that
the following conditions

p(Sx;Ty) klp(FsSx) + p( TV ho1g:
for all fx;fy 2 B,(fxo;r); where 0 k< 1=2; p(fxo; Txo)
and = 1% If the subset fX is complete and (T;f); (S;f) satis es the condition of weakly

compatible pair of functions, then there exists fz 2 Bp(fxo,;r), such that S(fz) = T(fz) =

flfz) = fz. Also, p(fz;fz) = 0:

In the following theorem, we establish the existence of a uniqgue common xed point of four
mappings on closed ball in complete partial metric space. One can easily prove this result by

using the technique given in the proof of Theorem 2.3.12.
2.3.21 Theorem [12]
Let (X;p) be a partial metric space, xo;x;y 2 X, r> 0 and S;T;g and f be self mappings on

X, such that SX; TX fX = gX and By(fxo,;r) fX: Assume that the following condition
holds:

p(Sx;Ty) k[p(fx;Sx) + p(gy; Ty)]

for all fx;fy 2 Bp(fxo;r), where 0 k< 1=2; and

p(fxo;Sx0) - (1 )[r+ p(fxofxo)]
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where = % If the subset fX is complete and (T:f); (S;f) satis es the condition of

weakly compatible pair of functions, then there exists fz in Bp(fxo,r) S(fz) = T(fz) =
fUfz) =g(f) = fz. Also, p(fz;fz) = 0:

In the following theorem, we establish the existence of a unique common xed point of
four mappings in complete partial metric space. One can easily prove this result by using the
technique given in the proof of Theorem 2.3.12.

2.3.22 Theorem [12]
Let (X;p) be a partial metric space, x;y 2 X and S;T;g and f'be self mappings on X, such

that SX; TX fX = gX: Assume that the following condition holds:

p(Sx;Ty) k[p(fx;Sx) + p(gy; Ty)]

for all fx;fy 2 fX, where 0 k< 1=2:

If the subset fX is complete and (T;g); (S;f) satis es the condition of weakly compatible pair of
functions, then there exists fz 2 fX, such that S(fz) = T(fz) = f{fz) = g9(fz) = fz. Also, p(fz;fz) =
0:

We can obtain the unique point of coincidence results as a corollaries of Theorem 2.3.18

to Theorem 2.3.22. Unique point of coincidence result for Theorem 2.3.18 is given below.

2.3.23 Theorem [12]

Let (X; ;p) be a ordered partial metric space, xo;x;y 2 X, r > 0 and S; T self mapping

and fbe a dominated mapping on X, such that SX [ TX fX; By(fxo;r) fX and

(Tx;fx);(Sx;fx) 2 r: Assume that the following conditions holds:
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p(Sx;Ty) k[p(fx;5x) + p(fy; Ty)]

for all (fx;fy) 2 (Bp(fxo;r) Bp(fxo;r)) \ 1; Where 0 k< 1=2;

p(fxo;Sxo) + p(fy; Ty) p(fxo;fy) + p(Sxo; Ty)
for all fy 2 Bp(fxo,; 1), such that fy Sxo;
p(fxo;Txo) (1 )[r + p(fxo;fx0)]

where = & Iffora nonincreasing sequence fxag in Bp(fxo,r); fxng ! implies that

xnand if for any z;x 2 Bp(fxo;r), the set Azx= fy 2 By(fxo;r) : y zand y xg is

non empty: If the subset fX is complete; then S; T and fhave a unique point of coincidence

fz 2 Bp(fxo;r). Also, p(fz;fz) = 0:
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Chapter 3

Fixed Points of Contractive Mappings in an
Ordered Dislocated and Dislocated Quasi

Metric Spaces

3.1 Introduction

The theory and some of the de nitions given in this section have been published in [11, 23].

Dislocated metric space (metric-like space) has many applications in the context of logic
programming semantics (see [36, 37]). Further useful results can be seen in (see [8, 44, 46,
47,50, 54, 66, 72, 81]). Furthermore, dislocated quasi metric space (quasi-metric-like space)
(see [1, 23, 73, 84, 85]) is a generalization of dislocated metric space and quasi-partial metric
space.

From examples and by de nitions given in the rst chapter, it is clear that any partial metric
is a di-metric whereas a di-metric may not be a partial metric. We also remark that for those
di-metrics which are also partial metrics, we have Ba(x;&) Bp(x;&): Also, for any di-metric
Ba(x;&) B (x;&): Thus, it is better to nd a xed point in a closed ball de ned by Hitzler in a di-
metric, because, we restrict ourselves to apply contractive condition on smallest closed ball.
In this way, we also weakened the contractive condition.

In Harandi s sence, a sequence fxng in the metric-like space (X; ) converges to a point x 2
Xifand only if lim (x»;x) = (x;x). A sequencel®nn o of elements of X is called m1-Cauchy if
the lim (xn;xm) exists and is nite. The metric-like space (X; ) is called nm!1

complete if for each  -Cauchy sequence {Zn}70, there is some x 2 X, such that
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lim o(x,,z) =c(z,z) = lim o(x,,z,)
n—oo n,m—roo

Romaguera [68] has given the idea of 0-Cauchy Sequence and 0-complete partial metric
space. Using his idea, we can observe the following:
(i) Every Cauchy Sequence with respect to Hitzler is a Cauchy Sequence with respect

toHarandi.

(i) Every complete metric space with respect to Harandi is complete with respect to
Hitzler.

The following example shows that the converse assertions of (i) and (ii) do not hold.

3.1.1 Example [11]

Let X=Q*[fOgand let di: X X! X be de ned by di(x;y) = x + y: Note that

{on} = (1+1)" isa Cauchy Sequence with respect to Harandi but it is not a Cauchy
Sequence

with respect to Hitzler. Also, every Cauchy Sequence (with respect to Hitzler) in X converges
to a point 0in X. Hence, X is complete with respect to Hitzler but X is not complete with

respect to Harandi as lim (1 + »1)"=e=2 X. n1

3.1.2 De nition [23]

Let (X;dq) be a dislocated quasi metric space.

(i) A sequence fxag in (X;dq) is called left (right) K-Cauchy if 8 &> 0, 9 no 2 N, such that 8
n>m no;dq(xm;xn) <& (respectively dq(xn;xm) <&): (ii) A sequence fxng dislocated quasi-
converges (for short dq -converges) to x if lim dq(xn;x) = m1lim dg(x;xn) = 0: In this case x is
called a dg-limit of fxag:

m1

(iii) (X;dq) is called complete left (right) K-sequentially if every left (right) K-Cauchy

sequence in X converges to a point x 2 X, such that dq(x;x) = 0.

One can easily observe that every complete dislocated quasi metric space is also complete
left K-sequentially dislocated quasi metric space but the converse is not true in general.
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Now, we discuss the relation between the complete left/right K-sequentially dislocated

quasi metric space and 0-complete left/right K-sequentially quasi-partial metric space.

3.1.3 Remark [23]

By comparing the De nition 2.1.1, De nition 2.1.2 with De nition 3.1.1, one can easily
observe that if X is 0-complete left/right K-sequentially quasi-partial metric space, then it is
also a complete left/right K-sequentially dislocated quasi metric space. But a complete
left/right K-sequentially dislocated quasi metric space may not be a 0-complete left/right
Ksequentially quasi-partial metric space. So every result which is true for complete left/right
Ksequentially dislocated quasi metric spaces, then it will always be true for 0-complete
left/right K-sequentially partial metric spaces, but converse does not hold.

[2, 6, 15, 24, 59, 62, 70] gave some  xed point theorems in ordered metric spaces. Samet
and Vetro [71] generalized the results in ordered metric spaces and introduced the concept of

-contractive type mappings and established  xed point theorems for such mappings in
complete metric spaces.

The existence of xed points of -admissible mappings in complete metric spaces has been
studied by several researchers (see [9, 41, 42, 69, 71] and references therein). Now, we

introduce the concept of -dominated mappings

3.1.4 De nition

Let T: X! Xand: X X![0,+1) be a function. We say that T is -dominated mapping on A X; if
(x;Tx) 1 for all x 2 A. Moreover, if (x;y) 1and (y;z) 1

implies that  (x;z) 1also holds, then we say that T is triangle  -dominated mapping:

In this chapter, we discuss common  xed point results for  -dominated mappings in a
closed ball in complete dislocated quasi metric space. Su¢ cient conditions for the existence

of common xed point for two, three and four mappings in complete dislocated quasi metric
space have been obtained. One can easily use this style to prove common xed point results in

quasi metric spaces. In section 3.2, we deal with the complete left/right K-sequentially
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dislocated quasi metric space and prove the existence of common xed points of two, three
and four -dominated mappings satisfying a generalized contractive condition. Section 3.3
deals with common xed point results of mappings satisfying - dominated contractive
condition

in complete left/right K-sequentially dislocated quasi metric space.

3.2 Common Fixed Point of -Dominated Mappings
Some of the results given in this section have been published in [23]. Some of the results given

in this section have been submitted for publication [80].

3.2.1 Theorem

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space. Suppose there
exist

a function, : XX ![0,+1), such that Sand T are - dominated mappings on Bd,(xo;1).
Let xo.x;y 2 Baq(xo0;1), r> 0: If there exist some k;t, such that k+2t 2 [0,1) and the following

conditions hold for (x;y) 1 and for x;y 2 Ba,(x0,7):

dq(Sx;Ty) kdg(x:y) + t[de(x:5x) + dq(y; Ty)]; (3.1)
dq(Tx;Sy) kdq(x:y) + t[dq(x;Tx) + dqg(y;Sy)] (3.2)
and
dq(X0,S%0) (1 )r; (3.3)
k4t
where 1 —t.
If for any sequence fxag in Bd,(xo0;r), such that (xn,xn+1) 1forall n2 N[ fOgand
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Xn!u 2 Bdy(xo;r)asn!+1wehave (xnu) 1foralln2 N[ fOg; then there exists a common
xed point w” of Sand T: Moreover, dq(w; w”) = 0:

Proof. Choose a point x1 in X, such that x1 = Sxoand x2 = Tx1. Continuing this process,

we construct a sequence x» of points in X, such that

x2i+1 = Sx2i; and x2i«2 = Tx2i+1, Where [ = 0;1;2;::::

k+1t
Using the inequality (3.3) and the factthat 1 — ¢  we have
dq(x0,5x0) r:

It implies that x1 2 Ba,(xo;r): Let x2; ;xj 2 Bas(xo;r) for some j 2 N. If j = 2i+1, where i =

-dominated mappings on Ba,(xo,;7), then (x1,x2) 1: Continuing in this way we obtain
(x2i;x2i+1) 1 for all i = 0,1,2/-* L21: So using the inequalities (3.1) and (3.2), we obtain
dq(x2i+1,x2i+2) = dq(Sx2i; Tx2i+1) kdq(x2i;x2i+1)

+t[dq(x2i;Sx2i) + dg(x2i+1; Tx2i+1)];

which implies that

dq(x2i+1;X2i+2) dq(x2i;x2i+1)
2 > 2i+1 (3'4)
dq(Xzi 1,'X2i) dq(X(),'Xl).'
If j = 2i+2, then as x1,x2;::;X; 2 Ba,(xo0;r) and (x2i1,X2i+2) 1; where i = 0;1;2;:::; L22:

we obtain
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dq(x2i+2;x2i+3) 2i+2dq(x0;x1): (3.5)

Thus, from the inequalities (3.4) and (3.5), we have

dy(z0, 1) + .. + Ndy(w0, 71),

dy(zo, x1)[1+ .. + N 1+ M)

_ A\t
(1-— /\)'r-i(l T ) <r,
dq(x;Xj+1) idg(x0;x1) for some j 2 N: (3.6)
Now,
dq(x0;xj+1) dq(x0;x1) + :: + dq(xj;xj+1)
(by 3.6)
dq(x0,;xj+1)
gives Xj+1 2 Bdq(X0,7): Hence, xn 2 Bdq(xo;r): Also, (xnxn+1) 1, then
dq(xn;Xn+1) ndq(x0;x1); forall n 2 N: (3.7)
So, we have
da(xn;xnsi) dg(xy, .T:HIH) + .+ dy(Tnyio1,Tnyi)
A1 =AY
:_qu(fﬂo.‘ff;l) —0Dasn — o0
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Therefore the sequence fxng is a left K-Cauchy sequence in (Bd,(xo;1);dq): AS Bdq(x0,1) IS
lim dy(x,;w") = lim dg(w;x" ) = 0: M1 (3.8)
1

Now,

dy(W; SN wh) dy(W;x”  2ne2) + dg(Xone2,SWH):
On taking limit as n ! 1 and using the fact that (x,;w”)  1when  (Xnxn+1) 1and

Xn! W, we have

dq(w;S™ wh) lim [dq(W;x" 2n+2) + kdg(X2n:1,W")

my

+tqu(X2n+1,'X2n+2) + dq(W,SA WA)g], By
using the inequalities (3.7) and (3.8), we obtain
(1 dg(w;S"w?) 0

and w” = Sw:” Similarly, by using,

dg W, TN wh) dg(w;x” 2ne1) + dg(X2ne1, TWH);

we can show that w” = Tw:” Hence, S and T have a common xed point w” in Bgy(Xo,7). As S
closed, it is complete left K-sequentially. Therefore, there exists a point w” 2
Budq(x0;7) With
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is - dominated mappings on Byg(xo,;7) we have  (w; S w”) 1andso (w;" w”) 1:Now,

dy(w;» wh) =dy(Sw,; T wh)

kdq(w; ™ wh) + thdy(w; S wh) + dg(w,; T w™)g

(1 k 26)dg(w;™ wh) 0:

This implies that
dy(w;» wh) =0: (3.9)

If we take T = Sfor all x; y 2 Xin Theorem 3.2.1, we obtain following result.

3.2.2 Corollary

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space. Suppose there
exist

a function, : XX ![0;+1), such that S is -dominated mappings on Ba,(xo,;7). Let

x0,%;y 2 Bag(xo;r), r> 0: If there exist some k;t, such that k + 2t 2 [0,1) and the following

conditions hold:

dq(Sx;5y) kdq(x;y) + t[dq(x;5X) + dq(y;5y)];
for (x) 1and

dq(Xo,'SXo) (1 )r;

_ii:—ﬁ—i
where 1 —¢.

If for any sequence fxng in Ba,(xo;r), such that (xn;xs+1) 1 foralln 2 N [ fOgand x*! u 2
Bd,(x0,7) as-a++1-we have (x»,u) 1 for all n 2 N [ fOg, then there exists a

point w” in Bd,(xo;r), such that w”» = Sw” and dq(w;* w”) = 0:
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3.23 Corollary

Let (X;d) be a complete left K-sequentially metric space. Suppose there exists, X X!

[0;+1), such that Sand T are -dominated mappings on Bad,(xo;r): Let

(xy)d(Sx;Ty) kd(x;y) + t[d(x;5x) + d(y; Ty)]
holds for all x;y 2 Xand k + 2t 2 [0,;1):

If for any sequence fxng in X with (xs;xn+1) 1 for all n 2 N [fOg and x»! xas n ! +1, we have

(xn,x) 1 forall n 2 N [ fOg, then S and T have a common xed point:

3.24 Theorem

Adding the following conditions to the hypotheses of Theorem 3.2.1
() LetSand T are triangle -dominated mappings on Bd,(xo;T).

(ii) If for any two points x;y in Ba,(xo,r) there exists a point zo 2 Bd,(xo;r), such that
(x,z0) 1, (pzo) 1:

(iiiy For all z 2 Baq(x0;1), such that (z; Sxo)1 implies

dq(x0;Sx0) + dq(z;TZ) dq(x0,2) + dq(Sx0;TZ):
then S and T have a uniqgue common Xxed point w” and dq(w;* w”) = 0:

Proof. Let y be another point in By(xo,7), such that y = Sy = Ty: Now,

dq(y;y) =do(Sy;Ty) kdq(y;y) + thde(y; Ty) +
dq(y;Sy)g
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(1 k26d,(yy) 0:

This implies that
dq(y;y) = 0: (3.10)

Now, if (w;y”) 1, then we have
dq(wy") =

dq(Sw; Ty ) kdy(w;y™ ) + t[dg(w; S
wh) +dq(v; Ty)]

(1 k)dqg(wy™ ) 0. (by 3.9 and 3.10)
This shows that w” = y: Now, if (w;y” ) 1, then there exists a point zo 2 Ba,(xo;r), such that

(w;z" 0) 1 and (y;zo) 1: Choose a point z1in X, such that z1 = Tzoand z2 = Sz1.

Continuing this process, we construct a sequence z» of points in X, such that
z2i+1 = Tz2i; and z2i+2 = Sz2i+1, Wherei = 0;1;2;::::

As T is -dominated mappings on Bd,(xo;r), then (zo;z1) 1: By assumption (x,,w”") 1 and (w;z"

0) 1 implies
that (xu0) g, (sxo:Tzo) kdy(x0;20) + t[da(x0;x1) + dq(z0;T20)] kdq(xoz0) +
1forall n 2 t{dy(x0;20) + dg(x1;T20)]; (by (iii))
NTfOg: g, (Sxo;Tz0) d,(x0;20) and (3.11)
Now, we
have dy(x0;21)

dq(x0;x1) + dg(x1,21)

(1 )r + dy(x0,20); (by 3.3 and 3.11)

dq(x0;21) (1 )r+r(as zo 2 Baq(Xo,1))
(z0;zj+1) limpliesthat (w;z"1)  1:Also, (x,w”) 1land (W;z"j.1) 1 implies that
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(xn;zj+1) 1: Now, if j is even, then we have

87
dq(x1,Tz) kdq(x0;7j) + t[dq(x0;x1) + dg(z; TZ))]
kdq(x0;z) + t[dq(x0;2)) + dq(x1;T2)]; (by (iii))

dq(x1,TZ) dq(x0;2) r: (as z; 2 Bag(x0;1)) (3.12)
implies that z1 2 Bd,(xo;r), then (z1,z2) 1: As S and T are triangle -dominated mappings on
Baq(xo0;r) and so (zo;z1) 1 and (z1,z2) 1 implies that (z0;22) 1: Let z2;z3;::7
2 Baq(xo;r) for some j 2 N, then (z;;zj+1) 1: Now, (zo;z2) 1 and (z2;z3) 1 implies that (zo;z3) 1:
Continuing in this way we obtain (zo;zj+1) 1: Now, (w;z” o) 1 and Now,

dq(x0,TZ) dq(x0;x1) + dy(x1,Tz)

(1 )r+r; (by 3.12)
dq(x0;zj+1) r: (3.13)

dq(z5zj+1) idy4(zo;z1) for some j 2 N: (3.14)

Now, we have

dq(x2;zj+1) =
dq(Tx1,;57)) kdq(x1,2) + t[dq(x1,Tx1) + dyq(2;;S7;)] kdg(x1,2) + t[dq(X0;x1)
+dq(zj1,Tzi1)], (by 3.7 and 3.14)

dq(x2,zj+1) kdq(x1;2)) + t [dqg(X0;Zj1) + dq(x1;27)], (by (iii))

dq(x2;zj+1) (k + t)dy(x1,Tzj1) + t r; (as zj1 2 Bag(x0;7))

dq(x2;zj+1) [(k+t)+t]r, (by3.12,asj 1is even)

do(x2;2j+1) zr. (3.15)

Now,
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dq(x0;zj+1) dq(x0;x1) + dq(x1,x2) + dq(x2;zj+1)

dq(x0;x1) + dg(x0;x1) + 2r, (by 3.7 and 3.15)

dq(XO,'Zj+1) r: (3.16)
Now, if j is odd, then following similar arguments as we have used to prove the inequality

(3.6), we have

Therefore, from the inequalities (3.13) and (3.16), zj+1 2 Baq(xo0;r) in both
cases: Hence,

Zn 2 Bag(xo;r) for all 2 N. Thus, the inequality (3.14) becomes

dq(zn;Zn+1) ndq(z0;z1) '0asn!1: (3.17)
As  (;z0) 1land (20;Zn+1) 1 implies that (V;Zns1) 1: Also, (W;z"n41) 1, then for

i 2 N; we have

dq(TW;SZA 2i 1) kdq(W;ZA 2i 1) + t[dq(W;T’\ WA) + dq(22i1;522i1)]
= kdq(Sw;Tz" 2i2) + tdq(z2i1,22i);

dy(w;Sz"™  2i1)  kadq(w;z™  2i2) + ktdq(z2i2;22i1) + tdq(z2i 1,22i)

kaidq(w;z" 0) + kei1tdq(zo;z1) +

+ktdq(z2i2;22i1) + tdq(z2i1,22i):

On taking limit as i ! 1 and by the inequality (3.17), we have

dq(w;Sz"2i1) = 0: (3.18)

Similarly, we have
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dq(Sz2i1;y) 1 0asi! 1: (3.19)

Now, by using the inequality (3.18) and (3.19), we have

dg(w;y") dg(w;Sz" 2i1) +dq(Sz2i1;y) ' 0asi! 1:

dq

So, w” =y: Hence, w” is a unique commonxed point of Tand S in B

(x;r):
In Theorem 3.2.4, the conditions (i), (ii), (iif) and  if for any sequence fxng in Bdq(x0,7),
such that  (xn;Xn+1) 1foralln2 N[ fOgand xn!u 2 Bas(xo;r) as n ! +1, then

(xn,u) 1 for all n 2 N [ fOgare imposed to restrict the conditions (3.1) and (3.2) only

for -dominated mappings on Ba,(xo,;7) and for those x;y in Ba,(xo;7) for which (x;y) 1:
However, the following result relax these restrictions but impose the conditions (3.1) and
3.2)

for all elements in Ba,(xo;r):
3.25 Theorem

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space, xo 2 Bdq(xo;r), r> 0
and S;T: X! X be two mappings. Suppose for k +2t 2 [0;1), the following conditions

hold:

do(Sx;Ty)  kdq(x;y) + t[dq(x;:5x) + dq(y; Ty)]; do(Tx;Sy)

kdq(x;y) + t{dq(x;TX) + dq(y;SY)];

for all x;y in Ba,(x0,;r) and

dg(x0,Sx0) (1 s
B k1
where 1 — ¢, then there exists a unique point w” in Budq(x0,7), such that w" =
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Swh = Tw?
and dq(w; ™ w”) = 0: Moreover;S and T have noxed point other than w:*

Proof. Following similar arguments of Theorem 3.2.1, we can obtain a unique point w” in

Baq(xo0;r), such that w* = Sw” = Tw:” Let y = Ty, then y isthe  xed point of T and it may not

bea xed point of S: Now,

de(w,y) = dy(Sw,Ty) < kdy(w,y) + t[dy(w, Sw) + dy(y, Ty)]
t
< ——d,(y,y). (by3.9
= 1-k ;(?J y). (by ) dq(w;y")
Similarly,
t dq(y,w")
dq(y;y):
1k
then
< dg(y, w) + dg(w,y) da(y:y)
t t
< ﬁdq(?ﬂy) =+ ﬂdq(ysy}
2t
I . <
(1= =Ddalu,y) < 0.
dg(y,y) = 0. (3.20)
Now,
do(wiy™)  =dg(Sw;Ty"™ ) kdg(w;y™ ) + tldg(w;" wh) + dg(y;y)]
(1 k)dg(wy™) 0: (by 3.9 and 3.20)
Hence, w" = y. Thus, T has no xed point other than w:# Similarly S has no xed point other
than w:" m

In Theorem 3.2.4, the conditions (iii) and (3.3) are imposed to restrict the conditions (3.1)

and (3.2) only for x;y in Bd,(xo,;r). However, the following result relax the conditions (iii) and

(3.3) but impose the conditions (3.1) and (3.2) for all elements x;y 2 X, such that  (x;y) 1.

3.2.6 Theorem
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Let (X;dq) be a complete left K-sequentially dislocated quasi metric space. Suppose there
exist

a function, : XX![0;+1), such that S and T are triangle -dominated mappings. If

there exist some k;t, such that k + 2t 2 [0;1) and the following conditions hold:

dy(Sx; Ty) kdq(x:y) + t[dq(x:5%) + dq(v; TY)];

dq(Tx;Sy) kdq(x;y) + t[do(x;TX) + dg(y;SY)];
for all x;y 2 X, such that (xy) 1.

If for any sequence fxng in X, such that (x»;xn+1) 1 foralln 2 N[ fOgand x»! u2 Xasn!+1,
then (xn;u) 1 for all n 2 N [ fOg: Also, for any two points x;y in X there exists a point zo 2 X,
such that (x;zo) 1, (v;zo) 1, then there exists a unique point w”

in X, such that w” = Sw” = Tw” and dq(w;* w”) = 0:

Now, we apply our Theorem 3.2.4 to obtain unique common Xxed point of three mappings

in closed ball in complete left K-sequentially dislocated quasi metric space.
3.2.7 Theorem

Let (X;dq) be a dislocated quasi metric space, S;T;f: X! X, such that SX [ TX fX: Suppose there
exist a function, : X X! [0;+1), such that (fx; Sx) 1, (fx;Tx) 1 and (x;y) 1, (;z) 1 implies that

(x;2) 1 for all x;y;z 2 X: Suppose for k+2t 2 [0;1),

dq (Sx;Ty) kdq(f;fy) + t{dg(fx;Sx) + dg(fy; TY); (3.21)
d, (Tx;Sy) kdq(fi:fy) + t[dq(fi; Tx) + dq(fy;Sy)] (3.22)

and for fxo 2 Baq(fxo,1)
dq(fXo;SX0) 1 I (3.23)

81



X0 2 X, r> 0;Ba,(fxo;7) fX and for all fx;fy 2 Ba,(fxo;r); (fx:fy) 1 implies that

_;’<.:+t
where ~ 1—tand

dq(fxo;Sx0) + dqg(fy; TY) dq(fxo;fy) + do(Sx0; Ty); (3.24)
for all fy 2 Ba,(fxo;r), such that (fy; Sxo)  1:
If for any sequence fxng in Bd,(fxo;1), such that (xn;xn+1) 1foralln2 N[ fOgand
Xn!u 2 Bdq(fxo;r) as n! +1 we have (xn,u) 1 forall n 2 N[ fOg and for any

two points x;y in Ba,(fXo;r) there exists a point zo 2 Ba,(fXo;r), such that (x,z0) 1,

(v;zo0) 1: If the subset fX is complete left K-sequentially and (T;f); (S;f) satis es the
condition of weakly compatible pair of functions, then there exists fz 2 Ba,(fxo;r), such that
S(fz) = T(fz) = fifz) = fz. Also, dq(fz;fz) = O:

Proof. By Lemma 1.4.2, there exists E X, such that fE = fXand f: E'! X is oneto-one. Now,
since SX [ TX fX; we de ne two mappings g;h : fE'! fE by g(fx) = Sx
and h(fx) = Tx respectively. Since fis one-to-one on E, then g;h are well-de ned. As (fx;Sx) 1

implies that (fx;g(fx)) 1 and (fx;Tx) 1 implies that (fx;h(fx)) 1,

then g and h are -dominated mappings on Ba,(fxo,;r): Now, fxo 2 Bd,(fxo;7) fX, then fxo 2 fX: Let
yo = fxo; choose a point y1 in fX, such that y1 = g(yo): Also, by the inequality

(3.23),
dq(fxo;,g(fx0)) (1 )r:
Then y1 2 Ba,(fxo;r): Let y2 = h(y1). Continuing this process and having chosen ynin fX, such

that

yais1 = g(y2i) and yais2 = h(y2is1); Where i = 0;1,2;:::
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Following similar arguments of Theorem 3.2.1, yn 2 Ba,(fXo,;r): Also, by using the inequality
(3.23), we obtain

_ do(fxeg(fxo)) + dg(firh(5))  da(fxo;fy) + do(g(fxo)h(f));
for all fy 2 Ba,(fxo;r), such that (f; Sxo) 1. By using the inequalities (3.21) and (3.22),

for fx;fy 2 Baq(fxo;r); (fx%:f)) 1 implies that

dq (gU);h())  kde(f;fy) + tldq(f;g (%)) + da(fy;h(5))]; dq
(h(g(f))  kdq(fify) + tlda(fh(fx)) + da(f;9())]:

As fX is a complete left K-sequentially space; all the conditions of Theorem 3.2.1 are satis ed,

we deduce that there exists a unique common xed point fz 2 Ba,(fXo,;r) of g and h: Also,
dq(fz;fz) = 0: The rest of the proof is similar to the proof given in Theorem 2.3.10 and so we

leave it. Hence, we obtain a unique common xed point of S;Tand f. m

3.2.8 Corollary

Let (X;dq) be a dislocated quasi metric space, xo 2 X, r> 0 and S;T and fare self mappings

on X, such that SX
conditions hold: [ TX fX; Bao(fxo;1)

fX: Suppose for k

+2t2[0;1), the

following
dq (S Ty) kdq(ffy) + tlda(f:Sx) + dg(f; TY)];
d, (Tx;:Sy) kdq(fxfy) + tldq(fis Tx) + do(f;Sy)]
_
for all fify 2 Bag(fio;r) and where 1 —¢: If the subse

the condition of weakly compatible pair of functions, then there exists fz 2 Bd,(fxo,r), such

that S(fz) = T(fz) = fifz) = fz. Also, dq(fz;fz) = O:
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Unique common xed point result of four mappings in complete left K-sequentially
dislocated quasi metric space in a closed ball is given below which can be proved with the

help of Theorem 3.2.4, by using the technique given in Theorem 2.3.13.

3.2.9 Theorem

Let (X;dq) be a dislocated quasi metric space, xo 2 X, r> 0 and S;T;g and fbe self mappings

on X, such that

following conditions hold: SX;TX fX=gXand

Baq(fxo;r) fX:
Suppose for k +
2t 2 [0;1), the
dq (Sx;Ty) kdq(fx;gy) + t[dq(fx;:Sx) + dg(gy; TY)];
d, (Tx:Sy) kdq(9x:fy) + t[dq(fx; Tx) + dq(gy;Sy)]
B k+1
for all fx;fy 2 Baq(fxo;1) and where ~ 1 — t: If the subset

the condition of weakly compatible pair of functions, then there exists fz 2 Bd,(fxo;r), such

that S(fz) = T(fz) = flfz) = g(fz) = fz. Also, dq(fz;fz) = 0:

From Theorem 3.2.1 to Theorem 3.2.6, we derive following important results in

preordered complete left K-sequentially dislocated quasi metric space. We de ne the set r by r
= f(x;y) 2

XX:xyoryxg:
3.2.10 Theorem

Let (X; ;dq) be a preordered complete left K-sequentially dislocated quasi metric space,
xox;y 2 X, r>0and S;T: X! X be two dominated mappings on Ba,(xo;r). Suppose for

k+ 2t 2 [0,1), the following conditions hold:

dq(SX;TY) kdq(x;y) + t{de(x:5x) + do(y; TY)|;
dq(Tx:Sy) kdq(x:y) + t{dg(x;Tx) + do(y;SY)]
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for all (x;y) in (Bas(x0;1) Bds(x0;r)) \ r and

dg(x0;Sx0) (1 )ry

k4t -
where 1 —¢. If for a nonincreasing sequence fxxg in Baq(x0;1); fxng !

implies that x», then there exists a point w” in Bd,(xo;r), such that w* = Sw” = Tw” and
dg(w;* wh) = 0:
Also, w” is unique, if for any x;y 2 Bd,(xo;r); the set Axy = fzo 2 Bd,(x0;1) : zox and zo yg is non

empty and for all z 2 Ba,(xo;r), such that z Sxo; we have

dq(x0;Sx0) + dq(z;TZ) dq(x0,2) + dq(Sx0;TZ)

3.2.11 Corollary
Let (X; ;dq) be a preordered complete left K-sequentially dislocated quasi metric space, xo 2 X

and S;T: X! X be two dominated mappings. Suppose for k + 2t 2 [0;1), the following
conditions hold:

dq(Sx;Ty) kdq(x;y) + t[dq(x:5x) + do(y; Ty)];
dq(Tx;Sy) kdq(x;y) + t[da(x;TX) + dq(y;5y)]
for all (x;y) in r. If for a nonincreasing sequence fxng ! implies that x», then there exists a

point w” in X, such that w» = Sw” = Tw” and dq(w;* w”) = 0: Also, w” is unique, if for any

x;y 2 X; the set Axy=fz02 X : zox and zo yg is non empty.
3.2.12 Theorem

Let (X; ;dq) be a preordered dislocated quasi metric space, xo 2 X, r> 0 and S; T be self

mapping and fbe a dominated mapping on Ba,(fxo;r), such that SX [ TX fX; Tx fx;
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Sx fx and

Baq(fxo;r) fX:
Suppose for k +

dq (Sx;Ty) kdq(fx;fy) + tldq(fx;Sx) + dq(fy; Ty)], 2tgp[0;1), the

dq (Tx:SY) kd,(ffy) + tldg(f; Tx) + dqw;Sy)];(f:% 'r'lgyving
tions
hold:

for all (fx;fy) 2 (Baq(fxo;1) Buq(fxo;r)) \ r and
dq(fxo;Sx0) (1 )y
_ k4t
where  1—tand

dq(fX0;Sx0) + dq(fy; Ty) dq(fxo;fy) + dq(Sxo0; Ty);

for all fy 2 Ba,(fxo;r), such that fy Sxo: If for a nonincreasing sequence fxsg in Ba,(fxo;7);
fxng ! implies that xnand for any two points z and x in Ba,(fxo,r) there exists a
point y 2 Ba,(fxo;r), such that y zand y x: If the subset fX is complete and (T;f); (S;f) satis es

the condition of weakly compatible pair of functions, then S(fz) = T(fz) =

ffz) = fz. In Bay(fxo;r). Also, dq(fz;fz) = 0:

3.2.13 Theorem
Let (X; ;dq) be a preordered dislocated quasi metric space, xo 2 X, r> 0 and S; T be self
mapping and fbe a dominated mapping on X, such that SX [ TX fX and Tx fx;

Sx fx: Suppose for k + 2t 2 [0,1), the following conditions hold:

dq (Sx;TY) kdq(fx;fy) + tlde(f:S5x) + do(fy; TY) ],

dq (Tx;Sy) kdq(fx;fy) + tlde(f; Tx) + dq(fy;SY)];
for all (fx;fy) 2 r: If for a nonincreasing sequence fx»g in X; fxng ! implies that x»and for any

two points z and x in X there exists a point y 2 X, such that y zand y x: If
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the subset fX is complete left K-sequentially and (Tf); (S;f) satis es the condition of weakly
compatible pair of functions, then there exists fz 2 Bd,(fxo;r), such that S(fz) = T(fz) = f(fz) =

fz. Also, dq(fz;fz) = 0:

3.2.14 Theorem [23]

Let (X; ;dq) be an ordered complete left K-sequentially dislocated quasi metric space, S be a

self dominated mapping on X and xo be an arbitrary point in Ba,(xo;r). Suppose there exists k

2 [0;1) with
dq(Sx;Sy) kdq(x;y); for all comparable elements x;y in Baq(xo,;7)
and
dq(x0,5x0) (LKR)r:
If for a nonincreasing sequence fxng ! implies that Xn, then there exists a point w” in

Budq(x0;1), such that dqg(w;» w”) = 0 and w” = Sw:” Moreover, if for any x;y 2 Ba,(xo;r); the

set Axy = fz 2 Bag(xo0;7) : z x and z yg is non empty, then the point w” is unique.

3.2.15 Theorem [23]

Let (X; ;dq) be an ordered complete left K-sequentially dislocated quasi metric space, S be a

self dominated mapping on X and xo be an arbitrary point in Ba,(x0,r). Suppose there exists
k€00, 3) with
dq(Sx;Sy) k[dq(x;5x) + dq(y;Sy)];

for all comparable elements x;y in Ba,(xo;r) and

dq(x0;Sx0) (1 )y

87



where = "% Iffora nonincreasing sequence fxng ! implies that Xn, then there

exists a point w” in Bd,(xo;r), such that dq(w;* w”) = 0 and w” = Sw:* Moreover, if for any
X;y 2 Bdq(x0;1); the set Axy = fz 2 Bd,(xo;r) : zx and z yg is non empty and

dq(x0;Sx0) + dq(z;5Z) dq(x0;2) + dq(Sx0;Sz) for all z Sxo:
then the point w” is unique.

3.2.16 Example [23]

Let X = R+ [ fOg be endowed with usual order and let dq: X X! X be de ned by

€I
0@ Y) =5V Lot 1 X1 Xbe de ned by

T
—ifxzel0,1
S:L‘{ 7 0,1]

x—gifze (1,00).
Clearly, S is a dominated mapping, then forto = L 7 = 5. 0 = 2, Ba,(z0,7) = [0,1] gng
3
fork = 16
6

3.3
(1—0)r :(17?)5 =

and
1
dy(xo, Sxo) = dy(1,51) = dy(1, ?) =

b =
1 =
—

= e
Sl

Also, if x;y 2 (1,1), then

9 9 9
5z + 10 > -4+ - -
e + 10y = 27+231+2

=
)

; 3 3
= 5;6—54—10;9;—52 3[5;L’+§y—l}
z 1 T 1y 1
== -2)>3z4+zx—=+= - =
5ty 2 re—g+5+y—3l
= dg(Sz, Sy) = kldg(x, Sz) + dy(y, Sy)].
So the contractive condition does not hold on the whole space: Now, if x;y 2 Bd,(xo;r); then

= 10(
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\a r oy Lo
3 xr 3 x T y oy
< gy N2y 2L g
- 1(]{2+2}_1(){2+7+2+7

Also,
dq(x0;5x0) + dq(2;52) = dq(x0;2) + dq(Sx0;5z) for all z Sxo:

Hence, all the conditions of Theorem 3.2.15 are satis ed. Moreover, 0 is equal to S(0):

3.3 Common Fixed Point Results Satisfying - Type Contractive Conditions

Some of the results given in this section have been published in [11]. Some of the results given

in this section have been submitted for publication [80].

331 Theorem

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space. Suppose there
exist a function, : XX!]0;+1). Let r> 0, xo0 2 Bag(xo;r) and S;T: X! X be -
dominated mappings on mﬂnd 2 . Assume that, for x;y 2 Ba,(xo0;1); (x;y) 1;
the following condition holds

maxfd,y(Sx;Ty);do(Tx;Sy)g (dq(x:)) (3.25)

and
j . .
> ¥ (dgwo, S70)) <7 gor a1l j 2 N [ fOg: (3.26)

i=0

If for any sequence {za} in Ba,(20,7) sych that (xn;Xxn+1) 1forall n2 N[ fOgand

Xn!u 2 Bdy(xo;r)as n! +1, then (xn;u) 1forall n2 N[ fOg; then there exists a common
xed point w” of Sand T and dq(w;* w”) = 0:

89



Proof. Choose a point x1 in X, such that x1 = Sxo and x2 = Tx1. Continuing this process,

we construct a sequence x» of points in X, such that
x2i+1 = Sx2i; and x2i«2 = Tx2i+1, Where [ = 0;1;2;::::

First, we show that x» 2 Bd,(xo;r) for all n 2 N. Using (3.26), we have

J
i;i'i(dq(;z:g, Sxzg)) <r
o forall j2 N [ fOg:

In particular, it holds for j = 0; that is

X1 2 Bdy(xo;r):

is -dominated mappings on By(xo;r), then (x0,x1) 1: As T'is -dominated mappings
on Buq(xo;1), then (x1,x2) 1: Continuing in this way we obtain (x2i;x2i+1) 1 for all
Let x2; ;xj 2 Bdq(xo0;7) for some j 2 N. If j=2i + 1, where i = 0;1,2;::: L21: As S

i=0;1,;2;::: L21: So using (3.25), we obtain

dq(x2i+1,X2i+2) = dq(Sx2i; Tx2i+1)
maxfdq(Sx2i; Tx2i+1);dq(Tx2i;Sx2i+1)g
(da(x2i;x2i+1)) 2(dq(x2i1,x2i))
2i+1(dq(x0;x1)):
Thus, we have

dq(x2i+1;x2i+2) 2*1(dg(x0;x1)): (3.27)
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dq(x2i+2;x2i+3) 20+1)(dg(x0;x1)): (3.28)
Thus, from the inequalities (3.27) and (3.28), we have

dq(xj;xj+1) J(dq(x0,x1)): (3.29)

Now,

dg(zo,zj11) = dy(wo, 1) + .. +dy(zj,z11)

I\
[~
.
—
QL
)
—
=
(=)
5
p—
~—
—
A
=

Thus, Xj+1 2 Bdq(x0;1): Hence, xn 2 Bay(xo0;r) for all n 2 N. Now, the inequality (3.29) can be

written as

dq(xn;xn+1) "(dq(x0;x1)); for all n 2 N: (3.30)

Fix &> 0 and let n(&) 2 N, such that X n(dq(x0;x1)) <&: Let n;m 2 N with m>n>n(&):

Using the triangle the inequality and the inequality (3.30), we obtain

m1 m1
dq(xn;xm) Xdq(xr;xKk+1) X k(dg(x0;x1))
k=n k=n

X k(dq(x0;x1)) <&:

nn(&)

Thus, we have proved that fx»g is a left K-Cauchy sequence in (Ba,(x0,7);dq). AS Bdq(x0,7) IS
closed and so it is complete left K-sequentially. Therefore, there exists a point w” 2 Ba,(xo;r),

such that x» ! w:~ Also,
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lim dq(xn,w”) = lim dg(w;x” n) = 0: (3.31) m1m1

By assumption, we have (w;x"n) 1forall n2 N[ f0g. Now, by using (3.25), we get

dq(Sw;x"2i+2) maxfdq(Sw; Tx"2ix1);dq(Tw; SX" 2i+1)g

(dg(w;x"2ix1)) <dq(w;x" 2i+1):

Letting i ! 1 and by the inequality (3.31), we obtain dq(Sw;* w”) < 0: Hence, Sw" = w:*
Similarly by using

dg(Tw;x" 2i+1) (dg(w;x™  21)) <dgq(w;x"2i);

we obtain dq(Tw;* w”) = 0; that is, Tw” = w:” Hence, S and T have a common  xed point in

Baq(x0;r). AsSis  -dominated mappings on Ba,(xo;r) we have (w; S w”) 1and so
(w;"w”)  1: Now,
dg(w;? =
wh)
maxfdq(Sw; T w");d,(Tw;S"
wh)g (do(w;™ wh)): dg(w;™ wh)
This implies that =0:
[ ]
33.2 Example
Let X=Q+[f0gand letd;: X X! X be the complete left K-sequentially dislocated quasi

metric on X de ned by,

dq(x;y) = 2x + y for all x;y 2 X: Let

S;T: X! Xbe de ned by,
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xr

—ifzel0,2lNnX
Sx = 4 0,2

Jrifxe (2,00)NX

and
2x
— ifze|0,2|NnX
S - 0, 2]
dz if v € (2,00) N X.

Considering, xo = 1,r = 4; then Ba,(xo0;r) = [0;2]\X. De ne @ (xy) =j2xy + 3j: Clearly,

m Let 9(t) = %

Sand Tare -dominated mappings on - Now,

; , 1.9
dg(wo, Szo) = dg(1, S1) = dy(1, 1) =

9~ 1 9.3
> " (dg(wo, Smo)) = 1 > 3 < (Z)Q <4

i—=0 i=0

Now, if x;y 2 (2;1) \ X; then we have the following cases.

Case 1. If maxfdq(Sx; Ty);dq(Tx; Sy)g = dq(Sx; Ty), then for x;y 2 (2,;1); we have

dy(Sz,Ty) = dy(3z,4y) = 6x + 4y
20y
3 + 3 = ":‘"'(dq(x-y)),

Case 2. If maxfdq(Sx;Ty);dq(Tx; Sy)g = dq(Tx; Sy),

dg(Tx,Sy) = dg(4z,3y) = 8x + 3y

20y !
? + § = ’q,’((lq(way)):

So the contractive condition does not hold on the whole space:

Now, if x;y 2 Ba,(x0,;7); then

Case 3. If maxfdq(Sx;Ty);dq(Tx; Sy)g = dq(Sx; Ty):
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dg(Sz, Ty) = dq(':,

Case 4. If maxfdq(Sx; Ty);dq(Tx; Sy)g = dq(Tx; Sy):

) 20y, 2z, oy
dy(Tz,Sy) = dq(7« Z} = 2(7) + 1
< 2A3)+ 5 = b(dy(a,y))

then the contractive condition holds on Ba,(xo;r): Hence, all the conditions of Theorem 3.3.1

are satis ed and 0 isa common  xed point of Sand T:

333 Corollary

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space. Suppose there
exist

a function, :XX![0;+1). Let r> 0, x0 2 Bas(x0;r)and S: X! X be a -dominated
mapping on Bd,(xo;r) and 2 . Assume that, for x;y 2 Bd,(xo0;1); (x;y) 1, the following

condition holds
dq (SX,Sy ) (dq (le))

and

J
zu‘;"’(dq(ﬂim Szo)) <7 gor all j2 N [ fOg:

i=0

If for any sequence {#n} I Be,(20.7) suchthat  (xnsxns1) 1forall n2 N [fogand

Xn! U 2 Baq(x0;,r) @s n ! +1; then (x»;u) 1 for all n 2 N [ fOg; then there exists a xed point w” of

Sand dg(w,* w”) =0:

334 Corollary

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space. Let r> 0, xo 2
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Budq(x0;,r) and S; T : X! X be dominated mappings on Ba,(xo;r) and 2 . Assume that

the following condition holds

maxfdq(Sx; Ty);dq(Tx;Sy)g (da(x;y))

for all (x;y) in (Bas(x0;1) Bds(x0;7)) \ r and

J
Zﬁr’:(dq(:tg, Sxzg)) <,
i=0 forall j2 N[ fOg:

If for any sequence fxng in Bay(xo,;7), such that fx,g ! implies that x», then there exists a point

w” in Bay(xo;r), such that w” = Sw” = Tw” and dq(w;» w?) = 0:

3.35 Theorem
Adding condition if w” isany common  xed point in Ba,(xo;r) of Sand T, xbe any  xed

point of S or T in Bd,(xo;1), then (w;x” ) 1to the hypotheses of Theorem 3.3.1, then Sand T

have a uniqgue common xed point w:”

Proof. Assume that y be another xed point of T in Ba,(xo;r); then by assumption, (w;y”*
) 1; also,

dg(wiy™) =dg(Sw; Ty™ ) (de(wiy™ )

A contradiction to the fact that for each t> 0; (t) <t: So w” =y point other
than w:~ Similarly, S has no xed point other than w*. m

:Hence, Thasno xed
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Now, we apply our Theorem 3.3.5 to obtain unique common xed point of three
mappings

on closed ball in complete dislocated quasi dq-metric space.

3.3.6 Theorem

Let (X;dq) be a dislocated quasi metric space;S;T;f: X! X, such that SX [ TX fX,
r> 0 and xo 2 Bd,(fxo;r). Suppose there exist a function, : XX![0;+1), such that

(fx; Sx) 1, (fxTx) 1forall fx 2 Ba,(fxo;r): If the following conditions hold for all

fx:fy 2 Baq(fxo;1); (%)) land2
maxfd(SxTy);da(Tx:SY)g (da(fi5): (332)
a
Xn
d
j
i(dq(fxo;Sx0)) r; for all j 2 N [ fOg: (3.33)

i=0

Suppose that the following conditions hold:

(i) If fxng is a sequence in Baq(fXo;1), such that (xn;xn+1) 1 forall nand x»! u
2
Baq(fxo;r) as n ! +1, then (u;xn)  1foralln2 N[ fog.

(i) fx, fy be any xed points in Ba,(fxo;r), then (fx;fy) 1:
(iii) If the subset fX is complete left K-sequentially and (T;f); (S;f) satis es the condition

of weakly compatible pair of functions.

then S;T and fhave a unique common  xed point fp in Ba,(fxo;r). Moreover dq(fp;fp) = 0:

Xcvi



Proof. By Lemma 1.4.2, there exists E X, such that fE = fX and f: E ! X is oneto-one.
Now, since SX [ TX fX; we de ne two mappings g;h : fE ! fE by g(fx) = Sx

and h(fx) = Tx respectively. Since fis one-to-one on E, then g;h are well-de ned. As

(fx:Sx) 1 implies that (fx;g(fx)) 1 and (fx;Tx) 1 implies that (fx;h(fx)) 1,

then g and h are -dominated mappings on Bad,(fXo;r): Now, fxo 2 Bd,(fxo;r) fX, then
fxo 2 fX: Let yo = fxo; choose a point y1in fX, such that y1 = g(yo): Also, by the inequality
(3.33).
X j i(dq(yo;gy0)) r; for all j 2

N[ fOg:

i=0
Then y1 2 Baq(fxo;r): Let y2 = h(y1). Continuing this process and having chosen yxin fX,
such that

yais1 = g(y2i) and yzi+2 = h(y2i+1); where i = 0;1,2;:;
Following similar arguments of Theorem 3.3.1, yn 2 Ba,(fXo;r): Note that for fx; fy 2

Ba,(fxo;r) and (fx;fy) 1, then by using the inequality (3.32), we have
maxfdq (9(fx);h());da(h(x);9(())g (da(fx;f3)):

As fX is a complete space; all the conditions of Theorem 3.3.5 are satis ed, we deduce
that

there exists a uniqgue common  xed point fp 2 Bd,(fxo;r) of g and h:

The rest of the proof is similar to the proof given in Theorem 2.3.10 and so we
leave it.

Hence, we obtain a unique common  xed point of S;Tand f. m
Metric version of Theorem 3.3.6 is given below.

3.3.7 Theorem
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Let (X;d) be a metric space; S;T;f: X! X, such that SX [ TX fX, r>0and
X0 2 B(fxo;r). Suppose there exist a function, : XX !]0,+1), such that (x:Sx) 1,

(fx; Tx) 1 for all fx 2 B(fxo;r): If the following conditions hold for all fx;fy 2 B(fxo,r);
(fx:0) land?2 ,

dSxTy)  (d(fef)):

and
X ji(d(fxo;Sx0)) r; forall j2 N
[ fOg:
i=0
Suppose that the following conditions hold:

(i) If fxng is a sequence in B(fxo;r), such that (xn;xn+1) 1 for all n and x» ! u 2 B(fxo;r) as
n!+1,then (u;xs) 1 foralln 2 N[ fOg.

(ii) fx, fy be any xed points in B(fxo;r), then  (fx;fy) 1:
(iii) If the subset fX is complete left K-sequentially and (T;f),; (S;f) satis es the condition

of weakly compatible pair of functions.
Then S;T and fhave a unique common xed point fp in B(fxo,1).

Now, we obtain the results in [11] as a corollaries of the above results.

3.3.8 Theorem [11]
Let (X; ;di) be an ordered complete dislocated metric space, S;T: X! X be dominated

maps and xo 2 X. Suppose that for k 2 [0,1) and for S =6 T, we have

di(Sx; Ty) kdi(x;y) for all comparable elements x;y in Ba(xo,;7)

and
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 dixoSxo) (LK)
If for a non-increasing sequence fx»g ! implies that x», then there exists a point w”
in-Baixe;r), such that di(w;» w) =0-and w? = Sw” = Tw:” Also, if for any two
points x;y in Bai(xo;r) there exists a point z 2 Ba(xo;r), such that zx and z y, then w”

IS a uniqgue common xed point in Ba(xo;r):

3.39 Example [11]

Let X = Q* [fOg be endowed with order (x1;y1) (x2;y2) if x1xzand let S;T: X2! X2
be de ned by
r 3y, ..
-, —)ifzx+y <1
S(x,y) = (71 11) :
(I—Ey—g) ifz+y>1
and
(Jﬁﬂ) ifr4+y<l1
T(x,y) = 11) 7
(z——y—-)ife+y>1
4 5] :

Clearly, S and T are dominated mappings. Let di: X2 X2! X be de ned by di((x1;y1);(x2;y2))
=Xx1+y1+Xx2+ )2, then it is easy to prove that (X2;di) is a complete dislocated metric

space.

34,

Let (IﬂvyO) - (?1 ?)w r= Zthen

Ba((x0;y0);r) =f(x;y) 2 X:x+y 1g

3
k= — 0,1),
with 10 €01,
3 7
]. — Jli: T = ]_ _ — 2 = —
656 7
di((z0,y0), S(zo,v0)) = 730 < E
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Also, for all comparable elements (x1,y1);(x2;y2) 2 X2, such that x1 +y1> 1 and x2 +y2 >

1; we have
1 3 1 1
L(S(x1,51), T(x0,92) = @1 —=+y1—=4a9—~+yy— =
di(S(x1,91), T(x2,y2)) e R Rk Rl et LR

IV

3
E{ml +y1 + 2 + Y2}

di(Sz,Ty) = kdi[(z1,y1), (x2,92)].

So the contractive condition does not hold on the whole space: Now, if (x1,y1);(x2;y2) 2

Ba((xo;y0);r); then

Ty | 3y Az | 2y
7 11 15 7

di(S(z1,y1), T(x2,2)) =

IA

3
E{Il +uy1 + w2 +y2t = kdi[(x1,y1), (2, 42)]

Hence, all the conditions of Theorem 3.3.8 are satis ed. Moreover, (0,0) is the common
xed point of S and T: Also, note that for any metric d on X%, the respective condition

does not

hold on Ba((xo;y0);r) since

, 2 3 2 9 8 6
1((3¢.97G.D) = (G55 G 35))

23, 23
> kd (( ) g)~ (F-: )
(O I
Moreover X2 is not complete for any metric d on X2:

v

[l

w| o

(S N V]

51

3.3.10 Remark [11]
If we impose Banach type contractive condition for a pair S;T: X! X of mappings on a

metric space (X;d) that is

d(Sx;Ty) kd(x;y) for all x;y 2 X:



then it follows that Sx = Tx; for all x 2 X (that is S and T are equal). Therefore the
above condition fails to nd common xed points of S and T. However the same
condition in dislocated metric space does not assert that S = T; this is seen in
Example 3.3.9. Hence, Theorem 3.3.8 cannot be obtained from a metric xed point

theorem.

3.3.11 Theorem [11]

Let (X; ;di) be a ordered complete dislocated metric space, S be a self dominated
mapping

on X and xo 2 X. Suppose there exists k 2 [0,1) with
di(Sx;Sy) kdi(x;y); for all comparable elements x;y in Ba(xo;r)

and di(xo;Sx0) (LK)r:
If for a non-increasing sequence fxng in Baxe;¥);fxng ! implies that x». Also, if for

any x;y 2 Bai(xo;r); the set Axy = fz 2 Ba(xo;r) : zx and z yg is non empty, then there

exists a unique xed point w” of S in Ba(xo;r): Further di(w;» w”) = 0:

3.3.12 Theorem [11]

Let (X; ;di) be an ordered complete dislocated metric space, S;T: X! X be the dominated

map and xo 2 X. Suppose for k 2 [0,1) and for S =6 T, we have

di(Sx; Ty) kdi(x;y); for all comparable elements x;y in X:
Also, if for a non-increasing sequence fx»g in X; fxng ! implies that x» and if for any x;y

2 X; the set Axy=fz 2 X: zx and z yg is non empty, then there exists a unique

point w” in X, such that w" = Sw” = Tw:” Further di(w;* w") = 0:

3.3.13 Theorem [11]
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Let (X;di) be a complete dislocated metric space, S;T: X! X be the self maps and xo 2 X.

Suppose for k 2 [0;1) and for S =6 T, we have

di(Sx; Ty) kdi(x;y); for all elements x;y in Ba(xo;r)

and
di(x0,5x0) (LK)r:

Then there exists a unique w” 2 Ba(xo;r), such that di(w;» w*) = 0 and w” = Sw” =
Tw:" Further

Sand Thave no xed point other than w:*

3.3.14 Theorem [11]

Let (X; ;di) be an ordered dislocated metric space and S; T self mappings and fbe a dom-

inated mapping on X, such that SX [ TX fX, Tx fx;Sx fx and xo 2 X. Suppose

that for k 2 [0,1) and for S =6 T, we have

di (Sx; Ty) kdi(fx;fy)

for all comparable elements fx;fy 2 Ba(fxo;r) fX and

di(fxo; Txo) (LKR)r:

If for a non-increasing sequence fx»g ! implies that x» and if for any x;z 2 Ba(fxo,;1);
the set Axz=fy 2 Ba(fxo;r) : y;a.ndj_pcfor some z;x 2 Bal(fxo;r)gis-non empty that

is every pair of elements in Ba(fxo;r) has a lower bound in Ba(fxo;r). If the subset fX
is complete and (T;f); (S;f) satis es the condition of weakly compatible pair of

functions, then
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there exists fz in Ba(fxo,;r), such that S(fz) = T(fz) = f(fz) = fz. Also di(fz;fz) = 0:
3.3.15 Theorem [11]

Let (X;di) be a dislocated metric space and S;T;g and fbe self mappings on X, such that
SX; TX fX = gX: Assume that xo 2 X;k 2 [0;1) and S =6 T, such that following conditions

hold:
di (Sx; Ty) kdi(fx;gy)

for all elements fx;gy 2 Ba(fxo;r) fX; and

di(fxo;5x0) (LKR)r:

If the subset fX is complete, then there exists fz 2 X, such that di(fz;fz) = 0: Also if
(T:g); (S;f) satis es the condition of weakly compatible pair of functions, then there

exists fz in

Ba(fxo;r), such that S(fz) = T(fz) = fifz) = g(fz) = fz.
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Chapter 4

Fixed Point Results in Closed Ball for

Multivalued Mappings

4.1 Introduction
The theory and the de nitions given in this section have been submitted for publication

[78].

Nadler [57], introduced a study of xed point theorems involving multivalued
mappings (see also [17, 18]). Asl et al. [14] generalized the notion of -admissible
mappings by introducing the concepts of - contractive multifunctions, -admissible
mapping and obtained some xed point results for these multifunctions (see also [5,
40, 41]). The aim of this chapter is to establish xed point results for -admissible
multivalued mappings on closed ball satisfying generalized - -contractive conditions
in complete left K-sequentially dislocated quasi metric space. We derive some new
xed point theorems for ordered metric space. The examples have been constructed
to demonstrate the novelty of our results. Our results unify, extend and
generalize several comparable results in the existing literature. Recently, Lopez
[67] introduced the concept of Hausdor’ fuzzy metric spaces on non empty compact
sets. The idea was derived from the concept of Hausdor/ metric. We also establish a
xed point result on closed ball in Hausdor’ fuzzy metric spaces. We introduce the
following de nitions which will be needed in

the sequel.
41.1 De nition
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Let K be a nonempty subset of dislocated quasi metric space X and let x 2 X: An
element

yo2 Kis called a best approximation in K if
dq(x;K) = dq(x;y0); Where dq(x;K) = inf

dq(x;

y):
y2K

If each x 2 X has at least one best approximation in K; then K is called a proximinal set.

We denote CP(X) be the set of all closed proximinal subsets of X: Let denote the
family

of all nondecreasing functions : [0;+1) ! [0;+1), such that>-n_1 ¥ () < 400 for all ¢t

0, where nis the nttiterate of : If 2 ; then (t) <t for all t> 0:

4.1.2 De nition

Let (X;d) be a metric space, S: X! CP(X) be a multivalued mapping and X X!
[0;+1). Let A X; we say that Sis -admissible on A; whenever (x;y) 1 implies
that

(Sx; Sy) 1; for all x;y 2 A; where (Sx; Sy) = inff (a;b) : a 2 Sx;b 2 Syg: If A = X, then

we say that S is -admissible on X:

413 De nition

The function Ha,: CP(X) CP(X) ! X; de ned by
Ha,(A;B) = maxfsupdq(a;B); supdq(4;D)g

a2A b2B

is called dislocated quasi hausdor’ metric on CP(X):

Ccv



Let X be a nonempty set, then (X; ;d) is called a preordered dislocated metric
space if diis a dislocated metric on X and is a preorder on X. Let (X; ;dq) be a
preordered metric space and A;B X. We say that A B whenever for each a 2 A there
exists b 2 B, such that a b. Also,we say that A - B whenever for each a 2and b 2 B
we have a b:

4.1.4 Lemma

Let (X;M; ) be a fuzzy metric space. Let (Ko(X);Hwm; ) is a Hausdorfuzzy metric
space on Ko(X), then for all A;B 2 Ko(X) and for each a 2 A there exist bq 2 B satis es
M(a;B;t) = M(a;bq;t), then Hu(A;B;t) M(a;ba;t). Proof. If Hu(A;B;t) = inf M(a;B;t);
then Hu(A;B;t) M(a;B;t) for each a 2 A: a24

Hence, for each a 2 A there exist ba 2 B satis es M(a;B;t) = M(a;ba;t), then Hu(A;B;t)

M(a;ba;t): Now, if Hu(A;B;t) = inf M(A4;b;t) inf M(a;B;t): Hence, in both
cases, We b2B a24

proved the result. m

4.2 Fixed Point Results for Multivalued Mappings in Dislocated Quasi
Metric Spaces

Let (X;dq) be a dislocated quasi metric space;xo2 Xand S: X! CP(X) be a

multivalued mapping on X, then there exist x1 2 Sxo, such that dq(xo; Sxo) =

dq(x0;x1): Let x2 2 Sx1 be, such that dg(x1; Sx1) = dg(x1,x2): Continuing this process,

we construct a sequence x» of points in X, such that xn+1 2 Sxnand dq(xn; Sxn) =

dq(xn;xn+1): We denote this iterative sequence by fXS(xo)g:

421 Theorem

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space, r > 0; xo 2
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Budq(x0;r) and S: X'! CP(X) be a -admissible multifunction on Ba,(xo;r). Assume that for

2, such that
(Sx;Sy)Hao(SX;Sy) (dq(x;:y)) for all x;y 2 Baq(xo;1) (4.1)
and
Z u’:i(dq(mo, Sxzg)) <r
=0 forall n 2 N [ fOg: 4.2)
If £XS(x0)g is a sequence in Ba,(xo;r) and fXS(xo)g ! xand (xn;Xxn+1) 1 for xn;Xxn+12

fXS(xo)g;n 2 N[fOg, then  (x»,x) 1or (x;xa) 1forall n2 N[fOg. Also, there exist

x12 Sxo, such that  (xo;x1) 1, then S has a xed point in Ba,(xo;7).

Proof. As xo 2 Bds(xo;r); and S : X ! CP(X) be a multivalued mapping on X, then there

exist x1 2 Sxo, such that dq(xo; Sxo0) = dq(xo;x1): If xo = x1, then xo is a xed point in

Baq(xo0;r) of S. Let xo=6 x1: From (4.2), we get

dg(zo, 1) < Z’l;i'i(dq(;z:o,;z:l)) <r.
i—0

It follows that,
X12 Baq(x0;7):

Since (xo;x1) 1 and S is -admissible multifunction on Ba,(xo;r) and so (Sxo;Sx1) 1. Also,

there exist x2 2 Sx1, such that dq(x1, Sx1) = dq(x1,x2): If X1 = x2, then x1is a xed
point of S in Ba,(xo,;7): Let x1=6 x2: Now,
dq(x1,x2) = dq(x1,;5x1) Hdq(SX0,5x1)
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(Sx0;5x1)Haq(Sx0;5x1):

Note that x2 2 Bd,(xo;r); because

dq(x0;x2) dq(x0;x1) + dq(x1,x2)

dq(xo0;x1) + (Sx0;Sx1)Hdq(Sx0,5%1)
dg(xo, 1) + Y(dg(20, 1))

Z Vi (dy (o, 1)) < 7.
i=0 by (4.1)
As  (Sxo; Sx1) 1,;x1 2 Sxoand x2 2 Sx1and so (x1,x2) 1: AsSis -

admissible

multifunction on Bd,(xo;r). Thus, (Sx1,; Sx2) 1: Let x2; ;xj 2 Bdq(xo;r) for some j 2 N,
such that xj+1 2 Sx;and dq(x;; Sx;) = dq(x;xj+1): AS (Sx1; Sx2) 1; we have (x2;x3) 1;
which further implies (Sx2; Sx3) 1: Continuing this process, we have (Sx;1; Sx;)

1. Now,

dq(xj;xj+1) = dq(xj;Sxj) Hde(Sxj 1,5%))
(Sxj 1,Sx) Hdq(Sxj 1,5%j)
(dq(x11,%))) ::7(dq(X0:x1)) (4.3)

dq(x0,x+1) dg(xo;x1) + i + dg(X;xj41) dg(Xo;Xx1) + 22 +

J(dy(x0;x1))
J
= X {(dq(x0;x1)) 1

i=0
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Thus, xj+1 2 Bdq(x0;7): AS (Sxj1;5x%;) 1,x; 2 Sxj 1,xj+1 2 Sxj; we have (x;xj+1) 1: Also, S
is -admissible multifunction on Ba,{xe;r); therefore (Sx;; Sxj+1) 1: Hence, by
mathematical induction, x» 2 Ba,(xo;r) and (Sx»; Sxn+1) 1 for all n 2 N. Now, the

inequality (4.3) can be written as

dq(xn;xn+1) "(dq(x0;x1)); for all n 2 N:

Fix &> 0 and let n(&) 2 N, such that X *(dq(xo0;x1)) <&: Let n;m 2 N with m>n>k(&);

then we obtain

m1 m1
dq(xn;xm) Xdq(xx;xK+1) X k(dg(x0;x1))
k=n k=n

X k(dq(x0;x1)) <&:

n k(&)

Thus, we proved that fxsg is a Cauchy sequence in (Bdq(x0,7);dq). As every closed ball
in a complete left K-sequentially dislocated quasi metric space is complete left K-

sequentially and

so there exists w” 2 Ba,(xo,;r), such that x»! w;* and

lim dg(xn;w”) = lim dg(w;x"n) = O:
1 1
Note that fxng is a fXS(xo0)g in Ba,(xo;1): AS (Sxn;Sxn+1) 1 for all n 2 N[fOg; we have

(xn+1,xn+2) 1 for all n 2 N[fOg: By assumption, we have (x,,w”) 1 for all n 2 N[fOg:
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Thus,  (Sxn; SW") 1: Now,

dg(w;S* w™)  dg(w;x"n+1) + dg(Xn+1,SWH)
dg(W;x" n+1) + Hao(Sxn;SWH)
dq(w;x" n+1) +
(Sxn, SW™)Hdq(Sxn;SWH)

dg(wW;x" n+1) + (dg(xn;W"n)):

Letting n! 1, we obtain dq(w; S w”) = 0: Similarly, if (w;x"n) 1foralln2 N[ fOg:
Thus,
(Sw; Sx™ »)  1: Now,

do(Sw;* wh)  (dg(w;x™  n)) + dg(xneyw™):
We obtain dq(Sw;” w”) = 0: Hence, w” 2 Sw:” So S has axed point in Ba,(xo;r). ®

4.2.2 Corollary

Let (X; ;dq) be a preordered complete left K-sequentially dislocated quasi metric space,
S:

X! CP(X). Suppose there exists 2 ; with

Haq(Sx;Sy) (dq(x;y)); for all elements x;y in Ba,(xo;7) with x y

Z 'z,i'i(dq (g, Sx0)) <71
and i-o foralln 2 N [ fOg

for xo 2 Bas(xo0;r);n 2 N, r> 0: If £XS(x0)g is a sequence in Ba,(xo,r) and fXS(xo0)g ! x and

Xn Xn+1 TOr Xn;Xn+1 2 £XS(x0)g; then x x» or xn x for all n 2 N[fOg. Also, there

exist x1 2 Sxo, such that xox1. If x;y 2 Ba,(xo0;r), such that x y implies Sx Sy, then

there exists a point w” in Ba,(xo,7), such that w” 2 Sw:*
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4.2.3 Corollary

Let (X; ;dq) be a preordered complete left K-sequentially dislocated quasi metric space,
S:

X! CP(X). Suppose there exists k 2 [0,;1) with

Ha,(Sx;Sy) kdq(x;y); for all elements x;y in Ba,(xo;r) with x y

Z kidq(l'[), S:C‘(]) <r
and i=o foralln 2 N [ fOg

for xo 2 Bay(xo0;r);n 2 N[fOg;r> 0: If £XS(x0)g is a sequence in Ba,(xo,;7) and fXS(xo)g!

x and xn xn+1 fOr xn;xn+1 2 £XS(x0)g;n 2 N[fOg; then x x» or x» x for all n 2 N[fOg.

Also, there exist x1 2 Sxo, such that xo x1. If ¥ 2 Ba,(xo0;r), such that x y implies

Sx r Sy, then there exists a point w” in Bd,(xo;r), such that w” 2 Sw:”

424 Corollary

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space and S: X! X,
r> 0 and xo be an arbitrary pointin-Buag{xo;r). Suppose there exists, : X X! [0;+1)

bea  -admissible mapping on Ba,(xo;r). For 2 , assume that,
X,y 2 Baq(x0,7); (x¥) 1 =) dq(Sx;Sy) (dq(x;v))

and j i(dq(x0;Sx0)) r for all j 2
XN [ fog:

i=0

Suppose that the following assertions hold:

(i) (xo; Sxo) 1;
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(i) for a Picard sequence xn+1= Sxnin Bd,(xo,;7), such that (xn,xn+1) 1 for
alln2

N [ fOgand xn! u 2 Bay(xo;r) as n ! +1, then (xn;u)  1foralln2N [ fOg.

then there exists a point w” in Ba,(xo;r), such that w” = Sw:”
4.2.5 Corollary

Let (X; ;dq) be a preordered complete left K-sequentially dislocated quasi metric space
and

let S: X! X be nondecreasing mapping and xo 2 Bd,(X0,7). Suppose that the following

assertions hold:

(i) there exists k 2 [0;1), such that dq(Sx; Sy) kdq(x;y) for all x;y 2 Ba,(x0;r) with

XYy,

(ii) @p < Swg and >_I o k'dy(wo, Szo) <7 forall n 2
N [ fOg;

(iii) for a Picard sequence xn+1 = Sxn IN Ba,(xo0;r), such that x» x»+1forall n 2 N [ fOg

and xn! u 2 Bdq(xo;r) as n ! +1, then x,u for all n 2 N [ fOg.
Then Shasa xed point.

4.2.6 Example
Let X = Q*[fOg and let dq: X X! X be the complete left K-sequentially dislocated quasi
metric on X de ned by,

€T
do(z.y) ==
o(:Y) 2 +yfor all x;y

2 X: De ne the multivalued mapping S: X! CP(X) by

12 ... _
Sz = [E gi] if » € [0,1]
z,x+ 1] if z € (1, cx:):
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Considering, xo = 1,r = 4; then Bd,(xo;r) = [0,;1] \ X: Now, dq(x0; Sx0) = dq(1; S1) =

e

1
dg(1, =) = 1. Let ¥(t) =

(z,y) = i . 1ifx;y 2[0;1]
3

otherwise:

Now,
L 3 ‘
(52,S54)Hy,(S2,54) = (5)6 > h(dg(x,y))

So the contractive condition does not hold on the whole space: Clearly
(Sx;Sy)Hdq(Sx;Sy) (dq(x;y)) for all x;y 2 Baq(xo,7):

So the contractive condition holds on Ba,(x0,;r): Also,

1
Z’lﬂ'n(dq(wﬂ,wl)) = Z 3 < 4=r.
i=0

v

i=0
We prove that by Theorem 4.2.1 are satis ed: Moreover, Shasa  xed point%.
4.2.7 Theorem
Let (X;dq) be a complete left K-sequentially dislocated quasi metric space, r > 0; xo 2

Budq(x0;r) and S: X! CP(X) be a -admissible multifunction on Ba,(xo0;r). Assume that

fort € [0,3) such that

(Sx%;Sy)Haq(Sx;Sy) t(dq(x;5%) + dq(y;Sy)) for all x;y 2 Baq(x0;7) (4.4)

and dq(xo0;x1)) r r (4.5)

where =1 ¢ I {XS(0)} is a sequence in Ba(xo;r) and fXS(xo)g ! xand  (xmxmr1) 1
for xn;xn+1 2 £XS(x0)g; then (xn,x)  lor (xxn) 1foralln2N [f0g. Also, there

exist x1 2 Sxo, such that (xo;x1)  1,thenShasa xed point in Ba,(xo;r).
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Proof. As xo 2 Bdy(x0,7); and S : X! CP(X) be a multivalued mapping on X, then there

exist x1 2 Sxo, such that dq(xo; Sxo) = dq(xo0;x1): If xo = x1, then xo is a xed point in

Ba,(xo,;1) Of S. Let xo =6 x1: From (4.5), we get

dg(x0,x1) (1 Jr<r:

It follows that,
X1 2 Badq(x0;1):

Since (xo;x1) landSis -admissible multifunction on Bas(xo;r) and so  (Sxo;Sx1) 1.
Also, there exist x2 2 Sx1, such that dq(x1,; Sx1) = dq(x1,x2): If x1=x2, then x1is a xed

point of S in Bd,(xo,;7): Let x1 =6 x2: Now, we have

dq(X1,'X2) qu(SXO,'SX1) (SXO;SX1)qu(SX(),'SX1)
t(dq(x0;Sx0) + dg(x1,5%1))

= t(dq(x0;x1) + dg(x1,x2)):

Thus,
dq(x1,x2) dq(x0;x1):

Note that x2 2 Ba,(x0,r); Since
dq(x0;x2) dq(x0;x1) + dq(x1,x2)

dq(xo0;x1) + dg(xo0;x1)

(1+)(1 Jr<r:

As  (Sxo; Sx1) 1,x12 Sxoand x2 2 Sx1and so (x1,x2) 1: AsSis -
admissible
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multifunction on Ba,(xo;r): Thus, (Sx1; Sx2) 1: Let x2; ;xj 2 Bdq(xo;7) for some j 2 N,
such that xj+1 2 Sx;and dq(x;; Sx;) = dq(x;xj+1): AS (Sx1; Sx2) 1; we have (x2;x3) 1;
which further implies (Sx2; Sx3) 1: Continuing this process, we have

(Sxj1; Sx;) 1. Now,

dq(x;x5+1) Hdq(Sxj 1;5%j) (Sxj 1,5%) Hdq(Sxj 1,5%/)
t(dq(xj1,5xj1) + dq(x;;5%/))

(dq(xj1,x7)) ::/(dq(x0;x1))
Now,

dy(xo, x1) + dg(z1,22) + .. + dy(5, T 41)
dy(xo, x1) + 0dy (w0, 1) + .. + Oj(dq(.’l?o, x1))
_ pitl
(1— 9),.w <r.
dq(x0,xj+1) (L—10)
Thus, xj+1 2 Bdq(x0;7): AS (Sxj1,5x)) 1,x; 2 Sxj 1,xj+1 2 Sxj; we have (x;xj+1) 1: Also, S

is -admissible multifunction on Ba{xe:#)-therefore (Sx;; Sxj+1) 1: Hence,

by mathematical induction, x» 2 Ba,(x0;r) and (Sxn; Sxn+1) 1 for all n 2 N. Now,

dq(Xn;xn+1) n(dq(x0;x1)); for all n 2 N:

Now,

dg(Tn, Tpi1) + .. + dg(Tnyio1, Tnii)
On(l _ 01)
1-6

dq(Xn,'Xn+i)
dy(xg,z1) — 0 as n — oo

Thus, we proved that fx»g is a Cauchy sequence in (Bd,(x0;7);dq). As every closed ball
in a complete left K-sequentially dislocated quasi metric space is complete left K-

sequentially and

so there exists w” 2 Ba,(xo,;r), such that x»! w;* and
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lim dg(xn,w") = lim dg(w;x"
n) =0:m1 mq

Note that, fx,g is a fXS(x0)g in Baq(Xo,7): As (Sxn,; Sxn+1) 1foralln2 N [fOg;

we have (Xq+1,Xn+2) 1 for all n 2 N [ fOg: By assumption, we have (x,w*) n 2 N [ fOg: Thus, 1 forall

(Sxn; SW”) 1: Now,

dq(w;S™ wh) dg(W;x" ns1) + dg(Xne1,SWH)

dy(w;x”  ni1) + Hag(Sxn,SWH) dg(w;x" ne1) +
(SXn; SW)Hag(Sxn; SW) dg(W;xX™ ne1) +
t(dq(Xn;xns1) + dg(W;S™ WM)):
Letting n! 1, we obtain dq(w; S* w*) = 0: Similarly, if (w;x" ») 1 forall n 2 N [ fOg; we
|
obtain dq(Sw; w”) = 0: Hence, w” 2 Sw:” So S has a xed point in Ba,(xo;r).

4.2.8 Corollary

Let (X; ;dq) be an ordered complete left K-sequentially dislocated quasi metric space, S':

X1 CP(X). Suppose there exists” € [0 3) with

Hao(Sx;Sy) t(dq(x;Sx) + dq(y;Sy)) for all elements x;y in Ba,(x0;7) With x y

and
dq(x0;Sx0) (1 )r

Xn;Xn+1 2 fXS(XO)g,
then x x» or xnx for all n 2 N [ f0g. If x;y 2 Ba,(x0,;7r), such that x y implies

Sx rSy, then there exists a point w” in Ba,(xo,;7), such that w” 2 Sw:*

Let (X;d,) be a complete left K-sequentially dislocated quasi metric space, r > 0; xo 2

Baq(x0;7) and S: X! CP(X) be a -admissible multifunction on Bg(xo;r). Assume

CXVi



that for 2 , such that

(Sx:SY)Haq(Sx:Sy) (Mq(x;y)) for all x;y 2 Baqg(x0,7)

where

My(x;y) = maxfdq(x;y);dq(x;5%);dq(y;Sy) g

and

4.2.9 Theorem

n

S Wi (dy(wo. Swo)) < 7
i=0 forall n 2 N [ fOg:

If £XS(xo0)g is a sequence in Bd,(xo;r), such that fXS(xo)g ! x and (xn;xn+1) 1 fOr Xn;xn+1 2

fXS(xo)g;n 2 N [ fOg; then (x»;x) 1 or (x;xn) 1 for all n 2 N [ fOg. Also,

there exist x1 2 Sxo, such that (xo;x1)  1,then Shasa xed point in Bd,(xo;r).
Proof. As xo 2 Bdq(x0;7); and S : X! CP(X) be a multivalued mapping on X, then there
exist x1 2 Sxo, such that dq(xo; Sxo) = dq(xo0;x1): If xo=x1, then xo is a xed point in

Bay(xo0;r) of S. Let xo=6 x1: From (4.7), we get

n
dg(wo, 1) < Z'@')i(d(J(JII[),&')l)) <r.
i=0
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It follows that,

X1 2 Bay(xo;r):

Since (xo;x1) 1 and S is -admissible multifunction on Ba,(xo;r) and so (Sxo;Sx1) 1. Also,

there exist x2 2 Sx1, such that dq(x1,; Sx1) = dq(x1,x2): If X1 = x2, then x1is a xed
point of S in Ba,(xo,;7): Let x1=6 x2: Now,

dq(x1,x2) = dq(x1,5%1) Hdq(Sx0;5x1)
(Sx0;5x1) Hdy(Sx0,5x1)
(Mq(x0;x1)) by (4.6)
(maxfdq(xo;x1);dq(x0;5%0),;dq(x1,5x1)g)

(maxfdq(xo;x1);dq(x1,x2)g):

If maxfdq(xo;x1);dq(x1,x2) = dg(x1,x2); then dq(x1,x2) (dq(x1,x2)): Thisis a
contradiction to the fact that (t) <t for all t> 0: Hence, we obtain
maxfdq(xo;x1),;dq(x1; Sx1) = dq(x0,x1): Now,

dq(x1,x2) (dq(x0;x1)): (4.8)

Note that x2 2 Ba,(x0,r); because

dq(xo0;x2) dq(x0;x1) + dg(x1,x2)

dy(xo, x1) + 1 (dg(x0, 1)),

Z -'ui:i(ciq(zlrn, xy)) <
i=0 by (4.8)

As  (Sxo; Sx1) 1,x12 Sxoand x2 2 Sx1and so (x1,x2) 1: AsSis -
admissible
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multifunction on Ba,(xo;r). Thus, (Sx1; Sx2) 1: Let x2; ;xj 2 Ba,(xo;r) for some j 2 N,
such that xj+1 2 Sx;and dq(x;; Sxj) = dq(x;xj+1): AS (Sx1; Sx2) 1; we have (x2,x3) 1;

which further implies (Sxz; Sx3) 1: Continuing this process, we have

(Sxj1; Sx)) 1. Now, x; 2 Sx;j1,x+1 2 Sx;; we have

dq(xj;xj+1) = dq(xj;5%j) Hdo(SXj 1,5%))
(Sxj 1,5x7) Hdo(SXj 1,5%))
(Mq(x51,%)))

(maxfdq(xj 1,x);da(xj 1,5%1),da(X;;5x/)8)

(maxfdq(x;j 1,x));dq(X;;xj+1)):

If maxfdq(x;1,X7);dq(Xi;x+1) = dq(xj;xj+1); then dq(x;;xj+1) (dg(xj;xj+1)): This is a
contradiction to the fact that (t) <t for all t> 0: Hence, we obtain maxfdg(x;
1,X),dq(Xj;Xj+1)g = dq(Xj 1,%)):

dq(xj;xj+1) :2:7(dg(x0;x1)): 4.9

dq(x0;xj+1) dq(x0;x1) + 122 + dq(Xj;Xj+1)

dq(x0;x1) + 122 +J(dq(x0;x1))
j

= X i(dq(x0;x1)) r:

i=0

Thus, xj+1 2 Bdq(x0;7): AS (Sxj1,5x%;) 1,x; 2 Sxj 1,xj+1 2 Sxj; we have (x;xj+1) 1: Also, S

is -admissible multifunction on Ba.{xe;r),therefore (Sx;; Sxj+1) 1: Hence, by
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mathematical induction, x» 2 Ba,(xo,;r) and (Sxn; Sxn+1) 1 for all n 2 N. Now, the

inequality (4.9) can be written as

dq(xn;xn+1) "(dq(x0;x1)); for all n 2 N:

Fix ">0and let n(") 2 N, such that X "(dq(x0;x1)) <": Let n;m 2 N with m>n>k(");
then we obtain

m 1 m 1

Z dg(Th, Tpq1) < Z '.'.;f!"‘"'(dq(:;rro,;rl))

k=n k=n

Z ﬁbk(dq(xoaxl)) < .

dq(Xn,'Xm) n>k(e)

Thus, we proved that fx,g is a Cauchy sequence in (Bdq(X0;7);dg). As every closed ball
in a complete left K-sequentially dislocated quasi metric space is left K-sequentially

complete and

so there exists w” 2 Bd,(xo,;r), such that x» ! w;” and

lim dg(xn,w") = lim dg(w;x"
n) =0:m1 nq

Note that fxng is a fXS(xo0)g in Ba,(xo0;r): AS (Sxn;Sxn+1) 1 for all n 2 N[fOg; we have
(xn+1,xn+2) 1 for all n 2 N[fOg: By assumption, we have (x,;w”) 1 for all n 2 N[fOg:

Thus,  (Sx»; SW”) 1: Now,

dg(w;S* w™)  dg(w;x"n+1) + dg(Xn+1,SWH)
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dg(W;x" n+1) + Hao(Sxn;SW™) dg(w;x" n+1) +
(Sxn, SW™)Hdy(Sxn;SWH) dg(w;x™ n+1) +

(maxfdq(xn,w");dq(XnXn+1);dg(w;S™ w™)g):

Letting n! 1, we obtain dq(w; S* w*) = 0; which implies w” 2 Sw:* Similarly, if(w;x”

alln 2 N [ fOg: Thus, (Sw; Sx*n)  1: Now,

dq(Sw; N wh) (dg(w;x"n)) + dg(Xn+1,W"):

We obtain dq(Sw;” w”) = 0: Hence, w” 2 Sw:” So S has axed point in Ba,(xo;r). ®
4.2.10 Corollary

Let (X; ;dq) be a preordered complete left K-sequentially dislocated quasi metric space,
S:

X! CP(X). Suppose that there exists 2 ;xo 2 Bds(xo;r);r> 0 with

Hao(Sx;Sy) (maxfdq(x;y);dq(x;5x);dq(y;Sy)g), for all elements x;y in Bdg(xo;r) with x y

and
E V! (dg(wo, Szo)) <1
i—0 foralln 2 N [ fOg:

If £XS(xo0)g is a sequence in Bd,(xo;r), such that fXS(xo0)g ! x and xn xn+1 fOr xn;xn+1 2

fXS(x0)g; then x xnor xnx for all n 2 N [ fOg. Also, there exist x1 2 Sxo, such that

xox1. If x;y 2 Bas(x0;1), such that x y implies Sx Sy, then there exists a point w” in

Budq(x0,1), such that w™ 2 Sw:»

4.2.11 Corollary
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Let (X;dq) be a complete left K-sequentially dislocated quasi metric space and S: X! X,
r> 0 and xo be an arbitrary pointia-Baz(xo;r). Suppose there exists, : X X ! [0,+1)

bea  -admissible mapping on Bd,(xo;r). For 2 , assume that,
x;y 2 Baq(x0,1); (%) 1 =) dq(Sx;Sy) (maxfdq(x;y);dq(x;5%);dq(y;Sy)g)

and j {(dq(x0;Sx0)) rfor all j 2
N [ fOg:

i=0

Suppose that the following assertions hold:

(i) (xo; Sxo) 1;
(i) for a Picard sequence xn+1 = Sxnin Bdy(Xo,;7), such that (xn;xn+1) 1 for
alln2
N [ fOgand xn! u 2 Ba,(xo;r) as n! +1, then (xnu)  1foralln2N [ fOg.

then there exists a point w” in Bg,(xo;r), such that w” = Sw:”
4.2.12 Corollary

Let (X; ;dq) be a preordered complete left K-sequentially dislocated quasi metric space
and

let 2 ;x0 2 Baq(x0;r);r>0and S: X! X be a nondecreasing mapping on A. Suppose

that the following assertions hold:

(i)  dq(Sx; Sy) (maxfdq(x;y);dq(x; Sx);dq(y; Sy)g); for all elements x;y in Ba,(xo;r)

with x y;

(ii)  xoSxoand Pii=o {(dq(xo; Sx0)) r for all j 2 N [ fOg;

(iii) for a Picard sequence xn+1= Sxn N Bdy(x0;r), such that x» x»+1 for all n 2 N [ fOg
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and xn! u 2 Bdq(xo;r) as n ! +1, then x,u for all n 2 N [ fOg.
Then Shasa  xed point.

4.2.13 Example

X! X be the complete left K-sequentially dislocated quasi
Let X = Q*[fOg and let d;: X metric

on X de ned by,

€T
d H = =
o(Y) 2 +yfor all x;y

2 X: De ne the multivalued mapping S: X! CP(X) by

12 ... :
G [E E,L] if x € [0,1]
[z, x4+ 1] if € (1,00).

Considering, xo = 1,r = 4; then Ba,(xo;r) = [0;1] \ X: Now, dq(x0; Sxo0) = dq(1; S1) =

1
) =1. Let ¢(t) =

dg(1, =
o1

ol

and

8
() = i 1if x;y 2 [0/1]

otherwise:

B

Now,
(52,54)Hq,(S2,54) = (%)6 > 1p(max{dy(2,4),d,(2,52), dq(fl,sfl)})__

So the contractive condition does not hold on X: Clearly

(Sx;Sy)Hdq(Sx;Sy) (maxfdq(x;y);dq(x; Tx);dq(y; Ty)g) for all x;y 2 Bas(xo;7):

So the contractive condition holds on Ba,(xo,;r): Also,

i
1
Z’lﬂ'n(dq(wﬂ,wl)) = Z 3 < 4=r.
=0 i=0

Hence, all the conditions of Theorem 4.2.9 are satis ed: Moreover, Shasa  xed point%.
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4.3 Fixed Point Results for Multivalued Mappings in Hausdor/ Fuzzy
Metric Spaces

43.1 Theorem

Let (X;M; ) be a complete fuzzy metric space, where be a continuous t-norm, de ned

as a a aor aa=minfa;bg. Let (Ko(X);Hwm; ) is Hausdor/ fuzzy metric space on

Ko(X). Let xo2 Xand S: X! Ko(X) be a multivalued mapping. Assume that for some

k2 (0;1) and t> 0, we have

Hu(Sx;Sy;kt) M(x;y;t) for all x;y 2 Bu(xo,1;t) (4.10)

and
M(x0;5x0;(1 k)t)) 1r: (4.12)

Then Shasa  xed point in Bu(xo;r;t).

Proof. We know that xo 2 Bm(xo;r;t): We construct a sequence fxsg of points in X
as follow. Let x1 2 X be, such that x1 2 Sxoand M(xo; Sxo;t) = M(xo;x1,t): If x0 = x1,
then xo is a xed point of S. Let xo =6 x1: By Lemma 4.1.4, there exist x2 2 Sx1 satis es
M(x1; Sx1,;t) = M(x1,x2,;t) and

M(x1,x2;t) Hu(Sx0;5x1,t):

If x1=x2,thenxiisa  xed point of S: Let x1=6 x2: For x2 2 X be, such that x2 2 Sx1, then

by Lemma 4.1.4, there exist x3 2 Sxz satis es M(xz; Sxz;t) = M(x2;x3;t) and

M(x2,x3;t) Hu(Sx1,5x2,t):
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By induction, we have for x» 2 X;xn1~6 xn be, such that x» 2 Sx» 1, then by Lemma 4.1.4,

M(Xn;Xn+1,t) Hu(SXn 1,5%n,t):

First, we will show that x, 2 Bu(xo;r;t): By (4.11), we get

M(xoxi;t) >M(xoxi;(1 K)E) = M(xosSxo; (1 K)E)) 1 7
which shows that x1 2 Bu(xo;1;t): Now, let x2; ;X; 2 Bu(xo,1;t)
there exist xn+1 2 Sxn Satis es M(xn; Sxn;t) = M(xn;xn+1,t) and
M(xj;xj+1,t)
IL-\-[(SLL‘j 1, S:IZj, L) 2 ﬂ[(uLJ 1,5, %)
2 [A
IIﬂ[(SZL‘j 2y SIL‘_;,' 1, E) Z AI(:L‘J' 2y .L,, 1 ﬁ)
t
A](.’L‘O: Wiy R_J)
(4.13)
Now,
M(xoxp1t) > M(x0;x41,(1 kj+1)t)
M(xo;x1,;(1 k)t) M(x1,x2;(1 Kkt) = M(xpx.1(1 k)kt)
M(xo;x1;(1 k)t) M(xo,x1;(1 Kty = M(xoxy (1 k)t)
1rlr 21lr=1r

which implies that xj.1 2 Bm(xo;r;t): Now, (4.13) can be written as,

t
J"lf(lr-n;-f‘n,{ 11t} =M (IO’I]’ A_n)

Now, for each n;m 2 N;n>m; we have
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M(Xn,'Xm,'t) > M(Xn,'Xm,'(l km ") t)

1 -kt 1 — Bkt 1 — k) em—n—1y
> M(xo,z1, ( o ) ) * M (xp, 21, (;‘Tl)) w ..k M (o, xq, ( k)m—l
— k)t — k)t — k)t
= M(zo,z1, = ) )*ﬂf(;t'[),;t'la(l i ) )*..*J\I(wo,xl,(l e ) )

As, lim M(x;y;t) = 1 for all x;y 2 X: In particular
t

(1— k)t
k’n"l

M (zq, 21, )=1lasn— oo

By using (4.16) in (4.15), we get

M(Xn,'Xm,'t) =lasn!1:

Hence, fxng is a Cauchy sequence in Bu(xo,;r;t): As every closed ball of a complete
fuzzy -

metric space is complete. So Bu(xo;r;t) is complete. So there exists w” 2 Bu(xo;r;t),
such

that x»! w* as n! 1: Now,

Mw; SN with) M(w;x™ 0 (1 k)E) M(xn;SWikt™  ):

By Lemma 4.1.4, we have

Mw; S w;t™ ) Mwx™ (1 k)t) Hu(Sxn1,;Swikt™ )
M(w;x" (1 K)t) M(xny,with ). by (4.10)

Lettingn! 1, we have
MwS"w;t ) 1 1=1

which implies that w" 2 Sw:"m
43.2 Corollary

)

(4.16)

Let (X;M; ) be a complete fuzzy metric space, where  be a continuous t-norm, de ned as

CXXVi

> M(xp,xni1, (1= E)t) * M(xpi1, Tppo, (L= E)EE) .o % M (2 1, T, (1 — K)E™" l!,)

(4.15)



aaaoraa=minfa;bg. Letxo2 Xand S: X! X be a self mapping. Assume that for

some k 2 (0;1) and ¢t> 0, we have
M(Sx;Sy;kt) M(x;y;t) for all x;y 2 Bu(xo;1;t)

and
M(x0;Sx0;(1 k)t)) 1r:

Then Shasa  xed point in Bu(xo;r;t).
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