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Preface

The flow of non-Newtonian fluids have a variety of practical application in industry and
engineering [1-4]. Nanofluid which is one of the most important branch of non-Newtonian
fluid has been widely used in industry due to unique physical and chemical properties of
nanometers/nanoparticles. The nano-particles are ultra fine particles in the size of
nanometer. The term “nanofluid” refers to a liquid containing a suspension of metallic or
non-metallic nanometer-sized solid particles and fibers (nanoparticles). Historically,
Choi [5] was first to study the behavior of nanofluids. The characteristic feature of
nanofluids is thermal conductivity enhancement, a phenomenon observed by Massoudi et al.
[6]. This phenomenon suggests the possibility of using nanofluids in a variety of
engineering applications, including advanced nuclear systems (see Buongiorno et al. [7]).
The general topics on heat transfer analysis in nanofluids have been surveyed by many

researchers, for instance see [8-12].

Despite the above studies, nanotechnology is considered by many to be one of the
significant forces that derived the next major industrial revolution of this century. It
represents the most relevant technological cutting edgc currently being explored. It aims the
manipulating the structure of the meter at the molecular level with the goal for innovation in
virtually every industry and public endeavor including biological sciences, physical
sciences, electronic cooling, transportation, the environment and national security etc. Some

numerical and experimental studies on nanofluid can be found in references [13, 14].

Moreover, recent several decades, flow of fluid in porous media has intensively, been
studied and it has become a very productive field of research this topic has many
widespread particle applications in modern industries and in many environmental issues
such as, nuclear waste management, building thermal insulation spread of pollutants,
geothermal power plants, grain storage, packed- bed chemical reactors, oil recovery and
ceramic processing etc. In the fluid mechanics there is sufficient literature available in witch

the porosity parameter is used as a major part [15-18].




Keeping in view the above importance of nanofluid and porosity, the present thesis is

arranged as follows:

In chapter one, the basic definitions of fluids, and equation of motion for non-Newtonian

nanofluid of third grade are given. Basic idea of HAM is also presented here.

Chapter two is devoted to study the influence of variable viscosity and viscous dissipation
on non-Newtonian flow which is review of paper by Ellahi et al. [19]. This chapter concerns
with the effect of constant and variable viscosity on velocity and temperature distributions

for a third grade non-Newtonian fluid is studied.

Chapter three is a new contribution in the literature in which we consider flow of third grade
non-Newtonian nanofluid between coaxial cylinders with constant and variable viscosity
when the outer cylinder is porous. The nonlinear coupled governing equations for
nanoparticles concentration are solved with the help of Homotopy Analysis Method (HAM)
[20-22]. The graphical results are displayed and analyzed for different emerging parameters.
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Chapter 1

Basic of Fluid Mechanics

In this chapter present some basic definitions and important concepts of fluid mechanics which

we will be useful in succeeding chapters.

1.1 Flow

A material that deforms continuously when different forces act upon it. If the deformation

continuously increases without limit,this phenomenon is know as flow.

1.2 Fluid

Any liquid or gas that cannot sustain a shearing force when at rest and that undergoes a

continuous change in shape when subjected to such as stress.

1.3 Nanoparticles

The nanoparticles are ultrafine particles in the size of nanometer order. “Nano” is a prefix
denoting the minus 9th power of ten, namely one billionth. Here it means nanometer (nm)
applied for the length. One nm is extremely small length corresponding to one billionth of one

m, one millionth of one mm, or one thousandth of one um.




1.4 Nanofluid

Nanofluid is a fluid containing nanoparticles. These fluids are engineered colloidal suspensions

of nanoparticles in a base fluid.

1.5 Porous Medium

A porous medium or a porous material is a solid permeated by an interconnected network of
pores (voids) filled with a fluid (liquid or gas). Natural porous media include soil, sand, mineral
salts, sponge, wood and others. Synthetic porous media include paper, cloth filters, chemical

reaction catalyst and membranes.

1.6 Porosity

Porosity or void fraction is a measure of the void spaces in a material and is a fraction of the

volume of voids over the total volume, i.e.,

W

where Vi, is the volume of void-space (such as fluids) and Vr is the total or bulk volume of

material, including the solid and void components.

1.7 Pressure

Pressure is an effect which occurs when a force is applied on a surface per unit area. Mathe-

matically,

F
P==, (1.2)

where P is pressure, F is the normal force and A is the area. The SI unit for pressure is Pascal

(Pa), equal to one Newton per square meter (Nm~2 or kgm~1s~2).




1.8 Velocity Field

In dealing with fluids in motion, we shall necessarily be concerned with the description of a
velocity field. At a given instant the velocity field, V, is a function of the space coordinates (
z, y, z) and time £. The velocity at any point in the flow field might vary from one instant to

another. Thus the complete representation of velocity is given by

V =V(z,y,z1t) (1.3)

1.9 Viscosity

The internal friction of a fluid, produced by the movement of its molecules against each other.

Viscosity causes the fluid to resist flowing.

Shear Stress

Viscosity = Rate of Shear Strain - (1-4)

1.10 Density

Density of a fluid is defined as the mass per unit volume. Mathematically, it is denoted by p
and defined as

. 0m

p= lim (1.5)

T bu—0 5_’0’
where dv is the total volume element around the point C and ém is the mass of the fluid within

dv.

1.11 Flow Visualization
There are four types of flow lines that may help to describe a flow field.

1.11.1 Streamline

A streamline is a line that is everywhere tangent to the velocity vector at a given instant of time.

A streamline is hence an instantaneous pattern. Let u,v and w be the components of velocity




in the z,y and z direction respectively. The equation of stream line for three dimensional flow
is

dz
v _ZZ 1.
U b (6)

and for two-dimensional flow the stream line equations are
— ==, (1.7)

1.11.2 Streakline

A streakline is an instantaneous line whose points are occupied by particles which have earlier

passed through a prescribed point in space. A streak line is hence an integrated pattern.

1.11.3 Pathlines

Pathlines are the trajectories that individual fluid particles follow. The direction the path takes

will be determined by the streamlines of the fluid at each moment in time.
1.11.4 Timeline

A timeline is a set of fluid particles that form a line segment at a given instant of time.

1.12 Prandt]l Number

- It is the ratio of the product of dynamic viscosity and specific heat to the thermal conductivity
and denoted by the symbol P, and is given by

- Ko
R =tz (1.8)

where 4 is dynamic viscosity ¢, is specific heat capacity and k is permeability of free space.




1.13 Reynolds Number

It is the ratio of inertia force to the viscous force. It is denoted by the symbol Re and is given
by
Re = —, (1.9)

where L denotes the characteristics length and v is kinematic viscosity.

1.14 Fundamental Equations of Fluids

1.14.1 Equation of Continuity

In any closed system, the mass is always invariant regardless of its changes in shape when
external forces are absent or the principle that matter cannot be created or destroyed. In fluid
mechanics, this law is named as equation of continuity. In other words the mass of the system
remains conserved. Mathematically, it is described as

% +V-(pV)=0. (1.10)

In cylindrical coordinates, this equation is given by

18 16v 6w
;5(7"&) + ;55 + -'a—z- =0. (1.11)

1.14.2 Equation of Momentum

When some bodies constituting an isolated system act upon one another, the total momentum
of the system remains same. In an inertial frame of reference, the general form of equations of

fluid motion or the law of conservation of momentum is

DV

2 =V T+pf .
T V- T+ pf, (1.12)

where T is the Cauchy stress tensor, D/Dt is the total material derivative and f is the body

force. In cylindrical coordinates the momentum equation in components forms is given by.




r- component:

—@4‘ 2 lé-(?"u)
6_u+ _a_lf+_’fa_u_3’i Q_u_i 61" " 61“ 769
P\at " "or TTe8 T ¥ 8z ] + 1@_2&4_@ 4 of
;7692 ;789 822 Plr,
8- component:
Op g d
I — (1=
P(6v+u60+vav ki 81;)_ ’6r+n[6r (' G(Tv))}
Gt e T TVE) T, [1 0%, 4 0u O
* [F’ae T rrge T TPk

z- component:

dp 0, Ow
a_w+ua_w v Bw wéz_u B _5'}'77 Fg(ra
p ot or r 06 8z ) n

1.14.3 Equation of Energy

(1.13)

(1.14)

(1.15)

The law of conservation of energy states that energy may neither be created nor destroyed.

Therefore, the sum of all the energies in the system is a constant. The energy equation is

described as

D8
pcpﬁ =TL-V.q,

in which

In cylindrical coordinates, it is given as

8_T+u(9_T+E_6_T_+ a_T —k l_a_ 8_T i& i +
oo\ e T T Y% ) TR 75 e ) T e Tz | T

where ¢ is the viscous dissipation function.

(1.16)

(1.17)

(1.18)




1.15 Solution Methodology

To describe the solution methodology we use the basic ideas of the HAM, we consider the

following differential equation:

Nu(r)] = 0, (1.19)

where N is a nonlinear operator, ¢ denotes the independent variable, u(r) is an unknown
function. By means of generalizing the traditional homotopy method, Liao [23] constructs the

so-called zero-order deformation equation

(1 = p)Liw*(r; p) — uo(r)] = pR{N[u"(r; p)]}, (1.20)

where p € {0, 1] is an embedding parameter, % is a nonzero auxiliary function, £ is an auxiliary
linear operator, up(r) is an initial guess of u(r) and uw*(r;p) is an unknown function. It is
important to note that one has great freedom to choose auxiliary objects such as A and £ in

HAM. Obviously, when p =0 and p=1, we get
u*(r; 0) = ug(r), w*(r;1) = u(r) (1.21)

hold. Thus as p increases from 0 to 1, the solution u*(r;p) varies from the initial guess

up(r) to the solution u(r). Expanding u*(r;p) in Taylor series with respect to p, one has

W (rip) = uo(r) + > um(r)p™, (1.22)
m=1
where
_ 1 8u'(r;p)
um(r) = ml opm | o (1.23)

If the auxiliary linear operator, the initial guess, the auxiliary parameter i and the auxil-

iary function are so properly chosen, then the series (1.16) converges at p = 1 and one can




get

w(r;1) =uo(r) + > um(7), ' (1.24)

m=1
which must be one of the solutions of the original nonlinear equation, if & = —1, Eq. (1.14)

becomes

(1 = p)L"(rip) — uo(r)] + p{N[u*(r; p)I} = G, (1.25)

which is used mostly in the HPM. In view of (1.17), the governing equations can be deduced

from the zero-order deformation Eq. (1.14). We define the vectors

u; = {uo(r),uo(r),. .., u(r)} (1.26)

Differentiating Eq. (1.14) m times with respect to the embedding parameter p and then setting
p = 0 and finally dividing them by m!, we have the so-called mth-order deformation equation

E[u’m - Xmum—l] = ﬁRm(um—l), (127)

where

1 o™ YN (r;p)]}

Rm(um—y) = TR opm1 p=0, (1.28)
{ 0, m<1
Xm = .
1, m>1

It should be emphasized that u,(m ‘2 1) are governed by the linear Eq. (1.21) with the
linear boundary conditions that come from the original problem, which can be easily solved by

symbolic computation software such as MAPLE and MATHEMATICA.

10




1.16 Cylindrical Coordinates

y=rsmé&

7 x=rcos& X
& 2=z

Fig. 1.1: Cylindrical frame of reference.

In cylindrical coordinate system, points are located by giving them the values to {r,0,z2}
see Fig. 1.1, which are related to {z = z1,y = 22,2 = 23} by

xz=cosf, y=rsinf, z = z and

1 (1.29)
r= (22 +y?)?, 6 =tan"! (¥),z=2
The basis vectors in this frame are related to the Cartesian ones by
e, = cos fe, + sin fey, e, = sinfe, — sin ey,
Y (1.30)

ep = — sinfe; + cosfe,, e, = sinfe, + cosfley

The velocity V, a tensor S, gradient operator, gradV and divV in terms of these coordinates

are respectively given by

V =Ve,+ %39 + V'zez = (‘/1‘7 %, 1/2)7 (1°31)

11




Srrerer + Spgereg + Sr.ere;
S = +Sp.-epe, + Sepeseg + Sp.e0e; (s

+Szrezer + 5299299 + Szzezez

where a matrix representation of S is given by

Srr Sro Srz
S=| S4 Seo So- |»
Szr SzG Szz

: el ind 3
. (cos e, — sin feg) (cos g2 — sin 6_9) +

(sin fe, + cos fey) (sin9§ + °°59%) + ezai

veeld 118 0 _ (018 8
“ e %50 T %8 \erv50°08z)°

a 10 0
VvV = (er-é9_r+69;%+ez5;) (Vre, + Voeg + Vee.),

Vi 3V V,
ere, B teepft +ee, B
— V; Vs IV
VV = tege, (%—ﬂ%g ~- % ) + egeg (%—Qa,, + —t‘j) ,

Vy eAY. \Z
+ege; 195 +e.e 9 + o052 +e.0. 55

where a matrix representation of V'V in cylindrical coordinates is given by

v eiY) v,

ar or or

_| 1w _ % 18w, w 10y
vV r 06 r r 00 + r r?@z !

av, Va Y

3z oz B2

oy 10V V. oV

or ;39+7+ oz’

12

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)




where we have used the following relations

i) ; —
%ef = 0: ﬁeO = 07 %ez _07

a 8
We'f = €y, Weﬂ =

a

13

ad
—er, 55€z = 0,

a 2]
5:8r = O, '3—z'eg = O,gez =0

(1.40)




Chapter 2

The Influence of Variable Viscosity
and Viscous Dissipation on the
Non-Newtonian Flow: An Analytical

Solution

2.1 Introduction

In this chapter, we review the work of Ellahi et al. {19). We consider a flow of third grade fluid in
a pipe with the viscous dissipation. The temperature of the pipe is higher than the temperature
of the fluid. The governing equations are formulated mathematically. The non-linear govern-
ing equations are solved analytically by Homotopy Analysis Method (HAM). Convergence of
the obtained solutions are properly discussed by help of fi—curves, explained the velocity and
temperature profiles with the help of graphs taking different values of different pertinent para-

meters.

2.2 Formulation of the Problem

We consider the steady flow of an incompressible, third grade fluid in a pipe. The z—axis is

taken along the axis of the flow. The velocity field in cylindrical coordinates is given by

14




V = 0,0,u(r)]. (2.1)

By definition of incompressible fluids, the continuity Eq. (1.18) becomes
V-V=0 (2.2)
Using Eq. (1.16) in Eq. {1.20), we obtain
pcp%z- =T -L+kV?%. (2.3)
For third grade fluid stress tenser is defined by
T = —p1 I+ pA; + 1Az + 0nA2 + 81 Az + By (A1Ar + AgAq) + B5(trADA,, (2.4)

where p; is hydrostatic pressure, I is the identity tensor and o;(i = 1,2) and 8;(j = 1,2) are

material constants. The Riviin-Ericksen tensors are defined by the following general relations

A =L+L (2.5)

_ DAn—l

An
Dt

+A, L+L'A,;, n>1. (2.6)

Thermodynamical limitations [24] comprise
1§20, 0120, |oy+asl < /24, By =Py =0, B3 > 0. (2.7)
In view of Eq. (2.7), Eq. (2.4), takes the following form

T = —pi ]+ pA; + 1Ay + a9 A2 + B5(trADA;. (2.8)

15




Using the velocity field given in Eq. (2.1), we obtain

0 00 00 &
L=(0 00], L'=|0 0 0
. & 00 00 0
-
0 0 %
Ai=L+L'=}0 0 0 |,
0 0
2(4) 0 0
AL+L'A; = 0 00
0 0 0
For steady flow
OA,
at =0
and ’
2(2)* 0 0
DA
A= 2 L AL+ LA, = 0 0 0
Dt
0 00
@)’ 0 g
A= o o o0 |,
0 0 (&)

tr(A2)A, = 0 0 0 :

2
Tep = —p1 + (201 <+ C!Q) (g—:) , Tro = 0= Top,
3
Trz = IJ'%% + 2ﬁ3 (%) = Tzr, T = —P1,

2
To: =0= 7.9, Tzz =—p1+ay (2)".

16
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(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)




T e S S ol = R

In the absence of body forces and using cylindrical coordinates for the flow in a pipe, the

momentum Eq. (1.19) will be simplified in the following form

1d du 28, d aw\®| op
Sl (B s (Y | =2 2.
T dr [T“(d'r)] T {'r (dr) ] oz’ (2.17)

subject to the boundary conditions

du
uWR)=0,  SH0)=0, (2.18)
where
. du)?
pP=p1— Qg (d—) ~ (2.19)
T

is the modified pressure. Now using the definition of product of two tensors, we have

du

T.L = Tz-,-'d?, (220)
du? du\*
T.L =u (E) + 20, (-&;) s (2.21)
1d dé
20 = 2 [ 2
Vg = I (Tdr) . (2.22)

The energy Eq. (2.3) becomes

2 4
p (%) + 2B, (%) +k [%gr- (rg-f-)J =0. (2.23)

The relating boundary conditions are

O(R) = —(0) = 0. .
(R)=0,  (0) (2.24)
Using non- dimensionalization criteria, we set
T 7 73 8 — 6
u= e r=a u=E g 2.25
%o " 61 — 6o (2:25)

17




6}3 Cy R2 263 'U,% Ho 'U-%
== C = s A = 3 F = e——
0z UQ g Lol k(81 — 6o)

(2.26)

1

boundary value problems consisting of Egs. (2.17), (2.18), (2.23) and (2.24) become

(2] 22 2]

d? du\\? u 2
d—r;‘fﬁg:iw(a) {u+A(2—T> } =0, (2.28)
u(1) = 6(1) = 0, 3—‘: (0) = g(()) =0, (2.29)

in which R, ug, ug, 0o, @ and 0; are the radius, reference velocity, reference viscosity, reference
temperature, pipe and fluid temperatures, respectively. Also, ¢; is the axial pressure drop, A is
third grade parameter and I is related to the Prandtl and Eckert numbers. For simplicity we

have omitted the bar symbols.

2.3 Solution of the Problem

We use homotopy analysis method (HAM) to solve the problem under consideration.
Case I: For the Constant Viscosity

When we take u = 1, the governing Eqgs. (2.27) and (2.28) in simplifled form reduce to

Py ldu du\* v A [du)\®
ozt o T (d“) pr (d—) =6 (2:30)
and ) 4
d?0 149 du du
o e L (d“) +AT (z) =0 (231)

respectively. We use the method of higher order differential mapping [25], to choose the linear

operator L, i.e.,
a2 1d

18




The above operator satisfies the following relation
L1[C1+ Calnr] =0, (2.33)
where C; and C» are the arbitrary constants. Integrating the linear part of Eq. (2.30), we get
1 2
up(r) = Zc('r -1) _ (2.34)

as the initial approximation of velocity u, which satisfies the linear operator £, and boundary
conditions too.

Zeroth order deformation equation

For non-zero auxiliary parameter A and an embedding parameter p € [0, 1}, the zeroth order

deformation equation in HAM is given by the following relation

d2u*  1du* du*\2 Lur
‘Fr+ra 30 () G

(1= p)Lafu (r,p) — wo(r)] = ph P (2.35)
+2 (&) —e
subject to the following boundary conditions
. du*
v(,p)=0, ——(0,p)=0. (2.36)

m—th order deformation eduation
If we differentiate m—times the zeroth order deformation Egs. (2.35) and (2.36) with respect
to p, dividing by m! and finally taking p = 0, we have the mth order deformation equation, of

the following form

L1 [tm — Xmum—l] = hRm(r), (2.37)
where
1 m—1 k 1
Ryp(r) =ull,  + ;u:n_l + A Z U1k Z uL_J(;u; + 3u3-') — (1 - x,,)- (2.38)
k=0 j=0
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Corresponding boundary conditions take the following form

u’:n(o) = um(l) =0,

where prime denotes the differentiation with respect to r.

From Eq. (2.35) by setting p = 0, it can be shown that

u*(r, p) = uo(r).

(2.39)

(2.40)

By the definition of homotopy, as p varies from 0 to 1, u*(r, p) varies from initial guess ugy(r)

to the exact solution u(r), that is for properly chosen £, we get
u*(r,p) =ufr) forp=1.
Then employing the Taylor’s theorem, we can write
o o]
w*(r,p) = ug(r) + D um(r)p™,
m=1

where
1 d™u*(r,p)
()= o apm

p=0

Now using Eq. (2.41) in Eq. (2.42), we get

a(r) = up(r) + 3 tm(r).
m=1

(2.41)

(2.42)

(2.43)

(2.44)

Differentiate Eq. (2.35) with respect to p and set p = 0, then after solving the resulting equation

we obtain the following

u(r) = %M\c?’(r4 - 1).

(2.45)

Again differentiating Eq. (2.35) with respect to p, putting p = 0 and using the similar procedure,

T we get

1 1
up(r) = goRAS(rt — 1)(h+ 1) + S BPA%S (10— 1).
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Now from Taylor series, we have the three terms solution as
u(r) = ug(r) + u1(r) + ue(r). (2.47)

Finally, inserting Egs. (2.34), (2.46) and (2.47) in Eq. (2.48), we get the expression for velocity
as follows

u(r) = ir ~1+ 5 hAc3(r —1)(A+2) + KA — 1). (2.48)

64

Now using Egs. (2.31) and (2.49), with boundary conditions Eq. (2.29), we can find 6 by using
Cauchy-Euler equation and computer software, ‘MATHEMATICA’. The result is given below

O(r) = Ar(r* — 1) + Ag(r® — 1) + Ag(r® — 1) + Ay (1 - 1)
+A5(r1? — 1) + Ag(r1% — 1) + A7(r1® — 1) + Ag(r'® - 1) _ (2.49)
+Ag(r® — 1) + Apo(r* — 1)

The calculated values of coefficients A;(i = 1, 2,...10) are given in Appendix A.
Case II: For the Variable Viscosity
Let us now assume that the viscosity is space dependent and choose u = 7.

From Eq. (2.26), we have

1d [ ,du  Ad | fdu)?
;d_( dr) YT [ (E) } =6 (2:50)
d?u du du\? d?u A [du\?®
d2+2d +3A(d’f‘) W-F?(g) =¢, (251)
d*v  2du  3A 2@ A fdu)\? ¢
mﬂ:;““?(;) mﬂ—e(a) = (2:52)
along with the same boundary conditions given in Eq. (2.29). Similarly Eq. (2.28) simplifies
to
d*6 df du du
W + - , (dr) +TI'r (dr) FA( 7’) = 0, (253)
which corresponds to Eq. (2.26). The linear operator in this case will be
@ 2d
Lo = g et (2.54)
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provided that
C4
La|C3+—| =0, (2.55)

where C3 and Cjy are constants of integration. Thus the initial approximation for the velocity
uis

uo (r) = ze(r? ~ 1) (2.56)

Zeroth order deformation equation

With the use of Eq. (2.53), one can define the zeroth order deformation equation for u as

. T T e T
(1 - p)Lofu"(r,p) —uo(r)] =ph | &7 T RS (2.57)
+x () —
m—th order deformation egquation
The mth order deformation problem can be written as
Lo [um — XpmUm—1] = ARm(r), (2.58)
where
m—1
Rin(r) = tpm_y + u’m—l +A Z Upp_1—k Zuk—]( —u; 4+ 3uj) — (1 ~ Xp)- (2.59)
k=0 7=0

The expression for 8 can also be defined in the same manner. The mth order deformation
equation can be obtained by using similar procedure like that of given in case 1. Following the

same procedure, we find three terms series solution of u as follows

u(r) = 3e(r? — 1) + $hc(r? = 1)(A+2) + ZhAS(2h+1)(r3 — 1) (2.60)
—Lhe(R+2)(r — 1) + 55 A2A2E (1t — 1) — ZR2AS(r2 — 1) ' '

For finding the solution of temperature 8, we use ‘MATHEMATICA'’ to solve the Cauchy-Euler
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equation. Then we obtain

6(7‘) = All('l‘z - 1) + A12(7‘3 - 1) -+ A13(T4 —71) + A14('I’5 - 1) + Als('r‘ﬁ — 1)+
Ag(r" — 1)+ A7 (r® — 1) + A1g(r® — 1) + A1o(r'® — 1) + Ago(r!? — 1)+ ., (2.61)
Azl(‘ru — 1) -+ A22 (T13 - 1) + A23(1"14 — 1)

where the coefficients A;(j = 11,12, ...23) are given in Appendix A.

2.4 Convergence of the Solution

It is noticed that the HAM method strictly depend upon the auxiliary parameter %. As specified
by Liao [26], the convergence region and rate of approximations given by the HAM are strongly
dependent upon k. Figs. 2.1 and 2.2 potray the i—curves of velocity and temperature profiles,
respectively just to find the range of 7 in case of variable viscosity. The range for admissible
values of & for velocity in this case of constant viscosity is —0.8 < & < 0.1 and for temperature
is —0.8 < B < 0. Figs. 2.3 and 2.4 represent the fi—curves for variable viscosity when u = r.
The admissible ranges for both velocity and temperature profiles are —0.3 < A < 0.1 and

—0.3 < R < —0.1, respectively.

23




0.5 Fr——————— T

00

V'(0)
| _/

-15f
_2_9 -l 1 o Ka 3 a4 4 a1 PU S S G | S 1 PO |
-10 -0.8 0.6 -0.4 e 2 0.0 0.2

h

Fig. 2.1: h—curve for velocity profile in case of constant viscosity

at 30th order approximation.
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Fig. 2.2: h—curve for temperature profile in case of constant

viscosity at 30th order approximation.
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2.5 Graphs

In this section, we will discuss the results of velocity and temperature profiles for both constant

and variable viscosity with the help of graphs.

1o
0.8

0.6

-

04¢

Fig. 2.6: Influence of A on velocity when c= —1 and T = 1.
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Fig. 2.10: Influence of ¢ on velocity when A=1and ' = 1.
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Fig. 2.11: Influence of A on velocity when ¢ = —1 and A = 1.
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Fig. 2.12: Influence of ¢ on temperature when I' =1 and A = 1.
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2.6 Discussion

In this chapter, the solution for the velocity and temperature distributions are plotted against
the pipe radius. Figs. 2.5 to 2.9 show the variation of velocity and temperature profiles for
constant viscosity case and for space dependent viscosity, Figs. 2.10 to 2.14 are presented. In
-these figures, the variation of the velocity v and temperature ¢ with the emerging parameters
A, c and T is revealed.

In Fig. 2.5, the effect of pressure gradient ¢ is depicted (when A is approximately equal to
—~0.05). It is clear that the velocity approaches its maximums at the center of the pipe and
varies inversely with c. Also, the effect of c on # ( in Fig. 2.7) is similar to that of velocity.
The effect of third grade parameter A on the velocity and temperature distributions are shown
in Figs. 2.6 and 2.8 respectively. As expected, an increase in A results in a decrease in both
velocity and temperature. However, the temperature profile is more flatter than the velocity
profile for same values of A. Fig. 2.9 illustrates the effect of the parameter I on temperature
distribution 8. It is concluded that 6 increases with the increase of I' and hence the thermal
boundary layer thickness decreases.

So far, we disclosed the results of the velocity and temperature for constant viscosity model.
Now we turn our consideration to the discussion of above mentioned parameters for space
dependent viscosity. Figs. 2.10 to 2.14 represent the influence of all dealing parameters (¢, A
and I") on both, velocity and temperature solutions when viscosity is depending upon space.
From these figures, it is observed that the impact of ¢, A and I on u and € (when % is nearly

equal to —0.01) is similar to that of constant viscosity case.
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Chapter 3

Effects of Porosity on the Flow of
Third Grade Nanofluid with Space

Dependent Viscosity

3.1 Introduction

Chapter three is a new contribution in literature in which the flow of third grade nanofluid
between coaxial cylinders with constant and variable viscosity is considered when the outer
cylinder is porous. To drive the solution of governing nonlinear boundary value problem, we
have used one of the most modern perturbation methods, Homotopy Analysis Method (HAM).
The physical features of the pertinent parameters are presented in graphical forms. A brief

conclusion is also given at the end of the chapter.

3.2 Formulation of the Problem

Consider a unidirectional, an incompressible third grade nanofluid between two infinite coaxial
cylinders. The outer cylinder is porous the flow is induced by a constant pressure gradient and
motion of an inner cylinder with no-slip conditions. The heat transfer analysis and nanoparticale
concentration equations are also taken into account. The z-axis is taken along the axis of the

flow. The velocity field in cylindrical coordinates is given by
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V = (0,0, u(r)].

By definition of incompressible fluids, the continuity Eq. (1.18) becomes
V-V=0

The non-dimensional quantities are defined by the following relations

_ o
o = P70 p (= p) B (n=9u)Gr
¢m'_¢w HoUQ
G, = Gn—0u)puR(1-0,)C | Ry
HolUg k]

In view of Eq. (3.1-3.3), we get the non dimensional problem of following form
dpdu  pdu d’u A(ﬁ)s

Pl —_ g4 — A it.l: 2@
drar " rdr a2 T 7 \dr dr ] dr? ,
=c+P(p+A(2)")u=Go-Bo

d*  1d§ N B0do
dr? " rdr ' ldrdr

2
Nb(d9+1d9>+Nt(d2¢+ld—¢‘) =0,

(a+ a1 V) 0,
i @ v ar
subject to boundary conditions
u{l) =1, u(2) =0,
6(1) =1, 6(2) =0,
$(1) =1, ¢(2) =0.

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

where G, is thermophoresis diffusion constant and B, is Brownian diffusion constant P is

porosity parameter, N; and N, are thermophoresis parameter and Brownian diffusion coefficient

respectively.
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3.3 Solution of the Problem.

In this section, we discuss two models of viscosity namely; constant and variable viscosity. By
using Homotopy Analysis Method (HAM), we find the series solutions of the nonlinear governing
equations

Case I: Constant Viscosity

For constant viscosity model we choose
p=1, (3.8)

Making use of Eq. (3.8) in Eq. (3.4) we get

ldu , d’u é(d_U)s A(d_u)ﬁcfg
rdr = dr? dr dr/ dr? %} (3.9)
=c+P[1+A(2)"]u- G0~ B
whereas Eq. (3.5) and Eq. (3.6) remains same because viscosity is involve there. The
solution of above equation has been obtained analytically by homotopy analysis method.
For HAM solution we select

(128 — r7

7
- )’ Bo(r) = (128 — r')

127,

(128 — r7)

—, (3.10)

$o (0) =

uo(r) =

as the initial approximation of « , # and ¢. Further we choose the following auxiliary linear

operator L3

d?
L3 = AL (3.11)
which satisfies the following relation
L3 [Cs +Cglnr] =0, (3.12)

where C5 and Cg are arbitrary constants.
Zeroth order deformation equation:

For embedding parameter p € [0, 1], auxiliary parameters is %, the zeroth order deformation
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equation in HAM is given by the following relations

(1 - p)£3[u* (1", p) — Ug (7‘)] = PWl {u* (’ra p)) gt(ra p): ¢‘ (Ta p)]’ (313)
i (1 — p)Ls[6* (7, p) — Oo(r)] = phN2 [u*(r, p), 6" (r, p), #*(r, P)]; (3.14)
(1= p)L3[¢"(r.p) — ¢o(r)] = PAN3 [¢*(r, p), 8" (r, p), ¢*(r, P)}, . (319)

v (1,p) =1, v (2,p) =0,
6*(1,p) =1, 6°(2,p) = 0, (3.16)
¢"(1,p) =1, ¢°(2,p) =0.

In above equations the nonlinear operators for velocity, temperature and nanoparticles are

defined as

1du’ d"’ ( ) ( >2d2u*
M [u*(r,p),0%(r,p), ¢*(r,p)| = 7T ar dr J dr? % (3.17)
—c—P[1+A ]u +G.6" + B¢
d**  1ds* dé* d¢*
Ne [w"(r,p),67(r,p), 8" (r, p)] = (@ + 1 Vo) — - + ——— + Nop— - f : (3.18)
. . . daze*  1d6* d*¢*  1d¢*
N [0 ¢l = 0 (G + 250 ) TN (G 1) (619
m—th order deformation equation:
mth order deformation problem of above equations are
Lo [um — Xmm-1) = AR1m(T), (3.20)
o L2 {0m = XonBm—1] = FR2m (7)
['2 [¢m - Xm¢m—1] = ﬁR3m(T)’ (321)
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um (1) =0, u(2) =0,
0m(1) =0, 6,(2) =0,
$m(1) =0, ¢,(2) =0.

where

dQ“m—l 1dum—1
dr? +; dr

m—1 <k dug_1— AUy, _k—1 du
+4 5505 Zz:o( a:r1 k) =T
m—1 k AUy _1— AUy _je— dQu
_ +3A Zk:O ZI=0( drl k) d'rk IEFQL
Rlp(r) = . >,
—Pu, 1+ BP ka=_0 Um—1—k0k
_ dum1-x\ Gtk
—PAY L SR, ( et k) ~mhsly,
—¢(1 = Xp) + Grbm—1 + Brdpy_y

/

R2m(7‘) = (a + ath)

6y 1d6p,_y "‘z‘ldem_l_,-%

2 )
dr r dr = dr dr

R3m(r) = No ( iz i dr? r dr
Case-II: Variable Viscosity

For variable viscosity is defined as

p=r

In view of Egs. (3.26) and (3.4) we get the nonlinear terms as following

2 3 2
2% 4 A(d—”) +3A(i’f) L

ps

r— + —
N [w'(r,p),0"(r,p), 8"(rp)] = dr  dr? " r \dr) dr
*C-P(T+A(g—;‘) )~u+G,9+B,¢

Ns [w*(r,p),6%(r, ), ¢"(r,p)] = (@ + 1 Vt)
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£o a0 a0 dg
dr? r dr dr dr’

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)




A }--d—oi) + N (dggb* +

No [ (526", 6.9 = o (5 + 257

dr?

mth order deformation equation:

mth order deformation problem of above equations are

Lo [9m — Xmem—l] = hmm("'):

Loy [¢m - Xmém—l] = ﬁR6m(T),

um (1) =0, u(2) =0,
0m(1) =0, 0:(2) =0,
$m(1) =0, ¢,,(2) =0.

where

i At —
o 12222l — Prug, g

+A S S (du"kll_k) du"&;"" dy

Rin(r) = +3A S5 Sk (Linpiet ) Stapaa £y
+Grem—1 + Br¢m_1 - C(]. — Xm)

~PATS Sl (gt ) Srmpeety

r

POy 1dGmm "‘Z‘ldem_l_i%
dr’

1dg"

T dr

A

J

Rm(r) = (a + a1 Nt) a2 + e + N, 2 ar
d20m_1 , 1d0m_y ¢y 1dg,_q
Rsm(")_N”( &z i ar )+Nt< iz T ar

Case-III: Variable Exponential Viscosity

For variable parabolic viscosity is defined as

2
p:e’z1+r+£2-+0(r3),
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(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)




In view of Egs. (3.36) and (3.4) we get the nonlinear terms as following

d 2y d du A (d du\? d?u
(1+r=+ Qirtz) )u+(1+ r+ )0y ;(—u) +3A(u)

N [u*(r,p), 67(r,p), ¢° (7, P)] = dr dr) dr?
—c—P ((1+r+f)+A(dd—) )u+ G0+ B
(3.37)
. d*9 1df déd
Ng [u*(r,p), 0 (r,p), 8" (1, p)] = (@ + 01 Vy) = -3 + = -— + Np— b d¢’ (3.38)
. . d?¢ 1d6 d?¢ 1do
Mo 1)) 8 o) = 0 (o + 25 )+ (S 435) . ao)
mth order deformation equation:

mth order deformation problem of above equations are

L3 {Um — Xmim-1] = ARTm (1), (3.40)

Ly [Qm - Xmgm—l] = FR8m (’l"), (3'41)

£2 [¢m - de’m—l] = h‘Rgm(T): (342)

um (1) =0, u(2) =0,
Bm(1) =0, 8,(2) =0, (3.43)
$m(1) =0, ¢,,(2) =0.

where
(+7+5 2y Lune1 (1 4 r) S

+(1+_’:'2_)dum— -Pl+r+ 2)um 1
A Qum_1-k | SUm—k— duy
+3A2k=0 Et:o( md-rl_k> o a
+Grbm_1+ Brdppn_y — c(1 — Xpp)
dupn—1— AUpyy — ko
—PAY S 1—0( @ k) rea
RSm(r) = (& + a1 ) 4?01 i1 1d9m_ LN, Z  dBm—1-; d; 345
mye 1 g2 dr  dr’ (345)
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d%0pm—1 | 1d0m_1 Py | 1ddp_y
Rgm(T)ﬁNb( dr? +; dr )+Nt( dr? +; dr ) (3.46)

3.4 Convergence of the Solution

It is noticed that the HAM method strictly depend upon the auxiliary parameter fi. As specified
by Liao [26], the convergence region and rate of approximations given by the HAM are strongly
dependent upon fi. Figs. 3.1 to 3.3 potray the fi—curves of velocity profile for all three cases
above and for the temperature and nanoparticles concentration profiles for all above cases
are shown in Figs. 3.4 to 3.5, just to find the range of % in case of constant and variable
viscosity. The range for admissible values of & for velocity in this case of constant viscosity is
—0.3 < R < 0.1, for variable viscosity when g =ris —0.9 <A <09 and for p=1+7+7%/2is
—0.8 < 1 < 0.8 similarly for temperature and concentration profile admissible values of for k

are —1.3 < A< —0.5 and —2.5 < h < 1, respectively.
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Fig. 3.1: hA—curve for velocity profile for the case 1 at 15th order

approximation.
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Fig. 3.3: A—curve for velocity profile for the case 3 at 15th order

approximation.
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Fig. 3.5: h—curve for nanoparticale concentration profile for the
» case 1 to case 3 at 15th order approximation.
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3.5 Graphs

In this section, we will discuss the results of velocity and temperature profiles for both constant
and varijable viscosity with the help of graphs. It is noted that we have fixed the some parameters

for instance B, =10, ¢c=—-1, G, =10, a=1and a; = 1.
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Fig. 3.6: Effect of A on velocity for case 1 when P =1, N; =1,
Ny =1 and k= —0.06.
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Fig. 3.7: Effect of P on velocity for case 1 when A =0.1, N;=1
Ny =1 and A= —0.06.
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Fig. 3.8: Effect of A on velocity for case 2 when P=1, N; =1,
Ny =1 and k= —0.06.
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Fig. 3.9: Effect of P on velocity for case 2 when A =0.1, Ny =1,

N, =1 and & = —0.06.
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Fig. 3.10: Effect of A on velocity for case 3 when P =1, N; =1

Np =1 and k= —0.06.
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Fig. 3.11: Effect of P on velocity for case 3 when

A=01, N;=1, Ny=1 and h = —0.06.
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Fig. 3.12: Effect of N, on velocity for case 1 when

A=0.1, Ny=1, P=1 and k= —0.06.
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Fig. 3.13: Effect of N, on velocity for case 2 when
A=01 N,=1, P=1and &= -0.06.
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Fig. 3.14: Effect of N} on velocity for case 3 when
A=01, N;=1 P=1and i=—0.06.
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Fig. 3.15: Effect of N; on velocity for case 1 when
A=01, Ny=1, P=1 and A = —0.06.
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Fig. 3.16: Effect of N; on velocity for case 2 when
A=0.1, Ny=1, P=1 and h = —0.06.
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Fig. 3.17: Effect of N; on velocity for case 3 when
A=0.1, Ny=1,P=1and k= -0.06.
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Fig. 3.18: Effect of N, on temperature for case 1 to case 3 when

Ng=1a.ndh=“'1
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Fig. 3.19: Effect of N; on temperature for case 1 to case 3 when

Nb=landh=—1.
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Fig. 3.20: Effect of N}, on nanoparticale concentration for case 1 to

case 3 when N;=1and k= -1.
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Fig. 3.21: Effect of N; on nanoparticale concentration for case 1

to case 3 when Np=1and h=—1.

3.6 Discussion

In this chapter, flow of third grade nanofluid in a coaxial cylinders is examined. An analytical
series solutions for velocity and temperature are obtained by Homotopy Analysis Method.
Special emphasis has been focussed here to see the behavior for third grade non-Newtonion
nanofluid. The behavior of the velocity, temperature and nanoparticale concentration against r
are showing in Figs. 3.6 to 3.21 in order to see the variation of each of the sundry parameters.
The convergence of the solution is also discussed explicitly in Figs. 3.1 to 3.5.

The following conclusions may be extracted from the graphical results.

1. In Figs. 3.6 to 3.11, it is found that the velocity decreases by increases the values of third

grade and porosity parameters.
2. From Figs. 3.12 to 3.14, we seen that the velocity is decreases by increasing N,,.
3. Figs. 3.15 to 3.17, we perceived that the velocity increases by increases of N;.

4. Figs. 3.18 to 3.21, show the influence of temperature and nanoparticale concentration for

different values of N, and N;.
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The related constants of calculation are given by

12
Ay = 641"

Ay = i&m + = 1 ARTA + —c4n2rA

576 96 144
As = ShrAZ + =2 29 SRIrAZ + SHTA? + ! BRITAZ,
1024 4096 1024 1024
39 g,0m,.3, 27 SETAS 3 SEAAS
= 2 8RITA R3TA3 +
1= 10800°¢ * 6a00°¢ + Te00° LA
9 11 1 1.
A 10 3 A4 1Oﬁ4FA4 IOHSFAli 1OﬁGFA4
5= 2006° " ¢ 4096 1024 1608
135 19,4145, 139 19.5..5 9  19:6p15 3 12575 1 REITIE
= 92 _12papp5 L 90 AP —2 _CR2ROTAS 0 I2R7PA KSTAS.
6= T1a688° * LA * Toossa’ LA+ 1m5¢ * 35088¢ *50176°¢
243 14,5046 135 14,6146 27T 47046 3 MBS AS
= 200 MpSPA6 L 99 L R8T
A7 = S oRs° + 262144¢ P TA T 31072° PTA Y gasge P TA
13 16:61a7 1 A6RTLAT 1 REISIN
RSTA TA” + TA7,
48 = 58304°¢ +5102° PITA o P
Bl 18;71a8 27 18,818
= A8 4 — =0
9= To76800° N T TgzsaonC LA
81
Ap = —————c?RTA®
10 = 39719424° -
1 4.4 14,5 3 A6 AR 1 AR
An = Jc*R'AT + ZHR°AT + 2o hAI‘+8 RTAT + = c'h°AT,
1 1 1 4 14 19 25
A — _2ﬁ2r =233 _24F__43r__44 -——4551\1"——-46 _
1 S +9chI‘+36ch e B A 27cﬁAI‘ = —c*RAT
447 1 az8 2652 1 6,6,2 SRTA2 SHEA2
AT
770 WAT — —c*h°AT + —c ﬁAI‘+gcﬁAI‘+18 hAr+108 REACT,
_ 1, 522 1 9.3 124 142 1143 744
Ay = 24 AT - —=c*hT — lchr RC T + 5 AT 4 ROAT + S HAAT +
13 1 13
4h5AF ARSAT AR7 458 6 442 ShSAQ
24 + 33 + = 2 hAI‘+96chAI‘ 516 AT — 216
59662_3672 682 863 873 883
g oA — 2 CPRTATT 864 hAF+ HOAST + - 56 hAI‘+384 RSAST,

51




-A14

Az

Al?

§;‘—Sér + 5‘235 ARl + 7% AR + — 22 ERT + — 5 2 2R — 6‘; 5c4ﬁA1‘ - ;Tlsc4h2Al" -
%c‘irﬂr - ;—:c“h‘*AF - %c‘*nf’Ar - ;—sc‘*hﬁ/\r — g%c‘*nmr — %c“hSAI‘ +
6;‘5 SHAT + 27700 SHATT + éig SHAT + égg SHEAT + 64,f5 SHTAT +
6—;—506h8A2I’ — 81—1c8215A3F 1‘;20 ERBAST — 61765 SRIAST - %;ECSHSASI‘ +

1350 PRA'T 27100 YA,

1 . 4 11 4,0 19 4.3 13 4,4 14
— r KAAT
2916 AF+243 RAD + g WAL + 75 AT + 755¢ T 729¢

7 418 AR7 1 48 5622 17 6:3,2
729cﬁAI‘+729 hAI‘+29160ﬁAI‘ Ta58° AT — 729cﬁ,AF

19 opanrr_ 8 opspop 8

ARPAT +

16 5
BRBAL — 2 BRTA2 SHESA2
324 729 1a58° P AT — g AAT — g AT +
97 B3 0853 25863 46873 79
17496 CRAT + =71¢ ﬁAF+729 AT + gr e MAT + 2008
2 1
1 10,644 CORT AL BUS I C12ZRBAS
gig¢ AT pge MAT - 972 AT+ seeze¢ P AT

ShBAST —

mcﬁhAQI‘ + %csﬁz AT + 3?}‘;‘211 SHIALT 3‘513;1 SEATT + 3?;121 645 A2T 4
3229 CRAT + 3;(7]/;1 CHAT + 3517621 RN - 3547021 SRAT - 32321 SR -

3:?121 SRAT - 32331 ST - 32331 SHIAT - 3_:722_168“%4' 3537421 ORATT +
1—1%8[)—7C10ﬁ6A4r 11‘;007 ORTAY + 3537821 CORSALT ﬁcuhmsr 10;06 F2RSAST
Tigea® AT+ 3429392 SRAT + 1126364 SHATT + 3;4 CRAT + 3499792 ST +

a5 AT+ g s AT - %Cwﬁﬂﬁf — s ORAYT 2 opopsr -
%cmhmfi[‘ — 6_%%610581\‘4F+ 462%012&6A5F+ 38188 A2RTAST + 9313312 2R AT
2791936 RAT,

52




Ao

Anp

An

104 103,44 697 104 24 1808 10544 2368 1036 2 4
ot OpSAdp 4 2L d0papap SO0 T4 220
4782969° + 782069° P AT Trsagee® P AT T frgageec M ATH
1544 10724 400 108 2 4 172 12£54 5 230 12:6 25
SO MORTA4p 4 Y a0p8a4p 'S azpsasp_ _
4782969° * 1782069°¢ 1782069 AT~ Tgggzm3c AT
304 15.7,5 386  10.8.5 4 4,748 O 14;8,6
AST — 20 _ 2 MpTASP L O
1592323° AT~ Frgooe¢ AT s314aC +531aac AT
107 123445 302 125545 43 49,645 614 12:7 45
ol 2paaSp L OUC  a2pSaSp %9 a2p6asp ., 0%
26572050 * 13986025° * 385735° T+ T35g6005¢ P ATH
443 12845 11 143626 16 14374 6 23 14;:8 4 6
9 AT m - 2
26572050° AT~ 29m0250° P AT T Ta7eosC AT~ ogngazoc ATH
1687
3936600° " AT
104 145556 160 14,66 248 1, 7 6 400 148 46
vt % 280 uaprpepy Y r—
192013083° * AT+ gazomser P AT 64304361° + Toz013083° A
16 1657 A7 26 1658 47
20 GRTATp 20 165847p
61304361° " AT~ 5130a361° ’
_ L epsatry D epmapL 1658 AT 1L 88,80
10131876 28697814 6377292 114791256 ’
16
_ 1872 8 188 4 8
A = 5 o65a853¢ P AT T oiodge5083¢ AL
Aos = 2058 AT
%= garisraieC PO T

53



10.

ol 1,
i

3.7 References

. Ellahi, R., "Steady and unsteady flow for Newtonian and non-Newtonian fluid", Basics

concepts and methods VDM Germany, 2009.

. Tan, W. C. and Masuoka, T., "Stokes first problem for second grade fluid in a porous half

space with in heated boundary" , Int. J. Non-Linear Mech. 40; 512-522, 2005.

Fetecau, C. and Fetecau, C., "Starting solutions for the motion of second grade fluid due
to longitudinal and torsional oscillations of a circular cylinder", Int. J. Eng. Sci. 44;

788-796, 2006

Hameed, M. and Nadeem, S., "Unsteady MHD flow of non-Newtonian fluid on porous
plate", Journ. of Math. Anal. and Appli. 325; 724-733, 2007

Choi, S. U. S., "Enhancing thermal conductivity of fluids with nanoparticles", the proceed-
ings of the a995 ASME International Mechanical Engineering Congress and Exposition,
San Francisco, 66; 99-105, 1995.

. Massoudi, M. and Christie, 1., "Effects of variable viscosity and viscous dissipation on the

flow of a third grade fluid in a pipe", Int. J. Non-Linear Mech., 30; 687-699, 1995.

Buongiorno, J., Hu, L. W., Rubner, M., Cohen, R., Forrest, E. and Williamson, E., "Aug-
mentation of Nucleate Boiling Heat Transfer and Critical Heat Flux Using Nanoparticle
Thin-Film Coatings", Int. J. Heat Mass Transfer, 53, 5867, 2010.

Das, S. K. and Choi, S. U. S., "Heat Transfer in Nanofluids", Advances in Heat Transfer,
41; 81-191, 2009.

Strandberg, R. T. and Das, D. K., "Heat Transfer Performance of Nanofluids", Applica-
tions in Facility Heating, LAP Lambert Academic Publishing, ISBN:978-3-8383-9842-6;
136, 2010.

Feng,Y., Yu, B., Peng, X. and Zou, M., "The effective thermal conductivity of nanofluids
based on the nanolayer and the aggregation of nanoparticles", J. Phys. D 40; 3164-3171,
2007.

54



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Xu, J., Yu, B., Zou, M. and Peng, X., "A new model for heat conduction of nanofluids
based on fractal distributions of nanoparticles", J. Phys. D 39; 4486-4490, 2006.

Peng, X., Wu, Z., Mujumdar, A. S. and Yu, B., "Innovative hydrocyclone inlet designs
to reduce erosion-induced wear in mineral dewater processes", Drying Technology 27;

201-211, 2009.

Lotfi, R., Saboohi, Y. and Rashidi, A. M. "Numerical study of forced convective heat
transfer of Nanofluids: Comparison of different approach", Int. Comm. in Heat and Mass

Transfer, 37; 74-78, 2010.

Matthews, M. T. and Hill, J. M. "Nanofluidics and the Navier boundary condition", Int.
J. Nanotechnol., 5; 218-242, 2008.

Bujurke, N. M., Patail, H. P. and Bhavi, S. G. "Porous slider bearing with couple stress
fluid", Acta Mechanica, 85; 99-113, 2005.

Ahmad, S. and Pop, 1., "Mixed convection boundary layer flow from a vertical flat plate
embedded in a porous medium filled with nanofluids", Int. Comm. in Heat and Mass

Transfer, 37; 987-991, 2010.

Andrew, D., Rees, S., and Pop, 1. "The effect of large-amplitude g-jitter vertical free
convection boundary-layer flow in porous media", International Journal of Heat and Mass

Transfer, 46; 1097-1102, 2003.

Tan, W. C. and Masuoka, T., "Stability analysis of a Maxwell fluid in a porous medium
heated from below", Physics Letters A 360; 454-460, 2007.

Hayat, T., Ellahi, R. and Asghar, S. "The influence of variable viscosity and viscous
dissipation on the non-Newtonian flow: An analytic solution", Communication in Non-

linear science and Numerical Simulation, 12; 300-313, 2007.
Hilton, P. J., "An introduction to homotopy theory", (Cambridge University Press), 1953.

Hayat, T., Ellahi, R., Ariel, P. D. and Asghar, S., "Homotopy solution for the channel
flow of a third grade fluid", Nonlinear Dynamics, 45; 55-64, 2006. x

55



22.

23.

24.

25.

26.

Abbasbandy, S., "The application of homotopy analysis method to non linear equations
arising in heat transfer", Phys. Lett., A, 360; 109-113, 2010.

Liao, S. J., "The proposed homotopy analysis technique for the solution of nonlinear

problems", PhD thesis, Shanghai Jiao Tong University, 1992.

Fosdick, R. L. and Rajagopal, K. R., "Thermodynamics and stability of fluids of third
grade", Proc Roy Soc London, 77; 339-351, 1980.

Van Gorder, R. A. and Vajravelu, K., "On the selection of auxiliary functions, operator
and convergence control parameter in the application of Homotopy Analysis Method to
nonlinear differential equations", A general approach. Commun. Nonlinear Sci. Numer.

Simul. 14; 4078-4089, 2009.

Liao, S. J., "An analytic approximate technique for free oscillations of positively damped
systems with algebraically decaying amplitude”, Int. J. Non-Linear Mech. 38; 1173-1183,
2003.

56



