(Data TCow 7estinE ofState Macfiine

Vsing”nt CoHmyA”oritfim (*CO)

Submitted by:
Fozia Mehboob

FBAS/MSSE/F09

Supervised by:
Mr Atif Aftab Ahmed Jilani

Co-Supervised by:

Mr Imran Saeed

Department of Computer Science & Software Engineering
FACULTY OF BASIC & APPLIED SCIENCES

International Islamic University H-10 Islamabad \s\arn,

0 CENTRAL
library

Jyy’

DATA ENTERED

/8 /n

-

Department of Computer Science & Software Engineering

International Islamic University Islamabad

Final Approval

Date:

It is certified that we have read this research thesis report and have fully evaluated the research undertaken by Fozia
Mehboob, Registration No. 27%/FBAS/MSSE/F09.This research thesis fully meets the requirement of Department

of Computer Science & Software Engineering , and hence, the International Islamic University, Islamabad for the

degree of Master of science in Software Engineering (MSSE).

Committee:

External Examiner:

| Prof. i Sikaridak Hayat Khiyal |

=R+

APCOMS, Khadim Hussain Road,
Lalkurti, Rawalpindi

Internal Examiner:

Dr. Zunera Jalil

Assistant Professor, DCS & SE, FBAS, ITUI

* Faculty of Basic & Applied Sciences,

International Islamic University Islamabad/1TUI
Supervisor

Mr Atif Aftab Ahmed Jilami

Assistant Professor

Faculty of Computer Science

FAST/National Universi@ of Computer & Engineering Sciences

A

v

Co-Supervisor
Mr Imran Saeed
Assistant Professor
Department of CS and SE

ITUL/International Islamic University

DA ()

Dedication...

I would like to dedicate my research work,
To my
FATHER, “Mabik Ghulam Mehboob”
Whose Sincere Love and prayers were a source of

' Strength for me and made me to do this research work,

Successfully.

iii

A dissertation submitted to the
Department of Computer Science and Software Engineering,
Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad,
As a Partial Fulfilment of the Requirements for the Award of the

Degree of Master of Science in Software Engineering (MSSE).

DECLARATION

I hereby declare that this Thesis “Data Flow Testing of State Machine using Ant Colony
Algorithm (ACO)” neither as a whole nor as a part thereof has been copied out from any source.
It is further declared that I have written this thesis entirely on the basis of my personal effort,
made under the proficient guidance of my thesis supervisor Mr Atif Aftab Ahmed Jilani. If any
part of this research thesis proved to be copied or found to be a research of some other

individual, I shall standby the consequences.

Fozia Mehboob

279-FBAS/MSSE/F(9

Acknowledgement

In the name of ALLAH, the most Compassionate and the most merciful whose guidance made
me so able to conduct and compiled this research work. It is God bestowed pride that I was able
to accomplish it successfully. Thanks to Almighty ALLLAH for His guidance and Vision so

granted to me.

Every project has an objective attached to it which generates new and creative ideas. I am lucky
that intelligence of my supervisor Mr Atif AftabAhmed Jilani, served as guiding star. My thesis
would have not been possible in the absence of such intellectual guidance. His worthy advices,
honest supervision and affable attitude are worth revealing. I therefore attribute my Master

degree to him because of his support and effort and have no words to show gratitude to him.

I would like to articulate my gratitude to Sir Imran Saeed for his sincere guidance and kind
cooperation. I would also like to acknowledge Dr. Abdul Rauf for his genuine support, and
motivation throughout the project. I would also like to thanks Dr Uzair for his worthy advices
and sincere comments. Despite his tight schedules, he gave his valuable time to document of

thesis. I thank also my committee members for their commendable comments and criticism.

I would like to pay my deepest gratitude to my parents for their constant support, encouragement
for the achievement of my work. Their prayers are always in overcoming difficult tasks. It is due
to their care and affection for that I am at this stage today. Most especially, my father is

responsible for my curiosity and always encourage me in my tough times to pull me up.

I am thankful to my caring brother Qasim Ali for constantly helping me during hard times and
offering me his valuable advice. My Grandmother deserves special appreciation for providing
me moral support and prayers. Last but not least, I would like to gratitude my sweet friends
especially Sobia Noreen for her love, care , moral support and boosting me to overcome my

morale if and when I was depressed due to strainful work.

vi

[e

Every research work can’t be perfect and final. I accept accountability for all deficiencies if any

in this dissertation. I shall be appreciative for worthy suggestions and would welcome optimistic

criticism.

Fozia Mehboob

279-MSSE/FBAS/F09

vii

S — —
T — R T

Project In Brief

Project Title: Data Flow Testing using Ant Colony Optimization
Undertaken By: Fozia Mehboob

279-FBAS/MSSE/F09

Supervised By: Mr Atif Aftab Ahmed Jilani
Start Date: June 01, 2011

Completion Date: September 06, 2012

Tools & Technologies Microsoft Visual Studio 2008

IBM Rational Software Architect
Enterprise Architect UML Modelling

Documentation Tools Microsoft Office Word 2007

Operating System: Microsoft Windows 7, Home Premium

System Used: HP Probook 4530s Notebook PC

viii

- Seammagy

e et]

-

Abstract

Automatic data flow testing refers to analysis of flow of data within models by using data
flow analysis rules. To ensure correct data flow within states we have to consider these data
values. The data flow analysis forms a source of testing data flow by considering define and uses
of the variables. Empirical studies have shown that existing state- based approaches are not
efficient in detecting state based faults. State-based testing examines state changes and its
behaviour without focusing on the internal details, thus data faults remain uncovered. However,
to completely analyze data flow within models and fulfil the coverage criteria is not an obvious
task, especially in state based systems. The complex nature of state based models further

aggravates the situation, making the data flow testing problem complicated and time consuming.

It has been observed that many state based approaches don’t provide complete definition-
use path complete coverage and also are ineffective in terms of detection of data flow faults. Our
work begins by considering all these observations to view automatic data flow analysis problem
and solve with heuristic technique. In this research work, a novel approach is presented for
automatic data flow testing of UML state machine models and automatically generates test cases.
We view data flow testing problem as an optimization problem and select optimal number of
feasible test cases to provide complete def-use paths coverage. Extensible Mark-up Language
(XML) of state machine models is used to given as input. Data flow information is extracted
from XML. After the system extract data flow information, variables are categorized as defined
or used. Def-Use pairs and def-use paths are identified. Automated feasible test cases are
generated from UML models. Minimal test cases provide the complete coverage of definition-
use paths. A best possible solution is investigated by make use of the heuristic search technique
Ant Colony Optimization Algorithm. We implemented this approach in a tool that is named as
data flow generator (DFG).

As a proof concept, applicability of this approach is checked by applying it to different
UML state machine models representing the dynamic system behaviour. Experiments are
performed to validate this approach which indicates that maximum complete def-use path

coverage can be obtained. However, the only prerequisite of this approach is to have a XML of

SEST R, A

given input models. Furthermore, we can use a small size and non-exhaustive UML state
machine models. Moreover, the proposed approach is effective enough in automatic detection of
data flow errors. This is to a certain extent not possible in existing state based system approaches

in which undetection of these data flow errors results in incomplete coverage of def-use paths.

Conclusively, by automatic detection of test paths from state based systems, our approach
provides complete data flow analysis. Moreover, mutation analysis is performed to analyze our
proposed approach effectiveness. In this way, our proposed approach makes data flow analysis
process of models painless by automatically data flow errors and improve or enhance the

effectiveness of fault detection of state based systems.

Table of Contents

ADSEFACEooeineeie ettt see st vae st st e e b s e et eae R e b e s R s s R e e R e e rneeteeRnan e Eaas ix
LiSt OF FIGUIES..c..coeieiieeceiccti ettt n e e a st et s s e e s Xviii
)05 1) A 1 o} [T OO OO POV OOTRR XX
Acronyms and ADDIEVIAtIONSc.coueviciiiiiniiri i e Xxi
Chapter 1. INtrodUCtioncccocoveiiiiiiiiiiiiii e e 1
1.1 INITOAUCLION .o cuviiteeees e crce s sieecr st caes s s e e bt s s srrenn et st e be s s e e s rn e st se st e aanesrnnsasaensean 2
1.2 Problem Statement.........cccoviiiirericeierene sttt a s s e s e s st e s r e enas 2
1.3 MOBIVALION c.veurirrreeiceiecensertnsei e e saeem e sesss st s b e e eencs s e bs st s ne s b srnsan s e eba e be s asnesrsensnesannas 3
1.4 ReSearch QUESHONS.....cveiivirrerieerieerrrsniee s eesces s cesecenessee e assts s srs e srneseeeconnessseaasaaseseseneassees 4
1.5 PropoSed SOIULION.c....cciiiecririiiriercee ittt sa st ss e b s e s ere s e s eneanencas 4
1.6 Thesis Contributioncceceennnns o teteeterueeaeaeaetesbeeeatestensesataae s et e e e e s b et eansen s nensas st es 5
1.6.1 CONITIDULION.eiiiieeeiiniieter et er et st e e as et e s b s ern e et a s s e s e asaesaa s aeses 6

1.7 DisSertation OULINE.........cooiiirieieii et ereeeeesissae e rre e sbsstesss et benae b sbe s s asaassanses 6
Chapter 2. Background..............ccoiiiiiiiiiinii et rvace s s sbess b b s saeestan 8
2.1 INIEOQUCHION ..ottt ettt sa s s at s e sme e ab s e as s e b e s e st e ebaeatee 9
2.2 State Based TESHNE ...c..cccviriieeecciierenree ettt st e st s st s b sas st esasan s s snanaeas 9
2.2.1 UML MOGEIS ..ottt ettt ettt s aaeeseesee e cassbsssassaasassnssranans 9

2.3 Data FIOW TeSINE ...ooii ittt ee e te e e e e eae e et e e e s e e e eenstseeaseneaneeaarasasassssasesns 10
2.3.1 Coverage CrIteIIA......c.ccoeiiiiierciceiteine ittt sas st s ab e b st saesn e baenaan 10

2.4 Automated Test Case GENETAtIONcccccecmrriririririeiesierecesites e sses e et sesatesae s nennneeas 11

xi

e miarnns b Atk s nAM WY LinsErR

e S

2.5 SWarm INLEIlIZENCEov ettt a et s e e 11
P T N X T OO OO 12
Chapter 3 Related WOrK ...ttt 14
3.1 INUTOAUCHION «eoviveie ittt et b e st sa s nb e e s a e n et s e e nneas 15
3.2 Data Flow Testing APProachescoveveriiiiiiniiiinnininicesensnc e eass e essssssesssesnes 15
3.2.1 Code Based Data Flow Testing Approaches..........cccecvveciinveinnneoniiiesnnnnsiesninnns 15

3.2.2 Model Based Data Flow Testing Approachescccueoicininiiniinnninncniencnnnnnns 16

3.2.3 Data Flow Testing of UML State Machine Using Metaheuristic Approaches.......... 16
3;.3.1 Code Based Data Flow Testing Using Metaheuristic Approaches................ 16

3.2.3.2 Model Based Data Flow Testing Using Metaheuristic Approaches.............. 18

3.3 Data Flow Testing TOOLScccremiiiimiinimiciniiesnea ettt nnnens 18
3.3.1 Code Based Data Flow Testing Tool......ccoooveeiiiiicmeniniiiinicenecrveccencne s 18

3.4 Data Flow Testing Using Swarm Intelligence...........cccooveviiiiiniiiincnnee 20
3.5 ADALYSIS c.oovuitirreciterete ittt et e bbb b d S aa bR et sae s 21
3.5.1 Limitations in Research Workc.oooiiiiieiiiniriiiiiiniiicccniinis ettt iesie s 22
Chapter 4. Problem Definition ..ottt et 23
4.1 INEOAUCTIONeveeeeeieeieseetar et et at et eaesae e sassasshssae et s sassascas ot smneassaneass s nbassssnsrnsaenas 24
4.2 Issues of State Based TESUIZ ...ceoceirireererrieiciiee ettt s ese e s s eanneais 24
4.3 Concern of Data FIOW TeSting TOOL.......cocvuruveeiuiriessreeceesssesssesseesessesssssssecsesssssseassanes 24
3 1) o SO U O OO PO ST SOOI PO PO PR UUUUPPRROt 25

Xit

Chapter 5. Proposed Approach..............coooi s 27

5.1 INrOAUCHION ..voveereeierreeee et it esaceeeeecesse e sbs st rn s e e s s ne s s s ere b s e b e e e nae b e st anaaasnanassesans 28
SIPAD (=3 1T 17 4 V=1 L OO OO OO UUPU O PPPS PSR POSS 28
5.2.1 Input Source Modelcc.covviriiiiiii e 28
5.2.2 UML State Maching MOElScocvrurvoiriiiciiiceercrint et e 28
S.2.3 XML oottt te ettt et b et sh e et a e s e e e ae e b e e bR e e a e s e rn 29
5.3 APProach OVETVIEWcccvvvmirieececiiiieiirie ettt 29
5.4 Test Data SElECtiON ...ccoieririieieiicert ittt et et sae s e et s bbb s e n e ans 33
5.4.1 UML State Machine Modelsc.ooorririiriicimmmiinii e 33
5.5 ACO Adaptation for Automated Data FIow TeSting........cccoecereiriiiiiniicieininieiinivieenneans 35
5.5.1 Representation 0f SOIUHIONcoiceciiinic ettt ts s s 36
5.5.2 Evaluation of Optimal SOLULIONc..ccuiieiiierierrrer ettt ccresecseseeeeneseanes 37
5.5.3 Deriving an Optimal SOIUHON.occceiiiciiimrrrieteccnniei et ee e ceesseesceseoneas 41
5.5.4 Parameter TUNINEccccoiiiiiiiiiiiirce ettt et eie et seaace e e eaeeanes ssseeass s s aasraeassecssseseas 43
5.6 Automated Data FIow TESHNG.c..coriieiieeei ettt ceeiecene i sssea e sressesnensnnes 43
5.6.1 Prepare the Input Source Modeccooiiieierinrreie et 44
5.6.2 Create Control FIOwW GTaph ..ottt ses e s 44
5.6.3 Identify Data Flow INformation.........c.cccuecierieiiiienie i eveeeciee s e sanesrns e eeee e 45
5.6.4 Automatically Generate Feasible Test Casesc..ccoeiooeeeiiiiiienieecireseaesineserseeeeee e 45

xiii

5.6.5 Data Flow Information against each Path..........ccoccccooiimnni 45
5.6.6 Optimum Set of Test Cases Using Optimal Solution...........cccvveeieeriniicnincnnccnnns 45
Chapter 6. Tool Implementation................ccccoviinmiiinreetiee e 46
] 6.1 INITOQUCTION ...tirieie et ceee ettt st sas s et ab s e ba e e ceaae s e aesaenn e neaannes 47
| 6.2 TOOI ATCRILECIUTE........veeeeeeieie ettt et tceac s s e sn s s s sre s s b e e an s b s 47
6.2.1 XML Parser I AT RSO RSPOS 47
| 6.2.2 SEATCH EIMZINE .ovvo oo oeeeeseeeeeeseee e eeee e ees e see e eeseesereseseeee s 49
6.2.3 Automated Test Case Generator ENginecccveeveieeiinnnieniccnennrcecsnssssiesne e 49
1
; 6.3 TOO! IMPLEMENLALIONccveereerieeieieieecerre e s et ee e st resae e st enesaesaneaes e eanses 50
6.3.1 Path ..o ettt sttt n e s a st ens 51
6.3. 2 AC0 ettt et et e e e e b et e st s 52
0.3.3 GIAPN ..ttt e e sb s sb et r bbb atas 52
6.3.4 Varablesoooiiiiiii ettt et s s e e 54
6.3.5 EQIOT ..ottt e e r e e s e e s aa s s ae bt s a e bt s e st nenn e et e aaens 55
6.3.0 INOUESoviiceeetieie et se e et e et e tb et e e teeteeste e rbaesneeeeesasaeneeanseeaeseatsateeesrennrans 55
6.3.7 EITOTS ..utiiinrenteesie et eett st et e st te s be s e e eae e s e s abacbaea s s s aaseeaneeaseaanteanesaesassssasasns 56
6.3.8 XIML PaISETccuiieiiiiiecieeiireiee e et et ce st e stassaeests s s asaasss e saessne e nnecesasasesssssneeasnssneens 56
6.4 T0Ol Process FIOWcccoiiiiiiiiiecece st s et e e 57
6.4.1 Input Source Modelcccooiiieiiiiiiieeccie e eree e cte e et sae s saa s 58
6.4.2 Parameter SEtlNE.......cccocvii ittt eiitee e e rteesae e s srseessatessse s e s ss e e naaes et esasaeaasaas 59
Xiv
L,

q

e S e s S

6.4.3 RUNACO ..ot ettt eee et aesec s e nssasaesa st s b s b e s s eb e n e s et ss e e snneancobans 60
6.4.3.1 Create Adjacency MatTiX.....cccovrvrmmrinmnrencieteiernees et 62
6.4.3.2 Generate Feasible Test SEqUENCES.......coveviiiiiiiiiniincie e 63
6.4.3.3 Generate Infeasible Test Cases.....oveceoviiviiiiecc it 64
6.4.3.4 Generate Optimal Test Casescvvvereriiiniiiniiniiieceen s e 65
Chapter 7. Case STUAYccooeevricr b 71
7.1 INTOAUCTION ..ottt et e reat s st e s ee e e be s aas s st b e s s bne e e aa e e sbneeraneeeanasserans 72
7.2 Elevator Control SYSIEML.....cccirvircciiecereeeneneeetcr et esste e ssasnseebes s easssess e ssnanas 72
7.2.1 Scope of Elevator Control SYStem.......c...ccorimiiiimimnieriniserteinnienernses s ssascascnsneanans 72
7.2.2 Functional REqUITEMENLc..cccovimmmiiriniimiiiieies et e es 73
7.2.3 Details 0f Case STUAY ...cvvecveeiicrieie et c e s sterassasssrssaeanssassas 74
7.2.3.1 Infeasible Paths..........ccoceeciecienceniieee ettt 82
7.2.3.2 MUutation TeStING........ccivmvrirmirceeiici et 82
Chapter 8. EVAIUALIONooiriecieecrr et vt s b et b e s bs s a e ns 84
8.1 INLTOAUCTION ...ttt ettt eaesae ettt e e e ae s e e e et s e s e nt et enee aaneesseasea e aeseertenneas 85
8.2 Elevator Control SYSLEIM........cc.ciiviiiiiiiiie et eeeeeeee s stieesae s s e e srrressness s ssaessssessesesnesssnnnns 85
8.2.1 Experimental Settings of TOOl........cccoimiriiiinriieieeeieieie e e 85
8.2.2 Results and DISCUSSIONcueiceeeierieeeieiessceerreareceeseeeiresseessassessassnsansessesesersssneensenns 86
8.3 Validation of our Proposed APproachcccccoiimieineiciiecenecieeeceeee e 98
8.3.1 Experimental SEINES.......cccecueiiirieiciiieiieceieiteesiaeeseesaeesaesasesaeseseesseeesssesssesssssrnsssnenns 98

Xv

8.3.2 Results and Discussion of Validation of Proposed Approach........c.ccccevenieirnnncnccne 99

8.4 COMPATISOTIS -....cveuermearuietrreeerreneeceneetesie e ebasasse s s s e e b et s s s e s 100
8.4.1 Data Flow Testing Approachescovvviieirieiiiieieecinectc s 100

8.5 ASSESSITIENE ...eovveeurieeeieersrirereersnereeeessteesnenneeesatssstetternaass e rsasesan e n e neaa s e R s et e s ne st er e et e nn e 101
B.5.1 BEIELIS ...eecuieiiiiieeceeee it e e st bee e sae e e b e bRt en b an e aan 101

8.5.2 LAMILALIONS ..c..eeueerrreenereeceietnisteeeeceesoss b e s e sae s rernesseeraaasassse s s e saassn e s rasnesnesassseescs 102
Chapter 9. Conclusion & Future Work............cccoii e 103
0.1 INTOAUCHION ...oviiieerierreeeeeeciee ettt e eeeesar e e e atasbssas et e s ae e eeesb s s bt eraensssnneasensennante 104
9.2 COMCIUSION 1. oeeeoeeee e eeeeemsseeeseeee e e sese st semeecemmeneseseeeeesseseeeeeresessere 104
0.3 FUUIC WOTK ..ottt ettt e sn bbbt sa e s et s b b sa s abenns 106
9.3.1Improve Optimal Set of Test Cases..........ocvcoiiiiiiiiciinnicccennce e 106

9.3.2 Application to Large Scale Modelsc.covrieiicnccmiciineacccciiniiincccneiens 106

9.3.3 Reduce the Test Case Generation Timecccccmmmiccriicininnccccniiisscsennenns 106

9.3.4 Enhance Data Flow Testing Toolccccoiriiiiiniiiniee et 106

9.3.5 Applicability of our Proposed Approachccccciiiincnnviniinncns 106

9.3.6 Applicability of Approach to other Models...........cooverrcccrerincccciiiiiiinccecne 107
REFEIENCES......c...oiniiiieee i et e b aae s 108
Appendix A. XML Format of all Input Models ... 112
Appendix B. Screen Shots all Input UML State Machine Models............c.ccooeecmmmrvrnncrcinenee. 122
Appendix C. User Manual.........cccoiiiiiiiiiiiiceecie ittt s et e saessae s aes s eanaeesesssacananenes 132

XVi

Appendix D. Generated Test Cases & Data Flow Information

xvii

List of Figures

Chapter 1

Figure l......ccoovviviiiiiiiii Format of XIMLooivieiiinieriren e einsesacnerens 5
Figure 1.2, Dissertation QUtline.........cocooocevvverieniiriinnnir e 7
Chapter 5

Figure S.1....iiiiiiiiiiiiiee Format of XIMLvvoeeiiecm ettt e 29
Figure 5.2......cooiiiiiiiiiien Data Flow Testing SYStEIM ...cvvuvveiciermreereieeerieeneeeeeereeessnneseseces 30
Figure 5.3........ccciiiiiinnns Data Flow Testing Approach OVETVIEW......cccoovnieivinnniisinneienennneinnes 31
Figure 54...........cocoiiiinne Process Flow of Proposed Approach................ccciiiininn 32
Figure 5.5............coieie State Machine Diagram of Telephone Systemccccccevevviinnnicniicnnins 34
Figure 5.6............c.oiiiiin, Adjacency MatriX . ooocoveeiiciii e 35
Figure 5.7........o.col Steps of Automated Data Flow Testing Process..........cecccoevveivevencennne 44
Chapter 6

Figure 6.1, Tool ArchiteCtureooooviiii e, 48
Figure 6.2, Class Diagram.......ccoeeevieeiiiiiiiccceie i cvvsineeone 50
Figure 6.3 Main Window of TOOL.........coveiriviiciiirnien e 57
Figure 6.4.....cccoeviviiiiiiiiiiiiiiinnnn XML File of Input Model of ECS ... 58
Figure 6.5..c.ciiiii i Main GUL.....cccoiiiiiiiiiiiiiini it cricsn e 59
Figure 6.6.......coovvivveiiiniiiiiinnn Main GUI (Select Run ACO Option)ccooveeeeeeeiviieecers e, 60
Figure 6.7....coovviiiiiiii Adjacency Matrix of ECS Model.........ccoccovcmnveniienicnninenneen. 62
Figure 6.8...........coviinnine. Feasible Test Cases of Input Model ECSccccooeiiiieccvvieciereeas 63
Figure 6.9...........co. i Optimal Trial 1 of Input Model ECS.......ccooooiiiiivcircnienrecien 64

xviii

Figure 6.10 ...t Optimal Trial 2 of Input Model ECS ..o 65
Figure 6.11 ..., Optimal Tral 3 of Input Model ECSocvviviiiniiieirs 66
Figure 6.12oieinn, Optimal Trial 4 of Input Model ECS ..., 67
Figure 6.13oiieee. Optimal Trial 5 of Input Model ECS ..o 68
Figure 6.14 Optimal Trial 6 of Input Model ECS ... 69
Figure 6.15 . ..oviiviiiiiee. Optimal Trial 7 of Input Model ECS ..o, 70
Chapter 7

Figure 7.1....covvvnvnvnnnnnn. Adjacency Matrix of Elevator State Machine Model.............cceoemnicenae. 75
Figure 72........cociiiviiinnn, State Machine Diagram of Elevator Control System.......c.ccoooveviiivrannnne. 76
Chapter 8

Figure 8.1...ooeviiiiiiiiei e XML Format of ECS ... 86
Figure 8.2.....ccccceviivininnnnn, Bar Chart of Def-Use Paths Vs Mutation Scoreccccccceeiinnncneiennens 87
Figure 83......c..cciiiiinnn. Line Chart of Def-Use Paths Vs Mutation Score...........cocccceviiniiieiininn. 87
Figure 8.4........ccioiiiiiiiiiiiininnn Mutated Telephone System Model........c..oooiieiniiiiiiiiiiceiene. 90
Figure 8.5.............. Automatically Generated Test Cases of Telephone System Model 97

Xix

List of Tables

Chapter 2

Table 2.1 ..o Steps Of ACO ...t 12
Chapter 5

Table S.1.....ciiiinii Def-use pairs and Def<clear paths.........coovviiiciinnininnineeeeene 37
Chapter 7

Table 7.1............... Def-use Pairs of the Variables used within State machine Diagramccecoenn. 81
Table 7.2, e, Showing Mutation Score of all Modelsc..cccovenniininniiine. 83
Chapter 8

Table 8.1 DU-Paths Coverage & Mutation Scores of all Models ... 87
Table 8.2 Type and Number of Error Seededccoooiveeciiiiciiiiiiiiinin 91
Table 8.3........cccoiiiiiiiii Mutation Score & No. of Test Cases Neededcccoocevncnininnnnnnn. 91
Table84..................... Fault-Wise Coverage Provided by Existing Techniques.........ccococeicoeeeeece 92
Table 8.5.................. General Coverage Provided by Existing Code-Based Techniques..................... 93
Table 8.6.................. General Coverage Provided by Existing Model-Based Techniques.........c........ 94
Table 8.7.....cccevviiinneni. Total Def-use pairs & Def-use paths in Paper [10]........cccconiiiiicinicicnninnne 95
Table 8.8.. .o Number of Input Models and DU-pairs.............. erreer e anee e e 99

XX

Acronyms and Abbreviations

KM ettt b et e et st e v e en Extensible Markup Language
UML .ot ieeeeeesssesssesesm e e s e est st s sseseerre s sunas st assaseees s seanseeeaeeseentessraesanenensaeen Unified Modelling Langnage
N1 O OO OOV UPOORO PP State Machine
) 1 O OO SOV PP PR PRPOROI Control Flow Graph
| I O DO S PP SRPRROPPPR Data Flow Testing
)) 5 O O SO Definition-Use
ACO et et et rrs s s et st e e e e e en e b te s e e e n et eennes Ant Colony Optimization
] U SO SO UUU U OO Particle Swarm Optimization
G A et e ettt g et e e s A ettt ent sne e sensbeanseeeasrbeeneaenaens Genetic Algorithm
23 S U OO UV ST OTU PO RPPRRPION Breadth First Search
B ettt e et n e bbb s e Elevator Control Systern
TS ettt ettt ettt bbbt s e a e e bana eSS an st Aen s s et b a s em e sesas Telephone System
HM S et e et s e s e s n e s amr e Hospital Management System
1Y SO U ST UPSYUU PR UUP RSP ST PPN Library Management System
PO ettt etk et et e e s et e et basr et st sneereanrranen Purchase Order System
DM et e et e e e re e e ea e e b bt e e er bt et e e annt e anr e eeeanreeeeanrstansanes Display Manager
R S e e et e ettt s eaa e b s e st e e atesra e b srserreernnen Student Enrollment System
ettt s e e st s e b2t ea e et e s eaaeeat et eneanteanseeesannns Cruise Control
AT M ettt et et e he bt a st ste s seaene s Automated Teller Machine
XXi

2
4

Chapter 1
INTRODUCTION

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

1.1 Introduction

In sofiware engineering, development of software is highly competitive task to provide
software product of high quality within specific constraints. Software testing is vital part in
development of software. Exhaustive testing is impossible; to achieve the testing effectiveness
testing process should be automated. In software testing, test data generation is a critical task in
formation of test cases that fulfill the coverage criteria.

Recently researchers focus on to automatically generate test cases to reduce the cost having
high quality and unproblematic software testing [10]. To measure adequacy of testing, many
researchers use different well known coverage criteria defining the stopping condition of testing
process, e.g. data and control flow criteria. In Software, generation of test cases mainly focuses
the information regarding control flow for the production of optimum test cases. Testing of data-
flow is significant because it supplements control flow information leading to more efficient as
well as targeted test cases. Data flow analysis analyzes, works out the relationship and
association among data objects. Existing data flow testing approaches and tools aren’t efficient in
terms of 1) detection of data flow faults, [9, 31] 2) incomplete coverage of data flow information,
[9, 31] 3) redundancy in test cases [9, 11, 31]. Currently data flow testing of UML state machine
is performed fulfilling the required coverage criteria result in generation of optimal number of

non redundant test cases.

1.2 Problem Statement

Recently researchers focus on to automatically generate minimal test cases that are based on
data flow criteria. Consequently, in literature there are many approaches that perform data flow
analysis and testing of state based systems along with control-flow information to thoroughly
analyze the software system. By the analysis of these existing state based approaches, it is
observed that all the approaches are not efficient in detection of data flow faults and fulfilling the

coverage criteria.

Automated data flow testing in state based systems has many limitations that confine the
results. Some of these limitations are: 1} some of the approaches are ineffective in terms of fault
detection [9], 2) incomplete coverage of all def-use paths [9, 31], 3) moreover, generation of

large number of redundant test cases result in time consumption, 4) some of the approaches

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 2

perform data flow testing of state machine models don’t generate test cases to cover def-use
paths [10]. All these difficulties result in incomplete data flow analysis of complex state machine
models. Due to all these reasons, data flow analysis and non redundant generation of optimal
number of test cases becomes a demanding activity. Data flow analysis of variables and their
relationship within states are considered only. No such approach exists that perform data flow
analysis 1) using ACO, 2) fulfilling data flow oriented coverage criteria within minimal number

of paths, 3) and efficient in fault detection.

Motivation

Taking account of only information regarding control flow of models in model based testing
is not adequate to make sure, whether flow of data is properly through model [10]. Most of
existing state-based approaches focused on the control flow structure and don’t examine state
changes and its behaviour. No existing state-based testing approaches performing data flow
testing provide efficient detection of data faults. However, currently the approaches perform data
flow testing using metaheuristic approach don’t provide all def-use paths coverage; generate a
number of test cases result in redundant and infeasible test cases because of data flow errors are
not completely detected.

From all these observations and keeping in view all these limitations, our work starts to
perform data-flow testing of UML state machine,. The n}otivation of this research is to put
forward an approach that improves cxisting state based coverage criteria. And provide a
mechanism to select the Optimum set of test sequences among alternative while ensuring all
definition-use paths complete coverage. Manual removal of redundant and infeasible test cases is
a time consuming task; result in incomplete coverage of all def-use paths. In this way, automatic
generation of non-redundant test cases is done to fulfill the definition-use paths coverage in

addition to efficient fault detection to evade the difficulties associated with manual detection.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 3

1.3 Research Questions

This research work plan to deals with the subsequent three research questions:

1. How effective is Data Flow testing using Ant Colony Algorithm in enhancing fault
detection capability?

2. How Data Flow testing using Ant Colony Algorithm provides complete definition-use
paths coverage?

3. How Data Flow testing using Ant Colony Algorithm is effective in reducing the search

space?

1.4 Proposed Solution

Observance of all the troubles and complication linked with existing state based data flow
testing approaches/techniques; we propose an approach that makes the data flow testing of state
based system simple, and uncomplicated. The main idea of proposed approach is to generate
minimal test paths in fulfilling data flow coverage criteria and provides maximum data flow error

detection.

We propose to use state based models to perform data flow testing. In our approach, XML is
given as input to tool that is commonly used representation in model based automated testing
tools. XML is generated using UML modeling tool enterprise architect. Both the data-flow and
information about control flow are extracted from XML of given input state machine model. The
format of XML is given in fig 1.1. Control flow information is collected is shown in adjacency
matrix to get the feasible connection between states. Data flow analyses of variables within states
are performed to know the relationship between variables and how they affect flow of execution

in models.

In state based testing, generation of test cases become difficult due to large number of test
cases meffective in fault detection. Most of the state based approaches focus on control flow
information doesn’t examine state changes and its behavior, Moreover, approaches providing
coverage of data flow information is incomplete. In this way, we provide an approach

automatically generate optimal number of test cases that not only ensure all def-use paths as well

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 4

3. Redundant test cases are minimized.

4. Reduces the search space.

The benefits obtained due to developing an approach having the characteristics that are given

below.

1. Ease the automated generation of test cases from state machine models.

2. Provides the complete coverage of all definition-use paths with minimal test cases
which is rather impossible in existing state based approaches.

3. Efficient detection of data flow errors.

4. Generation of non-redundant paths.

5. Tool is efficient in complete detection of all seeded faults within models.

1.6.1 Contribution

None of the existing model based approaches provides complete analysis of data flow
faults. Our approach use metaheuristic technique to perform data flow analysis that not only
provides effectiveness in detection of data flow faults and with optimal number of test
sequences, coverage of all def-use paths is provided. Due to use of heuristic technique, all seeded
faults are also effectively detected by tool. Tool provides general (state coverage) as well as

fault-wise completes coverage of models.
1.6 Dissertation Outline

Figure 1.2 demonstrates the association of this dissertation: Chapter 2 set up the background
to understand the dissertation by providing the knowledge regarding data flow testing. Related
work in the field of data flow testing of UML state machine is described in chapter 3. Chapter 4
highlights and demonstrates the issues and limitations of existing state based approaches and also
research gap is highlighted. Our proposed approach that automatically perform data-flow testing
of UML state machine is described in chapter 5. Tool implementation of proposed approach is

described in chapter 6. To validate our proposed approach, a case study is presented in chapter 7.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 6

b b g goo omo

2.5.1 Ant Colony Optimization (ACO)

Ant colony optimization (ACO), a famous research area in paradigm of swarm intelligence.
ACO algorithm was proposed by Dorigo et al in 1990’s derive from behavior of real ants [19].
This algorithm solves the travelling salesman problem. ACO algorithm is based on the idea of
sensing pheromone traces on paths and bases their decision on this value, to search the
shortest/optimal paths within a graph [18].

Ant Colony Algorithm has been by the behavior real ant’s colonies, observing them when
they are searching for food source. An ant lays a substance known as pheromone on a path that is
traversed by ants in searching of food source. This pheromone information helps other ants
moving randomly by marking the path and also returns to their original source by using this
information. Path that is followed by more ants have more pheromone value because new ants
also lays pheromone on that specific path update its pheromone value. As pheromone lay by ants

evaporate at a constant rate that helps avoidance of convergence to local optima [20].

Initialization

— Initialize the ant’s position

Iteration

For each Ant do

— On the Basis of probability choose the next state to
move into;

— Repeat until all ants completed a solution;

— Update the pheromone values for each path that are
traversed by ants;

Update the Graph;

End;

If global solution is not better than local solution

keep best local solution as global solution

End;

Table 2.1 Steps of ACO

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 12

The more ants pursue the same path, the more pheromones value is on that path. As a result,
there will be larger probability for the ants to go for on the same path. ACO simulates the mutual
aid process of real ant colony. Each ant leaves pheromones on solution it gets by independently
searching for solution. Paths having higher pheromones values have larger probability to be
chosen by ants [1]. Each ant makes use of the graph to search the optimal solution within graph.
Each ant has its own memory having start state and termination condition. Ant’s decision is
probabilistic decision based on available pheromone trails [17]. ACO is a strong heuristic
approach that involves positive feedback leads to the near best solutions in minimal time. ACO
technique in selection gives better results at higher test case values with minimal amount of time

taken by the algorithm [19].
ACO has been used in solving the various combinatorial optimization problems such as

knapsack problem, travelling salesman problem, distributed networks, data mining,

telecommunication networks, vehicle routing, test data and test suite selection [19].

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 13

Chapter 3

RELATED WORK

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

14

3.1Introduction

Search-Based generation of test cases is a promising methodology for the automatic
generations of test data of high quality. Using evolutionary algorithms to automatically generate
test cases is widely used by researchers. To select and generate quality test data from meta-
heuristic algorithms are used. Test cases are selected within the search space that satisfies a

certain testing criteria.

These chapters of dissertation discuss the existing work in this field. Our work can be
associated with two fields of software engineering, Data flow testing of state machine models
and application of swarm intelligence in data flow testing. Section 3.2 illustrated the approach,
techniques and tools related to data flow testing of UML state machines. Section 3.3 presents the
tools for testing the data flow within Models. Data flow testing using Swarm intelligence is
explained in section 3.4. Lastly section 3.5 explained the conclusion of chapter by analyzing

existing approaches and tools.
3.2 Data flow Testing Approaches

Initially researchers focused on data flow testing of code based programs. After some time,
they performed data flow testing of models and automatically generate test cases. We categorize

these existing literature based on their focus on models and on code coverage.
3.2.1 Code-Based Data Flow Testing Approaches

Frankl et al [48], performed data flow testing of programs and also focused on feasible
criteria for data flow testing. This Coverage criterion exercises only those deflnition-use pairs
that are executable. This is a code based approach and our focus is on models.

Weyuker’s et al [50) focused on number of criteria to select a test data. All-definition, all
uses, all edges, all c-use, all p-use and all definition-use paths coverage criteria are evaluated on
program. Analysis indicates that data flow faults remained undetected in all edges and all-defs
criteria. Coverage of all c-use doesn’t include all-edges and some of the paths aren’t covered by
these criteria that are covered by all definition-use paths coverage criteria. This is a code based

approach and our focus is on models.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 15

Girgis et al [37] presents a data-flow testing technique and focused on def-use paths. This
technique was not effective as the value of fitness function for all test cases was same; test cases
covering same number of def-use pairs and that don’t cover any def-use path. And use nodes

aren’t covered by any test case. This is a code based approach and our focus is on models.

3.2.2 Model-Based Data Flow Testing Approaches

Briand et al [9] performed data flow testing and focused on transition tree coverage cniteria.
A data flow criterion was not used to create test cases but they analyze already created test suites
to choose best among them. Their approach provides incomplete def-use pair coverage and there
are infeasible paths due to incompatible sequence of transition. They manually remove infeasible
paths. Our proposed approach is extension of this approach because it provides complete def-use
paths coverage and also minimizes redundant generation of paths. Secondly, this approach
doesn’t use any heuristic approach for analysis of flow of data within model.

Waheed et al [10] performs data flow analysis and use action semantics to analyze data
flow of variables and dependencies. They give state machine as an input and feasible path matrix
is created to collect the information regarding control flow. Approach includes the data flow
information by finding the def-use relationship between the variables that are within states of
given input model. Our approach is different with this approach in the sense that it automatically
generates test cases along with detection of def-use pairs within model. Secondly mutation

testing is not performed in [10] that our proposed approach do so.

3.2.3 Data flow Testing of UML State Machine using Meta-heuristic Approaches

Different code-based and model-based approaches use metaheuristic techniques to perform

data flow testing of UML State Machine are given in subsection 3.2.3.1 antd 323.2.

3.2.3.1 Code-Based Data flow Testing using Meta-heuristic Approaches

Khor et al [14] presented an automatic test case generation approach known as genet while
focusing on branch coverage criteria. Genet used genetic algorithm for test case generation and
formal concept analysis was used to organize the relationship between tests. They evaluate the

effectiveness of their approach with random test generation technique called randy. ATGs

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 16

provide better coverage with less number of test cases. This is a code based approach and our

focus is on model based data flow testing using metaheuristic approach.

Andreou et al [6] proposed a technique for data flow coverage criteria that combine
existing testing framework with data flow graph. To automatically generate test cases, genetic
algorithm was used and focused on All Definition-use path coverage criteria. Valuable
information was extracted by their Basic program analyzer, which creates the control flow and
data flow graph. Experiment was conducted on java programs of various size and complexity.
Comparison was conducted by comparing technique with existing data flow generator
techniques, showed better experimental results as compared to existing techniques. This is a code

based approach and our focus is on model based data flow testing using metaheuristic approach.

Girgis et al [28] proposed technique that generates test cases focusing on all-uses coverage
criteria. The technique uses genetic algorithm to evaluate the generated test cases. For defining a
multiple objective ﬁtnéss function, dominance relationship among nodes was considered.
Technique is able to select specific test requirement, generating test cases to satisfy that
requirement. To assess the efficiency of approach, they applied their approach on ¢++ programs.
Limitation of their approach was applying it to large programs and size of population is small.
Also time to search data depends on speed of machine that may vary and test cases generated in
previous iteration are ignored. Random test case generation technique was used to compare their
technique results. This is a code based approach and our focus is on model based data flow

testing using metaheuristic approach.

Girgis et al [32] presented a technique to perform data flow testing of instrumented version
of programs using genetic algorithm. All-uses criteria are used as coverage criteria. Roulette
wheel method and random selection method was used for the selection of parents. Fitness
function was calculated by counting the definition-use path covered within test cases and divided
it to overall number of definition-use paths. Comparison of their technique was done with
random testing technique. Test cases cover definition-use pairs are generated and also list down
definition-use pairs that aren’t covered. This is a code based approach and our focus is on model

based data flow testing using metaheuristic approach.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQ) 17

Singla et al [3] presented automatic test generating technique for data flow testing while
focusing on all-uses coverage criteria. Proposed algorithm use Particle Swarm Optimization to
generate test cases and new fitness function was designed. Comparison of technique is done with
Genetic Algorithm for all programs that are used in their experiment and with other data flow
based testing techniques, results showed that PSO achieved higher coverage percentage than
Genetic algorithm. This is a code based approach and our focus is on model based data flow

testing using metaheuristic approach.

3.2.3.2 Model-Based Data flow Testing of UML State Machine using Meta-heuristic
Approaches

Doungsa-ard et al [23] proposed a framework and implement a tool known as state diagram
executor for test case generation from UML State machine. Transitions pairs covered by test
cases are used as a coverage criteria and genetic algorithm was used for searching the high
quality test data. Best solution was considered that covered maximum number of transitions but
their approach produced better result when the system doesn’t contain any final state. This
approach only generates test cases but don’t focus on analysis of data flow within model. Tool
doesn’t execute guard conditions if they aren’t in mathematical expressions. And looping
problems as well as infeasible transitions aren’t handled by their approach. As this approach use
heuristic technique only for generation of test cases but our proposed approach focus on analysis
of data flow within models and also mutation testing is performed to analyze the effectiveness of

our approach that above mentioned approach don’t do so.

3.3 Data Flow Testing Tools

In literature, code based data flow testing tools were developed to detect the data flow errors

within program that are given in subsection 3.3.1.
3.3.1 Code-Based Data Flow Testing Tools

Hou et al [8] analyze the flow of data and a BPEL tool ‘was developed for testing of web
services to detect automatically the data flow errors and generates paths which are based on

certain data flow coverage criteria. The tool can automatically select the paths, without executing

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQ) 18

the process, result in incorrect data were detected. But tool don't generate test cases for selected
paths automatically. This is a code based tool and our focus is on model based data flow testing
tool.

Horgan et al [44] automatically designed test analysis tool to analyze the data flow in ¢
programs. It creates new test cases that examine the code but test cases aren’t generated
automatically. It analyses the ¢ source code and reads static data flow information for each c
source code. To collect static data flow constructs, data flow graph is searched. Regression
testing was also performed by this tool. This is a code based tool and our focus is on model based

data flow testing tool.

Hamlet et al {45] constructed a prototype tool >for analyzing the data flow information in
arrays and record the executed paths during testing. A tool, Du-path analyzer was constructed to
report the issues of data flow in arrays by considering element of each array as data flow object.
This is a code based tool and our focus is on_grjrlodel based data flow testinéftggl‘; "

.Bluemke et al [24] performed code-based data flow testing of java programs by
implementing tool known as data flow coverage tool is an eclipse plug-in. They focused on all
defuse pairs coverage criteria and also def-use graph was created. All def-use pairs are found by
testing the java code and also provide information about which def-use pairs are covered. Tool
also detects data flow errors that aren’t not be exposed by black box testing. This is a code based

tool and our focus is on model based data flow testing tool.

Hou et al [8] developed a tool for data flow testing of web services that automatically
detects data flow faults. Generation of test cases was done automatically focusing on data flow
coverage criteria and generations of duplicate paths were avoided. Some of the features of BPEL
tool were also supported by this tool. By using the data flow graph, it provides information of
du-pairs, c-uses and p-uses as well as detects anomalies of data. This is a code based tool and our

focus is on model based data flow testing tool.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) . 19

3.4 Data Flow Testing using Swarm Intelligence

LI et al [33] used Ant Colony Optimization (ACO) algorithm for state-based software
testing. They have developed a tool that convert the state machine diagram into directed graph
and generates test cases to achieve all-states coverage criteria. A flattened state chart is used by
the approach. Dynamic ant simulator which is a prototype tool was developed by using this
approach to generate test cases automatically while avoiding redundant test cases due to use of
ants. But this approach doesn’t focus on data flow coverage criteria. Qur Proposed approach also
uses ACO but it is different with aforementioned approach in the sense that it uses all def-use
path coverage criteria. Secondly, this approach use ACO only for generation of test cases but our
proposed approach uses ACO to generate minimal paths and analyze def-use paths covered by

these paths and also detects data flow errors that aforementioned approach doesn’t do so.

Ranjan et al [11] generate test cases using Ant colony algorithm. They focused on criticality
of states and average number of visits for optimizes test case generation. Comparison of
technique was done with approach in [15]. Results indicate that their approach produced optimal
number of test cases providing 100% critical states as well as edge coverage. But the work does
not perform data flow testing. As mentioned above this approach use markov chain model to
generate test cases but our proposed approach use state machine model for test case generation.

Existing approach also don’t consider data flow analysis that our proposed approach do so.

Lam et al [50] presented test case generation technique for state based testing using Ant
colony optimization. Their work was same as in [11] but considered additional factors like
criticality of states and average number of visits. Our approach differ with approach in a sense
that above mentioned approach use ACO just for generation of test cases but our proposed
approach uses ACO for data flow analysis of state based systems and analysis is performed using

mutation testing.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 20

3.5 Analysis

By the analysis of existing techniques, approaches and tools, we come to the subsequent

conclusions:

1. As existing state-based techniques and approaches focus on control flow structure and
examines state changes and its behavior without focusing on the internal details, thus data
faults remain uncovered.

2. Main problems of state-based software testing approaches are that, infeasible test cases
and redundant test paths are generated to fulfill the required coverage criteria {33].

3. Major focus of previous techniques performing data flow analyses are on code based
techniques focusing on all-uses coverage criteria.

4. Approaches that are model based don’t provide Def-Use Paths complete coverage.

* Because they analyze the definition-use paths (du-paths) of test suites that are
already created and consider that the test cases contains the feasible connection of
states.

» When they analyze the data flow in already created test cases, there were
definition-use pairs (du-pairs) that were not covered and also undetected faults
[9].

5. Some of the model based approaches performing data flow testing don’t generate test
cases considering the def-use pairs coverage [10].

6. Some of the model based techniques that use meta-heuristic technique, genetic algorithm
for data flow testing focused in all-transitions pairs result in undetected infeasible paths.

7. Tools using swarm intelligence technique, ant colony algorithm generate test cases

without focusing on data flow testing.

3.5.1 Limitations in Research Work

By examining existing literature, we come to conclusion that existing state based
approaches are ineffective in detection of state based faults. Redundant test paths are generated
to completely fulfill the coverage criteria. Mostly approaches which perform data flow analysis

are code based. State-Based approaches that use heuristic techniques, generates only test cases

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 21

while not focusing on data flow analysis. None of existing model based approaches use ACO for
data analysis of state based system that our proposed approach does so. Due to this not only

efficiency in fault detection is increased but also minimal test cases are generated to provide

coverage.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 22

Chapter 4

PROBLEM DEFINITION

Data Flow Testing of UML State Machine Using Ant Colony Optimization {(ACO)

23

4.1 Introduction

Search-Based generation of test cases is a methodology to automatically generate high
quality test data. The use of evolutionary algorithms to generate test cases is widely used by
researchers. For the selection and generation of quality test data, meta-heuristic techniques and
algorithms are used. Test cases are selected within the search space that satisfies a certain
coverage criteria.

This chapter of dissertation explains the limitation and issues of existing approaches for data
flow testing using meta-heuristic techniques. Section 4.2 discusses the difficulties associated
with automated testing of state based approaches. Issues of state based approaches are described
in section 4.3.Section 4.4 claborate the complexity of UML models. Existing research gap and

problem statement is expressed in section 4.5.
4.2 Issues of State-Based Testing

There is extensive variation in cost in designing, executing test cases, and checking their
effectiveness in terms of checking faults in existing state based approaches. Most of the criteria
focused on control flow information of state diagram but some of the papers focused on data
flow testing of state machine having limitations in their work [33]. Many coverage criteria are
proposed for test cases generation from UML state machine, some of well known are including
all transitions, all transitions pairs and all-paths etc. Empirical evaluation of these coverage
criteria revealed that there is variation in cost in developing test cases. For example several trees
are generated in all transition trees differing in fault detection rate, have low detection rate.
While in all transition pair coverage criteria are extremely expensive but effective in detection of

faults [9].

4.3 Concern of Data Flow Testing Tool

As there are infinite numbers of paths in a complex state machine diagram, it is impossible
to select all of them for the determination of conformance of impiementation to required
behavior. To select an optimal solution, there is need coverage criteria to select optimal number
of paths that satisfy certain conditions. Several testing methods are proposed in recent years,

most of them focusing on control flow oriented coverage criteria without considering data flow

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 24

information. Both type of information regarding data and control flow is necessary in model

based testing to ensure correct flow of data through the model [10]. Generations of test cases

from control and data flow selection criteria are complementary to each other [3, 32]. Both type

of information must be used for selection of comprehensive tests. To automatically generate test

cases based on certain coverage criteria has been a rapidly increasing interest for many

researchers in recent years. Metaheuristic techniques are used for cost-effective generation of test

cases automatically, using heuristic to seek an optimal solution for combinatorial problems [25].

4.4 The Gap

Existing gaps in research that forced this research are given below:

10.

State based approaches focused on control flow structure without focusing on flow of
data through the model.

State based approaches are not effective at detecting data flow faults.

Most of the existing approaches don’t perform mutation testing to check the effectiveness
of their approach.

Until now, there is no model based data flow testing tool providing complete def-use
pair’s coverage with optimal number of test sequence using meta-heuristic algorithm.
Existing approaches are ineffective in providing complete def-use paths coverage.
Currently some of the approaches which generate test sequences automatically using
meta-heuristic techniques are code based focusing on data flow coverage.

Majority of existing code based approaches focusing both on data flow coverage,
generate redundant test cases to provide coverage.

Most of the approaches that perform data flow testing of UML state machine don’t
encounter looping problem.

Some of the Model based approaches identify def-use pairs but don’t generate test cases
and perform mutation testing to analyze the effectiveness of their approach.

None of the Model Based approach use metaheunstic approach performs data flow
testing of UML State Machine.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 25

None of the existing techniques provides data flow coverage of model using Ant Colony
Optimization algorithm focusing on both Optimal generation of test suites providing
complete coverage of def-use pairs as well as automatic detection of data flow errors to

ensure correct data flow through the model.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 26

SR

Chapter 5

PROPOSED APPROACH

Data Fiow Testing of UML State Machine Using Ant Colony Optimization (ACO)

27

5.1 Introduction

To improve the existing coverage criteria of state based approaches and to aim the research
gap given in the previous chapter, an approach is proposed for automatic data flow testing. Our
approach is considerably different from that already exist in current literature of state based
testing. This approach makes use of swarm intelligence heuristic technique to automate the data

flow testing process. These concepts have never been used in data flow testing context before.

This chapter is devoted to explain our proposed approach to perform automatic data flow
testing. In the chapter, section 5.2 introduces basic concepts related to our approach. An
overview of the approach is given in section 5.3. Section 5.4 provides details of test data. Using
of ACO to identified problem of automatic data flow testing problem is presented in section 5.5.

Section 5.6 explains the entire process of generating test sequences covering def-use pairs.
5.2 Preliminaries

We introduce some general concepts related to our approach to facilitate the further

discussion.
5.2.1 Input Source Model

Input model is model of system that is given for producing the desired output. Input source

model 1s UML state machine diagrams.
5.2.2 UML State Machine Models

UML state machine model consists of states, transitions showing connection between states
and invariants. States may contain a number of variables and associations between them, etc. A

complex state machine model consists of 2 number of states, paths and sub paths.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 28

5.2.3 XML

In our approach, input of source model is given in the form of XML (Extensible Markup
Language), which is commonly used in model based testing. XML is a markup language that
encode document in a format that is human readable as well as machine readable by using set of
rules defined in XML 1.0 Specification [28] that are produced by the W3C, and several others
specifications etc. UML modeling tool enterprise architect is used to generate XML of state
machine system models. XML contains the details information of overall states within input
model, source and target transition of states, guard conditions, variables and relationship between

them. This information is extracted by tool from XML to perform the data flow testing. The

format of XML is given in Fig 5.1.

! T,
m(a&mhlmlm;cmmm

P eHE WA LRI DD iy 1:--;;,::4*4(}3:‘.5-3&»5;‘

LOr aracA Tty ndows-1252%7)
A1t ity Tl ="oma. orQ/TMLE L J7 TizesTampmOI2-R8-15 221431027 &

el cemT=tRA Hodel® ﬂ?L;:-’x’:{_’AJ.D_YéCGi!\? AZII 2625 AAIS_L9I40V(RATIESS
URLcliaKe3Tace . S sAIieRenT
<CRI:Cleas ¢ BARpetCIase” ml.xdw BAD_L3111131 TE6T_4050 AITE IBIECLAANGES 13RCTTATLITmT LAledTAarfaise” ifiratracietfalse”s>
T F b LAMC 72“@5 _ACYL_4b2st A412 IJLAGBCBATIET® raisctm ralae” ixleafetfalse® LSAXCraoterfalsee” viriril:

=*ea_package id"
s="oreatad” Falume 3l

- [g ™y

Ln;jrcd:l Sef:G . o Do\ Warmbowrs. Windaws-1252 N

oy

Fig 5.1 Format of XML

5.3 Approach Overview

Main theme of our approach analyzes the data flow to perform data flow testing. Analysis of
data is performed to find Definition-use pairs information between variables that exist within
states. UML state machine models are used for automatic test case generation. States tags, source

and target transitions ids, variable names and position within states are extracted from XML of

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 29

UML state machine. Adjacency matrix is created to create a control flow graph to automatically
create control flow graph. Variables information is then used identify the relationship between
variables, def-use pairs. Automated feasible set of test cases are generated covering data flow

information.

Search based generation of test cases is example of search based software engineering.
Many metaheuristic automated generations of test cases techniques have been developed that are
proposed to deal with and generate quality of test data. In testing of data flow, selections of test
paths are done on certain data flow criteria. Our approach use data-flow coverage criteria for
automatic generation of test cases. Our data flow based system consists of two main components

as shown in figure 5.2.

1. Coverage Criteria select the test data of quality which is evaluated against certain
coverage provide by the test cases.

2. Search Engine is a software program that figure out information available in coverage
criteria. We use heuristic search optimization technique as a search engine in our

approach.

Coverage Criteria

Problem Solution

Search Engine

(Heuristic Search Technique)

Figure 5.2 Data flow Testing System

In our approach, coverage criteria is all definition-use paths requires inclusion of test data
that cause path traversal from each occurrence of variable definition to each of its use of
variable. Our approach searches the all def-use pairs and paths within input model, removing
redundant def-use paths. During search, along with generation of optimal number of paths
providing maximum state as well as def-use pair coverage avoiding redundant test cases in each
generation, data flow errors are also detected automatically. For that reason our approach differs

from other data flow testing techniques.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 30

By selecting minimal test paths which are based on maximum definition-use pair coverage
of input model, the final solution consists of minimal test cases. Because input model consists of
large number of transitions and states, have larger number of possible paths. As exhaustive
testing is not possible to consider all the paths in input model and it becomes impractical. So

there should be coverage criteria to select minimal paths which satisfy certain conditions.

Due to this basis, the generation problem of test sequences automatically view as an
optimization problem. Minimal best solution is searched by make use of Ant Colony
Optimization Algorithm, a heuristic search technique. An introduction of ACO is described in

section 2.4.1. In a range of search techniques we use ACO for the following reasons:

1. Well adapted for solving combinatorial optimization problems[1,11]

2. Well suited for State Based testing {11]

3. As compared to other heuristic techniques, success ratio of ACO is better [3].
4. ACO finds optimal path while traversing graph [11]

Using ACO, solutions are represented as paths generate by ants in the search space, and
each ant path while traversing graph is evaluated based on fitness function. Ants that traverse the
paths with highest value for the fitness function is selected as optimal solution. An overview of
our automated data flow testing approach is given in figure 5.3. At an abstract level, our

approach divides the process of antomated data flow testing into three major steps.

1. Preparing XML of UML state machine model and is given as an input to or data flow
based system. This is used to extract states, source and target transitions, invariants

present within states information on different models.

Coverage Critena

Input Source Model Al Def-Use Paths Optimal Solution

n P

>

Search Engine

XML of UML state Machine Optimal no.of Test Sequences

Ant Colorry Optimization

Figure 5.3 Data Flow Testing Approach View

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 31

2. Each feasible path generated from graph of the input model selected from test data that
fulfill the coverage criteria using ACO.
3. Finally, all feasible test cases/paths generated from graph fulfilling coverage criteria are

used to select optimal paths among them.

Input State
Machine

A

(XML Parser)

y
6nstruct Adjacency Matrix> Du-Pairs DU-Paths List of Variables

A

Gnd Feasible States and TransitionD

Create CFG
A
N
Apply ACO)
A
Detection of Total no. of Paths Minimal no. of

Data Flow Errors within SMD Paths providing All

Def-use Paths

Fig 5.4 Process Flow of Proposed Approach

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 32

5.4 Test Data Selection

A quality test data is selected that is based on certain coverage it provides. All def-use paths
is used as coverage criteria, a strongest criteria defined by Rapps and weyuker. More effective
test cases are selected that fulfills some coverage criteria. Assignment of value to variable is
known as definition while use of variable in node is use of that variable and path is a definition-
use path from the point where variable definition occurs to the point it is use. All definition-use
paths of each def-use pairs are covered. In case of variable is defined single time but used in
more than one node than there is two def-use paths from definition to variable to each of its use.
If variable is defined and then again defined in a single path before its usage than it will be error
and def-use path will not from its first definttion to its use because there is a killing node

unbound memory location.

By using ACO, optimal solution is generated that fulfills the coverage criterion. Our
approach identifies data flow relationships among variables. However to illustrate our proposed
approach, we make use of state machine models as an example. Our choice of using this model is
that it describes the dynamic behavior of objects. Moreover rather than automated generation of
test cases based on coverage criteria, we also perform mutation testing to analyze the
effectiveness of our proposed approach and to detect the seeded faults to thoroughly test the

system.
5.4.1 UML State Machine Model

From the given input model of UML state machine diagram, states with invariants
relationships, associated source and target transitions are extracted. For example consider the
state machine model of telephone system is shown in figure 5.5. It has 8 simple states and 2
initial and final states with 16 transitions that change the state of object. Transitions are
dependent on its source and target states. Adjacency matrix is created to show the cormection
between the states, overall rows and columns are equal to the total number of nodes within input

model.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 33

A

Fa

l G 1. On Hook |

‘3
)

~
I3

: 3
1 G 6.Ringing |

|
N T

¢

l & 7.Connected |
A

/ ”‘—"i’ ™ /—_‘Q""-\

Fa
{ &3 5.Ring Tone [@ 4.Error Tone ! &5 3.Busy Tone

3
i
% Y

; =

Figure 5.5 State Machine Diagram of Telephone System

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

34

N
o
Q
[l
o
o
Q
-
o
o
o

& W
o
Qo
Qo
o
Q
o
Q
(=]
-
(=]

10\0000000000/

Figure 5.6 Adjacency Matrix

Adjacency matrix as shown in figure 5.6 is created to show the feasible connections within
a state machine diagram. Effort is reduced by using these feasible connections of paths instead of
finding in the whole state machine to inspect dependencies of data. Rows and columns within
matrix are equal to total states within input model. Entry is either O or 1. The entry O represents,
there is no connection between states. An entity with 1 portray that there is path between states

and are reachable. It keeps the information of control flow between states.

5.5 ACO Adaptation for Automated Data Flow Testing

Our approach finds an optimal solution for each input model by analyzing data flow
information. ACO represent solution as number of ants deploy in each generations while
traversing graph. The task of ACO is to search for optimize set of test cases covering maximum
states and def-use pairs. Redundant test cases are avoided and looping problem in state machine
diagram is handled by not allowing ants to revisit state more than once. For the application of
search techniques to specific problem, it is necessary to represent the optimal solution, specify
the objective in terms of fitness function for the evaluation of quality of searched solution. The

next section explains the adaptation of ACO to our automatic data flow test problem.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 35

5.5.1 Representation of Solution

Using ACO, overall solution is represented as ants in the search space. These ant’s moves
in the search space for finding best/optimal solution. The dimension of search space are
considered as the graph of the input model which is created from adjacency matrix containing
number of rows and columns representing connection of states in the input model. This implies
that search space dimension equal to total states within input model. For example, adjacency
matrix of state machine diagram of figure 5.5 contains 8 states with 2 initial and final states and

16 transitions contain 10 rows and 10 columns.

The total number of nodes in the graph will be numbered from 1 to n, n being the total
number of nodes. These nodes include the possible def-use information of variables. Each of the
input source models will be associated with a def-use pairs information of variables exists within
states. While the transition of the input model shows the number of possible paths within graph

that the ant can traverse.

This solution is implemented as a number of feasible test cases generated covering all def-
use paths. A variable defined can have multiple uses in present in different nodes. For example,
if we consider the definition-use pairs of state model of figure 5.5 has 11 def-use pairs. Table
5.1 shows a definition-use pairs and definition-use paths of single test case that contains total 4
variables with 6 def-use pairs covered by that test case. In State 1, 4 variables are defined and
used at different states. Variable time is defined in state 1 but used at three places state 2 and
state 6 and state 7, so it becomes three def-use pairs, as (1,6)(1,2)(1,7) and Def-use paths are (1-
»6),(1-56->7->2) and (1-»6->7). This means there are three paths that must be counted to cover all
definition-use paths of this def-use pair. And variable bill is defined in state 1 but used at state 7
so there is 1 definition-use pair and (1,7) and one def-use path(1-» 6-»7) to cover this definition-

use pair and so on.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 36

Initial 1 -6 -7 -2 - 8 - Final
TOTAL VARIABLES USED IN THIS TRAIL
bill, cr, rt, time, a
DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL
Variable : bill
(1,7): 1-6-7

Variable : cr

(1,2): 156572
Variable : rt
(1,6): 1-6

Variable : time

(1,6) 1-6
(1,7) 1-6-7
(1,2) 1-6->7-2

DATA FLOW ERRORS IN THIS TRAIL

Variable: a
Type of Error: UN USED
Description: Define on nodes 8, but not used.

Table 5.1 def-use pairs and def-clear paths
5.5.2 Evaluation of Optimal Solution
e Selection of node while traversing

The user defined objective function evaluates the quality of data flow testing solution
produced by ACO. In data flow testing, fitness value of ant indicates the aptness of the
optimal test cases selection for coverage of def-use pair of their correspondence input model.
For our problem of data flow testing from UML state machine models, we have defined the

following fitness function:

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 37

PV = Pheromones Value
DU = Total Definition-Use Pairs covered by a path

TN = Total Number of Nodes in Input Model

Fitness function is used to assess the data flow testing solution of any input model. As the
fitness function contains two parts def-use pairs and total number nodes covered in that specific
path. The numbers of def-use pairs are counted against each path traverse by the ant to update its

pheromone value.

Using this fitness function, first ant check the number of variables covered in path that is
traversed by it. Then check the definition-use pairs and definition-use paths covered in paths that
are traverse by ants. Ants also check the data flow errors in those paths. For example ants check
that whether variable is double defined in a single path before its usage then it detects the error.
After counting def-use pairs, total number of nodes traverse by ants in each path is counted. By

dividing def-use pairs counted by total number of nodes value is calculated of pheromone.

In calculating the value of pheromone, instead of using all def-use pairs within a graph,
only def-use pairs are counted that are covered by a specific path. Because there a number of
feasible paths within a graph, and each path cover different number of def-use pairs covering
different number of nodes while restricting traversing of redundant paths. Feasible paths are
those paths that are complete paths start from initial node to final node of input model. To
explain this point; we will use an example of state machine model of figure 5.5. Consider the

feasible paths of the input model are:

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQ) 38

Initial > 1 -» 6 -» 7 -» 8 -» Final

Initial > 1 ->6->7 ->2 -» 4 ->» 8 -» Final

Initial -» 1 -» 6 -> 7 -» 2 -> 8 -» Final

Initial -» 1 -» 2 -» 3 -» 8 -» Final

Initial > 1 ->6->7 -2 -» 3 -» 8 -> Final

Initial > 1 ->6->7->2 -» 5 -» 8 -» Final

Initial -» 1 -» 2 -» 8 -» Final

Initial -> 1 -» 2 -» 4 -» 8 -> Final

Inttial > 1 -»2->5-> 7 -» 8 -» Final

Initial -» 1 -» 2 -» 5 -» 8 -» Final

In this example, there are 10 feasible test cases or paths of the input model. Consider a single test

case 2;

Initial -» 1 ->6 -> 7 -» 2 -» 4 -» 8 -» Final

In this path/test case, total numbers of variable used are 4. And 5 definition-use pairs are
covered by this path. One variable is defined at single place at node 1 while used at 3 places, in
node 6, 2 and 7. So it becomes 3 def-use pairs of single variable and there is 1 definition-use path
to cover each def-use pair. Another variable rt is defined at node 1 but used at 2 places in model,
at state 4 and 6. So there are 2 def-use pairs and def-clear path. Variable that is defined and used

single time in a node so it has 1 definition-use pair and has a single definition-use path to

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 39

traverse it. So there total numbers of def-use pairs are 5 and total of nodes traversed in this

specific path are 6. Its pheromone value becomes 0.83.

The nodes traverses in this path are unique, revisiting of nodes is not allowed due to
looping problem. In each path, each node is visited once a time. But in different paths, a single
node may be covered many times. Redundant test cases are also avoided to save time. When a
single node is covered many times in different paths, each time its pheromone value will be
increased. Its means node is traverse by more number of ants having highest probability and its
pheromone value will be increases. For example in test cases as defined above; nodel, 6, 7, and
8 is traverse by many ants in their path. Consider the node 7 which is traverse 6 times by ants in
6 feasible test cases. When it is traverse first time by ants, pheromone value set by ants is 0.5 in a
first feasible test case. When node 7 is traverse 2™ time by ants, its more pheromone will be
added to this node by other ants traversing this. Consider the first test sequence in which 3 def-
use pairs are covered having pheromone value 0.75, and then updated pheromone value will be
0.83+0.75 = 1.58. First value is pheromone value while traversing this node first time and 2™

value is pheromone value set by ants in other paths, so its pheromone value is updated and so on.

Ants sense the pheromone traces at each current point in graph of its directly connected
nodes and leave pheromone traces while traversing that node. Pheromone value is set by ants
after completing its tour because if ants set the pheromone value of nodes before reaching to its
destination and will not reach to its destination then other ants also follow this path and all of
them don’t reach to destination. As ants make their decision based on this value, this value is set
by ants after completing their tour. And the pheromones value is updated each time it is traverse,

nodes with highest pheromone will be highlighted by more traversal of ants.

Nodes that are traversed many times also have highest probability. Because probability
depends on pheromone value and heuristic factor. Alpha and beta are constants, set their value 1.
Visited status of each node is tracked. Value 1 of state/node means that node is not visited yet. If
node is visited than its value changes to 0. Based on these value ants don’t visit node twice.

During tour, each time ants made to visit node it also checked the visited status of node.

When ants are made to traverse graph, they check these value at each point where they are

standing and want to move to visit next node. If ant finds nodes with same probability in their

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 40

path that is directly connected to current node, then it checks the desirability value of node. If
both nodes are not visited yet than it make decision randomly and if node visited status is 0 that
means it is already visited and second node visited status is 1 it means it is not visited. So ant

make a decision to move to that node which is not visited having same probability.

To avoid the problem of ants, stuck in local optima is avoided by setting the evaporation rate
of nodes. Pheromone value of each node is constantly evaporated. Because if this value is not
considered, pheromone value on each node remain same and ants will follow the same path in
each generations. Nodes that have highest pheromone value have low evaporation rate than those

paths that have low pheromone value.

Mutation testing is performed to analyze the effectiveness of model. Data flow faults are
identified from literature which are seeded into models and are detected by ants the type of fault

and its location is identified.
5.5.3 Deriving an Optimal Solution

In first generation of ACO, ants are made to move randomly for selecting the paths.
Because at start, probability of each node is zero due to each node pheromone value is set zero.
Pheromone value is zero as ants set this value after completing its first tour. After first generation
ants set the pheromone value of each node of every path that is used by ants of next generation.
And optimal solution is selected in each generation by calculating probability value of each path.

Probability value ranges from 0 to 1.

In ACO, each ant while traversing graph is associated with four factors. In each decision of
ant to traverse a certain node, it keeps record of their cwrrent position in a graph, visible
connection of nodes from current position, -heuristic factor, and pheromone value. Current
position of ant is its position in graph when it wants to make decision, while after making

decision its current position will be changed and new position will be its current position.

Fitness function is used to evaluate the ant’s decisions that decide the quality of the data
flow testing solution. Paths having high fitness value are stored in optimal test case that is best
optimal solution in a graph. Fitness value of each optimal test case is stored and optimal numbers

of test cases are selected from a number of feasible test cases. On each iteration, fitness value is

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQ) 41

-

calculated and stored to make comparison with later generations of ants to select an optimal
solution. In each generation, fitness value of each iteration is compared, if the current values are
better than existing iteration than optimal paths will be updated. The probability of optimal paths

in each generation is calculated using the formula in (2).

P={ij)* * i) /S @ * M) 2)
P = Probability
Alpha & Beta are constants
T = Pheromones Value
1 = Heuristic function

Optimal paths are selected from feasible paths of the given input model. Optimal paths are
those paths that cover maximum def-use pairs. Minimal numbers of paths are selected that cover
maximum states as well as def-use pairs while ensuring complete detection of data flow errors
result in reducing the search space. In each generation, optimal paths are different due to

coverage of different number of def-use pairs and states.

T 2 (27} T ATH et eeee e eeae e (3)

Where r= Rate of evaporation of pheromones between 0 and 1.
Artij= Total amount of pheromones set down by ants when it traverse from edge i to j.

Using formula 3, pheromones of each path evaporates. Path covering large number of definition-use pairs
t
have low evaporation rate than the path covering low number of definition-use pair in which pheromone

value evaporate quickly. But it shows better results when r is between 0.25 to 0.35.
i

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQ) 42

5.5.4 Parameter Tuning

In the searching of an optimal solution by ACO, parameters play an important role. In our

approach, following paramefter values are set to find an optimal solution:

1. First parameter is number of ants, for example number of ants sends for exploring the
search space. In automatic setting we set the number of ants to 100.
2. Evaporation coefficient that changes the decision of ants in each iteration.

3. We set the maximum number of generations to 10.

5.6 Automated Data Flow Testing

By using the proposed approach, automatic process of data flow testing is divided into six

main steps which are shown in figure 5.5.

1. Prepare Input Source Model.

Create Control Flow Graph. .
Identify data Flow Information.

Automatically generate feasible test cases.

Optimal set of test cases using Optimal Solution.

A

Data flow Error information against each path.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 43

Prepare Input Source

Model

Create Control Flow
Graph

N

Identify Data Flow]

VL Information

A

Data flow Error (Automatically
Information against * generate feasible test
each Path L cases

4

Optimal set of Test
Cases using Optimal
Solution

Figure 5.7 Steps of Automated Data Flow Testing Process

5.6.1 Prepare the Input Source Model

In our approach, input model to the tool is given in the form of XML. Input is prepared by
generating the XML using UML modeling tool enterprise architect, a comprehensive UML

designed tool.
5.6.2 Create Control Flow Graph

In our proposed approach, after selecting source model it is converted into adjacency
matrix. Control flow information is collected by creating a graph from adjacency matrix in which
states and transitions information shown is extracted from XML of input model. XML of each
input model is passed to collect its control and data flow information regarding model. Control

flow graph shows the flow of control between states and number of possible paths from initial

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 44

state to its final states. Total number of states and transitions in a control-flow graph is equal to
the rows and columns of adjacency matrix. This information is used by automatic code generator

for the generation of set of feasible test cases against XML of each input model.
5.6.3 Identify data Flow Information

Data flow information exists within states/nodes of input model are extracted by parser.
This information is necessary for analysis of data and data flow testing. Our approach is generic
and can be used to perform data flow testing of any input model. Test data is selected that

provide the coverage of all def-use paths.
5.6.4 Automatically generate feasible test cases

After creating a control flow graph, appropriate test data are selected to provide coverage
of all def-use paths in a search space. Search engine search for the feasible paths among set of
possible paths in each input model. Ant Colony Algorithm is used for searching the entire search
space. The task of ACO is to only select the complete paths starting from initial state to its final
state. Each path traverse by ants in each generation is evaluated on the basis of fitness function

while not allowing the redundant paths to be generated.
5.6.5 Data flow Error information against each path

Mutation testing is performed to see the effectiveness of algorithm. Errors are detected

against each path and position of errors and type of errors are identified within search space.
5.6.6 Optimum set of test cases using Optimal Solution

Finally, the optimal solution is selected based on solution search by the ACO. Minimal

numbers of test cases are selected for providing maximum all def-use paths and state coverage.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 45

Chapter 6

TOOL IMPLEMENTATION

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

46

6.1 Introduction

Our proposed approach is implemented in a tool that is named as data flow generator. Tool
is capable of generating optimal number of test sequences using data flow information from
UML state machine. Our motivation to select this model as UML state machines represents the
dynamic system behavior. Moreover, invariants within states are considered to ensure correct

data flow. Tool is capable or efficient enough in detection of data flow errors.

This chapter explains the tool that is based on our approach. Section 6.2 describes the tool
architecture and its main workings. Specific details related to implementation are given in

section 6.3. Section 6.4 describes the process flow of our tool.
6.2 Tool Architecture

Figure 6.1 shows architecture of our tool. Architecture of tool has three main components,
XML Parser, Search Engine, and Data Flow Testing. Our tool takes a source model as an input.
Input is handled by the XML Parser. Optimal solution is found by the search engine for the given
input models. Finally the data flow testing is performed by using the optimal solution performed
by the search engine and test cases are generated to cover these def-use pairs. Moreover tool is
capable of detecting faults seeded by mutation operator. Explanations of three major components

are as follows.
6.2.1 XML Parser

XML parser initiates the execution of tool. First it takes an input model of state machine
diagram to extract state, transition and invariant information from model. The training data are

XML files of state machine diagrams. Main function of XML parser is listed below;

* Load the whole XML file
» Extract the states and transitions tags
» Extract invariant’s within states

» (Create Adjacency Matrix to show feasible connection between states.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 47

<<[nput>>

Input State Machine

scomponents . |
L Panet

scamponents « }
o Seathtagine !

H
e

. :(.oagnnlnl-' =
t Lnutomated Test Case Generater Engine |

<<Qutput>>

Optimal Number of Test cases
covering all Def-use Paths

Figure 6.1 Tool Architecture

Tool takes a state machine diagram as an input stored in input file. Stat machine describe
the dynamic behavior of object containing invariants within states. XML parser organizes the
source, target state and data flow information that are used by next components. For the input

source models, following tasks are performed by xml parser.

» Store the input model.

= Count the number of states and transitions.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 43

il

! =S s

s Extract data flow information.
6.2.2 Search Engine

Search engine is main component of tool. ACO algorithm is used as the search engine.
Major role of search engine is to find best/optimal solution for any input model. Optimal solution
is in the form of optimal test sequences completing the covering coverage criteria. One test case

shows the total number of covered definition-use pairs and data flow errors.

Search engine is initializes by creating the control flow graph for traversing the graph.
Quality of solution is evaluated against fitness function which is defined in section 5.5.2. The
fitness values calculated by ants, ACO parameters are updated and many other optimal solutions
are generated in next generations. Component of the search engine active until total generations

of ACO is completed. Final optimal solution is selected based on having maximum fitness value.
6.2.3 Automated test case generator Engine

This is an important component of our tool. Basic purpose of automated test case generator
is the production of feasible and minimal number of test sequences providing maximum
definition-use pair coverage, related to input model. It does by using optimal solution generated

by search engine component.

Automated test case generator takes input of optimal solution generated by search engine.
For every input model, it searches the optimal test cases. Def-use pair’s information is then used
to produce the output. In this way, total number of definition-use pairs covered in test case is

produced as an output in automated test case generator engine for the input source model.

This component also detects the data flow error present within states of input model. The

automatic detection of data flow errors reduces the time and cost consumption in manual effort.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 49

6.3 Tool Implementation

Tool is implemented using .net language. We use Microsoft visual studio 2008 for tool
implementation. From implementation point of view, tool is organized into eight classes shown
in class diagram in figure 6.2.Path is the major class of our tool that select the optimum paths
from all the feasible test sequences of input model. ACO class contains heuristic search
optimization technique. Editor class mainly deals with the GUI of tool. Class of variables stores
variables information that is present within states. XML parser class deals with loading of XML
file and extraction of specific information from XML file. Graph class creates the adjacency
matrix and control flow graph and graph is updated as the information change. Class of error
encapsulates the data flow errors information. Node class shows the states and transition

information. A description of the main classes of tool is given below.

© S Combrelo 4
| @ Cricraohmasei [y |
| Sesrungs i} :
{ G RO) '
L@ senntermn;

2 Pob L < contyeter

Traverie GRIpA I}
; ¥ GetConnededMades)

3wl Parser

Gadgry T pieme
@, Setinge:lisndi P :
o CeDRF IO)

’_'L" nofg - i
T
1. jurisoly verenie

& RadRose 1
G, Uipontevanabielist ()

Figure 6.2 Class Diagram

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 50

6.3.1 Path

Path class is responsible for managing the paths traverse by ants in a number of generations
and produce automatically the minimal test sequences. Specifically following tasks are

performed in this class.

Manage the graph nodes and transition information.

Manage the information of total number of nodes within a model.
Manage the updation of pheromone value on graph nodes.
Manage and organize the paths traverse by ants.

Manage and consider feasible paths in optimal solution.

Quality of each solution is evaluated that is generated by ACO.

AU T e

Final optimal solution is selected.
Path class consists of five methods. These methods perform the following tasks.
AddNode

It keeps tracks of nodes traverse by ants until final node is reached and adds them to path
string. And nodes that are traversed change their status into visited and change their value to 0.
Because if node is not visited once its status becomes1. Also updation of pheromone and variable

function is catled in this class.

UpdateVariableList

This method maintains the variable updation list because as more nodes are added into track

variable list is updated.

UpdatePathPheromonesValue

This contains our fitness function; pheromone value is updated in this formula.
Pheromone Value = Total definition-use pairs covered in path / Total nodes covered by that path.

Pheromone value is updated in current graph set by ants by traversing the graph. Evaporation

rate of pheromone value on each node is also set in this method by a constant factor.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 51

Visitedstatus

This method keeps tracks of information regarding visited status of nodes that are directly

connected to current node.
GetSubpathsString
This path keeps track of initial and fmal node.

6.3.2 ACO

TraverseGraph

It set current position of ant in graph initially at state 0. It gets all nodes which are one

transition apart from current node and select state with highest probability.

GetConnectedNodes

It manages the list of connected Nodes until ants reach to the final node.
SelectNextNode

This method maintains the list of nodes that ants select in traversing graph having highest
probability. If current node is connected with more than one nodes with one node having highest
probability than ant will select that node to traverse. But more than one node having same
highest probability than ant will take decision randomly. If there is no connected node and
current node is also not a final node then path will be broken and not considered in feasible paths

or test cases.

CalculateProbability

Probability of node is calculated in this method using pheromone value, desirability factor,

alpha and beta value. Alpha and beta are constants.

6.3.3 Graph

CompareNodePosition

This method compares the position of nodes to arrange them in sorted order.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 52

CreateGraph

It keeps track of total number of nodes within input model. It takes input and compare graph

position to create the graph.

SetGraphValue

This method manages and identifies the source and target nodes information.
AddPath

It gets information from paths methods regarding different complete paths that are traverse

by ants in a number of generations. This method adds that paths to feasible paths.

GetOptimumPath

This method selects the optimum paths from feasible test cases or paths, infeasible paths are
not included in optimum paths. Optimum paths are selected on the basis of maximum def-use

pairs covered by those paths.

GetDataFlowlinfo

This method keeps track of variable information present in nodes. By getting all the list of
variable in each node from node class it categorize them as whether variable is defined or used. It

stores this information and displays data flow information against each path.

GetDataFlowErrors

This method manages the data flow faults information exists in each node. It identifies error
within nodes and checks whether it undefined, unused, double define error etc. It also keeps track

of path and node number where error exists.
GetNodeList

It adds and manages list of nodes that are one by one selected by ant in different generation.
GetNode

This method gets the node position, visited status and def-use pair information.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQ) 53

GetDefUseNodeCount

It counts the total definition-use pairs.
GetTotalNodes
It count total number of nodes covered in each path.
UpdateGraph
This method manages the graph that is updated each time pheromone value is updated.
6.3.4 Variables
Status
This method gets and sets status of variable.
Name
It gets and sets the name of variable.
DefIndex
This method manages the index of define variable.
Uselndex
This method manages the index of use variable.

DefNodesList

It maintains the information about number of times a variable is defined. And redundant

number of define variables list is avoided.
UseNodesList

It maintains the information about number of times a variable is used. And redundant number

of used variables list is avoided.

Data Flow Testing of UML State Machine Using Ant Coleny Optimization (ACO) 54

CET e

DefUsePairs

It maintains the total number of def-use pairs within input model.

DefUsePaths

This method keeps track of def-use paths and redundant def- use path are removed.

AddDefNodeNumber

It adds the number or position of nodes where single variable is multiple times defined.

AddUseNodeNumber

It adds the number or position of node where single variable is multiple times used.
6.3.5 Editor

Editor class deals with the GUI of tool. Controller of our code (tool name) application

controller.cs initiates the execution of our tool. It performs the following function;

= Manage GUI of tool name
» Manage the tool project dictionary
» File loading and reading

6.3.6 Nodes
Clone

It just return the Clone or a reference of a graph node instead of sending original node. It

returns the shallow copy of original node.
SetAttributes

It checks whether state contains any variable or not.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 55

6.3.7 Errors

ErrorType

This method stores the error exists in node.

ErrorTypeStr

It identifies the type of error exists in node.

ErrorDescriptionStr

It stores the errors details for example node where variable is defined but not used in any other

node or used in specific node but not defined in any other position in input model.
VariableName
It stores the name of variable.
DefNodesList
It stores the list of defined nodes.
UseNodesList
It stores the list of used nodes.
6.3.8 XML Parser

GetGraphNodes

This method extracts the overall intermediated states known as simple states within input
model and also initial and final state of the input model. It also extracts the invariants
information present within each state from XML of input model. And pass that information of

states to create graph method.

GetGraphTransitions

This method extracts the source and target transitions of each state from XML of input model.

Data Flow Testing of UML State Machine Using Ant Coleny Optimization (ACO) 56

IdentifyAttributes

It identifies the attributes from XML of state machine and if more than one variable are

presents in one state than it sphts them and stores them separately.
6.4 Tool Process flow

Main interface of our tool is shown in Figure 6.3. It generates test sequences against each

input model. The whole information of tool and its thorough user manual is discussed in

Appendix. Process of data flow testing can be divided into three major steps.

Welcome!

85 =] Mumberdl Generatons | This is a Model-Based testing tool that performs data flow ;
3 -1 aLFA testing on UML state machine using a heunstic tachnique cafled I
T Slem : Ant Colony Optimization. g
Quipds

Crapizy Aoetercy Mag

Ot bl Fsi: vey'f*';g, /

I

Dusiay Dovemom e H < ~

—

oy

| Duday Clhes Ogumum Pats |

gy Frestie Palin

Figure 6.3 Main Window of Tool

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQ) 57

6.4.1 Input Source Model

After running the application, input XML file is browse from the main interface. Browse
option is available in toolbar of tool. XML contains activity as well as state diagram. It contains
complete information of input model states, transitions, invariants etc. Specific information
related to perform data flow testing is extracted from the XML. When user browses the input
XML file, it loads and stores the xml file path than extracting nodes, transitions and variable
information in separate file and arranges them in sorted order according to source and target

transitions. This is one by the xml-parser class. XML file is shown in fig 6.4.

Fle -) s-m ou :nuang tanguage
P 1 =K "L Y P RS- B Y

Esnmrni

1% aminsiMI=tomg. orm’l!L 3% mimeFueIp=TIDIR-E7-27 10:4Z:20°> i

2 Zemz="3A lbde)_' =i Ed=THK WALD PRCER2AT ACII_Ah20 A4S 1IZAORTTAZIE"D
©>

21313133 24B7_A0SC_ATRA_4LM2ETHOANCET isfootettrae® isieal=“falsc” izAbatzacz="false”/>
B5e race="Cata Plow Nodel™ Je=. d’"!,d"i F2OER2ST_ACIT AE2d A41Z !324\9593’.53! 1eRnst="faloo" jelezf=tfalpet lshbacrastmvfaise” visitili
<RL:Modelllamen eedalce>

Tag~Tparent” walne=TEAT

BABIAGLE 1AFA 1550 5540 LIFEBCLAZICE™!>

B <3 i ~1IVICON-1: CRORG /2

extensible Markup Lenguage fike fength 1 171315 Bews 5 2366 ‘ln:l Colidf $ei:B . Dot\Wondmen Window:-1251 SIS

Figure 6.4 XML File of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 58

6.4.2 Parameter Setting

After the input file is loaded, parameters to perform testing are set automatic or custom. In
automatic specific number of generations and ants are selected for traversing. In custom setting

use selects the settings as under.

Figure 6.5: Main GUI (Select Parameters)

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 59

The third option is user select the RUN ACO option to perform data flow testing producing
the desired results. It important step because using the ACO algorithm, optimal solution is
generated. Furthermore, this solution shows the complete coverage of data flow coverage

criteria. Majority of classes are associated and functions are performed against this button.

The target test cases and data flow information is stored and displayed according to their
relevant buttons that just displays the output. Each output is calculated and stored in its relevant
class. Figure 6.6 shows the output produced for the input model of Elevator State Machine
Diagram”.

View Results

6.4.3 Run ACO

Figure 6.6: Main GUI (Select Run ACO option to Generate Results)

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 60

Finally the user select the outputs to show generated by ACO. Output generated by tool is shown

according to available options in main interface. Class of ACO-GUI.cs is mainly responsible for

performing this task. Qutput contains the following information.

1.

© N L R WN

Adjacency Matrix showing feasible connection between states
Total number of feasible paths in input model

Optimal number of test sequences covering maximum def-use pairs
Total number of variables presents in input model

Total definition-use pairs covered by each path

Total number of errors exists in each node of each path

Details of the type of error exists in nodes of each paths

Identifies the error location within node of each path

Figure 6.7 shows the adjacency matrix for creating the graph. Feasible test cases or paths within

input model are shown in figure 6.8. Optimal number of test cases covering def-use pairs

information as well error exists in each optimal path is shown in figure 6.9, 6.10, 6.11,6.12, 6.13,
and 6.14.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 61

6.4.3.1 Create Adjacency Matrix

[—‘:WWM

L Display infeasble Paths

| Display Optmom Path.

| - Display Other Optimum Paths '

| e Dizplay Feamible Pahs'

Uspray [za Fow o

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

1000
1 00

(=]

1

-

0
0
0
4
0
0
0
0
0
o]
0
0
0
a
0

QO O 0O 0o 0O 0 0O o O O ©o O o©
g o 0 0O O 0o O 0o 0o o o

Figure 6.7: Adjacency Matrix of ECS Model

(TR

o o o 0O 0O o o © o

ADJECENCY MATRIX

0

—

o 0 0 O 0o 0O 0O 0o O o O o o

o o ©

—

o O o o o O o ©oO

[=]

o 0O 0 O 0O 0O 0o o 0 0O 0O O o

0 © O 0 O o o O o

-

=]
o o o o © o o o

[

—

- 0O O

0O 0O 0 0 0 0o 0 0O 0 0o O ©

o © O 0 o O 0 o 0 0o O o o

62 3

6.4.3.2 Generate Feasible Test sequences

S e e Tk . N e, -
;@ Automated Test Cases Genrxtion using ACO

—

T lserm Fouze Mak FH Doaop\ATO()

@ Agomatic ALL FEASIBLE TRAILS

#73 Custom

initial -> 1 ->2 ->12->8 -> 7 -> 13 -> Final

Inittal -»> 1-> 9 -> 10 -> 13 -> Final

Initial -»> 1 ->2->3-> 11 -> 10 -> 13 -> Final
- Initial ->1->2->3->8->7->13 -> Final
Intial->1->6->7->2->3-511->10-> 13 -> Final

Initial -> 1-> 2 -> 12 -> 11 -> 10 -> 13 -> final

Inial > 1->6->7->2->12->11-> 10 -> 13 -> Final

Inidal > 1->6->7-> 13 -> Final

Figure 6.8: Feasible Test cases of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 63

6.4.3.3 Generate Optimal Test Sequences

Optimum TRAIL 1

Inal -> 1->2->12->8->7 -> 13 -> Final

TOTAL VARIABLES USED IN THIS TRAIL
o, ef,sf,f, e

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : o

1,2) 1->2
1,12) 1->2->12
1,13 3 1>2->12->8->7->13

Variable : =f

: 1-52
X 1->2->12

1,2)
1,12
1,8) 1->2->12->8

1,7) 1->2->12->8->7
1,13 1-32->12->8->7->13

)

7]

.

DATA FLOW ERRCRS IN THIS TRAIL

Variable: sf
Type of Ecror: UN USED
Description: Define on nedes 1, but not psed.

Variable: f
Tuno nf Erenc- 1IN 1IQED

Figure 6.9: Optimal trial 1 of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

64

Optimum Trial 2 of Input Model of ECS

Opbimum TRAIL 2 :

Initial -> 1 -> 9 -> 10 -> 13 -> Final

TOTAL VARIABLES USED IN THIS TRAIL
cf,ef,sf,c.b

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

: Variable :
io- Run ACO
(19 1->9

e (1,13) 1->9->10->13

Outputs - R
; Variable : f
l : J {1,10): 1->9->10
(1,13): 1->9-»>10->13
Display ifeasble Paths }
* Dispsy Optenum Path s = DATA FLOW ERRORS IN THIS TRAIL
, : Variable: sf
= Display Qkher Optimum Pathe | Type of Error: UN USED
-] Descripion: Define on nodes 1, but not used.

i - -Display Feasble Paths .__} Variable: ¢ =
. T Type of Error: UN DEFINED
Description: Used on nodes 9, but nat defined.

: Display Data Fow info E

Variable: b
Tuna nf Erears 1IN) ICED

Figure 6.10: Optimal trial 2 of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 65

L]

Optimum Trial 3 of Input Model of ECS

[Cusers Fouza M \FEFDestacp\ATED

Initial->1->2->3->11->10-> 13 -> Final
TOTAL VARIABLES USED IN THIS TRAIL
cf,ef,sf,.d,b

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

i Variable : of
RS Run ACO
i (1,2): 1-52
) (1,11): 1>2->3-511
Outprts - (1,13): 1-52->3->11->10->13
- Display Adecency Matrix] vanable : of
B —— (12} 1->2
Display Weasbie Paths J (1,10 1->2-53->11->10
N (1,13): 1->2->3->11->10->13
Display Optimem Pah,.:_j Variable : sf
(1,3 1-»2->3

|- Display Feasile Paths mee. DATA FLOW ERRORS IN THIS TRAIL
: ; variable: d :
Disploy Data Pow info i Type of Error: UN DEFINED
8] Descripticn: Used on nodes 3, but not defined.

@ Atomatic Optimum TRAIL 3 : (e 2}

SEE TR = PR R T e e e

Figure 6.11: Optimal trial 3 of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

Optimum Trial 4 of Input Model of ECS

Optimum TRAIL 4 : [<< Previous | [et >>aj

Inial -»> 1->2->3->8->7-> 13 ->Final

TOTAL VARIABLES USED IN THIS TRAIL
o, ef,sf,d,f,e

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : o

(1,2) 1-»2

(1,13) 1->2->2-28->7->13
Variabte : of

(1,2): 1->2

{1,8): 1-52->3->8

(1,7 1->2->3->8->7
(1,13): 1->2->3->8->7->13
Variable : sf

(1,3 1->2->3

DATA fLOW ERRORS IN THIS TRAIL

Variable: d
Type of Error: UN DEFINED
Description: Used on nodes 3, but not defined.

T = = = — e R s)

Figure 6.12: Optimal trial 4 of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 67

i
ta

Optimum Trial 5 of Input Model of ECS

{C “LseryiFousz Malk \FM Leatdeo \ATCC: e

9 Atomatic Optimum TRAIL 5 Le< Provious | [Next 2>a

i Custom Intial->1->6->7->2->3->11->10-> 13 ->Final

TOTAL VARIABLES USED IN THIS TRAIL

= cf,ef,sf,e,d,b
';____,'i ALFA
87777 metA
T DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL
Vanable : o
_ Fun ACO
. (1,6% 1-36
; {(1,2): 1>6-»7->2
Oulputs (1,11): 1>6->7-32->3->11
P (1,13) 1>6-37->2->3->11->10->13
i - = Dispiay Adjecency Matix
- =] . Variable : ef
Display ifeasbie Paths s | = (1,7) 1->6->7
ﬂ‘] i (1,2) 1->6-27-»2
— (1,10 1>>6->7->2->3->11->10
&,ﬁ&wpg{___l (113} 1->6->7->2->3->11->10->13
i : y Variable : sf
! ; Display Other Optimum Paths
! l (13): 1->6§->7-52->3
p
{maa Display Foasdle Paths mmm! | Tt oommmroooocsssssssoooeeesess h
[. J &
r y DATA FLOW ERRCRS IN THIS TRAIL
i Display Dota Fow k0 o .
: | Variable: e - |
Tuna Af Errar IR NEEINEDN) J

Figure 6.13: Optimal trial 5 of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 68

Optimum Trial 6 of Input Model of ECS

1€ ey Foutta Hask &4 Deaktop\ATCT!
@ Automatic
€ Custom

nputs

{100 - Mumber of Ats

[c5 <] Mumber of Genesations

0 _Jam
G -] eeTA

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQO)

Optimum TRAIL 6 :

InGal -> 1->2->12->11-> 10 -> 13 -> Finat

TOTAL VARIABLES USED IN THIS TRAIL
o,ef,sf,b

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : of

(1,2} 1-32

(1,12 1->2->12

(1,11): 1->2->12->11

(1,13) 1>2->12->11->10->13
Variable : ef

(1,2) 1->2

(1,12): 1->2->12

{1,101 1->2->12->11->10
(1,13} 1->2-»12->11->10-> 13

DATA FLOW ERRORS IN THIS TRAIL

Variable: sf
Type of Error: UN USED
Pescnpticn: Define on nodes t , but not used.

Vanable: b
Tuna ~fF Erenr: (1IN VISED

[<< Prowius | [Nex »> <]

Figure 6.14: Optimal trial 6 of Input Model of ECS

69

Optimum Trial 7 of Input Model of ECS

7

TR e, A . < - -
13 Automated Test Cases Genration using ~

Optimum TRAIL 7 : (<< Priviois | [=Potoom] |

Intial-»>1->6->7->2->12->11->10-> 13 -> Final

TOTAL VARIABLES USED IN THIS TRAIL

cf,ef,sf,e,b

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : of

1->6
1>6->27->2
bH 1->6->7->2->12
b H 1>6->7->22->12->11
) 1>6->7->2->12->11->10->13

varable : ef

1->6->7
1>6->7->2
) 1->6->7->2->12
}H 1->6->7->2->12->11-> 10
) 1->6->7->2->12-5>11->10->13

DATA FLOW ERRORS IN THIS TRAIL

Variable: sf
Type of Error: UN USED
Description: Define on nodes 1, but not used.

Figure 6.15: Optimal trial 7 of Input Model of ECS

Data Flow Testing of UML State Machine Using Ant Colony Optimization {ACQO) 70

ST e S T

Chapter 7

CASE STUDY

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

71

7.1 Introduction

This chapter is devoted to presents the details of the case study to validate our approach.
We choose example of an Elevator System to automatically analyze data flow and generate
optimal number of test cases to fulfill coverage criteria by employing our approach. In this
chapter, we describe the Elevator Control System by taking into account one UML State
Machine diagram.

The rest of paper is structured as follows. Section 7.2 describes an overview of Elevator
Control System and functional requirement of states. Section 7.3 demonstrates the state

machine diagram.
7.2 Elevator Control System

This section consists of two subsections. The first subsection gives summary of the scope
of the Elevator System. The second subsection describes the functional requirements of the

system.
7.2.1 Scope of Elevator Control System

Elevator System manages the working and the behavior of elevator. The major part of
the Elevator system is elevator which manages the working of elevator moving up, moving
down, door open, door closed, resume door open, resume door closed and pick passenger from
floors of buildings. The elevator is used in building having numerous floors ranging from 1 to n,
where n is utmost number of floors within building.

The elevator has call buttons to move the elevator correspondence to each floor. On the
base floor, there is one button to move up the elevator and at the middle floors except top, there
are three buttons to move the elevator up and down and third one is to resume button that resume
the moving elevator, either moving up or down. Top floor has only one button to move down the
floor. When the elevator reaches the destination floor, door will also open. But user can also
select another floor; door will be closed to move upward or move downward or presses the

resume close button to move up the floor.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 72

e TR T S = I ST

7.2.2 Functional Requirements

Idle/Door Closed: Elevator is at idle position when the door is closed. Elevator starts moving

towards up, down the floor according to request of user. If current floor and ending floor is same
than door will be open.

Start Moving Up: When the current floor is less than the ending floor, elevator starts moving

down the floor. After reaching the ending floor, door will be open. But here user can also resume
the door closed button and select another floor to move.

Start Moving Down: When the current floor is greater than the ending floor, elevator starts

moving up the floor.

Idle/ Door Open Reached: When the elevator reaches the destination floor requested by the user

then 1t will be moved to idle position.

Resume Moving Up: When the user reaches the requested floor except top, user will press the

resume moving up button to move up the floor.

Resume Moving Down: When the user reaches the requested floor except base floor, user will

press the resume moving down the floor button to move downward.

Floor Selected/ Door Closed: User can press this button to select a floor when elevator 1s at 1dle

position or when user reaches the requested floor and still want to move to another floor than it

presses this button for the selection of floor.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 73

7.2.3 Details of Case Study

UML state machine is given as input to tool in the form of extensible markup language file
(XML). XML is generated using UML modeling tool Enterprise architect. Tool extract states ids,
transition ids and construct adjacency matrix. Adjacency matrix shows the feasible connection
between states. If there is connection between states it shows 1 and if no connection exists
between states than it indicates 0.For control flow information, we use this adjacency matrix to
convert into control flow graph. This shows flow of information within states.

Data flow testing is performed using heuristic technique Ant Colony Optimization
algorithm. In first generation, Ants start at initial state and move randomly to reach the final
state. After completing its first tour ant updated pheromones value of paths that are traversed by
all ants. Pheromone value is updated based on number of def-use pairs covered by a path divided
by total number of nodes covered. Evaporation rate of pheromone value is set that larger path
covering small number of def-use pairs and having low pheromone value has high evaporation
rate than optimum path covering large number of def-use pairs and having high pheromone value
has low evaporation rate. In second generation, ants don’t move randomly. At each state ant
check whether variable is defined or used and compute overall def-use pairs and def-use paths to
traverse them. They start at initial state and calculate the probability, pheromones value. It also
checks the states status which indicates the visited/unvisited status of states. For example if state
is already visited than visited status is O and if status is unvisited than it is 1.Alpha and beta
constant is set 1. Our coverage criterion is all du-paths. All uses of variables are computed by the
approach. Repeated paths or redundant paths in each generation are eliminated. Optimum paths

selected are based on providing coverage of maximum number of def-use pairs.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 74

N

S 0N s W

10
11
12
13
14

15

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

Adjacency Matrix

12345678 9101112131415

Fig. 7.1 Adjacency Matrix for Elevator State Machine

75

! & LDoor Closed -
=3 =

3

—— %
G 6.5tart Moving Down

—

~

s %
¢ &9 7.MovingDown the Floor
{ 4
i . . o
A {
A = ;
¥ .
4 R 2
i & 13Idle/Door Cpen/Reached .} I &3 12.Resume/Door Closed -
; H :
N— JEA L — e -

. ~
N
i -G 9.5tart Moving Up J

S

v

& 3.Floor Selected/DoorClosed J

= So T e
; H
5 i
A—— 1 ?
— NI ’ v
{ G B.Resume Moving Downj [€3 4.Floor Selected/Dear Closed/Called -] LG 11.Resume Moving Upj
)
f)
} {
p ' . ¥

5

G 10.Moving Up the Floor ‘

G 5.Floor Selected/Door Open |
B - i

’ , =

Fig. 7.2 State Machine Diagram of Elevator Control System

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 76

Consider the state machine diagram given in fig 7.2. Many ants are made to traverses the
graph. In first generation ants take decision randomly because initially each state has zero
probability and pheromones value. After completing first generation ants set pheromones value
of all states that are made to traverse by them. In second generation, as ant approaches from
initial state 1, ants calculate probability of all nodes that are directly connected with
current/initial state and also check pheromones value. Ants traverse the states which have highest
probability and pheromones value. For example at state 1 of state machine diagram in fig 7.2,
there are three states that are directly connected with state 1; are state 2, 6 and 9. Ants calculate
the probability of these three states. If these three states have equal probability than ants check
visited status of these three states. If all are not visited yet than ant take decision randomly. If one
of state is not visited from three states than ant select that state to traverse it. In state 2, 6, and 9,
if state 6 has higher probability than state 2 and 9 than ant select 6 for next transition and current
sequence becomes 1-6. Ants also store information of its current position along with position of
nodes it made to traverse in a path. As mentioned above sequence 1-6, ant first store its current
position that is at state 1.when ant select next transition to move it also maintain record of

position of node and path.

During its tour, ants also analyze data flow within states. When ants select nodes to move, it
checks whether the state contains the definition-use pair. It counts the definition-use pair exists
within state and also checks the definition-use paths covered in a test path. Definition-use path is
path from variable definition to node where it is used. And count total number of def-use pair
along its paths. All paths are selected by from where every variable definition occurs to every

use of that definition. As first tours of ants are random, suppose ant traverse the paths are;
1-56->7->13

1-)2-»12->11-10->13

1-)9-»10->13

The probability of optimal paths in each generation is high calculated using the formula in (1).

P = {(ti)* * (i)} /2 (@) * M), (1)

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 77

= P = Probability

= 1 =Pheromones Value

* 1 = Desirability Factor

* Alpha & Beta are constants

Ants after completing their tour, set pheromones value of paths that it traverse. Every solution
searched by ACO is evaluated against fitness function given in (2) that we have tailored for state

based data flow testing problem.

» PV =Pheromones Value
» DU = Total Definition-Use Pairs covered by a path
= TN = Total Number of Nodes covered by a path.

The fitness value produced using fitness function indicates the appropriateness of optimal

solution.

Consider the first test path 1-)6-»7->13. Ants identify the def-use pair and definition-use path
from variable definition to its use without definition of variable again in a same path. At state 1,
there are 2 variables that are defined while used at state 6, 7 & 13. So 3 def-use pairs and def-

clear paths exists in this path.
Cf(1,6)=1-6

Cf(1, 13) = 1-6-»7-13
Ef(1, 7) = 1-6-7

So pheromone value of test sequence 1 is 3/4 = 0.75

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 78

This value is set on each state (6, 7, and 13) that is covered by ants in path 1.
For path 2;

1->2->12-11-10-13

The number of Def-use pairs and def-use paths covered in this test path are;
Cf(1,2)=1-2

Cf(1,13)=1-2-12-11-10-13

Ef(1,2)=1-2

Ef(1, 10) = 1->2->12->11-10

Ef(1,13)=1-2-12->11->10-13

Consider the third test path1->9->10->13. Def-use pairs and def-use paths covered in this path are;
Cf(1,9)=1-9

Cf(1,13)=1-9-10-13

Ef(1, 10)=1-9-10

Ef(1,13)=1-9-10->13

In this path, 4 def-use pairs and def-use paths exists. Pheromones value set by ants on 3 test case
is4/4=1.0

As pheromone value of test case 3 is higher than test case 1 and 2, so it also has higher
probabilty than test case 1 and 2 .
For example, at state 1 ants checks the pheromone value and P-factor of state 2,6,9 that are one
transition apart from state 1. State 9 have highh P-factor also having greater pheromone value
than state 2 and 6. At this point ants checks the visited status of both states, if both states are not

visited yet then ants decide randomly to move to next state. Suppose ants select state 9 due to its

So pheromone value of path 2 1s 5/6 = 0.833
Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 79

higher p factor. At state 9, ants check again the desirability factor and pheromone value of states
that are directly connected from this state. State 10 is the only state that is directly connected
from state 9. So ants moves to state 10. At state 10, it is only connected with with state 13. Ants
check its visited status and mone to this state, a final state of model.And current sequence
becomes 1-9-10-13. After completing each tour by ants, pheromone value is updated on traverse
nodes of all paths of graph.

All definition-use pairs are identified by ants during their traversal of graph. All Definition-
use paths of each definition-use pairs is calculated. Definition-use path is path that start at state
where variable definition occurs to place where that variable is used. We have identified all the
def-use paths of each definition-use pair. Each definition-use pair has several definition -use
paths. One definition-use pairs may have one or more than one def-use paths as mentioned in
table 7.1. For example, variable cf has deinition-use pair [1, 13] which has six def-use paths [1-
»2->3->8->7->13], [1-9-10-13], [1-56-)7-2->3->11->10->13], [1-36->7->13], [1-)6->7->2->12>11-
»10->13], and [1->2-)12-)8-»7->13]. After the identification of def-use paths, test cases are
generated to cover these definition-use paths. Each def-use path is examined and redundant
definition-use paths are removed by tool. For example, as in table 7.1 the def-use paths identified
by tool are [1->6->7->13], [1-6], [1-Y6-»7->2], [1-»6-37->2->3]. Aforementioned 4 definition-use
paths, a single test case can cover these def-clear paths. Thatis[1 ->6-> 7 -»2-> 12 - 11 -> 10 -»
13] cover the [1-)6->7->13], [1-)6], [1-6->7-2], [1-)6-»7->2->3]. All these def-clear paths are

included in this test case.

All paths that are traversed by ants, p factor is calculated for each path. Ants decision to move
to next state is based on pheromone value and probaility. These values of pheromones help other
ants as traces to select a path to destination. To avoid the local optima, evaporation rate is

considered. Pheromone value is evaporated based onformula given in 3.

T = (1) T F AT e eveeeereeer et eeee e, 3)

r= Rate of evaporation of pheromones

Atij= Total amount of pheromones set down by ants when it traverse from edge i to j.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 80

Using formula 3, pheromones of each path evaporates. Path covering large number of definition-
use pairs have low evaporation rate than the path covering low number of definition-use pair in
which pheromone value evaporate quickly.

Overall def-use pairs/def-clear paths

No of Variable DU-pair Def-Clear Path

Variables

Y

used

1. Cf 1,6 1-56

2. Cf 1.9 1-9

3. Cf 1,2 1->2
1-»6->7-2

4. Cf 1,12 1-52-512

5. Cf 1,13 15238713
1-9->10-»13
1-56-7-»2->3->11-
»>10->13
1-56->7->13
1-56->7->2->12->11-
»10->13
1->2->12-)8-7->13

6. Cf 1,11 1-)2-»3->11

7. Ef 1,10 1-59-10

1-36->7->2->3-11-10
1-56-7-2->12-11-

»10

8. Ef 1,2 1-52
1-36->7->2

9. Ef 1,12 1-2-512

10. Ef 1,8 1-52-33->8

11. Ef 1,13 1->2->3-58->7->13

12. Ef 1,7 1-56->7
1-52-»3->8->7
1->2->12-8-7

13. Sf 1,3 1-2-3
1-)6->7->2->3

Table 7.1 Def-use pairs of the variables used within State Machine

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQO) 81

[n the same way, ants made to traverse the graph and update the pheromones value.If ants at
some point has state that are directly connected to current state has same probability and also has
same desirabilty factor than ants select randomly. If ants at some point have state that are directly
connected to current states has same probability than ants move to state that is unvisited.
Redundant number of test cases are avoided by resticting the ants to not move to state that is
already visited. In each tour, ants visit one state at least one time. So ants will explore different

paths by traversing the graph.

7.2.3.1 Infeasible paths

Paths that are considered infeasible are;

= Ants stuck in cycle due to consideration of states visited status because ants don’t
traverse the node that is already traversed.

= Paths that don’t reach to its destination.

® Paths in which there is no connection between states.

= State having dead end.

7.2.3.2 Mutation Testing

To determine the error detection rate of state machine model, we introduce faults into
states of model. Mutation testing is widely used yielding realistic results and is frequently used
during testing research [9].

Tool detects the following data flow errors as well as the mutated faults.

= Variable is defined in state but not used in a given diagram.

* Variable is defined in one state and also defined in another state on a same path
before its use (redefinition of variable in a state on same path is a killing state).

= Varnable used but not defined.

= Multiple usage of variable but not defined.

* Multiple definitions of variable but not used.

= Variable used before it is defined.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 82

In state machine diagram of fig 7.2, 34 errors are seeded within states of model. Tool detects

seeded errors against each path. Mutation score of all models are listed in table 7.3.
1

Def-Use Def- Use Mutation

.
States

e I e |

Model# Model

Coverage Paths Path Score (%)

Coverage

1 ECS 84.6 a3 95 9522
2 TS 100 a8 100 100
3 POS 100 13 100 100
3 HMS 100 g 100 100
5 ATM 100 7 100 100
3 LMS 875 7 80 83.7
7 SES 88.8 G 833 90
8 CC 100 4 100 100
9 DM 100 10 100 100

Table 7.2 Showing mutation Score of All Models

Fig 7.2 illustrates the total du-paths within ECS model and mutation score of ECS model. There
are 43 def-use pairs within ECS model, 41 of which are covered by tool. Mutation score of ECS
model is 95.2%. As listed above in table 7.2. TS model have all definition-use paths coverage
having high mutation score. There is direct relationship exists between rate of mutation and
number of def-clear paths. Models that have provide coverage of all def-clear paths have high
mutation score. Some of the models have same mutation score due to same coverage of def-clear
paths. The analysis advocates that traversing certain def-clear paths make certain faults to be

detected.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 83

Chapter 8

EVALUATION

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

84

8.1 Introduction

This chapter is dedicated to clarify and assess experiment results which are performed to
authenticate our approach for data flow testing. Section 8.2 describes the results of our
approach on the model of the Elevator System that is elaborated in chapter 7.The validation
results are presented in section 8.3. Comparison of our approach with existing state based
data flow testing approaches and tools is discussed in section 8.4. Overall benefits and

limitations are given in section 8.5.
8.2 Elevator Control System

In this part, we explain the experimental setting and results are discussed by applying our

approach to state machine model of Elevator Control System.
8.2.1 Experimental Setting of Tool
The experiment steps are summarized below.

1. In the first step, we generate XML of state machine models using UML modeling tool
Enterprise Architect. The state machine models of 9 different software systems are used
to generate XML. The XML format of all models can be found in Appendix A. For
Elevator Control System, XML is stored in elevator.xml file. We store the 9 XML of 9
different software system in 9 different files; one file contains the XML of one state
machine model. This XML is given as input to our data flow testing tool. Figure 8.1
depicts the XML file format of ECS model.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 85

Window !

@L‘s’:alm B

_;ma'c agioaoni

<RKI.AcCEmENLRLLER>
O expos :e—\hurprun Architacts/ vl‘ 2aporvers

!~§no‘c-ls: ami . L3=*EATD_ 211211131 2467_40£0_ATI4_4:S26TBCAATET IsRaleETUroe” lslealf="false” LzAXICIacteraisets>
“Dera Flow Momei= xxi.loe"ZAVE FICSI?ST _ACIL_4bIC_A4LE_1IIASSOBAIAL® ieizsretfaise” irlesfeTfalse” isAbrtIaTiecfalpe® visizili
BASIASIS LAFA INID #6405 DITTDCSATICS™/ >

£3-24 T0:cC.CC/>
-53-24 0T:3C:0C"/>

cegeTtpos” valse=®
~packayar:es,
"batchsave”
"batchlnad”

cagen

status” velu=="Propaed />

citenible Markup Lenguege e

;tn:l Tol:¥ Sd:3 - D\ Windows Window:-1252 N

Figure 8.1 XML file format of ECS

2. During the second step, control flow graph is created from adjacency matrix of input
model, which shows the total number of states and feasible connections between them.

3. Automated analysis of data flow and minimal paths are generated to fulfill the required

all def-use path coverage criteria.

4. Mutation testing is performed to analyze the effectiveness of our approach.

8.2.2 Results and Discussion

Table 8.1 shows the results generated by data flow testing tool. According to the result,
from the total of 9 state machine models, there are 3 models that don’t provide complete

coverage while all other models provide 100% definition-use path coverage.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 86

-

mutation score. Library management (LMS) has lowest def-use path coverage having less
mutation score than other models. It shows that models that exercise more def-use paths have

detect more data flow faults.

No. of Models Model Data Flow DU-Paths States Coverage Vutation Score

Criteria Coverape

As we have seen in table 8.1, shows that model have high coverage of def-use paths have high

1 ECS All du-paths 95% 84.6% 95.2%
2 TS All du-paths 100% 100% 100%
3 ATM All du-paths 100% 100% 100%
4 SES All du-paths 83.3% 88.8% 90%

5 CC All du-paths 100% 100% 100%
6 POS All du-paths 100% 100% 100%
7 LMS All du-paths 80% 87.5% 83.7%
8 HMS All du-paths 100% 100% 100%
9 DM All du-paths 100% 100% 100%

Table 8.1 DU-paths Coverage &Mutation Scores of all Models

O Du-Paths Coverage @Mutation Score

LMS HMS

Figure 8.2 def-use Paths vs. Mutation Score

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQ) 87

120 - - e

100 g 'W

20

ECS s ATM POS SES cC LMS HMS
—i— Mutation Score

~4— Du-Paths Coverage

Figure 8.3 def-use Paths vs. Mutation Score

We also evaluate our approach based on general coverage including states coverage provided by
existing techniques and our proposed technique. These techniques are also evaluated against
fault wise coverage provided by them. Different categorizes of software faults are identified from
literature [51, 13, 8] and all techniques are evaluated against them. Detection of these software
faults is necessary because the presence of software errors in software results in disaster [51]. As
our coverage criteria are all defmition-use paths. The variable is considered as define when
variable is assigned a value or in memory value is stored. Node/State containing the definition of
variable is known as def or definition node. The variable is considered as use when that value is
fetched from memory or value that is defined is used. Node contacting the use of variable that is
defined before is known as used node. Variable from its point of definition to its use is known as
def-use pair. Path between definitions of variable to its possible use is known as definition-use
path. According to coverage criteria, we will include all paths from variable definition to the
point it uses. We include or select overall definition-use pairs and select all paths of every
definition-use pair. The possible combination of definition (d), killed (k) and used (u) that are

valid or acceptable are;
* Define and Used (du)

Variable is defined before it’s used within state. This is correct combination of variable

definition and its possible use.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQ) 88

Some of the standard definition and usage faults/anomalies identified from literature are;

» Define Without Use (d~) {51,13,8]
This is anomalous because variable is defined within state of model but it is not used in
any state. Since variable is defined, it is not used lead to programming error.

= Double Define (dd) [51,8]
Variable that is defined in a state and is redefined which is not used is invalid, suspicious
as well as programming error lead to serious disaster.

» Use without Define (~u) [51,13,8]
This is a serious problem that state uses a variable which is not defined in any path of
model. Usage of undefined variable is a software fault.

= Double Use (un) [8]
This is also an error when variable is used more than one time but is not defined in any
state within model.

» Defined without used in Scope (dk) [8]
This is a programming error that variable is defined but not used in path and is killing in
the same path.

8 Data is used beyond the Scope (ku) [8]
That is a serious defect that after variable is kill it is used on the same path.

» Variable is defined more than once before use [13]
This is also Programming error because as we are considering def-use paths in which is
path from variable definition to its usage without any definition of variable again in same

path.

These are the possible state based standard faults that can occur in states. And we
evaluate existing approaches and proposed approach against them. We also mutate these possible
state based faults in our input state machine models and our proposed approach detects these
mutated faults. The faults detected by the existing approaches and our proposed approach are
given below in a table 8.2, Faults that are identified from literature are mutated in input

telephone system model, and mutated state machine model is shown in fig 8.4.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 89

dfd Data Flow Diagram /

Initial

i

Fig 8.4 Mutated Telephone System Model

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

50

Errors Type Number of Seeded Faults

~d 15
u~ 10
Dd 6
Uu 4
Used Before Define V 5
Dk 1
Ku 1
Average 42

Table 8.2 Types and Number of Errors Seeded

a &

Model Number of Faults Seeded Mutation Score Number of Test Case

Telephone System Model 42 ' 100 6

Telephone System Model 38 90.47% 5
Table 8.3 Mutation Score and Number of test Cases Needed

We mutated faults within telephone system model overall containing 42 faults. We have seeded
faults within states of input model, as we are only focusing on state coverage. Test cases are
generated to cover all these states. Qur tool automatically generates test cases to detect these
seeded faults and definition-use paths were used as a coverage criterion. In telephone model, a
number of possible paths are generated but due to generation of non-redundant test cases we
don’t allow ant to revisit same node twice that’s why there are total 10 paths within input model.
As aforementioned we have seeded 42 faults, out tool generate optimal number of test paths and
provide efficient detection of data flow faults with 6 numbers of test cases that provide 100%
mutation score. With 5 numbers of test cases, our tool provides 90.47% mutation score the fault
missing are the 2 used before defined and 2 of faults variable used but not defined in any path of

model. With minimal number of 6 test cases our tool is able in detecting overall seeded 42 faults.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 91

e

Fault-Wise Coverage:

Existing Algorith Data flow | Faults Define, Used, Double Double Variable | Defined Data is | Used
Paper m Used Criteria QOverall Not Not Define Use (uu) | is without used Before
Author Used Coverage Used Define (dd) 18] Defined use in | beyond Defined
Names (d~) (~u) (51,8} More scope the
[51,13,8] | [51,13,8 than (dk) scope
} Once [8] (ku)
Before 181
Use
(31
L.CBriand | ---—-- All Du- | 88%,96% -— — - e R — —— | -
Paths
31 - All Du- | 9%6% - -—— ———— —_— | — — —— -—--
Paths
S.Andreous | -e-—e- All-uses 100% Yes Yes Yes Yes | -——- Yes Yes -
All Du-
Paths
(Code
Based)
H.K Dubeu | -eseee All Du- | -o-eem- Yes Yes e B Yes —————— —————e eeeee
b Paths
{Code
Based)
LCBriand | -~ | | eeeeees Yes Yes Yes e I e RN SRR
Proposed ACO All Du- | 100% Yes Yes Yes Yes Yes Yes Yes Yes
Approach Paths

Table 8.4 Fault-wise coverage provided by Existing Techniques and Proposed Technique (- =No)

As aforementioned in table 8.4, two of the model based approaches [9] [31] perform mutation
testing and detect data flow faults but don’t mention categorizes of faults that they identified or
detected by their tool. None of the other model based approach performs mutation testing. One
of the two code based approach [6] detect almost all faults except variable is defined more than
one time before its use. Approach in [13] detect only three type of faults; variable is define but
not used, Variable is used without defining, and variable is defined more than one time before it

use. But or proposed approach detect all categorizes of software faults as well as seeded faults.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 92

General Coverage Provided by Code Based Techniques:

Existing

Author

Algorithm Coverage Program Mutation

Paper no Name Used Criteria Coverage Testing
Used Performed
[28] Ahmed S. GA All-Uses 100% No
Ghiduk
[3] Sanjay PSO All-Uses 100% No
Singla
[32] Moheb R. GA All-Uses 100%(when No
Girgis no infeasible
paths exists)
[6] Andreas S. GA All Du- 100% No
Andreou Paths
[8] JunHou =~ -=----- All-Uses 100% Yes
All Du-
Paths
[13] Harsh -----e-- All Du- - No
Kumar Paths
Dubey
Table 8.5 General coverage provided by Existing Code-Based Techniques {——— = No)

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

93

General Coverage Provided by Model Based Techniques:

- 4

Existing

- R Y

Author Algorithm Used Coverage States Mutation

Paper no Name Criteria Used Coverage Testing

performed

[33] Huaizhong LI All States 100%
Coverage
[9] L.C.Briand = -eee- All Du-Paths —emee- Yes
[31] L.C.Brand = --eeee- All Du-Paths ——————- Yes
[29] Chartchai GA All-Transitions 100% coverage No
Doungsa-ard if system don’t

contain final

state
271 Praveen ACO All-Transitions 100% No
Ranjan
Srivastava
[10] Tabinda ~ = ---e- All Du-Paths ~ -~--- No
[11] Praveen ACO Crticality of 100% No
Ranjan states
Srivastava
Proposed Fozia, Atif ACO All Du-Paths 100% Yes
Approach Aftab Ahmed
Jilani
Table 8.6 General coverage provided by Model-Based Existing Techniques and Proposed Technique (~--- = No)

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 94

‘ No. of Pairs Variable Used inition-Use Pairs All Definition Use

Puaths

(1.32.2) 1-2
‘ 1-7-2
1-9-10-2
2 cf (1.3,5.2) 1-2-3-5
1-2-34-5
3 cr (1.3,6.3) 1-6
2 Cf . (1.3,9.3) 1-9
5 floorNo (1.3,7.1) 1-6-7
6 floorNo (1.3,10.1) 1-9-10
1-2-12-10
1-2-3-11-10
7 floorNo (7.1,7.1) 7-7
8 floorNo (7.1,10.1) 7-2-12-11-10
7-2-3-11-10
9 Ef (1.4,3.4) 1-2-3
10 Ef (1.4,7.1) 1-6-7
11 Ef (1.4,10.1) 1-9-10
12 Ef (7.1,3.4) 7-2-3
13 Ef (7.1,7.1) 7-7
14 Ef (7.1,10.1) 7-2-12-11-10
7-2-3-11-10
15 ST (1.5,3.1) 1-2-3
16 ’ St (1.5,3.2) 1-2-3

Table 8.7 Total definition-Use Pairs & All definition-use Paths in paper [10]

When comparing with approach in [10], they validate their approach on elevator state

machine model and only identify the definition-use pair. In elevator system, there are 16

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 95

defimtion-use pairs and 24 Definition-use paths. We generate test cases to satisfy these
definition-use paths. Existing technique needs 9 test cases to satisfy all these def-use paths and
provides 100% definition-use paths as well as states coverage. While our proposed approach
identify all the definition-use paths within model and remove the redundant ones. By using ACO,
optimal number of test cases is generated to satisfy these def-use paths. Our proposed approach
needs 7 test cases to satisfy all these def-use paths coverage criteria to provide 100 % definition

use paths coverage and states coverage.

Ranjan [11] used Ant colony optimization for generation of test cases in a state based
system. But they focused on criticality of the states generating optimized test sequences and
don’t consider data flow coverage. By using the results achieved by the application of technique
in [11] and the proposed technique, we make a comparative study. We choose this approach for
comparison as this work include ACO in model based testing for test case generation purpose.
As existing approach don’t analyze data flow so we compare the coverage provided by technique
in [11] and our proposed approach. Both techniques use Telephone system model. Model
contains 8 states and 15 transitions. The number of test cases required by existing technique

providing complete coverage is 6;

1) 052537
2) 0516237
3) 00115052557

4) 0247
5) 0->2-7
6) 01— 6->7

And the proposed technique requires only 5 test cases to provide complete coverage.
1) 1528
2) 152538
3) 152558
4) 152548
5) 156->7-8

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 96

(L]

Existing approach consider states 3, 4, 5 and 6 as critical states and cost factor but our
approach consider all definition-use paths as coverage criteria and detect data flow errors.
According to existing approach our approach provides full state coverage including critical states
in 5 test cases that they provide in 6 test cases. Secondly redundant numbers of states are covered
in providing coverage that our approach doesn’t cover still providing complete coverage. As
exiting approach consider cost factor, under limit of cost 20, our approach provide coverage with

5 test cases but existing provide it with 6.

¢ G Auroerinted Teit Caos G etion wirng ACO X P oy

i T ey S um Mt Thees Wees,

§ 0 Adomae S| ALL FEASIBLE TRAILS

' ' Catom Intial-> 1 -» 2 -> § -» Final

: Fouy ntial->1->2->3->8->Fnat

R v M i Initial -> 1> 2> 5> 8 > Final
ww’w Intial ->31->2->4->8->Fmal

Il > 1 ->6->7 -> 8-> Fnal

Fig 8.5 Automatically Generated Test Cases of Telephone System Model

When considering data flow coverage, existing aforementioned approach don’t analyzes
the flow of data just focused on control flow while our proposed approach analyzes and detects
the data flow errors. Total number of definition-use pairs in model is 9 and there are 16
definition-use paths as mentioned in table 8.7. Our approach with a single generation of ants
detects 9 def-use pairs and 11 definition use paths and efficiently detects all the data flow errors.
The 20 faults are mutated within states of model that are detected by our approach with a single
generation of ants. And also identify the all definition-use pairs. In our proposed approach, total
2 generations are required to cover all definition-use paths. In 2 generation, it provides all def-

use pairs, definition-use paths, and all states coverage.

Data Flow Testing of UML State Machine Using Ant Colony Optimiian'on (ACO) 97

It is quite obvious that our proposed approach not only ensures a better state coverage but also
ensures that it is intelligent enough in detection of data flow faults.

H Li [33] have used ACO for state based testing and automatically generate test cases.

This approach focused on all states coverage don’t focus on analysis of data flow within model.
If comparing test cases generated by technique in [33] and our proposed approach, than existing
approach provides state coverage with redundant number of test cases. Ranjan [27] also used
ACO focusing on all transition coverage don’t perform analysis of flow of data.
Comparing our proposed approach with approach in {10], both the techniques use same elevator
control system model. But existing approach [10] only identifies def-use pairs but don’t generate
test cases to provide the coverage. Secondly mutation testing is also not performed by this
approach that our proposed approach does.

Comparing it with technique [9] perform data flow analysis, identifies def-use pairs but
their approach result in incomplete def-use paths coverage. Due to some faults remained
undetected and also manually identify infeasible paths. They validate their approach on two state
machine models. One of cruise control model which our approach also use for validation.
Approach in [9] provides 96% fault detection rate and cover 88% def-use paths while our

proposed approach provides 100% fault detection rate as well as def-use path coverage.

8.3 Validation of Our Proposed Approach

This section 1s divided into two sub-sections. The first subsection explains the
experimental settings of obtained results while discussion of the obtained results is described in

the second subsection.
8.3.1 Experimental Settings

The state machine models of 9 different software systems and corresponding generated
XML, are given in Appendix A & B, that are used to perform the cross validation of our
approach. XML of each software system is given as input one by one to analyze the data flow

within states by a number of ants in a number of generations.

The experimental steps described in section 8.2.1 are performed to carry out the validation.

The generated optimal paths based on coverage criteria are analyzed with existing technique. The

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 98

total number of input models, states, and all def-use pairs within each model is shown in table
8.8.

Model No. Input Models L-Pairs

1 ECS 13 43
2 TS 9 16
3 ATM 4 6
4 SES 4 5
5 cC 4 4
6 HMS 6 6
7 LMS 5 5
8 POS 6 13
9 DM 5 10

Table 8.8 Number of Input Models and DU-Pairs
8.3.2 Results and Discussion of Validation of Proposed Approach

Table 8.4 describe the limitations of existing techniques and compared it with proposed
technique. There are few model based techniques that perform data flow analysis but don’t
provide complete coverage of faults. From the literature, categorize of faults are identified and
existing techniques are evaluated against them. One of the code based technique provide
complete du-path and fault coverage. But none of the model based technique provides 100%
fault wise coverage. A model based technique doesn’t provide du-path and fault coverage due to
presence of infeasible paths. One of the technique identified all du-paths within an input model
but don’t generate test cases to cover them and also mutation testing is not performed. Our
technique identified all categorizes of fault within input model and provide maximum fault-wise
coverage within input model. When considering general coverage of input models, our proposed

technique give maximun state coverage as compared to existing techniques.

As we have seen from literature that the model based approaches that use metaheuristic
techniques only generate test cases focusing on transition and state coverage. None of these

model-based approaches use metaheuristic approach for data flow testing purpose.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 99

8.4 Comparison

Currently, all the existing approaches and tools are capable of analyzing and performing data
flow testing of state based systems based on data flow analysis rules. Our proposed approach
also carry out so. However, the major difference lies in the way flow of data within state is
analyzed and the coverage criterion is fulfilled with minimum number of test cases. Therefore,
instead of focusing on the generated optimal solution, we have based our comparison on the all
overall process of analysis of data. This section is dedicated to present a description of our

comparison.
8.4.1 Data Flow Testing Approaches
The parameters of comparison and their details are given below.

Comparison with Model-Based Data flow testing Approaches

s Al DU-Paths Coverage

Existing techniques don’t provide complete coverage of all definition-paths, due to
undetection of du-pairs within infeasible paths. One of the techniques analyzes data flow
and completely identifies definition-use paths but don’t generate test cases to cover them.
Keeping in view, our approach provides complete coverage.

» Automated Test Case Generation
Existing techniques generate many redundant test cases to fulfill the coverage criteria.
One of the techniques doesn’t create test cases to provide coverage while other one
considers existing test cases. However, our approach generates minimal number of test
cases in fulfilling the coverage criteria.

* Mutation Testing
Existing techniques are not effective in detecting data flow faults. However in our

approach, we seeded different data flow faults and approach is effective in detecting

faults that are within states.

Comparison with Model-Based Data flow testing Approaches using Metaheuristic Techniques

Most of the techniques performs data flow testing are code based using Genetic algorithm and

PSO but all transitions and all-uses coverage criteria was used . One of the techniques produced

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 100

better results if UML diagram don’t contain final states using all transition coverage results large

test number of cases for covering all the transitions.

Comparison with Model-Based Data flow testing Approaches using Swarm Intellicence

All the existing approaches using Ant Colony Algorithm only generate test sequences
without consideration of data flow analysis. Approaches developed a prototype to tool for the
generation of test cases from UML state diagram focusing on all states coverage. None of the
approach performs data-flow testing using Ant Colony Algorithm. However our approach, along
with automated generation of test cases performs data-flow testing providing full coverage of All
DU-Paths. But our approach focuses on ALL du-paths coverage a criterion which is the strong

criteria to fulfill the criteria with optimal number of test cases.
8.5 Assessment

This section is devoted to specifically present the potential benefits and limitations of our

proposed approach.
8.5.1 Benefits

Our proposed approach offers many benefits over the existing state based data flow testing

approaches. These benefits are given below.

Automatic Data Flow Testing Analysis: Our approach performs automated analysis of data flow

within states.

Feasible State Connection Information: One of the existing approaches provides information

about feasible connection between states but don’t create graph to select paths from it. While our
approach also provide feasible connection of states and create a graph from them to traverse

them by ants.

Selection of Optimal paths: Our approach generates optimum paths to provide the better optimal

solution.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 101

Fulfilling Coverage Criteria with Minimum No. of Test Sequences: Qur approach provides the

maximum all definition-use paths coverage with optimum test cases that the other existing

approaches done it with redundant and larger test cases to fulfill the criteria.

Providing Maximum State Coverage with Minimum No. of Paths: All states coverage is mostly

used by state based approaches and generate large test data to cover all the states but our

approach also provides maximum states coverage with optimum number of paths.

Automatic Detection of Data Flow Errors:. Our approach is too much effective in detecting

faults that are seeded result in complete detection of these data flow faults.
8.5.2 Limitations

Considerations of all Du-paths within States: This approach performs the data flow analysis

within states, analysis of du-paths in transition are not performed.

Categorization of Uses. We have focuses only on uses of variable but don’t categorize them as c-

uses and p-uses.

Different Generations Results: As this approach relies on the heuristic technique, therefore in

multiple generation of the same input model have different optimal solutions. The generation of

best optimal solution is not assured in every generation.

Quality of Optimal Solution: As this approach use probabilistic technique to traverse and finds

the path from graph. Therefore the coverage of the all def-use paths depends on the technique.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 102

Chapter 9
CONCLUSION & FUTURE WORK

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

103

wr

9.1 Introduction

This chapter is dedicated to present the important findings from this dissertation. A summary
of conclusions is given in section 9.2. Finally section 9.3 wraps up this dissertation by

summarizing some future research direction and areas.
9.2 Conclusion

This work can be regard as a contribution to the study of data flow analysis of state based
systems. In the last few years, a number of data flows testing of UML state machine approaches
and tools have been contributed to this field by the software researchers. Due to these efforts,

automatic data flow testing has become quite grown-up.

Most of the existing data flow testing approaches focused on data flow analysis of code and
some of the approaches performed data flow testing of models. Model based data flow testing
approaches don’t provide coverage of all def-use paths and if provide coverage don’t focused on
generation of test cases. In reality, automated generation of test data providing complete
coverage, non redundant test cases, and handling looping problem in state based testing is a
complex task and several other limitation restrain the results. This task has also become

complicated when using complex state machine models.

A comprehensive survey of the existing literature reveals that currently there are no
approaches that perform data flow testing using Ant Colony Optimization algorithm. None of the
existing approach offers a complete coverage of all def-use paths. The researches that provide
coverage of all def-use paths don’t generate test cases. On the other hand, one of them analyzes
data flow coverage of existing test suites and relies on user input to indentify infeasible paths in a
model. Some of the approaches that focused on both automated data flow analysis and test case
generation using metaheuristic approach result in redundant test cases and infeasible paths. Our
work starts from these observations to view automated data flow analysis as one to solve with

heuristic technique to come with optimize set of data.

In this thesis, we have presented an approach for automated analysis of data flow of UML
state machine. XML of state machine models are generated to given as input to produce the

required results. After the system is given input, test cases are generated automatically. Heuristic

Data Flow Testing of UML State Machine Using Ant Colony Optimization {(ACO) 104

SR

search algorithm, Ant colony algorithm is used for exploring and reducing the search space. The
task of ACO is to search for optimal number of test cases fulfilling coverage criteria
corresponding to every input source model. Every solution searched by ACO is evaluated against
fitness function that we have tailored for state based data flow testing problem. The fitness value
produced by the fitness function indicates the appropriateness of optimal solution selected by
ACO for the data flow testing of corresponding input model. Data flow coverage solution with
best fitness values are selected as the final optimal solution. The optimal solution searched by
ACO is then utilized to generate optimized set of test cases from graph of input source model
that not only fulfills coverage criteria while reducing the search space. Qur aim to provide data
flow coverage with minimal number of test cases results in complete detection of data flow
faults.

We implemented this approach in a tool known as data flow generator (DFG). This approach
is generic that perform data flow testing of UML state machine models. As a proof of concept,
we validated our approach by analyzing the data flow of state model of software systems, as state
machine represent the dynamic behavior of system. Our experimental results indicate that 100%
automated test case generation is performed providing all def-use paths as well as state coverage
by this approach. And too effective in detection of data flow errors within states. Prerequisite of
this approach is to use XML of state machine models to given an input to tool generated using

UML modeling tool Enterprise Architect.

A comprehensive analysis of our experimental results revealed that our fitness function is
intelligent enough to look for the optimal paths in a search space. This is rather impossible in
existing state bases testing approaches and is effective in detection of data flow faults. Qur
evaluation shows that our approach is not only effective in automated generation of test cases,
rather it is also capable of detection of data flow faults to ensure correct flow of data through the
state machine model. And no expertise is required for the application of this approach. This

approach makes the data flow analysis process unproblematic by using heuristic technique.

However, this approach also has some limitations. As state machine model becomes
complex, automated test case generation may be time consuming. Since, the generation of

optimal solution in every generation is not guaranteed due to use of probabilistic technique.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 105

9.3 Future Work

In this section, we present some guidelines and direction for future work that would be

rewarding to examine further.
9.3.1 Improve Optimal Set of Test Cases

Although, the use of ACO as a heuristic search technique produces good results, we will use

other search based test case generation algorithms to further improve our optimal solution.
9.3.2 Application to Large Scale models

We have validated our approach it to medium and small sized UML state machine models.
However in future, we investigate the effectiveness of this approach by applying it to large scale

software models.
9.3.3 Reduce the Test Case Generation Time

Automated test cases are generated in an adequate time at the moment, this time will be
further reduce to speed up the automated generation of test cases fulfilling certain coverage
criteria. This can be done by either improving the efficiency of ACO or improving the stopping

criteria of the heuristic search.
9.3.4 Enhance Data Flow Testing Tool

Presently, it is capable of analyzing data flow information within states of UML state based
models and automated generation of test cases from these models. This tool should be enhanced

to analyze the data flow in transitions.
9.3.5 Applicability of our Approach to other Data Flow Oriented Coverage Criteria’s

Now we use the data flow oriented all def-use paths coverage criteria as a stopping criteria.
But we should also focus on using other coverage criteria as wells. In all def-use paths coverage,

we just indentify the use of variable but don’t further identify the c-use and p-uses of variable.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 106

9.3.6 Application to other Models

Currently, this approach has been applied to state machine models of software system. In
future, this approach should be validated to analyze flow of data and generate test sequences
from other models such as UML Activity Diagrams, UML sequence Diagrams and UML Class

Diagrams.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 107

References

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 108

1. XUE Xue-dong,"The basic principle and application of Ant colony optimization
algorithm", IEEE Transactions on Software Engineering,2010

2. Kamran Ghani,"Searching for Test Data",The University of York Department of
Computer Science, 2009

3. Sanjay Singla,"An Automatic Test Data Generation for Data Flow Coverage Using Soft
Computing Approach", International Journal of Research and Reviews in Computer
Science (IJRRCS), 2011

4. Mingjie Deng, “Automatic Test Data Generation Model by Combining Dataflow
Analysis with Genetic Algorithm”, IEEE, 2009

5. Offutt A. Jefferson and Pan Jie. “Employing data flow testing on object-oriented classes”,
IEE Proceedings, 2001, online no. 20010448

6. Andreas S. Andreou, "An automatic software test-data generation scheme based on data
flow criteria and genetic algorithms", 2007, DOI1 10.1109/CIT.2007.97

7. Alessandra Cavarra, "Inter-agent data flow analysis of Abstract State Machines",
Australian Software Engineering Conference, 2009,

8. Jun Hou, " DFTT4CWS: A Testing Tool for Composite Web Services Based on Data-
Flow", Sixth Web Information Systems and Applications Conference, 2009

9. Lionel Briand, "Improving the coverage criteria of UML state machines using data flow
analysis",2009, Softw. Test. Verif. Reliab.; 20:177-207

10. Tabinda Waheed,"Data Flow Analysis of UML Action Semantics for Executable
Models", Springer-Verlag Berlin Heidelberg, 2008

11. Praveen Ranjan Srivastava, “Optimized Test Sequence Generation from Usage Models
using Ant Colony Optimization”, International joumal of software engineering, 2010

12. Bor-Yuan Tsai, “An Automatic Test Case Generator Derived from State-Based Testing”,
Department of Information Management, Tamsui Oxford University College,2000

13. Harsh Kumar Dubey, “Automated Data Flow Testing”, IEEE, 2012, DOI 978-1-4673-
0455-9/12

14. Fevzi Belli, “Event-Based Mutation Testing vs. State-Based Mutation Testing - An
Experimental Comparison”, 35th IEEE Annual Computer Software and Applications
Conference, 2011

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 109

15

16.

17.

18.

19.

20.

21.

22

23.

24.

25.

26.

27.

. Praveen Ranjan Srivastava, “Structured Testing Using Ant Colony Optimization” ,
ACM, 2010, 978-1-4503-0408-5/10/12

Cheng Li, “Study on Improved Ant Colony Algorithm of Swarm Intelligence
Algonthm”, 3rd International Conference on Advanced Computer Theory and
Engineering(ICACTE), 2010

Sun Chengmin, “The Overview of Feature Selection Algorithms Based Swarm
Intelligence and Rough Set”, Seventh International Conference on Computational
Intelligence and Security, 2011

Chih-Yao Chien, “A New Method for Handling The Travelling Salesman Problem
Based on Parallelized Genetic Ant Colony System”, Proceedings of the Eighth
International Conference on Machine Learning and Cybernetics, 2009

Bharti Sur, “Analyzing Test Case Selection & Prioritization using ACO”, ACM
SIGSOFT Software Engineering Notes, November 2011, Volume 36 Number 6

Yogesh Singh, “Test Case Prioritization using Ant Colony Optimization”, ACM
SIGSOFT Software Engineering Notes, July 2010 ,Volume 35 Number 4

XUE Xue-dong, “The Basic Principle and application of Ant Colony Optimization
Algorithm”, IEEE, 2010, 978-1-4244-6936-9/10

Raluca Lefticaru, “Automatic State-Based Test Generation Using Genetic Algorithms”,
IEEE, 2008 0-7695-3078-8/08

Chartchai Doungsa-ard, “Test Data Generation from UML State Machine Diagrams
using Gas”, IEEE International Conference on Software Engineering Advances(ICSEA
2007), 2007,0-7695-2937-2/07

llona Bluemke, “Data flow approach to testing Java programs”, IEEE Fourth
International Conference on Dependability of Computer Systems, 2009 ,978-0-7695-
3674-3/09

Praveen Ranjan Srivastava, “Structured Testing Using Ant Colony Optimization”, ACM
, 2010 ,978-1-4503-0408-5/10/12,

Hyeon-Jeong Kim, “Deriving Data Depencies from/for UML State Machine Diagrams”,
IEEE, 2011, 978-0-7695-4453-3

Praveen Ranjan Srivastava, “Automated Software Testing using Metaheuristic Technique
Based on Ant Colony Optimization”, I[EEE, 2010 DOI 101.1109/ISED.2010.52

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 110

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

AhmedS. Ghiduk,"Using Genetic Algorithms to Aid Test-Data Generation for Data-Flow
Coverage",IEEE, 2007

Chartchai Doungsa-ard. “Test Data Generation from UML State Machine Diagrams
using GA”, IEEE International Conference on Software Engineering Advances(ICSEA
2007), 2007

Hua Bai, "A Survey on Application of Swarm Intelligence Computation to Electric
Power System”,Proceedings of the 6th World Congress on Intelligent Control and
Automation, 2006

L.C. Briand, “Improving Statechart Testing Criteria Using Data Flow Information”,
Proceedings of the 16th IEEE International Symposium on Software Reliability
Engineering (ISSRE’05), 2005

Moheb R. Girgis, “Automatic Test Data Generation for Data Flow Testing Using a
Genetic Algorithm”,Journal of Universal Computer Science, 2005

Huaizhong LI, "An Ant Colony Optimization Approach to Test Sequence Generation for
State based Software Testing ",Proceedings of the Fifth International Conference on
Quality Software (QSIC’05), 2005

Briand LC, Labiche Y, Wang Y. "Using simulation to empirically investigate test
coverage criteria”, Proceedings of the IEEE/ACM International Conference on Software
Engineering, 2004

P. McMinn, "Search-Based Software Test Data Generation: A Survey”, Software
Testing, Verification and Reliability, 2004

G. M. Kapfthammer, "Software testing”, Thg Computer Science Handbook , 2004,Boca
Raton,FL: CRC Press

M. R. Girgis, "Automatic test data generation for data flow testing using a genetic
algorithm", Journal of Universal computer Science, 2005

Hyoung Seok Hong,"Data Flow Testing as Model Checking", proceedings of the 250
international conference on Software Engineering (ICSE'03) ,2003

Bogdan Korel, “Slicing of State-Based Models”, IEEE Proceedings of the International
Conference on Software Maintenance (ICSM’03) , 2003

“OMG Unified Modeling Language Specification” version 1.3.1, 1st edition 2000

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 111

41.

42.

43.

44,

45.
46.

47.

48.

49.

50.

51

Hyoung Seok Hong, “A test sequence selection method for state charts”, Software
Testing, Verification and Reliability, Softw. Test. Verif. Reliab. 2000, 10: 203-227
Y.G.Kim, “Test cases generation from UML state diagrams”, IEEE Proceeding of
Software. 1999, Vol 146. No. 4

Sandra Rapps, “Data Flow Analysis Techniques for Test Data Selection”, IEEE, 1982,
0270-5257/82/0000/0272500.75

J. R. Horgan, “A Data Flow Coverage Testing Tool for C”, IEEE, 1992 0-8186-2620-
8/92

Dick Hamlet, “Exploring Dataflow Testing of Arrays”, IEEE, 1993, 0270-5257/93

Elaine J. Weyuker, “The Cost of Data Flow Testing: An Empirical Study”,IEEE
Transactions on Software Engineering. 1999 ,Vol 16. NO 2

Elaine J. Weyuker, “An Empirical Study of the Complexity of Data Flow Testing”, [EEE
, 1988,0225-3/88/0000/0188

Phyllis ,"An Applicable Family of Data Flow Testing Criteria",IEEE Transactions on
Software Engineering, 1998

S. Rapps and E. J. Weyuker, "Data flow analysis techniques for test data selection”,
Proceedings of the 6th IEEE-CS International Conference on Software Engineering, 1982
S. Rapps and E. J. Weyuker, "Selecting software test data using data flow information”,
IEEE Transactions on Software Engineering, 1985

J. Shan, “Research on Formal Description of Data Flow Software Faults”, International

Conference on Computer Application and System Modeling (ICCASM 2010), 2010

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 112

APPENDIX A
XML Format of All Input Models

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 113

A.1 XML Format of ECS

ﬁ:&m-&muﬂwuxwmeuuamwﬁmw
Fle_Edt_Surch_ Vew_ Encoding _Larquege Setngs Macrw Ren_ Poges Wendow ?
SHEHAGSD ORIDCIA G4 @8 % A o] F B € Q17 v otttk el riama ey -

8 emocdivyeTwindowe -1237%F)

2 o 4wt omg . Org /UKL 3" 18 22:43::27> -

= <FHI.3couRRnLEtzead> :
B <MKZ.exprTer>EDterpriee Archstevic /XN, exprrter>

< <XMZ.exper 8:02>2.84/X4% expoTCe

- </WI.docurentaticn>

* <N nengers

H <t zamzency

1w Hzdel seme="BA Nodel® xri.Liw W _EAID_FICEEIS7_AT3I_402d AAI%_131A93JBATIT->

UKL B e, cwnadllamart>

CE:C3e4s rarescEXREOLCIASS” EEY. LA=TERID 313

(3024 cikag= ew="Cata FIow Hodel® um:.:dv ZRPE_F2CE6E2ET_AC3L_4LJd_A41T_1I1AFECRBAZIZ .L:Zsst="Ffalse”
<TMo:Mogelile—ent.tagpedimiie>

< TeTRTPETENT” ¥ALusA ZAFT BASIASIS_I1AFA ITID 648 DSFZPCEAIICE™!>

31 %457_402C ATIL 4122STBOAMALC™ 1mRzcre‘rins* zalesfuTraige? lsdvarraceetialse’s>

lzei="lfalse™ IsACrrzecimfalse” viTirala

{Th

NI AR

191247/
T119:2474>

PP
. XN

version®

e

sprotenied val

v 4

g h v
i

bength - 173686 B : 2507 tn:l Col:f Se:0 CosWidows Windows 1282 -INS .

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 114

A.2 XML Format of Telephone System

LY O A im Ma e e\ The s Weine 2 WalesonessT oo iast G canies s 3wt varabits and srrorATSae Cphare 1y - Nolepades - . - TR ¥ s A
Fde _Tdm Sezecn_ Encoding - Lengusze - Seltings Macro -~ Kum © Plugins - Window 1
roBlH® LS DIMDE AN] E
EIREN 5 toierone x|

2 CAMT _nezgery

t <RI, deTamns 3

5004 <XMI.mxgporiar>Enterprize Architect</OL.expsIt

[HI.eEwerte 33652, 8¢/00C erpoT VeI 314>

B

i1

3 <R Hapearace. owasallenentd

i < :Class naze="ZARocillass® xmi.:d=UBAID 1IILIII1_5487_409C_ATF4_AIS26CICAATCT LrAcoiTTtroe” tslealT"falsst iaits wfalse"/>

p Flow Hodel® x=i.id="ZAT7 33829C€4_BI6Z_ATAb 72D CTESIBICLIPIT :sRaci="faise ialeni-"faise™ isAatract="lalse” 7isiBili

b

A"EALSE"/>
®T2C12-62-12 L0:27:3075>
*02633-02-12 10:27:20%>

1acomiiciled” v3ac

T="version® ¥

aprotecied”
z7="asedd” Taluew FAlEZ®/ >
“FAICZM >

N A
S VA N

<

TermTipos” Talies
Tag="package¥lags® IO CRO=5:7/>

3TCLIATET val

@

N
I

6o
DS

Tageotupleaityt wn
Tramtan atvret v

eRerable Mo up L snguage fie fengity: 1065H bres : 1562 tn:t Col:l Se:® Dor\Weiows Window- 1252~ (NS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 115

A.3 XML Format of ATM

;fc!su;ﬂ‘\;m@m‘m&uﬁ.w&w&u&%ﬁm&mmmmwmmw-»aq.s«v,_ — - cn - D O]
Ede Sech_View Encotng Urgusye Semngs Macro Run Phagins Vandow 1 -—— —— e
cHH®- S EGiRideianl « 5 ARSI [BSe
WGBS o] AN |

XM VEPSIOSELLGT CASIMIny SAYInAOWa- 13527 1Y .

O X e, o7y /UNLT .37 rizestars="20I2-C8-19 J2:05:257>

1.3

aser>

o] ML, ASTuEERTATITRY

<KMI.TapoTierdERterprise ATchitect(/K4:.caporier>
reizn>2.5</X¥I. exporzarvessios>

r RN LS LTIeNTRTLONS

w1
TS

H

mamzenZA Hodsl® wxi.idw MY BAID 1DCRIZSA 3D57_4la? 102 ECHPLIIDISIRNS
(OMI:Nemaspecs.owsedflmmestd

<D ="EARQOTCIAIF” Xmi.SZwTEAID 11111211 _5437_308C_ATrS_ALSZ6KSCAALCT isRocieiirze” is
“Data Ziaw Nodel® xml.igeTTAPK 1DCEIEIM_DBT 41aT 9252 €0AFIZH0TIIIST LaRsoserealyer
zr.zegged
AT="paTent™ vaiue="ZiPZ CFTSE3BY_CBCR_se38_S7IS_BABIDETDISCT™/>
%es="es_packags_id” -
“eyvTorated® vrls

af="faize™ z=ibsizacteTfalse™/>
SApaTyssterLaise” Tislpall

;lilass

<PLiTaggeSTeive

TR Tagged

Tar*"version” va
sprotected”
gmvaseded” Talues"TAIEZT >
2g="logaml®

e
5 IO0B=3 CRO-Z: 7>
% Tsg="bETehssves val
25 e mThetenicad”
[TR :Iaggedval egv"phase” valzae="l
: <R :Taggesva Feestavas® valuee:
EH H <N iTesgedlaiue tar="oompleaity” -
E - M I Trram e e lne rrratan atyre® k'oiemTReRIfnTlY '
* - A p—: T *

D e e e &
eXtensible Makup Language file : length - 6109 lwes - 1375 in:1 Col:l Se:0 Dan\vhndoon Nindow 1292 | B

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 116

A.4 XML Format of Library Management System

U Fouia MIE I Do T Wk ap Ve T ol Sk JEaates i T vanabics end CrrerPOGNNGard - Hotepads -
e o _Search_view_Encoding_ Lingusge_ Seings Maco fun_ Phugs ~Window ¢ — o - [————iehtut
-«HHG.)%-QW::M% VDQF51®M'3GFEI7****#-~F—ﬂ—mm~— ey

'ea‘axem{" ~alue=vel uenz‘,')
Tag="sivie® viluesTBackCoiore-li2ITacrCslore-1;50rasre1ath=-1 JFONITO10T= -1 ;VSwimlanea=1;ESwiniznes—1 :BorderSarie=S: >

ceze="CI: Maizn Mena” xzo.23="EAID_ITEZAD:

_2I55_W£9% BE3: FEESDEIIBSC1T wis

trymepmhiict tsmespuce=ZAPK FASSAIT_3ZDA &4a3_EI46_ECIIIAA

=sg="isAbstrast” valus="falge"/>

“zg="iaSpecification ~f3lse/>
">
5“'pachw‘ “alue -szrusomriszc;.ilmiaus_::sr.u.\zms')

Tzgm"dane_creazed” ¥
nag=rdsre medified” v

semlavatse

e
Z-C2-25 23:46:45%/>

e

**pALLags name® -Daza Elow Hodel®/>
zagveghase™ ue="L. 0N

ceg=rauthor" valiz=tabct)>

Tar=TComle ki Ly" VaiieaTIvT >

TzgwTaiazas® rallceProposcd’)>

cag="tpoa® w2

“eg="ez_loc
Tas="ea e}e‘!‘yw' ~

idth=—21;FaniColor=-1 VSvimiane

3 BSwimtanesal :BorderSuyie=T it/
=menc. cagsedielive>
terEnterprize Arenitect I.57>

syetprivare” Jwnasficspes*insrance® nargesldiopa=tinstance®>

i - - — -— .

eXtensible Markup Longuage flc length: 102854 Snes ;1504 Ln:t Col:l 5d:® Dos\Windoay Windows-1252 Y

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQ) 117

A.5 XML Format of Hotel Management System

F Clhserouris Maliifn DesopiTheats Wrie-up MEsioneri 0or R4S ert win mors verules snd +rar s ASCAAS with brad dotr 00

e Eot Scarch : Yomw ~[rcoding - Language - Setings Macra _Ren_Plogee_ Wardow !

t3gm=risAbstract® wrlue=falset/>
437 TageTleSpecification” Tilue="Izisa />
"2 zAg=Tma_stype” valjes~State~/>
(2] teg=tpa_ntype”
438 cagmtrersion® Talue="i
FrH TAGETIAANTIVET Val;emTlaige”/>
aus tage package® valuew EAPX ELICITAT

Talue= 201T-Sa-1E OC128:
vaize="201I-0E-18 OF:

trp=date_orested”
TEg=rdate wodified”

tz7="paciage neme” val:
ety B>
="abor/>
%>

R A e

agetastingT

<UHL:TacgedVelle Ty’ valies®

values ‘elament™/>

=Barilolor=-3:3;rdarcolor=-1 Sorder¥iath=-1 : Fonilolar=-¢

S ad DT\ STOATH

[P—

PCACYS_ZC65_A56e STAF DRBATIIIFRIE™ visibilotr=“prkiin®

sUSwinlanes=C:3Swimianea=2:Border

nazespasewNPAPR EIDICATE 115 4128 IIDE REFA24

exXFensible Merkup Langusge fdr fength - MG lnes 1202

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQO)

118

A.6 XML Format of Student Enrollment System

B CAlarnoamia Mal g Deaciop T s W rae 7 MiiectonenTord 267 GEp\States Wit Fooy varahies pd oIS, v - Mrieped z_v- -
(e B Sesn View TEncoding Language - Semngs: Macro - Run - Phuges - Ridow 1 = ~— - — —
b SEHME L AR SRR 2ia et S5 ﬁ@_.hbfizsﬂ = T .

=1 | DR i T e K T | -) |

Tyt e me=s*"C6:Barcilod Sivdvung® xo . LC=TEAI 3262 _4aab_TES?_$§YTAZEASSCIST visibility="pabli TARSIRACT T TAPK_IDCTIBR4_F0ST7_2ic? 9207 T4
4% .Teggedizive)

il sar="ishbstraze”

P “ay="iabpecification” <

i Tagviea_stypa” Taluew"State"/»

Tagwten srype®
Sag="versios® vsiue="i.E

zaT="isAntive”

e="Zaise"/>
TR TovgecValat taraTpackage” vaivee BAPR IDCELZT4_5DT7_1e7 9207 6042250731300
$="date_crecare. L~4o~/>

zag="dare medi
“epmtgeniype” v
Taz="rajyged” v
T3g="packaze_zane” "Data Pizs Hodei™/>
sagTrhase”
AT AuTRoT i N

cagvrcamlaxs syt valsewnit/s
sotatarasy
= tpos™ v

<ol

AT Taggecy

<RTiTeI

—ag=tez_locziid®
tar="ea_eleType” va.

Tagvmatyien velucw BackCalor—-112ordesColer—-1:Borderiidinu
zaggediaizes

sr="Enterprise Architect Z.57>

oniColor=-I;VSw ulance=" SSwinlarcs=s :FordersStyio=:%/

="private” oxm

Soope=Tinstance” e

Fe="izstance”>

CI:Ixpressicns> d

zag

v (D

_ 5 = - = — > i
eXenable Rk up | enguege e - Sevgph 1105225 e 3524 tn:l Cel:l Se:f Don\Wandows Windowy1252 L]

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQ) 119

A.7 XML Format of Purchase Order System

= - - T T |

iHe_fdt Serch Yeew Encoding Livgusge Semtings Baco Run_ Ploges Wandow !

}-.'aue-naizcmia'qﬁ.; »>1 3@ 1 (ED1 ¢ B E BRI — . e

S T I S R B R e B rosm |

<M :CompozateState ami.1d="ZAID LTECOrE? Z9CA_3IBY_ADTT 952176293927 _Activity_Top' race=®(=opl™>

Tagetssabstract” Telue="false™)
nag="ieSpecification” valuee"falss”/>
“STave”)>

aTw"isActive” velze=*false >

"ZRPY_£TSTIFEZ_EICA €IDT_ADCC_IEIIISIEINIITS
£2-2€ CEILR1ZCT/>

186 02:13:36")>

TegaTdate_creatad vall
Tig="date_wodified” v
TagmTenLypet
TegeTiagye” v

“eiveaTyT

="ra_iocalid”
s AIETYPE” valuesuiseent¥/)>
" srize=rBacklolor=-1:RorderCoict

terprise Aredizoct 1.5

za Freinstancet>

atgestles none® visibilicy=privete” TwmerSoope=tinatacca

Py
sAvarmmamEnitanTry

T e e e s — ——

CLIES
=1 ML Coxpoatsed
[CML:3impieStase nzme=t0i:i Vet order" uni.lIwtZAID C43SBITL_LSI6_4DOF_BLCT 4FCTEIIBTPADT vislBLiliTyetpubiicT rawespasesEAVE 474CSFEI_EAIA_49bBE_ACSCK
=] BT i ModelTien: >

dibe-1 ToxntCplgr=-1 Viwinlenes—C ESvinlanesad Bardez Sty lewd ;>

“

itensibie Morkup Language fie length : KN nes.. 1237 tn:l Cot:1 Sel:0 OovWndows Windom-1252

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

<IN

120

A.8 XML Format of Cruise Control

T Ve, e Fiodoen o T v e e Tt T Mo e Y - i
TFx Eot_ Sewch_Yaw Frcoding Langmys Selings Mecu Run Plogms Wedow 7 - - — —x
e M SDII DG C I Ml x| JTIS VAT . e R e A A O S

RN BT H TR | B e B | R G - ':..

tandoy/ranning® xri.1aw BAID TIU59230_SEEF_430a_AATE_ZFTEAI165€5™ Tisim:
caggenva
Tag="isAbstract” vaiue="Lalie"/>

“EgeTiySpeTifioazion” valisa files®S>

Tagetea_vtype® val
tay="versi
TaraTinAc!
zag="packags”
Tagesdate_srearsd® va 1

s3="date_medifted” velie="2012-L7-31
F="geniype

DIBE_1327_ADS:_4523IBISLDIDIT>
3:47:11%/>
$9:37:27°7>
Fara®>
Sl td

="Data TLow Model™/>

ani

<ae

e=inyance"

eXtemible Markup Lenguage fic * length: 93307 Snes 12840 Ln: Cobid

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

5el:0

DosiWindows Window-$ 252

121

A.9 XML Format of Display Manager

LI TR S TR < S Bt Y Syt VO P m——— —— 0 X

Encoding Langusge ~ Settngs “Macro - Run” Fuges Wedew 7

2133 BH 2T BRIwY

T=vwindows-125277> -
T =m0/t
B O0MT. expoTTe>EatoTprize ATahltoot</ Mt >
¢ <XMI.exg 20732, 5¢/FUI exprresves
T H CIRAT . BOTARITATLONY
; ~ ZA Model® r=:.iZ="KS_EAID 7IEDRFPC_6341 83le 93¢ IRLACACIEIL"S
2 ».ovmedZlarent
H 26CBIARDI® 2z
TC_IADBCAZCTE 3

Tazw parsat” vel ~ZAFT EID2TDD3 9335 4e3I STAT_C2BIITEILITH >
a=R 2Ry

-T3-24 UTIELICTT/>

e="3011-03-24 C2:ED:0T>

s=foa pasiega_id? v

cagwtcreated vs
tag=med: fied”
teg="icantrolied”

e " lannlzeddate”

= iastsavedite™

s=Tversion® vz

vaiuee s sHodel=1 VICRI=L:URC=0:% />
teyetbatchsave” valie=TQNS>

cag=tbarahicad” value="D">

tag=phase” vzlus=t(.8%4y

= Freposad®s>

n7="3zaTORT va

isleaf=TIalse” LenberiasTwTislset/>
SotmTfalse” LalearmTrajse {wiryvracteitalge® cyrc]

2 TeTcomplanity” wallem®ieSn
1 etea_Nryvat valoewPunliatey -
. g . = . oL
eltensible Merbup Langueye Re Imgth: §50H fiees 1926 tn:l Cob:l Seli0 OotWirdows . Window-1252 ¥ §
[3
2

Data Flow Testing of UML State Machine Using Ant Colony Optimization {ACO)

122

APPENDIX B
Screen Shots of All Input UML State Machine Models

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 123

B.1 Screen Shot of ECS

| & 6.5tart Moving Down

i

-

lh‘-’
A

4

~

i @ L.Door Closed |

;

aip

| 4

N

-t
;
i

&

~.

: &) 7.MovingDown the Floor !

;
o

A

[4

N

R

L—_——%

\

¢ E£313Idle/Door Open/Reached

- hy
H L

x

-

J t@ 12,Resume/Dogr Cln:edJ

;’

] H
i T T

G 2.Door CGpen

¢ ¢
; Y
& 3.Floor Selected/DoorClosed !
i
N |
;
L
v ¥ v
1 ! {
{ 8.Resume Moving Down ! - €= 4Floor Selected/Door Closed/Called : G 11.Resume Moving Up ‘
\ I I | S J L_;“J_;
f)
! .
1 ! !
— e i i
{ 3 ¥ JE R

i

. (2 5.Floor Selected/Door Open-
P an

\

G —

| . G310Moving Up the FIoorJ

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

e
’i &3 9.Start Maving Up

g

s

124

B.2 Screen Shot of Telephone System

L

e ~
; &3 1.0nHook -

H
H
*

e
. ._.i._._rjf___\
i CI6.Ringing I
i

NS

S

kCD 7.Conne i

RN
cted
,.__._, L‘",_—._\(.___v.__ .

i_:: 2.0ff Hook |

k4

i ’ : Y

M ¥

pd

: &3 5.Ring Tone

§

3 4.Error Tone l i &2 3.Busy Tone ‘

S
3

i
i
i
i

N

RALAE A&
4 Y

[Gme.Exit]

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

el

125

B.3 Screen Shot of ATM

Initial

<

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

P g

© @ LCard Enby |

. .
i G 3.Venfication

ST

JURN S N
—_ X

[€5 4 Amount Entry |
1

5 i N

; 3 5.Counting
H

. F
N eeag

¢

Es Y

; < 6.Dispensing 1
H
S .

— :
A

: @ 7.Return Card

o .

.

{ & 2pin Entry l

« . i

126

B.4 Screen Shot of Library Management System

-

{ G 3.Dispaly Catalog |

N—

Initial s ™
, | G@5.Catalog Contents :
i

!
L-m—«t~

DLLogm Page [7.Rent out E-Books f

i H

[
T

A

P e N

i &2 2.Maln Menu }

;D8 Exit I &3 4,Display Borrwoed Maurial .
; H
L [J

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 127

B.5 Screen Shot of Hotel Management System

P
.. & 1Patient Take Appointment
i H
'

(A 4 5

i &5 2.Patent consult DOr i

i N 7 b 7 Y
i & 3, Dris not Available ‘ l G 5,01 attains Patient ; & 6.Patient get Operated
\ ; N /oA -

¥

\
[G?.Disch:rge i

\:_]

RN

; & 8.Exit |

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 128

B.6 Screen Shot of Student Enrollment System

A

. &S 4Enrolled]

I E s v s
G35, Withdrwal in Process] 'l G T.Enrolled/Giving Exoms |
H , ;

Initial : 7 7y
F | (a? 8.Getting Result -
= o H

| G LRegistered Student { G 9.Graduated l
K
L P L—z
ks i
d .*‘ ",‘
&3 2.0n Break ‘
_ i
F L\.- S
e

——— i

i G 3.8eing Enfolled

‘ |

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

129

B.7 Screen Shot of Purchase Order System

-

s V\,’
.G 2.Checking Ttems ;

]

; :
F @iwaiting | |
> i

— N

i
AN

s 3 5.Cancel J
e

—

5
Initial ‘j.
Tx; ‘:"_”": T

d "_\,
l CGet Order) © &@TEdt

; i
- # o 5

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

130

B.8 Screen Shot of Cruise Control

i 3 3.Cruising/Running !
R
]

T ""

g i i H
: ! ;
i
i
H !
H &
i K
U . AR S, SN

~

& 4.5tandby/Running ¢

Initial]
Kad

a_‘h '
— W
\

; &3 1InactiveAdle |

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 131

B.9 Screen Shot of Display Manager

s

G 2,ShowingAdanaging Solution Initial

N

| ©1LShowng Idle |
! :
i
M}mu*t:iry’
i e
<. ¥ .
{QB.Showing{DisplayProbi:ms .
;
:
S ¥

e f" xi(
- \

1 &3 a Hidden |

3

L

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 132

APPENDIX C

User Manual

Data Flow Testing of UML State Machine Using Ant Colony Optimization {(ACO)

133

et

C.1 Main Interface of Data Flow Testing Tool

R -
est Cases Genratlon
]
g Welcome!
j Rumber of As
| 105 -] Numberof Generlions This is a Modet-Based testing tool that performs data flow
b e testing on"'UML slate machine using a heunstic technique called
' G - Ant Colony Optimization.
g
i . o I
5 ! Rom BT %
Outpits

mrmand

MAEe 2GSy A¥ N

j
/' Tanioy beasbi Pats i

Display Opt=mum 3t

Zmpisy O Opteowm Fathe] KS :

Deoniy Frastle Faiig

ispley Uads Flow rfe

1. Browse- Select XML to given input to tool.
Automatic Setting- Select this option to automatically select parameters values.

3. Custom Setting- Select this option to select parameters by users according to
his own will.

4. Inputs Setting- This option show drop down menu to select input by user
when selection custom setting.

5. RUN ACO Select this option to apply ACO on given input.

6. Select Qutput to Display- Select different outputs to displays.

7. Output Window- This window displays all the Outputs.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 134

C.2 Browse XML (New XML file)

f
N
{

Drapiay Adacricy Ml

Tariwy rdzactla P

maplay Onéimea F 2t

l Dhaelz e Goerr o Paths

Drdey Dtz Sow e

Welcome!

This is a Model-Based testing lool that performs data flow

testing on UML state machine using a heuristic technique called

Ant Colony Optimization.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

135

New XML file Window
.. e _— = . ‘E
‘@ Open ‘
,v I —. _ S i . - . - -
L 4 Jj » test.. » states with more variablesand ... » v | 44 | | Fcarch stotes with more vana... ,Oﬁt
m L‘-WT“?m B - o = _9]4 LL"-? A = Lo - j
Organize ¥ New folder = W @&
& Local Disk (C:) * Name ° Date modified
—y HP_RECOVERY (E: -
= o TO0LS (F ® B ATM 8/30/201211:3
£ pvoRw Drii;)(&) & cc sR0elaala,
= J2 ECS §/30/2012 11:2ff
=5 Microsoft Office Click-to-Run 2010 (Prc 2}3 HMS /3073012 112 :
Z1 Nokia Phone Browser 7 ' “.“ h”
G Network JBms 873072012 11:2(}
M Netv _ :
ey B PO sys 83072012112
28 Controt Panel
S Recvcle Bi s SES §/30/201211:2(
B3 — .
; ecydce " FETs 8/30:2012 112
3 test data
-J¢ elevator without loop
I‘ State machine diagrams with full of attr|
i states with more variables and emors
B Thesis Write-up Milestones - e 4 - »
File name: openFileDialog - {:mf files (*axmf} ~opm e "]
[__ Open__;_,iIVJ [;7== Cancel: I

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

136

Select Model

r& Open v
@@vl,}} » test.. » states with more variablesand ... » v | <4y H Segrch stgies
L T e e N =¥ A P T o N
Organize v New folder = v 8
% Local Disk {C:} * Name - Date medified
o= HP_RECOVERY (E:) 8/30/2012 11:2
< HP.TOOLS (F) 813072012 112
gt DVD RW Drive {G5) I — §750/9012 II:2§
% Microsoft Office Click-to-Run 2010 (P:c - - - 873072012 112
ﬁ Nokia Phone Browser e :
@ Network 8/30/201211:3(
8/30/201211:3
| &9 Controt Panel 8/30/2012 11:3
1 & RecycleBin §/30/2012 112
£ test data :
& elevator without loop
Ji State machine diagrams with fult of attr
_I ;tates wit;\ Ar;';ore vair*i; bles and errors

m} Thesis Write-up Milestones

File name: ECS v [xmlfilés xmil) = -—z-v]

I Qpen-r‘lfl { - Cancel==]

Data Flow Testing of UML State Machine Using Ant Colony Optimization {ACO) 137

Open XML File of Selected Input Model

@ Open

o

(=XT)

@i)vl_}.’ <« states with morevanables and emrors » ECS

49][Seorer £C5

Ph

<& DVD RW Drive (G3)

K 5] Nokia Phone Browser
€l Network
S8 Control Panel
‘& Recycle Bin
I{E test data
Jg elevator without loop

¢y Microsoft Office Click-to-Run 2010 (Prc

3 State machine diagrams with full of atts ¥
I states with more variables and errors
B Thesis Write-up Milestones

Organize v New folder = v m @
£ Local Disk (C3) 4 HName - Date medified
—e HP_RECOVERY (E;
cw HP_ {€) = ECS 871572012 10:4
=x HP_TQOLS (R}

File name: ECS

[Open =[]

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

138

SETTRETAN 490 R

C.3 Select Automatic Parameter Setting of ECS Model

e T o L LW TN
g Automated Test Cases Genration using ACO -~
L i ™ adis

o W s & R

| T Fiis Mas0F M Desicopten)

AL o>

Run ACO!

Dty Rascency N i

Uapbyy haasdie Pyhs

xplay i FEn

Dy T Upteras: Pathe

ey
: Lialay Feashle Fahs

Entey UMz w0

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

139

'

C.4 Select Custom Parameter Setting of ECS Model

e == g~ — T < A - i_k;-—' e SF ik 3¢
s Genration using ACO il e iy

2 . . b o
E B i - . Ao . Em . B i Seessraces = —— L =

C\Users Founs Samk\F3\Desktop tex @
TR une Tek L maLeskiootexX 9

Run ACO!

‘&g l HNumber of Generations
300 -
260 ALFA

d = BETA

!
!
)
Dnapdey Somooney B

Dwolyy Fisasbie Pains

Dapless Crtmuam Pt

Cadlay Jrher Ootirvm Pathe]

..

Dhaplay Fazadle Fama

Tezeimy Data Fiow 1in

S

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 140

Select Number of Generations for ECS Model

o

g 6] Automated Test Cases Genration using ACO = __

C\UsernFouzis Matk\F W Desdopiiest d.

€5 Adomalic Browse
| . Browse

outs Run ACO!

7100 = v ! Mumber of Ants

2e BETA

08 Run ACO

Outputs

Dsotay Agecercy M

Deplay Edzactss Pall

Dy Opriouns Fan

iy v D Pathe

Srophes Foanble Py

Danizer T zin Fiow o

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 141

C.4 Run ACO to View the Results

[r « % <
Clisers Fouze MaB(FM\Desiton et d!

: & Auvomaic Browsa -
R
| oe

T TN SR A

View Results

Mo - -
(100w} Numberof Ats

Outputs

Dispiay Adiecency Matrix i

esplay nfeasble Paths -

Display Optimum Path -]

; Dipiay Other Optmum Paths j

| Display Fgas’de Paths]

Drypiay Dats Fiew e

A

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQO) 142

APPENDIX D
Generated Test Cases & Data Flow Information of All Models

Data Flow Testing of UML State Machine Using Ant Colony Optimization {ACO) 143

D.1 Display Adjacency Matrix of ECS Model

T D S —— _—
& jAutomated Test Cases Gennation using ACO . B . ¥ i Sl
o e o DUV — s ST .

| [Esen Fora et Benanten &

£ Auomatic | erowse ADJECENCY MATRIX

[l 9 Custor :

| e 01000000600000CGO0O
—

) 60010001001000800
(100 =) MNumber of Arns
_ 001100000000100

295' « | Number of Generations
! { 000011001001 000 E
It ¥ ALFA
; : 00000C1000000000
f ¥1=_“"§ BETA
; 000101000000000
i
1 00000001000000O0O0
E - Run ACO
; 0010000000000T10
T 0000D0D0010000000

mmm) 0000000000 10000Q
e 000000000O0O0GDOUOD10
%-mmpm.]

00000000001 000OD
Disniay Optimum Path 000000001001000
; : : 00110000000000O0 1
| ety ; 0006000000CO00D0DO0ODO

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 144

n

D.2 Display Feasible Test Cases within ECS Model

e ;= ST L m e —"
i Automated Test Cases Genration using ACO

i Lsens Fouza Jaalk\Fi Desidon et J‘

T Automatic E,.* Browsz

@ Custom
Inputs
1300 . v Numberof Arts
IOS w1 Number of Generations
Do~
h_ »! BETA

ALL FEASIBLE TRAILS

Initial -> 1 -> 9 -> 10 -> 13 -> Final

Initial -> 1->2->12->8->7-> 13 -> Final

Initigl-> 1 ->6->7 -> 13 -> Final

Inidal -> 1->2->12-> 11 -> 10 -> 13 -> Final
Intal->1-»>6->7->2->12->11->10-> 13 -> Final
Initial->1->2->3->8->7->13 ->Final
Intal-»1->6->7->2-23->11->10->13-> Final

Initial-> 1->2->3-> 11 -> 10 -> 13 -> Final

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

145

D.3 Display Data Flow Errors against Each Path of ECS Model

Y cm i L T R
; 1Automated Test Cases Genration using ACO

o e T Wb NPT g o oo

e, ~ P N i I3 -

Nisers Fouze MaSkOF M Desiaopizest ¢ Vb 2t 1->s
1E e Fouze MaskF MiDesitop vest o {113) 1-52-512-58->7->13
£ Automatic e

. (1,2): 1->2
ous (1,7 1-52-312->8->7
’100—-\ Number of Arts (1,13) 1-22->12->8->7->13

[EE Numberof Genertions | T Tl TTTToTcoo Tttt

N THIS TRAIL
[) ara DATA FLOW ERRORS I ls>

1 zaeew] BETA Variable: sf
- Type of Error: UN USED
Description: Define on nodes 1, but not used.

Type of Error: UN DEFINED

l RNAO -~ Variable: k
Description: Used on nodes 2 , but not defined.

Outputs Variable: u
:] .) Type of Error: UN USED
- Display Adjecency Matr ‘l Description: Define on nodes 12, but not used.
D Ideasbic Paths Variable: f

Type of Error: UN USED

Description: Define on nodes 8 , but not used.
Display Optium Fath variable: j

Type of Error: UN DEFINED

Description: Used on nodes 8, but not defined.

Variabfe: e)
Type of Error; UN DEFINED
Description: Used on nodes 7 , but not defined.

Display Feasbile Paths .o

amemens 11 e movaoninosrsstootsows-aervor B0 ot 11 SOOI 11103 OO

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 146

B B e 2

D.4 Display Def-Use Pairs, All Def-use Paths & Data Flow Errors of ECS Model

[P — T i e]
JCnlsers™Founa MaB it Dicopes ¢!

T Automatic i Browss ,
‘@ Custom

Inpute

{100 e v Number of Ats

(8] Numberof Generatiors
b~ asm
[-jeea

Run ACO

- Outputs

MWMWJ

T TR

L Depiay feashla Paths -+ I

Display Optium Path - -

Uisplay Feasiie Faths]

T

FEASIBLE TRAIL 1 :

Initial -»> 1 -> 9 -> 10 -> 13 -> Final
TOTAL VARIABLES USED IN THIS TRAIL
of ,ef,sf,c,b

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Vanable : ¢f

{(1,9) 1->9

(1,13 3 1->9->10->13
Variable : ef

(1,10} 1->9->10
(1,13} 1->9->10-> 13

DATA FLOW ERRORS IN THIS TRAIL

Variable: sf
Type of Errgr; UN USED
Description: Define on nodes 1, but not used.

Variable: ¢
Type of Error: UN DEFINED
Dascription: Used on nodes 9, but not defined.

Variable: b
Tvna of Errart 1IN VIGED

4 — =

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

147

All Def-Use Pairs, Def-Use paths & Data Flow Errors of Feasible Test Case 2 of ECS Model

E&;ﬂmmwfmiv A0

o et Fouza ek Pl Desidonites 4!

Optimum TRAIL 2 :

Inibial->1->2->12->8->7-> 13 ->Final

TOTAL VARIABLES USED IN THIS TRAIL
o, ef,sf,k,u,f,j,e

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL
Variable :

{12} 122
(1,13): 1->2-»12-28->7->13

variable : ef
E>2

1->2->12->8->7
I 1-32->12->8->7->13

(1,2
(1,7
{11

.

OATA FLOW ERRORS IN THIS TRAIL

variable: sf
Type of Error: UN USED
Description: Define on nodes 1, but not used.

Variable: k
Type of Error: UN DEFINED
Description: Used on nodes 2, but not defined.

Yarahia: ot

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

148

All Def-Use Pairs, Def-Use paths & Data Flow Errors of Feasible Test Case 3 of ECS Model

o e
- Genwation using ACO

33 Actomatic — Browse —
@

Optimum TRAIL 3 :

Inmtal -> 1 ->6->7-> 13 -> Fina!

TOTAL VARIABLES USED IN THIS TRAIL
of,ef,sf, e
DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL
Variable : f

(1,6): 156
(1,13 1: 1->6->7->13

Variable : ef

(1,7) 1-56->7

1>6->7->13

DATA FLOW ERRORS IN THIS TRAIL

Varable: sf
Type of Error: UN USED
Description: Define on nodes 1, but not used.

Variabte: e
Type of Error: UN DEFINED
Description: Used on nodes 7 , but not defined.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 149

All Def-Use Pairs, Def-Use paths & Data Flow Errors of Feasible Test Case 4 of ECS Model

o \WisemFoudz Mk A Dese apNes 4

&7 Automate . Optimum TRAIL 4 :
puts

2100 | Mumberoi Adis
— TOTAL YARIABLES USED IN THIS TRAIL

cf.ef,sf , k,u,g,t,b

Inbal->1->2->12->11->10-> 13 -> Final

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : o

(1,2) 1->2
{1,131 1>2->12->11->10->13

Variable : ef

1->2
1->2->12->11->10
1->2->12->11->10->13

DATA FLOW ERRQRS IN THIS TRAIL

Variable: sf
Type of Error: UN USED
Description: Define on nodes 1, but not used.

Variable: k
Type of Error: UN DEFINED
Description: Used on nodes 2 , but not defined.

Varishlc: o

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 150

All Def-Use Pairs, Def-Use paths & Data Flow Errors of Feasible Test Case 5 of ECS Model

- e B ™
Automated Test Cases Gennation using ACO
A, - S

Outputs

- Disploy ifeasbie : e Paths -

:‘l

L Display Optimusm Path

[Display Feasbie Paths.

. leayDaaHowHox—-—i

Optimum TRAIL 5 : { < Previoiss | [+ Neat >> -}

Initial -> 1 ->6 ->7->2->12-> 11 -> 10 -> 13 -> Final
TOTAL VARIABLES USED IN THIS TRAIL
o, ef,sf,e,k,u,g,t,b

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable ; o

(16): i1->6

(1,2) 1-26->7->2

(1,13): 1-26->7->2->12-511->10->13
Varniable : ef

(1,7) 1->6->7

(1,2} 1->6-27->2

(1,10): 1->56->7->2->12->11-> 10
(1,13); }>6->7->2->12->11->10->13

DATA FLOW ERRORS IN THIS TRAIL

Vanable: sf
Type of Error: UN USED
Description: Define on nodes 1, but not used.

varable: e
Type of Error: UN DEFINED

Nacrrintinn’ 1lead nn nndac 7 hiot nnt dofinad

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

151

All Def-Use Pairs, Def-Use paths & Data Flow Errors of Feasible Test Case 6 of ECS Model

o pSET . S Diwsis

[C\Usere' Fouzie Mk P43 Desidzgtes &

E i 14
& Aoy Browse — Optimum TRAIL 6 : << Povous | - Nt 5=}
@ Custom -

Initial -> 1->2->3->8->7->13 -> Final

(160 . v! Numberof Ants

TOTAL VARIABLES USED IN THIS TRAIL
cf,ef,sf , k.d,f,3,e

{05 -0 v | Number of Generations

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : o

fun ACO
. (L2} 1->2
I ’ = (1,13): 1->2.>3->8->7->13

Quiputs

; Vanable : ef

Display Adiecency Matrix f

t (1,2 1->2

r - (1,7 1->2->3->8->7

| ~ Display ifeasbile Patfhis & l (1,13): 1->2->3->8->7->13

1] N _

— Variable : sf

] « Digplay Optimum Path

. (13) 1->2->3

H)3

|+ Display Other Optimum Paths o R LR R R

; . DATA FLOW ERRORS IN THIS TRAIL

| Divlay Feaside Pahs |]

Variable: k
. Type of Error: UN DEFINED 1

Display Data Fow o~ Description: Used on nodes 2, but not defined.
= — ' \fariahlc: A N e
- —— - e 5

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 152

T ——— 0

All Def-Use Pairs, Def-Use paths & Data Flow Errors of Feasible Test Case 7 of ECS Model

Epr————— ——
%3 T Automated Test Cases Genration using ACO
o

b aniulietitleluieeggrt

1C "\UszmiFouzia MelkFH\Desdor cest 4,

- 1
7 Adomatic ~ Browse-— Optimum TRAIL 7 : << Previows] (- Mot >>]

Initial->1->6->7->2->3->11->10-> 13 -> Final

TOTAL VARIABLES USED IN THIS TRAIL

of,ef,sf,e k,d,g.t,b

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : f

6): 1-26
2h 1-356->7->2
13) 1-56->7->2->3->11->10->13

- {L7) 1->6->7
= Olaplay kfeasbie Paths ~- <’ > (1.2 1-26->7->2
i ;e (1,10): 1->6->7->2->3->11->10
r i (1,13) 1-56->7->2->3->11->10->13
i~ Display Optwum Path : .
H g i Variable : sf
WBYWOD'M% ' (1,3 1->6->7->2->3

; i
1- = Display Feasible Paths ..
: 1 DATA FLOW ERRQORS IN THIS TRAIL

-—r Display Data Bow o~ - f variable: e
I : Type of Error: UN DEFINED

Nacerrintinn: tlcad nn andac 7 ku# nat daofinad

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 153

D.5 Display Adjacency Matrix of Telephone System Model

i A - . ol - e e . o A Tﬁw
'atiomgsing ACO - : _;‘,‘“-‘ 2 li= R

‘TJ&:‘S’\FWR R\ Desidor2es 3 ;
{2 Adomatic ADIECENCY MATRIX “
@ Custom 0100000O06O0CO0 :!
60010001000
0001110010
| 0000000DO010
l 0000000010
00000060110
o Ao 01006000100
‘ - 0010000010 |
Outpits 00DDO0OO0ODOOCGO 1 b
1mwm} 00O000O0O0D0GOCO
2 iru?qayﬂea%mhij- :
|

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 154

D.6 Display Infeasible paths within Telephone System Model

(o~ = T P ==
i @~ Autornated Test Cases Genration using ACO -
W mmwL amg J e,

T \Uses\Fouze Mol 8 Descopited 4

5 i

@ Custom

l Mvwmj

i—_ﬁgﬂayﬁeaﬁisf’m T

. Display Optimum Path]

| Disptay Othes Optimum Pathe - |

H

Lmipaayoaa Fow ifo - E

ALL INFEASIBLE TRAILS

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

D.7 Display Feasible Test Cases within Telephone System Model

i g Automated Test Cases Genration using ACO
f Ol T e oy Sror ~

N fyroim SIET -
-E \Userz"Fougia il vid \Dedeop e d

) Asomac ALL FEASIBLE TRAILS

@ Custom imitial -> 1 -> 6 -> 7 -> 8 -> Final
puts
1100y v Numberof Ats

Intial-> 1->2->3->8->Final

Initial -> 1 -> 2 -> 8 -> Final
05 e v! Number of Generations) -
Intal ->1->6->7->2->3->8->Final

{—'_\
i ~] ALFA
. «]BETA

Inttial -> 1->6->7->2-> 8-> Final

Initial -> 1 ->6->7->2->5-> 8-> Final

Intial->1->6->7->2->4->8->Fnal g

; "R ACO

—_- N ; Initial -> 1-> 2 -> 4 -> 8 ->Final

Oulputs Inital -> 1->2->5-» 8 -> Final

i Dispiay Adjecency Matix - Initial ->1->2->5->7-> 8-> Final %

- Display kfeasbic Paths

H

|- ooy Otr Ot Pt |

oo

- Display Data Fow ifo =

—

= T 4

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 156

D.8 Display Optimum Paths within Telephone System Model

£ WiseeFouda Mal\FIS Doskeooes 4

2 Aomatc - Browse —
@ Custom]

Inputs

100 v| Humberof Ats
(05~ Momber of Generatiors
LA P

i ~] BETA

Fun ACO

[i‘ Outputs
|~ Desley Aocory |

Display ifeasble Paths +*

’ — Display Data Flow o g_[

Optimum TRAIL 1 ;

Inbal ->1-»>6->7->8 -> Final
TOTAL VARIABLES USED IN THIS TRAIL
bil,cor, it ,tme, 3,k

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : bill

(1,7): 1->6->7
variable : rt
(1,6): 1->6

Variable : time

(1,6): 156
(1,7): 1->6->7

[

DATA FLOW ERRORS IN THIS TRAIL

Vanable: ¢r
Type of Ecror: UN USED
Description: Define on nodes 1, but not used.

Variable: a
Type of Error: UN USED

Pocrrintinn: Nofine nan nadace @ hit nnt nicad

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

157

D.9 Display All Def-Use Pairs, All Def-Use Paths against Each Path within Telephone
System Model

RN T

cO _ .

T ST TEE— =
2 Automated Test Cases Gervaton using A
2T TR ot i =

| T Users Fouzs faior 3 Deskivo\ed J. FEASIBLE TRAIL 1!
@ Adomatic Initiat -> 1 -> 6 -> 7 -> 8 -> Final
O QUM T e e e
e "'_ TOTAL VARIABLES USED IN THIS TRAIL
(100~ v Hember of Arts bill, o, st time, a, h
|65 | Number of Generations
S e 2y
A
:j ALFA DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL
11—~} BETA , ,
‘ e Variable : bilt
' (1,7) 1->6->7
l e 7 7 Variable : it Eg
Oulputs (1,6) 1->6 E
! Disply Adjecan “ﬂ"“wj Variable : time §
j—— (1.6): 156 i
| Dovley wheastic Paro T (17X 1->6->7 H
r e T
j, Depley Optmum Path J DATA FLOW ERRORS IN THIS TRAIL
Con Ot Pudi i Vanable: ¢r
i leay(lha J Type of Error: UN USED
, . Description: Define on nodes 1, but not used.
. y Feasie Paths ; Variable: a
- Type of Error: UN USED
r Disptay Data Fiow ko —- Destsiption: Define on nodes B , but not used.
- variable: h 5

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 158

D.10 Display Data Flow Errors

against Each Path within Telephone System Model

(100 v Mumber of Acts
A —

05 M Mumbey of Generations

1o <] ara
1.

i

LN

o
Variable : o . J[Ngg]

& Auomatic . i << Previous | |= pE -
- E_—j Browee (1.2): 1->2 =
@ Custom

Variable : time

Inputs a
(112): 1->2

DATA FLOW ERRCRS IN THIS TRAIL

Variable: bill
Type of Error; UN USED
Description: Define on nodes 1, but not used.

Variable: rt
Type of Error: UN USED
Description: Define on nodes 1, but not used.

Variable: n
Type of Error: UN DEFINED
Description: Used on nodes 3 , but not defined.

Variable: p
Type of Error: UN USED
Description: Define on nodes 3, but not used.

variable: a
Type of Error: UN USED
Description: Define on nodes § , but not used.

variable: h

Type of Error; UN DEFINED
Description: Used an nodes 8 , but not defined.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

D.11 Display Adjacency Matrix of Library Management System Model

3 FAutomated Test Cases Genration using ACO

ADJECENCY MATRIX
1 00 0
0

o 0 O 0o 0o o o

0

¢ 0
00
g0
00
o0
0 0
00
[
00

Display Feasible Paths

Owaplay Data Flow info-

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 160

D.12 Display Infeasible Paths within LMS Model

T e e
ion using ACO &

T Wisers* Fouzs Motk M Deskiooltent 3

& Adomatc ALL INFEASIBLE TRAILS

i Custom Ioitial > 1 ->2 -> 4

IR oI

= @

(- Diaplay irfeachle Paﬂn‘;fj

wwo;ammpah‘J

| Dy Other Optira Patrs |

1 Display Feasble Paths == |

| . - Display ata Fow bfo — |

i

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQO) 161

D.13 Display Feasible Test Cases within LMS Model

'€ \Userm Fous Maik P Casldopiies

71 Adtomac | -Browse -
@ Custom

loputs =
1100 v ! Number of Ares

165 - v | Number of Generations

=] aFa
: BETA

ALL FEASIBLE TRAILS

Inttial -> 1 -> 8 -> Final

Intial ->1->2->3->5->7->8 ->Final
Initial -> 1 -> 2 -> 8 -> Final

Initial->1->2->3->5->6->8->Final

R I RORINN

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQ)

162

D.14 Display All Def-Use Pairs & All Def-Use Paths within LMS Model

r—._ ES

Automated Test Cases Gembon usang ACO 5

2 LzerstFouda MalOFMDegdop test ¢ '*

FEASIBLE TRAIL 2 :

Intial->1->2->3->5->7->8 ->Final
TOTAL YARIABLES USED IN THIS TRAIL
bb , rentb , rentm , stdrec, stock ,j, ¥, f,u,9,i

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : rentb

Fun ACC -

L e - (4,7 1>2->3->5->7

’] Oulpute Variable : stdrec
, Display Adecancy Matrix J (1.2) 1->2
; Variable : stock

Way ifeatible Pa!hs - -I
= (1,5) 1->2->3->5

: Display Optimum Path- i --------------------------------------
DATA FLOW ERRORS IN THIS TRAIL :
* Dplay Qther Optimum Paths 1 ;
: J Variable: bb B
; . Type of Error. UN USED
i— Display Feasible Paths ! Description: Define on nodes 1, but not used.
{ ;

Y Vanable: rentm
| . DisplayData Fow bfo - — - Type of Error: UN USED -
H e i Desdaipticn: Define on nodes 1, but not usad. R

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 163

D.15 Display Data Flow Errors within LMS Model

é‘ai'&;o;\ated(fést Casesbén?lbonﬁ-m A0S, o g ST ’ X : "’EE i@@ x=]
g T T S : i X "y p——— — sk I ome

| [CWeemtFouds BekEMDescesuesd V0 - ﬂ
< Automatic Browss {« Pfewumf'] - Next »*?E
- DATA FLOW ERRORS IN THIS TRAIL [=

Variable: bb
outs Type of Erroc: UN USED
Description: Define on nodes 1, but not used.

varable: rentm

Type of Error: UN USED
Description: Define on nodes 1, but not used.

%tr-....vl BETA Variable: j 7
; - Type of Error: USED BEFORE DEFINE :
. Description: Define on node, 3, butusedon 2.

] - .
Run ACO . Variable: |
' 4 Type of Error: UN USED
oo Description: Define on nodes 2, but not used.
E

Variable: f

Type of Error: UN DEFINED
| Display Adiecency Matr = } Description: Used on nodes 3 , but not defined.

i variable: u
Type of Error: UN DEFINED
Description: Used on nodes 5, 7, but not defined.

variable: g
Type of Error: UN USED
Description: Define on nodes 8 , but not used.

. Variable:
! Type of Error: UN USED
i Description: Define on nodes 8 , but not used.

fggiayoaaﬂowﬂo_-é

i

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 164

D.16 Display Adjacency Matrix of Student Enrollment System

<’ Automt

I e T
Tast Cases Genraticn using
St e i

ILE‘. \Userz' Fouze Masic Falilesicop'res 4!

’) Actomatic Browse
@ Custom
inputs

(oo

=

* Diaglay Optinum Path J

¢ . Display Other Optamum Paths

Display Feasbie Paths - ;

Tisplay s Fow e

ADJECENCY MATRIX

0100000
0011000
0001000
19006100
0001011
0100000
00C0O0O0OT10
000O0O0OO1
0100000O0
0000O0CO0O0
00D00O0CO0OO

= a o O o o O

o o O Q

0o QO O O g O o

[

(=T = B =]

O O = O 0O © O QO O O ©

o 0 O o O 0O 0 O o

T

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

165

D.17 Display Feasible Test Cases within SES Model

- Browse: ALL FEASIBLE TRAILS

ST

Initial->1->3->4->6 ->7->8->9->Final

Display Irfeasiie Paths]

-

1

. Display Optimum Path l

|~ usplay Othes Optirum Pt

F Display Feasbie Paths

| , -Diﬁdayﬁdaﬁowﬂo_é

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

Initial -3 1->2->3->4->6->7->8->9 -5 Final

166

D.18 Display All Def-Use Pairs & All Def-Use Paths within SES Model

S o N W
FQS'Automated Test Cases Genration using ACO =
SN e Z e ",

[C Misers Fouzs Bk PA Desklop'itet 3

7 Automatic Browse -
o Custom

inputs -

{300. =} Mumber of Ants

FEASIBLE TRAIL 1 :
Inbal->1->3->4.->6->7->8->9->Final
TOTAL VARIABLES USED IN THIS TRAIL

enstd , regstd,e,n,u,p,Q

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL
variable ; enstd

(14) 1->3->4

variable ; regstd

(14) 1->3->4

(18) 1->3->4-56->7->8
(19): 1->3-»4-26->7->8->9
DATA FLOW ERRCRS IN THIS TRAIL

Variable: e

Type of Error: UN USED

Description: Define on nodes 3, but not used.
Variable: n

Type of Esror: UN DEFINED

Description: Used on nodes § , but not defined.

Variable: p
Tuna Af Brrnr I DEFINEN

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQO)

D.19 Display Data Flow Errors within SES Model

fC Ve Foura MeskFaf Doslocsites &

& Adomatc
-@: Custom
inouts

Run ACO

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : enstd
{14} 1>2->3->4

DATA FLOW ERRORS IN THIS TRAIL

Variable: regstd
Type of Error: DEFINE MULTIPLE TIMES
Description: Define multiple times onnodes 1,2, .

Variable: std
Type of Error: UN USED
Description; Define on nodes 2, but not used.

variable: e
Type of Error: UN USED
Description: Define on nodes 3, but not used.

Variable: n
Type of Error; UN DEFINED
Description: Used on nodes 6, but not defined.

Variable: p
Type of Error: UN DEFINED
Description: Used on nodes 7 , but not defined.

Variable: g

Type of Error: UN USED
Description: Define on nodes 9 , but not used.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

168

D.20 Display Adjacency Matrix of Purchase Order System

ADJECENCY MATRIX
1 00000

01000
1100 — v | Hamber of Ats

05w w| Number of Generations

0
0 1 1 0
0

(o]
0
0

o 0O O O O o o o©

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQO) 169

D.21 Display Feasible Test Cases within PO System

T

Ll [c\Users\Foxize e FiiDasiospites 3
5 Automatic ALL FEASIBLE TRAILS
-@: Custom -

initial -> 1->2->3 -> 7 -> Final

Intial -5 1->2->3->4->6->7->Final

Intial ->1->2->4->6->7 ->Final

RAACD ~ = -

Display Adscency Matix +

Display ifeasbie Peths

* Display Optanum Pa’b:

T

= Display Data Flow Ifo. == '

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQO) 170

-

D.22 Display All Def-Use Paths & All Def-Use Pairs within PO System

i 7Automated Test Cases Genvation using ACO 3 =)
BT 2 v ottt —— g+ ey T i, . _|
E:\Um':,‘lmz'z Ma3 \FMDeshiopves 4 |
5 Asomabe . _Browse— FEASIBLE TRAIL 2 : [<<Provious J [Net>> |
.9 Custom S SR

Intal->1->2->3->4->6->7 ->Final
m’ — _

(100 v Numberof s

{05 v] Mumber of Generations

TOTAL VARIABLES USED IN THIS TRAIL
ben, cust, items, order,a,u,c

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

i
J ' ' Vaniable : ben
‘

; (1,4) 1->2->3->4
— E— - {1,6): 1->2->3->4->6

Variable : cust

(1,4 1->2->3->4
{1,6): 1->22->3->4->86
{1,7)

1->2->3->4->6->7

Vanable : order

(16): 1->2->3->4->6

DATA FLOW ERRORS IN THIS TRAIL

Type of Error; UN USED
Desgription: Define on nodes 1, but not used.

i
i
Variable: items l

Yanzhla: 2

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 171

‘l
i
y

D.23 Display Data Flow Errors within PO System

L \WesreiFouds MaoFM\Deskiopites 4

77 Automatic
& Custom
inputs
100w = Nomber of Arts
{05] Number of Generatiors

-) ara

ommraren |

| Display Data Flow kfo

TOTAL VARIABLES USED IN THIS TRAIL

ben, cust, tems , order,a,u,c

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL
Variabfe : cust

1->2->5->7

DATA FLOW ERRORS IN THIS TRAIL

Variable: ben
Type of Error: UN USED
Description: Define on nodes 1, but not used.

varnable: items
Type of Error: UN USED
Description: Define on nodes 1, but not used.

Vanable: order
Type of Error: UN USED
Descnption: Define on nodes 1, but not used.

Variable: u
Type of Error: UN DEFINED
Description: Used on nodes 2, 5, but not defined.

Variable: ¢
Type of Error; UN USED
Description: Define on nodes 7 , but not used.

Data Flow Testing of UML State Machine Using Ant Colony Optimization {ACO)

172

s %

D.24 Display Adjacency Matrix of Hotel Management System

iC \Ussm Forde Mk F M Deskiop Tres, %
7 Adomatic - Browse = - ADJECENCY MATRIX
8 Custom 0100000000
00110060000
1100 - v! Mumberof Arts
—— 0000110000
05 = v| Numberof Generations
; 00000C0O0OC10
e] ara
. ALFA 0000001000
1. +] BETA
0000000010
: 00100600100
Run ACO- ~
00000D00OCT10
Ouiputs 000000D0GOGO01 !
0000000GGQ

(Display Adecency Matra ;-

i Duplay ifessbie Paths .

i N 1
j - Display Optimum Path. [
!]

| Owr v Cpamm Pt -

Dispiay Feasibie Paths |

it

Dplay Dtz T i

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 173

D.25 Display Feasible Test Cases within HMS

ALL FEASIBLE TRAILS
Initiat -> 1 - 3 -> 8 -> Final
Initial -> 1 -> 2 -> 5 -> 8 -> Final

100 -~ v | Number of Ants
! Initial ->1->2->4->6->7->8->Final

05 v Nuriber of Generations

Q= v) ALFA

=

Display infeasiie Pa;hs—.J)

Display Optimum Path i

1

| -Displey Other Optimum Paths

L.:;—DisdayFeaa’zleF‘w\ss -]

| Doviay Do Fowblo—

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQO)

174

nw

D.26 Display All Def-Use Pairs & All Def-Use Paths within HMS

22 HaliOF 4\ Dasidop\The s - L

pURYS
SO UTECITN

£ Adomatie « Browse - FEASIBLE TRAIL 3 : [« Prevous | { s>
i© Custom

nitial ->1->2->4->6->7->8->Final
TOTAL VARIABLES USED IN THIS TRAIL

chek , fee ,op,pat,p,s,d, e, u !

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

variable : chck
(12) 1->2

Variable : fee

(1,2): 1->2

Variable : op

(1,6): 1-52->4->6
Variable : pat

(1,6) 1->2->4->6
(1,7) 1->2->4->6->7

DATA FLOW ERRORS IN THIS TRAIL

Variable: p
Type of Error: UN USED -
Nacrrintinn: Nofina nn nndoc 4 hi# nat 1icod ’ J

. — T

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACQO) 175

D.27 Display Data Flow Errors within HMS

TOTAL VARIABLES USED IN THIS TRAIL

chek ,fee ,op,pat,d,u,e

i

ur - Display ifeasble Paths

i

| - Ovloy Optiram Pah

DATA FLOW ERRORS IN THIS TRAIL

Variable: chck

Type of Error: UN USED

Description: Define on nodes 1, but not used.

Variable: fee

Descripticn: Define on nodes 1, but not used.

Vanable: pat
Type of Error: UN USED
Description: Define on nodes 1, but not used.

Variable: u
) Type pf Error: JSED BEFORE DEFINE
i' Dispiay Other Ot Paths ~ Description: Define on node, 8, but usedon 3.
; ’ Varniable: e
! N Tvpe of Error: UN DEFINED
. Pi"”’w Paths Description: Used on nodes 8 , but not defined.
— DisplayDataFowido | | T oToTToTornooormomTmTTommmmmTTeT

G

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

Run ACO -
Type of Errar; UN USED
Dascription: Define on nodes 1, but not used. '1
Quiputs Variable: op
. Type of Error: UN USED

176

D.28 Display Adjacency Matrix of Cruise Control Model

JC \Usersi\Fouzia Melic "3 Deshior'test 4.

€ Adomatc — Browes ADJECENCY MATRIX

gt
@ Custom 10000

0100

[B w

o
0 0
011100
0 0
0
0

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 177

D.29 Display Feasible Paths within CC Model

13 Automated Test Cases Genration using ACO.
4 R " AR ki

o

[T \Users Fouria Mask P4\ Dasidortest)
75 Atomatc ALL FEASIBLE TRAILS

9" Custom Initiat-> 1 -> 2 -> 3 -> 4 -> Final
(100 =] Mumberof Ats

D Number of Generations
|

ALFA
BETA
I * - Rn ACO ' '
| o)
| &mwm':]
|| - Dy feosio Pt —
Display Optimum Path < F

e

Data Flow Testing of UML State Machine Using Ant Colony Optimizan'on.(ACO) 178 +

1

D. 30 Display All Def-Use Pairs & All Def-Use Paths within CC Model

o2 g = T

Automated Test Cases Gennbon u:mg ACO i

iC \Usens:Fouzs Ratiowsesiiestes 3:

@ Atomatic FEASIBLE TRAIL 1 : ¢ Previows | |= Neat 3>
bt Initial -> 1 -> 2 ->3->4 -> Fina!

$100 2, v | Mumber of Anis
LS —

TOTAL VARIABLES USED IN THIS TRAIL
eng,mread,sp,u,r

= — DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : eng
~Rm ACO" ==
: (1.3} 1-22->3
P Oulpits Variable : mread
I~ Display Adiecency Matrix-] (12 1-»2
I Variable : sp
= Display infeasble Paihs —l
i (1.3): 1->2->3
ﬁspzayopum Path J Variable : r
{ 1 (2.4) 2->3->4
. Dvskay Feasioe Paths DATA FLOW ERRORS IN THIS TRAIL
/ . Variable: u
{ - Dsplay Data Flow ko = i Type of Error: UN DEFINED

Description: Used on nodes 1, 2, but not defined.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

179

L cop—r e e]

D.31 Display Data Flow Errors within CC Model

: Automated Test Cases Genration vsing ACO
ey = e

iC UsarmiFousiz Keil P Desidopttes: 3

100 s v | Mhamber of Arts
105, - w| Numberof Generatiors

Ve Y| AIFA

lwuv; BET.

TOTAL VARIABLES USED IN THIS TRAIL

eng,mread,sp,u,r

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL
Vanable : eng
(13) 1->2->3

Variable : mread

(1,2) 1->2
Variable : sp

(1,3 1->2->3
Variable : r

{24} 2->3->4

DATA FLOW ERRORS IN THIS TRAIL
Variable: u

Type of Error: UN DEFINED
Description: Used on nodes 1, 2, but not defined.

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

D.32 Display Adjacency Matrix of ATM Model

T —— L T um oS - ——
r§ Augggafe_dlgﬁ Cases Genration using ACO -

€ WsersiFauzie Mk \FM ek ophent o

@ Adomaic — Browes- ADJECENCY MATRIX
019000000C0D
001000000
000100000 ‘
001010010
D0DO00O01000 E
000000100 :
000000O0TLO a
' 010000001
Outputs 0000C0CO0O0O0O

[Display Adcency Matix]

- - Display irfeasbie Paths.]

| Deley Data Pew ko

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 181

D.33 Display Feasible Test Cases within ATM Model

G LX7

{C \Users: Fouze Mok VP&l Dasidortes 4!
¢ :

) Aomatic ALL FEASIBLE TRAILS
R

Inibdal->1->2->3->7->Fnal

intial->1->2->3->4->5->5->7 ->Final

| = Oy Do o — |

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 182

D.34 Display All Def-Use Pairs & All Def-Use Paths within ATM Model

{C sersiFouse Mok w ¥ Desdeotest 4

- Myﬂeuﬂe?a‘ths:

13

Dispay Optimum Path =+

{ = it

am&asuemud_i

Display Data Fow o - - !

FEASIBLE TRAIL 2 :
Initial -> 1->2->3->4->5->6-> 7 -> Final
TOTAL VARIABLES USED IN THIS TRAIL

am , ce, pe, tries, ae

DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

Variable : pe

{1,2): 1-52

(1,6): 1->2->3->4->5-26
(1,7} 1->2->3-24-35>6->7

Variable : tries

{(L,7) 1-32->3-24->5->6->7
DATA FLOW ERRORS IN THIS TRAIL

Variable: am

Type of Errar: DEFINE MULTIPLE TIMES

Description: Define multiple times annodes 1,4, .
Variable: ce

Type of Error: USED BEFORE DEFINE

Descnption: Define on node, 7, but usedon & .

Vanable: ae
Tuna nf Cerars 1IN DEETMEN

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO)

183

D.35 Display Data Flow Errors within ATM Model

i \Use' Fouzs Maik\FM\Deskdopiyes

2 Adomatic . Browse —- | sr«Pm]f .‘k&ni
5 B TOTAL VARIABLES USED IN THIS TRAIL

am, ce, pe , tries , ae

{106- «! Mumberof Arts”

| S

E Narmber of Generations DEF-USE PAIRS AND DEF-CLEAR PATHS IN THIS TRAIL

o0) ara variable : pe
| 1. ~] BETA (1,2): 132
i : {16

. (1.7}

K 1-22->3->4->5->6
1->22->23->24->5-56->7

7

RNAQ v - Variable : tries

fffffff (1,7 1->22->3->4->5-36->7
Ouipds

Dieplay Adiecency Matwce - - DATA FLOW ERRORS IN THIS TRAIL
e Vanable: am
m~ Display irfeasbio Paths — Type of Error: DEFINE MULTIPLE TIMES
, _ Desdripticn: Define multiple imes onnodes 1,4, .
’L Display Ogtirum Path - - | Variable: ce
Type of Error: USED BEFORE DEFINE
o Other Ogtimum Pat <1 Description: Define on nade, 7, but usedon 1.
. Variable: ae

Type of Error: UN DEFINED
Description: Used on nodes 3, but not defined.

Y
l ~ - Display Feasible Paths - 5

|- - Display Data Fow b . =

i

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 184

D.36 Display Adjacency Matrix of Display Manager State Machine Model

0

0
[¢]
0
0
0
0

Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 185

D.37 Feasible Test Cases of Display Manager State Machine Model

4,

{ (s} automated Test Cases Genration using ACO” - ' T = | e
ALl FEASIBLE TRAILS
Initial -> 1 -> 4 -> Final
Initial -> 1 -> 3 -> 4 -> Final
Inbal -» 1->2->3->4d->Final
w-...; Initial -> 1-> 2 -> 4 -> Final
“ ! i A f
— :’".:_!
B 1 - BETA
H
| T = v RnACO" ‘
Ouiputs
I =
-:1 Usp#ayi " M § i
5 -
= Diplay ieasble Paths _]
N ______ ___ L i
Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) 186

D.38 Data Flow Errors in Display Manager State Machine Model

fo o Tk

e

" Custom

TOTAL VARIABLES USED IN THIS TRAIL

a,dv,sol,Preb,u

DATA FLOW ERRORS IN THIS TRAIL

= = Run ACO Variable: a
Type of Error: USED BEFORE DEFINE
Description; Define on node, 4, but usedon 1.

Outputs Variable: dv
: - Type of Error: UN USED
* Display Adecency Matrix J Description: Define on nodes 1, but not used.
) Vanable: sol
Dispiay feasbie Paths — Type of Error: UN DEFINED
: Description: Used on nodes 2, but not defined.
]] i
Disploy Optemum Path - i Variable: Prob
— Type of Error: UN DEFINED
Display Other Ot Paths { Description: Used on nodes 3, but not defined.
— > ; Variable: u
o Feasible Paths — | Type of Error: UN DEFINED
i

Description: Used on nodes 3, but not defined.

i .2
= e
Data Flow Testing of UML State Machine Using Ant Colony Optimization (ACO) .) ; 187

T 2o
o~

