VISUAL OBJECT TRACKING USING SPATIO
TEMPORAL INFORMATION (VOT-STI)

Khizer Mehmood
80-FET/PHDEE/F14

Submitted in partial fulfilment of the requirements for the PhD degree in Electronic
Engineering at the Department of Electrical & Computer Engineering
Faculty of Engineering and Technology

International Islamic University,

Islamabad
Supervisor
Prof. Dr. Abdul Jalil
Co-Supervisor
Dr. Ahmad Ali
#‘w(";ﬁ” June, 2022
.:'é:p\\u ~ iy 7’_" “"
ff‘-.’ Al
i - <
\: R )
{' ] A;I ’
\\ 1SL. . :u.;?‘,,f
‘\\-s--..-«"“'x



\
-
Accession Nn &fiﬁg y
ohD
PONEE 7

kb



ii

Copyright © 2022 by Khizer Mehmood
All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, including

photocopying, recording or by any information storage and retrieval system, without

permission of the author.



DEDICATED TO

My Teachers and Family

iii



CERTIFICATE OF APPROVAL

Title of Thesis: Visual Object Tracking using Spatio-Temporal Information (VOT-STTI)

Name of Student: KHIZER MEHMOOD
Registration No: 80-FET/PHDEE/F14

Accepted by the Department of Electrical & Computer Engineering, Faculty of Engineering and

Technology, International Islamic University (ITU), Islamabad, in partial fulfillment of the

requirements for the Doctor of Philosophy degree in Electronic Engineering.

Yiva voce committee:

Prof. Dr. Abdul Jalil (Supervisor)
Former Professor, TTS, DEE, FET, IIU Islamabad.

Dr. Ahmad Ali (Co-Supervisor)
General Manager, NESCOM, Islamabad.

Dr. Ihsan ul Haq (Internal)
Associate Professor DECE, FET, IIU Islamabad.

Dr. Rab Nawaz (External-I)
Project Director, NESCOM, Islamabad.

Dr. Abdul Basit (External-II)

Deputy Chief Scientist, MSID, PINSTECH, Islamabad.

Dr. Suheel Abdullah Malik (Chairman, DECE)
Associate Professor DECE, FET, I1U Islamabad.

Prof. Dr. Nadeem Ahmad Sheikh (Dean, FET)
Professor DME, FET, ITIU Islamabad.

v

A _av

o Mo

al JJ\ .




ABSTRACT

Object tracking is still an intriguing task as the target undergoes significant appearance
changes due to illumination, fast motion, scale variations, occlusion, and shape
deformation. Background clutter and numerous other environmental factors are other
significant constraints that remain a riveting challenge to developing a robust and effective
tracking algorithm. In the present study, an adaptive Spatio-temporal context (STC) based
algorithm for online tracking is proposed by combining the context-aware formulation,
Kalman filter, scale-space tracking, and adaptive model learning rate. To enhance seminal
STC-based tracking performance, different contributions are made in the proposed study. -
First, the context-aware formulation is incorporated in the STC framework to perform
better in clutter background situations. Second, a pyramid representation-based scale
correlation filter is integrated to overcome the STC's inability to rapid change in target
scale by learning appearances induced by variations sampled at a different set of scales.
Third, an occlusion detection and handling mechanism are incorporated to avoid the target
model from drifting. Occlusion is detected from the peak correlation score of the response
map. It continuously predicts the target location during occlusion and passes it to the STC
tracking model. After successfully detecting occlusion, an extended Kalman filter is used
for occlusion handling. It declines the chance of tracking failure as the Kalman filter
continuously updates itself and the tracking model. Further improvement to the model is
provided by fusion with average peak to correlation energy (APCE) criteria, automatically
updating the target model to deal with environmental changes. Finally, the average

difference between consecutive frames is used to update the target model adaptively.
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Experimental results on image sequences taken from Temple Color (TC)-128, OTB2013,
OTB2015 and UAV123 datasets indicate that the proposed algorithms perform better than

various algorithms, both qualitatively and quantitatively.
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Chapter 1.

Introduction

In this chapter, the impact of visual object tracking (VOT) in computer vision and
image processing is briefly reviewed, along with the need to explore models in developing
accurate and robust tracking algorithms. The main contributions are presented in designing

a tracking algorithm that can accurately track the target under various challenging

scenarios.

1.1  Background

To process visual detail vision system is one of the most perceptual systems. In
image processing, different mathematical operations are applied to images. The input to
an image processing system can either be an image or video, while its output is either an
image or a set of parameters related to the image. VOT aims to predict coordinates of
moving target in all frames of image sequence given with only the initial location of target
at the first frame. Commonly, a rectangular bounding box is used to describe the shape and
size of the target. VOT is applied in several real-world applications with the availability

of high-performance, low-cost cameras, as shown in Fig. 1.
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Fig. 1.1 Application areas of visual object tracking

e Activity Recognition: VOT plays a vital role in activity recognition applications
such as human action recognition [1], [2], learning activity patterns [3], etc.

o Traffic Monitoring: VOT provides an efficient solution for the management of
traffic on highways, such as detection of traffic accidents [4],[5], counting of
pedestrians [6], etc.

e Medical Diagnosis: VOT has shown significant progress in diagnosing diseases
such as automatic fovea center localization in retinal images [7], vocal tract from
magnetic resonance images [8], etc.

e Autonomous Vehicles: VOT plays a vital role in developing autonomous vehicles

such as mono camera-based 3D tracking [9], driver assistance systems [10], etc.



e Visual Surveillance: VOT is an essential part of various surveillance and security
systems such as foreground object detection and tracking [11], anti-aircraft gun
system [12], etc.

e Video Games: VOT is applied in video games for better control, such as gaming
Al [13], detection of unknown objects [14], and face tracking in video games [15].
etc.

¢ Sports Analysis: VOT plays a vital role in providing interesting analysis in various
sports such as tracking in basketball games [16], soccer games [17], etc.

¢ Radar Navigation System: VOT is applied in various navigation systems such as

ship’s radar [18], maritime radar systems [19], ARPA systems [20], etc.

In recent years, various object tracking has given promising results on different
benchmark datasets. Generally, tracking methods are classified into two categories, which
are generative tracking and discriminative tracking methods. In generative tracking, the
target appearance model is learned and updated by searching for the most similar candidate
as the target. In contrast, an online classifier is trained to discriminate target from its
background in discriminative tracking. Details of both tracking methods were widely

referred in the literature.

1.2 Issues in Visual Object Tracking

In recent years, substantial progress has been made in VOT [21]. However, VOT still faces

various challenges, as shown in Fig. 1.2.
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Fig. 1.2 Issues in visual object tracking

Illumination Variation: Various target features change considerably due to
illumination variations. Therefore, illumination changes around the target of
interest need to be handled for robust tracking.

Occlusion: It is the state of the target in which another object hides it. It is essential
to have an occlusion detection and handling module for accurate tracking.
Background Clutter: Tracker performance decreases significantly when there is a
similarity between the target and its background. A tracker must discriminate target

from its background for robust tracking.



Deformation: During tracking, most non-rigid targets change their appearance.
Therefore, a tracker should be able to update its motion model when the target
undergoes an appearance change.

Scale Variation: The size of the target changes significantly during tracking.
Therefore, the tracker should be able to track the size of the target appearance
accurately.

Low Resolution: Tracker might be lost the target in a video less than 400 pixels
around the target of interest. Therefore, a tracker should be able to track under these
limitations.

Motion Blur: The performance of the tracker decreases significantly when the target
area is blurred either by the motion of the target or camera movement. Therefore, a
tracker should be able to track under these circumstances.

Fast Motion: During tracking, if the target moves faster than 20 pixels than its
ground truth, then the tracker might lose the target. Therefore, a tracker should be
able to update its motion model when the target moves faster.

In-Plane and Out-of-Plane Rotation: One of the challenging issues during tracking
is when the target either rotates in the image plane or out of the image plane.
Therefore, a tracker should be able to track under these situations.

Out of View: During tracking, it is possible that some portion of the target leaves
the view and then comes back after a few frames. Therefore, a tracker should be

able to track under these scenarios.
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1.3  Motivation and Objective

VOT is a renowned research problem in computer vision and has been utilized in
many applications. With the increasing technological development in mobile cameras,
webcams, and closed-circuit televisions (CCTVs). It is a requirement for these systems to
develop tracking methods to process information from these videos in real-time. However,
it is a challenging task as less information is available related to the target and its context.
The main objective of this research is to find appropriate methods for VOT with the best

accuracy and robustness when faced with the various challenges mentioned above.

1.4  Problem Statement

Most of the work in the field of VOT is usually based on different assumptions such
as structured or non-structured environment, fixed or stationary camera etc. The more
issues are in a video sequence the more is difficult to track the object. So, in order to design
a robust tracking algorithm it must accurately track the object regardless of the changes in
appearance model. The literature survey identifies both generative and discriminative
methods, which use observation model of a tracker. Still there are some issues which need
to be addressed and best suitable technique is required to be identified for long term real
life video sequence.

In spatio temporal information (STI) algorithm a model is learned between the target
object and its local surrounding in a scene. The learned model is used to update a spatio
temporal context model for the next frame. Tracking in the next frame is formulated by
computing a confidence map that integrates the spatio temporal context information, and

the best object location can be estimated by maximizing the confidence map. We can



address object tracking problems by designing a STI algorithm, which integrates various

powerful features to further enhance the tracking process.

1.5  Contributions
This thesis focus on single object online tracking, in which generic tracker is designed for

all kind of objects. The contributions of the thesis are presented below:

1. We propose a correlation filter-based context-aware formulation to utilize context
information effectively and incorporate it into the Spatio-temporal context
framework to deal with effectively in clutter background situations.

2. We propose a scale correlation filter-based pyramid representation mechanism to
accurately extract the target without accumulating the scale model's error. We use a
combination of Spatio-temporal context and scale correlation filter to achieve
accurate object tracking

3. We introduce an effective method of tracking the object can be tracked accurately by
utilizing Kalman Filter and response map's peak value to measure the reliability.

4. We also use extended Kalman Filter (EKF) for occlusion handling and the response
map's peak value to measure the reliability of the current estimated position. If the
tracking result is unreliable, this method can regain the target position to continue
tracking.

5. We propose an adaptive leaming rate mechanism based on the average peak to
correlation energy (APCE) based on the target appearance model. This method can

effectively prevent the tracking model from the wrong appearance.



6. We propose an average difference between consecutive frames based adaptive
learning rate mechanism to update the model according to change in the
environment.

7. Experimental results have been presented on de facto standard videos to show the
efficacy of the proposed method over STC [22], DCFca [23], Modified KCF [24],

MACEF [25], Modified STC [26], MOSSEca[23], and AFAM-PEC [27].

1.6  Organization of Thesis

The organization of the thesis is as follows; the background, issues in VOT,
motivation, objectives of the research, and contribution of the thesis are given in Chapter
1. Chapter 2 explains the of Spatio-temporal context and correlation filters for visual object
tracking systems. The proposed schemes for tracking the target in VOT systems are
presented in Chapter 3. The simulation results and discussion for different case studies of
Spatio-temporal context are presented in Chapter 4. Finally, conclusions and future

directions are given in Chapter 5.
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Chapter 2.

Literature Review

This chapter provides a comprehensive review of current object tracking

methods related to Spatio-temporal context and correlation filters.

2.1 Introduction

VOT has been an active exploration area over the past two decades, during
which significant progress has been made [28]-[33]. The performance of tracking
methods relies on the appearance model such that it differentiates object from their
background under challenging scenarios. The appearance model can be allocated into
categories, which are discriminative tracking methods and generative tracking methods.

Both methods are widely used in the tracking community.

2.2 Generative Tracking Methods
Generative tracking methods learn target appearance models and search for the
highest matching score. These methods achieve good tracking results at the expense of

computational cost. Few generative tracking methods are presented below.

Kwon et al. [34] proposed a tracking scheme that utilizes observation, tracking
and motion models to construct the target appearance. Ross et al. [35] presented a
tracking method that learns low dimensional subspace representation by adapting the
appearance change of the target. Mei et al. [36] proposed a sparse representation-based
tracking algorithm using the /; norm. It dynamically updates target templates and uses

non-negativity constraints to filter out clutter. Lara et al. [37] proposed an image
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descriptor using distribution fields (DFs) representation such that loss of information
around pixel value can be prevented. Li et al. [38] proposed a generative tracking
method to model target appearance using incremental 3D discrete cosine transform
(3D-DCT), which determines the signal dimension and evaluates the likelihood
between the target and its background at a low computational cost. Zhang et al. [39]
proposed a weighted multiple instance learning (WMIL) based tracking method. It
utilizes a probability function that uses a large weight near the target location and
optimizes the likelihood function. Oron et al. [40] proposed a probabilistic model of
object variation over time by calculating the earth mover’s distance using the cost of

moving pixel and color change.

2.3  Discriminative Tracking Methods

Discriminative methods treat tracking as a binary classification problem that
can discriminate targets from their background by training online classifiers. These
methods perform favorably well. However, tracking might get affected when training

data is small. Few discriminative tracking methods are presented below.

Grabner et al. [41] proposed an object tracking method that uses online
AdaBoost feature selection such that the classifier is adapted to appearance change.
Moreover, depending upon the background, the most discriminative features are
selected. Kalal et al. [42] proposed a tracking method that exploits positive and negative
structural constraints to enforce labeling on unlabeled data. Hare et al. [43] proposed a
kernelised structured output support vector machine (SVM) learned online for adaptive
tracking. To prevent the unbound growth of the support vector, a budgeting mechanism
is also incorporated to run it at a high frame rate. Henriques et al. [44] exploits the

Circulant matrices' properties and uses Fast Fourier Transform (FFT) for detection.
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Zhang et al. [45] proposed a tracking algorithm to address the target's drift problem and
appearance change. They employed non-adaptive random projections to preserve the
image and sparse matrix structure to extract features of the appearance model.

Classification is done by using a naive Bayes classifier in the compressed domain.

2.4  Spatio-Temporal Context Tracking

In visual object tracking, the target is characterized by objects around the target
present in the current frame. The area which is present around the target is called
context. In the context around the target, various temporal and spatial relationships exist
in continuous frames. STC tracking algorithm is based on the Bayesian framework to
find the target location based on background knowledge accurately. It formulates the
task of finding an object center by maximizing the confidence map in every frame. For
every current frame target location is represented by x” with its features defined as X©
= {y(i) = (I(Q),D)|i € Q(x")} where I(i) is the image grey scale value at location i

while Qc(x") is the context around the target center x*. It is shown in Fig. 2.1.

Fig. 2.1 Spatial relationship between object and its context.
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A confidence map of the target location is described in (2.1).
y(x) = P(xlj) = Zyayexc P(x, y(DI))

= Ly exe P, y(DI) PODI) 2.1

where j is the target, P(y(i)|j) is context prior model that represents the features of
context appearance. P(x,y(i)|j) is a spatial context model that formulates spatial
relation between object location and its information of context. It is used to identify and
resolve various uncertainties for different image measurements. The goal in this

tracking problem is to train the spatial context model P(x, y(i)[j).

2.4.1 Confidence Map
Confidence map function y(x) is presented in (2.2).
2.2)

y(x) = P(xlj) = re et

where r is the normalization constant, a is the scale parameter, and & is the shape
parameter. The problem of location ambiguity frequently occurs in object tracking. An
appropriate selection of shape parameters can resolve this problem and helps learn the
spatial context model. Setting £>1 results in over smoothing of the confidence map near
the center, thereby increasing location ambiguities. However, if £<1, it generates a
sharp peak response due to which few positions are activated while learning spatial

context. Due to these issues, STC uses £=1.

2.4.2 Context Prior Model

To learn the spatial context model, the context prior model needs to be calculated
first. Then, it is modeled using the image intensity function to represent the target

appearance and Gaussian weighted function mentioned in (2.3) and (2.4).
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PyMI) = @) o, — x7) (2.3)

e 24
wy = de For 12 @4

where d is a normalization constant that restricts (2.4) to range between 0-1, and
o is scale representation. The closer the context location { is to the current target

location x* larger weight should be set to predict the target location in the next frame.

2.4.3 Learning Spatial Context Model

The conditional probability function defines the spatial context model is presented
in (2.5).
PO,y@lj) = k¥ (x — D) (25)

Solving (2.5) for spatial context.
= h*(x — )I{) ol - x7)
= b%(x) @ (I(x) wy(x — x7)) (2:6)
where  is a convolution operator in (2.6). Fast Fourier Transform (FFT) is used

and calculated as presented n (2.7) to improve calculation speed.
F(y(0) = F(h*x) O FI(®X)w,(x — x7)) @2.7)

where F is the FFT operation and O denotes element-wise multiplication.

Solving (2.7) for spatial context model.

F (re—l"—;i'l 5) 23

F(U(x)wy(x — x*)))

h(x) = F1

where F~1 denotes inverse FFT in (2.8). The spatial context model h*¢ learns

relatively spatial relations between different pixels in the Bayesian framework.
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2.4.4 Model Update
In the STC model, tracking is considered a detection task. Target is initialized
position at the first frame. At /% frame, the STC model H{S (x) can be updated using
the spatial context model hf¢(x). Then the target center position x;,, of the (t + 1)
frame can be attained by computing the extreme of the confidence map given in (2.9).
Xiy1 = Argxen (xpMax Vee1(X) (2.9)

The confidence map y;41(x) at t+1 frame can be calculated as described in (2.10).

yeur (@) = F (F(HES (@) O F (leaa () Cx - D)) 2.10)

Here, H3Y derives from spatial context h{® and can reduce noise caused by abrupt

appearance changes of I,,,. STC model can be updated as mentioned in (2.11).

HiY = (1 — p) H{* + ph{* 2.11)

where p is the learning rate and h§® is the spatial context model computed in
(2.8). The complete flow of the algorithm is presented in Fig. 2.2.

Spatial weight function Confidence map

Y

(N

Tracking at frame {t+1)

/ Ne\}l Iocajkion

Oid location

,p fp lp Spatio-temporal context model
1- - 1- HE = (1= p)HS 4+ p b
NI, Sl R ol N - S UL LN o, B

Fig. 2.2 Learning and Detection using STC [22]
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2.4.5 Improvementsin STC
STC algorithm achieves favorable tracking results. However, significant

improvements have been made in these in recent years few of them are presented below.

Zhang et al. [46] proposed an adaptive STC model for online tracking by
incorporating a histogram of oriented gradients (HoG) features and color naming (CN)
features in the STC framework. They also used the average difference between adjacent
frames to adjust the learning rate when the model is updated. Wang et al. [47] proposed
an improved tracking model that combines STC with a convolutional neural network
(CNN) to extract online CNN's deep characteristics without training. Wan et al. [48]
and Li et al. [49] proposed a motion vector-based mechanism for predicting target
position under motion is incorporated in the STC framework to improve the STC scale.
It also combined a scale correlation filter with STC to extract different scale samples
around the target and used the HoG operator to form a pyramid of scale characteristics.
Tian et al. [50] proposed an enhanced STC tracker to address occlusion by
incorporating patch-based occlusion detection mechanisms into the STC framework.
Chen et al. [51] proposed an improved STC tracker to address occlusion by

incorporating a Kalman filter to predict target location in case of occlusion.

Munir et al. [52] proposed a modified STC tracker to address occlusion by
incorporating a Kalman filter to predict the target location in case of occlusion and
implemented it for real-time eye-tracking applications. Cui et al. [53] proposed an
amended STC tracker to address the limitation of full occlusion. They incorporated an
occlusion detection mechanism which consists of three stages during which motion and
template update information is stored and used when the target is occluded. Yang et al.

[54] proposed an enhanced STC tracker to address occlusion by incorporating the PSR-
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based occlusion feedback mechanism for model and scale updates in the STC
framework. Yang et al. [55] proposed an improved STC tracker to address occlusion
by incorporating a Kalman filter to predict the target location and using Euclidean
distance to detect occlusion. Qi et al. [56] proposed an improved STC algorithm by
incorporating a context-aware correlation filter in the STC framework. Wei et al. [57]
proposed an enhanced STC algorithm. They included a bag of multiple models (BMM)

for target appearance in the STC framework and used the Bayesian Kalman filter for

tracking.

2.5 Correlation Filter

The tracking framework of the correlation filter is shown in Fig. 2.3. During
tracking correlation filter is trained from the first frame in which the target location is
initialized. Then for each following frame target location is detected. Afterward,
features are extracted, and a cosine window is applied for boundary effects. Fast Fourier
Transform (FFT) is used to compute the vector. A response map of the target function
can be obtained by calculating inverse FFT. The target's position in the next frame
corresponds to the coordinates of the maximum value in the response map. Afterwards,

appearance 1s estimated by extracting and updating the correlation filter.
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Fig. 2.3 Correlation filter tracking framework [32]

25.1 Kernelized Correlation Filter
Correlation filters use a sampling method to discriminate the target position from
the region of interest in consecutive frames at a low computational cost. It models all
possible translations of the target in the search window as circular shifts and
concatenates them to form a square matrix Ao. Thus, it facilitates computing the Fourier
domain solution to the ridge regression problem presented in (2.12).

min ||4ow — ylIf + Allwll3 2.12)

In (2.12), the learned correlation filter is denoted by vector w. Square matrix A4,
contains all circular shifts of image patch and regression target y is vectorized image
of 2D Gaussian. Let x(j) be the j component of vector x, and its conjugate is x*. Then,
its Fourier transform Ffx is£. (2.12) can be solved using (2.13).

X = Fdiag(®)F" and X" = Fdiag(x*)F¥ (2.13)
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Convex in (2.12) is complex and has a unique global minimum. Equating its
gradient to zero leads to a closed-form filter solution as given in (2.14).
w= (4TA,+ 2, D)7 1ATy (2.19)
As Ay is circulant, (2.14) can be diagonalized, and its solution in the Fourier

domain is given in (2.15).

s HOFY (2.15)
iy Qo+ 24
The target location is the same as the location of maximum response when (2.15)
1s convolved with the search window for the next frame. Finally, the detection formula
is given in (2.16).
WD =Iw o 5,OW (2.16)

where Z is the search window circulant matrix.

252 Improvements in CF and KCF
Both minimum output sum of squared error (MOSSE) [58] and KCF [59]
achieve favorable tracking results. However, significant improvements have been made

in these in recent years few of them are presented below.

Ahmed et al. [60] proposed a real-time correlation-based tracking framework
by utilizing an open-loop control strategy so that the target is always at the center of the
frame. Moreover, a video stabilization method was incorporated to eliminate the
vibration at low computational cost. Ma et al. [61] proposed a long-term correlation
filter tracker (LCT) that decomposed the tracking problem into the estimation of
translation and scale and redetected the target by online training of a random fern
classifier. Mueller et al. [23] proposed a context-aware framework for correlation filter

trackers by reformulating original optimization problem for single and
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multidimensional features in primal and dual domains. Masood et al. [62] proposed a
tracking framework that uses a maximum average correlation height (MACH) filter for
detection and a proximal gradient algorithm-based particle filter for tracking. Khan et
al. [27] proposed an improved tracking algorithm based on LCT. They incorporated the
Kalman filter in the LCT framework for occlusion handling and the PSR of the response
map for occlusion detection. Ali et al. [63] proposed a tracking algorithm that combines
mean-shift tracker, Kalman filter, and correlation filter heuristically. It updates the
template based on the change in the appearance model of the target and computes
similarity for each forthcoming frame based on the current frame similarity value.

Shin et al. [24] proposed an improved KCF based tracking algorithm. They
incorporated a module to detect tracking failure, a mechanism for re-tracking in
multiple search windows, and an analysis of motion vectors for deciding on search
window in the KCF framework. Zhang et al. [25] proposed a motion-aware correlation
filter (MACF) that predicts the position and scale of the target in the next frame by
utilizing instantaneous motion estimation. Farahi et al. [64] proposed a probabilistic
Kalman filter (PKF) to improve target estimation. They incorporated a different stage
in the Kalman filter to refine estimated positions by constructing an observed trajectory-
based probabilistic graph, further refined by applying the Viterbi algorithm. Khalkhali
et al. [65] proposed an improved Kalman filter-based vehicle tracking method. They
incorporated situation assessment and motion history graph in Kalman filtering
framework for estimation of target

Danelljan et al. [66] proposed a tracker based on correlation filters for
translation and scale in image scale pyramid representation. Ma et al. [67] proposed a
fast and accurate scale estimation method by incorporating average peak to correlation

energy (APCE) in multi-resolution translation filter. Ruan et al. [68] proposed an online
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scale adaptive tracker by formulating target insight correlation filters between the target
and its context by using target likelihood map weights of the image. Li et al. [69]
incorporated a scale adaptive tracking method in the KCF framework. They addressed
the issue of fixed template size in KCF and included HoG and CN features. Bibi et al.
[70] modify the KCF tracker by maximizing posterior distribution over the scales grid
and updating the filter by fixed point optimization. Danelljan et al. [71] proposed a
tracker based on discriminative scale space tracking by utilizing a scale correlation filter
for sampling target appearance at different scales. It also uses various strategies for
reducing computational cost. Yin et al. [72] modified the scale adaptive with multiple
features (SAMF) tracker by using APCE-based rate of change between consecutive
frames to control scale size. Khan et al . [73] proposed a multi cue robust object tracking
framework by incorporating scale invariant features in modified KCF framework. Lu
et al .[74] combined KCF and Fourier~Mellin transform to deal with rotation and scale
variation of the target. Yuan et al. [75] proposed a scale adaptive object tracking
algorithm. They extracted features from different layers of ResNet to produce a
response map which is further fused in the AdaBoost algorithm. Moreover, an occlusion
detection technique based on the number of effective local maxima (NELM) and scale

correlation filter is incorporated in their framework to handle scale variations.

2.6 Summary

This chapter presented a detailed overview of VOT methods based on STC and
CF. A comprehensive review of STC and CF was given along with the siandard
procedures to identify the target position for the VOT system. Finally, the state-of-the-

art tracking algorithms based on STC, CF, and KCF are discussed.
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Chapter 3.

Proposed Tracking Methods

3.1 Introduction
This chapter presents the design of algorithms based on the Spatio-temporal context

presented for visual object tracking systems. Two tracking schemes are proposed,

namely:

1. Context-aware and occlusion handling mechanism for VOT

2. Correlation filter and measurement estimation collaboration for VOT
Details of both tracking schemes are presented below.

3.2 Context-aware and occlusion handling mechanism for VOT

In this section, the proposed tracker is introduced in detail. First, a context-aware
object tracking model is investigated. Second, the Kalman filter-based motion
estimation model is discussed. Third, the average difference of consecutive frames-
based model update scheme is presented. Finally, the tracker will be mentioned in

Algorithm 1. Fig. 3.1 shows the flowchart of the proposed algorithm.
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Fig. 3.1 Execution Mechanism of case study 1

3.2.1 Context-Aware Tracking Framework

As information of context around the target elevates the tracking performance.

Therefore, it is added to the context-aware correlation filter solution as given in (3.1).

k (3.1)
min ldgw = yIE+ w3 + 2, ) 4wl

i=1

It should be noted that there are other probable selections for incorporating context
terms. However, it leads to constrained convex optimization requiring an iterative
relatively slow solution. When the position for the current frame is computed by STC,

then the filter w is trained and the background term A; is as small as possible. The
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objective function can be rewritten by forming a new data matrix B € Rk+Dnxn

which consists of target and context patches as given in (3.2).

fow,B) = IIBw = 7lI3 + A4 Iwll3 (3.2)

Ay y
where B = “afAl and y = 0

J 25 Ag 0
Like the correlation filter, the function in (3.2) is convex and minimized by setting
the gradient to zero. It is presented in (3.3).
w= (BTB+ A, D"1BTy (3.3)
Similar to (2.12), using (2.13) to determine Fourier domain closed-form solution as

described in (3.4).

GG OF 34
iy Odp+ M+ 2, 38,8 Q4

W=

The target window and its position are updated according to (3.4). Furthermore,

the confidence map and STC model in (2.9) and (2.11) are updated based on the target

position.

3.2.2 Kalman Filter Based Motion Estimation Model

The Kalman Filter is an optimal filter that minimizes the difference between true
and estimated states. It consists of four processes which are 1) Initial guess of the state
vector and state error covariance, 2) Forward time step propagation of state vector and
state error covariance, 3) Estimation of Kalman gain based on state error covariance
and measurement noise covariance, 4) Update state vector and state error covariance

based on estimated output and Kalman gain [76]. The constant velocity motion model
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is used due to its simplicity and effectiveness in describing the target's motion. It

consists of two stages which are prediction and correction.

3.2.2.1 Kalman Filter Prediction
During this state, uncertainty about the target is determined by both state and
covariance prediction. The current system state can predict position based on the
previous state. Similarly, covariance is calculated by multiplying the covariance matrix
from the last iteration by the state transition matrix and adding process noise Q. The
prediction equations are described in (3.5) and (3.6).
Xy = AX;—1 + Bugq (3.5)
where X, is the state target vector, A is the state transition matrix, and Bu,_, 1s
noise.
S, =AS,_AT + @ (3.6)
where S, is the predicted error covariance and @ is the covariance of the process

noise

3.2.2.2 Kalman Filter Correction
The position of the target obtained from STC is used as a measurement value Y;.By
combining it with the predicted result, Kalman gain can be calculated as described in
3.7.
K,y = S;_HT (HS;—{HT + R)™* 3.7
where R is the measurement noise covariance. The estimate is updated by

combining it with old estimate and measurement as given in (3.8).

Xer1 = Xe + Keoa (e — HX,) (3.8)
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The difference (Y, — HX,) is called measurement innovation or residual. It
reflects the discrepancy between predicted measurement HX, and actual measurement
Y;. Error covariance is calculated using (3.9).

Sev1 = (I = KcH) S¢ (3.9

where S,,; is the updated error covariance, H is matrix related to the

measurement of the state and K; is the updated Kalman gain.

3.2.3 Occlusion Detection

When the target undergoes occlusion, the STC model is updated incorrectly,
thereby losing the target. To detect occlusion, the maximum value of the target map is
used, which changes its value with the situation of the target state. If the target is
occluded, then the value of the response map is small. However, when the target
reappears then its value increases. The value of the response map determines whether
the target is tracked by STC or by the Kalman filter. For a given input image sequence,
the first confidence map is calculated in the frequency domain, and then the Spatio-
temporal model is learned for tracking. If the target is severely occluded, the next frame
Kalman filter will predict the position and update STC using a feedback loop. The filter
template for context-aware is updated accordingly. Kalman filter prediction can be

updated as observation of the target position marked for next frame.

3.2.4 Adaptive Learning Rate
During object tracking, target motion changes in each image sequence frame.
Therefore, it is necessary to update the target model correctly. In STC, the learning rate

is fixed, making it evitable to different appearances in the environment. So, to make it
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adaptive, an average difference of two consecutive frames-based mechanisms is

(1 .

incorporated [46]. It is given in (3.10).

N - (3.10)
M« N

where I;; is the pixel value, and M * N is the size of an image. The learning rate

is adjusted as given in (3.11).

0.005, er< 1.2
= 0.075, 1.2< er<10
0.1, er>10

(3.11)

Value of learning rate p is assigned based on er using (3.11).

Algorithm 1: Proposed Tracker at time step t

Input: Image Sequence of n Frames. Position of Target at First Frame.
Output: Target Positions in each frame for Image Sequences.
- Sor frame 1 to n frames.

1) Calculate context prior model using (2.3).

2) Calculate the confidence map using (2.10).

3) Calculate the target center.

4) Calculate the maximum of the response map.

5) if response map<threshold

6) new position=Kalman prediction

7) end

8) Estimate position for next frame using (3.5).

9) Estimate error covariance using (3.6).

10) Calculate Kalman gain using (3.7).

11) Update estimate via measurement using (3.8).

12) Update error covariance using (3.9).

13) Calculate the average difference between consecutive frames using (3.10).
14) Adjust learning rate using (3.11).

15) Update filter template using (3.4).

16) Update context prior model on Kalman prediction using (2.3).
17) Update spatial context model using (2.8).

18) Update the Spatio-temporal context model using (2.11).

19) Draw a rectangle on the target in each frame.

end
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3.3 Correlation filter and measurement estimation collaboration

for VOT

In this section, the proposed tracker will be discussed. First, a correlation filter-
based adaptive scale scheme is discussed. Second, an extended Kalman filter-based
occlusion handling mechanism is investigated. Third, an adaptive learning rate scheme
is presented. The execution scheme of the proposed tracker is shown in Fig. 3.2. In each
image sequence, the target of interest's location is initialized manually on the first frame
from the given ground truth. Afterward, the target confidence map is calculated. Next,
sample patches of a different set of scales are estimated from the confidence map of
STC. Then, the maximum value of the response map is calculated. The extended
Kalman filter is activated if the response map's value is less than the fixed threshold.
Kalman filter will predict the location of the next frame and update the tracking model
during this entire period. Once the response map's value exceeds the fixed threshold,
the Kalman filter is deactivated. Afterwards, the learning rate is updated, and the target

entire tracking model is updated based on the calculated position.
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Fig. 3.2 Execution mechanism of case study 2

3.3.1 Scale Space Tracking

Discriminative correlation filters are widely used in visual object tracking. A scale
correlation filter-based tracking model is used to estimate the target scale. It first
extracts different scale samples around the target position; then, the HOG feature
pyramid sample is extracted from the location. For finding an optimal correlation filter,

the cost function given in (3.12) needs to be minimized.
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e= ||ZL n' !~ g]* + A XL, |0 (3.12)

where g is desired output, A is the regularization term, * is the circular
convolution operator, h is the HOG features after extracting from the sample, 1 indicates
l-dimensional HOG features, g indicates two-dimensional Gaussian function, d
indicates the total dimension of HOG features, and fis the correlation filter. The
solution of (3.12) in the frequency domain is given in (3.13).

. G (3.13)
Yd_ FKFk 4 )

where H! is 1-D HOG feature extracted from sample, A is the regularization term
and G is 2-D Gaussian function. An optimal filter can be obtained by minimizing output

error over training patches. However, it is not suitable for online tracking because of

computational cost. For efficient tracking numerator and denominator of correlation
filter H' are updated separately as given in (3.14) and (3.15).
At =(1- V)AL + YGF! (3.14)
a (3.15)
Be=(1— Y)By+ v ) FEFE
k=1
where v is the learning rate. By maximizing the correlation score target state can

be determined as given in (3.16).

_ p-t yd AlzZ! (3.16)
y B+ A

where Z! denote HOG features extracted from prediction

3.3.2 Extended Kalman Filter
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Within the visual object tracking research area, EKF is widely used to estimate the
system. The target location problem can be viewed as an estimation problem, providing
measurement-based prediction. For the current estimate, EKF linearizes the nonlinear
equations. Afterward, EKF is applied to that linearized model [76]. Thus, EKF involves
two steps which are prediction and correction. During prediction, state and covariance
estimates are computed for the current frame using (3.17) and (3.18).

X; = AR(_{ + Bu, 3.17)

Pr = AP,_;AT+ Q (3.18)
where x; is the state target vector, Bu, is noise, A is process Jacobian, Q is
process noise covariance and P, is the predicted error covariance. During the
correction, Kalman gain K, is calculated. It balances prior estimation uncertainty and

measurement noise as presented in (3.19).

Ke= PJa0uP R + R (3.19)
where ] is measurement Jacobian and R is measurement noise. State estimate
is updated using prior estimate and error between measurement and predictive

measurement as given in (3.20).

xt = K¢ + Ke(ze — JuRe—1) (3.20)
The difference (z; — JyR_1) is called measurement innovation or residual. It
reflects the discrepancy between predicted measurement JuR;_; and actual

measurement z; Posterion estimation of variance is given in (3.21).

P = (- KJu)P (3.21)
where P, is the updated error covariance, ]y is matrix related to the measurement

of the state and K, is the updated Kalman gain.
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3.3.3 Occlusion Detection

When the target undergoes occlusion, the STC model is updated incorrectly,
thereby losing the target. The maximum value of the target map is used to detect
occlusion, which changes its value with the target state's situation. If the target is
occluded, then the value of the response map is small. However, when the target
reappears then its value increases. The value of the response map determines whether
the target is tracked by improved STC or by EKF. For a given input image sequence
first confidence map is computed in the frequency domain. If the target is severely

occluded, EKF will predict the position and update improved STC using a feedback

loop for the next frame.

3.3.4 Adaptive Learning Rate

The model is updated adaptively using average peak to correlation energy (APCE)

[77]. 1t is defined in (3.22).
(3.22)

lfmax - fminl2

mean (Zw,h(fw,h - fmin)z)

APCE, =

where f,,, is maximum response value,fyi, is minimum response value and
fwn is the corresponding row and column value of the response map. APCE specified
the degree of fluctuation between response maps and detected targets. (3.23) gives

expression of model update.

_ APCE; (3.23)
% = APCE,
Yt = Yo, bz, > bz,

Yt = Yo-bz:, otherwise
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where APCE, is the value at t-th frame,APCEj is the value at the initial frame

and bz, is the threshold to decide the learning rate.Algorithm 2 is presented below.

Algorithm 2: Proposed Tracker at time step t

Input: Image Sequence of n Frames. Position of Target at First Frame.
Output: Target Position in each frame for Image Sequences.
for frame 1 to n frames.

Calculate context prior model using (2.3).
Calculate the confidence map using (2.10).
Calculate the target center.
Calculate translation correlation using (3.16).
Calculate the maximum value of the response map
if response map<threshold

new position=Kalman prediction
end
Calculate Kalman gain using (3.19).
Estimate position for next frame using (3.20).
Estimate error covariance using (3.21).
Calculate APCE using (3.22).
Update model using (3.23).
Calculate scale correlation using (3.16).
Update translation and scale model using (3.14) and (3.15).
Update context prior model using (2.3).
Update spatial context model using (2.8).
Update the Spatio-temporal context model using (2.11).
Calculate the target position for each frame.
Draw a rectangle on the target in each frame.
end

In case study 1, STC is modified by incorporating KF, context aware formulation
and average of difference based learning rate. In case study 2, STC is modified by
incorporating EKF, discriminative scale filter context and APCE based learning rate
mechanism. The only similarity between both case studies is the use of peak response

value for occlusion detection.

3.4 Summary

First, the building blocks of proposed tracking mechanisms are presented in

this chapter. Then, the design of proposed trackers based on STC, i.e., context-
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aware and occlusion handling mechanism for VOT and correlation filter and

measurement estimation collaboration for VOT, are presented.
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Chapter 4.

Results and Discussion

Introduction

In this chapter, the results of both proposed tracking algorithms are presented.
The results given in this chapter are based on our published research works. To
evaluate the performance of the proposed trackers both qualitatively as well as
quantitatively, extensive experiments were conducted on image sequences selected
from Temple Color (TC)-128 [78], OTB2013 [21], OTB2015 [79], and UAV123
[80] datasets. The proposed trackers are compared quantitatively with existing
tracking methods based on distance precision rate (DPR) and centre location error
(CLE). CLE is defined as the Euclidean distance calculated between the tracker and

the ground truth of target. The calculation formula is mentioned in (4.1).

CLE = J(xi — Xg)2 + (i — Yg)? “4.1)

where (x;,y;) are positions calculated by tracking algorithm and (xg, y,.) are
ground truth values. DPR is the percentage of frames when the distance threshold
is greater than the estimated CLE. MATLAB software version 2018b is used for

simulations on a intel core i3 processor with 16 GB Ram.

Case Study 1: Context-aware and occlusion handling

mechanism for VOT
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4.2.1 CQuantitative Analysis

DPR comparison is given in Table 4.1. In sequences (Cardark, Cup, Jogging-1,
Juice, and Man) proposed tracker outperforms MOSSEca, STC, MACF, and DCFca.
In sequences (Carchasing ce3 and Plate ce2), all tracking methods have similar
performance. In sequence, Busstation_ce2 proposed has slightly less precision value.
However, the proposed has a higher mean value than other tracking methods.

Table 4.1. Distance precision rate at threshold of 20 pixels.
Sequence Proposed STC MACF MOSSEca DCFca

Busstation_ce2 0.878 0.194 1 0.820 0.886
Carchasing_ce3 1 1 1 1 1
Cardark 1 1 1 1 1
Cup 1 1 1 0.452 1

Jogging-1 0.996 0.228 0.231 0.231 0.231
Juice 1 1 1 1 1
Man 1 1 1 | 1
Plate ce2 1 1 1 1 1

Mean Precision 0.984 0.803 0.904 0.813 0.890

The average centre location error comparison is given in Table 4.2. In sequences
(Busstation_ce2, Cup, Jogging-1, and Man) proposed tracker outperforms STC,
MOSSEca, MACF, and DCFca. The sequences (Carchasing ce3, Cardark, Juice, and
Plate_ce2) proposed has slightly high error values. However, the proposed has the

lowest mean error and has the lowest mean error of other tracking methods.
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Table 4.2. Average Centre Location Error.
Sequence Proposed STC MACF MOSSEca DCFca

Busstation_ce2 10.86 78.25 3.58 14.50 9.71
Carchasing_ce3 3.90 3.55 2.39 2.61 3.05
Cardark 4.09 2.83 1.67 3.15 5.11
Cup 4.63 4.84 3.11 95.87 3.85
Jogging-1 8.40 5010 94.93 115.98 89.44
Juice 4.63 5.08 0.91 3.71 1.92

Man 1.32 1.49 1.73 1.72 2.23
Plate_ce2 2.58 234 1.62 1.77 1.83
Mean Error 5.05 638.55 13.74 2991 14.64

The precision plots are shown in Fig. 4.1 and Fig. 4.2. These plots provide frame
by frame precision in entire image sequences. Since precision gives the mean value of
the entire image sequence, the tracker might get the drift for few frames but then again
tracks the target correctly. Therefore, these plots were presented to show the efficacy
of the tracking method. Various challenges were present in sequences such as
occlusion, illumination variations, background clutter, etc. The sequences
(Carchasing_ce3, Cardark, Cup, Jogging-1, Juice, Man, and Plate_ce2) reported has the
highest precision in the entire sequence. In sequence, Busstation_ce2 reported has

slightly low precision.
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Cup) sequences.
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The location error plots are shown in Figs. 4.3 and Fig. 4.4. These plots provide
frame-by-frame errors in entire image sequences. Since average centre location gives
mean error of entire image sequence. It is possible that the tracker might get the drift
for few frames but then again tracks the target correctly. Therefore, these plots were
presented to show the effectiveness of the tracking method. Various challenges were
present in sequences such as occlusion, illumination variations, deformation, etc. In
sequences (Busstation_ce2, Cup, Jogging-1, and Man) the lowest error was reported in

the entire sequence. In sequences (Carchasing_ce3, Cardark, Juice, and Plate_ce2) a

slightly high error was reported.



41

8“" ' ] 1 1 T T T
600
) 400
B
A 200 /\ R
o e |
0 20 100 150 200 250 300 Iso 400
Frame Number
(a) Busstation_ce2
©
B
-» ]
0 100 200 300 400 £00 600
Frame Number
(b) Carchasing_ce3
i)
B
&=
0 l T - U v | ey AL
0 50 100 150 200 2%0 300 %0 400
Frame Number
(c) Cardark
300 —— , . . .
200
)
>
'Q‘: 100
0
0 20 100 150 . 200 250 300 350
Frame Number
(d) Cup
Proposed MACF STC MOSSEca DCFca

Fig 4.3 Centre location error (in pixels) comparison on (Busstation_ce2,
Carchasing_ce3, Cardark, and Cup) sequences.



“q

42 -

13 x |04’ 1 f I u’ - T - - |
4
— 3
(5]
2 2
&
]
"0 20 100 150 200 250 300 A%0
Frame Number
(a) Jogging-1
10y ' ) 1 ' u | T [ P
)
N
~
Ili 50 100 7 150 7200 250 300 ) 3507 400 74750
Frame Number
(b) Juice
6 I A — 1 — I - - r - L B EE—
°
22
-9
0 7 ) 20 40 60 i ~80 100 120 130
Frame Number
(c) Man
6 1 i
©
X
=3

0 20 40 60 80 J00 120 140 160 180 200

Frame Number

(d) Plate_ce2
Proposed MACF STC MOSSEca DCFca

Fig 4.4 Centre location error (in pixels) comparison on (Jogging-1, Juice, Man, and
Plate_ce2) sequences.



43

4.2.2 Experimental Results

Qualitative results of proposed tracking with four state-of-the-art trackers over
eight image sequences are shown in Fig. 4.5. It involves various challenges such as
partial or full occlusions, illumination variations, background clutter, etc. DCFca and
MOSSEca contain similar tracking components as our approach, i.e., correlation
filtering and context-aware formulation. However, the correlation filter in MOSSEca
and DCFca is not robust to blur motion in (Cup), illumination variations in (Man,
Cardark), and occlusions in (Jogging-1, Busstation_ce2). In (Carchasing ce3 and
Plate_ce2), where the target undergoes scale variations, both MOSSEca and DCFca
have similar performance with the proposed target tracking. With the joint
instantaneous motion model and Kalman filter in discriminative scale space tracking
frame, MACF performs better on various challenging sequences. However, MACF
tends to drift when the target undergoes occlusion and fails to recover from tracking
failures (Jogging-1). Although STC can estimate scale, it does not performs well in
motion blur (Juice) and scale variations (Cup). This is because STC only uses intensity
features and estimate scale from the response map of a single translation filter.
Moreover, it does not effectively deal with occlusion (Jogging-1, Busstation_ce2) as
there is no occlusion handling mechanism to deal with this issue. Moreover, its target
model is updated on a fixed learning rate, making it vulnerable to the background
environment.

The proposed tracker performs well in all these challenging sequences. This
performance can be attributed to three reasons. First, the context-aware formulation in
the STC framework is incorporated, making it less sensitive to illumination

variation(Cardark and Man) and motion blur (Juice, Man, and Cup). Second, the
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incorporation of occlusion detection based on the response map and occlusion handling
using the Kalman filter makes it effective towards for partial or full occlusion(Jogging-
1, and Busstation_ce2). Third, the fusion of adaptive learning rate in the model update

of the tracking model effectively deals with scale variation and fast motion (Plate_ce2).

4.2.3 Discussion

We discuss several observations from experimental and quantitative analysis. First,
the context-aware formulation in the correlation filter outperforms trackers without this
formulation. This can be attributed to the correlation filters regress all circular shifts of
the target appearance model. Second, trackers with occlusion detection and handling
module outperform trackers without these modules. Again, this can be attributed to that
occlusion detection, and the handling mechanism does not lead the tracker to drift.
Third, trackers with adaptive learning rate mechanisms perform better than fixed
learning rates. Again, it is because it copes tracking model with the changes in the

environment.
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4.3 Case study 2: CF and measurement estimation collaboration

for VOT

4.3.1 Quantitative Analysis

DPR comparison is given in Table 4.3. In sequences (Baby ce, Car9,
Carchasing_ce4, Crossing, Jogging2, Ring ce, Singerl, Tennis_ce2, and
Tennis_ce3), the proposed tracker outperforms Modified KCF, STC, MACF, and
DCFca. In sequences (Building3, Carchasing_ce3, Cardark, Cup, Juice, Man,
Plate ce2, and Sunshade), all tracking methods have similar performance. In
sequences (Bike3, Busstation_ce2, Car4, Girl2, Guitar_ce2, Human3, Joggingl,
Skating2, and Walking2), the proposed has slightly less precision value. However,

the proposed has a higher mean value than other tracking methods.
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Table 4.3. Distance precision rate at the threshold of 20 pixels.

Proposed Modified Modified STC AFAM- MACF DCFca

Sequence
KCF STC PEC
Baby ce 1 0.591 0591 0.699 0456 1 0.997
Bike3 0.206 0.166 0296 0275 0.124 0.275 0.262
Building3 1 1 1 1 1 1 1
Busstation_ce2 0.238 0.889 0878 0.194 0.927 1 0.886
Car4 0.997 0.998 0452 0991 098 1 0.998
Car9 0.988 0.362 0976 0201 0917 0.988 0.424
Carchasing_ce3 1 1 1 1 1 1 1
Carchasing_ce4 1 0.400 0.556 0995 0.199 1 0.717
Cardark 1 1 1 1 1 1 1
Crossing 1 1 0575 0.533 1 1 1
Cup 1 1 1 1 1 1 1
Girl2 0.830 0.591 0372 0262 0.940 0.097 0.071
Guitar_ce2 0.568 0.505 0.108 0524 0524 0524 0.581
Human3 0.302 0.006 0.018 0.088 0.795 0.005 0.006
Jogging 1 0.879 0.993 0996 0228 0973 0.231 0.231
Jogging 2 0.980 0.945 0228 0.185 0.990 0.166 0.160
Juice 1 1 1 1 1 1 1
Man 1 1 1 1 1 1 1
Plate ce2 1 1 1 1 1 1 1
Ring ce 1 0.905 0.129 1 1 1 1
Singerl 1 0.815 1 1 1 | 0.843
Skating2 0.074 0.302 0.076  0.023 0 0.014 0.423
Sunshade 1 1 0.228 1 1 1 1
Tennis_ce2 1 0.656 0.101  0.652 1 1 1
Tennis_ce3 1 0.098 0.186 0.691 0.108 0.107 0.108
Walking2 0.694 0.408 0934 0442 0722 1 0.564

Mean Precision  0.837 0.717 0.604 0.653 0.794 0.746 0.703

Variance 0.087 0.110 0.148 0.133 0.110 0.157 0.133
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The average centre location error comparison is given in Table 4.4. In sequences
(Baby _ce, Car4, Carchasing ce4, Cardark, Crossing, Plate ce2, Singerl,
Tennis_ce2 and Tennis ce3) the proposed tracker outperforms Modified KCF,
STC, MACF and DCFca. In sequences (Bike3, Building3, Busstation ce2,
Carchasing_ce3, Cup, Girl2, Guitar_ce2, Human3, Jogging1, Jogging2, Juice, Man,
Ring_ce, Skating2, Sunshade, and Walking?2), the proposed tracker has a slightly
high error value. However, the proposed tracker has the lowest mean error than of

the other tracking methods.
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Table 4.4. Average Centre Location Error.
Sequence Proposed Modified Modified STC AFAM- MACF DCFca

KCF STC PEC
Baby ce 3.93 81.38 37.25 12.02  40.42 4.89 8.67
Bike3 131.33 123.70 86.37 8197 7520 8358 87.73
Building3 2.02 1.96 1.79 1.50 1.97 3.76 2.02
Busstation_ce2 79.33 10.74 10.86 78.25 6.2 3.58 9.71
Car4 2.83 2.93 229.81 428 5.04 3.08 2.66
Car9 5.94 210.36 13.69 205.7 3.48 3.08 25542
Carchasing_ce3 2.68 3.04 3.90 3.55 2.52 2.39 3.05
Carchasing_ce4 2.06 26.73 112.99 292 140 224 16,68
Cardark 1.03 6.04 3.21 283 3.35 1.67 5.11
Crossing 1.23 2.24 27.05 34.06 471 1.64 2.20
Cup 2.82 4.02 4.63 4.84 248 3.11 3.85
Girl2 30.79 98.93 101.77  200.5 9.32 137.62 356.78
Guitar_ce2 19.20 59.91 16893 2972 19.12 19.03 16.06
Human3 66.31 249.60 34838 2108 15.2 30841 25799
Jogging 1 18.34 3.72 8.40 5010 3.87 9493 89.44
Jogging 2 5.46 4.74 43.04 10402 509 14898 14833
Juice 2.16 1.96 4.63 5.08 242 0.91 1.92
Man 2.00 2.36 1.32 1.49 220 1.73 2.23
Plate_ce2 1.23 1.79 2.58 2.34 1.21 1.62 1.83
Ring_ce 1.56 5.21 69.55 1.30 1.71 1.80 1.68
Singerl 2.50 12.84 6.58 5.76 722 334 12.65
Skating2 142.18 78.67 69.79 10633 2004 277.60 46.90
Sunshade 491 4.54 68.68 499 4.57 4.20 4.84
Tennis_ce2 5.51 31.21 13369 1692 5.66 5.74 5.69
Tennis_ce3 5.78 97.29 79.58 40.73 91.1 9095 90.72
Walking2 45.15 32.09 11.94 13.83  46.34 4.81 2233

Average Error 22.63 44.54 6348 23791 2695 46.72 56.02
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The precisions plots are shown in Fig. 4.6 to Fig. 4.14. Table 4.3 provides
the mean precision value of the tracker in the entire image sequence. However,
the tracker might get the drift for few frames and then recover itself. Therefore,
these plots presented to review tracker performance during the whole image
sequence. Various challenges were present in sequences such as occlusion,
scale variations, deformation, etc. In sequences (Baby ce, Carchasing_ce3,
Car4, Cardark, Carchasing ce4, Crossing, Cup, Joggingl, Jogging2,
Guitar_ce2, Man, Plate ce2, Ring_ce, Singerl, Sunshade, Tennis_ce2, and
Tennis ce3), the proposed tracker has the highest precision in the entire
sequence. In sequences (Bike3, Building3, Busstation_ce2, Car9, Girl2,
Human3, Juice, Skating2, and Walking2), the proposed tracker has slightly low

precision.

50
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The location error plots are shown in Fig. 4.15 to Fig. 4.23. In Table 4.4
average centre location is calculated for each image sequence. It gives an idea about
tracker performance, but it does not entirely incorporate all information necessary
to review tracker performance. A possible scenario exists in object tracking when
a tracker might drift for few frames in a sequence resulting in a high error value.
However, when the tracker recovers from drift and starts tracking the target
accurately, the error will be low during those frames, but its average value will be
high. Therefore, these plots are presented to review tracker performance on each
frame. The proposed tracker performs consistently for sequences (Baby_ce, Car4,
Car9, Cardark, Crossing, Carchasing ce3, Carchasing ce3, Cup, Guitar ce2,
Juice, Jogging2, Ring_ce, and Tennis_ce3) over the entire duration. In sequences
(Girl2, Human3, Skating2, and Walking2), the tracker drift between the frames but
recovers after few frames. For most of the frames in these sequences the proposed
tracker accurately tracks the target. However, when the tracker got drifted, then the
accumulative error was high for these sequences. In sequences (Bike3, Building3,
Busstation_ce2, Joggingl, Man, Plate_ce2, Singerl, Sunshade, and Tennis ce2),

the proposed method has similar performance with compared trackers.
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Fig 4.15 Centre location error (in pixels) comparison on (Baby _ce, Bike3, and
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4.3.2 Qualitative Analysis

Fig. 4.24 depicts the proposed tracking qualitative results with four state-of-the-art
trackers over twenty-six image sequences involving various challenges such as partial
or full occlusions, scale variations, background clutter, etc. MACF contains a similar
tracking component as our approach, i.e., scale correlation filter and Kalman filter.
Even though MACF performs favorably well in sequences involving scale variations,

it does not deal effectively with sequences involving occlusions (Girl2, Human3,
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Joggingl, Jogging2, and Skating2). STC uses intensity features and response of a single
translation filter to estimate scale. This makes STC a comparatively fast tracker;
however, there is no occlusion detection or handling mechanism due to which its
tracking results are affected in sequences (Busstation_ce2, Girl2, Human3, Joggingl,
and Jogging2). Moreover, due to only one translation filter, its tracking results are also
affected (Car9, Crossing, and Tennis_ce3). DCFca contains correlation filtering
combined with the context-aware formulation. However, it is not robust in occlusions,
scale variations, and deformation challenges. Therefore, DCFca does not perform well
in sequences (Car9, Carchasing ce4, Girl2, Human3, Joggingl, Jogging2, Skating2,
and Tennis ce3). Modified KCF performs significantly well in sequences involving
occlusions. However, it does not perform well in scale variation sequences (Baby_ce,

Car9, Carchasing_ce4, Guitar_ce2, Ring_ce, Singerl, Tennis_ce2, and Tennis_ce3).

It can be seen that the proposed tracking method outperforms other trackers in these
sequences. In sequences (Baby ce, Car4, Carchasing ce4, Crossing, Cup, Joggingl,
Jogging2, Guitar ce2, Plate ce2, Ring ce, Singerl, Tennis_ce2 and Tennis_ce3) the
proposed method can accurately track target for entire image sequences. In sequences
(Bike3, Busstation ce2, Girl2, Human3, Skating2, and Walking2) tracker cannot
accurately for the entire sequence. All trackers have similar performance in sequences

(Building3, Carchasing_ce3, Cardark, Juice, Man, and Sunshade).
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Fig. 4.24 Qualitative comparison on TC-128, OTB2013, OTB2015, and UAV123
datasets.(Continued)
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Fig. 4.24 Qualitative comparison on TC-128, OTB2013, OTB2015, and UAV123 datasets
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4.3.3 Discussion

It can be seen from Figure 4.24 that the proposed tracking method outperforms other
trackers in these sequences. We discuss several observations from performance
analysis. This performance can be strengthened for three reasons. First, the scale
correlation filter is incorporated in the STC framework making it deal effectively better
than the STC scale. This scale filter learns target appearance on different scales, making
it better to track the target accurately under scale variation scenarios. It can be seen in
sequences (Baby_ce, Car4, Car9, Carchasing_ce3, Carchasing_ce4, Plate ce2, and
Ring_ce) that the proposed tracker deals better with scale variation of the target.
Second, incorporating of an extended Kalman filter makes it robust to handle
occlusions. When the target undergoes partial or full occlusions, then EKF predicts the
target state and updates the tracking model. The sequences (Girl2, Joggingl, and
Jogging2) can be seen that the proposed method can effectively handle the target's
occlusion. Third, the fusion of APCE based adaptive learning rate further elevates the
tracking performance in illumination variations, motion blur, and clutter background
challenges. It can be seen in sequences (Building3, Cardark, Crossing, Cup, Guitar_ce2,
Juice, Man, Singerl, Sunshade, Tennis_ce2, and Tennis ce3) tracker can accurately
follow the target. The tracker's appearance model can cope with changes in the

environment by utilizing information in each frame.

Even though the proposed tracker performs significantly better than various trackers,
there are few sequences (Bike3, Busstation_ce2, Human3, Skating2, and Walking?2) in
which the tracker does not track the target accurately. In the Bike3 sequence, the tracker
fails due to fast movement combined with scale variation. In Skating? tracker fails due

to the deformation of the target. In (Busstation_ce2, Human3, and Walking2) tracker
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fails due to occlusions, fast motion, and motion blur. The limitations can be addressed
by working in few directions, such as developing a better occlusion detection and
handling mechanism, extending the aspect ratio adaptability, and incorporating context-

aware formulation.

4.4 Summary

This chapter presents simulation results of proposed tracking algorithms on VOT
datasets were presented in various graphical illustrations. From both case studies, it can
be concluded that the CF and measurement estimation collaboration-based tracking

mechanism performs better than other proposed tracking algorithms.
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Chapter 5.

Conclusion and Future Work

In this chapter, conclusions for proposed tracking schemes are presented. In

addition, some research directions were also stated for the researchers interested in

working in VOT.

5.1 Conclusion

Conclusions from this study are:

e In the first case study, an adaptive Spatio-temporal context (STC) based
algorithm for online tracking is presented, which combines the context-aware
formulation, Kalman filter, response map-based occlusion detection, and
average difference based adaptive model update in the STC framework. As a
result, the algorithm performs better in scenarios such as full occlusion,
illumination variation, deformation, and background clutter compared than

various algorithms with the achievement of efficient performance in datasets.

e The context-aware formulation can be efficiently applied to deal with
background clutter issues. The maximum value of the response map can be used
to detect occlusions. Afterward, a Kalman filter can be applied for occlusion
handling. The model update can also be related to the target's motion, as the
STC model is updated on a fixed learning rate, making it vulnerable to target
motion. Based on target motion, the tracking model should be updated

adaptively.
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The second case study gives insight into the robust tracking algorithm based on
STC by incorporating a scale correlation filter based on pyramid representation
for adaptive scale estimation, extended Kalman filter for occlusion handling,
and APCE criteria for the adaptive leaming rate of the tracking model.
Experimental results indicate that the proposed tracking algorithm performs
better than the various state-of-the-art qualitatively and quantitatively.

A correlation filter-based discriminative scale mechanism is incorporated in the
Spatio-temporal context model, making it robust and effective in scenarios such
as clutter background, illumination variation, scale variations, and fast motion.
The adaptive learning rate mechanism is based on APCE between consecutive
frames. It is fused into the framework to update the tracking model according
to the target's shape and motion. If the model is updated on a fixed learning rate,
it does not cope with the target's shape, losing it in the subsequent frames.

The extended Kalman filter aspect, utilized in case study 2, is when the target
undergoes occlusion. The condition to decide whether the target is occluded is
based on the response map's maximum value. In both case studies, Kalman filter
is applied, but a mechanism is also devised for its activation in the STC
framework, making it better both qualitatively and quantitatively than various

trackers.

Future Work

Research directions for future development in VOT are:

* The proposed tracking algorithms can be investigated by establishing
neural network-based algorithms [18], [19] to improve robustness and

tracking accuracy.
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This study is considered a step further to design new occlusion detection
and occlusion handling mechanisms for tracking algorithms.

The current framework can be extended to context-aware and target
adaptation formulation, incorporating more features to learn target
appearance and extending the aspect ratio adaptability.

One may explore this framework by combining heuristics and fractional
order algorithms for model update.

One can explore other methods for making learning rate adaptive by using
confidence of squared response map (CSRM) [25], APCE based degree
indicator [81], channel features [82], global optimization methods [83]-

[86] and deep learning based methods [87]-[89].
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