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Abstract

Plant disease detection is a complex area of study in agriculture since there are so many different
species grown in so many different environments across the world. Plant disease detection invoives
various processes including classification and segmentation. Due to the striking resemblance in
morphology among many plant species, it is challenging to accurately segment and classify not
only the various species of plants but also the diseases plant. The accurate classification of plant
species, make it possible to develop tools and techniques for early disease detection. There are var-
ious efforts made in order to achieve satisfactory performance for segmentation and classification
processes, however, using machine learning in general and deep learning in specific faces several
challenges. Considering the two types of the plants one growing with fruiting in the soil as plant
and the other one fruiting above the soil as tree, this research defines its scope to consider a case
from each of the mentioned classes. One such case is segmentation and classification of guava
leaves. The guava plant has achieved viable significance in subtropics and tropics owing to its flex-
ibility to climatic environments, soil conditions, and higher human consumption. It is cultivated in
vast areas of Asian and Non-Asian countries, including Pakistan. The guava plant is vulnerable to
diseases, specifically the leaves and fruit, which result in massive crop and profitability losses. The
existing plant leaf disease detection techniques can detect only one disease from a leaf. However, a
single leaf may contain symptoms of multiple diseases. The other case considered in this research
is of the potato leaves. Variations in crop species, crop disease signs, and environmental condi-
tions may contribute to the difficulty of early disease detection in potato leaves. Several machine
learning methods have been employed for disease detection in potato leaves. There exist signifi-
cant variance in geometry, color shape and other attributes of guava and potato leaves in Pakistan
region with that of rest of the world whose dataset for the same is available. However, the current
techniques are limited in identifying crop species and its illnesses in Pakistan. The limitations
include size and scale of the dataset and the application of the models tested on images of a small
subset of plant leaf regions. Robust methods are urgently needed for identifying plant leaf species,
segmentation, and diseases that may be applied in practical settings. In this thesis, considering
identification of the guava and potato species and diseases native to the Pakistani region as primary
problem, We overcome the issue of limited size and scale of the region specific dataset and use
deep learning methods to develop a system for real-time detection and classification of potato and

guava leaf species and illnesses.

The state-of-the-art plant leaf species, disease identification, and plant segmentation techniques
have been reviewed to identify the research gaps for contribution. Because all existing algorithms
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were trained on only the specific region dataset (PlantVillage dataset), they may be more accurate
at recognizing guava and potato plant leaf species and illnesses in Pakistan. Variations in shape,
variety, and environmental conditions contribute to regional differences in the prevalence of ill-
nesses that affect potatoes and guavas. Because of this, there are many false positives when using
these techniques to diagnose diseases in potatoes and guavas in the Pakistani region. To overcome

this issue, three techniques have been proposed.

The first hybrid deep learning method classifies and segments guava, potato, and java plum leaf
species. The proposed hybrid model consists of two novel methods. The first model using
MobileNetV2-UNet architecture has been developed to segment the guava, potato, and java plum
plant species. Plant species detection stacking ensemble deep learning model (PSD-SE-DLM) to
detect the potato, java plum, and guava species as a second model. The proposed PSD-SE-DLM
and MobileNetV2-UNet models were obtained with 99.84% and 96.74% accuracies, respectively.

The second method detects multiple diseases in guava leaves in real-time. A hybrid deep learning-
based framework for real-time various disease identification from a single guava leaf in numerous
phases is used for this. Guava Infected Patches Modified MobileNetV2 and U-Net (GIP-MU-NET)
segment infected guava patches. The encoder is modified MobileNetv2, and the decoder is the U-
Net model’s up-sampling layers. Second, the Guava Leaf Segmentation Model (GLSM) divides
healthy and diseased leaves. In the last step, the YOLOv5-based Guava Multiple Leaf illnesses
Detection (GMLDD) model detects multiple illnesses from guava leaves. The proposed approach
detected five fault classes: anthracnose, insect assault, nutrition shortage, wilt, and healthy. The
GIP-MU-Net model has 92.41% accuracy, the GLSM 83.40%, and the proposed GMLDD ap-
proach 73.3% precision, 73.1% recall, 71.0% mAP@0.5, and 50.3 mAP@0.5:0.95 scores for all

classes.

The third method detects potato leaf disease in Central Punjab, Pakistan. A multi-level deep learn-
ing model for potato leaf disease recognition is created. YOLOvVS5 image segmentation first re-
moves potato leaves from the potato plant image. A convolutional neural network can detect early
and late blight potato diseases from potato leaf images at the second level. The potato leaf dis-
ease dataset was 99.75% accurate using deep learning. The performance of the proposed methods
was also evaluated on the PlantVillage dataset. Concerning accuracy and computational cost, the
suggested method greatly outperforms state-of-the-art models.

In addition, to validate the robustness of the proposed methods in real scenarios, new datasets are
developed. For plant leaf species identification and segmentation, two datasets (Plant Leaf Species
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Dataset (PLSD) and Plant Leaf Species Segmentation Dataset (PLSSD)) for guava, java plum, and
potato healthy and diseased leaves are created in Central Punjab, Pakistan. To validate and train
the hybrid deep learning-based framework for the real-time detection of multiple diseases from
a single guava leaf, two self-collected datasets (the Guava Patches Dataset and the Guava Leaf
Diseases Dataset) are used. The proposed potato leaf disease detection model is trained and tested
on a self-created potato leaf disease dataset. The potato leaf disease dataset contains 4062 images
collected from the Central Punjab region of Pakistan. To further validate the robustness of the
proposed methods, cross-dataset experiments are performed to analyze the applicability of unseen

images.
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Chapter 1
Introduction

Agriculture is the backbone of human survival on this planet as it provides life necessities, includ-
ing food, fire, fibre, fodder, fruits and fertilizers, etc. Some of the world’s most important crop
plants and animal species were domesticated thousands of years ago when agriculture began to
flourish. Crop protection has been a challenging task in crop husbandry as it also carries a long
history of plant destruction and famines, leading to millions of casualties globally [1]. Plant dis-
eases are a vital cause of food insecurity, a severe global problem today [2]. According to one
estimate, 16% of worldwide food yields are lost due to plant diseases. Pests are predicted to have a
potential global loss of roughly 50% for wheat and 26-29% for soybeans [3]. A country’s economy
relies heavily on its agricultural sector, of which small farmers make up the vast majority (around
80%). Crop pests and illnesses account for at least half of this production’s losses [4]. According
to the UN’s FAQ report, there will be an estimated 9.1 billion people on the planet by the year 2050.
Approximately 70% of the increase in agricultural output is required for a safe and sufficient food

supply. [5].

Identifying plant disease is the first step toward a successful plant protection program, which fol-
lows the employment of appropriate control measures to achieve agricultural production and food
security goals. Providing such service at the farmer level is a significant hindrance for which vari-
ous service structures have been designed in the agriculture departments in Pakistan. Mostly small
scale farmers do not know much about the nature and severity of diseases. Application timing
of control measures also matters a lot, especially in controlling the disease, as it drastically and
robustly spoils the whole crop yield within a short period. Further. symptoms of many diseases
and nutritional deficiencies look similar, sometimes misleading, when visually observed. In such
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circumstances, farmers confuse or make wrong choices about pesticides and fertilizers. According
to the United Nations Environment Programme report [6], about 50% of crop yield losses are due
to incorrect determination of crop diseases and wrong usage of pesticides and fertilizers.

Many countries cultivate potatoes as a significant crop across various climatic zones, including
temperate regions, subtropics, and tropics, as well as lowlands and highlands with vastly varying
agroecological zones. There are several climates where the potato (Solanum tuberosum) can grow,
but it cannot flourish in extreme situations like intense heat or humidity {7]. About 130 countries
now cultivate potatoes, and there are more than 5000 varieties for selection in various agroeco-
logical regions [8]. When considering global food consumption, potatoes rank as the third most
significant non-grain crop. In areas where food availability is a problem, the FAO has designated
the potato as a food security crop [9]. With their high nutritional contents (vitamins like Niacin,
thiamin, riboflavin, and vitamin C, minerals and carbohydrates) and excellent yield, potatoes have
overtaken wheat and rice as the fourth most significant worldwide food crop.

Almost three-quarters of Pakistan’s population lives on less than $2 daily earnings for accommo-
dating daily domestic requirements [10]. Many people cannot buy and eat healthy food because of
the lack of resources. About 70% of the population lives off of agricultural income, while at least
43.7% of the workforce is involved in farming [10]. Even while agriculture plays an essential role
in the economy, production is less than the threshold. Low productivity can be attributed to various
factors, including small farm holdings, insufficient farmer purchasing power, little or suboptimal
input utilization, and others. Farmers are compelled to develop short-lived crops to make a profit

[11].

Potato cultivation is considered one of the most practical among short-duration crops. With the
establishiment of Pakistan as a sovereign government in 1947, the country only had enough land to
grow potatoes on a few thousand acres (ha), with an annual production of fewer than 30,000 tonnes
[12]. The significant increases in cultivated areas and average yield attained in the decades after
indepéndence, the potato has become the fastest-growing primary food crop in the country. Higher
irrigation efficiency in Pakistan is mainly responsible for expanding cultivated land and increasing
crop yield across the country, with Punjab showing solid growth. In 2020-21 agricultural statistics
exhibited that the cultivation of potatoes in Pakistan was on 234491 ha of land area, yielding
a total of around 5854208 tonnes, and that Punjab (Pakistan) cultivates potatoes on 220550 ha,
generating a capacity of 5682000 tonnes of which the district Okara of Punjab Province contributed
159,5425 metric tonnes (1/4th) in the yield of potatoes [13]. In 2020-21, the Okara district of
Punjab produced 159,5425 metric tonnes of potatoes. It is the most prosperous region in Punjab
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and Pakistan [13]. The utilization of potatoes generally in domestically usages as raw in food
preparation, industries like snacks, flakes, or fries, or utilized in the sizing of garments (starch).

The guava, or Psidium guajava L., is a popular fruit grown worldwide, especially in the tropics
and subtropics. Its year-round availability, low price relative to other fruit crops, and high nutrient
density make it desirable for forward-thinking farmers [14, 15]. The flavour of guava when it is
fully ripened and newly picked is sweet and enticing. Aside from fresh consumption, it is also
utilized in producing jams and jellies. It is high in nutrients containing high contents of vitamin
A, B, and C, carbohydrates (11%), protein (0.7%), and water (82%). Soluble fiber, phosphorus,
nicotinic acid, and calcium. Guava is anti-diabetic, aids in increasing the human immune system,
reduces the risk of cardiac arrest and cancer, lowers stress, and is a perfect weight reduction tool
f16].

Among Asian countries, India and Pakistan produce the guava each year, with a total of 4.10
million tonnes and 0.52 million, respectively. Guava in Pakistan is the fourth-largest fruit crop in
production and land area, after only citrus, mango, and apple [17]. A large percentage of Punjab’s
agricultural Jand (about 80%) is dedicated to growing guava because of the fruit’s adaptability to
various climates [18, 19]. Guava production is concentrated in the districts of Lahore. Sheikhupura,
Faisalabad, Nankana Sahib, Kasur, Sahiwal, and Okara in central Punjab [20].

Plants mainly various crops in agsicultural lands are usually much susceptible to various environ-
mental factor leading to the outbreak of various disorders. Such diseases and symptoms are at-
tributed because of disruption of a plant’s vital biochemical or physiological processes [21]. Since
the beginning of recorded history, diseases like rust, mildews, and blights have been responsible
for bunger, malnutrition as well as for starvation thus altering the economic landscape of nations
e.g., Ireland’s late potato blight (1845-60), France’s powdery and downy grape mildews (1851 and
1878), Ceylon (now Sri Lanka’s coffee) rust (the 1870s), cotton and flax wilts due to Fusarium,
tobacco’s southern bacterial wilt (early 1900s), banana’s Sigatoka leaf spot (1960) and Panama
disease (2012-present) [21].

The disease must be diagnosed appropriately to recommend particular treatments. In the research
of any disease, it is the first step. The diseased plant’s symptoms play a significant role in de--
termining the disease’s identity. Diagnosis cannot be accomplished without first determining the
pathogen’s identity. Careful observation and categorization of evidence, appraisal of facts and log-
ical conclusion to the cause are three processes needed in diagnosing [21]. ]. Identifying illnesses
and their causative agents is critical to develop practically controlled approaches. The ability to
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accurately diagnose plant diseases is thus crucial to training any aspiring plant pathologist. If the
sickness and the agent causing it are not correctly diagnosed, efforts to control the condition could
be wasted.

For detecting plant diseases, traditional methods rely heavily on the farmer’s experience, which
are highly subjective and inaccurate. Visual estimation is one of the quickest and most common
approaches when identifying plant diseases. Researchers have proposed the spectrometer as an
alternative to traditional methods of analyzing plant diseases for determining healthy or infected
crops [22]. Deoxyribonucleic Acid (DNA) can also be extracted from leaves using polymerase
chain reaction [23] or real-time polymerase chain reaction [24]. The employment of numerous
crop protection procedures and the guidance of experienced experts make these approaches dif-
ficult, time-consuming, and expensive. As a result, an automatic plant leaf species and disease
identification system capable of early detection of diseases affecting potato and guava leaf species

are urgently required.

The invention of artificial intelligence (AJ) [25] has revolutionized many fields, such as speech
recognition, pattern recognition, meteorology, livestock, etc. [26-28], throughout the world, in-
cluding the agriculture sector [21, 25]. Artificial intelligence applications in agriculture have given
rise to the idea of smart agriculture [29, 30]. It can successfully solve the issues of farmers at
their doorstep. However, its utilization in the agriculture sector has not yet been fully explored
in Pakistan. Further, there is no knowledge or minimal services achieved by applying this system
of Al for crop disease management in Pakistan, which necessitates research work in this regard.
Recent advancements in machine learning and image processing approaches have made it possible
to diagnose plant diseases in real time using film collected in the field [31, 32]. Even in the area,
plant diseases may be accurately detected from photographs of plants using convolutional networks
and Deep Learning (DL) [33]. In locations where technical expertise is few or continuous on-site
monitoring is impractical, image segmentation and DL algorithms for autonomous plant disease
diagnosis may become a vital source of decision-méking on farms. Plant species recognition and
disease detection have made significant strides using DL-based algorithms [34, 35]. The ultimate
goal of this study is to design a system that employs DL methods to assess problems in various

potato and guava varieties in real-time.

The accurate classification of plant species plays a crucial role in the effective detection and man-
agement of plant diseases. Plant diseases severely damage the crop yields, which leads to eco-
nomic loss and effect food security. Therefore, early and accurate detection of plant diseases is
vital to minimize the disease spread and mitigate their effects. The classification of plant species
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is a fundamental step in plant disease detection as it provides a foundation to identify and under-
stand the specific diseases that affects particular plant species. However, different plant species
are susceptible to different diseases, and the symptoms of plant diseases vary significantly on the
basis of plant species. The accurate classification of plant species, help the plant pathologists and
agricultural experts to develop disease detection methods that are tailored to specific plant species.
It allows the farmers to identify disease symptoms that are unique to each plant species and vary
from other non-disease-related symptoms. This specificity enhances the accuracy and reliability
of plant disease detection, that leads to develop timely and appropriate management strategies.
The accurate classification of plant species, make it possible to develop tools and techniques for
early disease detection. Early detection allows for prompt intervention measures, such as applying
fungicides or adjusting irrigation and fertilization practices, to prevent disease spread and mini-
mize crop losses. Plant species classification also enables precision management of plant diseases.
Accurate plant species classification helps the experts to determine the appropriate dosage and tim-
ing of treatments. This ensures that the right interventions are applied only to the affected plant
species, reducing unnecessary use of agrochemicals and minimizing the risk of environmental con-
tamination. Therefore, it helps to optimize disease control measures, reduce costs, and minimize
negative impacts on hurman health and the environment. It also plays a critical role in disease fore-
casting and risk assessment. The accurate information about the specific plant species in a field,
plant pathologists and agronomists can assess the vulnerability of a crop to specific diseases based
on historical disease data and weather conditions. This allows for proactive disease management
strategies, such as adjusting planting dates, crop rotations, or using resistant cultivars, to mitigate
disease risks. Disease forecasting and risk assessment based on accurate plant species classifi-
cation enable proactive planning and decision-making, which saves time, resources, and reduce
crop losses. We believe that accurate plant species classification is a fundamental aspect of plant
disease detection and management. It enables disease-specific detection, early detection, precision

rnanagement, and disease forecasting and risk assessment.

In light of the recent advances in machine learning and image processing, researchers have cre-
ated new methods for real-time detection and classification of potato and guava leaf species and
diseases using DL. The proposed method seeks to develop cutting-edge machine learning and
image-processing algorithms that quickly and accurately aid farmers in making decisions to limit
the spread of diseases. This study is limited to potatoes and guava from central Punjab, Pak-
istan, for experimentation and validation. The experiments are performed using publicly available
benchmarks and self-contained datasets. We have developed the aerial image datasets of potato
and guava leaf images from the Central Punjab of Pakistan. We have built datasets, one for iden-
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tifying a specific disease on a single leaf and the other for identifying many disorders on a single
leaf. From the Central Punjab region of Pakistan comes a potato leaf dataset (PLD) for studying
single-leaf diseases and a Guava leaf diseases dataset (GLDD) for studying multiple-leaf diseases.

Three models have been established for this research:

1. A Hybrid Deep Learning Approach to Classify the Plant Leaf Species has been developed
for classifying guava, potato, and java plum leaf species. It consists of two novel methods.
The first model using MobileNetV2-UNET architecture has been developed to segment the
guava, potato, and java plum plant species. A Plant species detection stacking ensemble
deep learning model (PSD-SE-DLM) to detect the potato, java plum, and guava species as a
second model.

2. Identifying Multiple Diseases on a Single Guava Leaf in Real-Time It has been discovered
that a single guava leaf may diagnose several diseases in real-time using a three-step process
called the hybrid deep learning technique. A method for dividing up contaminated guava
patches called Guava Infected Patches Modified MobileNetV2 and U-Net (GIP-MU-NET)
has been presented in the first part. The encoder of the suggested model is based on a
tweaked version of MobileNetv2, while the decoder uses the up-sampling layers from the
U-Net architecture. For the second part, we propose the Guava Leaf Segmentation Model
(GLSM) to divide the leaves into diseased and healthy parts. Finally, a Guava Multiple Leaf
Diseases Detection (GMLDD) technique built on top of the YOLOvVS method is used to
identify a wide range of illnesses in a guava leaf.

3. A multi-stage DL technique for potato disease classification was created to tell the difference
between normal potato leaves and those infected with late blight or early blight. First, it takes
a picture of a potato plant and utilizes the YOLOVS5 picture segmentation method to separate
the leaves. The second level uses a novel DL method established with a convolutional neural
network to identify several potato disorders, such as early and late blight, in real-time from

" images of potato leaves.

1.1 Motivation

Despite tremendous breakthroughs in food production, plant diseases [36] continue to pose a haz-
ard to the sustainability and availability of the food supply [37]. Disease detection from plant
leaves is challenging, and developing countries that lack the essential infrastructure in early dis-
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ease detection from plants lost more than 50% of crop production. Crop output is also negatively
impacted by catastrophes; in 2017, 23% of food production in poor nations was lost due to medium
to large-scale disasters [38]. Food and the other sectors were also dented and approximately 80%
of collective damage in transit, health, and infrastructure were reported as most of the developing
countries’ economies depend on the agriculture sector solely.

The developing country like Pakistan has an 18.9% contribution to the Gross Domestic Product
(GDP) and absorbs 42% of the workforce across the country [39]. These stats will be devastating
if we combine the impact of both challenges but still, the diseases damage more. According to
the United Nations Environment Program report [38], about 50% of crop yield losses are due
to incorrectly detecting crop diseases first and using the wrong pesticides and fertilizers after.
The first stage in developing an effective plant protection program is accurately diagnosing plant
diseases; the second is implementing effective management measures to ensure food security and
crop yields. Plaut diseases cause damage and reduce crop yield by manifesting symptoms on plant
buds, stems, or leaves. Furthermore, these disorders spread to other plants. Product loss can be
avoided if these illnesses are caught early enough to be treated. Therefore, it is critical to identify
the disease early on and take the required precautions, which may prevent the loss of productivity

and amount of agricultural products.

Many methods have been developed to identify plant disease from leaf samples; however, these
approaches need to be more sensitive to pick up on the plant diseases prevalent in the Pakistan
region. A plant disease detection website [40] is also publicly available, but this site also over-
looks the diseases of the Pakistan region. Figures 1.1 (a) and 1.1 (b) show that the potato plant -
has a distinct set of leaf species from its Pakistani counterpart and the PlantVillage dataset. Fig-
ures 1.1 (¢) and 1.1 (d) illustrate that the guava leaf species native to Bangladesh are distinct from
their Pakistani counterparts. It is because, as shown in Figure 1.1, crop species diversity is present
everywhere. Figure 1.2 (a) and (b) depict the varying symptoms of early blight and late blight
potato leaf infections in Pakistan and the PlantVillage dataset, respectively, due to regional cli-
mate and global warming differences. However, current methods are limited in identifying crop
species and agricultural diseases since the underlying models are only tested and trained on pho-
tographs of plant leaves from a specific geographical area. Modern methods avoid generalization
by relying on handcrafted and dynamic features. Thus, relying on the extreme of bias-variance
does not allow them to detect crop diseases with subtle perceptual differences. Usually, botanists
and agricultural engineers apply the manual process of detection of diseases in plant leaves in two
stages, i.e., (i) visual inspection and (ii) laboratory environment, which is time-consuming, not

Javed Rashid: 155-FBAS/PhDCS/F16 Page 7 of 179



Chapter 1. Introduction

robust [41], but these methods require continuous inspection of specialists, which is expensive and
time-consuming. Further, symptoms of many diseases and nutritional deficiencies look similar,
sometimes misleading when observed with the naked eye. In such situations, farmers get confused
or make wrong choices about pesticides and fertilizers.

Given these constraints, researchers are developing novel image processing-based algorithms for

precisely detecting and classifying potato and guava leaf species and disorders.
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Figure 1.1: (a) Potato Species of PlantVillage Dataset (b) Potato Leaf Species of Pakistani Envi-
ronment (c) Guava Leaf Species of Pakistani Region (d) Plant Leaf Species of Bangladesh.
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Figure 1.2: (a) Potato Leaf Diseases of PlantVillage Dataset (b) Potato Leaf Diseases of Pakistani
Environment (¢) Guava Leaf Diseases of Bangladesh (d) Plant Leaf Diseases of Pakistan Region.
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1.2 Objectives

Some goals of this study are as follows:

1. To develop new benchmark plant disease datasets of potato and guava in the Central Punjab
region of Pakistan.

2

To devise and employ an image segmentation technique in particular for guava and potato
plant leaves with different illumination and complex backgrounds to detect the infected re-

gion from a crop field.

3. To craft an efficient deep-learning based classification approach to classify the potato and
guava leaf species from Central Punjab, Pakistan.

4. To employ an efficient deep learning approach for potato and guava leaf disease detection
for the Central Punjab region of Pakistan.

5. To enhance the efficiency of the employed methods within the context of accuracy.

1.3 Relevance and Effectiveness

To improve the growth and quality of yield in agricultural sectors, Computer-Aided Diagnosis
(CAD) plays an important role. This research is allied with great significance and has a wide
variety of scope. Few are below:

1. In the current era, indirect methods of detecting disease from plant leaves are crucial in
agricultural practice. Computer-based detection has earned a stellar reputation for addressin g
production crises and quality issues.

2. Improved disease diagnosis wiil allow for more effective treatment of leaf abnormalities in
potato and guava plants, increasing the likelihood that harm will be halted or reversed.

3. An additional perk of using an automated disease detection system is that it can serve as a
preventative step by analyzing the source of the disease and offer advice on how to cure it.

4. Clear and high-quality imaging is critical for many decisions in plant disease detection. This
method is safe, cost-effective, time-saving, and easily adaptable, becoming increasingly im-
portant with each passing day. Automated diagnosis is on the rise with improved production
and quality policies and increased access to computer hardware worldwide.
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5. The created databases will aid researchers in identifying single-leaf diseases on individual
potato leaves and multiple-leaf diseases on single guava leaves. The different potato and
guava types’ plant species and diseases can be identified with its aid.

1.4 Contributions

In this thesis, we set out to construct real-time detection and categorization of species and pathogens
in potato and guava leaf samples using deep learning techniques. What this thesis contributes to

the discussion is;

1. Plant Species Recognition using Ensemble Technique is developed to recognize the plant
species of potato, java plum, and guava crops.

2. We have developed the following Segmentation Techniques:

(a) A Guava Infected Patches Modified MobileNetV2 and U-Net (GIP-MU-NET) segmen-
tation technique is developed to segment the infected guava patches. The suggested
GIP-MU-NET technique is made up of modified MobileNetv2 as the encoder and up-
sampling layers of U-Net as the decoder.

(b) A Guava Leaf Segmentation Model (GLSM) is developed to segment the guava leaves
into infected and healthy ones.

(c) A YOLOv5-based approach is proposed for real-time efficient segmentation and extrac-
. tion of potato leaf data.

(d) A Plant Leaf Segmentation based on MobileNetV2-UNet based technique is devel-
oped to segment the guava, java plum, and potato healthy and diseased leaves. The
MobileNetV?2 is used as an encoder par and UNet as a decoder part.

3. Two new benchmark datasets have been developed for potato and guava plant leaf diseases
from the Central Punjab of Pakistan:

(a) We have created the first Guava Leaf Disease Dataset (GLDD) dataset to identify mul-
tiple diseases on a single leaf. Anthracnose, nutritional shortage, wilt illnesses, insect
attack, and healthy comprise the five groups represented in the dataset.

(b) A new Potato Leaf Dataset (PLD) dataset has been developed to identify the late and
early blight disorders along with healthy potato leaves originating in the Central Punjab
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region of Pakistan.

4. For potato and guava leaf diseases identification, the following two methods have been pro-

posed:

(a) A real-time Guava Multiple Leaf Diseases Detection (GMLDD) method is developed
based on YOLOVS to detect and localize multiple diseases from a single guava leaf.
It is the only model we know that can identify many disorders from a single image
of a guava leaf. The proposed method can detect and localize multiple diseases from
a single image, including anthracnose, nutrient deficiency, wilt diseases, and insect
attacks.

(b) A novel decp-learning approach called PDDCNN has been created to assist in the iden-
tification of late and early blight on potato leaves.

5. The propesed models now have improved accuracy and performance. It is the most accu-
rate if we compare the PDDCNN technique to other cutting-edge techniques. However, the
Guava Multiple Leaf Diseases Detection (GMLDD) model has also obtained good mAP to
identify multiple diseases on a single leaf.

1.5 Problem Statement

Diseased plant detection is one important task in agricultural processes. There exist various ap-
proaches to detect the diseased plants. One such approach is to employ machine learning tech-
niques to detect the disease from leaves of the plant. This process requires classification and
segmentation of plant leaves. Researchers have already explored these approaches, however, the
accuracy, scale, scope and cost of these approaches remains questionable. One major problem is
limited scale of the dataset used in existing approaches that lacks in region specific data. To ad-
dress the problem at regional level in particular in Pakistan, considering the two types of the plants
one growing with fruiting in the soil as plant and the other one fruiting above the soil as tree, this
research defines its scope to consider a case from each of the mentioned classes. One such case is
segmentation and classification of guava leaves. The guava plant is vulnerable to diseases, specifi-
cally the leaves and fruit, which result in massive crop and profitability losses. The existing plant
leaf disease detection techniques can detect only one disease from a leaf. However, a single leaf
may contain symptoms of multiple diseases. The other case considered in this research is of the
potato leaves. Variations in crop species, crop disease signs, and environmental conditions may
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contribute to the difficulty of early disease detection in potato leaves. Several machine learning
methods have been employed for disease detection in potato leaves. There exist significant vari-
ance in geometry, color shape and other attributes of guava and potato leaves in Pakistan region
with that of rest of the world whose dataset for the same is available. To address the problem at
regional level, the existing studies of potato leaf disease classification trained on a specific region
dataset (PlantVillage) do not detect the diseases of Pakistan region with satisfactory accuracy. This
research provides an efficient deep learning technique using CNN to detect the different potato
leaf diseases for the Central Punjab region of Pakistan. Finally, the detection of multiple diseases
from plant leaves in real-time is another challenging task that requires a comprehensive dataset and

effective approaches to process the data.

In the given described context, there are several issues that needs to be addressed for effective
solution of the problem. Firstly, there exists no comprehensive dataset that can support detection
of the infected patch of guava tree from its leaves. Secondly, the segmentation of guava and potato
leaves from the plant image having different illumination and complex background is required.
Thirdly, as there is currently no literature on the detection of the potato and guava leaf species,
the classification of guava and potato species through application of deep learning is required.
Fourthly, an effective deep learning approach for detection of single or multiple diseases from
potato and guava leaves is required. Finally the real-time multiple lcaf diseases on a single leaf
is also a challenging and complex however a required task. The real challenge is 1o address these

issues in cost effective and efficient manner.

1.6 Proposed Solution

In agriculture studies, plant disease detection is a complex area due to diverse species cultivation in
different environments around the globe. It is even more challenging to classify and segment plant -
species and their diseases using deep learning as their resemblance changes across various coun-
tries in different environmental conditions. The potato and guava plant crops, which are farmed at
a vast scale in Pakistan, may vary from the plants of the same genera in other countries, and so does
the shape symptoms and occurrence of their diseases. Existing studies were conducted on potatoes
and guava but for different regions. This study presents three sub-model-based solutions for plant
species identification and disease segmentation and classification for guava and potato. A hybrid
deep learning approach with MobileV2 and UNET was proposed to classify the plant species,
which captures video, converts it into frames and segments and classifies them according to their
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corresponding classes. The second sub-model was also a hybrid deep learning technique for the
real-time multiple guava leaf disease detection from a single image by capturing video of a guava
tree and then converting its frames and performing detection and localization of diseases employ-
ing a modified MobileNetV2 along with UNET. The third model used deep multilevel learning for
potato leaf disease recognition; a CNN classifier classifies different potato leaf diseases at a higher
accuracy. The block diagram for the presented methodology is presented in Figure 1.3.
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Figure 1.3: The Proposed Methodology.

1.7 Thesis Organization

The following are the next six chapters of this thesis:

« Chapter 2 covers the most up-to-date research on classifying plant leaves by species, ana-
lyzing leaf structure, and identifying leaf diseases. It includes the problem statement for this

thesis and a discussion of the unanswered questions raised by the existing literature.

* In Chapter 3, we dive deep into the hybrid deep learning method, the process of building a
dataset of plant leaf species, and a comparison to other cutting-edge approaches. The pro-
posed hybrid model combines two cutting-edge methods. Model 1 uses the MobileNetV2-
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UNet architecture for segmentation, and Model 2 identifies the different plant species using
a Plant Species Detection using Stacking Ensemble Deep Learning Model (PSD-SE-DLM).

« The focus of Chapter 4 is on creating the first-ever Guava Leaf Disease Dataset (GLDD)

as well as the Guava Infected Patches Modified MobileNetV2 and U-Net (GIP-MU-NET)
segmentation technique, Guava Leaf Segmentation Model (GLSM), and real-time Guava
Multiple Leaf Diseases Detection (GMLDD) method. Also, the suggested Guava Multiple
Leaf Diseases Detection (GMLDD) model is as opposed to other members of the YOLO
family.

» In Chapter 5, we discuss the Potato Leaf Dataset (PLD), the Potato Leaf Disease Detection
Convolutional Neural Network (PDDCNN), and the efficacy of the suggested PDDCNN
technique, in addition a revolutionary deep learning technique termed real-time potato leaf
segmentation and extraction using YOLOVS5. The suggested technique is rigorously evalu-
ated against existing techniques and benchmarked against numerous datasets to guarantee its

precision.

+ The final verdict is presented in Chapter 6.

Javed Rashid: 155-FBAS/PhDCS/F16 Page 14 of 179



Chapter 2
Literature Review

The chapter below provides a synopsis of the relevant literature. This section examines the ex-
tensive and existing image-based approaches developed so far to identify patterns and issues in

recognizing plant species, plant leaf disorders, and plant leaf segmentation.

2.1 Plant Species Detection

Today’s Al systems, creaied witli multiple processing layers to facilitate representation learning at
different levels of data abstraction, have earned the catch-all term “deep learning”. Deep leaming
aliows for the automatic generation and extrapolation of features from unprocessed representations
of input date, eliminating the need for human intervention typically required by traditional algo-
rithmic methods. Several papers employ deep learning methods to determine what kind of plant is

depicted in a given leaf image.

2.1.1 Flower Species Recognition

Nguyen et al. [42] presented flower species identification using GooglLeNet, CaffeNet, and AlexNet
deep learning models. Firstly, this implementation achieved the maximum accuracy (66.6%) by
GoogleNet using the PlantCLEF2015 dataset. However, the accuracy achieved in this research
could be better. Secondly, the methodology used for identification can be improved using other
methods, such as in our scenario ensemble technique. Finally, the scope of this work was focused
on flowers, whereas potato and guava leaf species were not explored. Gogul and Kumar [43] in-
vestigated multiple flower species identification using InceptionV3, OverFeat, and Xception deep
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learning methods. Employing InceptionV3 to identify flower species could obtain the maximum
accuracy of 92.41% with the Flowers28 dataset. It can be seen that the size of the dataset in
each category needs to be bigger. Additionally, the dataset belongs to different domains and ob-
jectives from our focus. Xiao et al. [44] looked at using deep learning models to identify the
fiowers, specifically InceptionV3 and Residual Neural Network S50 (ResNet50). The datasets Plant-
CLEF and Oxford Flower were used in this study. Compared to ResNet50, the InceptionV3 model
achieved maximum accuracy of 69.5% On PlantCLEF, whereas, on the Oxford Flower dataset,
it reached a maximum accuracy of 92.8%. This study only looked at flowers; therefore, similar
phenomena in potato and guava leaf species were ignored.

2.1.2 Grapes Species Recognition

In a study by Pereira et al. [45], the authors used the AlexNet model to determine the species of
grape leaves. The datasets used by the researchers included DRVG, DRVG2018, and the Flavia
leaf dataset. AlexNet attained maximum accuracies of 77.30% on combined DRVG datasets and
89.75% on the Flavia leaf dataset. Other methods, such as ensemble, can be used to boost the
accuracy. This study focused on grapes; thus, it did not look at other plant species like potatoes or

guava leaves.

2.1.3 Multiple Species Recognition

Various researchers [46, 47] have used the LifCLEF2017 dataset to detect the different plant leaf
species. Lasseck [46] used the Ensemble model to identify the muitiple plant leaf species using
LifCLEF2017 dataset and obtained 92.6% accuracy. In another research [47], the researchers
employed InceptionResNetV2, VGG16, and MobileNetV?2 deep learning techniques te identify the
various plant leaf species using the Lif CLEF2017 dataset. As compared to the other two models,
the MobileNetV2 achieved the highest accuracy of 95.6%. Both pieces of research focused on
other plant leaf species, but the potato and guava leaf species were not explored. Although Lasseck
[46] employed the ensemble model that can be characterized to address overfitting problems and
enhance accuracy yet the low accuracy attained in the research is due to the choice of base models.
Contrary to this research, We have used the ensemble model with three base models.

Some researchers [48, 49] used different plant leaf species using the Swedish Leaf dataset. Kaur
and Kaur [48] used Support Vector Machine (SVM) to identify the 15 plant leaf species using
Swedish Leaf dataset and obtained 93.26% accuracy. On the other hand, Bisen [49] proposed a
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CNN-based model to identify 75 plant leaf species using the Swedish Leaf dataset with an accuracy
of 97%. The problem with both methods was that they could only perform better on large-scale
datasets. Secondly, neither of these techniques has been used to identify the guava and potato leaf

species.

Many researchers [50-53] identified the multiple leaf species using a self-created dataset. Wei
Tan et al. [S0] employed D-Leaf, Pre-trained AlexNet, and Fine-tuned AlexNet to classify the 43
species of tropical trees using a self-created dataset. Compared to the other models AlexNet fine-
tuned model obtained the highest accuracy of 95.4%. Another research [51] compared the deep-
learning models, such as InceptionResNetV2, ResNetV2, VGG16, and MobileNetV2, to identify
Vietnamese plant species using a self-created dataset. MobileNetV2 obtained the highest accuracy
of 83.9% as compared to other models. Research conducted by Bambil et al. [52] proposed
DNN and SVM-based models to identify the 30 plant leaf species using a self-created dataset.
Compared to DNN, the SVM-based model achieved a maximum accuracy of 98:4%. Hati and
Singh [53] developed a ResNetV2 model to classify the various plant leaf species and monitor
their health using a self-collected dataset. The proposed model achieved 90.53% accuracy. These
approaches have several problems and performance limitations, such as all the studies used small-
scaled datasets. In the case of a small-scale dataset, the chance of overfitting remains an issue.
Furthermore, alternative methodologies could be exploited to achieve effective accuracy. It can
also be observed that those studies did not consider guava and potato leave species in the scope of

the problem.

Various researchers [54-58] used multiple datasets to identify the different plant leaf species. In
a research conducted by Barré et al. [54], the researchers used the LeafSnap, Foliage, and Flavia
datasets to identify the different plant leaf species employing the LeafNet model. The proposed
method obtained 97.9% top-1 and 99.9% top-5 accuracy on the Flavia dataset. Aradjo et al. [55] -
developed the VGG16 and Siamese Convolutional Neural Network (S-CNN) models to identify
the 424 plant leaf species using PlantCLEF2015 and LeafSnap datasets. The models trained on
the LeafSnap dataset obtained the highest accuracy of 88% (VGG16) and 96% using the S-CNN
model. Hassan and Maji [56] proposed a CNN model to classify the various plant leaf species
using Flavia, MK-D1, MK-D2, and LeafSnap datasets. The proposed model obtained the highest
accuracy of 99.75% on the Flavia dataset. Another research conducted by Erkan et al. [57] devel-
oped an Optimal Deep CNN (ODC) method, which can identify the different plant leaf species and
handwritten digits using the Folio Leaf species dataset and MNIST handwritten dataset. The pro-
posed method obtained excellent accuracy of 98.2% on Folio and 99.21% on the MNIST dataset.
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Pearline and Kumar [58] employed different machine leaming classifiers to classify the various
plant leaf species using Flavia, Folio, Swedish, and an internal dataset. Among all the classifiers,
MLR achieved the highest accuracy of 99.38% on the internal dataset. The problem with all the
methods was that they could only perform better on small-scale datasets. Secondly, neither of these
techniques has been used to identify the guava and potato leaf species.

Table 2.1: Summary of Plant Leaf Species Related Work.

Reference Methodology Plant Species Dataset Accuracy
[42] GoogLeNet, CaffeNet, Flowers PlantCLEF 2015  Alexnet: 50.6%,

and AlexNet Caffenet: 54.84%,
' Googlenet: 66.6%

{43} InceptionV3, OverFeat, Flowers Flowers28 OverFeat. 85.71%,
and Xception ~ Oxford Flower InceptionV3: 92.41%,
. Xception: 90.18%

[44] InceptionV3 and ResNet50  Flowers PlantCLEF, InceptionV3: 69.5% (P),
Oxford Flower 92.8% (O)
ResNet50: 68% (P).

92.4% (F)
[45] AlexNet Grapes DRGV2018, DRGV2018: 77.30%,
Flavia Leaf Flavia: 89.75%

[46} Ensemble Multiple LitCLEF2017 92.6%

[47 VGG16, Multiple PlantCLEF VGG16: 75.5%
InceptionResNetV2, and InceptionResNetV2: 90.9%
MobileNetV2 MobileNetV2: 95.6%

[48] SVM Multiple Swedish Leaf 93.26%

491 CNN Multiple Swedish Leaf 97%

[50] D-Leaf, Multiple Self-Created D-Leaf: 94.88%

Pre-tuned AlexNet, and Pre-AlexNet: 93.26%
Fine-tuned AlexNet Fine-AlexNet: 95.54%
[51] InceptionResNetV2, Multiple Self-Created InceptionResNetV2: 81.2%
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ResNetV2, ResNetV2: 74.6%,
VGG16 and VGG16: 70.6%,
MobileNetV2 MobileNetV2: 83.9%
[52] DNN, SVM Mulitiple Self-Created DNN: 92.5%, SVM: 98.4%
[531 ResNetV2 Multiple Self-Created 90.53%
[54] LeafNet Multiple LeafSnap LeafSnap: 97.8%
Foliage Foliage: 99.6%
Flavia Flavia: 99.9%
[55] S-CNN, VGG16 Multiple PlantCLEF 2015, VGG16: 78%, S-CNN: 87%
LeafSnap VGG: 88%, S-CNN: 96%
[56] CNN Multiple Flavia, Flavia: 99.75%
MK-Di, MK-D2 MK-Di: 99.15%,
LeafSnap MK-D2: 99.43%
LeafSnap: 89.17%
[571 oDC Multiple Folio Leaf Folio: 98.2%
MNIST MNIST: 99.21%
[58] DenseNet-121, Muitiple Folio Leaf, MLR achieved best on
MobileNet, Flavia, Flavia: 98.71%
Xception, Swedish Leaf, Folio: 96.38%
SVM, MLP, BC, RF and Self-Created  Swedish: 99.14%
Cart, KNN, NB Self: 99.38%
MLR, LDA

2.2 Plant Leaf Diseases

Over the past few decades, many scientists have employed deep learning techniques to study vari-
ous agricultural illnesses. Most of the studies relied on data from PlantVillage research. Some re-

searchers also developed their datasets to track down the numerous diseases affecting plant leaves

across different crops. Here, we look at the most recent research to be conducted.
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2.2.1 Soybean Leaf Diseases

Many researchers [59-62] used different deep-learning models to identify soybean leaf diseases.
Nagasubramanian et al. in [59] developed a 3D-DCNN model to detect soybean leaf diseases.
Wu et al. [60] conducted research in which transfer learning-based models such as GoogLeNet,
AlexNet, and Residual Neural Network (ResNet) architectures were used to classify soybean leaf
diseases. Jadhav et al. [61] deployed GoogLeNet and AlexNet pre-trained models to identify the
soybean leaf diseases using a self-created dataset. A research conducted by Karlekar and Seal [62]
in which soybean leaf diseases were classified using deep CNN using PDDB [63] All the studies
were trained on small-scale datasets. That might make the above studies less stable when used
on more extensive datasets or in more realistic settings. The models also did not find diseases of
potato and guava leaves. The models also did not find diseases of potato and guava leaves. The
models also trained on specific region datasets besides Pakistan; therefore, they failed to detect the
diseases of Pakistan region soybean diseases.

2.2.2 Cucumber Leaf Diseases

Different studies [64-66] were proposed to distinguish cucumber leaf diseases using different
deep-learning models. Specifically, Zhang et al. [64] presented a GPDCNN to classify the cucum-
ber leaf diseases using a self-created dataset. Using a feature fusion selection technique, Kianat et
al. [65] created a hybrid framework to diagnose cucumber leaf diseases. Features from Features
from Accelerated Segmented Test (FAST), BRISK, and a Histogram of Gradient (HOG) were built
using the preprocessed picture samples. Khan et al. [66] researched to create a DL-based system -
for categorizing cucumber disorders using Cucumber Leaf Diseases publicly available dataset. All
the above studies are restricted to a single region, which could prevent the proposed model from
being applied to other regions. The studies are limited to cucumber leaf disease detection and
failed to detect potato and guava leaf diseases. The models are also trained on a small dataset.
Therefore, there was a chance of overfitting. The suggested approaches have a high computational

cost, which may reduce their use in low-resource environments.

2.2.3 Peach Leaf Diseases

There existed many studies [67—69] that utilized CNN deep learning models to classify peach leaf
diseases using the PlantVillage dataset. In recent research, Zhang et al. [67] reported utilizing
a CNN to identify peach leaf disease. Yadav et al. [68] developed a CNN model to classify
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the isolated bacteria that cause illnesses in peach leaves. Bedi and Gola [69] proposed a hybrid
method combining the Convolutional Auto Encoder (CAE) network and CNN for autonomously
identifying peach diseases. All the studies used a specific region dataset (PlantVillage) that failed
to detect the diseases of Pakistani region peach leaf diseases. The studies are limited to peach leaf
disease detection and failed to detect potato and guava leaf diseases. The dataset employed in the
study is broad and diversified, improving the suggested model’s stability.

2.2.4 Rice Leaf Diseases

Researchers employed different deep-learning models to distinguish rice diseases [70-79]. Lu et
al. [70] introduced a CNN model to identify the ten rice diseases. For early diagnosis of rice dis-
eases, Guoxiong Zhou et al. [71] suggested a system that uses Fuzzy C-Mean-K-Mean (FCM-KM)
clustering and a Region based Convolution Neural Network (RCNN). In [72], Ramesh and Vydeki
proposed an improved DNN with the Jaya technique to identify rice leaf disorders. Azim et al.
[73] utilized color, shape, and texture features to classify the different rice diseases using Extreme
Gradient Boosting (XGBoost) for classification. Improving the learning ability to recognize subtle
lesion characteristics, Chen et al. [74] employed the MobileNetVZ pre-trained on ImageNet as
the backbone network and incorporated the attention mechanism to distinguish the different rice
 diseases. InceptionResNetV2 was a kind of CNN model employed in a study [75] to recognize dis-
orders in rice. Upadhyay and Kumar [76] built a CNN approach using deep learning to identify rice
illnesses. Archana et al. [77] employed an adjusted version of the k-means segmentation technique
to isolate the ROI from the surrounding images of rice. Sharma et al. [78] considered InceptionV3,
MobileNet, ResNet50, Xception, and InceptionResNetV2 transferred learning models to detect the
diseases of rice. The rice disorders were proposed by Patil and Kumar [79] using a multi-model
data fusion model called Rice-Fusion. The datasets utilized in all the studies were developed in a
lab and may not have captured real-world circumstances in rice fields. The studies do not consider
environmental elements like weather and soil quality. Any inaccuracies or unfairness in the results
could be due to biases in the dataset or fhe model, neither of which are addressed in the study.
The study’s findings may be limited in their applicability because of the tiny size of the dataset
used. All the models are trained on a specific region dataset; therefore, these models fail to detect
Pakistani region diseases. The studies are limited to rice leaf disease detection and failed to detect

potato and guava leaf diseases.
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2.2.5 Wheat Leaf Diseases

Weekly supervised deep learning frameworks, i.e., VGG-FCN-S and VGG-FCN-VD16, were pro-
posed for automatic in-field wheat disease diagnosis [32] using WDD2017. To create a new
dataset, Bao et al. [80] compiled 360 photos of wheat infected with two common Chinese dis-
eases—powdery mildew and mild stripe rust. In this study, the authors suggested a DL system for
diagnosing the severity of wheat leaf disorders using the Elliptical-Maximum Margin Criterion (E-
MMC) metric. Due to the need for specialized hardware and human operators, the system can be
expensive to set up and maintain. Small-scale farmers or those working in areas with few resources
may need help to afford the system. The models are trained on small-scale datasets. When used in
large-scale field circumstances, the system’s performance may suffer from obstacles such as vari-
able illumination and weather. Due to variations in disease frequency, crop variety, and cultural
behaviors, the system’s performance may change among areas or situations. All the models are
trained on a specific region dataset; therefore, these models fail to detect Pakistani region diseases.
The studies are limited to wheat leaf disease detection and failed to detect potato and guava leaf

diseases.

2.2.6 Rice and Wheat Leaf Disorders

Based on the concept of multitask learning, Jiang et al. [81] employed the pre-training method on
ImageNET for alternate learning and 7L to enhance the VGG16 technique. A new dataset of leaf
blast, brown spot, bacterial blight diseases of rice, and powdery mildew and rust diseases of wheat
was developed of 40 images each for each class. Because of its high accuracy, non-destructiveness,
multi-task learning, and transferability, a study is a promising method for automated crop disease
identification. Limitations in its interpretability, effectiveness for rare diseases, scalability, gener-
alizability, and accessibility are only some of its difficulties. The model is trained on a specific
region dataset; therefore, it fails to detect Pakistani region diseases. The study is limited to rice
leaf disease detection and fails to detect potato and guava leaf diseases.

2.2.7 Corn/Maize Leaf Diseases

Many researchers [82-87] researched corn/maize disease identification using different deep-learning
models. Barbedo [82] investigated the various factors, i.e., annotation, covariate shift, image cap-
ture conditions, symptom representation, image background, variations in symptoms, and disorder
variations with similar and different symptoms, that affect the performance and design of plant
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pathology automation, based on deep learning. For this purpose, the researcher used a benchmark
dataset, i.e., an image database of PDDB available publicly for different crops. Zhang et al. [83]
developed an automated system based on pre-trained CIFAR10 and GoogLeNet to detect maize
leaf diseases. In [84], Priyadharshini et al. introduced an algorithm dependent upon modified
LeNet for analyzing leaf pictures for signs of maize illness. Regarding disease classification in
maize, Setiawan et al. [85] compared two CNN-based networks, AlexNet and Squeezenet. Multi-
ple DL methods, including VGG19, VGG16, GoogLeNet, and AlexNet, were utilized in research
by Pan et al. [86] to detect illnesses in Chinese maize leaves. Lu et al. [87] created a technique
for diagnosing maize leaf diseases using multi-channel ResNet, Wavelet threshold-guided bilateral
filtering and attenuation factor. Low detection, interference, background, and noise are all issues
that the proposed technique can address. All the models used small-scale datasets. The proposed
methodologies did not perform well on Pakistani region corn/maize plant leaf diseases.

2.2.8 Apple Leaf Diseases -

Various studies [88-91] worked on apple leaf disease detection using different deep-learning mod-
els. Jiang et al. [88] presented the INAK-SSD deep CNN model using the Inception module of
GoogLsNet's deep CNN's and incorporated the Rainbow concatenation to distinguish the various
‘apple leaf diseases. A lightweight CNN was proposed by Li et al. [89] to identify the illnesses that
plague Chinese apples. The research [90] developed a mobile-friendly CNN model for the real-
time detection of apple leaf disorders. Infected apple leaf areas were identified using the MASK
RCNN after introducing a hybrid contrast stretching technique to enhance an image’s visual im-
pact [91]. The studies rely on a relatively small dataset, which might only capture some of the
variances in apple leaf diseases. The results may need to be more generalizable due to the bias in
the dataset. All the models are trained on a specific region dataset; therefore, these models fail to
detect Pakistani region diseases. The stdies are limited to apple leaf disease detection and failed

to detect potato and guava leaf diseases.

2.2.9 Banana Leaf Diseases

In [92], Selvaraj et al. utilized different transfer learning models, i.e., ResNet50, InceptionV3,
and MobileNetV1 to identify banana disease, as well as the corm weevil pest class. Researchers
at the International Center for Tropical Agriculture Dataverse (CIAT) created a library of banana
images that successfully predicted the crop’s yield. The study’s results may not apply to other
demographics or locations due to the small sample size. The results may not apply to the system’s
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performance in the field because the research was done in a lab. Krishnan et al. [93] utilized
a hybrid fuzzy C-means technique for their segmentation and classification of banana diseases
using CIAT dataset. The accuracy of the segmentation and classification findings can be enhanced
by training the models on a big dataset. All the models are trained on a specific region dataset;
therefore, these models fail to detect Pakistani region diseases. The studies are limited to banana
leaf disease detection and failed to detect potato and guava leaf diseases.

2.2.10 Apple and Banana Leaf Diseases

In [94], Khan et al. proposed a technique for automatic disease classification and segmentatién
in food crops usingCorrelation Coefficient & Deep Features (CCDF). Spots on fruit are studied
to learn more about illnesses such as apple rot and apple scab, as well as banana cordial leaf
spot, Sigatoka, banana deightoniella leaf, and banana diamond leaf spot. Banana and apple dis-
ease features are extracted using pre-trained techniques from Caffe Alex Net and VGG16. They
got a classification accuracy of 98.60% using the publicly available datasets CASC-IFW [95] and
PlantVillage. The proposed system’s computational needs and resource constraints should be dis-
cussed in the study. Environmental elements such as changes in lighting and weather can impact
the system’s ability to provide high-quality images. The model is trained on a specific region
dataset; therefore, it fails to detect Pakistani region diseases. The study is limited to apple and
~ banana leaf disease detection and fails to detect potato and guava leaf diseases.

2.2.11 Tomato Leaf Diseases

Many researchers [96-112] developed different deep-learning models to identify tomato leaf dis-
eases using the PlantVillage dataset. In [96], Rangarajan et al. used VGG16 and AlexNet mod-
els that had already been trained to identify tomato leaf diseases using the PlantVillage dataset.
Gadekallu et al. [97] created a new PCA-whale optimization-based DNN to detect tomato leaf
disorders using the PlantVillage dataset. Based on the MobileNet as a feature extractor and the
Extreme Learning Machine (ELM) as a learning algorithm, Ashwinkuma et al. [98] suggested an
Optimal Mobile Network-based CNN named OMNCNN. Thangaraj et al. [99] established a DL-
based modified-Xception technique to distinguish the different tomato diseases using the PlantVil-
lage dataset. The research introduced by Chowdhury et al. [100] in which different U-Net architec-
ture variants were investigated to classify the different diseases of tomatoes using the PlantVillage
dataset. Altuntas and KOCAMAZ [101] used ResNet50, AlexNet, and GoogLeNet pre-trained
deep learning models as feature extractors using the PlantVillage dataset. After concatenating the
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three feature maps produced by deep learning models, this feature map was fed into SVM to iden-
tify tomato disorders. Sembiring et al. [102] proposed a CNN to identify tomato leaf diseases using
the PlantVillage dataset. Gomaa and El-Latif [103] presented a real-time CNN method prediction
of severe disease symptoms of Tomato Mosaic Virus (TMV) in different stages. Muhammad et
al. [104] introduced an expert system based on a DCNN to predict tomato leaf disorders using the
PlantVillage dataset. Nandhini and Ashokkumar [105] presented a novel binary solution encoding
scheme based on the Improved Crossover Based Monarch Butterfly Optimization /CRMBO) al-
gorithm to minimize the optimization and complexity of the CNN model parameters. The VGG16
and InceptionV3 DL methods were optimized using the ICRMBO technique. The DL methods
were trained on the PlantVillage dataset to detect tomato leaf diseases.

With the help of the C-GAN, Abbas et al. [106] introduced a DL DenseNet121 technique to
identify tomato leaf disorders using the 7L method. The researchers utilized the PlantVillage
_dataset. To enhance the efficiency of the models, a lightweight CNN was built in research [107] by
adding several attention modules. The researcher enhanced the PlantVillage dataset by capturing
the Fusarium wilt disease images from South Korea, and the total size of the dataset was 19510
images. In another study introduced by Chen et al. [108], the researchers made a mobile phone
Android application that modified the AlexNet DCNN to classify the tomato leaf diseases using the
PlantVillage dataset. Vadivel and Suguna [109] developed a DCVN to detect tomato leaf disorders
using the PlantVillage dataset. Cengil and Cinar [110] presented a hybrid DL technique based
on VGG16, ResNet50, and AlexNet pre-trained models to predict the tomato leaf diseases using
the PlantVillage dataset. MobileNetV1, MobileNetV2, MobileNetV3, AlexNet, InceptionV3, and
ResNet50 were the DL methods pre-trained on the IlnageNet dataset in a study [111]. The methods
were also installed on a Raspberry Pi 4 to create an Internet of Things (loT) device to detect
tomato leaf disease using the PlantVillage dataset. The authors [112] suggested a method for
classifying tomato leaf diseases using transfer learning. The researchers used NASNetMobile and
MobileNetV2 models to extract the features and then fed these features into different classifiers
such as MLR, SVM, and RF. The researchers used the PlantVillage dataset. The validity and
reliability of the results are improved by testing the suggested methods on a large dataset of tomato
leaf images. Almost all the models are trained using the PlantVillage dataset, which is limited to
a single geographic region. It meant that the diseases affecting tomatoes in the Pakistani region
were unnoticed. The studies are limited to rice leaf disease detection and failed to detect potato

and guava leaf diseases. These models only detect a single disease in a single leaf.
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2.2.12 Tomato and Potato Leaf Disorders

Gokulnath and others [113] suggested an effective loss-fused CNN method for identifying plants
affected by the disease. A Decision Tree (DT) and the K-Nearest Neighbour (KNN) algorithm
could be used to identify disease based on spectral reflectance. The proposed method detected
the tomato and potato leaves diseases utilizing the PlantVillage dataset. As a common issue in
plant disease identification, inconsistent lighting is tackled head-on by the resilient If-cnn method.
There may be limitations to the suggested strategy’s applicability because the dataset utilized in the
experiments may differ from the diversity of plant diseases in the real world. Although this study
belongs to potato leaf disease detection, it failed to detect potato and guava leaf diseases because
it is trained on a specific region dataset. These models only detect a single disease in a single leaf.

2.2.13 Tomato and Grape Leaf Diseases

Zhao et al. [114] suggested a DCNN that integrated an attention module and residual blocks based
on ResNet50 (SE-ResNet50) to diagnose the tomato and grape leaf diseases. For this purpose,
the PlantVilage dataset and Grape Leaf Diseases dataset were used to train the proposed method.
By training the model to zero in on the most informative parts of the input image for discase
classification, the attention module could boost the model’s discriminatory power. The model is
trained usiug the PiantVillage dataset, which is limited to a single geographic region. It meant that
the diseases affecting tomato and grape in the Pakistani region were unnoticed. The study is limited
to tomato and grape leaf disease detection and failed to detect potato and guava leaf diseases. The
model only detect a single disease in a single leaf.

2.2.14 Tea Leaf Diseases

Hu et Al in [115] introduced a low shot learning technique for identification of tea leaf disorders.
SVM was used for segmentation. A pre-trained VGG16 was trained with the augmented images to
identify the diseased leaf accurately. An improved Faster RCNN was used by Hu et al. [116] to
classify the tea leaf disease severity from images. The researcher used the VGG16 model to predict
the severity of tea leaf diseases. Shadow and light variations of images were reduced by using the
Retinex algorithm. The introduced technique can detect various disorders from a single leaf. Both
the studies’ experimental results are the limited sample size of the dataset used. The models used
in the studies are limited to tea leaf diseases and specific region datasets; therefore, they failed to
detect the tea leaf diseases of the Pakistani region and potato and guava leaf diseases.
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2.2.15 Coffee Leaf Diseases

Sorte et al. in [117] developed an expert system to detect Cercospora, a disease of coffee, by using
the Grey Level Co-Occurrence Matrix (GLCM) [118] and Local Binary Pattern (LBP) [119]. A
segmentation and classification technique based on CNN was introduced by Esgario et al. [120]
to estimate coffee leaf disease severity and classify the different diseases of coffee. The software
relies on high-quality photos of coffee leaves, which may take much work in some coffee-growing
regions. The study should have considered the costs of creating and maintaining the app, which
may prevent farmers from using it. Both studies are limited to specific geographic regions; there-
fore, these models fail to detect the Pakistan region coffee leaf diseases. The scope of both studies
categorized the coffee leaf diseases and failed to classify the potato and guava leaf diseases.

2.2.16 Coffee and Apple Leaf Diseases

A research was suggested by Hasan et al. [121] in which a segmentation model based on color
analysis process and graph-cut technique to detect the coffee and apple leaf diseases. The intro-
duced technique was trained on three different datasets: RoColLe, coffee, and Apple. There is a
strong correlation between the suggested method and high accuracy rates in detecting single and
multiple diseases in coffee and apple piants, suggesting that it may have practical applications in
the field. Possible limitations on the proposed method’s applicability result from the article’s omis-
sion of information on the time and money needed to implement it. The study is limited to specific
geographic regions; therefore, it fails to detect coffee and apple leaf diseases in the Pakistan region.

The scope of both studies categorized the coffee and apple leaf diseases and failed to classify the - -

potato and guava leaf diseases.

2.2.17 Cotton Leaf Diseases

A self-created dataset from Pakistan developed 1,711 images of fusarium wilt, bacterial blight,
and curl virus cotton leaf disease. A transfer learning technique based on EfficientNet-B0 was
introduced by Noon et al. [122] to classify the cotton leaf diseases. This research proposes a
computationally lightweight deep learning system for identifying cotton leaf diseases; this has
potential utility in settings with limited computing resources. The proposed framework was only
tested in a lab setting, so its results may vary when applied to the actual world. The scope of
the study is to categorize the cotton leaf diseases and fails to classify the potato and guava leaf
diseases. The dataset used in the study is limited in size.
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2.2.18 Citrus Leaf Diseases

Luaibi et al. [123] proposed ResNet and AlexNet convolutional neural networks to predict the
citrus leaf diseases. A self-created dataset was developed of 200 images. The sample size is rather
small; thus, the results may not apply to all cases of citrus leaf diseases. Because of this, the results
cannot be applied to a wider population. The study does not consider environmental factors that
may affect disease detection accuracy. These factors include but are not limited to, lighting condi-
tions and fluctuations in plant development. As this study was conducted in a laboratory context,
the outcomes may change when applied to a more realistic agricultural setting with a wider range
of variables. To see which technique performs better in disease identification, Sujatha et al. [124]
used both ML (SVM, RF, SGD) and DL (Inception-v3, VGG-16, VGG-19,) to categorize citrus
leaf disease. They used a self-created dataset from the Pakistan region to identify the melanose,
greening, canker, black spot diseases, and healthy citrus leaves. Researchers and practitioners in
the area will benefit from the study’s thorough comparison of deep learning and machine lean-
ing approachcs to plant leaf diseasc identification. The study’s conclusions are bolsterzd by using
a sizable dataset of plant leaf pholographs, enhancing the study’s generalizability to real-world

situations.

Both the studies are trained on a small scale dataset. The scope of the study 1s to categorize the
ciirus leaf diseases and fails to classify the potato and guava leaf diseascs.

2.2.19 Grapes Leaf Diseases

Many researchers [125-127] proposed different deep-learning models to classify grape leat dis-
eases. An integrated version of GoogLeNet (InceptionV3) and ResNet50 named UnitedModel was
proposed by Ji et al. in [125] to learn more discriminative features for the classification of grape
leaf diseases. Xie et al. [126] presented a Faster DR-IACNN based on Faster RCNN using the
InceptionV1, Inception-ResNetV2 module, and SE-blocks to identify the grape diseases. Another
study was introduced by Kaur et al. [127] in which a transfer learning-based model was developed
to identify grapevine leaf disorders. The studies do not consider environmental conditions and soil
quality, which might affect disease development in grapes. The studies are limited to grapes and
failed to detect potato and guava leaf diseases. The scope of all the studies is limited to grapes;
therefore, these studies fail to classify the potato and guava leaf diseases.
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2.2.20 Grapes and Tomato Leaf Diseases

Paymode and Malode [128] conducted research based on transfer learning of Visual Geometry
Group (VGG) CNN to classify the tomato and grapes leaf disorders using PlantVillage dataset.
Because of the modest size of the dataset utilized in the paper, the findings cannot be applied
to other datasets or different types of crops such as potato and guava. The generalizability and
accuracy of the results may be compromised due to the article’s failure to address possible biases
in the dataset. The dataset is limited to a specific geographic area, so the study fails to detect the
Pakistani region’s diseases.

2.2.21 Grapes and Cucumber Leaf Diseases

Chen et al. [129] presented a DL-based segmentation and classification technique (SegCNN) that
predicted the cucumber and grape diseases. The researcher created a 500 images dataset of cu-
cumbers with slight, moderate, and severe severity diseases with normal cucumber leaves. The
PlantVillage dataset was-used for grape disease detection to classify the black measles, leaf blight,
grape black rot diseases, and healthy leaves. Accurately identifying disease signs in plant photos
is the goal of the proposed method, which includes color-based characteristics, texture-based fea-
tures, and shape-based features. The scope of the study is to categcrize the grape and cucumber
leaf diseases and fails to classify the potato and guava leaf diseases. The dataset used in the study
is limited in size and for a specific geographic region; therefore, it fails to classify the Pakistani

region plant leaf diseases.

2.2.22 Preanuty Leaf Diseases

Qi et al. [130] developed a logistic regression stack ensemble technique based on InceptionV3,
DenseNet121, ResNet50, VGG16, and AlexNet for peanut diseases classification. They also used
LR, SVM, and RF were chosen as theé méta-model. The methods were trained on a self-created
dataset of 6029 images, including scorch, leaf spot, and rust diseases developed from China. The
" proposed model can detect multiple diseases on a single leaf. This study introduces a unique
approach to disease detection utilizing a stacked ensemble of different classifiers to enhance the
accuracy and reliability of illness identification in peanut-leaf samples. The suggested approach
integrates color, texture, and form features to correctly identify illness symptoms in photos of
peanut leaves. The downsides of the suggested strategy, such as its dependence on image quality
or the requirement for large amounts of training data, should be addressed in the work. The study
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is limited to peanut leaf diseases and failed to classify the potato and guava leaf diseases.

2.2.23 Olive Leaf Diseases

Uguz and Uysal [131] proposed the transfer learning techniques based on VGG19 and VGG16 to
classify the olive leaf diseases from Turkey. The researchers trained the models on data augmen-
tation techniques used on a self-created dataset and without data augmentation techniques. The
dataset consisted of 3400 images. The suggested method is thoroughly tested on a large dataset of
olive leaf photos, and its success in accurately classifying multiple olive leaf diseases is demon-
strated in the publication. The dataset used to test the approach was obtained in a lab, which may
differ from the complexity and variation seen in actual photographs of olive leaves. Because of
the high computing requirements of the suggested method, it may not apply to low-power devices
or situations with limited resources. The study used a specific region dataset, thus failing to clas-
sify the Pakistani region’s olive leaf disease. The scope of the study is also limited to olive leaf
diseases; therefore, it fails to classify the potato and guava leaf diseases. The study is limited to
finding a single disease on a single leaf.

2.2.24 Mango Leaf Diseases

Singh et al. in [132] developed a Multilayer Convolutional Neural Network (MCNN) to detect
the anthracnose fungal disease of mango leaves. They used a PlantVillage dataset, and real-time
healthy and diseased leaves images of mango. The researchers applied histograms to equalize the
images and then resized the images by the central square crop method. The proposed approach
was tested on a small subset of mango leaf diseases; its applicability to other plants and pathogens
cannot be guaranteed. Mango leaf photos captured in the wild tend to be more complicated and
variable than the dataset used to evaluate the approach. The scope of the study is limited to mango
leaf disease; therefore, it fails to classify the potato and guava leaf diseases. The study can find a

single disease on a single leaf.

2.2.25 Kiwifruit Leaf Diseases

Yao et al. [133] proposed a two-stage deep learning model to strip the kiwifruit leaves from the
complex natural environment using the YOLOX model. The researchers developed the dataset
of 2000 kiwifruit disease images from China for bacterial canker and brown spot disease. Then
DeepLabV3+ model was employed to extract the color and texture feature, and the ResNet101
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model was used to detect the diseases of kiwifruit on leaves. First, a pre-trained CNN is used
for coarse classification, and then, in the second stage, a CNN is modified to identify the disease
type accurately. Due to its high computational cost, the suggested technique may need to be more
practical for application on low-power devices or in contexts with limited resources. The scope of
the study is limited to kiwifruit leaf disease; therefore, it fails to classify the potato and guava leaf
diseases. The study can find multiple diseases on a single leaf.

2.2.26 Cassava Leaf Diseases

For the classification of Cassava leaf disease, an attention mechanism with pre-trained CNN-based
models was used by Ravi et al. [134]. The model added an attention layer to the EfficientNet
model, and features from EfficientNetBS5, EfficientNetB6, and EfficientNetB4 were extracted from
the penultimate layer. KPCA was used to minimize the extracted feature dimensions, and the
feature was fused. For classification, meta-classifiers were utilized. In the meta classifier, the
first stage employed RF and SVM for predictions, and the second stage used logistic regression
for classification. The researcher trained their model with the publicly available Cassava Leaf
Dataset to classify the Cassava Mosaic Disease (CMD), Cassava Green Mite (CGM), Cassava
Browa Streak Disease (CBSD), and Cassava Bacterial Blight (CBB) with healthy leaves of cassava.
By training on a huge dataset (over 12,000 photos), the classifier can better withstand variations
in both the environment and disease progression. In reality, it may be crucial to consider the
constraints of the proposed method and potential causes of mistakes, neither of which are discussed
in the article. Results may not apply to other regions with varying climatic circumstances and
illness frequency because the dataset utilized in the study is restricted to a single country (Uganda).

The CMD, CGM, CBSD, and CBB with healthy leaves of Cassava Leaf Dataset. Anitha and
Saranya [135] developed the Cenvolutional Neural Network (CNN) to detect the cassava leaf dis-
eases. Because the study only used photos of cassava plants from a particular site, the results may
need to be more generalizable to the wide variety of cassava diseases in other parts of the world.
The study should have included the logistical obstacles to deploying the deep learning method in
practice, such as the need for specific hardware or personnel.

A comprehensive deep learning technique based on Enhanced Convolutional Neural Network
(ECNN) models for real-time Cassava leaf disease detection was developed by Lilhore et al. [136]).
The CMD, CGM, CBSD, and CBB with healthy leaves of Cassava Leaf Dataset. In the suggested
Enhanced Convolutional Neural Network (ECNN) model, CNN difficulties were resolved using a
depth-wise separable convolution layer. The study’s dataset, including its collection, preprocess-
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ing, and augmentation methods, is described in depth. The study’s findings may not apply across
all cases of cassava leaf disease or all locations because of the small sample size. Environmental
factors, such as climate and soil conditions, have been ignored in this study despite their potential
influence on the onset and severity of diseases affecting cassava leaves.

Because of the modest size of the dataset utilized in all studies, the findings cannot be applied
to other datasets or different types of crops such as potato and guava. The generalizability and
accuracy of the results may be compromised due to the studies’ failure to address possible biases
in the dataset. The dataset is limited to a specific geographic area, so the studies fail to detect the
Pakistani region’s diseases. All the approaches can identify a single disease on a single leaf.

2.2.27 Beans Leaf Diseases

A deep convolutional neural network-based pre-trained MobileNetV2 model was proposed by
Elfatimi et al. [137] to classify the beans leaf diseases. The proposed method was trained on a
self-created dataset of 1296 images to detect beans’ rust and angular leaf spot diseases. Since only
1296 pictures were used in the analysis, the findings may only apply to some bean leaf diseases or
geographic areas (Uganda). In reality, it may be crucial to consider the constraints of the proposed
method and potential causes of mistakes, neither of which are discussed in the study. The scope of
the study and the size of the dataset is limited. The study does not find the potato and guava leaf
disease. It can detect a single disease on a single leaf.

2.2.28 Squash Leaf Diseases

Research conducted by Ganesh Babu and Chellaswamy [138] in which LPDBL-based deep learn-
ing model was developed to detect the squash leaf diseases. A squash dataset was developed for
severity estimation (early, middle, and critical) of powdery mildew of squash leaf diseases and
achieved 99% accuracy. High detection rates across all disease phases were achieved with the
suggested method, proving the efficacy of machine learning in plant disease diagnostics. Findings
may not apply to other regions with varying climatic circumstances and illness frequency because
the dataset utilized in the study was restricted to a single country (India). The scope of the study is
limited to squash leaf diseases, and it can identify a single disease on a single leaf.
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2.2.29 Palm Leaf Diseases

Ibrahim et al. [139] proposed a deep CNN developed to detect palm leaf diseases. A dataset of 350
images was developed to classify the palm nutrient deficiencies such as manganese, zinc, boron,
magnesium, potassium, and nitrogen with healthy leaves. As a result of the proposed method’s
success, deep learning is useful in plant nutrient diagnosis. The study’s dataset was collected
only in one country (Malaysia); hence its results may not apply to other countries with various
climates and nutrient deficiency problems. Little dataset (350 photos) and no discussion of how
elements like illumination and camera angle could affect categorization performance could limit

the suggested approach’s applicability.

2.2.30 Leaf Diseases of Multiple Crops

Various researchers [33, 140-160] developed different deep leaming models to investigate the
multiple crop leaf diseases. Barbedo in [140], used a pre-trained GoogleNet to detect the different
plant leaf diseases such as cassava, common bean, citrus, corn, coconut tree, kale, coffee, passion
fruit, cotton, sugarcane, soybean, and wheat crops by using the individual spots and lesions instead
of the entire leaf. The Piant Disease Database (PDDB) and expanded XDB datasets were used
for training and testing. Ferentinos in [33] used pre-trained AlexNet, Overfeat, AlexNetOWTBn,
VGG, and GoogleNet deep learning-based architectures, to identify the normal or abnormal plant
images of plant leaves. The models were trained on a publicly available dataset of plant images
[161], having 87,848 plants leave images of both real agricultural and laboratory environments.
The models detect the 58 distinct types of plant and disease combinations of banana, apple, cab-
bage, celery, cassava, cherry, cucumber, corn, grape, gourd, peach. orange, potato, pepper, soy-
bean, pumpkin, strawberry, squash, tomato plants. Geetharamani & Pandian [141] proposed a
model to differentiate between healthy and unhealthy crops based on the characteristics of leaf im-
ages. The model was trained on the PlantVillage dataset. The system identified apple, blueberry,
cherry, comn, grapes, orange, peach, pepper, potato, raspberry, soybean, squash, and tomato crop
diseases. Using depthwise separable convolution (DSC) rather than the convolution layer, Kamal et
al. [142] constructed plant disease identification models called Modified MobileNet and Reduced
MobileNet. The models can detect 55 plant leaf diseases of the PlantVillage dataset, including
potatoes. A hybrid method involving CNN and autoencoders was proposed by Khamparia et al.
in [143] for detecting agricultural leaf disease. Images of diseased and healthy leaves from three
crops were used: potatoes with late blight and early blight, tomatoes with leaf mold and yellow
leaf curl virus, and maize with rust. The PlantVillage dataset was used for training.
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Ahmed and Reddy [144] developed a CNN-themed Android mobile application. The 14 different
crops each had their unique disease profile, which was modeled using the PlantVillage dataset
throughout the training process. The segmentation models proposed by Thenmozhi et al. [145] for
classifying tomato, grape, and apple leaf diseases were as follows: The proposed method extracted
green pixels using HSV, color space, and other masking schemes. The study used the PlantVillage
dataset. Kushal et al. [146] built five convolutional neural networks from the ground up, including
MobileNet, AlexNet, ResNet, and two additional deep-learning models. The aforementioned deep
learning models were taught to recognize the many diseases that affect 58 different crops by using
the PlantVillage dataset as their training ground. AR et al. [147] presented a hybrid method based
on k-means clustering to analyze a leaf-based Region of Interest (ROI). The data set from the
University of California, Irvine (UCI) was used to train the proposed approach to detect illnesses
such as Cercospora, anthracnose, common rust, Alternaria diseases, and combinations of bacterial
blight diseases. Wagle and others [148] compared the traditional SVM with modified AlexNet to
detect the nine different crop diseases. The proposed method used the PlantVillage dataset. A big
plant leaves image dataset from different countries was used to train a dense convolutional neural
network architecture by Tiwari et al. [149]. The proposed method was trained on the rice leaf
diseases, citrus leaf, bean leaf image, and PlantVillage datasets. Hassan et al. [150] developed
different transfer learning models to detect multiple crop diseases using the PlantVillage dataset.
Using the Grey Level Co-Occurrence Matrix (GLCM), the authors of [151] obtained six color
features and twenty-two texture features. The SVM was utilized to classify one-to-one diseases.
The technique above received its training on the PlantVillage dataset, and it can identify a variety
of crop illnesses. Using the PlantVillage dataset, Atila et al. [152] suggested a deep learning model
built on EfficientNet. Their goal was to identify several illnesses that could affect various crops.
The tomato, potato, pepper, and bell crop illnesses were investigated in a study [153], which led
to the development of an ensemble network. The suggested method retrieved the hybrid features
using Local Binary Pattern (LBP), Law’s mask, Scale-Invariant Feature Transform (SIFT), Gabor,
and GLCM to enhance the classification results on the PlantVillage dataset.

Hossain et al. [154] proposed threeDepth-Wise Separable Convolutional PLD (DSCPLD) models
to reduce the computational cost and model size. These models include segmented extended DSC-
PLD (S-extended MobileNet), reduced segmented DSCPLD (S-reduced MobileNet), and modified
segmented DSCPLD (S-modified MobileNet). The suggested method made use of the PlantVil-
lage dataset as well as the Rice disease picture dataset. Additionally, a new dataset consisting of
6580 photos was produced to detect the various illnesses that affect crops such as cherry, mango,
apple, potato, rice, grape, and pepper. Research carried out by Li and Chao [155] in which a semi-
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supervised few-shot deep learning-based approach was developed to classify the various diseases
that can affect a wide variety of plant species. They also made use of the PlantVillage information
to identify a variety of diseases affecting multiple crops. He and his colleagues [156] proposed a
Disease Image Recognition Method based on Bilinear Residual (DIR-BiRN). The technique was
trained on the PlantVillage dataset to identify the various diseases affecting tomato, potato, grape,
maize, apple, and combination disorders. Albattah et al. [157] introduced a customized CenterNet
model with DenseNet77 for feature computation to improve plant disease recognition and classi-
fication accuracy while reducing training and testing time complexity. They used the PlantVillage
dataset to categorize the different crop diseases. The proposed method can detect diseases in ap-
ples, custard apples, and guavas; specifically, the technique distinguished between healthy apple
leaves and those with diseases such as black rot, rust, and scab. In India, Gaikwad et al. [158]
created the apple dataset, the custard apple dataset, and the guava dataset to train deep learning-
based CNN models such as SqueezeNet and AlexNet with the same hyperparameters. Singh et al.
{159] employed five distinct convolutional neural networks (CNNs), such as MobileNet, EffNet,
AlexNet, ShuffleNet, and LeNet, to differentiate between the several diseases that can affect vari-
ous types of crops. The model mentioned above was trained using the PlantVillage dataset, which
was used to train the model to identify the various illnesses affecting rice, tomato, potato, maize,
and apple plants. Another research was conducted by Wang [160] to develop an improved AlexNet
model to detect different plant diseases. The proposed method can detect diseases and pests from
peachs, potato, corn, rice, and pear plants. The researcher used the PlantVillage dataset and devel-
oped a 1200 images dataset from China.

Almost all the studies detect different plant leaf diseases, including potatoes, but these studies
have different problems. Aimost all the models are trained using the PlantVillage dataset, which is
limited to a single geographic region. Therefore, these techniques have a high false rate of detecting
potato diseases in the Pakistani region. The dataset, including most studies, has imbalanced classes,
which can cause overfitting. All the models can detect a single disease on a single leaf, but these
methods fail to identify multiple diseases on a single guava leaf. Almost all the models have high
computational costs. The impact of environmental factors, such as climate and soil conditions, on
plant leaf diseases, which might alter disease development and severity, needs to be considered.

2.2.31 Potato Leaf Diseases

A large number of researchers researched diseases that could affect potato crops, and they also
trained algorithms on the dataset known as PlanVillage. A rundown of the illnesses that can affect
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potato leaves is presented in Table 2.2.

A CNN model was proposed by Khalifa et al. [162] to detect early blight and late blight diseases
in addition to a healthy class. The researchers used the PlantVillage dataset to train their algorithm.
This dataset only contains information on the crops grown in certain places. A CNN mode] was
proposed by Rozagi and Sunyoto [163] to detect the early blight illness of potatoes, as well as the
late blight disease of potatoes, and a healthy class. They trained the model on the PlantVillage
dataset to identify the prevalent diseases in a particular area. Sanjeev et al. [164] suggested a
Feed-Forward Neural Network (FFNN) for early and late blight detection to identify both diseased
and healthy leaves. The PlantVillage dataset was used for both training and testing the suggested
approach. Barman et al. [165] presented a Self-Build CNN (SBCNN) model to identify the early
blight, late blight, and healthy class in potato leaf samples. The model, tailored to a specific area,
was trained using data from the PlantVillage dataset. The proposed mode! was also not veritied by
predicting the unseen data (test data).

Using a pre-trained model VGG19, Tiwart et al. [166] extracted features and classified them
using KNN, SVM, and a neural network. They didn’t put the model through a blind test on new
information. The program learned to identify early and late blight on potato leaves by analyzing
data from the PlantVillage dataset. Using a CNN model, Lee et al. [167] could identify potato
leaves that were either healthy or affected by early and late blight. The researchers also used a
regional PlantVillage dataset. We did not put the model through a blind test on new information.

To identify potato diseases like early blight, late blight, and healthy leaves, Islam et al. [168]
proposed a segment-based and multi-SVM-based model. Their approach was similarly inaccurate
despite making use of the PlantVillage dataset. Based on feature fusion and Principal Component
Analysis-Linear Discriminant Analysis (PCA-LDA) feature extraction, Feature Fusion Based PCA-
LDA (FF-PCA-LDA) was proposed as a classification technique for identifying potato leaf diseases
by Ali et al. [169]. The researchers used the PlantVillage dataset, which had information on
illnesses like late blight and early blight that can affect potatoes, as well as information on healthy
leaves. An accuracy of 98.20% was achieved using the proposed strategy.

2.2.32 Guava Leaf Diseases

Previously much work has been conducted on guava leaf diseases, but the methodology exercised
was only focused on detecting a single disease from a single leaf or fruit as shown in Table 2.3.

Howlader et al. [172] proposed a Deep Convolutional Neural Network (DCNN) consisted of eleven
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Table 2.2: Summary of Potato Leaf Diseases Related Work.

Reference Methodology Plant Name Disease Dataset Accuracy
[141] Deep CNN Multiple (Potato) Multiple PlantVillage 96.46%
[142] Modified MobileNet ~ Multiple (Potato) Multiple PlantVillage 98.34%
[143] CNN and Potato, Maize, Multiple PlantVillage 97.50%

Autoencoders Tomato 100%
[170] ResNet50 Multiple (Potato) Multiple PlantVillage 98%
[171] AlexNet, Overfeat Multiple (Potato) Multiple PlantVillage 99.53%
AlexNetOWTBn,
' VGG and GoogLeNet
[162] CNN Potato Early Blight, PlantVillage 98%
Late Blight
[163] CNN Potato Early Blight, PlantVillage 92%
Late Blight
[164] FFNN Potato Early Blight, PlantVillage 96.5%
Late Blight :
[165] SBCNN Potato . Early Blight, PlantVillage 96.75%
Late Blight
[166] SVM, KNN and Potato Early Blight, PlantVillage 97.8%
Neural Net Late Blight
[167] CNN Potato Early Blight, PlantVillage 99%
Late Blight
[168] Segment and Potato Early Blight, PlantVillage 95%
Multi SVM Late Blight
[169]  FF-PCA-LDA Potato Early Blight, PlantVillage 98.20%
Late Blight

layers in which four convolution layers followed by four max-pooling with ReLU and three fully
connected layers to detect the algal leaf spot, whitefly and rust diseases of guava along with healthy
leaves. They developed their own BU Guava Leaf 2018 (BUGL2018) dataset, which contains 2705
images from Bangladesh. Their proposed method achieved 98.74% accuracy on the test dataset.

Al Haque et al. [173] proposed a deep learning method based on CNN to detect the fruit canker,
anthracnose and fruit rot. The research was conducted on guava fruit in Bangladesh and achieved
95.61% accuracy but it did not detect the multiple diseases on a single leaf.

Almadhor et al. [174] proposed an AI-Driven framework to detect the rust, canker, mummification
and dot diseases on guava leaves and fruit, based on high imagery resolution sensor Digital Single-
Lens Reflex (DSLR) camera. The dataset contains only 393 sample images. RGB, HSV colour
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Table 2.3: Summary of Guava Leaf Diseases Related Work.

Single Leaf
Single Disease
(SLSD) or
Ref. Methodology Plant Name Disease Single Leaf Localization Accuracy
Multiple Disease
(SLMD) Detection
Fruit Canker,
[173] CNN Guava Anthracnose, SLSD No 95.61%
Fruit Rot
Rust,
[172] CNN Guava Algal Leaf Spot, SLSD No 98.74%
White Fly
Complex Tree, Dot,
Fine KNN, Guava Mummification,
{174] Bagged Tree, Rust, Canker SLSD No 99%
Boosted Tree.
& Cubic SVM
[173] SVM Guava Bacierial Blight, SLSD No 98.17%

Anthracnose

histogram and LBP texture features were extracted and Decision Tree (DT), Fine KNN, Bagged-
Tree (BT), Boosted Tree, and Cubic SVM classifiers were used to catalog the guava leaf and fruit
diseases. Bagged Tree classifier achieved the 99% accuracy.

Perumal et al. [175] proposed a single disease detection technique based on Support Vector Ma-
chine (SVM) to classify the healthy, bacterial blight and anthracnose diseases on a single guava
leaf only and the proposed method achieved 98.17% accuracy.
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2.3 Plant Leaf Segmentation Techniques

Leaf segmentation with complex background was also a challenging and complex task. Few re-
searchers worked on different plant leaves segmentation such as [176-191].

To segment leaf images with intricate backgrounds based on past shape knowledge, a method
known as automatic marker-controlled watershed segmentation was first introduced by Wang et al.
[176], which combines pre-segmentation and morphological operations. After leafstalk removal,
seven Hu geometric moments and sixteen Zernike moments are retrieved as shape characteristics
from segmented binary pictures. A self-collected dataset of 1200 images was used, with 20 classes
including 60 leaf samples for each class with complex background. They segmented the willow,
plum, London plane tree, China redbud, chestnut, laurel, rose bush, hazel, panicled goldrain tree,
sweetgum, honeysuckle, donglas fir, maple, arrowwood, tulip tree, ginkgo, photinia, camphor tree,

seating, and Chinese allspice and got 92.6% accuracy.

Research conducted by Itakura and Hosoi [181] in which automatic leaf segmentation and param-
eters of plant structure were retrieved using point-cloud 3D images. The leaves were segmented
automatically with 3D models combined with 2D and 3D point-cloud processing techniques. The
researchers used small plants such as Japanese sacandra, umbellate, kangaroo vine, council tree,
dwarf schefflera, hydrangea, and pothos. The proposed 3D mode] achieved 86.9% accuracy.

Ward et al. [182] trained a state-of-the-art pre-trained Mask RCNN modei to segment the synthetic
and real images of the arabidopsis plant. The researchers used the ADE20K and CVPPF LSC
datasets to train the model. The proposed model got 90% leaf segmentation accuracy on the Al
test set of the CVPPP Leaf Segmentation Challenge (LSC) and obtained 81% mean accuracy over
all five test sets.

Kurmar and Domnic [184] conducted research in which plant leaf region was extracted-and then
counted the rosette plant leaves. Three steps were involved. The first step image enhancement
method was developed using a novel statistical-based method—the second step involved segmen-
tation of the plant’s region using a graph-based technique. In the third step, leaves were counted us-
ing Circular Hough Transform (CHT). They used the Leaf Segmentation Challenge (LSC) dataset,
which consisted of Al, A2, and A3 sets. The proposed method achieved 95.4% segmentation
accuracy and obtained 0.7 and 2.3 dice of leaves counting for A1, A2, and A3 sets.

Gimenez-Gallego et al. [186] segment the multiple tree leaves like lemon, orange, almond, olive,
loquat, fig, cherry and walnut trees from the natural background using the Support Vector Machine
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(SVM) and SegNet deep learning model. The proposed method was trained on a self-created dataset
of 251 images. SVM achieved 83.11% accuracy, and SegNet gained 86.27% accuracy.

To carry out leaf phenotyping on two greenhouse ormamentals—Maranta arundinacea and Dieffen-
bachia picta—Li et al. [187] proposed a novel five-stage framework. It included multiview stereo
point cloud reconstruction, preprocessing, stem removal in the canopy, leaf segmentation, and leaf
phenotypic feature extraction. For each leaf, phenotypic features such as leaf area, length, width,
and inclination angle were determined and compared to ground realities. For the two species,
96.8% and 97.8% of the predicted leaf area were accurate.

According to the study, a new orthogonal transform-based plant region segmentation scheme was
proposed [188]. First, orthogonal transform coefficients were analyzed regarding orthogonal basis
vectors’ response to extracting the plant region from the orthogonal basis vectors. L*a*b and the
Cyan, Magenta, Yellow, Key (CMYK) colour spaces were utilized for noise removal after extracting
the plant region. Finally, deep convolutional neural network models were used to count the leaves.
They used the Computer Vision Problems in Plant Phenotyping (CVPPP) dataset, which included
Al, A2, and A3 sets. Datasets Al, A2 and A3 had an Foreground-Background Dice (FBD) of
94.7%, and a dice score of 93.72% was attained using the suggested method.

Research conducted by Yang et al. [189] in which 15 species segmentation was performed using
Mask RCNN deep learning model used VGG16 deep learning model. They used 2500 images
dataset of 15 species, including gardenia jasminoides, callisia fragrans, psidium littorale, Osman-
thus fragrans, bixa Orellana, ficus macrocarpa, calathea makoyana, rauvolfia verticillate, Ardisia
quinquegona, baccaurea ramiflora, synesepalum dulcificum, Hydnocarpus anthelminthic, daphne
odora, dracaena surculose, and mussaenda pubesens. The proposed method achieved 91.5% accu-

racy.

Plant leaf extraction was proposed by Amean et al. [191] using depth information from a stereo
visicn sensor. The system used synergistic features such as depth, shape, and colour to deal with
multiple leaf segmentation and overlapping leaf separation. The disparity maps employed depth
to measure discontinuities in its gradient. The algorithm was tested on 272 images of hibiscus
and cotton plants, with the results showing that depth attributes were successful in distinguishing
between occluded and overlapped leaves, with a separation rate of 84%. Over a variety of diverse
backgrounds and changing plant canopies, the system could distinguish individual plant leaves at
a rate of 78%.
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Table 2.4: Summary of Plant Leaf Segmentation Related Work.

Reference Methodology Crop Dataset Accuracy

[176] automatic marker-controlled Multiple Self-Created 92.6%
watershed segmentation

[181] point-cloud 3D Multiple Self-Created 86.9%

[182] RCNN Multiple ADE20K, CVPPPLSC 90%

[184] Graph-based Method Rosette Rosette, LSC 95.4%

[186] SVM, SegNet Multiple Self-Created SVM: 83.11%

SegNet: 86.27%

[187] Five-stage Framework Multiple Self-Created 97.8%
[188] DCNN Rosette CVPPP 94.7%
[189]} Mask RCNN Multiple Self-Created 91.5%
[191] Disparity Maps Hibiscus, Cotton  Self-Created 84%

2.4 Publicly Available Datasets

Since deep learning-based plant disease identification is a relatively new field, only a few bench-
marking datasets exist for evaluating the deep learning-based plant disease identification method.
The potato and guava publicly available datasets are described below.

2.4.1 Potato Leaf Disease Datasets

In literature, all the potato leaf disease datasets consisted of a single disease on a leaf. The re-
searchers used the following potato leaf disease datasets:

2.4.1.1 Potato Leaf Disease Dataset

The Potato Leaf Disease Dataset was publicly available on Kaggle [192]. It contained 1500 images
of three classes: late blight, early blight diseases, and healthy leaves. The dataset contained only a
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single disease on a leaf, and each class consisted of 500 jpg images of size 256 x 256.

2.4.1.2 Potato Leaf (Healthy and Late Blight)

The potato Leaf dataset was developed by Addis Ababa Science and Technology University [193].
It consisted of only two classes late blight and healthy. The healthy class comprised 363 jpg
images, and the late blight class comprised only 63 images. The data was collected with the help
of a smartphone and digital camera in an uncontrolled setting on a working potato field in Holeta,
Ethiopia.

2.4.1.3 PlantVillage Dataset

The PlantVillage dataset [161] was developed by Penn State University (US) and EPFL (Switzer-
land), which is a non-profit project. The database consists of JPG colour images with 256 x 256
dimensions. It has 38 classes of diseased and healthy leaves of 14 plants. In the PlantVillage -
dataset, the potato crop has three types: early blight, late blight, and healthy. It consisted of 1000
leaves for late blight, 1000 for early blight, and 152 images of healthy leaves.

2.4.2 Guava Leaf Disease Datasets

We found oniy two publicly available datasets of guava which focus only on a single disease on a
leaf. The publicly available datasets are presented below.

2.4.2.1 Guava Fruits and Leaves Dataset

Guava fruits and leaves dataset [194] was developed by Rauf and Lali from tropical areas of Pak-
istan. The dataset was developed to detect a single disease on a leaf and fruit. It consisted of rust,
mummification, canker, and dot diseases of both leaves and fruit. It consisted of 306 images having
300 dpi resolution and 6000 x 4000 sizes. The dataset contained 70 images of rust, 83 images of
murnmification, 77 images of canker, and 76 images of dot diseases. -

2.4.2.2 Guava Disease Dataset

The Guava disease dataset was found on Kaggle [195], which consisted of 2300 images. It con-
sisted of five classes: rust, mummification, canker, dot diseases, and healthy guava leaves. The
dot class consisted of 178 images, canker had 278, mummification class attained 275 images, rust
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class contained 279 images, while the healthy class contained 1289 jpg images. The guava disease
dataset also included a single disease on a single guava leaf.

2.4.3 Plant Leaf Species Datasets

Regarding computer vision, investigations of plant categorization using image processing have re-
cently emerged as a hot area. Numerous datasets in the literature can be used to evaluate plant
classification systems. These datasets include: ICL [196], MalayaKew [197], PlantCLEF [198],
LeafSnap [199], Swedish [200], Foliage [201], and Flavia [202]. A wide range of difficulties, in-
cluding fine-grained complexity, imbalanced distribution, substantial intraclass variability, modest
interclass variability, and noisy pictures, are well-illustrated by these datasets, which reflect the
issue area. In the literature, no dataset included potato and guava leaf species.

2.5 Convolutional Neural Network (CNN) Architecture

The developmert of powerful processing devices like the GPU has led to the emergence of new
fields of application connected to DL. Traditional artificial neural networks inspired the idea of
DL. To extract the essential information, CNN played a crucial role in deep learning by stacking
several preprocessing layers. These features were sent to fully linked levels to make a call. After
Krizhevsky et al. [203] demonstrated remarkable success at image classification using CNN in
2012, DL models expanded rapidly. Since then, CNN has found use in a wide variety of DL ap- .
plications, including but not limited to pattern identification, image classification, object detection,
voice recognition, and many more [204, 205]. Instead of traditional neural network layers, CNNs
use convolution techniques {206, 207]. Traditional feature extraction handcrafted methods often
depend on expert knowledge and need expensive human labor, while CNN provides automatic
feature extraction. A convolutional neural network (CNN) is an architecture of many layers, each

. responsible for a different feature extraction and transformation aspect. CNNs are built with sev-
eral layers, the most important being convolutional, pooling, and fully connected layers, as shown
in Figure 2.1. Each CNN consists of two parts:

1. Feature Learning

2. Classification
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Figure 2.1: Convolutional Neural Network (CNN) Architecture.

2.5.1 Feature Learning
The automatic feature learning task of the CNN model is the responsibility of the following layers:
1. Convolutional Layer

2. Pooling Layer

2.5.1.1 Convolutional Layer

CNNs rely on their convolutional layers to function. The input image is convolved with a set
of learnable filters (kernels) to generate feature maps. Each filter is optimized for discovering
unique characteristics or patterns in the raw data. Filters in lower convolutional layers extract the
small-scale features; conversely, filters in the upper convolutional layers will extract the large-scale

features, as shown in Figure 2.2 [208].

Orignal
Image

High-level
features

L,::'t;r:::'/ \ —_ _J\

Hierarchy of features

Figure 2.2: Feature Hierarchy.

The mathematical definition of convolution layers, where the 2D image matrix (/) is convolved
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with the smaller 2D kernel matrix (K), is provided by Equation 2.1. Convolution layers are widely
employed in digital image processing.

S,'j = (I * K),;j = ZZ Iij . Ki—m,j—n (21)

When using a filter bank or kernels, the input from a layer designed to detect characteristics will
be spatially translated without modification to the output [209]. Each filter or kernel is designed to
detect a specific feature at each input point. As it is defined by LeCun [209), there is a bank of m,
filters in each convolutional layer, and the output Y;(') of the [th layer consists of mgl) feature maps

U] O

of size my’ X my’. The ith feature map is computed as follows:

ml-D

1
vO=B"+ 3 KDy 2.2)

. J=1

K ,-]D is the filter with dimensions (2h§l+1) X .‘Zhgﬂ)) that connects the jth feature map of the ({—1)
layer to the ith feature map of the [th layer, and (x) is the 2D discrete convolution operator. B! is

the trainable bias parameters matrix.

In convolution, a tiny filter is vertically slid from left to right across the entire image. Figure 2.3
shows a convolution operation with a 3x3 convolution kernel applied to a 4x4 input image. Each
node’s output is the sum of the products of the kernel elements at that node times their respective
input values. This is repeated with different kernels until enough feature maps have been generated
[210].

The dimensions of the output characteristics map are less than those of the input maps. A padding
strategy {210, 211] can preserve the same in-plane dimension by inserting zeros around the input
and fitting the kernel’s center to its peripheral parts. Additionally, a stride is the distance between
two consecutive kernel nuclei. Before subsampling, feature maps are typically down sampled to a
resolution of 1 stride. However, occasionally longer strides will be required.

The combination of different parameters in convolutional layers affects the overall performance of
the proposed model. The following are the important building blocks or parameters that affect the
performance of a convolutional layer:

* Data Format: An input image’s parameter height, width, and depth (channel) is defined in
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Figure 2.3: Feature Hierarchy.

data format. For example, in our case data format values (64, 64, 3) mean input image has
the dimensions 64x64, and 3 denotes the colour channel (RGB); the number of channels and
the number of filters should be the same. If a grayscale image is passed to the convolution
layer, the depth value will be 1. Larger dimensions will increase the computational cost.

* Number of Filters: The first required parameter of the convolutional layer is the number
of filters. The exact number of filters is decided after tuning the model depending upon the
depth of the developed neural model and dataset complexity.

* Filters: The second important and required parameter is the filter size. Typically filter sizes
maybe 1x1, 3x3, 5x5, 7x7 and more. Kemnel size calculates after the fine-tuning of the model.

* Stride: The fourth important parameter is stride, which is used to move or step the convolu-
tion along with the x-axis and y-axis on the input image. The size of the convolved feature
matrix depends on the value of the stride. The image size can be reduced with the help of
stride. The value of the stride chooses after the fine-tuning of the CNN model.

* Padding: Another required parameter is image padding. If an image 5x5 is convolved into
a 3x3 filter, it produces 3x3 output. There are two disadvantages; in this case, each time we
perform a convolutional operation, the image size will shrink, and the other disadvantage is
that pixel present if we want to move or find the features from the corners of the input image,
then we can use the zero-padding on the comner of the image are used only a few numbers of

times as compared to the central image. It means there is an information loss on the image’s
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borders. To overcome this issue, an additional border of zeros on the borders of the original
image will be added, making a 4x4 matrix instead of a 2x2 matrix. It will give the result that
is the original matrix 4x4, as shown in Figure 2.4. Padding also depends on the size of the
filter. The value of padding may be Valid” or “Same”. We choose the padding after the fine

tuning of the model.
Fitter Padding = Same
1 0
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0 |05 Output
0l 0 6| o 0
0.5 . 0.
0 1 0 |05/]05| ¢ 0 0.2 25
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Figure 2.4: Same Padding Process.

* Activation: An artificial neuron calculates the weighted sum of its input and then adds the
bias, and after that, it decides whether it should be fired or not.

Y =) (weight x input) + bias (2.3)

Y’s value can range from -ve to +ve, and it does not know the bounds. So, how will it be
decided whether the neuron should fire or not? For this purpose, an activation function is
added to any CNN model to check the value of Y and decide whether the outside connections
consider this neuron as fired (activated) or not. Nonlinear activation functions (Equation
2.4) are applied to the output of the filter bank to generate activation maps, from which only
active features are promoted to the subsequent layer. The output of neurons is governed by
this function. Then, f(.) is an example of an activation function, and its behavior looks like
this:

mgl—l)

oY) = fBY + Y KP x v 2.4)
j=1
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Most convolution layers use the Rectified Linear Unit (ReLU) activation function. Semi-
rectification of the function is depicted in Figure 2.5(a) [207, 212]. Figure 2.5(b) depicts
the hyperbolic tangent (tanh) with domain [1, 1], which has a similar shape to the Sigmoid
function [207, 213]. The mapping between zero and negative numbers is nearly exact, which
is a plus. Figure 2.5(c) displays the hyperbolic tangent (tanh) with domain (1, 1], which has
a similar shape to the Sigmoid function [207, 213]. The mapping between zero and negative
numbers is nearly exact, which is +ve.

Sorae

Lo SR T
X 32 4 » 2 5 K 4 %

@) (b) (c)

Figure 2.5: (a) ReLU, (b) Sigmoid, and (c) Hyperbolic Tangent.

2.5.1.2 Pooling Layer

We can reduce the spatial size of the convolved feature matrix by using the pooling layer like a
convolutional layer, which helps decrease the computational power by reducing the dimensions of
the data. The pooling layer also extracts the dominant features used in positional and rotational
invariants. Every CNN model can usually have more than one convolutional and pooling layer.

The pooling layer has the following advantages [208]:
¢ Computational load, both the training and run time, is reduced.
* Reduces the usage of memory.
* Reduces the trainable weights, especially in images that have many pixels.
¢ Tolerant of the network and encourages location invariance.
* Reduces overfitting risk.
The hyperparameters used in the pooling layer are:

* Filter Size
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* Stride
* Pooling

The two basic pooling operations are described below, and a 2x2 filter is used as an example in
Figure 2.6. Maximum pooling (or “max pooling™) finds the maximum value for each input patch
[214]. The max-pooling layer preserves the highest value in each patch by iteratively sliding the
filter across the feature map. In mathematical notation, it looks like this:

fmax(A) = ma'X(Anxm) 2.5)

nxm

The max pooling layer frequently uses a 2x2 filter with a stride of 2. The input is down sampled
by a factor of 2 in each dimension, and 75% of the convolutional outputs are thrown away. The
average value of each input patch is calculated, and the results are pooled together [214). The
average pooling layer is responsible for down sampling the convolutional activation by averaging
over pooling regions of the input. These are the mathematical definitions of it:

Joe(A) = s (Z >, Azj) (2.6)

=1 j=1

Max pooling 2 1
>
2 1 0 1 2 3
1 1 0 | Pooling
2 0 0 2
00|31 F]os
e—
Average pooling| 5 | 1.5

Figure 2.6: Examples of Pooling Operations.

2.5.1.3 Dropout

A dropout layer can be used as a regularization layer to prevent the network’s neuron units from

over-adapting to one another. The dropout method enhances network performance while allowing
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the overfitting issue to be tackled. It applies to the network at any layer.

2.5.2 C(lassification

Automatic feature extraction is performed by all the convolutional and pooling layers, which build
many hierarchies of features. The output of the topmost convolutional layer is very high-level
features. When these high-level features are passed to fully connected layers, the classification
zone starts. Classification usually consists of a few fully connected layers that help the network
classify the different classes by learning the high-level feature [208].

2.5.2.1 Fully Connected Layers

Based on feature extraction or learning, the data is then classified into various classes using the fully
connected layers. We can generally use the fully connected layers after the feature learning to train
the model end-to-end. The basic purpose of a fully connected layer is to take the extracted features
from preceded layers to predict the class label of a given sample. Practically full connection

process works as under:
» The fully connected layer neuron detects certain features like the nose etc.
« It stores its probability value.
« Then, this value is communicated to the classes.
* After checking the feature, classes decide whether it is relevant to them.
There are three types of fuily connected layers on CNN, as shown in Figure 2.7.

* Fully Connected Input Layer (Flatten): The purpose of this layer is to receive the extracted
features from preceded layers, "flattens” the convolved matrix into a single vector, as shown

in Figure 2.8, and then passes it to the next stage as an input.

* Fully Connected Hidden Layer: This layer receives the input vector (feature analysis) from
the Flatten layer and learns the features to predict the class labels of training samples. More
than one fully connected hidden layer may be used in CNN, depending on the complexity
of the dataset. We will choose the number of hidden layers during the fine-tuning of the
proposed method. The following important parameters of the fully connected hidden layer
are chosen after the fine-tuning of the proposed method:
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Figure 2.8: Fully Connected Layer Flatten.

— Units or Neurons: The fully connected layer neuron detects certain features like the
nose etc. All the input received from the fully connected input layer (flatten) is directly
connected with the neuron of the first fully connected hidden layer, and the neuron of
the hidden layer is directly connected with the fully connected output layer, as shown
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in Figure 2.7. We decide the number of neurons or units after the fine-tuning of the
CNN model.

- Activation Function: Many activation functions exist, such as linear, step, Tanh, Sig-
moid, and ReLu functions. We decide which activation function will be based on the
best serving function for the faster training process of the CNN model after the fine-
tuning phase.

* Fully Connected Output Layer: Finally, the fully connected output layer predicts the final
probabilities for the presence of a class. A fully connected layer uses the backpropagation
process to feature extracted by preceded layers. Each neuron of the fully connected layer
receives the feature vector and prioritizes the most accurate label. For the final decision, the
output of all neurons in a fully connected layer is combined using a majority vote technique.

The following parameters are chosen after the fine-tuning of the CNN model:

~ Units or Neurons: The fully connected layer neuron detects certain features like the
nose etc. All the input received from the fully connected input layer (flatten) is directly
connected with the neuron of the first fully connected hidden layer, and the neuron of
the hidden layer is directly connected with the fully connected output layer, as shown
in Figure 2.7. We decide the number of neurcns or units after the fine-tuning of the
CNN model.

— Activation Function: The number of units or neurons of a fully connected output layer
should be the same as several classes the network has.

- Activation Function: Many activation functions exist, such as step function, linear
function, Sigmoid function, Softmax function, Tanh function, and ReLu function. The
sigmoid function is used for binary classification, and the Softmax function is used for
multi-class classification. Therefore, we use the Softmax activation function because

our problem is a multi-class problem.

2.5.3 Training and Optimization

Backpropagation, a form of stochastic gradient descent (SGD), is used to teach CNNs. During
training, the model learns to optimize its weights and biases to reduce the loss function from its
initial values, which are chosen at random. Cross-entropy loss and mean squared error are two
common loss functions used in CNNs for classification and regression. Training efficacy and
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generalization can be enhanced by applying optimization strategies like learning rate scheduling,
momentum, and weight decay.

2.6 YOLOVS Architecture

Object detection using deep neural networks was accomplished by employing the YOLO model
[215]. As an input image is processed, YOLO flags the location and class of the desired object.
In order to determine its location and category, it places a little rectangle around the object. From
version 1, YOLO advanced to version 5. The YOLOVS network improved upon the previous four
versions by being significantly faster, smaller, and more accurate. Fast RCNN [216], Faster RCNN
[217], SSD {218], and YOLO [215] have all been introduced to the field of object identification.
The YOLO technique was tied into the whole end-to-end detection process. YOLO saw object
identification as 2 way to overcome regression issues by simultaneously achieving input from the - -
real picture and output at the desired position. With YOLO’s detecting features, it was possible
to acquire real-time processing, which was particularly useful when dealing with large quantities
of imnage data [219]. The weight file size for the YOLOvS5 target identification network model is
roughly 90% smaller than YOLOv4, proving its viability for use in embedded devices for real-
time detection. Hence, the YOLOVS network’s portability, precision, and quickness in identifying
objects make it preferable. There are four distinct YOLOvS designs, each with its name: YOLOvS5]
f220], YOLOvS5x [220], YOLCv5m [220] and YOLOVSs [220]. These versions are distinguished
by their convolution kernels and the number of feature extraction modules they employ at each
node. Model complexity and the number of parameters used in the four designs increase. Figure
2.9 depicts the YOLOvSs architecture that was used in this research.
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Backbone: CSPDarknet Neck: PANet Head: Yolo Layer

Spatial Pyramid Pooling Concatenate Function
Figure 2.9: YOLOvS5s Model Architecture.

When discussing YOLOVS, “real-time detection” refers to the algorithm’s capacity to carry out
object identification tasks in real-time or near real-time. The algorithm must be able to process
multiple frames of input video or photos per second in order to offer timely detection results. With
its highly streamlined design and efficient implementation methodologies, YOLOVS can provide
real-time detection. Its real-time performance is due, in part, to the following factors:

First, the network architecture: YOLOVS uses a simplified one that strikes a good compromise
between precision and speed. It employs a sequence of convolutional layers to efficiently extract
characteristics from input images, typically with smaller kernel sizes.

Second, YOLOVS5 uses an efficient backbone network, like CSPDarknet53 or EfficientNet, which
keeps computational complexity low without sacrificing detection accuracy. These infrastructure

networks are optimized for rapid and reliable picture processing.

Third, YOLOVS uses a Feature Pyramid Network (FPN) to help the model extract multi-scale char-
acteristics from various nodes in the network. It strengthens the model’s capacity for accurately

detecting objects across various sizes.

Fourthly, model quantization, network pruning, and model acceleration libraries like NVIDIA’s
TensorRT are just a few of the optimization strategies used by YOLOvS. These methods aid in
maximizing the pace at which the model can conclude without sacrificing too much precision.
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Using these methods, YOLOV5 can detect numerous objects (disease regions) in each frame of
an input stream, making it suitable for applications such as plant leaf disease diagnosis, which
requires real-time object detection. Applications that benefit from real-time detection include real-
time monitoring, surveillance, and automation systems, where rapid or near-instantaneous findings

are essential.

The Detect, Backbone, and Neck networks are the three main parts of the YOLOV5s [220] system.
The primary network is a CNN that generates visual features by splicing together many high-
resolution images. Specifically, the first backbone layer is meant to speed up the model’s training
and reduce computing time. A 12 x 320 x 320 pixel feature map was created by first slicing the
input 3-channel image (3 x 640 x 640 in YOLOVS’s architecture) into four 3 x 320 x 320 pieces.
After being fed into a convolutional layer with 32 convolution kemels, this map yielded a 32 x
320 x 320 feature map. The output was processed using the BN (batch normalization) layer and
the Hardswish activation function before being sent to the final layer. The BottleneckCSP module,
located at the third tier of the backbone network, is meant to improve deep feature extraction
in an image. The simplest form of the BottleneckCSP is a convolutional layer (Conv2d + BN
+ Hardswish activation function) with a 1 x 1 kernel size and a 3 x 3 kernel size linked by a
Bottleneck module. Its output and input via the residual structure make up the bottleneck module’s
output. Each half of the input to the BottleneckCSP module undergoes a convolution operation
that halves the volume of channels of feature maps, effectively doubling the processing speed. The
Conv2d layer and Bottleneck module in the second branch is then used to merge the final feature
maps from both branches. After passing through the Conv2d and BN layers in sequence, the final
feature map is almost the same size as the input to the BottleneckCSP component.

The ninth layer of the Backbone network is the Spatial Pyramid Pooling (SPP) module, which
is designed to recover the network’s receptive field by transforming a feature map of arbitrary
size into a feature vector of fixed size. The YOLOvSs SPP module’s input feature map has the
dimensions (512 x 20 x 20). The initial output of the convolutional layer is the 2562020 feature
map, with a convolution kernel size of 11. This feature map was intimately linked to the output
feature map, which is now subsampled via three concurrent max-pooling layers. The final feature
map has dimensions of 1024 x 20 x 20. When everything has been processed via the convolutional
layer using a 512 convolution kernel, the final output feature map has dimensions of 512 x 20 x
20. To create Feature Pyramid Networks (FPN), a series of feature aggregation layers of mixed
and merged image features is used, and the neck network is the primary component of this series.
A detect network is then fed the resulting feature map (prediction network). In addition, this
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network’s feature extractor uses a novel FPN structure, which aids in bottom-up learning, feature
transmission, and multi-scale object recognition. The same target object can be accurately detected

across various scales and sizes.

The recognition network is used mainly in the model’s final recognition stage, which correlates
anchor boxes on the feature map output by the last layer. It spits out a vector that contains data
about the object’s score, bounding box position, and the likelihood that it belongs to the category of
interest. In order to properly recognize objects across a wide range of sizes in images, YOLOv5’s
identification network uses a three-layer detect architecture with 80 x 80, 40 x 40, and 20 x
20 detect layers, each of which takes as input a feature map with those specific dimensions. By
the end of the process, each detects layer will have produced a 21-channel vector ((2 classes + 1
class probability + 4 surrounding box position coordinates) x 3 anchor boxes). Following this, the
image’s leaves were recognized, and other bounding boxes and target class labels were generated
and assigned accordingly.

2.7 Open Issues

There are several research issues in this research area. The first issue is that different varieties of
potato and guava exist in other regions. Therefore, variations in potato and guava diseases prevail
weorldwide for several reasons, including the shape of the disease, symptoms, colour of leaves,
varieties of potato and guava and environmental factors. No study available in the literature can
detect the potato and guava species. Suppose we can research the Pakistani region’s potato and
guava varieties” species and diseases. In that case, it will be helpful for the Pakistani farmers to
detect the different diseases of potatoes and guava in their early stages. The second issue is the
infected patches detection. The other issue in the literature is that all research is done on a single -
disease on a single leaf, but the earlier works failed to detect the multiple diseases on a single
leaf. Most crops or leaves were attacked with various diseases on a single leaf. To the best of
our knowledge, no work has been reported on the detection of multiple diseases of guava on a
single leaf. As reported in the literature, real-time disease detection and localization is another
issue. Also, no work has been done on guava disease spot localization. The fifth biggest issue
in the literature is the non-availability of different varieties of potato and guava diseases datasets
in Pakistan. However, the PlantVillage dataset was available in the literature, which consisted of
potato diseases developed in Switzerland and the USA. Almost all the research has been done on
the PlantVillage dataset. Therefore, there is a dire need to develop a dataset consisting of different
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varieties of potato leaf diseases in Pakistan. In literature, only a dataset of a single disease on a
single leaf exists for the guava leaf. Still, the real-time dataset of guava for multiple leaf diseases
is also unavailable. So, there is a need to develop a dataset which can detect the various guava
diseases on a single leaf. Segmentation of guava leaf is another crucial issue. In literature, no
study exists which can segment the guava leaves.
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A Hybrid Deep Learning Approach to
Classify the Plant Species

3.1 Overview

Plants are essential to the survival of all life on Earth. Awmong other things, they provide us with
oxygen to breathe, food, and medicine. Every living thing depends on them [221]. Plants are a
vital part of our planet’s ecosystem, and there are around 391,000 vascular plant species worldwide
[222]. Detecting and eliminating weeds, for example, necessitates accurate identification of plant
species utilizing automated methods that rely on human expertise [57]. To examine all of the -
planet’s plant species and discover certain features that allow botanists to distinguish between them
is an impossible task [49]. Hand-species identification can be time (ntensive and error-prone even
when performed by experts in a given plant taxon. making it difficult to scale up to high-throughput
needs.

A biologist has difficulty categorizing plant species that appear to share many traits but are actually
distinct from each other. When botanists utilize manual identification, they rely on the specifically
defined traits of a plant as a key to identifying plant species. Each step in the identification process
necessitates answering a question regarding the plant’s characteristics. A polytomous or dichoto-
mous key is used to identify the next step in the identification process [54]. They put much effort
into researching and identifying unique traits in numerous plant species [223]. An alien plant’s
shape, texture, colour, and venation’ are some of the keys to its identification. These traits fi-
nally lead to the target species when thoroughly analyzed. Taxonomic skill required to identify
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a plant species from its natural habitat is beyond the capabilities of the average individual. As
a result, traditional methods for identifying plant species are difficult for laypeople and profes-
sional taxonomists. Ewen for the most experienced botanists, determining the species can be time-
consuming. The identification and categorization of plants should be computerized or automated.

In the past, researchers have only utilized healthy leaves to classify and divide plants. No research
on the leaves of guava, potatoes, or java plums was located in the literature review. Therefore, it
was also challenging to separate guava, java plum, and potato species. The availability of a dataset
for guava, potato, and java plum species was also challenging. There was a need to develop a
dataset for potato, guava, and java plum plant leaf species. To resolve the issues mentioned earlier,
the current research was carried out. For this purpose, two datasets, Plant Leaf Species Dataset
(PLSD) and Plant Leaf Species Segmentation Dataset (PLSSD), were developed. The Plant Leaf
Species Dataset (PLSD), which included healthy and diseased leaves of guava, potato, and java
plum for classification, and PLSSD generated for semantic segruentation of the above classes,
were used to tackle the above problems. The leaves of the guava, java plum, and potato plants
were used to create a hybrid deep-learning model. In the first stage, a unique segmentation model
based on MobileNetV2-UNet was developed to segment the plant leaf species. The Plant Species
Detection using Stacking Ensemble Deep Learning Model (PSD-SE-DLM) was created to classify
the guava, potato, and java plum plant leaf species in the second step. These are the main things
this chapter contributes:

1. A Plant Leaf Segmentation based on MobileNetV2-UNet based technique is developed to
segment the guava, java plum, and potato healthy and diseased leaves. The MobileNetV2 is
used as an encoder part and UNet as a decoder part.

2

A Plant Species Detection using Stacking Ensemble Deep L.earning Model (PSD-SE-DLM)
is developed based on MobileNetV2, InceptionV3, and ResNet50 models to classify the
guava, java plum, and potato leaves. The proposed approach has been thoroughly researched
and tested on healthy and damaged plant leaf species to guarantee the system’s diversity.

3. Two first-ever plant species datasets are developed to segment and classify the guava, java
plum, and potato plant leaf species from the central Punjab, Pakistan.
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3.2 The Proposed Methodology

This study suggests a hybrid deep-learning method for plant leaf species identification. A seg-
mentation model based on MobileNetV2 and UNET is first used to segment the leaves of guava,
java plum, and potato. Then the plant species detection stacking ensemble deep learning model
(PSD-SE-DLM) is used to classify the species of those leaves. In total, there are two stages to the
proposed method. Figure 3.1 is a flowchart depicting the suggested procedure.

-~ Pl ]

Converted Video > Annotated the Generate the Dataset Validation
Captured > into Frames Leaf Imagey Mashs tPLSSD)
? L .l Testing I
l Image l

l Labeling Segmentation Saved MobileNetv2

and UNET

Ll’ralned PSO-SE-DIM Valldation +
Datasst
T d MobileN,
l Classification H Saved PCO-SE-DLM H Testing {PLSSO1 "‘Mmd UN;I' vz g

Figure 3.1: Flowchart of the Proposed Hybrid Deep Learning Model.

3.2..1 Dataset Preperation

This study proposes a hybrid approach trained and tested on two datasets. We created two datasets
using PLSSD for MobileNetV2-UNet training and Plant Species Dataset (PLSD) for PSD-SE-
DLM training. In the next part, we present a comprehiensive overview of the datasets:

3.2.1.1 The Plant Leaf Species Dataset (PLSD)

A Plant Leaf Species Dataset (PLSD) was created in central Punjab, Pakistan. The PLSD dataset
included healthy and infected guava, potato, and java plum leaves, as depicted in Figure 3.2. We
constructed our real-time dataset using images and videos. The variations in the real-time dataset
were made using a wide variety of capture equipment, including cell phone cameras, digital cam-
eras, and drones. Mobile phones and digital cameras had a capture distance of 1 to 2 feet, whereas
drones had a capture distance of 5 to 10 feet. The drone’s fanning caused visual and video distor-
tion due to the fluttering of the plants’ leaves. Therefore we kept as much space between them as
feasible. Okara was chosen because it is the most productive area in Pakistan for growing potatoes,
guava, and java plum. We zero down on the Okara district’s Coroda, Mozika, and Sante potatoes.
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In November 2020, farmers planted several varieties of potatoes in the open fields once they had
been acclimatized to their new surroundings. The leaves of the guava and java plum cultivars Choti
Surahi, Bari Surahi, Gola, Golden, and Sadabahar were chosen. Images and videos were taken at
different times of day, in varied lighting settings, during different seasons (summer, winter, spring,
and fall for guava and java plum), and under diverse weather, circumstances to track how these
factors affected disease prevalence and severity. To account for differences in the quality of the
dataset, the pictures were captured at various sizes. Following this, plant pathologists classified
the photographs according to whether or not they depicted guava, potato, or guava leaf. We used
5,680 images of guava, potato, and java plum leaves, both healthy and diseased, to create the PLSD
dataset. The plant leaf species collection includes 1900 photos of guava leaves, 1900 photographs
of potato leaves, and 1880 images of java plum leaves (Table 3.1).

Figure 3.2: (a) Guava Leaf (b) Potato Leaf (c) Java Plum Leaf Species.

3.21.2 The Plant Leaf Species Segmentation Dataset (PLSSD)

As can be seen in Figure 3.3, we used the Plant Leaf Species Dataset (PLSD) to select both healthy
and diseased leaves from guava, java plum, and potato plants. Then, using the Labelme semantic
tool, these photos were annotated. Various guava, java plum, and potato leaf species were used to
create a diverse dataset. Annotations made with python code were then utilized to construct the
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Table 3.1: Exposition of the Plant Leaf Species Dataset (PLSD).

Class Labels  Samples

Guava 1900
Potato 1900
Java Plum 1880

Total Samples 5680

masks of multi-class photos. The Plant Leaf Species Segmentation Dataset (PLSSD) was created
using the original images and masks, as depicted in Figure 3.3. Each dataset class consisted of

1329 images and the same number of masks. The PLSSD dataset consisted of 3987 images as
shown in Table 3.2.
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Figure 3.3: (a) Guava Leaf (b) Guava Leaf Mask (c) Java Plum Leaf (d) Java Plum Mask (e) Potato
Leaf (f) Potato Mask.
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Table 3.2: Summary of the Plant Species Segmentation Dataset (PLSSD) Splitting.

Class Samples Total Samples

Guava 966
Training  Java Plum 966 2,898
Potato 966
Guava 242
Validation Java Plum 242 726
Potato 242
Guava 121
Testing Java Plum 121 363
Potato 121
Total Samples 3,987

3.2.2 Image Pre-Processing

The PLSD and PLSSD image datasets were pre-processed to facilitate more reliable classification
outcomes and enhanced feature extraction. The python code was used to extract still images from
the plant videos. The photos were then resized to 224 x 224 pixels using python scripts that clipped
out the excess background.

3.2.3 Dataset Splitting

Inside the PLSD are three distinct data sets: a training set, a validation set, and a test set. After the
PSD-SE-DLM model had been trained with the training dataset’s help, its efficacy was evaluated
with the help of the validation and test datasets. Because of this, we segmented the data sets into
a training set (79.23%), a validation set (10.566%), and a test set (20.37%) (10.21%). The PLSD
dataset contains 4,500 pictures; 600 for training and validation; and 580 for testing. The same
image ratios of 79.23% were employed to train the guava, potato, and java plum-labeled images.
Regarding PLSD, the remaining 20.77% of fresh photos were divided into a validation and testing
group with 10.55% and 10.21%. '

Training, validation, and testing sets make up the Plant Leaf Species Segmentation Dataset (PLSSD).
The acrshortplssd training set consisted of 2,898 photos, with 966 pictures devoted to each of the
three classes (guava, java plum, and potato). In addition, the validation set included 242 samples
from each class and 726 photos altogether. The testing set, on the other hand, contained 363 sam-
ples for inference, with 121 examples for each category. For all classes, there were 3987 samples
in the PLSSD, as shown in Table 3.2
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Table 3.3: Summary of the Plant Leaf Species Dataset (PLSD) Splitting.

Guava Potato Java Plum

Training 1500 1500 1500 4500
Validation 200 200 200 600
Testing 200 200 180 580

Total Samples 1900 1900 1880 5680

3.2.4 The MobileNetV2-UNet Segmentation Model Architecture For Plant
Leaf Species

Images are classified by the network by assigning them a category (or label). It’s possible to know
the shape of an object, which pixel corresponds to which object, and so on, but it’s not always
possible. We would give each image pixel a specific label to help us sort it out. Segmentation is
breaking down a problem into smaller, more manageable pieces. A segmentation model provides
more information about the image than a more generalized model.

For example, in the traditional encoding-decoding framework used by the U-Net model of seman-
tic segmentation networks, the VGG-Net [224] network is the principal feature extraction network.
However, the mode!’s complex network topelogy and heavy-weight parameters make it impractical
for usage in embedded devices. MobileNetV2 was developed by Mark Sandler [225] as a acrshort-
cnn specifically for cellular phones. The MobileNet network is used as a basis for the improvement
of MobileNetV2.

When combined with depthwise separable convolution, the inverse residual structure reduces the
number of network parameters while significantly minimizing the loss of low-dimensional spatial
information, making the retwork more amenable to the real-time requirements of the embedded
platform. The MobileNetV?2 network is combined with the U-Net semantic segmentation model to
produce the MobileNetV2-UNet model. Figure 3.4 depicts the overall model structure as shown
in Figure 3.4 (B1-B17). MobileNetV?2’s 17-layer inverted residual block was used in place of
VGG’s standard convolutional network as the model’s feature extraction backbone. As can be
seen in Figure 3.4, to obtain more basic features, only the first two convolutional layers of U-
Net were retained (C1-C2). The model feature extraction efficiency is enhanced, and information
loss due to picture compression is diminished when the number of parameters is decreased. The
right side of Figure 3.4 depicts the decoding process, which is a feature recovery procedure in
which the feature recovery layers concatenate with the extracted features from the coding section
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(CN1-CNS). A feature recovery procedure is implemented.
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Figure 3.4: MobileNetV2-UNet Architecture.

3.2.5 The Proposed Plant Species Detection using Stacking Ensemble Deep
Learning Model (PSD-SE-DLM) Methodology

Ensemble learning [226] pools the predictions from different models into a single set to reduce
the possibility of making a wrong decision. For instance, in the gradient boosting ensemble tech-
nique [227], model development occurs through a continuous process of reflecting on and gaining
wisdom from previous errors. Suppose one of the models produces inaccurate predictions. In that
case, the subsequent models will attempt to make up for it by doing relatively well on the dataset,
thereby boosting the overall performance of the ensemble. The two most essential characteristics
that are anticipated to be possessed by a method are bias and variance [228]. The ensemble method
tends to reduce both of these characteristics by combining individual models, resulting in a robust
learner that is much more responsive and less data-sensitive.
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Figure 3.5: Ensemble learning techniques
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Bagging, boosting, and stacking are alternative strategies for merging different types of leamers, as
shown in Figure 3.5 [229]. Instead of bagging and boosting, Stacking trains the tier-2 (meta clas-
sifier) learner by integrating the predictions from many independent models trained as base/tier-1
learners simultaneously. Stacking can accomplish [229] independence amongst varied learners by
simultaneously merging base models and achieving [229] dependence between learners by pro-
gressively introducing the meta learner, As a consequence, it results in improved precision of the
forecast and a reduced likelihood of overfitting. The stacking approach is a meta-classifier that ag-
gregates the base learners’ projections and is used for model combinations. The base learner must
be chosen to construct an effective model when using the stacking process. Several deep learn-
ing algorithms, such as MobileNetV? [225], InceptionV3 [230], and ResNet50 [231], key-value
networks are utilized to select the base learner. These algorithms provide the highest possible
accuracy in classification while doing so. Incorporating the best features of MobileNetV2, Incep-
tionV3, and ResNet50 into a single model allowed us to obtain the highest accuracy. When it
comes to combining models, the stacking approach refers to a meta-classifier that integrates the
predictions made by several basic learners, as depicted in Figure 3.6.
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Figure 3.6: The Proposed Plant Species Detection using Stacking Ensemble Deep Learning Model
(PSD-SE-DLM)
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Transfer learning models are models that are trained on huge datasets that contain millions of
images. These models are taught usin g transfer learning. Since the models were trained using such
a vast dataset, they can easily generalize to new situations. The features learned from the larger
datasets help tackle a problem that consists of either fewer or smaller data. This helps eliminate
the requirement of training a model from the ground up. We used the transfer learning models as
the base models. The description of the basic learners are as an under:

3.2.5.1 The First Base Model: MobileNetV2

MobileNetV2 is an architecture built by Google based on 1.4 million photos from 1000 different
classes [225]. This architecture is a sophisticated type of DCNN that works quite well on mobile
devices. With MobileNetV2, there is no need to start the training process from scratch; all that
has to be done is a modification to the model’s output layers at the very end. The architecture of
MobileNetV2 is based on the architecture of its earlier iteration (i.e., MobilenetV1). It introduced
a new "inverted residual” structure to store the information. The issue of information being lost in
convolution blocks due to the presence of a nonlinear layer is solved by employing the Depthwise
Separable Convolution (DSC) method, which uses a linear bottleneck layer [225]. The fundamental
components of MobileNetV?2 are laid out in Fi gure 3.7.
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Figure 3.7: MobileNetV2 Architecture
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3.2.5.2 The Second Base Model: InceptionV3

There are three inception blocks in the Szegedy et al. [230]’s InceptionV3 model, each of which
has parallel convolutions. With such modules, the deep architecture’s computations become more
efficient, and the overfitting problem is alleviated. An annual event, the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) features 1.4 million photos from 1,000 different product
categories [232). This challenge is significant in the fields of picture classification and recog-
nition. Krizhevsky et al. [233] propose employing the AlexNet model and report considerable
gains in their object recognition and classification investigation. When that has been done, mul-
tiple convolutional models are created to bring the Top-5 error rate of object identification and
classification down to an acceptable level. Figure 3.8 shows the top five error rates from item
identification findings on ImageNet, and the most fantastic recognition results are observed for
GoogleNet (Inception-v1). The results indicate that boosting the model layer’s depth leads to im-

proved recognition performance.
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Figure 3.8: InceptionV3 Architecture

Compared to its predecessor, GoogleNet, the Inception-v3 model performs exceptionally well in
object recognition (Inception-v1). The Inception-v3 architecture comprises three pieces: the en-
hanced Inception unit, the regular convolutional block, and the classifier. Feature extraction uses
the fundamental convolutional block, consisting of layers that alternate between convolutional and
max-pooling. The enhanced Inception module was developed based on NetworkIn-Network [234],
a method in which multi-scale convolutions are carried out in parallel, and the convolutional re-
sults of each branch are further concatenated. When auxiliary classifiers are used, training results
are more consistent, greater gradient convergence is achieved, and problems with concurrently
disappearing gradients and overfitting are relieved. All of these benefits are made possible by the
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utilization of auxiliary classifiers. To decrease the number of feature channels and shorten the
training time, Inception-v3 extensively uses the 1 x 1 convolutional kemnel. In addition, the huge
convolution is broken down into a series of smaller convolutions, bringing the total computation
cost and the number of parameters under control. In conclusion, Inception-superior v3’s perfor-
mance in object identification places it at the forefront of the present state-of-the-art because of its
unique architecture. This model is, therefore, widely used for the function of transfer learning.

3.2.5.3 The Third Base Model: ResNet50

The ResNet [231] model is one of the more well-known ones, and it has an excellent track record
of success in various computer vision challenges. Other examples include Inception v3 [230],
MobileNet [225], and GoogleNet [235], amongst many others. These models are trained with
data from numerous datasets that include many different kinds of images. Such pre-trained model
weights can be used by transfer learning techniques to efficiently address various computer vi-
sion challenges (dataset and computing resources). The ResNet50 model, a Convolutional Neural
Network (CNN), comprises fifty layers. Using the ResNet50 model’s pre-trained weights, we per-
formed transfer learning on a small set of photos of plant species. The internals of the ResNet50
model and the many pre-trained weights it makes use of are discussed below. It can see that the
overall structure of the ResNet50 model, including the fine-tuning setup for ResNet50, is in Figure

3.9.
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Figure 3.9: The ResNet50 Architecture
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3.2.6 Experimental Setup

The proposed techniques were trained and tested using a Google Colab Pro account with powerful

Graphical Processing Units (GPUs) without configuration requirements. The transfer learning

deep learning models were used for training. We conducted four experiments in which three base

models were used then a stacking ensemble model was developed using the output of the base

models. All experiments of proposed PSD-SE-DLM used Adam optimizer with a learning rate

of 0.0001, and SparseCategoricalCrossentropy loss functions were utilized for compiling all the

models. We used 16 batch size, early stopping, saved the best val_loss model, and 5 epochs to
train all the models. The proposed MobileNetV2-Unet model used 4 batch size, 50 epochs, early
stopping, and saved the best val loss model. The configuration details of all the models depicted

in Table 3.4.

Table 3.4: PSD-SE-DLM Experimental Setup Configurations.

PSD-SE-DLM Configurations
Platform Used Google Colab Pro account
Base Models Used MobileNetV2, InceptionV3, ResNet50
Meta Classifier PSD-SE-DILM
Optimizer Used Adam
Learning Rates Used 0.0001

Loss Function Used

SparseCategoricalCrossentropy

Batch Size Used 16
Batch Size 5
MobileNetV2-UNet Configurations
Batch Size 4
Epochs 50
Training Stopping Criteria | Early Stoping
Saved Model Best Val Loss

3.2.7 Evaluation Measures

3.2.7.1 Classification Accuracy

Take the total number of correct classifications made by the classifier and divide it by that number

to get a sense of its accuracy.

Accuracy =

TP+TN

(TP+TN + FP + FN)

3.1
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3.2.7.2 Precision

When evaluating a model’s performance, it’s important to remember that classification accuracy
isn’t always an accurate indicator. Expecting a high accuracy rate is unreasonable because the
model is not learning anything, and all samples are assumed to be of the best quality. It may
happen if there is an imbalance in the number of samples in each class. Following on the heels
of this definition, precision is the proportion of True Positive (TP) (accurately identified samples)
relative to the total number of positive samples identified (either incorrectly or correctly), which is
stated as:
TP

810N = ——— 3.2
Precision (TP + FP) (3.2)

3.2.7.3 Recall

Recall the fraction of input samples from a class that the model correctly predicts is another critical
metric. The formula for determining the recall is as follows:

TP
Recall = m (33)

3.2.7.4 F1 Score
Recall and precision can be measured by using a statistic known as the 1 score:

2 x Precision x Recall
F18 = .
oeore (Precision + Recall) (3.4

3.2.7.5 ROC Curve

Cutoff limits for classifiers generate a Receiver Operating Characteristic (ROC) curve. The cutoff
threshold of a superior model can be calculated using the widely used ROC curve. The TPR
contrasts favorably with the FPR at several different cutoff points.

3.2.7.6 Dice Score

In image segmentation and binary classification tasks like those found in medical image analysis or
natural language processing, the Dice score (also known as the Dice coefficient or Dice similarity
coefficient) is a statistical metric used to measure the similarity or overlap between two sets or

groups.
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The formula for determining a Dice score is as follows:

2-|AN B

2. < 3.5
A+ 18] G-

Dice Score =

Where:
* The cardinality of the union of two sets is denoted by the expression [A N B|.
* The value | A| indicates how big the set A is.
* |B| represents the size of set B.

There can be no overlap or similarity between the sets if the Dice score is zero, and there can be
100% overlap or 100% similarity if the score is one. When comparing two sets, a higher Dice
score indicates a higher leve! of resemblance or agreement.

In applications such as image segmentation, a high Dice score indicates good agreement or accu-—
racy in the predicted segmentation (set A) relative to the ground truth segmentation (set B).

3.3 Results and Discussion

The experimental results focused on the following:

1. The performance of the MobileNetV2-UNet segmentation model was analyzed on Plant Leaf
Species Segmentation Dataset (PLSSD).

2. Plant Species Detection (PSD) was used to evaluate the effectiveness of the proposed Plant
Species Detection using Stacking Ensemble Deep Learning Model (PSD-SE-DLM).

3. Compare the suggested PSD-SE-DLM model to the best existing models.

3.3.1 The Performance Analysis of the MebileNetV2-UNet Plant Species
Segmentation
Figure 3.10 (a) is a performance graph depicting the proposed model’s loss and dice score perfor-

mance on both the training and validation sets. The training loss decreased from 10.30% to 5.91%
after 28 epochs. The initial rate of validation failures is 6.45%, falling to 5.95% by the epoch’s
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conclusion. Dice Score during training and validation of the suggested MobileNetV2-UNet is dis-
played in Figure 3.10 (b). Validation dice score started at 96.53% and increased to 96.74% by the
period’s conclusion, whereas training dice score was 89.47% over that time. The test set prediction
results from the MobileNetV2-UNet segmentation model are shown in Figure 3.11. The suggested
method obtained a test set (unseen data) dice score of 96.38%. The complicated and damaged
leaves of guava, java plum, and potato were successfully segmented using the proposed segmen-
tation method. MobileNetV2-UNet works remarkably well as a plant leaf segmentation system,
according to all parameters.
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Figure 3.10: The MobileNetV2-UNet Plant Leaf Segmentation Model Dice Score and Loss Graph.
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Figure 3.11: The MobileNetV2-UNet Plant Leaf Segmentation Model Prediction on Test Set.

3.3.2 The Performance Analysis of the Plant Species Detection using Stack-
ing Ensemble Deep Learning Model (PSD-SE-DLM)

The proposed Plant Species Detection using Stacking Ensemble Deep Learning Model (PSD-SE-
DLM) performance for detecting plant species was also observed. As shown in Figure 3.12, the
training accuracy began at 94.97% after the first epoch and achieved its maximum (100%) follow-
ing the final epoch of the algorithm. During the start to final epoch, PSD-SE-DLM training loss
dropped from 39.18 t0 0.52, and PSD-SE-DLM validation loss dropped from 14.0 to 2.40. The val-
idation accuracy decreased from 99.32% at the beginning of the previous epoch to 99.16% at the
end of that era. Training loss decreases dramatically from epoch 1 to 5 (see Figure 3.12), demon-
strating that the model is improving and learning. An increase in generalization performance is
also shown in the validation loss from epoch 1 to epoch 2. Nonetheless, there is a minor rise in
validation loss during epoch 3, followed by a drop during epochs 4 and 5. During epoch 1, the
training loss for the model is 39.18, which is the maximum it will get. It may imply that the model
has room for improvement after the initial training. Training loss is minimized to 0.52 on epoch
5, the best performance of the model. During epoch 1, the validation loss is 14%, the maximum
it will become for this model. During epoch 5, the validation loss is 2.40 percentage points lower
than at any other time in the model’s history. It may indicate that the model was not initially tuned
to provide the best possible generalization and needs to be adjusted. Training and validation loss
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values decrease, indicating that the PSD-SE-DLM model is improving. However, the model may
require additional optimization and fine-tuning to increase performance, as evidenced by the high
values of training and validation loss at the outset. The PSD-SE-DIM model generally does well
on both the training and validation data, as measured by the accuracy values. Figure 3.12 shows
that at the end of the second epoch, the model has learned to identify all training data correctly. The
model needs work on its generalization to unseen data if the validation accuracy stays at 99.16%
as it does in the remaining epochs.

PSD-SE-DLM Model Training and Validation Accuracy PSD-SE-DLM Modet Training and Validation Loss
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Figure 3.12: The Proposed PSD-SE-DLM Model Accuracy and Loss Graph

Accuracy, recall, precision, and f1 score for the PSD-SE-DLM method on the test set of unseen
data are detailed in Table 3.8. As can be viewed in Table 3.5, the PSD-SE-DLM technique did
quite well on the test data. Precision and recall for the guava plant leaf species were both 99%, and
recall was 100%. Java plum class obtained a 100% f1 score, recall rate, and precision, respectively
while the potato class achieved the f1 score of 99%, 98%, and 100%, respectively. High scores
for precision and recall show that the model is effective at distinguishing between plant species.
As shown in Table 3.5, the model has a perfect score for the guava and java plum species and a
98.5% score for the Potato species. The model’s accuracy and recall are substantial, as measured
by the f1 score (the harmonic mean of these two metrics) for all three plant species. On average,
the suggested PSD-SE-DLM model has a 99.48% success rate in classifying all three plant species.

An intuitive visual indication of a model’s classification accuracy was obtained using a confusion
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Table 3.5: Classification Accuracies, Precision, Recall & F1 Score of the Suggested PSD-SE-DIM
Technique.

Performance Measures Guava JavaPlum Potato Average

Accuracy 100% 100% 98.5% 99.48%
Precision 99% 100% 100% -
Recall 100% 100% 98% -
F1 Score 99% 100% 99% -

matrix CM. The CM displayed the accurate guesses along the diagonal and the wrong ones off to
the side. A darker colour indicated that the proposed model of the relevant class had a greater clas-
sification accuracy, whereas a lighter colour indicated misclassified samples were present. Figure
3.13 depicts the CM utilized to assess the proposed model’s efficiency on the test set. Overall, the
PSD-SE-DLM model performed extremely well in classifying plant leaf species, with an accuracy
of 99.48%, as depicted in Figure 3.13. All photos of guava and java plum leaves were correctly cat-
egorized, demonstrating the model’s proficiency in identifying these plant species. The model also
performed very well when classifying photos of potatoes, with only three out of 200 cases being
misclassified, for an accuracy of 98.50%. Results from the confusion matrix showed that the sug-
gested PSD-SE-DLM model performed exceptionally well on the experimental dataset, correctly
classifying all of the plant leaf species tested.

PSD-SE-DLM Confusion Matrix on Test Set

175

Guava
150
% 128
; Java_Plum ; 1100
f= 3
S0
Potato 1 %
0

Predicted Label
accuracy=0.9948; misclass =0.0052

Figure 3.13: The Proposed PSD-SE-DLM Model Confusion Matrix on Test Set
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Figure 3.14 demonstrates how the ROC curve can be used to assess the proposed PSD-SE-DLM
model’s efficacy. The potato class is depicted in a pale green colour, while the element of chance
is shown in blue. The light blue tint signifies the guava. The orange colour indicates the java plum
class. The PSD-SE-DLM model outperformed its competitors, with classes like guava and java
plum obtaining around 100% and the potato class getting an area under the curve of 99%. The area
under the curve (AUC) values between 80 and 90 in a ROC plot are considered good, and AUC
values between 90 and 100 are considered excellent in classification issues, as stated in [236].

PSD-SE-DLM ROC Curve Graph on Test Set
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Figure 3.14: The Proposed PSD-SE-DLM Model ROC Graph on Test Set

All the evaluation measures such as, precision, recall, f1 score, accuracy, confusion matrix, and
ROC curve showed that the proposed PSD-SE-DLM model has achieved excellent performance to
classify the guava, java plum, and potat plant leaf species. The proposed PSD-SE-DLM model has
the highest classification accuracy (99.48%) on the experimental dataset. Using a stack ensemble
technique, the proposed PSD-SE-DLM model mixes many base models to make use of the best
features of each and boost classification accuracy.
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3.3.3 Comparison Analysis of the Proposed PSD-SE-DLM Model with Ex-
isting Techniques

In literature no study has been found that worked on guava or potato or java plum or combination of
three plant species. Therefore, comparison of this research is not possible. We compare our model
with the other plant leaf species. The study presented in [46] proposed an ensemble model which
can detect the multiple plant leaf species and got the 92.60% accuracy as presented in the Table
3.6. Xio et al. [44] got 92.8% accuracy on InceptionV3 and ResNet50 model obtained 92.4%
accuracy. Pereira et al. [45] investigated the AlexNet and achieved 89.75% accuracy. Pearline
and Kumar [58] investigated CART, KNN, NB, MLR, and LDA classifier and obtained 98.71%
accuracy using MLR classifier. The proposed ensemble model used the stack ensemble technique
to find the guava, potato and java plum plant leaf species and obtained 99.48% accuracy. The
suggested ensemble model used the stack ensemble technique for the guava, potato, and java plum
leaf species and achieved 99.48% accuracy, as depicted in Table 3.6. The results showed that the
suggested PSD-SE-DLM technique attained higher accuracy than the existing studies.

Table 3.6: Comparison of the Proposed PSD-SE-DLM Model with other Existing Models.

Ref. Year Methodology Dataset Accuracy

[46] 2017 Ensemble Mode] LifCLEF2017 92.60%

[44] 2018 InceptionV3, ResNet50  PlantCLEF, Oxford Flower InceptionV3 (92.8%),

ResNet50 (92.4%)

[451 2019 AlexNet DRGV2018, Flavia 89.75%

[58] 2022 CART, KNN, NB, MR, Flavia 98.71%

and LDA
Proposed Model PSD-SE-DIM PLSD 99.48%

3.3.4 Comparison Analysis of the Proposed PSD-SE-DLM Model with State-
of-the-Art Techniques

The proposed PSD-SE-DLM model was put to the test on the PLSD dataset by combining it with
the MobileNetV2 [225], ResNet50 [231], Googl.eNet [235], and AlexNet [237] models using
transfer learning. Thus, there was necessary to be consistent between studies concerning the en-
vironment and the methods used to enhance the data. The accuracy of modern deep learning
methods is displayed in Table 3.7. As shown in Table 3.7, the accuracy of the MobileNetV2 model
was 95.52%, ResNet50 was 96.10%, GoogLeNet was 92.35%, and AlexNet was 95.87%, and that
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of the suggested PSD-SE-DLM model was 99.48%. As shown in Table 3.7, the findings demon-
strated that the proposed PDDCNN model achieved the best accuracy (99.75%) compared to other
state-of-the-art models, as depicted in Figure 3.15.

Table 3.7: Comparison of the Proposed PSD-SE-DLM Model with other State-of-the-Art Models.

Ref. Methodology Dataset Accuracy
[225] MobileNetV2 PLSD 95.52%
[231] ResNet50 PLSD 96.10%
[235] GoogLeNet PLSD 92.35%
[237] AlexNet PLSD 95.87%

Proposed Model PSD-SE-DIM PLSD 99.48%

Comparision of the Proposed PSD-SE-DLM Model
with State-of-the-Art Models.
102.00%
100.00%
98.00%
96.00% 95.52%

96.10%
94.00% 92.35%
92.00% .
90.00% -
88.00%

MobileNetv2  ResNetS0 GoogleNet AlexNet PSD-SE-DLM
Models

Accuracy

Figure 3.15: The Proposed PSD-SE-DLM Model’s Comparison with State-of-the-Art Models.

3.4 Chapter Summary

When classifying and segmenting plant species using deep learning, detecting ones that have not
been discovered before can be challenging. It is difficult to precisely separate and describes many
different plant species since their outward appearances are strikingly similar. While the use of
robust deep learning architectures has helped to boost classification accuracy, these structures
frequently yield models that rely on a massive training dataset and hence need to be more scal-
able. This chapter proposes a hybrid approach to classifying the guava, potato, and java plum leaf
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species. The hybrid model that has been presented utilizes not one but two new methods. The
guava, potato, and java plum plant species have been segmented using MobileNetV2-UNet archi-
tecture, and this is the first model to use this design. The Potato, Java Plum, and Guava Plant
Species Detection using Stacking Ensemble Deep Learning Model (PSD-SE-DLM) is a second
model that uses plant species detection stacking ensemble deep learning. To train the suggested
models, two datasets called Plant Leaf Species Dataset (PLSD) and Plant Leaf Species Segmen-
tation Dataset (PLSSD) were produced in Punjab, Pakistan. These datasets included healthy and
diseased leaf samples of guava, java plum, and potato plants. The suggested model was com-
pletely automated compared to existing leaf species detection techniques. The plant leaves were
photographed and manually labeled for training reasons. With the proposed model, real-time iden-
tification of plant leaves is also possible.
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Chapter 4

Real—-Time Multiple Guava Leaf Disease
Detection from a Single Leaf Using Hybrid
Deep Learning Technique

4.1 Overview

Because of its adaptability to many climates and soil types and its high medicinal and nutritional
qualities, guava (Psidium guajava L.) has become commercially significant in the subtropics and
tropics. The guava tree’s fruit and leaves are extremely rich in minerals and nutrients [238]. Food
production should be increased up to 70% by 2050 due to an increase in the population {5, 239].
Due to how they might affect the quality of a product, many methods for diagnosing plant diseases
have been created [22~24]. These techniques include visual observation, spectrometer analysis
[22], and molecular techniques, i.e., the polymerase chain reaction [23] and polymerase chain
reaction [24]. These methods are not suitable as they are not time efficient, and sometimes they
are much more expensive and need technical experts etc.

The advent of CV, ML, and Al has made improvements in developing computerized models, al-
lowing for accurate and early identification of plant leaf diseases. Several methods, including
traditional ML techniques like KNN, SVM, random forest, etc., are utilized for automating the
detection of plant diseases. A significant difference prevails in the accuracy of the procedures
applied. [238, 240]. Though the proposed methods achieved multiple detections, identification
accuracy is comparatively low, particularly for managing massive databases containing various
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imperative features.

Deep Learning (DL) has recently become the standard for tackling complex problems in the real
world. The precision and efficiency of the deep learning approaches are unmatched. The primary
applications of DL in agriculture [241--243] have improved agricultural production through evo-
lution, control, and sustainability. DL helps illuminate a few complex tasks like pattern analysis,
image classification, facial expression, medical disease classification, relation extraction, sentiment
and natural language processing [244-248].

Different deep learning models are trained to do different things when detecting and identifying
plant leaf diseases. Let us get into these endeavors: One use of deep learning for plant disease
diagnosis is determining whether or not an image of a leaf is of a healthy or sick kind. The model
is educated using a collection of labeled images of both healthy and diseased leaves. Disease
detection aims to create a model that can reliably differentiate between healthy and sick leaves
using only the leaf images and the visual patterns and attributes collected from them. By examining -
new, unseen leaf images (test data), the trained model can automatically detect the presence of
illnesses in plant leaves. Disease detection in plant leaves using deep learning takes it one step
further by trying 10 identify the particular pathogen or illness that has affected the leaf. Training a
deep learning model requires a dataset of annotated photos of various leaf diseases, each belonging
to a predefined class. The goal of disease identification is to create a model that can reliably assign
an observed symptom to one of several disease categories based on an image of a leaf. The model
must be taught to recognize the specific symptoms and patterns indicative of various diseases. Once
the model has been trained, it can identify the disease in a leaf image. In summary, when discussing
plant leaf diseases in the context of deep learning, the distinction between healthy and sick leaves
is the primary focus, while identifying the exact diseasc or pathogen present in a leaf image is
the primary goal of plant leaf disease identification. There is a difference in the classification
granularity between the two objectives, but both require training deep learning models on labeled
datasets.

Guavas are native to South America, although many additional types of guava are grown in other
parts of the world. Different environmental conditions, guava cultivars, leaf colours, and other
factors contribute worldwide to the fantastic range of guava diseases. Diseases of various kinds
attacked most crops or leaves. One disease on one leaf is the main focus of the literature, although
previous studies overlooked the coexistence of many disorders on a single leaf. As reported in
the literature, real-time disease diagnosis and localization is another issue {249]. We tried to find
research reports on detecting numerous guava diseases on a single leaf. The localization of disease
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Figure 4.1: Diagram Illustrating the New Hybrid DL Approach.

4.2.1 Data Preparation

The success of a DL technique is highly dependent on using a high-quality dataset. We created the
Guava Patches Dataset and Guava Leaf Disease Dataset, real-time datasets gathered in the Okara
district of Central Punjab, Pakistan. Here is an in-depth breakdown of the various types of data
sets:

4.2.1.1 Guava Patches Dataset (GPD)

A real-time dataset was developed in the form of videos and pictures. The dataset capturing details
is already described in section 3.2.1.1. With the help of Python code, guava plant videos were
converted into frames (images). Then, with the assistance of plant disease experts, patches of plant
images were annotated into infected ones (Figure 4.2), ensuring the dataset’s authenticity. LabelMe
tool [250] was used to make the annotations, and the binary masks of the annotated images were
generated with the help of python code. The Guava Patches Dataset (GPD) contained 1190 images
of healthy and infected patches exhibited in Table 4.1. The dataset can be accessed online [251].

(b)

Figure 4.2: (a) Infected Patches Images (b) Infected Patches Masks.
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Table 4.1: Guava Patches Dataset (GPD) Summary

Split Images
Training 956
Validation 240
Testing 120
Total 1196

Figure 4.3: (a) Examples of Guava Leaf Images and (b) Examples of Guava Images Leaves’ Masks.

4.2.1.2 Guava Leaf Disease Dataset (GLDD)

Using the Guava Patches Dataset, the guava leaf images were extracted using the proposed GLSM
model. The guava leaf images and their masks were shown in Figure 4.3. The leaves were anno-
tated with the help of plant pathologists into five classes: nutrient deficiency, insect attack, anthrac-
nose, wilt, and healthy, as depicted in Figure 4.4. The five classes contain 2542 images with 6241
targets (labels/annotations) are depicted in Table 4.2. The dataset is available to be viewed on the
web [252]. After annotating the images of GPD and GLDD, the Roboflow [253] was employed
to perform the auto-orient with EXIF-orientation stripping and resizing the image size into 416 x
416. Deep learning models needed massive training data, which helped avoid over-fitting. As a
result, the datasets were improved with the aid of data augmentation tools used on the Roboflow
website. Several data augmentation methods were used for this purpose. It includes horizontal
flip with 50% probability, vertical flip with 50% probability, 90-degree rotation with equal chance
(upside-down, clockwise, and counter-clockwise), random rotation degree range -15 and +15, ran-
dom brightness between -25 and +25%, and random shear degree range -15 to +15 vertically and
-15 to +25 horizontally were all used.
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Table 4.2: Guava Leaf Diseases Dataset (GLDD) Summary
- Split Images Class Label Samples Total Samples

Anthracnose 2180
Healthy 447

Training 2346  Insect Attack 1398 5777
Nutrient Deficiency 1281
wilt 471
Anthracnose 53
Healthy 24

Validation 98 Insect Attack 67 232
Nutrient Deficiency 69
wilt 19
Anthracnose 53
Healthy 24

Testing 98 Insect Attack 67 232
Nutrient Deficiency 69
wilt 19

Total 2542 6241 6241

Figure 4.4: Examples of Guava Leaf Multiple Diseases Images.

Javed Rashid: 155-FBAS/PhDCS/FI 6 Page 86 of 179



Chapter 4. Real—Time Multiple Guava Leaf Disease Detection from a Single Leaf Using Hybrid Deep Learning
Technique

4.2.2 Image Preprocessing (Data Division)

The suggested technique was trained, validated, and tested by dividing datasets into various groups.
The model was then tested on unseen data to ensure it was accurate. According to Table 4.1,
1196 pictures were used as as a part of the GPD training set, with the same number of masks
(targets/labels) for the infected classes. The GPD dataset’s training set included 956 photographs
and targets, while the validation set had 240 photos with masks. However, the test set had 120
images and 120 masks.

Each training, validation, and test set in the GLDD contained 2346 images and 5777 targets (see
Table 4.2). The training set of GLDD consisted of 2180, 447, 1398, 1281 and 473 labels for
anthracnose, healthy, insect attack, nutrient deficiency and wilt class. The validation set included
53 targets for anthracnose, 24 for healthy, 67 for insect attack, 69 for nutrient deficiency and 19
annotations for wilt class. At the same time, the test set contained 53, 24, 67, 69 and 19 images for
anthracnose, healthy, insect attack, nutrient deficiency and wilt class.

4.2.3 The Proposed Network

4.23.1 Guava Infected Patches Modified MobileNetV?2 and U-Net (GIP-MU-NET) Segmen-
tation Technique

First, the infected guava areas must be cut into smaller pieces. In order to do this, we created
a brand new deep learning model we call GIP-MU-NET. The proposed method implements an
encoder-decoder U-Net [254] architecture. However, we replaced the encoder part with the mod-
ified MobileNetV2., The computational cost is further reduced by eliminating the block IDs 6,
9, 10, 13, and 16. The filters are also decreased from 160 to 128, 320 to 160, and 1280 to 256.
As a decoder, the up-sampled component of U-Net is employed. MobileNetV?2 [225] is a neural
network designed for machines with low processing capability, such as mobile devices. The Mo-
bileNetV2 offers favourable results in terms of accuracy while needing less memory and processing
cost. When this is done, they become a superfast network for handling images. MobileNetV? is
a lightweight CNN used in synchronous tasks due to its reduced number of trainable parameters
and reduced computational requirements. Figure 4.5 depicts the GIP-MU-NET architecture with
encoder-decoder components. Features are extracted from the input dataset using an updated ver-
sion of MobileNetV2; GIP-MU-NET receives these features to complete the segmentation task.
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Figure 4.5: Architecture of the Proposed GIP-MU-Net Model.

4.2.3.2 Guava Leaf Segmentation Model (GLSM)

This study aims to make the Guava Leaf Segmentation Model (GLSM) from a U-Net-like model to
segment guava leaves from the images. Figure 4.6 shows the proposed GLSM model’s structure.
The encoder section of this model accepts 416x416x3 dimensions as input, and the encoder part’s
output is then passed on to the next part of the model. As a result, the encoder part’s output was
processed by the decoder. Both an entering block and a residual block make up the encoder. The
BN and ReLu activation function are utilized in the Conv2D encoding algorithm. The residual
block consists of ReLu, SepereableConv2D, and batch normalization. Three residual blocks are
employed in the encoder. The structure of each residual block is the same. Sixteen filters are
applied in the entry block. Each of the three residual blocks has different filters: 32 for the first, 64
for the second, and 128 for the third. The decoder employs ReLu, Conv2D transpose, and batch
normalization to correct the inversion of the residual blocks. The leftover blocks that were inverted
have been joined together. In the decoder, we employ the utilization of four inverse residual blocks.
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It is the opposite in the decoder, where the filters are utilized in the first, second, third, and fourth
inverted residual blocks (128, 64, 32, and 16 filters, respectively). The examples of guava leaf
images concerning respective masks are represented in Figure 4.3.
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Figure 4.6: Architecture of Proposed GLSM Method.
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4.2.3.3 Guava Multiple Leaf Diseases Detection (GMLDD) Technique on a Single Leaf

The proposed Guava Multiple Leaf Diseases Detection (GMLDD) Technique on a Single Leaf
used YOLOVS architecture, and it is already discussed in section 2.6. We have changed the default
optimizer (SGD) to Adam, and it is because the Adam optimizer is one of the extensively used
optimizers. It has been adopted as a standard for deep learning studies and is suggested as the
default optimization approach. Compared to other optimization methods, this requires less tuning
and has fewer overheads regarding development complexity, execution time, memory usage, and
storage requirements [255]. Therefore, the Adam optimizer was employed in this study. All other
configuration details of the proposed GMLDD model are described in the experimental setup.
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Table 4.3: Configuration Parameters of the Proposed GMLDD Model

Model Name Guava Multiple Leaf Diseases Detection Model
Number of Classes 5 (Anth, Healthy, Inse_Att, Nut_Def, and Wilt)
Image Size 416 x 416

Batch Size 32

Epochs 500

Training Optimizer Adam

4.2.4 Experimental Setup

The approaches were trained and evaluated using powerful Graphics Processing Units GPUs for
free on Google Colab. No special configuration was necessary. The datasets were labeled using the
publicly accessible LabelMe tool [250]. Image scaling, data enhancement, and data partitioning

were all accomplished with the help of the Roboflow [253] website. The models were completely
retrained.

The GIP-MU-NET uses the following hyperparameters: (416x416) training image size, 8-batch
size, 125-epochs, Adam optimizer, binary cross-entropy loss function, and an initial learning rate
of (1e-4). In this case, the LR is decreased by a factor of 0.1 thanks to the ReduceLROnPlateau
procedure. If the Val accuracy has not changed after ten epochs, the minimum LR will be set to
le-6. The best possible Val accuracy weight was safely archived.

For training a DL network, the GLSM model uses hyperparameters (416x416 image size, 4 batch
size, 75 epochs, and le-4). The Adam optimizer and the SGD optimizer are used in experiments.
The binary cross-entropy loss function is used to construct the proposed technique. When the
Reducel.ROnPlateau function is used, the LR is decreased by 0.1. After ten epochs, the LR should
be at least 1e-6 if the val accuracy has improved.

Table 4.3 displays the setup information for the proposed GMLDD model, which employs images
with a resolution of 416x416. The GMLDD model has a 32-batch size and a 500-epoch time step.
The suggested model is trained with an Adam optimizer. Anthracnose, healthy, insect assault,
nutritional deficit, and guava wilt illness are some of the categories used.

4.2.5 Evaluation Measures

The accuracy of the suggested model was measured in various ways. Section 3.2.7 reviewed the
recall, precision, and f1 score. The performance of the recommended strategy was also assessed
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using mean Average Precision (mAP), in which the harmonic average of recall and accuracy is
determined.

mean Average Precision (mAP): We compute the mAP at various levels of IoU for each class k,
and then we average these results to get the mAP for the entire set of test data.

k=n

1
mAP = - Z AP, 4.1)

k=1

AP, = the APof classk

n = thenumber of classes

4.3 liesults and Discussion

All the proposed methods’ performance was evaluated using different evaluation measures such as
precision, recall, f1 score, accuracy, and mAP. In this section all the experimental results focused
on the following:

1. The Guava Patches Dataset (GPD) was used to analyze the efficiency of the suggested GIP-
MU-NET methods.

2. We used the Guava Leaf Segmentation Model (GLSM) to separate individual leaves from
clusters of leaves.

3. The proposed Guava Multiple Leaf Diseases Detection Model performance was measured
using Guava Leaf Disease Dataset (GLDD) to identify and localize the guava multiple dis-
eases on a single leaf.

4. We compared the proposed GMLDD model with other YOLO variants.

4.3.1 Proposed Guava Infected Patches Modified MobileNetV2 and U-Net
(GIP-MU-NET) Performance

We conduct two experiments to evaluate the proposed GIP-MU-NET model performance. Data
augmentation techniques are applied to the training set in the first experiments. Fi gure 4.7 depicts
the proposed model’s dice score and loss performance throughout the training and validation sets.
Fast loss reduction during training is visible up to epoch 57, after which it stabilizes at less than

Javed Rashid: 155-FBAS/PhDCS/F16 Page 91 of 179



P

Chapter 4. Real—Time Multiple Guava Leaf Disease Detection from a Single Leaf Using Hybrid Deep Learning
Technique

10%. However, after the first 15 epochs, the validation loss stabilizes at around 30%. Figure 4.7
displays the training and validation dice score of the suggested GIP-MU-NET. Results show that
training dice score rapidly improves up to 40 epochs, reaching nearly 96.62%, and validation dice
score similarly improves up to 20 epochs, reaching nearly 96.62%, while 92.38%.
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Figure 4.7: GIP-MU-NET Model Dice Score Graph using Data Augmentation.

Table 4.4 displays the performance of the suggested GIP-MU-NET technique on data that has
not been viewed previously (the test set). It demonstrates that the proposed model was 92.41%
accurate on unseen data (Test Set) using data augmentation techniques applied on training set, as
shown in Figure 4.8. Figure 4.9 displays the projected patch results from the suggested model. The
GIP-MU-NET performs exceptionally well according to all criteria.
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Table 4.4: The Proposed GIP-MU-NET Dice Score Comparison on Test Set.

Images Dice Score

Data Augmentation 120 92.41%
Without Data Augmentation 120 64.50%

GIP-MU-NET Model's Dice Score Performance Comparion

* Data Augmentation & Without Deta Augmenation

92.41%

25 5853

Modek

Deta Augmentstion Without Deta Augmenation

Figure 4.8: The Proposed GIP-MU-NET Dice Score Comparison Graph on Test Set.

Figure 4.9: (a) Original Images, (b) Ground Truth, and
Data Augmentation Techniques.

(c) Infected Patches Predictions Applying
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We do not use data augmentation methods in the second experiment on the training set. The pro-
posed model’s dice score and loss performance across the training and validation sets are shown in
Figure 4.10. Loss suppression is performed gradually throughout training, as depicted in 4.10 (a).
However, the validation loss worsens when training continues, revealing the overfitting problem.
During the training process, it does not appear steady. Dice score during training and validation
for the proposed GIP-MU-NET is shown in Figure 4.10 (b) below, without using any data aug-
mentation methods. It is clear that as training progresses, dice score improves, although validation
dice score initially appears unstable before stabilizing somewhat. Both the training and validation
phases have demonstrated the overfitting issue. Without employing data augmentation techniques
on the training set, the suggested GIP-MU-NET model can reach an dice score of 92.26% by the
end of the training process and obtains 64.94% validation dice score.
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Figure 4.10: The Proposed GIP-MU-NET Dice Score Graph Without Data Augmentation.

Figure 4.11 displays the prediction patch results from the proposed GIP-MU-NET model. The
results show that the proposed GIP-MU-NET model faces the problem of overfitting without ap-
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plying data augmentation techniques. The proposed GIP-MU-NET model obtains 64.52% dice
score on the test data when we do not apply any data augmentation technique on the training set,
as shown in Table 4.4 and Figure 4.8.

Figure 4.11: (a) Original Images, (b) Ground Truth, and (c) Infected Patches Predictions Without

‘Data Augmentation Techniques.

All the evaluation matrix show that the proposed GIP-MU-NET having data augmentation tech-
niques apply on the training set obtained the excellent performance as compared to do not apply
data augmentation technique.

We propose the following changes to the GIP-MU-NET to increase its efficiency: 1). If the dataset
were improved, it might work better. Overfitting happened if training data needed to be sufficiently
large for the deep learning methods. Improving the dataset may help eliminate the overfitting issue
[256]. 2). Data augmentation methods are an additional tool for improving the dataset. Only three
data augmentation strategies were employed in this study. So, with the proper data augmentation
techniques, we can make the dataset better.
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4.3.2 Proposed Guava Leaf Segmentation Model (GLSM) Performance

The proposed GLSM model performance has been observed by conducting two experiments. In
the first experiment, the Adam optimizer is used, and the other experiment is utilized the SGD
optimizer. In the first experiment, the performance of the proposed GLSM model is discussed by
training and validation process using Adam optimizer, as shown in Figure 4.12. Training loss for
the proposed GLSM technique drops swiftly to 25% until 50 epochs (Figure 4.12). In comparison,
validation loss drops rapidly to 37% until 20 epochs (also shown in Figure 4.12), and then loss
declines slowly to 35% after 50 epochs. Early on, the proposed technique shows significant im-
provement in training dice score. After 50 epochs, it reaches 86%, and after 17 epochs, it reaches
82% for validation dice score. The training and validation process shows exceptional segmentation

results using the Adam optimizer, as depicted in Figure 4.12.
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Figure 4.12: GLSM Model Dice Score Graph Using Adam Optimizer.
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Table 4.5: The Proposed GLSM Dice Score Comparison on Test Set.

Optimizer Images Dice Score
Adam 119 83.40%
SGD 119 73.79%

The proposed GLSM technique is evaluated by running test data that has yet to be analyzed. Ac-
cording to Table 4.5, the proposed strategy improved dice score by 83.40% on 119 test images,
as depicted in Figure 4.14. Figure 4.13 displays the proposed GLSM segmentation predictions for
guava. The proposed technique performs well even with a smaller data set. The efficiency of the
proposed GLSM method can be improved through extensive dataset training. We need consider-
ably larger datasets or data augmentation methods to prevent underfitting and overfitting.

Figure 4.13: (a) Original Image (b) Generated Mask (c) Predicted Mask of the GLSM Using Adam
Optimizer.
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Figure 4.14: The Proposed GLSM Dice Score Comparison Graph on Test Set.

The second experiment is conducted using the SGD optimizer to train the proposed GLSM model.
TThe model is trained with a loss of 62.98% and an accuracy of 70.67% in the first iteration of
training, as shown in Figure 4.15. The validation dice score is just 28.02%, whereas the validation
loss is significantly larger (77.56%). This result suggests that the model’s early performance could
be better. The model’s effectiveness increases throughout training. The training and validation
losses decrease, showing that the model improved its predictive abilities. Training loss is 47.89%
by Epoch 50, whereas validation loss is 48.86%. Also, from Epoch 1 to Epoch 50, there is a
rise from 70.67% to 75.03% in training dice score. At the end of the training, the validation dice
score has similarly increased, though slower, to 74.45%. Notably, the model repeatedly under-
performs on the validation set compared to the training set. It indicates the model may have been
overfitting to the training data, which means it may have learned to recognize just the patterns in
the training set. It becomes obvious throughout training when validation dice score both get up. In
conclusion, the suggested GLSM model’s dice score decrease throughout training while using the

SGD optimizer.

The results of the proposed GLSM utilizing the SGD optimizer are shown in Table 4.5. The test
images column shows the number of photos used to evaluate the model’s performance. There are
119 sample photos here. The results show that the GLSM model trained with the SGD optimizer
performed well on the test set, with a dice score of 73.79%, as depicts in Table 4.5 and Figure 4.14.
The prediction of the proposed GLSM model using SGD is shown in Figure 4.16.
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The Proposed GLSM Loss Graph Using SGD Optimizer
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Figure 4.15: GLSM Model Dice Accuracy Graph Using SGD.
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Figure 4.16: (a) Original Image (b) Generated Mask (c) Predicted Mask of the GLSM Using SGD.

The results show that the proposed GLSM model performs exceptionally well when using the Adam
optimizer in the training process. The model’s performance could be enhanced by employing reg-
ularization strategies (e.g., dropout, weight decay) or fine-tuning hyperparameters (e.g., learning
rate, batch size). The model’s generalization abilities can be better gauged if its performance is
tracked over time on a distinct test set. Overfitting is obvious, though, as validation performance
consistently lags behind training performance. It is recommended that additional optimization
techniques and testing on a test set be undertaken to enhance the model’s generalizability.
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4.3.3 Proposed Guava Multiple Leaf Diseases Detection (GMLDD) Model
Performance

The outcomes of the suggested approach on the training and validation sets are graphically pre-
sented in Figure 4.17. Figure 4.18 displays the outcomes of the recommended approach. In ad-
dition, to the effectiveness of detecting diseases under different illumination and complex back-
grounds, the proposed GMLDD model’s predictions have been shown in Figure 4.19. Using field-
level data, the proposed GMLDD model has shown excellent disease prediction capability under
different illumination and complex background.
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Figure 4.17: Training and Validation Graph of the GMLDD Technique.
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Figure 4.18: The Proposed GLMDD Model Predictions.
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Figure 4.19: The Proposed GLMDD Model Field Level Predictions Under Different Illumination
and Complex Backgrounds. (a) Original Images (b) Predictions.

Box loss, object loss, and categorization loss are all depicted in Figure 4.17. How well did the
model pinpoint the object’s location, and how much did its bounding box obscure it, as measured
by the box loss? A loss of objectness was defined as quantifying the likelihood that an object
existed inside a specific region of interest. It would be more objective if the image window usually
contained a particular item. The classification loss of the procedure showed how well the model
could identify an object’s class [258]. After 55 epochs, there was a dramatic rise in recall, precision
and mAP. Conversely, as depicted in Figure 4.17, box loss, objectness loss, and classification loss
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decreased significantly after 55 epochs.

An unknown data set (test set) containing five classes—anthracnose, healthy, insect assault, nutri-
ent shortage, and wilt—was used to compute the inference of the suggested method. As can be
illustrated in Table 4.6, the test dataset consisted of 98 images with 232 targets (labels) across all
classes. The proposed model had a 45.4% precision, 54.7% recall, a 44.3% mean absolute percent-
age (0.5) and a 14.0% mean absolute percentage on 53 anthracnose-labeled samples. Out of 24
labels considered “healthy,” 93% were accurate, 100% were remembered, 96% were mAP@0.5,
and 92% were mAP@0.5:0.95 (Table 4.6). The insect attack used 67 targets and achieved 64.6%
precision, 79% recall, 79% mAP@0Q.5, and 35.3% mAP@0.5:0.95 (Table 4.6). Nutritionally de-
ficient students earned a 66.5% precision rate, 31.7% recall rate, 35.5% mAP@(.5, and 11.9%
mAP@0.5:0.95 across 69 objectives (Table 4.6). We achieved 96.3% accuracy, 100% recall, 99.5%
mean absolute precision at a significance level of 0.5, and 98.2% mean absolute precision at a sig-
nificance level of 0.5:0.95 across 19 targets related to wilt disease (see Table 4.6). The outcomes of
the suggested strategy in ten distinct categories are illustrated in Table 4.6. Overall, the approach
did quite well, with percentages of 73.3% for precision, 73.13% for recall, 71.03% for mAP@0.5,
and 50.3% for mAP@0.5:0.95.

Table 4.6: The proposed GMLDD model performance

Class Images Targets Precision Recall mAP@.5 mAP@.5:95
All 98 232 73.3 73.1 71.0 50.3
Anthracnose 98 53 454 54.7 443 14.0
Healthy 98 24 933 100 95.9 92.0
Insect Attack 98 67 64.6 79.1 79.8 353
Nutrient Def. 98 69 66.5 317 355 119
Wilt 98 19 96.3 100 99.5 98.2

Figure 4.20 depicts the confusion matrix for the suggested procedure. The proposed model achieved
70.8% correct and 29.2% wrong predictions for all categories (Figure 4.20). The anthracnose class
achieved 53%, the healthy category attained 100%, the insect attack gained 75%, nutrient defi-
ciency accomplished 26% correct predictions, and the wilt class predicted 100% accurate predic-

tions.
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Figure 4.20: The Proposed GMLDD Model Confusion Matrix.

- Figure 4.21 (a) depicts the p graph, where precision (y-axis) and confidence (x-axis) are displayed

against various probability cutoffs. The p-curve demonstrates that for anthracnose disease, ac-
curacy improved steadily from 0% at the lowest confidence level to 100% at the highest. Ata
confidence level of 0.05 to 78, the healthy class obtained a precision of less than 90%. The optimal
level of accuracy for the healthy group was found to be 84.3%. At a confidence level of 0 to 55, the
accuracy of insect class identification improved steadily, and at a confidence level of 79, accuracy
approached 100% (Figure 4.21 (a)). Confidence in the nutritional deficit class rose from 0 to S0
with time. At a confidence level of 51 to 56, precision dropped precipitously to 50%, and from a
confidence level of 57% onwards, it reached its utmost limit. The wilt class, on the other hand,
achieved a precision of 95% or more and showed steady improvement, beginning at a confidence
level of 0.03. The precision of all categories improved linearly at a confidence level below 84.3,
peaking at a confidence level of 84.3. Hence, at a confidence level of 84.3, our model performed
admirably in accuracy.

Figure 4.21 (b) exhibits Recall Curve (R-Curve) graph represented recall (y-axis) and confidence
level (x-axis) on test data. The r-curve chart demonstrated that at a 0% confidence level, the
proposed model had a recall of about 82% for the anthracnose class. It gradually dropped from a
high of 58 at the lowest confidence level to zero at the highest. Under the proposed strategy, the
recall was 100% at the 70 confidence level for the healthy type but rapidly dropped beyond that.
The final result was a zero recall with an 89% certainty. Confidence levels ranged from O (highest)
to 82 (lowest) for the insect attack class, with a maximum recall of 97% at the 0 confidence level.
After a sharp drop from 1 to 51%, the recall rate for nutrient deficit began at 90% at a confidence
level of 0. When it came to recalling wilt classes, however, there was a distinct plateau at a
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confidence level of 83, followed by a precipitous drop to zero at a confidence level greater than 88.
At a 0 confidence level, the suggested method had a recall of 97% across all classes, and this recall
gradually dropped to around 0% at a 88 confidence level (Figure 4.21 (b)).
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Figure 4.21: (a) Precision Curve (P Curve) (b) Recall Curve (R Curve) (c) Precision Recall Curve
(PR Curve) (d) F1 Curve.

When plotted against different thresholds, the Precision-Recall Curve (PR-Curve) showed where
accuracy and recall were optimal. If the area under the curve was significant, recall and precision
were high, and the proportion of false positives was small. Qur model’s large area under the
curve expression in the findings indicates that the proposed model performed well. Figure 4.21 (¢)
shows that the anthracnose, healthy, insect attack, nutrient deficit, and wilt classes all reached 71.0
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mAP@0.5, whereas the other categories only reached 44.3, 95.9, 79.8, 35.5, and 99.5, respectively.

In Figure 4.21 (d), the f1 curve, also known as the f score, quantifies the accuracy of a model on a
given dataset. The f score for this approach was calculated by taking the average of its recall and
precision values. The model’s accuracy and reliability were combined. The greater the f1 score,
with 0 being the worst and 100 being the best accuracy was. The p-curve chart for anthrax disease
demonstrates that the most incredible possible accuracy was achieved at a confidence level of less
than 0.53. For the healthy group, the accuracies ranged from less than 90% (0.05 to 78%). The
highest level of accuracy for the healthy class was obtained with a confidence level of 84.3. From
a confidence level of 0 to 55, accuracy in classifying insects improved steadily, and accuracy of
100% was achieved at a confidence level of 79 (Figure 4.21 (d)). From a confidence level of O to
50, the nutrient deficiency class steadily improved accuracy. From a confidence level of 51% to
56%, precision rapidly dropped to 50%, reaching a maximum of 57% from that point on. The wilt
class, on the other hand, achieved less than 95% accuracy and steadily grew from a confidence level
of 0.03 onwards. Maximum accuracy was attained across the board with a degree of confidence of
84.3, and accuracy improved as confidence decreased. As a result, the accuracy of our model was
satisfactory at the 84.3% confidence level. The findings (shown in Figure 4.21 (d)) indicated that
the proposed model obtained the highest f1 score at the 22.2 confidence level.

The results showed that the healthy and wilt groups achieved over 93% precision, recall, and
mAP@0.5. However, among all the categories, anthracnose disease had the lowest precision,
recall, and mAP@0.5 (less than 46% precision). On the other hand, the insect attack and nutrient
deficiency class achieved more than 64% precision, recall and mAP@0.5.

The proposed model for detecting multiple-leaf illnesses in guava needs specific tweaks, which we
provide below:

* The five groups represented in the GLDD are extremely unbalanced. There is a severe lack
of data for the affected group. By applying the balanced dataset classes [256, 257], we can
boost the suggested model’s efficiency.

* The effectiveness of a dataset may be enhanced by increasing its size. The deep learning
methods require massive data samples for training; otherwise, overfitting occurs. Therefore,
we can resolve the problem of overfitting by enhancing the dataset [256, 257].

* The complex background is another reason for misclassification. In the dataset, we used
complex backgrounds, such as background colour, resembling leaf diseases, as shown in
Figure 4.22. For example, brown background misleads to the anthracnose, as shown in Fig-
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ure 4.22 (a-c), and the disease light pink deceives the nutrient deficiency class, as depicted in
Figure 4.22 (f). Using a transparent or plain background and avoiding complex backgrounds
can boost the effectiveness of the proposed strategy.

* Taking off the curved or folded leaves from the training is another option to boost the pro-
posed method’s efficiency. The curly or folded leaf can mislead the insect eaten class, as
shown in Figure 4.22 (d,e). We can enhance the proposed method’s efficiency by improving
the curly or folded leaf training.

* The small object sizes and annotation scheme are another reason for misclassification. In
YOLOVS5, only a rectangle is used to annotate the object. In guava leaf diseases, leaves are
not in the proper shapes from the edges. And when we use arectangle to annotate the object
or disease area, the unnecessary information or area is also included, as shown in Figure 4.22
(a-f). This irrelevant inclusion ultimately misleads the classification. In order to make the
suggested technique more effective, we can eliminate the extraneous data that could confuse
the annotation process and throw off the categorization [256].

Anth 0.10
Anth 0.25

Anth 0.30 4.
v

Inse_Att 0.11
inse_Att 0.2;
k]

L

(d)
Figure 4.22: The Proposed GMLDD Model Misclassification Examples.
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4.3.4 Comparison of Proposed GMLDD Model with Other YOLO Variants

There currently needs to be literature on single-leaf detection of various guava leaf diseases, as far
as we know. For this reason, we cannot directly compare our approach to the current standard.
On the GLDD dataset, however, we evaluate how well the suggested method stacks up against
other YOLO variations. There have been many distinct versions of YOLO produced throughout
time, each with its own set of improvements and modifications for certain use cases; these ver-
sions include YOLOv1, YOLOv2, YOLOv3, YOLOv4, YOLOv4 Tiny, YOLOvS, YOLOX, and
so on. However, the community has developed other enhancements and modifications to the YOLO
framework. Which YOLOQ variation is best depends on the task, the available hardware, and the
tradeoffs we are willing to make between speed and accuracy. The overall performances of the
suggested detection method are compared in Table 4.7 to those of YOLOV3 [258], YOLOv4 [259],
and YOLOv4 Tiny [260]. The recommended model outperformed the other models in terms of
precision (73.3%), recall (73.1%), and mAP0.5 (71%). When the average detection times of these
three techniques were evaluated, it was found that YOLOv4 detected events on average 45.301
milliseconds faster than the other two models. That is why it is clear that the suggested detection
method is the best option for pinpointing boundaries among the four methods considered. The
proposed model’s detection time was faster than the YOLOv3, and YOLOv4 Tiny models, which
had a detection time of 46.360 ms. Despite this, it can detect high-resolution images in real-time
with greater performance and speed than the other two existing models.

Table 4.7: The Proposed GMLDD comparison with YOLOv3, YOLOv4, and YOLOv4-Tiny

Model Precision (%) Recall (%) mAP@0.5 Time (ms)
YOLOvV3 66.2 65.0 65.1 48.205
YOLOv4 70.1 69.5 69.8 45.301
YOLOv4 Tiny - - 69.7 50.402
Proposed Model 73.3 73.1 71.0 46.360

4.4 Chapter Summary

No study was presented in the literature to detect the infected patches from the guava plant, and
it is mainly for the unavailability of the dataset. For this purpose, we developed a Guava Patches
Dataset (GPD) from Okara, Central Punjab, Pakistan. The dataset consisted of healthy and infected
patches. Data augmentation techniques were used to increase the dataset’s size to a reasonable
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level. Different segmentation approaches were employed to highlight the region of interest to learn
from the data successfully. Several segmentation techniques, such as UNET and MobileNetV2-
UNET, were presented in the literature. However, these techniques posed several issues, such as
high computational costs and limited accuracy. MobileNetV2 is a lightweight convolutional neural
network employed in synchronous functions for two reasons: first, it has fewer trainable parameters
than classic convolution; second, it has fewer training parameters and lower computing costs. A
segmentation method called Guava Infected Patches Modified MobileNetV?2 and UNET (GIP-MU-
NET) was created to address these problems. The proposed GIP-MU-NET consisted of modified
MobileNetV?2 as an encoder, and UNET was used as a decoder. The reason for using the modified
MobileNetV2 as an encoder part was to reduce the computational cost. The computational cost was
further reduced by eliminating the block IDs 6, 9, 10, 13, and 16. The ﬁlters were also decreased
from 160 to 128,7320 to 160, and 1280 to 256.

To our knowledge, no study intended to segment guava leaves was ever documented in the lit-
erature. Therefore, a novel Guava Leaf Segmentation Model (GLSM) was developed from a U-
Net-like model to segment guava leaves from the images of healthy and infected patches. The
proposed GL.SM model accurately segmented the healthy and diseased leaves from the infected
and healthy patches. The encoder comprised two components: the entry block and the residual
block. Conv2D, batch normalization, and ReLu activation functions were used in the encoder. The
residual block consisted of ReLu, SepereableConv2D, and batch normalization. Three residual
blocks were employed in the encoder. The decoder used inverted residual blocks containing ReLu,
Conv2Dtranspose, and batch normalization.

The most critical task was detecting and classifying multiple guava diseases on a single leaf, as
no research could detect multiple diseases on a single guava leaf. The main hurdle was the un-
availability of the dataset. We developed the first-ever Guava Leaf Diseases Dataset (GLDD) to
address this issue to detect various diseases on a single leaf. The dataset comprised five classes:
anthracnose, nutrient deficiency, wilt diseases, insect assault, and healthy. It was developed in the
district of Okara, Central Punjab, Pakistan. Then, a real-time Guava Multiple Leaf Disease De-
tection (GMLDD) model based on YOLOvS was devised to detect and localize multiple diseases
from a single guava leaf. The YOLOv5 model was known for its efficient capability of real-time
detection of objects. The YOLO algorithm used convolutional neural network (CNN) models to
detect objects in an image. The proposed model was totally automated compared to the most ad-
vanced methods currently used to detect leaf diseases. In order to detect leaf disorders in plants in
real-time, the proposed approach could be used. The ability to detect several illnesses on a single
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leaf in its early stages, before they cause severe damage and economic hardship, is a massive boon
to farmers.
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Multi-Level Deep Learning Model for
Potato Leaf Disease Recognition

5.1 Overview

Deep learning approaches already exist in the literature and are misfits for diagnosing regional
potato leaf diseases in Pakistan. Varieties of potatoes, climate change, disease symptoms, and
other external factors are significant to incorrect identification. So, the existing techniques failed
to achieve high accuracy for the other areas, such as Pakistan. Since the dataset was small, to
begin with, and any model’s latest version can be certified as good if tested on unseen data, most
approaches did not assess their efficacy on unseen images. The low convergence speed due to the
vast number of trainable parameters is also the main hurdle, and accuracy needs to be improved.
The last problem in the literature is the non- availability of the potato leaf segmentation technique.
Therefore, there is a dire need to develop a new dataset to detect the Pakistani region potato leaves’
diseases so farmers in Pakistan can determine the diseases of potatoes in their early stage, enhance
their income, and boost the country’s economy. This research is conducted to resolve the above

research gaps.

This part of the thesis investigates a multi-stage deep learning model for potato leaf disease detec-
tion. Initially, the picture of the potato plant is segmented using the YOLOv5 method to remove the
leaves. We created a unique Potato Leaf Disease Detection Convolutional Neural Network (PDD-
CNN) for the second layer to classify late and early blight in potato leaves. The recommended
PDDCNN was then evaluated using the Potato Leaf Dataset (PLD). In order to compile the PLD
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dataset, researchers in the Central Punjab area of Pakistan took photographs of potato leaves from
several places. We employ a cropping and labeling tool to help plant pathologists crop and identify
the images. The most significant contributions include:

The following are the main contributions:

* A method based on YOLOVS5 has been developed for real-time potato leaf segmentation and
extraction, which may be used to remove the leaves from potato images.

* For late and early blight recognition in potato leaves, a novel deep learning system known as
Potato Leaf Disease Detection Convolutional Neural Network (PDDCNN) has been created.

* The proposed method uses the minimum possible number of parameters compared to state-
of-the-art models. ’

* The development of a Potato Leaf Dataset (PLD) from the Central Punjab region of Pakistan
by capturing three types of potatc leaf images: early, late blight diseases and healthy.

3.2 Proposed Methodology

Many problems exist in the literature using deep learning approaches, including incorrect identi-
fication of potato leaf diseases, variation in potato diseases, varieties and environmental factors.
The existir;g systems have a high false rate to recognize potato diseases in the Pakistani region. -
The existing potato leaves dis- ease datasets contain inadequate training samples with imbalanced
class samples. Another issue is that current approaches are inaccurate and have a slow convergence
time because of the huge number of trainable parameters. In this research, we propose classifying
diseases affecting potato leaves using a multi-layered deep leaming network. As a first step, it
segments the image of the potato plant using the YOLOVS5 algorithm to get rid of the leaves. A
novel Potato Leaf Disease Detection Convolutional Neural Network (PDDCNN) was built at the
second layer to recognize late and early blight in potato plants from photos of their leaves. The
proposed method is represented by the flow diagram in Figure 5.1 and the overall design in Figure
5.2.
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Capture a Real-Time Video of
Potato Ptant

Convert the Video into Frame
using Python Code

¥

Annotation of the Potato
Leaves

Potato Leaf Segmentation & Extraction
Technique using YOLOVS

Potato Leaf Dataset

Labeling into Classes

Data Partitioning
Training + Validation Dataset

 J

Testing Dataset

Classification

Figure 5.1: The System Flow Diagram of the Proposed PDDCNN Technique.
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Figure 5.2: The Block Diagram of the Proposed PDDCNN Technique.

i

5.2.1 Dataset

The use of a high-quality dataset is critical to the efficiency of a DL model. This study makes use
of the following data sets.

5.2.1.1 PlantVillage Dataset

The details of the PlantVillage dataset have already been described in section 2.4.1.3. According
to Table 5.1, the following quantities of leaves were chosen for the experiments: images of 1000
leaves with late blight, 1000 leaves with early blight, and 152 healthy leaves.

Table 5.1: Summary of the PlantVillage Dataset.

Class Labels  Samples

Early Blight 1000
Late Blight 1000
Healthy 152
Total Samples 2152

5.21.2 Potato Leaf Dataset (PLD)

For potato leaf diseases, only the PlantVillage dataset is currently available for public use; hence
this is the only dataset used to construct models in the literature, All the researchers used the
PlantVillage dataset in their research, but there are many research gaps found in the literature. The
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PlantVillage dataset has been developed from a specific region under certain geographic and en-
vironmental factors. Variations in form, genetic diversity, and local climate contribute to regional
differences in potato leaf diseases. Therefore, the existing systems have a high false rate to recog-
nize potato disease detection in the Pakistani region potato leaf images, as shown in Table 5.2. The
PlantVillage dataset also has fewer images and an imbalanced class distribution. Therefore, there
is a dire need to develop a new potato leaves dataset collecting from the Pakistani areas. Scientists
may use this data to fine-tune their algorithms for spotting diseases in potato leaves, which will
benefit farmers in Pakistan by allowing them to identify problems early.

Table 5.2: Classification Accuracies of the Proposed PDDCNN Model Training on PlantVillage
and Testing on the PLD Dataset.

Training Testing Early Blight Healthy Late Blight Total Overall Testing

Dataset Dataset  Accuracy  Accuracy Accuracy  Accuracy Accuracy
PlantVillage  PLD 95.71% 08.82% 23.94% 807 48.89%

Thus, a new Potato Leaf Dataset (PLD) has been developed from Pakistan’s Central Punjab region.
The dataset capturing details has already been described in section 3.2.1.1. Potatoes were grown
in rows and segregated at a distance of 3 feet apart from each other. The seeds of the plants were
grown by digging a 6 to 8~inch deep, 5—inch wide hole in the soil. After placing seeds in a pit
hole that had been prepared, the soil was amended with manure and afterward watered with canal
water. Using LabelMe, we exported YOLOVS PyTorch and XML annotations of both diseased and
healthy leaves. The YOLOvSs method is trained entirely from scrateh for segmentation and leaf
extraction. The Python algorithm used to extract the leaves was trained with the results and anno-
tations from the YOLOv5s model. The PLD dataset includes 4062 images of diseased and healthy
potato leaves, chosen with the assistance of plant pathologists. Plant pathologists then classified -
the pictures into early blight, late blight, and normal leaves. The plant leaf dataset captured 1628
photos of early blight leaves, 1414 photos with late blight leaves, and 1020 images with healthy
potato leaves, as shown in Table 5.3. Figure 5.3 displays a selection of photos from the PLD
dataset. The PLD dataset can be accessed from [261].
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Table 5.3: Summary of PLD Dataset.

Class Labels  Samples

Early Blight 1628
Late Blight 1414
Healthy 1020
Total Samples 4062

Figure 5.3: Examples of Potato Leaf Images: (a) Early Blight, (b) Healthy and (c) Late Blight.

5.2.2 Image Pre-Processing

Pre-processing was used on the final PLD pictures to provide more consistent classification results
and improved feature extraction. The CNN approach required extensive retraining, and a large
image dataset was necessary to reduce the likelihood of overfitting.

5.2.2.1 Data Augmentation

Several data augmentation methods were performed to the training set to combat overfitting and
enlarge the variety of the dataset using the Image Data Generator method of the Keras library in
Python. The computational cost was decreased using scale transformation while maintaining the
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same range and smaller pixel values. Therefore, every pixel value was ranged from O'to 1 using the
parameter value (1./255). Images were rotated to a specific angle using the rotation transformation;
therefore, 25° was employed to rotate the images. Images can shift randomly either towards the
right or left by using the width shift range transformation; selected a 0.1 value of the width shift
parameter. Training images moved vertically using the height shift range parameter with a 0.1
range value. In the shear transformation, one picture axis is held constant while an angle stretches
the other, called the shear angle; in this case, the shear angle was set at 0.2. The zoom range
argument was utilized to realize the random zoom transformation; >1.0 means magnifying the
images, and <1.0 was utilized to zoom out the photo; therefore, 0.2 zoom range was employed to
magnify the image. Flip was applied to flip the image horizontally. We also included a brightness
adjl_lsuﬁent (where 0.0 means no brightness and 1.0 signifies maximum brightness), so we chose a
zoom range of 0.5-1.0. In order to implement this transformation, we randomly shifted the channel
values within a 0.05-point range using the fill mode closest.

5.2.3 Dataset Split

The PLD dataset had three distinct sections: training, validation, and testing. We utilized the
training set to teach the PDDCNN method and the validation and test sets to test its efficacy. As
a result, we used an 80-10-10% split for our training, validation, and testing sets. A total of 3257
photos were utilized for training, validation, and testing on the PLD database,

The CNN model was trained by passing training samples from the input layer to the output layer,
where predictions were made and where the causes of any discrepancies or failures were discoy-
ered. When a forecast went wrong, back-propagation was used to correct the problem. This study
used the back-propagation algorithm to fine-tune the model’s parameters for more accurate predic-
tions. It was considered one “epoch” once the forward and backward propagation processes were
finished. The Adam optimization algorithm was employed in the model. The current investigation
maintained the 80% image ratio by using training photos labeled as early blight, healthy, and late
blight. Only 20% of the original photos were used, and the remaining 80% were divided equally
(10% each for validation and testing) across the two datasets. As such, the proposed PDDCNN
model was trained using a dataset of labeled training images to predict the labels for those images.
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5.24 Potato Leaf Segmentation and Extraction Technique Using YOLOv5

Since we have already explained the proposed method of using YOLOVS to segment and extract
information from potato leaves in section 2.6, we will merely present the model’s architecture here.
The YOLOVSs framework employed in this study is shown in Figure 5.4. All the specifics of the
suggested model’s configuration are laid forth in the experiments.
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Figure 5.4: The Proposed Potato Leaf Segmentation and Extraction Technique Using YOLOVS
Model Architecture.
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5.2.5 Potato Leaf Disease Detection Convolutional Neural Network (PDD-
CNN)
The proposed PDDCNN is based on the CNN , it has already discussed in section 2.5. The desi gn

of the suggested PDDCNN, which was used to distinguish between diseased and healthy potato
leaves (see Figure 5.5), was displayed.

Figure 5.5: The Architecture of the Proposed PDDCNN Model.
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The PDDCNN was used the following building blocks:

L.

10.

1.

12.

13.

To prepare for future analysis, the sequential model extracted critical features from the input

image using a series of layers.

The first convolution layer has a 256 x 256 x 3 input image structure, 16 filters, a 3 x 3
kemnel, 1 x 1 padding, and ReU activation.

After the initial convolutional layer, the image size was decreased by employing a max-
pooling layer with a pool size of (2,2).

The second convolutional layer used 32 filters with kernel size 3 x 3, stride value 1 and the
ReLU nonlinear activation function,

After the second convolutional layer, max-pooling was applied with pool size (2,2).

- Regarding the final convolutionai layer, 64 filters with a 3 x 3 kernel size were chosen. The

padding and activation function ReLu was used once more for a stride of 1.

Then, the fiatten layer was used to tarn the convolved matrix into a vector in a single dimen-

sion.

. The generated features were used for classification or decision making at one of the four

concealed or fully linked layers.

- The first fully connected layer (sometimes called a dense layer or a buried layer) was used

with 512 neurons. followed by ReL.U activation functions.

The second fully connected layer was used with 256 neurons, followed by ReLU activation
functions. .

To create the third hidden layer, 128 neurons and the ReLu activation function were em-
ployed.

The number of classes always determines the neuronal output. Since this study involved mul-
tiple classes, the softmax activation function was implemented on a layer of three neurons
serving as the final hidden or output layer.

Predictions made in the model’s output layer class label evaluation layer were used to assess

the model’s overall accuracy.

The configuration details and various parameters of the proposed PDDCNN are given in Table 5.4.
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Table 5.4: The Proposed PDDCNN Model Configuration Details of Various Parameters.

Convolution Layers 3 (with 3 x 3 filters/kernels each)
Max-Pooling Layers 3 (with (2,2) pool size each)
Hidden Layer Neurons 512 (1st), 256 (2nd), 128 (3rd)
Output Layer Activation Function Softmax

Batch size 32

Epochs 100

Training Optimizer Adam

Loss Function Categorial Cross Entropy

5.2.6 Experimental Setup4

Experiments with the proposed PDDCNN models were run with identical settings, including an
Adam optimizer, a Categorical Cross Entropy loss function, a 32-batch size, 100 epochs with data
augmentation techniques used, and 20 epochs with no data augmentation. The models were trained
and evaluated using a Google Colab Pro account equipped with high-powered GPU that did not
require special settings. TensorFlow [262], the Keras open-source libraries, and the Python pro-
gramming language were utilized in the experimental implementation of the proposed PDDCNN
method. The best validation accuracy was kept, and an early termination criterion of 0.0001 was
utilized for learning. On the other hand, a YOLOvSs model was trained using 100 epochs, 416 x
416 images, and a batch size of 32 for the Potato Leaf Segmentation and Extraction Method. The
hyperparameters were left at their default values, First, the output of the trained model is stored
into a YOLOVS5 format file, then this text file and annotation stored in files were stored in a CSV
file. Then using the python code, the annotations of the leaves were cropped and stored in a folder
in jpg image format. The evaluation measures used in this chapter are described in section 3.2.7.

5.3 Results and Discussion

This section discusses the proposed PDDCNN model’ performance in detail on PLD and PlantVil-
lage datasets using and without data augmentation techniques.
The results of the proposed PDDCNN model focused on:

1. Identifying the stages of blight on potato leaves and classifying them as early, late, or healthy.

2. Test the proposed PDDCNN model on the PLD dataset with and without data augmentation
methods for the training set.
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3. Analyzing how well the proposed PDDCNN model does with and without data augmentation
on the publicly available dataset PlantVillage.

4. On the cross-dataset, we quantified the efficiency of the suggested model.

5. In order to make a fair comparison to other top-tier networks, such as VGG16 [224], Incep-
tionResNetV2 [263], DenseNet_121 [28], DenseNet169 [28] and Xception [264], using the
transfer learning.

6. In order to compare the efficacy of deep leaming for disease detection in potato leaves to
that of previous studies.

5.3.1 Proposed PDDCNN Model Performance on PLD Dataset

To test the efficacy of the proposed PDDCNN model, two groups of experiments were carried out.
To begin, we conducted a series of experiments in which we added new data to the training set of
the PLD dataset using one of four sets of data augmentation methods. The second trial involved
trairiing without the help of any data augmentation methods. Table 5.5 displays the results of com-
paring four groups utilizing the parameters described in Section 5.2.2.1 to supplement the PLD
dataset. Set #1 utilized a single data augmentation method and got 97.56% accuracy; set #2 used
a pair of methods and got 98.28%. Set # 3 achieved 99.02% accuracy with five data augmenta-
tion techniques and set # 4 had 99.75% accuracy using seven data augmentation techniques. It
confirmed that as we increased the training samples using more data augmentation techniques, the
accuracy also increased. The set # 4 achieved the highest accuracy because we increased the train-
ing samples using the seven data augmentation techniques. The results showed that the PDDCNN
required a vast amount of training samples for training.

In Figure 5.6, we can see the outcomes of set #4’s data augmentation strategies. Based on the ex-
perimental resuits, the suggested approach successfully identified early blight 99.38% of the time,
healthy plants 100% of the time, and late blight 100% of the time. The average accuracy on the
PLD dataset was 99.75%, as shown in Figure 5.6. Figure 5.7 depicts the training, validation accu-
racy, and losses in each epoch for the proposed PDDCNN approach on the PLD dataset with data
augmentation approaches applied to the training set. It was discovered that by applying data aug-
mentation techniques to the training set, the suggested method produced very high identification
rates on the PLD dataset.
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Table 5.5: Classification Accuracies on Different Sets of Data Augmentations of the Proposed
PDDCNN Model on the PLD Dataset.

Set # Data Augmentation Used Early Blight Healthy Late Blight Average

1 rotation_range 96.32% 97.06% 96.48% 97.56%
rotation_range,

2 width_shift_range, 98.77% 98.04% 97.89% 98.28%
height_shift_range

width_shift_range,
3 height_shift _range, shear_range, 99.39% 99.02% 98.59% 99.02%
zoom range, horizontal flip

rotation_range,
width _shift range, height_shift_range,
4 shear_range, zoom_range, horizontal _flip, 99.38% 100% 100% 99.75%
brightness_range, channel_shift_range,
fill_mode = nearest

ACCURACIES ON PLD DATASET WITH DATA AUGMENTATION

100% 100%
100.00%
99.90%
99.80% 99.75%
99.70% .
5 99.70% o
S 99.60% o
g 99.50% 99.38% -
< 99.40%
99.30%
99.20% :
99.10% :
99.00% .
Early Blight Healthy Late Blight Avg. Acc
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W EarlyBlight B Healthy W LateBlight Avg. Acc

Figure 5.6: Accuracies Graph of PDDCNN on PLD with Data Augmentation.
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Accuracy on PLD Dataset with Data Augmrntation
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Figure 5.7: a) Accuracy Graph of PDDCNN on PLD using Data Augmentation. (b) Loss Graph
of PDDCNN on PLD using Data Augmentation.
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Table 5.6: Classification Accuracies, Precision, Recall and F1-Score of the Proposed PDDCNN
Model on the PLD Dataset Using Data Augmentation Techniques.

Performance Measures Early Blight Healthy Late Blight Average

Accuracy 99.38% 100% 100% 99.75%
With Data Precision 100% 99% 100% -
Augmentation Recall 99% 100% 100% -

F1-Score 100% 100% 99% -

PRECISION, RECALL & F1-SCORE ON PLD DATASET WITH

DATA AUGMENTATION
100% 100% 100% 100% 100% 100% 100%
-] ”wx °9% o
g ' E‘;}‘: vg ' | “ | :: ‘: l:;:’
PRECISION RECALL F1-SCORE
PLD DATASET

BEarlyBlight  RHealthy = Late Blight

Figure 5.8: PDDCNN Precision, Recall and F1-Score on the PLD Dataset with Data Augmenta-
tion.

The Table 5.6 displays the results of applying data augmentation approaches to the proposed PDD-
CNN model on the PLD dataset. Three classes—early blight, healthy, and late blight—were used
to test the model. The model’s accuracy for all three classes is relatively high, with healthy and late
blight receiving perfect scores of 100% and 99.38% for early blight. Since the model’s accuracy
for early blight and late blight is 100%, its successful predictions for these classes were realized.
Just 1% of the positive predictions provided by the model for this class were inaccurate for healthy,
where the precision is 99%. The model also has an extremely high recall rate, scoring 100% for
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early blight and Healthy, proving that it correctly identified every instance of both classes. The
recall for late blight is 100%, indicating that the model accurately detected all instances. The har-
monic mean of recall and precision, known as the F1 score, strikes a compromise between the
two metrics. Early blight and healthy have an f1 score of 100%, demonstrating an ideal harmony
between precision and recall. The model is doing exceptionally well for all three classes; however,
the precision and recall metrics are slightly out of balance for late blight, as indicated by the f1
score of 99%, as depicted in Figure 5.8.

The performance of the proposed PDDCNN model on the 5.9 dataset utilizing data augmentation
approaches is presented in the confusion matrix illustrated in Figure 5.9. The matrix shows that
162 of the 163 early blight samples were classified correctly, while just one was incorrectly labeled
as healthy. None of the 102 healthy samples were misclassified; all 102 were appropriately cat-
egorized. Similarly, none of the 142 Late Blight samples were misclassified; all were accurately
identified. The model’s accuracy is 99.75%, meaning that 99.75% of the samples were correctly
identified, with only 0.25% misclassified. In conclusion, the confusion matrix shows that the Pro-
posed PDDCNN Model used data augmentation strategies to obtain high accuracy and perform
admirably on the PLD dataset for all three classes: early blight, healthy, and late blight.

PLD Contusion Matnx Vaiidation with Data Augmentation

160
Early Blight 1 0 4o
120
3 100
g Healthy 0
J= )
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Late Bhight 2
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accuracy=0.9975, misclass =0.0025

Figure 5.9: The Confusion Matrix of PDDCNN on PLD with Data Augmentation.

Figure 5.10 displays, using data augmentation approaches, the ROC curve of the PDDCNN model
on the PLD dataset. Three separate classes—early blight, healthy, and late blight—were used to
evaluate the model. In Figure 5.10, the Early Blight, Healthy, and Late Blight AUC values are
100%, demonstrating that the model performed flawlessly for all three classes. The model suc-
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cessfully balanced sensitivity (true positive rate) and specificity (true negative rate) and accurately
identified all positive and negative samples for each class according to an AUC of 100%. The
ROC curve reveals that the PDDCNN modetl used data augmentation techniques to obtain a ex-
cellent classification performance on the PLD dataset, as seen by the excellent AUC values for all

three classes.
PLD Testing ROC Curve Graph without Data Augmentation
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Figure 5.10: ROC Curve on the PLD Dataset with Augmentation Techniques.

When incorporating data augmentation strategies into the training set, the suggested method demon-
strated outstanding performance on the PLD dataset in all assessment metrics.

In the second experiment, the performance of the proposed PDDCNN model was measured without
using data augmentation techniques on the PLD dataset’s training set. In this second experiment,
we utilized the identical model and set of parameters as the first, but we simulated only 20 epochs
instead of 100. As shown in Figure 5.11, the suggested technique averaged 91.15% accuracy on the
PLD dataset and reached a precision of 93.87% for identifying early blight, 84.47% for identifying
healthy plants, and 92.25% for identifying late blight. Accuracy during training and validation,
as well as losses during each period, were all displayed in Figure 5.12. The proposed strategy
produced lower identification rates without using data augmentation techniques in the training set.
As a result, it is recommended to be trained on a massive dataset to improve its classification
accuracy.
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The proposed PDDCNN model performance was evaluated without applying the data augmenta-
tion techniques on the PLD dataset’s training set in the second experiment. The same model and
parameters were used as in the first experiment, but the number of epochs was reduced to 20. The
proposed method achieved 93.87%, 84.47% and 92.25% accuracy for early blight, healthy and late
blight, respectively, and gained 91.1% average accuracy on the PLD dataset, as shown in Table
5.7 and Figure 5.12. The complete training and validation accuracy and losses in each epoch were
shown in Figure 5.11. The proposed method achieved lower identification rates without using data
augmentation techniques compared to using data augmentation techniques applied to the training
set. Therefore, for better classification accuracy, it should train on a large-scale dataset.

ACCURACIES ON PLD DATASET WITHOUT DATA AUGMENTATION

100%
$3.87%
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Figure 5.11: Accuracies Graph of PDDCNN on PLD without Data Augmentation.

Table 5.7: Classification Accuracies, Precision, Recall and F1-Score of the Proposed PDDCNN
Model on the PLD Dataset without Applying Data Augmentation Techniques.

Performance Measures Early Blight Healthy Late Blight Average

Accuracy 93.87% 84.47% 92.25% 91.15%
Without Data  Precision 87% 94% 9% -
Augmentation Recall 92% 85% 88% -

F1-Score 96% 92% 94% -
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Accuracy on PLD Dataset without Data Augmentation
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Figure 5.12: (a) Accuracy Graph of PDDCNN on PLD without Data Augmentation. (b) Loss
Graph of PDDCNN on PLD without Data Augmentation.
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The assessment metrics for the proposed PDDCNN model on the PLD dataset are shown in Table
5.7 without using data augmentation methods. Table 5.7 shows that for early blight, healthy, and
late blight, the model’s accuracy i8 93.87%, 84.47%, and 92.25%, respectively. For early blight,
healthy, and late blight, the model’s accuracy is 87%, 94%, and 90%, respectively. For early,
healthy, and late blight, the model’s recall is 92%, 85%, and 88%, respectively. According to the
model, early blight, healthy, and late blight obtained f1 scores of 96%, 92%, and 94%, respectively.
According to the results, the suggested PDDCNN model performed well on the PLD dataset with-
out data augmentation techniques. The healthy class’s accuracy and other evaluation metrics are
lower than those for the other two classes, as illustrated in Figure 5.13.

PRECISION, RECALL & F1-SCORE ON PLD DATASET

WITHOUT DATA AUGMENTATION
6%
94% 9%
2% 2%
e} 90%
| I i I
PRECISION RECALL F1-SCORE
PLD DATASET

BEalyBiight B Heshhy & Late Blight

Figure 5.13: PDDCNN Precision, Recall and F 1-Score on the PLD Dataset without Data Augmen-
tation.

The proposed PDDCNN model’s confusion matrix on the PLD dataset without any data augmen-
tation approaches is shown in Figure 5.14. The algorithm accurately identified 153 samples of
early blight as early blight, while it incorrectly identified five samples as healthy and five as late
blight (see Figure 5.14). The model correctly classified 87 healthy samples as healthy and misclas-
sified 15 as early blight. The proposed method accurately identified 131 samples of late blight as
late blight, misclassified three as healthy, and incorrectly identified eight samples of early blight.
The model’s overall accuracy is 91.15%, meaning that the model correctly classified 91.15% of
all samples in the dataset. The model was a misclassification rate of 8.85%, indicating that the
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model incorrectly classified 8.85% of the samples. As can be seen in Figure 5.14, the model did
quite well with the early and late blight classes but had trouble classifying with the healthy class,

incorrectly labeling 15 samples as early blight.

Testing on PLD Dataset without Augmentation
Confusion Matrix)

Early Blight

Healthy

True Labels

Predicted Labels

Accuracy = 0.9115, Miss Classification = 0.0885

Figure 5.14: The Confusion Matrix of PDDCNN on PLD without Using Data Augmentation.
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Figure 5.15: ROC Curve on the PLD Dataset Without Applying Augmentation Techniques.
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The proposed PDDCNN model’s ROC curve on the PLD dataset without any data augmentation
approaches is shown in Figure 5.15. The AUC can take on values between 0 and 1, with 0.5 being
a randomly selected classifier and 1 representing a perfect classifier. Figure 5.15 shows the model
has good discriminatory power for the early blight class, with an AUC of 92%. The model’s ability
to discriminate healthy from unhealthy samples is slightly lower than for early blight, as indicated
by the AUC for the healthy class being 91%. The model performs well in classifying instances of
late blight, as evidenced by the 95% AUC. The model’s performance, especially its discriminatory
power, can be gauged through the ROC curve and AUC values. Figure 5.15 shows that the model
performs well at classifying the PLD dataset, as indicated by the high AUC scores.

The proposed strategy performed poorly across the evaluation metrics without using data augmen-
tation techniques on the PLD dataset. It implied that a massive amount of data would be needed to
train the proposed approach. When there was less information to work with, overfitting became an
issue. The overfitting could be eliminated by enhancing the dataset with the help of different data
augmentation methods or increase the dataset to millions of images.

5.3.2 The Proposed PDDCNN Model Performance on the PlantVillage Dataset

The suggested model was trained using data from sources outside the PLD dataset to increase its
generatizability. The potato harvest was the primary focus of the investigation. We used the potato
leaves from the open-source dataset PlantVillage [161] to evaluate the PDDCNN approach.

The proposed PDDCNN strategy was tested twice on the PlantVillage dataset. We applied the data
augmentation approaches to the training set in the first experiment. The second experiment did not
involve the data augmentation techniques to the training set of the PlantVillage dataset. The same
model and parameters were utilized in the first experiment used in the preceding section utilizing
the data augmentation approaches applied to the training set of the PlantVillage dataset. The pro-
posed method’s generality was checked utilizing training, validation, and testing. The experiment
findings revealed that the proposed technique obtained 99%, 92.31%, and 95% accuracies for early
blight, healthy, and late blight classes, respectively. The suggested technique achieved 96.71% av-
erage accuracy on the PlantVillage dataset in Figure 5.16. Figure 5.17 displays the training and
validation accuracy and loss for each epoch. The results demonstrated that the suggested method
achieved outstanding identification rates when the data augmentation strategies were used in the
training set of the PlantVillage dataset, which indicated the proposed PDDCNN model’s general-
ization.
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ACCURACIES ON PLANTVILAGEDATASET
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Figure 5.16: Accuracies Graph of PDDCNN on PlantVillage with Data Augmentation.
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Accuracy on PlantVilage Dataset with Data Augmentation
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Figure 5.17: (a) Accuracy Graph of PDDCNN on PlantVillage using Data Augmentation. (b) Loss
Graph of PDDCNN on PlantVillage using Data Augmentation.

The test set’s accuracy, recall, and f1 score are further used to evaluate the suggested approach. The
outcomes showed excellent performance across all classes in the PlantVillage dataset using data
augmentation approaches. Table 5.8 and Figure 5.18 show that the performance of the proposed
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PDDCNN model was outstanding after applying data augmentation strategies to the training set of
the PlantVillage dataset. Using the PlantVillage dataset, the PDDCNN achieved 95% precision for
early stages, 100% for healthy stages, and 98% precision for late stages of blight, and it attained
99%, 92%, and 95% recall for early blight, healthy, and late blight classes. The system achieved
f1 scores of 97%, 96%, and 96% for early, healthy, and late blight classes, respectively. All three
plant diseases were detected and correctly classified by the suggested PDDCNN model, with the
results showing high accuracy, precision, recall, and f1 score. The model performed best for early
blight, then late blight, then healthy classes, in that order, as depicted in Figure 5.18.

Table 5.8: Classification Accuracies, Precision, Recall & F1-Score of the Proposed PDDCNN
Model on the PlantVillage Dataset Using Data Augmentation Techniques.

Performance Measures Early Blight Healthy Late Blight Average

Accuracy 99% 92.31% 95% 96.71%
With Data Precision 95% 100% 98% -
Augmentation Recall 99% 92% 95% -

F1-Score 97% 96% 96% -

PRECSION, RECALL & F1-SCORE ON PLANTVILLAGE
DATASET WITHOUT DATA AUGMENTATION

100% 100% 100% 100% 100% 100% 100%
1 ‘
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sEarly Blight & Healthy Late Blight

Figure 5.18: PDDCNN Precision, Recall and F1 Score on PlantVillage with Data Augmentation
Techniques.

Javed Rashid: 155-FBAS/PhDCS/F16 Page 136 of 179



Chapter 5. Multi-Level Deep Learning Model for Potato Leaf Disease Recognition

Figure 5.19 also depicts the confusion matrix for the PlantVillage dataset after data augmentation
techniques have been applied to the training set. The suggested PDDCNN model successfully
classified 99 out of 100 images as having early blight disease, 12 out of 13 images as healthy leaves,
and 95 out of 100 images of late blight leaves. On the PlantVillage dataset, with data augmentation
techniques applied to the training set, the proposed PDDCNN model achieved a 96.71% overall
classification accuracy. After using data augmentation approaches to the PlantVillage dataset’s
training set, the suggested model achieved a 3.29% misclassification ratio across all classes. The
results showed that by applying data augmentation techniques to a training set comprised of data
from both the PLD and PlantVillage datasets, the suggested PDDCNN method could obtain high-
quality prediction results.

Testing on PlantVillage Dataset with Augmentation

Confusion Matrix)
Early Blight - 0 1

0
2
s Heaithy 0 12 1
o
2
Late Blight 5 0 -
N
& &
6\0 ‘\0’0 o
<& v
Predicted Labels

Accuracy = 0.9671, Miss Classification = 0.0329

Figure 5.19: PDDCNN Confusion Matrix on PlantVillage with Data Augmentation Techniques.

Figure 5.20 shows that we used ROC measurements to verify the effectiveness of our data-augmentation
strategies on the PlantVillage dataset. The blue hue represents the disease in its first stages. The
colour orange represents a fit and active group. Late blight class is depicted in green, while those
who take a more haphazard approach is shown in blue. A good area under the ROC curve was
obtained for early blight (97%), healthy (96%), and late blight (97%), indicating successful classi-
fication on the PlantVillage dataset when data augmentation techniques were used to the training

set of the proposed PDDCNN model. The latter was superior to the PlantVillage dataset since it
provided more training data for the proposed model. The proposed technique performed worse on

the PlantVillage dataset across the board than the PLD dataset.
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PlantVillage Testing ROC Curve using Dats Augmentation
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Figure 5.20: PDDCNN ROC Curve on PlantVillage with Applying Data Augmentation.

The effectiveness of the proposed PDDCNN model was measured in a second experiment that
used the PlantVillage dataset as training data without any data augmentation approaches. The
same experimental setup was used, but only 20 epochs were used this time. The experimental
results showed that the proposed approach had a 91% success rate for early blight, a 100% success
rate for healthy, and a 96% accuracy for late blight. As seen in Figure 5.21, the suggested strat-
egy achieved an average accuracy of 93.90% on the PlantVillage dataset without applying data
augmentation techniques to the training set. Figure 5.21 displays the overall performance of the
proposed PDDCNN approach on the PlantVillage dataset without data augmentation techniques
used for the training set, including the training and validation accuracies and losses.

PDDCNN ACCURACIES ON PLANTVILAGE DATASET

WITHOUT DATA AUGMENTATION
100.00%
100.00%
T -
g u.oo% ss0%
[ iy -1
3 92.00% 91.00% B
90.00% ‘
98.00%
$6.00%
EartyBiight Heaithy Late Bught Avg Acc
PLANTVILLAGE DATASET

8 Early Blight  ® Heaithy @ Late Blight  AvgAcc

Figure 5.21: Accuracies Graph of PDDCNN on PlantVillage without Applying Data Augmenta-
tion.
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Accuracy on PlantVillage without Data Augmentation
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Figure 5.22: (a) Accuracy Graph of PDDCNN on PlantVillage without Data Augmentation. (b)
Loss Graph of PDDCNN on PlantVillage without Data Augmentation.

Table 5.9 and Figure 5.23 display the results of precision, recall, and f1 score calculations per-
formed to validate the suggested method’s performance further. The suggested technique achieved
87%, 94%, and 90% precision on the early, healthy, and late blight classes, respectively, on the
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PlantVillage dataset. It had 92% recall for early blight, an 85% recall for healthy, an 88% recall
for late blight, and an F1 score of 96%, 92%, and 94%, respectively. When data augmentation was
used on the PlantVillage dataset’s training set, the findings indicated poorer performance across
the board.

Table 5.9: Classification Accuracies, Precision, Recall & F1-Score of the Proposed PDDCNN
Model on the PlantVillage Dataset.

Performance Measures Early Blight Healthy Late Blight Average

Accuracy 91% 100% 96% 93.90%
Without Data  Precision 97% 93% 91% -
Augmentation Recall 91% 100% 96% -

F1-Score 94% 96% 94% -

PRECSION, RECALL & F1-SCORE ON PLANTVILLAGE
DATASET WITHOUT DATA AUGMENTATION
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Figure 5.23: PDDCNN Precision, Recall and F1 Score on PlantVillage without Data Augmentation
Techniques.

Figure 5.24 depicts the confusion matrix of the proposed PDDCNN approach without any data
augmentation techniques applied to the test set. The suggested model correctly identified 91 out
of 100 leaves with early blight. The analysis was spot-on for all healthy leaves (13) and 96 of the
100 photos of leaves with late blight. Without data augmentation strategies, the suggested model
on the PlantVillage dataset showed lesser classification performance, with 93.90% accuracy and a
6.10% misclassification rate, as shown in Figure 5.24.
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Testing on PlantVillage Dataset without Augmentation
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Figure 5.24: PDDCNN Confusion Matrix on PlantVillage without Data Augmentation Techniques.

Without resorting to data augmentation approaches, the ROC curve (Figure 5.25) was utilized to
evaluate the efficacy of the suggested strategy on the PlantVillage dataset. The light blue colour
indicates the early blight, and the orange colour represents the healthy class. The green colour
denotes the late blight class, and the blue colour denotes random guessing. The ROC curve graph
showed that the early blight had 94%, healthy had 100% and late blight had 94% area under the
curve.
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Figure 5.25: PDDCNN ROC Curve on PlantVillage without Applying Data Augmentation.

When data augmentation techniques were not applied to the PlanVillage dataset’s training set, the
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strategy could have performed better because it was trained with a smaller sample of data. To
train, deep learning requires an enormous amount of information. Therefore, thé dataset needs to

be huge to improve the performance of the suggested strategy.

3.3.3 Cross Dataset Performance

The detection of crop diseases in Pakistan was an area that needed more study. Two experiments
Were run on a combined dataset to evaluate how well the proposed strategy worked. We trained on
the PlantVillage dataset and tested on the PLD dataset, both with the same experimental setup as
the first experiment. We used the PLD dataset for training and the PlantVillage dataset for testing in
the second set of experiments. As shown in Table 5.10 and Figure 5.26, the proposed method had
an accuracy of 48.89% in the first experiment and 86.38% in the second experiment. This finding
lends credence to the idea that regional differences in plant diseases and species are attributable to
climate change, climatic variation, and other environmental factors.

Table 5.10: Classification Accuracies of the Proposed PDDCNN Model Training on PlantVillage
and Testing on PLD and Training on PLD and Testing on the PlantVillage Dataset.

Training Testing Early Blight Healthy Late Blight Total Testing  Overall

Dataset Dataset Accuracy Accuracy Accuracy Images Accuracy
PlantVillage PLD - 95.71% 08.82% 23.94% 807 48.89%
PLD PlantVillage 92.00% 100% 79.00% 213 86.38%
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Figure 5.26: PDDCNN Cross Dataset Classification Accuracies.
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3.3.4 Accuracies Comparison of Proposed Method with State-of-the-Art Meth-

ods

We compared the proposed PDDCNN model to the VGG16 [224], [263], DenseNet_121 [28],
DenseNet169 [28] and Xception [264] models on the PLD dataset through a process called trans-
fer learning. For this reason, all tests utilized identical conditions and data enhancement strategies.
The precision of contemporary deep learning methods is displayed in Table 5.11. Table 5.11 dis-
plays the results of various models on the PLD dataset, including the accuracy attained by each:
VGGi6, 40.05%; InceptionResNetV2, 99.26%: DenseNet121, 99.26%; DenseNet169, 99.53%:;
Xception, 99.26%; and the suggested PDDCNN model, 99.75%. According to the findings, the
proposed PDDCNN model was the most accurate (99.75%), whereas VGG16 was the least ac-
curate {40.5%). Compared to the VGG 16, InceptionResNetV2, DenseNet121, DenseNet169, and
Xception, the suggested PDDCNN approach required fewer training parameters. Table 5.11 shows
that the state-of-the-art models have more trainable parameters than the proposed PDDCNN model.
- The VGG16, Inception ResNetV?2, DenseNet121, DenseNet169, and Xception models, for exam-
ple, each had 14,716,227, 20,867 ,627,7,040,579, and 12,647,875 trainable parameters. Table 5.11
demonstrates that compared to the state-of-the-art models, the suggested PDDCNN mode] saved
a lot of computational expenses and required less time to train the model than all of them except
the DenseNet121 model, which had the lowest number of parameters at 7,040,579. The suggested
PDDCNN model required fewer convolutional layers, which required fewer parameters and a lower

overall computing cost.

Table 5.11: Comparison with State-of-the-Art Techniques.

Model Total Parameters Accuracy
VGG16 [224] 14,716,227 40.05%
InceptionResNetV2 [263] 20,867,627 09.26%
DenseNet_121 [28] 7,040,579 99.26%
DenseNet169 [28] 12,647,875 99.53%
Xception [264) 20,867,627 99.26%
PDDCNN 8,578,611 99.75%

5.3.5 Accuracies Comparison of Proposed Method with Existing Studies

Table 5.11 displays the results of a comparison between the suggested technique and state-of-
the-art methodologies and represents the generalizability of the proposed approach. According to
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the results, the proposed deep learning model outperformed the current gold standard by a wide
margin. The proposed method could have been more precise than the state-of-the-art methods,
The proposed method’s effectiveness was evaluated compared to other methods currently used for
detecting diseases in potato leaves. According to Table 5.12, the proposed method has the best
accuracy (99.75%) compared to previous research. Tiwari et al. [166] obtained 97.80% accuracy;
however, they used pre-trained models with many trainable parameters (i.e., 143,667,240). There-
fore the proposed PDDCNN model fared better. Potato disease detection was performed using
the PlantVillage dataset, which featured fewer photos and an uneven distribution of classes. The
14-layer architecture used by Khalifa et al. [162] was reported to have achieved 98.00% accuracy
at a high computational cost. PlantVillage was used, a dataset with fewer photos and unbalanced
classes. With only 10,089,219 trainable parameters with the PlanVillage dataset’s imbalanced
classes and fewer parameters, Lee et al. [167] achieved 99.00% accuracy. With only 8,578,611
parameters, the suggested PDDCNN model outperformed state-of-the-art methods to achieve an
accuracy of 99.75% at a reduced computational cost.

Table 5.12: Comparison with Existing Studies.

Existing Study ' Total Parameters Accuracy
Rozagi and Sunyoto [163] 6,812,995 92.00%
Islam et al. [168] - 95.00%
Sanjeev et al. [164] - 96.50%
Barman et al. [165] 16,407,395 96.98%
Tiwari et al. [166] 143,667,240 97.80%
Khalifa et al. [162] - 98.00%
Lee et al. [167)] 10,089,219 99.00%
PDDCNN 8,578,611 99.75%

5.4 Chapter Summary

The use of deep learning algorithms for plant leaf disease detection has the potential to improve
crop yields and quality. In this chapter, we suggested a multi-tiered deep learning model for iden-
tifying potato leaf illnesses, which can be used for easy and rapid classification of potato leaf
diseases. The potato leaves in the plant image were initially extracted using the YOLOVS image
segmentation algorithm. In order to distinguish between early and late blight potato illnesses in
potato leaf images, a unique potato leaf disease detection convolutional neural network (PDD-
CNN) was created at the second level. Furthermore, environmental factors were also considered.
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Images of potato leaves captured in Central Punjab, Pakistan, responded favourably to the pro-
posed PDDCNN method. Experiments used both the non-augmented and augmented versions of
the PlantVillage and PLD datasets. The proposed PDDCNN algorithms were shown to be the most
effective across all datasets. The effectiveness of the proposed method was evaluated against other
approaches for disease detection in potato leaves. Both the PlantVillage and PLD datasets were
more sensitive to variations in environmental factors and disease symptoms because of the PLD
dataset’s high false-positive rate using state-of-the-art and current methodologies. Iis 99.75% ac-
curacy, high precision on the PLD dataset, few parameters, low computational cost, and fast speed
are its defining features.
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Conclusions and Future Directions

To support agricultural processes, plant disease detection is one major area of interest for research
community. For plant disease detection one approach is through classification and segmentation of
plant leaves. To address the problem of classification and segmentation, Al based approaches may
be employed. One such approach is using deep learning algorithms. This research set its scope
for identifying the infected regions of leaves for various plant species including that of potato and
guava. In particular, due to the striking resemblance in morphology among many plant species, it is
challenging to accurately segment and classify them. Additionally, early leaf disease identification
is difficult due to differences in crop species, disease symptoms, and environmental conditions.
As a result of these variances, early diagnosis of leaf diseases is often difficult. Researchers have
created several machine learning methods to identify the affected area, identify plant species, and
spot diseases on leaves. Important aspect is to detect the disease in real time mode. This research
focuses on addressing the problem considering the four main areas including Plant Species Recog-
nition, Identification of leaf’s Infected Patches, Leaf Segmentation, and Leaf multiple diseases. For
the inaccuracies among achieving these tasks, the overall complexity and accuracy of the system
gets compromised. To address these problems, this research focused on the following key points:

L. To identify the specie of the plant from its leaf, a deep ensemble technique was developed. It
recognizes the potato and guava species using leaf images. It enables the model to identify
the potato and guava species of different varieties in the Central Punjab region of Pakistan.

2. A Modified MobileNetV2 and U-Net (GIP-MU-NET) Segmentation Technique was devel-
oped to detect the infected patches from plant leaves. It will help the farmers with recom-
mending pesticides specifically for the infected region of the plants. Thus, the approach is
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expected to save costs, improve crop yield, and enhance the farmer’s income.

. Three methods have been developed to detect infected patches from the crop leaves. The
first novel method is the Guava Leaf Segmentation Model (GLSM). GLSM segments the
guava leaves, which was a challenging task due to limited scale and scope of the data and
its variances due to geographic specific information. This technique helps to segment the
guava leaves having complex backgrounds. The second model is developed for extracting
potato leaves from the potato plant images with a complex background based on YOLOVS.
Another segmentation technique based on MobileNetV3-UNet has been created. It segments
the diseased and healthy leaves of guava and potato.

- Diseases in potato and guava leaves can be identified using two distinct deep-learning ap-
proaches. The first model, the PDDCNN model, was created to detect potato single leaf
disease from a leaf from different varieties of potatoes in the Central Punjab region of Pak-
istan. This model’s ability to identify late and early blight disorders in potatoes irﬁpro;;ci:
crop yields and early diagnosis of diseases for Pakistani farmers. The other deep learning
model, Guava Muiltiple Leaf Diseases Detection (GMLDD), has been developed to detect
multiple leaf diseases on a single leaf. The GMLDD model classifies anthracnose, nutrient
deficiency, wilt diseases, insect attack, and healthy leaves of different guava diseases on a
single leaf. It helps them to detect the multiple diseases of guava in real-time. Both meth-
ods will benefit Pakistan’s agricultural sector by allowing farmers to identify diseases early,
reducing losses, and increasing crop yields and profits for farmers.

. The existing methods did not correctly identify the Pakistani region potato leaf diseases
because all the current practices were only trained on the specific dataset that did not include
the images of the crops from Pakistani region. Shape, symptoms, leaf color, variety, and
environmental conditions are only a few of the many ways in which diseases of potatoes and
guavas differ around the world. As a result, the current techniques are limited in identifying
guava and potato infections in Pakistan. Therefore, there is a dire need to develop a new
dataset to detect the Pakistani region’s potato and guava leaves’ diseases so that farmers in
Pakistan can determine the diseases in their early stages, enhance crop yield, and boost the
country’s economy. For this purpose, we developed the following datasets from the Central
Punjab region of Pakistan:

(a) Development of Plant Species Dataset (PLSD): The first-ever Plant Species Dataset
(PLSD) is developed to classify the guava, java plum, and potato plant leaf species
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from the central Punjab region of Pakistan.

(b) Development of Potato Leaf Dataset (PLD): This dataset may help the researchers
with the opportunity to research Pakistani potato varieties and diseases. For this pur-
pose, Potato Leaf Dataset (PLD) has been developed to identify late, early blight dis-
eases, and healthy potato leaves. There is only one instance of a disease affecting a
potato leaf in this data collection.

(c) Development of Guava Leaf Disease Dataset (GLDD): The Guava Leaf Disease
Dataset (GLDD) was created to identify many guava leaf diseases from a single leaf.
It presents multiple disorders, including anthracnose, nutrient deficiency, wilt diseases,
and insect attack on a single leaf. The guava leaf images were collected from the Cen-
tral Punjab region of Pakistan. We believe this dataset enables the computer-based
disease detection techniques to analyze more than one guava disease on a single leaf.

6. The Guava Mliltiple Leaf Diseases Detection (GMLDD) approach was designed to identify
plant diseases in real-time for optimal performance. In light of this progress, the suggested
methéds have become more effective in terms of their accuracy. However, the new PDD-
CNN approach improves efficiency by reducing the ideal number of parameters compared
to existing approaches. The developed PDDCNN model works better than before because it

can now achieve maximum accuracy.

6.1 Suggestions for Future Work

The field of plant leaf disease segmentation and recognition has vast potential for future develop-
ment. Future research will focus on developing deep learning techniques, plant leaf disease datasets
of various plant leaf diseases, and plant leaf disease segmentation techniques. To accomplish this,
we can emphasize the following ideas in the future:

1. Chapters 3, 4, and 5 mentioned that a particular crop’s image sequences were used to train
and evaluate deep-learning models. The study will be expanded to incorporate a single
identification model for leaf disease recognition across multiple crop species. Moreover, it
could also be extended to real-time plant leaf disease recognition, which requires developing
online learning techniques.

2. Currently, we are working on the plant leaf disease detection of three cops. Still, future
research should be extended to classify the other important crops cultivated in Punjab, such
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as corn, wheat, rice, tomato, chili, onion, and various vegetables.

3. Regardless of the findings of this research, more research work is required on plant leaf
disease recognition, not only for the crops cultivated in Punjab, this research will also be ex-
tended to recognize the plant leaf diseases of other crops being produced in different regions
of Pakistan.

4. Thus, the focus of future research should be the recognition of multiple diseases on a single
leaf recognition of the physiological disease and pests diseases.
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Appendix A

Dataset Authentication, Acceptance Letter,
Proof of Submission, & Research Statistics

A.1 Dataset Authentication Letters

Here we have dataset authentication letters. To ensure the validation of our self-created datasets,
we authenticated our datasets from Department of Plant Pathology, Pir Mehar Ali Shah ARID
Agriculture University, Rawalpindi. Some of the datasets are publicly available on Kaggle and re-
maining datasets will be public after publication of articles. These letters are presented in sequence
below.

1. The Potato Leaf Dataset (PLD) authentication letter.
2. The Guava Patches Dataset (GPD) authentication letter.
3. The Plant Species Dataset (PLSD) authentication letter.

4. The Guava Leaf Diseases Dataset (GLDD) authentication letter.
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PIR MEHR ALI SHAH
ARID AGRICULTURE UNIVERSITY RAWALPINDI
Department of Plant Pathology

TO WHOM IT MAY CONCERN

The Potato Leaf Dataset (PLD) made for the digital recognition of Potato Blight diseases
(detail under given) from field sown Coreda, Mozika and Sante varieties of Potato in the District
Okara (Central Punjab) region of Pakistan was created and utilized by Mr. Javed Rashid (PaD
Scholar in Computer Science), Registration No. 155-FBAS/PHDCS/F16 at the Department of

Computer Science & Software Engineering, International Islamic University, Islamabad.

Following labeled classes of infected/non-infected were determined by using the deep learning

approach.
Class Labels Samples
Early Blight 1628
Late Blight 1414
Healthy 1020
Total Samples ’ 4062

The Potato Leaf Dataset (PLD) images were submitted for authentication of the dataset.
The Potato Leaf Dataset (PLD} is hereby validated as aforementioned classes,

Prof. Dr. Tariq Mukhtar
Chairman

Chairman
Department of Plant Pathology
PHAS-Arnd Aqricultre Universty Rawalping



S PIR MEHR AL SHAH
ARID AGRICULTURE UNIVERSITY RAWALPIND!

\w ﬂepamnent of Plant Pathology
._'-.="'—'-'-— i S e g i et L. . R —
No. PMAS-AAUR/PP/__ Dated:

TO WHOM IT MAY CONCERN

The Guava Patches Dataset (GPD) made for the digital recognition of Infected patches
(detail under given) from field sown Choti Surahi, Bari Surahi, Gola. Golden and Sadabahar.
varteties of Guava in the District Okara (Central Punjab) region of Pakistan was created and
utilized by Mr, Javed Rashid (PhD Scholar in Computer Science). Registration No. 155-
FRASPUDCS/FI6 a1 the Depantment of Computer Science & Software Engineering.
International Islamic University. Islamabad. Following labeled classes of infected/non-infected

were determined by usine the deep learning approach.

’ “lass Labels [ Samples
i I
Taiected Paiches i
| ]
; Total Samples [ 1196
|

The Guava Patches Dataset 1GPD) imases were submitted for authentication of 1he

dataset. The Guava Patches Datuset (GPD) is hereby validated as aforementioned classes.

(Dr. Trniq Mukhtar)
Chairmar.

SHAIRMAN

Qenarment of Plast Pathelogy
N A% hd Agreatn Lty Rntid



PIR MEHR ALl SHAH
ARID AGRICULTURE UNIVERSITY RAWALPIND!
Depurtment of Plant Pathology

B T e R P e et S Mt s A A
No. PMAS-AAUR/PP/__ Dated:

TO WHOM IT MAY CONCERN

The Plant Snecies ataget (P1 SPY made for the divital recopnition of Guava. Java Plum.
and Potato leat specics (detail under viven) from field in the District Okara (Central Punjab)
region ol Pakistan was eneated and atilized by Mr. Javed Rashid {Ph) Scholar in Computer
Science), Revisiration No. 155-FBAS/PHDCS/F16 at the Department of Computer Science &
Software Engineering. International Islamic University, Islamabad. Following labeled classes of

infected/non-infected were determined by using the deep leaming approach.

Class Labels Samples
Guava Leaf Species { 1900
[Potato i.eaf Specic. o 1500
- Java Plum Leaf Species z 1880
% Total Sambles ‘ 5680

The Plant Species Dataset (PLSI)Y images were submitted for authentication of the

dataset. The Plant Species Dataset (P1.51)) is hereby validated a< aforementioned classes.

v, Traiq Mukhtar)
(flgnim1:zn ’



PIR MEHR ALl SHAH
ARID AGRICULTURE UNIVERSITY RAWALPINDI

Department of Plant Pathology
“No. PMASAAUR/PR Dated:
TO WHOM IT MAY CONCERN

The Guava Leal Diseases Damcet (GEDM mads for the disital recoenition of
nutrient Jeficiency, anthracnose, wilt diseases. insect atinck, and healthv (detail under given)
from field sown Choti Surahi. Rari Surahi Gola Golden and Sadabahar varieties of Guava ir
the District Okara (Central Puniah) renion of Pakistan was created and utilized bv Mr. Javed
Rashid (PhD Scholar in Comnuter Seienced Reeistration No. 155-FBAS/PHDCS/F16 at the
Oepartment of Comouter Science & Software Eneineerine. Interational Islamic University
Islamabad. Followine laheled classes of infected/non-infected were determined by using the

deep learming approaci

5 Class Labels T '—w}lw—'"sramplea

f |

lAnthracnose ’ 1256
— T FIC
Nutrient deficiency ;
_Insert attack 1332

, o 198
Healthy \
T otl Samples T o2l

| i
Vo !

The Guava Leal Diseases Dataset (GLDD) images were submitted for authentication
of the datasét. The Guava Leaf Discases Dataset (GLDD) is hereby validated as

aturementioned claases.

1
{Dr. Traiq Mukbtar;
Chairman
CHAIRMAN

Department of Plant Pathology
JAE A4 Agrvivare Unovarsdy Révdlpini
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