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Preface

Pulsatile accounts for pumping produced by heart that deals with the propagation of sinusoidal
waves which enforces the blood to flow through vessels. In the cardiovascular system, pulsatile
procedure occurs due to contractions and relaxation of heart which pumps blood from heart to
different part of the body. The pulsatile procedure is also responsible for general propulsive
and mixing movements and it also involves in pumping the blood against pressure rise. The
mathematical models for pulsatile flow of blood through arteries are of major significance
because they provide non-invasive mean to estimates various important hemodynamical
variables. The utility of these models further increase when the arteries under consideration
have localized narrowing called stenosis. These localized narrowing are due to fat deposition,
abnormal internal growth and proliferation of convective tissue in the arterial lumen. It is
generally accepted that the development and progression of stenosis is intimately linked to the
fluid dynamics of the post-stenotic blood flow. Although experimental estimates to quantify
the role of blood fluid dynamics on the formation of stenosis and its progression are clinically
more acceptable. Nevertheless, the mathematical models of blood flow constitute an alternative
and useful tool for supporting experiments and detect mildly constricted phenomena and the
local features which are not always obvious by experiments. Motivated by the above facts, the
present thesis focuses on development and simulation of mathematical models of pulsatile flow
in rigid constricted/ normal arteries. The developed models explore the effects of rheology of
the blood, geometrical parameters of the stenosis and catheter radius on unsteady
characteristics of the blood. The thesis is structured in the following manner.

The preliminary information regarding blood and its rheological behavior and some basic

definition equations are included in chapter one. A review of literature on pulsatile flow of



blood in arteries is provided. The numerical scheme used for simulations is also explained in
this chapter.

Chapter 2 deals with two-layered pulsatile blood flow through a circular tube. The Sisko non-
Newtonian model is integrated in the analysis to capture the rheological behavior of the blood
in the core region. The blood in the peripheral region is modeled as Newtonian fluid. The
equations governing the flow in each region are derived assuming the flow to be uni-directional
and one-dimensional. An explicit finite difference scheme is employed to solve these nonlinear
equations. The behavior of various flow quantities is analyzed through a parametric study. The
contents of these chapter are published online in Engineering Science and Technology, an
International Journal, (2015) Doi.org/10.1016/j.jestch.2015.09.013.

The mathematical model presented in chapter 2 is modified to take into account the viscoelastic
nature of the blood in chapter 3. In this chapter Oldroyd-B model is used instead of Sisko model
to characterize the rheology of the core region. The equations governing the flow in both core
and peripheral regions are modeled and solved numerically with appropriate boundary/initial
conditions. The results are graphically displayed and analyzed for several values of pertinent
parameters. The analysis presented in this chapter is published in International Journal of
nonlinear Sciences and Numerical simulation 16 (2015) 5.

Chapter 4 provides an analysis of pulsatile flow of blood through a porous-saturated
overlapping stenotic artery under the effects of magnetic field and body acceleration. The
power-law model is used to capture the hemo-rheological characteristics of blood. The
equations governing the flow is modeled under the assumption of mild stenosis. An explicit
finite difference scheme is employed for solution of these equation. An extensive quantitative
analysis is carried out to investigate effects of various involved parameters on axial velocity,

flow rate, resistance impedance and wall shear stress. The instantaneous patterns of streamlines



are also displayed. The findings of this chapter are published in Journal of Mechanics in
Medicine and Biology 16 (2015) 2.

The pulsatile flow of blood in a catheterized overlapping stenosed vessel is analyzed in this
chapter 5. The streaming blood in the artery is assumed to obey Carreau constitutive law.
Employing the mild stenosis condition, the equation governing the flow is derived and solved
numerically using an explicit finite difference scheme. The blood velocity, flow rate, arterial
wall shear stress and resistance impedance are computed and shown graphically for several
values of involved parameters. The bolus dynamics is also studied qualitatively. The material
presented in this chapter is published in Mathematical Biosciences 269 (2015) 94-103.
Chapter 6 is devoted to analyze unsteady flow characteristics of blood through a catheterized
artery with a combination of stenosis and aneurysm. The Eringen’s micropolar model is used
to capture the rheological characteristics of the streaming blood. The two-dimensional flow
equations are reduced to one-dimensional equations under mild stenosis assumption. The
numerical computations carried out using finite difference method and validated against finite
element simulations. The important hemodynamical variables are qualitatively analyzed for
geometrical and rheological parameters of the model. The streamline of the flow indicating the
effects of various involved parameter are also shown graphically. The material of this chapter
is published online in Medical & Biological Engineering & Computing DOI
10.1007/s11517-015-1415-3.

In chapter seven, the effects of unsteadiness and non-Newtonian rheology on blood flow
through a tapered time-variant stenotic artery are examined through numerical method. A two-
dimensional model is used to analyze the unsteady pulsatile flow of blood through a tapered
artery with stenosis. The problems under consideration is made dimensionless and solved
numerically using finite difference method. The axial and radial velocities, flow rate, wall shear

stress and resistance impedance are analyzed graphically for several values of the involved



parameters. The results presented in this chapter are published in AIP Advances 5, (2015)
037129.

The theoretical analysis regarding the effects of peripheral thickness on pulsatile flow of blood
through a stenotic artery is carried out in chapter 8. A two-fluid model consisting of core region
as a Herschel-Bulkley material and a plasma layer as a Newtonian fluid is employed. The
equations governing the flow in both core and peripheral regions are setup and solved
numerically using explicit finite difference scheme which is forward in time and central in
space. The results obtained through the numerical computations are compared with existing
experimental and theoretical results. The important flow quantities are analyzed graphically for
different values of the emerging parameters. The contents of this chapter are submitted for
publication in Canadian Journal of Physics.

A two-dimensional model of blood flow through a time variant stenotic artery is investigated
using Sisko model in chapter nine. The continuity and momentum equations along with
expression of stresses are numerically solved for axial and radial velocity components. The
important hemodynamical variables based on physiologically relevant data are graphically
shown and discussed in detail. The significance of Sisko model over power-law in context of
problem under consideration is highlighted. The results presented in this chapter are published

in Computers & Fluids 101 (2014) 42—49.
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Nomenclature

Greek Symbol

a Radius of the artery

Ao Amplitude of the pressure gradient

A; Amplitude of the pulsatile component
Ag Amplitude of the body acceleration

b Radius of the core region

B Total magnetic field

B Dimensionless pulsatile constant

B: Dimensionless body acceleration constant

d Length of non-stenotic arterial segment

e Ratio of the systolic to diastolic pressure
fo Heart pulse frequency

G() Body acceleration

k Radius ratio

K Permeability of the porous medium

lo Length of the stenotic region

n ‘ Power law constant

)4 Pressure

Q Volumetric flow rate

r Ra&ial coordinate



Ui
uz

Us

We

Greek Symbol

P

23

Time

Velocity component in core region
Velocity component in periphery region
Average velocity

Velocity vector

Weisenberg number

Axial coordinate

The second invariant of strain-rate tensor

First Rivilin-Ericksen tensor
Viscosity of the non-Newtonian fluid
Viscosity of the Newtonian fluid
Density of the core fluid

Density of the Plasma fluid

Phase angle

Circular frequency
Asymptotic value of viscosity at very high shear rates
Consistency index

Womersley number in the core region

Womersley number in the peripheral region



Wall shear stress
Dimensionless viscosity
Dimensionless density
Relaxation time
Retardation time
Tapering parameter
Tapering angle

Height of the stenosis
Time sonstant

Effective viscosity parameter



Chapter 1

‘.

b

Introduction and some basic definitions

In this chapfer, we introduce the reader with basic terminology about pulsatile blood flow in
arteries. The fundamental equations used in blood flow modeling are given. A review of
literature on pulsatile flow of blood in arteries is presented. The explicit finite difference

method is also illustrated with example. Basic definitions given here are based on internet

resources.

1.1 Some basic definitions

1.1.1 Blood

Blood is a heterogeneous multi-phase mixture of solid corpuscles (red blood cells, white blood
cells and platelets) suspended in liquid plasma which is an aqueous solution of proteins, organic

molecules and minerals.

1.1.2 Pulsatile Flow

In fluid dynamics, a flow with periodic variations is known as pulsatile flow. The cyclic nature
of heart pumping creates pulsatile flow of blood in arteries. These phenomena in medical
science are called systolic and diastolic. In systolic, the blood is pumped out, while in diastolic,

the blood is pumped into the heart. The cardiovascular system of chordate animals is very good

7



example where pulsatile flow is found. Pulsatile flow is also observed in engines and hydraulic

systems as a result of rotating mechanisms belonging to them.

1.1.3  Atherosclerosis

Atherosclerosis is a disease in which plaque builds up inside your arteries. Plaque is made up
of fat, cholesterol, calcium, and other substances found in the blood. Over time, plaque hardens
and narrows your arteries. This limits the flow of oxygen-rich blood to your organs and other

parts of your body. Atherosclerosis can lead to serious problems, including heart attack, stroke,

or even death.

1.1.4 Stenosis

A stenosis is an abnormal narrowing in a blood vessel or other tubular organ or structure. It is
also sometimes called a stricture. Stricture as a term is usually used when narrowing is caused
by contraction of smooth muscle. Stenosis is usually used when narrowing is caused by lesion

that reduces the space of lumen.

1.1.5 Aneurysm

An aneurysm or aneurism is a localized, blood-filled balloon-like bulge in the wall of a blood
vessel. Aneurysms can occur in any blood vessel, with examples including aneurysms of
the circle of Willis in the brain, aortic aneurysms affecting the thoracic aorta, and abdominal
aortic aneurysms. Aneurysms can also occur within the heart itself. As an aneurysm increases
in size, the risk of rupture increases. A ruptured aneurysm can lead to bleeding and subsequent
hypovolemic shock, leading to death. Aneurysms are a result of a weakened blood vessel wall,

and can be a result of a hereditary condition or an acquired disease.



Atherosclerosis

Fig. 1. 1. Shows a normal artery with normal blood flow. The inset image shows a cross-section of a normal
artery. Figure B shows an artery with plaque buildup. The inset image shows a cross-section of an artery with

plaque buildup. Figure is taken from the website http:/www.nhlbi.nih.gov/ (National Heart, Lungs, and Blood

institute).

1.1.6 Catheterization

Catheterization is the insertion of a catheter into a chamber or vessel of the heart. Catheters are
commonly used for the diagnosis and treatment of diseases like atherosclerosis. Subsets of this
technique are mainly coronary catheterization, involving the catheterization of the coronary

arteries, and catheterization of cardiac chambers and valves of the cardiac system.



1.1.7 Externally imposed Body acceleration

The human body may experience body acceleration in many situations e.g. helicopter crew
members, flying in an aircraft, astronauts, jet pilots, athletes and sportsmen for their sudden
movements. In such situation, a human body may be subjected to vibratory or acceleratory
motion. Such acceleratory motion is known as the imposed body acceleration. There are
evidences that, prolonged exposures to the body acceleration may bring some serious

physiological effects, e.g. headache, abdominal pain and loss of vision.

1.1.8 Womersley number

The Womersley number is a dimensionless number in bio-fluid mechanics. It is a
dimensionless expression of the pulsatile flow frequency in relation to viscous effects. The
Womersley number is also important in determining the thickness of the boundary layer to see

if entrance effects can be ignored.

1.1.9 Reynolds number

The Reynolds number is defined as the ratio of momentum forces to viscous forces. In fluid
mechanics, the Reynolds number is a dimensionless quantity that is used to help predict similar
flow patterns in different fluid flow situations. Reynolds numbers frequently arise when

performing scaling of fluid dynamics problems.

1.1.10 Fahraeus-Lindqvist (F-L) effect

The Fahraeus—Lindqvist (F-L) effect is an effect where the viscosity of a fluid, in this
case blood, changes with the diameter of the tube it travels through. It is clear that red blood

cells cannot pass through the capillary wall, which implies that the centers of red blood

10



cells must lie at least one red blood cell half-thickness away from the wall. This means that, on

average, there will be more red blood cells near the center of the capillary than very near the

wall.

1.2 Literature Review

Though non-Newtonian in nature in diseased arteries, blood is also treated as Newtonian fluid
by various researchers in stenotic arteries. Young et al. [1] undertaken a study to investigate
the pressure loss across the arterial stenosis of varying severities at elevated flow rates and the
corresponding effects of the stenosis on the vascular bed reserve. A technique for the solution
of the approximate equations governing steady flow through models of mild axisymmetric
arterial stenosis was presented by MacDonald [2]. Yongchareon and Young [3] studied
experimentally the development of turbulence under both steady and pulsatile flow through
models of arterial stenosis. Doffin and Chagnaeu [4] carried out a study to understand the
special flow conditions which may be produced by a clot of blood in the vessel. A modified
MAC-SOLA method was implemented by Liou et al. [5] to compute numerically the steady
non-uniform viscous flow part a partial stenosis in a circular vessel. Pollard [6] investigated
numerically the laminar flow in axisymmetric sudden expansions using three diameter ratios
and up to four inlet velocity profiles. The pulsatile flow of blood with periodic body
acceleration was investigated with the help of finite Hankel and Laplace transforms by
Chaturani and Palanisamy [7]. Chakravarty et al. [8] studied pulsatile flow characteristics of
blood in a distensible bifurcated artery having a stenosis when it is subjected to whole body
acceleration. Two-dimensional blood flow through tapered arteries under stenotic conditions
was numerically simulated by Chakravarty and Mandal [9]. Pulsatile flow of blood through
stenotic artery using finite Hankel and Laplace transforms was studied by El-Shahed [10]. The
application of Adomian decomposition method to blood flow through stenotic arteries in the

presence of a magnetic field was presented by Halder [11]. A mathematical model based on

11



the principles of Ferrohydrodynamics (FHD) and Magneto-hydrodynamics for bio-magnetic
flow of blood in a stenotic channel was developed and simulated by Tzirtzilakis [12]. Mehmood
et al [13] employed MAC method to understand the flow characteristics of an unsteady axi-
symmetric two-dimensional blood flow in a diseased arterial segment with flexible wall.
Sharma et al. [14] investigated uni-directional model of pulsatile flow of blood through a
porous-saturated stenotic artery under the influence of transverse magnetic field. Eldesokyet
al. [15] employed the differential quadrature method (DQM) to study the unsteady pulsatile
flow of blood through an artery filled with porous medium. A time-variant overlapping stenosis
model was incorporated by Haghighi et al. [16] to simulate the pulsatile flow of blood through
elastic tapered artery. Srivastava presented an analytical investigation of magneto-

hydrodynamic blood flow in a porous inclined stenotic artery.

Recently, it is also observed through experiments that the rheological behavior of blood does
not obey the Newtonian postulate, which linearly relates shear stress to the rate of deformation,
and therefore cannot be modeled through Newtonian fluid. Blood exhibits non-Newtonian
effects such as shear thinning, Thixotropy, Visco-elasticity and Yield Stress. It is pointed out
by Cho and Kensey [17] that in large arteries the instantaneous shear rate over a cardiac cycle

ranges from 0 to approximately 1000 s™'. Therefore, over the whole cardiac cycle there exists

a time span when the shear rate (o) is low(o- <1072 sec") , medium (10’2 <o <10%sec™ ) and

high (a >10° sec"). Further observations reveal that shear rate is low in some regions for

instance near bifurcations, grafts anastomoses, stenosis and aneurysms [18]. Blood being
concentrated suspension of cells displays both thixotropic and visco-elastic behavior. However,
thixotropy and visco-elasticity are exhibited by blood at low shear rates and they diminish as
it rises. Blood behaves like a Newtonian fluid when shear rate exceeds over a critical value. Its

critical value is 50 s [19], 100 s [20] or from 100 s* to 300 s [21]. The shear thinning

12



behavior is exhibited by normal blood at low and medium rates. Shear thinning is generally
perceived as a decrease in the blood viscosity with increase in the shear rate. For instance the
general shape of the curve of shear rate of blood flow indicates three distinct regions: a lower
Newtonian region (low shear rate constant viscosity), an upper Newtonian region (high shear
rate constant viscosity), and a middle region where apparent viscosity decreases with increasing
shear rate. The choice of appropriate model to represent shear thinning effects should
encompass all the above mentioned requirements. A critical review of blood flow in large
arteries with relevance to blood rheology and physiological conditions is presented by Yilmaz
and Gundogdu [22]. Studies pertaining to blood flow in stenotic arteries using different non-

Newtonian models will be reviewed in the following paragraph.

Srivastava [23] examined the non-Newtonian effects of blood using couple stress model to
study blood flow through mild stenotic artery. He concluded that the magnitude of resistance
to flow and wall shear stress is greater in couple stress model as compared to the Newtonian
model. The pulsatile flow of blood under body acceleration is studied by Majhi and Nair [24]
using third grade fluid model. The Laplace transform technique was used by Misra and Pal
[25] to obtained analytical solution for pulsatile flow of blood under externally imposed body
acceleration. They have constructed a mathematical model by treating blood as a non-
Newtonian fluid, using a biviscosity model for blood. Mandal [26] carried out a study using
power-law model to investigate the effects of the non-Newtonian rheology of blood, the vessel
tapering, the severity of stenosis and the wall deformability on pulsatile blood flow through
stenotic arteries. A two-dimensional power law model for blood through an elastic stenosed
artery in the presence of periodic body acceleration was presented by Mandal et al. [27]. The
Power law model has been implemented successfully by Ismail et al. [28] to represent haemo-
rheological transport phenomena through overlapping stenotic artery. The micropolar fluid

model is a common choice to account for the suspension nature of blood in fluid dynamical
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studies on blood flow through stenotic arteries. The Eringen micropolar fluid model has been
successfully applied to blood flow through stenotic arteries by Makheimer and Elkot [29].
Mathematical modelling of pulsatile flow of Casson’s fluid in arterial stenosis is investigated
by Siddique et al. [30]. Srivastava and Mishra [31] used the Casson fluid model for blood flow
through overlapping stenotic artery. The Erigen micropolar fluid model has been used by
Abdullah and Amin {32] and Abdullah et al. [33] to investigate the characteristics of blood
through a tapered stenotic artery. Unsteady Analysis of viscoelastic blood flow through arterial
Stenosis is examined by Ikal et al. [34]. Makheimer and Elkot [35] investigated mathematical
modelling of unsteady flow of a Sisko fluid through an anisotropically tapered elastic arteries
with time-variant overlapping stenosis. Numerical simulation of Casson fluid flow through
differently shaped arterial stenosis are carried out by Sarifuddin et al. [36]. Akbar and Nadeem
[37] analyzed steady flow of Carreau fluid in an artery under the assumption of mild stenosis
using perturbation technique.

It has been observed through clinical studies that the stenosis may develop in series and may
not be regular in shape. According to Moore [38] multiple stenosis and post-stenotic dilatations
are common in the coronary arteries. Therefore investigations of hemodynamics in an artery
with post-stenotic dilation is of major clinical significance. Very few studies in the literature
deal with the simultaneous effects of stenosis and dilatation on flow through small arteries.
Mention may be made of the work of Pincombe and Mazumdar [39], Pincombe et al. [40] and
Wong et al. [41]. In the above studies Casson, Bingham and Ostwald-DeWaele power law
models were used to characterize the rheology of blood. Supplementary to the above-
mentioned studies, more sophisticated investigations addressing blood flow in three-
dimensional models of human thoracic aorta at different stages of atherosclerotic lesion growth

(using computed tomography images and a mathematical model of biological structures in
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relation to coronary arteries with atherosclerosis) have been presented by Dabagh et al. [42]
and Wang et al. [43], respectively.

Medical catheters are commonly used for the diagnosis and treatment of diseases like
atherosclerosis. The technique used for diagnosis of stenosis in coronary arteries is usually
known as angiography while treatment procedure of such arteries is called as angioplasty. In
diagnostic procedure, such as angiography, small catheters are inserted under X-ray guidance
to the opening of coronary arteries in order to get information about location and severity of
stenotic arterial segment. Once the location of the stenosis is identified, the next procedure is
to treat the diseased segment through angioplasty. In angioplasty two types of Catheters
namely, guided catheter and Doppler catheter are commonly used. Doppler catheters are used
to monitor the changes in proximal and distal flow velocity during coronary angioplasty while
guided catheters with a small balloon at their tips are inserted into the artery and advanced to
the stenotic region of the coronary artery. The balloon is then inflated to enlarge the stenotic
segment. When inserted in arteries, these catheters will significantly alter the flow patterns of
blood. It has been shown by Kanai et al. [44] that apart from other factors, the error in the
measurement of blood pressure by catheter-insertion may also be due to reflection of pressure
wave at the tip of the catheter. Back and Denton [45] and Back [46] provided estimates of wall
shear stress and mean flow resistance due to the insertion of a catheter in a stenosed artery. The
influence of the presence and size of a catheter on mean pressure gradient across human
coronary stenosed artery was also examined by Back et al. [47]. The study of Sarkar and
Jayaraman [48] revealed that pressure drop, shear stress and impendence vary markedly in the
presence of catheter. Dash et al. [49] performed the analysis of blood in a curved catheterized
stenosed artery and found that increase in catheter size leads to a considerable increase in
pressure drop, impendence and wall shear stress. Apart from the attempts reported above, some

other hemo-dynamical studies encompassing formation and progression of plaque in coronary
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artery, analysis in an intracranial aneurysm and mathematical analysis of differential models
of circulatory system can be found in refs. [50-54]. For example, Dash et al. [55] carried out a
study to estimate the increase in flow resistance in a narrow catheterized artery using a Casson
model to account for blood rheology. A mathematical model of pulsatile flow of blood in a
catheterized artery using Herschel-Bulkley constitutive equation is studied analytically by
Sankar and Hemalatha [56]. Reddy et al. [57] utilized the constitutive equation of couple stress
fluid and investigated the effect of tapering angle and slip velocity on unsteady blood flow
through a catheterized stenosed artery. Two-phase model of blood flow through a catheterized
stenosed artery is analyzed by Srivastava and Rastogi [58]. Nadeem and [jaz [59] investigated
the effects of nanoparticles on blood flow through a catheterized artery using regular
perturbation method. Steady flow of a Herschel-Bulkley fluid in a catheterized artery is

analyzed by Sankar and Hemalatha [60].

Hemodynamical studies reveal that blood shows anomalous behavior while flowing through
large vessel (femoral artery) because its viscosity varies along the diaméter of vessel which
depicts Fahraeus-Lindqvist (F-L) effect. The definition of F-L effect is given in the literature
as, a phenomena in which the viscosity of a fluid/blood changes with the diameter of the vessel.
This effect is observed due to migration of suspended cells in the radial direction which is due
to variation of composition of blood [61-63]. In order to capture the F-L effect, the blood flow
in arteries is treated as two-phase. The core layer is treated as a non-Newtonian while peripheral
layer is modeled as a Newtonian fluid. Since the flow of blood in arteries is generated by
pulsatile pressure gradient produced by the pumping action of the heart, therefore several
authors examined the F-L effects by considering the flow to be unsteady. For instance, Majhi
and Usha [64] have examined the F-L effect by considering third grade hon-Newtonian fluid
in the core. In another study, Majhi and Nair [65] followed the same study in the presence of

body acceleration. Halder and Anderson [66] investigated the two-layer blood flow in a cosine
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shape artery considering Casson model for blood. The pulsatile flow of blood in the presence
of body acceleration was examined by Usha and Prema [67] by considering blood as
Newtonian fluid. Pulsatile flow of blood using a generalized second grade fluid model in the
core region was investigated by Massoudi and Phouc [68]. Recently Sankar {69] carried out a
perturbative analysis to discuss the one dimensional flow of blood through stenosed artery by
taking Herschel-Bulkley fluid in the core. An unsteady analysis of blood flow through a
stenotic artery using two-fluid model, consisting of Erigen’s micropolar fluid in the core region

was presented by Ikbal et al. [70].

1.3 Fundamental Equations

The analysis of blood flow is based on mass and momentum conservation equations. In this

section, we shall give vectorial form of these equations.

1.3.1 Mass conservation/continuity equation

This equation relates the density at a point inside the fluid with the velocity at that point. In

mathematical form, it reads

where p isthe fluid velocity and ¥ is the velocity. For incompressible fluid, Eq. (1.1) reduces

to
V.V =0, (1.2a)
In cylenderical co-ordinate system, Eq. (1.2) becomes

10(rv) 1% O, _

0, (1.2b)
r or rod oz
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1.3.2 The momentum equation

The momentum equation is based on law conservation of momentum. For a fluid flowing

through a porous medium and subjected to magnetic field, the momentum equation reads

v
p‘Z—T=V.T+pG(t)+JxB++%, (1.3)

where k' is the permeability of the porous medium, 4, is the effective viscosity of the porous
medium, G(r)is body acceleration vector, T is the Cauchy stress tensor, Jis the current
density, B = B, + B, is the total magnetic field, B, is the constant applied a magnetic field and

B, is the induced magnetic field and d/d: is the material time derivative given by:

d 9
Z_5+(V-V). (1.4)

The expression of Cauchy stress tensor T is based on the choice of fluid model used to

represent the rheology of blood.

1.3.3 Generalized Ohm’s law

The current density J in Eq. (1.3) is given by

J= 0'(E+VxB), (1.6)
whereais the electrical conductivity of blood and E is the total electric field. In the present
thesis, it is assumed that the induced magnetic field is negligible in comparison with constant

applied magnetic field. Moreover, the imposed and induced electrical fields are also assumed

to be negligible. Thus

JxB=-0xBV. .7
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1.3.4 Explicit Finite Difference Method
The finite difference approximations for derivatives are one of the simplest and the oldest
methods to solve differential equations. The advent of finite difference techniques in numerical
applications began in the early 1950s and their development was stimulated with the emergence

of computers that offered a convenient framework for dealing with complex problems of

science and technology.

An example of typical second order parabolic partial differential equation is taken to explain
the forward time/ central space (FTCS) method [71].The model equation under consideration

has the following form

ou ou
= = (1.8)

where 7 is assumed as a constant. Let du/dr be represented by a forward difference

approximation of order At:

ou ut-u
— =t T L O(AL). 1.9
Py Y (Ar) 1.9

Similarly, the space derivative is represent by a central difference approximation formula:

2 n n n
O'u  u, —2u +u

S =l ZA Ty O(AX). 1.10
o (Ax)z +0(Ax7) (1.10)

In view of Egs. (1.8) and (1.9), Eq. (1.1) can be approximated by the following difference
equation:

n+l n n

U U

n n
i - i+l 2u1 +u1—l

Af n ( Ax)2

U

(1.11)
InEq. (1.8), ™" is the only unknown and, therefore, it can be computed in the following form

= ﬂt(—i‘xi)z(u,"+l —2u! +ul,). (1.12)
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Now with suitably defined time and space step sizes Eq. (1.12) can be used along with

initial/boundary conditions to compute %' . It can been shown that the solution obtained via

above expression is stable for Aty / (Ax)2 <0.5[71].

20



Chapter 2

Numerical study of unsteady blood flow

through a vessel using Sisko model

In this chapter, an analysis is carried out to study two-phase blood flow through an artery under
the influence of pulsatile pressure gradient and externally imposed body acceleration. It is
assumed that the blood in the core region obeys the Sisko constitutive equation whilst it
behaves as a Newtonian liquid in the peripheral region. The mass and momentum conservation
laws are used to model the proposed problem in terms of nonlinear partial differential
equations. These equations along with initial and boundary conditions are made dimensionless
and then solved numerically. The behavior of various flow quantitates is analyzed through a

parametric study.

2.1 Mathematical formulation

For the present analysis, the artery is assumed to be a circular tube of radius a and a cylindrical

co-ordinates (r,0,z) system is employed. Following [68], a periodic forcing term due

externally imposed body acceleration is also included in the force balance. The geometry of
the flow configuration is presented in Fig. 2.1. Here it is shown that blood flow in the vessel is

divided into two regions, a core region 0 <r < band a periphery regionb<r<a.
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Fig. 2.1. Schematic diagram of flow in vessel.

For the subsequent analysis, it is assumed the Reynolds number associated with the flow is
small. As an implication of this assumption the radial velocity can be neglected in comparison

to the axial velocity. Thus for the present case the velocity field is taken as

V,=[0, 0, u,(r,0)],i=12. @.1)

Where »,and u, are the axial velocities in core and periphery regions, respectively. Using Eq.

(2.1) in Eq. (1.2b), continuity equation is identically satisfied and z-component of equation of

motion gives (in absence of magnetic field and porous medium)

ou op 10
=4 pG(t)+——(rS,,),i=1,2. 22
ot oz PG rar(r ")l @2)

where it is assumed that G(z) =(0, 0, G(t)). It is assumed that the fluid in the core is a Sisko
fluid and in the periphery a Newtonian fluid. The Cauchy stress tensor for a Sisko fluid is given

by [72]

T=-pI+S, 23)

in which p is the pressure, I is the identity tensor and §' is the extra stress tensor defined by

S:[.el +&, |\/ﬁ

""]A;, 2.4

where n, ¢, and ¢, are the material parameters of the Sisko fluid. The Sisko model include
Newtonian and generalized power law models for n =1 (or ¢, = 0) and ¢,=0, respectively.

The first Rivilin-Ericksen tensor 4, is defined by
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A =L+ 2.5
1

in which L=vv (2.6)
and m=1 tr(4?) Q.7
5 . .
For a Newtonian fluid, the extra stress tensor is
S =uA, (2.8)

where g, is the dynamic viscosity. In view of Egs. (2.1), (2.4) and (2.8), the shear stress in core

and periphery region is given by

n-1
|:81+£2 % jl(%), 0<r<h,
S, = x 29)
ou
yzgz, b<r<a,

Following Burton {99], we choose

——%:Ao+Alcoswpt, (2.10)

where dp/z is the driving pressure gradient due to the contraction and expansion of the heart,
4, and 4 are the systolic and diastolic components of the pressure gradient, respectively,
o,=2xf, isthe circular frequency and £, is the pulse rate frequency. Further, we assume G(t)as

follows:

G(t) = 4, cos(@,t +¢)- (2.11)

In Eq. (2.11) 4, is the amplitude, f, is the frequency [w, =27 f,]and ¢ is the lead angle of

G(t) with respect to the heart action. Eliminating S between (2.7) and (2.8), the equation in
the core region. i.e 0 < r < b is obtained as
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ou Y 10
p—a—t‘- = A0[1+Zicos(a)pt)}+pAg cos(w,,t+¢)+:gr'{r‘:€1 té&

Similarly, for the periphery region, i.e, b<r<a, we get

ot

ou 4 o
p—2=4, [1 +Zicos(a)pt)) +pA, cos(w,,t +¢)+%——ui +

62u2
252

or

>

2.13)

The boundary and initial conditions for the present flow configuration are

Ou,(r,1)
or

Y (r5 t)|,=b

r=0
U (r’ t)|r=n

=0,
=0,  (No-slip condition)

= uz(r,t)|r=b ,

(Symmetry condition)

=

Ouy
or

b

~

. 2.14)

o203

w(r,t)=u,(r,t)=0, att=0. (Initial conditions)

r=5b

2.15)

The last two boundary conditions in (2.14) represent the continuity of velocities and stresses at

the interface. The expressions of flow rate and wall shear stress are respectively given by

b a
0 =2rtjulrdr+27r u,rdr, (2.15)
0 b
auZ
T, =— | —=1 . 2.16
—m(%) @.16)
2.2 Dimensionless formulation of the problem
Introducing the dimensionless variables [68]
)
7=L,E=L,7=_Pt, 2.17)
a U, 2

Where U, and w,are average velocity and angular frequency, respectively. Egs. (2.12) - (2.13)

may be casted as (after dropping bars)
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a[%] = B, (1+e cos(2xt))+ B, (cos(27m)rt+¢))+l{ e+
{[ (5“1 H}azul} (au.j{a(
e & T [ W
ar or? or or
(2.18)

. - - 1[ou,| &
ya—: =B, (1+e cos(2xt))+ B, (cos (2700, +¢))+:|:Erz-:|+?uzz. (2.19)

Where a and ¥ are the Womersley numbers. The other parameters appearing in Egs. (2.18) and
(2.19) are

b2 ) . 3 n-1
Uo =(A‘;],(0r=&,p =&,,U =%5 g=82(g0—) ’€=£l ’e=i
A g 4

@, o a g ’
2 *
Bl =—Aob2 B, = P bz = plAg B.a= plwpb Y= pzwpbz = plwpbz & =Qa P
gU, 2 e EU, 4, v 2E 2mEp’ 2y’ o) u’
2 2 »
- AP B - pAD b
1=_ = ]t;Bz=_2 £ .=p1Ag_ pzn=B2pl' (2'20)
el eU,u U, pp JZ

ol g
ar r=0 ’
Uy, =0,
U, u2|,b y
(aulj"" (Bu]) . ou, 2:21)
g+| — =l =H
or or orl, -,

where r,=b/a. It is pointed out that Eq. (2.18) reduces to the corresponding equation of

Massoudi and Phuoc [68] when & — 0. In dimensionless variables, volume flow rate and wall

shear stress become

rn 1
0= ZH[Iulrdr+ uzrdr], (2.22)

0 n

auZ
T, = (Br_),=, . (2.23)
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2.3 Numerical solution

We have integrated the Eqgs. (2.18) - (2.19) with the initial and boundary data given in Eq.
(2.21) numerically by using a finite difference method which is forward in time and central in
space. Let us denote (r,,t J) asu’ and approximate various partial derivatives as
Oy _ Uy~ Uy
o 2Ar

2 I 9yl J
4y _ U 2uy +uy,

L = abs(uy, ), (2.24)

ot (Ar)2 I
J ;Y I} ;Y
Uyl “ U | [Mun T %
"-lJ 2Ar 2Ar
~ 1+

i\éu_l
ori|or

Similarly, for the time derivative we define the approximation:

2Ar

A
Ou _uyi —uy

=u,. 2.25
> o i (2.25)
The partial derivative of axial velocity computed u, are approximated in a similar manner.

Using (2.24) and (2.25), Eqs. (2.18) and (2.19) take the following discretized form

k+l k

u, =uy + %[Bl (1 +e cos(2mt* )) +B, (cos(2ﬂw,fk + ¢)) +

e,k (A : : 1 } 227
U, =y +( » J[Bl (1+e cos (27rt ))+B2 (cos(2zzco,t +¢))+ - [uz,]+u2r (2.27)

(2.26)

ulr

U, In—l )u1,1 + (ul, ) abs (ulr ) + .1_ (8 +
r

For the solution of present problem we have discretized the radius by using the formula
r,=(i-1)Ar, (i=1,2,..., N, +1) suchthat r, ., =7, andr, =(i-(N, +1))ar, i=(N,+1,

N +2,N +l) with r,,, =1,wherearis the increment in the radial direction. Similarly for
discretization of time, we have use the following discretization formula
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Dimensionless Velocity at =0

Dimensionless Velocity at r =0

t,=(j-1) A, (i=1,2,.....), where At is the small time increment. For the present

computations, we have chosen Ar =0.025 and At = 0.00001, so that the results are accurate up

to ~107.

2.4 Results and discussion

To observe the quantitative effects of the Sisko material parameter, computer code is developed

for the numerical simulations in Matlab. In this study, generally we have taken ¢=0 and

assume the core radius to be 60% of the tube radius. Our results are based on the data of two

different arteries (radius): Smaller vessel, coronary artery, the data is chosen as (4o = 698.65

dyne/cn’, a = 0.15 cm) and for larger vessel, femoral artery, the data is chosen as (4o = 32

dyne/cn’ , a = 0.5 cm) [68] and value of Womersley number is chosen as 2. Moreover, in all

the simulations we have assumed B, = B,, B, =B, and a=y.
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Fig. 2.2. Time -series of velocity at a = 0 for flow in two arteries, where Figs. 2.2 a, ¢ and e are for larger artery
(a = 0.5 cm, Ao = 32 dyne/cm’) and Figs. 2.2 b and d are for smaller artery (@ = 0.15 cm, Ao = 698.65 dyne/cnm’).
Velocity graphs for different values of B; (varying 4;) are shown in Fig. 2.2 (a, b); Velocity graphs for different

values of £, are shown in the Fig. 2.2(c and d); velocity graphs for different values of ¢ are shown in Fig. 2.2 (e).

The time-series of velocity at the central plane are shown in Fig. 2.2 for both femoral and
coronary arteries. These graphs shows that irrespective of the artery type, the velocity at the
centre fluctuates around its mean value, increases and eventually attains the steady state
condition as the time increases (here we define 7; is the dimensionless steady state time where
the maximum velocity distribution is obtained). Fig. 2.2 (a) and (b) show that the amplitude of
the velocity increases by increasing the amplitude of the body acceleration while it shows

decreasing trend by increasing the pulse frequency f; (Fig. 2.2 (c) and (d)) and material

parameter of the Sisko model (Fig. 2.2(e)).

B,=6.6, fy=1.2, £ =0.0,n=0.5,a=3

B,=6.6, B,=4.64, ¢ =00, n=0.5a=3
3 — 3 . ;
T
27 ; 2t
g
2
s
1f !
F O  Ref68:0
O Ref68:0] g - 1]11
or — Our Results (@ 1 2 o} . ur Res Its (b)
0 2 4 6 0 2 4 6
Dimensionless Time, T Dimensionless Time, T

28



TH-16128

Dimensionless Distance

Dimensionless Distance

Ao =698.65 dyne/em’; Ay = 0.5kg; fi= 2.4Hz

1 , . .
$ 08F ©  Ref. [2(68 ]
2 — Our Results
2 0.6} 1
g
3 047 15 + 0.05 .
E
/] 0.2r 1
ot (C) 1 Ts 1 ) l . J
0 0.5 1 i.5 2 2.5

Dimensionless Velocity

Fig. 2.3: Comparison of our results with Massoudi and Phuoc results for coronary artery.

A comparison of our numerical results in the limiting case when & — 0 with that of Massoudi

and Phuoc [68] is presented in Fig. 2.3. Here radial and time evolutions of axial velocity for

coronary artery are compared. It is observed that our results are in pleasing agreement with the

existing results of Massoudi and Phuoc [68]. This obviously corroborates the validity of our

model and further strengthen our faith on results obtained through it.
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Fig. 2.4: Radial distribution of axial velocity graphs for larger artery (@ = 0.5 cm, Ao = 32 dyne/cm’). Velocity
Graphs for different values of B; (varying A,) are shown in Fig. 2.4 (a and b); Graphs for different values of f; are

shown in Fig. 2.4(c and d); Graphs for different values of B and B: are shown in Fig. 2.4 (e and f).

The velocity profiles at different time instants for femoral artery are shown in Fig. 2.4. It is
generally observed from these plots that the body acceleration increases the magnitude of
velocity while an increase in pulse frequency f}, decreases its magnitude. There are inflection
points within time cycle of the velocity profile where the shapes of velocity changes from
convex to concave. It is observed from Fig. 2.4 (a) that the shape of the velocity profile is

parabolic in the absence of body acceleration at the beginning of the fluctuation cycle or r = 7,

as evident in Fig. 2.4 (b). Figs. 2.4 (c) and (d) indicate that the maximum velocity shifts from
the centre of an artery toward the wall during the first half of fluctuation cycle and then moving
back to the centre of an artery during the second half of fluctuation cycle. The core region is
taken as Newtonian and the effects of body acceleration are minimized in comparison with
other panels in Fig. 2.4 (e). It is noted from this figure that the velocity profile returns to its
parabolic shape and the curve becomes concave at ¢ = 7z, + fuair. In Fig. 2.4(f) the core region
is assumed as non-Newtonian fluid and effect of body acceleration is increased. This results in
the forward shift of the fluctuation cycle.

The velocity profile for smaller artery, coronary artery, is shown in Fig. 2.5. Figs. 2.5 (a)-(b)

show that the velocity profiles follow the same pattern as shown in Fig. 2.4. A Comparison of
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the velocity profiles in Figs. (2.4) and (2.5) for two arteries reveals that the velocity is faster in

larger artery as compare to smaller artery while its grows significantly slowly for Newtonian

case as compared to the non-Newtonian case. Fig. 2.5 (g) shows the effect of material parameter

of Sisko model. It is found that the magnitude of velocity increases by decreasing & which

ultimately shows that velocity profile is a decreasing function of material parameter. Fig. 2.5(h)

show a decrease in velocity by increasing the thickness of the peripheral layer.
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& d); Graphs for different values of ¢ are shown in Fig. 2.5 (e, f and g); Graphs for different peripheral thickness

are shown in Fig. 2.5 (h).

Figs. 2.6 and 2.7 present the effects of body acceleration A4, body force £, shear-thinning and
material parameter on the dimensionless wall shear stress and flow rate. The profiles indicate
that the flow rate and the wall shear stress fluctuate around mean values and these mean values
become constant values when steady state conditions are achieved. It is also observed that the
amplitude of fluctuation increase with an increase in the amplitude of body acceleration while
it shows converse behavior with increasing the material constant of the Sisko model. The
fluctuation of these profile is always between a positive and a negative value in the time cycle
for the larger artery, while for the small artery such fluctuation of wall shear stress in the smaller
artery are significantly higher (about three to five times) than those obtained for the larger
artery.

Now in the end, we would like to comment on significance of Sisko model in the light of above
discussion. It has been pointed by Yilmaz and Gundogdu [22] that all the generalized
Newtonian fluid models of (blood) viscosity show shear-thinning behavior and must meet the
following requirements. They must effectively fit the viscosity shear rate data of blood at ail

shear rates, whether high, medium or low. Power-law model is suitable for blood at medium
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Dimensionless Flow Rate

shear rates. However, it does not represent the blood rheology at low and high shear rates. In
fact power-law equation predicts infinite viscosity at low shear rate and zero viscosity as shear
rate approaches to infinity. Sisko model extends the power-law model to include a finite vaiue
of viscosity as shear rates approaches infinity. In this sense, Sisko model is better capable of
predicting the blood rheology at high shear rates. Graphical illustrations show that the
additional constant z_ (¢ in dimensionless form) in Sisko equation significantly alters the flow
characteristics of blood. It is observed that the power-law model predicts higher value of the
amplitude of dimensionless velocity at r = 0 than the Sisko model. Similar is the case with
dimensionless radial velocity. This significant effect of ¢ on velocity is later transmitted in
other variables such as flow rate and wall shear stress. It is found that flow rate through artery
decreases whilst wall shear stress increases in going from power-law to Sisko model. For
instance, keeping the other parameters fixed, a decrease of 20 % is noted in the flow rate as ¢

changes from 0 fo 1.5.

The above discussion clearly shows that inclusion of &in the power law equation brings
significant qualitative changes in the results.
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» The material parameter of Sisko has greater influence on blood flow in coronary artery as

compared to the femoral artery.

> This study also demonstrate the potential of rheological properties of the blood to control the

important variables associated with the blood flow.

> The results obtained here show pleasing agreement with the existing results of Massoudi and

Dimensionless Wall Stress

Phuoc [68].
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Chapter 3

Computations of pulsatile blood flow in a tube
for an Oldroyd-B fluid

This chapter investigates the effects of body acceleration on unsteady pulsatile flow of blood
in a vessel. The non-Newtonian behavior of blood in the core region is modeled by the
constitutive equation of an Oldroyd-B fluid. The peripheral region is assumed to obey
Newtonian constitutive law. Our interest lies in investigating the effects of stress relaxation
and retardation on various hemodynamical variables associated with the unsteady blood flow.
The modeled equations are normalized and solved numerically using finite difference method.
The results are graphically displayed and impact of various parameters on physical quantities

of interest is analyzed.

3.1 Problem formulation

The flow geometry and the underlying assumptions are same as described in the previous
chapter. However, the rheological behavior of streaming blood in the core region, in this
chapter, is characterized by an Oldroyd-B fluid model.

The extra stress tensor of an Oldroyd-B fluid is given by [73]
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\vJ v
S+TIS=/.11|:A1 +72A1], 3.1
where 7,, 7, are the relaxation and retardation times respectively, 4 is the viscosity of the blood
\4
in core region. S is the upper convected time derivative (a materially objective time derivative)
oS

§'=§+V < VS-((VV) VS + 5+(VV)) (3.2)

In view of Eq. (3.1), the shear stress in the core region (0 <r< b) satisfies

0 J \ou
1 S, 1 1 3.3
( +Tla) ,ul( +Tzat)a (3.3)

The shear stress in the periphery region (b <r <a)is already defined in Eq. (2.8). Eliminating

S_between Egs. (3.3) and (2.7), we get the governing equation for flow in the core region:

p[%+r %:‘ A0(1+%cos(w t))—%tlw sm(w t)+ pA, cos(co t+¢)

a o
_ azu o (0%u u (ou 0 (Ou
- pAnga)psm(copt)+yl[ arz T, po ( arzl J:l+—7( arl +7,— Py (E‘D

The flow in periphery region is governed by Eq. (2.12). Egs. (3.4) and (2.12) are subject to

(3.4)

same boundary and initial conditions as defined in (2.13) and (2.14) except at the interface r =

b. At the interface » = b, we shall only employ the condition of continuity of the velocities.

3.2 Dimensionless analysis

To this end, we first normalize these equations by using the new variables as defined in Eqns.

(2.17). In terms of new variables Eqns. (3.4) and (2.12) after dropping the bars yield

a[% +4 aazt’j‘ ] =B, (1+ecos(2nt))—(2heB) sin(2at)+ B, (cos (27t +))

—(27w,B,A, ) sin (27w, ) + {azul _M_li(@l_}}

or? ot
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1(ou ) 4 0(ouw
+{r(6r)+ r at(ar )}’ (3-5)

2
7% =B, (1+ecos(2xt ))+ B, (cos (2mw,t +9)) + %l:a_aurl} + %rzi‘ , (3.6)

where 4, =tyw, /27, 2y =7,/ p1'

The dimensionless boundary and initial conditions become

ou,
or |-

r=0

=0, u) =0, =1y, - 3.7

The volume flow rate and the shear stress at the wall are defined through expressions (2.21)

and (2.22), respectively.

) 1
Q=2r (Iulrdr + uzrdr} (3.8)

0 n

The various dimensionless variables appearing in Egs. (3.5) and (3.6) are already defined in

previous chapter through Eq. (2.23). The reader is only cautioned to use # instead of & in Eq.

(2.23) for the definitions of dimensionless variables appearing in this chapter.

3.3 Numerical solution using finite difference method

The methodology to obtain the solution of Eqgs. (3.5) and (3.6) with corresponding initial and
boundary conditions is same in described in the previous chapter. The formulae used to
approximate the space derivatives are already given in previous chapter. However, in contrast
to Egs. (2.12), Eq. (3.5) involve mixed and second order derivatives. These derivatives are

approximated as

38



JH J
oy, e —u
L=k b=y,
ot At !
2 J+1 J J-1
0w, w/" —2u; +u —u
a (A o
J+l J J+l J
2 oy, _ Ui T W T8 u
ot\ or 2ArAt i
2 JH 1+l PR J_ oyl
2 Ow | _uyy —2u] +uy | —uyy, +2u; -y, 38
or\ or* ) (ar) At s G-8)

Using (2.24) and (3.8), Eqns. (3.5) and (3.6) may be transformed to the following difference

equation

u =(a+l—;ll)|:ulf (a - ZA_/lt‘) + —i‘; ul! } +B, (1 +ecos(2nt* )) ~(24,eB,x)sin (2n't" )
+B, (cos (27m),t" + ¢)) —(27w,B,4,)sin (27:60,1" ) + {”1,2 + 2, }
Y2
+ {r(u")+ 5 um}, (3.9)

U =uf 4 L%)[Bl (1 +ecos (27rt" )) +B, (cos (27rco,t" + ¢)) + % (uy, ) +ty 2 :| (3.10)

The temporal and spatial discretizations are also carried out in a similar manner as done in
chapter 2. Moreover, the choice of temporal and spatial time steps sizes is also the same as

given in the previous chapter.

3.4 Results and Discussion
In simulation we have assumed that ¢ = 0 and the core diameter is assumed to be 60% of the

tube diameter. In addition, the effect of the non-Newtonian nature of the blood is studied using
Oldroyd-B fluid for different values of 4 and 4,. Following [68], we have performed two
simulations having radius size and systolic component of the pressure gradient. The set with

4, =698.65 dyne/cm’, r= 0.15 cm represents the values the constant pressure gradient inside
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the coronary artery whilst the other one with (4, =32dyne/cm’, r = 0.5 cm) representing the

corresponding variables for femoral artery. The effect of the body acceleration on the flow field

are shown for different values of 4, = (0, 0.5g, g) and pulse frequency f, (= 0.6, .2 and 2.4).
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Fig. 3.1. Unsteady Dimensionless velocity at the centre of the tube for flow: Results in the larger artery (r = 0.5
cm, Ao =32 dyne/cm®) are shown in Fig. 3.1 (a, ¢, and €); Results in the smaller artery (r= 0.15, Ao = 698.65
dyne/cni’) are shown in Fig.3.1 (b, d and f). Velocity graph for different values of B; (varying 4g) are shown in
Fig.3.1 (a and b); Velocity graph for different values of f; are shown in the Fig.3.1(c and d); Velocity graph for
different values of Bz are shown in Fig.3.1 (e and f).

It is observed that due to the pulsating pressure and the body acceleration the velocity at the

centre fluctuates, increases and finally attains the steady state as time increases (7 is the
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dimensionless steady state time where the maximum velocity distribution is obtained). Such
behavior of velocity is shown in Fig. 3.1. The effects of the amplitude of the pressure
gradient Ay, the body acceleration in term of the amplitude Ay, and the frequency f, are also

shown in Fig. 3.1 in the core of the artery for non-zero values of 4 and 4,.Fig. 3.1a and 3.1b

shows that the velocity fluctuates around its mean value with constant frequency and amplitude
after achieving the steady state. Moreover, the amplitude of velocity increases by increasing
the amplitude of body acceleration. However, it decreases by increasing the frequency of body
acceleration as evident Fig. 3.1¢ and 3.1d. One may also conclude from the velocity plots that
the mean value of the velocity fluctuation in absence of body acceleration is significantly higher

than mean value of velocity fluctuation in presence of body acceleration.

Fig. 3.2 illustrates the velocity profiles for steady state condition in femoral artery. Hence t; is
the dimensionless steady state time where the maximum velocity distribution is obtained.
Therefore, tg is the starting time of the first half of one fluctuation cycle. In general, it is
observed that if Ay is larger or f;, is smaller, the value of velocity grow faster. Same behavior
is also observed when fluid is taken in the core region non-Newtonian. There are inflection

points within cycle of the velocity profile where the shapes changes from being convex to

concave.
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Fig. 3.2. Dimensionless velocity profile in the larger artery(r=0.5cm, Ay=32 dyne/cm3); Graphs for different
values of B, (varying Ag) are shown in Fig. 3.2 (a and b); Graphs for different values of f; are shown in Fig.3.2(c

and d); Graphs for different values of A4, and A, are shown in Fig.3.2 (e and f).

From Fig.3.2a, it is observed that when 4, =0 the shape of the velocity profile is parabolic.

Similar behavior is also found in Fig.3.2b at the start of the fluctuation cycle or ¢ =7, . From

Figs. 3.2c and 3.2d one can observe that the velocity does not achieve maximum at the centre
of the artery. Moreover, maximum in velocity is moving from the centre toward the arterial
wall during the first half and moving back to the centre during the second half of the fluctuation
cycle. Moreover, for the femoral artery when the velocity profile becomes negative, the

maximum velocity can be seen near the wall beyond the core region.
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Fig. 3.3. Dimensionless velocity graphs in the smaller artery(r=0.15cm,Ag=32 dyne/cm®): Fig. 3.3 (a & b): The

Effects of B,(varying A,z);Fig(c & d): The effects of varying f,; Graphs for different values of Ayand A, are

shown

in Fig. 3.3 (gand h)

In Fig. 3.2¢, the core region is taken Newtonian and body acceleration is assumed minimum.

It is found that the velocity profile to return to its parabolic shape and the curve becomes

concave at t = 7, + tpqrs. Fig. 3.2f is shown for non-zero values of 4 and A,. This figure

indicates shift in fluctuation cycle in time.
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Fig. 3.4. Unsteady Dimensionless flow rate in two different arteries: Fig. 3.4 (a, ¢, and e) results for the larger
artery(r = 0.5 cm, A0 =32 dyne/cm’); Fig. 3.4 (b, d and f) results for the smaller artery (r= 0.15, A0 = 698.65
dyne/cm?). Fig. 3.4 (a and b) Effects of varying B2 (varying Ag); Fig. 3.4(c and d): the effects of varying f

(4g=0.5g); Graphs for different values of A, and A, are shown in Fig. 3.4 (g and h).

The variation in velocity with time after achieving steady state for coronary artery is shown in
Fig. 3.3. It is evident from Figs. 3.3a and b that the profiles of velocity show increasing trend
by increasing Ag. It is interesting to note that the shape of velocity profile is parabolic at all
time. Figs. 3.3c and d indicate a decreasing trend in velocity by increasing /5. The velocity in
coronary artery when fluid in the core region is Newtonian is shown in Fig. 3.3e. The velocity

with same set of values bit with non-zeros values of A4 and A,is shown in Fig. 3.3f. A

comparison of Figs. 3.3¢ and f indicates a faster decrease in velocity with time when fluid in

the core region is non-Newtonian Oldroyd-B fluid. The effects of 4, and A,on velocity at # = s
are shown in Figs. 3.3g and h respectively. These figures show that the effect of A, on velocity
is quite opposite to the effect of 4,.

The effects of Ag, /i, 4 and 4, on the non-dimensional wall shear stress and flow rate are shown

through Figs. 3.4 and 3.5. It is observed that both flow rate and wall shear stress fluctuate with
time around some mean value after steady state has been reached. The profiles further indicate

that the amplitude of fluctuation increases by increasing Ag (the parameter controlling the
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amplitude of body acceleration). The effects of /o on these profiles are quite opposite to the
effects of 4g.

Moreover, the amplitude of fluctuate in flow rate and shear stress increases in going from
Newtonian to Oldroyd-B fluid. Another interesting observation is that for the larger artery both
flow rate and shear stress fluctuates between positive and negative value whilst for smaller
artery such fluctuation is always between positive values. As an implication of the mean values

flow rate and shear stress in the coronary artery are in excess of those in the femoral artery.

3.5 Conclusion

A mathematical model based on Oldroyd-B constitutive equation is developed for pulsatile
flow of blood subject to body acceleration. The model bears the potential to explore the effects
of stress relaxation and retardation effects. The analysis presented here is general and includes
the results of Newtonian and Maxwell fluids as special cases. The important hemodynamical
variables in pulsatile flow with superimposed body acceleration are analyzed for several values
of relaxation and retardation parameters. The present analysis is general and even such an

analysis with Fahraeus-Lindqvist effect in Oldroyd B-fluid is yet not available in the literature.
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Fig.3.5. Dimensionless wall shear stress for flow in two different arteries as a function of the dimensionless time:

32 dyne/cm’); Fig. 3.5 (b, d and f) results for the

Fig.3.5 (a, ¢, and €) results for the larger artery (r = 0.5 cm, 4o

smaller artery (r= 0.15, Ap = 698.65 dyne/cm’). Fig. 3.5 (a and b) Effects of varying B; (varying Ag); Fig. 3.5 (¢

0,5g); Fig. 3.5 (g and h): the effects of varying 4; and ,.

and d): the effects of varying fi (4g
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Chapter 4

Unsteady magnetohydrodynamic blood flow in a

porous-saturated overlapping stenotic artery

Unsteady pulsatile flow of blood through a porous-saturated, tapered and overlapping stenotic
artery in the presence of magnetic field is examined theoretically and computationally in this
chapter. The power law constitutive model is employed to simulate haemo-rheological
characteristics. The governing equation is derived assuming the flow to be unsteady, laminar
and two-dimensional. A robust, finite difference method is employed for the solution of the
governing equation, subject to appropriate boundary conditions. Based on this solution, an
extensive quantitative analysis is performed to analyze the effects of blood rheology, body
acceleration, magneto-hydrodynamic parameter, permeability parameter and arterial
geometrical parameters of stenosis on various quantities of interest such as axial velocity, flow
rate, resistance impedance and wall shear stress. The computations demonstrate that velocity,
flow rate and shear stress increase while resistance to flow decreases with greater permeability
parameter. Additionally, the effects of magnetic field are observed to be converse to those of
permeability i.e. flow is decelerated and resistance is increased, demonstrating the powerful
utility of exploiting magnetic fields in haemo-dynamic flow control (e.g. intra-corporeal

surgical procedures). Furthermore, the size of trapped bolus of fluid is also found to be reduced
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for large values of the permeability parameter indicating that progressively more porous media

circumvent bolus growth.

4.1 Mathematical Model

Let us consider incompressible power-law blood flow through a tapered artery of length L with
a overlapping stenosis subject to periodic body acceleration. We employ a cylindrical
coordinate system (7, 6, z) with r directed along the radial direction and z along the axis of the
tube (artery). The geometry of the overlapping stenosed arterial segment is simulated according

to (see Fig. 4.1(a)):

, 64 (11 47 1 3
R()= (5z+a)(l—-]6n(—ﬁlg(z—d)—z-glg(z—-d)z+10(z—d)3—§(z—d)4n, d<z<d+Zh,

(&'z+a), otherwise,

(4.1)

where a is the radius of the non-tapered artery in the non-stenotic region, /, is the length of
stenosis, d is the length of non-stenotic region, &' (= tan @)is the tapering parameter and @is

called taper angle. The cases ¢>0,4=0, ¢ <Ocorrespond to converging, non-tapered and

diverging tapering artery respectively. These cases are depicted in Fig. 4.1 (b).

d

(b)

Fig. 4.1. Geometry of the stenosed arterial segment.

The parameter nis defined as
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45"
= —, 4.2
n ol 4.2)
in which &' denotes the maximum height of the stenosis located at
z=d+—. 4.3)

Since the flow under consideration is unsteady two-dimensional and axisymmetric, therefore

we define
V = [u(r,z,t), 0, w(r,z,t)]. 4.4)

The Cauchy stress tensor of power law fluid is given by [22]

S=ull" A7, 4.5)

where TTis the second invariant of rate of deformation tensor 4; and 7 is the power law index.

According to the effective viscosity of the porous medium for a power law fluid is [74]

n-1

py =P, (4.6)
where 4 is the blood dynamic viscosity.
In view of (4.4), the continuity equation (1.2b) reduces to

%%Jr%wz—:o. %))

Similarly, the momentum equation (1.3) in the presence of magnetic field and component of

extra stress S take the following form:

ow op (10 0 -1\ U
p(—+u—+w——a;j=—g+(:ar(rS”)+a—(S,z)) ( u )k’ , (48)
ow Ow ow op 10 K o n-1\ W
p(—at—+ugr-+w—a;)= _E;+pG(t)+(:_67(rS’z)+ Py (Sz)) O'BOW (,ulwl )k" (49)
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In Eq. (4.9) G(t) represents the body acceleration acting on stenosed arterial flow in axial

direction. The above equation can be made dimensionless by defining

- @ = 2 —
F=l w=" 7= Ifu L T==L47% -Z R= £,p= ap,’Sn: a,Sn,
a U, 5'U, 2z I, 3 a Ui Uyu “.13)
§rr= lO ,Srr’ -zz= 10 ,Szz’ .u"'_':u(_qi)
Uyu U, a
Making use of these variables Eqns. (4.7) - (4.12) after dropping bars can be casted as
a(%#)ﬂ:o, (4.14)
or r) 0Oz

r oz or

2 au Qu_ au —_a_}l 2 1 n n-l E.
ade (6t+£Re(5ua +w— D +e (rar(rS")+ (S, )) (6 || )k’ (4.15)

a[aw]+Re(58u—aﬂ+g waw) —9‘2+B2(cos(27ra),t+9))
ot or 0z 0z
+(-1r-éa:(rSn)+£2§(Sz))—M2w—

(4.16)
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ow
(g 5;)' (4.17)

For the subsequent analysis, we assume that the stenosis is mild (6 =6"a<< l), and the ratio

€= a/ I, = O(1). In view of above assumptions, Eqns. (4.15) - (4.16) reduce to

% _y

> (4.18)

9‘”—‘"— Qw—:\—Mzw— "“(1”-). (4.19)
orl or k

Moreover, the pressure gradient is assumed to be of the form defined in Eq. (2.9). In

W

w|__ % 10
a{ at}_ . + B, (cos(27m, t+6)) + - ar{r

dimensionless form it becomes

_%p = B, (1+ecos(2xt)). (4.20)

In Egs. (4.14) - (4.17), Re=pU,a/ y'is the Reynolds number, k=k'/ a™ is the modified

permeability, and M = Bya(o/ ,u')}é is the Hartmann number.
Inserting value of - dp/éz in axial momentum equation (4.19), we get

ow 0

1 ow
a[a-:\ = B, (1+ecos2nt))+ B, (cos(27, t+ 0))+ _r_gr{r

or

n-1 @]—MZ _
or

n-1 (uj
u - 1.
k
421)

The appropriate boundary and initial conditions for the problem under consideration are [26]

ow(r,t) _

=0, atr=0, (4.22)

52



w(r,1) =0, at r=R(z), (4.23)

w(r,0)=0, at t=0. (4.24)

The physical quantities of interest such as volumetric flow rate, the shear stress at the wall and

resistance impendence in terms of the new variables become:

Q =27r?wrdr, (4.25)
n~1 aW
= (5 5‘]’# ) (4.26)
{2
0z
A= o 4.27)

The dimensionless expression of geometry of stenosis is given by:

R(z)=(l+§z)[1——nl[ (s-0) -2 (e-0) +(z-0) -3 (z-0) H,asmm%,

where 771=45,6=5,0' d =£I—°.
a

4.28)

Employing the radial coordinate transformation [75]

r

R(z) ’

(4.29)

Eq. (4.21) can be cast as

a[?ﬂ B,(1+ecos2n 1))+ B, (cos (27w, t+6))+ R"*' [

2w (3

y.__/

(4.30)

The dimensionless boundary conditions assume the form:
BW(x: t) — 0’ W(x,t)l » = 0' (4.3 1)

ax x=0 =
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Similarly the volumetric flow rate, the shear stress at the wall and resistance impendence

respectively takes the form:

Q0 =2k [ fw xde, 4.32)
7, = 1;" (;ﬂ ) %} : 4.33)
29
L(a_l’)
1\ Oz
A=52, (4.34)

substituting the value dimensionless form of pressure gradient in Eq. (4.24), we can write,

A=

LB (1+ecos(2xt))
p )

0 (j.u xdx] R(z)

(4.35)

4.2 Numerical solution

Employing the finite difference formulas of various partial derivatives appearing in Eq. (4.30),

we get the following difference equation.

. di : 1 n-
wt =w +;t[[31 (1+ecos(27rt’))+B2 cos(27rw,t’ +6)+FIW’I lwx)+

Vbl w7 (o
R’

+1

‘)1”]-:—} (4.39)

The finite difference representation of the prescribed conditions is given by

w: =0, att=0,
wiy =0, atx=1, (4.40)
wlj = w{ at x=0.
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Dimensionless Velocity

The numerical solution is sought for N+I uniformly discrete points x,.,(i =12,...N+ 1) with

a grid size Ax =%V R the time levels ¢, = (j —1)At, wheres Af is the small increment in time.

To obtain the accuracy of the order ~ 1077, we have taken the following step sizes: Ax =0.025

and At =0.00001 .

4.3 Results and Discussion

The following default parameters are used in the simulations: d=02,=1, L=2.0,
©,=21f,f, =12 @,=21f, f,=12,0=00,0=02.

Fig. 4.2 (a), illustrates the variation of dimensionless velocity profiles with permeability
parameter at a time instant at which the maximum velocity is obtained. An increase in axial

velocity is noted from this figure with increasing k. Greater permeability diminishes the porous

matrix resistance which serves to accelerate the blood flow.

2.5 2.5 T T
(a) )
2f z 2
------- N R
....................... - s Tes
S p——— Swo 15 Fensasecncassaraasnassncran,.,, e
L] A 3 ............... RO
....."u.:\‘\\ E ........... h ~
e ™) g 1 o BN
— k=06 ...":,\ E — M=01 .."-..,\\\
----- k=05 RN A e M=05
0.5F e k=04 \ 0.57 ooereens M=09
0 . : . . 0 ' : * :
0 02 0.4 0.6 0.8 0 0.2 0.4 0.6 08
Dimensionless Radius Dimensionless Radius

Fig. 4.2. Velocity profile for different values of permeability parameter k and Hartmann number M with the

following data: f=1,, 2=0.52, 6 =02, n= 0.8, M =0.5.
The dimensionless velocity profiles for different values magnetic field parameter Hartmann

number, M, are shown in Fig. 4.2 (b). It is observed that magnitude of velocity decreases by
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increasing the value of the Hartmann number, since greater hydro magnetic body force acts to

retard the flow i.e. induces deceleration in the blood flow.
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Fig. 4.3. Velocity profile for different values of dimensionless amplitude body acceleration and Jd with the

following data: t=7,, 2=052, 6=0.2,n= 0.8, k=0.5.

The variation in axial velocity for various values of dimensionless amplitude of body

acceleration is shown in Fig. 4.3(a).As expected the magnitude of axial velocity increases with

increasing the amplitude of the body acceleration. Fig. 4.3(b) shows the non-dimensional axial

velocity in the stenotic region for different values of & and tapering parameter in the absence

of magnetic field and porous medium. It is observed that an increase in & decreases the

velocity. i.e., magnitude of velocity in stenotic artery is less than that in normal artery, a

physically realistic trend.

(a)
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Dimensionless Flow Rate

Dimensionless Wall Shear Stress

Fig. 4.4. Flow rate for different values of Hartmann number, M and kwith the following data:

B,=4,z= 052, n=0.38, k=05.

Dimensionless Flow Rate

\ : o
' ‘ ‘ : J 04 - : : :
0 0.5 1 1.5 2 25 0 0.5 1 15 2 25
Dimensionless Time Dimensionless Time
Fig. 4.5. Flow rate for different values of & and B, with the following data: B,=4,2=0.52, n= 0.8, k=05,
M=05.
Moreover, the diverging tapering accelerates the flow in the stenotic region in comparison with

the converging tapering. Divergence in geometry enhances momentum flux and accelerates the

flow. The converse behavior is induced with a convergence in taper.

0.05 . .
(a) M=09,05,0.1 "
I ¢
0.04 &
0.03 2
0.02
g
El AN
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£
or a y,
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Dimensionless Time Dimensionless Time

Fig. 4.6. Dimensionless wall shear stress for different values of Hartmann number, M and B, with the following

data: § =0.2, B, =4,z =0.52,n=0.8, k=0.5.

The velocity curve for artery without tapering lies in between the corresponding profiles of

converging and diverging arteries. Fig. 4.4 (a) shows the influence of M on dimensionless
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Dimensionless Wall Shear Stress

flow rate in the stenotic region. It is observed that an increase in the magnitude of M reduces
the magnitude of flow rate i.e. impedes arterial flow. Further, it can be seen through Fig. 4.4
(a) that the flow rate fluctuates around its mean value after the achievement of steady state time
which is observed to be approximately 1.3 in this case.

The plots of dimensionless flow rate for different values of k in the stenotic region are shown
in Fig. 4.4 (b). This figure reveals that flow rate increases by increasing the permeability of the
porous medium, which is again attributable to the reduction in Darcian drag force (lesser fibers

are present to resist the flow with greater permeability).

0.05 y " 0.05

i
0.04 & 004}
H
0.03 2 003}

3

0.02 2 002
3

0.01 £ oot

. 7 0

[
E

0r a 0

-0.01 . . . - 0. : - . .
0 0.5 1 1.5 2 2.5 0 010 0.5 1 1.5 2 2.5
Dimensionless Time Dimensionless Time

Fig.4.7. Wall shear stress for different values of k and & with the following data: § = 0.2, B, =4, z=0.52,
n=0.8,M =0.5.

The variation of dimensionless flow rate with & in the stenotic region is illustrated through
Fig. 4.5 (a). This figure indicates a decrease in the flow rate with an increase in the size of
stenosis. Contrary to the observation made in Fig. 4.5(a), Fig. 4.5(b) shows that the flow rate
increases by increasing the dimensionless amplitude of body acceleration.

The profiles of wall shear stress for different values of Hartmann number, M, and shape

parameter, B,are shown in Fig. 4.6 (a) and (b), respectively. Fig. 4.6 (a) indicates that wall

shear stress decreases from the purely hydrodynamic (non-magnetic) to the magneto

hydrodynamic case, since the presence of magnetic field decelerates the flow and reduces wall
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stress. Fig. 4.6 (b) indicates that wall shear stress increases with increase of amplitude of body

acceleration.

The time evolution of non-dimensional wall shear stress for different values of permeability
parameter k is shown in Fig. 4.7 (a). It is evident from inspection of Fig. 4.7 (a) that an increase
in the permeability parameter k increases the magnitude of the wall shear stress. The influence
of Son dimensionless wall shear stress at a specific location z = 0.52 is shown in Fig. 4.7(b).
It is interesting to note that shear stress decreases by increasings. The time series of
dimensionless resistance to flow of various values of permeability parameter is plotted in Fig.

4.8. This figure depicts that resistance to flow decreases with the permeability parameter .

'5x10
----- k=0.6 .
) S, k=04 H $

Dimensionless Resistance to Flow
(¥}

0 0.5 1 1.5 2 25 3
Dimensionless Time

Fig. 4.8. Resistance to flow for different values of permeability parameter & with the following data:

5=02,B,=0,2=0.52,n=08, M= 0.5.

Blood flow patterns over for the whole arterial segment at time instant # = 0.3 (which belongs
to systolic phase) are shown in Fig. 4.9 (Panels (a)-(f)). Panel (a) is considered as standard and
rest of the panels are compared with it in order to illustrate the effects of various parameters on
bolus pattern. Panels (a) and (b) illustrate streamlines for k= 0.5 and oo (purely blood flow Le.
vanishing porous medium), respectively. Both panels indicate a circulating bolus of fluid and
their comparison reveals a decrease in the size of bolus by increasing the permeability of the

porous medium. The effect of Hartmann number on streamlines pattern can be observed
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Fig. 4.9. Blood flow patterns for: 6 = 0.2, B = 2, B,=2,t=03.

through the comparison of Panels (a) and (c). It is observed that an increase in the strength of
magnetic field increases the size of the circulating bolus. This is perhaps due to the decelerating
effect of magnetic on the flow velocity. A comparison of Panels (a) and (d) illustrate the effects

of power law index 7 on streamlines pattern. It clear that size and circulation of trapped bolus
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increases when » approaches unity. In other words thev size and circulation of trapped bolus
increases from the shear-thinning blood scenario to the Newtonian blood scenaric;.

Streamlines patterns for converging and diverging arteries are shown lin Panels (e) and (f)
respectively. It is interesting to n;)te that the outer streamline of the eddying region has a sharp
edge on the upstream side for a converging artery while this sharp edge appears on the
downstream side for a diverging artery. A close examination of panels (e) and (f) also indicate

the formation of a small eddy in the downstream zone for a converging artery and in the

upstream region for a diverging artery.
4.4 Conclusions

A mathematical model for magneto-hydrodynamic pulsatile flow of blood through a porous
saturated artery incorporating the effect of body acceleration and asymmetric shape of stenosis
is presented. A power-law constitutive model is used to account for the blood rheology. The
unsteady flow regime is shown to be governed by a nonlinear partial differential equation
which is solved numerically using finite difference technique. The physical quantities of
interest are plotted for various values of the emerging fluid dynamic and geometric parameters.
The present computations have shown that:

Dimensionless velocity in the stenotic region increases by increasing amplitude of the body
acceleration and permeability parameter. However, it decreases when tapering parameter
changes from positive to negative or when the height of the stenosis increases.

A reduction in the magnitude of velocity accompanies increasing Hartmann number.

The dimensionless flow rate in the stenotic region decreases by increasing the height of the
stenosis while the converse response is computed by increasing permeability.

Wall shear stress increases by increasing the permeability of the porous medium.

The resistance to flow is a decreasing function of the permeability of the porous medium.
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o The size of trapped bolus of fluid decreases by increasing the permeability of the porous
medium. However bolus size is amplified as we progress from the shear-thinning to Newtonian

blood scenarios.
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Chapter 5

Unsteady non-Newtonian blood flow through a

tapered overlapping stenosed catheterized vessel

This chapter investigates the unsteady flow characteristics of blood in a catheterized
overlapping stenosed artery in presence of body acceleration and magnetic field. The stenosed
arterial segment is modeled as a rigid constricted tube. An improved shape of stenosis in the
realm of the formulation of the arterial narrowing caused by atheroma is integrated in the
present study. The catheter inside the artery is approximated by a thin rigid tube of small radius
while the streaming blood in the artery is characterized by the Carreau model. Employing mild
stenosis condition, the governing equation of the flow is derived which is then solving
numerically using finite difference scheme. The variation of axial velocity, flow rate, resistance
impendence and wall shear stress is shown graphically for various parameters of interest. The

flow patterns illustrating the global behavior of blood are also presented.

5.1 Geometry of the problem

A homogenous incompressible Carreau fluid is assumed to be flowing in a catheterized tapered
stenosed artery of length L. The flow is subject to a constant applied radial magnetic field and
periodic body acceleration. The flow analysis will be carried out in a cylindrical co-ordinate

system (r, 6, z), where r and z axes are along the radial and axial directions of the artery. It is
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assumed that the stenosed arterial segment is composed of two overlapping bell shaped curves

whose equation is

(¢‘z+a)(1 —%n(%zg (z—d)—%lj (z-d)’ +1,(z-d) —%(z-‘d)“)], d<z<d+1.3l,

(5 "z+ a) , otherwise,

(5.1)

In above expression d represents the length of non-stenotic arterial region, a is the radius of

undisturbed non-tapered part of the artery, J, the length of stenotic region, & is a parameter such
that 0<k<1 and & (= tan ¢) the parameter controlling the convergence (¢ < 0) or divergence

(¢ > O) of post-stenotic region. The case (¢ = 0) corresponds to non-tapered artery. A schematic

diagram of the both non-tapered and tapered catheterized arteries are shown in Fig. 5.1(a) and

().

Fig. 5.1(a). Geometry of the overlapping stenotic artery with a catheter.

5.2 Flow equations

The appropriate velocity field for two-dimensional and axi-symmeteric flow under

consideration is defined in Eq. (4.4). The constitutive equation for Carreau fluid model is [22]
n-1
S=(,uw+(y0-yw)[l+l"21'12] 2 JA,'. (5.2)
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In Eq. (5.2), y, and u_are zero-shear-rate and infinite-shear-rate viscosities, respectively and
T is the time constant.
In view of (4.4), the continuity equation (1.2b) reduces to

LIRS (5.3)
or r Oz

Similarly, the momentum equation (1.3) in the presence of magnetic field and component of

extra stress S take the following form:

ou Ou ow op (190 0
—tUu—t+w— |=——+| ——(rS_)+—(S_) |, 54
p(at “or waz) or (rar(r") az(”)j GH
ow ow ow\) op 10 ) ,
—tu—+w— |=——=—+pGt)+| ——(rS_)+—(S ) |- 0B, W, 5.5
p(@t “or waz) 5 PO (rar(r") az(”)) ° ¢2)

-l

2
S, =2| o+ (o — a4, ){ 14T (%u), (5.6)

()2 (2]

LOREREIESI

B ow
} ). 67

S, = #, +(;10 —,um){1+l‘2

Making use of dimensionless variables defined through Egs. (4.13), (5.4) - (5.8) after

dropping bars can be casted as
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ade’ [-2—1:+ aRe(é;uZ—u+w?)) = ——Z—p+£2 (lgar—(rS,,)+ai(S,,)j, (5.10)
r Z r r z

o ow ow 9 10 P,

r

rtefon a5 N (o

(5.12)

Employing mild stenosis assumption. i. e. (5:5'/a << 1), and further assuming that

¢ =afl, = O(1), the above equations take the following form

2L, (5.13)

n1

22
J M _Miw. (5.14)
or

ow 0 190 ow
0{ ]=—5§-+Bz(cos(czt+¢))+:g r m+(l—m)(1+We2
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Note that Eq. (5.9) does not need to be considered further because in view of the mild stenosis

assumption the information given by it i.e. awéz=0is already integrated in Eq. (5.14).

Following Burton [99], we take

_6—p=A0+A1Re{e2mw”}, t>0, (5.15)
0z

where 4, is the mean pressure gradient and 4, is the amplitude of the pulsatile component

which is responsible for systolic and diastolic pressures. In dimensionless form (5.15) becomes

0
s =B, (1 + ecos(clt)). (5.16)

It is pointed out that expression (5.16) slightly differs from its counterpart given in previous

chapters because of the use of was normalization frequency instead of@,. In Egs. (5.9) -

(5.12), We=TU,/ais the Weissenberg number and M =B0a(o/,uo)}é is the Hartmann

number and

0 o (5.17)

Inserting value of —8p/dz in axial momentum equation (5.16), we get

n-~1

N
ow 10 |ow| )% | ow 2
al— |=B{1+ecos(ct))+ B, (coslc, t+ @)} +——| rym+{1-m)| 1+ We" |— —|-M"w.

280t ) 2 e o2 |12
(5.18)
The above equation is subject to following boundary and initial conditions
w(r,t)|_, =0,w(r,0)| _, =0, w(r,0)=0, (5.19)

The formulas of volume flow rate, wall shear stress (WSS) and resistance impendence in new

variables read
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R
0 =[wrdr, (5.20)
k

2\ 2

Tg = (1—m)(1+We‘2 — J % , (5.2
r=R
2]
4
A= 5.22
0 (5.22)
where
R(z)=(1+§z)|:l—%nl[;—;(z—d —;{%(Z—d)z+(z-—d)3 —é(z—d)4):|, o<z<o+1.5,
with 7 =46, 5=5 , 0'=i, §=§—12.

a IR a

(5.23)

The formula (5.21) actually represents the magnitude of generalized wall shear stress given in

[76] under mild stenotic assumption. According to [76]
T, =Jw-w, (5.29)

where w=Tn—(Tn.n)n, T is the stress tensor given through Eq. (2.2) and n is outward normal

to the wall surface.
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Fig. 5.1(b). Geometry of the stenotic artery with different tapering angles.
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Employing the radial coordinate transformation [75]

r

x= Tk (5.25)
Eq. (5.18) can be transformed as
2 2\
ow 1 o WeYiow| |* | ow
a[a] = B (1+ecos(c,t)) + B, (cos(c2t+¢)) prw b m+(1 —m)(l +[?e) > = —M?w,
(5.26)

and the dimensionless boundary conditions becomes

wl,_, =0 _ =0, w|’=0 =0. (5.27)

Similarly the volume flow rate, the shear stress at the wall and resistance impendence,

respectively takes the form

Q=R2(wadx], ' (5.28)
1 we ) |ow|’ B ow
TJ:E m+(1—m)(l+(?e) -5; } —a—x— , (529)
12
a=h 52 . (5.30)

Substituting the dimensionless form of pressure gradient in Eq. (5.30), we can write

A=

LB (1+ecos(2z 1)) (5.3
I ' .

0 (wadijz(z)
5.3 Solution methodology

Due to nonlinear nature of Eq. (5.26), an exact solution is difficult to find. Therefore, a

numerical solution is inevitable for further discussion. Now, employing a similar procedure to
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approximate the various partial derivatives appearing in Eq. (5.26), we get the following

discretized version of Egs. (5.26):

k+1

At w, A%
W, =w,k+; B (1+ecos(cltk))+ B, cos(czz"‘+¢)+xR2 m +(1—m){l+(?e) walzj +

n-1 -l
l-m)w_ & we Y’ 2 :
J#— 14| 2= w,| +— | m+(1-m)| 1+ We 15 w,—M*wf
R Ox R R
(5.32)
The finite difference representation of prescribed conditions is given by
w,I =0, att=0,
wh,y =0, atx=1, (5.33)
wf =0 at x = k (cathetered radius).

Eq. (5.32) is used to compute the value of w at N+I uniformly discrete points
x,(i= 1,2,....N +1) with a space grid size Ax =%V+l at the time levels ¢, =(k-1)Ar, where

At is the small increment in time. To obtain the accuracy of the order ~107", we have taken

the following step sizes: Ax=0.025 and A= 0.00001.

5.4 Results and discussion

The computation are carried out for the following set of parameters:
d=05,0,=10, L=27,a =08, u,=0.56, u_ = 0.0345,¢ = 00,0,=2zf,, 0=025, k=0.1.

Fig. 5.2 demonstrates the dimensionless velocity profiles of blood at different locations of the
arterial segment. Panel (a) is plotted for a specific set of parameters. Each parameter of this
specific set is varied to produce plots in panels ((b)-(h)) at the same cross-sections as taken in
panel (a). In this way panel (a) is considered as standard and other panels are compared with it
in order to observe the effects of various parameters. In panel (b) the velocity profiles are shown

by changing the radius of the catheter. This panel when compared with panel (a) indicates that
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the effect of increasing catheter radius is to decrease the magnitude of velocity significantly at
each cross-section. Panel (c) illustrates the effects of increasing critical stenotic height on
velocity profile. It is evident from the comparison of panel (c) and panel (a) that blood flow
velocity decreases by increasing the critical height of the stenosis. The effects of power law
index n on velocity profile at various location of the artery are shown in panel (d). It is seen
that an increase in n decreases the flow velocity of blood. The parameter We which control the
viscoelastic behavior of blood also bears the potential to significantly affect the velocity profile
at each cross —section. It is observed through comparison of panel (a) and panel (¢) that velocity
profile of blood is an increasing function of Weissenberg number (We). In panel (a) the profiles
are shown at the time instant ¢ =0.3 which belongs to systolic phase. For a time instant which
belong to diastolic phase i.e. # =0.45 the velocity profile are shown in panel (f). In diastolic
phase pressure gradient fall down and as a result of that the magnitude of velocity at each cross-
section reduces. The velocity profiles at different cross-sections of the artery also show
decreasing behavior by increasing the strength of the magnetic field. This behavior of velocity
can be readily observed by a comparison of panel (a) with panel (h). The effects of amplitude
of body acceleration on velocity profiles at various cross-sections can be observed by
comparing panels (a) and (h). The comparison shows that an increase in amplitude of body
acceleration increases the magnitude of velocity. A general observation from Fig.5.2 is that the
rheological parameters of blood, the catheter radius, the amplitude of body acceleration, the
magnetic field alter the magnitude of velocity in both stenotic and non-stenotic region.
However, the geometric parameter of stenosis § effects the velocity profile only in the stenotic
region. The decrease in the magnitude of velocity by inserting a catheter is of major concern to
the clinicians. This may result in some complications during the treatment/diagnostic
procedure. However, the non-Newtonian rheology of the blood could be exploited to tune the

velocity profile in a manner so that the effects of catheter on flow velocity are minimum.

71



Indeed, in case of Newtonian fluid, the flow velocity is only function of geometrical parameters
of the stenosis. The only way to modify, for example, the flow velocity is to change the
geometrical parameters of the stenosis which is of course not possible. However, for a non-
Newtonian fluid the velocity in addition to the geometrical parameters of fluid is controlled by
the mechanical properties of the blood. Thus the non-Newtonian feature of blood allows the
flow velocity to be tuned without modification of geometrical parameters of the stenosis. It is
worth mentioning that our approach basically follows the approach of Mandal [26] and that is
why our results are in accordance with his results. In fact it is shown by Mandal [26] that axial
velocity get reduced to a considerable extent in case of a steeper stenosis. Thus following
Mandal [26], we have prescribed the pressure gradient of sinusoidal type instead of prescribing
the flow rate. In this way flow rate in our study is unknown. Since pulsatile pressure gradient
is the main source of flow in our case therefore no flow velocity is imposed at the inlet. On the
contrary, Tzirtzilakis [77] has prescribed the flow rate at inlet and calculated the stream
function (consequently the velocity). His study shows different flow jets and downstream
recirculation zones. Similar results are reported by Lee et al [78] by prescribing the Poiseuille
type flow at the inlet, where apart from different flow jets and downstream recirculation it is
also shown that axial velocity increases in the case of narrowing of stenosis. From the above
discussion it concluded that increase of axial velocity in the stenotic region is attributed to the
prescription of flow rate at the inlet. On the other hand, the decrease of axial velocity in the
stenotic region is attributed to the prescription of pressure gradient. It is remarked here that
fixing the correct boundary conditions at inlet and outlet in term of flow rate or velocity is an
active subject of research. We refer the reader to recent articles by Guerra et al. [79] and Elia

et al. [80] where data assimilation techniques based on variational approach are used to address

the issue.
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The time series of flow rate at z = 0.77 (where the maximum height of the stenosis is observed)
for various values of emerging parameters is shown in Fig. 5.3. The solid line curve
corresponds to a specific set of parameters i.e. We = 1.8, n=0.8 M=0.5k=0.1,6 =0.1, B,
=2. Each parameter from this set except B: s varied to produce all the other curves in Fig.5.3.
For instance the dashed curve is generated by changing 8. It is noticed that due to pulsatile
nature of flow, the flow rate also oscillates with time. For initial times its behavior is not
periodic. However, it achieves periodicity after ¢ = 2. 3sec. The amplitude of oscillations shows
quantitative variations by changing n, We, & and M. In fact it is seen by examining the other

curves that flow rate decreases by increasing n, M, § and k, while it exhibits opposite trend by

increasing We.

The time series of WSS at stenotic throat for some specific values of We, n, M, k and § is
shown through Fig. 5.4. Various curves in Fig. 5.4 are compared according to the rule as used
in Fig. 5.3. It is observed from this figure that WSS is found to decrease by increasing critical
height of stenosis, strength of magnetic field, radius of catheter and Weissenberg number.

However, it magnitude increases by increasing amplitude of body acceleration.

The time series of resistive impedance at z = 0.77 corresponding to the critical height of
stenosis is calculated using Eq. (5.33) and shown in Fig. 5.5 for various parameters. A
quantitative comparison of solid line curves with other curves indicates that impedance
increases by increasing magnetic field strength, catheter radius, critical height of stenosis and
power-law index. However, it follows opposite trend by increasing Weissenberg number. It is
also observed during simulations that the magnitude of impedance at a location in overlapping

region of stenosis (z = 1.26) is less than its magnitude at stenotic throat (z = 0.77).

The blood flow patterns for different values of involved parameters are shown in Fig. 5.6. Panel

(a) shows the flow pattern for specific values of We, n, M, &, and ¢. This panel confirms the
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appearance of circulating bolus of fluid in the stenotic region. By increasing » from 0.8 to 0.9,
the size and circulation of bolus increases as evident from panel (b). A comparison of panel (a)
and panel (c) discloses the potential of applied magnetic field to reduce the strength of the
circulating region. The effects of Weissenberg number on circulating bolus of fluid can be
observed by comparing panel (a) and panel (d). It is noted that the strength of circulation region
increases by increasing Weissenberg number. A comparison of flow patterns of panel (a) and
panel (e) indicates that the outer most streamline of circulating region in non-tapered artery
splits in case of converging artery. Moreover, there is an appearance of small eddy in the
downstream region for converging artery. Panel (f) shows flow pattern for a diverging artery.
When compared with panel (a), this panel also indicates the splitting of the outer most
streamline and small eddy in upstream region. The effects of critical height of stenosis on flow
pattern can be understood from a comparison of panel (@) and panel (g). It is seen that strength
of circulating region increases by increasing the stenotic height. The strength of circulation
bolus of fluid also varies with the passage of time. In fact the bolus size decreases in systolic
phase while in diastolic its behavior is reversed panel (4). The effect of catheter radius on blood
flow pattern can be well understood by comparing Figs. 5.6(a) and 5.6(3). It is interesting to

note that the size and circulation of bolus increases by increasing the catheter radius.

5.5 Concluding remarks

A mathematical model for unsteady magneto-hydrodynamics blood flow through a
catheterized stenotic vessel is analyzed. The constitutive equation of Carreau model is used to
represent blood rheology. A numerical solution of the governing initial-boundary value
problem is obtained employing the finite difference method. The velocity and volumetric flow

rate of blood, arterial wall shear stress, impedance and streamlines of flow are analyzed
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quantitatively for geometrical parameter of stenosis, rheological parameters of blood, catheter
radius and magnetic field. It is found that blood velocity and flow rate decrease with increasing
the catheter radius. On the contrary, the impedance increases with increasing the catheter
radius. Moreover, the strength of recirculating zones appearing in the stenotic region is also an
increasing function of catheter radius. These observations may have certain clinical
implications. In fact it is desired in any clinical procedure regarding treatment/diagnosis of
atherosclerosis to avoid the reduction of flow rate and to decrease the impedance (resistance to
flow) due to insertion of a catheter. The present study discloses two remedies to avoid such
effects. One remedy, of course, is to manufacture the catheters of very thin radius and the other
remedy is to tune the rheology of the blood. The later cannot be proposed by incorporating
Newtonian fluid in the flow analysis. Moreover, power-law model gives the choice to tune the
velocity of blood only by exploiting the shear-thinning nature of the blood. However, the
Carreau model gives additional solution i.e., to use the viscoelastic nature of blood to tune the
velocity of blood. In the end we would like to mention that the present analysis has certain
limitations. In fact a more detailed analysis, without using mild stenosis condition, which
encompasses wall properties, two- or three-dimensional aspects of the flow etc. may be more

helpful in bringing out the realistic results.
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Fig. 5.2. Velocity profile at different cross sections of the artery.
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Fig. 5.6. Blood flow patterns for: B, =2, B, = 2.
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Chapter 6

Unsteady micropolar hemodynamics in a
tapered catheterized artery with a combination

of stenosis and aneurysm

In this chapter, the unsteady flow characteristics of blood are analyzed through a catheterized
stenotic artery with post-stenotic dilatation. A rigid tube with a pair of abnormal wall segments
in close proximity to each other is employed to geometrically simulate the diseased artery. A
micropolar fluid model is used to capture the rheological characteristics of the streaming blood
in the annulus. The mild stenosis approximation is employed to derive the governing flow
equation which is then solved using a robust finite difference method. Particular attention is
paid to the effects of geometrical parameters of the arterial wall and rheological parameters of
the blood on axial velocity, flow rate, resistance impedance and wall shear stress. The global

behavior of blood is also analyzed through instantaneous pattern of streamlines.

6.1 Geometric Model

Consider the unsteady two-dimensional and incompressible flow of non-Newtonian blood in a
straight, rigid and axisymmetric catheterized artery of length L that contains two diseased

segments. A cylindrical coordinate system (r, 6, z) has been utilized for the analysis of the
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current problem, in which » and z axes are along the radial and axial directions of the artery

respectively. The equation describing the geometry of wall is given by:

R(;)= («f‘z-f—a)[l [j;(l+cos—2?( ﬁ——m} B <z<p+l,i=12 6

(f "2+ a) , otherwise.

In the above expression, §, represents the length of ith abnormal segment from the origin, a
denotes radius of the undisturbed non-tapered component of the artery, /, is the length of
abnormal segment and g (= tan ¢) the parameter controlling the convergence or divergence of

an artery. A schematic diagram of the non-tapered artery is shown in Fig. 6.1 (a), in which &,
denotes the critical height of the ith abnormal segment appearing at two specific locations

respectively i.e.

I, I
=B +>, and z= B, +2. 6.2
z ﬁl > Z ﬂz 5 ( )

»”"=~, Dllatation
N

r B =0.2 lo=1 .................
S
R(ZN___»~  Stenosis L
e v oo 20 k7 b A A A 2 2 A z
a_ééz.ld.’.‘E.ZJ./_LgﬂthitEFﬂ./././ AT N AT

e’

Fig. 6.1(a). Geometry of the arterial segment in pulsatile rheo-hemodynamic model.

The cases ¢ <0, $=0, ¢>0corresponding to converging, non-tapered and diverging artery

scenario’s, respectively are displayed in Fig. 6.1 (b). It is emphasized that 8, is positive for
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stenosis and negative for aneurysms. The radius of the catheter inserted in the diseased artery

iska(k<<1).

For the problem under consideration we have assumed /, =/, =/,, 6, =& and 8, =0 for
simplicity.

6.2 Flow equations

The equations that govern the unsteady flow of an incompressible micropolar fluid are [81]:

p(%}lt—+V-VV]=—Vp+m1 va+(,u+m1)V2V, (6.3)
pj(%+V-Vv)=—2mlv+m1 VxV—}/(Vxva)+(n+z+7)V(V-v), (6.4)

where V is the velocity vector, vis the micro-rotation vector, pis the fluid density, j is the
micro-gyration parameter, p is the fluid pressure, 7, x, 7 are the coefficients of the viscosities
and m,, u are coefficients of the vortex and shear viscosity, respectively. Moreover, the
parameters u, m,, 7, x and 7 are subject to the following constraints [29]:

2p+m 20, m20,3n+y+x20, ¥2|z|. (6.5)

Since the flow under consideration is unsteady, two-dimensional and axisymmetric, therefore,

we define the vectors:

V= [u(r, z,1), 0, w(r, z,t)], 6.6)

v= [O, wr,z,t), 0]. (6.7)

In view of (6.6)-(6.7), the continuity equation (1.2b) reduces to
—+—+—=0. 6.8)

Similarly, the balances of linear and angular momenta given through Egs. (6.3) and (6.4) take

the following form:
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u 10u v
22-Z l)—m,— (6.9)

p(gu—+u—ai+w@)——§£+( m,) +—
ot or oz or S ot ror r* Oz
P(@+u€w—+ @]"?L( e L 120 P m 3(0) (6.10)
ot or. oz Oz AT ot ror 8 roor’ '
a 2
pJ(zv-+u@+w@)=—2ml v—ml(ﬂ—% +7y 9 l—(ﬂ)- +2—; . (6.11)
ot or 0z or 0z orir or 0z

Let us scale the variables r, z, w, u, t and p in a similar fashion as done in previous chapter and

write Egs. (6.1), (6.9)6.11) as follows:

a(@#}—_o, 6.12)
or r) 0Oz
2
ade’ ﬁ+45‘Re(5u?£+wa—u) ____6_p+€252 _fiTu_*_lzu___uT —MEZ?X, (6.13)
ot or oz or o’r ror r Z

2 2 P
a[@]+Re(5&'u@+azwzw-)=—2‘2+(1+K) 8_2114_1@*_82_3;»: +£—£v—) 6.14)
or oz or ror oz or

2
(@_826@_)+K .a_ lM +gz.a_:. s
or 5 or\r oOr oz

aJ?—v-+Rng 5u2v—+ReJewgzl=—2Mv—M

ot or
(6.15)
. 2
WhereI,-:gl’j:_.]T’ —lzﬂa M=ﬂ_,K=l2—; 6=5 ;R-=—Iisﬁ= ap .
U, a I H Hua a a UJ.u

For the subsequent analysis, we assume that the stenosis/aneurysm is mild (5 =5 / a<< 1) , and

the ratio & = afl, = O(1) [57]. As an implication of these assumptions, Egs. (6.13)-(6.15) reduce

to:
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=0, (6.16)
a[@}—a—P+(1+M){az—f+l@W+M(la(”)], 6.17)
ot oz or r 6r_ r Oor
aj[@.}-M(zHéw_}Ki 6_@) 6.18)
ot or arkr or

Inserting the value of —3p/dz from Eq. (5.16) in the axial momentum equation (6.17), we get:

a[%ﬂ: B(1+ecos(ct))+(1+M)[%rz—?+lgw_}+M(lm]. (6.19)

r or r or

Egs. (6.18) and (6.19) are subject to following boundary and initial conditions:

wir, 1) =0,w(r,0)|,_, =0, w(r,0)=0,

(6.20)
vr, 1), =090, =0, ¥(r,0)=0,

The appropriate expressions for wall shear stress (WSS) may be defined as:

z, =(1+12v1 )(_Qw_}_[i\/f?)v (621)
a or a
where

R(z)=(1+§z)[l—(—§(l+c052ﬂ(z—,B, —%)D), c<z<o+],

l
B oo

l a

(6.22)

with o=
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Fig. 6.1 (b). Geometry of the diseased artery with tapering.

Employing a radial coordinate transformation [75]:

,
R(z)

(6.23)

Eqns. (6.18) and (6.19) now assume the form:

a[%] =B(1+ ecos(ct)) + (‘_1 ;.i\l )‘:& +_1_6_w_] + MLl _6_(1)] ) (6.24)

on®  xox

0
aJ —a—v =—M(2v+_1_a_w. +£2i l.&v_). . (6.25)
ot Rox) R ox\x ox
The dimensionless boundary conditions become:
wlx:k/R = O’M)Ix—.-l = 0’ WL:O = 0’ (626)

|, =0, =0 v =0 (6.27)

Similarly the volumetric flow rate, shear stress at the wall and resistance impedance,

respectively, take the form:

7, = (1 M )(@}(M) y. (6.28)
Ra or a
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6.4 Validation

The explicit numerical scheme which is forward in time and central in space [71] is validated
using a variational finite element method (FEM). The FEM is found to be a powerful tool for
solving partial differential equations as well as integral equations and utilizes numerical
integration, rather than differentiation as with difference methods. The whole domain is
delineated into smaller elements (sub-domains) of finite dimensions called “finite elements”.
The finite element mesh or grid refers to the collection of elements. By choosing a typical
element from the mesh, the variational formulation of the given problem over the typical
element is constructed. An approximate solution of the variational problem is assumed and the
element equations are derived by substituting this solution in the governing differential
equations. This process generates an element matrix, referred as stiffess matrix, is constructed
by using element interpolation functions. The algebraic equations so obtained are assembled
by imposing the inter-element continuity conditions. This yields a large number of algebraic
equations defining the global finite element model, which governs the whole domain. The
essential and natural boundary conditions are imposed on the assembled equations. The
assembled equations so obtained can be solved by any “matrix” numerical technique e.g.
Gaussian elimination method, Householder’s approach, LU Decomposition method etc as
elaborated by Bathe [82]. Numerous nonlinear micro- and nano-scale biofluid mechanics
problems have been successfully addressed in recent years with variational FEM including
biomagnetic micropolar convection flow in tissue [83], deoxygenated blood flows [84],
pulsating drug dispersion [85], nano-bio-polymer manufacture [86] and nano-pharmaco-
dynamics [87]. In the present transient problem, the linear momentum eqn. (6.24) and angular
momentum eqn. (6.25) contain the two dependent variables, w and v, and the independent
variables, x and . Discretization is performed separately in the time domain (f) and in the

spatial domain (x). Quadratic elements are used. The variational form associated with equations
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(6.24)-(6.25) over a typical quadratic element is constructed and arbitrary test functions
invoked. Interpolation functions are applied for the dependent variables in the form:
2
w=Yw¥ and y=3yw (6.32)
J=1 J=1

With w;= wo= ¥, i= I, 2. The shape elements for a typical quadratic element (xe, Xe+1) in the

space variable, take the form [71]:

pe = [xe+l — X, _2x][xz+l - x]

6.33
' [xe+l - X, ]2 ’ ( )
e = Alx- x,][xmz— x1 (6.34)
[xe+l - xe]
e =D =% —2x][x-x] (6.35)

[x¢+l - xz ]z
Valid for x, <x<Xx,,,. A similar procedure is used for the time-domain. The finite element

model of the equations thus formed is given in matrix-vector form by;

el

{6,
Here [K™] and [8"] (m, n =1, 2) are the components of the stiffness matrix and displacement
vector, and are lengthy integral expressions, which are omitted for conservation of space here.
Further details are readily available in the articles of Bég and co-workers [82-87]. The entire
flow domain is divided into 600 quadratic elements. Approximately 1800 linear equations are
generated. Following the assembly of all element equations, a large order matrix is generated.
The non-linear algebraic system of equations is solved iteratively. The process is terminated
when the relative difference between the current and previous iterations is less than 0.00001.
The integrations are carried out using two point Gaussian formula. The FEM code is developed
in MATLAB running on an Octane SGI desktop workstation and takes 25 seconds on average.

Comparisons of the FEM and FDM solutions are documented in Tables 6.1, 6.2 and 6.3 for
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axial velocity at two different locations, for both diverging and converging arteries in

micropolar blood flow (M#0). Excellent correlation is obtained testifying to the validity of the

FDM computations, the latter which are used in all graphical illustrations.

Numerical values of axial velocity

Non-tapered artery (¢=0.0) M=0.1
M=01] M=08 | M=038 | Diverging | Diverging | Converging Converging
FDM FEM artery artery artery. artery.
(£=01) | (£=01) | (£=-0.1) | (§=-0.1)
FDM FEM FDM FEM
0.1000 0 0 0 0 0 0 0
0.1889 | 0.0958 0.0669 0.0670 0.1065 0.1063 0.0846 0.0845
0.2779 | 0.1409 0.0992 0.0994 0.1567 0.1568 0.1246 0.1245
0.3668 | 0.1606 0.1138 0.1137 0.1786 0.1785 0.1420 0.1421
0.4557 | 0.1628 0.1157 0.1159 0.1812 0.1813 0.1438 0.1437
0.5447 | 0.1512 0.1076 0.1074 0.1684 0.1682 0.1334 0.1335
0.6336 | 0.1277 0.0908 0.0910 0.1425 0.1427 0.1126 0.1128
0.7225 | 0.0939 0.0666 0.0668 0.1050 0.1049 0.0826 0.0827
0.8115 | 0.0509 0.0360 0.0361 0.0570 0.0571 0.0447 0.0448
0.9000 0 0 0 0 0 0 0

Table 6.1: Numerical values of axial velocity at a cross-section z = 0.7 corresponding to the critical height of the

stenosisfork=0.1, & =0.1, t=0.3.

Numerical values of axial velocity
r Non-tapered artery (£=0.0) M=0.1
M=0.1 M=038 Diverging Converging
FDM FDM artery (£=0.1) artery.
FDM (¢=-01)FDM
0.1000 0 0 0 0

0.2111 0.1287 0.0969 0.1572 0.0923
0.3222 0.1891 0.1446 0.2302 0.1358
0.4333 0.2157 0.1665 0.2626 0.1548
0.5444 0.2193 0.1701 0.2681 0.1569
0.6555 0.2046 0.1587 0.2522 0.1456
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0.7666 0.1741 0.1345 0.2170 0.1229
0.8777 0.1290 0.0990 0.1631 0.0903
0.9888 0.0706 0.0537 0.0905 0.0490
1.0999 0 0 0 0

Table 6.2: FDM numerical values of axial velocity at a cross-section z = 2 corresponding to the critical height of

the post-stenotic dilated region (aneurysm) for k= 0.1, & = 0.1, 1=0.3.

Numerical values of axial velocity
r Non-tapered artery (£ =0.0) M=0.1
M=0.1 M=038 Diverging artery | Converging artery.
FEM FEM (£=0.1) (£=-0.1)
FEM FEM
0.1000 0 0 0 0
0.2111 0.1288 0.0970 0.1573 0.0924
0.3222 0.1893 0.1445 0.2303 0.1359
0.4333 0.2155 0.1666 0.2625 0.1547
0.5444 0.2191 0.1702 0.2681 0.1568
0.6555 0.2047 0.1588 0.2523 0.1455
0.7666 0.1742 0.1346 0.2172 0.1228
0.8777 0.1289 0.0991 0.1630 0.0904
0.9888 0.0704 0.0538 0.0907 0.0491
1.0999 0 0 0 0

Table 6.3: FEM computations for axial velocity at a cross-section z =2 corresponding to the critical height of the

post-stenotic dilated region (aneurysm) for k = 0.1, 8 =01, 1t=03.

6.5 Results

In this section, the axial velocity of flowing blood obtained through numerical simulations is
plotted over the whole arterial segment for various values of the geometrical parameter of the
stenosis/aneurysm and rheological blood parameters. Also volumetric flow rate, wall shear
stress, resistive impedance and instantaneous streamlines of the blood flow are also visualized

graphically. The following parameters are kept constant throughout the simulations:
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I,=1,L=28,a=2,e=05J=01K=01, B=2. 1t is pointed out that values of J and K are

chosen in accordance with the available theoretical studies [35-36].

The axial velocity of blood in the systolic phase (¢ = 0.3) over the whole arterial segment is
plotted for M =0.1,k=0.1,6 =0.1and£ =0 in panel (a) of Fig. 6.2. The remaining panels in
Fig. 6.2 illustrate the axial velocity profiles over the whole arterial segment by changing either
of the parameters used in panel (a). This makes it possible to observe the quantitative variations
in axial velocity due to pertinent parameters associated with the blood rheology and geometry
of the arterial segment. Panel (b) of Fig. 6.2 is prepared by changing the radius of the catheter.
A comparison of panel (b) with panel (a) clearly indicates a significant decrease in axial
velocity due to a corresponding increase in catheter radius. The effects of increasing the critical
height of stenosis/aneurysm (&) can be observed by comparing panel (c) with panel (a). It is
quite apparent from the comparison of both paneis that blood velocity is substantially reduced
in the stenotic region whereas the converse behavior 1.e. acceleration is observed in the post-

stenotic dilated region by increasing 6.
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® TR ®)
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> ; X \ . 08
o8t \ - —>
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Fig. 6.2. Velocity profiles at different cross sections of the artery.

The blood velocity is also found to be influenced by the tapering of the artery. Computations
are conducted for the axial velocity for two possible cases i.e. negative tapering (converging
artery, & <0) and positive tapering (diverging artery,£ >0). A comparison of panel (d) and
panel (a) reveals that the blood velocity in a non-tapered artery attains lower values than in an
artery with positive tapering. However, as is evident by comparing panel (a) and panel (€) the
negative tapering in an artery suppresses the magnitude of axial velocity of blood ie. induces
axial deceleration. The velocity profiles over the whole arterial segment in the diastolic phase
are shown in panel (f). A comparison of panel (a) and panel (f) shows a decrease in the
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magnitude of axial velocity in the diastolic phase. The rheological parameter i.e. micropolar |
parameter (M) also bears the potential to affect the magnitude of axial velocity. In fact it is
evident from comparing panels (a) and (h) that the magnitude of axial velocity of blood
decreases by increasing M. A general observation from Fig. 6.2 is that the rheological
parameter (M) of blood and the catheter radius alter the magnitude of velocity over the whole
arterial. segment. However, the geometric parameter § affect the velocity profile only in the
stenotic and post-stenotic dilated regions. These observations further confirm the findings of
Kang and Eringen [96]. They further highlight the intrinsic sophistication inherent to the

micropolar constitutive model which simply is absent in other haemo-rheological formulations.

The time-series of flow rate at z = 0.7 (where the maximum height of the stenosis is observed)
for various values of emerging parameters is shown in Fig. 6.3. The solid line curve
corresponds to a specific set of parameters i.e. M = 0.1, k=0.1,6 = 0.1, B=2. Each parameter
from this set is varied to produce all the other curves in Fig. 6.3. For instance the dashed curve
is generated by changing the value of 6. It is noticed that due to the pulsatile nature of flow (an
inevitable result of the human heart beat), the flow rate also oscillates with time. For initial
times flow rate behavior is not periodic. However, it is strongly periodic after t = 1.2sec. The
amplitude of oscillations shows quantitative variations by changing k, 8 and M. In fact it is
seen by examining the other curves that flow rate decreases by increasing M, & and k, while it
exhibits an even faster descent by increasing the magnitude of 5. The solid line with open
circles corresponds to flow rate curve at z = 2 (where the critical height of the aneurysm is
observed). This curve when compared with the solid line curve indicates higher values of flow

rate in the post-stenotic dilated region.

The variation of wall shear stress over entire arterial length for some specific values of M, k, 6,

and ¢ is shown through solid line curve in Fig. 6.4. Various curves in Fig. 6.4 are compared
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Fig. 6.4. Dimensionless wall shear stress (WSS) profiles.

The time-series of resistive impedance at z = 0.7 corresponding to the critical height of stenosis
is calculated using Eqn. (6.37) and shown in Fig. 6.5 for various values of the flow parameters.
A comparison of solid line curve with others curves predicts that resistance to flow or
impedance increases by elevating the catheter radius, critical height of stenosis and also the
micropolar parameter. However, magnitudes considerably decrease at the location
corresponding to the critical height of the post-stenotic dilated region. Thus it may be
concluded that the overall value of impedance for a diseased arterial segment with a
combination of stenosis and aneurysm is less than the overall value of impedance for a diseased

arterial segment with stenosis only.

The blood flow patterns for different values of the hemodynamic and geometric parameters are
shown in Fig. 6.6. Panel (a) shows the flow pattern for specific values of k, M, 8, and ¢. This
panel confirms the appearance of a circulating bolus of fluid in the post-stenotic dilated region.
The effects of critical height of stenosis/aneurysm on flow patterns can be understood by
comparing panel (a) and panel (b). It is seen that the strength of the circulating region increases

by increasing the critical height parameter (6). A comparison of flow patterns in panel (a) and
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panel (c) indicates that the circulating region extends from the post-stenotic dilated region to
the stenotic region in the case of a converging artery. On the contrary, the strength of the
circulating region in the post-stenotic dilated region reduces from the non-tapered artery
scenario to the diverging artery scenario, as illustrated in panel (d). However, a small eddy
materializes in the upstream region for a diverging artery which is not present for a non-tapered
artery. The strength of the circulating bolus of fluid also varies with the passage of time. In fact
the bolus size decreases in the systolic phase while in the diastolic phase its behavior is
reversed (panel (e)). Similarly it is observed from panel (f) that the increase in size and
circulation of bolus in post-stenotic dilated region is largely attributable to the larger values of
the radius of catheter. The effect of non-Newtonian (micropolar) parameter on flow patterns is
depicted in panel (g). It is evident that the strength of the circulating bolus of fluid decreases

by increasing the micropolar parameter.

80 T T T T T

ol —— M=01k=018=01
----- M=03

Time (t)

Fig. 6.5. Dimensionless impedancelresistance to flow profiles.
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Fig. 6.6. Instantaneous flow patterns of streaming blood.
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6.6 Discussion

Generally, it is observed that flow velocity attains higher values in the post-stenotic dilated
region as compared to the stenotic region. The results further indicate that.axial velocity of the
blood decreases substantially by increasing the catheter size and rheological parameter of the
micropolar fluid in both stenotic and post-stenotic dilated region. This decrease in flow velocity
simultaneously modifies the other operating variables such as wall shear stress, volumetric
flow rate and resistance to flow. In fact, it is found that volumetric flow decreases at the stenotic
throat and at the critical height of the post-stenotic dilated region by increasing catheter radius
and micropolar parameter. As an implication of the general observation of higher values of
flow velocity in the post-stenotic dialateral region, the wall shear stress (WSS) also attains
higher values in that region. However, WSS substantially descends by increasing catheter
radius and rheological parameter of the blood. The impedance to flow at the stenotic throat is
found to increase by increasing catheter radius and theological parameter of the blood. On the
contrary, it decreases at a critical height of the post-stenotic dilated region.

The previous studies [39-41] report the results for impedance and the other variable without
taking into account the pulsatile nature of the flow. The rheology of the blood in these
simulations is captured by Bingham, Casson and power-law models. The current study differs
from previous studies in three ways. Firstly, we have computed the flow quantities by taking
pulsatile pressure gradient, secondly the theology of the blood is characterized by the
constitutive equations of micropolar fluid and lastly the whole analysis is carried out in
presence of an inserted catheter. In contrast to the results presented in [39-41], our results
indicate that for fixed values of geometrical and rheological parameters of the model, the flow
quantities vary periodically at each arterial cross-section after the steady state condition has

been reached. Initially these quantities fluctuate and increase and finally reaches the steady
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state condition as time increases. The presumed steady state condition imposed in previous
studies does not delineate such situations.

Previous available studies also reveal that a dilatation near the stenosis causes an amelioration
in the increase of the resistance to flow ratio that would occur were the stenosis isolated. Our
results also comply well with such observations. However, improvement in the increése of
resistance to flow ratio due to the presence of dilatation is deteriorated by inserting a catheter.
This deterioration can be controlled by tuning the rheology of the blood which is not possible
with a Newtonian fluid. According to Eringen’s micropolar theory, the rheology of blood is a
concentrated suspension of neutrally-buoyant deformable particles in a viscous fluid. The
deformability of these particles, in particular erythrocytes (red blood cells) have a pronounced
effects on the apparent viscosity. For instance at normal concentration, hardened cells will
exhibit a viscosity ten times higher than normal blood. The dimensionless parameter M
employed in the current study successfully captures this increase in the viscosity of the blood.
Our study shows that the increase in the resistance to flow either due to the presence of the
stenosis or due to insertion of catheter can be reduced by choosing M to be smaller. This
observation suggests the possibility of tuning the rheology of the blood to control the reduction
in blood flow rate and increase in the resistance to flow. The present study also indicates an
increased wall shear stress arises at the throat of the post-stenotic dilated region for a Newtonian
fluid in comparison with micropolar fluid. The increased wall shear stress at the throat of the
post-stenotic dilated region may be of some concern to clinicians. Again Newtonian theory
does not suggest any remedy to control this increase in wall shear stress. However, as disclosed
by our computations, micropolar theory suggests that such an increase in WSS at the throat of

the post-stenotic dilated region can be reduced by adjusting the rheology of the blood.
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6.7 Conclusions

A mathematical model is presented to analyze the unsteady flow characteristics of blood
through a diseased catheterized artery with a combination of stenosis and post-stenotic dilated
regions. The constitutive equation of Eringen micropolar fluids has been implemented to
simulate non-Newtonian micro-structural blood characteristics. A numerical method based on
explicit finite difference scheme has been used to obtain the solution of the governing initial-
boundary value problem. The velocity, volumetric flow rate of blood, arterial wall shear stress,
impedance and streamlines of flow are analyzed quantitatively for geometrical parameter of
stenosis, rheological parameters of blood and catheter radius. The computations reveal that
blood velocity and flow rate both decrease while impedance increases by enhancing the size of
catheter radius, critical height parameter and micropolar parameter in the stenotic region.
However, these quantities demonstrate the contrary trend in the post-stenotic dilated region.
Moreover, the strength of recirculating zones appearing in the post-stenotic region is also an
increasing function of catheter radius, critical height parameter and micropolar parameter.
These observations may have practical implications regarding treatment/diagnosis of
atherosclerosis where it is desired to avoid the reduction of flow rate and to decrease the
impedance (resistance to flow) due to insertion of a catheter in surgical procedures. The
micropolar hameo-rheological model demonstrates some elegant features which warrant
further investigations. It is envisaged that subsequent investigations will employ computational
fluid dynamics (CFD) simulations to extend the two-dimensional computations to three
dimensions. Efforts in this regard are being made with the ADINA-F finite element code [88]
and other numerical approaches e.g. discrete particle dynamics (DPD) [89] which have

demonstrated exceptional ability in stenotic hemodynamics.
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Chapter 7

Time-dependent non-Newtonian blood flow

through a tapered time-variant stenosed artery

In this chapter, a two-dimensional model is used to analyze the unsteady pulsatile flow of blood
through a tapered artery with stenosis. The rheology of the flowing blood is captured by the
constitutive equation of Carreau model. The time-variant nature of the stenotic artery has been
incorporated in the present analysis. The flow equations are set up under the long wavelength
assumption which states that the lumen radius is small in comparison to the wavelength of the
pulsatile pressure wave. The effects of the vessel wall are immobilized by using a radial
coordinate transformation. The resulting partial differential equations along with the boundary
and initial conditions are solved using finite difference method. The important hemodynamical
variables are analyzed for normal and diseased arteries with particular focus on their variation

with non-Newtonian parameters.

7.1  Geometry of the problem

Let us consider flow of an incompressible Carreau fluid through a tapered artery with a single

stenosis. We employ a cylindrical co-ordinate (, 6, z) system for the purpose of flow analysis
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with  along the radial direction and z along the axis of the tube (artery). The mathematical

model of the time-variant stenosed arterial segment (see Fig. 7.1) is

Fig. 7.1. Geometry of the stenotic artery with different tapering angles.

(§z+a)—§wz—){lo—(z—d)} a (1), d<z<d+],

R(z1)= 57 sing’ - % (7.1)

L (§z+a)a1 (t), otherwise.

In above expression R(z,t)denotes the radius of the tapered stenotic artery , ¢ is the angle of
the tapering, ais the radius of the non-tapered artery in the non-stenotic region, [, is the

stenotic length of an artery, d is the location of the stenosis and &'secg is taken to be the height
. , l . .
of the stenosis for the tapered stenosed artery appearing at z =d +;°+ & sing and &=tan ¢

represents the slope of the tapered vessel and in our case &' =0.4a . The time-variant parameter
a,(t)is given by the following expression

a,(£)=1-b,(cosw,t 1), (72)
where o represents the angular frequency with w=2xf, , f, being the pulse frequency and

b, is a constant. The length of the arterial segment is L. Note that the model given by (7.1)
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bears the possibility to explore the case of non-tapered artery (¢=0), converging tapering

(¢<0) and the diverging tapering artery (¢>0) as evident from Fig. 7.1.

7.2 Problem formulation

Consider two-dimensional time-dependent flow of a Carreau fluid through a diseased arterial

segment. The geometry of the present problem is given in Fig. 7.1. The velocity field for two-

dimensional flow is given by:

V =[u(r, z,),0,w(r,2,0)]. (7.3)
In view of (7.3) the continuity equation (1.2b) reduces to

ou
LN (7.4)
or r 0Oz

Similarly, the momentum equation (1.3) take the following form:

ou  Ou ow op (10 0

—tu—trw— |=—=—+| ——(rS, ) +—(5,) | 7.5
p(@t or azj or (r ar( ") 52( # ] 7-3)

ow ow  ow op (10 0

—tUu—+w— |=——+| ——(rS, ) +—(S.) | 7.6
p(@t or wazj oz (r ar(r rz) az( ")j (7.6)

where S,., S_ and S, are defined in Eqns. (5.12).

Our current analysis is based on the assumption that the lumen radius R is taken sufficiently

smaller than wavelength A, of the pressure wave. i.e. R/A< I [90]. On the basis of this

assumption the radial momentum equation simply reduces to op/or = 0, which gives that

pressure has no variation along the radial coordinate.

The boundary and initial conditions for the problem under consideration are [26]
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z4an)=Q93%§ﬁl=0muS”=qonr:@ (7.7)
, w(r,z,t)=0, onr=R(z,t), (7.8)

u(r,z,O) = w(r, z,O) =0. (7.9)
7.3 Dimensionless formulation of the problem

We are interested in numerical solution of Eqns. (7.5) and (7.6) subject to conditions 7.7

(7.9). To this end, we first normalize these equations by defining the new variables

Y A L N E I S O by NP R (7.10)
a aw aw a MO a a a
In terms of new variables Eqns. (7.5), (7.6) and (5.12) after dropping the bars read
L v, (7.11)
or r Oz
LA B l—a-(rS,z)+i(S,,)j, 7.12)
ot or 0z 0z \ror oz

} (7.13)
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2
. . . aw
The Womersley number and Weissenberg number in above equation are given as [= L ]
Hy

and We[:l‘(gn , respectively. The dimensionless boundary and initial conditions are:
a

u(r,z.t)=0, M=O andS, =0,0nr=0, (7.15)
u(r,z,t)=%f—, w(r,z,t)=0, onr=R(z,t), (7.16)
u(r,z,0)=w(r,z,0)=0. (7.17)

Similarly as a consequence of (7.10), the geometry of the stenosis takes the following form:

(£z+1)- Ssech(z- 2){ ~(z-d)}|a(1),  dsz<d+l,
R(z,1)= 5% sin g 2l (7.18)
(&z+1)a (1), otherwise.
7.4 Transformation of the Problem
Employing the radial coordinate transformation [75]
S (7.19)

R(z,0)

Egs. (7.11) - (7.14) can be casted in the following form

w {xaR u xOR }@ Lop  ow 1{L L1088, 88, x3R3S,

+
ot Rot R Rz ox a Oz 0z «a

+—+
Rox xR Oz Razax
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=
L
|

-]

] [1au)2 [j (aw xaRawjz
2Ql— | +| — | +| ——————
J7; u " R Ox xR 0z ROz oOx
S, =——=+|1-—= K 1+We"
fo At L[ou_xoRM Lév:)z (7.22)
0z ROzox Rox

x(@u xORou 1 6w)

5. =-2[- .........]x(@__’ia_Réw_j_ (7.23)
0z ROz Ox

Similarly we can write the boundary and initial conditions as

u(x,z,t)=0,T=0,sz =0, onx=90, (7.24)
u(x,z,t)=%1§, w(x,z.t):O, onx=1, (7.25)
u(x,z,0)= w(x,z,O)zO. (7.26)

An explicit expression for u(x,z,t)can be obtained as follows: Multiplying Eq. (7.21) by xR

and integrating with respectto x from 0 tox, we get
u(x,z,t)=x—w-= x—dx———jxwdx, (7.27)
Eq. (7.27) takes the following form by making use of the boundary condition (7.25)

1 1
ow [2 OR 1 R } i, (7.28)

_jx-a—g-dx=£x E§w+ﬁaf(x)

where f(x)is an arbitrary function. Let us choose f(x)of the form
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fx)= —4(x2 —1) satisfying j[xf(x) =1.

Equating the integrands on both sides of (7.28), we find

ow 2 OR 4., OR
—=——-—w+—(x' —l)—,
Oz R oz R ot

utilizing (7.30) in (7.27), we finally arrive at

OR OR 2
u(x,_,t) = x[gw+§(2—x )}

7.5 Numerical solution

(7.29)

(7.30)

(7.31)

The numerical method employed for solution of Egs. (7.20)-(7.23) subject to boundary

conditions (7.24)-(7.26) is forward in time and central in space and is already implemented in

previous chapters for solutions of one-dimensional time-dependent equations. Here our system

of equations is two-dimensional and time dependent. Due to this fact, we present a somewhat

detailed procedure of discretization. The value of w at (x J,z,,tk) is denoted by w, . Thus, we

approximate the space derivative as

7™
aZw WII:-L/ _2 w”fj +wlk—l,j =w
aZZ (AZ)Z -1

In a similar manner we write following expression for the time derivative,
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(7.35)



K+l ok
%Wt_ Py Wy = My (7.36)

The discrete points in radial and axial directions are given as x=(;j-1)Ax, (j=12,....N+1)
such thatx(NH) =1.0,z=(i-1)Az, (i=1,2,....M +1), which are uniformly distributed. Similar
approach is used for the time step and is defined as 1, =(k -1)At, (k=12......), where Atis the

time increment. Using (7.32)~(7.36), Eq. (7.20) may be transformed to the following difference

equation

k k k
K+ k X, (OR “y  F[ORY . k d *
w, =w, +dt {R—jk(a-j, -—RTJ_*-R_]/‘(E;], W, (wx)x,] W, (W: ):,/ ’

) st ok, T, {2 T ] | oo
o oz x}&" s RELYTEx =lzhg RE\ ot ) L E
Similarly, Eqns. (7.22) - (7.23) have the following discretized form

ili+(l+&}<
Ho Hy

1| [ (2] 32 ]|

1+ We?

(7.38)
k ¢ x (oRY k 1 k
[(5.).] = ...][(u:)w ‘7{7(52), () +—1§7‘-(wx)”} D
The boundary and initial conditions can be written in the discretized form as:
uf, =0,w =wh, (S,), =0, (7.40)
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k
wflv+1 = 03 uzlfj = [_J ’ (741)

U, =W, =0. (7.42)

The volumetric flow rate (Q) and the wall shear stress (r,) are given by [26, 27]
1

O =2m(R) [xwf i, (7.43)

0

k

@) =L(8.). ], (7.44)

7.6  Results and Discussion

In this section graphical results are displayed for the following set of parameters [91-93]: U=
0.56, u, =0.0345,L=50,a=1,d=20,l0=16,40=7, A1 = 0.240, & = 0.4, Ax = 0.025, Az =
0.01. The accuracy of the numerical solution is maintained up to /0”’ by choosing the time step
0.0001.

The dimensionless axial velocity graphs of streaming biood in normal and stenotic artery for
different values of tapering angles are shown in Fig. 7.2a. One can see from Fig. 7.2(a) that the
magnitude of velocity is greater in the normal artery as compared with the stenotic artery. It is
also observed that the velocity profile achieves higher values for diverging tapering as
compared with the converging tapering. The graph of non-tapered artery lies in between. This
observation is true for both normal and constricted artery. However, the shape of profile in
considered artery for converging tapering is flat near the centre. This flat shape indicates a
plug-flow like region in the centre of the artery. The existence of flat velocity profile in the
constricted artery for converging tapering is because of the fact that near the artery wall the
viscous and inertial forces are of the same order. However, near the centre of the artery the
inertial forces dominate, thus compelling the axial velocity profile to attain a flat shape. The
dimensionless radial velocity graphs of the flowing blood in normal and constricted artery for
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Dimensionless Axial Velocify

Dimensionless Axial Velocity

different taper angles are shown in Fig. 7.2b. All the graphs are taken at specific location z =
28 and for time instant ¢ = 0.45. This figure reveals that radial velocity is negative over the
whole cross-section. All the curves start from zero and approach a constant value at wall due
to the presence of wall movement in the stenosis geometry. It is further observed from this
figure that the effects of vessel tapering on radial velocity are prominent for constricted artery
compared with the normal artery. The maximum deviation in the curves of radial velocity

occurs near the wall both of the stenotic and normal artery.
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Fig. 7.2: Dimensionless Axial (Fig. 7.2(2)) and radial (Fig. 7.2(b)) velocity graphs for different tapering angles.

Calculation is based on the following data: (z =28,¢ =045, d = 20,/; =16,We=2,a = Ln= 0.639 ).
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Dimensionless Axial Velocity

Fig. 7.3: Dimensionless Axial (Fig. 7.3(a) & 7.3.(b)) velocity graphs for different We (Weissenberg numbers) and

a (Womersiey numbers). Calculation is based on the following data: (z=28,1=0.45,0 =04a,d =20,

ly =16, We=3,n=0639 ).

Fig. 7.3. (a) depicts the profiles of dimensionless axial velocity for different values of We
(Weissenberg numbers) at a specific location at z = 28. These graphs indicate an increase in
axial velocity with an increase in We both for normal and constricted artery. Thus Carreau
fluid model predicts higher axial flow speed of blood in comparison with Newtonians fluid
model. The effects of Wormsley number o on axial velocity of blood at a specific location z

=28 and time instant ¢ = (.45 are illustrated in Fig. 7.3(b). These profiles show that an increase

in a decrease the axial velocity of blood.

0 T T T
005 \~ 7 u=0.639
z — - n=12
§ 0.17 _ — =00
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a
Fig. 7. 4(a) Fig. 7. 4(b)
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Fig. 7.4: Dimensionless Axial (Fig. 7.4(2)) and radial (Fig. 7.4(b)) velocity graphs for different n (Power law

constant). Calculation is based on the following data: (¢ = 0.45,6 = 04,d =20,/ =16,We=2,a=1).

The plots of dimensionless axial velocity of the flowing blood characterized by the Carreau
fluid for different values power law parameter n at t = (.45 and z = 28 are illustrated in Fig.
7.4 (a). One can see that the axial velocity decreases in going from shear-thinning (n = 0.0,
0.639) to shear-thickening (n = I, 1.2) fluid. The profile of axial velocity for Newtonian fluid

(n=1) lies in between shear-thinning and shear-thickening profiles. It is further observed that
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Dimensionless Axial Velocity

for shear-thinning fluid (n = 0) the profile tend to become flatter predicting a thin boundary
layer near the wall. The behavior of radial velocity for different values of power law parameter
n is depicted in Fig. 7.4 (b). One can see that radial velocity in a normal artery is independent
of power law parameter n. However, it is slightly affected by » in the constricted artery. i.e.
magnitude of radial velocity increases in going from shear-thinning to shear-thickening fluid.
The graphical illustrations of axial velocity profile of streaming blood characterized by the

Carreau fluid for different values of 7, are shown in Fig. 7.5(a). Fig. 7.5 (a) comprises of the

three distinct curves showing different arteries with different stenotic height. The top most
profile is for normal artery while the second and third curve correspond to the stenotic artery.
One can see that the magnitude of the axial velocity decreases rapidly with an increase in the
severity of the stenosis. Fig. 7.5(b) shows the profile of radial velocity for arteries with different
severity level of stenosis at a specific location z = 28 and time instant # = 0.45. These profiles
indicate that the magnitude of the radial velocity decreases with an increase in the severity level

of stenosis.

Dimensionless Radial Velocity

. 5¥reeesaasessannaag, .
Fig. 7. 5(b)
Flg' 7' Sx(a) i ! -:-=:> 05 i | ) I
0 02 04 0.6 0.8 1 0 02 0.4 06 0.8
Dimensionless Radial Distance Dimensionless Radial Distance

Fig. 7.5: Dimensionless Axial (Fig. 7.5(a)) and radial (Fig. 7.5(b)) velocity graphs for different values of z,, .

Calculation is based on the following data: (f = 0.45,8 = 04,4 =20,/ =16,We=2,a=1).
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Dimensionless Flow Rate

The graphical illustrations of time series of dimensionless flow rate of streaming blood
characterized by the Carreau fluid for a different tapering angles and different material
parameters are presented Fig. 7.6(a) and (b), respectively. Fig. 7.6 (a) comprises of the five
distinct curves of flow rate. The top most curve is for normal non-tapered artery while below
it is the curve for diverging normal artery. The variation of flow rate with time for diverging
stenotic artery is shown in third curve. The fourth curve from the top corresponds to non-
tapered stenotic artery. The last curve depicts the case of flow rate for a converging artery. We
may conclude from Fig. 7.6 (a) that flow rate attain higher value in normal artery with wall
movement as compared with stenotic artery. The positive values of taper angle further enhance
the flow rate while the presence of stenosis reduces it significantly. Fig 7.6 (b) indicates an
increase in the flow rate with increasing the material parameter We both in normal and

constricted arteries. It is interesting to note that flow rate does not become periodic in the first

four cardiac cycles.
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. 2
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S =0T g =020 -\ ] 0.5H5 =0
" Fig.7.6{(a) . $=02° Fig. 7. 6(b)
00 0.5 1 1.5 2 2.5 3 00 0.5 1 1.5 2 2.5 3
Dimensionless Time Dimensionless Time

Fig. 7.6: Dimensionless flow rate for different values of tapering angles ¢ (Fig.7.6(a)) and for different We

(Weissenberg numbers) (Fig. 7.6(b)) at z = 28. Calculation is based on the following data: (¢ = 0.45,5 =04,

d=20,{ =16,We=2,a=1).
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Dimensionless Wall Shear Stress
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The time series of wall shear stress for four cardiac cycles at a specific location z = 28 for

different taper angles and different values of material parameter We are shown in Fig. 7.7 (a)

and (b), respectively. We note from Fig. 7.7 (a) that the value of shear stress in the stenotic

region for a diverging constricted artery is higher than those of non-tapered and converging

artery. We further note from Fig. 7.7 (a) that the profile of wall shear stress for a normal artery

lies below of all other curves. This indicates that the presence of stenosis significantly enhances

the wall shear stress. The influence of We (Weissenberg numbers) on wall shear is depicted in

Fig. 7.7 (b). This figure predicts a reduction in wall shear stress by increasing We. This resuit

can also be anticipated from the profiles of flow rate in Fig. 7.6 (b) where the flow is found to

be an increasing function of We. It is also evident from both the figures 7.7 (a) and (b) that wall

shear stress become periodic immediately after the start of the flow.

' Fig. 7.7(a)

Dimensionless Time

Dimensionless Wall Shear Stress
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f o)
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Dimensioniess Time

Fig. 7.7: Dimensionless Wall shear stress for different values of tapering angles ¢ (Fig. 7.7(a)) and for different

We (Weissenberg numbers) (Fig. 7.7(b)) at z = 28mm. Calculation is based on the following data:

(¢t=045,6=04,d =20,/ =16,We=2,a=1).

Figs. 7.8(a) and (b) are plotted to see the time series of resistance impedance at a specific

location z = 28 for different taper angles and different values of We (Weissenberg numbers). It

is observed that these profiles follow a reverse trend in contrast to the flow rate profiles as
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The presence of stenosis reduces the magnitude of axial and radial velocity of blood.

Axial velocity is an increasing function of Weissenberg number while it decreases by

increasing Womersley number.

Axial velocity decreases in going from shear-thinning to shear-thickening fluid.

Radial velocity is not affected to an appreciable amount by increasing Weissenberg number.
Flow rate increases while shear stress decreases by increasing Weissenberg number.

Resistance to flow is found to be a decreasing function of Weissenberg number.
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Chapter 8

Two-dimensional and two-layered pulsatile flow

of blood in a stenotic artery

In this chapter, a theoretical study has been carried out to investigate the unsteady two-phase
flow of'blood through a flexible artery under stenotic conditions. The Newtonian and Herschel-
Bulkley constitutive relations are used to model the core and peripheral regions, respectively.
The present analysis treats the wall of the artery to be elastic. An explicit finite difference
algorithm is implemented for the solution of the governing unsteady partial differential
equations along with the given boundary and initial conditions. The radial and axial velocities
of the streaming blood are computed for several values of the emerging parameters. The
volumetric flow rate, resistance impedance and wall shear stress are also shown graphically

and discussed in detail.

8.1 Geometry of the two layer stenotic artery

Let us consider two-dimensional flow of blood through a stenotic artery. It is assumed that due
to aggregation of red blood cells, core and peripheral regions are developed in the centre and
near the boundary of the artery, respectively. The flow is analyzed using cylindrical co-ordinate

system (7, 6, z). A schematic diagram is illustrated in Fig. 8.1.
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core and peripheral region becomes:

Law of conservation of mass: V-V =0i=12 (8.3)
dv, _

Law of conservation of Momentum: P E =V-T,i=12, (8.4)

where I=-pl+S,i=12 8.5)

The blood in the core region is characterized by the constitutive equation of Herschel-Bulkley

model. According to Yilmaz and Gundogdu [22], the extra stress for Herschel Bulkley model

is

AP
Sl=[,ulH +HJA1, (8.6)

. . . = — 1 -
where 7 is the yield stress, 4, =VV, +V¥," and 11= ,/;tr(/g -AIT)Z.

The stress tensor in the peripheral region is given by:
S, =1, (Y7, +VP/). (8.7)

The velocity field for two-dimensional flow in the core and peripheral regions is given by:
v, =[u,(r,z,t),0, w,(r,z,t)],i=1,2. 8.8)
In view of (8.8), the continuity equation (8.3) in core and periphery region reduces to

O (8.9)
o r 0Oz

The momentum equation (8.4) in the core region takes the following form:

ou,  Ou Oulj op (120 8 )
Ty Ly =L =l 22 s V(5 ) ], 8.10
,01[ ot “ or " oz or (r ") ( m) ( )
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ow, ow, ow, op (10 0
M 2y 2P (1061, 005y, .11
,01[ o or : 62) 0z rar(r m) az( "z) ®1D

(8.12)

SJ=2[]X(%), (8.13)

Srz=[“'""""']x(%*“%j- (8.14)
Similarly the momentum equations for the peripheral region are defined as:

p(%+uz%+wz%—)=—%:—+yz[a;zz+%a;:2+aaz;2} (8.16)

The subsequent analysis is based on the assumption that the lumen radius R is taken

sufficiently smaller than wavelength 4, of the pressure wave in our current analysis. i.e. R/A,

A< 1[90]. On the basis of this assumption the radial Navier-Stokes equation simply reduces

to Op/Or = ( which gives that pressure is independent of radial coordinate.
The boundary and initial conditions for the problem under consideration are [26]

awl(r!zyt)

or

ul(r,z,t)=0 =0andS,=0,0nr=0, 8.17)
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uz(r,z,t)=z—f, wz(r,z,t)=0, onr=R, (8.18)

u (r,z,O):w,(r,::,O)=0, i=1, 2. (8.19)
At the interface, it is assumed that both the axial and radial velocities are continuous i.e.

w, (r,z,t)=w2(r,z,t), onr=R,
u, (r,:,t) =u, (r, z,t). onr=R. (8.20)

8.3 Non-dimensionalization of the problem
We are interested in numerical solution of Eqns. (8.10) and (8.11) subject to conditions (8.17)-
(8.19). We first normalize these equations by defining given in Eq. (7.10). In terms of new

variables Eqns. (8.10), (8.15), (8.13)-(8.14) after dropping the bars read

% ow
%.’_i_{__’:o' i=1, 2, (821)
o r Oz
o B P 2] 2 (L0 ). 2 s, (522
ot or 0z oz r or oz

and the Newtonian equation in the periphery region

2 2
af By Py, B O [T, 10w O, | (8.23)
ot or 0z 0z or r or oz

where
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(8.24)

S:z=[“"""""]x(2w"j, (8.25)

(z z/ ,,J is the dimensionless yield stress and where u = g " is the average viscosity. The
P@

dimensionless boundary and initial conditions are:

U (r, z,t) =0, w =0andS_=0,0nr=0, (8.26)
r

U, (r, z,t) = 2—?, w,(r,z,t)=0, onr=R, (8.27)

u,(r,2,0)=w,(r,z,0)=0, i=1,2. (8.28)

The boundary condition at the interface becomes
w, (r, z,t) =w, (r, z,t),
u (r,2,t)=u, (r,z,t) onr=R,. (8.29)

In above equations

(5"5‘) 2 ) ly .
(R,Ri)(z,t)= |:(l,ﬂ)——2a—{]+cosf(.l—d——2-j} al(t), d<z<d+2z, (8.30)

(1’ :B) 4 (’), otherwise.

*

where 6° = 5, where ,B(= a—j Is a geometric parameter.
a

8.4 Problem transformation

Now we introduce a radial coordinate transformation [75]
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.
R(z,t)’

X =

(8.31)

to map the constricted domain into a rectangular one. Using this transformation, Eqns. (8.22)-

(8.29) can be rewritten in the following form

ow, {xaR u, xOR }awI 10p  ow, 1{1 10S, oS, xaRas}
—= —w, — w——— S =

o |Rdt R Roz & ad '8 alxR ° Rox & Roz ox
(8.32)
ow, [xOR u, xOR \ow, ldp ow, 1|1 oRY' | &*w,
Tt Wy - — =< x— =+
ot Rotr R Roz ox a0z oz al R oz ox*
(8.33)

2 2 2
Lz 1+2(xa—Rj —szQ %+§—M:2- ,
xR oz 0z” | Ox 0Oz

1 & )
Low O XORM i1 2 (8.34)
Rox xR 0z ROz ox

o _[Ilof(LowY, _j m_éﬁmj . zu_l_za_@;mjz 2
= R &x xR 8z ROz oOx 9z ROz ox R ox

(W

2 2 2 2
cqllal (LamY () (o xoRowmY | %J%%Q%J
R ox xR 0z ROz ox 0z ROz ox R o&x
du, x OR Ou, 1aw1j
X| = == e |
0z ROz ox R ox
(8.35)
S:z=2[............]x om _x OR ow ) (8.36)
0z ROz oOx
Similarly, we can write the boundary and initial conditions as
ow, (x,z,¢
U (x, z,t) = 0,%=0, S, =0, onx=0, (8.37)
X
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u, (x,z,t)=a—, w, (x,z,t):O, onx=1, (8.38)

u,(x,2,0)= w,(x,20)=0,i=1 2. (8.39)
The interface boundary condition becomes
w (x,2.1) =w,(x,21),

w(x,2,t) =u,(x,z,1), on x=p, (8.40)

An explicit expression for (x, z, t)can be obtained as follows: Multiplying Eq. (8.34) by

xR and integrating with respect to x from 0 tox, we get

ul(x,z,z‘)=—{xwl—E xwldx}—ﬁjxaw1 dx, (8.41)

B B
ow, 20R B[ ,0R
Mg T 2R B(oR Y 8.42
o 0z 5 {R Oz R[ﬂ oz 7 ulﬂjf( )} ( )
Whel‘e uw=u1(x,z,t)x=ﬂ=u2(x,Z,l‘)x=ﬂa

PEIACES) e (8.43)

Since the choice of f(x) is arbitrary therefore we take f(x)= which satisfies the

condition .[ xf (x)dx =1. The equality of integrands in Eq. (8.42) gives
0
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ow,  20R /3( 3R )4(x2—1)
Pe 18 " Hp

== + 2 g S S A 8.44
= R R\'% B (8 -2) (8.49)
Utilizing (8.44) in (8.41), we finally arrive at
oR
R ('nglﬂ ulﬂj(x —2)
u (x,u,t) =x| —w - (8.45)

In a similar manner, for the plasma region (B<x<1), multiplying (8.36) by xR and

integrating with respect to xbetween the limits B and x(B<x<l1), and exploiting the

boundary conditions (8.43), one finds

5R\4(x -1
%=_25_sz_i(ﬂu2ﬂ_ﬂza_szﬂ_£] ( 2), (8.46)
oz R 0z R Oz ot (/32 _1)
and finally

2 _ 2 2_9
uz(x’z’t)=x Z—RWZ—L[ﬂugﬂ_ﬂza_sz _a_Rj(x ﬂ )(x +;8 )+£:(u2ﬂ_ﬂZ_Rw2ﬁ] ,
z z

2 & Y a (8 _1)2 x
(8.47)
now from Eqns (8.46) and (8.47) one can obtain
2 x*=1) A
wy (1,2,1) = 21| R A )%+ 2R (8.48)

2x | oz ¢ (ﬂ2+1)2 oz xX*+lo |

8.5 Finite difference technique

Following Mandal [26] and Mandal et al. [27], we use the central difference formula for the

approximation of space derivatives and forward difference formula for the approximation of
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time derivative. The discrete points in radial directions are given as

x,=(j-1)Ax, (j=12,....N,+1), such that x(NE+1);'B and  x, =(j—(Nc+l))Ax,
j=(Nc+1,Nc+2,...,N+l), such thatx(NH):l where Ax is the increment in the radial

direction. Similarly, we define z, =(i-1)Az, (i=1,2,....M +1), where Azthe increment is in

the axial direction, as uniformly distributed points in axial direction. Similar approach is used

to define time step as ¢, = (k-1)As, (k=1,2,.....), where A is the time increment. Using (7.32)

and (7.34), Eqgs. (8.32) and (8.33) may be transformed to the following difference equations

1

+i{_( %Z’ Jk“ - le (5.) +%[(Sx=)xlk,, —[(S,,)z]: +%(%§jk [(SE)X]LH, (8.49)

J

£k k
x, ( OR u x, [ OR k k
R | LT B VYL PR T R
’ Rla) R Rla) " g "

ot R R

1

k k k
x (6R u x, (OR P k
k+1 _ k ] 2, J k k
W’ll./ - w21,/ + dt \:{_ (—_J - + _(Ej WZI,_/}(W2X ),,1 - w’.Zl,] (w2x ),J +
I !

1 ap ! k 1 k k
+_{_(.a.;] ()—Ru()H (8:50)

where
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[(Sx,)]: S U ...]{(uﬁ): —%@—’:)k () +%(w,)j‘_j}. (8.52)

The boundary and initial conditions can be written in the discretized form as:

k
uhk.J =0, whk.l = th,z’ (sz ),,1 =0, (8.53)
oRY
ko k| oK
Wy v = 00y, —( - j ; (8.54)
)y = Wy =0 m=1, 2. (8.55)

The discretized form of interface conditions read

k

(wl ):‘,NCH = (WZ )iNCH ’ (ul ):‘,N:H = (u2 )r,NCH ) (8'56)

The volumetric flow rate (Q) and the wall shear stress (ty) and the resistance impedance A are

given by Mekheimer and Mohamed [94]

B 1
o = 27[(le )2 [J‘xjw[ﬁjdxj + xjwzf,jdxj R (8.57)
0 B
k
ap
(%)
Af = , (8.58)

@ =[(s.),]

1, N+l )

(8.59)

The expression for normalized flux (Q'), resistance to flow (A") and the wall shear stress (7’

) are obtained as

'y k
o . S S (8.60)

where Q,, 4,and r, are the flux, the resistance to flow and the wall shear stress respectively

for the normal artery in the absence of peripheral layer.
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8.6 Numerical results and discussion

In this section graphical results are displayed for the following set of parameters in Mandal

[26]: Numerical computations have been carried out using the following parameter values: o

=056,L =18 a=1d=5 lo=8 4o=7 A1 = 0.24s, & = 0.3. To obtain a convergent and
stable solution, the temporal and spatial step sizes are chosen as: Ax= 0.025, Az= 0.1, At=
0.0001. These values are also in accordance with the criteria for the convergent and stability of
such method proposed by Hoffmann and Chiang [71]. Test computations show that the
proposed method with the indicated restrictions is convergent up to 105,

Fig. 8.2 shows the results of the axial velocity profile of the two-layered fluid model
characterized by the Herschel Bulkley fluid in the core region and Newtonian fluid in the
plasma region for various time instants and different peripheral layer thickness at a specific
location (z = 9) of the artery. It is observed that velocity profile increases with time in both
peripheral and core regions. Since the thickness of the peripheral region is small therefore the
profiles in this region are found to be linear. However, in the core region the curves become
parabolic. For a fixed value of time the effects of increasing peripheral layer thickness on
velocity in peripheral region are negligible. Interestingly the velocity profile in the core region
is found to increase by increasing peripheral layer thickness for a fixed value of time . Such
results are also reported by Ikbal et al. [70] in their analysis where the blood in the core region
is modeled as a micropolar fluid. For a comparative study, the experimental results of
Bugliarello [95] are also included in Figure 8.2. In addition to that the plots of steady state
solutions obtained by Kang and Eringen [96] and Akay and Kaye [97] (both used Micropolar
model to describe blood rheology) have also been shown in this figure. It is observed that the
velocity profile predicted by our model (for ¢ = 8, 8 =0.95) approximates the experimental data
relatively closer than the velocity profiles obtained through the models given in references [96]

and [97]. It is pointed out that the value of yield stress taken in Fig. 8.2 is chosen from the data
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given by Valencia et al. [98]. However, it is expected that if we increase the yield stress
parameter, the velocity profile shifts toward the origin and in this case it better fits the
experimental results of Bugliarello and Sevilla [95]. This shift of velocity toward the origin by

increasing yield stress parameter is shown in Fig. 4(b).

——B=0866, t=2
—~>—B=0095,t=5
——3=0.866, t=5
—— 3 =095, t=8

0 0.5

02r

0

1 : i ‘.5
Axial Velocity

Fig. 8.2: Dimensionless axial velocity profiles at various dimensionless times; (0), experimental results of
Bugliarello and Sevilla for biood containing 40% RBC (-), prediction of Kang and Eringen’s model for blood with

40% RBC ;(+), prediction of Akay and Kaye for g =0866. Calculation is based on the following data:
(:=9.n=07d=5 I5=8 a=Ls r=0017s).

The profiles of dimensioniess radial velocity of the flowing blood in constricted artery at
different time instants are shown in Fig. 8.3. All the graphs are taken at specific location z = 9.
All the curves start from zero at the centre and approach a constant value at the interface thereby
indicating the presence of wall movement. It is also noted from Fig. 8.3 that for a fixed value
of time the magnitude of flow velocity diminishes as the peripheral layer thickness decreases.
Moreover, in the systolic phase (1=2) the radial velocity assumes positive values while in the

diastolic phase (f = 5, §) it continues with negative values only.
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Fig. 8.3: Dimensionless radial
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velocity profiles at various dimensionless times. Calculation is based on the

following data: (=9, n =07, d=5,/; =8, a = 15).

The plots of dimensionless axial velocity of the flowing biood characterized by the Herschel

Bulkley fluid for different values of power law parameter n at ¢ = 5 and z = 9 are illustrated in

Fig. 8.4a. One can see that the axial velocity decreases in going from shear thinning (n = 0.7)

to shear thickening (n = /, 1.3) fluid. The profile of axial velocity for n=/ lies in between shear

thinning and shear thickening profiles. As expected it is observed that trend of axial velocity

does not change with » in

the plasma region near the wall. The plots of dimensioniess axial

velocity for different values of yield stress are shown in Fig. 8.4b. This figure indicates that

the trend of axial velocity is strongly influenced by the values of yield stress. It is found that

the magnitude of the velocity profile decreases by increasing the value of yield stress.
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Fig. 8.4: Dimensionless Axial (Fig. 8.4(a) & 8.4. (b)) velocity graphs for different n and 7 (yield stress).

Calculation is based on the following data: (z =9, t =5, § =03,d=5,ly=8,7=10.0175n = 0.7).

Fig. 8.5. (a) shows a comparison among three different models namely: single layer Newtonian
model, single layer non-Newtonian model and two layer non-Newtonian model. One can
observe that the profile of axial velocity for single layer Newtonian model coincides with that
two-layered non-Newtonian model in plasma region while it predicts lower values of axial
velocity in core region. Moreover, the values of axial velocity predicted by single layer non-
Newtonian model are in excess of the values predicted by the other two models. F ig. 8.5 (b)
shows the profiles of dimensionless axial velocity for different stenotic heights at a specific
instant of time ¢ = 5. It can be deduced that in these profile the magnitude of velocity decreases
with an increase in the stenotic height.

Fig. 8.6 shows the curves of the flow rate over whole arterial length for three instants of time.
It is evident from these curves that qualitative behavior of flow rate is same at different time
instants. However, there do arise a qualitative difference i.e. the flow rate increases with time.

Furthermore, at a fixed instant of time the flow rate is found to increase by increasing peripheral

layer thickness.
1 1
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Fig. 8.5: Dimensionless Axial (Fig. 8.5(a) & 8.5.(b)) velocity graphs for different peripheral layer thickness and
J (stenotic length). Calculation is based on the following data: (z =9, t =5,d =5,/ = 8,7 =0.0175,n =

0.7).

=5,B=095
------- t=5, p = 0.886
—1t=10,p=095
3.75¢ ——t=15,=0095 1

0.75 y : y -

k4

Fig. 8.6: Distribution of flow rate for different dimensionless time (t). Calculation is based on the following data:

(6=03d=51,=8n=07a=15).

The curves of Fig. 8.7 illustrate the distribution of the normalized resistive impedances (A’) at

the same critical location of stenosis z = 9 at t = 5. These curves indicate that on one hand
resistance to flow increases by increasing the height of stenosis while on other hand it decreases
by increasing the peripheral layer thickness. The profile of impedance based on the existing
study performed by Young [1] is also shown in Fig. 8.7. It is found that our results are
qualitatively similar to those given by Young [1]. However, quantitative differences are
observed which may be attributed to unsteadiness and nonlinear model of the blood used in the

present study.
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Fig. 8.7: Distribution of normalized resistance to flow for t = 5 at = = 0; (0-0), Young results (1968). Calculation

is based on the following data: (d=54y=8a=15n=07).
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Fig. 8.8: Distribution of normalized wall shear stress at z = 9 at t = S. Calculation is based on the following

data: (4 =5,/) =8,a =15, 0=07).

w

Fig. 8.8 illustrates the plots of normalized wall shear stress (r’) versus stenotic height

corresponding to the critical location z = 9 at t = 5 with different peripheral layer thickness.
The increasing trend of the curves indicates the development of the stress due to the increase
of the severity of the stenosis from 0.0 0 0.2. Interestingly, the single layer Newtonian model
predicts lower values of wall shear stress than that of two layer model. Further the wall shear
stress predicted by two layer model is quite sensitive to the thickness of the peripheral layer.

In fact, it increases by increasing peripheral layer thickness.
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The time series of wall shear stress at a specific location z = 14 of the constricted arterial
segment for different Womersley number is shown in Fig. 8.9. It is inferred from this figure

that the wall shear stress is compressive in nature and its magnitude increases with Womersley

number.

Dimensioniess Time (t)

Fig. 8.9: Variation of wall shear stress for different Womersley number ( « ) with dimensionless time. Calculation

is based on the following data: (§=03.d =5,/ =8.2= 9,n=07),

8.7 Conclusion

The analysis of pulsatile flow of blood through a diseased artery exhibiting the importance of
peripheral layer thickness is carried out in the present study. The important findings of the

study can be summarized as:

The magnitude of the velocity profile increases by increasing the peripheral layer thickness and
decreases with the increase of height of the stenosis.

Wall shear stress increases with the increase of yield stress and height of the stenosis.

The flow rate is found to increase by increasing the peripheral layer thickness.

Resistance to flow increases by increasing the height of stenosis while on other hand it

decreases by increasing the peripheral layer thickness.

Resistance to flow increases with the increase in the size of stenosis.
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Chapter 9

Unsteady blood flow through a tapered stenotic

artery using Sisko model

This chapter explores the simultaneous effects of unsteadiness and non-Newtonian
characteristics on flow of blood through a tapered stenosed artery. The rheology of blood is
characterized by the constitutive equation of Sisko model. The time-variant nature of the
stenosed artery is integrated in the geometry. The flow equations are derived for the scenario
when the lumen radius is small than the wavelength of the pulsatile pressure wave. Employing
radial coordinate transformation, the governing equations are integrated numerically along with
the initial and boundary data over the whole arterial domain. Some important observations
regarding the radial and axial velocities, volumetric flow rate and resistance impedance are

made through graphical results.

9.1 Geometry of the problem

The model of the tapered artery with stenosis in its Jumen is considered as a thin elastic tube
with circular cross-section containing non-Newtonian fluid characterized by Sisko fluid model.
A cylindrical polar co-ordinate (7, 8, z) system is employed for the purpose of flow analysis

with r along the radial direction, while 6, z are taken along axial and circumferential directions
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respectively. A schematic diagram of stenosed arterial segment is already shown in Fig. 7. 1.

The expression defining the shape of this segment is reported in Eq. (7.1).

9.2 Problem formulation

The geometry and under lying assumption of the flow problem under consideration are similar
as given in chapter 7. However, the rheological behavior of the streaming blood through the

artery is characterized by the constitutive equation of Sisko model which is already given in

2.3) ie.

S =1:6‘1 +52(,x/—1'_1

)H}Af . ©.1)

Assuming the flow to be two-dimensional, it is appropriate to choose a velocity field defined
through Eq. (7.3) for the present flow situation. The continuity and momentum equations

governing the flow under consideration are given by Egs. (7.4) and (7.5)~(7.6).

Since the Sisko model (2.3) is employed to capture the rheology of the blood. Therefore, the

components of extra stress arising in momentum equations (7.5) and (7.6) can be written as

ouY (uY (owY ou Ow 272 ou
e CRCRCRC N
or r oz 0z Or or
_ ot (wf (owt (ow owt T | ow
5= 1e, [_ REAR +(_+— —), ©3)
or r 0z oz Or f 0z

ouY (u) (owV (ou awp | |liow 3
S,=—|¢+é, (—uj +(£) +[——j +[—u+—j (—+—uj 9.4)
or r Oz 0z oOr or 0Oz

With a similar argument based on evidence that the lumen radius R is sufficiently smaller than

wavelength A, of the pressure wave. i.e. R /A1 « 1 [90], the radial Navier-Stokes equation
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simply reduces to dp/Or =0 which implies that pressure is independent of the radial coordinate

[90].

The problem defined through Eqs. (7.4)-(7.6) and (9.2)-(9.4) is subject to the boundary and

initial conditions given through (7.7)~(7.9).

9.3 Transformation of the Problem

In order to immobilize the effects of vessel wall the following radial coordinate transformation

is obtained [75]

.
X = .
R(z,1)

(9.5)

In terms of new variable x, Eqns. (7.4), (9.2)-(9.4) read

Rot R ROz

ow [xdR u x0R \dw 1op L 1)1 135, as, xaRan}
xR ™ Rdx 0z Rz ax)

Ez ox poz 0z p

9.6)
——— =T, 0.7

n-1
1au)2 uY (0w xazzawj2 (au x OR Bu 1aw)
S, == g+&S|| =—— | +| —| +| ——=—— +| ————— +——
R ox xR 0z ROz Ox 0z RJOzdx Rox

y a_u_za_RQLL?_w_)
8z Rozdx Rox)

(9.8)

Similarly

S, =2 ]x[ﬂ_fia_R@J’ (9.9)
F 0z ROz Ox
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and

The boundary conditions are

u(x,z,t)=O,M=0, S,=0 on x =0,
ox
u(x,z,t)za—R, w(x,z,0)=0 on x=1,
ot
and u(x,z,0)=w(x,z,0)=0.

(9.10)

(9.11)

(9.12)

(9.13)

As explicit expression for u(x,z,t) can be obtained as follows: Multiplying Eq. (9.7) by xR

and integrating with respect to x from 0 to x, we get

u(x,z,z‘)=xa—Rw—£ x@dx—za—RJ‘xwdx.
0z xy Oz x 0z ¢,

Eq. (9.14) takes the following form by making use of the boundary condition (9.12)

1 1
—jx@dxzj‘x[za—Rwﬁ-ia—Rf(x)}dx.
o Ox 5 LR Oz R ot

where f(x) is an arbitrary function. Let us choose f(x) of the form
1
f(x)=—4(x" ~1) satisfying [xf (x)=1.
0

Equating the integrands on both sides of (9.14) yields

W+
R oz R

ow 2 OR 4(x2_1)aR'
ot

E_
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(9.14)

(9.15)

(9.16)

(9.17)



Utilizing (9.17) in (9.14), we finally arrive at

u(x,z,t)=x|i%§w+aa—f(2—xz)}. (9.18)

9.4 Numerical solution using finite difference method

Due to their nonlinear nature, it is difficult to obtain a closed form solution of Eqns. (9.6) and
(9.8) subject to the boundary and initial conditions (9.11)~(9.13). For further analysis, these
equations are integrated numerically using an explicit finite difference method. This method is
based on the approximation of partial derivatives with their finite difference counterparts. The

formulae of various derivatives appearing in (9.6) are already provided in chapter 7 through

(7.32)-(7.34).

Using (7.32)~(7.35), Eq. (9.6) may be transformed to the following difference equation

k+1 k k k
wfkjlzwfkﬂLA’ ‘i('@) + ‘_i(ﬁfjj “u’_'j’“x_i ?‘Iij w' (wx)k —-wF (Wz)k
’ ’ p\ oz R°\ot) R oz ) nyoh 1

1 1 k 1 k k x, (3R k k
IR R AR RN (= NES

(9.19)

and Eqns. (9.8)-(9.10) have the following discretized form




The boundary and initial conditions can be written in the discretized form as:

k
u;, = 0wl =wh(S,),, =0, (9.23)
oR Y
Wy = 0,uf =(—) 9.24
1L,N+L 1,/ 81‘ ' ( )
u,l,j =w,1,j =0. (9.25)

- 5 2|t

1 k i u,]fj ’ kX, (OR ¢ v ]
Gt o oo 22 e

(), =|&+e&, ,
j (ux)fﬁL(Wx)f,] (9.26)

The resistance to flow or impedance experienced by flowing blood at any cross-section is given

by [26]

Af =l (9.27)

9.5 Results and Discussion

The computations presented in this section are carried out for the following physiologically
relevant values of parameters [26, 91-93]: a = 0.8mm, n = 0.639, p = 1.06x 103 kg m?, =
1.2 Hz, Ao = 100 kg m™ 572, 4; = 0.240, 8= 0.4a. In fact the parameters chosen here correspond
to flow of blood in a coronary stenosed artery. The step sizes are taken [26] Ax= 0.025, Az =
0.01. Since no data is available about the value of @, therefore for the calculation purpose we

have chosen it equal to 0.035P. The accuracy of the numerical solution is maintained up to 10
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7 by choosing the time step 0.0001. Test computations show that if we decrease the spatial step
size then simulations will take more time and accuracy will be slightly improved. Thus we can
say that numerical solution is nearly independent of spatial step size for Ax <0.025 and Az <
0.1.

The profiles of the axial velocity of streaming blood in normal and stenotic artery for different
values of tapering angles are shown in Fig. 9.1a. We can observe from Fig.9.1a that the
magnitude of velocity is greater in the normal artery as compared with the stenotic artery.
Further velocity profile attains higher values for diverging tapering as compared with the
converging tapering. The profile of non-tapered artery lies in between. This observation is true
for both normal and constricted artery. However, the profile in constricted artery for converging
tapering is flatter over whole cross-section except near the wall. For such case, except the thin
boundary layer the flow in the interior region is similar to a plug flow. The existence of flat
velocity profile in the constricted region for converging tapering is because of the fact that near
the artery wall the viscous and inertial forces are of the same order. However, near the centre
of the artery the inertial forces dominate, thus compelling the axial velocity profile to attain a
flat shape. The profiles of radial velocity of the flowing blood in normal and constricted artery
for different taper angles are illustrated in Fig. 9.1b. All the profiles are taken at specific
location z = 28mm and at time instant # = (.45 s. This figure reveals that radial velocity is
negative over the whole cross-section. All the curves start from zero and approach a constant
value at wall due to the presence of wall movement in the stenosis geometry. It is further
observed from this figure that the effects of vessel tapering on radial velocity are prominent for
constricted artery as compared with the normal artery. The maximum deviation in the shape of
curves of radial velocity occurs near the wall for both stenotic and normal artery.

Fig. 9.2. (a) depicts the profiles of axial velocity for different instants of time ¢ within single

cardiac period at a specific location z = 28mm in the stenotic region. These profiles indicate a
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decreasing trend of the axial velocity when ¢ increases from 0./ to 0.45 s. However opposite
trend is observed at t = 0.7 5 i.e., axial velocity starts to rise again. Such a trend is clearly due
to the pulsatile pressure gradient produced by the imposed boundary condition. The time
instants 0.7, 0.3 and 0.45 s belong to systolic phase while time instant 0.7 s belongs to diastolic
phase. The plots of radial velocity for different instants of ¢ over a single cardiac cycle at a
location z = 28mm in the stenotic region are shown in Fig. 9.2b. It is noted from this figure
that radial velocity assumes positive values in the time period 0.7 to 0.3 s while as time
increases further from 0.3 s it decreases and become negative for ¢ = 0.45s. It further continues
with negative values for # =0.7s. The shift in the values of radial velocity from positive to
negative is due to the pulsatile pressure gradient while its non-symmetric shape owes due to

the arterial wall movement.

The results for the axial velocity profile of the flowing blood characterized by the Sisko fluid
at different axial positions for t = 0.45 s are illustrated in Fig. 9.3a. One can see that the shape
of velocity profile at cross-section z = 1 5mm is parabolic. However, as one moves downstream
toward the stenotic region a flattening trend is observed. The change in the velocity profile is
confined in a thin layer near the wall at z = 28mm and outside this layer there is no appreciable
change in it. At the offset of the stenosis i.e z = 34mm the velocity profile gets back to its
original parabolic form. Fig. 9.3b exhibits the profiles of radial velocity at different axial
stations for ¢ = —0.1° and =0.45s. We can observe that the behavior of all curves is similar
except the curve for z = 34 mm i.e. they get concave near the wall. However, at the location z
=34 mm the radial velocity changes its sign from positive to negative. The change of sign in

the radial velocity at the downstream stenosis is an indicator of separation in the flow field.

Figs.9. 4(a) and (b) show the axial and radial velocity plots for different tapering angles at t=
0.45 s. It is observed from both panels that when the tapered angle increases from -0.2° to -

0.4°, the velocity profiles do shifts toward the origin. Similarly it shows opposite behavior
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when taper angle assumes positive values from ¢ = 0°to ¢ = 0.2° i.e the magnitude of the
velocity increases or shift away from the origin. From these graphs one may conclude that there
are significant effects of the tapering angle on the flow field of blood.

Figs.9. 5(a) and (b) show the axial and radial velocity profiles for different values of the

material parameter &, atz = 28mm and t = 0.45 s. It is observed from both panels that with an
increase in value of ¢, from 0.1735 to 0.5735, the velocity profiles do shift away from the

origin. A comparison of axial and radial velocity for power law and Sisko fluid is shown in
Fig. 9.6(a) and (b). This figure predicts higher values of axial velocity both in stenotic and
normal artery for power-law fluid in comparison with Sisko fluid.

The graphical illustrations of time series of flow rate of streaming blood is characterized by the
Sisko fluid for a different tapering angles and different material parameters are presented in
Fig. 9.7(a) and (b), respectively. Fig.9.7 (a) comprises of the five distinct curves of flow rate.
The top most curve is for normal converging artery with wall movement. Below it lays the
curve for diverging stenotic artery. The third curve from the top corresponds to non-tapered
stenotic artery. The variation of flow rate with time for diverging stenotic artery is shown in
fourth curve. The last curve depicts the case of flow rate for artery with rigid wall. We may
conclude from Fig. 9.7(a) that flow rate attain higher value in normal artery with wall
movement as compared with stenotic artery. The positive values of taper angle further enhance
the flow rate while the presence of stenosis reduces it significantly. Moreover, the flow rate
fluctuates in the first two cardiac cycles and after that the periodic behavior prevails. This is
because of the arterial wall movement included in the geometry of stenosis through the factor
a,(t) given by Eq. (7.2). Now with the increase of time the factor a, (t) goes to unity due to
its dependence on e™" and thus the profiles of flow rate becomes periodic. This is also evident
from the curve for rigid wall where the flow rate is periodic for all times. Fig 9.7(b) indicates

an increase in the flow rate with increasing the material parameter ¢, .
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The time series of wall shear stress for four cardiac cycles at a location z = 28mm for different

taper angles and different values of material parameter &, are shown in Fig. 9.8 (a) and (b)

respectively. We note from Fig. 9.8 (a) that the value of shear stress value in the stenotic region
for a diverging constricted artery is higher than those of non-tapered and converging artery.
We further note from Fig. 9.8 (a) that the profile of wall shear stress for a normal artery lies
below of all other curves indicating how significantly the presence of stenosis can affect the

wall shear stress. The material parameter of Sisko fluid &, also affects the wall shear in the
sense that wall shear stress reduces with an increase ing,. Thus the non-Newtonian

characteristics of blood also bear the potential to influence the wall shear stress. It is also
evident from both the figures 9.8(a) and (b) that wall shear stress become periodic immediately
after the start of the flow.

Figs. 9. 9 (a) and (b) are plotted to see the time series of resistance impedance at a specific

location z = 28mm for different taper angles and different values of material parameter ¢, . It is

observed that these profiles follow a reverse trend in contrast to the flow rate profiles as
expected from the formula of the resistance to flow given by expression (9.31). Contrary to
flow rate profiles, one may observe that the resistance to flow in a stenotic region decreases as
tapering angle increase from -0.1 to 0.1. A further decrease is observed in the absence of the
stenotic region. Fig. 9.9 (b) reveals that the resistance to flow is a decreasing function of the

material parameter¢,. Moreover Fig. 9.9 (a) and (b) also indicate that like flow rate, the

periodicity in the resistance to flow is not attained within the first four cardiac cycles.

9.6 Conclusion

A mathematical mode! based on Sisko constitutive relation is developed to study the unsteady
pulsatile flow of blood through a time variant stenotic artery. The analysis carried out here is

general and includes the results for Newtonian and power law fluids as limiting cases.
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are (z=28mm, t =0.45s,8 = 0.4a,d = 20mm,i, =16mm,&, =0.1735Pa.s").

The present model is also capable of predicting the effects of vessel tapering and severity of

the stenosis on the important variables associated with the blood flow. The study reveals that

the axial velocity of blood, resistance to flow, flow rate and wall shear stress are greatly

influenced by the blood rheology, wall movement, presence of stenosis and degree of taperness
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of the artery. The study further gives a motivation to incorporate more realistic constitutive

equations in the present model to represent the blood rheology.
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