
(Data TCow 7estin£ o f State Macfiine

Vsing ̂ n t CoHmyA^oritfim (^CO)

Submitted by:

Fozia Mehboob

FBAS/MSSE/F09

Supervised by:

Mr Atif Aftab Ahmed Jilani

Co-Supervised by:

Mr Imran Saeed

Department of Computer Science & Software Engineering

FACULTY OF BASIC & APPLIED SCIENCES

International Islamic University H-10 Islamabad

(0

\s \a rn ,

CENTRAL
l ib r a r y

J y y '

- 7

DATA ENTERED

/6M / n

Department of Computer Science & Software Engineering

International Islamic University Islamabad

D a te :--------------------------

Final Approval

It is certified that we have read this research thesis report and have fiilly evaluated the research undertaken by Fozia

Mehboob, Registration No. 279/FBAS/MSSE/F09.This research thesis fully meets the requirement of Department

of Computer Science & Software Engineering , and hence, the International Islamic University, Islamabad for the

degree of M aster of science in Software Engineering (MSSE).

Committee;

‘EjQimimr

Î Prof. Df. SikandS: Hayat K ^yal

APCOMS, Khadim Hussain Road,

Lalkurti, Rawalpindi

InUmaf %:(aminer.

Dr. Zunera Jalil

Assistant Professor, DCS & SE, FBAS, IIUI

’ Faculty of Basic & Applied Sciences^

international Islamic University Islamabad/IIUI

Supervisor

Mr Atif Aftab Ahmed Jilani

Assistant Professor

Faculty of Computer Science

Co-Supetvisor

Mr Imran Saeed

Assistant Professor

Department of CS and SE

IlUI/Intemational Islamic University

r v ^ I /I

Dedication...

I wouCd Ci^ to dedicate my researcH wor^

7b my

""^MaRigHulam 9iefi6oo6''

WHose Sincere Love andprayers were a source o f

StrengtHforme and made me to do this researcfi wor^

Successfully.

A dissertation submitted to the

Department of Computer Science and Software Engineering,

Faculty of Basic and Applied Sciences,

International Islamic University, Islamabad,

As a Partial Fulfilment of the Requirements for the Award of the

Degree of Master of Science in Software Engineering (MSSE).

IV

DECLARATION

I hereby declare that this Thesis “Data Flow Testing of State Machine using Ant Colony

Algorithm (ACO)” neither as a whole nor as a part thereof has been copied out from any source.

It is further declared that 1 have written this thesis entirely on the basis of my personal effort,

made under the proficient guidance of my thesis supervisor Mr Atif Aftab Ahmed Jilani. If any

part of this research thesis proved to be copied or found to be a research of some other

individual, I shall standby the consequences.

Fozia M ehboob

279-FBAS/MSSE/F09

Acknowledgement

In the name of ALLAH, the most Compassionate and the most merciful whose guidance made

me so able to conduct and compiled this research work. It is God bestowed pride that I was able

to accomplish it successfully. Thanks to Almighty ALLAH for His guidance and Vision so

granted to me.

Every project has an objective attached to it which generates new and creative ideas. I am lucky

that intelligence of my supervisor Mr Atif AftabAhmed Jilani, served as guiding star. My thesis

would have not been possible in the absence of such intellectual guidance. His worthy advices,

honest supervision and affable attitude are worth revealing. I therefore attribute my Master

degree to him because of his support and effort and have no words to show gratitude to him.

I would like to articulate my gratitude to Sir Imran Saeed for his sincere guidance and kind

cooperation. I would also like to acknowledge Dr. Abdul Rauf for his genuine support, and

motivation throughout the project. I would also like to thanks Dr Uzair for his worthy advices

and sincere comments. Despite his tight schedules, he gave his valuable time to document of

thesis. I thank also my committee members for their commendable comments and criticism.

I would like to pay my deepest gratitude to my parents for their constant support, encouragement

for the achievement of my work. Their prayers are always in overcoming difficult tasks. It is due

to their care and affection for that I am at this stage today. Most especially, my father is

responsible for my curiosity and always encourage me in my tough times to pull me up.

I am thankful to my caring brother Qasim Ali for constantly helping me during hard times and

offering me his valuable advice. My Grandmother deserves special appreciation for providing

me moral support and prayers. Last but not least, I would like to gratitude my sweet friends

especially Sobia Noreen for her love, care , moral support and boosting me to overcome my

morale if and when I was depressed due to strainfiil work.

VI

Every research work can’t be perfect and final. I accept accountability for all deficiencies if any

in this dissertation. I shall be appreciative for worthy suggestions and would welcome optimistic

criticism.

Fozia Mehboob

279-MSSE/FBAS/F09

VII

Project In Brief

Project Title:

Undertaken By:

Supervised By:

Start Date:

Completion Date:

Tools & Technologies

Data Flow Testing using Ant Colony Optimization

Fozia Mehboob

279-FBAS/MSSE/F09

Mr Atif Aftab Ahmed Jilani

Documentation Tools

June 01, 2011

September 06, 2012

Microsoft Visual Studio 2008

IBM Rational Software Architect

Enterprise Architect UML Modelling

Microsoft Office Word 2007

Operating System:

System Used:

Microsoft Windows 7, Home Premium

HP Probook 4530s Notebook PC

VIII

Abstract

Automatic data flow testing refers to analysis of flow of data within models by iising data

flow analysis rules. To ensure correct data flow within states we have to consider these data

values. The data flow analysis forms a source of testing data flow by considering define and uses

of the variables. Empirical studies have shown that existing state- based approaches are not

efficient in detecting state based faults. State-based testing examines state changes and its

behaviour without focusing on the internal details, thus data faults remain uncovered. However,

to completely analyze data flow within models and fulfil the coverage criteria is not an obvious

task, especially in state based systems. The complex nature of state based models further

aggravates the situation, making the data flow testing problem complicated and time consuming.

It has been observed that many state based approaches don’t provide complete defmition-

use path complete coverage and also are ineffective in terms of detection of data flow faults. Our

work begins by considering all these observations to view automatic data flow analysis problem

and solve with heuristic technique. In this. research work, a novel approach is presented for

automatic data flow testing of UML state machine models and automatically generates test cases.

We view data flow testing problem as an optimization problem and select optimal number of

feasible test cases to provide complete def-use paths coverage. Extensible Mark-up Language

(XML) of state machine models is used to given as input. Data flow information is extracted

fi-om XML. After the system extract data flow information, variables are categorized as defined

or used. Def-Use pairs and def-use paths are identified. Automated feasible test cases are

generated from UML models. Minimal test cases provide the complete coverage of defmition-

use paths. A best possible solution is investigated by make use of the heuristic search technique

Ant Colony Optimization Algorithm. We implemented this approach in a tool that is named as

data flow generator (DFG),

As a proof concept, applicability of this approach is checked by applying it to different

UML state machine models representing the dynamic system behaviour. Experiments are

performed to validate this approach which indicates that maximum complete def-use path

coverage can be obtained. However, the only prerequisite of this approach is to have a XML of

IX

given input models. Furthermore, we can use a small size and non-exhaustive UML state

machine models. Moreover, the proposed approach is effective enough in automatic detection of

data flow errors. This is to a certain extent not possible in existing state based system approaches

in which undetection of these data flow errors results in incomplete coverage of def-use paths.

Conclusively, by automatic detection of test paths from state based systems, our approach

provides complete data flow analysis. Moreover, mutation analysis is performed to analyze our

proposed approach effectiveness. In this way, our proposed approach makes data flow analysis

process of models painless by automatically data flow errors and improve or enhance the

effectiveness of fault detection of state based systems.

Table of Contents

A bstract.. ix

List of Figures... xviii

List of Tables..xx

Acronyms and Abbreviations...xxi

Chapter 1. Introduction...1

LI Introduction...2

L2 Problem Statement... 2

1.3 Motivation..3

1.4 Research Questions.. 4

1.5 Proposed Solution.. 4
i

1.6 Thesis Contribution... 5

1.6.1 Contribution.. 6

1.7 Dissertation Outline... 6

Chapter 2. Background... 8

2.1 Introduction.. 9

2.2 State Based Testing..9

2.2.1 UML Models... 9

2.3 Data Flow Testing.. 10

2.3.1 Coverage Criteria... 10

2.4 Automated Test Case Generation...11

XI

I

2.5 Swarm Intelligence..11

2.5.1 ACO..12

Chapter 3 Related W ork.. 14

3.1 Introduction...15

3.2 Data Flow Testing Approaches..15

3.2.1 Code Based Data Flow Testing Approaches.. 15

3.2.2 Model Based Data Flow Testing Approaches..16

3.2.3 Data Flow Testing of UML State Machine Using Metaheuristic Approaches........... 16

3.2.3.1 Code Based Data Flow Testing Using Metaheuristic Approaches................. 16

3.2.3.2 Model Based Data Flow Testing Using Metaheuristic Approaches............... 18

3.3 Data Flow Testing Tools..18

3.3.1 Code Based Data Flow Testing Tool.. 18

3.4 Data Flow Testing Using Swarm Intelligence.. 20

3.5 Analysis.. 21

3.5.1 Limitations in Research Work..22

Chapter 4. Problem Definition.. 23

4.1 Introduction..24

4.2 Issues of State Based Testing.. 24

4.3 Concern of Data Flow Testing Tool..24

4.4 Gap.. 25

XU

I Chapter 5. Proposed Approach..27

5.1 Introduction... 28

5.2 Preliminaries..28

5.2.1 Input Source Model... 28

5.2.2 UML State Machine Models...28

5.2.3 XM L...29

5.3 Approach Overview... 29

5.4 Test Data Selection...33

5.4.1 UML State Machine Models..33

5.5 ACO Adaptation for Automated Data Flow Testing.. 35

5.5.1 Representation of Solution...36

5.5.2 Evaluation of Optimal Solution..37

5.5.3 Deriving an Optimal Solution... 41

5.5.4 Parameter Tuning... 43

5.6 Automated Data Flow Testing... 43

5.6.1 Prepare the Input Source Mode..44

5.6.2 Create Control Flow Graph..44

5.6.3 Identify Data Flow Information..45

5.6.4 Automatically Generate Feasible Test Cases.. 45

XIII

5.6.5 Data Flow Information against each Path... 45

5.6.6 Optimum Set of Test Cases Using Optimal Solution...45

Chapter 6. Tool Implementation..46

6.1 Introduction... 47

6.2 Tool Architecture..47

6.2.1 XML Parser...47

5 6.2.2 Search Engine... 49

6.2.3 Automated Test Case Generator Engine... 49
I

6.3 Tool Implementation...50
I

6.3.1 Path.. 51

6.3.2 ACO... 52

6.3.3 Graph...52

6.3.4 Variables..54

6.3.5 Editor...55

6.3.6 Nodes...55

6.3.7 Errors...56

6.3.8 XML Parser.. 56

6.4 Tool Process Flow..57

6.4.1 Input Source Model.. 58

6.4.2 Parameter Setting...59 \
I

x iv

6.4.3 Run ACO.. 60

6.4.3.1 Create Adjacency Matrix...62

6.4.3.2 Generate Feasible Test Sequences.. 63
I

6.4.3.3 Generate Infeasible Test Cases... 64

6.4.3.4 Generate Optimal Test Cases... 65

1 Chapter 7. Case Study...71

I 7.1 Introduction..72

7.2 Elevator Control System.. 72

7.2.1 Scope of Elevator Control System... 72

7.2.2 Functional Requirement...73

7.2.3 Details of Case Study...74

7.2.3.1 Infeasible Paths...82

1232 Mutation Testing...82

Chapter 8. Evaluation.. 84

8.1 Introduction..85

8.2 Elevator Control System.. 85

8.2.1 Experimental Settings of Tool..85

8.2.2 Results and Discussion...86

8.3 Validation of our Proposed Approach.. 98

8.3.1 Experimental Settings... 98

XV

8.3.2 Results and Discussion of Validation of Proposed Approach...................................... 99

8.4 Comparisons...10^

8.4.1 Data Flow Testing Approaches..100

8.5 Assessment... 101

8.5.1 Benefits..101

8.5.2 Limitations...102

Chapter 9. Conclusion & Future W ork..103

9.1 hitroduction..104

9.2 Conclusion..104

9.3 Future Work..106

9.3.1Improve Optimal Set of Test Cases.. 106

9.3.2 Application to Large Scale Models... 106

9.3.3 Reduce the Test Case Generation Time.. 106

9.3.4 Enhance Data Flow Testing Tool.. 106

9.3.5 Applicability of our Proposed Approach.. 106

9.3.6 Applicability of Approach to other Models... 107

References...108

Appendix A. XML Format of all hiput Models... 112

Appendix B. Screen Shots all Input UML State Machine Models...122

Appendix C. User Manual... 132

XVI

Appendix D. Generated Test Cases & Data Flow Information.. 142

XVII

Chapter 1

Figure 1..Format of XM L...5

Figure 1.2..Dissertation Outline... 7

Chapter 5

Figure 5.1..Format of XML... 29

Figure 5.2.. Data Flow Testing System... 30

Figure 5.3..............................Data Flow Testing Approach Overview...31

Figure 5.4..................................... Process Flow of Proposed Approach.. 32

Figure 5.5...........................State Machine Diagram of Telephone System..34

Figure 5.6..Adjacency Matrix...35

Figure 5.7...............................Steps of Automated Data Flow Testuig Process.................................... 44

Chapter 6

Figure 6.1... Tool Architecture..48

Figure 6.2... Class Diagram.. 50

Figure 6.3... Main Window of Tool...57

Figure 6.4.. XML File of Input Model of ECS.. 58

Figure 6.5...Main GUI..59

Figure 6.6... Main GUI (Select Run ACO Option).. 60

Figure 6.7..Adjacency Matrix of ECS Model..62

Figure 6.8..................................Feasible Test Cases of Input Model ECS...63

Figure 6.9......................................Optimal Trial 1 of Input Model ECS... 64

List of Figures

XVIII

Figure 6.10...............................Optimal Trial 2 of Input Model ECS...65

Figure 6.11................................ Optimal Trial 3 of Input Model ECS... 66

Figure 6.12................................ Optimal Trial 4 of Input Model ECS... 67

Figure 6.13................................Optimal Trial 5 of Input Model ECS... 68

Figure 6.14................................ Optimal Trial 6 of Input Model ECS... 69

Figure 6.15................................Optimal Trial 7 of Input Model ECS... 70

Chapter 7

Figure 7.1........................... Adjacency Matrix of Elevator State Machine Model.................................75

Figure 7.2............................ State Machine Diagram of Elevator Control System..................................76

Chapter 8

Figure 8.1..XML Format of ECS..86

Figure 8.2............................ Bar Chart of Def-Use Paths Vs Mutation Score.. 87

Figure 8.3............................ Line Chart of Def-Use Paths Vs Mutation Score....................................... 87

Figure 8.4...................................... Mutated Telephone System Model..90

Figure 8.5................Automatically Generated Test Cases of Telephone System Model.........................97

XIX

Chapter 2

Table 2.1... Steps of A CO ...12

Chapter 5

Table 5.1...Def-use pairs and Def-clear paths.. 37

Chapter 7

Table 7.1..................Def-use Pairs of the Variables used within State machine Diagram.....................81

Table 7.2....................................... Showing Mutation Score of all Models...83

Chapter 8

Table 8.1.................... DU-Paths Coverage & Mutation Scores of all Models............................. 87

Table 8.2...Type and Number of Error Seeded.. 91

Table 8.3...............................Mutation Score & No. of Test Cases Needed...91

Table 8.4......................... Fault-Wise Coverage Provided by Existing Techniques...............................92

Table 8.5.................... General Coverage Provided by Existing Code-Based Techniques..................... 93

Table 8.6.................... General Coverage Provided by Existing Model-Based Techniques................... 94

Table 8.7.......................... Total Def-use pairs & Def-use paths in Paper [10]......................................95

Table 8.8..................................Number of Input Models and DU-pairs.............99

List of Tables

XX

Acronyms and Abbreviations

XML...................... ...Extensible Markup Language

UML... Unified Modelling Language

SM State Machine

CFG..Control Flow Graph

DFT..Data Flow Testing

DU.. Definition-Use

ACO.. Ant Colony Optimization

PSO..Particle Swarm Optimization

G A ... Genetic Algorithm

BFS..Breadth First Search

ECS... Elevator Control System

TS...Telephone System

HMS... Hospital Management S>«tem

LMS..Library Management System

POS... Purchase Order System

DM...Display Manager

SES...Student Enrollment S> t̂em

CC..Cruise Control

ATM...Automated Teller Machine
1

XXI

Chapter 1

INTRODUCTION

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

1.1 Introduction

In software engineering, development of software is highly competitive task to provide

software product of high quality within specific constraints. Software testing is vital part in

development of software. Exhaustive testing is impossible; to achieve the testing effectiveness

testing process should be automated, hi software testing, test data generation is a critical task in

formation of test cases that fulfill the coverage criteria.

Recently researchers focus on to automatically generate test cases to reduce the cost having

high quality and unproblematic software testing [10]. To measure adequacy of testing, many

researchers use different well known coverage criteria defining the stopping condition of testing

process, e.g. data and control flow criteria. In Software, generation of test cases mainly focuses

the information regarding control flow for the production of optimum test cases. Testing of data­

flow is significant because it supplements control flow information leading to more efficient as

well as targeted test cases. Data flow analysis analyzes, works out the relationship and

association among data objects. Existing data flow testing approaches and tools aren’t efficient in

terms of 1) detection of data flow faults, [9, 31] 2) incomplete coverage of data flow information,

[9, 31] 3) redundancy in test cases [9, 11, 31]. Currently data flow testing of UML state machine

is performed fulfilling the required coverage criteria result in generation of optimal number of

non redundant test cases.

1.2 Problem Statement

Recently researchers focus on to automatically generate minimal test cases that are based on

data flow criteria. Consequently, in literature there are many approaches that perform data flow

analysis and testing of state based systems along with control-flow information to thoroughly

analyze the software system. By the analysis of these existing state based approaches, it is

observed that all the approaches are not efficient in detection of data flow faults and fiilfilling the

coverage criteria.

Automated data flow testing in state based systems has many limitations that confine the

results. Some of these limitations are: 1) some of the approaches are ineffective in terms of fault

detection [9], 2) incomplete coverage of all def-use paths [9, 31], 3) moreover, generation of

large number of redundant test cases result in time consumption, 4) some of the approaches

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 2

1

perform data flow testing of state machine models don’t generate test cases to cover def-use

paths [10]. All these difficulties result in incomplete data flow analysis of complex state machine

models. Due to all these reasons, data flow analysis and non redundant generation of optimal

number of test cases becomes a demanding activity. Data flow analysis of variables and their

relationship within states are considered only. No such approach exists that perform data flow

analysis 1) using ACO, 2) fulfilling data flow oriented coverage criteria within minimal number

of paths, 3) and efficient in fault detection.

Motivation

Taking account of only information regarding control flow of models in model based testing

is not adequate to make sure, whether flow of data is properly through model [10]. Most of

existing state-based approaches focused on the control flow structure and don’t examine state

changes and its behaviour. No existing state-based testing approaches performing data flow

testing provide efficient detection of data faults* However, currently the approaches perform data

flow testing using metaheuristic approach don’t provide all def-use paths coverage; generate a

number of test cases result in redundant and infeasible test cases because of data flow errors are

not completely detected.

From all these observations and keeping in view all these limitations, our work starts to

perform data-flow testing of UML state machine,. The motivation of this research is to put

forward an approach that improves existing state based coverage criteria. And provide a

mechanism to select the Optimum set of test sequences among alternative while ensuring all

definition-use paths complete coverage. Manual removal of redundant and infeasible test cases is

a time consuming task; result in incomplete coverage of all def-use paths. In this way, automatic

generation of non-redundant test cases is done to fulfill the definition-use paths coverage in

addition to efficient fault detection to evade the difficulties associated with manual detection.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

1.3 Research Questions

This research work plan to deals with the subsequent three research questions:

1. How effective is Data Flow testing using Ant Colony Algorithm in enhancing fault

detection capability?

2. How Data Flow testing using Ant Colony Algorithm provides complete definition-use

paths coverage?

3. How Data Flow testing using Ant Colony Algorithm is effective in reducing the search

space?

1.4 Proposed Solution

Observance of all the troubles and complication linked with existing state based data flow

testing approaches/techniques; we propose an approach that makes the data flow testing of state

based system simple, and uncomplicated. The main idea of proposed approach is to generate

minimal test paths in fulfilling data flow coverage criteria and provides maximum data flow error

detection.

We propose to use state based models to perform data flow testing. In our approach, XML is

given as input to tool that is commonly used representation in model based automated testing

tools. XML is generated using UML modeling tool enterprise architect. Both the data-flow and

information about control flow are extracted from XML of given input state machine model. The

format of XML is given in fig 1.1. Control flow information is collected is shown in adjacency

matrix to get the feasible connection between states. Data flow analyses of variables within states

are performed to know the relationship between variables and how they affect flow of execution

in models.

In state based testing, generation of test cases become difficult due to large number of test

cases ineffective in fault detection. Most of the state based approaches focus on control flow

information doesn’t examine state changes and its behavior, Moreover, approaches providing

coverage of data flow information is incomplete. In this way, we provide an approach

automatically generate optimal number of test cases that not only ensure all def-use paths as well

Data Flow Testing of UML State Machine Using Ant Colony Optimization (AGO) 4

3. Redundant test cases are minimized.

4. Reduces the search space.

The benefits obtained due to developing an approach having the characteristics that are given

below.

1. Ease the automated generation of test cases from state machine models.

2. Provides the complete coverage of all definition-use paths with minimal test cases

which is rather impossible in existing state based approaches.

3. Efficient detection of data flow errors.

4. Generation of non-redundant paths.

5. Tool is efficient in complete detection of all seeded faults within models.

1.6.1 Contribution

None of the existing model based approaches provides complete analysis of data flow

faults. Our approach use metaheuristic technique to perform data flow analysis that not only

provides effectiveness in detection of data flow faults and with optimal number of test

sequences, coverage of all def-use paths is provided. Due to use of heuristic technique, all seeded

faults are also effectively detected by tool. Tool provides general (state coverage) as well as

fault-wise completes coverage of models.

1.6 Dissertation Outline

Figure 1.2 demonstrates the association of this dissertation: Chapter 2 set up the background

to understand the dissertation by providing the knowledge regarding data flow testing. Related

work in the field of data flow testing of UML state machine is described in chapter 3. Chapter 4

highlights and demonstrates the issues and limitations of existing state based approaches and also

research gap is highlighted. Our proposed approach that automatically perform data-flow testing

of UML state machine is described in chapter 5. Tool implementation of proposed approach is

described in chapter 6. To validate our proposed approach, a case study is presented in chapter 7.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (AGO)

2.5.1 Ant Colony Optimization (ACO)

Ant colony optimization (ACO), a famous research area in paradigm of swarm intelligence.

ACO algorithm was proposed by Dorigo et al in 1990’s derive from behavior of real ants [19].

This algorithm solves the travelling salesman problem. ACO algorithm is based on the idea of

sensing pheromone traces on paths and bases their decision on this value, to search the

shortest/optimal paths within a graph [18].

Ant Colony Algorithm has been by the behavior real ant’s colonies, observing them when

they are searching for food source. An ant lays a substance known as pheromone on a path that is

traversed by ants in searching of food source. This pheromone information helps other ants

moving randomly by marking the path and also returns to their original source by using this

information. Path that is followed by more ants have more pheromone value because new ants

also lays pheromone on that specific path update its pheromone value. As pheromone lay by ants

evaporate at a constant rate that helps avoidance of convergence to local optima [20].

Initialization

- Initialize the ant’s position

Iteration

For each Ant do

- On the Basis of probability choose the next state to

move into;

- Repeat until all ants completed a solution;

- Update the pheromone values for each path that are

traversed by ants;

Update the Graph;

End;

If global solution is not better than local solution

keep best local solution as global solution

End;

Table 2.1 Steps of ACO

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 1 2

The more ants pursue the same path, the more pheromones value is on that path. As a result,

there will be larger probability for the ants to go for on the same path. ACO simulates the mutual

aid process of real ant colony. Each ant leaves pheromones on solution it gets by independently

searching for solution. Paths having higher pheromones values have larger probability to be

chosen by ants [1]. Each ant makes use of the graph to search the optimal solution within graph.

Each ant has its own memory having start state and termination condition. Ant’s decision is

probabilistic decision based on available pheromone trails [17]. ACO is a strong heuristic

approach that involves positive feedback leads to the near best solutions in minimal time. ACO

technique in selection gives better results at higher test case values with minimal amount of time

taken by the algorithm [19],

ACO has been used in solving the various combinatorial optimization problems such as

knapsack problem, travelling salesman problem, distributed networks, data mining,

telecommunication networks, vehicle routing, test data and test suite selection [19].

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 13

Chapter 3

RELATED WORK

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 14

3.1 Introduction

Search-Based generation of test cases is a promising methodology for the automatic

generations of test data of high quahty. Using evolutionary algorithms to automatically generate

test cases is widely used by researchers. To select and generate quality test data from meta-

heuristic algorithms are used. Test cases are selected within the search space that satisfies a

certain testing criteria.

These chapters of dissertation discuss the existing work in this field. Our work can be

associated with two fields of software engineering, Data flow testing of state machine models

and application of swarm intelligence in data flow testing. Section 3.2 illustrated the approach,

techniques and tools related to data flow testing of UML state machines. Section 3.3 presents the

tools for testing the data flow within Models. Data flow testing using Swarm intelligence is

explained in section 3.4. Lastly section 3.5 explained the conclusion of chapter by analyzing

existing approaches and tools.

3.2 Data flow Testing Approaches

Initially researchers focused on data flow testing of code based programs. After some time,

they performed data flow testing of models and automatically generate test cases. We categorize

these existing literature based on their focus on models and on code coverage.

3.2.1 Code-Based Data Flow Testing Approaches

Frankl et al [48], performed data flow testing of programs and also focused on feasible

criteria for data flow testing. This Coverage criterion exercises only those deflnition-use pairs

that are executable. This is a code based approach and our focus is on models.

Weyuker’s et al [50] focused on number of criteria to select a test data. All-definition, all

uses, all edges, all c-use, all p-use and all definition-use paths coverage criteria are evaluated on

program. Analysis indicates that data flow faults remained undetected in all edges and all-defs

criteria. Coverage of all c-use doesn’t include all-edges and some of the paths aren’t covered by

these criteria that are covered by all definition-use paths coverage criteria. This is a code based

approach and our focus is on models.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 15

Girgis et al [37] presents a data-flow testing technique and focused on def-use paths. This

technique was not effective as the value of fitness function for all test cases was same; test cases

covering same number of def-use pairs and that don’t cover any def-use path. And use nodes

aren’t covered by any test case. This is a code based approach and our focus is on models.

3.2.2 Model-Based Data Flow Testing Approaches

Briand et al [9] performed data flow testing and focused on transition tree coverage criteria.

A data flow criterion was not used to create test cases but they analyze already created test suites

to choose best among them. Their approach provides incomplete def-use pair coverage and there

are infeasible paths due to incompatible sequence of transition. They manually remove infeasible

paths. Our proposed approach is extension of this approach because it provides complete def-use

paths coverage and also minimizes redundant generation of paths. Secondly, this approach

doesn’t use any heuristic approach for analysis of flow of data within model

Waheed et al [10] performs data flow analysis and use action semantics to analyze data

flow of variables and dependencies. They give state machine as an input and feasible path matrix

is created to collect the information regarding control flow. Approach includes the data flow

information by finding the def-use relationship between the variables that are within states of

given input model. Our approach is different with this approach in the sense that it automatically

generates test cases along with detection of def-use pairs within model. Secondly mutation

testing is not performed in [10] that our proposed approach do so.

3.2.3 Data flow Testing of UML State Machine using Meta-heuristic Approaches

Different code-based and model-based approaches use metaheuristic techniques to perform

data flow testing of UML State Machine are given in subsection 3.2.3.1 and 3.2.3.2.

3.2.3.1 Code-Based Data flow Testing using Meta-heuristic Approaches

Khor et al [14] presented an automatic test case generation approach known as genet while

focusing on branch coverage criteria. Genet used genetic algorithm for test case generation and

formal concept analysis was used to organize the relationship between tests. They evaluate the

effectiveness of their approach with random test generation technique called randy. ATGs

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 16

provide better coverage with less number of test cases. This is a code based approach and our

focus is on model based data flow testing using metaheuristic approach.

Andreou et al [6] proposed a technique for data flow coverage criteria that combine

existing testing framework with data flow graph. To automatically generate test cases, genetic

algorithm was used and focused on All Definition-use path coverage criteria. Valuable

infonnation was extracted by their Basic program analyzer, which creates the control flow and

data flow graph. Experiment was conducted on Java programs of various size and complexity.

Comparison was conducted by comparing technique with existing data flow generator

techniques, showed better experimental results as compared to existing techniques. This is a code

based approach and our focus is on model based data flow testing using metaheuristic approach.

Girgis et al [28] proposed technique that generates test cases focusing on all-uses coverage

criteria. The technique uses genetic algorithm to evaluate the generated test cases. For defining a

multiple objective fitness fimction, dominance relationship among nodes was considered.

Technique is able to select specific test requirement, generating test cases to satisfy that

requirement. To assess the efficiency of approach, they applied their approach on C + + programs.

Limitation of their approach was applying it to large programs and size of population is small.

Also time to search data depends on speed of machine that may vary and test cases generated in

previous iteration are ignored. Random test case generation technique was used to compare their

technique results. This is a code based approach and our focus is on model based data flow

testing using metaheuristic approach.

Girgis et al [32] presented a technique to perform data flow testing of instrumented version

of programs using genetic algorithm. All-uses criteria are used as coverage criteria. Roulette

wheel method and random selection method was used for the selection of parents. Fitness

fiinction was calculated by coimting the definition-use path covered within test cases and divided

it to overall number of definition-use paths. Comparison of their technique was done with

random testing technique. Test cases cover definition-use pairs are generated and also list down

definition-use pairs that aren’t covered. This is a code based approach and our focus is on model

based data flow testing using metaheuristic approach.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 17

Singla et al [3] presented automatic test generating technique for data flow testing while

focusing on all-uses coverage criteria. Proposed algorithm use Particle Swarm Optimization to

generate test cases and new fitness function was designed. Comparison of technique is done with

Genetic Algorithm for all programs that are used in their experiment and with other data flow

based testing techniques, results showed that PSO achieved higher coverage percentage than

Genetic algorithm. This is a code based approach and our focus is on model based data flow

testing using metaheuristic approach.

3.2.3.2 Model-Based Data flow Testing of UML State Machine using Meta-heuristic

Approaches

Doungsa-ard et a! [23] proposed a framework and implement a tool known as state diagram

executor for test case generation fi-om UML State machine. Transitions pairs covered by test

cases are used as a coverage criteria and genetic algorithm was used for searching the high

quality test data. Best solution was considered that covered maximum number of transitions but

their approach produced better result when the system doesn’t contain any final state. This

approach only generates test cases but don’t focus on analysis of data flow within model. Tool

doesn’t execute guard conditions if they aren’t in mathematical expressions. And looping

problems as well as infeasible transitions aren’t handled by their approach. As this approach use

heuristic technique only for generation of test cases but our proposed approach focus on analysis

of data flow within models and also mutation testing is performed to analyze the effectiveness of

our approach that above mentioned approach don’t do so.

3.3 Data Flow Testing Tools

In literature, code based data flow testing tools were developed to detect the data flow errors

within program that are given in subsection 3.3.1.

3.3.1 Code-Based Data Flow Testing Tools

Hou et al [8] analyze the flow of data and a BPEL tool was developed for testing of web

services to detect automatically the data flow errors and generates paths which are based on

certain data flow coverage criteria. The tool can automatically select the paths, without executing

Data Flow Testing of UML State Machine Using Ant Colony Optimization (AGO) 18

the process, result in incorrect data were detected. But tool don't generate test cases for selected

paths automatically. This is a code based tool and our focus is on model based data flow testing

tool.

Horgan et al [44] automatically designed test analysis tool to analyze the data flow in c

programs. It creates new test cases that examine the code but test cases aren’t generated

automatically. It analyses the c source code and reads static data flow information for each c

source code. To collect static data flow constructs, data flow graph is searched. Regression

testing was also performed by this tool. This is a code based tool and our focus is on model based

data flow testing tool.

Hamlet et al [45] constructed a prototype tool for analyzing the data flow information in

arrays and record the executed paths during testing. A tool, Du-path analyzer was constructed to

report the issues of data flow in arrays by considering element of each array as data flow object.

This is a code based tool and our focus is on.model based data flow testing tool. '

Bluemke et al [24] performed code-based data flow testing of Java programs by

implementing tool known as data flow coverage tool is an eclipse plug-in. They focused on all

defuse pairs coverage criteria and also def-use graph was created. All def-use pairs are found by

testing the Java code and also provide information about which def-use pairs are covered. Tool

also detects data flow errors that aren’t not be exposed by black box testing. This is a code based

tool and our focus is on model based data flow testing tool.

Hou et al [8] developed a tool for data flow testing of web services that automatically

detects data flow faults. Generation of test cases was done automatically focusing on data flow

coverage criteria and generations of duplicate paths were avoided. Some of the features of BPEL

tool were also supported by this tool. By using the data flow graph, it provides information of

du-pairs, c-uses and p-uses as well as detects anomalies of data. This is a code based tool and our

focus is on model based data flow testing tool.

Data Flow Testing of UML State MachiTie Using Ant Colony Optimization (ACO) 19

3.4 Data Flow Testing using Swarm Intelligence

LI et al [33] used Ant Colony Optimization (ACO) algorithm for state-based software

testing. They have developed a tool that convert the state machine diagram into directed graph

and generates test cases to achieve all-states coverage criteria. A flattened state chart is used by

the approach. Dynamic ant simulator which is a prototype tool was developed by using this

approach to generate test cases automatically while avoiding redimdant test cases due to use of

ants. But this approach doesn’t focus on data flow coverage criteria. Our Proposed approach also

uses ACO but it is different with aforementioned approach in the sense that it uses all def-use

path coverage criteria. Secondly, this approach use ACO only for generation of test cases but our

proposed approach uses ACO to generate minimal paths and analyze def-use paths covered by

these paths and also detects data flow errors that aforementioned approach doesn’t do so.

Ranjan et al [11] generate test cases using Ant colony algorithm. They focused on criticality

of states and average number of visits for optimizes test case generation. Comparison of

technique was done with approach in [15]. Results indicate that their approach produced optimal

number of test cases providing 100% critical states as well as edge coverage. But the work does

not perform data flow testing. As mentioned above this approach use markov chain model to

generate test cases but our proposed approach use state machine model for test case generation.

Existing approach also don’t consider data flow analysis that our proposed approach do so.

Lam et al [50] presented test case generation technique for state based testing using Ant

colony optimization. Their work was same as in [11] but considered additional factors like

criticality of states and average number of visits. Our approach differ with approach in a sense

that above mentioned approach use ACO just for generation of test cases but our proposed

approach uses ACO for data flow analysis of state based systems and analysis is performed using

mutation testing.

Data Flow Tesring of UML State Machine Using Ant Colony Optimization (ACO) 20

3.5 Analysis

By the analysis of existing techniques, approaches and tools, we come to the subsequent

conclusions:

1. As existing state-based techniques and approaches focus on control flow structure and

examines state changes and its behavior without focusing on the internal details, thus data

faults remain uncovered.

2. Main problems of state-based software testing approaches are that, infeasible test cases

and redundant test paths are generated to fulfill the required coverage criteria [33].

3. Major focus of previous techniques performing data flow analyses are on code based

techniques focusing on all-uses coverage criteria.

4. Approaches that are model based don’t provide Def-Use Paths complete coverage.

■ Because they analyze the definition-use paths (du-paths) of test suites that are

already created and consider that the test cases contains the feasible connection of

states.

■ When they analyze the data flow in already created test cases, there were

definition-use pairs (du-pairs) that were not covered and also undetected faults

[9].

5. Some of the model based approaches performing data flow testing don’t generate test

cases considering the def-use pairs coverage [10].

6. Some of the model based techniques that use meta-heuristic technique, genetic algorithm

for data flow testing focused in all-transitions pairs result in undetected infeasible paths.

7. Tools using swarm intelligence technique, ant colony algorithm generate test cases

without focusing on data flow testing.

3.5.1 Limitations in Research Work

By examining existing literature, we come to conclusion that existing state based

approaches are ineffective in detection of state based faults. Redundant test paths are generated

to completely fulfill the coverage criteria. Mostly approaches which perform data flow analysis

are code based. State-Based approaches that use heuristic techniques, generates only test cases

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 21

while not focusing on data flow analysis. None of existing model based approaches use ACO for

data analysis of state based system that our proposed approach does so. Due to this not only

efficiency in fault detection is increased but also minimal test cases are generated to provide

coverage.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 22

Chapter 4

PROBT.EM DEFINITION

Data Flow Testing of UML State Machine Using Ant Colony Optitnization (ACO) 23

4.1 Introduction

Search-Based generation of test cases is a methodology to automatically generate high

quality test data. The use of evolutionary algorithms to generate test cases is widely used by

researchers. For the selection and generation of quality test data, meta-heuristic techniques and

algorithms are used. Test cases are selected within the search space that satisfies a certain

coverage criteria.

This chapter of dissertation explains the limitation and issues of existing approaches for data

flow testing using meta-heuristic techniques. Section 4.2 discusses the difficulties associated

with automated testing of state based approaches. Issues of state based approaches are described

in section 4.3.Section 4.4 elaborate the complexity of UML models. Existing research gap and

problem statement is expressed in section 4.5.

4.2 Issues of State-Based Testing

There is extensive variation in cost in designing, executing test cases, and checking their

effectiveness in terms of checking faults in existing state based approaches. Most of the criteria

focused on control flow information of state diagram but some of the papers focused on data

flow testing of state machine having limitations in their work [33]. Many coverage criteria are

proposed for test cases generation from UML state machine, some of well known are including

all transitions, all transitions pairs and all-paths etc. Empirical evaluation of these coverage

criteria revealed that there is variation in cost in developing test cases. For example several trees

are generated in all transition trees differing in fault detection rate, have low detection rate.

While in all transition pair coverage criteria are extremely expensive but effective in detection of

faults [9].

4.3 Concern of Data Flow Testing Tool

As there are infinite numbers of paths in a complex state machine diagram, it is impossible

to select all of them for the determination of conformance of implementation to required

behavior. To select an optimal solution, there is need coverage criteria to select optima! number

of paths that satisfy certain conditions. Several testing methods are proposed in recent years,

most of them focusing on control flow oriented coverage criteria without considering data flow

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 24

information. Both type of information regarding data and control flow is necessary in model

based testing to ensure correct flow of data through the model [10], Generations of test cases

from control and data flow selection criteria are complementary to each other [3, 32]. Both type

of information must be used for selection of comprehensive tests. To automatically generate test

cases based on certain coverage criteria has been a rapidly increasing interest for many

researchers in recent years. Metaheuristic techniques are used for cost-effective generation of test

cases automatically, using heuristic to seek an optimal solution for combinatorial problems [25].

4.4 The Gap

Existing gaps in research that forced this research are given below:

1. State based approaches focused on control flow structure without focusing on flow of

data through the model.

2. State based approaches are not effective at detecting data flow faults.

3. Most of the existing approaches don’t perform mutation testing to check the effectiveness

of their approach.

4. Until now, there is no model based data flow testing tool providing complete def-use

pair’s coverage with optimal number of test sequence using meta-heuristic algorithm.

5. Existing approaches are ineffective in providing complete def-use paths coverage.

6. Currently some of the approaches which generate test sequences automatically using

meta-heuristic techniques are code based focusing on data flow coverage.

7. Majority of existing code based approaches focusing both on data flow coverage,

generate redundant test cases to provide coverage.

8. Most of the approaches that perform data flow testing of UML state machine don’t

encounter looping problem.

9. Some of the Model based approaches identify def-use pairs but don’t generate test cases

and perform mutation testing to analyze the effectiveness of their approach.

10. None of the Model Based approach use metaheuristic approach performs data flow

testing of UML State Machine.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 25

None of the existing techniques provides data flow coverage of model using Ant Colony

Optimization algorithm focusing on both Optimal generation of test suites providing

complete coverage of def-use pairs as well as automatic detection of data flow errors to

ensure correct data flow through the model.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 26

2

Chapter 5

PROPOSED APPROACH

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 27

5.1 Introduction

To improve the existing coverage criteria of state based approaches and to aim the research

gap given in the previous chapter, an approach is proposed for automatic data flow testing. Our

approach is considerably different from that aheady exist in current literature of state based

testing. This approach makes use of swarm intelligence heuristic technique to automate the data

flow testing process. These concepts have never been used in data flow testing context before.

This chapter is devoted to explain our proposed approach to perform automatic data flow

testing. In the chapter, section 5.2 introduces basic concepts related to our approach. An

overview of the approach is given in section 5.3. Section 5.4 provides details of test data. Using

of ACO to identified problem of automatic data flow testing problem is presented in section 5.5.

Section 5.6 explains the entire process of generating test sequences covering def-use pairs.

5.2 Preliminaries

We introduce some general concepts related to our approach to facilitate the further

discussion.

5.2.1 Input Source Model

Input model is model of system that is given for producing the desired output. Input source

model is UML state machine diagrams.

5.2.2 UML State Machine Models

UML state machine model consists of states, transitions showing connection between states

and invariants. States may contain a number of variables and associations between them, etc. A

complex state machine model consists of a number of states, paths and sub paths.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 28

5.2.3 XML

In our approach, input of source model is given in the form of XML (Extensible Markup

Language), which is commonly used in model based testing. XML is a markup language that

encode document in a format that is human readable as well as machine readable by using set of

rules defined in XML 1.0 Specification [28] that are produced by the W3C, and several others

specifications etc. UML modeling tool enterprise architect is used to generate XML of state

machine system models. XML contains the details information of overall states within input

model, source and target transition of states, guard conditions, variables and relationship between

them. This information is extracted by tool from XML to perform the data flow testing. The

format of XML is given in Fig 5.1.

- ' Ci AA* - X H i - 11 i U i 1 I^ T_ 4 0 S fJ_ A ? r* _ 4 i *2 f i Cbf l AA&C‘ i s "zx rm "
. Id- " lAre 72C €E3 5 7_ac3 J141 !_13 IAS eCSAilE' 1 iisc t e

^ a 1 ^ iATA_45 S« 4G D 3 r c e c « ^ iC 6 ' / >

20:CCiCC’=,-'>
“Sri i 1 -0 3 -2 4 O i? ;C C jF tJV >

■1 - VIC0W=1 :C*tO-D ; V>

■2X1 ^ Irtil Crfil W:0

Fig 5.1 Format of XML

5.3 Approach Overview

Main theme of our approach analyzes the data flow to perform data flow testing. Analysis of

data is performed to find Definition-use pairs information between variables that exist within

states. UML state machine models are used for automatic test case generation. States tags, source

and target transitions ids, variable names and position within states are extracted fi-om XML of

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 29

UML state machine. Adjacency matrix is created to create a control flow graph to automatically

create control flow graph. Variables information is then used identify the relationship between

variables, def-use pairs. Automated feasible set of test cases are generated covering data flow

information.

Search based generation of test cases is example of search based software engineering.

Many metaheuristic automated generations of test cases techniques have been developed that are

proposed to deal with and generate quality of test data. In testing of data flow, selections of test

paths are done on certain data flow criteria. Our approach use data-flow coverage criteria for

automatic generation of test cases. Our data flow based system consists of two main components

as shown in figure 5.2.

1. Coverage Criteria select the test data of quality which is evaluated against certain

coverage provide by the test cases.

2. Search Engine is a software program that figure out information available in coverage

criteria. We use heiuistic search optimization technique as a search engine in our

approach.

Problem
Coverage Criteria

Solution

Search Engine

fHeuristic Search Technique)

w

Figure 5.2 Data flow Testing System

In our approach, coverage criteria is all defmition-use paths requires inclusion of test data

that cause path traversal from each occurrence of variable definition to each of its use of

variable. Our approach searches the all def-use pairs and paths within input model, removing

redundant def-use paths. During search, along with generation of optimal number of paths

providing maximum state as well as def-use pair coverage avoiding redundant test cases in each

generation, data flow errors are also detected automatically. For that reason our approach differs

from other data flow testing techniques.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (AGO) 30

By selecting miniinal test paths which are based on maximum defmition-use pair coverage

of input model, the final solution consists of minimal test cases. Because input model consists of

large number of transitions and states, have larger number of possible paths. As exhaustive

testing is not possible to consider all the paths in input model and it becomes impractical. So

there should be coverage criteria to select minimal paths which satisfy certain conditions.

Due to this basis, the generation problem of test sequences automatically view as an

optimization problem. Minimal best solution is searched by make use of Ant Colony

Optimization Algorithm, a heuristic search technique. An introduction of ACO is described in

section 2.4.1. hi a range of search techniques we use ACO for the following reasons:

1. Well adapted for solving combinatorial optimization problems [1,11]

2. Well suited for State Based testing [11]

3. As compared to other heuristic techniques, success ratio of ACO is better [3].

4. ACO finds optimal path while traversing graph [11]

Using ACO, solutions are represented as paths generate by ants in the search space, and

each ant path while traversing graph is evaluated based on fitness fimction. Ants that traverse the

paths with highest value for the fitness fimction is selected as optimal solution. An overview of

our automated data flow testing approach is given in figure 5.3. At an abstract level, our

approach divides the process of automated data flow testing into three major steps.

1. Preparing XML of UML state machine model and is given as an input to or data flow

based system. This is used to extract states, source and target transitions, invariants

present within states information on different models.

Coverage Criteria

Input Source Model M ^ - ‘Ose (Paths Optimal Solution

P-
Search Engine

XML o f UML state Machine _̂ nt Colony Optimization Optimal no.of Test Sequences

Figure 5.3 Data Flow Testing Approach View

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 31

2. Each feasible path generated from graph of the input model selected from test data that

fulfill the coverage criteria using ACO.

3. Finally, all feasible test cases/paths generated from graph fulfilling coverage criteria are

used to select optimal paths among them.

Input State

Machine

1r

XML Parser

Create CFG

Du-Pairs DU-Paths List of Variables

Apply ACO

1r 1r

Detection of

Data Flow Errors

Total no. of Paths

within SMD

Minimal no. of

Paths providing All

Def-use Paths

Fig 5.4 Process Flow of Proposed Approach

Data Flow Testitig of UML State Machine Using Ant Colony Optimization (ACO) 32

5.4 Test Data Selection

A quality test data is selected that is based on certain coverage it provides. All def-use paths

is used as coverage criteria, a strongest criteria defined by Rapps and weyuker. More effective

test cases are selected that fulfills some coverage criteria. Assignment of value to variable is

known as definition while use of variable in node is use of that variable and path is a definition-

use path from the point where variable definition occurs to the point it is use. All deflnition-use

paths of each def-use pairs are covered, hi case of variable is defined single time but used in

more than one node than there is two def-use paths from definition to variable to each of its use.

If variable is defined and then again defined in a single path before its usage than it will be error

and def-use path will not fi-om its first definition to its use because there is a killing node

imbound memory location.

By using ACO, optimal solution is generated that fulfills the coverage criterion. Our

approach identifies data flow relationships among variables. However to illustrate our proposed

approach, we make use of state machine models as an example. Our choice of using this model is

that it describes the dynamic behavior of objects. Moreover rather than automated generation of

test cases based on coverage criteria, we also perform mutation testing to analyze the

effectiveness of our proposed approach and to detect the seeded faults to thoroughly test the

system.

5.4.1 UML State Machine Model

From the given input model of UML state machine diagram, states with invariants

relationships, associated source and target transitions are extracted. For example consider the

state machine model of telephone system is shown in figure 5.5. It has 8 simple states and 2

initial and final states with 16 transitions that change the state of object. Transitions are

dependent on its source and target states. Adjacency matrix is created to show the coimection

between the states, overall rows and columns are equal to the total number of nodes within input

model.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 33

o

© 1. On Hook I

T 1

0 6.Ringing

/---------------- N
® 7.Connected]

j — I

2.Off Hook I
JV

J

£ \
® 5,Ring Tone i

j

/ A
© 4,Error Tone

^g.Exit

f \
j @ 3,Busy Tone
r

Figure 5.5 State Machine Diagram of Telephone System

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 34

1 2 3 4 5 6 7 8 9 10

1 ^ 0 1 0 0 0 0 0 0 0 oA
2 0 0 1 0 0 0 1 0 0 0

3 0 0 0 1 1 1 0 0 1 0

4 0 0 0 0 0 0 0 0 1 0

5 0 0 0 0 0 0 0 0 1 0

6 0 0 0 0 0 0 0 1 1 0

7 0 1 0 0 0 0 0 1 0 0

8 0 0 1 0 0 0 0 0 1 0

9 0 0 0 0 0 0 0 0 0 1

10\^0 0 0 0 0 0 0 0 0 0 y

Figure 5.6 Adjacency Matrix

Adjacency matrix as shown in figure 5.6 is created to show the feasible connections within

a state machine diagram. Effort is reduced by using these feasible connections of paths instead of

finding in the whole state machine to inspect dependencies of data. Rows and columns within

matrix are equal to total states within input model. Entry is either 0 or 1. The entry 0 represents,

there is no connection between states. An entity with 1 portray that there is path between states

and are reachable. It keeps the information of control flow between states.

5»5 ACO Adaptation for Automated Data Flow Testing

Our approach finds an optimal solution for each input model by analyzing data flow

information. ACO represent solution as number of ants deploy in each generations while

traversing graph. The task of ACO is to search for optimize set of test cases covering maximum

states and def-use pairs. Redundant test cases are avoided and looping problem in state machine

diagram is handled by not allowing ants to revisit state more than once. For the application of

search techniques to specific problem, it is necessary to represent the optimal solution, specify

the objective in terms of fitness function for the evaluation of quality of searched solution. The

next section explains the adaptation of ACO to our automatic data flow test problem.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 35

5.5.1 Representation of Solution

Using ACO, overall solution is represented as ants in the search space. These ant’s moves

in the search space for finding best/optimal solution. The dimension of search space are

considered as the graph of the input model which is created from adjacency matrix containing

number of rows and columns representing connection of states in the input model. This implies

that search space dimension equal to total states within input model. For example, adjacency

matrix of state machine diagram of figure 5.5 contains 8 states with 2 initial and final states and

16 transitions contain 10 rows and 10 columns.

The total number of nodes in the graph will be numbered from 1 to n, n being the total

number of nodes. These nodes include the possible def-use information of variables. Each of the

input source models will be associated with a def-use pairs information of variables exists within

states. While the transition of the input model shows the number of possible paths within graph

that the ant can traverse.

This solution is implemented as a number of feasible test cases generated covering all def­

use paths. A variable defined can have multiple uses in present in different nodes. For example,

if we consider the defmition-use pairs of state model of figure 5.5 has 11 def-use pairs. Table

5.1 shows a definition-use pairs and definition-use paths of single test case that contains total 4

variables with 6 def-use pairs covered by that test case. In State 1, 4 variables are defined and

used at different states. Variable time is defined in state 1 but used at three places state 2 and

state 6 and state 7, so it becomes three def-use pairs, as (1,6)(1,2)(1,7) and Def-use paths are (1-

>6),(l->6->7->2) and (l->6->7). This means there are three paths that must be counted to cover all

definition-use paths of this def-use pair. And variable bill is defined in state 1 but used at state 7

so there is 1 definition-use pair and (1,7) and one def-use path(l-> 6->7) to cover this definition-

use pair and so on.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 36

Initial -> 1 -> 6 -> 7 -> 2 -> 8 -> Final

TO TA L V A R IA B LES USED IN T H IS T R A IL

bill , c r , r t , time , a

D EF-U SE PA IRS AND D EF-C LEA R PATHS IN T H IS TR A IL

Variable : bill

(1, 7): 1 -> 6 -> 7

Variable : cr

(1,2):

Variable : rt

(1,6):

Variable : time

1 -> 6 -> 7 -> 2

(1,6)
(1 ,7)
(1,2)

1 -> 6
1 -> 6 -> 7
1 -> 6 -> 7 -> 2

DATA FLOW ERRO RS IN T H IS T R A IL

Variable: a
Type of Error: UN USED
Description: Define on nodes 8, but not used.

Table 5.1 def-use pairs and def-clear paths

5.5.2 Evaluation of Optimal Solution

• Selection of node while traversing

The user defined objective fimction evaluates the quality of data flow testing solution

produced by ACO. In data flow testing, fitness value of ant indicates the aptness of the

optimal test cases selection for coverage of def-use pair of their correspondence input model.

For our problem of data flow testing from UML state machine models, we have defined the

following fitness fimction:

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 37

PV= DU (1)

TN

PV = Pheromones Value

DU = Total Definition-Use Pairs covered by a path

TN = Total Number of Nodes in Input Model

Fitness function is used to assess the data flow testing solution of any input model. As the

fitness function contains two parts def-use pairs and total number nodes covered in that specific

path. The numbers of def-use pairs are counted against each path traverse by the ant to update its

pheromone value.

Using this fitness function, first ant check the number of variables covered in path that is

traversed by it. Then check the definition-use pairs and definition-use paths covered in paths that

are traverse by ants. Ants also check the data flow errors in those paths. For example ants check

that whether variable is double defined in a single path before its usage then it detects the error.

After counting def-use pairs, total number of nodes traverse by ants in each path is counted. By

dividing def-use pairs counted by total number of nodes value is calculated of pheromone.

]n calculating the value of pheromone, instead of using all def-use pairs within a graph,

only def-use pairs are counted that are covered by a specific path. Because there a number of

feasible paths within a graph, and each path cover different number of def-use pairs covering

different number of nodes while restricting traversing of redundant paths. Feasible paths are

those paths that are complete paths start from initial node to final node of input model. To

explain this point; we will use an example of state machine model of figure 5.5. Consider the

feasible paths of the input model are:

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 38

Initial -> 1 -> 6 -> 7 -> 2 -> 8 -> Final

Initial -> 1 -> 2 -> 3 -> 8 -> Final

Initial -> 1 -> 6 -> 7 -> 2 -> 3 -> 8 -> Final

Initial -> 1 -> 6 -> 7 -> 2 -> 5 -> 8 -> Final

Initial -> 1 -> 2 -> 8 -> Final

Initial -> 1 -> 2 -> 4 -> 8 -> Final

Initial -> 1 -> 2 -> 5 -> 7 -> 8 -> Final

Initial -> 1 -> 2 -> 5 -> 8 -> Final

In this example, there are 10 feasible test cases or paths of the input model. Consider a single test

case 2;

Initial -> 1 -> 6 -> 7 -> 2 -> 4 -> 8 -> Final

In this path/test case, total numbers of variable used are 4. And 5 definition-use pairs are

covered by this path. One variable is defined at single place at node 1 while used at 3 places, in

node 6, 2 and 7. So it becomes 3 def-use pairs of single variable and there is 1 definition-use path

to cover each def-use pair. Another variable rt is defined at node 1 but used at 2 places in model,

at state 4 and 6. So there are 2 def-use pairs and def>clear path. Variable that is defined and used

single time in a node so it has 1 definition-use pair and has a single definition-use path to

In itial -> 1 -> 6 -> 7 -> 8 -> F inal

In itial -> 1 -> 6 -> 7 -> 2 -> 4 >> 8 -> Final

Data Flow Testing of UML State Machine Using Ant Colony Optimi2ation (ACO) 39

traverse it. So there total numbers of def-use pairs are 5 and total of nodes traversed in this

specific path are 6. Its pheromone value becomes 0.83.

The nodes traverses in this path are unique, revisiting of nodes is not allowed due to

looping problem, hi each path, each node is visited once a time. But in different paths, a single

node may be covered many times. Redundant test cases are also avoided to save time. When a

single node is covered many times in different paths, each time its pheromone value will be

increased. Its means node is traverse by more number of ants having highest probability and its

pheromone value will be increases. For example in test cases as defined above; nodel, 6, 7, and

8 is traverse by many ants in their path. Consider the node 7 which is traverse 6 times by ants in

6 feasible test cases. When it is traverse first time by ants, pheromone value set by ants is 0.5 in a

first feasible test case. When node 7 is traverse 2"̂ * time by ants, its more pheromone will be

added to this node by other ants traversing this. Consider the first test sequence in which 3 def­

use pairs are covered having pheromone value 0.75, and then updated pheromone value will be

0.83+0.75 “ 1.58. First value is pheromone value while traversing this node first time and 2"̂

value is pheromone value set by ants in other paths, so its pheromone value is updated and so on.

Ants sense the pheromone traces at each current point in graph of its directly connected

nodes and leave pheromone traces while traversing that node. Pheromone value is set by ants

after completing its tour because if ants set the pheromone value of nodes before reaching to its

destination and will not reach to its destination then other ants also follow this path and all of

them don’t reach to destination. As ants make their decision based on this value, this value is set

by ants after completing their tour. And the pheromones value is updated each time it is traverse,

nodes with highest pheromone will be highlighted by more traversal of ants.

Nodes that are traversed many times also have highest probability. Because probability

depends on pheromone value and heuristic factor. Alpha and beta are constants, set their value 1.

Visited status of each node is tracked. Value 1 of state/node means that node is not visited yet. If

node is visited than its value changes to 0. Based on these value ants don’t visit node twice.

During tour, each time ants made to visit node it also checked the visited status of node.

When ants are made to traverse graph, they check these value at each point where they are

standing and want to move to visit next node. If ant finds nodes with same probability in their

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 40

path that is directly connected to current node, then it checks the desirabihty value of node. If

both nodes are not visited yet than it make decision randomly and if node visited status is 0 that

means it is already visited and second node visited status is 1 it means it is not visited. So ant

make a decision to move to that node which is not visited having same probability.

To avoid the problem of ants, stuck in local optima is avoided by setting the evaporation rate

of nodes. Pheromone value of each node is constantly evaporated. Because if this value is not

considered, pheromone value on each node remain same and ants will follow the same path in

each generations. Nodes that have highest pheromone value have low evaporation rate than those

paths that have low pheromone value.

Mutation testing is performed to analyze the effectiveness of model. Data flow faults are

identified from literature which are seeded into models and are detected by ants the type of fault

and its location is identified.

5.5.3 Deriving an Optimal Solution

In first generation of ACO, ants are made to move randomly for selecting the paths.

Because at start, probability of each node is zero due to each node pheromone value is set zero.

Pheromone value is zero as ants set this value after completing its first tour. After first generation

ants set the pheromone value of each node of every path that is used by ants of next generation.

And optimal solution is selected in each generation by calculating probability value of each path.

Probability value ranges fi"om 0 to 1.

In ACO, each ant while traversing graph is associated with four factors. In each decision of

ant to traverse a certain node, it keeps record of their current position in a graph, visible

connection of nodes fi-om current position, heuristic factor, and pheromone value. Current

position of ant is its position in graph when it wants to make decision, while after making

decision its current position will be changed and new position will be its current position.

Fitness function is used to evaluate the ant’s decisions that decide the quality of the data

flow testing solution. Paths having high fitness value are stored in optimal test case that is best

optimal solution in a graph. Fitness value of each optimal test case is stored and optimal numbers

of test cases are selected from a number of feasible test cases. On each iteration, fitness value is

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 41

calculated and stored to make comparison with later generations of ants to select an optimal

solution. In each generation, fitness value of each iteration is compared, if the current values are

better than existing iteration than optimal paths will be updated. The probability of optimal paths

in each generation is calculated using the formula in (2).

P = {(xij)“ * (ilijf} / 2 (Tij)“ * (TiU)P.. (2)

P = Probability

Alpha & Beta are constants

T = Pheromones Value

r\ = Heuristic function

Optimal paths are selected from feasible paths of the given input model. Optimal paths are

those paths that cover maximum def-use pairs. Minimal numbers of paths are selected that cover

maximum states as well as def-use pairs while ensuring complete detection of data flow errors

result in reducing the search space, hi each generation, optimal paths are different due to

coverage of different number of def-use pairs and states.

Tij = (l-r) lij + A iij...(3)

Where r= Rate of evaporation of pheromones between 0 and 1.

Axij= Total amount of pheromones set down by ants when it traverse from edge i to j.

Using formula 3, pheromones of each path evaporates. Path covering large number of defmition-use pairsi
have low evaporation rate than the path covering low number of definition-use pair in which pheromone
value evaporate quickly. But it shows better results when r is between 0.25 to 0.35.

i

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 42

5.5.4 Parameter Tuning

In the searching of an optimal solution by ACO, parameters play an important role. In oiir

approach, following parameter values are set to find an optimal solution:

1. First parameter is number of ants, for example number of ants sends for exploring the

search space. In automatic setting we set the number of ants to 100.

2. Evaporation coefficient that changes the decision of ants in each iteration.

3. We set the maximum number of generations to 10.

5.6 Automated Data Flow Testing

By using the proposed approach, automatic process of data flow testing is divided into six

main steps which are shown in figure 5.5.

1. Prepare Input Source Model.

2. Create Control Flow Graph.

3. Identify data Flow Information.

4. Automatically generate feasible test cases.

5. Optimal set of test cases using Optimal Solution.

6. Data flow Error information against each path.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 43

Figure 5.7 Steps of Automated Data Flow Testing Process

5.6.1 Prepare the Input Source Model

In our approach, input model to the tool is given in the form of XML. Input is prepared by

generating the XML using UML modeling tool enterprise architect, a comprehensive UML

designed tool.

5.6.2 Create Control Flow Graph

In our proposed approach, after selecting source model it is converted into adjacency

matrix. Control flow information is collected by creating a graph from adjacency matrix in which

states and transitions information shown is extracted from XML of input model. XML of each

input model is passed to collect its control and data flow information regarding model. Control

flow graph shows the flow of control between states and number of possible paths from initial ^

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 44

state to its final states. Total number of states and transitions in a control-flow graph is equal to

the rows and columns of adjacency matrix. This information is used by automatic code generator

for the generation of set of feasible test cases against XML of each input model.

5.6.3 Identify data Flow Information

Data flow information exists within states/nodes of input model are extracted by parser.

This information is necessary for analysis of data and data flow testing. Our approach is generic

and can be used to perform data flow testing of any input model. Test data is selected that

provide the coverage of all def-use paths.

5.6.4 Automatically generate feasible test cases

After creating a control flow graph, appropriate test data are selected to provide coverage

of all def-use paths in a search space. Search engine search for the feasible paths among set of

possible paths in each input model. Ant Colony Algorithm is used for searching the entire search

space. The task of ACO is to only select the complete paths starting from initial state to its final

state. Each path traverse by ants in each generation is evaluated on the basis of fitness fiinction

while not allowing the redundant paths to be generated.

5.6.5 Data flow Error information against each path

Mutation testing is performed to see the effectiveness of algorithm. Errors are detected

against each path and position of errors and type of errors are identified within search space.

5.6.6 Optimum set of test cases using Optimal Solution

Finally, the optimal solution is selected based on solution search by the ACO. Minimal

numbers of test cases are selected for providing maximum all def-use paths and state coverage.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 45

Chapter 6

TOOI. TMPT.EMENTATTON

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 46

6.1 Introduction

Our proposed approach is implemented in a tool that is named as data flow generator. Tool

is capable of generating optimal number of test sequences using data flow information from

UML state machine. Our motivation to select this model as UML state machines represents the

dynamic system behavior. Moreover, invariants within states are considered to ensure correct

data flow. Tool is capable or efficient enough in detection of data flow errors.

This chapter explains the tool that is based on our approach. Section 6.2 describes the tool

architecture and its main workings. Specific details related to implementation are given in

section 6.3. Section 6.4 describes the process flow of our tool.

6.2 Tool Architecture

Figure 6.1 shows architecture of our tool. Architecture of tool has three main components,

XML Parser, Search Engine, and Data Flow Testing. Our tool takes a source model as an input,

hiput is handled by the XML Parser. Optimal solution is found by the search engine for the given

input models. Finally the data flow testing is performed by using the optimal solution performed

by the search engine and test cases are generated to cover these def-use pairs. Moreover tool is

capable of detecting faults seeded by mutation operator. Explanations of three major components

are as follows.

6.2.1 XML Parser

XML parser initiates the execution of tool. First it takes an input model of state machine

diagram to extract state, transition and invariant information from model. The training data are

XML files of state machine diagrams. Main fimction of XML parser is listed below;

■ Load the whole XML file

■ Extract the states and transitions tags

■ Extract invariant’s within states

■ Create Adjacency Matrix to show feasible connection between states.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 47

Figure 6.1 Tool Architecture

Tool takes a state machine diagram as an input stored in input file. Stat machine describe

the dynamic behavior of object containing invariants within states. XML parser organizes the

source, target state and data flow information that are used by next components. For the input

source models, following tasks are performed by xml parser.

■ Store the input model.

■ Count the number of states and transitions.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 48

■ Extract data flow information.

6.2.2 Search Engine

Search engine is main component of tool. ACO algorithm is used as the search engine.

Major role of search engine is to fmd best/optimal solution for any input model. Optimal solution

is in the form of optimal test sequences completing the covering coverage criteria. One test case

shows the total number of covered defmition-use pairs and data flow errors.

Search engine is initializes by creating the control flow graph for traversing the graph.

Quality of solution is evaluated against fitness function which is defined in section 5.5.2. The

fitness values calculated by ants, ACO parameters are updated and many other optimal solutions

are generated in next generations. Component of the search engine active until total generations

of ACO is completed. Final optimal solution is selected based on having maximum fitness value.

6.2.3 Automated test case generator Engine

This is an important component of our tool. Basic purpose of automated test case generator

is the production of feasible and minimal number of test sequences providing maximum

defmition-use pair coverage, related to input model. It does by using optimal solution generated

by search engine component.

Automated test case generator takes input of optimal solution generated by search engine.

For every input model, it searches the optimal test cases. Def-use pair’s information is then used

to produce the output. In this way, total number of defmition-use pairs covered in test case is

produced as an output in automated test case generator engine for the input source model.

This component also detects the data flow error present within states of input model. The

automatic detection of data flow errors reduces the time and cost consumption in manual effort.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 49

6.3 Tool Implementation

Tool is implemented using .net language. We use Microsoft visual studio 2008 for tool

implementation. From implementation point of view, tool is organized into eight classes shown

in class diagram in figure 6.2.Path is the major class of our tool that select the optimum paths

from all the feasible test sequences of input model. ACO class contains heuristic search

optimization technique. Editor class mainly deals with the GUI of tool. Class of variables stores

variables information that is present within states. XML parser class deals with loading of XML

file and extraction of specific informafion from XML file. Graph class creates the adjacency

matrix and control flow graph and graph is updated as the information change. Class of error

encapsulates the data flow errors information. Node class shows the states and transition

information. A description of the main classes of tool is given below.

ŜttSK&r»9$ i)
R̂unAtCOO I

\ I - cMrtT»Hfr
I u>nroi(«T

k - B »w

snpn

1

1__

a S ltDiHf f 1

_) i 1

I 1-Vttting

1 -3«nna

ptttl

P«rT«r;
IxMl F>«rTer

Figure 6.2 Class Diagram

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 50

6.3.1 Path

Path class is responsible for managing the paths traverse by ants in a number of generations

and produce automatically the minimal test sequences. Specifically following tasks are

performed in this class.

1. Manage the graph nodes and transition information.

2. Manage the information of total number of nodes within a model.

3. Manage the updation of pheromone value on graph nodes.

4. Manage and organize the paths traverse by ants.

5. Manage and consider feasible paths in optimal solution.

6. Quality of each solution is evaluated that is generated by ACO.

7. Final optimal solution is selected.

Path class consists of five methods. These methods perform the following tasks.

AddNode
\

It keeps tracks of nodes traverse by ants until final node is reached and adds them to path

string. And nodes that are traversed change their status into visited and change their value to 0.

Because if node is not visited once its status becomes 1. Also updation of pheromone and variable

fimction is called in this class.

Update VariableList

This method maintains the variable updation list because as more nodes are added into track

variable list is updated.

UpdatePathPheromones Value

This contains our fitness function; pheromone value is updated in this formula.

Pheromone Value = Total definition-use pairs covered in path / Total nodes covered by that path.

Pheromone value is updated in current graph set by ants by traversing the graph. Evaporation

rate of pheromone value on each node is also set in this method by a constant factor. ^

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 51

Visitedstatus

This method keeps tracks of information regarding visited status of nodes that are directly

connected to current node.

GetSubpathsStrim

This path keeps track of initial and fmal node.

6.3.2 ACO

TraverseGraph

It set current position of ant in graph initially at state 0. It gets all nodes which are one

transition apart from current node and select state with highest probability.

GetConnectedNodes

It manages the list of connected Nodes until ants reach to the final node.

SelectNextNode

This method maintains the Ust of nodes that ants select in traversing graph having highest

probability. If current node is connected with more than one nodes with one node having highest

probability than ant will select that node to traverse. But more than one node having same

highest probability than ant will take decision randomly. If there is no connected node and

current node is also not a final node then path will be broken and not considered in feasible paths

or test cases.

CalculateProbabilitv

Probability of node is calculated in this method using pheromone value, desirability factor,

alpha and beta value. Alpha and beta are constants.

6.3.3 Graph

CompareNodePosition

This method compares the position of nodes to arrange them in sorted order.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 52

CreateGravh

It keeps track of total number of nodes within input model. It takes input and compare graph

position to create the graph.

SetGravh Value

This method manages and identifies the source and target nodes information.

AddPath

It gets information from paths methods regarding different complete paths that are traverse

by ants in a number of generations. This method adds that paths to feasible paths.

GetOptimumPath

This method selects the optimum paths from feasible test cases or paths, infeasible paths are

not included in optimum paths. Optimum paths are selected on the basis of maximum def-use

pairs covered by those paths.

GetDataFlowInfo

This method keeps track of variable information present in nodes. By getting all the list of

variable in each node from node class it categorize them as whether variable is defined or used. It

stores this information and displays data flow information against each path.

GetPataFlowErrors

This method manages the data flow faults information exists in each node. It identifies error

within nodes and checks whether it undefined, unused, double define error etc. It also keeps track

of path and node number where error exists.

GetNodeList

It adds and manages list of nodes that are one by one selected by ant in different generation.

GetNode

This method gets the node position, visited status and def-use pair information.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 53

GetPefUseNodeCount

It counts the total deflnition-use pairs.

GetTotalNodes

It count total number of nodes covered in each path.

UpdateGravh

This method manages the graph that is updated each time pheromone value is updated.

6.3.4 Variables

Status

This method gets and sets status of variable.

Name

It gets and sets the name of variable.

Deflndex

This method manages the index of define variable.

Uselndex

This method manages the index of use variable.

DefNodesList

It maintains the information about number of times a variable is defined. And redundant

number of define variables list is avoided.

UseNodesList

It maintains the information about number of times a variable is used. And redundant number

of used variables list is avoided.

i
Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 54

DeiXJsePairs

It maintains the total number of def-use pairs within input model.

DefUsePaths

This method keeps track of def-use paths and redundant def- use path are removed.

AddPefNodeNumber

It adds the number or position of nodes where single variable is multiple times defined.

AddUseNodeNumber

It adds the number or position of node where single variable is multiple times used.

6.3.5 Editor

Editor class deals with the GUI of tool. Controller of our code (tool name) application

controller.es initiates the execution of our tool. It performs the following function;

■ Manage GUI of tool name

■ Manage the tool project dictionary

■ File loading and reading

6.3.6 Nodes

Clone

It just return the Clone or a reference of a graph node instead of sending original node. It

returns the shallow copy of original node.

SetAttributes

It checks whether state contains any variable or not.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 55

6.3.7 Errors

ErrorTvve

This method stores the error exists in node.

ErrorTvveStr

It identifies the type of error exists in node.

ErrorPescriptionStr

It stores the errors details for example node where variable is defined but not used in any other

node or used in specific node but not defined in any other position in input model.

VariableName

It stores the name of variable.

DefNodesList

It stores the list of defined nodes.

UseNodesList

It stores the list of used nodes.

6.3.8 XML Parser

GetGraphNodes

This method extracts the overall intermediated states known as simple states within input

model and also initial and final state of the input model. It also extracts the invariants

information present within each state fi-om XML of input model. And pass that information of

states to create graph method.

GetGravh Transitions

This method extracts the source and target transitions of each state fi-om XML of input model.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 56

Identify A ttributes

It identifies the attributes from XML of state machine and if more than one variable are

presents in one state than it sphts them and stores them separately.

6.4 Tool Process flow

Main interface of our tool is shown in Figure 6.3. It generates test sequences against each

input model. The whole information of tool and its thorough user manual is discussed in

Appendix. Process of data flow testing can be divided into three major steps.

jlO O Nunnber erf Arts

^ Generation*

Z - i A LFA

' - 1 B E T A

O iip U s

>£Ssc>rrcy «««

D«t«y

tVjpta-,'

Welcome!

This is a Mod^Based testing tool that pefforms data flow
testing on UML state machine using a heuristic technique caled

Ant Cdony Optimization.

Figure 6.3 Main Window of Tool

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 57

6.4.1 Input Source Model

After running the application, input XML file is browse from the main interface. Browse

option is available in toolbar of tool. XML contains activity as well as state diagram. It contains

complete information of input model states, transitions, invariants etc. Specific information

related to perform data flow testing is extracted fi:om the XML. When user browses the input

XML file, it loads and stores the xml file path than extracting nodes, transitions and variable

information in separate file and arranges them in sorted order according to source and target

transitions. This is one by the xml-parser class. XML file is shown in fig 6.4.

filc ' id it Sc«rc^ {ctlings Mvcro twrt W M ow 7 ______________________

Ucxlei* ’SAID

K ls n t3 Z e s ^ ''2 V ^ 7 -n y -2 '1 15:42? ?<?■=>

“ x = i , i ^ - “f if tH 5 _ ill llU l_ 5 «7 _ 4 C S C Jk -? r4 _ 4 1 3 2 «:i> G A A S C " isJ^c c ^* '* tra e -
-D iit* f i a v a o d c l - i*

V a l »EA?S'_EAe 9 A 6 i S_ lA rA _4 55b_S«40_&3PEBC4A31C^ " / >
_ id "

a t a d - CO ^CG :OC-/>
t̂ltie--231L-03 £4 0̂ :CD;GD-/>

valaa*"rtLSE'/>
C2{L:rBycj5S.aLw4 r45»*lutioaxfcJato* vi;i:̂ -*"2-;311-lC-e9
< U K L ::»fp ® d V 4 l;ie :^ i:7 '-L d * ts flV td a = ^ - l l : l S : 2 4 ' / >

-::3 C .:lE C 5 e tfV * L u i L ip ro tfs c tc d ' -* ^ 'F A L S E -/ >

'L£̂ ‘'l3gzifcl" r&iV***'FAL£2"/>
<3iL;7«S5C3V4.I.ie *sa7-'*tpo»*
".^SC: r * 53« i V a i u - 14 ̂ ■'ixactAffAri a js ' v a l i sKxtel̂ l rV IC C M -1 . Ci*C-0 ; " / >

tiis«"fc4̂ chsa.vc" ViI-*-*vV>

< r:2 C .:ra 5 7 e SV a lii-VTT̂ -tMw" r.̂ */v _ _ ________________
tXtcnvWf Un̂ uiQC fik ttn^:inUS Knc$;̂ '466 b i ; l Cd i4 6 $ei:0

Figure 6.4 XML File of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 58

6.4.2 Parameter Setting

After the input file is loaded, parameters to perform testing are set automatic or custom. In

automatic specific number of generations and ants are selected for traversing. In custom setting

use selects the settings as under.

Automated usino ACC

Automatic

O Custom

- firovwe —

100 Number of

C5̂ Mwrijer trf Gen«ratiora

A LFA

8FTA

Run A O)

Outputs

Adtace'<*.

Run ACO!

Figure 6.5: Main GUI (Select Parameters)

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 59

6.4.3 Run ACO

The third option is user select the RUN ACO option to perform data flow testing producing

the desired results. It important step because using the ACO algorithm, optimal solution is

generated. Furthermore, this solution shows the complete coverage of data flow coverage

criteria. Majority of classes are associated and functions are performed against this button.

The target test cases and data flow information is stored and displayed according to their

relevant buttons that just displays the output. Each output is calculated and stored in its relevant

class. Figure 6.6 shows the output produced for the input model of Elevator State Machine

Diagram”.

iC \llsg!3‘̂fcLisa HSkvfM-X̂ikiop\Frii
:« Automatic

C- Cudom
inputs

1100 ' j Nutrtier of Arts

Browse —

- i Nu<Ti)eioif Genefations

J ALFA

n BETA

RjoACO

OUpt̂

- Cisptay Optimum

.Oispfay Other Optimum Path*

Ob|̂ Feaabie Padis

View Results

Figure 6.6: Main GUI (Select Run ACO option to Generate Results)

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 6 0

Finally the user select the outputs to show generated by ACO. Output generated by tool is shown

according to available options in main interface. Class of ACO-GUI.cs is mainly responsible for

performing this task. Output contains the following information.

1. Adjacency Matrix showing feasible connection between states

2. Total number of feasible paths in input model

3. Optimal number of test sequences covering maximum def-use pairs

4. Total number of variables presents in input model

5. Total definition-use pairs covered by each path

6. Total number of errors exists in each node of each path

7. Details of the type of error exists in nodes of each paths

8. Identifies the error location within node of each path

Figure 6.7 shows the adjacency matrix for creating the graph. Feasible test cases or paths within

input model are shown in figure 6.8. Optimal number of test cases covering def-use pairs

information as well error exists in each optimal path is shown in figure 6.9, 6.10, 6.11,6.12, 6.13,

and 6.14.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 61

6.4.3,1 Create Adjacency Matrix

■ C5

NuniwrofMs
tiunixr of Genet̂ tiona

11__ ::j ALFA
V | b e t a

RunACO

Oû s

irfeasite P^ti*

-D a p ^ Other Optnum Pathi

Daplay FedaiUe Patfv

tiivpioy C’JCa F o w fcr̂ io

Uspla/OpCm jtn Path

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 1 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 I 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6.7: Adjacency Matrix of ECS Model

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 62 f

i

6.4.3.2 Generate Feasible Test sequences

C MaSkV̂M‘J!)e3*dopV.TCCj
S/ Ajtomatic

O Custom

InpUa

100 "I NLmberofMs
C> 5 j H Number of GeoHaiions

 ̂ ^ A LFA

h - BETA

RtfiAO)

Diqjiay .A<|ecency

Display W « 3s t i e P a ^

Oapfa|y(^]&njn Pa»i

Display OherOptonuTj Patiw

- Oispfay Feaiible Piihs

Dsplay Data flow H o

AU. FEASIBLE TRAILS

initial -> 1 -> 2 -> 12 -> 8 -> 7 -> 13 -> Finai

Initial -> 1 -> 9 -> 10 -> 13 -> Fmal

Initial -> 1 -> 2 -> 3 -> 11 -> 10 -> 13 -> Final

Inttaal -> 1 > 2 -> 3 -> 8 -> 7 -> 13 -> Final

Infcial -> 1 -> 6 -> 7 -> 2 -> 3 -> 11 -> 10 -> 13 -> Final

Initial -> 1 -> 2 -> 12 -> 11 -> 10 •> 13 -> Final

Initial -> 1 -> 6 -> 7 -> 2 -> 12 -> 11 -> 10 -> 13 -> Final

Initial '> 1 -> 6 -> 7 -> 13 -> F ^a l

Figure 6.8: Feasible Test cases of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 63

6.4.3.3 Generate Optimal Test Sequences

T « t G ti^ t io h iging

iC.\User»\/«;aa KAV̂\DeaiOe!pVrfai
AXomatic

0 Custom

new*

HDO - ! Nunixrol firts

i05 I NiCTberof Gaier̂ iŵ
n _______ J A LFA

\] Z] B E TA

FkjnACO

O U p ii*

Dopfay .Aijeceocy Matitc

Keasi4e Pi^

Obpta/OF£rrum Path

Oiapiay Other OptiTun Paths

Disptay Feaarole Paths ■

Oispiay Data Bow H o .

Optimum TRAIL 1 :

Initial -> 1 -> 2 -> 12 -> 8 -> 7 -> 13 -> Final

TOTAL VARIABLES USED IN THIS TRAIL

c f , e f , s f , f , e

DEF-USE PAIRS AND D E F -C L E ^ PATHS IN THIS TKAIL

Variable : cf

(1 ,2):
(1 .1 2):
(1 ,1 3):

1 -> 2
1 -> 2 -> 12
I -> 2 -> 12 -> B -> 7 -> 13

Variable : ef

(1 ,2):
(1 ,1 2) ;
(1,8):
C 1,7);
C l ,1 3) :

1 -> 2
1 *>2 -> 12
1 -> 2 -> 12 -> 8
1 -> 2 -> 12 -> 8 -> 7
1 o 2 -> 12 -> 8 -> 7 -> 13

DATA FLOW ERRORS IN THIS TRAIL

Variable: sf
Type of Error: UN USED
Description; Define on nodes 1 , but not used.

Variable; f
T u n a r t f P r r n r - I lU I tC C H

Figure 6.9: Optimal trial 1 of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 64

Optimum Trial 2 of Input Model of ECS

J3eaWop'̂ K:q
■ 9:- AUomatic

© Custom

kputs

r firowsc-

Numberof
C5 -- j Nundjerof Gen«3iions

:j
'1 B E TA

FkjnAD O

OutpUs

D is p % A ^ec en cy Mabst

Osplay Wessfcic Paih*

O ^fa yO p b m u m Path;

Dspfay 0 * e f Optiinwn PrfiB

Dispby FaaaUe Pdth» <

Display Data Bow M o

Optimum TRAIL 2 :

Initiai -> 1 -> 9 -> 10 -> 13 -> Final

« Previous"] N o i

TOTAL VARIABLES USED IN THIS TRAIL

c f , e f , Sf , C , b

DEF-USE PAIRS AND DEF-CLEAR PATHS IN TH IS TKAIL

Variable : cf

(1.9): 1 -> 9
(1 ,1 3) : 1 -> 9 -> 10 -> 13

Variable : ef

(1 ,1 0): 1 -> 9 -> 10
{ 1 ,13): 1 -> 9 -> 10 -> 13

DATA FLOW ERRORS IN THIS TRAIL

Variable: sf
Type of Error; UN USED
Descripticn; Define on rrades 1 , biX not used.

Variable: c
Type of Error: UN DEFINED
Description: Used on rKsdes 9 , but not defined.

Variable: b
T v p r .o r t f P r r n r * I IN I f C C n

Figure 6.10: Optimal trial 2 of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 65

Optimum Trial 3 of Input Model of ECS

..........utom ated T » t Caj^CwitatiCTi ACO'

;C.'Jj3erS'î ou:i3 Ma9.;\ftf'l5e*lcp\ATCCt
a- Ajtomalic

0 Custom

Inputs

^ 3 0 - I

1̂

l L _

--- ,
i

■V ̂

8row*e

- i f̂ umfaer of Generefeons

RunACX)

OuMxis

Dispby Ajeccncy MahK

Oeplay W easUe Paihs

DsptoyOptiffluii P ^ .

= DispJay Otha-Optimum PnBw

— Display Feawle ■

Dsplay Da»a Bow hfo ‘
J

Opdmum T R A IL 3 :

Initial -> 1 *> 2 -> 3 -> 11 -> 10 -> 13 -> Final

« Prevlom J I^ N e a t >J>-

TOTAL VARIABLES USED IN THIS TRAIL

c f , e f , s f .. d ,b

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : cf

(1 ,2):
(1 .1 1) :
(1 ,1 3) :

1 -> 2
1 -> 2 -> 3 -> 11
1 -> 2 -> 3 -> 11 -> 10 -> 13

Vanable : ef

{ 1 .2);
(I . I O) :
(1 ,1 3 3:

1 -> 2
1 - > 2 - > 3 - > 11 10
1 -> 2 -> 3 -> 11 -> 10 -> 13

V ariable; sf

(1 , 3) ; 1 -> 2 -> 3

DATA FLOW ERRORS IN THIS TRAIL

Variable; d
Type of Error: UN CSFINED
Description: Used on nodes 3 , but not defined.

Figure 6.11: Optimal trial 3 of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 6 6

Optimum Trial 4 of Input Model of ECS

iC \Use;5\foijaB MaBc-̂fH\De*lopNA'n;x;
Automatic

Vipuu -

',00 NumberofAit*

awae

P.,__iJ A LFA

Pj B E T A

RunACO

-O U p U *

Displ^.^V;|ecency Mabtc

OhpI ^ Paths

Dispja/Optnun

- Dtsptey Olh«r Optinum Paths

Oispby FeawHe Path*.

Ditplay Data Bow ktfo

OptJinum TRAIL 4 :

Initial -> 1 -> 2 -> 3 -> 8 -> 7 -> 13 -> Final

« P re w x a ^ I g Next > > ^

TOTAL VARIABLES USED IN THIS TKAIL

c f , e f , s f , d , f , e

DEF-USE PAIRS AND D6F-CLEAR PATHS IN TH IS TRAIL

Variable ; cf

(1 ,2):
(1 ,1 3):

1 -> 2
1 -> 2 -> 3 -> 8 o 7 -> 13

Variable : ef

C 1.2):
(1 ,8);
C 1,7):
(1 ,1 3) :

1 -> 2
1 -> 2 -> 3 -> a
1 *> 2 -> 3 -> 8 -> 7
1 -> 2 *> 3 -> 8 -> 7 -> 13

Variable : sf

(1 , 3) : 1 -> 2 - > 3

DATA FLOW EI«?ORS IN THIS TRAIL

Variable: d
Type of Error; UN DEFINED
Descripbon: Used on nodes 3 , but not defined.

Figure 6.12: Optimal trial 4 of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 67

Optimum Trial 5 of Input Model of ECS

tWk-vfM\Cseak!eo\ATa::

&OWW

 ̂C5 £] Number of G enef^iofis

LL__ZD ALFA
n 3

PkjnfiCO

Output*

Display Ac|ec«ncy M^rix

Oiaplay ir^easMe Pah* -

I ; Oispi^ Other Optimum Pofra

Di!«]<ay Feable Paths.

Display Data Fk?«» Wo ^

Optimum TRAIL 5 : j «R rev«m

Initial -> 1 -> 6 -> 7 -> 2 -> 3 -> 11 -> 10 -> 13 -> Fmal

Nol » ^ \

TOTAL VARIABLES USED IN THIS T T ^ L

c f , e f , s f , e , d , b

DEF-U5E PAIRS AND DEF-CLEAR PATHS IN TH IS TRAIL

Variable : cf

(1 ,5):
(1 ,2):
(1 ,1 1) :
(1 ,13):

1 -> 6
1 -> 6 -> 7 -> 2
1 -> 6 -> 7 -> 2 -> 3 -> 11
1 -> 6 O 7 -> 2 -> 3 -> 11 -> 10 -> 13

Variable : ef

C 1,7):
(1 , 2) :
(1 ,1 0) :
(1 ,1 3) :

1 -> 6 7
1 -> 6 -> 7 -> 2
l - > 6 - > 7 - > 2 - > 3 - > l l - > 10
1 -> 6 -> 7 -> 2 -> 3 -> 11 *> 10 -> 13

Variable : sf

t 1,3): 1 -> 5 -> 7 -> 2 -> 3

DATA FT.OW ERRORS IN THIS TRAIL

Variable: e
T u n a n f C r rn r - t tW n C P T N P n

Figure 6.13: Optimal trial 5 of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 6 8

Optimum Trial 6 of Input Model of ECS

iC'AJ^efs'iwaa X^opN AT

‘S ' AiAomatic

© Qatom

i\pdis
-------------------- - -tS

jlOO - i Nui4)er of M s

Q r v w ic ■

[C5 ^ ^ ^ i3erc# Gene*cijora

;^A

FfcjnACX)

OutpuU

Display A^ecency Mabsc i , -

■ Display lr> re »U e P ^ s

Display Optiiun Path

Oisp^ Other Optimum

- Dispfay Feasible P a th s.

Display Data F bw k ia

O p tifn u m T R A IL 6 :

Inteal -> 1 -> 2 -> 12 -> 11 -> 10 -> 13 -> Final

I j [,Nog >? -»•']

TOTAL VARIABLES USED IN THIS TT?AIL

c f , e f , s f , b

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : cf

(1 .2):
(1 ,1 2):
(1 ,1 1):
(1 ,1 3):

1 -> 2
1 -> 2 -> 12
1 -> 2 -> 12 -> 11
1 -> 2 -> 12 -> 11 -> 10 -> 13

Variable : ef

(1.2):
(1 ,1 2) :
C 1,10):
(1 ,1 3) :

l - > 2
1 -> 2 -> 12
1 -> 2 -> 12 -> 11 -> 10
1 *> 2 -> 12 -> 11 -> 10 -> 13

DATA FLOW Ef^^ORS IN 'm iS TRAIL

Variabfe: sf
Type of Error: UN USED
Description; Define on nodes 1 , but not used.

Variable: b
T u n a n f t = r r n r > I IW I i c c n

Figure 6.14: Optimal trial 6 of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 69

optimum Trial 7 of Input Model of ECS

iAutomated, Test]

.'.U9ef>\Pwil3 Mâ ;̂\FM'X)e*lop̂ATCC
■■9 ' Automatic

("5 Custom

^xAs

[TiX ; - N unberof M s

Srswse

C5 ”■ I Nuniserof Geraf^ions

ALFA

- I B E TA

R u n A C O

Outputs

D is p l^ Acjjecercy Mabw

_ - Diaplay infeasiiie Pad^s

CXsplay Ĉ Jhmum P ^ ;.

Display Other Optimum P ^ v =

- O ia p ^ Feoiabje Paths ■

Oteplay Data Flow W o

Optimum TKAIL 7 : j «Previou»-| lg; Ngxt > ^

Initial -> 1 -> 5 -> 7 -> 2 -> 12 -> 11 -> 10 -> 13 -> Final

TOTAL VARIABLES USED IN THIS TRAIL

c f , e f , s f , e , b

DEF*USE PAIE^S AND DEF-CLEAR PATTIS IN THIS TKAIL E
Variable ; cf

(1 .6):
(1 ,2):
(1 ,1 2):
(1 ,1 1):
(1 ,1 3) :

1 -> 6
1 -> 6 -> 7 -> 2
1 -> 6 -> 7 -> 2 -> 12
1 -> 6 -> 7 -> 2 -> 12
1 -> 6 -> 7 -> 2 -> 12

Variable : ef

(1 , 7) ;
(1 ,2):
(1 ,1 2) :
{ 1 ,10):
C 1 ,13):

1 -> 6 -> 7
1 -> 6 -> 7 -> 2
1 -> 6 -> 7 -> 2 -> 12
1 -> 6 -> 7 -> 2 -> 12
1 - > 6 - > 7 - > 2 - > 12

DATA FLOW ERRORS IN THIS TRAIL

Variable: sf
Type of Error: UN USED
Description: D ^ n e on nodes 1 , but not used.

Figure 6.15: Optimal trial 7 of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 70

Chapter 7

CASE STUDY

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 71

7.1 Introduction

This chapter is devoted to presents the details of the case study to vahdate our approach.

We choose example of an Elevator System to automatically analyze data flow and generate

optimal number of test cases to fulfill coverage criteria by employing our approach. In this

chapter, we describe the Elevator Control System by taking into account one UML State

Machine diagram.

The rest of paper is structured as follows. Section 7.2 describes an overview of Elevator

Control System and functional requirement of states. Section 7.3 demonstrates the state

machine diagram.

7.2 Elevator Control System

This section consists of two subsections. The first subsection gives summary of the scope

of the Elevator System. The second subsection describes the fimctional requirements of the

system.

7.2.1 Scope of Elevator Control System

Elevator System manages the working and the behavior of elevator. The major part of

the Elevator system is elevator which manages the working of elevator moving up, moving

down, door open, door closed, resume door open, resume door closed and pick passenger from

floors of buildings. The elevator is used in building having numerous floors ranging from 1 to n,

where n is utmost number of floors within building.

The elevator has call buttons to move the elevator correspondence to each floor. On the

base floor, there is one button to move up the elevator and at the middle floors except top, there

are three buttons to move the elevator up and down and third one is to resume button that resume

the moving elevator, either moving up or down. Top floor has only one button to move down the

floor. When the elevator reaches the destination floor, door will also open. But user can also

select another floor; door will be closed to move upward or move downward or presses the

resume close button to move up the floor.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 72
i

7.2.2 Functional Requirements

Idle/Door Closed: Elevator is at idle position when the door is closed. Elevator starts moving

towards up, down the floor according to request of user. If current floor and ending floor is same

than door will be open.

Start Movins Uv: When the current floor is less than the ending floor, elevator starts moving

down the floor. After reaching the ending floor, door will be open. But here user can also resume

the door closed button and select another floor to move.

Start Movins Down: When the current floor is greater than the ending floor, elevator starts

moving up the floor.

Idle/ Door Open Reached: When the elevator reaches the destination floor requested by the user

then it will be moved to idle position.

Resume Moving Uv: When the user reaches the requested floor except top, user will press the

resume moving up button to move up the floor.

Resume Movins Down: When the user reaches the requested floor except base floor, user will

press the resume moving down the floor button to move downward.

Floor Selected/ Door Closed: User can press this button to select a floor when elevator is at idle

position or when user reaches the requested floor and still want to move to another floor than it

presses this button for the selection of floor.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 73

7.2.3 Details of Case Study

UML state machine is given as input to tool in the form of extensible markup language file

(XML). XML is generated using UML modeling tool Enterprise architect. Tool extract states ids,

transition ids and construct adjacency matrix. Adjacency matrix shows the feasible connection

between states. If there is connection between states it shows 1 and if no connection exists

between states than it indicates O.For control flow information, we use this adjacency matrix to

convert into control flow graph. This shows flow of information within states.

Data flow testing is performed using heuristic technique Ant Colony Optimization

algorithm. In first generation. Ants start at initial state and move randomly to reach the final

state. After completing its first tour ant updated pheromones value of paths that are traversed by

all ants. Pheromone value is updated based on number of def-use pairs covered by a path divided

by total number of nodes covered. Evaporation rate of pheromone value is set that larger path

covering small number of def-use pairs and having low pheromone value has high evaporation

rate than optimum path covering large number of def-use pairs and having high pheromone value

has low evaporation rate. In second generation, ants don’t move randomly. At each state ant

check whether variable is defined or used and compute overall def-use pairs and def-use paths to

traverse them. They start at initial state and calculate the probability, pheromones value. It also

checks the states status which indicates the visited/un visited status of states. For example if state

is already visited than visited status is 0 and if status is unvisited than it is 1.Alpha and beta

constant is set 1. Our coverage criterion is all du-paths. All uses of variables are computed by the

approach. Repeated paths or redundant paths in each generation are eliminated. Optimum paths

selected are based on providing coverage of maximum number of def-use pairs.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 74

Adjacency Matrix

1 2 3 4 5 6 7 8 9 1011 12 13 14 15

1 (0 1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

3 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0

4 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0

5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

6 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

8 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 0 o' 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

12 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

13 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

14 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

15 0
V

0 0 0 0 0 0 0 0 0 0 0 0 0
y

Fig. 7.1 Adjacency Matrix for Elevator State Machine

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 75

Fig. 7.2 State Machine Diagram of Elevator Control System

Data flow Testing of UML State Machine Using Ant Colony Optimization (AGO) 76

Consider the state machine diagram given in fig 12. Many ants are made to traverses the

graph, hi first generation ants take decision randomly because initially each state has zero

probability and pheromones value. After completing first generation ants set pheromones value

of all states that are made to traverse by them, hi second generation, as ant approaches fi-om

initial state 1, ants calculate probabihty of all nodes that are directly connected with

current/initial state and also check pheromones value. Ants traverse the states which have highest

probability and pheromones value. For example at state 1 of state machine diagram in fig 7.2,

there are three states that are directly connected with state 1; are state 2, 6 and 9. Ants calculate

the probability of these three states. If these three states have equal probability than ants check

visited status of these three states. If all are not visited yet than ant take decision randomly. If one

of state is not visited from three states than ant select that state to traverse it. In state 2, 6, and 9,

if state 6 has higher probability than state 2 and 9 than ant select 6 for next transition and current

sequence becomes 1 -6. Ants also store information of its current position along with position of

nodes it made to traverse in a path. As mentioned above sequence 1-6, ant first store its current

position that is at state l.when ant select next transition to move it also maintain record of

position of node and path.

During its tour, ants also analyze data flow within states. When ants select nodes to move, it

checks whether the state contains the definition-use pair. It counts the definition-use pair exists

within state and also checks the definition-use paths covered in a test path. Definition-use path is

path fi-om variable definition to node where it is used. And count total number of def-use pair

along its paths. All paths are selected by from where every variable definition occurs to every

use of that definition. As first tours of ants are random, suppose ant traverse the paths are;

l->6->7->13

l->2->12->ll->10->13

l->9->10->13

The probability of optimal paths in each generation is high calculated using the formula in (1).

P = { (tijr * (nij)'*} / £ * (r iij/ ... (1)

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 77

■ P = Probability

■ T = Pheromones Value

■ r| = Desirability Factor

■ Alpha & Beta are constants

Ants after completing their tour, set pheromones value of paths that it traverse. Every solution

searched by ACO is evaluated against fitness function given in (2) that we have tailored for state

based data flow testing problem.

PV = DU ... (2)

TN

■ PV - Pheromones Value

■ DU = Total Defmition-Use Pairs covered by a path

■i
■ TN - Total Number of Nodes covered by a path.

The fitness value produced using fitness function indicates the appropriateness of optimal

solution.

Consider the first test path !->6->7->13. Ants identify the def-use pair and definition-use path

from variable definition to its use without definition of variable again in a same path. At state 1,

there are 2 variables that are defined while used at state 6, 7 & 13. So 3 def-use pairs and def-

clear paths exists in this path.

C f(l,6)= l-> 6

C f(l, 13)- l->6->7->13

Ef(l,7)=l->6->7

So pheromone value of test sequence 1 is 3/4 = 0.75

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 78

This value is set on each state (6, 7, and 13) that is covered by ants in path 1.

For path 2;

l->2->12->ll->10->13

The number of Def-use pairs and def-use paths covered in this test path are;

C f(l,2)= l-> 2

Cf (1, 13) = l->2->12->U->10->13

E f (l ,2) - l->2

Ef(l,10)=l->2->12->ll->10

E f(l,13) = l->2->12->ll->10->13

So pheromone value of path 2 is 5/6 = 0.833

Consider the third test pathl->9->10->13. Def-use pairs and def-use paths covered in this path are;

C f (l ,9) - l->9

C f(l, 13)= l->9->10->13

E f(l, 10)= l->9->10

E f(l,13) = l->9->10->13

In this path, 4 def-use pairs and def-use paths exists. Pheromones value set by ants on 3 test case

is 4/4= 1.0

As pheromone value of test case 3 is higher than test case 1 and 2, so it also has higher

probabilty than test case 1 and 2 .

For example, at state 1 ants checks the pheromone value and P-factor of state 2,6,9 that are one

transition apart from state 1. State 9 have highh P-factor also having greater pheromone value

than state 2 and 6. At this point ants checks the visited status of both states, if both states are not

visited yet then ants decide randomly to move to next state. Suppose ants select state 9 due to its

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 79

higher p factor. At state 9, ants check again the desirabihty factor and pheromone value of states

that are directly connected from this state. State 10 is the only state that is directly connected

from state 9. So ants moves to state 10. At state 10, it is only connected with with state 13. Ants

check its visited status and mone to this state, a final state of model.And current sequence

becomes 1-9-10-13. After completing each tour by ants, pheromone value is updated on traverse

nodes of all paths of graph.

All definition-use pairs are identified by ants during their traversal of graph. All Definition-

use paths of each definition-use pairs is calculated. Definition-use path is path that start at state

where variable definition occxirs to place where that variable is used. We have identified all the

def-use paths of each defmition-use pair. Each definition-use pair has several definition -use

paths. One definition-use pairs may have one or more than one def-use paths as mentioned in

table 7.1. For example, variable cf has deinition-use pair [1, 13] which has six def-use paths [1-

>2->3->8->7->13], [l->9->10->13], [l->6->7->2->3->ll->10->13], [l->6->7->!3], [l->6->7->2->12->l 1-

>10->13], and [l->2->12->8->7->!3]. After the identification of def-use paths, test cases are

generated to cover these definition-use paths. Each def-use path is examined and redundant

definition-use paths are removed by tool. For example, as in table 7.1 the def-use paths identified

by tool are [l->6->7->13], [l->6], [l->6->7->2], [l->6->7->2->3]. Aforementioned 4 definition-use

paths, a single test case can cover these def-clear paths. That is [1 -> 6 -> 7 -> 2 -> 12 -> i i -> 10 ->

13] cover the [l->6->7->13], [l->6], [l->6->7->2], [l->6->7->2->3]. All these def-clear paths are

included in this test case.

All paths that are traversed by ants, p factor is calculated for each path. Ants decision to move

to next state is based on pheromone value and probaility. These values of pheromones help other

ants as traces to select a path to destination. To avoid the local optima, evaporation rate is

considered. Pheromone value is evaporated based onformula given in 3.

xij = (1-r) xij + Axij...(3)

T= Rate of evaporation of pheromones

Axij= Total amount of pheromones set down by ants when it traverse from edge i to j.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 80

Using formula 3, pheromones of each path evaporates. Path covering large number of deflnition-

use pairs have low evaporation rate than the path covering low number of defmition-use pair in

which pheromone value evaporate quickly.

Overall def-use pairs/def-clear paths

No of
Variables

used

Variable DU-pair Dcf-Clear Path

1. Cf 1,6 l->6

2. Cf 1,9 l->9

3. Cf 1,2 l->2
l->6->7->2

4. Cf 1,12 l->2->12

5. Cf 1,13 !_>2->3->8->7->13
l->9->10->13
1->6->7->2->3->11-
>10->13
l->6->7-)13
1->6->7->2->12->11-
>10->13
1->2->12->8->7->13

6. Cf 1,11 l->2->3->ll

7. Ef 1,10 l->9->10
l->6->7->2->3->ll->10
1->6->7->2->12->11-
>10

8. Ef 1,2 l->2
l->6->7->2

9. Ef 1,12 l->2->12
10. Ef 1,8 l->2->3->8

11. Ef 1,13 !->2->3->8->7->13
12. Ef 1,7 l->6->7

l->2->3->8->7
l->2->12->8->7

13. Sf 1,3 l->2->3
l->6->7->2->3

Table 7.1 Def-use pairs of the variables used within State Machine

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 81

In the same way, ants made to traverse the graph and update the pheromones value.If ants at

some point has state that are directly connected to current state has same probabihty and also has

same desirabilty factor than ants select randomly. If ants at some point have state that are directly

connected to cnrrent states has same probability than ants move to state that is unvisited.

Redundant number of test cases are avoided by resticting the ants to not move to state that is

aheady visited. In each tour, ants visit one state at least one time. So ants will explore different

paths by traversing the graph.

7.2.3.1 Infeasible paths

Paths that are considered infeasible are;

■ Ants stuck in cycle due to consideration of states visited status because ants don’t

traverse the node that is already traversed.

■ Paths that don’t reach to its destination.

■ Paths in which there is no connection between states.

■ State having dead end.

7.23.2 Mutation Testing

To determine the error detection rate of state machine model, we introduce faults into

states of model. Mutation testing is widely used yielding realistic results and is frequently used

during testing research [9].

Tool detects the following data flow errors as well as the mutated faults.

■ Variable is defined in state but not used in a given diagram.

■ Variable is defmed in one state and also defined in another state on a same path

before its use (redefinition of variable in a state on same path is a killing state).

■ Variable used but not defined.

■ Multiple usage of variable but not defined.

■ Multiple definitions of variable but not used.

■ Variable used before it is defined.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 82

In state machine diagram of fig 7.2, 34 errors are seeded within states of model. Tool detects

seeded errors against each path. Mutation score of all models are listed in table 7.3.
1

Model# Model States

Co> erage

Def-Use

Paths

Def- Use

Path

Coverage

Mutation

Score (%)

1 ECS 84.6 43 95 95.2

2 TS 100 48 100 100

3 POS 100 13 100 100

4 HMS 100 8 100 100

5 ATM 100 7 100 100

6 LMS 87.5 7 80 83.7

7 SES 88.8 5 83.3 90

8 c c 100 4 100 100

9 DM 100 10 100 100

Table 7.2 Showing mutation Score of All Models

Fig 7.2 illustrates the total du-paths within ECS model and mutation score of ECS model. There

are 43 def-use pairs within ECS model, 41 of which are covered by tool. Mutation score of ECS

model is 95.2%. As listed above in table 7.2. TS model have all definition-use paths coverage

having high mutation score. There is direct relationship exists between rate of mutation and

number of def-clear paths. Models that have provide coverage of all def-clear paths have high

mutation score. Some of the models have same mutation score due to same coverage of def-clear

paths. The analysis advocates that traversing certain def-clear paths make certain faults to be

detected.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 83

Chapter 8

EVALUATION

t
Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 84

8.1 Introduction

This chapter is dedicated to clarify and assess experiment results which are performed to

authenticate our approach for data flow testing. Section 8.2 describes the results of our

approach on the model of the Elevator System that is elaborated in chapter 7.The validation

results are presented in section 8.3. Conparison of our approach with existing state based

data flow testing approaches and tools is discussed in section 8.4. Overall benefits and

limitations are given in section 8.5.

8.2 Elevator Control System

In this part, we explain the experimental setting and results are discussed by applying our

approach to state machine model of Elevator Control System.

8.2.1 Experimental Setting of Tool

The experiment steps are summarized below.

1. In the first step, we generate XML of state machine models using UML modeling tool

Enterprise Architect. The state machine models of 9 different software systems are used

to generate XML. The XML format of all models can be found in Appendix A. For

Elevator Control System, XML is stored in elevator.xml file. We store the 9 XML of 9

different software system in 9 different files; one file contains the XML of one state

machine model. This XML is given as input to our data flow testing tool. Figure 8.1

depicts the XML file format of ECS model.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 85

H ^ S ^ ® * ^ ; ^ ^ ^ . . ^ , ^ } * ! I 3 < 1 a [■ ^ i s ? i ^ '1 ® 3 f i r C i l i " s l ^ v ^ ^

i d - ^ e l ^ « - T V >
< ::^ ;r a 5 5 -3 V -B lu s -3 i.5 % “ -2 C ! . l -C 3 -2 4 C C ;C C ;C C -/ >
< ?5C.:T* 5 c* JV ^ilii« ^ ig -" a i? d if le d * v » l - - - = i i l l - S 3 - 2 4 0 5 :C C :C C ‘ />
<U?C.:7«-75«d';Ai-« ’’.<*?■'l»coTitrt»iied“ vait2-'rAlSK"/>
CaC,:ra?geiV4li.* v*l----5'3ll-i5-Cd ;j:l»;2<"/>
C 3?L:rd?<7ei’val[ifi T;:ag*'‘ la « t * a v « O a t « “ v -s I u - -" 2 G X l- lC -D 9 i l ; l 9 ; 7 4 " / >

<?KL;TefyedVfiLue T;e7»"vsrat3ij' v*1wt**‘L.DV>
■ r a iL ;T e j5 e tf V a Ii- t a ? - ' ' ia p r o t e c t e a " v i l 2-**TAl_S£*/>
<̂ 3tL;r6?gei’Vtl»:- i4j-" î5edtd’' vdli-:*“F̂ LS2*'/>
c3>Cf7ft7ff53VaI;ie r^j-^logwi" Til-;e—•P>̂L£2‘’/?
C?̂ ;TaCi7«aValî e v a lC :* />
■ r3Kl;Te^5ed';al>i* T r , . ' . -^ - " - : j iS t i i l - l - l . 'V I C G I ^ ; :v3< C -n;*/>
<̂ 3?lL;7e7ge!iVal:i5
c :jx ;,;r6 ^ y -3 V Js l;is t . i5 -" b a t c n ir> «J '’ v 4 i j * -" G « / >
<??̂ L;rs5gedVal4=t v®i ut-” 1. C'/v

<*2ML: I l :ie c 4 i • " r ~in~ ̂i i L ’ va 1 ue— " 1 "/ >

. J j-r . ______________________________

.Ln;l OifT« SH:0

Figure 8.1 XML file fonnat of ECS

2. During the second step, control flow graph is created from adjacency matrix of input

model, which shows the total number of states and feasible connections between them.

3. Automated analysis of data flow and minimal paths are generated to fulfill the required

all def-use path coverage criteria.

4. Mutation testing is performed to analyze the effectiveness of our approach.

8.2.2 Results and Discussion

Table 8.1 shows the results generated by data flow testing tool. According to the result,

from the total of 9 state machine models, there are 3 models that don’t provide complete

coverage while all other models provide 100% defmition-use path coverage.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 86

As we have seen in table 8.1, shows that model have high coverage of def-use paths have high

mutation score. Library management (LMS) has lowest def-use path coverage having less

mutation score than other models. It shows that models that exercise more def-use paths have

detect more data flow faults.

No o f M odels .\[odL‘l Dutii 1 lo«

Oitcriij

1)1

CoM'iaiif

Stjiti's (Mutation Scoic

<%)

1 ECS All du-paths 95% 84.6% 95.2%

2 TS All du-paths 100% 100% 100%

3 ATM All du-paths 100% 100% 100%

4 SES All du-paths 83.3% 88.8% 90%

5 c c All du-paths 100% 100% 100%

6 POS AH du-paths 100% 100% 100%

7 LMS All du-paths 80% 87.5% 83.7%

8 HMS All du-paths 100% 100% 100%

9 DM All du-paths 100% 100% 100%

Table 8.1 DU-paths Coverage &Mutation Scores of all Models

Figure 8.2 def-use Paths vs. Mutation Score

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 87

■ Du-Paths Coverage

■ Mutation Score

Figure 8.3 def-use Paths vs. Mutation Score

We also evaluate our approach based on general coverage including states coverage provided by

existing techniques and our proposed technique. These techniques are also evaluated against

fault wise coverage provided by them. Different categorizes of software faults are identified from

literature [51, 13, 8] and all techniques are evaluated against them. Detection of these software

faults is necessary because the presence of software errors in software results in disaster [51]. As

our coverage criteria are all defmition-use paths. The variable is considered as define when

variable is assigned a value or in memory value is stored. Node/State containing the definition of

variable is known as def or definition node. The variable is considered as use when that value is

fetched from memory or value that is defined is used. Node contacting the use of variable that is

defined before is known as used node. Variable firom its point of definition to its use is known as

def-use pair. Path between definitions of variable to its possible use is known as definition-use

path. According to coverage criteria, we will include all paths from variable definition to the

point it uses. We include or select overall defmition-use pairs and select all paths of every

definition-use pair. The possible combination of definition (d), killed (k) and used (u) that are

valid or acceptable are;

■ Define and Used (du)

Variable is defined before it’s used within state. This is correct combination of variable

definition and its possible use.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 8 8

Some of the standard definition and usage faults/anomalies identified from literature are;

■ Define Without Use (d'^) [51,13^8]

This is anomalous because variable is defined within state of model but it is not used in

any state. Since variable is defmed, it is not used lead to programming error.

■ Double Define (dd) [51,8]

Variable that is defined in a state and is redefmed which is not used is invalid, suspicious

as well as programming error lead to serious disaster.

■ Use without Define ('Hi) [51,13,8]

This is a serious problem that state uses a variable which is not defined in any path of

model. Usage of undefined variable is a software fault.

■ Double Use (uu) [8]

This is also an error when variable is used more than one time but is not defined in any

state within model.

■ Defined without used in Scope (dk) [8]

This is a programming error that variable is defmed but not used in path and is killing in

the same path.

■ Data is used beyond the Scope (ku) [8]

That is a serious defect that after variable is kill it is used on the same path.

■ Variable is defined more than once befi>re use [13]

This is also Programming error because as we are considering def-use paths in which is

path from variable definition to its usage without any definition of variable again in same

path.

These are the possible state based standard faults that can occur in states. And we

evaluate existing approaches and proposed approach against them. We also mutate these possible

state based faults in our input state machine models and our proposed approach detects these

mutated faults. The faults detected by the existing approaches and our proposed approach are

given below in a table 8.2. Faults that are identified from literature are mutated in input

telephone system model, and mutated state machine model is shown in fig 8.4.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 89

dfd Data Ftow Oiagrac ?

Inrial

1

f 03;&jsy Toi%

r 01X>nHt»k N
* btll==0;

- J

- :ini
:im _ _ J

r 06j^ngtt>g

I
Final

Fig 8.4 Mutated Telephone System Model

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 90

Errors Type

~d

\mnhcr of Seeded Fuufts

15

u~ 10

Dd

Uu
Used Before Define

Dk

Ku

Averaee 42

Table 8.2 Types and Number of Errors Seeded

Number of Faults Seeded Mutation Score Number of Test Case

Telephone System Model 42 100

Telephone System Model 38 90.47%

Table 8.3 Mutation Score and Number of test Cases Needed

We mutated faults within telephone system model overall containing 42 faults. We have seeded

faults within states of input model, as we are only focusing on state coverage. Test cases are

generated to cover all these states. Our tool automatically generates test cases to detect these

seeded faults and definition-use paths were used as a coverage criterion. In telephone model, a

number of possible paths are generated but due to generation of non-redundant test cases we

don’t allow ant to revisit same node twice that’s why there are total 10 paths within input model.

As aforementioned we have seeded 42 faults, out tool generate optimal number of test paths and

provide efficient detection of data flow faults with 6 numbers of test cases that provide 100%

mutation score. With 5 numbers of test cases, our tool provides 90.47% mutation score the fault

missing are the 2 used before defined and 2 of faults variable used but not defined in any path of

model. With minimal number of 6 test cases our tool is able in detecting overall seeded 42 faults.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 91

Fault-Wise Coverage:

Existing

Paper

Author

Names

Algorith

m Used

Data flow

Criteria

Used

Faults

Overall

Coverage

Define, Used, Double

Not Not Define

Used Define (dd)

(d~) (-U) 151,8)

151,13^1 [51,13,8

Double

Use(uu)

181

Variable

is

Defined

More

than

Once

Before

Use

[8|

Defined

without

use in

scope

(dk)

[8|

Data is

used

beyond

the

scope

(ku)

|8i

Used

Before

Defined

L.C.Briand All Du-

Paths

8 8 % ,9 6 %

31 All Du-

Paths

96%

S.Andreous All-uses

All Du-

Paths

(Code

Based)

100% Yes Yes Yes Yes Yes Yes

H.K Dubeu All Du-

Palhs

(Code

Based)

Yes Yes Yes

L.C.Briand Yes Yes Yes

Proposed

Approach

ACO All Du-

Paths

100% Yes Yes Yes Yes Yes Yes Yes Yes

Table 8.4 Fault-wise coverage provic ed by Existing Techniques and Proposed Technique (-------= No)

As aforementioned in table 8.4, two of the model based approaches [9] [31] perform mutation

testing and detect data flow faults but don’t mention categorizes of faults that they identified or

detected by their tool. None of the other model based approach performs mutation testing. One

of the two code based approach [6] detect almost all faults except variable is defined more than

one time before its use. Approach in [13] detect only three type of faults; variable is define but

not used. Variable is used without defining, and variable is defined more than one time before it

use. But or proposed approach detect all categorizes of software faults as well as seeded faults.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 92

General Coverage Provided by Code Based Techniques:

Existing

Paper no

Author

Name

Algorithm

Used

Covenige

Criteria

Used

Program

Coverage

Mutation

Testing

Performed

[28] Ahmed S.

Ghiduk

GA All-Uses 100% No

[3] Sanjay

Singla

PSO All-Uses 100% No

[32] Moheb R.

Girgis

GA All-Uses 100%(v f̂hen

no infeasible

paths exists)

No

|6] Andreas S.

Andreou

GA All Du-

Paths

100% No

18] Jim Hou All-Uses

All Du-

Paths

100% Yes

113] Harsh

Kumar

Dubey

All Du-

Paths

No

Table 8.5 General coverage provided by Existing Code-Based Techniques (-------= No)

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 93

General Coverage Provided by Model Based Techniques:

Existing

Paper no

Author

Name

Algorithm Used Co \e rage

Criteria I'scd

States

Coverage

Mutation

Testing

performed

133] Huaizhong LI AGO All States

Coverage

100% No

[9] L.C. Briand All Du-Paths Yes

f311 L.C. Briand All Du-Paths Yes

[291 Chartchai

Doungsa-ard

GA All-Transitions 100% coverage

if system don’t

contain final

state

No

[27] Praveen

Ranjan

Srivastava

AGO All“Transitions 100% No

[101 Tabinda All Du-Paths No

[HI Praveen

Ranjan

Srivastava

AGO Griticahty of

states

100% No

Proposed

Approach

Fozia, Atif

Aftab Ahmed

Jilani

AGO All Du-Paths 100% Yes

Table 8.6 General coverage provided by Model-Based Existing Techniques and Proposed Technique (------- = No)

Data Flow Testing of UML State Machine Using Ant Colony Optimization (AGO) 94

No. o f Pairs Variable Used Definition-1 ŝe Pairs A ll Definition Use

Paths
1 Cf (1.3.2.2) 1-2

1-7-2
1-9-10-2

2 Cf (L3,5.2) 1-2-3-5
l-2-3^-5

3 Cf (1.3,6.3) 1-6
4 Cf (1.3,9.3) 1-9
5 floorNo (1.3,7.1) 1-6-7
6 floorNo (1.3,10.1) 1-9-10

1-2-12-10
1-2-3-11-10

7 floorNo (7.1, 7.1) 7-7
8 floorNo (7.1,10.1) 7-2-12-11-10

7-2-3-11-10
9 Ef (1.4,3.4) 1-2-3
10 Ef (1.4,7.1) 1-6-7
11 Ef (1.4,10.1) 1-9-10
12 Ef (7.1,3.4) 7-2-3
13 Ef (7.1,7.1) 7-7
14 Ef (7.1,10.1) 7-2-12-11-10

7-2-3-11-10
15 Sf (1.5,3.1) 1-2-3
16 Sf (1.5,3.2) 1-2-3

Table 8.7 Total definition-Use Pairs & All definition-use Paths in paper [10]

When comparing with approach in [10], they validate their approach on elevator state

machine model and only identify the definition-use pair. In elevator system, there are 16

Data Flow Testing of UML State Machine Using Ant Colony Optimization (AGO) 95 1

definition-use pairs and 24 Definition-use paths. We generate test cases to satisfy these

definition-use paths. Existing technique needs 9 test cases to satisfy all these def-use paths and

provides 100% definition-use paths as well as states coverage. While our proposed approach

identify all the definition-use paths within model and remove the redundant ones. By using AGO,

optimal number of test cases is generated to satisfy these def-use paths. Our proposed approach

needs 7 test cases to satisfy all these def-use paths coverage criteria to provide 100 % definition

use paths coverage and states coverage.

Ranjan [11] used Ant colony optimization for generation of test cases in a state based

system. But they focused on criticality of the states generating optimized test sequences and

don’t consider data flow coverage. By using the results achieved by the application of technique

in [11] and the proposed technique, we make a conqjarative study. We choose this approach for

comparison as this work include AGO in model based testing for test case generation purpose.

As existing approach don’t analyze data flow so we compare the coverage provided by technique

in [11] and our proposed approach. Both techniques use Telephone system model. Model

contains 8 states and 15 transitions. The number of test cases required by existing technique

providing complete coverage is 6;

1) 0->2->3->7

2) 0->l->6->2->3->7

3) 0-> 1 ->l->0->2->5->7

4) 0->2->4->7

5) 0->2->7

6) 0-> 1 ~> 6-> 7

And the proposed technique requires only 5 test cases to provide complete coverage.

1) 1 -> 2 -> 8

2) 1 -> 2 -> 3 -> 8

3) 1 -> 2 -) 5 -> 8

4) 1 .> 2 -> 4 -> 8

5) 1 -> 6 -> 7 -> 8

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 96

Existing approach consider states 3, 4, 5 and 6 as critical states and cost factor but our

approach consider all definition-use paths as coverage criteria and detect data flow errors.

According to existing approach our approach provides full state coverage including critical states

in 5 test cases that they provide in 6 test cases. Secondly redundant numbers of states are covered

in providing coverage that our approach doesn’t cover still providing complete coverage. As

exiting approach consider cost factor, under limit of cost 20, our approach provide coverage with

5 test cases but existing provide it with 6.

h B t i A

u —I

AIL FEASIBLE TRAILS

Iiutui > 1 -> 2 8 -> fkiai
Irvtial > I -> 2 -> 3 -> a -> Finat

Initiaf -> 1 -> 2 -> 5 -> a > FinaJ

Intfial -> J -> 2 -> J -> 0 -> FnaJ

o 1 ‘> 6 -> 7 -> 8 -> Final

"te^agjiin

Fig 8.5 Automatically Generated Test Cases of Telephone System Model

When considering data flow coverage, existing aforementioned approach don’t analyzes

the flow of data just focused on control flow while our proposed approach analyzes and detects

the data flow errors. Total number of definition-use pairs in model is 9 and there are 16

definition-use paths as mentioned in table 8.7. Our approach with a single generation of ants

detects 9 def-use pairs and 11 definition use paths and efficiently detects all the data flow errors.

The 20 faults are mutated within states of model that are detected by our approach with a single

generation of ants. And also identify the all definition-use pairs. In our proposed approach, total

2 generations are required to cover all definition-use paths. In 2 generation, it provides all def­

use pairs, definition-use paths, and all states coverage.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 97

It is quite obvious that our proposed approach not only ensures a better state coverage but also

ensures that it is intelligent enough in detection of data flow faults.

H Li [33] have used ACO for state based testing and automatically generate test cases.

This approach focused on all states coverage don’t focus on analysis of data flow within model.

If comparing test cases generated by technique in [33] and our proposed approach, than existing

approach provides state coverage with redundant number of test cases. Ranjan [27] also used

ACO focusing on all transition coverage don’t perform analysis of flow of data.

Comparing our proposed approach with approach in [10], both the techniques use same elevator

control system model. But existing approach [10] only identifies def-use pairs but don’t generate

test cases to provide the coverage. Secondly mutation testing is also not performed by this

approach that our proposed approach does.

Comparing it with technique [9] perform data flow analysis, identifies def-use pairs but

their approach result in incomplete def-use paths coverage. Due to some faults remained

undetected and also manually identify infeasible paths. They validate their approach on two state

machine models. One of cruise control model which our approach also use for validation.

Approach in [9] provides 96% fault detection rate and cover 88% def-use paths while our

proposed approach provides 100% fault detection rate as well as def-use path coverage.

8.3 Validation of Our Proposed Approach

This section is divided into two sub-sections. The first subsection explains the

experimental settings of obtained results while discussion of the obtained results is described in

the second subsection.

8.3.1 Experimental Settings

The state machine models of 9 different software systems and corresponding generated

XML, are given in Appendix A & B, that are used to perform the cross validation of our

approach. XML of each software system is given as input one by one to analyze the data flow

within states by a number of ants in a number of generations.

The experimental steps described in section 8.2.1 are performed to cany out the validation.

The generated optimal paths based on coverage criteria are analyzed with existing technique. The

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 98

total number o f input models, states, and all def-use pairs within each model

8.8.

is shown in table

iModel i\o. Input Models Dl'-Pairs All D l-Paths

1 ECS 13 43

2 TS 9 16

3 ATM 4 6

4 SES 4 5

5 cc 4 4

6 HMS 6 6

7 LMS 5 5

8 POS 6 13

9 DM 5 10

Table 8.8 Number of Input Models and DU-Pairs

8.3.2 Results and Discussion of Validation of Proposed Approach

Table 8.4 describe the limitations of existing techniques and compared it with proposed

technique. There are few model based techniques that perform data flow analysis but don’t

provide complete coverage of faults. From the literature, categorize of faults are identified and

existing techniques are evaluated against them. One of the code based technique provide

complete du-path and fault coverage. But none of the model based technique provides 100%

fault wise coverage. A model based technique doesn’t provide du-path and fault coverage due to

presence of infeasible paths. One of the technique identified all du-paths within an input model

but don’t generate test cases to cover them and also mutation testing is not performed. Our

technique identified all categorizes of fault within input model and provide maximum fault-wise

coverage within input model. When considering general coverage of input models, our proposed

technique give maximum state coverage as compared to existing techniques.

As we have seen from literature that the model based approaches that use metaheuristic

techniques only generate test cases focusing on transition and state coverage. None of these

model-based approaches use metaheuristic approach for data flow testing purpose.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 99

Currently, all the existing approaches and tools are capable of analyzing and performing data

flow testing of state based systems based on data flow analysis rules. Our proposed approach

also carry out so. However, the major difference lies in the way flow of data within state is

analyzed and the coverage criterion is fulfilled with minimum number of test cases. Therefore,

instead of focusing on the generated optimal solution, we have based our comparison on the all

overall process of analysis of data. This section is dedicated to present a description of our

comparison.

8.4.1 Data Flow Testing Approaches

The parameters of comparison and their details are given below.

Comparison with Model-Based Data flow testins Approaches

■ All DU-Paths Coverage

Existing techniques don’t provide complete coverage of all definition-paths, due to

undetection of du-pairs within infeasible paths. One of the techniques analyzes data flow

and completely identifies defmition-use paths but don’t generate test cases to cover them.

Keeping in view, our approach provides complete coverage.

■ Automated Test Case Generation

Existing techniques generate many redundant test cases to fulfill the coverage criteria.

One of the techniques doesn’t create test cases to provide coverage while other one

considers existing test cases. However, our approach generates minimal number of test

cases in fulfilling the coverage criteria.

■ Mutation Testing

Existing techniques are not effective in detecting data flow faults. However in our

approach, we seeded different data flow faults and approach is effective in detecting

faults that are within states.

Comparison with Model-Based Data flow testing Approaches usine Metaheuristic Techniques

Most of the techniques performs data flow testing are code based using Genetic algorithm and

PSO but all transitions and all-uses coverage criteria was used . One of the techniques produced

8.4 Comparison

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 100

better results if UML diagram don’t contain final states using all transition coverage results large

test number of cases for covering all the transitions.

Comparison with Model-Based Data flow testins Approaches usins Swarm Intellisence

All the existing approaches using Ant Colony Algorithm only generate test sequences

without consideration of data flow analysis. Approaches developed a prototype to tool for the

generation of test cases from UML state diagram focusing on all states coverage. None of the

approach performs data-flow testing using Ant Colony Algorithm. However our approach, along

with automated generation of test cases performs data-flow testing providing full coverage of All

DU-Paths. But our approach focuses on ALL du-paths coverage a criterion which is the strong

criteria to fulfill the criteria with optimal number of test cases.

8,5 Assessment

This section is devoted to specifically present the potential benefits and limitations of our

proposed approach.

8.5.1 Benefits

Our proposed approach offers many benefits over the existing state based data flow testing

approaches. These benefits are given below.

Automatic Data Flow Testing Analysis: Our approach performs automated analysis of data flow

within states.

Feasible State Connection Information: One of the existing approaches provides information

about feasible connection between states but don’t create graph to select paths from it. While our

approach also provide feasible connection of states and create a graph from them to traverse

them by ants.

Selection o f Optimal paths: Our approach generates optimum paths to provide the better optimal

solution.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 101

Fulfillins Coverage Criteria with Minimum No. o f Test Sequences: Our approach provides the

maximum all definition-use paths coverage with optimum test cases that the other existing

approaches done it with redundant and larger test cases to fulfill the criteria.

Providing Maximum State Coverage with Minimum No. o f Paths: All states coverage is mostly

used by state based approaches and generate large test data to cover all the states but our

approach also provides maximum states coverage with optimum number of paths.

Automatic Detection o f Data Flow Errors: Our approach is too much effective in detecting

faults that are seeded result in complete detection of these data flow faults.

8.5.2 Limitations

Considerations o f all Du~paths within States: This approach performs the data flow analysis

within states, analysis of du-paths in transition are not performed.

Categorization o f Uses: We have focuses only on uses of variable but don’t categorize them as c-

uses and p-uses.

Different Generations Results: As this approach relies on the heuristic technique, therefore in

multiple generation of the same input model have different optimal solutions. The generation of

best optimal solution is not assured in every generation.

Quality o f Optimal Solution: As this approach use probabilistic technique to traverse and finds

the path fi*om graph. Therefore the coverage of the all def-use paths depends on the technique.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 102

Chapter 9

CONCLUSION & FUTURE WORK

r

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 103

9.1 Introduction

This chapter is dedicated to present the important findings from this dissertation. A summary

of conclusions is given in section 9.2. Finally section 9.3 wraps up this dissertation by

summarizing some future research direction and areas,

9.2 Conclusion

This work can be regard as a contribution to the study of data flow analysis of state based

systems. In the last few years, a number of data flows testing of UML state machine approaches

and tools have been contributed to this field by the software researchers. Due to these efforts,

automatic data flow testing has become quite grown-up.

Most of the existing data flow testing approaches focused on data flow analysis of code and

some of the approaches performed data flow testing of models. Model based data flow testing

approaches don’t provide coverage of all def-use paths and if provide coverage don’t focused on

generation of test cases. In reality, automated generation of test data providing complete

coverage, non redundant test cases, and handling looping problem in state based testing is a

complex task and several other limitation restrain the results. This task has also become

complicated when using complex state machine models.

A comprehensive survey of the existing literature reveals that currently there are no

approaches that perform data flow testing using Ant Colony Optimization algorithm. None of the

existing approach offers a complete coverage of all def-use paths. The researches that provide

coverage of all def-use paths don’t generate test cases. On the other hand, one of them analyzes

data flow coverage of existing test suites and relies on user input to indentify infeasible paths in a

model. Some of the approaches that focused on both automated data flow analysis and test case

generation using metaheuristic approach result in redundant test cases and infeasible paths. Our

work starts from these observations to view automated data flow analysis as one to solve with

heuristic technique to come with optimize set of data.

In this thesis, we have presented an approach for automated analysis of data flow of UML

state machine. XML of state machine models are generated to given as input to produce the

required results. After the system is given input, test cases are generated automatically. Heuristic

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 104

1

search algorithm. Ant colony algorithm is used for exploring and reducing the search space. The

task of ACO is to search for optimal number of test cases fulfilling coverage criteria

corresponding to every input source model. Every solution searched by ACO is evaluated against

fitness function that we have tailored for state based data flow testing problem. The fitness value

produced by the fitness function indicates the appropriateness of optimal solution selected by

ACO for the data flow testing of corresponding input model. Data flow coverage solution with

best fitness values are selected as the final optimal solution. The optimal solution searched by

ACO is then utilized to generate optimized set of test cases from graph of input source model

that not only fulfills coverage criteria while reducing the search space. Our aim to provide data

flow coverage with minimal number of test cases results in complete detection of data flow

faults.

We implemented this approach in a tool known as data flow generator (DFG). This approach

is generic that perform data flow testing of UML state machine models. As a proof of concept,

we validated our approach by analyzing the data flow of state model of software systems, as state

machine represent the dynamic behavior of system. Our experimental results indicate that 100%

automated test case generation is performed providing all def-use paths as well as state coverage

by this approach. And too effective in detection of data flow errors within states. Prerequisite of

this approach is to use XML of state machine models to given an input to tool generated using

UML modeling tool Enterprise Architect.

A comprehensive analysis of our experimental results revealed that our fitness function is

intelligent enough to look for the optimal paths in a search space. This is rather impossible in

existing state bases testing approaches and is effective in detection of data flow faults. Our

evaluation shows that our approach is not only effective in automated generation of test cases,

rather it is also capable of detection of data flow faults to ensure correct flow of data through the

state machine model. And no expertise is required for the application of this approach. This

approach makes the data flow analysis process unproblematic by using heuristic technique.

However, this approach also has some limitations. As state machine model becomes

complex, automated test case generation may be time consuming. Since, the generation of

optimal solution in every generation is not guaranteed due to use of probabilistic technique.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 105

In this section, we present some guidelines and direction for future work that would be

rewarding to examine further.

9.3.1 Improve Optimal Set of Test Cases

Although, the use of ACO as a heuristic search technique produces good results, we will use

other search based test case generation algorithms to further improve our optimal solution.

9.3.2 Application to Large Scale models

We have validated our approach it to medium and small sized UML state machine models.

However in future, we investigate the effectiveness of this approach by applying it to large scale

soflAvare models.

9.3.3 Reduce the Test Case Generation Time

Automated test cases are generated in an adequate time at the moment, this time will be

further reduce to speed up the automated generation of test cases fulfilling certain coverage

criteria. This can be done by either improving the efficiency of ACO or improving the stopping

criteria of the heuristic search.

9.3.4 Enhance Data Flow Testing Tool

Presently, it is capable of analyzing data flow information within states of UML state based

models and automated generation of test cases from these models. This tool should be enhanced

to analyze the data flow in transitions.

9.3.5 Applicability of our Approach to other Data Flow Oriented Coverage Criteria’s

Now we use the data flow oriented all def-use paths coverage criteria as a stopping criteria.

But we should also focus on using other coverage criteria as wells. In all def-use paths coverage,

we just indentify the use of variable but don’t further identify the c*use and p-uses of variable.

9.3 Future Work

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 106

9.3.6 Application to other Models

Currently, this approach has been applied to state machine models of software system. In

future, this approach should be validated to analyze flow of data and generate test sequences

from other models such as UML Activity Diagrams, UML sequence Diagrams and UML Class

Diagrams.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (AGO) 107

References

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 108

1. XUE Xue-dong,"The basic principle and application of Ant colony optimization

algorithm", IEEE Transactions on Software Engineering,2010

2. Kamran Ghani,"Searching for Test Data",The University of York Department of

Computer Science, 2009

3. Sanjay Singla,"An Automatic Test Data Generation for Data Flow Coverage Using Soft

Computing Approach", International Journal of Research and Reviews in Computer

Science (URRCS), 2011

4. Mingjie Deng, “Automatic Test Data Generation Model by Combining Dataflow

Analysis with Genetic Algorithm”, IEEE, 2009

5. Offtitt A. Jefferson and Pan Jie. “Employing data flow testing on object-oriented classes”,

lEE Proceedings, 2001, online no. 20010448

6. Andreas S. Andreou, "An automatic software test-data generation scheme based on data

flow criteria and genetic algorithms", 2007, DOI 10.1109/CIT.2007.97

I. Alessandra Cavarra, "Inter-agent data flow analysis of Abstract State Machines",

Australian Software Engineering Conference, 2009,

8. Jun Hou, " DFTT4CWS: A Testing Tool for Composite Web Services Based on Data-

Flow", Sixth Web Information Systems and Applications Conference, 2009

9. Lionel Briand, "Improving the coverage criteria of UML state machines using data flow

analysis",2009, Softw. Test. Verif Reliab.; 20:177-207

10. Tabinda Waheed,"Data Flow Analysis of UML Action Semantics for Executable

Models", Springer-Verlag Berlin Heidelberg, 2008

II. Praveen Ranjan Srivastava, “Optimized Test Sequence Generation from Usage Models

using Ant Colony Optimization”, International joumal of software engineering, 2010

12. Bor-Yuan Tsai, “An Automatic Test Case Generator Derived from State-Based Testing”,

Department of Information Management, Tamsui Oxford University College,2000

13. Harsh Kumar Dubey, “Automated Data Flow Testing”, IEEE, 2012, DOI 978-1-4673-

0455-9/12

14. Fevzi Belli, “Event-Based Mutation Testing vs. State-Based Mutation Testing - An

Experimental Comparison”, 35 th IEEE Annual Computer Software and Applications

Conference, 2011

Data Flow Testing of UML State Machine Using Ant Colony Optimization (AGO) 109

15. Praveen Ranjan Srivastava, “Structured Testing Using Ant Colony Optimization” ,

ACM, 2010, 978-1-4503-0408-5/10/12

16. Cheng Li, “Study on Improved Ant Colony Algorithm of Swarm Intelligence

Algorithm”, 3rd International Conference on Advanced Computer Theory and

Engineering(ICACTE), 2010

17. Sun Chengmin, “The Overview of Feature Selection Algorithms Based Swarm

Intelligence and Rough Set”, Seventh International Conference on Computational

Intelligence and Security, 2011

18. Chih-Yao Chien, “A New Method for Handling The Travelling Salesman Problem

Based on Parallelized Genetic Ant Colony System”, Proceedings of the Eighth

International Conference on Machine Learning and Cybernetics, 2009

19. Bharti Suri, “Analyzing Test Case Selection & Prioritization using ACO”, ACM

SIGSOFT Software Engineering Notes, November 2011, Volume 36 Number 6

20. Yogesh Singh, “Test Case Prioritization using Ant Colony Optimization”, ACM

SIGSOFT Software Engineering Notes, July 2010 ,Volume 35 Number 4

21.XUE Xue-dong, “The Basic Principle and application of Ant Colony Optimization

Algorithm”, IEEE, 2010, 978-1-4244-6936-9/10

22. Raluca Lefticaru, “Automatic State-Based Test Generation Using Genetic Algorithms”,

IEEE, 2008 0-7695-3078-8/08

23. Chartchai Doungsa-ard, “Test Data Generation from UML State Machine Diagrams

using Gas”, IEEE International Conference on Software Engineering Advances(ICSEA

2007), 2007,0-7695-2937-2/07

24. Dona Bluemke, “Data flow approach to testing Java programs”, IEEE Fourth

International Conference on Dependability of Computer Systems, 2009 ,978-0-7695-

3674-3/09

25. Praveen Ranjan Srivastava, “Structured Testing Using Ant Colony Optimization”, ACM

, 2010 ,978-1-4503-0408-5/10/12,

26. Hyeon-Jeong Kim, “Deriving Data Depencies from/for UML State Machine Diagrams”,

IEEE, 2011, 978-0-7695-4453-3

27. Praveen Ranjan Srivastava, “Automated Software Testing using Metaheuristic Technique

Based on Ant Colony Optimization”, IEEE, 2010 DOI 101.1109/ISED.2010.52

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 110

28. AhmedS. Ghiduk,"Using Genetic Algorithms to Aid Test-Data Generation for Data-Flow

Coverage",IEEE, 2007

29. Chartchai Doungsa-ard. “Test Data Generation from UML State Machine Diagrams

using GA”, IEEE International Conference on Software Engineering Advances(ICSEA

2007), 2007

30. Hua Bai, "A Survey on Application of Swarm Intelligence Computation to Electric

Power System",Proceedings of the 6th World Congress on Intelligent Control and

Automation, 2006

31.L.C. Briand, “Improving Statechart Testing Criteria Using Data Flow Information”,

Proceedings of the 16th IEEE International Symposium on Software Reliability

Engineering (ISSRE’05), 2005

32. Moheb R. Girgis, “Automatic Test Data Generation for Data Flow Testing Using a

Genetic Algorithm”,Journal of Universal Computer Science, 2005

33. Huaizhong LI, "An Ant Colony Optimization Approach to Test Sequence Generation for

State based Software Testing ",Proceedings of the Fifth International Conference on

Quality Software (QSIC’05), 2005

34. Briand LC, Labiche Y, Wang Y. "Using simulation to empirically investigate test

coverage criteria", Proceedings of the lEEE/ACM International Conference on Software

Engineering, 2004

35. P. McMinn, "Search-Based Software Test Data Generation: A Survey”, Software

Testing, Verification and Reliability, 2004

36. G. M. Kapfhammer, "Software testing”, The Computer Science Handbook , 2004,Boca

Raton,FL: CRC Press

37. M. R. Girgis, "Automatic test data generation for data flow testing using a genetic

algorithm". Journal of Universal computer Science, 2005
th38. Hyoung Seok Hong,"Data Flow Testing as Model Checking", proceedings of the 25

intemational conference on Software Engineering (ICSE'03) ,2003

39. Bogdan Korel, “Slicing of State-Based Models”, IEEE Proceedings of the Intemational

Conference on Software Maintenance (ICSM’03), 2003

40. “OMG Unified Modeling Language Specification" version 1.3.1, 1st edition 2000

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 111 /

41.Hyoung Seok Hong, “A test sequence selection method for state charts”, Software

Testing, Verification and Reliabihty, Softw. Test. Verif. Reliab. 2000, 10: 203-227

42. Y.G.Kim, “Test cases generation from UML state diagrams”, IEEE Proceeding of

Software. 1999, Vol 146. No. 4

43. Sandra Rapps, “Data Flow Analysis Techniques for Test Data Selection”, IEEE, 1982,

0270-5257/82/0000/0272500.75

44. J. R. Horgan, “A Data Flow Coverage Testing Tool for C”, IEEE, 1992 0-8186-2620-

8/92

45. Dick Hamlet, “Exploring Dataflow Testing of Arrays”, IEEE, 1993, 0270-5257/93

46. Elaine J. Weyuker, “The Cost of Data Flow Testing: An Empirical Study”,IEEE

Transactions on Software Engineering. 1999 ,Vol 16. NO 2

47. Elaine J. Weyuker, “An Empirical Study of the Complexity of Data Flow Testing”, IEEE

, 1988,0225-3/88/0000/0188

48. Phyllis ,"An Applicable Family of Data Flow Testing Criteria",IEEE Transactions on

Software Engineering, 1998

49. S. Rapps and E. J. Weyuker, "Data flow analysis techniques for test data selection”,

Proceedings of the 6th lEEE-CS International Conference on Software Engineering, 1982

50. S. Rapps and E. J. Weyuker, "Selecting software test data using data flow information",

IEEE Transactions on Software Engineering, 1985

51. J. Shan, “Research on Formal Description of Data Flow Software Faults”, International

Conference on Computer Application and System Modeling (ICCASM 2010), 2010

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 112

APPENDIX A

XML Format of All Incut Models

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 113

A.1 XML Format of ECS

Fi«_fdit Encodiftf Ufvgt̂ ̂ M#cf» ̂ fcln̂ Pltfgirtf Wn̂<h» ? ̂ ̂ ̂ _
‘̂ vJTlM C l * ^1=*^ t iC § 2 3 r ',\ {|) [i| >:-S (B E O jj : ; v ? ^

< ?]m i ’jp rs rsTL* *!..&■* ff^aoT±ir.7 » 'w i» k M r ® -2 2 a j* ?>
□ <XJi: .i=̂ .T̂ ::5L3r:»“i . i ’̂ L’̂ - - ‘&«cj.£?rg/!J«Ll .3” 22i43:i2">

< S > II.n «a d e r>
3 <J:K J. ic <7u»er*Ti« t ic :i >

<xiiz .aji :̂5rt«r>int«rrrl#e ArcMtacT</»Tire*pcr’iftr>
i “t X H I . € rV> ra i a r . 5 c/ X X I . £ j f r t erV* r52.^r.>
r < / ^ I t d^ciis:'eri^avicr^>-
5- </XKZ .?:ftaaer>

3 < ^!C .:M cd el .-ene-'^SA H o < l«i‘ x.^i .i i* = ‘ ia_EA ID _FiC € ?i5?_A C 3 l_4 t32 d_A 4 1 «_1 5 1 A S 8 0a 4 S 3 S ‘’>
0 <UKL: U'oatespdce. cvs «il L >

<u3C.:ClAai 13=±. X-3«’'EJtXD_* 111 l i i l _ ^ 4 e 7 _IO tC _* Tr4 _4 1 SZSCSOJUkSC* ISnC- .̂
3 f a c i a s - = .a r* »'’ C a ta F lo w Z A F S _ J 2 C «2 5 7 _ A C 3 1 _ 4 b 5 d _ M l? _ 1 3 lA 3 8 0 a ftS ^ "
0 < ; He d e l i i « r.::. t agga ;;e>

< ' X . 51 e? 5ft S'/* : J t ^ ft 7* "pe r « J l t " ^ a l 2yU?T?_&<« SkAi ' i i • Sb_9 64G_D 5FZEC &A21C6
<’3C,t?s?T3c=V*lus ♦ .4r*-c4_l;«ck^fgc_icl''
< 3 IL :rB s rtd V % lu & c re a te d " -»J.5 e := ’’2C 1 1 -0 3 -7 4 G 0 ^CC;5 C"/>

! < 3 H l:" e f f ^ d Y E i: ;e i:.fe;-’'a 3 < lifL e d " v fe l-;t -= 2 i l 1-03*24 O 5 :0C3C S"/>
<U iC ,:r4 7 5 e S '/a li's t a f -" i* o a r .^ T v iie < 3 * vaiu ;g “ ’ ? ftlS S ’ />
<’3 K ^ :"e 5 g e ^V e L ,;- ’ e :.:^ ^ -~ ;;2 il -i i ; -C :& l l : i i : 2 4 - / >
<^3CL;Ta^y!53V^l;i- r_5j“ ’* Ia * t»A v w S «t^ " ^;:? :-’* ? 5i5-X C“ C3 l : ?4’'/ >
<i?HI v 'c i’i:-?*''':..-i''/>
<'sT^L:T?55ei5'/*lj“ » p r p t e r ; t ^ d ' 'r A L S T ‘ />

1 ctIMl,:?fl55«̂ T'fclu“ t«c""T2»eiltxl̂ vai
I < 'J> C .!ra ? C «3 V «lii* C*i5 » ’* L iW J«l '‘ V4l'jer»'=Fi.L5*:"/^

<7Xl:"ftg5̂ V̂4liie valjK»̂ G"/>
<l>il:Ta75eS'/*lui5 v4L . i - ’ istfcp(i-i=l;VICCfW! ;CW>0/"/>

: T a 5Vav 7 ™ ’’I n f ch i o»<S ” v « 1 ".p ™ " H " / >
<r>C.:Tkgce3\^4lue ^ g * “t ^ a 3 c - ra ia c * * -! . C*/>
<3Xl:T8C3eii'>’* ^ '-^ T a j - " s t a t e s ' ■7fll^i---Propo»J5d*/>

isilraTir*
■talse" i

eXtmifcif Maffup Un9u«9c fk kn9eh-173646 incs,:X̂ i n ; t CpI : I SH;0 MW<nvs-1252

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 114

A.2 XML Format of Telephone System

viaicili

<3iC:TftCfsJr/ai5ie vc3*’'a«edtcl’* '?'a:.v<»'‘?AL£ZV>
<v̂ :7asses'.'5î e r£i -̂-*rAi_ss-/>
■:*?<" ::47-"tpo5’'
d>il:Ta ?7 ^j-^p a ji.a 7 e Tl«g »‘ vaii;?-'! »?to<tel-*l;VXCifi-1 C3i>0; "/>
<jKL:T«fffS3V£i:ie

U : l Col:l 4d:fl

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 115

A.3 XML Format of ATM

3 cVm̂ I S . “S',
a I

pOOfi, !ig cr̂ e r.t-a ̂ ii;
iitect</x*il ,cji^r^er>

c r terVa rsl rr,>2»3</XJfI.

.ld*^3« S*a> IJXZIS?* 5D51 <la? 5:02 €C4F03iI>’7513">

_11112 2I1_5187_4D3C_A1F4̂ 4155«:3CAAl?C” is=ffcC*"trTM" faijs* ŝ̂ 9̂ Z9Z
-.̂ •'ZATK ID̂ I£9* M>5? 4le7 tC*!=C2$D'?m’’ tales’*

c a r .: 7 Q? ?« aVc 1.1- ’C ,1-- - pareo t ' v;- lue- ”SArZjCT75E3&r_CBi}2_4e59_S7r5_SAS5 3€7D 35CC ' / >

<U5Ciil9ffg5Jp"«i:je
-05-̂ 4 CO;0O:OGV>

<’JKL;ra75eiV*li:p T̂ 47»*»adiiicd" 211-D3-24 CG;DCrGa"/>
O C .: r a 5 i? s iV a l . i= r i j - ' i s p o ilt r o lle d * v iiw r * " F A L S 5 * / >
< 7 tC :T fl7 9 5 iV a .l;;« ^ j - " l « * : lo 4 d d a L e “ c i l i ? - ’ 2 i: i2 -e 2 -1 2 G S M S :3 1 "/ >
<̂ ?iL:l2?5eiVai\;€ ‘£ -̂-iast»av»dat€‘ value-'Zaii-02-12 C9:45:31"/>

tdr*”re7»ion" .5'/>

T a lu « * ’» ? A i.JS V >

<3C fTê gtiiVai’ie >

C^:ra^;sd’/&lue «7"'b»Echsir«*'
<v̂ tt55ge5'/«iw? ‘̂ ê "t>etchio«d‘’ j-'/>

s i - 1 ; V i a » - i ; e S C -S ; " / >

Ln^l Cot'A l̂iS2 . ^ws

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 116

A.4 XML Format of Library Management System

Ljfi^usgc Settings M k i v Knn

g «>d Wote»irf*»

aWWtt » t;si ̂ {&»>i 3 c»a r^ s] • »•« JF

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 117

A.5 XML Format of Hotel Management System

?)» ♦ 3 c j * f«>-T s @ rD t^ ' s a i -^ '5 ’1

i:(‘*xi ^
5‘.J 3

tM J
.*w ["v? 3
lij

;?w 5 c5 C i t e , .sues I. a t« >
7=i3̂ 1«̂ tste z.±rje~̂QT'. Dl»shftTg«“ xz_l. 2.i-''£A.ll>j:;2yCA<;»*_2C«5_<5̂ _WAf_DB84ri33ra32’’
< {“ C^je ; I i e « r . ^ , ^ is^eJ/a ; - «>

<'JKL:-rag^«3-»iue tia?-"i»Abstract"

g "-S A v4 i-ift» ''S? i* t» * />

•"SAJtr E7D3CA71 1335 4S2«. ast)S 38rA2<

L;7 ■/>
T45*-laArjtl^” v ii ‘;*--£Ai>c"/>

<’JKL: I 115» ‘piCts g« ̂ ■v 7G3iZA71_1 B3 5_402 4_5FD5_B3rAi 4 WE 5Ta2 " / >

<'vTe.JT*55e^r/Aia? tsT^-date^sTested" jS-ie cr^2fi;3D-/>

rsv»’’iate_»»od»t4e4=’ =? îi«-"20iI-0*-iS 00:7* :*i."/>
<‘JKliIs55*5valv:e tA5»"3eotyf«" va'.;i**'java*/>

< VHl: r ig5e-a%‘tlu« l i ” ̂ Agig;ê ■ vtl-i* ■ "C * / >
<UKI:“ i5ge^,'4lu* rr7~~rn~vri7r_~riin" T«JL’̂ 6 *"‘>ft'A Fio^ i2o4^1~y>

< » J!C .:rig5 ^1V d lL:a '» tt l-r* ’* l . S " / >
<’JK1: Td?7“iJV*liie i^Aij^'aiitiwr'"

<VKL: T4c?ei’*’ilu« cig»“cjcMj>ItxIty^ v'ol.ic«“ l“/>

<VXL v2l'ie»*Pr&pc««<l'/>
< 7 X - : Ie g 5 e iV s l i ie t e ; - " * p o s =
<*JKL;TAw;-S'/aIu# ta iĵ -sa lo-^i i d" js*"! 3” O
C .'H lr ra c c e ^ '/ ft l^ c
< i m : 7 a ^ i u !? t ̂ 7~" 9 t.ŷ e “ l?i“ "fl«<;i.Colo r*-j r 3o? cie rCol or— 1; Borde rV L d tJ»— 1; fcm tCol

>C : M o d - lZ l^ M r t . -:2e>
I . SKi.*ri*isr. .fcxi-rr̂ i3»r»"E«̂ r#ri'irl»« ftrebltiftac. 7

- i ; v i t t L a n ^ ^ C ; 25v ia t a T w s —2 : Bo r<>e r S x y 1 « -C : " / >

rji-r^:Zxrz'^9sisF:/>

eUen«ib<r M«rH^ Ijn^ua^e f ir 4en^:&4grS In jl CoJiI S«fiD Om '.WWmI owi Wmdawf'12S2

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 118

A.6 XML Format of Student Enrollment System

 ̂ a) M e”.“’. a ' ^ tSi1n>f 3s« I» •hI r» jc:si c» - v.
aas^Bijjaagagii^aTCT^^^ eh gs-< j

 ̂ ■</T5Kl:F3‘5ud35ta’ce>
3 -a=£*"C6V

<L^rT

Bnrcllad Stodyir '̂ sci .id-'SAID 57̂ ̂29?9 fg«7 557«IA53C7S“ c“ ■̂̂ SK 1DC3IS94 $&&? <£«7 9293 «C4

■:î
-2^

l i e v 6 7 -‘* ;» S p € c i£ ic c t io o '‘
ty p e " T ^ i 'j< * " 5 t a to " / >

<"21:,! "acjedvaX^:.* ra$ * * «a ._ is 'ys «* v a l : j t » ' ’(3*/>
< ? «LrTft? 7 e d V "£ l-e T ^ T -'v e M io D * * v a l 2 ? -" l .G " / >
<iS!L: TagijeiSVBlue va7*"isÂ îv«" v*iue-"ialse"/>

; Teg3«cfv a li -s - a t * " ’•■ai• «* ’'ZAP?k_i[>C51254_>55 7 _ * l«7 _«2 C 2 _«C 4 tD 2 5 & 7 5 1J~
<■21;,! "& 75«ii’-'aX‘-:.e r a 5 »* d a te _ c re a ^ e d “ r i.i ;j^ * '2 D 3 .2 -C t ?<
C ?H L:Tft? :??a V il,ie ^ S 7 -" d 4 t « _ a o d t ; :e d " ’v d l js -= 5 S 1 2 -C f -2 4 i3 :3 2 ^ 0 5 'f '>

: 7ag5«JVaÎ e -ay—"geritype" v̂ £l»ie"" Jav®’/>
■c'3C,:7a5a«dVai-i2 t d y * ’’ tagFged" v d l : i s « ’ 2 '/ >
C 2 :L :r a g g '!a V a iM ^^as-"pic>ia5e_D«ae* " a i u ^ * -r a t a F I t v H c d c i''/ >
<i?Hl; “ o75Td*.’5i'^c VaL;;#*’ ! .C*/>
<vH l;T4 5 5 ftS *-'s lje “̂ e iT - 'd O U w r ' - d l - ' : — a tc* / >
•::aCsTft53<iiVftX^* t 4 j » ' ’ c o f l^ iA x i sy«

ra5**sta»:̂ * v̂ luĉ 'Fropoji«<*'/>

< :7 H l5 T a 5 j^ ;a : 'je - 4 7 - ‘*ea l o c ^ l i d * v a l i - - * ’ 13"/> -/>
I ; 2g rde rtToiQ ?— I f ic rd e rW id th - -1 i FontCo l o r - - l ; VSw^«

< '3 G .: S L r ^ ic ^ 'i r e l f s t ^ 'iT ? ,
-t.ij- "t?"-" r.:TT,- ■ r- :rT- >,. ■■lil

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 119

A.7 XML Format of Purchase Order System

(nCOdiltg

y c - > "iftutSei3 c j • t !B̂ i ♦ ® » b q <>^■
H«3ac)BUmjjM̂ «a<Jt̂ lHCTSaBa»ĝ fiOOGS B poŝ j _____

<L’KL;Cc=vcs its State *jti .iil-*'iy^XJ_474C9r2^_Z9^_5^t_ADCC_f^21.V«2b9ii27_Activ'.ty_7i7p ’ r.ace-'J^op|">

4 1 “ 3
l#« p <l-Kl:5i^ie5t*c« r.ane-'Cl; !>et o r ^ r " .^S«‘’ZAID_C<3^s:i01_Z««p_4bG«_®lfC5_4rC7*:53Cr9C* zj-MFii::e-''5SAPX_4’»4C»FSa_]&aCA_'<?bf_Ai:<x:_

44? 0 C K l ;K :^ d « l ’::ie*<r;^.T;a53e<svai.i*>
■45C <3jL:la57«av%l’i« Las^'lsAbatraat" ^ftlue“ "ia ls «“/>

■£?' <?KLtra5?sd^^l;ie t*5- "le^ciftC*- 4i^A"

^4/ ! <r;Kl;Taj5e5V4lii«

i t 4 - r » " « _ a r y p e ’' T a l '-< :» “ e v >
-,>• I ra5»“ver8lcn" .C"/>

C^;T4g«2V4l'jft ’'.oC»'*tsJic'tive'' vftl-ip-'false
: <'J>ll:Ta73e2'/alie ‘̂ eg-"pscXA5e* veli-«’*ZArT_t’T-iC’?rS2_Z9C*^43bf_ACCC_363l5$ig9?2'J’'/>

:̂<~̂ { <'3C,:rE?g«iV«I'ie td^ '̂^Jate^tTT-fe&C^iS" va:._:fc"’ 20i2-25-i€ C C :13 :iC "/>

I C ;KL :“ agy?2Val.ift ti?— ii*te_!sOilCV«<l" rAVJ*“ “ 2CI2-i-«-lfi C0rl3 ;56"/>

<3HL:raffffsiY£:.;;e t4i;«''?er.type’' vtlu*--Javit'’/>

<v3<L:r595ei'.’*i;;e vaxu*»“C’=/>

<̂ 3C,:Te9ge5Vfti-- ‘/aI Flow «&dei"/>
=i5»"'ptiA»*“ v&li*w" l . d-/>

<J>E.:Z»^i^dVsl.-tLK K-tz^'auL2ior* v<ii'_e»'«l.--3"/>
^ o 3 * * c ;a ^ ie X it y " >

<’ji (L :Z s ^ q ^ £ ‘̂ 'AL'2.9 velie“ '’PTQp«»ei'’/>

< TJK l:"a 5 7 !? S V 3 lie c i g - ’ tp o s " v -a l . ; - - " 5 '/ >
<?KI:Ts?ff=iV5Lte Teiii«*'9V>

r . « c - ’ e * _«ie Tytk # "
<ti>C.:T«̂ g«̂ y’Al.i< Lai-‘ityic« ytii?-'3acVColo r=-J r?oTiicrCQlctm-l;6u'TJ«iWidi,>i*-l :Tos:tCoioi=-l.*VSwiiŷ :«»=0:

</UKL:Kcd^lIIs?:est.
t X « r .M t .a r AKJSliCtc* 5 ,5 “ >

</ 3<L: cr i i> . ixM t i »1 V« ̂ v f>

<v>il: 5 ir'-ijct u r e I ??«t - re. t vp« >

EXtH.LWtM*>*uvljn9u « j » n , k n g t h :H m fc w .t.’SI U ; 1 C a (:l SH;0 Oo5\W«4o«. Vftuto«-12W , W5

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 120

A.8 XML Format of Cruise Control

: Ta d V a i’j c ca 5“ “ i t r a c t “ e " / >
<V?C,;T*5 S e iV a ije !U I»e * / >
<3JC. 17« iV fti i# ' s ;■ ’'♦ a_s cypa " ? a l'j * ■ ' 5 t a t « "/ >
< ^3 H lrT i5 7 «S ‘v a lu e ca3**«a_^iityp«'* '>
< v H l \ r « ji^e i V a i ’j e vS j * “v e r* t sri = c. • 1 . C ■ />
< ;^ iT * 5 c e c T ,4 .i jf t ‘t 4 ? - " i a A c ' i : v « -
<3ML! ^ «95* 5Vfci ie r a ̂ "padk^ga - -.'a lu * 3 BDC 4 7 ‘ _!> 1S€_J 52 3_A05 4S5 & 5 D ?U 3 " / >
< 'J> H !ts7 5 * S ’val-:i5 r a g ^ ^ d a ta ^ c re a te d ’ v % l .:“ »*■<C12 - ? 7 - l i 0 3 t4 7 ;1 1 "/ >
< L ^ : r * J 7 e iV a l.ie ?̂ £5 -* d it e _ H o d ir t e d “ v i i j e - '^ 2 C l2 -C:’? - : 1 3 5 c -4 7 ;? 7 '/ ?

: L » 5 ge^r’ai?i e t £ 7— “g en t y p « ■ b - ' Ja v«i • / >
<"J>C,:Te5 s«i'<’* l i e t a 7- ” ta g g e d ' v 4 l - e - 'C --/>
< 'JK l:7 a ? 7 -3 V ’a liie :;3 i* 'p 3c»;«5e _^C M e * f l o v »od<>L“/>

re I .«?'/>
< * J> il:7 «5 i;e iV a iae t s y — v e i i - - ' 'A . 'J w io i i » ' : r a t o r " / >
<̂ 2̂C . :T e 7 s «S V e i-ie : ; i ; " ’'cge^?lexi ty"'
<^Z.:7d975^3VaiTie '*Pn3sw5»«d'’ />

t J M l;7 a g i5 ^ r ‘4 lu « L a ? -’-«a l i> c a l id -
<’j M L :T « 7 3 « i V a l - i » t s ; - ’*«»_«• e T jr -* ” v f li= ::* -"o iM «? it ’ />

; T A a c j 3 • t y i -^a !•-«• " ̂ AckC tyl o r— 1 : Eor<3€ r t ‘o I o r » - 1 ; ̂ itsrflerft i ti r.?:-
</T^^L: V .3 d c lt lc k «3 t - :;aj75t4Vel'w«>

_ : C I e s a i r i « r . ?«aCu'^e>
<'JlH

<C'MI: Acrrii'jte, iritis IVelvff̂
O K I : r * P 'S f = i£7T-/>. L r ;:.tl .a lV t i:ie >

<̂ 'T.-: 51racr*jr81 Festlire, type>
<T3C.:Cia95ifî 7 jcĥ . î ;:5-£-"oaiH

: l C a l :l Sditt

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 1 2 1

A.9 XML Format of Display Manager

•TOP™

< '• JOLL ve r* I .
z s iz T .~ ''l , 1 ' « E l^ 3 ;v K " « " o » i9 .» T y / C " L L .3 ^ r i£ * S T 4 .v p « -2 G 1 2 -lC -0 3 l S : i i : 2 1 " >

î rob i t«ct<'?KI. 9irp ̂ z
, e jrp t r wTiVe r 9 i c :: > 2 . 3< />3i I . c t rv « j: r

LrMcd*! rdn “*"SA ifedel" ,ii-TCi_aAID_73W3??C_€34a_«3I*_S5tC_lAi;BC<̂ C743 4-:>

:C l£ 5 3 r ,a = .6 -= t « < x jt C I « » » ' ’ xs-1

:H r e a v a l ' j « >

54 47 4 iaO_*7P 4_̂4 i 52 «Cfi0#Ui>0 “ * s? c c S« = t
a 0 9 !T C 6341 43l<5 S 'T C iA 5 5 G A 2 C 7 « ? - l5Lfc4?*“ r a i

11 ;* • -ZAPtr_*i D«7l>D3 5& 3 i _ 4 e 3 f _57A7_
s_ici“ »& i^ .e -"2 " .'>

ta g * " c re a t e d - i .D L i - - " 2 C l l -C 3 -2 4 0 5 re C ;C O "/ >
< 'JH l:T a ^ ? 6 l'/ a lu € v i l ^ 5 - ' J 5 l i - 0 3 - 2 4 H J:C iJ:C O '’/>
<UXL : T aggedVft 1̂ ;- t -1 r î -t*' rAi^S" / >
<̂ 3KL;Ta9g-dVal=̂ ̂ 2012-10-03 15:31;43V>
<lJ>?L:rt55«3’;al.i ̂ c-a3*"ls«t»awlA::e' ’val̂ e»*2512-lO“<J3 IJS.-M5“/>

»ic ri" v a iia -'* :
<V?C
d3 JC .;T a g ^»d 'y »l:ie
<U>?L: T4-75«3’/’al'ja c.a3»*lo
■<v>fl: v t g * ' tp
<WL tt7-“pa
■ctSC.;rftg«-dVai-iE valiie-"0"/>
<T3>C.:r4>?7etf/al'Jt ĵ ag-'botoJUĉ d'’ ''al-̂ e-"=e"/>
<l«l:Ta77ef/Bl je ta3-*’pi-a#a’’ ■■* .Q*/>
>C5KL5T*ggei’/aivff -vj. >

7 a l ’-^ - i^ t e £ le l= l .V i i : :0 K = l ;C S C = S :* / >

1.0:1 C s »il Sd;0

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 1 2 2

APPENDIX B

Screen Shots of All Input UML State lilachine Models

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 123

B.l Screen Shot of ECS

^ L D o o r Closed

a (.start Moving Down -\

J

• Q ".MovinjDown the Floor f

________________)
-------? k ------

_______ _±______ _
 ̂ G313Jdle/DoorOpen/ReachEd O 12>Rc5ume/Docr Closed

\ \ /
I j
' i

t . t..,.) i

I 2.Door Open

j£ J l
3.Floor Selected/DoorClosed

G 8.Resume Moving Down 1 I

_ _ _ _ J I
O 4,Floor Setected/Door Closed/Called

I O 9.Start Moving Up

O ILReiume Moving Up]

J

JiL
O s.floor Selected.^oor Open j i G S 10.Moving Up the Floor

.>___________________ _________

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 124

B.2 Screen Shot of Telephone System

C3 1.0n Hook

C56.Ringin9

O 7.Connected

:v___ y.

0 2.0ffHook

! O s .R in g Tone

I
G> 4.Error Tone 3.BuiyTone

V V V V V

08.E)dt

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 125

B.3 Screen Shot of ATM

I..

& 4Amount Entry

J

I O S.Courttirtg

Initial

o
JSL

O 7.Return Card

@ 2.Pin Entry

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 126

B.4 Screen Shot of Library Management System

«3.Dispaly Catalog

—I-----

Initial
5.Catalog Contents

O ’ .Rent out E-Book;

V

E 3 6-Rent out MateHsi

V

C J J.Maln Menu

(Q 4,Di;play Borrwoed Matfiiat

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 127

B.5 Screen Shot of Hotel Management System

I l.P>tient Take Appointment

3, Dr 1} not Available

i> 2.Pafaent coniult Or

& S.Dr attains Patient

I 8. Exit

i 0 4.under0peration

i i-
I V.

I (.Patient get Operated

O 7.Discharge |

J

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 128

B.6 Screen Shot of Student Enrollment System

r m

I @ 6.Enrolted studying

I

& S.Withdrwal in Proces; & 7.Enrolled/Giving Exams

Initial

L
f

I OS.Getting Result

I J

& LRegirtered Student w 9.Gr̂ duated

0 2.0n Break !

J

1 -
I 3.Being Enrolled

J

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 129

B.7 Screen Shot of Purchase Order System

J

r
r J I

Initial

(S.Cancet

V.

)
r
: @ 6 , Delivered

I

iL
d . C e t Order

J \

i liW /.Exit

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 130

B.8 Screen Shot of Cruise Control

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 131

B.9 Screen Shot of Display Manager

^ 2.Showing^vlanagjng Solution I Initial

......J 9

O lS h o w in g Idle

L,

O 3.Showing/Display Problems <

U _ L £
04 .H id d en !

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 132

APPENDIX C

User Manual

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 133

C.l Main Interface of Data Flow Testing Tool

2. Automatic Setting- Select this option to automatically select parameters values.
3. Custom Setting- Select this option to select parameters by users according to

his own will.
4. Inputs Setting- This option show drop down menu to select input by user

when selection custom setting.
5. RUN ACO Select this option to apply ACO on given input.
6. Select Output to Display- Select different outputs to displays.
7. Output Window- This window displays all the Outputs.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 134

C.2 Browse XML (New XML file)

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 135

New XML file Window

Open

► test... ► states with more variables and ... ► Search with vcrio... P

Organize ▼ New folder .̂zz

Local Disk (O)
HP.RECOVERY (E:>
HP_TOOLS{R)

s DVD RV/ Drive (6:)
^ Microsoft OfTtce Click-tO'Run2010 (Prc
^ Nokia Phone Browser

% Network
^ Control Panel
^ Recycle Bin
^ test data

elevator without loop
State machine diagrams with fuil of attr

^ states with more variables and errors
^ Thesis Write-up Milestones

Name

^ ATM

J CC

S ECS
i HMS

S
^ POsys

IS

<

File name; openFileDtslog

— Opet\ 0

Date modified

S/30/201211:2
8/30/201211 ;2j
8/30/201211;2
B.mmnii-2
8/30/201211;2
8/30/201211:2
3/30/201211:2
3/30/201211:2

Gance!

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 136

Select Model

► test„, ► states with nr»ore variables and ► Search ifotes with fr.orz vaiio... p
nr~ ■ :jigBie:

Organize ▼ htav folder

^ Local Disk (O)

cs HP.RECOVERY (E:)
HP_TOOLS{F:)

s DVD RVJ Drive (G:)
Microsoft Office Click-to-Run 2010 (Prc

^ Nokia Phone Browser

% Network
^ Control Panel
^ Recycle Bin
^ test data

^ elevator without loop
J i State machine diagrams with full of attil |

states with more variables and errors
Thesis Write-up Milestones

Name

ATM
CC

; ECS
^ HMS
i LMS

POsys

S SES
M TS

Date modified

8/30/201211:2
3/30/201211:2
S/30/2012
S/30/201211:2
8/30/201211:2
S/30/201211:2
8/30/201211:2
S/30/201211:2

File name: ECS xml f il« C -^m l)^

Cancel

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 137 ,

Open XML File of Selected Input Model

| |C£3 lislOpen

« states w'rth more varwbiK and errors ► ECS Seardi fCS P
Organize ▼ New folder

^ Local Disk (O)
HP.RECOVERY (E:)

^aHPJ-OOLS(R)
s DVD RV/ Drive (G:)
^ Microsoft Office CRck-to-Run 2010 (Prc
^ Nokia Phone Browser

Network
Control Panel |

^ Recycle Bin
test data

^ elevator without loop
iji State machine diagrams with full of attr

states with more variables and errors
^ Thesis Write-up Milestones

Name Date modified

S/15/2912 iCh4

Rle name: ECS xmlfil ̂T-xfTT'O'

Cancels

•4ig?r-y

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 138

C.3 Select Automatic Parameter Setting of ECS Model

* 0 ^ A lito c n M rt Tert uwng ACO^

•C \iJ5-ferg\rtu?<s MaStSFMNDwtgopHeK d!
O A;tomaijc &owse
© Custom

h(XJts
11 CO i Nuriser of Arils

■' I A LFA

- B E TA

Run ADO

Cutpots

>apl?/ V,jfs:«r>Cr Hasn'

ijsptry- p3fK*

CMpJayOpSjfTirf-. Fit/

[>api3y Op» 0?S!twr?. ?2!hs

Lisciay r̂ a»aly> VaiM

L'̂ 2 f iv w lr:c

Run ACO!

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 139

C.4 Select Custom Parameter Setting of ECS Model

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 140

Select Number of Generations for ECS Model

[y ^ u t o m a t ^ T rt Caic t Genration uting ACO 5.

C VUssrsXFjuriB * W c \ P h rX !e * lo p 'ie a d

O ôriialic
‘O Custom

Irputs

100 — » i of A ts

Number rfG enefctons

01
02

'34 beta

vS
07
D30̂ia

ALFA

Run ACO

O ipu ts

OsDtay

i>0Q(3> Paths

D-isliy Cpr’-THjr; rsr:

Cwiy âlhi

L>'spfe j Psffs

Run ACO!

4f-,\

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 141

C.4 Run ACO to View the Results

c

^j^Autofnsted Test Cos«s Gcnrvtion using A C O

© Automatic

0) Qjstoni
Inputs

&OWW '

100 »-i NunberrfAnt*
f iiM tix T d Generators

A LFA

Run A C O

O U p tls

Dist^ay A4iec«ncy Mabix

Dtepts/lnfMsl>le Paths .-

Distitey ftjtimum Paih

I Dapiay Other Optlnum Paths

I Display F e a s ^ Paths

[*>piey Dais RrJf

View Results

;»»»• ■

' \
7 1

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 142

APPENDIX D

Generated Test Cases & Data Flow Information of All Models

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 143

D.l Display Adjacency Matrix of ECS Model

|^Auton%ated Test C a i« Genration uiing ACQ

O Ajtomatic

Custom

inpLis

hoc Nunifcef rfAts

&OWSC

05

L I ALFA

B E T A

-RunATO

Display A$ecency Mabw

- Dtaplay Infeaiijle Path* ■

Disctay Optimum

DiapJayOlhef Optimum Paths

Diapî feaaaile Patts

“SS/ D̂3 Wo

A D J E C E N C y M A T R IX

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

0 0 1 : 0 0 0 0 0 0 0 0 1 0 0

0 0 □ 0 1 1 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 □ 0 0 0 0 0 0 0 0 0 0

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 144

D.2 Display Feasible Test Cases within ECS Model

ŝ-ir
: Automated Test Casei Cenntion using ACO

© Ai/uomatic
(» Custom

Inputs

hoo '•'!

Buvas

Nurier of Ants

05 ▼ i NuTnt)«-rf GftTeraeons
h - - ALFA

-I BETA

DispteyAtSecency Mm ik

' Diaclay Hearfjte Pa&w —

Osptey Optimum

U-Oaptey Other Optimum Paths:

CL Diapiay Fea d̂ife Palhs

Oispfay Data Row W o --

ALL FEASIBLE TRAILS

Initial -> 1 -> 9 -> 10 -> 13 -> Final

Initial -> 1 -> 2 -> 12 -> 8 -> 7 -> 13 -> Final

Initial -> 1 -> 5 -> 7 -> 13 -> Finaf

Initial -> 1 -> 2 -> 12 -> 11 -> 10 -> 13 -> Final

Initial -> 1 -> 6 -> 7 -> 2 -> 12 -> 11 -> 10 -> 13 -> Final

Initial -> 1 -> 2 -> 3 -> 8 -> 7 -> 13 -> Final

Intoal -> 1 -> 6 -> 7 -> 2 -> 3 -> 11 -> 10 -> 13 -> Final

Initial -> 1 -> 2 -> 3 -> 11 -> 10 -> 13 *> Final

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 145

D.3 Display Data Flow Errors against Each Path of ECS Model

Test Cas«s Gcnnition using ACO, i,iir̂ -_̂ -r'fiiiiir ii i

!C .\U3«'»’f*uz3 d!
G Somatic
‘■ii’ Custom

inputs

hOOo,''! Nunierrf̂ Tts

Browse

(oS-- ■»’j Numbero< GoTefgteons

0 " AU A

RrnAm

Oiputs

CS«pJayAd|ecericy Matii*

CUspla/ In fe ast^ Paths >

Oisptay Optimum Path

Dispiay OthwOptifnuii Paths

I>)̂t9y Feas4ilePa&».

d Oeplay Data Row Wo

Vanable : ef

(1,2):
(1 ,7):
(1 ,1 3) ;

l->2
1 -> 2 -> 12 -> 8 -> 7
1 -> 2 -> 12 -> 8 -> 7 -> 13

D A T A F L O W E R R O R S I N T H I S T R A I L

Variable: sf
Type of Error; UN USED
Description: Define on nodes 1 , but not used.

Variable: k
Type of Error: UN DERNED
Description: Used on nodes 2 , but not defined.

Variable: u
Type of Error: UN USED
Desaiption; Define on nodes 12 , but not used.

Variable; f
Type of Error: UN U ^ D
Desaipdon: Define on nodes 8 , but not used.

Variable; j
Type of En-or; UN DEFINED
Desaiption: Used on nodes 8 , but not defined.

Variable; e
TvTJe of Error; UN DERNED
Description: Used on nodes 7 , but not defined.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 146

D.4 Display Def-Use Pairs, All Def-use Paths & Data Flow Errors of ECS Model

' Automated Te rtC ^ ^ 6 e n ra S b n u «^ A C O =

o fiuiixtm:
Custom

hpcits

flrowse

Nuriaefof M s

05 ■»•! Nun̂ dGdiefaljofB
ALFA

BETA

Run AGO

OiipUs

Otsf̂sy Afjeoency Mftroc

Daptay HeasUe Paths -

Daptay Optimum Palh

Diaplay FeasSsle

(>̂ 3<ay Data Flow H o

FEASIBLE TFtAIL 1 :

Initial - > 1 -> 9 -> 10 -> 13 -> Final

TOTAL VARIABLES USED IN THIS TRAIL

c f , G f, s f , c , b

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : cf

«:?rs\nĉ

(1,9):
(1,13):

Vanable : ef

(1.1 0):
(1 ,1 3) :

1 ->9
1 - > 9 - > 10 *> 13

1 -> 9 -> 10
1 -> 9 '> 10 -> 13

DATA a O W ERRORS IN THIS TRAIL

Variable: sf
Type of Error; UN USED
Description: Define on nodes 1 , but not used.

Variable: c
Type of En-or: UN DEFINED
Description: Used on nodes 9 , but not defined.

Variable: b
T w n a n f C r r n r * I IW I IC lC n

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 147

All Def-Use Pairs, Def-Use paths & Data Flow Errors of Feasible Test Case 2 of ECS Model

I^^Automated Test Caset GetvaMon lising ACO

O Aiojnatic
■o GiSton
tpUs

-̂ Browse —-

05

ALFA

RunACO

Outputs

Dwptay Ac^ecency Matrix

- Onpiay Irf easiile Patha ̂

- Diipby Optinum Pash

' Oiiplay Ottier Opimjm PathS:̂

Oispjay Feasibie Padis

- Disp̂ Ĉ a F9ow lrft>.

Optimum TRAIL 2 :

Initial -> 1 -> 2 -> 12 -> 8 -> 7 -> 13 -> Final

TOTAL VARIABLES USED IN THIS TRAIL

c f , e f , s f , k , u , f , j , e

DEF-USE PAIRS AND DEF-CL£AR PATHS IN THIS TRAIL

Variable ; cf

(1 , 2) :
(1 ,1 3):

1 -> 2
1 -> 2 -> 12 -> 8 -> 7 *> 13

Variable : ef

(1 , 2) :
(1,7):
(1 ,1 3) :

I -> 2
1 -> 2 - > 1 2 -> 8 -> 7 j
J -> 2 -> 12 -> 8*> 7 -> 13

DATA FLOW ERRORS IN THIS TRAIL

Variable; sf
Type of Error: UN USED
Description: Define on nodes 1 , but not used.

Type of Error: UN DERNED
Description: Used on nodes 2 , but not defined.

U^rt^Klo' 11

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 148

All Def-Use Pairs, Def-Use paths & Data Flow Errors of Feasible Test Case 3 of ECS Model

- r?ii n I !■ IIUfvWEG‘O Ajtomatic
QjstOdi

InpuU

i 100 -.a- j liutvber al fins

F̂A
i l - « - BETA

RunACO

OUpUs

Display Aclecency Matrix

Display OpbTum Path

- Dijpley Other OpJinum Paths ~|

Display Fe«S)le Paths;

r Display Data Bow H o e

Optimum TRAIL 3 :

Initial -> 1 -> 6 -> 7 -> 13 -> Fkial

j << Prewkiug-j }^? t e d »r

TOTAL VARIABLES USED IN THIS TRAIL

c f , e f , s f , e

DEF*USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Vailable : cf

Cl,6):
(1,13):

Variable : ef

(1,7):
(1,13);

l->6
1 -> 6 -> 7 -> 13

1 -> 6 -> 7
J -> 6 - > 7 -> 13

DATA FLOW ERRORS IN THIS TRAIL

Variable: sf
Type of Error: UN USED
Description: Define on nodes 1 , btrt not used.

Variable: e
Type of Error: UN DERNED
Description: Used on nodes 7 , but not defined.

I'll...

Data Flow Testitig of UML State Machme Using Ant Colony Optimization (ACO) 149

■ I *

All Def-Use Pairs, Def-Use paths & Data Flow Errors of Feasible Test Case 4 of ECS Mode!

i ^ ^ A u to n u te d Test Casei Genntion using A C O

1C \Usgr3\FoLjjl3 d

C- ALKomatic
CO Qjstoni

irputs

- Bfowk

05 ■»'j NutrijercifGenwations

[I - - : T A LFA

i1 -r B E TA

CXiputs

Aî ecency Matnx

-Display b^easUe P diu •

O u play O pb iuTt Paih

~ Dispiay Other Opiaiun P^h) a

Di^slay Paths

Dtaplsy Data Fbw

Optimum TRAIL 4 :

Initial -> 1 -> 2 -> 12 -> 11 -> 10 -> 13 -> Final

« Ppgypw "^ I Ng>l>?

TOTAL VARIABLES USED IN THIS TRAIL

c f , e f , s f , k , u , g , t , b

C^F-USE PAIRS ^ D DEF-CLEAR PATHS IN THIS TRAIL

Variable : d

{ 1 ,2);
{ 1,13):

1 -> 2
1 -> 2 -> 12 -> 11 -> 10 -> 13

Variable : ef

(1,2);
(1 ,1 0) :
(1 ,1 3

1 -> 2
1 -> 2 -> 12 -> 11 -> 10
1 -> 2 -> 12 -> 11 -> 10 -> 13

DATA FLOW ERRORS IN THIS TRAIL

Variable: sf
Type of Error: UN USED
Description: Define on nodes 1 , but not used.

Variable: k
Type of Error: UN DEFINED
Description: Used on nodes 2 , but not defined.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 150

All Def-Use Pairs, Def-Use paths & Data Flow Errors of Feasible Test Case 5 of ECS Model

Autofnated Test

anwse
M̂K\?<y\DssJd5p‘>iesd

O AUofriatic
o Ciistoin

inpUs

130 1 H i j r b w d M s

0 5 -

ALFA

3

Run AGO

OiipUs

Displsy Ajecancy Mank

Disptay btfettib)e Patht:

Dispiay Opitmum Path

j«- Display Olher Optrain Paths

Display Fea^:te Paths >

Optimum TRAIL 5 : I « P r w ^ - .)

Initial -> 1 -> 6 -> 7 -> 2 -> 12 -> 11 -> 10 -> 13 o Final

TOTAL VARIABLES USED IN THIS TRAIL

c f , e f , s f , e , k , u , o , t , b

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable ; cf

{ 1,0):(1,2):
(1,13):

Variable : ef

(1,7):
(1,2):{ 1,10)1
(1 ,1 3):

1 * > 6
1 -> 6 -> 7 -> 2
1 -> 6 -> 7 -> 2 -> 12 -> 11 -> 10 *> 13

I -> 6 -> 7
I -> 6 -> 7 -> 2
1 -> 6 -> 7 -> 2 -> 12 -> 11 -> 10
1 -> 5 -> 7 -> 2 -> 12 -> 11 -> 10 -> 13

DATA FLOW ERRORS IN THIS TRAIL

Variabte: sf
Type of Error: UN USED
Description: Define on nodes 1 , but not u se d

Variable: €
Type of Error: UN DEFINED
rW crrinHno' I on '7 hi rt" rtn*- rlofinori

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 151

All Def-Use Pairs, Def-Use paths & Data Flow Errors of Feasible Test Case 6 of ECS Model

lE^i^aSiai

;C \U5;r3\rotJic di

C ; Auloinatic

•a Djstow
kvu*
i JOG . ▼! Nunba-of A:4s

Grovsae

i05 - r - '* '! Generations

h - ^ " ^ 1 8E1W

FkjnfiCO

Odpuis

â Aî ecercyMabtc

- Oaplay Weastte Paths.

' Dijplay OptiTKVR Path

L- Display O^Optinxjm P^hs

Display Feasibie PaO»

Data Flow kio^

Optimum TRAIL 6 :

Initial -> l -> 2 -> 3 -> 8 -> 7 -> 13 -> Final

TOTAL VARIABLES USED IN THIS TRAIL

c f , e f , s f , k , d , f J , e

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : cf

(1,2):
C 1 ,1 3):

1 -> 2
1 -> 2 *> 3 -> 6 -> 7 -> 13

Variable ; ef

(1 , 2) :
(1 .7);
(1 .1 3) :

1 -> 2
1 -> 2 -> 3 -> 8 -> 7
1 -> 2 -> 3 -> 8 -> 7 -> 13

Variable ; sf

(1,3); I -> 2 -> 3

DATA FLOW ERRORS IN THIS TRAIL

Variable: k
Type of Error; UN DERNED
DescriptiGn: Used on nodes 2 , but not defined.

X/ariaKJc- H

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 152

All Def-Use Pairs, Def-Use paths & Data Flow Errors of Feasible Test Case 7 of ECS Model

^TAutomsted Test Gcnration ucinQ A ^O

jC \Ussmifauzia d;

© .AUomatic

>o Custom

inputs -

I— Srowse

ilOO

|05 ▼ Nunte-of Genŵns

il - BETA

FknACO

Outputs

Dsplay A ^e c a n cy Matrw

— - OM ay Weasite Paths

tXsplay Optroun Path

- Display Other OptirouB Paihs

— Display Feasible P a ^ >

i-~- Dspisy Oala Bow Irio

Optimum TRAIL 7 :

Initial -> 1 -> 6 -> 7 -> 2 -> 3 -> 11 -> 10 -> 13 -> final

TOTAL VARIABLES USED IN THIS TKAIL

c f , e f , s f , e , k , d , g , t , b

DEF-USE PAIRS AND K F -C L E A R PATHS IN THIS TRAIL

Variable : cf

C 1.6):
(1,2):
(1 4 3) :

1 -> 6
1 -> 6 -> 7
1 -> 6 -> 7

Variable : ef

(1 . 7) :
(1 ,2);
C 1 .1 0):
(1 .1 3) :

1 -> 6 -> 7
1 O 6 -> 7
1 -> 6 - > 7
1 -> 6 -> 7

Variable : sf

(1 ,3): 1 -> 6 -> 7

DATA FLOW IN THIS TRAIL

Variable: e
Type of Error: UN DEHNED
r^ocrrinHnn^ I Ecorl nn 7 Ki rt* nnf' rtofioaH

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 153

D.5 Display Adjacency Matrix of Telephone System Model

test C a »i Gtnrition using ACO

iC UafeV-̂ \̂Dssk!i5c'̂ e« di

O Ailomatic

<a Qjstom

Inputs

— Brawse

]00 ▼! dt fris

M utni«f of Geoef^ionsi05

II: ALFA

- B E TA

ftjn A C O

Outputs

OUplay Adyec«ncy Matrix

OM ay Weasitie P ^ s

CXsplay Optmum Pash

D’splay O ^ O p t in m m - j

Dispfay Feasde Paft«

Dteplay Data Fktw Ho

A D 3 E C E N C Y M A T R IX

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0

0 0 0 1 1 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 1 1 0

0 1 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 154

D.6 Display Infeasible paths within Telephone System Model

Aiiom̂
la Custom

IfipuU -

hOO »-i Ntmberof/Sris

Bmtx

i05 - ■»■ l'4jnierrfG«Tef̂ iom
1 PiFA

1 . - beta

FkjnACO

CUpU5

Display Aî ocvcy Mdftiix

Dteplay H e a s » e Paths

OispteyOpttTun Path

Disp^ Other Optinura P^hs >•

Display F ea^ite P ads

Diapfay Data Fbw Hor

ALL INFEASIBLE TRAILS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 155

D.7 Display Feasible Test Cases within Telephone System Model

Automated Test Caics Genration usinq ̂ O

!C \U3e3\=byzis M^\FMvDs5fcloc'<« d

5
•» Custom

Inputs

Browse

100̂ -»-i NuflbefcrfMs
Nun4)er (rf G enefatw si05

II ALfA

- BETA

RjiACO

O u ^ s

D is f^ At^ecancy Mantt

-OspiaykfeasiTie Paths

Dtspiay Optinum Path

- OiqjfayO»h«-Optinijm?afris

Displ^ Feas^ PsAhs

- Q s p b y Data Bow H o - ^

ALL FEASIBLE TRAILS

Initial -> 1 -> 6 -> 7 -> 8 -> Finaf

Initial *> 1 -> 2 -> 3 -> 8 -> Final

Initial -> 1 -> 2 -> 8 -> Final

Initial -> 1 6 -> 7 -> 2 -> 3 -> 8 -> Rnal

Initial -> 1 -> 6 -> 7 -> 2 -> 5 -> 8 -> Final

Initial -> 1 -> 6 -> 7 -> 2 -> 4 -> 8 -> Final

Initial -> 1 -> 6 -> 7 *> 2 -> 8 -> Final

Initial -> 1 -> 2 -> 4 -> 8 -> Final

Initial -> 1 -> 2 -> 5 -> 8 -> Final

Initial -> 1 -> 2 -> 5 *> 7 -> 8 -> Final

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 156

D.8 Display Optimum Paths within Telephone System Model

I ̂ Automated CaMS Gwration uiing A C O ^

VUssrsvrauza MjAvFH'iDsskicsp'̂ es d
O Automatic

» Custom

Inputs

finnwse

too ■»-i Umber d Alts
|05 ▼ 4̂aT1berĉ Genef̂ iiô 9

Run/CO

OUputs

Dijploy A4® cency Matitt

Dsplay k i e a ^ P ^ '

Display O p tiTun

Display OtheiOptinum Path*- -

I Dijplay Feasfcte P att«

Display Data Bov* Wo =

Optimum TRAIL 1 :

Initial -> 1 -> 6 -> 7 -> 8 -> Final

« fVtvicua I (*■ N o d » — 1

TOTAL VARIABLES USED IN THIS TRAIL

bill, c r , I t , time , 3 , h

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable ; bill

Cl,7): l->6->7
Variable : rt

(1 , 5) : l - > 6

Variable ; time

(1,6): 1 -> 6
(1,7); 1 -> 6 -> 7

DATA FLOW ERRCH^ IN THIS TRAIL

Variable: cr
Type of Error: UN USED
Description: Define on nodes 1 , but not used.

Variable: a
Type of Error: UN USED
r ^ o c r f ^ i n H n r i ' r i n n ^ H o c Q hiffr- n r & i i c o r f

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 157

D.9 Display All Def-Use Pairs, All Def-Use Paths against Each Path within Telephone
System Model

O
Custom

tnpiis

&mse‘

1100-̂ - fJunb«rof Ms
j05 . ▼j NuntierafGenef^tjns

ALFA

B E TA

Otipils

Dsptay Ai^ecency UstrK -

Oisptay H e arfjte P «tf»

Display OptinLin Path

Oiaptey FeasS)te Paihs

Dspfay D^a Flow H o —

FEASIBLE T K A lf l :

Initial -> 1 -> 6 -> 7 -> 8 -> Final

n u n - ^

_______ ^13

TOTAL VARIABLES USED IN THIS TRAIL

bill, c r , r t , time , a , h

DEF-USE PAIRS AND DEF-CLEAR PATHS IN TH IS TRAIL

Variable ; bill

(1,7): 1 -> 6 -> 7

Variable : rt

(1,6): 1 -> 6
Variable : time

(1.6): 1 -> 6
(1,7): 1 -> 6 7

DATA FLOW ERRORS IN TH IS TRAIL

Variable: cr
Type of Error: UN USED
Description; Define on nodes 1 , but not used.

Variable: a
Type of Error: UN USED
Description: Define on nodes 8 , but not used.

Variable: h

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 158

D.IO Display Data Flow Errors against Each Path within Telephone System Model

fe it O a ii Gcwition using ACO

:C \Use?5'iR)uii« WeS;\FM̂De3ktcp‘i9K di
O Ajtocn̂
» ̂ CusUnn

Irputs

»'&Tjwse

100 îJT̂3«•dî rts
05 ^ Muiiier of Generations

iTTTH beta

Run«X)

CklpUs

Dwpiay Aj^ecency Matiix i-

Display OptimLin Path ----

- Display Other Optinum Pstiu ■:

: Display Feawie P a ^

Oisptey Data Bow Ho

Variable : cr

t 1,2): 1 -> 2
Variable : time

(1 , 2) : l - > 2

« .P pbî ~ | [—Nad »-.

CWTA FLOW ERRORS IN THIS TRAIL

Variable: bill
Type of Error: UN USED
Description: Define on nodes 1 , but not used.

Variable; rt
Type of Error: UN USED
Description: Define on nodes 1 , but not used.

Variable: n
Type of Error: UN DEFINED
Description; Used on nodes 3 , but not deftned.

Variable; p
Type of Error; UN USED
Description; Define on nodes 3 , but not used.

Variable: a
Type of Error; UN USED
Description: Define on nodes S , but not used.

Variable; h
Type of Error: UN DERNED
Description: Used on nodes 8 , bift not defined.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 159

D .ll Display Adjacency Matrix of Library Management System Model

^lAutom 8ted_r«t Ginratioo u iin g ACO

jC\User3\f3LJ2s Ma!4c\rM̂Dtiklop''iest d;
C-- fiduxr̂
O: Custom ’

irputs

1100 k̂Ĵ î efcrfAts
i05 ▼ Nmi4)er of GeneaCons

ALFA

BETA

Run A C O

OutpUs

Display Ai^ecercy Maiin

Osplay Opiimjni ,

Display Other Optinum Patf»

Display Feasible Path*

CksplayOata Ftowlnfor

A O J E C E N C Y M A T R IX

□ 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0

0 0 0 1 1 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 □ 0 0 0 0 0 0 0 0

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 1 6 0

D.12 Display Infeasible Paths within LMS Model

I T e s t C a se s G e n ra tio n u jw ^

:C ^U5€^^?DiJZ ̂^^xFM \De5kt5pV^;

0 .Ailom abc

Custon

Ir^puts

-

IQO— :▼! f^jnberdArts

BETA

RunACO.

Outputs

Dsplay Ac^ecency MoRtt

-Display Wearfjte PaShs

OiiptayOptinnum Path.

OispJay Other 05*nmm

ttsplayFea^Pis*® =

. Oisptey Data Row Irfo--

ALL INFEASIBLE TKAILS

Initial -> 1 -> 2 -> 4

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 151

D.13 Display Feasible Test Cases within LMS Model

...
'ii- Automated Test Cases Genratioo using V

— ----m e * .

'C VUje^^RjuzIs d;

C) Ajtomalic
9- Custom

Inputs

ilO O w .-rl Nunb&alflns

iC5. f̂ jtrhercfGenefatkxv
ALFA

BETA

RjnfiCD

O dputs

DispJay Acjecency Matiix =;■

' Display H e a s U e P a ^

- Display Optwum Paih

-O is p j^ Other OptsTun P » w -

-r Oispiay Feaibte Paths ■

- Display Data Flow H o

A L L F E A S I B L E T R A I L S

Initial -> 1 -> 8 -> Final

Initial -> 1 -> 2 -> 3 -> 5 -> 7 -> 8 -> Rnal

Initial -> 1 -> 2 -> 8 -> Final

Initial -> l -> 2 -> 3 -> 5 -> 5 -> 8 -> Final

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 162

D.14 Display All Def-Use Pairs & All Def-Use Paths within LMS Model

^ "A u to m a te d Test C ^ s G in rjt io n using WTO -

: XUsers'̂ QUCs MaBcSFMXDsikictJ'̂ ss d
© ALitom^

0 Custom

JfpuU

— Browse —

100 r of Arts

05 ■»• Muniier of Genwations

M A U A

II . . - r BETA

Run A C O

Outputs

DspJay As^econcy Matiu

. . . Diqitay k fea sU e Paths-

; Di«}lay Opdmun P»ii

Dî jlay 0 ^ C^jtwun Paths •=

i - CSsptay feasSjfe Pattw

Display Data Bow W o - -1

FEASIBLE TRAIL 2 :

Initial -> 1 -> 2 *> 3 -> 5 -> 7 -> 8 -> Rnal

TOTAL VARIABLES USED IN THIS TRAIL

bb , rentb , rentm , stdrec , stock , j , l , f , u , g , i

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : rentb

(1,7); 1 -> 2 -> 3 -> 5 -> 7

Variable ; stdrec

(1,2); l->2
Variable : stock

(1,5): 1 -> 2 *> 3 -> 5

DATA FLOW ERRORS IN THIS TRAIL

Variable: bb
Type of Error: UN USED
Description: Define on nodes 1 , but not used.

Variable; rentm
Type of Error; UN USED
Description: Define on nodes 1 , but not used.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 163

D.15 Display Data Flow Errors within LMS Model

jjlk-Automated test Cases Gehration w i f i q ftCO;

!C \UjgB\roua5 dj

C)
■ 9 : Custom '

InpUs

hoo Ntmbef rf/VTts

8̂row«

iCft ■»■ Mun»er<rfGenefai}Of«

D ALFA
ri BETA

FiunACOi

Oilputs

Display Ad^ecency Matm =

C%q3lay Nea^

Ouplay OlitiTun PaSi.

OupJayO^O(Aiiim Paths

D isp b yFe d s^P ^

- Display Data flow H o ■

DATA FLOW ERRORS IN THIS TRAIL

Variable: bb
Type of Error; UN USED
Description: Define on nodes 1 , but not used.

Variable: rentm
Type of Error: UN USED
Description: Define on nodes 1 , but not used.

Variable; j
Type of Error: USED BEFORE DEFINE
Descriptjon: Define on node, 3, but used on 2 .

Variable; I
Type of Error: UN U ^ D
Description: Define on nodes 2 , but not used.

Variable; f
Type of Error: UN DEFINED
Description: Used on nodes 3 , but not defimed.

Variable: u
Type of Error: UN DEFINED
Description: Used on nodes 5 , 7 , but not defined.

Variable: g
Type of Error: UN USED
Description; Define on nodes 8 , but not used.

Variable: t
Type of Error: UN USED
Description: Define on nodes 8 , but not used.

I « Previen̂

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 164

D.16 Display Adjacency Matrix of Student Enrollment System

j IT"
i t ' Automated Test Casei Genratioo using A C O ^

icXUsĉ XFDuEe ^^\Fa\Ds^co'^«t dl

Automatic

■o Cujtom '

Inputs

i 100 » 1 Number of M s

fitawse

105

E I 3
J hkjmber of Generation#

ALFA

-▼1 BETA

RmACO

Ououts

Display As^ecency Matm - -

~ Display fĉ easijie Pahs

Diiplay Optimum Path

^Dî jiay Other Oplinum Pattia

Display Feasfcte Paths

liptejr D-ir. PVr; Irtc

AD3ECENCY MATRIX

0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 □ 0 0

0 1 0 0 1 0 0 0 0 0 0

0 0 0 1 0 1 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 1 0 1 0 0

0 1 0 0 0 0 0 0 0 1 0

0 0 D 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 Q 0 0 0

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 165

D.17 Display Feasible Test Cases within SES Model

Te5^C«e» Genration u’s ^ ACO^

iC \U5Cf5\rDiJS-5 M^\F|tiy3=sk:scNieK d :

0 Siiwratic
Custom

HnJts

Browse'

100. UMiixfist Ms
|05 NuniserolGeneratiortt

h — t t I ALFA

- BETA

Rm/>CO

Owftoy Ad^ecancy MaJm

: Di jpiay Opinun Path

0«3iay Feasfafe Paths

- Qaptey Data Row Ho .

ALL FEASiBLE TRAILS

Initial -> 1 -> 3 -> 4 -> 6 -> 7 -> 8 -> 9 -> Final

Initial -> 1 -? 2 -> 3 -> 4 -> 6 -> 7 -> 8 -> 9 -> Final

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 166

D.18 Display All Def-Use Pairs & All Def-Use Paths within SES Model

Bnswse -

[C VÛ - F o i j ^ d
0 Automatic

O Custotn

InpuU -

i 100.- ^ ^̂M̂bera Ais
105

ASJA
BETA

Run AGO

OipUs

Display Adyecerrcy Matm

tnfeasiile Paths

Display Optimum Path

K Osptey Othef Opfiimjra ?afr«

i Display Feas&fe P aths

DspJay Data Row Wo ■

FEASIBLE TRAIL 1 :

initial -> 1 -> 3 -> 4 -> 6 -> 7 -> 8 -> 9 -> Final

TOTAL VARIABLES USED IN THIS TRAIL

enstd , regstd , e , n , u , p , g

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable ; enstd

C M) : i - > 3 - > 4

Variable ; regstd

(1,4): l->3->4
C 1 ,8): 1 -> 3 -> 4 -> 6*> 7 -> 8
(1,9): 1 -> 3 4 -> 6 -> 7 -> 8 -> 9

DATA FLOW ERRORS IN TH IS TRAIL

Variable: e
Type of Error: UN USED
Desaiption: Define on nodes 3 , but not used.

Variabte: n
Type of Error: UN DEHNED
Descriptfon; Used on nodes 6 , but not defined.

Variable: p
T u n a n f C r r n r ' t i M n C P T M C n

c<Pt»̂ aouB j [^tel<t»|— }

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 167

D.19 Display Data Flow Errors within SES Model

: Autynated Ger^tidn uiing ;

O Ajlomabc

O; Custom

hpUs
190 — Ĵur b̂«f rf ^rts

105. ▼ Nufi4ier of Geneatk»w

h l:' ALFA

- BETA

FkjoACO

OipUs

Dsplay Aŝ ecency Matrix

kieoMe Pathŝ

Display OpUnum Path

Display Other Optinum

Oi îlay FeasD<& Paths

Oiapfay Data Bow fc#o

DEF-USE PAIRS AND DEF-CLEAR PA7WS IN THIS TRAIL

Variable : enstd

(1 , 4) : l - > 2 - > 3 - > 4

DATA FLOW ERRORS IN THIS TKAIL

Variable: regstd
Type of Error; DEFINE MULTIPLE TIMES
Description: Define muftipie times on nodes 1 , 2 , .

Variable: std
Type of Error: UN USED
Description; Define on nodes 2 , but not used.

Variable: e
Type of Error: UN USED
Description: Define on nodes 3 , btjt not used.

Variable; n
Type of Error: UN DEFINED
Description: Used on nodes 6 , but not defined.

Variable: p
Type of Error: UN DERNED
Descriptian: Used on nodes 7 , but not defined.

Variable: Q
Type of Sn'or; UN USED
Description: Define on nodes 9 , but not used.

j « P r e v ^ J r~ I

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 168

D.20 Display Adjacency Matrix of Purchase Order System

Inputs

too— fjmberotMs

fijmberof Geneffitio™105

R jn A C O

OutpUs

Os^A^ecencyMabu

- O tm by ^ e a a lile Paths

- KsptayOptimijn Path-

Dî 3layCW«rOpttT«fl Patti

Ospiay Feasible

ajptej- Da;« Row W=7

A D J E C E N C Y M A T K I X

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 169

D.21 Display Feasible Test Cases within PO System

jC\Usm\Fô d
O A d to fr^ ^B n > w «

■O) Custom

InpUs

hOOr>--̂ i HLjnbefrfMs
i05 «r fijmbef of Genet^iofB

h- ALFA

BETA

Run/̂ -

Oiputs

D^jlay A^acancy Matrix

Onpiay H e a s t i e Paths

■ Oispl̂ OptsTium Path-.

Display Other OptiTxm Pattis -

Display FeassAj Path*

-=̂ Display Data flow H o

;U X FEASIBLE TKAILS

Initial -> 1 -> 2 -> 5 -> 7 •> Final

Initial -> 1 -> 2 -> 3 -> 4 -> 6 -> 7 -> Final

Initial -> 1 -> 2 -> 4 -> 6 -> 7 -> Final

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 170

D.22 Display All Def-Use Paths & All Def-Use Pairs within PO System

t k rAutomated Ted Caser G e n r a tk x i u i in g AGO
« m - — - .« T J"V tr- -I rnwif

Crowaa—

[C Ha3v\FM\Pert:op^fgg dj

O Autoniatic

»: Custom

bpU»

ilOO.- ▼! Numba-rf̂ s
[o5 ▼! Number cfGeneriwis

h. ALFA

BETA

RunACO

OiipUs

- Oitplay Ai^ecency Mabtc

Oispiay Optimum Patfi

• Dispfay Other Opiinum Paths ^

Qsplay D̂a ftow)rfo=>̂ .

FEASIBLE TRAIL 2 :

Initial -> 1 -> 2 -> 3 -> 4 -> 6 -> 7 -> Final

TOTAL VARIABLES USED IN THIS TKAIL

ben , cu s t, items , order , a , u , c

DEF-USE PAIRS AND DEF-CLEAR PATWS IN THIS TRAIL

Variable ; ben

(1,4):
(1,6):
Variable : o jst

1 -> 2 -> 3 -> 4
1 -> 2 -> 3 -> 4 -> 5

(1,4): l->2->3->4
(1,6); l->2->3->4->5
(1,7): 1 -> 2 -> 3 -> 4 -> 6 o 7

Variable ; order

(1, 6) : 1 - > 2 - > 3 *> 4 - > 6

DATA a O W ERRORS IN THIS TKAIL

Variable: items
Type of Error: UN USED
Desoiption: Define on nodes 1 , but not used.

J

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 171

D.23 Display Data Flow Errors within PO System

f Automated J « t Caici G«iva1ioo u s '^ & 0

;C VUseJTvrous H\D«toopUe$t 6]
('_ } ALiomatic

•»: Custom

Inputs

hOÔ Î Num4>wo<Ms

Brawse-

m Nunierof Gerwratton*

RunA^O

Outputs

Diipley As^ecancY

Osplay HeasUe P a ^ .

Oisftey 0|jtin*jm Path

j IXspby (Xher Optman PaHw ■

Display F ea s^ Paths

Dispiay Data Row Wo

TOTAL VARIABLES USED IN THIS TRAIL

ben , cu s t, ftems , order , 3 , u , c

DEF-U5E PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variabfe : cust

(1.7): 1 -> 2 -> 5 -> 7

DATA FLOW ERRORS IN THIS TRAIL

Variable: ben
Type of Error: UN USED
Description: Define on nodes 1 , but not used.

Variable: items
Type of Error; UN USED
Description: Define on nodes 1 , btrt not used.

Variable: order
Type of Error: UN USED
Descflpbon: Define on nodes 1 , but not used.

Variable: u
Type of Error: UN DEFINED
Description: Used on nodes 2 , 5 , but not d ^ n e d .

Variable; c
Type of Error: UN USED
Description: Define on nodes 7 , but not used.

(|,tFNad>>:

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 172

D.24 Display Adjacency Matrix of Hotel Management System

;C \UssT5\F3uie

0 .Viomala:
a) Custom

Inputs

IlO O ' - ' ' j N u m b «-o f^ rts

frOTttC ■■

PiFA
- BETA

RmAjO-

OutpUs

Dspiay A i^ «c «n c y M o iiv j

Okiplay V ie a M e Paths

- DispJayOptmin Paft.

i- Diaptey Other Op&jium Pattw

Display F e a j ^ Paths

Dcspicy C«t.5 Inc

A D 3 E C E N C Y M A T R IX

0 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

0 D 1 0 0 0 0 1 0 0

0 0 0 0 □ 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 173

D.25 Display Feasible Test Cases within HMS

I Getvation uiiog AOO

fc X.Users'-Jo'JM ?^ \̂FM\Ds^5p\Th^
O Aiiomatic
-» Custom

Inputs -

i 100 ▼I Ĵû f4)«• of iVls

Btwrae

i05 '^^1 MunijwofGefieratiofs
11. ALFA

- b e ta

fVn/CO

Outputs

Display A^ecflncyMatnx —

Display Weasiite Paths

Dimby OptinLin Paih

- Display Other Optimum Paths

- Osplay feasibte Paths =

Disp^ Data Flow Mo ^

A U FEASIBLE TRAILS

Initial -> 1 -> 3 -> 8 -> Final

Initial -> 1 -> 2 -> 5 -> 8 -> Final

Initial -> 1 -> 2 *> 4 -> 6 *> 7 -> 8 -> Final

Data flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 174

D.26 Display All Def-Use Pairs & All Def-Use Paths within HMS

I AutonrwtedJg^t Gef«̂ tior> uting ____ — - F

. Brwwe-

|C\U55T3\Fo;jzi5 MaBt\rMXD̂Pp\Theii:
.Ailcifnatic

■o QisUrni

InpUs

ilOO HumberofMs

[q5 -'̂ j Number<iGenef^»fi9

P T.] ALFA

h ’t] b e ta

FkjnACO.

OuhMs

OwpteyAdyecflncy Matrix

-OHtjiaybifeasfclePathi .̂

-O ijp la yO p ttm m Path

-Duptey Other Optinum PaHit.

OispiaY festuJe Paths-

Disp^ Data Bow Irfo -

FEASIBLE TRAIL 3 :

Initial -> 1 -> 2 -> 4 -> 6 '> 7 -> 8 -> Final

TOTAL VARIABLES USED IN THIS Tl^AIL

chck , fee , op , p a t , p , s , d , e , u

DEF-USE PAIRS ^U^D DEF-CLEAR PATHS IN THIS TRAIL

Variable : chck

(1 , 2) : 1 *> 2

Variable : fee

{ 1,2); 1 -> 2

Variable : op

(1. 6) : 1 - > 2 - > 4 - > 6

Variable : pat

(1, 5) ; 1 > 2 - > 4 - > 6
(1, 7) ; 1 - > 2 - > 4 - > 6 - > 7

DATA FLOW ERRORS IN THIS TRAIL

Variable; p
Type of Error: UN USED
n^crrinHrtn' HoftrLO nn nnHoc A hut" nni" i

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 175

D.27 Display Data Flow Errors within HMS

j i f A u to n w te d J e s tc ib e s G e n f i t iS u s ^ ACO;

iCXUKrsVFQLjila Msfe\FM\C«WopVTbssi
— Browso'© AUoin^

0> Custom

Inputs

j too a- j tkxrbw 0i Pfts

1 MjnibcrofGeneJ^iom105

h ALFA

BETA

RunACO

Ou^HiS

Ci<playA4ac«xyMatiu '

- Diapjay Heasiste Paths

- Oijplay OpUntun Path

- Oijplay Other Optimum Pattis

Display FeasdJe Paffis

— OspJay Data Bow Ho

TOTAL VARIABLES USED IN THIS TRAIL

chck , fee , op , p a t , d , u , e

DEF-USE PAIRS AND DEF-CLEAR PATWS IN THIS TRAIL

DATA FLOW ERRORS IN THIS TRAIL

Variable: chck
Type of Error; UN USED
Description: Define on nodes 1 , btit not used.

Variable: fee
Type of Error: UN USED
Description; Define on nodes 1 , but not used.

Variable; op
Type of Error: UN USED
Description; Define on nodes 1 , but not used.

Variable: pat
Type of Error; UN USED
Description: Define on nodes 1 , but not used.

Variable: u
Type of Error: USED BEFORE DEFINE
Description; Define on node, 8, but used on 3 .

Variable: e
Type of Error: UN DERNED
Description; Used on nodes 8 , but not defined.

s.-. ptyCTOOii I [Nsd »■

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 176

D.28 Display Adjacency Matrix of Cruise Control Model

jCMtefsXFaczia [i4eBvV'̂ HD&jkiv̂''iesd
C‘
a Qjstofn

Inputs

i 100 - ■»■ i Niiti>er rf f in s

— Broww

i1 ;̂ A
BETA

R u n A C O

O U p O s

Dsplay A4«»Tcy MsWx.

Qapiay H e a s i)le Paths -

Dsptey Optnun Path

Display O^wrOj^mjn PaSn=-. j

Display Feasiye Pihs

L̂s?ote>' D îe Flow info

A D J E C E N C Y M A T R IX

0 1 0 0 0 0

0 0 1 0 0 0

0 1 1 1 0 0
0 10 1 1 0
0 10 1 1 1
0 0 0 0 0 0

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 177

D.29 Display Feasible Paths within CC Model

[Ĉsers'.Fouzla M̂VrM'̂ DssHqi'ies 6]
O Somatic
’» Custan

Inputs

Brwrae-

hOO ~ »| Hjrtwdi PHs

i05 ▼ Number of Genef^ions

-R«iACO

OUpUs

Dsptay A^ecency Matiw

Ouplay bieasijte

Oi^jis)'Optenum Paih

Dupby Olher Optimum Pih*

Dispiay Fea^sle PaOv

- - Dispiay Data F5ow H o-

ALL FEASIBLE TRAILS

Initia} -> 1 -> 2 -> 3 -> 4 -> Finat

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 178 4

D. 30 Display All Def-Use Pairs & All Def-Use Paths within CC Model

iC\U>CT\rDy23 d

O Auftxn̂
» Custom

inpuu

iaO=-̂ -»-i NiMjjbercfAris
i05- Nunroer of GenefSiofw

ALFA

h ; ^ ^ ' r BETA

-R u nA C O

OUpiis

j- ttsptay Aî econcy MatriJC

Display infeasUeP^^--

Display OptinuT)

1-̂ Diapisy Other Optimum F a ^

. Dispby Feajiole Paths

i • DapJay Oa»a Row H o ~

FEASIBLE TRAIL 1 :

Initial -> 1 -> 2 -> 3 -> 4 -> Final

I Pt*v«?ta) (pa Neil» J

TOTAL VARIABLES USED IN THIS TKAIL

eng , mread , sp , u , r

C tF -U S E PAIRS AND OEF-CLEAR PATHS IN THIS TRAIL

Variable ; eng

(1,3): 1 -> 2 o 3

Variable : mread

(1 , 2) : I - > 2

Variable : sp

(1,3): 1 -> 2 -> 3

Variable ; r

(2,4); 2->3->4

E>ATA FLOV^f ERRORS IN THIS TRAIL

Variable: u
Type of Error; UN OERNED
Description: Used on nodes 1 , 2 , but not defined.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 179

D.31 Display Data Flow Errors within CC Model

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 180

D.32 Display Adjacency Matrix of ATM Model

I Automated Jest Cases Genration r».

[Ĉ r3\Fouaa Haa.\FH\Teticx̂ <̂
0 Automatic

0: Custon

Irputs

î Qnywse-

100 ™ -'! Ĵumb«• rf^rts

ios- - ▼ Ni^rberrfGeneraSions

ALFA

'T BETA

OiipUs

Display A<^ec«ncy Mattk

Onptay Heasl)te P^hs ■

Dsplay OpiimLin Path

Dlsptav Feasble Paths

Display Oda How Ir^

AD3EC£NCY MATRIX

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 1 0 1 0 0 1 0

0 0 0 0 0 I 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 181

D.33 Display Feasible Test Cases within ATM Model

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 182

D.34 Display All Def-Use Pairs & All Def-Use Paths within ATM Model

rAutomated Test Cases Genration using A Q)L --- --^
jC \Us£?3\f5LJs “^xrM^Desklcp'iest d

C) Autom̂C
0̂ Custom

Irputs

Bpowsft

i 100 ■»’i NunberofAts
i0 6 r ^ ’»' Nmnber of Generations

ALfA

.'T BETA

a n AGO

Outputs

Adjacency M^nx.

— Otafiby k^eatte Paths ■

OsplairOplmiTi Pah —

- Display Rsaibte Paths ^

Display Data Flow H o • >

FEASIBLE TRAIL 2 :

IniCiat -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> Final

TOTAL VARLi^BLES USED IN THIS TKAIL

am r ce , pe , tries , ae

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable ; pe

C 1.2): 1 -> 2
(1,6): 1 -> 2 -> 3 -> 4 -> 5 -> 6
(1,7): 1 -> 2 -> 3 -> 4 *> 5 -> 6 -> 7

Variable : tries

C 1,7); J -> 2 -> 3 -> 4 -> 5 -> 6 -> 7

DATA FLOW ERRORS IN THIS TRAIL

Variable:
Type of Error; DEFINE MULTIPLE TIMES
Description: Define multiple times on nodes 1 , 4 , ,

Variable: ce
Type of Error: USH> BEFORE DERNE
Description: Define on node, 7, but used on 1 ,

Variable: ae
T u n o n f C r r n r - I IM r iC P T W C H

i«fteW3U* r I »

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 183

D.35 Display Data Flow Errors within ATM Model

Automated Genration

Bmme ■o .Autoniaiic

■'Oi Custom

inpuU -:

i 100- ^ Ntriwrof Arts"

jo5r ▼] I îrroerrfGeneraliofis

h ' ’̂ 1 ALFA

- beta

RjnACO

Oû s
Display h ^ e c o n c y Matu c -

Display k i e a M e P ^ s —

Display Opbnum Paih

Di^jlay Other OpttTXjm P a t h s l

• -Display Feasible Path# =

- Oisptey Data Flow H o ■

TOTAL VARIABLES USED IN THIS TRAIL

am , c e , pe , tries , ae

0EF-U5E PAIRS AND DEF-CLEAR PATHS IN THIS TKAIL

Variable : pe

(1,2): 1 -> 2
C 1, 6) : 1 -> 2 -> 3 *>4 - > 5 -> e
(1,7): 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7

Variable : tries

{ 1 , 7) : 1 - > 2 - > 3 - > 4 - > 5 - > 6 - > 7

DATA FLOW ERRORS IN TH IS TRAIL

Variable: am
Type of Error: DEFINE MULTIPLE TIMES
Description: Define muftiple times on nodes 1 , 4 , .

Variable: ce
Type of Error; USED BEFORE D H ^N E
Description: Define on node, 7, but used on 1 ,

Variable: ae
Type of Error: UN DEHNED
Description; Used on nodes 3 , but not defined.

I <<Prefwp̂

Data Flow Testing of UML State Machine Using Ant Colony Optimization (AGO) 184

D.36 Display Adjacency Matrix of Display Manager State Machine Model

wing ACO.

») Ajtomatic

O Custom

InpuU

BrmvK I

»■> fJtuifaerd M s

] NutriserofGeneraikJris.06
J ALf A

BETA

Run AGO -

C Xlp iis

,A<^ec«icy Matnx

> Ctsplay kfeasi îe Paitis,

Display Opbraum Path r

Oisplay Other Opbmun Paths

Display Feasible

' Diaplay Data Flow H o

ADJECENCY MATRIX

0 1 0 0 0 0

0 0 1 1 1 0
0 10 1 1 0
0 0 0 0 1 0

0 1 0 0 0 1

0 0 0 0 0 0

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 185

D.37 Feasible Test Cases of Display Manager State Machine Model

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 186

D.38 Data Flow Errors in Display Manager State Machioe Model

Zasti Genration uiiog ’li^ jaisaasl

o'j .MomaUc

e /̂ Custom

^puts

[̂ ”Z i
‘"H ^

Browse ■

Numfcerrf Alts

Muniwof G«ner îofi5

ALFA

BETA

- — Run MXi

Oû s
Diapiay Aĉ ecency Hatji* *--

Display Heasl})e Prthj

Oijptoy Optimun Pafr>

. OsplayOthef OpSmum Patiw '

DisoJay Feasible Path*-

• Dtsplay Data Row W o -»

Initial -> 1 -> 2 -> 3 -> 4 -> Final

TOTAL VARIABLES USED I N TH IS TRAIL

a , dv fSot, Prob , u

DEF-U5E PAIRS AND DEF-CLEAR PATHS IN THIS TKAIL

DATA FLOW ERRORS IN THIS TT?AIL

Variable: a
Type of Error: USED BEFORE DERNE
Description; Define on node, 4, but used on 1 .

Variable: dv
Type of Error: UN USED
Description: Define on nodes 1 , btJt not used.

Variable: sot
Type of Error: UN DERNED
Description: Used on nodes 2 , but not defined.

Variabte: Prob
Type of Error: UN DERNED
Description: Used on nodes 3 , but not defined.

Variable: u
Type of Error: UN DEFINED
Description: Used on nodes 3 , but not defined.

j << PfCTOB I }

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 187

