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Preface

Ciliary transport is a complex feature exists on some of biological surfaces in the
presence of thermal and concentration fields. Cilia are small but complex additional
structures that protrude from the walls of the vessels. Cilia with an average length of
around 0.1 mm can easily found and thus contribute to many advanced biological
transport systems. Cilia exists in groups or clusters unlike the flagella, which generally
occurs as pairs or single structurcs. They manifest whip-like movements that appear in
plants, celis, sea creatures and physiological organs. They play a huge part across the
spectrum and biological properties. The mathematical modeling of moving cilia has
significance to estimate the various variables that are effected in this mechanism.
Although experiments together with mathematical model of ciliary transport estimates
the rolc of frequency, length, velocity and number of cilia in fluid dynamics and provide
the awareness of ciliary importance in occurrence of diseases (related to cilia).
Motivated by these facts, the cynosure of current thesis is based on the study of different
fluid models with cilia induced flow in thermal and concentration field with different
effects like magnetic field effect, thermophorectic and Brownian motion effects,
viscous dissipation effect and inertial cffects in different geometries and mathematical
tools. Under such assumptions, the governing equations of above mentioned biological
flows are modclled using continuity, momentum, energy and concentration equation.
The resulting partial differential equations are developed with or without long
wavelength approximation. The resulting linear and nonlinear system of equation has
been evaluated by the perturbation method, Adomian decomposition method and
Homotopy perturbation method. The effects of emerging parameters are shown through

graphs plotted by the software Mathematica. The impacts of physical parameters such
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as lHartmann number, porosity parameter, Weissenberg number, cilia length, power law
index, fluid parameters and Brinkman number are illustrated by the graphs. It is found
that ciliary flow enhances heat and mass transfer. This thesis comprises nine chapters
which are described in following manners.

The introduction of tluid mechanics, basic information about cilia, non-dimensional
numbers, fundamental laws, poverning equations and explanation of methodology
pertinent o the problems presented in thesis are tncluded in chapter one.

Chapter two develops the mathematical model of MHD convective flow and mixing
induced by cilia present in the bronchial airways under the effect of microscopic
temperature and concentration gradient for symplectic and antiplectic wave pattern. To
solve the partial differential equations Homotopy perturbation method s used. The
behavior of physical variables are estimated by graphical results. This study is
submitted in Kuwait Journal of Science and technology.

Chapter three extends the work presented in chapter two where effect of nanoparticles
on Jeffrey fluid due to ciliary movement has been obtained. The finding are discussed
and displayed by the graphs. This investigation is published in Rheologica Acta,

(2020), https://doi.org/10.1007/s00397-020-01222-§,

The rheological behavior of the fluid simulated with the non-Newtonian fluid under the
action of nanoparticles has been considered in chapter four. The mathematical
modelling has becn made by the envelop model appreach for the stokes flow of tangent
hyperbolic fluid with entropy generation. The governing equations are simplified and
solved analytically by Homotopy perturbation method and sofiware
"MATHEMATICA". The graphical results show the effects of viscoelastic parameter,

nanoparticles, cilia length and Brinkman number on the velocity, temperature and



entropy generation. This work is published in the Journal of Thermal Analysis and
Calorimetry, (2021).

Chapter five itlustrates the mathematical modeling of Tangent hyperbolic fluid {blood)
under the effect of magnetic field and copper nanoparticles passing through cylindrical
tube. Metachronal wavy mation is produced. Momentum and energy equations are
modeled for Tangent hyperbolic nano-fluid by using small Reynolds' number and long
wavelength approximation and solved by Adomian decomposition method with the
help of software "MATHEMATICA". The effects of emerging parameters have been
discussed through graphs. This analysis is published in Mathematical Biosciences and
Engincering, 16(4): 2927-2941, (2019).

In chapter six., thermal analysis of cilia-induced flow of mucus clearance through an
idealized two-dimensional model of the human airway is presented. The effect of
viscous dissipation is also considered. Perturbation technique is employed to solve the
resulting non-linear equations. Impact of various parameters along with the
characteristics of ciliary motion are presented through graphs and discussed in detail.
This effort is published in SN applied Sciences, (2021).

Chapter seven involves the thermal and concentration analysis on the flow of power
law fluid model through a ciliated tube. To simplify the problem long wavelength and
small Reynolds number approximation is used and exact solution for velocity is
obtained. Homotopy Perturbation technique is employed to solve the non-linear
coupled equations of temperature and concentration profiles. The impact of physical
parameters atong the characteristics of ciliary motion are presented through graphs and
discussed in detail. This work is submitted in Communication in Theorctical Physics

(2021).



Chapter eight involves thermal and diffusion effects in peripheral layer due to ciliary
movement. The fluid flow is modeled using the linear Phan-Thien-Tanner (PTT) fluid
model. After incorporating long wavelength and low Reynolds number approximations,
the resulting equations are solved and exact solution for velocity of fluid, temperature
and concentration fields are achieved. The effect of important parameters along the
properties of ciliary motion are illustrated by the graphs and discussed in graphical
results section. The results emerged in this chapter (chap. eight) are accepted for

publication in Journal of Central South University
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Chapter 1

Introduction

1.1 Bio Fluid Mechanics

Biofluid mechanics is a branch of fluid mechanics which includes fluid flow inside and
outside of the living organisms. The modern challenges associated with the
mathematical modeling of biological fluid {lows have mainly observed in human
circulatory system and respiratory system. Biofluid mechanics is rapidly increasing in
diagnosis and decision-making for treatment of clinical diseases. The relationship
between mucus flow phenomena in respiratory tract and blood flow in circulatory
system with pathophysiclogical observations has increased by measurement techniques
and capabilities of computational models. When tbese physiological models combine
in medical study, a powerful set of tools becomes available for the diagnosis,

assessment and prediction of treatment outcomes.

1.1.1 Types of Fluids

Fluid mechanics is further divided into Newtonian fluids (stress and deformation rate
vary linearly) and the non-Newtonian fluids (stress and strain rate vary nonlinearly).
Newtonian fluid models include viscous fluid model while the most familiar non-
Newtonian fluid models include Jeffrey, Maxwell, Tangent hyperbolic, Power law

and Phan-Thien-Tanner (PTT) fluid models.

1.2 Muco Ciliary Clearance

During respiration, respiratory system helps to pass the huge quantity of air into lungs.

This environmental air is mostly polluted with small particles, bacteria and viruses and



they contaminated the airways. A superficial epithelium is present in respiratory system
which consist of two types of cells the first one is goblet cells (source of mucus
production 20%) and second is ciliary cells (80%). The ciliated epithelium consists of
muco ciliary escalator which plays the basic role to protect thc whole respiratory
system. The main purpose of mucus is to trap the foreign particles and force generated
by motion of cilia moves this mucus layer into digestive tract for removal. [n nasal
cavity and lower airways the debris laden mucus can be cleared with coughing and
sneezing. Muco ciliary clearance (MCC) is dynamically regulated by both the inhaled
environmental stimuli as well as host factors such as neurotransmitters and cytokines.
A detailed knowledge of muco-ciliary clearance (MCC) is important for the correct
diagnosis and treatment of respiratory tract diseases (including asthma, diffuse
bronchitis, ctlia infections etc) and essential for sustaining the correct beating frequency

and coordination of cilia motion.

1.2.1 Mucus

Many parts of human bodies like vagina, digestive tract, lungs, eyes, and othcr moist

surfaces are protected and lubricated by a complex biological liquid called mucus.
Mucus consists of 95% water and 5% mucins. For the rapid passage of some gases,

specific proteins, ions and many nutrients, mucus plays a role of guard to protect
respiratory system from dust particles, viruses and bacteria’s, Its efficiency and
regularity based on its biochemical properties with different fength scale. By
considering mucus at macro level, its properties are different from solids and liquids.

At nanoscale level mucus behaves as fluid with very low viscosity.



1.2.2 Ciliary Structure

A single epithelial cell consists of nearly 50-200 cilia. The length of single cilium is
(.5-0.7 um and has a radius of about 0.1-0.15 um and are present at upper surface of
ciliated cells. Every cilium consists of a group of interconnected microtubules.
Microtubules (axoneme} consists of filaments called ploto filaments which are derived
from a- and p-tubulin dimers. The major component i.. B-tubulin (type 1V isotope) is
present abundantly in respiratory cilia. The cross-section area of cilia shows the
arrangement of these microtubules. In moving cilia, it consists of 9 doublet pair of
microtubules organized in a circular manner around two central microtubules called
9+2 arrangement. Each cilium has a two strokes i.e. forward which is called effective
stroke and backward which is called recovery stroke. During the effective stroke the
cilia is fully extended, and tips of cilia makes a contact with mucus layer which provides
the forward direction to the flow of mucus blanket then cilia bends 90° and goes back

to the initial point within the thin (PCL) fluid layer.

1.2.3 Metachronal Wave

A cilium, collectively called cilia, exhibit two phase stroke, power stroke (effective
stroke) and recovery stroke. Power stroke in which a cilium swings in full extension
weakly, while in a recovery stroke it reaches to the base and slowly return to the original
position. The high friction effective stroke is foliowed by low friction recovery stroke.
Cilium undergoes a cyclic motion with these two strokes, which generates force to
induced relative motion between the cell and its surrounding fluid. Since cilia are close
together on a single organism and move in coordination, This coordination produce a
collective behavior of cilia beating which forms a wave, called metachronal wave. This

wave can have different types, depending on the direction of propagation with effective

10



stroke. [f both (wave and power stroke) are in same direction, it is symplectic
metachronal wave, or in opposite direction, called antiplectic metachronal wave, or

perpendicular 1o each other, known as diplectic metachronal wave.

1.3 Nano Fluids

Nanofluids are stable and dilute suspension of solid particles typically of size less than
100nm in a liquid. This stable suspension of nanoparticles in the base fluids offer
enhanced thermal conductivity as well as heat transfer performance in comparison with
the base fluid. The term nano fluid was first coined by Chot. Different studies has been
discussed the evaluation of thermo physical properties of nanofluids. Oxide ceramics,
hitric ceramics, carbon nanotube, metals, semiconductors were used as nanoparticles in
the preparation of nanofluids. While water, ethlyene glycol and oil can be used as base
fluid. Choi investigated that addition of very small volume fraction of nanoparticles in
the base fluid can double the thermal conductivity of the nanofluid. Later many other
researchers showed that the thermal conductivity of the nanofluid can be enhanced up
to 20% by adding small volume fraction of nanoparticles to the base fluid. There are lot
of nanoparticles in blood that arc commonly one thausand times smaller than a human
hair and presence of theses nanoparticles produce many severe diseases such as
neutropenia, blood cancer, eosinophillia, leukocytosis etc. In many cases common

methods cannot be used to eliminate these particles.

1.4 Heat Transfer

Heat transfer is known as thermal energy, it is a form of encrgy which flow from one
region to another or between the systems and surroundings as a result of temperature
differences. Heat is transferred primarily through three modes conduction, convection

are radiation.

11



1.4.1 Effect of Heat Transfer on Ciliary Flow

The most important factor influencing ciliary activity is the temperature. Change in
temperature modity the different degrees of moisture and humidity which are necessary
to maintain normal physiological conditions in ciliated cells. In general, the effect of
temperature on ciliary movement is much like its effect on most biological processes
with increase in temperature. Experiments showed that there was a rapid rise in the
temperature from the standard 20°C, it always resulted in acceleration of the movement.
This acceleration was markedly increased with a gradual increase in temperature until
40°C was reached. An acute rise to 50°C paralyzed the movement of cilia.
Temperatures between 20° and 30°C did not affect the movement of cilia, but cilia were
very sensitive to temperatures above 35°C. By decreasing the temperature from 20° to
15°C and 10°C, the ciliary movement became decidedly slower, until at 5°C it ceased.
it was found that the most suitable temperature for ciliary movement was between 37°

and 38°C.

1.4.2 Entropy Generation

Entropy generation is the process which is associated with thermodynamic
ircreversibility of flow and second law of thermodynamics. Therefore, energy is reduced
due to decreasing entropy which is used by system to do work. To increase the
efficiency of engineering systems (Heat engines) the study of entropy generation is
important. Which can be done by decreasing the entropy generation effects in the
system. Bejan was the first researcher who proved that there are many factors which
can increase entropy generation like frictional forces, magnetic field and viscous

dissipation.
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1.5 Concentration Gradient

Ditfusion takes place due to concentration difference of a specie. Diffusion has many
applications in industrial and in biological process, e.g. evaporation of fluids, removal

of contamination from liver, kidneys and respiratory tract and purification of alcohol.

1.5.1 Effect of Concentration Gradient on Ciliary Flow

Cilia play an important role in respiratory tract where three mass transfer exit. If the
cilia beat frequency is low then it decreases the mass transfer, if cilia beat frequency is
moderate then cilia do not take active part in mass transport and third regime is active
regime where cilia have very high beat frequency and increases mass transfer actively.
Cilia beat frequency may vary with the age and health conditions so knowing the cilia
beat frequency one can predict the mass transfer rate in respiratory tract.

Another example of mass transfer with the help of cilia are coral reefs. Corals can

enhance mass transport with the help of cilia present on the surface of their bodies.

1.5.2 Thermophoretic Effects

Thermophoresis is the force that occurs due to the presence of a temperature gradient,
and it does not depend on size of particles. As a result of interactions between fluid and
nang particles, nanoparticles in a temperature gradient experience a force directed from
high temperature to low temperature, Insulating materials are greatly affected by
thermophoresis as compared to highly conducting (e.g., metallic) particles. For high
density particles temperature difference starts establishing i the particle which

introduce complexities.

1.5.3 Nanoparticle Effects in Diffusion

Nanoparticles are important in the fields of biclogy and medicine. They can bind many

drugs, proteins and target cancer cells. Interaction of respiratory mucus with
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nanoparticles helps in targeted drug delivery and cancer treatment which has great
applications in biomedical science. These nanoparticles should penetrate tn the mucus
to reduce rapid clcarance and achieve the pharmacokinetic profile required for better
outcomes. Recent siudies show that mucus-diffusing nanoparticle can enhance the
distribution, retention, and efficiency of vaginally administered drugs. Similarly,
nanoparticles that can penetrate easily in airway mucus may achieve reduced clearance

and improved airway distribution, retention, and pharmacokinetic profile.

1.6 Two Layer Flows

Two layered flows have major applications in engineering and biomedical sciences.
Recent studies shows that in many of engineering problems if flow is considered in two
layers with different viscosities, less power is required to run the systems. In respiratory
tract, ciliated epithelium is covered by airway surfacc liquid (ASL) which mainly
consist of two different layers. The first one is mucus layer which is a non-homogenous,
non-Newtonian, viscoelastic fluid and second layer is periciliary liquid layer (PCL)
which is considered as a watery lubricating (nearly Newtonian) fluid layer with much
small viscosity. To keep the respiratory tract clear from inhaled pollutants like viruses
and bacteria’s, transport of ASL which is facilitated by periodic ciliary actions has great
importance. We have considered fluids in both layers with different viscosities and

densities.

1.7 Laws of Fluid Mechanics

The fundamental laws of fluid mechanics which describe the fluid behavior are mass,

momentum and encrgy conversations and are applicahle in all physical problems.
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1.7.1 Continuity Equation

Law of conservation of mass is mathematically represented by the continuity equation.
This law states that neither mass can be generated nor demolished or the mass is

conserved. For compressible fluid, the continuity equation is defined as follow

% oW+ (V.Tp =0, &b

1.7.2 Momentum Equation

Momentum equation can be derived from law of conservation of momentum and can

be represented by the following equation

v ~ (1.2)
P (—5-{ + (V. V)V) =—-VP + V.t +pb,,

1.7.3 Energy Equation

The convective heat transfer problem requires a solution for the temperature
distribution through the flow. The equation for achieving this ultimate form is the

energy equation. Mathematically we can write

dr 3
pc, (EF) = k2T +1.L + pf, (13

where T denotes the temperature, T represents the extra stress tensor, ¥ is the

thermal conductivity, ¢, represents the specific heat and ¥ is the radial heating.

1.7.4 Concentration Equation

The mass transfer problem requires a solution for the concentration difference through

the flow. Mathematicaily it can be given as follows
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(dC (1.4)

— = 2
dt) DveC.

Where € is concentration and D s the Diffusion constant.
1.8 Dimensionless Numbers

1.8.1 Hartmann Number

It is interpreted as the ratio of electromagnetic forces to the viscous forces. It appears

in the magnetohydrodymics flow problems, Mathematically, it is defined as follows

f (1.5)
M= Bga -
H

where By, a , o, p are magnetic field intensity, mean width of channel/tube, fluid

conductivity and fluid viscosity, respectively.
1.8.2 Darcy’s number

It is the ratio of volume pores in the medium to the volume of bulk fluid in the medium.

Mathematically, it is given as follows

LX)

(1.6)

De

1.8.3 Reynolds Number

The Reynoilds number is the ratio of inertial forces to the viscous forces. In fluid
mechanics, the Reynolds number is a dimensionless number used to predict that flow

is laminar or turbulent. lts mathematical form is as follow
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Re = P48 (1.7
1.8.4 Wave Number

The ratio of channel width to the wavelength of metachronal wave is called wave

number. Usually it is represented by £ and it can be written as

(1.8)

~l e

1.8.5 Weissenberg Number

The ratio of elastic forces to the viscous forces is actually the Weissenberg number,
This dimensionless number is used to study the non-Newtonian viscoelastic fluid. It is

usually denoted by We. Mathematically, it is defined as

mly (1.9)
.

We =

1.8.6 Prandtl Number

It describes the ratio of momentum to thermal diffusivity and measure the heat transfer
between moving fluid and solid surface. Mathematically, it is given by the following

relation

Hep (1.10)

1.8.7 Eckert Number

it is the ratio of advective mass transfer to the heat dissipation potential. It simply shows
the relation between enthalpy and kinetic energy of the flow and is denoted by E,.

Mathematical representation is as follow
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? (1.11)

1.8.8 Brinkman Number
It is expressed as a ratio of viscous heat generation to the heat transfer rate and is
essential for short distance velocity changes flow i.e. lubricant flow. It is denoted by Br

in the product of Eckert and Prandt| number i.e. Br = EcPr.

1.8.9 Thermal Grashol Number

The ratio of buoyancy forces due to convective heat transfer to the viscous forces is
called thermal Grashof number. This non-dimensional parameter is a measure of free

or natural convection. Mathematically, the Grashof number is defined as

apATE (1.12)

Gr =

r

vz

in which g denotes the gravitational acceleration, § denotes the volume expansion, |
be the characteristics length, AT is the change in temperature and v is for the viscous

forces.
1.8.10 Concentration Grashof Number

The ratio of buoyancy forces due to concentration gradient to the viscous forces is
known as concentration Grashof number. Mathematically, the Grashof number is

defined as

gpACt
or = 48 2
v
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inwhich g denotes the gravitational acceleration, § denotes the volume expansion, {
be the characteristics length, AC is the change in concentration and v is for the viscous

forces.

1.9 Literature Review

The study of ciliary flow i1s very rich in history. The oldest known organelle cilia are
discovered by Lee-Wenheok in 1674-1675 due to their motality. Wilson et al. [1]
described the metachronism of moving cilia and they distinguish cilia from {lagella by
length, number and frequency of beating but they were considered “Different
modification of a single type”. Mathematical model for cilia was first introduced by
Gray that microorganisms execute with small velocity in water [2], Taylor [3] studied
the ciliary motion of microorganisms for finite and infinite length models. During
1960°s Porter [4]. Satir [5], Sleigh 6], and many other researchers studied the ciliary
structure and they recognized that 942 pattern is universal for motile cilta and 9+0
pattern is universal for non-motile cilia,

During last three decades of nineteenth century, Blake {7 & 8] used the envelope model
to study the movement of different microorganisms. Katz [9] and Lardner [10]
presented the propulsion of {luid due to cilia in mammalian reproductive systems and
then Blake [11] used this model to study both female and male reproductive system.
Brennen [12 & 13] used the cnvelope model to study the locomotion of ciliated
microorganisms. Sanderson {141, Agarwal [15], Fulford, {16] and Sleigh [17] described
the detaifed study of motile cilia in respiratory tract. They studied the mechanism of
mucociliary transport but a proper mathematical model for ciliary motion is given by
Gueron et al. [18]. Since cilia has very complex structure, small size and high speed,
therefore some assumptions to solve problems related to ciliary flow has been used in

this research. The most common of these assumptions are long waveiength and low
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Reynolds’ number approximation. In literature many rescarchers [19-23] uscd these

approximations to investigate the fluid flow due to ciliary motion.

Ciliary transport plays an important role in many biological process which includes
mucus flow in respiratory tract [24, 25, 26}, the movement of ovum in the fatlopian
tube [27, 28, 29] and the movement of spermatozoa in the ductus efferent of the male
reproductive tract [30, 31, 32]. The abnormalities in human airways cilia cause
periciliary dyskinesia (PCD). These patients have sinusitis and chronic bronchitis such
as chronic obstructive pulmonary disease (COPD), asthma, infection, lobar pneumonia,
influenzal pneumonia. Lee et al. [33] studied both layers of respiratory tract i.e, PCL
and mucus layer with Newtenian fluid Model and presented the diseases related to
defects in cilia. Magbool et al. [34-39] discussed the mathematical modeling of ciliary
flow in upper and lower respiratory tract in normal as well as in diseased conditions
and also they discussed the etfect of heat transfer on ciliary activity with the effect of
magnetic  field and  porous medium, Siddiqui ¢t al. [40] analyzed the
magnetohydrodynamics flow of viscous fluid induced by the ciliary propulsion in a
porous medium which has an application to control discases in respiratory tract.
Recently, Shaheen et al. [41] discussed the mathematical modeling of magnetically
actuated muco ciliary pumping in bronchial mbe in diseased condition with Darcy’s
law and constant magnetic field. Due to its numerous importance, the study of motile

cilia has key role in biofiuid dynamics.

Heat transter in biological flows and specifically in ciliary flows has wide-range of
applications in medical sciences [42 & 43], bioengincering [44 & 45] and
microfabrication technologies {46 & 47]. Some more applications in¢lude the thermal
trcatment of tumors [48], thermal control of respiratory system [49], heat transfer
through blood [50] and heat transfer regulation in organs of the body, etc. Main
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applications of temperature gradient in biological systems are thawing and freezing
process for preserving the biological material, cryosurgery, infrared radiators, and
microwave methods. Computational and mathematical thermal analysis is considered

as a critical modern tool in biological flows.

Heat trans(er has large impact on ciliary flow as described by Umbeda [51). He studied
the impact of heat transfer on PCL layer and showed that by increasing temperature
frequency of cilia can be made normal required for muco ciliary clearance. Mills ef a/.
[52] have used computational fluid dynamics to study the thermal transport in
artificially ciliated microfluidic systems. Heat transfer analysis of Rabinowitsch fluid
flow due to metachronal wave of cilia is investigated by Akber et al. [53]. Nadeem et
al. [54] studied the effect of cilia on the heat transfer and concluded that cilia enhance
the transport of heat in the fluid. Akbar et al. [55 & 56] observed the influence of
Hartmann layer and the analysis of heat transfer on transportation of copper nanofluids
due to the metachronal wave of beating cilia. Recently, Abrar et al. [57] discussed the
entropy generation during cilia transport of water based titanium diexide nanoparticies
in the presence of viscous dissipation. They obtained closed form exact solution for
velocity, temperature and entropy generation. A mathematical medeling for cilia
induced nanofluid flow through the human male reproductive tract is discussed by
Imran et al. [58]. They observed that by increasing thermophoretic effects frictional
forces at boundary also enhances significantly. Manzoor et al. [59] studied the forced
convective MHD flow ot eclectically conducing Jeffrey biofluid in a ciliated channel,
and Adomian decomposition method has been applied on the mixed convective
clectromagnetic fluid flow in the vertical ciliated channel with variable viscosity by

Farooq et al. [60]. Farah et al. [61] studied the electro-osmotic flow of Jeffrey fluid with
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effeets of heat source/sink and obtained the solution by using Adomian decomposition

method.

Mass diffusion is also important phenomenon in industry. Mass diffusion has many
applications such as nutrients” diffusion from the blood to tissues [62], membrane
separation process [63]. reverse osmosis [64], combustion process [65], diffusion of
chemical impurities [66] and drug delivery in respiratory tract [67]. Biologically-
inspired pumping systems (artificial cilia) have great applications in engineering as they
achieve high cfficiency. [ndustrial applications of mass dillusion also contains feature
of two-phase flows.

Khan et al. [68] provided effects of thermophoresis and Brownian motion on Eyring—
Powell fluid flow due to ciliary motion which has great applications in human oviduct.
They solved the resulting differential equation by Homatopy perturbation method and
show the impact of various parameters on concentration difference graphically.
Shaheen et al. [69] analyzed the thermal and concentration gradient effects on the
peristaltic motion of non-Newtonian Jeffrey six constant fluid with ciliated boundary.
Abdelsalam et al. [70] studied the theoretical analysis of thermal and concentration
gradient on a fluid flowing due to ciliary motion with inclined magnetic field. Farooq
et al. [71] studied the combined thermal and concentration gradient effects in human
body during flow of different physiological fluids. This research has major applications
in male reproductive tract. Recently many researchers [72-77] studied the effects of
thermophoresis and Brownian motion on the biological fluids which has many

applications in drug delivery systems in respiratory tract.
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1.10 Research Methodology

[n this thesis some analytical techniques are used to solve the linear and nonlinear
problems appearing in the next chapters. Some of the these suitable techniques are

described below

» Perturbation method
¢+ Adomian decomposition method

* Homotopy perturbation method

1.10.1 Perturbation Method

The perturbation method is used to solve the nonlinear problems analytically. To
approximate the perturbation solution [78], we assume [ as a small or large variable

and the unknown function u of the differential equation can be express as

U=y +wf Rt usfi e, (1.14)
and substitute in differential equation to alter the nonlinear equation into numbers of
linear problems depending on the large or small parameter of the equation and then
solution is approximated by the sum of sub linear equation’s solution. This technique
has its vital role in development of science and engineering. The problems in which

small or large parameter is not present, perturbation method cannot be used.

1.10.2 Adomian Decomposition Method

An efficient methed to solve linear and nonlinear, initial and boundary valuc problem
is Adomian decomposition method (ADM) {79, 80]. ADM docsn’t need any restrictive
assumptions such as small or large parameter. Nonlinear differential equation can be

written in the following form

u(x) = f(x) — £7HRu) — £71(Nu), (1.15)
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in which unknown f{unction % decompose into a sum of an infinite number of
components and calculated in a recursive manner, f(x) is inhomogeneous term, L7*
is the inverse operator of linear highest order derivative, Ru is the linear part of the
equation and can be decompose in the infinite sum of component of u,, where m =
0.1,2,3 ...,and Nu represent the nonlinear part of the equation and can be decompose
inte an infinite series of Adomian polynomials A,, where m=10,1,2,3..., which
are based on trigonometric and algebraic identities and on Taylor series. Finally, the

partial sum of the equation is the solution of required equation.

1.10.3 Homotopy Perturbation Method

The Homotopy perturbation technique [81] is a powerful and efficient technique to find
the approximate solution of linear and nonlinear cquation. HPM combines the two
different methods that are perwurbation and Homotopy method. This method is
applicable when the exact sotution of an equation is not possible. It starts with the initial
approximation which can be freely selected and satisfiy the boundary conditions of the

problem. The Homotopy structure can be written as

Hw,j) = (1= PILW) — Lwg)] + j[AW) — ()]
=0, (1.16)

in which L is the linear part, A can be decompose into a linear and nonlinear part, i,
1s the initial guess which satisfy the considered equation and j € [0,1] is an embedding
parameter.

Homptopy perturbation method leads to a solution in terms of power series. In this way,

a strict nonlinear equation reduce into solvable linear and nonlinear equation,
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Chapter 2

Effect of Viscous Dissipation and
Thermophoretic Diffusion on Muco

Ciliary Clearance

[n this chapter we have modeled the MHD convective flow of viscous fluid induced by
cilia, which is resembled with the mucus flow through bronchial airways under the
eftect of microscopic temperature gradient and magnetic field. The ciliary flow is
modeled by the symplectic and antiplectic pattern that forms the metachronal wave.
The governing equations are modeled in fixed and wave frame with long wavelength
and low Reynolds' number approximation. The results show that symplectic
metachronal waves are the most efficient regarding the fluid flow. The flow is studied
with the help of temperature gradient, diffusion law, viscous dissipation and
thermophoretic effects and the expressions for velocity, temperature and concentration
profile are solved by the help of analytical technigue HPM and software
"MATHEMATICA®". The graphical results of stream function show that presence of
magnetic field and porous medium help to increase the pumping phenomena, whereas
thermal and concentration Grashof number assist to slow the pumping of mucus

through bronchial airways.
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2.1 Mathematical Model

Consider a viscous flow in a tbe of finite length L. Assume infinite number of
continuously beating cilia are present at the inner walls of tube generating symplectic
metachronal wave which moves towards positive z-axis with wave speed ¢. As cilia
are present at the intemmal walls of the tube and due to continuously beating of cilia,
fluid flow is established. We will use envelope model approach to discuss the transport

of mucus by ciliary movement which is already used in literature [82] for the flow

induced by cilia.
Muus Flow
Nasal Cavity
teachea e - ' k— & Bronchial walt

Uy

Fig. 2.1: Geometry of the problem.

The position of the ciliary flow near the tip of cilia is govemned by the following

equation given in Ref. [83]
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2.1
R=H=F(Z,t)=a+aecos(27n(2—ct)), @

2= (2.2)
Z=G(2,23,t) =Zy 4+ aeasin -i-(Z —ct)].
R and Z components of velocity are given as follow
U=Rlgeg = F+FZ=F+FW, (2.3)
24

w =2|z=zo = G+G'Z = G‘+er-
The transformation from fixed to wave frame by using Galilean transformation are

given in Ref, [30]

z=2-ct, r=R, w=W-—c, u=y, (2.5)
p(t.r.z) = P(T,R,Z),

where U is the radial and W is the axial velocities.
The governing equations for the magnetodynamic diffusive convective flow of a

viscous fluid with thermophoretic and viscous dissipation effect [84] are given as

follows
13 ow (2.6)
—g (ru) + a— =0,
_ o2, M 0p {2.7)
pE(u) = nVu o o
pE(w) = nVw — (aBg + ki) (w+¢)
! (2.8}
. dp
+prgBi (T = To) + prgBy (€ — Cp) — 37
duy 2 w2 du  ow’ 2.9)
o=k (3 a3
pc,E(T) = kV°T + 2n p + 21 p +7 ol
D
E(C) = DV2C + -2 v7T, (2.10)
To
here E =u—+w
where E = u—+w—
Boundary conditions are suggested by [84] in the following manner
ac aT ow (2.11a)
_— 0 — T — =
ar , 57 0, P 0, at r =0,
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T=T, w = w(h), C=Cy at r=h (2.11b)

To non-dimensionalize the problem we use following parameters

 __ 4 * r x __ u . w hxu — h "
V4 "*"i, r *—au u ""ﬁca w —CJ _a: P
_6
= ” e
a ., a . CA pac Hep
ﬁ=_}l—’ Sij =E5i}» Ay = R8=T, PT’=T.
g = -7 ,_ (-6 Grr = gb1a*(Ty — To) Gr. = gB:"a*(C, — Cy)
_Tl_Tg, - Cl"CQ' L v2 ! ¢ V2 ’ (212)
U pDkr s k
S =, Sp =—/——, M= |—aBj, D, =—.
H Dp T #(Cl — CO) \/; 0 a a2

After dropping (*) Egs. (2.6)-(2.11) in non-dimensional form are given by the

following expressions

14 dw (2.13)

3%
RefplE(W)] = FL(w) + f2 5%

1 dp
2 _2r 2.14
(M + Dﬂ) (W + 1)+ Gre6 + Greg — =, (2.14)
%y u] B ap 2.15)
2 = Rl B/ o
Ref*[E(w)) =B [Fl(u) + B 72 2|t Dau e

%0
BE(0) = F,(8) + ai

+Br (ﬂz (g%)z + (%; + %%)2) +Br (%'fri)z, (2.16)
BE($) = Fy (%Jr 5:6). 217
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63

QJ“--.

TH-2&

a% 10
a

Where F; = s + e

with boundary conditions
w = w(h) = —(1 + 2reaff cos(2nz)),

u = u(h) = 2re(sin(2n2)) + f2mea sin(2nz) cos(2nz),

at
r = h(z) = a + eaa cos(2nz),
and
dw a8 d¢
—_—— = —= =0,
or dr oOr 0 at r

By applying low Reynolds' number and long wavelength approximation one can get

following equations

| dp
— {2 - — _F
Filw) = (M + Da) {(w+1)—6r:8 — Greg 37

=0,

C:JIQJ
il

2

Fi(0) + Br (Z—T) =0,

Fl (¢) + SHSTFl(B) = 0,

where the boundary conditions are

w = w(h) = —1 - 2meafi cos(2nz),0 =0,¢ =0,at r = h,

—_—=—=——=1 at =20,

(2.18a)
(2.18b)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

The flow rate of mucus in human trachea ranges from 5-20 mm/min, therefore it is

important to calculate flow rate of mucus from the airways to the ciliated epithelium.

Volume {low rate can be calculated by integrating Eq. (2.13) and volume flow rate is

defined as follows:
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(2.26)
g=2 f rwdr,

so that dimensional and non-dimensional volume flow rate are related as

! (2.27)
Q= 2fr fr(w+1)dr—q+h2
0
The average volume flow rate can be written as follows
1 T (2.28)
Ff Qdt*' = q+ 1+ 0.5¢e%
0
2.2 Homotopy Perturbation Solution
To obtain the solution of governing equations, homotopy perturbation method is
described as
Hw.j} =1 = HILW) — L{wo)]
1 1 d 2.29
+j(£(w)+(M2+—)w+(M2+-—) GrTﬂ—Grcqb——E) (2.29)
D, D, 0z
(2.30)

. ) w2
H{G,8) = (- LB — L6} +/ (1‘3(6‘) + Br (?3?) )

18/ a6 (2.31)
HG,¢) = - NP — LP)] +] (L(¢) +SHST—a—(r§))

The linear operator and initial guesses are chosen as follows

1) ( 5) (2.32)
=——I|r—=—1,
ror\ or

1dpg 2 2 (2.33)

WU_Zd_z( —h*} +w(h),
r2 —h? r? — h? (2.34)

90 - 4 r¢0 = 4 '

According to homotopy perturbation method

W = wo + jwy + 2wy + o, (2.352)
0 =0q+ )8, +j20,+ -, (2.35b)
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b = o +jpy + /7y + (2.35¢)
p=p+ip+jip+ (2.35d)

where is j € [0,1] is the homotopy perturbation parameter and j = 0 gives initial
guess and j = 1 gives the final solution. With the help of Eqs. (2.35a) - (2.354),

second order solution for the velocity and temperature profile are given as follow

w = w(h) +%(A1 + g+ (Mz +51;) {w(h) + 1)) (r? - h?)

1 1
— 4_ pay, 6 _ j6
+16A2(T h )+36A3(T h®) +

2

1 1\2d
—{ -Grr6— Greg + (MZ +—) 2PN (—3ht — ar2p? 4 7%, (236)
64 dz

D,
1 1 dp\ 1 2.37)
g = (1—6A4 ——ﬁBr(E) )(T —h )+'3'EA5(T —h ),
1 1
¢ = (- +Ag ~ SHST) (ri —h%) + —A,(r* - h*). 238)
4 16
Integrating Eq. (2.36) pressure gradient in terms of volume flow rate can be written
as
dp  —Ag+ ARl ¥ AL T 4A5q 2.39)
dz - ?..Ag '
The stream function can be calculated by the following relation
_ley o _10v 240
T raz’ ror'
P =Apr® + Apr® + Apart + A (2.41)

where A, to Ay, are defined in Appendix.
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2.3 Graphical Results

60

Fig. 2.2: Impact of cilia length parameter € on pressure gradient % for M =1,

D, =0.1,6rr =1,6rp = 1.
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Fig. 2.3: Influence of Hartmann number M on pressure gradient g—g for e = 0.1,

D, =0.1,6rr = 1,6rp = 1.
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Fig. 2.4: Impact of Darcy’s number D, on pressure gradient zz—? for € = 0.1,

M =0.1,Grr = 1,Grp = 1.
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Fig. 2.5: Impact of thermal Grashof number Gry on pressure gradient j—z for

€e=01,M=01D,=01,G6r,=1.
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Fig. 2.6; Impact of concentration Grashof number Grc on pressure gradient E—Z—

for e =0.1,M =0.1,D, = 1,Grp = 1.
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Fig. 2.7: Impact of cilia length parameter € on axial velocity w for M =1,

Da = 0.1, GT-_.- = 1, GT’C = 1.
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Fig. 2.8: Impact of Hartmann number M on axial velocity w for € = 0.2,

D, = 0.1,6ry = 1.Grp = 1.
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Fig. 2.9: Impact of Darcy’s number D, on axial velocity w for € = 0.1,

M=01Grr=1Gr=1
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Fig. 2.10: Impact of thermal Grashof number Gry on axial velocity w for € = 0.1,

M =0.1,D, =0.1,6rc = 1.
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Fig. 2.11: Impact of concentration Grashof number Gr¢ on axial velocity w

for € = 0.1,M =0.1,D, = 0.1,6rr = 1
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Fig. 2.12: Impact of cilia Hartmann number M on temperature field 8 for
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Fig. 2.13: Impact of Darcy’s number D, on temperature field 8 for

e=0.1,M=0106r =10 =1
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Fig. 2.14: Impact of thermal Grashof number Grr on temperature field 8 for

e=0.1,M=010D, =01,6r = 1.

r

Fig. 2.15: Impact of concentration Grashof number Gre on temperature profile 8

for e=01,M=01,0,=1 and Grp = 1.
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Fig. 2.16: Impact of Darcy’s number D, on concentration field ¢ for

M=1,SH=1 and ST=1'

Fig. 2.17: Impact of Hartmann number M on concentration field ¢ for

Sy=1,5=1 and D, = 0.1.
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Fig. 2.18: Impact of Schmidt number S; on concentration field ¢ for

M=10D,=01 and §;=1.

Fig. 2.19: Impact of Soret number Sy on concentration profile ¢ for

Sy=1D,=0.1 and M =0.1.
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Fig. 2.20: Contour plots for distinct values of cilia length parameter € for Gry = 1,

Gre=1,M=1,D, =0.1.
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(i) Grp =3

Fig. 2.23: Contour plots for distinct values of thermal Grashof number Gry for

D,=016Gr =1e=01 and M =0.1.
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Fig. 2.24: Contour plots for distinct values of concentration Grashof number Gre

for D, =1,6rr =1, =0.1 and M =0.1.
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2.4 Discussion

The thermophorectic diffusion and viscous dissipation effects on mucociliary clearance
has been considered in this research. We study the effects of prominent parameters
magnetic parameter M, Darcy's number D,, thermal and solutal Grashof number on
pressure pradient, velocity, temperature and concentration field for a = 0.2,8 =
0.2 and Q = 1. Figs. 2.2 — 2.6 represent the effects of cilia length parameter €,
magnetic parameter M Darcy's number D, and Grashof number on pressure gradient.
It is noticed that pressure gradient increases along the axial direction of the tube as we
increase € and M and dccrease can be observed with the increasing value of Darcy's
parameter Dy, thermal and concentration Grashof number. Figs. 2.7 — 2.11 depict the
impact of €, M, D, Grr and Gr; onaxial velocity. It is depicted that velocity in axial
direction increases as we increase the cilia length parameter € and permeability of
porous medium D, and velocity is retarded with the increasing magnetic parameter M,
thermal and concentration Grashof number. The fluid velocity near the center of the
tube become mounted due 1o poiseuille nature of the flow.

Figs. 2.12 — 2.15 portray the variation of temperature field for distinct values of
magnetic parameter M, Brinkmann number Br and Grashof number. It can be seen
that by employig magnetic field heat transfer rises but the temperature profile shows
the retarded behavior with the increasing value of D,, Br, Gry and Gre. The Darcy's
number D,, Brinkmann number Br, thermal Grashof Gry and solutal Grashof Gr,
are poor conductor of heat for viscous fluid.

In Figs. 2.16 — 2,19, the influence of magnetic parameter M, Darcy's number
D,, Schmidt number Sy and Soret number Sy on concentration field is observed. It
is evident that magnitude of eoncentration profile increases as we increase

M, D, S, and $r. The coneentration of molecules became high in the presence of
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heating effects, magnetic fietd and porous medium.

T'he trapping phenomena of mucociliary clearance for different values of €, M, D,
Gry and Grg has been shown in Figs. 2.20 — 2.24 and it can be seen that by rising
the values of € and D, number of boluses as well as size of boluses increase. The size
and number of boluses decreases as we increase M, Gry and Gro. The mucus (fluid)
become thin when ciliary length become high to clear the airway mucus but viscous

dissipation and thermophoretic cffects make the fluid (mucus) thick.
2.5 Conclusions

The mathematical analysis of mucociliary clearance with the effect of viscous

dissipation, thermophoresis, magnetic field and porous medium has been discussed.

The ditfusive convective transfer of heat and mass of ciliary flow in a vertical

symmetric tube is modeled with the help of mass, momentum, energy and concentration

laws. Homotepy perturbation solution of velocity, temperature and concentration have
been constructed upto the second order with the help of software "MATHEMATICA",

The flow features e.g velocity, stream function and pressure gradient are analyzed for

different values of involved parameters and following observations have noted.

* Pressure gradient increases by increasing values of cilia length, Hartmann and
porosity parameter, but decreases with rising value of concentration and thermal
Grashof number.

¢ Axial low velocity decelerates with the increasing value of €, M, Gry and  Grg
but flow velocity accelerates with the increasing value of D,.

o Temperature profile decreases with growing values of D,, Br, Grr and Grg
but increasc can be seen in temperature profile by rising value of M.

¢ (Concentration profile decelerated with the increasing values of D,, M, Sy and Sy.

e Trapping phenomena shows the size of bolus reduces by rising M, D,, Gry and
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Gre but bolus size tends to increase with the rising value of €.
The magnitude of concentration level can be increased in presence of magnetic field
and thermophoretic effect but heat transfer and axial flow can be increased with the

high length of cilia and porous medium.
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Chapter 3

Thermal and Concentration Field

Analysis of Jeffrey Nanofluid Flow

In this chapter. we discuss the eltect of nanoparticles on Jeffrey fluid parameter due to
ciltary movement. The mathematical modelting has been made by the envelop modcl
approach for the siokes flow of Jeffrey fluid. The governing partial differential
equations are solved by HPPM and software "MATHEMATICA". The graphical results
show the effects of viscoelastic parameter, cilia length and thermal and concentration
Grashof numbers on the pressure gradient, velocity, temperature and concentration

profilc.

3.1 Mathematical Model

Consider a Jeflrey nanofluid [85] flow (mucus contains dust particles) in a respiratory
tract resembled with a tube having finite length. Assume infinite number of
continuously beating cilia are present at the inner walls of tube generating symplectic

metachronal wave which moves
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Fig. 3.1: Geometry of the problem.

towards a positive z — axis with wave speed ¢. As we have considered the cilia which
are present on the inner surface of the trachea and due to continuously beating of cilia,

fluid flow is established.
The governing equations for the Jeffrey nanofluid flow through a ciliated tube with

thermophoresis, Brownian motion and buoyancy effects are given as follow

10 ow
rar Wty =0
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a
o7 (3 + V.9)V = /98, (C = Co) + prgBu(T = To) + V.,

1=-pl+5§,

(pcp)( +VV)T

2 Dr
= kVT + trace(S.L) + (pcy),, (DBVC. VT + =T vr),

0

(a +VV)C-D vec + ZLyer,
ot - Uh T
where

§=—" (A +1 dAl)
BT PR T &

with boundary conditions

~ (%) [eaacsin (5F) |

() feaacos ()]
f ) - (3) [eaacsin () ]

1= (5)[eancos (5F) 2]

T = T”. C = C{}:

at
r=zxh(z) = [a + eaa cos (2:) z].
and
a—w =0 at r=0.
ar

The temperature and concentration profile are constant at center of the tube therefore

6T_0 aC_O Fr=0
ar or at T=90

(3:2)

(3.3)
34

(3.5)

(3.6)

(3.79)

(3.7b)

(3.7¢)

(3.8a)

(3.8b)

In above equations V is the velocity profile, T is the extra stress tensor and p, is the

density of fluid.
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To non-dimensionalize the above system we use following parameters

t_z t_u *_r t_w t_a‘g h*
2EY YT TTy WS PEgP
B h
==
a , a . CA pac e
ﬁ=i, SU ;}—ESU, Al ="?, R€=T, PT—-T,
T-T C—-¢ ¢)pDg(C; = Cy)
6 = o’¢= O'Nb=(p)p8 1~ Lo ’
T, —T €1 =G (pc)ray (3.9)
Nt = (PC)pDT(C1 —Co) Cre = gBa*(Ty = Ty) Gre = gp,"a’(C, - Co).
(pc)ray T v? ’ v2

Using Eq. (3.9) into Egs. (3.1)-(3.8), we can obtain following form of equations after
dropping the asterisk

14 ow (3.10)
“g( u) + —a—' =0,

18( r , ap

ReBE(w) = ror (1 + A4 (67‘ A )) 9z
3w (3.11)

+ﬂ2 @ + GTTB + Grcfp,
2u ul ap (.12)
_ p2 2~ _ |22
ReBE(w) = f [Fl(u) +h=— Tz] e
828 200¢ 9004
— 2_ 299
BRePrE(8) = F,(8) + B o— + Nb ( L g az)
a0 , (36N ow( 1 caw  ou (3.13)
+Nt((?3~?) +h (az) )+ Br"é}"(1 +Al(6r th az) '
8? qb Nt (326 188 (3.14)
2 il
BE($) = F(9)+ B o=+ (arz +5 ar)»
with boundary conditions

w =w(h) = —(1 + 2meaf cos(2mz)), (3.15)
u = u(h) = 2me(sin(2nz)) + B2nea sin(2nz) cos(2nz), (3.16)

at

r = h(z) = a + eaa cos(2nz),
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-5—:5?:5?:0 at r=20.

Using long wavelength (4 — o) and low Reynolds' number (Re —

0) approximation [34] we can find following forms of equations

3
Fiw) — (1 + 1)) (—GrTG —Grep + a—’;) =0,

dp

—=0’

or
‘o +Nbaaa¢+N (aa) Br (aW)Z__O
1(6) ar or ar/  14i\dr/

Fi{¢) + Fl(ﬂ) =0,

with boundary conditions

w=w(h) = —1—2reaff cos(2nz) ,8 = 0,¢ =0,at r=h,

ow 08 _d¢

ar or or =0 at r=0.
Yolume flow rate is defined as
A
g=2 f rwdr,

0
so that dimensional and non-dimensional volume flow rate are related as

! t
Q =2[rwdr=2[r(w+1)dr=q+h2.

0 o

The average volume flow rate can be written as follows

T

1
?I Qdt* = q + 1+ 0.5¢2
0
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(3.19)

(3.20)
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(3.23)
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(3.26)



3.2 Homotopy Perturbation Solution

To obtain the solution of governing equations we use, homotopy perturbation method

which is described as follow

H{G w) = (1= NILw) = L{wp)] (3.27)

d
+J (L(w) - {1+ A4) (—GrTB —Grep + d—z)),

H{G.0) = (1~ DILEO) — L(6)]

{ e — N a8 a¢) N (39)2 s Br (aW)2 (3.28)
L) - (a_rEF'tEF 1+, \or) /'
, , , Nt1d, 08 (3.29)
HG.) = (1= DIE@) ~ L(po)] +) (L(cp Ty 5))
The linear operator and initial guesses are chosen as
[ % 19 (3.30)
ez trer
ldp (3.31)
Wy = Zd—zo(l +2,)(r? ~ h®) + w(h),
o ré —h?® _r?—h? (3.32)
0= 4 '¢0 - 4 ¢
According to Homotopy perturbation method
w = wg + jwy + fPwy + -, (3.33a)
8 =08,+j6, +j%0, + (3.33b)
d=do+jdr+ )20+ (3.33¢)
p=po+joL+ )0+ (3.33d)

where je[0,1] is the Homotopy perturbation parameter and j = 0 gives initial guess
and j = 1 gives the final solution. With the help of Egs. (3.33a) — (3.33d), solution
for the velocity, temperature and concentration profiles are given as follow

WEwy+w, +W, = A+ A (P2 — R + Ap (r* — A + A (k6 = %), (334)

Using Eq. (3.39) in Eq. (3.33) and solving Egs. (3.33) & (3.34) under the boundary
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conditions given in Eqs. (3.27) & (3.28) temperature and concentration profile can be
obtained as follow

g = 90 + 91 + 92 = Alg(rz - hz) + Azo(rq' - h‘}) + Az]_ (T6 - hﬁ), (335)

@ = o+ ¢y + P2 = Ay (r? — h?) + A (r* - 1) (3.36)

After integrating Eq. (3.34) one can get following pressure gradient in terms of

volume flow rate

dp  —Agy + —4AysAge + Asy + 44540 (3.37)
dz 24,, ’

where A5 to A,, are defined in Appendix.
The solution obtained by the Homotopy perturbation method is convergent as
expressions of velocity, temperature and concentration profiles are in the form of

power series with decaying coefficients.
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3.3 Graphical Results

iy

Fig. 3.2: Influence of cilia length parameter ¢ fraction on pressure gradient z—z for

Ay =03,6ry =1 and Gre =1,

, Ay =01, 0.5 09.
30k ]
r
25t
dp |
az 20}
15} . . .
10be---""" L L

1

Fig. 3.3: Influence of Jeffrey fluid parameter A; on pressure gradient z—z for € =
0.2,
Grp=1 and Gro= 1.
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L4

Fig. 3.4: Influence of thermal Grashof number Gry on pressure gradient % for € =
0.2,
A, =03 and Gre=1.

. . . d
Fig. 3.5: Influence of concentration Grashof number Gr¢ on pressure gradient d—z for

€e=02,4, =03 and Grr = 1.
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Fig. 3.6: Influence of cilia length parameter € on temperature profile & for

A, =03,6rp =1,Gr,=1,Nt =4 and Nb = 1.
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Fig. 3.7: [nfluence of Jeffrey fluid parameter A; on temperature profile 8 for

e=02 G6rr=1,6r-=1,Nt=4 and Nb=1.
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Fig. 3.8: Influence of thermal Grashof number Gry on temperature profile 8 for

€=02 4, =1Grc=1Nt =4 and Nb=1.
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Fig. 3.9: Influence of concentration Grashof number Gr, on temperature profile §

fore =02, 4, =1,Grr =1, Nt =4 and Nb=1.
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Fig. 3.10: Influence of thermophoretic constant Nt on temperature profile 8 for

€=02 A4, =1,6Grr =1, Gre=1 and Nb= 1.

Fig. 3.11: Influence of Brownian motion constant Nb on temperature profile 8 for

f=0.2, Al = I,GTT—_— 1, G'rc:l and Nb=1.
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Fig. 3.12: Influence of Jeffrey Muid parameter 4; on concentration profile ¢ for

Nt =4 and Nb =1.
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Fig. 3.13: The effect of thermophoretic constant Nt on concentration profile ¢ for

A; =03 and Nb=1.

61



r

Fig. 3.14: Influence of Brownian motion constant Nb on concentration profile ¢ for

A, =03 and Nt=1.
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Fig. 3.15: Comparison of symplectic and antiplectic wave pattern of different values

of cilia length parameter € for 4; = 0.3,Grp, =1 and Grp = 1.
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Fig. 3.16: Comparison of symplectic and antiplectic wave pattern of different values

of Jeffrey fluid parameter 3, for € = 0.3,Grr =1 and Grg=1.
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Fig. 3.17: Comparison of symplectic and antiplectic wave pattern of different values

of thermal Grashof number Gry for € = 0.2,4, = 03 and Gre = 1.
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Fig. 3.18: Comparison of symplectic and antiplectic wave patiern of different values

of concentration Grashof number Gr, for € = 0.2,4; = 0.3 and Gry = 1.

3.4 Discussion

The mathematical model of microsystem of respiratory tract contains mucociliary
clearance as Jeffrey nanofluid flow through ciliated tube is governed by the energy,
concentration and momentum equation with thc effects of thermophoresis and
Brownian motion. The results of velocity, temperature, concentration profite and
pressure gradient are presented through graphs. For the biological relevance of the
present study we have presumed a = 0.4, 8 = 0.4,

z = 0.1 from Ref. [30].

Pressure gradient in the ciliary flow is a vital agent for the mucociliary clearance and
its variations depend upon distinct values of cilia length e, Jeffrey parameter
(viscoelastic parameter) 4,, thermal Grashof number Gry and solutal Grashof number
Gre that are expressed through Figs. 3.2 — 3.5, It is noted that pressure deviation
mounted for the increasing values of cilia length parameter € and solutal Grashof

number Gre but deviation decreases with the increasing value of viscosity (Jeffrey)
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parameter A4, and thermal Grashof number Gry. These graphs show that when the
buoyancy forces are dominant over the temperature difference, then pressure gradient
decreases [or the ciliary flow but in contrast when the buoyancy forces became
dominant over the concentration difference the increase in pressure gradient is required
for the Jeffrey nanofluid flow. The increasing values of Jeftrey parameter A; show that
pressure gradient increases for the ciliary flow due 1o thickness of the fluid flow. Since
the temperature difference elfect the mucus flow near the ciliated bed therefore, heat
transfer altered due to the cilia length parameter e, Jeffrey parameter A4, thermal
Grashof number Gry and solutal Grashof number Gr which is shown in Figs. 3.6 —
3.11. These figures display that the decay in transfer of heat is observed with the
increasing values of cilia length parameter £, Jeffrey parameter A; and thermal
Grashof number Gry but solutal Grashof number Gre, thermophoretic parameter and
Brownian molion parameter cause to rise in transfer of heat. It is noticed that the
presence of nanoparticles (Nb  and Nt) and buoyancy force due to concentration
difference Gre help to enhance the thermal conductivity of the fluid that results to
increase the temperature profile, whereas Jeffrey parameter A4, cilia length parameter
¢ and thermal Grashof number Gry cause to reduce the thermal conductivity of the
(uicd which results to decrease the temperature profile.

The dilfusion of nano particles in the mucus are influenced by the Jeffrey paramcter
Ay, thermophoretic parameter Nt and Brownian motion parameter Nb that are
displayed through Figs. 3.12 — 3,14. It is observed that concentration profile decreases
with the increasing values of Jeffrey parameter A, and Brownian motion parameter
Nb whereas concentration profile increases with the increasing values of
thermophoretic parameter Nt . It is viewed that increasing values of Nb and

A, makes the diffusion process slow which results to decay the concentration profile
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but thermophoretic effect causes to accelerate the diffusion process which results to
increase the concentration profile.

The variation of €, Ay, Gry and Gr, has been displayed for axial velocity using the
symptectic and antiplectic wave pattern. Figs. 3.15 — 3.18 indicate that axial velogcity
is maximum at the center of the tube ¥ = 0 due to the presence of pressure gradient.
Axial velocity increases for the increasing values of cilia length parameter € i.e the
cilia lengih help to acceterate the axial velocity near the center of ciliated tube. The
increasing values of A;,Gry and Grp cause to decrease the axial velocity in the
region—0.5 < r < 0.5. It is noticed that Jeffrey parameter A; and buoyancy forces
(Grr and Gre) decelerate the fluid flow in the axial direction. It is also observed that
magnitude of the velocity profile is high in the antiplectic wave pattern when compared
with symplectic wave pattern. Thus for the fast movement of the axial flow antiplectic
wave pattern is suitable and for the slow motion of axial velocity symplectic wave

pattern is a best choice,
3.5 Conclusions

In this research, the analysis of micro-system of respiratory tract contains mucus
clearancc as Jeffrey nanofluid through cilia beating subject to the surrounding
temperature has been done with the effects of thermophoresis and Brownian motion. In
humans, the physiological part for respiration is small airways, it is alrcady proved [38]
that micro-system of ciliary motion plays a key role in clearance of mucus present in
small airways.

The flow of mucus under the influence of surrounding temperature and environment
(clean and dusty) has been observed in this study and main results of this study are
listed below

e The thickness of the nanofluid (Jeffrey fluid with dust or viruses) causes to reduce
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the flow rate, heat transfer (8) in mucus, diffusion of nanoparticles in mucus

: d
(¢) and pressure gradient (d—f) for the mucoclearance.

* The cilia length parameter € causes to increase the velocity (w) and pressure
. d :
eradicnt (a_p) along the trachca length but it causes to reduce the heat transfer
Z

(8).

e Buoyancy force due to temperaturc ditference {Gry) causes to decreasc thc
pressurc gradient, temperature and axial velocity.

« Buoyancy force due to concentration difference (Gro) causes to increase the
pressure gradient and temperature profile but it helps to reduce the axial velocity.

e Thermophoretic number causes (Nt} to increase the temperaturc and
concentration profile.

* Temperature profile increases and congentration profile decreases by increasing
Brownian motion parameter (Nb).

¢ By considering Jeffrey parameter {(4; = A; = 0) the results of linear viscous
fluid can be retrieved.

This study helps how one can control the mucociliary clearance with the help of

temperature and surrounding environment. The present study will hopefully provide

significant applications in bioengineering, medical sciences, and medical equipment,

such as cilia based microdevices for the clearance of viscoclastic fluid frem dust and

VIruses.
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Chapter 4

Mathematical Study of Entropy
Generation on Tangent Hyperbolic

Nanofluid Flow

In this chapter, we discuss the effect of nanoparticles and entropy generation due to
ciliary movement, The mathematical modeling has been made by the envelop model
approach for the Stokes flow of tangent hyperbolic [luid. The governing partial
differential equations are solved by Homotopy perturbation method and softwarce
"MATHEMATICA". The graphical results show the effects of viscoelastic parameter,
nanoparticles, cilia length and Brinkman number on the velocity, temperature and
entropy generation.

4.1 Mathematical Model

Consider a two dimensional {low of Tangent hyperbolic copper nanofluid in a tube
having width 22, Blood is considered as base fluid and copper nanoparticles are
immersed in blood. Assume infinite number of continuously beating cilia arc present at
the inner walls of tube generating symplectic metachronal wave which moves towards

positive z-axis with wave speed c.
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R-AXis & Nano particles
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Figure 4.1: Geometry of ciliated tube.

Governing equations for an incompressible tangent hyperbolic nanofluid [86] are

defined as follows:

VV=20,
where
V =[u,0,w]
and
dv
Pr T = divt,

ar
(pc)f-c?? =l V2T + trace(S.L),
where V is the velocity components.

Here the appropriate stress tensors for the tangent hyperbolic fluid model is as

follows:
T=—pl+5,
5 = (75 + (g + ne) tanh(Ty)™)y;],
where
. 1
Y - 2 m,

where m = trace(gradV + gradV™)?,
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where m is second order tensor we study the above equation for the case where 1, =

0 and Ty < 1. The elements of extra stress tensor can be written as

vi=L+L, (4.8)

5= n{(MN™y; = 11+ Ty = D™y = no(1 + m(Ty — 1))y, (49

where thermal conductivity of Cutblood nano-fluid is defined as follow

Pnp = (1 - Qo)pf + 9ps,

-
fng = (1 — )25

(pep),, = (1~ @)(Pcp)f +¢(pcy).,

kﬂf
(Pcp)nf

P ("s+2kr—2<o(kf-ks))
M Nk + 2k + 20(ky — k)’

anf=

(4.10)

where k¢ is the thermal conductivity of nano-fluid, k¢ is the thermal conductivity
of base fluid, k, is the thermal conductivity of solid nano particles and ¢ is the solid
volume fraction. The Mathematical model for geometry of cilia tips in the wave frame
is

h =1+ ¢ecos2nz, {4.11a)
w(h) = =1 — 2neaf cos 2nz, (4.11b)

where € is the cilia length parameter, « is the eccentricity of eiliptic wave and § is
the wave number.

The governing equations of motion for tangent hyperbolic fluid model in a tube are

specified as follows

14 dw 4.12
—(ru}) +—=0, ( )
r dr dz

19 3S,, Op (4.13)
pr(W) = rg(rsrz) +¥_E'
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~ 8S,. p (4.14)
prEGW) = Fy(Spp) + ===,

3T dw (4.13)
(pc)fE(T) = kyy (Fl(T) + ﬁ) + Ser 3

where p, is the fluid density, u and w are the radial and axial components of

velocity, ¢ is the wave speed and 71, is the apparent viscosity of fluid.

The following non-dimensional parameters ¢an be introduced for further analysis

* z L] u - r * w - aﬁ h*
A = _— T =, =, =—D,
A “ Bc a v c P qup
_h
==
a . a cd ac I'c
p=%, S =—S;  A=—t  Re=f=—, we=—,
A nsC a nr
ke T-T a? c
f = ¥ - 2 ' BT = nf, Pr - E}:_P'
(pc)y To keTo ky
(4.16)
CZ
Ec =
¢ To

In terms of dimensionless parameters the momentum equations and shear stresses are

13 dw 4.17
;5(7'11) + -a"; =10,

d a5,, 4.18
REBEGw) = = =2 4 Fy(S,0) + F =2 *.18)

a 9S,, S .
Ref*E(y) = _a—f + B(F1(Syr)) + B2 —=-B a?' (4.19)

a%8 ow (4.20)
ﬂ(pC)fE(B) = knf (Fl(e) + ﬁz E?) + Szrg;

s -1 (W aw 1) aw (4.21)
rz=|1+m ©or ar’

Using long wavelength approximation {(—0) the governing equations and boundary

conditions are as follow
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2
op =(1-m)(F,(W) + mWel—q—( (6_W) )

daz d ar
_dp
T or =90
Koy __p T ( ow ) (6W)2
F(Fl(fi))_ o l+miWe———1]j{5-] .
Moo Loy t r=0
ar - ar aor=s
w = w(h), 8=0 at r = h.

Integration of Eq. (4.17) over the tube width is as follow

rdr=0

J’ [la(ru) ow

r or
1dq dh
hu(h) + Ea - hEW(h) = {,

where g = 2 foh rwdr.

Eq. (4.27) takes the followig form

aq . f[on
E = 2h (E W(h) - u(h))

The relation between g and dimensionless volume flow rate Q is given by

h h
Q=2] RWdR=2] (w+ Lrdr = q + h?,
0 0

. . A.
The mean volume Aow rate for the time period T = - is

2

s L[ dt* = +1+'E

where A is the wavelength of metachronal wave, ¢ is the wave speed and t*

mean averaged time.
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4.2 Solution of the Problem

To obtain the solution ol governing equations we use homotopy perturbation method

[80] which is described as follow

H(j,w) = (1 = )(Lw) — L{wp))

il cow) 1 ﬁp+16 w(aW)2
NS Ty ez T rar\ NG ) ) (#.31)

H(j,8) = (1 -)(£6) - L(6,))

_ Br ks dw awy’
H(aa)-—(l_W%(Hm(ma_r_l))(a_r) ) am

The lincar operator and initial guesses are chosen as

w  1dw (4.33)
Lw) =(1-m) (F + ;g),
£(8) = 0’6 190 (4.34)
ar?  rar

(1-¢)**dp, , , (4.35)

—_— T Y _ hZ h ,
o r2 —h? (4.36)

o 4 '
According to homotopy perturbation method

w=wy+ jwy + 2w, .., (4.37a)
8 =0y + 6, + %6, .., (4.37b)
P=po+jpL+ Pz (4.37¢)

where j € [0,1] is the homotopy perturbation parameter and j = 0 gives initial guess
and j =1 gives the [inal solution. With the help of Egs. (4.31) - (4.37), second order

solution for the velocity and temperature profile are given as follow

W= W(h) + Az'?(rz - hZ) -+ Azs(rg — hB), (438)
and
1 ke {Azg Azg Agy (4.39)
= | = 4+ _ pe L S S 1%~ _at 6 pb
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1 kf A32 7 A33
- 2< _ h‘? 238 hB .
+(1—go)2-5knf(49 (" k) + g = 1)

Integrating Eq. (4.27) using software “MATHEMATICA” and calculating pressure

gradient in the following form

@ _ —Azs t \/;455 — 4A34A36 (4.40)
dz 243, '

4.3 Entropy Generation

Entropy generation can be written as

2 2
g K 0T\ (OT
gen T2\ \gr 2z

Dimensionless form of entropy generation can be written as

1 ow (4.41)
+ T—ﬂ'rz,. —a?

N = Sgen _ (68 ? ol (W ow 1) (014!)2 (4.42)
ST T E) r e ar/’
kT 7] 443
SE,‘”*———); C'z‘ A=—0 ( )
90(1 ru
4.4 Graphical Results
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Fig. 4.2: Impact of cilia length parameter € on axial velocity w for

m =01 and ¢ = 0.2.

Fig. 4.3: Impact of power law index m on axial velocity w for

e=02 and ¢ =0.2.
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Fig. 4.4; Impact of nanoparticles volume fraction ¢ on axial velocity w for

€ =02 and m = 0.1.
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Fig. 4.5: Impact of nanoparticles volume fraction ¢ on temperature field ¢ for

Br=1 and m =0.1.
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Fig. 4.6: Influence of power law index m on temperature profile 8 for Br = 1

and ¢ = 0.1,

Fig. 4.7: Influence of Brinkman number Br on temperature profile 8 for

¢ =01 and m = 0.1.
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Fig. 4.8: Influence of nanoparticles volume fractign ¢ on entropy generation Ns

for Br=1 and m = 0.1.
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Fig. 4.9: Influence of Brinkman number Br on entropy generation Ns for m = 0.1

and ¢ = 0.1.
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Fig. 4.10: Influence of power law index m on entropy generation Ns for

Br=1and ¢ =0.1.
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Fig. 4.11: Influence of nanoparticles volume fraction ¢ on Begjan number Be for

Br =1 and m = 0.1.
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Fig. 4.12: Influence of Brinkman number Br on Bejan number Be for m = 0.1

and ¢ = 0.1.

4.5 Discussion

The mathematical model of tangent hyperbolic nanofluid flow through ciliated tube is
governed by the energy and momentum cquations. The profiles of velocity and
lemperature, pressure gradient, entropy generation and Bejan number are presented
through plots.

In this section graphical results have shown the effects of different parameters of
interest. The cilia induced flow of a tangent hyperbolic nanofluid in circular tube is
investigated. The effect of emerging parameters for the entropy generation, and stream
functions are ohserved.

Axial velocity for various values of, cilia length ¢, powcer law index m and
nanoparticle volume fraction of the fluid @, arc obscrved in figures 4.2 — 4.4. In Fig.
4.2 the velocity of (luid decreases by increasing cilia length parameter as increase in
citia length resist the fluid flow at the center of tube. Fig. 4.3 shows that velocity of

fluid decreases by increasing power law index m because by increasing m fluid
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behuves like a shear thickening [uid which causes the decrease in velocity of fluid. Fig.
4.4 shows that velocity increases by increasing nanoparticle volume fraction of the fluid
because when nanoparticles are high in fluid, they will move quickly that increases the
velocity of the fluid.

Temperature profile for different values of nanoparticle volume fraction of the fluid ¢,
power law index m and Brickman number Br are observed in Figs. 4.5 —4.7. It can
be seen that temperature is maximum at the centre of tube and minimum at the ciliated
walls where it is effected by ciliated walls. Fig 4.5 illustrales that by increasing
nanoparticlc volume fraction of the fluid ¢, temperature profile decreases. Fig. 4.6
shows that by increasing power law index m temperature profile decreases. Brinkman
number is the ratio of viscous heat generation to external heating. So by increasing
Brinkman number viscous heat generation will increase as compared to external
heating; therefore, temperature will increase.

[n Figs 4.8 — 4.10 entropy generation for different values of nanoparticte veolume
fraction of the fluid ¢, power law index m and Brinkman number Br are observed.
[t can be depicted that entropy generation is maximum at the ciliated walls and
minimum at the centre of tube.

In Figs. 411 —4.13 Bejan number for different values of nanofluid velume fraction
¢, power law index m and Brinkman number Br is observed. Furthermorc by
increasing ¢ and m Bejan number decreases while by increasing Brinkman number

BEr Bejan number increases.
4.6 Conclusions

In this study we have developed a mathematical medel of velocity and temperature
profile in the presence of nanoparticles in base fluids. Ciliated surfaces are present at
the boundaries of tube due to which fluid motion is produced. The continuous
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movement of cilia creates elliptical envelop known as metachronal waves. The
boundary conditions are defined at mean radius of ¢ylinder therefore horizontal and
vertical velocity are defined at the mean radius (r = a). The governing differential
equations involve the parameter depend upon, volume fractions of nanoparticles. The
differential equations are solved by homotopy perturbation method (HPM). The
following matn points are concluded

e Axial velocity of the fluid increases by inserting nanoparticles.

e Thermal conductivity of [luid increases by adding nanoparticles.

* The entropy generation due to nanoparticles will decrease the viscosity on the wall

so of tube and blood will llow with less/normal pressure.
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Chapter 5

Heat Transfer Analysis for Tangent
Hyperbolic Cilia Induced Nano Fluid
Flow

In this chapter, we illustrate the mathematical modeling of tangent hyperbolic Nuid
{blood} under the effect of magnetic field, porous medium and copper nanoparticles
passing through cylindrical tube. Momentum and energy equations are modeled for
tangent hyperbolic nano-fluid and solved by Adomian decomposition methed with the
help of software "MATHEMATICA". The impact of various parameters have been

discussed through graphs

5.1 Mathematical Model

Censider a tangent hyperbolic nano-fluid flow in a (ube of mean radius a in a porous
medium. Assume infinite number of continuously beating cilia are present at the inner
walls of tube generating symplectic metachronal wave which moves towards positive

z-axis with wave speed c.

R-Ass By Nano Paticles
4 t ~ A I
| | —‘ Che
rhoh ’ \ l {[ I 1
e S T Porous Medium
r = 0\— ! = B Z-Bxis

Figure 5.1: Geometry of ciliated tube.
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(Governing equations for an incompressible MHD tangent hyperbolic nano-fluid

through porous medium are defined as [86]

av
pra= divt + o{J X B) + R,

ar
(pc)f‘—i? = ko V2T + trace(z. L),

(5.1)

(5.2)

where V = (u,0,w), J is the current density, B is the strength of magnetic field, R is

the Darcy's resistance, T is the temperature profile, L is gradient of velocity and T is

defined as follows.

T=—pl+3§,
§= [(qm + (HO + qw) tanh(l"?)m)yf],

. ’1 .
Y= 'ETT, Yi = L,+_LT’

where n = trace(gradV + gradVT)?,
In this study we consider 1, = 0 and 'y < 1.

Now stress tensor takes the following form

yi=L+1T,

§ = 7o((tY™y; = ng(L+ Ty = V™, = 1o (1 + m(Ty — D)y,
where thermal conductivity of Cut+blood nano-fluid is defined as follows

Pny = (1- 99)»0," + @Ps,

_ 1
hy = (1-—- 99)2‘5'

(pep),, = 1~ 0)(pcy), + @(pcy),.

Koy
(pcp)nf

e (ks + 2k — 2(k, — ks))
M kg + 2k + 20k - k) )

anf =
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where kp, is the thermal conductivity of nano-fluid, &, is the thermal conductivity
of base fluid, k; is the thermal conductivity of solid nano particles and ¢ is the solid
volume fraction. The Mathematical model for geometry of cilia tips in the wave frame
18

h=1+e¢ecos2nz, (5.9a)
w(h) = —1 — 2reaf cos 2nz. (5.9b)

The governing cquations ol motion of tangent hyperbolic fluid mode! in a tube are

specified as follows.

14 dw (5.10)
—a—(ru) t5, = 0,
3 a5,, . Nf dp (5.11)
prEW) = Fi(Sep) + =2 = (08" + L) (w+ ) -,

3s,, dp 5.12
pr(u):Fl(srr)+a_;_§: ( )
92T dw (5.13)

{pC)rE(T) = kyy Fo(T) + 322 + szr?-

where p, is the fluid density, u and w are the radial and axial components of
velocity, ¢ 1s the wave speed, 7, Is the apparent viscosity of fluid and k is the
permeability paramcter,

The tollowing parameters can be introduced to non- dimensionalize above quantities

:_z * U t_r m_w t_aﬁ h*
Z = )LJ u = ﬁcJ r = aJ w = Cr p - Cp p-
_h
_a'
_a , a A4 papf I'c
ﬁ—i, SU _;IC_'SU’ Al— a R RE—T, We = a,
k T_Tg M a B 2 D
= ’ ’ = _a ! :_l
4 (,OC);' Ty u ’ “ a?
(5.19)
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2
a C C
17 pp =t

= ——

Br = ) , .
keTo Ky ¢pTo

where A, a, ¢ symbolize the wavelength, width of velocity and wave speed
respectively. In terms of dimensionless parameters the momentum equations and shear

stresses are

19 dw (5.15)
—a—(ru) +3_z =0,
a

ReBIE(w)] = Fy(S,. (w2 +51—) wrn-o, 19
. B . L, 08,y 05g¢ Jp (5.1

Reﬁzb{u)—ﬁ(*ﬁ&:«))*’ﬁz‘g‘;" 5 3
, 820 aw (5.18)

B(pc)E(B) = kpp{ F1{(8) + 8 322 + Szrg?j.
~ aw aw (5.19)
Tpy = 1+m(Wea—r—1) Fr

After using long wavelength approximation (§—0) the boundary value problem takes

the following lorm

9 _ =(1-m){(Fi(wW)} + mWe—i( (a—w) ) - (M2 + -51—) (w+1) -20)

dz d ar
6p (5.21)
Cor =0
z 5.22)
nf T?nf dw ow (
—{F(8)) = 1+m(We——1) (—)
kf ( L ) T}}r ( Jr or
ow a8 (5.23a)
E = 0, a =0 at r= 0,
w = w(h), g =10 at r = h. (5.23b)
[ntegration of Eq. (5.15) over the tube width is given as:
10 d 5.24
f [ ) +—|rdr =0, G20
r Jr
19 dh 5.25
hu(h) + Ea—q—h——w(h) =0, ©-2)

where ¢ = 2 fﬂh rwdr.
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Eq. (5.25) can be written as

d dh (5.26)
= = 2n[ S win) —u(h) )
9z 0z
The relation between g and dimensionless volume flow rate @ is given by
h h (5.27)
Q=2f RWAR =2 | (w+ Urdr =q+h?,
0 0
. . . a.
The mean volume flow rate for the ttime period T = - is
I p . €2 (5.28)

where 4 is the wavelength of metachronal wave, ¢ is the wave speed and t* is the

mcan averaged time.

5.2 Solution of the Problem

To obtain the solution of governing equations, we use Adomian decomposition method

[78-79].

£+mWe—%( (6w) )—(M2+Di)(w+1)_g_2___0. (5.29)

The linear and inverse operator are chosen as follows

140 ad
=12 aom®) (530
ror ar
_ 1 (5.31)
1 — S—
L —f[r(l_m)fr[.]dr]dr.
Applying L1 on Eq. (5.29) we get
M? L 10 (8W)2 (5.32)
ll—mW 1-m " rar\ \or

w=clnr+c — L~

(e L)
1_ Tw Da

Adomian decomposition method yields the following infinite series

oo
= Z wn‘
n=0

Initial guess and recursive relation can be chosen in a following manner.

(5.33)
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1472 (5.34)
w9=cllnr+c21 (M2+ )

- D) F
= M? m_l d (awn)z (5.35)
Wni1 = = l—mw“+1—m “ror\ \or '

With the help of boundary conditions, initial guess takes the following form.

1 dp, (5.36)
Wy = 4(1 _ m) dz (r h ) + w(h)l

w=wh) +A4, > =h)+ 4,0 -k + 4,0 - +
A(r® = R®) + Az (r® — h®). (5.39)
Using Eq. (5.39) in Eq. (5.24), we get
8 =A0 =AY+ A, (> =R + Ag(r — R + Ag(r7 —hT) +
Aw(ra - ha) + An(?'g - k%) + Aqp (r1% — a'%)
FAL T =R + A, (P12 = R12) + A (P = A1)
A = B 4 A, (r'S — A15) + A,y (r18 — h16) . (5.40)
A19(T’l? - h'7).
Integrating Eq. (5.39) using software “MATHEMATICA” calculating pressure

gradient as

1
dp C, 22(—C,° + 3C,C3) (5.41)
dz 3¢, 1
3C(Cs + V4(Ce)* = (C)?)
1
(Cs +(C5 + 4(Cy)? - (610)2)3)
+ 1 .
3 x 23C,
5.3 Entropy Generation
Lntropy generation can be written as
on ke fgoT ? \ (ar)z L L ow (5.42)
gen = 72 (ar) ar) | T, e
Dimensionless form of entropy generation can be written as
N Seon (69)2 vaal1s+ (W dw 1) (@W)zf (5.43)
STosy or ar ar
kTS 0, 5.44
Sm' — _f 0 A= _U_ ( )

= T



5.4 Graphical Results

Fig, 5.2: Impact of nanoparticles volume fraction ¢ on axial velocity w for

M=01 and D, =1,

" 4'

M=01,05,1.0,15
3t
2 -l s 'l R 'l
0.0 0.2 0.4 0.6 0.8 1.0

r

Fig. 5.3: Impact of Hartmann number M on axial velocity w for

=01 and D, = 1.
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Fig. 5.4: Influence of Darcy’s parameter D, on axial velocity w for

¢ =01 and M =01,

r

Fig. 5.5: Impact of Hartmann number M on temperature field & for

=01 and D, = 1.
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Fig. 5.6: Impact of Darcy’s parameter D, on temperature field 8 for

=01 and M =0.1.

0.0

Fig. 5.7: Influence of nanoparticles volume fraction ¢ on entropy generation Ns for

M=01and D, =1
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Fig. 5.8: Influence of magnetic parameter M on entropy generation Ns for

¢ =01 and D, = 1.
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Fig. 5.9: Influence of Darcy’s parameter D, on entropy generation Ns for

=01 and M =01,
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Fig. 5.10: Impact of nanoparticles volume fraction ¢ on Bejan number Be for

M=01 and D, =1.

Fig. 5.11: Influence of Hartmann number M on Bejan number Be for

¢=01ad D, =1,

93



0.6%
0.5t
0.4}
Be (3t
0.2
0.1
0.0k

Fig. 5.12: Influence of Darcy’s parameter D, on Bejan number Be for

¢ =01 and M =0.1,

5.5 Discussion

In this section, graphical results have shown the impact of various parameters of
interest. The cilia induced flow of a tangent hyperbolic nano-fluid in circular tube is
investigated. The effect of emerging parameters for the entropy generation, and stream

functions are observed.

Axial velocity for various values of, nanoparticle volume fraction of the fluid ¢,
lHartmann number M and Darcy's number D, are observed in figures 5.2 — 5.4, Fig.
5.2 shows that velocity increases by increasing nanoparticle volume fraction of the fluid
because when nanoparticles are increased in fluid, they will move fastly enhancing the
veloeity of the fluid. Fig. 5.3 shows that velocity of fluid decreases by increasing
Hartmann number M because Lorentz force always opposes the fluid motion and Fig.
5.4 shows that velocity increases by increasing Darcy's number velocity of fluid
increases because as Darcy's number increases which means more porous is the medium

and fluid permeability increases and fluid through porous layer meets little resistance.
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Temperature profile for distinct values of Hartmann number M and Darcy's number
D, are observed in Figs. 5.5 — 5.6. It can be seen that temperature {s maximum near
the middle of tube and minimum at the boundaries where it is cffected by ciliated walls.
Fig. 5.5 shows that by increasing Hartmann number M temperature profile increases
as some supplementary work has to be done by the fluid to drag it against Lorentz force
which in result increases kinetic energy which is dissipated as heat. Fig. 5.6 shows that
by increasing Darcy's number temperature profile decreases. This is due to decrease in

thermal boundary tayer thickness.

In Fig. 5.7 —5.9 entropy generation for distinct values of nanoparticle volume
fraction of the fluid ¢, Hartmann number M, and Darcy's number D, are observed. It
can be depicted that entropy generation 1s maximum at the ciliated walls and minimum
at the centre of tube. [t is noted in Figs. 5.7 entropy generation increases by increasing
nano-fluid volume fraction. As ¢ increases effective thermal conductivity of blood
rises duc to which rate of heat transfer increases and temperature decreases therefore
entropy generation decrcases. In Fig. 5.8, it can be seen by increasing magnetic
parameter entropy generation rises. Due to increase in Hartmann number temperature
of fluid rises thus entropy gencration is increased. In Fig. 5.9, it is noticed that entropy
generation incrcases by increasing Darcy's number. As by increasing Darcy's number
thermal boundary layer thickness reduces thercfore heat transfer increases and

temperature decrcases which rises cntropy generation.

[n Figs. 5.10 —5.12, Bejan number for different values of nanoparticle volume
fraction of the fluid ¢, Hartmann number M, and Darcy's number D, are observed.
As heat transfer across a finite temperature difference is small and frictional forces arc
aiso ncgligible at center due to which Bejan number decreases at the middle of the tube

and at the walls of tube Bejan number is maximum. It is noted in Fig. 5.10 that Bejan
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number decreases with an increase in nanoparticles volume fraction ¢ which shows
that total entropy generation in blood flow is greater than entropy generation with the
help of heat transfer. From Figs. 5.11 and 5.12 it can be noted that by increasing
Hartmann number M and Darcy's numher D, Bejan number increases which shows

that entropy generation due to heat transfer is greater than net entropy gencration.

5.6 Conclusions

In this study, we have developed a mathematical model ol forced convective flow of
tangent hyperholic fluid through a ciliated axisymmetric tube in a porous medium.
Effects of copper nano particles, MHD and porous media are ohserved for the blood
flow (tangent hyperbolic fluid) in a tube. The fluid is flowing due to presence of ciliated
surface which is considered as a continuous envelope obtained by the coordinated cilia.
The boundary conditions are considered at the center of the tube and on the tip of cilia
which is anchored in the wall of the tuhe and formed a wavy surface. The simulation
shows that energy and momentum equations involves physicai paramcter like velocity,
temperature, pressure, thermal conductivity to see the effects of nano particles, MHD
and porous medium for the enhancement of heat transfer. The present study can he
validated by the work of [30] if m—0 present model reduces to Newtonian fluid modecl.

Following cbservations are highlighted in the present study.

e ‘The large distribution of nanoparticles into the hase fluid (blood) enhance the
heat transfer.

¢ The blood flow along the tube has been accelerated by increasing the volume
fraction of nanoparticles.

¢ The speed of the fluid flow has been decelerated by imposing the applied
magnetic field in the transverse direction whercas heat transfer has increased by

applying the magnetic field.
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* The blood flow requires less amount of pressure due to the presence of nano

particles.

¢ The presence of nanoparticles in base fluid results in weak disorder which helps

o reduce viscous dissipation effects.

97



Chapter 6

Effect of Temperature difference on
Airway Mucus Clearance in Cilia

Induced Flow with Inertial Forces

In this chapter, thermal analysis of cilia-induced flow of muecus clearance through an
idealized two-dimensional model of the human airway is presented. The cilia motion is
simulated by an elliptic wave pattern which is responsible for the mobilization of highly
viscous mucus with nonzero Reynolds numbers. The mucus is analyzed with the robust
Upper Convective Maxwell (JCM) viscoelastic formulation. The resuiting differential
equations are perturbed about wave number. Flow rate, temperature profile and velocity
distribution are calculated via the regular perturbation method, pressure rise is
computed with numerical integration in symbolic software “MATHEMATICA. The
influence of selected parameters for prescribed values of wave number are visualized

graphically.

6.1 Mathematical Modeling

The physical model for this problem is shown in Fig. 6.1. We consider the thermal
analysis of an incompressible, Maxwell eilia induced flow. An infinite number of
beating adjacent cilia are present along the internal wall surface of the tube and they
collectively generate a metachronal wave which propagate in the direction of z-axis.
This generates fluid motion and the sustained whip-motions propel the mucus

downstream. The elliptic covelope model [76-77] is adopted for which the motion of
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tips of cilia are assumed to trace elliptic paths. The continuity, momentum and energy

equations may then be written as:

N 1S L\
' Ll wawh), T=Tiatr =

a ar
_ I‘.z = »—w—0—=0atr—0
ar ar

Maxwell fluid
I % | 1 w=wh), T=Tyatr=-h

—

Wave speed

Fig. 6.1: Model for airways mucus clearance

V.V =0, (6.1)
dv 6.2
pa = divr, ( )
T=-pl+S5, (6.3)
T 6.4
pep— = kV2T + trace(S.L). 64)
Here the extra stress tensors for Maxwell viscoelastic model are defined as [88 & 89]
as 6.5
S+11(——LTS—SL)=pA1. (6:3)
dt
The velocity vector in Eq. (6.2) for axisymmetric flow in the ciliated tube can be
chosen as follows
= (u(r, 2),0,w(r, 2)). (6.6)

The component from ol Eq. (6.2). can be written in the following manner
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Jw
W) =—-—

oz’
05, Sgp Op
E =G(S ——— —— —
PE() = G(Sy) + =25 = =2 = —
as,, Oop
pE(W) - G(Srz) + az _Ea
E(T)+ S (au + aw) + kF(T)+ o°T S. gu
“pf T*\dz Or 1 dz2 + 3 or
Jw
+Szzg = 0

Where G %% (r(. ))

Here the shear and normal stresses satisfy the following expressions:

du du du
Srrt e (E(Srr) - ZE‘S‘?T ~-2 E‘S‘rz) =27 ar'

dw Ju ow ) Ju Jw
Tr

du
Sra + 2 (B = 3 Soa = 5 S = 508 = 5 Ser) =0+
ow ow dw
Szz + A4 (E(Szz) = 2"5;51'2 - 25532) = ZHE-

With boundary conditions

aw"O 6T_0 t £ tub =0
5y = O o at centre of e r=

- (2;) [Eaac sin%{lz]
B 1- (%) [Eaa cos%{lz]

. (—221) [faac sin ZT’T z]

B 1-- (ZTH) :eaa cos%’—[z]'

T=T,

at

[ 2n
r=h(z) =la+eaa cost].

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

{6.14a)

(6.14b)

(6.14¢c)

To normalize the above equations, the following non-dimensional parameters are

introduced;
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z
- = —_ = cmaiem = — _-—-—5,
zZ j_' u ﬁ,cj Re ‘u ' p C‘up Lf ﬂC L)
o a 1 cAy , T *_wg_}“—}'}J
ﬁ‘_AJ 1 - a! v _"aa w _Cr _Tl—To ]
peo=t pr=tP g o Br = Pr.E (6.15)
= —, =——, = , r= . . .
a r k ¢ C;U(T]._TU) r ¢

Here z* denotes dimensionless axial coordinate, r* denotes dimensionless radial
coordinate, w* is dimensionless axial velocity, A* is dimensionless radius of the tube,
p* is dimensionless hydrodynamic pressure, 4 is dimensionless wave number, % 1s
the non-dimensional stress tensor, A; is Maxwell relaxation time parameter, A is
metachronal wavelength, respectively, T, is the temperature at the centre of flow
regime and T, is the temperature of the fluid adjacent to the ciliated wall. After using
Eg. (6.5) and dropping the asterisk notation for dimensionless quantities, Eqs. (6.7)-

(6.14} in non-dimensional form are:

Ju ow u

....._.+__.._ ,
Jr dz T

. 539 BSzr ap
3 — _ 2" 0
Ref*E(u) = fG(S) — B —+ B 3
a5, dp
REﬁE(W) = G(Sz?-) + ﬁ 3z - a,

820
BRePrE(9) = (F1(9) + ‘825}3)

du dw 5 Ju
+Br(ﬁszza+ﬁsrra+szrg+ﬁ Srza)-
Spr + A [E(S 2 % ]—2 ou
rr+ 1ﬁ 'r'r)_ ar rr ﬁaz zr| — ﬁar:
dw du dw
Srz + ;{1 (ﬁE(Srz) - ﬁszr_a'; - ﬁSerSzz - E';Srr)
2%_8»\#
B 5= o
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(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)



ow aw ow (6.22)
Szz + BAE(Sz) — 24 Esrz = zﬁg = zalﬁaszz'
along with boundary cenditions
a0 _ aw _ (6.232)
Pl 0, ™ =0, at r=20
w = w(h) = —(1 + 2meaf cos(2nz)), {(6.23b)
u = u(h) = 2me(sin(2n2z)) + B2rea sin(2nz) cos(2rz), =1 (6.23c)

al

r = h(z) = [a + eaa cos(2nz)],

To reduce the unknowns, it is judicious to define following dimensional stream function

18y 18y (6.24)
T r 8z’ i

Egs. (6.17) to (6.23) are transformed into following form

op\ 1oty 1 0%\ _ o7
ﬁs( (az) r—zszazar"ﬁaraﬂ)‘ﬁ“s”)‘a
gl gl (6:25)
10y (1P 3 (19 /19y (6.26)
sre( G (50) (50) + 6 20) 5
a aSZZ
=S - + B

dz '’

ad 67143 ag
ﬁRePr{ ( 16f)+6 (r 6"3)] (F1(6)+ﬁ2 )

Br ("ﬁsﬂ (az r) S”‘EE(E) ¥ gy ar(ar r) tra 62( ar) (6.27)

Eliminating pressure gradient from Eqgs. (6.25)-(6.26), one can set following form
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3 {—10y 8 1a:p 1a:pa 18y
ﬁg’*e"a‘;(“““(“— a_( ‘—))

r dzdr\ raz rar r oz
¢ 1y
- e (—5%‘5-5‘;(%2‘,5’) EH%G2)
Eaz’_ (gé; (rS-) + ﬁz ) (6.28)
530S )
where
s D) s (s )
=25 5,) 29
N

3 /10y 19y
2__ (" e | ==
+8 gz (r dz)szz ar (r ar)s”

) 20
Bl S (s

The volume flow rate in the inertial frame can be written as:

h (6.32)
Q(Z,t) = 21:] RW(R,Z,t)dR,
0

In the laboratory (wave) frame volumetric flow rate becomes:

h (6.33)
qg= an rw{r, z)dr,
0
Using Eqns. (6.16), (6.32) and (6.33), we obtain:
Q(Z,t) = q + cnh?, (6.34)
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The average volume flow rate can be defined as:

L1 fl dt = 2 14 £? (6.35)
Q" = 7, Qdt =g +a‘cm > |
. = Q. . X .
Defining @ = g and F = s It follows that dimensionless mean-time
volumetric flow rate:
_ g2 (6.36)
=F+(1+—|
2
Boundary conditions in terms of stream function can be written as
a0 6.37
Y=0—=0, by convension ( 2)
or
d /1oy (6.37b)
—_-—]=0 =
p (r ar) by symmetry at r =0,
10 6.37
(—-2) = w(h) by no slip condition (6.37¢)
r dr
Yy=Fo6=1 at r=h, (6.37d)

6.2 Perturbation Solution

To find the solution of BVP perturbation technique [78] is implemented so, expand the
stream function , pressure distribution p, stress § and flux F in power series of small
parameter § (Since wave number have inverse relationship with wavelength and wave

length of metachronal wave is large as compared to diameter of tube).

Y=o + B + B2, .. (6.38a)
P =Dpo+Bp1+B°p2 (6.38b)
S =8y + S+ 8255 n (6.38¢c)

F =Fy + BF, + B%F; .., (6.38d)
0 =0 + 56, + %6, ... (6.38¢)
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6.2.1 System of Zeroth Order

After lengthy algehraic calculations, the following boundary value problems for the

stream function, pressure gradient, temperature profile and stress components can be

derived.
{10 (1 at,bu) -0
ar\ rar 'a or -

dpy 10 d (161,00)
gz raor rdr ror//

o
or !
10 ( 690) (1 61,00)
ror\ or Tor\r ar )0z
Sorr =0

The associated boundary conditions are:

181,00) , 890 _p

Yo =0, ar (r or ar

9o _
labtl"'Fo' a

wh), 6, =1

Pressure rise per wavelength can be calculated as:

d
ﬂp;{o = —éEE'dZ
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at r=10,

at r=h

(6.392)

(6.39b)

(6.39¢c)

(6.39d)

(6.3%)

(6.391)

(6.39g)

(6.39h)

{6.40a)

(6.40b)

(6.41)



6.2.2 System of First Order

i (Ha ) (R

_ a/1a 5099 dfla
-a(?a Sorr) T)‘E;(FEF"’S

op, R (—1 61.00) d (1 61.00) +(1 dy
Bz C\\T azlar\rar /T \rar

aSOzz
_E (rslrs) + _az y

irz

Y+

aSOzz)

r dz

1%))

0z

)22

18 ( 391) 3 (1 alpl)s d (1 61,00)5 (1 Bllio)s
rar\ ar/  ar\r or J7F Tar\r ar JOUF ar\r ar )%

98,

+RePr (( r1 6611;0) aaio * (%6611:0)

a

10y,
Strr = zar(r az)

()1 s )

r ér rdzdr r ordz
a 16% a 16%)
e e R ey ]50"'

The relevant boundary conditions are:

Y =0, 2 (22,

r or

10y, _

r dr

Y = F,

Integrating Eq. (6.42b) we get pressure rise

Ap;, = f —dz.
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— =0 at r=190.

4

)

r dr

at r =h.

(6.42a)

{6.42b)

{6.42¢)

(6.42d)

{6.42¢)

(6.425)

(6.43a)

(6.43b)

(6.44)



6.3 Graphical Results

Y — T —

80 S Y e=01,0.2,0.3, 0.4]

&

Fig. 6.2: Influence of cilia length parameter € on pressure gradient % for

Re=01 and 4, =1,

7] pr————r———— ——— ——r——r—r
120}
100}

dp 80F

&

Fig. 6.3: Influence of Reynolds number Re on pressure gradient %

for Re=01 and A4, =1
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00 02 04 06 08
Fig. 6.4: Influence of Maxwell’s parameter A; on pressure gradient Z—Z for Re =

0.1
and € = 0.1.

14}
13- .

12}
H [
11}

10}

3 . . . .
00 01 02 03 04 05
r

Fig. 6.5: Influence of cilia length parameter € on axial velocity w for Re =

0.1 and 1, = 1.
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Fig. 6.6: Influence of Reynolds number Re on axial velocity w for € =

0.1 and A, =1.

9 4 = 0.1, 0.5, 0.75, 0.9. REEEA
00 01 02 03 04 05
r

Fig. 6.7: Influence of Maxwell’s parameter A,on axial velocity w for Re =

0.1 and ¢=0.1.
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Fig. 6.8: Influence of cilia length parameter € on radial velocity u for Re =

0.1 and A, = 1.

Fig. 6.9: Influence of Reynolds number Re on radial velocity u for Re =

0.1 and 4, = 1.
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Fig. 6.10: Influence of Maxwell’s parameter A; on radial velocity u for Re = 0.1

and ¢ = 0.1,

1%

E A =01, 0.5, 0.9.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
r

Fig. 6.11: Comparison of axial velocity profile w of mucus with symplectic and

antiplectic wave pattern for Re = 0.1 and € = 0.1.
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[ - Antiplectic Wave
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7] i
—65
-8 B ~ - - -.__'E ?
Ay =01, 0.5, 0.9, R
-10L » . . . . . .
00 01 02 03 04 05 06 0.7

Fig. 6.12: Comparison of radial velocity u of mucus with symplectic and antiplectic

wave pattern for Re = 0.1 and € = 0.1

10.5 .l CLOC A Stk —a (= = an e -'-.'_'_ ‘.I ...........
10,0 < omcmenma _

9.5

9.0}

8.5}

€=01,0.2,03,0.4,

8.0}

00 01 02 03 04 0.5
r

Fig. 6.13: Influence of cilia length parameter € on temperature profile 8 for

Re=0.1 and A, = 1.
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Fig, 6.14: Impact of Reynolds number Re on temperature field & for Re =
01 and 4, =1.

Fig. 6.15: [mpact of Maxwell’s parameter 4; on temperature ficld 8 for Re = 0.1
and € =0.1.
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6.4 Discussion

Etfect of temperature difference on Airway Mucus Clearance in cilia induced flow with
inertial forces is governed by the energy and momentum equation. The results of
pressure gradient, velocity and temperature profile is presented through graphs. For the
biological relevance of the present study we have assumed a = 0.4, =0.01,z =

0.1, =03, Re=1 and 4, =0.1

Figs. 6.2 — 6.4 visualize the impact of cilia length parameter (¢), Reynolds number
{Ke) and relaxation time (A7) on axial pressure gradient distributions with axial length
(z). Fig. 6.2 shows that pressure gradient rises with higher values of cilia length
parameter. Fig. 6.3 shows that pressure gradient decrease with higher values of Re at
the entrance of tube but it increases at the center and exit point of the tube i.e. with
greater inertial forces fluid requires less amount of pressure gradient for the flow at the

exit,

By increasing 4; there is as noted earlier, an increase in mucus elastic properties. These
impede the cilia metachronal propulsion. Fig. 6.4 shows that for the initial region along
the tube there is a boost in axial pressure gradient with Maxwell relaxation time,
whereas with further distance along the tube the contrary response is computed. It is
known based on experiments, that optimum propulsion is achieved when the
concentration of glycoprotein is close to that of the gel transformation phase in mucus.
Since healthy mucus contains glycoproteins (long chain polymers), viscoelastic
behaviour is inevitable. However, at excessively higher concentrations of these
glycoproteins, the mucus begins to morph into a gel network where elastic forces
dominate rather than viscous forces. This leads to a pressure gradient rise with higher

relaxation times. However, with further distance from the hydrodynamic entry zone,
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the gel may achieve a relaxed state (cven during metachronal propulsion) and this may

lead to a reduction in axial pressure gradient as observed in Fig. 6.4.

Figs. 6.5 — 6.7 present the radial distributions for axial velocity for distinct values
{€), (Re) and (A;). By increasing cilia length parameter radial velocity increases
because cilia length assist {low in radial direction as shown in Fig. 6.5. Increasing Re
increases inertial [orces and reduces viscous force, so velocity of fluid increases.
Weakly viscoelastic mucus generates maximum velocity magnitudes. It is also of
interest that even with high relaxation time (or indeed cilia tength) the flow is never
reversed i1.¢, back flow is not induced as testified to by the consistently positive values
of axial velocity in Figs. 6.5 — 6.7. Overall it may be concluded that there is an
intimate relationship between cilia length, Reynolds number, mucus viscoelasticity and

optimized metachronal propulsion in healthy trachea.

Figs. 6.8 —6.10 present the radial component of velocity distributions for distinct
values of (€), (Re)and (4;) . Increasing values ol cilia length cause to increases fluid
velocity in radial direction as shown in Fig. 6.8. Increasing values of Reynolds numher
cause to increases {luid velocity. Whereas, an increase in (4;) produces considcrable
retardation in the flow. Mucus takes longer to return to its relaxed state after

deformation.

Figs. 6.11—6.12 present the comparison of symplectic and antiplectic wave
patterns on axial and radial velocity. It is shown that symplectic wave is more effective
than antiplectic wave. Figs. 6.13 — 6.15 visualize the cffects of (€}, (Re) and
(Ar}. Fig. 6.13 shows that by increasing cilia length parameter (¢) magnitude of
temperature profile increases. Fig. 6.14 shows that by rising {Re) magnitude of

temperature gradient decreases. Fig. 6.15 shows that by increasing Maxwell parameter
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(Ary magnitude of temperature profile incecases, with the increasing values of Maxwell
parameter fluid become thick and for the heat transfer in highly viscous Muid large

amount of temperature is required.

6.5 Conclusions

Motivated by providing a deeper insight into the mechanics of cilia-induced flow of
mucus in the human trachea with heat transfer, a mathematical model has been
devetoped for metachronal wave propulsion of viscoelastic mucus in an axisymmetric
ctliated tube at moderate Reynolds numbers. An elliptic cnvelope cilia model and the
Upper-Convective Maxwell (UCM) viscoelastic model have been depltoyed. We have
considered the effect of non-zero Reynolds’ number and resulting equations are
perturbed about wave number. Perturbation solutions for the velocity field have been
derived, numerical integration employed to compute pressure rise in the tube and
temperature profile is obtained by integration. The influence of selected parameters ie.
Reynolds number (Re) and Maxwell viscoelastic material parameter i.e. relaxation time
(A1) for prescribed values of # have been presented through graphs The study has
shown following features:

¢ Inertial forces causes to increase axial and radial velocity

e By rising Maxwell parameter, again there is an increase in pressure gradient fall
1s observed in axial and radial flow.

» The computations are consistent with experimental studies in which it has been
shown that undesirable high viscoelasticity inhibits efficient metachronal wave
propagation of mucus in the respiratory tract due to respiratory diseases and
denser, more elastic mucus constitution which cannot propel as easily with an

associated reduction in cilia beat efficiency.
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Chapter 7

Thermal Analysis on Power Law Fluid
Flow due to Ciliary Movement under

the Effect of Nanoparticles

in this chapter, we discuss the thermal and concentration analysis on the flow of power
law fluid model through a ciliated tube. Exact solutions for velocity of fluid whereas,
solutions for temperature and concentration profiles are calculated by using Homotopy
Perwrbation method. The impact of physical parameters atong the characteristics of

ciliary motion are presented in graphical results section.

7.1 Mathematical Model

We consider the flow of an incompressible power law fluid in a two-dimensional
symmetric cylinder, whose inner walls are ciliated. We choose a cylindrical coordinate
system with the Z* —axis along the centreline of the cylinder and the R*-axis normal
to it. Due to cilia beating, an infinite symplectic metachronal wave train is produced
and travels with a speed ¢ along the walls, that is shown in Fig. 7.1.

In an axisymmetric tuhe the cilia tips moving in elliptical path therefore position of

fluid particles is defined by the foliowing expression
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L » Power law flnid

1 Porous Medium
= 7-Axis

AT

Wave speed

Fig.7.1: Schematic diagram of the ciliary flow.

The governing equations for the power law nano fluid flow through a ciliated tube

with thermophoresis and Brownian effects are given as follow

V = [u(r,2),0,w(r,2)], (7.1)
10 ow (1.2)
;a‘;(ru) + E =0,
dv 13
L (7.3)
Where
T= p’ + .ue)r)rAl, (?4)
dT . (7.5)
(pcp) p (E) = kV?T + trace(r.L) + (pc) ,(DgVC. VT)
Dy
—VT.VT,
+ T, v
dc Dy (7.6)
—_=D,7? - 72
- = DaV7C + o V2T,
1 m 7.7
Hepr =1 (EtraceA%) , el
where the boundary conditions are
2 (7.8)

= (ZAE) [Eaa'c sin (T z
1= () [eancos ()]

w=w(h) =
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(2—;3) [eaac sin (EAE) z] (7.9)

- e
T =T, C = C,. (7.10)
at
r=h(z) = [a + €a cos (%E) z].

The biological lows are observed by velocity, temperature and concentration that are

assumed to be maximum at the center line of the ciliated tube

dw A1
— =0 at r=0, (.10
ar
T acC (7.12)
'5; = 0,5 =0 at r=0.

In above equations V, T, py, k, Dz and Dy shows the velocity profile, extra stress
tensor, density of fluid, thermal conductivity, Brownian diffusion cofficient and
thermospheric diffusion cocfficient respectively.

To normalize the above equations, the following non-dimensional parameters are

introduced:
zt_z t_u t_r t__w *_aﬁ h*___h
_Al u_ﬂc' r _al w _CJ p _mpl —a!
= =T Jh ‘R =_1 P =, Y
b=2  Su =g Re=T Tk = T =Ty
T—T C-C ¢),Dg(C; — €,
g=tTo 5_ _ﬁo_’Nb=(p)p p(C1 — Cy) Nt (7.13)
h-T G -G (PC);H;
(PC)pDT(C1 -Gyl
(pchpay

Using Eq. (7.13) into Eq. (7.1)-( 7.12), one can obtain the following form of equations

after dropping the asterisk

19 ow (7.14)
ra(ru) + -a—z =10,
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as d
ReBE(W) = Fy(S,g) + B2 =22 — 27

dz 9z
as dap
ReﬁzE(U) = BF (S ) + ﬁza_;r"' E&

320 08 d¢ 08 d¢
BE(8) = F1(6) + ﬁz_ +Nb (ar ar thg; dz 32)

+Nt (69) + 2(69) +B aws
or B dz "arre

Nt *¢
BE@) =Fi(0+776) + 8725

where

2

(@) v () (@) (o

with boundary conditions

w = w{h) = —(1 + 2neapf cos(2nz)),

u = u(h) = 2ne(sin(2nz)) + B2rea sin(2mz) cos(2mz),
at
r = h(z) = a + eaa cos(2nz),
ov_20_a9
gr dr or
Incorporating the approximation of long wave length and small Reynolds number

(A = o, Re = 0}

=90 at r=290.

2m+1 dp
(Fl( )) dzl
dp
ar Y
08 (109 .\ 0 w2
=2 (162 mi2) - or (2
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(7.15)

(7.16)

(7.17)

(7.18)

)' (7.19)

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)



F, (4; - %9) = 0. (7.26)

with boundary conditions

w = w(h) = -1 - 2neaf cos(2nz),6 =0, = 0,at r=h, (7.27)
gw 96 d¢ 3 (7.28)
E = E-I_' = -5;‘— =0 at r = 0.

fn bionic biological systems, volume flow rate is a key design quantity. The
instantaneous volumetric flow rate in a fixed frame is given by

h {7.29)

q=2 J’ rwdr,
0

using the formula of transformation (fixed to wave), we get

! t (7.30)
Q= ZJ’rwdr: 2fr(w+1)dr =gq + hZ,
0 0
The time-mean flow over a period t is defined as
1 ¢ (7.31)
6=?det* =q+1+0.5€6%
o
7.2 Homotopy Perturbation Solution
Integrating Eq. (7.23) w.r.t r and using the boundary conditions in Eq. (7.27) &
(7.28) the following exact solution of velocity profile is obtained
. 1dp ﬁzm + 2/ 2m+2 h2m+2 (7.32)
- —— 2m+1 — him+1 |,
v w()+(2dz) 2m+1(rm " )

To obtain the solution of Eq. (7.25) and (7.26) we define the homotopy equation which

can be written as

38  a¢ 29 (7.33)
H(j,8) = (1 = DILB) — L(B)] + j S 22
+Br (F)
2 7.34
H(,¢) = (1= DIEP) — L(o)] +] (L(@ - (EE+ %%—S)). 39
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We choose linear operator and initial guesses as

. a2 N 18 (7.35)
“\arz ror/
0 = r? —h? _ rZ —h? (7.36)
0 - 4 '¢0 - 4 "
Homotopy perturbation method suggest the following relations
8 =¢o+jds +j2¢2 + - (7.38)

where j € [0,1] is the embedding parameter and j = 0 provides initial
approximation and j = 1 provides the final solution. With the help of Egs. (7.33) &
(7.34), One can obtain the second order solution for the temperature and concentration

profile which are given as

1 /Nb Nt 1 {Nb? 3NBNt Nt?
= e = (rt =AY + — 6 pb
w3 ) ")'*315.(3:_”r 32 +16)(T )
1 1 2(1+m}
Br(1 + 2m)* (2'2‘2"‘?3“'2’“) 4+6m  4+em
- T 6m)? (r1+2m - hm)

—a{1+m) 2 1 1 y2m
21 2m Br(1+ Zm)(Nb + 2Nt)p1+2m (2-1—2mp1+2nl)

+
2+4+3m
(7.39)
14 2m\2,; 4+6m h4+6m
X | —— 1+2m — h1+2m
(6 T 10m) (r e m)‘
Nb Nt :
¢ - Nt (r?. _ hZ) _(T_T)Nt(r4 _ h4)
4AND 16Nb
Nt 1 2 1 1 2(1+m)
— F_J-f; (—4—1—2mBrp1+2m) (2*2-2ﬂ1p1+2m) (7.40)
142m\2/ 4+6m  4+ém
1+2m — pi1+2
*(57em) (5 —ntmm)
Integrating Eq. (7.32), pressure gradient can be written as
(7.41)
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2m+1

, 1 2(Im+2) -
dp [ 2VEEERTEmA (2 + 5m o+ 3m2)(Q — h2w(h)
dz  \ (1+3m+2m?2)
7.3 Graphical Results

P 1 ..
0.0 0.2 0.4 0.6 0.8 1.0

-
-

Fig. 7.3: Influence of power law index m on pressure gradient % for € = 0.1.
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Fig. 7.4: Impact of cilia length parameter € on axial velocity w for m = 0.01.
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Fig. 7.5: impact of power law index m on axial velocity w for € = 0.1,
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8 | m =-0.02, 0, 0.02.
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Fig. 7.6: Impact of power law index m on temperature field 8 for

Br=4,Nb=1 and Nt=1.
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Fig. 7.7: Impact of Brinkman number Br on temperature profile 8 for m = (.01,

Nb=1 and Nt =1
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Fig. 7.8: Impact of thermophoretic parameter Nt on temperature field 8 for Br = 4,

Nb=1 and m = 0.01.
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Fig. 7.9: Impact of Brownian motion parameter Nb on temperature field 8 for Br =
4,
m=0.01 and Nt =1.
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Fig. 7.10: Impact of cilia length parameter € on concentration field ¢ for m =
0.01,
Nb=1 and Nt=1.

0.0p>
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m =-0.02, 0, 0.02.
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Fig. 7.11: Influence of power law index m on concentration profile ¢ for € = 0.1,

Nb=1 and Nt=1.
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Fig. 7.12: Impact of Thermophoretic parameter Nt on concentration field ¢ for € =

0.1, Nb =1 and m = 0.01.

Fig. 7.13: Impact of Brownian motion parameter Nb on concentration field ¢ for

£=01 Nt=1 and m = 0.01.
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7.4 Discussion

This section compromises a detailed discussion on the graphs of pressure gradient,
velocity, temperature and concentration distribution. Figs. 7.2 — 7.3 show the
impact of interested parameters on the pressure gradient . The consequence of interested
parameters on the velocity profile can be depicted from Figs., 7.4 &7.5. Figs. 7.6 —
7.9 presents the influcnce of interested parameters on temperature profile and Figs.
7.10 — 7.13 present the impact of different parameters on temperature profile. These

graphs are plotted by fixing the parametersas @ = 0.2, = 0.2 and z = (.25,

The variation of cilia length ¢ and flow behavior index m has been displayed in TFigs.
7.2 & 7.3 for pressure gradient, It can be seen that pressure gradient rises by
increasing the values of cihia length parameter €. By mcreasing the values of power law
index m pressure deviation for the ciliary flow rises because of increase in viscosity of
the fluid flow.

Figs. 7.4 & 7.5 indicate that by increasing values of cilia length parameter € axial
velocity of fluid increases.lt is noticed that flow behavior index m also accelerates the
fluid MNow.

Figs. 7.6 — 7.9 depict the significance change in temperature profile 8 [or growing
values of various parameters. The trend of temperature profile is same as velocity
profile attains its peak at center of tube (i.e ¥ = 0). These figures display that rise in
(low behavior index m, thermophoretic parameter Nt and Brownian motion
parameter Nb results to decrease in temperature profile whereas it is observed that
Brinkman number Br enhances the temperature profile.

Figs. 7.10 — 7.13 show the significance change in magnitude of concentration profile
¢ forincreasing values of various parameters. The trend of concentration profile is also

same as velocity  and temperature profiles attains their peaks at center of tube (i.e r =
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0). These figures display that rise in cilia length € and thermophoretic parameter Nt
results to decrease in magnitude of concentration profile whereas it is observed that
flow behavior index m and Brownian motion parameter Nb enhances the magnitude

of concentration profile.

7.5 Conclusions

[n this study we have studied a mathematical model of forced convective low of power
law nano fluid through a ciliated axisymmectric tube. The fluid is flowing due to ciliary
motion which creates a continuous envelop called metachronal wave. The boundary
conditions are considered at the center of the tube and on the tip of cilia which is
anchored in the wall of the tube and formed a wavy surface. The simulation shows that
energy, momentum and concentration equations involve physical parameter [ike
velocity, temperature, pressure, concentration to see the effects of nano particles for the
enhancement of heat and mass transfer. The present study can be validated by the work
of [30] if m—0 i.e. Power law index is zero. Following observations are highlighted in

the present study.

*  Velocity profile reduces with the cilia length parameter € whereas it rises with
flow behavior index m.

*  Pressure gradient decreases for larger values ol cilia length constant € and flow
behavior index m.

* Temperature profile diminishes by increasing cilia length €, flow behavior
index m and Brownian motion parameter Nb and enhances by increasing

Brinkman number Br and thermophoretic parameter Nt.
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Temperature profile diminishes by increasing cilia length ¢, flow behaviour
index m and Brownian motion parameter Nb and enhances by increasing
Brinkman number Br and thermophoretic parameter Nt.

Magnitude of concentration profile diminishes by increasing cilia length
parameter €, thermophoretic parameter Nt and flow behavior index m, but
magnitude of concentration profile enhances with increasing Brownian motion

parameter Nb.
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Chapter 8

Thermal and Concentration Analysis of
PTT Fluid Flow due to Ciliary

Movement in a Peripheral Layer

In this chapter, we discuss the thermal and diffusion effects in peripheral layer due to
ciliary movement. The fluid flow is modeled using the linear Phan-Thien-Tanner (PTT)
fluid model. After incorporating long wavelength and low Reynolds number
approximations, the resulting equations are then sclved. Exact solution for velocity,
temperature and concentration fields are obtained. The influence of various parameters
along the characteristics of ciliary motion are illustrated by the graphs and discussed in

graphical results section.

8.1 Mathematical Modeling

We have considered two-dimensional flow of PTT fluids with distinct densities,
viscosities. thermal conductivities and diffusion parameters in two immiscihle fluid
layers, i.c. central and peripheral layers in a channel. The X-axis is considered along
the direction of metachronal wave and Y-axis is normal to it that is shown in Fig. 8.1.
[n an axisymmetric tube the cilia tips moving in elliptical path therefore position of

fluid particles is defined by the following expression
. X' —ct”
X" =g(X", X;,t") = X} + aea sin (2}"[ (T))

X" —ct®
Y*=f(X",t")=a+ aecos (27r (T)),
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Figure 8.1: Geometry of the problem

After using no slip condition X* and Y components of velocity are given as follows
=Xlyroyr, =G+EX =G+ GV, (8.3)
V' =V yeoye, = F+FX = F+F U, (8.4)
where (.) represents the derivative w.r.t t* and () represents the derivative
ﬁ!. i [N

Using Eqgs. (8.1)-(8.2) in Eqgs. (8.3)-(8.4), we arrive at

{0
) o 52

and

T (271'() eaac sin (271' (‘A”—;'c—r:))l (86)

1= () eaacos(zn (K555) )|

The wave frame and fixed frame are related by the following transformation

V=

X=X =-cthy' =Y =U -, v =V ,p(x,y) = P (X", Y5,T), (8.7
For the transportation of two immiscible mucus layers in the airways, the continuity,

momentum, heat and concentration equations can be written as
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vy =9 i=12 (8.8)

and
Ldy® _ 8.9)
pO—=dive®, =12
(D
p(i)cz{’i)% = Oy2p® 4 O O =12 (8.10)
(i)
g_ = %Vz-r(i) + pldgzcl), i=12. (8.11)
dt To .
Where
v = [u(i) (x, ), v (x, y)], (8.12)

Stress tensor for PTT fluid model is given by [90]

f (trace(t(”)) T 4 1030 = 2040, (8.13)
where n“),lt’:),r(”,A(P represent the coefTicient of viscosity, relaxation time, stress
tensor and deformation rate of both fluid and shear stress is defined as follows

(@)
3 = %— — 2@ 1O _ (LOY 70, (8.14)

_ 00 _ 8.15
f (trace(t(‘))) =1+ EU(U trace(t®), (&1

where superscript { denotes the two fluids, i = 1 shows the fluid in first layer and the
fluid in second layer is represented by i = 2. £} denotes the elongation behavior

parameter and A denotes the material parameters.

In the muco ciliary pumping, velocity, pressure and shear stress need to be analyzed,
therefore continuity, momentum, heat and concentration equation together with the

stress and strain relationship are expressed in the following manner

gu® gy (8.16)
+——=0,
dx ay
© 5 ® 8.17
pOFO®) = 0xy  O%ax 0P (®&17)
gy  o6x ox
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o @) 8.18)
3Tyy ar 3 (
pOFO(y©) = vy Tty _E,

27 9270 1
p(f)cgi)F“)(T(”) = trace(v®, LO) 4 x©® (6 TV 3T ) (8.19)

dx? * dy?

2p(0) 2p(8)
FO(C®) =1 N (6 ct N 8C )! (8.20)

Dy (8°TH  92T® 4 pC
ox? dy?

+
T, —To)\ dx? dy?

where F() = 4@ a% + v(”% and stress tensors can be written as

20200

1+
70

trace('r(‘}) r +A(‘)G(‘) ®

A oo D y du®
—27() (ri‘f — Hf;y) = )=2,, = (8.21)

0,
n®

NAPN T\ av® L qu® v S fou®  au
-2 (i) (i) (i) +1 ® =g — +—1(8.22
(r” dy Ty dy T o T e 7 dy N )

1+

trace(t®) |79 +A06 0

(l)a(t) @

1+ trace(tv®) |1 +a06 0

N dv au(‘)
(0 0 - _—
~2:® (r . +1,, ay) 27 % (8.23)

where G© = u® 2 4 0 7
ax ay

The biological flows are observed by velocity, temperature and concentration that are

assumed to be maximum at the center line of the ciliated tube whereas at the interface

shear stresses and velocities of fluids are equal as considered in Ref. [91], therefore

boundary conditions for velocities and shear stress can be written as

1:%) =0 at y=0, (8.24a)
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rg,) = ‘tg,,) at y=hy,

u =y@ gt y=4,

- (ZII_N) -saar: sin (_2/1_rr) x]
@) = - =
¢ 1 - (2—;) [faa cos (-2-;—[) x] y=h
) (%) :eaac sin (-2{—[) z] ot y=h

() feeees (3

Similarly boundary conditions for temperature and concentration profile can be

written as:
T
=90 at y =0,
dy
TV aT®
(1 — (2} t y=h,,
K 3y K 3y at y 1
T(l) = T(Z) at Y = h’l'
T(Z} = T'D at y - h..
act
=0 at y =0,
dy
actv ac®
1) = 2 =h
D 3y D 3y at y = hy,
cH® =@ at y=h,,
CH=C aty=h
where

hix) = [a + €a (ZTH) x],

hy(x) = [a1 + ea, (—2;) x].

For the mathematical computation following non-dimensional quantities are required

W ©
w® =2 p® =2 peo B
a

pc’
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(8.24c)
(8.24d)

(8.24¢)

(8.25a)

(8.25b)

(8.25¢)
(8.25d)

(8.26a)

(8.26b)

(8.26¢)
(8.26d)



af a pac
L - *(t) — (I) —
P CT}U) p!ﬁ /1’ TU T](l Cr ifr Re T](i) f Pr
n(l)c 5 r}(1)62
= r r = r
k@ KO (T, — To)
o TO-T, o D¢ (n
S = P(IJDKT «{i) _ L(!)- 5= a,
T (¢, - Cy) p’ a’
(&) () +{)
p0 =0 0 pw =2
r}(l d k)’ p

After dropping * non-dimensional form of Egs. (8.16)-(8.26) are given as follow

ou® gy
dx N ay

={,

® 5,0
ReF®(u®) = ﬁz i Txx 01y, 9p
ay ax’

w69
rerO () = 2 g S

a2e® Br ()611(‘)

@O gy =
BRePrFO(HD) = 577 T R0 gy
o 8%2p®  $,5:3%9@
BReSyFO(p®) = 5y o0 5y

where stress tensors can be written as

310 (i ()

W] du dv ;
1+ -y trace(t®) |2 +2® (ﬁu(‘) —-*h 2 % )r£2

® au®

_ 0" 2 @) e 0P

21(1) (ﬁrxx 6 B xy 6 ) - ZBn ' ax '

{i) 2(0)

| au’ ke ,
1+ "G trace(t®) (k)+l(‘) (ﬂu(‘) v gy — 5 )r:(:;
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(8.28)

{8.29)

(8.30)

(8.31)

(8.32)

(8.33)



. ; au(") av(‘.) au(‘) ; av(i)
0O L ez D 0] 7 (1)
2A (Txx a}' +f Ty 3y + gt Tyy Ix +5 Tyy _ax

~ {u®d v® (8.34)
— i) 2
. (—ay s )
(i) () ©
g\ du vt ;
03] 2 (D
1+ trace(v®) |7})+2® (ﬁu(‘)-—a—+ﬁ @ — % ) Ty
. ou® av'® u®
_q0{ @8 L 0T (8.35)
A (’ oy TPy )T Sy

Also boundary conditions for velocity, stress, temperature and concentration are given

as follow

rg,) =0 at y=0, (8.362)
rg,) = 1,'(2} at y =h,, (8.36b)
uB =y@ gt y=n, (8.36¢)

u® = -1 - 2neafcos(2nx) at y =h, (8.36d)

v® = +2re(sin(2nx) + 2reaf sin(2rx) cos(2nx)) at y = h (8.36¢)

ap) {8.37a)
ay ~0 =0
g e (8.37b)
(4] —] t = h,,
K 3y K 3y at y 1
M =9@  ar y=nh,, (8.37¢)
6 =0 at y=h (8.37d)
oV (8.38a)
g’y =0 at y=0,
dp™ @ (8.38b)
M _ p@ =
D 2y D 3 at y = hy,
¢{1) = ¢(2) at y= h_1, (8.380)
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¢(2) =0 at y= h. (8.38(1)

where
h(x) =[1+ecosx],
hi(x) = [6 + decos x].
Using long wavelength and small Reynolds’ number approximation in Eqs. (6.28-

6.38), one can get the following form

ap ot (8.39)
ax  ady’
»_, (8.40)
ady '
9*9® _ Br o du® (841)
ay? K@ ¥ dy '
a2p® 5,5, 0%00 (8.42)
952 Y ay? '

After using long wavelength approximation and solving Eqs. (8.33-8.35), one can
write following expressions

W=, (8.43)

xx

@

@ _ 247 L (8.44)
»w - n® xy !

£ 2® 3O i au® (8.45)

(&
Tey T2 70 Ty =1 3y

with boundary conditions

t$)=0at y=0, (8.463)

N R (8:46b)

uW =u@ at y=hy, (8.46¢)

u@ = -1~ 2neafcos(ax) at y=h, (8.46d)

v = 27e(sin(2nx) + 2meap sin{2nx) cos(2nx)) at y = h. (8.46¢)
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agn (8.47a)

Ty— = at y=0,
g 9@ (8.47b)
L = x@ -
K 3 K 3y at y=nh,,
g =9 gt y=nh,, (8.47¢)
8@ =0 at y=h (8.47d)
EYYeY: 8.48a
g’_y = at vy=0, ( )
gt g (8.48b)
¢)) = p®@ =
D 3y D 3 at y = h,,
P = ¢ at y=h,, (8.48¢c)

where
h(x) = [1 + ecosx],
hi(x) = [6 + e cosx].

8.2 Solution of the Problem

To find the following stresses, one can make the integration of Eq. (8.39) w.r.t "y

Y | .
O=Fy+al, =12 (849)
where Agi) are constants of integration.
Using conditions mentioned in Eq. (8.45a) into the above equation for = 1 , one can
find A% = 0.
dp 8.50
==y, 0sysh (8:50)
Similarly we use Eq. (8.45b) in Eq. (8.49) for i = 2 and find that A = 0
3
(@ _Py hy<y<h 8.51)

o gx”’

Expressions in Eq. (8.50) and Eq. (8.51) clearly show that stresses 'rg in both
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regions are same,

T(:) gp y, (8.52)

Substituting the Eq. (8.52) in Eq. (8.43), one can write the following form
o _ EE(EE)Z , (853)
= 70 \ox ‘

After using the Eq. (8.52) and Eq. (8.44), one can find the following form of velocity

wu 3 dpy (8.54)

3y ) Tan®

Integration of above equation yields the following form

u® = 02 ¥ + ¥ +B® (8.35)
2 ax 27?(")
. £03200 7503
where C(l} = ZW(E)
Using boundary conditions given in Egs. (8.45a) - Eq. (8.45¢) in above equation, one
can get the following velocity profiles in two regions.
(1) y2(1)
ap VA% p
(1) 2 4 _ 14
ap 1, WD g3 (8.56)
Se e =R+ ( ) (RS — h*).
2222 /5 (8.57)
4 P
(2) = 2 _ A 4_
u® = u) +37 a 2n (2) S i Tey (ax) o=

After integrating Eq. (8.41) and using boundary conditions given in Eq. 8.47(a — d)

one can get following temperature profiles

g — - L( ) (y* = h%) — M(ap) (v — h9)
127 \ax 303 \gx !
Br N’ . L 2Bre@ 2@ (gp\* L6 e
Tk @n® (5) @t -n0- 30K 3@ (5) @t-r
2 . 2{1) 3
. (EE) pp - 28R a—p) ns | (h, - h)
3pW\ax/ Sp3 \gx/ 1)
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Br rap\? . 2Bre@ 2@ gpt (8.58)
(- () we - 2 () )

3n{2) \ax 5p32)  \gx
512 Br e ., 2Bre® 122 g * 6 e
T 12k ((;_{) (" —h%) - 30k@p3@ (E) O°—R%)

 Br o’ 2BreW 321 an\ 4 1 1 8.59
BT L T ERE S
3n(1) ax 5n3(1) ax ‘q(z) ‘q(l)

Similarly, Eq. (8.42) can be written as follows

(=

Sh* St « Br (ap) Ot — k) + ZSh*St*BrEmAZ(”(ap) (v — kS
T 1200k \gx 30D W Mp3D) 1

Sh* St * Br 25h = St » Bre'®)322) rgp\*
+——-—( ) (R} — %) + (—E) (h¢ -
12D @ @n2) \gx 30D D @ip3) ox

Sh + St * Br ;0 2Sh » St * BreW L 45
+ _(—E) h% + ( p) hs (hy - h)
3’((1)”(1) ox 30;((1)”3(1)

Sh St » Br 1ap\* 25h = St + Bre@ 2@ gp\ *
( (50) (5 )t -

- 2@ \gx 2)173(2) Ax
3kt%n dx 30« dx (8.60)

Sh+ St * Br (ap

(2) — 4 314
¢ = e ® ax) O =R

2Sh « St « Bre'® 22 (ap) (5 — 1)
3002} (2)p3(2)

Sh* St Br gﬁ)zh”zsmsnsn“)&z“) @)4}15 S X
3O \ax) 1 30K D7) ax) "V

Sh* St +Br (dp 2h3 ZSh*SttBrE(Z}AZ(Z)( p) 8 )ty — B,
T\ 3k@p@ (E) it 30x@p3@ A

The total velumetric flow rate @ in dimensionless form is given by the following

cquation
Q=0W+0?, e
R hk  5R® | hR}\dp
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(hSE{IJAZ{l} hh?E(Uﬂz“) gh5 (2} 2(2) hh;}g(ﬂ/{z(z)) (61))3 (8.63)

10q3(1] - 27?3(1) - 107}3(3) + 21}3(2) a

8.3 Graphical Results

In this section the effects of involved parameters appearing in the immiscible PTT fluid
flow induced by cilia motion are displayed through graphs. The effect of emerging
parameters are observed on the pressure rise, velocity, temperature and concentration
profile by fixing a=028=027Y=017?% =05 =012 =
0.5 A = 0.1,A@ =05,x =025, e =0.25p=2, 6§ =05V =0.1,x? =
0.5,8r =1,0V =0,1,D = 05,5, =1 and Sy = 1.

Figs. 8.2 — 8.7 show the effects of different parameters on pressure rise for two
immiscible fluids. These graphs show that with the increasing values of viscosities
(79, 7)) elongation parameters (AW, A®) and (¢, @), pressure rise increases
in pumping region and reduces in co pumping region. Figs. 8.8 — 8.13 show the
cffects of various parameters on velocity profiles for two immiscible fluids. These
graphs show that velocity is maximum at the center ol the tube and continuity is clearly
shown in graphs at the interface of two fluids i.e (x = 0.5).

Figure (8.8) demonstrate the effect of distinct values of 5™ on the velocities of the
fluids. It is observed that three curves in graph overlapped in the region of fluid phase
Il It is also clearly indicated by equation (8.57) that the expression u(® does not
involve the coefficient of viscosity 7Y of phase I fluid in it and therefore the values
of {1 does not affect velocity of the fluid in phase 1l. However, the expressions (8.46)
involve both parameters of viscosity, and velocities of both fluids and are aftected by
varying the value of 3% as shown in figure (8.9). It is observed that with the increasing

vatues of 72’ the velocity profiles of the fluids appear to be deliberate.
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Figs. 8.10 —8.11 show the effect of elongation parameters £V and £® on
velocity profile in both regions. By increasing elongation parameters £ fluid
decelerates in first region whereas it has no effect in second region and by increasing
€@ fluid velocity decreases in both regions which shows that it has important
application in ciliary flow.

Figs. 8.12 — 8.13 show the effect of material parameters A and A® on velocity
profile in both regions. By increasing material parameters A2 fluid decelerates in first
region whereas it has no effect in second region and by increasing A fluid velocity
decreases in both the regions.

Figs. 8.14 — 8.22 show the effects of various parameters on temperature profiles for
two immiscible fluids. It can be seen from figures 8.14 — 8.19 by increasing
viscosities  (n™,n®) elongation parameters  (11,A%) and (e, @)
temperature profile decreases. Fig. (8.20) shows that by growing thermal conductivity
k{1 heal transfer decreases in first region but it does not have any effect in second
region but k%) has the significant effect on both the regions i.e. heat transfer decreases
by increasing k%) which can be seen in Fig. (8.21). Fig. (8.22) shows that by
increasing Brinkman number Br temperature profile decreases.

Figs. 8.23 — 8.32 show the effects of various parameters on concentration profiles for
two immiscible fluids. It can be seen from figures 8.23 — 8.28 by increasing
viscosities (™, 7®)  elongation parameters (A, A®) and (M), ®)
concentration profile decreases. Fig. (B.29} shows that by increasing thermal
conductivity DMV concentration profile decreascs in first region but it does not have
significant effect in second region but D®) has the noteworthy effect on both the

regions i.e. concentration profile decreases by increasing D@ which can be seen in
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Fig. (8.30). Figs. 8.31 & 8.32 show that by increasing Sy and Sy concentration

prefile decreases.

-10 <05 00 0.5 1.0
4]

Fig. 8.2: Influence of viscosity 7 on pressure rise AP for @ = 0.5, = 0.1,

e® =052 =01 and A@ =0.5.

-10 _ -0s 0.0 05 1.0
4]

Fig. 8.3: Influence of viscosity 7(® on pressure rise AP for (¥ = 0.1,6® = 0.1,
£@ =052M =01 and A® =05,
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Fig. 8.4: Impact of elongation parameter £ on pressure rise AP for V) = 0.1,

n® =05, =051 =01 and 1@ =05,

Fig. 8.5: Impact of elongation parameter £ on pressure rise AP for n(l} = 0.1,

n® =050 =0.1,20 =01 and A® = 0.5.
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Fig. 8.6: Influence of material parameter A% on pressure rise AP for n = 0.1,

1@ =05,6M =0.1,6® =05 and A® =0.5.

Fig. 8.7: Influence of material parameter A®) on pressure rise AP for ) = 0.1,

1@ =050 =01, =05 and 1M =0.1.
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Fig. 8.8: Influence of viscosity n* on longitudinal velocity u for @ = 0.5,
£ =01, = 051V = 0.1 and A® = 0.5.

— v

7 = 0.4, 0.5, 0.6.

- e aL

L.
.....
-
L]
-

0.0 0.2 0.4 0.6 0.8 1.0
¥
Fig. 8.9: Influence of viscosity n‘® on iongitudinal velocity u for p = 0.1,

e =01,6® =051 = 0.1 and A® =05,
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Fig. 8.10: influence of elongation parameter £ on longitudinal velocity u for

=017 =05:@ =051 =01 and 2@ =Q.5.

Fig. 8.11: Impact of elongation parameter £2> on longitudinal velocity u for

M =0.1,7® =050 = 01,10 = 0.1 and A® = 0.5.
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Fig. 8.12: Influence of material parameter A1} on longitudinal velocity u for

1M =01,7® =050 =0.1,¢6® =05 and A® =0.5.
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Fig. 8.13: Influence of material parameter A% on longitudinal velocity u for

) =01,73 =050 =012 =05 and AV =0.1.
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Fig. 8.14: Influence of viscosity 7 on temperature profile 8 for 7® = 0.5,
M =0.1,6® =051 =0.1,A% =05, «@® = 0.1,
k¥ =05 and Br=1.
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Fig. 8.15:.Influence of viscosity 7' on temperature profile 8 for n¥ = 0.1,
M =0.1,6® =050 = 01,0 = 0.5, «® =01,

K2 =05 and Br=1.
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Fig. 8.16: Impact of elongation parameter £} on temperature field & for
M = 0.1, n@ = 05,6® =051 =0.1,A@ =05, «® =01,
k) =05 and Br=1.
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Fig. 8.17: Impact of elongation parameter £ on temperature field 8 for
7 =01, n® =05, =01,10 = 0.1,A% =05 V=01,
x® =05 and Br=1.
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Fig. 8.18: Impact of material parameter A1) on temperature field @ for pt® = 0.1,
@ =056 =012 =0512 =05 «® =01,
kK =05 and Br=1,
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Fig. 8.19: Impact of material parameter A*) on temperature field 8 for n' = 0.1,
@ =056W=01,e@ =051 =01, V=01,
k? =05 and Br=1.
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Fig. 8.20: Influence of thermal conductivity k") on temperature profile 6 for
7V =01,7® = 05,60 =0.1,6@ = 0520 = 0.1, 2@ = 0.5,
k®? =05 and Br=1.
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Fig. 8.21: Impact of thermal conductivity k¥ on temperature field 8 for
1V =01,7® =05,V =01,@ = 05,11 = 0.1, A2 =05,
Y =01 and Br=1.
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Fig, 8.22: Influence of Brinkman Br on temperature profile 8 for V) = 0.1,
1@ =050 =0.1,6@® = 0513 = 0.1, A2 =95,
kM =0.1 and k@ = 0.5.
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Fig. 8.23: Influence of viscosity 7 on concentration profile ¢ for 7'#) = 0.5,
M =0.1,6® =05,2® =01,0% =05 p® =01,0? =05,
Sy=1and S;=1
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Fig. 8.24: Influence of viscosity n'® on concentration profile ¢ for nt} = 0.1,
¢ =01,6® = 05219 = 01,AP =05, DY =0.1,0@ =05,
SH'=1 and ST-:I.
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Fig. 8.25: Influence of elongation parameter ‘¥ on concentration profile ¢ for
7™M =0.1,7® = 05,6® = 05,1 = 0,1,A? = 0.5,
DM =01,D® =05 S,=1 and Sy =1
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Fig. 8.26: Influence of elongation parameter £@ on concentration profile ¢ for
7 =0.1,7® = 05,0 = 0.2,A0 = 0.1,2@ = 0.5,
DM =01,0® =05  S,=1 and Sy =1.
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Fig. 8.27: Influence of material parameter A’ on concentration profile ¢ for

7V =0.1,7® = 05,0 = 0.1,6® = 0.5,2@ = 0.5,
DM =01,D?=05  Sy=1and Sy= 1
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Fig. 8.28: Influence of material parameter A2} on concentration profile ¢ for
W =01,7® =05.:D =01, =050 = 0.1,
DM =01,D® =05  S;,=1 and $;=1.
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Fig. 8.29: Impact of diffusion parameter D'V on concentration field ¢ for 7P =
0.1,
7@ =050 =0.1,6® = 052" =01, A® =05,0® = 0.5,
Si=1and S =1,
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Fig. 8.30: Influence of diffusion parameter D@ on concentration profile ¢ for
71 =0,1,7@ = 05,:6® = 0.1, = 0.5, = .1,
A2 =050 =01,5,=1 and S; = 1.
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Fig, 8.31: Influence of Schmidt number Sy on concentration profile ¢ for
7V =01, = 05,0 =0.1,6® =051 = 0.1, 2@ =0.5DD =01,
D® =05 and S; =1
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Fig. 8.32: Influence of Soret number Sy on concentration profile ¢ for Y = 0.1,
n@ =050 =01, =05,2V =01, A% =05DY = 0.1,
D =05 and S, = 1.

8.4 Conclusions

The mathematical analysis of ciliary flow in peripheral layer model has been discussed
in this chapter. The diffusive convective heat and mass transfer of ciliary flow in two
layer flow (liquid-liquid) is modelled with the help of mass, momentum, energy and
concentration laws using linecar PTT fluid model. The momentum, energy and
concentration equations are simplified under the lubrication approach. Exact solutions
for velocity, temperature and concentration have been constructed and graphical results
are found with the help of software "MATHEMATICA". The flow features e.g pressure
rise. velocity of fluid, temperature and concentration profiles are analyzed for different
values of involved parameters and following observations are noted.

e Shear stress are independent of material constants whereas normal stresses

depend on material constants.
o Pressure rise surges in pumping region and falls in co pumping region by

increasing the values of various parameters.

160



Continuity of velocities, temperature and concentration profile exists at the

interface.

Graphical results shows that velocity of fluid can be controlled by adjusting

suitable values of different parameters

Heat and diffusion rate can also be controlled by adjusting various values of

involved parameters.
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Chapter 9

Conclusions

This thesis presents the thermal and diffusion effects in cilia induced flow through
channet and tube. [t is found that heat and diffusion rate in the fluid can be enhanced

by the ciliary movement.

In chapter 1, introduction to ciliary structure, basic laws of fluid mechanics and
literature review are discussed in detail

in chapter 2. convective flow and mixing induced by cilia present in the bronchial
airways under the effect of microscopic temperature gradient and magnetic (ield are
discussed. The ciliary flow is modeled by the symplectic and antiplectic pattern that
forms the metachronal wave. It is noted that the magnitude of concentration level can
be increased with the help of magnetic field and thermophoretic effect but heat transfer
and axial flow can be increased with the high length cilia and porous medium.
Chapter 3 is the study of thermal and concentration field analysis of cilia induced flow
for Jeffrey’s fluid model. It is investigated that Buoyancy force due to temperature
difference causes to decrease the pressure gradient, temperature and axial velocity and
buoyancy force due to concentration difference causes to increase the pressure gradient
and temperature profile but it helps to reduce the axial velocity.

Effect of nanoparticles and entropy generation on tangent hyperbolic fluid due to ciliary
movement is discussed in chapter 4. it is concluded that axial velocity and thermal
conductivity of the fluid increases by inserting nanoparticles and entropy generation
due to nanoparticles decrease the viscosity on the wall of tube and blood will flow with

less/normal pressure.
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In chapter 5, analysis of tangent hyperbolic nano fluid flow through a ciliated tube is
discussed with effects of magnetic field. The presence of nanoparticles in base fluid
results in weak disorder which helps to reduce viscous dissipation effects and

nanopanticles increases the thermal conductivity of fluid.

in chapter 6, mathematical modeling of ciliary transport of inertial flow of Maxwell’s
fluid model is discussed in a two dimensional cylinder. 1t is investigated that larger

inertial forces increases the velocity of flow and decreases the rate of heat transfer.

In chapter 7, mathematical modeling of ciliary flow of Power law nanofluid model is
discussed in a ciliated tube. It is investigated that thermal and concentration gradient
significantly accelerated the cilia induced flow. Also nanoparticles enhances the
thermal conductivity of tluid and Browniam motion causes to increase concentration

gradicent.

In chapter 8, the impact of heat and mass transfer is discussed on the cilia induced flow
of PTT fluid trough two layers with different viscosities. It is concluded that magnitude
of velocity, heat and mass transfer is maximum in the central layer and minimum at the

peripheral layer i.e. near the boundary of tube.

Finally. it is concluded that the temperature and concentration profile can be enhanced
by cilia induced flow. This study will provide remarkable applications in medical
sciences, bioengineering and medical equipment, such as cilia based micro devices for

the removal of fluid from viruses, bacteria and dust particle.
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