Classification of Textual Documents
Using

Learning Vector Quantization

“~(§o/

Aoe, Re. (FUB‘ e eww oue S

Submitted By
Muhammad Fahad Umer
Reg#107-CS/MS/03
Supervised By
Dr. M. Sikander Hayat Khiyal ,

Department of Computer Science
Faculty of Applied Sciences
International Islamic University, Islamabad

Final Approval

Date: Sk May, 2007

We hereby declare that we have read this thesis thoroughly and it is our
judgment that this thesis is of sufficient standard to warrant it acceptance by the

International Islamic University, Islamabad for the award of degree of Master of

Science in Computer Science.

Committee

External Examiner
Mr. Shaftab Ahmad

Senior Principal Engineer
House-No-460,-Strost-NoS0 shogi—M_

’

Internal Examiner

Dr. Syed Afaq Hussain
Head, Departrment of Electronic Engineering W

International Islamic University, Islamabad \
Supervisor .
Dr. M. Sikander Hayat Khiyal é,\ o B
Head, Department of Computer Science /

International Islamic University, Islamabad.

To my fellow traveler,

i

Dissertation

A dissertation submitted as a partial fulfillment for the award of

degree of Master of Science (Computer Science)

i

Declaration

I hereby declare that this thesis is an original research work. No part of thesis
has been copied from any source. I am solemnly responsible for the material
presented and expressed in this document. I further guarantee that this work has

not been presented in any other institution for award of degree or for any other

purpose whatsoever.

Muhammad Fahad Umer
107-CS/MS/03

Project Summary

Project Title:
Undertaken By:
Supervised By:

Tools Used:

Operating System Used:

System Used:
Date Started:

Date Completed:

Classification of Textual Documents

using LVQ

Muhammad Fahad Umer

Dr. M. Sikander Hayat Khiyal

JDK 1.5
JBulider 2005 Enterpsise

Microsoft Windows XP (R)

Intel Pentium IV

20-04-2006

05-65-2607

ABSTRACT

The classification of a large collection of texts into predefined set of classes is an
enduring research problem. The comparative study of classification algorithms shows
that there is a tradeoff between accuracy and complexity of the classification systems.
This work evaluates the Learning Vector Quantization (LVQ) network for classifying
text documents. In the LVQ method, each class is described by a relatively small
number of codebook vectors. These codebook vectors are placed in the feature space
such that the decision boundaries are approximated by the nearest neighbor rule. The
LVQ require less training examples and are much faster than other classification
methods. The experimental results show that the Learning Vector Quantization

approach outperforms the k-NN, Rocchio, NB and Decision Tree classifiers, and is

comparable to SVMs.

vi

Table of Contents

CH # CONTENTS PAGE #
1 Introduction 1
1.1 Definition of Text Classification 1
1.2 Application of Text Classification Systems 2
1.3 Issues in Text Classification 2
1.4 Text Classification Techniques 3
1.5 Artificial Neural Networks 4
1.6 Classification using ANN 5
1.7 Learning | 7
1.8 LVQ Networks 8
1.9 Learning Vector Quantization Algorithms 8
2 Literature Survey 12
2.1 Rocchio’s Classification 13
2.2 Naive Bayes Classifiers 13
2.3 Decision Tree Classification 14
2.4 Associate Rule Mining 15
2.5 Support Vector Machines 15
2.6 Bagging Algorithms 16
2.7 K-Nearest Neighbor Classification 16
3 Problem Domain 19
3.1 Requirements of a Text Classification System 19
3.2 Scope of Work 19
3.3 Proposed Solution 20
4 System Design 23
4.1 Data Input 23
4.2 Data Pre-processing 24
4.3 Document Classification 28
4.4 Classification Evaluation 29
5 Experiment 32
5.1 VSIM Converter 32
5.2 Classification Experiment 38
6 Analysis of Results 45
6.1 Comparison of LYQ algorithms 45

51

6.2 Comparison of Classification Algorithms

Vii

7. Conclusion & Future Work

7.1 Conclusion

57
57

7.2 Future Work

57

References

Appendix A

58
60

viii

CHAPTER 1
INTRODUCTION

1 Introduction

The information on the Internet continues to grow at an incredible speed with more
than 4.5 billion pages available online. The copious amount of data on the
organizational intranets is besides this. Due to this amazing growth of Internet, several
research areas have gained an invigorated interest. Text Classification (TC), the
activity of labeling natural language text documents with thematic categories from a
predefined set, is one such task that is an active area of research since the last decade.

The term classification has been used in a broader context in human activity. The term
can be defined over any context in which some decision or forecast is made on the
basis of currently available information, and a ‘classification procedure’ is some
formal method for repeatedly making such judgments in new situations based on the
information provided to it. We may have a set of observations and want to infer
classes or clusters within the data. Or we may have a certain number of classes, and
we want to classify a new sample in one of the existing classes. The former type is
known as Clustering, and the latter is known as Classification.

1.1 Definition of Text Classification

The TC system categorizes the documents into a fixed number of predefined classes.
Formally, it can be defined as the task of assigning a Boolean value to each pair (d;
c;) where d={d}, d,,d;, ...d,} is the set of text documents and ¢;={c;,c;c3,...cn} is the
set of class labels. The value assigned to the pair could be true if the document d; falls
under class c; or false if the document d; does not belong to class ¢; [1].

The research in automated text classification started in early 1960s. A long list of
successes and failures are reported in this field. Many methods had been proposed and
a lot of experiments had been carried out. All this research had been done in the field

of Information Retrieval and classification was a part of it. The rapid growth of

Internet has revived the interest in automated text classification. Hand-built

directories of web content suggest one solution to the dilemma, but unfortunately
creating and maintaining such directories requires enormous amounts of human effort.

@ Science

O Sport

© An

Figure 1-1 Classification Example

Text Classification Using LVQ

1.2 Application of Text Classification Systems

The applications of text classification system occur in wide range. The classification
system may apply for Help-Desk support. The query obtained from the user may
classify according to the subject and referred to an appropriate expert.

In newsgroup sites, it is sometime very cumbersome to find an article of interest. A
text classification system can be employed to extract the relevant news stories. The
popular benchmarking text classification data set, REUTERS, is indeed a collection of
news stories from the Reuters Group.

Relevance feedback for the documents for a particular query can be calculated by
using a classification system.

A large database of documents may be organized in semantic categories with the help

of text classification system.

1.3 Issues in Text Classification

Text Classification systems generally have same structural design regardless of the
algorithm used for the classification task. But there are some parameters, such as the
soft or hard classification rule, single or multi-class classification results or the
classification pivoting, which may differ according the problem domain. The reason
for this diversity is the wide range of applications of classification systems.

1.3.1 Classification Rule

The procedure for text classification can be enforced to give a set of classes according
to their relevance with the document. For a text document d; € D, the result could be a
ranked list of classes C={c/, ¢,...c,}. The procedure doest not take any hard decision
on any of the class. The ranked set of classes provided by the classification system
can be of a great help to the human expert applying the classification. The
classification rule is usually softened especially in critical application where the
effectiveness of the text classification system is considered to be low than the human
expert and an interactive session is maintained. This may be the case when the quality
of the training data is low, or when the training documents cannot be trusted to be a
representative sample of the unseen documents that are to come, so that the results of
a completely automatic classifier could not be trusted completely [1].

1.3.2 Class Labeling

For every dj, a single class label can be assigned to every document or a number of
categories from C, to C, may be assigned to the same d. The classification in which a
single class label is assigned to every document is called single label or binary
classification and in the later case the classification is called multi-label classification.

The binary case is more general than the multi label, since an algorithm for binary
classification can also be used for muliti label classification. The only requirement is
to only transform the multi label classification problem to a single label classification
problem. But the converse is not true, that an algorithm for multi label classification

Text Classification Using LVQ

cannot be used for single label or binary classification. In fact, given a document dj to
classify, the classifier might attribute k >1 categories to dj, and it might not be
obvious how to choose a “most appropriate” category from them; or the classifier
might attribute to dj no category at all, and it might not be obvious how to choose a
“least inappropriate” category from C. The binary case is important in itself because
important classification applications, including filtering, consist of binary
classification problems. Solving the binary case also means solving the multi label
case, which is also representative of important text classification applications,

including automated indexing for Boolean systems [1].

1.3.3 Classification Pivoting

There are two different ways of using a text classifier. Given d; ¢ D, we might want to
find all the classes to which it should belong (document-pivoted categorization),
alternatively, given a class ¢; ¢ C, we might want to find all the documents that should
be filed under it (category-pivoted categorization). Document pivoted classification is
suitable when documents become available at different moments in time, e.g., in
filtering e-mail. Category pivoted classification is instead suitable when (i) a new
category ¢, may be added to an existing set C= i’:p"',%} after a number of

documents have already been classified under C, and (ii) these documents need to be
reconsidered for classification under c,,,. Document pivoted classification is used

more often than category pivoted classification, as the former situation is more
common than the latter. Some specific problem domains apply to one technique and

not to the other [1].

1.4 Text Classification Techniques

Three different fields have been in concern with the classification techniques;
Statistics, Machine Learning and Artificial Neural Networks. The basic prototype
methods for these techniques are linear discrimination, decision-tree and rule-based,
k-nearest neighbor are prototypes for three types of classification procedure. Not
surprisingly, they have been refined and extended, but they still represent the major
strands in current classification practice and research. The procedures mainly used for
classification can be directly linked to one or other of the above. However, within
literature, the methods have been grouped around the more traditional headings of
classical statistics, modern statistical techniques, Machine Learning and neural

networks [2].

1.4.1 Classical Statistics

We can include in this group those procedures that start from linear combinations of
the measurements, even if these combinations are subsequently subjected to some
non-linear transformation. The procedures of this type are: Linear discriminants;
logistic discriminants; quadratic discriminants. In these methods, the training set is a
subset of n known class example. The n is typically 2. These methods require numeric
value attributes with none of the value is missing. The attributes used binary

Text Classification Using LVQ

indicators to indicate that a specific attribute belong to a class or not. When an
attribute is classified against more than one class, the indicators are setup to drop the

other classes.

1.4.2 Modern Statistics

The modern statistics includes the techniques that use density estimation to
approximate the classification categories. The k-nearest neighbor, Projection pursuit
classification, Casual networks and Naive Bayes are considered under modem

statistical classification techniques.

1.4.3 Decision Trees

Decision tree learning is one of the most widely used techniques for classification. Its
classification accuracy is competitive with other methods, and it is very efficient. The
classification model is a tree, called decision tree in which internal nodes are labeled
by terms, branches departing from them are labeled by tests on the weight that the
term has in the test document, and leafs are labeled by categories [3].

The most popular approaches used for constructing Decision Tree classifiers are 1D3,
C4.5, and C5.

1.4.4 Neural Networks Techniques

The neural network techniques have a common procedure that is intimately linked
with the training of the network and adjusting the input weights. The density estimate
group contains: radial basis functions; Kohonen self-organizing maps; LVQ; and the
kernel density method.

1.5 Artificial Neural Networks

Artificial Neural Networks are electronic models based on the neural structure of the
brain. The brain basically learns from experience and neural networks try to mimic
the same behavior. This new approach to computing also provides a more graceful
degradation during system overload than its more traditional counterparts. Even
simple animal brains are capable of functions that are currently impossible for
traditional computing; these biologically inspired methods of computing are thought
to be the next major advancement in computer science. But the true power of neural
networks have not utilized till now. It is worth mentioning that there is very small
numbers of real time neural network based applications. The reason for this is not that
there is a problem with the neural network theory, but it is the inability to model the
billions of brain neurons with the traditional computers.

Computers do simple mathematical things well, like keeping information stored for a
long time or performing complex calcuilations. But computers have trouble
recognizing even simple patterns and abstracting the real world ideas.

Now, advances in biological research promise an initial understanding of the natural
thinking mechanism. This research shows that brains store information as patterns.
Some of these patterns are very complicated and allow us the ability to recognize
individual faces from many different angles. This process of storing information as

Text Classification Using LVQ

patterns, utilizing those patterns, and then solving problems encompasses a new field
in computing. This field, as mentioned before, does not utilize traditional
programming but involves the creation of massively parallel networks and the training
of those networks to solve specific problems. This field also utilizes words very
different from traditional computing, words like behave, react, self-organize, learn,

generalize, and forget [4].

1.5.1 Analogy to the Brain

The exact workings of the human brain are still an obscurity. Yet, some aspects of this
astounding processor are known. The most basic element of the human brain is a
specific type of cell, which, unlike the rest of the body, doesn't appear to regenerate.
Because this type of cell is the only part of the body that isn't slowly replaced, it is
assumed that these cells are what provide us with our abilities to remember, think, and
apply previous experiences to our every action. These cells, all 100 billion of them,
are known as neurons. Each of these neurons can connect with up to 200,000 other
neurons, aithough 1,000 to 10,000 are typical. The power of the human mind comes
from the sheer numbers of these basic components and the multiple connections
between them. It also comes from genetic programming and learning. The individual
neurons are complicated. They have a myriad of parts, sub-systems, and control
mechanisms. They convey information via a host of electrochemical pathways. There
are over one hundred different classes of neurons, depending on the classification
method used. Together these neurons and their connections form a process which is
not binary, not stable, and not synchronous. In short, it is nothing like the currently
available electronic computers, or even artificial neural networks. These artificial
neural networks try to replicate only the most basic elements of this complicated,
versatile, and powerful organism. They do it in a primitive way. But for the software
engineer who is trying to solve problems, neural computing was never about
replicating human brains. It is about machines and a new way to solve problems.

1.6 Classification using ANN
A neural network consist of one or more than neurons connected which each other

and having some weights associated with each weight. The simples case is that
network will consist of single layer with only one neuron as given in the following

figure [5].

z; @

Figure 1-2 A simple neuron mode]

Text Classification Using LVQ

The output of the network is formed by the activation of the output of neuron, which
is some function of input:
2
yzF(Zw,xﬁH) (1.1)
i=1
The activation function can be linear if we have a linear network. The output function

could be:
1 ifs>0
—~1 otherwise.

F(s)z{ (1.2)

The output could be +1 or -1 depending on the input so the network can be used for
the classification task. A separation between the two classes is the straight line given

by the equation:

wx, +w,x, +0=0 (1.3)
A geometric representation of the linear threshold neural network is given Fig 1.1 and
the Equation (1.2) can be written as:

__wx € (1.4)
w, W,

Xz

The weights determine the slope of the line and the bias determines the offset i.e. how
far is the line from the origin. The weight vector is always perpendicular to the input

space [5].

Figure 1-3 Perceptron Classification
This single layer network learns the weight and bias by using a perceptron learning
rule. There are a number of learning rules defined for neural networks such as Error-
correction learning rule, Perceptron learning rule, the Boltzmann learning rule,
Hebbian learning rule and the competitive learning rule. The perceptron learning rule
is the iterative procedure that adjusts the weights. A learning sample is presented to
the network. For each weight the new value is computing by adding a correction to

the old value.

Text Classification Using LVQ 4 6

A single layer network has several limitations and the class of tasks that can be
accomplished is very limited. For solving complicated problems we need more
complex multi-layer neural networks such as feed-forward networks, recurrent
networks and self-organizing networks. A feed-forward network has a layered
structure. Each layer consists of a number of units, which receive their input directly
below and send their output to the layer directly above. There is no connection
between the neurons in the same layer. The recurrent networks contain cycles within
the layers. A hidden unit may be connected with itself over a weighted connection,
connect hidden units with input units or all units may be connected with each other.
The self-organizing networks do not require a sample set for training and use
unsupervised learning rule. The most basic scheme for the self-organizing networks is
competitive learning in which each unit competes for winning.

1.7 Learning
There are two models in artificial neural networks:
1. Activation transfer mode when activation is transmitted throughout the
network
2. Learning mode when the network organizes usually on the basis of most
recent activation transfer
Neural networks need not to be programmed when they encounter novel environment.
Yet their behavior changes in order adapt to the new environment. Such behavioral
changes are due to the changes in the weights of the networks. These changes in the
weighs are called learning. The changes in the neural network are intended to model
the changing synaptic efficiencies in real neural networks. There are three main types

of learning for the neural networks.

1.7.1 Supervised learning

With this type of learning the network is provided with the input data with the correct
answers i.e. output that is intended to receive form the network from the network. The
input data is propagated forward through the network till activation reaches to the
output neurons. The answers that are calculated from the network can be compared
from the desired output. If the answers agree, no change is made to the network,
however f the answers are different, and the weights are adjusted to ensure that the
network more likely to give the correct result in future if it is presented with the same
input data. This weight adjustment schemes is known as supervised learning or
learning with a teacher. The delta learning rule and the LMS rule are examples of

supervised learning.

1.7.2 Unsupervised learning

In this type of learning the network is only provided with input data. The network is
required to self organize depending on some structure in the input data. Typically this
structure is may be some form of redundancy in the input data or clusters in the data.
Self Organizing Maps use unsupervised learning rule.

Text Classification Using LVQO

1.7.3 Reinforcement learning
This type of learning is halfway house between the above two types of learning. We

provide the network with the input data and the activation is propagated but only to
tell the network that it has produced correct result or not [4].

1.8 LVQ Networks

Learning Vector Quantization networks are based on the supervised competitive
learning. LVQ networks attempt to define decision boundaries in the input space,
given a large set of exemplary decisions (the training data). Topologically, the
network contains an input layer, a competitive layer and an output layer. The output
layer has the neurons equal to the number of classes. The competitive layer has a
number of neurons assigned to each class. The competitive layer leamns and performs
relational classifications with the aid of a training set. Unlike perceptron, LVQ
networks can classify any set of input vectors, not just linearly separable sets of input
vectors. The only requirement is that the competitive layer must have enough neurons,
and each class must be assigned enough competitive neurons [4].

Figure 1-4 LVQ Network model

1.9 Learning Vector Quantization Algorithms

The LVQ method assume that a number of codebook vectors m; are used to classify
various domains of input vector x, and x is then decided to belong to the same class to

which the nearest m; belongs. Let
¢ = arg min {fx - m} (1.5)
1

Let x(2) be a sample input and let m;(t) represent the sequence of m; in the discrete
tome domain. Then starting with the initial values of m;, the following equations

define the basic Learning Vector Quantization process:

Text Classification Using LVO

me(t+1) = m(6) + a(t)x() ~mc (1)] (1.6)

if x and m. belong to the same class

me (£ +1) = me (1) = a(t)[x(t) ~mc (1)] (1.7)

if x and m. belong to the different class

The o) defines the leaming rate for the learning process. This algorithm is called
LVQI and it is the basic LVQ learning algorithm. There are many other variations of
the LVQ method. The LVQ2 algorithm takes two codebook vectors m; and m;, which
are the two nearest neighbors to x, are updated simultaneously. One of them belongs
to the correct class and the other to a wrong class respectively. Moreover x must fall
into a zone of values called ‘window’ which is defined in between the mid-plane of m;
and my;. A relative window length of 0.2 to 0.3 is recommended.

The algorithm process is given by the following equations:

mi (6 +1) = my (6) ~ a(O)[x(r) ~ mi(0)] (1.8)
m (e +1) = m)+ a(Ox@) - mj(o)] (1.9)

where m; and m; are the two closest codebook vectors to x, where x and m; belong to
the same class while x and m; belong to the different classes. The LVQ2 aigorithm
does not give attention to m; that what will happen to the location of the m; in the long
run. The LVQ3 algorithm includes necessary corrections that ensure that the m;
continue approximation class distributions roughly. In addition to the previous
equations defined for the m; and my, x and m; belong to different classes, respectively;

furthermore x must fall into the ‘widow’;
my(t+1)=m () +eat)[x(t)—my (t)] (1.10)

for k € {i, j}, if x, m;, and m; belong to the same class. The optimal value of € seems
to depend on the size of the window, being smaller for narrower windows. The value
between 0.1 and 0.5 is recommended for €. This algorithm seems to be self
stabilizing, i.e.; the optional placement of the m; does not change in continual
learning.

The basic LVQI1 and LVQ3 algorithms are modified in s such a way that an
individual learning rate a,(?) is assigned to each m;. The optimal learning rate can be
defined as:

2 (- 1)

1+ s()a(t-1) (L.1D)

ac(t)=

Where s(t) =1, id the classification is correct and s(z) = -1 if the classification decision
is wrong. The LVQI and LVQ3 with individual training rate are called gptimized
LVQI and LVQ3 algorithms because the learning rate is optimized [6].

The different training algorithms available yield almost similar accuracies, although
different techniques underlie each other. In this work, we will perform the experiment

Text Classification Using LVQ

using all available algorithms and analyze the result to determine that which algorithm
performs well for text classification. In the next step we will compare the LVQ
algorithms results with the other text classification algorithms for determining
performance of LVQ algorithms.

Text Classification Using LVQ 10

CHAPTER 2
LITERATURE SURVEY

2 Literature Survey

The older work done in classification mainly relates to Statistics. The classification
work in statistics can be identified in two phases. The first or the classical phase is the
Fisher’s work on linear discrimination. The second or modern phase exploits more
flexible classes of models, which attempt to provide an estimate of the joint
distribution of the features in every class. Statistical approaches used in text
categorizations problems generally have an underlying probability model, which
provides a probability of a test example fro being in each class rather than simply a

classification.

Machine Learning encompasses automatic computing procedures based on logical or
binary operations that learn a task from a series of examples. In the ML approach, the
pre-classified documents are the key resource. In an ideal case, they are already
available, typically for the problems that are solved manually. The less favorable case
is when no manually classified examples are avaiiable, this happens for a newborn
problem. The ML approach is convenient also in the latter case. Classifiers built by
means of ML techniques nowadays achieve impressive levels of effectiveness making
automatic classification a qualitatively viable alternative to manual classification [1].
In Machine Learning, attention has focused on decision-tree approaches, in which
classification results from a sequence of logical steps. These are capable of
representing the most complex problem given sufficient data.

Another field of concern for text classification is the Neural Networks. Generally,
neural networks consist of layers of interconnected nodes called neurons, each neuron
produce a non-linear function of its input. The input to a neuron may come from other
neurons or directly from the input data. The neurons in the output layer define the
output of the network. The complete network therefore represents a very complex set
of inter-dependencies, which may incorporate any degree of nonlinearity, allowing
very complex functions to be modeled. The simplest neural network receives input
from one neuron and forwards it to the next neuron in the way that the results are
propagated through the network. These networks are called feed-forwarded networks.
In more complex networks the results are propagated backward to improve the
efficiency and to minimize the error. These networks are called Recurrent or
Feedback Networks. It has been argued that neural networks emulate to a certain level
the behavior of networks of neurons in the brain.

The above discussion involves broad fields of concern with text classification. The
classification solutions suggested in the literature belong to one or more of the above
described fields; for example, Naive Bayes (NB) probabilistic classifiers [7], Decision
Tree classifiers [8], #-NN classifiers [9], Support Vector Machine (SVM) [10] and
[11], and Rocchio classifiers [12] and [13] etc. Most of the methods come from the
Machine Learning approach, while Neural Networks have also been studied
extensively for the application of text classification.

Text Classification Using LVQ 12

2.1 Rocchio’s Classification
Rocchio's classification algorithm [12] is used for inducing linear, profile-style
classifiers. The Rocchio method operates by building a prototype vectors for every
class. The prototype vector is the profile of a category is the difference between the
centriod of the positive and the negative examples.

C, = B x centroid(POS,) — y x centroid(NEG,) 2.1
The B and y are the control parameters. If we take B=1 and y=0, then the profile of the
class becomes the centriod of the positive examples. The role of the negative
examples is denigrated by using higher value for $ and lower value for y. [13] used
=16 and y=4. The prediction rule used to compute the classification of a new
example is the cosine of the new example with the profile vector. For a new
example X,
1, ifcos(x,Ci)>@

—1, otherwise

p(x) = { 22)
An improvement to the classic Rocchio method is the use of near-positive examples
employed by [14]. The near-positive examples are the most positive examples in the
set of negative examples and are the most difficult documents to apart from the
positive examples

This method is quite efficient and easy to implement. A drawback of Rocchio method
described by [1] is that if the documents in the category tend to occur in disjoint
clusters (e.g., a set of newspaper articles labeled with the Sports category and dealing
with either boxing or rock-climbing), such a classifier may miss most of them, as the
centriod of these documents may fall outside all of these clusters. The improved
versions of Rocchio based classifiers are discussed [15] and [13].

2.2 Naive Bayes Classifiers

These classifiers work a generative framework in which each document is generated

by a parametric distribution governed by a set of hidden parameters. Naive Bayes

method assumes that all attributes of the examples independent of each other given

the context of a single class while this assumption is clearly wring in the real world,

the Naive Bayes often works well. Because of the independence assumption the

parameters for every attribute can be learned separately. This makes the learning

process very simple especially when the attributes are large.

This model views the training examples as Pr(¥ | X = X) that is, the probability that a

document represented by a vector x belongs to Y, and compute this probability by an

application of Bayes’ theorem given by:

: Pr(Y)Pr(X =-le) 2.3)
Pr(X =Xx)

The classification rule can be defined as that predicts class 1 if the following predicate

is true or the Class -1 otherwise.

Pr(Y | X = %)

Text Classification Using LVQ 13

Pr(Y = 1)f1 P(w=w,|Y =1)>Pr(Y = —1)ﬁ Pr(W =w,|Y =-1) (24
i=l i=l

Pr(X =X) is thus the probability that a randomly picked document has vector x as its
representation, and Pr(Y) is the probability that a randomly picked document belongs
to Y. The multinomial Naive Bayes model assumes that any two coordinates of the
document vector are, when viewed as random variables, statistically independent of
each other; this independence assumption is encoded by the equation

Pr(X =%|Y) = f‘[Pr(W =w, | ¥) (2.5)

=]
There are many variations to the Naive Bayes approach suggested by [7] also
discussed by [1]. A variation is to use weighted indexed vectors instead of binary-
valued vectors [16]. Another way of improvement is to introduce document length
normalization. The value of document ranking can be very high or very low for long
documents. Taking length into account is easy in non-probabilistic approaches to
classification, but is problematic in probabilistic ones. One possible answer is to
switch an interpretation of Naive Bayes in which documents are events to one in
which terms are events, but at the same time, the solution given above has the
drawback that the different occurrences of the same word within the same document

are viewed as independent.

2.3 Decision Tree Classification

Decision tree learning is one of the most widely used techniques for classification. Its
classification accuracy is competitive with other methods, and it is very efficient. The
classification model is a tree, called decision tree in which internal nodes are labeled
by terms, branches departing from them are labeled by tests on the weight that the
term has in the test document, and leafs are labeled by categories [3].

A decision tree based classification learning process consists of two steps. In the first
step of tree induction, a tree is induced from the given training set for category C;
using “divide and conquer” strategy by checking whether all the training examples
have the same label (either C; or C;) and if not, a term # is selected to partition the
training set into classes of documents that have the same value for #, and placing each
such class in a separate subtree. The process is recursively repeated on the subtrees
until each leaf of the tree generated contains training examples assigned to the same
category C;, which is then chosen as the label for the leaf. The key step is the choice
of the term # on which the partition is performed. In the second step of tree pruning,
the induced tree is made more concise and robust by removing any statistical
dependencies on the specific training dataset. The induction step is computationally
much more expensive as compared to the pruning step.

The most popular approaches used for constructing Decision Tree classifiers are ID3

[17], C4.5 [18], and C5 [19].

Text Classification Using LVQ 14

2.4 Associate Rule Mining

The Association Rules are canonical data mining taking aim at discovering
relationships between items in the dataset. The association-rule-based classifiers
model the text documents as a collection of transactions where each transaction
represents a document, and the items in the transaction are the terms selected from the
document and the categories documents is assigned to. The most popular algorithm
use to compute association rules effectively are apriori algorithm [20] and FP-tree
algorithm [21]. The [22] uses a similar approach to construct a rule-base classifier
with apriori-based algorithm but the results obtained on the Reuter-21578 collection
are not promising as for five categories out of ten; the precision/recall breakeven point
is around 60 %. For a relatively difficult category the breakeven point is 25.8 %,
which is not acceptable for practical classification.

2.5 Support Vector Machines

SVM is learning methods introduced by [23]. SVM are based on the structural risk
minimization principal from the computational theory. SVM use the Vapnik-
Chervonenkis (VC) dimensions of a problem to characterize its complexity, which
can be independent of the dimensionality of the problem. The basic idea is to find
decision surfaces between use a hyper plane to the classes of data, positive and
negative with maximum margins from the both sides. Kernel functions are used for
nonlinear separation. The groups of vectors that lie near the separating hyperplane are
called support vectors. Once the separating hyper plane is found the new examples
can be classifies by simply checking that on which side of the hyperplane they fall.
SVM not only has a rigorous theoretical foundation, but also performs classification
more accurately than most other methods in applications, especially for high
dimensional data. In classifiers using SVM, term selection is often not needed, as
SVMs tend to be fairly robust to over fitting and can scale up to considerable
dimensionalities. Also there is no human and machine effort in parameter tuning on a
validation set is needed, as there is a theoretically calculated “default” choice of

parameter settings.

SVM have shown superb performance for text classification tasks. The reasons that
SVMs work well for TC is that during learning classifiers, one has to deal with many
features such as more than 10,000. Since SVM use over fitting protection that does
not depend on the number of features and have the potential to deal with the large
number of attributes. Most of the document vectors are sparse and contained very few
non-zero entries. It is shown in [24] that additive algorithms having inductive base
like SVM work very well for problems with dense concepts and sparse instances.
Most of the text categorization problems are linearly separable such as the reuters-
21578 [26].

SVMs are accurate, robust, and quick to apply to test instances. Their only potential
drawback is their training time and memory requirement. For » training instances held

Text Classification Using LVQ 15

in memory, the best-known SVM implementations take time proportional to n°, where

a is typically between 1.8 and 2.1.
2.6 Bagging Algorithms

Since most of classification algorithm work poorly, voting algorithms make use of
them in smarter way i.e. many poor classifiers => one good classifier. Some base
classifiers are generated and they are used to give decision about the classification of
a document. In order to guarantee good effectiveness, the classifiers should be
independent from each other as possible [25]. However the classifier may use the
same or different indexing approach or the induction method.

For constructing the classification decision, the simplest rule used is the majority
voting. For k classifiers the decision which takes (k+1)/2 votes are taken [19].

A variant of classifier’s committee, called doosting method is also used in the
classification applications [15]). The main idea of this algorithm is to maintain a
distribution or set of weights over the training set. Initially, all weights are set equally,
but in every iteration, the weights of incorrectly classified examples are increased so
that the base classifier is forced to focus on the ‘hard” examples in the training set. For
those correctly classified examples, their weights are decreased so that they are less
important in next iteration.

One example of the voting algorithm is the bagging algorithm. In bagging algorithm,
multiple versions of a training set D of size N, each created by re-sampling N
examples from the data set are taken. Each of training sets is used to train a base
classifier; the majority voting of these classifiers makes the final classification
decision. Although voting algorithms give relatively high accuracy rate but they need
extensive calculation and memory as there is more than one type of classifiers are
working.

2.7 K-Nearest Neighbor Classification

Unlike all the other classifications methods, k-NN [9] does not build model from the
training data but rely on the category labels attached to the training documents similar
to the test document. These methods are called lazy learners, since “they defer the
decision on how to generalize beyond the training data until each new query instance
is encountered™(1].

To classify a test instance d, it defines k-neighborhood P as k nearest neighbors of ¢
and count number n of training instances in P that belong to class Cj. No training is
needed. Classification time is linear in training set size for each test case. The
problem involved in using KNN classifiers is to determine the optimal value of 4. The
value of £ is a tradeoff between the accuracy and the classification time. Large value
of & will generate high accuracy but the classification time will be very slow.

The value for k is usually chosen empirically via a validation set or cross-validation

by trying a range of k£ values.

Text Classification Using LVQ 16

k-NN is considered a lazy learning algorithm as it defers data processing until it
receives a request to classify an unlabelled example. It replies to a request for
information by combining its stored training data. After the classification decision it
discards the intermediate results and the constructed answer. This strategy is opposed
to other learning algorithms where the data model is described in the form of a density
estimator or a graphical structure with weights.

The k-NN can deal with complex and arbitrary decision boundaries. Despite its
simplicity, researchers have shown that the classification accuracy of k-NN can be
quite strong and in many cases as accurate as those elaborated methods. The k-NN
method is slow at the classification time and also does not produce an understandable

model.

Text Classification Using LVQ 17

CHAPTER 3
PROBLEM DOMAIN

3 Problem Domain

The problem discussed here is the construction of a procedure that will be applied to a
collection of documents. Each new document of the collection is assigned a
predefined class label on the basis of some observed attributes and features.

There are some issues regarding classification presented in [2] that are to be
discussed. Most of the classifiers discussed in previous section lack one or more of

these requirements.

3.1 Requirements of a Text Classification System

The requirements of a text classification system are described as follows:

Accuracy: There is the reliability of the rule, usually represented by the proportion of

correct classifications. If the classification is performed by an intelligent procedure
(e.g. human), and the results are compared then sufficient accuracy should be present

in the results.

Speed: In some circumstances, the speed of the classifier is a major issue. A classifier
that is 90% accurate may be preferred over one that is 95% accurate if it is 100 times
faster in testing (and such differences in time-scales are not uncommon in neural
networks for example). Such considerations would be important for automatic reading
of postal codes or automatic fault detection of items on a production line for example.

Comprehensibility: If it is a human operator that who applys the classification
procedure, the procedure must be easily understood else mistakes will be made in
applying the rule. It is important also, that human operators believe the system. An
oft-quoted example is the Three-Mile Island case, where the automatic devices
correctly recommended a shutdown, but the human operators who did not believe that
the recommendation was well founded did not act upon this recommendation. A
similar story applies to the Chernobyl disaster.

Time to Learn: Especially in a rapidly changing environment, it may be necessary to
learn a classification rule quickly, or making adjustments to an existing rule in real
time. “Quickly” might imply also that we need only a small number of observations to
establish our rule. Statistical approaches completely lack this requirement.

While there are still lacks of classification methods that fulfill the above-mentioned
requirements; it will be quite reasonable to find an adequate solution to solve the
problem of document classification. The basis of this research can be stated as below:

“To find a reasonable accurate, efficient, and flexible solution for automatic
classification of text documents”

3.2 Scope of Work

Neural Networks is the emerging field of today and it provides a mechanism to define
a solution for the above quoted research problem. If designed with care, neural
networks perform very well as measured by error rate. They seem to provide either
the best or near to best predictive performance in nearly all cases. In terms of

Text classification Using LVQ

computational burden, and the level of expertise required, they are little complex than,
say, the machine learning procedures, but with an exception to Learning Vector
Quantization (LVQ) which is easy to set up and fast to run [2].

Neural Networks provide sufficient accuracy rate, they can learn new situations, and
are quite fast (especially in case of LVQ). The most important factor is that neural
networks roughly mimic human behavior that is the essence of intelligent text

classification.
This work would discuss an application of a specific type of neural network called
Learning Vector Quantization for the text classification problem.

3.3 Proposed Solution

The experiment will be conducted by selecting a data set of random text documents.
A neural network based on Learning Vector Quantization will be designed. This
network will be trained using a subset of the dataset available for classification. There
will be pre-defined classification classes and every element of dataset will belong to
one of the pre-defined classes. The research can be divided in three phases,
representation of text documents, designing and training of the network, providing

real data and the analysis of results.

3.3.1 Representation of Documents

The documents will be represented as two-dimensional matrix using Vector Space
Information model. The document set comprises an m x »n term-document matrix in
which a column A; will represent a document and the cell Ay will represent the
frequency of a particular term present in the document. A major benefit of this
approach is that algebraic structure of the vector space can be exploited. The
conversion of documents from text to matrix form is standardized as follows:

1. A list of unique strings will be created from the documents selected for
training.
2. The list can be scanned for deleting common words using a stop list. A

stemming algorithm such as Porter’s stemming algorithm can be also applied
for removing suffixes from different form of a single word.

3. Third, the document collection can be indexed on the basis of scanned list
using Vector Space Information model. Different weighting schemes might be
used; one that seems effective is the "Term Frequency-Inverse Document
Frequency" (TF-IDF), that is, the number of times the word appears in the
document multiplied by a function of the inverse of the number of documents
in which the word appears. Terms that appear often in a document and do not
appear in many documents therefore have an important weight.

3.3.2 Training of Network
In the training phase, the codebook vectors are initialized from the given training data.
Each codebook vector must fall within the correct class boundary for which it is

Text classification Using LV(Q 20

initialized. A sample is classified against all other samples in the training set and is
accepted only if it has the same classification as the initial class label given. There are
different learning algorithms available for the training of the network discussed in
Chapter 1.

3.3.3 Analysis of Results

After the training of the network, the real data can be provided to the network and the
results can be analyzed using standard evaluation measures such as Fl-mesure to
judge the performance of the classifier.

The F1-measure is the harmonic mean of the precision and recall of the classifier.

2 pr

yZ + r

Fl=

G.1)

where p= Precision, and » = Recall.

The Precision & Recall measures are widely used in Information Retrieval and Text
classification. Precision is defined as the number of correctly classified positive
examples divided by the total number of examples that are classified as positive.
Recall is defined as the number of correctly classified positive examples divided by
the total number of actual positive examples in the test set. The class of interest is
called the positive class, while the rest of all are negative classes

Texi classification Using LVQ 21

CHAPTER 4
SYSTEM DESIGN

4 System Design

The structural design of the text classification system with training and testing phase
is described in Fig 4-1, The system operates in two modes; training mode and testing
mode. In training mode the network developed pattern for classification of text
documents. The inputs to training mode are the documents with pre-defined
documents while inputs to testing mode are unclassified documents. The pre-
processing phase is similar for both modes with exception that the dictionary is
construction in training mode and it is used for document conversion during testing
mode. The training data is used to construct classifier and it takes classification

decision for unclassified documents.

r—

Semons pmmmime meems peae—

Pre Processing |

L — — D T

¥ , ¥

Documents .

Fi— e = e e —)

Data ln;:)ut l I

|
|
|| unctassified"
|
|

_TextCidssifier __ | __

L —

Figure 4-1 Classification System

4.1 Data Input

The data for the classification system will consist of the text documents. Text
classification system takes both classified and unclassified documents as input. The
classified documents have class label attached with them and used for the training of

classification procedure.

Classification System

50 senrcevams

Classified

Unclassified
Documents

Documents
Figure 4-2 Classification Flow
The system will be able to extract text from XML and HTML formatted text pages
and form Internet URLs.

23

Text classification using LVQ

Documentloader

$LoadDocument()
9L oadURL()

F TextDecoder]

$XMLTagloader()
—%PlainTextLoader()

Figure 4-3 The Document Loader Classes

4.1.1 DocumentLoader Class
The DocumentLoader class will load document from a single file, disk directory, or

from the URL.

4.1.2 TextDecoder Class
The TextDecoder class will parse documents into raw text. The functions defined for

this class are
a. XMLTagLoader will ignore XML or HTML formatted tags and will extract
actual text.
b. The PlainTextLoader() method will be used for simple text documents.

4.2 Data Pre-processing

Generally the classification algorithm cannot operate on simple raw texts. Several pre-
processing steps are required for classification of texts using Learning Vector
Quantization. This preprocessing increases the accuracy of classification and reduces
the complexity of the procedure by decreasing the size of dictionary. The steps for

pre-processing are described below:

4.2.1 Common Words Removal

The removal of high frequency words prevents document vectors from becoming
sparse. Comparing input text with a stop list of words can easily perform it.

The removal of least occurring terms helps in making vocabulary list more
meaningful. The terms having frequency of less than 2 or 3 do not count much
towards calculating the relevancy of document to a class. So, it is good practice to
remove them to reduce vocabulary size and computational complexity [27].

4.2.1.1 StopWord Class

The StopWord class has a list of stop word. Each input token is compared with stop
list and is not processed if a match is found. The function isStopWord (String
token) will return true or false for a string token extracted form text documents

depending if the match is found or not.

Text classification using LVQ 24

Sto prrd
&,m_stopiist

F-isStopWord()—]

Figure 4-4 Stopword Class

4.2.2 Word Stemming

After the removal of high frequency terms, the next step is of suffix stripping from
words having same meaning but more than morphological form. Two words should
be compared for their conceptual meaning because a conventional string comparison

will produce high error rate.

Table lists some examples where words should be taken as equivalent but traditional
string comparison will show them different. The solution to this problem is to remove
suffixes from different forms of a word. Removal of ility, ual, es, en from the
following words will work out. There are standard algorithms defined for suffix
stripping called stemming algorithms such as Lovins and Porter algorithms [28].

Table 4-1 Suffix Stripping

Flexible Flexibility Different Same

Fact Factual Different Same
Matrix Matrixes Different Same

Give Given Different Same J

Many words, after suffix removal map to one morphological form, but still there are
some, which don’t. One way to deal with this problem is to have a list of equivalent
stems and two words should be considered equivalent if and only if their stems match
and there 1s an entry in the list defining their suffixes as equivalent. This work does
not consider the problem of equivalency of stems as there are very few such words in
a document and usually don’t affect the accuracy of the classifier.

422.1 Levins Stemmer Wrapper Class
This class wraps the Lovins stemmer algorithm for determining the root of a word.

42.2.2 Lowercase Stemmer Wrapper Class
The Lowercase Stemmer class does not use any stemming algorithm but it simply
converts the all input tokens to lower case and eliminates the duplicate term.

4.2.3 Dictionary Creation
After the removal of high frequency words and word stemming, a dictionary of
important words of document space is created. All documents are indexed on the basis

of this dictionary using a suitable weighting scheme.

25

Text classification using LVQ

4.2.3.1 WordList Class
The WordList class has a list of important terms. We can also manually add and
delete the words from the word list.

WordList
&m_wordLsit

@addWord()
YdeleteWord()
®getDocumnetsNum()
®getWordListCount()
—RgetWordList()

Figure 4-5 WordList Class

4.2.4 Document Conversion

Generally the classification algorithm cannot operate on the simple raw texts. A
structure representation of the text documents is required. The representation used is
the Vector Space Information Model. This model views the documents as vectors of
words. Each cell of the document vector shows the weighted frequency of that term in
that document. There are different schemes for the term weighting:

Uerm Occurrences BinaryOccurrences

—createVectors ()1 —®createVectors()—

TFIDF TermFrequency

—®createVectors 07 —&createVectors ()

Figure 4-6 Weighting Scheme Classes

4.2.4.1 BinaryOccurences Class
The cells of the document vectors have 0 or 1 depending on the presence of a term in
that document. For the ith cell of the jth document in documents space v, the

corresponding value will be
V,-,-={:)’f"’ B @)
where fj is the frequency of ith term in the jtA document.
424.2 TermOQOccurences Class
The absolute number of occurrences of a term v; = f; is used.
4243 TermFrequency Class
Each cell of the vectors has relative frequency of a term in that document. The

frequency of each term is-normalized to the Euclidean unit length by dividing the each
term frequency with the total number of terms in the document vector.

Text classification using LVQ 26

/s (4.2)

Ty

where f; is the frequency of ith term in the jth document, and f is the total number of
terms in the document j.
4.2.4.4 TFIDF Class

The calculation of TF-IDF is done by multiplying the term frequency with an inverse
function of document frequency of the term. The weight value for the term can be

defined as:
i D
P -———f'/]og [uj (43)
fd J ﬁi
where,
i, = -fi 4.9)

A
The longer the document, the more likely it is for a given term to appear in it. It would
be better to reduce the importance attached to a term appearing in a document based
on the length of the document. The term weights are than normalized so longer

documents are not unfairly given more weight.
Vy = - tf"f Iog(D /ﬁ,) (45)
V3 L) leg(D1 AT

4.2.5 The Configuration Class

This class will include variables for configuring each step of the vector creation. For
every step in the vectorization process, user sets the class that would be used for this
step. This class can be one already included in the package or a new one, written by
the user. The only constraint is that it has to implement the corresponding interface of

a given step.
e STEP_CHAR _MAPPER: If a different character mapping scheme is used
other than default
e STEP_LOADER: The loader for loading the documents i.e. XML documents

or simple text documents

e STEP_OUTPUT: If the vectors are stored in a file then the output
configuration

e STEP_STEMMER: The stemming algorithm wrapper class that will be used
for suffix stripping.

e STEP_TOKENIZER: The tokenizer class for the input stream.

e STEP VECTORCREATION: The class that will be used for the vector
creation; TF, TO or the TFIDF etc.

27

Text classification using LVQ

» STEP_WORDFILTER: The class for the stop word list

VYectorConfigration

STEP_CHAR_MAPPER : String
STEP_INPUT_FILTER : Stting
STEP_LOADER : String
STEP_OUTPUT : String
STEP_STEMMER : String

&
&
d
&
&
&P STEP_TOKEMIZER : String
&P
&
&
&
o

STEP_VECTOR_CREATION : String
STEP_WORDFILTER : String

getComponentForStep() : Objact
setConfigurationRule() ; void
Wy TConfiguration() : void

A WY TConfiguration() : void

’
e
Y 4
Y 4
P
¥ 4
¢
’
'Y
A3
]
)
& @ WIConfiguration() - void

Figure 4-7 Vector Configuration Class

4.3 Document Classification

The Document Classification phase will implement LVQ algorithms and classify the
input vectors. The classes in this phase will analyze the vector file for several

statistical measures.

4.3.1 File Loader
This class will load the vector file in a set of instances. A single instance will be a
horizontal linear array of numeric values and it will show a document with the actual

class label at the inserted at the end of the array.

4.3.2 Parameter Initialization

This class will collect the required initiation and configuration algorithm parameters
from the user for every LVQ algorithm. This class will be instantiated with default
values for the algorithm parameters. User will be able to configure every parameter of

LVQ algorithms.
The class will include following parameters:

e epsilon value for OLVQ3

o learning rate for algorithms

¢ total number of code book vectors
» initialization mode

e learning function

o total training iterations

s use of voting

e window size

Text classification using LVQ 28

Figure 4-8 Algorithm Parameter Class

4.3.3 LVQ Algorithms
These classes will implement LVQ algorithms.
4331 LVQ1

The LVQI1 [29] selects a single set of best matching codebook vectors is selected and
moved closer or further away from each data vector, per iteration if the classification

decision is correct or wrong respectively.

Lugt

ol globslinfol) : String
&P Lvat(y: vaid

%

b3
S
LY main() : vaid

& {7 getAlgorthmOptions() ; Collection
4 7 gstlistOptions() : Collection

4 7 setirguments(): void

% G trainModel() : void

& §# validstearguments() : void

Figure 4-9 LVQ1 wrapper class

4332 LVQ2

Two sets of best matching codebook vectors are selected and only updated if one set
belongs to the desired class and the other does not, and the distance ratio is within a
defined window. The value of the window is defined as the mid-point of the set of
codebook vectors. [30]

4333 LVQ3

The same as LVQ2.1 except if both set of codebook vectors belong to correct class;
they are updated but adjusted using an epsilon value. The epsilon value is used to

adjust the global learning rate.

4334 OLVQl

The Optimized LVQ1 [29] is same as LVQI, except that each codebook vector has its
own learning rate.

4335 OLVQ3

The Optimized LVQ3 [31] is same as LVQ3 except each codebook vector has its own
learning rate in the same manner as OLVQI.

4.4 Classification Evaluation

The classification evaluation will consist of performing 10-fold cross validation
method for all algorithms. 10-fold cross validation method divides the test set in 10
equal sets and uses one set for testing and the remaining nine sets are used for the
training of classification model. The evaluation class will give F1-measure, Precision
and Recall rates, and the Percentage of correct and incorrect classified instances

29

Text classification using LV

Evaluation

‘? k_MerginResoiution ; int
¥ m_ClassisNominal : baolean
® m_ClassNames : String(]

@ m_ConfusionMatrix ; doutle(]]]
? m_Correct: double

§ m_CostMatrix : Castiatrix

@ m_ErrorEstimetor : Estimator
§ m_ncorrect: double

§ m_MissingClass : double

? m_NumClasses : int

P m_NumFolds : it

CHG GO N

GO O

& o7 svgCost() : double

P contusionMatriz() : double]][]

&l correct(); double

& ! correlationCoetficient() : double
& & crossvalidsteModel() : void

& P crossvalidateModel() : void

& P equalsy): boolean

& & errorRate() : double

& ! evalusteiodel() : String

4 E‘I_" evalugtehodel() : String

& ! evalusteModel() : doublef]

% gt evalusteModelOnce() : double

& o talseNegativeRete() : double

& ¢! falsePostiveRate() : double

& P Measwre() : double

% o incorrect() : double

% o peiCorrectt) : doutle

& P pctincorrect() : double

& P pctUnclassified() : double

% o precision() : double

& ! priorErtropy() : double

% P recsll() : double

& P relativeshsaluteError() : double
& P rootieanPriorSaueredError() ; double
& o rootMeanSauaredError() : double
4 o rootRelativeSquaredError() : doubls

L

Figure 4-10 Algorithm Evaluation Class

Text classification using LVQ

30

CHAPTER 5
EXPERIMENT

S Experiment

The design of a text classification system plays a vital role in the construction of
classifier. Following the design described in chapter 4, the classification system is
constructed in two separate modules and these modules are joined resuiting in a
complete text classification application.

The application for the experiment is developed in Java as it provides relatively easy
handling of text files and string tokens. The application has a main window, which
combines the different modules of the application.

|_E|i‘§a

' Text Classification 'E_m:i‘mmén_t-’_ :
' Version 100

Developed By Muhammad Fah_a@ Umer“ :

-, Copyright 20052006
 International Isiamic University, Islamabad

Experiment

. VSIM Model,

Figure 5-1 LVQ Text Classification Environment

5.1 VSIM Converter

This module converts the text documents to vectors using Vector Space Information
Model. This method takes two inputs from the user, the directory path where the
documents are placed and the dictionary file for those documents. This dictionary file
is used to filter the string tokens received from the documents. The documents used in
this experiment are in XML format. Therefore, an XML filter is used to remove the
XML formatting tags. The Lovins stemmer algorithm was used to remove the suffixes
from the different morphological forms of a single word. The other stemmer
algorithms are Porters and Snowball stemmer algorithms. To remove the stop words,

Text Classification Using LVQ 32

a text file containing the common stop words is supplied to filter tokens. The class can
generate the document vectors with Binary weighting, Term Occurrence, Term
Frequencies and normalized-TFIDF. The TFIDF is the most suitable weighting
scheme as it makes the most occurring terms less effective and prevents the long

documents from scoring high.

5.1.1 Initialization

The class constructor is initialized with the path of documents directory and
dictionary of the words.

class V3IMTask 1
{

WVTool wvk;

Configuration config;

Inputlist list;

WordList wordList ;

WordList wordListFile;

String Doclist|[];

String DirPath;

public VSIMTask{int VSIMM, String dirpath) throws Exception

{

}
The Configuration class is initialized and the appropriate values for the different steps
have been set. This class will provide a configuration object that will be used to
configure LVQ algorithms for classification.

//Initialize the configuration
config = new WVTConfiguration();
//Set the input filter for XML documnets
config.setConfigurationRule (
WVTConfiguration.STEP_INPUT FILTER,new WVTConfigurationFact
(new XMLInputFilter())):
//8et the Lovins stemmer algorithm for suffux stripping
config.setConfigurationRule(WVTConfiguration.STEP_STEMMER,
new WVTConfigurationFact (new LovinsStemmerWrapper()));
try |
//Initialize the stopword class
config.setConfigurationRule(WVTConfiguration.STEP _WORDFILTER,

new WVTConfigurationFact {new StopwordFilter(})):;

Text Classification Using LVQ 33

}

catch (Exception e)
{

e.printStackTrace();

}
list = new WVTInputList(10);

//Load The Documnets from the dircetory
list.addEntry(new WVTDocumentInfo (DirPath, "xmli","","english"));

//Create the word List
wordList = wvt.createWordList(list,config);

//store the word lists created in temporary files
wordList.store(new FileWriter {"wordlistinfo.txt"));

wordList.storePlain{new FileWriter ("wordlistplain.txt"));

//Create the WVTOOL Format Doc Vectors and store in a

temporary file
FileWriter outFile = new FileWriter ("wordvectors.txt");

WordVectorWriter wvw = new WordVectorWriter (outFile,true);
config.setConfigurationRule (WWTConfiguration.STEP_QUTPUT, new

WvTConfigurationFact (wvw)),

—J

The integer value VSIM initialized in the constructor is used to define that which
weighting scheme will be used for the vector creation.

switeh (VSIMM)
{

case 1:
config.setConfigurationRule |
WvTConfiguration.STEP_VECTOR_CREATION,
new WVTConfigurationFact (new BinaryOccurrences())):;
break;

case 2:
config.setConfigurationRule(
WVTConfiguration.STEP_VECTOR_CREATION,
new WVTConfigurationFact (new TermOccurrences()));

break;

case 3:
config.setConfigurationRule(
WVTConfiguration.STEP VECTOR_CREATION,

new WVTConfigurationFact (new TermFrequency()));

Text Classification Using LVQ 34

break;
case 4:
config.setConfigurationRule(
WVTConfiguration.STEP_VECTOR_CREATION,
new WVTConfigurationFact (new TFIDF()]));
JOptionPane.showMessageDialog(null, "The data is saved in
a file");
break;
default:
config.setConfigurationRule (
WVTConfiguration.STEP_VECTOR_CREATIOCN,
new WVTConfigurationFact (new TFIDF()));
}

//create the vectors

wvt.createVectors(list,config,wordList);

7The vectors are created and stored in a text file. The createVectors() function use the
list of the documents, configuration object and dictionary words to create vectors.
The vectors stored in text file at this stage are in raw form and are not readable. The
classification algorithm requires input data in tab-separated two-dimensional array.
This data is processed to generate the tab-separated vector values.

//Read the temporary files

File ReadableFile = new File("wordvectors.txt');

FileReader vectorFile = new FileReader {"wordwvectors.txt");
StringTokenizer strToken = new StringTokenizer{strBuffer,"\n");
int row = wordList.getNumWords();

int col = wordList.getNumDocuments();

float docArray []{] = new float[row][col]l;

while (strToken.hasMoreTokens{))

{
Token = strToken.nextToken(};

String s = Token;
StringTokenizer termToken = new StringTokenizer(s,™:");
if (termToken.hasMoreTokens())}
{

String termNo = termToken.nextToken();

if (termToken.hasMoreTokens())

{

Text Classification Using LV(Q 35

String TFIDF = termToken.nextToken();

Integer ItemNo = new Integer (termNo);

Float F = new Float (TFIDF);

//round the value to 0.00

float in = Math.round(F.flcatValue()*1000Q.00);
in = in/1000:

try |

docArray(ItemNo.intValue()] [docNum} = in;

} catch (Exception e)

{ e.printStackTrace(); }

FileWriter docVector = new FileWriter("vector.txt"):

writeBuffer = new StringBuffer(coll;

for (k=0; k<row; k++)
{
for (m=0; m<col; m++)
{
writeBuffer({m].append(docArray({k] (m]).append(Delim);
if (k=={row~1})
{
writeBuffer [m].append("").append(Doclist{m]) .append(”\n"};

}

t
for (int s=0; s<col; s++)

docVector .write(writeBuffer{s].toString()):

}
As every vector contains each of the vocabulary word, most of the vectors are sparse.
These vectors are then converted in a comma separated two dimensional matrix form
are store in a text file. The format of the text file is ARFF i.e. Attribute Relation File
Format. The description of the ARFF format is given in the following table.

Table 5-1 ARFF File Format Description

A dataset has to start with a declaration of its

@relation name
name

Text Classification Using LVQ 36

It followed by a list of all the attributes in the

i ttribut . . .
tattribute attribute mame | dataset (including the class attribute). These

specification }
declarations have the form

Gattribute If an attribute is nominal, specification contains

nominal attribute R . . .
. - a list of the possible attribute values in curly
{first_value, second_value,

third value) brackets

If an attribute is numeric, specification is
fattribute .
ed keyword ric: (Integer
numeric_attribute numeric replac by the eYw nume' (teg
values are treated as real numbers in WEKA.)

In addition to these two types of attributes,
there also exists a string attribute type. This

Rattribute . . oy wqe

string attribute string attribute provides the possibility to_ store a
comment or ID field for each of the instances
in a dataset

Actual data is introduced by this tag, which is
followed by a list of all the instances. The
Gdata instances are listed in comma-separated format,
with a question mark representing a missing
value

The frame window for the VSIM conversion takes required data and dictionary path
from user. The user than can select which of the term weighting scheme will be used,
by clicking the appropriate checkbox.

The first text field will take document directory path and second text filed will take
the dictionary path. Checking appropriate radio button can specify the method that
will be used for vector creation.

When ‘Start Vector Transformation’ button will be clicked, application will start
processing on the document and load output vectors in the text area at the bottom of |
the application window

These vectors can be saved in a file in the current working directory by clicking the

‘Save Vectors’ button.

Text Classification Using LVQ 37

&, Vectar Space Information Madel PRt
Choose Directoly For Text DOCUMAELS, ;- ~+-=

Choose Dictionary Far Text Docurmnets... -

I

. Classfication Test Method-

VS Pragress: -
l Start Vector: Transfermati

Save Classification G4l — = -

]

(KR

-

<]

Figure 5-2 Vector Creation Application

5.2 Classification Experiment

This is main module used for performing the classification task. This module has the
class ClassificationExp() that performs the classification operation. Main window of
this class has three tabbed panes associated with it. The first pane is used for loading
the ARFF file. The window displays the documents vectors in a table. When the user
clicks on any attribute value in the table, following values about that attribute are

displayed:

Attribute Name: The name of the attribute.

Missing: The number of missing values in data set for the attribute.

Type: The type of attribute of value. i.e. numeric or nominal. Numeric
attributes have real number values while the value for nominal
attributes belong from a definite set of values such as the day of
week.

Distinct: The number of distinct values.

Unique: The number of values that appear once.

5.2.1 Class Constructor

The class ClassificationExp() is declared with components required to display the user
interface. Class constructor initializes the algorithm parameters with their default
values. As the classification experiment window has three panes, three panels are
initialized and added to tabbed windowpanes.

Text Classification Using LVQ 38

public class ClassficationExp extends JFrame {
Instances data, Inst;
BasePane BaseWindow;
AlgoParam (JalgoParam;

VisualizePanel VP;

L

public ClassficationExp ()
{
JFrame expFrm = this;
algoParam = new AlgoParam{5];
algoParam({0] = new AlgoParam{40,1600,1,1,1,0.1,0.3,0.3};
algoParam{l] = new AlgoParam(40,1600,1,1,1,0.1,0.3,0.3);

Container expFrmCnt = expFrm.getContentPane(}:

BaseWindow = new BasePane();

JPanel PrePanel = new JPanel (new GridLayout (2,1));
JPanel ClassPanel = new JPanel (new BorderLayout(5,5));
VisualPanel = new JPanel{new GridLayout(1l,2)};
BaseWindow.addTab ("PreProcessing", PrePanel} ;
BaseWindow.addTab("Visualization", VisualPanel) ;
BaseWindow.addTab ("Classification",ClassPanel);
VisualPanel.add(VP) ;

expFrmCnt.add (BaseWindow) ;

5.2.2 Algorithm Configuration

The classification pane has a drop down list, which displays all LVQ algorithms with
their default values. When an algorithm is selected, its initialization parameters can be
edited by clicking the Edit Parameters button next to it. A dialog box is displayed
where user can supply the appropriate values. After user presses the OK button, new

values are retrieved respectively and algorithm configuration is updated.

public void editParamBtn Clicked(ActionEvent e)

{
//get the selected algorithm

int slItem = chooselVQAlgoCmb.getSelectedIndex ()

dlg=new ParamDlg({
chooselLVQAlgoCmb.getSelectedIndex () ,algoParam({sItem]);

if (sItem <= 2)
{

int temp = sItemtl;

Text Classification Using L VQ

39

String updatelteml =

"LYQU+ temp + " -M "+algoParam{sItem].numInitMode+" -C "+
algoParam{sItem].numCBV+" -1 "+
algoParam{sItem].numIranlter+” -R "+
algoParam{sIten].learnRate;

chooselLVQAlgoCmb. removeltemAt (sItem);
chooselVQAlgoCmb. insertItemAt (updateIteml, sltem);

{bréi’?ocessmg v ation |- Classi
-Choose LVQ Algorithn for Classification -

S
. ELVQ1 -M1.C30-11600-R0.3

~Classification Test Method

{3 5-fold Cres:
" Y nigorithm Parameters-.

T "
- Classffication Rasults... -~ Leammg-w_‘_’ S e
Correctly Classified lnstam:e# Tma.l Codefask Vectors : 40 . :
:) ‘Yinttialization Function. * " IRandom Training Data Proportional
Incorrectly Classified instancg L — -

Learning Function E.inaar Decay.
. Totat Time Taken ta Bulld Mot§ . x
, Ensilon . S Y
:Total Time Takento Build Madd T B

UseVoting A LT 2 : ers_
‘Root Mean Suuared Efror. | . . no Y
: St,‘.u redrror ‘Window Size éog
:Raot Absalute Error: ' Yotal Traing herations : '§r1 600
‘Root Refative Square Error: '

- o 0K iCancel

“Total Number of instancas &

Figure 5-3 Dialog for Algorithm Configuration

5.2.3 Algorithm Initiator

The algorithm initiator class ‘ParamDlg’ is derived from JDialog(...). This class
stores the algorithm initialization parameters as an object of class ‘AlgoParam’. An
object of this class is used for every LVQ algorithm. '

public class RlgoParam

{
int numCBV, numTranlIter,numlearnFunc,numInitMode, useVoting;

double epsilon,wndSize, learnRate;

Text Classification Using LVQ 40

public AlgoParam{int ncbv,int ntiter, int nlrnfnc,

int nimode, int uvtng,double ep,double wsize,double lrate) {
numCBV = ncbv;

numTranIter = ntiter;

nunLearnFunc = 1;

numInitMode = nimode;

useVoting = uvtng;

epsilon = ep;

wndSize wsize;

learnRate = lrate;

]

; .
public AlgoParam{)

{
}

}

5.2.4 Classification Test Methods

Classification test methods can be specified by clicking the appropriate radio button.

The test method options are follows:

a. 5-fold cross validation method
b. 10-fold cross validation method
c. 66% training split

d. User supplied test set

5.2.5 Classification Algerithm
The implementation of each algorithm is defined in a function. There are wrapper

classes for each of LVQ algorithm. An object of the respective class is created and

initiated with given parameters.

[public void OLVQl ()

{
try |
0lvqgl algorithm = new Olvgl(};
switch (algoParam{3].numInitMode) {
case 0O:

init = new SelectedTag(
InitialisationFactory.INITALISE_TRAINING_PROPORTIONAL,

InitialisationFactory.TAGS_MODEL INITALISATION);

break:

}
algorithm.setInitialisationMode(init);
switch (algoParam{3].numLearnfFunc) {

case Q:°

Text Classification Using LVQ 41

1func = new SelectedTag(
LearningKernelFactory.LEARNING FUNCTION_ LINEAR,

LearningKernelFactory.TAGS_LEARNING_FUNCTION) ;

break;

}
algorithm.setLearningFunction {1func);

algorithm.setSeed (1)

algorithm. setTotalCodebookVectors(algoParam([3].numCBV};

algorithm.setTotalTrainingIterations(algoParam{3].numTranlter);

algorithm.setUseVoting{true};

Once the parameters for algorithm object are set, an instance of the Evaluation class is
created and initialize with the given data set. Evaluation class has a function
crossValidateModel (...}, which takes algorithm instance and data set and use n-
fold cross validation model to obtain the result for given algorithm on the given data

set.

e e A A L
{ PreProcessing ! Visualizetion . | ClasSilication

Choose LVQ Algasithm for. Classification -

1LV -M 1.C 40 1 1600 R O3 -

; Classification Test Mathot -~ oros i
(3 540l Cross Vaildation JA0-ald Cross Vaildation -C5.66% Percentage Split Use the Training Set

.. St Crassification . |

1355 Wige Precision & CONMUSIN Matrig o :o romemm forim s

- Classification Results... -

‘Correcily Classified instances

dncorrectly Classifted Instances -

Total Time.Taken ta Build Made!

“Total Time Taken ta Build Madel.

‘Root Mean Squared Error

:Roat Abselute Error:

Root Relative Square Error:

Mean Absolute Error:

"Total Number of nstances

Figure 4 Classification Window

// train and test the model (10 fold cross validation)
Evaluation evaluation = new Evaluation{data):
evaluation.crossValidateModel (algorithm, data, 10,
new Random(algorithm.getSeed()));

Double icrtval = new Double(evaluation.incorrect());
Double crtval = new Double(evaluation.correct(});

Text Classification Using LVQ 42

}
catch (Exception exp)

{
exp.printStackTrace();

}
As user clicks the Start Classification button, processing on the document vectors is
started. The respective algorithms initialize the codebook vectors automatically.
These codebook vectors are used to classify the test instances. Result values are

populated in the respective text fields.

Text Classification Using LVQ 43

CHAPTER 6
ANALYSIS OF RESULTS

6 Analysis of Results

In order to objectively evaluate the LVQ and other classification algorithms, the well
known Reuters-21578 collection has been used. The analysis of results is carried out
in two phases: first the all five LVQ algorithms are compared for determining the
most accurate algorithm for the text classification, Second: the best LVQ algorithm is

compared with other classification approaches.

6.1 Comparison of LV(Q) algorithms

Each classification algorithm requires a configuration before it can be applied to the
classification task. These configurations determine that how the algorithm will be
trained, the length pf the training time, number of instances that will be used for he
training and the learning rate of the algorithm. The parameters required to configure
with their recommended values are discussed below:

epsilon -- Epsilon learning weight modifier used when both BMUs are of the
instances class (recommend 0.1 or 0.5 should be smaller for smaller windowSize

values).

initialisationMode -- Model (codebook vector) initalisation mode (1==Random
Training Data Proportional, 2==Random Training Data Even, 3==Random Values In
Range, 4==Simple KMeans, 5==Farthest First, 6==K-Nearest Neighbour Even)

learningFunction -- Learning rate function to use while training, linear is typically
better (1==Linear Decay, 2==Inverse, 3==Static)

learningRate -- Initial learning rate value (recommend 0.3 or 0.5)
totalCodebookVectors -- Total number of codebook vectors in the model

totalTraininglIterations -- Total number of training iterations (recommended 30 to
50 times the number of codebook vectors).

useVoting -- Use dynamic voting to select the assigned class of each codebook
vector, provides automatic handling of misclassified instances.

windowSize -- Window size matching codebook vectors must be within (recommend
0.2 0r 0.3)

For evaluation purpose, the 10-fold cross validation method is used. This method
divides the data set in 10 equal folds. The 9 folds are used for training the network
while the remaining 1 fold is used for testing of algorithm. The folds for the cross
validation method can be any number but 10 and 5-fold method are used normally.

Text Classification Using LVQ

6.1.1 LVQI1 Results

Table 6-1 LVQ1 Algorithm Configuration

Total codebook vectors 40
Use of voting yes
Learning rate 0.3
Total training iterations 1600
Window size 0.3

Table 6-2 Classification Accuracy

I

Correctly Classified Instances

S

400, 83.50 %

Incorrectly Classified Instances

79, 16.49 %

Root mean squared error

0.2185

Table 6-3 LVQ1 Classification Result

0.911
tra 0.927 0.935 0.931
shi 0.639 0.568 0.601
int 0.911 0.988 0.948
cru 0.789 0.795 0.792

Table 6-4 LVQI Confusion Matrix

Model Initialization Time 15ms

Model Training Time 1032ms
Total Model Preparation Time 1047ms
Time Taken to Build Model 1050ms

Text Classification Using LVQ

46

6.1.2 LVQ2 Results

Table 6-6 LYQ2 Algorithm Configuration

Total codebook vectors 50
Use of voting Yes
Learning rate 0.5
Total training iterations 2200
Window size 0.3

Table 6-7 Classification Accuracy

Correctly Classified Instances

404, 84.3424 %

Incorrectly Classified Instances

75,15.6576 %

Root mean squared error

0.2223

Table 6-8 LVQ2 Classification Result

TR

whe 0.941 0.857 0.897
tra 0.934 0917 0.925
shi 0.616 0.654 0.635
int 0.921 0.988 0.953
cru 0.83 0.808 0.819

Table 6-9 LYQ2 Confusion Matrix

T

Table 6-10 Classification Time Breakdown

Model Initialization Time Oms

Model Training Time 1750ms
Total Model Preparation Time 1750ms
Time Taken to Build Model 1750ms

Text Classification Using LVQ

47

6.1.3 LVQ3 Results

Table 6-11 LVQ3 Algorithm Configuration

m

Total codebook vectors 40
Use of voting Yes
Learning rate 0.3
Total training iterations 2000
Epsilon 0.1
Window size 03

T

Correctly Classified Instances

Table 6-12 Classification Accuracy

s

399, 83.2985 %

Incorrectly Classified Instances

80, 16.7015 %

Root mean squared error

0.2179

Table 6-13 LVQ3 Classification Result

tra 0.927 0.944 0.936
shi 0.591 0.679 0.632
int 0.929 0.952 0.94
cru 0.809 0.755 0.781

Model Initialization Time Oms
Model Training Time 1313ms
Total Model Preparation Time 1313ms

Text Classification Using LVQ

48

6.1.4 OLVQ1 Results
Table 6-16 OLVQ1 Algorithm Configuration

Total codebook vectors

Use of voting yes

Learning rate 0.3

Total training iterations 1600
Window size 0.3

Table 6-17 Classification Accuracy

ik e i

Correctly Classified Instances 408, 85.17 %

Incorrectly Classified Instances 71, 14.82%

Root mean squared error 0.2133

Table 6-18 OLVQ1 Classification Result

e T

0.926 0.893
Tra 0.927 0.944 0.936
Shi 0.667 0.642 0.654
Int 0.921 0.988 0.953
Cru 0.824 0.808 0.816

Table 6-19 OLVQ1 Confusion Matrix

Model Initialization Time 15ms
Model Training Time 907ms
Total Model Preparation Time 922ms

Text Classification Using LVQ

6.1.5 OLVQ3 Results

Table 6-21 OLVQ3 Algorithm Configuration

amete Confign
Total codebook vectors 40
Use of voting Yes
Learning rate 0.3
Total training iterations 1600
Window size 0.3

R

Table 6-22 Classification Accuracy

Correctly Classified Instances 400, 83.50 %
Incorrectly Classified Instances 79, 16.49 %
Root mean squared error 0.2185

Table 6-23 OLVYQ3 Classification Result

Whe 0.911 0911 | 0911
Tra 0.927 0.935 0.931
Shi 0.639 0.568 0.601
Int 0.911 0.988 0.948
Cru | 0789 0.795 0.792

Tablie 6-24 OLVQ3 Confusion Matrix

Model Initialization Time 15ms

Model Training Time 1032ms
Total Mode] Preparaticn Time 1047ms
Time Taken to Build Model 1050ms

Text Classification Using LVQ

50

Table 6-26 Comparison of LVQ algorithms F1-measure

trade 0931 0.925 0.936 0.936 0.922
ship 0.601 0.635 0.632 0.654 0.642
interest 0.948 0.953 0.94 0.953 0.94
crude 0.792 0.819 0.781 0.816 0.809

The three LVQ-algorithms LVQ1, LVQ2.1 and LVQ3, yield almost similar accuracy
for the classification procedure. The LVQ1 and the LVQ3 define a more robust
process, whereby the codebook vectors assume stationary values even after extended
learning periods. For the LVQ1 the learning rate can approximately be optimized for
quick convergence. In LVQ2.1, there is no guarantee for the codebook vectors being
placed optimally to describe the forms of the class borders. Therefore the LVQ2.1
should only be used in a differential fashion, using a small value of learning rate and

low number of training steps.

LVQ1 are LVQ3 with optimized learning rate have given higher accuracies than other
LVQ algorithms. Optimized-LVQ1 performs better than its other counterparts. It
gives F1-measure over 90% for whe, gra and tra categories. The shi category has the
lowest Fl-measure.i.e 65.4%. The reason for this is not the poor performance of the
classifier but there were some documents which were common between the shi and
cru category. Because the classification system was based on hard categorization rule
[2], it had to classify the overlapping documents in one of the target classes.

The performance of the OLVQI algorithm is also fairly reasonable if the training time
of the classifier is considered. It took only 922 ms on a P-IV 2.4GHz to perform 1600
training iterations on 40 codebook vectors for building model on 10-folds cross

validation method.

6.2 Comparison of Classification Algorithms

The results generated by the experiment are quite excellent Table 6 compares the
results with the other classification algorithms with same training and test set. Other
classification model, such as Naive Bayes, K-NN, and C4 give low accuracy and also
their training and classification time is greater than LVQ.

Due to the memory and computation limitations, the results in Table 6 were obtained
using 5-folds cross validation. The results show that for the whe, tra and int category,
SVMs works well than OLVQI and for the shi and cru, the OLVQ1 is better than
SVM. One can say that as SVM works well for three categories and OLVQ! is good
only for two categories, it is better than OLVQ]1. In fact, SVM work well than LVQ
but the problem lies with the time taken by SVM to build the model. SVMs took 6

Text Classification Using LVQ 51

times more time than OLVQI. This short training and classification time encourages
the use of LVQ for the classification task

With the greater accuracy and very short training and classification time, LVQ
networks seem to be prospective for the classification of text data.

o.:x \ /o\ﬁ
0.6 \/

0.4

0.2

whe trade ship interest crude

(a) Fl-measure for OLVQI

1
0.8 N /\
s N _ /£ ®
" N
0.2

0 : . , ,

whe trade ship interest crude

(b) Fl-measure for SVM

Text Classification Using LVQ 52

0.9

o7 [T Pt

0.6 —&—RBF
0.5 \/ Network

0.4
0.3
0.2
0.1

0 T T T —

whe trade ship interest crude

(c) F1-measure for RBF Network

0.6 \g/

0.4

0.2

0 ™ T ~r -

whe trade ship interest crude

(d) F1-measure for Self-organizing Maps

Text Classification Using LVQ

0.8 S ~3
0.6 \V/
0.4
0.2
0 - - 1
whe trade ship interest crude

(g) F1-measure for Naive Bayes

Table 6-27 F1-measure comparisen of classification procedures

whe 0917 | 0927 | 0771 | 0.867 | 0.867 | 0957 | 0.893
tra 091 | 0917 | 0759 | 0.853 | 0.886 | 0.762 | 0.825
shi 0593 | 0506 | 0484 | 0577 | 0.542 | 0467 | 0.547
int 0.936 | 0959 | 0.802 | 00911 | 0.909 | 0.822 | 0.886
cru 0776 | 0722 | 0.641 | 0795 | 0.758 | 0.817 | 0.714
(NorTni:;?ze ay| 01099 | 0745 0.4005 | 0.5103 | 0.001 | 0.0989 | 0.1444

Text Classification Using LVQ

55

0.8 *‘__0\ Z\

0.6

0.4

0.2

whe

=T T T

trade ship interest crude

(e) F1-measure for K-NN (K=7)

whe

trade ship interest crude

(f) F1-measure for K-NN (K=7)

Text Classification Using LVQ

54

CHAPTER 7
CONCLUSION & FUTURE WORK

7. Conclusion & Future Work

7.1 Conclusion

This paper presents an application of LVQ for text classification. The process of
classifying documents with LVQ consists of three phases; pre-processing of data,
training of the network and the testing of classification network. In pre-processing
phase, common words are removed from the texts, suffix striping is carried out and
least and most occurring terms are removed. The text documents are represented as
vectors using Vector Space Information Model. Each cell of the vector denotes the
weighted frequency of a tem in that document.

The experimental results show that the LVQ classifier performs well and its
effectiveness is comparable to mostly well known text classifiers. One major
advantage of the LVQ based classifier is its relatively fast training time.

The results generated by the experiment are relatively exceptional. The LVQ
networks seem to be prospective for the classification of text documents, with the
advantage of restricting documents to be part of certain classes.

7.2 Future Work

This research uses Vector Space Information Model for the representation of text. The
problem with Vector Space Information Model is that in the representation, all pairs
are considered equally similar. Semantically relationships between the terms are not
taken into account (Honkela, 1997). The LVQ classification can be applied by using
some other approach such as Poisson distribution. The use of Poisson model is widely
investigated in Information Retrieval but it is rarely used for the text classification.
There is no way to determine a good number of codebook vectors. Some mechanism
of finding an optimal number of codebook vectors should be embedded in the
learning algorithm. _

The results show that SVMs are also very effective in the classification task. To
obtain highly accurate classification system, a classification committee can be
constructed using LVQ and SVM.

This study demonstrates how promising LVQ text classification systems could be.
The next step in this research is to study the effectiveness of LVQ algorithms with

image collections.

Text Classification using LVQ 57

(1]
(2]

(3]
(41

(5]
(6]

(7

{91

{10]

[11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]
{20]

(21]

References

Sebastiani, F., Machine Learning in Classification, ACM Computing Surveys, (34) 1, 2002, I-

47.

Michie, D., Spiegelhalter, D.J. and Taylor. C.C, (Ed), ML, Neural and Statistical Classification,
1994,

Mitchell, T.M., Machine Learning, McGraw Hill, New York, 1996,

Dave A., and George M. Artificial Neural Network Technology, Data & Analysis Center for
Software, NY, 1992,

Krose, B., and Smagt, P., An introduction to Neural Networks, University of Amsterdam.1996,
Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J., and Torkkola, K., LV¥Q PAK-The
Learning Vector Quantization Program Package, Helsinki University of Technology, 1995
Lewis D. D. Nafve (Bayes) at forty: The independence assumption in information retrieval,
Proceedings of 10th European Conference on Machine Learning, 1998, 4-15.

Dumais, S. T., Platt, J., Heckerman, D., and Sahami, M. Inductive learning algorithms and
representations for text categorization. In Proceedings of 7th ACM International Conference on
Information and Knowledge Management, Bethesda, MD, 1998, 148-155.

Yang, Y., and Liu, X. A Re-examination of Text Categorization Methods. In Proceedings of
22nd ACM International Conference on Research and Development in Information Retrieval,
Berkeley, CA, 1999, 42-49.

Joachims, T. Text categorization with support vector machines: learning with many relevant
features. In Proceedings of 10th European Conference on Machine Learning, Chemnitz,
Germany, 1998, 137-142.

Joachims, T. Transductive inference for text classification using support vector machines. In
Proceedings of 16th International Conference on Machine Learning, Bled, Slovenia, 1999, 200~
209.

Rocchio, Jr. 1. J. Relevance Feedback in Information Retrieval. The SMART project
Experiments in Automatic Document Processing, editor: Gerard Salton, Prentice-Hall,
Englewood Cliffs, New Jersey, 1971.

Joachims, T. A probabilistic analysis of the Rocchio algorithm with TFIDF for text
categorization. In Proceedings of ICML-97, 14th International Conference on Machine
Learning, Nashville, TN, 1997, 143~151.

SINGHAL, A., MITRA, M., AND BUCKLEY, C. 1997. Learning routing queries in a query
zone. In Proceedings of SIGIR-97, 20th ACM International Conference on Research and
Development in Information Retrieval (Philadelphia, PA,1997), 25-32.

SCHAPIRE, R. E., SINGER, Y., AND SINGHAL, A. 1998. Boosting and Rocchio applied to
text filtering. In Proceedings of SIGIR-98, 21st ACM International Conference on Research and
Development in Information Retrieval (Melbourne, Australia, 1998), 215-223.

SALTON, G. AND BUCKLEY, C. 1988. Term-weighting approaches in automatic text
retrieval. Inform. Process. Man, 24, 5, 513--523, Also reprinted in Sparck Jones and Willett
[1997], pp. 323-328.

Fuhr, N., Hartmann, S., Knorz, G., LustiG, G., Schwantner, M., and Tzeras, K. AIR/X—a rule-
based multistage indexing system for large subject fields. In Proceedings of 3rd International
Conference "“Recherche d'Information Assistee par Ordinateur”, Barcelona, Spain, 1991, 606~
623.

Cohen, W, W, and Hirsh, H. Joins that generalize: text classification using WHIRL. In
Praceedings of 4th International Conference on Knowledge Discovery and Data Mining, New
York, 1998, 169-173.

Li, Y.H. and Jian, A.K. Classification of Text Documents The Computer J, (41)8, 1998, 537-
546,

Agrawal, R. and Srikant, S., Fast algorithm for mining association rules. In Proc. 1994 Int. Conf.
Very Large Data Bases, pages 487-499, Santiago, Chile, September 1994,

Han, J., Pei, J. and Yin, Y., Mining frequent patterns without candidate generation. In ACM

SGMOD, Dal las, 2000.

Text Classification using LVQ

58

(22]

(23]
[24]

[25]

(26]
(27]
(28]

[29]
(30]

(31]

(32]

Osmar R. Zaiane, Maria-Luiza Antonie, Classifying Text Documents by Associating Terms with
Text Categories, Department of Computer Science, University of Alberta, Canada, 2001.
Vladimir N. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995.

Fuhr, N, Hartmann, S., Knorz, G., LustiG, G., Schwantner, M., and Tzeras, K. AIR/X—arule-
based multistage indexing system for large subject fields. In Proceedings of 3rd International
Conference “Recherche d'Information Assistee par Ordinateur”, Barcelona, Spain, 1991, 606
623.

Lam, W., Ho, C. Y. Using a generalized instance set for automatic text categorization. In
Proceedings of 215t ACM International Conference on Research and Development in
Information Retrieval, Melbourne, Australia, 1998, 81-89.
http://www.daviddlewis.com/resources/testcollections/reuters21578/

C.J. van Rijsbergen. Information Retrieval, Butterworth’s, London, 1979.

Andrew, K., ‘The development of a fast conflation algorithm for English'. Dissertation submitted
for the Diploma in Computer Science, University of Cambridge, (unpublished), 1971.

Kohonen, T. The self-organizing maps. Proceedings of the IEEE, 78(9), 1990, 1464-1480
Kohonen, T. Improved versions of Learning Vector Quantization. In proceeding of the National
Joint Conference of Neural Networks, San Diego, 1990, 545-550

Kohonen, T. New Developments of Learning Vector Quantization and the Self Organizing Map.
In symposium on Neural Networks; Alliances and Perspectives in Senri, Osaka, Japan, 1992.
Honkela, T. Self-Organizing-Maps in Natural Language Processing, Ph. D Thesis, Helsinki
University of Technology, Finland, 1997.

Text Classification using LVQ

59

APPENDIX A
RESEARCH PAPER

ANSlne?

308 Lasani Town, Sargodha Road, Faisalabad - Pakistan
Tel: 0092 300 6661982, Fax: 0092 21 5206036, E-mail: support@ansimail.org

Information Technology Journal 6 (1): 154-159, 2007

ISSN 1812-5638
© 2007 Asian Network for Scientific Information

Classification of Textual Documents Using Learning Vector Quantization

Muhammad Fahad Umer and M. Sikander Hayat Khiyal
Department of Computer Science, International Islamic University, Islamabad, Pakistan

Abstract: The classification of a large collection of texts into predefined set of classes is an enduring research
problem, The comparative study of classification algorithms shows that there is a tradeoff between accuracy
and complexity of the classification systems. This study evaluates the Leaming Vector Quantization (LVQ)
network for classifying text documents. In the L. VQ method, each class is described by a relatively small number
of codebook vectors. These codebook vectors are placed in the feature space such that the decision boundaries
are approximated by the nearest neighbor rule. The LVQ require less training examples and are much faster than
other classification methods. The experimental results show that the Leamning Vector Quantization approach
outperforms the k-NN, Rocchio, NB and Decision Tree classifiers and is comparable to SVMs.

Key words: Leaming vector quantization, text classification, artificial neural networks

INTRODUCTION

The automated classification has gained
invigorated interest in the last decade. The information
on the Internet continues to grow at an incredible speed
with more than 4.5 billion pages available online. It has
become a very challenging task to classify such large
collection of information. Text Classification (TC) is one
of the prime techniques to deal with the textual data.
TC systems are used in a number of applications such as,
filtering email messages, classifying customer reviews
for large e-commerce sites, web page classification for
an intemnet directory (e.g., Google), evaluating exams
paper answers and organizing document databases in
semantic categories.

The term classification has been used in a broader
context in human activity. We may have a set of
observations and want to infer classes or clusters within
the set. Or we may have a certain number of classes and
we want to classify a new sample into one of the existing
classes. The former type is known as Clustering and the
latter is known as Classification.

The TC system categorizes the documents into a
fixed number of predefined classes. Formally, it can be
defined as the task of assigning a Boolean value to each
pair (d, ¢) where d = {d,,d;d,,...d,} is the set of text
documents and ¢;= {cy,¢;,Cs,... C,} 15 the set of class labels.
The value assigned to the pair could be true if the
document d, falls under class ¢, or false if the document d;
does not belong to class ¢; (Sebastiani, 2002).

The research in automated text classification started
in early 1960s. A long list of successes and failures are
reported in this field Many methods had been proposed

and a lot of experiments had been carried out. All this
research had been done in the field of Information
Retrieval and classification was a part of it. The rapid
growth of Internet has revived the interest in automated
text classification. Hand-built directories of web content
suggest one solution to the dilemma, but unfortunately
creating and maintaining such directories requires
enormous amourts of human effort.

Many classification methods have been suggested in
literature such as; Rocchio’s classifiers (Rocchio, 1971)
and (Joachims, 1997), k-NN (Yang and Liu, 1999), Naive
Bayes (Lewis, 1998), Decision Tree (Dumais, 1998) and
Suppert Vector Machines (Joachims, 1998, 1999).

The k-NN is an example based classifier. For deciding
whether a document d belongs to a class ¢ or not, k-NN
retrieve the k neighboring documents of d and they vote
for the classification, if there is a majority vote for class c,
a positive decision is taken and negative otherwise. The
success of classification in k-NN depends upon the value
ofk, but there is no defined way to calculate it. Since
k-NN is a lazy classifier, i.e., there is no training stage and
all the computation is performed at the classification time,
it cannot be used in real-time scenarios to classify large
collection of texts.

The Rocchio method (1971) and (Joachims, 1897)
selects an average prototype vector for every class. It
calculates the similarity between a document and each of
prototype vectors and the docurnent is assigned to the
class with maximum similarity. A problem with Rocchio
classifier discussed by Lam and Ho (1998) is that it
restricts the hypothesis space to the set of linear
separable hyper plane regions, which has less expressive
power than that of k-NN algorithms.

Corresponding Author:
Pakistan

Muhammad Fahad Umer, Department of Computer Science, Intemational Islamic University, Islamabad,

Inform. Technol. J,, 6 (1): 154-159, 2007

The Naive Bayes algorithm (Lewis, 1998) calculates
the probability of each class for a document. The
document is assigned to the class for which the
probability is highest. There are many improvements to
the Naive Bayes classification model. A problem with
Naive Bayes discussed by Shen and Jiang (2003), is that
when asked to make predictions; it always gives class
posteriors very close to O or 1 and smoother class
posteriors cannot be determined.

Support Vector Machines are employed in text
classification by Joachims (1998, 1999). SVMs are linear
classifiers that define a decision surface to separate
classes of data as positive and negative. Kemnel functions
are used for nonlinear separation. SVMs have shown
superb performance for text classification tasks and
perhaps the best classifiers till now (Yang and Liu, 1999).
SVMSs’ only potential drawback 1s their training time and
memory requirement. For n training mstances held in
memiory, the best-known SVM implementations take time
proportional to 1°, where a is typically between 1.8 and 2
{Chakrabart et al., 2002).

The Decision Tree (DT) classifiers are based on tree
induction algorithms. A DT classifier is a tree, which
internal nodes denote the terms and the branches
departing from them are labeled with predicate applied to
the terms. Each leaf nodes denotes a class. The DT
classifiers discussed in literature are based on ID3
(Fuhr et al, 1991), C4.5 (Cohen and Hirsh, 1998) and C5
(L1 and Jian, 1998).

THE CLASSIFICATION SYSTEM

The automated text classification system is shown in
Fig 1. The first phase is the selection of training and test
material. This training set is processed through several
pre-processes phases such as, the removal of common
words, feature selection and word stemming.

Performance
meastire

T
Classification
algorithm

T

Training of
procedure

Documents

Pre-processing

Indexing

Fig. 1. The classification system

155

A vocabulary list is constructed containing all of the
important terms and this list is used to index the training
set. The training set is used for learning the classification.
The test set is used to generate the results and the results
are analyzed by using some standard performance
measures for the evaluation of the classifier.

TEXT SELECTION AND INDEXING

The Reuters-21578 text collection (Lewis, 2006) has
been used for evaluation purpose. There are many version
of Reuters-21578 available and the ModeApte version
was selected. From this collection, the documents having
more than 2,000 characters have been selected, as most of
the documents in the collection contain only a single line
or just news heading. This filtering process made the
collection more meaning full and helped us to quickly
generate the results from the experimental setup. The final
subset contains five categories and the number of
document as shown in Table 1.

Normally, text categorization systems use a vector
model representation of the documents. The same
representation has been used for this system. Each
document is represented as a vector and each cell of the
vector represents the weighted frequency of the term in
that document. There are many different schemes in use
for the weighting of the term frequencies. One that
seems effective is the Term Frequency-Inverse
Document Frequency. That is, the number of times the
word appears in the document multiplied by a function of
the inverse of the number of documents in which the
word appears. Terms that appear often in a document
and do not appear in many documents therefore have
an important weight.

The creation of vectors for documents consists of
following steps:

A word list containing all of the important terms is
created for all the documents.
This list can be scanmed further to remove some

»
common words and to eliminate the most and least
frequently occurring terms.

» The document collection is indexed on the basis of

word list using normalized TF-IDF.

The creation of a vocabulary list for a collection
of documents is not a trivial task. The problems
involved in constructing such systems as described by

Table 1: Total number of documents per category

Category Interest Ship Trade Crude Wheat Total
Document 3 8l 108 151 56 479

Inform. Technol. J., 6 (1) 154-159, 2007

van Rijsbergen (1979) are (1) removal of high frequency
or common words, (2) suffix stripping, (3) detecting
equivalent stems. Comparing the mnput text with a stop list
of words can easily carry out the removal of high
frequency words. This process reduces the size of the
dictionary to a considerable limit.

The next problem of suffix stripping is more
complicated. Two words should be compared for their
conceptual meaning because a conventional string
comparison will produce high error rate. The solution to
this problem is to remove the suffixes from the different
forms of a word. There are standard algorithms defined for
suffix stripping called stemming algorithms such as
Lovins’ algorithm (Andrew, 1971).

Many words, after suffix removal map to one
morphological form, but still there are some, which don’t.
One way to deal with this problem is to have a list of
equivalent stems and two words should be considered
equivalent if and only if their stems match and there is an
entry in the list defining their suffixes as equivalent. This
paper does not consider the problem of equivalency of
stems as there are very few such words in a document and
usually they don’t affect the accuracy of the classifier
(van Rijsbergen, 1979).

After applying stop list and stemming algorithm, a
vocabulary list of 468 words was obtained containing
important terms of all documents. We indexed the
document collection on the basis of vocabulary list
obtaining a two dimensional sparse matrix which
contained documents row wise and terms column wise.

NEURAL NETWORKS CLASSIFICATION

A Neural Network (NN) is a network of units called
neurons. The neuron is the basic processing element of
NN. The mputs to a neuron arrive through synaptic
connections. The efficacy of inputs is modeled by the
weights attached with every input. The response of the
neuron is a nonlinear furction of its weighted inputs.

The classification model based on NN has generally,
more than one layer of commected neurons. The input
layer has the input units representing terms and the
output layer output units representing the classes. The
intermediate or hidden layers are used for the computing
the classification decision. For classifying a document d,
its terms t, with weights w, are loaded into the input units;
the output of these units is propagated through the
intermediate neuron layers (if present) to the output layers
and the value of the output units determine the
classification decision.

A usval way of training NN is back-propagation.
When a learning pattern is presented, the activation
values of input neurons are propagated through the

156

intermediate layers to the output layers and the actual
output is compared with target output, if a miss-match
oceurs, the error s back-propagated so as to change the
parameters of the network to minimize the error.

The simplest type of NNet classifier is the perceptron
discussed in Dagan et al. (1997) and (Ng et al, 1997)
which is a linear classifier. A nonlinear NNet (Lam and
Lee, 1999) and (Ruiz and Srinivasan, 1999) is instead a
network with one or more additional layers of units, which
in TC usually represent higher order interactions between
terms that the network is able to learn (Sebastiani, 2002).

LVQ networks are based on the supervised
competitive Jearning. LVQ networks attempt to define
decision boundaries in the input space, given a set of
exemplary decisions (the training data). Topologically; the
network contains an input layer, a competitive layer and
an output layer. The output layer has the neurons equal
to the number of classes. In the competitive layer, each
competitive unit corresponds to a cluster, the center of
which is called a codebook vector. The Euclidean distance
of an input vector is computed with each codebook vector
and the nearest codebook vector is declared winner.
Unlike perceptron, LVQ networks can classify any set of
input vectors, not just linearly separable sets of input
vectors. The only requirement is that the competitive layer
must have enough neurons and each class must be
assigned enough competitive neurons.

LVQ ALGORITHMS

There are a number of somewhat different LVQ
algorithms appearing in the literature, they are all based
on the following basic algorithm:

A learning sample consisting of input vector x;
together with its correct class label c; is presented to
the network.

A suitable number of codebook vectors are selected
for every class label ;.

Using distance measures between codebook vectors
and input vector d, the winner is determined. In some
cases, the second best winner is also determined.

We have used LVQ1 (Kohonen, 1990b), LVQ2.1
(Kohonen, 1990a), LVQ3 (Kohonen, 1990b) and the
optimized learning rate algorithms OLVQ1 (Kohonen,
1992), OLVQ3 for the classification task.

LVQI: The LVQ! (Kohonen, 1990b) selects a single set
of best matching codebook vectors is selected and moved
closer or further away from each data vector, per iteration
if the classification decision is correct or wrong,
respectively.

Inform. Technol. J, 6 (1): 154-159, 2007

OLVQI1: The Optimized LVQ! (Kohonen, 1992) is same
as LVQI, except that each codebook vector has its own

learming rate

LVQ2.1: Two sets of best matching codebook vectors are
selected and only updated if one belongs to the desired
class and one does not and the distance ratio is within a
defined window. The value of the window is defined as
the mid-point of the two codebook vectors.

LVQ3: The same as LVQ2.1 except if both set of
codebook vectors are of the comrect class; they are
updated but adjusted using an epsilon value. The epsilon
value is used to adjust the global learning rate.

OLVQ3: The Optimized LVQ3 is same as LVQ3 except
each codebook vector has its own learning rate in the
same manner as OL VQ1

These training algorithms yield almost similar
accuracies, although different techniques underlie each
other. The experiment has been performed using all five
algorithms and the results are analyzed to determine that
which algorithm performs well for text classification. In the
next step, the best LVQ algorithm is compared with the
other classification algorithms.

THE EXPERTMENTAL RESULTS

Table 2 shows the experimental results of the five
LVQ algorithms applied to the document vectors. The
parameters for every algorithm have been selected
empirically by slightly increasing and decreasing their
value and analyzing the output.

Precision and Recall measures are widely used for
evaluating the classifiers. Recall is defined to be the ratio
of correct assignments by the system divided by the total
number of correct assignments. Precision is the ratio of
correct assignments by the system divided by the total
numnber of the system's assignments. It is hard to compare
classifiers using two measures, the F1 measure,
introduced by (van Rijsbergen, 1979), combines recall (r)
and precision (p) with an equal weight in the following
form:

(B* +pr

ot ;where =1

FB(z,p)

The Fl-measure has been used for evaluating the
accuracy of the classifiers. The n-fold cross validation
method was used to obtain the results. This method

157

divides the data set in equal n partitions with using one
partition as test set and rest of them as training set. The
results show that almost each LVQ algorithm gives similar
accuracies. These algorithms also took almost similar time
for building the training model. But the optimized-L VQI
performs well than its counterparts. It gives F1-measure
over 90% for wheat and trade categories. The ship
category has the lowest Fl-measure.ie., 654%. The
reason for this is not the poor performance of the
classifier but the fact that there were some documents
which were common between the ship and crude category
and the classification system had to classify the
overlapping documents in one of the target classes.

The performance of the QLVQ1 algorithm is also quite
reasonable if we consider the training time of the
classifier. It took only 922 ms on a 2.4 GHz machine to
perform 1600 training iterations on 40 codebook vectors
for building a single model for 10-folds cross validation
method.

Table 3 compares the results with the other
classification algorithms with the same training and
test set. Other classification model, such as Naive Bayes,
k-NN and C4 give low accuracy and also their training
and classification time is greater than the LVQ. Due to
the memory and computation limitations, the results in
Table 3 were obtained using 5-folds cross validation
method. The results show that for the wheat, trade and
interest category, SVMs work well than OLVQI and for
the ship and crude, the OLVQ1 is better than SVMs. One
can say that as SVMs work well for three categories and
OLVQL1 1s good only for two categories, it is better than
OLVQI. In fact, SVMs are, but the problem lies with the
time taken by SVM to build the model. SVMs took 6.25s
to build the model while OLVQ]1 took only 1.06s that is six
times less. This modest training and classification time
encourages the use of L VQ for the classification task.

Table 2: Fl-measure comparison of LVQ ealgorithms (10-fold cross

validation)
Algorithms/Classes LVQl LVQ2.1 LVQ3 OLVQl OLVQ3
Wheat 0.911 0.897 0,925 0.909 0.923
Trade 0.931 0.925 0.936 0.936 0.922
Ship 0.601 0.635 0.632 0.654 0.642
Interest 0.948 0.953 0.940 0,953 0.940
Crude 0.792 0.819 0.781 0.816 0.809

Table 3: Fl-measure comparison of classification procedures (5-fold cross

validation)

Classifier/ RBF k-NN

Class OLVQl SVM Network SOM K=7 C4 NB
Wheat 0.917 0.927 0.771 0.867 0.867 0.957 0.893
Trade 0.910 0.917 0.759 0.853 0.8 0.762 0.825
Ship 0.593 0.506 0.484 0.577 0542 0.467 0.547
Interest 0.936 0.959 0.802 0911 0909 0.822 0886
Crude 0.776 0.722 0.641 0.795 0.758 0.817 0.714

Inform. Technol. J., 6 (1): 154-159, 2007

FUTURE WORK

This research uses Vector Space Information Model
for the representation of text. The problem with Vector
Space Information Model is that in the representation, all
pairs are considered equally similar. Semantically
relationships between the terms are not taken into
account (Honkela, 1997). The L.VQ classification can be
applied by using some other approach such as Poisson
distribution. The use of Poisson model is widely
investigated in Information Retrieval but it is rarely used
for the text classification.

There is no way to determine a good number of
codebook vectors. Some mechanism of finding an optimal
number of codebook vectors should be embedded in the
learning algorithm.

The classification of binary data such as images can
be explored with the LVQ.

CONCLUSIONS

This study presents an application of LVQ for text
classification. The process of classifying documents with
LVQ consists of three phases;, pre-processing of data,
trairung of the network and the testing of classification
network. The text documents are represented as vectors
using Vector Space Information Model. The results
generated by the experiment are relatively exceptional.
The LVQ network seems to be prospective for the
classification of text documents, with the advantage of
restricting documents to be a part of certain classes.

Thus study provides sufficient theoretical base for the
development of a fully functional text classification
application.

REFERENCES

Andrew, K., 1971. The development of a fast conflation
algorithm for English. Dissertation submitted for the
Diploma in Computer Science, University of
Cambridge, (unpublished).

Chakrabart, S., S. Roy and M. Soundalgekar, 2002. Fast
and accurate text classification via multiple linear
discriminant projections. Proceedings of the 28th
VLDB Conference, Hong Kong, China.

Cohen, W.W. and H. Hirsh, 1998. Joins that generalize:
Text classification using WHIRL. In Proceedings of
4th Intemnational Conference on Knowledge
Discovery and Data Mining, New York, pp: 169-173.

Dagan, I., Y. Karov and D. Roth, 1997. Mistaken driven
learning in text categorization. In: Proceedings of
2nd Conference on Empirical Methods in Natural
Language Processing, Providence, RI, pp: 55-63.

158

Dumais, S.T., J. Platt, D. Heckerman and M. Sahami, 1998.
Inductive learning algorithms and representations
for text categorization. In Proceedings of 7th
ACM Intemational Conference on Information
and Knowledge Management, Bethesda, MD,
pp: 148-155.

Fuhr, N, S. Hartmann, G. Knorz, G. LustiG, M. Schwantner
and K. Tzeras, 1991. AIR/X-a rule-based multistage
indexing system for large subject fields. In
Proceedings of 3rd International Conference
Recherche d’Information Assistee par Ordinateur,
Barcelona, Spain, pp: 606-623.

Honkela, T., 1997. Self-Organizing-Maps in Natural
Language Processing, PhD Thests, Helsinki
University of Technology, Finland.

Joachims, T., 1997. A probabilistic analysis of the Rocchio
algorithm with TFIDF for text categorization. In
Proceedings of ICML-§7, 14th International
Conference on Machine Leaming, Nashville, TN,
pp: 143-151.

Joachims, T., 1998. Text categorization with support
vector machines: Leaming with many relevant
features. In Proceedings of 10th European
Confererce on Machine Leamning, Chemnitz,
Germany, pp: 137-142.

Joachims, T., 1999. Transductive inference for text
classification using support vector machines. In
Proceedings of 16th International Conference on
Machine Learning, Bled, Slovenia, pp: 200-209.

Kohonen, T. 1990a. Improved versions of Learning
Vector Quantization. In: proceeding of the National
Joint Conference of Neural Networks, San Diego,
pp: 545-550

Kohonen, T. 1990b. The self-organizing maps.
Proceedings of the IEEE, 78: 1464-1480.

Kohonen, T., 1992. New Developments of Leaming
Vector Quantization and the Self-Organizing Map.
In: Symposium on Neural Networks; Alliances and
Perspectives in Senri, Osaka, Japan.

Lam, W.and C.Y. Ho, 1998. Using a generalized instance
set for automatic text categorization. In: Proceedings
of 21st ACM International Conference on Research
and Development in Information Retrieval,
Melbourne, Australia, pp: 81-89.

Lam, S.L. and D.L. Lee, 1999. Feature reduction for
neural network based text categorization. In
Proceedings of 6th IEEE Int. Conference on
Database Advanced Systems for Advanced
Application, Taiwan, pp: 195-202.

Lewis, D.D., 1998 Naive (Bayes) at forty: The
independence assumption in information retrieval.
Proceedings of 10th European Conference on
Machine Leamning, Chemnitz, Germany, pp: 4-15.

Inform. Technol. J., 6 (1): 154-159, 2007

Lewis, D.D., 2006. http://www.daviddlewis.com/resources/
testcollections/reuters21578/, Last accessed Mar
2006.

Li, YH. and AK. Jian, 1998. Classification of text
documents. Computer J., 8: 537-546.

Ng,H.T., W .B. Gohand K.L. Low, 1997. Feature selection,
perceptron learning and a usability case study for
text categorization. In: Proceedings of 20th ACM Intl.
Conference on Research and Development in
Information Retrieval, Philadelphia, PA, pp: 67-73.

Rocchio, Ir. 1.J, 1971. Relevance Feedback in Information
Retrieval The SMART project Experiments in
Automatic Document Processing, Editor: Gerard
Salton, Prentice-Hall, Englewood Cliffs, New Jersey.

Ruiz, M.E. and P. Srinivasan, |999. Hierarchical neural
networks for text categorization. In Proceedings of
22nd ACM International Conference on Research
and Development in Information Retrieval, Berkeley,
CA, pp: 281-282.

Sebastiani, F., 2002. Machine learning in classification,
ACM Computing Surveys, 1: 1-47.

Shen, Y. and J. Jiang, 2003. Improving the performance of
Naive Bayes for text classification, technical report
(Unpublished), Stanford Natural Language
Processing (NLP) Group, Stanford University, CA.

van Rijsbergen, C.J,, 1979. Information Retrieval,
Butterworth’s, London.

Yang, Y. and X. Liu, 1999. A Re-examination of Text
Categorization Methods. In: Proceedings of 22nd
ACM International Conference on Research and
Development in Information Retrieval, Berkeley, CA,
pp: 42-49.

159

