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Complex Network Topology Learning Using ANN Abstrdct

Abstract

This Thesis presents an implementation of SSQ-Routing algorithm an algorithm vba-sed
on Q-routing and artificial neural network (ANN) to solve the shortest path problem for
routing in networks. The SSQ-Routing uses the Q-routing algorithm, a network routing
algorithm based on Q-learning, a method from the emerging field of reinforcement
learning. In this framework, the routing information at individual nodes is maintained as
Q-value estimates of how long it will take to send a packet to any particular destination
via each of the node's neighbors. These Q-values are updated through exploration as the
packets are transmitted. Neural networks have been used with some success to perform
Q-learning, and would seem to be a possible method to allow Q-routing to scale well
beyond its initial table-based implementation. This thesis attempts to apply a neural
network as a function approximator in an online reinforcement learning task, a field
~ where neural hetworks, have been used with varying degreés of success in the past. A
discussion of the factors involved in neural network function approximation in
reinforcement learning is provided. The main contribution of this work is the faster

adaptation and improved quality of routing policies.
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Chapter 1. ' * Introduction

1. Introduction

Computer networks play an important and ever increasing role in the modern world. The
development of the Internet, the corporate intranet, and mobile telephony have extended
the reach of network connectivity to places that ten years ago would have beeﬁ
unthinkable. The result of these trends is that the performance of network hardware and
software is being tested by the increasing loaﬂ placed upon them, and new ways have to
be found to solve the problems. Modern networking applications are often based upon
frequently changing ad hoc network topologies and require that the network protocols
running these applications are able to withstand outages of parts of the network.

In this Thesis a routing algorithm that attempts to solve some of the problems faced in

dynamic, unreliable, and congested networks is suggested.

1.1 Communication Networks

In a communication network, information is transferred from one node to another as data
packets. The process of sending.a packet from its source node °s’ to its destination hodg
‘d’ is referred to as packet routing. Normally it takes multiple “hops” to transfer a packet
from its source to destination node. On its way, the packet spends some time waiting in
the queues of intermediate nodes while they are busy processing the packets that came
earlier. Thus the delivery time of the packet, defined as the time it takes for the packet to
reach its destination, depends mainly on the total time it has to spend in the queues of the
intermediate nodes.

Normally, there are multiple routes that a packet could take, which means that the choice
~of the route is crucial to the delivery time of the packet for any source, destination(s,d) |
pair. If there was a g]ob:;.ll observer with current information about the quéu_es> of all nodes
in the network, it would be possible to make optimal routing decisions: always send the
packet through the route that has the shortest delivery time at the moment. In the real
world, such complete, global information is not available, and the performance of the
global observer has an upper bound on actual performance. Instead, the task of making

routing decisions is shared by all the nodes, each using only local information. Thus, a

Complex Network Topology Learning Using ANN 1



Chapter 1. ' Introduction

routing policy is a collection of local decisions at the individual nodes. When a node x
receives a packet P(d) destined for node d, it has to choose one of its neighboring nodes y
such that the packet reaches its destination as quickly as possible.

The simplest such policy is the shortest-path algorithm, which always routes packets
through the path with .the minimum number of hops. This policy is not always good
because some intermediate nodes, falling in a popular route, might have large queues. In
such cases it would be better to send the packet through another route that may be longer
in terms of hops but results in shorter delivery time. Hence as the traffic builds up at
some popular routes, alternative routes must be chosen to keep the average packet
delivery time low. This is the key motivation for SSQ- routing algorithm that learn
alternate routes through exploration as the current routing policy begins to lead to
degraded performance.

Learning effective routing policies is a challenging task. In SSQ-routing algorithm
implementation, network makes routing decisions using Q-routing in which Kohonen’s
Neural Network is used as function approximator. Neural network has been used to some
“success to perform Q-learning. There has been notable success with this method using Q-
learning and a neural network which approximate the value function. This dissertation
presents improvements in reinforcement learning. This algorithm aims to be stable as

possible as under high loads while performing in less extreme situations.

1.2 Routing Problem

Depending on the network topology, there could be multiple routes from source ‘s’ to

destination ‘d’ and hence the time taken by the packet to reach destination from source
| depends on the route it takes. So the overall goal that emerges can be stated as: What is |
the optimal route from a given source node to a given destination node in the current state
of the network? The state of the network depends on a number of network properties like
the queue lengths of all the nodes, the condition of all the links (whether they are up or

down), condition of all the nodes (whether they are up or down) and so on.

Complex Network Topology Learning Using ANN 2
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If there were a central observer that had information about the current state (i.e.
the packet queue length) of all the nodes in the network, it would be possible to find the
best route using the Weighted Shortest Path Routing algorithm'[Dijkstra’s 1959].
| If q; is the waiting time in the packet 'queue of node x; and 6 is the link delay
(same for all links) then the cost of sending a packet P(S; d) through node x; will add (i +
d) to the delivery time of the packet. The weighted shortest path routing algorithm finds
the route for which the total delivery time of a packet from source to destination node is
minimum.
Such a central observer does not exist in any realistic communication system. The task of
making routing decisions is therefore the responsibility of the individual nodes in the
network. There are two possible ways of distributing this responsibility among the
different nodes:
a. The first approach is that the source node computes the best route R to be
traversed by the packet to reach its ultimate destination and attaches this
computed route to the packet before it is sent out. Each intermediate node that
 receives this packet can deduce from R to which neighboring node this message
should be forwarded. This approach is called Source Routing and it assumes that
every (source) node has complete information about the network topology. This
assumption is not useful, because knowledge about the network topology alone is
not enough. To make an optimal routing decision one has to also know the queue |
lengths of all the nodes in then network. Also in a dynamically changing network,
some links or nodes might go down and come up later, meaning that even the
topology of the network is not fixed at all times. Moreover, each packet carries a
lot of routing information (its complete route R) which creates a significant
overhead. As a result, this approach is not very useful for adaptive routing in
dynamically changing networks. )
b. The second approach is that the intermediate nodes make local routing

decisions.
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As a node receives a packet for some destination d it decides to which neighbor

this packet should be forwarded so that it reaches its destination as quickly as

possible.

The destination index d is the only routing information that the packet carries. The

overall route depends on the decisions of all the intermediate nodes. The

following requirements have been identified for this approach [Tanenbaum 1989;

Gouda 1998].

Each node in the network needs to have:

e For each of its neighbors, an estimate of how long it would take for the packet

to reach its destination when sent via that neighbor.
e A heuristic to make use of this information in making routing decisions;
e A means of updating this routing information so that it changes with the
change in the state of the network; and

e A mechanism of propagating this information to other nodes in the network.
This approach has lead to adaptive distance vector routing algorithms. Distributed
Bellrhan-Ford Routing [Bellman 1958], is the state of the art and most widely used and
cited distance vector routing algorithm.
In the framework of the second approach, where all the nodes share the responsibility of
making local routing decisions, the routing problem can be viewed as a complex
optimization problem whereby each of the local routing decisions combine to yield a
global routing policy. This policy is evaluated based on the average packet delivery time
under the prevailing network and traffic conditions. The quality of the policy depends, in
a rather complex manner, on all the routing decisions made by all the nodes. Due to the
' ~ complexity -of this problem, a simplified version is usually considered. Instead of a

globally optimal poliéy, one tries to find a collection of locally optimal ones:

When a node x receives a packet P(s; d) destined to node d, what is the best neighbor y of
x to which this packet should be forwarded so that it reaches its destination as quickly as

possible?

Complex Network Topology Learning Using ANN 4
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This problem is difficult for several reasons (as will be discussed in more detail later in

this thesis):

a. Making such routing decisions at individual nodes requires a global view of the
network which is not available; all decisions have to be made using local
information available at the nodes only.
b. There is no training signal available for directly evaluating the individual
routing decisions until the packets have finally reached their destination.
c. When a packet reaches its destination, such a training signal could be
generated, but to make it available to the nodes that were responsible for routing
the packet, the signal would have to travel to all these nodes thereby consuming a
significant amount of network resources.
d. It is not known which particular decision in the entire sequence of routing
decisions is to be given credit or blame -and how much (the credit assignment
problem). - '

These issues call for an approximate greedy solution to the problem where the routing

policy adapts as routing takes place and overhead due to exploration is minimum.

1.3 Neural Networks and Function Approximation

Neural networks are a biologically inspired approach to machine learning that can learn
to approximate complex mathematical functions. Neural networks have been used in
proposéd solutions to all sorts of probléms, from financial forecasting to automate&
control systems, and have achieved some very significant successes in many of these
areas. Neural networks are a very active area of research. Whilst it is obvious that no one

technology can be a solution for every problem, neural networks have proved to be

extraordinarily versatile and effective.
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This Thesis attempts to apply a neural network as a function approximator in an online
reinforcement learning task, a field where neural networks have been used with varying

degrees of success in the past.

Complex Network Topology Learning Using ANN 6
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2. Literature Review

Supervised and Unsupervised learning are two quite different techniques of learning. As
the names suggest, supervised learning involves learning with some supervisioh from an
external source (for example a teacher) whereas unsupervised learning does not. An
example of supervised learning is a student taking an examination, having it marked and
then being shown which questions they answered incorrectly. After being shown the
correct answers, the student should then learn to answer those questions successfully as
well. An example of unsupervised learning is someone learning to juggle by themselves.
The person will start by throwing the balls and attempting to catch them again. After
dropping most of the balls initially, they will gradually adjust their technique and start to
keep the balls in the air.

Reinforcement learning is a type of unsupervised learning relatively new and emerging
area of machine learning theory. Reinforcement learning aims to develop successful
techniélues for learning complex strategies from limited data in a goal-directed manner.
The definition of reinforcement learning given by Sutton and Barto is “Reinforcement
learning is defined not by characterizing learning methods, but by characterizing a

learning problem” [1].

A reinforcement learning problem is a problem where supervised learning cannot easily
be used because there are no training sets, insufficient data or external knowledge that
can be applied, a reward signal. Maximizing this reward signal is the goal of
reinforcement learning. Reinforcement learning algorithms develop a policy, usually
defined as a mapping of statés and'subséquent actions to expected reward.

The field is still quite young, and there are problems that are still being researched which
are proving difficult to solve. For example, the problem of temporal credit assignment,
when given a reward determining which set of long or short term actions were
responsible for the reward, is a very difficult one. In some cases it will obviously be
better to take a lower short term reward for a greater long term reward. However, the

reinforcement learning approach is very promising even in these early stages, and seems
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a good fit for the network routing problem as Boyan and Littman [2] showed. Temporal
difference (TD) learning, is a major part of reinforcement learning theory, and covers a
number of methods, such as TD(0), TD(}), Q-learning and Sarsa [1]. What these methods
have in common is the concept of accumulating the effect of differences in reward over

time, hence “temporal difference”.

Q(sra) < Q(sp.an)+ofri1HyQ(se+1,a1+1)-Q(S1,a1) 2.1

The equation 2.1 sometimes referred to as the “Q-function” for quite obvious reasons, is
the policy update rule used in Q-learning. Confusingly, it is also the same function used
by the Sarsa algorithm, although the two techniques have differences in other areas. The
update rule states how the value of the Q-function is updated for each state s, and for
every action at that can be taken from that state. r.; is the immediate reward from this
action, and O(s;+), an) is the discounted future reward from this state. The value vy,
known as the discounting rate determines whether the algorithm is. greedy in the short
term or longer term. . ' _

A greedy policy is a policy that always takes the action that is estimated to have the
highest reward. This is sometimes the best course of action, for example in a static
environment. An online algorithm must keep trying other actions to ensure that the
reward estimates are accurate. To do this a probability, known as epsilon (€), is given
that in any state there is a probability of epsilon that a random action will be taken. A
policy like this is known as € -greedy.

Q-learning is an off-policy reinforcement learning method, which means it learns a
policy, called an estimation policy that is separate from the policy which it acts upon, the
behavior policy. This allows, for example, an estimatibn policy that is greedy while the
behavior policy may be able to sample other actions, for example epsilon-greedy. An
algorithm closely related to Q-learning, but working in an on-policy manner, is Sarsa.
Sarsa is close enough to Q-learning to be able to be substituted directly in some cases.
Neural networks are a technique for pattern recognition and function approximation
based originally on ideas from biology and the study of neurons [3], although the theory

behind neural networks is based on statistical foundations [4]. Neural networks seek to
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mimic the apparently simple, but extremely effective, structure of the human brain to able
to approximate functions that would be far too complex to program by hand. Neural
networks consist of units, corresponding to neurons, and weighted connections between
them. The values of each unit are “fed forward” via the weighted connections to other
units. The artificial neurons have an output value based on a speciﬁc “activation
function” of which they are many, some more biologically realistic, and others better
suited for other tasks. The most common are linear units and sigmoid units. Neural
networks may also be made up of building blocks of smaller networks, for example
perceptrons. When two layers of units are combined, such a neural network can
approximate any continuous function. When three layers of units are combined any
arbitrary function that may be required can be approximated [5].

Learning in neural networks is commonly achieved using the backpropagation algorithm
[4). Backpropagation takes the overall error of the output of a neural network, as
measured against training data, and propagates it back through the network, calculating
the error of each individual weight. The weights of the network can then be updated
.aécording to a Weight update rule. Backpropagation has proved successful at solving
some quite complex préblems [5], including complex control tasks such as engine
control, and speech and image recognition. The typical use of backpropagation is in
multiple iterations over static data sets, but it may be used in online applications as a
means of calculating error gradients.

Neural networks have been used before in network routing type problems, for example,
using radial basis functions to optimize call set-up in a telephone network with a static
topology [6]. This situation could be seen as analogous to a computer network, but the
“two situations are quite different. A telephone network has a relatively static topology,
and quiie predictable'usage‘pattems. A cdmputef data network often has a changeable, ad
hoc topology, greatly varying usage patterns and a lack of control over bandwidth
allocation. Because of this, a controller trained on prior data cannot be guaranteed to
perform well under the conditions, and must be rebuilt when the topology is altered.
Neural networks have often been used in reinforcement learning. The use of neural
networks in this situation is sometimes called “neuro-dynamic programming” because of

the use of neural network and dynamic programming techniques together.
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There have been notable successes with these methods, such as TDGammon, a
reinforcement learning approach to playing backgammon. TDGammon uses temporal
difference learning and a neural network which approximates the value function of the
various board states in a game of backgammon. The current version of TDGammon, 3.0,
is on a par with the best human players in the world today and easily the best computer
backgammon player [1, 7].

Neural networks and the Sarsa algorithm were also used to good effect by Bazen et. al. to
extract minutia information from fingerprint data [8]. Success with neural network
function approximation and temporal difference learning was also shown with a control
problem similar to network routing by Crites and Barto [9]. Crites and Barto [9] used a
neural network function approximator in conjunction with temporal difference learning to
control a system of elevators (lifts) and which was able to outperform all known heuristic
elevator control algorithms.

Unfortunately the Q-learning algorithm is known fo be unstable when used in conjunction
with a linear function approximator [10, 11]. Baird [10] demonstrated an example that
clearly shows this with the “star problem” a six-state Marko§ decisidn process (MDP)
that has an exact solution, but when using a linear function approximator is guaranteed to
~ fail to converge successfully. This means there is no guarantee that a linear approximator
will be able to safely approximate the Q-function, and if convergence can not be
guarénteed for the weaker condition of a linear approximator, then a non-linear »
approximator is also not guaranteed. A neural network therefore cannot guarantee to
safely approximate the Q-function, although in some cases it may. Tsitsiklis and Van Roy
[12] showed that all Temporal Difference algorithms are liable to become unstable when
used with a non-linear function approximator, such as a neural network. - -

The solution Baird [1-0]' used was a techﬁique known as Residual Algorithms, which is
essentially a gradient descent approach as oppdsed to a simple value maximization
algorithm. Residual algorithms tend to be quite slow to learn and are really more suited to
episodic tasks rather than infinite horizon tasks.

Eligibility traces, sometimes termed 7D(A) methods, are another techniques that can
make function approximation more stable. Eligibility traces try to bridge the gap between

temporal difference methods and Monte Carlo methods [1].
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Discussion of Monte Carlo methods and dynamic programming are deemed outside the
scope of this project due to the huge quantity of unnecessary detail that would require.
Eligibility methods basically amount to another step of “back up” in the Q-function, so
for example the last two known rewards are used plus the discounted sum of the
remammg rewards, rather than the last known reward plus the discounted sum.

The Internet, with a capital “I”, as opposed to the more general term internet or
internetwork, is a global network of computer systems that originated in the United States
as part of the military funded ARPANET which began in the early 1970s [13]. The
Internet has pushed networking technology into the mainstream and it is without doubt
the most important network, both in terms of technology advances and social impact, in
the world. The number of hosts on the Internet is growing at an incredible rate and shows
no sign of slowing down [14]. This growth has placed strain on the network infrastructure
that was built on what were, at the time ARPANET was created, experimental
technologies.

The Internet uses packet switching technology to transmit data, that is, data that to be
~_transmitted over the Internet is split into small chunks, known as packets. These packets
are then transmitted one at a time across the Internet where they are reassembled at the
. receiver. Packets on the Internet may not necessarily arrive in order, or at all, and may
follow different routes to their destinations. Packet switching allows the Internet to be
flexible in what physical media it can use to transmit data, as well as to be fairly resilient |
when faced with small amounts of data loss caused by line noise or other factors. The
basic building blocks of the Internet are the TCP/IP suite of protocols [15], which may be
modeled as a stack of protocols split into several layers [16]. The underlying protocol at
the network layer, Internet Protocol or IP is a connection-less best effort protocol, - .
meaning it has no connection establishment phase or authentication, and it does not
provide a guarantee that the data sent will reach its destination [15]. Reliable delivery is
Provided by the Transmission Control Protocol, or TCP.

However, the properties that make the Internet so effective and successful also make it
vulnerable to “Internet Meltdown” or “congestion collapse” [17]. Several aspects of the
underlying Internet technology are showing their age and reaching the point where other

approaches may soon have to be explored if the growth rate and stability of the Internet is
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to be maintained. These areas include address allocation [15], routing and congestion
[17]).

Network congestion occurs when a part of a computer network is asked to transfer more
data than its resources allow in a period of time. This results in data loss and degradation
in performance. The problem of congestion occurs when the bandwidth of a specific link
is exhausted by an upsurge in trafﬁc;‘ if packets cannot be sent down a congested link
then the machine sending packets onto that link has to wait for the link to become free
before sending any more. This means the sender has to buffer the packets it still has to
send until the link is free, which requires that the sender have memory available to buffer
the packets. If the backlog of packets gets too large for the sender to buffer, then any
additional packets must be discarded or dropped. In reliable network protocols the
response to a dropped packet is to resend the packet in question, and because of this, the
effect of a dropped packet is multiplied. For every packet that is dropped from a reliable
protocol it will be sent again at least once, adding to the congestion and therefore more
packets will be dropped, and so on [15, 16]. _

Network congestion is increasingly becommg a problem on the Internet. In- the mid- -
1980s the Internet was beginning to suffer from congestion problems and the possibility
of congestion collapse [18]. TCP congestion control measures [17] such as Tahoe and
Reno extensions have attempted to alleviate this'problem, and TCP performance under
load is much better than it was when the Internet cut over to TCP/IP on the 1st January '
1983. The continuing growth of the Internet and the proliferation of high-bandwidth
applications mean this issue is far from resolved however.

Much progress has been made in the field of congestion control in recent years, and
problems such as congestion collapse [18] have largely been avoided [19] in the context
of TCP, the most Widely used transport protocol oﬁ the Internet. Congestion problems afe
by no means confined to TCP based applications however, and the area is still being very
actively researched.

Congestion control can be approached at every level of the network protocol stack. At the
data link layer, the hardware will do its best to avoid congestion, for example Ethernet
will do exponential back off in an attempt to avoid packet collisions on an Ethernet

segment [15]. Congestion control at this level is usually very simple because it is usually
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implemented in hardware. Ethernet is simple enough to be implemented in very small
integrated packages and Ethernet hardware is accordingly very cheap.

At the network layer the queuing policy and routing algorithm come into play along with
the possibility of a virtual circuit switching technology. Virtual circuit switching
technology will not be discussed here for space reason's.'Active queue mahégement is an
active research topic, and algorithms such as Random Early Detection, or RED, [20] and
BLUE [9] have proved very successful in simulation, although practical use of these
technologies is still quite limited [21]. Active Queue Management seeks to drop packets
not simply based on the order they are received at a router. For example, RED drops
packets randomly with a specific probability before congestion becomes a problem, in an
attempt to prevent congestion occurring. These algorithms have also been extended to
implement fair queuing, an attempt to make sure every traffic flow gets access to network
resources fairly, and differential services, which allow different types of network packet
to be given different priorities in network resource allocation. There have also been
proposed algo;ithms that use cost metrics to price the routing of a packet through a
network, so a user willing to pay more could route packets over a faster or more reliable
network. Routing algorithms are discussed in the next section.

Active queue management may also be applied at the transport layer, for example the
Explicit Congestion Notification, ECN [22] extension to TCP. This adds a single bit to
TCP packets so congestion can be signaled explicitly rather than implicitly by dropping |
packets at the network layer. This approach works best with connection based protocols
because rate control is more easily applied to a connection than single packets, rate
control for TCP is performed by altering the transmission window size of the sender [15].
- The other main Internet transport layer protocol, the User Datagram Protocol or UDP
[15] must be treated separately by an active queue management algorithm, because it is
best effort and connection-less much like the underlying IP. UDP tends to be bandwidth
greedy and can be a major factor in network performance degradation. An ECN bit has
also been proposed for IP, but it is a more recent proposal and so not many TCP/IP stacks
implement it today.

The setting of timeout values is also very important because it impacts directly on how

much excess traffic is put onto the network when congestion occurs. Timeout values
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determine how long a packet may go unacknowledged by the receiver, after a certain
length of time the sender will assume the packet is lost and resend it. Getting the timeout
values perfect is very difficult and depends to a large extent on the characteristics of the
network involved. TCP has received a lot of attention, and there are many extensions
proposed that may improve it further, including Selective A'ckn'o.wledgements, or SACK,
which sends less acknowledgement packets and Fast Retransmit, which attempts to guess
when a packet has been lost and retransmit it before it timeouts [23].
Applications may also attempt their own congestion control. If an application uses TCP it
is usually counter-productive to try and implement another layer of congestion control at
the application level unless the application author has some extremely domain-specific
knowledge. UDP applications, in particular streaming applications like Internet radio and
video conferencing, can benefit enormously from being able to handle their own
congestion control due to their greedy nature. However, it is a very difficult problem to
calculate the bandwidth available across a wide variety of links and routers between two
hosts. A lot of the research in this area seems to be proprietary and quite experimental.
Routing al_gofithms are methods for finding the best way to get from a host A to another
host B. This may be via a large number of other machines or it may be in the next room.
On a small, simple network the problem is almost trivial, statically allocating routes and
defining them by hand, but when dealing with a huge internetwork such as the Internet
this is not possible. A heavily interconnected network such as the Internet has many '
routes from one host to another, and these routes span many different types of link with
different bandwidth and latency characteristics. Calculating the best route through such a
complex system is computationally intractable and impossible to do by hand. A routing
~algorithm first 'seeks to deliver a packet successfully, and if possible deliver it by the
quickeét route available. If many packets are routed through the same router a bottleneck
occurs, and the whole network slows down, a good routing algorithm will try to route
around a bottleneck router to minimize the effect of network congestion.
There are two types of routing algorithms, inter-domain routing algorithms and intra-
domain routing algorithms. Inter-domain routing algorithms route packets between
domains, that is, they find routes from one large area of the Internet, for example JANET,

to another large area such as LINX. These large areas are called domains or autonomous
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areas. Inter-domain routing algorithms include the Exterior Gateway Protocol or EGP
which is now considered obsolete, and the Border Gateway Protocol or BGP [24] which
the modern Internet backbone runs on. There are many problems in the field of inter-
domain routing, the sheer size of the routing tables for the Interne't today is close to
ovefwhelming some of the backbone routers and some have raised questions over
whether BGP is a stable enough protocol for running such a large and complex network
[25].
Intra-domain routing algorithms find routes within autonomous areas. An autonomous
area could be as small as 2 or 3 machines or as large as tens of thousands on a corporate
network. Intra-domain routing algorithms include Routing Information Protocol or RIP,
version 1 and 2 [26], and Open Shortest Path First or OSPF [27].
RIP is a distance vector routing protocol, and very simple to implement. Distance vector
routing, sometimes known as Bellman-Ford, after its inventors, is based on the idea of
each router in a network keeping a vector of distances to every other node in the network.
This vector is then distributed to its nearest neighbors, which update their distance vector
| on the basis of the information they are sent by their neighbors. In this way routing data
propagates throughout the network and eventually converges to a stable routing policy.
RIP and distance vector routing suffer from some quite serious drawbacks unfortunately.
Under certain circumstances the routing tables for a network will not stabilize, a problem
often called the “count to infinity” problem [15]. Various partial solutions have been.
proposed to this but none are particularly elegant. RIP also has scalability problems, it
can only handle networks with a maximum of 16 hops, and it generates a considerable
amount of network traffic in larger networks. In 1979 RIP was retired from ARPANET.
‘OSPF is a link-state routing algorithm. Link-state routing attempts to build up a graph
representing the network at each router and uses a shortest path algorithm, usually
Dijkstra’s algorithm, to find the shortest path to a route according to the graph it has built
up. The graph representation is built up by routers exchanging link-state advertisements,
or LSAs. These packets contain link-state information, that is, what links a router has,
and to what machines. OSPF adds several advanced features that RIP didn’t have, such as
message authentication, load balancing and a hierarchical structure [27]. OSPF also uses

metrics to calculate the cost of taking a route, rather than the RIP approach which is
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merely based on hop counts, that is the number of routers on the route. This allows, for
example, a 128Kbps link to be preferred over a 9.6Kbps link. The metric used is a very
important factor as to the optimality of the routes chosen, and ideally should be able to
take into account how congested a link is.

There are several other routing algorithndé that have been proposed. Many of these are
applicable only to specific routing problems such as Massively Parallel Processor, or
MPP networks [28] or virtual circuit switched networks, and do not work well in a
complex, dynamic environment such as a packet switched computer network.

Of more interest is Q-routing, a routing algorithm that uses a technique known as Q-
learning from the field of reinforcement learning to learn the best routes and constantly
update them online [2]. Boyan and Littman [2] present very impressive results in their
paper. The algorithm is dynamic and suited to networks with changing topologies and
traffic levels; it aims to be as stable as possible under high loads whilst still performing
well in less extreme situations. The Q-routing algorithm has been developed further by
_others [29], but the extensions proposed are rather incidental to the underlying algorithm.
In Q-routing, the routing decision maker at each node x makes use of a table of values
Qx(y; d), where each value is an estimate, for a neighbor y and destination d, of how long
it takes for a packet to be delivered to node d, if sent via neighbor y, excluding time spent
in node x’s queue. When the node has to make a routing decision it simply chooses the
neighbor y for which Qu(y; d) is minimum. Learning takes place by updating the Q |
values.

On sending P(d) to y, x immediately gets back y’s estimate for the time remaining in the

trip, namely

Qyz,d)=min Qyz,d) - _' _ (2.2)
zeN(y) ' " -

Where n(y) denotes the set of neighbors of node y. if the packet spent qx units of time in

X’s queue, then x can revise its estimate based on this feedback:

AQy, dy=(Qy(2", d)* qx+ 8- Qu(y, d)) 23)
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Where 1 is the “learning rate “constant for all Q-values updates and & is a transmission

delay over the link between nodes x and y (assumed same for all links).
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3. PROBLEM DEFINITION

As Computer networks play an important and ever increasing role in the modemn
world. The development of the Internet, the corporate intranet, and mobile telephony
have extended the reach of network connectivity to places that ten yearé ago would have
been unthinkable. The result of these trends is that the performance of network hardware
and software is being tested by the increasing load placed upon them, and new ways have
to be found to solve the problems that the original ARPANET engineers faced nearly 50

years ago.

Modern networking applications are often based upon frequently changing ad hoc
network topologies and require that the network protocols running these applications are
able to withstand outages of parts of the network. The emphasis on peer-to-peer
technologies of such applications as Napster ¢ and Gnutella demonstrates the desire to
move away from centralized network architectures towards more loosely defined,

distributed ones. A computer data network often has a changeable, ad hoc topology,
| greatly vérying usage patterns and a lack of control over bandwidth allocation. Because
of this, a controller trained on prior data cannot be guaranteed to perform well under the

conditions, and must be rebuilt when the topology is altered.

However, the properties that make the Internet so effective and successful also
make it vulnerable to “Internet Meltdown” or “congestion collapse”. Several aspects of
the underlying Internet technology are showing their age and reaching the point where
other approaches may soon have to be explored if the growth rate and stability of the
Internet is to be maintained. These areas include address allocation, routing and

congestion.

Network congestion occurs when a part of a computer network is asked to
transfer more data than its resources allow in a period of time. This results in data loss
and degradation in performance. The problem of congestion occurs when the bandwidth

of a specific link is exhausted by an upsurge in traffic; if packets cannot be sent down a
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congested link then the machine sending packets onto that link has to wait for the link to
become free before sending any more. Much progress has been made in the field of
congestion control in recent years, and problems such as congestion collapse have largely
been avoided in the context of TCP, the most widely used transport protocol on the
intemet. Congestio-n problems are by no means confined to TCP based applications

however, and the area is still being very actively researched.

Efficient routing of packets in computer networks is a prerequisite for wide
deployment of network-enabled devices, especially mobile and distributed computing.
A computer data network often has a changeable, ad hoc topology, greatly varying usage
patterns and a lack of control over bandwidth allocation. Because of this, a controller
trained on prior data cannot be guaranteed to perform well under the conditions, and must

be rebuilt when the topology is altered.

Current approaches to this problem have been partially successful, but are liable

to breakdown when under heavy load.

A routing algorithm that attempts to solve some of the problems faced in
dynamic, unreliable, and congested networks is suggested. Such an algorithm aims to

have the following properties:

e [t should be able to “bootstrap” itself without any need for operator intervention.

¢ It should be able to “route around” failed links or nodes.

~e It should be able to find optimal or close to optimal routes even when the network

is heavily congésted.-

3.1 Problem Description

Routing algorithms are methods for finding the best way to get from a host A to

another host B. This may be via a large number of other machines or it may be in the

next room.
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¢ On a small, simple network the problem is almost trivial, statically allocating
routes and defining them by hand.

e When dealing with a huge internetwork such as the Internet this is not
possible. A heavily interconnected netwofk such as the Internet has many
routes from one host to another, and these routes span many different types of
link with different bandwidth and latency characteristics.

e Calculating the best route through a complex system is computationally
intractable and impossible to do by hand.

e A routing algorithm first seeks to deliver a packet successfully, and if
possible deliver it by the quickest route available.

e If many packets are routed through the same router a bottleneck occurs, and
the whole network slows down, a good routing algorithm will try to route

around a bottleneck router to minimize the effect of network congestion.

3.2 Proposed solution

To refnove thesé drawbacks wé will develop a new intelligent routing algdrifhm
provides stability in complex topology. One approach to solve complex topology is the
use of neural networks as a non-linear function approximator in an online reinforcement
learning task. .

A Q-routing Algorithm, a network algorithm based on Q-learning, 2 method from
the emerging field of reinforcement learning. Q-routing leamns to route packets in an
adaptive manner allowing slow spots in the network to be routed around, and has
performed well in simulation. Neural networks have been used with some success to
perform Q-learning, and would seem to be a pdssible method to allow Q-routihg to scale
well beyond its initial table-based implementation. Neural networks have often been used
in reinforcement learning. The use of neural networks in this situation is sometimes
called “neuro-dynamic programming” because of the use of neural network and dynamic
programming techniques together. There have been notable successes with these methods
using temporal difference learning and a neural network which approximates the value

function. Success with neural network function approximation and temporal difference
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learning was also shown with a control problem similar to network routing by Crites and
Barto [9]. Crites and Barto used a neural network function approximator in conjunction
with temporal difference learning to control a system of elevators (lifts) and which was

able to outperform all known heuristic elevator control algorithms.

The Algorithm will be developed that aims to be stable as possible as under high
loads while performing well in less extreme situations. The algorithm will be analyzed
and compared with the existing algorithms theoretically that whether it complete its
requirements or not.

Q-routing and Kohonen’s network will be combined in this algorithm. Kohonen’s
network will be used as function approximator. Q-value table will be updated using
Kohonen’s network updating rule.
Proposed Algorithm will have five modules.
e A Packet Generator module
* Routers modules (4- modules)
= - A packet generator will generate the packets to different source routers using
“Poison Distribution algorithm™.
= When packet generated by packet generator will given to the source node, then
Routing module of that source router will activated to find out the next node to
hand over the packet.
= Routing module will be developed by using Kohonen’s network algorithm as
function approximator in reinforcement learning algorithm.
= Each router will have its own Q-weight table. When packet will be routed through
| different routers, Q-weight table values of each router will be updated according

to weight updating rule given by new algorithm.
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4. Design

In this chapter we will discuss the design, algorithm formulation and algorithm in detail.

4.1 Algorithm Formulation

In the formulation of algorithm we have few things to consider in doing so. They are

described in the following.

4.1.1 Network Load Level

It is defined as the average number of packets introduced in the network per unit time.
For simulation purposes, time is to be interpreted as simulation time (discrete time steps
synchronized for all nodes in the network). Three ranges of network load levels are
identified: low load, medium load, and high load. At low loads, exploration is very low
and the amount of information per packet hop significantly affects the rate of learning. At
medium loads, the exploration is directly related to the number of packets in the network.
Medium load level represents the average load levels in a realistic communication
network. Although the amount of exploration is high at high loads, there are a large
number of packets in the network, and it is actually more difficult to learn an effective
routing policy. When a node's buffer gets filled up, additional incoming packets are
dropped leading to loss of information, which is called congestion. In this thesis,

however, infinite packet buffers are used.

4.1.2 Traffic Pattern

It is defined as the probability distribution p(s; d) of source node s sending a packet to

node d. This distribution is normalized such that:

Y p(s;x)=1forallseV
xeV

Whefe V is the set of all nodes in the network. The value of p(s; s) is set to 0 for all s € V.
A uniform traffic pattern is one in which the probability p(s; d) is 1/n-1 where n is the

number of nodes in the network.
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4.1.3 Network Topology

It is made up of the nodes and links in the network. The topology changes when a link
goes down or comes up. The following Q-value updates are used to model the going

down of the link between nodes x and y:

Qu(y, d) = infinite for alld e V; 4.1)
And

Q,(x, d) = infinite for all d e V; (4.2)

4.1.4 A Routing Policy

It is characterized by the Q tables in the entire network. Changes in these Q-values by
exploration leads to changes in the routing policy of the network. The algorithm is said to
have converged to a routing policy when changes in Q-values are too small to affect any
routing decisions. An indirect way of testing whether the routing policy has converged is
to examine the average packet delivery time or the number of packets in the network as
routing takes place. When average packet delivery time or number of nodes in the
network stabilize or converge to a value and stay there for a long time, we can say that

the routing policy has converged.

4.1.5 Performance Measure

The performances of an adaptive routing algorithm can be measured in two ways:

(a) Speed of Adaptation is the time it takes for the algorithm to converge to an effective
routing policy starting from a random policy. It depends mainly on the amount of

exploration taking place in the network. | |

(b) Quality of Adaptation is the quality of the final routing policy. This is again

measured in terms of the average packet delivery time and the number of packets in the

network. Quality of adaptation depends mainly on how accurate the updated QWeight-

value is as compared to the old QWeight- value. Hence quality of exploration affects the

quality of adaptation.
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4.1.6 Average Packet Delivery Time

The main performance metric for routing algorithms is based on the delivery time of
packets, which is defined as the (simulation) time interval between the introduction of a
packet in the network at its source node and its removal from the network when it has -
reached its destination node. The average packet delivery time, computed at regular
intervals, is the average over all the packets arriving at their destinations during the
interval. This measure is used to monitor the network performance while learning is
taking place. Average packet delivery time after learning has settled measures the quality

of the final routing policy.

4.1.7 Number of Packets in the Network

A related performance metric for routing algorithms is the number of packets in the
network also referred to as the amount of traffic in the network. An effective routing
policy tries to keep the traffic level as low as possible. A fixed number of packets are
introduced per time step at a given load level. Packets are removed from the network in
two possible wayAs';.either théy reach their destination or the packets are dropped on the
way due to congestion. Let ng(t), n(t) and ng(t) denote the total number of packets
generated, received and dropped at time t, respectively. Then the number of packets in

the network ny(T) at the current time T is given by:

T
np(T)=ZO (ng(H) - ni(t) - na()) (4.3)
t=

Where time t = 0 denotes the beginning of the simulation. In this thesis, infinite packet

buffers are ﬁsed therefore no packets are drdpped (i.e. ng(t) = 0. 8t).

4.1.8 Network Topology used

The network topology used for simulation is 6X6 irregular grid shown in figure 4.1 due
to Boyan and Littman (1994). In this network, there are two possible ways of routing
packets between the left cluster (nodes 1 through 18) and the right cluster (nodes 19
through 36): the route including nodes 12 and 25 (R1) and the route including nodes 18

and 19 (R2). For every pair of source and destination nodes in different clusters, either of
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the two routes, R1 or R2 can be chosen. Convergence to effective routing policies,

starting from either random or shortest path policies.
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Figure 4.1: The 6X6 Irregular Grid (adapted from Boyan and Littman (1994)). The left cluster comprises
of nodes 1 through 18 and the right cluster of nodes 19 through 36. The two alternative routes for traffic
between clusters are the route including the link between nodes 12 and 25 (route R1) and the route
involving the link between nodes 18 and 19 (route R2). R1 becomes a bottleneck with increasing loads and
the adaptive routing algorithm needs to make use of R2.

4.1.9 Neural Network (Kohonen’s Network) Architecture used

A Kohonen’s Network consists of two layers, an Input Layer and a Kohonen’s Layer, as
shown in figure 4.2. The input layer receives inputs and performs no processing. The
Kohonen’s Layer is responsible for working out the 'winning' neuron using weights

calculated during training.
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Kohonen’s
layer

Input layer

Figure 4.2: A schematic Diagram of Kohonen’s Network. It shows the nodes in the input layer
connected to all of the nodes in the output layer. Each connecting line represents a weight.

Learning in Kohonen’s Networks -
The learning process is as roughly as follows:

» initialize the weights for each output unit
o loop until weight changes are negligible
o for each input pattern
= present the input pattern
» find the Winnihg output ﬁnit
* find all units in the neighborhood of the winner
» update the weight vectors for all those units
o reduce the size of neighborhoods if required

The winning output unit is simply the unit with the weight vector that has the smallest

Euclidean distance to the input pattern. The neighborhood of a unit is defined as all units
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within some distance of that unit on the map (not in weight space). In the demonstration
below all the neighborhoods are square. If the size of the neighborhood is 1 then all units
no more than 1 either horizontally or vertically from -any unit fall within its
neighborhood. The weights of _every unit in the neighborhood of the winning unit

(including the winning unit itself) are updated using:
Wyi= Wi +phi* 1 * (Np - wai ) 4.4
where
rj=e It G2y 7 (9 %theta)
phi = Leaming rate parameter
theta = Leaming Factor
dist(i, j) = Guassian density function.

This will move each unit in the neighborhood closer to the input pattern. As time
progresses the learning rate and the neighborhood size are reduced. If the parameters are

well chosen the final network should capture the natural clusters in the input data.

4.2 The Algorithm

Main steps of the algorithm developed are:
Q-routing and Kohonen’s network are combined in this algorithm. Kohonen’s network is |
used as function approximator. Q-value table is updated using Kohonen’s network
updating rule as in equation (4.4).
Main steps of the algorithm are:

1. . Initial Q-values can be calculated as -

1= Ie Clist@ D2y 7 (2% theta)
where
dist(i,j)= exp(-d*/phi) / sqrt(2)

2. Take source node as starting node.

3. Find the next neighboring node having minimum Q-value.

4. Update the Q-value for that selected node by using the equation derived from

equation (4.4) as

Complex Network Topology Learning Using ANN 28



Chapter 4 ' " Design

AQx(y, d)= Quly, d) +phi*r; * (Qyz", d)- Quy,d) )
Where

" d)= mi d
Qy(z s ) zranl(I;) Qy(z> )

5. Decrease theta , phi and recalculate r value for the selected node only.

6. goto step 3.
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4.3 Data Flow Diagrams

In this section we explain different levels of data flow diagram.

4.3.1 Level 0 Data Flow Diagram

Level-0 data flow diagram 1s shown in figure 4.3.

F. . e
$5Q- Main Function.- & - F i

Figure- 4.3 Level 0 DFD

4.3.2 Level 1 Data Flow Diagram

Level-1 data flow diagram is In this level of diagram we have F1 input process, F2 Find
path process and F3 Update weight process shown in figure 4.4.

Calculate
;. New Weight

. Find Path

Figure- 4.4 Level 1 DFD
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4.3.3 Level 2 Data Flow Diagram

In this level of data flow diagram we have explained F1 find path process shown in figure
4.5.

Figure- 4.5 Level 2 DFD
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4.4 Flow Chart

Main algorithm flow chart is shown in figure 4.6.

4

Take Source &
Destination -

Source=Dest S

: Fafsle

somimen cmmmmem———— ~ 3l Call FindNextNode

h 4

False Call UpdateWeight T ru o

Figure- 4.6 Program Flow Chart
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5. Implementation

In this chapter we discuss how we implement our algorithm. In section 5.1 we have

explained division of functional units and coding details are discussed in section 5.2.

5.1 Division of Functional Units
Considering the nature of the whole simulation it is divided into five applications. Which

are described in the following?

5.1.1 Packet Generator

This application generates packets to route between different nodes (Routers). Packets

are generated randomly. Poisson distribution is used to generate packets randomly.

Table 5.1
Distribution Functional Form Mean | Standard Deviation
) ] -a . X
Poisson f ()= e a a Jya
p x!

Poisson distribution generates packets according to the natural phenomena such that
Poisson distribution is not an average distribution different numbers of packet are |
generated for each node.

In this function packets are generated after every 100 ms. Packet generator is connected
to each routing server (Router). When a packet is generated a source node is analyzed and

hand over to that source Router for routing to destination node.

5.1.2 Routers (Nodes)

There are 9- Routers in a network. Each router is directly connected with Packet
Generator. Each Router has a unique ID such that Router 1 has an Id like ID-1 which

uniquely identifies it while routing a packet. Router ID-0 is directly connected with
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Router ID-1 and Router ID-2. Router ID-1 is connected with Router ID-1 and Router ID-
3. While Router ID-3 is connected with Router ID-1 & 2 and so on. There is bidirectional
communication between 2 nodes such that each node can send and receive data from
other node.

When a packet is generated by Packet generator it is handover to a source router. Source
router calls it “FIND NEXT NODE()* function to find a next node to route a packet to
its destination. When a next node is found then packet is handover to that node and a
signal is generated to update the Q- weight value from this node to new node. When a
node received update signal it updates its Q-Weight value table entry for those nodes
received in signal. Also the values of ‘Theta’, ‘Phi’ and ‘r’ are recalculated after

receiving each updated signal.

5.2 Coding Details

5.2.1 Packet Generator

In this application we have two functionalities. One is to listen for request from each

Router and second to generate packets using Poisson distribution on request.

5.2.1.1 Listening for the Request

Packet generator starts listening in the beginning for the requests from the Routers.
5.2.1.2 Connection to Router

When a router request for connection any available socket is assigned to it to which a
bidirectional communication can be made.

5.2.1.3 Packet Generate Request

The Poisson random distribution is implemented on the packet generator to generate
packet randomly. When a “Start Generation” button is pressed then Poisson distribution

code is running after every 100ms a packet is generated.
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5.2.2 Routers

The real implementation of Algorithm is on each Router. When a request for routing
comes the algorithm runs at that time. In following it is described how Router is carrying
its functionality. '

5221 Listening for Request from other Routers

All Routers start listening for the request from other Routers.

5.2.2.2 Connection to Packet Generator

Router requests to the Packet Generator for connection on clicking button “Connect to
PG”.
5.2.2.3 Connection to Other Routers

When Router receive request for connection any available socket is assigned to it through

which bidirectional communication can be done.

5.2.2.4 Algorithm Implementation

A separate class by the name of “Router” is made for the algorithm and all functions are
implemented there, which are used with object of class on calling. The details of class are
given below.

5.2.2.5 Call For FIND_NEXT_NODE

When “FIND NEXT NODE” function is called with two parameters startnode and
endnode then algorithm start to find new next node to which packet will be handed over.
When the next node is found then UPDATE_QW() function is called. A new header is
added to the packet and sends to the new Ro_uter found.

5.2.2.6 Call For UPDATE_QW

This Function is called by the FIND_ NEXT NODE function. When this function is
called Q-Weight value from the previous node and the new found node is updated. Also

the value for Theta and ‘Phi’ are updated. And all new values are broadcast to all routers.
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6. Testing

Testing of a program is used to check whether it produces the same results as are expected from
it and how does it handles in the situation where an exception of error occurs. Testing has

different types defined in sections below.

6.1 System testing

Which is to test the system as a whole to validate that it meets its specification and the objectives
of its users? System testing focuses on testing the system as an entity. Generally, it is the
responsibility of a group which is separate from the system development team.

It is generally good practice for system testing to be an independent activity as the testers are not
themselves stakeholders in the system development. If developers are involved at this stage, they
may be reluctant to design tests which reveal problems in the developed system as this is an

implicit criticism of the quality of their work.

6.2 Development testing

e Hardware and software components should be tested as they are developéd and as
sub-systems are created. These testing activities include:
*  Unit testing.
* Module testing
* Sub-system testing
o However, these tests cannot cover:
» Interactions between components or sub-systems where the interaction causes the
system to behave in an unexpected way
e The emergent propertieé of the system
As part of the development process, each component Which has‘ been developed should be tested
either by its developer or by a separate testing group. The objective of this testing process is to
find defects in that component. These defects should then be removed before the component is
delivered for integration.
However, these tests can only be based on the component specification (if it exists) along with

knowledge about the structure of the component. There may be component errors which are not

Complex Network Topology Learning Using ANN 36



Chapter 6 : Testing

discovered because these relate to the interaction of the component with other components in the
system.

The emergent properties of a system are those properties which apply to the system as a whole
rather than to particular components in the system. While some assessment can be made, e.g. of
individual component reliability, unit and module testing be used to assess the overall reliability

or performance of the whole system.

6.3 Integration testing

The major activity in the integration process is integration testing where the developer of the
system carries out a series of tests as the system is put together from its components.

Integration testing should be concerned with tests which cannot be executed on individual
system components or sub-systems. Interface testing is concerned with designing tests which
will validate the interactions between components and property testing is concerned with testing
the emergent system properties such as reliability, performance etc. As these do not emerge until

the system exists as a single entity, it is clearly impossible to test them earlier in the process.

6.3.1. Integration test planning

A separate group should always be responsible for test planning for two reasons:
a. It means that test planning can be carried out at the same time as system development
b. It removes a potential conflict of interest from the development team - is their
responsibility to develop software or to test (and potentially find faults with) that
software. Developers may, consciously or unconsciously, design tests which they know
avoid problems in the system.
For large, complex systems, integration test planmng may involve hardware and software

engmeers and human factors specialists. -

6.3.2 Test planning activities

Wherever possible (and this is really not easy) the integration test planning team should identify
individual system increments which can be tested and should design tests for these increments.
These decisions may be made using the delivery schedules for the different sub-systems (it
makes sense to stagger delivery - getting everything on the same day is an integration nightmare)

but schedule changes may mean that increments are not available when required.
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Testing tools such as tools to compare test outputs, tools to automatically run tests from files of
test data, simulators for hardware which is not available may have to be developed before system
testing is possible. The development of these tools goes on in parallel with systems development

and often represents a significant fraction of the overall system development costs

6.4 Stress testing

Stress testing is particularly important for large, multi-user systems where the load on the system
varies dramatically from time to time. In essence, you estimate the maximum load that the
system is likely to have to handle then test it with more than that load. What should happen is
graceful failure where the level of service offered to all users is reduced. What often happens is
catastrophic failure where the system moves from working reasonably for all users to a complete
loss of service.

Building up the load on the system is not just a test of system performance. Because there is so
much stress on the system, defects which can be corrected automatically in other situations come
to light during stress testing. For example, say a screen is not properly updated but the normal
use calls for this screen to be replaced quite quickly in normal use. The error may never be
discovered. Stress testing slows the system down and may reQeal this kind of defect. '
This is not too important but stress testing can also reveal defects which are caused by built-in

timing assumptions in real-time systems

6.5 Acceptance testing

Acceptance testing may take place after a system has been installed but often it takes place at the
developer’s premises using customer supplied data. The customer observes the system tests to
check if the system meets the specified requirements.

It is important to understand that the decision on-Wheth'er or not to accAe'pt a systérh does not
necessarily depend on the system meeting' every requirement and successfully executing every
test supplied by the customer. The customer needs the system (presumably) so they may be
willing to accept an imperfect system for installation. The problems identified are noted and the
contractor may have to agree to fix these problems in the first new release after the system has
been delivered.

There may also be disagreement between the customer and the contractor at this stage about

what requirements actually mean. The customer may have one interpretation of the requirements
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and the contractor a different interpretation. Therefore, when there is a problem with an
acceptance test, some negotiation is necessary to decide whether the customer or the developer
has the right interpretation. Often, the result will be that some system changes have to be made

and the customer has to pay for some or all of the costs of these changes

6.6 Performance testihg

It may be possible to use data for stress testing for performance testing as critical performance
problems are most likely to occur when the system is heavily loaded.

The major problém with performance testing is that there are rarely explicit performance
requirements which are specified in a measurable way. Furthermore, there may be serious
conflicts between for example security and performance requirements and the only way to fix the
performance problems might be to weaken system security.

The perceived performance of a system is important (if it is an interactive system) whereby the
performance is as much to do with expectations as it is with actual figures. If users use a system
with a specific performance level, they will expect a new system to at least match that level, even
if it offers much greater functionality. This has t0 be taken into account when setting

performance criteria,

6.7 Reliability testing

The problem with reliability is that it is not an absolute but depends on the context of use of the
system. Two different patterns of system use can result in different perceived system reliability.
For this reason, it is very important to get the operational profile right such that the predicted
pattern of inputs which will be presented to the system. This is possible for some classes of
system (where reliability testing is very mature) such as telephone switches where the actual
ﬁsage'of an existing system can be logged and used as the basis of an operational proﬁle.

It is MUCH harder to predict an operational profile wheﬁ a completely new system or process is
introduced - no-one really knows how users will adapt to the change and what inputs will be
generated.

Reliability testing must take into account the seriousness of system errors. For example, an error
in an air traffic control system where a display was pink rather than red is much less serious than

an error in the same system where the height of the aircraft was wrongly computed.
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6.8 Security testing

This is an unusual form of testing because it can’t really be planned in the same way. While it is
possible to pre-conceive some simple security tests, effective security testing can only really be
interactive and, arguably, can only be carried out once the system is in use.

Interactive testing is necessary because security problems méy not have a single cause. A user
may detect a potential weakness in the system and then exploit this in some other way to gain
access to protected parts of the system. It is almost impossible to anticipate this in advance

The argument that security testing cannot be effective until the system is in use comes from the
fact that many security problems are due to the way in which a system is used such as insecure
passwords, use of over-general permission vectors, etc. These can’t really be tested in a pre-

production version of the system.

6.9 Testing for SSQ-Routing Simulation system

6.9.1 Prerequisites

Following are the prerequlsltes for SSQ-Routing Simulation:
e All applications such Routers, and Packet Generator should be runmng.

o Packet generator generates packets using Poisson distribution.

e SSQ-Routing is implemented on each Router so it is considered mostly.
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6.9.2 TC —SSQ-Routing- PG - Packet Generation

Test Case ID

TC- SSQ-Routing — PG - Packet Generation

Functional Area

Test Name

Packet Generation
Description (Purpose) Packet is generated after every Smsec.
Prerequisite PG should be connected to every Router.
Input Mean value

Actions to perform (Procedure) | Send generated packet to the source Router..

Expected Result(s) Status

Generate Packet after every Smsec using Poisson distribution and send it to | Pass

the source node.
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6.9.3 TC — SSQ-Routing —Router - Find_next_node

Test Case ID TC -~ SSQ-Routing —Router Find_next_node

Functional Area Router

Test Name

Find_next_node

Description (Purpose) Find shortest distance next node to route packet.

Prerequisite

Find_next_node() function should be active.

Input

Source and destination node ID should be provided.

Actions to perform (Procedure) | Find next node and route packet to it.

Expected Result(s) Status

Find next node and send packet to that node. And invoke

update_Qweight() Function. Pass
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-, 6.9.4 TC - SSQ_Routing — Router— Update_Qweight

Test Case ID TC - SSQ_Routing — Router Update_Qweight

Functional Area Router

Test Name
Update_Qweight

Description (Purpose) Update the QWeight value in the table for the selected
node.

Prerequisite Update-Qweight () function should be active.

Input Node ID should be provided.

Actions to perform | Update Qweight table.Entry. |

(Procedure)

Expected Result(s) Status

Update the Qweight value for the selected Router and broadcast updated Pass

value to all Routers.
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6.9.5 TC - SSQ_Routing —-PG & Router Integration

Test Case ID

TC - SSQ_Routing -PG & Router Integration

Functional Area PG & Router

Test Name
PG & Router Integration

Description (Purpose) Router sends request to PG (Packet generator) for
Connection to Router.

Prerequisite Packet generator should be in listen state.

Input PG’s Port address.

Actions to perform

PG accepts the Router Request.

(Procedure)
Expected Result(s) Status
Router connected to the PG. Pass
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6.9.6 TC - SSQ_Routing —PG

Test Case 1D

& Router Integration

TC - SSQ_Routing -PG & Router Integration

Functional Area PG & Router

Test Name
PG & Router Integration

Description (Purpose) PG generates packet and send to the destination node
(Router).

Prerequisite Router should be connected to PG.

Input Router’s Port address.

Actions to perform

| (Procedure)

Packet reaches to the source node.

Expected Result(s)

Status

Packet reached at source node.

Pass

o~
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6.9.7 TC - SS'Q_Routing —Router ID-0 & Router ID-1 Integration

Test Case ID
ID-0 for connection.

TC - SSQ_Routing ~Router ID-1 Requests Router

Functional Area Router ID-0 & Router ID-1

Test Name

Router ID-1 requests Router ID-0 for connection.

Description (Purpose) | Router ID-1 requests for connection to Router ID-0.

Prerequisite Router ID-0 should be in listen state.

Input Router ID-1’s Port address.

Actions to perform Router ID-1 connects to Router ID-0.

(Procedure)

Expected Result(s) Status

Router ID-1 connected to Router ID-0.

Pass

A
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6.9.8 TC - SSQ_Routing ~Router ID-0 & Router ID-1 Integration

TC - SSQ_Routing —Source node (Router ID-0)

Test Case ID
sends packet to destination node (Router ID-1).
Functional Area Router ID-0 & Router ID-1
Test Name

Router ID-0 sends packet to Router ID-1.

Description (Purpose) | Source node (Router ID-0) sends received packet from PG to

destination node (Router ID-1).

Prerequisite Router ID-0 & Router ID-1 should be connected.

Input ~ | Router ID-1’s Port address.

Actions to perform Packet sends from source to destination node.

(Procedure)

Expected Result(s) Status

Packet received at destination node. Pass
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7. Results and Discussions

In this chapter different experiments are performed to give an accurate measurement of
the performance of the neural network based algorithm. All tests were carried out on the
network topology given in Figure 4.1.

In this chapter, possible future directions of this thesis are also discussed.

7.1 Experimental Setup
The Q-tables were initialized with small random Q-values, except for the base cases.
Learning rate for forward exploration n¢ value for ‘theta’, and phi’ are summarized in

table7.1. Performance of the algorithms was found to be the best with these parameters.

Table 7.1- Parameter values for the slgorithm

Algorithms N¢ Theta Phi
Q-Routing 0.85 - -
SSQ-Routing - 0.5 0.5

In Table 7.1 Parameters for the Algorithms are shown. In Q-Routing and SSQ-routing

where the learning rates vale for ‘theta’ and ‘Phi’ are constant.

7.2 Learning at Constant Loads

In the first set of experiments, the load level was maintained constant throughout the‘
simulation. Results on two network topologies, namely the 36-node irregular 6*6 grid

(figure 4.1) and a 128 node 7-D hypercube are presented. The speed and quality of

adaptation at three load levels, low, medium and high, were compared. The typical load

level values for the two topologies are given in table 7.2.

The 'adapfive routing algorithms were found to have relatively similar performance and

learning behaviors (in average packet delivery time) within a given range.

Table7.2- Typical load values for two topologies

Topology # Nodes Low Load Medium Load High Load
6 X 6 Irregular Grid 36 0 - L75 1.75 - 2.50 2.50 - more
7- D hypercube 128 0-5 5-8 8 - more

A cecnd e Al ndisonsd ToasmmndZoarsss F rrvoseivery Yicisery A NN AQ




Chapter 7 ’ Results and Discussions

In Table 7.2 Load level ranges the number stands for number of packets Introduced in the
network per time step. The learning behavior of adaptive routing algorithms remains
roughly similar within a given load range (low, medium or high), but if the load changes
from one range' to ahother, the behavior can change quite draxriétically. In real life
communication networks, the load is usually in the medium range, and occasionally
changes to low or high levels.

The performance and learning behavior is significantly different from one load level to
another for some routing algorithms. For example, learning behavior of Q-Routing shows
different behavior at medium and high load levels (figure 7.3 and 7.5).

Three representative load levels, one in each of the three ranges, were used in the
experiments. For the grid topology, they were 1.25 pkts/step, 2.5 pkts/step and 3.5
pkts/step.

For 7-D hypercube topology, they were 3 pkts/step, 7 pkts/step and 10 pkts/step. The load
level ranges depend on the topology, more specifically on the average branching factor
‘and number of nodes in the network.. The 36 node 6 * 6 grid and the 128 node 7-D hyper-
cube have different topologies, hence their load ranges are also different. These ranges
were decided after a number of experiments.

The learning behavior was observed in terms of average packet delivery time and number
of packets in the network during learning. The packet delivery times of all packets'
reaching their destination in a window of 25 time steps were averaged. Similarly, the
number of packets in the network was averaged for every successive window of 25 time
steps. Results averaged over 50 simulation runs, each starting with random initializations
of Q-values for both network topologies are reported in figures 7.1 through 7.12.
Statistical signiﬁcance is computed' at 99% confidence. | |

At low load levels, the average packet delivery time for both the grid (figure 7.1) and the
hypercube (figure 7.3) and the number of packets in the network for the grid (figure 7.2)
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Figure 7.1: Average packet delivery time at a low load level for the grid topology: Difference between Q-

Routing and SSQ-Routing is statistically significant between 300 to 800 time steps.

and the hypercube (figure 7.4) shows that there is not much gain in the speed of learning

from Q-Routing to SSQ-Routing. Reason for this trend is that at low loads, what matters
the most is the amount of exploration and the algorithm that allows more exploration per

packet hop will learn faster. SSQ-Routing learns more than 3 times as fast as Q-Routing

for both topologies.

At medium load levels, the average packet delivery times (figure 7.5 for the grid and

figure 7.7 for the hypercube).and the nurhb_er of packets in the network (figure 7.6 for the
grid and figure 7.8 for the hypercube) show that both SSQ-Routing performs better than

Q-Routing. This result is significant because it highlights the contribution of both the

quality and qﬁantity of exploration in learning. They contribute in two different ways to

increase the performance of SSQ-Routing.
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Figure 7.2: Number of packets in the network for the grid topology at a low load level: Difference between

SSQ-Routing and Q-Routing is significant after 175 time step.
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Figure 7.3: Average packet delivery time for 7-D hypercube at low load: Difference between SSQ-Routing

and Q-Routing is significant between 175 to 800 time steps.

At high load levels the average packet delivery time (figure 7.9) and the number of
packets in the network (figure 7.10) for the grid topology show that while Q-Routing
converges to a qualitatively poor routing policy, and SSQ-Routing converge to

qualitatively similar policies.
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Figure 7.4: Number of packets for 7-D hypercube at low load: Difference between SSQ-Routing and Q-

Routing is significant after 150 time step.

Q-Routing learns' qualitativély $imilar- roUting policy as SSQ-Routing but learning is
twice as fast in the later. The learning behavior for Q-Routing and SSQ-Routing is
similar in both topologies at low and medium load levels. However, at high loads Q-
Routing fails to converge to a policy qualitatively as good as SSQ-Routing for grid
topology but this trend is not reflected in the hypercube topology. The reason being that
the hypercube is a very symmetric network with not much alternatives to choose from
while in grid topology, there could be multiple routing policies due to no symmetry in the

topology. Hence, the performance improvements might vary with topology but in general
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SSQ-Routing was found in all cases to improve significantly in speed of learning and in
some topologies even in quality of the policy learned. Only grid topology is used in the
next two sets of experiments, evaluating and comparing the performance of adaptive

routing algorithms for adaptation to changes in traffic pattern and network topoldgy.
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Figure 7.5: Average packet delivery time for the grid topology at a medium load level: Difference between

S$SQ-Routing and Q-Routing is significant between 300 to 1900 time steps.
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Figure 7.6: Number of packets in the network for the grid topology at a medium load level: Differences

between both algorithms are significant after 500 time step and remain so for ever.

7.3 Adaptation to Varying Traffic Conditions

In the second set of experiments, Q-Routing, and SSQ-Routing, are compared with
respect to their ability to adapt to variations in traffic patterns in the grid topology. Both
algorithms were first allowed to leam an effective routing policy at a load level of 2

pkts/step and a uniform traffic pattern, where the probability that each node generates a

packet to any other node is equal.
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Figure 7.7: Average packet delivery time for 7-D hypercube at medium load: Difference between SSQ-
‘Routing and Q-Routing is significant between 200 to 2750 time steps.
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Figure 7.8: Number of packets for 7-D hypercube at medium load: Trends are very similar to the ones in

figure 7.7. The significance limits are also same as in figure 7.7.

After convergence (in 2000 simulation steps), the traffic pattern was changed so that the
probability of generating a packet destined to a node across the cluster becomes 10 times
higher than within the cluster (figure 4.1). Only single run is shown in this case to depict .
the variability during adaptation process. Results from 50 test runs were used to compute

statistical significance and are reported below.
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Figure 7.9: Average packet delivery time for grid topology at high load: Difference between SSQ-Routing

and Q-Routing is significant between after 1000 time steps.

The average packet delivery time for each algorithm is shown in figure 7.13. Both
Algorithms converge to an effective routing policy for the initial traffic condition, by
time step 2000. As the traffic pattern changes at 2000, the old routing policy is no longer -
effective and both algorithms start updating their Q values to adapt to the change in the
pattern. SSQ-Routing is faster than Q-Routing. There is a significant improvement over
Q-Routing between 2600 to 2650 time steps. In fact, SSQ-Routing adapts to change in

traffic pattern 50 time steps faster than Q-Routing on an average.

7.4 Adaptation to Changing Network Topology

The third set of experiments compared the routing algorithms' ability to adapt to the

changes in network topology. A link was added between nodes 3 and 34 in the 6*6 grid
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Figure 7.10: Number of packets in the network for grid topology at high load: Differences between SSQ-

Routing and Q-Routing is significant during the learning phase from 1000 to 5500 time steps.

topology (figure 7.14) for these experiments. The routing algorithms were first allowed to
learn an effective routing policy for the new network at a load level of 2.0 pkts/step until -
they converged (in 2000 time steps). At time step 2000, the link between node 12 and 25
was removed (figure 7.15). That is, the Q tables of node 12 and 25 were updated such
that Q;2(25,*) and Q;5(12,*) were all set to Infinite Cost and the corresponding routing
tables were also updated accordingly. The C values were not changed. Only single run is
shown in figure 7.16 to depict the variatfons in adapfaﬁon process. waever, statistiéél

significance is computed over 50 runs and is given below.

Figure 7.16 shows the average packet delivery time between time steps 1800 and 3200
for both algorithms. As soon as the link between nodes 12 and 25 went down at time
2000, the average packet delivery time of both algorithms started increasing. They all
tried to adapt to the change in network topology. SSQ-Routing learns better and faster Q-
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Routing. The improvement from Q-Routing is significant with 99% confidence in the

interval 2400 through 3200 (and beyond) time steps.
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Figure 7.11: Average packet delivery time for 7-D hypercube at high load: All differences are significant
between 2400 to 300 time steps. Q-Routing is significantly different from SSQ-Routing.
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Figure 7.12: Number of packets for 7-D hypercube at high load: The trend is similar to that in figure 6.11

both for range of significant differences and quality of final policy learned.

The significant improvement in SSQ-Routing over Q-Routing is evident. Q-Routing fails
to learn an effective routing policy for the changed topology even in 1000 steps (till step -

3200), while SSQ-Routing has almost settled to an effective routing policy at that time.
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Figure 7.13: Adaptation to a change in traffic pattern. Single run is shown. Note the variations in the
adaptation process. SSQ-Routing adapts around 50 time steps faster than Q-Routing. Difference between

Q-Routing and SSQ-Routing is statistically significant between 2600-2650 time steps.

Figure 7.14: Grid topology before link 12 and 25 went Figure 7.15: Grid topology after link between

down. This Topology is different from the one in figure 12 and 25 has been removed, by fixing vectors

4.1. it has an additional link between 3 and 34 nodes. Q12(25, *) and Q,5(12,*) to infinite cost.
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Boyan and Littman (1994) observed that Q-Routing fails to revert to the original routing
policy once the network topology is restored. This problem persists in SSQ- Routing also.
However, Bellman-Ford routing algorithm does not suffer from this problem and can

adapt to changes in network topology very effectively.
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0 1 1800 2000 2200 2400 2600 2800 3000

Simulation time step

Figure 7.16: Adaptation to change a in the network topology. Q-Routing does not converge to an effective

policy while SSQ-Routing converges to an effective policy very fast.

7.5 Load level Sustenance

In addition to evaluating how fast the routing algorithms learn, it is impoﬁant to evaluate
how good the final policy is. For this reason, the average packet delivery time, after
steady state was reached, was measured for different load levels. These results indicate
how much load the final routing policy can sustain.

Figure 7.17 shows the relative performance of both routing algorithms on the 6*6 gird

topology (figure 4.1). The results were averaged over 20 simulations.
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Average packet delivery time (after convergence)

Chapter 7 ' Results and Discussions

The non-adaptive shortest path routing is best at low load levels (0-1.5 pkts/step), but as
the load increases to medium ranges (1.5-2.5 pkts/step), the nodes on popular routes start

flooding and waiting time increases, degenerating the performance.

0.5 1 1.5 2 2.5 3

Simutation time step

Figure 7.17: Average Packet Delivery time after convergence. The quality of the final routing policy is
directly related to the amount of load level it can sustain. SSQ-Routing is much superior than Q-Routing in

its ability to sustain high load levels. The difference between the two is statistically significant over all load

levels with 99% confidence.

SSQ-Routing performs significantly better than Q-Routing. This is because the quantity
of exploration is-more 'importanf than quality at low load leVelé. ‘At medium load levels,
Q-Routing leads to flooding of packets in the network, and the average packet delivery
time increases quickly. SS-Routing can sustain these load levels.

At high load levels (2.5 and higher pkts/step), the SSQ-Routing sustains up to 3 pkts/step

before breaking down.




Chapter 7 ' Results and Discussions

This result is a clear indication that both quality and quantity of exploration contribute to
the final routing policy, quantity being more significant than quality. In the Q-learning

framework, SSQ-Routing is the best adaptive routing algorithm currently known.

7.6 Conclusions and Future Work

SSQ-Routing with higher quantity of exploration and better quality of exploration than
Q-Routing was developed in this work. It was evaluated and compared to Q-Routing.

The ability to learn an effective routing policy starting from a random policy, the ability
to adapt to changes in traffic patterns, and the ability to adapt to changes in network
topology. SSQ-Routing is an improvement over the conventional adaptive routing
algorithms such as BF in a number of ways. First, SSQ-Routing tries to optimize more
realistic criteria, the average packet delivery time, while the conventional adaptive
routing algorithms try to learn the shortest path. Moreover, the amount of exploration
overhead in CDRQ-Routing is significantly smaller than that in BF which exchanges
complete cost tables between neighboring nodes. SSQ-Routing strikes a balance between
the amounts of overhead incurred and speed of adaptation whether it is from random
policy at fixed loads or to change in traffic pattern or change in network topology.
Reinforcement learning and neuro-dynamic programming are both relatively new fields
in computer science. The techniques involved still have some rough edges and are not
always fully understood, this is particularly the case with the application of function
approximation to reinforcement learning. But the results shown above are very
satisfactory yet.

A different function approximator may have shown more success. A radial basis function
and-tile coding, such as proposed by Sutton and Barto [31] could be a good aipproach tb
try, as Residual algorithms were considered as a solution but would require the Q-routing
algorithm to be re-phrased as an episodic learning task, which may not be feasible. A
more thorough and time consuming analysis of the methods proposed in this project
could lead to a more successful application of neural network function approximation to

the Q-routing problem.
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A1. Packet Generator

" Packet Generator{ At 1024}

Packet Generation History

LJ

Stait Generation l

Figure Al: Interface for Packet Generator
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Snapshots

A2. Router (Node-0)

> Router D-0 (At 4000}
- Received Packets History -~ - {\Weight T able Update History
Connect To PG Connect To Router-4 View Cutrent QWw-T ablef Exit

Figure A2: Interface for Router (Node-0)
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A3. Router (Node-1)

> Router ID-1 {At 4500)

Connect ToPG Connect To Router0 View Current QW-T able] Euit

Figure A3: Interface for Router (Node-1)
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Snapshots

A4. Router (Node-2)

“* Router ID-2 (At 5000)

- Received Packets History -~~~ . QWeight T able Update History

Connect To PG

Connect To Routers View Cunent QW-T ablef! Exit

Figure A4: Interface for Router (Node-2)
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A5. Router (Node-3)

> Router ID-3 {At 6000)

Connect To PG Connect To Router-1 l! View Current QW-T able Exit

Figure AS: Interface for Router (Node-3)
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A6. Router (Node-4)

“* Router ID-4 (At 4100)
Connect To PG Connect To Router-1 View Currert QW-Tab Ext %

Figure A6: Interface for Router (Node-4)
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A7. Router (Node-5)

" Router ID-5{At 4300)

Received Packets Hisiuy s (N igh T able Update Hislmy

Exit

Connect To PG Connect To Rowter-2 } View Cuntent OW-Table

Figure A7: Interface for Router (Node-5)
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Snapshots

A8. Router (Node-6)

“ Router ID-6(At 4600)

+ Received Packets Histogy -~~~ “1  QWeight Table Update History

Connect To PG Connect To Router-2

View Current Qw-T 2ble)

Ext §

| S

Figure A8: Interface for Router (Node-6)
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A9. Router (Node-7)

= Router ID-7{At 4800}

- Received Packets History -~~~ - QWeight Table Update History -

Connect To PG Connect To Router-2 View Current QW Table Ext l

Figure A9: Interface for Router (Node-7)
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A10. Router (Node-8)

“ Router ID-B{At 5500}

Received Packets History

-~ QWeight Table Update History

Connect To PG

Connect To Router-2

View Current QW-T able!

Figure A10: Interface for Router (Node-8)
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ABSTRACT

Efficient routing of packets in computer networks is a prerequisite for wide deployment of network-
enabled devices, especially mobile and distributed computing. Current approaches to this problem have
been partially successful. Boyan and Littman presented the Q-routing algorithm, a network routing
algorithm based on Q-learning, a method from the emerging field of reinforcement learning. Q-routing
learns to route packets in an adaptive manner. Neural networks have been used with some success to
perform Q-learning, and would seem to be a possible method to allow Q-routing to scale well beyond its
initial table-based implementation. This paper uses Q-routing algorithm. In this framework, the routing
information at individual nodes is maintained as Q value estimates of how long it will take to send a
packet to any particular destination via each of the node's neighbors. These Q values are updated
through exploration as the packets are transmitted. This paper attempts to apply a neural network as a
function approximator in an online reinforcement learning task, a field where neural networks have been
used with varying degrees of success in the past. A discussion of the factors involved in neural network
function approximation in reinforcement learning is provided. The main contribution of this work is the
faster adaptation and improved quality of routing policies. The results achieved are satisfactory, some
insight is gained into the difficulties of using neural networks as a function approximator in
reinforcement learning tasks.

Key Words: Reinforcement Learning, Q-Routing, Artificial Neural Network (ANN), Function
Approximation, Adhoc Networks, MANET.

1. INTRODUCTION
In a communication network information is transferred from one node to another as data packets. The

process of sending a packet from its source node ‘s’ to its destination node ‘d’ is referred to as packet
routing. Normally it takes multiple “hops” to transfer a packet from its source to destination node. On its
way, the packet spends some time waiting in the queues of intermediate nodes while they are busy
processing the packets that came earlier. Thus the delivery time of the packet, defined as the time it
takes for the packet to reach its destination, depends mainly on the total time it has to spend in the

queues of the intermediate nodes.
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Normally, there are multiple routes that a packet could take, which means that the choice of the route is
crucial to the delivery time of the packet for any (s,d) pair. If there was a global observer with current
information about the queues of all nodes in the network, it would be possible to make optimal routing
decisions: always send the packet through the route that has the shortest delivery time at the moment. In
the real world, such complete, global information is not available, and the performance of the global
observer is an upper bound on actual performance. Instead, the task of making routing decisions is
shared by all the nodes, each using only local information. Thus, a routing policy is a collection of local
decisions at the individual nodes. When a node ‘x’ receives a packet P(d) destined for node ‘d’, it has to

choose one of its neighboring nodes y such that the packet reaches its destination as quickly as possible.

The simplest such policy is the shortest-path algorithm, which always routes packets through the path
with the minimum number of hops. This policy is not always good because some intermediate nodes,
falling in a popular route, might have large queues. In such cases it would be better to send the packet
through another route that may be longer in terms of hops but results in shorter delivery time. Hence as
the traffic builds up at some popular routes, alternative routes must be chosen to keep the average packet
delivery time low. This is the key motivation of this paper that it learns alternate routes through

exploration as the current routing policy begins to lead to degraded performance.

Learning effective routing policies is a challenging task. In this paper, network makes routing decisions
using Q-routing in which Kohonen’s neural network is used as function approximator. This paper
presents improvements in reinforcement learning. The algorithm presented here, aims to be stable as

possible as under high loads while performing in less extreme situations.

2. BACKGROUND

Reinforcement learning

Reinforcement learning method is a method where supervised learning cannot easily be used because
there are no sufficient data or external knowledge that can be applied, a reward signal. Maximizing this
reward signal is the goal of reinforcement learning. Reinforcement learning algorithms develop a policy,

usually defined as a mapping of states and subsequent actions to expected reward.

Temporal difference learning is a major part of reinforcement learning theory, and covers a number of

methods such as TD(0), Q-learning and Sarsa.
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Q(st,a)«Q(s,a)tafru1+yQ(se1,ar+1)-Q(s1,a)] . QY]

The equation (1), referred to as the “Q-function” for quite obvious reasons, is the policy update rule used
in Q-learning. The update rule states how the value of the Q-function is updated for each state s; and for.
every action a; that can be taken from that state. r.+; is the immediate reward from this action, and

YQ(sw+1,1+1) is the discounted future reward from this state. The value v is the discounting rate.

Q-Routing
In Q-routing, the routing decision maker at each node x makes use of a table of values Q«(y; d), where

each value is an estimate, for a neighbor y and destination d, of how long it takes for a packet to be
delivered to node d, if sent via neighbor y, excluding time spent in node x’s queue. When the node has
to make a routing decision it simply chooses the neighbor y for which Qx(y; d) is minimum. Learning

takes place by updating the Q values.
On sending P(d) to y, x immediately gets back y’s estimate for the time remaining in the trip, namely

Q,(z’, d)=min Qyz, d) )

zeN(y)

where N(y) denotes the set of neighbors of node y. if the packet spent gy units of time in x’s queue, then

X can revise its estimate based on this feedback:

AQuY, dyn(Qy(Z’, d)F qx+ 8- Q«(y, d)) (3)

Where 1 is the “learning rate” constant for all Q-values updates and § is a transmission delay over the

link between nodes x and y (assumed same for all links).

Neural Networks (Kohonen’s Networks)

The objective of a Kohonen’s network is to map input vectors (patterns) of arbitrary dimension N onto a
discrete map with 1 or 2 dimensions. Patterns close to one another in the input space should be close to
one another in the map: they should be topologically ordered. A Kohonen’s network is composed of a
grid of output units and N input units. The input pattern is fed to each output unit. The input lines to

each output unit are weighted. These weights are initialized to-small random numbers.

The learning process is as roughly as follows:
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 Iinitialize the weights for each output unit
« loop until weight changes are negligible

o for each input pattern

present the input pattern

find the winning output unit

find all units in the neighborhood of the winner

update the weight vectors for all those units

o Reduce the size of neighborhoods if required.

The winning output unit is simply the unit with the weight vector that has the smallest Euclidean
distance to the input pattern. The neighborhood of a unit is defined as all units within some distance of

that unit on the map (not in weight space). The weights of every unit in the neighborhood of the winning

unit (including the winning unit itself) are updated using:
Wni= Wni +phi *1ij * (Np-wy; ) 4
where ry=e (@D 2y / (9%theta)
phi= Learning rate parameter
theta = Learning Factor
dist(i, j) = Guassian density function.

This will move each unit in the neighborhood closer to the input pattern. As time progresses the learning
rate and the neighborhood size are reduced.

3. RELATED WORK

Reinforcement learning is a relatively new and emerging area of machine learning theory. Very limited
work has done in this area of field. Richard S. Sutton and Andrew G. Barto [1] presented the basic
intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g.

supervised learning and neural network, genetic algorithms and artificial life, control theory.
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The field is still quite young, and there are problems that are still being researched which are proving
difficult to solve. However, the reinforcement learning approach is very promising even in these early
stages, and seems a good fit for the network routing problem as Boyan and Littman [2] showed. This
paper describes the Q-Routing algorithm for packet routing in which a reinforcemént learning module is

embedded into each node of switching network.

Neural networks are a technique for pattern recognition and function approximation based originally on
ideas from biology and the study of neurons [3], although the theory behind neural networks is based on

statistical foundations [4]. Neural networks seek to mimic the apparently simple, but extremely

effective, structure of the human brain.

Neural network has been used to some success to perform Q-learning. There has been notable success
with this method using Q-learning and a neural network which approximate the value function. Will
Newton was the one who presented the idea of using Neural Network as function approximator in online
reinforcement learning task [5]. The results achieved were disappointing, but some insight is gained into

the difficulties of using neural networks as a function approximator in reinforcement learning tasks.

Ritesh Gandhi [6] used Kohonen’s Neural Network to solve Traveling salesman problem (TSP).

4. METHODOLOGY

SSQ-Routing Algorithm
Q-routing and Kohonen’s network are combined in this algorithm. Kohonen’s network is used as

function approximator. Q-value table is updated using Kohonen’s network updating rule as in equation

2.
Main steps of the algorithm are:
1. Initial Q-values can be calculated as
ry=e G2y / (2% therq)
where
dist(i,j)= exp(-d*/phi) / sqrt(2)

2. Take source node as ‘starting node’.

3. Find the next neighboring node having minimum Q-value.
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4. Update the Q-value for that selected node by using the equation derived from equation- (4) as
AQ(y, d)= Quly, d) +phi*ry * (Qy(Z’, d) - Qu(y, d) )
Where

Qy(z, d)= min Qy(z, d)

zeN(y)

5. Decrease ‘theta’,’ phi’ and recalculate ‘r’ value for the selected node only.

6. Compare selected node with ‘ending node’, if not equal then, go to step 3 else exit.

5. IMPLEMENTATION

Simulation Environment

The simulation environment was built on NS-2, a discrete event simulator targeted at networking
research. NS-2 provides substantial support for simulation of TCP, routing, and multicast protocols over

wired and wireless (local and satellite) networks.

Network Topology used

The network topology used for simulation is 6X6 irregular grid shown in figure-1 due to Boyan and
Littman (1994). In this network, there are two possible ways of routing packets between the left cluster
(nodes 1 through 18) and the right cluster (nodes 19 through 36): the route including nodes 12 and 25
(R1) and the route including nodes 18 and 19 (R2). For every pair of source and destination nodes in
different clusters, either of the two routes, R1 or R2 can be chosen. Convergence to effective routing

policies, starting from either random or shortest path policies.
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Figure- I: The 6X6 Irvegular Grid. The left cluster comprises of nodes 1 through 18 and the right cluster of
nodes 19 theough 39. The two alternative routes for traffic between clusters are the rowte including the link
between nodes 12 and 25 {(route R1) and the rowte involving the link betwreen nodes 18 and 19 {route R2). R
becomes a bottleneck with increasing loads and the sdaptive routing algorithm needs to make use of R2.

Parameters

The Q tables were initialized with small random Q values, except for the base cases. Learning rate for
forward exploration nr _ value for ‘theta’, and ‘phi’ are summarized in table 1. Performance of the

algorithms was found to be the best with these parameters.

Table 1- Parameters

Alsorithins Nt | Theta Phi
Q-Routing 0.85 : -
$SQ-Routing - 0.5 ' 0.5

In Table 1 Parameters for the Algorithms are shown. In Q-Routing and SSQ-routing where the learning

rates vale for ‘theta’ and ‘Phi’ are constant.
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6. RESULTS
Learning at Constant Loads

In the first set of experiments, the load level was maintained constant throughout the simulation. Results
on a network topology, namely the 36-node irregular 6*6 grid (figure -1) are presented. The speed and
quality of adaptation at three load levels, low, medium and high, were compared. The typical load level

values for the topology are given in table- 2

The adaptive routing algorithms were found to have relatively similar performance and learning

behaviors (in average packet delivery time) within a given range.

Table 2- Load Level Ranges

Topology E Nodes | Low Load Mediwm Load | High Lead
6 X 6 Ivegulr Grid | 36 0 - 175 1.75 - 2.50 2.50 - more
- D hypercube 128 8 -5 5-8 8 - more

In Table 2 Load level ranges the number stands for number of packets Introduced in the network per
time step. The learning behavior of adaptive routing algorithms remains roughly similar within a given
load range (low, medium or high), but if the load changes from one range to another the behavior can be
changed quite dramatically. In real life communication networks, the load is usually in the medium

range, and occasionally changes to low or high levels.

The performance and learning behavior is significantly different from one load level to another for some
routing algorithms. The learning behavior was observed in terms of average packet delivery time and

number of packets in the network during learning.
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Simulation time step

Figure 2: Average packet delivery time at a low load level for the grid topology: Difference between Q-

Routing and SSQ-Routing is statistically significant between 300 to 800 time steps.
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Figure 3: Number of packets for 7-D hypercube at low load: Difference between SSQ-Routing and Q-
Routing is significant after 150 time step.

At low load the average packet delivery time for both the grid (figure 2) and the hypercube (figure 3)
shows that there is not much gain in the speed of learing from Q-Routing to SSQ-Routing. Reason for
this trend is that at low loads, what matters the most is the amount of exploration and the algorithm that

allows more exploration per packet hop will learn faster. SSQ-Routing learns more than 3 times as fast

as Q-Routing for both topologies.
300
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Figure 4: Average packet delivery time for the grid topology at a medium load level: Difference

between SSQ-Routing and Q-Routing is significant between 300 to 1900 time steps.

At medium load levels, the average packet delivery times (figure 4 for the grid and 5 for the hypercube)
shows that both SSQ-Routing performs better than Q-Routing. This result is significant because it
highlights the contribution of both the quality and quantity of exploration in learning. They contribute in

two different ways to increase the performance of SSQ-Routing.



Number of packets in network

© European Journal of Scientific Research, Vol 9, No 2, 2005

900
800
700
600
500
400
300
200

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Simulation time step

Figure 5: Average packet delivery time for 7-D hypercube at medium load: Difference between SSQ-
Routing and Q-Routing is significant between 200 to 2750 time steps.
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Figure 6: Average packet delivery time for grid topology at high load: Difference between SSQ-
Routing and Q-Routing is significant between after 1000 time steps.

At high load levels the average packet delivery time (figure 6) for the grid topology show that while Q-
Routing converges to a qualitatively poor routing policy, and SSQ_—Routing converge to qualitatively

similar policies.
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Figure 7: Average packet delivery time for 7-D hypercube at high load: All differences are significant
between 2400 to 300 time steps. Q-Routing is significantly different from SSQ-Routing

Adaptation to Changing Network Topology
The third set of experiments compared the routing algorithms' ability to adapt to the changes in network

topology. A link was added between nodes 3 and 34 in the 6*6 grid topology (figure-1) for these
experiments. The routing algorithms were first allowed to learn an effective routing policy for the new
network at a load level of 2.0 pkts/step until they converged (in 2000 time steps). At time step 2000, the
link between node 12 and 25 was removed (figure 6). That is, the Q tables of node 12 and 25 were
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updated such that Q;2(25,*) and Q25(12,*) were all set to Infinite Cost and the corresponding routing

tables were also updated accordingly. The C values were not changed. Only single run is shown in

figure-7 to depict the variations in adaptation process. However, statistical significance is computed over

50 runs and is given below. -

Figure 8: Grid topology before link 12 and 25 went Figure 9: Grid topology after link between
down. This Topology is different from the one in figwe 12 and 25 has been removed, by fixing vectors
1. it has an edditional link between 3 and 34 nodes. Qix(25, *) end Q1{12,%) ta infinite cost.
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Figure 10: Adaptation to change a in the network topology. Q-Routing does not converge to an

effective policy while SSQ-Routing converges to an effective policy very fast.

7. CONCLUSIONS AND FUTURE WORK

SSQ-Routing with higher quantity of exploration and better quality of exploration than
Q-Routing was developed in this work. It was evaluated and compared to Q-Routing.

The ability to learn an effective routing policy starting from a random policy, the ability to adapt to
changes in traffic patterns, and the ability to adapt to changes in network topology. SSQ-Routing is an
improvement over the conventional adaptive routing algorithms such as BF in a number of ways. SSQ-
Routing strikes a balance between the amounts of overhead incurred and speed of adaptation whether it
is from random policy at fixed loads or to change in traffic pattern or change in network topology.
Reinforcement learning and neuro-dynamic programming are both relatively new fields in computer
science. The techniques involved still have some rough edges and are not always fully understood, this

is particularly the case with the application of function approximation to reinforcement learning. But the

results shown above are very satisfactory yet.

A different function approximator may have shown more success. A radial basis function and tile
coding, such as proposed by Sutton and Barto [7] could be a good approach to try, as Residual
algorithms were considered as a solution but would require the Q-routing algorithm to be re-phrased as
an episodic learning task, which may not be feasible. A more thorough and time consuming ahalysis of
the methods proposed in this project could lead to a more successful application of neural network

function approximation to the Q-routing problem.
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