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Introduction 



1. Introduction 

Bluetooth wireless technology is gradually becoming a popular way to replace 
existing wire line connections with short-range wireless interconnectivity. It is also an 
enabling technology for new types of applications. In this chapter we give a shorl 
backgro~nd and a condensed description of how the Bluetooth syslem works. We will 
focus on details that directly or indirectly relate to security issues and on the 
functioizality that is important in order to understand the concept of the technology. 
The reference documentation for Bluetooth wireless technology is given in [I]. 

1.1 Bluetooth system basics 

1.1.1 Background 

Bluetooth wireless technology is a short-range radio technology thal is 
designed to fillfill the particular needs of wireless interconnections between different 
personal devices, which are very popular in today's society. The development of 
Bluetooth started in the mid-1990s, when a project within Ericsson Mobile 
Coinmunications required a way to connect a keyboard to a computer device without 
a cable. The wireless link turned out to be useful for many other things, and it was 
developed into a niore generic tool for connecting devices. A synchronous mode for 
voice traffic was added and support for up to seven slaves was introduced. I11 order to 
gain inoinentuin for the technology and to promote acceptance, the Bluetooth Special 
Interest Group (SIG) was founded in 1998. 

The group consists of many companies from various fields. By joining forces, 
the SIG members have evolved the radio link to what is now known as Bluetooth 
wireless teclmology. 

1.1.2 Trade-offs 

Bluetooth wireless technology is targeting devices with particular needs and 
constraints. The main issues are, as with all battery-powered consumer electronics, 
cost and power consumption. Consequently. certain design trade-offs have been made 
between the cost and power consumption on one side and overall performance on the 
other. For instance, some of the specified requirements for the radio (par~icularly the 
sensitivity numbers) are chosen to be so relaxed that it is possible to implement a 
rather cheap one-chip radio with very few external coinponents (such as filters). 

The price paid is in a shortening of the range, as it will decrease with 
decreased sensitivity. On the other hand, some requirements are quite stringent (e.g. 
adjacent channel rejection) in order to handle interference at frequencies near the 
intended signal. This helps to keep up the aggregated throughput when inany links are 
running simultaneously. One major design goal is to have the system quite robust in 
noisy environments. This is because interference rather than range is expected to be 
the limiting factor of the perceived performance. 

In contrast to most other well-known radio standards used for data 
coniinunicatioii [e.g., Institute of Electrical and Electronics Engineers (IEEE) 802.1 1 b 
and HIPERLAN], the specification has been written fiom the beginning with use 
cases for handheld personal devices in mind. In particular, there is no need to have an 
infrastructure (i.e., base stations) in place. The flexible Bluetooth master-slave 
concept was introduced to fit well in a dynamically changing constellation of devices 
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that conlmunicate with each other. Furthennore. due to the wide range of 
requirements for the traffic types for different applications, Bluetooth can handle 
various data transport channels: asynchronous. isochronous, and synchronous. It is 
even possible for a device to mix asynchronous (data) and synchronous (voice) traffic 
at the same time. 

In a radio environment where communication links are set up on request rather 
than by defa~dt (without the need lor a centralized infrastructure, as in cellular 
networks) and where any node is able to communicate with any other node. 
networking is usually called ud hoc netw~orking or od hoc coi~nectivity. As we will 
discuss later in the thesis, ad hoc connections impose special requirements for the 
security f~~nctionality for the system. Bluetooth wireless technology is particularly 
well suited for ad 11oc usage sccnarios. 

1.1.3 Bluetooth protocol stack 

The Bluetooth system stack is layered according to Figure 1.1. At the bottom 
is the physicu lcryer. which is basically the modem part. This is where the radio 
signals are processed. The fundamental limits on sensitivity (range) and interference 
rejection are set by the radio front end (noise figure) and filters i~nple~nented in this 
layer. 

I Bluetooth hod I 

RFCOMM 

end isechronars and isochronous 
unlramedtraffic framed traffic 

F A . .  

Oata Ce~trol Data Control 

I TI. manaoer 1 [+* manager - 

Baseband resowce 
baseband manegsr 

I layer i * ' I 
h e r  
baseband 
lnver 

I 

Physical f 
layer RF 

Blustcah controller 

Figure 1.1 A schematic view of the Bluetooth protocol stack architecture [I] .  

Above the physical layer is the bc~wbcmd layer, which is divided into lower 
and upper p'uts. In the following, we will not differentiate bctwcen these. but simply 
refer to them as the baseband. It is at this layer that packets are formatted: creation of 
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headers. checksum calculations. retransmission procedure, and, optionally. encryption 
and deciyption are handled. The link controller (LC) is the entity that iinplelnents the 
baseband protocol and procedures. 

Bluetooth links are managed by thc litzk munuger (LM). 'l'he devices sct up 
links. negotiate fcatures, and administer connections that arc up and running using the 
link nwmuger* protocol (LMP). 

Large chunks of user data need to be reformatted into smaller units before they 
can bc transmitted over the 13luetooth link. It is the ~~csponsibility of the logical link 
con7municafion and aduptutionprotocol (I.,2CAP) to tcakc carc of this. 

At this layer it is possible to ask for certain qzrulify-qflserviceeve (QoS) values 
one would like to reserve for the link. In many cases, the Bluetooth functionality is to 
be integrated into a host entity that has computatioilal power but lacks the radio part. 
For this purpose, Bluetooth modziles handling only the lowcr laycrs exist. Thc entity 
handling the fi~nctionality 01' these layers is sonletimes referred to as the Blzietooth 
conlroller'. 

For instance, a laptop that is perfectly capable of llandling higher protocol 
layers can embed a module that handles radio, baseband, and 1.2CAP. In such a setup, 
the higher layers that are implemented in the host entity will con~municate with the 
lower layers of the module through the host conlroller inferface (HCI) .  

1.1.4 Physical layer 

Bluetooth radio operates in the license-free and globally available inc2'~1striul, 
scienfzfic, nnd vnedicul (ISM) band at 2.4 GHz. Because the ISM band is free, 
Bli~etooth has to share this frequency band with many other systems. Various wireless 
coinmunication systems operatc in this band (bcsides Bluetooth, IEEE 802.1 1 b, most 
notably). Other systems may be defined in the future. One other common device 
emitting radio frequency power in this band is found in almost all homes: the 
microwave oven. Even though the vast ma-jority of the radiation is absorbed by thc 
food inside the oven. some of it leaks and will appcar outside as interference. 
Actually, the leakage may be as much as 1,000 times more powerful than the signal 
one tries to capture, so this interference cannot be neglected. 

Fortunately, the interference is not there all the time (loosely speaking, the 
radiation cycle follows the frequency of the power supply) and is not over the entire 
frequency spectrum (approximately 15 to 20 MHz of'the frequency band is affected 
by the microwave oven). 

All in all. it is very hard to pscdict what kind of intcrfercnce to cxpcct in the 
ISM band. To combat this. Hluctooth deploys n ji-equcncy hopping ( F I - I )  sprcad 
spectrum technology. There are 79 cllaniiels used, each wilh a bandwidth of 1 MHz. 
During con~municcltion, the system makes 1.600 hops per second evenly spread over 
these channcls according to a pscudorandom pattern. I h c  idea is that if one transmits 
on a bad channel, the next hop, which is only 625 ps 6 Bluetooth Security later, will 
hopefully, be on a good channel. In general, faster hopping between frequencies gives 
more spreading, this improves on protection Srom other interl'erence. However, the 
improved performance comes at the cost of increased complexity. The hopping rate 
chosen for Bluctootl~ is considcrcd to bc a good tradc-off bctwccn pcrforrnancc and 
complexity. 

The signal is transmitted using binary Gaussiun fi.eqzrency shiji keying. The 
raw bit rate is I Mbps, but due to various kinds of protocol overhead. the user data 
rate cannot exceed 723 Kbps. Following regulatory bodies in different parts of the 
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world, thc maximum transmit power is restricted to 100 niW (or, equivalently. 20 
dBm). It is expected that this will give a range of 100m at line of sight. 

Another power class, where the output power is restricted to 1 mW (0 dBni), is 
also defined. Radios of this power class arc morc common in handheld devices, and 
thcy will liavc a rangc of approximately 1 Om at line of sight. 

One should notice that the specification defines the sensitivity level for the 
radio such that the raw bir error rule (BER) 10-3 is met, which translates into the 
range numbers given above within the specified link budgct. It is around this raw 
BER that a voice link without error-correcting capabilities becomes noticeably 
distorted. This is a major reason for the choice of the BER 10-3 as a benchmark 
number for the radio specification. However, for data traffic, Bluetooth applies cyclic 
rcdtrndnncy check (CRC) as well as optional crror corrcctioil codes. 

Thus, if the rccciver detects a transmission error. it will rcqucst a 
retransmission. The result is that when operating at BER 10-3 (and even worse. to 
some extent), a data link will function quite well anyway. Depending on payload 
lengths and packet types, the decrease in throughput may even be unnoticed by the 
user. 

This is, of course, good for the users, but also for potential eavesdroppers, who 
may be able to choose a position at a safe distance beyond the specified range for their 
purposes. 

1.1.5 Baseband 

Addressing and setting up com~ections Each Bluetooth radio comes with a 
unique, factory preset 48-bit address. This address, known as the Bluetooth device 
nddress (BD ADDR), constitutes the basis for identification of devices when 
connections &e established. Before any connection can be set up, the BD-ADDR of 
the addressee must be known to the side that initiates a connection. For lirst-time 
connections, this is accon~plished by having the initiating side collect the device 
addrcsscs of all nearby units and then individually addrcss thc onc of interest. This 
step is known as tlie inquiry procedtrre. Naturally, once this has been done, the 
inibrnlation gathered can be reused without tlie need Ior another inquiry at the next 
connection attempt to one of the known dcviccs. 

The first step in finding other devices is to send an inquiry message. This 
message is repeatedly transmitted following a well-defincd. rather short hop sequence 
of length 32. Any device that wants to be visible to others (also known as being 
discovernble) frequently scans tlic inquiry hop sequence for inquiry messages. 

This procedure is referred to as inquiry scan. A scanning device will respond 
to inquiries with its BD-ADDR and the current value of its native clock. The inquiry 
message is anonymous and there is no acknowledgment to the response, so the 
scanning device has no idea who made the inquiry, nor if the inquirer received the 
response correctly. 

The inquirer gathers responses for a while and can, when so desired, reach a 
particular device through a page message. This niessage is sent on another lenglh 32 
hop sequence determined from the 24 least significant bits of the RD-ADDR [these 
are denoted by lower nddvesspart (LAP)] of the target device. 

A device listens for page messages when it is in tlie pcge scan state. The phase 
(i.e., the particular position) of the FH sequence is determined from tlie device's 
native clock. The paging device lias knowledge of this from the inquiiy response; thus 
it is possible for the paging devicc to hit the correct frequency of the paged device 
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fairly quickly. As already has been stated. the inquiry part can be bypassed when two 
units have set up a connection before and want to connect again. If a long time has 
passed since the previous connection, the clocks of the devices may have drifted, 
causing the estimate of the other unit's native clock to bc inaccurate. The only effect 
of this is that the connection set-up time may increase because of the resulting 
n~isalignn~ent of their respective phase in the page hop sequence. 

When a page response is received, a rough FH synchronization has been 
established between the pager and the paged dcvicc. By definition. the pager is the 
master and the paged device is the s fme .  The meaning of these terms will be 
discussed in the next section. Before the channel can be set up, some more 
inlormation must be exchanged between the devices. The FH sequence, the timing, 
and the channel access code (CAC)  are all derivcd from the master device. In ordcr to 
fine tunc the FI-I synchronization, the slave needs thc BD AUDK and the nativc clock 
of the master. This information is conveyed in a special sent from the master to 
the slave. With all information at hand at the slave side, the master and slave can 
switch from the page hopping sequence (defined by the slave) to thc basic channel 
hopping sequence determined by the master's parameters. Details on this process can 
be found in [2]. 

1.1.5.1 Topology and medium access control 

Networks are formed using a star topology in Bluetooth. Not more than eight 
simultaneous devices can participate in one of these piconets. The central node of the 
piconet is called a master and the other nodes are called slnves. Thus. a piconet will 
have exactly one master and at least one but at most seven slaves. The 8 Bluetooth 
Security simplest form of piconet is illustrated in Figure 1.2(a). Inlormation exchange 
within the piconet is done by sending packets back and forth between devices. 

Full duplex is accoinplished using a rime division dzrplex mode; that is, the 
channel access is divided into time slots assigned to the communicating parties. Who 
gets access to the channel is determined by the piconet master simply by addressing a 
slave. which will then have the right to send in the next time slot. 

Being in connection state. the piconet devices follow a long deterniinistic F1-l 
sequence determined from the master's LAP and native clock. The length of this 
sequence is 223, which roughly corresponds to a 23-hour cycle. Following from the 
fact that a device can only be master of one piconet at a time, every piconet will have 
diffcrcnt PI4 sequences. To stay tuncd to its piconet, each slave mcniber must 
co~itinuously adjust li)r cloclc drill to thc mastcr by monitoring thc trallic scnt ovcr the 
channel. Only master-to-slave and slave-to-master com~nunication is possible. 

Consequently, slave-to-slave traffic must be relayed via the master. If one 
particular device is involved in all traftic, there is a risk that it becomes a bottleneck 
for the data transfer. This property is suboptimal with respect to the aggregated 
system throughput. However, an important concept in Bluetooth is that all devices 
have the ability to take the role of either slave or master, so the slaves may choose to 
create another piconet. Doing so is better for the aggregated throughput. since quite 
many piconets can actually be opclnted in parallel before mutual interference cancels 
the benefits inherent in the parallelism. This principle is shown in Figure 1.2(b). 

In principle, a Bluetooth device is allowed to participate in more than one 
piconet siinultaneously, as illustrated in Figure 1.2(c). 'This is acconlplished using 
time sharing between the different piconets. To accommodate for this, the low-power 
modes hold, park, and sn[ffcan be used. Without going into detail, these modes make 
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it possible for a device to ten~porarily leave a piconet to do something else (e.g., to 
sleep to save power or join another piconet). Thus, by having one device is a member 
of two piconets, it is possible to exchange information between piconets by relaying 
traffic via the common node. There are, of course, practical problems with this-such 
as tinling issues and fulfilling quality of service when a device is absent from the 
piconet-but the possibility is given in the specification. One limitation is that a 
device can only be the master in at most one of the piconets of which it is a member. 

Figure 1.2.Three different piconet constellations: (a) two devices, (b) master relaying 
versus two separate piconets, and (c) interpiconet scheduling using time sharing. 

1..1.5.2 Traffic types 

Bluetoot11 wireless technology is designed to handle quite different types of traffic 
scenarios. Data may be sent without any QoS requirements (referred to as best efort 
traffic); thus, no bandwidth needs to be reserved and there are no requirements for 
latency or delay. Typically, file transfer and data syi~cl~onization fall into this 
category. Sometimes this traffic is called asyr~chronous. For real-time, two-way 
communication, the round-trip delay must be kept small, as do variations in the inter 
arrival time of data samples. If not, the quality will be perceived as unacceptable. This 
type of traffic is referred to as .sy~chronous. 

Typical examples are speech and video conversations. Streaming audio and video 
falls somewhere in between these categories. Small time variations between data 
samples are still important, but latency and roundtrip delays are of less interest. Such 
traffic is called isochronous. Bluetooth can handle all these traffic types-it is even 
possible to mix asynchronous and syncl.lronous traffic between the master and a slave 
at the same time. 

A synchronous link in Bluetooth is referred to as a synchronous connection 
orienied (SCO) link. It is a point-to-point link between the master and a slave where 
traffic is sent on slots reserved at regular intervals. Another logical link that carries 
traffic on reserved slots is called elzhanced synchrowus connection-oriented (eSCO) 
link. Both these logical links provide constant rate data services by carrying fixed- 
sized packets on reserved slots over the physical channel. The eSCO link (introduced 
in Bluetooth version 1.2) is more flexible than the SCO link in that it offers more 
freedom in choosing bit rates and it is more reliable, as a limited number of 
retransmissions can take place in between the reserved time slots. 
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The asynchronous connection-oriented (.logical transyor-t) (ACL) link is a point- 
to-multipoint link between the nlaster and all the slaves 011 the piconet. 
No slots are used. The master can address an arbitrary slave at any slot not 
reserved for SCOleSCO traffic, even one that has a SCOIeSCO logical link running 
with the master. 

1 .l.W Packet structure 

A baseband packet consists of an access code, a packet header, and the puyload 
The access code, which comes first in each packet, is used to trigger and synchronize 
the receiver. Each piconet uses a unique access code derived from the BD-ADDR of 
the master. Thus, by inspecting the access code, a receiver can determine if a packet is 
for another piconet. In that case, processing the rest of the packet can be aborted, 
which will help it save some power. Moreover, as the access code defines where a slot 
boundary is, it is used to time-synchronize the slave to the nlaster clock. 

This is necessary, as time drift is inevitable between different devices due to 
differences in their respective crystal frequencies. Consequently, each slave of a 
piconet must continuously adjust its clock offset relative to the nlaster clock; 
otheiwise it will eventually lose connection with the master. 

The packet header is used to address individual slaves of a piconet. For this 
purpose, a 3-bit field denoted by logical transport address (LT ADDR) is used. The 
master assigns nonzero addresses to slaves at connection setup. while the all-zero 
address is resewed for broadcast messages. Apart from this. the packet header 
conveys information regarding the type of data traffic, flow control, and the 
retransmission scheme. To increase the robustness of the packet header, it is encoded 
with a rate R 0. 1/3 repetition code (i.e., each bit is repeated three times). 

User data is carried by the payload. The length of this field can vsuy depending on 
the type of traffic-from zero bytes (for acknowledginent of received data when 
nothing needs to be sent in the reverse direction) up to 339 bytes (plus 4 bytes of 
payload header and CRC). The packet format is depicted in Figure 1.3. 

A baseband packet may occupy up to 1. 3, or 5 slots, depending on its type. This 
allows for having asynmetric data rates in the forward and reverse directions without - 

the overhead penalty that one-size packets would cause. Error detection may be 
applied through a 16-bit CRC code. Furthermore. it is possible to apply an error 
correcting code to the payload-either a rate R 0. 1/3 repetition code, or a (15, 10) 
shortened Hamming code [3] (which has rate R 0. 2/3)-when link conditions are bad. 
In the Bluetooth specification, one uses the notion forward error correction (FEC) for 
this. 

AR'O hi  

Figure 1.3 Packet format u ised in Blue 
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Best effort traffic (i.e., ACL links) without an error correcting code are carried 
over packets denoted by DH1, DH3, and DH5, where D indicates data, H stands for 
high rate, and the number is the maximum nunlber of slots occupied by the packet. 
Similarly, there are DMI, DM3, and DM5 packets (where M stands for medium rate) 
for packets utilizing the shortened Hamming code. Using these packet types. it is 
possible to have user data rates ranging from 108.8 Kbps (symmetric, DMI) to 723.2 
Kbps (forward) and 57.6 Kbps (reverse) for DH5 packets. 

The achievable data rates using ACL packets are sunlmarized in Table 1 . l .  For 
synchronous traffic. there are the HV1. HV2, and HV3 [where H stands for high- 
quality (referring to the relatively high bit rate available for speech coding) and V 
stands for voice] packets of 10.20. and 30 infornlation bytes. respectively. These one- 
slot packets have 1-10 CRC applied to the payload and are typically used to carry voice 
traffic. The achievable rate for all HV packets is 64 Kbps. The HVI packet is 
protected by the rate R 0. 1/3 repetition code, the HV2 packet is protected by the rate R 
U.2/3 Hanuning code, and the MV3 packet has no error correcting code applied. 

Table 1.1 
Sumnia~yof AACL Paclets and T1iei1-Adiiembla Data Rates [in k'hp.3) 

- 

Asymmelric 
Max. Rate 

Prryle~d Symmetric 
Type Ildonnation Bytes) FEC CRC Max. Rate Farward Revelse 

DM 1 0-17 2 Yes 1m,8 1 OB. 8 108.8 

BH1 W . 7  Yes 1 72.8 172.8 172.8 

DM3 13-121 33 Yes 233.1 387.2 54.4 

nH3 0-183 Fils Yes 3N.4 335.6 86.4 

DM5 0-224 3 Yes 2@,7 477.8 36.3 

OH5 Q-339 No Yes 433.9 723'2 57 .G 

AUX1 0-29 No No 185& 185,fi 1R5.6 

There is also a DV,packet which consists of two parts-one carrying 10 bytes 
of voice data (no CRC) and one carrying asynchronous user data (0 to 9 bytes) for 
which CRC is applied. The voice part also offers 64 Kbps. In addition to these, the 
eSCO logical transport is mapped on EV3, EV4, and EV5 packets. All these have a 
CRC, which implies that retransmission is possible if no acknowledgn~ent has been 
received within the retransn~ission window. The EV4 also applies the error correcting 
code to the payload. For these packets, the achievable rates are 96, 192, and 288 
Kbps, respectively. The rates that are supported for synchronous traffic are 
summarized in Table 1.2. 

1 .l.6 Link manager protocol 

It is the link manager that is responsible for the control of the Bluetooth link. 
That includes all tasks related to the setup, detachment, or configuration of a link. The 
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IJM is also responsible for exchanging security-related messages. The LMs in 
different units exchange control messages using the LMP. A large set of control 
messages or LMP protocul dnla ulzils (PDU) have been defined. Many of these are 
security related and some PDUs are used to carry the infoimation needed at pairing 
and authentication, and for enabling of encryption. 

Table 1.2 
Sumrnsryd Synch~onous P a c k  and Th~ir khievable Data R&BS (in Kbps) 

Payload Symmetric 
Type tlnlarmafion Bytes) FEC CRC Max, Rale 

HVI  10 1 . 3  No 64 

HI,",. 29 2/3 No 64 

HY3 330 No No 64 

OY 10+1,&9). ZD' ye: 64+ 57.6. 

W3 1 3 0  140 Yes 96 

N3 1-120 21'3 Yes 192 

N5 1-180 N o  Yes 288 

'Marked items of the D'r 'pck~t  am only relwnt to t l ~  data pan crf tk ~u$xid. 

The LMP PDUs are transferred in the payload instead of ordinary data. They 
are always sent as single-slot packets and they can be carried in two different types of 
data packets. In order to distinguish LMP packets from other packets, a special type 
code is used in the packet header of all LMP messages. To avoid overflow in the 
receiving packet buffer, flow control is nornlally applied to the asynchronous data 
packet in Bluetooth. However, no flow control applies to LMP PDUs. The LMP PDU 
payload fornlat is shown in Figure 1.4. The PDU fornlat can be considered as one 
byte header followed by the LM data. 

Transaction 10 and OpCode 

Parameter 2 

The header has two iields. The first field is only 1 bit long and contains the 
transaction identjfier (ID). The second field is 7 bits long and contains the operalion 

Parsmeter 1 

Parameter 3 

Parameter N-1 
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code (OpCode). The operation code tclls which type of L,MP PDU that is being sent. 
Each LMP message has its unique OpCode. 

As we have described, the LMP is used to control and set up the link. A 
typical PDU flow example at connection creation is shown in Figure 1.5. The 
connection establishment always starts with the master unit paging the slave unit. 
After the basic baseband page and page response messages have been exchanged, the 
setup of the link can start. Before the master sends a coimection request, it might 
request infornlation from the slave regarding its clock, version of the link manager 
protocol, LMP features, and the name of the slave units. A set of LMP PDUs has been 
defined for this purpose. The connection setup procedure then really starts with the 
master sending the LMP coimection request message. 

Next, the security-related message exchange takes place. Finally, the peers 
complete the connection setup by exchanging LMP setup complete messages. 
Special security related PDUs have been defined in order to accomplish: 

Pairing; 
Authentication; 
Encryption; 
Changing the link key. 

The details of principles and usage are described in Chapters 2 and 3, In addition 
to the different LM functions we have mentioned previously. the LM is also 
responsible for performing role change (master-slave switch), controlling multislot 
packet size, and power control. 

Master Slave 

* Page procedure * 
I M P  procedures for clock offset 
request, CMP version, features, 

LMP h o s t  connect ion  req  + 
LMP a c c e p t e d  + 

Figure 1.5 Connection establishment examples, LMP PDU flow. 
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1.1.7 Logical link control and adaptation protocol 

The L2CAP takes care of datagram segmentation and reassembly, 
multiplexing of service streams, and quality-of-service issues. The L2CAP constitutes 
a filter between the Bluetooth independent higher layers running on the host and the 
lower layers belonging to the Bluetooth module. For instance, transmission control 
l~rotclcol/internet protocol (TCPl11') traffic packets are too large to fit within a 
baseband packet. Therefore, such packets will be cut into smaller chunks of data 
before they are sent to the baseband for further processing. On the receiving side, the 
process is reversed; baseband packets are reassembled into larger entities before being 
released to higher layers. 

1.1.8 Host control interface 

The HC1 is a conunon standardized interface between the upper and lower 
layers in tlie Bluetooth cominunication stack. As we described in Section 1.1.3, the 
HCI provides the capability of separating tlle radio hardware-related fimctions from 
higher layer protocols, which might run on a separate host processor. By using the 
HCI, it is possible to use one Bluetooth module for several different hosts and 
applications. Similar, upper-layer applications implemented in one host can use any 
Bluetooth module supporting the HCI. 

Figure 1.6 provides an overview of the lower Bluetooth layers and the HCI 
interface. The HCI commands for the Bluetooth module are handled by the HCI 
firmware that accesses tlle baseband and link manager. Not all Bluetooth 
inlplementations nm the lower and higher layer processing on different processors. 
Integrated iinplelnentations are also possible. Consequently, tlie HCI is an optional 
feature and only products that benefit from the separation use it. 

I Eluelooth host I 

Phys~cal bus driver d 
C + 

Link controller 

Figure 1.6 Overview of the lower software layers and the position of the T-ICI stack. 
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The HCI conunands are transported between the Bluetooth module and host 
by some physical bus. This can, for example, be a universul serial bus (USB) or PC 
card connection. Three physical transport media have been defined [41: USR, RS232, 
and universal asynchronous receiverltransmitter (UART). The host exchanges data 
with the module by using cornmc~rtdpuckets, and the module gives responses to these 
requests or sends its own coinnlands to the hosts, which are called event packets. Data 
to be passed over a Bluetooth link is transported in datapuckels. 

'To prevent buffer overflow in the host controller, flow control is used in the 
direction from the host to the host controller. The host keeps track of the size of the 
buffer all the time. At initialization, the host issues the Read Buffer Size command. 
The host controller then coiltinuously iilfornls the host of the number of completed 
transmitted packets through the Number of Completed Packet event. 

The cormnand packets can be divided into six different subgroups: 
1. Link control conlmands. 
2. Link policy commands. 
3. Host controller and baseband commands. 
4. Read information conlmands. 
5. Read status conunands. 
6. Test commands. 

The link control commands are used to control the link layer connections to 
other Bluetooth devices. Control of authentication and encryption as well as keys and 
pass-key conmands belong to this subgroup. The policy cominands are used to 
control how the link manager manages the piconet. 'The host controller and baseband 
commands are used to read and write into several different host controller registers. 
This includes reading and writing keys and pass-keys to or from the host controller, as 
well as reading and writing the general link manager autl~entication and ellcryption 
policy (see Section 2.5). 

The read information conmands are used to get information about the 
Bluetooth device and the capabilities of the host controller. Infoilnation on connection 
states and signal strength can be obtained through the read status coinniands. Finally. 
the test commands are used to test various functionalities of the Bluetooth hardware. 

1.1.9 Profiles 

The Bluetooth standard is not limited to specific use cases or applications. 
I-lowever, in order to offer interoperability and to provide support for specific 
applications, the Bluetooth SIG has developed a set of so-called profiles. A profile 
deiines an unan~biguous description of the coinmunication interface between two 
units for one particular service. Both basic profiles that define fundamental 
procedures for Bluetooth connections and profiles for distinct services have been 
defined. 

A new profile can be built on existing ones, allowing efficient reuse of 
existing protocols and procedures. This gives raise to a hierarchical profiles structure 
as outlined in Figwe 1.7. The most fundamental definitions, recommendations, and 
requirements related to modes of operation and connection and channel setup are 
given in the generic access profile (GAP). All other existing Bluetooth profiles make 
use of the GAP. 
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The very original purpose of the Bluetooth standard was short-range cable 
replacement. Pure cable replacement through RS232 emulation is offered by the serial 
porf p r o m .  Several other profiles, like the personal urrn nerwork (PAN) and local 
positioning profile make use of the .serial porf profile. One level deeper in the profiles 
hierarchy is the general object exchange projjlc, The purpose of this profile is to 
describe how the IrDA object exchange (OBEX) layer is used within Bluetooth. 
OBEX can be used to any higher layer object exchange, such as synchronization, file 
transfer, and push services. 

Zeneric access pmfile I 

istribution profile 

distribution profile 

control profile 

Hardcopy cable 
replacemrnt profile 

Hands-free profile 

access p~ofile 

device profile 

Serdce discovery 
application profile 

ienericobject exchsnye profile 

I Object push profile I 

Serial port profile 

.. 

I I 

profile 

pmfile 

I Basic printing 
profile I 

Figure 1.7 Bluetooth profiles. 

Different services have different security requirements. 111 Section 10 we 
discuss the security requirements and solutions for a selection of Rluetooth profiles. 

Most profiles benefit from using the baseband security functions. It is 
important, though. that the mechanisins are correctly understood and that application 
providers are aware of the strength as well as limitations of the link level security 
services. New profiles are constantly being developed, and some existing profiles may 
become replaced as others covering the same or similar functionality are added. 
Profiles are released independently of the core specification release schedule. In 
Figure 1.7 we have included the profiles that were adopted at the time of (I&xmdxr , 
2003). 
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1.2 Bluetooth security basics 

Security issues surfaced from the beginning in the design of the Bluetooth 
systein. It was decided that even for the simplest usage scenarios, the Bluetooth 
systein should provide security features. To find the correct level of security when a 
new coinmunication technology is defined is a nontrivial task, as it depends on usage. 
Bluetooth is versatile, which further increases the difficulties in finding the correct 
level one anticipates for the system. We start this section by discussing some typical 
user scenarios for Bluetooth applications. 

1.2.1 User scenarios 

In Section 1.1.9 we touched upon Bluetooth profiles. The overview of tlie 
profiles shows that the technology can be used in a large number of different 
applications. The overview also demonstrates that very different devices with very 
different capabilities might utilize the local connectivity provided by Bluetooth. 
However, most applications are characterized by two things: personal area m a p  and 
ad hoc connectivity. The Bluetooth link level security mechanisms have been 
designed with these two characteristics in mind, and below we describe what we mean 
by personal area networks and ad hoc connectivity. 

1.2.1.1 Personal area networks 

The personal area network concept is a vision shared among a large number of 
researchers and wireless teclmology drivers. A PAN consists of a limited number of 
units that have the ability to foim networks and exchange information. The units can 
be under one user's control (i.e., personal computing units) or they can be controlled 
by different users or organizations. Bluetooth is used as a local connection interface 
between different personal units, such as mobile phones, laptops, personal digit01 
assistants (PDA), printers, keyboards, mouses, headsets, and loudspeakers. Hence, 
Bluetooth is a true enabling technology for the PAN vision. The devices are typically 
(but not at all limited to) consumer devices. 

Different consumer devices have different manufacturers, and the personal 
usage of a device will vaiy fiom person to person. Hence, in order to provide 
interoperability between the different personal devices, the security must to some 
extent be configured by the user. Bluetooth security solutioils have been designed 
with the principles in mind that any ordinary user should be able to configure and 
manage the necessary security actions needed to protect tlie con~munication links. 

The infomation exchanged over Bluetooth might very well be sensitive and 
vulnerable to eavesdropping. In addition, users of mobile phones or laptops would 
like to be sure that no unauthorized (by the users) person is able to connect to their 
personal devices. Another issue is location privacy. People would like to use their 
Bluetooth devices anywhere they go without fearing that somebody can track their 
movements. To ensure that, device anonymity is an important user 

To sum up, there are four fundamental security expectations for Blueto 
1.  Easy-to-use and self-explanatory security configuration. 
2. Confidentiality protection. 
3. Authentication of connecting devices. 
4. Anonymity. 
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Bluetooth provides link enclyption and authentication. If the expectation for 
easy-to-use and self-explanatory security coilfiguratio~~ has also been f~dfilled is hard 
to say-at least the system has been designed with this goal in mind. 

1.2.1.2 Ad hoc connectivity 

As discussed previously. Bluetooth has been designed to support the wireless 
PAN vision. Sometimes the relations between the devices are fixed. like the 
connection between a desktop computer and the keyboard or the mouse. Another 
example is the connection between a mobile phone and a headset. However, 
sometimes one wishes to set up connections on the fly with another device that just 
happens to be nearby. This is ad hoc connectivity. To illustrate an ad hoc connectivity 
scenario, we give an example. Let us consider a business meeting where two persons, 
an employee and a visitor. meet in a room equipped with a video prqjector, illustrated 
in Figure 1 3. 

The two persons in the room are each canying one laptop. The laptops contain 
presentation information that the users would like to present to each other using the 
video projector. Furthermore, after the presentation, the visitor would like to send a 
presentation to the employee. We assume that the video projector and the laptops 
support Bluetooth for local connectivity. Hence, we have a PAN scenario with three 
different Bluetooth-enabled devices: 

1. A video projector. 
2. A visitor laptop. 
3. An employee laptop. 

The ad hoc nature of these connections stems from the fact that no prior 
relation can be assumed between the visitor's laptop and the projector or between the 
visitor and en~ployee laptop. Hence, in order to provide security (authentication and 
enclyption) on the communication links, the security relations must be set up on the 
fly and often by the users themselves. The original Bluetooth pairing mechanism 
provides the possibility of setting up ad hoc security relations. However, one would 
like to minimize the load on the user and find alternative methods to manual 
procedures. In this book we revisit these issues several times and discuss features 
needed to make ad hoc connectivity a s  secure and, at the same time, as user friendly 
as possible. In the next chapter we will give an overview of the Bluetooth security 
architecture. But first we review some fi-equently used notions and teiminology. 
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Chapter I 

Video projector Visitor 

Employee 

Figure 1.8 Bluetooth meeting room ad hoc connectivity scenario. 

1.2.2 Notions and terminology 

We already mentioned that security expectations for Bluetooth are related to 
the following four aspects (1)  casy-to-use and self-explanatory security configuration. 
(2) confidentiality protection, (3) authentication of connecting devices, and (4) 
anonymity. These aspects describe what we mean by security in this book. When 
considering general infomation systems, security is understood to enconlpass the 
following three aspects [ 5 ] :  confidentiality, integrity, and availability. 

The mechanisms that address the confidentiality aspects should provide the 
means to keep user infornlation private. Integrity n~echanisn~s address the capability 
to protect the data against unauthorized alterations or removal. Finally, availability 
deals with the aspect that the system should be available as expected. Availability is 
therefore closely related to reliability and robustness. 

Coinp,uing this with what we said within the context of Bluetooth, we see that 
the aspects of confidentiality and availability appear in the four security expectations, 
although it may be argued that anonymity is an aspect on its own. The Bluetootli 
standard does not currently include any data integrity protection mechanism. In the 
sections that follow, we discuss first the meaning of confidentiality and integrity in 
more detail. We then continue to give a very conlpact description of cryptographic 
mechanisms that are used to achieve security. 

1.2.2.1 Confidentiality 

Confidentiality of data can be achieved by transfonniiig the original data, 
often called the plaintext, into a new text. the ciphertext, that does not reveal the 
content of the plaintext. The transformation should be (conditionally) reversible, 
allowing the recovery of the plaintext from the ciphertext. To avoid that the 
transfoilnation itself has to be kept secret to prevent a recovery of the plaintext, the 
transformation is realized as a parameterized transformation, where only the 
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controlling parameter is kept secret. The controlling parameter is called tlie key and 
tlie transformation js called enciyptioiz. 

A good enc~yption mechanism has the property that unless the key value is 
known, it is practically infeasible to recover the plaintext or the key value from the 
ciphertext. What actually "practically infeasible" means is not exactly defined. 
Moreover, what is infeasible today may be feasible tomorrow. A good measure of the 
quality of an enciyption mechanism is that even if very many plaintext and 
corresponding ciphertext messages are known, the amount of work to break a cipher 
(e.g., recover the key) is in the same order as the number of key conibinations. In 
other words, breaking the cipher is equivalent to a complete search through the key 
space. 

1.2.2.2 Integrity 

The second aspect of security, that is, integrity, is about ensuring that data has 
not been replaced or modified without authorization during transport or storage. 
lntegrity should not be confused with peer authentication or identification (see the 
explanation below), which can be used to verify the comniunication peer during 
connection setup. Peer authentication only guarantees that a connection is established 
with the supposed peer, while message integrity is about authenticity of the 
transmitted messages. Integrity protection of transmitted data is not part of the 
Bluetooth standard. 

1.2.2.3 Symmetric and asymmetric mechanisms 

Cryptographic n~echanisms are distinguished as being either symmelric key or 
asymmetric key. Symmetric mechanisnls are mechanisms for which the 
coinniunicating parties share the same secret key. There is. so to speak, a symmetric 
situation among the parties. If the mechanism concerns the encryption of files, say, 
then the receiver is not only able to decrypt the files received from the transmitter, but 
in fact the receiver is able to decrypt encrypted files that were generated by the 
receiver itself. Thus, a receiver cannot claim that the decrypted data indeed was sent 
by the sender. 

Symmetric mechanisms (we sometimes also use the word schemes) are also 
called secret-key mechanisms. An important property of symmetric inechanisms is 
that the transportation of the key from the sending to the receiving party needs to be 
realized in such a way that no information about the key is leaked to outsiders. This 
need for key transfer constitutes the core problem in key management. Encryption of 
large data blocks is often realized through synmetric encryption mechanisms because 
they are faster than the asymmetric niechanisnis. Secret-key mechanisms have a long 
history, and many variants are known and in use. The main two types of secret-key 
n~echanisms are block and streanl ciphers. 

Asymmetric mechanisms are mechanisms that realize an enciyption and 
decryptioii tra~isfomiation pair for which the keys for the respective transformations 
are not the same. In fact, one demands that one of the keys cannot be recovered fi-om 
the other. Hence, the keys at the sending and receiving sides have ail asyinnletry in 
their properties. Asyinnletric mechanisms are also calledpublic-key mechanisms. This 
naming stems from the fact that for asymmetric mechanism, one speaks about a 
private- and public-key pair. The private key is kept secret from eveiyone else and the 
public key is made accessible to everybody (i.e., it is made public). Asynmetric 
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mechanisms solve some of the key distribution problems that arise in the activation of 
syinrnetric mechanisms. This advantage of asymmetric mechanisms is, however. often 
spoiled by the need to have proofs of the binding between a public key and an entity 
who claims to be the owner (of the private key). A widespread solution to this is the 
use of so-called cert[ficntes. Such certificates bind a public key to an identity and are 
issued by a conlmon trusted agent. 

Public-key schemes are asyilmetric cryptographic mechanisms. The two keys 
that relate to a pair of encryption and decryption transforn~ations are called the public 
key and private ley, respectively. Together they form a public- and private-key pair. 
In public-key schemes, the private key cannot be recovered by practical means from 
the public key or any other publicly known information for that matter. 

The best known public-key schemes are the Rivest, Shainir, and Adleinan 
(RSA) and Diffie-Hellinan schemes. Both date back to the beginning of publickey 
clyptogl-aphy in the 1970s. Difiie-Hellman is used for key establishment, while RSA 
is for key transport, enciyption. or digital signatures. For more infoilnation and a 
historical overview, see [6]. 

1.2.2.4 Block and stream ciphers 

Block ciphers are symmetric cryptographic mechanisms that transfonn a fixed 
amount of plaintext data (a block) to a block of ciphertext data using a key, and that 
have an inverse transformation using the same key (as used for the encryption 
transformation). See Figure 1.9(a). Block ciphers are very useful as building blocks to 
obtain other cryptographic mechanisms, such as authentication mechanisms. In 
Bluetooth, the SAFER block cipher is used in this manner. Stream c@hers are the 
other main type of syinmetric cryptographic mechanisms. Here a stream (sequence) of 
plaintext symbols is trmsfbrmed symbol by symbol in a sequence of ciphertext 
symbols by adding, symbol by syn~bol, a so-called key stream to the sequence of 
plaintext synlbols. See Figure 1.9(b). Stream ciphers have a trivial inverse 
transformation. Just generate the same key stream and subtract its synlbols from the 
stream of cipher symbols. Bluetooth uses the 
EO stream cipher to enciypt the data sent via the radio links. 

Plaintep block Cipherte~q ~ r n  bol Plaintext symbol 

1 / 
Key-+ Encrypt 

C 
Cipemxt block Plaintext ,&-* symbol Crpheirext symbol 

Figure 1.9 (a) Block cipher, and (b) stream cipher. 
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1.2.2.5 Authentication 

Authentication is the procedure by which a unit (the verifier) can convince 
itself about the (correct) identity of another unit (the claimant) it is conlmunicating 
with. Note that in ciyptography, one often refers to this as the ident$curion, and 
authentication is reserved for referring to (message or data) authenticity. that is, the 
probleni of asserting that a received message is authentic (as sent by the sender). Here 
we use the definition of authentication that is in use in many (cellular) colnnlunication 
systems [e.g., Global Mobile System (GSM) and wideband code division n~ultiple 
access (WCDMA)], that is, it refers to the process of verifying the consistency of the 
IinIc keys in the involved Bluetooth devices exchanged during the pairing procedure. 

1.2.2.6 Authorization 

Authorization is the process of giving someone pelmission to do or have 
access to something. For Blu~etooth this means to decide wlietller a remote device has 
the right to access a service on the local host and what privileges to gain for it. 
Usually this involves some form of user interaction. Alternatively, granting access to 
services can be subject to device-specific settings. Sometimes authorization refers 
both to administering system permission settings and the actual checking of the 
permission values wlieli a device is getting access. 
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2. Literature Survey 

The security demands in the various usage scenarios for Rluetooth differ 
substantially. For example, a remote-controlled toy and a remote-controlled industrial 
robot constitute usage cases with essentially different demands on security. The 
security architecture for Bluetooth is designed to provide built-in security features 
even for the simplest cases and at the same time provide adequate support to provide 
security in demanding cases, such as those where Bluetooth devices are used in a 
network environment. 

This chapter gives an overview of the Bluetooth security literature survey, 
starting with a description of the different ley types that are used, how the link 
encryption is organized, how all the basic features are controlled through security 
modes to achieve different trust relations and enhanced security suggestions for 
Bluetooth architecture. 

2.1 Key types 

The security provided by the Bluetooth core is built upon the use of symmetric 
key ctyptographic mechanisnls for authentication, link encryption, and lcey 
generation. A number of different key types are used in connection with these 
mechanisms. In Bluetooth, a link is a cotnmunication channel that is established 
between two Bluetooth devices. To check that a link is established between the 
correct devices, an authentication procedure between two devices has been 
introduced. The authentication mechanism in this procedure uses the so-called link 
key. As we will find out later, there are several different types of link keys. 

Link keys are not only used for authentication. They are also used for 
derivation of the key that controls the encryption of the data sent via a link. Through 
this encryption, confidentiality of the transmitted data is realized. The corresponding 
enclyption mechanism uses the link elzcryption key. Loosely speaking, a link key is 
used for the authentication between two devices and to derive the link encryption key. 
A link key is created during the pairing of two devices. Section 2.2 contains more 
details on the pairing and use of pass-keys. 

Before we discuss the pairing mechanism, it is useful to clari@ the conditioits 
under which coinmunication between two devices will occur. It is important to 
distinguish two important states. Firstly, we have the state in which a device wants to 
establish a connection with a device it has not been paired with. 

Secondly, we have the state where a device wants to con~municate with a 
device it has paired with. Of course, a device may, as a result of a nlalfunction or a 
forced reset, have lost the pairing information associated with a device. In such a 
situation, the device should fall back to the unpaired state. 

The pairing operation will result in a link key that two devices will use for 
authentication and link encryption key generation directly after the pairing and at later 
instances. The Bluetooth system recognizes two types of link keys: semi permanent 
and femporury keys. Furthermore, two types of semi permanent (link) keys are 
distinguished: unit keys and conzbiizution keys. A unit key is a link key that one unit 
generates by itself and uses as a link key with any other (Bluetooth) device. and a 
combination key is a lcey that a device generates in cooperation (combination) with 
another device. Therefore, any unit key that a specific device has may be known to 
many other devices, whereas each combination key is only known to itself and the 
device with which it was generated. llnit keys can only be safely used when there is 
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full trust among the devices that are paired with the same unit key. This is because 
every paired device can impersonate any other device holding the same unit key. 
Since Bluetooth version 1.2, the use of unit keys is not recommended. But. for legacy 
reasons, unit keys have not been completely removed from the specification. Besides 
the combination and unit keys, two other key types are used: initialization keys and 
master keys. These are temporaly keys. 

The initialization key is a short-lived key that exists during the pairing of two 
devices. The master key is a link key that the master generates prior to the setup of an 
enciypted broadcast con~munication to several slave devices. Besides the link keys, 
we have three ciphering keys: the encryption key KC, the construined encryption key 
.'K C' , and the yuyload key KP. The encryption key is the main key that controls the 
ciphering. Since this key may have a length (in bits) that exceeds legislative 
coiistraints on the maxin~ally allowed ley length. KC is not used directly but is 
replaced by the constrained encryption key.'KC , whose number of independent bits 
can be selected from 8, 16, . . . , 128 bits. 

Currently there is little reason to accept key lengths less than 128 bits because 
the export regulatio~~s have been relaxed since the original design of the Bluetooth 
system. It is directly derived fi-om KC. Finally. the payload key is a ciphering key 
derived from the constrained encryption keyafKC: This key is the initial state of the 
ciphering engine prior to generating the overlay sequence. A summary of the different 
key types can be found in Table 2.1. More details on thc enc~yption keys are given in 
Section 2.4.1. 

Table 2.1 
O v m i e w  of K q  Types 

Purpose Se~~iipermaneat Ten~porary 

Autlietiticatiu~i Unit key Cumbinatian key lriitialization key Master key 
kay Cj~ll~l'ati~ll 

Ciphering Encryption key Payload key 
Constrained 
encrvption key 

2.2 Pairing and user interaction 

As indicated earlier, the pairing of two devices is the procedure by which two 
devices establish a shared secret that they can use when they meet again. The pairing 
requires user interaction, for example. the entering of a pass-key. See Figure 2.l(a). 
The Bluetooth system allows the pass-key to be 128 bits long. Such a large pass-key 
value would be rather user unfriendly for manual input. However, this feature allows 
the use of a higher level automated key agreement scheme that can "feed" the agreed 
pass-key into the pairing procedure. See Figure 2.l(b). 

The high-level key agreement schenle can be a network or transpori Iuyer 
security (TLS) protocol. Examples of such protocols are the Internet Engineering 
Task Force (IETF) protocols TLS [7] and Internet key exchange (IKE) [8]. 

-- - 
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'I'here are two lcinds of pass-keys in Bluetooth teiminology: tlie variable pass- 
key and the fixed pass-key. The first type represents a pass-key that can be arbitrarily 
chosen at tlie pairing instance. This requires that some form of user interaction takes 
place in order to feed the Bluetooth device with the appropriate pass-key value. This 
interaction is most likely accomplished using a keyboard or numerical keypad. An 
example of a typical device with a variable pass-key is the mobile phone. In contrast, 
the fixed pass-key cannot be chosen arbitrarily when it is needed. Instead, a 
predetermined value must be used, This type of pass-key is used when these is no user 
interface to input a value to the Bluetooth device. Clearly, for a pairing to work, only 
one device can have a fixed pass-key (unless, of course, both devices happen to have 
the same fixed pass-key). Exainples of devices in need of iixed pass-keys are 
Bluetooth-enabled mice and headsets. These gadgets come with a factory preset pass- 
key when delivered to tlie customer. 

* Pass-key 

Device 1 Device 2 

mi 

aqreernent agreement 

Device I Device 2 

Figure 2.1 (a) Pairing through manual user interaction, and (b) pairing though 
separate key agreement protocol. 

Note that a fixed pass-key need not be "fixed" in the sense that it can never be 
changed. Preferably, the user is allowed to change the fixed pass- key in some way. In 
some scenarios, a wired connectioii could be used, for example, by plugging in an 
external keyboard and changing the pass-key. This is only feasible if it is difficult for 
anyone but the rightful owner to have physical access to the Bluetooth device in 
question. More interesting is to allow the change over Bluetooth using an already 
paired device (equipped with the necessary user interface) over a secwe connection. 
This implies that the user connects to the device with a fixed pass-key. authenticates 
itself, and requests the link to be encrypted before a fresh pass-key value can be sent 
to the remote device. The new value replaces tlie old one and becomes the fixed pass- 
key to use in subsequent pairings. 
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2.3 Authentication 

A Bluetooth device in a connectable state accepts connection requests from 
other devices. This means that there is a risk that a connectable device is connected to 
and attacked by a malicious device. Obvious, this can be avoided by never entering a 
connectable state. On the other hand, that implies that no Bluetooth connections at all 
can be established. Accordingly, there is a need to securely identify the other 
con~~nunication peer so that connections from unknown devices can be refixed. 
Device identification is provided though the Bluetooth authentication mechanism. 

The authentication procedure is a so-called challenge-response scheme, where 
the ver$fier device sends a random challenge to the clainzant device and expects a 
valid response value in return. The authentication procedure is only one way, and if 
mutual authentication is needed the procedure must be repeated with the verifier and 
claimant roles switched [12]. 

First, the verifier sends the claimant a random number to be authenticated. 
Then, both participants use the authentication function El  with the random number, 
the claimants Bluetooth Device Address and the current link key to get a response. 
The claimant sends the response to the verifier, who then makes sure the responses 
match. 

The used application indicates who is to be authenticated. So the verifier may 
not necessarily be the master. Some of the applications require only one way 
authentication, so that only one party is authenticated. This it not always the case, as 
there could be a mutual authentication, where both parties are authenticated in turn 
~ 7 1 .  

If the authentication fails, there is a period of time that must pass until a new 
attempt at authentication can be made. The period of time doubles for each 
subsequent failed attempt from the same address, until the maximum waiting time is 
reached. The waiting time decreases exponentially to a minimum when no failed 
authentication attempts are made during a time period [17]. 

2.4 Link privacy 

Of all security aspects encountered in wireless scenarios, the easiest to 
understand is the one relating to confidentiality. Eavesdropping on a radio 
transmission can be acconiplished without revealing anything to the victim. Radio 
waves are ornni directional and travel through walls (at least to some extent). One can 
easily imagine hiding a small radio receiver close enough to intercept the messages 
sent by a user, without revealing its presence to anyone not knowing where to look for 
it. It may even be possible to do this without having physical access to the premises 
where the Bluetooth devices are used. If the walls surrounding the user area are not 
completely shielding the radio transmissions, eavesdropping can take place outside 
this room [I 21 [ I  71. 

Initially, Bluetooth was envisioned as a simple cable replacement technology. 
For some applications (such as device synchronization), replacing the wire with a 
radio has iinplications for confidentiality. It was desirable that the user should not 
experience any decrease in confidentiality when comparing the wireless with the 
wired solution. Thus, it was determined to look into what kind of security means were 
needed in order to give a sufficient degree of protection to Bluetooth communication. 

In contrast to what soinetiines has been claimed, the fi-equency hopping 
scheme used in Bluetooth gives no real protection against eavesdropping. 
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Firstly, there is no secret involved in generating the sequence of visited 
channels-it is determined by the master's LAP and native clock. Clearly, these two 
variables are not secret. Adversaries may have full knowledge of them by following 
the inquiiylpage procedure traffic preceding tlie connection that they arc now 
cavesdropping on. Alternatively, adversaries can sinlply connect to the master to 
automatically get all necessary information. Secondly, there are only 79 chaimels 
used. By running this many receivers in parallel (one for each channel) and recording 
all trafiic, an offline attack seems feasible simply by overlaying all 79 recordings. 

2.4.1 Protect the link 

It is important to understaiid that Bluetooth specifies security for the link 
between radio units, not for the entire path from source to destination at the 
application layer. All protocols and profiles that need end-to-end protection will have 
to provide for these themselves. The implications are obvious in access point 
scenarios, where the remote application may be running on a unit located thousands of 
kilometers away, and traffic routing will involve many uizknourli links apart from the 
short radio link between the local unit aid the access point. Since the user has no 
control over this, higher layer security is an understandable prerequisite to ensuring 
confidentiality all the way. However, even in the case when the source and destination 
reside on PDAs close to each other and there is only one direct Rluetootli link in 
between, one should remember that Bluetooth security only addresses the radio link. 
Who is really in control on the other side? Can nialicious software access and control 
the Bluetooth radio [12]. 

2.4.2 Encryption algorithm 

When it comes to the selection of which enciyption algorithm to use, there are 
some consideratioils that need to be taken into account: 

- Algorithmic complexity; 
- Iniplementation complexity; 
- Strength of the cipher. 

Algorithmic complexity relates to the number of conlputatioils needed for 
enciyption and decryption, while implementation complexity relates to the size of the 
implenientation on silicon. These two items boil down to power coi~sumption and 
cost-crucial properties for the batte~y-powered units Bluetooth is designed for. A 
coniplex algoritlm will almost certainly require a larger footprint on silicon than does 
a simple algorithm, leading to higher cost. For the implementation, sometimes the 
speed obtained fiom dedicated hardware can be traded for flexibility and smaller size 
using a programmable component such as a digital .signal processor (DSP) or a small 
cenrral processing ztnir (CPU). For such solutions, an increased algorithmic 
conlplexity will inevitably demand higher clocking frequency, which also increases 
power consun~ption. 

The last item on the list may be the most important. Should the ciphering 
algorithm prove to be vulnerable to some "simple" attack, the whole foundation of 
link privacy falls. Of course, the question of whether an attack is "simple" or not 
remains to be discussed, but, in general. even tlie smallest suspicion regarding 
strength is enough to cast doubts over the system's overall security quality [lo] [17]. 

1 

- - - - 
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Do not confuse algorithmic complexity of encryptionldecryption with the 
strength of the cipher. In fact, the goal is to keep the algorithmic complexity low 
while having the computational complexity for all types of attacks as high as possible. 

Bluetooth deploys a stream cipher (see Section 1.2.2) with the desired 
properties of a small and simple hardware solution while being difficult to break. 

A key stream is added modulo 2 to the information sequence. Thus, the 
scheme is synl~netric, since the same key is used for encryption and decryption. This 
means the same hardware can be used for encryption and decryption, sonlething that 
will actively keep down the size of the implementation. Moreover, stream ciphers are 
built efficiently using linear jeedback shifi regi3istem (LFSR), which helps to reduce 
the die size even further. 

The encryption algorithm uses four LFSRs of lengths 25, 3 1, 33 and 39, with 
the total length of 128. The initial 128-bit value of the four LFSRs is derived from the 
key stream generator itself using the encryption key, a 128-bit random number, the 
Bluetooth device address of the device and the 26-bit value of the master clock. The 
feedback polynomials used by the LFSRs are all primitive, with the Hamming weight 
of 5. The polynomials used are (25, 20, 12, 8, O), (31,24, 16, 12, O), (33,28, 24,4,0) 
and (39,36,28,4,0). Information on the fundamentals of LFSRs is found in [18]. 

The encryptiorddecryption consists of three identifiable parts: initialization of 
a payload key, generating the key stseam bits, and, finally. the actual process of 
encrypting and decrypting the data. These fimctions are depicted in Figure 2.2. 

The payload liey is generated out of different input bits that are "randomized" 
by running the sequence generating circuitry of the key stream generator for a while. 

Then the payload key is used as the starting state for the key stream generator 
in the encryption process. Since the sequence generating circuitry is used also for 
generating the payload key, the implementation is mainly concentrated in this past. 
The last part simply consists of XORing2 the key stream bits with the outgoing data 
stseam (for encryption) or the demodulated received sequence (for decryption). 

The choice of a stream cipher was to a large extent based on implementation 
considerations. Clearly, a liey stream generator needs to fuliill a whole range or  
properties to make it useful for cryptographic purposes. For instance, the sequence 
must have a large period and a high linear con~plexity. and satisfy standard statistical 
and cryptographic tests [lo] [1 1] [12] [17]. 

Constrained I 
encryption key 

___( 
Clack + 
Random ntmber + 

Figure 2.2 Stream cipher usage in Bluetooth. 
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As can be seen i n  Figure 2.2, there are some parameters involved in creating 
the payload key. KP. The secret constrained encryption key, .'K C , is generated by 
both units at the time a decision is made to switch encryption on. This key is fixed for 
the duration of the session or until a decision is made to use a temporary key (which 
will require a cl~ange of the encryption key). Even though the constrained encryption 
key always consists of 128 bits, its true entropy will vary between 8 and 128 bits (in 
steps of 8 bits), depending on the outconle of the link key negotiation that the 
involved units must perform before encryption can be started. The address refers to 
the 48-bit Bluetooth unit address of the master. while the clock is 26 bits from the 
master's native clock. Finally, there is a 128- bit random number that is changed 
every time the encryption key is changed. 

This number is issued by the master before entering encryption mode and it is 
sent in plaintext over tlie air. The purpose of it is to introduce more variance into the 
generated payload key. 

In Bluetooth, the key streain bits are generated by a method derived from the 
summation stream cipher generator in Massey and Rueppel [9]. This method is well 
investigated, and good estimates of its strength with respect to currently known 
methods for cryptanalysis exist. The summation generator is luiown to have some 
weaknesses that can be utilized in correlation attacks, but, thanks to the high 
resynclu-onization frequency (see Section 2.4.3) of the generator. these attacks will not 
be practical threats to Bluetooth. 

2.4.3 Mode of operation 

Not all bits of a Bluetooth packet are enciypted. The access code, consisting of 
a preamble, sync word, and a trailer, must be readable to all units in order for them to 
succeed in their receiver acquisition phase (i.e.. in locking onto the radio signal). 
Furthermore, all units of a piconet must be able to read the packet header to see if the 
message is for them or not. Therefore, it is only the payload that is encrypted. The 
ciphering takes place after the CRC is added but before tlie optional error correcting 
code is applied. The principle is illustrated in Figure 2.3. 
In generating the payload key, bits 1 to 26 of the master clock are used. This implies a 
change of the resulting key for every slot. since bit 1 toggles every 625 ps. However, 
the payload key is only generated at the start of a packet; multislot packets will not 
require a change of the payload key when passing a slot boundary within the packet. 
Consequently, for every Bluetooth baseband payload, the key streain generator will be 
initialized with a different starting state. This frequent change of the starting state is a 
key factor in its resistance to correlation attacks [12]. 
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Figure 2.3 How to format encrypted packets. 

The initialization phase takes some time. In principle. the input parameters are loaded 
into the shift registers of the key stream generator, which is then nm to produce 200 
output bits. Of these, the last 128 are retained and subsequently reloaded into the shift 
registers. These operations put a limit to how fast one can change from one payload 
key to another. Fortunately, Bluetooth specifies a guard space between the end of a 
payload and the start of the next of at least3 259 p. The guard space is there in order 
to allow for the fi-equency synthesizer of the radio to stabilize at the next channel used 
before the start of the next packet. During this time (and, in principle, also during the 
72  54 ps of plaintext access code and packet header), the payload key initialization 
can be nin without interfering with the encryption or decryption process. The 
principle is shown in Figure 2.4 [lo] [12]. 

2.4.4 Unicast and broadcast 

Broadcast encryption poses a slight problem due to the point-to-point 
paradigm used in Bluetootl~. In principle, apart from itself, a slave device is only 
aware of the piconet master. Thus the slave has no security bonding to other slave 
inenhers. 
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Specifically, each link in the piconet uses different encryption keys. since they 
are all based on their respective link keys. If the master would like to send an 
encrypted message to all its slaves. it can do these using individually addressed 
messages (also known as micas/ nzessages) which will introduce unnecessary 
overhead. A better alternative is for the master to change all link keys to a temporaly 
key, the mastcr key. Based on this, all devices are able to generate a common 
encryption key that can be used in broadcast transinissions that address all slaves 
sin~ultaneously. 

One drawback with this approach is that mixing secure unicast traffic and 
secure broadcast traffic is not possible. The user must settle for one of these at a time. 
The reason is in the packet structure and required initialization time for the payload 
key. A broadcast nlessage is identified from the all-zero LTADDR,  while unicast 
messages ham nonzero LT-ADIIR. This 3-bit address field is part of the payload 
header. Not until this infoilnation has been received and interpreted can the receiver 
decide whether the payload key should be based on the encryption key used for 
unicast or broadcast traffic. By then, there is far too little time (less than 48 ps) to 
generate the payload key before the packet payload is being received unless very fast 
l~ardware (i.e., involving high clock frequency) is used. This, however, would put 
unrealistic requirements on the ciphering hardware and increase cost as well as power 
consumption. It is, of course, inappropriate to use the broadcast encryption key for 
unicast traffic also, since all deviccs within the piconet are able to decipher this. 

Run stream cipher Initialize key stream generator 

I i I i I i I 
! ! 

-b 

Slot 
number k k + 2  k +  3 

space 

Figure 2.4 Operation of the encryption machinery. 

2.5 Communication security policies 

Security always comes at the prize of higher conlplexity. Hence, the security 
nlechanisins should only be used when they are really needed. When and how to use 
the mechanisn~s, is determined by the security policies of a device. The Bluetooth 
standard provides some basic principles for enforcing link-level security and building 
more advanced security polices tlwough the three defined security modes [l 11 [12]. 

One obvious choice for protecting Bluetooth communication is using the built- 
in link-level security mechanisms. Authentication and encryption is provided at 
baseband level. Using the built-in mechanislns has the ad~~antage of protecting all 
layers above the link level (including control messages). The link level security 
mechanisnis can be switched on or off. The security policy detennines if a device 
demands authentication and/or encryption. One very simple approach is to demand 
nlaxinlum link-level security, that is, both authentication and encryption for all 
connections. This is an "always-on" link-level security policy. Such a simple policy 
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has scveral advantages. First, the complexity is low. Fwthermore, it gives a high level 
of security for all local connections and it is easy to implement. Finally, it is easy for 
the user to handle and understand the security policy. This kind of always-on policy 
and security enforcement is supported by Bluetooth security mode 3 (see Section 
2.5.1). 111 order for this policy to be user convenient, the necessary keys must bc 
present. If one can assume or actually denland that this is the case, the simple. always- 
on policy can be used and the security mechanisn~s are vely easy to handle. 
Obviously, this policy also has some drawbacks: 

- If the necessary link keys are not present. either a connection cannot be 
established or the keys need to be generated and exchanged at connection creation. 

- If the necessary link keys are not present and the key exchange cannot be 
done automatically. the users must be involved and they must understand what is 
happening. 

The latter implication can be a serious drawback, when the actual service does 
not demand any security. Tn this case, the user will be forced to handle a security 
procedure for a service that may need to be fast and convenient. Some device might 
only run services with high security requirements, and consequently this will not 
cause any problem. On the other hand, devices used at public places for information 
retrieval or exchange will certainly not have high security requirements for all its 
connections, and people using such seivices will probably not accept any tedious 
security procedures. Hence, a policy that demands link level security for some 
services and keeps some services totally "open" will be needed. I11 practice. this 
implies that a device will need a shared secret with some other device, and at the same 
time the device must be able to communicate with other devices without sharing any 
secrets and using link-level security. 
In summary, the simple, always-on security policy is not sufficient for all Rluetooth 
usage scenarios. Better flexibility link-level security mechanism enforcement is 
necessary. This can be achieved by service level-enabled security (aligned with the 
access control mechanism). This is the n~otivation for the introduction of security 
mode 2 (see Section 2.5.1), which allows service level-enabled link layer security 
[lo] 11 [121[171. 

2.5.1 Security modes 

The GAP [16] defines the generic procedure related to the discove~y of 
Bluetooth devices and the link management aspects of colulecting lo Bluetooth 
devices. The GAP also defines the different basic security procedures of a Bluetooth 
device. A connectable device can operate in three different secwity modes: 

- Securip mode 1: A Bluetooth unit in security mode 1 never initiates any 
security procedures; that is, it never demands authentication or ellcryption of the 
13luetooth link. 

- Securitj? mode 2: When a Bluetooth unit is operating in security modc 2, it 
shall not initiate any security procedures. that is, demand authentication or encryption 
of the Bluetooth link, at link establishment. Instead, security is enforced at channel 
(LZCAP) or connection (e.g., Service Discovery Protocol (SDP), RFCOMM, and 
TCS) establishment. 

- Security mode 3: When a Bluetooth unit is in security mode 3, it shall 
initiate security procedures before the link setup is completed. Two different security 
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policies are possible: always demand authentication or always demand both 
authentication and encryption. In the following sections we discuss the different 
modes and how they are used in Bluetooth applications. 

2.5.1.1, Security mode 1 

Secmity mode I is the "unsecured" mode in Bluetooth. A unit that offers its 
service to all connecting devices operates in security mode 1. This implies that the 
unit does not demand authentication or encryption at connection establishment. For 
example, an access point that offers information services to anybody is a possible 
usage scenario for security mode 1 [ 101. 

Supporting authentication is n~andatory and a unit in security inode 1 must 
respond to any authentication challenge. However, the unit will never send an 
authentication challenge itself and mutual authentication is never performed [17]. 

A unit in security mode 1 that does not support encryption will refuse any 
requesl for that. On the other hand, if encryption is supported, the unit should accept a 
request for switching encryption on [12]. 

2.5.1.2 Security mode 2 

Security mode 2 has been defined in order to provide better flexibility in the 
use of Bluetooth link-level security. In security mode 2, no security procedures are 
initiated until a channel or connection request has been received. This means that it is 
up to the application or service to ask for security. Only when tlie application or 
service requires it will the authentication and/or encryption mechanisms be switched 
on. A sophisticated authentication and encryption policy based on the baseband 
~nechanisms can be implemented using this principle [I21 [17]. 

Security mechanisms enforcement and policy handling must be taken care of 
by the unit. One possibility is to use a "security manager" to handle this. In Section 
2.5.2, we further discuss the role and implenlentation of a security manager. Security 
mode 2 comes at the price of higher iniplen~entation complexity and the risk of faulty 
security policies that might conipronlise the security of the unit [lo]. 

2.5.1.3 Security mode 3 

In security mode 3, on the other hand, security procedures (authentication 
and/or encryption) are enforced at connection establishment. 'This is a simple, always- 
on security policy. The inlplementation is easy and that reduces the risks of any 
security implementation mistakes. The drawback is the lack of flexibility. The unit 
will not be generally accessible. All connecting units need to be authenticated 1101 
1121 1171. 

The difference between Security Mode 2 and Security Mode 3 is that in 
Security Mode 3 the Bluetooth device initiates security procedures before the channel 
is established [I 11 

There are also different security levels for devices and services. For devices, 
there are 2 levels, "trusted device" and "un trusted device". The trusted device 
obviously has unrestricted access to all services. For services, 3 security levels are 
defined: services that require authorization and authenticntion, services that require 
authentication only and services that are open to all devices [l I] [17]. 
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2.5.1.4 Security modes and security mechanisms 

The different security modes define how a unit will act at connection 
establishment. Independent of the current security mode, a unit shall respond to 
sect~rity requests in accordance with what is specified in the link manager protocol 
(see Section 1.1.6). Hence, a security mode only defines the sec~uity behavior of the 
unit, but the security level for a connection is determined by the security modes of 
both units. Let one of two units be in security mode 3 and consequently denland 
encryption. Then the connection will be encrypted if both units support encryption; 
otherwise the connection will be terminated. 

Table 2.2 describes the different security mode options and the resulting 
security mechanisms, while in Figure 2.5 the channel establishment procedure for 
different security modes is illustrated. In the figure, the connection and service 
establishment procedure for a Bluetooth device is shown as a flow diagram. 

The process starts with the device that is in connectable mode. If the device is 
in security mode 3, it will try to authenticate and optionally encrypt the link directly 
after the link manager receives or makes a connection request. Specific host settings 
for access can be applied. For instance, devices that are not previously paired may be 
rejected. A device that is in security mode 1 or 2, on the other hand, will continue 
with the link setup procedure without any authentication or encryption request. 
Instead, the device in security mode 2 makes an access control check after a service 
connection has been requested. Access is only granted for authorized devices. 
Authorization is either given explicitly by the user or it can be given automatically 
(tiusted and already paired device). For security mode 2. optional encryption can be 
requested before the connection to the service is finally established [12]. 

Service level access control can also be implen~ented by using security mode 
3. Then authentication always takes place before the service request. Hence, security 
mode 2 gives better flexibility, since no security is enforced at channel or connection 
request. Thus it is possible to allow access to some services without any 
authentication or encryption and a unit can be totally open to some services while still 
restricting access to other services. 

Table 2.2 
The D~fterent Security Mods Optionsf01 Master RRspect~~,e Slave and Resultiy Security hlechan~sn~(s) 

Security I:,. 1 ..... sew.iv... 

No authentication, If theimster application The link will be authenticated. 
no encryption. demands autlmtication(and If the master policy demands 

enayptlon). then the linkwill it, the linkwill be encrypted. 
be airthenticaletl (and 
encrypted]. 

2 
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demands it. the linkwill application demands it, tb If the master policy demands 
he autlientbted (and link will be authenticated it, or i t  the slave application 
encrypted). [and encryl:ltedj. demands it, the link will be 

ecicrypted. 

3 Tho link will be The link will k The link will be authenticated. 
antlienticatml. If the aothenticaled. If t h ~  slave If the slave or the mastor 
$la% poky dernatdIs it. policy demands it, or the policy demands it, the link will 
the link will be master appl~cation denlands Lw enqged.  
enciypted. it, the link will be enqpted. 
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If security mode 2 is required together with a high secmity level, an advanced 
security policy must be implemented. One possibility is to use a security manager that 
llandles the security policy and enforces the security mechanism. An example of how 
a securityl manager can be implemented in Bluetooth is given in [I I]. According to 
these reconlmendations, the security manager is Ihe responsible eiltily for security 
enforcement and it interacts with several different layers in the stack (see Section 
1.1.3). In this architecture, an application or set of applications (referred to as service) 
register their security demands with the security mmager. The security requirements 

w 
I 
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of all supported applications make 1113 the security policy. 'I'he security manager 
handles the policy. 

Since link-level security in Bluetooth is connected with the device address 
(through the link keys). The security manager needs access to a database, which 
contains information on different Bluetooth units, the corresponding link keys, and 
their level of trust. In addition to this, the manager needs access to a service database, 
which contains the specific security requirements of a particular service [12]. 

All the above techniques are of authentication and encryption are implemented 
at link level. The link adaptation protocol of Bluetooth protocol architecture can 
convert the information from upper layers to link layers [lo]. 

Encryption and authentication is also supported by IPSec protocol one of the 
protocol suite from TCP/ IP protocol stack which can work at upper layers of 
Bluetooth protocol architecture [13][14]. 

IPSec is widely used in many applications specifically in Ad-hoc networks to 
secure communication [15] [16]. The application of IPSec in Ad-hoc networks 
suggests that it is the feasible choice to provide secure transmission in networks using 
Bluetooth as Pico nets and scatter nets [17]. 

Lot of vulnerabilities is present at link level security techniques in Bluetooth 
[17], which can be eliminated by using IPSec [I 31 [14]. 
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3. IPSec Fundamentals 

IPSec is a collection of protocols that assist in protecting communications over IP 
networks [19]. IPSec protocols work together in various combinations to provide 
protection for communications. This section will focus on the three primary components. 
The Encapsulating Security Payload (ESP), Authentication Header (AH), and Internet 
Key Exchange (IKE) protocols explaining the purpose and function of each protocol, and 
showing how they work together to create IPSec connections. Also, this section will 
discuss the value of using the IP Payload Compression Protocol (IPComp) as part of an 
IPSec implementation. 

3.1 System Overview 

This section provides a high level description of how IPSec works, the 
components of the system, and how they fit together to provide the security services 
noted above. The goal of this description is to enable the reader to "picture" the overall 
process/system, see how it fits into the IP environment, and to provide context for later 
sections of this chapter, which describe each of the components in more detail. 

An IPSec implementation operates in a host, as a security gateway (SG), or as an 
independent device, Affording protection to IP traffic. (A security gateway is an 
intermediate system implementing IPSec, e.g., a firewall or router that has been IPSec- 
enabled.) The protection offered by IPSec is based on Requirements defined by a 
Security Policy Database (SPD) established and maintained by a user or system 
administrator, or by an application operating within constraints established by either of 
the above. In general, packets are selected for one of three processing actions based on 1P 
and next layer header Information matched against entries in the SPD. Each packet is 
either PROTECTED using IPSec Security services, DISCARDED, or allowed to 
BYPASS IPSec protection, based on the applicable SPD Policies identified by the 
Selectors. 

3.1.1 What IPSec Does 

IPSec creates a boundary between unprotected and protected interfaces, for a host 
or a network. Traffic Traversing the boundary is subject to the access controls specified 
by the user or administrator responsible for the IPSec configuration. These controls 
indicate whether packets cross the boundary unimpeded, are afforded security services 
via AH or ESP, or are discarded. IPSec security services are offered at the IP Layer 
through selection of appropriate security protocols, cryptographic algorithms, and 
cryptographic Keys. IPSec can be used to protect one or more "paths": 
a) Between a pair of hosts. 
b) Between a pair of security gateways. 
c) Between a security gateway and a host. 

A compliant host implementation MUST support (a) and (c) and a compliant 
security Gateway must support all three of these forms of connectivity, since under 
certain circumstances a Security gateway acts as a host. 
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IPSec optionally supports negotiation of IP compression, motivated in part by the 
observation that when Encryption is employed within IPSec; it prevents effective 
compression by lower protocol layers. 

3.1.2 How IPSec Works 

IPSec uses two protocols to provide traffic security services Authentication 
Header (AH) and Encapsulating Security Payload (ESP). 
IPSec implementations MUST support ESP and MAY support AH. (Support for AH has 
been Downgraded to MAY because experience has shown that there are very few 
contexts in which ESP cannot provide the requisite security services. Note that ESP can 
be used to provide only integrity, without confidentiality, making it comparable to AH in 
most contexts.) The IP Authentication Header (AH) offers integrity and data origin 
authentication, with optional (at the Discretion of the receiver) anti-replay features. 

The Encapsulating Security Payload (ESP) protocol offers the same set of 
services, and also offers confidentiality. Use of ESP to provide confidentiality without 
integrity is NOT RECOMMENDED. When ESP is used with confidentiality enabled, 
there are provisions for limited traffic flow confidentiality, i.e., provisions for concealing 
packet length, and for facilitating efficient generation and discard of dummy packets. 

This capability is likely to be effective primarily in virtual private network (VPN) 
and overlay network contexts. 

Both AH and ESP offer access control, enforced through the distribution of 
cryptographic keys and the management of traffic flows as dictated by the Security 
Policy Database. 

These protocols may be applied individually or in combination with each other to 
provide IPv4 and IPv6 Security services. However, most security requirements can be 
met through the use of ESP by itself. 

Each protocol supports two modes of use: transport mode and tunnel mode. In 
transport mode, AH and ESP provide protection primarily for next layer protocols; in 
tunnel mode, AH and ESP are applied to Tunneled IP packets. 

IPSec allows the user (or system administrator) to control the granularity at which 
a security service is Offered. For example, one can create a single encrypted tunnel to 
carry all the traffic between two Security gateways or a separate encrypted tunnel can be 
created for each TCP connection between each Pair of hosts communicating across these 
gateways. IPSec, through the SPD management paradigm, incorporates facilities for 
specifying which security protocol (AH or ESP) to employ, the mode (transport Or 
tunnel), security service options, what cryptographic algorithms to use, and in what 
combinations to Use the specified protocols and services, and the granularity at which 
protection should be applied. 

Because most of the security services provided by IPSec require the use of 
cryptographic keys, IPSec relies on a separate set of mechanisms for putting these keys in 
place. 
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3.2 Authentication Header (AH) 

AH [20], one of the IPSec security protocols, provides integrity protection for 
packet headers and data, as well as user authentication. It can optionally provide replay 
protection and access protection. AH cannot encrypt any portion of packets. In the initial 
version of IPSec, the ESP protocol could provide only encryption, not authentication, so 
AH and ESP were often used together to provide both confidentiality and integrity 
protection for communications. Because authentication capabilities were added to ESP in 
the second version of IPSec AH has become less significant; in fact, some IPSec software 
no longer supports AH. However, AH is still of value because AH can authenticate 
portions of packets that ESP cannot. Also, many existing IPSec implementations are 
using AH, so this guide includes a discussion of AH for completeness [21]. 

3.2.1 AH Modes 

AH have two modes: transport and tunnel. In tunnel mode, AH creates a new IP 
header for each packet; in transport mode, AH does not create a new IP header. In IPSec 
architectures that use a gateway, the true source or destination 1P address for packets 
must be altered to be the gateway's IP address. Because transport mode cannot alter the 
original IP header or create a new IP header, transport mode is generally used in host-to- 
host architectures [22]. As shown in Figures 3.1 and 3.2, AH provides integrity protection 
for the entire packet, regardless of which mode is used. (As explained in Section 3.2.2, IP 
header fields that can change unpredictably while in transit are not integrity-protected.) 

H w  IP AH H a d w  I Onglnof iP I Transport an6 hpplisaiion Protocol Headers and Data I Haadn I Header I 
I I I 

Authenticated {integrity Protectim) ' 

Figure 3.1 AH Tunnel Mode Packet 

Authenticated {Integrity Protection) . L 

Figure 3.2 AH Transport Mode Packet 

3.2.2 Integrity Protection Process 

The first step of integrity protection is to create a hash by using a keyed hash 
algorithm, also known as a message authentication code (MAC) algorithm. A standard 
hash algorithm generates a hash based on a message, while a keyed hash algorithm 
creates a hash based on both a message and a secret key shared by the two endpoints. The 
hash is added to the packet, and the packet is sent to the recipient. The recipient can then 



regenerate the hash using the shared key and confirm that the two hashes match, which 
provides integrity protection for the packet. 

IPSec uses hash message authentication code (HMAC) algorithms,[23] which 
perform two keyed hashes. Examples of keyed hash algorithms are HMAC-MDS and 
HMAC-SHA-1[24]. Another common MAC algorithm is AES Cipher Block Chaining 
MAC (AES-XCBC-MAC-96)[25].Technically, Figures 3.1 and 3.2 are somewhat 
misleading because. it is not possible to protect the integrity of the entire IP header. 
Certain IP header fields, such as time to live (TTL) and the IP header checksum, are 
dynamic and may change during routine communications. If the hash is calculated on all 
the original IP header values, and some of those values legitimately change in transit, the 
recalculated hash will be different. 

The destination would conclude that the packet had changed in transit and that its 
integrity had been violated. To avoid this problem, IP header fields that may legitimately 
change in transit in an unpredictable manner are excluded from the integrity protection 
calculations. This same principle explains why AH is often incompatible with network 
address translation (NAT) implementations. The IP source and destination address fields 
are included in the AH integrity protection calculations. If these addresses are altered by 
a NAT device (e.g., changing the source address from a private to a public address), the 
AH integrity protection calculation made by the destination will not match. 

3.2.3 AH Header 

AH adds a header to each packet. As shown in Figure 3.3, each AH header is 
composed of six fields: 

1- Next Header. This field contains the IP protocol number for the next packet 
payload. In tunnel mode, the payload is an IP packet, so the Next Header value is 
set to 4 for IP-in-IP. In transport mode, the payload is usually a transport-layer 
protocol, often TCP (protocol number 6) or UDP (protocol number 17) 

2- Payload Length. This field contains the length of the payload in 4-byte 
increments, minus 2: 

3- Reserved. This value is reserved for future use, so it should be set to 0. 
4- Security Parameters Index (SPI) [26]. Each endpoint of each IPSec connection 

has an arbitrarily chosen SPI value, which acts as a unique identifier for the 
connection. The recipient uses the SPI value, along with the destination IP address 
and (optionally) the IPSec protocol type (in this case, AH), to determine which 
Security Association (SA) is being used. This tells the recipient which lPSec 
protocols and algorithms have been applied to the packet. 

5- Sequence Number. Each packet is assigned a sequential sequence number, and 
only packets within a sliding window of sequence numbers are accepted. This 
provides protection against replay attacks because duplicate packets will use the 
same sequence number. This also helps to thwart denial of service attacks because 
old packets that are replayed will have sequence numbers outside the window, 
and will be dropped immediately without performing any more processing. 
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6- Authentication Information. This field contains the MAC output described in 
Section 3.2.2. The recipient of the packet can recalculate the MAC to confirm that 
the packet has not been altered in transit. 

I Next Header I Payioad Length I Reserved I 
Security Parameters Index 

Sequence Nunil~w 

Figure 3.3 AH Header 

3.2.4 How AH Works 

The best way to understand how AH works is by reviewing and analyzing actual 
AH packets. Figure 3.4 shows the bytes that compose an actual AH packet. The values on 
the left side are the packet bytes in hex, and the values on the right side are attempted 
ASCII translations of each hex byte. (Bytes that cannot be translated into a printable 
ASCII character are represented by a dot.) Figure 3.4 indicates each section of the AH 
packet: Ethernet header, IP header, AH header, and payload [27].Based on the fields 
shown in Figures 3.1 and 3.2, this is a transport mode packet because it only contains a 
single IP header. In this case, the payload contains an ICMP echo request a ping. The 
original ping contained alphabetic sequences, represented in the packet by ascending hex 
values (e.g., 61, 62, and 63). After AH was applied, the ICMP payload is unaffected. This 
is because AH only provides integrity protection, not encryption. 

Ethentet Header IP Header 
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2 . .  . . . . . . 4 . .  . . a .  
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Figure 3.4 Samples AH Transport Mode Packet 

Figure 3.5 shows the AH header fields from the first four packets in an AH 
session between hosts A and B. The fields in the first header have been labeled, and they 
correspond to the fields identified in Figure 3.3. Items of interest are as follows: 

1- SPI: Host A uses the hex value cdb59934 for the SPI in both its packets, while 
host B uses the hex value a6b32c00 for the SPI in both packets. This reflects that 
an AH connection is actually composed of two one-way connections, each with 
its own SPI. 
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2- Sequence Number: Both hosts initially set the sequence number to 1, and both 
incremented the number to 2 for their second packets. 

3- Authentication Information: The authentication (integrity protection) 
information, which is a keyed hash based on virtually all the bytes in the packet, 
is different in each packet. This value should be different even if only one byte in 
a hashed section of the packet changes. 

Figure 3-5. AH Header Fields from Sample Packet 

3.2.5 AH Version 3 

A new standard for AH, version 3, is currently in development[28].Based on the 
current standard draft, the functional differences between version 2 and version 3 should 
be relatively minor to IPSec administrators and users- some modifications to the SPI, and 
an optional longer sequence number. The version 3 standard draft also points to another 
standard draft that lists cryptographic algorithm requirements for AH[29].The draft 
mandates support for HMAC-SHA 1-96, strongly recommends support for AES-XCBC- 
MAC-96, and also recommends support for HMAC-MD5-96. 

3.2.6 AH Summary 

AH provides integrity protection for all packet headers and data, with the 
exception of a few IP header fields that routinely change in transit. 
Because AH includes source and destination IP addresses in its integrity 
protection calculations, AH is often incompatible with NAT. 
Currently, most IPSec implementations support the second version of IPSec, in 
which ESP can provide integrity protection services through authentication. The 

~ 
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use of AH has significantly declined. I11 fact, some IPSec implementations no 
longer support AH. 
AH still provides one benefit that ESP does not: integrity protection for the 
outermost IP header [30]. 

3.3 Encapsulating Security Payload (ESP) 

ESP 1311 is the second core IPSec security protocol. In the initial version of 
IPSec, ESP provided only encryption for packet payload data. Integrity protection was 
provided by the AH protocol if needed, as discussed in Section 3.2. In the second version 
of IPSec, ESP became more flexible. It can perform authentication to provide integrity 
protection, although not for the outermost IP header. 

Also, ESP's encryption can be disabled through the Null ESP Encryption 
Algorithm. Therefore, in all but the oldest IPSec implementations, ESP can be used to 
provide only encryption; encryption and integrity protection; or only integrity protection 
[32]. This section mainly addresses the features and characteristics of the second version 
of ESP; the third version, currently in development, is described near the end of the 
section. 

3.3.1 ESP Modes 

ESP has two modes: transport and tunnel. In tunnel mode, ESP creates a new IP 
header for each packet. The new IP header lists the endpoints of the ESP tunnel (such as 
two IPSec gateways) as the source and destination of the packet. As shown in Figure 3.6, 
tunnel mode can encrypt and/or protect the integrity of both the data and the original IP 
header for each packet [33].Encrypting the data protects it from being accessed or 
modified by unauthorized parties; encrypting the IP header conceals the nature of the 
communications, such as the actual source or destination of the packet. If authentication 
is being used for integrity protection, each packet will have an ESP Authentication 
section after the ESP trailer. 

N w  IP 
Header 

Figure 3.6 ESP Tunnel Mode Packet 

I I I I I 1 Encrypted I .  
1 Authenticated (Integni Profection) j I t I 

ESP tunnel mode is used far more frequently than ESP transport mode. In 
transport mode, ESP uses the original IP header instead of creating a new one. Figure 3.7 
shows that in transport mode, ESP can only encrypt and/or protect the integrity of packet 
payloads and certain ESP components, but not IP headers. As with AH, ESP transport 
mode is generally only used in host-to-host architectures. Also, transport mode is 
incompatible with NAT. For example, in each TCP packet, the TCP checksum is 
calculated on both TCP and IP fields, including the source and destination addresses in 
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the IP header. If NAT is being used, one or both of the IP addresses are altered, so NAT 
needs to recalculate the TCP checksum. If ESP is encrypting packets, the TCP header is 
encrypted; NAT cannot recalculate the checksum, so NAT fails. This is not an issue in 
tunnel mode; because the entire TCP packet is hidden, NAT will not attempt to 
recalculate the TCP checksum. However, tunnel mode and NAT have other potential 
compatibility issues [34]. Section 4.3.1 provides guidance on overcoming NAT-related 
Issues. 

Figure 3.7 ESP Transport Mode Packet 

3.3.2 Encryption Process 

ESP 
Authentation - 
optional 

As described in Section 3.3, ESP uses symmetric cryptography to provide 
encryption for IPSec packets. Accordingly, both endpoints of an IPSec connection 
protected by ESP encryption must use the same key to encrypt and decrypt the packets. 
When an endpoint encrypts data, it divides the data into small blocks (for the AES 
algorithm, 128 bits each), and then performs multiple sets of cryptographic operations 
(known as rounds) using the data blocks and key. Encryption algorithms that work in this 
way are known as block cipher algorithms. 

When the other endpoint receives the encrypted data, it performs decryption using 
the same key and a similar process, but with the steps reversed and the cryptographic 
operations altered. Examples of encryption algorithms used by ESP are AES-Cipher 
Block Chaining (AES-CBC), AES Counter Mode (AES-CTR), and Triple DES (3DES) 
P51. 

ESP Trailer 

3.3.3 ESP Packet Fields 

Transport and Application Protocol Headers 
and Data 

IP 
Header 

ESP adds a header and a trailer around each packets payload. As shown in Figure 
3-8, each ESP header is composed of two fields: 

SPI. Each endpoint of each IPSec connection has an arbitrarily chosen SPI value, 
which acts as a unique identifier for the connection. The recipient uses the SPI 
value, along with the destination IP address and (optionally) the IPSec protocol 
type (in this case, ESP), to determine which SA is being used. 
Sequence Number. Each packet is assigned a sequential sequence number, and 
only packets within a sliding window of sequence numbers are accepted. This 
provides protection against replay attacks because duplicate packets will use the 
same sequence number. This also helps to thwart denial of service attacks because 
old packets that are replayed will have sequence numbers outside the window, 
and will be dropped immediately without performing any more processing. 

ESP Header 
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The next part of the packet is the payload. It is composed of the payload data, 
which is encrypted, and the initialization vector (IV), which is not encrypted. The 
IV is used during encryption. Its value is different in every packet, so if two 
packets have the same content, the inclusion of the IV will cause the encryption of 
the two packets to have different results. This makes ESP less susceptible to 
cryptanalysis. 
The third part of the packet is the ESP trailer, which contains at least two fields 
and may optionally include one more. 
Padding. An ESP packet may optionally contain padding, which is additional 
byte of data that make the packet larger and are discarded by the packet's 
recipient. Because ESP uses block ciphers for encryption, padding may be needed 
so that the encrypted data is an integral multiple of the block size. Padding may 
also be needed to ensure that the ESP trailer ends on a multiple of 4 bytes. 
Additional padding may also be used to alter the size of each packet, concealing 
how many bytes of actual data the packet contains. This is helpful in deterring 
traffic analysis. 
Padding Length. This number indicates how many bytes long the padding is. The 
Padding Length field is mandatory. 
Next Header. In tunnel mode, the payload is an IP packet, so the Next Header 
value is set to 4 for IP-in-IP. In transport mode, the payload is usually a transport- 
layer protocol, often TCP (protocol number 6 )  or UDP (protocol number 17). 
Every ESP trailer contains a Next Header value. 

If ESP integrity protection is enabled, the ESP trailer is followed by an 
Authentication Information field. Like AH, the field contains the MAC output 
described in Section 3.2.2. Unlike AH, the MAC in ESP does not include the 
outermost IP header in its calculations. The recipient of the packet can recalculate the 
MAC to confirm that the portions of the packet other than the outermost IP header 
have not been altered in transit. 
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3.3.4 How ESP Works 

Reviewing and analyzing actual ESP packets can provide a better understanding 
of how ESP works, particularly when compared with AH packets. Figure 3.9 shows the 
bytes that compose an actual ESP packet and their ASCII representations, in the same 
format used in Section 3.2.4. The alphabetic sequence that was visible in the AH- 
protected payload cannot be seen in the ESP-protected payload because it has been 
encrypted. 

The ESP packet only contains five sections: Ethernet header, IP header, ESP 
header, encrypted data (payload and ESP trailer), and (optionally) authentication 
information. From the encrypted data, it is not possible to determine if this packet was 
generated in transport mode or tunnel mode. However, because the IP header is 
unencrypted, the IP protocol field in the header does reveal which protocol the payload 
uses (in this case, ESP). As shown in Figures 3.6 and 3.7, the unencrypted fields in both 
modes (tunnel and transport) are the same. 

Ethernet Header IP Header 
r 

Figure 3.9 ESP Packet Capture 

Although it is difficult to tell from Figure 3.9, the ESP header fields are not 
encrypted. Figure 3.10 shows the ESP header fields from the first four packets in an ESP 
session between hosts A and B. The SPI and Sequence Number fields work the same way 
in ESP that they do in AH. Each host uses a different static SPI value for its packets, 
which corresponds to an ESP connection being composed of two one-way connections, 
each with its own SPI. Also, both hosts initially set the sequence number to I, and both 
incremented the number to 2 for their second packets. 

Figure 3.10 ESP Header Fields from Sample Packets 
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3.3.5 ESP Version 3 

A new standard for ESP, version 3, is currently in development [36]. Based on the 
current standard draft, there should be several major functional differences between 
version 2 and version 3, including the following: 

The standard for ESP version 2 required ESP implementations to support using 
ESP encryption only (without integrity protection). The proposed ESP version 3 
standards make support for this optional. 
ESP can use an optional longer sequence number, just like the proposed AH 
version 3 standard. 
ESP version 3 supports the use of combined mode algorithms (e.g., AES Counter 
with CBC-MAC [AES-CCM]) [37].Rather than using separate algorithms for 
encryption and integrity protection, a combined mode algorithm provides both 
encryption and integrity protection. 
The version 3 standard draft also points to another standard draft that lists 
encryption and integrity protection cryptographic algorithm requirements for ESP 
[33]. For encryption algorithms, the draft mandates support for the null encryption 
algorithm and 3DES-CBC, strongly recommends support for AES-CBC (with 
128-bit keys), recommends support for AES-CTR, and discourages support for 
DES-CBC[39].For integrity protection algorithms, the draft mandates support for 
HMAC-SHA 1-96 and the null authentication algorithm, strongly recommends 
support for AES-XCBC-MAC-96, and also recommends support for HMAC- 
MD5-96. The standard draft does not recommend any combined mode algorithms. 

3.3.6 ESP Summary 

In tunnel mode, ESP can provide encryption and integrity protection for an 
encapsulated IP packet, as well as authentication of the ESP header. Tunnel mode 
can be compatible with NAT. However, protocols with embedded addresses (e.g., 
FTP, IRC, and SIP) can present additional complications. 
In transport mode, ESP can provide encryption and integrity protection for the 
payload of an IP packet, as well as integrity protection for the ESP header. 
Transport mode is not compatible with NAT. 
ESP tunnel mode is the most commonly used lPSec mode. Because it can encrypt 
the original IP header, it can conceal the true source and destination of the packet. 
Also, ESP can add padding to packets, further complicating attempts to perform 
traffic analysis. 
Although ESP can be used to provide encryption or integrity protection (or both), 
ESP encryption should not be used without integrity protection. 
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3.4 MD5 Algorithm 

We begin by supposing that we have a b-bit message as input, and that we wish to 
find its message digest. Here b is an arbitrary nonnegative integer; b may be zero, it need 
not be a multiple of eight, and it may be arbitrarily large. We imagine the bits of the 
message written down as follows: 

m-0 m-1 ... m-{b-I) 
The following five steps are performed to compute the message digest of the 

message. 

Step 1: Append Padding Bits 

The message is "padded" (extended) so that its length (in bits) is congruent to 
448, modulo 5 12. That is, the message is extended so that it is just 64 bits shy of being a 
multiple of 512 bits long. Padding is always performed, even if the length of the message 
is already congruent to 448, modulo 5 12. 

Padding is performed as follows: a single "I " bit is appended to the message, and 
then "0" bits are appended so that the length in bits of the padded message becomes 
congruent to 448, modulo 5 12. In all, at least one bit and at most 512 bits are appended. 

Step 2: Append Length 

A 64-bit representation of b (the length of the message before the padding bits 
were added) is appended to the result of the previous step. In the unlikely event that b is 
greater than 2"64, then only the low-order 64 bits of b are used. (These bits are appended 
as two 32-bit words and appended low-order word first in accordance with the previous 
conventions.) 

At this point the resulting message (afterepadding with bits and with b) has a 
length that is an exact multiple of 512 bits. Equivalently, this message has a length that is 
an exact multiple of 16 (32-bit) words. Let M [0 ... N-I] denote the words of the resulting 
message, where N is a multiple of 16. 

A four-word buffer (A, B, C, D) is used to compute the message digest. Here each 
of A, B, C, D is a 32-bit register. These registers are initialized to the following values in 
hexadecimal, low-order bytes first): 

Word A: 0 1 23 45 67 
Word B: 89 ab cd ef 
Word C: fe dc ba 98 
Word D: 76 54 32 10 

Step 3: Initialize MD Buffer 

A four-word buffer (A, B, C,D) is used to compute the message digest. Here each 
of A, B, C, D is a 32-bit register. These registers are initialized to the following values in 
hexadecimal, low-order bytes first): 

Word A: 01 23 45 67 
Word B: 89 ab cd ef 
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Word C: fe dc ba 98 
Word D: 76 54 32 10 

Step 4: Process Message in 16-Word Blocks 

We first define four auxiliary functions that each take as input three 32-bit words 
and produce as output one 32-bit word. 

F(X,Y,Z) = XY v not(X) Z 
G(X,Y,Z) = XZ v Y not(Z) 
H(X,Y,Z) = X xor Y xor Z 
I(X,Y,Z) = Y xor (X v not(Z)) 

In each bit position F acts as a conditional: if X then Y else Z. The function F 
could have been defined using + instead of v since XY and not(X)Z will never have 1's in 
the same bit position.) It is interesting to note that if the bits of X, Y, and Z are 
independent and unbiased, the each bit of F(X,Y,Z) will be independent and unbiased. 

The functions G, H, and I are similar to the function F, in that they act in "bitwise 
parallel" to produce their output from the bits of X, Y, and Z, in such a manner that if the 
corresponding bits of X, Y, and Z are independent and unbiased, then each bit of 
G(X,Y,Z), H(X,Y,Z), and I(X,Y,Z) will be independent and unbiased. Note that the 
function H is the bit-wise "xor" or "parity" function of its inputs. 

This step uses a 64-element table T[l ... 641 constructed from the sine function. 
Let T[i] denote the i-th element of the table, which is equal to the integer part of 
4294967296 times abs(sin(i)), where i is in radians. 

Do the following: 
I* Process each 16-word block. */ 
For i = 0 to Nl16-1 do 
/* Copy block i into X. *I 
Forj = 0 to 15 do 

Set Xfi] to M [i* 16+j]. 
End I* of loop on j */ 

I* Save A as AA, B as BB, C as CC, and D as DD. *I 
AA = A 
B B = B  

I* Round I .  */ 
I* Let [abcd k s i] denote the operation 

a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). *I 
I* Do the following 16 operations. */ 
[ABCD 0 7 11 [DABC 1 12 21 [CDAB 2 17 31 [BCDA 3 22 41 
[ABCD 4 7 51 [DABC 5 12 61 [CDAB 6 17 71 [BCDA 7 22 81 
[ABCD 8 7 91 [DABC 9 12 101 [CDAB 10 17 1 11 [BCDA 1 1 22 121 

IPSec Based Bluetooth Security Architectzire 48 



Chapter 3 lPSec Protocol 

[ABCD 12 7 131 [DABC 13 12 141 [CDAB 14 17 151 [BCDA 15 22 161 

/* Round 2. *I 
/* Let [abcd k s i] denote the operation 

a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */ 
/* Do the following 16 operations. */ 
[ABCD 1 5 171 [DABC 6 9 181 [CDAB 11 14 191 [BCDA 0 20 201 
[ABCD 5 5 211 [DABC 10 9 221 [CDAB 15 14 231 [BCDA 4 20 241 
[ABCD 9 5 251 [DABC 14 9 261 [CDAB 3 14 271 [BCDA 8 20 281 
[ABCD 13 5 291 [DABC 2 9 301 [CDAB 7 14 3 I] [BCDA 12 20 321 

/* Round 3. */ 
/* Let [abcd k s t] denote the operation 

a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */ 
I* Do the following 16 operations. */ 
[ABCD 5 4 331 [DABC 8 1 1 341 [CDAB 1 1 16 351 [BCDA 14 23 361 
[ABCD 1 4 371 [DABC 4 1 1 381 [CDAB 7 16 391 [BCDA 10 23 401 
[ABCD 13 4 4 11 [DABC 0 1 1 421 [CDAB 3 16 431 [BCDA 6 23 441 
[ABCD 9 4 451 [DABC 12 1 1 461 [CDAB 15 1 6 471 [BCDA 2 23 481 

/* Round 4. */ 
/* Let [abcd k s t] denote the operation 

a = b + ((a + J(b,c,d) + X[k] + T[i]) <<< s). */ 
/* Do the following 16 operations. */ 
[ABCD 0 6 491 [DABC 7 10 501 [CDAB 14 15 511 [BCDA 5 21 521 
[ABCD 12 6 531 [DABC 3 10 541 [CDAB 10 15 551 [BCDA 1 2 1 561 
[ABCD 8 6 571 [DABC 15 10 581 [CDAB 6 15 591 [BCDA 13 21 601 
[ABCD 4 6 611 [DABC 1 1  10 621 [CDAB 2 15 631 [BCDA 9 21 641 

/* Then perform the following additions. (That is increment each 
of the four registers by the value it had before this block 
was started.) */ 

A = A + A A  
B = B + B B  
C = C + C C  
D = D + D D  

Step 5: Output 

The message digest produced as output is A, B, C, D. That is, we begin with the 
low-order byte of A, and end with the high-order byte of D. 

The MD5 message-digest algorithm is simple to implement, and provides a 
"fingerprint" or message digest of a message of arbitrary length. It is conjectured that the 
difficulty of coming up with two messages having the same message digest is on the 
order of 2"64 operations, and that the difficulty of coming up with any message having a 
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given message digest is on the order of 2"128 operations. The MD5 algorithm has been 
carefully scrutinized for weaknesses. It is, however, a relatively new algorithm and 
further security analysis is of course justified, as is the case with any new proposal of this 
sort. 

3.5 SHA-1 Algorithm 

Operations ion words. The following logical operators will be applied to words: 

A. Bitwise logical word operations 
X AND Y = bitwise logical "and" of X and Y. 
X OR Y = bitwise logical "inclusive-or" of X and Y. 
X XOR Y = bitwise logical "exclusive-or" of X and Y. 
NOT X = bitwise logical "complement" of X. 
Example: 

0110110010111001110100l00llll0ll 
XOR O11OO1O111OOOOO1O11OlOOllOllOlll 

B. The operation X + Y is defined as follows: words X and Y represent 
integers x and y, where 0 <= x < 2^32 and 0 <= y < 2^32. For positive 
integer's n and m, let n mod m be the remainder upon dividing n by m. 
Compute 

z = (x + y) mod 2^32. 
Then 0 <= z < 2"32. Convert z to a word, 2, and define Z = X + Y. 

C. The circular left shift operation SAn(X), where X is a word and n is an 
integer with 0 <= n < 32, is defined by 

SAn(X) = (X << n) OR (X >> 32-n). 

In the above, X << n is obtained as follows: discard the left-most n bits of X and 
then pad the result with n zeroes on the right (the result will still be 32 bits). X >> n is 
obtained by discarding the right-most n bits of X and then padding the result with n 
zeroes on the left. Thus SAn(X) is equivalent to a circular shift of X by n positions to the 
left. 

3.5.1 Message Padding 

SHA-I is used to compute a message digest for a message or data file that is 
provided as input. The message or data file should be considered to be a bit string. The 
length of the message is the number of bits in the message (the empty message has length 
0). If the number of bits in a message is a multiple of 8, for compactness we can 
represent the message in hex. The purpose of message padding is to make the total 
length of a padded message a multiple of 512. SHA-I sequentially processes blocks of 
512 bits when computing the message digest. The following specifies how this padding 
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shall be performed. As a summary, a "1" followed by m "0"s followed by a 64- bit 
integer are appended to the end of the message to produce a padded message of length 
512 * n. The 64-bit integer is the length of the original message. The padded message is 
then processed by the SHA-I as n 5 12-bit blocks. 

Suppose a message has length I < 2"64. Before it is input to the SHA-I, the 
message is padded on the right as follows: 

1. " 1" is appended. Example: if the original message is "0 10 1 OOOO", this is 
padded to "0 10 10000 1 ". 

2. "0"s are appended. The number of "0"s will depend on the original 
length of the message. The last 64 bits of the last 512-bit block are 
reserved for the length 1 of the original message. 

Example: Suppose the original message is the bit string 
011000010110001001100011 0110010001100101. 

After step (1) this gives 
01100001 0110001001100011 0110010001100101 1 .  

Since 1 = 40, the number of bits in the above is 41 and 407 "0"s are appended, 
making the total now 448. This gives (in hex) 

61626364658000000000000000000000 
00000000 00000000 00000000 00000000 
00000000000000000000000000000000 
0000000000000000. 

3. Obtain the 2-word representation of I, the number of bits in the original 
message. If I < 2A32 then the first word is all zeroes. 

Append these two words to the padded message. 
Example: Suppose the original message is as in (b). Then I = 40 (note that 1 is 

computed before any padding). The two-word representation of 40 is hex 00000000 
00000028. Hence the final padded message is hex 

The padded message will contain 16 * n words for some n > 0. 
The padded message is regarded as a sequence of n blocks M(1) , M(2), first 

characters (or bits) of the message. 

3.5.2 Functions and Constants Used 

A sequence of logical functions f(O), f(l), ..., f(79) is used in SHA-I. Each f(t), 0 
<= t <= 79, operates on three 32-bit words B, C, D and produces a 32-bit word as output. 
f(t;B,C,D) is defined as follows: for words B, C, D, 
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f(t;B,C,D) = (B AND C) OR ((NOT B) AND D) ( 0 <= t <= 19) 
f(t;B,C,D) = B XOR C XOR D (20 <= t <= 39) 
f(t;B,C,D) = (B AND C) OR (B AND D) OR (C AND D) (40 <= t <= 59) 
f(t;B,C,D) = B XOR C XOR D (60 <= t <= 79). 

A sequence of constant words K(O), K(1), ... , K(79) is used in the SHA-1. In hex 
these are given by 

K(t) = 5A827999 ( 0 <= t <= 19) 
K(t) = 6ED9EBA 1 (20 <= t <= 39) 
K(t) = SF1 BBCDC (40 <= t <= 59) 
K(t) = CA62C 1D6 (60 <= t <= 79). 

3.5.3 Computing the Message Digest 

The methods given in 3.5.3.1 and 3.5.3.2 below yield the same message digest. 
Although using method 2 saves sixty-four 32-bit words of storage, it is likely to lengthen 
execution time due to the increased complexity of the address computations for the ( 
W[t] ) in step (3). There are other computation methods which give identical results. 

3.5.3.1 Method 1 

The computation is described using two buffers, each consisting of five 32-bit 
words, and a sequence of eighty 32-bit words. The words of the first 5-word buffer are 
labeled A,B,C,D,E. The words of the second 5-word buffer are labeled HO, HI, H2, H3, 
H4. The words of the 80-word sequence are labeled W(O), W(l), ..., W(79). A single word 
buffer TEMP is also employed. To generate the message digest, the 16-word blocks 
M(l), M(2), ..., M(n) defined in section 4 are processed in order. The processing of 
each M(i) involves 80 steps. 

Before processing any blocks, the H's are initialized as follows: in hex, 
HO = 67452301 
H 1 = EFCDAB89 
H2 = 98BADCFE 
H3 = 10325476 
H4 = C3D2E1 FO. 

Now M(1), M(2), ... , M(n) are processed. To process M(i), we proceed as 
follows: 

a. 

b. 

C. 

d. 

e. 

Divide M(i) into 16 words W(O), W(1), ... , W(15), where W(0) is the 
left-most word. 
For t = 16 to 79 let W(t) = SAl(W(t-3) XOR W(t-8) XOR W(t-14) 
XOR W(t- 16)). 
L e t A = H O , B = H I , C = H 2 , D = H 3 , E = H 4 .  
For t = 0 to 79 do TEMP = SA5(A) + f(t;B,C,D) + E + W(t) + K(t); 
E = D; D = C; C = SA30(B); B = A; A = TEMP; 
LetHO=HO+A,Hl  =H1 + B , H 2 = H 2 + C , H 3 = H 3 + D Y H 4 = H 4  
+ E. 
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After processing M(n), the message digest is the 160-bit string represented by the 
5 words HO H l H2 H3 H4. 

3.5.3.2 Method 2 

The method above assumes that the sequence W(O), ... , W(79) is implemented as 
an array of eighty 32-bit words. This is efficient from the standpoint of minimization of 
execution time, since the addresses of W(t-3), ... ,W(t-16) in step (b) are easily 
computed. If space is at a premium, an alternative is to regard { W(t) ) as a circular 
queue, which may be implemented using an array of sixteen 32-bit words W[O], ... 
W[38]. In this case, in hex let 

MASK = 0000000F. Then processing of M(i) is as follows: 

a. Divide M(i) into 16 words W[0], ... , W[38], where W[O] is the left- 
most word. 

b. L e t A = H O , B = H l , C = H 2 , D = H 3 , E = H 4 .  
c. For t = 0 to 79 do s = t AND MASK; 
If (t >= 16) W[s] = SAl(W[(s + 13) AND MASK] XOR W[(s + 8) AND 
MASK] XOR W[(s + 2) AND MASK] XOR W[s]); 
TEMP = SA5(A) + f(t;B,C,D) + E + W[s] + K(t); 
E = D; D = C; C = SA30(B); B = A; A = TEMP; 

3.6 DES Algorithm 

DES is a block cipher--meaning it operates on plaintext blocks of a given size (64-bits) 
and returns ciphertext blocks of the same size. Thus DES results in apermutation among 
the 2"64 (read this as: "2 to the 64th power") possible arrangements of 64 bits, each of 
which may be either 0 or I .  Each block of 64 bits is divided into two blocks of 32 bits 
each, a left half block L and a right half R. (This division is only used in certain 
operations.) 
Example: Let M be the plain text message M = 0123456789ABCDEF, where M is in 
hexadecimal (base 16) format. Rewriting M in binary format, we get the 64-bit block of 
text: 
M=0000OOO1 00100011 01000101 01100l11 1000 1001 1010 1011 1100 1101 1110 
1 1 1 1  
L = 0000 0001 0010 0011 0100 0101 0110 0111 
R=10001001 1010 1011 11001101 11101111 
The first bit of M is "0". The last bit is "1 ". We read from left to right. 
DES operates on the 64-bit blocks using key sizes of 56- bits. The keys are actually stored 
as being 64 bits long, but every 8th bit in the key is not used (i.e. bits numbered 8, 16,24, 
32, 40, 48, 56, and 64). However, we will nevertheless number the bits from 1 to 64, 
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going left to right, in the following calculations. But, as you will see, the eight bits just 
mentioned get eliminated when we create sub keys. 
Example: Let K be the hexadecimal key K = 133457799BBCDFFl. This gives us as the 
binary key (setting 1 = 0001, 3 = 001 1, etc., and grouping together every eight bits, of 
which the last one in each group will be unused): 
K =  0001001 1 001 10100 010101 1 1  01 1 1  1001 1001 101 1 101 I I100 1101 1 1  1 1  11  110001 
The DES algorithm uses the following steps: 

Step 1: Create 16 sub keys, each of which is 48-bits long. 

The 64-bit key is permuted according to the following table, PC-1. Since the first entry in 
the table is "57", this means that the 57th bit of the original key K becomes the first bit of 
the permuted key K+. The 49th bit of the original key becomes the second bit of the 
permuted key. The 4th bit of the original key is the last bit of the permuted key. Note 
only 56 bits of the original key appear in the permuted key. 

PC-1 

57 49 41 33 25 17 9 
1 58 50 42 34 26 18 
10 2 59 51 43 35 27 
19 1 1  3 60 52 44 36 
63 55 47 39 31 23 15 
7 62 54 46 38 30 22 
14 6 61 53 45 3 7 2 9  
21 13 5 28 20 12 4 

Example: From the original 64-bit key 
K=00010011 00110100 010101 1 1  011 11001 1001 101 1 10111100 1101111 1 1 1  110001 
We get the 56-bit permutation 
K+=11110000110011 0010101 0101111 01010101011001 100111I 0001111 
Next, split this key into left and right halves, Co and Do, where each half has 28 bits. 
Example: From the permuted key K+, we get 
co - - 11 11000 011001 1 0010101 0101111 
Do= 0101010 101 1001 10011 1 1  0001 1 I I 
With Co and Do defined, we now create sixteen blocks C,, and I),,, 1<=n<=16. Each pair 
of blocks C,, and Dl, is formed from the previous pair C,,-, and I),-,, respectively, for n = 
1, 2... 16, using the following schedule of "left shifts" of the previous block. To do a left 
shift, move each bit one place to the left, except for the first bit, which is cycled to the 
end of the block. 

Iteration Number of 
Number Leftshifts 
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6 2 
7 2 
8 2 
9 1 
10 2 
1 1  2 
12 2 
13 2 
14 2 
15 2 
16 1 

s, for example, C3 and D3 are obtained from Ct and D2, respectively, by two 
left shifts, and Cla and D16 are obtained from Clg and Dls, respectively, by one left shift. 
In all cases, by a single left shift is meant a rotation of the bits one place to the left, so 
that after one left shift the bits in the 28 positions are the bits that were previously in 
positions 2, 3 ,..., 28, I .  

This m ean 

Example: From original pair pair Co and Do we obtain: 
co - - 11110000110011001010l0l0llll 
Do= 0101010l01100110011110001111 
Cl - - 111000011001100101010l0l1lll 
Dl = 101010101 1001 1001 11 10001 11  10 
c 2  

- - 11000011001100101010l0lll11l 
D r = O 1 O 1 O 1 O 1 l O O 1 l O O 1 l l l O O O 1 l l l O 1  
c3 

- - 000011001 100101010101 1 l l l  I l l  
D3=0101011001100111100011 110101 
c4 

- - 00110011001010101011lll1ll00 
Dq=OIOllOOllOO1lllOOO1lllOIOIO1 
c5 

- - 110011001010101011111lll0000 
D5= 011001 10011 1100011 1101010101 
c 6  

- - 00110010101010111111110000ll 
D ~ =  ~ O O I I O O I ~ I ~ O O O I  i1ioioi010101 
C7 

- - 1100101010101111111100001100 
D~=0110011110001111010101010110 
c8 

- - 0010101010111111110000ll001l 
Dg=lOO1lllOOO1lllOIOIOIOIO1lOOl 
c9 

- - 010101010111111110000ll00ll0 
D~=0011110001l110101010101l001I 
Cl0 - - 01010101111111100001l001l00l 
Dlo= 111100011110101010101l00ll00 
Cl I - - 010101111111100001100l100l0l 
D~~=1100011110101010101100110011 
Cl2 - - 01011111111000011001l0010l0l 
D~2=00011110101010101100l1001111 
el3 

- - 011111111000011001100l0l0l0l 
D~~=OllllOlOlOlOlOllOOllOOllllOO 
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- 
c14 

- 1 1  1 1  11 100001 1001 1001010l010l 

Dl4= ~ 1 ~ 0 ~ ~ 1 0 ~ 0 ~ 0 ~ ~ 0 0 ~ ~ 0 0 ~ ~ ~ ~ 0 0 0 1  - 
CIS - 1111100001100110010101010111 

D l s = l O 1 O I O I O I O 1 l O O 1 l O O 1 l l l O O O 1 l l  
c16 

- - 111100001100110010101010l11l 

~~~=0101010101100110011110001111 
We now form the keys K,, for I <=n<=16, by applying the following permutation table to 
each of the concatenated pairs C,,D,,. Each pair has 56 bits, but PC-2 only uses 48 of 
these. 

PC-2 

14 1 7 1 1  24 1 5  
3 28 15 6 21 10 

23 19 12 4 26 8 
16 7 27 20 13 2 
41 52 31 37 47 55 
30 40 51 45 33 48 
44 49 39 56 34 53 
46 42 50 36 . 2 9  32 

Therefore, the first bit of K,, is the 14th bit of C,& the second bit the 17th, and so on, 
ending with the 48th bit of K,, being the 32th bit of C,,D,. 

Example: For the first key we have ClDI = 11 10000 11001 10 0101010 101 1 1 1  1 
1010101 0110011 0011110 0011110 which, after we apply the permutation PC-2, 
becomes 
K1=OOO1lO1lOOOOOO1O1l 101111111111000111 000001 110010 
For the other keys we have 
Ii2 = 011110 011010 111011 011001 110110 111100 100111 100101 
K3 = 010101 011111 110010 001010 010000 101100 111110 011001 
Kq = 011100 101010 110111 010110 110110 110011 010100 011101 
Ii5 = 011111 001110 110000 000111 111010 110101 001110 101000 
K,5 = 011000 111010 010100 111110 010100 000111 101100 101111 
K7 = 111011 001000 010010 110111 111 101 100001 100010 111100 
Ks = 111101 111000 101000 111010 110000 010011 101111 111011 
K9 = 111000 001101 101111 101011 11101 1 011110 011110 000001 
Kl0 = 101100 011111 001101 000111 101110 100100 011001 001111 
Klr = 001000 010101 11 1 1 1 1  01001 1 11011 1 101101 0011 10 0001 10 
Kit = 011101 010111 000111 110101 100101 000110 011111 101001 
I(,3 = 100101 111100 010111 010001 111110 101011 101001 000001 
I64 = 010111 110100 001110 110111 111100 101110 011100 111010 
K15 = 10111 1 111001 000110 001101 001111 010011 11 1100 001010 
K16= 110010 110011 110110001011 000011 100001 011111 110101 

So, much for the sub keys. Now we look at the message itself. 
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Step 2: Encode each 64-bit block of data. 

There is an initial permutation IP of the 64 bits of the message data M. This rearranges 
the bits according to the following table, where the entries in the table show the new 
arrangement of the bits from their initial order. The 58th bit of M becomes the first bit of 
IP. The 50th bit of M becomes the second bit of IP. The 7th bit of M is the last bit of IP. 

IP 

Example: Applying the initial permutation to the block of text M, given previously, we 
get 
M = 0000 0001 0010 001 1 0100 0101 01 10 01 11 1000 1001 1010 101 1 1100 1101 1 1  10 
1111 
I P =  1100 110000000000 11001100 1 1 1 1  1111 1111 0000 1010 1010 I111 0000 1010 
1010 
Here the 58th bit of M is " 1 ", which becomes the first bit of IP. The 50th bit of M is "I", 
which becomes the second bit of IP. The 7th bit of M is "OM, which becomes the last bit 
of IP. 
Next divide the permuted block IP into a left half Lo of 32 bits, and a right half Ro of 32 
bits. 
Example: From IP, we get Lo and Ro 
Lo= 1100110000000000 1100 1100 1111 1 1 1 1  
Ro= 1 1 1 1  0000 1010 1010 11II0000 1010 1010 
We now proceed through 16 iterations, for 1<=n<=16, using a fhnction f which operates 
on two blocks--a data block of 32 bits and a key K, of 48 bits--to produce a block of 32 
bits. Let + denote XOR addition, (bit-by-bit addition modulo 2). Then for n going 
from I to 16 we calculate 
LIZ = Rn-J 
R,= L,,-J +AR,-J&) 
This results in a final block, for n = 16, of LJ&J6. That is, in each iteration, we take the 
right 32 bits of the previous result and make them the left 32 bits of the current step. For 
the right 32 bits in the current step, we XOR the left 32 bits of the previous step with the 
calculation f .  
Example: For n = I, we have 
~ ~ ~ 0 0 0 ~ ~ 0  ~ ~ 0 0 0 0 0 0 ~ 0 ~ ~  101111 ~ ~ ~ ~ ~ ~ 0 0 0 1 ~ ~ 0 0 0 0 0 ~  110010 
L j = R o = I I I I  0000 1010 1010 1111 00001OIO101O 
RJ = Lo +ARO&J) 
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It remains to explain how the functionfworks. To calculatef, we first expand each block 
Rn-1 from 32 bits to 48 bits. This is done by using a selection table that repeats some of 
the bits in R,,J . We'll call the use of this selection table the function E. Thus E (R,-I) has 
a 32 bit input block, and a 48 bit output block. 
Let E be such that the 48 bits of its output, written as 8 blocks of 6 bits each, are obtained 
by selecting the bits in its inputs in order according to the following table: 

E BIT-SELECTION TABLE 

Thus the first three bits of E(R,,-[) are the bits in positions 32, 1 and 2 of R,,l while the 
last 2 bits of E(R,-l) are the bits in positions 32 and I .  
Example: We calculate E(R0) from Ro as follows: 
Ro = 1111 0000 1010 1010 11 1 1  0000 1010 1010 
E (Ro)=O1l 110 100001 010101 010101 011 110 100001 010101 010101 
(Note that each block of 4 original bits has been expanded to a block of 6 output bits.) 
Next in the f calculation, we XOR the output E(RnmI) with the key K,,: 
Kt, + E (&-I). 
Example: For KI , E(Ro), we have 
KI = 000110 110000 001011 101111 1 1 1 1 1 1  000111 000001 110010 
E(Ro) = 0111 10 100001 010101 010101 01 1110 100001 010101 010101 
KI+E(Ro)=O1lOOOO1OOO1 011110111010100001 100110010100 100111. 
We have not yet finished calculating the function f .  To this point we have expanded R,.l 
from 32 bits to 48 bits, using the selection table, and XORed the result with the key Kn . 
We now have 48 bits, or eight groups of six bits. We now do something strange with each 
group of six bits: we use them as addresses in tables called "S boxes". Each group of six 
bits will give us an address in a different S box. Located at that address will be a 4 bit 
number. This 4 bit number will replace the original 6 bits. The net result is that the eight 
groups of 6 bits are transformed into eight groups of 4 bits (the 4-bit outputs from the S 
boxes) for 32 bits total. 
Write the previous result, which is 48 bits, in the form: 
Kt, + E(&-I) ' B I B ~ B J B ~ B ~ B ~ ~ ~ B ~ ,  
Where each Bi is a group of six bits. We now calculate 
~I(BI)~~(B~~~(B~)S~(~~)~S(BS)~~(B~S~(B~)S~(B~) 
Where Si(Bi) referres to the output of the i-th S box. 
To repeat, each of the functions SI, S2, ..., S8, takes a 6-bit block as input and yields a 4- 
bit block as output. The table to determine SI is shown and explained below: 
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S1 
Column Number 

I 
Row 
No. 0  1  2  3  4  5  6  7 8 9 1011 1213 1415 
0 14 4  13 1  215 11 8 3 1 0  612  5 9 0 7 
1  0 1 5  7 4 1 4 2  1 3 1 1 0 6 1 2 1 1  9 5  3 8  
2 4 1 1 4  8 13 6  211  1512 9 7 3 1 0  5 0  
3  1512 8 2  4 9  1 7  511  3 1 4 1 0 0  6 1 3  

If SI is the function defined in this table and B is a block of 6 bits, then SI(B) is 
determined as follows: The first and last bits of B represent in base 2 a number in the 
decimal range 0 to 3 (or binary 00 to 11). Let that number be i. The middle 4 bits of B 
represent in base 2 a number in the decimal range 0 to 15 (binary 0000 to 1 1 1 1). Let that 
number be j. Look up in the table the number in the i-th row and j-th column. It is a 
number in the range 0 to 15 and is uniquely represented by a 4 bit block. That block is the 
output S,(B) of S, for the input B. For example, for input block B = 01 101 1 the first bit is 
"0" and the last bit "1" giving 01 as the row. This is row 1. The middle four bits are 
" I I01 ". This is the binary equivalent of decimal 13, so the column is column number 13. 
In row 1, column 13 appears 5. This determines the output; 5 is binary 0101, so that the 
output is 0101. Hence S1(011011) = 0101. 
The tables defining the functions SI, ..., Ss are the following: 

S  1  
14 4 13 1 215  11  8 310  612 5 9 0 7 
015 7 4  1 4 2  13 1 1 0 6  1211 9 5  3 8 
4 1  1 4 8 1 3 6  211 1512 9 7  310  5 0  
1512 8 2 4 9 1 7  511 314 10 0 613 
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SS 
1 3 2  8 4  615  11  1 1 0 9  314  5 0  1 2 7  
115 13 8 10 3 7 4 12 5 611 014 9 2 
711 4 1 912  1 4 2  0 6  1013 15 3 5 8 
2 1 14 7 410  813  1512 9 0 3 5 611 

Example: For the first round, we obtain as the output of the eight S boxes: 
K~+E(Ro)=011000010001011Il0 111010100001 l00ll0010100 l0011l. 
Sl(Bl)S2(B$S3(B3)S4(B~)SS(BS)S6(B~S7(B7)S8(Ba) = O 1 O 1 1 100 1000 00 1 O 1 O I 1 O 1 O I 
1001 0111 
The final stage in the calculation off is to do a permutation P of the S-box output to 
obtain the final value off: 
f = P(SI(B~S~(BZ)...S~(BLI)) 
The permutation P is defined in the following table. P yields a 32-bit output from a 32-bit 
input by permuting the bits of the input block. 

P 
16 72021 
29 12 28 17 
1 152326 
5 1831 10 
2 824 14 
32 27 3 9 
19 13 30 6 
22 11 425 

Example: From the output of the eight S boxes: 
S,(Bl)S~(B~S3(B3)S~(B&(Bs)S6(B&)S7(B7 = 0 10 1 1 1 00 1 000 00 10 1 0 1 1 0 1 0 1 
1001 01 11 
We get 
f=OO1O0011 0100 1010 1010 1001 1011 1011 
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RI = Lo +ARo, ) 
- - 1100 1100 0000 0000 1100 1100 1 1 1 1  1 1 1 1  
+ 0010 001 1 0100 1010 1010 1001 101 1 101 1 
= 1110 1111  0100 1010 0110 0101 0l000l00 
In the next round, we will have Lt = R,, which is the block we just calculated, and then 
we must calculate R2 =LI + ~ ( R I ,  Kz), and so on for 16 rounds. At the end of the sixteenth 
round we have the blocks L16 and R16. We then reverse the order of the two blocks into 
the 64-bit block 
R16L16 and apply a final permutation IP-' as defined by the following table: 

IF' 
40 8 48 16 56 24 64 32 
39 7 4 7  15 55 23 63 31 
38 6 46 14 54 22 62 30 
37 5 45 13 53 21 61 29 
36 4 44 12 52 20 60 28 
35 3 43 1 1  51 19 59 27 
34 2 42 10 50 18 58 26 
33 1 4 1  9 49 17 57 25 

That is, the output of the algorithm has bit 40 of the preoutput block as its first bit, bit 8 
as its second bit, and so on, until bit 25 ofthe preoutput block is the last bit ofthe output. 
ExampIe: If we process all 16 blocks using the method defined previously, we get, on 
the 16th round, 

- 0100 0011 0100 0010 0011 0010 0011 0100 L16 - 
~ , ~ = 0 0 0 0  i o i o o ~ o o  1100 1101 1001 1001 0101 
We reverse the order of these two blocks and apply the final permutation to 
R I d I 6  = OOOO1O10 01001 100 1101 1001 1OO101O1 01OOOO11 O1OOOO10 001 10010 
001 10100 
IF' = 10000101 1 1  101000 0001001 1 01010100 00001 1 1  1 00001010 101 10100 
000001 0 1 which in hexadecimal format is 85E8 1 3540FOAB405. 
This is the encrypted form of M = 0123456789ABCDEF: namely, C = 

85E8 13540FOAB405. 
Decryption is simply the inverse of encryption, following the same steps as above, but 
reversing the order in which the sub keys are applied. 

3.7 Triple DES Encryption 

The Data Encryption Standard (DES) was developed by an IBM team around 
1974 and adopted as a national standard in 1977. Triple DES is a minor variation of this 
standard. It is three times slower than regular DES but can be billions of times more 
secure if used properly. Triple DES enjoys much wider use than DES because DES is so 
easy to break with today's rapidly advancing technology. In 1998 the Electronic Frontier 
Foundation, using a specially developed computer called the DES Cracker, managed to 
break DES in less than 3 days. And this was done for under $250,000. The encryption 
chip that powei-ed the DES Cracker was capable of processing 88 billion keys per second. 
In addition, it has been shown that for a cost of one million dollars a dedicated hardware 
device can be built that can search all possible DES keys in about 3.5 hours. This just 
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serves to illustrate that any organization with moderate resources can break through DES 
with very little effort these days. No sane security expert would consider using DES to 
protect data. 

Triple DES was the answer to many ofthe shortcomings of DES. Since it is based 
on the DES algorithm, it is very easy to modify existing software to use Triple DES. It 
also has the advantage of proven reliability and a longer key length that eliminates many 
of the shortcut attacks that can be used to reduce the amount of time it takes to break 
DES. However, even this more powerful version of DES may not be strong enough to 
protect data for very much longer. The DES algorithm itself has become obsolete and is 
in need of replacement. To this end the National Institute of Standards and Technology 
(NIST) is holding a competition to develop the Advanced Encryption Standard (AES) as 
a replacement for DES. Triple DES has been endorsed by NIST as a temporary standard 
to be used until the AES is finished sometime in 2001. 

The AES will be at least as strong as Triple DES and probably much faster. Many 
security systems will probably use both Triple DES and AES for at least the next five 
years. After that, AES may supplant Triple DES as the default algorithm on most systems 
if it lives up to its expectations. But Triple DES will be kept around for compatibility 
reasons for many years after that. So the useful lifetime of Triple DES is far from over, 
even with the AES near completion. For the foreseeable future Triple DES is an excellent 
and reliable choice for the security needs of highly sensitive information. 

3.7.1 In Depth 

Triple DES is simply another mode of DES operation. It takes three 64-bit keys, 
for an overall key length of 192 bits. In Private Encryptor, you simply type in the entire 
192-bit (24 character) key rather than entering each of the three keys individually. The 
Triple DES DLL then breaks the user provided key into three sub keys, padding the keys 
if necessary so they are each 64 bits long. The procedure for encryption is exactly the 
same as regular DES, but it is repeated three times. Hence the name Triple DES. The data 
is encrypted with the first key, decrypted with the second key, and finally encrypted again 
with the third key. 

Plaintext 

I IDES ~n*ct~pt i~nkI I Key 1 

Key 2 

4 
Ciphertext 

Figure 3.11 3DES 
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Consequently, Triple DES runs three times slower than standard DES, but is 
much more secure if used properly. The procedure for decrypting something is the same 
as the procedure for encryption, except it is executed in reverse. Like DES, data is 
encrypted and decrypted in 64-bit chunks. Unfortunately, there are some weak keys that 
one should be aware of: if all three keys, the first and second keys, or the second and 
third keys are the same, then the encryption procedure is essentially the same as standard 
DES. This situation is to be avoided because it is the same as using a really slow version 
of regular DES . 

Note that although the input key for DES is 64 bits long, the actual key used by 
DES is only 56 bits in length. The least significant (right-most) bit in each byte is a parity 
bit, and should be set so that there are always an odd number of Is in every byte. These 
parity bits are ignored, so only the seven most significant bits of each byte are used, 
resulting in a key length of 56 bits. This means that the effective key strength for Triple 
DES is actually 168 bits because each of the three keys contains 8 parity bits that are not 
used during the encryption process. 

3.7.2 Modes of Operation 

3.7.2.1 Triple ECB (Electronic Code Book) 

This variant of Triple DES works exactly the same way as the ECB mode of DES. 
Triple ECB is the type of encryption used by Private Encrypted. This is the most 
commonly used mode of operation. 

3.7.2.2 Triple CBC (Cipher Block Chaining) 

This method is very similar to the standard DES CBC mode. As with Triple ECB, 
the effective key length is 168 bits and keys are used in the same manner, as described 
above, but the chaining features of CBC mode are also employed. The first 64-bit key 
acts as the Initialization Vector to DES. Triple ECB is then executed for a single 64-bit 
block of plaintext. The resulting cipher text is then XORed with the next plaintext block 
to be encrypted, and the procedure is repeated. This method adds an extra layer of 
security to Triple DES and is therefore more secure than Triple ECB, although it is not 
used as widely as Triple ECB. 
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4. Methodology 

In this chapter first we discuss the problem area of our research and cover the 
security weaknesses of Bluetooth security. Then we suggest the solution and 
methodology. 

4.1 Security weaknesses 

There are many security weaknesses in the Bluetooth standard. Some of these 
problems can very easily be exploited by an attacker; other security weaknesses are 
rather theoretical. An extensive overview of the most important problems will now be 
given 

4.1.1 Security depends on security of PIN 

The initialization key is a function of a random number IN RAND, a shared 
PIN and the length L of the PIN. The random number is sent in clear and hence 
known by an attacker that is present during the initialization phase. Note that it is not 
so difficult for an attacker to obtain this random number. 

He can place some (small) devices near the two Bluetooth devices that are 
going to be paired or even place a small sensor on one of the devices. This means that 
only the PIN is a secret value, all the rest is public. If an attacker obtains the PIN, he 
knows the initialization key. It even gets worse! Since all the other keys are derived 
from the initialization key, they also will be known by the attacker. The security of 
the keys depends on the security of the PIN. If it is too short or weak (e.g., OOOO), it is 
very easy for an attacker to guess the PIN. 

Note that it is always possible to guess the PIN. The reason is that a mutual 
authentication protocol is executed after the generation of the initialization key. If an 
attacker observes this protocol, he obtains a challenge and the corresponding 
response. It is now very easy to perform a brute force attack. The attacker tries every 
PIN and calculates for every PIN the corresponding response. When the calculated 
response is equal to the observed response, the correct PIN is used. The shorter the 
PIN, the faster this brute force attack can be executed. 

Sometimes a fixed PIN is used (the default value is 0000) or the PIN is sent in 
clear to the other device. In those cases, the PIN is publicly known and the keys only 
depend on public values. It is then trivial for an attacker to obtain the secret keys. This 
certainly has to be avoided in security-sensitive applications. 

4.1.2 Unit key 

The unit key is used if one of the Bluetooth devices does not have enough 
memory to store session keys. This key is stored in non-volatile memory and almost 
never changed. The unit key is sent encrypted (with the initialization key) to the other 
device. This is not very secure! Suppose A has sent its unit key to device B. The result 
is that B now knows the key of A and can use this key itself. B can send this unit key 
to C and impersonate itself as A. It is impossible for C to detect this impersonation 
attack. This is why the use of unit keys should be avoided. 
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4.1.3 Encryption algorithms 

Bluetooth uses the encryption algorithm EO and El .  This stream cipher has 
some security flaws. 

The attacks with the lowest complexity are the algebraic attacks. EO is 
vulnerable to algebraic attacks because of the possibility to recover the initial value by 
solving a system of non-linear equations of degree 4 over the finite field GF (2). This 
system can be transformed by linearization into a system of linear independent 
equations with at most 223 unknowns. Fortunately, this attack does not work in 
Bluetooth because it needs a long key stream during the initialization and EO in 
Bluetooth only uses small packets (the payload ranges from zero to a maximum of 
2745 bits. 

There is however an attack which can be implemented on the EO algorithm in 
Bluetooth. Golic has found an attack on the Bluetooth stream cipher that can 
reconstruct the 128-bit secret key with complexity about 270 from about 45 
initializations. In the pre computation stage, a database of about 280 103-bit words 
has to be sorted out. The attack uses a general linear iterative cryptanalysis method for 
solving binary systems of approximate linear equations. 

Irrespective of the security mode used, encryption of data during transmission 
is only optional and has to be explicitly requested by the applications. 

Problems with EO encryption algorithm are: 

- Output (KCIPHER) = combination of 4 LFSRs 
- Key (KC) = 128 bits 
- Best attack: guess some registers 2 to the power of 266 (memory and 

complexity) 

Problems with E 1 encryption algorithm are: 

- El  = SAFER+ 
- Some security weaknesses (although not applicable to Bluetooth) 
- slow 

4.1.4 Denial of service attach 

Mobile networks are vulnerable to denial of service attacks. They consist of 
mobile devices and these devices are often battery fed. Bluetooth is no exception. An 
attacker can send dummy messages to a mobile device. 

When this device receives a message (a real of a fake one), it consumes some 
computation (and battery) power. After some time, all battery power will be 
consumed and the device won't be available anymore. This exhaustion of the battery 
power is called the sleep deprivation attack. There are a lot more denial of service 
attacks. The attacker can try to interfere with the radio propagation. Bluetooth uses 
the 2.4 GHz ISM band, which is also used by some other mobile networks (e.g., 
WIFI). To avoid the interference caused by other mobile networks or an attacker, 
frequency hopping and spread spectrums are used in Bluetooth. 

There is also some denial of service attacks caused by implementation 
decisions. An example is the black list which is used during the mutual authentication 
procedure. To avoid that a device would start a mutual authentication procedure over 
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and over again, each device has a black list with the Bluetooth addresses of the 
devices which failed to authenticate themselves correctly. These devices can not start 
an authentication procedure during some period. This period will be increased 
exponentially (until a certain upper limit is reached) if the authentication fails again. 

The black list is used to avoid a denial of service attack (successive wrong 
authentication procedures), but in fact opens the door for other DoS attacks. An 
attacker can try to authenticate to device A, but change every time its address. All 
these authentication attempts will fail and the black list of A will become quite large. 
If there is no upper limit on this black list, the entire memory of A will be filled with 
the entries of the black list and device A will crash. 

This is not the only DoS attack. Suppose device B wants to authenticate to A. 
After A has sent a random number (the challenge) to B (this is the first step in the 
authentication procedure), the attacker sends a wrong response to A using the 
Bluetooth address of B. The authentication will fail, B will be put on the black list of 
A and hence the (correct) response of B will be ignored by A. The attacker keeps 
repeating this attack and B will never be able to authenticate successful to A. 

4.1.5 Location Privacy 

When two or more Bluetooth devices are communicating, the transmitted 
packets always contain the Bluetooth address of the sender and the receiver. 

When an attacker eavesdrops on the transmitted data, he knows the Bluetooth 
addresses of the devices which were communicating (the attacker can do this by 
placing a small device near the two Bluetooth devices). This way, the attacker can 
keep track of the place and the time these two devices were communicating. It is also 
quite probable that the two devices are from the same user (most of the 
communication takes place between devices of the same owner). 

This is a violation of the privacy of the user. The location information can be 
sold to other persons and used for location dependent commercial advertisements 
(e.g., a shop can send advertisements to all the users which are near the shop). It 
should be possible for the user to decide him self when his location is revealed and 
when not. 

4.1.6 Other security problems 

There are also some security problems in the challenge-response protocol. 
Another security flaw is that: 

1) No integrity check on the Bluetooth packets. 
2) An attacker can always modify or replace a transmitted Bluetooth packet. 
3) Man-in-the-middle attacks are also not prevented in Bluetooth. 
4) A user can switch off security. Often, the default configuration is no security 

at all. 
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4.2 Bluetooth Network Encapsulation Protocol 

The functional requirement for Bluetooth networking encapsulation protocol 
(BNEP) includes the following [47]: 

- Support for common networking protocols such as IPv4, IPv6, IPX, and other 
existing or emerging networking protocols. 

- Low Overhead -- The encapsulation format SHALL be bandwidth efficient. 

BNEP is used for transporting both control and data packet over Bluetooth to 
provide networking capabilities for Bluetooth devices. BNEP provides capabilities 
that are similar to capabilities provided by Ethernet (EthernetIDIX Framing /IEEE 
802.3). The following diagram illustrates stack overview [40] [47]. 

Netfirorking Applications 

TCPlUDP 

Figure 4.1: BNEP Stack 

BNEP Header Format 

The following diagram illustrates the BNEP header format. 

0 12 16 20 24 28 3 1 - - - - - - - - - - - - -  
I 

BNEP Packet based on BNEP Type ... 
I I 
I - - - - - - - - - - - - -  

Figure 4.2: BNEP Format 

BNEP Type: Seven bit Bluetooth Network Encapsulation Protocol 
Type value identifies the type of BNEP header contained in this packet [47]. 
Extension Flag (E): One bit extension flag that indicates if one or more extension 
headers follow the BNEP Header before the data payload if the data payload exists. If 
the extension flag is equal to 0x1 then one or more extension headers follows the 
BNEP header. If the extension flag is equal to Ox0 then the BNEP payload follows the 
BNEP header 1471. 
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BNEP Packet: Based on the BNEP Type [47]. 
The following table defines various BENP packet formats. 

Value BNEP Packet Type 

.Ox00 
OxOl  
0x02 
0x03 
OX04 ' , 

0x05 - 

Figure 4.3: BNEP Packet Format 

J 
BNEP GENERAL ETHERNET 
BNEP-CONTROL 
BNEP COMPRESSED ETHERNET 
BNEP COMPRESSED ETHERNET SOURCE ONLY 
*BhtEP_COMvtPRESSEDDETtiERNETNDESTTONLY 
Resewed for future use 

W E  
Ox7F 

4.2.2 Packet encapsulation 

Reserved "Sor 802.2 LLC Packets for IEEE 802.1 5. I WG 

The following diagram illustrates the use of the BNEP for transporting an 
Ethernet packet. BNEP removes and replaces the Ethernet Header with the BNEP 
Header. Finally, both the BNEP Header and the Ethemet Payload is encapsulated by 
L2CAP and is sent over the Bluetooth media. 

The maximum payload that BNEP SHALL accept from the higher layer is 
equal to the negotiated L2CAP MTU (minimum value: 1691), minus 191 bytes (or 
187 bytes if an IEEE 802.1Q tag header is present) reserved for BNEP headers. This 
way it can be assured that enough frame buffer space is reserved to transmit all 
BNEP. 

The minimum payload that BNEP SHALL accepts from the higher layer is 
zero; BNEP is not required to pad payloads to the Ethernet minimum size (46 bytes) 
[401[471- 

Figure 4.4 Packet Encapsulation 

I 

The following is a simple example in which an IP packet is sent using BNEP. 
The example illustrates an IPv4 packet sent from a device with 48 bit IEEE address of 
00: AA: 00:55:44:33 to a 48 bit Bluetooth address of OO:3O:B7:45:67:89. 

Ethernet Header 
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Destination Addrm (Bytes 3-5) = 0x456789 

0 4 8 12 I F  20 24 28 31 

Source Address 
(Byte 0) = M i 0  

BNEPType= 
m 

I Swrce Address (Bytes 1-4) = OxAAOD5544 I 

Destinakn Address (8yies 0-2) = 0x003007 

Figure 4.5 IP Packet in BNEP 

--- 

4.3 Suggested Solution 

The suggested idea is that authentication and encryption in Bluetooth to be 
provided on IP or application level by using IPSec [46] at the IP level. A protocol like 
IPSec is most suitable to secure end-to-end IP services like Virtual Private Network 
(VPN) services. IPSec can be used for any IP connection independent of the particular 
access method. Here only LAN access using the Bluetooth wireless technology is 
considered. It is important to notice that the use of link level security and VPN 
solutions does not exclude each other but rather complement each other. 

IPSec, however, can protect any protocol running above IP and any medium 
which IP runs over. More to the point, it can protect a mixture of application protocols 
running over a complex combination of media. This is the normal situation for 
Internet communication; IPSec is the only general solution. The following diagram 
illustrates layers architecture which makes an understanding between Bluetooth and 

Payload ... !3oL4rce Address 

IPSec in Network layer. 

Nebforking Protocol Type = 0x800 

PSI &€ye 

Application 
. . . . . . . . . . . . . .  

Presentation 
. . . .  . . . . .  

S e s s i m  
..... . . .  

Transport 
. . . . . . . . . . . . . .  

Netvvork 

. . . .  , . . , .  

Data-Link 

. . . . .  ... 
Physical 

1 
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The problems raises is that Bluetooth enabled devices will have the ability to 
form networks and exchange information. For these devices to interoperate and 
exchange information, a common packet format needs to be defined to encapsulate 
layer 3 network protocols. 

Due to that, a specific packet format used to transport common networking 
protocols over the Bluetooth media [41] [42] [43]. The packet format is based on 
EthernetDIX Framing as defined by IEEE 802.3[44] [45]. 

qNEP accommodates IP communication by transporting IP packets between two 
Ethernet-based link layer end-points on an IP segment. It encapsulates the IP packets 
in BNEP headers, letting the source and destination addresses reflect the Bluetooth 
end-points and setting the 6-bit Networking Protocol Type field to code for an IP 
packet in the payload. BNEP finally encapsulates the BNEP packet in an L2CAP 
header and sends it over the L2CAP connection. 

4.3.1 AH and BNEP 

This following diagrams illustrates BNEP with an IPv4 packet payload sent using 
L2CAP before and after positioning AH header for transport and tunnel modes. 

BEFORE APPLYING AH 

AFTER APPLYING AH 

L2CAP Header 

Figure 4.6 BNEP before and after applying AH (Transport Mode) 

BNEP Header 

-- 1 < --------------- authenticated -----------a I 

AFTER APPLYING AH 

Original IP Hdr + TCP + DATA 

LZCAP Header 

Figure 4.7 BNEP after applying AH (Tunnel Mode) 

4 Bytes At least 1 Byte 0 - 1500 1 1504 Bytes 

GNEP Header 

I<-airthentmted except for nrrtible fields in the new IP hdr -,I 

4.3.2 ESP and BNEP 

OriginalIPHdr+ AH+ TCP + DATA 

L?CAP Header 

This following diagrams illustrates BNEP with an IPv4 packet payload sent using 
L2CAP before and after positioning ESP header for transport and tunnel modes. 
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-. 

Figure 4.8 BNEP before and after applying ESP (Transport Mode) 

Aftrr encrypted 

Figure 4.9 BNEP after applying ESP (Tunnel Mode) 

TCP 
Data 

4.4 System Design 

~ c : p  
Header 

The simulation of the IPSec protocols in NS2 was based on the existing 
implementation of wireless network NS-2 [48] version 2 and UCBT (Bluetooth 
extension for NS2). UCBT implements a full Bluetooth stack, including Baseband, 
LMP, L2CAP, BNEP layers [49]. 
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Chapter 4 Problem & Suggested Solution 

Since there are many security protocols in terms of algorithms in IPSec, we 
had to choose appropriate algorithms. For this purpose we took into account several 
aspects: 

a) Existing documentation of simulations that expressed the time to compute the 
cryptographic functions involved in the algorithm. 

b) Low computational time of cryptographic functions. 
c) Algorithms that had proven enough reliability. 
d) Algorithms that comply with the basic requirements of the protocols. 

For the reasons stated above, we decided on: 
HMAC - M . 5  and HMAC - SHAl to provide origin authentication and 
integrity for IP packets. MD5 should be preferred because its performance is 
much better than that of SHA1. 
In ESP implementation we support both encryption and authentication. 
Encryption is done by the widely used 3DES algorithm, which is applied in 
CBC mode. Pure DES is also implemented. For authentication we use HASH- 
MAC MD5. 

The IPSec Module is the central part, which does the whole standard conform 
processing of the incoming and outgoing IP traffic. It uses a set of data bases (SPD 
and SAD) to determine the flow of the IP packets. The main processing is then done 
in the AH and ESP module. A small cryptographic library contains all the 
functionality used to encrypt, decrypt or to authenticate the packets. 

Figure 4.11 The whole IPSec system with dependencies 
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It was necessary to get familiar with IPSec. This implied reading through various 
RFCs since there exists no single document covering the whole standard. The "Big 
Book of IPSec RFCs" [LOSH02] is a collection of the relevant documents. The key 
aspects of a basic IPSec implementation include [RFC]: 
1. RFC 2401 : Security Architecture for the Internet Protocol (IPSec) 
2. RFC 2402: IP Authentication Header (AH) 
3. RFC 2406: IP Encapsulating Security Payload (ESP) 
4. Various RFCs: Algorithm descriptions for MD5, SHAI and DES 

More sophisticated parts of IPSec such as the Internet Key Exchange (IKE) 
Protocol, the OAKLEY Key Determination Protocol or the Internet Security 
Association and Key Management Protocol (ISAKMP) where not discussed in this 
research work. 

After having become familiar with the IPSec standard, a breakdown of the whole 
system was necessary. We needed to identify the different modules out of the IPSec 
architecture so that we were able to characterize the following attributes of the 
modules: 

Priority 
Dependencies 
Performance sensibility 

An important part of our semester work was to find a suitable IP-stack and 
Bluetooth stack that is able to carry our IPSec implementation. The Network 
Simulator NS-2 TCPIIP Stack has all the desired features: modular design, active 
community and free BSD-style license. As well as UCBT which has all the desired 
features needed for Bluetooth stack. 

Any inbound data is forwarded to ipsecdev input() function. Depending on the 
protocol field in the packet header, the entire packet is forwarded to the IP protocol 
stack. If the packet could be identified as belonging to the suit of IPSec protocols, it is 
transferred to the IPSec library. Pure IPSec specific processing, such as applying ESP 
de-/encapsulation or AH de-/encapsulation is done within the IPSec library. 

After these steps, the original IP packet is rebuilt by applying new offsets and 
packet length to the pbuf structure. Then the clear-text packet is passed up to the 
ip-input() function. 

For outbound packets, all IP based protocols forward their data to 
ipsecdev - output(). Here the decision is made whether the packet needs IPSec 
processing or not. Depending on the appropriate Security Association, AH or ESP 
functionality will encapsulate the packet. After these steps, the packet is forwarded to 
the BNEP Class of Bluetooth Stack and sent over to the receiver. 

The Security Policy Database (SPD) can be accessed from the IPSec module. 
This database contains all rules required to decide how to handle packets, which have 
security associations but also how to handle non-IP traffic. There are several 
possibilities: any non-IPSec packet can be forwarded to the default protocol handler 
(in order for connections from non-IPSec clients are accepted) or any non-IPSec 
packet can be dropped immediately without wasting CPU time on further analysis. 
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4.4.1 Security Policy & Association Management 

IPSec needs one database to control the flow of the IP packets. This database is 
called Security Policy Database. It simply describes which traffic requires IPSec 
processing and which traffic does not. 

The other database, the Security Association Database, holds data about each 
configured connection and also defines how the traffic must be processed if the policy 
in the SPD defines the APPLY rule for a certain packet. 

The SPD can be seen as a persistent database while the SAD is only temporary 
for each connection. In our simplified environment the SAD could also be static 
because a dynamic standard conform way to add SA's is not implemented. 

4.4.1.1 Basic Concept of Security Association 

IPSec needs the Security Policy Database and the Security Association Database 
to process packets correctly. 

The SPD defines the packets, to which IPSec needs to be applied. To guarantee 
that each packet is processed the right way, each IP packet leaving or entering the 
system must be checked against the SPD. We call this action the SPD lookup. This 
lookup does nothing except compare the selectors from the database with the ones 
from the packet. The SPD lookup delivers back the following results: 

BYPASS: this packet is forwarded directly to the next protocol layer 
without applying IPSec. 
DISCARD: this packet is discarded, it will be dropped. 
APPLY: this packet requires IPSec processing 

If the result of a SPD lookup is BYPASS, the unmodified packet is forwarded to 
the next protocol layer. This is particularly usefbl if certain protocols such as ICMP 
should not be protected by IPSec or communication with non-IPSec hosts must be 
concurrently possible. 

The DISCARD rule is returned when the intention is not to process this packet. If 
this is the case, the packet will be dropped. This means that we simply delete the 
packet instead of passing it to the next protocol layer. It is possible to use this feature 
to build a primitive firewall. 

IPSec processing is only needed if the result of the SPD lookup is APPLY. 
Whenever a packet matches an SPD entry whose policy says APPLY, then there must 
also be an SA that describes exactly how the packet has to be processed. 
A successful SPD lookup provides us with a pointer to the SP over which we can 
access the SA using a pointer stored in the SP structure. 

In a dynamic environment this SA can be created using IKE. As soon as the 
SPD finds out that there is no current SA available, it will trigger an IKE function 
which is responsible for the negotiation of the required parameters. The packet can be 
processed only after Security Association parameters are successfully negotiated. 

In a more static environment, where IKE functionality is missing, an SA 
cannot be set-up on the fly. In such a case, the SA needs to be created at system start- 
up so that IPSec is ready to process traffic. 

IPSec Based Bluetooth Security Architeclure 75 



Chapter 4 Problem & Sunnested Solution 

4.4.1.2 SPD Outbound Processing 

1. When a packet leaves TCPIIP stack, the very first step is an SPD lookup, a 
determination of how the packet must be processed. When the policy says 
APPLY, the IPSec process continues. Otherwise the hnction passes the packet to 
the Bluetooth stack or returns to the TCPIIP stack without doing anything. 

2. Now (in case of an APPLY policy) the packet must be processed according to the 
SA that was given back by the SPD lookup. When no SA is available, IKE 
functionality would be invoked. If no IKE is available or the IKE negotiation fails, 
the packet must be discarded. 

3. In case of a valid SA being available the packet is encapsulated either in an AH- 
or ESP-header. 

4. After the new IPSec packet has been built, it must be sent out on the Bluetooth 
stack. 
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Figure 4.12 Outbound Processing 

4.4.1.3 SPD/SAD Inbound Processing 

1. Inbound processing is somewhat different because an incoming IPSec packet 
already has an SPI, which allows a direct lookup in the SAD table. The reason for 
using the SPI is straightforward. The incoming IPSec packet may be encrypted 
and so the SPD lookup, which must be performed on the inner packet data, cannot 
be performed. The SAD lookup would directly give back an SA if one was found. 
If no SA is found, then the must be discarded. 

2. With the valid SA we are now able to process the packet properly. In inbound 
processing this corresponds to decapsulation in ESP or integrity checking in AH. 
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3. After decapsulation, we have a clear-text or authenticated packet. To be sure that 
the right SA was applied to the packet, an SPD lookup has to be performed now 
on the clear text packet. This check will confirm that there was a valid SPD entry 
for the SA, which was used. This must be done because a packet could have been 
sent with a fake SPI to force the proper processing of the packet. If the SPD 
lookup fails or points to a different SA, the packet must be dropped. 

4. After the IPSec packet has been decapsulated, it can be passed on to the TCPIIP. 

~p-knp~v, 

Figure 4.13 Inbound Processing 
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4.4.2 AH Processing 

The IP Authentication Header (AH) provides data origin authentication and 
integrity for IP packets. Authentication is done by the well-known HASH-MAC4 
MD5 and HASH-MAC SHAlalgorithms. These are the algorithms requested by the 
standard. MD5 should be preferred because its performance is much better than that 
of SHA1. 

In the SA configuration, the user has the possibility to choose the algorithm 
that shall be selected for authentication. Because the integrity of an AH packet can 
always be verified, the anti-replay check is performed on each packet. If one 
considers that ESP also supports integrity and authentication, one may think that there 
is no need for AH. This is not true because the authentication and integrity check of 
AH is a bit more sophisticated. Authentication in AH covers more fields of the packet 
than ESP does. 

AH processing can be split up into inbound and outbound processing. These 
two parts are implemented in: 

ipsec-ah-check(): verifies the integrity of the AH packet by applying a 
HMAC with given key and performs an anti-replay check. 
ispec-ah-encapsulate(): sets up a new AH and IP header in front of the inner 
packet and calculates its integrity check value. The next two paragraphs 
describe more detailed how AH processing was implemented. 

4.4.2.1 AH Inbound Processing 

AH inbound processing was implemented with the fbnction ipsec-ah-check(). 
This function gets the following input parameters: 

- Pointer to the IP packet that must be verified 
- Pointer to the SA that describes how the packet must be processed 

After AH processing is done, two variables are passed back: 
- Offset to the decapsulated IP packet (relative to the address of the 

input IP packet) 
- Length of the inner IP packet 

The processing itself described step-by-step 
1. In order to check the integrity and the authentication of the packet, the 

ICV must be calculated. The ICV calculation in AH also covers the 
outer IP header. In this header there are so-called mutable fields, which 
change their value while they are sent across the network. Those fields 
(Type of Service, Offset, TTL and checksum) must first be set to zero. 
The ICV fields in the AH header must be backed up and zeroed, so that 
later comparing remains possible. It becomes clear that AH 
authentication also covers the source and destination address of the 
outer IP packet. 

2. The packet is now ready to be verified and the integrity check value 
can be calculated over the whole packet. The SA determines the 
appropriate algorithm and key. 

3. The calculated ICV can be compared with the one saved in the first 
step. Processing continues only if the calculated ICV matches the 
original one. 

- 
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4. The authentication of the packet is now verified and the anti-replay 
check can be performed. If it is successful, the sequence number 
(stored in the SA) is incremented. Finally, the offset and packet length 
are passed back. 

4.4.2.2 A H  Outbound Processing 

AH outbound processing was implemented with the ipsec-ah_encapsulate() 
function. This function gets the following parameters: 

- Pointer to the IP packet, which must be encapsulated. 
- Pointer to the SA, which defines how the packet must be encapsulated. 
- Source IP address, describing the tunnels source address 
- Destination IP address, describing the tunnels destination address 

After AH processing has been completed, two variables are passed back: 
- Offset to the encapsulated IP packet (relative to the address of the input 

packet) 
- Length of the encapsulated IP packet 

The processing itself described step-by-step: 
1. First of all a new AH header is placed in front of the IP packet, leaving a 

gap between the inner IP header and the AH header. This gap is later used to 
place the ICV. The AH header fields: next header, length, SPI and sequence 
number are added. 

2. After the outer IP header has been constructed, only the source and 
destination address, version, header length and total length are set. The other 
fields are set to zero as a preparation for the ICV calculation. Padding is not 
required because the packet is already aligned. 

3. The integrity check value can now be calculated and placed into the gab 
between AH header and inner IP header. 

4. After the ICV has been calculated, the zeroed fields are now filled with the 
appropriate values. 

5. Finally, the offset and the packet length are passed back. 

4.4.3 ESP Processing 

An Encapsulating Security Payload (ESP) header is designed to provide a mix 
of security services for IP packets. In our ESP implementation we support both 
encryption and authentication. Encryption is done by the widely used 3DES 
algorithm, which is applied in CBC mode. Pure DES is also implemented. For 
authentication we use HASH-MAC MD5 and HASH-MAC SHAl . 

With the SA configuration the user has the possibility to configure the security 
features that are to be applied to ESP processing. 

When the user also selects authentication, the anti-replay service can guarantee 
that resent IP packets or packets entering the system out of the replay-window are 
discard. 

ESP processing can be split up into inbound and outbound processing. These 
two parts are implemented with 

- ipsec-esp-decapsulateO: checks the content of the ESP header, and 
optionally verifies the authentication and anti-replay and decrypts the 
packet with the given key and initialization vector. 
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- ipsec-esp-encapsulate(): sets up a new ESP header, encrypts the 
packet and optionally calculates the integrity check value (for 
authentication). 

Both functions also setup the outer IP-header, which is needed for tunnel mode. 

4.4.3.1 ESP Inbound Processing 

ESP inbound processing is implemented with the function 
ipsec - esp decapsulate(). 

TGS fbnction receives the following input parameters: 
- Pointer to the IP packet which must be decapsulated 
- Pointer to the SA which describes how the packet must be processed. 

After ESP processing has been done, two variables are passed back: 
- Offset to the decapsulated IP packet (relative to the address of the 

input IP packet). 
- Length of the decapsulated IP packet. 

The processing it self described step-by-step: 
1. A check in the SA structure indicates whether authentication needs to 

be checked or not. If an authentication algorithm is specified within 
the SA, the ICV must be calculated and compared with the one stored 
at the end of the ESP packet. The ICV is calculated over the whole 
ESP header, IV and encrypted payload. Processing continues only 
when the packets ICV matches our recalculated one. 

2. In the next step we have to decrypt the packet. The decryption 
algorithm and the secret key can be accessed over the SA. Because 
the packet was encrypted in CBC-mode, the IV must be copied out of 
the ESP packet. The IV is stored between ESP header and encrypted 
payload. The decryption happens in-place, so no copying must be 
done. 

3. Since the IP packet has now been extracted out of the ESP packet, 
we can perform some sanity checks before terminating ESP 
processing. In our implementation we verify that the total length field 
in the extracted IP packet is within our valid range (20- 1500 bytes). 

4. Before everything is done the sequence number counter in the SA is 
incremented, and optionally the same is done with the anti-replay 
window. To let the caller of the ESP function know about the location 
and the size of the extracted IP packet, the offset and the packet 
length are giving back. 

4.4.3.2 ESP Outbound Processing 

ESP outbound processing is implemented with the function 
ipsec-esp-encapsulate(). 

This fbnction receives the following input parameters: 
- Pointer to the IP packet which must be encapsulated. 
- Pointer to the SA, which describes how the packet must be processed. 
- Source IP address describing the tunnels source address (from outer IP 

header). 
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- Destination IP address, describing the tunnels destination address 
(from outer IP header). 

After ESP processing has been completed, two variables are passed back: 
- Offset to the decapsulated IP packet (relative to the address of the 

input IP packet). 
- Length of the decapsulated IP packet. 

The processing itself described step-by-step: 
1. The first step of encapsulation is to test whether the decremented TTL 

field of the IP header reaches zero. If this is the case, the packet must 
be discarded in order to prevent endless straying of packets. 

2. Then we have to calculate how much padding must be added to fulfill 
the requirements of the encryption algorithm. In our case (DESl3DES) 
we must have the payload aligned to 8 bytes because the block size of 
DES/3DES is 64-bit (8 bytes). The right amount of padding bytes is 
added at the end of the payload. The fields: padding length and next 
header are appended right after the padding. 

3. Encryption is now performed according to the settings in the SA. After 
encryption, the used IV is copied in front of the encrypted payload. 

4. ESP header is now added in front of the IV. Inserted are a incremented 
sequence number and the SPI taken out of the SA. 

5. As was done in inbound processing, the SA must be checked to see if 
authentication is enabled. If this is the case, then the ICV must be 
calculated according the SA's settings. The ICV, which is calculated 
the ESP header, the IV and the encrypted payload, is copied at the end 
of the payload. 

6. Now the outer IP header can be constructed using the tunnels source 
and destination address given as input arguments to the function. The 
TOS field is copied from the inner IP header. 

7. Finally, the offset and the length are passed back, so that the caller can 
update its data structure (in our case the pbuf), where the packet is 
stored. 
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5. Implementation 

In this chapter we shall discuss the implementation of the system. We shall 
discuss the technologies used to develop our system and the benefits these 
technologies. These technologies have greater scope on other related technologies. 

5.1 Network Simualtor NS-2 

5.1.1 Introduction 

Ns began as a variant of the REAL network simulator in 1989 and, has evolved 
substantially over the past few years. In 1995 ns development was supported by 
DARPA through the VINT project at LBL, Xerox PARC, UCB, and USCIISI. 
Currently ns development is supported through DARPA with SAMAN and through 
NSF with CONSER, both in collaboration with other researchers including ACIRI. Ns 
has always included substantal contributions from other researchers, including 
wireless code from the UCB Daedelus and CMU Monarch projects and Sun 
Microsystems. 

Ns is a discrete event simulator targeted at networking research. Ns provides 
substantial support for simulation of TCP, routing, and multicast protocols over wired 
and wireless (local and satellite) networks. Nam is a TclITK based animation tool for 
viewing network simulation traces and real world packet traces. It supports topology 
layout, packet level animation, and various data inspection tools. 

ns-2 is the second major iteration of a discrete-event network simulation 
platform programmed in C++ and Object Tcl (OTcl).. ns-2 is a major architectural 
change from ns-1-- the simulator became entirely based on the blend of OTcl and 
C++. 

5.1.2 Functionality 

Ns-allinone is a package which contains equired components and some 
optional components used in running ns. The package contains an "install" script to 
automatically configure, compile and install these components. After downloading, 
run the install script. If you haven't installed ns before and want to quickly try ns out, 
ns-allinone may be easier than getting all the pieces by hand. 
Currently the package contains: 

Tcl release 8.4.1 1 (required component). 
Tk release 8.4.1 1 (required component). 
Otcl release 1.1 1 (required component). 
TclCL release 1.17 (required component). 
Ns release 2.29 (required component). 
Narn release 1.1 1 (optional component). 
Xgraph version 12 (optional component). 
CWeb version 3.4g (optional component). 
SGB version 1.0 (optional component, builds sgblib for all UNIX type platforms). 
Gt-itm gt-itm and sgb2ns 1.1 (optional component). 
Zlib version 1.2.3 (optional, but required should Nam be used). 
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Currently, ns-allinone works on UNIX systems and under Cygwin for 
Windows 9x/2000/XP .The current release 2.29; released Oct 22, 2005 can be 
downloaded fiom [50]: 

http://prdownloads.sourceforge.net/nsna1n/11s-allino~1e-2.29.2.tar.~z?download 

5.2 UCBT 

5.2.1. Introduction 

UCBT (stands for University of Cincinnati - Bluetooth) is an ns-2 based 
Bluetooth network module which simulates the Bluetooth network operations in great 
details. Most specifications at Baseband and above like LMP, L2CAP, BNEP have 
been simulated in UCBT, including frequency hopping scheme, device discovery, 
connection set up, Hold, Sniff and Park modes management, role switch and multi- 
slot packet type negotiation, SCO voice connection, etc. There is a provision to 
constitute a cluster of Bluetooth devices and such formation with up to 8 Bluetooth 
devices is known as a piconet. It also allows a number of piconets to be connected 
together using "bridge nodes" and such a large network is usually referred to as a 
scatternet. 

UCBT is not the first ns-2 based Bluetooth simulator. BlueHoc developed at 
IBM and its scatternet extension, Blueware at MIT, both pre-date UCBT. However, 
with 28,000+ lines of C++ code: 
1. UCBT is the most accurate, complete and up-to-date open-source Bluetooth 
simulator. 
2. It adapts to the PAN profile with Bluetooth Network Encapsulation Protocol 
(BNEP). 
3. It takes clock drift into account, which is very important for simulating 
synchronization or scheduling protocols accurately, as difference devices will drift 
apart in long period. 
4. It also includes the newly adopted Enhanced Data Rate (EDR) specification to 
simulate new devices with 2 or 3 Mbps data rate. 

One of its main contributions is that UCBT provides a flexible framework to 
conduct Bluetooth scatternet research. A scatternet requires time sharing of some 
common devices (bridges) among piconets. Coordination of the presence schedule of 
bridge nodes in a large mesh scatternet is very challenging. UCBT provides multiple 
bridge scheduling algorithms to enable scatternets to operate smoothly. Prototype 
self-organized scatternets are being designed and simulated. 

5.2.2. Functionality 

As a Bluetooth module for &, UCBT implements a full Bluetooth stack, 
including Baseband, LMP, L2CAP, BNEP layers. It integrates with ns-2 well and 
works out of box for recent ns-2 release, ns-2.28. UCBT closely follows spec 1.1 and 
is partially updated to spec 2.0. 

- -~ 
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2- 

Figure 5.1 Bluetooth stack 

Figure 5.2 UCBT Bluetooth Node 

Radio ChanneVPHY: It is not modeled explicitly. It is modeled using a 
configurable Loss model and Interpiconet interference detection model Baseband. 

Baseband modeling: It has a correct frequency hopping kernel which generates the 
same sequence as illustrated on the Specs 1.1 (pp963-968). It handles multiple slots 
packets. It handles SCO. It understands clock drift. 

LMP: Handles Link setup, Role Switch, Link Suspension (Hold, Sniff, and Park) 
and Piconet Switch. 

L2CAP: Handles SAR and Protocol Multiplexing. 
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BNEP: Provides MAC interface to higher layer such as LL. 
SCO: SCO connections are handle'd by SCO-Agents, which bridge BasebandILMP 

and Applications. 
Mobility: Mobility is specified as the wlan node style. That is, let node 'setdest' at 

specific time to change the direction and speed. 

5.2.3 Interface & Implementation: 

Bluetooth node is a normal ns node with different MACIPHY. Currently I 
view the entire Bluetooth as a new MAC in the ns system. Create a Bluetooth Node 
using the following interface: 

Set ns- [new Simulator] 
$ns- node-config -macType MacIBluetooth; # or MacIBNEP 

Set addr 1 
Set node0 [$ns- node $addr] 

Set statetime 0.1 
$ n s  at $statetime "$node0 on" 

Most the control interfaces are located in BTNode::cornmand () (bt-node.cc). 
You should read that method to be familiar with all controls. You can also get a hint 
about which variables are settable at runtime in file ns-btnode.tc1. 

Bluetooth Node has the following exclusive components besides those 
common to Node: 

BNEP: 
- MAC interface to upper protocol. 

L2CAP: 
- Maintains Channels 
- mapping connection to L2cap channels 
- Mapping Channels to Connection Handle. M: 1 mapping 
- SAR 

LMP: 
- Maintains Bluetooth device information database -- should move up! ! 
- Maintains piconets 
- Mapping Connection Handle to LMP Link (ACLISCO). 1 : 1 mapping 
- mapping Link to TxBuffer at Baseband 

Base Band: 
- Pagelinquirylscan, etc. 
- Link Scheduler. 
- Frequency hopping kernel. 
- TxBuffers 
- ARQ. 

- -- 
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Different from the specs requirement of TDD scheme, UCBT controls the 
TDD by a schedule word at the Baseband. Say, at current clk, if looking up this word 
return M, UCBT picks up a package at TxBuffer [MI, and transmits it. Obviously, 
this word can be used to implement easily what the specs says: we let the word return 
valid TxBuffer slot at Master transmitting slot for the master and at slave transmitting 
slot for the slave. This sched word is also usefid for QoS mapping. Link scheduler is 
implemented on the top of schedule word, because only tight link (like SCO) need to 
schedule as specified by the word. 

A non-qos ACL link is usually not specified by the word therefore can be 
scheduled by the Link Scheduler. Another difference is, the master also have a CLK 
controller, though normally set to CLKN. 

Trace format is not fixed by now. It's interfaced by two set of commands: 
trace-all-xxx and trace-me-xxx. The former has an effect on all BT devices, while the 
latter only has an effect on the specific node. 

Physical layer is not explicitly implemented; the bottom protocol stack is 
baseband, which are interconnected so each baseband packet will be forwarded to all 
other basebands. 

Different LossMod to model packet loss can be specified, though there is only 
the table driven module used by BlueHoc project is available. Package collision 
between different piconets can be detected. 

Currently, the baseband is fairly complete. Some minor things like clock 
wrapping around is not modeled.Park1Unpark is not completed because it's quite 
complex and less usehl. Clock drifting is being implemented and should complete 
soon. 

Specl.2 features like interlaced scan is implemented. AFH is also in place in 
baseband but work in LMP is needed. ESCO is not implemented at this moment. 

Baseband (BB) can support 2 piconet parameters concurrently: an active 
piconet and a possible SCO link of other piconet. This doesn't mean that BB has two 
sets of transmitter. BB just switches between the 2 piconet parameter before and after 
the SCO slots. This happens at the slot granularity. An Imp scheduled piconet switch 
would be much less frequent. 

LMP can handle as many sniffing, held, and parked piconets as you need, by 
taking suitable scheduling scheme. Two HV3 SCO links from different piconets can 
be supported at the same time. This is also the maximum capacity regarding 2 SCO 
piconets, since CLK is not aligned. 

SCO traffic is handled separated by SCO agents, which connect Application, 
Traffic generator and LMP/Baseband. L2CAP doesn't handle SCO, as the specs 
specified. 
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Clinpter 6 Testing 

6. Testing 

System testing is an essential step for the development of a reliable and error- 
free system. Testing is the process of executing a program with the explicit intention 
of finding errors i.e., making the program fail and test cases are devised with the 
purpose in mind. A test case is a set of data items that the system processes as normal 
input. A successful test is the one that finds an error. 

This chapter explains our test fiamework that enabled us to test early and 
often. We continuously controlled our work in order to be able to provide good 
quality of coding. Our test framework consists of three main parts. They are all 
described in the next paragraphs. 

The basic strategies that were used for testing were following 

6.1 Structural (White Box) Testing 

6.1.1 Why Structural Testing? 

This type of testing can be done early in the project phase. It involves testing 
of a single unit of software. In our case these units are our modules. The tests should 
check all the important elements of the module. We were able to add all structural 
tests to one unit so all the structural tests can be performed in a batch process (all tests 
at the same time). This enabled us to run the batch often and regularly. The tests can 
also be run after each small change in the code, so we always knew that our software 
was still working in a consistent state. Structural testing is also called white box 
testing because the exact kind of functions and code tested is known. 

6.1.2 How We Implemented Structural Testing 

Structural testing means running a test for each implemented function. We 
decided to apply the extreme Programming paradigm "test driven development". This 
forced us to write down testing procedures first. After the test procedures were 
implemented, we were able to start coding the actual problem. Test-driven 
development helped us to: - First think about what the tested function really needs to 
do. - Define the input and output data types and value ranges. - Be able to run a test 
after having finished coding the function. 

We wanted to go even a bit further. We first wrote down all the test functions 
needed to test the whole IPSec implementation. This helped us thinking about the 
whole programming structure of our end product. The test functions were added to 
our main test routine. At first, all these test functions were just stubs, without any 
implemented code. They were then implemented with a predefined interface, so that 
they could easily be called from the main test routine. The test routine of a certain 
module was responsible for the testing of the whole structure of the module. 

The module test function needed to implement the following features: 
- Implementation with a predefined interface and naming convention. 

o Interface: int function(void) 
o Name: modulename-test() 

- When the test function is returned without an error, we can be sure that the 
module is implemented properly and without bugs. 
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- It is able to do many tests of the same function if required. Input data may 
be random (i.e. for value range testing) or statically programmed. 

- It is able to call many different functions of the module. 
- The tests need to be reproducible. 
- As long the test function is not implemented, it must print out that the 

module / module test function has not yet been implemented. 
When the module test functions were implemented according to these rules we 

were able to run the module test function out of one main (executable) function. The 
first time we ran the test function we got a list of printed messages. Each line 
corresponded to one module test function and it showed that the module had not yet 
been implemented. Our goal for the end of the project was for each module test 
function to print a line indicating that all tests were successful. 

6.2 Functional (Black Box) Testing 

6.2.1 Why Functional Testing? 

The second step in our testing concept was functional testing. In this phase we 
tested the functionality of our IPSec implementation. The reason why it is also called 
black box testing is because we didn't care how the tested functionality was 
implemented and what functions are needed to implement this functionality. It was a 
kind of abstraction: we just wanted to know whether certain functionality did its job 
properly. This kind of test is not based on modules but on functionality. As an 
example we wanted to know if an AH packet can be verified properly. In order to be 
able to run such a test we needed functions of many modules (HASH-MAC, AH, 
etc ...). 

Functional testing can always be started with small tests. The more modules 
were implemented, the more functional tests could be done. The objective of the test 
was to check whether the modules work properly with each other. The further the 
project preceded the more complex the tests became. The last functional test was a 
test that checked the whole function of our IPSec implementation. After having run 
the functional test properly we expected to be able to run the implementation on the 
desired hardware in the real world. 

For functional testing we used similar rules that were needed for structural 
testing. Failing functions need to print out the input, output and expected output data 
in order for the error to be reproducible. 

As wanted side-effect, each functional test performs many different tests on 
the various involved modules. 
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Figure 6.1 Normal dataflow and dataflow of functional tests. 

6.2.2 How We Implemented Structural Testing 

Since functional testing was implemented as the project proceeded, we did not 
specifir the structure of functional tests. Because functional testing demanded a lot of 
memory for static test data, we were not able to make one executable. We split up the 
functional tests into functional units. 

There were two possible approaches: Top-Down and Bottom-Up tests (Figure 
G.l).Both could be implemented. They were independent to each other and they tested 
the functionality in different ways. 

In our IPSec implementation there are two directions of data flow. One 
direction is from the network device upwards the stack, until data reaches the 
application. The other direction is downwards the stack, starting at a normal TCP or 
UDP packet which gets encapsulated and injected into the Ethernet. 

Top-Down Tests 

Top-down starts at the top of the stack and goes down the whole stack. The 
following is an example of what a top-down test could look like: 

- Lets assume that there is a function called esp-encapsulate (char *data, 
char *espqacket). This function creates an ESP packet out of some 
user data (e.g. TCP packet). 

- We capture an IPSec stream from two communicating IPSec peers. 
They use an already working IPSec implementation like FreeSIWAN 
or IPSec-tunnel. We know the keys and algorithms from the 
configuration and we know the plain text data of the packet, because a 
well-known sequence of packets has already been captured. 

- We can now feed the esp-encapsulate () function with the known plain 
text data. This could for example be the content of a small web page 
packed into a TCP packet. 
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- The function must now return an ESP packet looking equal or very 
similar (maybe there are fields which may be different i.e. sequence 
numbers, etc) to the original packet we captured from the IPSec 
stream. With such a test we were able to ensure that the whole 
functionality of generating an ESP packet was implemented properly. 
Of course we still didn't know whether it was possible to check if we 
were able to verify and decapsulate an ESP packet. This was done in 
the Bottom-Up tests. With such a test we can check a part of the 
functionality of our implementation. Another test could have done the 
same for AH packets. 

Bottom-Up Tests 

This test starts at the bottom of the stack. The last piece of software right 
before the hardware is the network interface driver. A bottom-up test could look as 
follows: 

- From an IPSec stream we capture one or multiple IPSec packets. 
- From the configuration we know all the parameters. 
- We now feeds the appropriate IPSec function with a captured IPSec 

packet through BNEP protocol. 
- We can now see if our implementation is able to find the appropriate 

SAD (Security Association Database) entry for this packet. We are 
able to check if the implementation is able to find out if the packet 
needs to be processed by IPSec or not. 

6.3 Interoperability Testing 

A useful implementation must be able to talk with other IPSec products. 
Interoperability means that our implementation should be able to establish IPSec 
tunnels with other peers in the network. First of all we analyzed different IPSec 
products, which we could use for the interoperability tests. We had to choose a 
product that is easily available and suits as a good reference. We had to take a product 
that was already widely used and thus well tested. We soon focused on the following 
IPSec implementations: 

- IPSec-tunnel: a simple and free implementation for Linux 
- FreeSIWAN: a free Linux IPSec implementation. 
- Windows IPSec: on a Windows 2000 operating system. 
- PGPNet: another free IPSec implementation for Windows and Mac 

The next paragraph describes the products we looked at more closely. 

6.3.1 Testing Environments 

6.3.1.1 IPSec-tunnel for Linux 

The IPSec-tunnel developed by Tobias Rainstorm [TRS] is an elegant, 
minimal implementation of IPSec tunnel functionality for the Linux 2.4 kernel series. 
It is designed as kernel module and the IPSec-tunnel module itself does not require 
any kernel patching. The only requirement is the presence of the Crypto API code in 
the kernel source (some kernels are shipped with it already; others require the addition 
of strong cryptography by applying the International Kernel Patch). After successfully 

IPSec Based Bluetooth Security Architecture 92 



having loaded the IPSec-tunnel module, an unconfigured network device "IPSecO" 
becomes available. The "IPSecadm" utility is used to create, list and modify SA 
records for IPSec-tunnel. Selecting a previously defined Security Association to 
create a tunnel is the final step in configuring IPSec-tunnel. The standard Linux 
network tools "ifconfig" and "route" can be used to establish a route through the 
IPSecO device. Since IPSec-tunnel relies on the encryption and digest functionality 
provided by Crypto API (Figure 6.2), all common algorithms are supported: 

I DFC, IDEA, Mars, RC5. R C 6 ,  Serpent, null I SHA384. SHA512 I 

I 

I I 4 

Figure 6.2 Common Algorithms 

3DES, DES, AES, Blawfish, Twofish, Cast5, 

The supported protocols of IPSec-tunnel are ESP and ESP with 
authentication. Support for dynamic configuration is NOT available. 

As long as manual keying is supported by the other party, IPSec-tunnel looks 
promising regarding to interoperability. There are already successful interactions with 
FreeSIWAN and Open BSD documented. 

MDS, REPEDEM160, SHA1, SHA256, 

FreeSIWAN was interesting for us from the beginning because it is widely 
used in the Linux community. There is a lot of documentation available and in case of 
problems or additional interest we would be able to have a look at the source code, 
which of course is freely available. FreeSIWAN also supports many features, which 
we wanted to, implement in our IPSec library. 

With FreeSIWAN we would be able to perform the following tests: 
- AH tunnels. 
- ESP tunnels. 
- Encryption with 3DES. 
- Authentication with MD5. 
- Authentication with SHAI . 
- Manual Keying. 

Manual keying was a very important feature for us because we were not yet 
sure whether we would be able to implement automatic keying. Besides this, manual 
keying simplifies debugging because it's independent fiom complicated key 
generation and negotiation. 

By default, FreeSIWAN is a very restrictive implementation and so the 
developers do not like to implement features that decrease the security. The following 
features can only be added using patches: 

- Single DES encryption 
- Null encryption 

We did not want to lose time with patching the FreeSIWAN source and 
recompilation of kernels. The supported features were rich enough to provide a good 
test environment. FreeSIWAN also provides good debugging facilities. This helped us 
to analyze problems and observe what happened in the IPSec kernel. Unfortunately, 
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documentation is poor and bad structured so that getting starting with FreeSIWAN 
turned out to be a time consuming task. 

6.3.1.3 Windows 2000 

We also had a look at the Windows IPSec implementation. Of course 
Windows would be a spectacular testing environment because of its wide spreading. 
Windows 2000 and Windows XP have built-in IPSec support. Soon we found out that 
manual keying is not a possible configuration. The advantages of Windows IPSec 
would be: - Support of Null encryption (good for debugging) - Support of single DES 
encryption (good for performance) Because we were not able to find out whether and 
how manual keying can be done with windows, we had to omit this implementation 
for our tests. 

6.3.1.4 PGPnet 

PGPnet is an easy to install and configure VPN software for Windows and 
Macintosh computers. It implements the IPSec and IKE protocols and supports 
OpenPGP keys for authentication in addition to X.509. The tested version 7.0.3 
cannot handle manual keying and therefore cannot be used to test the simple IPSec 
configuration. 

6.3.2 Security Tests 

This section describes how the security of our IPSec implementation can be 
tested. Implementing according to the standard guaranties certain security features, 
but nothing assures that these features really work and that coding was done properly. 
With the intention of proving good security in our implementation, certain attacks to 
our implementation and its results are discussed and explained below. 

Not all security features can be tested easily. For example, we were not able to 
prove the security of ESP encryption. The user of our IPSec system has no other 
choice but to trust the DES standard and carefully inspect its implementation. 

6.3.2.1 Packet was altered during transmission 

Scenario: A bad guy may want to modify the content of some network 
packets and somehow manages to alter the content, let's say of a HTTP transmission. 
If the packet was authenticated, he will not be able to recalculate the proper ICV 
because he doesn't know the required secret key to update the ICV in the packet. 
Proper IPSec processing: After the packet has entered the IPSec system it is 
processed by either the AH or ESP module. When authentication is enabled (AH or 
ESP with HMAC), IPSec recalculates the ICV using the secret authentication key. 
The recalculated value will not match the one stored in the packet and therefore the 
packet will be discarded. Verification of this threat: If a packet with some changed 
bits either in the packet itself or in the ICV value is injected into an IPSec stream our 
implementation will discard the packet with the following message: 

- - - - -- - - -- 
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ERR ipsec-ah-check : - 2  LU 1c-d' doee not m t e h  

0 t- 

ERR ipaec-ah-check : - 2  ESP ICY does not match 

6.3.2.2 Non-IPSec packet, which should be one 

Scenario: A bad guy may try to send non-IPSec packets to our IPSec enabled 
host. He may hope that a non-IPSec packet (which should be one according to the 
SPD) will reach the IP stack without any intervention. 

Proper IPSec processing: When a clear text packet enters the system, it is 
checked against the SPD. If the policy says APPLY, the packet will be discarded 
(because the packet should be encrypted and IPSec decapsulation can't be applied to 
non-IPSec traffic). The goal of this test is to prevent that non-IPSec traffic bypasses 
the IPSec engine as requested by the RFC. Verification of this threat: The incoming 
packet will fail on the above-mentioned SPD lookup. The packet will be discarded 
with the following message: 

AUD ipsecdev-input: 3: FCJLI~CY-APPLS; got ncn-IPsec packet xhich should be one 

6.3.2.3 Packets are resent 

Scenario: A bad guy may want to resend a certain IPSec packet. 
Proper IPSec processing: This threat can only be caught if authentication is 

activated. This is the case when AH or ESP with authentication is used. Otherwise, 
the packet passes IPSec processing without any problems. In case of activated 
authentication, the anti-replay check will find out that the packet has already been 
sent, because the packet's bit in the bit-mask is already set to 1. Verification of this 
threat: It is necessary to resend a packet that has already been processed and thereby 
verify that authentication is turned on. Our IPSec implementation will discard this 
packet with the following message: 

JtuD ipscc-ah-check : 7 : packet rejected bf anti-replay chwk 

or 
&LID ipsec-~sp-clecapsulate : 7 : packet rejected by anti-replay c h ~ ~ k  

6.3.2.4 Packets that are out of the window 

Scenario: A bad guy may want to disturb IPSec processing by sending IPSec 
packets with a high sequence number. This could lead the anti-replay mechanism to 
shift the anti-replay window in such a way, that the normal IPSec packets seem to 
arrive out of the window (their sequence number would be too low to be accepted). 

Proper IPSec processing: The anti-replay check is only performed when 
authentication is turned on. This is the case when AH or ESP with an authentication 
algorithm is used. Before the packet is authenticated, a preliminary check of the 
sequence number is done to avoid wasting CPU time for authenticating packets that 
are obviously out of sequence. Only if the sequence number is valid (not yet obvious 
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since it is within the window), the packet is passed to the authentication function. 
When authentication has passed, it will again be checked for validity of the sequence 
number before the packet is marked as seen and anti-replay window is shifted. 

If the sequence number was altered, the integrity check would fail and the 
packet would be discarded. 

Verification of this threat: If a forged sequence number is injected into an 
IPSec stream, our IPSec implementation will discard this packet with the following 
message: 

ACID lpeac-ah-check : 7 : packet rej e c t d  by anti-replay update 

or 
AUD Iperc-esp-decaps~ilate : S I packet rejected by ant 1 --play update 

6.3.2.5 Packets with a bad SPI 

Scenario: A bad guy may want to send IPSec packets with a forged SPI. If he 
monitors the IPSec traffic of a certain host, he is able to set a packet with a valid 
sequence number and a valid SPI, which could lead the IPSec system to properly 
process the packet. The correct sequence number is only required when authentication 
is activated. For example, the sequence number is not tested in the case of a ESP 
without authentication. 

Proper IPSec processing: Such an attack would be possible if only an SA 
lookup was performed on incoming IPSec packets. The SA lookup uses only the outer 
destination address, the IPSec protocol and the SPI to determine the appropriate SA. 
However, the standard requires that after an inbound IPSec packet has been processed 
properly, an SPD lookup must be performed. A successful SPD lookup gives back a 
security policy with a pointer to the SA describing how the packet must be processed. 
To prevent such attacks, the SA pointer from the policy must now point to the same 
SA that was used to process the packet. 

Verification of this threat: Inject a forged IPSec packet into an "ESP 3DES 
only" packet stream. The inner IP packet's fields may be modified in such a way, that 
there is no matching entry in the SPD. Our IPSec implementation discards such a 
packet with the following message: 

AUD ipaecciev-input: 3: XC,K"~'-APPLY: got nm-IPscc packet which ahnuld be one 

6.4 Specification Testing 

Even if the code testing is performed exclusively, it doesn't provide grantee 
against the program failure. Code testing doesn't answer whether the code meets the 
agreed specification document. It doesn't also determine whether all aspects of the 
design are implemented. 

Therefore, examining specifications stating what program should do and how 
it should behave under various conditions performs specification testing. Test cases 
are developed to test the range of values expected including both valid and invalid 
data. It helps in finding discrepancies between the system and its original objective. 
During these testing phases, all efforts were made to remove programming bugs and 
minor design faults. 



Cltllater 6 Testing 

G.5 Regression Testing 

In regression testing the software was testing against the boundary condition. 
Various input fields were tested against abnormal values and it was tested that the 
software does not behave abnormally at any time. 

6.6 Acceptance Testing 

In acceptance testing the software was tested for its completeness that it is 
ready. Normally the quality assurance department performs the acceptance testing that 
the software is ready and can be exported. 

6.7 Assertion Testing 

In assertion testing the software is tested against the possible assertions. 
Assertions are used to check the program and various locations that whether the state 
of the program at a particular point is the same as expected or not. 

6.8 Unit Testing 

In unit testing we checked that all the individual components were working 
properly. Before integration of the entire components unit testing is essential because 
it gives a confidence that all the components individually are working fine and ready 
to be integrated with other ones. 

6.9 System Testing 

When a11 the units were working properly and unit testing was performed then 
comes the time for system testing where we checked a11 the integrated components as 
a whole and looked for possible discrepancies, which could have arisen after the 
integration. 

6.10 System Evaluation 

The objectives of the system evaluation are to determine whether the desired 
objectives have been accomplished or not. Determining the merits and demerits of the 
proposed system over the existing system is also covered in the system evaluation. 
This is concerned with the detailed study of the developed system, from 
implementation point of view. At the end, some suggestions for the improvements of 
the system are coded. 

-- - 
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7. Performance 

Since there are many security protocols in terms of algorithms in IPSec, we 
had to choose appropriate algoritlms. For this purpose we took into account several 
aspects: 

Existing documentation of simulations that expressed the time to compute the 
cryptographic functions involved in the algorithm. 
Low computational time of cryptographic functions. 
Algorithms that had proven enough reliability. 
Algorithms that comply with the basic requirements of the protocols. 

For the reasons stated above, we decided on: 
HMAC - MD5 and HMAC - SHAl to provide origin authentication and 
integrity for IP packets. MD5 should be preferred because its performance is 
much better than that of SHAI. 
In ESP implementation we support both encryption and authentication. 
Encryption is done by the widely used 3DES algorithm, which is applied in 
CBC mode. Pure DES is also implemented. For authentication we use HASH- 
MAC MD5. 

7.1 Features 

Our implementation is still a prototype but all the features that were requested 
for our work are quite well tested. We created test cases for almost each feature. 
Several hnctional tests were run over night to detect memory leaks. The nightly tests 
usually processed between thirty to sixty thousand packets without crashing and 
failing. 

Such tests showed with reasonable certainty that features listed below are 
implemented in a quite stable manner. Utilization in a busy real-life network 
environment would probably show some not yet known shortcomings that were not 
apparent up to now due to the clean lab environment. 

Our implementation has the following features: 
- Dynamic Security Policy management. 
- Dynamic Security Association management. 
- AH protocol. 
- ESP protocol. 
- Support for AH with HMAC-MD5 and HMAC-SHAl 
- Support for ESP with DES-HMAC-MD5 and 3DES-HMAC-MD5 
- Support for tunnel mode 
- Support for manual keying 
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7.2 Analysis & Results 

j ~ l a t i o n s  of the implementation described previously were performed, 
using hand-off rate of 60 seconds. The scenario was simulated with a constant FTP 
source on top of TCP with a packet size of 2000 bytes between two nodes (node0 and 
nodel). 

No IPSec 

Simulation Start Time 
Simulation End Time 
Simulation length(Sec) 

- I I 

No of sent Bytes ( 4698000 1 3700136 1 2578664 1 70 1480 25 1668 1 

HMAC 
MD5 

No of Generated Packets 
No of Sent Packets 
No of Lost Packets 
No of Received Packets 
AVE. Packet Size 

Table 7.1 Retrieved Initial results 

1.3 
60.08 
58.78 

We measured the cumulative sum of packets in each of the cases, as well as 
the throughput, and end 2 end delay imposcd by the security protocols: IPSec. 

Not much comment is needed since the table can easily be interpreted. In some 
aspects, the results were as expected. The relative difference between the different 
cryptographic algorithms, correspond to the performance test, which were done. 

The results from this chapter show, that depending on the chosen 
cryptography, various types of security can be added with various amounts of cost. 

If only authentication and integrity is required, IPSec packets can be processed 
in quite a short time. Using strong encryption, a noticeable performance loss must be 
accepted. 

HMAC 
SHAl 

4500 
4500 
2260 
2240 
105 1 
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1.4 
60.07 
58.62 

DES 
HMAC- 
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1648 
1066 

3DES 
HMAC- 

1.4 
59.66 
58.20 
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2443 
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1217 
1066 

MD5 
1.5 

59.91 
58.37 

MD5 
1.6 

60.04 
58.37 
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Figure 7.1, depicts the increment of the TCP packets sequence in different 
scenarios (No IPSec), MD5 , SHAl , DES-MD5 and 3DES-MDS), The illustrated 
scenarios showed that number of packets are decreasing in authentication and 
encryption compared to Bluetooth with no IPSec. As it is seen HMAC - MD5 
perform better than HMAC - SHAl while sending and receiving packets. As well as 
DES-MD5 performs better than 3DES-MD5. 

4500 I I u I 

I -c Bluetooth 

10 20 30 . 40 50 60 
Send event Lime [Sec] 

Figure 7.l(a) Performance of Cumulative sum of numbers of sent packets. 

Recelve even1 lime [Sec] 

Figure 7.l(b) Performance of Cumulative sum of numbers of received packets. 
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The throughput results are shown in Fig 7.2. There is a significant difference 
between the simulated scenarios. Contrary to our expectations, the throughput in 
Bluetooth environment is driven by the effect of the erratic behavior of delay imposed 
by the encryption and decryption of the data and the erratic behavior of the Bluetooth 
wireless link. 

-+ DESMDS 

10 20 30 40 50 60 
Simulation tlme (See] 

Figure 7.2(a) Throughput of sending packets. 
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As we can see in Fig 7.2, the throughput in HMAC - MD5 and HMAC - 
SHAl is not the same due to better performance of HMAC -MD5. For the 
encryption, DES-MD5 has better throughput than 3DES-MD5. 

h I I I 1 I I I I n - 
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SHAl 

Figure 7.3(a) Packet size vs. average throughput of sending packets. 
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Figure 7.3(b) Packet size vs. average throughput receiving packets. 



The following Figure 7.4 illustrates a comparison of Throughputs vs. average 
simulation End2End delay. There is a big and noticed difference of end 2 end delays 
while sending the bits, and rise in the throughput. While in receiving bits, both factors 
affect the bits transmission. 

Throughput of sending bits [Bils/llL] x los  

Figure 7.4(a) Throughputs of senidng bits vs. average simulation End2End delay 
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2000 4000 6000 BOO0 10000 12000 14000 16000 18000 
Throughput of receiving bits (BitfllL] 

Figure 7.4(b) Throughputs of receiving bits vs. average simulation End2End delay 
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7.3 Conclusion 

This research proposed a new Bluetooth security scheme, which allows ad-hoc 
(PAN) based on Bluetooth technology to communicate with other devices in full 
secure channel includes authentication and encryption, unlike for the present schemes 
with weak security. 

IPSec protocols over Bluetooth do not impose a significant penalty. This is 
because the main factor in the reduction of the performance is due to the delay 
imposed by the encryption and decryption of the data and the erratic behavior of the 
wireless link. In addition, the throughput is reduced by almost 25% for authentication 
and 65% for encryption compared with the cases where IPSec was not used. 
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A User Manual 

IPSec Based Bluetooth Security Architecture has been designed keeping in 

view user's interaction and ease in use. All interfaces are simple and easy to use. This 

user manual facilitates the user to understand different forms and interfaces. The use 

of forms and different options are described in details in this manual. 

Steps to IPSec over Bluetooth 

The following document is a step by step guide to using the IPSec over 

Bluetooth system. This is a step by step guide for a user assumed to have no technical 

experience other that an assumed basic familiarity with desktop computing. 

The steps begin on bare PC's and cumulate to a full IPSec over Bluetooth 

between 2+ users. If you have a NS-2 and UCBT installed, skip to step A-4, otherwise 

proceed as follows. 

A-1 Check out hardware 

As far as hardware goes the minimum system requirements are recommended 

at the end of the performance testing and are as follows.. . 
Minimum recommended system requirements: 

500 MHz processor. 

128mb ram. 

Bluetooth Device. 

Monitor. 

Keyboard and Mouse. 

A-2 Download and install NS-2 

This part will show you how to install NS2 on Windows platform (windows 
2000 or windows XP). The NS2 version for this document is ns-2.29. 

Cygwin 

1. Download the cygwin.rar from http://l4o. 1 16.72.801-smallkolns2/cygwin.rar 
2. Decompress the cygwin.rar 
3. Click the setup.exe to install cygwin. 
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Figure A.l Install cygwin 

4. Because the language of operating system is Traditional Chinese. The text of 
button is shown in Chinese. But you donclt need to worry about this. I think it is 
shown in English in your computer. Just click "Next". 

Choose A Download Source 
Choose whether to install or download from the internet, or install from files in 
a local directory, 

a*--- "--..-----..%- ----- "-" --- - -- *-- -- -. -.."----"---.." "-"- =..- - ---"" 

@ !nstall from Internet 

f Download from Internet 

Install from _Local D~rectory 

Figure A.2 Choose a download source 
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5. Then choose "Install from Local Directory". 

Choose A Download Source 
Choose whether to install or download from the internet, or install from files in 
a local directory. 

r jnstall from Internet 

t Download lrom lnternet 

Figure A.3 Install from Local Directory 

6. Click "Next" and keep the settings as they are. 

I Select Root Install Directory 
Select the directory where you want to install Cygwin. Also choose a few 
installation parameters. ................... " "" " ". . . . " " .  " " "  " " .  - " """ "" "- 

I 
Figure A.4 Select Root Install Directory 

- -  
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7. Click "Next". 

Figure A S  Select local Package Directory 

8. Click "Browse" to choose where the software is. 
~~ftp%3a%2f%2fftp.nctu.edu.tw%2fWindows%2fcygwin~") 
9. Click "OK". 

I Select Local Package Directory 
Select a directory where you want Setup tu store the installation files it 
downloads The d~rectory wd be created if il does not already exist. 

Figure A.6 Select local Package Directory 

(choose 
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10. click "Next" and you will see the figure shown as follows. In this window, the 
cygwin setup program let you choose what software you want to install. 

Select Package* 
Select packages to install 

....... " ..................................................................................... .: . . . .  . . . . .  r Keep f erev &; C E_xp ~ i e w l  Category 

t Base Default 

t Database 0 Default 

t Devel Q Default 

+ Games 0 Default 
+ Graphics 0 Default 

t Interpreters 0 Default 

Figure A.7 Select Packages 

11. Click "View" first to make the word &•˜Category &•˜change to "Full". 

Selecl Packages 
Select packages to install 

." ................ ........................ ............................. * .................. .... ," ... 
r Keep Erev iz Cur, r E_xp m, Full 

fRJ a Base b a s e - p w d :  A script to ! 

02.0Sb-16 Ma Btm, Shek bash: The GNU Boume 1 

Na rJa Devel binutils: The GNU assem' 

nkr Utils bzip2: A high-quality bk 

Wa No Utils clear: Clears the screen 

ibs cygipc: IPC support for c;$: 
:> ,  

..... ....... 

Figure A.8 Changing Category 

12. XFree86-base, XFree86-bin, XFree86-prog, XFree86-lib, XFree86-etc, make, 
patch, perl, gcc, gcc-g+, gawk, gnuplot, tar and gzip must be chosen. For example, if 
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I want to install XFree-86 base (upper figure), click the "Skip" of "New" column. The 
"Skip" will be changed to "4.3 -0- 1 ". 

Base 
XFree86 

XFree86 

XFree86 

XFree86 

XFree86 

XFree86 

XFree86 

which: Displays where a : 
XFree86-bm: CygwinlX 

XFree86-bin: CygwidXI 

XFreeSdetc: CygwidXF 

XFree86-fenc: Cygwin-8 
XFree86-fnk: Cygwin-X 

XFree86-lib: CygyinlXF;~.$ 

XFree86-lib-compat: Cy$i 

Figure A.9 Select Packages to Install 

I Select Packages 
Select packages to install 

. < ,-,-. .... -,-.. ......... ............... +" ............. ..... - ................................. *.--" ................-... 
. . .  r le@ Full r Keep r Prev I; Gun r E_xp 

rJa XFree86 XFree86-bin. CygwinlXI 

40 XFree86 XFree86-etc: CygwinlXF 

rJa XFree86 XFree86-fenc: Cyain-X 

Ma XFreeB6 XFree86-fnb: Cygwin-X 

rda XFree86 XFree86-lib: C y g x h X  

0 XFree86 XFree86-lib-compat: C 

Figure A.10 Select Packages to Install 

13. Click "Next". Please be patient. It may take a long time to finish the installation. 
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gress of the, download or installation. 

.. . 

checking MD5 for -update-info-dk:OOZ26-1 

. . . .. . . 

. . 

. . 

< t .--.; SJi:);.] 1 YJ ' .::.........:......*:....-.>.. * 

. . .  

Figure A. l l  Installation Progress 

14. When setup is done, it will be shown as following figure. Click "Finish". 

Create icon on Desktop 

P Add icon to Start Menu 

Figure A.12 Create Icons 

15. Click "OK" to finish the cygwin setup program. 
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1. Click Cygwin icon on the desktop. 

2. For the first time execution, it will generate some environment parameter setting 
files. In this example, smallko is my login name to windows system. Therefore, the 
cygwin will create a folder named ~•˜smallko~" under home directory. (The actual path 
for smallko folder is: c:\cygwin\home\smallko) It should be noticed that the login 
name can not have any space in your name. For example, (•˜A Bc" may cause errors 
when you install NS2. 

3. Download NS-2 fromhtt~://~rdownloads.sourcefor~e.net/nsaan~l~~s-allinone- 
2.29.2.tar.gz?download. 

4. Decompress the ns-allinone-2.29.rar. 

5. Move this folder under c:\cygwin\home\smallko. (P.S. smallko is my login name) 

6. Open a cygwin window 

7. Change the path to ns-allinone-2.29111s-2.29 

Figure A.13 Changing Path 

8. Run the command "./configure; make clean; make" 
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Figure A.14 Configure NS2 

9. Please be patient. It will take some time to finish the compilation. 

10. When it is done, it should look like as follows. 

11. To make sure that you have successf&lly installed myNS2, you need to check 
whether you can find ns.exe under ns-allinone-2.29lns-2.29 
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12. Copy the .bashrc to c:/cygwi~~/home/smallko 
13. Run the example script to test whether you have setup the path or not. 

Figure A.17 Nam window 
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14. If you see the error message like .$ns command not found.", no wony about this. 
Sometimes even you have setup the path, but it does not work. You can copy the 
ns.exe (nam.exe) to the same place as the simulation script. Run the simulation 
withU./ns.exe" and it will be ok. 

Testing 

1. To initial graphical mode. (Type startxwin.bat). 
2. Run the example tcl script. (Change to -Ins-allinone-2.28111s-2.28111s- 
tutorial/examples. Then run the command "ns example2.tcl") 
3. If you can see the above figure, congratulations. You have successfully install 
cygwin + ns-2.28 under windows platform. 

A-3 Download and Install UCBT 

1. Get ns-allinone-2.29.tar.g~ 
ftp://ftp.isi.edu/nsnam/ns-allinone-2.29.tar.g~ 

2. Get ucbt-xx.tgz 
http:llwww.ececs.uc.edu/-cdmc/ucbt/src 

3. tar zxvf ns-allinone-2.29.tar.g~ 

4. cd ns-allinone-2.29111s-2.291 
tar zxvf../../ucbt-xx.tgz 

Assume ucbt-xx.tgz and ns-allinone-2.29.tar.g~ is in the same directory. 
5. cd ucbt-xx/ 

. /install-bt 
Or 

. /install-bt -d # enable debug 
Or 

. /install-bt -t # install tcl-debug 

ucbt-xx will be linked as Bluetooth. 

6. %If you want debug enabled, while the debug option is not enable in the above step, 
cd patchlns-2.29 
./enable-ns-debugsh 

7. Try some tests: 
cd test/ 
../..Ins test.tc1 > test.out 

8. ,To generate mobile scenario: 
cd tools && make 

Then you can use the modified setdest program. 

9. To recompile if you make some changes to the source code: 
make # in bluetooth/ 
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A-4 Running IPSec over Bluetooth 

1) cd ns-allinone-2.29111s-2.291 
2) cd ucbt-0.9.9.2 
3) cd project 
4) The following Files will be present: 

a) Bluetooth 
b) MD5 
c) SHAl 
d) D'ES-MDS 
e) 3DES-MD5 

5) To run TCL file : nsfile-name.tc1 >file-name.out 

Figure A.18 Running TCL & Result 

6) To run NAM Iile: namflfc-nartze.nam 

fPScc Bnscd fllrrctoo~h S c c w i ~ y  A rch i~ec~ i r r c  122 



Appendix-A User Manual 

Figure A. 19 Transmission of Data 

Figure A.20 Receiving of Data 
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B Classes Implemented for IPSec Based Bluetooth Security Architecture 

We have divided our work into following main modules 

B-1Networlr Simulator NS-2 

Class TCP 

This class is already implemented in NS-2 simulator; it was used and preferred as the 
TCPIIP stack which IPSec will be written over it. 
TCP calss can be foud in the path.\. ..\. . .\ns-allinone-2.29hs-2.29\tcp 

TCL class 

set ns [new Simulator] 
set tf [open tcp.tr w] 
$ns trace-all $tf 

set nf [open tcp.nam w] 
$ns namtrace-all-wireless $nf 7 7 

Simulator set MacTrace- ON 
Simulator set RouterTrace- ON 

$ns node-config -macType MacIBNEP 

set node(0) [$ns node 0] 
set node(]) [$ns node I ]  

$node(O) set-statist 10 30 1 
$node(l) set-statist 10 30 1 

$node(O) rt AODV 
$node(]) rt AODV 

$node(O) LossMod BlueHoc 
$node(O) trace-all-NULL on 
$node(O) trace-all-POLL on 

$ns at 0.0002 "$node(O) on" 
$ns at 0.0005 "$node(]) on" 

set tcpO [new AgentITCP] 
$ns attach-agent $node(O) $tcpO 
set ftpO [new Application/FTP] 
$RpO attach-agent $tcpO 
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set null0 [new AgentITCPSink] 
$ns attach-agent $node(l ) $null0 

$tcpO set pacletSize- 2000 
$ns connect $tcpO $null0 

set nscmd "$ftpO start" 

[$node(l) set 12capJ set ifq-limit- 30 
[$node(O) set 12capJ set ifq-limit- 40 

set i fq- [new QueueIDropTail] 
$ifq- set limit- 20 

$ns at 0.01 "$node(O) make-bnep-connection $node(l 
$nscmdM 

-I3 noqos $if% 

$ns at 30.1 "finish" 

proc finish {) { 
global node ns nf tf 
$node(O) print-all-stat 
$node(l) print-all-stat 

$close nf 
exit 0 

1 

$ns run 

B-2 IPSec 

There needed to be a mechanism, which allowed us to add IPsec functionality to TCPIIP 
stack 
The IPsec class is the central part, which does the whole standard conform processing of 
the incoming and outgoing IP traffic. It uses a set of databases (SPD and SAD) to 
determine the flow of the IP packets. The main processing is then done in the AH and 
ESP module. 
A small cryptographic library contains all the functionality used to encrypt, decrypt or to 
authenticate the packets. 

Class IPSec 
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#include "ipsec1ipsec.h" 
#include "ipsecluti 1.h" 
#include "ipsec1sa.h" 
#include "ipsec1ah.h" 
#include "ipsec1esp.h" 

I* * 
* IPsec input processing * 
* This function is called by the before BNEP and after TCPIIP when a packet arrives 

having AH or ESP in the 
* protocol field. A SA lookup gets the appropriate SA which is then passed to the packet 

processing 
* hnciton ipsec-ah-check() or ipsec-esp-decapsulateO. After successfidly processing 

an IPsec packet 
* an check together with an SPD lookup verifies if the packet was processed acording 

the right SA. 
* 
* @param packet pointer used to access the intercepted original packet 
* @param packet-size length of the intercepted packet 
* @param payload-offset pointer used to return offset of the new IP packet relative to 

original packet pointer 
* @param payload-size pointer used to return total size of the new IP packet 
* @param databases Collection of all security policy databases for the active IPsec 

device 
* @return int return status code 
*I 
int ipsec-input(unsigned char *packet, int packet - size, 

int *payload-offset, int *payloaddsize, 
db-set - netif *databases) 

{ 
int ret-val = IPSEC-STATUS-NOT-INITIALIZED; /* by default, the 

return value is undefined *I 
int dummy = packet-size; 

operation to avoid compiler warnings *I 
sad-entry *sa ; 
spd-entry *spd ; 
ipsec-ip-header *ip ; 
ipsec-ip-header *inner-ip ; 
- u32 spi ; 

IPSEC-LOG-TRC(1PSECTRACE-ENTER, 
"ipsec-input", 

("*packet=%p, packet-size=%d, len=%u, 
*payload - offset=%d, *payload-size=%d databases=%pn, 

I* dummy 
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(void *)packet, packet - size, (int)*payload-offset, 
(int)*payload-size, (void *)databases) 

1; 

IPSEC-DUMPBUFFER(" INBOUND ESP or AH:", packet, 0, packet-size); 

ip = (ipsec-ip-header*)packet ; 
spi = ipsec-sad-get-spi(ip) ; 
ga = ipsec - sad-lookup(ip->dest, ip->protocol, spi, &databases->inbound-sad) ; 

if(sa == NULL) 
{ 

IPSEC-LOG-AUD("ipsec-input", IPSEC-AUDIT-FAILURE, ("no 
matching SA found")) ; 

IPSEC-LOG-TRC(1PSEC-TRACE-RETURN, "ipsec-input", ("return = 

%dn, IPSEC - STATUS-FAILURE) ); 
return IPSEC-STATUS - FAILURE; 

I 

if(sa->mode != IPSEC-TUNNEL) 
{ 

IPSEC LOG ERR("ipsec-input", IPSEC-STATUS FAILURE, 
("unsupported transrnkion mode (only IPSEC-TUNNEL is suppo~ed)") ); 

IPSEC-LOG-TRC(1PSEC-TRACE-RETURN, "ipsec-input", ("return = 

%d", IPSEC-STATUS-FAILURE) ); 
return IPSEC-STATUS-FAILURE; 

I 

if(sa->protocol -- IPSEC-PROTO-AH) 
{ 

ret-val = ipsec-ah-check((ipsec-ip-header *)packet, payload-offset, 
payload-size, sa); 

if(ret - val != IPSEC-STATUS-SUCCESS) 

IPSEC-LOG-ERR("ipsec-input", ret - val, ("ahgacket-check() 
failed") ); 

IPSEC - LOG - TRCQPSEC - TRACE-RETURN, Mipsec-input", 
("ret-val =%dlt, ret-val) ); 

return ret-val; 
1 

) else if (sa->protocol == TPSEC-PROTO-ESP) 

ret val = ipsec~esp~decapsulate((ipsec~ip~header *)packet, 
payload - offset, p~yload-size, sa); 

if(ret-val != IPSEC-STATUS-SUCCESS) 
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{ 
IPSEC-LOG ERR("ipsec-input", ret-val, 

("ipsec - esp - decapsulate() failed") ); 
IPSEC - LOG - TRC(1PSEC-TRACE-RETURN, "ipsec-input", 

("ret-val=%dn, ret-val) ); 
return ret-val; 

1 

) else 
{ 

IPSEC-LOG-ERR("ipsec-input", IPSEC - STATUS - FAILURE, ("invalid 
protocol from SA") ); 

IPSEC-LOG-TRC(1PSEC TRACE-RETURN, "ipsec-input", 
("retval=%dM, IPSEC-STATUS-FAILURE) ); 

return IPSEC-STATUS-FAILURE; 
1 

inner-ip = (ipsec-ip-header *)(((unsigned char *)ip) + *payload-offset) ; 

spd = ipsec-spd-lookup(inner-ip, &databases->inbound-spd) ; 
if(spd - NULL) 
{ 

IPSEC LOG - AUD("ipsec-input", IPSEC-AUDIT-FAILURE, ("no 
matching SPD found")) ; 

IPSEC-LOG-TRC(1PSEC-TRACE-RETURN, "ipsec-input", 
("ret-val=%dW, IPSEC-STATUS-FAILURE) ); 

return IPSEC-STATUS-FAILURE; 
1 

if(spd->policy == POLICY-APPLY) 
{ 

if(spd->sa != sa) 
{ 

IPSEC-LOG-AUD("ipsec-input", 
IPSEC-AUDIT - SPI-MISMATCH, ("SPI mismatch") ); 

IPSEC LOG TRC(1PSEC-TRACE-RETURN, "ipsec-input", 
("return = %dv, IPSEC-AUDTT-SPY MISMATCH) -1; 

return IPSEC-STATUS-FAILURE; 
1 

1 
else 
{ 

IPSEC-LOG-AUD("ipsec-input", 
IPSEC - AUDIT - POLICY - MISMATCH, ("matching SPD da 
processing") ); 

les not permit IPS 
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IPSEC-LOG-TRC(1PSEC-TRACE-RETURN, "ipsec-input", 
("return = %d", IPSEC STATUS-FAILURE) ); 

return IPSECSTATUS-FAILURE; 
1 

IPSEC LOG-TRC(1PSEC-TRACE-RETURN, "ipsec-input", ("return = %d", 
IPSEC - STATUS~SUCCESS) 1; 

return IPSEC-STATUS-SUCCESS; 
1 

* IPsec output processing * 
* This function is called when outbound packets need IPsec processing. Depending the 
SA, passed via 
* the SPD entry ipsec-ah-check() and ipsec - esp - encapsulate() is called to encapsulate 

the packet in a 
* IPsec header. 
* 
* @param packet pointer used to access the intercepted original packet 
* @param packet-size length of the intercepted packet 
* @param payload-offset pointer used to return offset of the new IP packet relative to 

original packet pointer 
* @param payload-size pointer used to return total size of the new IP packet 
* @param src IP address of the local tunnel start point (external IP address) 
* @param dst IP address of the remote tunnel end point (external IP address) 
* @param spd pointer to security policy database where the rules for IPsec 

processing are stored . 
* @return int return status code 
*/ 
int ipsec output(unsigned char *packet, int packet-size, int *payload-offset, int 
*payload_size, 

u32 src, u 3 2  dst, spd-entry *spd) 

int ret-val = IPSEC STATUS-NOT-INITIALIZED; I* by default, 
the return value is undefined *I 

ipsec-ip-header *ip ; 

IPSEC-LOG-TRC(1PSEC-TRACE-ENTER, 
"ipsec - output", 

("*packet=%p, packet-size=%d, len=%u, 
*payload-offset=%d, *payload size=%d src=%lx dst=%lx *spd=%pU, 

(~oid*)~acket ,  packet - size, *payload-offset, *payload-size, 
(u32) src, (u32) dst, (void *)spd) 

); 
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if((ip == NULL) I I  (ipsec-ntohs(ip-4en) > packet-size)) 
{ 

1PSEC-LOG-DBG("ipse~~output", 
IPSEC-STATUS-NOT-IMPLEMENTED, ("bad packet ip=%p, ip->len=%d (must not 
be >%d bytes)", (void *)ip, ipsec-ntohs(ip->len), packet-size) ); 

IPSEC LOG-TRC(1PSEC-TRACE-RETURN, "ipsec-output", ("return = 

%dtt, IPSEC-STATUS-BAD-PACKET) 1; 
return IPSEC-STATUSBAD-PACKET; 

1 

if((spd -- NULL) 11 (spd->sa == NULL)) 
{ 

I** @todo invoke IKE to generate a proper SA for this SPD entry *I 
IPSEC LOG DBG("ipsec-output", 

IPSEC-STATUS-NO~IMPLEMENTED, ("unable to generate dynamically an SA (IKE 
not implemented)") ); 

IPSEC LOG-AUD("ipsec-output", IPSEC-STATUS-NO-SA - FOUND, 
("no SA or SPD defined")) ; 

IPSEC-LOG-TRC(1PSEC-TRACE-RETURN, "ipsec-output", ("return = 

%d", IPSEC-STATUS-NO-S A-FOUND) ); 
return IPSEC-STATUS-NO-SA-FOUND; 

1 

switch(spd->sa->protocol) { 
case IPSEC-PROTO-AH: 

IPSEC-LOG-MSG("ipsec-output", ("have to encapsulate 
an AH packet")) ; 

ret-val = ipsec-ah-encapsulate((ipsec-ip-header *)packet, 
payload-offset, payload-size, spd->sa, src, dst); 

if(ret-val != IPSEC-STATUS-SUCCESS) 
{ 

IPSEC-LOG-ERR("ipsec_output", ret-val, 
("ipsec-ah-encapsulate() failed")); 

1 
break; 

case IPSEC-PROTO-ESP: 
IPSEC-LOG-MSG("ipsec_output", ("have to encapsulate 

an ESP packet")) ; 
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ret-val = ipsec-esp-encapsulate((ipsec-ip-header *)packet, 
payload-offset, payload-size, spd->say src, dst); 

if(ret-val != IPSEC-STATUS-SUCCESS) 
{ 

IPSEC-LOG-ERR("ipsec_output", ret-val, 
("ipsec-esp-encapsulate() failed")); 

1 
break; 

default: 
ret-val = IPSEC-STATUSBAD-PROTOCOL; 
IPSEC-LOG-ERR("ipsec_output", ret-val, ("unsupported 

protocol '%dl in spd->sa->protocol", spd-%a->protocol)); 
1 

IPSEC-LOG-TRC(1PSEC-TRACE - RETURN, "ipsec-output", ("ret-val=%dU, 
ret-val) ); 

return ret-val; 
1 

Class AH (IP Authentication Header) 

The AH functions are used to authenticate IPsec traffic. All functions work in- 
place (i.g. manipulate directly the original packet without copying any data). For the 
encapsulation routine, the caller must ensure that space for the new IP and AH headers 
are available in front of the packet. 

Definition in file ah.c. 

Functions 

Int ipsec ahcheck (ipsec-ip-header *outerjacket, int *payload-offset, int 
*payload-s%e, sad-entry *sa) 

Int ipsec-ah-encapsulate (ipsec-ip-header *innerpacket, int "ayload-offset, int 
*payload-size, sad-entry *sa, u 3 2  src, -u32 dst) 

Variables 
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Function Documentation 

Int ipsec-ah-check (ipsec-ip-header * outer-packet, int * payload-offset, int * 
payload-size, sad-entry * sa) 

It checks AH header and ICV (RFC 2402). Mutable fields of the outer IP header 
are set to zero prior to the ICV calculation. 

Parameters: 
Outergacket: pointer used to access the (outer) IP packet which hast to be 
checked. 
payload-offset: pointer used to return offset of inner (original) IP packet relative 
to the start of the outer header. 
payload-size: pointer used to return total size of the inner (original) IP packet. 
SA: pointer to security association holding the secret authentication key 

Returns: 
IPSEC-STATUS-SUCCESS: packet could be authenticated. 
IPSEC-STATUS-FAILURE: packet is corrupted or ICV does not match. 
IPSEC-STATUS-NOT-IMPLEMENTED: invalid mode (only IPSEC-TUNNEL 
mode is implemented). 

Int ipsec-ah-encapsulate (ipsec-ip-header * inner-packet, 
int * payload-offset, int * payload-size, sad-entry * sa, -u32 src, -u32 dst ) 

It adds AH and outer IP header calculates ICV (RFC 2402). 

Parameters: 
innerjacket: pointer used to access the (outer) IP packet which hast to be 
checked. 
payload-offset: pointer used to return offset of inner (original) IP packet relative 
to the start of the outer header. 
payload size: pointer used to return total size of the inner (original) IP packet. 
Src: IP Gdress of the local tunnel start point (external IP address). 
DST: IP address of the remote tunnel end point (external IP address). 
SA: pointer to security association holding the secret authentication key. 

Returns: 
IPSEC-STATUS-SUCCESS packet could be authenticated. 
IPSEC-STATUS-FAILURE packet is corrupted or ICV does not match. 
IPSEC-STATUS-NOT-IMPLEMENTED invalid mode (only IPSEC-TUNNEL 
mode is implemented). 
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Variable Documentation 

u32 ipsec-ah-bitmap = 0 (save session state to detect replays - must be 32 bits. 
Note: must be initialized with zero (0x00000000) when a new SA is established). 
- u32 ipsec-ah-IastSeq = 0 (save session state to detect replays Note: must be 
initialized with zero (0x00000000) when a new SA is established). 

Class ESP (Encapsulating Security Protocol) 

This module contains the Encapsulating Security Payload code. All functions 
work in-place (i.g. mainipulate directly the original packet without copying any data). For 
the encapsulation routine, the caller must ensure that space for the new IP and ESP 
header are available in front of the packet. 

Definition in file esp.c. 

Functions 
- u8 ipsec-esp-getgadding (int len) 
ipsec status ipsec-esp-decapsulate (ipsec-ip-header "packet, int *offset, int *len, 
sad-entry *sa) 
ipsec-status ipsec-esp-encapsulate (ipsec-ip-header *packet, int *offset, int *]en, 
sad-entry *sa, -u32 src-addr, -1.132 dest-addr) 

Variables 
- u32 ipsec-esp-bitmap = 0 
- u32 ipsec-esp-IastSeq = 0 

Function Documentation 

ipsec-status ipsec-esp-decapsulate (ipsec-ip-header * packet, int * offset, int * len, 
sad-entry * sa) 

It decapsulates an IP packet containing an ESP header. 
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Parameters: 
0 Packet: pointer to the ESP header. 

Offset: pointer to the offset which is passed back. 
Len: pointer to the length of the decapsulated packet. 
Sa: pointer to the SA. 

Returns: 
IPSEC-STATUS-SUCCESS: if the packet could be decapsulated properly 
IPSEC-STATUS-FAILURE: if the SA's authentication algorithm was invalid or 

if ICV comparison failed 
IPSEC-STATUSBAD-PACKET: if the decryption gave back a strange packet 

Ipsec-status ipsec-esp-encapsulate (ipsec-ip-header * packet, int * offset, int * len, 
sad-entry * sa, u 3 2  src-addr, -u32 dest-addr ) 

It encapsulates an IP packet into an ESP packet which will again be added to an IP 
packet. 

Parameters: 
Packet pointer to the IP packet. 
Offset: pointer to the offset which will point to the new encapsulated packet. 
Len: pointer to the length ofthe new encapsulated packet. 
SA: pointer to the SA. 
src-addr: source IP address of the outer IP header. 
dest-addr: destination 1P address of the outer 1P header. 

Returns: 
IPSEC-STATUS-SUCCESS if the packet was properly encapsulated. 
IPSEC-STATUS-TTL-EXPIRED if the TTL expired. 
IPSEC-STATUS-FAILURE if the SA contained a bad authentication algorithm. 

- u8 ipsec-espxet-padding ( int len ) 
It returns the number of padding needed for a certain ESP packet size. 

Parameters: 
Len: the length of the packet 

Returns: 
The length of padding needed 

Variable Documentation 
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- u32 ipsec-esp-bitmap = 0 (save session state to detect replays - must be 32 
bits. Note: must be initialized with zero (0x00000000) when a new SA is 
established). 
- u32 ipsec-esp-IastSeq = 0 ( save session state to detect replays Note: must be 
initialized with zero (0x00000000) when a new SA is established). 

Class SA (security Association) 

This module contains the Security Association code. Here we implement the 
Security Association concept from W C  2401. Both SPD and SAD are implemented. At 
the time we do not support IKE and SA bundling. For having maximum flexibility two 
physically different tables (SPD and SAD) were implemented. They both provide 
functions to manipulate the database during run-time, so that a later IKE or SA-bundling 
could be implemented. 

The SPD contains the selector fields on which each IP packet needs to be 
checked. After outbound packets found their SPD entry, they can access the SA via the 
SA pointer. Inbound packets can access their SA directly by applying the SPI to the SAD 
(by performing an SAD lookup). Each IPsec enabled device needs to have its own set of 
SPD and SAD for each, inbound and outbound processing. 

Definition in file sa.c. 

Data Structures 
Struct ipsec-in-ip-struct 

Typedefs 
Typedef ipsec-in-ip-struct ipsec-in-ip 

Functions 
db-set-netif * ipsec-spd-load-dbs (spd-entry *inbound-spd-data, spd-entry 
*outbound-spd-data, sad-entry *inbound-sad-data, sad-entry *outbound-sad-data) 
ipsec-status ipsec-spd-release-dbs (db-set-netif *dbs) . 
spd-entry * ipsec-spd-get-free (spd-table *table) . 
spd-entry * ipsec-spd-add C u 3 2  src, u32 src-net, u32 dst, u 3 2  dst-net, -u8 
proto, -u16 srcgort, -u 16 dstgort, u 8 p o l i c y ,  spd-table *table) . 
ipsec-status ipsec-spd-add-sa (spd-entry *entry, sad-entry *sa) . 
ipsec-status ipsec-spd-del (spd-entry *entry, spd-table *table) . 
spd-entry * ipsec-spd-lookup (ipsec-ip-header *header, spd-table *table) . 
void ipsec-spdgrint-single (spd-entry *entry) . 
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void ipsec-spdgrint (spd-table *table) . 
sad-entry * ipsec-sad-get-free (sad-table *table). 
sad-entry * ipsec-sad-add (sad-entry *entry, sad-table *table). 
ipsec-status ipsec-sad-del (sad-entry *entry, sad-table *table). 
sad-entry * ipsec-sad-lookup (1.132 dest, u 8  proto, -u32 spi, sad-table *table). 
void ipsec-sadgrint-single (sad-entry *entry). 
void ipsec-sadgrint (sad-table *table) . 
- u32 ipsec-sad-get-spi (ipsec-ip-header *header). 
ipsec-status ipsec-spd-flush (spd-table *table, spd-entry *def-entry). 
ipsec-status ipsec-sad-flush (sad-table *table). 

Variables 
db-set-netif db-sets [IPSEC-NR-NETIFS] 

Typedef Documentation 
Typedef struct ipsec-in-ip-struct ipsec-in-ip: IPsec in IP structure - used to access 
headers inside SA . 

Function Documentation 

sad-entry* ipsec-sad-add ( sad-entry * entry, sad-table * table ) 

It adds a Security Association to SA table.The SA entries is added to a statically 
allocated array of SAD structs. The size is defined by IPSEC-MAX-SAD-ENTRIES, so 
there cannot be added more entries added as this constant. The order of the entries within 
the table is not the same as the order within the array. The "table functionality" is 
implemented in a linked-list, so one must follow the links of the structure to get to the 
next entry. 

Parameters: 
Entry: pointer to the SA structure which will be copied into the table. 
Table: pointer to the table where the SA is added. 

Returns: 
A pointer to the added entry when adding was successful. 
NULL when the entry could not have been added (no free entry or duplicate). 

Ipsec-status ipsec-sad-del (sad-entry * entry, sad-table * table) 

It deletes a Security Association from an SA table.This function is simple. If the 
pointer is within the range of the table, then the entry is cleared. If the pointer does not 
match, nothing happens. 

- - - - - - - - - - - -- - - -- - 
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Parameters: 
8 Entry: Pointer to the SA entry which needs to be deleted. 

Table: Pointer to the SA table. 

Returns: 
IPSEC-STATUS-SUCCESS: entry was deleted properly. 
IPSEC-STATUS-FAILURE: entry could not be deleted because not found, or 
invalid pointer. 

ipsec-status ipsec-sad-flush (sad-table * table ) 

Parameters: 
Table: pointer to the SAD table. 

Returns: 
IPSEC-STATUS-SUCCESS: if the flush was successful 

sad-en try* ipsec-sadxet-free (sad-table * table ) 

It gives back a pointer to the next free entry from the given SA table. 

Parameters: 
Table: pointer to the SA table. 

Returns: 
Pointer to the free entry if one was found. 
NULL if no free entry was found 

- 1132 ipsec-sadxet-spi ( ipsec-ip-header * header ) 

Parameters: 
Header: pointer to the IP header having an lPsec header as payload. 

Returns: 
The SPI if one could be extracted 
0 if no SPI could be extracted (not 1Psec packet) 

sad-entry* ipsec-sad-lookup (-1132 dest, -US proto, -u32 spi, sad-table * 
table) 

It gives back a pointer to a SA matching the SA selectors.For incoming packets 
the IPsec packet must be checked against the inbound SAD and for outgoing packets the 
packet must be checked against the outbound SAD. It Implements simply by loops over 
all entries and returns the first match. 
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Parameters: 
Dest: destination IP address. 
Proto: lPsec protocol. 
Spi: Security Parameters Index. 
Table: pointer to the SAD table. 

Returns: 
Pointer to the SA entry if one matched. 
NULL if no matching entry was found 

void ipsec-sad-print ( sad-table * table ) 

Parameters: 
Table: pointer to the SAD table which will be printed 

Returns: 
Void 

void ipsec-sad-prin t-single ( sad-entry * en try ) 

Parameters: 
0 Entry: pointer to the SA entry which will be printed 

Returns: 
Void 

Ipsec-status ipsec-spd-add-sa (spd-entry * entry, sad-entry * sa) 

It adds a Security Association to a Security Police. 

Parameters: 
0 Entry: pointer to the SPD entry where the SA should be added. 

Sa: a pointer to the SA which is added to the SPD 

Keturns: 
IPSEC-STATUS-SUCCESS: the entry was added successfully. 

Ipsec-status ipsec-spd-del (spd-entry * entry, spd-table * table) 

It deletes a Security Policy from an SPD table.This function is simple. If the 
pointer is within the range of the table, then the entry is cleared. If the pointer does not 
match, nothing happens. 

Parameters: 
Entry: Pointer to the SPD entry which needs to be deleted. 
Table: Pointer to the SPD table. 

~ ~- ~~- 
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Returns: 
IPSEC-STATUS-SUCCESS: entry was deleted properly. 
IPSEC-STATUS-FAILURE: entry could not be deleted because not found, or 
invalid pointer. 

Ipsec-status ipsec-spd-flush (spd-table * table, spd-entry * def-entry) 

It flushes SPD table and sets a new default entry. 

Parameters: 
Table: pointer to the SPD table 
def-entry: pointer to the default entry. 

Returns: 
IPSEC-STATUS-SUCCESS: if the flush was successful. 
IPSEC-STATUS-FAILURE: if the flush failed. 

Db-set-netiP ipsec-spd-load-dbs (spd-en try * inbound-spd-data, spd-entry * 
ou tbound-spd-data, sad-entry * inbound-sad-data, sad-entry * 
outbound-sad-data) 

This function initializes the database set, allocated in a per-network manner.The 
data which is passed by the pointers should not be used by other functions except the 
ones of the SA-module. 

The data passed can be viewed as a place where the SA-module can store its data 
(Security Policies or Security Associations). The tables which are passed to the function 
can already be filled up with static configuration data. You can use the SPD-ENTRY and 
the SAD-ENTRY macro to do this in a nice way. 

Parameters: 
inbound-spd-data pointer: to a table where inbound Security Policies will be 
stored 
outbound-spd-data pointer: to a table where outbound Security Policies will be 
stored 
inbound-sad-data pointer: to a table where inbound Security Associations will be 
stored 
outbound-sad-data pointer: to a table where outbound Security Associations will 
be stored 

Returns: 
Pointer to the initialized set of DB's if the setup was successful. 
NULL if loading failed. 
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spd - entry* ipsec-spd-looltup (ipsec-ip-header * header, spd-table * table) 

It returns a pointer to an SPD entry which matches the packet. Inbound packets 
must be checked against the inbound SPD and outbound packets must be checked against 
the outbound SPD. 

Parameters: 
Header: Pointer to an 1P packet which is checked. 
Table: Pointer to the SPD inbound/outbound table. 

Returns: 
Pointer to the matching SPD entry. 
NULL if no entry matched. 

ipsec-status ipsec-spd-release-dbs (db-set-netif * dbs ) 

This function is used to release the structure allocated in ipsec-spd-load-dbs(). 
The tables which were allocated in ipsec-spd-load-dbs() can now be freely used. 

Parameters: 
Dbs pointer: to the set of databases got by ipsec-spd-load-dbs() which has to be 
released. 

Returns: 
IPSEC-STATUS-SUCCESS : if release was successful. 
IPSEC-STATUS-FAILURE: if release was not successful. 

Variable Documentation 

db-set-netif db-sets[IPSEC-NR-NETIFS] (This structure holds sets of databases 
used by one network interface. Each successful call of ipsec-spd-load-dbs() will 
return a pointer to an entry of this structure array. One entry holds pointers to a 
inbound and outbound SPD and SAD table.) 

SHAl (US Secure Hash Algorithm) 

Definition in file shal .c. 

Defines 
#define Xupdate(a, ix, ia, ib, ic, id) 
#define SHA-CBLOCK (SHA_LBLOCK*4) 
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#define SHALAST-BLOCK (SI-ILCBLOCK-8) 
#define SHA-LBLOCK (SHA_CBLOCK/4) 
#define HOST-c2l(c, 1) 
#define HOST_p_c2l(c, 1, n) 
#define HOSTg-c2lg(c, 1, sc, len) 
#define HOST-c2l_p(c, 1, n) 
#define HOST-12c(l, c) 
#define INIT-DATA-hO 0x6745230 1 UL 
#define INIT-DATA-hl Oxefcdab89UL 
#define INIT-DATA-h2 Ox98badcfeUL 
#define INIT-DATA-h3 0x1 O325476UL 
#define INIT-DATA-h4 Oxc3d2e 1 fOUL 
#define K-00-19 Ox5a827999UL 
#define K-20-39 Ox6ed9ebal UL 
#define K-40-59 Ox8fl bbcdcUL 
#define K 60-79 Oxca62cl d6UL 
#define ~:00_19(b, c, d) ((((c) A (d)) & (b)) A (d)) 
#define F-20-39(b, c, d) ((b) A (c) A (d)) 
#define F_40_59(b, c, d) (((b) & (c)) I (((b)l(cH & (d))) 
#define F-60_79(b, c, d) F-20-39(b,c,d) 
#define BODY_00_15(i, a, b, c, d, e, f, xi) 
#define BODY-1 6-1 9(i, a, b, c, d, e, f, xi, xa, xb, xc, xd) 
#define BODY-20-3 1 (i, a, b, c, d, e, f, xi, xa, xb, xc, xd) 
#define BODY_32_39(i, a, b, c, d, e, f, xa, xb, xc, xd) 
#define BODY_40_59(i, a, b, c, d;e, f, xa, xb, xc, xd) 
#define BODY_60_79(i, a, b, c, d, e, f, xa, xb, xc, xd) 
#define X(i) XX##i 

Functions 

unsigned char * SHAl (const unsigned char *d, unsigned long n, unsigned char 
*md) 
void shal-block-host-order (SHA-CTX *c, const void *p, int num) 
void shal-block data-order (SHA CTX *c, const void *p, int num) 
void SHAl up&e (SHA-CTX *c: const void *data ,  unsigned long len) 
void ~HA1~~ransf01-m (SHA CTX *c, const unsigned char *data) 
void SHAl-Final (unsigned char *md, SHA-CTX *c) 
void SHA1-Init (SHA-CTX *c) 
void hmac-shal (unsigned char *text, int text-len, unsigned char *key, int 
key-len, unsigned char *digest) 
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Define Documentation 

#defineBODY-16_19(i, a, b, c, d, e, f, xi, xa, xb, xc ,xd  ) 
Value: 
Xupdate(f,xi,xa,xb,xc,xd); \ 
(~)+=(~)+K-~O-~~+ROTATE((~),~)+F-OO-~~((~),(C),(~)); \ 
(b)=ROTATE((b),30); 

#define BODY-20-31 ( i, a, by c, d, e, f, xi, xa, xb, xc, xd ) 
Value: 
Xupdate(f,xi,xa,xb,xc,xd); \ 
(f)+=(e)+K~20~39+ROTATE((a),5)+F(f)+=(e)+K_20_39+RoTATEo,5)+F_20_39((2O~39((b)y(c)y(d)); \ 
(b)=ROTATE((b),3 0); 

#define BODY-32-39 ( i, a, b, c, d, e, f, xa, xb, xc, xd ) 
Value: 
Xupdate(f,xa,xa,xb,xc,xd); \ 
(f)+=(e)+K-20-39+ROTATE((a),S)+F-20-39((b),(c),(d)); \ 
(b)=ROTATE((b),30); 

#define BODY-40-59 ( i, a, b, c, d, e, f, xa, xb, xc, xd ) 
Value: 
Xupdate(f,xa,xa,xb,xc,xd); \ 
(f)+=(e)+K-4 0-59+ROTATE((a),5)+F(f)+=o,5)+F_40_59((4005 9((b),(c),(d)); \ 
(b)=ROTATE((b),3 0); 

#defineBODY-60-79 ( i, a, b, c, d, e, f, xa, xb, xc, xd ) 
Value: 
Xupdate(f,xa,xa,xb,xc,xd); \ 
(f)=xa+(e)+K-60-79+ROTATE((a),5)+F-60-79((b),(c),(d)); \ 
(b)=ROTATE((b),3 0); 

#define F-00-19 ( b, c, d ) ((((c) A (d)) & (b)) A (d)) 
#define F-20-39 ( b, c, d ) ((b) A (c) A (d)) 
#define F-40-59 t b, c, d 1 Nb) & ( 4 )  I (ttb)ltc)) & (dl)) 
#defineF-60-79 ( b, c, d ) F-20_39(b,c,d) 

#define HOST-c21( c, I ) 
Value: 
(1 =(((unsigned long)(* ((c)++)))<<24), \ 
Il=(((unsigned long)(*((c)++)))<<l6), \ 
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#define HOST-c2lj ( c, 1, n ) 
Value: 
i \ 

1=0; (c)+=n; \ 
switch (n) ( \ 
case 3: 1 =((unsigned long)(*(--(c))))<< 8; \ 
case 2: ll=((unsigned long)(*(--(c))))<< 16; \ 
case 1: l(=((unsigned long)(*(--(c))))<<24; \ 

> > 
#define HOST-12c ( 1, c ) 
Value: 
(*((c)++)=(uns igned char)(((l)>>24)&0xff), \ 

* ((c)++)=(unsigned char)(((l)>> 16)&Oxff), \ 
*((c)++)=(unsigned char)(((l)>> 8)&0xff), \ 
*((c)++)=(unsigned char)(((l) )&Oxff), \ 
1) 

#define HOSTq-c21( c, 1, n ) 
Value: 

\ 
switch (n) ( \ 
case 0: 1 =((unsigned long)(*((c)++)))<<24; \ 
case 1 : ll=((unsigned long)(*((c)++)))<< 16; \ 
case 2: l(=((unsigned long)(*((c)++)))<< 8; \ 
case 3: ll=((unsigned long)(*((c)++))); \ 

> > 
#define HOSTq_c2l_p ( c, 1, sc, len ) 
Value: 
i \ 

switch (sc) ( \ 
case 0: I =((unsigned long)(*((c)++)))<<24; \ 

if (--1en == 0) break; \ 
case 1 : l(=((unsigned long)(*((c)++)))<< 16; \ 

if (--1en == 0) break; \ 
case 2: l(=((unsigned long)(*((c)++)))<< 8; \ 

> > 
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#define INIT-DATA-hO 0x6745230 1 UL 
#define INIT-DATA-h 1 Oxefcdab89UL 
#define INIT-DATA-h2 Ox98badcfeUL 

. #define INIT-DATA-h3 Ox 1 O325476UL 
#define INIT-DATA-114 Oxc3d2e 1 fOUL 
#define K-00-19 Ox5a827999UL 
#define K - 20 - 39 Ox6ed9ebalUL 
#define K-40-59 Ox8fl bbcdcUL 
#define K-60-79 Oxca62c 1 d6UL 
#define SHA-CBLOCK (SHA_LBLOCK*4) 
#define SHA-LAST-BLOCK (SHA-CBLOCK-8) 
#define SHA-LBLOCK (SHA-CBLOCW4) 
#define X ( i ) XX##i 
#define Xupdate ( a, ix, ia, ib, ic, id ) 

Function Documentation 

void hmac-shal ( unsigned char * text, int text - len, unsigned char * key, int 
key-len, unsigned char * digest ) 
unsigned char* SHAl ( const unsigned char * d, unsigned long n, unsigned char 
* md ) 
void shal-block-data-order ( SHA CTX * c, const void * p, int num ) 
void shal-block-host-order ( SHAICTX * c, const void * p, int num ) 
void SHAl-Final ( unsigned char * md, SHA-CTX * c ) 
void SHAl Init ( SHA-CTX * c ) 
void sHAl-~ransform ( SHA CTX * c, const unsigned char * data ) 
void sHAIVpdate - ( SHA - CC * c, const void * data_, unsigned long len ) 

Class MD5 (Message-Digest Algorithm) 

Definition in file md5.c. 

Defines 

#define INIT DATA-A (unsigned long)Ox6745230 1 L 
#define INITDATA-B (unsigned long)Oxefcdab891 
#define NIT-DATA-C (unsigned long)Ox98badcfeL 
#define NIT-DATA-D (unsigned 1ong)Ox 1 O325476L 
#define HOST-c2l(c, I )  
#define HOSTq-c2l(c, I, n) 
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#define HOST-p-c2lg(c, 1, sc, len) 
#define HOST-c2lg(c, I, n) 
#define HOST-12c(l, c) 
#define F(b, c, d) ((((c) " ( 4 )  (b)) " ( 4 )  
#define G(b, c, d) " (c)) ( 4 )  " (c)) 
#define H(b, c, d) ((b) " (c) A (d)) 
#define I(b, c, d) (((-(dl) I (b)) /' (c)) 
#define RO(a, b, c, d, k, s, t) 
#define Rl(a, b, c, d, k, s, t) 
#define R2(a, b, c, d, k, s, t) 
#define R3(a, b, c, d, k, s, t) 
#define X(i) XX##i 

Functions 

unsigned char * MD5 (const unsigned char *d, unsigned long n, unsigned char *md) 
void MD5 Init (MDS-CTX *c) 
void md5-ilock-host-order (MD5-CTX *c, const void *p, int num) 
void md5-block-data-order (MD5-CTX *c, const void *p, int num) 
void MD5-Update (MD5-CTX *c, const void *data_, unsigned long len) 
void MD5 Transform (MD5-CTX *c, const unsigned char *data) 
void ~ ~ 5 I ~ i n a l  (unsigned char *md, MD5-CTX *c) 
void hmac-md5 (unsigned char *text, int text-len, unsigned char *key, int key-len, 
unsigned char *digest) 

Define Documentation 

#define HOST-c21 ( c, I ) 
Value: 
(1 =(((unsigned long)(*((c)++))) ), \ 

Il=(((unsigned long)(*((c)++)))<< 8), \ 
Il=(((unsigned long)(*((c)++)))<<l6), \ 
Il=(((unsigned long)(*((c)++)))<<24), \ 
1 > 

#define HOST-c2lg ( c, 1, n ) 
Value: 
{ \ 

1=0; (c)+=n; \ 
switch (n) { \ 
case 3: 1 =((unsigned long)(*(--(c))))<<l6; \ 
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case 2: ])=((unsigned long)(*(--(c))))<< 8; \ 
case 1 : ]]=((unsigned long)(*(--(c)))); \ 

1 )  

#define HOST-12c ( I, c ) 
Value: 
(*((c)++)=(unsigned char)(((l) )&Oxff), \ 

*((c)++)=(unsigned char)(((l)>> 8)&0xff), \ 
*((c)++)=(unsigned char)(((l)>>l6)&0xff), \ 
*((c)++)=(unsigned char)(((l)>>24)&0xff), \ 
1) 

#define HOSTg_c21( c, I, n ) 
Value: 
{ \ 

switch (n) { \ 
case 0: I =((unsigned long)(*((c)++))); \ 
case 1: !(=((unsigned long)(*((c)++)))<< 8; \ 
case 2: I(=((unsigned long)(*((c)++)))<< 16; \ 
case 3: Il=((unsigned long)(*((c)++)))<<24; \ 

1 I 

#define HOSTg_c2lg ( c, I, sc, len ) 
Value: 
{ \ 

switch (sc) { \ 
case 0: I =((unsigned long)(*((c)++))); \ 

if (--len == 0) break; \ 
case 1: Il=((unsigned long)(*((c)++)))<< 8; \ 

if (--len == 0) break; \ 
case 2: ])=((unsigned long)(*((c)++)))<<l6; \ 

I I  

#define I ( b, c, d 1 (((-(dl) I (b)) A (c)) 
#define INIT-DATA-A (unsigned long)Ox6745230 1 L 
#define INIT-DATA-B (unsigned Iong)Oxefcdab89L 
#define INIT-DATA C (unsigned long)Ox98badcfeL 
#define WIT-DATAID (unsigned long)OxI 0325476L 

#define RO ( a, b, c, d, k, s, t ) 
Value: 
{ \ 

a+=((k>+(t)+F((b>,(c>,(d))); \ 
a=ROTATE(a,s); \ 
a+=b; ) ;\ 
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#define R1 ( a, b, c, d, k, s, t ) 
Value: 
{ \ 

a+=((k>+(t)+G((b),(c>,(d))); \ 
a=ROTATE(a,s); \ 
a+=b; ); 

#define R2 ( a, b, c, d, k, s, t ) 
Value: 
{ \ 

a+=((k)+(t>+H((b>,(c),(d))); \ 
a=ROTATE(a,s); \ 
a+=b; ); 

#define R3 ( a, b, c, d, k, s, t ) 
Value: 
{ \ 

a+=((k)+(t)+I((bX(c),(d))); \ 
a=ROTATE(a,s); \ 
a+=b; ) ; 

Function Documentation 

void hmac-mdS ( unsigned char * text, int text-len, unsigned char * key, int 
key-len, unsigned char * digest ) 

Parameters: 
Text: pointer to data stream. 
text - len: length of data stream. 
Key: pointer to authentication key. 
key-len: length of authentication key 
Digest: caller digest to be filled in 128-bit. 

Returns: 
void 

unsigned char* MD5 ( const unsigned char * d, unsigned long n, unsigned char * 
md 
void md5-block-data-order ( MD5-CTX * c, const void * p, int num ) 
void md5-block-host-order ( MDS-CTX * c, const void * p, int num ) 
void MDS-Final ( unsigned char * md, MD5-CTX * c ) 
void MDS-Init ( MD5-CTX * c ) 
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void MDS-Transform ( MDS-CTX * c, const unsigned char * data ) 
void MDS-Update ( MDS-CTX * c, const void * data-, unsigned long ten ) 

Class DES and 3DES in CBC Mode 

Definition in file des.c. 

Defines 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

DES-KEY-SZ (sizeof(DES-cblock)) 
DES-SCHEDULE-SZ (sizeof(DES-key-schedule)) 
ITERATIONS 16 
HALF-ITERATIONS 8 
c21(c, 1) 
c2ln(c, 11, 12, n) 
12c(l, c) 
HDRSIZE 4 
n21(c, 1) 
12n(l, c) 
12cn(11,12, c, n) 
ROTATE(a7 n) (((a)'>(n))+((a)<<(32-(n)))) 
LOAD-DATA-tmp(a, b, c, d, e, f )  LOAD-DATA(a,b,c,d,e,f,g) 
LOAD-DATA(R, S, u, t, EO, El ,  tmp) 
D-ENCRYPT(LL, R, S) 
PERM-OP(a, b, t, n, m) 
IP(L r) 
W I ,  
NUM-WEAK-KEY 16 
HPERM-OP(a, t, n, m) 

Functions 

void DES-cbc-encrypt (const unsigned char *input, unsigned char *output, long length, 
DES-key-schedule *schedule, DES-cblock *ivec, int enc) 
void DES-ncbc-encrypt (const unsigned char *input, unsigned char *output, long length, 
DES-key-schedule *schedule, DES-cblock *ivec, int enc) 
void DES-encrypt1 (DES-LONG *data, DES-key-schedule *ks, int enc) 
void DES-encrypt2 (DES-LONG *data, DES-key-schedule *ks, int enc) 
void DES-encrypt3 (DES-LONG *data, DES-key-schedule *ks 1, DES-key-schedule 
*ks2, DES-key-schedule *ks3) 
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void DES-decrypt3 (DES-LONG *data, DES-key-schedule *ksl, DES-key-schedule 
*ks2, DES key-schedule *ks3) 
void ~ ~ ~ ~ e d e 3 - c b c - e n c r ~ ~ t  (const unsigned char *input, unsigned char *output, long 
length, DES-key-schedule *ksl, DES-key-schedule *ks2, DES-key-schedule *ks3, 
DES-cblock * k c ,  int enc) 
void DES-set-oddgarity (DES-cblock *key) 
int DES check-keyqarity (const-DES-cblock *key) 
int DES~~S-weak-key (const-DES-cblock *key) 
int DES-set-key (const-DES-cblock *key, DES-key-schedule *schedule) 
int DES-key-sched (const-DES-cblock *key, DES-key-schedule *schedule) 
int DES-set-key-checked (const-DES-cblock *key, DES-key-schedule *schedule) 
void DES-set-key-unchecked (const-DES-cblock *key, DES-key-schedule *schedule) 
void cipher-3des-cbc (unsigned char *text, int text-len, unsigned char *key, unsigned 
char *ivy int mode, unsigned char *output) 

Variables 

const DES-LONG DES-SPtrans [8] [64] 
int -shadow-DES-check-key 
const unsigned char oddqarity [256] 
DES-cblock weak-keys [NUM-WEAK-KEY] 
const DES-LONG des-skb [8][64] 

Define Documentation 

#define c21n ( 
Value: 
I \ 

c+=n; \ 
1 1 =12=0; \ 
switch (n) { \ 
case 8: 12 =((DES-LONG)(*(--(c))))<<24L; \ 
case 7: 121=((DES_LONG)(*(--(c))))<< 16L; \ 
case 6: 121=((DES_LONG)(*(--(c))))<< 8L; \ 
case 5: 121=((DES_LONG)(*(--(c)))); \ 
case 4: 11 =((DES LONG)(*(--(c))))<<24L; \ 
case 3 : 1 1 I=((DEs~oNG)(*(--(c))))<< 1 6 ~ ;  \ 
case 2: 11 I=((DES-LONG)(*(--(c))))<< 8L; \ 
case 1 : 1 1 I=((DES-LONG)(*(--(c)))); \ 
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#define D - ENCRYPT ( LL, R, S ) 
Value: 
0 

LOAD-DATA-tmp(R,S,u,t,EO,El ); \ 
t=ROTATE(t,4); \ 
LLA=\ 
DES - SPtrans[O] [(u>> 2L)&Ox3flA \ 

DES-SPtrans[2] [(LIB> 1 0L)&Ox3flA \ 
DES_SPtrans[4][(u>> 1 8L)&0x3flA \ 
DES-SPtrans[6][(u>>26L)&0x3flA \ 
DES-SPtrans[ 1 ][(t>> 2L)&0x3flA \ 
DES_SPtrans[3][(t>> 1 0L)&Ox3flA \ 
DES SPtrans[S][(t>> 1 8L)&0x3flA \ 
~ ~ ~ S ~ t r a n s [ 7 ] [ ( t > > 2 6 ~ ) & 0 ~ 3 f ] ;  ) 

#define FP ( 1, r ) 
Value: 

DES-LONG tt; \ 
PERM-OP(l,r,tt, I ,Ox55555555L); \ 
PERM OP(r,l,tt, 8,OxOOffOOffL); \ 
PERM:OP(I,~~~~, 2,0~33333333L); \ 
PERM-OP(r,l,tt, 16,OxOOOOffffL); \ 
PERM_OP(l,r,tt, 4,OxOfOfOfOfL); \ 
I 

#define HALF-ITERATIONS 8 
#define HDRSIZE 4 

#define IP ( 1, r ) 
Value: 
{ \ 

DES-LONG tt; \ 
PERM-OP(r,l,tt, 4,0xOfOf0fOfL); \ 
PERM-OP(l,r,tt, l6,OxOOOOffffL); \ 
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#define ITERATIONS 16 

#define 12c ( I, c ) 
Value: 
(*((c)++)=(unsigned char)(((l) )&Oxff), \ 

*((c)++)=(unsigned char)(((l)>> 8L)&Oxff), \ 
*((c)++)=(unsigned char)(((l)>> 16L)&Oxff), \ 
*((c)++)=(unsigned char)(((1)>>24L)&Oxff)) 

#define l2cn ( 11, 12, c, n ) 
Value: 
{ \ 

c+=n; \ 
switch (n) { \ 
case 8: *(--(c))=(unsigned char)(((12)>>24L)&Oxff); \ 
case 7: *(--(c))=(unsigned char)(((l2)>>16L)&Oxff); \ 
case 6: *(--(c))=(unsigned char)(((l2)>> 8L)&Oxff); \ 
case 5: *(--(c))=(unsigned char)(((l2) )&Oxff); \ 
case 4: *(--(c))=(unsigned char)(((l l)>>24L)&OxM); \ 
case 3: *(--(c))=(unsigned char)(((ll)>> 16L)&Oxff); \ 
case 2: *(--(c))=(unsigned char)(((l I)>> 8L)&Oxff); \ 
case 1 : *(--(c))=(unsigned char)(((l 1) )&Oxff); \ 

> \ 
1 

#define 12n ( 1, c ) 
Value: 
(*((c)++)=(unsigned char)(((l)>>24L)&Oxff), \ 

*((c)++)=(unsigned char)(((l)>> l6L)&Ox@, \ 
*((c)++)=(unsigned char)(((l)>> 8L)&Oxff), \ 
* ((c)++)=(unsigned char)(((l) )&OxM)) 

#define LOAD-DATA ( R, S, u, t, EO, El ,  tmp ) 
Value: 
u=RAs[S 1; \ 

t=RAs[S+ I]  

#define n21( c, 1 ) 
Value: 
(I =((DES_LONG)(*((c)++)))<<24L, \ 
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#define NUM-WEAK-KEY 16 

#define ROTATE ( a, n ) (((a)>>(n))+((a)<<(32-(n)))) 

Function Documentation 

void cipher-3des-cbc ( unsigned char * text, int text-len, unsigned char * key, 
unsigned char * iv, int mode, unsigned char * output ) 

3DES-CBC function calculates a digest from a given data buffer and a given key. 

Parameters: 
Text: pointer to input data. 
text-len: length of input data. 
Key: pointer to encryption key (1 92 bits). 
IV: initialization vector. 
Mode: defines whether encryption or decryption should be performed. 
output: en- or decrypted input data 

Returns: 
void 

void DES-cbc-encrypt ( const unsigned char * input, unsigned char * output, 
long length, DES-key-schedule * schedule, DES-cblock * ivec, int enc) 
int DES-check-key-parity ( const-DES-cblock * key ) 
void DES-decrypt3 ( DES-LONG * data, DES-key-schedule * ksl, 
DES-key-schedule * ks2, DES-key-schedule * ks3 ) 
void DES-ede3-cbc-encrypt ( const unsigned char * input, unsigned char * 
output, long length, DES-key-schedule * ksl, DES-key-schedule * ks2, 
DES-key-schedule * ks3, DES-cblock * ivec, int enc) 
void DES-encrypt1 ( DES-LONG * data, DES-key-schedule * ks, int enc ) 
void DES-encrypt2 ( DES-LONG * data, DES key-schedule " ks, int enc ) 
void DES-encrypt3 ( DES-LONG * dita, DES-key-schedule * ksl, 
DES-key-schedule * ks2, DES-key-schedule * ks3) 
int DES-is-weak-key ( const-DES-cblock * key ) 
int DES-key-sched ( const-DES-cblock * key, DES-key-schedule * schedule ) 
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void DES-ncbc-encrypt ( const unsigned char * input, unsigned char * output, 
long length, DES-key-schedule * schedule, DES-cblock * ivec, int enc)  
int DES-set-key ( const-DES-cblock * key, DES-key-schedule * schedule ) 
int DES-set-key-checked ( const-DES-cblock * key, DES-key-schedule * 
schedule ) 
void DES-set-key-unchecked (constDES-cblock * key, DES-key-schedule * 
schedule ) 
void DES-set-odd-parity ( DES-cblock * key ) 

Variable Documentation 

int shadow-DES-check-key 
con& DES-LONG des_skb[8] [64] [static] 
const DES-LONG DES_SPtrans[8][64] 

const unsigned char oddqarity[25 61 [static] 
Initial value: 
{ 

1, 1 , 2 , 2 , 4 , 4 ,  7, 7, 8, 8,11,11,13,13,14,14, 
16, 16, 19, 19,21,21,22,22,25,25,26,26,28,28,31,31, 
32, 32,35,35,37,37, 38, 38,41, 41,42,42,44,44,47, 47, 
49,49,50,50,52,52,55, 55,56, 56,59,59,61,61,62,62, 
64,64,67,67,69,69, 70, 70, 73, 73, 74,74, 76, 76, 79, 79, 
81,81,82,82,84,84,87,87,88,88,91,91,93,93,94,94, 
97,97,98, 98,100,100,103,103,104,104,107,107,109,109,110,110, 
112,112,115,115,117,117,118,118,121,121,122,122,124,124,127,127, 
128,128,131,131,133,133,134,134,137,137,138,138,140,140,143,143, 
145,145,146,146,148,148,151,151,152,152,155,155,157,157,158,158, 
161,161,162,162,164,164,167,167,168,168,171,171,173,173,174,174, 
176,176,179,179,181,181,182,182,185,185,186,186,188,188,191,191, 
193,193,194,194,196,196,199,199,200,200,203,203,205,205,206,206, 
208,208,211,21 l,213,213,214,214,2 17,217,218,218,220,220,223,223, 
224,224,227,227,229,229,230,230,233,233,234,234,236,236,239,239, 
241,241,242,242,244,244,247,247,248,248,25 1,25 1,253,253,254,254) 

DES-cblock weak-keys[NUM-WEAK-KEY] [static] 
Initial value: 
{ 

(0x0 1 ,ox0 1 ,ox0 1 ,ox0 1 ,ox0 1 ,ox0 1 ,ox0 1 ,ox0 1 ), 
{OxFE,OxFE,OxFE,OxFE,OxFE,OxFE,OxFE,OxFE}, 
{Ox 1 F,Ox I F,Ox 1 F,Ox 1 F,0x0E,OxOE,OxOE,OxOE}, 
{OxEO,OxEO,OxEO,OxEO,OxF 1 ,OxF 1 ,OxF 1 ,OxF 1 ), 
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{Ox 1 F,OxE0,0x1F,OxEO,OxOE,OxF 1 ,OxOE,OxF 1 ), 
{OxEO,Ox1 F,OxEO,Oxl F,OxF 1 ,OxOE,OxF 1 ,OxOE), 
(0x01 ,OxEO,OxO 1 ,OxEO,OxO 1 ,OxF 1 ,Ox0 I ,OxF 1 ), 
(OxE0,OxO 1 ,OxE0,0x01 ,OxF 1 ,Ox0 1 ,OxF 1 ,Ox0 1 ), 
{Ox 1 F,OxFE,Ox 1 F,OxFE,OxOE,OxFE,0x0E,OxFE), 
{OxFE,Ox 1 F,OxFE,Ox 1 F,OxFE,OxOE,OxFE,OxOE} , 
(0x0 1 ,Ox 1 F,OxO 1 ,Ox 1 F,OxO 1 ,OxOE,OxO 1 ,OxOE), 
{Ox1F,Ox01 ,Ox1 F,OxO I ,OxOE,OxO 1 ,OxOE,Ox01), 
{OxEO,OxFE,OxEO,OxFE,OxF 1 ,OxFE,OxF I ,OxFE), 
{OxFE,OxEO,OxFE,OxEO,OxFE,OxF 1 ,OxFE,OxF 1 ) ) 

B-3 UCBT 

Class BNEP 

I* 
* Note -- The bridge function of GN/NAP is supposed to implement here. 
* We rather use the L3 approach to do it. That is, GN/NAP and BR are routers 
* instead of bridges. This design simplifies the simulator implementation 
* significantly, and we don't need to handle ARP for BT devices. 
* Bridge function presented here is quite minimum. 
* / 

#define BUFFSIZE 1024 

int hdr-bnep::offset-; 

static class BNEPHeaderC1ass:public PacketHeaderClass { 
public: 
BNEPHeaderClass():PacketHeaderClass("PacketHeader/BNEP~~, 

sizeof(hdr-bnep)) { 
bind-offset(&hdr-bnep: :offset); 

1 
) class-bnephdr; 

static class BNEPClass:public TclClass { 
public: 
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BNEPClass():TclClass("Mac/BNEP") {) 
TclObject *create(int, const char *const *) { 

return new BNEP(); 
1 

) class-bnep; 

.......................................................... 
// BridgeTable I/ 
.......................................................... 
int BridgeTable::lookup(int ad) 
{ 

BrTableEntry *wk = -table; 
while (wk) { 

if (wk->addr -- ad) { 
return wk->port; 

1 
wk = wk->next; 

1 

return -1 ; 
1 

void BridgeTable::dump() 
{ 

int cntr = 0; 

BrTableEntry *wk = -table; 
while (wk) { 

printf("%d:%d %f\n", wk->addr, wk->port, wk-Xs); 
cntr++; 
wk = wk->next; 

1 

printf("Tota1 %d entries.\n\nM, cntr); 
1 

void BridgeTable::add(int ad, int p) 
{ 

BrTableEntry *wk = -table; 
while (wk) { 

if (wk->addr == ad) { 
wk->port = p; 
wk->ts = Scheduler::instance().clock(); 
return; 

1 
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wk = new BrTableEntry(ad, p, (Scheduler::instance().clock())); 
wk->next = -table; 
- table = wk; 

1 

void BridgeTable::remove(int addr) 
{ 

if (!-table) ( 
return; 

1 

BrTableEntry *wk = -table; 
if Ctable->addr == addr) { 

table = table->next; - 
delete wk; 
return; 

I 

BrTableEntry *par = -table; 
wk = table->next; 
while<wk) { 

if (wk->addr == addr) ( 
par->next = wk->next; 
delete wk; 
return; 

1 
par = wk; 
wk = wk->next; 

1 
1 

/ I  purge any entry old than t 
void BridgeTable::remove(double t) 
{ 

if (!-table) ( 
return; 

1 

BrTableEntry *wk = -table; 
if Ctable->ts <= t) { 

table = table->next; - 
delete wk; 
return remove(t); I /  not likely to happen since header is newer. 
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BrTableEntry *par =-table; 
wk = -table->next; 
while (wk) ( 

if (wk->ts <= t) { 
par->next = wk->next; 
delete wk; 
wk = par->next; 

) else ( 
par = wk; 
wk = wk->next; 

I 
I 

I 

/ / / / / / / / / / / /N/// / / / / / l / / / / / / / / / / / / l / l / / / / / / / / / / / / l / / / / / / /  
I/ BNEP /I 
////////////////////////////////////////////////////////// 
int BNEP::trace-all-bnep- = 1 ; 

BNEP : :BNEP() 
: - timer(this), sendTimer(this), inqCallback(this) 
{ 

bind("onDemand-", &onDemandJ; 

rolemask - = ROLEMASK; 
role- = 0; 
numRole- = 0; 
chan = 0; - 

nb- = 0; 
nb-num = 0; 
waitForInq- = 0; 
numConnReq- = 0; 
schedsend = 0; 

onDemand- = 0; 
in makegico = 0; - - 

num-conn = 0; 
num-conn-max = 8; 
- conn = new Connection *[num-conn-max]; 
int i; 
for (i = 0; i < num-conn-max; i++) { 

- conn[i] = 0; 
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- current = 0; 
trace-me-bnep- = 0; 

1 

void BNEP::setup(bd-addr-t ad, LMP * I, L2CAP * 12, SDP * s, BTNode * node) 
{ 

bd-addr- = ad; 
Imp- = 1; 
12cap- = 12; 

- sdp- - s; 
11 12cap - ->bnep- =this; 
node - =node; 

1 

void BNEPSendTimer::handle(Event *) 
I 
- bnep->handle-send(); 

1 

void BNEPTimer::handle(Event *) 

void BNEPInqCallback::handle(Event *) 
{ 
- bnep->inq-complete(); 

1 

void BNEP::addSchedEntry(Piconet * pico, double len) 
{ 

if (!-current) { 
- current = new BNEPSchedEntry(pico, len); 
- numSchedEntry = I ; 
return; 

1 

BNEPSchedEntry *wk = -current; 
do { 

if (wk->pic0 = pico) { /I do an update for existing entry. 
wk->length = len; 
return; 

1 
) while ((wk = wk->next) != -current); 
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wk = new BNEPSchedEntry(pico, len); 

// add to the end 
wk->next = -current; 
wk->prev = -current->prev; 
- current->prev->next = wk; 
- current->prev = wk; 
- numSchedEntry++; 

void BNEP::removeSchedEntry(Piconet * pico) 
{ 

if (! - current) { 
return; 

I 
BNEPSchedEntry *wk = current; 
if Ccurrent->pic0 == pica) { 

if Ccurrent = current->next) { // singleton 
current = NULL; 

> else { 
wk->next->prev = wk->prey 
wk->prev->next = wk->next; 

current = -current->next; - 
I 
delete wk; 
- numSchedEntry--; 
return; 

I 
do { 

if (wk->pic0 = pico) { 
wk->next->prev = wk->prev; 
wk->prev->next = wk->next; 
delete wk; 
- numSchedEntry--; 
return; 

I 
} while ((wk = wk->next) != -current); 

I 

void BNEP::disableScan() 
{ 

if (! - current) { 
return; 

I 
BNEPSchedEntry *wk = -current; 
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do { 
if (!wk->pica) ( 

if (wk->length > 0) { 
wk->length '= -wk->length; 

I 
return; 

1 
) while ((wk = wk->next) != -current); 

1 

void BNEP::enableScan(double len) 
{ 

if (!-current) { 
addSchedEntry(NULL, len); 
return; 

1 

BNEPSchedEntry *wk = -current; 
do ( 

if (!wk->pica) ( 
wk->length = len; 
return; 

1 
) while ((wk = wk->next) != -current); 

addSchedEntry(NULL, len); 
1 

void BNEP::piconet-sched() 
{ 

int cntr = -numSchedEntry; 
Scheduler & s = Scheduler::instance(); 
if (!-current) ( 

return; 
1 
if (waitForInqJ { 

printf("waitFor1nq-h"); 
s.schedule(&-timer, &-ev, 30E-3); 
return; 

1 
current = -current->next; - 

printf("%d %f bnepsched p:%x %f\n", bd addr-, s.clock(), 
(unsigned int) -current->pica, -current->length); 

Imp - ->wakeupCcurrent->pica); 

- - -  
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while Ccurrent->length <= 0 && cntr-- > 0) { 11 mask out disabled 
- current = -current->next; 

1 

void BNEP::inq-complete() 
( 

if (nbJ ( 
Imp - ->destroyNeighborList(nbJ; 

1 
nb = Imp-->getNeighborList(&nb-num); 
wait~or1n~- = 0; 
make-connections(); 

1 

void BNEP::make-connections() 

Bd-info *wk = nb-; 
for (int i = 0; i < n; i++) { 

connect(wk->bd-addrJ; 
wk = wk->next-; 

1 
numConnReq- = n; 
schedsend = 0; 

1 

void BNEP::inq(int to, int num) 

Imp-->HC1-Inquiry(lmp ->giac-, to, num); 
imp-->addlnq~allback(&inq~allback); 
waitForInq- = I ; 

1 
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/I Note: 
// Well, BCAST packets probably is the first higher layer packet arrived, since 
I/ Routing Agent and LL module will send them first before a data packet can 
I/ be sent. (LL does not send ARP pkt any more.) 
N 
I/ Senarios for onDemand Scatternet formation: 
// 1. no port/conn. 
I/ a. check L2CAP and LMP to see if any link exists. If so, add 
N BNEP conn/port quickly. send the packet. 
I/ b. no Links. retrieve neighbor list. Check capability. If canBeMaster, 
// if has neighbor, page them, otherwise, inquiry and paging. 
I/ If canBePANU, page one of neighbor and do a role switch upon 
/I connection setup. 

void BNEP::bcast(Packet * p) 
{ 

int i; 

/I if num of bnep <= N do inqiry and paging 

if (onDemandJ { // try to format the scatternet on demand 
if (num-conn < 1) ( 

_q.enque(p); 
// -curPkt = p; 
makegiconet(); 
return; 

) else if (canBeMaster() && num-conn < 2) { 
_q.enque(p); 
I/ curPkt = p; 
mikejiconet(); 
return; 

1 
1 

printf("BNEP::bcast():num-conn:%d\n", num-conn); 

for (i = 0; i < num-conn - max; i++) ( 
if (!-conn[i]) { 

continue; 
1 
conn[i]- id->enque(p->copy()); - 

1 
Packet::free(p); 

1 
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#if 0 
N three cases: 1. bcast. 

if (role- == PANU) { 
if (-master-bd-addr) { 
} else if Condemand) { 

// inquiry and page 
} else { 

// drop the packet. 
1 

} else if (role- =NAP 11 role- == GN) ( 
// if no bridge, mac desn't match slaves. if -ondemand 
I1 inquiry and page 
I/ 
N 
if ((slot = findPort(mh->macDA())) >= 0) { 

conn[slot]->cid->enque(p); 
else{ /I MACBROADCAST 

bcast(p); 
1 

} else { /I BR 
if Cmaster) { 
1 

void BNEP::makeqiconet() 
( 

if Gin-makegico) { 
return; 

1 

- in-rnakegico = 1 ; 

I1 Check if Links exists. If so, make BNEP conn out of them. 
//ConnectionHandle *wk = 12cap-->-connhand; 
// while (wk) { 
1 )  

// grab neighbor list from LMP 
if (nbJ { 

Imp-->destroyNeighborList(nbJ; 
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if (isMaster()) { 
) else if (isPANU()) { 

if (isBridge()) { 
1 

1 

if (canBeMaster()) { 
if (nb-num < 2) { 

if (Imp-->suspendCurPiconetReq()) { 
inq(l, 4); 

) else { 
inq(ly4); 

1 
) else { 

make-connections(); 
1 
return; 

) else if (canBePANU()) { 
if (canBeBridge0) { 
1 
if (nb-num < 1) { 

if (Imp-->suspendCurPiconetReq()) { 
inq(43); 

) else ( 
inq(1, 3); 

1 
) else { 

make-connections(); 
1 
return; 

1 
1 

BNEP::Connection * BNEP::addConnection(L%CAPChannel * ch) 
{ 

Connection *c = new Connection(ch); 
if (num - conn = num-conn-max) { 

num-conn-max += num-conn-max; 
Connection **nc = new Connection *[num~conn~max]; 
memset(nc, 0, sizeof(Connection *) * num-conn-max); 
memcpy(nc, -corm, sizeof(Connection *) * num-conn); 
delete[]-conn; 
conn = nc; - 

1 
num-corm++; 
for (int i = 0; i < num-conn-max; i++) { 

- -  
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if Cconn[i] == 0) { 
- conn[i] = c; 
c->port = i; 
return c; 

1 
1 
return NULL; 

1 

void BNEP::removeConnection(L2CAPChannel * ch) 
{ 

Connection *c = lookupConnection(ch); 
W )  { 

removeConnection(c); 
1 

1 

void BNEP::removeConnection(BNEP::Connection * c) 
{ 

br table.remove(c->daddr); - - 

num-conn--; 
- conn[c->port] = 0; 
delete c; 

1 

void BNEP::portLearning(int fromPort, Packet * p) 
{ 

hdr-ip * ip = HDR-IP(p); 
// hdrcmn *ch = HDR CMN(p); 
//hdr - mac *mh = HDRMAC@); 

//FIXME:put source ip addr as an alternative ?? 
br-table.add(ip->saddr(), fromPort); 

7 basically, mac-addr == ip-addr in ns. 
N -br-table.add(mh->macSA(), fromPort); 

1 

int BNEP::findPortByIp(int ip) 
{ 

return -br-table.lookup(ip); 

int BNEP::findPort(int macDA) 
{ 

I/ only if macDA is the other end of the link 
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// otherwise use -br-table.lookup(macDA); 
Connection *conn = lookupConnection(macDA); 
if (conn) { 

return conn->port; 
} else { 

return - I  ; 
I 

I 

BNEP::Connection * BNEP::lookGpConnection(bd_addr-t addr) 

for (int i = 0; i < num conn-max; i++) { 
if Cconn[i] &&Iconn[i]->daddr = addr) { 

return -conn[i]; 
I 

I 
return NULL; 

BNEP::Connection * BNEP::lookupConnection(L2CAPChannel * ch) 
{ 

for (int i = 0; i < num-conn-max; i++) { 
if Cconn[i] && -conn[i]-%id == ch) { 

return - conn[i]; 
I 

I 
return NULL; 

I 

L2CAPChannel *BNEP::lookupChannel(bd-addr-t addr) 
{ 

for (int i = 0; i < num-conn-max; i++) { 
if Cconn[i] && -conn[i]- id->remote() = addr) { 

return -conn[i]->cid; 
I 

I 
return NULL; 

I 

void BNEP::handle - send() 
{ 

if (!-in-makeqico) { 
return; 
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void BNEP::-send() 
{ 

Packet *p; 
while ((p = -q.deque())) { 

hdr-ip * ip = HDR-IP(p); 

// hdr-cmn *ch = HDR-CMN(p); 
hdr-mac *mh = HDR-MAC(p); 
int slot, i; 

int da = ip->daddr(); 

if (mh->macDA() = (int) MAC-BROADCAST) { 
printf("BNEP::bcast():num-conn:%d\nv, num-conn); 

for (i = 0; i < num-conn; i++) { 
conn[i]->cid->enque(p->copy()); - 

I 
Packet:: free(p); 

) else if ((slot = findPort(da)) >= 0) { 
- conn[slot]->cid->enque(p); 

1 
1 

I 

void BNEP::schedule-send(int slots) 
{ 
Scheduler::instance().schedule(&sendTimer, &send-ev, 

BTSIotTime * slots); 
I 

/I Master has a scheduIer. The slave is controlled by the master. 
11 to: upper layer pkt arrives. 
/I t l :  M: idle-Hnq, Page, S:idle->Scan 
11 t2: M: page-complete, upper layer S: conn-ind, upper layer. 
I1 t3: M: master piconet. decide the S: Know when to return 
I1 intv, send to S: 
/I t4: M: send Data S: receive bcast DATA 
// put link on hold, Inq, page 

void BNEP::channel-setup-complete(L2CAPChannel * ch) 
{ 

Connection *c = lookupConnection(ch); 
if (!c) { 
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if (node-->scatFormator_) { 
node-->scatFormator-->connected(ch->remote()); 
// return; 

1 
// Add arp stuff to LL arp table, if it exists. 
N TODO 

/ I  Add routing table entry. 
N add SchedEntry. 
// TODO 

) else { 
becomePANU(); 

#if 0 
enableScan(30 * 1 E-3); 
addSchedEntry(c->cid~>connhand()->link->piconet, 1); 
if Cev.uid- <= 0) { 

piconet-sched(); 

if (!schedsend) { 
schedule-send(l2); 
schedsend = 1 ; 

1 
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if (c-> nscmd) { 
T ~ I  & tcl = Tcl::instance(); 
tcl.eval(c->nscmd); 
c->-nscmd = 0; 

1 

if (numConnReq- > 1) { 
numConnReq---; 

) else { 
- send(); 

1 
1 

void BNEP::disconnect(bd-addr-t addr, uchar reason) 
{ 

Connection *c = lookupConnection(addr); 
I /  assert(c && c->cid); 
if (c && c->cid) { 

c->cid->disconnect(reason); 
} else { 

ConnectionHandle *connh = 12cap-->lookupConnectionHandle(addr); 
if (connh && connh->than) { 

connh->than->disconnect(reason); 
) else if (connh) { 

Imp-->HCI-Disconnect(connh, reason); 
) 

1 

BNEP::Connection * BNEP::connect(bd-addr-t addr, hdr-bt::packet-type pt, 
hdr-bt::packet-type rpt, Queue * ifq) 

{ 
Connection *c; 
if ((c = lookupConnection(addr))) { 

return c; 
1 

#if 0 
if (pt < hdr bt::NotSpecified) { 

Imp - - T d e f a u l t ~ k t ~ ~ ~ e -  = pt; 
1 
if (rpt < hdr-bt::NotSpecified) { 

Imp - ->defaultRecvPktType- = rpt; 
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N In reality, this call will block until the L2CAP Channel 
I1 is established. The simulator returns as long as Page request 
11 is queued. So, we have a flag in Connection to indicate if the 
N underlying L2CAP Channel setup is completed. 
L2CAPChannel *ch = 12cap-->L2CA_ConnectReq(addr, PSMBNEP, ifq); 

if (pt < hdr-bt::NotSpecified) { N try to change pktType 
ch+changePktType(pt); 

1 
if (rpt < hdr-bt::NotSpecified) { 

ch->changeRecvPktType(rpt); 
1 

return c; 
1 

/ I  In current implentment, bridges are routers. Le., UCBT adopts a L3 
11 approach. When packet is passed down to BNEP. MacDA() should be the 
I/ othe end of BNEP link, unless it is a broadcasting pkt. Unlike 
/ I  specified in PAN profile, where an external interface may exist, 
/I a packet to an external interface should be directed to a different MAC 
/ I  by the routing agent (hier routing). 
/ I  1. If the packet is bcast, send it to each port. 
/I 2. Lookup outgoing port for the pkt by its MacDA(), and send to that port, 
/ I  3. otherwise, drop it if no port is found. 
void BNEP::sendDown(Packet * p, Handler * h) 
{ 

int slot; 
hdr-ip *ip = HDR-IP(p); 
hdr cmn *ch = HDR-CMN(p); 
hd rb t  *bh = HDR-BT(p); 
hdr mac *mh = HDR-MAC(p); 
hdrIbnep *bneph = HDR-BNEP(p); 
I /  hdr-tcp *tcp = HDR-TCP(p); 
double now = Scheduler::instance().clock(); 

bh->ts- = now; /I record time stamp, used by BTFCFS 
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node - ->recordSend(ch->size(), ip->daddr(), ip->dport(), &bh->hops_, 
&bh->flow-ts-, &bh->flow-seq-, &bh->flow-ts-lasthop-, 
&bh->flow-seq-lasthop-, ip->saddr() == bd 

if (trace-all-bnep- ( 1  trace-me-bnepJ { 
fprintf(BtStat::log-, BNEPPREFIXO 

"%d %d:%d->%d:%d %f %d %d %d %d %d\n", 
bd-addr-, ip->saddr(), ip->sport(), ip->daddr(), 
ip->dport(), now, 
ch->next-hop(), bh->hops-, bh->flow-seq-, ch->size(), 
bh->flow-seq-lasthop_); 

1 
#if 0 

// UCBT doesn't model ARP since bluetooth link are P to P and the 
N both ends of a link always know the MAC of each other. 
if (mh->hdr-type() == ETHERTYPE-ARP) { N Arp packet, handle to proxy. 

handle-arp(p); 
return; 

1 
#endif 

N int da = ip->daddr(); 
N Add BNEP header. 
if (mh->macDA() == (int) MAC-BROADCAST) { 

bneph->type = BNEP-COMPRESSED-ETHERNET-DEST - ONLY; 
bneph->u.ether.daddr = MACBROADCAST; 
ch->size() += bneph->hdr-len(); 
bcast(p); 
// } else if ((slot = findPort(mh->macDA())) >= 0) { 
// } else if ((slot = findPort(da)) >= 0) { 
// ) else if ((slot = findPortByIp(ip->daddr())) >= 0) { 

} else if ((slot = findPortByIp(ch->next-hop())) >= 0) { 
bneph->type = BNEP-COMPRESSED-ETHERNET; 
ch->size() += bneph->hdr-len(); 
conn[slot]->cid->enque(p); 

// A possible way to handle it is to bcast the pkt. However, 
// choose to drop it at this moment. 
/I bcast(p); 
if (node-->getRagent()) { 

node - ->getRagent()->I inkFai led(p); 

// drop@, "NoPort"); 
1 

- -  -- 
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1 
// receive packet from L2CAP CID. 
void BNEP::sendUp(Packet * p, ~ a n d l e r  * h) 
{ 

hdr-ip *ip = HDR-IP@); 
hdr-cmn *ch = HDR-CMN(p); 
hdr-bt *bh = HDR-BT(p); 
hdr-bnep *bneph = HDR-BNEP(p); 
// hdr-tcp *tcp = HDR-TCP(p); 

if (bneph->u.ether.prot-type == ETHER-PROT-SCAT-FORM) { 
node-->scatFormator-->recv(p, HDR-BT(p)->sender); 
return; 

1 

double now = Scheduler::instance().clock(); 
node - ->recordRecv(ch->size(), ip->daddr(), ip->dport(), 

bh->hops-, bh->flow-ts-, bh->flow-seq-, 
bh->flow-ts-lasthop-, bh->flow-seq-IasthopJ; 

ch->size() -= bneph->hdr - len(); 

#if 0 
N set mac frame paramter, we don't need to do so in the simulator. 
mh->hdr-type() = bneph->u.ether.prot-type; 
if (bneph->type = BNEP-COMPRESSED-ETHERNET) { 
} else if (bneph->type -- BNEP COMPRESSED-ETHERNET-DEST-ONLY) { 
} else if (bneph->type = BNEP~COMPRESSED-ETHERNET-SOURCE~ONLY) { 
) else if (bneph->type = BNEP-GENERAL-ETHERNET) { 
1 

#end i f 

if (trace-all-bnep- 11 trace-me-bnepJ { 
fprintf(BtStat::log-, BNEPPREFIXI 

"%d %d:%d->%d:%d %f %f %d %d %d %f %d\nU, 
bd-addr-, ip->saddr(), 
ip->sport(), ip->daddr(), ip->dport(), 
now, (now - bh->flow tsJ, bh->hops-, bh->flow-seq, 
ch->size(), (now - bh-;flow-ts-lasthop_), 
bh->flow-seq-lasthop); 

int fromPort = findPort(HDR - BT(p)->sender); 
portLeaming(fromPort, p); 
uptarget-->recv(p); 
return; 

1 
1 
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Abstract: Bluetooth has recently obtained an unprecedented success in gaining a wide industry support. The 
main aim of Bluetooth is to eliminate interconnection cables and to connect one device to another via a 
ur~ivcss:~l r:ldio link. First gcncration Bl~~ctooih cli~~scls are limited irl rmgc to :q~proxinialcly 10 nl iirltlcr tyliic:~l 
line-of-sight conditions. Future implementations will provide roughly ten times that range. In the present study, 
a performance assessment, pi-ocessing delay and tluoughput of IPSec over Bluetooth based on the 13luctooth 
Network Encapsulation Protocol (BNEP) operation sce~lario, is presented. In particular. the performance of tlu 
point-to- point link and the effectiveness of lPSec (authentication and enc~yption) algoritln~s in Bluetooth. 
~ o ~ c o v c <  sonic networking issues that may limit Bluetooth applicability in sonic cnvironmcnts will bc pointed 
out. 

I<cy words: Uluelootl~ IPSec, security, UNEP protocol, MD-5, SLIA-1, IXS, 313139 

INTRODUCTION 

Bluetooth was initially designed as an efficient cable 
replacement technology primarily for handheld devices. 
Indeed, all the devices belonging to one person can form 
a PAN (Personal Area Network) using Bluetooth. 
Bluetooth protocol stack is divided into five layers 
(Bluetooth, 2001 ; Saarinen, 2000): 

Bluetooth Core Protocols: including Baseband, LMP, 
L2CAP and SDP, comprise exclusively Bluetooth- 
specific protocols developed by the Bluetooth SIG 
tlmt are required by most of the Bluetooth devices. 
Cable Replacement Protocol: i.e., WCOMM protocol 
is based on the ETSI TS 07.10 that emulates serial line 
control and data signals over Bluetooth Baseband to 
provide transport capabilities for upper level services. 
Telephony Control Protocols: including TCS Binary 
and AT-commands are used to define the call control 
signaling, mobility management procedures and 
multiple usage models for the Bluetooth devices to 
establish the speech and data calls and provide FAX 
and modem serv ices. 
Adopted Protocols: including PPP, UDPITCPIIP, 
WAF, WAE, etc. Due to the open nature of the 
Bluetooth specification, additional protocols (e.g.. 
HTTP. FTP, etc.) can be accommodated in an 
interoperable fashion. 
Host Controller Interface (HCI): i.e., the boundary 
between hardware a n d  software provides a unifom~ 

command interface to access capabilities of hardware, 
e.g., Baseband controller, link manager, control and 
event registers. 

The layers of Cable Replacement, Telephony Control 
and Adopted Protocols form the application-oriented 
protocols that enable applications to run over the 
Bluetooth core protocols. 

The IPSec protocol suite is used to provide privacy 
and authentication services at the IP layer. It provides a 
set of security algorithms plus a general framework that 
allows a pair of communicating entities to use whichever 
algorithms provide secwity appropriate for the 
communication. 

The elements describing the set of IPSec protocols 
are divided into six groups: 

There is the main Archtecture, whch broadly contain 
the general concepts, security requirements, 
definitions and nlechanisms defining IPSec 
technology. 
There is the ESP Protocol and an AH Protocol. 
The Encryption Algorithm, describes how varrcxls 
encryption algorithms are used for ESP. 
The Authentication Algorithm describes how various 
authentication algorithms are used for both ESP 
and AH. 
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The Key Management. 
The DO1 contains values needed for the other 
elements to relate to each other. This includes for 
example encryption algorithms, authentication 
algorithms and operational parameters such as key 
lifetimes. 

IP AUTI-IENTICATION HEADER (AH) 

The IP Authentication Header (AH) is used to 
provide connectionless integrity and data origin 
authentication for IP datagram's and to provide protection 
against replays. 

AH may be employed in two ways: transport mode or 
tunnel mode. The former mode is applicable only to host 
implementations and provides protection for upper layer 
protocols. Tunncl inodc limy bc cmploycd in cithcr hosts 
or secwity gateways. 

The first step of integrity protection is to create a 
has11 by using a kcyed hash algorihn, also lalown as a 
Message Authentication Code (MAC) algoritlm. A 
standard hash algorithm generates a hash based on a 
message, while a keyed hash algorithm creates a hash 
based on both a message and a secret key shared by tlle 
two endpoints. The hash is added to the packet and the 
packet is sent to the recipient. The recipient can then 
regenerate the hash using the shared key and confirm that 
the two hashes match, which provides integrity protection 
for the packet. IPSec uses Hash Message Authentication 
Code (HMAC) algorithms, which perform two keyed 
hashes. Examples of keyed hash algorithms are HMAC- 
MD5 and HMAC-SHA-1. Another common MAC 
algorihn is AES Cipher Block Chaining MAC-AES- 
XCBC-MAC-%- (Kent and Atkinson, 2004). 

ENCAPSULATING SECURITY PAYLOAD(ESP) 

The Encapsulating Security Payload (ESP) header is 
designed to provide a mix of security services in IPv4 and 
IPv6. ESP may be applied alone, in combination with the 
IP Authentication Header (AH), or in a nested fashion 
(Kent and Atkinson, 2004b). 

ESP is used to provide confidentiality, data origin 
authentication, connectionless integrity, an anti-replay 
service and limited traffic flow confidentiality. The set of 
services provided depends on options selected at the time 
of Security Association establishment and on the 
placement of the implementation. 

ESP uses symmetric cryptography to provide 
encryption for IPSec packets. Accordingly, both 
endpoints of an IPSec connection protected by ESP 
encryption must use the same key to encrypt and decrypt 

the packets. When an endpoint encrypts data, it divides 
the data into small blocks and then performs multiple sets 
of cryptographic operations using the data blocks and 
key Encryption algorithms that work in this way are 
known as block cipher algorithms. When the other 
endpoint receives the encrypted data, it performs 
deciyption using the same key and a similar process, but 
with the steps reversed and the cryptographic operations 
altered. Examples of encryption algorithms used by ESP 
are AES-CBChaining, AES Counter Mode, DES and 3DES 
(Kent and Atkinson, 2004b). 

IPSec O m R  BLUETOOTH 

The proposed idea is that authentication and 
encryption in Bluetooth to be provided on IP or 
application lcvcl by using IPScc according to RFC 2401 
(1998) at the IP level. A protocol like IPSec is most 
suitable to secure end-to-end IP services like Virtual 
Privatc Network (Vl'N) sciviccu. IPScc call be r w d  for 
any IP connection indepcndent of the particular access 
method. Here only LAN access using the Bluetooth 
wireless tec1:nology is considered. It is important to 
notice that the use of link level security and VPN 
solutions does not exclude each other but rather 
complement each other. 

IPSec, however, can protect any protocol iunning 
above IP and any medium which IP runs over. More to the 
point it can protect a mixture of application protocols 
runnmg over a complex combination of media. T h s  is the 
normal situation for Internet communication; IPSec is the 
only general solution. 

The problems raises is that Bluetooth enabled devices 
will have the ability to form networks and exchange 

BIiEP I SDP v 
I I 

Fig. 1: BNEP Stack 
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4 bytes At leaat 1 byte 0-lSOO/l504 

Fig. 2: BNEP after applying AH 

Fig. 3: BNEP after applying ESP 

I.2 CAP 
h d e r  

information. For these devices to interoperate and 
exchange information, a common packet format needs to 
be defined to encapsulate layer 3 network protocols. 

Due to that, a specific packet format used to transport 
common networking protocols over the Bluetooth media 
(RFC 894,1996) (RFC 22251 998) (RFC2734,1999). The 
packet fonnat is based on EthemetDIX Framing as 
defined by IEEE 802.3 according to Ether Typ (2006) 
(Anonymous, 1980) (Inlernat Enigeering Task Force, 1 996; 
1998; 1999). 

The functional requirement for Bluetooth networking 
encapsulation protocol includes the following according 
to BNEP specification (2002): 

Suppull for common rictworking protocols such as 
IPv4, IPv6, IPX and other existing or emerging 
networking protocols. 
Low Overhead -- The encapsulation fonnat S W L  bc 
bandwidth efficient. 

BENEP 
header 

The following points illustrate the BNEP header 
fonnat. 

Bnep type: Seven bit Bluetooth Network Encapsulation 
Protocol. 

Type value identifies the type of BNEP header 
contained in this packet (BNEP specification, 2002). 

NmIP 
hdr 

Extension flag (E): One bit extension flag that indicates if 
one or more exlension headers lollow the BNEP Header 
before the data payload if the data payload exists. If the 
extension flag is equal to 0x1 then one or more extension 
headcrs follows the BNEP header. If the extension flag is 
equal to Ox0 then the BNEP payload follows the BNEP 
header (BNEP specification, 2002). 

BNEP packet: Based on the BNEP Type (BNEP 
specification, 2002). 

Bluetooth Network Encapsulating Protocol (BNEP) 
accommodates IP communication by transporting IP 
packets between two Ethernet-based link layer end-points 
on an IP segment. It encapsulates the IP packets in BNEP 
headers, letting the source and destination addresses 
reflect the Bluetooth end-points and setting the 6-bit 
Networking Protocol Type field to code for an IP packet 
in the payload. BNEP finally encapsulates the BNEP 
packet in an L2CAP header and sends it over the L2CAP 
connection (Fig. 1 ). 

Figure 2 and 3 show BNEP with an IPv4 packet 
payload sent using L2CAP after positioning AH header 
and ESP hcadcr for tunncl modcs. 

ESP 
hcadcr 

CRYPTANALYSIS 

In Bluetooth Encryption,several atbcks and allen~pts 
at cryptanalysis of EO (Lu arid Vaudenay, 2004) and the 
Bluetooth protocol have been made and a number o l  
vulnerabilities have been found. In 1999, Miia Hermelin 
and Kaisa Nyberg showed that EO could be broken in 2m 
operations (instead of 212'), if a 2m bits output is known. 
This type of attack was subsequently improved by 
Kishan Chand Gupta and Palash Sarkar. scott fluhrer, 
found a theoretical attack with a 2" operations 
precalculation and a key search complexity of about 265 
operations. He deduced that the mavimal security of EO is 
equivalent to that provided by 65-bit keys and that longer 
keys do not improve security. Fluluer's attack is an 
improvement upon earlier work by golic, bagini and 
morgani, who devised a 2'' operations attack on EO 

Lu and Vaudenay (2005). Published a cryptanalysis of 
EO based on a conditional correlation attack. Their best 
result required the first 24 bits of 2*18 frames and 2'' 

WIP TCP 
hcedcr 

TCP 
data 

IISP 
lrailer 

ESP 
AUTH 
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computations to recover the key. The authors assert that 
"this is clearly the fastest and only practical known- 
plaintext allack on Bluetooth encrytion comparc with all 
existing attacks (Lu and Vaudenay, 2004). In the 
authentication scheme of Bluetooth there seems to be 
some weaknesses. 

SAFER+ according to NIST (1 998) was submitted as 
a candidate for the Advanced Encryption Standard and 
has a block size of 128 bits. The cipher was not selected 
as a finalist. SAFER+ was included in the Bluetooth 
standard as an algorithm for authentication and key 
generation. 

Its found that in SAFER+1192 and SAFER+/256, the 
key schedules do a poor job of getting the whole key 
involved quickly in the encryption process. SAFER+/192 
takes five (of twelve) rounds to get the whole key 
involved in the encryption process; SAFER+/256 takes 
nine (of sixteen) rounds to do so. This contrasts with 
SAFER+/l28, where every round is affected by every bit 
of key. 

Due to this slow key diffusion, a meet-in-the-middle 
attack was found on SAFER+/256. This attack requires 
work equivalent to about zz4' SAFER+/256 encryptions 
and about 12  *224 bytes of memory. Also due to this slow 
key diffusion, a related-key attack was found on 
SAFER+/256. This attack requires very little memory, 3 * 
2" chosen plaintexts encrypted under two different keys 
with a chosen XOR relationship and work approximately 
equivalent to 2200 SAFER+/256 encryptions (Kelsey et al., 
1 999). 

SYSTEM DESIGN 

The simulation of the IPSec protocols in NS2 was 
based on t l~e existing implementation of wircless network 

NS-2 (The Network Simulator) version 2 and UCBT 
(Bluetooth extension for NS2) (Fig. 4). UCBT implements 
a Sdl Bluc~ooth slack, inclutli~~g Baseband, I M P ,  L2CAP. 
BNEP layers (UCBT, 2004). 

Among the most important design principles for BT 
networking are: 

Providing for flexibility in usage as a universal short- 
range low-cost low-power technology in a variety of 
different scenarios. 
Ensuring that BT devices made by clifferenl 
manufacturers can inter-operate. 

Following the first principle, BT networking topology 
is built upon the flexiblc concepts of the scatternet and 
the piconet. A piconet is an ad hoc collection of BT 
devices, where one of the devices takes the role of the 
master of the piconet and the other devices take the role 
of the slaves. Since each node could be a slave on 
multiple piconets, a larger network structure may be 
formed out of multiple piconets. This larger structure is 
the scatternet. 

Following the second design principle, a BT protocol 
stack has been defined (Fig. 5). Usage profiles have also 
been defined for different usage scenarios, such as LAN 
access, to allow devices from different manufacturers to 
inter-operate. The profiles are collections of messages, 
procedures, features and parameter settings that must be 
used in order to provide specific services or usage 
scenarios for BT (Bluetooth, 2001). The use of profiles 
somewhat limits the flexibility in terms of usage of higher- 
layer protocols, network topologies and usage scenarios 
to what is contained in the profiles. 

This is a tradeoff between the two principles 
discuqsed. In an cffort to make use of existing protocols. 

Fig. 4: IPSec architecture in Bluetooth 

4 
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ESP Euumub 

Fig. 5:  IPSec system with dependencies 

especially those with large installed bases like PPP, BT 
gives up some efficiency and flexibility that it could have 
had if more BT specific protocols had been defined. This 
is a second tradeoff in BT networking design. With future 
definitions of additional profiles (and maybe additional 
protocols), such constraints on BT usage might be 
relaxed. 

QoS support: BT provides some support for bandwidth 
allocation and latency control. FEC (Forward Error 
Correction) and retransmission mechanisms ensure low 
error rates at the expense of more overhead and the 
protocols ensure in-sequence delivery of packets so that 
reliable, orderly delive~y of packets is expected. Link delay 
and delay jitter are also not expected to be large, once a 
link has been establishcd. 

Mobility support: Partial support for handoff is provided 
by BT. the fact that a device can be a member of multiple 
piconets at the sarnc time means that it could in theory 
perform soft handoffs. However, it is up to the 
applications to include other necessary features, e.g., the 
bridging, switching/routing and buffering inechanisms in 
the backbone. 

The IPSec Module is the central part (Fig. 5). which 
does the whole standard conform processing of the 
incoming and outgoing IP traffic. It u3es a set of data 
bases (SPD and SAD) to determine the flow of the IP 
packets. The main processing is then done in the AII and 
ESP module. A small cryptographic librrary contains all the 
functionality used to encrypt, decrypt or to authenticate 
the packets. 

Since there are many security protocols in terms of 
algorithms in IPSec, we decided on: 

HMAC-MD5 and HMAC-SHAI to provide origin 
authentication and integrity for IP packets. MD5 
should be preferred because its performance is much 
bettcr than that of SHAl (Chaudluy et al., 2002). 
In ESP implementation we support both encryption 
and authentication. Encryption is done by the widely 
used 3DES algorithm, which is applied in CBC mode. 
Purc DES is also implemented. For authentication we 
use HASH-MAC MD5. 

We needed to identify the different modules out of 
the IPSec architecture so that we were able to characterize 
the following attributes of the modules: 
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Priority 
Dependencies 
Performance sensibility 

An important part of our work was to find a suitable 
IP-stack ar~d Bluetooth stack that is able to carry our 
IPSec implementation. The Network Sunulator NS-2 
TCPLP Stack has all the desired features: modular design, 
activc community and free BSD-style license. As well as 
UCBT which has all the desired features needed for 
Bluetooth stack. 

From Fig. 5, any inbound data is forwarded to IPSec 
input function. Depending on the protocol field in the 
packet header, the entire packet is forwarded to the IP 
protocol stack. If the packet could be identified as 
belonging to the suit of IPSec protocols, it is transferred 
to the IPSec library. Pure IPSec specific processing, such 
as applying ESP de-/encapsulation or AH de- 
/encapsulation is done within the IPSec library. 

After these steps, the original IP packet is rebuilt by 
applyi~~g ncw offscts and packct lcngth to thc pbuf 
str-ucturc. Then thc clcar-tcxt packet is passed up to thc 
TCPlIP stack in NS-2. 

For outbound packets, all IP based protocols forward 
Ihcir tlaln to TPScc output. function. TTcrc I.lic dccision is 
madc whcther thc packet nceds IPSec processing or not. 
Dcpcnding on thc appropriate Security Association, AH 
or ESP h~nctionality will cncapsulatc thc packct. Aftcr 
thctcc skps, lllc pmkct is lbrwardcd to tlic L3NW Class 01' 
Bluetooth Stack and sent over to the receiver. 

Thc Security Policy Database (SPD) can bc accessed 
L ~ . O I I I  IIw 1I'Scc lr~odulc as sl~own in Fig. 5. This tlatahlsc 
contains 'a11 rules required to decide how to handle 
packcts, which have security associations but also how 
to handk non-IP traffic. Therc are scveral possibilities: 
any non-IPSec packet can be forwarded to the default 
protocol handler (in order for connections from non-IPSec 
nodes are accepted) or any non-IPSec packet can be 
diopped immediately without wasting CPU time on further 
analysis. 

BASIC CONCEPT OF SECURITY ASSOCIATION 

TPSec nceds the Security Policy Database and the 
Security Association Database to process packets 
correctly. 

The SPD defines the packets, to which IPSec needs to 
be applied. To guarantee that each packet is processed 
the right way, each IP packet leaving or entering the 
system must be checked against the SPD. We call this 
action the SPD lookup. This lookup does nothing except 
compare the selectors from the database with the ones 

from the packet. The SPD lookup delivers back the 
following results: 

BYPASS: This packet is forwarded directly to 
Bluetooth layers without applying IPSec. 
DISCARD: This packet is discarded, it will be 
dropped. 
APPLY: This packet requires IPSec processing 

If the result of a SPD lookup is BYPASS, the 
unmodified packet is forwarded to the Bluetooth layers. 
This is particularly useful if certain protocols such as 
ICMP shouldnot be protected by IPSec or communication 
with non-IPSec hosts must be coi~cuurently possible. 

The DISCARD rule is returned when the intention is 
not to process this packct. If this is the case, the packet 
will be dropped. This means that we simply delete the 
packet instead of passing it to Bluetooth layers. It is 
possible to use this feature to build a primitive firewall. 

IPSec processing is only needed if the result of the 
SPD lookup is APPLY. Whenever a packet matches an 
SPD ci~try wliosc policy says APPLY, thcn thcrc must 
also bc an SA that dcscribes exactly how the packct has 
to be processed. 

A successful SPD lookup provides us with a pointer 
to t l~e  SP ovcr which we car1 access the SA usirg 2% 

pointcr storccl Iri tile S1' structure. 'l'lic pcket can be 
processed only after Security Association parameters are 
successfully negotiatcd. 

WIICII :I pckol. Ic?;~vos 'I'CI'/II' slr~ck. llic v c ~ y  first 
step is an SPD lookup, a determination of how the packet 
must be processed. When the policy says APPLY, the 
TPScc proccss contiuucs. Othcnvise the function passes 
the packet to the BluetooLh stack or retuns to thc 'l'Cl'/Il' 
stack without doing anything.After the new IPSec packet 
has bocn built it. must In: scnt out on tl~c Bluictooth stack 
as shown in Fig. 6. 

I pGq 
Fig. 6: Outbound processing 
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Pig. 7: Inbound processing 

From Fig. 7, inbound processing is somewhat different 
because an incoming IPSec packet already has an SPI, 
which allows a direct lookup in the SAD table. The reason 
for using the SPI is straightforward. The incoming IPSec 
packet may be encrypted and so the SPD lookup, wllic11 
must bc pcrfornled on the inner packet data, ca~mot Ix 
performed. The SAD lookup would directly give h c k  an 
SA if one was found If no SA is found then the packet 
must be discarded. 

With the valid SA we are now able to process the 
packet properly. In inbound processing dus corresponds 
to decapsulation in ESP or integrity checking in AH. After 
the IPSec packet has been decapsulated, it can be passed 
on to the TCPAP. 

AH PROCESSING 

Authentication is done by the well-known HASH- 
MAC4 MD5 and HASH-MAC SHAl algorithn~s. These 
are the algorithms requested by the standard. MD5 
should be preferred because its perfoniiancc is much 
better than that of SHA1. 

If one considers that ESP also supports integrity and 
authentication, one may dunk that there is no need for 
AH. This is not true because the authentication and 
integrity check of AH is a bit more sophisticated. 
Authentication in AH covers more ficlds of the packet 
than ESP does. 
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AH processing can be split up into inbound and 
outbound processing. 

AH inbound processing itself described step-by-step 

In order to check the integrity and the authentication 
of the packet, the ICV must be calculated. The ICV 
calculation in AH also covers the outer IP header. In 
this header there are so-called mutable fields, which 
change their value while they are sent across the 
nctwork. Thosc fields (Typc of Sctvice, Offset, TTL 
i u ~ t l  C ~ I C C ~ ~ I I I I I )  I I I I I S I  I'irsl Iw scl lo zcro. '1'110 I C X  
I'iclcls in Ilw Al-l I~cadcr I I I U S ~  be bilcketl 111) tuul 
zeroed, so that latcr comparing remains possible. It 
becomes clear that AH authentication also covers the 
source and destination address of the outer IP packet. 
The packet is now ready to be verified and the 
integrity check value can be calculated over the 
whole packet. The SA determines the appropriate 
algorillml and key. 
The calculated ICV can be compared with the one 
saved in the first step. Processing continues only if 
the calculated ICV matches the original one. 
The authentication of the packet is now verified and 
the anti-replay check can be performed. If it is 
successful, the sequence number (stored in the SA) 
is incremented. Finally, the offset and packet length 
are passed back. 

widely used 3DES algorithm, which is applied in CBC 
mode. Pure DES is also implemented. For authentication 
we use HASH-MAC MD5 and HASH-MAC SHAl . 

ESP processing can be split up into inbound and 
outbound processing. 
ESP inbound it self described step-by-step: 

A check in the SA stmcture indicates whether 
authentication needs to be checked or not. If an 
authcntication algorithm is specified within the SA, 
Il~c IC:V 11111~1  1 ~ :  C H I C I I I ~ I I C I ~ I  H I I ~  C O I I I ~ I I I I U ~  will1 1 1 1 ~  
o11c slorctl ill d ~ c  u r ~ t l  of llic liSI' l ~ c k c t .  'llw ICV is 
calculated ovcr the whole ESP l~eader. IV mid 
encrypted payload. Processing continues only when 
the packets ICV matches our recalculated one. 
In the next step we have to decrypt the packet. The 
decryption algorithm and the secret key can be 
accessed over the SA. Because the packet was 
cucryptcd in CBC-mode, the IV must be copied out of 
the ESP packet. Thc IV is stored between ESP header 
and encrypted payload. The decryption happens in- 
place, so no copying must be done. 
Before everything is done the sequence number 
counter in the SA is incremented and optionally the 
same is done with the anti-replay window. To let the 
caller of the ESP function know about the location 
and the size of the extracted IP packet, the offset and 
the packet length are giving back. 

AH outbound processing described step-by-step: 
ESP outbound processing itself described step-by-step: 

First of all a new AH header is placed in front of the 
IP packet, leaving a gap between the inner IP header 
and the AH header. This gap is later used to place the 
ICV. The AH header fields: next header, length, SPI 
and sequence number are added. 
After the outer IP header has been constructed, only 
the source and destination address, version, header 
length and total length are set. The other fields are set 
to zero as a preparation for the ICV calculation. 
Padding is not required because the packet is already 
aligned. 
The integrity check value can now be calculated and 
placed into the gab between AH header and inner IP 
header. 
After the ICV has been calculated, the zeroed fields 
are now filled with the appropriate values. 
Finally, the offset and the packet length are passed 
back. 

ESP PROCESSING 

In our ESP unplenlenlation we suppol-t both 
encryption and authentication. Encryption is done by the 

The first step of encapsulation is to test whether the 
decremented TTL field of the IP header reaches zero. 
If this is the case, the packet must be discarded in 
order to prevent endless straying of packets. 
Then we have to calculate how much padding must 
be added to fulfill the requirements of the encryption 
algorithm. The right amount of padding bytes is 
added at the end of the payload. The fields: padding 
length and next header are appended right after the 
padding. 
Encryption is performed according to the settings in 
the SA. After encryption, the used IV is copied in 
front of the encrypted payload. 
ESP header is added in front of the IV. inserted are a 
incremented sequence number and the SPI taken out 
of the SA. 
The SA must be checked to see if authentication is 
enabled. If this is the case, then the ICV must be 
calculated according the SA's settings. The ICV, 
which is calculated the ESP header, the IV and (IE 

enc~yptud payload, is copied at (IIC elid of (Im 
payload. 
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Outer IP header can be constructed using the tunnels 
source and destination address given as input 
arguments to the function. The TOS field is copied 
from the inner IP header. Finally, the offset and the 
length are passed back, so that the caller can update 
its data stnlcture, where the packet is stored. 

RESULTS AND PERFORMANCE ANALYSIS 

IPSec over Bluetooth scenario was simulated with a 
constant FTP source on top of TCP with a packet size of 
2000 bytes between two nodes (node 0 and node I). 

Table 1 show the Simulations of the system design 
described in section 5 using different algorithms using the 
hand-off rate of 60 seconds. HMAC- MD5 has shown to 
have the highest No of Bytes sent where 3DES HMAC- 
MDS has lowest. 

The difference in simulations' time varies from one 
algorithm to another due to the delay required for the 
authentication or encryption procedure. As delay 
co~~su~iics ~ ~ i o r o  time, it nffccts the No. of p;~ckels 
gcneratcd. As shown ill Table 1, I-WAC-MDS algoritlun 
has the lowest delay but the hghest No. of packets 
generated, where 3DES HMAC-MDS algorithm has the 
highesl delay but the lowest No. of packets generated. 

It's also noticed that the average packet size is not 
fixed due to different types of packets (TCP, 
Authenticated packets, Encrypted Packets, ACK, etc.. .,) 
sent between nodes where each has a different size. 

Authenticated packets ( M C - M D S  and HMAC 
SHAl) almost have the same average packet size while 
3DES HMAC-MDS has higher average packet size in 
encryption (ESP). 

In order to study the Performance of IPSec over 
Bluetoo& we measured the cumulative sum of packets in 
each of the cases, as well as the throughput and end 2 
end delay imposed by the security protocols IPSec. 

Figure 8, depicts the decrement of the TCP packets 
sequence in different scenarios (No IPSec, MD5, SHAl, 
DES-MDS and 3DES-MDS). The reason behind this 
decrease in No. of packets is the Authentication and 
Encryphon Procedure which includes SPD lookup when 
the result is DISCARD. This means that we simply delete 

the packet instead of passing it to Bluetooth layers, so the 
packet is lost thus more delay is consumed and wasted 
The Fig. 8a and b scenarios showed that number of 
packets is decreasing in authentication and encryption 
compared to Bluetooth with no IPSec. As it is seen 
HMAC-MDS performs better than HMAC-SHAI while 
sending and receiving packets. As well as DES-MDS 
performs better than 3DES-MDS. 

Plain Bluetooth packets and HMAC-MDS share 
almost the same performance at trade-off rate 7,  but later 
on HMAC-MDS start losing packets and decrements 
more. 

On the other side, SHAI , DES-MDS and 3DES-MDS 
share almost the same performance at trade-off rate 12 
where SHAl starts catching up with MDS, while DES- 
MD5 and 3DES-MDS remain sharing it till trade-off rate 18. 

Throughput is defined as the percentage of packets 
that experience a Bit Error Probability (BEP) that is less 
hm a maximum allowableBEP, BEPth. The I3EPth is setto 
a value of 0.1 % (or lo-'), i.e., a packet is considered 
reliable as long as its BEP is not greater than BEPth. The 
qu~~lity I11c 1i11k viwics rrom 0110 13'1' w ~ i t  10 I I I C  licst 
within the scatternet. It is highly dependent on the 
relative spacing of the BT devices within the scatternet. 
Hence, the percentage of reliable packets has to be 
determined by collecting the statistic over lllany 
realizations of the scatternet The conservative measure of 
10th percentile is used to represent the throughput 
performance of the BT network. 

The throughput results are shown in Fig. 9. There is 
a significant difference between the simulated scenarios. 
As we can see, the throughput in HMAC-MDS and 
HMAC-SHAI is not the same due to a better performance 
from HMAC-MDS. In respect to the encryption, DES- 
MD5 has a better throughput U r n  3DES-MDS. 

In sending packets, plain Bluetooth packets 
throughput remain at a rate of 78, HMAC-MDS 
throughput is at around 50 while HMAC-SHAl at a rate 
of 40. For encryption algorithms, throughput rate is 15 for 
DES-MDS and 8 for 3DES-MDS. 

These rates decrease while receiving packets; they 
become around 37 for plain Bluetooth packets, 28 for 
HMAC-MDS, 20 for HMAC-SHA1,6 for DES-MDS and 2 
for 3DES-MDS. 

Table 1 : Retreived initial results 
Parameten No. IPSec HMAC MD5 HMAC SHAl DES HMAC- MD5 3DES HMAC- MD5 
Simulation start time 1.30513601 1.4471 1.46 1.5374 1.6665 
Simulation end time 60.08551 301 60.073 59.6643 59.9108 60.0448 
Sim~~lation length (Sec) 58.7880377 58.62592863 58.20427423 58.37336781 58.37830156 
No of pamated packets 4500 3501 24439 658 23 7 
No of lost packets 2260 1753 1222 330 119 
No of received packets 2240 1648 1217 3 28 118 
Avg. packet size 1051.7595 1066.1472 1066.2114 1074.5023 1069.6913 
No of sent bytes 4698000 3700136 2578664 701480 25 1668 
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Fig. En: Performance of Cumulative sum of numbers of 
sent packets 

Fig. 8b: Performance of Cumulative sum of numbers of 
received packets 

Fig. 9 (a): Throughput of sending packets 

Fig. 9b: Throughput of receiving packets 
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Fig. lOa: Throughputs of senidng bits vs. average 
simulation end 2 end delay 

Fig. lob: Throughputs of receiving bits vs. average 
simulation end 2 end delay 

Contrary to our expectations, the throughput in 
Bluetooth environment is driven by the effect o f  

The successive saitliilg of coiist;~nl piickets, whetl~cr 
its ACK packet where throughputs increases or 
encrypted and authenticated packets in which 
throughput decreases. 
The erratic behavior of delay imposed by the 
encryption and decryption of the data. 
The erratic behavior of the Bluetooth wireless link, 
Wireless links are characterized by higher bit error 
rates and this causes inefficiencies in the operation of 
TCP. Essentially, any perceived packet loss 
(occurring because of error or buffer overflow) is  
construed by a TCP sender as occurring due to buffer 
overflow., The response of TCP to all such events is 
to invoke its congestion control procedures, resulting 
in unnecessary window reduction, which causes a 
drop in the TCP throughput. Note, though, that some 
of the packet losses occur due to corrupted packets 
being dropped by the link layer and invoking the 
congestion avoidance procedures when these events 
occur is  not desirable. 
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Figure 10 show a comparison of Throughputs vs. 
average simulation end 2 end delay. There is a big and 
noticed difference of end 2 end delays while sending the 
bits and rise in the throughput. While in receiving bits, 
both factors also affect the bits transmission. 

The main difference noticed raises at throughput of 
sending and receiving packets, while end 2 end &lay 
almost equal in case of Authentication algorithms, it's also 
the same as for Encryption algorithms. 

CONCLUSION 

This study proposed a new Bluetooth security 
scheme, which allows ad-hoc (PAN) based on Bluetooth 
technology to communicate with other devices in f i l l  
secure channel includes authentication and encryption, 
unlike for the present schemes with weak security 
(EO and El) .  

In addition, as shown in Fig. 11, the throughput in 
sending packets is reduced by almost 35-50% for 
authentication and 80-90% for encryption compared with 
the cases where P S e c  was not used. While in receiving 
packets, throughput is reduced by almost 30-45% for 
authentication and 80-95% for Encryption. 

Fig. 1la:Packet size vs. average throughput of sending 
packets 

Fig. l l b :  Packet size vs. average throughput of receiving 
packets 

The throughput in Bluetooth environment is  driven 
by the effect of the successive sending of constant 
packets, the erratic behavior of delay imposed by the 
encryption and decryption of the data, the erratic 
behavior of Ule Bluetooth wireless link and Wireless links 
are characterized by higher bit error rates and Ulis causes 
inefficiencies in Ule operation of TCP. 

We have not addressed the issues related to 
Bluetooth radio layer and polling algorithm at the 
baseband, where problems such as noise, interference and 
packet loss, may have a significant impact on performance 
(Misic and Jelena, 2003). 

Over all and according to the results in the previous 
section, it has been proved that HMAC-MD5 performance 
better than HMAC-SHA1 for authentication and DESI 
HMAC-MD5 reliable than 3DES/ HMAC-MD5 for 
Encryption. 
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