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Preface

The analysis of non Newtonian fluids has gained the attention of engineers and scientist in recent
times due to their important application in various branches of science and engineering. The non-
Newtonian fluids are important in chemical and nuclear industries, material processing.
geophysics and bio-engineering. The flow of such non-Newtonian fluids with heat transfer over a
stretching surface has tremendous applications in the field of many industrial processes like
manufacturing of plastic sheets, artificial fibers and polymeric sheets, plastic foam processing,
extrusion of polymer sheet from a die, heat materials travelling between a feed roll and many
others. The literature survey indicates that in the general, the stretching sheet is assumed non-
oscillatory. However, the situation can arise where sheet may stretch and oscillate at the same
time. The flow induced by such streiching surface is inherently unsteady. The combined heat and
mass transfer effects on the flow due to oscillatory stretching surface is also an interesting area of
research because of its valuable applications in industries and technology. Moreover, the
governing equations of problems are highly nonlinear partial differential equations which always
pose challenges for mathematicians to compute analytic and numerical solutions of these
equations. In this thesis, we investigate the flow of various non-Newtonian fluids like second
grade fluid, third grade fluid, Maxwell fluid, Couple stress fluid and Eyring-Powel fluid with
heat/mass transfer over an oscillatory stretching surface. Moreover, flow features in the presence
of saturated porous media and suction/injection phenomenon has also been discussed
comprehensively. The heat transfer analysis incorporating the effects of radiation, heat
absorption/generation. Cattaneo-Christov heat flux mode! and convective boundary condition is
also presented. The resulting partial differential equations are highly nonlinear in nature. The
analytical and numerical solutions of highly nonlinear partial differential equations are computed
by using homotopy analysis method and an implicit finite difference scheme.

Chapter one consists of brief introduction and some basic definitions. Various types of
viscoelastic constitutive equations have been discussed. Some details about finite difference
scheme and homotopy analysis method are also included in this chapter.

Chapter 2 investigates the slip effects on the hydromagnetic flow of a viscoelastic second grade
fluid through porous medium over a porous oscillatory stretching sheet. It is assumed that sheet
is oscillating back and forth in its own plane and stretched linearly in X — direction. The solution
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of the problem is obtained numerically using finite ;aiffercncc method. The effects of viscoelastic
parameter, combined parameter, ratio of oscillating frequency to stretching rate parameter,
suction parameter and slip length on velocity and skin-friction coefficient are discussed. The
study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates
oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the involved
parameters. Moreover, the results also predict a reduction in the amplitude of skin friction
coefficient by increasing slip at the stretching surface. The results of this chapter are accepted
for publication in “Journal of Porous Media”.

Chapter 3 illustrates the boundary layer flow and heat transfer of an electrically conducting
viscoelastic fluid (second grade fluid) over a porous oscillating stretching surface. The reduced
partial differential equations in the normalized variables and have been solved numerically by
using an implicit finite difference scheme. It is found that amplitude of flow velocity increases
with increasing viscoelastic and mass suction/injection parameters. However, it decreases with
increasing the strength of the applied magnetic ﬁg‘ld. Moveover, the temperature of fluid is a
decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl
number. The contents of this chapter have been published in “PLOS ONE, 2015; 10(12):
¢0144299.

Chapter 4 extends the results of chapter 2 by including the Soret, Dufour and thermal radiation
effects. The dimensionless partial differential equations are solved analytically by using
homotopy analysis method. The variations of the velocity, temperature and concentration
profiles for different values of emerging parameters are shown graphically and discussed in
detail. It is observed that temperature decreases by an increase in the effective Prandtl number
and the viscoelastic parameter. The concentration field increases by increasing the porosity
parameter and the Soret number while it decreases by increasing the viscoelastic parameter and
the Schmidt number. The contents of this chapter are available online in “Journal of the
Brazilian Society of Mechanical Sciences and Engineering” DOIL: 10.1007/s40430-016-0506-
X.

Chapter 5 presents analysis of the boundary layer flow of a third grade fluid over an oscillatory
stretching sheet. The heat transfer analysis has been performed in presence of the thermal

radiation and the convective boundary conditions. The transformed set of governing equations is
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solved by homotopy analysis method. It is concluded that the amplitude of velocity increases by
increasing third grade fluid parameter while it decreases by increasing Hartmann number and
ratio of the oscillation frequency of the sheet to its stretching rate parameter. The temperature
profile increases by increasing thermal Biot number while decreases by increasing third grade
fluid parameter. Moreover, the amplitude of skin friction coefficient decreases by increasing
Reynolds number and third grade parameter. These observations are published in “Nonlinear
Engineering, 2015; 4(4): 223-236.”

Chapter 6 deals with the hydromagnetic flow and heat transfer of an electrically conducting
Jeffrey fluid over an oscillatory stretching surface. Series solutions of the problem have been
computed by using homotopy analysis methods while an implicit finite difference scheme is
employed for numerical solutions. The results show that HAM solution at the higher order of
approximation is in great agreement with the numerical solution. It is noted that the velocity
increases by increasing Deborah number and decreases by increasing the ratio of relaxation to
retardation time parameter. The amplitude of oscillation of the skin friction coefficient increases
by increasing both Deborah number and the ratio of relaxation to retardation time parameter. The
temperature increases by increasing ratio of relaxation to retardation time parameter and
Hartmann number. These results are published in “Zeitschrift fiir Naturforschung A, 2015;
70(7)a: 567-576".

Chapter 7 presents the hydromagnetic flow and heat transfer of a couple stress fluid over a
porous oscillatory stretching surface in the presence of heat sourcefsink. The unsteady flow
problem is reduced into two coupled partial differential equations using dimensionless variables.
Homotopy analysis method is employed to obtain the solution of these equations. Based on the
solution an extensive analysis is performed to investigate the effects of various flow parameters
on the velocity, temperature, skin friction coefficient and Nusselt number. It is found that the
presence of couple stress in viscous fluid increases the amplitude of oscillations in the velocity
and the skin friction coefficient. It is also noticed that the temperature increases by increasing
heat source parameter. Moreover, the numerical values of the local Nusselt number are
calculated and shown in tabular form. It is found that the Nusselt number increases by increasing
Prandt]l number while it decreases by increasing couple stress parameter. These findings are

published in “Alexandria Engineering Journal, 2016; 55: 915-924,
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Chapter 8 highlights the Soret and Dufour effects on hydromagnetic flow of Eyring-Powell fluid
over an oscillatory stretching surface in the presence of heat generation/ absorption and chemical
reaction. The convective boundary conditions are imposed on the energy equation. The
governing equations are solved by using homotopy analysis method. It is observed that velocity
increases with the increase of Eyring-Powell fluid parameter. The temperature increases with
increasing Dufour number, heat source parameter and thermal Biot number. Moreover,
concentration profile decreases with chemical reaction parameter. The results of this chapter
are accepted for publication in “Thermal Science Journal”.

Chapter 9 deals with combined heat and mass transfer effects in the unsteady flow of Walters’ B
Nanofluid over an oscillatory stretching surface. The effects of thermal radiation and heat
absorption/gencration are also considered in the energy equation. The study shows that the
velocity of the fluid decreases by increasing viscoelastic fluid parameter. It is noted that the
temperature increases by increasing thermal Biot number, Hartmann number, Brownian force
parameter, thermophoresis parameter and heat source parameter. The concentration decreases
with increase in Schmidt number and Brownian force parameter The effect of Prandt] number on
the concentration profile is marginal. The amplitude of the skin friction increases by increasing
viscoelastic parameter and Hartmann number. These findings have been accepted for
publication in “Journal of Computational and Theoretical Nanoscience’.

In Chapter 10, the hydromagnetic flow and heat transfer of a Maxwell fluid is analyzed. The
boundaries are assumed to be oscillatory. The energy equation based on the Cattaneo-Christov
heat flux model is used for heat transfer analysis. The system of nonlinear equations solved by
means of the homotopy analysis method (HAM). It is found that Hartmann and Deborah
numbers suppress the velocity. On the other hand, the velocity increases by increasing ratio of
oscillation frequency to stretching rate. A reverse flow occurs in the central region of the channel
which is found to decrease by increasing Hartmann and Deborah numbers. The temperature
inside the channel predicted on the basis of Cattaneo-Christov heat flux model is less when
compared with the temperature obtained on the basis of Fourier law. Such findings are
submitted in Proceedings of the National Academy of Sciences, India Section A: Physical

Sciences.
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Chapter 1

Introduction

Aim of this chapter is to introduce the readers with classical and recent literature for the
boundary layer flows of Newtonian and non-Newtonian fluids over a stretching surface. The
incorporated literature includes research work relating to viscous and viscoelastic fluids, flow
through porous media, flow of electrically conducting fluids, radiation phenomena in heat
transfer and flow of nanofluids due to a stretching sheet. The constitutive relationships of non-
Newtonian fluids including second grade, third grade, Jeffrey and Eyring-Powell fluids are also
presented. In the later part of the chapter, the details of the analytic technique, namely, homotopy
analysis method and numerical technique, namely, the implicit finite difference scheme are

included.
1.1 Literature review

The theoretical and experimental evidences established the fact that fluids in industrial and
technological applications obey nonlinear constitutive relationship between shear stress and rate
of deformation. The dynamics of non-Newtonian fluids is entirely different from Newtonian
fluids and such fluids have important practical applications in the industrial and technological
processes. The constitutive relationships of non-Newtonian fluids exhibit important
characteristics such as shear-thinning or thickening, yield stress, Weissenberg effects, fluid
memory and die swelling, which cannot be explained using Newtonian fluids. The examples of
non-Newtonian fluids in daily life are liquid crystals, foams, slurries, paints, polymer solutions,
melts and many more. Many biological fluids like blood, spermatic fluid, chime and respiratory
mucus are also modeled as non-Newtonian fluids. The diverse characteristics and applications of
non-Newtonian fluids encouraged the rheologists to propose several constitutive relationships in
the literature {1-10].

Analysis for the two-dimensional flow of Newtonian and non-Newtonian fluids over a
stretching surface has attained a remarkable interest of the researchers in the past few decades. In
fact, the stretching phenomenon has considerable importance in determining the quality of final

product in the manufacturing processes of sheets and films. In stretching phenomenon when fluid



interacts with the solid surface the viscous forces are dominant in a thin region near the surface
and have no significance far away from the surface. This emphasizes the role of boundary layer
theory in deriving the governing equations for stretching flow problems. Apart from that, the
boundary layer theory has numerous applications in industrial processes like metal spinning,
metal extrusion, glass blowing, artificial fibers, continuous stretching of plastic films, filaments
and wires and many more. The concept of boundary layer theory was presented by Prandd {1 1]
in early 20" century which has been great impetus in the modern fluid mechanics. The boundary
layer approximations are valid for the flow past solid boundaries at high Reynolds number. The
earlier studies carried out by Prandtl and Blastus [12] deal with flow past a stationary boundary.
In 1960, Sakiadis [13,14] originated the study of the boundary layer flow over a moving surface.
He presented most interesting and important problem regarding the flow of a viscous fluid over a
moving flat surface with constant velocity. Crane [15] investigated two-dimensional, steady flow
of viscous fluid over a moving stretching surface and provided a closed form solution of the
problem. Crane’s problem motivaled many researchers to study the flow of viscous and
viscoelastic fluids over stretching surfaces. Wang [16] extended the Crane’s problem for three
dimensional flow. He provided exact similar solution of the problem successfully. Rajeswari and
Nath [17] studied the numerical solution of problem regarding boundary layer flow and heat
transfer of rotating viscous fluid over a stretching surface. They claimed that the temperature and
the skin friction coefficient increase by increasing the rotation parameter. Ariel [18] provided
exact numerical solution of axisymmetric flow of a viscoelastic fluid (second grade fluid) over a
stretching sheet. His results were excellent agreement with existing literature. Sajid and Hayat
{19] studied boundary layer flow of a third grade fluid over a stretching sheet. They discussed
non-similar solutions of the problem by using homotopy analysis method. Mahapatra et al. [20]
discussed the laminar flow and heat transfer of an incompressible viscoelastic fluid past a
permeable stretching surface near an oblique stagnation point analytically by using perturbation
technique. Javed et al. [21] developed the boundary layer equations for two-dimensional flow of
Eyring-Powell fluid and discussed the stretching flow. They obtained numerical solutions using
Keller-Box scheme to analyze the locally similar solutions of the boundary value problem. Their
study reveals that the velocity of fluid increases by increasing the material parameter. Sajid et al.

[22] implemented finite difference scheme to investigate two-dimenstonal flow of an Oldroyd-B



fluid over a stretching surface. Nadeem et al. [23] used homotopy analysis method to investigate
boundary layer flow of a Williamson fluid over a stretching surface. Bhattacharyya et al. [24]
showed that closed form solutions can be obtained in both stretching and shrinking cases.
Furthermore dual solutions exist in the case of shrinking flow. Three-dimensional flow of a
Maxwell fluid over a stretching surface is analyzed by Awais et al. [25].

The study of flow of electrically conducting fluid under the influence of a constant
magnetic field is another topic of interest for scientists and engineers because of its promising
applications in physics, engineering, chemistry, polymer industry and metallurgy. The cooling
process is an important feature in many industrial processes. The MHD effects are important in
controlling the cooling and boundary layer thickness. The desired cooling rate can be achieved
by drawing a strip in magnetohydrodynamic fluid to obtain the end product of the desired
quality. The problem regarding magnetohydrodynamic (MHD) flows are also encountered in
various physiological fluids, for instance, blood plasma and blood pump machines. Keeping all
these numerous applications in mind, many researchers studied the effects of transverse magnetic
field on stretching flows under various configurations. Ariel [26] studied the effects of an applied
magnetic field in the boundary layer flow of a viscoelastic fluid over a stretching sheet. He
presented exact analytic solution of the problem and claimed that in the case of suction, the
solution is possible for some critical values of viscoelastic parameter. Anderson [27] provided an
exact solution of the MHD flow of a Walter's B over a stretching surface. He concluded that
increase of magnetic field and voscoelasticity has same effects on the velocity profile. Kumari
and Nath [28] analyzed the magnetohydrodynamic phenomenon in a power law fluid flow over a
moving stretching surface numerically by using an implicit finite difference scheme. Hayat et al.
[29] investigated the hydromagnetic flow of an Oldroyd-B fluid. Noor et al. [30] presented series
solution by using well known analytic technique namely Adomian decomposition method for
studying the magnetohydrodynamic flow of a viscous fluid flow due to a shrinking surface.
Motsa et al. [31] used spectral-homotopy analysis technique to investigate the effects of an
applied magnetic field in a Jeffery-Hamel problem. There results show that solution obtained by
using this technique converges rapidly as compared to classical homotopy analysis solution. The
hydromagnetic boundary layer flow of rotating ¥iscous fluid over a shrinking surface was

analyzed by Sajid et al. {32].
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The flow analysis through saturated porous media is an important phenomenon and has
major applications in technology and geothermal energy recovery. Some sophisticated
applications of porous media have also been reported in the literature. Examples may include the
usage of shear-thinning solutions to enhance oil recovery, the involvement of inline filtration of
fluids with complex rheological properties in many processes in food and chemical industry,
distillation towers and fixed bed reactor, biomedical separation devices etc. [33]. Chauhan and
Agrawal [34] studied the flow of electrically conducting viscous fluid through a porous medium
over a stretching sheet. Ishaq and Nazar [35] investigated the steady and unsteady flow of
viscous fluid over a vertical stretching surface in a porous medium using Darcy-Brinkman
equation model. Kumaran and Tamizharasi [36] computed the analytic solution for flow of a
incompressible viscous over a stretching sheet in a presence of porous medium. Three
dimensional boundary layer flow of Casson fluid over a stretching surface embedded in a
saturated porous media was analyzed numerically by Nadeem et al. [37]. Sajid et al. [38]
discussed the flow of viscous fluid over a stretching surface in presence of porous medium of
uniform permeability. They obtained the exact solution of the problem.

The heat transfer is one of the important features in many industrial and technological
processes. In many industrial processes like oil and gas processing and refining, the role of heat
transfer cannot be neglected. Besides, the effects of heat transfer in the boundary layer flows due
to stretching surfaces have applications in industrial and metallurgical processes. These
applications include the manufacture of plastic and rubber sheets, annealing and thinning of
copper wires, continuous cooling of fiber spinning etc. The primary interest of such
investigations is to predict the variation of skin friction coefficient and local Nusselt number with
non-Newtonian fluid parameters. The literature survey indicates that a number of studies are
carried out in this direction. For instance, Vajravelu and Rollins {39] discussed the effects of heat
transfer in the boundary layer flow of a viscoelastic fluid over a stretching sheet for prescribed
surface temperature and heat flux cases. Their analysis showed that thermal boundary layer
thickness is inversely proportional to the square root of the Prandtl number for both cases.
Subhas and Veena [40] performed similar analysis by considering prescribed surface temperature
and wall heat flux over a porous stretching surface. Massoudi and Maneschy [41] discussed the

numerical solution of a viscoelastic second grade fluid by using quasi-lineanization method.



Cortell [42] implemented an implicit finite difference scheme to discuss heat transfer
phenomenon in the hydromagnetic flow of a viscoelastic fluid (second grade fluid) with mass
suction. Abel et al. [43] presented analytic solution for the flow and heat transfer of a second
grade fluid over a permeable stretching surface in the presence of heat absorption/generation. In
this study blood is considered as a viscoelastic fluid obeying the constitutive equations of a
second grade fluid. Analysis for the unsteady boundary layer flow of a Jeffrey fluid over a
stretching surface was carried out by Hayat et al. [44] Homotopy analysis method is adopted in
{44] to obtain series solution of the resulting system of partial differential equations. Ibrahim and
Shanker [45] used Keller-box scheme to discuss the heat transfer characteristics in a
hydromagnetic flow of a viscous fluid in the presence of heat source/sink. Hayat et al. [46]
investigated the slip flow of a second grade fluid over a porous stretching sheet. The unsteady
stagnation boundary layer flow and heat transfer of a viscous fluid over a stretching surface was
analyzed numerically by Bhattacharyya et al. [47]. Elbashbeshy and. Bazid {48] discussed the
two-dimensional flow and heat transfer of a viscous fluid over unsteady stretching sheet by
Runge-Kutta-Merson method. The stagnation-point flow and heat transfer of a Couple stress
fluid with melting heat transfer over stretching sheet was analyzed by Hayat et al. [49].

Heat transfer in the presence of thermal radiation is another interesting feature in modern
physics and engineering. In fact, at high temperatures, the thermal radiation effects are quit
prominent and have applications in nuclear industry, power generation, astrophysical flows, solar
power technology missiles, satellites and semiconductor wafers etc. Raptis et al. [50] presented
most interesting result regarding heat transfer phenomenon in the presence of thermal radiation
for an asymmetric flow of a viscous fluid under the influence of a transverse magnetic fieid. This
problem encourages the researchers to discuss the effects of thermal radiation in the heat transfer
analysis using various fluid models {51-54]. Later, Magyari and Pantokratoras [55] commented
on thermal radiation effects under the linearized Rosseland approximation in boundary layer
flows. They proved that heat transfer analysis with and without thermal radiation is exactly the
same task. They further emphasized that the radiation problem admits the same solution for
infinite set of parameter vatues (Nr, Pr) that corresponds to some effective Prandt! number.

In these studies the phenomenon of heat transfer is modeled using Fourier law of heat

conduction [56] which states that heat transfer is proportional to temperature gradient. Fourier



law of heat conduction is applicable to macroscopic systems where time scale of the system is
higher than average relaxation time. Based on this fact, Cattaneo [57] proposed a modification in
the Fourier’s law by adding a relaxation time term. In 2009, Christov [58] derived relations for
invariant version of Maxwell-Cattaneo law by using Oldroyed upper convective derivative [59].
Pranesh et al. [60] implemented Maxwell-Cattaneo law of heat conduction to study the Rayleigh-
Bénard magneto convection in a micropolar fluid. Tibullo et al. [61] validated the uniqueness
and structural stability of the solutions obtained by using Cattaneo-Christov heat flux model. The
effects of thermal convection using Cattaneo-Christov heat flux model has been discussed by
Straughan [62] through Chebyshev-tau numerical method. Thermal instability for an
incompressible viscous fluid in a Brinkman porous media using Cattaneo-Christov heat flux
model was investigated by Haddad [63]. Recently, Han et al. [64] studied the effects of heat
transfer in steady upper-convected Maxwell fluid over a stretching plate using Cattaneo-Christov
heat flux model! [58]. They solved nonlinear ordinary differential equations using HAM.

In last few decades, the combined heat and mass transfer in the boundary layer flow of
various fluids over stretching surface is the topic of interest because of its tremendous
applications in many engineering and industrial processes. The mathematical equivalence of the
thermal boundary layer problem with the concentration analogue has provided the liberty to use
the results obtained for heat transfer to the case of mass transfer by replacing the Prandtl number
by Schmidt number. However, such equivalence is not possible when chemical reaction term is
introduced in the mass diffusion equation. In such cases, the mass transfer equations must be
solved along with momentum and energy equation to analyze the concentration field.
Sanjayanand and Khan [65] presented analytic solution for the two-dimensional boundary layer
flow and heat/mass transfer of a viscoelastic fluid over a an elastic stretching sheet. Alharbi et al.
[66] studied the combined heat and mass transfer characteristics in the steady flow of a
viscoelastic fluid over a stretching sheet. The effects of heat and mass transfer with chemical
reaction for the flow of a second grade fluid have been analyzed by Hayat et al. [67] by using
homotopy analysis method. Veena et al. [68] discussed the non-similar solutions of viscoelastic
fluid flow with heat and mass transfer over a porous stretching sheet. The analysis of heat and
mass transfer in the presence of transverse magnetic field and slip at the surface was studied by

Turkyilmazoglu [69]. Moreover, Turkyilmazoglu successfully specified and defined the region



of existence or non-existence of the unique/multiple solutions. The phenomenon of heat and
mass transfer in the stagnation-point flow of a viscous fluid over a porous stretching sheet with
suction and blowing was analyzed by Layek et al. [70].

In some cases, heat and mass transfer occur simultaneously in moving fluid, then it is
often observed that heat flux can be generated not only by temperature gradients but also by
concentration gradients. The phenomenon of Soret (thermal diffusion) is occurrence of diffusion
flux due to temperature gradient. The reciprocal o} Soret effect is known as Dufour effect, the
occurrence of energy flux due to chemical potential gradient. Soret and Dufour effects play a
vital role in geoscience and chemical engineering. Anghel [71] analyzed Soret and Dufour
effects for the free convection boundary layer flow over a vertical surface embedded in a porous
medium. Postelnicu [72] investigated the phenomenon of heat and mass transfer by natural
convection from a vertical surface embedded in a saturated porous medium by considering Soret
and Dufour effects. Srinivasacharya et al. [73] studied mixed convection in a viscous fluid over
an exponentially stretching vertical surface subject to Soret and Dufour effects. Beg et al. [74]
focused their research to investigate Soret and Dufour effects for laminar magnetohydrodynamic
flow of a viscous fluid. Soret and Dufour effects in Hiemenz flow through a porous medium over
a stretching surface were investigated by Tsai [75]. Ahmed [76] reported the influence of Soret
and Dufour effects by analyzing the similarity solution for free convection heat and mass transfer
over a permeable stretching surface. Bazid et al. [77] presented the numerical solution for the
stagnation point flow towards a stretching surface in the presence of buoyancy force, Soret and
Dufour effects. Pal et al. [78] discussed the Soret and Dufour effects for MHD non-Darcian
mixed convection heat and mass transfer over a stretching sheet with non-uniform heat
source/sink. Nayak [79] discussed the Soret and Dufour effects on mixed convection unsteady
boundary layer flow over a stretching sheet in a porous medium by using Runge-Kutta method
with shooting technique. Hayat et al. [80] analyzed combined heat and mass transfer
characteristics in the boundary layer flow of a viscoelastic fluid over a linearly stretching vertical
surface by using homotopy analysis method. Turkyilmazoglu [81] computed exact solution
hydromagnetic flow of a viscoelatic fluid in the presence of Soret and Dufout effects. His results

show an excellent agreement with the results of Hayat et al. [80].



The tremendous physio-chemical properties of nanofluid such as higher electrical
conductivities, higher stability and rheological characteristics have enormous applications in
nano-micro electronic devices, refrigerators, coolants, power generators, solar water heaters,
wransformers, nuclear reactors, antibacterial agents, spaceships and nanotherapeutics [82, 83].
The nanofluids play a key role to increase the thermal conductivity of the base fluid because in
many industrial processes simple base fluids do not meet the cooling requirements. For instance,
many conventional fluids like water, oil, bio-fluids, ethylene glycol and organic liquids have low
thermal conductivities and therefore cannot reach high heat exchange rates in many engineering
equipments. To overcome this problem, Choi [84] was the first who suggested that effective
thermal conductivity of these base fluids can be enhanced if nano-sized particles (1-100 nm) are
merged in these conventional base fluids. This investigation leads many researchers to analyze
the flow of base fluid in the presence of various nanoparticles. For instance, Kuznetsov et al. [85]
presented similarity solution for natural convection boundary layer flow in the presence of
nanoparticlesover over a vertical plate. Khan and Pop [86] presented first problem regarding
boundary layer flow of viscous nanofluids over a stretching sheet. They used finite difference
scheme to provide the similarity solution of the problem. Mustafa et al. [87] used convective
boundary conditions to investigate heat and mass transfer in the boundary layer flow of a
nanofluid over an exponentially stretching sheet. Turkyilmazoglu (88] obtained the analytical
solutions for the flow of a nanofluid over a stretching/shrinking surface. Three-dimensional
boundary layer flow of Maxwell nanofluid over a stretching sheet has been investigated by Hayat
et al. [89]. Two-dimensional boundary layer flow of a viscous nanofluid has been examined by
Shehzad et al. [90]. Das et al. [91] used Runge-Kutta—Fehlberg method to investigate the
unsteady flow of a nanofluid over a stretching sheet. Nazar et al. [92] analyzed the stagnation
point flow of a nanofluid over a stretching sheet. The effects of transverse magnetic field along
with slip and thermal radiation for the boundary layer flow of a nanofluid over a permeable
stretching sheet was investigated by Ibrahim and Shankar [93). The effects of homogeneous-
hetrogeneous chemical reaction on nanofluid flow over a porous stretching surface was analyzed
by Kameswaran et al. [94]. Gayal and Bhargava [95] used finite element method to investigate
the slip effects for the boundary layer flow of a viscoelastic nanofluid over a stretching sheet.

Hamad et al. [96] considered free convection flow of nanofluids over a vertical flat plate. Din et



al. [97] presented group analysis for the flow of non-Newtonian naofluid with slip effects over a
permeable stretching sheet. The effects of buoyancy force and Navier slip in the hydromagnetic
flow of a nanofluid over a vertical porous plate was analyzed by Njane and Makinde [98]. Pal et
al. [99] used Runge-Kutta-Fehlberg to investigate effects of heat generation/absorption in mixed
convection stagnation-point flow of nanofluids over a porous stretching/shrinking.

In all above mentioned studies the stretching imposed at the surface may be linear, power
law or exponential type. However, there are situations where the sheet is stretched as well as
oscillate periodically in its own plane. Wang [100] was first who analyzed the unsteady
boundary layer flow of a viscous fluid over an oscillatory stretching surface. A perturbation
solution is presented in [100]. The analysis of Wang was extended by Saddipa et al. (101} for
Walter's B fluid. Rajagopal et al. [102] examined the effects of suction and blowing in
oscillatory motion of a viscoelastic fluid over a stretching sheet in the presence of saturated
porous medium. Abbas et al. [103] complemented the Wang's analysis by including the slip
effects and performing the heat transfer analysis. In another paper, Abbas et al. [104] discussed
boundary layer flow of a second grade fluid over an oscillatory stretching surface by using
homotpy analysis method and finite difference scheme. Zheng et al. [105] provided an analysis
of the unsteady heat and mass transfer in MHD flow over an oscillatory stretching sheet with
Soret and Dufour effects. They have employed homotopy analysis method and delineated the
effects of various emerging parameters on the flow and heat transfer characteristics. Their study
indicates a decrease in the velocity of the fluid by increasing unsteady paramcter, magnetic
parameter and suctionfinjection parameter. The heat transfer analysis in a channel with

oscillatory stretching walls for a viscoelastic fluid was also analyzed by Misra et al. [106].

1.2 Some basic laws

1.2.1 Law of conservation of mass

The law of conservation of mass provides the following partial differential equation

op
v pV)=0, :
5t (pV) (L.1)

where p is the density and V the velocity of the fluid. For incompressible flow, Eq. (1.1)

becomes



VeV =1). (1.2)
1.2.2 Law of conservation of linear momentum

The motion of fluids is governed by the equation
pﬂzv-‘r+pb. (1.3)
dt

In above equation d/dr represents material derivative, T is the Cauchy stress tensor and b is

the body force per unit mass. The velocity field for unsteady two-dimensional flow is
V =[u(x,y,0,v(x,3,1),0], (1.4)

where « and v are the velocity components along x and ¥ directions, respectively. The

component form of the Eq. (1.3) for two-dimensional flow is given by

ou ou ou) dr, 0T,
pl —tu—+v— :—+—+pbx. (1.5)
of ox dy dax dy
ar,, 9T,
p §E+uiv~+v& =X+ pb, (1.6)
o8 dx dy) oX dy :
where 7,,,7,,,7, are the components of Cauchy stress tensor and pb,,pb, are components of

body force.

1.2.3 Law of conservation of energy

The energy equation for fluids in motion is

pcp% =1:VV+LV'T, (L7
where ¢, is the specific heat, T is the temperature, k, is the thermal conductivity and v:VV
represents the viscous dissipation function.

1.2.4 Concentration equation

According to Fick’s law, at constant diffusivity, the rate of change in concentration with time, is
directly proportional to the rate at which the concentration gradient changes with distance in a

given direction, i.e.,
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E=D,,‘(v:‘-c), (1.8)
dr

where C denoted concentration and D is the diffusion coefficient. Eq. (1.8) in presence of

chemical reaction is
%:Dm (ViC)-kCm, (1.9)

where k_is the reaction constant and m represents the order of the chemical reaction.

1.3  Governing Equations for nanofluid

The energy and concentration equations for nanofluid are

(pc)f (%—T + V.VT] =k VT + (pc)p [DBVC.VT +[-?1]VT.VT}, (1.10)
%—Cw.vc: DBV2C+[%]V2T, (1.11)
t o

In above equations (c)  is the heat capacitance of the base fluid, (pc), is the heat capacitance
of the nanoparticles, @=k/{pc}), is the thermal diffusivity of nanofluid, D; is the Brownian

diffusion coefficient and D), is the thermophoretic diffusion coefficient.

1.4 Constitutive equations

The constitutive equation provides a relationship between the shear stress and rate of
deformation. In the subsequent subsection, we introduce the readers with the constitutive
equations of second grade, third grade, Jeffrey and Eyring-Powell fluids and corresponding

boundary layer equations for unsteady two-dimensional flow of these fluids.
1.4.1 Boundary layer equation for Second grade fluid

The Cauchy stress tensor for a second grade fluid is given by [1]
r=—pl+uA, +aA, +GA], (1.12)
where p is the pressure, I is the identity tensor, # represent the dynamic viscosity, & and @,

are the material modulli parameters and A, and A, are the Rivlin Ericksen tensors given by
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A, =L+L, L=VV, (1.13)

A,—dA +AL+LA, . (1.14)

dt

Using velocity profile (1.4) and utilizing (1.11)-(1.13) in Eq. (1.3), we get the following

equations

du du Bu 1 op 3w du Ov) afoudv _dudy av du ., du
-—+— — —+V2— A=t ==t +2——
ax ay' pa,? ¥ Hax) p\F & I o axayax otdx”
ou du du du Ju o'u du v v v % v
+2§§f-3+2u&?+2vaya}2 t e +ud*x®2 +”5—*'+aaxa5;+“azzay+ %-a)_'a}wa}ayz (1.15)
dudn ouodv ou dv advadv Za, oudu ul du 82 ov( du o
t—— — t— [t 4 Tt — Ht=l=*+= ||
dxdy: dydy’ dxdydx dxdy dx ok’ Jy\ dxdy aa_c o\ oxdy dx

dv ov v 1 ap azv v du L& Fu ou 0'u du ava u
—tU—FV—=—— =+ 2—+— |+ +2—
o dF oy pay & oy’ dydx ) p\ drdxdy afayer ayafz 8;?852

du oV a'v v Bzu ou du av o o v’ v, du 0 “. '
e v e R + -
dxdy: orax’ 8'3? a'zai I’ oF v dydx ayasf aiai /% o
8u v Y v av+_aga_2vj+2a2[ @a_zv -aﬁ[av *u ) av[az aZUJ:l
35353" afaiz T HH FH dy\&dy dy ) dx\&dy

Employing the order and magnitude analysis by considering [107]

(1.16)

u=0(1),v=0(8),x=0(1),y=0(3), (117

Egs. (1.15) and (116) yield [103]

du Ju  du 1 dp o’u a,| d'u 0
St U— v = AV | 5+ | U
drdy” dx

w) dud’v du
o 9x oy podx Iy v }+— Y ] (119

dy oyt oy’
9% =0, (1.19)
where p is the modified pressure defined as

. uY
p=p—(2a]+a2)[§:J . (1.20)
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Equation (1.18) is the boundary layer equation for flow of a second grade fluid.
1.4.2 Constitutive equations for third grade fluid

The constitutive relationship for a third grade fluid is [2]

T=-Pl+uA, +aA, +a,Al+ B (IrADA,, (1.21)

where B, is the material constant. This model parameters must satisfy the following constraints
420, a’ 20, B=5,=0, 5,20, 0 +a] <J24up,. (1.22)

Using Eq. (1.4) and (1.21) in (1.3), we get the following equations

Q ___1-@ du du du Fu ) v du du Fu Fu
@ e aﬁ?}_{zaﬁa 5o o a%[B_*“H KT J]

R e b ) E@+(—+*J[ﬂ+@1
3&5 Y F ) e &) p 5 &)\ &

ﬂ &Jauazv a:aua’u dudvFu . dudv Fu Blu * Su

aayaxz N rT HE aﬁa;_af

6{ ] a.tavazu __J 2[ ] auavazu]
&F) & azaiaf & o & ax
W, o ¥ 1, (&v &VJ {2 Fu v . v +8v{82v 13ale

FLE__F +2 Filr 32
PRk AR M P Ha W Ha Flae F

NER AN AN LR ARCL )
® &) \&F &H) HF FE) &\ EF F

2%3‘*_3'_%@32”92259391’ wY v (Y
[%Hf’ (afa)[m*afﬂ*'p{m[aﬁ] ayl”[a;J & za) % (129
2[ Jalv Ly Budv 8vavalu+248v8v Fv +8[8v]281v

&) R aiai@ a6‘5@ dIy Ky \dy) &
udv Fv 6(&;] o 4auava2}

2ZE T
dy dy dxdy Jy & oy

Using boundary layer approximations as defined in (1.17), we find the boundary layer equation
for a third grade fluid as{107]

au ou
—tu—-+v
& o

(1.23)
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ou du ou lai’ 0’1 8 Buau d'u auav 6133( ]
— UtV —=—— +v +v +
»E " em & p[a@ ¥ my ww FE| p\&) &

=0. (1.26)

1.4.3 Constitutive equations for Jeffrey fluid

The constitutive relationship for a Jeffrey fluid is [3]

=15 i[ ,+A1( +VV]Aj| (127)

where A is the ratio of relaxation to retardation time (ratio parameter) and ﬂ, is the retardation

time. The equation of motion (1.3} gives

- du du ,zaualu Fu v du
M M M Ly v |Fudu T ® mE & EED
—HU— V= =— | S+ +4 ’ , (1.28)
o & & pdd 1+ & auazu é&_g&zu Iv
3)73’?@ 3)7&2 §392 aa)_’l
I Fv . ou du Fu oudv ovdu
e e e B
CAVL LY. A A AT & TEY Ky FH KE (1.29)
2 E S e T | S adu de wd |
] Ty ay ® &

Employing boundary layer approximations, we get the following equation

2 3
W, O w_ lop, v [a“+4{a’u oS _udu O O, a“ﬂ,(um

—_—ty— - = il i, - -
¥ w s oEm A N Fe wy & G EY

dp

—=0 .
% (1.31)

as boundary layer equations for flow of a Jeffrey fluid.

1.44 Constitutive equations for Eyring-Powell Fluid

The extra stress tensor for an Eyring-Powell fluid is [5]
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s{mg_,sinh-' (l ijAl, (132)

in which

y= J%rr(A.)z. (1.33)

The second order approximation of sinh™ function is

sinh'l[l}?]zz—-—j—)— with j—:<<<l. (1.35)

11
c ¢ 6¢ c

where B, and ¢ are the fluid parameters of the Eyring-Powell model. Using (1.32)-(1.35) in Eq.

2?—‘}2 +2(QJ- -;{é +&)
& & & &

(1.3), one finds

v ou ow 1o 1 )% o™ 1 9
+ v+—— Tt
o pBe \d&x™ &) 3pBc &

] a“aujz [avj* [au av}2 (au av)
BRI PV AN LN Al
oBcn| &) 5§ & | &
> » o 1@[ 1J[a2v &’v) i a“au]z (avj [&4 a\ﬂ[au avJ
—ti—tv—=——HV+— | S+ || = | Y = | H =t | =t
a'E5"F pn \ B \E 5 pBeE| &) 5, \F &) & &

1 a{ (auT (aujz [au avj2 Py
|2 = | Y = | H =t
WBO x| &) B & &

Using boundary layer approximations, we get

i
W u W lap 1 Yo 1 |fauY a
—tU— AV — = — || =| = 1.38
aE 'y peﬁ“{”p&c]w zpB!c’[(ay'J > (=9

(1.37)

+ -0 (1.39)

1.5 Homotopy

The word homotopy is a topological term. Two functions are said to be homotopic if one

function can be deformed continuously into other function. Assuming f, and f, represents two
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continuously mapping from one topological space X into the topological space Y then £ is
homotopic to f, if exist a continuous map F such that for each xe X

F:Xx[0.1]- 7. (1.40)

F(x,0)= f(x).F(x1}=f,(x) (1.41)

The map F is called the homotopy between f, and f,.

1.6 Homotopy analysis method

In many physical problems, the resulted differential equations are highly non-linear nature. The
solution of these nonlinear equations always provides a challenge to mathematician to compute
solution of the equations. For this purpose various analytic method has been proposed in the
literature. The perturbation technique is one such analytic method. However, this method is valid
only for small choice of parameter. To overcome this issue, Liao [108] developed a new analytic
method which is independedt of any small or large parameter. Later on, many researchers used
this method to solve various nonlinear problems in various disciplines of science and engineering
[109-112]. It has been emphasized by Liao that the series solution obtained by HAM is purely
analytic and he demonstrated this fact in number of articles for instance [113,114]. Moreover, it
has been proved by Turkyilmazoglu [115] that HAM can handle any type of nonlinearity by a
suitable HAM formulation.

Let us assume nonlinear differential equation
Nlu(r,n]=0, (1.42)
Where, N is an non-linear operator, u(r,t) is an unknown function and r and 7 denote spatial

and temporal indepent variable, respectively. Using homotopy concept, Liao [107] constructed

zeroth-order deformation equation _
(l-—q)L[fb(r.t.q)—uO(r,l)]=qhH(r,r)N[<I>(r,l,q)]. (1.43)
In which ge[0,1] is an embedding parameter, «,(r,?) denotes the initial guess, h#0 is the
auxiliary parameter, H (r,t)#0 is an auxiliary function, ®(r.,q) is.. unknown function. The

auxiliary property with property

D(r,7,0)=u,(r.t), (1.44)
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&(r,1,1)=u(r.z), (1.45)
It is remarked that g varies towards the final solution w(x) when ¢ tends 0 to 1. We expand

w(x,q)about ¢ using Taylor series

O(r,r.q)=u,(rt)+ > u, (r.1)g", (1.46)
m=1
where
um(r’r):_l_a_q)(L’q)_ , (1.47)
m!  dg" oo

with property of linear operator, A, H (r.t) the series (1.46) will converges at g =1 and power

series (3) becomes

u(r,r)=uu(r,t)+ium(r,t), (1.48)

m=1

which must be one of the solutions of N [u(r,t)] =0. In short, defining a vector
ﬁn={u0(r,r),u(,(r.r),...,u"(r,t)}. (1.49)
According to definition of (r.t), it can be derive from zeroth-order equation (1.43),

differentiating the equation (1.43) m-times respective to g and then dividing it by m! and

finally setting m=0 , we have the so-called mth -order deformation equation

L{u, (r.1) = Zuhn (r.t)]=nH (r,0)R, (&, . r.t), (1.50)
where
O0m<l,
Zm ={ ) (1'51)
ILm>1,
and

1 amﬁ‘N[CI)(r,t,q)]l

1.52
(m-1)! og™" (152)

R (i, .r.t)=
g=0

Clearly, Eq. (1.50) is a linear one. Therefore a nonlinear equation could be transformed to a
system of linear ones which can be easily solved using an iterative procedure and this is the main

consequence of the HAM.
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1.7 Implicit Finite Deference Method "

The finite difference is one of the simplest and the oldest methods to solve various highly
nonlinear ordinary as well as partial differential equations. This method was introduced in the
early 1950s and its development was stimulated after the emergence of computers that offered a
convenient framework for dealing with complex problems of science and technology. To
compute the numerical solution of nonlinear differential equations, the space derivatives of
differential equations are replaced by central difference approximations while time derivatives
by forward difference approximations.

For implementation of implicit finite difference scheme, let us consider the differential equation
[116]

o _ T
ot ox*’

We replace the time derivative by forward/backward difference approximation and space

(1.53)

derivatives by central difference approximation. Thus using BTCS approximation, the

differential equation evaluated at (i,n+1)} grids namely

a4l n+l
(%It;), = a{—aa;l , (1.54)
gives

et a,[ Ty - (2;()’ +T7 J (155
On simplification, we get following finite difference scheme

— T+ (1420 T -T2 =T (1.56)

For i=1,2,3,....,N —1, the number of unknown in x—direction. The equation is implicil in the
sense that there are three unknown values of 7 at {n+1)7h time level. For n=0 Eq. (1.56)
gives (N—-1) simultaneous linear algebraic equations for {N —1) unknown value of T at

internal grid points at time level zero in term of unknown initial and boundary values. These

equations can be solved to get each values of T', for i=1,2,..,N ~1. Similarly for n=1, we get
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(N-1) unknown value of T at second time level in term of boundary values and recently

computed values of T at first step level and so on. For i=12,...N -1 in Eq. (1.56), we get

following simultaneous algebraic equations in tridiagonal form as given below

(1+2r)Tln+] —rT;H =dllrr “ (157)
_rfrln+1 +(1+2r)1-:?n+l _rrI;nH =d; (158)
—rT;H +(1+2r)T3n+l —rT4"+] :d;x (159)

T +(1420) T =dy | (1.60)
where
d =T+, d" =T",i=1,2,3,.N-1. (1.61)

This system of these differential equations is converted into a system of algebraic equations

which are further solved by Gaussian elimination method.
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Chapter 2

Slip effects in the hydromagnetic flow of a viscoelastic fluid through

porous medium over a porous oscillatory stretching sheet

In this chapter, the hydromagnetic flow of a viscoelastic second grade fluid through porous
medium over porous oscillatory stretching sheet is considered. It is assumed that sheet is
oscillating back and forth in its own plane and stretched linearly in X — direction. The similarity
flow is governed by nonlinear partial differential equation and nonlinear boundary conditions.
The solution of the problem is obtained numerically using finite difference method. The effects
of viscoelastic parameter, combined magnetic and porosity parameter, ratio of oscillating
frequency to stretching rate parameter, suction parameter and slip length on velocity and skin-

friction coefficient are discussed.
2.1 Mathematical Formulation

Consider an unsteady, two-dimensional, magnetohydrodynamic and incompressible flow of a
second grade fluid through a porous medium over a porous oscillating stretching sheet. The plate

coincides with the ¥ Z —plane and fluid occupies the space y > 0. The sheet performs periodic
oscillations back and forth and stretched with a velocity u, =bxsinax where b is the stretching

rate and @ represents angular frequency. A magnetic field of strength B, is applied along
¥ direction. In present case, we are interested in studying the effects of applied magnetic field on
the fluid motion and not the vice versa. Hence the diffusion of magnetic field is important and
thus magnetic susceptibility is large which results in a small magnetic Reynolds number. In the
small magnetic Reynolds number limit, the induced magnetic field and electric currents are
neglected in comparison to the applied magnetic field and current density, respectively.

According to the Hayat et al. [117], the Darcy resistance for second grade fluid flowing through

a porous medium is

@ d
R=-+u+a—|V, 2.1
k‘[ " ]ar} @1
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where @ is the porosity and k* is the permeability of the porous medium. Under the assumption

of very large magnetic diffusivity, the induced magnetic field 1s neglected.

| —
. 4
a F 3
* ® . [ .?o . . . [
2 . .
« L . Second grade fluld »
. '. . . @ . .
.
. " o . .. . * .
.’ . R L e o: .,
. 40.T. “.T. 1 “0?010130
m—-—l--rylly-I. * el olef o] ofe *ol %e B
X
—— 0 | _——
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Fig. 2.1: Geometry of the problem
In the presence of porous medium and magnetic field, Eq. (1.1) and Eq. (1.18) after employing
the boundary layer approximations reduce to
Qg + a_r =0, (2.2)
dx oy

u o E}u du |: Fu 8( a"-u] ou &'y 8%{} O'BS P ( a]
—+u— VS +— AU [tttV Hop— |u. (2.3)
a Ty F play & F) FH T p A or

The mass conservation equation (2.2) remains same throughout the thesis. Therefore, we shall

not reproduce it in the subsequent chapters. The appropriate boundary conditions for the present

slip flow are

2 2 20
u=u, _bv(s[nwr_*.N l:au ﬁ[_é)_.u_-{-u a “ +VM—2§E%J} NWETV at §=0, >0 (2.4)
- =

du -0 y . (2.5)

where N° is the slip constant, V is kinematic viscosity, v, is the wall mass transfer velocity

with v, <0 is for suction and v, >0 is for injection. The second condition in (2.5) is augmented

boundary condition {103]. We remark here that such boundary condition for slip flow with wall

mass transfer have been already used by several researchers (see refs. [48. 49. 69]).
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The problem defined above can be normalized by defining the following variables [103]

y= (5. et wmb, (7). v=BS (27) 26
In view of (2.6), the continuity equation (2.2) is satisfied identically and Eqgs. (2.3)-(2.5) take the
form

SQ+BKYf o+ 2 [ AM S, 4B, = £+ K(S, + 2 S = fom T )- (2.7)
f,(0.7)=sinz+£[ £, (0.0)+ K (3£,1, (0.7) +§,,. (0.7) - (0.7) £, (0 )] f(0.7)=r28)
£,(00,7)=0, f,,(>,7)=0. 2.9)

In above equations ¥=v,/ Jvb is the dimensionless suction (y>0} or injection
(y<O)parameter, M =\oB;/pb is the Hartmann number, B=vp/k’b is the

porosity/permeability parameter, £ =N *Jb/v is the non-dimensional slip length, K =ba,/ pv

is the viscoelastic parameter and §=@/b is the ratio of the oscillating frequency to the
stretching rate. The subscripts in Eqgs. (2.7)-(2.9) indicate differentiation.

The formula of skin-friction coefficient C ;s

TW
C, = s (2.10)

where 7, is the shear stress at wall and is given by [103]

ou d'u o' d'u ., duov

T =4 —1 +al ——+u— tv—=-2——| - (2.11)
9 Jieq ddy dxdy dy Iy,

The normalized version of Eq. (2.11) is

Relx’z Cf = [f.v_v + K (3fyf.\'.v + Sfy.vr N ff.V.V.v )j|v=n i (2.12)

where Re, =u X /v is the local Reynolds number.

22



o |

initial conditions for velocity field is

f{nr=7'=0)=0. (2.18)

Following Abbas et al. {103] the time difference scheme is constructed for f as

(n+l} (n) 3 pin+l) 3 pimd LAFIETIH 2 ping
S(1-6K7+ BK) - [af ¥ ] skt [a_f_ 2 ] 65K,,ai[3_fT_afzJ
AT AT

an  on o o on on
- of" 2 af"’“ o 8f " o
=(7 -8K7" )[ ] +{6' —M* - B)=——+(24K11' - ) f +617° o (2.19)
. azfm af(n} azf(m s asz . an(nHJ
+{3 m =z 7

tn) 1y} pia) 3 pin} 4 piny
__2qu f af +12Kq5f(ill af ﬂ f(ir)a f
an an’ on'

The advantage of above scheme is that only linear terms need to be considered at (n+1) time
step. It is important to mention that other choices of time differences are also possible. Using
finite difference method above equations are converted into system of linear equations that can
be solved by using Gaussian elimination method. This method has already been implemented by

several authors to simulate other similar flows [103,104,118-121].
2.4 Numerical results and discussion

In order to study the influence of emerging parameters of interest on velocity and skin friction
coefficient, the numerical technique described in previous section is implemented for solving Eq.
(2.7) subject to the boundary conditions (2.8) and (2.9) with the initial conditions (2.18). The
obtained results are displayed in Figs. 2.2-2.8. Fig. 2.2 shows the effects of the viscoelastic
parameter K (panel (a)), suction parameter ¥ (panel (b)). Hartmann number M (panel (c)), slip
parameter £ (panel (d)) and porosity parameter B (panel (e)) on the velocity with time f' ata
distance y=0.25 from sheet. It is expected that due to the oscillations of stretching sheet the
velocity f' at a specific location from the sheet also oscillates but may not with the same

amplitude and phase as that of the sheet. From Fig. 2.2, we observe that viscoelastic parameter

K and suction parameter ¥ enhance the amplitude of oscillation in the time-series of f'.

However, the amplitude of oscillations decrease with increasing slip parameter £, Hartmann
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number M and porosity parameter B. It is interesting to note that a phase difference is observed
with increasing the viscoelastic parameter K. This phase shift is attributed to the increase in
effective viscosity caused with an increase in K.

Fig. 2.3 illustrates the effects of viscoelastic parameter K on the f' at four different time
instants 7=8.57, 97, 9.57 and 107 with §=1.5,M =12, £=0.01, 8=0.2 and y=02. Fig.
2.3(a) shows that f' is an increasing function of X. It is also observed from this figure that there
is no oscillation in velocity profile at this time instant. Fig. 2.3(b) is plotted to describe the
behavior of velocity at 7=97. This figure elucidates that at this time instant velocity oscillates
near the boundary. The velocity profiles for other two times are shown in Figs. 2.3(c) and 2.3(d),
respectively. Again at time instant 7=9.57, there is no oscillation in the velocity while at
7=107 the velocity oscillates inside the boundary layer. Moreover, due to introduction of slip at
the wall, the velocity f' at the wall decreases with increasing viscoelastic parameter K at time
instant 7=8.57,9.57 and 107 . However, it increases by increasing K at time 7=97. The
boundary layer thickness is also found to increase with increasing K as evident from Figs.
2.3(a-d). Fig. 4 shows the influence of suction parameter on the velocity at four different time
instants. It is evident that oscillations in f' occurs at 7=97 and 107. The velocity and
boundary layer thickness increases with increasing suction for 7= 8.5 and the fact is evident
from Fig. 2.4(a). A similar behavior is noted form in Fig. 2.4(¢) for T=9.57 . For T=97 and
7 =107, the velocity oscillates inside the boundary layer as shown in Figs. 2.4(b) and (d). Fig.
2.4 further reveals that due to imposition of slip at the wall, the velocity f' decreases at the wall
by increasing ¥ at time instants 7 =38.57 and 97 while it increases at the wall for 7=9.57 and
7=107. Fig. 2.5 shows the effects of Hartmann number M on f' for four different times. It is
observed that an increase in M both reduces velocity and boundary layer thickness. Hence an
applied magnetic field can be used to control the boundary layer thickness. Figure 2.6 illustrates
the behavior of velocity under the influence of slip parameter €. This figure depicts a decrease in
£ at the wall for all the considercd time instants except 7= 107

Fig. 2.7 shows the effects of porosity parameter B on the velocity profile at four different times.

Fig. 2.7(a) indicates a decrease in velocity near the wall at 7=8.57. with increasing porosity
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parameter. On contrary, an increase in velocity at the wall is observed at 7=97 with increasing
B. Fig. 2.7(c) and (d) show the similar behavior as observed in Fig. 2.7(b) and 2.7(a),
respectively. A slight decrease in boundary layer thickness is also noted with increasing B at all
considered time instant.

The variation skin friction coefficient against time is presented in Fig. 2.8. It is observed from
Figs. 2.8(a)-(e) that the amplitude of skin friction increases with increasing viscoelastic
parameter, suction parameter, Hartmann number and porosity parameter while it decreases with
increasing slip parameter. We also note from this figure a phase shift in skin friction with

increasing viscoelastic parameter.
2.5 Concluding remarks

An analysis for the hydromagnetic flow of viscoelastic second grade fluid through a porous
medium under the influence of applied magnetic field and slip condition is carried out in this
paper. The main objective of the paper is to highlight the influence of slip and porosity parameter
on the fluid velocity and skin friction coefficient. To this end, the governing partial differential
equations are solved numerically using a robust finite difference scheme. The results show that
amplitude of oscillation in the time-series of velocity is an increasing function of viscoelastic,
suction and porosity parameters. In contrast, the Hartmann number and slip parameter cause a
damping in the amplitude of oscillation in the time-series of velocity. The transverse profiles of
velocity indicate a reduction in the boundary layer thickness with increasing porosity parameter
and Hartmann number. The results further indicate that skin friction coefficient is oscillatory in
nature and its amplitude increases with increasing viscoelastic, porosity and suction parameters.
On the contrary, the amplitude of skin friction coefficient decrease with increasing slip

parameter.
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Chapter 3

Hydromagnetic flow and heat transfer over a porous oscillating

stretching surface in a viscoelastic fluid with porous medium

In this chapter an analysis is carried out to study the heat transfer for an unsteady two-
dimensional magnetohydrodynamics boundary layer flow of a second grade fluid due to porous
oscillating stretching surface embedded in a porous medium. The surface is elastic and is
stretched periodically to produce flow phenomena. A system of non-linear partial differential
equations is developed using suitable dimensionless variables. The semi-infinite domain is
transformed to a finite domain and finite difference method is implemented to obtained the
numerical solution of the considered flow and heat transfer problem. Fluid velocity, temperature,
skin friction coefficient and local Nusselt number are evaluated and analyzed to see the influence

of involved parameters.
3.1 Flow Analysis

Consider an unsteady, incompressible and two-dimensional magnetohydrodynamics (MHD)
flow of a viscoelastic (second grade) fluid over a porous oscillatory stretching heated sheet

embedded in a porous medium and coinciding with the plane ¥ =0. The temperature of the sheet
is maintained as T, and free stream temperature is 7, where 7, >T_. A schematic of the flow

geometry is illustrated in Fig. 3.1. Incorporating these assumptions along with the boundary
layer approximations and neglecting viscous dissipation, the governing equations based on
conservation momentum and energy in presence of porous medium and body force for unsteady

two-dimensional flow are

o ow ou du &l Fu 23 udly, du| o8 vy

—tu—+v—= = +t=—+v ——u—— i, .

5 uaf vay a§2+p{azayz+af uay 358? 6‘_3 P u——iut (3.1)
oT aT T o’T

pc, [54-”-'8_-;4'\)%]:!(1?. (3.2)
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Fig. 3.1: Geometry of the problem.

The flow is subject to no-slip at the wall, therefore the appropriate boundary conditions on
velocity components follows from (2.4) and (2.5) with N*=0. The boundary conditions on
temperature field are

T=T, at y=0, >0, 3.3
T—o>T,6 at y—oe (3.4)
Using the non-dimensional variables in Eq. (2.6) along with additional dimensionless variable

defined by

6(y,7)= T —f: . _ (3.5)
Egs. (3.1) and (3.2) become

Sfot fr= [+ B = Ly K[ e + 2 f o= fo = Mo ]. (3.6)
6, +Pr(f6,-56,)=0. 3.7

where Pr=c,/k is the Prandtl number. The boundary conditions on velocity and temperature

in terms of new variables are

f,(0,7)=sin7, f(0.7)=y. 6O.D=L (3.8)
f,(e0,7)=0, [y (= 7)=0,  8,1)=0, (3.9)

where f=M’+B denotes combined parameter due to magnetic field and the porosity of the
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porous medium. For non-conducting fluids, ¢=0 and thus B=ve/ kb corresponds to the

classical porosity/permeability parameter and by taking k" — oo, as such M corresponds to the
classical Hartmann number.

The physical quantities of interest are the skin-friction coefficient C, and the local Nusselt
number Nu_. The skin-friction coefficient is defined through Eq. (2.12). The local Nusselt

number is defined as

xq
Ny =———24—, 3.10)
“ kl (Tw_Tm) (

where ¢, 1s the heat flux at wall given by

q, =k (%L} (3.11)

In view of Egs. (3.5) and (3.11), Eq. (3.10) gives
Re]"* Nu, =-6,(0, 7). (3.12)

3.2 Numerical solution of the problem

In this section, we describe the procedure to obtain the solution of nonlinear boundary value

problem consisting of Eqs. (3.6) and (3.7) with boundary conditions (3.8) and (3.9) using finite

difference method. As a first step, the infinite domain ye [0,¢) is transformed to a finite
domain 7€ [0,1] using transformation (2.14). Equations (3.6} and (3.7) along with boundary

conditions in the bounded domain are

f . 9f , &F [ J
S(1-6Kn* —SKn* —Z£——6SKm' -——
(1-6K7 )aza T agar 01 anter =(7"-
df o' f
+(67° - B+24Kfn’ = 2477) q+1] 3 3+(¢5q — [ +36Kfn" ) = (3.13)
saf Ff 37 Y ¢of 3'f f f
+Kn| =% | <2K7° 12K K .
a a 2 ” anz a a 1+ ” f + q f ]]
. 0°0 , 08 08 a6
2 2= — P Zis2|= 14
n arﬁ+ n on r[fq 817+Sar] 0, (3.14)
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5, =0, f,=0, 6=0 at n=0, (3.15)

f=% f,=-sing =1 a n=1. (3.16)
The initial conditions for velocity field and temperature are
f(n,t=0)=0 and 8(7.7=0)=0. (3.17)

The semi-implicit time difference versions of Eqgs. (3.13)-(3.17) are

(a+]) {n) 3 pln+t) 3 ) 2 pln+l} 2 )
s(1- 6Kr]) {af A J—SKU {af IS 65Kq3l af2 —afzJ
an 97 Azl o' on’ Ar{ dn an

f{n 5 afqml} (o) af() z (n+1}
= —-8K +{6n7 — 24K ZJ
=(7 n)[ nJ +{6n7 - B) e +(24Km -217) f 3 +617°

an
3 f o' a2 f FY ot 19
+(36K7* —nz)f‘"’Tz——Squ—aﬂ—Tqi—+Kq" (-—é?—] +n* e =+
2K7° ag(n a;j; +12K77° £ 33):) Kn"f“"%)—
SPI(B(MJ)A:Q(»)) L a?:;n o Y S —pr flp? a_%;l (3.19)
fi7=0, fi=0, ¢=0 at 7=m,= (3.20)
[Py 0 =sine, 87=1 at p=m,, =1 (3.21)

Using finite difference method the above equations are converted into system of linear equations
that can be solved by using Gaussian elimination method at each time step. The stability is
solution is largely dependent on the choice of temporal and spatial time step sizes. For the

present case, we choose A7=0.025 and A7 =0.018.

3.3 Results and discussion

In this section graphical results based on the numerical solution of Eqgs. (3.6) and (3.7) with
boundary conditions (3.8) and (3.9) are shown using the numerical scheme described in the

previous section. The transverse distributions and time-series for velocity and temperature fields
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in the first five periods 7€ [0,107] are plotted to analyze the influence of the various involved
parameters. Furthermore, the values of the skin friction coefficient Re!” C, and the local Nusselt

number Re;"? Nu_ for different parameters and displayed both graphically and in tabular form.
Fig. 3.2 shows the velocity component f* against time in the first five periods 7€ (0,107} for
four different values of y (which correspond to different distances from the sheet) when § = 2,

B=10, y=0.5 and K=0.1. Tt is evident from Fig. 3.2(a) that with the increase of distance
from the oscillatory sheet, the amplitude of the velocity decreases. It is further noted that far
away from the surface, the amplitude of the flow motion is almost negligible. We observe a
similar phenomenon from Fig. 3.2(b) for K =0.5. However, for K=0.5 the amplitude of the
flow motion is large in comparison to the corresponding amplitude for K =0.1.

Fig. 3.3(a-c) illustrates the influence of viscoelastic parameter K, combined parameter S and
the mass suction/injection parameter ¥ on the time-series f'. Fig. 3.3(a) shows the effect of the
viscoelastic parameter K on the time-series of the velocity profile f' for §=2, f=10 and
y=0.5. The amplitude of the velocity increases for larger value of K due to the increased

effective viscosity and a phase shift occurs which increases with K. The variation of velocity
with time for different values of g is shown in Fig. 3.3(b). It is found that an increase in
results in the decrease of amplitude of the flow motion. In fact, an increase in f corresponds to

either an increase in strength of the applied magnetic field or a decrease in the permeability of
the porous medium. In either case, the resistance to flow is increased and as a result of that the
amplitude of the flow velocity is suppressed. Fig. 3.3(c) shows the time-series for velocity field

f* for different values of the mass suction/injection parameter . It is evident from this figure
that the amplitude velocity is larger for the higher values of ¥. It is also noted that a phase shift
occurs which increases with the increase in }.

Fig. 3.4 depicts the variation of the viscoelastic parameter K on the velocity f' for different
values of 7=8.57.97.9.57 and 107 in the fifth period 7 [87,107] for which a periodic
motion has been reached. At 7=38.57, [’ decayls‘ from unity at the surface to zero far away

from the surface (Fig. 3.4(a)). Morevoer, there is no oscillation in the velocity and it is an
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increasing function of the viscoelastic parameter K, i.e. by increasing the values of K. Fig
3.4(b) presents the velocity component f' at time instant =97 for various values of K. At

this time instant, velocity is zero both at the sheet and far away from the sheet. It is also observed
that near the surface, there exists some oscillations in the velocity field and the amplitude of the

these oscillations increases with K . These oscillations in the transverse profile is an evidence of
a phase shift in the viscoelastic fluid (K #0) in contrast to the viscous fluid (K =0). Fig.
3.4(c)-(d) display the velocity field f’ for others two time instants within the fifth periods. It is
evident from Figs. 3.4(c)-(d) that the flow in the whole domain is almost in phase with the sheet
oscillations in the case of Newtonian fluid (K =0), as shown from the solid lines displayed in
Figs. 3.4(a)-(d). Furthermore, we can see from Fig. 3.4 that the boundary layer thickness is
increased by increasing the value of K.

Fig. 3.5 illustrates the effect of the combined parameter B on the transverse profile of the
velocity component f' for 7=8.57,97,9.57 and 107 with §=1, y=2 and K=02. It is
evident from this figure that an increase in the Hartmann number or permeability parameter
causes a reduction in the velocity field and the boundary layer thickness (Fig. 3.5(a)). However,
at 7=97 (Fig. 3.5(b) and 7=10x (Fig. 3.5(d)), there exist the oscillations with fairly small
amplitudes in the transverse profiles of f' near the wall. It is also noted that with increase in
combined parameter S, the phase differencein f'is almost invisible.

Fig. 3.6 presents the variation in the transverse profile of the velocity field f' for various values
of mass suction/injection parameter ¥ at 7==8.57,97,9.57 and 107zin the fifth period with
§=2, =10 and K=0.1. The change in the velocity f* for different values of ¥ at time
r=8.57 can be seen from Fig, 3.6(a). It is found that f'=1 at the sheet y=0 and it approaches

to zero far away from the sheet. Furthermore, the velocity profile is increased by increasing the

value of the 7. The influence of ¥ on the velocity f' at the time 7=97 is presented in Fig.

3.6(b). It is evident that at this time point the velocity takes zero value both at the wall and far

away from the surface. The amplitude of oscillations near the plate decreases with increasing ¥.

The velocity fields for other two time points within the fifth period are plotted in Fig. 3.6(c) and
(d) with the similar results as observed in Figs. 3.6(a) and 3.6(b).
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Fig. 3.7 shows the effects of the combined parameter £ and the mass suction/injection

parameter ¥ on the time-series of shear stress at the wall Re'? C, for the first five periods
7€ [0,107]. Fig. 3.7(a) gives the variation of the combined parameter S on the skin-friction
coefficient Re’>C,. It is evident that skin friction coefficient is oscillatory in nature and
amplitude of oscillations increases with increasing 5. Fig. 3.7(b) displays the effects of ¥ on
the skin-friction coefficient Re’>C, with §=1, =12 and K=02. It is noted that the
oscillation amplitude of the skin-friction coefficient Re}” C, increases for large values of mass

suction/injection parameter }.

Fig. 3.8 displays the effect of the Prandt! number Pr, viscoelastic parameter K, parameter S
and the mass suction/injection parameter ¥ on the transverse profile of the temperature 8 for the
time point 7=38x. Fig. 3.8(a) shows the variation of the transverse profile of the lemperature
distribution @ for different values of Pr at the time point 7 =8z. This figure shows that thermal
boundary layer thickness decreases with increasing Prandtl number. In fact the Prandtl number
represents the ratio of momentum diffusivity to thermal diffusivity; larger values of Prandtl
number correspond to fluids with weaker thermal diffusivity. Thus thermal boundary layer
thickness in fluids with greater Prandtl number is small in comparison to the fluids having lower
Prandt! number. In view of the above fact, it may be concluded that Prandil number play a key
role in the cooling process. In other words it may be used to control the thickness of the
momentum and thermal boundary layers. Fig. 3.8(b) depicts the transverse profiles of
temperature £ for different values of viscoelastic parameter K for the time point 7=87. It is
noticed from this figure that influence of viscoelastic parameter K is to decrease the temperature
of the fluid. Fig. 3.8(c) illustrates temperature profile @ for various values of A at the time point

r=87n by keeping all other parameters fixed. It is observed that as we increase the values of 4,

both temperature & and thermal boundary layer thickness are increased. The influence of the
mass suction/injection parameter ¥ on the temperature field 8 can be seen from Fig. 3.8(d). It is
found from this figure that the temperature is a decreasing function of 7. The thermal boundary

layer thickness also decreases by increasing 7.
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Fig. 3.9 presents the results by varying Pr and ¥ on the time-series of the temperature
distribution @ and the local Nusselt number Re " Nu, in the first five periods 7€ [0,107] ata

fixed distance y =0.25 from the sheet. From Fig. 3.9(a), it can be seen that with the increase of

Prandtl number Pr, temperature decreases because of thermal diffusivity decreases. Fig. 3.9(a)

also shows that the magnitude of the local Nusselt number Re.'* Nu, is increased by increasing
the values of Pr. Fig. 3.9(b) illustrates the effects of the mass suction/injection parameter ¥ on
the temperature profile ¢ and the local Nusselt number Re "? Nu_. It is noted from this figure
that with the increase in the mass suction/injection parameter ¥, the decrease in temperature &

with time becomes slower. Furthermore, a small oscillation, which is superimposed on the

monotonically increasing temperature time-series, can be identified for large values of . It is
further observed that local Nusselt number Re '* Nu, increases with 7. A common observation
from Fig. 3.9(a)-(b) is that for 7 =0, the local Nusselt number attains a maximum and then
decreases monotonically because of the given initial conditions i.e., the temperature gradient at
the sheet has its maximum initially which decreases with time.

Table 3.1 shows the numerical values of the skin friction coefficient Re”? C, for various values
of §.K,8 and ¥ at r=157.5.57 and 9.57. It is evident from this table that the values of skin
friction coefficient for the three different time points 7 = i,Szr, r=5.57 and 7=9.57 are almost

identical. Furthermore, we can see that the periodic motion may be reached within the first
period when the initial conditions are set up. However, the change in the skin friction coefficient

from positive to negative by increasing the value of K indicates the large phase difference as K
increases. It is also noted that the values of the skin friction coefficient Re!? C, are increased as
the relative frequency to the stretching rate S, combined parameter S and the mass
suction/injection parameter } are increased. Table 3.2 gives the numerical values of the local
Nusselt number for Pr, X, B and ¥ at the four different times points 7=27%. =47, 7T=67%
and 7=87. Tt is concluded that the local Nusselt number increases by increasing the value of Pr,
K and y while it decreases by increasing f at all four times points 7 = 27,7 = 47,7 =67 and

7 =87. Moreover, the values of local Nusselt number are also decrease with time increase from
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7=2m to 7 =_8x due to the decrease in the rate of heat transfer near the sheet.
3.4 Concluding remarks

In chapter, we analyzed the MHD flow and heat transfer of a viscoelastic fluid due to the

oscillation of an infinite porous stretching sheet with magnetic field in a porous medium. A

coordinate transformation is used to transform the semi-infinite flow domain to a finite

computational domain and a suitable finite difference method is used to solve the goveming

partial differential equations. The time-series of the flow velocity, the temperature, the structure

of the boundary layer near the plate for different values of the involved parameters are

graphically presented and discussed. The following observations are made on the basis of

obtained numerical results:

o The flow field gencrated by flat sheet which is suddenly stretched periodically rapidly
becomes periodic, at most after three or four periods.

» The amplitude of velocity time-series is suppressed for large values of the combined
parameter. On the contrary, it increases with increasing the viscoelastic parameter.

¢ The flow exists only within a boundary layer near the plate, whilst the heat can be transferred
to an infinitely large distance with the increase of time.

» The behavior of the temperature is monotonic with time rather than oscillatory.

» The temperature and thermal boundary layer thickness increase with increasing combined
parameter while converse trend is noted with increasing viscoelastic parameter and mass

suction/injection parameter.
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Table 3.1: Numerical values of the skin-friction coefficient Re, *C, for different values of §,

K, B and 7 at three different time points 7=1.57, 5.57 and 9.57.

) K B I4 r=1.5% T=5.57 r=9.57
0.5 0.2 12 0.1 7.712793 7.712849 7.712781
1.0 7.824557 7.824703 7.824677
2.0 8.146671 8.147018 8.146691
3.0 8.570725 8.570726 8.570721
4.0 9.065895 9.066202 9.066481
1.0 0.0 12.182205 | 12.182195 | 12.182195
0.2 7.824557 7.824703 7.824677
0.5 1.846781 1.846511 1.846236
0.8 -3.577653 | -3.577136 | -3.577650
1.0 -6.938216 | -6.938253 | -6.938675
0.2 5.0 3.038148 3.038256 3.037955
7.0 4.355440 4.355567 4.355471
9.0 5.716519 5.716240 5.716628
12.0 7.824557 7.824703 7.824677
15.0 9.992332 9.992408 9.992349
12.0 0.2 0.416449 9.416035 9.417047
0.5 172.837937 12.839594 | 12.833545
0.8 15.306652 | 15.294266 | 15.292671
1.0 16.664039 | 16.656905 | 16.651919
1.5 19.506594 | 19.486431 | 19.500553
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Table 3.2: Numerical values of local Nusselt number Re;"? Nu_ for several values of parametrs

Pr, K, B and 7 at four different time points 7 =27.47,6% and 7=87 when § =3.

Pr

K

2

T=2r

T=4rx

T=061

T=87

0.3

0.1

12.0

3.286656

3.250347

3.246147

3.245864

0.5

3.442377

3.300958

3.280489

3.279686

1.0

3.949524

3.528154

3.414912

3.381638

2.0

5.049508

4.140732

3.838137

3.707441

3.0

6.127671

4.814339

4,339281

4.116033

1.0

0.0

3.929795

3.510038

3.396825

3.363732

0.3

3.957418

3.536146

3.420409

3.387667

0.8

3.975992

3.554076

3.435345

3.403153

1.0

3.979141

3.557149

3.437445

3.405464

1.5

3.981102

3.559297

3.437308

3.405878

0.2

0.0

3.735224

3.325657

3.215876

3.183788

0.5

4.967091

4.498941

4.368397

4.331065

1.0

6.513363

5.997575

5.848653

5.807043

1.5

8.396179

7.850689

7.687753

7.643900

1.8

9.694819

9.142083

8.973502

8.929473

0.1

9.0

3.969607

3.546253

3.434544

3.400663

12.0

3.967523

3.544466

3.432311

3.398531

15.0

3.963304

3.540774

3.427898

3.394361

18.0

3.956978

3.535232

3.421240

3.388076

200

3.945905

3.525353

3.409733

3.376938
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Chapter 4

Soret and Dufour effects on hydromagnetic flow of viscoelastic fluid

over porous oscillatory stretching sheet with thermal radiation

The aim of this chapter is to investigate the thermal-diffusion and diffusion-thermo cffects on
magnetohydrodynamics (MHD) viscoelastic second grade fluid due to a porous oscillatory
stretching sheet with thermal radiation. The dimensionless nonlinear partial differential equations
are solved by means of the homotopy analysis method. The effects of various parameters on
velocity, temperature and concentration distributions are investigated and discussed in detail.
The numerical values of effective local Nusselt number and Sherwood number are computed and

expressed in tabular form.
4.1 Statement of the problem

Consider two-dimensional boundary layer flow of an incompressible electrically conducting
second grade fluid over a permeable oscillatory stretching sheet embedded in 2 porous medium
in the presence of Soret and Dufour effects, The effects of the thermal radiation are also

incorporated. It is assumed that T, is the temperature of the sheet and 7_ denotes the ambient
temperature in the free stream, while ¢ and C_ cormespond to surface and ambient

concentration, respectively. The schematic diagram of the flow is shown in Fig. 4.1. The

boundary layer equation in the presence of transverse magnetic field is

8
T>T, Ty
C->C, T 4
L} [] . 3. . [] ] L]
. “, [] [
. . Second grade flaid o
. e e e, .
. . ¢ .
. * ]
e terelt aarer 1B
¢ . ’ ' ¢ ® | Commmtrations boumdary teyer
.| ® [o ;@ o hd
. o o . . Thermal bemuibry bryer
m—mw‘ . v L J L . .' v 'L i
- 0 ———

C=C, T=I, u =bxsnofaty=0

Fig. 4.1: Schematic diagram of the flow
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The involved parameters in above equation are already defined in chapter 2. The energy and

concentration equations in presence of thermal radiation, Soret and Dufour effects are

or 9T oT _ 9T Dk C__1 9,

I, ., , 42
ot ax a_ a—z cc, 0y pcpa? 2

2 2
ac, aCc  aC_ . ¥C D IT “3)

r “m ey % T o

where @ is the thermal diffusivity, D, is the molecular diffusivity of the species concentration,
k, is the thermal diffusion ratio, ¢ is the concentration susceptibility, T, is the mean fluid

temperature and g, is the radiative heat flux. By using Rosseland approximation for radiation

heat flux [50], we write

4
_ 40 oT (4.4)

AP E
where o denotes Stefan-Boltzmann constant, &* is mean absorption coefficient. Using Taylor
series expansion, one can get

T* =477 3T, (4.5)

In view of Egs. (4.4) and (4.5), Eq. (4.2) becomes
or , oT T (a+16cr’Tj] 2T+D k. 0°C
a a" ai y o, oy

The corresponding initial and boundary conditions for velocity profile remain same as we have

(4.6)

discussed in chapter 3 (Egs. (3.3),(3.4)). The boundary conditions for temperature and
concentration profiles are
T=T =T +Ax, C=C,=C_+Bx at y=0, 1>0, (4.7
T—>T,C-C, a j—oeo, (4.8)

where A and B are constant. To non-dimentionalize the flow problem, we use dimensionless

variable defined in Egs. (2.6) and (3.5) along with
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R 4.9)

with the help of Eq. (2.6), (3.5) and (4.9), Egs. (4.1), (4.2) and (4.6) reduces to

S(14BK) frut f2—ff, + M2+ Bf, = £, 4 K[ S +2f, 10 = ~ F s (4.10)
%(HN,)GW+Du¢yv+f9y—56r—9fy:0, (4.11)
g, +Sc(Sr6,, + £6,—56,-61,)=0. (4.12)

In above equations Sc=Vv/D,Sc is the Schmidt number, Du = D k. (C,~C.)lce,v(T.-T.)
is the Dufour number, Sr=Dk (T, —T, YTv(C,— C.) represents Soret number and

N = 160°T? /3ak” is the radiation parameter.

Following Magyari and Pantokratoras [55], we write Eq. (4.11) as

1
E—a)}_+Du¢w+fq:—SG,—9fy =0, (4.13)
off

The dimensionless effective Prandtl number is defined as Pr,; = Pr/(1+N, ). In fact, Magyari
and Pantokratoras [55] pointed out that there is no need to solve energy equation (4.13) by using
two parameter approach i.e. for different values of Pr and N,. They showed that in fact the

investigation of heat transfer characteristics with and without thermal radiation is exactly the

same task. They further emphasized that the radiation problem admits the same solution for

infinite set of parameter values (N,,Pr) which corresponds to same effective Prandtl number.

Following Magyari and Pantokratoras (55], we solve the Eq. (4.13) for various values of the
effective Prandtl number.

The boundary conditions are

£,(0,7)=sinz, f(0.7)=y, &O.D)=L (4.14)
f,(=7)=0, f,(=1)=0, O=7)=0 (3.15)
The skin-friction coefficient Cf is defined in (2.12). We define local Nusselt number and local

Sherwood number as
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where g, is the surface heat flux and g, is the surface mass flux, which can be defined as

(4.16)

160 T3 [aT) (ac)
=— oL ,q,=—D| &= , 417
k{ v ] 5 ). g S 4.17)
In view of (2.6), (3.5) and Eq. (4.9}, Eqs. (4.16) and (4.17) become
Re"? Nu' =8, (0,7),Re]"* Sh=—¢,(0.7), (4.18)

where Nu, = Nu, /(1+N,) is the effective local Nusselt number.

4.2 Solution by homotopy analysis methed

In view of boundary conditions, we choose the following initial guesses and linear operators for

velocity, temperature and concentration fields

£, =p+sing(1-exp(-y)), 6 () =exp(-), 6 (¥} =exp(=)- (4.19)
(=22 a0 a3 &g, @20
Such that
£,[C+Cexp(y)+C, exp(-y)]=0, 4.21)
£,[Coexp(y)+Cs exp(-y)]=0, (4.22)
£,[Csexp(y)+C exp (-y)]=0, (4.23)

where C,(i=1-35) are arbitrary constants.

We construct the following zeroth-order deformation problems

(1-p)&, [ F(3:50)- fo(37) = PV, [T 0550 | @24)
(1-p)£,[805.5:P) =00 |= PNy [ 6(3.7:0). F (3. 7:p)- 37 )| (4.25)
(1-p)£,[#(3.7:P)- 4 (3:7) |= PN, [#(3.5:p). 7 (2.50), 00> %)) (4.26)
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f{y,’r;p)li :QM =sin7, f()’Tp) ‘M =0. (4.2

¥=0 ay - ay ay .

6(0,7,p)=1 6(7,p)=0, (4.28)
(4.29)

#(0.7:p)=1. @{.7:p)=0,

where pe[0,1] is an embedding parameter and h;.hy, h, are the auxiliary parameters. The

nonlinear operators N, Ny and N, are

Nf[f(yrp):l __an%rp) S(1+BK) éy P) f(y,‘r,p)a f(a);rp (af}rp)]
e 0hTP) o' f(y.5p) Qf(y‘rp)a’ (v7p) (F(»5p) 2
(M +B)——-—ay +K{S 9 . 5 { 5 J (4.30)
. *fly. 7
—f(y,ﬂp)*#a}ﬂl)},
. 2*d(y.z; - 96(y,T: A f (y.7.
N, 6(y.7:p). f(y’ﬂp)]=L—(Lzm+f(y»ﬁp)ﬂ—9(ymp)m
Pr, dy Jy @30
39(y.7:p) _36(y.5p)
+Du R AY o
. \ d . 3¢(y.T.p) - f(y.m
N,[$(r.7:p).0(x.7 p).F(»7p) |- j%rﬂﬂ{f(ymp)ﬂg—rﬂ—sﬁ(ymp)amTp)
) (4.32)
5 00z} 200n7p)
oy’ ar '
The solutions of above problems at p =0 and p =1 are
F(3.1:0)= £, (32). f(»51) = £ (307), 4.33)
8(y,7;0)=6,(».7),8(».71:1)=6(».7). (4.34)
(4.35)

#(y.1:0)= ¢, (3.7).8(y.7:1) = ¢(.7).

Expanding f (y,7,p) 6(y,7;p) and @(y,T, p) in a Taylor's series with respect to p, we get
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1 0" f(y.7p)

Fomp) =+ 2 L) p" fulyn7)=— - (4.36)
m=} m: ap
= o"8(y,1;
8(y.t:p)=6,(y.7)+> 6, (».7) P", 6,,.(y.f)=;11—,——é;-,f—’ﬂ, (4.37)
A = 1 9"d(y.7;
Hy.mp)=6{»1)+ 26 (».7)pP" ¢m(y,f)=;nf—,—%;—p), (4.38)
m=1 H

Using generalized Leibnitz formula, we take mth derivative of zeroth-order problem with

respect to p and then set p =0 to get

£ [ £ (7.0 = S (3.7) ] =1, RL (3:7), (4.39)
£,[6,(3.7) = 200 (3.7) | = HoRo (5.7); (4.40)
£¢[¢m(y’f)_1m¢m-](y”r)]':hrﬂRr:(y’T)’ (4.41)
of (0,1,') daf, (oo,‘r) 0’ f, (OO,T)
= m — L — 0 = 4'42
Fu (0,1') 0, P 0, R T oy 0, ( )
8,(0,7)=8,(7)=0,8,(0,7)=6,(=7)=0, (4.43)
B’f S Y. A ) Z{ azf ¥ i afk]
, s(1+BR) LImt _ppp It _pPmt (N p | ok Sk L
' it 2 Bf L, O, 2 (49
fm—] @rm-lﬁk a f}: a m-1-k k k
+KS—— a))3aT+Kk=‘) 2 ay ay2 ayz ay2 fm—l-rk ay4

[ _ 1 aZ a 9 — m -1 ‘S afk 4.45
Rm(y‘r)_Preﬁr a + ( ayZ ) a +Z mel—k mlk a} ( . )

¢ 2’9 ( 98 _ ) (o 9¢, af,c]

I —_ 7 ¥m ¥ Ym m—| _ == 446
R (y,0)= 3’ +Sc(Sr)—=2= 5 Se| S +Sck§ Fork k. ik 5 (4.46)
.= {0, m <1, A7)

1, m>1.

The problems defined above are called mth -order deformation problems. The solution of above

problems can be expressed as

£ (3 7) = £1 (3 7)+C, +Cyexp(y) + Cyexp(—y), (4.48)
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8 (y,7)=6.(y.7)+C, exp(y)+C,exp(-y). (4.49)
¢ (3,7)=¢.(y,7)+C,exp(y)+Csexp(—y) (4.50)

where £ (y,7).0, (y,7) and ¢ (7.7) denote the particular solutions.

4.3 Convergence of HAM solution

We sce that Eqs. (4.39)-(4.41) consist of nonzero auxiliary parameters h .k, and h,. The

convergence of the obtained series solution can be controlled by proper choice of these auxiliary

parameters. Fig. 4.2(a-c) are plotted to find the plausible values of %, 7, and 7, at 10" order of

approximation. We note from these figures that for convergent solutions

_1<h, <—0.1,-1.25k, <01 and 1.3k, <-0.1.

4.4 Analysis of obtained results

The main aim of this work is to investigate the effects of various parameters of interest on
velocity, temperature and concentration. To this end Fig. 4.3-4.19 have been plotted. Figs. 4.3(a-
d) shows the effects of viscoelastic parameter K, Hartmann number M . porosity parameter B
and suction/injection parameter y on the time-serjes of velocity profile f° at fixed distance
y=0.25 from the surface. From Fig. 4.3(a) it is noticed that amplitude of the velocity increases
by increasing viscoelastic parameter K because of increased effective viscosity. Further, it can
be seen that a phase shift occurs which increases with an increase in viscoelastic parameter K.
Fig. 4.3(b) elucidate the variation of Hartmann number M on time-evolution of velocity profile
when S=1K=01y=3 and B=0.5. This figure show that the amplitude of velocity is
suppressed by increasing Hartmann number M. Since the magnetic lines of force behaves like
elastic bands in the fluid motion therefore, fluid motion is suppressed and thus amplitude 1s

reduced. The velocity as a function of time f “(»,7) by keeping values of other parameters fixed

is illustrated for different values of B in Fig. 4.3(c). We note that the influence of porosity
parameter is similar to Hartmann number i.e., the amplitude of velocity decreases with increase
of porosity parameter B, In fact, an increase in the porosity parameter decrease the permeability
of the porous medium and hence increase the resistance to flow. The effects of suction/injection
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parameter ¥ on £ are illustrated in Fig. 4.3(d). In the case of suction (7>0), the amplitude of

velocity decreases with time. However, in the case of injection {7<0) an opposite behavior is
observed.

Figs. (4.4-4.7) demonstrate the effects of viscoelastic parameter X, Hartmann number M,
suction/injection parameter ¥ and porosity parameter B on transverse profile of f” at a fixed
time 7 =8.57. Fig, 4.4 shows the effects of viscoelastic parameter K on velocity profile f". Itis
noted from this figure that f’ increases with the increase of viscoelastic parameter K. The

momentum boundary layer thickness also increases by increasing viscoelastic parameter. The
dimensionless form of the viscoelastic parameter suggests that K is inversely proportional to the
viscosity and thus increase in K reduces the viscosity as a result velocity is increased. Fig. 4.5

shows a decrease in f with the increase in the Hartmann number M. The momentum boundary

layer thickness is suppressed for higher values of Hartmann number M. This is in accordance
with the fact that a constant magnetic field suppresses the bulk motion and alters the boundary
layers. The porous medium also offers resistance to the flow and thus Fig. 4.6 depicts a decrease

in velocity. Fig. 4.7 shows the same behavior as observed in Fig. 4.6 i.e. the velocity decreases
significantly with the increase in the suction (7>0) while in the case of blowing {y<0) the
velocity of fluid increases. It is also noted that in the case of wall suction (7>0), a decrease in

momentum boundary layer thickness is observed.

The effects of effective Prandtl number Pr, viscoelastic parameter K, Dufour numbers Du,

Hartmann number M. suction/injection parameter ¥ and porosity parameter B on the
temperature profile are illustrated in Figs. (4.8-4.13). It is observed from figure 8 that increase of

effective Prandtl number Pr;, temperature and thermal boundary layer thickness decreases. An

increase in effective Prandtl number means that thermal diffusivity is decreased and as a result
temperature of the fluid decreases.

Fig. 4.9 depicts that with the increase of Dufour number Du, the thickness of thermal boundary
layer enhanced. Fig. 4.10 depicts that graph of the non-dimensional temperature profile &(7)

for different values of Hartmann number M. Increase of magnetic parameter means increase of
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Lorentz force which creates enhancement in the dimensionless temperature and thermal
boundary layer thickness. It is evident from this figure that temperature increase with the

increase of Hartmann number M. Figs. 4.11 shows that temperature decreases with the increase

of viscoelastic parameter K. The effects of suctionfinjection parameter on & (n7) are illustrated

in Fig. 4.12. Here a decrease in the temperature is noted with increasing suction velocity. In fact,
the strong cross-stream flow velocity imposed at the plate prevents the thermal boundary layer to
grow and as a result the temperature of the fluid is decreased.

The variation of the concentration field at 7 =7/2 is illustrated in Figs. (4.13-4.19) for various

values of Schmidt number Sc, Soret number §r, Harimann number M , viscoelastic parameter
K, porosity parameter B and suction/injection parameter }.

Fig. 4.13 represents the effects of Schmidt number Sc¢ on dimensionless concentration profile.
The concentration profile as well as concentration boundary layer thickness decreases for higher
values of Schmidt number. As Schmidt number Sc is the ratio of momentum (o mass
diffusivities, hence mass diffusivity decreases for higher values of Schmidt number Sc¢ which
leads to a decrease in the concentration profile. These effects may be attributable to the increase
in the rate of solute transfer from the surface by increasing the Schmidt number. The influence of
dimensionless Soret number Sr is presented in Fig. 4.14. This figure shows that concentration
profile is an increasing function of Soret number. The variation of Hartmann number M on

concentration field ¢ is shown in Fig. 4.15. Likewise temperature, the concentration increases

with increase in Hartmann number M. Fig. 4.16 demonstrates the effects of viscoelastic
parameter K on dimensionless concentration profile. The concentration profile decreases with
an increase in viscoelastic parameter K. The thickness of the concentration boundary layer also
decreases for lager values of viscoelastic parameter. The variation of porosity parameter B on
concentration profile is plotted in Fig. 4.17. An increase in porosity parameter B causes a rise in
the concentration. The concentration boundary layer thickness increases with increasing porosity
parameter 8. Fig. 4.18 displays the effects of suction/injection parameter on the concentration
profile. The concentration decreases in case of suction while it increases in case of injection. The
concentration boundary layer thickness is reduced because of the suction of decelerated fluid
particles through the porous wall. In contrast, the concentration boundary layer thickness is

higher in the case of injection.
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The time-series of skin friction coefficient for different values of K and B is illustrated in Figs.
4,19 (a-b). Fig. 4.19(a) shows that the skin friction coefficient oscillates with time and its
amplitude raises with the increase of viscoelastic parameter K. Fig. 4.19 (b) depicts the
influence of B on time-evolution of skin friction coefficient. It is observed that the amplitude of
skin friction coefficient increases with increasing B. It is also noted that a phase shift occurs
which increases for larger values of B.

Table 4.1 shows the numerical values of the effective local Nusselt number at fixed time

r=x/2. It is observed from this table that effective local Nusselt number increases with an

increase of Pr,, Sr, ¥ and K while it decrease with an increase in M, Sc, Du and B. The

numerical values of the local Sherwood number are illustrated in Table 4.2. We observe that

local Sherwood number increases with Sc. Du, K and ¥ while it shows opposite behavior by

increasing Pr., Sr, M and B.

4.5 Conclusions

The Soret and Dufour effects on unsteady boundary layer flow of a second grade fluid over a

porous oscillatory stretching sheet have been investigated. Heat transfer analysis has been

performed under influence of thermal radiation. The number of independent variables in

governing equations has been reduced by using transformed dimensionless variables. Well

known analytical technique namely, homotopy analysis method has been employed for solution.

The solutions are illustrated through various plots. The main findings are:

¢ Increasing the viscoelastic parameter causes an increase of the amplitude of the flow
velocity. The amplitude of the flow velocity decreases for larger values of Hartmann number,
porosity parameter and suction/injection parameter.

* Velocity inside the boundary layer increases with the increase of viscoelastic parameter while
it decreases with the increase of Hartmann number and porosity parameter.

» Suction at the sheet decreases the velocity inside the boundary layer.

e With the increase of the effective Prandt] number, the heat transfer from the plate to fluid
becomes slower and the thermal boundary layer thickness decreases. However, an increase in
Dufour number, porosity parameter and suction/injection parameter leads to rise in the fluid

temperature.
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An enhancement in Hartmann number increases the temperature and concentration.
Concentration is higher for larger values of Soret number while its magnitude is suppressed
with an increase in the Schmidt number.

The effective local Nusselt number is an increasing function of effective Prandtl number,
Soret number, suction/injection and viscoelastic parameters while it shows opposite behavior
by increasing Hartmann number, Schmidt number, Dufour number and porosity parameter.
The local Sherwood number is found to be increase for higher values of Schmidt number,
Dufour number and viscoelastic parameter while it decreases with the increase of effective
Prandtl number, Soret number, porosity parameter and Hartmann number.

The amplitude of skin friction coefficient increases by increasing viscoelastic and porosity

parameters.
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Table 4.1: Numerical values of effective local Nusselt number when S = 0.5 and 7= Tl2.

Pr, p

M

Du

Sc

Sr

Y

B

K

-2 *
Re "“ Nu,

0.2

0.5

0.5

0.2

0.2

0.5

0.5

0.5

0.679021

0.4

0.764708

0.6

0.850813

0.2

0.5

0.679021

1.5

0.660688

2.5

0.654021

0.3

0.5

0.679021

1.0

0.645229

1.5

0.611438

0.2

0.5

0.675365

1.5

0.669271

2.5

0.663177

0.5

0.5

0.676771

1.5

0.681458

2.5

0.686146

0.5

0.5

0.676771

1.5

0.747708

2.0

0.784115

0.5

0.5

0.676771

1.5

0.672604

3.5

0.664271

0.5

0.5

0.676771

2.5

0.689271

3.5

0.695521
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Table 4.2: Numerical values of the local Sherwood number Re;’’Sh when S =0.5 and

T=nm/2.

Pr,, M Du Sc Sr Y B K Re"* Sh

0.2 0.5 0.2 0.2 0.2 0.5 0.5 0.5 0.699296

0.5 0.697833

0.7 0.696858

0.1 0.5 0.699783

15 ; 0.69145

2.5 0.674783

0.5 0.1 0.699746

0.7 0.699971

1.5 0.700083

0.2 0.2 0.699783

04 0.806358

0.6 0.913475

0.5 0.1 0.706298

0.3 0.693269

0.6 0.673725

0.5 0.5 0.699783

1.0 0.737283

1.5 0.775408

0.5 0.3 0.700617

0.6 0.659367

09 0.698117

0.5 0.5 0.699783

1.5 0.706033

25 0.712283
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Chapter 5

Unsteady flow of third grade fluid over an oscillatory stretching

sheet with thermal radiation and heat source/sink

The chapter aims to investigate the unsteady boundary layer flow and heat transfer analysis in a
third grade fluid due an oscillatory stretching surface under the influence of thermal radiation
and heat source/sink. The convective boundary condition at the sheet is imposed to determine the
temperature distribution. Homotopy analysis method (HAM) is used to solve dimensionless
nonlinear partial differential equations. The effects of involved parameters on both velocity and

temperature distributions are illustrated in detail through various plots.
5.1 Mathematical model

We consider heat transfer in unsteady two-dimensional magnetohydrodynamic (MHD) laminar
flow of an incompressible third grade fluid due to an oscillatory stretching sheet. The geometry
of the problem is same as illustrated in Fig. 3.1. However, instead of specifying the wall

temperature, the flux of temperature at the wall is specified in the term of convective fluid

temperature 7, below the sheet. Moreover, in contrast to chapter 3, the effects of heat

source/sink and thermal radiation are included in the present analysis. The boundary layer

equation for third grade fluid under influence of transverse magnetic field is

o’u 2
u du ., 4 Qu du

2 3T 2 2
gb.‘.+u§£+v§£ __]._a_p al; & | gy d 3 +£ﬂ_3(2ﬂ] a—%—ﬂu, (5.1
Braffﬁpc'f?ﬁpﬂa’ du 3’ pl\F,) I P

I 3\_837

Similarly, the energy Eq. (3.2) defined in chapter 3 in presence of thermal radiation and heat

source sink effects 1s

ofT oT oT 16T \0'T
c | —+u—+v— |=| &k, + —_ T-T, (5.2
e G s % gt )
The flow phenomenon is subject to same boundary conditions as given in chapter 3. The

boundary conditions on energy equation are
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—k ~—=h(T,-T) a y=0, >0, (5.3)

ToT, at 7o (5.4)
The condition in (5.3) is known as the convective boundary condition in the literature. In Eq.
(5.3), h, denotes the heat transfer coefficient.

Utilizing the dimensionless variables given in Eq. (2.6) together with

T-T
8(y,7)= =, 55
(3.7) T T, (5.5)

Egs. (5.1) and (5.2) take the following form
St f2AMf, = [ = fop + K| S+ 2y Fry = Fom = £, |+6f Refif, 56

1

o (1+N,)6,, + 16, - 56,+66 =0. (5.7)

In above equations B =85/ is the third grade fluid parameter, 8=0/bpc, is the heat

source (&>0) and heat sink for (§<0) and 7 =(h/k)Wv/b is the Biot number. Following

Magyari and Pantokratoras [55), we write Eq. (5.7) as

1

Pr,

8.+ f0, —-56.+06=0. (5.8)
The transformed boundary conditions are
£,(0,7)=sin7, £(0.7)=0, 6,(0.9)=-7% [1-6(0.7) ], (5.9)

f(w1)=0, f (e7)=0,  O(=.7)=0. (5.10)
The skin friction coefficient in present case is defined as

Re!C, = f, + K(Sf, o +3f S5 = J+28 Ref), ] . 5.11)
The expression of effective local Nusselt number is same as defined in (4.18).

5.2 Homotopy analysis method

In this section homotopy analysis method (HAM) is employed to solve nonlinear partial

differential equations (5.6) and (5.7) together with boundary conditions (5.9) and (5.10). In view
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of boundary conditions, the appropriate initial guesses for f(y,7) and 8(y,7) are

foly,7)=sinz(1—exp(-y)), 6,(5.7)= -y—ei%)- (5.12)

Further we choose the following auxiliary linear operators for the velocity and temperature

profiles
¥ oaf 3 f
£ = -, £ = -f, 5.13
satisfying
£f[C1+Czexp(y)+C3exp(—y)]=0, (5.14)
%[ C, exp(y) +Cexp(-y) | =0, (5.15)
Zeroth-order deformation problems are
(I‘P)ff[f(y,ﬁp)—fo(%f)}ph;Nf[f(y,z:p)} (5.16)
(l—p)fg[é(y,np)—-%(y,r)]=ph9N [f(y.r p); (y,rp)} (5.17)
Florp) =0 dGmp) g Yo P el (5.18)
v=0 dy . dy . ay’ _
aé(O,T;p) - -
=y (1-68(07 ), b(eeip) =0, (5.19)
dy

The associated nonlinear operators are

Nf[f“(ymp)]zaﬁf(y.np) _Fien) ¥ mp) _(af(y,r,p)]

oy’ oot dy dy
+f(y,np)azfg;ﬂp)+,-{\isa4 a(y);é:P)_{_Z (}&;yTP)a3fg;ﬁp)_f“(y,ﬂp)§v_(a})tfﬂ(5_20)
[af(yrp) vopre| F0:mR)| 27 0r5p)
oy oy &
N, [ (»zp), f(ymp)}:[,; aze(ai}ﬁp)+f(ymp)ag(;’fp)—Sag(;’:'p)wa (5.21)
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Setting p=0 and p=11in zeroth-order problems, we get
FO.m0= £, O, mD = F(.7), (5.22)
é(y,r;())=90(y,1:),9(y,r;]):9(y,r). (5.23)

Expanding f (y,7; p) and é(y,'r; p) using Taylor’s series, one gets

- = 1 amn ,T;

f(y’T;P)zfo()’-T)+Z (y!T)P ’ (Y! ) |_f_(2}m_-p—)s (5‘24)
m=] m. ap

~ > 1 9"8(v.7;

8(y.7:p)=0,(07)+ 2 0, (»7) P" 9m(y,f)=—,—*—(y7p—)- (5.25)
m=} m. ap

Setting p =0 in Eqgs. (5.27) and (5.28), we find

Fymp) =L+ 2 L (n7) (5.26)
m=1

9(y,f)=60(y,1)+29m(y,r), (5.27)

m=1
as solutions to the original equations (5.6} and (5.7). In Egs. (5.26) and (5.27), f, and 8, can be

computed through meh-order deformations problems given by

£, £, (0.0) = ZuSra (3. 7) ] =1, R (3:7), (5.28)
£,[6,(3.7) = 28,1 (3.7} | = oRe (5.7), (5.29)
£.(0.7)=0, Yol07)_ o Hul?) o 9al?) g (5.30)
dy dy dy’
%é(o—’rl—y,am(o,f)zem(m,r):{), (5.31)
y
2 2'f, af Ff .9,
v = "3” Maf’"" N 3"”+Kz:£ @rm_k ep O Flen Oy |y
ROD=g M SR ke s o "y o 5
af 1-k 2-]2—{ ajf;
+6F Rey It oI ZI
ﬁ Z ay'Z £ ay2 ay}
o 1 9%, .06, el
R:(y, T)_Pr,ﬁ 5 -S =t 88, Z[ - ay] (5.33)
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<
7= 0, m<l1, (5.34)
1, m>1.

The general solution is of the form
£ (0 1)= fo(3.7)+C+Cexp(y)+ G, exp(-y), (5.35)
6 (y.,7) =8, (y.7)+C,exp(y}+C; exp{—y). (5.36)

where f,(y,7) and g (y,T) represents the particular solutions. In view of the boundary
conditions (5.30) and (5.31), the constants C; (i=1,2...,5) are computed as follows

af (0.7 .
C2=C4:0,C3=é(—l, C,=-C,—fa(0.7), C= ! [

08, (0,7)
dy Tyl

YA (O,z')i} (5.37)
dy

5.3 Convergence of the HAM solution

The proper choice of auxiliary parameters h, and h, plays prime role in convergent HAM
solution. Figs. 5.1 and 5.2 are plotted to see the appropriate regions indicating plausible values of

R, and h,. These figures clearly show that the for convergent solutions /i, and h, must be in

the range —1< A, <0 and 1.5 <h,<-02.

5.4 Results and discussion

Figs. (5.1)-(5.15) arc displayed to reflect the behavior of velocity and temperature in response to
the pertinent parameters. Figs. 5.3 (a-c) shows the effects of M, S and £ on the time series of
velocity profile f* when y=0.25 from the surface of the sheet. Fig. 5.3 (a) illustrate that with

an increase in Hartmann number M , the amplitude of the flow velocity decreases. This is due to
the fact that magnetic field introduces a retarding force known as Lorentz force which is of
resistive nature. The variation of ratio of the oscillation frequency to its stretching rate S on the
time-evolution of the velocity profile f* is illustrated in Fig. 5.3 (b). It is clear from this figure
that the amplitude of flow motion decreases by increasing S. It is also observed that a phase shift
occur with increasing . Fig. 5.3 (¢) elucidates that the amplitude of the velocity is an increasing
function of third grade fluid parameter 5°. Physically, for non-zero values of [ . the viscosity

of the fluid increases with increasing the shear rate and as a result of that an acceleration in the
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flow is observed.

Figs. 5.4 (a-d) describe the variation of fluid parameter K on the transverse profiles of velocity
field f’ at time instants 7 =8.57, 7= 97, 7=9.57 and 7=107x.Fig. 5.4(a) shows the effects of
parameter K at 7=8.57. The velocity f’ increases from unity to zero by increasing K. It is
also observed that an increase in K results in an increase of the momentum boundary layer
thickness. This increase in momentum boundary layer thickness is attributed to the increase in
the effective viscosity and normal stress effect exhibited by third grade fluid for nonzero values
of K. The effects of the velocity profile f* at time instant 7 =97 are shown in Fig. 5.4(b). This
figure reflects opposite effects, i.e., the velocity and momentum boundary layer decreases by
increasing K at this time instant. At 7=9.57, (Fig. 5.4(c)) the magnitude of the velocity f " is
an increasing function of fluid parameter K. Fig. 5.4(d) indicates that f’ decreases with K at
time instant 7=107z. At this time instant, the velocity at the surface and for away from the
surface is zero.

The variation of Hartmann number M at four time points is depicted in Fig. 5.5(a-d). It is clear
from these figures that the magnitude of the velocity decreases at all time instants except

at7 = 9.57 where an increasing trend in magnitude is observed. Fig. 5.6(a-d) is plotted to see the

effects of third grade fluid parameter J at different time instant. Fig. 5.6(a) shows that the

magnitude of the velocity is an increasing function of f . Similar observations are made from
Fig. 5.6(b) which is plotted at time instant r=9x. Fig. 5.6(c) is sketched at time instant

7=9.57 where again it is observed that the magnitude of the velocity increases with 5. The

influence of /& on f’ at time instant 7 =107 is similar to the influence of £ on f” at the time

instant 7 =97x.

The time -evolution of skin friction coefficient for different values of M, S, f and Re are
illustrated in Figs. 5.7(a-d). Fig. 5.7(a) shows that skin friction coefficient oscillates with time
due to oscillatory motion of the sheet. Moreover. the amplitude of oscillations increases with an
increase in dimensionless Hartmann number M. The increase in the skin friction coefficient with
increasing Hartmann number is expected because of flow suppression caused by Lorentz force.
The effect of ratio of oscillation frequency of sheet to stretching rate § on the skin friction

coefficient is similar to effects of M and shown in Fig, 5.7(b). Further, it is observed that there
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exists a phase shift for larger values of S. Fig. 5.7(c) depicts that for higher values of g
amplitude of the skin friction coefficient decreases. This is perhaps due to result of flow
acceleration observed for the larger values of B". The influence of Reynolds number Re the on
skin friction coefficient is displayed in Fig. 5.8(d), where it is observed that the skin friction

coefficient decreases for large values of the Reynolds number Re.

Figs. (5.8-5.15) portray the effects of Pr K, B°.M, %, on the temperature profile & at
r=0.5xz. Fig. 5.8 shows the effects of effective Prandtl number Pr,; on temperature profile 8.

It is evident from this figure that the temperature as well as thermal boundary layer thickness

decreases by increasing effective Prandtl number Pr,, . This decrease in the temperature inside
the boundary layer by increasing Pr, is a consequence of the fact that Pr, is directly
proportional to Prandt number Pr, and inversely proportional to radiation parameter. The

effects of fluid parameters K and B on the temperature are shown in Figs. (5.9) and (5.10),
respectively. The temperature is found to be decrease with an increase in these fluid parameters.
The decrease of the temperature also leads to decrease in the thermal boundary layer thickness.
The influence of Hartmann number on temperature is shown in Fig. 5.11. This figure reveals that
at an increase in Hartmann number M results in an increase in temperature. Moreover, it is
found that the thermal boundary layer increases also increases. It can be justified physically
because the Lorentz force opposes the fluid motion and increases the internal fluid friction, as a
result of this increase the thermal boundary layer becomes thicker for strong larger values of
magnetic field. The effects of heat source parameter on the temperature distribution are presented
in Fig. 5.12, which indicates that temperature increases by increasing heat source strength. It is
expected because more heat is added to the system results in the rise of the fluid temperature and
the thermal boundary layer thickness. Fig. 5.13 shows opposite effects i.e., the temperature and
the thermal boundary layer thickness decreases with increase of the strength of the heat sink.
This result is of key importance for the flows where heat transfer is of prime importance. The

variation of Biot number % on the temperature profile & is shown in Fig. 5.14. This figure

elucidates that the temperature as well as the thermal boundary layer thickness increases by

increasing Biot number ¥,. It is also observed from this figure that there is no heat transfer when
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7, =0. Since thermal Biot number depends upon heat transfer coefficient h, therefore its higher

values represent the case of enhanced heat transfer from stretching sheet to the fluid stream. This

enhancement in heat transfer is responsible for increase in the temperature of fluid. Fig. 5.15(a-

¢} shows the effects of effective Prandtl number Pr.., Harmann number M and Reynolds number

Re on the time-series of effective local Nusselt number Re "> Nu. Tt is observed that the
effective local Nusselt number increases monotonically with time for large values of PrL,, Re

while the effects of Hartmann number M are opposite. Table 5.1 shows the numerical values of

the effective local Nusselt number for different values of Pr,g, [, 7, and Hartmann number M .

From the table it is clear the larger values of the effective Prandtl number Pr,, lead to an
increase in the effective local Nusselt number. The effective local Nusselt number also increases

by increasing fluid parameters K and B'. However, this increase is marginal. Table 5.1 also
shows that heat transfer rate is zero when ¥ ={). Moreover, the effective local Nusselt number

decreases with an increase in Hartmann number M and heat source parameter J.
5.5 Concluding remarks

This study deals with the unsteady boundary layer flow of a third grade fluid over an oscillatory

stretching surface in the presence of thermal radiation effects and heat source/sink. The

dimensionless nonlinear partial differential equations are solved through homotopy analysis

method (HAM). The main observations of the study are:

o The amplitude of the velocity f’ increases by increasing fluid parameter S while it
decreases by increasing Hartmann number M.

» Amplitude of the wall shear stress increases periodically with Hartmann number M while it
shows opposite trend with third grade parameter f and Reynold number Re.

e The temperature and the thermal boundary layer thickness increases by increasing Hartmann
number M, Biot number ¥ and heat source parameter & while decreases by increasing all
other parameters. Moreover, there is no heat transfer if ¥ =0.

e The numerical values of the effective local Nusselt number increases by increasing effective
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Prandil number Pr;, third grade parameter [ and Biot number . However, the effective

local Nusselt number decreases for large values of heat source parameter ¢ and Hartmann

number M.
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Table 5.1: Numerical values of effective local Nusselt number —9y (0,7

ofPr,, M, .6 and ¥ when §=0.5,Re=0.5 and T=n1/2.

) for various values

Py

I

M

K

g d

~6,0.0

0.1

1.0

0.5

0.2

0.2 0.1

0.476203

0.3

0.477359

0.5

0.478519

0.2

0.0

0.0

1.0

0.476781

1.5

0.566646

0.5

0.476781

1.0

0.476770

2.5

0.476697

0.5

0.2

0.476781

0.6

0.476786

0.9

(.476790

0.2

0.5

0.476784

1.5

0.476797

3.5

0.476822

02|05

0.474780

1.5

0.469744

2.5

0.464658
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Chapter 6

Hydromagnetic flow and heat transfer of a Jeffrey fluid over an

oscillatory stretching surface

The theme of this chapter is to investigate the flow of a Jeffrey fluid over an oscillatory
stretching sheet. The heat transfer analysis has also been performed. The system of
dimensionless partial differential equations has been solved analytically by using homotopy
analysis method (HAM) and numerically by a finite difference scheme. A comparison of both
solutions is also provided. The effects of involved parameters are illustrated through graphs and

discussed in detail.
6.1 Flow analysis

We consider the unsteady, two-dimensional and magnetohydrodynamics (MHD) flow of an
incompressible Jeffrey fluid over an oscillatory stretching surface. The geometry of the flow and
heat transfer problem is already discussed in Fig. 3.1. Instead of electrically conducting second
grade fluid, here the analysis is carried out for a magnetohydrodynamic Jeffrey fluid. Thus the

governing equation (1.30) in presence of magnetic field under boundary layer assumptions takes

the form

ou ou du v |du u . u _dudu du 3%, 8314 OB,
tu—Hv—=— + +u —ouou, — +v Ly, 6.1
o 14[;;; %[ayzat s G waw ) o

The energy equation for the flow under consideration is given by Eq. (3.2). The boundary
conditions to be satisfied by the velocity components and temperature are also defined in Eqgs.
(3.3) and (3.4) of chapter 3.

Transformation of variables in Eq. (6.1) using Egs. (2.6) and (3.5) yields the following system

(14 2) (S, + S7 = [+ M1} = F+ D[ S £ fo | (6.2)
g, +Pr(f6,-56,)=0, (6.3)
f,(y.7)=sin7, fly»1)=0, &yo=la y=0, (6.4)
£,(»7)=0, f,(»7)=0, 60»n)=0as yreo (6.5)
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where De=Ab is the Deborah number.

The skin-friction coefficient C; is given as

) :
{2 _

Re)*C, =1 ,1[ £+ De(8f et fu = )] - (6.6)

The expression for local Nusselt number remains same as given in (3.12).

6.2 Solution of the problem

We have employed two methods for obtaining the solutions of Egs. (6.2) and (6.3) subject to
boundary conditions (6.4) and (6.5). Firstly, we have used homotopy analysis method to solve
nonlinear partial differential equations, The method has been already explained in previous
chapters. However, for further details we refer the reader to the book by Liao [112). Secondly, a
numerical method based on an implicit finite difference scheme is used. The details of the
numerical method are also explained in previous chapters (see section 2.3 and 3.2).

For the sake of completeness, we provide here the transformed version of Egs. (6.2)-(6.5) in the
bounded computational domain. With the help of coordinate transformation 7 =1/ (}’+1), Eq.

(6.2)-(6.5) can be transformed to

5{(142)-6(06) )} 25 Dl 1 as(omn (e -0 |

o sas(peyn s -us a2 ayns) Lol (s arr s s
L _yper T EL_peyt(3L) 2f ipeyrrdL

2 LEL (oot T4 2ty S0 5

00,10 (.00 (30)_

7 an2+2r] an Pr{fr] aﬂ-’rSaT]—O, (6.8)

£, =0 f,=0, =0 at n=0, ' (6.9)

f=0, f,=-sinz, f=lat n=1 (6.10)

The implicit-time difference schemes for f and & are
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\ 1 alfl'”"l aZfl") ) . afl")
—6S (De)i' — - =((1+A)p*—4(D
(De)r N[ L 0 iy —a(oa)
(me1) (n+1)
+(6772—(1+/T.)M2)——a'];n +(24(De)’ ~2(1+ A)7 )f(") f +617 ——an 6.11)
. =) P f(") saf(ﬂ) alf(n] . azf{n) 2
+(36{De)n* —(1+4)7 2 f —4(De)1p _877_ 57 —(De)n e
3 pln+l) (n (n)
I
(H(M-l, - 0[”)) a2g(n+l) ag(nﬂ) aalnﬂ}
SP =n* 2’ ~-Pr fp? . 6.12
! At 7 an’ oA an T an (6.12)

6.4 Convergence of HAM solution and its comparison with the numerical
solution
It is well established fact that convergence of the HAM solution is strongly dependent on the

proper values of the auxiliary parameters h, and h,. Figs. 6.1(a-b) present two such curves

showing the plausible values of %, and %,. These figures indicate that for a convergent solution
~1.1<h, <0 and -1.75h, <-0.2. Numerical values of f"(0.7) at different order of

approximations in shown in Table 1. It is observed that the convergent values of f "(0, T) are

obtained at 10th order of approximation. A comparison of the HAM solution with the numerical

solution is also presented in Figs. 6.2 and 6.3. These figures show an excellent agreement
between the numerical solution and the higher order HAM solution. The values of f "(0,7)

obtained by HAM and numerical solution for a Newtonian fluid are also compared with the
corresponding values in Refs. [103] and [105]. Table 6.2 shows the comparison of such values.
It can be seen that present results are in excellent agreement with those presented in Ref. [103]

and Ref. [105].
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6.5 Discussion

The results of velocity f°', skin friction coefficient, temperature profile # and Nusselt number

are illustrated through various plots in Figs. 6.4-6.9. Fig. 6.4 illustrates the effects of Deborah

number # and ratio of relaxation to retardation parameter A on the dimensionless velocity at
y =0.25. In Fig. 6.4 (a) the effects of Deborah number De are illustrated. This figure shows an
increase in the amplitude of velocity f' by increasing Deborah number De. Moreover, a phase
difference occur for non-zero value of De. Thus viscoelastic fluid with larger retardation time
oscillates in time at fixed location from the sheet with different amplitude and phase than that of
the Newtonian fluid. Fig. 6.4(b) depicts suppression in amplitude of f' with increasing A.

The transverse profiles of the velocity f' for various values of De at four different time
instants in the fifth period are shown in Figs. 6.5(a-d). Fig. 6.5(a) shows that at 7=8.57, the
velocity f' increases by increasing De. Moreover at this time instant there are no oscillations in
the velocity profile f'. At time instant =97 (Fig. 6.5(b)), the velocity f' oscillates near the
wall and the amplitude of oscillations increases by increasing De . Fig. 6.6(c) elucidates that at
7=957, f' decreases by increasing De. When 7=107., f' again oscillates near the

oscillating sheet and its amplitude increases with De.

Fig. 6.6 shows the effects of ratio of relaxation to retardation time A on the transverse profiles
of velocity different instants 7=8.57-10x. It is observed from this figure that for 7=8.57
velocity f' and corresponding boundary layer thickness decrease with A. At time instants
=97 and 107 f' attain zero value both at the sheet and far away from the surface.
Furthermore, it oscillates near the wall and amplitude of oscillation decreases by increasing

A.Morever, at T =9.5x, the magnitude of f' decreases by increasing A .
The variation of the skin friction coefficient Re)” C; with time for different values of De and

A is depicted in Fig. 6.7. It is observed from this figure that similar to the velocity profile f',
skin friction coefficient also oscillates with time and amplitude of oscillations increases by
increasing De and A. Further like velocity profile f'. the oscillations in the skin friction
coefficient for De =0 are not in phase with the oscillations for non-zero value of De . In fact a
phase shift is observed in the skin friction coefficient for non-zero values of De .
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The temperature & for different values of Pr, De, M and A is plotted in Fig. 6.8 It is

observed through this figure that the temperature & of the fluid decreases by increasing Pr and
De. However, it increases by increasing M and A . The variation of local Nusselt number with

time for different values of Pr, De, M and A is displayed in Figs. 6.9(a-d). Fig. 6.9(a)
illustrates the effects of Prandtl number on local Nusselt number Re.""* Nu,. It is noted that the

local Nusselt number increases with the increase in Pr. In Figs. 6.9(b) the effects of Deborah
number De are illustrated. This figure predicts an increase in the local Nusselt number by
increasing the Deborah number De . The profiles of the local Nusselt number follow a reverse
trend in Figs. 6.9(c) and 6.9(d). These figures indicate that the local Nusselt number decreases

by increasing ratio parameter 4 and Hartmann number M .
6.6 Concluding remarks

In this chapter, we have studied the unsteady flow and heat transfer of a Jeffrey fluid over an

oscillatory stretching surface which is maintained at a constant temperature. The resulting

nonlinear partial differential equations are solved by using homotopy analysis method (HAM)

and finite difference scheme. The main conclusions of the present study are:

¢ The amplitude of the flow velocity increases by increasing the Deborah number De while it
decreases with an increase in the ratio of relaxation to retardation time A . Morcover a phase
shift is observed for non-zero values of the Deborah number De .

¢ The amplitude of the skin friction coefficient increases by increasing Deborah number De
and ratio of relaxation to retardation time 4.

¢ An increase in temperature is found by increasing Hartmann number M and ratio of

relaxation to retardation time 4 However, it decreases by increasing Deborah number and

Prandtl number Pr. Morcover, the rate of heat transfer increases by increasing Prandtl
number Pr and Deborah number De .

» The solution presented in this chapter is more general and includes the solution
corresponding to radiative problem as a special case. This conclusion is also supported by
recent papers by Magyari and Pantokratoras [38], Fetecau et al. [39] and Vieru et al. [40]
where it is explicitly shown that an evaluation of the effect of thermal radiation in the

linearized Rosseland approximation does not require any additional research effort. Once the
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problem has been solved for a comprehensive set of values of the Prandtl number in the
absence of radiation, it has been automatically solved for radiative case too. In view of above

argument the solution of problem with radiative effects can be obtained by replacing the
Prandtl number in our solution by the effective Prandtl number Pr, = Pr(l+N,) where N,

is the radiation parameter.

Table 6.1: Convergence of HAM solution of f7(0,7) with §=05M =3, De=0.1 and

A=0.1

Order of approximations | 7=0 T=n r=15

3 -0.002304 0.002304 0.9444438
5 -0.002632 0.002574 0.943124
10 -0.002670 0.002588 0.943017
15 -0.002670 0.002588 0.943017
20 -0.002670 0.002588 0.943017
30 -0.002670 0.002588 0.943017

Table 6.2: Comparison of values of f7(0,7) for A = De =0 with Refs. [103] and [105].

S M T Ref. [103] with Ref. [105] Present results
K=0
Numerical HAM
solution solution
1.0 120 | =157 | 11.678656 11. 678565 11. 678656 11. 6785657
r=5.5x | 11.678707 11.678706 11.678707 11.6787065
=957 | 11.678656 11.678656 11.678656 11.6786561
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Chapter 7

MHD flow and heat transfer of Couple Stress fluid over an

oscillatory stretching sheet with heat source/sink in porous medium

This chapter presents the MHD flow and heat transfer of a couple stress fluid over oscillatory
stretching sheet embedded in a porous medium in the presence of heat source/sink. The unsteady
flow problem is reduced to two coupled partial differential equations using dimensionless
variables. Homotopy analysis method is employed to obtain the solution of these equations. An
extensive analysis is performed to investigate the effects of various flow parameters on the

velocity and temperature distributions, skin friction coefficient and Nusselt number.
7.1 Flow Analysis

Let us consider two-dimensional flow of an incompressible fluid over an oscillatory stretching
sheet. In contrast to chapter 3, here the fluid in the semi-infinite space is assumed to obey
constitutive equation of couple stress fluid. The momentum equation under boundary layer

approximation becomes [49]

2 4 2
ou, du  ou_ u 5{;]_03{,%52“, o

v —=y_—=-=
d &x & I p p K
where € is the material constant for the couple stress fluid. The energy equation for the problem

under consideration is also modified slightly due to inclusion of heat absorption/generation term
in the balance law. Therefore, energy equation takes the form

of  oT  dT k 9T Q

—tu—t+v—="——=+—(T-T1},

o0 X dy pc,dy pc, (r-1.) 72)
Due to increase in the order of governing equation (7.1), the already available boundary

conditions given in (3.3) and (3.4) are not sufficient for the unique solution. The extra boundary

2
. . . u L
condition arises as a consequence of the assumption = — 0 at v =0. The energy equation is
¥

subject to the same boundary conditions as given in (3.3} and (3.4).

Utilizing the dimensionless variables (2.6) and (3.5}, Eqgs. (7.1) and (7.4) are transformed into

96



Fon = f)‘f"fyz-l-ﬁryy_ﬁf) _K‘fmw =0, (7.3)

8, +Pr(£6,-56,+86)=0. 74
The boundary conditions take following form

f,(0,7)=sint, £(0,7)=0, £,.(0,7)}=0, &0,7)=1 (75)
[,(,7)=0, f,(7)=0, &e,1)=0. 1.6)

In above equations K™ =7,8/pV’ is couple stress parameter. It has been pointed out by Stokes
[122] that the effects of couple stress are quite large for large values of K~ =Ibp/ u, where

bp/yt is a typical length scale associated with the flow and /= 77/ ¢ is a material coefficient

which is a function of molecular dimensions of the liquid. The parameter ! varies for different
liquids. For instant, the length of polymer chain may be a million time the diameter of a water
molecule. This is the size dependent effect associated with the couple stress fluid. For small
values of K* the effects of couple stresses diminish and fluid behaves like a Newtonian fluid.

The shear stress for couple stress fluid is

ﬂ[a_] g[a_) .
O jose P\IY )iy

Thus the skin friction coefficient and the local Nusselt number defined in Eg. (3.10) become
Rel)’C, = f, (0,1)-K"f,,.(0,7), 1.8)
Re;"? Nu, =—6,(0,7). (1.9)

7.2  Solution by homotopy analysis method

For the series solution of Eqs. (7.3) and (7.4), we employ homotopy analysis method (HAM).

According to HAM the velocity and temperature fields can be represented as

w  m o

F(n7)=a0,+2.3 % al,y* sin(jr)exp(-ny), (7.10)
A= k=0 j=0

O(y.7)=byy+ 2. > bl ¥y sin(jz)exp(-ny), (7.11)
=0 k=0 j=0

where a’, and b;': . are the coefficients to be determined. The appropriate initial guesses for
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f(y,7) and 6(y) are

1.
fy(37) = sin(3=3exp(=y) - yexp(~)), (7.12)
6, (y)=exp(-y). (7.13)
Further we choose

of _of o' f
£ = ()=~ 1, .
() 5 3y (f) et (7.14)
as auxiliary linear operators satisfying following relations
£ [C +C, exp +C exp ] 0, (7.15)
£, C,exp(y)+Cyexp(-y) ] =0, (7.16)
The zeroth order deformation problems are
(1-p)£, [ (5 p) = fo(3n7) |[= P8 N, [F(rmp)]. (7.17)
(1-p) £, 6(3.7:P) =8, (37 |= poN, [ (173 p). F (3.7 0) | (7.18)
2 Flrrp) . Flnmp)_ ,3F(nnp)

= _ == , =0, 5 =09 .
f(0,7;p)=0, 5 sint 3 3 (7.19)
6(0,7; p)=1,8(s,7; p) =0, (1.20)

where nonlinear operators N, and N, are

- D flymp) Fnep) B (nme) | 3f(y.7:p)
- =—K -

Nf[f()’r’p):l ays + ayl S aya,r +f(y’T p) ayl

u 2 . (7.21)
[ (»mp) _ﬁaf(y,r;p)

dy ay

5 - Pé(ynp) |- 36(y.5p) _98(» %)
N,[8(y.5p). ] (y,'r,p)]=—(ayT+Pr[f Ty > +3(y.rp) | 7.22)
The solutions for zeroth-order deformation problems associated to p =0 and p =1
F(rm0)=f(y.7).f (351)=£(51), (7.23)
6(y.7:0)=6,(y,7),8(».7:1)=8(»7). (7.24)
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By using Taylor’s expansion with respect to variable p, we can write f (y,7; p) and é(y,r; P)

as
Fump)=f(10)+ 2 fu(nt)p™, (7.25)
6(y.7.p)=6 y,f)+Z (7.26)
19" fly.7:p) _La"'é(y,r:p)
fu(yi7)= TR W LA e e W (7.27)

Differentiating zeroth order deformations equations (7.17) and (7.18) m -times with respect to

p , then setting p =0 and finally dividing by m!, we get the following mth -order deformation

problem
‘£f[fm(y’r)_l?r’mfm—l(y’r)i|=thr{;(y‘r)’ (728)
£,00 (37~ 2Bt (3:7) | = RoRA (3,7), (7.29)
af (y.7:0 af (y.1.0 of 2 (y.7;0
e St R L
dy Voo VAN (7.30)
Bm(0)=0,0m((°°)= ,
—_ asfm—l a]f a fm Nm-1 az fi Su—ia af.k
R,{()’,T)——K a - +— ayg - ayafl_ﬂ +kz:( m-l-k 37 _a)'_ﬁ)’ (731)
Ry o =l . 98,
R (y,7)=—22-Pr(S —'"“+P{ [f ‘1‘*]+59m_1], 32
»="35 (8) 52 g E» (7.32)
N O,m<l,
X = Lm>l. (7.33)

7.3 Convergence of HAM solution

It is well established fact that the convergence of HAM solution is strongly dependent on
auxiliary parameters 7, and 7%, The convergence of series solution can be controlled by proper
choice of these auxiliary parameters. Figs. 7.1 and 7.2 presents two such curves showing the

plausible values of %, and A, for particular parameters. We note from these figures that for
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convergent solution —1.2<#, <02 and -15<h,<-0.2. The purpose of showing such

curves is just to emphasize that in principle for any physical choice of parameters of the problem,

a convergent solution can be obtained. The values of f"(0,7) obtained by HAM in the present

case are also compared with the corresponding values reported in Refs. [80,81,103,105] in
Tables 7.1 and 7.2. Both tables show that our results are in excellent agreement with the existing

results in the literature.
K*=0.3.§=0.2 §=0.1n/2

fyy(a-'r)

by

Fig. 7.1: h-curve for velocity.
K'=0.1.5=01.p=026=05Pr=01r)2

a
V4

20 15 10 Y 0.0
hg
Fig. 7.2: h-curve for temperature.

Table 7.1: Comparison f7(0,7) for various values of f§ with K=0,5=0and 7=7/2.
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B Hayat et al. [80] Turkyilmazoglu [81] | Present results
0.0 -1.00000000 -1.00000000 -1.00000000
0.5 -1.224747 -1.22474487 -1.224747

1.0 -1.414217 -1.41421356 -1.414217

15 -1.581147 -1.58113883 -1.581147

2.0 -1.732057 -1.73205081 -1.732057

Table 7.2: Comparison of values of f7(0.7) with Refs. [103] with K™ =0 and [105].

s B Zheng et al. [105] Abbas et al. [105] Present results

1.0 12.0 | 11.678565 11.678656 11.678565
11.678706 11.678707 11.678706
11.678656 11.678656 11.678656

7.4 Results and discussion

The homotopy analysis method is a power full technique to solve nonlinear partial and ordinary
differential equations with initial and boundary conditions. The set of nonlinear partial
differential (7.3) and (7.4) with boundary conditions (7.5) and (7.6) are solved analytically by
means of homotopy analysis method and the effects of involved parameters are illustrated
through graphs. In this section, we are going to present the detailed analysis of flow and heat
transfer of couple stress fluid over an oscillating stretching surface in the presence of heat source
and sink.

The variation of velocity versus time for various values of couple stress parameter K~ and

combined parameter £ in studied is Figs. 7.3 (a-b). In Fig. 7.3 (a) the effects of the couple
stress parameter K™ are illustrated by keeping §=1 and f=0.2. From this figure we observe

that an increase in the couple stress parameter K~ results in an increase of the amplitude of

velocity. This is perhaps due to the fact that for large values of K the size dependent effects
become strong resulting in the enhancement of the velocity amplitude. Fig. 7.3(b) describes the

effects of combined f by keeping other parameters constant. This figure shows that an increase

in combined parameter S results in a decrease of the amplitude.
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Figs. 7.4(a)-(d) demonstrate the effects of couple stress parameter K~ on the velocity profile f'
at four different time instants r=8.5x7, t=97,7=9.57 and 7 =107 . Fig. 7.4(a) characterizes
the effects of the couple stress parameter K~ on the velocity profile f" at 7=8.5x . This figure
depicts that the velocity f' decrease as we increase K°. This decrease in velocity results in
decrease of momentum boundary layer thickness. In Fig. 7.4(b), the influence of couple stress
parameter K° on f' is shown for 7 =97. This figure shows an increase in the magnitude of
velocity at this instant. The effects of K™ at 7 =957 and T=107 are illustrated in Figs. 7.4(c)
and 7.4(d), respectively. It is observed from these figures that at 7=957z and =107, the
velocity f' decreases with K'. It is interesting to note that the effects of couple stresses is to the
increase the amplitude of the velocity when f'=1 at the surface. For other instants when
f'=-1 or 0, the magnitude of the velocity decreases due to the presence of couple stresses.
The effects of combined parameter § on the velocity are illustrated in Figs. 7.5(a)-(d} at four
different times. In Fig. 7.5(a) the effects of combined parameter B are shown at 7==8.57. From
this figure it is readily observed that velocity decreases with an increase in S. The effects of
magneto-porous parameter on velocity at other three time instants arc illustrated in Figs. 7.5(b)-
(d). These figures also highlight the decreasing trend in the magnitude of f' with increasing 5.
The variation of the skin friction coefficient with couple stress parameter K* and combined
parameter f is shown in Figs. 7.6(a)-(b), respectively. Fig. 7.6(a) shows the time series of the
skin friction coefficient for different values of couple stress parameter K* when §=0.1 and
B =0.1. From this figure we observe that skin friction coefficient varies periodically due to

periodic motion of the surface and its amplitude increases with couple stress parameter K. This
observation reflects that the skin friction coefficient for a Newtonian fluid flowing over an
oscillatory stretching sheet is less in comparison with its value for a couple stress fluids
performing the same motion. The effects of combined parameter 4 on skin friction coefficient
are illustrated in Fig. 7.6(b). This figure depicts that amplitude of the skin friction coefficient
increases by increasing magneto-porous parameter B . Such effects of § and M are expected
due to the fact that magnetic force and drag force offered by the porous medium acts as a

resistance to the flow.
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Fig. 7.7-7.11 presents the effects of Prandtl number Pr, combined parameter f, couple stress

parameter K° and heat source/sink parameter A on the temperature field. Fig. 7.7 reveals the

graphical behavior of temperature with varying Prandtl number Pr for both heat source and sink
cases. It is seen that the temperature is a decreasing function of Pr in both cases. The fact is that
the increase of Prandtl number results in lower conductivity, as a result conduction as well as the
thermal boundary layer thickness decrease and hence we observe a decrease in the temperature.
It is observed that presence of heat sink enhances the decrease of temperature by increasing

Prandtl number. In Fig. 7.8, the influence of combined parameter J on the temperature is
explained graphically by keeping other parameters fixed. This figure shows that temperature
increases with magneto-porous parameter § . The influence of couple stress parameter K™ on
the temperature is shown in Fig. 7.9, which depicts that increase of couple stress parameter
results in the increase of temperature. The effects of heat source/sink parameter are illustrated in
Fig. 7.10 and Fig. 7.11 by keeping Pr=04, f=0.5, k" =0.1, S=0.1. It is noted from Fig.

7.10 that as we increase the strength of the heat source, the temperature increases. This is due to
the fact that heat source can add more heat to the stretching sheet which increases its temperature
and thus the temperature of the fluid rises. It is also observed out that an increase in the strength
of heat source results in increase of thermal boundary layer thickness. Fig. 7.11 is plotted to
observe the effects of heat sink by keeping other parameters constant. This figure shows opposite
results i.e., the temperature decreases by increasing the strength of heat sink. This result is of key
importance for the flows where heat wransfer is of prime importance. The numerical values of
Nusselt number are shown in Table. 7.3. It is found that the Nusselt number an increases with
Prandtl number while it decreases with the increase of heat source, couple stress and combined

parameter.

7.5 Concluding remarks

Flow and heat transfer of a couple stress fluid over an oscillatory stretching sheet in the presence
of heat source/sink is investigated using HAM. It is observed that flow and heat transfer
characteristics are greatly influenced by the presence of couple stress and heat source/sink. In
fact, the skin friction coefficient increases by increasing couple stress and combined parameter.

It is also interesting to note that rate of heat transfer is enhanced by increasing combined
103



parameter, heat source and couple stress parameters, while it decreases for large values of
Prandtl number and heat sink parameter. Such observations may have interesting implications

where it is desired to reduce skin friction and enhance heat transfer.
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Fig. 7.3: Velocity profile as function of time (a) effects of couple stress parameter K * (b)

effects of magneto-porous parameter f.
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Fig. 7.4: Effects of couple stress parameter K * on velocity.
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Table 7.3: Local Nusselt number for Prandtl number Pr, couple stress parameter K. combined

parameter # and heat source parameter d attime 7=x/2 with S=1.

Pr

)

K*

B

—-1/2
Re "'“Nu,

0.5

0.2

5.0

5.0

0.596791

1.0

0.634885

15

0.671806

2.0

0.705075

0.5

0.2

0.596791

04

0.547204

0.6

0.496478

0.8

0.444590

0.2

0.2

0.573683

0.4

0.573021

0.8

0.572122

1.0

(0.571885

50

0.5

0.643221

1.5

0.630873

2.5

0.619684

35

0.609657
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Chapter 8

Soret and Dufour effects on hydromagnetic flow of Eyring-Powell
fluid over oscillatory stretching surface with heat generation/

absorption and chemical reaction

In this chapter, we have investigated thermal-diffusion and diffusion-thermo effects on unsteady
flow of electrically conducting Eyring-Powell fluid over an oscillatory stretching sheet by using
convective boundary conditions. Series solution is computed using homotopy analysis method.
The effects of various parameters of interest on the velocity filed, temperature profile,
concentration profile, skin friction, local Nusselt number and local Sherwood number are

illustrated graphically and discussed in detail.
8.1 Flow Analysis

Consider time-dependent laminar boundary layer flow of incompressible electrically conducting
Eyring-Powell fluid over an oscillatory stretching sheet. The flow configuration is already
explained in Fig. 4.1. The boundary layer equation (1.38) in presence of external magnetic field
Ju odu ov 1 You 1 (o) o oBu

—tu—+v—=iV+ — == (8.1)
ot dx dy pBc oy’ 2pBc’\dy) dy p

The energy and concentration equations (4.2) and (4.3) in the presence of heat source/sink and

chemical reaction are

oT aT aT T Dk 3C 0
- T-T. 8.2
S EYy aaVl+cIcp = pcp( ) (8:2)

9C oC ac 9'C Dk, o'T
+

—_ =D -k {(C-C_). 8.3
a w5y Ty T o (C-C.) (83

where k_ is the reaction rate constant. The flow phenomenon is subject to same boundary

conditions as given in chapter 3. The boundary conditions on energy and concentration are
aT
—k,===h (T,-T), C=C,, aa 5=0, 1>0, (8.4)
oy
T—-T,C—-C, a Yoo, (8.5)
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Using dimensionless variables given in Eq. (2.6), (5.5) (4.9), Eqs. (8.1-8.4) transform to

(+0)f,, ~SF, - fI+f,-Mf,~-TAf,f, =0 (8.6)
8, +Pr(Dug,, + f8,-58,)+Prdo=0, 8.7)
8, +Sc(Sr6, + f8,-56,)-Kr(Sc)=0, (8.8)
with boundary conditions

f,(07)=sint, f(0.7)=7. 6,00.7)=-7, [1—9(0,':)], 9(0.7) =1, (8.9)
f,(00,7)=0, B(e0,7)=0, §(x,7)=0, (8.10)

In above equations I' =1/ uB,c and A=Xb’/2vc’ are the dimensionless Eyring-Powell fluid

parameters. The parameter A is the local non-Newtonian parameter because of its dependence

on the length scale x. Due to this dependence A varies along the flow direction and thus the

solution of Eq. (8.6} is locally similar [21]. The graphical results for particular value of A

represent the variation in flow along the vertical direction at a specific longitudinal position X .
Morevoer, Kr=k_ /b is the chemical reaction parameter.

The mathematical expression for the skin-friction coefficient is

Rel” C, =[(1+F)f,w —gf\f_i] : (8.11)

v=0

The problem defined by Egs. (8.6)-(8.10) is solved by HAM. The method is already explained

and therefore we shall proceed to the graphical results and their interpretation.

8.2. Result and discussion

It is well established fact that the auxiliary parameters play an important role within the
framework of the homotopy analysis method. The rate of convergence depends upon the proper
choice of these parameters. To highlight convergence region, we draw the A-curves in Fig.
8.1(a-c). We see that these curves predict that convergent solution for temperature, velocity and

concentration fields can be obtained when ~1.1 <h,<-0.1, -1.5<h, <0.5 and -1.3<h,<-04.

Fig. 8.2(a-b) displays the variation of velocity with time under influence of two important

parameters namely, Eyring fluid parameter I" and suctionfinjection y. From Fig. 8.2(a), we
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observe that velocity shows oscillatory behavior and its amplitude increases with increasing T

Fig. 8.2(b) elucidates the effects of suction/blowing parameter y on dimensionless velocity
profile f'. It is noticed that a phase shift occurs and amplitude of velocity decreases with
increasing suction/blowing parameter .

The effects of Eyring Powell fluid parameter, Hartmann number and suction/injection parameter
on transverse distribution of velocity at a time 7 = /2 are shown in Fig. 8.3. Fig. 8.3(a) depicts
that velocity increase with increasing the Eyring-Powell fluid parameter . Fig. 8.3(b) depicts
that the velocity profile decreases rapidly with increasing the Hartmann number. Moreover, the
boundary layer thickness also decreases in this case. From Fig. 8.3(c), it has been noticed that
increase in suction/blowing parameter y causes the thinning of the boundary layer and velocity
profile decreases with increasing suction/blowing parameter y.

The influence of T on both temperature and concentration profiles at 7 =7/2 is shown in Fig.
8.4(a-b). A significant decreasing effect in temperature is seen near the wall. Similar effects are
observed in Fig. 8.4(b). However, the change in concentration field with increasing [ is smaller
as compared to the corresponding change in temperature field.

Fig. 8.5 illustrates the effects of M on temperaturc and concentration profiles at 7 =7/2. The
temperature inside the thermal boundary layer is found to be enhanced with increasing M. The
variation of concentration for different values of M is shown in Fig. 8.5(b). It is observed that
concentration profile slightly increases with increasing M.

Fig. 8.6 shows the variation of suction /blowing parameter y on temperature and concentration
profiles at T =x/2 by keeping other parametcrs coﬁstant. The dimensionless temperature inside
the thermal boundary layer is found to decrease in the case of suction. However, an increase in
temperature and corresponding thermal boundary layer thickness is noted for the injection case
and corresponding thermal boundary layer thickness increases. Similar observations are made
through the examination of concentration profiles (Fig. 8.6(b))

Fig. 8.7 is sketched to see the temperature profiles for various values of Pr, Du, 7, and § at
r = z/2. Fig. 8.7(a) indicates that an increase of Pr reduce the thickness of thermal boundary
layer. The effect of Dufour number on temperature field is shown in Fig. 8.7(b). An increase in

Dufour number leads to an increase in the temperature. The thermal boundary layer is also found
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to increase for larger values of Dufour number. In fact, increase in Dufour number causes

increase in energy flux due to concentration gradicnt which is responsible for the increases of

temperature. Fig. 8.7(c) predicts the behavior of thermal Biot number ¥, on temperature §. With

an increase in 7, the heat transfer coefficient increases and as a result temperature of fluid rises.

Fig. 8.7(d) depicts that temperature increases with increasing the strength of the heat generation
parameter. In contrast, the temperature decreases with an increase in heat absorption parameter.
This result is of key importance for the flows where heat transfer is of prime importance. The

effects of Schmidt number Sc¢, Soret number S§r and chemical reaction parameter Kr on
concentration field ¢ are shown in Fig. 8.8. Fig. 8.8(a) illustrates that as we increase Schmidt
number Sc, mass diffusion reduces and thus the concentration field decreases. Fig. 8.8(b)

depicts that increase in Soret number Sr results in increase in concentration field. The
concentration decreases with chemical reaction parameter Kr (Fig. 8.8(c)). Physically, larger
values of Kr correspond to larger interfacial mass transfer rate and as a result concentration
decreases.

Fig. 8.9 illustrates the variation of wall shear stress with time for different values of Hartmann
number M and Eyring Powell fluid parameter T From Fig. 8.9(a), it is observed that skin
friction oscillates periodically due to the oscillatory surface and amplitude of oscillation
increases with increasing Hartmann number M. The effects of fluid parameter I on wall shear
stress are quite opposite. Here, amplitude of skin friction decreases by increasing fluid parameter
I" (Fig. 8.9(b)). Fig. 8.10(a) depicts the effects of Pfandtl number on time-series of local Nusselt
number examined by keeping other parameters constant. It is interesting to note that amplitude of
local Nusselt number increases with an increase in Prandtl number. Fig. 8.10(b) shows the on
time-series of local Sherwood number for various values of Schmidt number. Here it is noted
that amplitude of oscillations in local Nusselt number increases with an increase in Schmidt
number.

The velocity, temperature and concentration profiles for various time instants are shown
graphicaily in Fig. 8.11(a-c}. Fig. 8.11(a) shows that velocity component oscillates periodically
between -1 to } because of the oscillatory nature of the sheet. Fig. 8.11(b) and 8.11(c) shows that

temperature and concentration profiles decrease as time increases from 7/6 to 2n/3.
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8.3. Concluding remarks

This paper highlights the Soret and Dufour effects in two-dimensional flow of Eyring-Powell
fluid over an oscillatory stretching sheet. Furthermore, heat transfer analysis is carried out in the
presence of chemical reaction and convective boundary conditions. The impact of various
parameters of interest is discussed graphicaily. The larger values of Eyring Powell fluid
parameter enhance the amplitude of velocity and boundary layer thickness. However, opposite
effects are observed in temperature and concentration profiles. Moreover, the temperature is
found to decrease with increasing values of suction while it increases in the case of injection. It is
also observed that the temperature and concentration field are increasing functions of Hartmann
number. Similarly, temperature inside the thermal boundary layer increases with an increase in
Dufour and Biot numbers. Finally, concentration and concentration boundary layer thickness

decrease by increasing dimensionless Schmidt number and reaction rate parameter.
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Chapter 9

Influence of heat source/sink and convective conditions in unsteady

stretching flow of Walters’ B nanofluid

In this chapter investigates the magnetohydrodynamic (MHD}) boundary layer flow of Walters’ B
nanofluid over an oscillatory stretching surface. The convective boundary conditions are
imposed on the temperature and nanoparticles concentration. The effects of heat
generation/absorption are also considered in the heat transfer process. The periodic motion of
elastic sheet induces the flow. With help of dimensionless variables, series solution is obtained
by using HAM. Graphical results illustrating the effects of pertinent parameters like viscoelastic
parameter, the ratio of angular velocity to stretching rate, thermophoresis parameter, thermal
Biot number, concentration Biot number, Hartmann number, Prandtl number, heat source/sink

parameter, Schmidt number on various quantities of interest are discussed.

9.1 Flow Analysis

Let us observe two-dimensional, laminar flow of Walters’ B nanofluid over an oscillatory
stretching surface. (Fig. 4.1). The modeled momentum, energy and concentration gquations
under boundary layer approximations for flow phenomenon of Walters’ B fluid can be expressed

as

du  Ou +v8u_ ou | du Fu  du oudu du du }_O'Bj .

oL Ly A sVt T T e e . 9.1

3 ETY oo ey oy &d HAd| A b

S ar or T . acaer D(arY| @

- b y—=0—-+ D—-——+—I' —_— + T-T.), 9.2

7wy | d TN(EEH (pc),( - -
2 2

8‘_C_+u§£+v%?_=DBB ) {9.3)

5 4w e

where p, is the density of the base fluid, T‘(= ( pc)p /{pc) f) is the ratio between heat capacity

of nanoparticle material to the heat capacity of base fluid, a[=k/ {pc) f) is the thermal
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diffusivity of nanofiuid, D, and I} denotes Brownian diffusion coefficient and thermophoretic

diffusion coefficient, respectively.
Eqgs. (9.1)-(9.2) are subject to the same boundary conditions as given in chapter 5. However, the
concentration is assumed to satisfy following convective type boundary conditions

aC —
- mg=k,,,(cf—c), 5=0, 1>0, 9.4)
C—>C_ as y = oo, (9.5}
where C, and C_ ar¢ the concentration of fluid at the surface and ambient concentration,

respectively, D, is the molecular diffusivity of the species concentration, &, is the wall mass

transfer coefficient. Now using the dimensionless variables used in (2.6) along with

T-T c-C -
I,T = = (9,6)
1. °¥ =t .

&(y.7)=

Egs. (9.1)-(9.3) are transformed as

S =Sy £ =M1, =K (S 420,y = = F ) 07
%% 5@, + 4, +NbO.g, +Ni(6,) +70=0, 9.8)
¢W—S(SC)¢1+(Sc)f¢_‘+RIN—taW =0, 9.9)

The boundary conditions in dimensionless form become

£,(0,7)=sin7, £(0,7)=0, 6,(0.1)=-7%, [1-80,7)], 4,(0.7)=~7,[L1-¢(O, 7], (9.10)
f,(7)=0, f,(7)=0. O(=1)=0,  PeT)= 0. (9.11)
The Schmidt number Se, the concentration Biot number ;. Brownian motion parameter Nb,

and thermophoresis parameter Nt are, respectively, defined below:

D,(C,-C D (T, -T.
1 = 1D T8 Np = 2 o(C-C) |, (09, B (T T}

(pc),v (pc), Ty
The expression of skin friction takes form
R C, =|:fyy—K(3f)_f”+Sfm—jfm)]Fo. (9.12)

121



The solution of Egs. (9.7)-(9.9) subject to boundary conditions (9.10) and (9.11) is computed
using HAM. The method is already explained in the previous chapters. Therefore we shall not

described it here and proceed only with graphical results and discussion in the next section.

9.3 Convergence of the HAM Solution
In order to locate the convergence region, the fi-curves are plotted in Fig. 9.1(a-c) for a
particular set of involved parameters. From these figures it clear that for this choice of parameter

values a convergent solution can be obtained when -13<h, <03, < -14< h,<02 and

—2<h, <-0.2.

9.4 Results and discussion

The dimensionless nonlinear partial differential equations (9.7)-(9.9) are solved analytically

using homotopy analysis method. Fig. 9.2 presents the effects of the viscoelastic parameter X,

Hartmann number M and ratio of oscillation frequency to stretching sheet § on velocity as

function of time from a fix distance y=0.25, respectively. Fig. 9.2(a) demonstrates the
influence of viscoelastic parameter K on velocity f'. The amplitude of velocity shows a

decreasing trend with increase of K. Fig. 9.2(b) clucidates the behavior of Hartmann number M
/' by keeping other physical parameters fixed. Here suppression in velocity amplitude is
observed which is due to the fact that the magnetic field introduces a retarding force known as
Lorentz force which acts as a resistance to the flow.

Figs. 9.3(a-c) are prepared to see the effects of X, M and S on f' when 7=0.57. The study
reveals that the dimensionless velocity profile f' decreases by increasing the viscoelastic

parameter K. Fig. 9.3(b) shows that an increase in Hartmann number reduces the velocity and
consequently the thickness of momentum boundary layer also reduces. Fig. 9.3(c) exhibits
similar effects as observed in Fig. 9.3(b). Fig. 9.4(a) shows the physical impact of Prandtl
number Pr on temperature field & while Fig. 9.4(b} illustrates the variation of concentration
profile with Prandtl number. It is observed that temperature inside the thermal boundary layer
decreases with increasing Pr. This can be justified physically because an increase in Prandtl
number Pr is due to increase of momentum diffusivity and decrease of thermal diffusivity. This

decrease in thermal diffusivity is responsible for decrease in the temperature. The effects of Pr
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on ¢ are marginal. The influence of K on temperature and concentration fields is disdplayed in
Figs. 9.5. Fig. 9.5(a). illustrates the influence of viscoelastic parameter K on the dimensionless
temperature . It is noted that an increase in viscoelastic parameter K results in an increase in
the temperature because viscoelastic normal stress results in thickening of the thermal boundary
layer. The concentration field also seems to increase with increasing viscoelastic parameter K
(Fig. 9.5(b)).

In order to see the impact of Hartmann number on temperature and concentration profiles, Fig.
9.6 is plotted. It is observed that temperature increases with increasing values of Hartmann
number M. Fig, 9.6(b) shows that increase in concentration by increasing Hartmann number is
smaller in comparison with corresponding increase in the temperature. Fig. 9.7(a) presents the
temperature profile for different values of thermophoresis parameter NZ. It is clearly seen from
this figure that the temperature increases with increasing the value of thermophoresis parameter
Nt. Similar results are observed in Fig. 9.7(b} where it is found that the concentration increases
by increasing thermophoresis parameter Nt

The effects of Brownian parameter Nb on temperature and concentration fields are portrayed in
Figs. 9.8(a) and 9.8(b), respectively. These figures elucidate that the Brownian parameter Nb is
responsible for increase in the fluid temperature. However, concentration profile follow a reverse
trend with increasing the Brownian parameter Nb.

Fig. 9.9(a) illustrates the effects of thermal Biot number %, on the temperature 6. This figure
predicts an increase in the temperature by increasing J;. This is expected because the expression
of thermal Biot number depends upon heat transfer coefficient fi, so higher values of Biot
number means greater rate of heat transfer from wall to the fluid. The concentration profile also
increases with increase of the concentration Biot number %, (Fig. 9.9(b)).

In Fig. 9.10(a), variation of the temperature profiles for various values of heat source/sink

parameter J. From this figure, it is noted that the temperature increases by increasing d. It is
expected because more heat is added to the system with increasing the strength of the heat source
which results in the rise of the fluid temperature and the thermal boundary layer thickness. Fig.
9.10(b) depicts the effects of Schmidt number on the concentration ¢@. The concentration
boundary layer thickness decreases by increasing Schmidt number.
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Fig. 9.11(a-c) shows the transverse distribution of the velocity, temperature and concentration
profiles at different time instants. It is found that the velocity oscillates periodically between -1
to 1, because in present study the sheet is assumed to be oscillatory. Moreover, the boundary
layer thickness is found to increase in the time interval [7/2, 3m/2]. On contrary, a decrease in the
temperature and concentration is found as time increases from r/6 to 2r/3.

Fig. 9.12(a-b) is sketched to discuss the effects of Hartmann number M and viscoelastic
parameter K on the time-series of the shear stress at the wall Re!?C ;. From these figures we
observe that the skin friction coefficient shows oscillatory behavior with time and its amplitude
increases monotonically for larger values of M and viscoelastic parameter K. Fig. 9.13(a} is
sketched to discuss the effect of Prandtl number Pr on local Nusselt number Re'’? Nu_.From
this figure we observe that amplitude of the Nusselt number increases by increasing Prandtl
number. The response of local Sherwood number Re!” Sh with time for various values of
Schmidt number is shown in Fig. 9.13(b). It is observed that the local Sherwood number

oscillates periodically with time and its amplitude increases for larger values of Schmidt number

Sc.
9.5 Summary

In present chapter, we have discussed unsteady boundary layer flow of Walters” B fluid in
presence of nanoparticles by using HAM. From the obtained results it is observed that the

boundary layer thickness decreases by increasing viscoelastic parameter, ratio of oscillating

frequency to stretching rate and Hartmann number. Further, it is found that the temperature
profile is increasing functions of thermal Biot nﬁmbcr, Hartmann number, Brownian force
parameter, thermophoresis parameter and heat source parameter. Increase in Schmidt number
and Brownian force parameter leads to decrease the concentration profile. The effect of Prandtl
number on the concentration profile is marginal. The amplitude of the wall shear stress increases

by increasing viscoelastic parameter and Hartmann number.
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Chapter 10

Heat transfer characteristics in oscillatory hydromagnetic channel

flow of Maxwell fluid using Cattaneo-Christov model

This chapter presents the analysis of hydromagnetic flow and heat transfer of Maxwell fluid in
channel with oscillatory stretching walls. Unlike typical heat transfer studies, here Cattaneo-
Christov heat flux model is used. The transformed dimensionless nonlinear partial differential
equations are solved by means of the homotopy analysis method (HAM). The convergent series
solutions are utilized to discuss the main effects of emerging parameters on velocity and
temperature. The obtained results illustrate that Hartmann and Deborah numbers suppress the
velocity. However, an increase in ratio of oscillation frequency to stretching rate increases the
velocity. A reverse flow occurs in the central region of the channel which is found to decrease by
increasing Hartmann and Deborah numbers. Moreover, for the Cattaneo-Christov model fluid
temperature inside the channel is less when compared with temperature obtained using heat flux

based on Fourier’s law.

10.1 Flow Analysis

Consider two-dimensional, unsteady flow of a Maxwell fluid between two oscillatory stretching
sheets in planes y =*h. The flow geometry is displayed in Fig. 10.1. The sheets are stretched
along x -axis with velocity u =bxe™ . A constant magnetic field B, is imposed in y — direction.

Based on low magnetic Reynolds number assumption, the effects of induced magnetic field are
neglected. The continuity equation for flow is defined in Eq. (2.1). The governing boundary layer

equations for two-dimensional Maxwell fluid are

o’u 2( o'u 82u]+ ,0%u

ou o ou ow ot e e )" ot | o .9
—M+u‘—hi+v—u—:v—g—ﬂ1 Y _%% u+/1,vi+/‘i1—E .(10.1)
gt ox dy Oy 0% ' dy of
+2uv +v —
oxdy av"
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B, B,

Fig. 10.1: Geometry of problem
The flow problem is subjected to the following boundary conditions [106]
u=u, =bxe'™, v=0, at y=h, >0, (10.2)
M_o, v=0, a y=0 (10.3)
oy
10.2 Heat Transfer Analysis

In present study, we discuss the effects of heat transfer using Cattaneo-Christov heat flux model
[57]. According to this model the heat flux and temperature gradient are related through

following expression

q+,17B—‘tl+ V.Vq—q.VV+(V.V)q} ——kVT, (10.4)

where q is heat flux, 4, the relaxation time of the heat flux, T is the Maxwell fluid temperature

and k, is the thermal conductivity. It is clear that when A, =0, above equation represents the

well known Fourier’s law. For incompressible fluid V.V =0 and Eq. (10.4) reduce to
9q
q+4, —a——+ VVq-qVV |=—kVT. (10.5)
!
The energy equation for incompressible fluid in the absence of viscous dissipation effects is
pe, {%—1:+V.VT:| =-Vgq. (10.6)

Elimination of q from (10.5) and (10.6) yields to the following single equation for the
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temperature field

T o'T o’T av 0T du aT av oT
2 2v —+tu

+ +
ar ot ar .|t Mo Vo aay “oxax oydy | o
—+u—+v—+ =a—, (10.7)
ot dy » v or ou oT . T o 82T+v2 T dy
o By Bv o axay ox* oy’
The imposed boundary conditions are
T=T, y=h, >0, gT_o at  y=0. (10.8)
y

10.3 Dimensionless formulation

Egs. (10.1) and (10.7) can be written in the terms of dimensionless variables by defining [106]

y - U . Vv
== =Y L = s 10.9
T T Ve (109

The transformed equations in new variable can further be reduced through following equations

u'=xe"f({), vi=—e“f({). H(C,T)=T1. (10.10)

It is pointed out that in view of (10.9) the continuity equation is identically satisfied and Egs.

{10.2) and (10.8) takes the following forms

P _pol s ¥ o If L, oIS
3 [s 5 ~25(Si T)[[ag] agl} +Co 2f{f 32 a;aﬁﬂ

. (10.11)
aZf aj: - az
+COST[ 52?—[5—4';} ZI_MZ{%_DE(COST)faC{]—:O‘
2 2
S’a—-zsc rf 96 +8(Si r)f—
1 3% 06 a8 ar’ 0wg 9¢
———S—+Costf ——7 =0. (10.12)
Prol® ot 14 of 96 ., 3¢
+Cos2t + f?
a¢ag 7 A
The boundary conditions of problem under consideration reduce to
F=1r(6)=0 0(¢)=1 @ ¢=1 (10.13)
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o°f _ _o 90 _ _
ag,z—f(§)—0, ag—OarC—O- (10.14)

where De = Ab is the Deborah number and y* = A6 is the dimensionless relaxation time of heat

flux.
10.4 Homotopy analysis method

To discuss the influence of emerging parameters appearing in Eq. (10.11) and (10.12) we have

solved the set of these nonlinear differential equations analytically by means of homotopy
analysis method. The procedure of HAM is same as described in the previous chapters therefore

it would be redundant to reproduce it here.
10.5 Results and discussion

The solution obtained by HAM contains the convergence-contral parameters 7, and /,. In the

present case the convergence region is identified by plotting the so-called & -curves in Figs. 10.2

and 10.3. It is found that the plausible values of %, and %, must be in the range —2<h, <0 and
—-2<h, <0, respectively. The values of %, and %, in subsequent figurcs arc also chosen

through a similar methodology.

Once convergence of the solution is guaranteed, the next step is to examine the effects of

Hartrnann number M , ratio parameter S, Deborah number De, dimensionless relaxation time

of the heat flux ¥ and Prandti number Pr on transverse velocity component f (), longitudinal
velocity component f'({} and temperature 8(¢’). For this purpose, Figs. 10.4-10.14 have been
plotted. Fig. 10.4 shows that the effects of M on the transverse velocity f(¢). Here, velocity
component f({) decreases with the increase of Hartmann number M. Fig. 10.5 reflects the
influence of Hartmann number M on longitudinal component f'({’} of the velocity. The flow
region can be divided into two parts on the basis of behavior of the velocity component f'({).
For 0<¢ <0.5 the magnitude of f'({) shows decreasing trend by increasing M while for
0.5< ¢ <1 the opposite trend is observed. The negative values of f'({) in the region
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0< ¢ <0.5 are the indicator of the flow reversal. It is also observed from Fig. 10.5 that flow

reversal decreases by increasing M . Moreover, the vertical location ¢, at which the velocity
component f'({’} becomes zero shifts towards the channel wall by increasing M . The graph
illustrating the effects of De on transverse component of the velocity f(¢) is shown in Fig.

10.6. A decrease in magnitude of f(¢{) is observed by increasing the Deborah number. The

longitudinal component of the velocity shows similar behavior by increasing De as observed by
increasing M. However, the ratio parameter S affects the transverse and the longitudinal
velocity components in a manner different from De and M. In fact the magnitude of the

transverse component of velocity is enhanced by increasing S (Fig. 10.8). Moreover, the flow

reversal increases by increasing § (Fig. 10.9). It is evident from Fig. 10.9 that ¢ shifts away

from the boundary by increasing S . The effects of Pr on (") are shown in Fig. 10.10. As

expected, the temperature inside the channel decreases by increasing Prandtl number. Fig. 10.11

reveals that temperature inside the channel is an increasing function of Hartmann number M.

The effects of dimensionless relaxation time of heat flux y° are illustrated in Fig. 10.12. The
curve ¥ =0 in Fig. 10.12 represents the temperature profile inside the channe! obtained on the
basis of Fourier law. It is interesting to note that temperature decreases by increasing y°. Fig.
10.13 depicts an increase in temperature by increasing Deborah number De. Fig. 10.14 shows

the plots of @(¢) for various values of §. It is noted that the effects of ratio parameter § on

8(¢) are similar to the effects of y" and Pr.

10.6 Concluding remarks

In this chapter Cattaneo-Christov heat flux model is used to analyze the heal transfer
characteristics of unsteady flow of Maxwell fluid in a channel with oscillatory walls. The
nonlinear differential equations are solved analytically by homotopy analysis method. The main
points of analysis are summarized as:

s The effects of Deborah number De and Hartmann number M are similar on the longitudinal

velocity component are similar.
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» The reversal flow take place near the central line of the channel which is found to increase by
increasing ratio parameter. However, it is suppressed by increasing Hartmann number M
and Deborah number De.

 The temperature decreases by increasing Prandtl number Pr while it increases by increasing
Hartmann number M and ratio parameter S.

 The values of temprature inside the channel obtained by Fourier law are in excess of those
predicted by Cattaneo-Christov heat flux model.
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Fig. 10.2: #-curve for velocity profile.
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Fig. 10.3: & -curve for temperature profile.
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