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Preface 

 Let T : X ! X be a mapping. A point x 2 X is called a xed point of T if x = Tx: 
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Let x0 be an arbitrarily chosen point in X: De ne a sequence fxng in X by a simple iterative 

method given by xn+1 = Txn; where n 2 f0;1;2;:::g: Such a sequence is called a Picard 

iterative sequence and its convergence plays an important role in proving existence of a xed 

point of a mapping T: A self mapping T on a metric space X is said to be a Banach contraction 

mapping if d(Tx;Ty) kd(x;y) holds for all x;y 2 X where 0 k< 1: The Banach xed 

point theorem is commonly known as Banach contraction principle, which states that if X is a 

complete metric space and T is a Banach contraction mapping on X, then T has a unique xed 

point in X. This theorem looks simple but plays a fundamental role in the eld of xed point 

theory and has become even more important because being based on iteration, it can easily be 

implemented on a computer. The Banach contraction principle implies that T is uniformly 

continuous on X. It is natural to ask if there is a contractive de nition which does not force T 

to be continuous. It was answered in a¢ rmative by Kannan [45], who established a xed point 

theorem for a self mapping T satisfying, d(Tx;Ty) k[d(x;Tx) + d(y;Ty)]; for all x;y 2 X; where 

: Chatterjea [26], proved a similar result for a self mapping satisfying, 

d(Tx;Ty) k[d(x;Ty) + d(y;Tx)] for all x;y 2 X where : It is important to note 

that these three theorems are independent of each other and have laid down the foundation of 

modern xed point theory for contractive type mappings. 

Fixed point results of mappings satisfying certain contractive condition on the entire domain 

have been at the centre of rigorous research activity, for example (see [10, 19, 20, 22, 27, 28, 29, 

38, 39, 59, 84, 75]) and they have a wide range of applications in di⁄erent areas such as nonlinear 

and adaptive control systems, parameterize estimation problems, computing magnetostatic 

elds in a nonlinear medium and convergence of recurrent networks. (see [53, 69, 82, 83]). 

Ran and Reurings [64] proved an analogue of Banach s xed point theorem in a metric space 

endowed with a partial order and gave applications to matrix equations. In this way, they 

weakened the usual contractive condition. Subsequently, Nieto et. al. [60] extended the results in 

[64] for nondecreasing mappings and applied it to obtain a unique solution for a 1st order 

ordinary di⁄erential equation with periodic boundary conditions. Samet and Vetro [71] 
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generalized the results in ordered metric spaces and introduced the concept of contractive type 

mappings and established xed point theorems for such mappings in complete 

metric spaces. 

On the other hand, the notion of a partial metric space was introduced by Matthews in [55]. 

In partial metric spaces, the distance of a point from itself may not be zero. Partial metric spaces 

have applications in theoretical computer science (see [42]). Altun et. al. [6], Samet et. al. [70] 

and Paesano et. al. [62] used the idea of partial metric space and partial order and gave some xed 

point theorems for contractive condition on ordered partial metric spaces. To generalize partial 

metric space, Hitzler et. al. [37] introduced the concept of a dislocated topologies and its 

corresponding generalized metric space named as dislocated metric space (metric-like space [8]) 

and have established a xed point theorem in complete dislocated metric spaces which generalizes 

the celebrated Banach contraction principle. The notion of dislocated topologies has useful 

applications in the context of logic programming semantics (see [36]). For further related results 

see ([1, 8, 44, 46, 47, 50, 54, 66, 72, 81]). Furthermore, dislocated quasi metric space (quasi-

metric-like space) (see [1, 23, 73, 84, 85]) generalized the idea of dislocated 

metric space and quasi-partial metric space(see [33, 48, 57, 74, 76]). 

A multivalued function is a set valued function. In the last thirty years, the theory of 

multivalued functions has advanced in a variety of ways. In 1969, the systematic study of Banach 

type xed theorems of multivalued mappings had been started with the work of Nadler [57], who 

proved that a multivalued contractive mapping of a complete metric space X into the family of 

closed bounded subsets of X has a xed point. His ndings were followed by many authors (see [17, 

18]). Asl et al. [14] generalized the notion of ( ) contractive mapping by introducing the concepts 

of ( ) contractive multifunctions and obtained some xed point 

results for these multivalued contractive mapping (see also [5, 40, 41]). 

This thesis deals with the xed point results of locally, globally, single and multivalued 

contractive mappings in ordered spaces. This dissertation consists of four chapters. Each 

chapter begins with a brief introduction which acts as a summery of the material there in. 

Chapter 1, is a survey, aimed at clarifying the terminology to be used and recalls basic 

de nitions and facts. 
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Chapter 2, is devoted to study the existence of coincidence and common xed points of 

mappings satisfying generalized contractive conditions. Some xed point results have been 

established in the frame work of partial metric space. Moreover, we initiate the concept of an 

ordered 0-complete left/right K-sequentially quasi-partial metric space and prove some 

results 

for dominated mappings in these spaces. 

Chapter 3, deals with an ordered complete left K-sequentially as well as right K-sequentially 

dislocated quasi metric spaces. Moreover, we introduce the concept of -dominated mapping. 

Some coincidence and common xed point results have been established for -dominated map- 

pings in left/right K-sequentially dislocated quasi metric spaces. 

Chapter 4, deals with the multivalued contractive mappings. We establish xed point 

results for -admissible multivalued mappings satisfying generalized - -contractive conditions 

in complete left K-sequentially dislocated quasi metric space. A theorem on xed point of mul- 

tivalued locally contractive mappings in a fuzzy metric space is also established. 

I would like to express my sincere gratitude to my supervisor Dr. Muhammad Arshad. 

Without his sincere pieces of advice and valuable guidance this thesis could never have become a 

reality. The department of Mathematics remained encouraging and supportive during my Ph.D. 

studies for which I am grateful. Finally, I thank my family for their a⁄ection and 

support throughout my research. 

Abdullah Shoaib 

July, 2015 

Pakistan. 
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Preliminaries 

The aim of this chapter is to present some basic concepts and to explain the terminology used 

throughout this dissertation. Some previously known results are given without proof. Section 1.1, 

is devoted to the introductory material on the notions of partial and quasi-partial metric spaces. 

Section 1.2, is concerned with the introduction of dislocated and dislocated quasi metric spaces 

which are the natural generalizations of metric spaces. Section 1.3, deals with the concepts of 

fuzzy metric and hausdor⁄ fuzzy metric spaces. Section 1.4, introduces some other basic relevant 

concepts. 

1.1 Partial and Quasi-partial Metric Spaces 

1.1.1 De nition [48] 

A quasi-partial metric is a function, q : X X ! R+ satisfying: 

(i) if 0 q(x;x) = q(x;y) = q(y;y); then x = y (equality), 

(ii) q(x;x) q(y;x) (small self-distances), 

(iii) q(x;x) q(x;y) (small self-distances), 

(iv) q(x;z) + q(y;y) q(x;y) + q(y;z) (triangle inequality), for all x;y;z 2 X: Then the 

pair (X;q) is called a quasi-partial metric space. 

Note that, if q(x;y) = q(y;x) for all x;y 2 X; then (X;q) becomes a partial metric space (X;p). 

Moreover if q(x;x) = 0; for all x 2 X; then (X;q) and (X;p) become a quasi metric 

space and a metric space respectively. Also,  where x;y 2 X is a 

partial metric on X. The function dpq : X X ! R+ de ned by dpq(x;y) = q(x;y) + q(y;x) 

 

q(x;x) q(y;y) is a (usual) metric on X: The ball Bq(x;&); where Bq(x;&) = fy 2 X : q(x;y) 

 

& + q(x;x)g and Bp(x;&) = fy 2 X : p(x;y) & + p(x;x)g are closed balls in a quasi-partial metric 

space and a partial metric space respectively, for some x 2 X and &> 0: 
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1.1.2 Examples 

Let X = [0;1), then 

(i) [55] p(x;y) = maxfx;yg for all x;y 2 X; de nes a partial metric p on X. 

(ii) q(x;y) = maxfy x;0g + x for all x;y 2 X; de nes a quasi-partial metric q on X. 

1.1.3 De nition [55] 

Let (X;p) be a partial metric space, then 

(i) A sequence fxng in (X;p) converges to a point x 2 X if and only if limn!1p(x;xn) 

= 

p(x;x). 

(ii) A sequence fxng in (X;p) is called a Cauchy sequence if the limn;m!1p(xn;xm) 

exists (and is nite). (iii) [68] A sequence fxng in (X;p) is called 0-Cauchy if lim 

p(xn;xm) = 0. n;m!1 

The space (X;p) is called 0-complete if every 0-Cauchy sequence in X converges to a point x 

2 X, such that p(x;x) = 0. If (X;p) is a partial metric space, then ps(x;y) = 2p(x;y) p(x;x) p(y;y), x;y 

2 X, is a metric on X: 

1.1.4 Lemma [55] 

Let (X;p) be a partial metric space, then 

(i) fxng is a Cauchy sequence in (X;p) if and only if it is a Cauchy sequence in the 

metric space (X;ps). 

(ii) (X;p) is complete if and only if the metric space (X;ps) is complete. 

(iii) [68] Every 0-Cauchy sequence in (X;p) is Cauchy in (X;ps). 

(iv) [68]If (X;p) is complete, then it is 0-complete. 

(v) [59] Every closed subset of a 0-complete partial metric space is 0-complete. 
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Romaguera [68] has given an example which proves that converse assertions of (iii) and (iv) 

do not hold. 

1.1.5 De nition [48] 

Let (X;q) be a quasi-partial metric, then (i) A sequence fxng in (X;q) converges to a point x 2 
X; if and only if lim q(x;xn) = n!1 

lim q(xn;x) = q(x;x). 
n!1 (ii) A sequence fxng in (X;q) is called a Cauchy sequence, if the lim q(xn;xm) and n;m!1 

lim q(xm;xn) exists, (and are nite). 
n;m!1 

(iii) The space (X;q) is said to be complete, if every Cauchy sequence fxng in (X;q) con- 

verges to a point x 2 X, such that . 

1.1.6 Lemma [48] 

Let (X;q) be a quasi-partial metric space, let (X;pq) be the corresponding partial metric space, 

then these statements are equivalent. (i) The sequence fxng is Cauchy in (X;q). (ii) The 

sequence fxng is Cauchy in (X;pq). (iii) The sequence fxng is Cauchy in (X;dpq). These 

statements are also equivalent. (i) (X;q) is complete. (ii) (X;pq) is complete. (iii) (X;dpq) is 

complete. 

1.1.7 De nition [76] 

Let X be a nonempty set, then (X; ;q) is called an ordered quasi-partial metric space if: 

 (i) q is a quasi-partial metric on X and (ii) is a partial order on X. 

1.2 Dislocated and Dislocated Quasi Metric Spaces 

1.2.1 De nition [84] 

Let X be a nonempty set and let dq : X X ! [0;1) be a function, called a dislocated quasi 
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metric (or simply dq-metric) if the following conditions hold for any x;y;z 2 X : (i) 

If dq(x;y) = dq(y;x) = 0; then x = y; 

(ii) dq(x;y) dq(x;z) + dq(z;y): 
The pair (X;dq) is called a dislocated quasi metric space. It is clear that if dq(x;y) = 

dq(y;x) = 0, then from (i), x = y. But if x = y; then dq(x;y) or dq(y;x) may not be 0: It is 

observed that if dq(x;y) = dq(y;x) for all x;y 2 X; then (X;dq) becomes a dislocated metric 

space (X;dl). Moreover, if dq(x;x) = 0 for all x 2 X; then (X;dq) and (X;dl) become 

 

a quasi metric space (X;q) and a metric space (X;d) respectively. The ball Bdq(x;&); where 

 

Bdq(x;&) = fy 2 X : dq(x;y) &g; is a closed ball in dislocated quasi metric space, for some x 2 X and 

&> 0: Recently, Sarm and Kumari [72] proved results that establish existence of a topology 

induced by a dislocated metric and that this topology is metrizable. This topology has as a base 

the family of sets fB(x;&) [ fxg : x 2 X;&> 0g, where B(x;&) is an open ball 

 

and B(x;&) = fy 2 X : dl(x;y) <&g for some x 2 X and &> 0. Also, Bdq(x;&) = fy 2 X : 

dl(x;y) &g is a closed ball. 

Also, Harandi [8] de ned the concept of metric like space which is similar to dislocated 

metric space. Each metric-like on X generates a topology on X whose base is the family 

of open -balls 

 B (x;&) = fy 2 X : j (x;y) (x;x)j <&g: 

1.2.2 Examples 

Let X = Q+ [ f0g; then 

(i) 
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 dl(x;y) = <  1 x =6 y 

de nes a dislocated metric dl on X. : 

(ii) dq(x;y) = x + 2y de nes a dislocated quasi metric dq on X. 

(iii) dq(x;y) = x + maxfx;yg de nes a dislocated quasi metric dq on X. 

1.2.3 De nition [84] 

Let (X;dq) be a dislocated quasi metric space. 

(i) A sequence fxng in (X;dq) is called Cauchy if 8 &> 0, 9 n0 2 N, such that 8 m;n n0; 

dq(xm;xn) <& or dq(xn;xm) <&: (ii) A sequence fxng dislocated quasi-converges (for short dq -

converges) to x if lim dq(xn;x) = n!1 lim dq(x;xn) = 0: In this case x is called a dq-limit of fxng: 

n!1 

(iii) A dislocated quasi metric (X;dq) is called complete if every Cauchy Sequence in it is 

dq -convergent. 

1.3 Fuzzy Metric and Hausdor⁄Fuzzy Metric Spaces 

1.3.1 De nition [32] 

A binary operation : [0;1] [0;1] ! [0;1] is a continuous t-norm if ([0;1]; ) is a topological 

monoid with unit 1, such that 

a b c d whenever a c and b d (a;b;c;d 2 [0;1]). 

1.3.2 De nition [31] 

The 3-tuple (X;M; ) is said to be a fuzzy metric space if X an arbitrary set, is a continuous 
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t-norm and M is a fuzzy set on X2 (0;1) satisfying the following conditions: 

(i) M(x;y;t) > 0; 

(ii) M(x;y;t) = 1 if and only if x = y; 

(iii) M(x;y;t) = M(y;x;t); 

(iv) M(x;y;t) M(y;z; S) M(x;z;t + s); 

(v) M(x;y;:) : (0;1) ! [0;1] is continuous x;y;z 2 X and t; S> 0: 

1.3.3 Remark [31] 

M(x;y;t) can be thought of as the degree of nearness between x and y with respect to t: We 

identify x = y with M(x;y;t) = 1 for t> 0 and M(x;y;t) = 0 when t = 1: In this context 

we modify the above de nition in order to introduce a Hausdor⁄ topology on the fuzzy metric 

space. 

1.3.4 Lemma [32] 

M(x;y;:) is nondecreasing for all x;y in X. 

1.3.5 De nition [32] 

Let (X;M; ) be a fuzzy metric space. (i) A sequence fxig in X is said to converge to point x 2 X 
if lim M(xi;x;t) = 1, for all i!1 

t> 0: (ii) A sequence fxig in X is said to be Cauchy sequence in X if lim M(xi;xi+j;t) = 1, for i!1 

all t> 0;j> 0: 

(iii) A fuzzy metric space in which every Cauchy sequence is convergent is called complete. 

George and Veeramani [31] proved that every fuzzy metric (M; ) on X generates a topology 

M on X which has as a base the family of sets of the form fBM(x0;r;t) : x 2 X; 0 <r< 1; t> 0g; 

where BM(x0;r;t) = fy 2 X : M(x;y;t) > 1 rg: 

For a given fuzzy metric space (X;M; ), we shall denote K0(X); the set of non empty compact 

subsets of (X; M), where (X; M) is a metrizable topological space, generated by fuzzy metric space 

(X;M; ): 
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1.3.6 De nition [67] 

Let B be non empty subset of a fuzzy metric space (X;M; ) for a 2 X and t > 0; then M(a;B;t) = 

supfM(a;b;t) : b 2 Bg: 

1.3.7 Lemma [67] 

Let (X;M; ) be a fuzzy metric space, then for each a 2 X;B 2 K0(X) and t> 0; there is b0 2 B, 

such that M(a;B;t) = M(a;b0;t): 

1.3.8 Lemma [67] 

Let (X;M; ) be a fuzzy metric space, then for each a 2 X;B 2 K0(X) the function t ! 

M(a;B;t) is continuous on (0;1): 
1.3.9 Lemma [67] 

Let (X;M; ) be a fuzzy metric space, then for each A 2 K0(X) and for any non empty subset B of 

X and t> 0; then there exists a0 2 A, such that inf M(a;B;t) = M(a0;B;t): 

a2A 

1.3.10 De nition [67] 

Let (X;M; ) be a fuzzy metric space. We de ne a function HM on K0(X) K0(X) (0;1) 

by HM(A;B;t) = minfinf M(a;B;t); inf M(A;b;t)g; 

 a2A b2B 

for all A;B 2 K0(X) and t> 0: 

1.3.11 Lemma [67] 

Let (X;M; ) be a fuzzy metric space, then for each a 2 X;B;C 2 K0(X) and t; S> 0, then 
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M(a;C;t + s) M(a;B;t) M(ba;C;S); 

where ba 2 B satis es M(a;B;t) = M(a;ba;t): 

1.3.12 Theorem [67] 

Let (X;M; ) be a fuzzy metric space, then (K0(X);HM; ) is a fuzzy metric space, known as 

Hausdor⁄ fuzzy metric space on K0(X): 

1.4 Some Basic Concepts 

1.4.1 De nition [84] 

Let X be a non empty set and T;f : X ! X. A point u 2 X is said to be common xed point of the 

pair (T;f) if Tu = fu = u: A point y 2 X is called point of coincidence of T and f; if there exists 

a point x 2 X, such that y = Tx = fx, here x is called coincidence point of T and f. The 

mappings T;f are said to be weakly compatible if they commute at their coincidence point 

(i.e. Tfx = fTx whenever Tx = fx): 

1.4.2 Lemma [22] 

Let X be a non empty set and f : X ! X be a function, then there exists E X, such that fE = fX and f 

: E ! X is one to one. 

1.4.3 Lemma [10] 

Let X be a non empty set and the mappings S;T;f : X ! X have a unique point of coincidence v in 

X; If (S;f) and (T;f) are weakly compatible, then S;T;f have a unique common xed 

point. 

 Let denote the family of all non-decreasing functions : [0;+1) ! [0;+1), such that 
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 for all t> 0; where n is the nth iterate of : 

1.4.4 Lemma [69] 

If 2 ; then (t) <t for all t> 0: 

1.4.5 De nition 

Let S : X ! X and : X X ! [0;+1) be two functions and A X. We say that S is 

-admissible mapping on A; if x;y 2 A, such that (x;y) 1, then we have (Sx; Sy) 1. 

1.4.6 De nition 

Let (X;d) be metric space. The ball B(x;&); where B(x;&) = fy 2 X : d(x;y) &g is a closed ball in 

metric space, for some x 2 X and &> 0. 

1.4.7 Theorem [52] 

 

Let X be a non empty set and B(x0;r) be a closed subset of X. Let S : X ! X be a a 

mapping satisfying: 

d(Sx;Sy) kd(x;y): 

 

for all x;y 2 B(x0;r); where 0 k< 1, then S has a unique xed point in B(x0;r). 

1.4.8 De nition [52] 

Let (X; ) be a partial ordered set, then x;y 2 X are called comparable if x y or y x 

holds. 

1.4.9 De nition [3] 

Let (X; ) be a partially ordered set. A self mapping f on X is called dominated if fx x for each x 

in X: 
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1.4.10 Example [3] 

Let X = [0;1] be endowed with the usual ordering and f : X ! X be de ned by fx = xn for some n 2 

N: Since fx = xn x for all x 2 X; therefore f is a dominated map. 

1.4.11 De nition 

Let (X; ) be a preordered set and T : X ! X: If A X;x;y 2 A; with x y implies Tx Ty, then the 

mapping T is said to be non-decreasing on A. 

1.4.12 De nition [57] 

Let (X;d) be a metric space. For A;B 2 CB(X) and &> 0; the sets N(&;A) and EA;B are 

de ned as follows: 

N(&;A) = fx 2 X : d(x;A) <&g; 

EA;B = f& : A N(&;B);B N(&;A)g; 

where d(x;A) = inffd(x;y) : y 2 Ag. The distance function H on CB(X) induced by d is 

de ned as 

H(A;B) = inf EA;B; 

which is known as Hausdor⁄ metric on X: 
1.4.13 Lemma [17] 

Let (X;d) be a metric space. If A;B 2 CB(X); then for each y 2 A, d(y;B) H(A;B): 

1.4.14 De nition [57] 

A mapping T : X ! CB(X) is said to be multivalued contraction if there exists a constant 

; 0 < 1, such that for all x;y 2 X; 
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H(Tx;Ty) d(x;y): 

Nadler [57] generalized Banach contraction principle and proved the following important 

xed point result for multivalued contractions. 

1.4.15 Theorem [57] 

Let (X;d) be a complete metric space, T : X ! CB(X) is a multivalued contraction, then 

T has a xed point.
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Chapter 2 

Fixed Point of Contractive Mapping in an 

Ordered Partial and 

Quasi-Partial Metric Spaces 

2.1 Introduction 
The de nitions given in this section have been published in [76, 79]. 

Recently, many results related to the xed point in complete metric spaces endowed with a 

partial ordering appeared in the literature. Indeed, they all deal with a monotone mapping (either 

order-preserving or order-reversing mapping) and such that for some x0 2 X, either x0 fx0 or fx0 x0, 

where f is a self-map on metric space. To obtain unique solution they used an additional 

restriction that each pair of element has a lower bound and an upper bound. In this chapter, we 

introduce a new condition of partial order instead of monotone mapping and restriction for 

uniqueness. We take dominated mapping to approximate the unique solution to non linear 

functional equations. We will exploit this concept for self, two, three and four, locally and 

globally, contractive mappings on an ordered complete space X to generalize/improve and extend 

several classical xed point results. Also, we will not nd common xed points for three or four 

mappings in a standard way. Instead of usual technique, we will nd common xed points for three 

or four mappings via common xed point for two mappings. 

Our results will not only extend some classical theorems to ordered spaces but also restrict 

the contractive conditions in a closed ball only. Our analysis is based on the simple observation 
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that xed point results can be deduced from xed point theory of mappings on closed balls. 

Practically speaking there are many situations in which the mappings are not contractive on the 

whole space but instead they are contractive on its subsets. However, by imposing a subtle 

restriction, one can establish the existence of a xed point of such mappings. We feel that this 

aspect of nding the xed points via closed balls was overlooked and our work will bring a lot of 

interest into this area. Furthermore, the concept of dominated mappings and weaker conditions in 

the process of investigating the existence of unique xed point of locally and 

globally contractive conditions in the settings of ordered metric spaces is applied in this 

chapter. 

Recently, Karap‹nar et. al. [48] introduced the concept of quasi-partial metric space (see also 

[33, 48, 57, 74, 76]) and generalized the idea of partial metric space (see [2, 6, 15, 55, 62, 70]). 

Romaguera [68] has given the idea of 0-complete partial metric space. Nashine et. al. [59] used 

this concept and proved some classical results. Reilly et al. [65] introduced the notion of left 

(right) K-Cauchy sequence and complete left (right) K-sequentially spaces (see also [21, 30]). 

In this chapter, we introduce a new concept of an ordered 0-complete left/right K-

sequentially quasi-partial metric space. Some better and interesting results are explored. Our 

results improve several well-known conventional results. Section 2.2 deals with an ordered 0-

complete left/right K-sequentially quasi-partial metric space and the existence of xed points of 

self mappings satisfying contractive conditions of Banach, Kannan, Chatterjea and Reich type. 

In section 2.3, coincidence and common xed point results of mappings satisfying contractive 

conditions of Hardy Roger type in an ordered 0-complete partial metric space are discussed. 

Consistent with [76, 79], the following de nitions and results will be needed in the sequel. 

2.1.1 De nition [76] 

Let (X;q) be a quasi-partial metric space. (i) A sequence fxng in (X;q) is called 0-Cauchy if

 lim q(xn;xm) = lim q(xm;xn) = 0: n;m!1 n;m!1 

(ii) The space (X;q) is called 0-complete if every 0-Cauchy sequence in X converges to a 

point x 2 X, such that q(x;x) = 0. 
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It is easy to see that every 0-Cauchy sequence in (X;q) is Cauchy in (X;dpq) and if (X;q) is 

complete, then it is 0-complete but the converse assertions do not hold. For example, the 

space X = [0;+1) \ Q with q(x;y) = jx yj + jxj is a 0-complete quasi-partial metric space but it 

is not complete (since dpq(x;y) = 2jx yj and (X;dpq) is not complete). 

2.1.2 De nition [79] 

Let (X;q) be a quasi-partial metric space. (i) A sequence fxng in (X;q) is called left (right) K-0-

Cauchy if 8 n>m; lim q(xm;xn) = n;m!1 

0 (respectively lim q(xn;xm) = 0): n;m!1 

(ii) The space (X;q) is called 0-complete left(right) K-sequentially if every left (right) K0-

Cauchy sequence in X converges to a point x 2 X, such that q(x;x) = 0. 

One can easily observe that every 0-complete quasi-partial metric space is also a 0-

complete left K-sequentially quasi-partial metric space but the converse does not hold always. 

Also, every closed subset of a 0-complete left K-sequentially quasi-partial metric space is a 

0-complete left K-sequentially quasi-partial metric space. 

2.2 Fixed Points of Reich, Banach, Kannan and Chatterjea Type Mappings 

in an Ordered 0-Complete Left K-Sequentially Quasi-Partial Metric 

Spaces 

The results given in this section have been published in [13, 76, 79]. 

2.2.1 Theorem [79] 

Let (X; ;q) be an ordered 0-complete left K-sequentially quasi-partial metric space, S be a self 

dominated mapping on X and x0 2 X. Suppose that for a;b 2 [0;1), such that a + 2b< 1 
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and 

 q(Sx;Sy) aq(x;y) + b[q(x;Sx) + q(y;Sy)]; (2.1) 

 

for all comparable elements x;y in Bq(x0;r): Also, 

 q(x0;Sx0) (1 k)[r + q(x0;x0)]; (2.2) 

where . If for a nonincreasing sequence fxng in Bq(x0;r); fxng ! implies 

that xn, then there exists a point w^ in Bq(x0;r), such that dq(w;^ w^) = 0 and w^ = Sw:^ 

Moreover, w^ 

 

is unique, if for any x;y 2 Bq(x0;r); the set Ax;y = fz 2 Bq(x0;r) : z x and z yg is non 

empty and 

 q(x0;Sx0) + q(z;Sz) q(x0;z) + q(Sx0;Sz); for all z Sx0: (2.3) 

Proof. Consider a Picard sequence, xn+1 = Sxn with initial guess x0. As xn+1 = Sxn xn for all n 

2 f0g [ N: By the inequality (2.2), we have 

 q(x0;x1) (1 k)[r + q(x0;x0)] 

r + q(x0;x0): 

 

Therefore, x1 belongs to the closed ball: Now, let xi 2 Bq(x0;r) for some i = 1;2;::;j 2 N. As xn+1 

xn; so by using the inequality (2.1), we obtain 

 q(xj;xj+1) = q(Sxj 1;Sxj) 

a[q(xj 1;xj))] + b[q(xj 1;xj) + q(xj;xj+1)]; 

 q(xj;xj+1) kq(xj 1;xj); 

which implies that 
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 q(xj;xj+1) k2q(xj 2;xj 1) kjq(x0;x1): (2.4) 

Now, 

q(x0;xj+1) 

q(x0;xj+1) 

 

Thus, xj+1 2 Bq(x0;r). Hence, xn 2 Bq(x0;r) for all n 2 N. Also, xn+1 xn for all n 2 N: It 
implies that 

It follows that 

q(xn;xn+1) knq(x0;x1) for all n 2 N:  

q(xn;xn+i) q(xn;xn+1) + + q(xn+i 1;xn+i) q(xn+1;xn+1) q(xn+i 1;xn+i 1) 

q(xn;xn+i) knq(x0;x1)[1 + + ki 2 + ki 1] ! 0 as n ! 1:  

 

Notice that, the sequence fxng is a left K-0-Cauchy sequence in (Bq(x0;r);q): As, Bq(x0;r) is 

closed and so it is 0-complete left K-sequentially quasi-partial metric space. Therefore, there 

 

exists a point w^ 2 Bq(x0;r) with 

q(w;^ w^) = lim q(xn;w^) = lim q(w;x^ n) = 0: (2.5) n!1 n!1 

Now, 

 q(w;S^ w^) q(w;x^ n) + q(Sxn 1;Sw^) q(xn;xn): 

On taking limit as n ! 1 and using the fact that w^ xn xn 1; when xn ! w;^ we have 

q(w;S^ w^) lim [q(w;x^ n) + aq(xn 1;w^) + bfq(xn 1;Sxn 1) + q(w;S^ 
w^)g] n!1 lim [q(w;x^ n) + aq(xn 1;w^) + bfkn 1q(x0;x1) 
+ q(w;S^ w^)g]: 
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n!1 

Then by the inequality (2.5), we have 

 (1 b)q(w;S^ w^) 0: 

Similarly, we have 

 q(Sw;^ w^) 0: 

 

Hence, w^ = Sw^. Now, we will prove that w^ is the unique xed point of S in Bq(x0;r). Let y 

 

be another point in Bq(x0;r), such that y = Sy. Then, we have 

 

will prove that Snz 2 Bq(x0;r): By assumptions z w^ xn:: x0 and hence, we have 

q(Sx0;Sz) aq(x0;z) + b[q(x0;x1) + q(z;Sz)]   

 aq(x0;z) + b[q(x0;z) + q(x1;Sz)]; by (2.3)  

 q(y;y) = q(Sy;Sy) aq(y;y) + bfq(y;Sy) + q(y;Sy)g;  

(1 a 2b)q(y;y) 

and hence, we have 

0;   

Now, if w^ y. Then, we have 

 q(y;y) = 0: (2.6) 

 q(w;y^ ) = 

q(Sw;Sy^ ) aq(w;y^ ) + b[q(w;S^ 

w^) + q(y;Sy)]; 

 

 (1 a)q(w;y^ ) 
 

0. (by (2.5) and (2.6)) 
 

Similarly, q(y;w^) 0: This proves that w^ is the only xed point in Bq(x0;r). Now, it is possible 

that w^ y and y w;^ then there exists a point z 2 X, such that z w^ and z y: Now, we 
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q(x1;Sz) 

Now, we have 

kq(x0;z):  (2.7) 

q(x0;Sz) 

q(x0;x1) + q(x1;Sz) q(x1;x1) q(x0;x1) + 

kq(x0;z); by (2.7) 

  

q(x0;Sz) (1 k)[r + q(x0;x0)] + k[r + q(x0;x0)] = r: 
 

 

 

which implies that  

q(Snz;Sn+1z) kq(Sn 1z;Snz) 
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 : (2.9) 

Now, we have 

 q(w;y^ ) = q(Sw;Sy^ ) 

 q(Sw;S^ n+1z) + q(Sn+1z;Sy) q(Sn+1z;Sn+1z): 

As, Sn 1z w^ and Sn 1z y; Snw^ = w^ and Sny = y for all n 2 N: It implies that Sn 1z Snw^ and Sn 

1z Sny; for all n 2 N, then 

 q(w;y^ ) aq(w;S^ nz) + bfq(w;S^ w^) + 
q(Snz;Sn+1z)g 

+aq(Snz;y) + bfq(Snz;Sn+1z) + q(y;Sy)g: 

On taking limit as n ! 1; and by using the inequalities (2.6) and (2.9), we have 

 q(w;y^ )  

It follows that Sz 2 Bq(x0;r): Let S2z;::; Sjz 2 Bq(x0;r) for some j 2 N: As Sjz 

:: z w^ xn:: x0; then 

 q(x1;Sj+1z) = aq(x0;Sjz) + b[q(x0;x1) + q(Sjz;Sj+1z)] 

aq(x0;Sjz) + b[q(x0;Sjz) + q(x1;Sj+1z)]; (by 2.3) 

which implies that 

Sj 1z 

 q(x1;Sj+1z) kq(x0;Sjz) k[r + q(x0;x0)] (as Sjz 2 Bq(x0;r)). 

Now, we have 

 q(x0;Sj+1z) q(x0;x1) + q(x1;Sj+1z) 

(1 k)[r + q(x0;x0)] + k[r + q(x0;x0)] = r 

 (2.8) 

It follows that Sj+1z 2 Bq(x0;r); and hence, Snz 2 Bq(x0;r): As, Snz Sn 1z 

so 

:: z and 
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 lim [a2q(w;S^ n 1z) + a2q(Sn 1z;y)] 
n!1 

... 

 lim [anq(w;Sz^ ) + anq(Sz;y)] ! 0: 
n!1 

Similarly, q(y;w^) 0: Hence, w^ = y.  

2.2.2 Example [79] 

Let X = [0;+1)\Q be endowed with order, x y if q(x;x) q(y;y) and let q : X X ! R+ 

be an ordered 0-complete left K-sequentially quasi-partial metric on X de ned by q(x;y) = 

maxfy x;0g + x: De ne 

 

Clearly, S is dominated mapping. Take,  then 

Bq(x0;r) = 

[0;1] \ Q; we have  with 

 

and 

: 

Also, if x;y 2 (1;1) \ Q; then 

: 

Now, if x = y; then 

 

Now, if x>y; then 
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Now, if x<y; then 

 

So the contractive condition does not hold on the whole space in each case: 

 

Now, if x;y 2 Bq(x0;r) \ Q; then 

 

Also, 

q(x0;Sx0) + q(z;Sz) q(x0;z) + q(Sx0;Sz) for all z Sx0: 

Hence, all the conditions of Theorem 2.2.1 are satis ed. Moreover, 0 is equal to S(0) and 

q(0;0) = 0: 

In Theorem 2.2.1, the condition for a nonincreasing sequence fxng ! implies that xn ; the 

existence of lower bound and the condition (2.3) are imposed to restrict the condition (2.1) 

only for comparable elements: However, the following result relax these restrictions but 

 

impose the condition (2.1) for all elements in Bq(x0;r): 
2.2.3 Theorem [79] 

Let (X;q) be a 0-complete left K-sequentially quasi-partial metric space, S : X ! X be a self 

map and x0 2 X. Suppose that for a;b 2 [0;1), such that a + 2b< 1 with 

q(Sx;Sy) aq(x;y) + b[q(x;Sx) + q(y;Sy)]; 

 

for all elements x;y in Bq(x0;r) and 

 q(x0;Sx0) (1 k)[r + q(x0;x0)]; 
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where , then there exists a unique xed point w^ in Bq(x0;r), such that w^ = Sw^ and 

q(w;^ w^) = 0: 

In Theorem 2.2.1, the condition (2.2) and (2.3) are imposed to restrict the condition (2.1) 

 

only for x;y in Bq(x0;r) and Example 2.2.2 explains the utility of these restrictions. However, the 

following result relax the condition (2.2) and (2.3) but impose the condition (2.1) for all 

comparable elements in the whole space X. 

2.2.4 Theorem [79] 

Let (X; ;q) be an ordered 0-complete left K-sequentially quasi-partial metric space, S be a self 

dominated mapping on X and x0 2 X. Suppose that for a;b 2 [0;1), such that a + 2b< 1 

with 

q(Sx;Sy) aq(x;y) + b[q(x;Sx) + q(y;Sy)]; 

for all comparable elements x;y in X: 

if for a nonincreasing sequence fxngin X; fxng ! implies that xn, then there exists a point w^ in X, 

such that w^ = Sw^ and q(w;^ w^) = 0: Moreover, w^ is unique, if for any x;y 2 X; 

the set Ax;y = fz 2 X : z x and z yg is non empty: 

In Theorem 2.2.1, the conditions (2.3) is imposed to obtain unique xed point of a 

contractive mapping satisfying conditions (2.1). However, the following result relax restriction 

(2.3) but impose the condition (2.1) for b = 0: Also, we can replace an ordered 0-complete left 

Ksequentially quasi-partial metric space by an ordered 0-complete quasi-partial metric space to 

obtain Theorem 10 of [76] as a corollary of Theorem 2.2.1. 

2.2.5 Corollary [76] 

Let (X; ;q) be an ordered 0-complete quasi-partial metric space, S be a self dominated map- 

ping on X and x0 2 X. Suppose that there exists a 2 [0;1), such that 
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q(Sx;Sy) aq(x;y) 

 

for all comparable elements x;y in Bq(x0;r) and 

 q(x0;Sx0) (1 a)[r + q(x0;x0)]: 

 

if for a nonincreasing sequence fxng in Bq(x0;r); fxng ! implies that xn, then there exists a point 

w^ in Bq(x0;r), such that dq(w;^ w^) = 0 and w^ = Sw:^ Also, w^ is unique, if for any 

 

x;y 2 Bq(x0;r); the set Ax;y = fz 2 Bq(x0;r) : z x and z yg is non empty: 

2.2.6 Corollary [76] 

Let (X; ;q) be an ordered 0-complete quasi-partial metric space, S be a self dominated map- 

ping on X and x0 2 X. Suppose there exists k 2 [0;1) with 

q(Sx;Sy) kq(x;y); for all comparable elements x;y in X: 

If for a nonincreasing sequence fxngin X; fxng ! implies that xn, then there exists a point w^ in 

X, such that w^ = Sw^ and q(w;^ w^) = 0: Moreover, w^ is unique, if for any x;y 2 X; 

the set Ax;y = fz 2 X : z x and z yg is non empty: 
2.2.7 Corollary [76] 

Let (X;q) be a 0-complete quasi-partial metric space, S : X ! X be a map and x0 2 X. 

Suppose there exists k 2 [0;1) with 

 

q(Sx;Sy) kq(x;y); for all elements x;y in Bq(x0;r) 

and 

 q(x0;Sx0) (1 k)[r + q(x0;x0)] 
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then there exists a unique point w^ in Bq(x0;r), such that w^ = Sw:^ Further q(w;^ w^) = 0: 

2.2.8 Remark 

By taking a = 0 and an ordered 0-complete quasi-partial metric space instead of an ordered 0-

complete left K-sequentially quasi-partial metric space in Theorem 2.2.1 and in Theorem 

2.2.4, we can obtain Theorem 15 and Theorem 17 of [76]. 

2.2.9 Corollary [76] 

Let (X; ;q) be an ordered 0-complete quasi-partial metric space, S be a self dominated map- 

ping on X and x0 2 X. Suppose that there exists , such that 

q(Sx;Sy) b[q(x;Sx) + q(y;Sy)] 

 

for all comparable elements x;y in Bq(x0;r) and 

 q(x0;Sx0) (1 k)[r + q(x0;x0)]; 

where : If for a nonincreasing sequence fxng in Bq(x0;r); fxng !

 implies that xn, then there exists a point w^ in Bq(x0;r), such that dq(w;^ w^) = 0 and w^ = 

Sw:^ Moreover, w^ 

 

is unique, if for any x;y 2 Bq(x0;r); the set Ax;y = fz 2 Bq(x0;r) : z x and z yg is non 

empty and 

q(x0;Sx0) + q(z;Sz) q(x0;z) + q(Sx0;Sz) for all z Sx0: 

2.2.10 Corollary [76] 

Let (X; ;q) be an ordered 0-complete quasi-partial metric space, S : X ! X be a dominated 

map. Suppose that there exists , such that 
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q(Sx;Sy) b[q(x;Sx) + q(y;Sy)] 

for all comparable elements x;y in X: If for a nonincreasing sequence fxng in X; fxng ! implies 

that xn, then there exists a point w^ in X, such that w^ = Sw^ and q(w;^ w^) = 0: Moreover, 

w^ is unique, if for any x;y 2 X; the set Ax;y = fz 2 X : z x and z yg is non 

empty: 

2.2.11 Corollary [13] 

Let (X; ;p) be a complete ordered partial metric space, S be a self dominated mapping on X 

and x0 2 X. Suppose there exists  with 

p(Sx;Sy) k[p(x;Sx) + p(y;Sy)]; 

 

for all comparable elements x;y in Bp(x0;r) and 

 p(x0;Sx0) (1 )[r + p(x0;x0)]; 

where : If for a nonincreasing sequence in Bp(x0;r); fxng ! implies that xn, 

then there exists a point w^ in Bp(x0;r), such that dp(w;^ w^) = 0 and w^ = Sw:^ Also, if for 

any 

 

x;y 2 Bp(x0;r); the set Ax;y = fz 2 Bp(x0;r) : z x and z yg is non empty and 

p(x0;Sx0) + p(z;Sz) p(x0;z) + p(Sx0;Sz); 

then w^ is unique. 

2.2.12 Example [13] 
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Let X = R+ [ f0g and Bp(x0;r) = [0;1] be endowed with the usual ordering and let p be the 

complete partial metric on X de ned by p(x;y) = maxfx;yg for all x;y 2 X: Let S : X ! X be de 

ned by 

: 
Clearly, Sx x for all x 2 X that is,is dominating map. For all comparable elements with 

 

: 

 

Also, 

If  

 

So the contractive condition does not hold on (1;1): For the closed ball [0;1]; the four cases 

arrises: 

 we have 
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(ii) For  we have 

 

(iii) When  we have 

 

(iv) And if  we obtain 

 

Hence, all conditions of the above theorem are satis ed and 0 is the unique xed point of S: 
2.2.13 Theorem [76] 

Let (X; ;q) be an ordered 0-complete quasi-partial metric space, S be a self dominated map- 

ping on X and x0 2 X. Suppose that there exists , such that 

 c  

where k = . If for a nonincreasing sequence fxng in Bq(x0;r); fxng ! implies that 

1 c 

q(Sx;Sy) c[q(x;Sy) + q(Sx;y)] 

for all comparable elements x;y in Bq(x0;r) and 

(2.10) 

 q(x0;Sx0) (1 c)[r + q(x0;x0)]; (2.11) 
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xn, then there exists a point w^ in Bq(x0;r), such that w^ = Sw:^ Further q(w;^ w^) = 0: 

Proof. Consider a Picard sequence xn+1 = Sxn with initial guess x0. As xn+1 = Sxn xn for all n 2 

f0g [ N: By using the inequality (2.11), we have 

q(x0;x1) r + q(x0;x0): 

 

Therefore, x1 2 Bq(x0;r): Now, let x2; ;xj 2 Bq(x0;r) for some j 2 N. As xn+1 xn; so by using the 

inequality (2.10), we obtain 

q(xj;xj+1) 

which implies that 

c[q(xj 1;xj) + q(xj;xj+1) cq(xj 

1;xj); 

q(xj;xj) + q(xj;xj)] 

 q(xj;xj+1) c2q(xj 2;xj 1) cjq(x0;x1): 

Now, 

q(x0;xj+1) 

q(x0;xj+1) 

 

Thus, xj+1 2 Bq(x0;r): Hence, xn 2 Bq(x0;r) for all n 2 N. Also, xn+1 xn for all n 2 N: It 

implies that 

q(xn;xn+1) cnq(x0;x1) for all n 2 N: 

It follows that   

q(xn;xn+i) q(xn;xn+1) + + q(xn+i 1;xn+i) 

q(xn;xn+i) cnq(x0;x1)[1 + + ci 2 + ci 1] ! 0 as n ! 1: 

 

Notice that the sequence fxng is a 0-Cauchy sequence in (Bq(x0;r);q): As Bq(x0;r) is closed 
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and so is 0-complete Therefore there exists a point w^ 2 Bq(x0;r) with 

q(w;^ w^) = lim q(xn;w^) = lim q(w;x^ n) = 0: (2.12) n!1 n!1 

Now, 

 q(w;S^ w^) q(w;x^ n) + q(Sxn 1;Sw^) q(xn;xn): 

On taking limit as n ! 1 and using the fact that w^ xn xn 1; when xn ! w;^ we have 

 q(w;S^ w^) lim [q(w;x^n) + cfq(xn 1;Sw^) + q(xn;w^)g] 
n!1 

lim [cfq(xn 1;w^) + q(w;S^ w^) q(w;^ w^) + q(xn;w^)g] 
n!1 

(1 

Similarly, 

c)q(w;S^ w^) 0: (by 2.12) 

 q(Sw;^ w^) 0: 

Hence, w^ = Sw^.  

2.2.14 Remark [79] 

(i) The above results can easily be proved in an ordered 0-complete right K-sequentially 

quasipartial metric space. (ii) We can obtain the quasi-metric and metric version of all 

theorems which are still not present in the literature. 

2.3 Common Fixed Points of a Pair of Hardy Rogers Type Mappings in a 

Closed Ball in Ordered Partial Metric Spaces 

The results given in this section have been published in [12, 77]. 

2.3.1 Theorem [77] 
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Let (X; ;p) be an ordered 0-complete partial metric space, x0 2 X, r> 0 and S;T : X ! X be two 

dominated mappings. Suppose that for a;b 2 [0;1);c 2 [0;1), such that a + 2b + 2c< 1 

and 

 p(Sx;Ty) ap(x;y) + b[p(x;Sx) + p(y;Ty)] + c[p(y;Sx) + p(x;Ty)]; (2.13) 

 

for all comparable elements x;y in Bp(x0;r) and 

 p(x0;Sx0) (1 )[r + p(x0;x0)]; (2.14) 

where , then there exists a point w^ in Bp(x0;r), such that dp(w;^ w^) = 0: If for a 

 

nonincreasing sequence fxng in Bp(x0;r); fxng ! implies that xn, then w^ = Sw^ = Tw:^ 

Proof. Choose a point x1 in X, such that x1 = Sx0: As Sx0 x0 and so x1 x0: Let x2 = Tx1. Now, 

Tx1 x1 gives x2 x1, Continuing this process and having chosen xn in X, such that 

x2k+1 = Sx2k and x2k+2 = Tx2k+1; where k = 0;1;2;:::: 

0;1;2;::: j 21: So using the inequality x2k+1 = Sx2k x2k; where k = 
(2.13), we obtain 

By using the inequality (2.14), we have 

p(x0;x1) r + p(x0;x0): 

 

Therefore, x1 2 Bp(x0;r): Let x2;::;xj 2 Bp(x0;r) for some j 2 N. 
If j = 2k + 1, then 
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 p(x2k+2;x2k+3) p(x0;x1): (2.16) 

Thus, from the inequality (2.15) and (2.16), we have 

 p(xj;xj+1) jp(x0;x1) for some j 2 N: (2.17) 

Now, 

 p(x0;xj+1) p(x0;x1) + :: + p(xj;xj+1) [p(x1;x1) + :: + p(xj;xj)] 

 p(x0;xj+1) (1 

 

Thus, xj+1 2 Bp(x0;r). Hence, xn 2 Bp(x0;r) for all n 2 N. Also, xn+1 xn for all n 2 N: It 
implies that   

p(xn;xn+1) 
n 

p(x0;x1) for all n 2 N: (2.18) 

So, we have 

p(xn+i;xn) 

 p(x2k+1;x2k+2) = p(Sx2k;Tx2k+1) 

a[p(x2k;x2k+1)] + b[p(x2k;Sx2k) + p(x2k+1;Tx2k+1)] + 

c[p(x2k;Tx2k+1) + p(x2k+1;Sx2k)] a[p(x2k;x2k+1)] + 

b[p(x2k;x2k+1) + p(x2k+1;x2k+2)] + c[p(x2k;x2k+1) + 

p(x2k+1;x2k+2)]; 

which implies that 

 

p(x2k+1;x2k+2) p(x2k;x2k+1) :: 2k+1p(x0;x1): (2.15) 

If j = 2k + 2, then as x1;x2...;xj 2 Bp(x0;r) and x2k+2 x2k+1, (k = 0;1;2;:::; j 22); we obtain 

2k+2 
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: 

 

Hence, the sequence fxng is a 0-Cauchy sequence in (Bp(x0;r);p): As Bp(x0;r) is closed and 

so is 0-complete partial metric space. Therefore, there exists a point w^ 2 Bp(x0;r) with 

 p(w;^ w^) = lim p(xn;w^) = 0: (2.19) 
n!1 

Now, 

 p(w;S^ w^) p(w;x^ 2n+2) + p(x2n+2;Sw^) p(x2n+2;x2n+2): 

On taking limit as n ! 1 and by assumptions w^ xn as xn ! w;^ therefore, we have 

 p(w;S^ w^) lim [p(w;x^ 2n+2) + ap(x2n+1;w^) + bfp(x2n+1;Tx2n+1) 
n!1 

+p(w;S^ w^)g + cfp(x2n+1;Sw^) + p(w;Tx^

 2n+1)g] lim [p(w;x^ 2n+2) + ap(x2n+1;w^) + 

bfp(x2n+1;x2n+2) 

n!1 

+p(w;S^ w^)g + cfp(x2n+1;w^) + p(w;S^ w^) + p(w;x^ 

2n+2)g]: By using the inequality (2.18) and (2.19), we obtain 

 (1 b c)p(w;S^ w^) 0; 

which implies that w^ = Sw^. Similarly, from 

 p(w;T^ w^) p(w;x^ 2n+1) + p(x2n+1;Tw^) p(x2n+1;x2n+1); 
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we can obtain w^ = Tw:^ Hence, S and T have a common xed point in Bp(x0;r). 

2.3.2 Example [77] 

Let X = [0;+1)\Q be endowed with order, x y if p(x;x) p(y;y) and let p : X X ! R+ 

be an ordered 0-complete partial metric on X de ned by p(x;y) = maxfx;yg: De ne 

  and  

Clearly, S and T are dominated mappings. Take,  then 

Bp(x0;r) = [0;1] \ Q: We have  with 

 

and 

: 

Also, if x;y 2 (1;1) \ Q; then 

: 

So the contractive condition does not hold on the whole space: 

Bp(x0;r); then  Now, if x;y 2 

: 



45 

Hence, all the conditions of Theorem 2.3.1 are satis ed. Moreover, 0 is equal to S(0) = T(0) 

and p(0;0) = 0: 

If we take a = b = 0 in Theorem 2.3.1, then we obtain the following theorem. 

2.3.3 Theorem 

Let (X; ;p) be an ordered 0-complete partial metric space, x0 2 X, r> 0 and S;T : X ! X 

be two dominated mappings. Suppose that there exists , such that 

p(Sx;Ty) c[p(y;Sx) + p(x;Ty)]; 

 

for all comparable elements x;y in Bp(x0;r) and 

 p(x0;Sx0) (1 )[r + p(x0;x0)]; 

where , then there exists a point w^ in Bp(x0;r), such that dp(w;^ w^) = 0: If for a 

 

nonincreasing sequence fxng in Bp(x0;r); fxng ! implies that xn, then w^ = Sw^ = Tw:^ 

2.3.4 Example 

Let X = [0;+1) \ Q and p : X2 X2 ! R+ be an ordered 0-complete partial metric on X2 de ned by 

p((x1;y1);(x2;y2)) = maxfx1;y1;x2;y2g. Let X2 be endowed with order, (x1;y1) (x2;y2) if 

p((x1;y1);(x1;y1)) p((x2;y2);(x2;y2)): Let S;T : X2 ! X2 be de ned by 

 

and 
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: 

Clearly, S and T are dominated mappings. Let  then 

 

Bp((x0;y0);r) = f(x;y) 2 X2 : x;y 2 [0;1]g 

with  

 

: 

Putting x1 = y1 = x2 = y2 = 3; we obtain 

 

: 

So the contractive condition does not hold on the whole space: Now, if (x1;y1);(x2;y2) 2 

 

Bp((x0;y0);r); then 

 

Hence, all the conditions of Theorem 2.3.3 are satis ed. Moreover, (0;0) is the common xed 

point of S and T: 

2.3.5 Theorem [77] 

Let (X; ;p) be an ordered 0-complete partial metric space, x0 2 X, r> 0 and S : X ! X be 
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two dominated mapping. Suppose that for a;b;c 2 [0;1) 2 [0;1), such that a+2b+2c< 1 and 

p(Sx;Sy) ap(x;y) + b[p(x;Sx) + p(y;Sy)] + c[p(y;Sx) + p(x;Sy)]; 

 

for all comparable elements x;y in Bp(x0;r) and 

 p(x0;Sx0) (1 )[r + p(x0;x0)]; 

where , then there exists a point w^ in Bp(x0;r), such that dp(w;^ w^) = 0: If for a 

 

nonincreasing sequence fxng in Bp(x0;r); fxng ! implies that xn, then w^ = Sw:^ 

 

 Proof. In Theorem 2.3.1 take T = S to get xed point w^ 2 Bp(x0;r), such that w^ = Sw:^ 

 

In Theorem 2.3.1,the condition for a nonincreasing sequence fxng ! implies that xn ; is 

imposed to restrict the condition (2.13) only for comparable elements: However, the 

 

following result relax this restriction but impose the condition (2.13) for all elements in 

Bp(x0;r): In Theorem 2.3.1, the common xed point of S and T may not be unique, whereas 

without order we can obtain unique xed point of S and T separately, which is proved in the 

following 

theorem. 

2.3.6 Theorem [77] 

Let (X;p) be a 0-complete partial metric space, x0 2 X, r > 0 and S;T : X ! X be two 

dominated mappings. Suppose that for a;b;c 2 [0;1) 2 [0;1), such that a + 2b + 2c< 1 and 

p(Sx;Ty) ap(x;y) + b[p(x;Sx) + p(y;Ty)] + c[p(y;Sx) + p(x;Ty)]; 
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for all elements x;y in Bp(x0;r) and 

 p(x0;Sx0) (1 )[r + p(x0;x0)]; 

where , then there exists a unique point w^ in Bp(x0;r), such that w^ = 
Sw^ = Tw^ 

and p(w;^ w^) = 0: Moreover;S and T have noxed point other than w:^ 

Proof. By following similar arguments of Theorem 2.3.1, we can obtain a point w^ in 

 

Bp(x0;r), such that w^ = Sw^ = Tw:^ Let y = Ty, then y is the xed point of T and it may not 

be the xed point of S, then 

 p(w;y^ ) = p(Sw;Ty^ ) 

ap(w;y^ ) + b[p(w;^ w^) + p(y;y) + c[p(w;y^ ) + 

p(y;w^)] (a + b + 2c)p(w;y^ ): 

This shows that w^ = y: Hence, T has no xed point other than w:^ Similarly, S has no xed 

point other than w:^  

In Theorem 2.3.1, the condition (2.14) is imposed to restrict the condition (2.13) only for x;y 

 

in Bp(x0;r) and Example 2.3.2 explains the utility of this restriction. However, the following 

result relax the condition (2.14) but impose the condition (2.13) for all comparable elements 

in the whole space X. Moreover, we introduce a weaker restriction to obtain unique common 

xed point. 

2.3.7 Theorem [77] 

Let (X; ;p) be an ordered 0-complete partial metric space, x0 2 X and S;T : X ! X be 

two dominated mappings. Suppose that there exists there exists a;b;c 2 [0;1), such that 

a + 2b + 2c< 1 and 

p(Sx;Ty) ap(x;y) + b[p(x;Sx) + p(y;Ty)] + c[p(y;Sx) + p(x;Ty)]; 
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for all comparable elements x;y in X: If for a nonincreasing sequence fxng in X; fxng ! implies 

that xn, then there exists a point w^ in X, such that w^ = Sw^ = Tw^ and p(w;^ w^) = 0: 

Moreover, the point w^ is unique if for any two points x;y in X there exists a point z0 2 X, 

such that z0 w^ and z0 y. 

Proof. By following similar arguments of Theorem 2.3.1, we can obtain a point w^ in X, such 

that w^ = Sw^ = Tw:^ By Theorem 2.3.4, w^ is unique common xed point for all comparable 

elements. Now, if w^ and y are not comparable, such that y = Sy = Ty, then there exists a 

point z0 2 X, such that z0 w^ and z0 y: Choose a point z1 in X, such that z1 = Tz0: As Tz0 z0 and 

so z1 z0 and let z2 = Sz1. Now, Sz1 z1 gives z2 z1, continuing this process and having chosen zn 

in X, such that 

z2i+1 = Tz2i; z2i+2 = Sz2i+1 and z2i+1 = Tz2i z2i where i = 0;1;2;:::: 

It follows that zn+1 zn :: z0 w:^ Following similar arguments as we have used to prove the 

inequality (2.18), we have 

  p(zn;zn+1) np(z0;z1) for all n 2 N: (2.20) 

As z0 
w^ and z0 y; it follows that zn Tw^ and zn Ty for all n 2 N, then for i 2 N; 

 p(Tw;Sz^ 2i 1) ap(w;z^ 2i 1) + b[p(w;T^ w^) + p(z2i 1;Sz2i 1)] 

+c[p(w;Sz^ 2i 1) + p(z2i 1;Tw^)]; (1 

c)p(w;Sz^ 2i 1) (a + c)p(w;z^ 2i 1) + bp(z2i 1;z2i); p(w;Sz^ 2i 1) 

p(w;z^ 2i 1) + p(z2i 1;z2i); 

 (where  and  

 p(w;Sz^2i 1) 2p(w;z^ 2i 2) + p(z2i 2;z2i 1) + p(z2i 1;z2i) 

... 

 2i 2i 1 
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 p(w;z^0) + p(z0;z1) + 

+p(z2i 2;z2i 1) + p(z2i 1;z2i): 

On taking limit as i ! 1 and by the inequality (2.20), we have 

 p(w;Sz^ 2i 1) = 0: (2.21) 

Similarly, 

 p(Sz2i 1;y) ! 0 as n ! 1: (2.22) 

Now, by using the inequality (2.21) and (2.22), we have 

 p(w;y^) p(w;Sz^ 2i 1) + p(Sz2i 1;y) p(Sz2i 1;Sz2i 1) ! 0 as n ! 1: 

so w^ = y:  

2.3.8 Remark [77] 

In Theorem 2.3.1, the common xed point of S and T may not be unique. However, xed point is 

unique in Theorem 2.3.1, if for every pair of elements x;y in Bp(x0;r) there exists a point 

 

z0 2 Bp(x0;r), such that z0 x and z0 y and the sequence zn 2 Bp(x0;r), such that 

z2i+1 = Tz2i; z2i+2 = Sz2i+1, where i = 0;1;2;:::: 

Metric version of Theorem 2.3.1 is given below. 

2.3.9 Theorem [77] 

Let (X; ;d) be a ordered complete metric space, x0 2 X, r> 0 and S;T : X ! X be two 

dominated mappings. Suppose that for a;b;c 2 [0;1) 2 [0;1), such that a + 2b + 2c< 1 and 
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d(Sx;Ty) ad(x;y) + b[d(x;Sx) + d(y;Ty)] + c[d(y;Sx) + d(x;Ty)]; 

 

for all comparable elements x;y in B(x0;r) and 

 d(x0;Sx0) (1 )r; 

where . If for a nonincreasing sequence fxng in B(x0;r); fxng ! implies that 

 

xn, then there exists a point w^ in B(x0;r), such that w^ = Sw^ = Tw:^ 

 Now, we apply our Theorem 2.3.7 to obtain unique common xed point of three mappings 

in an ordered 0-complete partial metric space. 

2.3.10 Theorem [77] 

Let (X; ;p) be a ordered partial metric space and S;T self mapping and f be a dominated 

mapping on X, such that SX [ TX fX with Tx; Sx fx: Assume that the following 

conditions holds for a;b;c 2 [0;1), such that a + 2b + 2c< 1: 

 p(Sx;Ty) ap(fx;fy) + b[p(fx;Sx) + p(fy;Ty)] 

 +c[p(fy;Sx) + p(fx;Ty)]; (2.23) 

for all comparable elements fx;fy 2 fX: 

If for a nonincreasing sequence fxng in fX; fxng ! implies that xn. Also, for any two points z and 

x in fX there exists a point y 2 fX, such that y z;y x: If the subset fX is 

complete and (T;f); (S;f) satis es the condition of weakly compatible pair of functions, then 

there exists fz 2 fX, such that S(fz) = T(fz) = f(fz) = fz. Moreover p(fz;fz) = 0: 

Proof. By Lemma 1.4.2, there exists E X, such that fE = fX and f : E ! X is one-toone. Now, 

since SX [ TX fX; we de ne two mappings g;h : fE ! fE by g(fx) = Sx and 
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h(fx) = Tx respectively. Since f is one-to-one on E, then g;h are well-de ned. As Sx fx implies 

that g(fx) fx and Tx fx implies that h(fx) fx therefore g and h are dominated maps. Let y0 = fx0; 

choose a point y1 in fX, such that y1 = h(y0): As h(y0) y0; so y1 y0 and let y2 = g(y1). Now, 

g(y1) y1 gives y2 y1. Continuing this process and having chosen 

yn in fX, such that 

y2i+1 = h(y2i) and y2i+2 = g(y2i+1); where i = 0;1;2;::; 

then yn+1 yn for all n 2 N. Note that for fx;fy 2 fX, where fx and fy are comparable and a;b;c 2 
[0;1), such that a + 2b + 2c< 1, then by using the inequality (2.23), we have 

 p(g(fx);h(fy)) ap(fx;fy) + b[p(fx;g(fx)) + p(fy;h(fy))] 

+c[p(fy;g(fx)) + p(fx;h(fy))]: 

As fX is a 0-complete space and so that all the conditions of Theorem 2.3.7 are satis ed, we 

deduce that there exists a unique common xed point fz 2 fX of g and h: Also, p(fz;fz) = 0: The 

rest of the proof is similar to the proof given in Theorem 4 [12] (see also [22]) and so we 

write it, as it is in inverted commas. 

"Now, fz = g(fz) = h(fz) or fz = Sz = Tz = fz. Thus, fz is the point of coincidence of S;T and f. 

Let v 2 fX be another point of coincidence of f;S and T, then there exists u 2 fX, such that v = fu = 

Su = Tu; which implies that fu = g(fu) = h(fu): A contradiction, as, fz 2 fX is a unique common 

xed point of g and h: Hence, v = fz: Thus, S;T and f have a 

unique point of coincidence fz 2 fX. Now, since (S;f) and (T;f) are weakly compatible, by 

Lemma 1.4.3 fz is a unique common xed point of S;T and f:"  

2.3.11 Example 

Let X = [0;4] and x y if x y be the order and let p : X X ! R+ be the complete 
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ordered partial metric on X de ned by p(x;y) = maxfx;yg: De ne  and 

: Clearly, S and T are self mapping and f be a dominated mapping on X, such that 

SX [ TX fX with Tx; Sx fx: Take, : Also, if x;y 2 X; then 

 
Hence, all the conditions of Theorem 2.3.10 are satis ed. Moreover, 0 is equal to S(0) = T(0) = 

f(0). Also, p(0;0) = 0: 

One cannot proof the above theorem for mappings satisfying locally contractive conditions in 

a closed ball in an ordered 0-complete partial metric space in a similar way by using Theorem 

2.3.1. In order to prove unique common xed point of three mappings satisfying locally 

contractive conditions in a closed ball in an ordered 0-complete partial metric space, rst we 

should prove that S and T have a unique common xed point, in Theorem 2.3.1. Common 

xed point result of three mappings in a closed ball in 0-complete partial metric space is given 

below which can be proved with the help of Theorem 2.3.6 in a similar way to that of the 

above 

theorem. 

2.3.12 Theorem [77] 

Let (X;p) be a partial metric space and S;T and f be self mappings on X, such that SX[TX 

fX. Assume that the following conditions holds: 

 p(Sx;Ty) ap(fx;fy) + b[p(fx;Sx) + p(fy;Ty)] 

+c[p(fy;Sx) + p(fx;Ty)]; 
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for all elements fx;fy 2 Bp(fx0;r); where a;b;c 2 [0;1), such that a + 2b + 2c< 1 and 

 p(fx0;Tx0) (1 )[r + p(fx0;fx0)]; 

for r > 0 and : If the subset fX is complete and (T;f); (S;f) satis es the 

 

condition of weakly compatible pair of functions, then there exists fz 2 Bp(fx0;r), such that 

S(fz) = T(fz) = f(fz) = fz. Moreover, p(fz;fz) = 0: 

In the following theorem we use Theorem 2.3.6 to establish a new way of nding the 

existence of a unique common xed point of four mappings on closed ball in 0-complete partial 

metric 

space. 

2.3.13 Theorem [77] 

Let (X;p) be a partial metric space and S;T;g and f be self mappings on X, such that SX; TX fX = 

gX: Assume that the following condition holds: 

 p(Sx;Ty) ap(fx;gy) + b[p(fx;Sx) + p(gy;Ty)] 

 +c[p(gy;Sx) + p(fx;Ty)]; (2.24) 

 

for all elements fx;fy 2 Bp(fx0;r) fX; with a;b;c 2 [0;1), such that a + 2b + 2c< 1 and 

 p(fx0;Sx0) (1 )[r + p(fx0;fx0)]; (2.25) 

for r > 0 and : If the subset fX is 0-complete and (T;g); (S;f) satis es the 

 

condition of weakly compatible pair of functions, then there exists fz 2 Bp(fx0;r), such that 

S(fz) = T(fz) = f(fz) = g(fz) = fz. Moreover, p(fz;fz) = 0: 
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Proof. By Lemma 1.4.2, there exists E1;E2 X, such that fE1 = fX = gX = gE2; f : E1 ! X; g : E2 ! 

X are one to one. Now, de ne the mappings A;B : fE1 ! fE1 by 

A(fx) = Sx and B(gx) = Tx respectively. Since f;g are one to one on E1; and E2 respectively, 

 

then the mappings A;B are well-de ned. As fx0 2 Bp(fx0;r) fX; then fx0 2 fX: Let y0 = fx0; choose 

a point y1 in fX, such that y1 = A(y0) and let y2 = B(y1). Continuing this process and having 

chosen yn in fX, such that 

y2i+1 = A(y2i) and y2i+2 = B(y2i+1); where i = 0;1;2;::: 

 

Following similar arguments of Theorem 2.3.1, yn 2 Bp(fx0;r): Also, by the inequality (2.25), 

we have 

 p(fx0;A(fx0)) (1 )[r + p(fx0;fx0)]: 

 

By using the inequality (2.24), for fx;gy 2 Bp(fx0;r) and a + 2b + 2c< 1 we have 

 p(A(fx);B(gy)) ap(fx;gy) + b[p(fx;A(fx)) + p(gy;B(gy))] 

+c[p(gy;A(fx)) + p(fx;B(gy))]: 

As fX is a 0-complete space, all the conditions of Theorem 2.3.6 are satis ed, we deduce that 

 

there exists a unique common xed point fz 2 Bp(fx0;r) of and B: Further and B have no xed 

point other than fz: Also, p(fz;fz) = 0: The rest of the proof is similar to the proof 

given in Theorem 2.8 [11] (see also [22]) and so we write it, as it is in inverted commas. 

"Now, fz = A(fz) = B(fz) or fz = Sz = fz: Thus, fz is a point of coincidence of f and S: 

 

Let w 2 Bp(fx0;r) be another point of coincidence of S and f, then there exists u 2 Bp(fx0;r), 

such that is w = fu = Su; which implies that fu = A(fu): A contradiction as fz 2 Bp(fx0;r) is a 

unique xed point of A: Hence, w = fz: Thus, S and f have a unique point of coincidence 
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fz 2 Bp(fx0;r). Since (S;f) are weakly compatible, by Lemma 1.4.3 fz is a unique common 

xed point of S and f. As fX = gX, then there exists v 2 X, such that fz = gv: Now, as A(fz) = 

B(fz) = fz implies that A(gv) = B(gv) = gv ) Tv = gv: Thus, gv is the point of coincidence of T 

and g. Now, if Tx = gx; then we have B(gx) = gx; a contradiction. This implies that gv = gx: 

As (T;g) are weakly compatible, we obtain that gv is the unique common 

xed point for T and g: But gv = fz: Thus, S;T;g and f have a unique common xed point 

fz 2 Bp(fx0;r)." 

One cannot prove the above theorem for an ordered 0-complete partial metric space in a 

similar way by using Theorem 2.3.7. In order to prove unique common xed point of four 

mappings in an ordered 0-complete partial metric space, rst we should prove that S and T have no 

xed point other than w^ in Theorem 2.3.7. Coincidence point results of three and four 

mappings can be obtained as a corollaries of Theorem 2.3.10 and Theorem 2.3.13. 

In the following result, we obtain common xed for a pair of Kannan type contractive 

dominated mapping in a closed ball. Here, we also prove the uniqueness of the xed point with 

the weaker conditions. One cannot prove the uniqueness of the xed point in Theorem 2.3.1 

with these weaker conditions. 

2.3.14 Theorem [12] 

Let (X; ;p) be a complete ordered partial metric space, x0;x;y 2 X, r> 0 and S;T : X ! X be two 

dominated mappings. Suppose that there exists , such that following conditions hold: 

 

p(Sx;Ty) 

and 

t[p(x;Sx) + p(y;Ty)]; for all (x;y) in (Bp(x0;r) Bp(x0;r)) \ r; (2.26) 
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  p(x0;Sx0) (1 )[r + p(x0;x0)];  (2.27) 

where r = f(x;y) 2 X X j x and y are comparableg and , then there exists a point 

w^, such that dp(w;^ w^) = 0: Also, if for a nonincreasing sequence fxng in Bp(x0;r); fxng ! 

implies that xn, then w^ = Sw^ = Tw:^ Moreover, w^ is unique, if for any x;y 2 Bp(x0;r); the 

 

set Ax;y = fz0 2 Bp(x0;r) : z0 x and z0 yg is non empty and 

 p(x0;Sx0) + p(z;Tz) p(x0;z) + p(Sx0;Tz) (2.28) 

 

for all z 2 Bp(x0;r), such that z Sx0: 

Proof. Take a = c = 0 in Theorem 2.3.1, we obtain a point w^, such that dp(w;^ w^) = 0 and 

 

w^ = Sw^ = Tw:^ Let y be another point in Bp(x0;r), such that y = Sy = Ty: If w^ y, then 

 p(w;y^ ) = p(Sw;Ty^ ) 

t[p(w;S^ w^) + p(y;Ty)] 

= t[p(w;^ w^) + p(y;y)] 

tp(y;y) p(y;y): 

Using the fact that p(y;y) p(w;y^ ); we have w^ = y. Now, if w^ y, then there exists a 

 

point z0 2 Bp(x0;r), such that (z0;w^) 2 r and (z0;y) 2 r: Choose a point z1 in X, such that z1 = 

Tz0: As Tz0 z0 and so (z1;z0) 2 r: Let z2 = Sz1 z1 gives (z2;z1) 2 r. Continuing 

this process and having chosen zn in X, such that 

z2i+1 = Tz2i; z2i+2 = Sz2i+1 and z2i+1 = Tz2i z2i where i = 0;1;2;:::: 

 

It follows that zn+1 zn :: z0 w^ xn:: x0: We will prove that zn 2 Bp(x0;r) for all 
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n 2 N by using mathematical induction. For n = 1: Now, (x0;z0) 2 Bp(x0;r) Bp(x0;r) \ r 

p(Sx0;Tz0) t[p(x0;x1) + p(z0;Tz0)] 

 t[p(x0;z0) + p(x1;Tz0)] (by 2.28) 

 p(x0;z0) (2.29) 

and 

 p(x0;z1) p(x0;x1) + p(x1;z1) p(x1;x1) 

 (1 )[r + p(x0;x0)] + p(x0;z0) (by 2.27 and 2.29) 

 

(1 )r + (1 )p(x0;x0) + [r + p(x0;x0)] (as z0 2 Bp(x0;r)) r + p(x0;x0) 

 

implies that z1 2 Bp(x0;r): Let z2;z3;::;zj 2 Bp(x0;r) for some j 2 N: Following similar 

arguments as we have used to prove the inequality (2.18), we have 

 p(zj;zj+1) jp(z0;z1) for some j 2 N: (2.30) 

Note that, if j is odd, then we have 

p(xj+1;zj+1) = p(Txj;Szj) t[p(xj;Txj) + p(zj;Szj)] t[ 
jp(x0;x1) + jp(z0;z1)] ( by 2.30) t j[p(x0;z0) 

+ p(x1;z1)] (by 2.28) t j[p(x0;z0) + 

p(x0;z0)] 

 

 
= 

j+1 p(x0;z0): 
(2.31) 

Similarly, if j is even, then we obtain 

 p(xj+1;zj+1) j+1p(x0;z0): (2.32) 

Now, 

p(x0;zj+1) 
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p(x0;x1) + p(x1;x2) + :: + p(xj+1;zj+1) p(x0;x1) + p(x0;x1) + :: + 

j+1p(x0;z0) (by 2.31 and 2.32) 

 

= r + p(x0;x0) 

 

 

gives zj+1 2 Bp(x0;r): Hence, zn 2 Bp(x0;r) for all n 2 N. Now, the inequality (2.30) can be 

written as 

 p(zn;zn+1) np(z0;z1) for all n 2 N: (2.33) 

As (z0;w^);(z0;y) 2 (Bp(x0;r) Bp(x0;r)) \ r and so it follows that (zn;w^) and (zn;y) are in 

(Bp(x0;r) Bp(x0;r)) \ r for all n 2 N, then for i 2 N; 

 p(w;y^ ) = p(Tw;Ty^ ) 

p(Tw;Sz^ 2i 1) + p(Sz2i 1;Ty) p(Sz2i 1;Sz2i 1) tp(w;^ 

w^) + 2tp(z2i 1;z2i) + tp(y;y) 

2t 2i 1dl(z0;z1) + tp(y;y): (by 2.33) 

On taking limit as i ! 1; we obtain 

 p(w;y^ ) tp(y;y) p(y;y): 

A contradiction, so w^ = y: Hence, w^ is a unique commonxed point of T and S in Bp(x0;r): 

2.3.15 Example [12] 
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Let X = R+[f0g be endowed with order x y if p(x;x) p(y;y) and let p : X X ! R+[f0g be the 

complete ordered partial metric on X de ned by p(x;y) = maxfx;yg and S;T : X ! X as follows: 

 

and 

: 

Clearly, S and T are dominated mappings. Take,  we have 

 and 

Bp(x0;r) = [0;1]: Also, 

 

 

Also, if  

 

 

So the contractive condition does not hold on the whole space: Now, if x;y 2 Bp(x0;r); then 
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Also, for all z 2 Bp(x0;r), such that z Sx0; then 

p(x0;Sx0) + p(z;Tz) p(x0;z) + p(Sx0;Tz): 

Hence, all the conditions of Theorem 2.3.14 are satis ed. Moreover, 0 is the unique common 

xed point of S and T: 

In Theorem 2.3.14, the conditions (2.27) and (2.28) are imposed to restrict the condition 

 

(2.26) only for x;y in Bp(x0;r) and Example 2.3.15 explains the utility of these restrictions. 

However, the following result relax the conditions (2.27) and (2.28) but impose the condition 

(2.26) for all comparable elements in the whole space X. 

2.3.16 Theorem [12] 

Let (X; ;p) be a complete ordered partial metric space and S;T : X ! X be two dominated 

mappings. Suppose that there exists , such that following condition holds for x;y 2 X, 

p(Sx;Ty) t[p(x;Sx) + p(y;Ty)]; for all (x;y) in r: 

then there exists a point w^, such that dp(w;^ w^) = 0: Also, if for a nonincreasing sequence 

fxng 

in X; fxng ! implies that xn, then w^ = Sw^ = Tw:^ Moreover, w^ is unique, if for any x;y 2 X; 

the set Ax;y = fz0 2 X : z0 x and z0 yg is non empty: 

In Theorem 2.3.14, the condition for a nonincreasing sequence fxng ! implies that xn ; the 

existence of z0 and the condition (2.28) are imposed to restrict the condition (2.26) only for 

comparable elements: However, the following result relax these restrictions but 
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impose the condition (2.26) for all elements in Bp(x0;r): 

2.3.17 Theorem [12] 

Let (X;p) be a complete partial metric space, x0;x;y 2 X, r> 0 and S;T : X ! X be two 

mappings. Suppose that there exists , such that following conditions hold 

 

p(Sx;Ty) t[p(x;Sx) + p(y;Ty)]; for all x;y in Bp(x0;r) 

and 

 p(x0;Sx0) (1 )[r + p(x0;x0)] 

where , then there exists a unique point w^ in Bp(x0;r), such that w^ = 
Sw^ = Tw:^ Also, p(w;^ w^) = 0: Further S and T have no xed point other than w:^ 

Now, we apply our Theorem 2.3.14 to obtain unique common xed point of three 

mappings in a closed ball in complete partial ordered metric space. One can easily prove this 

result. 

2.3.18 Theorem [12] 

Let (X; ;p) be a ordered partial metric space, x0;x;y 2 X, r > 0 and S;T self mapping 

 

and f be a dominated mapping on X, such that SX [ TX fX; Bp(fx0;r) fX and 

(Tx;fx);(Sx;fx) 2 r: Assume that the following conditions hold: 

p(Sx;Ty) k[p(fx;Sx) + p(fy;Ty)] 

 

for all (fx;fy) 2 (Bp(fx0;r) Bp(fx0;r)) \ r; where 0 k< 1=2; 

p(fx0;Sx0) + p(fy;Ty) p(fx0;fy) + p(Sx0;Ty) 

 



63 

for all fy 2 Bp(fx0;r), such that fy Sx0; 

 p(fx0;Tx0) (1 )[r + p(fx0;fx0)] 

where : If for a nonincreasing sequence fxng in Bp(fx0;r); fxng ! implies that 

 

xn and if for any x;z 2 Bp(fx0;r); the set Ax;z = fy 2 Bp(fx0;r) : y z and y xg 

is non empty: If the subset fX is complete and (T;f); (S;f) satis es the condition of weakly 

 

compatible pair of functions, then there exists fz 2 Bp(fx0;r), such that S(fz) = T(fz) = 

f(fz) = fz: Also, p(fz;fz) = 0: 

Now, we can apply our Theorem 2.3.16 to obtain unique common xed point result of 

three mappings in complete partial ordered metric space. One can easily prove this result. 

2.3.19 Theorem [12] 

Let (X; ;p) be a ordered partial metric space, x;y 2 X and S;T self mapping and f be a 

dominated mapping on X, such that SX [TX fX and (Tx;fx);(Sx;fx) 2 r: Assume that 

the following conditions hold: 

p(Sx;Ty) k[p(fx;Sx) + p(fy;Ty)] 

for all (fx;fy) 2 r; where 0 k< 1=2: 

If for a nonincreasing sequence fxng in fX; fxng ! implies that xn and if for any z;x 2 fX; the set 

Az;x = fy 2 fX : y z and y xg is non empty: If the subset fX is 

complete and (T;f); (S;f) satis es the condition of weakly compatible pair of functions, then 

there exists fz 2 fX, such that S(fz) = T(fz) = f(fz) = fz. Also, p(fz;fz) = 0: 
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 Now, we can apply our Theorem 2.3.17 to obtain unique common xed point of three 

mappings on closed ball in complete partial metric space. 

2.3.20 Theorem [12] 

Let (X;p) be a partial metric space, x0;x;y 2 X, r> 0 and S;T and f be the self mappings 

 

on X, such that SX [TX 
fX;Bp(fx0;r) fX: Assume that 

the following conditions 

hold: 

 p(fx0;Tx0) (1 )[r + p(fx0;fx0)] 

and : If the subset fX is complete and (T;f); (S;f) satis es the condition of weakly 

 

compatible pair of functions, then there exists fz 2 Bp(fx0;r), such that S(fz) = T(fz) = 

f(fz) = fz. Also, p(fz;fz) = 0: 

In the following theorem, we establish the existence of a unique common xed point of four 

mappings on closed ball in complete partial metric space. One can easily prove this result by 

using the technique given in the proof of Theorem 2.3.12. 

2.3.21 Theorem [12] 

Let (X;p) be a partial metric space, x0;x;y 2 X, r> 0 and S;T;g and f be self mappings on 

 

X, such that SX;TX fX = gX and Bp(fx0;r) fX: Assume that the following condition 

holds: 

p(Sx;Ty) k[p(fx;Sx) + p(gy;Ty)] 

 

for all fx;fy 2 Bp(fx0;r), where 0 k< 1=2; and 

 p(fx0;Sx0) (1 )[r + p(fx0;fx0)] 

p(Sx;Ty) k[p(fx;Sx) + p(fy;Ty)] 

for all fx;fy 2 Bp(fx0;r); where 0 k< 1=2; 
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where : If the subset fX is complete and (T;f); (S;f) satis es the condition of 

 

weakly compatible pair of functions, then there exists fz in Bp(fx0;r) S(fz) = T(fz) = 

f(fz) = g(f) = fz. Also, p(fz;fz) = 0: 

In the following theorem, we establish the existence of a unique common xed point of 

four mappings in complete partial metric space. One can easily prove this result by using the 

technique given in the proof of Theorem 2.3.12. 

2.3.22 Theorem [12] 

Let (X;p) be a partial metric space, x;y 2 X and S;T;g and f be self mappings on X, such 

that SX;TX fX = gX: Assume that the following condition holds: 

p(Sx;Ty) k[p(fx;Sx) + p(gy;Ty)] 

for all fx;fy 2 fX, where 0 k< 1=2: 

If the subset fX is complete and (T;g); (S;f) satis es the condition of weakly compatible pair of 

functions, then there exists fz 2 fX, such that S(fz) = T(fz) = f(fz) = g(fz) = fz. Also, p(fz;fz) = 

0: 

We can obtain the unique point of coincidence results as a corollaries of Theorem 2.3.18 

to Theorem 2.3.22. Unique point of coincidence result for Theorem 2.3.18 is given below. 

2.3.23 Theorem [12] 

Let (X; ;p) be a ordered partial metric space, x0;x;y 2 X, r > 0 and S;T self mapping 

 

and f be a dominated mapping on X, such that SX [ TX fX; Bp(fx0;r) fX and 

(Tx;fx);(Sx;fx) 2 r: Assume that the following conditions holds: 
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p(Sx;Ty) k[p(fx;Sx) + p(fy;Ty)] 

 

for all (fx;fy) 2 (Bp(fx0;r) Bp(fx0;r)) \ r; where 0 k< 1=2; 

p(fx0;Sx0) + p(fy;Ty) p(fx0;fy) + p(Sx0;Ty) 

 

for all fy 2 Bp(fx0;r), such that fy Sx0; 

 p(fx0;Tx0) (1 )[r + p(fx0;fx0)] 

where : If for a nonincreasing sequence fxng in Bp(fx0;r); fxng ! implies that 

 

xn and if for any z;x 2 Bp(fx0;r), the set Az;x = fy 2 Bp(fx0;r) : y z and y xg is 

non empty: If the subset fX is complete; then S;T and f have a unique point of coincidence 

 

fz 2 Bp(fx0;r). Also, p(fz;fz) = 0: 
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Chapter 3 

Fixed Points of Contractive Mappings in an 

Ordered Dislocated and Dislocated Quasi 

Metric Spaces 

3.1 Introduction 
The theory and some of the de nitions given in this section have been published in [11, 23]. 

Dislocated metric space (metric-like space) has many applications in the context of logic 

programming semantics (see [36, 37]). Further useful results can be seen in (see [8, 44, 46, 

47, 50, 54, 66, 72, 81]). Furthermore, dislocated quasi metric space (quasi-metric-like space) 

(see [1, 23, 73, 84, 85]) is a generalization of dislocated metric space and quasi-partial metric 

space. 

From examples and by de nitions given in the rst chapter, it is clear that any partial metric 

is a dl-metric whereas a dl-metric may not be a partial metric. We also remark that for those 

dl-metrics which are also partial metrics, we have Bdl(x;&) Bp(x;&): Also, for any dl-metric 

Bdl(x;&) B (x;&): Thus, it is better to nd a xed point in a closed ball de ned by Hitzler in a dl-

metric, because, we restrict ourselves to apply contractive condition on smallest closed ball. 

In this way, we also weakened the contractive condition. 

In Harandi s sence, a sequence fxng in the metric-like space (X; ) converges to a point x 2 
X if and only if lim (xn;x) = (x;x). A sequence  of elements of X is called n!1 -Cauchy if 

the lim (xn;xm) exists and is nite. The metric-like space (X; ) is called n;m!1 

complete if for each -Cauchy sequence , there is some x 2 X, such that 
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Romaguera [68] has given the idea of 0-Cauchy Sequence and 0-complete partial metric 

space. Using his idea, we can observe the following: 

(i) Every Cauchy Sequence with respect to Hitzler is a Cauchy Sequence with respect 

toHarandi. 

(ii) Every complete metric space with respect to Harandi is complete with respect to 

Hitzler. 

The following example shows that the converse assertions of (i) and (ii) do not hold. 

3.1.1 Example [11] 

Let X = Q+ [ f0g and let dl : X X ! X be de ned by dl(x;y) = x + y: Note that 

 is a Cauchy Sequence with respect to Harandi but it is not a Cauchy 

Sequence 

with respect to Hitzler. Also, every Cauchy Sequence (with respect to Hitzler) in X converges 

to a point 0in X. Hence, X is complete with respect to Hitzler but X is not complete with 

respect to Harandi as lim (1 + n1)n = e=2 X. n!1 

3.1.2 De nition [23] 

Let (X;dq) be a dislocated quasi metric space. 

(i) A sequence fxng in (X;dq) is called left (right) K-Cauchy if 8 &> 0, 9 n0 2 N, such that 8 

n>m n0;dq(xm;xn) <& (respectively dq(xn;xm) <&): (ii) A sequence fxng dislocated quasi-

converges (for short dq -converges) to x if lim dq(xn;x) = n!1 lim dq(x;xn) = 0: In this case x is 

called a dq-limit of fxng: 

n!1 

(iii) (X;dq) is called complete left (right) K-sequentially if every left (right) K-Cauchy 

sequence in X converges to a point x 2 X, such that dq(x;x) = 0. 

One can easily observe that every complete dislocated quasi metric space is also complete 

left K-sequentially dislocated quasi metric space but the converse is not true in general. 
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Now, we discuss the relation between the complete left/right K-sequentially dislocated 

quasi metric space and 0-complete left/right K-sequentially quasi-partial metric space. 

3.1.3 Remark [23] 

By comparing the De nition 2.1.1, De nition 2.1.2 with De nition 3.1.1, one can easily 

observe that if X is 0-complete left/right K-sequentially quasi-partial metric space, then it is 

also a complete left/right K-sequentially dislocated quasi metric space. But a complete 

left/right K-sequentially dislocated quasi metric space may not be a 0-complete left/right 

Ksequentially quasi-partial metric space. So every result which is true for complete left/right 

Ksequentially dislocated quasi metric spaces, then it will always be true for 0-complete 

left/right K-sequentially partial metric spaces, but converse does not hold. 

 [2, 6, 15, 24, 59, 62, 70] gave some xed point theorems in ordered metric spaces. Samet 

and Vetro [71] generalized the results in ordered metric spaces and introduced the concept of 

  -contractive type mappings and established xed point theorems for such mappings in 

complete metric spaces. 

The existence of xed points of -admissible mappings in complete metric spaces has been 

studied by several researchers (see [9, 41, 42, 69, 71] and references therein). Now, we 

introduce the concept of -dominated mappings 

3.1.4 De nition 

Let T : X ! X and : X X ! [0;+1) be a function. We say that T is -dominated mapping on A X; if 

(x;Tx) 1 for all x 2 A. Moreover, if (x;y) 1 and (y;z) 1 

implies that (x;z) 1also holds, then we say that T is triangle -dominated mapping: 

 In this chapter, we discuss common xed point results for -dominated mappings in a 

closed ball in complete dislocated quasi metric space. Su¢ cient conditions for the existence 

of common xed point for two, three and four mappings in complete dislocated quasi metric 

space have been obtained. One can easily use this style to prove common xed point results in 

quasi metric spaces. In section 3.2, we deal with the complete left/right K-sequentially 
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dislocated quasi metric space and prove the existence of common xed points of two, three 

and four -dominated mappings satisfying a generalized contractive condition. Section 3.3 

deals with common xed point results of mappings satisfying - dominated contractive 

condition 

in complete left/right K-sequentially dislocated quasi metric space. 

3.2 Common Fixed Point of -Dominated Mappings 
Some of the results given in this section have been published in [23]. Some of the results given 

in this section have been submitted for publication [80]. 

3.2.1 Theorem 

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space. Suppose there 

exist 

 

a function, : X X ! [0;+1), such that S and T are - dominated mappings on Bdq(x0;r). 

 

Let x0;x;y 2 Bdq(x0;r), r> 0: If there exist some k;t, such that k+2t 2 [0;1) and the following 

 

conditions hold for (x;y) 1 and for x;y 2 Bdq(x0;r): 

 dq(Sx;Ty) kdq(x;y) + t[dq(x;Sx) + dq(y;Ty)]; (3.1) 

and 

dq(Tx;Sy) kdq(x;y) + t[dq(x;Tx) + dq(y;Sy)] (3.2) 

  dq(x0;Sx0) (1 )r; (3.3) 

where . 

 

If for any sequence fxng in Bdq(x0;r), such that (xn;xn+1) 1 for all n 2 N [ f0g and 
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xn ! u 2 Bdq(x0;r) as n ! +1 we have (xn;u) 1 for all n 2 N [ f0g; then there exists a common

 xed point w^ of S and T: Moreover, dq(w;^ w^) = 0: 

Proof. Choose a point x1 in X, such that x1 = Sx0 and x2 = Tx1. Continuing this process, 

we construct a sequence xn of points in X, such that 

x2i+1 = Sx2i; and x2i+2 = Tx2i+1, where i = 0;1;2;:::: 

Using the inequality (3.3) and the fact that  we have 

dq(x0;Sx0) r: 

 

It implies that x1 2 Bdq(x0;r): Let x2; ;xj 2 Bdq(x0;r) for some j 2 N. If j = 2i+1, where i = 

0;1;2;::: j 21: As S is -dominated mappings on Bdq(x0;r), then (x0;x1) 1: As T is 

 

-dominated mappings on Bdq(x0;r), then (x1;x2) 1: Continuing in this way we obtain 

(x2i;x2i+1) 1 for all i = 0;1;2;::: j 21: So using the inequalities (3.1) and (3.2), we obtain 

 dq(x2i+1;x2i+2) = dq(Sx2i;Tx2i+1) kdq(x2i;x2i+1) 

+t[dq(x2i;Sx2i) + dq(x2i+1;Tx2i+1)]; 

which implies that 

 dq(x2i+1;x2i+2) dq(x2i;x2i+1) 
2 
dq(x2i 1;x2i) 

:: 2i+1 
dq(x0;x1): 

(3.4) 

 

If j = 2i+2, then as x1;x2;::;xj 2 Bdq(x0;r) and (x2i+1;x2i+2) 1; where i = 0;1;2;:::; j 22: 
we obtain  
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 dq(x2i+2;x2i+3) 2i+2dq(x0;x1): 

Thus, from the inequalities (3.4) and (3.5), we have 

(3.5) 

 dq(xj;xj+1) jdq(x0;x1) for some j 2 N: 

Now, 

 dq(x0;xj+1) dq(x0;x1) + :: + dq(xj;xj+1) 

(3.6) 

(by 3.6) 

dq(x0;xj+1) 

gives xj+1 2 Bdq(x0;r): Hence, xn 2 Bdq(x0;r): Also, (xn;xn+1) 1; then 

 dq(xn;xn+1) ndq(x0;x1); for all n 2 N: (3.7) 

So, we have 

dq(xn;xn+i) 

: 
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Therefore the sequence fxng is a left K-Cauchy sequence in (Bdq(x0;r);dq): As Bdq(x0;r) is 

closed, it is complete left K-sequentially. Therefore, there exists a point w^ 2 

Bdq(x0;r) with

lim dq(xn;w^) = lim dq(w;x^ n) = 0: n!1

 n!1 

Now, 

 dq(w;S^ w^) dq(w;x^ 2n+2) + dq(x2n+2;Sw^): 

 (3.8) 

On taking limit as n ! 1 and using the fact that (xn;w^) 1 when 

xn ! w;^ we have 

 dq(w;S^ w^) lim [dq(w;x^ 2n+2) + kdq(x2n+1;w^) 
n!1 

+tfdq(x2n+1;x2n+2) + dq(w;S^ w^)g]; By 

using the inequalities (3.7) and (3.8), we obtain 

 (1 t)dq(w;S^ w^) 0 

and w^ = Sw:^ Similarly, by using, 

 dq (w;T^ w^) dq(w;x^ 2n+1) + dq(x2n+1;Tw^); 

(xn;xn+1) 1 and 

we can show that w^ = Tw:^ Hence, S and T have a common xed point w^ in Bdq(x0;r). As S 
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is - dominated mappings on Bdq(x0;r) we have (w; S^ w^) 1 and so (w;^ w^) 

 dq(w;^ w^) = dq(Sw;T^ w^) 

kdq(w;^ w^) + tfdq(w;S^ w^) + dq(w;T^ w^)g 

 (1 k 2t)dq(w;^ w^) 0: 

This implies that 

1: Now, 

dq(w;^ w^) = 0: (3.9) 

 

If we take T = S for all x; y 2 X in Theorem 3.2.1, we obtain following result. 

3.2.2 Corollary 

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space. Suppose there 

exist 

 

a function, : X X ! [0;+1), such that S is -dominated mappings on Bdq(x0;r). Let 

 

x0;x;y 2 Bdq(x0;r), r> 0: If there exist some k;t, such that k + 2t 2 [0;1) and the following 

conditions hold: 

dq(Sx;Sy) kdq(x;y) + t[dq(x;Sx) + dq(y;Sy)]; 

for (x;y) 1 and    

   
dq(x0;Sx0) 

(1 )r; 

where . 

 

If for any sequence fxng in Bdq(x0;r), such that (xn;xn+1) 1 for all n 2 N [ f0g and xn ! u 2 

Bdq(x0;r) as n ! +1 we have (xn;u) 1 for all n 2 N [ f0g, then there exists a 

point w^ in Bdq(x0;r), such that w^ = Sw^ and dq(w;^ w^) = 0: 
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3.2.3 Corollary 

Let (X;d) be a complete left K-sequentially metric space. Suppose there exists, : X X ! 

 

[0;+1), such that S and T are -dominated mappings on Bdq(x0;r): Let 

(x;y)d(Sx;Ty) kd(x;y) + t[d(x;Sx) + d(y;Ty)] 

holds for all x;y 2 X and k + 2t 2 [0;1): 

If for any sequence fxng in X with (xn;xn+1) 1 for all n 2 N [f0g and xn ! x as n ! +1, we have 

(xn;x) 1 for all n 2 N [ f0g, then S and T have a common xed point: 

3.2.4 Theorem 

Adding the following conditions to the hypotheses of Theorem 3.2.1 

 

(i) Let S and T are triangle -dominated mappings on Bdq(x0;r). 

 

(ii) If for any two points x;y in Bdq(x0;r) there exists a point z0 2 Bdq(x0;r), such that 

 (x;z0) 1, (y;z0) 1: 

 

(iii) For all z 2 Bdq(x0;r), such that (z; Sx0) 1 implies 

dq(x0;Sx0) + dq(z;Tz) dq(x0;z) + dq(Sx0;Tz): 

then S and T have a unique common xed point w^ and dq(w;^ w^) = 0: 

 

Proof. Let y be another point in Bdq(x0;r), such that y = Sy = Ty: Now,  

dq(y;y) = dq(Sy;Ty) kdq(y;y) + tfdq(y;Ty) + 

dq(y;Sy)g 
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(1 k 2t)dq(y;y) 

This implies that 

0: 

 

Now, if (w;y^) 1, then we have 

dq(y;y) = 0: (3.10) 

 dq(w;y^) = 

dq(Sw;Ty^ ) kdq(w;y^ ) + t[dq(w;S^ 

w^) + dq(y;Ty)] 

 

 (1 k)dq(w;y^ ) 0. (by 3.9 and 3.10) 
 

This shows that w^ = y: Now, if (w;y^ ) 1, then there exists a point z0 2 Bdq(x0;r), such that 

(w;z^ 0) 1 and (y;z0) 1: Choose a point z1 in X, such that z1 = Tz0 and z2 = Sz1. 

Continuing this process, we construct a sequence zn of points in X, such that 

z2i+1 = Tz2i; and z2i+2 = Sz2i+1, wherei = 0;1;2;:::: 

 

As T is -dominated mappings on Bdq(x0;r), then (z0;z1) 1: By assumption (xn;w^) 1 and (w;z^ 

0) 1 implies 

that (xn;z0) 

1 for all n 2 

N [ f0g: 

Now, we 

have 

dq(Sx0;Tz0) kdq(x0;z0) + t[dq(x0;x1) + dq(z0;Tz0)] kdq(x0;z0) + 

t[dq(x0;z0) + dq(x1;Tz0)]; (by (iii)) 

 

dq(Sx0;Tz0) dq(x0;z0) and (3.11) 

dq(x0;z1) 

dq(x0;x1) + dq(x1;z1) 

 (1 )r + dq(x0;z0); (by 3.3 and 3.11) 

 

dq(x0;z1)  (1 )r + r (as z0 2 Bdq(x0;r))  

(z0;zj+1) 1 implies that (w;z^ j+1) 1: Also, (xn;w^) 1 and (w;z^ j+1) 1 implies that 
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implies that z1 2 Bdq(x0;r), then (z1;z2) 1: As S and T are triangle -dominated mappings on 

Bdq(x0;r) and so (z0;z1) 1 and (z1;z2) 1 implies that (z0;z2) 1: Let z2;z3;::;zj 

2 Bdq(x0;r) for some j 2 N, then (zj;zj+1) 1: Now, (z0;z2) 1 and (z2;z3) 1 implies that (z0;z3) 1: 

Continuing in this way we obtain (z0;zj+1) 1: Now, (w;z^ 0) 1 and Now, 

dq(x0;Tzj) dq(x0;x1) + dq(x1;Tzj) 

(1 )r + r; (by 3.12) 

dq(x0;zj+1) r: (3.13) 

(xn;zj+1) 1: Now, if j is even, then we have 

dq(x1;Tzj) kdq(x0;zj) + t[dq(x0;x1) + dq(zj;Tzj)] 

kdq(x0;zj) + t[dq(x0;zj) + dq(x1;Tzj)]; (by (iii)) 

 

 dq(x1;Tzj) dq(x0;zj) r: (as zj 2 Bdq(x0;r)) (3.12) 

Now, we have 

  dq(zj;zj+1) jdq(z0;z1) for some j 2 N: (3.14) 

dq(x2;zj+1) = 

dq(Tx1;Szj) kdq(x1;zj) + t[dq(x1;Tx1) + dq(zj;Szj)] kdq(x1;zj) + t[dq(x0;x1) 

+ dq(zj 1;Tzj 1)], (by 3.7 and 3.14) 

dq(x2;zj+1)  kdq(x1;zj) + t [dq(x0;zj 1) + dq(x1;zj)], (by (iii))  

dq(x2;zj+1) 
 

(k + t )dq(x1;Tzj 1) + t r; (as zj 1 2 Bdq(x0;r)) 
 

dq(x2;zj+1)  [(k + t ) + t ]r, (by 3.12, as j 1 is even)  

dq(x2;zj+1) 

Now, 

 2 
r: 

(3.15) 
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Now, if j is odd, then following similar arguments as we have used to prove the inequality 

(3.6), we have 

 

Therefore, from the inequalities (3.13) and (3.16), zj+1 2 Bdq(x0;r) in both 

cases: Hence, 

 

zn 2 Bdq(x0;r) for all n 2 N. Thus, the inequality (3.14) becomes 

 dq(zn;zn+1) ndq(z0;z1) ! 0 as n ! 1: (3.17) 

As (y;z0) 1 and (z0;zn+1) 1 implies that (y;zn+1) 1: Also, (w;z^ n+1) 1, then for 

i 2 N; we have  

 dq(Tw;Sz^ 2i 1) 
 

kdq(w;z^ 2i 1) + t[dq(w;T^ w^) + dq(z2i 1;Sz2i 1)] 

 = kdq(Sw;Tz^ 2i 2) + tdq(z2i 1;z2i); 

 dq(w;Sz^ 2i 1) 
 

k2dq(w;z^ 2i 2) + ktdq(z2i 2;z2i 1) + tdq(z2i 1;z2i) 

... 

 k2idq(w;z^ 0) + k2i 1tdq(z0;z1) + 

+ktdq(z2i 2;z2i 1) + tdq(z2i 1;z2i): 

On taking limit as i ! 1 and by the inequality (3.17), we have 

 dq(w;Sz^ 2i 1) = 0: (3.18) 

Similarly, we have 

 dq(x0;zj+1) dq(x0;x1) + dq(x1;x2) + dq(x2;zj+1) 

dq(x0;x1) + dq(x0;x1) + 2r, (by 3.7 and 3.15) 

 dq(x0;zj+1) r: (3.16) 



79 

 dq(Sz2i 1;y) ! 0 as i ! 1: (3.19) 

Now, by using the inequality (3.18) and (3.19), we have 

 dq(w;y^ ) dq(w;Sz^ 2i 1) + dq(Sz2i 1;y) ! 0 as i ! 1: 

So, w^ = y: Hence, w^ is a unique commonxed point of T and S in B  
(x;r): 
 In Theorem 3.2.4, the conditions (i), (ii), (iii) and if for any sequence fxng in Bdq(x0;r), 

 

such that (xn;xn+1) 1 for all n 2 N [ f0g and xn ! u 2 Bdq(x0;r) as n ! +1, then 

(xn;u) 1 for all n 2 N [ f0gare imposed to restrict the conditions (3.1) and (3.2) only 

 

for -dominated mappings on Bdq(x0;r) and for those x;y in Bdq(x0;r) for which (x;y) 1: 

However, the following result relax these restrictions but impose the conditions (3.1) and 

(3.2) 

 

for all elements in Bdq(x0;r): 
3.2.5 Theorem 

 

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space, x0 2 Bdq(x0;r), r> 0 

and S;T : X ! X be two mappings. Suppose for k +2t 2 [0;1), the following conditions 

hold: 

dq(Sx;Ty) kdq(x;y) + t[dq(x;Sx) + dq(y;Ty)]; dq(Tx;Sy)

 kdq(x;y) + t[dq(x;Tx) + dq(y;Sy)]; 

 

for all x;y in Bdq(x0;r) and 

 dq(x0;Sx0) (1 )r; 

where , then there exists a unique point w^ in Bdq(x0;r), such that w^ = 

d q 0 
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Sw^ = Tw^ 

and dq(w;^ w^) = 0: Moreover;S and T have no xed point other than w:^ 

Proof. Following similar arguments of Theorem 3.2.1, we can obtain a unique point w^ in 

 

Bdq(x0;r), such that w^ = Sw^ = Tw:^ Let y = Ty, then y is the xed point of T and it may not 

be a xed point of S: Now, 

 dq(w;y^ ) 

Similarly, 

t dq(y;w^)
 dq(y;y): 

1 k 

then 

dq(y;y) 

(3.20) 

Now, 

 dq(w;y^) = dq(Sw;Ty^ ) kdq(w;y^ ) + t[dq(w;^ w^) + dq(y;y)] 

 (1 k)dq(w;y^ ) 0: (by 3.9 and 3.20) 

Hence, w^ = y. Thus, T has no xed point other than w:^ Similarly S has no xed point other 

than w:^  

In Theorem 3.2.4, the conditions (iii) and (3.3) are imposed to restrict the conditions (3.1) 

 

and (3.2) only for x;y in Bdq(x0;r). However, the following result relax the conditions (iii) and 

(3.3) but impose the conditions (3.1) and (3.2) for all elements x;y 2 X, such that (x;y) 1. 

3.2.6 Theorem 
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Let (X;dq) be a complete left K-sequentially dislocated quasi metric space. Suppose there 

exist 

a function, : X X ! [0;+1), such that S and T are triangle -dominated mappings. If 

there exist some k;t, such that k + 2t 2 [0;1) and the following conditions hold: 

dq(Sx;Ty) kdq(x;y) + t[dq(x;Sx) + dq(y;Ty)]; 

dq(Tx;Sy) kdq(x;y) + t[dq(x;Tx) + dq(y;Sy)]; 

for all x;y 2 X, such that (x;y) 1. 

If for any sequence fxng in X, such that (xn;xn+1) 1 for all n 2 N [ f0g and xn ! u 2 X as n ! +1, 

then (xn;u) 1 for all n 2 N [ f0g: Also, for any two points x;y in X there exists a point z0 2 X, 

such that (x;z0) 1, (y;z0) 1, then there exists a unique point w^ 

in X, such that w^ = Sw^ = Tw^ and dq(w;^ w^) = 0: 

 Now, we apply our Theorem 3.2.4 to obtain unique common xed point of three mappings 

in closed ball in complete left K-sequentially dislocated quasi metric space. 

3.2.7 Theorem 

Let (X;dq) be a dislocated quasi metric space, S;T;f : X ! X, such that SX [ TX fX: Suppose there 

exist a function, : X X ! [0;+1), such that (fx; Sx) 1, (fx;Tx) 1 and (x;y) 1, (y;z) 1 implies that 

(x;z) 1 for all x;y;z 2 X: Suppose for k+2t 2 [0;1), 

 

dq (Sx;Ty) kdq(fx;fy) + t[dq(fx;Sx) + dq(fy;Ty)]; (3.21) 

dq (Tx;Sy) 

and for fx0 2 Bdq(fx0;r) 

kdq(fx;fy) + t[dq(fx;Tx) + dq(fy;Sy)] (3.22) 

 dq(fx0;Sx0) (1 )r; (3.23) 
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x0 2 X, r> 0;Bdq(fx0;r) fX and for all fx;fy 2 Bdq(fx0;r); (fx;fy) 1 implies that 

where  and 

dq(fx0;Sx0) + dq(fy;Ty) dq(fx0;fy) + dq(Sx0;Ty); (3.24) 

 

for all fy 2 Bdq(fx0;r), such that (fy; Sx0) 1: 

 

If for any sequence fxng in Bdq(fx0;r), such that (xn;xn+1) 1 for all n 2 N [ f0g and 

xn ! u 2 Bdq(fx0;r) as n ! +1 we have (xn;u) 1 for all n 2 N [ f0g and for any 

 

two points x;y in Bdq(fx0;r) there exists a point z0 2 Bdq(fx0;r), such that (x;z0) 1, 

(y;z0) 1: If the subset fX is complete left K-sequentially and (T;f); (S;f) satis es the 

 

condition of weakly compatible pair of functions, then there exists fz 2 Bdq(fx0;r), such that 

S(fz) = T(fz) = f(fz) = fz. Also, dq(fz;fz) = 0: 

Proof. By Lemma 1.4.2, there exists E X, such that fE = fX and f : E ! X is oneto-one. Now, 

since SX [ TX fX; we de ne two mappings g;h : fE ! fE by g(fx) = Sx 

and h(fx) = Tx respectively. Since f is one-to-one on E, then g;h are well-de ned. As (fx;Sx) 1 

implies that (fx;g(fx)) 1 and (fx;Tx) 1 implies that (fx;h(fx)) 1, 

 

then g and h are -dominated mappings on Bdq(fx0;r): Now, fx0 2 Bdq(fx0;r) fX, then fx0 2 fX: Let 

y0 = fx0; choose a point y1 in fX, such that y1 = g(y0): Also, by the inequality 

(3.23), 

 dq(fx0;g(fx0)) (1 )r: 

Then y1 2 Bdq(fx0;r): Let y2 = h(y1). Continuing this process and having chosen yn in fX, such 

that 

y2i+1 = g(y2i) and y2i+2 = h(y2i+1); where i = 0;1;2;::: 
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Following similar arguments of Theorem 3.2.1, yn 2 Bdq(fx0;r): Also, by using the inequality 
(3.23), we obtain  

dq(fx0;g(fx0)) + dq(fy;h(fy)) dq(fx0;fy) + dq(g(fx0);h(fy)); 

for all fy 2 Bdq(fx0;r), such that (fy; Sx0) 1. By using the inequalities (3.21) and (3.22), 

for fx;fy 2 Bdq(fx0;r); (fx;fy) 1 implies that 

dq (g(fx);h(fy)) kdq(fx;fy) + t[dq(fx;g(fx)) + dq(fy;h(fy))]; dq 

(h(fx;g(fy)) kdq(fx;fy) + t[dq(fx;h(fx)) + dq(fy;g(fy))]: 

As fX is a complete left K-sequentially space; all the conditions of Theorem 3.2.1 are satis ed, 

 

we deduce that there exists a unique common xed point fz 2 Bdq(fx0;r) of g and h: Also, 

dq(fz;fz) = 0: The rest of the proof is similar to the proof given in Theorem 2.3.10 and so we 

leave it. Hence, we obtain a unique common xed point of S;T and f.  

3.2.8 Corollary 

Let (X;dq) be a dislocated quasi metric space, x0 2 X, r> 0 and S;T and f are self mappings 

 

on X, such that SX 
[ TX fX;Bdq(fx0;r) 
fX: Suppose for k 
+ 2t 2 [0;1), the 

following 

 dq(fx0;Sx0) (1 )r; 

where : If the subset fX is complete left K-sequentially and (T;f); (S;f) satis es 

 

the condition of weakly compatible pair of functions, then there exists fz 2 Bdq(fx0;r), such 

that S(fz) = T(fz) = f(fz) = fz. Also, dq(fz;fz) = 0: 

conditions hold:  

dq (Sx;Ty) kdq(fx;fy) + t[dq(fx;Sx) + dq(fy;Ty)]; 

dq (Tx;Sy) 

for all fx;fy 2 Bdq(fx0;r) and 

kdq(fx;fy) + t[dq(fx;Tx) + dq(fy;Sy)] 
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Unique common xed point result of four mappings in complete left K-sequentially 

dislocated quasi metric space in a closed ball is given below which can be proved with the 

help of Theorem 3.2.4, by using the technique given in Theorem 2.3.13. 

3.2.9 Theorem 

Let (X;dq) be a dislocated quasi metric space, x0 2 X, r> 0 and S;T;g and f be self mappings 

 

on X, such that 

SX;TX fX = gX and 

Bdq(fx0;r) fX: 
Suppose for k + 
2t 2 [0;1), the 

 dq(fx0;Sx0) (1 )r; 

where : If the subset fX is complete left K-sequentially and (T;g); (S;f) satis es 

 

the condition of weakly compatible pair of functions, then there exists fz 2 Bdq(fx0;r), such 

that S(fz) = T(fz) = f(fz) = g(fz) = fz. Also, dq(fz;fz) = 0: 

From Theorem 3.2.1 to Theorem 3.2.6, we derive following important results in 

preordered complete left K-sequentially dislocated quasi metric space. We de ne the set r by r 

= f(x;y) 2 

X X : x y or y xg: 
3.2.10 Theorem 

Let (X; ;dq) be a preordered complete left K-sequentially dislocated quasi metric space, 

 

x0;x;y 2 X, r> 0 and S;T : X ! X be two dominated mappings on Bdq(x0;r). Suppose for 

k + 2t 2 [0;1), the following conditions hold: 

dq(Sx;Ty) kdq(x;y) + t[dq(x;Sx) + dq(y;Ty)]; 

dq(Tx;Sy) kdq(x;y) + t[dq(x;Tx) + dq(y;Sy)] 

following conditions hold:  

dq (Sx;Ty) kdq(fx;gy) + t[dq(fx;Sx) + dq(gy;Ty)]; 

dq (Tx;Sy) 

for all fx;fy 2 Bdq(fx0;r) and 

kdq(gx;fy) + t[dq(fx;Tx) + dq(gy;Sy)] 
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for all (x;y) in (Bdq(x0;r) Bdq(x0;r)) \ r and 

 dq(x0;Sx0) (1 )r; 

where . If for a nonincreasing sequence fxng in Bdq(x0;r); fxng ! 

implies that xn, then there exists a point w^ in Bdq(x0;r), such that w^ = Sw^ = Tw^ and 

dq(w;^ w^) = 0: 

 

Also, w^ is unique, if for any x;y 2 Bdq(x0;r); the set Ax;y = fz0 2 Bdq(x0;r) : z0 x and z0 yg is non 

empty and for all z 2 Bdq(x0;r), such that z Sx0; we have 

dq(x0;Sx0) + dq(z;Tz) dq(x0;z) + dq(Sx0;Tz) 

3.2.11 Corollary 

Let (X; ;dq) be a preordered complete left K-sequentially dislocated quasi metric space, x0 2 X 
and S;T : X ! X be two dominated mappings. Suppose for k + 2t 2 [0;1), the following 
conditions hold:  

dq(Sx;Ty) kdq(x;y) + t[dq(x;Sx) + dq(y;Ty)]; 

dq(Tx;Sy) kdq(x;y) + t[dq(x;Tx) + dq(y;Sy)] 

for all (x;y) in r. If for a nonincreasing sequence fxng ! implies that xn, then there exists a 

point w^ in X, such that w^ = Sw^ = Tw^ and dq(w;^ w^) = 0: Also, w^ is unique, if for any 

x;y 2 X; the set Ax;y = fz0 2 X : z0 x and z0 yg is non empty. 

3.2.12 Theorem 

Let (X; ;dq) be a preordered dislocated quasi metric space, x0 2 X, r> 0 and S;T be self 

 

mapping and f be a dominated mapping on Bdq(fx0;r), such that SX [ TX fX;Tx fx; 
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Sx fx and 

Bdq(fx0;r) fX: 
Suppose for k + 
2t 2 [0;1), the 

following 

condi

tions 

hold: 

 dq(fx0;Sx0) (1 )r; 

where  and 

dq(fx0;Sx0) + dq(fy;Ty) dq(fx0;fy) + dq(Sx0;Ty); 

 

for all fy 2 Bdq(fx0;r), such that fy Sx0: If for a nonincreasing sequence fxng in Bdq(fx0;r); 

fxng ! implies that xn and for any two points z and x in Bdq(fx0;r) there exists a 

 

point y 2 Bdq(fx0;r), such that y z and y x: If the subset fX is complete and (T;f); (S;f) satis es 

the condition of weakly compatible pair of functions, then S(fz) = T(fz) = 

 

f(fz) = fz. in Bdq(fx0;r). Also, dq(fz;fz) = 0: 

3.2.13 Theorem 

Let (X; ;dq) be a preordered dislocated quasi metric space, x0 2 X, r> 0 and S;T be self 

mapping and f be a dominated mapping on X, such that SX [ TX fX and Tx fx; 

Sx fx: Suppose for k + 2t 2 [0;1), the following conditions hold: 

dq (Sx;Ty) kdq(fx;fy) + t[dq(fx;Sx) + dq(fy;Ty)]; 

dq (Tx;Sy) kdq(fx;fy) + t[dq(fx;Tx) + dq(fy;Sy)]; 

for all (fx;fy) 2 r: If for a nonincreasing sequence fxng in X; fxng ! implies that xn and for any 

two points z and x in X there exists a point y 2 X, such that y z and y x: If 

dq (Sx;Ty) kdq(fx;fy) + t[dq(fx;Sx) + dq(fy;Ty)]; 

dq (Tx;Sy) kdq(fx;fy) + t[dq(fx;Tx) + dq(fy;Sy)]; 

for all (fx;fy) 2 (Bdq(fx0;r) Bdq(fx0;r)) \ r and 
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the subset fX is complete left K-sequentially and (T;f); (S;f) satis es the condition of weakly 

 

compatible pair of functions, then there exists fz 2 Bdq(fx0;r), such that S(fz) = T(fz) = f(fz) = 

fz. Also, dq(fz;fz) = 0: 

3.2.14 Theorem [23] 

Let (X; ;dq) be an ordered complete left K-sequentially dislocated quasi metric space, S be a 

 

self dominated mapping on X and x0 be an arbitrary point in Bdq(x0;r). Suppose there exists k 

2 [0;1) with 

 

dq(Sx;Sy) kdq(x;y); for all comparable elements x;y in Bdq(x0;r) 

and 

 dq(x0;Sx0) (1 k)r: 

If for a nonincreasing sequence fxng ! implies that xn, then there exists a point w^ in 

 

Bdq(x0;r), such that dq(w;^ w^) = 0 and w^ = Sw:^ Moreover, if for any x;y 2 Bdq(x0;r); the 

set Ax;y = fz 2 Bdq(x0;r) : z x and z yg is non empty, then the point w^ is unique. 

3.2.15 Theorem [23] 

Let (X; ;dq) be an ordered complete left K-sequentially dislocated quasi metric space, S be a 

 

self dominated mapping on X and x0 be an arbitrary point in Bdq(x0;r). Suppose there exists 

 with 

dq(Sx;Sy) k[dq(x;Sx) + dq(y;Sy)]; 

 

for all comparable elements x;y in Bdq(x0;r) and 

 dq(x0;Sx0) (1 )r; 
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where : If for a nonincreasing sequence fxng ! implies that xn, then there 

 

exists a point w^ in Bdq(x0;r), such that dq(w;^ w^) = 0 and w^ = Sw:^ Moreover, if for any 

x;y 2 Bdq(x0;r); the set Ax;y = fz 2 Bdq(x0;r) : z x and z yg is non empty and 

dq(x0;Sx0) + dq(z;Sz) dq(x0;z) + dq(Sx0;Sz) for all z Sx0: 

then the point w^ is unique. 

3.2.16 Example [23] 

Let X = R+ [ f0g be endowed with usual order and let dq : X X ! X be de ned by 

 Let S : X ! X be de ned by 

: 

Clearly, S is a dominated mapping, then for  and 

for  

 

and 

: 

Also, if x;y 2 (1;1); then 

 
So the contractive condition does not hold on the whole space: Now, if x;y 2 Bdq(x0;r); then 
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Also, 

dq(x0;Sx0) + dq(z;Sz) = dq(x0;z) + dq(Sx0;Sz) for all z Sx0: 

Hence, all the conditions of Theorem 3.2.15 are satis ed. Moreover, 0 is equal to S(0): 

3.3 Common Fixed Point Results Satisfying - Type Contractive Conditions 

Some of the results given in this section have been published in [11]. Some of the results given 

in this section have been submitted for publication [80]. 

3.3.1 Theorem 

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space. Suppose there 

exist a function, : X X ! [0;+1). Let r> 0, x0 2 Bdq(x0;r) and S;T : X ! X be - 

 

dominated mappings on Bdq(x0;r) and 2 . Assume that, for x;y 2 Bdq(x0;r); (x;y) 1; 

the following condition holds 

and 

maxfdq(Sx;Ty);dq(Tx;Sy)g  (dq(x;y)) (3.25) 

  for all j 2 N [ f0g: (3.26) 

If for any sequence , such that (xn;xn+1) 1 for all n 2 N [ f0g and 

 

xn ! u 2 Bdq(x0;r) as n ! +1, then (xn;u) 1 for all n 2 N [ f0g; then there exists a common

 xed point w^ of S and T and dq(w;^ w^) = 0: 
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Proof. Choose a point x1 in X, such that x1 = Sx0 and x2 = Tx1. Continuing this process, 

we construct a sequence xn of points in X, such that 

x2i+1 = Sx2i; and x2i+2 = Tx2i+1, where i = 0;1;2;:::: 

 

First, we show that xn 2 Bdq(x0;r) for all n 2 N. Using (3.26), we have 

 for all j 2 N [ f0g: 

In particular, it holds for j = 0; that is 

 

x1 2 Bdq(x0;r): 

Let x2; ;xj 2 Bdq(x0;r) for some j 2 N. If j = 2i + 1, where i = 0;1;2;::: j 21: As S 

i = 0;1;2;::: j 21: So using (3.25), we obtain 

 dq(x2i+1;x2i+2) = dq(Sx2i;Tx2i+1) 

maxfdq(Sx2i;Tx2i+1);dq(Tx2i;Sx2i+1)g 

 (dq(x2i;x2i+1)) 2(dq(x2i 1;x2i)) 

 2i+1(dq(x0;x1)): 

Thus, we have 

 dq(x2i+1;x2i+2) 2i+1(dq(x0;x1)): (3.27) 

 

If j = 2i + 2, then as x1;x2;:::;xj 2 Bdq(x0;r) where (i = 0;1;2;:::; j 22): we obtain 

is -dominated mappings on Bdq(x0;r), then (x0;x1) 1: As T is -dominated mappings 

on Bdq(x0;r), then (x1;x2) 1: Continuing in this way we obtain (x2i;x2i+1) 1 for all 
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 dq(x2i+2;x2i+3) 2(i+1)(dq(x0;x1)): (3.28) 

Thus, from the inequalities (3.27) and (3.28), we have 

 dq(xj;xj+1) j(dq(x0;x1)): (3.29) 

Now, 

 

 

Thus, xj+1 2 Bdq(x0;r): Hence, xn 2 Bdq(x0;r) for all n 2 N. Now, the inequality (3.29) can be 

written as 

 dq(xn;xn+1) n(dq(x0;x1)); for all n 2 N: (3.30) 

Fix &> 0 and let n(&) 2 N, such that X n(dq(x0;x1)) <&: Let n;m 2 N with m>n>n(&): 

Using the triangle the inequality and the inequality (3.30), we obtain 

 m 1 m 1 

 dq(xn;xm) Xdq(xk;xk+1) X k(dq(x0;x1)) 

 k=n k=n 

X k(dq(x0;x1)) <&: 

n n(&) 

 

Thus, we have proved that fxng is a left K-Cauchy sequence in (Bdq(x0;r);dq). As Bdq(x0;r) is 

closed and so it is complete left K-sequentially. Therefore, there exists a point w^ 2 Bdq(x0;r), 

such that xn ! w:^ Also, 
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lim dq(xn;w^) = lim dq(w;x^ n) = 0: (3.31) n!1 n!1 

By assumption, we have (w;x^n) 1 for all n 2 N [ f0g. Now, by using (3.25), we get 

 dq(Sw;x^2i+2) maxfdq(Sw;Tx^2i+1);dq(Tw;Sx^ 2i+1)g 

  (dq(w;x^ 2i+1)) <dq(w;x^ 2i+1): 

Letting i ! 1 and by the inequality (3.31), we obtain dq(Sw;^ w^) < 0: Hence, Sw^ = w:^ 
Similarly by using 

 dq(Tw;x^ 2i+1) (dq(w;x^ 2i)) <dq(w;x^ 2i); 

we obtain dq(Tw;^ w^) = 0; that is, Tw^ = w:^ Hence, S and T have a common xed point in 

 

Bdq(x0;r). As S is - dominated mappings on Bdq(x0;r) we have (w; S^ w^) 1 and so 
(w;^ w^) 1: Now,    

This implies that 

dq(w;^ 

w^) 

= 

maxfdq(Sw;T^ w^);dq(Tw;S^ 
w^)g  (dq(w;^ w^)): dq(w;^ w^) 

= 0: 

 

3.3.2 Example  

Let X = Q+[f0g and let dq : X X ! X be the complete left K-sequentially dislocated quasi 

metric on X de ned by, 

dq(x;y) = 2x + y for all x;y 2 X: Let 

S;T : X ! X be de ned by, 
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and 

 

Considering, x0 = 1;r = 4; then Bdq(x0;r) = [0;2]\X. De ne (x;y) = j2x y + 3j: Clearly, 

S and T are -dominated mappings on : Now, 

: 

: 

Now, if x;y 2 (2;1) \ X; then we have the following cases. 

Case 1. If maxfdq(Sx;Ty);dq(Tx; Sy)g = dq(Sx;Ty), then for x;y 2 (2;1); we have 

: 

Case 2. If maxfdq(Sx;Ty);dq(Tx; Sy)g = dq(Tx; Sy), 

: 

So the contractive condition does not hold on the whole space: 

 

Now, if x;y 2 Bdq(x0;r); then 

Case 3. If maxfdq(Sx;Ty);dq(Tx; Sy)g = dq(Sx;Ty): 
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: 

Case 4. If maxfdq(Sx;Ty);dq(Tx; Sy)g = dq(Tx; Sy): 

: 

 

then the contractive condition holds on Bdq(x0;r): Hence, all the conditions of Theorem 3.3.1 

are satis ed and 0 is a common xed point of S and T: 

3.3.3 Corollary 

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space. Suppose there 

exist 

 

a function, : X X ! [0;+1). Let r> 0, x0 2 Bdq(x0;r) and S : X ! X be a -dominated 

mapping on Bdq(x0;r) and 2 . Assume that, for x;y 2 Bdq(x0;r); (x;y) 1; the following 

condition holds 

dq(Sx;Sy) (dq(x;y)) 

and 

 for all j 2 N [ f0g: 

If for any sequence , such that (xn;xn+1) 1 for all n 2 N [ f0g and 

 

xn ! u 2 Bdq(x0;r) as n ! +1; then (xn;u) 1 for all n 2 N [ f0g; then there exists a xed point w^ of 

S and dq(w;^ w^) = 0: 

3.3.4 Corollary 

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space. Let r> 0, x0 2 
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Bdq(x0;r) and S;T : X ! X be dominated mappings on Bdq(x0;r) and 2 . Assume that 

the following condition holds 

maxfdq(Sx;Ty);dq(Tx;Sy)g (dq(x;y)) 

 

for all (x;y) in (Bdq(x0;r) Bdq(x0;r)) \ r and 

 for all j 2 N [ f0g: 

If for any sequence fxng in Bdq(x0;r), such that fxng ! implies that xn, then there exists a point 

w^ in Bdq(x0;r), such that w^ = Sw^ = Tw^ and dq(w;^ w^) = 0: 

3.3.5 Theorem 

 

Adding condition if w^ is any common xed point in Bdq(x0;r) of S and T, x be any xed 

 

point of S or T in Bdq(x0;r), then (w;x^ ) 1to the hypotheses of Theorem 3.3.1, then S and T 

have a unique common xed point w:^ 

 

Proof. Assume that y be another xed point of T in Bdq(x0;r); then by assumption, (w;y^
 ) 1; also, 

 dq(w;y^ ) = dq(Sw;Ty^ ) (dq(w;y^ )) 

A contradiction to the fact that for each t> 0; (t) <t: So w^ = y point other 

than w:^ Similarly, S has no xed point other than w^.  

: Hence, T has no xed 
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 Now, we apply our Theorem 3.3.5 to obtain unique common xed point of three 

mappings 

on closed ball in complete dislocated quasi dq-metric space. 

3.3.6 Theorem 

Let (X;dq) be a dislocated quasi metric space;S;T;f : X ! X, such that SX [ TX fX, 

 

r> 0 and x0 2 Bdq(fx0;r). Suppose there exist a function, : X X ! [0;+1), such that 

 

(fx; Sx) 1, (fx;Tx) 1 for all fx 2 Bdq(fx0;r): If the following conditions hold for all 

 

fx;fy 2 Bdq(fx0;r); (fx;fy) 1 and 2 , 

 maxfdq(Sx;Ty);dq(Tx;Sy)g (dq(fx;fy)): (3.32) 

a

n

d

 
j 

  i(dq(fx0;Sx0)) r; for all j 2 N [ f0g: (3.33) 

i=0 

Suppose that the following conditions hold: 

 

(i) If fxng is a sequence in Bdq(fx0;r), such that (xn;xn+1) 1 for all n and xn ! u 

2 

 

Bdq(fx0;r) as n ! +1, then (u;xn) 1 for all n 2 N [ f0g. 

 

(ii) fx, fy be any xed points in Bdq(fx0;r), then (fx;fy) 1: 

(iii) If the subset fX is complete left K-sequentially and (T;f); (S;f) satis es the condition 

of weakly compatible pair of functions. 

 

then S;T and f have a unique common xed point fp in Bdq(fx0;r). Moreover dq(fp;fp) = 0: 

X 



 xcvii 

Proof. By Lemma 1.4.2, there exists E X, such that fE = fX and f : E ! X is oneto-one. 

Now, since SX [ TX fX; we de ne two mappings g;h : fE ! fE by g(fx) = Sx 

and h(fx) = Tx respectively. Since f is one-to-one on E, then g;h are well-de ned. As 

(fx;Sx) 1 implies that (fx;g(fx)) 1 and (fx;Tx) 1 implies that (fx;h(fx)) 1, 

 

then g and h are -dominated mappings on Bdq(fx0;r): Now, fx0 2 Bdq(fx0;r) fX, then 

fx0 2 fX: Let y0 = fx0; choose a point y1 in fX, such that y1 = g(y0): Also, by the inequality 

(3.33). 

j  i(dq(y0;gy0)) r; for all j 2 
N [ f0g: 
i=0 

 

Then y1 2 Bdq(fx0;r): Let y2 = h(y1). Continuing this process and having chosen yn in fX, 

such that 

y2i+1 = g(y2i) and y2i+2 = h(y2i+1); where i = 0;1;2;::; 

 

Following similar arguments of Theorem 3.3.1, yn 2 Bdq(fx0;r): Note that for fx; fy 2 

 

Bdq(fx0;r) and (fx;fy) 1, then by using the inequality (3.32), we have 

maxfdq (g(fx);h(fy));dq(h(fx);g(fy))g (dq(fx;fy)): 

As fX is a complete space; all the conditions of Theorem 3.3.5 are satis ed, we deduce 

that 

 

there exists a unique common xed point fp 2 Bdq(fx0;r) of g and h: 

The rest of the proof is similar to the proof given in Theorem 2.3.10 and so we 

leave it. 

Hence, we obtain a unique common xed point of S;T and f.  

Metric version of Theorem 3.3.6 is given below. 

3.3.7 Theorem 

X 
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Let (X;d) be a metric space; S;T;f : X ! X, such that SX [ TX fX, r > 0 and 

 

x0 2 B(fx0;r). Suppose there exist a function, : X X ! [0;+1), such that (fx;Sx) 1, 

 

(fx;Tx) 1 for all fx 2 B(fx0;r): If the following conditions hold for all fx;fy 2 B(fx0;r); 
(fx;fy) 1 and 2 ,  

and 

 d(Sx;Ty)  (d(fx;fy)): 

j  i(d(fx0;Sx0)) r; for all j 2 N 
[ f0g: 
i=0 

Suppose that the following conditions hold: 

 

(i) If fxng is a sequence in B(fx0;r), such that (xn;xn+1) 1 for all n and xn ! u 2 B(fx0;r) as 

n ! +1, then (u;xn) 1 for all n 2 N [ f0g. 

(ii) fx, fy be any xed points in B(fx0;r), then (fx;fy) 1: 

(iii) If the subset fX is complete left K-sequentially and (T;f); (S;f) satis es the condition 

of weakly compatible pair of functions. 

 

Then S;T and f have a unique common xed point fp in B(fx0;r). 

Now, we obtain the results in [11] as a corollaries of the above results. 

3.3.8 Theorem [11] 

Let (X; ;dl) be an ordered complete dislocated metric space, S;T : X ! X be dominated 

maps and x0 2 X. Suppose that for k 2 [0;1) and for S =6 T, we have 

 

dl(Sx;Ty) kdl(x;y) for all comparable elements x;y in Bdl(x0;r) 

and 

X 
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 dl(x0;Sx0) (1 k)r: 

If for a non-increasing sequence fxng ! implies that xn, then there exists a point w^ 

in Bdl(x0;r), such that dl(w;^ w^) = 0 and w^ = Sw^ = Tw:^ Also, if for any two 

points x;y in Bdl(x0;r) there exists a point z 2 Bdl(x0;r), such that z x and z y, then w^ 

is a unique common xed point in Bdl(x0;r): 

3.3.9 Example [11] 

Let X = Q+ [f0g be endowed with order (x1;y1) (x2;y2) if x1 x2 and let S;T : X2 ! X2 

be de ned by 

 

and 

: 

Clearly, S and T are dominated mappings. Let dl : X2 X2 ! X be de ned by dl((x1;y1);(x2;y2)) 

= x1 + y1 + x2 + y2, then it is easy to prove that (X2;dl) is a complete dislocated metric 

space. 

Let  then 

 

Bdl((x0;y0);r) = f(x;y) 2 X : x + y 1g 

with  

 



 c 

Also, for all comparable elements (x1;y1);(x2;y2) 2 X2, such that x1 +y1 > 1 and x2 +y2 > 

1; we have 

 

So the contractive condition does not hold on the whole space: Now, if (x1;y1);(x2;y2) 2 

 

Bdl((x0;y0);r); then 

: 

Hence, all the conditions of Theorem 3.3.8 are satis ed. Moreover, (0;0) is the common 

xed point of S and T: Also, note that for any metric d on X2; the respective condition 

does not 

 

hold on Bdl((x0;y0);r) since 

 for any k 2 [0;1): 
Moreover X2 is not complete for any metric d on X2: 

3.3.10 Remark [11] 

If we impose Banach type contractive condition for a pair S;T : X ! X of mappings on a 

metric space (X;d) that is 

d(Sx;Ty) kd(x;y) for all x;y 2 X: 



 ci 

then it follows that Sx = Tx; for all x 2 X (that is S and T are equal). Therefore the 

above condition fails to nd common xed points of S and T. However the same 

condition in dislocated metric space does not assert that S = T; this is seen in 

Example 3.3.9. Hence, Theorem 3.3.8 cannot be obtained from a metric xed point 

theorem. 

3.3.11 Theorem [11] 

Let (X; ;dl) be a ordered complete dislocated metric space, S be a self dominated 

mapping 

on X and x0 2 X. Suppose there exists k 2 [0;1) with 

 

dl(Sx;Sy) kdl(x;y); for all comparable elements x;y in Bdl(x0;r) 

 and dl(x0;Sx0) (1 k)r: 

If for a non-increasing sequence fxng in Bdl(x0;r); fxng ! implies that xn. Also, if for 

 

any x;y 2 Bdl(x0;r); the set Ax;y = fz 2 Bdl(x0;r) : z x and z yg is non empty, then there 

exists a unique xed point w^ of S in Bdl(x0;r): Further dl(w;^ w^) = 0: 

3.3.12 Theorem [11] 

Let (X; ;dl) be an ordered complete dislocated metric space, S;T : X ! X be the dominated 

map and x0 2 X. Suppose for k 2 [0;1) and for S =6 T, we have 

dl(Sx;Ty) kdl(x;y); for all comparable elements x;y in X: 
Also, if for a non-increasing sequence fxng in X; fxng ! implies that xn and if for any x;y 

2 X; the set Ax;y = fz 2 X : z x and z yg is non empty, then there exists a unique 

point w^ in X, such that w^ = Sw^ = Tw:^ Further dl(w;^ w^) = 0: 

3.3.13 Theorem [11] 
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Let (X;dl) be a complete dislocated metric space, S;T : X ! X be the self maps and x0 2 X. 

Suppose for k 2 [0;1) and for S =6 T, we have 

 

dl(Sx;Ty) kdl(x;y); for all elements x;y in Bdl(x0;r) 

and 

 dl(x0;Sx0) (1 k)r: 

 

Then there exists a unique w^ 2 Bdl(x0;r), such that dl(w;^ w^) = 0 and w^ = Sw^ = 
Tw:^ Further 

S and T have no xed point other than w:^ 

3.3.14 Theorem [11] 

Let (X; ;dl) be an ordered dislocated metric space and S;T self mappings and f be a dom- 

inated mapping on X, such that SX [ TX fX, Tx fx;Sx fx and x0 2 X. Suppose 

that for k 2 [0;1) and for S =6 T, we have 

dl (Sx;Ty) kdl(fx;fy) 

 

for all comparable elements fx;fy 2 Bdl(fx0;r) fX and 

 dl(fx0;Tx0) (1 k)r: 

 

If for a non-increasing sequence fxng ! implies that xn and if for any x;z 2 Bdl(fx0;r); 

the set Ax;z = fy 2 Bdl(fx0;r) : y z and y x for some z;x 2 Bdl(fx0;r)g is non empty that 

is every pair of elements in Bdl(fx0;r) has a lower bound in Bdl(fx0;r). If the subset fX 

is complete and (T;f); (S;f) satis es the condition of weakly compatible pair of 

functions, then 
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there exists fz in Bdl(fx0;r), such that S(fz) = T(fz) = f(fz) = fz. Also dl(fz;fz) = 0: 
3.3.15 Theorem [11] 

Let (X;dl) be a dislocated metric space and S;T;g and f be self mappings on X, such that 

SX; TX fX = gX: Assume that x0 2 X;k 2 [0;1) and S =6 T, such that following conditions 

hold: 

dl (Sx;Ty) kdl(fx;gy) 

 

for all elements fx;gy 2 Bdl(fx0;r) fX; and 

 dl(fx0;Sx0) (1 k)r: 

If the subset fX is complete, then there exists fz 2 X, such that dl(fz;fz) = 0: Also if 

(T;g); (S;f) satis es the condition of weakly compatible pair of functions, then there 

exists fz in 

 

Bdl(fx0;r), such that S(fz) = T(fz) = f(fz) = g(fz) = fz.



 civ 

 

Chapter 4 

Fixed Point Results in Closed Ball for 

Multivalued Mappings 

4.1 Introduction 
The theory and the de nitions given in this section have been submitted for publication 

[78]. 

Nadler [57], introduced a study of xed point theorems involving multivalued 

mappings (see also [17, 18]). Asl et al. [14] generalized the notion of -admissible 

mappings by introducing the concepts of - contractive multifunctions, -admissible 

mapping and obtained some xed point results for these multifunctions (see also [5, 

40, 41]). The aim of this chapter is to establish xed point results for -admissible 

multivalued mappings on closed ball satisfying generalized - -contractive conditions 

in complete left K-sequentially dislocated quasi metric space. We derive some new 

xed point theorems for ordered metric space. The examples have been constructed 

to demonstrate the novelty of our results. Our results unify, extend and 

generalize several comparable results in the existing literature. Recently, Lopez 

[67] introduced the concept of Hausdor⁄ fuzzy metric spaces on non empty compact 

sets. The idea was derived from the concept of Hausdor⁄ metric. We also establish a 

xed point result on closed ball in Hausdor⁄ fuzzy metric spaces. We introduce the 

following de nitions which will be needed in 

the sequel. 

4.1.1 De nition 
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Let K be a nonempty subset of dislocated quasi metric space X and let x 2 X: An 

element 

y0 2 K is called a best approximation in K if 

dq(x;K) = dq(x;y0); where dq(x;K) = inf 
dq(x;
y): 
y2K 

If each x 2 X has at least one best approximation in K; then K is called a proximinal set. 

 We denote CP(X) be the set of all closed proximinal subsets of X: Let denote the 

family 

of all nondecreasing functions : [0;+1) ! [0;+1), such that  for all t> 

0; where n is the nth iterate of : If 2 ; then (t) <t for all t> 0: 

4.1.2 De nition 

Let (X;d) be a metric space, S : X ! CP(X) be a multivalued mapping and : X X ! 

[0;+1). Let A X; we say that S is -admissible on A; whenever (x;y) 1 implies 

that 

(Sx; Sy) 1; for all x;y 2 A; where (Sx; Sy) = inff (a;b) : a 2 Sx;b 2 Syg: If A = X, then 

we say that S is -admissible on X: 

4.1.3 De nition 

The function Hdq : CP(X) CP(X) ! X; de ned by 

Hdq(A;B) = maxfsupdq(a;B); supdq(A;b)g 
 a2A b2B 

is called dislocated quasi hausdor⁄ metric on CP(X): 
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Let X be a nonempty set, then (X; ;dl) is called a preordered dislocated metric 

space if dl is a dislocated metric on X and is a preorder on X. Let (X; ;dq) be a 

preordered metric space and A;B X. We say that A B whenever for each a 2 A there 

exists b 2 B, such that a b. Also,we say that A r B whenever for each a 2and b 2 B 

we have a b: 

4.1.4 Lemma 

Let (X;M; ) be a fuzzy metric space. Let (K0(X);HM; ) is a Hausdor⁄fuzzy metric 

space on K0(X), then for all A;B 2 K0(X) and for each a 2 A there exist ba 2 B satis es 

M(a;B;t) = M(a;ba;t), then HM(A;B;t) M(a;ba;t). Proof. If HM(A;B;t) = inf M(a;B;t); 

then HM(A;B;t) M(a;B;t) for each a 2 A: a2A 

Hence, for each a 2 A there exist ba 2 B satis es M(a;B;t) = M(a;ba;t), then HM(A;B;t) 

M(a;ba;t): Now, if HM(A;B;t) = inf M(A;b;t) inf M(a;B;t): Hence, in both 

cases, we b2B a2A 

proved the result.  

4.2 Fixed Point Results for Multivalued Mappings in Dislocated Quasi 

Metric Spaces 

Let (X;dq) be a dislocated quasi metric space;x0 2 X and S : X ! CP(X) be a 

multivalued mapping on X, then there exist x1 2 Sx0, such that dq(x0; Sx0) = 

dq(x0;x1): Let x2 2 Sx1 be, such that dq(x1; Sx1) = dq(x1;x2): Continuing this process, 

we construct a sequence xn of points in X, such that xn+1 2 Sxn and dq(xn; Sxn) = 

dq(xn;xn+1): We denote this iterative sequence by fXS(x0)g: 

4.2.1 Theorem 

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space, r > 0; x0 2 
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Bdq(x0;r) and S : X ! CP(X) be a -admissible multifunction on Bdq(x0;r). Assume that for 

2 , such that 

 

and 

(Sx;Sy)Hdq(Sx;Sy)  (dq(x;y)) for all x;y 2 Bdq(x0;r) (4.1) 

  for all n 2 N [ f0g: (4.2) 

 

If fXS(x0)g is a sequence in Bdq(x0;r) and fXS(x0)g ! x and (xn;xn+1) 1 for xn;xn+1 2 

fXS(x0)g;n 2 N[f0g, then (xn;x) 1 or (x;xn) 1 for all n 2 N[f0g. Also, there exist 

x1 2 Sx0, such that (x0;x1) 1, then S has a xed point in Bdq(x0;r). 

 

Proof. As x0 2 Bdq(x0;r); and S : X ! CP(X) be a multivalued mapping on X, then there 

exist x1 2 Sx0, such that dq(x0; Sx0) = dq(x0;x1): If x0 = x1, then x0 is a xed point in 

 

Bdq(x0;r) of S. Let x0 =6 x1: From (4.2), we get 

 

It follows that, 

 

x1 2 Bdq(x0;r): 

 

Since (x0;x1) 1 and S is -admissible multifunction on Bdq(x0;r) and so (Sx0;Sx1) 1. Also, 

there exist x2 2 Sx1, such that dq(x1; Sx1) = dq(x1;x2): If x1 = x2, then x1 is a xed 

 

point of S in Bdq(x0;r): Let x1 =6 x2: Now, 

 dq(x1;x2) = dq(x1;Sx1) Hdq(Sx0;Sx1) 
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(Sx0;Sx1)Hdq(Sx0;Sx1): 

 

Note that x2 2 Bdq(x0;r); because 

 dq(x0;x2) dq(x0;x1) + dq(x1;x2) 

 dq(x0;x1) + (Sx0;Sx1)Hdq(Sx0;Sx1) 

  by (4.1) 

As (Sx0; Sx1) 1;x1 2 Sx0 and x2 2 Sx1 and so (x1;x2) 1: As S is -

admissible 

 

multifunction on Bdq(x0;r). Thus, (Sx1; Sx2) 1: Let x2; ;xj 2 Bdq(x0;r) for some j 2 N, 

such that xj+1 2 Sxj and dq(xj; Sxj) = dq(xj;xj+1): As (Sx1; Sx2) 1; we have (x2;x3) 1; 

which further implies (Sx2; Sx3) 1: Continuing this process, we have (Sxj 1; Sxj)

 1. Now, 

dq(xj;xj+1) = dq(xj;Sxj) Hdq(Sxj 1;Sxj) 

(Sxj 1;Sxj)Hdq(Sxj 1;Sxj) 

 

  (dq(xj 1;xj)) :: j(dq(x0;x1)) (4.3) 

dq(x0;xj+1) dq(x0;x1) + :: + dq(xj;xj+1) dq(x0;x1) + :: + 

j(dq(x0;x1)) 

j 

= X i(dq(x0;x1)) r: 

i=0 
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Thus, xj+1 2 Bdq(x0;r): As (Sxj 1;Sxj) 1;xj 2 Sxj 1;xj+1 2 Sxj; we have (xj;xj+1) 1: Also, S 

is -admissible multifunction on Bdq(x0;r); therefore (Sxj; Sxj+1) 1: Hence, by 

mathematical induction, xn 2 Bdq(x0;r) and (Sxn; Sxn+1) 1 for all n 2 N. Now, the 

inequality (4.3) can be written as 

dq(xn;xn+1) n(dq(x0;x1)); for all n 2 N: 

Fix &> 0 and let n(&) 2 N, such that X n(dq(x0;x1)) <&: Let n;m 2 N with m>n>k(&); 

then we obtain 

 m 1 m 1 

 dq(xn;xm) Xdq(xk;xk+1) X k(dq(x0;x1)) 

 k=n k=n 

X k(dq(x0;x1)) <&: 

n k(&) 

 

Thus, we proved that fxng is a Cauchy sequence in (Bdq(x0;r);dq). As every closed ball 

in a complete left K-sequentially dislocated quasi metric space is complete left K-

sequentially and 

 

so there exists w^ 2 Bdq(x0;r), such that xn ! w;^ and 

 lim dq(xn;w^) = lim dq(w;x^ n) = 0: 
 n!1 n!1 

Note that fxng is a fXS(x0)g in Bdq(x0;r): As (Sxn;Sxn+1) 1 for all n 2 N[f0g; we have 

(xn+1;xn+2) 1 for all n 2 N[f0g: By assumption, we have (xn;w^) 1 for all n 2 N[f0g: 
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Thus, (Sxn; Sw^) 1: Now, 

 dq(w;S^ w^) dq(w;x^n+1) + dq(xn+1;Sw^) 

dq(w;x^ n+1) + Hdq(Sxn;Sw^) 

dq(w;x^ n+1) + 

(Sxn;Sw^)Hdq(Sxn;Sw^) 

dq(w;x^ n+1) + (dq(xn;w^)): 

Letting n ! 1, we obtain dq(w; S^ w^) = 0: Similarly, if (w;x^n) 1 for all n 2 N [ f0g: 
Thus, 

(Sw; Sx^ n) 1: Now,   

  
dq(Sw;^ w^)  (dq(w;x^ n)) + dq(xn+1;w^): 

We obtain dq(Sw;^ w^) = 0: Hence, w^ 2 Sw:^ So S has axed point in Bdq(x0;r). 

4.2.2 Corollary 

Let (X; ;dq) be a preordered complete left K-sequentially dislocated quasi metric space, 

S : 

X ! CP(X). Suppose there exists 2 ; with 

 

Hdq(Sx;Sy) (dq(x;y)); for all elements x;y in Bdq(x0;r) with x y 

and  for all n 2 N [ f0g 

 

for x0 2 Bdq(x0;r);n 2 N, r> 0: If fXS(x0)g is a sequence in Bdq(x0;r) and fXS(x0)g ! x and 

xn xn+1 for xn;xn+1 2 fXS(x0)g; then x xn or xn x for all n 2 N[f0g. Also, there 

 

exist x1 2 Sx0, such that x0 x1. If x;y 2 Bdq(x0;r), such that x y implies Sx r Sy, then 

 

there exists a point w^ in Bdq(x0;r), such that w^ 2 Sw:^ 
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4.2.3 Corollary 

Let (X; ;dq) be a preordered complete left K-sequentially dislocated quasi metric space, 

S : 

X ! CP(X). Suppose there exists k 2 [0;1) with 

 

Hdq(Sx;Sy) kdq(x;y); for all elements x;y in Bdq(x0;r) with x y 

and  for all n 2 N [ f0g 

 

for x0 2 Bdq(x0;r);n 2 N[f0g;r> 0: If fXS(x0)g is a sequence in Bdq(x0;r) and fXS(x0)g ! 

x and xn xn+1 for xn;xn+1 2 fXS(x0)g;n 2 N[f0g; then x xn or xn x for all n 2 N[f0g. 

 

Also, there exist x1 2 Sx0, such that x0 x1. If x;y 2 Bdq(x0;r), such that x y implies 

 

Sx r Sy, then there exists a point w^ in Bdq(x0;r), such that w^ 2 Sw:^ 

4.2.4 Corollary 

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space and S : X ! X, 

r> 0 and x0 be an arbitrary point in Bdq(x0;r). Suppose there exists, : X X ! [0;+1) 

be a -admissible mapping on Bdq(x0;r). For 2 , assume that, 

 

 x;y 2 Bdq(x0;r); (x;y) 1 =) dq(Sx;Sy) (dq(x;y)) 

and j  i(dq(x0;Sx0)) r for all j 2 
N [ f0g: 

i=0 

Suppose that the following assertions hold: 

(i) (x0; Sx0) 1; 

 

X 
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(ii) for a Picard sequence xn+1 = Sxn in Bdq(x0;r), such that (xn;xn+1) 1 for 

all n 2 

 

 N [ f0g and xn ! u 2 Bdq(x0;r) as n ! +1, then (xn;u) 1 for all n 2 N [ f0g. 

 

then there exists a point w^ in Bdq(x0;r), such that w^ = Sw:^ 

4.2.5 Corollary 

Let (X; ;dq) be a preordered complete left K-sequentially dislocated quasi metric space 

and 

 

let S : X ! X be nondecreasing mapping and x0 2 Bdq(x0;r). Suppose that the following 

assertions hold: 

 

(i) there exists k 2 [0;1), such that dq(Sx; Sy) kdq(x;y) for all x;y 2 Bdq(x0;r) with 

x y; 

 for all n 2 
N [ f0g; 

 

(iii) for a Picard sequence xn+1 = Sxn in Bdq(x0;r), such that xn xn+1 for all n 2 N [ f0g 

 

and xn ! u 2 Bdq(x0;r) as n ! +1, then xn u for all n 2 N [ f0g. 

 Then S has a xed point. 

4.2.6 Example 

Let X = Q+[f0g and let dq : X X ! X be the complete left K-sequentially dislocated quasi 

metric on X de ned by, 

 for all x;y 

2 X: De ne the multivalued mapping S : X ! CP(X) by 

: 



 cxiii 

 

Considering, x0 = 1;r = 4; then Bdq(x0;r) = [0;1] \ X: Now, dq(x0; Sx0) = dq(1; S1) = 

 and 

1 if x;y 2 [0;1] 

otherwise: 

Now, 

: 

So the contractive condition does not hold on the whole space: Clearly 

 

(Sx;Sy)Hdq(Sx;Sy) (dq(x;y)) for all x;y 2 Bdq(x0;r): 

 

So the contractive condition holds on Bdq(x0;r): Also, 

 

We prove that by Theorem 4.2.1 are satis ed: Moreover, S has a xed point . 

4.2.7 Theorem 

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space, r > 0; x0 2 

 

Bdq(x0;r) and S : X ! CP(X) be a -admissible multifunction on Bdq(x0;r). Assume that 

for , such that 

 
(Sx;Sy)Hdq(Sx;Sy) t(dq(x;Sx) + dq(y;Sy)) for all x;y 2 Bdq(x0;r) (4.4) 

 and dq(x0;x1)) (1 )r (4.5) 

where  is a sequence in Bdq(x0;r) and fXS(x0)g ! x and (xn;xn+1) 1 

for xn;xn+1 2 fXS(x0)g; then (xn;x) 1 or (x;xn) 1 for all n 2 N [ f0g. Also, there 

 

exist x1 2 Sx0, such that (x0;x1) 1, then S has a xed point in Bdq(x0;r). 
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Proof. As x0 2 Bdq(x0;r); and S : X ! CP(X) be a multivalued mapping on X, then there 

exist x1 2 Sx0, such that dq(x0; Sx0) = dq(x0;x1): If x0 = x1, then x0 is a xed point in 

 

Bdq(x0;r) of S. Let x0 =6 x1: From (4.5), we get 

 dq(x0;x1) (1 )r<r: 

It follows that, 

 

x1 2 Bdq(x0;r): 

 

Since (x0;x1) 1 and S is -admissible multifunction on Bdq(x0;r) and so (Sx0;Sx1) 1. 

Also, there exist x2 2 Sx1, such that dq(x1; Sx1) = dq(x1;x2): If x1 = x2, then x1 is a xed 

 

point of S in Bdq(x0;r): Let x1 =6 x2: Now, we have 

dq(x1;x2)  Hdq(Sx0;Sx1) (Sx0;Sx1)Hdq(Sx0;Sx1) 

t(dq(x0;Sx0) + dq(x1;Sx1)) 

Thus, 

= t(dq(x0;x1) + dq(x1;x2)): 

dq(x1;x2) dq(x0;x1): 

 

Note that x2 2 Bdq(x0;r); since 

 dq(x0;x2) dq(x0;x1) + dq(x1;x2) 

dq(x0;x1) + dq(x0;x1) 

 (1 + )(1 )r<r: 

As (Sx0; Sx1) 1;x1 2 Sx0 and x2 2 Sx1 and so (x1;x2) 1: As S is -

admissible 

 



 cxv 

multifunction on Bdq(x0;r): Thus, (Sx1; Sx2) 1: Let x2; ;xj 2 Bdq(x0;r) for some j 2 N, 

such that xj+1 2 Sxj and dq(xj; Sxj) = dq(xj;xj+1): As (Sx1; Sx2) 1; we have (x2;x3) 1; 
which further implies (Sx2; Sx3) 1: Continuing this process, we have 

(Sxj 1; Sxj) 1. Now,   

dq(xj;xj+1) Hdq(Sxj 1;Sxj) (Sxj 1;Sxj)Hdq(Sxj 1;Sxj) 

t(dq(xj 1;Sxj 1) + dq(xj;Sxj)) 

(dq(xj 1;xj)) :: j(dq(x0;x1)) 

Now, 

 dq(x0;xj+1)  

Thus, xj+1 2 Bdq(x0;r): As (Sxj 1;Sxj) 1;xj 2 Sxj 1;xj+1 2 Sxj; we have (xj;xj+1) 1: Also, S 

is -admissible multifunction on Bdq(x0;r); therefore (Sxj; Sxj+1) 1: Hence, 

by mathematical induction, xn 2 Bdq(x0;r) and (Sxn; Sxn+1) 1 for all n 2 N. Now, 

 dq(xn;xn+1) n(dq(x0;x1)); for all n 2 N: 

Now, 

dq(xn;xn+i) 

: 

 

Thus, we proved that fxng is a Cauchy sequence in (Bdq(x0;r);dq). As every closed ball 

in a complete left K-sequentially dislocated quasi metric space is complete left K-

sequentially and 

 

so there exists w^ 2 Bdq(x0;r), such that xn ! w;^ and 
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lim dq(xn;w^) = lim dq(w;x^
 n) = 0: n!1 n!1 

 
Note that, fxng is a fXS(x0)g in Bdq(x0;r): As (Sxn; Sxn+1) 1 for all n 2 N [ f0g; 

we have (xn+1;xn+2) 1 for all n 2 N [ f0g: By assumption, we have (xn;w^) n 2 N [ f0g: Thus, 

(Sxn; Sw^) 1: Now, 

 dq(w;S^ w^) dq(w;x^ n+1) + dq(xn+1;Sw^) 

dq(w;x^ n+1) + Hdq(Sxn;Sw^) dq(w;x^ n+1) +

 (Sxn;Sw^)Hdq(Sxn;Sw^) dq(w;x^ n+1) + 

t(dq(xn;xn+1) + dq(w;S^ w^)): 

1 for all 

Letting n ! 1, we obtain dq(w; S^ w^) = 0: Similarly, if (w;x^ n) 1 for all n 2 N [ f0g; we 

obtain dq(Sw;^ w^) = 0: Hence, w^ 2 Sw:^ So S has a xed point in Bdq(x0;r). 

4.2.8 Corollary 

Let (X; ;dq) be an ordered complete left K-sequentially dislocated quasi metric space, S : 

X ! CP(X). Suppose there exists  with 

 

Hdq(Sx;Sy) t(dq(x;Sx) + dq(y;Sy)) for all elements x;y in Bdq(x0;r) with x y 

and 

 dq(x0;Sx0) (1 )r 

for  and xn xn+1 for 

xn;xn+1 2 fXS(x0)g; 

 

then x xn or xn x for all n 2 N [ f0g. If x;y 2 Bdq(x0;r), such that x y implies 

 

Sx r Sy, then there exists a point w^ in Bdq(x0;r), such that w^ 2 Sw:^ 

Let (X;dq) be a complete left K-sequentially dislocated quasi metric space, r > 0; x0 2 

Bdq(x0;r) and S : X ! CP(X) be a -admissible multifunction on Bdq(x0;r). Assume 
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4.2.9 Theorem 

  for all n 2 N [ f0g: (4.7) 

 

If fXS(x0)g is a sequence in Bdq(x0;r), such that fXS(x0)g ! x and (xn;xn+1) 1 for xn;xn+1 2 

fXS(x0)g;n 2 N [ f0g; then (xn;x) 1 or (x;xn) 1 for all n 2 N [ f0g. Also, 

 

there exist x1 2 Sx0, such that (x0;x1) 1, then S has a xed point in Bdq(x0;r). 

 

Proof. As x0 2 Bdq(x0;r); and S : X ! CP(X) be a multivalued mapping on X, then there 

exist x1 2 Sx0, such that dq(x0; Sx0) = dq(x0;x1): If x0 = x1, then x0 is a xed point in 

Bdq(x0;r) of S. Let x0 =6 x1: From (4.7), we get 

 

that for 2 , such that 

where 

and 

(Sx;Sy)Hdq(Sx;Sy) (Mq(x;y)) for all x;y 2 Bdq(x0;r) 

Mq(x;y) = maxfdq(x;y);dq(x;Sx);dq(y;Sy)g 

(4.6) 
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It follows that, 

 

x1 2 Bdq(x0;r): 

 

Since (x0;x1) 1 and S is -admissible multifunction on Bdq(x0;r) and so (Sx0;Sx1) 1. Also, 

there exist x2 2 Sx1, such that dq(x1; Sx1) = dq(x1;x2): If x1 = x2, then x1 is a xed 

 

point of S in Bdq(x0;r): Let x1 =6 x2: Now, 

 dq(x1;x2) = dq(x1;Sx1) Hdq(Sx0;Sx1) 

(Sx0;Sx1)Hdq(Sx0;Sx1) 

  (Mq(x0;x1)) by (4.6) 

 (maxfdq(x0;x1);dq(x0;Sx0);dq(x1;Sx1)g)  

(maxfdq(x0;x1);dq(x1;x2)g): 

If maxfdq(x0;x1);dq(x1;x2) = dq(x1;x2); then dq(x1;x2) (dq(x1;x2)): This is a 

contradiction to the fact that (t) <t for all t> 0: Hence, we obtain 

maxfdq(x0;x1);dq(x1; Sx1) = dq(x0;x1): Now, 

 dq(x1;x2) (dq(x0;x1)): (4.8) 

 

Note that x2 2 Bdq(x0;r); because 

 dq(x0;x2) dq(x0;x1) + dq(x1;x2) 

  by (4.8) 

As (Sx0; Sx1) 1;x1 2 Sx0 and x2 2 Sx1 and so (x1;x2) 1: As S is -

admissible 
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multifunction on Bdq(x0;r). Thus, (Sx1; Sx2) 1: Let x2; ;xj 2 Bdq(x0;r) for some j 2 N, 

such that xj+1 2 Sxj and dq(xj; Sxj) = dq(xj;xj+1): As (Sx1; Sx2) 1; we have (x2;x3) 1; 

which further implies (Sx2; Sx3) 1: Continuing this process, we have 

 (Sxj 1; Sxj) 1. Now, xj 2 Sxj 1;xj+1 2 Sxj; we have 

 dq(xj;xj+1) = dq(xj;Sxj) Hdq(Sxj 1;Sxj) 

(Sxj 1;Sxj)Hdq(Sxj 1;Sxj) 

 (Mq(xj 1;xj)) 

 (maxfdq(xj 1;xj);dq(xj 1;Sxj 1);dq(xj;Sxj)g)  

(maxfdq(xj 1;xj);dq(xj;xj+1)): 

If maxfdq(xj 1;xj);dq(xj;xj+1) = dq(xj;xj+1); then dq(xj;xj+1) (dq(xj;xj+1)): This is a 

contradiction to the fact that (t) <t for all t> 0: Hence, we obtain maxfdq(xj 

1;xj);dq(xj;xj+1)g = dq(xj 1;xj): 

 dq(xj;xj+1) ::: j(dq(x0;x1)): (4.9) 

 dq(x0;xj+1) dq(x0;x1) + ::: + dq(xj;xj+1) 

dq(x0;x1) + ::: + j(dq(x0;x1)) 
j 

= X i(dq(x0;x1)) r: 

i=0 

 

Thus, xj+1 2 Bdq(x0;r): As (Sxj 1;Sxj) 1;xj 2 Sxj 1;xj+1 2 Sxj; we have (xj;xj+1) 1: Also, S 

is -admissible multifunction on Bdq(x0;r); therefore (Sxj; Sxj+1) 1: Hence, by 
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mathematical induction, xn 2 Bdq(x0;r) and (Sxn; Sxn+1) 1 for all n 2 N. Now, the 

inequality (4.9) can be written as 

dq(xn;xn+1) n(dq(x0;x1)); for all n 2 N: 

Fix "> 0 and let n(") 2 N, such that X n(dq(x0;x1)) <": Let n;m 2 N with m>n>k("); 
then we obtain 

 dq(xn;xm)  

 

Thus, we proved that fxng is a Cauchy sequence in (Bdq(x0;r);dq). As every closed ball 

in a complete left K-sequentially dislocated quasi metric space is left K-sequentially 

complete and 

 

so there exists w^ 2 Bdq(x0;r), such that xn ! w;^ and 

lim dq(xn;w^) = lim dq(w;x^
 n) = 0: n!1 n!1 

 

Note that fxng is a fXS(x0)g in Bdq(x0;r): As (Sxn;Sxn+1) 1 for all n 2 N[f0g; we have 

(xn+1;xn+2) 1 for all n 2 N[f0g: By assumption, we have (xn;w^) 1 for all n 2 N[f0g: 

Thus, (Sxn; Sw^) 1: Now, 

 dq(w;S^ w^) dq(w;x^n+1) + dq(xn+1;Sw^) 
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dq(w;x^ n+1) + Hdq(Sxn;Sw^) dq(w;x^ n+1) + 

(Sxn;Sw^)Hdq(Sxn;Sw^) dq(w;x^ n+1) + 

(maxfdq(xn;w^);dq(xn;xn+1);dq(w;S^ w^)g): 

Letting n ! 1, we obtain dq(w; S^ w^) = 0; which implies w^ 2 Sw:^ Similarly, if(w;x^ n) 1 for 

all n 2 N [ f0g: Thus, (Sw; Sx^n) 1: Now, 

 dq(Sw;^ w^) (dq(w;x^n)) + dq(xn+1;w^): 

We obtain dq(Sw;^ w^) = 0: Hence, w^ 2 Sw:^ So S has axed point in Bdq(x0;r). 

4.2.10 Corollary 

Let (X; ;dq) be a preordered complete left K-sequentially dislocated quasi metric space, 

S : 

 

X ! CP(X). Suppose that there exists 2 ;x0 2 Bdq(x0;r);r> 0 with 

 

Hdq(Sx;Sy) (maxfdq(x;y);dq(x;Sx);dq(y;Sy)g); for all elements x;y in Bdq(x0;r) with x y 

and 

 for all n 2 N [ f0g: 

 

If fXS(x0)g is a sequence in Bdq(x0;r), such that fXS(x0)g ! x and xn xn+1 for xn;xn+1 2 

fXS(x0)g; then x xn or xn x for all n 2 N [ f0g. Also, there exist x1 2 Sx0, such that 

 

x0 x1. If x;y 2 Bdq(x0;r), such that x y implies Sx r Sy, then there exists a point w^ in 

 

Bdq(x0;r), such that w^ 2 Sw:^ 

4.2.11 Corollary 
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Let (X;dq) be a complete left K-sequentially dislocated quasi metric space and S : X ! X, 

r> 0 and x0 be an arbitrary point in Bdq(x0;r). Suppose there exists, : X X ! [0;+1) 

be a -admissible mapping on Bdq(x0;r). For 2 , assume that, 

 

 x;y 2 Bdq(x0;r); (x;y) 1 =) dq(Sx;Sy) (maxfdq(x;y);dq(x;Sx);dq(y;Sy)g) 

and j  i(dq(x0;Sx0)) r for all j 2 
N [ f0g: 

i=0 

Suppose that the following assertions hold: 

(i) (x0; Sx0) 1; 

 

(ii) for a Picard sequence xn+1 = Sxn in Bdq(x0;r), such that (xn;xn+1) 1 for 

all n 2 

 

 N [ f0g and xn ! u 2 Bdq(x0;r) as n ! +1, then (xn;u) 1 for all n 2 N [ f0g. 

 

then there exists a point w^ in Bdq(x0;r), such that w^ = Sw:^ 

4.2.12 Corollary 

Let (X; ;dq) be a preordered complete left K-sequentially dislocated quasi metric space 

and 

 

let 2 ;x0 2 Bdq(x0;r);r> 0 and S : X ! X be a nondecreasing mapping on A. Suppose 

that the following assertions hold: 

 

(i) dq(Sx; Sy) (maxfdq(x;y);dq(x; Sx);dq(y; Sy)g); for all elements x;y in Bdq(x0;r) 

with x y; 

(ii) x0 Sx0 and Pji=0 i(dq(x0; Sx0)) r for all j 2 N [ f0g; 

 

(iii) for a Picard sequence xn+1 = Sxn in Bdq(x0;r), such that xn xn+1 for all n 2 N [ f0g 

 

X 
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and xn ! u 2 Bdq(x0;r) as n ! +1, then xn u for all n 2 N [ f0g. 

 Then S has a xed point. 

4.2.13 Example 

 

Let X = Q+[f0g and let dq : X metric 

on X de ned by, 

X ! X be the complete left K-sequentially dislocated quasi 

 for all x;y 

2 X: De ne the multivalued mapping S : X ! CP(X) by 

: 

 

Considering, x0 = 1;r = 4; then Bdq(x0;r) = [0;1] \ X: Now, dq(x0; Sx0) = dq(1; S1) = 

 and 

1 if x;y 2 [0;1] 

otherwise: 

Now, 

: 

So the contractive condition does not hold on X: Clearly 

 

(Sx;Sy)Hdq(Sx;Sy) (maxfdq(x;y);dq(x;Tx);dq(y;Ty)g) for all x;y 2 Bdq(x0;r): 

 

So the contractive condition holds on Bdq(x0;r): Also, 

 

Hence, all the conditions of Theorem 4.2.9 are satis ed: Moreover, S has a xed point . 
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4.3 Fixed Point Results for Multivalued Mappings in Hausdor⁄ Fuzzy 

Metric Spaces 

4.3.1 Theorem 

Let (X;M; ) be a complete fuzzy metric space, where be a continuous t-norm, de ned 

as a a a or a a = minfa;bg. Let (K0(X);HM; ) is Hausdor⁄ fuzzy metric space on 

K0(X). Let x0 2 X and S : X ! K0(X) be a multivalued mapping. Assume that for some 

k 2 (0;1) and t> 0, we have 

 

and 

HM(Sx;Sy;kt) M(x;y;t) for all x;y 2 BM(x0;r;t) (4.10) 

  M(x0;Sx0;(1 k)t)) 1 r: (4.11) 

Then S has a xed point in BM(x0;r;t). 

Proof. We know that x0 2 BM(x0;r;t): We construct a sequence fxng of points in X 

as follow. Let x1 2 X be, such that x1 2 Sx0 and M(x0; Sx0;t) = M(x0;x1;t): If x0 = x1, 

then x0 is a xed point of S. Let x0 =6 x1: By Lemma 4.1.4, there exist x2 2 Sx1 satis es 

M(x1; Sx1;t) = M(x1;x2;t) and 

M(x1;x2;t) HM(Sx0;Sx1;t): 

If x1 = x2, then x1 is a xed point of S: Let x1 =6 x2: For x2 2 X be, such that x2 2 Sx1, then 

by Lemma 4.1.4, there exist x3 2 Sx2 satis es M(x2; Sx2;t) = M(x2;x3;t) and 

M(x2;x3;t) HM(Sx1;Sx2;t): 
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By induction, we have for xn 2 X;xn 1 
=6 xn be, such that xn 2 Sxn 1, then by Lemma 4.1.4, 

there exist xn+1 2 Sxn satis es M(xn; Sxn;t) = M(xn;xn+1;t) and 

M(xj;xj+1;t) 

(4.13) 

Now,      

M(x0;xj+1;t) > M(x0;xj+1;(1 kj+1)t) 

   

 M(x0;x1;(1 k)t) M(x1;x2;(1 k)kt) :: M(xj;xj+1;(1 k)kjt) 

 M(x0;x1;(1 k)t) M(x0;x1;(1 k)t) :: M(x0;x1;(1 k)t) 

 
1 r 1 r :: 1 r = 1 r 

   

 

which implies that xj+1 2 BM(x0;r;t): Now, (4.13) can be written as, 

 : (4.14) 

Now, for each n;m 2 N;n>m; we have 

M(xn;xn+1;t) HM(Sxn 1;Sxn;t): 

First, we will show that xn 2 BM(x0;r;t): By (4.11), we get 

  (4.12) 

M(x0;x1;t) >M(x0;x1;(1 k)t) = M(x0;Sx0;(1 k)t)) 

which shows that x1 2 BM(x0;r;t): Now, let x2; ;xj 2 BM(x0;r;t) 

1 r  
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M(xn;xm;t) > M(xn;xm;(1 km n)t) 

 

As, lim M(x;y;t) = 1 for all x;y 2 X: In particular 
t!1 

 : (4.16) 

By using (4.16) in (4.15), we get 

M(xn;xm;t) = 1 as n ! 1: 

Hence, fxng is a Cauchy sequence in BM(x0;r;t): As every closed ball of a complete 

fuzzy 

 

metric space is complete. So BM(x0;r;t) is complete. So there exists w^ 2 BM(x0;r;t), 

such 

that xn ! w^ as n ! 1: Now, 

 M(w;S^ w;t^) M(w;x^ n;(1 k)t) M(xn;Sw;kt^ ): 

By Lemma 4.1.4, we have    

 M(w;S^ w;t^ ) M(w;x^ n;(1 k)t) HM(Sxn 1;Sw;kt^ ) 

Letting n ! 1; we have 

M(w;x^ n;(1 k)t) M(xn 1;w;t^ ). by (4.10) 

 M(w;S^ w;t^ ) 1 1 = 1 

which implies that w^ 2 Sw:^  

4.3.2 Corollary 

Let (X;M; ) be a complete fuzzy metric space, where be a continuous t-norm, de ned as 
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a a a or a a = minfa;bg. Let x0 2 X and S : X ! X be a self mapping. Assume that for 

some k 2 (0;1) and t> 0, we have 

 

M(Sx;Sy;kt) M(x;y;t) for all x;y 2 BM(x0;r;t) 

and 

 M(x0;Sx0;(1 k)t)) 1 r: 

 

Then S has a xed point in BM(x0;r;t). 
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