
Classification of Textual Documents 

Us in g 

Learning Vector Quantization 

Muhammad Fahad Umer .. 

Reg#107-CSIMS/03 

Szpervised By 

Dr. M. ~ i k a n d e r  Hayat Khiyal I 

Department of Computer Science 
Faculty of Applied Sciences 

International Islamic University, Islamabad 



Final Approval 

Date: 5s May, 2007 

We hereby declare that we have read this thesis thoroughly and it is our 

judgment that this thesis is of sufficient standard to warrant it acceptance by the 

International Islamic University, Islamabad for the award of degree of Master of 

Science in Computer Science. 

Committee 

External Examiner 
Mr. Shaftab Ahmad 
Senior Principal Engineer 
- 9  

Internal Examiner 
Dr. Syed Afaq Hussain 
Head, Departrment of Electronic Engineering 
International Islamic University, Islamabad 

Supewisor 
Dr. M. Sikander Hayat Khiyal 
Head, Department of Computer Science 
International Islamic University, Islamabad. 



To my fellow Imveler, 



Dissertation 

A dissertation submitted as a partial fulfillment for the award of 

degree of Master of Science (Computer Science) 



Declaration 

I hereby declare that this thesis is an original research work. No part of thesis 

has been copied from any source. I am solemnly responsible for the material 

presented and expressed in this document. I further guarantee that this work has 

not been presented in any other institution for award of degree or  for any other 

purpose whatsoever. 

Muhammad Fahad Umer 

107-CSMS/03 



Project Summary 

Project Title: 

Undertaken By: 

Supervised By: 

Tools Used: 

Operating System Used: 

System Used: 

Date Started: 

Date Completed: 

Classification of Textual Documents 

using LVQ 

Muhammad Fahad Umer 

Dr. M. Sikander Hayat Khiyal 

JDK 1.5 

JBulider 2005 Enterpsise 

Microsoft Windows XP (R ) 

Intel Pentium IV 



ABSTRACT 

The classification of a large collection of texts into predefined set of classes is an 

enduring research problem. The comparative study of classification algorithms shows 

that there is a tradeoff between accuracy and complexity of the classification systems. 

This work evaluates the Learning Vector Quantization (LVQ) network for classifying 

text documents. In the LVQ method, each class is described by a relatively small 

number of codebook vectors. These codebook vectors are placed in the feature space 

such that the decision boundaries are approximated by the nearest neighbor rule. The 

LVQ require less training examples and are much faster than other classification 

methods. The experimental results show that the Learning Vector Quantization 

approach outperforms the k-NN, Rocchio, NB and Decision Tree classifiers, and is 

comparable to SVMs. 
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CHAPTER 1 

INTRODUCTION 



1 Introduction 
The information on the Internet continues to grow at an incredible speed with more 
than 4.5 billion pages available online. The copious amount of data on the 
organizational intranets is besides this. Due to this amazing growth of Internet, several 
research areas have gained an invigorated interest. Text Classification (TC), the 
activity of labeling natural language text documents with thematic categories from a 
predefined set, is one such task that is an active area of research since the last decade. 

The term classification has been used in a broader context in human activity. The term 
can be defined over any context in which some decision or forecast is made on the 
basis of currently available information, and a 'classification procedure' is some 
formal method for repeatedly making such judgments in new situations based on the 
information provided to it. We may have a set of observations and want to infer 
classes or clusters within the data. Or we may have a certain number of classes, and 
we want to classify a new sample in one of the existing classes. The former type is 
known as Clustering, and the latter is known as Classification. 

1.1 Definition of Text Classification 
The TC system categorizes the documents into a fixed number of predefined classes. 
Formally, it can be defined as the task of assigning a Boolean value to each pair (dl, 
c,) where d,={dl,d2,d3, ... d,,) is the set of text documents and c,={cI,c2,c 3,...cn} is the 
set of class labels. The value assigned to the pair could be true if the document di falls 
under class c, or false if the document di does not belong to class ci [I]. 

The research in automated text classification started in early 1960s. A long list of 
successes and failures are reported in this field. Many methods had been proposed and 
a lot of experiments had been carried out. AII this research had been done in the field 
of Information Retrieval and classification was a part of it. The rapid growth of 
Internet has revived the interest in automated text classification. Hand-built 
directories of web content suggest one solution to the dilemma, but unfortunately 
creating and maintaining such directories requires enormous amounts of human effort. 

I 1 

Figure 1-1 Classification Example 

Text CIassification Using LVQ 1 



1.2 Application of Text Classification Systems 
The applications of text classification system occur in wide range. The classification 
system may apply for Help-Desk support. The query obtained from the user may 
classify according to the subject and referred to an appropriate expert. 

In newsgroup sites, it is sometime very cumbersome to find an article of interest. A 
text classification system can be employed to extract the relevant news stories. The 
popular benchmarking text classification data set, REUTERS, is indeed a collection of 
news stories from the Reuters Group. 

Relevalice feedback for the documents for a particular query can be calculated by 
using a classification system. 

A large database of documents may be organized in semantic categories with the help 
of text classification system. 

1.3 Issues in Text Classification 
Text Classification systems generally have same structural design regardless of the 
algorithm used for the classification task. But there are some parameters, such as the 
soft or hard classification rule, single or multi-class classification results or the 
classification pivoting, which may differ according the problem domain. The reason 
for this diversity is the wide range of applications of classification systems. 

1.3.1 Classification Rule 

The procedure for text classification can be enforced to give a set of classes according 
to their relevance with the document. For a text document d, E D, the result could be a 
ranked list of classes C={cl, cl, ... c,). The procedure doest not take any hard decision 
on any of the class. The ranked set of classes provided by the classification system 
can be of a great help to the human expert applying the classification. The 
classification rule is usually softened especially in critical application where the 
effectiveness of the text classification system is considered to be low than the human 
expert and an interactive session is maintained. This may be the case when the quality 
of the training data is low, or when the training documents cannot be trusted to be a 
representative sample of the unseen documents that are to come, so that the results of 
a completely automatic classifier could not be trusted completely [I]. 

1.3.2 Class Labeling 

For every 4, a single class label can be assigned to every document or a number of 
categories from C, to C, may be assigned to the same 4. The classification in which a 
single class label is assigned to every document is called single label or binary 
classification and in the later case the classification is called multi-label classification. 

The binary case is more general than the multi label, since an algorithm for binary 
classification can also be used for multi label classification. The only requirement is 
to only transform the inulti label classification problem to a single label classification 
problem. But the converse is not true, that an algorithm for multi label classification 

- - 
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cannot be used for single label or binary classification. In fact, given a document dj to 
classifjl, the classifier might attribute k >1 categories to 4, and it might not be 
obvious how to choose a "most appropriate" category from them; or the classifier 
might attribute to 4 no category at all, and it might not be obvious how to choose a 
"least inappropriate" category from C. The binary case is important in itself because 
important classification applications, including filtering, consist of binary 
classification problems. Solving the binary case also means solving the multi label 
case, which is also representative of important text classification applications, 
including automated indexing for Boolean systems [I]. 

1.3.3 Classification Pivoting 

There are two different ways of using a text classifier. Given 4 ED, we might want to 
find all the classes to which it should belong (document-pivoted categorization); 

alternatively, given a class ci E C, we might want to find all the documents that should 
be filed under it (categoppivoted categorization). Document pivoted classification is 
suitable when documents become available at different moments in time, e.g., in 
filtering e-mail. Category pivoted classification is instead suitable when (i) a new 

category c C +  may be added to an existing set C = I , ,  . . a ,  clc, j after a number of 

documents have already been classified under C, and (ii) these documents need to be 

reconsidered for classification under tic,+, . Document pivoted classification is used 

more often than category pivoted classification, as the former situation is more 
common than the latter. Some specific problem domains apply to one technique and 
not to the other [I]. 

1.4 Text Classification Techniques 
Three different fields have been in concern with the classification techniques; 
Statistics, Machine Learning and Artificial Neural Networks. The basic prototype 
methods for these techniques are linear discrimination, decision-tree and rule-based, 
k-nearest neighbor are prototypes for three types of classification procedure. Not 
surprisingly, they have been refined and extended, but they still represent the major 
strands in current classification practice and research, The procedures mainly used for 
classification can be directly linked to one or other of the above. However, within 
literature, the methods have been grouped around the more traditional headings of 
classical statistics, modern statistical techniques, Machine Learning and neural 
networks [2 ] .  

1.4.1 Classical Statistics 

We can include in this group those procedures that start from linear combinations of 
the measurements, even if these combinations are subsequently subjected to some 
non-linear transformation. The procedures of this type are: Linear discriminants; 
logistic discriminants; quadratic discriminants. In these methods, the training set is a 
subset of n known class example. The n is typically 2. These methods require numeric 
value attributes with none of the value is missing. The attributes used binary 



indicators to indicate that a specific attribute belong to a class or not. When an 
attribute is classified against more than one class, the indicators are setup to drop the 
other classes. 

1.4.2 Modern Statistics 

The modern statistics includes the techniques that use density estimation to 
approximate the classification categories. The k-nearest neighbor, Projection pursuit 
classification, Casual networks and Naive Bayes are considered under modem 
statistical classification techniques. 

1.4.3 Decision Trees 

Decision tree learning is one of the most widely used techniques for classification. Its 
classification accuracy is competitive with other methods, and it is very efficient. The 
classification model is a tree, called decision tree in which internal nodes are labeled 
by terms, branches departing from them are labeled by tests on the weight that the 
term has in the test document, and leafs are labeled by categories [3]. 

The most popular approaches used for constructing Decision Tree classifiers are ID3, 
C4.5, and C5. 

1.4.4 Neural Networks Techniques 
The neural network techniques have a common procedure that is intimately linked 
with the training of the network and adjusting the input weights. The density estimate 
group contains: radial basis functions; Kohonen self-organizing maps; LVQ; and the 
kernel density method. 

1.5 Artificial Neural Networks 
Artificial Neural Networks are electronic models based on the neural structure of the 
brain. The brain basically learns from experience and neural networks try to mimic 
the same behavior. This new approach to computing also provides a more graceful 
degradation during system overload than its more traditional counterparts. Even 
simple animal brains are capable of functions that are currently impossible for 
traditional computing; these biologically inspired methods of computing are thought 
to be the next major advancement in computer science. But the true power of neural 
networks have not utilized till now. It is worth mentioning that there is very small 
numbers of real time neural network based applications. The reason for this is not that 
there is a problem with the neural network theory, but it is the inability to model the 
billions of brain neurons with the traditional computers. 

Computers do simple mathematical things well, like keeping information stored for a 
long time or performing complex calculations. But computers have trouble 
recognizing even simple patterns and abstracting the real world ideas. 

Now, advances in biological research promise an initial understanding of the natural 
thinking mechanism. This research shows that brains store information as patterns. 
Some of these patterns are very complicated and allow us the ability to recognize 
individual faces from many different angles. This process of storing information as 



patterns, utilizing those patterns, and then solving problems encolnpasses a new field 
in computing. This field, as mentioned before, does not utilize traditional 
programming but involves the creation of massively parallel networks and the training 
of those networks to solve specific problems. This field also utilizes words very 
different from traditional computing, words like behave, react, self-organize, learn, 
generalize, and forget [4]. 

1.5.1 Analogy to the Brain 

The exact workings of the human brain are still an obscurity. Yet, some aspects of this 
astounding processor are known. The most basic element o f  the human brain is a 
specific type of cell, which, unlike the rest of the body, doesn't appear to regenerate. 
Because this type of cell is the only part of  the body that isn't slowly replaced, it is 
assumed that these cells are what provide us with our abilities to remember, think, and 
apply previous experiences to our every action. These cells, all 100 billion of them, 
are known as neurons. Each of these neurons can connect with up to 200,000 other 
neurons, although 1,000 to 10,000 are typical. The power of the human mind comes 
from the sheer numbers of these basic components and the multiple connections 
between them. It also comes from genetic programming and learning. The individual 
neurons are complicated. They have a myriad of parts, sub-systems, and control 
mechanisms. They convey information via a host of electrochemical pathways. There 
are over one hundred different classes of neurons, depending on the classification 
method used. Together these neurons and their connections form a process which is 
not binary, not stable, and not synchronous. In short, it is nothing like the currently 
available electronic computers, or even artificial neural networks. These artificial 
neural networks try to replicate only the most basic elements of this complicated, 
versatile, and powerful organism. They do it in a primitive way. But for the software 
engineer who is trying to solve problems, neural computing was never about 
replicating human brains. It is about machines and a new way to solve problems. 

1.6 Classification using ANN 
A neural network consist of one or more than neurons connected which each other 
and having some weights associated with each weight. The simples case is that 
network will consist of single layer with only one neuron as given in the following 
figure [ 5 ] .  

Figure 1-2 A simple neuron model 
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The output of the network is formed by the activation of the output of neuron, which 
is some function of input: 

The activation function can be linear if we have a linear network. The output function 
could be: 

1 f s > O  
F(s) = 

- 1 otherwise. 

The output could be + I  or -1 depending on the input so  the network can be used for 
the classification task. A separation between the two classes is the straight line given 
by the equation: 

W , X ,  + w,x2 + e  = o (1.3) 

A geometric representation of the linear threshold neural network is given Fig 1. I and 
the Equation (1.2) can be written as: 

The weights determine the slope of the line and the bias determines the offset i.e. how 
far is the line from the origin. The weight vector is always perpendicular to the input 
space [ 5 ] .  

Figure 1-3 Perceptron Classification 

This single layer network learns the weight and bias by using a perceptron learning 
rule. There are a number of learning rules defined for neural networks such as Error- 
correction learning rule, Perceptron learning rule, the Boltzmann learning rule, 
Hebbian learning rule and the competitive learning rule. The perceptron learning rule 
is the iterative procedure that adjusts the weights. A learning sample is presented to 
the network. For each weight the new value is computing by adding a correction to 
the old value. 
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A single layer network has several limitations and the class of tasks that can be 
accomplished is very limited. For solving complicated problems we need more 
complex multi-layer neural networks such as feed-forward networks, recurrent 
networks and self-organizing networks. A feed-forward network has a layered 
structure. Each layer consists of a number of units, which receive their input directly 
below and send their output to the layer directly above. There is no connection 
between the neurons in the same layer. The recurrent networks contain cycles within 
the layers. A hidden unit may be connected with itself over a weighted connection, 
connect hidden units with input units or all units may be connected with each other. 
The self-organizing networks do not require a sample set for training and use 
unsupervised learning rule. The most basic scheme for the self-organizing networks is 
competitive learning in which each unit competes for winning. 

1.7 Learning 
There are two models in artificial neural networks: 

1. Activation transfer mode when activation is transmitted throughout the 
network 

2. Learning mode when the network organizes usually on the basis of most 
recent activation transfer 

Neural networks need not to be programmed when they encounter novel environment. 
Yet their behavior changes in order adapt to the new environment. Such behavioral 
changes are due to the changes in the weights of the networks. These changes in the 
weighs are called learning. The changes in the neural network are intended to model 
the changing synaptic efficiencies in real neural networks. There are three main types 
of learning for the neural networks. 

1.7.1 Supervised learning 
With this type of learning the network is provided with the input data with the correct 
answers i.e. output that is intended to receive form the network from the network. The 
input data is propagated forward through the network till activation reaches to the 
output neurons. The answers that are calculated from the network can be compared 
from the desired output. If the answers agree, no change is made to the network, 
however f the answers are different, and the weights are adjusted to ensure that the 
network more likely to give the correct result in future if it is presented with the same 
input data. This weight adjustment schemes is known as supervised learning or 
learning with a teacher. The delta learning rule and the LMS rule are examples of 
supervised learning. 

1.7.2 Unsupervised learning 
In this type of learning the network is only provided with input data. The network is 
required to self organize depending on some structure in the input data. Typically this 
structure is may be some form of redundancy in the input data or clusters in the data. 
Self Organizing Maps use unsupervised learning rule. 
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1.7.3 Reinforcement learning 
This type of learning is halfway house between the above two types of learning, We 
provide the network with the input data and the activation is propagated but only to 
tell the network that it has produced correct result or not [4]. 

1.8 LVQ Networks 
Learning Vector Quantization networks are based on the supervised competitive 
learning. LVQ networks attempt to define decision boundaries in the input space, 
given a large set of exemplary decisions (the training data). TopologicaIly, the 
network contains an input layer, a competitive layer and an output layer. The output 
layer has the neurons equal to the number of classes. The competitive layer has a 
number of neurons assigned to each class. The competitive layer learns and performs 
relational classifications with the aid of a training set. Unlike perceptron, LVQ 
networks can classify any set of input vectors, not just linearly separable sets of input 
vectors. The only requirement is that the competitive layer must have enough neurons, 
and each class must be assigned enough competitive neurons [4]. 

Figure 1-4 LVQ Network model 

1.9 Learning Vector Quantization Algorithms 
The LVQ method assume that a number of codebook vectors mi are used to classify 
various domains of input vector x, and x is then decided to belong to the same class to 
which the nearest rn, belongs. Let 

c = arg min $x - rn i 11) 
i (1.5) 

Let x(5) be a sample input and let mi(Q represent the sequence of mi in the discrete 
tome domain. Then starting with the initial values of mi, the following equations 
define the basic Learning Vector Quantization process: 
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if x and nz, belong to the same class 

if x and m, belong to the different class 

The a 0  defines the learning rate for the learning process. This algorithm is called 
LVQl and it is the basic LVQ learning algorithm. There are many other variations of 
the LVQ method. The LVQ2 algorithm takes two codebook vectors rn; and mj, which 
are the two nearest neighbors to x, are updated simultaneously. One of them belongs 
to the correct class and the other to a wrong class respectively. Moreover x must fall 
into a zone of values called 'window' which is defined in between the mid-plane of m, 

and nlj. A relative window length of 0.2 to 0.3 is recommended. 

The algorithm process is given by the following equations: 

mi ( t  +l) = mi ( t )  - a( t ) [x ( t )  - mi(t)] (1.8) 

m j  ( t  + 1 )  = m ( t )  + a(t)[x(t)  - mj(r)] (1.9) 

where m, and n?, are the two closest codebook vectors to x, where x and mi belong to 
the same class while x and mi belong to the different classes. The LVQ2 algorithm 
does not give attention to mi that what will happen to the location of the nz; in the long 
run. The LVQ3 algorithm includes necessary corrections that ensure that the mi 
continue approximation class distributions roughly. In addition to the previous 
equations defined for the mi and nzj, x and nz; belong to different classes, respectively; 
furthermore x must fall into the 'widow'; 

for k € (i, j ) ,  if x, mi, and n?, belong to the same class. The optimal value of € seeins 
to depend on the size of the window, being smaller for narrower windows. The value 
between 0.1 and 0.5 is recommended for €. This algorithm seems to be self 
stabilizing, i.e.; the optional placement of the mi does not change in continual 
learning. 

The basic LVQl and LVQ3 algorithms are modified in s such a way that an 
individual learning rate a&) is assigned to each mi. The optimal learning rate can be 
defined as: 

Where s(t) =1, id the classification is correct and s(t) = -1 if the classification decision 
is wrong. The LVQl and LVQ3 with individual training rate are called optimized 
LVQl and L VQ3 algorithms because the learning rate is optimized [6]. 

The different training algorithms available yield almost similar accuracies, although 
different techniques underlie each other. In this work, we will perfom the experiment 
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using all available algoritlms and analyze the result to determine that which algorithm 
performs well for text classification. In the next step we will compare the LVQ 
algorithms results with the other text classification algorithms for determining 
performance of LVQ algorithms. 
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CHAPTER 2 

LITERATURE SURVEY 



2 Literature Survey 
The older work done in classification mainly relates to Statistics. The classification 
work in statistics can be identified in two phases. The first or the classical phase is the 
Fisher's work on linear discrimination. The second or modern phase exploits more 
flexible classes of models, which attempt to provide an estimate of the joint 
distribution of the features in every class. Statistical approaches used in text 
categorizations problems generally have an underlying probability model, which 
provides a probability of a test example fro being in each class rather than simply a 
classification. 

Machine Learning encompasses automatic computing procedures based on logical or 
binary operations that learn a task from a series of examples. In the ML approach, the 
pre-classified documents are the key resource. In an ideal case, they are already 
available, typically for the problems that are solved manually. The less favorable case 
is when no manually classified examples are available, this happens for a newborn 
problem. The ML approach is convenient also in the latter case. Classifiers built by 
means of ML techniques nowadays achieve impressive levels of effectiveness making 
autoinatic classification a qualitatively viable alternative to manual classification [I]. 
In Machine Learning, attention has focused on decision-tree approaches, in which 
classification results from a sequence of logical steps. These are capable of 
representing the most complex problem given sufficient data. 

Another field of concern for text classification is the Neural Networks. Generally, 
neural networks consist of layers of interconnected nodes called neurons, each neuron 
produce a non-linear function of its input. The input to a neuron may come from other 
neurons or directly from the input data. The neurons in the output layer define the 
output of the network. The complete network therefore represents a very complex set 
of inter-dependencies, which may incorporate any degree of nonlinearity, allowing 
very complex functions to be modeled. The simplest neural network receives input 
from one neuron and forwards it to the next neuron in the way that the results are 
propagated through the network. These networks are called feed-fonvarded networks. 
In more complex networks the results are propagated backward to improve the 
efficiency and to minimize the error. These networks are called Recurrent or 
Feedback Networlts. It has been argued that neural networks emulate to a certain level 
the behavior of networks of neurons in the brain. 

The above discussion involves broad fields of concern with text classification. The 
classification solutions suggested in the literature belong to one or more of the above 
described fields; for example, NaTve Bayes (NB) probabilistic classifiers [7], Decision 
Tree classifiers (81, k-NN classifiers [9], Support Vector Machine (SVM) [lo] and 
[I  11, and Rocchio classifiers [I21 and [13] etc. Most of the methods come from the 
Machine Learning approach, while Neural Networks have also been studied 
extensively for the application of text classification. 
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2.1 Rocchio's Classification 
Rocchio's classification algorithm [12] is used for inducing linear, profile-style 
classifiers. The Rocchio method operates by building a prototype vectors for every 
class. The prototype vector is the profile of a category is the difference between the 
centriod of the positive and the negative examples. 

The IJ and y are the control parameters. If we take 13=1 and TO, then the profile of the 
class becomes the centriod of the positive examples. The role of the negative 
examples is denigrated by using higher value for 13 and lower value for y. [I31 used 
0=16 and y=4. The prediction rule used to compute the classification of a new 
example is the cosine of the new example with the profile vector. For a new 
example 2 ,  

1, if cos( X, Ci) > 9 
p ( 3  = 

- 1, otherwise 

An improvement to the classic Rocchio method is the use of near-positive examples 
employed by [14]. The near-positive examples are the most positive examples in the 
set of negative examples and are the most difficult documents to apart from the 
positive examples 

This method is quite efficient and easy to implement. A drawback of Rocchio method 
described by [ I ]  is that if the documents in the category tend to occur in disjoint 
clusters (e.g., a set of newspaper articles labeled with the Sports category and dealing 
with either boxing or rock-climbing), such a classifier may miss most of them, as the 
centriod of these documents may fall outside all of these clusters. The improved 
versions of Rocchio based classifiers are discussed [I 51 and [I  31. 

2.2 Naive Bayes Classifiers 
These classifiers work a generative framework in which each document is generated 
by a parametric distribution governed by a set of hidden parameters. NaYve Bayes 
method assumes that all attributes of the examples independent of each other given 
the context of a single class while this assumption is clearly wring in the real world, 
the Nalve Bayes often works well. Because of the independence assumption the 
parameters for every attribute can be learned separately. This makes the learning 
process very simple especially when the attributes are large. 

This model views the training examples as Pr(Y I X = 2)  that is, the probability that a 

document represented by a vector x belongs to Y, and compute this probability by an 
application of Bayes' theorem given by: 

The classification rule can be defined as that predicts class 1 if the following predicate 
is true or the Class -1 otherwise. 
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Pr(Y = l ) f i ~ r ( w =  w,  I Y  = I ) > P ~ ( Y  = - l ) f i P r ( ~  = w, / Y = - 1 )  (2.4) 
1 : I  r = l  

Pr(X = 2) is thus the probability that a randomly picked document has vector x as its 

representation, and Pr(Y) is the probability that a randomly picked document belongs 

to Y. The multinomial Naive Bayes model assumes that any two coordinates of the 
document vector are, when viewed as random variables, statistically independent of 
each other; this independence assumption is encoded by the equation 

There are many variations to the Naive Bayes approach suggested by [7] also 
discussed by [I]. A variation is to use weighted indexed vectors instead of binary- 
valued vectors [16]. Another way of improvement is to introduce document length 
normalization. The value of document ranking can be very high or very low for long 
documents. Taking length into account is easy in non-probabilistic approaches to 
classification, but is problematic in probabilistic ones. One possible answer is to 
switch an interpretation of Naive Bayes in which documents are events to one in 
which terms are events, but at the same time, the solution given above has the 
drawback that the different occurrences of the same word within the same document 
are viewed as independent. 

2.3 Decision Tree Classification 
Decision tree learning is one of the most widely used techniques for classification. Its 
classification accuracy is competitive with other methods, and it is very efficient. The 
classification model is a tree, called decision tree in which internal nodes are labeled 
by terms, branches departing from them are labeled by tests on the weight that the 
term has in the test document, and leafs are labeled by categories [3]. 

A decision tree based classification learning process consists of two steps. In the first 
step of tree induction, a tree is induced from the given training set for category C, 
using "divide and conquer" strategy by checking whether all the training examples 

have the same label (either Ci or 2,) and if not, a term tk is selected to partition the 
training set into classes of documents that have the same value for tk, and placing each 
such class in a separate subtree. The process is recursively repeated on the subtrees 
until each leaf of the tree generated contains training examples assigned to the same 
category Ci, which is then chosen as the label for the leaf. The key step is the choice 
of the term tk on which the partition is performed. In the second step of tree pruning, 
the induced tree is made more concise and robust by removing any statistical 
dependencies on the specific training dataset. The induction step is computationally 
much more expensive as compared to the pruning step. 

The most popular approaches used for constructing Decision Tree classifiers are ID3 
[17], C4.5 [18], and C5 [19]. 

- -  - - - -  
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2.4 Associate Rule Mining 
The Association Rules are canonical data mining taking aim at discovering 
relationships between items in the dataset. The association-rule-based classifiers 
model the text documents as a collection of transactions where each transaction 
represents a document, and the items in the transaction are the terms selected from the 
document and the categories documents is assigned to. The most popular algorithm 
use to compute association rules effectively are apriori algorithm [20] and FP-tree 
algorithm [21]. The [22] uses a similar approach to construct a rule-base classifier 
with apriori-based algorithm but the results obtained on the Reuter-21578 collection 
are not promising as for five categories out of ten; the precision/recall breakeven point 
is around 60 %. For a relatively difficult category the breakeven point is 25.8 %, 

which is not acceptable for practical classification. 

2.5 Support Vector Machines 
SVM is learning methods introduced by [23]. SVM are based on the structural risk 
minimization principal from the computational theory. SVM use the Vapnik- 
Chervonenkis (VC) dimensions of a problem to characterize its complexity, which 
can be independent of the dimensionality of the problem. The basic idea is to find 
decision surfaces between use a hyper plane to the classes of data, positive and 
negative with maximum margins from the both sides. Kernel functions are used for 
nonlinear separation. The groups of vectors that lie near the separating hyperplane are 
called support vectors. Once the separating hyper plane is found the new examples 
can be classifies by simply checking that on which side of the hyperplane they fall. 
SVM not only has a rigorous theoretical foundation, but also performs classification 
more accurately than most other methods in applications, especially for high 
dimensional data. In classifiers using SVM, term selection is often not needed, as 
SVMs tend to be fairly robust to over fitting and can scale up to considerable 
dirnensionalities. Also there is no human and machine effort in parameter tuning on a 
validation set is needed, as there is a theoretically calculated "default" choice of 
parameter settings. 

SVM have shown superb performance for text classification tasks. The reasons that 
SVMs work well for TC is that during learning classifiers, one has to deal with many 
features such as more than 10,000. Since SVM use over fitting protection that does 
not depend on the number of features and have the potential to deal with the large 
number of attributes. Most of the document vectors are sparse and contained very few 
non-zero entries. It is shown in [24] that additive algorithms having inductive base 
like SVM work very well for problems with dense concepts and sparse instances, 

Most of the text categorization problems are linearly separable such as the reuters- 
21578 [26]. 

SVMs are accurate, robust, and quick to apply to test instances. Their only potential 
drawback is their training time and memory requirement. For n training instances held 
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in memory, the best-known SVM implementations take time proportional to nay where 

a is typically between 1.8 and 2.1. 

2.6 Bagging Algorithms 
Since most of classification algorithm work poorly, voting algorithms make use of 
them in smarter way i.e. many poor classifiers => one good classifier. Some base 
classifiers are generated and they are used to give decision about the classification of 
a document. In order to guarantee good effectiveness, the classifiers should be 
independent from each other as possible [25]. However the classifier may use the 
same or different indexing approach or the induction method. 

For constructing the classification decision, the simplest rule used is the majority 
voting. For k classifiers the decision which takes (k+1)/2 votes are taken [19]. 

A variant of classifier's committee, called boosting method is also used in the 
classification applications [15]. The main idea of this algorithm is to maintain a 
distribution or set of weights over the training set. Initially, all weights are set equally, 
but in every iteration, the weights of incorrectly classified examples are increased so 
that the base classifier is forced to focus on the 'hard' examples in the training set. For 
those correctly classified examples, their weights are decreased so that they are less 
important in next iteration. 

One example of the voting algorithm is the bagging algorithm. In bagging algorithm, 
multiple versions of a training set D of size N, each created by re-sampling N 
examples from the data set are taken. Each of training sets is used to train a base 
classifier; the majority voting of these classifiers makes the final classification 
decision. Although voting algorithms give relatively high accuracy rate but they need 
extensive calculation and memory as there is more than one type of classifiers are 
working. 

2.7 K-Nearest Neighbor Classification 
Unlike all the other classifications methods, k-NN [9] does not build model from the 
training data but rely on the category labels attached to the training documents similar 
to the test document. These methods are called lazy learners, since "they defer the 
decision on how to generalize beyond the training data until each new query instance 
is encountered"[l]. 

To classify a test instance d, it defines k-neighborhood P as k nearest neighbors of d 
and count number n of training instances in P that belong to class CJ No training is 

needed. Classification time is linear in training set size for each test case. The 
problem involved in using KNN classifiers is to determine the optimal value of k. The 
value of k is a tradeoff between the accuracy and the classification time. Large value 
of k will generate high accuracy but the classification time will be very slow. 

The value for k is usually chosen empirically via a validation set or cross-validation 
by trying a range of k values. 
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k-NN is considered a lazy learning algorithm as it defers data processing until it 
receives a request to classify an unlabelled example. It replies to a request for 
information by combining its stored training data. After the classification decision it 
discards the intermediate results and the constructed answer. This strategy is opposed 
to other learning algorithms where the data model is described in the form of a density 
estimator or a graphical structure with weights. 

The k-IW can deal with complex and arbitrary decision boundaries. Despite its 
simplicity, researchers have shown that the classification accuracy of k-NN can be 
quite strong and in many cases as accurate as those elaborated methods. The k-NN 
method is slow at the classification time and also does not produce an understandable 
model. 
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3 Problem Domain 
The problem discussed here is the construction of a procedure that will be applied to a 
collection of documents. Each new document of the collection is assigned a 
predefined class label on the basis of some observed attributes and features. 

There are some issues regarding classification presented in [2] that are to be 
discussed. Most of the classifiers discussed in previous section lack one or more of 
these requirements. 

3.1 Requirements of a Text Classification System 
The requirements of a text classification system are described as follows: 

Accuracy: There is the reliability of the rule, usually represented by the proportion of 
correct classifications. If the classification is performed by an intelligent procedure 
(e.g. human), and the results are compared then sufficient accuracy should be present 
in the results. 

Speed: In some circumstances, the speed of the classifier is a major issue. A classifier 
that is 90% accurate may be preferred over one that is 95% accurate if it is 100 times 
faster in testing (and such differences in time-scales are not uncommon in neural 
networks for example). Such considerations would be important for automatic reading 
of postal codes or automatic fault detection of items on a production line for example. 

Comprehensibility: If it is a human operator that who applys the classification 
procedure, the procedure must be easily understood else mistakes will be made in 
applying the rule. It is important also, that human operators believe the system. An 
oft-quoted example is the Three-Mile Island case, where the automatic devices 
correctly recommended a shutdown, but the human operators who did not believe that 
the recommendation was well founded did not act upon this recommendation. A 
similar story applies to the Chernobyl disaster. 

Time to Learn: Especially in a rapidly changing environment, it may be necessary to 
learn a classification rule quickly, or making adjustments to an existing rule in real 
time. "Quickly" might imply also that we need only a small number of observations to 
establish our rule. Statistical approaches completely lack this requirement. 

While there are still lacks of classification methods that fulfill the above-mentioned 
requirements; it will be quite reasonable to find an adequate solution to solve the 
problem of document classification. The basis of this research can be stated as below: 

"To find a reasonable accurate, efficient, and flexible solution for automatic 
classification of text documents" 

3.2 Scope of Work 
Neural Networks is the emerging field of today and it provides a mechanism to define 
a solution for the above quoted research problem. If designed with care, neural 
networks perform very well as measured by error rate. They seem to provide either 
the best or near to best predictive performance in nearly all cases. In terms of 
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computational burden, and the level of expertise required, they are little complex than, 
say, the machine learning procedures, but with an exception to Learning Vector 
Quantization (LVQ) which is easy to set up and fast to run [2 ] .  

Neural Networks provide sufficient accuracy rate, they can learn new situations, and 
are quite fast (especially in case of LVQ). The most important factor is that neural 
nehvorks roughly mimic human behavior that is the essence of intelligent text 
classification. 

This work would discuss an application of a specific type of neural network called 
Learning Vector Quantization for the text classification problem. 

3.3 Proposed Solution 
The experiment will be conducted by selecting a data set of random text documents. 
A neural network based on Learning Vector Quantization will be designed. This 
network will be trained using a subset of the dataset available for classification. There 
will be pre-defined classification classes and every element of dataset will belong to 
one of the pre-defined classes. The research can be divided in three phases, 
representation of text documents, designing and training of the network, providing 
real data and the analysis of results. 

3.3.1 Representation of Documents 

The documents will be represented as two-dimensional matrix using Vector Space 

Information model. The document set comprises an m x n term-document matrix in 
which a column A, will represent a document and the cell Av will represent the 
frequency of a particular term present in the document. A major benefit of this 
approach is that algebraic structure of the vector space can be exploited. The 
conversion of documents from text to matrix form is standardized as follows: 

1. A list of unique strings will be created from the documents selected for 

training. 

2. The list can be scanned for deleting common words using a stop list. A 
stemming algorithm such as Porter's stemming algorithm can be also applied 
for removing suffixes from different form of a single word. 

3.  Third, the document collection can be indexed on the basis of scanned list 
using Vector Space Information model. Different weighting schemes might be 
used; one that seems effective is the "Term Frequency-Inverse Document 
Frequency" (TF-IDF), that is, the number of times the word appears in the 
document multiplied by a function of the inverse of the number of documents 
in which the word appears. Terms that appear often in a document and do not 
appear in many documents therefore have an important weight. 

3.3.2 Training of Network 

In the training phase, the codebook vectors are initialized from the given training data. 
Each codebook vector must fall within the correct class boundary for which it is 
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initialized. A sample is classified against all other samples in the training set and is 
accepted only if it has the same classification as the initial class label given. There are 
different learning algorithms available for the training of the network discussed in 
Chapter 1. 

3.3.3 Analysis of Results 

After the training of the network, the real data can be provided to the network and the 
results can be analyzed using standard evaluation measures such as F1-mesure to 
judge the performance of the classifier. 

The F1-measure is the harmonic mean of the precision and recall of the classifier. 

wherep= Precision, and r = Recall. 

The Precision & Recall measures are widely used in Infonnation Retrieval and Text 
classification. Precision is defined as the number of correctly classified positive 
examples divided by the total number of examples that are classified as positive. 
Recall is defined as the number of correctly classified positive examples divided by 
the total number of actual positive examples in the test set. The class of interest is 
called the positive class, while the rest of all are negative classes 
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4 System Design 
The structural design of the text classification system with training and testing phase 
is described in Fig 4-1. The system operates in two modes; training mode and testing 
mode. In training mode the network developed pattern for classification of text 
documents. The inputs to training mode are the documents with pre-defined 
documents while inputs to testing mode are unclassified documents. The pre- 
processing phase is similar for both modes with exception that the dictionary is 
construction in training mode and it is used for document conversion during testing 
mode. The training data is used to construct classifier and it takes classification 
decision for unclassified documents. 

t - ----------- -I 

I 
.. . . .. ,. 

Pre Processing I 
I 

-------- I--- ----- 1 
- - - - - - - ----I- - 

. . 

- - - J  I 

Figure 4-1 Classification System 

4.1 Data Input 
The data for the classification system will consist of the text documents. Text 
classification system takes both classified and unclassified documents as input. The 
classified documents have class label attached with them and used for the training of 
classification procedure. 

Unclassified 
Documents 

Classified 
Documents 

Figure 4-2 Classification Flow 

The system will be able to extract text from XML and HTML formatted text pages 
and form Internet URLs. 



DocumentLoader t----i 

Figure 4-3 The Document Loader Classes 

4.1.1 DocumentLoader Class 

The DocumentLoader class will load document from a single file, disk directory, or 
from the URL. 

4.1.2 TextDecoder Class 

The TextDecoder class will parse documents into raw text. The functions defined for 
this class are 

a. XMLTagLoader will ignore XML or HTML formatted tags and will extract 
actual text. 

b. The PlainTextLoader() method will be used for simple text documents. 

4.2 Data Pre-processing 

Generally the classification algorithm cannot operate on simple raw texts. Several pre- 
processing steps are required for classification of texts using Learning Vector 
Quantization. This preprocessing increases the accuracy of classification and reduces 
the complexity of the procedure by decreasing the size of dictionary. The steps for 
pre-processing are described below: 

4.2.1 Common Words Removal 

The removal of high frequency words prevents document vectors from becoming 
sparse. Comparing input text with a stop list of words can easily perform it. 

The removal of least occurring terms helps in making vocabulary list more 
meaningful. The terms having frequency of less than 2 or 3 do not count much 
towards calculating the relevancy of document to a class. So, it is good practice to 
remove them to reduce vocabulary size and computational complexity [27]. 

4.2.1.1 StopWord Class 

The StopWord class has a list of stop word. Each input token is compared with stop 
list and is not processed if a match is found. The function isStopWord (String 

token) will return true or false for a string token extracted form text documents 
depending ifthe match is found or not. 
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Figure 4-4 Stopword Class 

4.2.2 Word Stemming 

After the removal of high frequency terms, the next step is of suffix stripping from 
words having same meaning but more than morphological form. Two words should 
be compared for their conceptual meaning because a conventional string comparison 
will produce high error rate. 

Table lists some examples where words should be taken as equivalent but traditional 
string comparison will show them different. The solution to this problem is to remove 
suffixes from different forms of a word. Removal of ility, ual, es, en from the 
following words will work out. There are standard algorithms defined for suffix 
stripping called stemming algorithms such as Lovins and Porter algorithms [28]. 

Table 4-1 Suffii Stripping 

( Flexible I Flexibility I Different I Same I 
Fact 1 Factual I Different I same I 

Many words, after suffix removal map to one morphological form, but still there are 
some, which don't. One way to deal with this problem is to have a list of equivalent 
stems and two words should be considered equivalent if and only if their stems match 
and there is an entry in the list defining their suffixes as equivalent. This work does 
not consider the problem of equivalency of stems as there are very few such words in 
a document and usually don't affect the accuracy of the classifier. 

4.2.2.1 Lovins Stemmer Wrapper Class 

This class wraps the Lovins stemmer algorithm for determining the root of a word. 

4.2.2.2 Lowercase Stemmer Wrapper Class 

The Lowercase Stemmer class does not use any stemming algorithm but it simply 
converts the all input tokens to lower case and eliminates the duplicate term. 

4.2.3 Dictionary Creation 

After the removal of high frequency words and word stemming, a dictionary of 
important words of document space is created. All documents are indexed on the basis 
of this dictionary using a suitable weighting scheme. 

Matrix 

Give 
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4.2.3.1 WordList Class 

The WordList class has a list of important terms. We can also manually add and 
delete the words from the word list. 

WordList 1-1 

Figure 4-5 WordList Class 

4.2.4 Document Conversion 

Generally the classification algorithm cannot operate on the simple raw texts. A 
structure representation of the text documents is required. The representation used is 
the Vector Space Information Model. This model views the documents as vectors of 
words. Each cell of the document vector shows the weighted frequency of that term in 
that document. There are different schemes for the term weighting: 

Term Frequency t""!t---i 
Figure 4-6 Weighting Scheme Classes 

4.2.4.1 BinaryOccurences Class 

The cells of the document vectors have 0 or 1 depending on the presence of a term in 
that document. For the ith cell of the jth document in documents space v, the 
corresponding value will be 

where& is the frequency of ith term in the jth document. 

4.2.4.2 TermOccurences Class 

The absolute number of occurrences of a term vq =A, is used. 

4.2.4.3 TermFrequency Class 

Each cell of the vectors has relative frequency of a term in th at document. The 
frequency of each term is normalized to the Euclidean unit length by dividing the each 
term frequency with the total number of terms in the document vector. 
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wherej;, is the frequency of ith term in the jth document, and&, is the total number of 
terms in the document j. 

4.2.4.4 TFIDF Class 

The calculation of TF-IDF is done by multiplying the term frequency with an inverse 
function of document frequency of the term. The weight value for the term can be 
defined as: 

where, 

The longer the document, the more likely it is for a given term to appear in it. It would 
be better to reduce the importance attached to a term appearing in a document based 
on the length of the document. The term weights are than normalized so longer 
documents are not unfairly given more weight. 

4.2.5 The Configuration Class 

This class will include variables for configuring each step of the vector creation. For 
every step in the vectorization process, user sets the class that would be used for this 
step. This class can be one already included in the package or a new one, written by 
the user. The only constraint is that it has to implement the corresponding interface of 
a given step. 

STEP-CHAR-MAPPER: If a different character mapping scheme is used 
other than default 

STEP - LOADER: The loader for loading the documents i.e. XML documents 
or simple text documents 

STEP-OUTPUT: If the vectors are stored in a file then the output 
configuration 

STEP-STEMMER: The stemming algorithm wrapper class that will be used 
for suffix stripping. 

STEP-TOKENIZER: The tokenizer class for the input stream. 

STEP-VECTORCREATION: The class that will be used for the vector 
creation; TF, TO or the TFIDF etc. 
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STEP - WORDFILTER: The class for the stop word list 

YectorConf igrat ion 1 

+ 8 geiComponentForStep() : Object 
% 8 setConfigurationRule() : void 
Q WTConfiguration() : void 
Q 8 WTConfiguration() : void 

%@- 
. . 

t 

. 

Figure 4-7 Vector Configuration Class 

# 8 STEP-CHAR-MAPPER : Str~ng 
1) 8 STEPJNPUT-FILTER : String 

4 cfjJ STEP-LOADER : String 
4 &' STEP-OUTPUT : String 

# STEP-STEMMER : String 
1) 8 STEPJOKENIZER : Strtng 
$ 8 STEP-VECTOR-CREATION : String 
# 8 STEP-WORDFILTER : String 

4.3 Document Classification 
The Document Classification phase will implement LVQ algorithms and classify the 
input vectors. The classes in this phase will analyze the vector file for several 
statistical measures. 

4.3.1 File Loader 

This class will load the vector file in a set of instances. A single instance will be a 
horizontal linear array of numeric values and it will show a document with the actual 
class label at the inserted at the end of the array. 

4.3.2 Parameter Initialization 

This class will collect the required initiation and configuration algorithm parameters 
from the user for every LVQ algorithm. This class will be instantiated with default 
values for the algorithm parameters. User will be able to configure every parameter of 
LVQ algorithms. 

The class will include following parameters: 

epsilon value for OLVQ3 

learning rate for algorithms 

total number of code book vectors 

initialization mode 

learning function 

total training iterations 

use of voting 

window size 

- - ~  ~ 
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Figure 4-8 Algorithm Parameter Class 

4.3.3 LVQ Algorithms 

These classes will implement LVQ algorithms. 

4.3.3.1 LVQl 

The LVQ1 [29] selects a single set of best matching codebook vectors is selected and 
moved closer or further away from each data vector, per iteration if the classification 
decision is correct or wrong respectively. 

+ 8 globallnfo() : String 
6 8 Lvql () : void 
+ @ main() : vo~d 
+ '$ getAlgor~thmOptions() : Collection 
+ gdListOpt~ons() : Collection 
% 9 setArguments() : void 
9 trainModel[) . void 

f? valid&eArguments[) : void 
c---- 

Figure 4-9 LVQ1 wrapper class 

4.3.3.2 LVQ2 

Two sets of best matching codebook vectors are selected and only updated if one set 
belongs to the desired class and the other does not, and the distance ratio is within a 
defined window. The value of the window is defined as the mid-point of the set of 
codebook vectors. [30] 

The same as LVQ2.1 except if both set of codebook vectors belong to correct class; 
they are updated but adjusted using an epsilon value. The epsilon value is used to 
adjust the global learning rate. 

4.3.3.4 OLVQ1 

The Optimized LVQl [29] is same as LVQ1, except that each codebook vector has its 
own learning rate. 

4.3.3.5 OLVQ3 

The Optimized LVQ3 [3 I ]  is same as LVQ3 except each codebook vector has its own 
learning rate in the same manner as OLVQI. 

4.4 Classification Evaluation 
The classification evaluation will consist of performing 10-fold cross validation 
method for all algorithms. 10-fold cross validation method divides the test set in 10 
equal sets and uses one set for testing and the remaining nine sets are used for the 
training of classification model. The evaluation class will give F1-measure, Precision 
and Recall rates, and the Percentage of correct and incorrect classified instances 
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I Evaluation 

# k-MarginResolution : int 
6 0 m-ClasslsNominal : boolean 
@ 9 m-ClassNames : String[] 

# 0 m-Confusiontvlatrix : double[][] 
@ m-Correct double 
9 '$ m-CostMatrix : Cosihlatrix 
Q '$' m-ErrorEstimator : Estimator 
& m-lncorrect : double 

& f? m-tv1issingCfass . double 
.Q m-NumClasses : int - 
4 f? m-NumFolds int 

+ 8 avgCostU : double 
+ &' confusionMatrix() : double[l[l 
+ &' correct() : double 
+ 8 correlationCoeffictent() : double 
+ 8 crossValidateldodel() . void 
+ &' crossValidateModel() : void 
+ 8 equals[) : boolean 
+ 8 errorRate() : double 
9 8 eeaakateModel() : String 
9 8 evaluateModel() . String 
+ &' evaluateModel() : double[] 
+ @ evaluatehrlodelOnce() : double . 8 fdseNegatneRate() : double 
+ 8 falsePostiveRate() : double 
+ 8 fMeasure() : double 
% 8 incorrect() : double 
% 8 pctCorrect0 : double 
9 &' pctlncorrect() : double 
+ 8 pctUnclassified() : double 
+ @' precision() : double 
+ 8 priorEntropyQ . double 
', ,@ recall() : double 
', @ relativeAbsoluteError() : double 
', 8 rootMeanPriorSquaredError() : double 
8 rootMeanSquaredError() : double 

+ 8 rootRelativeSqusredError() : double 

Figure 4-10 Algorithm Evaluation Class 
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5 Experiment 
The design of a text classification system plays a vital role in the construction of 
classifier. Following the design described in chapter 4, the classification system is 
constructed in two separate modules and these modules are joined resulting in a 
complete text classification application. 

The application for the experiment is developed in Java as it provides relatively easy 
handling of text files and string tokens. The application has a main window, which 
combines the different modules of the application. 

VSIM Model 
.< 

Experiment +. . 1 
I 

Figure 5-1 LVQ Text Classification Environment 

5.1 VSIM Converter 
This module converts the text documents to vectors using Vector Space Information 
Model. This method takes two inputs from the user, the directory path where the 
documents are placed and the dictionary file for those documents. This dictionary file 
is used to filter the string tokens received from the documents. The documents used in 
this experiment are in XML format. Therefore, an XML filter is used to remove the 
XML formatting tags. The Lovins stemmer algorithm was used to remove the suffixes 
from the different morphological form of a single word. The other stemmer 
algorithms are Porters and Snowball stemmer algorithms. To remove the stop words, 
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a text file containing the common stop words is supplied to filter tokens. The class can 
generate the document vectors with Binary weighting, Term Occurrence, Term 
Frequencies and normalized-TFIDF. The TFIDF is the most suitable weighting 
scheme as it makes the most occurring terms less effective and prevents the long 
documents from scoring high. 

5.1.1 Initialization 
The class constructor is initialized with the path of documents directory and 
dictionary of the words. 

WVTool wvt; 

Configuration config; 

InputList list; 

WordList wordList ; 

WordList wordListFile; 

String DocList [ J ; 

String DirPath; 

public VSIMTask(int VSIMM, String dirpath) throws Exception 

1 

The Configuration class is initialized and the appropriate values for the different steps 
have been set. This class will provide a configuration object that will be used to 
configure LVQ algorithms for classification. 

//Initialize the configuration 

conf ig = new WVTConf iguration ( ) ; 

//Set the input filter for XML documnets 

config.setConfigurationRule( 

WVTConfiguration.STEP-INPUT-FILTER,new WVTConfigurationFact 

(new XMLInputFilter 0 ) ) ; 

//Set the Lovins sterner algorithm for suffux stripping 

config.setConfigurationRule(WVTConfiguration.STEP~STEMMER, 

new WVTConfigurationFact(new LovinsStemmerWrapper())); 

try { 

//Initialize the stopword class 

config.setConfigurationRule(WVTConfiguration.STEP~WORDFILTER, 

new WVTConfigurationFact(new StopwordFilterO ) ) ;  
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} 

catch (Exception e) 

( 

e.printStackTrace(); 

1 

list = new WVTInputList (10) ; 

//Load The Documnets from the dircetory 

list. addEntry (new WVTDocumentInfo (DirPath, "xmll' , "", "english") ) ; 

//Create the word List 

wordList = wvt.createWordList(listIconfig); 

//store the word lists created in temporary files 

wordList.store(new FileWriter("wordlistinfo.txt")); 

wordList.storePlain(new FileWriter("wordlistp1ain.txt") ) ;  

//Create the WVTOOL Format Doc Vectors and store in a 
temporary file 

Filewriter outFile = new FileWriter("wordvectors.txt"); 

WordVectorWriter wvw = new WordVectorWriter (outFile,true); 

config.setConfigurationRule(WVTConfiguration.STEP~0UTPUT~new 
WVTConfigurationFact(wvw)); 

. . . 
L 
The integer value VSIM initialized in the constructor is used to define that which 
weighting scheme will be used for the vector creation. 

switch (VSIMM) 

case 1: 

config.setConfigurationRule( 

WVTConfiguration.STEPWvTConfiguration.STEP_VECTOR_CREATION,VECTORRCREATION, 

new WVTConfigurationFact(new BinaryOccurrences())); 

break; 

case 2: 

config.setConfigurationRule( 

WVTConfiguration.STEPWVTConfiguration.STEP_VECTOR_CREATION,VECTORRCREATION, 

new WVTConfigurationFact(new TermOccurrences())); 

brea k ; 

case 3: 

config.setConfigurationRule( 

WVTConfiguration.STEPWVTConfiguration.STEP_VECTOR_CREATION,VECTORRCREATIONl 

new WVTConfigurationFact (new TermFrequency ( )  ) ) ; 
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break; 

case 4: 

config.setConfigurationRule( 

WVTConfiguration.STEPWVTConfiguration.STEP_VECTOR_CREATION,VECTORRCREATION, 

new WVTConfigurationFact(new TFIDFO 1 ) ;  

JOptionPane. showMessageDialog (null, "The data is saved in 
3 file"); 

break; 

default: 

config.setConfigurationRule( 

WVTConfiguration.STEPWVTConfiguration.STEP_VECTOR_CREATION,VECTORRCREATION, 

new WVTConfigurationFact(new TFIDFO 1 ) ;  

///create the vectors 

7The vectors are created and stored in a text file. The createVectors() fhnction use the 
list of the documents, configuration object and dictionary words to create vectors. 
The vectors stored in text file at this stage are in raw form and are not readable. The 
classification algorithm requires input data in tab-separated two-dimensional array. 
This data is processed to generate the tab-separated vector values. 

//Read the temporary files 

File ReadableFile = new File("wordvectors.txt"); 

FileReader vectorFile = new FileReader{"wordvectors.txt"); 

StringTokenizer strToken = new StringTokenizer(strBuffer,"\n"); 

int row = wordList.getNumWords(); 

int col = wordList.getNumDocuments(); 

float docArray [ I  [ I  = new float [row] [col] ; 

while (strToken.hasMoreTokens0) I - - .  

I Token = strToken.nextToken0; 

String s = Token; 

StringTokenizer termToken = new StringTokenizer(s,":"); 

if (termToken. hasMoreTokens ( )  ) 

I 
String termNo = termToken.nextToken0; 
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String TFIDF = termToken.nextToken0; 

Integer ItemNo = new Integer(termN0); 

Float F = new Float (TFIDF) ; 

//.round the value to 0.00 

float in = Math.round(F.floatValue()*1000.00); 

in = in/1000; 

try ( 

docArray [ ItemNo. intValue ( ) ] [docNum] = in; 

1 catch (Exception e) 

( e.printStackTrace ( )  ; } 

1 

1 

1 
. . .  

Filewriter docvector = new FileWriter("vector.txt"); 

writeBuffer = new StringBuffer [col] ; 

. . .  
for (k=O; kcrow; kt+) 

t 

for (m=O; m<col; m++) 

{ 

writeBuffer[m].append(docArray[k][m] ).append(Delim); 

if (k== (row-1) ) 

( 

writeBuffer [m] .append("") .append (DocList [ I  ) .append ("\n") ; 

1 

I 

for (int s=O; s<col; st+) 

As every vector contains each of the vocabulary word, most of the vectors are sparse. 
These vectors are then converted in a comma separated two dimensional matrix form 
are store in a text file. The format of the text file is ARFF i.e. Attribute Relation File 
Format. The description of the ARFF format is given in the following table. 

Table 5-1 ARFF File Format Description 
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erelation name 
A dataset has to start with a declaration of its 
name 



@attribute attribute-name 

specification 

oattribute 

nominal-attribute 

{first-value,second-value, 

third-value) 

eattribute 

numeric-attribute numeric 

@attribute 

string-attribute string 

It followed by a list of all the attributes in the 
dataset (including the class attribute). These 
declarations have the form 

If an attribute is nominal, specification contains 
a list of the possible attribute values in curly 

brackets 

If an attribute is numeric, specification is 

values are treated as real numbers in WEKA.) 

In addition to these two types of attributes, 
there also exists a string attribute type. This 
attribute provides the possibility to store a 
comment or ID field for each of the instances 
in a dataset 

Actual data is introduced by this tag, which is 
followed by a list of all the instances. The 
instances are listed in comma-separated format, 
with a question mark representing a missing 
value 

replaced by the keyword numeric: (Integer 

The frame window for the VSIM conversion takes required data and dictionary path 
from user. The user than can select which of the term weighting scheme will be used, 
by clicking the appropriate checkbox. 

The first text field will take document directory path and second text filed will take 
the dictionary path. Checking appropriate radio button can specify the method that 
will be used for vector creation. 

When 'Start Vector Transformation' button will be clicked, application will start 
processing on the document and load output vectors in the text area at the bottom of 
the application window 

These vectors can be saved in a file in the current working directory by clicking the 
'Save Vectors' button. 
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Figure 5-2 Vector Creation Application 

5.2 Classification Experiment 
This is main module used for performing the classification task. This module has the 
class ClassificationExp() that performs the classification operation. Main window of 
this class has three tabbed panes associated with it. The first pane is used for loading 
the ARFF file. The window displays the documents vectors in a table. When the user 
clicks on any attribute value in the table, following values about that attribute are 
displayed: 

Attribute Name: The name of the attribute. 

Missing: The number of missing values in data set for the attribute. 

Type: The type of attribute of value. i.e. numeric or nominal. Numeric 
attributes have real number values while the value for nominal 
attributes belong from a definite set of values such as the day of 
week. 

Distinct: The number of distinct values. 

Unique: The number of values that appear once. 

5.2.1 Class Constructor 

The class ClassificationExp() is declared with components required to display the user 
interface. Class constructor initializes the algorithm parameters with their default 
values. As the classification experiment window has three panes, three panels are 
initialized and added to tabbed windowpanes. 
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public class ClassficationExp extends JFrame { 

Instances data, Inst; 

EasePane BaseWindow; 

AlgoParam [ ]  algoparam; 

Visualizepanel VP; 

I JFrame expFrm = this; 

I algoParam = new AlgoParam[S]; 

I algoParam[O] = new AlgoParam(40,1600,11 1,lIO.1,0.3,0.3); 

I algoParam[l] = new AlgoParam(40,1600,1~ 1, 1, 0.1,0.3,0.3); 

. . . 
Container expFrmCnt = expFrm.getContentPane(); 

BaseWindow = new Basepane(); 

I JPanel PrePanel = new JPanel(new GridLayout(2,l)); 

I JPanel Classpanel = new JPanel(new BorderLayo~t(5~5)); 

I Visualpanel = new JPanel(new GridLayout(l,2)); 

BaseWindow.addTab("PreProcessing",PrePanel); 

BaseWindow.addTab("Visualization",visualPanel); 

BaseWindow.addTab("Classificati~n'~,ClassPanel); 

VisualPanel.add(VP); 

expFrmCnt.add(BaseWindow); 

5.2.2 Algorithm Configuration 

The classification pane has a drop down list, which displays all LVQ algorithms with 
their default values. When an algorithm is selected, its initialization parameters can be 
edited by clicking the Edit Parameters button next to it. A dialog box is displayed 
where user can supply the appropriate values. After user presses the OK button, new 
values are retrieved respectively and algorithm configuration is updated. 

public void editParamBtn-Clicked(Acti0nEvent e) I I //get the selected algorithm 

int sItem = chooseLVQAlgoCmb.getSelectedIndex(); 

dlg=new ParamDlg( 

chooseLVQAlgoCmb.getSelectedIndex~),algoParam[sItemJ); 

I int temp = sItemtl; 
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String updateItem1 = 

"LvQ"+ temp + " -M "+algoParam[sItem].numInitMode+" -C "+ 

algoParam [sItem] . numCBV+I1 -I "+ 
algoPararn[sItem].numTranIter+" -R "+  

algoParam[sItem].learnRate; 

chooseLVQAlgoCmb.removeItemAt(sItem); 

chooseLVQAlgoCmb.insertItemAt(updateItem1,sItem); 

... 

. . . 
1 

i, Choose LVQ Al@thm for Classili 

ClassKication Resun 

Initialization Ftsrction 
Incorrectly Classifiecl lnstan 

Learning Function 
Total Time Taken to Build Mo 

Total Tinre Taken to Build Mot 
Use Votlng 

Root Mean Squared Error 
Window Size 

Root Absolute Error: Total Trainp Iterations 

Root Relatne Square Error: 

Mean Rbsolute Error: 

Total Number of hstances , - - - - - . -- - .- . - - --- - -. - 

Figure 5-3 Dialog for Algorithm Configuration 

5.2.3 Algorithm Initiator 

The algorithm initiator class 'ParamDlg' is derived from JDialog(. . .). This class 
stores the algorithm initialization parameters as an object of class 'AlgoParam'. An 
object of this class is used for every LVQ algorithm. 

public class AlgoParam 

I 
int numCBV,numTranIter,numLearnFunc,numInitMode,useVoting; 
double epsilon,wndSize,learnRate; 
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public AlgoParam(int ncbv,int ntiter, int nlrnfnc, 
int nimode,int uvtng,double ep,double wsize,double Irate) { 

numCBV = ncbv; 
numTranIter = ntiter; 
numLearnFunc = 1; 
numInitMode = nimode; 
usevoting = uvtng; 
epsilon = ep; 
wndSize = wsize; 
learnRate = lrate; 

5.2.4 Classification Test Methods 

Classification test methods can be specified by clicking the appropriate radio button. 
The test method options are follows: 

a. 5-fold cross validation method 

b. 10-fold cross validation method 

c. 66% training split 

d. User supplied test set 

5.2.5 Classification Algorithm 
The implementation of each algorithm is defined in a function. There are wrapper 
classes for each of LVQ algorithm. An object of the respective class is created and 
initiated with given parameters. 

public void OLVQl ( 1  

i 
try i 
Olvql algorithm = new OlvqlO; 
switch (algoParam[3] .numInitMode) { 

case 0: 

init = new SelectedTag( 
InitialisationFactory.INITALISEInitialisationFactory.INITALISE_TRAININGTRAINING~PROPORTIONAL, 
InitialisationFactory.TAGSInitiaLisationFactory.TAGS_MODEL_INITALIMODELLINITALISATION); 
break; 

. .. 

. . .  
1 
algorithm.setInitialisationMode(init); 
switch (algoparam [3] . numLearnFunc) ( 

case 0 :  ' 
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1 

lfunc = new SelectedTag( 
LearningKernelFactory.LEARNINGLearningKernelFactory.LEARNING_FUNCTION_FUNCTION~LINEAR, 
LearningKernelFactory.TAGSLearningKernelFactory.TAGS_LEARNING_FUNCLEARNINGGFUNCTION); 

break; 

I 
algorithm.setLearningFunction(lfunc); 
algorithm. setseed (1) ; 
algorithm. setTotalCodebookVectors (algoparam [3] .nmCBV) ; 
algorithm.setTotalTrainingIterations(algoParam[3]~numTranIter); 

Once the parameters for algorithm object are set, an instance of the Evaluation class is 
created and initialize with the given data set. Evaluation class has a function 
crossvalidate~odel ( . . . ), which takes algorithm instance and data set and use n- 
fold cross validation model to obtain the result for given algorithm on the given data 
set. 

ot Absolute Error: 

Absolute Error: 

Figure 4 Classification Window 

/ /  train and test the model (10 fold cross validation) 
Evaluation evaluation = new Evaluation(data); 
evaluation.crossValidateModel(algorithm, data, 10, 
new Random(algorithm.getSeed()) ) ;  

Double icrtval = new Double (evaluation. incorrect ( ) ) ; 

Double crtval = new Double(evaluation.correct() ) ;  
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1 
c a t c h  (Except ion  exp)  

exp . p r i n t S t a c k T r a c e  ( )  ; 

J 
As user clicks the Start Classification button, processing on the document vectors is 
started. The respective algorithms initialize the codebook vectors automatically. 
These codebook vectors are used to classify the test instances. Result values are 
populated in the respective text fields. 
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6 Analysis of Results 
In order to objectively evaluate the LVQ and other classification algorithms, the well 
known Reuters-21578 collection has been used. The analysis of results is carried out 
in two phases: first the all five LVQ algorithms are compared for determining the 
most accurate algorithm for the text classification, Second: the best LVQ algorithm is 
compared with other classification approaches. 

6.1 Comparison of LVQ algorithms 
Each classification algorithm requires a configuration before it can be applied to the 
classification task. These configurations determine that how the algorithm will be 
trained, the length pf the training time, number of instances that will be used for he 
training and the learning rate of the algorithm. The parameters required to configure 
with their recommended values are discussed below: 

epsilon -- Epsilon learning weight modifier used when both BMUs are of the 
instances class (recommend 0.1 or 0.5 should be smaller for smaller windowsize 
values). 

initialisationMode -- Model (codebook vector) initalisation mode (l=Random 
Training Data Proportional, 2-Random Training Data Even, 3==Random Values In 
Range, 4==Simple KMeans, 5==Farthest First, 6==K-Nearest Neighbour Even) 

IearningFunction -- Learning rate function to use while training, linear is typically 
better (l==Linear Decay, 2=Inverse, 3==Static) 

IearningRate -- Initial learning rate value (recommend 0.3 or 0.5) 

totalCodebookVectors -- Total number of codebook vectors in the model 

totalTrainingIterations -- Total number of training iterations (recommended 30 to 
50 times the number of codebook vectors). 

usevoting -- Use dynamic voting to select the assigned class of each codebook 
vector, provides automatic handling of misclassified instances. 

windowsize -- Window size matching codebook vectors must be within (recommend 
0.2 or 0.3) 
For evaluation purpose, the 10-fold cross validation method is used. This method 
divides the data set in 10 equal folds. The 9 folds are used for training the network 
while the remaining 1 fold is used for testing of algorithm. The folds for the cross 
validation method can be any number but 10 and 5-fold method are used normally. 
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6.1.1 LVQl Results 

Table 6-1 LVQl Algorithm Configuration 

Total codebook vectors 

Use of voting 

Learning rate 

( Window size I 0.3 I 
Total training iterations 

-- -- 

Table 6-2 Classification Accuracy 

1600 

Table 6-3 LVQl Classification Result 

I whe. 1 0.911 1 0.91 1 1 0.911 1 
I tra 1 0.927 1 0.935 1 0.931 1 

shi 

Table 6-4 LVQl Confusion Matrix 

cru 

Table 6-5 Classification Time Breakdown 

0.639 

0.789 

/ Total Model Preparation Time I lO47rns I 

0.568 
L 

Model Initialization Time 

Model Training Time 

0.601 

int 0.988 

0.795 

15ms 

1032ms 
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6.1.2 LVQ2 Results 

Table 6-6 LVQ2 Algorithm Configuration 
... <,-,* ":%*., ...... =" 7 ?,3,;g5,:g,$2j &"r%;~:@@2>g:;*g$,$~~:g$i5$$@;; 
a . ~ ~ . ? ~ q j & ~  a. ..+ ... , A  "T4 +z:,dt ,. ;* dp&rametes9&$:;...q!:&;+i ,* 
<&SF ..- ..*. * L , . , ~  ...... b.$*<z .. .b+.i(.X i " r , x  $ .. *$ r>fi*: . & ~ ~ ~ p  

Total codebook vectors 

~ { $ . ~ $ < ? ~  t ;F:$-b::;$~$.?$gpy:$$g .3 i tr$?%.7~~figurat ls~~;X~g~ 
:??&*ji&& <LA, "& qs,$ t:&..,.w*:2: &?$ 

50 

Use of voting 

Learning rate 

Table 6-7 Classification Accuracy 

r 

Yes 

0.5 
- 

Total training iterations - 
Window size 

2200 

0.3 

Correctly Classified Instances 

Incorrectly Classified Instances 

I whe 1 0.941 1 0.857 1 0.897 1 

404, 84.3424 % 

75, 15.6576 % 
- - 

Root mean squared error 0.2223 

1 -  int 1 0.921 1 0.988 1 0.953 1 

Table 6-8 LVQZ Classification Result 

tra 

shi 

Table 6-10 Classification Time Breakdown 

0.934 

0.616 

cm 

I Time Taken to Build Model I l75Orns I 
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0.917 

0.654 

Table 6-9 LVQZ Confusion Matrix 

0.83 

0.925 

0.635 

0.808 0.819 I 



6.1.3 LVQ3 Results 

Table 6-11 LVQ3 Algorithm Configuration 
* .. 

, , Parameter. . : ) % Configuration .'- 
t 

I Learning; rate I 0.3 

Total codebook vectors 

Use of voting 

40 

Yes 

Window size 0.3 

Table 6-12 Classification Accuracy 

Total training iterations 

I Correctly Classified Instances ( 399, 83.2985 % I 

2000 

( Incorrectly Classified Instances ( 80, 16.7015 % ( 
I Root mean squared error / 0.2179 1 

Table 6-13 LVQ3 Classification Result 

I whe 1 0.98 1 0.875 1 0.925 1 
( t r a  1 0.927 1 0.944 1 0.936 1 

I cru 1 0.809 1 0.755 1 0.781 1 

shi 

int 

Table 6-14 LVQ3 Confusion Matrix 

Table 6-15 Classification Time Breakdown 

0.591 

0.929 

I Model Initialization Time I Oms 1 

0.679 

0.952 
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0.632 

0.94 

Model Training Time 

Total Model Preparation Time 

1313ms 

1313ms 



6.1.4 OLVQ1 Results 

Table 6-16 OLVQl Algorithm Configuration 

Total codebook vectors 40 

Use of voting Yes 

Learning rate 0.3 

Total training iterations 1600 

Window size 0.3 

Table 6-17 Classification Accuracy 

71, 14.82% 

Table 6-18 OLVQl Classification Result 

Table 6-19 OLVQl Confusion Matrix 

''.''+'%'~'$:$~;.:p:~$*s 
I : $ @ M ~ ~ ~ - ~ ~ ~ ~  .L& ..,. !>: ,... -. -.%m% .*.w 

0.909 

0.936 
A... 

Shi 

Int 

Cru 

Table 6-20 Classification Time Breakdown 

~ : * % ~ ~ ~ ; > ~ ~ ' ? : ' ~ - ~ ~ . - ' ~ ' * : : *  

&kG~ecall...%js 
*W:~*~.W: 4&-*,?<> /4&?& 

0.893 

0.944 

.+.< ,;, *,: .+9d&,wg :&*, .".. ,.<t- . *, .. . ,-,3d,plasst38 -..< .,- 
<$;.'+*<,, 'dh~ 

Whe 
T r a  
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*7.<@fty;3$+>~d~;:5,' &v*x7; ..x#A *& 

0.926 

0.927 

0.667 

0.921 

0.824 

I 

0.642 

0.988 

0.808 

0.654 

0.953 

0.816 



OLVQ3 Results 

Table 6-21 OLVQ3 Algorithm Configuration 

I Total codebook vectors I 40 I 
- ~ I Use of voting Yes 

I Learning rate I 0.3 I 

Table 6-22 Classification Accuracy 

Total training iterations 

Window size 

Correctly Classified Instances 400, 83.50 % 

Table 6-23 OLVQ3 Classification Result 

1600 

0.3 

I Whe ( 0.911 1 0.91 1 1 0.91 1 1 
Tra 

Shi 

Int 

Table 6-25 Classification Time Breakdown 

I C ru 

0.927 

0.639 

0.91 1 

I 
Table 6-24 OLVQ3 Confusion Matrix 

0.789 

Model Initialization Time 

Model Training Time 
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0.935 

0.568 

0.988 

0.795 1 0.792 

15ms 

1 032ms 

Total Model Preparation Time 

Time Taken to Build Model 

0.93 1 

0.60 1 

0.948 

1 047rns 

1 050rns 



Table 6-26 Comparison of LVQ algorithms F1-measure 

The three LVQ-algorithms LVQ1, LVQ2.1 and LVQ3, yield almost similar accuracy 
for the classification procedure. The LVQl and the LVQ3 define a more robust 
process, whereby the codebook vectors assume stationary values even after extended 
learning periods. For the LVQl the learning rate can approximately be optimized for 
quick convergence. In LVQ2.1, there is no guarantee for the codebook vectors being 
placed optimally to describe the forms of the class borders. Therefore the LVQ2.1 
should only be used in a differential fashion, using a small value of learning rate and 
low number of training steps. 

LVQI are LVQ3 with optimized learning rate have given higher accuracies than other 
LVQ algorithms. Optimized-LVQI performs better than its other counterparts. It 
gives F1-measure over 90% for whey gra and tra categories. The shi category has the 
lowest Fl-measure.i.e 65.4%. The reason for this is not the poor performance of the 
classifier but there were some documents which were common between the shi and 
cru category. Because the classification system was based on hard categorization rule 
[2], it had to classify the overlapping documents in one of the target classes. 

The performance of the OLVQl algorithm is also fairly reasonable if the training time 
of the classifier is considered. It took only 922 ms on a P-IV 2.4GHz to perform 1600 
training iterations on 40 codebook vectors for building model on 10-folds cross 
validation method. 

wheat 

trade 

ship 

interest 

crude 

6.2 Comparison of Classification Algorithms 
The results generated by the experiment are quite excellent Table 6 compares the 
results with the other classification algorithms with same training and test set. Other 
classification model, such as NaYve Bayes, K-NN, and C4 give low accuracy and also 
their training and classification time is greater than LVQ. 

Due to the memory and computation limitations, the results in Table 6 were obtained 
using 5-folds cross validation. The results show that for the whey tra and int category, 
SVMs works well than OLVQl and for the shi and cru, the OLVQl is better than 
SVM. One can say that as SVM works well for three categories and OLVQl is good 
only for two categories, it is better than OLVQI. In fact, SVM work well than LVQ 
but the problem lies with the time taken by SVM to build the model. SVMs took 6 

0.911 

0.93 1 

0.601 

0.948 

0.792 
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0.897 

0.925 

0.63 5 

0.953 

0.81 9 

0.925 

0.936 

0.632 

0.94 

0.781 

0.909 

0.936 

0.654 

0.953 

0.816 

0.923 

0.922 

0.642 

0.94 

0.809 
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times more time than OLVQI. This short training and classification time encourages 
the use of LVQ for the classification task 

With the greater accuracy and very short training and classification time, LVQ 
networks seem to be prospective for the classification of text data. 

0 
w h e  trade ship interest crude 

(a) FI-measure for OLVQ 1 

( O 4  whe 
I 

trade ship interest crude 

(b) F 1 -measure for SVM 
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I whe trade ship interest crude I 
(c) F 1 -measure for RBF Network 

0 4 I 
I whe trade ship interest crude 

(d) F 1 -measure for Self-organizing Maps 
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(g) F 1 -measure for NaYve Bayes 

Table 6-27 F1-measure comparison of classification procedures 

Time 
(Normalized) 
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(e) F 1 -measure for K-NN (K=7) 

1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0 
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(f) F 1 -measure for K-NN (K=7) 
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7. Conclusion & Future Work 

7.1 Conclusion 

This paper presents an application of LVQ for text classification. The process of 
classifying documents with LVQ consists of three phases; pre-processing of data, 
training of the network and the testing of classification network. In pre-processing 
phase, common words are removed from the texts, sufix striping is carried out and 
least and most occurring terms are removed. The text documents are represented as 
vectors using Vector Space Information Model. Each cell of the vector denotes the 
weighted frequency of a tem in that document. 

The experimental results show that the LVQ classifier performs well and its 
effectiveness is comparable to mostly well known text classifiers. One major 
advantage of the LVQ based classifier is its relatively fast training time. 

The results generated by the experiment are relatively exceptional. The LVQ 
networks seem to be prospective for the classification of text documents, with the 
advantage of restricting documents to be part of certain classes. 

7.2 Future Work 
This research uses Vector Space Information Model for the representation of text. The 
problem with Vector Space Information Model is that in the representation, all pairs 
are considered equally similar. Semantically relationships between the terms are not 
taken into account (Honkela, 1997). The LVQ classification can be applied by using 
some other approach such as Poisson distribution. The use of Poisson model is widely 
investigated in Information Retrieval but it is rarely used for the text classification. 

There is no way to determine a good number of codebook vectors. Some mechanism 
of finding an optimal number of codebook vectors should be embedded in the 
learning algorithm. 

The results show that SVMs are also very effective in the classification task. To 
obtain highly accurate classification system, a classification committee can be 
constructed using LVQ and SVM. 

This study demonstrates how promising LVQ text classification systems could be. 
The next step in this research is to study the effectiveness of LVQ algorithms with 
image collections. 
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Abstract: The classification of a large collection of texts into predefined set of classes is an enduring research 
problem. The comparative study of classification algorithms shows that there is a tradeoff between accuracy 
and complexity of the classification systems. This study evaluates the Lea- Vector Quantization (LVQ) 
network for classifying text documents. In the LVQ m e t h a  each class is described by a relatively small number 
of codebook vectors. These codebook vectors are placed in the feature space such that the decision boundaries 
are approximated by the nearest neighbor rule. The LVQ require less training examples and are much faster than 
other classification methods. The experimental results show that the Learning Vector Quantization approach 
outperforms the k-NN, Rocchio, NB and Decision Tree classifiers and is comparable to SVMs. 
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INTRODUCTION 

The automated classification has gained 
invigorated interest in the last decade. The information 
on the Internet continues to grow at an incredible speed 
with more than 4.5 billion pages available ordine. It has 
become a very challenging task to classify such large 
collection of information. Text Classification (TC) is one 
of the prime techniques to deal with the textual data. 
TC systems are used in a number of applications such as, 
filtering email messages, classifying customer reviews 
for large e-commerce sites, web page classification for 
an internet directory (e.g., Google), evaluatmg exams 
paper answers and organizing document databases in 
semantic categories. 

The term classification has been used in a broader 
context in human activity. We may have a set of 
observations and want to infer classes or clusters w i h n  
the set. Or we may have a certain number of classes and 
we want to classify a new sample into one of the existing 
classes. The former type is known as Clustering and the 
latter is known as Classification. 

The TC system categorizes the documents into a 
fixed number of predefmed classes. Formally, it can be 
defined as the task of assigning a Boolean value to each 
pair (4, c,) where 4 = (d,,d,,d ,,... d,,) is the set of text 
documents andc,= {c,,c,,c, ,... c,) is the set of class labels. 
The value assigned to the pair could be irue if the 
document 4 faus under class c, or false if the document 4 
does not belong to class c, (Sebastiani, 2002). 

The research in automated text classification started 
in early 1960s. A long list of successes and failures are 
reported in this field Many methods had been proposed 

and a lot of experiments had been carried out. All this 
research had been done in the field of Information 
Retneval and classification was a part of it. The rapid 
growth of Internet has revived the interest in automated 
text classification Hand-built directories of web content 
suggest one solution to the dilemma, but unfortunately 
creating and maintaining such directories requires 
enormous amounts of human effort. 

Many classification methods have been suggested in 
literature such as; Rocchio's classifiers (Rocchio, 1971) 
and (Joachims, 1997), k-NN (Yang and Liu, 1999), Na'ive 
Bayes (Lewis, 1998), Decision Tree (Dumais, 1998) and 
Support Vector Machines (Joachims, 1998,1999). 

The k-NN is an example based classifier. For deciding 
whether a document d belongs to a class c or not, k-NN 
retrieve the k neighboring documents of d and they vote 
for the classification; if there is a majority vote for class c, 
a positive decision is taken and negative otherwise. The 
success of classification in k-NN depends upon the value 
ofk, but there is no defined way to calculate it. Since 
k-NN is a lazy classifier, i.e., there is no training stage and 
all the computation is performed at the classification time, 
it cannot be used in real-time scenarios to classify large 
collection of texts. 

The Rocchio method (1 97 1) and (Joachims, 1997) 
selects an average prototype vector for every class. It 
calculates the similarity between a document and each of 
prototype vectors and the document is assigned to the 
class with maximum similarity. A problem with Rocchio 
classifier discussed by Lam and Ho (1998) is that it 
restricts the hypothesis space to the set of linear 
separable hyper plane regions, which has less expressive 
power than that of k-NN algorithms. 
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The Nai've Bayes algorithm (Lewis, 1998) calculates 
the probability of each class for a document. The 
document is assigned to the class for which the 
probability is highest. There are many improvements to 
the Naive Bayes classification model. A problem with 
NaZve Bayes discussed by Shen and Jiang (2003), is that 
when asked to make predictions; it always gives class 
posteriors very close to 0 or 1 and smoother class 
posteriors cannot be determined. 

Support Vector Machines are employed in text 
classification by Joachms (1 998, 1999). SVMs are linear 
classifiers that defme a decision surface to separate 
classes of data as positive and negative. Kernel functions 
are used for nonlinear separation. SVMs have shown 
superb performance for text classification tasks and 
perhaps the best classifiers till now (Yang and Liy  1 999). 
SVMs' only potential drawback is their training time and 
memory requirement For n training instances held in 
memory, the best-known SVM implementations take time 
proportional to na, where a is typically between 1.8 and 2 
(Chakrabart et al., 2002). 

The Decision Tree (DT) classifiers are based on tree 
induction algorithms. A DT classifier is a tree, whlch 
internal nodes denote the terms and the branches 
departing from them are labeled with predicate applied to 
the terms. Each leaf nodes denotes a class. The DT 
classifiers discussed in literature are based on D 3  
(Fuhr et al., 1 991 ), C4.5 (Cohen and Hirsh, 1 998) and C5 
(Li and Jian, 1998). 

A vocabulary list is constructed containing all of the 
important terms and this list is used to index the training 
set. The training set is used for learning the classification. 
The test set is used to generate the results and the results 
are analyzed by using some standard performance 
measures for the evaluation of the classifier. 

TEXT SELECTION AND INDEXING 

The Reuters-21578 text collection (Lewis, 2006) has 
been used for evaluation purpose. There are many version 
of Reuters-2 1578 available and the ModeApte version 
was selected. From this collection, the documents having 
more than 2,000 characters have been selected, as most of 
the documents in the collection contain only a single line 
or just news heading. This filtering process made the 
collection more meaning full and helped us to quickly 
generate the results from the experimental setup. The final 
subset contains five categories and the number of 
document as shown in Table 1. 

Normally, text categorization systems use a vector 
model representation of the documents. The same 
representation has been used for this system. Each 
document is represented as a vector and each cell of the 
vector represents the weighted frequency of the term in 
that document. There are many different schemes in use 
for the weighting of the term frequencies. One that 
seems effective is the Term Frequency-Inverse 
Document Frequency. That is, the number of times the 
word appears in the document multiplied by a function of 

THE CLASSIFICATION SYSTEM 

The automated text classification system is shown in 
Fig 1. The fxst phase is the selection of training and test 
material. This training set is processed through several 
pre-processes phases such as, the removal of common 
words, feature selection and word stemming. 

Fig. 1 : The classification system 

the inverse of the number of documents -in which the 
word appears. Terms that appear often in a document 
and do not appear in many documents therefore have 
an important weight 

The creation of vectors for documents consists of 
following steps: 

A word list containing all of the important terms is 
created for all the documents. 
This list can be scanned further to remove some 
common words and to eliminate the most and least 
frequently occurring terms. 
The document collection is indexed on the basis of 
word list using normalized TF-IDF. 

The creation of a vocabulary list for a collection 
of documents is not a trivial task. The problems 
involved in constructing such systems as described by 

Table 1: Total number of documents per cateEory 
Category Interest Ship Trade Crude Wheat Total 
Document 53 81 108 151 56 479 
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van Rijsbergen (1979) are (1) removal of high frequency 
or common words, (2) suffix stripping, (3) detecting 
equivalent stems. Comparing the input text with a stop list 
of words can easily carry out the removal of high 
frequency words. This process reduces the size of the 
dictionary to a considerable limit 

The next problem of suffix stripping is more 
complicated Two words should be compared for their 
conceptual meaning because a conventional string 
comparison will produce high error rate. The solution to 
this problem is to remove the suffzes from the different 
forms of a word There are standard algorithms defined for 
suffix stripping called stemming algorithms such as 
Lovins' algorithm (Andrew, 1971). 

Many words, after suffz removal map to one 
morphological form, but still there are some, which don't. 
One way to deal with this problem is to have a list of 
equivalent stems and two words should be considered 
equivalent if and only if their stems match and there is an 
entry in the list defining their suffixes as equivalent. %s 
paper does not consider the problem of equivalency of 
stems as there are very few such words in a document and 
usually they don't affect the accuracy of the classifier 
(van Rijs bergen, 1 979). 

After applying stop list and stemming algorithm, a 
vocabulary list of 468 words was obtained containing 
important terms of all documents. We indexed the 
document collection on the basis of vocabulary list 
obtaining a two dimensional sparse matrix which 
contained documents row wise and terms column wise. 

NEURAL NETWORKS CLASSIFICATION 

A Neural Network (NN) is a network of units called 
neurons. The neuron is the basic processing element of 
NN. The inputs to a neuron arrive through synaptic 
connections. The efficacy of inputs is modeled by the 
weights attached with every input. The response of the 
neuron is a nonlinear function of its weighted inputs. 

The classification model based on NN has generally, 
more than one layer of connected neurons. The input 
layer has the input units representing terms and the 
output layer output units representing the classes. The 
intermediate or hidden layers are used for the computing 
the classification decision. For classifying a document d, 
its t e n s  4 with weights w, are loaded into the input units; 
the output of these units is propagated through the 
intermediate neuron layers (if present) to the output layers 
and the value of the output units determine the 
classification decision. 

A usual way of training NN is back-propagation. 
When a learning pattern is presented, the activation 
values of input neurons are propagated through the 

intermediate layers to the output layers and the actual 
output is compared with target output, if a miss-match 
occurs, the error is back-propagated so as to change the 
parameters of the network to minimize the error. 

The simplest type of NNet classifier is the perceptron 
discussed in Dagan et al. (1997) and (Ng et al., 1997) 
whch  is a linear classifier. A nonhear W e t  (Lam and 
Lee, 1999) and (Ruiz and Srinivasan, 1999) is instead a 
network with one or more additional layers of units, which 
in TC usually represent higher order interactions between 
t e n s  that the network is able to learn (Sebastiani, 2002). 

LVQ networks are based on the supervised 
competitive learning. LVQ networks attempt to define 
decision boundaries in the input space, given a set of 
exemplary decisions (the training data). Topologically; the 
network contains an input layer, a competitive layer and 
an output layer. The output layer has the neurons equal 
to the number of classes. In the competitive layer, each 
competitive unit corresponds to a cluster, the center of 
whch is called a codebook vector. The Euclidean distance 
of an input vector is computed with each codebook vector 
and the nearest codebook vector is declared winner. 
Unlike perceptron, LVQ networks can classify any set of 
input vectors, not just linearly separable sets of input 
vectors. The only requirement is that the competitive layer 
must have enough neurons and each class must be 
assigned enough competitive neurons. 

LVQ ALGORITHMS 

There are a number of somewhat different LVQ 
algorithms appearing in the literature, they are all based 
on the following basic algorithm: 

A learning sample consisting of input vector x, 
together with its correct class label c, is presented to 
the network. 
A suitable number of codebook vectors are selected 
for every class label c,. 
Using distance measures between codebook vectors 
and input vector 4, the winner is determined In some 
cases, the second best winner is also determined 

We have used LVQl (Kohonen, 1 Bob), LVQ2. 1 
(Kohonen, 1990a), LVQ3 (Kohonen, 1990b) and the 
optimized learning rate algorithms OLVQl (Kohonen, 
1992), OLVQ3 for the classification task. 

LVQ1: The LVQl (Kohonen, 1 Bob)  selects a single set 
of best matching codebook vectors is selected and moved 
closer or firrther away from each data vector, per iteration 
if the classification decision is correct or wrong, 
respectively. 
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OLVQl: The Optimized LVQl Wohonen, 1992) is same 
as LVQ I, except that each codebook vector has its own 
learning rate 

LVQZ.1: Two sets of best matching codebook vectors are 
selected and only updated if one belongs to the desired 
class and one does not and the distance ratio is within a 
defined window. The value of the window is defmed as 
the mid-point of the two codebook vectors. 

LVQJ: The same as LVQ2.1 except if both set of 
codebook vectors are of the correct class; they are 
updated but adjusted using an epsilon value. The epsilon 
value is used to adjust the global learning rate. 

OLVQ3: The Optimized LVQ3 is same as LVQ3 except 
each codebook vector has its own learning rate in the 
same manner as OLVQl 

These training algorithms yield almost similar 
accuracies, although different techniques underlie each 
other. The experiment has been performed using all five 
algorithms and the results are analyzed to determine that 
which algorithm performs well for text classification, Jn the 
next step, the best LVQ algorithm is compared with the 
other classification algorithms. 

THE EXPERIMENTAL RESULTS 

Table 2 shows the experimental results of the five 
LVQ algorithms applied to the document vectors. The 
parameters for every algorithm have been selected 
empirically by slightly increasing and decreasing their 
value and analyzing the output 

Precision and Recall measures are widely used for 
evaluating the classifiers. Recall is defmed to be the ratio 
of correct assignments by the system divided by the total 
number of correct assignments. Precision is the ratio of 
correct assignments by the system divided by the total 
number of the system's assignments. It is hard to compare 
classifiers using two measures, the F1 measure, 
introduced by (van Rijsbergen. 1979), combines recall (r) 
and precision (p) with an equal weight in the following 
form: 

The El -measure has been used for evaluating the 
accuracy of the classifiers. The n-fold cross validation 
method was used to obtain the results. T h  method 

divides the data set in equal n partitions with using one 
partition as test set and rest of them as training set The 
results show that almost each LVQ algorithm gives similar 
accuracies. These algorithms also took almost similar time 
for building the training model. But the optimized-LVQl 
performs well than its counterparts. It gives El -measure 
over 90% for wheat and trade categories. The ship 
categwy has the lowest F1-measure.i.e., 65.4%. The 
reason for this is not the poor performance of the 
classifier but the fact that there were some documents 
whichwere common between the ship and crude category 
and the classification system had to classify the 
overlapping documents in one of the target classes. 

The performance of the OLVQl algorithm is also quite 
reasonable if we consider the training time of the 
classifier. It took only 922 ms on a 2.4 GHz machine to 
perform 1600 training iterations on 40 codebook vectors 
for building a single model for I @folds cross validation 
method. 

Table 3 compares the results wlth the other 
classification algorithms with the same training and 
test set. Other classification model, such as Nalve Bayes, 
k-NN and C4 give low accuracy and also their training 
and classification time is greater than the LVQ. Due to 
the memory and computation limitations, the results in 
Table 3 were obtained using 5-folds cross validation 
method. The results show that for the wheat, trade and 
interest category, SVMs work well than OLVQl and for 
the s h p  and crude, the OLVQ 1 is better than SVMs. One 
can say that as SVMs work well for three categories and 
OLVQl is good only for two categories, it is better than 
OLVQI . In fact, SVMs are, but the problem lies with the 
time taken by SVM to build the model. SVMs took 6.25s 
to build the model while OLVQ 1 took only 1.06s that is six 
times less. This modest training and classification time 
encourages the use of LVQ for the classification task. 

Table 2: F1-measure comparison of LVQ algorithms (10-fold cross 
validation) 

AlgoriMClasses LVQl LVQ2.1 LVQ3 OLVQl OLVQ3 
Wheat 0.911 0.897 0.925 0.909 0.923 
Trade 0.931 0.925 0.936 0.936 0.922 
Ship 0.601 0.635 0.632 0.654 0.642 
Interest 0.948 0.953 0.940 0.953 0.940 
Crude 0.792 0.819 0.781 0.816 0.809 

Table 3: F1-measue comparison of classification pmcedums (5-fold cross 
validation) 

Classifier/ RBF k-NN 
Class OLVQl SVM Network SOM K = 7  C4 NB 
Wheat 0.917 0.927 0.771 0.867 0.867 0.957 0.893 
Trade 0.910 0.917 0.759 0.853 0.886 0.7620.825 - 

Ship 0.593 0.506 0.484 0.577 0.542 0.467 0.547 
Interst 0.936 0.959 0.802 0.911 0.909 0.822 0.886 
Cmde 0.776 0.722 0.641 0.795 0.758 0.817 0.714 
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FUTURE WORK 

This research uses Vector Space Information Model 
for the representation of text The problem with Vector 
Space Information Model is that in the representatio~ all 
pairs are considered equally similar. Semantically 
relationships between the terms are not taken into 
account (Honkela, 1997). The LVQ classification can be 
applied by using some other approach such as Poisson 
distribution. The use of Poisson model is widely 
investigated in Information Retrieval but it is rarely used 
for the text classification 

There is no way to determine a good number of 
codebook vectors. Some mechanism of fmding an optimal 
number of codebook vectors should be embedded in the 
leaming algorithm. 

The classification of binary data such as images can 
be explored with the LVQ. 

CONCLUSIONS 

This study presents an application of LVQ for text 
classification The process of classifying documents with 
LVQ consists of three phases, pre-processing of data, 
training of the network and the testing of classification 
network. The text documents are represented as vectors 
using Vector Space Information Model. The results 
generated by the experiment are relatively exceptional. 
The LVQ network seems to be prospective for the 
classification of text documents, with the advantage of 
restricting documents to be a part of certain classes. 

Ths study provides sufficient theoretical base for the 
development of a fully functional text classification 
application. 
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