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Introduction

Best proximity points have widespread applications in optimization, economics,

and various engineering disciplines, where exact �xed points are elusive, and optimal

approximations are sought. Future research may extend these concepts to more com-

plex structures, such as partial metric spaces or ordered metric spaces, broadening the

scope and applicability of these results. In optimization and �xed point theory, best

proximity points are crucial when dealing with non-self mappings where �xed points

do not exist. The classical Banach contraction principle has seen various extensions

to accommodate di¤erent contractions and more general settings. This note focuses

on a speci�c generalization: generalized interpolative proximal contractions.

BPP theory is an area of mathematical analysis and optimization that focuses on

�nding points in one set that are closest to points in another set when a contractive

mapping is involved. In metric �xed point theory, the concept of best proximity points

plays a crucial role, particularly when dealing with mappings that do not necessarily

have �xed points. This note delves into the best proximity points for generalized

interpolative proximal contractions, an important class of mappings in metric spaces.

A metric space approach is a crucial technique in many mathematics branches

and especial in �xed point theory. Recently, di¤erent development of a metric spaces

have been developed. Fixed point theory is well-known and established concept in

mathematical �eld and also a large �rm of utilization. Banach �xed point theorem is

the most crucial development in the study of presence and identi�cation of solution

of non-linear problems arising in mathematics and its applications to enginering and
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life sciences. Fixed point results is o¤ensive on the presence and identi�cation of

the explanation of a easy equation p(&) = & and mentioned mapping p is a self-

mapping. Consequently, "�xed point theory" is taken into account in the concrete

solution of such equations. The best proximity point becomes a �xed point when the

mapping in question is a self-mapping. Analyzing various proximal contractions [1,

2, 3, 4, 5] reveals the bpp. The product of distances with exponents that satisfy a few

conditions constitutes the basis of the interpolative contraction principles. The well-

known mathematician Erdal Karapinar coined the term "interpolative contraction"

in his 2018 paper [6]. The interpolative contraction is de�ned as follows:

A map S de�ned on a m.s (
;gd) is refered to as interpolative contr., if � 2 (0; 1],

K 2 [0; 1) s.t

gd(Se; Sr) � K
�
gd(e; r)

��
;8e; r 2 
:

Note � = 1, S is a BC. If S de�ned on a MS (
;gd) satis�es:

gd(S&kj; Sr) � K
�
gd(&kj; S&kj)

�� �
g
d

(r; Sr)
�1��

;

gd(S&kj; Sr) � K
�
gd(r; S&kj)

�� �
gd(&kj; Sr)

�1��
;

gd(S&kj; Sr) � K
�
gd(&kj; r)

�� �
gd(&kj; S&kj)

�� �
gd(r; Sr)

�1����
; � + � < 1

gd(S&kj; Sr) � K
�
gd(&kj; r)

�� �
gd(&kj; S&kj)

�� �
gd(r; Sr)

�

�
1

2
(gd(&kj; Sr) + gd(r; S&kj))

�1�����

;

for all &kj; r 2 
, then S is called an IKTC, an ICTC, an IĆRRTC and an IHRTC,

respectively. Interpolation has been used to revisit several classical and advanced

contractions (see [7, 8, 9, 10]).

Altun et al. [11], recently de�ned interpolative proximal contractions and reviewed

all interpolative contractions. On such contractions, they presented the best proximity
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theorems. This aims to establish the best proximity point theorems for interpolative

proximal contractions in the case of non-self mappings.

Gabeleh [13] demonstrated the existence and uniqueness of a best proximity point

for weak proximal contractions and introduced a new class of non-self mappings.

Some utilization of best proximity points has been discussed in (see [14, 15, 16]).

Proinov [10](2020) provided a number of �xed-point theorems that expanded on

earlier work in [5]. First, Karapinar introduced the idea of interpolation contraction

in his work [9] published in 2018, then Proinov gave the second idea in his paper [10]

published in 2020. Recently, Altun and Taşdemir [23] have utilized the interpolative

proximal contraction to produce some best proximity point theorems.

Finding an element & in R that is as close to S(&) in G as possible, is of great

interest, since a non-self mapping need not have a �xed point. In other words, it is

considered to �nd an approximation solution & in R such that the error gd(&; S(&)) is

smallest, where ' is the distance function, if the �xed point equation S(&) = & has no

exact solution. In fact, best proximity point theorems look into the possibility of such

best proximity point for approximate solutions to the �xed point equation S(&) = &

in the absence of a precise solution.

Chapter 1 contains the basic concepts and introduction of best proximity point

theory. It de�nes important and fundamental notions of bpp and fbpp.

Chapter 2 seeks to provide bppt for contractive non-self mappings using interpo-

lation, leading to global optimal approximate solutions to speci�c �xed point equa-

tions. Iterative strategies are also provided to �nd such ideal approximative proving

the presence of bpp. Also, we introducing (Ĥm;�)-interpolative proximal contrac-
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tion, which generalize and and establishing the optimal proximity point theorems for

them. We look for various conditions on the functions to introduce presence of bppt of

improved pc, improved Ćiríc-Reich-Rus interpolative proximal contraction, improved

Hardy Rogers interpolative proximal contraction. These results have published in

Filomat (2025), 39:8, 2817-2830.

In Chapter 3, we investigate optimal solutions for best proximity points through

the framework of generalized interpolative proximal contractions. We introduce a

new method that uses interpolation techniques to handle a wider class of mappings

by expanding the concepts of classical proximal contraction. In the absence of a

precise solution, bppt investigate the existence of such best proximity points for ap-

proximate solutions to the �xed point problem. This chapter aims to develop the

bppt for contractive non-self mappings via interpolation. We illustrate the utility of

our �ndings with a few instances. The value of our research is illustrated with a few

examples and applications. These results have published in European Journal of

Pure and Applied Mathematics (2025), 18:4, 1-23.

InChapter 4, we establish certain bppt for such pc. These results have published

in Fractal and fractional (2022), 1(2): 1-19.

In Chapter 5, these results have published in Aims Mathematics (2025),

8(2): 2891-2909.



Chapter 1

Preliminaries

A few basic de�nitions, results and examples related to metric spaces and its gen-

eralized form were discussed in the current chapter which will support us in next

chapters.

1.1 Some Basic Concepts

1.1.1 De�nition [1]

Let (J; �) be a complete metric space (in short CMS). Let U 6= � and V 6= � are

closed subset of J . Let � : U ! V be a mapping. A point s 2 U is the BPP of � if

it satis�es,

� (s;�s) = � (U; V )

We proceed with the following notations that are used in the sequel.

L0 = fs 2 L : �(s; t) = � (U; V ) , for some t 2 V g

5
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V0 = ft 2 V : � (s; t) = � (U; V ) , for some s 2 Ug :

1.1.2 De�nition

Let R;G �
�

;gd

�
. A mapping S : R! G satisfying

gd(&kj; S(q1)) = gd (R;G)

gd(�jk; S(q2)) = gd (R;G)

9
>>=
>>;
) gd(&kj; �jk) � kgd (q1; q2) (1.1)

for all &kj; �jk; q1; q2 2 R such that &kj 6= �jk and k 2 [0; 1) is called PC-I.

Every PC-I can be modi�ed to a Banach contraction.

1.1.3 De�nition

Let R;G �
�

;gd

�
. A mapping S : R! G satisfying

gd(&kj; S(q1)) = gd (R;G)

gd(�jk; S(q2)) = gd (R;G)

9
>>=
>>;
) gd

�
S&kj; S�jk

�
� kgd (Sq1; Sq2) ;

for all &kj; �jk; q1; q2 2 R such that S&kj 6= S�jk, and k 2 [0; 1) is said to be a PC-II.

For a self-mapping S : R ! R to be a PC-II, it needs to satisfy the following

inequality:

gd
�
S2q1; S

2q2
�
� kgd (Sq1; Sq2) ; for all q1; q2 2 R:
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1.1.4 Remark

Every contraction is a PC-II but the converse is not true. Indeed, the mapping

S : [0; 1]! [0; 1] de�ned by

S (&) =

8
>>>>>><
>>>>>>:

0 if & is rational

1 otherwise

is a PC-II but not a contraction in (R;gd).

1.1.5 De�nition [23]

If each sequence fsng in V holding the condition that � (t; sn) ! � (t; V ) for some

t 2 U , then there is a subsequence of fsnkg s.t snk ! s 2 V; so V is A-Compact with

respect to (in short w.r.t) U . Each compact subset of U is AC w.r.t any subsets as

well as A-Compact w.r.t itself.

1.1.6 Lemma [18]

Let (J; �) be a CMS. Let U and V 2 PCB (J) and s 2 U; then for each h > 1; there

t 2 V with

gd (s; t) � hH (s; t) . (1.2)

1.1.7 Lemma [18]

Let (J; �) be a MS. Let U and V 2 PCB(J) and s 2 U ,
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(i) For each " > 0, there exist t 2 V s.t;

� (s; t) � H (U; V ) + ":

(ii) For each h > 1, there exist t 2 V s.t;

� (s; t) � hH (U; V ) + ":

1.1.8 De�nition [11]

Let (J; �) CMS. Let U 6= � and V 6= � are closed subset of J . Then a mapping

� : U ! V be a IKTPC. If 9 a real number � 2 [0; 1) and l 2 (0; 1) s.t

� (s1; s2) � � (� (s1; t1))l (� (s2; t2))1�l ;

for all s1; s2; t1and t2 2 U with si 6= ti for i 2 f1; 2g.

1.1.9 De�nition [11]

Let (J; �) be a CMS. Let U 6= � and V 6= � are subset of J: Then a mapping � : U ! V

be a IRRCTPC of �rst kind. If 9 a real number � 2 [0; 1) and l1; l2 2 (0; 1) s.t,

� (s1; s2) � k (� (t1; t2))l1 (� (s1; t1))l2 (� (s2; t2))1�l1�l2 ;

for all s1; s2; t1 and t2 2 U with si 6= ti for i 2 f1; 2g.

1.1.10 De�nition [11]

Let (J; �) be a CMS. Let U 6= � and V 6= � are closed subset of J . Then a mapping

� : U ! V be a IHRTPC of �rst kind. If 9 a real number � 2 [0; 1) and l1; l2; l2 2 (0; 1)
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s.t,

� (s1; s2) � � (� (t1; t2))l1 (� (s1; t1))l2 (� (s2; t2))l3
�
1

2
(� (s1; t1) + � (s2; t2))

�1�l1�l2�l3

for all s1; s2; t1and t2 2 U with si 6= ti for i 2 f1; 2g w.r.t � (s1;�t1) = � (U; V ) and

� (s2;�t2) = � (U; V ) :

1.1.11 Lemma [10]

Let flng be a sequence in (
;gd) verifying limn!1 gd(ln; ln+1) = 0. If the seqence

flng is not cauchy, then there are sub-sequences flnkg, flmk
g and &kj > 0 such that

lim
k!1

gd(lnk+1; lmk+1) = �+ some term(s): (1.3)

lim
k!1

gd(lnk ; lmk
) = lim

k!1
gd(lnk+1; lmk

) = lim
k!1

gd(lnk ; lmk+1) = �: (1.4)

1.1.12 Lemma [10]

Let Ĥm : (0;1)! R . Then the axioms (i)-(iii) are equivalent.

(i) infz>" Ĥm (z) > �1 for every " > 0:

(ii) limz!"+ inf Ĥm (z) > �1 for every " > 0:

(iii) limn!1 Ĥm (zn) = �1 implies that limn!1 zn = 0:

1.1.13 Lemma [5]

Let Ĥm : (0; 1]! R. Then following are equivalent:

(i) inft>" Ĥm (t) > �1 for every " 2 (0; 1) :

(ii) limt!"� inf Ĥm (t) > �1 for any " 2 (0; 1) :
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(iii) limn!1 Ĥm (tn) = �1 implies that limn!1 tn = 1:



Chapter 2

Existence of best proximity point

with applications

2.1 Introduction

We introduce some new generalized proximal interpolative contraction principles that

produce corresponding proximal interpolative contraction principles and proximal

contraction principles as special cases. We prove various best proximity point theo-

rems using introduced generalized proximal interpolative contraction principles. Some

examples and applications are given to demonstrate the usefulness of our results.

We proceed with the following notations that are used in the sequel.

gd(R;G) = inffgd(&; q) : & 2 R ^ q 2 Gg;

R0 = f& 2 R : gd(&; q) = gd(R;G) for some q 2 Gg;

G0 = fq 2 G : gd(&; q) = gd(R;G) for some & 2 Rg;

11
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where
�

;gd

�
is a metric space and R;G �

�

;gd

�
.

2.2 Improved proximal contractions.

In this section, we de�ne improved PC and show that it generalizes PC (1.1). We

state and prove some existence of bpp theorems for improved PC and improved in-

terpolative PC in a CMS.

2.2.1 De�nition

Let R;G be subsets of
�

;gd

�
. A mapping S : R! G satisfying

gd
�
&kj; Sq1

�
= gd (R;G)

gd
�
�jk; Sq2

�
= gd (R;G)

9
>>=
>>;
) ĤmĤm

�
gd
�
S&kj; S�jk

��
� �

�
gd (Sq1; Sq2)

�
;

(2.1)

for all &kj; �jk; q1; q2 2 R such that &kj 6= �jk; is called an improved PC-II, where

the maps Ĥm;� : (0;1) ! (�1;1) such that Ĥm is non-decreasing function and

� (t) < Ĥm(t) for all t > 0:

The following example shows the signi�cance of improved PC-II.

2.2.2 Example

Let gd : R2 �R2 ! [0;1) be de�ned by

gd((&; q); (u; v)) = j& � uj+ jq� |̂j for all (&; y); (u; |̂) 2 
:

Let R;G be the subsets of 
 de�ned by

R = f(0; q); q 2 Rg; G = f(1; q); q 2 Rg; then gd(R;G) = 1:
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De�ne the functions Ĥm;� : R
+ ! R by

Ĥm(t) = 2t and �(t) = t; t 2 R+:

De�ne the mapping S : R! G by S((0; r)) = (1; r
4
) for all (0; r) 2 R. We show that

S is an improved PC-II. For &kj = (0; &), �jk = (0; u) and q1 = (0; 4&), q2 = (0; 4u) 2 R

we have,

gd(&kj; Sq1) = gd((0; &); S(0; 4&)) = 1 = gd(R;G);

gd(�jk; Sq2) = gd((0; u); S(0; 4u)) = 1 = gd(R;G):

This implies that

Ĥm
�
gd
�
S&kj; S�jk

��
� �

�
gd (Sq1; Sq2)

�
;

This shows that S is an improved PC-II. However, the following calculations show

that it is not a PC-II. We know that

gd(&kj; Sq1) = 1 = gd(R;G)

gd(�jk; Sq2) = 1 = gd(R;G):

If there exists k 2 (0; 1) such that

gd
�
S&kj; S�jk

�
� kgd (Sq1; Sq2) ;

then, k = 1
6
, a contradiction. Hence, S is not a PC-II.

The following lemmas are integral part of this paper and have an impact on further

investigations.
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2.2.3 Lemma

Let f&kjn g be a sequence in (
;gd) obeying the equation limn!1 gd(&kjn ; &
kj
n+1) = 0.

Suppose that the mapping S : R! G satis�es (2.1) and the maps Ĥm;� : (0;1)! R

such that

lim sup
t!�+

� (z)< Ĥm(�+) (2.2)

for any � > 0: Then f&kjn g is a cauchy sequence.

Proof. First, we consider f&kjn g is not cauchy, then by Lemma 1.1.11, 9 two

subsequence f&nkg, f&mk
g of f&kjn g and � > 0 so that (1.3) and (1.4) hold. By (1.3),

we get that gd(&nk+1; &mk+1) > � and

gd(&nk+1; S(&mk
)) = gd(R;G);

gd(&mk+1; S(&nk)) = gd(R;G); for all k � 1:

Thus, by (2.1), we have

Ĥm(g
d(&nk+1; &mk+1)) � �(gd(&nk ; &mk

)); for any k � 1: (2.3)

Putting ck = gd(&nk+1; &mk+1) and &
kj
k = g

d(&nk ; &mk
) in (2.3), we have

Ĥm(ck) � �(&kjk ); for any k � 1: (2.4)

By (1.3) and (1.4), limk!1 ck = �+ some term(s) and limk!1 &
kj
k = �. By (2.4), we

get

Ĥm(�+) = lim
k!1

Ĥm(ck) � lim sup
k!1

�(&kjk ) � lim sup
p!�

�(p): (2.5)

This is a contradiction to the assumption (2.2). Consequently, f&kjn g is a cauchy

sequence in G.
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2.2.4 Theorem

Let R;G � (
;gd) with the property that �R is a-compact w.r.t G� and (
;gd) be a

cms and S : R! G be a continuous improved PC-II verifying conditions

(i) Ĥm is non-decreasing (nd) function and lim supt!�+� (t) < Ĥm(�+) for any

� > 0,

(ii) R0 is non-empty subset of R obeying S(R0) � G0:

Then S has a bpp.

Proof. Consider &kj0 2 R0. Since S(&kj0 ) 2 S(R0) � G0; there exists &
kj 2 R0

satisfying gd(&kj; S(&kj0 )) = g
d(R;G): Also, we have S(&kj) 2 S(R0) � G0; there exists

�jk 2 R0 so that gd(�
jk; S(&kj)) = gd(R;G): We build a series by continuing this

approach such that f&kjn g in R0 satis�es the following equation:

gd(&kjn ; S(&
kj
n�1)) = g

d(R;G); for all n 2 N: (2.6)

If n 2 N s.t &kjn = &
kj
n+1, then &

kj
n is a bpp of the mapping S. If &kjn�1 6= &kjn for all

n 2 N, then we have

gd(&kjn ; S(&
kj
n�1)) = gd(R;G);

gd(&kjn+1; S(&
kj
n )) = gd(R;G); for all n � 1:

Thus, by (2.1), we have

Ĥm(g
d(S&kjn ; S&

kj
n+1)) � �(gd(S&kjn�1; S&kjn )):

Let gd(S&kjn ; S&
kj
n+1) = dn. We know that, � (t) < Ĥm (t) for all t > 0; we have

Ĥm(dn) � �(dn�1) < Ĥm(dn�1): (2.7)
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Given that Ĥm is nd, by (2:7), dn < dn�1 8 n 2 N . Thus, it converges to some

element d � 0. We claim that d = 0. If d > 0, by (2:7), we obtain the following:

Ĥm (d+) = lim
n!1

Ĥm (dn) � lim
n!1

� (dn�1) � lim
t!d+

sup� (t) :

This contradicts (i), hence, d = 0 and limn!1 gd(S&kjn ; S&
kj
n+1) = 0. By using (i)

and Lemma 2.2.3, we conclude that fS(&kjn )g is a cauchy sequence. Since G is

a closed subset of complete metric space (
;gd), there exists q� 2 G such that

limn!1 gd(S&kjn ; q
�) = 0. Moreover,

gd(q�; R) � gd(q�; &kjn )

� gd(q�; S(&kjn )) + g
d(S(&kjn�1); &

kj
n )

� gd(q�; S(&kjn�1)) + g
d(R;G)

� gd(q�; S(&kjn�1)) + g
d(q�; R):

Thus, gd(q�; &kjn ) ! gd(q�; R) as n ! 1. Since R is a-compact w.r.t G, 9 f(&nk)g of

f(&kjn )g converging to &� 2 R(say). We infer the following equation:

gd(&�; q�) = gd(&nk ; S(&nk�1)) = g
d(R;G): (2.8)

Due to the continuity of S, we have S(&nk�1)! S(&�). Thus,

gd(&�; S(&�)) = gd(R;G):

Let R;G � (
;gd) with the property that �R is approximately compact with respect

to G� and (
;gd) be a complete metric space.
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2.2.5 Theorem

Let R;G � (
;gd) with the property that �R is a-compact w.r.t G� and (
;gd) be a

cms and S : R! G be a improved PC-I verifying conditions

(i) Ĥm is nd function and lim supt!�+� (t) < Ĥm(�+) for any � > 0,

(ii) R0 is non-empty subset of R obeying S(R0) � G0: Then S has a bpp.

We omit the proof of Theorem 2.2.4, as it follows from the previous one.

2.2.6 Theorem

Let R;G � (
;gd) with the property that �R is a-compact w.r.t G� and (
;gd) be a

cms and S : R! G be a improved PC-II verifying conditions

(i) Ĥm is non-decreasing and if fĤm(tn)g and f�(tn)g are convergent sequence

satisfying limn!1 Ĥm(tn) = limn!1�(tn), then limn!1 tn = 0,

(ii) R0 is non-empty subset of R obeying S(R0) � G0: Then S has a bpp.

Proof. Following the procedure used in the proof of Theorem 2.2.4, we have

Ĥm(dn) � �(dn�1) < Ĥm(dn�1): (2.9)

By (2.9), we have fĤm (dn)g is strictly decreasing seq. If fĤm (wn)g is not bounded

below, then

inf
wn>"

Ĥm (dn) > �1 for every " > 0; n 2 N:

From, Lemma 1.1.12, then dn ! 0 as n!1. Secondly, if seq fĤm(dn)g is bounded

below, then, it is a cgt seq. By (2.9), the seq f�(dn)g also cgs. By (i), we have

limn!1 dn = 0, or limn!1 gd
�
S&kjn ; S&

kj
n+1

�
= 0; for any seq

�
&kjn
	
in R. Theorem
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2.2.4, we have

gd(&�; S(&�)) = gd(R;G):

Hence, &� is a bpp of the mapping S:

2.3 Improved Ćiríc-Reich-Rus interpolative prox-

imal contraction

2.3.1 De�nition

Let
�

;gd

�
be a cms, and R;G be a pair of non-empty subsets of 
: Let Ĥm;� :

(0;1) ! R be two functions. A mapping S : R ! G is said to be an improved

Ćiríc-Reich-Rus interpolative PC-II if there exist �; � 2 (0; 1); � + � < 1 satisfying

Ĥm
�
gd
�
S&kj; S�jk

��
� �

0
BB@

�
gd (Sq1; Sq2)

�� �
gd
�
Sq1; S&

kj
���

�
gd
�
Sq2; S�

jk
��1����

1
CCA ; (2.10)

whenever gd
�
&kj; Sq1

�
= gd (R;G) and gd

�
�jk; Sq2

�
= gd (R;G) for all distinct

&kj; �jkq1; q2 2 R.

2.3.2 Example

Let gd : R2 � R2 ! R be the Euclidean metric on R2 and R;G be the subsets of R2

de�ned by

R =
n
(&; q) : q =

p
9� &2

o
;G =

n
(&; |̂) : q =

p
16� &2

o
then gd (R;G) = 1:
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De�ne the functions Ĥm;� : R
+ ! R and S : R! G by

�(z) =
p
z and Ĥm(z) = z; for all z 2 R+:

S(�) = S (&; |̂) =

8
>><
>>:

�
&
2
; q
2

�
for & � 0;

(�1; 0) for & < 0;

for all (&; y) 2 R:

The following information shows that S generalizes the interpolative Ćiríc-Reich-Rus

type proximal contraction [23]. Indeed, for &kj = (1; 0) ; �jk = (1; 2) ; q1 = (2; 2) ; q2 =

(0; 4), we have gd(&kj; Sq1) = 1 = gd(R;G), gd(�jk; Sq2) = 1 = gd(R;G); and for

� = 1
2
; � = 1

3
,

Ĥm
�
gd (S (1; 0) ; S (1; 2))

�
� �

0
BB@

�
gd (S (0; 4) ; S (2; 2))

� 1
2
�
gd (S (2; 2) ; S (1; 0))

� 1
3

�
gd (S (0; 4) ; S (1; 2))

�1� 1
2
�
1
3

1
CCA ;

Ĥm (1) � � (1:2573)) 1 � 1:1213:

Thus,

Ĥm
�
gd
�
S&kj; S�jk

��
� �

0
BB@

�
gd (Sq1; Sq2)

�� �
gd
�
Sq1; S&

kj
���

�
gd
�
Sq2; S�

jk
��1����

1
CCA :

This shows that S is an improved interpolative Ćiríc-Reich-Rus PC-II. However, for

&kj = (1; 0) ; �jk = (1; 2) ; q1 = (2; 2) ; q2 = (0; 4), if there exists some k satisfying the

following inequality:

gd
�
S&kj; S�jk

�
� k

�
gd (Sq1; Sq2)

�� �
gd
�
Sq1; S&

kj
��� �

gd
�
Sq2; S�

jk
��1����

gd (S (1; 0) ; S (1; 2)) � k
�
gd (S (0; 4) ; S (2; 2))

� 1
2
�
gd (S (2; 2) ; S (1; 0))

� 1
3

�
gd (S (0; 4) ; S (1; 2))

�1� 1
2
�
1
3 :
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Then, k 2
�

1
1:2573

;1
�
, a contradiction. Hence, S is not interpolative Ćiríc-Reich-Rus

PC-II. We note that for & � 0, there is � = (&; |̂) 2 R such that gd(�; S (�)) =

gd(R;G) = 1.

The criteria for the existence of bpp of the improved Ćiríc-Reich-Rus interpolative

PC-II are stated in the following two theorems.

2.3.3 Theorem

Let R;G � (
;gd) with the property that �R is approximately compact with respect

to G� and (
;gd) be a complete metric space. If S : R! G is a continuous improved

Ćiríc-Reich-Rus type interpolative PC-II satisfying the following assumptions: Ĥm

is non-decreasing function and lim supt!�+� (t) < Ĥm(�+) for any � > 0. R0 is

non-empty subset of R such that S(R0) � G0: Then S has a bpp.

Proof. Consider an arbitrary initial guess &kjo 2 R0. Since S(&kjo ) 2 S(R0) � G0;

there exists &kj 2 R0 such that

gd(&kj; S(&kjo )) = g
d(R;G):

Also, S(&kj) 2 S(R0) � G0; there exists �jk 2 R0 such that

gd(�jk; S(&kj)) = gd(R;G):

We build a series by continuing this approach such that f&kjn g in R0 satis�es the

following equation:

gd(&kjn+1; S(&
kj
n )) = g

d(R;G); for all n 2 N: (2.11)
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Now, if 9 n 2 N s.t &kjn = &kjn+1, the point &kjn is a bpp of the mapping S. Assume that

&kjn 6= &kjn+1 8 n 2 N and using (2.11), we have

gd(&kjn ; S(&
kj
n�1)) = g

d(R;G);

and

gd(&kjn+1; S(&
kj
n )) = g

d(R;G); for all n � 1:

By (2.10), we have

Ĥm(g
d(S&kjn ; S&

kj
n+1)) � �

��
gd
�
S&

kj
n�1; S&

kj
n

��� �
gd
�
S&

kj
n�1; S&n

��� �
gd
�
S&n; S&

kj
n+1

��1�����
;

(2.12)

for all distinct &kjn�1; &
kj
n ; &

kj
n+1 2 R. Given that �(t) < Ĥm(t) for all t > 0, by (2.12),

we have

Ĥm(g
d(S&kjn ; S&

kj
n+1)) < Ĥm

��
gd
�
S&

kj
n�1; S&

kj
n

��� �
gd
�
S&

kj
n�1; S&

kj
n

��� �
gd
�
S&kjn ; S&

kj
n+1

��1�����
:

Since Ĥm is a nd,

gd(S&kjn ; S&
kj
n+1) <

�
gd
�
S&

kj
n�1S&

kj
n

���+�
(gd(S&kjn ; S&

kj
n+1))

1����:

This implies that

(gd(S&kjn ; S&
kj
n+1))

�+� <
�
gd
�
S&

kj
n�1; S&

kj
n

���+�
:

This shows that the sequence fgd(S&kjn ; S&kjn+1) = dng converges to some element

d � 0. We claim that d = 0. If d > 0, by (2.12), we obtain the following:

Ĥm (d+) = lim
n!1

Ĥm (dn) � lim
n!1

�
�
(dn�1)

�+�(dn)
1����

�
� lim

z!d+
sup� (z) :
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This contradicts (i), hence, d = 0 and limn!1 gd(S&kjn ; S&
kj
n+1) = 0. By using (i) and

Lemma 2.2.3, we conclude that fS&kjn g is a cauchy sequence. SinceG is a closed subset

of cms (
;gd), there exists q� 2 G; such that limn!1 gd(S&kjn ; q
�) = 0. Now, we can

obtain the desired result by following the reasoning used in the proof of Theorem

2.2.4.

2.3.4 Theorem

Let R;G � (
;gd) with the property that �R is a-compact with repect to G� and

(
;gd) be a cms. If S : R! G is a continuous improved Ćiríc-Reich-Rus type inter-

polative PC-II verifying (i)-(ii) Ĥm is non-decreasing and if fĤm(zn)g and f�(zn)g are

convergent sequences satisfying limn!1 Ĥm(zn) = limn!1�(zn), then limn!1 zn = 0,

R0 is non-void subset of R obeying S(R0) � G0: Then the mapping S has a bpp.

Proof. Following the procedure used in the proof of Theorem 2.3.3, we have

Ĥm (dn) � �
�
(dn�1)

�+� (dn)
1����

�
< Ĥm

�
(dn�1)

�+� (dn)
1����

�
: (2.13)

By (2:13), we infer that
n
Ĥm (dn)

o
is strictly decreasing sequence. If

n
Ĥm (dn)

o
is

not bounded below, then

inf
dn>"

Ĥm (dn) > �1 for every " > 0, n 2 N:

It follows by Lemma 1.1.12, that dn ! 0 as n!1. Secondly, if the seq
n
Ĥm (dn)

o

is bounded below, then, it is cgt seq. By (2:13) the seq f� (dn)g also cgs. By (i) ; we

have limn!1 dn = 0 for any seq
�
&kjn
	
in R: The proof of Theorem 2.3.3 leads to the

rest of the proof.
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Note that, if S is a self-mapping de�ned on R, then best proximity point is a �xed

point of S.

2.4 Improved Hardy Rogers interpolative proxi-

mal contraction

2.4.1 De�nition

Let R;G �
�

;gd

�
. A mapping S : R! G satisfying

Ĥm
�
gd
�
S&kj; S�jk

��
� �

0
BB@
gd (Sq1; Sq2)

� gd
�
Sq1; S&

kj
��
gd
�
S|̂2; S�

jk
�


�
1
2

�
gd
�
Sq1; S�

jk
�
+ gd

�
S|̂2; S&

kj
���1�����


1
CCA ;

(2.14)

whenever, gd
�
&kj; Sq1

�
= gd (R;G); gd

�
�jk; Sq2

�
= gd (R;G), is called an improved

Hardy Rogers interpolative PC-II, where �; �; 
 2 (0; 1) such that � + � + 
 < 1,

&kj; �jk; q1; q2 2 R and Ĥm;� : R+ ! R:

The following example shows that improved Hardy Rogers type interpolative PC-II

generalizes the Hardy Rogers type interpolative PC-II appeared in [23].

2.4.2 Example

Let gd : R2 ! R be a usual metric and R;G be subsets of 
 de�ned as

R = f1; 2; 3; 4; 5; 6; 7g; G = f0; 1; 2; 3; 4; 5g then gd (R;G) = 0:



24

De�ne the functions Ĥm;� : R
+ ! R and S : R! G by

Ĥm (&) =

8
>><
>>:

& + 1 for & = 2;

& + 10 for & 6= 2;
� (&) =

8
>><
>>:

&
2
for & = 2;

& + 5 otherwise;

and S (&) = & � 1 for all & 2 R: We show that S is an improved interpolative Hardy

Rogers PC-II. Indeed, for &kj = 2; �jk = 4; y1 = 3; y2 = 5; and � = 0:2; � = 0:3; 
 =

0:4 we have gd
�
&kj; Sq1

�
= 0 = gd (R;G), gd

�
�jk; Sq2

�
= 0 = gd (R;G) and

Ĥm (2) � �

�
(2)� (1)� (1)


�
1
2
(3 + 1)

�1�����

�

Ĥm (2) � �
�
(2)0:2 (1)0:3 (1)0:4 (2)0:1

�

= �(0:7764)) 3 < 5:7764:

Hence,

Ĥm
�
gd
�
S&kj; S�jk

��
� �

0
BB@
gd (Sq1; Sq2)

� gd
�
Sq1; S&

kj
��
gd
�
Sq2; S�

jk
�


�
1
2

�
gd
�
Sq1; S�

jk
�
+ gd

�
Sq2; S&

kj
���1�����


1
CCA :

Suppose there is some k satisfying the following inequality:

gd
�
S&kj; S�jk

�
� k

0
BB@
gd (Sq1; Sq2)

� gd
�
Sq1; S&

kj
��
gd
�
Sq2; S�

jk
�


�
1
2

�
gd
�
Sq1; S�

jk
�
+ gd

�
Sq2; S&

kj
���1�����


1
CCA :

Then, k 2
�

2
0:7764

;1
�
, which is a contradiction to the assumption that k 2 (0; 1).

Hence, S is not an interpolative Hardy Rogers PC-II.

The criteria for the existence of the bpp of improved interpolative Hardy Rogers

PC S are stated theorems. The proofs are very identical to the proofs of Theorems

2.2.5 and 2.3.3. We only write the distinct parts of the proof.
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2.4.3 Theorem

Let R;G � (
;gd) with the property that �R is a-compact with repect to G� and

(
;gd) be a cms. If S : R! G is a continuous improved interpolative Hardy Rogers

PC-II verifying conditions

(i) Ĥm is non-decreasing function and lim supt!�+� (t) < Ĥm(�+) for any � > 0,

(ii) R0 is non-empty subset of R obeying S(R0) � G0:

Then S has a bpp.

Proof. Starting with the initial input the Theorem 2.2.5, we have

gd(&kjn ; S(&
kj
n�1)) = g

d(R;G);

gd(&kjn+1; S(&
kj
n )) = g

d(R;G); for all n � 1:

Thus by (2:14) we can write

Ĥm(g
d(S&kjn ; S&

kj
n+1)) � �

0
BB@

�
gd
�
S&

kj
n�1S&

kj
n

��� �
gd(S&kjn�1; S&

kj
n )
�� �

gd
�
S&kjn ; S&

kj
n+1

��


�
1
2

�
gd
�
S&

kj
n�1; S&

kj
n+1

�
+ gd

�
S&n; S&

kj
n

���1�����


1
CCA

Ĥm

�
gd
�
S&kjn ; S&

kj
n+1

��
� �

0
BB@

�
gd
�
S&

kj
n�1; S&

kj
n

��� �
gd
�
S&

kj
n�1; S&

kj
n

��� �
gd
�
S&n; S&

kj
n+1

��


�
1
2
gd
�
S&

kj
n�1; S&

kj
n+1

��1�����


1
CCA

Ĥm

�
gd
�
S&kjn ; S&

kj
n+1

��
� �

0
BB@

�
gd
�
S&

kj
n�1S&

kj
n

��� �
gd(S&kjn�1; S&n)

�� �
gd
�
S&n; S&

kj
n+1

��


�
1
2

�
gd
�
S&

kj
n�1; S&

kj
n

�
+ gd

�
S&n; S&

kj
n+1

���1�����


1
CCA

Ĥm

�
gd
�
S&n; S&

kj
n+1

��
� �

0
BB@

�
gd
�
S&

kj
n�1; S&n

���+� �
gd
�
S&n; S&

kj
n+1

��


�
1
2

�
gd
�
S&

kj
n�1; S&n

�
+ gd

�
S&n; S&

kj
n+1

���1�����


1
CCA ;

for all distinct&kjn�1; &
kj
n ; &

kj
n+1 2 R: Let gd(S&kjn ; S&kjn+1) = |swn . Since � (t) < Ĥm (t) for
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all t > 0; we get

Ĥm (dn) < Ĥm

 
(dn�1)

�+� (dn)



�
1

2
(dn�1 + dn)

�1�����
!
: (2.15)

If dn�1 < dn for some n � 1 and by monotonicity of Ĥm, we have

(dn)
�+� < (dn)

�+�
;

which is a false statement, dn < dn�1 for all n 2 N . This implies dn < dn�1 for all

n 2 N: Thus, it converges to some element d � 0: Suppose d > 0; then

Ĥm(d+) = lim
n!1

Ĥm (dn) � lim
n!1

�

 
(dn�1)

�+� (dn)



�
1

2
(dn + dn�1)

�1�����
!
� lim

t!|sw+
�(t):

This contradicts (i), hence, d = 0 and limn!1 gd(S&kjn ; S&
kj
n+1) = 0: We omit the

remaining details as they are similar to proof of Theorem 2.2.5.

2.4.4 Theorem

Let R;G � (
;gd) with the property that �R is a-compact with repect to G� and

(
;gd) be a cms. If S : R! G is a continuous improved interpolative Hardy Rogers

PC-II verifying

(i) Ĥm is non-decreasing and if fĤm(zn)g and f�(zn)g are convergent sequences

satisfying limn!1 Ĥm(zn) = limn!1�(zn), then limn!1 zn = 0,

(ii)R0 is non-void subset of R obeying S(R0) � G0: Then the mapping S has a

bpp.

Proof. This proof follows from the proof of Theorem 2.3.3 and Theorem 2.3.4.
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2.4.5 Remark

If S : R ! R (G = R), then the best proximity point is a �xed point and Theorem

2.2.4, Theorem 2.2.5, Theorem 2.3.3, Theorem 2.3.4, Theorem 2.4.3 and Theorem

2.4.4 are �xed point theorems.

2.5 Application to integral equations

We intend to apply Theorem 2.2.5 (for R � G) to show the existence of the solution

to the following nonlinear Volterra type integral equations:

f(k) =

kZ

0

H&(k; h; f) dh; (2.16)

for all k 2 [0; 1]; & 2 �; and H& is a function de�ned on [0; 1]2 � C([0; 1]; R+) to R:

We show the existence to the solution of (2.16). For f 2 C([0; 1]; R+); the norm as:

kfk� = sup
k2[0;1]

jf(k)j &kj��k, � > 0. De�ne

�� (f;{) =

"
sup
k2[0;1]

jf(k)� {(k)j &kj��k
#
= kf � {k�

for all f;{ 2 C([0; 1]; R+); with these settings, (C([0; 1]; R+); �� ) represents a cms.

Now, we show the following theorem to clarify that the solution of integral equation

exists.

2.5.1 Theorem

Suppose that the mapping H& : [0; 1] � [0; 1] � C([0; 1]; R+) ! R is a continuous

mapping:

jH&(k; h; f)�H&(k; h; c)j �
��� ( ~AM ; c)

��� (f; c) + 1
&kj�h (2.17)
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for every h; k 2 [0; 1] and f; c 2 C([0; 1]; R): Then, integral equation (2.16) has at

most one solution in C([0; 1]; R+) or equivalently the associated operator L& : R! R

de�ned by

(L&f)(k) =

kZ

0

H&(k; h; f) dh; (2.18)

admits a best proximity point.

Proof. By (2.17) and (2.18), we has the following information.

jL&f � L&{j =
kZ

0

jH&(k; h; f)�H&(k; h;{)j dh;

�
kZ

0

��� (f;{)
��� (f;{) + 1

&kj�hdh

� ��� (f;{)
��� (f;{) + 1

kZ

0

&kj�hdh

� �� (f;{)
��� (f;{) + 1

&kj�k:

This implies

jL&f � L&{j &kj��k �
�� (f;{)

��� (f;{) + 1

kL&f � L&{k� �
�� (f;{)

��� (f;{) + 1

��� (f;{) + 1
�� (f;{)

� 1

kL&f � L&{k�
� +

1

�� (f;{)
� 1

kL&f � L&{k�
which further implies

� � 1

kL&f � L&{k�
� �1
�� (f;{)

:

So all the conditions of Theorem 2.2.5 are satis�ed for Ĥm({) = �1
{
; { > 0 and

�({) = Ĥm({)� � . Hence, the integral equation (2.16) admits a solution.
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2.6 Conclusion

The theorems provided here establish a broad criterion a bpp of improved IPC-II.

The results will extend earlier results of Basha [1], Altun and Taşdemir [23], Beg et

al. [9], Espinola et al. [5], Suzuki [4] and others.
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Chapter 3

Best proximity point results for a

class of nonlinear contractions in

metric spaces

3.1 Introduction

Best proximity point theorems look into the possibility of such best proximity point

for approximate solutions to the �xed point equation F (~) = ~ in the absence of a

precise solution. In order to produce global optimal approximate solutions to some

�xed point equations, aims to establish best proximity point theorems for contractive

non-self mappings via interpolation. Iterative strategies are also provided to �nd such

ideal approximative solutions in addition to proving the presence of best proximity

points.
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3.2 Modi�ed proximal contractions

In this section, we explain modi�ed proximal contractions and show that it generalizes

proximal contractions. We prove the existence of the best proximity points of modi�ed

proximal contractions in a complete metric space.

3.2.1 De�nition

Let (W; #) be a complete metric space, and C;D are subsets of W: A mapping P :

C! D is said to be a (J;$)-prox contrs if

# (b1;Pm1) = # (C;D)

# (b2;Pm2) = # (C;D)

9
>>=
>>;
) J (# (b1; b2)) � $ (# (m1;m2)) (3.1)

for all b1; b2;m1;m2 2 C with b1 6= b2; where J;$ : R+ ! R are two mappings:

3.2.2 Example

Let W = R2 and de�ne the function # :W�W! [0;1) by

#((b;m); (u; v)) = jb� uj+ jm� vj for all (b;m); (u; v) 2W:

Then (W; #) is a m.s. Let C;D be the subsets of W de�ned by

C = f(0;m); 0 � m � 1g; D = f(1;m); 0 � m � 1g; then #(C;D) = 1:

De�ne the functions J;F : R+ ! R by

J(z) = z and $(z) = z� z
2

2
; z 2 R+:
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De�ne the mapping P : C ! D by P((0; r)) = (1; r � r2

2
) for all (0; r) 2 C. We

show that P is a (J;$)-prox contrs. For b = (0; b1), u = (0; b2) and m1 = (0; a1),

m2 = (0; a2) (let a1 > a2), we have

#(b;Pm1) = #(C;D) (3.2)

#(u;Pm2) = #(C;D): (3.3)

We note that the equations (3.2) and (3.3) can further be simpli�ed to have the

following information:

b1 = a1 �
a21
2
;

b2 = a2 �
a22
2
:

This implies that

J(#(b; u)) = J(#((0; b1); (0; b2))) = (j 0� 0 j + j b1 � b2 j)

� (a1 � a2)�
1

2
(a1 � a2)2

= #(m1;m2)�
1

2
(#(m1;m2))

2 = $(#(m1;m2))

This shows that P is a (J;$)-prox contrs. Next, we show that it is not a prox

contraction. Since

#(b;Pm1) = #(C;D)

#(u;Pm2) = #(C;D):

If there exists k 2 (0; 1) such that

# (b; u) � k# (m1;m2) :
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Then,

#((0; b1); (0; b2)) � k#((0; a1); (0; a2)

(j 0� 0 j + j b1 � b2 j) � k(j 0� 0 j + j a1 � a2 j)

a1 �
a21
2
� a2 +

a22
2

� k(a1 � a2)

1 +
a1 + a2
2

� k:

This is a contradiction. Hence, P is not a prox contraction.

3.2.3 Theorem

Let P : C ! D be a (J;$)-prox contrs de�ned on a complete m.s (W; #) and

C;D be nonvoid, closed subsets of W such that D is a-compact w.r.t C. If J is nd

and lim supt!�+$ (t) < J(�+) for any � > 0. C0 is non-void subset of C such that

P(C0) � D0:Then P has a bpp.

Proof. Let b0 2 C0. Since P (b0) 2 P (C0) � D0; there exists b1 2 C0 such that,

#(b1; P (b0)) = #(C;D): Also we have P (b1) 2 P (C0) � D0; so, there exist b2 2 C0

such that #(b2; P (b1)) = #(C;D): Then C0 implies to have a seq fbng � C0 such that

#(bn;P(bn�1)) = #(C;D); for all n 2 N: (3.4)

If 9 n 2 N such that bn = bn+1, then by (3:4), then bn is a bpp of the mapping P . If

bn�1 6= bn 8 n 2 N , then by (3:4), we have

#(bn;P(bn�1)) = #(C;D);

#(bn+1;P(bn)) = #(C;D); for all n � 1:
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Thus, by (3.1), we have

J(#(bn; bn+1)) � $(#(bn�1; bn)); for all bn�1; bn; bn+1 2 C:

Let #(bn; bn+1) = �n,

J(�n) � F(�n�1) < J(�n�1): (3.5)

If � > 0, so that, by (3.5), we obtain the following:

J (�+) = lim
n!1

J (�n) � lim
n!1

F (�n�1) � lim
t!�+

supF (t) :

This de�es presumption (i), hence, � = 0 and limn!1 #(bn; bn+1) = 0. Now (i) and

Lemma 1.1.12, we conclude that fbng is a Cauchy seq. Since (W;#) is a complete ms.

Then 9 b� 2 C; st limn!1 #(bn; b
�) = 0. Moreover,

#(b�;P(bn)) � #(b�; bn+1) + #(bn+1;P(bn))

� #(b�; bn+1) + #(C;D)

� #(b�; bn+1) + #(b
�;D):

Therefore, #(b�; P (bn)) ! #(b�; D) as n ! 1. Since D is a-compact w.r.t C, there

exists a subseq fP (bnk )g of fP (bn)g. Such that P (bnk ) ! m� 2 D as k ! 1. Thus,

by solving the following eqation with k !1,

#(bnk+1 ;P(bnk )) = #(C;D); (3.6)

we have,

#(b�; ��) = #(C;D):

Since, l� 2 C0, so, P (b�) 2 P (C0) � D0 and p 2 C0

#(p;P(b�)) = #(C;D): (3.7)
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Now, (3.6) and (3.7), by (3.1) we have

J(#(bnk+1 ; p)) � b(#(bnk ; b�)) < J(#(bnk ; b�)); for all k 2 N:

Since, J is nd,

#(bnk+1 ; p) < #(bnk ; b
�)

Thus, as k !1, we have #(b�; p) = 0 or b� = p. Finally, by (3.7) we have

#(b�;P(b�)) = #(C;D):

Hence, b� is a bpp of the mapping P:

3.2.4 Theorem

Let P : C ! D be a (J;$)-prox contrs de�ned on a complete m.s (W;#) and C;D be

nonvoid, closed subsets ofW such that D is a-compact w.r.t C. If J is nd and fJ(tn)g

and f$(tn)g are cgt seqs st limn!1 J(tn) = limn!1$(tn), then limn!1 tn = 0. C0 is

non-empty subset of C st P (C0) � D0:Then P admits a bpp.

Proof. As Theorem 3.2.3, we have

J(�n) � $(�n�1) < J(�n�1): (3.8)

By (3:8), then fJ (�n)g is a strictly decreasing seq.

inf
�n>"

J (�n) > �1 for every " > 0; n 2 N:

From lemma 1.1.20, indicated that �n ! 0 as n ! 1. Second, the seq fJ(�n)g is

cgt if it is bounded below. The seq f$(�n)g likewise cgs by (3:8). Using (i), we have
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limn!1 �n = 0; for any seq fbng in C. Now, the rest of the proof aligns with the

methodology outlined in Theorem 3.2.3, we have

#(b�;P(b�)) = #(C;D):

Hence, b� is a bpp of the mapping P:

3.2.5 Example

Let W = R2 and de�ne the function # :W�W! [0;1) by

#((b;m); (u; v)) = jb� uj+ jm� vj for all (b;m); (u; v) 2W:

Then (W; #) is a complete m.s. Let C;D be the subsets of W de�ned by

C = f(0;m); 0 � m � 1g; D = f(1;m); 0 � m � 1g; then #(C;D) = 1:

Here C0 = C and D0 = D. De�ne the mapping P : C ! D by P((0; r)) = (1; r
2
) for

all (0; r) 2 C. Thus P (C0) = D0. De�ne the functions J;$ : R+ ! R by

J (b) = 2b and $ (b) = b; b 2 R+.

As J (b) > $ (b) for every b � t > 0. Also lims!"+ J (b) > limb!"+ sup$ (b). We

need to check whether P is a (J;$)-prox contrs or not.

For u1 = (0; b), u2 = (0;m) and v1 = (0; 2b),v2 = (0; 2m)

# (u1;Pv1) = # ((0; b) ;P (0; 2b)) = # (C;D) ;

# (u2;Pv2) = # ((0;m) ;P (0; 2m)) = # (C;D) :

This implies that,

J (# (u1; u2)) � $ (# (v1; v2))
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Therefore, the (J;$)-prox contrs is ful�lled. Also, (0; 0) is the bpp of the mapping

P. Hence, all the conditions of the Theorem 3.2.3 are hold.

3.3 Modi�ed Hardy Rogers type proximal contrac-

tion

3.3.1 De�nition

Let (W; #) be a complete m.s, and C;D be a pair of nonvoid subsets ofW: A mapping

P : C! D is said to be a (J;$)-intplv H-R type prox contrs if there exist �; �; 
; � 2

(0; 1) satisfying � + � + 
 + � < 1 such that

# (b1;Pm1) = # (C;D)

# (b2;Pm2) = # (C;D)

9
>>=
>>;
) J (# (b1; b2)) � $

0
BB@
# (m1;m2)

�
# (m1; b1)

�
# (m2; b2)




�
1
2
(# (m1; b2) + # (m2; b1))

�1�����


1
CCA ;

(3.8)

for all distinct b1; b2;m1;m2 2 C and bi 6= mi; i 2 f1; 2g with # (Pb;Pm) > 0;

J;$ : R+ ! R are two functions:

The following example shows that (J;$)-H-R type intplv prox contrs generalizes

the H-R type intplv prox contrs [23].

3.3.2 Example

Let W = R and de�ne the function # :W�W! R by

# (b;m) =j b�m j
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Then (W; #) is a m.s. Let C;D be the subsets of W de�ned as

C = f1; 2; 3; 4; 5g;D = f1; 2; 3; 4; 5; 6; 7g then # (C;D) = 0

De�ne the functions J;$ : R+ ! R

J (b) =

8
>><
>>:

b+ 1 for b = 2

b+ 10 for b 6= 2
and $ (b) =

8
>><
>>:

b
2

for b = 2

b+ 5 otherwise

9
>>=
>>;

De�ne the mapping P : C! D by P (b) = b + 1 for all b 2 C: We show that P is a

(J;$)-intplv H-R type prox contrs: For b1; b2; m1; m2 2 C;and � = 1
8
; � = 1

7
,
 = 1

6

# (b1;Pm1) = # (C;D)

# (b2;Pm2) = # (C;D)

implies

J (# (b1; b2)) � $
 
# (m1;m2)

�
# (m1; b1)

�
# (m2; b2)




�
1

2
(# (m1; b2) + # (m2; b1))

�1�����
!
:

This shows that P is a (J;$)-H-R intplv type prox contraction. However, the fol-

lowing calculation shows that it is not an intplv H-R type prox contrs. We know

that

# (b1;Pm1) = # (C;D)

# (b2;Pm2) = # (C;D)

If there exists k 2 (0; 1) such that

# (b1; b2) � k

 
# (m1;m2)

�
# (m1; b1)

�
# (m2; b2)




�
1

2
(# (m1; b2) + # (m2; b1))

�1�����
!

2 � k

 
(2)

1
8 (1)

1
7 (1)

1
6

�
1

2
(3 + 1)

�1� 1
8
�
1
7
�
1
6

!

2 � k (1:6138) ;
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a contradiction. Hence, P is not an intplv H-R type prox contraction.

3.3.3 Theorem

Let (W; #) be a complete m.s and C;D be nonvoid, closed subsets ofW such that D

is a-compact w.r.t C. Let P : C! D be an (J;$)� intplv H-R type prox contrs. If

J is nd and for any " > 0;

lim
t!"+

sup$ (t) < J ("+) :

C0 is nonvoid subset of C such that P (C0) � D0:Then P has a bpp.

Proof. Let b0 2 C0. Since P(b0) 2 P(C0) � D0; there exist b1 2 C0 such that,

#(b1;P(b0)) = #(C;D):Similarly, for P(b1) 2 P(C0) � D0; there exists b2 2 C0 such

that #(b2;P(b1)) = #(C;D): Then C0 implies to have a seq fbng � C0 such that

#(bn+1;P(bn)) = #(C;D) (3.9)

so, bn = bn+1, then bn is a bpp of the mapping P (see (3.9)). Assume that bn+1 6= bn

for all n 2 N, then by (3.9) we have

#(bn;P(bn�1)) = #(C;D);

#(bn+1;P(bn)) = #(C;D); for all n � 1:
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Thus by (3.8), we have

J(#(bn; bn+1)) � $

0
BB@
(# (bn�1;bn))

� (#(bn�1; bn))
� (# (bn; bn+1))




�
1
2
(# (bn�1; bn+1) + # (bn; bn))

�1�����


1
CCA

J (# (bn; bn+1)) = $

0
BB@
(# (bn�1;bn))

� (#(bn�1; bn))
� (# (bn; bn+1))




�
1
2
(# (bn�1; bn+1))

�1�����


1
CCA

J (# (bn; bn+1)) � $

0
BB@
(# (bn�1;bn))

� (#(bn�1; bn))
� (# (bn; bn+1))




�
1
2
(# (bn�1; bn) + # (bn; bn+1))

�1�����


1
CCA

J (# (bn; bn+1)) � $

0
BB@
(# (bn�1;bn))

�+� (# (bn; bn+1))



�
1
2
(# (bn�1; bn) + # (bn; bn+1))

�1�����


1
CCA ;

for all distinct bn�1; bn; bn+1 2 C: Let #(bn; bn+1) = �n: Since, $ (t) < J (t) for all

t > 0; so we get

J (�n) < J

 
(�n�1)

�+� (�n)



�
1

2
(�n + �n�1)

�1�����
!
: (3.10)

Assume that for some n � 1; �n�1 < �n: According to (3.10), we have (�n)
�+� <

(�n)
�+� since J is non- decreasing: As a result, for every n 2 N, we obtain �n < �n�1

. This indicates a strictly decreasing seq f�ng. As a result, it approaches an element

� � 0: Consequently, � = 0; in case � > 0; we can derive the following via (3.10):

J(�+) = lim
n!1

J (�n) � lim
n!1

$

 
(�n�1)

�+� (�n)



�
1

2
(�n + �n�1)

�1�����
!
� lim

t!�+
b(t)

This contradicts (i), hence, � = 0 and limn!1 #(bn; bn+1) = 0: we conclude that fbng

is a Cauchy seq. Since (W; #) is a complete m.s and C is a closed subset of W; so,
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there exists b� 2 C, such that limn!1 # (bn; b
�) = 0: Moreover,

#(b�;P (bn)) � #(b�; bn+1) + #(bn+1;P(bn))

� #(b�; bn+1) + #(C;D)

� #(b�; bn+1) + #(b
�;D):

Thus, #(b�;P(bn))! #(b�;D) as n!1. Since D is a-compact w.r.t C, there exists

a subseq fP(bnk )g of fP(bn)g such that P(bnk )! m� 2 D as k!1. Letting k!1

in the following equation:

#(bnk+1 ;P(bnk )) = #(C;D); (3.11)

we have,

#(b�;m�) = #(C;D):

Since, b� 2 C0, so P(b�) 2 P(C0) � D0, there exists p 2 C0 such that

#(p;P(b�)) = #(C;D): (3.12)

Now, using (3.8) in association with (3.9) and (3.10), for all k 2 N, we have

J
�
#
�
bnk+1 ; p

��
� $

0
BB@
(# (bnk ; b

�))�
�
#
�
bnk ; bnk+1

���
(# (b�; p))


�
1
2

�
# (bnk ; p) + #

�
b�; bnk+1

���1�����


1
CCA

< J

0
BB@
(# (bnk ; b

�))�
�
#
�
bnk ; bnk+1

���
(# (b�; p))


�
1
2

�
# (bnk ; p) + #

�
b�; bnk+1

���1�����


1
CCA :

By using the monotonicity of J, for all k 2 N, we have

#
�
bnk+1 ; p

�
� (# (bnk ; b�))

�
�
#
�
bnk ; bnk+1

���
(# (b�; p))


�
1

2

�
# (bnk ; p) + #

�
b�; bnk+1

���1�����

:



43

Thus, as k!1, b� = p. Finally, by (3.12) we have

# (b�;P (b�)) = # (C;D) :

Hence, b� is a bpp of the mapping P:

3.3.4 Theorem

Let (W; #) be a complete m.s and C;D be nonvoid, closed subsets ofW such that D

is a-compact w.r.t C. Let P : C ! D be an (J;$)-intplv H-R type prox contrs. If J

is non-decreasing and fJ (tn)g and fb (tn)g are convergent seqs such that

lim
n!1

J (tn) = lim
n!1

b (tn) ;

then limn!1 tn = 0:C0 is nonvoid subset of C such that P (C0) � D0:Then P has a

bpp.

Proof. The proof aligns with the methodology outlined in Theorem 3.3.3, we

have

J (�n) � $

 
(�n�1)

�+� (�n)



�
1

2
(�n + �n�1)

�1�����
!

< J

 
(�n�1)

�+� (�n)



�
1

2
(�n + �n�1)

�1�����
!
: (3.13)

We establish that fJ (�n)g is a strictly decreasing seq by (3.13). Lemma 1.1.12,

indicates that �n ! 0 as n approaches to 1. Second, the seq fJ (�n)g is cgt if it

is bounded below. The seq fb (�n)g likewise cgs by (3.13), and, both have the same

limit. For each seq fbng in C we have limn!1 # (bn; bn+1) = 0 according to (i) : Now,
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according to Theorem 3.3.3 proof, we have

# (b�;Pb�) = # (C;D) :

Hence, b� is a bpp of the mapping P:

3.4 Conclusion

Generalized interpolative proximal contractions provide a robust framework for solv-

ing proximity problems in various mathematical and applied contexts. The estab-

lished existence and uniqueness results facilitate their practical use, o¤ering signi�cant

insights and solutions in various applied mathematics and engineering �elds.



Chapter 4

New results on best proximity

points via generalized fuzzy

interpolative proximal contractions

4.1 Introduction

In this chapter, we de�ne
�
Ĥm;�

�
-PC and show that it generalizes PC. We ensure

the bpp of
�
Ĥm;�

�
-proximal contraction in a complete nafms followed by supporting

examples. Moreover, we bpp of complete non-Archimedean fuzzy metric space.
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4.2 Proinov type non-Archimedean fuzzy proxi-

mal contraction

In this section, we prove the existence of bpp of
�
Ĥm;�

�
-non-Archimedean fuzzy pc

and
�
Ĥm;�

�
-interpolative nafms in a complete nafms.

4.2.1 De�nition

Let
�

; b�; �

�
be a cnafms and R;S be subsets of 
: A mapping � : R! S is called

�
Ĥm;�

�
-nafpc of the �rst kind

b�
�
&kj;�v1;|sw|sw

�
= b� (R;S; |sw)

b�
�
�jk;�v2;|sw

�
= b� (R;S; |sw)

9
>>=
>>;
) Ĥm

�
b�
�
&kj; �jk;|sw

��
� �

�
b� (v1; v2;|sw)

�
;

(4.1)

for all distinct &kj; �jk; |̂1; v2 2 R with &kj 6= �jk; where Ĥm;� : (0; 1] ! R are two

functions s.t � (t) > Ĥm (t) 8 t 2 (0; 1) :

The following example shows that
�
Ĥm;�

�
-non-Archimedean fuzzy proximal con-

traction generalizes non-Archimedean fuzzy proximal contraction.

4.2.2 Example

Let 
 = R2 , b� : 
� 
� (0;+1)! [0; 1] by

b�(&; v;|sw) = &kj�
g
d((&kj ;v1);(�jk;v2))

|sw

gd((&kj; v1); (�
jk; v2)) =

2

q�
&kj � �jk

�2
+ (v1 � v2)2 for all

�
&kj; v1

�
;
�
�jk; v2

�
2 
:

Then
�

; b�; �

�
is a nafms.
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Let R;S be the subsets of 
 de�ned as

R = f(0; &); & 2 Rg; S = f(1; &); & 2 Rg; then b�(R;S; |sw) = &kj� 1
|sw :

De�ne the functions Ĥm;� : (0; 1]! R by

Ĥm(s) =
2
p
s and �(s) = s2 for s 2 (0; 1) :

De�ne the mapping � : R ! S by �((0; 
)) = (1; 2
) for all (0; 
) 2 R. Let us

consider &kj = (0; 2), v1 = (0; 1) and �
jk = (0; 4), v2 = (0; 2);|sw = 1

b�(&kj;�v1;|sw) = b�((0; 2);�(0; 1);|sw) = &kj�
1

|sw = b�(R;S; |sw); (4.2)

b�(�jk;�v2;|sw) = b�((0; 4);�(0; 2);|sw) = &kj�
1

|sw = b�(R;S; |sw): (4.3)

This implies that

Ĥm

�
b�(&kj; �jk;|sw)

�
� �

�
b�(v1; v2;|sw)

�

b�(&kj; �jk;|sw) = b�((0; 2); (0; 4);|sw) = 0:1353

b�(v1; v2;|sw) = b�((0; 1) ; (0; 2);|sw) = 0:3679:

Ĥm (0:1353) � � (0:3679)

0:3673 > 0:1354

This shows that � is a
�
Ĥm;�

�
-nafmpc. We know that

b�(&kj;�v1;|sw) = b�((0; 2);�(0; 1);|sw) = &kj� 1
|sw = b�(R;S; |sw);

b�(�jk;�v2;|sw) = b�((0; 4);�(0; 2);|sw) = &kj� 1
|sw = b�(R;S; |sw):
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This implies that

b�(&kj; �jk;|sw) � b�(v1; v2;|sw)

0:1353 � 0:3679

This shows that, � is not a nafmpc.

4.2.3 Lemma

Let f&kjn g be a seq in
�

; b�; �

�
s.t limn!1

b�
�
&kjn ; &

kj
n+1;|

sw
�
> 1 � " 8 |sw > 0 and

" 2 (0; 1) and� : R! S be a map satisfying (4.1). If the functions Ĥm;� : (0; 1]! R

are s.t

(1) lim inft!"�� (t) > Ĥm ("�) for any " 2 (0; 1) :

Then f&kjn g is cauchy.

Proof. If f&nkg; f&mk
g and " 2 (0; 1) such that the equations (1:5) and (1:6) hold.

By (1:5), we get that b�
�
&nk+1 ; &mk+1

;|sw
�
< 1�": Since, for &nk ; &mk

; &mk+1
; &nk+1 2 R;

we have

b�
�
&nk+1 ;�&nk ;|

sw
�
= b� (R;S; |sw)

b�
�
&mk+1

;�&nk ;|
sw
�
= b� (R;S; |sw) for all k � 1

Thus, by (4.1) we have

b�
�
b�
�
&nk+1 ; &mk+1

;|sw
��
� �

�
b� (&nk ; &mk

;|sw)
�
; for any k � 1

For if ak = b�
�
&nk+1 ; &mk+1

;|sw
�
and bk = b� (&nk ; &mk

;|sw), we have

Ĥm (ak) � � (bk) ; for any k � 1: (4.4)
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By (1:5) and (1:6), we have limk!1 ak = "� and limk!1 bk = ": By (4.4), we get that

Ĥm ("�) = lim
k!1

Ĥm (ak) � lim inf
k!1

� (bk) � lim inf
c!"

� (c) (4.5)

This is contradicts to the assumption (1). Consequently,
�
&kjn
	
is a cau seq in R.

4.2.4 Theorem

Let
�

; b�; �

�
be a cnafmc and S is a-compact w.r.t R. Let �: R! S be an

�
Ĥm;�

�
-

non-Archimedean fpc of the �rst kind. If

(i) Ĥm is non-decreasing function and lim inft!"�� (t) > Ĥm ("�) for any " 2

(0; 1) :

(ii) � (R0) � S0:

Then � admits a bpp.

Proof. Since �(&kjo ) 2 �(R0) � S0, there exists &kj 2 R0 such that,

b�(&kj;�(&kjo );|sw) = b�(R;S; |sw):

Also we have �(&kj) 2 �(R0) � S0. So, there exist �jk 2 R0 such that

b�(�jk;�(&kj);|sw) = b�(R;S; |sw);

b�(&kjn+1;�(&kjn );|sw) = b�(R;S; |sw): (4.6)

In light, 9 n 2 N s.t &kjn = &
kj
n+1 then from (4.6) the point &kjn is a bpp of �. If
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&kjn 6= &kjn+1 for all n 2 N. Then by (4.6), we have

b�(&kjn ;�(&kjn�1);|sw) = b�(R;S; |sw);

and

b�(&kjn+1;�(&kjn );|sw) = b�(R;S; |sw):

for all n � 1. Thus, by (4.1)

Ĥm(b�(&kjn ; &kjn+1;|sw)) � �(b�(&kjn�1; &kjn ;|sw)):

for all distinct &kjn�1; &
kj
n ; &

kj
n+1 2 R. Let b�(&kjn ; &kjn+1;|sw) = �n. We have

Ĥm (�n) � � (�n�1) > Ĥm (�n�1) : (4.7)

Since Ĥm is nd, so, by (4.7), so �n > �n�1 8 n 2 N. Assume on contrary that � < 1;

so that (4.7), therefore the following holds:

Ĥm ("�) = lim
n!1

Ĥm (�n) � lim
n!1

� (�n�1) � lim
t!&kj�

inf � (t) :

Which is not true to condition (i) ; hence, � = 1 and limn!1
b�
�
&kjn ; &

kj
n+1;|

sw
�
= 1.

The condition (i) and lemma 4.2.3, we conclude that
�
&kjn
	
is a cau seq. Since
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�

; b�; �

�
is a cnafms: Then 9 & 2 R; s.t limn!1

b�
�
&kjn ; &; |

sw
�
= 1: Moreover,

b�(R;S; |sw) = b�(&kjn+1;�(&kjn );|sw)

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&;�(&kjn );|sw)

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�

�
&
kj
n+1;�&

kj
n ;|

sw
�

= b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�(R;S; |sw):

This implies

b�(R;S; |sw) � b�
�
&
kj
n+1; &; |

sw
�
� b�(&;�(&kjn );|sw);

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�(R;S; |sw):

Applying to limit as n!1 for above inequality,

b�(R;S; |sw) � 1 � lim
n!1

b�(&;�(&kjn );|sw);

� 1 � 1 � b�(R;S; |sw):

That is,

lim
n!1

b�(&;�(&kjn );|sw) = b�(R;S; |sw):

Therefore, b�(&;�
�
&kjn
�
;|sw)! b�(&; S; |sw). Since S is a-compact w.r.t R, 9 a subseq

f�(&nk)g of f�(&kjn )g s.t (�&nk)! � 2 S as k !1. Then, k !1

b�(&nk+1 ;�(&nk);|sw) = b�(R;S;|sw); (4.8)

we have,

b�(&; �; |sw) = b�(R;S; |sw):

Since, & 2 R0; so, �(&) 2 �(R0) � S0 there exists � 2 R0 such that

b� (�;�&;|sw) = b�(R;S; |sw): (4.9)
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Now, having in mind the equations (4.8) and (4.9), by (4.1) we have

Ĥm(b�(&nk+1 ; �;|sw)) � �(b�(&nk ; &; |sw)) > Ĥm
�
b� (&nk ; &; |sw)

�

Since, Ĥm is non-decreasing function, so, we have

b�(&nk+1 ; �;|sw) > b� (&nk ; &; |sw)

Thus, as k !1; we have b� (&; �; |sw) = 1 or & = �: Finally, by (4.9) we have

b�(&;�(&) ;|sw) = b� (R;S; |sw) :

4.2.5 Theorem

Let
�

; b�; �

�
be a cnafms and S is a-compact w.r.t R. Let �: R! S be an

�
Ĥm;�

�
-

fpc of the �rst kind. If

(i) Ĥm is non-decreasing and
n
Ĥm (tn)

o
and f� (tn)g are cgt seq s.t limn!1 Ĥm (tn) =

limn!1� (tn) ; then limn!1 (tn) = 1

(ii) R0 is non-empty subset of R such that �(R0) � S0:

Then � admits a best proximity point.
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4.3 Best proximity point and Proinov type proxi-

mal contraction in NAFMS

The aim of this section we introduce new �ndings on bppt, incorporating the functions

(Ĥm;�) : (0; 1] ! R. The example below demonstrates that
�
Ĥm;�

�
-na�rrc is not

equivalent to na�rrctpc.

4.3.1 De�nition

Let
�

; b�; �

�
be a cnafms, and R;S of 
: A mapping � : R ! S is said to be a

�
Ĥm;�

�
-na�rrc proximal contraction of the �rst kind if there exist (�; �) 2 (0; 1)

with �u � < 1:

b�
�
&kj;�v1;|sw

�
= b� (R;S; |sw)

b�
�
�jk;�v2;|sw

�
= b� (R;S; |sw)

9
>>=
>>;

) Ĥm

�
b�
�
�jk; &kj;|sw

��
� �

��
b� (v1; v2;|sw)

�� �b�
�
v1; &

kj;|sw
��� �b�

�
v2; �

jk;|sw
��1�����

:

(4.10)

for all &kj; �jkv1; v2 2 A and & i 6= vi; i 2 f1; 2g with b� (&; v;|sw) > 0 where Ĥm;� :

(0; 1]! R are s.t � (t) > Ĥm (t) for t 2 (0; 1) :

4.3.2 Example

Let 
 = R and de�ne a function b� : 
� 
� (0;1)! [0; 1] by

b� (&; v;|sw) = |sw

|sw + gd(&; v)
:
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Then
�

; b�; �

�
fms. Let R;S are subsets of 
 and de�ned as

R = f1; 2; 3; 4; 5g; S = f1; 2; 3; 4; 5; 6; 7g; then b� (A;B;|sw) = 1:

De�ne the function Ĥm;� : (0; 1]! R by

Ĥm (t) =
2
p
t and � (t) = t 8 t 2 (0; 1) :

De�ne the mapping � : R ! S by �(&) = & + 1: We show that � is a
�
Ĥm;�

�
-

non-Archimedean fuzzy irrctpc of the �rst kind. For this consider &kj = 4; �jk = 2

; v1 = 3; v2 = 1;and � =
1
2
, � = 1

3
but � + � < 1: For |sw = 1; we have,

b�(&kj;�v1;|sw) = b�(4;�3;|sw) = b�(R;S; |sw);

b�(&kj;�v1;|sw) = b�(2;�1;|sw) = b�(R;S; |sw):

Hence, we have to prove that

Ĥm

�
b�
�
�jk; &kj;|sw

��
� �

��
b� (v1; v2;|sw)

�� �b�
�
v1; &

kj;|sw
��� �b�

�
v2; �

jk;|sw
��1�����

;

Ĥm (0:3333) � �
�
(0:3333)

1
2 (0:5)

1
3 (0:3333)1�

1
2
�
1
3

�
;

Ĥm (0:3333) � � (0:4079) ;

0:5773 � 0:4079:

This shows that � is a (Ĥm;�)-non-Archimedean fuzzy interpolative Rich-Rus Ciric

type contraction of the �rst kind. However, the following calculation shows that it is

not a non-Archimedean fuzzy irrctpc of the �rst kind. We know that

b�(&kj;�v1;|sw) = b�(4;�3;|sw) = b�(R;S; |sw);

b�(&kj;�v1;|sw) = b�(2;�1;|sw) = b�(R;S; |sw):
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This implies that,

b�
�
�jk; &kj;|sw

�
�

��
b� (v1; v2;|sw)

�� �b�
�
v1; &

kj;|sw
��� �b�

�
v2; �

jk;|sw
��1�����

;

0:3333 > 0:4079:

This is contradiction.

4.3.3 Theorem

Let
�

; b�; �

�
be a cnafmc and R;S be non-empty, s.t S is a-compact w.r.t R. Let

�: R! S be an
�
Ĥm;�

�
-na�rrctpc of the �rst kind. If

(i) Ĥm is non-decreasing function and lim inft!"�� (t) > Ĥm ("�) for any " 2

(0; 1) ;

(ii) R0 is non-empty subset of R such that �(R0) � S0;

Then � admits a bpp.

Proof. Let &kj0 in R0. Since �(&
kj
0 ) 2 �(R0) � S0; there exists &kj 2 R0 such that,

b�(&kj;�(&kj0 );|sw) = b�(R;S; |sw):

Also we have �(&kj) 2 �(R0) � S0. So, there exist �jk 2 R0 such that

b�(�jk;�(&kj);|sw) = b�(R;S; |sw):

b�(&kjn+1;�(&kjn );|sw) = b�(R;S; |sw): (4.11)

for all n 2 N. Observe that, if there exist n 2 N s.t &kjn = &kjn+1 then from (4.11) the
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point &kjn is a bpp of the mapping �. If &kjn 6= &kjn+1 8 n 2 N. Then by (4.11), we have

b�(&kjn ;�(&kjn�1);|sw) = b�(R;S; |sw); and

b�(&kjn+1;�(&kjn );|sw) = b�(R;S; |sw);

for all n � 1. Thus, by (4:13)

Ĥm(b�(&kjn ; &kjn+1;|sw)) � �
��
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&
kj
n�1; &

kj
n ;|

sw
��� �b�

�
&kjn ; &

kj
n+1;|

sw
��1�����

:

(4.12)

for all distinct &kjn�1; &
kj
n ; &

kj
n+1 2 R by (4.12), we have

Ĥm

�
b�(&kjn ; &kjn+1;|sw)

�
> Ĥm

��
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&
kj
n�1; &n;|

sw
��� �b� (&n; &n+1;|sw)

�1�����
:

Since, Ĥm is nd function, we have

�
b�(&kjn ; &kjn+1;|sw)

�
>

��
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&
kj
n�1; &n;|

sw
��� �b�

�
&n; &

kj
n+1;|

sw
��1�����

:

This implies that

�
b�(&kjn ; &kjn+1;|sw)

��+�
>
�
b�(&kjn�1; &kjn ;|sw)

��+�
:

Let b�
�
&kjn ; &

kj
n+1;|

sw
�
= �n: This implies that

Ĥm ((�n)) � �
�
(�n)

�+� (�n)
1����

�
> Ĥm

�
(�n�1)

�+� (�n)
1����

�
:
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Since Ĥm is nd, so, by (4.12), we have �n > �n�1 for all n 2 N. Assume that � < 1;

so that (4.12), we obtain the following:

Ĥm ("�) = lim
n!1

Ĥm (�n) � lim
n!1

�
�
(�n�1)

�+� (�n)
1����

�
� lim

t!&kj�
inf � (t) :

This is contradicts assumption (i) ; hence, E = 1 and limn!1
b�
�
&kjn ; &

kj
n+1;|

sw
�
= 1:

Now keeping in mind the assumption (i) and Lemma 4.2.3, we conclude that
�
&kjn
	
is

a cau seq. Since
�

; b�; �

�
is a cnafms: Then 9 & 2 R; s.t limn!1

b�
�
&kjn ; &; |

sw
�
= 1:

Moreover,

b�(R;S; |sw) = b�(&kjn+1;�(&kjn );|sw);

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&;�(&kjn );|sw);

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�

�
&
kj
n+1;�&n;|

sw
�
;

= b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�(R;S; |sw):

This implies

b�(R;S; |sw) � b�
�
&
kj
n+1; &; |

sw
�
� b�(&;�(&kjn );|sw)

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�(R;S;|sw):

Applying to limit as n!1 in the above inequality, we get

b�(R;S; |sw) � 1 � lim
n!1

b�(&;�(&kjn );|sw)

� 1 � 1 � b�(R; S;|sw):

That is,

lim
n!1

b�(&�;�(&kjn );|sw) = b�(R;S; |sw):



58

Therefore, b�(&;�
�
&kjn
�
;|sw) ! b�(&; S; |sw) as n ! 1. Since S is a-compact w.r.t

R, 9 a subseq f�(&nk)g of f�(&kjn )g s.t (�&nk) ! � 2 S as k ! 1. Therefore, by

taking k !1 in the following equation,

b�(&nk+1 ;�(&nk);|sw) = b�(R; S; |sw): (4.13)

we have,

b�(&; �; |sw) = b�(R;S; |sw):

Since, & 2 R0; so, �(&) 2 �(R0) � S0 there exists � 2 R0 such that

b� (�;�&;|sw) = b�(R;S; |sw); (4.14)

Now, having in mind the equations (4.13) and (4.14), by (4:13) we have

Ĥm(b�(&nk+1 ; �;|sw)) � �

��
b�(&nk ; &; |sw)

�� �b�
�
&nk ; &nk+1 ;|

sw
��� �b� (&; �; |sw)

�1�����
;

> Ĥm

��
b�(&nk ; &; |sw)

�� �b�
�
&nk ; &nk+1 ;|

sw
��� �b� (&; �; |sw)

�1�����
:

Since, Ĥm is non-decreasing function, so, we have

b�(&nk+1 ; �;|sw) >
�
b�(&nk ; &; |sw)

�� �b�
�
&nk ; &nk+1 ;|

sw
��� �b� (&; �; |sw)

�1����
:

Thus, as k !1; we have b� (&; �; |sw) = 1 or & = �: Finally, by (4.14) we have

b�(&;�(&) ;|sw) = b� (R;S; |sw) :
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4.3.4 Theorem

Let
�

; b�; �

�
be a cnafms and R;S be non-empty, s.t S is a-compact w.r.t R. Let

�: R! S be an
�
Ĥm;�

�
-non-Archimedean fuzzy irrctpc of the �rst kind. If

(i) Ĥm is non-decreasing and
n
Ĥm (tn)

o
and f� (tn)g s.t that limn!1 Ĥm (tn) =

limn!1� (tn) ; then limn!1 (tn) = 1

(ii) � (R0) � S0:

Then � admits a bpp.

4.3.5 De�nition

Let
�

; b�; �

�
be a cnafms, and R;S of 
: A mapping � : R ! S is said to be

�
Ĥm;�

�
-non-Archimedean fuzzy interpolative ktpc of the �rst kind if � 2 (0; 1) such

that

b�
�
&kj;�v1;|sw

�
= b� (R; S; |sw)

b�
�
�jk;�v2;|sw

�
= b� (R;S; |sw)

9
>>=
>>;
;

) Ĥm

�
b�
�
&kj; �jk;|sw

��
� �

��
b�
�
v1; &

kj;|sw
��� �b�

�
v2; �

jk;|sw
��1���

: (4.15)

for all &kj; �jkv1; v2 2 R and & i 6= vi; i 2 f1; 2g with b�(&; v;|sw) > 0: Where Ĥm;� :

(0; 1]! R s.t � (t) > Ĥm (t) for t 2 (0; 1) :

4.3.6 Example

Let 
 = R and de�ne the function b� : 
� 
� (0;1)! [0; 1] by

b� (&; v;|sw) = &kj�
g
d(&;v)
|sw :
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Then
�

; b�; �

�
is a nafms. Let R;S be the subsets of 
 de�ned by

R = f1; 2; 3; 4; 5g; S = f1; 2; 3; 4; 5; 6; 7g; then b� (R; S; |sw) = 1:

De�ne the functions Ĥm;� : (0; 1]! R by

Ĥm (s) =
2
p
s and � (s) = s for all s 2 (0; 1) :

De�ne the mapping � : R ! S by �(&) = & + 1 for all & 2 R: We show that � is a
�
Ĥm;�

�
-non-Archimedean fuzzy iktfpc of the �rst kind: For &kj = 3; �jk = 5; v1 = 2;

v2 = 4; and � =
1
2
; for |sw = 1;

b�(&kj;�v1;|sw) = b� (3;�2;|sw) = 1 = b� (R;S; |sw) ;

b�(�jk;�v2;|sw) = b� (5;�4;|sw) = 1 = b� (R;S; |sw) :

This implies that

Ĥm

�
b�
�
&kj; �jk;|sw

��
� �

��
b�
�
v1; &

kj;|sw
��� �b�

�
v2; �

jk;|sw
��1���

;

Ĥm

�
b� (3; 5; 1)

�
� �

��
b� (2; 3; 1)

� 1
2
�
b� (4; 5; 1)

�1� 1
2

�
;

Ĥm (0:1353) � �
�
(0:3678)

1
2 (0:3678)

1
2

�
;

Ĥm (0:1353) � � (0:3678) ;

0:3678 � 0:3678:

This shows that � is a
�
Ĥm;�

�
-non-Archimedean fuzzy iktfpc of the �rst kind.

However, the following calculations shows that it is not a non Archimedean fuzzy
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iktpc of the �rst kind. We know that

b�(&kj;�v1;|sw) = b� (3;�2;|sw) = 1 = b� (R;S; |sw) ;

b�(�jk;�v2;|sw) = b� (5;�4;|sw) = 1 = b� (R;S; |sw) :

Then,

�
b�
�
&kj; �jk;|sw

��
�

��
b�
�
v1; &

kj;|sw
��� �b�

�
v2; �

jk;|sw
��1���

;

0:1353 � 0:3678:

This is a contradiction.

4.3.7 Theorem

Let
�

; b�; �

�
be a cnafms and R;S be non-empty, s.t S is a-compact with respect to

R. Let �: R! S be an
�
Ĥm;�

�
-iktpc of the �rst kind. If

(i) Ĥm is non-decreasing function and lim inft!"�� (t) > Ĥm ("�) for any " 2

(0; 1) :

(ii) R0 is non-empty subset of R such that �(R0) � S0:

Then � admits a bpp.

Proof. Let &kjo in R0. Since �(&
kj
o ) 2 �(R0) � S0; there exists &kj 2 R0 such that,

b�(&kj;�(&kjo );|sw) = b�(R;S; |sw):

Also we have �(&kj) 2 �(R0) � S0: So, there exist �jk 2 R0 such that

b�(�jk;�(&kj);|sw) = b�(R;S; |sw):
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b�(&kjn+1;�(&kjn );|sw) = b�(R;S; |sw): (4.16)

for all n 2 N. Observe that, if 9 n 2 N s.t &kjn = &kjn+1 then (4.16) the point &
kj
n is a

bpp of the mapping �. If &kjn 6= &kjn+1 for all n 2 N. Then by (4.16), we have

b�(&kjn ;�(&kjn�1);|sw) = b�(R;S; |sw);

and

b�(&kjn+1;�(&kjn );|sw) = b�(R;S; |sw):

for all n � 1. Thus, by (4.15)

Ĥm(b�(&kjn ; &kjn+1;|sw)) � �
��
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&n; &

kj
n+1;|

sw
��1���

: (4.17)

for all distinct &kjn�1; &
kj
n ; &

kj
n+1 2 R by (4.17), we have

Ĥm

�
b�(&kjn ; &kjn+1;|sw)

�
> Ĥm

��
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&n; &

kj
n+1;|

sw
��1���

:

Since, Ĥm is nd function, we have

�
b�(&kjn ; &kjn+1;|sw)

�
>

��
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&kjn ; &

kj
n+1;|

sw
��1���

:

This implies that

�
b�(&kjn ; &kjn+1;|sw)

��
>
�
b�(&kjn�1; &kjn ;|sw)

��
:
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Let b�
�
&kjn ; &

kj
n+1;|

sw
�
= �n: This implies that

Since Ĥm is nd, so, by (4.17), �n > �n�1 8 n 2 N. Assume that � < 1; so that

(4.17), we obtain the following:

Ĥm ("�) = lim
n!1

Ĥm (�n) � lim
n!1

�
�
(�n�1)

� (�n)
1��� � lim

t!E�
inf � (t) :

This is contradicts assumption (i) ; hence, � = 1 and limn!1
b�
�
&kjn ; &

kj
n+1;|

sw
�
= 1.

Now keeping in mind the assumption (i) and Lemma 4.2.3, we conclude that
�
&kjn
	
is

a cau seq. Since
�

; b�; �

�
is a cnafms: Then 9 & 2 R; s.t limn!1

b�
�
&kjn ; &; |

sw
�
= 1:

Moreover,

b�(R;S; |sw) = b�(&kjn+1;�(&kjn );|sw);

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&;�(&kjn );|sw);

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�

�
&
kj
n+1;�&n;|

sw
�
;

= b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�(R;S; |sw):

Above information implies that

b�(R; S;|sw) � b�
�
&
kj
n+1; &; |

sw
�
� b�(&;�(&kjn );|sw)

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�(R;S; |sw):

Applying to limit as n!1 for above inequality,

b�(R;S; |sw) � 1 � lim
n!1

b�(&;�(&kjn );|sw)

� 1 � 1 � b�(R;S; |sw):

That is,

lim
n!1

b�(&;�(&kjn );|sw) = b�(R;S; |sw):
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Therefore, b�(&;�
�
&kjn
�
;|sw)! b�(&; S; |sw) as n!1. Since S is a-compact w.r.t R,

there exists a subseq f�(&kjnk)g of f�(&kjn )g s.t (�&nk)! � 2 S as k !1. Therefore,

by taking k !1 in the following equation,

b�(&nk+1 ;�(&nk);|sw) = b�(R;S; |sw); (4.18)

We have,

b�(&; �; |sw) = b�(R;S; |sw):

Since, &� 2 R0; so, �(&�) 2 �(R0) � S0 there exists � 2 R0 such that

b� (�;�&;|sw) = b�(R;S; |sw): (4.19)

Now, having in mind the equations (4.18) and (4.18), by (4.15) we have

Ĥm(b�(&nk+1 ; �;|sw)) � �

��
b�(&nk ; &nk+1 ;|sw)

�� �b� (&; �; |sw)
�1���

;

> Ĥm

��
b�(&nk ; &nk+1 ;|sw)

�� �b� (&; �; |sw)
�1���

:

Since, Ĥm is non-decreasing function, so, we have

b�(&nk+1 ; �;|sw) >
�
b�(&nk ; &nk+1 ;|sw)

�� �b� (&; �; |sw)
�1��

:

Thus, as k !1; we have b� (&; �; |sw) = 1 or & = �: Finally, by (4.19) we have

b�(&;�(&) ;|sw) = b� (R;S; |sw) :
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4.3.8 Theorem

Let
�

; b�; �

�
be a cnafms and R;S be non-empty, s.t S is a-compact w.r.t R. Let

�: R! S be an
�
Ĥm;�

�
-na�kpc of the �rst kind. If

(i) Ĥm is non-decreasing and
n
Ĥm (tn)

o
and f� (tn)g s.t limn!1 Ĥm (tn) = limn!1� (tn) ;

then limn!1 (tn) = 1:

(ii) � (R0) � S0:

Then � admits a bpp.

4.3.9 De�nition

Let
�

; b�; �

�
be a cnafms, and R;S be a pair of non-empty subsets of 
: A mapping

� : R! S is said to be
�
Ĥm;�

�
-non-Archimedean fuzzy interpolative Hardy Rogers

type pc of the �rst kind if �; �; 
; � 2 (0; 1) s.t � + � + 
 + � < 1:

b�
�
&kj;�v1;|sw

�
= b� (R;S; |sw)

b�
�
�jk;�v2;|sw

�
= b� (R;S; |sw)

9
>>=
>>;

) Ĥm

�
b�
�
&kj; �jk;|sw

��
� �

0
BBBBBB@

�
b� (v1; v2;|sw)

�� �b�
�
v1; &

kj;|sw
���

�
b�
�
v2; �

jk;|sw
��
 �b�

�
v1; �

jk;|sw
���

�
b�
�
v2; &

kj;|sw
��1�����
��

1
CCCCCCA
:(4.20)

for all &kj; �jkv1; v2 2 R and & i 6= vi; i 2 f1; 2g with b� (�&;�v; |sw) > 0 where

Ĥm;� : (0; 1]! R s.t � (t) > Ĥm (t) for t 2 (0; 1) :
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4.3.10 Example

Let 
 = R2 and b� : 
� 
� (0;1)! [0; 1] by

b� (&; v;|sw) = |sw

|sw + gd (&; v)
where gd (&; v) =j &kj � v1 j + j �jk � v2 j;

for all &kj; v1; �
jk; v2 2 
: Then

�

; b�; �

�
is a fms. Let R, S be the subset of 
 de�ned

by

R = f(0; &) ; & 2 Rg , S = f(1; 0) ; & 2 Rg ; then b� (R;S; |sw) = |sw

|sw + 1
:

De�ne the functions Ĥm;� : (0; 1]! R by

Ĥm (s) =
2
p
s and � (s) = s2 for all s 2 (0; 1) :

De�ne the mapping � : R! S by

�(s) =

8
>><
>>:

(1; s) if s 2 [�1; 1]

(1; s2) otherwise

9
>>=
>>;
for all s 2 R:

We show that � is
�
Ĥm;�

�
-non-Archimedean fuzzy interpolative Hardy Rogers type

pc of the �rst kind. Let & = (0; 4) ; v = (0; 2) ; x = (0; 9) ; y = (0; 3) let � = 0:01; � =

0:02; 
 = 0:03; � = 0:04 and also |sw = 1 then we have

b� (&;�v; |sw) = b� ((0; 4) ;�(0; 2) ;|sw) = |sw

|sw + 1
= b� (R;S; |sw) ;

b� (x;�y; |sw) = b� ((0; 9) ;�(0; 3) ;|sw) = |sw

|sw + 1
= b� (R;S; |sw) :
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This implies that

Ĥm

�
b� (&; x;|sw)

�
� �

0
BB@

�
b� (v; y; |sw)

�� �b� (v; &;|sw)
�� �b� (y; x; |sw)

�


�
b� (v; x; |sw)

�� �b� (y; &;|sw)
�1�����
��

1
CCA ;

Ĥm (0:1667) � �

0
BB@
(0:5)0:01 (0:3333)0:02 (0:1429)0:03

(0:125)0:04 (0:5)0:9

1
CCA ;

Ĥm (0:1667) � � (0:4519) ;

0:4082 � 0:2042:

This shows that � is a
�
Ĥm;�

�
-non-Archimedean fuzzy interpolative Hardy Rogers

type proximal contraction of the �rst kind. However, the following calculations show

that it is not-non-Archimedean fuzzy interpolative Hardy Rogers type pc of the �rst

kind. let � = 0:01; � = 0:02; 
 = 0:03; � = 0:04 for |sw = 1; We know that

b� (&;�v; |sw) = b� ((0; 4) ;�(0; 2) ;|sw) = |sw

|sw + 1
= b� (R;S; |sw) ;

b� (x;�y; |sw) = b� ((0; 9) ;�(0; 3) ;|sw) = |sw

|sw + 1
= b� (R;S; |sw) :

This implies that

�
b� (&; x;|sw)

�
�

�
b� (v; y; |sw)

�� �b� (v; &; |sw)
�� �b� (y; x; |sw)

�


�
b� (v; x; |sw)

�� �b� (y; &;|sw)
�1�����
�� ;

0:1667 � 0:4519:

This is a contradiction.

4.3.11 Theorem

Let
�

; b�; �

�
be a cnafms and R; S be non-empty, closed subsets of 
 such that S is

a-compact w.r.t R. Let �: R ! S be an
�
Ĥm;�

�
-interpolative Hardy Rogers type
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pc of the �rst kind. If

(i) Ĥm is non-decreasing function and lim inft!"�� (t) > Ĥm ("�) for any " 2

(0; 1) :

(ii) � (R0) � S0:

Then � admits a bpp.

Proof. Let &kjo in R0. Since �(&
kj
o ) 2 �(R0) � S0; there exists &kj 2 R0 such that,

b�(&kj;�(&kjo );|sw) = b�(R;S; |sw):

Also we have �(&kj) 2 �(R0) � S0: So, there exist �jk 2 R0, such that

b�(�jk;�(&kj);|sw) = b�(R;S; |sw):

b�(&kjn+1;�(&kjn );|sw) = b�(R;S; |sw); (4.21)

for all n 2 N. Observe that, if 9 n 2 N s.t &kjn = &kjn+1 then from (4.21) the point &kjn

is a bpp of the mapping �. If &kjn 6= &kjn+1 8 n 2 N. Then by (4.21), we have

b�(&kjn ;�(&kjn�1);|sw) = b�(R;S; |sw); and

b�(&kjn+1;�(&kjn );|sw) = b�(R;S; |sw);

8 n � 1. Thus, by (4.20)

Ĥm(b�(&kjn ; &kjn+1;|sw)) � �

0
BB@

�
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&
kj
n�1; &n;|

sw
��� �b�

�
&n; &

kj
n+1;|

sw
��


�
b�
�
&
kj
n�1; &

kj
n+1;|

sw
��� �b� (&n; &n;|sw)

�1�����
��

1
CCA ;
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Ĥm(b�(&n; &kjn+1;|sw)) � �

0
BB@

�
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&
kj
n�1; &n;|

sw
���

�
b�
�
&kjn ; &

kj
n+1;|

sw
��
 �b�

�
&
kj
n�1; &

kj
n+1;|

sw
���

(1)1�����
��

1
CCA ;

Ĥm(b�(&kjn ; &kjn+1;|sw)) � �

0
BB@

�
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&
kj
n�1; &n;|

sw
���

�
b�
�
&kjn ; &

kj
n+1;|

sw
��
 �b�

�
&
kj
n�1; &

kj
n+1;|

sw
���

1
CCA ;

Ĥm(b�(&kjn ; &kjn+1;|sw)) � �

0
BB@

�
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&
kj
n�1; &n;|

sw
��� �b�

�
&n; &

kj
n+1;|

sw
��


�
b�
�
&
kj
n�1; &

kj
n ;|

sw
��� �b�

�
&n; &

kj
n+1;|

sw
���

1
CCA :

(4.22)

8 distinct &kjn�1; &kjn ; &kjn+1 2 R by (4.22), we have

Ĥm

�
b�(&kjn ; &kjn+1;|sw)

�
> Ĥm

0
BB@

�
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&
kj
n�1; &n;|

sw
��� �b�

�
&n; &

kj
n+1;|

sw
��


�
b�
�
&
kj
n�1; &

kj
n ;|

sw
��� �b�

�
&n; &

kj
n+1;|

sw
���

1
CCA :

Since, Ĥm is non decreasing function, we have

�
b�(&kjn ; &kjn+1;|sw)

�
>

�
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&
kj
n�1; &n;|

sw
��� �b�

�
&n; &

kj
n+1;|

sw
��


�
b�
�
&
kj
n�1; &

kj
n ;|

sw
��� �b�

�
&n; &

kj
n+1;|

sw
��� :

This implies that

�
b�(&kjn ; &kjn+1;|sw)

�
>
�
b�(&kjn�1; &kjn ;|sw)

��+�+� �b�
�
&kjn ; &

kj
n+1;|

sw
��
+�

:

Let b�
�
&n; &

kj
n ;|

sw
�
= �n: This implies that

Ĥm ((�n)) � �
�
(�n�1)

�+�+� (�n)

+�
�
> Ĥm

�
(�n)

�+�+� (�n)

+�
�
:

Suppose that �n�1 > �n for some n � 1: Since Ĥm is non- decreasing, we have

(�n)
�+�+� < (�n)

�+�+�
: This is not possible. Consequently, we have �n > �n�1 for all
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n 2 N. This implies �n > �n�1 for all n 2 N: Assume contrary � < 1; we obtain the

following:

Ĥm ("�) = lim
n!1

Ĥm (�n) � lim
n!1

�
�
(�n�1)

�+�+� (�n)

+�
�
� lim

t!&kj�
inf � (t) :

This is contradicts assumption (i) ; hence, � = 1 and limn!1
b�
�
&kjn ; &

kj
n+1;|

sw
�
=

1:Now keeping in mind the assumption (i) and Lemma 4.2.3, we conclude that
�
&kjn
	

is a cau seq. Since
�

; b�; �

�
is a cfms: Then 9 & 2 R; s.t limn!1

b�
�
&kjn ; &; |

sw
�
= 1:

Moreover,

b�(R;S; |sw) = b�(&kjn+1;�(&kjn );|sw);

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&;�(&kjn );|sw);

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�

�
&
kj
n+1;�&n;|

sw
�
;

= b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�(R;S; |sw):

This implies

b�(R; S; |sw) � b�
�
&
kj
n+1; &; |

sw
�
� b�(&;�(&kjn );|sw);

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�(R; S;|sw):

Applying to limit as n!1 for above inequality

b�(R;S; |sw) � 1 � lim
n!1

b�(&;�(&kjn );|sw)

� 1 � 1 � b�(R;S; |sw):

That is,

lim
n!1

b�(&;�(&kjn );|sw) = b�(R;S; |sw):
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Therefore, b�(&;�
�
&kjn
�
;|sw) ! b�(&; S; |sw) as n ! 1. Since S is a-compact w.r.t

R, 9 a subseq f�(&nk)g of f�(&kjn )g s.t (�&nk) ! � 2 S as k ! 1. Therefore, by

taking k !1 in the following equation,

b�(&nk+1 ;�(&nk);|sw) = b�(R; S; |sw): (4.23)

we have,

b�(&; �; |sw) = b�(R;S; |sw):

Since, & 2 R0; so, �(&) 2 �(R0) � S0 there exists � 2 R0 such that

b� (�;�&;|sw) = b�(R;S; |sw): (4.24)

Now, having in mind the equations (4.23) and (4.24), by (4.20) we have

Ĥm(b�(&nk+1 ; �;|sw)) � �

0
BB@

�
b�(&nk ; &; |sw)

�� �b�
�
&nk ; &nk+1 ;|

sw
��� �b� (&; �; |sw)

�


�
b� (&nk ; �;|sw)

�� �b�
�
&; &nk+1 ;|

sw
��1�����
��

1
CCA

> Ĥm

0
BB@

�
b�(&nk ; &; |sw)

�� �b�
�
&nk ; &nk+1 ;|

sw
��� �b� (&; �; |sw)

�


�
b� (&nk ; �;|sw)

�� �b�
�
&; &nk+1 ;|

sw
��1�����
��

1
CCA :

Since, Ĥm is non-decreasing function, so, we have

b�(&nk+1 ; �;|sw) >

�
b�(&nk ; &; |sw)

�� �b�
�
&nk ; &nk+1 ;|

sw
��� �b� (&; �; |sw)

�


�
b� (&nk ; �;|sw)

�� �b�
�
&; &nk+1 ;|

sw
��1�����
�� :

Thus, as k !1; we have b� (&; �; |sw) = 1 or & = �: Finally, by (4.24) we have

b�(&;�(&) ;|sw) = b� (R;S; |sw) :
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4.3.12 Theorem

Let
�

; b�; �

�
be a cnafms and R;S be non-empty, s.t S is a-compact w.r.t R. Let

�: R! S be an
�
Ĥm;�

�
-non-Archimedean fuzzy interpolative Hardy Rorgers type

pc of the �rst kind. If

(i) Ĥm is non-decreasing and
n
Ĥm (tn)

o
and f� (tn)g s.t limn!1 Ĥm (tn) = limn!1� (tn) ;

then limn!1 (tn) = 1:

(ii) � (R0) � S0:

Then � admits a bpp.

4.4 Conclusion

The main aim of our chapter is to present new concepts of bppt for (Ĥm;�)-fuzzy

ipc, thereby extending Proinov type fpr in a fms principle [25] to the case of non-self

mappings.



Chapter 5

Best proximity point results for

proximal contractions in fuzzy

metric spaces

5.1 Introduction

In this chapter, we introduced a new type of interpolative proximal contractive con-

dition that bpp of fuzzy mappings.We establish certain bppt for such pc. We improve

and generalize the fuzzy proximal contractions by introducing fuzzy proximal inter-

polative contractions. We explain some bpp results in fms by introducing new fuzzy

interpolative contraction mappings.

73
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5.2 Modi�ed Kannan type proximal contraction in

fuzzy metric space

5.2.1 De�nition

Let (&; F; �) be a cnafms and R;G � U: A mapping � : R! G is said to be iktpc, if

there exist � 2 [0; 1) and � 2 (0; 1) such that

b�
�
&kj; �jk;|sw

�
� �

��
b�
�
v1; &

kj;|sw
��� �b�

�
v2; �

jk;|sw
��1���

; (5.1)

for all &kj; �jkv1; v2 2 R, |sw > 0 and & i 6= vi; i 2 f1; 2g whenever b�
�
&kj;�v1;|sw

�
=

b� (R;G;|sw), b�
�
�jk;�v2;|sw

�
= b� (R;G;|sw) and b� (&; v; |sw) > 0:

5.2.2 Example

Let U = R� R, b� : U � U � (0;1)! [0; 1] by

b� (&; |̂;|sw) = |sw

|sw + gd
�
(&kj; |̂1) ;

�
�jk; |̂2

�� ;

for all
�
&kj; |̂1

�
;
�
�jk; |̂2

�
2 U where gd

��
&kj; |̂1

�
;
�
�jk; |̂2

��
=j &kj � |̂1 j + j �jk � |̂2j.

Then
�
U; b�; �

�
is a nafms. Let R;G � U de�ned by

R =

��
0;
1

n

�
;n 2 N

�
[ f(0; 0)g ;

G = f
�
1;
1

n

�
;n 2 Ng [ f(1; 0)g :

De�ne b�(R;G;|sw) = supfb�(&; |̂;|sw) : & 2 R; |̂ 2 G and |sw > 0g: So, we have

b�(R;G;|sw) = |
sw

|sw+1
, R0 (|sw) = R and G0 (|sw) = G: De�ne the mapping � : R !
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G by

�
�
&kj; �jk

�
=

8
>><
>>:

�
1; 1

2n

�
; if

�
&kj; �jk

�
=
�
0; 1

n

�
for all n 2 N

(1; 0) ; if
�
&kj; �jk

�
= (0; 0)

for all
�
&kj; �jk

�
2 R: Then, clearly �(R0) � G0. Now, we show that � is a iktpc:

For &kj =
�
0; 1

2

�
; �jk =

�
0; 1

4

�
; |̂1 = (0; 1) ; |̂2 =

�
0; 1

2

�
; � = 1

2
; � = 1

3
and |sw = 1:

b�(&kj;�|̂1;|sw) = b�
��
0;
1

2

�
;�(0; 1) ; 1

�
;

= b� (R;G;|sw) ; and

b�(�jk;�|̂2;|sw) = b�
��
0;
1

4

�
;�

�
0;
1

2

�
; 1

�
;

= b� (R;G;|sw) :

Above information implies that,

b�
�
&kj; �jk;|sw

�
= b�

��
0;
1

2

�
;

�
0;
1

4

�
; 1

�
;

� �
�
b�
�
|̂1; &

kj;|sw
��� �b�

�
|̂2; �

jk;|sw
��1��

;

� �

�
b�
�
(0; 1) ;

�
0;
1

2

�
; 1

�� 1
2
�
b�
��
0;
1

2

�
;

�
0;
1

4

�
; 1

��1� 1
2

;

which yield,

0:5714 � 0:1826:

This shows that � is a interpolative Kannan type contraction. However, for &kj =

�
0; 1

2

�
; �jk =

�
0; 1

4

�
; |̂1 = (0; 1) ; |̂2 =

�
0; 1

2

�
; � = 0:499 and |sw = 1: Now, we have

b�(&kj;�|̂1;|sw) = b�
��
0;
1

2

�
;�(0; 1) ; 1

�
;

= b� (R;G;|sw) ; and
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b�(�jk;�|̂2;|sw) = b�
��
0;
1

4

�
;�

�
0;
1

2

�
; 1

�
;

= b� (R;G;|sw) :

Above information implies that

�
b�
�
&kj; �jk;|sw

��
= b�

��
0;
1

2

�
;

�
0;
1

4

�
; 1

�
;

� �
��
b�
�
|̂1; &

kj;|sw
��
+
�
b�
�
|̂2; �

jk;|sw
���

;

= �

0
BB@

�
b�
�
(0; 1) ;

�
0; 1

2

�
; 1
��

+b�
��
0; 1

2

�
;
�
0; 1

4

�
; 1
�

1
CCA ;

which yield

0:5714 � � (0:4 + 0:75) ;

0:5714 � 0:5739:

This is a contradiction. Hence, � is not a Kannan type contraction.

Next, we start our main results:

5.2.3 Theorem

Let
�
U; b�; �

�
be a cnafms and R;G � U such that G is a-compact with respect to

R. Let �: R! G iktpc. If R0 � R such that �(R0) � G0: Then � admits a bpp.

Proof. Let &kjo 2 R0. Since �(&kjo ) 2 �(R0) � G0 there exist &kj 2 R0 such that,

b�(&kj;�(&kjo );|sw) = b�(R;G;|sw):
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Also we have �(&kj) 2 �(R0) � G0. So, there exist �jk 2 R0 such that,

b�(�jk;�(&kj);|sw) = b�(R;G;|sw):

b�(&kjn+1;�(&kjn );|sw) = b�(R;G;|sw); (5.2)

8 n 2 N. Observe that, if 9 n 2 N such that &kjn = &kjn+1 then from (5.2), the point &kjn

is a bpp of the mapping �. If &kjn 6= &kjn+1 8 n 2 N. Then by (5.2), we have

b�(&kjn ;�(&kjn�1);|sw) = b�(R;G;|sw);

and

b�(&kjn+1;�(&kjn );|sw) = b�(R;G;|sw):

for all n � 1. Thus, by (5.1),

(b�(&kjn ; &kjn+1;|sw)) � �
�
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&kjn ; &

kj
n+1;|

sw
��1��

; (5.3)

for all distinct &kjn�1; &
kj
n ; &

kj
n+1 2 R. Since, by (5.3), we have

b�(&kjn ; &kjn+1;|sw) � �
�
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&kjn ; &

kj
n+1;|

sw
��1��

;

�
b�(&kjn ; &kjn+1;|sw)

��
� �

�
b�(&kjn�1; &kjn ;|sw)

��
: (5.4)

So, by (5.4), let �n = b�
�
&kjn ; &

kj
n+1;|

sw
�
. We have �n�1 < �n 8 n 2 N. Now from (5.4),

we have

b�(&kjn ; &kjn+1;|sw) � �
1
� b�(&kjn�1; &kjn ;|sw);

� �
2
� b�(&n�2; &kjn�1;|sw);

...

� �
n
� b�(&kj; &kjo ;|sw):
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Then �n (|sw) > �n�1 (|sw) ; that is the sequence f�ng is non-decreasing sequence

for all |sw > 0. Consequently, there exist � (|sw) � 1 such that limn!1 �n (|sw) =

� (|sw). Now, � (|sw) = 1. Suppose, 0 < � (|sw0 ) < 1 for some |sw0 > 0: Since

�n (|sw0 ) � � (|sw0 ) ; by taking the limit with |sw = |sw0 . We obtain

� (|sw0 ) � �
1
� � (|sw0 ) > � (|

sw
0 ) :

Which is contradiction and hence, � (|sw) = 1 for all |sw > 0. Now, we show
�
&kjn
	

is a cau seq. Then 9 � 2 (0; 1) and |sw0 > 0 s.t 8 k 2 N, 9 n (k) ;m (k) 2 N with

m (k) > n (k) � k and

b�
�
&
kj

m(k); &
kj

n(k);|
sw
0

�
� 1� �:

b�
�
&m(k)�1; &

kj

n(k);|
sw
0

�
> 1� �:

and so 8 k we get

1� � � b�
�
&
kj

m(k); &
kj

n(k);|
sw
�
;

� b�
�
&m(k)�1; &

kj

m(k);|
sw
�
� b�

�
&m(k)�1; &

kj

n(k);|
sw
�
; (5.5)

> Hm(k) (|
sw
0 ) � (1� �) :

Putting limit n!1 in (5.5), that

lim
n!1

b�
�
&
kj

m(k); &
kj

n(k);|
sw
0

�
= 1� �;

from,

b�
�
&
kj

m(k)+1; &
kj

n(k)+1;|
sw
0

�
� b�

�
&
kj

m(k)+1; &
kj

m(k);|
sw
0

�
� b�

�
&
kj

m(k); &
kj

n(k);|
sw
0

�

�b�
�
&
kj

n(k); &
kj

n(k)+1;|
sw
0

�
;
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and

b�
�
&
kj

m(k); &
kj

n(k);|
sw
0

�
� b�

�
&
kj

m(k); &
kj

m(k)+1;|
sw
0

�
� b�

�
&
kj

m(k); &
kj

n(k)+1;|
sw
0

�

�b�
�
&
kj

n(k)+1; &
kj

n(k);|
sw
0

�
;

we get,

lim
n!1

b�
�
&
kj

m(k)+1; &
kj

n(k)+1;|
sw
0

�
= 1� �:

From equation (5.2), we know that

b�
�
&
kj

m(k)+1;�&
kj

m(k);|
sw
0

�
= b� (R;G;|sw0 ) and b�

�
&
kj

n(k)+1;�&
kj

n(k);|
sw
0

�
= b� (R;G;|sw0 ) :

So by (5.1),

b�
�
&
kj

m(k)+1; &
kj

n(k)+1;|
sw
0

�
� �

�
b�
�
&
kj

m(k); &
kj

m(k)+1;|
sw
0

��� �b�
�
&
kj

n(k); &
kj

n(k)+1;|
sw
0

��1��
;

taking lim k !1; we get

1� � � � (1� �) > 1� �:

this is wrong. Then f&ng is cau seq. Since
�
&; b�; �

�
is a cnafms: Then 9 & 2 R; s.t

limn!1
b�
�
&kjn ; &; |

sw
�
= 1: Moreover,

b�(R;G;|sw) = b�(&kjn+1;�(&kjn );|sw);

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&;�(&kjn );|sw);

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�

�
&
kj
n+1;�&n;|

sw
�
;

= b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�(R;G;|sw):

This implies,

b�(R;G;|sw) � b�
�
&
kj
n+1; &; |

sw
�
� b�(&;�(&kjn );|sw);

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�(R;G;|sw):
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Applying to limit as n!1 for above inequality,

b�(R;G;|sw) � 1 � lim
n!1

b�(&;�(&kjn );|sw);

� 1 � 1 � b�(R;G;|sw):

That is,

lim
n!1

b�(&;�(&kjn );|sw) = b�(R;G;|sw):

Therefore, b�(&;�
�
&kjn
�
;|sw) ! b�(&; G;|sw) as n ! 1. Since G is a-compact w.r.t

R, then 9 � 2 R0 (|sw) s.t,

b� (�;�&;|sw) = b�(R;G;|sw) = b�(&kjn+1;�(&kjn );|sw): (5.6)

We now show that & = �. If not, then

b�
�
�; &

kj
n+1;|

sw
�
� �

�
b� (&; �; |sw)

�� �b�
�
&kjn ; &

kj
n+1;|

sw
��1��

;

on taking limit as n!1 gives

b� (�; &; |sw) � �
�
b� (&; �; |sw)

��
>
�
b� (&; �; |sw)

��
:

Which is contradiction. Hence b� (&;�&;|sw) = b�(R;G;|sw) = b� (�;��;|sw), that is

, & is the best proximity point. We show that & is the unique bpp of �: Assume, that

0 < b� (&; |̂;|sw) < 1 8 |sw > 0 and |̂ 6= & is another bpp of �; i.e., b� (&;�&;|sw) =

b�(R;G;|sw) = b� (|̂;�|̂;|sw) then from (5.1),

b� (&; |̂;|sw) � �
�
b� (&; &;|sw)

�� �b� (|̂; |̂;|sw)
�1��

> 1:

Which is contradiction and hence b� (&; |̂;|sw) = 1 for all |sw > 0, that is & = |̂:
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5.3 Modi�ed Reich-Rus-Ciric type proximal con-

traction in fuzzy metric space

5.3.1 De�nition

Let
�
U; b�; �

�
be a cnafms, and R;G � U: A mapping � : R! G is called irrpc, if 9

�; � 2 (0; 1) and � 2 [0; 1) with � + � < 1:

b�
�
u2; &

kj;|sw
�
� �

�
b� (|̂1; |̂2;|sw)

�� �b�
�
|̂1; &

kj;|sw
��� �b�

�
|̂2; �

jk;|sw
��1����

;

(5.7)

for all &kj; �jk |̂1; |̂2 2 R; |sw > 0 and & i 6= |̂i; i 2 f1; 2g whenever b�
�
&kj;�|̂1;|sw

�
=

b� (R;G;|sw), b�
�
�jk;�|̂2;|sw

�
= b� (R;G;|sw) and b� (&; |̂;|sw) > 0:

5.3.2 Example

Let U = R2, b� : U � U � (0;+1)! [0; 1] by

b�(&; |̂;|sw) = |sw

|sw + gd (&; |̂)
;

where gd((&kj; |̂1); (�
jk; |̂2)) =

2

q�
�jk � &kj

�2
+ (|̂2 � |̂1)2 for all

�
&kj; |̂1

�
;
�
�jk; |̂2

�
2 U:

Then
�
U; b�; �

�
is a nafms. Let R;G � U de�ned as

R = f(0; &); & 2 Rg;

G = f(1; &); & 2 Rg:

De�ne b�(R;G;|sw) = supfb�(&; |̂;|sw) : & 2 R; |̂ 2 G and |sw > 0g. So we have

b�(R;G;|sw) = |
sw

|sw+1
, R0 (|sw) = R, G0 (|sw) = G: De�ne the mapping � : R ! G
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by

�((0; 
)) = (1; 2
),

for all (0; 
) 2 R. Then clearly �(R0) � G0. Now, we show that � is a irrpc. For

&kj = (0; 2), |̂1 = (0; 1), �
jk = (0; 4), |̂2 = (0; 2); |sw = 1; � = 1

2
; � = 1

3
and � = 0:27:

b�(&kj;�|̂1;|sw) = b�((0; 2);�(0; 1); 1);

= b�(R;G;|sw); and

b�(�jk;�|̂2;|sw) = b�((0; 4);�(0; 2); 1);

= b�(R;G;|sw):

Above information implies that,

b�(&kj; �jk;|sw) = b�((0; 2); (0; 4); 1);

� �

��
b�(|̂1; |̂2;|sw)

�� �b�
�
|̂1; &

kj;|sw
��� �b�

�
|̂2; �

jk;|sw
��1�����

;

= �

0
BB@

�
b�((0; 1) ; (0; 2) ;|sw)

� 1
2
�
b� ((0; 1) ; (0; 2) ; 1)

� 1
3

�
b� ((0; 2) ; (0; 4) ; 1)

�1� 1
2
�
1
3

1
CCA ;

which yield

0:3333 � 0:1557:

Then � is a irrpc. However, for u1 = (0; 2), |̂1 = (0; 1) and �
jk = (0; 4), |̂2 = (0; 2);

� = 0:27. Now, we have

b�(&kj;�|̂1;|sw) = b�((0; 2);�(0; 1); 1);

= b�(R;G;|sw); and
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b�(�jk;�|̂2;|sw) = b�((0; 4);�(0; 2); 1);

= b�(R;G;|sw):

Above information implies that,

b�(&kj; �jk;|sw) = b�((0; 2); (0; 4); 1);

� �
�
b�(|̂1; |̂2;|sw) + b�

�
|̂1; &

kj;|sw
�
+ b�

�
|̂2; �

jk;|sw
��
;

= �

0
BB@
b�((0; 1) ; (0; 2) ;|sw) + b� ((0; 1) ; (0; 2) ; 1)+

b� ((0; 2) ; (0; 4) ; 1)

1
CCA ;

which yield,

0:3333 � 0:3599:

This is a contradiction.

5.3.3 Theorem

Let
�
U; b�; �

�
be a cnafms and R;G � U s.t G a-compact w.r.t R. Let �: R! G be

a irrpc. If R0 � R such that �(R0) � G0: Then � admits a bpp.

Proof. Let &kjo 2 R0. Since �(&kjo ) 2 �(R0) � G0, so 9 &kj 2 R0 s.t,

b�(&kj;�(&kjo );|sw) = b�(R;G;|sw):

Also we have �(&kj) 2 �(R0) � G0. So, there exist �jk 2 R0 such that,

b�(�jk;�(&kj);|sw) = b�(R;G;|sw):

b�(&kjn+1;�(&kjn );|sw) = b�(R;G;|sw): (5.8)
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8 n 2 N. Observe that, if 9 n 2 N s.t &kjn = &kjn+1 then from (5.8), the point &kjn is a

bpp of the mapping �. If &kjn 6= &kjn+1 8 n 2 N. Then by (5.8), we have

b�(&kjn ;�(&kjn�1);|sw) = b�(R;G;|sw); and

b�(&kjn+1;�(&kjn );|sw) = b�(R;G;|sw);

for all n � 1. Thus, by (5.7),

(b�(&kjn ; &kjn+1;|sw)) � �
��
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&
kj
n�1; &n;|

sw
��� �b�

�
&n; &

kj
n+1;|

sw
��1�����

;

(5.9)

for all distinct &kjn�1; &
kj
n ; &

kj
n+1 2 R. Since, by (5.9), we have

(b�(&kjn ; &kjn+1;|sw)) � �
��
b�(&kjn�1; &kjn ;|sw)

�� �b�
�
&
kj
n�1; &n;|

sw
��� �b�

�
&n; &

kj
n+1;|

sw
��1�����

;

b�(&kjn ; &kjn+1;|sw) � �
�
b�(&kjn�1; &kjn ;|sw)

��+� �b�(&kjn ; &kjn+1;|sw)
�1����

: (5.10)

So, by (5.10), let �n = b�
�
&kjn ; &

kj
n+1;|

sw
�
:We have �n�1 < �n for all n 2 N. Now from

(5.10), we have

b�(&kjn ; &kjn+1;|sw) � �
1

�+� b�(&kjn�1; &kjn ;|sw);

� �
2

�+� b�(&n�2; &kjn�1;|sw);

...

� �
n

�+� b�(&kj; &kjo ;|sw):

Then �n�1 (|sw) < �n (|sw) ; that is the sequence f�ng is non-decreasing sequence

for all |sw > 0. Consequently, there exist � (|sw) � 1 such that limn!1 �n (|sw) =

� (|sw) : Now � (|sw) = 1. Suppose, 0 < � (|sw0 ) < 1 for some |
sw
0 > 0: Since �n (|sw0 ) �
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� (|sw0 ) ; by taking the limit with |
sw = |sw0 . We obtain

� (|sw0 ) � �
1

�+� � (|sw0 ) > � (|
sw
0 ) :

Which is contradiction and hence, � (|sw) = 1 for all |sw > 0. Now,
�
&kjn
	
is a cau

seq. Then 9 � 2 (0; 1) and |sw0 > 0 s.t 8 k 2 N, there are n (k) ;m (k) 2 N with

m (k) > n (k) � k and

b�
�
&
kj

m(k); &
kj

n(k);|
sw
0

�
� 1� �:

b�
�
&m(k)�1; &

kj

n(k);|
sw
0

�
> 1� �;

1� � � b�
�
&
kj

m(k); &
kj

n(k);|
sw
�
;

� b�
�
&m(k)�1; &

kj

m(k);|
sw
�
� b�

�
&m(k)�1; &

kj

n(k);|
sw
�
; (5.11)

> Hm(k) (|
sw
0 ) � (1� �) :

Putting limit n!1 in (5.11),

lim
n!1

b�
�
&
kj

m(k); &
kj

n(k);|
sw
0

�
= 1� �;

from

b�
�
&
kj

m(k)+1; &
kj

n(k)+1;|
sw
0

�
� b�

�
&
kj

m(k)+1; &
kj

m(k);|
sw
0

�
� b�

�
&
kj

m(k); &
kj

n(k);|
sw
0

�

�b�
�
&
kj

n(k); &
kj

n(k)+1;|
sw
0

�
;

and

b�
�
&
kj

m(k); &
kj

n(k);|
sw
0

�
� b�

�
&
kj

m(k); &
kj

m(k)+1;|
sw
0

�
� b�

�
&
kj

m(k); &
kj

n(k)+1;|
sw
0

�

�b�
�
&
kj

n(k)+1; &
kj

n(k);|
sw
0

�
;
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we get

lim
n!1

b�
�
&
kj

m(k)+1; &
kj

n(k)+1;|
sw
0

�
= 1� �:

From equation (5.8), we know that

b�
�
&
kj

m(k)+1;�&
kj

m(k);|
sw
0

�
= b� (R;G;|sw0 ) and b�

�
&
kj

n(k)+1;�&
kj

n(k);|
sw
0

�
= b� (R;G;|sw0 ) :

So by (5.7),

b�
�
&
kj

m(k)+1; &
kj

n(k)+1;|
sw
0

�
� �

�
b�
�
&
kj

m(k); &
kj

n(k);|
sw
��� �b�

�
&
kj

m(k); &
kj

m(k)+1;|
sw
0

���

�
b�
�
&
kj

n(k); &
kj

n(k)+1;|
sw
0

��1����
;

taking lim k !1 we get

1� � � � (1� �) > 1� �:

Then
�
&kjn
	
is cau seq. Since

�
U; b�; �

�
is a cnafms and R is closed subset of U: Then

9 & 2 R; s.t limn!1
b�
�
&kjn ; &; |

sw
�
= 1: Moreover,

b�(R;G;|sw) = b�(&kjn+1;�(&kjn );|sw) � b�
�
&
kj
n+1; &; |

sw
�
� b�(&;�(&n);|sw);

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�

�
&
kj
n+1;�&n;|

sw
�
;

= b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�(R;G;|sw):

Above information implies that,

b�(R;G;|sw) � b�
�
&
kj
n+1; &; |

sw
�
� b�(&;�(&kjn );|sw);

� b�
�
&
kj
n+1; &; |

sw
�
� b�(&; &kjn+1;|sw) � b�(R;G;|sw):

Applying to limit as n!1 in the above inequality, we get

b�(R;G;|sw) � 1 � lim
n!1

b�(&;�(&kjn );|sw);

� 1 � 1 � b�(R;G;|sw):
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That is,

lim
n!1

b�(&;�(&kjn );|sw) = b�(R;G;|sw):

Therefore, b�(&;�
�
&kjn
�
;|sw) ! b�(&; G;|sw) as n ! 1. Since G is approximately

comact with respec to R, there exist � 2 R0 (|sw) such that,

b� (�;�&;|sw) = b�(R;G;|sw) = b�(&kjn+1;�(&kjn );|sw): (5.12)

We show that & = �. If not, then

b�
�
�; &

kj
n+1;|

sw
�
� �

0
BB@

�
b�
�
&; &kjn ;|

sw
��� �b� (&; �; |sw)

��

�
b�
�
&kjn ; &

kj
n+1;|

sw
��1����

1
CCA ;

taking limit as n!1 gives

b� (�; &; |sw) � �
�
b� (&; �; |sw)

��
>
�
b� (&; �; |sw)

��
:

Which is contradiction. Hence b� (&;�&;|sw) = b�(R;G;|sw) = b� (�;��;|sw) that is &

is the best proximity point. Next, & is the ubpp of �: Assume, on the contrary, that

0 < b� (&; |̂;|sw) < 1 for all |sw > 0 and |̂ 6= & is another bpp of � then from (5.7) we

have

b� (&; |̂;|sw) � �

��
b� (&; |̂;|sw)

�� �b� (&; &;|sw)
�� �b� (|̂; |̂;|sw)

�1�����
;

>
�
b� (&; |̂;|sw)

��
:

Which is contradiction and hence b� (&; |̂;|sw) = 1 for all |sw > 0, that is & = |̂.
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5.4 Modi�ed Hardy Rogers type contraction in

fuzzy metric space

5.4.1 De�nition

Let
�
U; b�; �

�
be a cnafms, and R;G � U: A mapping � : R! G is called ihrpc, if 9

�; �; 
; � 2 (0; 1) s.t � + � + 
 + � < 1; and � 2 [0; 1).

b�
�
&kj; �jk;|sw

�
� �

0
BB@

�
b� (|̂1; |̂2;|sw)

�� �b�
�
|̂1; &

kj;|sw
��� �b�

�
|̂2; �

jk;|sw
��


�
b�
�
|̂1; �

jk;|sw
��� �b�

�
|̂2; &

kj;|sw
��1�����
��

1
CCA ;

(5.13)

for all &kj; �jk |̂1; |̂2 2 R, |sw > 0 and & i 6= |̂i; i 2 f1; 2g whenever b�
�
&kj;�|̂1;|sw

�
=

b� (R;G;|sw), b�
�
�jk;�|̂2;|sw

�
= b� (R;G;|sw) and b� (&; |̂;|sw) > 0:

5.4.2 Example

Let U = R2, b� : U � U � (0;1)! [0; 1] by

b�
�
&kj; |̂;|sw

�
=

|sw

|sw + gd
�
(&kj; |̂1) ;

�
�jk; |̂2

�� ,

where gd
��
&kj; |̂1

�
;
�
�jk; |̂2

��
=

2

q�
�jk � &kj

�2
+ (|̂2 � |̂1)2 for all

�
&kj; |̂1

�
;
�
�jk; |̂2

�
2

U . Then
�
U; b�; �

�
is a nafms. Let R,G � U de�ned by

R =
��
0; &kj

�
; &kj 2 R

	
,

G =
��
1; &kj

�
; &kj 2 R

	
:

De�ne b�(R;G;|sw) = supfb�(&kj; |̂;|sw) : &kj 2 R; |̂ 2 G and |sw > 0g: Then

b�(R;G;|sw) = |
sw

|sw+1
; R0 (|sw) = R; G0 (|sw) = G: De�ne the mapping � : R ! G
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by

�
�
0; &kj

�
=

8
>><
>>:

�
1; &kj

�
if s 2 [�1; 1]

�
1; &kj2

�
otherwise

;

for all
�
0; &kj

�
2 R: Then clearly �(R0) � G0. We show that � is interpolative

Hardy Rogers type contraction. For &kj = (0; 4) ; |̂1 = (0; 2), �
jk = (0; 9) ; |̂2 = (0; 3) ;

� = 0:01; � = 0:02; 
 = 0:03; � = 0:04; � = 1
4
then we have

b�
�
&kj;�|̂1;|

sw
�
= b� ((0; 4) ;�(0; 2) ; 1) ;

= b� (R;G;|sw) ;

and

b�
�
�jk;�|̂2;|

sw
�
= b� ((0; 9) ;�(0; 3) ; 1) ;

= b� (R;G;|sw) :

This implies that,

b�
�
&kj; �jk;|sw

�
= b� ((0; 4) ; (0; 9) ; 1) ;

� �

0
BB@

�
b� (|̂1; |̂2;|sw)

�� �b�
�
|̂1; &

kj;|sw
��� �b�

�
|̂2; �

jk;|sw
��


�
b�
�
|̂1; �

jk;|sw
��� �b�

�
|̂2; &

kj;|sw
��1�����
��

1
CCA ;

which yield,

0:4082 � 0:1129:

This shows that � is a interpolative Hardy Rogers type contraction. However, for

&kj = (0; 4) ; |̂1 = (0; 2), �
jk = (0; 9) ; |̂2 = (0; 3) ; � = 0:2 and |sw = 1: We know that

b�
�
&kj;�|̂1;|

sw
�
= b� ((0; 4) ;�(0; 2) ; 1) ;

= b� (R;G;|sw) ;
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and,

b�
�
�jk;�|̂2;|

sw
�
= b� ((0; 9) ;�(0; 3) ; 1) ;

= b� (R;G;|sw) :

Implies,

b�
�
&kj; �jk;|sw

�
= b� ((0; 4) ; (0; 9) ; 1) ;

� �

0
BB@

�
b� (|̂1; |̂2;|sw)

�
+
�
b�
�
|̂1; &

kj;|sw
��
+
�
b�
�
|̂2; �

jk;|sw
��

+
�
b�
�
|̂1; �

jk;|sw
��
+
�
b�
�
|̂2; �

jk;|sw
��

1
CCA ;

which yield,

0:1667 � 0:3201:

This is a contradiction.

5.4.3 Theorem

Let
�
U; b�; �

�
be a cnafms, R;G � U s.t G is a-compact w.r.t R. Let �: R ! G

be a interpolative Hardy Rogers type proximal contraction. If R0 � R such that

�(R0) � G0: Then � admits a bpp.

Proof. Let &kjo 2 R0. Since �(&kjo ) 2 �(R0) � G0, there exist &kj 2 R0 such that,

b�(&kj;�(&kjo );|sw) = b�(R;G;|sw):

Also we have �(&kj) 2 �(R0) � G0, so there exist �jk 2 R0 such that,

b�(�jk;�(&kj);|sw) = b�(R;G;|sw):

b�(&kjn+1;�(&kjn );|sw) = b�(R;G;|sw); (5.14)
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8 n 2 N. Observe that, if 9 n 2 N s.t &kjn = &kjn+1 then from (5.14), the point &kjn is a

bpp of the mapping �. If &kjn 6= &kjn+1 8 n 2 N. Then by (5.14), we have

b�(&kjn ;�(&kjn�1);|sw) = b�(R;G;|sw);

and

b�(&kjn+1;�(&kjn );|sw) = b�(R;G;|sw);

for all n � 1, thus, by (5.13),

b�
�
&kjn ; &

kj
n+1;|

sw
�
� �

�
b�
�
&
kj
n�1; &

kj
n ;|

sw
��� �b�

�
&
kj
n�1; &

kj
n ;|

sw
���

(5.15)

�
b�
�
&kjn ; &

kj
n+1;|

sw
��


;
�
b�
�
&kjn ; &

kj
n ;|

sw
���

�
b�
�
&
kj
n�1; &

kj
n+1;|

sw
��1�����
��

;

for all distinct &kjn�1; &
kj
n ; &

kj
n+1 2 R. Since, by (5:15), we have

b�
�
&kjn ; &

kj
n+1;|

sw
�
� �

�
b�
�
&
kj
n�1; &

kj
n ;|

sw
���+� �b�

�
&kjn ; &

kj
n+1;|

sw
��
 �b�

�
&
kj
n�1; &

kj
n+1;|

sw
��1�����


� �
�
b�
�
&
kj
n�1; &

kj
n ;|

sw
���+� �b�

�
&kjn ; &

kj
n+1;|

sw
��


;

�
b�
�
&
kj
n�1; &

kj
n ;|

sw
��1�����
�� �b�

�
&kjn ; &

kj
n+1;|

sw
��1�����
��

;

� �
�
b�
�
&
kj
n�1; &

kj
n ;|

sw
��1�
�� �b�

�
&kjn ; &

kj
n+1;|

sw
��1������

;

�
b�
�
&kjn ; &

kj
n+1;|

sw
���+�+�

� �
�
b�
�
&
kj
n�1; &

kj
n ;|

sw
��1�
��

: (5.16)

Letting �n = b�
�
&kjn ; &

kj
n+1;|

sw
�
, (5.16), we have �n�1 < �n for all n 2 N. Now from
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(5.16), we have

b�(&kjn ; &kjn+1;|sw) � �
1

�+�+� b�(&kjn�1; &kjn ;|sw)
1�
��
�+�+� ;

� �
2

�+�+� b�(&n�2; &kjn�1;|sw)
1�
��
�+�+�

;

...

� �
n

�+�+� b�(&kj; &kjo ;|sw)
1�
��
�+�+�

:

Then �n�1 (|sw) < �n (|sw) ; that is the seq f�ng is non-decreasing seq for all |sw > 0.

Consequently, there exist � (|sw) � 1 such that limn!1 �n (|sw) = � (|sw) : Suppose,

0 < � (|sw0 ) < 1 for some |
sw
0 > 0: Since �n (|sw0 ) � � (|sw0 ) ; by taking the limit with

|sw = |sw0 . We obtain

� (|sw0 ) � �
1

�+�+� � (|sw0 ) > � (|
sw
0 ) :

Satisfying the above inequality, that is equivalently,

b�
�
&
kj

m(k)�1; &
kj

n(k);|
sw
0

�
> 1� �;

and so for all k we get

1� � � b�
�
&
kj

m(k); &
kj

n(k);|
sw
�
;

� b�
�
&
kj

m(k); &
kj

n(k);|
sw
�
� b�

�
&
kj

m(k); &
kj

n(k);|
sw
�
; (5.17)

� �m(k) (|
sw
0 ) � (1� �) ;

putting limit n!1 in (5.17), we get that

lim
n!1

b�
�
&
kj

m(k); &
kj

n(k);|
sw
0

�
= 1� �;
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from

b�
�
&
kj

m(k)+1; &
kj

n(k)+1;|
sw
0

�
� b�

�
&
kj

m(k)+1; &
kj

m(k);|
sw
0

�
� b�

�
&
kj

m(k); &
kj

n(k);|
sw
0

�

�b�
�
&
kj

n(k); &
kj

n(k)+1;|
sw
0

�
;

and

b�
�
&
kj

m(k); &
kj

n(k);|
sw
0

�
� b�

�
&
kj

m(k); &
kj

m(k)+1;|
sw
0

�
� b�

�
&
kj

m(k); &
kj

n(k)+1;|
sw
0

�

�b�
�
&
kj

n(k)+1; &
kj

n(k);|
sw
0

�
;

we get,

lim
n!1

b�
�
&
kj

m(k)+1; &
kj

n(k)+1;|
sw
0

�
= 1� �:

From equation (5.14), we know that

b�
�
&
kj

m(k)+1;�&
kj

m(k);|
sw
0

�
= b� (R;G;|sw0 ) and b�

�
&
kj

n(k)+1;�&
kj

n(k);|
sw
0

�
= b� (R;G;|sw0 ) ;

so by (5.13),

b�
�
&
kj

m(k)+1; &
kj

n(k)+1;|
sw
0

�
� �

�
b�
�
&
kj

m(k); &
kj

n(k);|
sw
��� �b�

�
&
kj

m(k); &
kj

m(k)+1;|
sw
0

���

�
b�
�
&
kj

n(k); &
kj

n(k)+1;|
sw
0

��

;
�
b�
�
&
kj

m(k); &
kj

n(k)+1;|
sw
���

�
b�
�
&
kj

n(k); &
kj

m(k)+1;|
sw
��1�����
��

:

Taking lim k !1 we get

1� � � � (1� �) > 1� �:

Which is contradiction. Then
�
&kjn
	
is cau seq. Since

�
U; b�; �

�
is a cnafms and R is
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closed subset of U: Then 9 & 2 R; s.t limn!1
b�
�
&kjn ; &; |

sw
�
= 1: Moreover,

b�(R;G;|sw) = b�(&kjn+1;�(&kjn );|sw);

� b�
�
&
kj
n+1; &

kj;|sw
�
� b�(&kj;�(&kjn );|sw);

� b�
�
&
kj
n+1; &

kj;|sw
�
� b�(&kj; &kjn+1;|sw) � b�

�
&
kj
n+1;�&

kj
n ;|

sw
�
;

= b�
�
&
kj
n+1; &

kj;|sw
�
� b�(&kj; &kjn+1;|sw) � b�(R;G;|sw):

This implies,

b�(R;G;|sw) � b�
�
&
kj
n+1; &

kj;|sw
�
� b�(&kj;�(&kjn );|sw);

� b�
�
&
kj
n+1; &

kj;|sw
�
� b�(&kj; &kjn+1;|sw) � b�(R;G;|sw):

Applying to limit as n!1 in the above inequality, we get

b�(R;G;|sw) � 1 � lim
n!1

b�(&;�(&kjn );|sw);

� 1 � 1 � b�(R;G;|sw):

That is,

lim
n!1

b�(&kj;�(&kjn );|sw) = b�(R;G;|sw):

Therefore, b�(&kj;�
�
&kjn
�
;|sw) ! b�(&kj; G;|sw) as n ! 1. Since G is a-compact

w.r.t R, there exist � 2 R0 (|sw) s.t,

b�
�
�;�&kj;|sw

�
= b�(R;G;|sw) = b�(&kjn+1;�(&kjn );|sw): (5.18)

We now show that &kj = �. If not, then

b�
�
�; &

kj
n+1;|

sw
�
� �

�
b�
�
&; &kjn ;|

sw
��� �b� (&; �; |sw)

�� �b�
�
&kjn ; &

kj
n+1;|

sw
��


�
b�
�
&; &

kj
n+1;|

sw
��� �b�

�
&kjn ; �;|

sw
��1�����
��

:
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on taking limit as n!1 gives

b� (�; &; |sw) � �
�
b� (&; �; |sw)

�1���
��
>
�
b� (&; �; |sw)

�1���
��
:

Which is contradiction. Hence b� (&;�&;|sw) = b�(R;G;|sw) = b� (�;��;|sw) that

is, & is the bpp. We show that & is the ubpp of �: Assume, on the contrary, that

0 < b� (&; |̂;|sw) < 1 for all |sw > 0 and |̂ 6= & is another bpp of �; i.e., b� (&;�&;|sw) =

b�(R;G;|sw) = b� (|̂;�|̂;|sw) then from (5.13) we have

b� (&; |̂;|sw) � �
�
b� (&; |̂;|sw)

�� �b� (&; &;|sw)
�� �b� (|̂; |̂;|sw)

�


�
b� (&; |̂;|sw)

�� �b� (|̂; &; |sw)
�1�����
��

;

>
�
b� (&; |̂;|sw)

�1���

:

Which is contradiction and hence b� (&; |̂;|sw) = 1 8 |sw > 0, that is & = |̂.

5.5 Conclusion

We have produced several new type of contractive condition that ensures the existence

of bpp in cnafms. According to the nature (linear and nonlinear) of contractions (5.1),

(5.7) and (5.13). The study carried out in this paper generalizes the valuable research

work presented in [25, 38].
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