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Preface 
Peristaltic transport of real fluids has attracted the attention of researchers because of its 

applications in medical science and industry. This mechanism is a fundamental and vital feature 

of many smooth muscle organs which transport bio-fluids. Typical examples of bio-fluids which 

are transported through peristaltic activity are urine, chyme, blood, spermatic fluid, bile etc. 

Industrial applications of peristalsis can found in the design of finger and roller pumps. In 

medical engineering, peristaltic systems are utilized in diabetes pumps, heart-lung machine and 

pharmacological delivery systems. In botanical hydrodynamics, peristalsis arises in loam 

dynamics in trees and plants. The literature on the peristaltic transport is quite extensive. Much 

of the work is based on the constitutive equations of generalized Newtonian fluid models, 

retarded motion expansion and polar fluids. However, despite the importance of FENE-P and 

visco-elasto-plastic fluid models not a single attempt is available in the literature which deals 

with peristaltic transport of such fluids. Moreover, the study of streamlines patterns of two-

dimensional peristaltic flow and bifurcations of their critical points is relatively a new area and 

literature is scarce on this topic. Similarly, studies pertaining to simultaneous effects of mixed 

convection and viscous dissipation on peristaltic flows and heat transfer is also limited. 

Motivated by the above facts, the aim of this thesis is to explore the peristaltic motion with 

particular focus on non-Newtonian effects, streamlines topologies and their bifurcations and 

heat/mass transfers analysis. The thesis is composed of seven chapters. A brief description of 

each chapter is given below. 

Chapter 1 consists of fundamentals of peristaltic flows, heat/mass transfer and bifurcation 

theory. A detailed literature review on peristaltic flow of real fluids is also presented.  

Chapter 2numerically investigates peristaltic transport of incompressible visco-elasto-plastic 

fluids in a two-dimensional symmetric channel. The constitutive equation used for extra stress 

tensor is quite general and includes models like Maxwell A, Maxwell B, Johnson-Segalman, 

Oldroyd-B and Bingham model as its special case. The continuity and momentum equations 

under the assumptions of long wavelength and low Reynolds numbergive rise a nonlinear 

ordinary differential equation which is solved using shooting method and Matlab built-in routine 

bvp4c. Excellent correlation is observed between the results obtained by two methods. The 

solution obtained by bvp4c is used for further analysis of velocity profile, pressure rise per 



wavelength, frictional forces and trapping phenomenon. The contents of this chapter are 

published in Zeitschrift Fur NaturforschungA 70 (8) (2015) 593-603. 

Chapter 3presents the mathematical modeling and analysis of the peristaltic flow of Finitely 

Extendable Nonlinear Elastic-Peterlin (FENE-P) fluid both in planar channel and axisymmetric 

tube. An exact solution is obtained for the stream function and longitudinal pressure gradient 

subject to no-slip condition under the same approximations considered in chapter 1. The effects 

of model parameters, Deborah number and extensibility parameter, on velocity profile, trapping 

phenomenon and normal stress are analyzed. An enhancement in normal stress is observed with 

increasingDeborah number and extensibility parameter. Further, flow acceleration is observed 

near the channel/tube center for larger values of Deborah number while a converse trend is noted 

with increasing extensibility parameter. Thesize of trapped bolus decreases (increases) by 

increasing Deborah number (extensibility parameter). Similar trend is noted form the plots of 

pressure rise and frictional forces. It is also shown thatresults of Newtonian model can be 

deduced as a special case of FENE-P model. The contents of this chapter are publishedin 

Zeitschrift Fur NaturforschungA, 69a, 462-472 (2014). 

Chapter 4present the analysis of streamlines patterns and their bifurcation for two-dimensional 

peristaltic flow of Newtonian fluid in the presence of wall slip. The flow analysis is carried out 

both in planar channel and axisymmetric tube. Exact solution for the stream function is obtained 

in the wave frame under the assumptions of long wavelength and low Reynolds number for both 

cases. A system of nonlinear autonomous differential equations is established and the methods of 

dynamical systems are used to discuss the local bifurcations and their topological changes. All 

types of local bifurcations and their topological changes are discussed graphically. Moreover, 

global bifurcation diagram is used to summarize the bifurcations. The contents of this chapter are 

published in Chinese Physics B Vol. 23, No. 6 (2014) 064701. 

Chapter 5investigates streamline topologies and their bifurcations for two-dimensional 

peristaltic channel flow in presence of buoyancy forces and constant heat source. The well-

knownBoussinesq approximation is used to formulate buoyancy force term in momentum 

equation. Methods of dynamical systems are employed to solve the non-linear autonomous 

system. The results indicate that vortices contract along the vertical direction whereas they 

expand along horizontal direction. A global bifurcations diagram is used to summarize the 

bifurcations. The trapping and backward flow regions are mainly affected by increasing Grashof 



number and constant heat source parameter in such a way that trapping region increases whereas 

backward flow region shrinks. The contents of this chapter are published in AIP Advances 5 (9) 

(2015) 097142. 

Chapter 6extends the results of chapter 3 by including the mixed convective heat/mass transfer 

analysis and chemical reaction effects. The Boussinesq approximation to account for the effects 

density variations in the flow field. Moreover, the present analysis is carried out neglecting 

viscous dissipation and including diffusion-thermal (Dufour) and thermal-diffusion (Soret) 

effects. The flow equations become highly nonlinear and coupled. An exact solution of the 

simplified coupled linear equations for the temperature and concentration has been obtained 

whereas numerical solution is obtained for dimensionless stream function and pressure gradient. 

Tthe effects of pertinent parameterson velocity profile, temperature and concentration fields and 

trapping phenomenon are highlighted. Numerical integration has been performed to analyze 

pressure rise per wavelength. The contents of this chapter are published in the Journal of 

Mechanics (2015) 1-10. 

Chapter 7presents the analysis of mixed convective peristaltic flow of incompressible 

viscoplastic fluid in a two-dimensional symmetric channel. The prime objective is to see the 

effects of plasticity of the fluid on flow and temperature characteristics. The equations governing 

the velocity and temperature of the fluid are solved using regular perturbation method and 

Matlab built-in routine bvp4c. The comparison for two solutions reveals the superiority of the 

numerical solution over the perturbation solution. The bvp4c solution is further utilized to 

investigate various features of the problem. It is found that velocity decreases at the channel 

center by increasing Bingham number showing a boundary layer character for large values. 

However, it increases by increasing Brinkman and Grashof numbers. Moreover, pressure rise per 

wavelength increases with Bingham number, Brinkman number and Grashof number, in the 

pumping region. The trapping phenomenon is also discussed in detail for several values of 

involved parameters. The contents of this chapter are submitted for possible publication in 

International Journal of Heat and Mass Transfer. 
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Nomenclature

English symbols

a1 Half width of channel/radius of tube

b1 Amplitude of wave

t Time

X Horizontal coordinate of �xed frame of reference

Y Vertical coordinate of �xed frame of reference

x Horizontal coordinate of moving frame of reference

y Vertical coordinate of moving frame of reference

U Longitudinal component of velocity in �xed frame

V Transverse component of velocity in �xed frame

u Longitudinal component of velocity in wave frame

v Transverse component of velocity in wave frame

f Body force vector

P Pressure in �xed frame

p Pressure in wave frame

I Identity tensor

D Deformation tensor
^
D Tensor for Bingham �uid

De Deborah number

Bn Bingham number

Re Reynolds number

q Dimensionless mean �ow rate in �xed frame of reference

� Dimensionless mean �ow rate in moving frame of reference

A Con�guration tensor

R End-to-end vector that connects the dumbbell beads
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R Radial component of cylindrical coordinates

Z Axial component of cylindrical coordinates

Rw Average height of channel

A1 First Rivillin-Ericksen tensor

xi;j i = 1; 3; 5; 7; 9 ; j = 2; 4; 6; 8 Abscissa for eigenvalues

yi;j i = 1; 3; 5; 7; 9 ; j = 2; 4; 6; 8 Ordinate of eigenvalues

pi;j Trace of Jacobian

di;j Product of eigenvalues

M Bifurcation curves

Ra Tube radius

T Temperature

T0 Constant temperature at lower wall

Q Constant heat generation term

Grt Grashof number for temperature

Pr Prandtl number

qc Critical value of �ow rate in �xed frame

g Acceleration due to gravity

C Concentration �eld

T0 Constant temperature at lower wall

C0 Constant concentration at lower wall

D� Coe¢ cient of mass di¤usivity

KT Thermal di¤usion ratio

cs Concentration susceptibility

K1 Chemical reaction parameter

Grc Grashof number for concentration

Df Dufour number

Sc Schmidt number

Sr Soret number

S Extra stress tensor

Ec Eckert number
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Re Characteristic length

H0 Gaussian sti¤ness in the limit of small molecular extension

R0 Maximum allowable dumbbell length

L2 Measure of extensibility of the dumbbells

k1 Boltzmann constant

T Absolute temperature

Ai with i = 1; 2 � � � ; 6 Constants of integration

Br Brinkman number

Ci with i = 1; 2; � � � ; 11 Constants

Tj with j = 1; 2; � � � ; 12 Constants

A1;B1 Arbitrary tensors

T Cauchy Stess tensor

N Bifurcation curve

C Tensor

L Bifurcation curve

L� Bifurcation curve

Es Stable manifold

Eu Unstable manifold

Rn n-dimensional real space

E Arbitrary Open subset

Q Heat source or sink

H Function de�ning the geometry of the wall

F (c) Connector force

tr Trace

< � > Ensamble average
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Greek symbols

� Wave length

� Fluid density

r Gradient

�a Amplitude ratio in tube

� Extra stress tensor

�1 Relaxation time

�2 Retardation time

� Viscosity

�1 Small scalar parameter

�0 Basic yield stress

� Wave number

" Small dimensionless parameter

� Amplitude ratio

 Stream function

�p Zero shear rate polymer viscosity

r Upper convected derivative

�P� Pressure rise per wave length

F� Frictional force

� Kinematic viscosity

� Dimensionless slip parameter

� Dimensional slip parameter

�i;j i = 1; 3; 5; 7; 9; j = 2; 4; 6; 8; 10 Eigenvalues

�3 Eigenvalue

�4 Eigenvalue

�� dimensionless temperature

� Vector containing bifurcation parameters
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�1 Thermal expansion coe¢ cient

� Dimensionless heat generation

�2 Concentration expansion coe¢ cient


 Chemical reaction parameter

�1 Dimensional slip parameter

�2 Coe¢ cient of volume expansion
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Chapter 1

Introduction

This chapter includes fundamentals concepts about peristalsis, heat/mass transfer and bifur-

cation theory. The frequently appearing dimensionless numbers relevant to peristaltic �ow and

heat/mass transfer are also de�ned. A review of literature on peristalsis and its interaction

with heat/mass transfer is presented. The basic equations governing the �ow and heat/mass

transfer are also provided.

1.1 Fundamentals of peristaltic transport

1.1.1 Peristalsis

The word peristalsis stems from a Greek word "Peristaltikos" which means clasping and com-

pressing. Therefore, it is de�ned as a wave of relaxation contraction to the walls of a �exible

conduit, thereby pumping the enclosed material.

1.1.2 Peristaltic transport

It is form of material transport induced by a progressive wave of area contraction or expansion

along the length of a distensible tube containing some material. It is also a natural way

of moving the content within hollow muscular structures by successive contraction of their

muscular �bers.
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1.1.3 Biological and Industrial applications of peristalsis

Peristalsis is an inherent property of many biological systems having smooth muscle tubes which

transport bio�uids by its propulsive movements and is found in the transport of urine from

kidney to bladder, the movement of chyme in the gastro intestinal tract, vassomotion of small

blood vessels, the movement of spermatozoa in the ductus e¤rents of the male reproductive

tract, the movement of ovum in the fallopian tube, swallowing of food through esophagus,

transport of bile, transport of lymph in the lymphatic vessels, blood motion in the arteries and

many glandular ducts.

The mechanism of peristaltic transport has been exploited for industrial applications like

sanitary �uid transport, the blood pumps in heart lung machine, transport of noxious �uid in

nuclear industry and transport of corrosive �uids where the contact of �uid with machinery

parts is prohibited.

1.1.4 Pumping

It is characteristic feature of peristaltic transport. The operation of a pump of moving liquids

from lower pressure to higher pressure under certain conditions is called pumping. For the

explanation of this characteristic let us view the following:

Positive and negative pumping

The pumping is called positive or negative depending on whether the mean �ow rate is positive

or negative.

Peristaltic pumping

It is the situation in which pumping is positive and pressure gradient is adverse (i.e. pressure

rise per wavelength (�P�) is positive).

Augmented pumping

It occurs when pumping is positive but in this case pressure gradient is favorable (i.e. pressure

rise per wavelength (�P�) is negative).
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Retrograde pumping

It is the situation in which pumping is negative and the pressure gradient is adverse.

Free pumping

The situation where pumping is positive but pressure gradient is neither adverse nor favorable.

In other words pressure rise per wavelength (�P�) vanishes i.e., �P� = 0.

1.1.5 Free pumping �ux

It is de�ned as the critical value of mean �ow rate corresponding to free pumping.

1.1.6 Bolus

It is de�ned as a volume of �uid bounded by closed streamline in the frame moving with the

wave speed.

1.1.7 Trapping

In general the shape of streamline is similar to that of the boundary wall in the wave frame.

However, under certain conditions some of the streamlines split and enclose a bolus, which is

pushed ahead alongwith the peristaltic wave with the wave speed. This phenomenon is known

as trapping.

1.2 Basic concepts of heat and mass transfer

1.2.1 Heat

It is the form of energy that can be transferred from one system to another as a result of

temperature di¤erence.

1.2.2 Conduction

It can be de�ned as the transfer of energy from the more energetic particles of a substance

to the adjacent less energetic ones as a result of the interaction between the particles with no
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movement of material.

1.2.3 Convection

It is the mode of heat transfer between a surface and the adjacent �uid that is in motion and

it involves the combined e¤ects of conduction and �uid motion.

Natural Convection

If the �uid motion occurs as a result of the density di¤erence produced by the temperature

di¤erence, the process is called free or natural convection. In case of free convection �ow is

generated by the body forces that occurs as a result of the density changes arising from the

temperature changes in the whole �uid. These body forces are actually generated by pressure

gradients imposed on the whole �uid. The most common source of this imposed pressure �eld is

gravity. The body forces in this case are usually termed bouyancy forces. Without the existence

os gravity and thermal expansion coe¢ cient, natural convection would not be possible.

Forced Convection

Convection is called forced convection if the �uid is forced to �ow over the surface by external

means such as fan, pump or the air. The term forced convection is only applied to �ows in

which the e¤ects of the buoyancy forces are negligible.

1.2.4 Radiation

It is the energy emitted by the matter in the form of electromagnetic waves (or photons). Heat

transfer by radiation does not require a material in which to propagate and can travel through

vacuum.

1.2.5 Speci�c Heat

It is de�ned as the amount of energy needed to increase the temperature of one kilogram by

one degree Celsius
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1.2.6 Thermal Conductivity

It is the measure of the ability of a material to conduct heat and is designated by k. A substance

with a large value of k is a good thermal conductor, whereas a substance with a small value of

k is a poor thermal conductor or a good thermal insulator.

1.2.7 Thermal Di¤usivity

It is de�ned as the ratio of the heat conducted through the material to the heat stored per unit

volume. The larger the thermal di¤usivity, the faster the propagation of heat into the medium.

A small value of thermal di¤usivity means that heat is mostly absorbed by the material and a

small amount of heat will be conducted further.

1.2.8 Boussinesq Approximation

In Boussinesq approximation, which is appropriate for an almost incompressible �uid, it as-

sumed that the variations of density are small, so that in the inertial terms, and in the conti-

nuity equation, we may substitute � ! �0, a constant. However, even weak density variations

are important in buoyancy and so we retain variations in � in the buoyancy term in the vertical

equation of motion. We de�ne the buoyancy as

b = g(�0 � �)=�0

1.3 Dimensionless Numbers

1.3.1 Reynold�s number

It is interpreted as the ratio of inertial forces to the viscous forces and is denoted by Re. It is

the most important dimensionless number in �uid dynamics because it is used for determining

whether a �ow will be laminar or turbulent. Laminar �ow occurs at low Reynolds number

where viscous forces are dominant and is characterized by smooth �uid motion while turbulent

�ow occurs at high Reynolds number and is dominant by inertial forces, producing random

eddies, vortices and other �ow �uctuations.
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1.3.2 Wave Number

It is interpreted as the ratio of the width of the channel to the wavelength. Usually, it is denoted

by the Greek symbol � and is

� =
L

�
; (1.1)

where L is the characteristic length and � is the wavelength.

1.3.3 Prandtl number

The relative thickness of the velocity and thermal boundary layers is best described by the

dimensionless parameter, Prandtl number, de�ned by

Pr =
Molecular di¤usivity of momentum

molecular di¤usivity of heat
=

�

�1
=
�Cp
k

(1.2)

where � is the kinematic viscosity, �1 is the thermal di¤usivity, Cp is the speci�c heat, � is the

dynamic viscosity and k is the thermal conductivity. The Prandtl number of gases is about

unity, which indicates that both momentum and heat dissipate through the �uid at about the

same rate.

Heat di¤uses very quickly in liquid metals (Pr� 1) and very slowly in oils (Pr� 1) relative

to momentum. Consequently the thermal boundary layer is much thicker for liquid metals and

much thinner for oils relative to the velocity boundary layer.

1.3.4 Eckert number

This number expresses the relation between kinetic energy of �ow and enthalpy and is designated

by Ec or E. This number only enters the problem when the viscous dissipation term in the

energy equation is signi�cant.

1.3.5 Brinkman number

This is interpreted as the ratio of the viscous dissipation to the heat transfer rate. This number

is important in cases where large velocity changes occur over short distances such as lubricant

�ow. It is denoted by Br.
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1.3.6 Soret and Dufour numbers

When heat and mass transfer occur simultaneously in a moving �uid, an energy �ux can be

generated not only by temperature gradient but by composition gradient also. The energy �ux

caused by a composition gradient is termed Dufour or di¤usion-thermo e¤ect. On the other

hand, mass �uxes can also be created by temperature gradients and this embodies the Soret

or thermo-di¤usion e¤ect. Such e¤ects are signi�cant when density di¤erences exist in the

�ow regime. For example, when species are introduced at a surface in a �uid domain, with a

di¤erent (lower) density than the surrounding �uid, both Soret and Dufour e¤ects can become

in�uential. Soret and Dufour e¤ects are important for intermediate molecular weight �uids

in coupled heat and mass transfer in �uid binary systems, often encountered in biophysical

processes.

1.3.7 Deborah number

Whether a viscoelastic material behaves as an elastic solid or a viscous liquid depends on the

material response time and its relation to the time scale of the experiment or observation. This

was �rst proposed by Marcus Reiner, who de�ned the ratio of the material response time to

the experimental time scale as the Deborah number, De. That is,

De =
material response time

exp erimental time scale (Observation time)
(1.3)

A high Deborah number that is long response time relative to the observation time implies

viscoelastic solid behavior, whereas a low value of Deborah number (short response time relative

to the time scale of the experiment) is indicative of viscoelastic �uid behavior. From conceptual

standpoint, the Deborah number is related to the time one must wait to observe the onset of

�ow or creep.

1.3.8 Grashof number

The Grashof number is de�ned as

Grt =
gL3�2�T�

2

�2
(1.4)
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is a measure of natural or free convection. The meaning of this number follows from the meaning

of symbols given here: g is the acceleration due to gravity, � is density, �2 is coe¢ cient of volume

expansion, �T is the temperature gradient in Kelvin which induces density variations. Density

variations are also known as buoyancy forces, because they cause macroscopic (bulk) motion of

the �uid. This motion is known as natural or free convection. Thus natural convection will be

enhanced by buoyancy forces (the numerator of Grt ratio) and decreased by viscous forces (the

denominator of Grt ratio). It is the ratio of natural convection buoyancy force to the viscous

force. It controls the ratio of length scale to natural convection boundary layer thickness.

1.3.9 Bingham number

It is proportional to (yield stress/viscous stress) and is used in momentum transfer in general

and calculations in particular. It is normally de�ned in the following form:

Bn =
�0L

�v
(1.5)

where �0 is the yield stress, L is the characteristic length and v is the �uid velocity.

1.3.10 Schmidt number

It characterizes the relative e¤ectiveness of momentum and mass transport by di¤usion, higher

value of Schmidt number lead to species di¤usivity rate exceed the momentum di¤usivity which

diminish concentration in boundary layer. This number plays a role in mass transfer that is

analogous to that played by the Prandtl number in heat transfer

1.3.11 Nusselt number

It is de�ned as the ratio of length scale to the thermal boundary layer thickness. It is used

to calculate the heat transfer coe¢ cient. The Nusselt number represents the enhancement of

heat transfer through a �uid layer as a result of convection relative to conduction across the

same �uid layer. The larger the Nusselt number, the more e¤ective the convection. A Nusselt

number of N = 1 for a �uid layer represents heat transfer across the layer by pure conduction.
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1.3.12 Amplitude Ratio

It is de�ned as the ratio of amplitude of the wave to either half width of the channel or radius

of the tube. It is usually denoted by �.

1.3.13 Slip Parameter

The condition that the relative velocity between the �uid and that of the wall being proportional

to the shearing rate at the walls is called slip condition. Mathematically,

Uf � Uw = �
�1
�
�xy (1.6)

where Uf is the velocity of �uid, Uw is the velocity of wall and � � 0 is the dimensional slip

parameter and has the dimension of length. The plus (+) and minus (�) signs are due to the

direction of the normal on the wall.

Although no-slip condition plays a vital role in the Navier-Stokes theory but there are

problems where it does not hold. For instance a large class of polymeric materials slip on the

solid boundaries. It is important in the polishing of arti�cial heart valves, internal cavities in a

variety of manufactured parts and in applications where a thin �lm of light oil is attracted to

the moving walls.

1.4 Basics of Bifurcation theory

1.4.1 Autonomous system

A system of di¤erential equations
�
X = f(X) for X 2 Rn, is called an autonomous system.

1.4.2 Nonautonomous system

Any system of di¤erential equations
�
X = f(X; t) for X 2 Rn, is called a nonautonomous

system. Moreover, any nonautonomous system can be written as an autonomous system with

X 2 Rn+1 simply by letting xn+1 = t and
�
xn+1 = 1.
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1.4.3 Equilibrium point

A point X0 2 Rn is called an equilibrium point or critical point of
�
X = f(X) if f(X0) = 0.

1.4.4 Hyperbolic Equilibrium point

An equilibrium point is called hyperbolic equilibrium point of
�
X = f(X) if none of the eigen-

values of the Jacobian matrix have zero real part.

1.4.5 Classi�cation of the equilibrium point based on eigenvalues

1. An equilibrium point is called Sink if all the eigenvalues of Jacobian have negative real

part.

2. Eqilibrium point is called Source if all of the eigenvalues of Jacobian matrix have positive

real part.

3. Equilibrium point is called Saddle if it is hyperbolic equilibrium point and Jacobian has

atleast one eigenvalue with positive real part and atleast one eigenvalue with negative real

part.

1.4.6 Linearization

The linearization of a nonlinear system

�
X = f(X) (1.7)

is
�
X = CX =

�
Df(X0)

�
X (1.8)

1.4.7 Topological equivalence of local behavior of linear and nonlinear sys-

tems

If X0 is a hyperbolic equilibrium point of nonlinear system (1:7) then the local behavior of

the nonlinear system (1:7) is topological equivalent to the local behavior of the linear system
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(1:8) that is there is a continuous one-to-one map of a neighborhood of X0 onto an open set U

containing the origin.

1.4.8 Bifurcation Theory

It is the mathematical study of changes in the qualitative or topological structure of a given

family, such as the integral curves of a family of vector �elds, and the solutions of a family

of di¤erential equations. Most commonly applied to the mathematical study of dynamical

systems, a bifurcation occurs when a small smooth change made to the parameter values (the

bifurcation parameter) of a system causes a sudden qualitative or topological change in its

behavior. The name "Bifurcation" was �rst introduced by Henri Poincare in (1885) in the �rst

paper in mathematics showing such a behavior. He also later named various types of stationary

points and classi�ed them.

1.4.9 Types of bifurcation

Local bifurcation

A local bifurcation occurs when a parameter change causes the stability of an equilibrium point.

In continuous system, this corresponds to the real part of an eigenvalue of an equilibrium point

passing through zero. In this case the equilibrium point is nonhyperbolic at the bifurcation

point. The topological changes in the phase portraits of the system can be con�ned to arbitrarily

small neighborhoods of bifurcation points by moving the bifurcation parameter close to the

bifurcation point. Technically, consider dynamical system described by the ordinary di¤erential

equation
�
x = f(x; �); f : Rn � R! Rn (1.9)

A local bifurcation occurs at (x0; �0) if the Jacobian J j(x0;�0) has an eigenvalue with zero real

part. If the eigenvalue is zero, the bifurcation is a steady state bifurcation, but if the eigenvalue

is non-zero but purely imaginary, this is a Hopf bifurcation.
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Global bifurcation

Global bifurcations occur when large invariant sets, such as periodic orbits, collide with eqilibria.

This causes changes in the topology of the trajectories in the phase space which cannot be

con�ned to a small neighborhood, as in the case with local bifurcations. In fact the changes in

the topology extend out to an arbitrarily large distance (hence global).

1.4.10 Co-dimension of a bifurcation

The co-dimension of a bifurcation is the number of parameters which must be varied for the

bifurcation to occur. This corresponds to the co-dimension of parameter set for which the

bifurcation occurs within the full space of parameters. Saddle-node bifurcations and Hopf

bifurcations are the only generic local bifurcations which are really co-dimension one. The

others all having higher co-dimension. However, Transcritical and Pitchfork bifurcations are

also often thought of as co-dimension one, because the normal forms can be written with only

one parameter. An example of a well studied co-dimension two bifurcation is the Bogdanov-

Takens bifurcation.

1.4.11 Streamline topology

The study of �uid �ow patterns given in terms of streamlines is called topological �uid dynamics

and this context we denote a streamline �uid �ow patterns in phase space as a �ow, a �ow

topology, a streamline topology or simply a topology.

1.4.12 Separatrix

The �ow on simple closed curve determined by the union of holoclinic orbit and the equilibrium

point at the origin is called a Separatrix or Separatrix cycle.

1.4.13 Homoclinic orbit

A homoclinic orbit is a trajectory of a �ow of a dynamical system which joins a saddle equilib-

rium point with itself.
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1.4.14 Heteroclinic orbit

A heteroclinic orbit or a heteroclinic connection is a path in phase space which joins two di¤erent

equilibrium points.

Phase Portrait

If we know the value of x at t = 0, we have an initial value problem

�
x = f(x), x(0) = x0

where x0 is the known value. When we plot the change in x during time we have an orbit. All

the orbits together with the direction of arrows gives a phase portrait.

1.4.15 Structural Stability

Let E1 be an open subset of Rn. A vector �eld f 2 C1(E1) is said to be structurally stable if

there is � > 0 such that 8 I 2 C1(E1) with

kf � Ik1 < �

f and I are topologically equivalent on E1; i.e., there is a homeomorphism H1 : E
1 ! E1 which

maps trajectories of (1) onto trajectories of
�
X = g(X) and preserves their orientation by time.

In this case we also say that the dynamical system (1) is structurally stable. If a vector �eld

f 2 C1(E1) is not structurally stable, then f is said to be structurally unstable. And k�k1 is

de�ned by

kfk1 = max
x2K

��f(X)��+max
x2K



Df(X)


where K is a compact subset of E1.

1.4.16 Bifurcation value

The qualitative behavior of the solution set of a system (3) depending on a parameter � 2 R

changes as the vector �eld f passes through a point in the bifurcation set or as the parameter

� varies through a bifurcation value �0. A value �0 of the parameter � in Eq. (3) for which the

C1-vector �eld f(x; �0) is not structurally stable is called bifurcation value.
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1.4.17 Some important theorems

The Stable manifold Theorem:

It is one of the most important results in the local qualitative theory of ordinary di¤erential

equations. The theorem shows that near a hyperbolic equilibrium point X0, the nonlinear

system (1) has stable and unstable manifolds S and U tangent at X0 to the stable and unstable

subspaces Es and Eu of the linearized system (2). Furthermore, S and U are of the same

dimensions as Es and Eu, and if �t = eAt is the �ow of nonlinear system (2), then S and U are

positively and negatively invariant under �t respectively and satisfy

lim
t!1

�t(c) = X0 8c 2 S

lim
t!�1

�t(c) = X0 8c 2 U

Theorem

Let E1 be an open subset of Rn containing the origin, let f 2 C1(E1); and let �t be the

�ow of the nonlinear system (1). Suppose that f(0) = 0 and that Df(0) has m eigenvalues

with negative real part and n � m eigenvalues with positive real part. Then there exists a

k-dimensional di¤erentiable manifold S tangent to the stable subspace Es of linear system (2)

at 0 such that for all t > 0; �t(S) � S and for all X0 2 S

lim
t!1

�t(X0) = 0;

and there exists an n�m dimensional di¤erentiable manifold U tangent to the unstable subspace

Eu of (2) at 0 such that for all t 6 0; �t(U) � U and for all X0 2 U;

lim
t!�1

�t(X0) = 0:

The Hartman-Grobman Theorem

It is another very important result in the local qualitative theory of ordinary di¤erential equa-

tions. The theorem shows that near a hyperbolic equilibrium point X0, the nonlinear system

(1) has the same qualitative structure as the linear system (2).
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Theorem

Let E1 be an open subset of Rn containing the origin, let f 2 C1(E1), and let �t be the

�ow of the nonlinear system (1). Suppose that f(0) = 0 and that the matrix C = Df(0) has

no eigenvalue with zero real part. Then there exists a homeomorphism H1 of an open set U

containing the origin onto an open set V containing the origin such that for each X0 2 U , there

is an open interval I0 � R containing zero such that 8X0 2 U and t 2 I0

Ho�t(X0) = eAtH1(X0);

that is H1 maps trajectories of (1) near the origin onto trajectories of (2) near the origin and

preserves the parametrization by time.

1.5 Governing equations for �uid motion

In order to describe the physical behavior of the �uid �ow, one needs to have some mathematical

relations. In �uid mechanics, we have three basic laws which account for the motion of the �uid

and those are recognized as law of conservation of mass, momentum and energy. These laws in

their mathematical form gives the relations for rate of change of mass, momentum and energy

at a point and are in subsection heads as following

1.5.1 Continuity equation

A continuity equation is an equation that describes the transport of a conserved quantity. Since

mass, energy, momentum, electric charge and other natural quantities are conserved under their

respective appropriate conditions, a variety of physical phenomena may be described using

continuity equations.

For the conservation of mass, mass of the closed system always remains constant with time,

as mass of the system cannot change quantity except being added or removed. It means that

the quantity of mass is conserved over time. The mathematical relation expressing law of

conservation of mass is known as continuity equation. For compressible �uid, it is de�ned as

d�

dt
+ �r:V =0; (1.10)
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here � is the �uid density, d=dt is the material time derivative and V is the velocity �eld. The

material time derivative is de�ned as

d

dt
=

@

@t
+V:r: (1.11)

In view of Eq. (1:11); Eq. (1:10) takes the following form

@�

@t
+r:�V =0: (1.12)

For an incompressible �uid, it reduces to

r:V =0: (1.13)

1.5.2 Momentum equation

The momentum balance for a di¤erential �uid element reads

�
dV

dt
= r:T+�f ; (1.14)

where T is the Cauchy stress tensor and f denotes the body force vector.

1.5.3 Energy equation

The energy equation for �uid is de�ned by

�Cp
dT

dt
= kr2T +T: (rV) +Q (1.15)

where T is the temperature and Q is the constant heat source/sink term.

1.5.4 Concentration equation

The energy equation for �uid is de�ned by

�
dC

dt
= �D�r2C + �D�kT

�T
r2T � �k1 (C � C0) (1.16)

25



where C is the concentration D� is the coe¢ cient of mass di¤usivity, kT is the thermal di¤usion

ratio and k1 is the chemical reaction parameter.

1.6 Literature Review

The study of peristaltic motion using the principles of �uid dynamics was initiated by Latham

[1]. Later several researchers investigated the peristaltic motion under various assumptions.

Generally, it is assumed that the �ow is laminar, incompressible and two-dimensional. The

geometry of the vessel is assumed to be either an axisymmetric tube, a planar channel or a

curved channel. The �uid inside the vessel is assumed to obey Newtonian or Non-Newtonian

constitutive law. Further, assumptions are made regarding the magnitudes of Reynolds number

and wave number, commonly known as long wavelength and low Reynolds number assumptions.

The continuity and momentum equations are su¢ cient to model the peristaltic �ow under the

above mentioned assumptions. However, if it is assumed that �ow is under non-isothermal

condition with non-zero concentration gradients, then energy and mass concentration equation

are also utilized along with continuity and momentum equations. The brief review of literature

on peristaltic motion of Newtonian and non-Newtonian �uids with and without heat/mass

transfer e¤ects is presented below.

1.6.1 Peristaltic transport of Newtonian �uids

Initial theoretical studies on peristaltic transport were carried out using Newtonian �uids.

Though limited in scope, such attempts were quite relevant to understand the transport of urine

from kidney to the bladder. A two-dimensional model of peristaltic motion under negligible

inertia and small wave number was investigated by Shapiro [2]. A closed form solution of the �ow

problem was developed under the speci�ed assumptions. A correlation between the theoretical

and experimental results was presented by Shapiro and Latham [3] and Weinberg [4]. Shapiro et

al. [5] investigated the peristaltic motion of viscous �uid in a planar channel and cylindrical tube

using wavelength and vanishing Reynolds number approximations. A perturbation solution of

the peristaltic �ow in a planar channel was reported by Ja¤rin [6] for small wave number.

The realistic mathematical model representing the peristaltic �ow in ureter was suggested by
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Lykoudis and Roos [7] and Weinberg et al. [8]. An unsteady analysis of peristaltic motion

in �xed frame of reference for arbitrary Reynolds and wave numbers was presented by Fung

and Yih [9]. The dynamics of ureteral muscle was integrated in the study of peristaltic �ow

by Fung [10]. A review of earlier literature on peristalsis according to the assumptions on the

geometry and �ow was presented by Ja¤rin and Shapiro [11]. Numerical simulations of two-

dimensional peristaltic channel �ow using �nite di¤erence method were carried out by Browns

and Hung [12] and Takabatake and Ayukawa [13]. Later Takabatake et al. [14] also provided the

computational results for axisymmetric case. The �nite element simulations of two-dimensional

peristaltic �ow in a planar channel were presented by Kumar and Naidu [15]. Srivastava and

Srivastava [16] discussed peristaltic motion of Newtonian �uid with superimposed pulsatile �ow

in a circular cylindrical tube. The solution was constructed for small amplitude ratio. A��and

Gad [17] extended the results of ref. [16] by including the additional forces due to magnetic

�eld and porous medium. Recently, physiologists have noted that peristaltic mechanism is

involved in the �uid �ow induced by myometrial contractions. Moreover, it is also noted that

the myometrial contraction may occur in both symmetric and asymmetric direction [18]. Apart

from that the study carried out by Eytan et al. [19] revealed that the characterization of

non-pregnant women uterine contractions is very complicated as they are composed of variable

amplitudes, a range of frequencies and di¤erent wavelengths. They con�rmed that the width

of the sagittal cross-section of the uterine cavity increase towards the fundus and the cavity

is not fully occluded during the contractions. Based on these observations Eytan and Elad

[20] modeled the �ow in the uterine cavity as peristaltic �ow in a planar channel with wave

trains of di¤erent phase propagating on the upper and lower walls. They employed lubrication

approximation in �nding the solution. Mishra and Rao [21] analyzed the peristaltic �ow of

Newtonian �uid in an asymmetric channel under long wavelength and low Reynolds number

assumptions. Naby et al. [22] studied the in�uence of inserted endoscope and �uid with variable

viscosity on the peristaltic motion under the assumption of zero Reynolds number. Hayat and

Ali [23] discussed the e¤ects of variable viscosity on the peristaltic �ow of a Newtonian �uid

in an asymmetric channel. Elnaby and Haroun [24] presented the two-dimensional analysis of

peristaltic motion to include the compliant wall e¤ects. A detailed discussion of peristaltic �ow

of viscous �uid through a porous space in an asymmetric channel was made by Elshehawey et al.
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[25]. They obtained the explicit expression for stream function using Adomian decomposition

method. They showed that for high permeability parameter their results are in agreement with

Mishra and Rao [21]. The in�uence of slip condition on a hydromagnetic viscous �ow in an

asymmetric channel was analyzed by Ebaid [26]. Ali et al. [27] studied the e¤ects of magnetic

�uid, slip condition and variable viscosity on peristaltic motion of viscous �uid. Peristaltic �ow

of magnetohydrodynamic (MHD) viscous �uid in an inclined asymmetric channel was discussed

by Sirinivas and Pushparaj [28]. The e¤ects of channel curvature on peristaltic motion of

Newtonian �uid are analyzed by Sato et al. [29] and Ali et al. [30]. Ramanamurthy et al. [31]

presented a generalized mathematical model describing the unsteady peristaltic transport of

viscous �uid in a two-dimensional curved channel. The �ow is investigated in the laboratory

frame of reference.

Heat transfer is an important principle in biological systems and industrial �uid transport.

One of the most important functions of the cardiovascular system is to maintain the temperature

of the body. Also air entering the lungs must be warmed (or cooled) to body temperature. This

is accomplished through all blood vessels. There are three mechanisms of heat transfer but

the convection is the most applicable heat transfer modality within the circulation of �uid in

human body. Study of the combined e¤ects of heat and mass transfer has been attracting the

attention of many researchers due to its applications in engineering and sciences. Some physical

examples include drying of porous solid, thermal insulation, cooling of nuclear reactors and

underground energy transport, geothermal energy recovery, oil extraction and thermal energy

storage. Combined heat and mass transfer with chemical reaction also plays an important role

in design of chemical processing equipment, in formation and dissipation of fog, in metabolic

processes, in resorting of human body to heat and mass for its temperature control due to

change in weather conditions. Convective heat transfer is used by human and animal bodies to

loose the heat generated by metabolic processes to the environment. Thermodynamic aspects

of blood becomes important in the processes such as oxygenation and hemodialysis when blood

is drawn out of the body. The industrial applications include the thermal insulation, cooling of

nuclear reactors, oil extraction and thermal energy storage. The process of heat transfer and

�uid �ow seem to pervade all aspects of our life. Due to great importance of heat and mass

transfer in di¤erent areas of engineering and sciences, especially in physiological �uid �ows,
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interests and contributions of researchers are growing fastly in peristaltic �ows. Vajravelu

et al. [32] initiated the study of heat transfer in peristalsis. Srinivas et al. [33] studied

the combined e¤ects of slip and wall properties on MHD non-isothermal peristaltic transport

in a planar channel. Hayat et al. [34] developed closed form solutions for stream function

and temperature �eld for non-isothermal hydromagnetic peristaltic �ow in a �uid-saturated

porous channel. They have simpli�ed their modeled problem by using the long wavelength

approximation. Perturbation method is used to �nd the solution of the velocity and temperature

�elds. A similar analysis with mixed convective heat transfer in an annulus has been given by

Mekheimer and Elmaboud [35]. They considered MHD �uid and discussed the problem by

ignoring the viscous dissipation e¤ects. They got such a simpli�ed form of their problem that

all the desired expressions were obtained analytically. Nadeem and Akbar have extended the

work [35] by considering the temperature dependent viscosity [36]. Hina et al. [37] considered

peristaltic �ows of Newtonian �uid by incorporating the natural convection, viscous dissipation

and chemical reaction. Mustafa et al. [38] has thrown a light on the e¤ects of viscous dissipation

along with Soret and Dufour in mixed convective peristaltic �ow of nano�uid. Hayat and Asghar

[39] have extended [27] by carrying out heat transfer analysis. Slip e¤ects with wall properties

and heat transfer has also been analyzed by Sirinivas et al. [40]. The e¤ects of variable

viscosity on hydromagnetic peristaltic �ow in a tube were discussed by Ebaid [41] by employing

Adomian decomposition method. Comparison of the results was made with the corresponding

results obtained by perturbation method. Combined e¤ects of heat and mass transfer are

reported by Srinivas and Kothandapani [42] and Srinivas and Muthuraj [43]. The e¤ects of

channel curvature on heat transfer characteristics in �ow of Newtonian �uid due to peristalsis

were discussed by Ali et al. [44].

1.6.2 Literature Review for Non-Newtonian Fluids

The study of non-Newtonian �uids has received special attention of researchers for last few

years. This is because of the fact that most of the real �uids occuring in physiology and industry

are non-Newtonian. Blood, chyme, mixed form of foodstu¤, cervical mucus and bile are some

examples of non-Newtonian bio�uids. Other examples of non-Newtonian �uids are polymeric

liquids, drilling muds, saliva, synovial �uid found in joints and slurries. Unlike the Newtonian
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�uids there is no any single constitutive equation that describes the behavior of Non-Newtonian

�uids. Therefore several constitutive equations have been used in the literature to capture

various non-Newtonian e¤ects. Peristaltic motion of non-Newtonian �uids was initiated by

Raju and Devanathan [45]. They used the power-law model to characterize the non-Newtonian

rheology. In continuation, they carried out the analysis of peristaltic motion for a simple

�uid with fading memory [46]. Bohme and Friedrich [47] examined the peristaltic transport

of viscoelastic �uid with integral constitutive equation. Peristaltic motion of a micropolar

�uid was analyzed by Devi and Devanathan [48]. They followed the small wave amplitude

assumption in their analysis. Srivastava and Srivastava [49] investigated the peristaltic �ow

of blood using Casson model. The study of peristaltic motion of second order �uid in planar

channel and axisymmetric tube was carried out by Siddiqui et al. [50] and Siddiqui and Schwarz

[51] ; respectively. Siddiqui and Shwarz [52] also studied peristaltic motion for third order

�uid under the approximations of long wavelength and low Reynolds number. Hayat et al.

[53] extended the �ow analysis presented in ref. [52] for axisymmetric case. They solved the

governing equation both analytically and numerically. The viscoelastic e¤ects in peristaltic

motion using the constitutive equation of Johnson-Segalman �uid were also analyzed by Hayat

et al. [54]. Srinivasacharya et al. [55] analyzed the peristalsis of a micropolar �uid is a circular

tube by taking small Reynolds number and long wavelength considerations. The in�uence

of wall properties on the peristaltic �ows in channel/tube has been studied by Muthu et al.

[56]. Mishra and Rao [57] studied the peristaltic motion of power law �uid in an axisymmetric

porous tube under long wavelength and low Reynolds number assumptions. They discussed

the trapping and re�ux phenomena for various parameters of interest that governs the �ow.

The in�uence of stress relaxation and retardation on peristaltic transport was studied by Hayat

et al. [58] using Oldroyd-B model. Elshahed and Haroun [59] extended the ref. [54] by

including magnetohydrodynamics e¤ects. Hakeem et al. [60] discussed the axisymmetric �ow of

generalized Newtonian MHD �uid by considering the power law model. They used perturbation

method in terms of small Hartmann number and used numerical integration to discuss the

pressure rise per wavelength and frictional forces.A closed form solution for peristaltic �ow

of power law �uids under the assumptions of long wavelength and low Reynolds number was

presented Hayat and Ali [62] : An extension of results presented in ref. [60] for asymmetric
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channel was given by Reddy et al. [63]. Perturbation solution for the peristaltic �ow of Carreau

�uid was obtained by Ali and Hayat [64]. Hayat et al. [65; 66] provided the solution for MHD

peristaltic motion of third and fourth order �uids in planar channel. The peristaltic �ow analysis

of third and fourth order �uid using regular perturbation method in asymmetric channel was

presented by Haroun [67; 68]. The e¤ects of wall slip on peristaltic motion of third order �uid in

an asymmetric channel were explored by Hayat et al. [69]. Hayat et al. [70] have also analyzed

the Hall e¤ects on MHD peristaltic �ow of Maxwell �uid in a porous medium . Wang et al.

[71] numerically simulated the peristaltic �ow of Johnson-Segalman �uid in a deformable tube.

Unsteady peristaltic �ow analysis in an axisymmetric tubular vessel by using power law model

was presented by Ikbal et al. [72]. MHD peristaltic transport of Sisko �uid in symmetric and

asymmetric channels was investigated by Wang et al. [73]. Hayat et al. [74] extended their

previous analysis [54] for Johnson-Segalman �uid to include the e¤ects of asymmetry of the

channel. An analysis for peristaltic �ow of Je¤rey �uid in an asymmetric channel under the

in�uence of magnetic �eld was carried out by Kothandapani and Srinivas [75]. Hayat et al.

[76] explained the e¤ects of wall properties on peristaltic �ow of Johnson-Segalman �uid. The

e¤ects of an inserted endoscope and variable viscosity on peristaltic motion were also studied

by Hayat et al. [77]. The in�uence of inclined magnetic �eld on peristaltic �ow of Williamson

�uid was analyzed both in symmetric and asymmetric channel by Nadeem and Akram [78] : A

similar analysis for fourth grade �uid was provided by Hayat et al. [79]. Pandey and Tripathi

[80] discussed the peristaltic �ow of Casson �uid in a �nite length channel. Tripathi et al.

[81] studied the interaction of viscoelasticity with peristaltic �ow by taking fractional Maxwell

model. A mathematical model for intestinal peristaltic �ow of power law �uids with multilayers

and distinct viscosities was developed by Pandey et al.[82]. The e¤ects of permeability of porous

medium on peristaltic �ow of second order �uid was discussed by Elmaboud and Mekheimer

[83] : Tripathi et al. [84] studied peristaltic motion of generalized Burger�s �uid as a model

of intestinal �uid transport. Vajravelu et al. [85] has discussed the peristaltic transport of

Williamson �uid. They have analyzed the problem in an asymmetric channel with permeable

walls. An unsteady peristaltic �ow of Maxwell �uid was investigated by Padey and Tripathi

[86]. The �ow was considered in a �nite length tube. The dynamic boundary condition due

to compliant wall was imposed on peristaltic �ow of Maxwell �uid by Hina et al. [87]. They
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have made analysis in an asymmetric channel. A numerical investigation of two-dimensional

peristaltic �ow of viscoelastic Oldroyd-B �uid using boundary immersed technique was carried

out by Ceniceros and Fisher [88]. El-Sayed et al. [89] have disclosed the e¤ects of plasticity

on peristaltic motion by considering Bingham model. In addition they also examined the

e¤ects of slip and temperature jump condition in an eccentric annuli. An investigation of

unsteady peristaltic �ow in digestive system by considering couple stress bio-�uid was made by

Tripathi and Beg [90]. Analytical and numerical investigation for the peristaltic �ow of Johnson-

Segalman �uid through an axisymmetric tube with endoscope was carried out by Akbar and

Nadeem [91]. Simultaneous e¤ects of heat transfer and wall properties on peristaltic �ow of

Burger�s �uid was analyzed by Javed et al. [92]. A study of chyme dynamics through a diseased

intestine was carried out by Tripathi and Beg [93]. The Burgers�constitutive equation was used

to represent the rheology of chyme �uid through uniform porous medium. Hayat et al. [94]

analyzed the problem of peristaltic transport of Johnson-Segalman �uid with nanoparticles.

Abo-Dahab and Abd-Alla [95] discussed the peristaltic �ow of Je¤rey �uid in an asymmetric

channel. They focused on the e¤ects of magnetic �eld and rotation. Tripathi et al. [96]

developed a mathematical model using fractional Oldroyd-B model for bio-�uid transport due to

peristalsis. The analysis was made in a two-dimensional asymmetric porous-saturated channel.

Nadeem and Akbar [97; 98] investigated the e¤ects of heat transfer in peristaltic �ow of Johnson-

Segalman �uid and Herschel-Bulkley �uid in a non-uniform tube. Hayat et al. [99] extended

the ref. [64] by performing the heat transfer analysis. The e¤ects of heat transfer on peristaltic

transport of Je¤rey �uid through a vertical porous stratum were highlighted by Vajravelu et

al. [100]. The temperature and concentration variations in peristaltic annular �ow of Eyring-

Powell �uid were shown graphically by Akbar and Nadeem [101] : They have also discussed

the e¤ects of thermal and velocity slip [102] on peristaltic �ow of Je¤rey 6-constants �uid.

Mehmood et al. [103] have extended the �ow analysis in ref. [80] by including heat transfer

e¤ects. The peristaltic �ow of viscoelastic Je¤rey �uid through a channel with heated wall was

investigated by Tripathi et al. [104]. They showed that less pressure is needed to propel the

food bolus with high magnitude of Je¤rey parameter. Vajravelu et al. [105] examined the heat

transfer characteristics in peristaltic transport of Herschel�Bulkley Fluid in an elastic tube. Ali

et al. [106; 107] studied the peristaltic �ow of third order and micropolar �uids through curved
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channel. Peristaltic transport of Eyring�Powell �uid through a curved channel is examined

by Abbasi et al. [108]. Recently Hayat et al. [109] investigated the peristaltic transport of

Carreau �uid through a curved channel. Further recent investigation on peristaltic �ow in a

curved channel are made by Hina et al. [110], Hayat et al. [111; 112], Javid et al. [113] Ali [114] :

Peristaltic �ows of non-Newtonain nano�uids has also received great interest of the researchers.

This is because of diverse applications in engineering, medical and electrical appliances. For

further details, the reader is referred to refs. [115� 124].

Topological �uid dynamics is a mathematical discipline that studies topological features

of �ows with complicated trajectories and their applications to �uid motions and develops

group-theoretic and geometric points of view on various problems of hydrodynamical origin.

It is situated at crossroads of several disciplines, including Lie group, knot theory, integrable

systems and geometric inequalities. The intrusion of topological ideas in �uid mechanics goes

back to seminal work of Helmholtz [125] and Kelvin [126] who established that in inviscid �ow

governed by Euler equation, vortex lines more with the �uid or as we might now say are �Frozen

in Fluid�. The qualitative approach on streamline patterns using the theory of dynamical

systems is not a new idea in the �eld of �uid mechanics because a number of contributions

have been made in the far past. Particularly, the early works on separation was done by

Oswatitsch, Davey and Lighthill [127 � 129]. Hunt et al. [130] discussed the �ow around

obstacles by applying the topology to �ow visualization. Brons and Hartnack [131] analyzed

the streamline topologies and their bifurcations near simple degenerate critical points for two

dimensional viscous incompressible �ows away from the boundaries. They have used normal

forms coe¢ cients to discuss the bifurcations. Such a study near non-simple degenerate critical

point close to stationary wall was made by [132]. The analysis of topological features and

bifurcations for peristaltic �ow of Newtonian �uid was presented by Jimenez and Sen [133].
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Chapter 2

Peristaltic transport of

visco-elasto-plastic �uids in a planar

channel

In this chapter, we numerically investigate peristaltic transport of incompressible visco-elasto-

plastic �uids in a two-dimensional symmetric channel. The constitutive equation used for extra

stress tensor includes a number of well-known models like Maxwell A, Maxwell B, Johnson-

Segalman, Oldroyd-B and Bingham model as its special case. The mathematical modeling of the

problem is presented employing the laws of mass and momentum conservations. It is found that

the �ow equations in the wave frame reduce to a single nonlinear ordinary di¤erential equation

in stream function under the widely taken assumptions of long wavelength and low Reynolds

number. The solution of problem is obtained by two ways; namely, shooting method and Matlab

built-in routine bvp4c. The solutions obtained via both methods are in excellent agreement. A

parametric study based on bvp4c solution is performed to see the e¤ects of di¤erent parameters

on velocity pro�le, pressure rise per wavelength, frictional forces and trapping phenomenon. The

contents of this chapter are published in Zeitschrift Fur Naturforschung A 70 (8) (2015) 593�

603.
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2.1 Problem Formulation

Consider peristaltic �ow of an incompressible visco-elasto-plastic �uid in a two-dimensional

channel of width 2a1. The �ow is initiated by the sinusoidal wave trains that propagate on the

walls of channel with constant speed c. The shape of the wall surface is described by

H(X; t) = a1 + b1

�
cos

�
2�

�
(X � c t)

��
; (2.1)

in which a1 is half width of the channel, b1 the wave amplitude, � the wavelength, t the time,

(X;Y ) are the rectangular coordinates with X � axis lying along the channel and Y � axis

transverse to it. A schematic diagram of �ow geometry is illustrated in Fig. 2:1.

c

X

Ya1

b 1

y =H

y =­H

Fig. 2:1 Schematic diagram

The �ow is governed by continuity and momentum equations given through Eq. (1:12) and

Eq. (1:14).The peristaltic �ow is inherently unsteady and two-dimensional, therefore, we de�ne

velocity �eld

V = [U
�
X;Y ; t

�
; V
�
X;Y ; t

�
; 0] (2.2)

and gradient vector

r =
�
@

@X
;
@

@Y

�
: (2.3)

Here U and V are the longitudinal and transverse components of velocity.
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The general form of the Cauchy stress tensor (T) appearing in Eq. (1:14) is

T = �P I+ � : (2.4)

Here P is pressure, I the identity tensor and � is extra stress tensor which for the visco-elasto-

plastic �uid is de�ned by ([61]) as:

� + �1

�
(1� �1)

r
� + �1

�
�

�
= 2�

 
D+ �2

r
D

!
+ 2�0

^
D; (2.5)

where �1 is relaxation time, �1 (0 � �1 � 1) is a small scalar parameter, � is dynamic viscosity,

�2 is retardation time and �0 the basic yield stress. The tensors D and
^
D are de�ned by

D = (1=2)
�
L+ L

��
; L = rV,

^
D = D=

q
"1 + 2trD

2
; (2.6)

where � represents the transpose and "1 is a small positive quantity. As stated in ([61]), the

presence of "1 is bene�cial because it prevents from unboundedness when D ! 0. The upper

and lower convected derivatives, r and � for an arbitrary tensor A1 are de�ned respectively as

r
A1 =

dA1
dt

� LA1 �A1L
�
;

�

A1 =
dA1
dt

+ L
�
A1 +A1L: (2.7)

Now, we shall give a list of some well-known viscoelastic and plastic models that could be

derived from Eq. (2:5).

1) For �1 = �2 = �0 = 0, we have � = 2�D, which is constitutive relation for Newtonian �uid.

2) Setting �1 = �0 = 0 in Eq. (5) results in the following equation for extra stress tensor (� )

� + �1
r
� = 2�

 
D+ �2

r
D

!
; (2.8)

It can easily be identi�ed that Eq. (2:8) represents the constitutive equation of Oldroyd-B

model.

3) When �1 = �0 = �2 = 0, we get the constitutive relation for UCM, i.e.,

� + �1
r
� = 2�D; (2.9)
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4) For �1 = 1; �2 = �0 = 0; Eq. (2:5) reduces to LCM, represented by

� + �1
�
� = 2�D; (2.10)

5) Expression (2:5) reduces to Johnson-Segalman model for �2 = 0 and �0 = 0, i.e.,

� + �1

�
(1� �1)

r
� + �1

�
�

�
= 2�D: (2.11)

6) The Bingham model can be recovered from Eq. (2:5) by taking �1 = �2 = 0. This model is

capable of predicting yield stress e¤ects and has the following form

� = 2�D+ 2�0
^
D: (2.12)

On incorporating Eq. (2:2) and Eq. (2:3), the continuity equation (1:13) gets the following

form
@U

@X
+
@V

@Y
= 0, (2.13)

whereas the component form of momentum equation (1:14) in the absence of body forces, i.e.,

f = 0, gives

�

�
@

@t
+ U

@

@X
+ V

@

@Y

�
U = � @P

@X
+

@

@X
�XX +

@

@Y
�XY ; (2.14)

�

�
@

@t
+ U

@

@X
+ V

@

@Y

�
V = �@P

@Y
+

@

@X
�Y X +

@

@Y
�Y Y : (2.15)

The constitutive Eq. (2:5) with the help of Eq. (2:6) and Eq. (2:7) can be written as:

� + �1

24 (1� �1)n@�@�t + U @�
@X
+ V @�

@Y
� L� � �L�

o
+�1

n
@�
@�t + U

@�
@X
+ V @�

@Y
+ L� + �L

�o
35

= 2�

�
D+ �2

�
@D

@�t
+ U

@D

@X
+ V

@D

@Y
+ LD+DL

�
��

+ 2�0
^
D; (2.16)

where

L=

0@ @U
@X

@V
@X

@U
@Y

@V
@Y

1A : (2.17)
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The boundary conditions associated with the �ow problem under consideration are:

U = 0 at y = �H

The usual steady analysis can be performed by switching from laboratory frame (X;Y ) to the

wave frame (x; y). The following relationships between coordinates, velocities and pressures in

the two frames hold:

x = X � c�t, y = Y , u = U � c, v = V , p(x; y) = P (X;Y ; t); (2.18)

where u , v and p are the velocity components and pressure in the wave frame, respectively.

Invoking the transformations (2:18); Eq. (2:1) and Eqs. (2:13)� (2:16) take the form

h(x) = a1 + b1 cos

�
2�x

�

�
; (2.19)

@u

@x
+
@v

@y
= 0; (2.20)

�

�
u
@

@x
+ v

@

@y

�
u = �@p

@x
+

@

@x
�xx +

@

@y
�xy; (2.21)

�

�
u
@

@x
+ v

@

@y

�
v = �@p

@y
+

@

@x
�yx +

@

@y
�yy; (2.22)

� + �1

24 (1� �1)nu@�@x + v @�@y � L� � �L�o
+�1

n
u@�@x + v

@�
@y + L� + �L

�o
35

= 2�

�
D+ �2

�
u
@D

@x
+ v

@D

@y
� LD�DL�

��
+ 2�0

^
D: (2.23)
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By introducing the dimensionless �ow variables

x =
x

�
, y =

y

a1
, u =

u

c
, v =

v

c�
, t =

�ct

�
, p =

�a1p

�c
,

h =
h

a1
, � =

a1
c�
� ; h =

h

a1
, � =

b1
a1
(< 1); A1=

a1
c�
A1;

D =
a1
c�
D;

^
D =

a1
c�

^
D; L =

a1
c�
L; L� =

a1
c�
L
�

(2.24)

Eqs. (2:19)� (2:22) and Eq. (2:23) in components form can be put as

h(x) = 1 + � cos(2�x); (2.25)

@u

@x
+
@v

@y
= 0; (2.26)

Re �

�
u
@
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@
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�yy; (2.28)
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where the dimensionless numbers are

De1 =
�1c

a1
; De2 =

�2c

a1
; Bn =

a1�0
�c

; � =
a1
�
, Re =

�ca1
�
, " =

"1a
2
1

c2
(0 < "� 1) (2.32)

The subsequent analysis is based on the elimination of stresses from Eqs. (2:27) � (2:28).

However, it is di¢ cult to obtain the exact expressions of stresses from Eqs. (2:29) � (3:31).

Even if one is able to do that, Eqs. (2:27) � (2:28) after substitution of these expressions are

not easy to handle. The simplest case for a Newtonian �uid is even treated by approximate

methods or numerical technique. Not a single attempt is available in the literature where the

problem of peristaltic �ow of non-Newtonian �uid in a channel or tube is treated without using

some assumptions. Fortunately appropriate assumptions can be made due to the relevance of

peristalsis with physiology. For example, in small intestine, ureter and in many other ducts

where the bio-�uid is transported by peristaltic activity, the wavelength of the wave is quite

large as compared to the radius of the vessel. Further, the �ow in such ducts due to peristalsis

can be treated as creeping �ow i.e. the Reynolds number for such �ows is very small. The

above two assumptions are usually referred as the long wavelength and low Reynolds number

assumptions in literature. The parameter characterizing the ratio of radius of the channel to

wavelength of the peristaltic wave in present study is �. Thus for the �ow under consideration

we assume � � 0 and Re � 0. A typical example where the above assumptions may be valid is

the movement of chyme in small intestine where both � and Re are very much less than unity

[59]. Some relevant studies regarding the applications of long wavelength and low Reynolds

number assumptions in peristaltic �ows can be found in refs. [5; 32; 34; 65; 102; 103]. In view of
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aforementioned assumptions, Eqs. (2:27)� (2:31) reduce to

0 = �@p
@x
+

@

@y
�xy; (2.33)

0 = �@p
@y
; (2.34)
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�yy + 2�1De1�xy
@u

@y
= 0: (2.37)

From Eqs. (2:35)� (2:37); we can easily �nd the expressions for components of stress tensor as
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�yy = �2�1De1�xy
@u

@y
: (2.40)

Now on de�ning the stream function by the relation

u =
@ 
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; v = �@ 

@x
; (2.41)

the continuity equation (2:26) is identically satis�ed, while Eqs. (2:38)� (2:40) take the form
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�xx = 2De1(1� �1)�xy
@2 

@y2
� 2De2

�
@2 

@y2

�2
; (2.43)

�yy = �2�1De1�xy
@2 

@y2
: (2.44)
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Substituting the value of �xy in Eq. (2:33) and eliminating the pressure between Eqs. (2:33)

and (2:34) results in the following compatibility equation

@2
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@2 
@y2

�2
3775 = 0: (2.45)

The boundary conditions in the wave frame for symmetric case are ([64]) as

 = �q
2
,

@ 

@y
= �1, at y = �h, (2.46)

 =
q

2
,

@ 

@y
= �1, at y = h, (2.47)

q = � � 2. (2.48)

where � and q are the dimensionless mean �ow rates in the �xed and wave frames, respectively.

The Dritchlet boundary conditions on  follows from the de�nition of �ow rate in wave frame,

i.e.,

q =

hZ
�h

udy: (2.49)

In view of Eq. (2:41), one can write

q =

hZ
�h

@ 

@y
dy =  (h)�  (�h) : (2.50)

Eq. (2:50) is satis�ed if we choose  (h) = q=2 and  (�h) = �q=2. The Neuman boundary

conditions on  represent the well known no-slip conditions.

The pressure rise per wavelength (�P�) and frictional forces (F�) on the wall are de�ned

by

�P� =

1Z
0

�
dp

dx

�
dx; (2.51)

F� =

1Z
0

h2
�
�dp
dx

�
dx: (2.52)
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2.2 Solution Methodology

An exact solution of Eq. (2:45) subject to boundary conditions (2:46) and (2:47) is di¢ cult

to obtain due to its nonlinear nature. Therefore, we have computed numerical solutions by

using shooting method and Matlab built-in routine bvp4c which is based on the collocation

method. bvp4c is a �nite di¤erence code that implements the 3-stage Labatto IIIa formula.

This is collocation formula and the collocation polynomial provides a C1�continuous solution

that is fourth order accurate. Mesh selection and error control are based on the residual of the

continuous solution. Analytical condensation is used when the system of algebraic equations is

formed. Further details can be found in [134]. Table. 2:1 and Fig. 2:2 present a comparison of

both solutions. This comparison shows that both the solutions are in excellent agreement. In

limiting case when De1; De2 and Bn approach to zero, our results reduce to those for the case

of Newtonian �uid. For rest of the plots, the solution obtained by bvp4c is utilized.

2.3 Results and Discussion

In this section, we discuss the numerical results through their graphical representation. The

e¤ects of emerging parameters (De1; De2 and Bn) on velocity pro�le, pressure rise per wave-

length, frictional forces, normal and shear stresses and trapping phenomenon.

The e¤ects of model parameters on velocity pro�le are shown in Figs. 2:3 to 2:5. In the model

parameters, De1;2 highlight the e¤ects of elasticity whereas Bn shows the e¤ects of plasticity.

From Fig. 2:3 we note that the magnitude of the velocity decreases at the centre of channel by

increasing elasticity (De1), which perhaps is a result of increased shear thickening of viscosity.

Since De1 and De2 are concerned with relaxation and retardation times, so their e¤ects on

velocity pro�le should also be opposite. From Fig. 2:4 we note that De2 leaves opposite e¤ects

to the e¤ects of De1 on velocity pro�le because it increases at the centre whereas it decreases

near the walls. From Fig. 2:5 we observe that increasing plasticity (Bn) results in decrease of

velocity at the center and for the larger values of Bn (means for higher values of yield stress),

�uid behaves like a solid. For such values of Bn the velocity pro�le approaches to uniformity.

Figs. 2:6�2:11, have been plotted to see the in�uence of model parameters on pressure rise

per wavelength (�P�) and frictional forces (F�) : These �gures show that De2 and Bn leave
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similar e¤ects on �P� and F� whereas the e¤ects of De1 on �P� and F� are opposite to the

e¤ects that of De2 and Bn. Fig. 2:6 shows that �P� decreases by increasing elasticity (De1)

up to a certain critical value of �ow rate (�) in retrograde pumping region (q < 0 and �P� > 0)

and peristaltic pumping region (q > 0 and �P� > 0) but it begins to increase after this critical

value in augmented pumping region (q > 0 and �P� < 0). Fig. 2:7 also shows an increase in

�P� and F� in retrograde and peristaltic pumping regions by increasing De2 while it predicts

a decrease in �P� and F� in augmented pumping region. From Fig. 2:9 we note that frictional

forces increase up to a certain critical value of �ow rate by increasing De1, while they decrease

onward. It means that a resistance caused by frictional forces is observed for q < �0:7 but

these forces get weaker afterwards. The e¤ects of De2 and Bn on frictional forces are similar

but opposite to the e¤ects of De1.

We have prepared Figs. 2:12 � 2:14 in order to see the behavior of stresses by increasing

the value of parameters De1; De2 and Bn. From Figs. 2:12 and 2:13 we note that the normal

stress components �xx and �yy decrease in the entire channel by increasing all the parameters

De1; De2 and Bn. The shear stress (�xy) pro�le for di¤erent values of parameters is presented

in Fig. 2:14: From this �gure we note that �xy increases by increasing De1 but a continuous

decrease in its pro�le is observed by increasing De2 and Bn:

Now we report some results about an interesting phenomenon in peristalsis, called trapping.

In this phenomenon an amount of �uid called Bolus is trapped due to contraction of walls. To

see the in�uence of non-Newtonian parameters De1; De2 and Bn on trapping, we have prepared

Figs. 2:15� 2:17: Here we observe that these parameters a¤ect the trapping phenomenon in a

similar way as they a¤ected the velocity pro�le. In fact size and circulation of bolus decrease

by increasing De1 and Bn. However, its size and circulation increases for large values of De2.
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y V el: (BV P4c) V el:(Shooting Method) V el:(BV P4c) V el:(Shooting Method)

�1:60 �1:0000 �1:0000 �1:0000 �1:0000

�1:44 �0:7497 �0:7497 �0:7314 �0:7314

�1:28 �0:5353 �0:5353 �0:5041 �0:5041

�1:12 �0:3535 �0:3535 �0:3186 �0:3186

�0:96 �0:2019 �0:2019 �0:1737 �0:1737

�0:80 �0:0782 �0:0782 �0:0649 �0:0650

�0:64 0:0195 0:0195 0:0146 0:0145

�0:48 0:0929 0:0929 0:0710 0:0709

�0:32 0:1438 0:1438 0:1087 0:1087

�0:16 0:1735 0:1735 0:1304 0:1304

0:00 0:1832 0:1832 0:1375 0:1375

0:16 0:1735 0:1735 0:1304 0:1304

0:32 0:1438 0:1437 0:1087 0:1087

0:48 0:0929 0:0929 0:0710 0:0709

0:64 0:0195 0:0195 0:0146 0:0145

0:80 �0:0782 �0:0782 �0:0649 �0:0650

0:96 �0:2019 �0:2019 �0:1737 �0:1737

1:12 �0:3535 �0:3535 �0:3186 �0:3186

1:28 �0:5353 �0:5353 �0:5041 �0:5041

1:44 �0:7497 �0:7497 �0:7314 �0:7314

1:60 �1:0000 �1:0000 �1:0000 �1:0000

Table. 2:1: Comparison of solutions with � = 1:4; � = 0:6, De1 = 0:5, 1:5;

De2 = 0:1; 0:3; " = 0:2; �1 = 0:8; Bn = 0:1:

2.4 Concluding Remarks

The problem of peristaltic motion is investigated in a planar channel under the assumptions

of long wavelength and low Reynolds number. We considered a fairly general constitutive
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equation for extra stress tensor that describes the characteristics of viscosity, elasticity and

plasticity. Therefore, the governing nonlinear di¤erential equations involve three non-Newtonian

parameters characterizing the viscous, elastic and plastic behaviors of the �uid. The analysis

reveals the following main observations:

� The velocity pro�le decreases (increases) at the center (other parts of channel) due to

increasing elasticity (De1) whereas opposite e¤ects are noticed in case of De2:

� Increasing plasticity (Bn) results in rigidity of material and therefore the velocity pro�le

becomes uniform at the center of channel. In case of strong plasticity the velocity pro�le

becomes uniform in most part of the channel except very close to the wall of channel.

� Normal stress components �xx and �yy decrease by increasing De1; De2 and Bn.

� �xy increases (decreases) with De1 (De2 and Bn).

� The size and circulation of trapped bolus decrease by increasing elasticity (De1) and

plasticity (Bn). However, the size of bolus increases and it circulates faster by increasing

De2.
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Chapter 3

An analysis of peristaltic �ow of

Finitely Extendable Nonlinear

Elastic-Peterlin �uid in a two

dimensional planar channel and

axisymmetric tube

Peristaltic motion of non-Newtonian �uid characterized by Finitely Extendable Nonlinear Elastic-

Peterlin (FENE-P) �uid model is investigated in this chapter. A background for development

of the di¤erential constitutive equation of this model has been provided. The �ow analysis

is carried out both for two-dimensional planar channel and axisymmetric tube. The govern-

ing equations have been simpli�ed under the widely used assumptions of long wavelength and

low Reynolds number in a frame of reference that moves with constant wave speed. An exact

solution is obtained for the stream function and longitudinal pressure gradient with no slip

condition. We have portrayed the e¤ects of Deborah number and extensibility parameter on

velocity pro�le, trapping phenomenon and normal stress. It is observed that normal stress is

an increasing function of Deborah number and extensibility parameter. As far as the velocity

at channel (tube) center is concerned, it decreases (increases) by increasing Deborah number
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(extensibility parameter). The non-Newtonian rheology also a¤ect the size of trapped bolus

in a sense that the size of trapped bolus decreasses (increases) by increasing Deborah number

(extensibility parameter). Further, it is observed through numerical integration that both Deb-

orah number and extensibility parameter have opposite e¤ects on pressure rise per wavelength

and frictional forces at the wall. Moreover, it is shown that the results for Newtonian model

can be deduced as a special case of FENE-P model. The contents of this chapter are published

in the journal of Zeitschrift Fur Naturforschung A, 69a; 462� 472 (2014).

3.1 Formulation of the Problem

The dumbbell model with the Warner force law and Peterlin approximation for the average

spring force is called FENE-P model. This model was rooted in kinetic theory and was initially

developed to represent the behavior of dilute polymer solutions. The kinetic theory assumes that

the motion of the dumbbells is the combined result of the hydrodynamic force, the Brownian

motion force and the connector force. This model leads to a di¤erential constitutive equation

that was provided in the form of extra stress tensor in Bird et. al. [135]. Following Chilcott and

Rallison [136], we prefer to work with the model given in the form of con�guration tensor A,

de�ned by A = 3 hRRi =R2e, in which R is end-to-end vector that connects the dumbbell beads,

h�i represents an ensemble average over the con�guration space and Re is the characteristic

length. The connector force of the spring in the original FENE model follows the expression

[137] proposed by Warner

F(c) =
H0

1� (R �R) =R20
R; (3.1)

where H0 is the Gaussian sti¤ness in the limit of small molecular extension and R0 is the

maximum allowable dumbbell length. The nonlinearity in (3:1) induces the non-closure problem

usually encountered in many areas of statistical physics and a closed form constitutive equation

is not possible unless an approximation is made. A well known approximation was made by

Peterlin [138]: According to which the con�guration dependent nonlinear factor in (3:1) is

replaced by a self-consistently averaged term. Thus we can write

F (c) � H0
1� hR2i =R20

R � fH0R; (3.2)
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where


R2
�
is already de�ned and (�) means the identically equivalent. After making use of

con�guration tensor we note that the dimensionless function f gets the form [137],

f = f (trA) =
L2

L2 � trA : (3.3)

Here L2 is a measure of the extensibility of the dumbbells and is de�ned as L2 = 3R20=R
2
e. It is

also related to b(= H0R
2
0=k1T ) by L

2 = b+ 3 as was used in [135]; where k1 is the Boltzmann

constant and T the absolute temperature.

Now the ensemble averaging of equations of motion for dumbbells yield the following evo-

lution equation for A, ([135]; [139])

r
A = � 1

�1
(fA� aI) : (3.4)

Eq. (3:4) must be used in conjunction with the Kramer�s relation for polymeric stress

� =
�p
�1
(fA� aI) : (3.5)

In above equations, �p is the zero shear rate polymer viscosity, �1 the relaxation time and a is a

parameter that depends on extensibility parameter (L2) by a = 1=
�
1� 3=L2

�
: The parameter

a has the relation with the physical properties by a = 1 +
�
3k1T=H0R

2
0

�
and is also related to

b by a = 1 + (3=b): On combining (3:4) and (3:5), we get

r
A = ��=�p (3.6)

Generally, the operator d=dt satis�es the equation

d

dt
(fA) = f

�
r
A

�
+A

df

dt
(3.7)

for any function f: Here we would like to mention that for axisymmetric case the material

derivative d=dt is de�ned by
d

dt
=

@

@t
+ V R

@

@R
+ V Z

@

@Z
(3.8)

in which V R and V Z are the velocity components in radial and axial directions respectively.
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If we apply the upper convected operator r to (3:5), we �nd

r
� =

�p
�1

��
f
r
A

�
� a

r
I

�
=
�p
�1

��
f
r
A

�
+ 2aD

�
: (3.9)

Here we used the result
r
I = �2D by following [61].

3.1.1 Flow in a planar channel

The geometry of the planar channel is already explained in section 2.1 of the previous chapter.

After making use of the transformations (2:18), dimensionless variables (2:24) and de�nition

of stream function (2:41), the form of material derivative (1:11) in terms of stream function

becomes

d

dt
= �

�
@ 

@y

@

@x
� @ 

@x

@

@y

�
: (3.10)

The governing equations for the problem under consideration given Eqs. (2:25) � (2:27): In

view of the de�nition of the stream function (2:41), these equations take the following form

Re �

�
 y

@

@x
�  x

@

@y

�
 y = �@p

@x
+ �

@

@x
�xx +

@

@y
�xy; (3.11)

�Re �3
�
 y

@

@x
�  x

@

@y

�
 x = �@p

@y
+ �2

@

@x
�yx + �

@

@y
�yy: (3.12)

Employing the long wavelength approximation [102; 103], the material derivative (3:21) van-

ishes, i.e., d=dt = 0. Using this result in (3:7) and then incorporating the resulting equation in

Eq. (3:9), we obtain an equation that yields an explicit relation between
r
� and

r
A that is

r
� =

�p
�1

�
f
r
A+ 2aD

�
: (3.13)

From Eqs. (3:13) and (3:6), we get the constitutive equation of extra stress tensor for the

FENE-P model

f� + �1
r
� = 2a�pD. (3.14)
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Now it is desired to express f in terms of � , for which we take the trace of (3:5) and get

trA =
3a+ �1

�p
tr�

f
: (3.15)

Using above equation in (3:3), we �nd

f = 1 +
3a+ (�1=�p)(tr(� ))

L2
: (3.16)

Upon making use of (2:6) for the expression of tensor D and the de�nition of upper convected

derivative from (2:7), the component forms of Eq. (3:27) in �xed frame (X;Y ) yield

f�XX + �1

��
@

@t
+ U

@

@X
+ V

@

@Y

�
�XX �

��
rV

��
�
�
XX

�
�
�
�
rV

��
XX

�
= a�p

�
rV + (rV)�

�
XX

; (3.17)

f�XY + �1

��
@

@t
+ U

@

@X
+ V

@

@Y

�
�XY �

��
rV

��
�
�
XY

�
�
�
�
rV

��
XY

�
= a�p

�
rV + (rV)�

�
XY

; (3.18)

f�Y Y + �1

��
@

@t
+ U

@

@X
+ V

@

@Y

�
�Y Y �

��
rV

��
�
�
Y Y

�
�
�
�
rV

��
Y Y

�
= a�p

�
rV + (rV)�

�
Y Y

: (3.19)

Invoking Eq. (2:18) and Eq. (2:24), Eqs. (3:16) � (3:19) can be put in the following

dimensionless form

f = 1 +
3a+ (De) (tra (�))

L2
(3.20)

f�xx +De�

��
u
@

@x
+ v

@

@y

�
�xx � 2

�
�xx

@u

@x
+ ��yx

@v

@x

��
= 2a��xx

@u

@x
; (3.21)

f�xy +De�

��
u
@

@x
+ v

@

@y

�
�xy �

�
�xy

@u

@x
+ �2

@v

@x

��
= a

�
�2
@v

@x
+
@u

@x

�
+De

�
�xx

@u

@x
+ ��yx

@v

@x

�
; (3.22)
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f�yy +De

�
�

�
u
@

@x
+ v

@

@y

�
�yy � 2

�
�xy

@u

@y
+ ��yy

@v

@y

��
= 2a�2

@v

@y
: (3.23)

After using the de�nition of stream function through (2:41) in (3:20)� (3:23) and then em-

ploying the long wavelength and low Reynolds number assumptions on the resulting equations,

we have

0 = �@p
@x
+

@

@y
�xy; 0 = �@p

@y
; (3.24)

Similarly, Eqs. (3:11) and (3:12) give

f�xx = 0; f�xy = De�xx yy + a yy; f�yy = 2De�xy yy. (3.25)

Now on solving Eq. (3:24) and Eq. (3:25) for the components of extra stress tensor and f , we

arrive at

f = 1+
3a+ (2De

2

a )(�xy)
2

L2
; �xy =

�
y
@p

@x
+A1

�
; �yy =

2De(�xy)
2

a
= tra(� ); �xx = 0; (3.26)

where A1 is a constant of integration. The boundary conditions in the wave frame are same as

in [1140]

 = 0,
@u

@y
=
@2 

@y2
= 0, at y = 0, (3.27)

 = q,
@ 

@y
= �1, at y = h, (3.28)

� � 1 = q =

Z h

0

@ 

@y
dy =  (h)�  (0). (3.29)

By means of (3:26) and the second boundary condition in (3:27), we obtain the following

expression of velocity gradient from (3:25):

@2 

@y2
=
pxy

a

�
1 +

3a+ (2De2=a)p2xy
2

L2

�
: (3.30)
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Since
�
1 + 3a

L2

�
=a is unity by de�nition of a, therefore we can write (3:30) as

@2 

@y2
=
@u

@y
= pxy

�
1 +

2De2

a2L2
p2xy

2

�
: (3.31)

Integrating (3:31) and making use of �rst condition in (3:27) and the second condition in (3:28);

we get the following expression of stream function

 = �y � dp

dx

 
(1=2) (h2y � y3=3) + (5B1=4)(h4y � y5=5)

�
dp

dx

�2!
: (3.32)

Now using the remaining boundary condition in (3:28), i.e.,  = q at y = h, we �nd

dp

dx
=
�2
�
21=3

�
h8B1 + 2

2=3
�
�27B21 (h+ q)h10 +

p
B31h

20 (4h4 + 729(h+ q)2B1)
�2=3

6h5B1

�
�27B21 (h+ q)h10 +

p
B31h

20 (4h4 + 729(h+ q)2B1)
�1=3 ; (3.33)

where B1 = 2De2=5a2L2: The pressure rise per wavelength �P� and frictional forces F� on the

wall are de�ned through Eqs. (2:51) and (2:52).

�P� =

1Z
0

�
dp

dx

�
dx; (3.34)

F� =

1Z
0

h2
�
�dp
dx

�
dx (3.35)

3.1.2 Flow in an axisymmetric tube

Before proceeding ahead, we mention here that the alternative notations for coordinates, ve-

locity components and stresses will be used for the �ow in an axisymmetric tube and rest of

the quantities/parameters will be denoted by the same symbols as used in the previous section.

Now we consider the peristaltic transport of an incompressible viscoelastic �uid represented by

FENE-P model in a �exible axisymmetric tube of radius a1. In cylindrical coordinates
�
R;Z

�
the shape of tube wall is given as

H(Z; t) = a1 + b1

�
cos

�
2�

�
(Z � c t)

��
: (3.36)
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A schematic diagram of the �ow geometry is given below.
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Fig. 3.1 Geometry of the problem for axisymmetric case

The �ow is governed by the following equations:

1

R

@

@R

�
RV R

�
+
@V Z

@Z
= 0, (3.37)

�
d

dt
V R = �@P

@R
+
1

R

@

@R

�
R�RR

�
+

@

@Z
�RZ ; (3.38)

�
d

dt
V Z = �@P

@Z
+
1

R

@

@R

�
R�ZR

�
+

@

@Z
�ZZ ; (3.39)

where V R and V Z are radial and axial components of velocity, respectively. The material

derivative d=dt is de�ned by
d

dt
=

@

@t
+ V R

@

@R
+ V Z

@

@Z
(3.40)

The coordinates, velocities and pressures in the laboratory frame (R;Z) and the wave frame
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(r; z) are related through the following expressions:

z = Z � c�t, r = R, vz = V Z � c, vr = V R, p(r; z) = P (R;Z; t); (3.41)

where vz , vr are the axial and radial components of velocity, respectively and p is the pressure

in the wave frame. Making use of (3:41); de�ning the dimensionless variables as

z =
z

�
, r =

r

a1
, vz =

vz
c
, vr =

vr
c�
, t =

�ct

�
, p =

�a1p

�pc
, h =

h

a1
, � =

a1
c�p

� (3.42)

and the stream function by

vr = �
1

r

@ 

@z
, vz =

1

r

@ 

@r
; (3.43)

the continuity equation (3:37) is identically satis�ed whereas Eq. (3:36) and Eqs. (3:38)�(3:40)

h (z) = 1 + �a cos 2�z; (3.44)

Re �3
�
vr
@

@r
+ vz

@

@z

�
vr = �@p

@r
+
�

r

@ (r� rr)

@r
+ �2

@� rz
@z

; (3.45)

Re �

�
vr
@

@r
+ vz

@

@z

�
vz = �@p

@z
+
1

r

@ (r� zr)

@r
+ �

@� zz
@z

; (3.46)

d

dt
= �

�
vr
@

@r
+ vz

@

@z

�
: (3.47)

Here �a = b1=a1 is the amplitude ratio for the axisymmetric case. On using the assumption

of long wavelength in Eq. (3:47), we have d=dt = 0: The constitutive equation for extra stress

is already given in Eq. (3:14). After making use of Eq. (2:6) and the de�nition of upper

convective derivative again, the component form of Eq. (3:14) in �xed frame
�
R;Z

�
is

f�RR + �1

��
@

@t
+ V R

@

@R
+ V Z

@

@Z

�
�RR �

��
rV

��
�
�
RR
�
�
�
�
rV

��
RR

�
= a�p

�
rV + (rV)�

�
RR

; (3.48)
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f�RZ + �1

��
@

@t
+ V R

@

@R
+ V Z

@

@Z

�
�RZ �

��
rV

��
�
�
RZ
�
�
�
�
rV

��
RZ

�
= a�p

�
rV + (rV)�

�
RZ

; (3.49)

f�ZZ + �1

��
@

@t
+ V R

@

@R
+ V Z

@

@Z

�
�ZZ �

��
rV

��
�
�
ZZ
�
�
�
�
rV

��
ZZ

�
= a�p

�
rV + (rV)�

�
ZZ

: (3.50)

Incorporating Eq. (3:40) and Eq. (3:41), Eqs. (3:48)� (3:50) in dimensionless form become

f� rr +De

�
�

�
vr
@

@r
+ vz

@

@z

�
� rr � 2

�
�� rr

@vr
@r

+ � zr
@vz
@r

��
= a�

@vr
@r

; (3.51)

f� rz +De

�
�

�
vr
@

@r
+ vz

@

@z

�
� rz �

�
�� rz

@vr
@r

+ � zz
@vz
@r

��
= a

�
�2
@vr
@z

+
@vz
@r

�
+De�

�
�2� rr

@vr
@z

+ �� rz
@vz
@z

�
; (3.52)

f� zz +De

�
�

�
vr
@

@r
+ vz

@

@z

�
� zz � 2

�
�2� rz

@vr
@z

+ �� zz
@vz
@z

��
= a�

@vz
@z

: (3.53)

Now on applying the assumptions of long wavelength and low Reynolds number, the scalar

momentum equation (3:45) and (3:46) and Eqs. (3:51)� (3:53) yield

0 = �@p
@r
; 0 = �@p

@z
+
1

r

@ (r� zr)

@r
; (3.54)

f� rr = 2De� zr
@

@r

�
1

r

@ 

@r

�
; f� rz = De� zz

@

@r

�
1

r

@ 

@r

�
+ a

@

@r

�
1

r

@ 

@r

�
; f� zz = 0:(3.55)

After little algebraic manipulations, we can have

� rz =
pzr

2
+
A2
r
; f = 1 +

3a+ (2De2=a) (� rz)
2

L2
; � rr =

2De (� rz)
2

a
= tra(� ); � zz = 0; (3.56)

where A2 is the constant of integration. The boundary conditions in the wave frame are de�ned
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as [142]

 = 0,
@

@r

�
1

r

@ 

@r

�
= 0, at r = 0, (3.57)

 = qa,
1

r

@ 

@r
= �1, at r = h, (3.58)

� � 1
2

�
1 +

�2a
2

�
= qa =

Z h

0

@ 

@r
dy =  (h)�  (0). (3.59)

Now adopting the same procedure for obtaining stream function and pressure gradient as

described for planar case, we arrive at the following expressions:

 = �r
2

2
+
1

2

dp

dz

 
(1=8) (2h2r2 � r4) + C

2
(3h4r2 � r6)

�
dp

dz

�2!
; (3.60)

dp

dz
=

�62=3h10C + 61=3
�
�144C2

�
h2 + 2qa

�
h12 +

p
6

r
C3h24

�
h6 + 3456 (h2 + 2qa)

2C
��2=3

12h6C

�
�144�2 (h2 + 2qa)h12 +

p
6

r
C3h24

�
h6 + 3456 (h2 + 2qa)

2C
��1=3 ;

(3.61)

where C = De2=24a2L2: The pressure rise per wavelength �P� and frictional forces F� are

de�ned through the following formulas:

�P� =

1Z
0

�
dp

dz

�
dz; (3.62)

F� =

1Z
0

h2
�
�dp
dz

�
dz: (3.63)

3.2 Discussion of the Results

We break up this section into three subsections namely, �ow behavior, trapping and pumping

phenomena. The detail of these subsections is as follows:

3.2.1 Flow behavior

This part describes the e¤ects of De and (L2) on the velocity pro�le and the normal stresses

which are depicted in Figs. (3:2) � (3:4). Here we observe that these parameters leave the
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opposite e¤ects on the velocity pro�le but the same e¤ects on the normal stresses. From Figs.

3:2 and 3:3 we observe that the magnitude of the velocity increases at the centre of the channel

with the increase of L2 but decreases by increasing De. We also note that the magnitude of

velocity pro�le is greater for axisymmetric �ow compared with the case of planar �ow. Here it

is important to note that the results for Newtonian �uid can be obtained when either De �! 0

or L2 �!1: A departure from Newtonian behavior is observed for small values of L2 or large

values of De. In fact the velocity pro�le shows shear thinning behavior and become �atter

as L2 �! 1 or De �! 0: We also observe that the velocity �eld is parabolic for both the

Newtonian and FENE-P �uids. Fig. 3:4 highlights the e¤ects of De and L2 on normal stresses

for the axisymmetric case. It is seen that the normal stresses increase by increasing these

parameters.

3.2.2 Trapping Phenomenon

This subsection describes the e¤ects of pertinent parameters on trapping phenomenon, through

Figs. 3:5 and 3:6: Figs. 3:5a; b show the e¤ects of De on trapping for �xed value of L2. We

observe that the size of the trapped bolus decreases by increasing De. Moreover, the size of

trapped bolus is greater in the case of axisymmetric �ow when compared with the planar �ow.

From Figs. 3:6a; b, we observe that L2 leaves the opposite e¤ects on trapping phenomenon in

comparison with De. Thus we may interpret from all these �gures that size and circulation of

the trapped bolus reduces for a shear-thinning �uid in comparison with Newtonian �uid.

3.2.3 Pumping Phenomenon

Here our focus is to explore the e¤ects of FENE-P model parameters on pressure rise per

wavelength �P� and frictional forces F�: For the analysis we have performed numerical inte-

gration for the evaluation of integrals appearing in Eqs. (3:34), (3:35), (3:63) and (3:64) using

Mathematica. The results are shown in Figs. 3:7 and 3:8. We have depicted the results only

for axisymmetric case and one can easily observe the same e¤ects for the channel �ow only

with qualitative di¤erences, i.e., pressure rise attains higher values in the axisymmetric case

compared with the planar case.

Fig. 3:7 shows the e¤ects of De and L2 on �P�: Since the peristaltic �ow shows di¤erent
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interesting behaviors, therefore Fig. 3:7 is divided into following four sub-regions:

The region in which �P� > 0 and � < 0 is called retrograde pumping region.

The region where �P� > 0 and � > 0 is called as peristaltic pumping region.

Third region corresponds to �P� = 0, which is called free pumping region.

The region in which �P� < 0 but � > 0 is called augmented pumping region.

Fig. 3:7 shows that �P� decreases by increasing the �ow rate �: Moreover, �P� shows a

linear behavior for Newtonian case whereas nonlinear behavior for the FENE-P �uid. We also

note that the De and L2 leave the opposite e¤ect on �P� in the retrograde and peristaltic

pumping regions i.e., �P� decreases (increases) by increasing De (L2). However, in augmented

pumping region the situation is reversed. As already mentioned, large values of De or small

values of L2 correspond to shear thinning �uid. Then we may conclude from Figs. 3:7a and b

that �P� in peristaltic pumping region is greater for Newtonian �uid in comparison with the

shear thinning �uid. Such observations are also reported in some previous studies [42; 43].

Fig.3:8 presents the variation of frictional force F� against the mean �ow rate � for di¤erent

values of De and L2. From this �gure we see that F� increases by increasing � and show linear

behavior for Newtonian case whereas nonlinear behavior for the FENE-P �uid. We observe

from Fig. 3:8a that F� resists the �ow till � � 0:3 and gets weak after this critical value. The

resistance provided by F� is greater for the Newtonian �uid in comparison with with shear

thinning �uid. The e¤ect of De on the frictional forces is opposite to that of L2 and also with

a di¤erent value of �ow rate � = 0:27.
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Fig. 3:2: Velocity pro�le for di¤erent values of extensibility parameter with � = 0:7; �a = 0:6:
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Fig. 3:7: Pressure rise per wavelength (�P�) with �a = 0:5
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Fig. 3:8: Frictional forces (F�) with �a = 0:5
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3.3 Concluding remarks

From the presented analysis we conclude that Deborah number (De) and extensibility para-

meter (L2) leave opposite e¤ects on �ow characteristics, trapping and pumping phenomena.

Speci�cally, we �nd that velocity �eld attains higher values at the centre of the channel for

the case of axisymmetric �ow when compared with the planar �ow. Moreover, the velocity

pro�le decreases (increases) by increasing De (L2) at the centre of the channel whereas it shows

opposite trend near the walls. The velocity �eld is parabolic both for Newtonian and FENE-P

�uids. As for as normal stress is concerned, it increases by increasing both De and L2: If we

look into the pumping phenomenon we come to know that �P� increases in the retrograde,

peristaltic and free pumping regions, whereas it decreases in the augmented pumping region, by

increasing L2. The e¤ects of De on �P� are quite opposite to that of L2. In addition, frictional

forces (F�) resist the �ow below a certain critical value of the �ow rate and this resistance

increases in going from FENE-P to Newtonian �uid. Furthermore, F� shows linear behavior for

Newtonian case whereas its behavior is non-linear behavior for FENE-P �uid. Coming on the

trapping phenomenon, we infer that the size of trapped bolus reduces by increasing De while

it increases by increasing L2:
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Chapter 4

Slip e¤ects on streamline topologies

and their bifurcations for peristaltic

�ows of a viscous �uid

We discuss the e¤ects of the surface slip on streamline patterns and their bifurcations for

peristaltic transport of a Newtonian �uid. The �ow is in a two-dimensional symmetric channel

or an axisymmetric tube. An exact expression for the stream function is obtained in the

wave frame under the assumptions of long wavelength and low Reynolds number for both

cases. For the discussion of the particle path in wave frame, a system of nonlinear autonomous

di¤erential equations is established and the methods of dynamical systems are used to discuss

the local bifurcations and their topological changes. Moreover, all types of bifurcations and

their topological changes are discussed graphically. Finally, the global bifurcation diagram is

used to summarize the bifurcations. The contents of this chapter are published in Chinese

Physics B Vol. 23, No. 6 (2014) 064701.

81



4.1 Problem formulation

4.1.1 Channel Flow

Consider the peristaltic transport of an incompressible viscous �uid in a two dimensional channel

of width 2a1. The �ow is initiated by the sinusoidal wave trains propagating on the channel walls

with constant speed c. The shape of the wall surface is characterized by the same expression

as in Ref: [133; 143]

H(X; t) = a1 � b1
h
1� cos2

��
�
(X � ct)

�i
; (4.1)

The geometry of the problem is given below.
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­1

­0.5
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b1 a
1

λ c

Y Y = H

Y = ­ H

Fig:4:1 Geometry for planar case

It is interesting to note that expression (4:1) describes only a wave of contraction at the channel

wall. Here the governing equations of the problem are the same as considered in last chapter.

The di¤erence comes through the constitutive equation of extra stress tensor. We have consid-

ered the case of Newtonian �uid therefore the constitutive equation for extra stress tensor is

given by

� = 2�D: (4.2)

The mass conservation equation for present scenario does not di¤er from the corresponding
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equation in chapter 2. However, the component form of momentum equations (2:14) and (2:15)

in view of Eq. (2:6) and Eq. (4:2) becomes

�

�
@

@t
+ U

@

@X
+ V

@

@Y

�
U = � @P

@X
+ �

�
@2U

@X
2 +

@2 �U

@Y
2

�
; (4.3)

�

�
@

@t
+ U

@

@X
+ V

@

@Y

�
V = �@P

@Y
+ �

�
@2V

@X
2 +

@2V

@Y
2

�
: (4.4)

Now after making use of well known transformations between the laboratory
�
X;Y

�
and moving

(x; y) frames, non-dimensionalizing using Eq. (2:24), introducing the stream function through

(2:41) and eliminating the pressure gradient from the resulting forms of the Eq. (4:3) and Eq.

(4:4) ; we get the following equation

Re �
�
 yr2 x �  xr2 y

�
= r2(r2 ): (4.5)

In non-dimensional form, equation (4:1) reduces to

h(x) = 1� �
�
1� cos2 �x

�
: (4.6)

The modi�ed Laplacian r2 is de�ned by the relations

r2 = �2
@2

@x2
+

@2

@y2
(4.7)

After taking into account the long wavelength and low Reynolds number assumptions, Eq. (4:5)

reduce to a similar equation as obtained in Ref. [133]

@4 

@y4
= 0. (4.8)

The dimensionless volume �ow rate and boundary conditions in the wave frame are

 = 0,
@2 

@y2
= 0, at y = 0, (4.9a)

 = q,
@ 

@y
+ �

@2 

@y2
= �1, at y = h, (4.9b)
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q =

Z h

0

@ 

@y
dy =  (h)�  (0). (4.10)

Here � (= �1=a1; �1 is the dimensional slip parameter) is the dimensionless slip parameter.

Since the �ow is symmetric with respect to centerline, therefore we shall discuss the problem

in the domain y 2 [0; h]:

Solution of the problem

The solution of Eq. (4:8) subject to boundary conditions (4:9a) and (4:9b) is

 =
1

h

�
3qh+ h2 + 6�q

2h+ 6�

�
y �

�
q + h

2h3 + 6�h2

�
y3: (4.11)

Three di¤erent �ow situations, namely, backward �ow, trapping and augmented �ow occur.

Backward �ow refers to the case in which the whole �ow goes in the direction opposite to the

travelling wave. Trapping is the situation where the streamline splits to enclose an amount of

�uid, called a bolus. The augmented �ow occurs when the trapped bolus splits and there exist

some �ow going in the forward direction.

Flow Field as a Nonlinear Dynamical System

In this section, we employ the idea of the qualitative theory of dynamical systems. At a

particular instant, say t0, the motion of individual particles moving in paths de�ned by
�
x =

[u(x; y; t); v(x; y; t); 0] is identical to instantaneous streamlines, in other words, we have
�
x =

[u(x; y; t0); v(x; y; t0); 0] : The present problem can be written as a system of following nonlinear

di¤erential equations by using the de�nition of stream function (2:41) and Eq. (4:11):

�
x =

3qh+ h2 + 6�q

2h2 + 6�h
� (3y

2) (q + h)

2h3 + 6�h2
= f(x; y;�); (4.12)

�
y = y

@h

@x

1

h (2h2 + 6�h)2
�
6qh(h2 � y2)� 4h2y2 � 6�h(h2 + y2) + 12�q(2h2 � y2)

�
+36�2qh = g(x; y;�); (4.13)

where � = [�; q; �];�1 < x <1, �h < y < h and the amplitude ratio � lies between 0 and 1:

To obtain the critical points we set f(x; y;�) = 0 = g(x; y;�) by following Ref. [133] and
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then use the Hartman-Grobman theorem according to which the nature of the critical point can

be found using the Jacobian at the critical point. If the determinant of the Jacobian at certain

critical point is zero, the critical point is degenerate. There are two subclasses namely simple

and non-simple degeneracies. The simple degeneracy corresponds to the case when eigen values

of the Jacobian are zero and for non-simple degeneracy, Jacobian is a zero matrix. We shall use

the notation [144] to classify the critical points, where trace: p12 = �1 + �2 and the Jacobian:

d12 = �1�2; which are based on eigen values �1; �2 are used to classify the phase portraits.

According to [145] a bifurcation point with respect to parameter � is a solution (x; y;�);

where the number of equilibria, periodic or quasi-periodic solutions change when � passes

through �c; with �c as a critical value.

The critical points are given by

1. fx1;2; y1;2g =
n
n�;�

q
3q+1+6�q
3(q+1)

o
2. fx3;4; y3;4g =

(
� cos�1

r
��1� 3q

2
� 1
2

p
9q2�24�q

� ; 0

)

3. fx5;6; y5;6g =
�
(2n�1)�

2 ;�
q

(3q+1��)(1��)2+6�q(1��)
3(q+1��)

�
In the coming sections we present the qualitative classi�cation and discussion of the critical

points. We will also discuss the critical values of the parameters and graphical representation

of the local and global bifurcations of the critical points.

Classi�cation and Bifurcation of the critical points

The critical points fx1;2; y1;2g =
n
n�;�

q
3q+1+6�q
3(q+1)

o
where n 2 Z; lie on the vertical below the

wave crests. The Jacobian at these critical points is

J jfx1;2;y1;2g =

266664
0 �3(q+1)

1+3�

q
3q+1+6�q
3(q+1)0B@ ��(3q+2+3�+6�q)

(1+3�)2

�q
3q+1+6�q
3(q+1)

�3
�

�(3q�3�+12�q+18�2q)
(1+3�)2

�q
3q+1+6�q
3(q+1)

�
1CA 0

377775 (4.14)
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and the eigenvalues of the Jacobian are given by

�1;2 = �

q
6�(q + 1)(3q + 1 + 6�q)(1 + 3�)(1 + 6� � 9�q2 � 18�2q)

3(q + 1) (1 + 3�)2
: (4.15)

Since eigen values vary with q by �xing the values of � and �, therefore, the nature and stability

of critical points change with the value of �ow rate q; and the values of the �ow rate are taken

between �1 and 1. Qualitative changes are divided into two cases which take place as follows:

Case-1 (for 0 < � � 1=6)

� As p12 = 0 and d12 < 0 when �1 < q < �1
3+6� , therefore the critical point is co-dimension

two saddle as it depends on � and q; see Fig:4:3(a):

� An isolated critical point occurs at q = qc1 =
�1
3+6� ; which is also known as a degenerate

point but is non-hyperbolic as de�ned in [146], because both the eigen values and Jacobian

matrix are zero. Moreover the critical point with q = �1
3+6� corresponds to non-simple

degeneracy because J jfx1;2;y1;2g = 0 for q = qc1 =
�1
3+6� , see Fig. 4:3(a).

� As p12 = 0 and d12 > 0 when q > �1
3+6� ; therefore each critical point is a center; see Fig.

4:3(a).

A bifurcation diagram in the q� y plane depending on the de�nition of a bifurcation which

crop up on the vertical situated at the wave crest at x = n� for n 2 Z; is traced in Fig. 4:3(a).

This bifurcation is also of co-dimension two as it depends on q and �:
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Case-2 (for � > 1=6)

� As p12 = 0 and d12 < 0 when �1 < q < �1
3+6� or ��+

1
3

q
1+6�+9�3

� < q < 1; therefore the

critical point is co-dimension two saddle as it depends on � and q; see Fig:4:3(b):

� Isolated critical points occur when q = qc1 =
�1
3+6� and q = qc2 = �� + 1

3

q
1+6�+9�3

� :

These are also known as a degenerate points but the degeneracy is non-simple. Critical

points are also non-hyperbolic, see Fig. 4:3(b).

� As p12 = 0 and d12 > 0 when �1
3+6� < q < ��+ 1

3

q
1+6�+9�3

� therefore, each critical point

is a center; see Fig. 4:3(b).

A bifurcation diagram in the q � y plane is traced in Fig. 4:3(b). This bifurcation is of

co-dimension two as it also depends on q and �:

Classi�cation and Bifurcation of the Stagnation Points (for � � 0)

Consider fx3;4; y3;4g =
(
� cos�1

r
��1� 3q

2
� 1
2

p
9q2�24�q

� ; 0

)
: These critical points lie along the

longitudinal axis. The Jacobian at these critical points is J jfx3;4;y3;4g =

24 @f
@x 0

0 �@f
@x

35where

@f

@x
=

0B@ 3��
3q
2 +

1
2

p
9q2 � 24�q

�2 �
3� � 3q

2 �
1
2

p
9q2 � 24�q

�2
1CA�

0@s�� 1� 3q
2 �

1
2

p
9q2 � 24�q

�

1A�
0@s1 + 3q

2 +
1
2

p
9q2 � 24�q

�

1A�
 
(q � �)

�
3q

2
+
1

2

p
9q2 � 24�q

�2
� 4�q

�
3q

2
+
1

2

p
9q2 � 24�q

�
+ 6�2q

!
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and the eigen values are given by

�3;4 = � 3�
3q
2 +

1
2

p
9q2 � 24�q

�2 �
3� � 3q

2 �
1
2

p
9q2 � 24�q

�2 �
s
�

�
1 +

3q

2
+
1

2

p
9q2 � 24�q

�
�
�
1 +

3q

2
+
1

2

p
9q2 � 24�q

�2
� 

(q � �)
�
3q

2
+
1

2

p
9q2 � 24�q

�2
� 4�q

�
3q

2
+
1

2

p
9q2 � 24�q

�
+ 6�2q

!
:(4.16)

From (4:16) we note that a discussion about these critical points is only possible for negative

values of � and since negative values of � are of no interest physically therefore we will not

proceed further.

Classi�cation and Bifurcation of the critical points

x = (2n�1)�
2 with q > �1

3

�
(1��)2
1��+2�

�
where n 2 Z,

Likewise in previous section, a degenerate �xed point bifurcates to saddle nodes on the

longitudinal axis for �1 + � < q < �1
3
(1��)2
1��+2� : The case when q approaches qc2 = �1

3
(1��)2
1��+2�

saddle nodes of adjacent waves join together below the wave troughs, therefore the critical points

merge on x = (2n�1)�
2 for q = qc2 : This join of critical points produce degenerate points with

six heteroclinic connections. The degenerate points bifurcates on the y�branch at x = (2n�1)�
2

with q > qc2 and change stability to saddle nodes.

Critical points fx5;6; y5;6g =
�
(2n�1)�

2 ;�
q

(3q+1��)(1��)2+6�q(1��)
3(q+1��)

�
lie on the vertical below

the wave troughs. The Jacobian is given by J jfx5;6;y5;6g =

24 0 @f
@y

@g
@x 0

35 where
@f

@y
= � (q + 1� �)

((�� 1)3 � 3�(�� 1)2)

s
3(3q + 1� �)(�� 1)2 � 18�q(�� 1)

q + 1� �

and

@g

@x
= � �

3(1� �)2(3� + 1� �)2(q + 1� �)

s
(3q + 1� �)(�� 1)2 + 6�q(1� �)

3(q + 1� �)
[2h4 � 18�2q2 + 12�h3 � 36�2qh]
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with eigen values

�5;6 = �
 p

6�(q + 1� �)(1� �) [(3q + 1� �)(1� �)2 + 6�q(1� �)]
3(1� �)5=2 (3� + 1� �)3=2 (q + 1� �)

!

�
q
(1� �)4 � 9�2q2 + 6�(1� �)3 � 18�2q(1� �): (4.17)

Qualitative changes of critical points for q � � (1��)2
3[1��+2�] on x =

(2n�1)�
2 take place as follows:

� P56 = 0 and d56 = 0 when q = qc2 ; therefore the critical point is degenerate. And since

J jfx5;6;y5;6g = 0 with q = qc2 ; therefore degeneracy non-simple; see Fig. 4:4(b):

� P56 = 0 and d56 < 0 when q > � (1��)2
3[1��+2�] ; therefore the critical points are saddle nodes;

see Fig. 4:4(c)

A bifurcation diagram for the y � q plane with the variation of � is portrayed in Fig. 4:4:

Global bifurcation and streamline patterns

The vector �eld associated with y = 0 is f _x; _yg =
n
3qh+h2+6�q
2h2+6�h

; 0
o
, from which � = q +

h2

(3h+6�) : Critical conditions crop up at the wave crests x = n� and troughs x = (2n�1)�
2 : Global

bifurcation curves are given by f(x;�) = � = 0; so we have

�j(x=n�) = q +
1

(3 + 6�)
= 0;

�j
(x=

(2n�1)�
2

)
= q +

(1� �)2

(3 (1� �) + 6�) = 0:

The global bifurcation diagram in the parameters space �� q with the variation of � contains

the following set of curves:

M =

�
(�; q)j0 < � < 1; q =

�1
(3 + 6�)

�
; (4.18)

N =

(
(�; q)j0 < � < 1; q =

(1� �)2

(3 (1� �) + 6�)

)
: (4.19)

Along the bifurcation curve M; an isolated non-hyperbolic degenerate point exists below the

wave crest which is also non-simple. Whereas along the bifurcation curve N; the associated
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critical points join together below the wave troughs and form connections of non-simple degen-

erate points. Critical points that amalgamate on N produce a degenerate saddle having six

heteroclinic paths. Bifurcation curves are shown in Fig. 4:5:

The region of peristaltic �ow is divided as follows:

Region I: backward �ow, where all the �ow going in an opposite direction to the �ow.

Region II: trapping,where saddles are connected by heteroclinic connections and the interac-

tion of two vortices with opposite rotations exist in the �ow.

RegionIII : Augmented �ow, where the eddies below wave crests merge and form heteroclinic

connections with their neighbors,

and part of the �uid is able to �ow through the centerline in the �ow direction.

4.1.2 Axisymmetric �ow

Now we consider the peristaltic motion of an incompressible Newtonian �uid in an axisymmetric

tube with �exible walls. The tube wall in cylindrical coordinates
�
R;Z

�
is expressed by

H(Z; t) = a1 � b1
h
1� cos2

��
�
(Z � ct)

�i
; (4.20)

in which a1 is the tube radius in this case. In the governing equations in laboratory frame

(R;Z); the momentum equations in view of (2:6) and (4:2) can be written as

�

�
@

@t
+ V R

@

@X
+ V Z

@

@Y

�
V R = �@P

@R
+ �

 
@

@R

�
1

R

@

@R
(RV R)

�
+
@2V R

@Z
2

!
; (4.21)

�

�
@

@t
+ V R

@

@X
+ V Z

@

@Y

�
V Z = �@P

@Z
+ �

 
1

R

@

@R

 
R
@V Z

@R

!
+
@2V Z

@Z
2

!
; (4.22)

The �ow geometry is illustrated in the following �gure.
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Now following a similar procedure as done for planar case, the counter-part of Eq. (4:5) is

the present case is [130]

�Re

"
@
�
 ;r2 =r2

�
@(r; z)

#
=
1

r
r2(r2 ): (4.23)

The dimensionless form of the tube surface is

h(z) = 1� �a
�
1� cos2 �z

�
: (4.24)

The modi�ed Laplacian r2 is de�ned by the relations

r2 = �2
@2

@z2
+

@2

@r2
� 1
r

@

@r
: (4.25)

Employing long wavelength and low Reynolds number assumptions Eq. (4:32) reduces to the

similar form as obtained in [133] i.e.

r2(r2 ) = 0. (4.26)
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The dimensionless volume �ow rate and boundary conditions in the wave frame are

 = 0,
@

@r

�
1

r

@ 

@r

�
= 0, at r = 0, (4.27a)

 = qa,
1

r

@ 

@r
+ �

@

@r

�
1

r

@ 

@r

�
= �1, at r = h, (4.27b)

qa =

Z h

0

@ 

@r
dr =  (h)�  (0). (4.28)

Solution of the problem

The solution of the equation (4:26) subject to boundary conditions (4:27a; b) is

 =
1

(h+ 4�)

��
2qa
h
+
h

2
+
4qa�

h2

�
r2 �

�
qa
h3
+
1

2h

�
r4
�
: (4.29)

Dynamical System approach to the �ow �eld

We can write the present problem as a system of nonlinear di¤erential equations by using the

relation
�
z = vz =

1
r
@ 
@r and

�
r = vr = �1

r
@ 
@z and invoking Eq. (4:29) as

�
z =

1

h3 (h+ 4�)

�
h4 � 4qar2 + h2

�
4qa � 2r2

�
+ 8hqa�

�
= l(z; r;�); (4.30)

�
r = r

@h

@z

1

h4 (h+ 4�)2
[4h3qa � h

�
h2 + 4qa

�
r2 � 2(h4 + 6qar2 + h2

�
�10qa + r2

�
)�

+32�2qah] = m(z; r;�); (4.31)

where �1 < z <1 and �h < r < h:

For the critical points we set l(z; r;�) = 0 = m(z; r;�) and use the same technique as

applied for the planar �ow. The critical points are given by

1. fz1;2; r1;2g =
n
n�;�

q
4qa(2�+1)+1
2(2qa+1)

o
2. fz3;4; r3;4g =

(
� cos�1

r
�a�1�

3qa
2
� 1
2

p
9q2a�24�qa

�a
; 0

)

3. fz5;6; r5;6g =
(
(2n�1)�

2 ;�
r
(4qa+(�a�1)2)(�a�1)2�8�qa(�a�1)

2(2qa+(�a�1)2)

)
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Next we present the qualitative classi�cation and discussion of the critical points. We also

present the discussion about the critical values and local and global bifurcation diagrams for

the critical points.

Classi�cation and Bifurcation of the critical points

Consider fz1;2; r1;2g =
n
n�;�

q
4qa(2�+1)+1
2(2qa+1)

o
where n 2 Z: These critical points lie on a vertical

line below the wave crests. The Jacobian at these critical points is

J jfz1;2;r1;2g =

24 0 @l
@r

@m
@z 0

35 (4.32)

where

@l

@r
= � 4

4� + 1
(2qa + 1)

s
4qa(2� + 1) + 1

2(2qa + 1)
;

@m

@z
= �

�a
�
�1 + 2(�3 + 4qa + 8q2a)� + 8qa(7 + 10qa)�2

�
(2qa + 1) (4� + 1)

2

s
4qa (2� + 1)

2(2qa + 1)

and the eigen values are given by

�1;2 = �
 p

�(4qa + 2)(4qa(2� + 1) + 1)(4� + 1)�a
(2qa + 1) (4� + 1)

2

!

�
�q

1� 2(�3 + 4qa + 8q2a)� � 8qa(7 + 10qa)�2
�
: (4.33)

For discussion of the qualitative changes we again take �1 < qa < 1 and these changes occur

in the following way:

� p12 = 0 and d12 < 0 when �1
2 < qa <

�1
4+8� : The critical point is co-dimension two saddle

as it depends on � and qa; see Fig:4:6(a):

� p12 = 0 and d12 = 0 at qa = qac1 =
�1
4+8� and the critical point is non-simple degenerate

point because J jfz1;2;r1;2g = 0, see Fig. 4:6(b).

� p12 = 0 and d12 > 0 when qa > �1
4+8� ; therefore each critical point is a center; see Fig.

4:6(c).
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Classi�cation and Bifurcation of the critical points (� � 0)

The critical points

fz3;4; r3;4g =

8>>><>>>:� cos
�1

0BBB@
vuuuuut

21=3
p
qa(

p
qa+

p
3
p
�qa)�

�9qa�+
p
3
p
4q3a+27q

2
a�

2
�1=3 � 1 + �a�

(
p
qa�

p
3
p
�qa)

�
�9qa�+

p
3
p
4q3a+27q

2
a�

2
�1=3

181=3
p
qa

1CCCA ; 0

9>>>=>>>; :

lie along the longitudinal axis. The Jacobian at these critical points is J jfz3;4;r3;4g =24 @l
@z 0

0 �1
2
@l
@z

35 where
@l

@z
= 4

@h

@z

�
�2qah2 + h3� � 10qah� � 16qa�2

h3 (h+ 4�)2

�

and the eigen values are given by

�3 =
@l

@z
; �4 = �

1

2

@l

@z
(4.34)

Here we would again mention that existence of these critical points is subject to negative values

of � and therefore these critical points are of no physical interest.

Classi�cation and Bifurcation of the critical points

Now take z = (2n�1)�
2 with qa � � (1��a)3

4(1��a)+8�
where n 2 Z:

As previously mentioned, a degenerate �xed point bifurcates to saddle nodes on the longi-

tudinal axis for � 1
4+8� < qa < � (1��a)3

4(1��a)+8�
: As qa approaches qac2 = �

(1��a)3
4(1��a)+8�

; saddle nodes

of contiguous waves coalesce below the wave troughs. Critical points merge on z = (2n�1)�
2 with

qa = qac2 ; this produce degenerate points with six heteroclinic connections. For qa > qac2 the

degenerate points bifurcates on the r�branch at z = (2n�1)�
2 and changes stability to saddle

nodes.

Critical points fz5;6; r5;6g =
�
(2n�1)�

2 ;�
r

(4qa+(�a�1)2)(�a�1)2�8�qa(�a�1)
2(2qa+(�a�1)2)

�
lie on the vertical
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below the wave trough. The Jacobian is given by J jfz5;6;r5;6g =

24 0 @l
@r

@m
@z 0

35 where

@l

@r
= �

4
�
2qa + (�a � 1)2

�
(1� �a + 4�) (�a � 1)3

vuuut
�
4qa + (�a � 1)2

�
(�a � 1)2 � 8qa�(�a � 1)

2
�
2qa + (�a � 1)2

� ;

@m

@z
= �

0@2�a
h
�16qa�2

�
2qa + 3 (�a � 1)2

�
+ 2�

�
2qa � 3 (�a � 1)2

�
(�a � 1)3 + (�a � 1)6

i
2
�
2q + (�a � 1)2

�
(�a � 1)3 (�a � 1� 4�)

1A

�

0B@
vuuut
�
4q + (�a � 1)2

�
(�a � 1)2 � 8qa� (�a � 1)

2
�
2qa + (�a � 1)2

�
1CA

with eigenvalues

�5;6 = �

0BB@
r
2�a

�
2qa + (�a � 1)2

�n�
4qa + (�a � 1)2

�
(�a � 1)2 � 8qa� (�a � 1)

o
(�a � 1)3 (4� + 1� �a)3=2

�
2qa + (�a � 1)2

�
1CCA

r
(�a � 1)6 � 16�2qa

�
2qa + 3 (�a � 1)2

�
+ 2�

�
2qa � 3 (�a � 1)2

�
(�a � 1)3:(4.35)

Qualitative changes of critical points takes place as follows:

� P56 = 0 and d56 = 0 at qa = qac2 and the critical point is non-simple degenerate because

J jfz5;6;r5;6g = 0; look at Fig. 4:7(b):

� For; P56 = 0 and d56 < 0 when q > � (1��a)3
4(1��a)+8�

therefore the critical points are saddle

nodes; see Fig. 4:7(c)

A bifurcation diagram for the r � qa plane is traced keeping �a and � �xed; see Fig. 4:7:

Global bifurcation and streamline patterns

The associated vector �eld for r = 0 is fvz;vrg =
n
h3+4hqa+8qa�
h2(h+4�)

; 0
o
, from which � = qa +

h3

4(h+2�) : Critical conditions occur at the wave crests z = n� and troughs z = (2n�1)�
2 : Bifurcation
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curves are given by l(z;�) = � = 0; so we have

�j(z=n�) = qa +
1

4 (1 + 2�)
= 0;

�j
(z=

(2n�1)�
2

)
= qa +

(1� �a)3

4 (1� �a + 2�)
= 0:

The global bifurcation diagram in the parameter space �� q by keeping � �xed, contains of the

following curves :

O =

�
(�a; qa)j0 < �a < 1; qa =

�1
4 (1 + 2�)

�
; (4.36)

P =

(
(�a; qa)j0 < �a < 1; qa = �

(1� �a)3

4 (1� �a + 2�)

)
: (4.37)

Along the bifurcation curve O; an isolated non-hyperbolic degenerate point exists below the

wave crest which is also non-simple. Whereas along the bifurcation curve P; the associated

critical points join together below the wave troughs and form connections of non-simple de-

generate points. Critical points that amalgamate on P produce a degenerate saddle having

six heteroclinic paths. Bifurcation curves are shown in Fig. 4:8: Figs. 4:8 (a) � (e) highlight

the transitions between di¤erent values of qa with �xed values of �a and �: In Fig. 4:8, pan-

els (a) ; (b) ; panels (c); (d) and (e) corresponds to backward �ow, trapping and forward �ow,

respectively.

4.2 Results and discussion

Di¤erent �ow formations which occur in peristaltic motion are discussed through Figs. 4:3�4:8:

Fig. 4:3 is prepared to show the bifurcation that occurs corresponding to the critical points

fx1;2; y1;2g for di¤erent values of slip parameter. Here we observe that with the increase in slip

parameter �, the bifurcation point occurs for the larger values of �ow rate. Moreover, vortices

spread along the vertical. Similar observation is made from Fig. 4:4. Global bifurcation

diagram is presented in Fig. 4:5: From this �gure we observe that with an increase in slip

parameter, backward �ow region expands whereas the trapping region narrows down. However,

no change occurs in the augmented region by increasing slip parameter. This explains the
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vanishing trapped bolus with an increase in slip parameter. In fact, if one keeps increasing �

for a �xed value of qa, then the backward �ow region expands and encloses the chosen value of

qa: Thus this chosen value of qa, which was initially in trapping region, now falls in backward

�ow region where trapping phenomenon is not possible.

Figs. 4:6� 4:8 are plotted for the axisymmetric case and the observations in Figs. 4:6 and

4:7 are similar to those noticed in Figs. 4:3 and 4:4: Fig. 4:8 shows the global bifurcation

curves and the streamline patterns for di¤erent values of slip parameter �. In order to show

the streamline patterns in di¤erent �ow regions, we take values of the �ow rate (qa) both from

inside the regions (I-III) and on the lines that separate them, and then the streamlines are

drawn for the �ve selected values of �ow rate, which are shown in Fig. 4:6.

The whole analysis provides the bifurcation points and the parametric ranges for di¤erent

�ow situations (backward �ow, trapping and augmented �ow). We draw a consequence from

this analysis that if peristaltic walls are made slippery, then the trapping could be reduced and

as a result, the damage of the internal parts due to contamination, if the �uid is a chemical,

could be avoided.
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4.3 Concluding remarks

An analysis is performed to investigate the streamline topologies and their bifurcations for

peristaltic �ow of viscous incompressible �uid in the presence of slip at the wall of channel/tube.

The main �ndings are:

� Trapping region narrows down by increasing the slip parameter.

� The backward �ow region expands, whereas no changes occur in the augmented �ow

region by increasing �:

� The location of bifurcation point changes with the variation of slip parameter.

� Transitions between backward �ow to trapping and trapping to the augmented �ow cor-

responds to bifurcations of co-dimension two.

� An increase in slip parameter accelerates the lift o¤ of the centerline and also accelerates

the �ow through the center.
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Chapter 5

Streamline topologies and their

bifurcations for mixed convective

peristaltic �ow

In this chapter, our focus is on streamlines patterns and their bifurcations for mixed convective

peristaltic �ow of Newtonian �uid with heat transfer. It is assumed that all the �uid properties,

except the density are constant. The Boussinesq approximation which relates density change

to temperature changes is used in formulating buoyancy force term in the momentum equation.

The �ow is considered in a two dimensional symmetric channel and the governing equations

are simpli�ed under widely taken assumptions of large wavelength and low Reynolds number

in a wave frame of reference. In order to study the streamlines patterns, a system of nonlinear

autonomous di¤erential equations are established and dynamical systems approach is used

to discuss the local bifurcations and their topological changes. We have discussed all types of

bifurcations and their topological changes are presented graphically. We found that the vortices

contract along the vertical direction whereas they expand along horizontal direction. A global

bifurcations diagram is used to summarize the bifurcations. The trapping and backward �ow

regions are mainly a¤ected by increasing Grashof number and constant heat source parameter in

such a way that trapping region increases whereas backward �ow region shrinks. The contents

of this chapter are published in AIP Advances 5 (9) (2015) 097142:
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5.1 Problem formulation

We consider the �ow of an incompressible viscous �uid in a two-dimensional vertical channel

of width 2a1 initiated due to sinusoidal wave trains travelling on the channel walls with speed

c. In contrast to previous chapter, we have considered buoyant force in this case. Due to

this consideration, an additional term in the x�component of momentum equation (4:3) will

appear. The expression for the shape of wall surface is same as considered in previous chapter

for the planar case. Additionally, it is assumed that the walls are maintained at a constant

temperature T 0. The geometry of the problem is explained in Fig. 5:1.
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0

Fig:5:1 Geometry of the problem

For the problem under consideration are continuity equation is given by Eq. (2:13). The

scalar momentum equations and energy equation after ignoring dissipation term and taking
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into account the source term in �xed frame of reference
�
X;Y

�
are:

�

�
@

@t
+ U

@

@X
+ V

@

@Y

�
U = � @P

@X
+ �

�
@2U

@X
2 +

@2 �U

@Y
2

�
+ �g�(T � T 0); (5.1)

�

�
@

@t
+ U

@

@X
+ V

@

@Y

�
V = �@P

@Y
+ �

�
@2V

@X
2 +

@2V

@Y
2

�
; (5.2)

�Cp

�
@

@t
+ U

@

@X
+ V

@

@Y

�
T = k

�
@2T

@X
2 +

@2T

@Y
2

�
+Q: (5.3)

In view of the channel symmetry, the problem is considered only in the upper half of the channel.

The appropriate boundary conditions on temperature �eld are:

@T

@Y
= 0 at Y = 0; (5.4)

T = T 0 at Y = H: (5.5)

Making use of the transformations (2:18), dimensionless quantities (2:24) and stream function

(2:41) in Eqs. (5:1) and Eq. (5:2) and eliminating pressure gradient from the resulting equations,

we get

Re �
�
 yr2 x �  xr2 y

�
= r2

�
r2 

�
+Grt�

�
y: (5.6)

Similarly Eq. (5:3) becomes

RePr �
�
 y�

�
x �  x��y

�
= r2� + E1; (5.7)

where the Grashof number Grt, dimensionless temperature ��, constant heat generation E1 and

Prandtl number (Pr) are respectively de�ned as below

Grt =
g�a3T 0
�2

, �� =
T � T 0
T 0

, E =
Qa2

kT 0
, Pr =

�Cp
k
: (5.8)
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Now under the assumptions of long wavelength and low Reynolds number, Eqs. (5:6) and (5:7)

yield

0 =
@4 

@y4
+Grt

@��

@y
, (5.9)

0 =
@2��

@y2
+ E: (5.10)

The dimensionless volume �ow rate and boundary conditions in the wave frame are [39]

 = 0,
@2 

@y2
= 0,

@��

@y
= 0, at y = 0, (5.11a)

 = q,
@ 

@y
= �1, �� = 0, at y = h, (5.11b)

� � 1 = q =

Z h

0

@ 

@y
dy; (5.12)

where q and F are dimensionless mean �ow rates in the laboratory and wave frames respectively.

5.2 Solution of the problem

The solution of the Eq. (5:9) and Eq. (5:10) subject to boundary conditions (5:11a; b) is

 =
y(60q(3h2 � y2) + h(h2 � y2)(60 + �h2(h2 � y2)))

120h2
; (5.13)

where � = GrtE:

5.3 Flow Field as a Nonlinear Dynamical System

Here we follow the idea of the qualitative theory of dynamical systems. At a particular instant,

say t0, the motion of individual particles moving in paths de�ned by V = [u(x; y; t); v(x; y; t); 0]

is identical to instantaneous streamlines, or we have V = [u(x; y; t0); v(x; y; t0); 0] = [u(x; y); v(x; y); 0] :

The present problem will reduce to as a system of nonlinear autonomous di¤erential equations
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by using the relation u(x; y) = @ 
@y and v(x; y) = �

@ 
@x : Using Eq. (5:13) we have

u =
�180hy2 + 180q(h2 � y2) + h7� � 6h5y2� + 5h3(12 + y4�)

120h3
= f(x; y;�); (5.14)

v =
@h

@x

�
30hy3 � 45qy(h2 � y2) + h5y�(h2 � y2)

30h4

�
= g(x; y;�); (5.15)

where � = [�; q; �], �1 < x <1, �h < y < h and 0 < � < 1:

For the equilibrium points we set f(x; y;�) = 0 = g(x; y;�) by following [133] and use

the Hartman-Grobman theorem according to which the nature of the equilibrium point for

the nonlinear autonomous system can be found by the Jacobian at the equilibrium point. If

the determinant of the Jacobian at certain equilibrium point is zero, the equilibrium point is

degenerate. There are two subcases of degeneracy namely Simple and Non-Simple. The simple

degeneracy corresponds to the case when eigenvalues of the Jacobian are zero and for non-simple

degeneracy, Jacobian is a zero matrix. We used the notation of [144] to classify the equilibrium

points, where trace: pij = �i+�j and the Jacobian: dij = �i�j ; which are based on eigen values

�i; �j ; and are used to classify the phase space. Here i and j represent arbitrary indices.

According to Seydel [145]: a bifurcation point w.r.t. parameter � is a solution (x; y;�);

where the number of equilibria, periodic or quasi-periodic solutions change when � passes

through �c; with �c as a critical value.

The equilibrium points are given by

I. fx1;2; y1;2g =
�
n�;�

q
90(q+1)+3��2

p
A1

5�

�

II. fx3;4; y3;4g =
�
n�;�

q
90(q+1)+3�+2

p
A1

5�

�

III. fx5;6; y5;6g =
�
(2n�1)�

2 ;�
q

�90q�3(30+�(1��)4)(1��)+2
p
B1

5�(�1+�)3

�

IV. fx7;8; y7;8g =
�
(2n�1)�

2 ;�
q

�90q�3(30+�(1��)4)(1��)�2
p
B1

5�(�1+�)3

�

V. fx9;10; y9;10g =
(
cos�1

"
�

r��
�3q+ 81(q�1)5

20
�
�
�1+�

�
�

#
; 0

)
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where

A1 = 2025 (q + 1)2 � 15(35 + 6 (q + 1))� + �2;

B1 = 2025(q + 1� �)2 + �2(1� �)10 � 30�(1� �)5(�5 + 3 (1 + q) + 2�):

Here it is important to remember that critical points fx9;10; y9;10g are calculated by taking

� small and terms O(�2) are neglected. The nature of the critical points, critical ranges for the

parameters and local and global bifurcations of the critical points will be discussed in coming

sections.

5.3.1 Classi�cation and bifurcation of the critical points fx1;2; y1;2g

The equilibrium points fx1;2; y1;2g =
�
n�;�

q
90(q+1)+3��2

p
A1

5�

�
with n 2 Z; lie on the vertical

below the wave crests. The Jacobian at these equilibrium points is

J jfx1;2;y1;2g =

24 0 @f
@y jfx1;2;y1;2g

@g
@x jfx1;2;y1;2g 0

35 (5.16)

where

@f

@y
jfx1;2;y1;2g = � 1

30

0@s90 (q + 1) + 3� � 2pA1
5�

1A�90 (q + 1) + 3� � �90 (q + 1) + 3� � 2pA1�� ;
@g

@x
jfx1;2;y1;2g = � 1

15
�

0@s90 (q + 1) + 3� � 2pA1
5�

1A0@ �45((q + 1)� 1) + � +
�
�15+45(q+1)��

5�

�
�
�
90 (q + 1) + 3� � 2

p
A1
�

1A ;

and the eigenvalues of the Jacobian are given by

�1;2 = �
1

15
p
5

0B@
vuuut
0@�1

�

p
A1

�
90 (q + 1) + 3� � 2

p
A1

�0@ �45((q + 1)� 1) + � +
�
�15+45(q+1)��

5�

�
�
�
90 (q + 1) + 3� � 2

p
A1
�

1A�

1A
1CA :

(5.17)

Here the eigenvalues vary with � by �xing the values of � and �, therefore, the nature and

stability of equilibrium points change with the value of �ow rate �. All the discussion will be

made by taking the values of �ow rate between �1 and 1. Qualitative changes are divided into
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four cases which are as follows:

Case-1 (for 0 < � < 21=64)

� p12 = 0 and d12 < 0 when
�
�1 < q < �

45 �
1
3

q
7�
3

�
OR�

�
45 +

1
3

q
7�
3 < q < �1

27

p
1� 3� + 1

135 (40 + 3�)

�
, therefore the equilibrium points are co-

dimension two saddle as they depend on � and q.

� Equilibrium points occur at q = qc1;2 =
�
45 �

1
3

q
7�
3 and q = qc3 =

�1
27

p
1� 3� +

1
135 (40 + 3�) ; with the variations of �. They are degenerate and non-hyperbolic [146],

because both the Jacobian matrix and eigenvalues are zero respectively. Moreover the crit-

ical points with q = qc1;2;3 correspond to non-simple degeneracy because J jfx1;2;y1;2g = 0

for q = qc1;2;3 .

� p12 = 0 and d12 > 0 when �1
27

p
1� 3� + 1

135 (40 + 3�) < q < 1; therefore each equilibrium

point is a center for these value of parameters.

This whole case is presented in Fig. 5:1(a).

Case-2
�
for 21

64 � � < 1
2

�
615� 15

p
1645

��
� p12 = 0 and d12 < 0 when �1 < q < �

45 �
1
3

q
7�
3 , therefore the equilibrium point is

co-dimension two saddle as it depends on � and �.

� p12 = 0 and d12 > 0 when �
45 +

1
3

q
7�
3 < q < 1, therefore, each equilibrium point is a

center.

� Equilibrium points occur at q = qc1 =
�
45 �

1
3

q
7�
3 ; which are also known as a degenerate

point but are non-hyperbolic.

This whole case is presented in Fig. 5:1(b).

Case-3
�
for 1

2

�
435 + 15

p
805
�
< � < 1

2

�
615 + 15

p
1645

��
� p12 = 0 and d12 > 0 when �1 < q < �

45 �
1
3

q
7�
3 , therefore, each equilibrium point is a

center.
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� An isolated equilibrium point occurs at q = qc1 =
�
45 �

1
3

q
7�
3 ; which is also degenerate

point but is non-hyperbolic [146]. Moreover the equilibrium point with q = �
45 �

1
3

q
7�
3

corresponds to non-simple degeneracy because J jfx1;2;y1;2g = 0 for q = qc1 =
�
45 �

1
3

q
7�
3 .

This whole case is presented in Fig. 5:1(c).

Case-4
�
for � � 1

2

�
615 + 15

p
1645

��
� p12 = 0 and d12 > 0 when �1 < q < 1, therefore, each equilibrium point is a center; see

Fig. 5:1(d).

Based on the de�nition of a bifurcation, one occurs on the vertical situated at the wave

crest at x = n�. Bifurcation diagram in the q � y plane is traced for each Case� (1� 4); see

Figs. 5:1(a)� (d) respectively. All these bifurcations are of co-dimension two as these depend

on q and �:

5.3.2 Classi�cation and bifurcation of the critical points fx3;4; y3;4g

The equilibrium points fx3;4; y3;4g =
�
n�;�

q
90q+3�+2

p
A1

5�

�
lie on the vertical below the wave

crests. The Jacobian at these equilibrium points is

J jfx3;4;y3;4g =

24 0 @f
@y jfx3;4;y3;4g

@g
@x jfx3;4;y3;4g 0

35 (5.18)

where

@f

@y
jfx3;4;y3;4g = � 1

30

0@s90q + 3� + 2pA1
5�

1A�90q + 3� � �90q + 3� + 2pA1��
@g

@x
jfx3;4;y3;4g = � 1

15
�

0@s90q + 3� + 2pA1
5�

1A0@ �45(q � 1) + � +
�
�15+45q��

5�

�
�
�
90q + 3� + 2

p
A1
�

1A
and the eigenvalues of the Jacobian are given by

�3;4 = �
1

15
p
5

0B@
vuuut
0@1
�

p
A1

�
90q + 3� + 2

p
A1

�0@ �45(q � 1) + � +
�
�15+45q��

5�

�
�
�
90q + 3� + 2

p
A1
�

1A�

1A
1CA :

(5.19)
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Since eigenvalues vary with q by �xing the values of �, �, therefore, the nature and stability of

critical points change with the value of �ow rate q. Qualitative changes are divided into four

cases which take place as follows:

Case-1 (for 0 < � � 21=64)

� p34 = 0 and d34 < 0 when�
�
45 +

1
3

q
7�
3 < q < �1

27

p
1� 3� + 1

35 (40 + 3�)

�
OR�

1
27

p
1� 3� + 1

135 (40 + 3�) < q < 1
�
, therefore the equilibrium points are co-dimension

two saddle as they depend on � and q.

� Equilibrium points occur at q = qc1;2 =
�
45�

1
3

q
7�
3 ; q = qc3;4 = � 1

27

p
1� 3�+ 1

135 (40 + 3�) ;

which are also known as degenerate points but are non-hyperbolic. Moreover these equilib-

rium points correspond to non-simple degeneracy because J jfx3;4;y3;4g = 0 for q = qc1;2;3;4 .

� p34 = 0 and d34 > 0 when
�
�1 < q < �

45 �
1
3

q
7�
3

�
OR �

45 +
1
3

q
7�
3 < q < 1

27

p
1� 3� +

1
135 (40 + 3�) OR (�

1
27

p
1� 3� + 1

35 (40 + 3�) < q < 1
27

p
1� 3� + 1

35 (40 + 3�)), therefore

each equilibrium point is a center.

This whole case is portrayed in Fig. 5:2(a).

Case-2
�
for 1=3 < � < 1

2

�
615� 15

p
1645

��
� p34 = 0 and d34 < 0 when �

45 +
1
3

q
7�
3 < q < 1, therefore, each equilibrium point is a

co-dimension two saddle as it depends on � and q.

� Isolated equilibrium points occur at q = qc1;2 =
�
45�

1
3

q
7�
3 ; which are also known as degen-

erate point but are non-hyperbolic. Moreover the equilibrium points q = qc1;2 corresponds

to non-simple degeneracy because J jfx3;4;y3;4g = 0 for q = qc1;2 .

� p34 = 0 and d34 > 0 when �1 < q < �
45 �

1
3

q
7�
3 , therefore, each equilibrium point is a

center.

This whole case is portrayed in Fig. 5:2(b).

Case-3
�
for 1

2

�
435 + 15

p
805
�
< � < 1

2

�
615 + 15

p
1645

��
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� p34 = 0 and d34 < 0 when �1 < q < �
45 �

1
3

q
7�
3 , therefore, each equilibrium point is a

co-dimension two saddle.

� An isolated equilibrium point occur at q = qc1 =
�
45 �

1
3

q
7�
3 ; which is also known as

a degenerate point but is non-hyperbolic. Moreover the equilibrium point with q = qc1

corresponds to non-simple degeneracy because J jfx3;4;y3;4g = 0 for q = qc1 .

This whole case is presented in Fig. 5:2(c).

Case-4
�
for � � 1

2

�
615 + 15

p
1645

��
� p34 = 0 and d34 < 0 when �1 < q < 1, therefore, each equilibrium point is a center; see

Fig. 5:2(d).

Based on the de�nition of a bifurcation, one occurs on the vertical situated at the wave

crest at x = n�. Bifurcation diagram in the q � y plane is traced for each Case� (1� 4); see

Figs. 5:2(a)� (d) respectively. All these bifurcations are of co-dimension two as these depend

on q and �:

5.3.3 Classi�cation and bifurcation of the critical points fx5;6; y5;6g

Now we consider x = (2n�1)�
2 with q > qa where qa = 1

180(120� � + 60�+ 5��� 10��
2 + 10��3

�5��4 + ��5) and 0 < � < �300�60�
�1+5��10�2+10�3�5�4+�5 . Likewise in previous section, a degenerate

�xed point bifurcates to saddle nodes on the longitudinal axis for qa < q < 1: The case when

q approaches qc1 = qa saddle nodes of adjacent waves join together below the wave troughs,

therefore the equilibrium points merge on x = (2n�1)�
2 for q = qc1 : This join of equilibrium points

produce degenerate points with six heteroclinic connections. The degenerate points bifurcate

on the y�branch at x = (2n�1)�
2 with q > qc1 and change stability to saddle nodes.

Equilibrium points fx5;6; y5;6g =
�
(2n�1)�

2 ;�
q

�90(q�1)�3(30+�(1��)4)(1��)+2
p
B1

5�(�1+�)3

�
lie on the

vertical below the wave troughs. The Jacobian is given by

J jfx5;6;y5;6g =

24 0 @f
@y jfx5;6;y5;6g

@g
@x jfx5;6;y5;6g 0

35 (5.20)

115



where

@f

@y
jfx5;6;y5;6g =

�1
30 (1� �)3

�

s
�90(q � 1)� 3(30 + �(1� �)4)(1� �) + 2

p
B1

5�(�1 + �)3

�

0@ 90(q � 1)� 90(�1 + �)� 3� (�1 + �)5 + 5� (�1 + �)3

�
�
�90(q�1)�3(30+�(1��)4)(1��)+2

p
B1

5�(�1+�)3
�

1A
and

@g

@x
jfx5;6;y5;6g = � �

15 (1� �)4

0@s�90(q � 1)� 3(30 + �(1� �)4)(1� �) + 2pB1
5�(�1 + �)3

1A
�

0@ �
45(q � 1) + � (�1 + �)5

�
(�1 + �)2 + (�45(q � 1)

�(�30 + � (�1 + �)4) (�1 + �))�
�
�90(q�1)+3(30+�(1��)4)(1��)+2

p
B1

5�(�1+�)3
�
1A

with eigenvalues

�5;6 = � 1p
15

0BBBBBBBB@

vuuuuuuuuuut

0BBBBBBB@

�

(1��)4 (
�
45(q � 1) + � (�1 + �)5

�
(�1 + �)2 + 1

5�(�1+�)3

�(45(q � 1) + (�30 + � (�1 + �)4) (�1 + �))��
90(q � 1)� 3(30 + � (�1 + �)4) (�1 + �)� 2

p
B1

��
�
q

90(q�1)+3(30+�(1��)4)(1��)�2
p
B1

5�(1��)3

�

1CCCCCCCA

1CCCCCCCCA

�

vuuuut
0B@ �1
30 (1� �)3

� 2p
5

p
B1

vuuut 1

� (1� �)3

0@ 90(q � 1)� 2
p
B1+

3(30 + � (�1 + �)4) (�1 + �)

1A
1CA(5.21)

Qualitative changes of critical points for q � qa on x =
(2n�1)�

2 takes place as follows:

Case
�
for 0 < � < �300�60�

�1+5��10�2+10�3�5�4+�5
�

� P56 = 0 and d56 = 0 when q = qc1 ; therefore the equilibrium point is degenerate. And

since J jfx5;6;y5;6g = 0 with q = qc1 ; therefore degeneracy is non-simple.

� P56 = 0 and d56 < 0 when q > qa; therefore the equilibrium points are saddle nodes.

A bifurcation diagram for the y � q plane with the variation of � is traced as Fig. 5:3.
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5.3.4 Classi�cation and bifurcation of the critical points fx7;8; y7;8g

x = (2n�1)�
2 and 0 < � < �40�20�

�1+5��10�2+10�3�5�4+�5

Likewise in previous section, a degenerate �xed point bifurcates to saddle nodes on the longi-

tudinal axis for �1 < q < qb where qb = 1
30

�
10� � + 20�+ 5��� 10��2 + 10��3 � 5��4 + ��5

�
and qb < q < 1: The case when q approaches qc2 = qb saddle nodes of adjacent waves join

together below the wave troughs, therefore the equilibrium points merge on x = (2n�1)�
2 for

q = qc1 : This join of equilibrium points produce degenerate points with six heteroclinic con-

nections. The degenerate points bifurcates on the y�branch at x = (2n�1)�
2 with q > qc2 and

change stability to saddle nodes.

Equilibrium points fx7;8; y7;8g =
�
(2n�1)�

2 ;�
q

�90(q�1)�3(30+�(1��)4)(1��)+2
p
B1

5�(�1+�)3

�
lie on the

vertical below the wave troughs. The Jacobian is given by

J jfx7;8;y7;8g =

24 0 @f
@y jfx7;8;y7;8g

@g
@x jfx7;8;y7;8g 0

35 (5.22)

where

@f

@y
jfx7;8;y7;8g =

�1
30 (1� �)3

�

s
�90(q � 1)� 3(30 + �(1� �)4)(1� �)� 2

p
B1

5�(�1 + �)3

�

0@ 90(q � 1)� 90(�1 + �)� 3� (�1 + �)5 + 5� (�1 + �)3

�
�
�90(q�1)�3(30+�(1��)4)(1��)�2

p
B1

5�(�1+�)3
�

1A
and

@g

@x
jfx7;8;y7;8g = � �

15 (1� �)4

0@s�90(q � 1)� 3(30 + �(1� �)4)(1� �)� 2pB1
5�(�1 + �)3

1A
�

0@ �
45(q � 1) + � (�1 + �)5

�
(�1 + �)2 + (�45(q � 1)

�(�30 + � (�1 + �)4) (�1 + �))�
�
�90(q�1)+3(30+�(1��)4)(1��)�2

p
B1

5�(�1+�)3
�
1A
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with eigenvalues

�7;8 = � 1p
15

0BBBBBBBB@

vuuuuuuuuuut

0BBBBBBB@

�

(1��)4 (
�
45(q � 1) + � (�1 + �)5

�
(�1 + �)2 + 1

5�(�1+�)3

�(45(q � 1) + (�30 + � (�1 + �)4) (�1 + �))��
90(q � 1)� 3(30 + � (�1 + �)4) (�1 + �) + 2

p
B1

��
�
q

90(q�1)+3(30+�(1��)4)(1��)+2
p
B1

5�(1��)3

�

1CCCCCCCA

1CCCCCCCCA

�

vuuuut
0B@ �1
30 (1� �)3

� 2p
5

p
B1

vuuut 1

� (1� �)3

0@ 90(q � 1) + 2
p
B1+

3(30 + � (�1 + �)4) (�1 + �)

1A
1CA(5.23)

Qualitative changes of equilibrium points for q � qb on x =
(2n�1)�

2 takes place as follows:

Case
�
for 0 < � < �40�20�

�1+5��10�2+10�3�5�4+�5
�

� P78 = 0 and d78 = 0 when q = qc2 ; therefore the equilibrium point is degenerate. And

since J jfx7;8;y7;8g = 0 with q = qc2 ; therefore degeneracy is non-simple.

� P78 = 0 and d78 < 0 when �1 < q < qb; therefore the equilibrium points are saddle nodes.

� P78 = 0 and d78 > 0 when qb < q < 1; therefore the equilibrium points are centers.

A bifurcation diagram for the y � q plane with the variation of � is traced as Fig. 5:4.

Classi�cation and Bifurcation of the critical points The equilibrium points fx9;10; y9;10g =(
cos�1

"
�

r��
�3(q�1)+ 81(q�1)5

20
�
�
�1+�

�
�

#
; 0

)
lie along the longitudinal axis. The Jacobian at

these equilibrium points is

J jfx9;10;y9;10g =

24 @f
@x jfx9;10;y9;10g 0

0 �@f
@x jfx9;10;y9;10g

35 (5.24)

where
@f

@x
= �

�
�
�45(q � 1)h2 + �h7

�
cosx sinx

15h4
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with eigenvalues

�9;10 = �

s�
2 + C1 + �

225 (3 + C1)

�
(2 + C1)

�
� (3 + C1)

5 � 45 (�1 + q)
�2
;

with C1 =
81

20
�(�1 + q)5 � 3q (5.25)

The further classi�cation is based on the solution of the inequality d910 < 0. In previous cases

we were fortunate to classify such equilibrium points by giving general ranges for � and q.

However, in this case due to complicated nature of d910, we are only able to �nd general ranges

for �. But unfortunately corresponding ranges of q cannot be obtained in general. Therefore

by taking some speci�c values of � from these ranges one can classify the critical points. We

have done it only for the case when 0 < � � 25=648: In this case due to occurrence of twelfth

degree term in d910, we are not able to �nd general ranges for �ow rate q.

Qualitative changes of equilibrium points take place as follows:

Case-1 (for 0 < � � 25=648)

� p910 = 0 and d910 < 0 when

(i) (�1 < q < q1) OR (q2 < q < 1) with q1 = 0:666611; q2 = 0:866666 and � = 0:01

(ii) (�1 < q < q3) OR (q2 < q < 1) with q3 = 0:666555 and � = 0:02

(iii) (�1 < q < q4) OR (q5 < q < 1) with q4 = 0:6665; q5 = 0:866665 and � = 0:03,

therefore the critical point is co-dimension two saddle as it depends on � and q.

� Critical points occur at q = qc1;2;3;4;5 = q1; q2; q3; q4; q5 for � = 0:01; 0:02; 0:03, which is

also known as a degenerate point but is non-hyperbolic. Moreover these critical points

correspond to non-simple degeneracy because J jfx9;10;y9;10g = 0 for q = qc1;2;3;4;5 . A set of

in�nitely many such critical points with the variation of � can be obtained but very few

are discussed in order to avoid to present lengthy calculations.

� p910 = 0 and d910 > 0 when

(i) (q1 < q < q2) with � = 0:01

(ii) (q3 < q < q2) with � = 0:02
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(iii) (q4 < q < q5) with � = 0:03

therefore each critical point is a center.

This whole case is depicted in Fig. 5:5(a). For other cases in which critical points of co-

dimension three appear, the ranges of � are 25
648 < � < 1

648 (25 + 5�) and
1
648 (25 + 5�) <

� < 3072
625 : Their pictorial representation are given in Figs. 5:5(b) and 5:5(c) respectively.

Global bifurcation and streamline patterns The vector �eld associated with y = 0 is

f _x; _yg =
n
180q+�h5+60h

12h3
; 0
o
, from which � = q + �h5+60h

180 : Critical conditions occur at the wave

crests and troughs: Global bifurcation curves are given by f(x;�) = � = 0; so we have

�j(x=n�) = q +
� + 60

180
= 0;

�j
(x=

(2n�1)�
2

)
= q +

� (1� �)5 + 60 (1� �)
180

= 0:

The global bifurcation diagram in the parameters space �� q with the variation of � contains

the following set of curves:

M =

�
(�; q)j0 < � < 1; q = �� + 60

180

�
; (5.26)

N =

(
(�; q)j0 < � < 1; q = �� (1� �)

5 + 60 (1� �)
180

)
: (5.27)

Along the bifurcation curve M; isolated non-hyperbolic degenerate points exist below the wave

crests which are also non-simple. Whereas along the bifurcation curve N; the associated criti-

cal points join together below the wave troughs and form connections of non-simple degenerate

points. Critical points that merge on N produce a degenerate saddles having six heteroclinic

paths. Bifurcation curves are shown in Fig. 6. The region of peristaltic �ow is divided as

follows:

RegionI : backward �ow, where all the �ow going in an opposite direction to the �ow.

RegionII : trapping, where saddles are connected by heteroclinic connections and the interac-

tion of two vortices with opposite rotations exist in the �ow.

RegionIII : Augmented �ow, where the eddies below wave crests merge and form heteroclinic

connections with their neighbors, and part of the �uid is able to �ow through the centerline in
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the �ow direction.

5.4 Results

Di¤erent types of �ow topologies and bifurcations in the mixed convective peristaltic �ow have

been portrayed in Figs. 5:1�5:6. Fig. 5:1(a) discloses the bifurcations that occur corresponding

to the critical points fx1;2; y1;2g for di¤erent values of parameter �. The bifurcation points for

negative values of �ow rate move in the backward direction, whereas those with positive values

of �ow rates move forward. This translation of bifurcation points result in narrowing down the

eddying/circulation region. In this way circulation will remain in control. Same observations

are made in Fig. 5:1(b). An opposite observation is made from Fig. 5:1(c) that the region

of eddying motion increases due to which more vortices will arise. Fig. 5:2(a) shows that

the region of eddying motion decreases and the region where separatrices are generated also

decreases. Same results are noted from Fig. 5:2(b). In Fig. 5:2(c) we note that the region

where separatrices are formed increases. In Fig. 5:2(d) it is observed that the whole region

becomes eddying motion region. Fig. 5:3 shows that there is no bifurcation point for which

vortices or eddying motion will occur. In Fig. 5:4 eddying motion region decreases means that

vortices reduce along the vertical. In all Figs. 5:5 (a)� (c), we note that eddying motion region

expands by increasing �. This means that vortices spread along the longitudinal direction.

The global bifurcation diagram is presented in Fig. 5:6. We note that the backward �ow

region decreases whereas trapping region increases by increasing �. This means that there

will be more trapping by increasing �. Increasing � means increasing Grashof number and

this observation was made by many researchers that trapping increases by increasing Grashof

number. Streamlines are depicted in Fig. 5:7: These streamlines are drawn by taking the values

of �ow rate from bifurcations curves and di¤erent regions. From this �gure we note that the

behavior of streamlines are quite according to di¤erent �ow regions, i.e., there is no trapping

in backward �ow region and on bifurcation curve between backward �ow and trapping regions.

We also observe that a volume of �uid is observed to be trapped for the values of �ow rate

q = 0:8; 1:3 which basically correspond to trapping and augmented �ow regions respectively.

Di¤erent ranges of parameters are calculated for di¤erent types of bifurcations. There are many
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bifurcation points where circulations occur. We have prepared Fig. 5:8 and Fig. 5:9 to verify

the case-4 of circulation for the critical points fx3;4; y3;4g. The constructed �gures are quite

agreed with the calculations. That�s why we observed circulations both for the variations of �

and �ow rate.

By the topological �uid dynamics approach one can easily �nd the range(s) of �ow rate

for di¤erent regions corresponding to di¤erent values of involved parameters. If one discusses

trapping by choosing values of �ow rates in backward �ow region, then he will observe no

trapping. Similarly if another researcher workout same problem and take values of �ow rate

from trapping region then he will surely observe trapping. Now there will arise two di¤erent

opinions for a single work regarding trapping. This is the qualitative approach which enables

to �x ranges for �ow rate to avoid ambiguities.
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Fig. 5:6: Global bifurcation for the variation of � with Region I : Backward �ow region,

Region II : Trapping region, Region III : Augmented �ow region.
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III: augmented �ow, (a) q = 0:55; (b) q = 0:66; (c) q = 0:8; (d) q = 1:3:
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Fig. 5:8: Streamlines for veri�cation of the occurrence of circulation corresponding to

� = 0:6 and � = 615 with (a) q = �0:55; (b) q = 0; (c) q = 0:4; (d) q = 0:9:
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Fig. 5:9: Streamlines for veri�cation of the occurrence of circulation corresponding to

� = 0:6 and � = 750 with (a) q = �0:55; (b) q = 0; (c) q = 0:4; (d) q = 0:9:

5.5 Concluding remarks

We have performed the analysis for mixed convective peristaltic �ow of viscous �uid in the

presence of heat transfer to discuss the streamline topologies and all possible bifurcations.

The �ow is considered in a two dimensional channel therefore the possible nature of critical

points were either saddle or center. The region where vortices occur shrinks by increasing �
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(i.e. Grashof number or constant (Grt) source (�)) in the vertical direction whereas the region

of eddying motion expands along longitudinal direction by increasing �. The trapping region

expands by increasing either Grt or �. The backward �ow region shrinks while augmented

�ow region remains conserved by increasing either Grt or �. Transition between the backward

�ow to trapping and trapping to the augmented �ow regions corresponds to bifurcations of

co-dimension two and three respectively.
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Chapter 6

Analysis of mixed convective heat

and mass transfer on peristaltic �ow

of FENE-P �uid with chemical

reaction

This study presents the in�uence of heat and mass transfer on peristaltic transport of Finitely

Extensible Nonlinear Elastic Peterlin (FENE-P) �uid in the presence of chemical reaction.

This chapter is basically the extension of chapter 3. It is assumed that all the �uid properties,

except the density are constant. The Boussinesq approximation which relates density change

to temperature and concentration changes is used in formulating buoyancy force terms in the

momentum equation. Moreover, we neglect viscous dissipation and include di¤usion-thermal

(Dufour) and thermal-di¤usion (Soret) e¤ects in the present analysis. By the consideration

of such important aspects the �ow equations become highly nonlinear and coupled. In order

to make the problem tractable we have adopted widely used assumptions of long wave length

and low Reynolds number. An exact solution of the simpli�ed coupled linear equations for the

temperature and concentration has been obtained whereas numerical solution is obtained for

dimensionless stream function and pressure gradient. The e¤ects of di¤erent parameters on

velocity �eld, temperature and concentration �elds and trapping phenomenon are highlighted
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through various graphs. Numerical integration has been performed to analyze pressure rise per

wavelength. The contents of this chapter are published in the Journal of Mechanics (2015) 1�10.

6.1 Formulation of the Problem

We consider the peristaltic transport of an incompressible viscoelastic �uid in a two-dimensional

symmetric channel of width 2a1. The �ow geometry is similar to that given in previous chapter.

However, the walls of the channel here are maintained at di¤erent temperature. Moreover, the

concentration of species at both the walls is also assumed to be di¤erent.
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Fig: 6:1: Geometry of the Problem

The �ow is governed by the four coupled non-linear partial di¤erential equations namely;

continuity (2:13), momentum, energy and mass di¤usion equations which in the frame (X;Y )

are expressed by

�
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in which g is the acceleration due to gravity, �1 and �2 are the coe¢ cients of thermal and

concentration expansion respectively, T the temperature, C the concentration, T0 and C0 are

the temperature and concentration at lower wall, D� the coe¢ cient of mass di¤usivity, kT is

the thermal di¤usion ratio, cs is the concentration susceptibility and k2 is the chemical reaction

parameter. Now we use the same transformations (2:13) and dimensionless variables (2:24) as

considered in previous chapters in Eqs. (6:1)� (6:4) to get
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The dimensionless numbers, Grt and Grc (local Grashof numbers for temperature and concen-

tration), Pr (Prandtl number), Df (Dufour number), Sc (Schmidt number), Sr (Soret number)

and 
 the chemical reaction parameter for the present �ow situation are given by

Grt =
�g�1a

2
1 (T1 � T0)
�pc

, Grc =
�g�2a

2
1 (C1 � C0)
�pc

, Df =
�D�kT (C1 � C0)
csCp (T1 � T0) �p

; �� =
T � T0
T1 � T0

,

Sc =
�p
�D� , Sr =

�D�kT
(C1 � C0) �p

, 
 =
�k1a

2
1

�p
, Pr =

Cp�p
k

; �� =
C � C0
C1 � C0

: (6.9)

Our objective is to extend the results of chapter 3 by carrying out heat and mass transfer

analysis. Therefore, the constitutive equation for extra stress will remain the same and hence

the components of extra stress in Eqs. (6:5) and (6:6) are given through Eqs. (3:20) � (3:23).
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Employing long wavelength and low Reynolds number assumption Eqs. (6:5) and (6:8) become
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The dimensionless volume �ow rate and boundary conditions in the wave frame are taken by

following [38]

 =
q

2
,

@ 

@y
= �1, �� = 1; �� = 1; at y = h; (6.14)
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@y
dy =  (h)�  (�h). (6.16)

It is remarked here that due to non-symmetric nature of temperature and concentration �elds

it is necessary to solve the �ow problem in domain y 2 [�h; h]. On solving Eqs. (6:12) and

(6:13) with the boundary conditions given in Eqs. (6:14) and (6:15), we obtain the following

expressions of dimensionless temperature and concentration �elds

�� = �PrDf�
� +

�
1 + PrDf

2

��y
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+ 1
�
; (6.17)
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p
�h)

: (6.18)

Using the above expressions for �� and �� in Eq. (6:10) and then integrating the resulting

equation, we get

�xy = A3 + pxy +A4 cosh
�p
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�
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�
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2h
+ y

�
(6.19)
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where

� = 
� (1� PrDfScSr) ; A4 = (Grt PrDf �Grc) =
p
�1, A5 = �

1

2
Grt (1 + PrDf ) ;

From Eq. (3:25) the expression for transverse component of velocity gradient is
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Invoking the de�nition of stream function, we can write

@2 
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=
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;

where A6 = 2De2=a2L2: Now integrating Eq. (6:20), we get
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Another integration yields
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A further simpli�cation gives

 =

yZ
�h

(y � ') �xy (') d'+A6
yZ
�h

(y � ') �3xy (') d'+A1y +A2 (6.23)

where A1 and A2 are contents of integrations. The utilization of boundary conditions (6:14)

and (6:15) gives A1 = �1 and A2 = � q
2 � h. Inserting the values of A1 and A2 in (6:23) and

making use of remaining two boundary conditions, we get

hZ
�h

(h� ') �xy (') d'+A6
hZ
�h

(h� ') �3xy (') d'� 2h� q = 0; (6.24)
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hZ
�h

�xy (') d'+A6

hZ
�h

�3xy (') d' = 0 (6.25)

Eqs. (6:24) and (6:25) are nonlinear algebraic equations which can be solved numerically for

a given set of parameter at each cross-section x to get the values of A3 and px by using any

computational software like Mathematica. Once A3 and px are known,  is given by

 =

yZ
�h

(y � ') �xy (') d� +A6
yZ
�h

(y � ') �3xy (') d'� y �
q

2
� h: (6.26)

The pressure rise per wavelength (�P�) is de�ned through the following integrals given via Eq.

(2:51).

6.2 Results and Discussion

This section provides the discussion of the e¤ects of di¤erent parameters such as Pr (Prandtl

number), Sr (Soret number), Df (Dufour number), Sc (Schmidt number), Grt (local Grashof

number), Grc (Grashof number for concentration) and 
 (chemical reaction parameter) on

velocity pro�le, pressure rise per wavelength, temperature pro�le, concentration pro�le, and

trapping phenomenon.

The e¤ects of above mentioned parameters on longitudinal velocity at a cross-section x = 0

are in Fig. 6:2. The value of �ow rate in Fig. 6:2 is kept �xed i.e. q = �0:6. As an implication,

the velocity at this cross-section adjust itself i.e. it may increase or decrease in lower or upper

half of the channel by increasing a particular parameter to maintain the same �ux. Interestingly,

the axial velocity pro�les are not symmetric about the centerline y = 0.

In general the shape of streamlines is similar to that of the boundary wall in the wave

frame. However, some of the streamlines split and enclose an amount of �uid called bolus which

is pushed ahead along with the wave speed. This phenomenon of enclosing the bolus is called

trapping phenomenon.

The e¤ects of above mentioned parameters on velocity pro�le are depicted in Fig. 6:2. We

observe that parameters Pr; Df , Grt and Grc leave the same e¤ects on the velocity pro�le in

such a way that it decreases near the lower wall of the channel whereas its behavior reverses
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near the upper wall of the channel. Previous studies on peristalsis report that asymmetric

velocity pro�les in a straight channel result due to asymmetric waves propagating along the

channel wall. By asymmetric waves we mean that waves which are out of phase or have di¤erent

amplitudes. However, in this case the asymmetry in velocity pro�les is not due to nature of

the waves propagating at wall, rather it is due to coupling between momentum, energy and

concentration equations. A close examination of Eqs. (6:24) � (6:27) reveals that a strong

coupling between energy and momentum equations is expected for higher values of Grashof

number for temperature. Similarly higher values of Grashof number for concentration may

result in a strong coupling between momentum and concentration equations. Graphical results

presented in Fig. 6:2 indicate that velocity pro�le is not symmetric about the centerline of

channel for non-zero values of Grt and Grc. In addition to that a �ow reversal in lower half

of the channel is observed for non-zero large values of Grashof numbers for temperature and

concentration. It is observed that �ow reversal increases by increasing Prandtl number, Grashof

numbers and Dufour number while it decreases by increasing Schmidt number, Soret number

and chemical reaction parameter.

In Fig. 6:3 the pro�les of pressure rise per wavelength �P� are shown for various values

of the parameters of interest. The complicated integral appearing in Eq. (6:40) is evaluated

numerically using MATHEMATICA. Each panel in Fig. 6:3 can be divided into two sub-

regions: (I) peristaltic pumping region that corresponds to �P� > 0 and q > 0 and (II)

augmented pumping region which corresponds to �P� < 0 and q > 0. It is observed that

�P� in peristaltic pumping region increases by increasing Prandtl number, Grashof numbers

(Grt and Grc) and Dufour number. However, it decreases by increasing chemical reaction

parameter, Schmidt number and Soret number. The increase in �P� in peristaltic pumping

region by increasing Pr, Grt, Grc and Df may be due to increased �ow reversal caused by

increasing these parameters. Similarly a decrease in �ow reversal by increasing Sr, Sc and 


results in decrease of �P� in peristaltic pumping region by increasing these parameters. A

reduction in pressure rise per wavelength by increasing the rheological properties of �uid is

already reported in the literature. However, the above results suggest another possible way

to reduce the pressure rise per wavelength in addition to the already available remedy i.e. by

altering the rheological properties of the �uid. Thus heat transfer characteristics may also be
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exploited to our use to reduce the pressure rise per wavelength in the peristaltic pumping region

without altering the rheological features of the �uid. Another interesting observation from Fig.

6:3 is the expansion of peristaltic pumping region i.e. �P� is positive over a quite large range

of F . Thus the prescribed �ow rate F must be large for the pressure to assist the �ow. In

almost all cases considered in Fig. 6:3 the prescribed �ow rate F must be greater than 3 for

�P� to be negative. The expansion of peristaltic pumping region may be due to the choice of

larger values for Grt and Grc. However, it can be reduced by altering the rheological properties

of the �uid i.e. by altering the parameter De and L2. In fact the larger values of De results in

contraction of peristaltic pumping region.

The e¤ects of Prandtl number, Dufour number, Schmidt number, Soret number and chemical

reaction parameter on temperature and concentration �eld are shown through Figs. 6:4 and

6:5. It is evident from Fig. 6:4 that temperature inside the channel increases by increasing

all the above mentioned parameters. On contrary the concentration pro�les follow a reverse

trend by increasing either of these parameters. This is perhaps inherited property of solutions

of temperature and concentration �elds. In fact the following relation holds for temperature

and concentration �elds

�� = �PrDf�
� +

�
1 + PrDf

2

��y
h
+ 1
�
:

Now the pro�les of �� (Fig. 6:5) show that it is positive but a decreasing function of each of

the parameters Pr, Df ; Sr; Sc and 
: This implies its derivative with respect to either of these

parameter is always negative and hence strictly less then the value of �� itself. Now let us

di¤erentiate above equation with respect to Pr i.e.

@��

@ Pr
= �Df�

� � PrDf
@��

@ Pr
+
Df

2

�y
h
+ 1
�

The second term of above expression is positive and greater than the �rst term. Similarly third

term is also positive. Therefore @��=@ Pr > 0 for all values of Pr : This illustrates that temper-

ature is an increasing function of Pr : The above argument also holds for other parameters. In

this way the behavior of temperature �eld for increasing values of each of the parameters Pr,

Df ; Sr; Sc and 
 is opposite to the behavior of concentration �eld for these parameters.
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In general it is expected that in the wave frame behavior of streamlines is similar to that

of boundary wall. However, under speci�c conditions some of the streamlines split and enclose

a bolus of �uid which moves as a whole with the wave speed. This phenomenon is known as

trapping. It has been reported in various available studies on peristaltic transport that trapping

is largely dependent on the magnitude of �ow rate [21]. In fact one can �nd the values of �ow

rate for which trapping occurs near the boundary, centerline or nowhere. In the present study,

we have chosen a speci�c value of �ow rate for which circulating region emerges in the center

of the channel. It has been observed through Figs. 6:6 and 6:7 that for small values of Grashof

numbers (Grt and Grc), the trapped bolus of �uid is almost asymmetric about centerline.

However the bolus becomes asymmetric by increasing the values of Grt or Grc. In such case

the size of the bolus in lower half of the channel increases while it decreases in upper half of the

channel. A further reduction in the size of bolus in upper half of the channel is observed for

larger values of Grt and Grc: These results may be justi�ed with similar reasons as given for

velocity pro�les. In fact asymmetry is due to strong coupling between energy, momentum and

concentration equations. For smaller values of Grashof numbers the coupling e¤ects are weak

and in that case the bolus of �uid is symmetric about the centerline. The streamline patterns

by increasing the values of other parameters such as Pr, Df ; Sr; Sc and 
 are not shown here

because these parameters do not a¤ect the streamlines pattern to an appreciable extent. This

is perhaps due to implicit dependence of stream function on these parameters.
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Fig:6:2: Velocity pro�le with L = 3:5; � = 0:6; � = 0:7; De = 5:
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Fig:6:4: Temperature Pro�le for � = 0:6; x = 1=6 and (i) Df = 0:6; Sr = 0:5; Sc = 0:5; 
 = 2;

(ii) Pr = 0:7; Sr = 0:5; Sc = 0:5; 
 = 2 (iii) Pr = 0:7; Df = 0:6; Sc = 0:5; 
 = 2;

(iv) Pr = 0:7; Df = 0:6; Sr = 0:5; 
 = 2; (v) Pr = 0:7; Df = 0:6; Sr = 0:5; Sc = 0:5:
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Fig:6:5: Concentration Pro�le for � = 0:6; x = 1=6 and (i) Df = 0:6; Sr = 0:5; Sc = 0:5; 
 = 2;

(ii) Pr = 0:7; Sr = 0:5; Sc = 0:5; 
 = 2; (iii) Pr = 0:7; Df = 0:6; Sc = 0:5; 
 = 2;

(iv) Pr = 0:7; Df = 0:6; Sr = 0:5; 
 = 2; (v) Pr = 0:7; Df = 0:6; Sr = 0:5; Sc = 0:5:
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Fig: 6:6: Streamlines for the variation in Grt with � = 1:7, � = 0:6, De = 1,

Sr = 0:5, Sc = 0:5, Df = 0:5, 
 = 0:1, Grc = 0:5, Pr = 0:5:
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Fig: 6:7: Streamlines for the variation in Grc with � = 1:7, � = 0:6, De = 1,

Sr = 0:5, Sc = 0:5, Df = 0:5, Pr = 0:5, Grt = 0:5, 
 = 0:1:
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6.3 Concluding remarks

Peristaltic �ow of a FENE-P �uid is analyzed in presence of chemically reactive species in

a channel whose walls are maintained at di¤erent temperatures. The coupling between mo-

mentum, energy and concentration equations is achieved by using Boussinesq approximation.

The equations governing the �ow are modeled under long wavelength and low Reynolds number

assumptions. Closed form solutions are reported for temperature and concentration �elds. How-

ever, stream function and pressure gradient are evaluated numerically. The striking observations

of the present analysis are: the existence of non-symmetric velocity pro�les and asymmetric

shape of circulating bolus of �uid for non-zero values of Grashof numbers for temperature and

concentration. The buoyancy e¤ects induced by non-zero values of Grashof numbers are also

responsible for increase in pressure rise per wavelength in the peristaltic pumping region. It is

further observed that an increase in either of the parameters Pr, Df , Sr, Sc and 
 increases

the temperature inside the channel. On contrary the concentration �eld is found to follow an

opposite trend.

154



Chapter 7

Mixed convective heat transfer

analysis for the peristaltic transport

of viscoplastic �uid

This chapter present the analysis of mixed convective peristaltic �ow of incompressible vis-

coplastic �uid in a two-dimensional symmetric channel. The rheology of viscoplastic �uid is

characterized by the constitutive equation for Bingham plastic model. The coupling between

momentum and energy equations is done through Boussinesq approximation. The coupled non-

linear partial di¤erential equations are transformed in wave frame using Galilean transformation

and then simpli�ed under realistic assumptions of long wavelength and low Reynolds number.

Approximate solution is obtained using regular perturbation method which is restricted for the

smaller values of Grashof and Bingham numbers. The validity of approximate solution is estab-

lished by comparing it with the numerical solution obtained via Matlab built-in routine bvp4c.

Based on the numerical solution an extensive analysis is performed in order to analyze the

e¤ects of various parameters of interest on �ow characteristics, pumping and trapping phenom-

ena. It is found that velocity decreases at the center by increasing Bingham number showing

a boundary layer character for large values. However, it increases by increasing Brinkman and

Grashof numbers. Moreover, pressure rise per wavelength increases with Bingham number,

Brinkman number and Grashof number, in the pumping region. The trapping phenomenon is
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also discussed in detail. The contents of this chapter are submitted for possible publication in

International Journal of Heat and Mass Transfer.

7.1 Formulation of the Problem

We consider the peristaltic transport of an incompressible viscoplastic �uid in a two-dimensional

symmetric channel of width 2a1. The �ow is generated by continuously moving sinusoidal waves

of speed c along the walls of the channel. The geometry of the problem is similar to that

considered in chapter 5. In contrast to previous chapter, here the channel walls are maintained

at same temperature T0. The equations governing the �ow and heat transfer in the peristaltic

channel in the �xed frame
�
X;Y

�
are

�

�
@

@t
+ U

@

@X
+ V

@

@Y

�
U = � @P

@X
+

@

@X
�XX +

@

@Y
�XY + �g�1 (T � T0) ; (7.1)

�
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@

@t
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@

@X
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@
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�
V = �@P
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�Y Y ; (7.2)
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T = k

�
@2T
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@2T

@Y
2

�
+T � (rV): (7.3)

where

� = 2�D+ 2�0
^
D (7.4)

and the term T � (rV) is the well known viscous dissipation term. The de�nition of dot product

of arbitrary tensors A1 and B1, i.e., A �B = tra(AB) enables us to write energy equation (7:3)

as

�Cp
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@
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: (7.5)

156



In view of Eqs. (7:4) and (2:6), the components of extra stress tensor in the laboratory frame

become

�XX = 2�DXX +
2�0DXXp
"1 + 2trD2

; �XY = 2�DXY +
2�0DXYp
"1 + 2trD2

;

�Y Y = 2�DY Y +
2�0DY Yp
"1 + 2trD2

: (7.6)

In view of Eq. (2:18), Eq. (2:24), Eq. (2:32) and Eq. (5:8), components of momentum equation

(7:1) and (7:2) and the energy equation (7:3) reduce to

Re �
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u
@

@x
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@
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The components of extra stress tensor (7:6) in non-dimensional form transform to

�xx = 2�
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The Eckert number Ec and the Brinkman number are de�ned by

Ec =
c2

CpT0
, Br = PrEc: (7.13)
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De�ning the stream function ( ) through (2:41), Eqs. (7:7)� (7:9) take the following form
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whereas the components of extra stress tensor in terms of stream function become
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Employing long wavelength and low Reynolds number assumptions, the Eqs. (7:14) � (7:16)

reduce to the following coupled equations
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Eliminating pressure between (7:20) and (7:21), one can write

0 =
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@y2
�xy +Grt

@��

@y
: (7.24)
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Invoking the component of extra stress tensor in Eqs. (7:22) and (7:24), one gets the following

coupled nonlinear di¤erential equations

0 =
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; (7.25)
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The dimensionless volume �ow rate and boundary conditions in the wave frame are [149]

 = �q
2
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7.2 Solution of the Problem

The perturbation method is adopted for the analytical solution of the problem. To this end,

the dependent variables  and �� are expressed as

 =
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 0i
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 1i
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Substituting the above expressions in the Eqs. (7:25)� (7:29) and equating the various power

Bn; one get the following systems:

Zeroth Order System:
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 00(�h) = �q
2
;  00y(�h) = �1;  01(�h) = 0; (7.34)

 01y(�h) = 0; ��00(�h) = 0 = ��01(�h): (7.35)
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First Order System:
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0 =  10(�h); 0 =  10y(�h); 0 =  11(�h); (7.40)
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The solution of the zeroth order system is
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On solving the �rst order system, one gets
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The various constants appearing in above expressions are listed in below.
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With the above expressions in hand, the approximate solution of Eqs. (7:25) and (7:26) is

known up to �rst order of Grashof and Bingham numbers. Numerical solution of the problem

is also obtained using Matlab built-in routine bvp4c without any restriction on parameters being

small. The comparison of the numerical and analytical solutions is presented in Table. 7:1 and

Fig. 7:2. It is observed that both the solutions are in excellent agreement for smaller values of

Grt and Bn. For further discussion regarding the in�uence of parameters of interest on �ow

characteristics, pumping and trapping phenomena, we have preferred numerical solution over

perturbation solution.

7.3 Results and Discussion

In this section, graphical results are displayed in order to see the e¤ects of various emerging

parameters such as Bn; Grt and Br on velocity and temperature pro�les, pressure rise per

wavelength, frictional forces and trapping phenomenon.

The e¤ects of parameters Bn; Grt and Br, on velocity pro�le are shown in the Figs. 7:3. In

these parameters Bn shows the e¤ects of plasticity. We observe that increasing plasticity (Bn)

results in decrease of velocity at the center and for the larger values of Bn i.e., for higher values

of yield stress, �uid behaves like a solid. In that case the velocity shows a uniform behavior over

most part of the channel cross-section and changes only in a thin layer near the walls which may

be due to frictional forces. From Fig. 7:3 we also note that the velocity pro�le increases near

the channel whereas it decreases in the vicinity of the walls with increasing both the Grashof

number (Grt) and Brinkman number (Br).

Fig. 7:4 and Fig. 7:5 are prepared to see the in�uence of parameters Bn; Grt and Br

on pumping phenomenon. Fig. 7:4 highlights the variation of pressure rise per wavelength

(�P�) for di¤erent values of Bn, Grt and Br. From this �gure it is observed that Grt and

Br have the similar e¤ects on �P� i.e., �P� increases with increasing these parameters in all

three regions namely: retrograde pumping region (q < 0 and �P� > 0), peristaltic pumping

region (q > 0 and �P� > 0) and augmented pumping region (q > 0 and �P� < 0). From

Fig. 7:4 we also observe that �P� increases by increasing plasticity (Bn) in retrograde and

peristaltic pumping regions but decreases in augmented pumping region. We also note that
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�P� shows a nonlinear behavior due to presence of plasticity. It is interesting to note that �P�

decreases by increasing �ow rate up to a certain critical value and above that critical value

it starts to increase. Moreover, this increase is more prominent for large values of Grt and

Br. Fig. 7:5 shows that the e¤ects of all the involved parameters on frictional forces are quite

opposite to e¤ects of these parameters on �P�: In retrograde and peristaltic pumping regions,

frictional forces resist the �ow due to peristalsis and the magnitude of resistance increases by

increasing Bn; Grt and Br: However, in augmented pumping region they assist the �ow and

again the magnitude of assistance increases by increasing Bn while it decreases with Grt and

Br. The results reported above which depict the e¤ects of Grt and Br on �P� and F� are quite

interesting and new addition in the literature.

Fig. 7:6 illustrates the variation in temperature pro�le for di¤erent values of involved

parameters. From this �gure it is observed that the temperature pro�le increases with increasing

all the involved parameters. As expected, increasing the plasticity parameter (Bn) result in the

hampering of �uid motion and in consequence more work is done on the �uid to maintain the

�ow rate. As a result more heat is generated and eventually a rise in the temperature is observed.

Similarly an increase in temperature with increasing Grashof number Grt is attributed to large

temperature gradients within the �uid for larger values of Grt:means that the buoyant force is

higher than the viscous force as a result of which the larger temperature di¤erence between the

�uid particles will occur and therefore the temperature increases. The rise in temperature for

larger values of Brinkman number is due to the fact that higher values of Br results in lesser

conduction of heat produced by viscous dissipation.

Finally we report some results about the phenomenon of trapping. In this phenomenon

an amount of �uid called bolus is trapped due to contraction of walls. To see the in�uence of

parameters Bn; Grt and Br on trapping, we have plotted Figs. 7:7 � 7:9: From Fig. 7:7 we

note that an increase in Bn decreases the size and circulation of the bolus. Figs. 7:8 and 7:9

show that though the size of bolus is independent of the Grt and Br but it circulate faster for

large values of Grt and Br.
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Comparison of velocity pro�le

y
Solution by

Perturbation

Solution by

bvp4c

�1:60 �1:0000000000 �1:0000000000

�1:44 �0:7430926598 �0:7436599899

�1:28 �0:5139202503 �0:5149601267

�1:12 �0:3136751353 �0:3150914599

�0:96 �0:1431066839 �0:1447877193

�0:80 �0:0025892965 �0:0043712754

�0:64 0:1078613554 0:1062768005

�0:48 0:1886819834 0:1879071792

�0:32 0:2411262419 0:2423347756

�0:16 0:2682421882 0:2727034296

0:00 0:2758974988 0:2823523318

0:16 0:2682421882 0:2727034296

0:32 0:2411262419 0:2423347756

0:48 0:1886819834 0:1879071792

0:64 0:1078613554 0:1062768005

0:80 �0:0025892965 �0:0043712753

0:96 �0:1431066839 �0:1447877192

1:12 �0:3136751353 �0:3150914599

1:28 �0:5139202503 �0:5149601299

1:44 �0:7430926598 �0:7436599899

1:60 �1:0000000000 �1:0000000000

Comparison of temperature pro�le

y
Solution by

Perturbation

Solution by

bvp4c

�1:60 0:0000000000 0:0000000000

�1:44 0:1384192059 0:1381180352

�1:28 0:2369391566 0:2362746361

�1:12 0:3037895776 0:3027716022

�0:96 0:3464959763 0:3451889360

�0:80 0:3716937695 0:3701971323

�0:64 0:3850083576 0:3834324157

�0:48 0:3909827722 0:3894185762

�0:32 0:3930388860 0:3915266088

�0:16 0:3934692382 0:3919897535

0:00 0:3934953567 0:3920196670

0:16 0:3934692382 0:3919897535

0:32 0:3930388860 0:3915266088

0:48 0:3909827722 0:3894185762

0:64 0:3850083576 0:3834324156

0:80 0:3716937695 0:3701971322

0:96 0:3464959763 0:3451889359

1:12 0:3037895776 0:3027716021

1:28 0:2369391566 0:2362746404

1:44 0:1384192059 0:1381180352

1:60 0:0000000000 0:0000000000

Table 7:1: Comparison of solutions of velocity and temperature pro�les
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Fig:7:5: Frictional forces versus �ow rate q with � = 0:4:
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Fig:7:7: Streamlines for various values of Bn with Br = 0:6, Grt = 3, q = 1:5, � = 0:6:
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Fig:7:8: Streamlines for various values of Br with Grt = 3, Bn = 1, q = 1:5, � = 0:6:
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Fig:7:9: Streamlines for values of Grt with Br = 0:6, Bn = 1, q = 1:5, � = 0:6:
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7.4 Concluding remarks

Heat transfer analysis is performed for peristaltic �ow of a viscoplastic �uid in presence of

buoyant forces and viscous dissipation. The problem is modeled under long wavelength and low

Reynolds number assumptions in form of few coupled nonlinear ordinary di¤erential equations.

The solution of these equations is obtained analytically and numerically. A quantitative analy-

sis is performed through various plots. It is observed that the velocity of �uid shows uniformity

over the whole cross-section except near the boundaries, with the increase in plasticity (Bn).

However, it increases near the center of channel while decreases near the boundaries by increas-

ing Grt and Br. The pressure rise per wavelength increases in the retrograde and peristaltic

pumping regions but decreases in the augmented pumping region with the increase in plasticity.

While it increases in all the three regions by increasing Grt and Br. It is further observed that

e¤ects of Bn, Grt and Br on temperature �eld are similar. The trapping phenomenon is also

a¤ected with the increase of Bn, Grt and Br. In fact the size and circulation of bolus decreases

by increasing Bn while its size remain unchanged with an increase in Grt and Br.
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