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Preface

Peristaltic transport of real fluids has attracted the attention of researchers because of its
applications in medical science and industry. This mechanism is a fundamental and vital feature
of many smooth muscle organs which transport bio-fluids. Typical examples of bio-fluids which
are transported through peristaltic activity are urine, chyme, blood, spermatic fluid, bile etc.
Industrial applications of peristalsis can found in the design of finger and roller pumps. In
medical engineering, peristaltic systems are utilized in diabetes pumps, heart-lung machine and
pharmacological delivery systems. In botanical hydrodynamics, peristalsis arises in loam
dynamics in trees and plants. The literature on the peristaltic transport is quite extensive. Much
of the work is based on the constitutive equations of generalized Newtonian fluid models,
retarded motion expansion and polar fluids. However, despite the importance of FENE-P and
visco-elasto-plastic fluid models not a single attempt is available in the literature which deals
with peristaltic transport of such fluids. Moreover, the study of streamlines patterns of two-
dimensional peristaltic flow and bifurcations of their critical points is relatively a new area and
literature is scarce on this topic. Similarly, studies pertaining to simultaneous effects of mixed
convection and viscous dissipation on peristaltic flows and heat transfer is also limited.
Motivated by the above facts, the aim of this thesis is to explore the peristaltic motion with
particular focus on non-Newtonian effects, streamlines topologies and their bifurcations and
heat/mass transfers analysis. The thesis is composed of seven chapters. A brief description of
each chapter is given below.

Chapter 1 consists of fundamentals of peristaltic flows, heat/mass transfer and bifurcation
theory. A detailed literature review on peristaltic flow of real fluids is also presented.

Chapter 2numerically investigates peristaltic transport of incompressible visco-elasto-plastic
fluids in a two-dimensional symmetric channel. The constitutive equation used for extra stress
tensor is quite general and includes models like Maxwell A, Maxwell B, Johnson-Segalman,
Oldroyd-B and Bingham model as its special case. The continuity and momentum equations
under the assumptions of long wavelength and low Reynolds numbergive rise a nonlinear
ordinary differential equation which is solved using shooting method and Matlab built-in routine
bvp4c. Excellent correlation is observed between the results obtained by two methods. The

solution obtained by bvp4c is used for further analysis of velocity profile, pressure rise per



wavelength, frictional forces and trapping phenomenon. The contents of this chapter are
published in Zeitschrift Fur NaturforschungA 70 (8) (2015) 593-603.

Chapter 3presents the mathematical modeling and analysis of the peristaltic flow of Finitely
Extendable Nonlinear Elastic-Peterlin (FENE-P) fluid both in planar channel and axisymmetric
tube. An exact solution is obtained for the stream function and longitudinal pressure gradient
subject to no-slip condition under the same approximations considered in chapter 1. The effects
of model parameters, Deborah number and extensibility parameter, on velocity profile, trapping
phenomenon and normal stress are analyzed. An enhancement in normal stress is observed with
increasingDeborah number and extensibility parameter. Further, flow acceleration is observed
near the channel/tube center for larger values of Deborah number while a converse trend is noted
with increasing extensibility parameter. Thesize of trapped bolus decreases (increases) by
increasing Deborah number (extensibility parameter). Similar trend is noted form the plots of
pressure rise and frictional forces. It is also shown thatresults of Newtonian model can be
deduced as a special case of FENE-P model. The contents of this chapter are publishedin
Zeitschrift Fur NaturforschungA, 69a, 462-472 (2014).

Chapter 4present the analysis of streamlines patterns and their bifurcation for two-dimensional
peristaltic flow of Newtonian fluid in the presence of wall slip. The flow analysis is carried out
both in planar channel and axisymmetric tube. Exact solution for the stream function is obtained
in the wave frame under the assumptions of long wavelength and low Reynolds number for both
cases. A system of nonlinear autonomous differential equations is established and the methods of
dynamical systems are used to discuss the local bifurcations and their topological changes. All
types of local bifurcations and their topological changes are discussed graphically. Moreover,
global bifurcation diagram is used to summarize the bifurcations. The contents of this chapter are
published in Chinese Physics B Vol. 23, No. 6 (2014) 064701.

Chapter Sinvestigates streamline topologies and their bifurcations for two-dimensional
peristaltic channel flow in presence of buoyancy forces and constant heat source. The well-
knownBoussinesq approximation is used to formulate buoyancy force term in momentum
equation. Methods of dynamical systems are employed to solve the non-linear autonomous
system. The results indicate that vortices contract along the vertical direction whereas they
expand along horizontal direction. A global bifurcations diagram is used to summarize the

bifurcations. The trapping and backward flow regions are mainly affected by increasing Grashof



number and constant heat source parameter in such a way that trapping region increases whereas
backward flow region shrinks. The contents of this chapter are published in AIP Advances 5 (9)
(2015) 097142.

Chapter 6extends the results of chapter 3 by including the mixed convective heat/mass transfer
analysis and chemical reaction effects. The Boussinesq approximation to account for the effects
density variations in the flow field. Moreover, the present analysis is carried out neglecting
viscous dissipation and including diffusion-thermal (Dufour) and thermal-diffusion (Soret)
effects. The flow equations become highly nonlinear and coupled. An exact solution of the
simplified coupled linear equations for the temperature and concentration has been obtained
whereas numerical solution is obtained for dimensionless stream function and pressure gradient.
Tthe effects of pertinent parameterson velocity profile, temperature and concentration fields and
trapping phenomenon are highlighted. Numerical integration has been performed to analyze
pressure rise per wavelength. The contents of this chapter are published in the Journal of
Mechanics (2015) 1-10.

Chapter 7presents the analysis of mixed convective peristaltic flow of incompressible
viscoplastic fluid in a two-dimensional symmetric channel. The prime objective is to see the
effects of plasticity of the fluid on flow and temperature characteristics. The equations governing
the velocity and temperature of the fluid are solved using regular perturbation method and
Matlab built-in routine bvp4c. The comparison for two solutions reveals the superiority of the
numerical solution over the perturbation solution. The bvp4c solution is further utilized to
investigate various features of the problem. It is found that velocity decreases at the channel
center by increasing Bingham number showing a boundary layer character for large values.
However, it increases by increasing Brinkman and Grashof numbers. Moreover, pressure rise per
wavelength increases with Bingham number, Brinkman number and Grashof number, in the
pumping region. The trapping phenomenon is also discussed in detail for several values of
involved parameters. The contents of this chapter are submitted for possible publication in

International Journal of Heat and Mass Transfer.
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English symbols
ap  Half width of channel/radius of tube

b1 Amplitude of wave

t Time

X  Horizontal coordinate of fixed frame of reference

Y  Vertical coordinate of fixed frame of reference

T Horizontal coordinate of moving frame of reference
Y Vertical coordinate of moving frame of reference

U  Longitudinal component of velocity in fixed frame
V  Transverse component of velocity in fixed frame

[ Longitudinal component of velocity in wave frame

) Transverse component of velocity in wave frame

f Body force vector

P Pressure in fixed frame

P Pressure in wave frame

I Identity tensor

D  Deformation tensor

I/\) Tensor for Bingham fluid

De Deborah number

Bn  Bingham number
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q Dimensionless mean flow rate in fixed frame of reference
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Chapter 1

Introduction

This chapter includes fundamentals concepts about peristalsis, heat/mass transfer and bifur-
cation theory. The frequently appearing dimensionless numbers relevant to peristaltic flow and
heat/mass transfer are also defined. A review of literature on peristalsis and its interaction
with heat/mass transfer is presented. The basic equations governing the flow and heat/mass

transfer are also provided.

1.1 Fundamentals of peristaltic transport

1.1.1 Peristalsis

The word peristalsis stems from a Greek word "Peristaltikos" which means clasping and com-
pressing. Therefore, it is defined as a wave of relaxation contraction to the walls of a flexible

conduit, thereby pumping the enclosed material.

1.1.2 Peristaltic transport

It is form of material transport induced by a progressive wave of area contraction or expansion
along the length of a distensible tube containing some material. It is also a natural way
of moving the content within hollow muscular structures by successive contraction of their

muscular fibers.
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1.1.3 Biological and Industrial applications of peristalsis

Peristalsis is an inherent property of many biological systems having smooth muscle tubes which
transport biofluids by its propulsive movements and is found in the transport of urine from
kidney to bladder, the movement of chyme in the gastro intestinal tract, vassomotion of small
blood vessels, the movement of spermatozoa in the ductus effrents of the male reproductive
tract, the movement of ovum in the fallopian tube, swallowing of food through esophagus,
transport of bile, transport of lymph in the lymphatic vessels, blood motion in the arteries and
many glandular ducts.

The mechanism of peristaltic transport has been exploited for industrial applications like
sanitary fluid transport, the blood pumps in heart lung machine, transport of noxious fluid in
nuclear industry and transport of corrosive fluids where the contact of fluid with machinery

parts is prohibited.

1.1.4 Pumping

It is characteristic feature of peristaltic transport. The operation of a pump of moving liquids
from lower pressure to higher pressure under certain conditions is called pumping. For the
explanation of this characteristic let us view the following;:

Positive and negative pumping

The pumping is called positive or negative depending on whether the mean flow rate is positive
or negative.

Peristaltic pumping

It is the situation in which pumping is positive and pressure gradient is adverse (i.e. pressure
rise per wavelength (APy) is positive).

Augmented pumping

It occurs when pumping is positive but in this case pressure gradient is favorable (i.e. pressure

rise per wavelength (AP,) is negative).

11



Retrograde pumping

It is the situation in which pumping is negative and the pressure gradient is adverse.

Free pumping

The situation where pumping is positive but pressure gradient is neither adverse nor favorable.
In other words pressure rise per wavelength (AP)) vanishes i.e., APy = 0.

1.1.5 Free pumping flux

It is defined as the critical value of mean flow rate corresponding to free pumping.

1.1.6 Bolus

It is defined as a volume of fluid bounded by closed streamline in the frame moving with the
wave speed.

1.1.7 Trapping

In general the shape of streamline is similar to that of the boundary wall in the wave frame.
However, under certain conditions some of the streamlines split and enclose a bolus, which is
pushed ahead alongwith the peristaltic wave with the wave speed. This phenomenon is known

as trapping.

1.2 Basic concepts of heat and mass transfer

1.2.1 Heat

It is the form of energy that can be transferred from one system to another as a result of

temperature difference.

1.2.2 Conduction

It can be defined as the transfer of energy from the more energetic particles of a substance

to the adjacent less energetic ones as a result of the interaction between the particles with no

12



movement of material.

1.2.3 Convection

It is the mode of heat transfer between a surface and the adjacent fluid that is in motion and

it involves the combined effects of conduction and fluid motion.

Natural Convection

If the fluid motion occurs as a result of the density difference produced by the temperature
difference, the process is called free or natural convection. In case of free convection flow is
generated by the body forces that occurs as a result of the density changes arising from the
temperature changes in the whole fluid. These body forces are actually generated by pressure
gradients imposed on the whole fluid. The most common source of this imposed pressure field is
gravity. The body forces in this case are usually termed bouyancy forces. Without the existence

os gravity and thermal expansion coefficient, natural convection would not be possible.

Forced Convection

Convection is called forced convection if the fluid is forced to flow over the surface by external
means such as fan, pump or the air. The term forced convection is only applied to flows in
which the effects of the buoyancy forces are negligible.

1.2.4 Radiation

It is the energy emitted by the matter in the form of electromagnetic waves (or photons). Heat
transfer by radiation does not require a material in which to propagate and can travel through

vacuum.

1.2.5 Specific Heat

It is defined as the amount of energy needed to increase the temperature of one kilogram by

one degree Celsius

13



1.2.6 Thermal Conductivity

It is the measure of the ability of a material to conduct heat and is designated by k. A substance
with a large value of k is a good thermal conductor, whereas a substance with a small value of

k is a poor thermal conductor or a good thermal insulator.

1.2.7 Thermal Diffusivity

It is defined as the ratio of the heat conducted through the material to the heat stored per unit
volume. The larger the thermal diffusivity, the faster the propagation of heat into the medium.
A small value of thermal diffusivity means that heat is mostly absorbed by the material and a

small amount of heat will be conducted further.

1.2.8 Boussinesq Approximation

In Boussinesq approximation, which is appropriate for an almost incompressible fluid, it as-
sumed that the variations of density are small, so that in the inertial terms, and in the conti-
nuity equation, we may substitute p — pgy, a constant. However, even weak density variations
are important in buoyancy and so we retain variations in p in the buoyancy term in the vertical

equation of motion. We define the buoyancy as

b=g(po—P)/po

1.3 Dimensionless Numbers

1.3.1 Reynold’s number

It is interpreted as the ratio of inertial forces to the viscous forces and is denoted by Re. It is
the most important dimensionless number in fluid dynamics because it is used for determining
whether a flow will be laminar or turbulent. Laminar flow occurs at low Reynolds number
where viscous forces are dominant and is characterized by smooth fluid motion while turbulent
flow occurs at high Reynolds number and is dominant by inertial forces, producing random

eddies, vortices and other flow fluctuations.
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1.3.2 Wave Number

It is interpreted as the ratio of the width of the channel to the wavelength. Usually, it is denoted
by the Greek symbol § and is

L
=3

: (1.1)

where L is the characteristic length and A is the wavelength.

1.3.3 Prandtl number

The relative thickness of the velocity and thermal boundary layers is best described by the

dimensionless parameter, Prandtl number, defined by

P Molecular diffusivity of momentum v nCp (1.2)
r = = —_—= — .
molecular diffusivity of heat aq k

where v is the kinematic viscosity, o is the thermal diffusivity, C), is the specific heat, 1 is the
dynamic viscosity and k is the thermal conductivity. The Prandtl number of gases is about
unity, which indicates that both momentum and heat dissipate through the fluid at about the
same rate.

Heat diffuses very quickly in liquid metals (Pr < 1) and very slowly in oils (Pr > 1) relative
to momentum. Consequently the thermal boundary layer is much thicker for liquid metals and

much thinner for oils relative to the velocity boundary layer.

1.3.4 Eckert number

This number expresses the relation between kinetic energy of flow and enthalpy and is designated
by Ec or E. This number only enters the problem when the viscous dissipation term in the

energy equation is significant.

1.3.5 Brinkman number

This is interpreted as the ratio of the viscous dissipation to the heat transfer rate. This number
is important in cases where large velocity changes occur over short distances such as lubricant

flow. It is denoted by Br.
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1.3.6 Soret and Dufour numbers

When heat and mass transfer occur simultaneously in a moving fluid, an energy flux can be
generated not only by temperature gradient but by composition gradient also. The energy flux
caused by a composition gradient is termed Dufour or diffusion-thermo effect. On the other
hand, mass fluxes can also be created by temperature gradients and this embodies the Soret
or thermo-diffusion effect. Such effects are significant when density differences exist in the
flow regime. For example, when species are introduced at a surface in a fluid domain, with a
different (lower) density than the surrounding fluid, both Soret and Dufour effects can become
influential. Soret and Dufour effects are important for intermediate molecular weight fluids
in coupled heat and mass transfer in fluid binary systems, often encountered in biophysical

processes.

1.3.7 Deborah number

Whether a viscoelastic material behaves as an elastic solid or a viscous liquid depends on the
material response time and its relation to the time scale of the experiment or observation. This
was first proposed by Marcus Reiner, who defined the ratio of the material response time to

the experimental time scale as the Deborah number, De. That is,

material response time
De = , : , - (1.3)
exp erimental time scale (Observation time)

A high Deborah number that is long response time relative to the observation time implies
viscoelastic solid behavior, whereas a low value of Deborah number (short response time relative
to the time scale of the experiment) is indicative of viscoelastic fluid behavior. From conceptual
standpoint, the Deborah number is related to the time one must wait to observe the onset of
flow or creep.

1.3.8 Grashof number

The Grashof number is defined as

(1.4)
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is a measure of natural or free convection. The meaning of this number follows from the meaning
of symbols given here: g is the acceleration due to gravity, p is density, 85 is coefficient of volume
expansion, AT is the temperature gradient in Kelvin which induces density variations. Density
variations are also known as buoyancy forces, because they cause macroscopic (bulk) motion of
the fluid. This motion is known as natural or free convection. Thus natural convection will be
enhanced by buoyancy forces (the numerator of Gry ratio) and decreased by viscous forces (the
denominator of Gy ratio). It is the ratio of natural convection buoyancy force to the viscous

force. It controls the ratio of length scale to natural convection boundary layer thickness.

1.3.9 Bingham number

It is proportional to (yield stress/viscous stress) and is used in momentum transfer in general

and calculations in particular. It is normally defined in the following form:

L
Bn=""= (1.5)
nv

where 7 is the yield stress, L is the characteristic length and v is the fluid velocity.

1.3.10 Schmidt number

It characterizes the relative effectiveness of momentum and mass transport by diffusion, higher
value of Schmidt number lead to species diffusivity rate exceed the momentum diffusivity which
diminish concentration in boundary layer. This number plays a role in mass transfer that is

analogous to that played by the Prandtl number in heat transfer

1.3.11 Nusselt number

It is defined as the ratio of length scale to the thermal boundary layer thickness. It is used
to calculate the heat transfer coefficient. The Nusselt number represents the enhancement of
heat transfer through a fluid layer as a result of convection relative to conduction across the
same fluid layer. The larger the Nusselt number, the more effective the convection. A Nusselt

number of NV = 1 for a fluid layer represents heat transfer across the layer by pure conduction.
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1.3.12 Amplitude Ratio

It is defined as the ratio of amplitude of the wave to either half width of the channel or radius

of the tube. It is usually denoted by ¢.

1.3.13 Slip Parameter

The condition that the relative velocity between the fluid and that of the wall being proportional

to the shearing rate at the walls is called slip condition. Mathematically,

U —Uy = jzﬁnlmy (1.6)
where Uy is the velocity of fluid, U,, is the velocity of wall and § > 0 is the dimensional slip
parameter and has the dimension of length. The plus (+) and minus (—) signs are due to the
direction of the normal on the wall.

Although no-slip condition plays a vital role in the Navier-Stokes theory but there are
problems where it does not hold. For instance a large class of polymeric materials slip on the
solid boundaries. It is important in the polishing of artificial heart valves, internal cavities in a
variety of manufactured parts and in applications where a thin film of light oil is attracted to

the moving walls.

1.4 Basics of Bifurcation theory

1.4.1 Autonomous system

[ ]
A system of differential equations X = f(X) for X € R”, is called an autonomous system.

1.4.2 Nonautonomous system

Any system of differential equations X = f(X,?) for X € R", is called a nonautonomous
system. Moreover, any nonautonomous system can be written as an autonomous system with

X € R*! simply by letting ,,,1 =t and C%n+1 = 1.
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1.4.3 Equilibrium point

A point X € R" is called an equilibrium point or critical point of X = f(X) if f(Xo) = 0.

1.4.4 Hyperbolic Equilibrium point

An equilibrium point is called hyperbolic equilibrium point of X = f (Y) if none of the eigen-
values of the Jacobian matrix have zero real part.

1.4.5 Classification of the equilibrium point based on eigenvalues

1. An equilibrium point is called Sink if all the eigenvalues of Jacobian have negative real

part.

2. Eqilibrium point is called Source if all of the eigenvalues of Jacobian matrix have positive

real part.

3. Equilibrium point is called Saddle if it is hyperbolic equilibrium point and Jacobian has
atleast one eigenvalue with positive real part and atleast one eigenvalue with negative real

part.

1.4.6 Linearization

The linearization of a nonlinear system

is

X =CX = (Df(Xg)) X (1.8)

1.4.7 Topological equivalence of local behavior of linear and nonlinear sys-

tems

If Xy is a hyperbolic equilibrium point of nonlinear system (1.7) then the local behavior of

the nonlinear system (1.7) is topological equivalent to the local behavior of the linear system
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(1.8) that is there is a continuous one-to-one map of a neighborhood of X onto an open set U

containing the origin.

1.4.8 Bifurcation Theory

It is the mathematical study of changes in the qualitative or topological structure of a given
family, such as the integral curves of a family of vector fields, and the solutions of a family
of differential equations. Most commonly applied to the mathematical study of dynamical
systems, a bifurcation occurs when a small smooth change made to the parameter values (the
bifurcation parameter) of a system causes a sudden qualitative or topological change in its
behavior. The name "Bifurcation" was first introduced by Henri Poincare in (1885) in the first
paper in mathematics showing such a behavior. He also later named various types of stationary

points and classified them.

1.4.9 Types of bifurcation
Local bifurcation

A local bifurcation occurs when a parameter change causes the stability of an equilibrium point.
In continuous system, this corresponds to the real part of an eigenvalue of an equilibrium point
passing through zero. In this case the equilibrium point is nonhyperbolic at the bifurcation
point. The topological changes in the phase portraits of the system can be confined to arbitrarily
small neighborhoods of bifurcation points by moving the bifurcation parameter close to the
bifurcation point. Technically, consider dynamical system described by the ordinary differential
equation

= f(z,)), f:R"xR—R" (1.9)

A local bifurcation occurs at (wo, Ag) if the Jacobian J|, ,) has an eigenvalue with zero real
part. If the eigenvalue is zero, the bifurcation is a steady state bifurcation, but if the eigenvalue

is non-zero but purely imaginary, this is a Hopf bifurcation.
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Global bifurcation

Global bifurcations occur when large invariant sets, such as periodic orbits, collide with eqilibria.
This causes changes in the topology of the trajectories in the phase space which cannot be
confined to a small neighborhood, as in the case with local bifurcations. In fact the changes in

the topology extend out to an arbitrarily large distance (hence global).

1.4.10 Co-dimension of a bifurcation

The co-dimension of a bifurcation is the number of parameters which must be varied for the
bifurcation to occur. This corresponds to the co-dimension of parameter set for which the
bifurcation occurs within the full space of parameters. Saddle-node bifurcations and Hopf
bifurcations are the only generic local bifurcations which are really co-dimension one. The
others all having higher co-dimension. However, Transcritical and Pitchfork bifurcations are
also often thought of as co-dimension one, because the normal forms can be written with only
one parameter. An example of a well studied co-dimension two bifurcation is the Bogdanov-

Takens bifurcation.

1.4.11 Streamline topology

The study of fluid flow patterns given in terms of streamlines is called topological fluid dynamics
and this context we denote a streamline fluid flow patterns in phase space as a flow, a flow

topology, a streamline topology or simply a topology.

1.4.12 Separatrix

The flow on simple closed curve determined by the union of holoclinic orbit and the equilibrium

point at the origin is called a Separatrix or Separatrix cycle.

1.4.13 Homoclinic orbit

A homoclinic orbit is a trajectory of a flow of a dynamical system which joins a saddle equilib-

rium point with itself.
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1.4.14 Heteroclinic orbit

A heteroclinic orbit or a heteroclinic connection is a path in phase space which joins two different
equilibrium points.
Phase Portrait

If we know the value of x at ¢t = 0, we have an initial value problem
t=f(x), #(0)=u20

where z is the known value. When we plot the change in « during time we have an orbit. All

the orbits together with the direction of arrows gives a phase portrait.

1.4.15 Structural Stability

Let E' be an open subset of R". A vector field f € C*(E") is said to be structurally stable if
there is € > 0 such that V I € C*(E') with

If=1Il, <e

f and I are topologically equivalent on E'; i.e., there is a homeomorphism H; : E' — E' which
maps trajectories of (1) onto trajectories of % = g(X) and preserves their orientation by time.
In this case we also say that the dynamical system (1) is structurally stable. If a vector field
f € CYEY) is not structurally stable, then f is said to be structurally unstable. And |[|-||; is
defined by

11l = max | £()] + max | D£ ()

where K is a compact subset of E'.

1.4.16 Bifurcation value

The qualitative behavior of the solution set of a system (3) depending on a parameter A € R
changes as the vector field f passes through a point in the bifurcation set or as the parameter
A varies through a bifurcation value Ag. A value A\ of the parameter A in Eq. (3) for which the

Cl-vector field f(x, \g) is not structurally stable is called bifurcation value.
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1.4.17 Some important theorems
The Stable manifold Theorem:

It is one of the most important results in the local qualitative theory of ordinary differential
equations. The theorem shows that near a hyperbolic equilibrium point X, the nonlinear
system (1) has stable and unstable manifolds S and U tangent at X to the stable and unstable
subspaces E* and E" of the linearized system (2). Furthermore, S and U are of the same
dimensions as E* and E*, and if ¢, = e4? is the flow of nonlinear system (2), then S and U are

positively and negatively invariant under ¢, respectively and satisfy

tlimqbt(c) = Xg VeeS

lim ¢,(c) = Xo VeeU

t——o00

Theorem

Let E' be an open subset of R™ containing the origin, let f € C1(E!), and let ¢, be the
flow of the nonlinear system (1). Suppose that f(0) = 0 and that Df(0) has m eigenvalues
with negative real part and n — m eigenvalues with positive real part. Then there exists a
k-dimensional differentiable manifold S tangent to the stable subspace E® of linear system (2)

at 0 such that for all ¢ > 0, ¢,(S) C S and for all X € S
tlim #,(Xo) = 0;

and there exists an n—m dimensional differentiable manifold U tangent to the unstable subspace

E* of (2) at 0 such that for all t < 0,¢,(U) C U and for all X € U,
lim ¢,(Xo) = 0.
t——00

The Hartman-Grobman Theorem

It is another very important result in the local qualitative theory of ordinary differential equa-
tions. The theorem shows that near a hyperbolic equilibrium point X, the nonlinear system

(1) has the same qualitative structure as the linear system (2).
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Theorem

Let E' be an open subset of R™ containing the origin, let f € C1(E!), and let ¢, be the
flow of the nonlinear system (1). Suppose that f(0) = 0 and that the matrix C' = D f(0) has
no eigenvalue with zero real part. Then there exists a homeomorphism H; of an open set U
containing the origin onto an open set V containing the origin such that for each Xy € U, there

is an open interval Iy C R containing zero such that VX € U and t € I
Hog,(Xo) = e H1(Xo);

that is H; maps trajectories of (1) near the origin onto trajectories of (2) near the origin and

preserves the parametrization by time.

1.5 Governing equations for fluid motion

In order to describe the physical behavior of the fluid flow, one needs to have some mathematical
relations. In fluid mechanics, we have three basic laws which account for the motion of the fluid
and those are recognized as law of conservation of mass, momentum and energy. These laws in
their mathematical form gives the relations for rate of change of mass, momentum and energy

at a point and are in subsection heads as following

1.5.1 Continuity equation

A continuity equation is an equation that describes the transport of a conserved quantity. Since
mass, energy, momentum, electric charge and other natural quantities are conserved under their
respective appropriate conditions, a variety of physical phenomena may be described using
continuity equations.

For the conservation of mass, mass of the closed system always remains constant with time,
as mass of the system cannot change quantity except being added or removed. It means that
the quantity of mass is conserved over time. The mathematical relation expressing law of

conservation of mass is known as continuity equation. For compressible fluid, it is defined as

d
d—g +pV.V =0, (1.10)
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here p is the fluid density, d/dt is the material time derivative and V is the velocity field. The

material time derivative is defined as

d 0
—_ = = V. .
ity

In view of Eq. (1.11), Eq. (1.10) takes the following form

dp
= V. V :O.
ot VP

For an incompressible fluid, it reduces to

V.V =0.

1.5.2 Momentum equation

The momentum balance for a differential fluid element reads

dv =
— = V.T f7
p di +p

where T is the Cauchy stress tensor and f denotes the body force vector.

1.5.3 Energy equation

The energy equation for fluid is defined by

ar =
PCp— = EVPT +T.(VV) +Q

where T is the temperature and @ is the constant heat source/sink term.

1.5.4 Concentration equation

The energy equation for fluid is defined by

dC . D*k
P = pD'VIC + %VQT — k1 (C — Cp)
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where C'is the concentration D* is the coefficient of mass diffusivity, k7 is the thermal diffusion

ratio and k; is the chemical reaction parameter.

1.6 Literature Review

The study of peristaltic motion using the principles of fluid dynamics was initiated by Latham
[1]. Later several researchers investigated the peristaltic motion under various assumptions.
Generally, it is assumed that the flow is laminar, incompressible and two-dimensional. The
geometry of the vessel is assumed to be either an axisymmetric tube, a planar channel or a
curved channel. The fluid inside the vessel is assumed to obey Newtonian or Non-Newtonian
constitutive law. Further, assumptions are made regarding the magnitudes of Reynolds number
and wave number, commonly known as long wavelength and low Reynolds number assumptions.
The continuity and momentum equations are sufficient to model the peristaltic flow under the
above mentioned assumptions. However, if it is assumed that flow is under non-isothermal
condition with non-zero concentration gradients, then energy and mass concentration equation
are also utilized along with continuity and momentum equations. The brief review of literature
on peristaltic motion of Newtonian and non-Newtonian fluids with and without heat/mass

transfer effects is presented below.

1.6.1 Peristaltic transport of Newtonian fluids

Initial theoretical studies on peristaltic transport were carried out using Newtonian fluids.
Though limited in scope, such attempts were quite relevant to understand the transport of urine
from kidney to the bladder. A two-dimensional model of peristaltic motion under negligible
inertia and small wave number was investigated by Shapiro [2]. A closed form solution of the flow
problem was developed under the specified assumptions. A correlation between the theoretical
and experimental results was presented by Shapiro and Latham [3] and Weinberg [4]. Shapiro et
al. [5] investigated the peristaltic motion of viscous fluid in a planar channel and cylindrical tube
using wavelength and vanishing Reynolds number approximations. A perturbation solution of
the peristaltic flow in a planar channel was reported by Jaffrin [6] for small wave number.

The realistic mathematical model representing the peristaltic flow in ureter was suggested by
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Lykoudis and Roos [7] and Weinberg et al. [8]. An unsteady analysis of peristaltic motion
in fixed frame of reference for arbitrary Reynolds and wave numbers was presented by Fung
and Yih [9]. The dynamics of ureteral muscle was integrated in the study of peristaltic flow
by Fung [10]. A review of earlier literature on peristalsis according to the assumptions on the
geometry and flow was presented by Jaffrin and Shapiro [11]. Numerical simulations of two-
dimensional peristaltic channel flow using finite difference method were carried out by Browns
and Hung [12] and Takabatake and Ayukawa [13]. Later Takabatake et al. [14] also provided the
computational results for axisymmetric case. The finite element simulations of two-dimensional
peristaltic flow in a planar channel were presented by Kumar and Naidu [15]. Srivastava and
Srivastava [16] discussed peristaltic motion of Newtonian fluid with superimposed pulsatile flow
in a circular cylindrical tube. The solution was constructed for small amplitude ratio. Afifi and
Gad [17] extended the results of ref. [16] by including the additional forces due to magnetic
field and porous medium. Recently, physiologists have noted that peristaltic mechanism is
involved in the fluid flow induced by myometrial contractions. Moreover, it is also noted that
the myometrial contraction may occur in both symmetric and asymmetric direction [18]. Apart
from that the study carried out by Eytan et al. [19] revealed that the characterization of
non-pregnant women uterine contractions is very complicated as they are composed of variable
amplitudes, a range of frequencies and different wavelengths. They confirmed that the width
of the sagittal cross-section of the uterine cavity increase towards the fundus and the cavity
is not fully occluded during the contractions. Based on these observations Eytan and Elad
[20] modeled the flow in the uterine cavity as peristaltic flow in a planar channel with wave
trains of different phase propagating on the upper and lower walls. They employed lubrication
approximation in finding the solution. Mishra and Rao [21] analyzed the peristaltic flow of
Newtonian fluid in an asymmetric channel under long wavelength and low Reynolds number
assumptions. Naby et al. [22] studied the influence of inserted endoscope and fluid with variable
viscosity on the peristaltic motion under the assumption of zero Reynolds number. Hayat and
Ali [23] discussed the effects of variable viscosity on the peristaltic flow of a Newtonian fluid
in an asymmetric channel. Elnaby and Haroun [24] presented the two-dimensional analysis of
peristaltic motion to include the compliant wall effects. A detailed discussion of peristaltic flow

of viscous fluid through a porous space in an asymmetric channel was made by Elshehawey et al.
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[25]. They obtained the explicit expression for stream function using Adomian decomposition
method. They showed that for high permeability parameter their results are in agreement with
Mishra and Rao [21]. The influence of slip condition on a hydromagnetic viscous flow in an
asymmetric channel was analyzed by Ebaid [26]. Ali et al. [27] studied the effects of magnetic
fluid, slip condition and variable viscosity on peristaltic motion of viscous fluid. Peristaltic flow
of magnetohydrodynamic (MHD) viscous fluid in an inclined asymmetric channel was discussed
by Sirinivas and Pushparaj [28]. The effects of channel curvature on peristaltic motion of
Newtonian fluid are analyzed by Sato et al. [29] and Ali et al. [30]. Ramanamurthy et al. [31]
presented a generalized mathematical model describing the unsteady peristaltic transport of
viscous fluid in a two-dimensional curved channel. The flow is investigated in the laboratory
frame of reference.

Heat transfer is an important principle in biological systems and industrial fluid transport.
One of the most important functions of the cardiovascular system is to maintain the temperature
of the body. Also air entering the lungs must be warmed (or cooled) to body temperature. This
is accomplished through all blood vessels. There are three mechanisms of heat transfer but
the convection is the most applicable heat transfer modality within the circulation of fluid in
human body. Study of the combined effects of heat and mass transfer has been attracting the
attention of many researchers due to its applications in engineering and sciences. Some physical
examples include drying of porous solid, thermal insulation, cooling of nuclear reactors and
underground energy transport, geothermal energy recovery, oil extraction and thermal energy
storage. Combined heat and mass transfer with chemical reaction also plays an important role
in design of chemical processing equipment, in formation and dissipation of fog, in metabolic
processes, in resorting of human body to heat and mass for its temperature control due to
change in weather conditions. Convective heat transfer is used by human and animal bodies to
loose the heat generated by metabolic processes to the environment. Thermodynamic aspects
of blood becomes important in the processes such as oxygenation and hemodialysis when blood
is drawn out of the body. The industrial applications include the thermal insulation, cooling of
nuclear reactors, oil extraction and thermal energy storage. The process of heat transfer and
fluid flow seem to pervade all aspects of our life. Due to great importance of heat and mass

transfer in different areas of engineering and sciences, especially in physiological fluid flows,
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interests and contributions of researchers are growing fastly in peristaltic flows. Vajravelu
et al. [32] initiated the study of heat transfer in peristalsis. Srinivas et al. [33] studied
the combined effects of slip and wall properties on MHD non-isothermal peristaltic transport
in a planar channel. Hayat et al. [34] developed closed form solutions for stream function
and temperature field for non-isothermal hydromagnetic peristaltic flow in a fluid-saturated
porous channel. They have simplified their modeled problem by using the long wavelength
approximation. Perturbation method is used to find the solution of the velocity and temperature
fields. A similar analysis with mixed convective heat transfer in an annulus has been given by
Mekheimer and Elmaboud [35]. They considered MHD fluid and discussed the problem by
ignoring the viscous dissipation effects. They got such a simplified form of their problem that
all the desired expressions were obtained analytically. Nadeem and Akbar have extended the
work [35] by considering the temperature dependent viscosity [36]. Hina et al. [37] considered
peristaltic flows of Newtonian fluid by incorporating the natural convection, viscous dissipation
and chemical reaction. Mustafa et al. [38] has thrown a light on the effects of viscous dissipation
along with Soret and Dufour in mixed convective peristaltic flow of nanofluid. Hayat and Asghar
[39] have extended [27] by carrying out heat transfer analysis. Slip effects with wall properties
and heat transfer has also been analyzed by Sirinivas et al. [40]. The effects of variable
viscosity on hydromagnetic peristaltic flow in a tube were discussed by Ebaid [41] by employing
Adomian decomposition method. Comparison of the results was made with the corresponding
results obtained by perturbation method. Combined effects of heat and mass transfer are
reported by Srinivas and Kothandapani [42] and Srinivas and Muthuraj [43]. The effects of
channel curvature on heat transfer characteristics in flow of Newtonian fluid due to peristalsis

were discussed by Ali et al. [44].

1.6.2 Literature Review for Non-Newtonian Fluids

The study of non-Newtonian fluids has received special attention of researchers for last few
years. This is because of the fact that most of the real fluids occuring in physiology and industry
are non-Newtonian. Blood, chyme, mixed form of foodstuff, cervical mucus and bile are some
examples of non-Newtonian biofluids. Other examples of non-Newtonian fluids are polymeric

liquids, drilling muds, saliva, synovial fluid found in joints and slurries. Unlike the Newtonian
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fluids there is no any single constitutive equation that describes the behavior of Non-Newtonian
fluids. Therefore several constitutive equations have been used in the literature to capture
various non-Newtonian effects. Peristaltic motion of non-Newtonian fluids was initiated by
Raju and Devanathan [45]. They used the power-law model to characterize the non-Newtonian
rheology. In continuation, they carried out the analysis of peristaltic motion for a simple
fluid with fading memory [46]. Bohme and Friedrich [47] examined the peristaltic transport
of viscoelastic fluid with integral constitutive equation. Peristaltic motion of a micropolar
fluid was analyzed by Devi and Devanathan [48]. They followed the small wave amplitude
assumption in their analysis. Srivastava and Srivastava [49] investigated the peristaltic flow
of blood using Casson model. The study of peristaltic motion of second order fluid in planar
channel and axisymmetric tube was carried out by Siddiqui et al. [50] and Siddiqui and Schwarz
[51], respectively. Siddiqui and Shwarz [52] also studied peristaltic motion for third order
fluid under the approximations of long wavelength and low Reynolds number. Hayat et al.
[53] extended the flow analysis presented in ref. [52] for axisymmetric case. They solved the
governing equation both analytically and numerically. The viscoelastic effects in peristaltic
motion using the constitutive equation of Johnson-Segalman fluid were also analyzed by Hayat
et al. [54]. Srinivasacharya et al. [55] analyzed the peristalsis of a micropolar fluid is a circular
tube by taking small Reynolds number and long wavelength considerations. The influence
of wall properties on the peristaltic flows in channel/tube has been studied by Muthu et al.
[56]. Mishra and Rao [57] studied the peristaltic motion of power law fluid in an axisymmetric
porous tube under long wavelength and low Reynolds number assumptions. They discussed
the trapping and reflux phenomena for various parameters of interest that governs the flow.
The influence of stress relaxation and retardation on peristaltic transport was studied by Hayat
et al. [58] using Oldroyd-B model. Elshahed and Haroun [59] extended the ref. [54] by
including magnetohydrodynamics effects. Hakeem et al. [60] discussed the axisymmetric flow of
generalized Newtonian MHD fluid by considering the power law model. They used perturbation
method in terms of small Hartmann number and used numerical integration to discuss the
pressure rise per wavelength and frictional forces.A closed form solution for peristaltic flow
of power law fluids under the assumptions of long wavelength and low Reynolds number was

presented Hayat and Ali [62]. An extension of results presented in ref. [60] for asymmetric
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channel was given by Reddy et al. [63]. Perturbation solution for the peristaltic flow of Carreau
fluid was obtained by Ali and Hayat [64]. Hayat et al. [65,66] provided the solution for MHD
peristaltic motion of third and fourth order fluids in planar channel. The peristaltic flow analysis
of third and fourth order fluid using regular perturbation method in asymmetric channel was
presented by Haroun [67, 68]. The effects of wall slip on peristaltic motion of third order fluid in
an asymmetric channel were explored by Hayat et al. [69]. Hayat et al. [70] have also analyzed
the Hall effects on MHD peristaltic low of Maxwell fluid in a porous medium . Wang et al.
[71] numerically simulated the peristaltic flow of Johnson-Segalman fluid in a deformable tube.
Unsteady peristaltic flow analysis in an axisymmetric tubular vessel by using power law model
was presented by Ikbal et al. [72]. MHD peristaltic transport of Sisko fluid in symmetric and
asymmetric channels was investigated by Wang et al. [73]. Hayat et al. [74] extended their
previous analysis [54] for Johnson-Segalman fluid to include the effects of asymmetry of the
channel. An analysis for peristaltic flow of Jeffrey fluid in an asymmetric channel under the
influence of magnetic field was carried out by Kothandapani and Srinivas [75]. Hayat et al.
[76] explained the effects of wall properties on peristaltic flow of Johnson-Segalman fluid. The
effects of an inserted endoscope and variable viscosity on peristaltic motion were also studied
by Hayat et al. [77]. The influence of inclined magnetic field on peristaltic flow of Williamson
fluid was analyzed both in symmetric and asymmetric channel by Nadeem and Akram [78]. A
similar analysis for fourth grade fluid was provided by Hayat et al. [79]. Pandey and Tripathi
[80] discussed the peristaltic flow of Casson fluid in a finite length channel. Tripathi et al.
[81] studied the interaction of viscoelasticity with peristaltic flow by taking fractional Maxwell
model. A mathematical model for intestinal peristaltic flow of power law fluids with multilayers
and distinct viscosities was developed by Pandey et al.[82]. The effects of permeability of porous
medium on peristaltic flow of second order fluid was discussed by Elmaboud and Mekheimer
[83]. Tripathi et al. [84] studied peristaltic motion of generalized Burger’s fluid as a model
of intestinal fluid transport. Vajravelu et al. [85] has discussed the peristaltic transport of
Williamson fluid. They have analyzed the problem in an asymmetric channel with permeable
walls. An unsteady peristaltic flow of Maxwell fluid was investigated by Padey and Tripathi
[86]. The flow was considered in a finite length tube. The dynamic boundary condition due

to compliant wall was imposed on peristaltic flow of Maxwell fluid by Hina et al. [87]. They
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have made analysis in an asymmetric channel. A numerical investigation of two-dimensional
peristaltic flow of viscoelastic Oldroyd-B fluid using boundary immersed technique was carried
out by Ceniceros and Fisher [88]. El-Sayed et al. [89] have disclosed the effects of plasticity
on peristaltic motion by considering Bingham model. In addition they also examined the
effects of slip and temperature jump condition in an eccentric annuli. An investigation of
unsteady peristaltic flow in digestive system by considering couple stress bio-fluid was made by
Tripathi and Beg [90]. Analytical and numerical investigation for the peristaltic flow of Johnson-
Segalman fluid through an axisymmetric tube with endoscope was carried out by Akbar and
Nadeem [91]. Simultaneous effects of heat transfer and wall properties on peristaltic flow of
Burger’s fluid was analyzed by Javed et al. [92]. A study of chyme dynamics through a diseased
intestine was carried out by Tripathi and Beg [93]. The Burgers’ constitutive equation was used
to represent the rheology of chyme fluid through uniform porous medium. Hayat et al. [94]
analyzed the problem of peristaltic transport of Johnson-Segalman fluid with nanoparticles.
Abo-Dahab and Abd-Alla [95] discussed the peristaltic flow of Jeffrey fluid in an asymmetric
channel. They focused on the effects of magnetic field and rotation. Tripathi et al. [96]
developed a mathematical model using fractional Oldroyd-B model for bio-fluid transport due to
peristalsis. The analysis was made in a two-dimensional asymmetric porous-saturated channel.
Nadeem and Akbar [97, 98] investigated the effects of heat transfer in peristaltic flow of Johnson-
Segalman fluid and Herschel-Bulkley fluid in a non-uniform tube. Hayat et al. [99] extended
the ref. [64] by performing the heat transfer analysis. The effects of heat transfer on peristaltic
transport of Jeffrey fluid through a vertical porous stratum were highlighted by Vajravelu et
al. [100]. The temperature and concentration variations in peristaltic annular flow of Eyring-
Powell fluid were shown graphically by Akbar and Nadeem [101]. They have also discussed
the effects of thermal and velocity slip [102] on peristaltic flow of Jeffrey 6-constants fluid.
Mehmood et al. [103] have extended the flow analysis in ref. [80] by including heat transfer
effects. The peristaltic flow of viscoelastic Jeffrey fluid through a channel with heated wall was
investigated by Tripathi et al. [104]. They showed that less pressure is needed to propel the
food bolus with high magnitude of Jeffrey parameter. Vajravelu et al. [105] examined the heat
transfer characteristics in peristaltic transport of Herschel-Bulkley Fluid in an elastic tube. Ali

et al. [106,107] studied the peristaltic flow of third order and micropolar fluids through curved
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channel. Peristaltic transport of Eyring—Powell fluid through a curved channel is examined
by Abbasi et al. [108]. Recently Hayat et al. [109] investigated the peristaltic transport of
Carreau fluid through a curved channel. Further recent investigation on peristaltic flow in a
curved channel are made by Hina et al. [110], Hayat et al. [111,112], Javid et al. [113] Ali [114].
Peristaltic flows of non-Newtonain nanofluids has also received great interest of the researchers.
This is because of diverse applications in engineering, medical and electrical appliances. For
further details, the reader is referred to refs. [115 — 124].

Topological fluid dynamics is a mathematical discipline that studies topological features
of flows with complicated trajectories and their applications to fluid motions and develops
group-theoretic and geometric points of view on various problems of hydrodynamical origin.
It is situated at crossroads of several disciplines, including Lie group, knot theory, integrable
systems and geometric inequalities. The intrusion of topological ideas in fluid mechanics goes
back to seminal work of Helmholtz [125] and Kelvin [126] who established that in inviscid flow
governed by Euler equation, vortex lines more with the fluid or as we might now say are 'Frozen
in Fluid’. The qualitative approach on streamline patterns using the theory of dynamical
systems is not a new idea in the field of fluid mechanics because a number of contributions
have been made in the far past. Particularly, the early works on separation was done by
Oswatitsch, Davey and Lighthill [127 — 129]. Hunt et al. [130] discussed the flow around
obstacles by applying the topology to flow visualization. Brons and Hartnack [131] analyzed
the streamline topologies and their bifurcations near simple degenerate critical points for two
dimensional viscous incompressible flows away from the boundaries. They have used normal
forms coeflicients to discuss the bifurcations. Such a study near non-simple degenerate critical
point close to stationary wall was made by [132]. The analysis of topological features and

bifurcations for peristaltic flow of Newtonian fluid was presented by Jimenez and Sen [133].
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Chapter 2

Peristaltic transport of
visco-elasto-plastic fluids in a planar

channel

In this chapter, we numerically investigate peristaltic transport of incompressible visco-elasto-
plastic fluids in a two-dimensional symmetric channel. The constitutive equation used for extra
stress tensor includes a number of well-known models like Maxwell A, Maxwell B, Johnson-
Segalman, Oldroyd-B and Bingham model as its special case. The mathematical modeling of the
problem is presented employing the laws of mass and momentum conservations. It is found that
the flow equations in the wave frame reduce to a single nonlinear ordinary differential equation
in stream function under the widely taken assumptions of long wavelength and low Reynolds
number. The solution of problem is obtained by two ways; namely, shooting method and Matlab
built-in routine bvp4c. The solutions obtained via both methods are in excellent agreement. A
parametric study based on bvp4c solution is performed to see the effects of different parameters
on velocity profile, pressure rise per wavelength, frictional forces and trapping phenomenon. The
contents of this chapter are published in Zeitschrift Fur Naturforschung A 70 (8) (2015) 593 —
603.
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2.1 Problem Formulation

Consider peristaltic flow of an incompressible visco-elasto-plastic fluid in a two-dimensional
channel of width 2a;. The flow is initiated by the sinusoidal wave trains that propagate on the

walls of channel with constant speed c¢. The shape of the wall surface is described by

HX,E) = a1 + b [cos <2; (X —c t))] , (2.1)

in which a; is half width of the channel, b; the wave amplitude, A the wavelength, ¢ the time,
(X,Y) are the rectangular coordinates with X — axis lying along the channel and Y — awis

transverse to it. A schematic diagram of flow geometry is illustrated in Fig. 2.1.

Fig. 2.1 Schematic diagram

The flow is governed by continuity and momentum equations given through Eq. (1.12) and
Eq. (1.14).The peristaltic flow is inherently unsteady and two-dimensional, therefore, we define

velocity field
V=[U(X,Y,1),V(X,Y,?),0] (2.2)

and gradient vector

Here U and V are the longitudinal and transverse components of velocity.
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The general form of the Cauchy stress tensor (T) appearing in Eq. (1.14) is
T=-PI+7. (2.4)
Here P is pressure, I the identity tensor and 7 is extra stress tensor which for the visco-elasto-
plastic fluid is defined by ([61]) as:
A

v A _ v A
T+M\ ((1 - &)T+ §1T> =2n (D + A2D> + 27D, (2.5)

where \; is relaxation time, £; (0 < &; < 1) is a small scalar parameter, 1 is dynamic viscosity,
A

X2 is retardation time and g the basic yield stress. The tensors D and D are defined by

D= (1/2) (L+L"), L=VV, D = D/y/es + 26D, (2.6)

where * represents the transpose and 7 is a small positive quantity. As stated in ([61]), the
presence of €1 is beneficial because it prevents from unboundedness when D — 0. The upper
and lower convected derivatives, ¥ and 2 for an arbitrary tensor A; are defined respectively as
v A A A
s dAy — — = = dAy  —— @ — =
A= 7,1 — LA — AlL*, A= it + L*Al + A L. (27)
dt dt
Now, we shall give a list of some well-known viscoelastic and plastic models that could be
derived from Eq. (2.5).
1) For Ay = Ag = 79 =0, we have T = 2nD, which is constitutive relation for Newtonian fluid.

2) Setting &; = 79 = 0 in Eq. (5) results in the following equation for extra stress tensor (7)
v — Y
T+MT=2n|D+ D], (2.8)

It can easily be identified that Eq. (2.8) represents the constitutive equation of Oldroyd-B
model.

3) When &; = 179 = A2 = 0, we get the constitutive relation for UCM, i.e.,

\Y% _
T+ MT = 277D, (2.9)
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4) For £, =1, Ay = 79 =0, Eq. (2.5) reduces to LCM, represented by

A —
T+ M7 =21D, (2.10)

5) Expression (2.5) reduces to Johnson-Segalman model for Ay = 0 and 79 = 0, i.e.,
v A _
T4+ M <(1 —gl)r+§lr> = 2nD. (2.11)

6) The Bingham model can be recovered from Eq. (2.5) by taking \; = Ay = 0. This model is

capable of predicting yield stress effects and has the following form

A
7 = 2nD + 27(D. (2.12)

On incorporating Eq. (2.2) and Eq. (2.3), the continuity equation (1.13) gets the following

form
ou oV
il R 2.13
0X + )4 ( )

whereas the component form of momentum equation (1.14) in the absence of body forces, i.e.,

f =0, gives
0 —0 =0 \= oP 0 3}
p <8t ax © aY) X T ox X Ty Xv (2:14)
— 0 =0 \= oP 9 0
U =+V=|V = ——=+ =Ty + =Tyv 2.15
<6t OX 8Y) v ox X Ty VY (2.15)
The constitutive Eq. (2.5) with the help of Eq. (2.6) and Eq. (2.7) can be written as:
- {F+TZE+VE -Lr-7L}
T+ M
{BT—I-UBT +VBT +LT+TL }
oD 9D _9D L
= D+ A +U-=+V-—=+LD+DL 219D 2.16
[+2{8t %t Ve TID+ H+ro, (2.16)
where
[ m o
L= 9X 9xX || (2.17)
ou oV
Yy oY

w
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The boundary conditions associated with the flow problem under consideration are:

U=0 aty==+H

The usual steady analysis can be performed by switching from laboratory frame (X,Y) to the
wave frame (Z,7y). The following relationships between coordinates, velocities and pressures in

the two frames hold:

2=X—ct, y=Y, u=U-c¢, v=V, pI7y =PX,Y,1), (2.18)

where u , ¥ and p are the velocity components and pressure in the wave frame, respectively.

Invoking the transformations (2.18), Eq. (2.1) and Egs. (2.13) — (2.16) take the form

R(Z) = ay + by cos (2;”’) , (2.19)
o v
a—; + a—; —0, (2.20)
9 _oN_. o 8_ 0_
P ( 7% + v@@) U 77 + 8@73636 + a—yuy, (2.21)
9 _aN. _ op,a_ . 9_
P (Uax + ’Uay) v = —Ky + %Tyx + @Tyya (222)

T+ .
+£; {a%; +74L + L7 + 7L }
_ D D . A
= 2n|D+ X Eai +@8T — LD - DL + 279D. (2.23)
oz oy
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By introducing the dimensionless flow variables

L T ¥ U v, md dup
N )x’y_al’ I A L nc ’
h = ﬁa T = alia h = ﬁa d) = ﬁ(< 1)7 Al_ﬂAlv
a1 cn a a1
A AR _ -
D = 2D, D=9D, =21 L =2 (2.24)
an an cn cn
Egs. (2.19) — (2.22) and Eq. (2.23) in components form can be put as
h(z) = 1+ ¢cos(2nz), (2.25)
ou Ov
—+—=0 2.26
9 Ty =0 (2.26)
0 0 Op 0 0
— _ = = — 2.2
Red(uax +’Uay>u G +58 Ta:w+8y7$y7 ( 7)
0 0 dp 0 3}
S lu— +v— = 2 . 2.2
Red (uax—i-vay)v 8y—|—567'y +(5a Tyy, (2.28)
— 0 0 ou
v+ Dey (1-¢) {5 (“895 + Uay) Tz — 207 g 8 e — 2Ty ay}
+¢ {5 ( uZ + vay) Tow + 20700 3% + 26°74, 3;}
ou 0 0\ Ou ou ou Ou Qv
= 26— +2D 2 u—tov=—)——-28% (=) - (=) —6°=—=—
58x+ 2 {5 <“ax+”ay) ox 0 <8x> <6y> 0 ayax}
ou ou\? v\ > ou ov
26Bn | — 26% [ — 26% [ + 4 2.29
y ”<8x)/\/€+ () +2*(5) (5 am) (2:29)

Ty + Dey

(1-¢&) {5 (“a% + ”a%) Tay — OTay G dx — Tyy 3 By ~ 0 Tau Gy oz 5Twyay}
+£1 {(5 (ua% + Ua@y) Ty + 57’111% + 527’yy oz + sz By + 57-acy }

ou 50V o 0 0 ou 50V Oudv  _30udv
_ (2 2D AR Y (L Ol I Ly i
<8y+68 >+ 62{ <“ax+ 8><8y+68x> 29y oy ‘5axax}

) aw\% [0 )
+Bn< +85 v /\/ +252 +252 (8z> +<az+528;> (2.30)
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(1-¢&){s <u8% + 0 ) Tyy — 207y G2 — 267,32}
+£& {(5 ( gy + vay) Tyy + QTwyay + 207y, y}

B v 9 0 0\ v o (OU\" 4 [Ov 9 0u Ov
-l wann (oo 2) 0 (22 (1) e
v 2 @ 2 (OV ou 5 0v\?
v (30) e (2 o ()4 (B 0) o

where the dimensionless numbers are

Tyy + Deq

A A 2
a C

The subsequent analysis is based on the elimination of stresses from Egs. (2.27) — (2.28).
However, it is difficult to obtain the exact expressions of stresses from Egs. (2.29) — (3.31).
Even if one is able to do that, Eqs. (2.27) — (2.28) after substitution of these expressions are
not easy to handle. The simplest case for a Newtonian fluid is even treated by approximate
methods or numerical technique. Not a single attempt is available in the literature where the
problem of peristaltic flow of non-Newtonian fluid in a channel or tube is treated without using
some assumptions. Fortunately appropriate assumptions can be made due to the relevance of
peristalsis with physiology. For example, in small intestine, ureter and in many other ducts
where the bio-fluid is transported by peristaltic activity, the wavelength of the wave is quite
large as compared to the radius of the vessel. Further, the flow in such ducts due to peristalsis
can be treated as creeping flow i.e. the Reynolds number for such flows is very small. The
above two assumptions are usually referred as the long wavelength and low Reynolds number
assumptions in literature. The parameter characterizing the ratio of radius of the channel to
wavelength of the peristaltic wave in present study is §. Thus for the flow under consideration
we assume 0 ~ 0 and Re =~ 0. A typical example where the above assumptions may be valid is
the movement of chyme in small intestine where both § and Re are very much less than unity
[59]. Some relevant studies regarding the applications of long wavelength and low Reynolds

number assumptions in peristaltic flows can be found in refs. [5,32,34, 65,102, 103]. In view of
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aforementioned assumptions, Egs. (2.27) — (2.31) reduce to

B op 0
0 = *51‘ + a a3 Tzy, (233)
_ o
0 = —5, (2.34)
9Der(1 - €))7y 2% = —2Dey (24 2 (2.35)
Tzx 1 1)Tzxy ay = 2 8y ) .

ou ou ou ou ou\ >
Txy + D@l —( 51)7—yy8 + 51 Trx 8y] == (8:{/) + Bn <8y> / e+ <6y> 5 (236)
Tyy + 2§1D617'Iygz =0. (2.37)

From Egs. (2.35) — (2.37), we can easily find the expressions for components of stress tensor as

3
1 2DejDeséy (%) + (%) (2.38)
7'1, = b N
’ — Qu +Bn (%) /y/e+ (2 i
1+4&(1-¢&)D <ay> dy dy
Tew = 2Dei(1 51)%‘3 — 2De, (g;‘) , (2.39)
ou
Ty = —2£1D61uya—y. (2.40)

Now on defining the stream function by the relation

_ W
u = ' V= (2.41)

the continuity equation (2.26) is identically satisfied, while Eqgs. (2.38) — (2.40) take the form

824
7_ B 1 2D61D€2§1 (ﬁ) (5 ) (2 42)
xy = SN2 2 | :
14+4€;(1 — &) Deg (?9715) ] +Bn( >/\/€+ (Tw)
2 2
Toe = 2Dei(l gl)mygf 9Dey (gf) , (2.43)
2
Tyy = —2§1D617'xyg;§. (2.44)
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Substituting the value of 7, in Eq. (2.33) and eliminating the pressure between Eqs. (2.33)
and (2.34) results in the following compatibility equation

2,5\ 3 2 2 2\ 2
3 |2enpests (54) + (58) + 8 (55) e+ (5)

=0. (2.45)

o2 20N\ 2
Y 1448, (1 — &) Det (377’2{))
The boundary conditions in the wave frame for symmetric case are ([64]) as
q oY

- 1 X _ 4 ty=—h 2.4

¢ 27 8y Y a y ? ( 6)
q¢ oY

= 2 %Y g aty=h 2.4
’Z/} 27 8y Y a y ) ( 7)
g = 0—2. (2.48)

where 0 and ¢ are the dimensionless mean flow rates in the fixed and wave frames, respectively.

The Dritchlet boundary conditions on 1 follows from the definition of flow rate in wave frame,

ie.,
h
q= /udy. (2.49)
—h
In view of Eq. (2.41), one can write
h .
q= afydy =9 (h) —v(=h). (2.50)

—h

Eq. (2.50) is satisfied if we choose ¢ (h) = ¢/2 and ¢ (—h) = —¢/2. The Neuman boundary
conditions on % represent the well known no-slip conditions.
The pressure rise per wavelength (AP)) and frictional forces (F)) on the wall are defined

by

1

= () s

1

F\ = /h2 (—fé)d:p. (2.52)
0
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2.2 Solution Methodology

An exact solution of Eq. (2.45) subject to boundary conditions (2.46) and (2.47) is difficult
to obtain due to its nonlinear nature. Therefore, we have computed numerical solutions by
using shooting method and Matlab built-in routine bvp4c which is based on the collocation
method. bvpdc is a finite difference code that implements the 3-stage Labatto Illa formula.
This is collocation formula and the collocation polynomial provides a C'—continuous solution
that is fourth order accurate. Mesh selection and error control are based on the residual of the
continuous solution. Analytical condensation is used when the system of algebraic equations is
formed. Further details can be found in [134]. Table. 2.1 and Fig. 2.2 present a comparison of
both solutions. This comparison shows that both the solutions are in excellent agreement. In
limiting case when Dey, Dey and Bn approach to zero, our results reduce to those for the case

of Newtonian fluid. For rest of the plots, the solution obtained by bvp4c is utilized.

2.3 Results and Discussion

In this section, we discuss the numerical results through their graphical representation. The
effects of emerging parameters (Dej, Des and Bn) on velocity profile, pressure rise per wave-
length, frictional forces, normal and shear stresses and trapping phenomenon.

The effects of model parameters on velocity profile are shown in Figs. 2.3 to 2.5. In the model
parameters, Dej o highlight the effects of elasticity whereas Bn shows the effects of plasticity.
From Fig. 2.3 we note that the magnitude of the velocity decreases at the centre of channel by
increasing elasticity (Dej), which perhaps is a result of increased shear thickening of viscosity.
Since De; and Degy are concerned with relaxation and retardation times, so their effects on
velocity profile should also be opposite. From Fig. 2.4 we note that Dey leaves opposite effects
to the effects of Dey on velocity profile because it increases at the centre whereas it decreases
near the walls. From Fig. 2.5 we observe that increasing plasticity (Bn) results in decrease of
velocity at the center and for the larger values of Bn (means for higher values of yield stress),
fluid behaves like a solid. For such values of Bn the velocity profile approaches to uniformity.

Figs. 2.6 —2.11, have been plotted to see the influence of model parameters on pressure rise

per wavelength (AP)) and frictional forces (F). These figures show that Dey and Bn leave
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similar effects on APy and F) whereas the effects of De; on APy, and F) are opposite to the
effects that of Dey and Bn. Fig. 2.6 shows that APy decreases by increasing elasticity (Dej)
up to a certain critical value of flow rate (#) in retrograde pumping region (¢ < 0 and APy > 0)
and peristaltic pumping region (¢ > 0 and AP, > 0) but it begins to increase after this critical
value in augmented pumping region (¢ > 0 and AP\ < 0). Fig. 2.7 also shows an increase in
AP, and F) in retrograde and peristaltic pumping regions by increasing Des while it predicts
a decrease in APy and F) in augmented pumping region. From Fig. 2.9 we note that frictional
forces increase up to a certain critical value of flow rate by increasing De;, while they decrease
onward. It means that a resistance caused by frictional forces is observed for ¢ < —0.7 but
these forces get weaker afterwards. The effects of Dey and Bn on frictional forces are similar
but opposite to the effects of Dej.

We have prepared Figs. 2.12 — 2.14 in order to see the behavior of stresses by increasing
the value of parameters Dej, Des and Bn. From Figs. 2.12 and 2.13 we note that the normal
stress components 7., and 7., decrease in the entire channel by increasing all the parameters
Dey, Dey and Bn. The shear stress (74,) profile for different values of parameters is presented
in Fig. 2.14. From this figure we note that 7., increases by increasing De; but a continuous
decrease in its profile is observed by increasing Des and Bn.

Now we report some results about an interesting phenomenon in peristalsis, called trapping.
In this phenomenon an amount of fluid called Bolus is trapped due to contraction of walls. To
see the influence of non-Newtonian parameters De;, Des and Bn on trapping, we have prepared
Figs. 2.15 — 2.17. Here we observe that these parameters affect the trapping phenomenon in a
similar way as they affected the velocity profile. In fact size and circulation of bolus decrease

by increasing De; and Bn. However, its size and circulation increases for large values of Des.
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Fig. 2.2: Comparison of solution by bvp4c and shooting method
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Fig. 2.4: Velocity for Dey with 8 =1.4, ¢ =0.6, £, =0.8, € =0.2
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Fig. 2.12: 7., for different values of De;, Des and Bn

with 0 = 1.4,¢ = 0.6, &, = 0.8, = 0.2
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Fig. 2.13: 1, for different values of Dej, Des and Bn

with 0 = 1.4,¢ = 0.6, &, = 0.8, = 0.2
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Fig. 2.14: 7., for different values of Dey, Dez and Bn
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Fig. 2.15: Streamlines for De; with § = 1.4, ¢ = 0.6, Dea =1.2, £ =0.2, £, =0.8, Bn = 1.
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Fig. 2.16: Streamlines for Dey with 6 = 1.4, ¢ = 0.6, De; = 0.5, ¢ =0.2, £, = 0.8, Bn = 1.
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Fig. 2.17: Streamlines for Bn with 8 = 1.4, ¢ = 0.6, Dea = 1.2, ¢ =0.2, £; = 0.8, De; =0.5.
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Yy Vel. (BV P4c) | Vel.(Shooting Method) | Vel.(BV P4c) | Vel.(Shooting Method)
—1.60 —1.0000 —1.0000 —1.0000 —1.0000
—1.44 —0.7497 —0.7497 —0.7314 —0.7314
—1.28 —0.5353 —0.5353 —0.5041 —0.5041
—1.12 —0.3535 —0.3535 —0.3186 —0.3186
—0.96 —0.2019 —0.2019 —0.1737 —0.1737
—0.80 —0.0782 —0.0782 —0.0649 —0.0650
—0.64 0.0195 0.0195 0.0146 0.0145
—0.48 0.0929 0.0929 0.0710 0.0709
—0.32 0.1438 0.1438 0.1087 0.1087
—0.16 0.1735 0.1735 0.1304 0.1304
0.00 0.1832 0.1832 0.1375 0.1375
0.16 0.1735 0.1735 0.1304 0.1304
0.32 0.1438 0.1437 0.1087 0.1087
0.48 0.0929 0.0929 0.0710 0.0709
0.64 0.0195 0.0195 0.0146 0.0145
0.80 —0.0782 —0.0782 —0.0649 —0.0650
0.96 —0.2019 —0.2019 —0.1737 —0.1737

1.12 —0.3535 —0.3535 —0.3186 —0.3186
1.28 —0.5353 —0.5353 —0.5041 —0.5041
1.44 —0.7497 —0.7497 —0.7314 —0.7314
1.60 —1.0000 —1.0000 —1.0000 —1.0000

Table. 2.1: Comparison of solutions with 8 = 1.4, ¢ = 0.6, De; = 0.5, 1.5,

De; =0.1,0.3, ¢ =0.2, & = 0.8, Bn = 0.1.

2.4 Concluding Remarks

The problem of peristaltic motion is investigated in a planar channel under the assumptions

of long wavelength and low Reynolds number. We considered a fairly general constitutive
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equation for extra stress tensor that describes the characteristics of viscosity, elasticity and
plasticity. Therefore, the governing nonlinear differential equations involve three non-Newtonian
parameters characterizing the viscous, elastic and plastic behaviors of the fluid. The analysis

reveals the following main observations:

e The velocity profile decreases (increases) at the center (other parts of channel) due to

increasing elasticity (De;) whereas opposite effects are noticed in case of Des.

e Increasing plasticity (Bn) results in rigidity of material and therefore the velocity profile
becomes uniform at the center of channel. In case of strong plasticity the velocity profile

becomes uniform in most part of the channel except very close to the wall of channel.
e Normal stress components 7., and 7, decrease by increasing Dey, Des and Bn.
e T, increases (decreases) with De; (Dey and Bn).

e The size and circulation of trapped bolus decrease by increasing elasticity (De;) and
plasticity (Bn). However, the size of bolus increases and it circulates faster by increasing

Des.
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Chapter 3

An analysis of peristaltic flow of
Finitely Extendable Nonlinear
Elastic-Peterlin fluid in a two
dimensional planar channel and

axisymmetric tube

Peristaltic motion of non-Newtonian fluid characterized by Finitely Extendable Nonlinear Elastic-
Peterlin (FENE-P) fluid model is investigated in this chapter. A background for development
of the differential constitutive equation of this model has been provided. The flow analysis
is carried out both for two-dimensional planar channel and axisymmetric tube. The govern-
ing equations have been simplified under the widely used assumptions of long wavelength and
low Reynolds number in a frame of reference that moves with constant wave speed. An exact
solution is obtained for the stream function and longitudinal pressure gradient with no slip
condition. We have portrayed the effects of Deborah number and extensibility parameter on
velocity profile, trapping phenomenon and normal stress. It is observed that normal stress is
an increasing function of Deborah number and extensibility parameter. As far as the velocity

at channel (tube) center is concerned, it decreases (increases) by increasing Deborah number
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(extensibility parameter). The non-Newtonian rheology also affect the size of trapped bolus
in a sense that the size of trapped bolus decreasses (increases) by increasing Deborah number
(extensibility parameter). Further, it is observed through numerical integration that both Deb-
orah number and extensibility parameter have opposite effects on pressure rise per wavelength
and frictional forces at the wall. Moreover, it is shown that the results for Newtonian model
can be deduced as a special case of FENE-P model. The contents of this chapter are published
in the journal of Zeitschrift Fur Naturforschung A, 69a, 462 — 472 (2014).

3.1 Formulation of the Problem

The dumbbell model with the Warner force law and Peterlin approximation for the average
spring force is called FENE-P model. This model was rooted in kinetic theory and was initially
developed to represent the behavior of dilute polymer solutions. The kinetic theory assumes that
the motion of the dumbbells is the combined result of the hydrodynamic force, the Brownian
motion force and the connector force. This model leads to a differential constitutive equation
that was provided in the form of extra stress tensor in Bird et. al. [135]. Following Chilcott and
Rallison [136], we prefer to work with the model given in the form of configuration tensor A,
defined by A = 3 (RR) /R2, in which R is end-to-end vector that connects the dumbbell beads,
() represents an ensemble average over the configuration space and R, is the characteristic
length. The connector force of the spring in the original FENE model follows the expression
[137] proposed by Warner

Hy
FO = R 1
1-(R-R)/R3" (8-1)

where Hj is the Gaussian stiffness in the limit of small molecular extension and Ry is the
maximum allowable dumbbell length. The nonlinearity in (3.1) induces the non-closure problem
usually encountered in many areas of statistical physics and a closed form constitutive equation
is not possible unless an approximation is made. A well known approximation was made by
Peterlin [138]. According to which the configuration dependent nonlinear factor in (3.1) is

replaced by a self-consistently averaged term. Thus we can write

H,
FO~_ 70  R=*fHR 3.2
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where <R2> is already defined and (=) means the identically equivalent. After making use of
configuration tensor we note that the dimensionless function f gets the form [137],

L2

f=f(trA) = TP A

(3.3)

Here L? is a measure of the extensibility of the dumbbells and is defined as L? = 3R3/R2. It is
also related to b(= HoR2/k1T) by L? = b+ 3 as was used in [135], where k; is the Boltzmann
constant and T' the absolute temperature.

Now the ensemble averaging of equations of motion for dumbbells yield the following evo-
lution equation for A, ([135],[139])

v
A=—L(fA—aT). (3.4)
A1

Eq. (3.4) must be used in conjunction with the Kramer’s relation for polymeric stress
P (fA —al). (3.5)

In above equations, 7, is the zero shear rate polymer viscosity, A1 the relaxation time and a is a
parameter that depends on extensibility parameter (L?) by a = 1/ (1 -3/ L2) . The parameter
a has the relation with the physical properties by a = 1 + (3k1T/ HoRg) and is also related to
b by a =1+ (3/b). On combining (3.4) and (3.5), we get

X =-7/n, (3.6)

Generally, the operator d/dt satisfies the equation

%(fA) g <X) +A% (3.7)

for any function f. Here we would like to mention that for axisymmetric case the material

derivative d/dt is defined by
4 _0 u 0
dt ot "R

— 0
V757 (3.8)

in which VE and 77 are the velocity components in radial and axial directions respectively.
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If we apply the upper convected operator ¥ to (3.5), we find

z:;hi<<fX)a¥>:Z?(<fx>+2aD>. (3.9)

Y
Here we used the result I = —2D by following [61].

3.1.1 Flow in a planar channel

The geometry of the planar channel is already explained in section 2.1 of the previous chapter.
After making use of the transformations (2.18), dimensionless variables (2.24) and definition
of stream function (2.41), the form of material derivative (1.11) in terms of stream function

becomes

(3.10)

The governing equations for the problem under consideration given Egs. (2.25) — (2.27). In

view of the definition of the stream function (2.41), these equations take the following form

o 0 0 9
R,65 (wyax — wx8y> 'lpy = —% + 587:1:7'553; + %T$y7 (311)
P P op 0 P
Red (7% P U, 8y> U, dy +0 amTym + 5ay7yy. (3.12)

Employing the long wavelength approximation [102,103], the material derivative (3.21) van-

ishes, i.e., d/dt = 0. Using this result in (3.7) and then incorporating the resulting equation in
v v

Eq. (3.9), we obtain an equation that yields an explicit relation between 7 and A that is

Y_ (X
T:)\—l fA+2aD ). (3.13)

From Egs. (3.13) and (3.6), we get the constitutive equation of extra stress tensor for the
FENE-P model
v _
fT+ M7 = 2an,D. (3.14)
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Now it is desired to express f in terms of 7, for which we take the trace of (3.5) and get

3a + %t’r?
trA = fp (3.15)

Using above equation in (3.3), we find

30+ (/) (tr(7)

f=1+ 73 (3.16)

Upon making use of (2.6) for the expression of tensor D and the definition of upper convected

derivative from (2.7), the component forms of Eq. (3.27) in fixed frame (X,Y") yield

Free + A1 { (gt + Uaa +vaay> = (V9)7F) (vv))XX}

= an, (VV+(VV)* <% (3.17)
sy + M { (gt +U88 +V£/> v — (V9)'F) - (7 (vv))XY}

= an, (VV 4+ (VV) )55, (3.18)
ffwwl{ gtwaa +v£/> oy = ((V9)'7) - (T(vv))y}

= an, (VV+(VV) ) (3.19)

Invoking Eq. (2.18) and Eq. (2.24), Egs. (3.16) — (3.19) can be put in the following

dimensionless form
3a + (De) (tra (1))

f=1+ 72 (3.20)
0 0 ou ov
JTox + Ded { <ua$ + UE)y) Tre — 2 (T”ax + 57—”6:13) }
= 2a57m%, (3.21)
0 0 ou 50V
fTay + Ded { <u8:1: + v(?y) Tay — <Txya$ +0 &E) }
ov Ou ou ov
— 277 77 - el
= aq <5 o + 83:) + De <Tm o + 5Tyw8$> , (3.22)
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15) 0 ou ov
fTyy + De {5 <u6$ + U@y) Tyy — 2 (Tmyay + 5Tyyay) }
= 2a52gz. (3.23)

After using the definition of stream function through (2.41) in (3.20) — (3.23) and then em-

ploying the long wavelength and low Reynolds number assumptions on the resulting equations,

we have
op 0 Op
0=-LL 9. 0=-2 3.24
oz + GyT Y y ( )
Similarly, Egs. (3.11) and (3.12) give
[Tex =0, fray = Detygthy, +av)y,, fry, =2Deryyd,,. (3.25)

Now on solving Eq. (3.24) and Eq. (3.25) for the components of extra stress tensor and f, we

arrive at

f=1+

3a + 2De? Te 2 0 2De Tx 2
( 22 ) (Tay) y Toy = (yai +A1> » Tyy = (ay) =tra(t), T2z =0, (3.26)

where A; is a constant of integration. The boundary conditions in the wave frame are same as

in [1140]
B ou 0% B B
b = aq ZZ’ — 1, aty=h (3.28)
h aw
o1 = q= /0 Gy = V() = V(0. (3.29)

By means of (3.26) and the second boundary condition in (3.27), we obtain the following

expression of velocity gradient from (3.25):

(3.30)

8271# _ Py () 3a + (2De?/a)p2y?
o2 a L2 ’
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Since (1 + %) /a is unity by definition of a, therefore we can write (3.30) as

0% Ou 2De? ,
o =y =rev (1 St a0

Integrating (3.31) and making use of first condition in (3.27) and the second condition in (3.28),

we get the following expression of stream function

= D12y 2y — 4 3) + (5B 0ty — v 5) (2 3.32
vy Lty - 2+ ommety-m) (L) ). 6

Now using the remaining boundary condition in (3.28), i.e., ¥ = ¢ at y = h, we find

2/3
—2 (21/3) K8 B, + 22/3 (—273% (h+ q) W10 + \/B3h20 (4h* + 729(h + q)2B1))
_ 3.33)
1/3 ) (
6h5 B, (—273% (h + q) 10 + /B3R (4h* + 729(h + q)zBl))

dap
dzx

where By = 2De?/5a? L. The pressure rise per wavelength APy and frictional forces Fy on the

wall are defined through Eqgs. (2.51) and (2.52).

<f£> de, (3.34)

h? (—jﬁ) dx (3.35)

AP, =

P =

1
{
1
[
3.1.2 Flow in an axisymmetric tube

Before proceeding ahead, we mention here that the alternative notations for coordinates, ve-
locity components and stresses will be used for the flow in an axisymmetric tube and rest of
the quantities/parameters will be denoted by the same symbols as used in the previous section.
Now we consider the peristaltic transport of an incompressible viscoelastic fluid represented by
FENE-P model in a flexible axisymmetric tube of radius a;. In cylindrical coordinates (R, 7)

the shape of tube wall is given as
H(Z,t)=aj+b, [cos <)\ (Z —c t))] . (3.36)
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A schematic diagram of the flow geometry is given below.

Fig. 3.1 Geometry of the problem for axisymmetric case

The flow is governed by the following equations:

OV,

1 0 ——
d— oP 1 0 ,—_ 0 _
— oP 1 0 - 0 _
%Vﬁ = —877 + ﬁﬁ ( Tﬁ) + 8777'@, (339)

where VE and 77 are radial and axial components of velocity, respectively. The material

derivative d/dt is defined by
d 0 d 0

g~ ot Vrgn V77 (3.40)

The coordinates, velocities and pressures in the laboratory frame (R, Z) and the wave frame
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(7,Z) are related through the following expressions:
z=Z-cd, T=R, vz=Vz—c¢, v=Vg pT2z)=P(R,Z1), (3.41)

where Tz , U7 are the axial and radial components of velocity, respectively and p is the pressure

in the wave frame. Making use of (3.41), defining the dimensionless variables as

Uz Uy et da1p h a;

z T
z )\77‘ alavz Cv'UT 5’ s » P npc, a1 T Cin ( )
and the stream function by
10y 10y
__ Y - 27 4
Ur r oz’ T ror (3.43)

the continuity equation (3.37) is identically satisfied whereas Eq. (3.36) and Egs. (3.38)—(3.40)

h(z) =14 ¢, cos2mz, (3.44)
a 8 ap ) 6 (TTT‘T) 87—7‘2
3(. 0 J _ _9p ¢ 9
Red <UT or + UZ@Z) vr or + r Or +9 0z’ (3.45)
0 0 B Op  10(r7y) OT 2
Refs(”rar*%aﬂ v T ety T ia (8.46)
d 0 0
% = 6 <'anar =+ UZaz) . (347)

Here ¢, = b1/a; is the amplitude ratio for the axisymmetric case. On using the assumption
of long wavelength in Eq. (3.47), we have d/dt = 0. The constitutive equation for extra stress
is already given in Eq. (3.14). After making use of Eq. (2.6) and the definition of upper
convective derivative again, the component form of Eq. (3.14) in fixed frame (E, 7) is

0
V) (3.48)
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Py + A {(gt +vR£z + Z;;) - (V) 7).~ (r (vv))RZ}

= an, (VV+(VV)" )5, (3.49)
Fry+ A { <<§t + vRa‘; + VZ;Z> = (VV)'7)_—( (vv))ZZ}

= an, (VV+(VV)"),. (3.50)

Incorporating Eq. (3.40) and Eq. (3.41), Egs. (3.48) — (3.50) in dimensionless form become

0 0 ov, Ov,
fT'f"f‘ + De {5 <UT’8T + Uzaz> Tryr — 2 <5TT7~8T + TZTa»,«)}

- a(;f?ai:’ (3.51)
frrz+ De {5 <UT§T + Uzgz) Trz — (57'712«881:“ + Tzzaal;f) }
fres+ De {5 (Uri + ”%i) 9 <527r28£ . 5Tzz(?;§>}

- aé(?zz' (3.53)

Now on applying the assumptions of long wavelength and low Reynolds number, the scalar

momentum equation (3.45) and (3.46) and Egs. (3.51) — (3.53) yield

op op  10(r7y)

- Y g _Y = .54
0 87“’0 8z+r or (3:54)

B o (1Y B 0 (10y 0 (1Y B
fTrr = 2D€Tzr5 (Ta’)"> y fTT’Z = DGTZZE <’r‘8’r‘) + CLE <’r‘81" y fTZZ = Q355)

After little algebraic manipulations, we can have
v A 3a + (2De? r2)? 2De (7,,)

Trz:p2r+72, Fo1+ a+( EQ/G)(T ) : Trrzeg):tm(ﬂv 7.. =0, (3.56)

where As is the constant of integration. The boundary conditions in the wave frame are defined
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as [142]

9 100\ -
T/} == 0, 5 <1"67“> == 0, at r = 0, (357)
VY = Qa, %%ﬁ = -1, at r = h, (3.58)
LR how
9—2Q+2) — = [ Sy =v(t) - w(0), (3.59)

Now adopting the same procedure for obtaining stream function and pressure gradient as

described for planar case, we arrive at the following expressions:

r?  ldp 22 4y, Crpaa o (4P
b=-5 5o ((1/8) (25717 = 1%) + = (3h'r —r)(dz) , (3.60)
2/3
gy OOC 6 (—14402 (h? + 2¢4) 12 + \/6\/0%24 (16 + 3456 (2 + 2q,)* C))
dz 1/3 ’

e (14452 (h? +2qq) 12 + \/5\/0%24 (10 -+ 3456 (1 + 24,)” C>>
(3.61)
where C' = De? / 24a%12. The pressure rise per wavelength AP, and frictional forces F) are

defined through the following formulas:

dp
AP — .62
\ Q&)w, (3.62)

d
Py h? <—di> dz. (3.63)

1
/
1
/
3.2 Discussion of the Results

We break up this section into three subsections namely, flow behavior, trapping and pumping

phenomena. The detail of these subsections is as follows:

3.2.1 Flow behavior

This part describes the effects of De and (L?) on the velocity profile and the normal stresses

which are depicted in Figs. (3.2) — (3.4). Here we observe that these parameters leave the
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opposite effects on the velocity profile but the same effects on the normal stresses. From Figs.
3.2 and 3.3 we observe that the magnitude of the velocity increases at the centre of the channel
with the increase of L? but decreases by increasing De. We also note that the magnitude of
velocity profile is greater for axisymmetric flow compared with the case of planar flow. Here it
is important to note that the results for Newtonian fluid can be obtained when either De — 0
or L? — o0o. A departure from Newtonian behavior is observed for small values of L? or large
values of De. In fact the velocity profile shows shear thinning behavior and become flatter
as L? — oo or De — 0. We also observe that the velocity field is parabolic for both the
Newtonian and FENE-P fluids. Fig. 3.4 highlights the effects of De and L? on normal stresses
for the axisymmetric case. It is seen that the normal stresses increase by increasing these

parameters.

3.2.2 Trapping Phenomenon

This subsection describes the effects of pertinent parameters on trapping phenomenon, through
Figs. 3.5 and 3.6. Figs. 3.5a,b show the effects of De on trapping for fixed value of L2. We
observe that the size of the trapped bolus decreases by increasing De. Moreover, the size of
trapped bolus is greater in the case of axisymmetric flow when compared with the planar flow.
From Figs. 3.6a,b, we observe that L? leaves the opposite effects on trapping phenomenon in
comparison with De. Thus we may interpret from all these figures that size and circulation of

the trapped bolus reduces for a shear-thinning fluid in comparison with Newtonian fluid.

3.2.3 Pumping Phenomenon

Here our focus is to explore the effects of FENE-P model parameters on pressure rise per
wavelength AP, and frictional forces F). For the analysis we have performed numerical inte-
gration for the evaluation of integrals appearing in Egs. (3.34), (3.35), (3.63) and (3.64) using
Mathematica. The results are shown in Figs. 3.7 and 3.8. We have depicted the results only
for axisymmetric case and one can easily observe the same effects for the channel flow only
with qualitative differences, i.e., pressure rise attains higher values in the axisymmetric case
compared with the planar case.

Fig. 3.7 shows the effects of De and L? on AP). Since the peristaltic flow shows different
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interesting behaviors, therefore Fig. 3.7 is divided into following four sub-regions:

The region in which AP, > 0 and 6 < 0 is called retrograde pumping region.
The region where APy > 0 and 6 > 0 is called as peristaltic pumping region.
Third region corresponds to AP, = 0, which is called free pumping region.

The region in which APy < 0 but € > 0 is called augmented pumping region.

Fig. 3.7 shows that AP, decreases by increasing the flow rate 6. Moreover, APy shows a
linear behavior for Newtonian case whereas nonlinear behavior for the FENE-P fluid. We also
note that the De and L? leave the opposite effect on APy in the retrograde and peristaltic
pumping regions i.e., APy decreases (increases) by increasing De (L?). However, in augmented
pumping region the situation is reversed. As already mentioned, large values of De or small
values of L? correspond to shear thinning fluid. Then we may conclude from Figs. 3.7a and b
that AP, in peristaltic pumping region is greater for Newtonian fluid in comparison with the
shear thinning fluid. Such observations are also reported in some previous studies [42,43].

Fig.3.8 presents the variation of frictional force F)\ against the mean flow rate 0 for different
values of De and L?. From this figure we see that F increases by increasing  and show linear
behavior for Newtonian case whereas nonlinear behavior for the FENE-P fluid. We observe
from Fig. 3.8a that F) resists the flow till § ~ 0.3 and gets weak after this critical value. The
resistance provided by F) is greater for the Newtonian fluid in comparison with with shear
thinning fluid. The effect of De on the frictional forces is opposite to that of L? and also with

a different value of flow rate § = 0.27.
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Fig. 3.2: Velocity profile for different values of extensibility parameter with 8 = 0.7, ¢, = 0.6.
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Fig. 3.3: Velocity profile for different values of Deborah number with 8 = 0.7, ¢, = 0.6.
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Fig. 3.4: Normal Stress profile in Axisymmetric Case with § = 0.7, ¢, = 0.6.
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Fig. 3.5(a): Streamlines for the variation of Deborah number with # = 0.6, ¢, = 0.6.
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Fig. 3.5(b): Streamlines for the variation of Deborah number with 8 = 0.5, ¢, = 0.5.
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Fig. 3.6(a): Streamlines for the variation of Extensibility parameter with § = 0.6, ¢, = 0.6.
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Fig. 3.6(b): Streamlines for the variation of Extensibility parameter with § = 0.5, ¢, = 0.5.
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Fig. 3.7: Pressure rise per wavelength (AP)) with ¢, = 0.5
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Fig. 3.8: Frictional forces (Fy) with ¢, = 0.5

79



3.3 Concluding remarks

From the presented analysis we conclude that Deborah number (De) and extensibility para-
meter (L?) leave opposite effects on flow characteristics, trapping and pumping phenomena.
Specifically, we find that velocity field attains higher values at the centre of the channel for
the case of axisymmetric flow when compared with the planar flow. Moreover, the velocity
profile decreases (increases) by increasing De (L?) at the centre of the channel whereas it shows
opposite trend near the walls. The velocity field is parabolic both for Newtonian and FENE-P
fluids. As for as normal stress is concerned, it increases by increasing both De and L?. If we
look into the pumping phenomenon we come to know that AP, increases in the retrograde,
peristaltic and free pumping regions, whereas it decreases in the augmented pumping region, by
increasing L2. The effects of De on AP are quite opposite to that of L2. In addition, frictional
forces (F)) resist the flow below a certain critical value of the flow rate and this resistance
increases in going from FENE-P to Newtonian fluid. Furthermore, F)\ shows linear behavior for
Newtonian case whereas its behavior is non-linear behavior for FENE-P fluid. Coming on the
trapping phenomenon, we infer that the size of trapped bolus reduces by increasing De while

it increases by increasing L2.
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Chapter 4

Slip effects on streamline topologies
and their bifurcations for peristaltic

flows of a viscous fluid

We discuss the effects of the surface slip on streamline patterns and their bifurcations for
peristaltic transport of a Newtonian fluid. The flow is in a two-dimensional symmetric channel
or an axisymmetric tube. An exact expression for the stream function is obtained in the
wave frame under the assumptions of long wavelength and low Reynolds number for both
cases. For the discussion of the particle path in wave frame, a system of nonlinear autonomous
differential equations is established and the methods of dynamical systems are used to discuss
the local bifurcations and their topological changes. Moreover, all types of bifurcations and
their topological changes are discussed graphically. Finally, the global bifurcation diagram is
used to summarize the bifurcations. The contents of this chapter are published in Chinese

Physics B Vol. 23, No. 6 (2014) 064701.
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4.1 Problem formulation

4.1.1 Channel Flow

Consider the peristaltic transport of an incompressible viscous fluid in a two dimensional channel
of width 2a;. The flow is initiated by the sinusoidal wave trains propagating on the channel walls
with constant speed c. The shape of the wall surface is characterized by the same expression
as in Ref. [133,143]

H(X,7) = a1 — b [1 ~ cos? G(Y - ci))} : (4.1)

The geometry of the problem is given below.

Fig.4.1 Geometry for planar case

It is interesting to note that expression (4.1) describes only a wave of contraction at the channel
wall. Here the governing equations of the problem are the same as considered in last chapter.
The difference comes through the constitutive equation of extra stress tensor. We have consid-
ered the case of Newtonian fluid therefore the constitutive equation for extra stress tensor is
given by

7 =2nD. (4.2)

The mass conservation equation for present scenario does not differ from the corresponding
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equation in chapter 2. However, the component form of momentum equations (2.14) and (2.15)

in view of Eq. (2.6) and Eq. (4.2) becomes

) ) ) gP 2T 82U
02 v\ = & LAy 4.3
<0t+ ox 8Y> 6X+"<ax2+ay2) “3)

) ) 9\ — oP 2V 9V
e Ui V V = — —  a - a . 4.4
p(aﬁ ox © aY) 3Y+77(8X2+8Y2> "

Now after making use of well known transformations between the laboratory (Y, 7) and moving
(Z,7y) frames, non-dimensionalizing using Eq. (2.24), introducing the stream function through
(2.41) and eliminating the pressure gradient from the resulting forms of the Eq. (4.3) and Eq.

(4.4), we get the following equation
Red [, V0, — 1, V7,] = V(V2Y). (45)
In non-dimensional form, equation (4.1) reduces to
hz)=1-¢ (1—cos’rz). (4.6)

The modified Laplacian V? is defined by the relations

, 0%, &

vi=$ 022 8y2

(4.7)

After taking into account the long wavelength and low Reynolds number assumptions, Eq. (4.5)

reduce to a similar equation as obtained in Ref. [133]

ot

The dimensionless volume flow rate and boundary conditions in the wave frame are

2
v = 0, ggf =0, at y=0, (4.9a)
_ ¢ 32’¢ _
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h
o= | gjdyzwm—woy (4.10)

Here 8 (= B,/a1, B, is the dimensional slip parameter) is the dimensionless slip parameter.
Since the flow is symmetric with respect to centerline, therefore we shall discuss the problem

in the domain y € [0, h].

Solution of the problem

The solution of Eq. (4.8) subject to boundary conditions (4.9a) and (4.9b) is

1 [ 3qh + h? +683q q+h 3
- = Y (B ) 411
v h( 2 + 68 Y7 \ondrepnz)”? (4.11)

Three different flow situations, namely, backward flow, trapping and augmented flow occur.
Backward flow refers to the case in which the whole flow goes in the direction opposite to the
travelling wave. Trapping is the situation where the streamline splits to enclose an amount of
fluid, called a bolus. The augmented flow occurs when the trapped bolus splits and there exist

some flow going in the forward direction.

Flow Field as a Nonlinear Dynamical System

In this section, we employ the idea of the qualitative theory of dynamical systems. At a
particular instant, say g, the motion of individual particles moving in paths defined by X =
[u(z,y,t),v(x,y,t),0] is identical to instantaneous streamlines, in other words, we have X =
[u(zx,y,to), v(z,y,t0),0]. The present problem can be written as a system of following nonlinear

differential equations by using the definition of stream function (2.41) and Eq. (4.11):

. 3gh+h2+68g (3y2) (¢+h)

_ N _ 412
v 2h% 1 64h oh3 1oz 4 Y a) (4.12)
. oh 1
y = [6gh(h? — y?) — 4h*y® — 68h(h* + y?) + 128q(2h* — ¢?)]

Yoz 1 (202 + 681)°
+366%qh = g(x,y, @), (4.13)

where a = [¢, q, ], —00 < x < 00, —h < y < h and the amplitude ratio ¢ lies between 0 and 1.

To obtain the critical points we set f(x,y,a) = 0 = g(z,y, &) by following Ref. [133] and
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then use the Hartman-Grobman theorem according to which the nature of the critical point can
be found using the Jacobian at the critical point. If the determinant of the Jacobian at certain
critical point is zero, the critical point is degenerate. There are two subclasses namely simple
and non-simple degeneracies. The simple degeneracy corresponds to the case when eigen values
of the Jacobian are zero and for non-simple degeneracy, Jacobian is a zero matrix. We shall use
the notation [144] to classify the critical points, where trace: pj2 = A1 + A2 and the Jacobian:
d12 = A1), which are based on eigen values A1, Ao are used to classify the phase portraits.

According to [145] a bifurcation point with respect to parameter « is a solution (z,y, ),
where the number of equilibria, periodic or quasi-periodic solutions change when a passes
through a., with a, as a critical value.

The critical points are given by
3¢+146
L {z12,912} = {mr,i %T(Tﬂfq}

31 fops
2. {x34,y34} = {icos_1 \/¢ 1-3 \/mﬁ}

17 — 32 —
e e )

In the coming sections we present the qualitative classification and discussion of the critical
points. We will also discuss the critical values of the parameters and graphical representation

of the local and global bifurcations of the critical points.

Classification and Bifurcation of the critical points

3g+1+468g
3(q+1)

wave crests. The Jacobian at these critical points is

The critical points {z12,y12} = {mr, + } where n € Z, lie on the vertical below the

0 3(¢+1) /3q+1+68q

+133 3(qg+1)
_ $(3¢+2-+38+63 3¢+1+46
J|{:c1,2,y1,2} - + ( q(1+35) g (m)

:F
$(3q—38+128q+185%q) ( 3q+1+6,8q>
(1+33)? 3(q+1)

(4.14)
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and the eigenvalues of the Jacobian are given by

L V660 + (30 + 14 639)(1+ 38)(1 +68 — 9562 — 185%)

A =
b2 3(q+1)(1+38)°

(4.15)

Since eigen values vary with ¢ by fixing the values of ¢ and 3, therefore, the nature and stability
of critical points change with the value of flow rate ¢, and the values of the flow rate are taken
between —1 and 1. Qualitative changes are divided into two cases which take place as follows:

Case-1 (for 0 < 5 <1/6)

e Aspio =0 and dio < 0 when —1 < ¢ < ﬁ, therefore the critical point is co-dimension

two saddle as it depends on 8 and g; see Fig.4.3(a).

e An isolated critical point occurs at ¢ = q., = ﬁ, which is also known as a degenerate
point but is non-hyperbolic as defined in [146], because both the eigen values and Jacobian
matrix are zero. Moreover the critical point with ¢ = ﬁ corresponds to non-simple

degeneracy because J|{$172’y172} =0forqg=gq, = ﬁ, see Fig. 4.3(a).

-1

oAsp12:Oandd12>0whenq>W,

4.3(a).

therefore each critical point is a center; see Fig.

A bifurcation diagram in the ¢ — y plane depending on the definition of a bifurcation which
crop up on the vertical situated at the wave crest at x = nr for n € Z, is traced in Fig. 4.3(a).

This bifurcation is also of co-dimension two as it depends on ¢ and (.
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Case-2 (for B> 1/6)

e Aspio =0and dio < 0 when —1 < ¢ < ﬁ or —B—i—%\/% < q < 1, therefore the

critical point is co-dimension two saddle as it depends on  and ¢; see Fig.4.3(b).

e Isolated critical points occur when q = ¢, = ﬁ and ¢ = g, = —f + %\/ HGB}%%S-
These are also known as a degenerate points but the degeneracy is non-simple. Critical

points are also non-hyperbolic, see Fig. 4.3(b).

e As pio = 0 and dio > 0 when ﬁ <qg< —-p+ %\/ HGB‘%Q'B:% therefore, each critical point

is a center; see Fig. 4.3(b).

A bifurcation diagram in the ¢ — y plane is traced in Fig. 4.3(b). This bifurcation is of

co-dimension two as it also depends on g and S.

Classification and Bifurcation of the Stagnation Points (for § <0)

_1-3a_1 /g,2_
Consider {734,y34} = {j:cos—l \/¢’ -5 2 % 24&1,0} . These critical points lie along the
9 ¢

ox

longitudinal axis. The Jacobian at these critical points is J|(z, 4 ys 4} = where

ox

of 3¢

= X

87 2 2
g (% + 3v0e —243q) (38 - % - 3/9¢° - 245q)

\/¢—1—32‘1—§ 9° —248q\ [ [1+% +3V/0¢ 245
¢ ¢

(¢—B) s, 1 9¢2 — 248 2—45 s, 1 9¢2 — 248q | + 65>
q 5 B q q q B 9 q q q
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and the eigen values are given by

3

3¢ ;1 2 2 3¢ _ 1 2 2 ”
(7—&-5 9q —245(]) (35—7—5\/9(] —24ﬂq>

1 2
\/<1++ 9q2—24ﬂq>—<1+32q+2 9q2—245q> X

1 9¢2 — 240¢ ) — 48q <32q + % 9¢2 — 24ﬂq) + 6B2q> (4.16)

N34 =

)

From (4.16) we note that a discussion about these critical points is only possible for negative
values of B and since negative values of § are of no interest physically therefore we will not

proceed further.

Classification and Bifurcation of the critical points

2
T = w with ¢ > —% (19;1:)25) where n € Z,

Likewise in previous section, a degenerate fixed point bifurcates to saddle nodes on the

2
longitudinal axis for —1 4+ ¢ < g < — ( d)f)% The case when ¢ approaches ¢., = —% S;ﬁ 3

saddle nodes of adjacent waves join together below the wave troughs, therefore the critical points

merge on r = w for ¢ = qc,. This join of critical points produce degenerate points with

(2n—1)mw
2

six heteroclinic connections. The degenerate points bifurcates on the y—branch at x =
with ¢ > g, and change stability to saddle nodes.
2
Critical points {z56, Y56} = {(%gl)ﬂ,:t\/(?’q“_qb)(l_d’) +66q(1_¢)} lie on the vertical below

3(¢+1-9)
o 9
the wave troughs. The Jacobian is given by J|g ¢ s 63 = 5 9 | where
1’99 ) 79 0
oz

of _.  (g+1-9) \/3<3q+1 —6)(0—1)* — 18546 — 1)
?)

ay (6 —1)>—3B(¢ - g+1-¢
and
99 _ ¢ \/<3q+1— 6)(¢—1)2 +68q(1 — 9)
O 3(1— ¢2B6+1-0)2(¢+1-9) 3(¢+1-9)

[2R* — 1862%¢% + 126h3 — 3652qh]
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with eigen values

N <¢6¢<q+ 1= 0)(1L— ) [(Bq+1—9)(1—0)2 + 63q(1 - ¢)]>
56 —
| 31— )52 (38+1- )" (¢ +1—-9)

/(1= 9% — 982 + 63(1 — 9)° — 185%(1 — 9). (1.17)
Qualitative changes of critical points for ¢ > _3[5%;1);3] on x = w take place as follows:

e Pss = 0 and ds = 0 when g = q.,, therefore the critical point is degenerate. And since

(25,656 =0 With ¢ = ge,, therefore degeneracy non-simple; see Fig. 4.4(b).

(1-¢)°

L P56:Oandd55<0whenq>—m,

see Fig. 4.4(c)

therefore the critical points are saddle nodes;

A bifurcation diagram for the y — ¢ plane with the variation of § is portrayed in Fig. 4.4.

Global bifurcation and streamline patterns
The vector field associated with y = 0 is {z,9} = {%,O}, from which ( = ¢ +
B%QGB)' Critical conditions crop up at the wave crests * = nm and troughs x = w Global

bifurcation curves are given by f(x,a) = ( = 0, so we have

1
Cla=nm) = Q‘Fm:@
(1-9¢)*

=0.

Clgmenznny = g+

2

(3(1—¢)+65)

The global bifurcation diagram in the parameters space ¢ — ¢ with the variation of 5 contains

the following set of curves:

-1
M = {(¢aQ)|0<¢<1»q:(3+6m}a (4.18)
_ _ (1—9)

Along the bifurcation curve M, an isolated non-hyperbolic degenerate point exists below the

wave crest which is also non-simple. Whereas along the bifurcation curve IV, the associated
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critical points join together below the wave troughs and form connections of non-simple degen-
erate points. Critical points that amalgamate on N produce a degenerate saddle having six
heteroclinic paths. Bifurcation curves are shown in Fig. 4.5.

The region of peristaltic flow is divided as follows:

Region I: backward flow, where all the flow going in an opposite direction to the flow.

Region I1: trapping,where saddles are connected by heteroclinic connections and the interac-

tion of two vortices with opposite rotations exist in the flow.

RegionlII : Augmented flow, where the eddies below wave crests merge and form heteroclinic

connections with their neighbors,

and part of the fluid is able to flow through the centerline in the flow direction.

4.1.2 Axisymmetric flow

Now we consider the peristaltic motion of an incompressible Newtonian fluid in an axisymmetric

tube with flexible walls. The tube wall in cylindrical coordinates (E, 7) is expressed by
H(Z,t) =a; — b [1 — cos? (; (Z - cf))] , (4.20)

in which ay is the tube radius in this case. In the governing equations in laboratory frame

(R,Z), the momentum equations in view of (2.6) and (4.2) can be written as

N N oP o (10 0*Vy
p(aﬁ Rox Zay> & OR ”(aR (R@R( R>> Tz ) 2y
o — 9 9\ oP 10 (LoV,\ 0V
g <8t RoxX Zay) Z 0z " (RBR ( OR ) 07 ) 422

The flow geometry is illustrated in the following figure.
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Fig.4.2 Geometry for axisymmetric case

Now following a similar procedure as done for planar case, the counter-part of Eq. (4.5) is

the present case is [130]

9 (¢, V2/r?)

o :1 22
SR o ] (V). (4.23)

The dimensionless form of the tube surface is
h(z)=1—¢, (1 —cos’mz). (4.24)

The modified Laplacian V? is defined by the relations

s_p 0 P 10

—_—— - 4.2
v 0z2  Or2 ror (4.25)

Employing long wavelength and low Reynolds number assumptions Eq. (4.32) reduces to the

similar form as obtained in [133] i.e.

VZ(V?)) = 0. (4.26)
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The dimensionless volume flow rate and boundary conditions in the wave frame are

B o (10¢\ B
QIZ) = 0, E (Tar) = 0, atr = 0, (427&)
B 10y 0 (1oy\ _ B
o= arag (o) = wr=n (1270)
h 6¢
w = [ Grdr=vin) - v0) (1.28)

Solution of the problem

The solution of the equation (4.26) subject to boundary conditions (4.27a,b) is

_ 1 2a b 44BN 2 (G 1) 4
w_(h+46)[<h+2+ hz)r <h3+2h>r]' (4.29)

Dynamical System approach to the flow field

We can write the present problem as a system of nonlinear differential equations by using the

relation = v, = %%—f and 1 = v, = —%g—f and invoking Eq. (4.29) as
. 1 4 2 2 2
Z = L3 (h+4,3) [h —4q.r" + h (4(](1_2?” ) +8hqaﬁ] 21(277”,(,\!)7 (430)
o oh 1
r o= r————— _[4h3q, — h (h® + 4q,) r* — 2(h* + 6q,r% + h? (—=10q, + 72
3Zh4(h+45)2[ 4 ( ) ( a (—10g )8
+328%qah] = m(z,7, ), (4.31)

where —oc0 < z < oo and —h <7 < h.
For the critical points we set l(z,7,@) = 0 = m(z,r, &) and use the same technique as

applied for the planar flow. The critical points are given by

4q9q(26+1)+1
1. {2’172,7"1,2} = {TZT[',:I: %}

_ 1, [ ba—1-342—1./992 2454,
2. {2374,’/“374} = {:l: COS \/ b ,0

a

n—1)mr 4qa+ (¢, —1 2 $qa—1 *—864a ba—1
3. {56,756} = {(2 21) ’i\/( o 2()2q1(+(¢a—)1)2) = )}
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Next we present the qualitative classification and discussion of the critical points. We also
present the discussion about the critical values and local and global bifurcation diagrams for

the critical points.

Classification and Bifurcation of the critical points

Consider {212,712} = {TL?T, + %} where n € Z. These critical points lie on a vertical

line below the wave crests. The Jacobian at these critical points is

o 4
o102} = ) " (4.32)
0
0z
where
a4 1gu(28+1) + 1
o = Tigrg Gty \/ 22q0 +1)
om b [—1 4+ 2(=3 + 494 + 8¢2)5 + 8¢a(7 + 10¢4) %] [4qa (28 + 1)
2 (200 +1) (46 + 1)° 2(2a + 1)
and the eigen values are given by
My = [V 0+ DB+ D+ DUEB + D,
’ (2q0 +1) (48 + 1)
X <\/1 —2(=3+44q, +8¢2)8 — 84 (7 + 1Oqa)62> . (4.33)

For discussion of the qualitative changes we again take —1 < ¢, < 1 and these changes occur

in the following way:

e pio =0 and dij2 < 0 when —% < Qg < ﬁ. The critical point is co-dimension two saddle

as it depends on 3 and ¢,; see Fig.4.6(a).

e pi2 =0and dig =0 at ¢, = q¢, = ﬁ and the critical point is non-simple degenerate

point because J|;, ,r ,3 = 0, see Fig. 4.6(b).

e p12 = 0 and dj2 > 0 when ¢, > ﬁ, therefore each critical point is a center; see Fig.

4.6(c).
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Classification and Bifurcation of the critical points (8 < 0)

The critical points

2173 /Ga(\/Ga+/3v—4a )
1/3 1+ ¢a_
_1 (*QQaB+\/§ 4q2+27q362>
{2’374, 7’374} = =+ cos 1/3 s 0
(Vaa—v3v=ta) (~94a8+/3\/443+27¢25%)
181/3\/(1*“
lie along the longitudinal axis. The Jacobian at these critical points is J{(.,, s, =
al
9z where
0 _lol
20z
oL _ ,oh (—2qah2 + 138 — 10gah3 — 16qaﬁ2)
0z 0z h3 (h +48)
and the eigen values are given by
ol 10l
g = — M = ——— 4.34
3 82’ 4 292 ( )

Here we would again mention that existence of these critical points is subject to negative values

of B and therefore these critical points are of no physical interest.

Classification and Bifurcation of the critical points

3
Now take z = w with ¢, > —% where n € Z.
As previously mentioned, a degenerate fixed point bifurcates to saddle nodes on the longi-
. . 1— 3 1— 3
tudinal axis for —@ <@g < —W. As q, approaches q;, = —W, saddle nodes

of contiguous waves coalesce below the wave troughs. Critical points merge on z = w with

da = qg,, this produce degenerate points with six heteroclinic connections. For ¢, > qg, the

degenerate points bifurcates on the r—branch at z = w and changes stability to saddle

nodes.

Critical points {256,756} = { (2n;1)ﬂ’ i\/(4qa+(¢a_21()22(1)(3;1121;28)@1“(%_1) } lie on the vertical
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0 al
below the wave trough. The Jacobian is given by J |{z5 orset = | 9 | where
T om
0z

o, A6 1) | (40t 00— 1) 60— D* - 80006, - b
or (1= o +48) (¢ — 1)° 2 (200 + (64— 1)°)
om (29[ 1605 (2043 (60~ 1) +25 (20~ 360 = 1) 00— 1 + (00— V]
0 2(20+ (94— 1) (¢4 = 1)® (9, — 1 —45)
(40+ (6, = 1)) (84 = 1)” = 8428 (95 — 1)
2 (240 + (60— 1)°)

with eigenvalues

Vwa (200 + (60 = 1) { (100 + (02 = 1) (60 = 1)” = 808 (6 — 1)}
e s (60— 1 (48 +1— 0,972 (200 + (8, — 1)°)

(60— 105~ 166% (20043 (60~ 17) +26 (2 - 3(6, ~117) (6~ 19435)

Qualitative changes of critical points takes place as follows:

e P56 =0 and dsg = 0 at g, = g, and the critical point is non-simple degenerate because
Il iz5.6,m56) = 0; look at Fig. 4.7(b).

3
e For, Psg = 0 and dsg < 0 when ¢ > —% therefore the critical points are saddle

nodes; see Fig. 4.7(c)

A bifurcation diagram for the r — ¢, plane is traced keeping ¢, and [ fixed; see Fig. 4.7.

Global bifurcation and streamline patterns

The associated vector field for r = 0 is {v,,v,} = {%%W,O}, from which { = ¢, +

4(%32@. Critical conditions occur at the wave crests z = nm and troughs z = w Bifurcation
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curves are given by [(z, a) = ( = 0, so we have

1
z=nm = a 71 en 07
Ce=nm = 40t 725
_ (1 — (ba)?’ _
<|(z: (2n;1)7‘r) = Qg+ m =0.

The global bifurcation diagram in the parameter space ¢ — g by keeping  fixed, contains of the

following curves :

0O = {(¢a7Qa)|0 < (ba <1l,g,= 4(1__’_125)} s (436)
16 )3
P = {(%7%)!0 <Py <1,qa= —4(1(_ f‘ﬁ ) } . (4.37)

Along the bifurcation curve O, an isolated non-hyperbolic degenerate point exists below the
wave crest which is also non-simple. Whereas along the bifurcation curve P, the associated
critical points join together below the wave troughs and form connections of non-simple de-
generate points. Critical points that amalgamate on P produce a degenerate saddle having
six heteroclinic paths. Bifurcation curves are shown in Fig. 4.8. Figs. 4.8 (a) — (e) highlight
the transitions between different values of g, with fixed values of ¢, and S. In Fig. 4.8, pan-
els (a), (b), panels (c), (d) and (e) corresponds to backward flow, trapping and forward flow,

respectively.

4.2 Results and discussion

Different flow formations which occur in peristaltic motion are discussed through Figs. 4.3—4.8.
Fig. 4.3 is prepared to show the bifurcation that occurs corresponding to the critical points
{z1,2,y1,2} for different values of slip parameter. Here we observe that with the increase in slip
parameter (3, the bifurcation point occurs for the larger values of flow rate. Moreover, vortices
spread along the vertical. Similar observation is made from Fig. 4.4. Global bifurcation
diagram is presented in Fig. 4.5. From this figure we observe that with an increase in slip
parameter, backward flow region expands whereas the trapping region narrows down. However,

no change occurs in the augmented region by increasing slip parameter. This explains the
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vanishing trapped bolus with an increase in slip parameter. In fact, if one keeps increasing [
for a fixed value of ¢4, then the backward flow region expands and encloses the chosen value of
Ga- Thus this chosen value of ¢,, which was initially in trapping region, now falls in backward
flow region where trapping phenomenon is not possible.

Figs. 4.6 — 4.8 are plotted for the axisymmetric case and the observations in Figs. 4.6 and
4.7 are similar to those noticed in Figs. 4.3 and 4.4. Fig. 4.8 shows the global bifurcation
curves and the streamline patterns for different values of slip parameter §. In order to show
the streamline patterns in different flow regions, we take values of the flow rate (¢g,) both from
inside the regions (I-III) and on the lines that separate them, and then the streamlines are
drawn for the five selected values of flow rate, which are shown in Fig. 4.6.

The whole analysis provides the bifurcation points and the parametric ranges for different
flow situations (backward flow, trapping and augmented flow). We draw a consequence from
this analysis that if peristaltic walls are made slippery, then the trapping could be reduced and
as a result, the damage of the internal parts due to contamination, if the fluid is a chemical,

could be avoided.
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-1 -0.5 0 0.5 1

T
:

(2) (b) (c)

Fig. 4.3(a): Bifurcation diagram for = nm, n € Z and pictorial topological

changes with the variation of 8 for 0 < 8 < % (a) g < ﬁ, (b) g = ﬁ, (c) g > ﬁ.

98



T
:

(a) (b) (c)

Fig. 4.3(b): Bifurcation diagram for z = nm, n € Z and pictorial topological

changes with the variation of 3 for 8 > ¢ (a) ¢ < ﬁ, (b) ¢ = ﬁ, (c) g > ﬁ.
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Fig. 4.4: Local bifurcation for wave troughs at = (2n — 1)7/2 with ¢ >

for different values of ¢ and pictorial changes: (a) ¢ < —

1—¢)?
(c) a> _3[§—¢+)2ﬁ]'
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Fig. 4.5: Global bifurcation for planar flow with the variation of §3; region I: backward flow,

region II: trapping, region III: augmented flow
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Fig. 4.6: Local bifurcation for wave crest z = nm, n € Z and pictorial topological changes

(a) Ga < ﬁ, (b) qa = ﬁ7 (C) Ga > ﬁ
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Fig. 4.7: Local bifurcation for wave troughs z = (2n — 1)7/2 with ¢, > —% with

3 3
different values of ¢, and pictorial changes: (a) q, < —%, (b) qu = —%,

(1_¢a)3
(¢) 40 > — 715,755
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005

o° 006

Fig. 4.8: Global bifurcation diagram for axisymmetric flow, (a) — (e) corresponds to ¢, = 0.6
with different values of ¢,; region I: backward flow, region II: trapping,region III: augmented

flow, (a) g, = —0.1, (b) ¢o = —0.08, (¢) ¢4 = —0.05, (d) q, = =0, (e) g, = 0.02.
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4.3 Concluding remarks

An analysis is performed to investigate the streamline topologies and their bifurcations for
peristaltic flow of viscous incompressible fluid in the presence of slip at the wall of channel /tube.

The main findings are:

e Trapping region narrows down by increasing the slip parameter.

e The backward flow region expands, whereas no changes occur in the augmented flow

region by increasing .
e The location of bifurcation point changes with the variation of slip parameter.

e Transitions between backward flow to trapping and trapping to the augmented flow cor-

responds to bifurcations of co-dimension two.

e An increase in slip parameter accelerates the lift off of the centerline and also accelerates

the flow through the center.
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Chapter 5

Streamline topologies and their
bifurcations for mixed convective

peristaltic flow

In this chapter, our focus is on streamlines patterns and their bifurcations for mixed convective
peristaltic low of Newtonian fluid with heat transfer. It is assumed that all the fluid properties,
except the density are constant. The Boussinesq approximation which relates density change
to temperature changes is used in formulating buoyancy force term in the momentum equation.
The flow is considered in a two dimensional symmetric channel and the governing equations
are simplified under widely taken assumptions of large wavelength and low Reynolds number
in a wave frame of reference. In order to study the streamlines patterns, a system of nonlinear
autonomous differential equations are established and dynamical systems approach is used
to discuss the local bifurcations and their topological changes. We have discussed all types of
bifurcations and their topological changes are presented graphically. We found that the vortices
contract along the vertical direction whereas they expand along horizontal direction. A global
bifurcations diagram is used to summarize the bifurcations. The trapping and backward flow
regions are mainly affected by increasing Grashof number and constant heat source parameter in
such a way that trapping region increases whereas backward flow region shrinks. The contents

of this chapter are published in AIP Advances 5 (9) (2015) 097142.
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5.1 Problem formulation

We consider the flow of an incompressible viscous fluid in a two-dimensional vertical channel
of width 2a; initiated due to sinusoidal wave trains travelling on the channel walls with speed
c. In contrast to previous chapter, we have considered buoyant force in this case. Due to
this consideration, an additional term in the z—component of momentum equation (4.3) will
appear. The expression for the shape of wall surface is same as considered in previous chapter
for the planar case. Additionally, it is assumed that the walls are maintained at a constant

temperature Tg. The geometry of the problem is explained in Fig. 5.1.

Fig.5.1 Geometry of the problem

For the problem under consideration are continuity equation is given by Eq. (2.13). The

scalar momentum equations and energy equation after ignoring dissipation term and taking
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into account the source term in fixed frame of reference (Y, 7) are:

0 —=0 =0)\= oP 0*U  0°U —
p<at+ o BY) 8X+n<aX2+aY2>+pga( 0, (51)
0 —=0 =0 )\= oP *vV 0%V
p (875 U T 8Y> v " <3X2 * ay2> (5:2)
0 —=0 =0 )\= 0*T 0T
’ p<0t+ ox 8Y) (ax2+ayz>+Q 63

In view of the channel symmetry, the problem is considered only in the upper half of the channel.

The appropriate boundary conditions on temperature field are:

= 0 atY =0, (5.4)

oT
oy

T = Ty atY =H. (5.5)
Making use of the transformations (2.18), dimensionless quantities (2.24) and stream function
(2.41) in Egs. (5.1) and Eq. (5.2) and eliminating pressure gradient from the resulting equations,
we get

Red [¢, V2, — 1, VY, ] = V? (V) + Grib}. (5.6)

Similarly Eq. (5.3) becomes
RePrd [¢,0% —¥,05] = V20 + B, (5.7)
where the Grashof number Gr;, dimensionless temperature 8*, constant heat generation F; and

Prandtl number (Pr) are respectively defined as below

_ _
T
Gr=22T0 =TT g T p ol (53)
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Now under the assumptions of long wavelength and low Reynolds number, Egs. (5.6) and (5.7)

yield

ot 00*
0 = —+¢G 5.9
ay4 + Gy 8y ) ( )
020"
0 = E. 5.10
Tt (5.10)
The dimensionless volume flow rate and boundary conditions in the wave frame are [39]
0 @—0 89*—0 aty =0 (5.11a)
9 ayQ - Y ay - y - .
oY
—=-1, =0, aty=nh 5.11b
“ 5, , , aty=h, (5.11b)
a= [ Pay (.12
o 9y 7 .

where ¢ and F' are dimensionless mean flow rates in the laboratory and wave frames respectively.

5.2 Solution of the problem

The solution of the Eq. (5.9) and Eq. (5.10) subject to boundary conditions (5.11a,b) is

(G

_ y(60g(3h* — y?) + h(h* — y*)(60 + £h*(h? — y?)))

where £ = GriE.

1
120h2 ’ (5:13)

5.3 Flow Field as a Nonlinear Dynamical System

Here we follow the idea of the qualitative theory of dynamical systems. At a particular instant,

say to, the motion of individual particles moving in paths defined by V = [u(x,y,t),v(z,y,t), 0]

is identical to instantaneous streamlines, or we have V' = [u(z, y, to), v(z,y, to), 0] = [u(z,y),v(z,y),0].

The present problem will reduce to as a system of nonlinear autonomous differential equations
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by using the relation u(z,y) = @ and v(z,y) = gf Using Eq. (5.13) we have
—180hy? + 180q(h? — y?) + h7¢ — 6R°y%€ + 5h3(12 4 y*
u = O 80T ) IO IRV ), (5.14)
120h
_ Oh [30hy? — 45qy(h? — y?) + KPyE(h* —y*)]
vo= 87.73 30h4 - g({L’, Y, O’,), (515)

where a = [, q,&], —oc0o <z <00, —h<y<hand 0 < ¢ < 1.

For the equilibrium points we set f(z,y,a) = 0 = g(z,y, ) by following [133] and use
the Hartman-Grobman theorem according to which the nature of the equilibrium point for
the nonlinear autonomous system can be found by the Jacobian at the equilibrium point. If
the determinant of the Jacobian at certain equilibrium point is zero, the equilibrium point is
degenerate. There are two subcases of degeneracy namely Simple and Non-Simple. The simple
degeneracy corresponds to the case when eigenvalues of the Jacobian are zero and for non-simple
degeneracy, Jacobian is a zero matrix. We used the notation of [144] to classify the equilibrium
points, where trace: p;; = A\; +\; and the Jacobian: d;; = A\;Aj, which are based on eigen values
i, Aj, and are used to classify the phase space. Here ¢ and j represent arbitrary indices.

According to Seydel [145]: a bifurcation point w.r.t. parameter « is a solution (z,y, a),
where the number of equilibria, periodic or quasi-periodic solutions change when a passes
through a., with a. as a critical value.

The equilibrium points are given by

n, jE\/90 q+1) +3§ 2F}

L {z12,71,2}

II. {234,y34} = { nm, i\/% q+1)+3g+2\ﬁ}

I {z56, Y56} = BE(—119)5

5¢(—1+¢)3

{2n 1)m j:\/ 90g— 330+§(1¢)4)(1¢)+2¢E}

2n Dr i\/ 90¢—3(30+£(1 ¢)4)(1—¢)—2¢E}

V. {z9,10,Y9,10} = {COS1

Wiz R
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where

Ay = 2025(q+1)2 = 15(35+ 6 (g + 1))€ + €2,

Br = 2025(q+1—¢)*+&*(1— )" —306(1 — ¢)°(=5+ 3 (1 +q) + 29).

Here it is important to remember that critical points {zg 10, Y910} are calculated by taking
¢ small and terms O(&2) are neglected. The nature of the critical points, critical ranges for the
parameters and local and global bifurcations of the critical points will be discussed in coming

sections.

5.3.1 Classification and bifurcation of the critical points {z1 2,712}

5¢
below the wave crests. The Jacobian at these equilibrium points is

The equilibrium points {z12,y12} = {mr, i\/go(q+1)+3§2m} with n € Z, lie on the vertical

0 e
Twromar = | 5, ozl (5.16)

%|{$1,27y1,2} 0
where
of 1 [90(q+ 1)+ 36 — 2V/4A,
aylwanar = F5 \/ = (90(a+1)+3¢ = (90 (g +1) + 3¢ —2/41) ),
%, Ly \/90(q+1)+3£—2x/A1 *45((q+1)*1)+£+<%(§+”_5)
0 1
O M2 15 5¢ X (90 (g + 1) + 3¢ — 2/A7)

and the eigenvalues of the Jacobian are given by

—45((g+1) — 1) + € + (FEHREED=)

x (90 (g + 1) + 3¢ — 2¢/Ay)
(5.17)

1 1
Mo =t —g@(90<q+1)+3£—2@)

Here the eigenvalues vary with 6 by fixing the values of ¢ and &, therefore, the nature and
stability of equilibrium points change with the value of flow rate 6. All the discussion will be

made by taking the values of flow rate between —1 and 1. Qualitative changes are divided into
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four cases which are as follows:

Case-1 (for 0 < £ < 21/64)

e p12 =0 and di3 < 0 when <1<q<4f5§,/7§> OR

<4§5 + %\/%5 <qg< 5—71\/1 — 36+ 1—;)5 (40 + 35)), therefore the equilibrium points are co-

dimension two saddle as they depend on £ and gq.

¢ Equilibrium points occur at ¢ = ¢, = f—5 + %\/7;5 and ¢ = ¢, = FVI—3+
% (40 + 3¢), with the variations of £. They are degenerate and non-hyperbolic [146],
because both the Jacobian matrix and eigenvalues are zero respectively. Moreover the crit-
ical points with ¢ = ¢, , ; correspond to non-simple degeneracy because J|{m1’27y1’2} =0
for ¢ = Qeyns-

e p1o = 0 and dy2 > 0 when %m + % (40 + 3¢) < g < 1, therefore each equilibrium
point is a center for these value of parameters.

This whole case is presented in Fig. 5.1(a).

Case-2 (for 21 < & < & (615 — 15v/1645))

e p1o = 0 and di2 < 0 when —1 < ¢ < 4% — % %, therefore the equilibrium point is

co-dimension two saddle as it depends on & and 6.

e p1o = 0 and dio2 > 0 when 4% +% %5 < q < 1, therefore, each equilibrium point is a

center.

e Equilibrium points occur at ¢ = ¢, = 45—5 + % %5, which are also known as a degenerate
point but are non-hyperbolic.
This whole case is presented in Fig. 5.1(b).

Case-3 (for 4 (435 +15v/805) < ¢ < 3 (615 + 151/1645))

e p1o = 0 and dio > 0 when —1 < ¢ < 4% - % %, therefore, each equilibrium point is a

center.
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1 /7€

e An isolated equilibrium point occurs at ¢ = g, = 4% — 34/ 3, which is also degenerate

point but is non-hyperbolic [146]. Moreover the equilibrium point with ¢ = & — 1,/ %5

corresponds to non-simple degeneracy because J |{x1727y172} =0forqg=¢q., = 4% - % 5

This whole case is presented in Fig. 5.1(c).
Case-4 (for € > 3 (615 + 151/1645))

e p12 = 0 and di2 > 0 when —1 < ¢ < 1, therefore, each equilibrium point is a center; see

Fig. 5.1(d).

Based on the definition of a bifurcation, one occurs on the vertical situated at the wave
crest at © = nr. Bifurcation diagram in the ¢ — y plane is traced for each Case — (1 — 4); see
Figs. 5.1(a) — (d) respectively. All these bifurcations are of co-dimension two as these depend

on g and &.

5.3.2 Classification and bifurcation of the critical points {z54,y54}

The equilibrium points {z34,y34} = {mr, 44/ W} lie on the vertical below the wave

crests. The Jacobian at these equilibrium points is

0 Bl (w5000}
3.4,Y3,
s awar = | 5, v (5.18)
%|{$3,47y3,4} 0
where
of 1 90q + 3¢ + 2v/A;
@‘@3,4&3,4} - :F@ \/ 5¢ (90(] + 3£ — (90q + 3£ + 24/ A1)>
dg 1 00q + 3¢ + 2V/A;, \ [ —45(g— 1)+ &+ (%‘?I*)
%‘{13,4,?43,4} = iﬁgf) 5e
x (90q + 3¢ + 2v/4;)
and the eigenvalues of the Jacobian are given by
1 1 —45(q — 1) + £ + ( —25H450=¢
A3a=+t—+~ VA (90q + 3¢+ 2\/A71) ( 5¢ )
15V5 £ x (90q + 3¢ + 2/ 4;)
(5.19)
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Since eigenvalues vary with ¢ by fixing the values of ¢, &, therefore, the nature and stability of
critical points change with the value of flow rate ¢q. Qualitative changes are divided into four
cases which take place as follows:

Case-1 (for 0 < £ <21/64)

e p3s = 0 and d3g4 < 0 when
<f5+§\/735<q<271m+;5(40+35)> OR

(%\/1 — 3¢+ ﬁ (40+3¢) <qg< 1), therefore the equilibrium points are co-dimension
two saddle as they depend on ¢ and gq.

e Equilibrium points occur at ¢ = q¢, , = f@i% %5, q=Gess = iQ%\/l — 354—% (40 + 3¢),
which are also known as degenerate points but are non-hyperbolic. Moreover these equilib-

rium points correspond to non-simple degeneracy because J |{$3 aysa) = 010r ¢ =Gc; 54,

e p3y = 0 and d3g > 0 when <—1<q<4§5—z1,)\/§> OR%+%\/§<q<%m+
3= (404 3€) OR (—5-v/T =38+ % (40 + 3¢) < g < 5-/T — 3E + = (40 + 3€)), therefore
each equilibrium point is a center.

This whole case is portrayed in Fig. 5.2(a).
Case-2 (for 1/3 < € < & (615 — 151/1645))
e p34 = 0 and d3q4 < 0 when 4% + % % < g < 1, therefore, each equilibrium point is a

co-dimension two saddle as it depends on £ and gq.

e Isolated equilibrium points occur at ¢ = g, , = 4%:&% %ﬁ, which are also known as degen-
erate point but are non-hyperbolic. Moreover the equilibrium points ¢ = g, , corresponds

to non-simple degeneracy because J|(, , 4,3 = 0 for ¢ = gc, ,.

e p3y = 0 and d3g > 0 when —1 < ¢ < 4% - % %, therefore, each equilibrium point is a

center.
This whole case is portrayed in Fig. 5.2(b).

Case-3 (for & (435 4+ 15v/805) < £ < 5 (615 + 15/1645))
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e p34 = 0 and d3g < 0 when —1 < ¢ < 45—5 — % %5, therefore, each equilibrium point is a

co-dimension two saddle.

e An isolated equilibrium point occur at ¢ = ¢q., = 4% — % %,

which is also known as
a degenerate point but is non-hyperbolic. Moreover the equilibrium point with ¢ = g,

corresponds to non-simple degeneracy because J |{m3, aysa) = 0 for ¢ =qe,.
This whole case is presented in Fig. 5.2(c).
Case-4 (for &> % (615 + 15\/1645))

e p34 = 0 and d3y < 0 when —1 < ¢ < 1, therefore, each equilibrium point is a center; see

Fig. 5.2(d).

Based on the definition of a bifurcation, one occurs on the vertical situated at the wave
crest at = nm. Bifurcation diagram in the ¢ — y plane is traced for each Case — (1 — 4); see
Figs. 5.2(a) — (d) respectively. All these bifurcations are of co-dimension two as these depend

on g and &.

5.3.3 Classification and bifurcation of the critical points {z5¢, Y56}

Now we consider x = (2”%)” with ¢ > g, where g, = @10(120 — £+ 600 + 5P — 10£0% + 10643

—5Ept +€¢°) and 0 < € < i3 (b_lg;g?;g%’_B prawl Likewise in previous section, a degenerate

fixed point bifurcates to saddle nodes on the longitudinal axis for ¢, < g < 1. The case when
q approaches q., = g, saddle nodes of adjacent waves join together below the wave troughs,

therefore the equilibrium points merge on z =

@ for ¢ = g, . This join of equilibrium points

produce degenerate points with six heteroclinic connections. The degenerate points bifurcate

on the y—branch at x = w with ¢ > g., and change stability to saddle nodes.

Equilibrium points {56,956} = { (2"51)7r, i\/_go(q_l)_3(3(5)2_(5_(11§§;)(1_¢)+2\/Bi} lie on the

vertical below the wave troughs. The Jacobian is given by

of
0 dy |{$5,67215,6}

J|{$5,6,y5,6} = (5.20)

9g
%|{I5,67y5,6} 0
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where

ﬂ‘ = -1 + —90(q — 1) =330+ £(1 — 9)*)(1 — ¢) + 2By
ay {z5,6,95,6} 30 (1 — ¢)3 55(_1 " ¢)3
90(q — 1) = 90(~1+ ¢) =3¢ (-1 + )" + 5 (-1 + ¢)°
) > (*90(qfl)73(30+5(1f¢)4)(1f¢)+2\/3*1)
56(—14¢)3
and
8gl _ 4 ¢ —90(q — 1) = 3(30 + £(1 — 9)H)(1 — ¢) + 2By
prened 15(1—¢)* 5E(—1+ )

) ( (4500 = 1) + £(-1+6)°) (-1 4+ 6)” + (~45(g — 1)
(

90(f1—1)+3(30+§(1—¢)4)(1—¢)+2\/E) )

=30 +&(~=1+¢)") (=1 +¢)) x <_ 5E(— L1 6)°

with eigenvalues

T (15— D) +€(-1+6)°) (-14+9)’ + s
N x(45(g — 1) + (=30 + £ (—1+ ¢)*) (—1 + ¢))x
B (90(a = 1) = 330 + € (~1+ ¢)") (~1+ ¢) — 2B
(i\/90(q—1)+3(304g§8—%)(1—@—NE>

71 2 90(q — 1) — 2y/B1+
30 (1 —¢)® 'Ji 1—@ (am+g(1+@%(1+®

Qualitative changes of critical points for ¢ > ¢, on x = w takes place as follows:

—300—60¢
Case (for 0<é< _1+5¢_10¢2+10¢3_5¢4+¢5)

)( .21)

e Pss = 0 and ds¢ = 0 when ¢ = q.,, therefore the equilibrium point is degenerate. And

since J ]{%76,%16} = 0 with ¢ = ¢.,, therefore degeneracy is non-simple.

e P55 = 0 and dsg < 0 when ¢ > ¢, therefore the equilibrium points are saddle nodes.

A bifurcation diagram for the y — ¢ plane with the variation of ¢ is traced as Fig. 5.3.
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5.3.4 Classification and bifurcation of the critical points {z7g,y:5}

(2n—1)7

r = 5 and 0< 5 < —40-20¢

—14+5¢—102+1043 —5¢*+¢°
Likewise in previous section, a degenerate fixed point bifurcates to saddle nodes on the longi-

tudinal axis for —1 < g < g, where ¢, = % (10 — £ 4200 + 5EP — 10642 4 10£0° — bEG* + £¢5)

and g, < ¢ < 1. The case when ¢ approaches q., = ¢, saddle nodes of adjacent waves join

(2n—1)m
2

together below the wave troughs, therefore the equilibrium points merge on z = for

q¢ = qc,- This join of equilibrium points produce degenerate points with six heteroclinic con-

nections. The degenerate points bifurcates on the y—branch at x =

w with ¢ > ¢., and

change stability to saddle nodes.

Equilibrium points {7, y78} = { @n-Lr W S b S et o2 } lie on the

vertical below the wave troughs. The Jacobian is given by

0 ?L{ y7,8}
r7.8,Y7,8
Tarsarst = | o, Y (5.22)
%|{I7,s,y7,s} 0
where
o7, _ -1 [=90(g—1) = 3(30+£(1 - 9)")(1 - ¢) —2v/By
dy {z7,8:y7,8} 30(1— ¢)3 BE(—1+ ¢>3

90(q — 1) — 90(—1 4 ¢) — 3¢ (=1 + ¢)° + 5¢ (=1 + ¢)®
% (790(q71)73(30+5(17¢)4)(17¢>>72\/Bi )

5E(—1+¢)°
and

99 -y ? —90(¢—1) =330+ &1 - ¢)")(1 — ¢) — 2By
Bz ereal 15(1 - ¢)* 5E(—1+ ¢)3

(45(a= 1) +§(-1+)°) (14 )" + (~45(¢ — 1)

— — —d)H(1—0)—
~(=30+ & (~1+ ¢)") (-1 + ¢)) x (—eDEELC 00 2T )

X
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with eigenvalues

T (45— D) + € (14 6)°) (-1 4+0)” +

X (45(g = 1) + (=30 + £ (=1 + ¢)") (=1 + ¢))x

1
Mg = £
8 V15 (90(q 1) 3304 E(—1+ ) (~1 4 ¢) + 2\/31)
90(q—1)+3(30+£(1—¢)*) (1—p)+2v/B1
\ (i\/ I >
1 90(q — 1) + 2v/Bi+

2 1
4+ /B | — .23
30 (1 - ¢)° vGJiffa—@S 330+ € (=14 )Y (=1 + ¢) (2

Qualitative changes of equilibrium points for ¢ > ¢, on z = takes place as follows:

—40—20¢
Case (for 0<é< _1+5¢_10¢2+10¢3_5¢4+¢5>

(2n—1)7
2

e Prg =0 and dyg = 0 when ¢ = q.,, therefore the equilibrium point is degenerate. And

since J ]{”8%8} = 0 with ¢ = q.,, therefore degeneracy is non-simple.
e Prg =0 and dyg < 0when —1 < g < ¢, therefore the equilibrium points are saddle nodes.

e Prg =0 and dyg > 0 when ¢, < g < 1, therefore the equilibrium points are centers.

A bifurcation diagram for the y — ¢ plane with the variation of ¢ is traced as Fig. 5.4.

Classification and Bifurcation of the critical points The equilibrium points {xg 10, Y910} =

{COS_1

these equilibrium points is

—3(g—1)+ 8D )y
i\/ << ) ¢20 £> ¢>] ,0} lie along the longitudinal axis. The Jacobian at

0
a*ic’{xg,m,yg,lo} 0 (5.24)

J|{19,107y9,10} = of
0 _ﬁ‘{mg,m,yg,lo}

where
of ¢ (—45(g — 1)h?* 4+ €R7) coszsinz

or 15h4
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with eigenvalues

doso = i\/<2225+<301++5$) (2+C1) (€3 +C0)° —45(-1+4))
with C; = 2—;5(—1+q)5—3q (5.25)

The further classification is based on the solution of the inequality dgi1g < 0. In previous cases
we were fortunate to classify such equilibrium points by giving general ranges for £ and q.
However, in this case due to complicated nature of dg1g, we are only able to find general ranges
for £. But unfortunately corresponding ranges of ¢ cannot be obtained in general. Therefore
by taking some specific values of ¢ from these ranges one can classify the critical points. We
have done it only for the case when 0 < & < 25/648. In this case due to occurrence of twelfth
degree term in dg19, we are not able to find general ranges for flow rate q.
Qualitative changes of equilibrium points take place as follows:

Case-1 (for 0 < £ < 25/648)

® pg91g = 0 and dg19 < 0 when
(i) (-1 < g < q1) OR (g2 < ¢ < 1) with ¢ = 0.666611, g2 = 0.866666 and & = 0.01
(ii) (-1 < ¢ < g3) OR (g2 < g < 1) with g3 = 0.666555 and & = 0.02
(iii) (-1 < ¢ < qs) OR (g5 < ¢ < 1) with ¢4 = 0.6665, g5 = 0.866665 and £ = 0.03,
therefore the critical point is co-dimension two saddle as it depends on £ and gq.

e Critical points occur at ¢ = qc; 5545 = q1, 42, G3, 94, g5 for £ = 0.01,0.02,0.03, which is
also known as a degenerate point but is non-hyperbolic. Moreover these critical points
correspond to non-simple degeneracy because J|{$97107ygym} =0for ¢ = ey 5545 A set of
infinitely many such critical points with the variation of £ can be obtained but very few
are discussed in order to avoid to present lengthy calculations.

e p91o = 0 and dgig > 0 when
(i) (@1 < g < g2) with £ =0.01

(ii) (g3 < ¢ < g2) with £ = 0.02
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(iif) (g4 < g < g5) with § = 0.03
therefore each critical point is a center.

This whole case is depicted in Fig. 5.5(a). For other cases in which critical points of co-

dimension three appear, the ranges of £ are % <€E< HIS (25 + 5¢) and ﬁ (25 + 59) <

£ < %. Their pictorial representation are given in Figs. 5.5(b) and 5.5(c) respectively.

Global bifurcation and streamline patterns The vector field associated with y = 0 is

{z,9} = {w, O}, from which ¢ = ¢ + ﬁhsfr%. Critical conditions occur at the wave

crests and troughs. Global bifurcation curves are given by f(x,a) = ¢ = 0, so we have

B §+60
C’(a::mr) = q+ 180 =0,
£(1-¢)° +60(1—9)

=0.

Clpmtenonny = q+ 180

The global bifurcation diagram in the parameters space ¢ — ¢ with the variation of £ contains

the following set of curves:

M = %¢WM<¢<Lq=—£;?}, (5.26)
J— 5 J—
N = {(¢,q)|0<¢<1,q=—5(1 ?) 1;060(1 ¢)}. (5.27)

Along the bifurcation curve M, isolated non-hyperbolic degenerate points exist below the wave
crests which are also non-simple. Whereas along the bifurcation curve N, the associated criti-
cal points join together below the wave troughs and form connections of non-simple degenerate
points. Critical points that merge on N produce a degenerate saddles having six heteroclinic
paths. Bifurcation curves are shown in Fig. 6. The region of peristaltic flow is divided as
follows:

Region[ : backward flow, where all the flow going in an opposite direction to the flow.
Region/I : trapping, where saddles are connected by heteroclinic connections and the interac-
tion of two vortices with opposite rotations exist in the flow.

Region/I1 : Augmented flow, where the eddies below wave crests merge and form heteroclinic

connections with their neighbors, and part of the fluid is able to flow through the centerline in
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the flow direction.

5.4 Results

Different types of flow topologies and bifurcations in the mixed convective peristaltic flow have
been portrayed in Figs. 5.1—-5.6. Fig. 5.1(a) discloses the bifurcations that occur corresponding
to the critical points {z1 2,912} for different values of parameter . The bifurcation points for
negative values of flow rate move in the backward direction, whereas those with positive values
of flow rates move forward. This translation of bifurcation points result in narrowing down the
eddying/circulation region. In this way circulation will remain in control. Same observations
are made in Fig. 5.1(b). An opposite observation is made from Fig. 5.1(c¢) that the region
of eddying motion increases due to which more vortices will arise. Fig. 5.2(a) shows that
the region of eddying motion decreases and the region where separatrices are generated also
decreases. Same results are noted from Fig. 5.2(b). In Fig. 5.2(c) we note that the region
where separatrices are formed increases. In Fig. 5.2(d) it is observed that the whole region
becomes eddying motion region. Fig. 5.3 shows that there is no bifurcation point for which
vortices or eddying motion will occur. In Fig. 5.4 eddying motion region decreases means that
vortices reduce along the vertical. In all Figs. 5.5 (a) — (¢), we note that eddying motion region
expands by increasing £. This means that vortices spread along the longitudinal direction.
The global bifurcation diagram is presented in Fig. 5.6. We note that the backward flow
region decreases whereas trapping region increases by increasing £. This means that there
will be more trapping by increasing £. Increasing £ means increasing Grashof number and
this observation was made by many researchers that trapping increases by increasing Grashof
number. Streamlines are depicted in Fig. 5.7. These streamlines are drawn by taking the values
of flow rate from bifurcations curves and different regions. From this figure we note that the
behavior of streamlines are quite according to different flow regions, i.e., there is no trapping
in backward flow region and on bifurcation curve between backward flow and trapping regions.
We also observe that a volume of fluid is observed to be trapped for the values of flow rate
q = 0.8,1.3 which basically correspond to trapping and augmented flow regions respectively.

Different ranges of parameters are calculated for different types of bifurcations. There are many
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bifurcation points where circulations occur. We have prepared Fig. 5.8 and Fig. 5.9 to verify
the case-4 of circulation for the critical points {z34,y34}. The constructed figures are quite
agreed with the calculations. That’s why we observed circulations both for the variations of &
and flow rate.

By the topological fluid dynamics approach one can easily find the range(s) of flow rate
for different regions corresponding to different values of involved parameters. If one discusses
trapping by choosing values of flow rates in backward flow region, then he will observe no
trapping. Similarly if another researcher workout same problem and take values of flow rate
from trapping region then he will surely observe trapping. Now there will arise two different
opinions for a single work regarding trapping. This is the qualitative approach which enables

to fix ranges for flow rate to avoid ambiguities.

122



> or———~
g =-0.16, q=-022"
0.16,0.27 0.23,0.28 , "
-5 -5
-1 -0.5 0 0.5 1 -1 -0.5 0 05 1
q q
S) -
x= 0.3 N
q=-0.28, e
0.29514, ™~ g
0.29600 i
-5
-1 -0.5 05 1
/c:—:f:)\
e — - — ——
=
(n ()

Fig.5.1(a):Localbifurcation for wave crests = nm,n € Z and pictorial topological

changes with the variation of £ for 0 < £ < (23711 (a)g < & — L/ %’C,

Ba=§ - 31/% (0 > FyT=3€ -

123

45 3
5 (40 + 3¢) .



10 " i 10 i i
: : e q
: D X=2 e ot
x=1. o T e Co
5f S e i 57 ;
> QF=-=-q=-049 > o —-d=-0.68
N : qg=0.76
q=0.53 . .
S5 T e S5 e :
...... E/ 'N””’w..”. 3/,/
: U
-10 -10
-1 0.5 0 0.5 1 -1 0.5 0 0.5 1
q q
o T T 2]
......... N
x=3 e

> QoF-q=0.95

. 1
) L0
-1 -0.5 0 N 1

(L] {n) ()

Fig. 5.1(b): Local bifurcation for wave crests x = nm,n € Z and pictorial topological

changes with the variation of £ for 2711 << % (615 — 15\/1645)
/7 /7 7
(a’)q<4%_% %7(b)q:4%_% ?ga(c)q>4%+% §

124



4 4 E—
20 20
~ 0 x= 450 80 ol x=500 q=-0.27'
-20 -2 0 :
4 2 B —
-1 0.9 -0.7 -1 0.8 -0. 0.4 -0
q
IR
x=550 g =10.28
\§
-0.5 0 0.5

LLLD ]

Fig. 5.1(c): Local bifurcation for wave crests x = nm,n € Z and pictorial topological

changes with the variation of ¢ for § (435 + 15v/805) < & < 1 (615 + 151/1645)

(a)g < &

£

— 45

125

7
Ve, (c)g> 5+ 1

7€
?-



50 50
-~ 0 X =650 | ~ of x= 1050
-50 -50
-1 0.5 0 0.5 1 -1 0.5 0 0.5 1
q q
50
-~ 0 x= 1500
-50
-1 0.5 0 0.5 1
q
PET
TN A E
i b

Fig. 5.1(d): Local bifurcation for wave crests x = nm,n € Z and pictorial topological

changes with the variation of £ for £ > % (615 + 15/ 1645) and |g| < 1.

126



-10f

qg=-0.27,
0.285,0:29,
0.31 ‘

-20
-1

-0.5

T

(1

()

Fig. 5.2(a): Local bifurcation for wave crests = nr for different values of ¢

and qualitative changes for £ for 0 < £ < % (a)g >

(b)g=5+3

7
?E,(C)q<4€—5—%

127

1./7€
37




20 ‘ 20 :
" x=0.5 _ x=1 3
10 g LT 100 a’
> oF=—=-—-- 4 q= 0.37 oF-—-- = 053
1 T ! A :y
1o : ~— ] -10f :
Eq = -0.35 0.49
-20 ; : : -20 ; 3
-1 0.5 0 0.5 1 -1 -0.5 0 0.5
q q
20
X= 2
100 . i
o - a= 076
LT e “
-10f q = -0.68 e
-20
-1 0.5 0 0.5 1
q
— —— — %
(1) (D))

(m)

Fig. 5.2(b). Local bifurcation for wave crests x = nz for different values of ¢
1(615 —15v1645) (a) ¢ > 5 + 34/ %,

()Q<£—§\/737£

and pictorial changes for ¢ for 1 < 5 <
OFESES:

128



50 T : T T 50 T . -
e ——mm— e — e m == T T — e
X= 550 .
x= 500
> 0f >~ 0
q=-0.27 q=0.28"
S - U o]
_50 ! . . 50 | . :
-1 0.5 ° 0 0.5 1 -1 0.5 0 0.5 1
a q
50 L T
—
Xx= 600 :
> 0 '
q=0.86:
S
-50 ‘
-1 0.5 0 0.5 1
q
Q /(;\

Fig. 5.2(c): Local bifurcation for wave crests © = nmw with different values of ¢

and pictorial changes for ¢ for % (435 + 15v/ 805) <éL % (615 + 15/ 1645)

7 7
(@ a<s-3/2 0 a=5—-3/%

129



10 10
507 50
> 0 x= 700 > of x= 800
-50F -50(
-10 10
-1 0.5 0 0.5 1 1 0.5 0 0.5
q q
10
50
~  of x= 900
-50/
-10
-1 -0.5 0 0.5 1
q
-
i me
O 7
N rme S
St

Fig. 5.2(d): Local bifurcation for wave crests x = nm,n € Z and pictorial topological

changes with the variation of £ for £ > % (615 + 15/ 1645) and |g| < 1.

130



1000

—500’3

40

200

-200

-40

L
¥
L

(n () {m)

Fig. 5.3: Local bifurcation for wave troughs z = (2n — 1)7/2 forq > ¢, and variation

of £, 0< ¢ < 173 ¢_16283_122‘§_5 pra with different values of ¢ and pictorial changes:

(a)q < qa, (0)q = qa, (¢)q > qa-

131



: ‘ 10 ;
100 . . 7 . .
1 - Xx=20,40,60 1 x=20,40,60 4
500 q=-078 50 a=-0.18 ¢ s
: : : Lo I,
> o & = . > 0 i —f—p T
q=-0.39 g=0.03 \:'~o
; ‘ T~ C A
-50f N\ ] -50] : >
9=0.01 " q = 0.25
\_ .
-10Q DS
-10
-1 -0. 0 0.5 1 -1 -0.5 0 0.5 1
a a
10
507
> 0
50 o -
-10
-1 -0.5 0 0.5 1
(n (n) (1)

Fig. 5.4: Local bifurcation for wave troughs z = (2n — 1)m/2 for ¢ > ¢, and variation

of £, 0< €<

—40-20¢

—14+5p—10¢%+104% —5¢*

(a)qg < ab, ()q = qv, (c)q > g

132

o with different values of ¢ and pictorial changes:



4 T 4 R
N< v < v
37 oA 37 ] A4
x= 0.01,f = 0.6 c x=0.02,f = 0.6 e
2F S 27 .
X < - | " ?' N x 3 | : .E' 1
1 ; S 1/ g =0.666555, 0.8666 — ]
q = 0.666611, 0.866666 .||’ a=" n W
0 g 0 £ |1
<> <>V
-1 : : : -1 : : : ‘
-1 0.5 0 0.5 1 -1 -0.5 0 0.5 1
q a
4 — .
< v
37 |
x= 0.03,f = 0.6 T
ol .
X < | . & 1
17 q=0.666500, 0.8666 =]
0 SETENE
<>V
-1 L - -
-1 0.5 0 0.5 1

T
|

(), (v), (Vi (), (v), (vi) m, (v)

Fig. 5.5(a): Local bifurcation for y = 0 and pictorial topological changes with

the variation of £ for 0 < £ < % and ¢ = 0.6.

133



4 : 4 —
el 0 > \
3BT T T I TI oS T T v g - mmm - ——m———gV oy
; x=0039f =06 A ¥  x=0041f=06
5 2|, ) 1T ] 2| q=-0.97 1T S
© ,9=-0.99 L: = L, - 067 7 -
1&/’ q=067,087 . | 1\ q=067,087 . |
[ LR BV VI Ofr ——m m m e m - — = @ VH
‘ L AV
U : b : :
1 0.5 0 0.5 1 1 0.5 0 0.5 1
q q
ar ‘
al >N __ %V Vil
‘ x=0043f =06 A 4
21 i SN
x I gq=-0.94 b=
1\~ q=0.67,0.87 .y
o= =TT TS v
-1 L L - -
1 -0.5 0 0.5
q
< e =N

(), (v), (v

(m, (), (vi)

(1, (v)

Fig. 5.5(b): Local bifurcation for y = 0 and pictorial topological changes with

134



4— : : — 4 : : : ‘
| 111 vV <— VI LIl y<—_ VI
HEE 402 AN AR N T R - A" 4. SO A )
3. _ _ N A7 3 /EV \ 1
77 XZ005=06 7 , [ x=020f =0.6N
% 2-!5(13 q=-0.93 -0.87 IV VI x 2—411 q=-0.93 10.87, Vi
10y D 1 1 % v //,’
3 q=0.67,0.87/ Vg =-0.93, -087 :
[ R R B VHI or [ TERT PR R 5] C
. . o . v| |
-1 : : : 1 T— : : :
1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
q q
N AT 3
= 0.40f = 0.6 /L. Mg VI
3" o A
2/ : = -0.93 087\'\‘ ]
PSS AL &
1 vV \
P
07 q - -0.93, _08%} ................ VIVI”
1 0.5 0 0.5 1
q
« e _ %
(1), (v), (IX) (), (v}, (v}, (Vi) (), (v

Fig. 5.5(c): Local bifurcation for y = 0 and pictorial topological changes with

the variation of £ for 5= (25 + 5¢) < & < 322 and ¢ = 0.6.

135



DE L T T T T T T i
cL £=05 o I
10zt Il -
Pl M -
| | | | | | | I
0 01 J2 C3 04 05 08 07 08 329
0
[‘JE L T T T T T T I e
[ 4=3 1
Cr N —=
q =D2f Il
D M %
| | | | | |

]
i I J2 B I8 s 05 IF s 48 |

¢
i T T T T T T 7
cloe=10 I
= N=—
q -0zZ 7
04 M |
] ] ] ] ] ] |
a 04 22 L3 04 D5 06 0F 08 29 l
¢

Fig. 5.6: Global bifurcation for the variation of ¢ with Region I : Backward flow region,

Region I1 : Trapping region, Region 1] : Augmented flow region.

136



Fig. 5.7: Streamlines for different regions corresponding to ¢ = 0.6 and £ =4
with different values of ¢; region I: backward flow, region II: trapping region,

III: augmented flow, (a) ¢ = 0.55,(b) ¢ = 0.66, (c) ¢ = 0.8, (d) ¢ = 1.3.

Fig. 5.8: Streamlines for verification of the occurrence of circulation corresponding to

¢ = 0.6 and & = 615 with (a) ¢ = —0.55,(b) ¢ =0, (c) ¢ =0.4,(d) ¢ =0.9.
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Fig. 5.9: Streamlines for verification of the occurrence of circulation corresponding to

¢ = 0.6 and & = 750 with (a) ¢ = —0.55,(b) ¢ =0, (c) ¢ =0.4,(d) ¢ =0.9.

5.5 Concluding remarks

We have performed the analysis for mixed convective peristaltic flow of viscous fluid in the
presence of heat transfer to discuss the streamline topologies and all possible bifurcations.
The flow is considered in a two dimensional channel therefore the possible nature of critical

points were either saddle or center. The region where vortices occur shrinks by increasing &
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(i.e. Grashof number or constant (Gr:) source (3)) in the vertical direction whereas the region
of eddying motion expands along longitudinal direction by increasing £. The trapping region
expands by increasing either Gr; or S. The backward flow region shrinks while augmented
flow region remains conserved by increasing either G'r; or 8. Transition between the backward
flow to trapping and trapping to the augmented flow regions corresponds to bifurcations of

co-dimension two and three respectively.
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Chapter 6

Analysis of mixed convective heat

and mass transfer on peristaltic flow
of FENE-P fluid with chemical

reaction

This study presents the influence of heat and mass transfer on peristaltic transport of Finitely
Extensible Nonlinear Elastic Peterlin (FENE-P) fluid in the presence of chemical reaction.
This chapter is basically the extension of chapter 3. It is assumed that all the fluid properties,
except the density are constant. The Boussinesq approximation which relates density change
to temperature and concentration changes is used in formulating buoyancy force terms in the
momentum equation. Moreover, we neglect viscous dissipation and include diffusion-thermal
(Dufour) and thermal-diffusion (Soret) effects in the present analysis. By the consideration
of such important aspects the flow equations become highly nonlinear and coupled. In order
to make the problem tractable we have adopted widely used assumptions of long wave length
and low Reynolds number. An exact solution of the simplified coupled linear equations for the
temperature and concentration has been obtained whereas numerical solution is obtained for
dimensionless stream function and pressure gradient. The effects of different parameters on

velocity field, temperature and concentration fields and trapping phenomenon are highlighted
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through various graphs. Numerical integration has been performed to analyze pressure rise per

wavelength. The contents of this chapter are published in the Journal of Mechanics (2015) 1—10.

6.1 Formulation of the Problem

We consider the peristaltic transport of an incompressible viscoelastic fluid in a two-dimensional
symmetric channel of width 2a;. The flow geometry is similar to that given in previous chapter.
However, the walls of the channel here are maintained at different temperature. Moreover, the

concentration of species at both the walls is also assumed to be different.

Fig. 6.1: Geometry of the Problem

The flow is governed by the four coupled non-linear partial differential equations namely;
continuity (2.13), momentum, energy and mass diffusion equations which in the frame (X,Y)

are expressed by

—0 =0 \= oP 0 0
p((%+U8+V81/'>U = _ﬁ—i_ﬁ?ﬁ—i_ﬁ?ﬁ_‘_ﬂgal (T_TU)
+pgas (C — Cp) , (6.1)
=0 =0\ o°P 9 0
_ Ut Vi V = E— tif iii, 6-2
p(8t+ ox aY> v Tax VX T oy vy (62
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0 —0 =0 0’T 0T pD*kr (0°C  0°C
e <8t TUax T 8Y) (ax2 " ay2> T <8X2 i ay2> (65)
0 —0 =0 0’C  0*C pD*kr <82T 82T>
’ (8t TUex T aY) g (ax2 ! ay2> 1) \ox? T or?
—phs(C — Co), (6.4)

in which ¢ is the acceleration due to gravity, a; and s are the coefficients of thermal and
concentration expansion respectively, T' the temperature, C' the concentration, Ty and Cj are
the temperature and concentration at lower wall, D* the coefficient of mass diffusivity, kr is
the thermal diffusion ratio, ¢, is the concentration susceptibility and ko is the chemical reaction
parameter. Now we use the same transformations (2.13) and dimensionless variables (2.24) as

considered in previous chapters in Egs. (6.1) — (6.4) to get

Red (uéij + U(fy) U = —% + 5%7931 + ;ymy + Gri0* + GreoF, (6.5)
Re (uaax +v§y> v o= gfy’ +5286 Tya +5§ Ty, (6.6)
Red <u£: + v§y> 0 = % <52%ng* + fj;) + Dy <525§‘f + ‘zﬁ*) : (6.7)
Red (u; - ”aay) P* = 51*0 (62 %25 - a;;;*) + Sy (52%292* - a;;;) —y¢*. (6.8)

The dimensionless numbers, Gry and Gr. (local Grashof numbers for temperature and concen-
tration), Pr (Prandtl number), Dy (Dufour number), S, (Schmidt number), S, (Soret number)

and - the chemical reaction parameter for the present flow situation are given by

2(Ty — T 2 — D*k — T — T,
Gr, = PIa(i=To) o pgazai(Ch = Co) p, = PPkr (CL—=Co) e _ 0
NpC NpC csCp (11 — To) Mp T1 Ty’
n pD*kr pkiat Cpn C — Cy
Se = 717’ r = ) = , Pr= pa - 6.9
,OD* (Cl _ CO) np 7 np /{Z ¢ Cl CO ( )

Our objective is to extend the results of chapter 3 by carrying out heat and mass transfer
analysis. Therefore, the constitutive equation for extra stress will remain the same and hence

the components of extra stress in Eqs. (6.5) and (6.6) are given through Eqs. (3.20) — (3.23).
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Employing long wavelength and low Reynolds number assumption Egs. (6.5) and (6.8) become

0 = gi+(%rw+arte*+arc¢*, (6.10)
0 = —g]y’, (6.11)
0 = ;<%2;;F)+Df <%2§>, (6.12)

The dimensionless volume flow rate and boundary conditions in the wave frame are taken by

following [38]

_ g 871/’ _ * * _
b= g gy =L =L o =1 aty=h, (6.14)
q Oy . .
frd _— _ = _1 == - - — '1
w 27 8y ) 0 07 ¢ 07 aty h7 (6 5)
h
0
0-2 = q= [ Slay=v() - w(-n) (6.16)
—h Jy

It is remarked here that due to non-symmetric nature of temperature and concentration fields
it is necessary to solve the flow problem in domain y € [—h,h]. On solving Egs. (6.12) and
(6.13) with the boundary conditions given in Eqgs. (6.14) and (6.15), we obtain the following

expressions of dimensionless temperature and concentration fields

0 = —PrD;o" + (M;Df> (% + 1) , (6.17)
« _ sinh(Va(y+h))
¢ = sinh (2\/ah) (6.18)

Using the above expressions for 6* and ¢* in Eq. (6.10) and then integrating the resulting

equation, we get

2
Taoy = A3 + pay + Ag cosh (ﬁ(thy)) + A5 <:2gh —|—y> (6.19)
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where
1
a=7v/1-PrDsS.S,;), As=(GriPrDs—Gr.)/Jou, As= *iGT‘t (1+PrDy),

From Eq. (3.25) the expression for transverse component of velocity gradient is

(6.20)

Ou_ 7oy (1 | B+ (2D¢%/a) <rxy>2)
L? )

Invoking the definition of stream function, we can write

32@ZJ au 2
W_@_Txy (1+A6(Txy) )7

where Ag = 2De?/a?L?. Now integrating Eq. (6.20), we get

Y Y

0

;j/’ _ / 7oy () dp + Ag / (o) do + Ay. (6.21)
~h “h

Another integration yields

o)

y o
S //Txy ) dndy + A6/ Tiy )dnde + A1y + As. (6.22)
—h—h —h

A further simplification gives

Y Yy

Y = / (Y — ¢) Tay (¢) dp + Ae/ (y — @) 7oy (9) dip + Ary + Ag (6.23)
—h —h

where A; and Ap are contents of integrations. The utilization of boundary conditions (6.14)
and (6.15) gives A; = —1 and Ay = —Z — h. Inserting the values of A; and A in (6.23) and

making use of remaining two boundary conditions, we get

h h
/ (h — ) Ty () dgp + Ag / (h— )78, () dp— 2h — g =0, (6.24)
—h —h
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h h

/ 7oy () dip + Ag / 7 () dip = 0 (6.25)
“h “h

Egs. (6.24) and (6.25) are nonlinear algebraic equations which can be solved numerically for
a given set of parameter at each cross-section z to get the values of A3 and p, by using any

computational software like Mathematica. Once A3 and p, are known, v is given by

Yy )
wz/(y—w)uy(cp)dﬁJrAes/(y—w)fiy(sa)dw—y—g—h- (6.26)
—h —h

The pressure rise per wavelength (AP)) is defined through the following integrals given via Eq.
(2.51).

6.2 Results and Discussion

This section provides the discussion of the effects of different parameters such as Pr (Prandtl
number), S, (Soret number), D; (Dufour number), S. (Schmidt number), Gr; (local Grashof
number), Gr. (Grashof number for concentration) and 7 (chemical reaction parameter) on
velocity profile, pressure rise per wavelength, temperature profile, concentration profile, and
trapping phenomenon.

The effects of above mentioned parameters on longitudinal velocity at a cross-section z = 0
are in Fig. 6.2. The value of flow rate in Fig. 6.2 is kept fixed i.e. ¢ = —0.6. As an implication,
the velocity at this cross-section adjust itself i.e. it may increase or decrease in lower or upper
half of the channel by increasing a particular parameter to maintain the same flux. Interestingly,
the axial velocity profiles are not symmetric about the centerline y = 0.

In general the shape of streamlines is similar to that of the boundary wall in the wave
frame. However, some of the streamlines split and enclose an amount of fluid called bolus which
is pushed ahead along with the wave speed. This phenomenon of enclosing the bolus is called
trapping phenomenon.

The effects of above mentioned parameters on velocity profile are depicted in Fig. 6.2. We
observe that parameters Pr, D¢, Gry and Gr. leave the same effects on the velocity profile in

such a way that it decreases near the lower wall of the channel whereas its behavior reverses
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near the upper wall of the channel. Previous studies on peristalsis report that asymmetric
velocity profiles in a straight channel result due to asymmetric waves propagating along the
channel wall. By asymmetric waves we mean that waves which are out of phase or have different
amplitudes. However, in this case the asymmetry in velocity profiles is not due to nature of
the waves propagating at wall, rather it is due to coupling between momentum, energy and
concentration equations. A close examination of Eqs. (6.24) — (6.27) reveals that a strong
coupling between energy and momentum equations is expected for higher values of Grashof
number for temperature. Similarly higher values of Grashof number for concentration may
result in a strong coupling between momentum and concentration equations. Graphical results
presented in Fig. 6.2 indicate that velocity profile is not symmetric about the centerline of
channel for non-zero values of Gr; and Gr.. In addition to that a flow reversal in lower half
of the channel is observed for non-zero large values of Grashof numbers for temperature and
concentration. It is observed that flow reversal increases by increasing Prandtl number, Grashof
numbers and Dufour number while it decreases by increasing Schmidt number, Soret number
and chemical reaction parameter.

In Fig. 6.3 the profiles of pressure rise per wavelength AP\ are shown for various values
of the parameters of interest. The complicated integral appearing in Eq. (6.40) is evaluated
numerically using MATHEMATICA. Each panel in Fig. 6.3 can be divided into two sub-
regions: (I) peristaltic pumping region that corresponds to APy, > 0 and ¢ > 0 and (I[)
augmented pumping region which corresponds to APy, < 0 and ¢ > 0. It is observed that
AP, in peristaltic pumping region increases by increasing Prandtl number, Grashof numbers
(Gry and Gr.) and Dufour number. However, it decreases by increasing chemical reaction
parameter, Schmidt number and Soret number. The increase in APy in peristaltic pumping
region by increasing Pr, Gry, Gr. and Dy may be due to increased flow reversal caused by
increasing these parameters. Similarly a decrease in flow reversal by increasing S,, S. and ~
results in decrease of AP\ in peristaltic pumping region by increasing these parameters. A
reduction in pressure rise per wavelength by increasing the rheological properties of fluid is
already reported in the literature. However, the above results suggest another possible way
to reduce the pressure rise per wavelength in addition to the already available remedy i.e. by

altering the rheological properties of the fluid. Thus heat transfer characteristics may also be
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exploited to our use to reduce the pressure rise per wavelength in the peristaltic pumping region
without altering the rheological features of the fluid. Another interesting observation from Fig.
6.3 is the expansion of peristaltic pumping region i.e. APy is positive over a quite large range
of F'. Thus the prescribed flow rate F' must be large for the pressure to assist the flow. In
almost all cases considered in Fig. 6.3 the prescribed flow rate F' must be greater than 3 for
AP, to be negative. The expansion of peristaltic pumping region may be due to the choice of
larger values for Gr; and Gr.. However, it can be reduced by altering the rheological properties
of the fluid i.e. by altering the parameter De and L?. In fact the larger values of De results in
contraction of peristaltic pumping region.

The effects of Prandtl number, Dufour number, Schmidt number, Soret number and chemical
reaction parameter on temperature and concentration field are shown through Figs. 6.4 and
6.5. It is evident from Fig. 6.4 that temperature inside the channel increases by increasing
all the above mentioned parameters. On contrary the concentration profiles follow a reverse
trend by increasing either of these parameters. This is perhaps inherited property of solutions
of temperature and concentration fields. In fact the following relation holds for temperature
and concentration fields

. " 1+PrDy Y
0* = — Pr Do +( . >(h+1).

Now the profiles of ¢* (Fig. 6.5) show that it is positive but a decreasing function of each of
the parameters Pr, D¢, S, Sc and «. This implies its derivative with respect to either of these
parameter is always negative and hence strictly less then the value of ¢* itself. Now let us
differentiate above equation with respect to Pr i.e.

00* 00" Dy ry

= —Dpot — P+ S (L 41)

OPr 79 /
The second term of above expression is positive and greater than the first term. Similarly third
term is also positive. Therefore 00" /0 Pr > 0 for all values of Pr. This illustrates that temper-
ature is an increasing function of Pr. The above argument also holds for other parameters. In
this way the behavior of temperature field for increasing values of each of the parameters Pr,

Dy, Sy, Sc and 7 is opposite to the behavior of concentration field for these parameters.
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In general it is expected that in the wave frame behavior of streamlines is similar to that
of boundary wall. However, under specific conditions some of the streamlines split and enclose
a bolus of fluid which moves as a whole with the wave speed. This phenomenon is known as
trapping. It has been reported in various available studies on peristaltic transport that trapping
is largely dependent on the magnitude of flow rate [21]. In fact one can find the values of flow
rate for which trapping occurs near the boundary, centerline or nowhere. In the present study,
we have chosen a specific value of flow rate for which circulating region emerges in the center
of the channel. It has been observed through Figs. 6.6 and 6.7 that for small values of Grashof
numbers (Gr; and Gr.), the trapped bolus of fluid is almost asymmetric about centerline.
However the bolus becomes asymmetric by increasing the values of Gr; or Gr.. In such case
the size of the bolus in lower half of the channel increases while it decreases in upper half of the
channel. A further reduction in the size of bolus in upper half of the channel is observed for
larger values of Gry and Gr.. These results may be justified with similar reasons as given for
velocity profiles. In fact asymmetry is due to strong coupling between energy, momentum and
concentration equations. For smaller values of Grashof numbers the coupling effects are weak
and in that case the bolus of fluid is symmetric about the centerline. The streamline patterns
by increasing the values of other parameters such as Pr, Dy, S, S. and v are not shown here
because these parameters do not affect the streamlines pattern to an appreciable extent. This

is perhaps due to implicit dependence of stream function on these parameters.
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Fig.6.3: Pressure rise per wavelength versus flow rate ¢ with L = 3.5, De = 5, ¢ = 0.6.
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Fig.6.4: Temperature Profile for ¢ = 0.6,2 = 1/6 and (i) Dy = 0.6, 5, = 0.5,5. = 0.5,y = 2,
(ii) Pr = 0.7, 8, = 0.5, S, = 0.5, = 2 (iii) Pr = 0.7, D = 0.6, S, = 0.5, = 2,
(iv) Pr = 0.7, D = 0.6, S, = 0.5,y = 2, (v) Pr = 0.7, D; = 0.6, S, = 0.5, S, = 0.5.
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Fig.6.5: Concentration Profile for ¢ = 0.6,z = 1/6 and (i) Dy = 0.6, 5, = 0.5,5. = 0.5,y = 2,
(ii) Pr=0.7, 8, = 0.5, 5, = 0.5, = 2, (iii) Pr = 0.7, D; = 0.6, S, = 0.5,y = 2,
(iv) Pr = 0.7, D = 0.6, 8, = 0.5,y = 2, (v) Pr = 0.7, D; = 0.6, S, = 0.5, 5, = 0.5.
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Fig. 6.6: Streamlines for the variation in Gr; with 6 = 1.7, ¢ = 0.6, D, = 1,
Sy =0.5,5.=0.5, Dy =0.5,y=0.1, Gr. = 0.5, Pr = 0.5.

Fig. 6.7: Streamlines for the variation in Gr. with § = 1.7, ¢ = 0.6, D, = 1,
Sr=0.5,S.=0.5, Dy =0.5, Pr = 0.5, Gr; = 0.5, v = 0.1.
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6.3 Concluding remarks

Peristaltic flow of a FENE-P fluid is analyzed in presence of chemically reactive species in
a channel whose walls are maintained at different temperatures. The coupling between mo-
mentum, energy and concentration equations is achieved by using Boussinesq approximation.
The equations governing the flow are modeled under long wavelength and low Reynolds number
assumptions. Closed form solutions are reported for temperature and concentration fields. How-
ever, stream function and pressure gradient are evaluated numerically. The striking observations
of the present analysis are: the existence of non-symmetric velocity profiles and asymmetric
shape of circulating bolus of fluid for non-zero values of Grashof numbers for temperature and
concentration. The buoyancy effects induced by non-zero values of Grashof numbers are also
responsible for increase in pressure rise per wavelength in the peristaltic pumping region. It is
further observed that an increase in either of the parameters Pr, Dy, S;, S. and 7 increases
the temperature inside the channel. On contrary the concentration field is found to follow an

opposite trend.
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Chapter 7

Mixed convective heat transfer
analysis for the peristaltic transport

of viscoplastic fluid

This chapter present the analysis of mixed convective peristaltic flow of incompressible vis-
coplastic fluid in a two-dimensional symmetric channel. The rheology of viscoplastic fluid is
characterized by the constitutive equation for Bingham plastic model. The coupling between
momentum and energy equations is done through Boussinesq approximation. The coupled non-
linear partial differential equations are transformed in wave frame using Galilean transformation
and then simplified under realistic assumptions of long wavelength and low Reynolds number.
Approximate solution is obtained using regular perturbation method which is restricted for the
smaller values of Grashof and Bingham numbers. The validity of approximate solution is estab-
lished by comparing it with the numerical solution obtained via Matlab built-in routine bvp4c.
Based on the numerical solution an extensive analysis is performed in order to analyze the
effects of various parameters of interest on flow characteristics, pumping and trapping phenom-
ena. It is found that velocity decreases at the center by increasing Bingham number showing
a boundary layer character for large values. However, it increases by increasing Brinkman and
Grashof numbers. Moreover, pressure rise per wavelength increases with Bingham number,

Brinkman number and Grashof number, in the pumping region. The trapping phenomenon is
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also discussed in detail. The contents of this chapter are submitted for possible publication in

International Journal of Heat and Mass Transfer.

7.1 Formulation of the Problem

We consider the peristaltic transport of an incompressible viscoplastic fluid in a two-dimensional
symmetric channel of width 2a;. The flow is generated by continuously moving sinusoidal waves
of speed c¢ along the walls of the channel. The geometry of the problem is similar to that
considered in chapter 5. In contrast to previous chapter, here the channel walls are maintained
at same temperature Ty. The equations governing the flow and heat transfer in the peristaltic

channel in the fixed frame (Y, 7) are

P<;+U£( +V£,)U = 2}P{+ 8?( Txx t 8?” Txy +pgor (T —Tp), (7.1)
P <§t + UffX +V£/> vV = _21]; + ;Xr” + £/,Tw, (7.2)
pCy (gt +U£( +V£/> T = k (g;j; + g;T> +T-(VV). (7.3)
where
7 — 29D + 276D (7.4)

and the term T - (V'V) is the well known viscous dissipation term. The definition of dot product

of arbitrary tensors A; and By, i.e., A-B = tra(AB) enables us to write energy equation (7.3)

0 —0 =0 0’T  0°T ou ov
(57 + U5z + Vap) <ax2 ! ayQ) +7ex (5g) +7 (%)

(@) (@) e

as
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In view of Egs. (7.4) and (2.6), the components of extra stress tensor in the laboratory frame

become

27’0D7 27‘0D7
Txx = 2nDxx + 2% Top = 2Dyy + el
XX Ul & SR AR S e S G ENpa; 77 s
270D
Try = 2nDyy + ——.
VY Y T e anD?

(7.6)

In view of Eq. (2.18), Eq. (2.24), Eq. (2.32) and Eq. (5.8), components of momentum equation

(7.1) and (7.2) and the energy equation (7.3) reduce to

0 0 B dp 0 0 *
Red <“ax+ay> = e T0ggTer t gy Tt GO
0 0 _Op 0 0
3(. 9 o _ 2
Red <u8 —l—vay) 8y +46 axmy—l-&ayryy,

0 0 1 0% 9%*¢* ou
Slum-+v=—]0" = — (0 Ecétyy | =
Re <u8:1: Jrv(?y) Pr (5 Ox? + oy? > +beor <8y>
ou ov ov
+ECT$y <a + 5a$> + ECTyy <8y> ,
The components of extra stress tensor (7.6) in non-dimensional form transform to

du
ST 26Bn (54)

o \/e+252 (24)* 42 (%)2 + (% +5§§)2’

Bn (g—; + 5%)

T;zjy - (g; 62:;) —+ : 2’
et G 2 ()" (398
Tyy = 2@ + 2Bn <3y>

\/a+252 (24)” 42 (%) + (% +5§;;)2.

The Eckert number Fc¢ and the Brinkman number are defined by

2

FEc= m, BT’ = Pr FEec.
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Defining the stream function (1) through (2.41), Egs. (7.7) — (7.9) take the following form

5 5  op .0 G )
Re‘s(%a%%) Yy, = ~ 9z +5a Tee + oy —Tay + G0,
0 Op 0 0
_ 3 - — J— = 2
Red <1/1ya wxay) U, ay+5 7 ggy-l—éa Tyys

o\ ., 2329* 520"
Re5 <d}yax — wzay> 9 = <5 8 + 8 ) > + B 57'm1[)yy
+BrTay (Vyy — 6°00y) — 6BrTyythy,

whereas the components of extra stress tensor in terms of stream function become

20 B,
e+ 207 (03)7 420 (0,)7 + (1 — 0%0,,)°
Bn (wyy - 521/}9030)

Ve 20 (1) 20 () + (b — 6%0,,)°
—20Bni,,

e+ 202 (1g)7 + 20 (1) + (b, — 0%0,,)°

Tow = 2004, +

Toy = (1/1yy - 52wxx) +

)

Tyy = —251/1xy+

Employing long wavelength and low Reynolds number assumptions, the Eqs. (7.14) —

reduce to the following coupled equations

dp 0 .
0 = —%‘f‘a Txy"‘Grtea
dp
0 = ——
oy’
0%6*
0 = £ + BrTaythy,
where
Bny
T:cy = ¢yy + 2 2 .
€+ (wyy)

Eliminating pressure between (7.20) and (7.21), one can write

0?2 00*
0= ay 5 Tay T Gry 9y
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Invoking the component of extra stress tensor in Eqgs. (7.22) and (7.24), one gets the following

coupled nonlinear differential equations

0 = 2 (b B )+ 62 2

020" 2 2 2
0 = 57 + B, (zpyy+anyy/ e+ (1byy) > (7.26)

The dimensionless volume flow rate and boundary conditions in the wave frame are [149]

q Oy «
- X X __ = = — 2
_ 9 W _
v o= 2 B = 1, 60*=0, at y=h, (7.28)
h
)
0—2 = q:/ ﬁdy:zp(h)—w(—h). (7.29)
—h 8y

7.2 Solution of the Problem

The perturbation method is adopted for the analytical solution of the problem. To this end,

the dependent variables ¥ and 6* are expressed as

o= ) g (Gry)' + Bnd by (Gry)' + O(Bn?), (7.30)
=0 =0

0 = > 05 (Gr)' + Bn) 07, (Gre)' + O(Bn?). (7.31)
=0 =0

Substituting the above expressions in the Egs. (7.25) — (7.29) and equating the various power
Bn, one get the following systems:

Zeroth Order System:

oo 805 A
M1 | e %05, Phoo \ (Vo1
Dy’ +0p = 0, TyQ +2Br< 12 ) < D12 ) =0, (7.33)
q
¢00(ih) = i§, ¢00y(ih) =-1, ¢01(ih) =0, (7-34)
Yory(£h) = 0, Ogo(£h) =0 =05, (+h). (7.35)
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First Order System:

0 = o 3 (dJOOyy)3 (wOOyyy)2 _ 3 (¢00yy) (¢00yyy)2 (7.36)
10yyyy 2\ 5/2 9 )
(5 + (Yooyy) ) (5 + (Yooyy) )
0 = oy + 18 (7/)001/@/)2 (¢01yy) (¢00yyy)2 +6 (¢00yy)3 (¢00yyy) (wOIyyy)
yyyy (5 N (¢00yy)2>5/2
. 15 (wOOyy)4 (¢01yy) (wOOyyy)2 _ 6 (wOlyy) (wOOyyy) (w/Olyyy)
7/2 3/2
(5 + (¢00yy)2> (5 + (¢00yy)2>
+ (wOlyyyy) + (¢00yy)2 (wﬂlyyyy) -3 (¢011//y) (wOOyyy)2 0%, (7.37)
3/2 ) )
€+ (¢00yy)2 (5 + (wOOyy)2>
B, 2
0 = HTOyy + WOOyy)2 + QBT (qzbOOyy) (QzZ)IOyy) ) (738)
e+ (Yooyy)
B, ’ 2B,
0 = Oy — (wOOyy) (1501334/112) (wooyy) (%12%) + 2B o1y Y10y
(5 + (wOOyy) ) €+ (¢00yy)
+2Brthooyy ¥ 11yys (7.39)
0 = ¢10(ih)7 0= wIOy(ih)a 0= d}ll(ih)? (740)
0 = y(£h), 0=~07(+h), 0=07(xh). (7.41)

The solution of the zeroth order system is

Yoo = yCo+y>Cu, Yo, = (1/70) B,C3y" + yCs + y*Cho,

05, = —6B,C1oCay* — (9/70) B2C3y® + C11.
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On solving the first order system, one gets

b = Ti+yTo+y*Ts— (604y\/f teln )204 (6043/ n \/E) () /7202,

Y11 = Tr+yTs +y°To + y*Tio + (1/(104509440C3)) (35¢(82944C10C;
+Br(10368C5y* + 864C3y%¢ + 172)) In )2 <6C4y + \E) }
+18C,4y(165888 BrCy Ty’ — 8792B,C3y2eV'L + 3998,V L
—8064(C) () (30T + BryV'L) — 4200B,Cyye® In (204 <6C4y + ﬁ) ‘)),

fo = Bi(=6CiTuy" + (14s”)/(216C3) + (1/6)(y*) VL +eVL/54CF) + Ty
44T — Byyeln jz (604y + fL) ) /12Cy,

11 = Tu+yTe + (1/4354560C%) B, (—26127360C3 (C4T1o + CroTa)y"
+1306368C5 Tsy° — 1679616 B,CTyy® + (1/15C4)(2V/ L(604800C o

(9CHy? — 2C3¢) 4+ B, (466560C%y5 + 329184C 1 yte — 3267CHy%e? — 256¢°)).
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The various constants appearing in above expressions are listed in below.

L = 36CH°+¢e, ,M=36C2h>+¢e, Cy=(3F+2h)/(4h), Ci= —((F +2h)/(4h?)),
Cs = 3B.Cih*, Cg=(B.Cih%)/35, Ci=(-3/70)(B,CFh°),
Cii = (3/70) (140B,C1oCsh* + 3B2C3R®%), Ty = cln (4Cj¢) /144C3,

Ty = (144C3h3 +4Cshe)/VM +cln <<6C4h + \/M)Q /6) :

2
Ty = (432030 +12Cyhe) /VM +eln ((—6C4h + \/M) /5> /288C2h3,

Ts = —(1/(216C3))B.(—1296C3h* Ty 4 Tye® + 36C5h*V M + 4Cy1evV' M
+904h51n< 6(74h+\/ ) /g>,
Ts = (Byeln(4e))/24Cy, Tr = (—1/5971968C3)(248832C5h Ty + e(—10368C3

x(—8C10 + B,C3hY) + 17Bre?) In (4¢),
Ty = (1/139345920C5hv M) (4C4h(2903040C10Cie + 1990656 B, (C3)(h®)Tyv/' M
—7B,(373248CSh® + 90720C  h'e + 12636C3h%e? + 257<3)) + 35eV M

2
((82944C10C2 + B, (—3456C1h* + 288C2h%e + 17:2)) In <<604h + \/M) /5)

+720B,C2h2e In ((604h + JM)2 /a> ),
Ty = (1/13824C3)(1152C5h* T + Bye(5eln (4C5¢e) — 2(24C5h* + €) In(4e))),
Tio = (1/418037760C3h3*V M)(12C4h (43545608, CShS + 2582496 B,Cih's — 595B,.¢>
—2985984 BrC2 hSTyv/ M + 420C2e(—6912C o + 131B,h%e)) — 35evV/ M

2
% ((10368C2(8Cho — 3B,C2h%) — 864B,C2h% + 17B,2%) In ((—604h v \/M) /5>

12160B,C2h% In <(—604h + J@z /5) :

T = (B,/130636800C3)(4(195955200C10C5hATy + 12597120BrClh8Ty 4 256 B3/ M
+27C3eV/ M (44800C1 + 121 Brh’s) — 2592C7h*V/ M (2100Cyo + 127 BrhZe)
—466560C5 (—420h*T19 B, h®V/M)) 4 105C3he((51840C10C — B,(216C2h? — 5¢)

% (T2C2h? + 5¢)) In ((—604h + \/M)2 /a) +1800B,C2h2% In ((—6C4h + \/M)2 /5>

Ty = (B,/1244160C3)(—124416C5h*(3h°Ts — 40Ty) — e(1800B,Cih’c In (4C3¢)

+(51840C10CF — B,(216C2h? — 5¢)(72C2h* 4 5¢)) In(4e).
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With the above expressions in hand, the approximate solution of Eqgs. (7.25) and (7.26) is
known up to first order of Grashof and Bingham numbers. Numerical solution of the problem
is also obtained using Matlab built-in routine bvp4c without any restriction on parameters being
small. The comparison of the numerical and analytical solutions is presented in Table. 7.1 and
Fig. 7.2. Tt is observed that both the solutions are in excellent agreement for smaller values of
Gry and Bn. For further discussion regarding the influence of parameters of interest on flow
characteristics, pumping and trapping phenomena, we have preferred numerical solution over

perturbation solution.

7.3 Results and Discussion

In this section, graphical results are displayed in order to see the effects of various emerging
parameters such as Bn, Gr; and B, on velocity and temperature profiles, pressure rise per
wavelength, frictional forces and trapping phenomenon.

The effects of parameters Bn, Gry and B, on velocity profile are shown in the Figs. 7.3. In
these parameters Bn shows the effects of plasticity. We observe that increasing plasticity (Bn)
results in decrease of velocity at the center and for the larger values of Bn i.e., for higher values
of yield stress, fluid behaves like a solid. In that case the velocity shows a uniform behavior over
most part of the channel cross-section and changes only in a thin layer near the walls which may
be due to frictional forces. From Fig. 7.3 we also note that the velocity profile increases near
the channel whereas it decreases in the vicinity of the walls with increasing both the Grashof
number (Gr¢) and Brinkman number (B;).

Fig. 7.4 and Fig. 7.5 are prepared to see the influence of parameters Bn, Gr; and B,
on pumping phenomenon. Fig. 7.4 highlights the variation of pressure rise per wavelength
(AP,) for different values of Bn, Gr; and B,. From this figure it is observed that Gr; and
B, have the similar effects on APy i.e., APy increases with increasing these parameters in all
three regions namely: retrograde pumping region (¢ < 0 and APy, > 0), peristaltic pumping
region (¢ > 0 and AP, > 0) and augmented pumping region (¢ > 0 and AP, < 0). From
Fig. 7.4 we also observe that AP, increases by increasing plasticity (Bn) in retrograde and

peristaltic pumping regions but decreases in augmented pumping region. We also note that
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AP, shows a nonlinear behavior due to presence of plasticity. It is interesting to note that APy
decreases by increasing flow rate up to a certain critical value and above that critical value
it starts to increase. Moreover, this increase is more prominent for large values of Gry; and
B,. Fig. 7.5 shows that the effects of all the involved parameters on frictional forces are quite
opposite to effects of these parameters on AP). In retrograde and peristaltic pumping regions,
frictional forces resist the flow due to peristalsis and the magnitude of resistance increases by
increasing Bn, Gr; and B,. However, in augmented pumping region they assist the flow and
again the magnitude of assistance increases by increasing Bn while it decreases with Gr; and
B,.. The results reported above which depict the effects of Gr; and B, on APy and F) are quite
interesting and new addition in the literature.

Fig. 7.6 illustrates the variation in temperature profile for different values of involved
parameters. From this figure it is observed that the temperature profile increases with increasing
all the involved parameters. As expected, increasing the plasticity parameter (Bn) result in the
hampering of fluid motion and in consequence more work is done on the fluid to maintain the
flow rate. As a result more heat is generated and eventually a rise in the temperature is observed.
Similarly an increase in temperature with increasing Grashof number Gr; is attributed to large
temperature gradients within the fluid for larger values of Gr;.means that the buoyant force is
higher than the viscous force as a result of which the larger temperature difference between the
fluid particles will occur and therefore the temperature increases. The rise in temperature for
larger values of Brinkman number is due to the fact that higher values of B, results in lesser
conduction of heat produced by viscous dissipation.

Finally we report some results about the phenomenon of trapping. In this phenomenon
an amount of fluid called bolus is trapped due to contraction of walls. To see the influence of
parameters Bn, Gr; and B, on trapping, we have plotted Figs. 7.7 — 7.9. From Fig. 7.7 we
note that an increase in Bn decreases the size and circulation of the bolus. Figs. 7.8 and 7.9
show that though the size of bolus is independent of the G'r; and B, but it circulate faster for

large values of Gr; and B,.
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Comparison of velocity profile

Comparison of temperature profile

Solution by

Solution by

Solution by

Solution by

’ Perturbation bupdc / Perturbation bupdc

—1.60 | —1.0000000000 | —1.0000000000 —1.60 | 0.0000000000 0.0000000000
—1.44 | —0.7430926598 | —0.7436599899 —1.44 | 0.1384192059 0.1381180352
—1.28 | —0.5139202503 | —0.5149601267 —1.28 | 0.2369391566 0.2362746361
—1.12 | —0.3136751353 | —0.3150914599 —1.12 | 0.3037895776 0.3027716022
—0.96 | —0.1431066839 | —0.1447877193 —0.96 | 0.3464959763 0.3451889360
—0.80 | —0.0025892965 | —0.0043712754 —0.80 | 0.3716937695 0.3701971323
—0.64 | 0.1078613554 0.1062768005 —0.64 | 0.3850083576 0.3834324157
—0.48 | 0.1886819834 0.1879071792 —0.48 | 0.3909827722 0.3894185762
—0.32 | 0.2411262419 0.2423347756 —0.32 | 0.3930388860 0.3915266088
—0.16 | 0.2682421882 0.2727034296 —0.16 | 0.3934692382 0.3919897535
0.00 0.2758974988 0.2823523318 0.00 0.3934953567 0.3920196670
0.16 0.2682421882 0.2727034296 0.16 0.3934692382 0.3919897535
0.32 0.2411262419 0.2423347756 0.32 0.3930388860 0.3915266088
0.48 0.1886819834 0.1879071792 0.48 0.3909827722 0.3894185762
0.64 0.1078613554 0.1062768005 0.64 0.3850083576 0.3834324156
0.80 —0.0025892965 | —0.0043712753 0.80 0.3716937695 0.3701971322
0.96 —0.1431066839 | —0.1447877192 0.96 0.3464959763 0.3451889359
1.12 —0.3136751353 | —0.3150914599 1.12 0.3037895776 0.3027716021
1.28 —0.5139202503 | —0.5149601299 1.28 0.2369391566 0.2362746404
1.44 —0.7430926598 | —0.7436599899 1.44 0.1384192059 0.1381180352
1.60 —1.0000000000 | —1.0000000000 1.60 0.0000000000 0.0000000000

Table 7.1: Comparison of solutions of velocity and temperature profiles
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Fig.7.2: Comparison of perturbation and numerical solutions

166



0.4

02f (o G =01,B=02,e=0.1 i
or 4
_0.2 - e - |
= Pty e
s 1
-0.4 - I \
! \
06 (B
! —6—Bn=05 \
.08 H ——Bn=35 “
7 = Bn® ¥ !
1 ‘ ‘ ‘ ‘ ‘
-1 -0.5 0 0.5 1
y
0.6 T T T
G =3,Bn=1, e=0.1
0.4r (b) r o B
,./".— ~ \’\.
L ~ B
0.2 . 3
or _
5 .02 I.’ J
7 .
0.4 | : \ .
,.’ \
Y/ ——B =06 N\
’ B =12 R\
08 g7 ' "X |
/R -B, =18 A\
_1 Il Il Il Il Il Il
-1.5 -1 -0.5 0 0.5 1.5
y
0.6
0.4F B,=0.6Bn=1e=01 ]
0.2F /,."' "w.\.\ i
or i
5.02F ,." ; .
2 )
4 N
-0.4 % \ 1
73 —o—Gr =1 )
0.6 ; W%
0.6 7 —Gr,=4 \
o8l /2 Gr =7 ‘.\ |
. 4 .\'
-1 I I I I I I
1.5 1 -0.5 0 05 15
y

Fig.7.3: Velocity profile with x =0, ¢ = 1.4, ¢ = 0.6.
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Fig.7.4: Pressure rise per wavelength versus flow rate ¢ with ¢ = 0.4.
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Fig.7.5: Frictional forces versus flow rate ¢ with ¢ = 0.4.
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Fig.7.6: Temperature profile with x =0, ¢ = 1.4, ¢ = 0.6.

170



Fig.7.7: Streamlines for various values of Bn with B, = 0.6, Gry =3, ¢ = 1.5, ¢ = 0.6.
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Fig.7.8: Streamlines for various values of B, with Gr, =3, Bn =1, ¢ = 1.5, ¢ = 0.6.
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Fig.7.9: Streamlines for values of Gr; with B, = 0.6, Bn =1, ¢ = 1.5, ¢ = 0.6.
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7.4 Concluding remarks

Heat transfer analysis is performed for peristaltic flow of a viscoplastic fluid in presence of
buoyant forces and viscous dissipation. The problem is modeled under long wavelength and low
Reynolds number assumptions in form of few coupled nonlinear ordinary differential equations.
The solution of these equations is obtained analytically and numerically. A quantitative analy-
sis is performed through various plots. It is observed that the velocity of fluid shows uniformity
over the whole cross-section except near the boundaries, with the increase in plasticity (Bn).
However, it increases near the center of channel while decreases near the boundaries by increas-
ing Gr; and B,. The pressure rise per wavelength increases in the retrograde and peristaltic
pumping regions but decreases in the augmented pumping region with the increase in plasticity.
While it increases in all the three regions by increasing Gr; and B,. It is further observed that
effects of Bn, Gry and B, on temperature field are similar. The trapping phenomenon is also
affected with the increase of Bn, Gry and B,. In fact the size and circulation of bolus decreases

by increasing Bn while its size remain unchanged with an increase in Gry and B,.
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