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1. Introduction

Bluetooth wireless technology is gradually becoming a popular way to replace
existing wire line connections with short-range wireless interconnectivity. It is also an
enabling technology for new types of applications. In this chapter we give a shqrt
background and a condensed description of how the Bluetooth system works. We will
focus on details that directly or indirectly relate to security issues and on the
functionality that is important in order to understand the concept of the technology.
The reference documentation for Bluetooth wireless technology is given in [1].

1.1 Bluetooth system basics

1.1.1 Background

Bluetooth wireless technology is a short-range radio technology that is
designed to fulfill the particular needs of wireless interconnections between different
personal devices, which are very popular in today’s society. The development of
Bluetooth started in the mid-1990s, when a project within Ericsson Mobile
Communications required a way to connect a keyboard to a computer device without
a cable. The wireless link turned out to be useful for many other things, and it was
developed into a more generic tool for connecting devices. A synchronous mode for
voice traffic was added and support for up to seven slaves was introduced. In order to
gain momentum for the technology and to promote acceptance, the Bluetooth Special
Interest Group (SIG) was founded in 1998.

The group consists of many companies from various fields. By joining forces,
the SIG members have evolved the radio link to what is now known as Bluetooth
wireless technology.

1.1.2 Trade-offs

Bluetooth wireless technology is targeting devices with particular needs and
constraints. The main issues are, as with all battery-powered consumer electronics,
cost and power consumption. Consequently, certain design trade-offs have been made
between the cost and power consumption on one side and overall performance on the
other. For instance, some of the specified requirements for the radio (particularly the
sensitivity numbers) are chosen to be so relaxed that it is possible to implement a
rather cheap one-chip radio with very few external components (such as filters).

The price paid is in a shortening of the range, as it will decrease with
decreased sensitivity. On the other hand, some requirements are quite stringent (e.g.
adjacent channel rejection) in order to handle interference at frequencies near the
intended signal. This helps to keep up the aggregated throughput when many links are
running simultaneously. One major design goal is to have the system quite robust in
noisy environments. This is because interference rather than range is expected to be
the limiting factor of the perceived performance.

In contrast to most other well-known radio standards used for data
communication [e.g., Institute of Electrical and Electronics Engineers (IEEE) 802.11b
and HIPERLAN], the specification has been written from the beginning with use
cases for handheld personal devices in mind. In particular, there is no need to have an
infrastructure (i.e., base stations) in place. The flexible Bluetooth master-slave
concept was introduced to fit well in a dynamically changing constellation of devices

[PSec Based Bluetooth Security Architecture 1
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that communicate with each other. Furthermore. due to the wide range of
requirements for the traffic types for different applications, Bluetooth can handle
various data transport channels: asynchronous, isochronous, and synchronous. It is
even possible for a device to mix asynchronous (data) and synchronous (voice) tratfic
at the same time.

In a radio environment where communication links are set up on request rather
than by default (without the need for a centralized infrastructure, as in cellular
networks) and where any node is able to communicate with any other node,
networking is usually called ad hoc networking or ad hoc connectivity. As we will
discuss later in the thesis, ad hoc connections impose special requirements for the
security functionality for the system. Bluetooth wireless technology is particularly
well suited for ad hoc usage scenarios.

1.1.3 Bluetooth protocol stack

The Bluetooth system stack is layered according to Figure 1.1. At the bottom
is the physical layer, which is basically the modem part. This is where the radio
signals are processed. The fundamental limits on sensitivity (range) and interference
rejection are set by the radio front end (noise figure) and filters implemented in this
layer.

Bluetooth host

BNE

Prirting
sop ")
Synchronous Asynchronous
and isochronous and isochmnous
unframed wraffic framed traftic
p - A,
Data Cortrol Dats Control
UFXP *
wcap |20 Channel LCAP
resource
fayer menager
manager

LMP

Device o Link
manager * : ;

Uppar Baseband resource
baseband manager
layer

p

Lower i

Link contraller
baseband | Link controller )C_‘J:m{)
Isyer 4

1

Physicas! L) Radio
layer [ RF

Bluetocth controller

Figure 1.1 A schematic view of the Bluetooth protocol stack architecture [1].

Above the physical layer is the baseband layer, which is divided into lower
and upper parts. In the following, we will not differentiate between these, but simply
refer to them as the baseband. It is at this layer that packets are formatted: creation of
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headers. checksum calculations, retransmission procedure, and, optionally, encryption
and decryption are handled. The link controller (LC) is the entity that implements the
baseband protocol and procedures.

Bluetooth links are managed by the link manager (LM). The devices set up
links, ncgotiate features, and administer connections that are up and running using the
link manager protocol (LMP).

Large chunks of user data need to be reformatted into smaller units before they
can be transmitted over the Bluetooth link. It is the responsibility of the logical link
communication and adaptation protocol (1L.2CAP) to take care of this.

At this layer it is possible to ask for certain quality-of-service (QoS) values
one would like to reserve for the link. In many cases, the Bluetooth functionality is to
be integrated into a host entity that has computational power but lacks the radio part.
For this purpose, Bluetooth modules handling only the lower layers exist. The entity
handling the functionality of these layers is sometimes referred to as the Bluerooth
controller.

For instance, a laptop that is perfectly capable of handling higher protocol
layers can embed a module that handles radio, baseband, and L.2CAP. In such a setup,
the higher layers that are implemented in the host entity will communicate with the
lower layers of the module through the host controller interface (HCI).

1.1.4 Physical layer

Bluetooth radio operates in the license-free and globally available industrial,
scientific, and medical (ISM) band at 2.4 GHz. Because the ISM band is free,
Bluetooth has to share this frequency band with many other systems. Various wireless
communication systems operate in this band (besides Bluetooth, IEEE 802.11b, most
notably). Other systems may be defined in the future. One other common device
emitting radio frequency power in this band is found in almost all homes: the
microwave oven. Even though the vast majority of the radiation is absorbed by the
food inside the oven. some of it leaks and will appear outside as interference.
Actually, the leakage may be as much as 1,000 times more powerful than the signal
one tries to capture, so this interference cannot be neglected.

Fortunately, the interference is not there all the time (loosely speaking, the
radiation cycle follows the frequency of the power supply) and is not over the entire
frequency spectrum (approximately 15 to 20 MHz of the frequency band is affected
by the microwave oven).

All in all, it is very hard to predict what kind of interference to expect in the
ISM band. To combat this, Bluctooth deploys a frequency hopping (FH) spread
spectrum technology. There are 79 channels used, each with a bandwidth of 1 MHz.
During communication, the system makes 1,600 hops per second evenly spread over
these channels according to a pseudorandom pattern. The idea is that if one transmits
on a bad channel, the next hop, which is only 625 us 6 Bluetooth Security later, will
hopefully, be on a good channel. In general, faster hopping between frequencies gives
more spreading, this improves on protection from other interference. However, the
improved performance comes at the cost of increased complexity. The hopping rate
chosen for Bluctooth is considered to be a good trade-off between performance and
complexity.

The signal is transmitted using binary Gaussian frequency shifi keying. The
raw bit rate is 1 Mbps, but due to various kinds of protocol overhead, the user data
rate cannot exceed 723 Kbps. Following regulatory bodics in diffcrent parts of the

IPSec Based Bluetooth Security Architecture 3
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world, the maximum transmit power is restricted to 100 mW (or, equivalently, 20
dBm). It is expected that this will give a range of 100m at line of sight.

Another power class, where the output power is restricted to | mW (0 dBm), is
also defined. Radios of this power class are more common in handheld devices, and
they will have a range of approximately 10m at line of sight.

One should notice that the specification defines the sensitivity level for the
radio such that the raw bir error rate (BER) 10-3 is met, which translates into the
range numbers given above within the specified link budget. It is around this raw
BER that a voice link without error-correcting capabilitics becomes noticeably
distorted. This is a major reason for the choice of the BER 10-3 as a benchmark
number for the radio specification. However, for data traffic, Bluetooth applies cyclic
redundancy check (CRC) as well as optional error correction codes.

Thus, if the receiver detects a transmission error, it will request a
retransmission. The result is that when operating at BER 10-3 (and even worse, 10
some extent), a data link will function quite well anyway. Depending on payload
lengths and packet types, the decrease in throughput may even be unnoticed by the
user.

This is, of course, good for the users, but alse for potential eavesdroppers, who
may be able to choose a position at a safe distance beyond the specified range for their
purposes.

1.1.5 Baseband

Addressing and setting up connections Each Bluetooth radio comes with a
unique, factory preset 48-bit address. This address, known as the Bluefooth device
address (BD_ADDR), constitutes the basis for identification of devices when
connections are established. Before any connection can be set up, the BD_ADDR of
the addressee must be known to the side that initiates a connection. For first-time
connections, this is accomplished by having the initiating side collect the device
addresses of all nearby units and then individually address the one of interest. This
step is known as the inquiry procedure. Naturally, once this has been done, the
information gathered can be reused without the need for another inquiry at the next
connection attempt to one of the known devices.

The first step in finding other devices is to send an inquiry message. This
message is repeatedly transmitted following a well-defined, rather short hop sequence
of length 32. Any device that wants to be visible to others (also known as being
discoverable) frequently scans the inquiry hop sequence for inquiry messages.

This procedure is referred to as inquiry scan. A scanning device will respond
to inquiries with its BD ADDR and the current value of its native clock. The inquiry
message is anonymous and there is no acknowledgment to the response, so the
scanning device has no idea who made the inquiry, nor if the inquirer received the
response correctly. ‘

The inquirer gathers responses for a while and can, when so desired, reach a
particular device through a page message. This message is sent on another length 32
hop sequence determined from the 24 least significant bits of the BD ADDR [these
are denoted by lower address part (LAP)] of the target device.

A device listens for page messages when it is in the page scan state. The phase
(i.e., the particular position) of the FH sequence is determined from the device’s
native clock. The paging device has knowledge of this from the inquiry response; thus
it is possible for the paging device to hit the correct frequency of the paged device
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fairly quickly. As already has been stated, the inquiry part can be bypassed when two
units have set up a connection before and want to connect again. If a long time has
passed since the previous connection, the clocks of the devices may have drifted,
causing the estimate of the other unit’s native clock to be inaccurate. The only effect
of this is that the connection sct-up time may increase because of the resulting
misalignment of their respective phase in the page hop sequence.

When a page response is received, a rough FH synchronization has been
established between the pager and the paged device. By definition, the pager is the
master and the paged device is the slave. The meaning of these terms will be
discussed in the next section. Before the channel can be set up, some more
information must be exchanged between the devices. The FH sequence, the timing,
and the channel access code (CAC) are all derived from the master device. In order to
fine tunc the FH synchronization, the slave needs the BD_ADDR and the native clock
of the master. This information is conveyed in a special packet sent from the master to
the slave. With all information at hand at the slave side, the master and slave can
switch from the page hopping sequence (defined by the slave) to the basic channel
hopping sequence determined by the master’s parameters. Details on this process can
be found in [2].

1.1.5.1 Topology and medium access control

Networks are formed using a star topology in Bluetooth. Not more than eight
simultaneous devices can participate in one of these piconets. The central node of the
piconet is called a master and the other nodes are called slaves. Thus, a piconet will
have exactly one master and at least one but at most seven slaves. The 8 Bluetooth
Security simplest form of piconet is illustrated in Figure 1.2(a). Information exchange
within the piconet is done by sending packets back and forth between devices.

Full duplex is accomplished using a time division duplex mode; that is, the
channel access is divided into time slots assigned to the communicating parties. Who
gets access to the channel is determined by the piconet master simply by addressing a
slave, which will then have the right to send in the next time slot.

Being in connection state, the piconet devices follow a long deterministic FH
sequence determined from the master’s LAP and native clock. The length of this
sequence is 223, which roughly corresponds to a 23-hour cycle. Following from the
fact that a device can only be master of one piconet at a time, every piconet will have
different FH sequences. To stay tuned to its piconet, each slave member must
continuously adjust for clock drift to the master by monitoring the traffic sent over the
channel. Only master-to-slave and slave-to-master communication is possible.

Consequently, slave-to-slave traffic must be relayed via the master. If one
particular device is involved in all traffic, there is a risk that it becomes a bottleneck
for the data transfer. This property is suboptimal with respect to the aggregated
system throughput. However, an important concept in Bluetooth is that all devices
have the ability to take the role of either slave or master, so the slaves may choose to
create another piconet. Doing so is better for the aggregated throughput. since quite
many piconets can actually be operated in parallel before mutual interference cancels
the benefits inherent in the parallelism. This principle is shown in Figure 1.2(b).

In principle, a Bluetooth device is allowed to participate in more than one
piconet simultaneously, as illustrated in Figure 1.2(c). This is accomplished using
time sharing between the different piconets. To accommodate for this, the low-power
modes hold, park, and sniff can be used. Without going into detail. these modes make
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it possible for a device to temporarily leave a piconet to do something else (e.g., to
sleep to save power or join another piconet). Thus, by having one device is a member
of two piconets, it is possible to exchange information between piconets by relaying
traffic via the common node. There are, of course, practical problems with this—such
as timing issues and fulfilling quality of service when a device is absent from the
piconet—but the possibility is given in the specification. One limitation is that a
device can only be the master in at most one of the piconets of which it is a member.

o o (c)

Figure 1.2.Three different piconet constellations: (a) two devices, (b) master relaying
versus two separate piconets, and (¢) interpiconet scheduling using time sharing.

1.1.5.2 Traffic types

Bluetooth wireless technology is designed to handle quite different types of traffic
scenarios. Data may be sent without any QoS requirements (referred to as best effort
traffic); thus, no bandwidth needs to be reserved and there are no requirements for
latency or delay. Typically, file transfer and data synchronization fall into this
category. Sometimes this traffic is called asynchronous. For real-time, two-way
communication, the round-trip delay must be kept small, as do variations in the inter
arrival time of data samples. If not, the quality will be perceived as unacceptable. This
type of traffic is referred to as synchronous.

Typical examples are speech and video conversations. Streaming audio and video
falls somewhere in between these categories. Small time variations between data
samples are still important, but latency and roundtrip delays are of less interest. Such
traffic is called isochronous. Bluetooth can handle all these traffic types—it is even
possible to mix asynchronous and synchronous traffic between the master and a slave
at the same time.

A synchronous link in Bluetooth is referred to as a synchronous connection
oriented (SCO) link. It is a point-to-point link between the master and a slave where
traffic is sent on slots reserved at regular intervals. Another logical link that carries
traffic on reserved slots is called enhanced synchronous connection-oriented (eSCO)
link. Both these logical links provide constant rate data services by carrying fixed-
sized packets on reserved slots over the physical channel. The eSCO link (introduced
in Bluetooth version 1.2) is more flexible than the SCO link in that it offers more
freedom in choosing bit rates and it is more reliable, as a limited number of
retransmissions can take place in between the reserved time slots.
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The asynchronous connection-oriented (logical transport) (ACL) link is a point-
to-multipoint link between the master and all the slaves on the piconet.
No reserved slots are used. The master can address an arbitrary slave at any slot not
reserved for SCO/eSCO traffic, even one that has a SCO/eSCO logical link running
with the master.

1.1.5.3 Packet structure

A baseband packet consists of an access code, a packet header, and the payload.
The access code, which comes first in each packet, is used to trigger and synchronize
the receiver. Each piconet uses a unique access code derived from the BD _ADDR of
the master. Thus, by inspecting the access code, a receiver can determine if a packet is
for another piconet. In that case, processing the rest of the packet can be aborted,
which will help it save some power. Moreover, as the access code defines where a slot
boundary is, it is used to time-synchronize the slave to the master clock.

This is necessary, as time drift is inevitable between different devices due to
differences in their respective crystal frequencies. Consequently, each slave of a
piconet must continuously adjust its clock offset relative to the master clock;
otherwise it will eventually lose connection with the master.

The packet header is used to address individual slaves of a piconet. For this
purpose, a 3-bit field denoted by logical transport address (LT _ADDR) is used. The
master assigns nonzero addresses to slaves at connection setup, while the ali-zero
address is reserved for broadcast messages. Apart from this, the packet header
conveys information regarding the type of data traffic, flow control, and the
retransmission scheme. To increase the robustness of the packet header, it is encoded
with a rate R [l 1/3 repetition code (i.e., each bit is repeated three times).

User data is carried by the payload. The length of this field can vary depending on
the type of traffic—from zero bytes (for acknowledgment of received data when
nothing needs to be sent in the reverse direction) up to 339 bytes (plus 4 bytes of
payload header and CRC). The packet format is depicted in Figure 1.3.

A baseband packet may occupy up to 1, 3, or 5 slots, depending on its type. This
allows for having asymmetric data rates in the forward and reverse directions without
the overhead penalty that one-size packets would cause. Error detection may be
applied through a 16-bit CRC code. Furthermore, it is possible to. apply an error
correcting code to the payload—either a rate R [ 1/3 repetition code, or a (15, 10)
shortened Hamming code [3] (which has rate R [, 2/3)—when link conditions are bad.
In the Bluetooth specification, one uses the notion forward error correction (FEC) for
this.

72 18 0-2744
r""_"“"A“"""‘—'wr‘"—'*"\“'—-N\,—- - et e
{ Access code]| Header | Payload
¥ 6 =4
i s A
[Preamble] Synt word ] Trailer |
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.a"‘ “‘
[LLADDR] Type ['[ J'[ neC |
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Figure 1.3 Packet format used in Bluetooth..
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Best effort traffic (i.e., ACL links) without an error correcting code are carried
over packets denoted by DH1, DH3, and DHS, where D indicates data, H stands for
high rate, and the number is the maximum number of slots occupied by the packet.
Similarly, there are DM1, DM3, and DM5 packets (where M stands for medium rate)
for packets utilizing the shortened Hamming code. Using these packet types, it is
possible to have user data rates ranging from 108.8 Kbps (symmetric, DM1) to 723.2
Kbps (forward) and 57.6 Kbps (reverse) for DHS packets.

The achievable data rates using ACL packets are summarized in Table 1.1. For
synchronous traffic, there are the HV1, HV2, and HV3 [where H stands for high-
quality (referring to the relatively high bit rate available for speech coding) and V
stands for voice] packets of 10, 20, and 30 information bytes, respectively. These one-
slot packets have no CRC applied to the payload and are typically used to carry voice
traffic. The achievable rate for all HV packets is 64 Kbps. The HV1 packet is
protected by the rate R [l 1/3 repetition code, the HV2 packet is protected by the rate R
0. 2/3 Hamming code, and the HV3 packet has no error correcting code applied.

Table 1.1
Summary of ACL Packsts and Their Achisvahle Data Rates [in Kbps)
Asymmetric
Max. Rate
Payload Symmetric
Type  {Informafion Byies) FEC CRC Max. Rate Forward Reverse
Dt o-17 23 Yes 1088 108.8 108.8
OH1 027 Ho Yes 1728 172.8 1728
043 0121 23 Yes 2541 387.2 54.4
OH3 183 M Yes 3904 535.5 €64
D45 0-224 23 Yes 2687 4778 36.3
[HS [-333 Ho Yes 4334 723.2 575
ALK 0-29 Ho No 1856 185.6 1856

There is also a DV packet which consists of two parts—one carrying 10 bytes
of voice data (no CRC) and one carrying asynchronous user data (0 to 9 bytes) for
which CRC is applied. The voice part also offers 64 Kbps. In addition to these, the
eSCO logical transport is mapped on EV3, EV4, and EVS5 packets. All these have a
CRC, which implies that retransmission is possible if no acknowledgment has been
received within the retransmission window. The EV4 also applies the error correcting
code to the payload. For these packets, the achievable rates are 96, 192, and 288
Kbps, respectively. The rates that are supported for synchronous traffic are
summarized in Table 1.2.

1.1.6 Link manager protocol

It is the link manager that is responsible for the control of the Bluetooth link.
That includes all tasks related to the setup, detachment, or configuration of a link. The
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LM is also responsible for exchanging security-related messages. The LMs in
different units exchange control messages using the LMP. A large set of control
messages or LMP protocol data units (PDU) have been defined. Many of these are
security related and some PDUs are used to carry the information needed at pairing
and authentication, and for enabling of encryption.

Table 1.2

Summary of $ynchronous Packets and Thair Achievable Date Rates {in Kbps)

Puayload Symunetric
Type ({Informatioa Bytesi FEC CRC Manx. Rate
Hi 10 193 Nix 64
HVZ2 20 243 Nix 64
HY3 30 Ho No 64
DY I+ 73 Yes  B4+576
BVl 1-30 No Yes a5
B4 1-120 273 Yes 192
5 1-180 No Yos 208

*farked items of the BV padiet am only relesant to tho date part of the paylead.

The LMP PDUs are transferred in the payload instead of ordinary data. They
are always sent as single-slot packets and they can be carried in two different types of
data packets. In order to distinguish LMP packets from other packets, a special type
code is used in the packet header of all LMP messages. To avoid overflow in the
receiving packet buffer, flow control is normally applied to the asynchronous data
packet in Bluetooth. However, no flow control applies to LMP PDUs. The LMP PDU
payload format is shown in Figure 1.4. The PDU format can be considered as one
byte header followed by the LM data.

188 MSB
{0 g 18
TFransaction 1D and OpCode Parsmeter)
Parameter 2 Parameter3
Parameter {{-1 Parameter M

Figure 1.4 The LMP PDU format.

The header has two fields. The first field is only 1 bit long and contains the
transaction identifier (ID). The second field is 7 bits long and contains the operation
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code (OpCode). The operation code tells which type of LMP PDU that is being sent.
Each LMP message has its unique OpCode.

As we have described, the LMP is used to control and set up the link. A
typical PDU flow example at connection creation is shown in Figure 1.5. The
connection establishment always starts with the master unit paging the slave unit.
After the basic baseband page and page response messages have been exchanged, the
setup of the link can start. Before the master sends a connection request, it might
request information from the slave regarding its clock, version of the link manager
protocol, LMP features, and the name of the slave units. A set of LMP PDUs has been
defined for this purpose. The connection setup procedure then really starts with the
master sending the LMP connection request message.

Next, the security-related message exchange takes place. Finally, the peers
complete the connection setup by exchanging LMP setup complete messages.

Special security related PDUs have been defined in order to accomplish:
e Pairing;
e Authentication;
e Encryption;
e Changing the link key.

The details of principles and usage are described in Chapters 2 and 3. In addition
to the different LM functions we have mentioned previously, the LM is also
responsible for performing role change (master-slave switch), controlling multislot
packet size, and power control.

Master Slave

Page procedure

-
x

¥

LMNP pracedures for clock offset
request, LMP version, features,
name request, ard detach

F 3
»

LMP host coennectiaen reg

k. 4

\' Connection

LMP scceptead frequest

! -, . -
LMP_au rand » | Authentication
" LMP sres { ofthe slave
LMP encrypti '
enccyption mode red I\ peqyestior

LMP accepted

o

LMP encryption key size regq

an encrypted link

Encryption key
(" size negotiation

LMP accepted

"

‘*—W__J\-._V_J

LMP start encryption req .
LMP accepted *}Startencwpnon
LMP setup complete » | Link establishment
) LMP setup complete ; comp[g‘[ed

Figure 1.5 Connection establishment examples, LMP PDU flow.
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1.1.7 Logical link control and adaptation protocol

The L2CAP takes care of datagram segmentation and reassembly,
multiplexing of service streams, and quality-of-service issues. The L2ZCAP constitutes
a filter between the Bluetooth independent higher layers running on the host and the
lower layers belonging to the Bluetooth module. For instance, transmission control
protocol/internet protocol (TCP/IP) traffic packets are too large to fit within a
baseband packet. Therefore, such packets will be cut into smaller chunks of data
before they are sent to the baseband for further processing. On the receiving side, the
process is reversed; baseband packets are reassembled into larger entities before being
released to higher layers.

1.1.8 Host control interface

The HCI is a common standardized interface between the upper and lower
layers in the Bluetooth communication stack. As we described in Section 1.1.3, the
HCI provides the capability of separating the radio hardware-related functions from
higher layer protocols, which might run on a separate host processor. By using the
HCI, it is possible to use one Bluetooth module for several different hosts and
applications. Similar, upper-layer applications implemented in one host can use any
Bluetooth module supporting the HCI.

Figure 1.6 provides an overview of the lower Bluetooth layers and the HCI
interface. The HCI commands for the Bluetooth module are handled by the HCI
firmware that accesses the baseband and link manager. Not all Bluetooth
implementations run the lower and higher layer processing on different processors.
Integrated implementations are also possible. Consequently, the HCI is an optional
feature and only products that benefit from the separation use it.

Bluetooth host

Higher lsyer drivers .

!

HC1 driver

i

Physice! bus driver

i ? Physical bus (USB, PC card, etc.)

Physical bus driver

[

HCF Rrmveare l
1

’ L l.jnk fnanager ]

] 1

Link controlter

?

fow

He

Bluetooth module

Figure 1.6 Overview of the lower software layers and the position of the HCI stack.
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The HCI commands are transported between the Bluetooth module and host
by some physical bus. This can, for example, be a universal serial bus (USB) or PC
card connection. Three physical transport media have been defined [4]: USB, R§232,
and universal asynchronous receiver/transmitter (UART). The host exchanges data
with the module by using command packets, and the module gives responses to these
requests or sends its own commands to the hosts, which are called event packets. Data
to be passed over a Bluetooth link is transported in data packets.

To prevent buffer overflow in the host controller, flow control is used in the
direction from the host to the host controller. The host keeps track of the size of the
buffer all the time. At initialization, the host issues the Read Buffer Size command.
The host controller then continuously informs the host of the number of completed
transmitted packets through the Number of Completed Packet event.

The command packets can be divided into six different subgroups:

Link control commands.

Link policy commands.

Host controller and baseband commands.
Read information commands.

Read status commands.

Test commands.

Sk LN

The link control commands are used to control the link layer connections to
other Bluetooth devices. Control of authentication and encryption as well as keys and
pass-key commands belong to this subgroup. The policy commands are used to
control how the link manager manages the piconet. The host controller and baseband
commands are used to read and write into several different host controller registers.
This includes reading and writing keys and pass-keys to or from the host controller, as
well as reading and writing the general link manager authentication and encryption
policy (see Section 2.5).

The read information commands are used to get information about the
Bluetooth device and the capabilities of the host controller. Information on connection
states and signal strength can be obtained through the read status commands. Finally,
the test commands are used to test various functionalities of the Bluetooth hardware.

1.1.9 Profiles

The Bluetooth standard is not limited to specific use cases or applications.
However, in order to offer interoperability and to provide support for specific
applications, the Bluetooth SIG has developed a set of so-called profiles. A profile
defines an unambiguous description of the communication interface between two
units for one particular service. Both basic profiles that define fundamental
procedures for Bluetooth connections and profiles for distinct services have been
defined. '

A new profile can be built on existing ones, allowing efficient reuse of
existing protocols and procedures. This gives raise to a hierarchical profiles structure
as outlined in Figure 1.7. The most fundamental definitions, recommendations, and
requirements related to modes of operation and connection and channel setup are
given in the generic access profile (GAP). All other existing Bluetooth profiles make
use of the GAP.
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The very original purpose of the Bluetooth standard was short-range cable
replacement. Pure cable replacement through RS232 emulation is offered by the serial
port profile. Several other profiles, like the personal area network (PAN) and local
positioning profile make use of the serial port profile. One level deeper in the profiles
hierarchy is the general object exchange profile. The purpose of this profile is to
describe how the IrDA object exchange (OBEX) layer is used within Bluetooth.

OBEX can be used to any higher layer object exchange, such as synchronization, file
transfer, and push services.

Generic access profile

Ge ﬁef.ic ’audibfui&eﬁ' “Serial port profile

distribution profite: _ -
e - | Diak-up networking | | Ganeric object exchange profile
- 1 profile
o | Fletrensfer.
- X FAX profile 1 orofle '
Audiofvideo remove:
cantrél ;}@flie . " Object push prafile
. Headset profile
Hardcopy cahblz
. l'&plﬁc 8 mv_ant_praﬁfe Synchronization
—— S—— Hands-free profile | - profile
. ~Common ISON: —
access profile Basicimaging
: —— profile
- Human interface
device profile Basic printing
— profile
‘Service discovery
.application profife .

E:ﬁéfdie'ssi.”t.iel:ebhqnv "
‘profile

Intercomprafile

Figure 1.7 Bluetooth profiles.

Different services have different security requirements. In Section 10 we
discuss the security requirements and solutions for a selection of Bluetooth profiles.

Most profiles benefit from using the baseband security functions. It is
important, though, that the mechanisms are correctly understood and that application
providers are aware of the strength as well as limitations of the link level security
services. New profiles are constantly being developed, and some existing profiles may
become replaced as others covering the same or similar functionality are added.
Profiles are released independently of the core specification release schedule. In

Figure 1.7 we have included the profiles that were adopted at the time of (November _
2003).

=
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1.2 Bluetooth security basics

Security issues surfaced from the beginning in the design of the Bluetooth
system. It was decided that even for the simplest usage scenarios, the Bluetooth
system should provide security features. To find the correct level of security when a
new communication technology is defined is a nontrivial task, as it depends on usage.
Bluetooth is versatile, which further increases the difficulties in finding the correct
level one anticipates for the system. We start this section by discussing some typical
user scenarios for Bluetooth applications.

1.2.1 User scenarios

In Section 1.1.9 we touched upon Bluetooth profiles. The overview of the
profiles shows that the technology can be used in a large number of different
applications. The overview also demonstrates that very different devices with very
different capabilities might utilize the local connectivity provided by Bluetooth.
However, most applications are characterized by two things: personal area usage and
ad hoc connectivity. The Bluetooth link level security mechanisms have been
designed with these two characteristics in mind, and below we describe what we mean
by personal area networks and ad hoc connectivity.

1.2.1.1 Personal area networks

The personal area network concept is a vision shared among a large number of
researchers and wireless technology drivers. A PAN consists of a limited number of
units that have the ability to form networks and exchange information. The units can
be under one user’s control (i.e., personal computing units) or they can be controlled
by different users or organizations. Bluetooth is used as a local connection interface
between different personal units, such as mobile phones, laptops, personal digital
assistants (PDA), printers, keyboards, mouses, headsets, and loudspeakers. Hence,
Bluetooth is a true enabling technology for the PAN vision. The devices are typically
(but not at all limited to) consumer devices.

Different consumer devices have different manufacturers, and the personal
usage of a device will vary from person to person. Hence, in order to provide
interoperability between the different personal devices, the security must to some
extent be configured by the user. Bluetooth security solutions have been designed
with the principles in mind that any ordinary user should be able to configure and
manage the necessary security actions needed to protect the communication links.

The information exchanged over Bluetooth might very well be sensitive and
vulnerable to eavesdropping. In addition, users of mobile phones or laptops would
like to be sure that no unauthorized (by the users) person is able to connect to their
personal devices. Another issue is location privacy. People would like to use their
Bluetooth devices anywhere they go without fearing that somebody can track their
movements. To ensure that, device anonymity is an important user expectation.

To sum up, there are four fundamental security expectations for Blueto

1. Easy-to-use and self-explanatory security configuration.

2. Confidentiality protection.

3. Authentication of connecting devices.

4. Anonymity.
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Bluetooth provides link encryption and authentication. If the expectation for
easy-to-use and self-explanatory security configuration has also been fulfilled is hard
to say—at least the system has been designed with this goal in mind.

1.2.1.2 Ad hoc connectivity

As discussed previously, Bluetooth has been designed to support the wireless
PAN vision. Sometimes the relations between the devices are fixed, like the
connection between a desktop computer and the keyboard or the mouse. Another
example is the connection between a mobile phone and a headset. However,
sometimes one wishes to set up connections on the fly with another device that just
happens to be nearby. This is ad hoc connectivity. To illustrate an ad hoc connectivity
scenario, we give an example. Let us consider a business meeting where two persons,
an employee and a visitor, meet in a room equipped with a video projector, illustrated
in Figure 1.8.

The two persons in the room are each carrying one laptop. The laptops contain
presentation information that the users would like to present to each other using the
video projector. Furthermore, after the presentation, the visitor would like to send a
presentation to the employee. We assume that the video projector and the laptops
support Bluetooth for local connectivity. Hence, we have a PAN scenario with three
different Bluetooth-enabled devices:

l. A video projector.

2. A visitor laptop.

3. An employee laptop.

The ad hoc nature of these connections stems from the fact that no prior
relation can be assumed between the visitor’s laptop and the projector or between the
visitor and employee laptop. Hence, in order to provide security (authentication and
encryption) on the communication links, the security relations must be set up on the
fly and often by the users themselves. The original Bluetooth pairing mechanism
provides the possibility of setting up ad hoc security relations. However, one would
like to minimize the load on the user and find alternative methods to manual
procedures. In this book we revisit these issues several times and discuss features
needed to make ad hoc connectivity as secure and, at the same time, as user friendly
as possible. In the next chapter we will give an overview of the Bluetooth security
architecture. But first we review some frequently used notions and terminology.
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Employee

Figure 1.8 Bluetooth meeting room ad hoc connectivity scenario.

1.2.2 Notions and terminology

We already mentioned that security expectations for Bluetooth are related to
the following four aspects (1) easy-to-use and self-explanatory security configuration,
(2) confidentiality protection, (3) authentication of connecting devices, and (4)
anonymity. These aspects describe what we mean by security in this book. When
considering general information systems, security is understood to encompass the
following three aspects [S]: confidentiality, integrity, and availability.

The mechanisms that address the confidentiality aspects should provide the
means to keep user information private. Integrity mechanisms address the capability
to protect the data against unauthorized alterations or removal. Finally, availability
deals with the aspect that the system should be available as expected. Availability is
therefore closely related to reliability and robustness.

Comparing this with what we said within the context of Bluetooth, we sec that
the aspects of confidentiality and availability appear in the four security expectations,
although it may be argued that anonymity is an aspect on its own. The Bluetooth
standard does not currently include any data integrity protection mechanism. In the
sections that follow, we discuss first the meaning of confidentiality and integrity in
more detail. We then continue to give a very compact description of cryptographic
mechanisms that are used to achieve security.

1.2.2.1 Confidentiality

Confidentiality of data can be achieved by transforming the original data,
often called the plaintext, into a new text, the ciphertext, that does not reveal the
content of the plaintext. The transformation should be (conditionally) reversible,
allowing the recovery of the plaintext from the ciphertext. To avoid that the
transformation itself has to be kept secret to prevent a recovery of the plaintext, the
transformation is realized as a parameterized transformation, where only the
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controlling parameter is kept secret. The controlling parameter is called the key and
the transformation is called encryption.

A good encryption mechanism has the property that unless the key value is
known, it is practically infeasible to recover the plaintext or the key value from the
ciphertext. What actually “practically infeasible” means is not exactly defined.
Moreover, what is infeasible today may be feasible tomorrow. A good measure of the
quality of an encryption mechanism is that even if very many plaintext and
corresponding ciphertext messages are known, the amount of work to break a cipher
(e.g., recover the key) is in the same order as the number of key combinations. In
other words, breaking the cipher is equivalent to a complete search through the key
space.

1.2.2.2 Integrity

The second aspect of security, that is, integrity, is about ensuring that data has
not been replaced or modified without authorization during transport or storage.
Integrity should not be confused with peer authentication or identification (see the
explanation below), which can be used to verify the communication peer during
connection setup. Peer authentication only guarantees that a connection is established
with the supposed peer, while message integrity is about authenticity of the
transmitted messages. Integrity protection of transmitted data is not part of the
Bluetooth standard.

1.2.2.3 Symmetric and asymmetric mechanisms

Cryptographic mechanisms are distinguished as being either symmetric key or
asymmetric key. Symmetric mechanisms are mechanisms for which the
communicating parties share the same secret key. There is, so to speak, a symmetric
situation among the parties. If the mechanism concerns the encryption of files, say,
then the receiver is not only able to decrypt the files received from the transmitter, but
in fact the receiver is able to decrypt encrypted files that were generated by the
receiver itself. Thus, a receiver cannot claim that the decrypted data indeed was sent
by the sender.

Symmetric mechanisms (we sometimes also use the word schemes) are also
called secrer-key mechanisms. An important property of symmetric mechanisms is
that the transportation of the key from the sending to the receiving party needs to be
realized in such a way that no information about the key is leaked to outsiders. This
need for key transfer constitutes the core problem in key management. Encryption of
large data blocks is often realized through symmetric encryption mechanisms because
they are faster than the asymmetric mechanisms. Secret-key mechanisms have a long
history, and many variants are known and in use. The main two types of secret-key
mechanisms are block and stream ciphers.

Asymmetric mechanisms are mechanisms that realize an encryption and
decryption transformation pair for which the keys for the respective transformations
are not the same. In fact, one demands that one of the keys cannot be recovered from
the other. Hence, the keys at the sending and receiving sides have an asymmetry in
their propeities. Asymmetric mechanisms are also called public-key mechanisms. This
naming stems from the fact that for asymmetric mechanism, one speaks about a
private- and public-key pair. The private key is kept secret from everyone else and the
public key is made accessible to everybody (i.e., it is made public). Asymmetric
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mechanisms solve some of the key distribution problems that arise in the activation of
symmetric mechanisms. This advantage of asymmetric mechanisms is, however, often
spoiled by the need to have proofs of the binding between a public key and an entity
who claims to be the owner (of the private key). A widespread solution to this is the
use of so-called certificates. Such certificates bind a public key to an identity and are
issued by a common trusted agent.

Public-key schemes are asymmetric cryptographic mechanisms. The two keys
that relate to a pair of encryption and decryption transformations are called the public
key and private key, respectively. Together they form a public- and private-key pair.
In public-key schemes, the private key cannot be recovered by practical means from
the public key or any other publicly known information for that matter.

The best known public-key schemes are the Rivest, Shamir, and Adleman
(RSA) and Diffie-Hellman schemes. Both date back to the beginning of publickey
cryptography in the 1970s. Diffie-Hellman is used for key establishment, while RSA
is for key transport, encryption, or digital signatures. For more information and a
historical overview, see [6].

1.2.2.4 Block and stream ciphers

Block ciphers are symmetric cryptographic mechanisms that transform a fixed
amount of plaintext data (a block) to a block of ciphertext data using a key, and that
have an inverse transformation using the same key (as used for the encryption
transformation). See Figure 1.9(a). Block ciphers are very useful as building blocks to
obtain other cryptographic mechanisms, such as authentication mechanisms. In
Bluetooth, the SAFER block cipher is used in this manner. Stream ciphers are the
other main type of symmetric cryptographic mechanisms. Here a stream (sequence) of
plaintext symbols is transformed symbol by symbol in a sequence of ciphertext
symbols by adding, symbol by symbol, a so-called key stream to the sequence of
plaintext symbols. See Figure 1.9(b). Stream ciphers have a trivial inverse
transformation. Just generate the same key stream and subtract its symbols from the
stream of cipher symbols. Bluetooth uses the
EQ stream cipher to encrypt the data sent via the radio links.

Plgintaxt block Ciphertext symbol "? Plaintext symbol
= { (I M‘/\
Cen - Key—s Ke team> Q’%
ey—+| Encrypt ik generator
Cipertsxtblock  Plaintextsymbal = Ciphertext symbol
{a) {b]

Figure 1.9 (a) Block cipher, and (b) stream cipher.
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1.2.2.5 Authentication

Authentication is the procedure by which a unit (the verifier) can convince
itself about the (correct) identity of another unit (the claimant) it is communicating
with. Note that in cryptography, one often refers to this as the identification, and
authentication is reserved for referring to (message or data) authenticity, that is, the
problem of asserting that a received message is authentic (as sent by the sender). Here
we use the definition of authentication that is in use in many (cellular) communication
systems [e.g., Global Mobile System (GSM) and wideband code division multiple
access (WCDMA)], that is, it refers to the process of verifying the consistency of the
link keys in the involved Bluetooth devices exchanged during the pairing procedure.

1.2.2.6 Authorization

Authorization is the process of giving someone permission to do or have
access to something. For Bluetooth this means to decide whether a remote device has
the right to access a service on the local host and what privileges to gain for it.
Usually this involves some form of user interaction. Alternatively, granting access to
services can be subject to device-specific settings. Sometimes authorization refers
both to administering system permission settings and the actual checking of the
permission values when a device is getting access.
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2. Literature Survey

The security demands in the various usage scenarios for Bluetooth differ
substantially. For example, a remote-controlled toy and a remote-controlled industrial
robot constitute usage cases with essentially different demands on security. The
security architecture for Bluetooth is designed to provide built-in security features
even for the simplest cases and at the same time provide adequate support to provide
security in demanding cases, such as those where Bluetooth devices are used in a
network environment.

This chapter gives an overview of the Bluetooth security literature survey,
starting with a description of the different key types that are used, how the link
encryption is organized, how all the basic features are controlled through security
modes to achieve different trust relations and enhanced security suggestions for
Bluetooth architecture.

2.1 Key types

The security provided by the Bluetooth core is built upon the use of symmetric
key cryptographic mechanisms for authentication, link encryption, and key
generation. A number of different key types are used in connection with these
mechanisms. In Bluetooth, a link is a communication channel that is established
between two Bluetooth devices. To check that a link is established between the
correct devices, an authentication procedure between two devices has been
introduced. The authentication mechanism in this procedure uses the so-called /ink
key. As we will find out later, there are several different types of link keys.

Link keys are not only used for authentication. They are also used for
derivation of the key that controls the encryption of the data sent via a link. Through
this encryption, confidentiality of the transmitted data is realized. The corresponding
encryption mechanism uses the link encryption key. Loosely speaking, a link key is
used for the authentication between two devices and to derive the link encryption key.
A link key 1s created during the pairing of two devices. Section 2.2 contains more
details on the pairing and use of pass-keys.

Before we discuss the pairing mechanisim, it is useful to clarify the conditions
under which communication between two devices will occur. It is important to
distinguish two important states. Firstly, we have the state in which a device wants to
establish a connection with a device it has not been paired with.

Secondly, we have the state where a device wants to communicate with a
device it has paired with. Of course, a device may, as a result of a malfunction or a
forced reset, have lost the pairing information associated with a device. In such a
situation, the device should fall back to the unpaired state.

The pairing operation will result in a link key that two devices will use for
authentication and link encryption key generation directly after the pairing and at later
instances. The Bluetooth system recognizes two types of link keys: semi permanent
and temporary keys. Furthermore, two types of semi permanent (link) keys are
distinguished: unit keys and combination keys. A unit key is a link key that one unit
generates by itself and uses as a link key with any other (Bluetooth) device, and a
combination key is a key that a device generates in cooperation (combination) with
another device. Therefore, any unit key that a specific device has may be known to
many other devices, whereas each combination key is only known to itself and the
device with which it was generated. Unit keys can ounly be safely used when there is
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full trust among the devices that are paired with the same unit key. This is because
every paired device can impersonate any other device holding the same unit key.
Since Bluetooth version 1.2, the use of unit keys is not recommended. But, for legacy
reasons, unit keys have not been completely removed from the specification. Besides
the combination and unit keys, two other key types are used: iritialization keys and
master keys. These are temporary keys.

The initialization key is a short-lived key that exists during the pairing of two
devices. The master key is a link key that the master generates prior to the setup of an
encrypted broadcast communication to several slave devices. Besides the link keys,
we have three ciphering keys: the encryption key KC, the constrained encryption key
'K C, and the payload key KP. The encryption key is the main key that controls the
ciphering. Since this key may have a length (in bits) that exceeds legislative
constraints on the maximally allowed key length, KC is not used directly but is
replaced by the constrained encryption key ‘KC , whose number of independent bits
can be selected from 8, 16, . .., 128 bits.

Currently there is little reason to accept key lengths less than 128 bits because
the export regulations have been relaxed since the original design of the Bluetooth
system. It is directly derived from KC. Finally, the payload key is a ciphering key
derived from the constrained encryption key 'KC. This key is the initial state of the
ciphering engine prior to generating the overlay sequence. A summary of the different
key types can be found in Table 2.1. More details on the encryption keys are given in
Section 2.4.1.

Table 2.1
Ovendiew of Key Types
Purpose Semipermanent Temporary

Authentication  Unitkey  Combination key  Initialization key Master key
kay generation

Ciphering Encryption key Payload key
Constrained
encryption key

2.2 Pairing and user interaction

As indicated earlier, the pairing of two devices is the procedure by which two
devices establish a shared secret that they can use when they meet again. The pairing
requires user interaction, for example, the entering of a pass-key. See Figure 2.1(a).
The Bluetooth system allows the pass-key to be 128 bits long. Such a large pass-key
value would be rather user unfriendly for manual input. However, this feature allows
the use of a higher level automated key agreement scheme that can “feed” the agreed
pass-key into the pairing procedure. See Figure 2.1(b).

The high-level key agreement scheme can be a network or transport layer
security (TLS) protocol. Examples of such protocols are the Internet Engineering
Task Force (IETF) protocols TLS [7] and Internet key exchange (IKE) [8].
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There are two kinds of pass-keys in Bluetooth terminology: the variable pass-
key and the fixed pass-key. The first type represents a pass-key that can be arbitrarily
chosen at the pairing instance. This requires that some form of user interaction takes
place in order to feed the Bluetooth device with the appropriate pass-key value. This
interaction is most likely accomplished using a keyboard or numerical keypad. An
example of a typical device with a variable pass-key is the mobile phone. In contrast,
the fixed pass-key cannot be chosen arbitrarily when it is needed. Instead, a
predetermined value must be used. This type of pass-key is used when there is no user
interface to input a value to the Bluetooth device. Clearly, for a pairing to work, only
one device can have a fixed pass-key (unless, of course, both devices happen to have
the same fixed pass-key). Examples of devices in need of fixed pass-keys are
Bluetooth-enabled mice and headsets. These gadgets come with a factory preset pass-
key when delivered to the customer.

{a) Pass-key « » Pass-key
Device | Device 2
{b)
Key . . | Key
agreement | " | agreement
| Pass-key “Pass~kev
Device 1 Device 2

Figure 2.1 (a) Pairing through manual user interaction, and (b) pairing through
separate key agreement protocol.

Note that a fixed pass-key need not be “fixed” in the sense that it can never be
changed. Preferably, the user is allowed to change the fixed pass- key in some way. In
some scenarios, a wired connection could be used, for example, by plugging in an
external keyboard and changing the pass-key. This is only feasible if it is difficult for
anyone but the rightful owner to have physical access to the Bluetooth device in
question. More interesting is to allow the change over Bluetooth using an already
paired device (equipped with the necessary user interface) over a secure connection.
This implies that the user connects to the device with a fixed pass-key. authenticates
itself, and requests the link to be encrypted before a fresh pass-key value can be sent
to the remote device. The new value replaces the old one and becomes the fixed pass-
key to use in subsequent pairings.
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2.3 Authentication

A Bluetooth device in a connectable state accepts connection requests from
other devices. This means that there is a risk that a connectable device is connected to
and attacked by a malicious device. Obvious, this can be avoided by never entering a
connectable state. On the other hand, that implies that no Bluetooth connections at all
can be established. Accordingly, there is a need to securely identify the other
communication peer so that connections from unknown devices can be refused.
Device identification is provided through the Bluetooth authentication mechanism.

The authentication procedure is a so-called challenge-response scheme, where
the verifier device sends a random challenge to the claimant device and expects a
valid response value in return. The authentication procedure is only one way, and if
mutual authentication is needed the procedure must be repeated with the verifier and
claimant roles switched [12].

First, the verifier sends the claimant a random number to be authenticated.
Then, both participants use the authentication function El with the random number,
the claimants Bluetooth Device Address and the current link key to get a response.
The claimant sends the response to the verifier, who then makes sure the responses
match.

The used application indicates who is to be authenticated. So the verifier may
not necessarily be the master. Some of the applications require only one way
authentication, so that only one party is authenticated. This it not always the case, as
there could be a mutual authentication, where both parties are authenticated in turn
[17}.

If the authentication fails, there is a period of time that must pass until a new
attempt at authentication can be made. The period of time doubles for each
subsequent failed attempt from the same address, until the maximum waiting time is
reached. The waiting time decreases exponentially to a minimum when no failed
authentication attempts are made during a time period [17].

2.4 Link privacy

Of all security aspects encountered in wireless scenarios, the easiest to
understand is the one relating to confidentiality. Eavesdropping on a radio
transmission can be accomplished without revealing anything to the victim. Radio
waves are ommni directional and travel through walls (at least to some extent). One can
easily imagine hiding a small radio receiver close enough to intercept the messages
sent by a user, without revealing its presence to anyone not knowing where to look for
it. It may even be possible to do this without having physical access to the premises
where the Bluetooth devices are used. If the walls surrounding the user area are not
completely shielding the radio transmissions, eavesdropping can take place outside
this room [12] [17].

Initially, Bluetooth was envisioned as a simple cable replacement technology.
For some applications (such as device synchronization), replacing the wire with a
radio has implications for confidentiality. It was desirable that the user should not
experience any decrease in confidentiality when comparing the wireless with the
wired solution. Thus, it was determined to look into what kind of security means were
needed in order to give a sufficient degree of protection to Bluetooth communication.

In contrast to what sometimes has been claimed, the frequency hopping
scheme used in Bluetooth gives no real protection against eavesdropping.
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Firstly, there is no secret involved in generating the sequence of visited
channels—it is determined by the master’s LAP and native clock. Clearly, these two
variables are not secret. Adversaries may have full knowledge of them by following
the inquiry/page procedure traffic preceding the connection that they are now
eavesdropping on. Alternatively, adversaries can simply connect to the master to
automatically get all necessary information. Secondly, there are only 79 channels
used. By running this many receivers in parallel (one for each channel) and recording
all traffic, an offline attack seems feasible simply by overlaying all 79 recordings.

2.4.1 Protect the link

It is important to understand that Bluetooth specifies security for the link
between radio units, not for the entire path from source to destination at the
application layer. All protocols and profiles that need end-to-end protection will have
to provide for these themselves. The implications are obvious in access point
scenarios, where the remote application may be running on a unit located thousands of
kilometers away, and traffic routing will involve many unknown links apart from the
short radio link between the local unit and the access point. Since the user has no
control over this, higher layer security is an understandable prerequisite to ensuring
confidentiality all the way. However, even in the case when the source and destination
reside on PDAs close to each other and there is only one direct Bluetooth link in
between, one should remember that Bluetooth security only addresses the radio link.
Who is really in control on the other side? Can malicious software access and control
the Bluetooth radio [12].

2.4.2 Encryption algorithm

When it comes to the selection of which encryption algorithm to use, there are
some considerations that need to be taken into account:

- Algorithmic complexity;

- Implementation complexity;

- Strength of the cipher.

Algorithmic complexity relates to the number of computations needed for
encryption and decryption, while implementation complexity relates to the size of the
implementation on silicon. These two items boil down to power consumption and
cost—crucial properties for the battery-powered units Bluetooth is designed for. A
complex algorithm will almost certainly require a larger footprint on silicon than does
a simple algorithm, leading to higher cost. For the implementation, sometimes the
speed obtained from dedicated hardware can be traded for flexibility and smaller size
using a programmable component such as a digital signal processor (DSP) or a small
central processing unit (CPU). For such solutions, an increased algorithmic
complexity will inevitably demand higher clocking frequency, which also increases
power consumption.

The last item on the list may be the most important. Should the ciphering
algorithm prove to be vulnerable to some “simple” attack, the whole foundation of
link privacy falls. Of course, the question of whether an attack is “simple” or not
remains to be discussed, but, in general, even the smallest suspicion regarding
strength is enough to cast doubts over the system’s overall security quality [10] [17].
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Do not confuse algorithmic complexity of encryption/decryption with the
strength of the cipher. In fact, the goal is to keep the algorithmic complexity low
while having the computational complexity for all types of attacks as high as possible.

Bluetooth deploys a stream cipher (see Section 1.2.2) with the desired
propertics of a small and simple hardware solution while being difficult to break.

A key stream is added modulo 2 to the information sequence. Thus, the
scheme is syminetric, since the same key is used for encryption and decryption. This
means the same hardware can be used for encryption and decryption, something that
will actively keep down the size of the implementation. Moreover, stream ciphers are
built efficiently using linear feedback shift registers (LFSR), which helps to reduce
the die size even further.

The encryption algorithm uses four LFSRs of lengths 25, 31, 33 and 39, with
the total length of 128. The initial 128-bit value of the four LFSRs is derived from the
key stream generator itself using the encryption key, a 128-bit random number, the
Bluetooth device address of the device and the 26-bit value of the master clock. The
feedback polynomials used by the LFSRs are all primitive, with the Hamming weight
of 5. The polynomials used are (25, 20, 12, 8, 0), (31, 24, 16, 12, 0), (33, 28, 24, 4, 0)
and (39, 36, 28, 4, 0). Information on the fundamentals of LFSRs is found in [18].

The encryption/decryption consists of three identifiable parts: initialization of
a payload key, generating the key stream bits, and, finally, the actual process of
encrypting and decrypting the data. These functions are depicted in Figure 2.2.

The payload key is generated out of different input bits that are “randomized”
by running the sequence generating circuitry of the key stream generator for a while.

Then the payload key is used as the starting state for the key stream generator
in the encryption process. Since the sequence generating circuitry is used also for
generating the payload key, the implementation is mainly concentrated in this part.
The last part simply consists of XORing2 the key stream bits with the outgoing data
stream (for encryption) or the demodulated received sequence (for decryption).

The choice of a stream cipher was to a large extent based on implementation
considerations. Clearly, a key stream generator needs to fulfill a whole range of
properties to make it useful for cryptographic purposes. For instance, the sequence
must have a large period and a high linear complexity, and satisfy standard statistical
and cryptographic tests [10] [11] [12] [17].

Plaintext/Ciphertext
Constrained
encryption key N
Address
¥ Payload Key stream +
key » >
Clack genegrator e
» generator
Random number
A 4
Ciphertext/Plaintext

Figure 2.2 Stream cipher usage in Bluetooth.
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As can be seen in Figure 2.2, there are some parameters involved in creating
the payload key, KP. The secret constrained encryption key, 'K C , is generated by
both units at the time a decision is made to switch encryption on. This key is fixed for
the duration of the session or until a decision is made to use a temporary key (which
will require a change of the encryption key). Even though the constrained encryption
key always consists of 128 bits, its true entropy will vary between 8 and 128 bits (in
steps of 8 bits), depending on the outcome of the link key negotiation that the
involved units must perform before encryption can be started. The address refers to
the 48-bit Bluetooth unit address of the master, while the clock is 26 bits from the
master’s native clock. Finally, there is a 128- bit random number that is changed
every time the encryption key is changed.

This number is issued by the master before entering encryption mode and it is
sent in plaintext over the air. The purpose of it is to introduce more variance into the
generated payload key.

In Bluetooth, the key stream bits are generated by a method derived from the
sumimation stream cipher generator in Massey and Rueppel [9]. This method is well
investigated, and good estimates of its strength with respect to currently known
methods for cryptanalysis exist. The summation generator is known to have some
weaknesses that can be utilized in correlation attacks, but, thanks to the high
resynchronization frequency (see Section 2.4.3) of the generator. these attacks will not
be practical threats to Bluetooth.

2.4.3 Mode of operation

Not all bits of a Bluetooth packet are encrypted. The access code, consisting of
a preamble, sync word, and a trailer, must be readable to all units in order for them to
succeed in their receiver acquisition phase (i.e., in locking onto the radio signal).
Furthermore, all units of a piconet must be able to read the packet header to see if the
message is for them or not. Therefore, it is only the payload that is encrypted. The
ciphering takes place after the CRC is added but before the optional error correcting
code is applied. The principle is illustrated in Figure 2.3.
In generating the payload key, bits 1 to 26 of the master clock are used. This implies a
change of the resulting key for every slot, since bit 1 toggles every 625 ps. However,
the payload key is only generated at the start of a packet; multislot packets will not
require a change of the payload key when passing a slot boundary within the packet.
Consequently, for every Bluetooth baseband payload, the key stream generator will be
initialized with a different starting state. This frequent change of the starting state is a
key factor in its resistance to correlation attacks [12].
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Figure 2.3 How to format encrypted packets.

The initialization phase takes some time. In principle, the input parameters are loaded
into the shift registers of the key stream generator, which is then run to produce 200
output bits. Of these, the last 128 are retained and subsequently reloaded into the shift
registers. These operations put a limit to how fast one can change from one payload
key to another. Fortunately, Bluetooth specifies a guard space between the end of a
payload and the start of the next of at least3 259 ps. The guard space is there in order
to allow for the frequency synthesizer of the radio to stabilize at the next channel used
before the start of the next packet. During this time (and, in principle, also during the
72, 54 us of plaintext access code and packet header), the payload key initialization
can be run without interfering with the encryption or decryption process. The
principle is shown in Figure 2.4 [10] {12].

2.4.4 Unicast and broadcast

Broadcast encryption poses a slight problem due to the point-to-point
paradigm used in Bluetooth. In principle, apart from itself, a slave device is only
aware of the piconet master. Thus the slave has no security bonding to other slave
members.
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Specifically, each link in the piconet uses different encryption keys, since they
are all based on their respective link keys. If' the master would like to send an
encrypted message to all its slaves, it can do these using individually addressed
messages (also known as wunicast messages) which will introduce unnecessary
overhead. A better alternative is for the master to change all link keys to a temporary
key, the master key. Based on this, all devices are able (o generate a common
encryption key that can be used in broadcast transmissions that address all slaves
simultaneously.

One drawback with this approach is that mixing secure unicast traffic and
secure broadcast traffic is not possible. The user must settle for one of these at a time.
The reason is in the packet structure and required initialization time for the payload
key. A broadcast message is identified from the all-zero L7 ADDR, while unicast
messages have nonzero LT ADDR. This 3-bit address field is part of the payload
header. Not until this information has been received and interpreted can the receiver
decide whether the payload key should be based on the encryption key used for
unicast or broadcast traffic. By then, there is far too little time (less than 48 ps) to
generate the payload key before the packet payload is being received unless very fast
hardware (i.e., involving high clock frequency) is used. This, however, would put
unrealistic requirements on the ciphering hardware and increase cost as well as power
consumption. 1t is, of course, inappropriate to use the broadcast encryption key for
unicast traffic also, since all devices within the piconet are able to decipher this.

Run stream cipher Initialize key stream generator

I

k Guard k+1 k+2 k+3
space

d

Slat
number

Figure 2.4 Operation of the encryption machinery.
2.5 Communication security policies

Security always comes at the prize of higher complexity. Hence, the security
mechanisms should only be used when they are really needed. When and how to use
the mechanisms, is determined by the security policies of a device. The Bluetooth
standard provides some basic principles for enforcing link-level security and building
more advanced security polices through the three defined security modes [11] [12].
One obvious choice for protecting Bluetooth communication is using the built-
in link-level security mechanisms. Authentication and encryption is provided at
baseband level. Using the built-in mechanisms has the advantage of protecting all
layers above the link level (including control messages). The link level security
mechanisms can be switched on or off. The security policy determines if a device
demands authentication and/or encryption. One very simple approach is to demand
maximum link-level security, that is, both authentication and encryption for all
connections. This is an “always-on” link-level security policy. Such a simple policy
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has several advantages. First, the complexity is low. Furthermore, it gives a high level
of security for all local connections and it is easy to implement. Finally, it is easy for
the user to handle and understand the security policy. This kind of always-on policy
and security enforcement is supported by Bluetooth security mode 3 (see Section
2.5.1). In order for this policy to be user convenient, the necessary keys must be
present. If one can assume or actually demand that this is the case, the simple, always-
on policy can be used and the security mechanisms are very easy to handle.
Obviously, this policy also has some drawbacks:

- If the necessary link keys are not present, either a connection cannot be
established or the keys need to be generated and exchanged at connection creation.

- If the necessary link keys are not present and the key exchange cannot be
done automatically, the users must be involved and they must understand what is
happening.

The latter implication can be a serious drawback, when the actual service does
not demand any security. In this case, the user will be forced to handle a security
procedure for a service that may need to be fast and convenient. Some device might
only run services with high security requirements, and consequently this will not
cause any problem. On the other hand, devices used at public places for information
retrieval or exchange will certainly not have high security requirements for all its
connections, and people using such services will probably not accept any tedious
security procedures. Hence, a policy that demands link level security for some
services and keeps some services totally “open”™ will be needed. In practice, this
implies that a device will need a-shared secret with some other device, and at the same
time the device must be able to communicate with other devices without sharing any
secrets and using link-level security.

In summary, the simple, always-on sccurity policy is not sufficient for all Bluetooth
usage scenarios. Better flexibility link-level security mechanism enforcement is
necessary. This can be achieved by service level-enabled security (aligned with the
access control mechanism). This is the motivation for the introduction of security
mode 2 (see Section 2.5.1), which allows service level-enabled link layer security

(1o {11y (123 {171.
2.5.1 Security modes

The GAP [16] defines the generic procedure related to the discovery of
Bluetooth devices and the link management aspects of connecting to Bluetooth
devices. The GAP also defines the different basic security procedures of a Bluetooth
device. A connectable device can operate in three different security modes:

- Security mode 1: A Bluetooth unit in security mode 1 never initiates any
security procedures; that is, it never demands authentication or encryption of the
Bluetooth link.

- Security mode 2: When a Bluetooth unit is operating in security mode 2, it
shall not initiate any security procedures, that is, demand authentication or encryption
of the Bluetooth link, at link establishment. Instead, security is enforced at channel
(L2CAP) or connection (e.g., Service Discovery Protocol (SDP), RFCOMM, and
TCS) establishment. .

- Security mode 3: When a Bluetooth unit is in security mode 3, it shall
initiate security procedures before the link setup is completed. Two different security
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policies are possible: always demand authentication or always demand both
authentication and encryption. In the following sections we discuss the different
modes and how they are used in Bluetooth applications.

2.5.1.1 Security mode 1

Security mode 1 is the “unsecured” mode in Bluetooth. A unit that offers its
service to all connecting devices operates in security mode 1. This implies that the
unit does not demand authentication or encryption at connection establishment. For
example, an access point that offers information services to anybody is a possible
usage scenario for security mode 1{10].

Supporting authentication is mandatory and a unit in security mode 1 must
respond to any authentication challenge. However, the unit will never send an
authentication challenge itself and mutual authentication is never performed {17].

A unit in security mode 1 that does not support encryption will refuse any
request for that. On the other hand, if encryption is supported, the unit should accept a
request for switching encryption on [12].

2.5.1.2 Security mode 2

Security mode 2 has been defined in order to provide better flexibility in the
use of Bluetooth link-level security. In security mode 2, no security procedures are
initiated until a channel or connection request has been received. This means that it is
up to the application or service to ask for security. Only when the application or
service requires it will the authentication and/or encryption mechanisms be switched
on. A sophisticated authentication and encryption policy based on the baseband
mechanisms can be implemented using this principle [12] [17].

Security mechanisms enforcement and policy handling must be taken care of
by the unit, One possibility is to use a “security manager” to handle this. In Section
2.5.2, we further discuss the role and implementation of a security manager. Security
mode 2 comes at the price of higher implementation complexity and the risk of faulty
security policies that might compromise the security of the unit [10].

2.5.1.3 Security mode 3

In security mode 3, on the other hand, security procedures (authentication
and/or encryption) are enforced at connection establishinent. This is a simple, always-
on security policy. The implementation is easy and that reduces the risks of any
security implementation mistakes. The drawback is the lack of flexibility. The unit
will not be generally accessible. All connecting units need to be authenticated [10]
[12} [17].

The difference between Security Mode 2 and Security Mode 3 is that in
Security Mode 3 the Bluetooth device initiates security procedures before the channel
is established [11]

There are also different security levels for devices and services. For devices,
there are 2 levels, "trusted device" and "un trusted device”. The trusted device
obviously has unrestricted access to all services. For services, 3 security levels are
defined: services that require authorization and authentication, services that require
authentication only and services that are open to all devices [11] [17].
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2.5.1.4 Security modes and security mechanisms

The different security modes define how a unit will act at connection
establishment. Independent of the current security mode, a unit shall respond to
security requests in accordance with what is specified in the link manager protocol
(see Section 1.1.6). Hence, a security mode only defines the security behavior of the
unit, but the security level for a connection is determined by the security modes of
both units. Let one of two units be in security mode 3 and consequently demand
encryption. Then the connection will be encrypted if both units support encryption;
otherwise the connection will be terminated.

Table 2.2 describes the different security mode options and the resulting
security mechanisms, while in Figure 2.5 the channel establishment procedure for
different security modes is illustrated. In the figure, the connection and service
establishment procedure for a Bluetooth device is shown as a flow diagram.

The process starts with the device that is in connectable mode. If the device is
in security mode 3, it will try to authenticate and optionally encrypt the link directly
after the link manager receives or makes a connection regquest. Specific host settings
for access can be applied. For instance, devices that are not previously paired may be
rejected. A device that is in security mode 1 or 2, on the other hand, will continue
with the link setup procedure without any authentication or encryption request.
Instead, the device in security mode 2 makes an access control check after a service
connection has been requested. Access is only granted for authorized devices.
Authorization is either given explicitly by the user or it can be given automatically
(trusted and already paired device). For security mode 2, optional encryption can be
requested before the connection to the service is finally established [12].

Service level access control can also be implemented by using security mode
3. Then authentication always takes place before the service request. Hence, security
mode 2 gives better flexibility, since no security is enforced at channel or connection
request. Thus it is possible to allow access to some services without any
authentication or encryption and a unit can be totally open to some services while still
restricting access to other services.

Table 2.2

The Different Security Mods Options for Master Respective Slave and Resulting Sexurity Mechanism{s)

Slave

Security

Mode | Master Security Mode
1 2 3

1 No authentication, If the master application The fink witl be authenticated.
no ancryption. demands authentication{and  If the master palicy demands

encryption), then the fink will  it, the link will be encrypted.
be authenticated {and
encrypted).

2 If the slave application  If the mastar or slava The link will ba authanticatecl
demands i, the link-will  application demands it, the  If the master policy demands
he authenticated{and . link will ba authenticated it, or if tha slave application
encrypted). fand encrypted) demands it, the link will be

encrypted.

3 The link witl ba The tink will be The link wifl be authenticated,
authienticated. {f the authenticatad. Iif the slave if the sfave or the master
slave policy demands it,  policy demands i, of the policy demands it, the link wll
the tink weilt be master application demands  be encrypted.
encrypted. it, the link will be encryptad.
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Figure 2.5 Channel establishment flow for different security modes.

2.5.2 Security policy management

If security mode 2 is required together with a high security level, an advanced
security policy must be implemented. One possibility is to use a security manager that
handles the security policy and enforces the security mechanism. An example of how
a securit_yf manager can be implemented in Bluetooth is given in [11]. According to
these recommendations, the security manager is the responsible entity for security
enforcement and it interacts with several different layers in the stack (see Section
1.1.3). In this architecture, an application or set of applications (referred to as service)
register their security demands with the security manager. The security requirements
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of all supported applications make up the security policy. The security manager
handles the policy.

Since link-level security in Bluetooth is connected with the device address
(through the link keys). The security manager needs access to a database, which
contains information on different Bluetooth units, the corresponding link keys, and
their level of trust. In addition to this, the manager needs access to a service database,
which contains the specific security requirements of a particular service [12].

All the above techniques are of authentication and encryption are implemented
at link level. The link adaptation protocol of Bluetooth protocol architecture can
convert the information from upper layers to link layers [10].

Encryption and authentication is also supported by IPSec protocol one of the
protocol suite from TCP/ IP protocol stack which can work at upper layers of
Bluetooth protocol architecture [13][14].

IPSec is widely used in many applications specifically in Ad-hoc networks to
secure communication [15] [16]. The application of IPSec in Ad-hoc networks
suggests that it is the feasible choice to provide secure transmission in networks using
Bluetooth as Pico nets and scatter nets [17].

Lot of vulnerabilities is present at link level security techniques in Bluetooth
[17], which can be eliminated by using IPSec [13] [14].
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3. IPSec Fundamentals

IPSec is a collection of protocols that assist in protecting communications over [P
networks [19]. IPSec protocols work together in various combinations to provide
protection for communications. This section will focus on the three primary components.
The Encapsulating Security Payload (ESP), Authentication Header (AH), and Internet
Key Exchange (IKE) protocols explaining the purpose and function of each protocol, and
showing how they work together to create [PSec connections. Also, this section will
discuss the value of using the IP Payload Compression Protocol (IPComp) as part of an
[PSec implementation. ‘

3.1 System Overview

This section provides a high level description of how IPSec works, the
components of the system, and how they fit together to provide the security services
noted above. The goal of this description is to enable the reader to "picture” the overall
process/system, see how it fits into the IP environment, and to provide context for later
sections of this chapter, which describe each of the components in more detail.

An [PSec implementation operates in a host, as a security gateway (SG), or as an
independent device, Affording protection to IP traffic. (A security gateway is an
intermediate system implementing IPSec, e.g., a firewall or router that has been IPSec-
enabled.) The protection offered by IPSec is based on Requirements defined by a
Security Policy Database (SPD) established and maintained by a user or system
administrator, or by an application operating within constraints established by either of
the above. In general, packets are selected for one of three processing actions based on [P
and next layer header Information matched against entries in the SPD. Each packet is
either PROTECTED using IPSec Security services, DISCARDED, or allowed to
BYPASS IPSec protection, based on the applicable SPD Policies identified by the
Selectors.

3.1.1 What IPSec Does

[PSec creates a boundary between unprotected and protected interfaces, for a host
or a network. Traffic Traversing the boundary is subject to the access controls specified
by the user or administrator responsible for the IPSec configuration. These controls
indicate whether packets cross the boundary unimpeded, are afforded security services
via AH or ESP, or are discarded. IPSec security services are offered at the IP Layer
through selection of appropriate security protocols, cryptographic algorithms, and
cryptographic Keys. IPSec can be used to protect one or more "paths™:

a) Between a pair of hosts.
b) Between a pair of security gateways.
¢) Between a security gateway and a host.

A compliant host implementation MUST support (a) and (c) and a compliant
security Gateway must support all three of these forms of connectivity, since under
certain circumstances a Security gateway acts as a host.
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IPSec optionally supports negotiation of IP compression, motivated in part by the
observation that when Encryption is employed within IPSec; it prevents ecffective
compression by lower protocol layers.

3.1.2 How IPSec Works

IPSec uses two protocols to provide traffic security services Authentication
Header (AH) and Encapsulating Security Payload (ESP).

IPSec implementations MUST support ESP and MAY support AH. (Support for AH has
been Downgraded to MAY because experience has shown that there are very few
contexts in which ESP cannot provide the requisite security services. Note that ESP can
be used to provide only integrity, without confidentiality, making it comparable to AH in
most contexts.) The IP Authentication Header (AH) offers integrity and data origin
authentication, with optional (at the Discretion of the receiver) anti-replay features.

The Encapsulating Security Payload (ESP) protocol offers the same set of
services, and also offers confidentiality. Use of ESP to provide confidentiality without
integrity is NOT RECOMMENDED. When ESP is used with confidentiality enabled,
there are provisions for limited traffic flow confidentiality, i.e., provisions for concealing
packet length, and for facilitating efficient generation and discard of dummy packets.

This capability is likely to be effective primarily in virtual private network (VPN)
and overlay network contexts.

Both AH and ESP offer access control, enforced through the distribution of
cryptographic keys and the management of traffic flows as dictated by the Security
Policy Database.

These protocols may be applied individually or in combination with each other to
provide IPv4 and IPv6 Security services. However, most security requirements can be
met through the use of ESP by itself.

Each protocol supports two modes of use: transport mode and tunnel mode. In
transport mode, AH and ESP provide protection primarily for next layer protocols; in
tunnel mode, AH and ESP are applied to Tunneled IP packets.

IPSec allows the user (or system administrator) to control the granularity at which
a security service is Offered. For example, one can create a single encrypted tunnel to
carry all the traffic between two Security gateways or a separate encrypted tunnel can be
created for each TCP connection between each Pair of hosts communicating across these
gateways. IPSec, through the SPD management paradigm, incorporates facilities for
specifying which security protocol (AH or ESP) to employ, the mode (transport Or
tunnel), security service options, what cryptographic algorithms to use, and in what
combinations to Use the specified protocols and services, and the granularity at which
protection should be applied.

Because most of the security services provided by IPSec require the use of
cryptographic keys, IPSec relies on a separate set of mechanisms for putting these keys in
place. ’
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3.2 Authentication Header (AH)

AH [20], one of the IPSec security protocols, provides integrity protection for
packet headers and data, as well as user authentication. It can optionally provide replay
protection and access protection. AH cannot encrypt any portion of packets. In the initial
version of IPSec, the ESP protocol could provide only encryption, not authentication, so
AH and ESP were often used together to provide both confidentiality and integrity
protection for communications. Because authentication capabilities were added to ESP in
the second version of IPSec AH has become less significant; in fact, some IPSec software
no longer supports AH. However, AH is still of value because AH can authenticate
portions of packets that ESP cannot. Also, many existing IPSec implementations are
using AH, so this guide includes a discussion of AH for completeness [21].

3.2.1 AH Modes

AH have two modes: transport and tunnel. In tunnel mode, AH creates a new IP
header for each packet; in transport mode, AH does not create a new IP header. In IPSec
architectures that use a gateway, the true source or destination IP address for packets
must be altered to be the gateway's IP address. Because transport mode cannot alter the
original [P header or create a new IP header, transport mode is generally used in host-to-
host architectures [22]). As shown in Figures 3.1 and 3.2, AH provides integrity protection
for the entire packet, regardless of which mode is used. (As explained in Section 3.2.2, IP
header fields that can change unpredictably while in transit are not integrity-protected.)

New IP | AH Header Qrigina: iP Transport and Application Protocol Headers and Cata
Header Header
“Authentic

Figure 3.1 AH Tunnel Mode Packet

P AH Header Transport and Application Frotocol Headers and Oata
Header

Figure 3.2 AH Transport Mode Packet

3.2.2 Integrity Protection Process

The first step of integrity protection is to create a hash by using a keyed hash
algorithm, also known as a message authentication code (MAC) algorithm. A standard
hash algorithm generates a hash based on a message, while a keyed hash algorithm
creates a hash based on both a message and a secret key shared by the two endpoints. The
hash is added to the packet, and the packet is sent to the recipient. The recipient can then
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regenerate the hash using the shared key and confirm that the two hashes match, which
provides integrity protection for the packet.

IPSec uses hash message authentication code (HMAC) algorithms,[23] which
perform two keyed hashes. Examples of keyed hash algorithms are HMAC-MDS5 and
HMAC-SHA-1[24]. Another common MAC algorithm is AES Cipher Block Chaining
MAC (AES-XCBC-MAC-96)[25]). Technically, Figures 3.1 and 3.2 are somewhat
misleading because it is not possible to protect the integrity of the entire IP header.
Certain IP header fields, such as time to live (TTL) and the IP header checksum, are
dynamic and may change during routine communications. If the hash is calculated on all
the original IP header values, and some of those values legitimately change in transit, the
recalculated hash will be different.

The destination would conclude that the packet had changed in transit and that its
integrity had been violated. To avoid this problem, IP header fields that may legitimately
change in transit in an unpredictable manner are excluded from the integrity protection
calculations. This same principle explains why AH is often incompatible with network
address translation (NAT) implementations. The IP source and destination address fields
are included in the AH integrity protection calculations. If these addresses are altered by
a NAT device (e.g., changing the source address from a private to a public address), the
AH integrity protection calculation made by the destination will not match.

3.2.3 AH Header

AH adds a header to each packet. As shown in Figure 3.3, each AH header is
composed of six fields:

1- Next Header. This field contains the IP protocol number for the next packet
payload. In tunnel mode, the payload is an IP packet, so the Next Header value is
set to 4 for IP-in-IP. In transport mode, the payload is usually a transport-layer
protocol, often TCP (protocol number 6) or UDP (protocol number 17)

2- Payload Length. This field contains the length of the payload in 4-byte
increments, minus 2,

3- Reserved. This value is reserved for future use, so it should be set to 0.

4- Security Parameters Index (SPI) [26]. Each endpoint of each IPSec connection
has an arbitrarily chosen SPI value, which acts as a unique identifier for the
connection. The recipient uses the SPI value, along with the destination [P address
and (optionally) the IPSec protocol type (in this case, AH), to determine which
Security Association (SA) is being used. This tells the recipient which IPSec
protocols and algorithms have been applied to the packet.

5- Sequence Number. Each packet is assigned a sequential sequence number, and
only packets within a sliding window of sequence numbers are accepted. This
provides protection against replay attacks because duplicate packets will use the
same sequence number. This also helps to thwart denial of service attacks because
old packets that are replayed will have sequence numbers outside the window,
and will be dropped immediately without performing any more processing.
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6- Authentication Information. This field contains the MAC output described in
Section 3.2.2. The recipient of the packet can recalculate the MAC to confirm that
the packet has not been altered in transit.

Next Header | PayioadLength | Reservet
Security Parameders Indey
Sequence Number

Authentication information

Figure 3.3 AH Header
3.2.4 How AH Works

The best way to understand how AH works is by reviewing and analyzing actual
AH packets. Figure 3.4 shows the bytes that compose an actual AH packet. The values on
the left side are the packet bytes in hex, and the values on the right side are attempted
ASCII translations of each hex byte. (Bytes that cannot be translated into a printable
ASCII character are represented by a dot.) Figure 3.4 indicates each section of the AH
packet: Ethernet header, IP header, AH header, and payload [27].Based on the fields
shown in Figures 3.1 and 3.2, this is a transport mode packet because it only contains a
single IP header. In this case, the payload contains an [CMP echo request a ping. The
original ping contained alphabetic sequences, represented in the packet by ascending hex
values (e.g., 61, 62, and 63). After AH was applied, the ICMP payload is unaffected. This
is because AH only provides integrity protection, not encryption.

Ethemet Header IP Header

00" 0B 21 fe BO ad 0D 04 27 36 1o ab 08 0 v, ‘6....E

AH Header = 30Rd An A ] N JEUN 311<<<.22
Z..vina 4....a.

K...#..RB....[..

Payload P.abodefghijkimn
opgrstuvwahadefg

hi

Figure 3.4 Samples AH Transport Mode Packet

Figure 3.5 shows the AH header fields from the first four packets in an AH
session between hosts A and B. The fields in the first header have been labeled, and they
correspond to the fields identified in Figure 3.3. Items of interest are as follows:

1- SPI: Host A uses the hex value cdb59934 for the SPI in both its packets, while
host B uses the hex value a6b32c00 for the SPI in both packets. This reflects that
an AH connection is actually composed of two one-way connections, each with
its own SPI.
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2- Sequence Number: Both hosts initially set the sequence number to 1, and both
incremented the number to 2 for their second packets.

3- Authentication Information: The authentication (integrity protection)
information, which is a keyed hash based on virtually all the bytes in the packet,
is different in each packet. This value should be different even if only one byte in
a hashed section of the packet changes.

Payload Length '
Next Header : Reserved  SP{ Seqyence Number

NN

Figure 3-5. AH Header Fields from Sample Packet

3.2.5 AH Version 3

A new standard for AH, version 3, is currently in development[28].Based on the
current standard draft, the functional differences between version 2 and version 3 should
be relatively minor to IPSec administrators and users- some modifications to the SPI, and
an optional longer sequence number. The version 3 standard draft also points to another
standard draft that lists cryptographic algorithm requirements for AH[29].The draft
mandates support for HMAC-SHA1-96, strongly recommends support for AES-XCBC-
MAC-96, and also recommends support for HMAC-MD5-96.

3.2.6 AH Summary

e AH provides integrity protection for all packet headers and data, with the
exception of a few IP header fields that routinely change in transit.

e DBecause AH includes source and destination IP addresses in its integrity
protection calculations, AH is often incompatible with NAT.

e Currently, most IPSec implementations support the second version of IPSec, in
which ESP can provide integrity protection services through authentication. The
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use of AH has significantly declined. In fact, some IPSec implementations no
longer support AH.

e AH still provides one benefit that ESP does not: integrity protection for the
outermost IP header [30].

3.3 Encapsulating Security Payload (ESP)

ESP [31] is the second core IPSec security protocol. In the initial version of
IPSec, ESP provided only encryption for packet payload data. Integrity protection was
provided by the AH protocol if needed, as discussed in Section 3.2. In the second version
of IPSec, ESP became more flexible. It can perform authentication to provide integrity
protection, although not for the outermost IP header.

Also, ESP's encryption can be disabled through the Null ESP Encryption
Algorithm. Therefore, in all but the oldest [PSec implementations, ESP can be used to
provide only encryption; encryption and integrity protection; or only integrity protection
[32]. This section mainly addresses the features and characteristics of the second version
of ESP; the third version, currently in development, is described near the end of the
section.

3.3.1 ESP Modes

ESP has two modes: transport and tunnel. In tunnel mode, ESP creates a new IP
header for each packet. The new IP header lists the endpoints of the ESP tunnel (such as
two [PSec gateways) as the source and destination of the packet. As shown in Figure 3.6,
tunnel mode can encrypt and/or protect the integrity of both the data and the original IP
header for each packet [33].Encrypting the data protects it from being accessed or
modified by unauthorized parties; encrypting the IP header conceals the nature of the
communications, such as the actual source or destination of the packet. If authentication
is being used for integrity protection, each packet will have an ESP Authentication
section after the ESP trailer.

New P | £8P Header Originat 1P Transport and Application ESP Trailer ESP
Header Header Protocol Headers and Data Authentication
{optional)y

Figure 3.6 ESP Tunnel Mode Packet

ESP tunnel mode is used far more frequently than ESP transport mode. In
transport mode, ESP uses the original 1P header instead of creating a new one. Figure 3.7
shows that in transport mode, ESP can only encrypt and/or protect the integrity of packet
payloads and certain ESP components, but not [P headers. As with AH, ESP transport
mode is generally only used in host-to-host architectures. Also, transport mode is
incompatible with NAT. For example, in each TCP packet, the TCP checksum is
calculated on both TCP and IP fields, including the source and destination addresses in
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the IP header. If NAT is being used, one or both of the IP addresses are altered, so NAT
needs to recalculate the TCP checksum. If ESP is encrypting packets, the TCP header is
encrypted; NAT cannot recalculate the checksum, so NAT fails. This is not an issue in
tunnel mode; because the entire TCP packet is hidden, NAT will not attempt to
recalculate the TCP checksum. However, tunnel mode and NAT have other potential
compatibility issues [34]. Section 4.3.1 provides guidance on overcoming NAT-related
issues.

P ESP Header ' Transport and Application Protocol Headers ESP Trailer ESP
Header and Data Authentication —
optionat

Figure 3.7 ESP Transport Mode Packet

3.3.2 Encryption Process

As described in Section 3.3, ESP uses symmetric cryptography to provide
encryption for JPSec packets. Accordingly, both endpoints of an IPSec connection
protected by ESP encryption must use the same key to encrypt and decrypt the packets.
When an endpoint encrypts data, it divides the data into small blocks (for the AES
algorithm, 128 bits each), and then performs multiple sets of cryptographic operations
(known as rounds) using the data blocks and key. Encryption algorithms that work in this
way are known as block cipher algorithms.

When the other endpoint receives the encrypted data, it performs decryption using
the same key and a similar process, but with the steps reversed and the cryptographic
operations altered. Examples of encryption algorithms used by ESP are AES-Cipher
Block Chaining (AES-CBC), AES Counter Mode (AES-CTR), and Triple DES (3DES)
[35].

3.3.3 ESP Packet Fields

ESP adds a header and a trailer around each packets payload. As shown in Figure
3-8, each ESP header is composed of two fields:

e SPI. Each endpoint of each IPSec connection has an arbitrarily chosen SPI value,
which acts as a unique identifier for the connection. The recipient uses the SPI
value, along with the destination IP address and (optionally) the IPSec protocol
type (in this case, ESP), to determine which SA is being used.

e Sequence Number. Each packet is assigned a sequential sequence number, and
only packets within a sliding window of sequence numbers are accepted. This
provides protection against replay attacks because duplicate packets will use the
same sequence number. This also helps to thwart denial of service attacks because
old packets that are replayed will have sequence numbers outside the window,
and will be dropped immediately without performing any more processing.
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The next part of the packet is the payload. It is composed of the payload data,
which is encrypted, and the initialization vector (IV), which is not encrypted. The
IV is used during encryption. Its value is different in every packet, so if two
packets have the same content, the inclusion of the IV will cause the encryption of
the two packets to have different results. This makes ESP less susceptible to
cryptanalysis.

The third part of the packet is the ESP trailer, which contains at least two fields
and may optionally include one more.

e Padding. An ESP packet may optionally contain padding, which is additional
byte of data that make the packet larger and are discarded by the packet's
recipient. Because ESP uses block ciphers for encryption, padding may be needed
so that the encrypted data is an integral multiple of the block size. Padding may
also be needed to ensure that the ESP trailer ends on a multiple of 4 bytes.
Additional padding may also be used to alter the size of each packet, concealing
how many bytes of actual data the packet contains. This is helpful in deterring
traffic analysis.

e Padding Length. This number indicates how many bytes long the padding is. The
Padding Length field is mandatory.

e Next Header. In tunnel mode, the payload is an IP packet, so the Next Header
value is set to 4 for [P-in-IP. In transport mode, the payload is usually a transport-
layer protocol, often TCP (protocol number 6) or UDP (protocol number 17).
Every ESP trailer contains a Next Header value.

If ESP integrity protection is enabled, the ESP trailer is followed by an
Authentication Information field. Like AH, the field contains the MAC output
described in Section 3.2.2. Unlike AH, the MAC in ESP does not include the
outermost IP header in its calculations. The recipient of the packet can recalculate the
MAC to confirm that the portions of the packet other than the outermost IP header
have not been altered in transit.

""""""""""""""""""""""""" Securify Paranteters Index
ESP Header
_________________ Sequence Number
Initialization Vector
Payload
Data
] ESP Trailer ) Padding | Paddinglength |  NextHeader
Authentication Data Authentication Information

Figure 3.8 ESP Packet Fields
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3.3.4 How ESP Works

Reviewing and analyzing actual ESP packets can provide a better understanding
of how ESP works, particularly when compared with AH packets. Figure 3.9 shows the
bytes that compose an actual ESP packet and their ASCII representations, in the same
format used in Section 3.2.4. The alphabetic sequence that was visible in the AH-
protected payload cannot be seen in the ESP-protected payload because it has been
encrypted.

The ESP packet only contains five sections: Ethernet header, IP header, ESP
header, encrypted data (payload and ESP trailer), and (optionally) authentication
information. From the encrypted data, it is not possible to determine if this packet was
generated in transport mode or tunnel mode. However, because the IP header is
unencrypted, the IP protocol field in the header does reveal which protocol the payload
uses (in this case, ESP). As shown in Figures 3.6 and 3.7, the unencrypted fields in both
modes (tunnel and transport) are the same.

Ethemet Header IP Header

Payload 2..0.<....5."
£..3....1.kaK.\.
CVLLT. (.. .BE, .

.8hE.w.+.Jk .N. ., *
i.96.4s8f....v.

Figure 3.9 ESP Packet Capture

Although it is difficult to tell from Figure 3.9, the ESP header fields are not
encrypted. Figure 3.10 shows the ESP header fields from the first four packets in an ESP
session between hosts A and B. The SPI and Sequence Number fields work the same way
in ESP that they do in AH. Each host uses a different static SPI value for its packets,
which corresponds to an ESP connection being composed of two one-way connections,
each with its own SPI1. Also, both hosts initially set the sequence number to I, and both
incremented the number to 2 for their second packets.

SPi _Sequence Number
A=B [ag* 30 ae ac|[B5
B=~A d3 64 co 53 0D 00 00 O1
A-—B df 30 de 3c 00 00 0D D2
B=—A d5 64 ce 53 00 00 00 02

Figure 3.10 ESP Header Fields from Sample Packets
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3.3.5ESP Version 3

A new standard for ESP, version 3, is currently in development [36]. Based on the

current standard draft, there should be several major functional differences between
version 2 and version 3, including the following:

The standard for ESP version 2 required ESP implementations to support using
ESP encryption only (without integrity protection). The proposed ESP version 3
standards make support for this optional.

ESP can use an optional longer sequence number, just like the proposed AH
version 3 standard.

ESP version 3 supports the use of combined mode algorithms (e.g., AES Counter
with CBC-MAC [AES-CCM]) {37].Rather than using separate algorithms for
encryption and integrity protection, a combined mode algorithm provides both
encryption and integrity protection.
The version 3 standard draft also points to another standard draft that lists
encryption and integrity protection cryptographic algorithm requirements for ESP
[33]. For encryption algorithms, the draft mandates support for the null encryption
algorithm and 3DES-CBC, strongly recommends support for AES-CBC (with
128-bit keys), recommends support for AES-CTR, and discourages support for
DES-CBC[39].For integrity protection algorithms, the draft mandates support for
HMAC-SHA1-96 and the null authentication algorithm, strongly recommends
support for AES-XCBC-MAC-96, and also recommends support for HMAC-
MD5-96. The standard draft does not recommend any combined mode algorithms.

3.3.6 ESP Summary

In tunnel mode, ESP can provide encryption and integrity protection for an
encapsulated IP packet, as well as authentication of the ESP header. Tunnel mode
can be compatible with NAT. However, protocols with embedded addresses (e.g.,
FTP, IRC, and SIP) can present additional complications.

In transport mode, ESP can provide encryption and integrity protection for the
payload of an IP packet, as well as integrity protection for the ESP header.
Transport mode is not compatible with NAT.

ESP tunnel mode is the most commonly used IPSec mode. Because it can encrypt
the original IP header, it can conceal the true source and destination of the packet.
Also, ESP can add padding to packets, further complicating attempts to perform
traffic analysis.

Although ESP can be used to provide encryption or integrity protection (or both),
ESP encryption should not be used without integrity protection.
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3.4 MDS Algorithm

We begin by supposing that we have a b-bit message as input, and that we wish to
find its message digest. Here b is an arbitrary nonnegative integer; b may be zero, it need
not be a multiple of eight, and it may be arbitrarily large. We imagine the bits of the
message written down as follows:

m Om_1..m_{b-1}

The following five steps are performed to compute the message digest of the

message.

Step 1: Append Padding Bits

The message is "padded” (extended) so that its length (in bits) is congruent to
448, modulo 512. That is, the message is extended so that it is just 64 bits shy of being a
multiple of 512 bits long. Padding is always performed, even if the length of the message
is already congruent to 448, modulo 512.

Padding is performed as follows: a single "1" bit is appended to the message, and
then "0" bits are appended so that the length in bits of the padded message becomes
congruent to 448, modulo 512. In all, at least one bit and at most 512 bits are appended.

Step 2: Append Length

A 64-bit representation of b (the length of the message before the padding bits
were added) is appended to the result of the previous step. In the unlikely event that b is
greater than 2764, then only the low-order 64 bits of b are used. (These bits are appended
as two 32-bit words and appended low-order word first in accordance with the previous
conventions.) _

At this point the resulting message (after padding with bits and with b) has a
length that is an exact multiple of 512 bits. Equivalently, this message has a length that is
an exact muitiple of 16 (32-bit) words. Let M [0 ... N-1] denote the words of the resulting
message, where N is a multiple of 16.

A four-word buffer (A, B, C, D) is used to compute the message digest. Here each
of A, B, C, D is a 32-bit register. These registers are initialized to the following values in
hexadecimal, low-order bytes first):

Word A: 01 23 45 67
Word B: 89 ab cd ef
Word C: fe dc ba 98

Word D: 76 54 32 10

Step 3: Initialize MD Buffer

A four-word buffer (A, B, C,D) is used to compute the message digest. Here each
of A, B, C, D is a 32-bit register. These registers are initialized to the following values in
hexadecimal, low-order bytes first):

Word A: 01 23 45 67
Word B: 89 ab cd ef
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Word C: fe dc ba 98
Word D: 76 54 32 10

Step 4: Process Message in 16-Word Blocks

We first define four auxiliary functions that each take as input three 32-bit words

and produce as output one 32-bit word.
F(X,Y,Z) = XY v not(X) Z
G(X,Y,Z) = XZ v Y not(Z)
H(X,Y,Z) =X xor Y xor Z
I(X,Y,Z2) =Y xor (X v not(Z))

In each bit position F acts as a conditional: if X then Y else Z. The function F
could have been defined using + instead of v since XY and not(X)Z will never have 1's in
the same bit position.) It is interesting to note that if the bits of X, Y, and Z are
independent and unbiased, the each bit of F(X,Y,Z) will be independent and unbiased.

The functions G, H, and [ are similar to the function F, in that they act in "bitwise
parallel” to produce their output from the bits of X, Y, and Z, in such a manner that if the
corresponding bits of X, Y, and Z are independent and unbiased, then each bit of
G(X,Y,Z), H(X,Y,Z), and I(X,Y,Z) will be independent and unbiased. Note that the
function H is the bit-wise "xor" or "parity" function of its inputs.

This step uses a 64-clement table T[1 ... 64] constructed from the sine function.
Let T[i] denote the i-th element of the table, which is equal to the integer part of
4294967296 times abs(sin(i)), where i is in radians.

Do the following:
/* Process each 16-word block. */
Fori=0toN/16-1do
/* Copy block i into X. */
Forj=0to 15 do
Set X[j] to M [i*16+]].
End /* of loop on j */

/* Save A as AA, B as BB, C as CC, and D as DD. */
AA=A
BB =B

CcC=C
DD =D

/* Round 1. */
/* Let [abcd k s 1] denote the operation

a=b + ((a+ F(b,c,d) + X[k] + T[i]) <<<s). ¥/
/* Do the following 16 operations. */
[ABCD 0 7 1] [DABC 112 2] [CDAB 217 3] [BCDA 322 4]
[ABCD 4 7 5] [DABC 512 6] [CDAB 617 7] [BCDA 722 8]
{ABCD 8 7 9] [DABC 91210] [CDAB 1017 11] [BCDA 1122 12]
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[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 1522 16]

/* Round 2. */
/* Let {abcd k s i] denote the operation

a=b+ ((a+ G(b,c,d) + X[k] + T[i]) <<<s). ¥/
/* Do the following 16 operations. */
[ABCD 1 517] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 020 20]
[ABCD S5 521] [DABC 10 922} {CDAB 15 14 23] [BCDA 4 20 24]
[ABCD 9 525] [DABC 14 926] [CDAB 3 14 27] [BCDA 820 28]
[ABCD 13 529] [DABC 2 930] [CDAB 7 14 31] [BCDA 12 20 32]

/* Round 3. */
/* Let [abced k s t] denote the operation

a=b+ ((a+ H(bed) + X[k] + T[i]) <<<5s). */
/* Do the following 16 operations. */
[ABCD 5 433] [DABC 81134] [CDAB 11 1635] [BCDA 14 23 36]
[ABCD 1 437] [DABC 411 38] [CDAB 716 39] [BCDA 1023 40]
[ABCD 13 441] [DABC 011 42] [CDAB 3 1643] [BCDA 623 44]
[ABCD 9 445] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]

/* Round 4. */
/* Let [abed k s t] denote the operation

a=b+ ((a+I(b,c,d)+ X[k] + T[i]) <<<s). ¥/
/* Do the following 16 operations. */
[ABCD 0 6 49] [DABC 71050] [CDAB 14 1551] [BCDA 521 52]
[ABCD 12 6 53] [DABC 310 54] [CDAB 10 15 55] [BCDA 121 56]
[ABCD 8 6 57] [DABC 1510 58] [CDAB 6 1559] [BCDA 13 21 60]
[ABCD 4 661] [DABC 11 1062] [CDAB 2 1563] [BCDA 9 21 64]

/* Then perform the following additions. (That is increment each
of the four registers by the value it had before this block
was started.) */

A=A+ AA

B=B +BB

C=C+CC

D=D+DD

Step 5: Output

The message digest produced as output is A, B, C, D. That is, we begin with the
low-order byte of A, and end with the high-order byte of D.

The MDS5 message-digest algorithm is simple to implement, and provides a
"fingerprint” or message digest of a message of arbitrary length. It is conjectured that the
difficulty of coming up with two messages having the same message digest is on the
order of 2”64 operations, and that the difficulty of coming up with any message having a
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given message digest is on the order of 2”128 operations. The MD5 algorithm has been
carefully scrutinized for weaknesses. It is, however, a relatively new algorithm aqd
further security analysis is of course justified, as is the case with any new proposal of this
sort.

3.5 SHA-1 Algorithm

Operations ion words. The following logical operators will be applied to words:

A. Bitwise logical word operations

X AND Y = bitwise logical "and" of X and Y.
XORY = bitwise logical "inclusive-or" of X and Y.

X XOR Y = bitwise logical "exclusive-or" of X and Y.
NOT X = bitwise logical "complement” of X.
Example:

01101100101110011101001001111011
XOR 01100101110000010110100110110111

= 00001001011110001011101111001100

B. The operation X + Y is defined as follows: words X and Y represent
integers x and y, where 0 <=x < 2”32 and 0 <=y < 2°32. For positive
integer's n and m, let n mod m be the remainder upon dividing n by m.
Compute

z=(x +y) mod 2°32.
Then 0 <=z <2732. Convert zto a word, Z, and defineZ=X +Y.

C. The circular left shift operation S*n(X), where X is a word and n is an
integer with 0 <= n < 32, is defined by
S™'n(X) = (X << n) OR (X >> 32-n).

In the above, X << n is obtained as follows: discard the left-most n bits of X and
then pad the result with n zeroes on the right (the result will still be 32 bits). X >>n is
obtained by discarding the right-most n bits of X and then padding the result with n
zeroes on the left. Thus S*n(X) is equivalent to a circular shift of X by n positions to the
left.

3.5.1 Message Padding

SHA-1 is used to compute a message digest for a message or data file that is
provided as input. The message or data file should be considered to be a bit string. The
length of the message is the number of bits in the message (the empty message has length
0). If the number of bits in a message is a multiple of 8, for compactness we can
represent the message in hex. The purpose of message padding is to make the total
length of a padded message a multiple of 512. SHA-1 sequentially processes blocks of
512 bits when computing the message digest. The following specifies how this padding
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shall be performed. As a summary, a "1" followed by m "0"s followed by a 64- bit
integer are appended to the end of the message to produce a padded message of length
512 * n. The 64-bit integer is the length of the original message. The padded message is
then processed by the SHA-1 as n 512-bit blocks.

Suppose a message has length | < 2764. Before it is input to the SHA-1, the
message is padded on the right as follows:

1. "1" is appended. Example: if the original message is "01010000", this is
padded to "010100001".

2. "0"s are appended. The number of "0"s will depend on the original
length of the message. The last 64 bits of the last 512-bit block are
reserved for the length | of the original message.

Example: Suppose the original message is the bit string

01100001 01100010 01100011 01100100 01100101.

After step (1) this gives
01100001 01100010 01100011 01100100 01100101 1.
Since | = 40, the number of bits in the above is 41 and 407 "0"s are appended,
making the total now 448. This gives (in hex)
61626364 65800000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
(0000000 00000000.

3. Obtain the 2-word representation of |, the number of bits in the original
message. If1 <2732 then the first word is all zeroes.
Append these two words to the padded message.
Example: Suppose the original message is as in (b). Then | =40 (note that | is
computed before any padding). The two-word representation of 40 is hex 00000000
00000028. Hence the final padded message is hex

61626364 65800000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000028.

The padded message will contain 16 * n words for some n > 0.
The padded message is regarded as a sequence of n blocks M(1) , M(2), first
characters (or bits) of the message.

3.5.2 Functions and Constants Used
A sequence of logical functions f{0), f(1),..., f(79) is used in SHA-1. Each f(t), 0

<=t <= 179, operates on three 32-bit words B, C, D and produces a 32-bit word as output.
f(t;B,C,D) is defined as follows: for words B, C, D,
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f(t;B,C,D) =(B AND C) OR (NOT B) AND D) (0<=t<=19)

f(t;B,C,D)=B XORCXOR D (20 <=t<=39)
f(t;B,C,D) = (B AND C) OR (B AND D) OR (C AND D) (40 <=t<=159)
f(t;B,C,D)=B XOR C XOR D (60 <=t <=79).

A sequence of constant words K(0), K(1), ..., K(79) is used in the SHA-1. In hex
these are given by
K() =5A827999 (0<=t<=19)
K(t) = 6EDI9EBAI (20 <=t <=139)
K(t)=8FIBBCDC (40 <=t <=59)
K({)=CA62CI1D6 60 <=t<=179).

3.5.3 Computing the Message Digest

The methods given in 3.5.3.1 and 3.5.3.2 below yield the same message digest.
Although using method 2 saves sixty-four 32-bit words of storage, it is likely to lengthen
execution time due to the increased complexity of the address computations for the §
W(t] } in step (3). There are other computation methods which give identical results.

3.5.3.1 Method 1

The computation is described using two buffers, each consisting of five 32-bit
words, and a sequence of eighty 32-bit words. The words of the first S-word buffer are
labeled A,B,C,D,E. The words of the second 5-word buffer are labeled HO, H1, H2, H3,
H4. The words of the 80-word sequence are labeled W(0), W(1),..., W(79). A single word
buffer TEMP is also employed. To generate the message digest, the 16-word blocks
M(1), M(2),..., M(n) defined in section 4 are processed in order. The processing of
each M(i) involves 80 steps.

Before processing any blocks, the H's are initialized as follows: in hex,

HO = 67452301
H1 = EFCDABS89
H2 = 98BADCFE
H3 = 10325476
H4 = C3D2E1F0.

Now M(1), M(2), ... , M(n) are processed. To process M(i), we proceed as
follows:

a. Divide M(i) into 16 words W(0), W(1), ... , W(15), where W(0) is the
left-most word.

b. Fort =16 to 79 let W(t) = S*"1(W(t-3) XOR W(t-8) XOR W(t-14)
XOR W(i-16)).

c. LetA=H0,B=H1,C=H2,D=H3,E=H4.

d. Fort=0to 79 do TEMP = S"5(A) + f(t;B,C,D) + E + W(t) + K(t);
E=D; D=C; C=8"30(B); B=A; A=TEMP;

e. LetHO=HO+A HI=H1+B,H2=H2+C,H3=H3+D,H4=H4
+E.
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After processing M(n), the message digest is the 1 60-bit string represented by the
5 words HO H1 H2 H3 H4.

3.5.3.2 Method 2

The method above assumes that the sequence W(0), ... , W(79) is implemented as
an array of eighty 32-bit words. This is efficient from the standpoint of minimization of
execution time, since the addresses of W(t-3), ... ,W(t-16) in step (b) are easily
computed. If space is at a premium, an alternative is to regard { W(t) } as a circular
queue, which may be implemented using an array of sixteen 32-bit words W[0], ...
W[38]. In this case, in hex let

MASK = 0000000F. Then processing of M(i) is as follows:

a. Divide M(i) into 16 words W[0}, ... , W[38], where W[0] is the left-
most word.

b. LetA=H0,B=HI|,C=H2,D=H3,E=H4.

c. Fort=0to79dos=tAND MASK;

If (¢t >= 16) W[s} = SA(W[(s + 13) AND MASK] XOR W[(s + 8) AND

MASK] XOR W{(s + 2) AND MASK] XOR W[s]);

TEMP = SA5(A) + f(t;B,C,D) + E + W[s] + K(t);

E=D;D=C;C=8"30B), B=A; A=TEMP;

d. LetHO=HO+A,HI=HI+B,H2=H2+C,H3=H3+D,H4=H4
+E.

3.6 DES Algorithm

DES is a block cipher--meaning it operates on plaintext blocks of a given size (64-bits)
and returns ciphertext blocks of the same size. Thus DES results in a permutation among
the 2764 (read this as: "2 to the 64th power") possible arrangements of 64 bits, each of
which may be either 0 or 1. Each block of 64 bits is divided into two blocks of 32 bits
each, a left half block L and a right half R. (This division is only used in certain
operations.)

Example: Let M be the plain text message M = 0123456789ABCDEF, where M is in
hexadecimal (base 16) format. Rewriting M in binary format, we get the 64-bit block of
text:

M = 0000 0001 0010 0011 0100 0101 01100111 1000 1001 1010 1011 1100 1101 1110
1111

L = 0000 0001 0010 0011 0100 0101 0110 o111
R=1000 1001 1010 1011 1100 1101 1110 1111

The first bit of M is "0". The last bit is "1". We read from left to right.

DES operates on the 64-bit blocks using key sizes of 56- bits. The keys are actually stored
as being 64 bits long, but every 8th bit in the key is not used (i.e. bits numbered 8, 16, 24,
32, 40, 48, 56, and 64). However, we will nevertheless number the bits from 1 to 64,
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going left to right, in the following calculations. But, as you will see, the eight bits just
mentioned get eliminated when we create sub keys.

Example: Let K be the hexadecimal key K = 133457799BBCDFF1. This gives us as the
binary key (setting 1 = 0001, 3 = 0011, etc., and grouping together every eight bits, of
which the last one in each group will be unused):

K =00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001
The DES algorithm uses the following steps:

Step 1: Create 16 sub keys, each of which is 48-bits long.

The 64-bit key is permuted according to the following table, PC-1. Since the first entry in
the table is "57", this means that the 57th bit of the original key K becomes the first bit of
the permuted key K+. The 49th bit of the original key becomes the second bit of the
permuted key. The 4th bit of the original key is the last bit of the permuted key. Note
only 56 bits of the original key appear in the permuted key.

PC-1

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4
Example: From the original 64-bit key
K=00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001
We get the 56-bit permutation
K+=11110000110011 0010101 0101111 0101010 1011001 1001111 0001111
Next, split this key into left and right halves, Cp and Dy, where each half has 28 bits.
Example: From the permuted key K+, we get
Gy = 1111000 0110011 0010101 0101111
D;=01010101011001 1001111 0001111
With Cp and D, defined, we now create sixteen blocks C, and D,, 1<=n<=16. Each pair
of blocks C, and D,, is formed from the previous pair C,.; and D,.;, respectively, for n =
1, 2... 16, using the following schedule of "left shifts" of the previous block. To do a left
shift, move each bit one place to the left, except for the first bit, which is cycled to the
end of the block.

Iteration Number of
Number  Left Shifts

VAW R —
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This means, for example, C; and D; are obtained from C; and D, respectively, by two
left shifts, and C;s and D are obtained from C;s5 and Dys, respectively, by one left shift.
In all cases, by a single left shift is meant a rotation of the bits one place to the left, so
that after one left shift the bits in the 28 positions are the bits that were previously in

positions 2, 3...., 28, 1.

Example: From original pair pair Cy and Dy we obtain:

Co =
Dy=0101010101100110011110001111
C =
D,=1010101011001100111100011110
%) =
D,=0101010110011001111000111101
C3 =
D;=0101011001100111100011110101
Cy =
D,=0101100110011110001111010101
C5 =
Ds=0110011001111000111101010101
Cs =
Ds=1001100111100011110101010101
C7 =
D,=0110011110001111010101010110
C3 =
Dg=1001111000111101010101011001
Cg =
Dy=0011110001111010101010110011
Cio =
D;p=1111000111101010101011001100
Cu =
D,;=1100011110101010101100110011
Ci2 =
D;;=0001111010101010110011001111
Cis =
D;;=0111101010101011001100111100

1111000011001100101010101111
1110000110011001010101011111
1100001100110010101010111111
ooootr10011001010101012111111
0011001100101010101111111100
1100110010101010111111110000
0011001010101011111111000011
1100101010101111111100001 100
0010101010111111110000110011
0101010101111111100001100110
0101010111111110000110011001
0101011111111000011001100101
0101111111100001100110010101

0111111110000110011001010101

IPSec Based Bluetooth Security Architecture

55



Chapter 3 IPSec Protocol

Cuy = 1111111000011001100101010101
Dy= 1110101010101100110011110001
Crs 1111100001100110010101010111
Dys= 101010101011001100111]000111
Cis 1111000011001100101010101111

D16~01010101011001100111100011]1
We now form the keys Kj, for 1<=n<=16, by applying the following permutation table to
each of the concatenated pairs C,D,. Each pair has 56 bits, but PC-2 only uses 48 of
these.

rPC-2

14 17 11 24 1 5

3 28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41 52 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 .29 32
Therefore, the first bit of K, is the 14th bit of C,D,, the second bit the 17th, and so on,
ending with the 48th bit of K, being the 32th bit of C,D,.

Example: For the first key we have C;D; = 1110000 1100110 0101010 1011111
1010101 0110011 0011110 0011110 which, after we apply the permutation PC-2,
becomes

K;=000110 110000 001011 101111 111111 000111 000001 110010

For the other keys we have

K, = 011110 011010 111011 011001 110110 111100 100111 100101
K; = 010101 oO11111 110010 001010 010000 101100 111110 011001
K, = 011100 101010 110111 010110 110110 110011 010100 011101}
Ks = 011111 001110 110000 000111 111010 110101 001110 101000
Ks = 011000 111010 010100 111110 010100 000111 101100 101111
K, = 111011 001000 010010 110111 111101 100001 100010 111100
Ks = 111101 111000 101000 111010 110000 010011 101111 111011
K, = 111000 001101 10111t 1o1011 111011 O1t110 011110 000001
K, = 101100 O11111 001101 000111 101110 100100 011001 001111
K, = 001000 010101 11f111 010011 110111 101101 001110 000110
K;; = 011101 010111 000111 110101 100101 000110 O11111 101001
K,; = 100101 111100 010111 010001 111110 101011 101001 000001
K, = 010111 110100 001110 110111 111100 101110 011100 111010
K;s = 101111 111001 000110 001101 00t111 010011 111100 001010
K;s= 110010110011 110110 001011 000011 100001 011111 110101

So, much for the sub keys. Now we look at the message itself.
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Step 2: Encode each 64-bit block of data.

There is an initial permutation IP of the 64 bits of the message data M. This rearranges

the bits according to the following table, where the entries in the table show the new

arrangement of the bits from their initial order. The 58th bit of M becomes the first bit of

IP. The 50th bit of M becomes the second bit of IP. The 7th bit of M is the last bit of IP.
P

58 50 42 34 26 18 10
60 52 44 36 28 20 12
62 54 46 38 30 22 14
64 56 48 40 32 24 16
57 49 41 33 25 17 9
59 51 43 35 27 19 11
61 53 45 37 29 21 13
63 55 47 39 31 23 15

N W T oy N

Example: Applying the initial permutation to the block of text M, given previously, we
get

M = 0000 0001 0010 0011 0100 0101 01100111 1000 1001 1010 1011 1100 1101 1110
1111

IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1111 0000 1010
1010

Here the 58th bit of M is "1", which becomes the first bit of IP. The 50th bit of M is 1",
which becomes the second bit of IP. The 7th bit of M is "0", which becomes the last bit
of IP.

Next divide the permuted block IP into a left half Ly of 32 bits, and a right half Ry of 32
bits.

Example: From [P, we get Ly and Ry

L= 1100 1100 0000 0000 1100 1100 1111 1111

Rp,= 111100001010 1010 1111 0000 1010 1010

We now proceed through 16 iterations, for 1<=n<=16, using a function f which operates
on two blocks--a data block of 32 bits and a key K,, of 48 bits--to produce a block of 32
bits. Let + denote XOR addition, (bit-by-bit addition modulo 2). Then for n going
from 1 to 16 we calculate

Ln = Rn-l

R,=L,, +f(Rn-l Kn)

This results in a final block, for n = 16, of L;sR;6. That is, in each iteration, we take the
right 32 bits of the previous result and make them the left 32 bits of the current step. For
the right 32 bits in the current step, we XOR the left 32 bits of the previous step with the
calculation .

Example: For n =1, we have

K; =000110 110000 001011 101111 111111000111 000001 110010
L;=Ry=11110000 1010 1010 1111 0000 1010 1010

R;= Lo+ f(Rp,K))
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[t remains to explain how the function f'works. To calculate f, we first expand each block
R, from 32 bits to 48 bits. This is done by using a selection table that repeats some of
the bits in R,..; . We'll call the use of this selection table the function E. Thus E (R,.;) has
a 32 bit input block, and a 48 bit output block.

Let E be such that the 48 bits of its output, written as 8 blocks of 6 bits each, are obtained
by selecting the bits in its inputs in order according to the following table:

E BIT-SELECTION TABLE

32 1 2 3 45
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 |

Thus the first three bits of E(R,.;) are the bits in positions 32, 1 and 2 of R,_; while the
last 2 bits of E(R,.;) are the bits in positions 32 and 1.

Example: We calculate E(Rp) from R, as follows:

Ry = 111 0000 1010 1010 1111 0000 1010 1010
E (Rp)=011110 100001 010101 010101 011110 100001 010101 010101

(Note that each block of 4 original bits has been expanded to a block of 6 output bits.)
Next in the fcalculation, we XOR the output E(R,.;) with the key K,;:

K+ E (Ry.y).

Example: For K; , E(Rp), we have

K; = 000110 110000 001011 101111 111Ei1 QOO111 000001 110010
E(R;) = 011110 100001 010101 010101 011110 100001 010101 010101
K +E(Rp)=011000 010001 011110 111010 100001 100110 010100 100111.

We have not yet finished calculating the function f. To this point we have expanded R,.;
from 32 bits to 48 bits, using the selection table, and XORed the result with the key K, .
We now have 48 bits, or eight groups of six bits. We now do something strange with each
group of six bits: we use them as addresses in tables called "S boxes". Each group of six
bits will give us an address in a different S box. Located at that address will be a 4 bit
number. This 4 bit number will replace the original 6 bits. The net result is that the eight
groups of 6 bits are transformed into eight groups of 4 bits (the 4-bit outputs from the S
boxes) for 32 bits total.

Write the previous result, which is 48 bits, in the form:

K, + E(R,.;) =B;B2B;B BsBsB B3,

Where each B; is a group of six bits. We now calculate
S1(B1)S2(B2)S3(B3)S«(B4)Ss(Bs)Ss(Bs)S7(B7)Ss(Bs)

Where Si(By) referres to the output of the i-th S box.

To repeat, each of the functions $1, $2,..., S8, takes a 6-bit block as input and yields a 4-
bit block as output. The table to determine §; is shown and explained below:
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S1
Column Number

Row

No. 01 23 45 67 89 1011 1213 1415
0 144131 215118 310 612 59 0 7
1 015 74142 1311061211 95 3 8
2 41148136 211 1512 97 310 590
31512 82 49 17 511 314100 613

If §; is the function defined in this table and B is a block of 6 bits, then Sy(B) is
determined as follows: The first and last bits of B represent in base 2 a number in the
decimal range 0 to 3 (or binary 00 to 11). Let that number be i. The middle 4 bits of B
represent in base 2 a number in the decimal range 0 to 15 (binary 0000 to 1111). Let that
number be j. Look up in the table the number in the i-th row and j-th column. It is a
number in the range 0 to 15 and is uniquely represented by a 4 bit block. That block is the
output §,(B) of S; for the input B. For example, for input block B = 011011 the first bit is
"0" and the last bit "1" giving O1 as the row. This is row 1. The middle four bits are
“1101". This is the binary equivalent of decimal 13, so the column is column number 13.
In row 1, column 13 appears 5. This determines the output; 5 is binary 0101, so that the
output is 0101. Hence §,(011011) =0101.

The tables defining the functions S),...,53 are the following:

S1

15118 310 612 S
2131106 1211 9
6 211 1512 97 31
9 17 511 31410

14 4 13 1
015 74
41148
1512 8 2

2
14
13
4

o

S2
I51 814 611 34 97
313 47152 814120 0
014 711 104 13 1 58 126
138101 315 42116 712

5 113127114 28
10 28 514 1211 15 1
111 212 510 14 7
415143115 212

851112 415
212 110 14 9
5131452 84
4 511127 214
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S5
212 41 710116 85 31513
1411 212 47131 501510 3
42 1111013 78159125 6
118127 114 213 615 09 10

0149
986
3 014
4 53

S6

1211015 92

1015 42 712

914 155 281
9

43 212 95151

1334147 511
11314 011 3 8
0 410 11311 6
14 17 60 813

68 0
95 6
237
0 11
S7
411 214 150 813 312 97 5
130117 49 110143 512 2
141113123 7141015 68 0
611138 14107 95 015 14

10 61
15 86
592
2 312
S8
132 84 615111 10 3
115138103 74125 6
711 41 912142 061013 15
21147 410 8131512 90 35 o1l
Example: For the first round, we obtain as the output of the eight S boxes:
K; +E(Rp)=011000010001 011110 111010 100001 100110 010100 1001 11.
S1(B1)S2(B2)S3(B3)S«By)Ss5(Bs)Ss(Bs)SAB7)Ss(By) = 0101 1100 1000 0010 1011 0101
1001 0111
The final stage in the calculation of f is to do a permutation P of the S-box output to
obtain the final value of f:
S=P(S1(B1)S:(B2)...Ss(By))
The permutation P is defined in the following table. P yields a 32-bit output from a 32-bit
input by permuting the bits of the input block.
p
16 72021
291228 17
1152326
5183110
2 82414
3227 3 9
191330 6
2211 425
Example: From the output of the eight S boxes:
S1(B1)S2B2)S3(B3)S«(BySs(Bs)Ss(Bs)SB7)Ss(Bg) = 0101 1100 1000 0010 1011 0101
1001 0111
We get
S=00100011 0100 1010 1010 1001 1011 1011

9 31
5 61
1
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R, =L0+ﬂR0,I(] )
= 1100 1100 0000 0000 1100 1100 SRR 1111
+ 0010 001t 0100 1010 1010 1001 1011 1011
=11101111 0100 101001100101 01000100
In the next round, we will have L; = R;, which is the block we just calculated, and then
we must calculate Rz =L; + f{R}, K3), and so on for 16 rounds. At the end of the sixteenth
round we have the blocks L;s and R;s. We then reverse the order of the two blocks into
the 64-bit block
R6Ls and apply a ﬁlnal permutation IP™' as defined by the following table:

IP-

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 545 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 1t 51 19 59 27
34 2 42 10 50 18 58 26
33 141 9 49 17 57 25

That is, the output of the algorithm has bit 40 of the preoutput block as its first bit, bit 8
as its second bit, and so on, until bit 25 of the preoutput block is the last bit of the output.
Example: If we process all 16 blocks using the method defined previously, we get, on
the 16th round,

Lis = 0100 0011 0100 0010 0011 0010 0011 0100
R;s=0000 1010 0100 1100 1101 1001 1001 0101

We reverse the order of these two blocks and apply the final permutation to

RisLis = 00001010 01001100 11011001 10010101 01000011 01000010 00110010
00110100

IP' = 10000101 11101000 00010011 01010100 00001111 00001010 10110100
00000101 which in hexadecimal format is 85E813540F0AB405.

This is the encrypted form of M = 012345678SABCDEF: namely, C =
85E813540F0AB405.

Decryption is simply the inverse of encryption, following the same steps as above, but
reversing the order in which the sub keys are applied.

3.7 Triple DES Encryption

The Data Encryption Standard (DES) was developed by an IBM team around
1974 and adopted as a national standard in 1977. Triple DES is a minor variation of this
standard. It is three times slower than regular DES but can be billions of times more
secure if used properly. Triple DES enjoys much wider use than DES because DES is so
easy to break with today's rapidly advancing technology. In 1998 the Electronic Frontier
Foundation, using a specially developed computer called the DES Cracker, managed to
break DES in less than 3 days. And this was done for under $250,000. The encryption
chip that powered the DES Cracker was capable of processing 88 billion keys per second.
In addition, it has been shown that for a cost of one million dollars a dedicated hardware
device can be built that can search all possible DES keys in about 3.5 hours. This just
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serves to illustrate that any organization with moderate resources can break through DES
with very little effort these days. No sane security expert would consider using DES to
protect data.

Triple DES was the answer to many of the shortcomings of DES. Since it is based
on the DES algorithm, it is very easy to modify existing software to use Triple DES. It
also has the advantage of proven reliability and a longer key length that eliminates many
of the shortcut attacks that can be used to reduce the amount of time it takes to break
DES. However, even this more powerful version of DES may not be strong enough to
protect data for very much longer. The DES algorithm itself has become obsolete and is
in need of replacement. To this end the National Institute of Standards and Technology
(NIST) is holding a competition to develop the Advanced Encryption Standard (AES) as
a replacement for DES. Triple DES has been endorsed by NIST as a temporary standard
to be used until the AES is finished sometime in 2001.

The AES will be at least as strong as Triple DES and probably much faster. Many
security systems will probably use both Triple DES and AES for at least the next five
years. After that, AES may supplant Triple DES as the default algorithm on most systems
if it lives up to its expectations. But Triple DES will be kept around for compatibility
reasons for many years after that. So the useful lifetime of Triple DES is far from over,
even with the AES near completion. For the foreseeable future Triple DES is an excellent
and reliable choice for the security needs of highly sensitive information.

3.7.1 In Depth

Triple DES is simply another mode of DES operation. It takes three 64-bit keys,
for an overall key length of 192 bits. In Private Encryptor, you simply type in the entire
192-bit (24 character) key rather than entering each of the three keys individually. The
Triple DES DLL then breaks the user provided key into three sub keys, padding the keys
if necessary so they are each 64 bits long. The procedure for encryption is exactly the
same as regular DES, but it is repeated three times. lHence the name Triple DES. The data
is encrypted with the first key, decrypted with the second key, and finally encrypted again
with the third key.

Plaintext
|DES Encryption fef———— Key 1
!
|DES Decryption jq¢————— Key 2
IBES Encryption Ie——-—-——— Key3
Ciphertext

Figure 3.11 3DES
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Consequently, Triple DES runs three times slower than standard DES, but is
much more secure if used properly. The procedure for decrypting something is the same
as the procedure for encryption, except it is executed in reverse. Like DES, data is
encrypted and decrypted in 64-bit chunks. Unfortunately, there are some weak keys that
one should be aware of: if all three keys, the first and second keys, or the second and
third keys are the same, then the encryption procedure is essentially the same as standard
DES. This situation is to be avoided because it is the same as using a really slow version
of regular DES .

Note that although the input key for DES is 64 bits long, the actual key used by
DES is only 56 bits in length. The least significant (right-most) bit in each byte is a parity
bit, and should be set so that there are always an odd number of 1s in every byte. These
parity bits are ignored, so only the seven most significant bits of each byte are used,
resulting in a key length of 56 bits. This means that the effective key strength for Triple
DES is actually 168 bits because each of the three keys contains 8 parity bits that are not
used during the encryption process.

3.7.2 Modes of Operation
3.7.2.1 Triple ECB (Electronic Code Book)

This variant of Triple DES works exactly the same way as the ECB mode of DES.
Triple ECB is the type of encryption used by Private Encrypted. This is the most
commonly used mode of operation.

3.7.2.2 Triple CBC (Cipher Block Chaining)

This method is very similar to the standard DES CBC mode. As with Triple ECB,
the effective key length is 168 bits and keys are used in the same manner, as described
above, but the chaining features of CBC mode are also employed. The first 64-bit key
acts as the Initialization Vector to DES. Triple ECB is then executed for a single 64-bit
block of plaintext. The resuiting cipher text is then XORed with the next plaintext block
to be encrypted, and the procedure is repeated. This method adds an extra layer of
security to Triple DES and is therefore more secure than Triple ECB, although it is not
used as widely as Triple ECB.
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4. Methodology

In this chapter first we discuss the problem area of our research and cover the
security weaknesses of Bluetooth security. Then we suggest the solution and
methodology.

4.1 Security weaknesses

There are many security weaknesses in the Bluetooth standard. Some of these
problems can very easily be exploited by an attacker; other security weaknesses are
rather theoretical. An extensive overview of the most important problems will now be
given

4.1.1 Security depends on security of PIN

The initialization key is a function of a random number IN RAND, a shared
PIN and the length L of the PIN. The random number is sent in clear and hence
known by an attacker that is present during the initialization phase. Note that it is not
so difficult for an attacker to obtain this random number.

He can place some (small) devices near the two Bluetooth devices that are
going to be paired or even place a small sensor on one of the devices. This means that
only the PIN is a secret value, all the rest is public. If an attacker obtains the PIN, he
knows the initialization key. It even gets worse! Since all the other keys are derived
from the initialization key, they also will be known by the attacker. The security of
the keys depends on the security of the PIN. If it is too short or weak (e.g., 0000), it is
very easy for an attacker to guess the PIN.

Note that it is always possible to guess the PIN. The reason is that a mutual
authentication protocol is executed after the generation of the initialization key. If an
attacker observes this protocol, he obtains a challenge and the corresponding
response. It is now very easy to perform a brute force attack. The attacker tries every
PIN and calculates for every PIN the corresponding response. When the calculated
response is equal to the observed response, the correct PIN is used. The shorter the
PIN, the faster this brute force attack can be executed.

Sometimes a fixed PIN is used (the default value is 0000) or the PIN is sent in
clear to the other device. In those cases, the PIN is publicly known and the keys only
depend on public values. It is then trivial for an attacker to obtain the secret keys. This
certainly has to be avoided in security-sensitive applications.

4.1.2 Unit key

The unit key is used if one of the Bluetooth devices does not have enough
memory to store session keys. This key is stored in non-volatile memory and almost
never changed. The unit key is sent encrypted (with the initialization key) to the other
device. This is not very secure! Suppose A has sent its unit key to device B. The result
is that B now knows the key of A and can use this key itself. B can send this unit key
to C and impersonate itself as A. It is impossible for C to detect this impersonation
attack. This is why the use of unit keys should be avoided.
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4.1.3 Encryption algorithms

Bluetooth uses the encryption algorithm EQ and El. This stream cipher has
some security flaws.

The attacks with the lowest complexity are the algebraic attacks. EO is
vulnerable to algebraic attacks because of the possibility to recover the initial value by
solving a system of non-linear equations of degree 4 over the finite field GF (2). This
system can be transformed by linearization into a system of linear independent
equations with at most 223 unknowns. Fortunately, this attack does not work in
Bluetooth because it needs a long key stream during the initialization and EQ in
Bluetooth only uses small packets (the payload ranges from zero to a maximum of
2745 bits.

There is however an attack which can be implemented on the EO algorithm in
Bluetooth. Golic has found an attack on the Bluetooth stream cipher that can
reconstruct the 128-bit secret key with complexity about 270 from about 45
initializations. In the pre computation stage, a database of about 280 103-bit words
has to be sorted out. The attack uses a general linear iterative cryptanalysis method for
solving binary systems of approximate linear equations.

Irrespective of the security mode used, encryption of data during transmission
is only optional and has to be explicitly requested by the applications.

Problems with EQ encryption algorithm are:

- Output (KCIPHER) = combination of 4 LFSRs

- Key (KC) =128 bits

- Best attack: guess some registers 2 to the power of 266 (memory and
complexity)

Problems with E1 encryption algorithm are:

- E1=SAFER+
- Some security weaknesses (although not applicable to Bluetooth)
- slow

4.1.4 Denial of service attacks

Mobile networks are vulnerable to denial of service attacks. They consist of
mobile devices and these devices are often battery fed. Bluetooth is no exception. An
attacker can send dummy messages to a mobile device.

When this device receives a message (a real of a fake one), it consumes some
computation (and battery) power. After some time, all battery power will be
consumed and the device won’t be available anymore. This exhaustion of the battery
power is called the sleep deprivation attack. There are a lot more denial of service
attacks. The attacker can try to interfere with the radio propagation. Bluetooth uses
the 2.4 GHz ISM band, which is also used by some other mobile networks (e.g.,
WIFD). To avoid the interference caused by other mobile networks or an attacker,
frequency hopping and spread spectrums are used in Bluetooth.

There is also some denial of service attacks caused by implementation
decisions. An example is the black list which is used during the mutual authentication
procedure. To avoid that a device would start a mutual authentication procedure over
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and over again, each device has a black list with the Bluetooth addresses of the
devices which failed to authenticate themselves correctly. These devices can not start
an authentication procedure during some period. This period will be increased
exponentially (until a certain upper limit is reached) if the authentication fails again.

The black list is used to avoid a denial of service attack (successive wrong
authentication procedures), but in fact opens the door for other DoS attacks. An
attacker can try to authenticate to device A, but change every time its address. All
these authentication attempts will fail and the black list of A will become quite large.
If there is no upper limit on this black list, the entire memory of A will be filled with
the entries of the black list and device A will crash.

This is not the only DoS attack. Suppose device B wants to authenticate to A.
After A has sent a random number (the challenge) to B (this is the first step in the
authentication procedure), the attacker sends a wrong response to A using the
Bluetooth address of B. The authentication will fail, B will be put on the black list of
A and hence the (correct) response of B will be ignored by A. The attacker keeps
repeating this attack and B will never be able to authenticate successful to A.

4.1.5 Location Privacy

When two or more Bluetooth devices are communicating, the transmitted
packets always contain the Bluetooth address of the sender and the receiver.

When an attacker eavesdrops on the transmitted data, he knows the Bluetooth
addresses of the devices which were communicating (the attacker can do this by
placing a small device near the two Bluetooth devices). This way, the attacker can
keep track of the place and the time these two devices were communicating. It is also
quite probable that the two devices are from the same user (most of the
communication takes place between devices of the same owner).

This is a violation of the privacy of the user. The location information can be
sold to other persons and used for location dependent commercial advertisements
(e.g., a shop can send advertisements to all the users which are near the shop). It
should be possible for the user to decide him self when his location is revealed and
when not.

4.1.6 Other security problems

There are also some security problems in the challenge-response protocol.
Another security flaw is that:
1) No integrity check on the Bluetooth packets.
2) An attacker can always modify or replace a transmitted Bluetooth packet.
3) Man-in-the-middle attacks are also not prevented in Bluetooth.
4) A user can switch off security. Often, the default configuration is no security
at all.
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4.2 Bluetooth Network Encapsulation Protocol

The functional requirement for Bluetooth networking encapsulation protocol
(BNEP) includes the following [47}:
- Support for common networking protocols such as IPv4, IPv6, IPX, and other
existing or emerging networking protocols.
- Low Overhead -- The encapsulation format SHALL be bandwidth efficient.

BNEP is used for transporting both control and data packet over Bluetooth to
provide networking capabilities for Bluetooth devices. BNEP provides capabilities
that are similar to capabilities provided by Ethernet (Ethernet/DIX Framing /IEEE
802.3). The following diagram illustrates stack overview [40] [47].

T T D T S T B
Networking Applications

TCP/UDP

) Blitéiooth

Bluetooth Radio

Figure 4.1: BNEP Stack

4.2.1 BNEP Header Format
The following diagram illustrates the BNEP header format.

0 4 8 12 16 2 24 28 3

BNEP Type |E BNEP Packet based on BNEP Type ...

Figure 4.2: BNEP Format

BNEP Type: Seven bit Bluetooth Network Encapsulation Protocol

Type value identifies the type of BNEP header contained in this packet [47].
Extension Flag (E): One bit extension flag that indicates if one or more extension
headers follow the BNEP Header before the data payload if the data payload exists. If
the extension flag is equal to Ox1 then one or more extension headers follows the
BNEP header. If the extension flag is equal to 0x0 then the BNEP payload follows the
BNEP header [47].
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BNEP Packet: Based on the BNEP Type [47].
The following table defines various BENP packet formats.

Value BNEP Packet Type
0x00 ;e D ‘BNEP GENERAL ETHERNET - = -
Oxa BNEP _CONTROL
0x02. .| BNEP_COMPRESSED. ETHERNET . = . -
Ox83 BNEP COMPRESSED ETHERNET SOURCE ONLY
0x04 BNEP. COMPRESSED ETHERNET DEST ONLY '
Ox05 — Reserved for future use
OX7E :
Ox7E: “Reserved for 802.2 LLC Packets for IEEE 802.15:1WG.

Figure 4.3: BNEP Packet Format

4.2.2 Packet encapsulation

The following diagram illustrates the use of the BNEP for transporting an
Ethernet packet. BNEP removes and replaces the Ethernet Header with the BNEP
Header. Finally, both the BNEP Header and the Ethernet Payload is encapsulated by
L2CAP and is sent over the Bluetooth media.

The maximum payload that BNEP SHALL accept from the higher layer is
equal to the negotiated L2CAP MTU (minimum value: 1691), minus 191 bytes (or
187 bytes if an IEEE 802.1Q tag header is present) reserved for BNEP headers. This
way it can be assured that enough frame buffer space is reserved to transmit all
BNEP.

The minimum payload that BNEP SHALL accepts from the higher layer is
zero; BNEP is not required to pad payloads to the Ethernet minimum size (46 bytes)
[40] [47].

Ethemet Header Ethemel Payload
14 Bytes “ e 46-150071504 Bytes "
L2CAP Header BHEP Header Ethernst Payload
4 Bytes Atleast 1 Byte - 1500 / 1504 Bytes

Figure 4.4 Packet Encapsulation

The following is a simple example in which an IP packet is sent using BNEP.
The example illustrates an IPv4 packet sent from a device with 48 bit IEEE address of
00: AA: 00:55:44:33 to a 48 bit Bluetooth address of 00:30:B7:45:67:89.
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4] 4 8 12 16 20 24 28 31
BN e o Destination Address (Bytes 0-2) = 0x003087
inal Scource Address
Destinafion Address (Bytes 3-5) = (456789 (Byle 0) = 000
Source Address {Bytes 1-4) = DxAADDS544
Source Address . _
{Byte 5) =0x33 Networking Protocol Type = 0xB00 Payload ...
[ ]
[ ]

Figure 4.5 IP Packet in BNEP

4.3 Suggested Solution

The suggested idea is that authentication and encryption in Bluetooth to be
provided on IP or application level by using IPSec [46] at the IP level. A protocol like
IPSec is most suitable to secure end-to-end IP services like Virtual Private Network
(VPN) services. IPSec can be used for any IP connection independent of the particular
access method. Here only LAN access using the Bluetooth wireless technology is
considered. It is important to notice that the use of link level security and VPN
solutions does not exclude each other but rather complement each other.

IPSec, however, can protect any protocol running above IP and any medium
which IP runs over. More to the point, it can protect a mixture of application protocols
running over a complex combination of media. This is the normal situation for
Internet communication; IPSec is the only general solution. The following diagram
illustrates layers architecture which makes an understanding between Bluetooth and
[PSec in Network layer.

Q5! Layers rolocols
| vCard || vCal |

Application
Presentation QBEX ]

; | iATv;mds? ] uan] [‘rcs B«n | .m

Session

Transport

Network

RFCOMM

Data-link

Baseband

Bluetooth Radio

Physical

Btuetooth Frotocol Stack
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The problems raises is that Bluetooth enabled devices will have the ability to
form networks and exchange information. For these devices to interoperate and
exchange information, a common packet format needs to be defined to encapsulate
layer 3 network protocols.

Due to that, a specific packet format used to transport common networking
protocols over the Bluetooth media [41] [42] [43]. The packet format is based on
Ethernet/DIX Framing as defined by IEEE 802.3[44] [45].

BNEP accommodates IP communication by transporting IP packets between two
Etherriet-based link layer end-points on an IP segment. It encapsulates the IP packets
in BNEP headers, letting the source and destination addresses reflect the Bluetooth
end-points and setting the 6-bit Networking Protocol Type field to code for an IP
packet in the payload. BNEP finally encapsulates the BNEP packet in an L2CAP
header and sends it over the L2CAP connection.

43.1 AH and BNEP

This following diagrams illustrates BNEP with an IPv4 packet payload sent using
L2CAP before and after positioning AH header for transport and tunnel modes.

BEFORE APPLYING AH

IL‘ iPvd ’

L2CAP Header | BNEP Header Original IP Hdr + TCP + DATA

4 ytes Alleast 1 Byte 0 - 1580 / 1504 3yles

AFTER APPLYING AH

L2CAP Header | BNEP Header [|OriginallPHdr+ AH+ TCP + DATA

4 Byles At leasi 1 Byle . 15001 1504 Qytes

Figure 4.6 BNEP before and after applying AH (Transport Mode)

AFTER APPLYING AH
[<-atthenticated except for mutable fields in the new IP hdr -»|
LICAP Header | BNEP Header New [P hdr+ AH + Orig (P hdr + TCP + Data
4 Byles Atless! 1 Byle £ - 1550/ 1504 Bytes

Figure 4.7 BNEP after applying AH (Tunnel Mode)

4.3.2 ESP and BNEP

This following diagrams illustrates BNEP with an IPv4 packet payload sent using
L2CAP before and after positioning ESP header for transport and tunnel modes.
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Before: L2CAP | BNEP | 1pv4 TCP TCP
Header | Header | Header | Header Data
44— autheuticated —————#
After: < encrypted
L2CAP | BNEP | 1Pv4d ESP TCP TCP ESP ESP

Header | Header |Header| Header Header | Data Trailer | AUTH

Figure 4.8 BNEP before and after applying ESP (Transport Mode)

A

authenticated —

After: 44— encnypted ——m———p
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Figure 4.9 BNEP after applying ESP (Tunnel Mode)

4.4 System Design

The simulation of the IPSec protocols in NS2 was based on the existing
implementation of wireless network NS-2 [48] version 2 and UCBT (Bluetooth
extension for NS2). UCBT implements a full Bluetooth stack, including Baseband,
LMP, L2CAP, BNEP layers [49].
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Figure 4.10 IPSec Functionality in NS-2 and over UCBT
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Since there are many security protocols in terms of algorithms in IPSec, we
had to choose appropriate algorithms. For this purpose we took into account several
aspects:

a) Existing documentation of simulations that expressed the time to compute the
cryptographic functions involved in the algorithm.

b) Low computational time of cryptographic functions.

c) Algorithms that had proven enough reliability.

d) Algorithms that comply with the basic requirements of the protocols.

For the reasons stated above, we decided on:

» HMAC - MD5 and HMAC — SHAI1 to provide origin authentication and
integrity for IP packets. MDS5 should be preferred because its performance is
much better than that of SHAL.

o In ESP implementation we support both encryption and authentication.
Encryption is done by the widely used 3DES algorithm, which is applied in
CBC mode. Pure DES is also implemented. For authentication we use HASH-
MAC MD:5.

The IPSec Module is the central part, which does the whole standard conform
processing of the incoming and outgoing IP traffic. It uses a set of data bases (SPD
and SAD) to determine the flow of the IP packets. The main processing is then done
in the AH and ESP module. A small cryptographic library contains all the
functionality used to encrypt, decrypt or to authenticate the packets.
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Figure 4.11 The whole IPSec system with dependencies
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It was necessary to get familiar with IPSec. This implied reading through various
RFCs since there exists no single document covering the whole standard. The “Big
Book of IPSec RFCs” [LOSH(2] is a collection of the relevant documents. The key
aspects of a basic IPSec implementation include /[RFC]:

RFC 2401: Security Architecture for the Internet Protocol (IPSec)
RFC 2402: IP Authentication Header (AH)

RFC 2406: IP Encapsulating Security Payload (ESP)

Various RFCs: Algorithm descriptions for MD5, SHA1 and DES

LN =

More sophisticated parts of IPSec such as the Internet Key Exchange (IKE)
Protocol, the OAKLEY Key Determination Protocol or the Internet Security
Association and Key Management Protocol (ISAKMP) where not discussed in this -
research work.

After having become familiar with the IPSec standard, a breakdown of the whole
system was necessary. We needed to identify the different modules out of the IPSec
architecture so that we were able to characterize the following attributes of the
modules:

e Priority

e Dependencies

e Performance sensibility

An important part of our semester work was to find a suitable IP-stack and
Bluetooth stack that is able to carry our IPSec implementation. The Network
Simulator NS-2 TCP/IP Stack has all the desired features: modular design, active
community and free BSD-style license. As well as UCBT which has all the desired
features needed for Bluetooth stack.

Any inbound data is forwarded to ipsecdev_input() function. Depending on the
protocol field in the packet header, the entire packet is forwarded to the IP protocol
stack. If the packet could be identified as belonging to the suit of IPSec protocols, it is
transferred to the IPSec library. Pure IPSec specific processing, such as applying ESP
de-/encapsulation or AH de-/encapsulation is done within the IPSec library.

After these steps, the original IP packet is rebuilt by applying new offsets and
packet length to the pbuf structure. Then the clear-text packet is passed up to the
ip_input() function.

For outbound packets, all IP based protocols forward their data to
ipsecdev_output(). Here the decision is made whether the packet needs IPSec
processing or not. Depending on the appropriate Security Association, AH or ESP
functionality will encapsulate the packet. After these steps, the packet is forwarded to
the BNEP Class of Bluetooth Stack and sent over to the receiver.

The Security Policy Database (SPD) can be accessed from the IPSec module.
This database contains all rules required to decide how to handle packets, which have
security associations but also how to handle non-IP traffic. There are several
possibilities: any non-IPSec packet can be forwarded to the default protocol handler
(in order for connections from non-IPSec clients are accepted) or any non-IPSec
packet can be dropped immediately without wasting CPU time on further analysis.
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4.4.1 Security Policy & Association Management

IPSec needs one database to control the flow of the IP packets. This database is
called Security Policy Database. It simply describes which traffic requires IPSec
processing and which traffic does not.

The other database, the Security Association Database, holds data about each
configured connection and also defines how the traffic must be processed if the policy
in the SPD defines the APPLY rule for a certain packet.

The SPD can be seen as a persistent database while the SAD is only temporary
for each connection. In our simplified environment the SAD could also be static
because a dynamic standard conform way to add SA’s is not implemented.

4.4.1.1 Basic Concept of Security Association

IPSec needs the Security Policy Database and the Security Association Database
to process packets correctly.

The SPD defines the packets, to which IPSec needs to be applied. To guarantee
that each packet is processed the right way, each IP packet leaving or entering the
system must be checked against the SPD. We call this action the SPD lookup. This
lookup does nothing except compare the selectors from the database with the ones
from the packet. The SPD lookup delivers back the following results:

o BYPASS: this packet is forwarded directly to the next protocol layer
without applying IPSec.

e DISCARD: this packet is discarded, it will be dropped.

e APPLY: this packet requires IPSec processing

If the result of a SPD lookup is BYPASS, the unmodified packet is forwarded to
the next protocol layer. This is particularly useful if certain protocols such as ICMP
should not be protected by IPSec or communication with non-IPSec hosts must be
concurrently possible.

The DISCARD rule is returned when the intention is not to process this packet. If
this is the case, the packet will be dropped. This means that we simply delete the
packet instead of passing it to the next protocol layer. It is possible to use this feature
to build a primitive firewall.

IPSec processing is only needed if the result of the SPD lookup is APPLY.
Whenever a packet matches an SPD entry whose policy says APPLY, then there must
also be an SA that describes exactly how the packet has to be processed.

A successful SPD lookup provides us with a pointer to the SP over which we can
access the SA using a pointer stored in the SP structure.

In a dynamic environment this SA can be created using IKE. As soon as the
SPD finds out that there is no current SA available, it will trigger an IKE function
which is responsible for the negotiation of the required parameters. The packet can be
processed only after Security Association parameters are successfully negotiated.

In a more static environment, where IKE functionality is missing, an SA
cannot be set-up on the fly. In such a case, the SA needs to be created at system start-
up so that IPSec is ready to process traffic.
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4.4.1.2 SPD Outbound Processing

1.

When a packet leaves TCP/IP stack, the very first step is an SPD lookup, a
determination of how the packet must be processed. When the policy says
APPLY, the IPSec process continues. Otherwise the function passes the packet to
the Bluetooth stack or returns to the TCP/IP stack without doing anything.

Now (in case of an APPLY policy) the packet must be processed according to the
SA that was given back by the SPD lookup. When no SA is available, IKE
functionality would be invoked. If no IKE is available or the IKE negotiation fails,
the packet must be discarded.

In case of a valid SA being available the packet is encapsulated either in an AH-
or ESP-header.

After the new IPSec packet has been built, it must be sent out on the Bluetooth
stack.
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Figure 4.12 Outbound Processing

4.4.1.3 SPD/SAD Inbound Processing

1.

Inbound processing is somewhat different because an incoming IPSec packet
already has an SPI, which allows a direct lookup in the SAD table. The reason for
using the SPI is straightforward. The incoming IPSec packet may be encrypted
and so the SPD lookup, which must be performed on the inner packet data, cannot
be performed. The SAD lookup would directly give back an SA if one was found.
If no SA is found, then the packet must be discarded.

With the valid SA we are now able to process the packet properly. In inbound
processing this corresponds to decapsulation in ESP or integrity checking in AH.
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3. After decapsulation, we have a clear-text or authenticated packet. To be sure that
the right SA was applied to the packet, an SPD lookup has to be performed now
on the clear text packet. This check will confirm that there was a valid SPD entry
for the SA, which was used. This must be done because a packet could have been
sent with a fake SPI to force the proper processing of the packet. If the SPD
lookup fails or points to a different SA, the packet must be dropped.

4. After the IPSec packet has been decapsulated, it can be passed on to the TCP/IP.
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Figure 4.13 Inbound Processing
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44.2 AH Processing

The IP Authentication Header (AH) provides data origin authentication and
integrity for IP packets. Authentication is done by the well-known HASH-MAC4
MD5 and HASH-MAC SHA lalgorithms. These are the algorithms requested by the
standard. MDS5 should be preferred because its performance is much better than that
of SHAL.

In the SA configuration, the user has the possibility to choose the algorithm
that shall be selected for authentication. Because the integrity of an AH packet can
always be verified, the anti-replay check is performed on each packet. If one
considers that ESP also supports integrity and authentication, one may think that there
is no need for AH. This is not true because the authentication and integrity check of
AH is a bit more sophisticated. Authentication in AH covers more fields of the packet
than ESP does.

AH processing can be split up into inbound and outbound processing. These
two parts are implemented in:

o ipsec_ah_check(): verifies the integrity of the AH packet by applying a
HMAC with given key and performs an anti-replay check.

e ispec_ah_encapsulate(): sets up a new AH and IP header in front of the inner
packet and calculates its integrity check value. The next two paragraphs
describe more detailed how AH processing was implemented.

4.4.2.1 AH Inbound Processing

AH inbound processing was implemented with the function ipsec_ah_check().
This function gets the following input parameters:

- Pointer to the IP packet that must be verified

- Pointer to the SA that describes how the packet must be processed
After AH processing is done, two variables are passed back:

- Offset to the decapsulated IP packet (relative to the address of the

input IP packet)
- Length of the inner IP packet

The processing itself described step-by-step

1. In order to check the integrity and the authentication of the packet, the
ICV must be calculated. The ICV calculation in AH also covers the
outer IP header. In this header there are so-called mutable fields, which
change their value while they are sent across the network. Those fields
(Type of Service, Offset, TTL and checksum) must first be set to zero.
The ICV fields in the AH header must be backed up and zeroed, so that
later comparing remains possible. It becomes clear that AH
authentication also covers the source and destination address of the
outer IP packet.

2. The packet is now ready to be verified and the integrity check value
can be calculated over the whole packet. The SA determines the
appropriate algorithm and key.

3. The calculated ICV can be compared with the one saved in the first
step. Processing continues only if the calculated ICV matches the
original one.
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4. The authentication of the packet is now verified and the anti-replay
check can be performed. If it is successful, the sequence number
(stored in the SA) is incremented. Finally, the offset and packet length
are passed back.

4.4.2.2 AH Outbound Processing

AH outbound processing was implemented with the ipsec_ah_encapsulate()
function. This function gets the following parameters:
- Pointer to the IP packet, which must be encapsulated.
- Pointer to the SA, which defines how the packet must be encapsulated.
- Source IP address, describing the tunnels source address
- Destination IP address, describing the tunnels destination address
After AH processing has been completed, two variables are passed back:
- Offset to the encapsulated IP packet (relative to the address of the input
packet)
- Length of the encapsulated IP packet

The processing itself described step-by-step:

1. First of all a new AH header is placed in front of the IP packet, leaving a
gap between the inner IP header and the AH header. This gap is later used to
place the ICV. The AH header fields: next header, length, SPI and sequence
number are added.

2. After the outer IP header has been constructed, only the source and
destination address, version, header length and total length are set. The other
fields are set to zero as a preparation for the ICV calculation. Padding is not
required because the packet is already aligned.

3. The integrity check value can now be calculated and placed into the gab
between AH header and inner IP header.

4. After the ICV has been calculated, the zeroed fields are now filled with the
appropriate values.

5. Finally, the offset and the packet length are passed back.

4.4.3 ESP Processing

An Encapsulating Security Payload (ESP) header is designed to provide a mix
of security services for IP packets. In our ESP implementation we support both
encryption and authentication. Encryption is done by the widely used 3DES
algorithm, which is applied in CBC mode. Pure DES is also implemented. For
authentication we use HASH-MAC MD5 and HASH-MAC SHAL.

With the SA configuration the user has the possibility to configure the security
features that are to be applied to ESP processing.

When the user also selects authentication, the anti-replay service can guarantee
that resent [P packets or packets entering the system out of the replay-window are
discard.

ESP processing can be split up into inbound and outbound processing. These
two parts are implemented with

- ipsec_esp_decapsulate(): checks the content of the ESP header, and
optionally verifies the authentication and anti-replay and decrypts the
packet with the given key and initialization vector.
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- ipsec_esp_encapsulate(): sets up a new ESP header, encrypts the
packet and optionally calculates the integrity check value (for
authentication).

Both functions also setup the outer [P-header, which is needed for tunnel mode.

4.4.3.1 ESP Inbound Processing

ESP inbound processing is implemented with the function
ipsec_esp_decapsulate().
This function receives the following input parameters:
- Pointer to the IP packet which must be decapsulated
- Pointer to the SA which describes how the packet must be processed.
After ESP processing has been done, two variables are passed back:
- Offset to the decapsulated IP packet (relative to the address of the
input IP packet).
- Length of the decapsulated IP packet.

The processing it self described step-by-step:

1. A check in the SA structure indicates whether authentication needs to
be checked or not. If an authentication algorithm is specified within
the SA, the ICV must be calculated and compared with the one stored
at the end of the ESP packet. The ICV is calculated over the whole
ESP header, IV and encrypted payload. Processing continues only
when the packets ICV matches our recalculated one.

2. In the next step we have to decrypt the packet. The decryption
algorithm and the secret key can be accessed over the SA. Because
the packet was encrypted in CBC-mode, the IV must be copied out of
the ESP packet. The IV is stored between ESP header and encrypted
payload. The decryption happens in-place, so no copying must be
done.

3. Since the IP packet has now been extracted out of the ESP packet,
we can perform some sanity checks before terminating ESP
processing. In our implementation we verify that the total length field
in the extracted IP packet is within our valid range (20-1500 bytes).

4. Before everything is done the sequence number counter in the SA is
incremented, and optionally the same is done with the anti-replay
window. To let the caller of the ESP function know about the location
and the size of the extracted IP packet, the offset and the packet
length are giving back.

4.4.3.2 ESP Outbound Processing

ESP  outbound processing is implemented with the function
ipsec_esp_encapsulate().
This function receives the following input parameters:
- Pointer to the IP packet which must be encapsulated.
- Pointer to the SA, which describes how the packet must be processed.
- Source IP address describing the tunnels source address (from outer IP
header).
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- Destination IP address, describing the tunnels destination address
(from outer IP header).
After ESP processing has been completed, two variables are passed back:
- Offset to the decapsulated IP packet (relative to the address of the
input IP packet).
- Length of the decapsulated IP packet.
The processing itself described step-by-step:

1. The first step of encapsulation is to test whether the decremented TTL
field of the IP header reaches zero. If this is the case, the packet must
be discarded in order to prevent endless straying of packets.

2. Then we have to calculate how much padding must be added to fulfill
the requirements of the encryption algorithm. In our case (DES/3DES)
we must have the payload aligned to 8 bytes because the block size of
DES/3DES is 64-bit (8 bytes). The right amount of padding bytes is
added at the end of the payload. The fields: padding length and next
header are appended right after the padding.

3. Encryption is now performed according to the settings in the SA. After
encryption, the used IV is copied in front of the encrypted payload.

4. ESP header is now added in front of the IV. Inserted are a incremented
sequence number and the SPI taken out of the SA.

5. As was done in inbound processing, the SA must be checked to see if
authentication is enabled. If this is the case, then the ICV must be
calculated according the SA’s settings. The ICV, which is calculated
the ESP header, the IV and the encrypted payload, is copied at the end
of the payload.

6. Now the outer IP header can be constructed using the tunnels source
and destination address given as input arguments to the function. The
TOS field is copied from the inner IP header.

7. Finally, the offset and the length are passed back, so that the caller can
update its data structure (in our case the pbuf), where the packet is
stored.
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5. Implementation

In this chapter we shall discuss the implementation of the system. We shall
discuss the technologies used to develop our system and the benefits these
technologies. These technologies have greater scope on other related technologies.

5.1 Network Simualtor NS-2

5.1.1 Introduction

Ns began as a variant of the REAL network simulator in 1989 and has evolved
substantially over the past few years. In 1995 ns development was supported by
DARPA through the VINT project at LBL, Xerox PARC, UCB, and USC/ISL
Currently ns development is supported through DARPA with SAMAN and through
NSF with CONSER, both in collaboration with other researchers including ACIRI. Ns
has always included substantal contributions from other researchers, including
wireless code from the UCB Daedelus and CMU Monarch projects and Sun
Microsystems.

Ns is a discrete event simulator targeted at networking research. Ns provides
substantial support for simulation of TCP, routing, and multicast protocols over wired
and wireless (local and satellite) networks. Nam is a Tcl/TK based animation tool for
viewing network simulation traces and real world packet traces. It supports topology
layout, packet level animation, and various data inspection tools.

ns-2 is the second major iteration of a discrete-event network simulation
platform programmed in C++ and Object Tcl (OTcl).. ns-2 is a major architectural
change from ns-1-- the simulator became entirely based on the blend of OTcl and
C+,

5.1.2 Functionality

Ns-allinone is a package which contains equired components and some
optional components used in running ns. The package contains an "install" script to
automatically configure, compile and install these components. After downloading,
run the install script. If you haven't installed ns before and want to quickly try ns out,
ns-allinone may be easier than getting all the pieces by hand.

Currently the package contains:

Tcl release 8.4.11 (required component).

Tk release 8.4.11 (required component).

Otcl release 1.11 (required component).

TclCL release 1.17 (required component).

Ns release 2.29 (required component).

Nam release 1.11 (optional component).

Xgraph version 12 (optional component).

CWeb version 3.4g (optional component).

SGB version 1.0 (optional component, builds sgblib for all UNIX type platforms).
Gt-itm gt-itm and sgb2ns 1.1 (optional component).

Zl1ib version 1.2.3 (optional, but required should Nam be used).
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Currently, ns-allinone works on UNIX systems and under Cygwin for
Windows 9x/2000/XP .The current release 2.29; released Oct 22, 2005 can be

downloaded from [50]:
http://prdownloads.sourceforge.net/nsnam/ns-allinone-2.29.2 tar.gz?download

5.2 UCBT
5.2.1. Introduction

UCBT (stands for University of Cincinnati - Bluetooth) is an ns-2 based
Bluetooth network module which simulates the Bluetooth network operations in great
details. Most specifications at Baseband and above like LMP, L2CAP, BNEP have
been simulated in UCBT, including frequency hopping scheme, device discovery,
connection set up, Hold, Sniff and Park modes management, role switch and multi-
slot packet type negotiation, SCO voice connection, etc. There is a provision to
constitute a cluster of Bluetooth devices and such formation with up to 8 Bluetooth
devices is known as a piconet. It also allows a number of piconets to be connected
together using "bridge nodes” and such a large network is usually referred to as a
scatternet.

UCBT is not the first ns-2 based Bluetooth simulator. BlueHoc developed at
IBM and its scatternet extension, Blueware at MIT, both pre-date UCBT. However,
with 28,000+ lines of C++ code:
1.UCBT is the most accurate, complete and up-to-date open-source Bluetooth
simulator.
2.1t adapts to the PAN profile with Bluetooth Network Encapsulation Protocol
(BNEP).
3.1t takes clock drift into account, which is very important for simulating
synchronization or scheduling protocols accurately, as difference devices will drift
apart in long period.
4.1t also includes the newly adopted Enhanced Data Rate (EDR) specification to
simulate new devices with 2 or 3 Mbps data rate.

One of its main contributions is that UCBT provides a flexible framework to
conduct Bluetooth scatternet research. A scatternet requires time sharing of some
common devices (bridges) among piconets. Coordination of the presence schedule of
bridge nodes in a large mesh scatternet is very challenging. UCBT provides multiple
bridge scheduling algorithms to enable scatternets to operate smoothly. Prototype
self-organized scatternets are being designed and simulated.

5.2.2. Functionality

As a Bluetooth module for ns-2, UCBT implements a full Bluetooth stack,
including Baseband, LMP, L2CAP, BNEP layers. It integrates with ns-2 well and
works out of box for recent ns-2 release, ns-2.28. UCBT closely follows spec 1.1 and
is partially updated to spec 2.0.
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Figure 5.1 Bluetooth stack

nlerforence queu:

Figure 5.2 UCBT Bluetooth Node

e Radio Channel/PHY: It is not modeled explicitly. It is modeled using a
configurable Loss model and Interpiconet interference detection model Baseband.

o Baseband modeling: It has a correct frequency hopping kernel which generates the
same sequence as illustrated on the Specs 1.1 (pp963-968). It handles multiple slots
packets. It handles SCO. It understands clock drift.

« LMP: Handles Link setup, Role Switch, Link Suspension (Hold, Sniff, and Park)
and Piconet Switch.

o L2CAP: Handles SAR and Protocol Multiplexing.
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o BNEP: Provides MAC interface to higher layer such as LL.

e SCO: SCO connections are handled by SCO-Agents, which bridge Baseband/LMP
and Applications.

» Mobility: Mobility is specified as the wlan node style. That is, let node 'setdest' at
specific time to change the direction and speed.

5.2.3 Interface & Implementation:

Bluetooth node is a normal ns node with different MAC/PHY. Currently I
view the entire Bluetooth as a new MAC in the ns system. Create a Bluetooth Node
using the following interface:

Setns_ [new Simulator)
$ns_ node-config -macType Mac/Bluetooth; # or Mac/BNEP

Set addr 1
Set node0 [$ns_ node $addr]

Set statetime 0.1
$ns_ at $statetime "$node0 on"

Most the control interfaces are located in BTNode::command () (bt-node.cc).
You should read that method to be familiar with all controls. You can also get a hint
about which variables are settable at runtime in file ns-btnode.tcl.

Bluetooth Node has the following exclusive components besides those
common to Node:

BNEP:
- MAC interface to upper protocol.

L2CAP:
- Maintains Channels
- mapping connection to L2cap channels
- Mapping Channels to Connection Handle. M: 1 mapping
-SAR

LMP:
- Maintains Bluetooth device information database -- should move up!!
- Maintains piconets
- Mapping Connection Handle to LMP Link (ACL/SCO). 1:1 mapping
- mapping Link to TxBuffer at Baseband

Base Band:
- Page/inquiry/scan, etc.
- Link Scheduler.
- Frequency hopping kernel.
- TxBuffers
- ARQ.
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Different from the specs requirement of TDD scheme, UCBT controls the
TDD by a schedule word at the Baseband. Say, at current clk, if looking up this word
return M, UCBT picks up a package at TxBuffer [M], and transmits it. Obviously,
this word can be used to implement easily what the specs says: we let the word return
valid TxBuffer slot at Master transmitting slot for the master and at slave transmitting
slot for the slave. This sched word is also useful for QoS mapping. Link scheduler is
implemented on the top of schedule word, because only tight link (like SCO) need to
schedule as specified by the word.

A non-qos ACL link is usually not specified by the word therefore can be
scheduled by the Link Scheduler. Another difference is, the master also have a CLK
controller, though normally set to CLKN.

Trace format is not fixed by now. It's interfaced by two set of commands:
trace-all-xxx and trace-me-xxx. The former has an effect on all BT devices, while the
latter only has an effect on the specific node.

Physical layer is not explicitly implemented; the bottom protocol stack is
baseband, which are interconnected so each baseband packet will be forwarded to all
other basebands.

Different LossMod to model packet loss can be specified, though there is only
the table driven module used by BlueHoc project is available. Package collision
between different piconets can be detected.

Currently, the baseband is fairly complete. Some minor things like clock
wrapping around is not modeled.Park/Unpark is not completed because it's quite
complex and less useful. Clock drifting is being implemented and should complete
SOO1.

Specl.2 features like interlaced scan is implemented. AFH is also in place in
baseband but work in LMP is needed. ESCO is not implemented at this moment.

Baseband (BB) can support 2 piconet parameters concurrently: an active
piconet and a possible SCO link of other piconet. This doesn't mean that BB has two
sets of transmitter. BB just switches between the 2 piconet parameter before and after
the SCO slots. This happens at the slot granularity. An lmp scheduled piconet switch
would be much less frequent.

LMP can handle as many sniffing, held, and parked piconets as you need, by
taking suitable scheduling scheme. Two HV3 SCO links from different piconets can
be supported at the same time. This is also the maximum capacity regarding 2 SCO
piconets, since CLK is not aligned.

SCO traffic is handled separated by SCO agents, which connect Application/
Traffic generator and LMP/Baseband. L2CAP doesn't handle SCO, as the specs
specified.
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6. Testing

System testing is an essential step for the development of a reliable and error-
free system. Testing is the process of executing a program with the explicit intention
of finding errors i.e., making the program fail and test cases are devised with the
purpose in mind. A test case is a set of data items that the system processes as normal
input. A successful test is the one that finds an error.

This chapter explains our test framework that enabled us to test early and
often. We continuously controlled our work in order to be able to provide good
quality of coding. Our test framework consists of three main parts. They are all
described in the next paragraphs.

The basic strategies that were used for testing were following

6.1 Structural (White Box) Testing

6.1.1 Why Structural Testing?

This type of testing can be done early in the project phase. It involves testing
of a single unit of software. In our case these units are our modules. The tests should
check all the important elements of the module. We were able to add all structural
tests to one unit so all the structural tests can be performed in a batch process (all tests
at the same time). This enabled us to run the batch often and regularly. The tests can
also be run after each small change in the code, so we always knew that our software
was still working in a consistent state. Structural testing is also called white box
testing because the exact kind of functions and code tested is known.

6.1.2 How We Implemented Structural Testing

Structural testing means running a test for each implemented function. We
decided to apply the extreme Programming paradigm “test driven development”. This
forced us to write down testing procedures first. After the test procedures were
implemented, we were able to start coding the actual problem. Test-driven
development helped us to: - First think about what the tested function really needs to
do. - Define the input and output data types and value ranges. - Be able to run a test
after having finished coding the function.

We wanted to go even a bit further. We first wrote down all the test functions
needed to test the whole TPSec implementation. This helped us thinking about the
whole programming structure of our end product. The test functions were added to
our main test routine. At first, all these test functions were just stubs, without any
implemented code. They were then implemented with a predefined interface, so that
they could easily be called from the main test routine. The test routine of a certain
module was responsible for the testing of the whole structure of the module.

The module test function needed to implement the following features:

- Implementation with a predefined interface and naming convention.

o Interface: int function(void)
o Name: modulename_test()

- When the test function is returned without an error, we can be sure that the

module is implemented properly and without bugs.
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- 1t is able to do many tests of the same function if required. Input data may

be random (i.e. for value range testing) or statically programmed.

- It is able to call many different functions of the module.

- The tests need to be reproducible.

- As long the test function is not implemented, it must print out that the

module / module test function has not yet been implemented.

When the module test functions were implemented according to these rules we
were able to run the module test function out of one main (executable) function. The
first time we ran the test funcfion we got a list of printed messages. Each line
corresponded to one module test function and it showed that the module had not yet
been implemented. Our goal for the end of the project was for each module test
function to print a line indicating that all tests were successful.

6.2 Functional (Black Box) Testing

6.2.1 Why Functional Testing?

The second step in our testing concept was functional testing. In this phase we
tested the functionality of our IPSec implementation. The reason why it is also called
black box testing is because we didn’t care how the tested functionality was
implemented and what functions are needed to implement this functionality. It was a
kind of abstraction: we just wanted to know whether certain functionality did its job
properly. This kind of test is not based on modules but on functionality. As an
example we wanted to know if an AH packet can be verified properly. In order to be
able to run such a test we needed functions of many modules (HASH-MAC, AH,
etc...).

Functional testing can always be started with small tests. The more modules
were implemented, the more functional tests could be done. The objective of the test
was to check whether the modules work properly with each other. The further the
project preceded the more complex the tests became. The last functional test was a
test that checked the whole function of our IPSec implementation. After having run
the functional test properly we expected to be able to run the implementation on the
desired hardware in the real world.

For functional testing we used similar rules that were needed for structural
testing. Failing functions need to print out the input, output and expected output data
in order for the error to be reproducible.

As wanted side-effect, each functional test performs many different tests on
the various involved modules.
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Figure 6.1 Normal dataflow and dataflow of functional tests.

6.2.2 How We Implemented Structural Testing

Since functional testing was implemented as the project proceeded, we did not
specify the structure of functional tests. Because functional testing demanded a lot of
memory for static test data, we were not able to make one executable. We split up the
functional tests into functional units.

There were two possible approaches: Top-Down and Bottom-Up tests (Figure
6.1).Both could be implemented. They were independent to each other and they tested
the functionality in different ways.

In our IPSec implementation there are two directions of data flow. One
direction is from the network device upwards the stack, until data reaches the
application. The other direction is downwards the stack, starting at a normal TCP or
UDP packet which gets encapsulated and injected into the Ethernet.

Top-Down Tests

Top-down starts at the top of the stack and goes down the whole stack. The
following is an example of what a top-down test could look like:

- Lets assume that there is a function called esp_encapsulate (char *data,
char *esp packet). This function creates an ESP packet out of some
user data (¢.g. TCP packet).

- We capture an IPSec stream from two communicating IPSec peers.
They use an already working IPSec implementation like FreeS/WAN
or JPSec tunnel. We know the keys and algorithms from the
configuration and we know the plain text data of the packet, because a
well-known sequence of packets has already been captured.

- We can now feed the esp_encapsulate () function with the known plain
text data. This could for example be the content of a small web page
packed into a TCP packet.
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- The function must now return an ESP packet looking equal or very
similar (maybe there are fields which may be different i.e. sequence
numbers, etc) to the original packet we captured from the IPSec
stream. With such a test we were able to ensure that the whole
functionality of generating an ESP packet was implemented properly.
Of course we still didn’t know whether it was possible to check if we
were able to verify and decapsulate an ESP packet. This was done in
the Bottom-Up tests. With such a test we can check a part of the
functionality of our implementation. Another test could have done the
same for AH packets.

Bottom-Up Tests

This test starts at the bottom of the stack. The last piece of software right
before the hardware is the network interface driver. A bottom-up test could look as
follows:

- From an IPSec stream we capture one or multiple [PSec packets.

- From the configuration we know all the parameters.

- We now feeds the appropriate IPSec function with a captured IPSec
packet through BNEP protocol.

- We can now see if our implementation is able to find the appropriate
SAD (Security Association Database) entry for this packet. We are
able to check if the implementation is able to find out if the packet
needs to be processed by IPSec or not.

6.3 Interoperability Testing

A useful implementation must be able to talk with other IPSec products.
Interoperability means that our implementation should be able to establish IPSec
tunnels with other peers in the network. First of all we analyzed different IPSec
products, which we could use for the interoperability tests. We had to choose a
product that is easily available and suits as a good reference. We had to take a product
that was already widely used and thus well tested. We soon focused on the following
IPSec implementations:

- IPSec_tunnel: a simple and free implementation for Linux

- FreeS/WAN: a free Linux IPSec implementation.

- Windows IPSec: on a Windows 2000 operating system.

- PGPNet: another free IPSec implementation for Windows and Mac
The next paragraph describes the products we looked at more closely.

6.3.1 Testing Environments

6.3.1.1 IPSec_tunnel for Linux

The IPSec_tunnel developed by Tobias Rainstorm [TRS] is an elegant,
minimal implementation of IPSec tunnel functionality for the Linux 2.4 kernel series.
It is designed as kernel module and the IPSec_tunnel module itself does not require
any kernel patching. The only requirement is the presence of the Crypto API code in
the kernel source (some kernels are shipped with it already; others require the addition
of strong cryptography by applying the International Kernel Patch). After successfully
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having loaded the IPSec_tunnel module, an unconfigured network device “IPSec0”
becomes available. The “IPSecadm” utility is used to create, list and modify SA
records for IPSec tunnel. Selecting a previously defined Security Association to
create a tunnel is the final step in configuring IPSec tunnel. The standard Linux
network tools “ifconfig” and “route” can be used to establish a route through the
IPSec0 device. Since IPSec_tunnel relies on the encryption and digest functionality
provided by Crypto API (Figure 6.2), all common algorithms are supported:

Ciphers B | Digests
3DES, DES, AES, Blowfish, Twofish, Casts, |MD5, RIPEDEM160, SHA1, SHA256,
DFC, IDEA, Mars, RCS, RC6, Serpent, null | SHA384, SHAS12

Figure 6.2 Common Algorithms

The supported protocols of IPSec_tunnel are ESP and ESP with
authentication. Support for dynamic configuration is NOT available.

As long as manual keying is supported by the other party, IPSec_tunnel looks
promising regarding to interoperability. There are already successful interactions with
FreeS/WAN and Open BSD documented.

6.3.1.2 FreeS/ WAN

FreeS/WAN was interesting for us from the beginning because it is widely
used in the Linux community. There is a lot of documentation available and in case of
problems or additional interest we would be able to have a look at the source code,
which of course is freely available. FreeS/WAN also supports many features, which
we wanted to, implement in our IPSec library.

With FreeS/WAN we would be able to perform the following tests:

- AH tunnels.

- ESP tunnels.

- Encryption with 3DES.

- Authentication with MD5.
- Authentication with SHAI.
- Manual Keying.

Manual keying was a very important feature for us because we were not yet
sure whether we would be able to implement automatic keying. Besides this, manual
keying simplifies debugging because it’s independent from complicated key
generation and negotiation.

By default, FreeS/WAN is a very restrictive implementation and so the
developers do not like to implement features that decrease the security. The following
features can only be added using patches:

- Single DES encryption
- Null encryption

We did not want to lose time with patching the FreeS/WAN source and
recompilation of kernels. The supported features were rich enough to provide a good
test environment. FreeS/WAN also provides good debugging facilities. This helped us
to analyze problems and observe what happened in the IPSec kernel. Unfortunately,
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documentation is poor and bad structured so that getting starting with FreeS/WAN
turned out to be a time consuming task.

6.3.1.3 Windows 2000

We also had a look at the Windows IPSec implementation. Of course
Windows would be a spectacular testing environment because of its wide spreading.
Windows 2000 and Windows XP have built-in IPSec support. Soon we found out that
manual keying is not a possible configuration. The advantages of Windows IPSec
would be: - Support of Null encryption {good for debugging) - Support of single DES
encryption (good for performance) Because we were not able to find out whether and
how manual keying can be done with windows, we had to omit this implementation
for our tests.

6.3.1.4 PGPnet

PGPnet is an easy to install and configure VPN software for Windows and
Macintosh computers. It implements the IPSec and IKE protocols and supports
OpenPGP keys for authentication in addition to X.509. The tested version 7.0.3
cannot handle manual keying and therefore cannot be used to test the simple IPSec
configuration.

6.3.2 Security Tests

This section describes how the security of our IPSec implementation can be
tested. Implementing according to the standard guaranties certain security features,
but nothing assures that these features really work and that coding was done properly.
With the intention of proving good security in our implementation, certain attacks to
our implementation and its results are discussed and explained below.

Not all security features can be tested easily. For example, we were not able to
prove the security of ESP encryption. The user of our IPSec system has no other
choice but to trust the DES standard and carefully inspect its implementation.

6.3.2.1 Packet was altered during transmission

Scenario: A bad guy may want to modify the content of some network
packets and somehow manages to alter the content, let's say of a HTTP transmission.
If the packet was authenticated, he will not be able to recalculate the proper ICV
because he doesn’t know the required secret key to update the ICV in the packet.
Proper IPSec processing: After the packet has entered the IPSec system it is
processed by either the AH or ESP module. When authentication is enabled (AH or
ESP with HMAC), IPSec recalculates the ICV using the secret authentication key.
The recalculated value will not match the one stored in the packet and therefore the
packet will be discarded. Verification of this threat: If a packet with some changed
bits either in the packet itself or in the ICV value is injected into an IPSec stream our
implementation will discard the packet with the following message:
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ERR ipsac_sh_check: -2 AN ICV does not match

ERE ipsec_ah check: -2 ESP ICV doea not match

6.3.2.2 Non-IPSec packet, which should be one

Scenario: A bad guy may try to send non-IPSec packets to our JPSec enabled
host. He may hope that a non-[PSec packet (which should be one according to the
SPD) will reach the IP stack without any intervention.

Proper IPSec processing: When a clear text packet enters the system, it is
checked against the SPD. If the policy says APPLY, the packet will be discarded
(because the packet should be encrypted and IPSec decapsulation can’t be applied to
non-IPSec traffic). The goal of this test is to prevent that non-IPSec traffic bypasses
the IPSec engine as requested by the RFC. Verification of this threat: The incoming
packet will fail on the above-mentioned SPD lookup. The packet will be discarded
with the following message:

AUD ipseadev input:  3: POLITY APPLY: got non-IPsec packet which should be one

6.3.2.3 Packets are resent

Scenario: A bad guy may want to resend a certain [PSec packet.

Proper IPSec processing: This threat can only be caught if authentication is
activated. This is the case when AH or ESP with authentication is used. Otherwise,
the packet passes IPSec processing without any problems. In case of activated
authentication, the anti-replay check will find out that the packet has already been
sent, because the packet’s bit in the bit-mask is already set to 1. Verification of this
threat: It is necessary to resend a packet that has already been processed and thereby
verify that authentication is turned on. Our [PSec implementation will discard this
packet with the following message:

AUD ipsec_ah_check 3 7 : packet rejectad by anti-replay check
or
AUD ipsac_egp_decapsulate : 7 : packet rejected by anti-replay check

6.3.2.4 Packets that are out of the window

Scenario: A bad guy may want to disturb IPSec processing by sending IPSec
packets with a high sequence number. This could lead the anti-replay mechanism to
shift the anti-replay window in such a way, that the normal IPSec packets seem to
arrive out of the window (their sequence number would be too low to be accepted).

Proper IPSec processing: The anti-replay check is only performed when
authentication is turned on. This is the case when AH or ESP with an authentication
algorithm is used. Before the packet is authenticated, a preliminary check of the
sequence number is done to avoid wasting CPU time for authenticating packets that
are obviously out of sequence. Only if the sequence number is valid (not yet obvious
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since it is within the window), the packet is passed to the authentication function. |
When authentication has passed, it will again be checked for validity of the sequence |
number before the packet is marked as seen and anti-replay window is shifted. |
If the sequence number was altered, the integrity check would fail and the
packet would be discarded. :
Verification of this threat: If a forged sequence number is injected into an
IPSec stream, our [PSec implementation will discard this packet with the following
message:

AUD ipsec_ah_check : 7 1 packet rejected Ly anti-replay update
or

AUD ipsec_esp_decapsulate : 7 : packet rejected by anti-replay update

0.3.2.5 Packets with a bad SPI

Scenario: A bad guy may want to send IPSec packets with a forged SPI. If he
monitors the IPSec traffic of a certain host, he is able to set a packet with a valid
sequence number and a valid SPI, which could lead the IPSec system to properly
process the packet. The correct sequence number is only required when authentication
is activated. For example, the sequence number is not tested in the case of a ESP
without authentication.

Proper IPSec processing: Such an attack would be possible if only an SA
lookup was performed on incoming IPSec packets. The SA lookup uses only the outer
destination address, the IPSec protocol and the SPI to determine the appropriate SA.
However, the standard requires that after an inbound IPSec packet has been processed
properly, an SPD lookup must be performed. A successful SPD lookup gives back a
security policy with a pointer to the SA describing how the packet must be processed.
To prevent such attacks, the SA pointer from the policy must now point to the same
SA that was used to process the packet.

" Verification of this threat: Inject a forged IPSec packet into an “ESP 3DES
only” packet stream. The inner IP packet’s fields may be modified in such a way, that
there is no matching entry in the SPD. Our [PSec implementation discards such a
packet with the following message:

AUD dpsecdev_input: 2: FOLICY_APPLY: got nom-IPsex packet which should be one

6.4 Specification Testing

Even if the code testing is performed exclusively, it doesn’t provide grantee
against the program failure. Code testing doesn’t answer whether the code meets the
agreed specification document. It doesn’t also determine whether all aspects of the
design are implemented.

Therefore, examining specifications stating what program should do and how
it should behave under various conditions performs specification testing. Test cases
are developed to test the range of values expected including both valid and invalid
data. It helps in finding discrepancies between the system and its original objective.
During these testing phases, all efforts were made to remove programming bugs and
minor design faults.

IPSec Based Bluetooth Security Architecture 96




Chapter 6 T estirgg

6.5 Regression Testing

In regression testing the software was testing against the boundary condition.
Various input fields were tested against abnormal values and it was tested that the
software does not behave abnormally at any time.

6.6 Acceptance Testing

In acceptance testing the software was tested for its completeness that it is
ready. Normally the quality assurance department performs the acceptance testing that
the software is ready and can be exported.

6.7 Assertion Testing

In assertion testing the software is tested against the possible assertions.
Assertions are used to check the program and various locations that whether the state
of the program at a particular point is the same as expected or not.

6.8 Unit Testing

In unit testing we checked that all the individual components were working
properly. Before integration of the entire components unit testing is essential because
it gives a confidence that all the components individually are working fine and ready
to be integrated with other ones.

6.9 System Testing

When all the units were working properly and unit testing was performed then
comes the time for system testing where we checked all the integrated components as
a whole and looked for possible discrepancies, which could have arisen after the
integration.

6.10 System Evaluation

The objectives of the system evaluation are to determine whether the desired
objectives have been accomplished or not. Determining the merits and demerits of the
proposed system over the existing system is also covered in the system evaluation.
This is concerned with the detailed study of the developed system, from
implementation point of view. At the end, some suggestions for the improvements of
the system are coded.
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7. Performance

Since there are many security protocols in terms of algorithms in IPSec, we
had to choose appropriate algorithms. For this purpose we took into account several
aspects:

e Existing documentation of simulations that expressed the time to compute the
cryptographic functions involved in the algorithm.

e Low computational time of cryptographic functions.
Algorithms that had proven enough reliability.

e Algorithms that comply with the basic requirements of the protocols.

For the reasons stated above, we decided on:

e HMAC — MDS5 and HMAC - SHA1 to provide origin authentication and
integrity for IP packets. MDS5 should be preferred because its performance is
much better than that of SHAI.

e In ESP implementation we support both encryption and authentication.
Encryption is done by the widely used 3DES algorithm, which is applied in
CBC mode. Pure DES is also implemented. For authentication we use HASH-
MAC MD5.

7.1 Features

Our implementation is still a prototype but all the features that were requested
for our work are quite well tested. We created test cases for almost each feature.
Several functional tests were run over night to detect memory leaks. The nightly tests
usually processed between thirty to sixty thousand packets without crashing and
failing.

Such tests showed with reasonable certainty that features listed below are
implemented in a quite stable manner. Utilization in a busy real-life network
environment would probably show some not yet known shortcomings that were not
apparent up to now due to the clean lab environment.

Our implementation has the following features:

- Dynamic Security Policy management.

- Dynamic Security Association management.

- AH protocol.

- ESP protocol.

- Support for AH with HMAC-MDS5 and HMAC-SHA1

- Support for ESP with DES-HMAC-MDS and 3DES-HMAC-MD5
- Support for tunnel mode

- Support for manual keying
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7.2 Analysis & Results

gm)lfations of the implementation described previously were performed,
using hand-off rate of 60 seconds. The scenario was simulated with a constant FTP
source on top of TCP with a packet size of 2000 bytes between two nodes (nodeQ and

nodel).

No IPSec HMAC HMAC DES 3DES
MD5 SHA1 HMAC- HMAC-
MD5 MD5
Simulation Start Time 1.3 1.4 1.4 1.5 1.6
Simulation End Time 60.08 60.07 59.66 59.91 60.04
Simulation length(Sec) 58.78 58.62 58.20 58.37 58.37
No of Generated Packets 4500 3501 2443 658 237
No of Sent Packets 4500 3501 2443 658 237
No of Lost Packets 2260 1753 1222 330 119
No of Received Packets 2240 1648 1217 328 118
Avg. Packet Size 1051 1066 1066 1074 1069
No of sent Bytes 4698000 3700136 2578664 701480 251668

Table 7.1 Retrieved Initial results

We measured the cumulative sum of packets in each of the cases, as well as
the throughput, and end 2 end delay imposed by the security protocols: IPSec.
Not much comment is needed since the table can easily be interpreted. In some
aspects, the results were as expected. The relative difference between the different

cryptographic algorithms, correspond to the performance test, which were done.

The results from this chapter show, that depending on the chosen

cryptography, various types of security can be added with various amounts of cost.

If only authentication and integrity is required, IPSec packets can be processed
in quite a short time. Using strong encryption, a noticeable performance loss must be

accepted.
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Figure 7.1, depicts the increment of the TCP packets sequence in different
scenarios (No IPSec), MD5 , SHA1 , DES-MDS5 and 3DES-MDS5), The iilustrated
scenarios showed that number of packets are decreasing in authentication and
encryption compared to Bluetooth with no IPSec. As it is seen HMAC - MD5
perform better than HMAC — SHA1 while sending and receiving packets. As well as
DES-MDS performs better than 3DES-MDS5.
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Figure 7.1(a) Performance of Cumulative sum of numbers of sent packets.
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Figure 7.1(b) Performance of Cumulative sum of numbers of received packets.
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The throughput results are shown in Fig 7.2. There is a significant difference

between the simulated scenarios. Contrary to our expectations, the throughput in
Bluetooth environment is driven by the effect of the erratic behavior of delay imposed

by the encryption and decryption of the data and the erratic behavior of the Bluetooth

wireless link.
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As we can see in Fig 7.2, the throughput in HMAC —~ MD5 and HMAC -
SHA1 is not the same due to better performance of HMAC -MDS5. For the
encryption, DES-MDS5 has better throughput than 3DES-MD5.
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The following Figure 7.4 illustrates a comparison of Throughputs vs. average
simulation End2End delay. There is a big and noticed difference of end 2 end delays
while sending the bits, and rise in the throughput. While in receiving bits, both factors

affect the bits transmission.
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x 10°
T T T ¥ ' T — :
" [~ Bluelooh
L P e MDS
) o e SHA
- ~+— DESMD5
2051 T -+~ 3DES-MD5 H
7 N
7 7 —
3 "
Z 195 7 ’
] "
2O T . o |
g 1. /
§est! ] .
© f
2] N
§ 18f |
i i B
17151 ’
17 ]
1.555,&‘ ]
1 1 { L L

] f Il
2000 4000 6000 8000 10000 12000
Throughput of receiving bits [Bits/TiL]

1
14000

16000 18000

Figure 7.4(b) Throughputs of receiving bits vs. average simulation End2End delay

1PSec Based Bluetooth Security Architecture

104



Chapter 7 Ferformance

—e— bluetooth
—e— MD5

i GH, A1l

—o— DES-MD5
—o— 3DES-MD5

7.3 Conclusion

This research proposed a new Bluetooth security scheme, which allows ad-hoc
(PAN) based on Bluetooth technology to communicate with other devices in full
secure channel includes authentication and encryption, unlike for the present schemes
with weak security.

IPSec protocols over Bluetooth do not impose a significant penalty. This is
because the main factor in the reduction of the performance is due to the delay
imposed by the encryption and decryption of the data and the erratic behavior of the
wireless link. In addition, the throughput is reduced by almost 25% for authentication
and 65% for encryption compared with the cases where IPSec was not used.
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A User Manual
IPSec Based Bluetooth Security Architecture has been designed keeping in

view user’s interaction and ease in use. All interfaces are simple and easy to use. This
user manual facilitates the user to understand different forms and interfaces. The use

of forms and different options are described in details in this manual.

Steps to IPSec over Bluetooth

The following document is a step by step guide to using the IPSec over
Bluetooth system. This is a step by step guide for a user assumed to have no technical
experience other that an assumed basic familiarity with desktop computing.

The steps begin on bare PC's and cumulate to a full IPSec over Bluetooth
between 2+ users. If you have a NS-2 and UCBT installed, skip to step A-4, otherwise

proceed as follows.
A-1 Check out hardware

As far as hardware goes the minimum system requirements are recommended
at the end of the performance testing and are as follows...
Minimum recommended system requirements:
* 500 MHz processor.
* 128mb ram.
* Bluetooth Device.
= Monitor.

= Keyboard and Mouse.

A-2 Download and install NS-2

This part will show you how to install NS2 on Windows platform (windows
2000 or windows XP). The NS2 version for this document is ns-2.29.

Cygwin

I. Download the cygwin.rar from http://140.116.72.80/~smallko/ns2/cygwin.rar
2. Decompress the cygwin.rar
3. Click the setup.exe to install cygwin.
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it uidlé Yo vough ths installation st Updatng
Enviroment and a plethaia o GNU packages,

2000, 2001 R i
I/éduwcé:.lé_ Leom/cywm/ '

T'-gza@,}.j BA ;

Wty Anti¥inve AZyY -+

Figure A.1 Install cygwin

4, Because the language of operating system is Traditional Chinese. The text of
button is shown in Chinese. But you don¢t need to worry about this. I think it is

shown in English in your computer. Just click "Next".

~ Choase A Download Source
Choose whether'to install or download from the internet, or:install from files in

a local directory;

% Install from Internet
* Download from Intemet

T |nstall from Local Directory

<t—#@| T-#$w> |

Figure A.2 Choose a downldad source
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5. Then choose "Install from Local Directory".

o1 downlaad from the internet;, orinstall from fifes in

™ Install from Intemet

* Download frqﬁ'lnterﬁel .

€ finstail from Local Directon)

JEoe— - s -

<t-#@ | [F=

> |

Figure A.3 Install from Local Directory

6. Click "Next" and keep the settings as they are.

e e Ve A e ar s e e e

ygwin Setnp ~ Chooss Installation Directory

you want to install Chgwin. Also choose afew E’

R oot Directory g

CAcygwin Browse... - l

-~ |fhstall For

~Defaulk Text File Type
# AllUsers " DOS
& JustMe & Unix

e | [FEms] _ wm |

Figure A.4 Select Root Install Directofy
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7. Click "Next".

|

Figure A.5 Select local Package Directory

8. Click "Browse" to choose where the software is. (choose
§ftp%3a%2{%2fftp.nctu.edu.tw2f Windows%2fcygwine ™)
9. Click "OK".

ifistallatio fles it &

' diegt ant Setup lo store the ifstallation’
dowrloads. . T he'-.d|r§ctory wil be created if it.does not.alieadp exist,

ackage Directory

]l:;:\l)_;ﬁcuméms;anﬂ Seltingshsmalko\st i \cygwin', Bowse:. |

<20 | [T-20:

R |

Figure A.6 Select local Package Directory
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10. Click "Next" and you will see the figure shown as follows. In this window, the
cygwin setup program let you choose what software you want to install.

g

kages

. € Keep { Prev ©Lug C Exp View| Categoy
fCogory “[Comr... | Hew ’ ! Bi...|'S.. | Pothege ]
+ Al £¥ Defanlt

+ Base £¥ Default

+ Database £ Default

+ Devel & Default

+ Doc & Default

+ Games & Default

+ Graphics £ Default

+ Interpreters £ Defoult

+ Libs £ Defanlt

=@ [F-B

Figure A.7 Select Packages

11. Click "View" first to make the word «§Category «<§change to "Full".

Select Packages
Select packages to install

CKeep © Prev & Cum € Exp

{Cur.. ‘New - [Bi..!S.. | Catgories | Package
) £20040127-1 nja  DBase, Shellks ath: A Boumne Shell (bix.
0826-1 o Base base-files: & set of impor
o111 nfo  Base base-passwd: A scriptio ¢
£2.05b-16 nja  Base, Shells bash: The GNU Boume 2
O Skip e nja Devel binutils: The GNU assem’
£102-5 wa  Utis bzip2: A high-quality blc
£rSkip ne  nje Utis clear: Clears the screen
£ Skip o nfa Libs ervpt: Encryption/Decryy
£ Skip rfa  na  Devel, Libs cygipe: IPC support for ¢V
‘ .

3@ F-sw-| we |

Figure A.8 Changing Category

12. XFree86-base, XFree86-bin, XFree86-prog, XFree86-lib, XFree86-etc, make,
patch, perl, gee, gee-g++, gawk, gnuplot, tar and gzip must be chosen. For example, if
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I want to install XFree-86 base (upper figure), click the "Skip" of "New" column. The
"Skip" will be changed to "4.3.0-1".

O Keep CPrev ©Qu € Ew

TBi.|5.. | Cabgores | Parkags | &

ya e Libs Ww3Zapt: Win3Z APT heas
K] wo Base which: Displays where a :
wa  nja XFreeB6 KFree86-base: Cygwin/¥
na  nja ¥PFree86 XFree86-bin: Cygwinf/K}
na  nja XFreeB6 XFree86-etc: Cygwin/{F
o no  XFree86 KFreeB6-fenc: Cygwin-¥
o  nja XFreeB6 HFree86-fats: Cygwin-X
no  njo XFreeB6 X Free86-lib; Cygwin/XF.
na  nje HFreeB6

X Free86-lib-compat: Cy;

<t—2®| T

Bl

Figure A.9 Select Packages to Install

Select Packages”
Select packagesto install

{Cur. (New 1 Bi. | 8. | Categories | Packsge - -

: A¥SKp Wa  ne Libs w32ap1: W32 AFT head
&15-2 nfa  Base which: Displays where a:
§430-1 o XFreeS6 XFreeS6-base: Cygwin/X
£2430-8 nfa  XFree86 XFree86-bin: Cygwin/Xt
4306 K e XFreets XFree86-etc: Cygwin/XF
£420-3 nfa  XFree86 XFreeB6-fenc: Cygwin-¥
£&420-3 nfa  XFreeB86 XFree86-fnts: Cygwin-X
£r4.30-1 na  XFree06 XFree86-lih: Cygwin/K
£&4.30-2 o XFree8G XFree86-lib-compat: Cy; s

RuiH

<@ | [T=5w-]

Figure A.10 Select Packages to Install

13. Click "Next". Please be patient. It may take a long time to finish the installation.
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- Progress.

U This pagé'di'splays;ﬂffé progress of the download or installation. &

Checking MD5 for _update-info-dir-00226:1

: "iEfOQ[e_S_S'i'

Figure A.11 Installation Progress

14. When setup is done, it will be shown as following figure. Click "Finish".

L Tell se_tub.if pou want itto create a fevricons for convenient access to the
Cygwin environmient.

¥ Create icon on Desktop

- ™ Addicon to Start Menu.

Figure A.12 Create Icons

15. Click "OK" to finish the cygwin setup program.
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NS2 setup
1. Click Cygwin icon on the desktop.

2. For the first time execution, it will generate some environment parameter setting
files. In this example, smallko is my login name to windows system. Therefore, the
cygwin will create a folder named «§smallko<” under home directory. (The actual path
for smallko folder is: c:\cygwin\home\smallko) It should be noticed that the login
name can not have any space in your name. For example, «§A B<" may cause errors
when you install NS2.

3. Download NS-2 fromhttp://prdownloads.sourceforge.net/nsnany/ns-ailinone-
2.29.2 tar.pz?download.

4, Decompress the ns-allinone-2.29.rar.
5. Move this folder under c:\cygwin\home\smallko. (P.S. smallko is my login name)
6. Open a cygwin window

7. Change the path to ns-allinone-2.29/ns-2.29

Figure A.13 Changing Path

8. Run the command "./configure; make clean; make"
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Figure A.14 Configure NS2
9. Please be patient. It will take some time to finish the compilation.

10. When it is done, it should look like as follows.

Figure A.15 Compilation Complete

11. To make sure that you have successfully installed myNS2, you need to check
whether you can find ns.exe under ns-allinone-2.29/ns-2.29 :
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Figure A.16 Checking NS.exe

12. Copy the .bashrc to c:/cygwin/home/smallko
13. Run the example script to test whether you have setup the path or not.

Helitonal Moy
exanple2,tcl

Copyrfght (3] 1981 1994 ! gents of.the Unlve:slly ot Calfomla
Copyright'(c) 19371999 University of Stuthern Califomia; J
Copynght () zonmzooz USO‘Infonnahnn “Scietces Insulu\e

’

Figure A.17 Nam window
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14. If you sec the error message like «§ns command not found<”, no worry about this.
Sometimes even you have setup the path, but it does not work. You can copy the
ns.exe (nam.exe) to the same place as the simulation script. Run the simulation
with"./ns.exe" and it will be ok.

Testing

1. To initial graphical mode. (Type startxwin.bat).

2. Run the example tcl script. (Change to ~/ns-allinone-2.28/ns-2.28/ns-
tutorial/examples. Then run the command "ns example2.tcl™)

3. If you can see the above figure, congratulations. You have successfully install
cygwin + ns-2.28 under windows platform.

A—3‘ Download and Install UCBT

1. Get ns-allinone-2.29 tar.gz
ftp://ftp.isi.edu/nsnam/ns-allinone-2.29.tar.gz

2. Get ucbt-xx.tgz
http://www.ececs.uc.edu/~cdme/ucbt/src

3. tar zxvf ns-allinone-2.29 tar.gz

4. cd ns-allinone-2.29/ns-2.29/
tar zxvi../../ucbt-xx.tgz

Assume ucbt-xx.tgz and ns-allinone-2.29.tar.gz is in the same directory.
5. c¢d ucbt-xx/

. /install-bt
Or

. /install-bt -d # enable debug
Or

. /install-bt -t # install tcl-debug

ucbt-xx will be linked as Bluetooth.

6. If you want debug enabled, while the debug option is not enable in the above step,
cd patch/ns-2.29

Jenable-ns-debug.sh

7. Try some tests:
cd test/
../../Ins test.tcl > test.out

8. To generate mobile scenario:
cd tools && make
Then you can use the modified setdest program.

9. To recompile if you make some changes to the source code:
make # in bluetooth/
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A-4 Running IPSec over Bluetooth

1) cd ns-allinone-2.2%/ns-2.29/
2) cd ucbt-0.9.9.2
3) cd project
4) The following Files will be present:
a) Bluetooth ‘
b) MD3
¢) SHAI
d) DES-MDS5
e) 3DES-MDS
5) Torun TCL file : ns file-name.tcl > file-name.out

—-== MSCrids 045F'tart Y

Pagejt —e;F1'295112 2072 i

0 2400130](49008/20 00)J0T0274(15202740,723200:06) ¥d: Qg 0TO0 R e 10T00T0 0 010500
79714"7"' (1594230/20*00) 0‘882{(83??181'00.’?23200 OO}wd 0152 0152? OTOOTU 00020
1879714475 (1594295/20700) 01882 (837718T00/?23200100) ds 0152 015251 0700 0700 0700,

.0 2400130 (48006/20700) 50 %027 4(15202 % 40/?23200 %0} 07

gmuth@ajsa+ &
?

e e e T vt Mt

Figure A.18 Running TCL & Result

6) To run NAM file: nam file-name.nam
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Ale Views &nal{léis»‘l ) “ " bluetoothnam
U erre | s20436s | Stepi20ms oo
¢ - ' S AT e
Byl
] o

i {\] ) Cd

Figure A.20 Receiving of Data
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B Classes Implemented for IPSec Based Bluetooth Security Architecture

We have divided our work into following main modules

B-1Network Simulator NS-2
Class TCP

This class is already implemented in NS-2 simulator; it was used and preferred as the
TCP/IP stack which IPSec will be written over it.
TCP calss can be foud in the path.\...\...\ns-allinone-2.29\ns-2.29%\tcp

TCL class

set ns [new Simulator]
set tf [open tcp.tr w]
$ns trace-all $tf

set nf [open tcp.nam w]
$ns namtrace-all-wireless $nf 7 7

Simulator set MacTrace ON
Simulator set RouterTrace ON

$ns node-config -macType Mac/BNEP

set node(0) [$ns node 0]
set node(1) [$ns node 1]

$node(0) set-statist 10 30 |
$node(1) set-statist 10 30 1

$node(0) rt AODV
$node(1) rt AODV

$node(0) LossMod BlueHoc
$node(0) trace-all-NULL on
$node(0) trace-all-POLL on

$ns at 0.0002 "$node(0) on"
$ns at 0.0005 "$node(1) on"

set tcp0 [new Agent/TCP]

$ns attach-agent $node(0) $tcp0
set ftp0 [new Application/FTP]
$1ip0 attach-agent $tcp0
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set null0 [new Agent/TCPSink]
$ns attach-agent $node(1) $null0

$tcp0 set packetSize 2000
$ns connect $tcp0 $null0

set nscmd "$ftp0 start"”

[$node(1) set 12cap_] set ifq_limit_ 30
[$node(0) set 12cap ] set ifq_limit_40

set ifq_ [new Queue/DropTail]
$ifq_ set limit_ 20

$ns at 0.01 "$node(0) make-bnep-connection $node(1) DHS DH3 noqos $ifq
$nscmd”

$ns at 30.1 "finish"

proc finish {} {
global node ns nf tf
$node(0) print-all-stat
$node(1) print-all-stat
$close nf
exit 0

}

$ns run

B-2 IPSec

There needed to be a mechanism, which allowed us to add IPsec functionality to TCP/IP
stack

The IPsec class is the central part, which does the whole standard conform processing of
the incoming and outgoing IP traffic. It uses a set of databases (SPD and SAD) to
determine the flow of the IP packets. The main processing is then done in the AH and
ESP module.

A small cryptographic library contains all the functionality used to encrypt, decrypt or to
authenticate the packets.

Class IPSec

#include "ipsec/debug.h"
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#include "ipsec/ipsec.h”
#include "ipsec/util.h"
#include "ipsec/sa.h"
#include "ipsec/ah.h"
#include "ipsec/esp.h"

JH*

* [Psec input processing

*

* This function is called by the before BNEP and after TCP/IP when a packet arrives
having AH or ESP in the

* protocol field. A SA lookup gets the appropriate SA which is then passed to the packet
processing

* funciton ipsec_ah_check() or ipsec_esp_decapsulate(). After successfully processing
an [Psec packet

* an check together with an SPD lookup verifies if the packet was processed acording
the right SA.

*

* @param packet pointer used to access the intercepted original packet
* @param packet_size length of the intercepted packet
* @param payload_offset pointer used to return offset of the new IP packet relative to
original packet pointer
* @param payload_size pointer used to return total size of the new IP packet
* @param databases  Collection of all security policy databases for the active IPsec
device
* @return int return status code
*/
int ipsec_input(unsigned char *packet, int packet_size,

int *payload_offset, int *payload_size,

db_set netif *databases)

{ .

int ret_val =[PSEC_STATUS NOT _INITIALIZED; /* by default, the
return value is undefined */

intdummy = packet_size; /* dummy
operation to avoid compiler warnings */

sad_entry *sa ;

spd_entry *spd ;

ipsec_ip_header *ip;

ipsec_ip_header *inner_ip ;

_u32 spi ;

IPSEC_LOG_TRC(IPSEC_TRACE_ENTER,
"ipsec_input",
("*packet=%p, packet_size=%d, len=%u,
*payload_offset=%d, *payload_size=%d databases=%p",
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(void *)packet, packet_size, (int)*payload_offset,
(int)*payload_size, (void *)databases)

);
[PSEC_DUMP_BUFFER(" INBOUND ESP or AH:", packet, 0, packet_size);

ip = (ipsec_ip_header*)packet ;
spi = ipsec_sad_get_spi(ip) ;
sa = ipsec_sad_lookup(ip->dest, ip->protocol, spi, &databases->inbound_sad) ;

if(sa == NULL)

{
IPSEC_LOG_AUD("ipsec_input", IPSEC_AUDIT FAILURE, ("no
matching SA found")) ;
IPSEC_LOG_TRC(IPSEC_TRACE_RETURN, "ipsec_input", ("return =
%d", IPSEC_STATUS_FAILURE));
return [IPSEC_STATUS FAILURE;
}

if(sa->mode != [PSEC_TUNNEL)

{
IPSEC_LOG_ERR("ipsec_input", IPSEC_STATUS FAILURE,
("unsupported transmission mode (only IPSEC_TUNNEL is supported)") );
IPSEC_LOG_TRC(IPSEC_TRACE_RETURN, "ipsec_input", ("return =
%d", IPSEC_STATUS FAILURE));
return IPSEC_STATUS_FAILURE;
}

if(sa->protocol == IPSEC_PROTO_AH)
{
ret_val = ipsec_ah_check((ipsec_ip_header *)packet, payload_offset,
payload_size, sa); ;
if(ret_val !=IPSEC_STATUS_SUCCESS)
{
IPSEC_LOG_ERR("ipsec_input", ret_val, ("ah_packet_check()
failed") ); .
IPSEC_LOG_TRC(IPSEC TRACE _RETURN, "ipsec_input",
("ret_val=%d", ret_val) );
return ret_val,
}

} else if (sa->protocol == IPSEC_PROTO_ESP)
{
A ret_val = ipsec_esp_decapsulate((ipsec_ip _header *)packet,
payload_offset, payload_size, sa);
if(ret_val !'=IPSEC_STATUS_SUCCESS)
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{
IPSEC_LOG_ERR("ipsec_input", ret_val,
("ipsec_esp_decapsulate() failed") );
IPSEC_LOG_TRC(IPSEC_TRACE RETURN, "ipsec_input",
("ret_val=%d", ret_val) );
return ret_val;

}

} else
{
IPSEC_LOG_ERR("ipsec_input", IPSEC_STATUS_ FAILURE, ("invalid
protocol from SA"));
IPSEC_LOG_TRC(IPSEC_TRACE_RETURN, "ipsec_input",
("ret_val=%d", IPSEC_STATUS_FAILURE));
return IPSEC_STATUS_FAILURE;

}
inner_ip = (ipsec_ip_header *)(((unsigned char *)ip) + *payload_offset) ;

spd = ipsec_spd_lookup(inner_ip, &databases->inbound_spd) ;
if(spd ==NULL)

{
IPSEC_LOG_AUD("ipsec_input", IPSEC_AUDIT FAILURE, ("no
matching SPD found")) ;
IPSEC_LOG_TRC(IPSEC_TRACE_RETURN, "ipsec_input",
("ret_val=%d", IPSEC_STATUS_FAILURE) );
return IPSEC_STATUS_FAILURE;

)
if(spd->policy == POLICY_APPLY)
{

if(spd->sa !=sa)

{
IPSEC_LOG_AUD("ipsec_input",
IPSEC_AUDIT_SPI_MISMATCH, ("SPI mismatch") );
IPSEC_LOG_TRC(PSEC _TRACE _RETURN, "ipsec_input",
("return = %d", IPSEC_AUDIT_SPI MISMATCH) );
return [PSEC_STATUS_FAILURE;
}
}

else

{
IPSEC_LOG_AUD("ipsec_input",
IPSEC_AUDIT_POLICY_MISMATCH, ("matching SPD does not permit IPsec
processing") );
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IPSEC_LOG_TRC(IPSEC_TRACE_RETURN, "ipsec_input",
("return = %d", IPSEC_STATUS_FAILURE) ),
return IPSEC_STATUS_FAILURE;
}

IPSEC_LOG_TRC(IPSEC_TRACE_RETURN, "ipsec_input”, ("return = %d",
IPSEC_STATUS_SUCCESS) );
return IPSEC_STATUS_SUCCESS;

}

Jx*

* [Psec output processing

*

* This function is called when outbound packets need IPsec processing. Depending the
SA, passed via

* the SPD entry ipsec_ah_check() and ipsec_esp_encapsulate() is called to encapsulate
the packet in a

* IPsec header.

*

* @param packet pointer used to access the intercepted original packet

* @param packet_size length of the intercepted packet

* @param payload_offset pointer used to return offset of the new IP packet relative to
original packet pointer

* @param payload_size pointer used to return total size of the new IP packet

* @param src IP address of the local tunnel start point (external IP address)
* @param dst IP address of the remote tunnel end point (external IP address)
* @param spd pointer to security policy database where the rules for [Psec
processing are stored

* @return int return status code

*/

int ipsec_output(unsigned char *packet, int packet_size, int *payload_offset, int
*payload_size,
_u32src, _ u32dst, spd_entry *spd)

{

int ret_val = IPSEC_STATUS_NOT_INITIALIZED; /* by default,
the return value is undefined */

ipsec_ip_header *ip ;

IPSEC_LOG_TRC(IPSEC_TRACE_ENTER,
"ipsec_output",
("*packet=%p, packet size=%d, len=%u,
*payload_offset=%d, *payload_size=%d src=%Ix dst=%lx *spd=%p",
(void *)packet, packet_size, *payload_offset, *payload_size,
(__u32) src, (_ u32) dst, (void *)spd)
);
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ip = (ipsec_ip_header*)packet;
if((ip == NULL) || (ipsec_ntohs(ip->len) > packet_size))
{

[PSEC_LOG_DBG("ipsec_output”,
IPSEC_STATUS_NOT_IMPLEMENTED, ("bad packet ip=%p, ip->len=%d (must not
be >%d bytes)", (void *)ip, ipsec_ntohs(ip->len), packet_size) );

IPSEC_LOG_TRC(IPSEC_TRACE_RETURN, "ipsec_output”, ("return =
%d", IPSEC_STATUS_BAD_PACKET) ),
return IPSEC_STATUS _BAD PACKET;

}

if((spd == NULL) || (spd->sa == NULL))
{
/** @todo invoke IKE to generate a proper SA for this SPD entry */
IPSEC_LOG_DBG("ipsec_output”,
IPSEC_STATUS_NOT_IMPLEMENTED, ("unable to generate dynamically an SA (IKE
not implemented)") );

IPSEC_LOG_AUD("ipsec_output", IPSEC_STATUS_NO _SA_FOUND,
("no SA or SPD defined")) ;
IPSEC_LOG_TRC(IPSEC_TRACE_RETURN, "ipsec_output", ("return =
%d", IPSEC_STATUS_NO_SA_FOUND) );
return IPSEC_STATUS NO_SA FOUND;

}

switch(spd->sa->protocol) {
case IPSEC_PROTO_AH:
IPSEC_LOG_MSG("ipsec_output", ("have to encapsulate
an AH packet")) ;
ret_val = ipsec_ah_encapsulate((ipsec_ip_header *)packet,
payload_offset, payload_size, spd->sa, src, dst);

if(ret_val !=IPSEC STATUS_SUCCESS)
{
IPSEC_LOG_ERR("ipsec_output”, ret_val,
("ipsec_ah_encapsulate() failed"));

}
break;

case [IPSEC_PROTO_ESP:
IPSEC_LOG_MSG("ipsec_output”, ("have to encapsulate
an ESP packet")) ;
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ret_val = ipsec_esp_encapsulate((ipsec_ip_header *)packet,
payload_offset, payload_size, spd->sa, src, dst);

if(ret_val 1= IPSEC_STATUS_SUCCESS)
{

("ipsec_esp_encapsulate() failed"));

}

break;

IPSEC_LOG_ERR("ipsec_output", ret_val,

defauit:
ret_val =IPSEC STATUS BAD_PROTOCOL;
IPSEC_LOG_ERR("ipsec_output", ret_val, ("unsupported
protocol '%d' in spd->sa->protocol”, spd->sa->protocol));

}

IPSEC_LOG_TRC(IPSEC_TRACE RETURN, "ipsec_output", ("ret_val=%d",
ret_val) );

return ret_val;
}

Class AH (IP Authentication Header)

The AH functions are used to authenticate [Psec traffic. All functions work in-
place (i.g. manipulate directly the original packet without copying any data). For the
encapsulation routine, the caller must ensure that space for the new IP and AH headers
are available in front of the packet.

Definition in file ah.c.

#include <string.h>
#include "ipsec/ipsec.h"
#include "ipsec/util.h"
#include "ipsec/debug.h"
#include "ipsec/sa.h"
#include "ipsec/md5.h"
#include "ipsec/shal.h"
#include "ipsec/ah.h"

Functions

Int ipsec_ah check (ipsec_ip_header *outer packet, int *payload offset, int
*payload_size, sad_entry *sa)

Int ipsec_ah_encapsulate (ipsec_ip_header *inner packet, int *payload offset, int
*payload_size, sad_entry *sa, _u32 src, u32 dst)

Variables

IPSec Based Bluetooth Security Architecture 132



dppendix-B Cade

__u32 ipsec_ah_bitmap = 0
__u32ipsec_ah_lastSeq =0

T'unction Documentation

Int ipsec_ah_check (ipsec_ip_header * outer_packet, int * payload offset, int *
payload_size, sad_entry * sa)

It checks AH header and ICV (RFC 2402). Mutable fields of the outer IP header
are set to zero prior to the ICV calculation.

Parameters:
e OQuter_packet: pointer used to access the (outer) IP packet which hast to be
checked.

e payload offset: pointer used to return offset of inner (original) IP packet relative
to the start of the outer header.

e payload_size: pointer used to return total size of the inner (original) IP packet.

e SA: pointer to security association holding the secret authentication key

Returns:
e [PSEC _STATUS_SUCCESS: packet could be authenticated.
e IPSEC STATUS_ FAILURE: packet is corrupted or ICV does not match.

e [PSEC_STATUS NOT IMPLEMENTED: invalid mode (only IPSEC_TUNNEL
mode is implemented).

Int ipsec_ah_encapsulate (ipsec_ip_header * inner_packet,
int * payload_offset, int * payload_size, sad_entry * sa, _ u32 src, __ u32 dst)

It adds AH and outer IP header calculates ICV (RFC 2402).

Parameters: ,
e inner_packet: pointer used to access the (outer) IP packet which hast to be
checked.

o payload offset: pointer used to return offset of inner (original) IP packet relative
to the start of the outer header.

payload_size: pointer used to return total size of the inner (original) IP packet.
Src: IP address of the local tunnel start point (external IP address).

DST: IP address of the remote tunnel end point (external IP address).

SA: pointer to security association holding the secret authentication key.

Returns:
e JPSEC_STATUS_SUCCESS packet could be authenticated.
e IPSEC_STATUS_FAILURE packet is corrupted or ICV does not match.

o IPSEC_STATUS_NOT_IMPLEMENTED invalid mode (only IPSEC_TUNNEL
mode is implemented).
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Variable Documentation

e _ u32ipsec_ah bitmap = 0 (save session state to detect replays - must be 32 bits.
Note: must be initialized with zero (0x00000000) when a new SA is established).

e _ u32 ipsec_ah_lastSeq = 0 (save session state to detect replays Note: must be
initialized with zero (0x00000000) when a new SA is established).

Class ESP (Encapsulating Security Protocol)

This module contains the Encapsulating Security Payload code. All functions
work in-place (i.g. mainipulate directly the original packet without copying any data). For
the encapsulation routine, the caller must ensure that space for the new IP and ESP
header are available in front of the packet.

Definition in file esp.c.

#include <string.h>
#include "ipsec/ipsec.h”
#include "ipsec/util.h"
#include "ipsec/debug.h”
#include "ipsec/sa.h”
#include "ipsec/des.h"
#include "ipsec/md5.h"
#finclude "ipsec/shal.h"
#include "ipsec/esp.h”

Functions

__uBipsec_esp_get_padding (int len)

ipsec_status ipsec_esp_decapsulate (ipsec_ip_header *packet, int *offset, int *len,
sad_entry *sa)

ipsec_status ipsec_esp_encapsulate (ipsec_ip_header *packet, int *offset, int *len,
sad_entry *sa, __u32 src_addr, __u32 dest_addr)

Variables
__u32ipsec_esp_bitmap =0
__u32ipsec_esp_lastSeq =0

Function Documentation

ipsec_status ipsec_esp_decapsulate (ipsec_ip_header * packet, int * offset, int * len,
sad_entry * sa)

It decapsulates an IP packet containing an ESP header.
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Parameters:
» Packet: pointer to the ESP header.
e Offset: pointer to the offset which is passed back.
e Len: pointer to the length of the decapsulated packet.
e Sa: pointer to the SA.

Returns:
e [PSEC STATUS SUCCESS: if the packet could be decapsulated properly
o JPSEC_STATUS FAILURE: if the SA's authentication aigorithm was invalid or
if ICV comparison failed
e IPSEC STATUS BAD PACKET: if the decryption gave back a strange packet

Ipsec_status ipsec_esp_encapsulate (ipsec_ip_header * packet, int * offset, int* len,
sad_entry * sa, _ u32 src_addr, _ u32 dest _addr )

It encapsulates an IP packet into an ESP packet which will again be added to an IP
packet.

Parameters:
e Packet pointer to the IP packet.
e Offset: pointer to the offset which will point to the new encapsulated packet.
e Len: pointer to the length of the new encapsulated packet.
e SA: pointer to the SA.
e src_addr: source IP address of the outer IP header.
e dest addr: destination IP address of the outer IP header.

Returns:
o IPSEC STATUS SUCCESS if the packet was properly encapsulated.
e IPSEC STATUS_TTL_EXPIRED if the TTL expired.
e [PSEC STATUS FAILURE ifthe SA contained a bad authentication algorithm.

__u8ipsec_esp_get_padding ( int len )
It returns the number of padding needed for a certain ESP packet size.

Parameters:
e Len: the length of the packet

Returns:
e The length of padding needed

Variable Documentation
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e  u32 ipsec_esp bitmap = 0 (save session state to detect replays - must be 32
bits. Note: must be initialized with zero (0x00000000) when a new SA is
established).

e  u32 ipsec_esp_lastSeq = 0 ( save session state to detect replays Note: must be
initialized with zero (0x00000000) when a new SA is established).

Class SA (security Association)

This module contains the Security Association code. Here we implement the
Security Association concept from RFC 2401. Both SPD and SAD are implemented. At
the time we do not support IKE and SA bundling. For having maximum flexibility two
physically different tables (SPD and SAD) were implemented. They both provide
functions to manipulate the database during run-time, so that a later IKE or SA-bundling
could be implemented.

The SPD contains the selector fields on which each IP packet needs to be
checked. After outbound packets found their SPD entry, they can access the SA via the
SA pointer. Inbound packets can access their SA directly by applying the SPI to the SAD
(by performing an SAD lookup). Each IPsec enabled device needs to have its own set of
SPD and SAD for each, inbound and outbound processing.

Definition in file sa.c.

#include <string.h>
#include "ipsec/debug.h"
#include "ipsec/util.h"
#include "ipsec/sa.h"
#include "ipsec/ah.h"
#include "ipsec/esp.h"

Data Structures
Struct ipsec_in_ip_struct

Typedefs
Typedefipsec_in_ip_struct ipsec_in_ip

Functions

db_set netif * ipsec_spd load_dbs (spd_entry *inbound spd data, spd entry
*outbound_spd_data, sad_entry *inbound_sad_data, sad_entry *outbound_sad data)
ipsec_status ipsec_spd_release_dbs (db_set netif *dbs) .

spd_entry * ipsec_spd_get_free (spd_table *table) .

spd_entry * ipsec_spd_add (__u32 src, __u32 src_net, _ u32 dst, __u32 dst_net, u8
proto, __ul6src_port, ul6dst_port, __u8 policy, spd_table *table) .

ipsec_status ipsec_spd add_sa (spd_entry *entry, sad_entry *sa) .

ipsec_status ipsec_spd_del (spd_entry *entry, spd_table *table) .

spd_entry * ipsec_spd_lookup (ipsec_ip header *header, spd_table *table) .

void ipsec_spd_print_single (spd_entry *entry) .
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void ipsec_spd_print (spd_table *table) .

sad_entry * ipsec_sad_get_free (sad_table *table).

sad_entry * ipsec_sad_add (sad_entry *entry, sad_table *table).

ipsec_status ipsec_sad_del (sad_entry *entry, sad_table *table).

sad_entry * ipsec_sad lookup (__u32 dest, _ u8 proto, _ u32 spi, sad_table *table).
void ipsec_sad_print_single (sad_entry *entry).

void ipsec_sad_print (sad_table *table) .

__u32ipsec_sad_get spi (ipsec_ip_header *header).

ipsec_status ipsec_spd_flush (spd_table *table, spd_entry *def_entry).

ipsec_status ipsec_sad_flush (sad_table *table).

Variables
db_set_netif db_sets [IPSEC_NR_NETIFS]

Typedef Documentation
Typedef struct ipsec_in_ip_struct ipsec_in_ip: IPsec in IP structure - used to access
headers inside SA .

Function Documentation
sad_entry* ipsec_sad_add ( sad entry * entry, sad_table * table )

It adds a Security Association to SA table.The SA entries is added to a statically
allocated array of SAD structs. The size is defined by IPSEC_MAX_SAD_ENTRIES, so
there cannot be added more entries added as this constant. The order of the entries within
the table is not the same as the order within the array. The "table functionality” is
implemented in a linked-list, so one must follow the links of the structure to get to the
next entry.

Parameters:
o Entry: pointer to the SA structure which will be copied into the table.
e Table: pointer to the table where the SA is added.

Returns:
e A pointer to the added entry when adding was successful.
e NULL when the entry could not have been added (no free entry or duplicate).

Ipsce_status ipsec_sad_del (sad_entry * entry, sad_table * table)

It deletes a Security Association from an SA table.This function is simple. If the
pointer is within the range of the table, then the entry is cleared. If the pointer does not
match, nothing happens.
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Parameters:
e Entry: Pointer to the SA entry which needs to be deleted.
e Table: Pointer to the SA table.

Returns:
e IPSEC STATUS_SUCCESS: entry was deleted properly.
e IPSEC_STATUS_FAILURE: entry could not be deleted because not found, or
invalid pointer.

ipsec_status ipsec_sad_flush (sad_table * table )

Parameters:
e Table: pointer to the SAD table.

Returns:
e [PSEC_STATUS_SUCCESS: if the flush was successful

sad_entry* ipsec_sad_get_free (sad_table * table )
It gives back a pointer to the next free entry from the given SA table.

Parameters:
e Table: pointer to the SA table.

Returns:
e Pointer to the free entry if one was found.
e NULL if no free entry was found

__u32ipsec_sad_get_spi ( ipsec_ip_header * header )

Parameters:
e Header: pointer to the IP header having an IPsec header as payload.

Returns:
e The SPI if one could be extracted
e 0 ifno SPI could be extracted (not IPsec packet)

sad_entry* ipsec_sad_lookup (__u32 dest, _u8 proto, _u32 spi, sad_table *
table)

It gives back a pointer to a SA matching the SA selectors.For incoming packets
the IPsec packet must be checked against the inbound SAD and for outgoing packets the
packet must be checked against the outbound SAD. It Implements simply by loops over
all entries and returns the first match.
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Parameters:
e Dest: destination IP address.
e Proto: IPsec protocol.
e Spi: Security Parameters Index.
e Table: pointerto the SAD table.

Returns:
e Pointer to the SA entry if one matched.
e NULL if no matching entry was found

void ipsec_sad_print ( sad_table * table )

Parameters:
e Table: pointer to the SAD table which will be printed

Returns:
e Void

void ipsec_sad_print_single ( sad_entry * entry )

Parameters:
» Entry: pointer to the SA entry which will be printed

Returns:
e Void

Ipsec_status ipsec_spd_add_sa (spd_entry * entry, sad_entry * sa)
It adds a Security Association to a Security Police.

Parameters:
e Entry: pointer to the SPD entry where the SA should be added.
e Sa: apointer to the SA which is added to the SPD

Returns:
o [PSEC STATUS_SUCCESS: the entry was added successfully.

Ipsec_status ipsec_spd_del (spd_entry * entry, spd_table * table)

It deletes a Security Policy from an SPD table.This function is simple. If the
pointer is within the range of the table, then the entry is cleared. If the pointer does not
match, nothing happens.

Parameters:
o Entry: Pointer to the SPD entry which needs to be deleted.
e Table: Pointer to the SPD table.
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Returns:
e IPSEC_STATUS_SUCCESS: entry was deleted properly.
e IPSEC_STATUS_FAILURE: entry could not be deleted because not found, or
invalid pointer.

Ipsec_status ipsec_spd_flush (spd_table * table, spd_entry * def_entry)

It flushes SPD table and sets a new default entry.

Parameters:
e Table: pointer to the SPD table
e def entry: pointer to the default entry.

Returns:
e [PSEC STATUS SUCCESS: if the flush was successful.
o IPSEC STATUS FAILURE: if the flush failed.

Db_set_netif* ipsec_spd _load_dbs (spd_entry * inbound_spd_data, spd_entry *
outbound_spd_data, sad_entry * inbound_sad_data, sad_entry *
outbound_sad_data)

This function initializes the database set, allocated in a per-network manner.The
data which is passed by the pointers should not be used by other functions except the
ones of the SA-module.

The data passed can be viewed as a place where the SA-module can store its data
(Security Policies or Security Associations). The tables which are passed to the function
can already be filled up with static configuration data. You can use the SPD_ENTRY and
the SAD _ENTRY macro to do this in a nice way.

Parameters:
e inbound spd_data pointer: to a table where inbound Security Policies will be
stored
e outbound_spd_data pointer: to a table where outbound Security Policies will be
stored
e inbound_sad_data pointer: to a table where inbound Security Associations will be
stored
e outbound sad data pointer: to a table where outbound Security Associations will
be stored
Returns:

e Pointer to the initialized set of DB's if the setup was successful.
e NULL if loading failed.
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spd_entry* ipsec_spd_lookup (ipsec_ip_header * header, spd_table * table)

It returns a pointer to an SPD entry which matches the packet. Inbound packets
must be checked against the inbound SPD and outbound packets must be checked against
the outbound SPD.

Parameters:
e Header: Pointer to an IP packet which is checked.
o Table: Pointer to the SPD inbound/outbound table.

Returns:
e Pointer to the matching SPD entry.
e NULL if no entry matched.

ipsec_status ipsec_spd_release_dbs (db_set_netif * dbs )

This function is used to release the structure allocated in ipsec_spd load_dbs().
The tables which were allocated in ipsec_spd load_dbs() can now be freely used.

Parameters:
e Dbs pointer: to the set of databases got by ipsec_spd_load_dbs() which has to be
released.

Returns:
e [PSEC _STATUS SUCCESS: if release was successful.
o [PSEC_STATUS_FAILURE: if release was not successful.

Variable Documentation

o db set netif db_sets{IPSEC_NR_NETIFS] (This structure holds sets of databases
used by one network interface. Each successful call of ipsec_spd_load_dbs() will
return a pointer to an entry of this structure array. One entry holds pointers to a
inbound and outbound SPD and SAD table.)

SHA1 (US Secure Hash Algorithm)
Definition in file shal.c.

#include <string.h>

#include "ipsec/shal.h"”

#include "ipsec/debug.h"”

Defines

#define Xupdate(a, ix, ia, b, ic, id)
#define SHA_CBLOCK (SHA _LBLOCK*4)
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#define SHA_ LAST BLOCK (SHA_CBLOCK-8)
#define SHA LBLOCK (SHA_CBLOCK/4)

#define HOST c2l(c, 1)

#idefine HOST p_c2l(c, I, n)

#define HOST p_c2l p(c, |, sc, len)

#define HOST c2l1 p(c, 1, n)

#define HOST 12¢(l, c)

#define INIT DATA_hO 0x67452301UL

#tdefine INIT DATA_hl Oxefcdab89UL

f#tidefine INIT DATA_h2 0x98badcfeUL

fidefine INIT DATA_h3 0x10325476UL

#define INIT DATA h4 Oxc3d2el fOUL

ftdefine K_00_19 0x5a827999UL

#define K_20 39 0Ox6ed9ebalUL

#define K 40 59 0x8flbbcdcUL

#define K_60_79 Oxca62c1d6UL

#define ¥_00_19(b, c,d) ((((c)”(d)) & (b))~ (d))
#idefine F 20 39(b,c,d) ((b)"(c)”"(d))

ftdefine F_40_59(b, c, d) (((b) & (c)) | ((b)i(c)) & (d)))
#tdefine F_60 79(b,c,d) F_20 39(b,c,d)

#define BODY_00_15(i, a, b, c, d, ¢, f, xi)

#define BODY 16 19(i, a, b, ¢, d, e, {, xi, xa, xb, xc, xd)
#define BODY 20 31(i, a, b, ¢, d, e, f, xi, xa, xb, xc, xd)
#define BODY 32 39(1, a, b, ¢, d, e, f, xa, xb, xc, xd)
#define BODY_40_59(i, a, b, ¢, d, ¢, f, xa, xb, xc, xd)
#define BODY_60_79(i, a, b, c, d, e, f, xa, xb, xc, xd)
#define X(1) XX##i

Functions

unsigned char * SHAI1 (const unsigned char *d, unsigned long n, unsigned char
*md)

void shal_block host_order (SHA CTX *c, const void *p, int num)

void shal_block data order (SHA_CTX *c, const void *p, int num)

void SHA1 Update (SHA CTX *c, const void *data_, unsigned long len)

void SHA1 Transform (SHA_CTX *c, const unsigned char *data)

void SHA1 Final (unsigned char *md, SHA CTX *c)

void SHA1 Init (SHA_CTX *c)

void hmac_shal (unsigned char *text, int text len, unsigned char *key, int
key len, unsigned char *digest)
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Define Documentation
#define BODY _00_15( i, a, b, ¢, d, e, f, xi )

#define BODY 16 19( i, a, b, ¢, d, ¢, f, xi, xa, xb, xc, xd )
Value:

Xupdate(f,xi,xa,xb,xc,xd); \
(H+=(e)+K_00_19+ROTATE((a),5)+F 00 19((b),(c),(d)); \
(b)=ROTATE((b),30);

#define BODY 20 31 ( i,a, b, ¢, d, ¢, f, xi, xa, xb, x¢, xd )
Value:

Xupdate(f,xi,xa,xb,xc,xd); \
(O+=(e)+K_20_39+ROTATE((a),5)+F_20_39((b),(c),(d)); \
(b)=ROTATE((b),30);

#define BODY 32 39( i, a, b, ¢, d, ¢, f, xa, xb, xc, xd )
Value:

Xupdate(f,xa,xa,xb,x¢,xd); \

(H+=(e)+K_20 _39+ROTATE((a),5)+F _20_39((b),(c),(d)); \
(b)=ROTATE((b),30);

#define BODY 40 59( i, a, b, ¢, d, e, f, xa, xb, xc, xd )
Value:

Xupdate(f,xa,xa,xb,xc,xd); \
O+=(e)+K_40_59+ROTATE((a),5)+F_40_59((b),(c),(d)); \
(b)=ROTATE((b),30);

#define BODY_60_79( i, a, b, c, d, e, f, xa, xb, xc, xd )
Value:

Xupdate(f,xa,xa,xb,xc,xd); \
(H=xa+(e)+K_60_79+ROTATE((a),5)+F_60_79((b),(c),(d)); \
(b)=ROTATE((b),30),

#define F_00 19

(b, c,d ) (((c)"(d)&(b)"(d)
#define F_20 39 (

(

(

b,
b, ¢, d ) ((B"(c)"(d)
b,c,d ) (((b)& (@) ((BE) & (d)))
b, ¢, d ) F 20 39(b,c,d)

#define F 40 59
#define F 60 79

#define HOST c21( ¢, 1 )

Value:

(1=(((unsigned long)(*((c)++)))<<24), \
lI=(((unsigned long)(*((c)++)))<<16), \
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I|=(((unsigned long)(*((c)*++)))<< 8), \
I|=(((unsigned long)(*((c)*++))) ), \

)

#define HOST ¢2l_ p( ¢, I, n )

Value:

{ \
1=0; (c)+=n; \
switch (n) { \
case 3: | =((unsigned long)(*(-~(c))))<< 8; \
case 2: [|=((unsigned long)(*(--(c))))<<16; \
case 1: I|=((unsigned long)(*(--(c))))<<24; \

3}
#define HOST 12¢ ( ,c )
Value:

(*((c)*++)=(unsigned char)(((1)>>24)&0xff), \
*((c)++)=(unsigned char)(((1)>>16)&0xff), \
*((c)++)=(unsigned char)(((1)>> 8)&0xff), \
*((c)++)=(unsigned char)(((I) )&O0xff), \

D

#define HOST p c2l( ¢, L, n )

Value:

{ \
switch (n) { \
case 0: I =((unsigned long)(*((c)++)))<<24; \
case 1: lI|=((unsigned long)(*((c)++)))<<16; \
case 2: l|=((unsigned long)(*((c)++)))<<8; \
case 3: l|=((unsigned long)(*((c)++))); \

3}

#define HOST p c2l p( c, 1, sc, len )
Value:
{ \
switch (sc) { \
case 0: | =((unsigned long)(*((c)++)))<<24; \
if (--len == 0) break; \
case 1: l|=((unsigned long)(*((c)++)))<<16; \
if (--len == 0) break; \
case 2: [[=((unsigned long)(*((c)++)))<< 8; \
3}
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#define INIT DATA_hO 0x67452301UL
#define INIT DATA_hl Oxefcdab§9UL
#define INIT DATA h2 0x98badcfeUL
#define INIT_ DATA_h3 0x10325476UL
#define INIT DATA h4 Oxc3d2elfOUL
#define K_00_19 0x5a827999UL

#define K_20_39 0x6ed9ebal UL

#define K_40 59 0x8flbbedcUL

#define K_60_79 0Oxca62c1d6UL

#define SHA_CBLOCK (SHA_LBLOCK*4)
#define SHA_LAST BLOCK (SHA_CBLOCK-8)
#define SHA_LBLOCK (SHA CBLOCK/4)
#idefine X (1 ) XX##i

#define Xupdate ( a, ix, 1ia, ib, ic, id )

Function Documentation

void hmac _shal ( unsigned char * text, int text len, unsigned char * key, int
key len, unsigned char * digest )

unsigned char* SHA1 ( const unsigned char * d, unsigned long n, unsigned char
* md )

void shal_block data_order ( SHA CTX * c, const void * p, int num)

void shal block host order ( SHA CTX * ¢, constvoid * p, int num )

void SHA1 Final ( unsigned char * md, SHA CTX * c)

void SHA1 Init ( SHA CTX * ¢ )

void SHA1 Transform ( SHA _CTX * c, const unsigned char * data )

void SHA1 Update ( SHA CTX * c, constvoid * data , unsigned long len )

Class MDS (Message-Digest Algorithm)
Definition in file md5.c.

#include <string.h>
#include "ipsec/md5.h"
#include "ipsec/debug.h"

Defines

#define INIT DATA_A (unsigned long)0x67452301L
#define INIT_DATA_B (unsigned long)Oxefcdab89L
#define INIT_DATA_C (unsigned long)0x98badcfeL
#define INIT_DATA_D (unsigned long)0x10325476L
#define HOST c2l(c, })

#define HOST p _c2l(c, I, n)
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#define HOST p c2l_p(c, |, sc, len)
#define HOST c2l_p(c, I, n)

#define HOST 12¢(l, ¢)

fidefine F(b, c, d) ((((c)*(d)) & (b)) " (d))
#define G(b, c,d) ((((b) " (c)) & (d)) " (¢))
#define H(b, c,d) ((b) " (c) " (d))

fidefine I(b, c,d) (((~{(d)) | (b)) " (c))
ftidefine RO(a, b, ¢, d, k, s, t)

#define R1(a, b, ¢, d, k, s, 1)

ffdefine R2(a, b, c,d, k, s, t)

#define R3(a, b, c,d, k, s, 1)

#define X(i) XX##i

Functions

unsigned char * MDS5 (const unsigned char *d, unsigned long n, unsigned char *md)
void MD5_Init (MD5_CTX *c)

void md5_block_host_order (MD5 CTX *c, const void *p, int num)

void md5_block _data_order (MD5_CTX *c, const void *p, int num)

void MD5_Update (MD5_CTX *c, const void *data_, unsigned long len)

void MDS5_Transform (MDS_CTX *c, const unsigned char *data)

void MD5_Final (unsigned char *md, MD5_CTX *c)

void hmac_md5 (unsigned char *text, int text_len, unsigned char *key, int key len,
unsigned char *digest)

Define Documentation

#define F (b,c,d ) ((((c) " (d)) & (b))~ (d))
#define G (b,c,d )  ((((b) ~(c)) & (d)) ~ (c))
#define H(b,c,d ) ((b)"(c)”~(d))

ftdefine HOST c2I( ¢, 1 )

Value:

(1 =(((unsigned long)(*((c)*++))) ), \
I|=(((unsigned long)(*((c)*+)))<< 8), \
I=(((unsigned long)(*((c)++)))<<16), \
II=(((unsigned long)(*((c)++)))<<24), \

))

#define HOST ¢2l p(c, L n )

Value:

{ \
1=0; (c)+=n; \
switch (n) { \

case 3: | =((unsigned long)(*(--(c)))<<16; \
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case 2: l|=((unsigned long)(*(--(c))))<< §; \
case 1: I[=((unsigned long)(*(--(c)))); \
1}

#define HOST 12¢c( 1, ¢ )

Value:

(*((c)++)=(unsigned char)((() )&O0xff), \
*((c)++)=(unsigned char)(((1)>> 8)&0xff), \
*((c)++)=(unsigned char)(((1)>>16)&0xff), \
*((c)++)=(unsigned char)(((1)>>24)&0xff), \

)
#define HOST p ¢21( ¢, I, n )
Value:
{ \
switch (n) { \
case 0: | =((unsigned long)(*((c)+1)); \
case 1: l|=((unsigned long)(*((c)++)))<<8; \
case 2: l[=((unsigned long)(*((c)++)))<<16; \
case 3: l|=((unsigned long)(*((c)++)))<<24; \
}}
#define HOST p c2l p( ¢, I, sc, len )
Value:
{ \
switch (sc) { \
case 0: | =((unsigned long)(*((c)*+1))); \
if (--len == Q) break; \

case 1: I[[=((unsigned long)(*((c)++)))<< 8 \
if (--len == 0) break;
case 2: l[=((unsigned long)(*((c)++)))<<16, \

3}

#define [( b, ¢, d ) (((~(d) | (b)) * ()

#define INIT_DATA_A (unsigned long)0x67452301L
#define INIT_DATA B (unsigned long)Oxefcdab89L
#define INIT_DATA_C (unsigned long)0x98badcfeL
#define INIT_DATA D (unsigned long)0x10325476L

#defineRO( a, b, ¢, d, k, s, t )
Value:
{\
at=((k)+(t)+F((b),(c),(d))); \
a=ROTATE(a,s); \
at+=b; };\
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#defineR1( a, b, ¢, d, k, 5, t )
Value:
{\
at=((K)Ht)+G((b),(c),(d))); \
a=ROTATEC(a,s); \
a+=b; };

#defineR2( a, b, ¢, d, k, 5, t )
Value:
{\
a+=((K)+(t)+H((b),(c),(d)); \
a=ROTATE(a,s); \
a+=b; };

fidefineR3(a, b, ¢, d, k, s, t )
Value:
{\
a+=((k)HO+((b),(c),(d)); \
a=ROTATE(a,s); \
at=b; };

fidefine X (1 ) XX##i

Function Documentation

void hmac_md5 ( unsigned char * text, int text len, unsigned char * key, int
key_len, unsigned char * digest)

Parameters:
o Text: pointer to data stream.

e text len: length of data stream.

o Key: pointer to authentication key.

e key len: length of authentication key

e Digest: caller digest to be filled in 128-bit.
Returns:
void

unsigned char* MDS5 ( const unsigned char * d, unsigned long n, unsigned char *
md )

void md5_block_data_order ( MD5_CTX * ¢, constvoid * p, int num )

void md5_block_host_order ( MD5_CTX * ¢, const void * p, int num )

void MDS5_Final ( unsigned char * md, MD5 CTX * ¢)

void MDS_Init ( MDS_CTX * ¢ )

IPSec Based Bluetooth Security Architecture 148



Appendix-B ___ Code

void MD5_Transform ( MDS_CTX * ¢, const unsigned char * data )
void MD5 Update (MD5_CTX * ¢, const void * data_, unsigned long len)

Class DES and 3DES in CBC Mode
Definition in file des.c.

#finclude <string.h>
#include "ipsec/des.h"
#include "ipsec/debug.h"

Defines

#define DES KEY SZ (sizeof(DES_cblock))

#define DES_SCHEDULE SZ (sizeof(DES_key_schedule))
#define ITERATIONS 16

#define HALF ITERATIONS 8

#define c2i(c, 1)

#define c2ln(c, 11, 12, n)

#define 12¢(l, ¢)

#define HDRSIZE 4

#define n2l(c, 1)

#define 12n(l, c)

#define 12cn(ll, 12, ¢, n)

#define ROTATE(a, n) (((a)>>(n))+((a)<<(32-(n))))
#define LOAD_DATA tmp(a,b,c,d,e, f) LOAD_DATA(a,b,c,d,e,f,g)
#define LOAD DATA(R, S, u, t, EO, E1, tmp)

#define D_ENCRYPT(LL, R, S)

#define PERM_OP(a, b, t, n, m)

#define IP(l, r)

#define FP(l,r)

#define NUM_WEAK_KEY 16

#define HPERM_OP(a, t, n, m)

Functions

void DES cbc_encrypt (const unsigned char *input, unsigned char *output, long length,
DES_key_schedule *schedule, DES cblock *ivec, int enc)

void DES_ncbe_encrypt (const unsigned char *input, unsigned char *output, long length,
DES key schedule *schedule, DES cblock *ivec, int enc)

void DES_encryptl (DES_LONG *data, DES_key_ schedule *ks, int enc)

void DES_encrypt2 (DES_LONG *data, DES key schedule *ks, int enc)

void DES_encrypt3 (DES_LONG *data, DES key_schedule *ksi, DES key schedule
*ks2, DES_key schedule *ks3)
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void DES_decrypt3 (DES_LONG *data, DES_key_schedule *ksl, DES_key_schedule
*ks2, DES_key_schedule *ks3)

void DES_ede3 cbc encrypt (const unsigned char *input, unsigned char *output, long
length, DES key schedule *ksl, DES_key schedule *ks2, DES_key_schedule *ks3,
DES_cblock *ivec, int enc)

void DES_set odd_parity (DES_cblock *key)

int DES check key parity (const_DES_cblock *key)

int DES_is_weak_key (const_DES_cblock *key)

int DES_set_key (const DES_cblock *key, DES_key schedule *schedule)

int DES key sched (const_DES_cblock *key, DES_key_schedule *schedule)

int DES_set_key checked (const DES_cblock *key, DES_key_schedule *schedule)

void DES_set_key unchecked (const DES_cblock *key, DES_key_schedule *schedule)
void cipher_3des_cbe (unsigned char *text, int text_len, unsigned char *key, unsigned
char *iv, int mode, unsigned char *output)

Variables

const DES LONG DES_SPtrans [8]{64]

int _shadow_DES_check_key

const unsigned char odd_parity [256]

DES _cblock weak keys [NUM_WEAK_KEY]
const DES_LONG des_skb [8][64]

Define Documentation

#tdefinec2i ( c,1 )

Value:

(I =((DES_LONG)(*({c)*+)) ,\
II=((DES_LONG)(*((c)++)))<< 8L, \
II=((DES_LONG)(*((c)++)))<<16L, \
lI=((DES_LONG)(*((c)++)))<<24L)

#idefinec2in( ¢, I1, 12, n )

Value:

{\
ct=n;\
11=12=0; \
switch (n) {\
case 8: 12 =((DES_LONG)(*(--(c))))<<24L; \
case 7: 12|=((DES_LONG)(*(--(c))))<<I6L; \
case 6: [2[=((DES_LONG)(*(--(c))))<< 8L; \
case 5: I2I=((DES_LONG)(*(--(c)))); \
case 4: 11 =((DES_LONG)(*(--(c))))<<24L; \
case 3: [1|=((DES_LONG)(*(--(c))))<<16L;\
case 2: 11|=((DES_LONG)(*(--(c))))<< 8L; \
case 1: [1=((DES_LONG)(*(--(c)))); \
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A\
}
#define D ENCRYPT ( LL, R, S )
Value:
{\

LOAD _DATA_tmp(R,S,u,t,EO,E1); \

t=ROTATE(t,4); \

LLA=\

DES_SPtrans[0][(u>> 2L)&0x3f]"\
DES_SPtrans{2]{(u>>10L)&0x3f}*\
DES_SPtrans[4][(u>>18L)&0x3{]™\
DES_SPtrans[6][(u>>26L)&0x3f]"\
DES SPtrans[1]{(t>> 2L)&0x3f}"\
DES_SPtrans[3][(t>>10L)&0x3f]" \
DES_SPtrans[5][{(t>>18L)&0x3f]* \
DES_ SPtrans{7]{(t>>26L)&0x3f]; }

#define DES_ KEY SZ (sizeoffDES_cblock))
#tdefine DES_SCHEDULE_SZ (sizeof(DES_key_schedule))

#define FP ( 1, r )

Value:

{\
DES _LONG tt; \
PERM_OP(l,r,tt, 1,0x55555555L); \
PERM_OP(,1Ltt, 8,0x00£f00ffL); \
PERM_OP(l,ntt, 2,0x33333333L); \
PERM_OP(t,l,tt,16,0x0000ffffL); \
PERM_OP(l,r,tt, 4,0x0f0f0f0fL); \
}

#define HALF _ITERATIONS 8
#idefine HDRSIZE 4

#define HPERM OP( a, t, n, m )

Value:

(O=((@)<<(16-(m))"(a))&(m)),\
(@)=@)"®ON>>(16-(n)))

HdefineIP( I, r )

Value:

{\
DES LONG tt; \
PERM_OP(r,l,tt, 4,0x0f0f0f0fL); \
PERM_OP(l,r,tt,16,0x00001f£fL); \
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PERM_OP(r L tt, 2,0x33333333L); \
PERM_OP(l,r,tt, 8,0x00ff00ffL); \
PERM_OP(r,1,tt, 1,0x55555555L); \
}
fidefine ITERATIONS 16
#definel2¢ (I, ¢ )
Value:
(*((c)++)=(unsigned char)((() )&0xfhH), \
*((c)++)=(unsigned char)(((1)>> 8L)&0x{f), \
*((c)++)=(unsigned char)(({1)>>16L)&0xff), \
*((c)++)=(unsigned char)(((1)>>24L)&0xft))
#define 12cn ( 11, 12, ¢, n )
Value:
{\
c+=n;\
switch (n) {\
case 8: *(-~(c))=(unsigned char)(((12)>>24L)&0xff); \
case 7: *(--(c))=(unsigned char)(((12)>>16L)& 0xff); \
case 6: *(--(c))=(unsigned char)(((12)>> 8L)&0xff); \
case 5: *(--(¢))=(unsigned char)(((12) )&O0xff);\
case 4: *(--(c))=(unsigned char){{(11)>>24L)&0xff); \
case 3: *(--(c))=(unsigned char)(((11)>>16L)&0xff); \
case 2: *(--(c))=(unsigned char)(((11)>> 8L)&0xf¥); \
case 1: *(--(c))=(unsigned char)(((11) )&0xff);\
I
}
#define2n( I, ¢ )
Value:
(*((c)++)=(unsigned char)(((1)>>24L)&0x{f),\
*((c)++)=(unsigned char)(((1)>>16L)&0x ff), \
*((c)++)=(unsigned char)(((1)>> 8L)&0xfD), \
*((cy++)=(unsigned char)(((l) )&0xff))
#define LOAD_DATA( R, S, u, t, EO, El, tmp )
Value:
u=R"s[S |;\
t=R"s[S+1]
#define LOAD_DATA tmp( a, b, ¢, d, e, f ) LOAD DATA(a,b,c,d,e,f,g)
#definen2l( ¢, 1 )
Value:
(1=((DES_LONG)(*((c)++)))<<24L,\
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II=((DES_LONG)(*((c)++)))<<16L, \
[[=((DES_LONG)(*((c)++)))<< 8L, \
[[=((DES_LONG)(*((c)*++))))

#define NUM_WEAK_KEY 16

#define PERM_OP( a, b, t, n, m )
Value:
(O=(((@>>N)N(b))&(m)),\

(b)Y*=(),\

(@"=((H<<(n)))

#tdefine ROTATE (a, n ) (((a)>>(n))+((a)<<(32-(n))))
Function Documentation

void cipher_3des_cbc ( unsigned char * text, int text_len, unsigned char * key,
unsigned char * iv, int mode, unsigned char * output )

3DES-CBC function calculates a digest from a given data buffer and a given key.

Parameters:
e Text: pointer to input data.

e text len: length of input data.
e Key: pointer to encryption key (192 bits).
e [V: initialization vector.
e Mode: defines whether encryption or decryption should be performed.
e output: en- or decrypted input data
Returns:
void

void DES_cbc_encrypt ( const unsigned char * input, unsigned char * output,
long length, DES_key_schedule * schedule, DES_cblock * ivec, int enc)

int DES_check_key_parity ( const DES cblock * key )

void DES decrypt3 ( DES LONG * data, DES key schedule * ksl,
DES key schedule * ks2, DES key schedule * ks3 )

void DES_ede3_cbc_encrypt ( const unsigned char * input, unsigned char *
output, long length, DES_key schedule * ksl, DES key_schedule * ks2,
DES_key_schedule * ks3, DES cblock * ivec, int enc)

void DES_encryptl ( DES_LONG * data, DES key schedule * ks, int enc )
void DES_encrypt2 ( DES_LONG * data, DES key schedule * ks, int enc)

void DES encrypt3 ( DES_LONG * data, DES_key schedule *  ksl,
DES_key_schedule * ks2, DES key schedule * ks3)

int DES_is_weak_key ( const_DES cblock * key )

int DES_key_sched ( const DES_cblock * key, DES_key schedule * schedule)
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void DES ncbc_encrypt ( const unsigned char * input, unsigned char * output,
long length, DES_key_schedule * schedule, DES_cblock * ivec, int enc)

int DES_set_key ( const_DES_cblock * key, DES_key_schedule * schedule )

int DES_set _key checked ( const DES cblock * key, DES_key_schedule *
schedule )

void DES_set key unchecked (const DES cblock * key, DES_key_schedule *
schedule)

void DES_set_odd_parity ( DES_cblock * key )

Variable Documentation

int _shadow DES_check key
const DES_LONG des_skb[8][64] [static]
const DES_LONG DES_SPtrans[8][64]

const unsigned char odd_parity[256] [static]
Initial value:

1, 1,2,2,4,4,7, 7,8, 811,11,13,13, 14, 14,

16, 16, 19, 19, 21, 21, 22, 22, 25, 25, 26, 26, 28, 28, 31, 31,

32,32, 35,35,37,37, 38, 38,41, 41, 42, 42, 44, 44, 47, 47,

49, 49, 50, 50, 52, 52, 55, 55, 56, 56, 59, 59, 61, 61, 62, 62,

64, 64, 67, 67, 69, 69, 70, 70, 73, 73, 74, 74, 76, 76, 79, 79,

81, 81, 82, 82, 84, 84, 87, 87, 88, 88, 91, 91, 93, 93, 94, 94,

97,97, 98, 98,100,100,103,103,104,104,107,107,109,109,110,110,
112,112,115,115,117,117,118,118,121,121,122,122,124,124,127,127,
128,128,131,131,133,133,134,134,137,137,138,138,140,140,143,143,
145,145,146,146,148,148,151,151,152,152,155,155,157,157,158,158,
161,161,162,162,164,164,167,167,168,168,171,171,173,173,174,174,
176,176,179,179,181,181,182,182,185,185,186,186,188,188,191,191,
193,193,194,194,196,196,199,199,200,200,203,203,205,205,206,206,
208,208,211,211,213,213,214,214,217,217,218,218,220,220,223,223,
224,224,227,227,229,229,230,230,233,233,234,234,236,236,239,239,
241,241,242,242,244,244,247 247,248 248,251,251,253,253,254,254}

DES_cblock weak_keysINUM_WEAK_KEY] [static]

Initial value:

{
{0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01},
{OxFE,0xFE,0xFE,0xFE,OxFE,0xFE,0xFE,0xFE},
{0x1F,0x1F,0x1F,0x 1F,0x0E,0x0E,0x0E,0x0E },
{0xE0,0xE0,0xE0,0xE0Q,0xF1,0xF1,0xF1,0xF1},

{0x01,0xFE,0x01,0xFE,0x01,0xFE,0x01,0xFE},
{OxFE,0x01,0xFE,0x01,0xFE,0x01,0xFE ,0x01 },
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{0x1F,0xE0,0x 1F,0xE0,0x0E,0xF 1,0x0E,0xF 1},
{0xE0,0x1F,0xE0,0x1F,0xF 1,0x0E,0xF1,0x0E},
{0x01,0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1},
{0xE0,0x01,0xE0,0x01,0xF1,0x01,0xF1,0x01},
{0x1F,0xFE,0x 1F,0xFE,0x0E,0xFE,0x0E,0xFE },
{OxFE,0x1F,0xFE,0x1F,0xFE,0x0E,0xFE,0x0E},
{0x01,0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E},
{0x1F,0x01,0x1F,0x01,0x0E,0x01,0x0E,0x01 },
{0xE0,0xFE,0xE0,0xFE,0xF 1,0xFE,0xF1,0xFE},
{0xFE,0xEQ,0xFE,0xEQ,0xFE,0xF 1,0xFE,0xF1} }

B-3 UCBT
Class BNEP

/*

* Note -- The bridge function of GN/NAP is supposed to implement here.

* We rather use the L3 approach to do it. That is, GN/NAP and BR are routers
* instead of bridges. This design simplifies the simulator implementation

* significantly, and we don't need to handle ARP for BT devices.

* Bridge function presented here is quite minimum.

*/

#include "I2cap.h"
#include "bnep.h"
#include "packet.h”
#include "mac.h"
#include "gridkeeper.h"
#include "Imp-piconet.h"
#include "scat-form.h"

#define BUFFSIZE 1024
int hdr_bnep::offset ;

static class BNEPHeaderClass:public PacketHeaderClass {
public:
BNEPHeaderClass():PacketHeaderClass("PacketHeader/BNEP",
sizeofthdr_bnep)) {
bind_offset(&hdr_bnep::offset );

}
} class_bnephdr;

static class BNEPClass:public TclClass {
public:
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BNEPClass():TclClass("Mac/BNEP") {}

TclObject *create(int, const char *const *) {
return new BNEP();

}

} class_bnep;

I I T
" BridgeTable /"
I LT T
int BridgeTable::lookup(int ad)
{
BrTableEntry *wk = _table;
while (wk) {
if (wk->addr == ad) {
return wk->port;
}

wk = wk->next;

}

return -1;

}

void BridgeTable::dump()
{

int cntr = 0;
printf("\nRridge Table:\n");

BrTableEntry *wk = _table;

while (wk) {
printf("%d:%d %f\n", wk->addr, wk->port, wk->ts),
cntrt+;
wk = wk->next;

}

printf("Total %d entries.\n\n", cntr);

}

void BridgeTable::add(int ad, int p)

BrTableEntry *wk = _table;
while (wk) {
if (wk->addr == ad) {

wk->port = p;
wk->ts = Scheduler::instance().clock();
refurn;

}
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wk = wk->next;

}

wk = new BrTableEntry(ad, p, (Scheduler::instance().clock()));
wk->next = _table;
_table = wk;

}

void BridgeTable::remove(int addr)

if (!_table) {
return;

}

BrTableEntry *wk = _table;
if (_table->addr == addr) {
_table = _table->next;
delete wk;
return,

}

BrTableEntry *par = _table;
wk = table->next;
while (wk) {
if (wk->addr == addr) {
par->next = wk->next;
delete wk;
return;
}
par = wk;
wk = wk->next;
}
}

// purge any entry old than t
void BridgeTable::remove(double t)
{
if (!_table) {
return;
}

BrTableEntry *wk = _table;
if (_table->ts <=1) {
_table = table->next;
delete wk;
return remove(t); // not likely to happen since header is newer.
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}

BrTableEntry *par = _table;
wk = _table->next;
while (wk) {
if (wk->ts <=1t) {
par->next = wk->next;

delete wk;
wk = par->next;
} else {
par = wk;
wk = wk->next;
}
}
}
i
1 BNEP "

I T
int BNEP::trace _all _bnep =1;

BNEP::BNEP()
: _timer(this), sendTimer(this), inqCallback(this)

{
bind("onDemand_", &onDemand_);

rolemask = ROLEMASK;
role =0;

numRole = 0;

_chan =(0;

nb_=0;

nb_num =0;
waitForlng_ = 0;
numConnReq_ = 0;
schedsend = 0;

onDemand_ = 0;
_in_make_pico = (;

num_conn = 0;

num_conn_max = 8;

_conn = new Connection *[num_conn_max};

inti;

for (i = 0; i <num_conn_max; i++) {
_conn{i] = 0;
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}

_current = 0;
trace_me _bnep_ =0;

}

{
bd addr_=ad;
imp_=1;
2cap_=12;
sdp_=s;

// 12cap_->bnep_ = this;
node = node;

}

void BNEPSendTimer::handle(Event *)

_bnep->handle_send();
}

void BNEPTimer::handle(Event *)
{

_bnep->piconet_sched();

}

void BNEPInqCallback::handle(Event *)
{
_bnep->inq_complete();

}

void BNEP::addSchedEntry(Piconet * pico, double len)
{
if (!_current) {
_current = new BNEPSchedEntry(pico, len);
_numSchedEntry = 1;
return;

}

BNEPSchedEntry *wk = _current;
do {

if (wk->pico == pico) { // do an update for existing entry.

wk->length = len;
return;

}

} while ((wk = wk->next) != _current);

void BNEP::setup(bd_addr_t ad, LMP * [, L2CAP * 12, SDP * s, BTNode * node)
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wk = new BNEPSchedEntry(pico, len);

// add to the end

wk->next = _current;
wk->prev = _current->prev;
_current->prev->next = wk;
_current->prev = wk;
_numSchedEntry++;

}

void BNEP::removeSchedEntry(Piconet * pico)

if (!_current) {
return;
}

BNEPSchedEntry *wk = _current;
if (_current->pico == pico) {

if (_current == _current->next) {
_current = NULL;
} else {

wk->next->prev = wk->prev;
wk->prev->next = wk->next;
_current = _current->next;

}
delete wk;
_numSchedEntry--;
return;

}

do {

if (wk->pico == pico) {
wk->next->prev = wk->prev;
wk->prev->next = wk->next;
delete wk;
_numSchedEntry--;
return;

}

} while ((wk = wk->next) !=_current);

}
void BNEP::disableScan()

if (!_current) {
return;
}

BNEPSchedEntry *wk = _current;

// singleton
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do {
if ('wk->pico) {
if (wk->length > 0) {
wk->length = -wk->length;
}

return;

}

} while ((Wk = wk->next) != _current);

}
void BNEP::enableScan(double len)

if (!_current) {
addSchedEntry(NULL, len);
return;

}

BNEPSchedEntry *wk = _current;
do {
if ('wk->pico) {
wk->length = len;
return;

} while ((wk = wk->next) != _current);

addSchedEntry(NULL, len);
}

void BNEP::piconet_sched()

{
int cntr = _numSchedEntry;

Scheduler & s = Scheduler::instance();

if (!_current) {
return;

}

if (waitForlng_) {
printf("waitForlng_\n");
s.schedule(&_timer, &_ev, 30E-3);
return;

)

_current = _current->next;

printf{("%d %f bnepSched p:%x %f\n", bd_addr_, s.clock(),
(unsigned int) _current->pico, _current->length);

Imp_->wakeup(_current->pico);
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}

while (_current->length <=0 && cntr-- > 0) {
_current = _current->next;

}

s.schedule(& timer, & ev, current->length);

void BNEP::inq_complete()

{

}

if (nb_) {
Imp_->destroyNeighborList(nb_);
}

nb_ = Imp_->getNeighborList(&nb_num);
waitForlnq_ = 0;
make_connections();

void BNEP::make connections()

{

}

if (nb_num < 1) {

inq(1, 7);
return;

}

intn=1;

if (canBeMaster()) {
n=MIN(nb_num, 7);
}

Bd_info *wk =nb_;

for (int1=0; 1 <n;it++) {
connect(wk->bd_addr );
wk = wk->next_;

}

numConnReq_ =n;
schedsend = 0;

void BNEP::inq(int to, int num)

{

}

Imp_->HCI_Inquiry(Imp_->giac_, to, num);
Imp_->addInqCallback(&ingCallback);
waitForlnq_ = 1;

// mask out disabled

1PSec Based Bluetooth Security Architecture

162



Appendix-B Code

// Note:

// Well, BCAST packets probably is the first higher layer packet arrived, since
// Routing Agent and LL module will send them first before a data packet can
// be sent. (LL does not send ARP pkt any more.)

1

// Senarios for onDemand Scatternet formation:

// 1. no port/conn.

// a.check L2ZCAP and LMP to see if any link exists. If so, add

" BNEP conn/port quickly. send the packet.

// b.no Links. retrieve neighbor list. Check capability. If canBeMaster,

/ if has neighbor, page them, otherwise, inquiry and paging.

I If canBePANU, page one of neighbor and do a role switch upon

I connection setup.

void BNEP::bcast(Packet * p)
{

int i;
/{ if num of bnep <= N do inqiry and paging

if (onDemand_) { // try to format the scatternet on demand
if (num_conn < 1) {
_q.enque(p);
/I _curPkt = p;
make_piconet();
return;
} else if (canBeMaster() && num_conn < 2) {
_q.enque(p);
/I _curPkt = p;
make_piconet();
return;

}
}

printf("BNEP::bcast():num_conn:%d\n", num_conn);

for (i =0; i < num_conn_max; i++) {
if (!_connli]) {

continue;
}
_conn(i]->cid->enque(p->copy());
}
Packet::free(p);
}
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#if 0
// three cases: 1. bcast.

if (role_ == PANU) {
if (_master_bd_addr) {
} else if (_ondemand) {
// inquiry and page
} else {
/1 drop the packet.
}

} else if (role_ == NAP | role_ == GN) {

/1 if no bridge, mac desn't match slaves. if _ondemand

// inquiry and page

/!

I

if ((slot = findPort(mh->macDA())) >= 0) {
_conn|slot}->cid->enque(p);

} else { // MAC_BROADCAST
beast(p);

}

} else { // BR
if (_master) {

}

3
#endif

void BNEP::make piconet()

{
if (_in_make_pico) {
return;

}
_in_make pico = 1;

!/ Check if Links exists. If so, make BNEP conn out of them,
//ConnectionHandle *¥wk = 12cap -> connhand;

/! while (wk) {

Iy

// grab neighbor list from LMP

if (nb_) §
Imp_->destroyNeighborList(nb_);

}

nb_ = Imp_->getNeighborList(&nb_num);
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}

if (isMaster()) {
} else if (isSPANU(Q)) {

}

if (isBridge()) {
}

if (canBeMaster()) {

if (nb_num <2) {
if (Imp_->suspendCurPiconetReq()) {
inq(1, 4);
} else {
inq(1, 4);
}

} else {
make_connections();

}

return;

} else if (canBePANU()) {

}

if (canBeBridge()) {

)
if (nb_num < 1) {
if imp_->suspendCurPiconetReq()) {
inq(1, 3);
} else {
inq(1, 3);
}

} else {
make connections();

}

return;

BNEP::Connection * BNEP::addConnection(L2CAPChannel * ch)

{

Connection *c = new Connection(ch);
if (nhum_conn == num_conn_max) {

}

num_conn_max += num_conn_max;

Connection **nc = new Connection *[num_conn_max];
memset(nc, 0, sizeof{ Connection *) * num_conn_max);
memcepy(nc, _conn, sizeof(Connection *) * num_conn),
delete[] conn;

_conn = nc;

num_connt+;
for (int i = 0; i <num_conn_max; i++) {
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if (_conn[i] ==0) {

_connli] =c;
c->port = i;
return C;
}
}
return NULL;
}
void BNEP::removeConnection(L2CAPChannel * ch)
{
Connection *c = lookupConnection(ch);
if (¢) {
removeConnection(c);
}
}

void BNEP::removeConnection(BNEP::Connection * c¢)

{

_br_table.remove(c->daddr);

num_conn--;
_conn[c->port] = 0;
delete c;

}

void BNEP::portLearning(int fromPort, Packet * p)
{

hdr_ip *ip = HDR_IP(p);

// hdr_cmn *ch = HDR_CMN(p);

//hdr_mac *mh = HDR_MAC(p);

//FIXME:put source ip addr as an alternative ??
_br_table.add(ip->saddr(), fromPort);

// basically, mac_addr == ip_addr in ns.

// _br_table.add(mh->macSA(), fromPort);

}

int BNEP::findPortBylp(int ip)

{
return _br_table.lookup(ip);
}
int BNEP::findPort(int macDA)
{

// only if macDA is the other end of the link
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// otherwise use _br_table.lookup(macDA);
Connection *conn = lookupConnection(macDA);
if (conn) {

return conn->port;
} else {

return -1;

}
}

BNEP::Connection * BNEP::lookupConnection(bd_addr_t addr)

for (inti=0; i <num_conn_max; i++) {
if (_conn[i] && _conn[i]->daddr = addr) {
return _connli];
}
}
return NULL;
}

BNEP::Connection * BNEP::lookupConnection(L2ZCAPChannel * ch)
{
for (inti=0; i <num_conn_max; i++) {
if (_conn[i] && conn[i]->cid == ch) {
return _conn[i];
}
}
return NULL,;
}

L2CAPChannel *BNEP::lookupChannel(bd_addr_t addr)
{

for (int i = 0; i < num_conn_max; i++) {
if (_conn[i] && _conn[i]->cid->remote() == addr) {
return _conn[i]->cid;

}
}
return NULL;
}
void BNEP::handle_send()
{
if (!_in_make_pico) {
return;
}
_in_make_pico =0;
_send();
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}

void BNEP::_send()

{
Packet *p;

while ((p = _q.deque())) {
hdr_ip *ip = HDR_IP(p);

// hdr_cmn *ch = HDR_CMN(p);
hdr_mac *mh = HDR_MAC(p);
int slot, i;

int da = ip->daddr();

if (mh->macDA() == (int) MAC_BROADCAST) {
printf("BNEP::bcast():num_conn:%d\n", num_conn);

for (i = 0; i <num_conn; i++) {
_conn|i]->cid->enque(p->copy());
)

Packet::free(p);
} else if ((slot = findPort(da)) >=0) {
_conn[slot]->cid->enque(p);

}
}
}
void BNEP::schedule send(int slots)
{

Scheduler::instance().schedule(&sendTimer, &send_ev,
BTSlotTime * slots);
}

/f Master has a scheduler. The slave is controlled by the master.
/1 10: upper layer pkt arrives.

// t1: M: idle->Inq, Page, S:idle->Scan

// 12: M: page_complete, upper layer S: conn_ind, upper layer.
I t3: M: master piconet. decide the S: Know when to return

I intv, send to S:

// t4: M: send Data - S: receive becast DATA

" put link on hold, Inq, page

void BNEP::channel_setup_complete(L2ZCAPChannel * ch)
{

Connection *c = JookupConnection(ch);

if (Ic) {
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¢ = addConnection(ch);

_br_table.add(c->daddr, c->port);
c->ready = 1;

fprintf(stdout, "%d %s ", bd_addr_, _ FUNCTION_ );
c->dump(stdout);
fprintf(stdout, "\n");

if (node ->scatFormator_) {
node_->scatFormator_->connected(ch->remote());
// return;

}

/I Add arp stuff to LL arp table, if it exists.

// TODO

// Add routing table entry.
// add SchedEntry.
// TODO

if (c->cid->connhand()->link->piconet->isMaster()) {

becomeGN();

_masterPort-++;

if (CmasterPort == 1) {
enableScan(30 * 1E-3);
addSchedEntry(c->cid->connhand()- >lmk->plconet 1);
if (evuid_ <= 0) {

/ plconet_sched(),

'}
}
} else {
becomeP ANU();
#if 0
enableScan(30 * 1E-3);
addSchedEntry(c->cid->connhand()->link->piconet, 1);
if Cevuid_<=0) {
piconet_sched();
}
#endif
}

if (!schedsend) {
schedule_send(12);
schedsend = 1;
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if (c->_nsemd) {
Tel & tel = Tcl::instance();
tcl.eval(c->_nscmd);
c->_nscmd = 0;

}

if (numConnReq_ > 1) {
numConnReq --;
}else {
_send();
}

}

void BNEP::disconnect(bd addr_t addr, uchar reason)
{
Connection *c = lookupConnection(addr);
/I assert{c && c->cid);
if (c && c->cid) {
c->cid->disconnect(reason);
}else {
ConnectionHandle *connh = [2cap_->lookupConnectionHandle(addr);
if (connh && connh->chan) {
connh->chan->disconnect(reason);
} else if (connh) {
Imp ->HCI_Disconnect(connh, reason);

}
}
if (c) {
removeConnection(c);
}
}

BNEP::Connection * BNEP::connect(bd_addr_t addr, hdr_bt::packet_type pt,
hdr_bt::packet_type rpt, Queue * ifq)
{
Connection *c;
if ((c = lookupConnection(addr))) {
return c;
}
#if 0
if (pt < hdr_bt::NotSpecified) {
Imp_->defaultPktType = pt;

}
if (rpt < hdr_bt::NotSpecified) {
Imp_->defaultRecvPktType = rpt;
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}
#endif

// In reality, this call will block until the L2CAP Channel

/1 is established. The simulator returns as long as Page request

// is queued. So, we have a flag in Connection to indicate if the

// underlying L2CAP Channel setup is completed.

L2CAPChannel *ch = 12cap_->L2CA_ConnectReq(addr, PSM_BNEDP, ifq);

if (pt <hdr_bt::NotSpecified) {  // try to change pktType
ch->changePktType(pt);

3

if (rpt < hdr_bt::NotSpecified) {
ch->changeRecvPktType(rpt);

¥

¢ = addConnection(ch);

if (ch->ready ) {
c->ready = 1;

}

return c;

}

// In current implentment, bridges are routers. l.e., UCBT adopts a L3
// approach. When packet is passed down to BNEP. MacDA() should be the
// othe end of BNEP link, unless it is a broadcasting pkt. Unlike
/! specified in PAN profile, where an external interface may exist,
// a packet to an external interface should be directed to a different MAC
// by the routing agent (hier routing).
/1 1. If the packet is bcast, send it to each port.
/1 2. Lookup outgoing port for the pkt by its MacDA(), and send to that port,
/1 3. otherwise, drop it if no port is found.
void BNEP::sendDown(Packet * p, Handler * h)
{
int slot;
hdr_ip *ip = HDR_[P(p);
hdr_cmn *ch =HDR_CMN(p);
hdr_bt *bh = HDR_BT(p);
hdr_mac *mh = HDR_MAC(p);
hdr_bnep *bneph = HDR_BNEP(p);
/I hdr_tcp *tcp = HDR_TCP(p);
double now = Scheduler::instance().clock();

bh->ts_ = now; // record time stamp, used by BTFCFS
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node_->recordSend(ch->size(), ip->daddr(), ip->dport(), &bh->hops_,
&bh->flow_ts_, &bh->flow_seq_, &bh->flow_ts_lasthop_,
&bh->flow_seq_lasthop_, ip->saddr() == bd_addr_);

bneph->u.ether.prot_type = mh->hdr_type();
bneph->ext_bit=0;

if (trace_all bnep || trace_me_bnep ) {

fprintf(BtStat::log_, BNEPPREFIX0
"%d %d:%d->%d:%d %f %d %d %d %d %d\n",
bd_addr_, ip->saddr(), ip->sport(), ip->daddr(),
ip->dport(), now,
ch->next_hop(), bh->hops_, bh->flow_seq_, ch->size(),
bh->flow_seq_lasthop_);

}

#if 0

/1 UCBT doesn't model ARP since bluetooth link are P to P and the

// both ends of a link always know the MAC of each other.

if (mh->hdr_type() == ETHERTYPE_ARP) {  // Arp packet, handle to proxy.
handle_arp(p);
return;

}

ftendif

/ int da = ip->daddr();

/I Add BNEP header.

if (mh->macDA() == (int) MAC_BROADCAST) {
bneph->type = BNEP_COMPRESSED _ETHERNET_DEST ONLY;
bneph->u.ether.daddr = MAC_BROADCAST;
ch->size() += bneph->hdr_len();
beast(p);

/1 '} else if ((slot = findPort(mh->macDA())) >= 0) {
/'} else if ((slot = findPort(da)) >= 0) {
11} else if ((slot = findPortBylp(ip->daddr())) >= 0) {

} else if ((slot = findPortBylp(ch->next_hop())) >= 0) {
bneph->type = BNEP_COMPRESSED ETHERNET;
ch->size() += bneph->hdr_len();

_conn[slot]->cid->enque(p);

} else {

/I A possible way to handle it is to bcast the pkt. However,

// choose to drop it at this moment.

// beast(p);

if (node_->getRagent()) {
node_->getRagent()->linkFailed(p);

}
// drop(p, "NoPort");

IPSec Based Bluetooth Security Architecture 172




Appendix-B Code

}
// receive packet from L2CAP CID.

void BNEP::sendUp(Packet * p, Handler * h)
{

hdr_ip *ip = HDR_IP(p);

hdr_cmn *ch = HDR_CMN(p);

hdr_bt *bh = HDR_BT(p);

hdr_bnep *bneph = HDR_BNEP(p);

// hdr_tcp *tcp = HDR_TCP(p);

if (bneph->u.ether.prot_type == ETHER PROT_SCAT_FORM) {
node ->scatFormator_->recv(p, HDR_BT(p)->sender);
return,

}

double now = Scheduler::instance().clock();
node_->recordRecv(ch->size(), ip->daddr(), ip->dport(),
bh->hops_, bh->flow_ts_, bh->flow_seq_,
bh->flow_ts_lasthop_, bh->flow_seq_lasthop_);
ch->size() -= bneph->hdr_len();

#if 0
// set mac frame paramter, we don't need to do so in the simulator.
mh->hdr_type() = bneph->u.ether.prot_type;
if (bneph->type = BNEP_COMPRESSED_ETHERNET) {
} else if (bneph->type = BNEP_COMPRESSED ETHERNET_DEST ONLY) {
} else if (bneph->type = BNEP_COMPRESSED ETHERNET SOURCE_ONLY) {
} else if (bneph->type = BNEP_GENERAL_ETHERNET) {

}
#endif

if (trace_all_bnep_ || trace_me_bnep_) {
fprintf(BtStat::log_, BNEPPREFIX1

"%d %d:%d->%d:%d %f %f %d %d %d %f %d\n",
bd_addr_, ip->saddr(),
ip->sport(), ip->daddr(), ip->dport(),
now, (now - bh->flow_ts_), bh->hops_, bh->flow_seq_,
ch->size(), (now - bh->flow_ts_lasthop ),
bh->flow_seq_lasthop_);

int fromPort = findPort(HDR_BT(p)->sender);
portLearning(fromPort, p);
uptarget_->recv(p);

return;
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Abstract: Bluetooth has recently obtained an unprecedented success in gaining a wide industry support. The
main aim of Bluetooth is to eliminate interconnection cables and to connect one device to another via a
universal radio link. First generation Bluetooth chipsets are limited inrange to approximately 10 m under typical
line-of-sight conditions. Future implementations will provide roughly ten times that range. In the present study,
a performance assessment, processing delay and throughput of IPSec over Bluetooth based on the Bluetooth
Network Encapsulation Protocol (BNEP) operation scenario, is presented. In particular, the performance of the
point-to- point link and the effectiveniess of [PSec (authentication and encryption) algorithms in Bluetooth.
Moreover, some networking issues that may limit Bluetooth applicability in sonic environments will be pointed

out.
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INTRODUCTION

Bluetooth was initially designed as an efficient cable
replacement technology primarily for handheld devices.
Indeed, all the devices belonging to one person can form
a PAN (Personal Area Network) using Bluetooth.
Bluetooth protocol stack is divided into five layers
(Bluetooth, 2001 ; Saarinen, 2000):

¢ Biluetooth Core Protocols: including Baseband, LMP,
L2CAP and SDP, comprise exclusively Bluetooth-
specific protocols developed by the Bluetooth SIG
that are required by most of the Bluetooth devices.

e Cable Replacement Protocol: i.e., RFCOMM protocol
is based on the ETSI TS 07.10 that emulates serial line
control and data signals over Bluetooth Baseband to
provide transport capabilities for upper level services.

e Telephony Control Protocols: including TCS Binary
and AT-commands are used to define the call control
signaling, mobility management procedures and
multiple usage models for the Bluetooth devices to
establish the speech and data calls and provide FAX
and modem services.

e Adopted Protocols; including PPP, UDP/TCP/IP,
WAP, WAE, etc. Due to the open nature of the
Bluetooth specification, additional protocols (e.g.,
HTTP, FTP, etc.) can be accommodated in an
interoperable fashion.

e Host Controller Interface (HCI): 1.e., the boundary
between hardware and software provides a uniform

command interface to access capabilities of hardware,
e.g., Baseband controller, link manager, control and
event registers.

The layers of Cable Replacement, Telephony Control
and Adopted Protocols form the application-oriented
protocols that enable applications to run over the
Bluetooth core protocols.

IPSec

The IPSec protocol suite is used to provide privacy
and authentication services at the IP layer. It provides a
set of security algorithms plus a general framework that
allows a pair of communicating entities to use whichever
algorithms provide security appropriate for the
communication.

The elements describing the set of IPSec protocols
are divided into six groups:

e There is the main Architecture, which broadly contain
security —requirements,
defining IPSec

the general concepts,
defimtions and mechanisms
technology.

e There is the ESP Protocol and an AH Protocol.

e The Encryption Algorithm, describes how various

encryption algorithms are used for ESP.

e The Authentication Algorithm describes how various
authentication algorithms are used for both ESP
and AH.
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e The Key Management .

e The DOI contains values needed for the other
elements to relate to each other. This includes for
example encryption  algorithms, authentication
algorithms and operational parameters such as key
lifetimes.

IP AUTHENTICATION HEADER (AH)

The IP Authentication Header (AH) is used to
provide connectionless integrity and data origin
authentication for IP datagram’s and to provide protection
against replays.

AH may be employed in two ways: transport mode or
tuninel mode. The former mode is applicable only to host
implementations and provides protection for upper layer
protocols. Tunnel mode may be employed in either hosts
or security gateways.

The first step of integrity protection is to create a
hash Ly using a keyed hash algorithm, also known as a
Message Authentication Code (MAC) algorithm, A
standard hash algorithm generates a hash based on a
message, while a keyed hash algorithm creates a hash
based on both a message and a secret key shared by the
two endpoints. The hash is added to the packet and the
packet 1s sent to the recipient. The recipient can then
regenerate the hash using the shared key and confirm that
the two hashes match, which provides integrity protection
for the packet. IPSec uses Hash Message Authentication
Code (HMAC) algorithms, which perform two keyed
hashes. Examples of keyed hash algorithms are HMAC-
MD5 and HMAC-SHA-1. Ancther common MAC
algorithm is AES Cipher Block Chaining MAC-AES-
XCBC-MAC-96- (Kent and Atkinson, 2004).

ENCAPSULATING SECURITY PAYLOAD(ESP)

The Encapsulating Security Payload (ESP) header is
designed to provide a mix of security services in IPv4 and
IPv6. ESP may be applied alone, in combination with the
IP Authentication Header (AH), or in a nested fashion
(Kent and Atkinson, 2004b).

ESP is used to provide confidentiality, data origin
authentication, connectionless integrity, an anti-replay
service and limited traffic flow confidentiality. The set of
services provided depends on options selected at the time
of Security Association establishment and on the
placement of the implementation.

ESP uses symmetric cryptography to provide
encryption for IPSec packets. Accordingly, both
endpoints of an IPSec connection protected by ESP
encryption must use the same key to encrypt and decrypt

the packets. When an endpoint encrypts data, it divides
the data into small blocks and then performs multiple sets
of cryptographic operations using the data blocks and
key. Encryption algorithms that work in this way are
known as block cipher algoritims. When the other
endpoint receives the encrypted data, it performs
decryption using the same key and a similar process, but
with the steps reversed and the cryptographic operations
altered. Examples of encryption algorithms used by ESP
are AES-CBChaining, AES Counter Mode, DES and 3DES
(Kent and Atkinson, 2004b).

IPSec OVER BLUETOOTH

The proposed idea is that authentication and
encryption in Bluetooth to be provided on IP or
application level by using IPSec according to RFC 2401
(1998) at the IP level. A protocol like IPSec is most
suitable to secure end-to-end IP services like Virtual
Private Network (VPN) services. IPSec can be used for
any IP connection independent of the particular access
method. Here only LAN access using the Bluetooth
wireless technology is considered. It is important to
notice that the use of link level security and VPN
solutions does not exclude each other but rather
complement each other.

IPSec, however, can protect any protocol running
above IP and any medium which IP runs over. More to the
point, it can protect a mixture of application protocols
running over a complex combination of media. This is the
normal situation for Intemet communication; IPSec is the
only general solution.

The problems raises is that Bluetooth enabled devices
will have the ability to form networks and exchange
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Fig. 1: BNEP Stack
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information. For these devices to interoperate and
exchange information, a common packet format needs to
be defined to encapsulate layer 3 network protocols.

Due to that, a specific packet format used to transport
common networking protocols over the Bluetooth media
(RFC 894,1996) (RFC 2225,1998) (RFC2734, 1999). The
packet format is based on Ethermnet/DIX Framing as
defined by IEEE 802.3 according to Ether Typ (2006)
(Anonymous, 1980) (Inlernat Enigeering Task Force, 1996;
1998, 1999).

The functional requirement for Bluetooth networking
encapsulation protocol includes the following according
to BNEP specification (2002):

« Support for common networking protocols such as
IPv4, IPv6, IPX and other existing or emerging
networking protocols.

« Low Overhead -- The encapsulation format SHALL be
bandwidth efficient.

The following points illustrate the BNEP header
format.

Bnep type: Seven bit Bluetooth Network Encapsulation
Protocol.

Type value identifies the type of BNEP header
contained in this packet (BNEP specification, 2002).

Extension flag (E): One bit extension flag that indicates if
one or more exlension headers follow the BNEP Header
before the data payload if the data payload exists. If the
extension flag is equal to 01 then one or more extension
headers follows the BNEP header. If the extension flag is
equal to 0x0 then the BNEP payload follows the BNEP
header (BNEP specification, 2002).

BNEP packet: Based on the BNEP Type (BNEP
specification, 2002).

Bluetooth Network Encapsulating Protocol (BNEP)
accommodates [P communication by transporting IP
packets between two Ethernet-based link layer end-points
on an IP segment. It encapsulates the IP packets in BNEP
headers, letting the source and destination addresses
reflect the Bluetooth end-points and setting the 6-bit
Networking Protocol Type field to code for an IP packet
in the payload. BNEP finally encapsulates the BNEP
packet in an L2CAP header and sends it over the L2CAP
connection (Fig. 1).

Figure 2 and 3 show BNEP with an IPv4 packet
payload sent using L2CAP after positioning AH header
and ESP header for tunnel modes.

CRYPTANALYSIS

In Bluetooth Encryption,several attacks and allempts
at cryptanalysis of EO (Lu and Vaudenay, 2004) and the
Bluetooth protocol have been made and a number of
vulnerabilities have been found. In 1999, Miia Hermelin
and Kaisa Nyberg showed that EO could be broken in 2%
operations (instead of 2'**), if a 2* bits output is known.
This type of attack was subsequently improved by
Kishan Chand Gupta and Palash Sarkar. scott fluhrer,
found a theoretical attack with a 2* operations
precalculation and a key search complexity of about 2%
operations. He deduced that the maximal security of EO 1s
equivalent to that provided by 65-bit keys and that longer
keys do not improve security. Flulrer's attack is an
improvement upon earlier work by golic, bagini and
morgani, who devised a 2" operations attack on EO.

Luand Vaudenay (2005). Published a cryptanalysis of
EO based on a conditional correlation attack. Their best
result required the first 24 bits of 2”** frames and 2™
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computations to recover the key. The authors assert that
"this is clearly the fastest and only practical known-
plaintext attack on Bluetooth encrytion compare witl all
existing attacks (Lu and Vaudenay, 2004). In the
authentication scheme of Bluetooth there seems to be
somme weaknesses.

SAFER+ according to NIST (1998) was submitted as
a candidate for the Advanced Encryption Standard and
has a block size of 128 bits. The cipher was not selected
as a finalist. SAFER+ was included in the Bluetooth
standard as an algorithm for authentication and key
generation.

Its found that in SAFER+/192 and SAFER+/256, the
key scliedules do a poor job of getting the whole key
involved quickly in the encryption process. SAFER+/192
takes five (of twelve) rounds to get the whole key
involved in the encryption process; SAFER+/256 takeés
nine (of sixteen) rounds to do so. This contrasts with
SAFER+/128, where every round is affected by every bit
of key.

Due to this slow key diffusion, a meet-in-the-middle
attack was found on SAFER+/256. This attack requires
work equivalent to about 2*° SAFER+/256 encryptions
and about 12*2% bytes of memory. Also due to this slow
key diffusion, a related-key attack was found on
SAFER+/256. This attack requires very little memory, 3 *
2** chosen plaintexts encrypted under two different keys
with a chosen XOR relationship and work approximately
equivalent to 2”°° SAFER+/256 encryptions (Kelsey et al.,
1999).

SYSTEM DESIGN

The simulation of the IPSec protocols in NS2 was
based on the existing implementation of wireless network

NS-2 (The Network Simulator) version 2 and UCBT
(Bluetooth extension for NS2) (Fig. 4). UCBT implements
a full Bluetooth stack, including Bascband, LMP, T.2CAP,
BNEP layers (UCBT, 2004).

Among the most important design principles for BT
networking are:

e  Providing for flexibility in usage as a unuversal short-
range low-cost low-power technology in a variety of
different scenarios.

e Ensuring that BT devices
manufacturers can inter-operate.

made by different

Following the first principle, BT networking topology
1s built upon the flexible concepts of the scatternet and
the piconet. A piconet is an ad hoc collection of BT
devices, where one of the devices takes the role of the
master of the piconet and the other devices take the role
of the slaves. Since each node could be a slave on
multiple piconets, a larger network structure may be
formed out of multiple piconets. This larger structure 1s
the scatternet.

Following the second design principle, a BT protocol
stack has been defined (Fig. 5). Usage profiles have also
been defined for different usage scenarios, such as LAN
access, to allow devices from different manufacturers to
inter-operate. The profiles are collections of messages,
procedures, features and parameter settings that must be
used in order to provide specific services or usage
scenarios for BT (Bluetooth, 2001). The use of profiles
somewhat limits the flexibility in terms of usage of higher-
layer protocols, network topologies and usage scenarios
to what 13 contained in the profiles.

This is a tradeoff between the two principles
discussed, In an cffort to make use of existing protocols,

Fig. 4: IPSec architecture in Bluetooth
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especially those with large installed bases like PPP, BT
gives up some efficiency and flexibility that it could have
had if more BT specific protocols had been defined. This
is a second tradeoff in BT networking design. With future
definitions of additional profiles {and maybe additional
protocols), such constraints on BT usage might be
relaxed.

QoS support: BT provides some support for bandwidth
allocation and latency control. FEC (Forward Error
Correction) and retransmission mechanisms ensure low
error rates at the expense of more overhead and the
protocols ensure in-sequence delivery of packets so that
reliable, orderly delivery of packets is expected. Link delay
and delay jitter are also not expected to be large, once a
link has been established.

Mobility support: Partial support for handoff is provided
by BT. the fact that a device can be a member of multiple
piconets at the same time means that it could in theory
perform soft handoffs. However, it is up to the
applications to include other necessary features, e.g., the
bridging, switching/routing and buffering mechanisms in
the backbone.

SAD lookup

encapsulate
HMAC-MOS

AH check

3DES, CBC encrypt

The IPSec Module is the central part (Fig. 5), which
does the whole standard conform processing of the
incoming and outgoing IP traffic. It uses a set of data
bases (SPD and SAD) to determine the flow of the IP
packets. The main processing is then done in the AH and
ESP module. A small cryptographic library contains all the
functionality used to encrypt, decrypt or to authenticate
the packets.

Since there are many security protocols in terms of
algorithms in IPSec, we decided on:

» HMAC-MD35 and HMAC-SHAI to provide origin
authentication and integrity for IP packets. MD5
should be preferred because its performance is much
better than that of SHA1(Chaudhry et al., 2002).

* In ESP implementation we support both encryption
and authentication. Encryption is done by the widely
used 3DES algorithm, which is applied in CBC mode.
Pure DES is also implemented. For authentication we
use HASH-MAC MDS.

We needed to identify the different modules out of
the IPSec architecture so that we were able to characterize
the following attributes of the modules:
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¢ Priority
¢ Dependericies
¢ Perfonnance sensibility

An important part of our work was to find a suitable
IP-stack and Bluetooth stack that is able to carry our
IPSec implementation. The Network Simulator NS-2
TCP/IP Stack has all the desired features: modular design,
active community and free BSD-style license. As well as
UCBT which has all the desired features needed for
Bluetooth stack.

From Fig. 5, any inbound data is forwarded to IPSec
input function. Depending on the protocol field in the
packet header, the entire packet is forwarded to the IP
protocol stack. If the packet could be identified as
belonging to the suit of IPSec protocols, it is transferred
to the [PSec library. Pure IPSec specific processing, such
as applying ESP de-fencapsulation or AH de-
/encapsulation is done within the IPSec library.

After these steps, the original IP packet is rebuilt by
applying new offsets and packet length to the pbuf
structure. Then the clear-text packet is passed up to the
TCP/IP stack in NS-2,

For outbound packets, all IP based protocols forward
their data to IPSec output function. Here the decision is
made whether the packet nceds IPSec processing or not.
Depending on the appropriate Security Association, AH
or ESP functiomality will encapsulate the packet. After
these steps, the packet is forwarded to the BNEP Clags of
Bluetooth Stack and sent over to the receiver.

The Security Policy Database (SPD) can be accessed
from thie LPSec module as shown in Fig. 5. This database
contains all rules required to decide how to handle
packets, which have security associations but also how
to handle non-[P traffic. There are scveral possibilities:
any non-1PSec packet can be forwarded to the default
protocol handler (in order for connections from non-IPSec
nodes are accepted) or any non-IPSec packet can be
dropped immediately without wasting CPU time on further
analysis.

BASIC CONCEPT OF SECURITY ASSOCIATION

TPSec nceds the Security Policy Database and the
Security Association Database to process packets
correctly.

The SPD defines the packets, to which IPSec needs to
be applied. To guarantee that each packet is processed
the right way, each IP packet leaving or entering the
system must be checked against the SPD. We call this
action the SPD lookup. This lookup does nothing except
compare the selectors from the database with the ones

from the packet. The SPD lookup delivers back the
following results:

« BYPASS: This packet is forwarded directly to
Bluetooth layers without applying IPSec.

e DISCARD: This packet is discarded, it will be
dropped.

»  APPLY: This packet requires IPSec processing

If the result of a SPD lookup s BYPASS, the
unmodified packet 1s forwarded to the Bluetooth layers.
This is particularly useful if certain protocols such as
ICMP should not be protected by IPSec or communication
with non-IPSec hosts must be concurrently possible.

The DISCARD rule is returned when the intention is
not to process this packet. If this is the case, the packet
will be dropped. This means that we simply delete the
packet instead of passing it to Bluetooth layers. It is
possible to use this feature to build a primitive firewall.

IPSec processing is only needed if the result of the
SPD lookup is APPLY. Whenever a packet matches an
SPD culry whose policy says APPLY, then there must
also be an SA that describes exactly how the packet has
to be processed.

A successful SPD lookup provides us with a pointer
to the SP over which we can access the SA using a
pointer stored in the SP structure. The packel can be
processed only after Security Association parameters are
successfully negotiated.

When a packel leaves TCP/AP stack, the very first
step is an SPD lookup, a determination of how the packet
must be processed. When the policy says APPLY, the
IPSec process continues. Otherwise the function passes
the packet to the Bluetooth stack or returns to the TCP/1P
stack without doing anything. After the new IPSec packet
has been built, it must be sent out on the Bluetooth stack
as shown in Fig. 6.

1P output
Discard / Appl;
{()1%_””—_
ﬁ Bypass
>
_'2’ Encapsulate
g IP sec packet
<
Bluctooth
y stack

Fig. 6: Outbound processing
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From Fig. 7, inbound processing 1s somewhat different AH PROCESSING

because an incoming IPSec packet already has an SPI,
which allows a direct lookup in the SAD table. The reason
for using the SPI is straightforward. The incoming IPSec
packet may be encrypted and so the SPD lookup, which
must be performed on the inner packet data, cannot be
performed. The SAD lookup would directly give back an
SA if one was found. If no SA is found, then the packet
must be discarded.

With the valid SA we are now able to process the
packet properly. In inbound processing this corresponds
to decapsulation in ESP or integrity checking in AH. After
the IPSec packet has been decapsulated, it can be passed
on to the TCP/IP.

Authentication is done by the well-known HASH-
MAC4 MD5 and HASH-MAC SHA1 algorithms. These
are the algorithms requested by the standard. MD5
sliould be preferred because its performance is much
better than that of SHAL.
~ If one considers that ESP also supports integrity and
authentication, one may think that there is no need for
AH. This is not true because the authentication and
integrity check of AH is a bit more sophisticated.
Authentication in AH covers more fields of the packet
than ESP does.
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AH processing can be split up into inbound and
outbound processing,.
AH inbound processing itself described step-by-step

» In order to check the integrity and the authentication
of the packet, the ICV must be calculated. The ICV
calculation in AH also covers the outer IP header. In
this header there are so-called mutable fields, which
change their value while they are sent across the
network. Those fields (Type of Service, Offset, TTL
and checksum) must first be set to zero, The 1CV
ficlds in the AH header must be backed up and
zeroed, so that later comparing remains possible. It
becomes clear that AH authentication also covers the
source and destination address of the outer IP packet.

e The packet is now ready to be verified and the
integrity check value can be calculated over the
whole packet. The SA determines the appropriate
algorithm and key.

e The calculated ICV can be compared with the one
saved in the first step. Processing continues only if
the calculated ICV matches the original one.

»  The authentication of the packet is now verified and
the anti-replay check can be performed. If it is
successful, the sequence number (stored in the SA)
1s incremented. Finally, the offset and packet length
are passed back.

AH outbound processing described step-by-step:

e First of all a new AH header is placed in front of the
IP packet, leaving a gap between the inner [P header
and the AH header. This gap is later used to place the
ICV. The AH header fields: next header, length, SPI
and sequence number are added.

e After the outer IP header has been constructed, only
the source and destination address, version, header
length and total length are set. The other fields are set
to zero as a preparation for the ICV calculation.
Padding is not required because the packet is already
aligned.

» The integrity check value can now be calculated and
placed into the gab between AH header and inner IP
header.

e After the ICV has been calculated, the zeroed fields
are now filled with the appropriate values.

¢ Finally, the offset and the packet length are passed
back.

ESP PROCESSING

In our ESP inplementation we support both
encryption and authentication. Encryption is done by the

widely used 3DES algorithm, which is applied in CBC
mode. Pure DES is also inplemented. For authentication
we use HA SH-MAC MDS5 and HASH-MAC SHALI.

ESP processing can be split up into inbound and
outbound processing.
ESP inbound it self described step-by-step:

* A check in the SA structure indicates whether
authentication needs to be checked or not. If an
authentication algorithm is specified within the SA,
the TCV must be caleunlated and compared with the
otte stored at the end of the ISP pucket. The 1CV iy
calculated over the whole ESP header, IV aud
enciypted payload. Processing continues only when
the packets ICV matches our recalculated one.

* In the next step we have to decrypt the packet. The
decryption algorithin and the secret key can be
accessed over the SA. Because the packet was
encrypted in CBC-mode, the IV must be copied out of
the ESP packet. The IV is stored between ESP header
and encrypted payload. The decryption happens in-
place, so no copying must be done.

¢ Before everything is done the sequence munber
counter in the SA is incremented and opticnally the
same is done with the anti-replay window. To let the
caller of the ESP function know about the location
and the size of the extracted IP packet, the offset and
the packet length are giving back.

ESP outbound processing itself described step-by-step:

*  The first step of encapsulation is to test whether the
decremented TTL field of the IP header reaches zero.
If this is the case, the packet must be discarded in
order to prevent endless straying of packets.

¢ Then we have to calculate how much padding must
be added to fulfill the requirements of the encryption
algorithm. The right amount of padding bytes is
added at the end of the payload. The fields: padding
length and next header are appended right after the
padding.

*  Encryption is performed according to the settings in
the SA. After encryption, the used IV is copied in
front of the encrypted payload.

+  ESP header is added in front of the IV. Inserted are a
incremented sequence number and the SPI taken out
of the SA.

* The SA must be checked to see if authentication is
enabled. If this is the case, then the ICV must be
calculated according the SA’s settings. The ICV,
which is calculated the ESP leader, the IV and the
cnerypted payload, is copied at the end of the
payload.
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e QOuter IP header can be constructed using the tunnels
source and destination address given as input
arguments to the function. The TOS field is copied
from the inner IP header. Finally, the offset and the
length are passed back, so that the caller can update
its data structure, where the packet is stored.

RESULTS AND PERFORMANCE ANALYSIS

IPSec over Bluetooth scenario was simulated with a
constant FTP source on top of TCP with a packet size of
2000 bytes between two nodes (node 0 and node 1).

Table 1 show the Simulations of the system design
described in section 5 using different algorithms using the
hand-off rate of 60 seconds. HMAC- MDS5 has shown to
have the highest No of Bytes sent where 3DES HMAC-
MDS5 has lowest.

The difference in simulations' time varies from one
algorithm to another due to the delay required for the
authentication or encryption procedure. As delay
consumes more time, it affects the No. of packets
generated. As shown in Table 1, HMAC-MDS5 algoritlun
has the lowest delay but the highest No. of packets
generated, where 3DES HMAC-MDS5 algorithm has the
highest delay but the lowest No. of packets generated.

It's also noticed that the average packet size is not
fixed due to different types of packets (TCP,
Authenticated packets, Encrypted Packets, ACK, etc...,)
sent between nodes where each has a different size.

Authenticated packets (HMAC-MD5 and HMAC
SHAT1) almost have the same average packet size while
3DES HMAC-MD5 has higher average packet size in
encryption (ESP).

In order to study the Performance of TPSec over
Bluetooth, we measured the cumulative sum of packets in
each of the cases, as well as the throughput and end 2
end delay imposed by the security protocols IPSec.

Figure 8, depicts the decrement of the TCP packets
sequence 1n different scenarios (No IPSec, MD5, SHAL,
DES-MD5 and 3DES-MDS5). The reason behind this
decrease in No. of packets is the Authentication and
Encryption Procedure which includes SPD lookup when
the result is DISCARD. This means that we simply delete

Table 1: Retreived initial results

the packet instead of passing it to Bluetooth layers, so the
packet 1s lost thus more delay is consumed and wasted
The Fig. 8a and b scenarios showed that number of
packets 1s decreasing in authentication and encryption
compared 1o Bluetooth with no IPSec. As it is seen
HMAC-MDS5 performs better than HMAC-SHA1 while
sending and receiving packets. As well as DES-MD5
performs better than 3DES-MDS5.

Plain Bluetooth packets and HMAC-MDS share
almost the same performance at trade-off rate 7, but later
on HMAC-MD5 start losing packets and decrements
more.

On the other side, SHA1, DES-MDS5 and 3DES-MD5
share almost the same performance at trade-off rate 12
where SHALI starts catching up with MD5, while DES-
MDS5 and 3DES-MD5 remain sharing it till trade-off rate 18.

Throughput 1s defined as the percentage of packets
that experience a Bit Error Probability (BEP) that is less
than a maximum allowable BEP, BEPth. The BEPthis set to
a value of 0.1% (or 10™), ie., a packet is considered
reliable as long as its BEP is not greater than BEPth. The
quality of the link vacies from one BT unit to the next
within the scatternet. It is highly dependent on the
relative spacing of the BT devices within the scatternet.
Hence, the percentage of reliable packets has to be
determined by collecting the statistic over inany
realizations of the scatternet. The conservative measure of
10th percentile i1s used to represent the throughput
performance of the BT network.

The throughput results are shown in Fig. 9. There is
a significant difference between the simulated scenarios.
As we can see, the throughput in HMAC-MDS5 and
HMAC-SHA is not the same due to a better performance
from HMAC-MDS. In respect to the encryption, DES-
MDS has a better throughput than 3DES-MDS5.

In sending packets, plain Bluetooth packets
throughput remam at a rate of 78, HMAC-MDS5
throughput is at around 50 while HMAC-SHALI at a rate
of 40. For encryption algorithms, throughput rate is 15 for
DES-MD5 and 8 for 3DES-MD5.

These rates decrease while receiving packets; they
become around 37 for plain Bluetooth packets, 28 for
HMAC-MDS, 20 for HMAC-SHAL, 6 for DES-MD5 and 2
for 3DES-MDS.

Parameters No. [PSec HMAC MDS5 HMAC SHAL DES HMAC- MD5S 3DES HMAC- MD5
Simulation start titme 1.30513601 1.4471 1.46 1.5374 1.6665
Simutation end time 60.08551301 60.073 59.6643 59.9108 60.0448
Simulation length (Sec) 58.7880377 5862592863 58.20427423 5837336781 58.37830156

No of generated packets 4500 3501 24439 658 237

No of lost packets 2260 1753 1222 330 119

No of received packets 2240 1648 1217 328 118

Avg. packet size 1051.7595 1066.1472 10662114 1074.5023 1069.6913

No of sent bytes 4698000 3700136 2578664 701480 251668




SRR a1 A AT I e ORI

e B R ¥ W e o Pk e

Fig.

Fig.

Inform.
it
v Badmy
b u
on Lo g
§ e LR MDY
b
i
LI
fois
s
ws0n
van
bl " sumf"““"j%

ITRR——

'
M‘M S R4
s ARSI e R e : ;
o

‘
10 » & i 1
Hrre wowk Few Jen)

Performance of Cumulative sum of numbers of
sent packets

a
=4
4

i
g
faegn
i it
B
1
o 2 . e
as L # « e A e o WA il
” .m:f'::“ s g TR AR TS
AT : 8 !
o Cod W Finid
. 8b: Performance of Cumulative sum of numbers of
received packets
. o g

x

G b
T WO
Bl S % 1

2

i s ¥

i §

s 2

k-1

TENSRT T F LAY PIFRE S I

i ? ¥
% :

B * EY }
,,;& J . & X

1) & » e Pl 3 S onk 4 wwmed .
I Rl ST s
H i

w i s £
xralin v (e}

9 (a): Throughput of sending packets

» - P . o

e R R e R i)

® ¥
Frnarmesre [2ach

9b: Throughput of receiving packets

Fig.

Fig.

Technol. J., 2007

Tawi n
2y .
s
- PERMDY
2387 & Fmnbey
it
A
r?, tay:
E 0 e e b et s e s
%yn:
i
visd
vl i
[ . PR . . .
t ¥ ¥ £ & * T #* o
THte U of g s e aTh 3 \iE
10a: Throughputs of senidng bits vs. average
simulation end 2 end delay
"“: - - PR e
2 ey
2t R
; . tEmmLY,
s w e BRBMDE K
P e .
;um o
#ooe
5!%? +
¥
ek R Vi e ke
Varagrod 2 me: nang s rerhiLp
10b: Throughputs of receiving bits vs. average

simulation end 2 end delay

Contrary to our expectations, the throughput in

Bluetooth environment is driven by the effect of:

10

The successive sending of constant packets, whether
its ACK packet where throughputs increases or
encrypted and authenticated packets in which
throughput decreases.

The erratic behavior of delay imposed by the
encryption and decryption of the data.

The erratic behavior of the Bluetooth wireless link,
Wireless links are characterized by higher bit error
rates and this causes inefficiencies in the operation of
TCP. Essentially, any perceived packet loss
(occurring because of error or buffer overflow) is
construed by a TCP sender as occurring due to buffer
overflow., The response of TCP to all such events is
toinvoke its congestion control procedures, resulting
in unnecessary window reduction, which causes a
drop in the TCP throughput. Note, though, that some
of the packet losses occur due to corrupted packets
being dropped by the link layer and invoking the
congestion avoidance procedures when these events
occur is not desirable.
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Figure 10 show a comparison of Throughputs vs.
average simulation end 2 end delay. There is a big and
noticed difference of end 2 end delays while sending the
bits and rise in the throughput. While in receiving bits,
both factors also affect the bits transmission.

The main difference noticed raises at throughput of
sending and receiving packets, while end 2 end delay
almost equal in case of Authentication algorithms, it's also
the same as for Encryption algorithms.

CONCLUSION

This study proposed a new Bluctooth security
scheme, which allows ad-hoc (PAN) based on Bluetooth
technology to communicate with other devices in full
secure channel includes authentication and encryption,
unlike for the present schemes with weak security
(E0 and E1).

In addition, as shown in Fig. 11, the throughput in
sending packets is reduced by almost 35-50% for
authentication and 80-90% for encryption compared with
the cases where IPSec was not used. While in receiving
packets, throughput is reduced by almost 30-45% for
authentication and 80-95% for Encryption.
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Fig. 11a: Packet size vs. average throughput of sending
packets
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Fig. 11b: Packet size vs. average throughput of receiving
packets
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The throughput in Bluetooth environment is driven
by the effect of the successive sending of constant
packets, the erratic behavior of delay imposed by the
encryption and decryption of the data, the erratic
behavior of the Bluetooth wireless link and Wireless links
are characterized by higher bit error rates and this causes
inefficiencies in the operation of TCP.

We have not addressed the issues related to
Bluetooth radio layer and polling algorithm at the
baseband, where problems such as noise, interference and
packet loss, may have a significant impact on performance
(Misic and Jelena, 2003).

Over all and according to the results in the previous
section, it has been proved that HMAC-MDS5 performance
better than HMAC-SHA1 for authentication and DES/
HMAC-MDS5 reliable than 3DES/ HMAC-MDS for
Encryption.
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