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Preface

The generalized theory of thermoelasticity is one of the modified version of classical
uncoupled and coupled theory of elasticity and have been developed in order to remove
the paradox of physical impossible phenomena of infinite velocity of thermal signal in
the classical coupled theory. Lord and Shulman [1] developed the generalized
thermoelasticity theory involving one relaxation time. Green and Lindsay [2] formulated
a temperature dependent thermoelasticity that includes two thermal relaxation times and

does not violate the classical Fourier law of heat conduction.

The foundation of magnetoelasticity was proposed by Kaliski and Petykicwics
[3]. Increasing attention on this topic is due to the interaction between magnetic field and
strain field in a thermoelastic solid due to its many applications in the field of geophysics,
plasma physics and related topics. A two dimensional problem for a half-space in
magneto-thermoelasticity with thermal relaxation was discussed by Sherief and Kamal
[4]. The phenomena of reflection and refraction of plane wave has been discussed by
many authors e.g. Othman and Song [5] viewed the influence of temperature dependent
elastic moduli on the reflection magneto thermoelastic waves with two relaxation times.
Further [6-15] studied the reflection and refraction of magneto thermoelastic waves. Abd-
Alla [16] considered the refraction and reflection of SV-waves at the solid liquid
interface by considering primary stress and three thermoelastic theories. Kumar and Saini
[17] illustrated the effect of refraction and reflection of waves at the interface between
two different porous solids. Wei et al. [18] investigated the refraction and reflection of P-

waves at thermoelastic and porous thermoelastic medium.

In the first chapter, we present some basic definitions. The second chapter
deals with the reflection of magneto-thermoelastic waves with two relaxation times and
temperature dependent elastic moduli. In the third chapter, we discuss the influence of
two relaxation times on P, SV and Thermal waves at interface with magnetic field and

temperature dependent elastic moduli.
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Chapter 1

Preliminaries

In this chapter some basic definitions are discussed.

1.1 Definitions

1.1.1 Waves

A wave is an oscillation accompanied by transfer of energy through a medium.

1.1.2 Elastic Waves

A wave in which the propagated disturbance is an elastic deformation of the medium.

1.1.3 Elastic Modulus

Elastic Modulus is the ratio of the applied stress to the change in shape of an elastic body.

1.1.4 Reflection

Reflection is the change in direction of a wave front at an interface between two different media

so that the wave front return into medium from which it is originated.



1.1.5 Refraction

Refraction is the change in direction of propagation of a wave due to change in its transmission

media.

1.1.6 Interface

The point where two medium are separated.

1.2 Seismic Waves

Seismic waves produced by the energy released during an earthquake. There are two types of
seismic waves.
Surface waves

Body waves

1.2.1 Surface Waves

A surface wave is a mechanical wave that propagates along the interface between differing
media, usually as a gravity wave between two fluids with different densities. There are two
types of surface waves.

Rayleigh waves

Love waves
1.2.2 Body Waves
These are the waves propagating inside the elastic material or travelling with in the medium.
There are two types of body waves, P-waves and S-waves.

1.2.3 P-Waves

P-waves are known as primary, pressure or dilatational waves. These waves moves parallel to
the direction of wave propagation. They are the first seismic wave to be felt during an earth

quake. They can move through solid rock and fluids and they are the least destructive.



1.2.4 S-Waves

S-waves are known as secondary, rotational waves or shear waves. These waves move up and
down or side to side as a sine wave perpendicular to the direction of wave propagation. They
are the second seismic wave to be felt or recorded during an earthquake. These waves are the

most destructive.

1.2.5 SV-Waves

If the displacement vector is along the vertical direction, we call such waves as SV-waves.

1.3 Strain

When an external force is applied on a body, there is some change occur in the dimension of
the body. The ratio of this change of dimension in the body to its actual length is called strain.
Strain is dimensionless quantity.

Change in Dimension
Original Dimension

Strain =

1.3.1 Types of Strain

Strain is of three types depending upon the change produced in a body when an elastic body

is subjected to stress.

Longitudinal Strain

It is the ratio of the change in length of a body to the original length of the body. If L is the
original length of a rod or a wire and the final length of the rod or the wire is L + AL under
the action of a normal stress, the change in length is AL.

Longitudinal Strain = %



Volume Strain

It is the ratio of the change in volume of a body to its original volume. If V is the original
volume of a body and V + AV is the volume of the body under the action of a normal stress,
the change in volume is AV.

Volume Strain = ——.

vV

1.3.2 Normal strain

Normal strain measures change in length along a specific direction. It is also called extensional
strain as well as dimensional strain.

1.3.3 Shear strain

Shear strain measures change in angles with respect to two specific directions.

1.3.4 Normal Stress

Stress that acts perpendicular to a surface. Can be either compressional or tensional.

1.4 Snell’s Law

A law describes the refraction of seismic waves at the surface between two media, such that
the product of the refractive index of the first medium and the sine of the angle of incidence
equals the product of the refractive index of the second medium and the sine of the angle of
refraction.

n; sind; = ng sinfs.



where n; is index of refraction of 1%t medium, 8, is incidence angle, n2 is index of refraction of

2™ medium, @, is refractive angle.

1.5 Equation of Motion

The equation of motion for an elastic medium is
oijj+fi=p (Us) ) (1.1)

where 0;;,; is the stress force acting on the direction of z; axis, f; is the body force, p is the

density of the medium and Uj; is the displacement vector.

1.6 Energy Equation

The energy describe the distribution of heat in a given section over a time. The first law of
thermodynamics i.e., the energy may neither be created nor destroyed. Therefore, the sum of
all the energies in the system is a constant.

The law of conservation of energy is described as

KV2T + K*V?T = preT + nTodivi, (1.2)



where 7 is the thermal modulus, p is the density of the medium, T is the temperature, Tp is
the uniform reference temperature, u is the displacement vector, TE i8 the specific heat of the

medium at constant strain, K is the thermal conductivity and K* is a material constant.

1.7 Maxwell Equations

The equations that relate elastic and magnetic field to their sources, charge and current density

are known as Maxwell’s equations. These equations are

curlh = J+ &k, (1.3)
curlE = —uo%tl!, (1.4)

E = —po(axHo), (1.5)
divh = 0, (1.6)

where g, is magnetic permeability, E is induced electric field, Hy is initial uniform magnetic

intensity vector, €g is electric permeability and J is the current density vector.



Chapter 2

Reflection of
Magneto-Thermoelastic Waves with
Temperature Dependent Elastic

Moduli and Two Relaxation Times

2.1 Introduction

This chapter is a review work of Ref [5]. This chapter studies the effect of magnetic field on the
reflection of the plane thermoelastic wave from the boundary of elastic half space. The reflection
coefficient ratios of different reflected waves with an incident angle have been obtained for Green
and Lindsay theory and dynamical coupling theory. The effect of the permanent parameters

on the distribution of reflection coefficient ratios are shown graphically.

2.2 Mathematical Formulatio

Consider linear, an isotropic, homogeneous, perfectly conducting and thermally elastic medium
whose mechanical properties depends on temperature having the half space
G={(z, y, 2)} 1 —o0<z,y <00, —00 < z2>0}

Let Ty is the temperature of the half space and a constant magnetic field Hy = (0, H, 0)is



applied in the positive y-axis. The basic equations with respect to CD theory and GL theory
in the absence of heat source are
(1) Equation of motion

S =045+ fo (2.1)

here f; is the Lorentz force has a form
fi = no(d x Ho);, (22)

where the derivative with respect to time represents a superposed dot and a comma after suffix

shows material derivatives, ¢, j =z, 2.
Using the magnetic field h = (0, h, 0). in Egs. (1.3) — (1.6), we have

oh oh
fi=—poH 5~ comgH uy, f2=0, fa=—pgH P cougHw g1 (2.3)

(2) Under the GL theory, the constitutive law has the form
Ou 0 or
oij = 2peij + 05 [/\ (&- + 6—1:) -7 (T -To+ voﬁ)] . (2.4)

(3) Strain-displacement relation

1
eij = 5 (wij + ). (2.5)

(4) Under GL theory, the heat conduction equation is

KV2T = prg (1 + vlgt-) % + ﬂTo% (% + %1;”) . (2-6)
In the above equations, K is thermal conductivity, p is density, A, u are lame’s constants,
7 is specific heat at constant strain, u; is components of displacement vector, T is absolute
temperature, 0;; is components of stress tensor, 7 is thermal parameter, ¢ is time and vp, v
are two relaxation times.
Consider the two dimensional unsteady problem in zz plane, the displacement component
are given below.

uz =u(z,2,t), uy=0, u,=w(z,z2t). (2.7)

10



The displacement potentials ® and ¥ are given below

9 oY 0% oY

= - = — 4 —. 2.
dx 0z’ v az+8:v (28)

U

We assume that
E=Ef(T), A=XEof (T), n=pBof(T), n=mnoEof(T). (2.9)

Let the dimensionless temperature is f (T') . The modulus of elasticity is temperature indepen-
dent when f(T) =1 and E = Ep.
Using Egs. (2.3) and (2.4) into Eq. (2.1) taking into consideration of Eqs. (2.5) and (2.9)

we have the following form

Pu u OPuw Oezs i} .
pw = Eof (T) [Ao (517 + 39:_31_) + 2#()% - ‘I’]o-a—x (T + ’UOT)]
36,, oh 2712 6211,
+2Eof (T) po Ep poH e H4¢g 52 (2.10)
azw azu azw aezz a -
Porr ~ Eof (T) ['\0 (az&t + 791,_2) + 240 9z 5, (T-HJOT)]
"deys oh 9.9 OCw
+2E0f (T) Ho 9z F'OHaz - I‘OH €0 92" (2'11)
Putting Eq. (2.8) in Egs. (1.3) — (1.6), we can obtain
= —HV?9, (2.12)
where V2 is Laplace’s operator.
We introduce the non-dimensional variables as follows
" — Ti " __ u‘ . __ _t_ ® __ 1)_0 * __ 1)_!_
i wlc't’ %= w10¢’ &= w1’ Yo = wl’ 1= wl’
. i « __ Tij . _ UoEo (T - TO) _ Cg
R = H’ Uij—pctz’ I'="—%—", ﬂ_1+?a
1 1
B (2.13)

1-8T,  f(To)

11



After non-dimensionalize, Eqs. (2.5), (2.6), (2.10), (2.11) and (2.12) are taking the following

aT
ﬂﬂl%zt—f = (14 B17H) Ve — (T + ”03{> ) (2.14)
2
¥
ﬂﬂl%?z- = (1-a)V2y, (2.15)
VT = (% + vl%) + eV, (2.16)
h=-V2&. (2.17)
The constitutive equation reduce to
Ou Ow oT
o= (- ) g+ 5 + 8 a1 (B4 52) - (T4 | @29
where
_ BoOotu) G mD o2 po
cF Ty ST RCr Tt e
Eo (Mo +2p9) 1 K
c? = 2TV 2= —, = .
¢ p meo’ 17 pClre

Here ry is the amount of magnetic pressure and Ey is constant modulus of elasticity at 8* = 0.
C, is called Alfven speed, ¢ is the usual thermoelastic coupling parameter. Also we can see
from Eqgs. (2.14) — (2.16) the dilatational wave is affected due to the presence of the thermal
effect and the magnetic field, while the coupled rotational waves remain unaffected.

We study the basic equations for the following two theories.

1) Classical and dynamical coupled theory

70=0, 711=0

2) Green and Lindsay’s theory

712 10>0

12



2.3 Solution of the Problem

For a harmonic wave propagated in the direction of zz-plane, and make an angle 0 with the

z-axis, we assume the solutions of the system of Egs. (2.14) — (2.17) in the form:

{®, T, h}(z, 2, t) = {®1, Th, hy} exp {i€ (zsinf + zcosf) — wt},
¥ (z, 2z t) = Texp{il(z sin 6 + zcos0) — wt}, (2.19)

where £ and £ are the wave numbers and w is the complex circular frequency.

Substituting Eq. (2.19) into Egs. (2.14)—(2.17), we arrive at a system of three homogeneous

equations:
({201 + ﬂﬂlwz) &, +pTh =0, (2.20)
weg?®; + (€2 —wq) Th =0, (2.21)
—£28, + h1 =0, (2.22)

in which a; =1+ ByrH, p=(1-wwo), 9= (1 - ww).
The system of Egs. (2.20) — (2.22) has non-trivial solutions if and only if the determinant

of the factor matrix vanishes. So

=0. (2.23)
This yields
4 BBw-—oug—pe o wo

v — véi——— =0, 2.24
BB BB 229

in which v = % is the velocity of P-waves.

From Egs. (2.15) — (2.19), we can obtain
1-—

Wi =9 o w= (2.25)

BBy

in which W = ¥ is the velocity of the SV-waves.



Fig. 2.1: Geometry of the Problem

2.3.1 For Incident SV-Wave

Eq.(2.24) is quadratic in v2, there are two dilatational waves traveling with two different ve-
locities. So assuming that when a SV-wave strikes at the boundary z = 0 within the elastic
medium, it is reflected as SV-wave that makes an angle § with the negative z-axis and two
reflected dilatational waves (P-wave and thermal wave) that makes angles §; and 6; with the

same direction (see. Fig. 2.1). The displacement potentials ® and ¥ can be written as
® = A exp {i€, (zsin ) — zcos61) — wt} + Az exp {i€; (zsinf; — zcosb3) — wt}, (2.26)

¥ = By exp {if (zsinf + z cos§) — wt} + Byexp {if (zsinf — zcosh) — wt}. (2.27)

If the amplitude ratios of the reflected waves and incident wave %f, ﬁ}, %f give the correspond-
ing reflection coefficients. The angles 6, 6;, 62 and the corresponding wave numbers ¢, ¢ 1 &2

are defined by the following relation:

§1sinf) = £, sin 03 = €siné, (2.28)

14



on the interface z = 0 of the medium, relation (2.24) may also be written as

. 0 . /
sind; sinf; _sinb

= 2.29
- e 7 (2.29)

in which

i=L vy = ,é=%=W= (2.30)

=Y
&1
and vy, vy are roots of Eq. (2.28).

2.3.2 For Incident P-Wave

Consider the incident P-wave falls on the boundary z = 0, it is reflected as SV-wave that makes
an angle 6, with the negative 2-axis and two reflected dilatational waves (P-wave and thermal
wave) that makes angles 6 and #; with the same direction (see. Fig. 2.1). The displacement

potentials ® and ¥ can be written as

® = Bjexp{it; (zsinf+ zcosf) — wt} + Byexp {i€; (zsind — zcos ) — wt}

+A; exp {i€, (zsinf; — zcos ) — wt}, (2.31)

¥ = A exp {il (zsinf2 — zcosfz) — wt}, (2-32)

also the angles 6, 6, 62 and the corresponding wave numbers &;, &3, £ are defined by the
following relation:

£, 8in0 = €, sin 6y = ¢sin b, (2.33)
on the interface z = 0 of the medium, relation (2.33) may also be written as:

sin @ _ sinf; _ sin 69
v, @ (2.34)

in which vy, va, ¢ is the same as that obtained in Eq. (2.30).

15



2.4 Boundary Conditions

At the free surface, normal and tangential stress must vanishes.
0;;=0 (j=z,2) onz=0 (2.35)

At the free surface, the boundary is thermally insulated.

QT——O on z2=0. (2.36)
0z

2.5 Expressions for the Reflection Coefficients

2.5.1 For Incident SV-Wave

Using the boundary conditions (2.35), (2.36) into Egs. (2.26), (2.27), we have the following

relations:

& A ¢ Ay B
Vi B —-sin26; + -—2-B—1 sin 202 — B, cos 260 = cos 20, (2.37)
A [2(a—-1) . Al [2(a-1) . BiTH
B; . .
-g la- 1)sin26 = (1 — a)sin 26, (2.38)
1

A1 1351 ﬂﬂ1 al _
B [ v1 cos b, + B o +— Vi cosf = 0. (2.39)

The solution of this system for the reflection coefficient ratios of SV-wave %}, reflection coeffi-

cient ratios of P and thermal waves %’; and %} are

A1 B A2 P2 B2 P3
= 0 y_f22_22 x =22 2.40
"B & "B @& 3TB @& (2.40)
in which
= (1 —a) v [BB1v3 + a1 sin 48 cos b3, (2.41)
Po=(a-1)v} [ﬂﬁlvf + 1) sin48 cos by, (2.42)

16



[ cos20 [1-a+Biru+ BB1v3)
P = - i ol
) vz [BB1v} + ] cos by L —(1—a)cos2(0+62)

[ cos20 [1-a+pira+ BBV

2.43
L —(1—-a)cos2(0+61) (243)

+c'2v1 [ﬂﬂlvg + a1] cos By

cos20 [1 —a+ Byru + BB1v3] ]

9 = o] cosl [ —(1-a)cos2 (0 —62)

cos20 [1 —a+ firu + BB,V

] . (2.44)
—(1—a)cos2 (0 —61)

+ a3 cos by [

2.5.2 For Incident P-Wave

Using the boundary conditions (2.35), (2.36) into Egs. (2.31), (2.32) we have the following

B, . Ar1vi Ay .
B, o 20 + Ev—é sin 20, — BVl cos 205 = sin 20, (2.45)
i+ By + A vi [2 (1 - a)sin?6y + By +ﬂﬁ1v§]
B,  Bi1v2|2(1-—a)sin®8+ Byry + BB1vE
Ag v} [ (o — 1) sin® 6, ]
2271 =0, 2.46
B1c? [2(1 - a)sin?8 + Bty + BB V3 (2.46)
Bs Ay V:{ (ﬂﬁ1v§ + al) cos
—=cosf+ ——3 = cosf. 2.47
By Bivi| (BB1v}+an) (247)

The solution of this system for the reflection coefficient ratios of P and thermal waves gf and

}—“;}, the reflection coefficient ratio of SV-wave ﬁ{, are

xo2_Mo oy A4 _Z2 oy _2_78 (2.48)
2 2

17



in which

Ry = —-v3(BByv3+on)cosby [ ! 6, ]
—vivy [ﬂﬂlvf + o] cos @ [ ( 2, ] , (2.49)
Ry =2v3 [BB1vi + ] [2(1 - @) sin? 0 + B,ri + BB, V3] cosfcos 202, (2.50)

Ry = 2¢" {v1[BB,v}+ ] cosfysin20 — vy [881v} + 1] cos B5in 261 }

[2(1 - a)sin? 6 + Byra + BB1VE] (2.51)
+
@ = i e onts [ (1- cos 20, ]
2) +
—vivy [BB; V2 + a1] cos b [ ( ) cos 265 ] . (2.52)

2.6 Numerical Results

The copper material is chosen for numerical evaluations. In calculation process, the material
constants necessary to be known can be found in ref. [4]. Let w = wo, the other constants of
the problem are taken as Tp = 300 K, a = 0.7472, vo = 0.05, v; = 0.02, wo = 5.

Figs. 2.2 and 2.3 give the variation of the reflection coefficient ratios with the angle of
incidence for the SV-wave and the P-wave under two theories. Here rg = 0.3, 8 = 1.275,
e = 0.03, 8* = 0.001. We can observe that in the case of SV-wave, the reflection coefficient
ratio | X1| = | Xa| = 0 when 6 = 0°, 45°, 90°. | X3| = 1 when 6 = 0°, 45°. In the case of P-wave,
the reflection coefficient ratio |X3| = 0 when 6 = 0°, 90° and |X;| gets maximum value at
6 = 0°, 90°.

Figs. 2.4 and 2.5 give the effect of the reference temperature dependent modulus on the

reflection coefficient ratios for incident SV and P-waves. Here ry = 0.3, 8 = 1.275, ¢ = 0.03,

18



B* = 0, 0.001, 0.002, respectively. The reflection coefficient ratios |Xi|, |Xs| for incident SV-
wave and | X3|, | X3| for incident P-wave decrease with the increase of *. While for incident
SV-wave the reflection coefficient ratio | X3| decrease with the increase of 4* when § < 45° and
increases when 45° < 6 < 90°. For P-wave, the reflection coefficient ratio |X;| increase with
increase of A*. It can be concluded that the reference of 8* plays an important role.

Figs. 2.6 and 2.7 give the effect of magnetic field on the reflection coefficient ratio. Here
B =1.275,¢ = 0.03, 8* = 0.001, ri = 0.0, 0.3, 0.5, respectively. We can see that the effect of the
magnetic field has the same trend on reflection coefficient ratios as that reference temperature
dependent modulus for both incident P-wave and SV-wave.

Figs. 2.8 and 2.9 give the variation of the angle of incidence with the reflection coefficient
ratios under different values of coupling parameter for two type of incidence wave. rg = 0.3,
B = 1.275, 8* = 0.001 and £ = 0, 0.03, 0.05, respectively. We can see the reflection coefficient
ratios |X2| increase with increase of coupling parameter, while the coupling parameter has
small effect on reflection coefficient ratio |X;| for both cases. Also it can be observed that | X5
vanishes when € = 0.0. While for incident SV-wave the reflection coefficient ratio | X3| increases

with an increase of € when 8 < 45° and decreases with an increase of € when 45° < 8 < 90°.
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Fig. 2.2: Difference of the amplitudes of reflection coefficient ratios with incident angle

of SV-wave under different theory.
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Fig. 2.3: Difference of the amplitudes of reflection coefficient ratios with incident angle

of P-wave under different theory.
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Fig 2.4: Difference of the amplitudes of reflection coefficient ratios with incident angle

of SV-wave for reference of 8°.
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Fig 2.5: Difference of the amplitudes of reflection coefficient ratios with incident angle

of P-wave for reference of 8*.
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Fig 2.6: Difference of the amplitudes of reflection coefficient ratios with incident angle

of SV-wave for effect of magnetic field.
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Fig 2.7: Difference of the amplitudes of reflection coefficient ratios with incident angle
of P-wave for effect of magnetic field.
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Fig 2.8: Difference of the amplitudes of reflection coefficient ratios with incident angle

of SV-wave for coupling parameter.
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Fig 2.9: Difference of the amplitudes of reflection coefficient ratios with incident angle

of P-wave for coupling parameter.
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Chapter 3

Influence of Two Relaxation Times
on P, SV and Thermal Waves at
Interface with Magnetic Field and

Temperature Dependent Elastic

Moduli

3.1 Introduction

In this chapter, two models of the generalized thermoelasticity theory are used to see the in-
fluence on the refraction and reflection of the plane waves at the interface under a constant
magnetic field. The elasticity modulus depends on the reference temperature. The elasticity
modulus is considered as a linear function of reference temperature. The resulting problem is
solved by using the boundary conditions at the interface. The matrix has been solved numeri-

cally.
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3.2 Mathematical Formulation

We consider an isotropic, linear, homogeneous, perfectly conducting and thermally elastic
medium whose mechanical properties depends upon temperature occupying the two half spaces.

We kept constant temperature Ty throughout the body and is acted on all over by a uniform
magnetic field Ho = (0, H, 0), which is applied in the positive y-axis.

Now for the medium M, we will use prime to describe all the quantities of the basic Eqgs.

(1.3) — (1.6) . Taking
, 0% oV 8% v
_o® 9 (3.1)

YT 9r 8z’ VT 9z Oz

After non-dimensionalize, we obtain

! 62¢I [ 2 1] ’ 1 aT,
B 'BIW = (1 + ,Bl’f'H) Vo — (T +1)0—67) y (32)
(3.3)
v?r : (3.4)
(3.5)
ﬂ’la{-z(l—a')(u’--+u'-~) - Tl+v'6—T’ (3.6)
1) 2%) It 0 ot ' '

3.3 Solution of the Problem

For a harmonic wave propagated in the direction of zz-plane, and make an angle 6' with the

z-axis, we assume the solutions of the system of Egs. (3.2) — (3.5) in the form:

{<I>'1, T{, hll} exp {ifl (:l:sinO’ + zcos0’) —wt} ,
U, exp {ifl (:L' sinf + zcos 0’) - wt} , (3.7

{Q', T, h’} (z, 2, t)
U (z, z, t)

where ¢ and ¢ are the wave numbers of refracted waves and w is the complex circular frequency.

Substituting Eq. (3.7) into Eqs. (3.2) — (3.5), we arrive at a system of three homogeneous
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equations:

(¢7a; + B 1w®) @) +mT} =0, (38)
(En - wn) T + we’{néll =0, (3.9)
—£7®, +hy =0, (3.10)

in which a; =1+ Biry, m= (1 - wv{,), n=(1-wv).
The system of Eqgs. (3.8) — (3.10) has non-trivial solutions if and only if the determinant of

the factor matrix vanishes. So

({laall + ﬂ'ﬂllwz) m 0

we'€” (g" - wn) 0 =0. (3.11)
£ 0 1
This yields ,
v V2o 2o oy, (3.12)
B Bin

in which v’ = ?’r is the velocity of refracted SV-waves.

From Egs. (3.3) — (3.6), we can obtain

(1-a)
8 8y

w4+ =0, W= -1 (3.13)

in which W' = %’; is the velocity of the refracted P-waves.
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3.3.1 For Incident SV-Wave

Z-axis

Medium M’

Medium M

Fig 3.1: Relation between incident angle of SV-wave, reflect and the refract angles.

Consider a plane SV-wave propagating through a medium M and is incident at 2 = 0, three
waves (SV, P and thermal) are reflected in the same medium M by making an angles 0, 6,
and 0, with z-axis and P-wave, Thermal waves are transmitted into medium M’ by making an
angles 0’1 and 0’2. The displacement potentials ®, ¥ for medium M and &', ¥ for medium M '
will take the forms:

& = Aj exp {i€; (zsin8; — zcos0;) — wt} + Azexp {if, (zsinf; — zcosby) —wt},  (3.14)

¥ = B, exp {if (zsin 8 + z cos6) — wt} + Byexp {if (zsinb — zcosf) — wt}, (3.15)
& = Ajexp {i{ll (a; sin 0 + zcosO'l) - wt} + Ajexp {i{; (zsin0’2 + zcosa;) - wt} , (3.16)
¥ =0, (3.17)

where the angles 8, 61, 02, 0’1, 0’2 and the corresponding numbers ¢, §;, £, {'1, 5'2 are joined with
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the following relation:
£,8in6) = £;sinfy = £sinf = £, sin g, = £y 5in 6. (3.18)

On the interface z = 0, we have

. . . ’ . y
sinf; sinfy sinf sinf; _ sin 04

7 ’ ! ) (3‘19)
Vi V2 c v Vo
in which
w w [] w ' w ' w
vy = — Vg = —, cC = — Vi = —, Vg = — (3-20)
TE TG A

v1, vz are the roots of Eq. (2.24) and v}, Vv, are the roots of Eq. (3.12).

3.3.2 For Incident P-wave

Medium M’

Medium M

Fig 3.2: Relation between incident angle of P-wave, reflect and the refract angles.

A plane P-wave propagating through a medium M and is incident at z =0, three waves (P, SV
and thermal) are reflected in the same medium M by making an angles 6, 9, and 62 with z-axis

and P-wave, Thermal waves are transmitted into medium M ' by making an angles ¢ and 0’1

32



2) At the interface, the tangential displacement must disappear i.e., u = 0.

o® av
-z _ T =0. .29
% 52 0, atz=0 (3.29)
3) At the interface, normal force per unit primary area is continuous i.e., o33 = 02,3.
Substituting Egs. (2.8), (2.14) into Eq. (2.18) and Egs. (3.1), (3.2) into Eq. (3.6), we get
at2=0

2
[(20‘ -2-Pyra) Ve +2(1-a) (%zz—f + g_zi‘;z) + ﬂﬁl%]

= [(20/ —2- ﬂ'lr'H) V2’ +2 (1 - a’) (32‘1" + 62—‘1') + ﬂ'ﬂl%{;—'] . (3.30)

1

P

1 e
! 022  0z0z

4) At the interface, tangential force per unit primary area must disappear i.e., 013 = 0. Using

Eq. (2.8) into Eq. (2.18), we get

28 PV PV

2ot —pm =0 atz=0. (3.31)

5) At the interface, continuity of temperature i.e., T = T'. Substituting Eq. (2.14) into Eq.
(2.19) and Eq. (3.2) into Eq. (3.7), we get

) . 020

82@] =p [a;vzél - ﬁ ﬂl—a—tz—] s at 2 =0. (3.32)

m [a1v2<1> - ﬁﬂl—a?

3.5 Expressions for the Refraction and Reflection Coefficients

3.5.1 For Incident SV-Wave

Considering Eqgs. (3.14) — (3.17) and then applying the boundary conditions (3.28) to (3.32).

We obtain the following relations:
A ([ Az (¢ By, . A (< '
1!—3;(;1-c0301)+F1(v—zcosﬁ’z)—F1 s1n0)+E ‘—rzcosol

+%3 (i cose;) =sind, (3.33)
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£1 (v_sinol) + = (v%sinoz) + —gf (cos8) = cos¥,
& my & my ((1 a) )_A_; & my
2(G5) 5 (G5) 5 (G52ew)- 5 (55

c'2m4 _(l—a) .
"B (v2 ﬁl)_ B sin2d,

A [, 4 [ B,
et N =2 = —cosf
B (vf sm201) B, ( —58in26; | + B, cos 20) cos b,
A () A ﬂ)_ﬁ(ﬁ)_i&(ﬂ)_o
Bl V% Bl Vg Bl V': B1 V'; -
where
_ ﬂﬂl 2
m = (2+ﬂ1rH 2a) + (20 — 2) cos? 0y + —+
mg = (2+ﬂ1rH 2a) + (20 — 2) cos 8, +ﬂﬂ‘ 2]
my = (2+ﬂ'1r;,—2a')+(2a'— ) 201+ﬂﬂ1 2]
| R, 'y ﬁﬂl 2
my = -(2+ﬂ1rH 2') + (20" —2) cos? 6, + =5 =
m = mw?(a+BBvi), na=mw? (e +BB61v3),
ng = pw? (a'1 +ﬂ'ﬂ'1V'12), ny = pw (a1 +ﬂ'ﬂ'1vf;)

Generalizing, we get a system of five nonhomogeneous equations for incident SV-wave.

5
> ai¥i=p;,  (i=1,2..5)

i=1
where
. ’

a;3 = —cosf;, a2 = —cosfy, aj3=—sinf, aiq4 = —cosby,

Vi v Vl

/ d . d .

a3 = —rcosfy, ag =—sinf), a = —sinfdz, ag3 =cosd,

V2 Vi \$)
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G624

a34
a43

as1

)¢

’ m a my l-a) ,
= ap5=0, as1=—77, G2=_37 G8B= ( ) sin 26,
Vl V2 ﬂl
» C’2 m3 c'2 my C’2 . .
= ——F— 35 = ——F 7 0G4 = —28111201, a42 = 75111202,
vi By vy By i v2
= co0s20, a4y =a4s =0,
1 n2 n3 _ n4
= —3, G@52= "3, @53 = 0, as4=-——3, 55 = — "2
1 V2 vy Vo
A A B A; ;
= —_1’ ],2=_21 },3—_2’ },4_—1'1 Y5=é2_-
Bl Bl Bl Bl Bl

where(j = 1,2, ..., 5) represents the amplitude ratios of reflected P, T, SV-waves and refracted

P, T-waves.

(1-a)
B

p1 =sinf, py=cosd, p3 = sin20, ps = —cosd, ps =0

3.5.2 For Incident P-Wave

Considering Eqs. (3.21) — (3.24) and then applying the boundary conditions (3.28) to (3.32).

We obtain the following relations:

By (oosa) LA (cosal) Ay (sineg) B cosd'\ A [cosb;
Bl Vi Bl Vo Bl c B] V’l » Bl V'z
_ cosf
= S
By (sin0) | Ai (sindi)  Ag (cosfy) __sing
B, Vi By V2 By c - vi
B> m'z A m;; Ay ((a—l) . ) Bi m;
2l Z )+ 51 +5 20, ) — A
B (ﬂw%) B (ﬂl"% B \ B’ M) "B Bivy
A g\ my
By \ Byvy B1v3
_B_z(sin20 +ﬂ sin 26 +ﬁ cos20;  sin20
By \ v} B\ v} B\ &/ vi’
By (m) | A1 (m2 B ( n3 A (nd) | mw? 2
B, (V?) B (V%) B, (V'l’) Bi\v;) VI (2 +BBrv1).

)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)



where

my = [(2 + By — 20) + (2a — 2) cos? 0 + —* ﬂﬂl 2]
my = (2"'517‘1{ 2a) + (2a — 2) cos? 6 +ﬂ£ﬂ1 2]
2
m; = -(2 + /3'17"” - 20/) + (2a - 2) cos? @ + ﬂ{fl 2]
m'5 = (2 +ﬂ'1r;q - 2a') + (2a - 2) cos? 0, + — g ﬂl 2]
- &

Generalizing, we get a system of five nonhomogeneous equations for incident P-wave.

5
Y obiizi=s; (=1 2,...5)

i=1
where
cosf cos sin 8 cosé’ cos @
by = —, bp="—", by=- dz, bu=——, bis=—
V1 V2 1 Vo
_ sinf __ sinb; __cosfy _ _ m'2
b21 = Vi ’ b22 - va ’ = J ) b24 = b25 =0 b31 = ﬂlvgy
m; (a—1) m, mg
b32 = 3 ) b33= sm2021 b34=— 7 s === )
B1v3 B’ Bivy Biva
sin 20 sin 20 cos 20
by = 7 b= vglv bys = o 2 bu=bg=0
1 2
n ng ng n4
b = —, beo = —= =0, = -3 bss = — 2
51 vg 52 vg b53 0 b54 vplz ) 55 V';
B, Ay Ay B A
= = ==, Z3=— - =

where(j = 1,2,...,5) represents the amplitude ratios of reflected P, T, SV-waves and refracted

P, T-waves.
N ! o
cosf sin @ m; sin 26 mo.)2
s1=—), S4=———, S=—7—3, =—3 H=——3 (m +BB1vi) -
vi Vi p1vy vi 1
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3.6 Numerical Results and Discussions

We considered the data for solid medium as crust and liquid medium as a water following Singh
and Chakraborty [9], for the numerical analysis of previous section.
For solid medium (M crust “Granite”): which in geology is the uppermost solid shell of a

rocky planet or natural satellite, and is chemically different from the underlying mantle.

A = p=3x100Nm™2 Ty=30K, w=75x10" s~ rg=1100 JKg LK},

p = 2900 Kgm™3, K=3Wm K,  Ej=26x 10°.
For fluid medium (M "Water"):

N = 4 =204x10° Nm™2, 7 =4187 JKg LK},
E

o = 1000 Kgm™, K =06Wm LK™, Ey=22x10

Considering vg = vé, =08, v1 = v'l =0.9 and ¢¢ = e:) =0.2.

Fig. 3.3 and Fig. 3.4 give the effects of amplitude ratio with the incident angle for the
SV and the P-waves under two theories. In the situation of SV-wave, [Y1|, |Yz|, |Ya| and |Y5|
commenced from the maximum values and goes to zero at § = 90° but for |Y3], it begins from
unity and ends on as well a unity at 6 = 90°. It also indicates that GL theory in |Ya], |¥2| and
|Y4| have the smaller values than CD theory, whereas GL theory in |Y3| and |Y5| have smaller
values than CD theory after 8 = 65°.

In the case of P-wave, |Z;| begins from zero and reaches to unity at § = 90°. |Z| and | Zs|
begins from its extreme values and reaches to zero at 6 = 90°. Whereas for |Zy| = 0 at 6 = 90°.
|Zs| = 0 when 8 = 0° and 6 = 90°. |Z]| gets its highest value after § = 50° and gradually it
goes to zero at 6 = 90°.

Fig. 3.5 to Fig. 3.7 depict the effect of amplitudes with incident angle of SV-wave under
the variation of two relaxation times to GL theory. Fig. 3.5 exhibits the variation of incident
angle of SV-wave with the amplitude ratio under various values of € . The amplitude ratio
|Y1], |Ya|, and |Ya| increases with increase of ¢ whereas amplitude ratio |Y3| and |Ys| initially

decreases by increasing € and after § = 60°, the amplitude ratio increases by increasing €. Fig.
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3.6 gives the difference of magnetic field on the amplitude ratio of SV-wave. It is seen that |Y1]
and |Y3| increases with an increase of H, but |Y3|, |Ya| and |Y5| decreases by increasing H. |Yj|
has maximum value at 6 = 45°. Fig. 3.7 shows the influence of reference temperature modulus
on amplitude ratio. We can see that the amplitude ratio |¥1| and |Y4] rises with rising 8" after
0 = 20°, |Y3| starts from unity and end on unity as well with increasing 3* and all the curve mix
with each other after § = 45°. While |Y2| and |Ys| decreases with increasing 3* before 8 = 45°
and after # = 45° it has opposite effect.

Fig. 3.8 to Fig. 3.10 gives the difference of amplitude with the incident angle of P-wave
under the influence of two relaxation times to GL-theory. Fig. 3.8 shows the effect of € on the
amplitude ratio. |Z1| , |Z2| and |Zs| decreases before § = 30° and after § = 45° increases by
increasing &, while |Z3| and |Z,| decreases before § = 50° and after § = 50° it start increasing
and moves toward zero at 6 = 90°. We observed from Fig. 3.9 that |Z;| to |Z5| decreases as H
increases. For |Z| it moves towards unity at § = 90° where as in | Z,|, | Z3|, | Z4| and | Z5| it moves
toward zero at § = 90°. Fig. 3.10 exhibits the difference of reference temperature modulus on
the amplitude ratio. We see that |Z;| to |Zs| have increasing and decreasing behavior for all

values of 3.

3.7 Conclusion

In this paper, we discussed the effect of temperature dependent elastic moduli, coupling para-
meter and magnetic field on the refraction and reflection of P and SV-waves at the interface.
For SV and P-waves incident at the solid liquid interface, the effect of variation of temperature
dependent modulus is more prominent than that of coupling parameter and magnetic field on

the amplitude ratios of refracted and reflected P and thermal waves.
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Fig. 3.3: Difference of the amplitudes |Y; , (6=1,2, .., 5) making an incident angle of
SV-waves under different theory, H = 0.4, ¢ = 0.08, 3* = 0.001.
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Fig. 3.4: Difference of the amplitudes |Z;| , (i=1, 2, ..., 5) making an incident angle of
P-waves under different theory, H = 0.4, ¢ = 0.08, * = 0.001.

41



— =00
-— =P
-— axzblS

— =00
-— =09
-—— =0

Fig. 3.5: Difference of the amplitudes |Y;| , (i =1, 2, ..., 5) making an incident angle of

SV-waves for effect of coupling parameter, H = 0.5, §* = 0.001.
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Fig. 3.6: Difference of the amplitudes |Y;| , (i=1,2, ..., 5) making an incident angle of
SV-waves for effect of magnetic field, e = 0.7, 8* = 0.001.
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Fig. 3.7: Difference of the amplitudes |Y;| , (i =1, 2, ..., 5) making an incident angle of

SV-waves for temperature dependent modulus effect, H = 0.0, ¢ =0.7.

44



VG
g
AV

Fig. 3.8: Difference of the amplitudes |Z| , (¢ =1, 2, ..., 5) making an incident angle
of P-waves for coupling parameter, H = 0.5, 8* = 0.001.
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Fig. 3.9: Difference of the amplitudes |Z;| , (i=1, 2, ..., 5) making an incident angle
of P-waves for effect of magnetic field, e = 0.7, 8* = 0.001.
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Fig. 3.10: Difference of the amplitudes |Z;] , (:=1,2, ..., 5) making an incident angle of
P-wave for temperature dependent modulus effect, H = 0.0, 8* = 0.001.
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