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Preface

The flow of non-Newtonian fluids have a variety of practical application in industry and 

engineering [1-4]. Nanofluid which is one o f the most important branch o f non*Newtonian 

fluid has been widely used in industry due to unique physical and chemical properties o f 

nanometers/nanoparticles. The nano-particles are ultra fine particles in the size of 

nanometer. The term “nanofluid” refers to a liquid containing a suspension of metallic or 

non-metallic nanometer-sized solid particles and fibers (nanoparticles), ^isto^cally, 

^hoi [5] wa  ̂ first to s^dy the behavior of nanofluids. The characteristic feature of 

nanofluids is thermal conductivity enhancement, a phenomenon observed by ^assoudi et al. 

[6]. This phenomenon suggests the possibility of using nanofluids in a variety of 

engineering applications, including advanced nuclear systems (see ^uongiorno et ai. [?]). 

The general topics on heat transfer analysis in nanofluids have been surveyed by many 

researches؟ , for instance see [8-12].

Despite the above studies, nanotechnology is considered by many to be one of the 

significant forces that derived the ne^t major industrial revolution of this century. It 

represents the most relevant technological cutting edge currently being explored. It aims the 

ma^pulating the structure of the meter at the molecular level with the goal for innovation in 

virtuaily every industry and public endeavor including biological sciences, physical 

sciences, electronic cooling, transportation, the environment and national security etc. ^ome 

numerical and experimental s^dies on nanofluid can be found in references [13, 14].

Moreover, recent several decades, flow o f fluid in porous media has intensively, been 

studied and it has become a v e^  productive field of research this topic has many 

widespread particle applications in modem industries and in many environmental issues 

such as, nuclear waste management, building thermal insulation spread of pollutants, 

geothermal power plants, grain storage, packed- bed chemical react©!؟ , oil recover and 

ceramic processing etc. In the fluid mechanics there is su^icient literat^e available in witch 

the porosi^  ̂parameter is used as a major pa^ [15-18].



Keeping in view ^̂ e above importance of nanofluid and porosity, the present thesis is 

arranged as follows:

In chapter one, the basic de^nitions of fluids, and equation of motion for non-Newtonian 

nanofluid of third grade are given. Basic idea ofHAM is also presented here.

C arter two is devoted to study the influence of variable viscosity and viscous dissipation 

on non-Newtonian flow which is review of paper by £llahi et al. [19]. This chapter concerns 

with ه e effect of constant and variable viscosity on velocity and temperature distributions 

for a third grade non-Newtonian fluid is s^died.

Chapter three is a new contribution in ه e l i t e r a l  in which we consider flow of third grade 

non-Ne^onian nanofluid between coa^al cylinders with constant and variable viscosity 

when the outer cylinder is porous. The nonlinear coupled governing equations for 

nanoparticles concentration are solved wifl  ̂the help of ̂ omotopy Analysis Method (HAM) 

[20-22]. The graphical results are displayed and analysed for different emerging parameters.
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Chapter ل

Basic Fluid Mechanics

In this chapter present some basic definitions and inلp٠rtaم t concepts of fluid mechanics which 

we will be useful in succeeding chapters.

1.1 Flow

A material that deforms continuously when different forces act upon it. If the deformation 

continuously^ increases without limit,this phenomenon is know as ^ow.

1.2 Fluid

Any h^uid or gas that cannot sustain a shearing force when ^t rest and that undergoes a 

continuous change in shape when subjected 0̂ such as stress.

1.3 Nanoparticles

The nanoparticles are ultrafine panicles in the size of nanometer order. “Nano” is a prefix 

denoting the minus ^th power of ten, namely one bilhonth. Here it means nanometer (nm) 

applied for the length. One nm is extremely small length corresponding to one billionth of one 

^ ١̂٢  one millionth of one mm, or one thousandth of one fim.



1.4 Nanofluid

Nanofiuid is a fluid containing nanoparticles. These fluids are engineered colloidal suspensions 

of nanoparticles in a base fluid.

1.5 Porous M edium

A porous medium or a porous materia] is a solid permeated by an interconnected network of 

pores (¥0ids) fllled with a fluid (liquid or ga5). Natural porous media include soil, sand, mineral 

salts, sponge, wood and others. Synthetic porous media include paper, cloth filters, chemical 

reaction catalyst and membranes.

1.6 Porosity

?orosity or ^oid fraction is a measure of the void spaces in a material and is a fraction of the 

volume of voids over the total volume, i.e.,

ء )،.،( - ع

volume of ؛where Vy is the volume of void-space (such as fluids) and Vr is the total or bull

,material, including the sohd and void components

Pressure ٦ ٣

Pressure is an efl'ect which occurs when a force is apphed on a surface per u ^ t area. Mathe-

,magically

(1. م (2 = إ

where p  is pressure, F  is the normal force and A is the area. The SI unit for pressure is Pascal 

(Pa), e^ual to one Newton per square meter {Nm~‘̂ or kgm~^s~‘̂).



1.8 V elocity Field

In dealing with fluids in motion, we shall necessarily he concerned with the description of a 

velocity field. At a given instant the velocity field, V, is a Unction of the space coordinates ا 

ء , y, z) and time t. The veloci^ at any point in the flow fleld might v a^  from one instant to 

another. Thus the complete representation of velocity is given by

V  =  V( x, 1. 3) ( ،̂ . , (؛

1.9 V iscosity

The internal friction of a fluid, produced by the movement of its molecules against each other. 

Viscosity causes the fluid to resist flowing.

1.10 D ensity

Density of a fluid is defined the mass per unit volume. Mathematically, it is denoted by م  

and defined as

ء = ظ0ة’ رة-لا
where Sv is the totك  volume eleme^ around the point c and Sm is the mass of the fluid within 

6v.

1.11 Flow Visualization

There are four types of flow lines that may help to describe a flow field.

1.11.1  S tream lin e

A streamline is a hne that is everywhere tangent to the velocity vector at a given instant of time. 

A streamline is hence an instantaneous pattern. Let u ,  V and w  be the components of veloci^



in the X , y and 2 direction respectively. The equation of stream line for three dimensional flow

م (1.6) ي = غ = ب
u V w

and for two-dimensional flow the stream line equations are

؛ (1.7) ؛ = .

1 .11.2  Streakline

A streakline is an instantaneous line whose points are occupied by particles which have earlier 

passed through a prescribed point in space. A streak line is hence an integrated pattern.

1.11.3  P ath lin es

Pathlines are the trajectories that individual fluid particles follow. The direction the path takes 

will be deter^nined by the streamlines of the fluid at each moment in time.

1.11 .4  T im elin e

A timeline is a set of fluid particles that form a line segment at a given instant of time.

1.12 Prandtl Num ber

It is the ratio of the product of dynamic viscosity and specific heat to the thermal conductivity 

and denoted by the symbol Pr and is given by

م, (1.8) ب = م

where pL is dynamic viscosity Cp is specific heat capacity and k  is permeability of free space.



1.13 Reynolds Num ber

It is the ratio of inertia force to the viscous force. It is denoted by the symbol Re and is given

Re =  1. ؛, (9 ؛ ) 

where L denotes the chaxacteristics length and u is kinematic viscosity.

1.14 Fundamental Equations of Fluids

1.14.1 E q u ation  o f C on tin u ity

In any closed system, the mass is always invariant regardless of its changes in shape when 

external forces are absent or the principle that matter cannot be created or destroyed. In fluid 

mechanics, this law is named as equation of continuity. In other words the mass of the system 

remains conserved. Mathematically, it is d ^ c rib ^  as

^  +  V- ( pV)  =  0.  (1.10)

In cylindrical coordinates, ^his equation is given by

<ار؛ةاق ةث" - " ■

مه1.1  ̂ E q u ation  o f  M om entu m

^ e n  some bodies constituting an isolated system act upon one auother, the total momentum 

of the system remains same. In an inertia] fra^e of reference, the general form of equations of 

^uid motion or the law of conservation of momentum is

p ’̂  = V T  + pt, (1.12)

where T  is the Cauchy stress tensor, D/Dt  is the total material derivative and f is the body 

force. In cylindrical coordinates the momentum equation in components forms is given by.



٠ ذ

(1.13)

(ل-ا4)

(1.15)

٣- component:

ء

9- component:

;لآ ا| :ج )ه: = ق-ا; ة؛م ء-م ة(

:component -أ

ي؛ ئ ث ن ب ن م ل ؛ ؛ آ ن و س = إ م + ؛ج+و ها ؛ + ه

1.14.3  E quation  E nergy

The law of conservation of energy ^tate$ that energy may neither be crea^e^ nor destroyed. 

Therefore, the sum of all the energies in the system is a constant. The energy equation is 

described a^

P C p ^  = T .L -V .q ,  (1.16)

in which

(117)L = v v .

In cylindrical coordinates, it is given

(1.18)
- حا■ [ئ(ه)ااةام ة؛يممة)ى؛ ها -ب )

where ي is the viscous dissipation function.



1.15 Solution M ethodology

^٠ d^cribe the solution metliodology we use the basic ideas of the HAM, we consider th^ 

following differentia] equation:

M[u(r)] = 0, (1.19)

where is a nonlinear operator, t denotes the independent variable, u(r) is a^ unl^ow^ 

function. By means of generalizing the traditional homotopy method, Liac» [23] constructs the 

so-called zero-order deformation equation

(l-p)/:{u*(r]p)  - هلا(رآ  ] = ph{N[u*{r;p)]}, (1.20)

where p ع [0,ال  is au embedding parameter, م  is a nonzero auxiliary function, ى is an auxiliary 

hne^r operator, Uo( )̂ is an iك tiك  guess of u{r) and u* {r-,p) is an unsow n function. It is 

important to note tha^ one has great freedom to choose auxiliary objects such as h and c  in 

HAM. Obviously, when 0 = تؤ and p =  1, we get

■u*(r; 0) =  z،o(r)j u*(r; 1) = u(r) (1.21)

hold, ^hus as p increases ^■om ٥ to 1, the solution u*(r-,p) varies from the initial guess 

uo{r) to the solution u(r). Expanding u*{r\p) in Taylor series with respect to p, one has

ء)م, (1.22) إ ج ) ك;م) = آ(هءأ) + آ ) آ

where

(1.23)
p=0dpm

If the auxiliary linear operator, the initial guess, the auxiliary parameter h and the auxil- 

iary function are so properly chosen, then the series (1.16) converges at _p = 1 and one can



u*(r\ 1) =  uo{r) +  y^UTn(0, ( 2 4 (ل-

which must be one of the solutions of the original nonline^ equation, if ?1 =  —1, Eq. (1.14) 

becomes

{l-p)C[u*(r\p) -  uo(r)] +p{A^[n*(r;p)]} =  0, (1.25)

which is used mostly in the HPM. In view of (1.17), the governing equations can be deduced 

from the ^eroorder deformation Eq. (1-14)• We define the vectors

آ•} (ل-26) = {فآ0(مأ)أ لآ0(آ)"ل - • ,•هلآ(ر

Differentiating Eq. (1.14) m  times ^ t h  respect to the embedding parameter p and then setting 

p = 0 and finall̂  ̂dividing them by m!, we have the so-called mth-order deformation equation

مم[ج ” — ^أآآةئ(آآآءآ —l)1. (و (27

where

p=0( m و !(1— وإ آآ -أ ا

0. ^  < 1 

1, ^  > 1

It should be emphasised that Um{Tn > 1) are governed by the linear Eq. (1.21) with the 

linear boundary conditions that come ^■om the original problem, which can be easily solved by 

symbolic computation software such as MAPLE and MATHEMATICA.



1.16 Cylindrical Coordinates

In cylindrical coordinate system, points are located ^y them the values to {r, و زت,
Fig. 1.1, which are related to {x = Xi.y ~  X2^z = by {تت3 

(1.29)
y = rsin^, z = z and رو cos = تل 

(ر ١ ج ع ق = tan“̂ ؛ م و, r = (هء + ر

The basis vectors in this frame are related to the Cartesian ones by

(1.30)
و, ١ — sin و̂

و ؛٢ + cos و0ل

و6ء COS — -ل6  +  sin و6ألإ 6ء  = sin 6er —

= و6  — sin و6ء  + cos 06y, 6y =  sin 6er

The velocity V, a tensor gradient operator, gra d v  and divV  in terms of these coordinates 

are respectively given by

(1.31)



(1.33)

(1.34)

(1.35)

Sfj• 6 م0م ب مإ©ومك©و ب م©ءمكم€ء
ب€م وك €م ة = و  -f 5 ك و م€ة ة وو6و6و + ة  

ب ءة ب ءهءجءءك

where a matrix representation of s is given by

Srz ؟،٢٢ وخ 

S z r  SzO Szz

s =

 (cos و6م — sin و6و) (cos0^ — ج )ه +

ء ^؟ + 6ه ^ (٤ + ^ ^sin) (و6وcos + و6مsin)

( (ة.يةئ'

v  =

م = ه+ث ب م م ؛ ؟ = ق

(1.37)

(1.38)

(1.39)

+ ٢̂٢̂©

ج ج+مءمم(أ. + ر إ-ر +صء(ه

ء م م+ه م م ء+ج م ج ء+ه م ء ء +هإ

v v  =

where a n^atri^ representation of v v  in cyhndrical coordinates is given hy

dVr.
dr

I dv,

dVd

قآوئ1قآ ٢ ءو ٠ ٢
dVfi
dz

dv  ̂

\ dv  ̂ _ ئ   

aVr
ءو

v v  =

س. ه ب ث ة م ؟ م ء



where we have ^^e^ ^he following relations

-  Oj ,0 - €ه - 0, ء€ه  و

ه = ٠, ءءج = ٠, = ٠ ء م



Chapter 2

The Influence of Variable Viscosity 
an^ Viscous dissipation on the 

Non-Newtonian Flow: ^n Analytical 
Solution

Introduction ل.^

In this chapter, we review the work of Ellahi et al. (19j. We consider a ^ow of third grade fluid in 

a pipe with the viscous dissipation. The temperature of the pipe is higher than the temperature 

of the fluid. The governing equations are formu]ated mathematically. The non-linear govern- 

ing equations are solved analytically by ^omotopy Analysis ^^ethod (HAM). Convergence of 

the obtained solutions are properly discussed by help of /أ—curves, explained the velocity and 

temperature proflles with the help of graphs taking d i^rent values of di^ere^ pertinent para- 

meters.

2.2 Formulation of th€ Problem

We consider the steady flow of an incompressible, third grade fluid in a pipe. The 2—axis is 

taken along the axis of the flow. The velocity fleld in cylindrical coordinates is given by



v = [ 0, 0,u(r)]. (2.1)

definition of incompressible fluids, the continuity Eq. (1.18) becomes

v - v  =  0. (2.2)

Using Eq. (1.16) in Eq. (1.20), we obtain

p c p ^  =  T -L  +  A: V2. ؛«. (3 )

For third grade fluid stress tenser is defined by

T = —م لا  +  mAi +  a\A2 + ه2ع-ا  +  +  ^(A ^A ^ + A^A^) -f ^ 3(،rA^)Ai, (2.4)

where P\ is hydrostatic pressurej I is the ide^ity tensor and 1,2 = = and 1,2 (ي(بم   are (ز(وور 

material constants. The Rivlin-Ericksen tensors are defined by the foilowing gener^, relations

A i  = L ^ L \  (2.5)

A „ = ^ ^  +  A „ ^ i L  +  L ‘ A „ - i , n > l .  ( 2 . 6 )

Thermodynamical limitations [24j comprise

0< م , a i > 0 ,  |،،1 +  a2. 7) ■ ء2 = ٥, ء3 ة ٥ =ا / ؛ <ا/24ص3. أ ! )

In view of Eq. (2.?)ء Eq. (2.4), takes the following form

T = ~ ل1 و ا  + /iAi +  q؛iA 2 +  A؛ +  P^{trAi)Ai . (2.8)



Using the velocity field given in Eq. (2.1), we obtain

(2-9)

o o f
0 0 0

0 0 0

0 0

0 0

f o o
Ij

(2.10)

(2-ل2)

(2.13)

(2-14)

(2.15)

(2.16)

0 0

0 0

0 0

ه 0ق
م 0ه

f o o

A.1 — L + ة  أ  —

0 0

0 0

0 0

2;؛(

0

ش0

A-iLi ب —

OAi
d t

du  ̂
dr و

0

0

2 (
A2 — +  L*Ai =

0

0
' dû
،رآد

'du'
^drj

0

٥

A? =

'du'
,dr.
0

0

0

0
'du'
.dr.

٣٢٢ =  ~ P 1 +  (2ai + ه2) (ج)أ  , Tre =  0 =  ,٣٠٢ 

٢٢̂ — ■وم + مة3 (ق ) ='^zr,Tee =  —Pi, 

rez =  0 = ,وءآ ءءآ   =  - P i  +  Q2 (ع)ج ■

For steady flow

and



the ؛In the absence of body forces and using cylindric£il coordinates for the flow in a pipe

momentum Eq. (1.19) will be simplified in the following form

)ة’(2.17) ق’('ق= ؛ق[و(ق)ا+فء
subject to the bounda^^ conditions

(2.18)duu{R) = 0, — (0) =  0,

where

p =  p i ~ ( X 2 ج (2.19  ر ) 

is the modified pressure, ^ow using the definition of product of two tensors, we ha^e

(2 .20)

(2 .^1)

(2.22)

(2.2^)

(2.2ه)

(2.2ع)

du
dr'T.L = r,

ء.ع(مءاو(.و,
ص'و- = ئ ق

The energy Eq. (2.3) becomes

و ا (-'و’ءءب(.ق*)ب؛[،ف'(ب
The relating boundary conditions are

dO
0{R) = 0, 0 = (0)ي -dr

Using non- dimensionalization criteria, we set



ءء - ة’ ء“تءئ’ ي“محة ’ ~̂k{e°-eo)
boundary value problems consisting of Eqs. (2.17)j (2.18). (2.23) and (2.2ه ) become

(2.27)

(2.28)

(2م2و)

ث) =٩ آف ) ؛ة[ي(ق]) + ق

)م’ ل=] م س م ب )ق

بم(ق = م=رمث>

ة(^ق ب ؛ ق ب

و) = 0, (ءآ) = ا( ا

in which آل ءآ0ر ٣٠١ ء0أ و,  and او are the radius, reference velocity, reference viscosity, re^re^ce 

temperature, pipe and fluid temperatures, respectively Also, Cl is the a ^ ^  pressure drop, ٨ is 

third grade parameter and r  is related to the ?randtl and Elckert numbers. For simplicity we 

have omitted the bar symbols.

2.3 Solution of the Problem

١̂ ^ use homotopy analysis method (HAM) to solve the problem under consideration.

Case I: For the Constant V iscosity

^ e n  we take ٣ =  1, the governing Eqs. (2.27) a^d (^.28) in simplifled form reduce to

(2.30)

(2 .^1)

(Pu A / 'du\^  
dr^ ^  r \ d r du 1اق؛م“(و(

ب(^و’ئ(--و=*م■ ق؛ م
and

وم
dr^

respectively. We use the method of higher order differential mapping |25j, to ه00ة € the linear 

operator ء , i.e.,

ء ا ؛ لمم = غ



The above operator satisfies the following relation

where Cl and C2 are the arbitrary constants. Integrating the line^ part of Eq. (2.30), we get

آ(هءآ) = - )ل(2.3بم

35 the initial ap p ro b a tio n  of velocity u, which satisfies the  hnear operator Cl  and boundary 

conditions too.

Zeroth order de^r^^^tion e^^^tlon

^or non-^ero a ^ lia ry  parameter h and an embedding parameter p € [0, 1], the ^ero^h order 

deformation equation in HAM is given by the following relation

=  ^  (2.35)

subject to the following boundary conditions

(^.3^)(0,p) =  0.
du*
dru*(l,p) =  0,

٢٢̂—tb  order de£or^^tion equation

If we di^erentiate m—times the zeroth order deformation £qs. (2.35) and (2.36) with respect 

to p, dividing b^ m\ and finally taking م = ره  we have the mth order deformation equation, of 

the following form

A  [Um -  XTn'^m-\] =  hRm{r), (2.37)

where

-^ + ه-ه ٤ د-:أءأ ■بمتا ب بمة0 “ ل(ء س  - ٨ ٤ ل  Xm)• ( ة-ةة )
-د0



Corresponding boundary conditions take tطe following form

39-2) , ج = ه ه(ه) = رل( )

where prime denotes the di^erentiation with respect to r.

^om  Eq. (2.35) by setting 0 = م , it can be s h o ^  that

u*{r, p) =  2.40) .( أ(آ ع م ب ر )

^y the definition of homotopy, as p varies from 0 to ل لآ(*ئآ, p) varies from initial guess uo{r) 

to the exact solution ^(٢), that is for properly chosen h, we get

u*{r^p) = u{r) for 2.41) .1 = تإ)

^hen employing the Taylor’s theorem, we can write

u*{r,p) = UQ{r) + ع   u^{r)p^, (2.42)
m = l

where

(2.43)dp

^ow using £ ٩. (2.41) in Eq, (2.42)ر we get

ع(مأ.) (2.44) )ذ آ(ءأ) = آ(مءأ+
m —l

Differentiate Eq. (2.35) with respect to p and set p == Oj then after solving ^he resulting equation 

we obtain the following

ي“ل•) (2-45) س م) = سم(هم ب ) آ

^gain differentiating Eq. (2.35) with respect 0̂ p, putting p = 0 and using the similar procedure, 

U2{r) =  2.4) . (1 -  ^ ) +  ( ي€ق(هآ - 1()ابأئ س )̂



Now from Taylor series, we have the three terms solution

هءأ ) لآ) = آ آ( )  - f  • U i( r )  +  U2 [ r ) .

Finally, inserting Eqs. (2.34), (2.46) and (2.47) in Eq. (2.48), we get the expression for velocity 

as follows

آ(ءأ) ع ب(ءإ -1) + سم(همخحي - 1^() + 2) + م(ةءةخسمي - 1.) (2.48) ل + 2) + ” ■)ل إ -ل) + “ ء) (ء ؛٢) = ب

Now nsing Eqs. (2.31) and (2.49), with لممهظdةry onditions Eq. (2.29), we can find 9 by using 

^auchy-Euler equation and computer sof^a^e, ‘MATHEMATICA’. The result is ^ven below

(2.49)

0{r) =  A i {t  ̂ -  1) +  1 - م(ب  ) +  As(r( ؟ - )ل + ملآ(يخ - ل

م - 1) + مح8(وم - )ل ح ■ م(ب م - )ل + مح6(آ’يأ - رل + ةث خ(ة +  

ومحب(هم — )ل + ةتم(هه — ل )

The calculated Vك U€$ of coefficients Ai{i =  1, 2, ...10) a^e given in Appendix A. 

Ccise II: For th€ Variable V iscosity

Let us now assume that the viscosity is space dependent and choose fj, — r. 

From Eq. (2.26), we have

(2.50)

(2.51)

(2.52)

ق- ا('[آ ث '(فث’ق)ق

((ق) و ق ب ب“ث
2du 3A f d u \  d?u A f d u \  c 

r ^ 2 ٢؛ ' ^ y d r j٣ \رآمح ممح r dr

du . م آ  ن
dr "؛" ̂ ̂dr

Su
'̂dv

along with the same boundary conditions given in Eq. (2.29). Similarly Eq. (2.28) simphfies

وم 1 /ومم\ /اآبا\ق
-و'س.(2.53) و( -ب dr̂بو(؛ب(

which corresponds to Eq. (2.2م)ة The linear operator in ^his case will be

(2.54)dr^ ٢ r dr



( 2 . 5 5 أ0,( إ ' ع2 ء3 + =
provided that

where Cz and C4 are constants of integration. Thus the initial approximation for the velocity

(2 - 5 6) ( ؤ“ل• (ء ءأ0 (آ) = م

Zeroth order deformation equation

With the use of Eq. (2.53), one can de^ne the zeroth order deformation equation for u £IS

(2.57)

th order deformation equation

The mth order deformation problem can be written

مم2 [ج ]ت “ زرآ(أأهح(2؛•

where

(2-59) (•Xm - ا)ء" ( م+و“- م ،د(ب أ“- -ت ر س،ا-1، ا ق ه)• = “m-l + س«ث-1 + ت ) ا
fc=o =ذ0

The expression for B can also be defined in the same manner. The ^ th  order deformation 

equation can be obtained by using similar procedure like that of given in case L following the

same procedure, we find three terms series solution of n as follows

(2.60)
u(r) = إ(م / عإ — )إ + ءأ م(  — l)( / i+  2) + JrMc^(2^+ 1)( م — ل )

— ̂ hc{h-\-2){r — 1) + ةفمحةي€ق(سم — 1) — — ل  )

For finding the solution of temperature رو we use ‘MATHEMATICA’ to solve the Cauchy-Euler



equation. Then we obtain

= (r}0 - )ل + امح2(م -ا) + - )ل + امح4(ةمآ -ل) + امح5(م - +)ل  A ii(r2 

(2-61) 1) + A i 8 ( ^ - 1 )  +  Ai9(r^^-1) +  A20(r^^-1)+ h؟ -1) + Ai7(r؟ -Ai6(r 

(له — )ل ب ينح22(وأم — )ل + ” )ل و علآ

where the coefficients Aj{j  =  11,1^, ...23) are given in Appendix A.

2.4 Convergence o f the ^0 ا0ه س ؛

It is noticed that the HAM method strictly depend upon the auxiliary parameter h. As specihed 

hy Liao [26], the convergence re^on and rate of approximations given by the HAM a^e strongly 

dependent upon h. ^igs. 2.1 and .̂2 potray the ظ—curves o£ velocity and temperature profiles, 

respectively just to find the range of h i^ case of variable ^scosity. The range for admissible 

values of h for velocity in this case of constant viscosity is —0.8 < /i < 0.1 and for temperature 

is —0.8 < ?٤ < 0. Figs. 2.3 and 2.4 represen the /أ—curves for variable viscosity when ٣ =  r. 

The admissible ranges for both velocity and temperature profiles are —0.3 < h <  0.1 and 

-0.3 < h <  —0.1, respectively.



o

h

2.1: curve for velocity profile in case of constant viscosity 

at 30أ/ء order approximation.

viscosity at 30أمء order approximation.



Fig. 2.3: ft—curve for velocity profile i^ case of variable viscosity at 

order approbation أ/ء30 .

Fig. 2.4: ft—curve for temperature profile in case of variable 

viscosity at 30th order app robation .



2.5 Graphs

In this section, we will discuss the results of velocity and temperature profiles for hoth constant 

and variable viscosity with the help of graphs.

Fig. 2.5: Influence of c on velocity when A =  1 and r = 1.

Fig. 2.6: Influence of A on velocity when c =  —1 and r  =  1.



Fig. 2.7; Influence of c on temperature when r = l and A 1 =؛.

Fig. 2.8: Influence of A on temperature when c =  —land r  = 1.



Fig. 2.9: Influence of r on temperature when c = —1 and A == 1.

>

Fig. 2.10: ■Influence of c on velocity when A=؛ l and r .I ت= 



2.11; Influence of A on velocity when c = —1 and A =  1.

§

Fig. 2.12: Influence of c on temperature wiien r  — 1 and A =  1.



^ 2 . 1 3 Influence of A on temperature ^^^en r ;جل.   = l and c = —!,

Fig, 2.14: Influent of ٢ on temperature when c = —3 and A = 1. .̂



2.6 Discussion

In tliis chapter, the solution for the velocity and temperature distributions are plotted against 

the pipe raxiius. Figs. 2.5 to 2.9 show the variation of velocity and temperature profiles for 

constant viscosity case and for space dependent viscosity, Figs. 2.10 to 2.14 are presented. In 

these figures, the variation of the velocity u and temperature 6 with the emerging parameters 

A, c and r  is revealed.

In ^ig. 2.5, the effect of pressure gradient c is depicted (when h is approximate^ equal to 

—0.05). It is clear that the velocity approaches its maximums at ^he center of the pipe and 

varies inversely wi^h c. Also, the effect of c on و ( in Fig. 2.7) is similar to that of velocity, 

^he effect of third grade pajameter A on the velocity and temperature distributions are shown 

in Figs. 2.6 and 2.8 respectively. As expected, an increase in A results in a decrease in both 

velocity and temperature, however, the temperature profile is more flatter than the velocity 

profile for same values of A. Fig. 2.9 illustrates the effect of the parameter r  on temperature 

dist^bution 9. It is concluded that 0 increases wi^h the increase of r and hence the thermal 

boundary layer thicl^ness decreases.

So far, we disclosed the results of ̂ he velocity and temperature for constant viscosity model, 

^ow we turn om• consideration to the discussion of above mentioned parameters for space 

dependent viscosity Figs. ^.10 to 2 م1ه  represent the influence of all dealing parameters (c, A 

and r) on both, velocity and temperature solutions when viscosity is depending upon space. 

From these figures, it is observed that the impact of ء, A and ٢ on ئآ and B (when h is nearly 

equal to —0.01) is similar to that of constant viscosity case.



Chapter 3

Effects of Porosity on the Flow of 
Third Grade Nanofiuid with Space 
Dependent Viscosity

3.1 Introduction

Chapter three is a new contribution in hterature in which the جow of third grade nanofiuid 

between coaxial cyhnders with constant and variable viscosity is considered when the outer 

cylinder is porous. ^0 drive the solution of governing nonhnear boundary value problen:, we 

have used one of the most modern perturbation methods, Homotopy Analysis ^^ethod (HAM), 

^he physical features of the pertine^ parameters are presented in graphical forms. A brief 

conclusion is also given at the end of th^ chapter.

3.2 Formulation of th^ Problem

Consider a unidirectional, an incompressible third grade nanofiuid between two infinite coaxial 

cylinders. The outer cylinder is porous the fiow is induced by a constant pressure gradient and 

motion of an inner cyhnder with n o  slip conditions. The heat transfer analysis and nanoparticale 

concentration equations are also taken into account. The z—axis is taken along the axis of the 

fiow. The velocity field in cyhndrical coordinates is given by



(3.1)v=[ 0, 0, «( r ) ] .

definition of incompressible fluids, the continuity Eq. (1.18) becomes

(3.2)v - v  = o.

The non-dimensional quantities are defined by the following relations

^  _  jpp ~ Pw) {4>m -  ^w)
<Pm-4>w 0 م0ءآ

ه = (3.3)
0 م0ءآ

In view of Eq. (3.1-3.3), we get the non dimensional problem of following form

(3.4)

(3-5)

(3.6)

d u \^  (Pu 
dr‘̂

djidu udu dru A f d u \  f d u\ \آئ/ ب ا رغ ، r "؛ " ̂dr dr r dr ^  dr
 — CP م + ٨ (ه) ر ̂ ” Gr̂ ب

ة=م- ا م ب ق ل؛ق ق م،ب (“+س

)لم’ +ق= محه(،مل + )قث + ق('م؛
subject ؛ه  boundary conditions

u ( l )  =  l ,  n ( 2 )  =  0 ,

ة2) = 0, (3.7) (ء1) = 1, (
ت(م) = ,ل (مح2) = 0.

where Gr is thermophoresis di^usion constant and Br is brownian diffusion constant p  is 

porosity parameter, Nt and N}, are thermophoresis parameter and Brownian diffusion coefficient 

respectively.



3.3 Solution o^ the Problem.

In this section, we discuss two models of viscosity namely; constant and variable viscosity, ^y 

using Homotopy Analysis Method (HAM), we find the series solutions of the nonlinear governing 

equations

Case I: Constsint V iscosity

^or constant viscosity model we choose

(3.8)

Making use of Eq. (3.8) in Eq. (3.4) we get

(3.9)
\ d u  (Pu A / 'du\^  / ح م لآ \ أ ح م لآ

=  c ^ P  1 +  A ( ^ ) ^ '  u-Gr&~Br<l>

whereas Eq. (3.5) and Eq. (3.6) remains same because viscosity is involve there. The 

solution of above equation has been obtained analogically by homotopy analysis method.

Eor HAM solution we select

ن(3.10) ء )ك - .ء؛ ه,ء( ح .ه-م م,م( ب ح م-م »ب ) 127 ’ ٣٧ ب 127  ’

as the initial approximation of u , و and (f>. Further we choose the following auxiliary linear

operator 3تى

(3.11)

which satisfies the following relation

(^.12)

where 5ء  and Ce are arbitrary constants.

Zeroth o^der deformation equation:

For embedding parameter p 0را ع [1,  auxiliary parameters is h, the zeroth order deformation



(3.13)

(3.14)

(3.15)

( l - p ) £ 3[u * (r,p )-u o (r)]= ^W i[u * (r,p ),0*(r,p),^*(r,p)),

(1 -p)Cz\e*{r,p)  - (هو  = ل)^  phM2 [,(( )مءبج(آ,مل ملآ,ء, آ(

)ممح(آ,ء])ء )و(*آ,'م, 'مممآأتث3[م(آ,م, ( [ ا-ء)مم3[م(آ,-مح-تي0(آ= )

ل(*ءآ,لء = ,ل م (2,ء) = 0م  
1 =  ( مو(1,م , r(2 ,p )  =  0, (3-16)

0 = م2محء  م1, ( ر م(1,ع .

In above equations the nonlinear operators £©r velocity, temperature an^ nanoparticles are 

^e£ne^ قج

, (3.17)

(3.18)

Idu* <fu* K f d u * v  f d u * V ( f u* 
dr )  dr“̂ \ ر ه \ r "؛" ̂T dr ^  dr

ه• + •ضء c- (ه)زأ •« + ء' - p [ l  +  A
M )ممح(م,ءء  كإ,ممح(*مءآ, مآا )] =

٨ ^̂ [^ (r,p), e*{r,p), 4>*{r,p)] = ه)   +  aiNt) م  م ظ ^ ؤ + ؛ه + ؤ ي

ئ (3.19) و ئ + . و + ^ ' ، ) ، + ء ) ق )م(٢,p]) = ئ٧ء .p,ء(*٢( مر3[٠(•،٢,ء,

m—th deformation equation:

mth order de£or^nation problem of above equations are

(3.2ه)

(3.21)

- Um] ءد2  =  hnimir) ,  

۴ “ ^مم2   =  hTZ2m ((٢

- m<مم2 [4  =  hTUm{r),



(3.23)

(3.2بم

(3.25)

(3.26)

ذ (ل) = ءه (2) = ,ه

ئ2) = ,ه ^و) = 0, ( ) ا
ع. خ2)ه ا(„مح) = 0, (

, 1 dum--i 
dr  ̂ r  dr

where

lA ٢٦ !—̂"٢٦ ،: f  dui

ي ك ر ي ك ة^ق^ط(ة +ن
U jn - l - k ^ k أ0أ ت ح P ل U m -1  +  BP—

م(ب) ب“، خ ت ئ لإ ة -ط

1-Xm) +  GrOjn-1 +  ^r^m “ ء(ا-

k=()

ج؛ج) ,ب ب( ج)ء ب ح(ج , ص ه

Case-II: Variable Viscosity

For variable viscosity is defined

آ م = ,

In view of Eqs. (3.26) and (3.4) we get the nonlinear terms as following

M K (r ,p ) .r (r ,p ) ,^ * (n p ) l= ب) ة , (3.27)  س ه + ه + ق(ث) ق(
ه ر ئآ ء — م ۶ + ٨ (ر  — +  GrO +  Br<p

A/s [n*{r,p), ^*(r.p), 4>*{r,p)\ =  (a +  OiiNt) 3.28) + ؤ- + ؛ه  خ )



؛ (و-2و) ^ ( . + ' ، ) ^W؛ ؛ ( + + ، ) ^M >[«*(r-,p),r(r.p).^*(r.p)] =  W

(3.30)

mth order deformation equation:

mth. order deformation problem of above equations are

71 مم2 [الآ  ”  —l] ~  ^ 7 7 ) آ آ ة4إ '),

(3.3ل)

مم2  {Om  -  Xm^m-l] = س),  أ (آآ  آ

- f>m)] مم2  =  h7l6m{r),

(3.32)

(3.33)

(3.34)

(3.35)

u ^ { l )  =  0 , u{ 2)  =  0,

0m{l) =  0, em{2) =  0,

ة(ط = •ه ط = ة ر ل( ل

U m - i - f c N  dum-k-l dui/ ، ٢؛؛ ؛ ٦ 1—٢٦٢٨ 1_A_
dr dr ل dr ث /= ت ث0 ام ء = ' r

طع-ر= ء(

Xm) ” ء) G-1 “ آ r O m - l  + Br4>m-\-

( ب“، ^ (-p a e TJo E L

مح ل-ط

where

م خ ق ء ء ذ ا+ه ء ء+ك س )م . ) ، . ج+ ) ء
fc=o

Case-Ill: Variable Exponential V iscosity

For variable parabolic viscosity is defined as

(3.3^)+  r +  ~ + 0 (^ ),٣ =



In view of Eqs. (3.36) and (3.4) we get the nonlinear terms as following

،و’ق ق(و%ء( *ء.ه)م > - م. ء ج ت ,ا؛ة . ، ي„مء- م ,م

ء م + ة ي و + ت ؤ(خ)لا آ) + لإ + (1 + ه -ح-ع(
(3.37)

ل(3.38) ا آ ج ج ئ + , ) + ه1آال)ج + ج [= )م(أ,-ء«( )ء(*ا,-ء. اار8(آ(*،أ,-ء,

ي + ؛و ■ (ق-وة) إ +٨٢، (ؤ ،م + و )م(ء,-ررء =م( )ؤ(ا-م. م [م(ا,-ء, و

mth order deformation equation:

mth order deformation ^ro^lem of above equations are

- Um] مم2(3.40)  ~ h7l7m{r)

(3.41)

(3.42)

(2 [Om “  Xm^m-l] =  fVR^rn{rمم  

- f>m]> 2] = س9(^آ’ل  Xm،?m-lمم

(^.43)

(3.44)

(3.45)

«m (l) = )0أ ,0  (ثمآ2=  

0m{l) = 0, , ع ط2)ه )

- خ ث( ر ع ع, ه ه)م ) ل

أ +ل+م ه( ر ج .م ل+ء+ )

( l + r + ^ ^ - )  dUm- ٨

K7„(r) =

where

ر ح م +ب ئ(ل+أ؟ ب ق م - + ء
, ٨  ^ dUm-k-l duj

ث م(ث)ة ث ء ي إ ت؛ت +3قا

(Xm “ ء)1 “ ا-Gr6m -\  + Sr^m+

t=0r drdr^



ء ع < ، ( + « . ) % ، + ؛ ؛ % ؛ ( ■
' ا_^وحم ٠  IdOm-

dr^ ^ ٣ drK9„(r) = w ،^

3.4 Convergence o f th e Solution

It is noticed that the HAM method strictly depend upon the auxiliary parameter h. As specified 

by Liao [26], the convergence region and rate of appro^mations given by the HAM a^e strongly 

dependent upon h. ^igs. 3.1 to 3.3 potray the ?أ—curves of velocity profile for all three cases 

above and for the temperature and nanoparticles concentration profiles for all above cases 

are shown in ^igs. 3.4 to 3.5 , just to س  the range of h in case of constant and variable 

viscosity, ^he range for admissible values of h for velocity in ؛his case of constant viscosity is 

—0.3 < h <  0.1, for variable viscosity when لم — ٣  is —0-9 < h <  0.9 and for 2/ ٣ = ل + ٣ + م  is 

—0.8 < h <  similarly for temperature and concentration profile admissible values of for h ةم0 

are -1.3 < h <  —0.5 and —2.5 < /1 > أ, respectively.

م
ج ب

<

h

Fig. 3.1: أئ—curve for velocity profile for the case ل at 15th order

app robation .



٨
ببمأ

I—curve for velocity ^ro^le for tlie case 2 at 15أ/ء or^er 

approximation.

Fig• 3.:

ب
ج بب

3.3: h —cvLTve for velocity pro£ie for t^e case 3 at 15أمء order 

approbation .

ص
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^  curve for temperature profile £or t^e C35e 1 0̂ case—جل. 3.4: ?1

at 15أاء or^er approbation .
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١—H
٢  - 2

- 4
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h

3.5: h—curve for nanoparticale concentration profile for the 

case 1 to case 3 at 15،أم order approbation .



3.5 Graphs

In this section؛ we will discuss the ^ ^ t s  of velocity س  temperature profiles £or both constant 

and variable viscosit^  ̂with the help of graphs. It is noted that we have fixed the some parameters 

for instance Br ==10j c =  —10 = ل, مء  , a  = 1 and a i = 1.

A  =  0 . 1

A  =  0 . 3

A  =  0 . ك

-  A  =  0 .?
د

' I I I .  1 . 1 I I 1
.4 1.6 L8 2.0L 2

.0

0.6

0.4

0.2

0.0

>

ا.ا

Fig. 3.6: Effect of A on velocity for case 1 when p  = 1, Nt = I, 

Nb = l  and h =  —0.06.



>

Fig. 3.7: Effect of p  on velocity for case ل when A =  0.1, Nt = I 

Nb = I and h =  -0.06.



Fig. 3.9: Effect of p  on velocity for case 2 when A = 0.1, Nt = ,ل 

=  1 and h =  —0.06.

>



>

Fig. 3.11: Effect of p  on velocity for c^e  3 when 

A = 0.1, Nt = l,Ni, = l ^ d h =  -0.06.



Fig. 3.13: Effect of Nb on velocity for c^e  2 when 

A = 0.1, iV، = l, P o l a n d  -0.06.

>

Fig. 3-1ه : Effect of Nb on velocity for c^e  3 when 

A = 0.1, Nt = l , p  = l a n d h =  -0.06.



>

^ 3 . 1 5 Effect of Nt on velocity fo :جل.   ̂ c^e  when ل 

A =  0.1, Ni = l , p = l a i i d h =  -0.06.



LO

0.8

0.6

0.4

0م2

0،0

>

3.17: Effect of Nt on velocity for case 3 when 

A 0.1 ع , Nb = l , P ^ l B n d h =  -0.06.

LO

0.8

0.6

Q A

0،2

0،0

of Nb on te^^er^ t^e  fo  ̂c^e  1 to case 3 when 

Nt = 1 a^^ h =  —1.

Fig. 3.18:



!إ2.0 . 1.6 1.4

r
1.2.0

Fig. 3.19: Effect of Nt on temperature £or case 1 to case 3 when 

A  ̂= l a n d ^ = —1.

Fig. ^.^٥: F ^ t  of Nb on nanoparticale concentration for case ل to 

case 3 when ^ .and h = —1 ل = 
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0.6
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—  Nt = 4
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0.0 ا ر ج
-0 .2
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2.0L4 1.6

r
.21.0

^ جل. ^-^ل : Effect of Nt on nanoparticale conceiitration fo  ̂case 1 

to case 3 when Nb — 1 and h = -ل— 

3.6 Discussion

In this chapter, flow of third grade nanofluid in a coaxial cylinders is examined, ^n  analytical 

series solutions for velocity and temperature are obtained by Homotopy Analysis ^^ethod. 

Special emphasis has been focussed here to see the behavior for third grade non-Newtonion 

nanofluid. The behavior of the velocity, temperature and nanoparticale concentration against r 

are showing in Figs. 3.6 to 3.21 in order to see the variation of e^ch of the sundry parameters. 

The convergence of the solution is also discussed explicitly in Figs. 3.1 to 3.^.

The following conclusions may be extracted ^om the graphical results.

1. In Figs. 3.6 to 3.11, it is found that the velocity decreases by increases the values of third 

grade and porosity parameters.

2. From Figs. ^.12 to 3.اهل we seen that the velocity is decreases by increasing Nb.

3. Figs. 3.عل to 3.1?, we perceived that the velocity increases by increases of Nt.

4. Figs. 3.18 to 3.^1, show the influence of temperature and nanoparticale concentration for 

difierent values of Nb and Nt.



Appendix A

The related constants of calculation are given by
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