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Introduction

Best proximity points have widespread applications in optimization, economics,
and various engineering disciplines, where exact fixed points are elusive, and optimal
approximations are sought. Future research may extend these concepts to more com-
plex structures, such as partial metric spaces or ordered metric spaces, broadening the
scope and applicability of these results. In optimization and fixed point theory, best
proximity points are crucial when dealing with non-self mappings where fixed points
do not exist. The classical Banach contraction principle has seen various extensions
to accommodate different contractions and more general settings. This note focuses

on a specific generalization: generalized interpolative proximal contractions.

BPP theory is an area of mathematical analysis and optimization that focuses on
finding points in one set that are closest to points in another set when a contractive
mapping is involved. In metric fixed point theory, the concept of best proximity points
plays a crucial role, particularly when dealing with mappings that do not necessarily
have fixed points. This note delves into the best proximity points for generalized
interpolative proximal contractions, an important class of mappings in metric spaces.

A metric space approach is a crucial technique in many mathematics branches
and especial in fixed point theory. Recently, different development of a metric spaces
have been developed. Fixed point theory is well-known and established concept in
mathematical field and also a large firm of utilization. Banach fixed point theorem is
the most crucial development in the study of presence and identification of solution

of non-linear problems arising in mathematics and its applications to enginering and



life sciences. Fixed point results is offensive on the presence and identification of
the explanation of a easy equation p(¢) = ¢ and mentioned mapping p is a self-
mapping. Consequently, "fixed point theory" is taken into account in the concrete
solution of such equations. The best proximity point becomes a fixed point when the
mapping in question is a self-mapping. Analyzing various proximal contractions [1,
2, 3, 4, 5] reveals the bpp. The product of distances with exponents that satisfy a few
conditions constitutes the basis of the interpolative contraction principles. The well-
known mathematician Erdal Karapinar coined the term "interpolative contraction"
in his 2018 paper [6]. The interpolative contraction is defined as follows:

A map S defined on a m.s (€2, d%) is refered to as interpolative contr., if v € (0,1],
K e€[0,1) st

9%(Se, Sr) < K (5d(e,r))y Ve, r € Q.

Note v = 1, S is a BC. If S defined on a MS ((2,3?) satisfies:
018, Sr) < K (976, 56)" (8 (r, Sr))l_y )
94ScM Sr) < K (?)d(r, Sgkj))y (5d(§kj75r))lfy,
9%(Ss*,Sr) < K (8%(sM,r))" (8%(sM, S¢M))" (9, ST))l_V_n, v+n<l1
6d(sgkj’sr) < K (6d(§kj77n))V (6d(gkj’ Sgkj))n (5d(r7 ST))"V <%(6d<gkj’ Sr) + 5d(r7 Sgkj))>1nuw’
for all ¢*.r € ®, then S is called an IKTC, an ICTC, an ICRRTC and an IHRTC,
respectively. Interpolation has been used to revisit several classical and advanced
contractions (see [7, 8, 9, 10]).

Altun et al. [11], recently defined interpolative proximal contractions and reviewed

all interpolative contractions. On such contractions, they presented the best proximity



theorems. This aims to establish the best proximity point theorems for interpolative
proximal contractions in the case of non-self mappings.

Gabeleh [13] demonstrated the existence and uniqueness of a best proximity point
for weak proximal contractions and introduced a new class of non-self mappings.
Some utilization of best proximity points has been discussed in (see [14, 15, 16]).

Proinov [10](2020) provided a number of fixed-point theorems that expanded on
earlier work in [5]. First, Karapinar introduced the idea of interpolation contraction
in his work [9] published in 2018, then Proinov gave the second idea in his paper [10]
published in 2020. Recently, Altun and Tagdemir [23] have utilized the interpolative
proximal contraction to produce some best proximity point theorems.

Finding an element ¢ in R that is as close to S(¢) in G as possible, is of great
interest, since a non-self mapping need not have a fixed point. In other words, it is
considered to find an approximation solution ¢ in R such that the error 3%(s, S(c)) is
smallest, where ¢ is the distance function, if the fixed point equation S(s) = ¢ has no
exact solution. In fact, best proximity point theorems look into the possibility of such
best proximity point for approximate solutions to the fixed point equation S(¢) = ¢
in the absence of a precise solution.

Chapter 1 contains the basic concepts and introduction of best proximity point
theory. It defines important and fundamental notions of bpp and fbpp.

Chapter 2 seeks to provide bppt for contractive non-self mappings using interpo-
lation, leading to global optimal approximate solutions to specific fixed point equa-
tions. Iterative strategies are also provided to find such ideal approximative proving

A

the presence of bpp. Also, we introducing (H,,, ®)-interpolative proximal contrac-



tion, which generalize and and establishing the optimal proximity point theorems for
them. We look for various conditions on the functions to introduce presence of bppt of
improved pc, improved Cirié-Reich-Rus interpolative proximal contraction, improved
Hardy Rogers interpolative proximal contraction. These results have published in
Filomat (2025), 39:8, 2817-2830.

In Chapter 3, we investigate optimal solutions for best proximity points through
the framework of generalized interpolative proximal contractions. We introduce a
new method that uses interpolation techniques to handle a wider class of mappings
by expanding the concepts of classical proximal contraction. In the absence of a
precise solution, bppt investigate the existence of such best proximity points for ap-
proximate solutions to the fixed point problem. This chapter aims to develop the
bppt for contractive non-self mappings via interpolation. We illustrate the utility of
our findings with a few instances. The value of our research is illustrated with a few
examples and applications. These results have published in European Journal of
Pure and Applied Mathematics (2025), 18:4, 1-23.

In Chapter 4, we establish certain bppt for such pc. These results have published
in Fractal and fractional (2022), 1(2): 1-19.

In Chapter 5, these results have published in Aims Mathematics (2025),

8(2): 2891-2909.



Chapter 1

Preliminaries

A few basic definitions, results and examples related to metric spaces and its gen-
eralized form were discussed in the current chapter which will support us in next

chapters.

1.1 Some Basic Concepts

1.1.1 Definition [1]

Let (J,0) be a complete metric space (in short CMS). Let U # ¢ and V # ¢ are
closed subset of J. Let I' : U — V be a mapping. A point s € U is the BPP of I if
it satisfies,

0(s,I's)=0(U,V)

We proceed with the following notations that are used in the sequel.

Lo={se L:0(s,t) =6 (U, V), for some t € V}

5



Vo={teV:0(st)=0(U,V), for some s € U}.

1.1.2 Definition

Let R,G C (Q, 5d). A mapping S : R — G satisfying

PES@I TR N g oy <aat@g) 0

0%(¢’*, S(a2)) = 0" (R, G)

for all <% (7% ¢, ¢, € R such that ¢* # 7% and k € [0,1) is called PC-I.

Every PC-I can be modified to a Banach contraction.

1.1.3 Definition

Let R,G C (Q, 5d). A mapping S : R — G satisfying

0%(c™, S(m)) =0 (R, G) S
= 07 (96", S¢*) < ko (Squ, Sq2)

9%(¢’*, S(a2)) = 0" (R, G)

for all ¢*, (7% ¢1,q, € R such that S¢* # S¢7*, and k € [0,1) is said to be a PC-II.

For a self-mapping S : R — R to be a PC-II, it needs to satisfy the following

inequality:

07 (S%q1, S°q2) < k9% (Sq1,992), for all g1, q2 € R.



1.1.4 Remark

Every contraction is a PC-II but the converse is not true. Indeed, the mapping

S :10,1] — [0, 1] defined by

0 if ¢ is rational

1  otherwise

\

is a PC-II but not a contraction in (R, d%).

1.1.5 Definition [23]

If each sequence {s,} in V holding the condition that 60 (¢,s,) — 60 (t,V) for some
t € U, then there is a subsequence of {s,, } s.t s,, — s €V, so V is A-Compact with
respect to (in short w.r.t) U. Each compact subset of U is AC w.r.t any subsets as

well as A-Compact w.r.t itself.

1.1.6 Lemma [18]

Let (J,0) be a CMS. Let U and V € Pop(J) and s € U, then for each h > 1, there
t € V with

0% (s,t) < hH (s,t). (1.2)

1.1.7 Lemma [18]

Let (J,0) be a MS. Let U and V € Pop(J) and s € U,



(1) For each € > 0, there exist t € V s.t;
0(s,t) <HUYV)+e.
(77) For each h > 1, there exist t € V s.t;

0 (s,t) < hH (U,V) +e.

1.1.8 Definition [11]

Let (J,0) CMS. Let U # ¢ and V # ¢ are closed subset of J. Then a mapping

I':U — V be a IKTPC. If 3 a real number x € [0,1) and [ € (0,1) s.t

0 (s1,52) < k(0 (51, t1)) (0 (s2,22))" ",

for all sy, s9,t1and ty € U with s; # t; for i € {1,2}.

1.1.9 Definition [11]

Let (J,0) be a CMS. Let U # ¢ and V' # ¢ are subset of J. Then a mapping ' : U — V'

be a IRRCTPC of first kind. If 3 a real number « € [0,1) and 1,15 € (0,1) s.t,
0 (81; 32) S k (9 (tlu t2>)l1 (9 (Sl, tl))lz (8 (827 t2>)1—l1—l2 ’

for all sy, s9,t1 and ty € U with s; # t; for i € {1,2}.

1.1.10 Definition [11]

Let (J,0) be a CMS. Let U # ¢ and V' # ¢ are closed subset of J. Then a mapping

[': U — V beaIHRTPC of first kind. If 3 areal number A € [0,1) and [, 15,1 € (0,1)



s.t,

2

0 <81,82) <A (9 (t17t2>>l1 (‘9 (Slatl»lz (9 (Sg,tg))l?’ (1 (‘9 (81’t1> Lo <827t2))) —l1—l2—I3

for all sy, s9,t1and ty € U with s; # t; for i € {1,2} wrt 0(s1,T't1) = 0(U,V) and

0 (SQ,FtQ) =0 (U, V) .

1.1.11 Lemma [10]

Let {l,} be a sequence in (Q2,3) verifying lim, .o, 0%(l,,l,1) = 0. If the seqence

{l,,} is not cauchy, then there are sub-sequences {l,,, }, {lm, } and ¢*/ > 0 such that

klim 0y 11, lmy+1) = € + some term(s).

lim 8L, , ) = Hm 8%l 11, L, ) = lim 3% (L, L, 41) = €.

k—o0 k—o0 k—o0

1.1.12 Lemma [10]

Let H,, : (0,00) — R . Then the axioms (i)-(iii) are equivalent.

~

(¢) inf,~. H,, (3) > —oo for every € > 0.
(i7) lim,_,. inf H,, (3) > —oco for every ¢ > 0.

~

(3i) limy, oo Hyp (3,) = —o0 implies that lim,, ., 2, = 0.

1.1.13 Lemma [5]

Let H,, : (0,1] — R. Then following are equivalent:

A

(i) infyse Hy, (t) > —o0 for every € € (0,1).

(i1) limy_.._ inf H,, (t) > —oo for any ¢ € (0,1).

(1.3)

(1.4)
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(ii1) limy, oo Hp, (t,)

—oo implies that lim,, . t,

= 1.



Chapter 2

Existence of best proximity point

with applications

2.1 Introduction

We introduce some new generalized proximal interpolative contraction principles that
produce corresponding proximal interpolative contraction principles and proximal
contraction principles as special cases. We prove various best proximity point theo-
rems using introduced generalized proximal interpolative contraction principles. Some

examples and applications are given to demonstrate the usefulness of our results.

We proceed with the following notations that are used in the sequel.

0YR,G) = inf{d%,q):c€ RAq€E G},
Ry = {<€R:0%Gs,q)=0%R,G) for some q € G},
Go = {q€G:0%ps,q)=0%R,G) for some s € R},

11
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where (Q7 5‘5‘1) is a metric space and R, G C (Q, 3d).

2.2 Improved proximal contractions.

In this section, we define improved PC and show that it generalizes PC (1.1). We
state and prove some existence of bpp theorems for improved PC and improved in-

terpolative PC in a CMS.

2.2.1 Definition

Let R, G be subsets of (Q, 5d). A mapping S : R — G satisfying
0’ (¢, 8q1) =9 (R, G) - o
= HyHy (07 (S, 5¢)) < @ (87 (Sa1, Sa2))
9 (¢*, Sg2) = 3 (R, G)
(2.1)
for all <" (%% ¢1,¢» € R such that ¢*/ # (7% is called an improved PC-II, where
the maps H,,, ® : (0,00) — (—00,00) such that H,, is non-decreasing function and

D (t) < Hp(t) for all t > 0.

The following example shows the significance of improved PC-II.

2.2.2 Example
Let 0% : R? x R? — [0, 00) be defined by

0%((<a), (u,v)) = |s —ul + g = ]| for all (<, y), (u,]) € Q.
Let R, G be the subsets of () defined by

R=1{(0,9);q € R}, G=1{(1,9);q9 € R}, then 3%(R,G) = 1.



13

Define the functions H,,,® : R* — R by
H,,(t) =2t and ®(t) = t,t € R*.

Define the mapping S : R — G by S((0,7)) = (1, 7) for all (0,7) € R. We show that
S is an improved PC-II. For ¢*/ = (0, <), ¢/* = (0,u) and q; = (0,4), 2 = (0,4u) € R

we have,

6d(gkj’ Sql) = 6d((0’ g)? S(O,4§)) =1= 6d(R7 G)7

o4, Sqy) = 94(0,u),S(0,4u)) =1 =3%R,G).
This implies that
H,, (3¢ (S6*,5¢%)) < @ (3¢ (San, Saa))

This shows that S is an improved PC-II. However, the following calculations show

that it is not a PC-II. We know that

o4t Sq)) = 1=0%R,G)

o%(¢7*, Sqs) = 1=0YR,G).
If there exists k € (0, 1) such that
0 (Ss™, S¢*) < ko (Squ, Sq2)

then, k = %, a contradiction. Hence, S is not a PC-IL.
The following lemmas are integral part of this paper and have an impact on further

investigations.



14

2.2.3 Lemma

Let {c*} be a sequence in (2,3%) obeying the equation lim,, ., 3%(c®, <%, ) = 0,

Suppose that the mapping S : R — G satisfies (2.1) and the maps H,. ®: (0,00) = R

such that

A

lim sup ® (3) < H,,(e+)

t—e+

for any € > 0. Then {c*} is a cauchy sequence.

(2.2)

Proof. First, we consider {¢¥} is not cauchy, then by Lemma 1.1.11, 3 two

subsequence {c,, }, {Sm, } of {<¥} and € > 0 so that (1.3) and (1.4) hold. By (1.3),

we get that 8%(s,, +1,Sm,+1) > € and

6d(§nk+175(§mk>> = 6d(R7 G)?

(G415 S(sn,)) = OUR,G), forall k> 1,

Thus, by (2.1), we have

~

Hpy (0% (Sngt1, Smpt1)) < @(0%(Sne, Sy ), for any k > 1.

Putting ¢, = 04(p, 41, Sm,+1) and gij = 0%(Sp,, Sm, ) in (2.3), we have

~

Hy(cp) < (), for any k > 1.

(2.3)

(2.4)

By (1.3) and (1.4), limj_.o ¢z = e+ some term(s) and lim .. <) = €. By (2.4), we

get

H,(e+) = lim H,,(c;) < lim sup ®(¢}’) < limsup ®(p).

k—o0 k—oo p—e

(2.5)

This is a contradiction to the assumption (2.2). Consequently, {<*} is a cauchy

sequence in G. m
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2.2.4 Theorem

Let R, G C (2,09) with the property that “R is a-compact w.r.t G” and (£2,39) be a
cms and S: R — G be a continuous improved PC-II verifying conditions

(1) H,, is non-decreasing (nd) function and limsup, ., ® (t) < H,,(e+) for any
€ >0,

(17) Ro is non-empty subset of R obeying S(Ry) C Gp.

Then S has a bpp.

Proof. Consider i’ € Ry. Since S(¢t) € S(Ry) C Gy, there exists ¢ € Ry
satisfying 99(¢*, S(ch?)) = (R, G). Also, we have S(c*) € S(Ry) C G, there exists
¢’* € Ry so that 9%(¢’", S(s™)) = d%R,G). We build a series by continuing this

approach such that {<*} in Ry satisfies the following equation:
99, S(M ) = 3UR, @), for all n € N. (2.6)

Ifn € Nstch = qﬁﬁrl, then ¢*7 is a bpp of the mapping S. If gﬁj_l # ¢k for all

n € N, then we have
0y, S(s,l0) = 0UR,G),
0%k 1, S(sM)) = 8YR,G), forall n > 1.
Thus, by (2.1), we have
H,,(3%(Ss%, 5 1)) < ®@(d9(S6H, S6k)).
Let 89(S¢*, 56" ) = v,,. We know that, ® (t) < H,, (t) for all t > 0, we have

~

Hy(0,) < ®(0-1) < Hy(00-1). (2.7)
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Given that H,, is nd, by (2.7), d, < d—1 ¥ n € N. Thus, it converges to some

element d > 0. We claim that d = 0. If d > 0, by (2.7), we obtain the following:

A

H,, (0+) = lim H,, (2,) < lim ® (0,_1) < tliran sup @ ().

n—o0 n—o0 +

This contradicts (i), hence, d = 0 and lim,, ., 0¢(Ss*’ ,Sgﬁil) = 0. By using (i)
and Lemma 2.2.3, we conclude that {S(c¥)} is a cauchy sequence. Since G is
a closed subset of complete metric space (£2,0%), there exists ¢* € G such that

lim,, o, 0%(Sck7 . q*) = 0. Moreover,

o'(q", R) < 0(q",<)

9%(q*, S(sk7)) +8%(S(sk. ), k)

IN

0'(a", S(c,L)) +0%(R. G)

IA

IN

6d(q*7 S<gfzjfl)) + 6d(q*7 R)

Thus, 9%(q*,<*) — 8%(¢*, R) as n — oo. Since R is a-compact w.r.t G, 3 {(c,, )} of

{(s*)} converging to ¢* € R(say). We infer the following equation:

6d<g*> q*> = 6d(§nk7 S(gnkfl)) = 6d(R7 G) (28)

Due to the continuity of S, we have S(s,,—1) — S(¢*). Thus,

9%(¢*, S(s*)) = %R, G).

Let R, G C (2,09) with the property that “R is approximately compact with respect

to G” and (£2,0%) be a complete metric space. m
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2.2.5 Theorem

Let R,G C (2,0%) with the property that “R is a-compact w.r.t G” and (£2,3%) be a
cms and S: R — G be a improved PC-I verifying conditions

(i) H,, is nd function and limsup, ., ® () < H,,(e+) for any € > 0,

(77) Ry is non-empty subset of R obeying S(Ry) C Gy. Then S has a bpp.

We omit the proof of Theorem 2.2.4, as it follows from the previous one.

2.2.6 Theorem

Let R,G C (£2,0%) with the property that “R is a-compact w.r.t G” and (£2,3%) be a
cms and S: R — G be a improved PC-II verifying conditions

(i) H,, is non-decreasing and if {H,,(t,)} and {®(t,)} are convergent sequence
satisfying lim,, o ]:Im(tn) = lim,, o ®(t,), then lim,, . t, =0,

(17) Ro is non-empty subset of R obeying S(Ry) C Gy. Then S has a bpp.

Proof. Following the procedure used in the proof of Theorem 2.2.4, we have

A A

Hm(an) < (I)(Dn—l) < Hm(an—l)- (2-9)

By (2.9), we have {H,, (9,,)} is strictly decreasing seq. If {H,, (w,)} is not bounded

below, then

inf H,, (9,) > —oo for every ¢ > 0,n € N.

Wn >€
From, Lemma 1.1.12, then d,, — 0 as n — oo. Secondly, if seq {f[m(dn)} is bounded
below, then, it is a cgt seq. By (2.9), the seq {®(d,)} also cgs. By (i), we have

lim, . d, = 0, or lim,,_,, 0% (Sgﬁj, ngﬂd) = 0, for any seq {gflj} in R. Theorem
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2.2.4, we have

0%(s*, S(¢*) = 0% R, G).

Hence, ¢* is a bpp of the mapping S. =

2.3 Improved Ciri¢-Reich-Rus interpolative prox-

imal contraction

2.3.1 Definition

Let (Q, 5d) be a cms, and R, G be a pair of non-empty subsets of ). Let H,, ®:
(0,00) — R be two functions. A mapping S : R — G is said to be an improved

Cirié-Reich-Rus interpolative PC-II if there exist «, 3 € (0,1); a+ B < 1 satisfying

d « (o5 kj\\B
Hm (6d (SCk],SCjk)) S(I) (6 <Sq1’Sq2)) (6 (Sql’Sg )) , (210)

(0" (Sqz 5¢7%)) "

whenever 9% (¥, 5q;) = 9(R,G) and 9% (¢’*,Sq2) = 0¢(R,G) for all distinct

k%, g0 € R.

2.3.2 Example

Let 0 : R? x R? — R be the Euclidean metric on R? and R, G be the subsets of R?

defined by

R:{(§,q):q: 9—§2};G:{(g,j):q:\/16—§2} then 8 (R, G) = 1.
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Define the functions H,,,® : R* — R and S: R — G by

®(3) = 3 and H,,(3) =3, for all 3 € RY.

(5.9) fore0
S(C)=5S5(s,)) = for all (¢,y) € R.
(=1,0) forc¢ <0,
The following information shows that S generalizes the interpolative Cirié-Reich-Rus

type proximal contraction [23]. Indeed, for ¢*/ = (1,0),¢" = (1,2),q1 = (2,2) ,q2 =

(0,4), we have 8¢, Sq) = 1 = YR, G), 3%, Sqgz) = 1 = dYR,G), and for

1 1
azﬁaﬁzga

N
W=

o (99 (5 (1,0),5(1,2)) < @ (32(S(0,4),5(2,2)))2 (87(S(2,2),5(1,0)))

1—

Wl

1
2

(89(5(0,4),5(1,2)))
H, (1) < ®(1.2573) = 1 < 1.1213.

Thus,

0% (Sqq, S > (59 (Say. Scki 8
f[m (3d (Sgkj,SCjk)) <® ( ( q1, Clz)) ( ( q1, S¢ ))
(5d (qu, Scjk:))lfa—ﬁ

This shows that S is an improved interpolative Ciri¢-Reich-Rus PC-I1. However, for
M =(1,0),¢" = (1,2),q1 = (2,2),q2 = (0,4), if there exists some k satisfying the
following inequality:

l1—a—p

6(1 (Sgkj, SC]k) < k (6d (th Sq2))a (8(1 (th S§kj))6 (6d (Sq27 SC]k))

04(S(1,0),5(1,2)) < k(éd(5(0,4),5(2,2)))%(6%5(2,2),5(1,0)))%

N=
W=

(57 (5 (0,4),5(1,2)))"
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Then, k € [121%, oo), a contradiction. Hence, S is not interpolative Cirié-Reich-Rus

PC-II. We note that for ¢ > 0, there is ¢ = (5,7) € R such that 3%(¢,S(¢)) =
0UR,G) =1.
The criteria for the existence of bpp of the improved Cirié-Reich-Rus interpolative

PC-II are stated in the following two theorems.

2.3.3 Theorem

Let R, G C (£2,0%) with the property that “R is approximately compact with respect
to G” and (£2,3%) be a complete metric space. If S: R — G is a continuous improved
Cirié-Reich-Rus type interpolative PC-II satisfying the following assumptions: H,
is non-decreasing function and limsup, ., ® (t) < H,(e+) for any € > 0. Ry is
non-empty subset of R such that S(Ry) C Go. Then S has a bpp.

Proof. Consider an arbitrary initial guess ¢* € Ry. Since S(¢¥) € S(Ry) C Gy,

there exists ¢*/ € R, such that
0'(sM, S(ci7)) = 0YR, G).
Also, S(s*) € S(Ry) C Gy, there exists (¥ € Ry such that
04(¢", 5(sM)) = 0%(R, G).

We build a series by continuing this approach such that {c*} in R, satisfies the

following equation:

a%(cM 1, S(sk)) = 84(R, @), for all n € N, (2.11)
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Now, if 3n € Ns.t ¢M = gﬁil, the point ¢*/ is a bpp of the mapping S. Assume that

n

ki £ M ¥ n €N and using (2.11), we have
0(c7, S(<nly)) = 0Y(R. G),

and
6d(€f£1a S(ck7)) = 8% R, @), for all n > 1.
By (2.10), we have
A5 550 2 (0 (580 550) " (0 (55 5)) (7 (5 562)) 7).
(2.12)

for all distinct ¢*7 | ¢*7, gfﬂl € R. Given that ®(t) < H,,(t) for all ¢ > 0, by (2.12),

n

e have
st < (s s)) (55 0 i) )
Since Hp s a nd,

a5 o) < (o (S6i2,567)) ™ @5 sy
This implies that

(0S5, Serty )™ < <5d <5€k’j 5€2j>)a+ﬂ-

n—1»

This shows that the sequence {9¢(S¢H ,Sgﬁil) = d,} converges to some element

d > 0. We claim that d = 0. If d > 0, by (2.12), we obtain the following:

H,, (0+) = lim H,, (2,) < lim & ((00-1)*(0,)' %) < lim sup @ ().

n— 00 n— 00 3—0+



22

This contradicts (i), hence, d = 0 and lim,, ., 0¢(Ss*, Sgﬁﬂrl) = 0. By using (i) and
Lemma 2.2.3, we conclude that {S<*} is a cauchy sequence. Since G is a closed subset
of cms (€, 9%), there exists ¢* € G, such that lim,,_,., 34(Ss*, ¢*) = 0. Now, we can

n

obtain the desired result by following the reasoning used in the proof of Theorem

224 =

2.3.4 Theorem

Let R,G C (Q,0%) with the property that “R is a-compact with repect to G” and
(€,3%) be a cms. If S: R — G is a continuous improved Ciri¢-Reich-Rus type inter-
polative PC-II verifying (i)-(ii) H,, is non-decreasing and if { H,,,(2,)} and {®(z,)} are
convergent sequences satisfying lim,, ﬁm(zn) = lim,,_, 00 ®(2,), then lim,,_, 2z, =0,
Ry is non-void subset of R obeying S(Rg) C Gg. Then the mapping S has a bpp.

Proof. Following the procedure used in the proof of Theorem 2.3.3, we have

A~

i, (0,) < ® ((an,l)‘“ﬂ (on)l‘“‘5> < H, ((an,l)a“’ (an)l‘a‘ﬂ) . (2.13)

By (2.13), we infer that {f[m (Dn)} is strictly decreasing sequence. If {f[m (Dn)} is

not bounded below, then

Dinf H,, (v,) > —oo0 for every € > 0, n € N.
n>€

It follows by Lemma 1.1.12, that d,, — 0 as n — o0o. Secondly, if the seq {ﬁm (Dn)}
is bounded below, then, it is cgt seq. By (2.13) the seq {® (0,,)} also cgs. By (i), we
have lim,, . d,, = 0 for any seq {gfj } in R. The proof of Theorem 2.3.3 leads to the

rest of the proof. =
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Note that, if S is a self-mapping defined on R, then best proximity point is a fixed

point of S.

2.4 Improved Hardy Rogers interpolative proxi-

mal contraction

2.4.1 Definition
Let R,G C (Q, 5d). A mapping S : R — G satisfying

. o 0 (a1, S42)" 0% (Sa1, S649) 7 8¢ (S, SC*)”
o, (611 (Sgkj,SCjk)) <® ( 1 2) ( 1 ) ( 2 ) 7

(3 (8 (Sar, SC7*) + 8% (S, Ss*)))
(2.14)

whenever, 87 (¢*, Sq;) = 04 (R, G); 9° (Cjk, Sq,) = 8% (R, @), is called an improved
Hardy Rogers interpolative PC-II, where a, 8,7 € (0,1) such that o + 5+ v < 1,

M, % q1,q, € Rand H,,, ®: RT — R.
The following example shows that improved Hardy Rogers type interpolative PC-11

generalizes the Hardy Rogers type interpolative PC-II appeared in [23].

2.4.2 Example

Let 0% : R? — R be a usual metric and R, G be subsets of ) defined as

R=1{1,2,3,4,5,6,7},G = {0,1,2,3,4,5} then 3 (R, G) = 0.
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Define the functions H,,,® : R* — R and S: R — G by

¢+ 1 for ¢ =2, 5 for ¢ =2,
Hy (s) = ®(c) =
¢ + 10 for ¢ # 2, ¢ + 5 otherwise,

and S (¢) = ¢ — 1 for all ¢ € R. We show that S is an improved interpolative Hardy
Rogers PC-II. Indeed, for ¢ = 2, (* =4,y =3,y =5,and a = 0.2,3 = 0.3,y =

0.4 we have 0¢ (gkj, Sql) =0=0%(R,G), 8¢ (ij, ng) =0=0%(R,G) and

5
©
A

) ( (271’ B+ )
@ (2" (1) 1) ))

= &(0.7764) = 3 < 5.7764.

5
©
A

Hence,

) - 0 (a1, S42)” 8% (Squ, S¢M)” 8¢ (Sqo, SC*)”
iy, (37 (Sob1, 5C)) < @ (Sq1, Sq2)" 07 (Sau, S<M)" 87 (Sqz, S¢7)
(4 (37 (Sar, S¢*) + 3 (Sqa, Ssh7))) 7

Suppose there is some k satisfying the following inequality:

d @ x5d kj\P =d R\
51 (369, ) < 07 (Sa1, S92)" 8¢ (Sa1, S¢M) "9 (Sq2, SC7)
(L (8¢ (Squ, SC*) + 07 (Sqy, Sst))) 77

Then, k € [07—2764, oo), which is a contradiction to the assumption that & € (0,1).
Hence, S is not an interpolative Hardy Rogers PC-II.
The criteria for the existence of the bpp of improved interpolative Hardy Rogers

PC S are stated theorems. The proofs are very identical to the proofs of Theorems

2.2.5 and 2.3.3. We only write the distinct parts of the proof.
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2.4.3 Theorem

Let R,G C (9,09 with the property that “R is a-compact with repect to G” and
(2,04 be a cms. If S: R — G is a continuous improved interpolative Hardy Rogers
PC-II verifying conditions
(i) H,, is non-decreasing function and limsup, ., LP(t) < H,,(e+) for any € > 0,
(17) Ro is non-empty subset of R obeying S(Ry) C Gp.

Then S has a bpp.

Proof. Starting with the initial input the Theorem 2.2.5, we have
0'(ci7, S(<,L)) = 8U(R, @),
a%(cM |, S(sk)) = 34R, @), for all n > 1.
Thus by (2.14) we can write
5 (56t ,56)) " (0986t 1. 56)) " (¢ (5. 568,) )
5 (09 (SeiLy, 56k ) +07 (S5, 5) ) ) e

(
(

o (s5)" (0 (s5)) (0 (50
(o (ss))
(
(
(
(

11,845, 565,) < @

i (s275.)) <= o

o (SetLy56)) " (0%(S6k. 1,S<n> (04 (Son5224) )

(o (5 5) 1 ()

o (s 5)) " (0 (s 5

% (66[ (Sgn L Sgn) + ¢ (Scn, Sgnﬂ)))lo‘ﬁv

(5d <S§k7 S§n+1>> < &

i (7 (s0.52)) < o

for all distincts’ |, ¢% & € R. Let 84(Sc", S¢i, ) = k. Since ® (t) < H,, (t) for
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all t > 0, we get

l—a—B—y
H, (0,) < H, ((anl)a+5 (0,)" (% (0p_1+ an)) ) : (2.15)

If d, 1 < d, for some n > 1 and by monotonicity of ﬁm, we have
(00)* < (0,)",

which is a false statement, d,, < d,_; for all n € N. This implies d,, < d,,_; for all

n € N. Thus, it converges to some element d > 0. Suppose d > 0, then

n—00 n—00 2 T tokswy

R ) 1 l—a—B—y
H,(o+) = lim H,, (0,) < lim & ((an_l)“” (0,)" (— (0, +an_1)) ) < lim ®(1).

This contradicts (i), hence, d = 0 and lim,, 3d(Sng,S§Zﬁrl) = 0. We omit the

remaining details as they are similar to proof of Theorem 2.2.5. =

2.4.4 Theorem

Let R,G C (9,09 with the property that “R is a-compact with repect to G” and
(£2,0%) be a cms. If S: R — G is a continuous improved interpolative Hardy Rogers
PC-II verifying

(i) H,, is non-decreasing and if {H,,(z,)} and {®(z,)} are convergent sequences
satisfying lim,, . f[m(zn) = lim,, 0o ®(2,), then lim, . 2z, =0,

(1) Ro is non-void subset of R obeying S(Ry) C Gy. Then the mapping S has a
bpp.

Proof. This proof follows from the proof of Theorem 2.3.3 and Theorem 2.3.4. =
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2.4.5 Remark

If S: R — R (G = R), then the best proximity point is a fixed point and Theorem
2.2.4, Theorem 2.2.5, Theorem 2.3.3, Theorem 2.3.4, Theorem 2.4.3 and Theorem

2.4.4 are fixed point theorems.

2.5 Application to integral equations

We intend to apply Theorem 2.2.5 (for R C () to show the existence of the solution

to the following nonlinear Volterra type integral equations:

k
) = [ H(0h p)dn, (2.16)

0
for all k € [0,1], ¢ € ©, and H, is a function defined on [0,1]? x C([0,1], Ry) to R.
We show the existence to the solution of (2.16). For f € C([0,1], Ry), the norm as:

| fll- = sup |f(k)] ¢ki=mk 1 > 0. Define
kel0,1]

. (f, %) = lsup f (k) — %(k?)|<kj”k] =|If = =ll-

ke€lo,1]

for all f,sc € C([0,1], Ry), with these settings, (C([0, 1], R+),n,) represents a cms.
Now, we show the following theorem to clarify that the solution of integral equation

exists.

2.5.1 Theorem

Suppose that the mapping H. : [0,1] x [0,1] x C(]0,1], R;) — R is a continuous

mapping:
TUT(AMaC) kjiTh
H(k, h — H (k. h < ———— M7 2.1
| §( ’ 7f) §( ’ 7C)|_7_7']T(f,0)+1g ( 7)
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for every h,k € [0,1] and f,c € C(]0,1], R). Then, integral equation (2.16) has at
most one solution in C([0, 1], R, ) or equivalently the associated operator L. : R — R

defined by
k
(L) = [ Hlboh ) dh, (218)
0
admits a best proximity point.

Proof. By (2.17) and (2.18), we has the following information.
k
L Lo = [ G0 f) = Bl o) dh,

0

k
/ ™. (f, %) ckith qp,

™, (f, %)+ 1
0

k
TT]T(f’ %) /§ijhdh

™, (f, ) +1
0

nr(fa %> gijk
™ (f, ) +1

IN

This implies

L f—1 kj—Tk < 777'(f7 %)
S A S o

n,(f, )
T (fx) +1
T, (fix) +1 1
() = Lef — Lol
1
() = oo — Lo,

| Lo f — Lox||

T+

which further implies
1 -1
_ < )
||L§f_L§%||—r 777'<f7 %)

T

So all the conditions of Theorem 2.2.5 are satisfied for H,,(s) = =L 5 > 0 and

A~

® () = H,,(3) — 7. Hence, the integral equation (2.16) admits a solution. m
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2.6 Conclusion

The theorems provided here establish a broad criterion a bpp of improved IPC-II.
The results will extend earlier results of Basha [1], Altun and Tagdemir [23], Beg et

al. [9], Espinola et al. [5], Suzuki [4] and others.
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Chapter 3

Best proximity point results for a
class of nonlinear contractions in

metric spaces

3.1 Introduction

Best proximity point theorems look into the possibility of such best proximity point
for approximate solutions to the fixed point equation F'(h) = h in the absence of a
precise solution. In order to produce global optimal approximate solutions to some
fixed point equations, aims to establish best proximity point theorems for contractive
non-self mappings via interpolation. Iterative strategies are also provided to find such
ideal approximative solutions in addition to proving the presence of best proximity
points.

31
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3.2 Modified proximal contractions

In this section, we explain modified proximal contractions and show that it generalizes
proximal contractions. We prove the existence of the best proximity points of modified

proximal contractions in a complete metric space.

3.2.1 Definition

Let (20,9) be a complete metric space, and €, are subsets of 20. A mapping ‘P :

¢ — @ is said to be a (J, £)-prox contrs if

’19 1, 1 :’19 y
(o, Fm) (&®) = J (U (b1, b2)) < £ (0 (my, my)) (3.1)

¥ (b2, Pm,) = J (¢, D)

for all by, by, my,my € € with by # by, where J, £ : RT — R are two mappings.

3.2.2 Example
Let 20 = R? and define the function 9 : 20 x 20 — [0, 00) by
J((b,m), (u,0)) = |b —u| + |m — v| for all (b,m), (u,v) € 2.
Then (20,9) is a m.s. Let €, be the subsets of 20 defined by
C={0,m);0<m<1}, ©={(1,m);0 <m < 1}, then ¥(€, D) =1.

Define the functions J, F : R™ — R by

2
~ 3
J(3) =3and £(3) =3 — T3€ RY.
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Define the mapping P : € — D by B((0,7)) = (1,7 — %) for all (0,7) € €. We
show that P is a (J, £)-prox contrs. For b = (0,b;), u = (0,b2) and my = (0, a4),

my = (0,a2) (let a; > as), we have

9(b,Pm,) = 9(¢,D) (3.2)

I, Pm,) = 9(C,D). (3.3)

We note that the equations (3.2) and (3.3) can further be simplified to have the

following information:

ai
by, = a1—57
2
a
[12 = Cl2——2.
2

This implies that

3(19([]7’4)) = 3(19((07 bl)? (07 b2))) = (| 0-0 | + | b; — b2 |)
< (o —ag) — %(Ch — ay)?

= D(me,m) — 5 (me,m))? = £((ms,ms)

This shows that B is a (J, £)-prox contrs. Next, we show that it is not a prox

contraction. Since

ﬁ(bv Spml) = 19(¢7 ©>

O(u, Pmy) = I(¢, D).
If there exists ¢ € (0,1) such that

9 (b,u) <€ (my,my).
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Then,

19((0’ bl)? (07 b?)) < E19((07 al)a (07 uQ)

(JO=0[+[bi—ba]) < EJO—-0|+|a;—az])
a’ a2
Cll—?l—ClQ—F; < E(Cll—ClQ)
1+a1J2ra2 <t

This is a contradiction. Hence, B is not a prox contraction.

3.2.3 Theorem

Let P : € — © be a (J,£)-prox contrs defined on a complete m.s (20,v) and
¢, be nonvoid, closed subsets of 20 such that ® is a-compact w.r.t €. If J is nd
and limsup,_,., £ (t) < J(e+) for any € > 0. €, is non-void subset of € such that
PB(Cy) € Dg.Then P has a bpp.

Proof. Let by € Cy. Since P(by) € P(Cy) C Dy, there exists by € Cy such that,
I(by, P(bo)) = 9(C, D). Also we have P(by) € P(Cy) C Dy, so, there exist by € Cp

such that 9(by, P(b1)) = 9(C, D). Then Cj implies to have a seq {b,} C Cy such that

(b, P(b,,—1)) = (€, D), for all n € N. (3.4)

If 3 n € N such that b, = b,,1, then by (3.4), then b, is a bpp of the mapping P. If

b1 # b, ¥ n € N, then by (3.4), we have

O(bn, P(bna)) = (€, D),

V(bpt1, B(b,)) = Y(C,D), foralln > 1.
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Thus, by (3.1), we have

(b, by11)) < L(I(br_s, b)), for all by_y, by, byiy € €.
Let 9(by, bnt1) = On,
3(0,) < F0p_1) < 3(0n_r). (3.5)

If # > 0, so that, by (3.5), we obtain the following;:

J(0+) = lim J(0,) < lim F (0,-1) < lim sup F (¢).

n— 00 n— 00 t—0-+
This defies presumption (i), hence, § = 0 and lim,, o ¥(b,,, b41) = 0. Now (i) and
Lemma 1.1.12, we conclude that {b,} is a Cauchy seq. Since (I¥,4) is a complete ms.

Then 3 b* € C, st lim,,_, ¥(b,, b*) = 0. Moreover,

007 P(bn)) < D67, bpia) + (b p1, B(bn))
< 96, byyr) +U(E, D)

< (6%, b)) + (6", D).

Therefore, ¥(b*, P(b,)) — 9(b*, D) as n — oo. Since D is a-compact w.r.t C, there
exists a subseq {P(by,)} of {P(b,)}. Such that P(b,,) — m* € D as k — oco. Thus,

by solving the following eqation with £ — oo,

ﬁ(bnuum(bne)) - 19(¢7 Q)’ (36)

we have,
9(b*,6%) = (€, D).

Since, 1* € Cy, so, P(b*) € P(Cy) C Dy and p € Cp

O(p, P(b7)) = 9(¢, D). (3.7)
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Now, (3.6) and (3.7), by (3.1) we have

3(0(bpg,,,0)) < b(D(byy, 6%)) < J(D(by,, 7)), for all £ € N.

Since, J is nd,

Dby, p) < V(by,,b")

Thus, as k — oo, we have ¥(b*,p) = 0 or b* = p. Finally, by (3.7) we have

J(6*,B(b")) = I(€, D).

Hence, b* is a bpp of the mapping P. m

3.2.4 Theorem

Let P: C'— D be a (J, £)-prox contrs defined on a complete m.s (W, ) and C, D be
nonvoid, closed subsets of W such that D is a-compact w.r.t C. If J is nd and {J(¢,,)}
and {£(t,)} are cgt seqs st lim,, .o, J(t,) = lim,, o £(t,), then lim, . t, = 0. Cy is
non-empty subset of C' st P(Cy) C Dy.Then P admits a bpp.

Proof. As Theorem 3.2.3, we have
3(0n) < £(0n-1) <J(On-1). (3-8)
By (3.8), then {J (0,)} is a strictly decreasing seq.
9inn>f53 (0,,) > —oo for every € > 0,n € N.

From lemma 1.1.20, indicated that 6, — 0 as n — oo. Second, the seq {J(6,)} is

cgt if it is bounded below. The seq {£(0,)} likewise cgs by (3.8). Using (i), we have
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lim,, 0, = 0, for any seq {b,} in C. Now, the rest of the proof aligns with the

methodology outlined in Theorem 3.2.3, we have
0(b%, P(b%)) = I(, D).

Hence, b* is a bpp of the mapping P. m

3.2.5 Example
Let 20 = R? and define the function ¢ : 20 x 20 — [0, 00) by
J((b,m), (u,0)) = |b —u| + |m — v for all (b,m), (u,v) € 20.
Then (20,7) is a complete m.s. Let €, D be the subsets of 20 defined by
C={0,m);0<m<1}, ©={(1,m);0 <m < 1}, then ¥(€, D) =1.

Here €y = € and Dy = D. Define the mapping B : € — D by B((0,7)) = (1, 3) for
all (0,7) € €. Thus B (¢y) = Do. Define the functions J, £ : RT — R by

J(b) =2b and £(b) =b; b € R".

As J(b) > £(b) for every b >t > 0. Also lim, ..+ J(b) > lim,_.+sup £ (b). We
need to check whether P is a (J, £)-prox contrs or not.

For u; = (0, b), us = (0,m) and v; = (0,2b),0, = (0, 2m)

9 (ur, Poy) = J((0,b), % (0,2b)) =9 (€, D),

0 (ug, Poy) = J((0,m), P (0,2m)) = (€, D).

This implies that,

J (0 (w1, u2)) < £(0 (01,02))
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Therefore, the (J, £)-prox contrs is fulfilled. Also, (0,0) is the bpp of the mapping

B. Hence, all the conditions of the Theorem 3.2.3 are hold.

3.3 Modified Hardy Rogers type proximal contrac-

tion

3.3.1 Definition

Let (20, 9) be a complete m.s, and €, D be a pair of nonvoid subsets of 20. A mapping
P : € — D issaid to be a (J, £)-intplv H-R type prox contrs if there exist o, 5,7, €

(0, 1) satisfying o+ f + v+ d < 1 such that

= J (0 (b1, b2)) < £
9 (b2, Pmy) = (€, D) (3 (9 (my, by) + 0 (mz, by))) 77
(3.8)

for all distinct by, by, m;,my € € and b; # m; i € {1,2} with ¥ (Bb,Pm) > 0;
3, £ :RT — R are two functions.
The following example shows that (J, £)-H-R type intplv prox contrs generalizes

the H-R type intplv prox contrs [23].

3.3.2 Example

Let 20 = R and define the function ¢ : 20 x 20 — R by

J(b,m)=|b—m|
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Then (20,9) is a m.s. Let €, be the subsets of 20 defined as
¢ =1{1,2,3,4,5},D = {1,2,3,4,5,6,7} then ¥ (¢, D) = 0

Define the functions J, £ : RT — R

b+1 for b =2 for b =2

b+ 10 for b #2 b+5 otherwise

Define the mapping B : € — D by P (b) = b+ 1 for all b € €. We show that P is a

b
2

(J, £)-intplv H-R type prox contrs. For by, by, m;, my € €and o = %,ﬁ = %,’y = %
(b1, Pmy) = 9(¢,D)
U (b, Pm,) = J(€,D)

implies

1 l—a—B—
3 (79 (bl, [12)) S £ (79 (ml,mg)o‘ Y (ml, bl)ﬁ Y (m2, bz)7 (5 (19 (ml, bg) + 9 (mQ, bl») ) .

This shows that B is a (J, £)-H-R intplv type prox contraction. However, the fol-
lowing calculation shows that it is not an intplv H-R type prox contrs. We know

that
9 (b1, Pm;) = J(€,D)
J(ba, Pm,) = (¢, D)
If there exists ¢ € (0,1) such that

(b, by) < € (79 (my, mg)* J (my, 51)619 (my, by)” (% (¥ (my, by) 4 ¥ (my, b1))> 1aﬁ7>

[\)
VAN
(g~}
VRS
S
[\)
S~—
00|
—~
-
SN—
=
S
—_
S~—
[
7~ N
N =
—
w
+
[
N—
N—
—
|
|
|
~|
|
ol
\—/

2 < £(1.6138)),
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a contradiction. Hence, 3 is not an intplv H-R type prox contraction.

3.3.3 Theorem

Let (20,7) be a complete m.s and €,® be nonvoid, closed subsets of 20 such that ©
is a-compact w.r.t €. Let P: € — D be an (J, £) — intplv H-R type prox contrs. If

J is nd and for any € > 0,

lim sup £ (t) < J (e+).

t—e+

¢y is nonvoid subset of € such that B (€y) C Dy.Then P has a bpp.

Proof. Let by € &;. Since P(bg) € P(Cy) C Dy, there exist b; € &€y such that,
(b1, B(by)) = I(€,D).Similarly, for P(b;) € P(Cy) C Do, there exists by € €, such

that 9(bg, P(b1)) = ¥(€, D). Then €, implies to have a seq {b,,} C &y such that

19<bn+1> m(bn)) = 79(67 @> (3'9)

so, b, = b,,1, then b, is a bpp of the mapping P (see (3.9)). Assume that b, 1 # b,

for all n € N, then by (3.9) we have

O(bn, P(bn1)) = (€, D),

V(bpi1, B(b,)) = Y(C,D), foralln > 1.
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Thus by (3.8), we have

~ (9 (b-1.6,)) ((bp_1,6,))° (9 (b, b, 11))"
JW(bn, bpq1)) < £

<% 09(6”—1vbn+1)‘F19(bn,bn)))1*a*5*v

(19 (bn—l,bn))a (19([1”_1, bn))ﬁ (19 (bna bn—&-l))’y

CICICE [’nﬂ)))l_a_ﬂ_7

3<19 (bmbn—i-l)) = £

~ (9 (0,-1,6,))" (9(b,-1,0,))° (9 (b, 0,11))"
J (19 (bn’ bn—i—l)) S £

(3.0 (bura, B0+ (b0, Baia))) 7

Y n—1,Yn ath 9 ny On+t1 v
3O nbu)) < ] OO En b)) ,

(2 (9 (by-1, b,) + 9 (b, anrl)))lfa,B,W

for all distinct b,_1,b,,b,11 € €. Let 9(b,, b,11) = 0,. Since, £ (t) < J(t) for all

t > 0, so we get

l—a—B—y
J(0n) <3 ((Qn—l)aw (0n)" (% 0, + Hn—1)> ) . (3.10)

Assume that for some n > 1, 6,,_; < 6,. According to (3.10), we have (0,)*"" <
(Qn)aw since J is non- decreasing. As a result, for every n € N, we obtain 0,, < 0,,_;
. This indicates a strictly decreasing seq {6,}. As a result, it approaches an element
0 > 0. Consequently, § = 0, in case § > 0, we can derive the following via (3.10):

1 1—a—B—y
3(0+) = lim J(6,) < lim £ ((en_l)w 6,) (5 0, +9n_1)) ) < lim b(¢)

n—00 n—00 =

This contradicts (i), hence, # = 0 and lim,, ., ¥(b,,, b,,11) = 0. we conclude that {b,,}

is a Cauchy seq. Since (20,9) is a complete m.s and € is a closed subset of 20, so,
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there exists b* € €, such that lim,, ., ¥ (b,, b*) = 0. Moreover,

ﬁ(b*’m(bn)) < 19([]*7 anrl) +19<bn+1aq3(bn))
< 19({]*, bn—i—l) + 19<€7 :D)
< 9(b*, b,41) + 0(b", D).
Thus, J(b*,B(b,,)) — V(b*,D) asn — oco. Since D is a-compact w.r.t €, there exists

a subseq {P(b,, )} of {P(b,)} such that P(b,,) — m* € © as & — oco. Letting ¢ — oo

in the following equation:
Dby, B(bn,)) = 9(€, D), (3.11)

we have,

J(b*, m*) = 9(€, D).
Since, b* € &g, so P(b*) € P(Cy) C Dy, there exists p € €, such that
O(p, P(b7)) = 9(¢, D). (3.12)
Now, using (3.8) in association with (3.9) and (3.10), for all £ € N, we have

(0 (B, )% (0 (B, bg,,))” (9 (6%, )7

3(19 (b”t+1’p)) < £
(3 (9 (Bn,p) +9 (67, b0,.)))

(0 (b, 6) (9 (B by,,))” (0 (6%, p))

(L (9 (b, ) + 0 (b%,b,,,,))) 7

By using the monotonicity of J, for all € € N, we have

1-a—B—y
9 (BursssP) < (9 (60, 8)% (9 (b b)) (0 (6, p)) (1 (9 (6o, p) + 9 (5, bnm))) |

2
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Thus, as ¢ — oo, b* = p. Finally, by (3.12) we have
76", (b%)) =V (€, D).

Hence, b* is a bpp of the mapping B. =

3.3.4 Theorem

Let (20,4) be a complete m.s and €,® be nonvoid, closed subsets of 20 such that D
is a-compact w.r.t €. Let P: € — D be an (J, £)-intplv H-R type prox contrs. If J

is non-decreasing and {J (,)} and {b (¢,)} are convergent segs such that

lim 3 (t,) = lim b (t,),

n—oo n—oo

then lim, . t, = 0.€; is nonvoid subset of € such that P (&;) C ©y.Then P has a
bpp.
Proof. The proof aligns with the methodology outlined in Theorem 3.3.3, we

have

l-a—f—y
3, < £ ((enl)aw (0,)" G (0, + Hnl)) )
l-a—f—y
< J ((0n1>a+6 (0,)7 <% (6, + Hnl)) ) . (3.13)

We establish that {J(6,)} is a strictly decreasing seq by (3.13). Lemma 1.1.12
indicates that #,, — 0 as n approaches to co. Second, the seq {J (0,,)} is cgt if it
is bounded below. The seq {b (6,)} likewise cgs by (3.13), and, both have the same

limit. For each seq {b,} in € we have lim,, .., ¢ (b,, b, 1) = 0 according to (i) . Now,
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according to Theorem 3.3.3 proof, we have

9 (b*,Bb*) = 9 (¢,D) .

Hence, b* is a bpp of the mapping B. =

3.4 Conclusion

Generalized interpolative proximal contractions provide a robust framework for solv-
ing proximity problems in various mathematical and applied contexts. The estab-
lished existence and uniqueness results facilitate their practical use, offering significant

insights and solutions in various applied mathematics and engineering fields.



Chapter 4

New results on best proximity
points via generalized fuzzy

interpolative proximal contractions

4.1 Introduction

In this chapter, we define (I:[m, CI>> -PC and show that it generalizes PC. We ensure
the bpp of <f]m, <I>> -proximal contraction in a complete nafms followed by supporting
examples. Moreover, we bpp of complete non-Archimedean fuzzy metric space.

45
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4.2 Proinov type non-Archimedean fuzzy proxi-

mal contraction

In this section, we prove the existence of bpp of (ﬁm, @)—non—Archimedean fuzzy pc

and <]:Im, <I>> -interpolative nafms in a complete nafms.

4.2.1 Definition

Let (Q, f), *) be a cnafms and R, S be subsets of 2. A mapping T : R — S is called

(]:Im, (I>) -nafpc of the first kind

5 (sM, Yop, kUk™) = £ (R, S, k™) o ~
= Hm (E (gkja Cjkvksw)) > ¢ <E (Ula U27ksw)> )
3 (7%, Tug, k) = S (R, S, k™)
(4.1)
for all distinct ¢*7, (7% 7, vy € R with ¢* # (7% where H,,,® : (0,1] — R are two
functions s.t ® (t) > H,, (t) ¥V t € (0,1).

The following example shows that (]:I m <I>> -non-Archimedean fuzzy proximal con-

traction generalizes non-Archimedean fuzzy proximal contraction.

4.2.2 Example

Let Q =R2, 3:Q x Qx (0,400) — [0,1] by

6d((§kj_yul),(§j’“,v2))

i\](g’,v’ksw) — gk'_]* kSW

(<%, vr), (¢, v2)) = f/(C’“" — M) (o = 02)” for all (S, 01) (¢ 0n) € 2.

Then (Q, i, *) is a nafms.
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Let R, S be the subsets of ) defined as
R={(0,6);s €R}, S={(1,6);s € R}, then £(R, S, k") = H/~ &
Define the functions H,,, ® : (0,1] — R by

H,,(s) = ¢/s and ®(s) = s* for s € (0,1).

Define the mapping T : R — S by T ((0,7)) = (1,2y) for all (0,7) € R. Let us
consider ¢*/ = (0,2), v; = (0,1) and ¢* = (0,4), v, = (0,2),k** =1

S(M, Ty, k) = £((0,2), T(0,1), k) = M = S(R, 5, k),  (4.2)

S(R, S k™). (4.3)

S(¢*, o, k) = £((0,4), T(0,2), k™) = Fi-ww

This implies that
H,, (f](ij,Cjk,ksw)) > (2(01702,]1&81”))

~

S(sM, R k™) = 5((0,2),(0,4), k™) = 0.1353

~

S(o1,v9, k) = 2((0,1),(0,2),k*") = 0.3679.

A

H,,(0.1353) > ®(0.3679)

0.3673 > 0.1354
This shows that T is a <I:Im, CI>> -nafmpc. We know that

S(H Yo, k) = £((0,2),Y(0,1),k*) = Fww = S(R, S, k*),

~

(¢, Ton, k™) = $((0,4),7(0,2), k™) = 65777 = S(R, §, k™).
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This implies that

i(gkja Cjka ksw) Z i\)(Ula V2, ksw)

0.1353 > 0.3679

This shows that, T is not a nafmpc.

4.2.3 Lemma

Let {<*} be a seq in (Q, 5, *) s.6 limy, o0 & (g’fj, gﬁil,ksw) >1-—eVk™ >0 and
g€ (0,1)and T : R — S be a map satisfying (4.1). If the functions H,,, ® : (0,1] — R
are s.t

(1) liminf,_._ ® (t) > H,, (=) for any € € (0,1).

Then {¢*} is cauchy.

Proof. If {¢,, }, {<m,} and € € (0,1) such that the equations (1.5) and (1.6) hold.
By (1.5), we get that 5 (gnk+1,§mk+l,k5w) < 1—e¢. Since, for ¢, , Smys Smpyrs Spsy € 1R,

we have

i(gnkﬂ,Tgnk,ksw) = i(R,S,]ksw)

i (gmk+17 Tg’nkuksw> == i (R, S, ksw) fOI' all k Z 1

Thus, by (4.1) we have

~ ~

5 <Z (gnk+1,§mk+l,ksw)> > (Z (gnk,gmk,]ksw)> , forany k >1
For if a; = S (gnkH, gmk“,ks“’) and b, = S (Sng> Smy» k°), we have

H,, (az) > ® (b), for any k > 1. (4.4)
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By (1.5) and (1.6), we have limj_,o a; = ¢— and limy_,, by = €. By (4.4), we get that

A

H,, (=) = lim H,, (a;) > lim kinf ® (by,) > lim inf @ (¢) (4.5)

k—oo c—e

This is contradicts to the assumption (1). Consequently, {gflj } isacauseqin R. m

4.2.4 Theorem

Let (Q, f], *) be a cnafmc and S is a-compact w.r.t R. Let T: R — S be an <F[m, <I>>—
non-Archimedean fpc of the first kind. If

(i) H,, is non-decreasing function and liminf, .._ ® (t) > H,, (e—) for any ¢ €
(0,1).

(i) T (Ro) < So.

Then T admits a bpp.

Proof. Since Y(s¥) € T(Ry) C Sy, there exists ¢* € Ry such that,

S(M T (M), k) = S(R, S, k).

Also we have Y(¢*/) € T(Ry) C Sp. So, there exist (/¥ € Ry such that

SR, T (M), k) = (R, S, k),

S(ch, T(M), k™) = S(R, S, k™). (4.6)

In light, 3 n € N s.t ¢/ = ¢/ | then from (4.6) the point ¢*/ is a bpp of Y. If
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ki £ ¥ for all n € N. Then by (4.6), we have

S(H, T ) k) = £(R, S, k™),

and

S(M T (M), k) = S(R, S, k).

for all n > 1. Thus, by (4.1)

~

Hm(i(gﬁja gfﬁi—la ksw)) 2 (I)(i(gfzj—la gﬁja ksw)).

for all distinct ¢, ¢* ¢ € R. Let Sk, ¢k k) = 0, We have

H,, (0,) > ® (0,_1) > Hy, (0,_1) - (4.7)

Since H,, is nd, so, by (4.7), 80 0, > 0,1 ¥V n € N. Assume on contrary that 0 < 1,

so that (4.7), therefore the following holds:

A

H,, (e=) = lim H,, (0,) > lim ®(6,_;) > lim inf® (¢).

n—00 n—00 t—cki—

Which is not true to condition (7), hence, § = 1 and lim,, 5 (gfjj, gfz]ﬁa ]ksw> = 1.

The condition (i) and lemma 4.2.3, we conclude that {c/} is a cau seq. Since
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<Q, S, *) is a cnafms. Then 3 ¢ € R, s.t lim,,_00 (%, ¢, k™) = 1. Moreover,

S(R, S, k™) = (M (k) k)

v

) <§n+1>§ kﬁw) * i(g 1) k™)

Y
M)

i (gn-i-l’ gaksw) (g gn—&-l?ksw) * E ( Snt1 Tgk] ksw>

= S (ool Sls, i k) 5 (R, 5, k™).
This implies
S(R, S, k™) > i( M, ksw)*i(g T(cH), k),

~

> S (oHa 6 k™) + (s o, k™) + S(R, 5, k).
Applying to limit as n — oo for above inequality,

S(R,S,K™) > 1x lim i(g,T(gﬁj),ksw),

n—oo

> 1x1%%(R, S, k™).

That is,

lim S(s, T(%), k™) = S(R, S, k™).

n—oo

Therefore, f](g, T (gflj) ko) — f](g, S, k). Since S is a-compact w.r.t R, 3 a subseq

{Y(sn,)} of {T(sF)} s.6 (Tsp,) =1 €S ask — oo. Then, k — oo
3]\<an+1’ T(gnk)7 ksw) - i(Ra S? ksw)v (48)

we have,

(6.0, k") = S(R, 5.k).
Since, ¢ € Ry, so, T (s) € T (Ry) C Sy there exists £ € Ry such that

(& Te, k™) = S(R, 8,k™). (4.9)
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Now, having in mind the equations (4.8) and (4.9), by (4.1) we have

f{m(i(§nk+1 ) §> ksw)) Z q)(i(an, §, ksw)) > ];[m (i (gmg’ §, ksw))
Since, H,, is non-decreasing function, so, we have

S (Smpnr &) > S (6, 6, k)

Thus, as k — oo, we have 3 (¢, &, k™) = 1 or ¢ = &. Finally, by (4.9) we have

~

¥(s, T (s), k™)

I
™D

(R, S, k).

4.2.5 Theorem

Let (Q, i, *) be a cnafms and S is a-compact w.r.t R. Let T: R — S be an (H’W <I>>-

fpc of the first kind. If

(i) H,, is non-decreasing and {]f[m (tn)} and {® (t,,)} are cgt seq s.t limy, o Hy, () =

lim,, o ® (¢,), then lim, . (t,) =1
(i1) Ry is non-empty subset of R such that Y (Ry) C So.

Then T admits a best proximity point.
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4.3 Best proximity point and Proinov type proxi-

mal contraction in NAFMS

The aim of this section we introduce new findings on bppt, incorporating the functions
(H,,,®) : (0,1] — R. The example below demonstrates that (f[m, CID)—naﬁrrc is not

equivalent to nafirrctpc.

4.3.1 Definition

Let (Q,i, *) be a cnafms, and R,S of 2. A mapping T : R — S is said to be a
<I:Im, @) -nafirrc proximal contraction of the first kind if there exist (a,3) € (0,1)
with a + 8 < 1.

5 (M, Ty, k) = 5 (R, S, k)

o

(7% Ty, k) = (R, S, k)

A ~ . . ~ « —~ . 6 . ' 170575

= H,, (E (Cjk’gk37k5w>> > o ((E (Ul’vz’ksw» (E (U1,§k],ksw)> (E (112, C]k,ksw)> ) ‘
(4.10)

for all <", (v, vy € A and ¢; # v; i € {1,2} with 5 (,v, k") > 0 where ﬁm;¢ :

(0,1] — R are s.t ® (t) > H,, (t) for t € (0,1).

4.3.2 Example

Let Q = R and define a function & : Q x Q x (0, 00) — [0, 1] by

~ sw kSw
(v k™) = kv 1 09(c,v) °
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Then (Q, i, *) fms. Let R, S are subsets of {2 and defined as
R=1{1,2,3,4,5}, S={1,2,3,4,5,6,7}, then & (A, B,k*") = 1.

Define the function H,,,® : (0,1] — R by

A~

H,(t)=vtand ®(t) =tV te(0,1).

Define the mapping T : R — S by T (¢) = ¢ + 1. We show that T is a (ﬁm,q))-
non-Archimedean fuzzy irrctpe of the first kind. For this consider ¢* = 4, (7% = 2

,v1 = 3,09 = land a = %, b= % but a4+ 8 < 1. For k* = 1, we have,

i(gkj7’rvl7ksw) = 2(4’ T37ksw) = i(R’ S’ ksw)’

S Yo k) = S(2,T1,k™) = S(R, S, k™).
Hence, we have to prove that

fin (B2 2 ®<<§(”l’v2’“‘sw))a<i (rn.64.) ) (2 (uQ,cf’“,ksw))l_a_ﬁ),

A~

H,, (0.3333) > <I>((0.3333)%(0.5)%(0_3333)1—%—%>’

H,,(0.3333) > (0.4079),

0.5773 > 0.4079.

This shows that T is a (H,,, ®)-non-Archimedean fuzzy interpolative Rich-Rus Ciric
type contraction of the first kind. However, the following calculation shows that it is

not a non-Archimedean fuzzy irrctpc of the first kind. We know that

B(<M, Top, k™) = B(4,13,k") = B(R, S, k™),

S T k) = 52,71,k = S(R, S, k™).
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This implies that,

~

z (Cjk>§kj>ksw) > ((E (Ubvmksw))a <§ (vl,gkj,ksw)>ﬁ <§ (vg,gjk,ksw))l_a_ﬁ) :

0.3333 > 0.4079.

This is contradiction.

4.3.3 Theorem

Let (Q, f], *) be a cnafmc and R, S be non-empty, s.t S is a-compact w.r.t R. Let

T: R— S be an <f[m, <I>) -nafirrctpc of the first kind. If

~

(i) H,, is non-decreasing function and liminf,_.._ ® (t) > H,, (¢—) for any ¢ €
(0,1);

(77) Ro is non-empty subset of R such that Y (Ry) C Sp;

Then T admits a bpp.

Proof. Let ¢{? in Ry. Since T(<t/) € T(R,) C Sy, there exists ¢*/ € Ry such that,

S(M P (ch), k) = S(R, S, k).

Also we have Y(¢*) € T(Ry) C Sp. So, there exist (/* € Ry such that

B¢, T (M), k) = B(R, S, k).
S5, (M), k) = S(R, S, k). (4.11)

for all n € N. Observe that, if there exist n € N s.t ¢¥ = giﬁrl then from (4.11) the
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point ¢*7 is a bpp of the mapping Y. If ¢*7 # ¢ | ¥ n € N. Then by (4.11), we have

S5, (M), k) = £(R, S,k*), and

§(§Zﬂ-17 T(d?)? ksw) = i(R, Sa kSﬂ))a

for all n > 1. Thus, by (4.13)

~ ~ . . —~ . . "RV . . B s~ . . 1—a—p
Ao B skl e) 2 @ ( (B sthien)” (5 () (B (b ckhaer)) 7).

(4.12)

for all distinct ¢*7 |, ¥ ™ | € R by (4.12), we have

N —~ X . “ —~ . . (e RN . B/~ 1—a—p
Hp, (E(gﬁ% dﬁpksw)) > H,, <(E(<fﬂ1, cfﬂ,ksw)> (E (@fﬂ,l, <n,ksw)) (E (Sns <n+1,ksw)) ) :
Since, H,, is nd function, we have

Srokjo ki sw S/ kj kj m,.5w R ES kj sw Bra kj sw 1-a=p
(Z(§n 7§n+17k )) > (E<gn717gn 7k )) (E (gnflvgmk )) (E (Cn,§n+1,ﬂ§ >> .

This implies that

~ a+8 ~ L. : a+pB
(B4, k™)) > (S, s, k)

Let <gfbj, gfﬂ_l, ksw) = 0,,. This implies that

Hy ((6)) > @ (0" (62)' ) > o ((00-0)™ (0) )
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Since H,, is nd, so, by (4.12), we have 0,, > 0,,_; for all n € N. Assume that § < 1,

so that (4.12), we obtain the following:

H, (=) = lim H,, (6,) > lim ® ((9n_1)a+5 (en)lfa*ﬁ) > lim inf®(f).

n—00 n—00 t—cki—

This is contradicts assumption (i), hence, £ = 1 and lim,, 5 (gfij, gﬁjﬂ, k5w> =1.
Now keeping in mind the assumption (i) and Lemma 4.2.3, we conclude that {c/} is
a cau seq. Since (Q, i\], *) is a cnafms. Then 4 ¢ € R, s.t lim,, . 5 ( ki g, kSw) = 1.

Moreover,

B(R, S, k™) = (ol T(). k™),

v

2 (s sk ) S5, T, k™),

Y
M)

5 ( n+1,§,ksw> (5,68 | k™) * 5 ( n+1,T<n,k8w>

- 3 ( SRS k5w> i(g §n+1,ksw) * i(R, S, k%Y.
This implies
S(R, S, k) > 5 ( n+1,g,ksw> « (¢, T(cH), k™)
> 3 ( n+1,§ ksw> i(g §n+1,k5w) * i‘(R, S, k).
Applying to limit as n — oo in the above inequality, we get

S(R, S, k™) > 1x lim S(c, T(<™), k™)

n—oo

> 1x1x3(R, S, k™).

That is,

lim S(c*, T(<M),k*) = (R, S, k*).

n—oo
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Therefore, f](g, T (gﬁj) ko) — i(g,S, k**) as n — oo. Since S is a-compact w.r.t
R, 3 a subseq {Y (¢, )} of {Y(¢*)} s.t (Ys,,) — n € S as k — oco. Therefore, by

taking kK — oo in the following equation,
i<§nk+17 T(gnk)7 k*) = i(R’ S, k™). (4.13)

we have,

S(s,n, k™) = S(R, S, k™).

Since, ¢ € Ry, so, YT (¢) € T (Ry) C Sp there exists £ € Ry such that

S (€, 76, k™) = S(R, S, k™), (4.14)

Now, having in mind the equations (4.13) and (4.14), by (4.13) we have

A~

- (<z >< i) (Blesen) 7).

Since, H,, is non-decreasing function, so, we have

o~ ~ (07 ~ 6 ~ 1_04_B
o &K > (Sone . 6™) (2 (o sme k™)) (Bl 66™)

Thus, as k — oo, we have 5 (c,&,k*) =1 or ¢ = £. Finally, by (4.14) we have

I
ol

S, Y (<), k™) (R, S, k") .
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4.3.4 Theorem

Let (Q, i, *) be a cnafms and R, S be non-empty, s.t S is a-compact w.r.t R. Let
T: R— S be an <]:Im, (I>> -non-Archimedean fuzzy irrctpc of the first kind. If

(i) H,, is non-decreasing and {ﬁm (tn)} and {® (t,)} s.t that lim, e Hy, (t,) =
lim,, oo ® (t,), then lim,, ., (t,) =1

(i) T (Ro) C So.

Then T admits a bpp.

4.3.5 Definition

Let (Q,i,*) be a cnafms, and R,S of 2. A mapping T : R — § is said to be
<I:Im, (I>> -non-Archimedean fuzzy interpolative ktpc of the first kind if a € (0, 1) such

that

5 (", Yu1, k) = 5 (R, S, k)
3 (¢7F, Tuy, k) = S (R, S, k™)

~

= H, (i (M, <jk7]]<sw)) > @ <<§ (vl,gkjksw))a (2 (v27gjk,]ksw)>1_a) . (4.15)

for all <%, ("vy vy € Rand ¢; # v;, i € {1,2} with S(¢,v,k™) > 0. Where H,,,, ® :

(0,1] » Rs.t @ (¢) > H,, (t) for t € (0,1).

4.3.6 Example

Let Q = R and define the function 3 : Q x Q x (0,00) — [0,1] by

- joi— 0%s.v)

Z (C,U’ksw) =c J ksw
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Then (Q, i, *) is a nafms. Let R, S be the subsets of {2 defined by
R={1,2,3,4,5}, S={1,2,3,4,5,6,7}, then & (R, S,k*") = 1.
Define the functions H,,, ® : (0,1] — R by
H, (s) = /s and ®(s) = s for all s € (0,1).

Define the mapping Y : R — S by T (¢) = ¢+ 1 for all ¢ € R. We show that T is a
(I:[m, @) -non-Archimedean fuzzy iktfpc of the first kind. For ¢/ = 3, ¢/ =5, v; = 2,

vy =4, and o = %, for k** = 1;

S T k) = S(3,72,k) =1 =35 (R, S, k™),

S(EF Tug, k) = S(5,T4,k™) =1=3(R, S, k™).
This implies that

f{m (i (gkj’ Cjk,ksw)> > @ U1,§k] ksw)) (i (7}27 Cjk,ksw)>1a> ’

(56
ﬁm(§(3,5,1)) > @( (2,3,1) <§(4,5,1))1_é),
)

-
D=

H, (0.1353) > @ ( (0.3678)2 (0.3678)
H,,(0.1353) > ®(0.3678),

0.3678 > 0.3678.

This shows that T is a (ﬁm,@> -non-Archimedean fuzzy iktfpc of the first kind.

However, the following calculations shows that it is not a non Archimedean fuzzy
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iktpc of the first kind. We know that

S(¢M, Yo k™) = E(3,72,k™) =1=35(R,Sk™),

~

SR Tug, k) = 2(5,T4,k%) =1

S (R, S, k™).
Then,

Boxm) 2 (B (Emete) )

0.1353 > 0.3678.

This is a contradiction.

4.3.7 Theorem

Let <Q, fl, *) be a cnafms and R, S be non-empty, s.t S is a-compact with respect to
R. Let T: R — S be an (If[m, <I>> -iktpc of the first kind. If

(i) H,, is non-decreasing function and liminf,_.._ ® (t) > H,, (e—) for any ¢ €
(0,1).

(i1) Ry is non-empty subset of R such that Y (Ry) C So.

Then T admits a bpp.

Proof. Let ¢ in Ry. Since Y(¢¥) € T(Ry) C Sp, there exists ¢* € Ry such that,

S(6M, (k) k™) = S(R, S, k™).

Also we have Y(¢*7) € T(Ry) C Sp. So, there exist (/* € Ry such that

SR (M), k) = S(R, S, k).
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S(H L, T (M), k) = S(R, S, k). (4.16)

for all n € N. Observe that, if 3 n € N s.t ¢*/ = ¢ | then (4.16) the point ¢*7 is a

n

bpp of the mapping Y. If ¢*/ # ¢* | for all n € N. Then by (4.16), we have

B(H, T(sH ), k) = £(R, S, k),

and

i(gfﬂrl, T (k) k) = i(R, S, k).

for all n > 1. Thus, by (4.15)

A ~

~ . . ~ . . « . -«
oS sk e) 2 @ ( (B sth i) (5 (snstaer)) ) @)

for all distinct ¢ |, ¢¥ ¥ | € R by (4.17), we have

iy (S, K0, 6)) > My, ((f(Cﬁj_l, i) (8 (%Sﬁﬂl,ksw))la) -
Since, H,, is nd function, we have
(B, k) > ((i(CﬁipGﬁj X)) (S (o »Cﬁﬂl,ksw»M) -
This implies that

(Sl sk k™))" > (S, o))
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Let (gﬁj, S ]ksw) = 0,,. This implies that
Since H,, is nd, so, by (4.17), 0, > 0,1 ¥V n € N. Assume that 0 < 1, so that

(4.17), we obtain the following:

~

Hy (e—) = lim H,, (0,) > lim @ ((0,-1) (6,)' ™) > lim inf & (t).

n—c0 n—o0 1B
This is contradicts assumption (), hence, § = 1 and lim,, 5 (gflj, qfﬂrl, ksw> = 1.
Now keeping in mind the assumption (i) and Lemma 4.2.3, we conclude that {<*¥/} is
a cau seq. Since (Q, i, *) is a cnafms. Then 3 ¢ € R, s.t lim,, 5 (q’fﬂ, q,ksw) =1

Moreover,

S(R, S, k) = (M (M) k),

> 3 (<ﬁila<,k5”) % (¢, T(¢M), k),
> 3 (Gﬁila sks“’) 55,001, k™) # 3 (@fﬂp Tgmksw) :

n

- 3 (gkj_'H, g,]ksw> * i(g,gﬁil,ksw) * f](R, S, k).
Above information implies that
B(R.SK) > E (o k™) « S 1) k)
> 8 (Bho k) 5 S, o ko)« S(R, S, k).
Applying to limit as n — oo for above inequality,

S(R, S, k™) > 1x lim S(c, Y(cM), k™)

n—o0

> 1x1%3(R, S, k™).

That is,

lim $(c, T(cM), k™) = S(R, S, k™).

n—o0
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Therefore, f](g, T (g,’?bj) ko) — i(g, S, k*) as n — oo. Since S is a-compact w.r.t R,
there exists a subseq {Y(c}/)} of {T(c}¥)} s.t (Y<n,) — n €S as k — oo. Therefore,

by taking k£ — oo in the following equation,
i<§nk+17 T(gnk)7 ksw) = i\](R’ S, ksw)a (4'18)

We have,

S(s,n, k™) = S(R, S, k).

Since, ¢* € Ry, so, T (¢*) € T (Ry) C Sy there exists £ € Ry such that

S (€, 76, k™) = S(R, S, k™). (4.19)

Now, having in mind the equations (4.18) and (4.18), by (4.15) we have

Hon(S(Snr £ K7)) > <1>((i(gnk,gw,ksw))“(i@,@k%))l_“),
-~ A, ((i@nk,gnm,ks%)“ (5 (g,g,ksw)>1_a> .

A

Since, H,, is non-decreasing function, so, we have

~ -«

E(6nenr & k™) > (Z6mesmn k™) (26 6,6™))

Thus, as k — oo, we have 5 (c,&,k*) =1 or ¢ = £. Finally, by (4.19) we have

~

Y(s, T (), k™)

I
ol

(R, S, k).
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4.3.8 Theorem

Let (Q, f], >|<> be a cnafms and R, S be non-empty, s.t S is a-compact w.r.t R. Let

T: R— S be an <If[m, (I>> -nafikpc of the first kind. If

(i) H,, is non-decreasing and {f[m (tn)} and {® (£,,)} 8.6 limy, o0 Hyp () = limy, o0 @ (£,)
then lim,, . (¢,) = 1.

(17) T (Rp) C Sp.

Then T admits a bpp.

4.3.9 Definition

Let <Q, f], *) be a cnafms, and R, S be a pair of non-empty subsets of 2. A mapping
T: R — Sissaid to be (ﬁm, @)—non—Archimedean fuzzy interpolative Hardy Rogers

type pc of the first kind if o, 5,7, € (0,1) st a+5+~v+ 5 < 1.

S (¥, Toy, k™) = S (R, S, k™)
S (¢F, Tog, k) = £ (R, S, k™)
(EA] (v1, Vg, ksw))a (}A] (U1,§kj,ksw))6
~ . (i (gkj’gjkjksw)> > @ (i (U2,Cjk’ksw)>7 (i (U17<jk,ksw)>5 4.20)

(5 (02,65, %)) e

for all ¢, (Fvy, vy € R and ¢; # v;, i € {1,2} with i(Tg,Tv,ksw) > (0 where

Hp, @ :(0,1] = Rs.t ®(t) > H, (t) for t € (0,1).



66

4.3.10 Example
Let @ =R2and & : Q x Q x (0,00) — [0,1] by

~ ksw ' ‘
B0 k") = gy Ve 06 =l —u [+ [ -,

for all ¢*7_ vy, (7% vy € Q. Then <Q, f], *) is a fms. Let R, S be the subset of {2 defined

by

~ ksw
R={(0,¢),s e R}, S={(1,0),¢ € R}, then ¥ (R, S,k*) = e

Define the functions H,,, ® : (0,1] — R by

~

H,, (s) = &/s and ® (s) = s* for all s € (0,1).

Define the mapping T : R — S by

T (s) = 7 for all s € R.

We show that T is (I:Im, CI>> -non-Archimedean fuzzy interpolative Hardy Rogers type
pc of the first kind. Let ¢ = (0,4),v = (0,2), x = (0,9),y = (0,3) let « = 0.01,5 =

0.02,~v =0.03,0 = 0.04 and also k** = 1 then we have

_ . k5w _
B T0k) = B((0.4),7(0.2),k") = e = S(RSK™),
_ . ks .

S (2, Ty, k™) = 5((0,9),7(0,3), k™) = S (R, S, k™) .

_ksw+1:
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This implies that

~ [CYEN B s~ Y
e (C@ykm) (Swerem) (Swekm)
H, (2(§’x’k >> = 5 1-a—f—y-5
(E (v, z, ksw)> (E (y, ¢, ksw)>

£, (0.1667) > @ (0.5)"" (0.3333)"% (0.1429)"

(0.125)°%* (0.5)%?

A~

H,,(0.1667) > ®(0.4519),

0.4082 > 0.2042.

This shows that T is a (I—:Tm, <I>) -non-Archimedean fuzzy interpolative Hardy Rogers
type proximal contraction of the first kind. However, the following calculations show
that it is not-non-Archimedean fuzzy interpolative Hardy Rogers type pc of the first

kind. let « = 0.01, 5 = 0.02,v = 0.03,6 = 0.04 for k* = 1, We know that

. . k5w .
B T0k) = B(0.4),7(0.2).k") = g = S(RSK),
N . k5w .

(@ Ty k™) = £((0,9),7(0.3).k") = o7 = S(R.SK™).

This implies that
~ [ YN B s~ ol
(E (v, v, ksw)> (E (v,¢, ksw)> (E (y, x, ksw))

~ 0 s~ 1-a—B—vy—06
(Ewakm) (S k™)
0.1667 > 0.4519.

(f] (g,x,ksw)> >

This is a contradiction.

4.3.11 Theorem

Let <Q, i, >|<> be a cnafms and R, .S be non-empty, closed subsets of €2 such that S is

a-compact w.r.t R. Let T: R — S be an (]:Im, @)-interpolative Hardy Rogers type
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pc of the first kind. If

A

(i) H,, is non-decreasing function and liminf,_.._ ® (t) > H,, (¢—) for any ¢ €
(0,1).

(it) T (Ro) C So.

Then T admits a bpp.

Proof. Let ¢¥ in Ry. Since YT(s*7) € T(Ry) C Sy, there exists ¢ € Ry such that,

S (M), k) = S(R, S, k).

Also we have Y(¢*7) € T(Ry) C Sp. So, there exist (/* € Ry, such that

SR, T (M), k) = £(R, S, k).
S(H,, T(H), k) = B(R, S, k), (4.21)

for all n € N. Observe that, if 3n € N s.t ¢ = ¢*/ | then from (4.21) the point ¢/

is a bpp of the mapping Y. If ¢" #£ §n+1 V' n € N. Then by (4.21), we have
S (M), k) = S(R, S, k™), and

S(6M,, T(M), k) = £(R, 5, k),

vV n > 1. Thus, by (4.20)

~ . ) RPN B s~
Ay QS (E(gfz]fla glfzja ksw)) (E (gﬁj 1» Sny ksw)) (E (gm n+17 k8w>>’y
H (2( n 7§n+17ksw)) o

~ . 6 s~ l—a—B—vy—§
<E (ggj—la n+17ksw>> <Z (gnagnaksw)>
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ST kj q.sw e sw B
; (Bt asibe) (2 (s smke))
m - o - . b
(5 (sk ok b)) (S (b sk i) ) (@) e
i kj k] sw S kj sSW A
< (gn 17 k )) <2 (gn—lagnak >)
~ . ) Y /o~ . 1
(5 () (5 ()
~ ~ . B/~ v
o o () (B (i) (8 o)
Hm(z(gn]7gn+17k ))Zq)

(2 () (5 o))

(4.22)

V distinct ¢*7 |, ¢k ,an € R by (4.22), we have

~ ~ . B/~ v
H (869,50, k%)) > (Bt ( (asmkr)) (£ (onsiuk))
m Sn s Snsls ) m

S kj k sw e sw o
(B (nstie) ) (8 (i)

Since, H,, is non decreasing function, we have

(st o () (B (k) (3ot e))
o (5 (61 68 )’ (8 (s ) )

This implies that
(B8, ¥ k™)) > (S0, sl ,ksw))a+6+6 (= (<ﬁj,<n+17ﬂ<s”))7+5-
Let (Sn, sk, k™) = 6,,. This implies that
Hy ((6,)) > @ ((9n71)a+6+5 (0, )v+5> >, ((9 Niiian (en)w(s) .

Suppose that 6, 1 > 6, for some n > 1. Since ﬁm is non- decreasing, we have

(6,)*% < (,,)**°  This is not possible. Consequently, we have 8, > 6,_; for all
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n € N. This implies 6,, > 6,,_; for all n € N. Assume contrary 6 < 1, we obtain the

following:

H, (=) = lim H,, (6,) > lim ® ((9n_1)a+5+5 (en)m) > lim inf®(f).

n— o0 n— o0 t—cki—

This is contradicts assumption (i), hence, § = 1 and lim,_ . & (gﬁj ,gﬁil,ksw) =
1.Now keeping in mind the assumption (i) and Lemma 4.2.3, we conclude that {gflj}
is a cau seq. Since (Q, f], *) is a cfms. Then 3 ¢ € R, s.t lim,, . 5 ( g, ]ksw) =1.

Moreover,

B(R, S, k™) = (ol T(H). k™),

v

2 (e85 k™ ) S5, T, k™),

Vv
M)

i ( n+17 g’ksw> (§ §n+1)ksw) * E ( n+1a Tgnak8w> )

- 3 ( SRS k5w> i(g §n+1,ksw) * i(R, S, k*).
This implies
SRS = 8 (e k) # S, Tk, k™),
> 3 ( n+1,§ ksw> i(g §n+1,ksw) * i(R, S, k%Y.
Applying to limit as n — oo for above inequality

S(R, S, k™) > 1x lim S(c, T(<™), k™)

n—oo

> 1x1x3(R, S, k™).

That is,

lim S(c, T(cM), k™) = S(R, S, k™).

n—o0
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Therefore, f](g, T (gﬁj) ko) — i(g,S, k**) as n — oo. Since S is a-compact w.r.t
R, 3 a subseq {Y (¢, )} of {Y(¢*)} st (Ys,,) — n € S as k — oco. Therefore, by

taking k£ — oo in the following equation,
5 (Snpprs Tlsn ), k) = B(R, S, k™). (4.23)
we have,
S(s,n, k") = B(R, S, k™).
Since, ¢ € Ry, so, T (s) € T (Ry) C Sy there exists £ € Ry such that

(€, T, k™) = S(R, S, k™). (4.24)

Now, having in mind the equations (4.23) and (4.24), by (4.20) we have

(S6nrsk™) " (£ (Gnrneer &) (Bs.eem)’

Hm(E(gnkH,g,]ksw)) > @ R 5 s~ l-a—B—y—§
(£ 6ns&6) (2 (<50 k) )

(i(gnk, S, ksw)>a (i (Sngs <nk+1,ks“’)>ﬂ (i (. &, ks“’))w

- b, ) 5 /o l—a—f-y—§
(£ ©nes k) (2 (6 5mes k) )

A

Since, H,, is non-decreasing function, so, we have

) (S5 (8 s k)) (Stc68) "

E(anJrl?gaksw) > R 5 /o l—-a—B—vy—6
(E (Sne &5 ks“’)) (E (. cnw,ks“’))

Thus, as k — oo, we have 3. (c,&, k) =1 or ¢ =¢&. Finally, by (4.24) we have

A~

S Y (<), k) =S (R, S, k™).
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4.3.12 Theorem

Let (Q, f], *) be a cnafms and R, S be non-empty, s.t S is a-compact w.r.t R. Let
T: R— S bean <ﬁm, @) -non-Archimedean fuzzy interpolative Hardy Rorgers type
pc of the first kind. If
(i) H,, is non-decreasing and {]:Im (tn)} and {® (£,,)} 8.6 1imy, o0 Hyp () = limy, o0 @ (£,)
then lim, . (t,) = 1.
(i) T (Ro) S So.

Then T admits a bpp.

4.4 Conclusion

The main aim of our chapter is to present new concepts of bppt for (ﬁm, )-fuzzy
ipc, thereby extending Proinov type fpr in a fms principle [25] to the case of non-self

mappings.



Chapter 5

Best proximity point results for
proximal contractions in fuzzy

metric spaces

5.1 Introduction

In this chapter, we introduced a new type of interpolative proximal contractive con-
dition that bpp of fuzzy mappings.We establish certain bppt for such pc. We improve
and generalize the fuzzy proximal contractions by introducing fuzzy proximal inter-
polative contractions. We explain some bpp results in fms by introducing new fuzzy
interpolative contraction mappings.

73
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5.2 Modified Kannan type proximal contraction in

fuzzy metric space

5.2.1 Definition

Let (s, F, %) be a cnafms and R,G C U. A mapping T : R — G is said to be iktpc, if

there exist A € [0,1) and « € (0,1) such that
5 (M, % k) > A ((i (01,67, 8)) " (9 (vz,cj’“,ksw))la) 6B

for all ¢ (*v vy € R, k* > 0 and ¢; # v; i € {1,2} whenever 5 (M, Yoy, k) =

2 (R, G, k), 8 (¢F, Tog, k) = £ (R, G, k™) and % (5, v, k™) > 0.

5.2.2 Example

Let U=R xR, S: U x U x (0,00) — [0,1] by

R ksw
E A ksw — ]
(§JJ7 ) ksw + 5‘1 ((gkj7j1) ) (Cjk7j2)) 7

for all (¥, 1), (¢%, j2) € U where 8¢ ((*, 51), (%, j2)) = 6" — 31 | + | ¢7* = 3l

Then (U, i\], *) is a nafms. Let R,G C U defined by

R = {(0,%) ;nEN}U{(QO)}a

G - {(1,%) ‘n e N}U{(1,0)}.

Define fJ(R, G, k™) = sup{i‘(q,j, k) : ¢ € R,j € G and k* > 0}. So, we have

S(R,G, k™) = £ Ry (k™) = R and Gy (k*) = G. Define the mapping T : R —

- ksw417
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G by

¥ (9, 0) = (1,5), if (M,¢") =(0,2) foralln e N
(1,0), if (s*,¢7%) = (0,0)

for all (gkj,(’jk) € R. Then, clearly T (Rg) C Go. Now, we show that Y is a iktpc.

For % = (0,4), ¢ = (0,1), 5 = (0,1), 2= (0,3) ,a =1 A=t and k" = 1.

o ~ 1
S(¢M T, k) = z((0,5),r(0,1),1),

= S(R,G,k*™), and
S(EF 15,k = 5 0.5) r(ol) 1),
4 2
= S(R,G,k™).

Above information implies that,

s - 5((02) (1))

ME e em)) " (5 (n €™ )

(2 (00 (5) ) () (03) 1)

v

[NIE

v

which yield,

0.5714 > 0.1826.

This shows that Y is a interpolative Kannan type contraction. However, for ¢¥/ =

(0,3), ¢"=1(0,3), 51 =(0,1), jo=(0,3), A = 0.499 and k** = 1. Now, we have

2

(M, Ty, k) = i((o,%),T(O,l),l),

= f](R,G,]ksw), and
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. ~ 1 1
S(EF Yy, k) = 2 ((0 Z) T (0,5) ,1>,

= S(R,G,k™).

Above information implies that

Feree) = =((03). (1) 1)

which yield

0.5714 > X (0.4+0.75),

0.5714 # 0.5739.

This is a contradiction. Hence, T is not a Kannan type contraction.

Next, we start our main results:

5.2.3 Theorem

Let (U, i, *) be a cnafms and R,G C U such that G is a-compact with respect to
R. Let T: R — G iktpc. If Ry C R such that T (Ry) C Go. Then T admits a bpp.

Proof. Let ¢*/ € Ry. Since Y(s¥) € T(Ry) C Gy there exist ¢*/ € Ry such that,

S(M,T(M), k) = S(R, G, k™).
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Also we have Y(¢*7) € T(Ry) C Go. So, there exist (/¥ € Ry such that,

i(gjk7 T(ij)7 ksw) — i(R, G, ksw).

S5, (M), k) = S(R, G, k™), (5.2)

V n € N. Observe that, if 37 € N such that ¢*/ = ¢!, then from (5.2), the point ¢*J

is a bpp of the mapping Y. If ¢%/ # ¢ | vV n € N. Then by (5.2), we have

~

S(H, (M), k) = £(R, G, k™),

and
S(M (M), k) = S(R, G, k).
for all n > 1. Thus, by (5.1),
~ . . ~ . . a s . . -
B, k™) 2 A (S k™)) (S (k) T 63)

for all distinct ¢/, ¢* ¢* | € R. Since, by (5.3), we have

~ . . ~ . X [ RPN . . 11—«
E(gZJ7 gflj—i-h kSw) Z /\ (E(§ﬁj_1’ g”]:L]’ ksw)) (E <g’l;;bj7 gij—H? ksw)) )
(B(6H, k™)) 2 A (Sleh 16 k™)) (5.4)
So, by (5.4), let 6,, = 5 <§flj, gfﬂrl, ksu’>. We have 6,,_; < 0, Vn € N. Now from (5.4),
we have
i(gkj §kj ksw) > )\éﬁ(gk] §kj ksw)
n o >n+1» n—1»>n > )

(gn—27 gﬁjfl y ksw) )

vV
Qv
\gl;

A

)\%f}(gkj,glgj,ksw).

v
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Then 0,, (k*”) > 60,1 (k*"), that is the sequence {6, } is non-decreasing sequence
for all k* > 0. Consequently, there exist 6 (k**) < 1 such that lim, . 6, (k") =
0 (k**). Now, 6 (k") = 1. Suppose, 0 < 0 (kj") < 1 for some ki > 0. Since

0, (k") > 0 (ki) , by taking the limit with k** = k§*. We obtain
0 (k") > A0 (k") > 0 (k") .

Which is contradiction and hence, 6 (k**) = 1 for all k™ > 0. Now, we show {¢*/}
is a cau seq. Then 3 e € (0,1) and k§* > 0stV k € N, I n(k),m(k) € N with

m (k) >n (k) > k and
<« kj sw
5 (B sty ki) <1
i <§m(k)—17 gZik)? kgw) >1—e
and so V k we get
L—e > (s iy k™).

> 3 <€m(k) m(k) ksw) > (§m(k)—1,€ﬁ{k)7ksw> ) (5.5)

S Hogy (K57) (1= )
Putting limit n — oo in (5.5), that

hmZ(g (k)7 S ()ksw>:1—e,

n—oo

from,

« kj sw kj sw o sw
E<< (k)41 n(k)+1’k ) 2 Z<§ (s )+1’< (k)’k ) * 2 ( Sim(k) S () ko )

N »
*2 (gnj(k) ()+1vk )
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and

S kj sw « sw <« sw
2 (gnf(k) 2 Ko ) > E( Sm(k) g +1v]k > * 2 <§ (k) n(k)+17k )
*2( k)—&-l’gn(k kw)

we get,

lim &

o ( (k417 Sl )+1’k3w) =l-e

From equation (5.2), we know that
5 ( kj Tgfj(k),kgW> =3 (R, G, k") and 5 ( Snik) +1,T§kj k8w> =3 (R,G, k") .

m(k)+1’

So by (5.1),
~ ~ . ~ . -«
kj sw k sw k kj sw
£ (Mo iy k") 2 A (2 (Mg i k) ) (5 (b skl 67))
taking lim k£ — oo, we get
l—e>A(l—-¢)>1—¢

this is wrong. Then {¢,} is cau seq. Since (g,i, *) is a cnafms. Then 9 ¢ € R, s.t

lim,, o 5 ( s, ksw) = 1. Moreover,

B(RGK™) = Dok (), k),

v

i (gn-i-l? S, ksw) * i(@, T(gﬁj)? ksw)7

i < n+17 ksw)

= (o k) # Sl k) £ SR, G ).

v
M)

(C gn—&-la ksw) * E < n+1a Tgna ksw)

This implies,
E(R7 Gaksw) 2 i ( n+1’ k5w> * i(g T@Zj)?ksw),

> i ( Sn+15S ksw) * i(g7gﬁj_‘~_1,ksw) * i(R, G, ksw).
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Applying to limit as n — oo for above inequality,

S(R, G k™) > 1 lim S(c, T(c™), k™),

n—~oo

> 1x1%%(R,G,k™).

That is,

lim S(s, T(H), k™) = S(R, G, k™).

Therefore, f](g, T (g’fbj) ko) — EA](g,G,]kS“’) as n — o0o0. Since (G is a-compact w.r.t

R, then 3 £ € Ry (k™) s.t,
S (€ Ts, k) = (R, G, k™) = S(H,, T (M), k). (5.6)
We now show that ¢ = . If not, then
S (& k) 2 A (S 68m) (5 (o, <Zﬂ’+1,kW))la,
on taking limit as n — oo gives

[0}

(€6, k) > A (i (c,f,ksw)>a > <§ (s, & k™)

N———

Which is contradiction. Hence 3 (s, T, k) = f](R, G, k™) = 5 (&, TE k™), that is
, ¢ is the best proximity point. We show that ¢ is the unique bpp of T. Assume, that
0<3(s,j k™) <1VKk™ >0and j# ¢ is another bpp of T, i.e., & (s, T¢, k*) =

S(R,G, k™) = 3 (3, Tj,k*) then from (5.1),

~ -«

$(s,7, k™) > A (i (<,g,ksw))a (i (3,7, ksw)) > 1.

Which is contradiction and hence & (¢,7,k**) =1 for all k* > 0, that is¢ = ). m
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5.3 Modified Reich-Rus-Ciric type proximal con-

traction in fuzzy metric space

5.3.1 Definition

Let (U, f], *) be a cnafms, and R,G C U. A mapping T : R — G is called irrpc, if 3
a,f €(0,1) and A € [0,1) with a+ 5 < 1.
(1,6, 5) 2 A (S 00,22 6) (8 00 64.0%)” (B G 6)
(5.7)
for all ¢, ¢7%%, 5, € R, k** > 0 and ¢; # Ji, © € {1,2} whenever 5 (gkj,'fjl,ksw) =

2 (R, G, k), 5 (¢F, Yo, k) = B (R, G,k*) and % (s, 5, k*) > 0.

5.3.2 Example

Let U=R2 5: U x U x (0,400) — [0,1] by

~ . sw ksw
2(s, 2, k™) = kv 107 (c, )

where 8((<*, J1), (¢**, J2)) = \/ (¢F — ki) 4 () — Ju) for all (M, ) , (¢*, Ja) € U
Then (U, f], *) is a nafms. Let R,G C U defined as

R = {(0,¢);s € R},

G = {(1,¢);c € R}.

Define ﬁ(R, G, k™) = sup{i(q,j, k) : ¢ € R,J € G and k*™ > 0}. So we have

S(R, G, k™) = £ Ry (k™) = R, Go (k*) = G. Define the mapping T : R — G

]ksw_;’_l Y
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T ((0,7)) = (1,27),
for all (0,7) € R. Then clearly T (Ry) C Go. Now, we show that Y is a irrpc. For
gkj = (072>7 jl - <07 1)7 Cjk - (074)7 j2 - (07 2)7 kv = La= : - Lfl), and A = 0.27.

2

~

S(¢M T, k) = £((0,2), T(0,1),1),

= S(R,G.k*), and

~

S, T, k) = £((0,4),7(0,2),1),
= 3(R,G.k™).

Above information implies that,

B(M, K = £((0,2),(0,4), 1),

((i@bjz,k%)a (8 G 6%)) (B 0o ) ) ,

v
>

which yield
0.3333 > 0.1557.

Then Y is a irrpc. However, for u; = (0,2), 71 = (0,1) and ¢/* = (0,4), 3, = (0,2),

A = 0.27. Now, we have

~

S, T, k) = £((0,2), 1(0,1),1),

= f](R, G, k"), and
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i(cjk>Tj27ksw) = E(<074)7T(072)71)7

= (R, G.k*™).

Above information implies that,

~

i(gkjacjkaksw) = E((072)7(074)71>7

v

A (S0 K) 4 5 (3,69, 6) +8 (3, 1)),

_ 5((0,1),(0,2) k™) + 3 ((0,1),(0,2), 1) +

~

¥ ((0,2),(0,4),1)
which yield,

0.3333 % 0.3599.

This is a contradiction.

5.3.3 Theorem

Let (U, i, *) be a cnafms and R, G C U s.t G a-compact w.r.t R. Let T: R — G be
a irrpe. If Ry C R such that T (Ry) C Go. Then T admits a bpp.

Proof. Let ¢* € Ry. Since Y(sM) € T(Ry) C Gy, so I M € Ry s.t,
S(M, T (sM), k) = £(R, G, k).
Also we have Y(¢*) € T(Ry) C Gy. So, there exist (/¥ € Ry such that,

S(E*, (M), k) = S(R, G, k™).

S(M (M), k) = S(R, G k). (5.8)
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¥ n € N. Observe that, if 3 n € N s.t ¢ = ' | then from (5.8), the point ¢*/ is a

n

bpp of the mapping Y. If ¢*/ # ¢ | ¥ n € N. Then by (5.8), we have
S(¢k, T ), k™) = S(R, G, k™), and

S(6M,, T(M), k) = £(R, G, k),

for all n > 1. Thus, by (5.7),

S ki ki posw Soki ki sy )" (8 (ki w) ) (s Kioopesw)) "
(Z(gn,§n+1,k ))2)‘ E<§n—1’gnak ) )Y Cn—lagnak D §n,§n+1,k 3

for all distinct ¢™ |, ¢, §ﬁi1 € R. Since, by (5.9), we have

n

(E(df?’ gfl]—i-b ksw)) Z /\ <<Z(gij_17 CZ]’ ksw)) (E (gfzj_la gna ksw)> <2 (gna g:ﬂ—l’ k5w>> ) ’

~

~ . . ~ . . a+p . . l1—a—p
S(ek, ok k) 2 A (S k) (S k) (5.10)

So, by (5.10), let 6, = 5. (gfﬁ, S ksw> . We have 6,1 < 0,, for all n € N. Now from

(5.10), we have

n—1

s . . #/\ . .
Nk M k) > AN (¢ M ),

Vv

)\%ﬂai(gn—% gkj ksw))

n—1y

AeHE S (HT KT e,

v

Then 6,1 (k) < 6, (k*), that is the sequence {6, } is non-decreasing sequence
for all k* > 0. Consequently, there exist 6 (k") < 1 such that lim,, 0, (k°") =

0 (k**). Now 6 (k*“) = 1. Suppose, 0 < 0 (ki*) < 1 for some ki > 0. Since 6,, (k&*) >
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0 (ki) , by taking the limit with k** = k&*. We obtain
0 (kg”) > X770 (k™) > 0 (k3").

Which is contradiction and hence, 6 (k*) = 1 for all k*” > 0. Now, {c*/} is a cau
seq. Then 3 ¢ € (0,1) and k§* > 0 s.t V k£ € N, there are n (k),m (k) € N with
m (k) >n (k) > k and

S kj sw

~

% <§m(k)717 gﬁ{k)? kgw) >1- €

l1—¢ > i( (k) n(k ksw)

~

> X <§m(k)_1, Gf,f(k),ksw) «3 (gm(k)—la Ci{k),ksw> ; (5.11)
> Hm(k) (k ) (1 — 6)

Putting limit n — oo in (5.11),

hmE(g (k)7 S ()k5w>:1—e,

n—oo

from

S [ ki sw kj sw (kK sw
DE CH PRI ATIN ) i /S A - R i G/ )

and

- kj kj sw <« kj kj sw <« sw
Y <§rrz(k)’gn](k)’k0 ) > X (Cnf(k) N j( )+1vk )*E <§ (k) n(k)+1’k >

%3 ( n(k)+1v<n(k) ksw) ;
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we get

lim 3 ( (k) +1,g +17ksw) =1—¢

n—oo

From equation (5.8), we know that

5 ( kj Tgfg(k),kgw> — (R, G, k) and (

SHay Y ki) = (R, GG,

n(k )+1°

So by (5.7),

5 <§];z(k)+1’ gfz%k)+1’ k(s)w> E (i (gfj(k)’ n(k)’ ksw)) (i (Gfrf(k)a gfg(k)+1> kgw)>6
<i <§Z%k)7 gi{k)+1’ k(s)w>)1a6 5
taking lim k£ — oo we get
l—e>A(1l—-¢)>1—c

Then {g’fj } is cau seq. Since (U , i *) is a cnafms and R is closed subset of U. Then

d¢ € R, stlim, 5 ( QAN ]ks“’) = 1. Moreover,

i(R>G>ksw) = i(gii_l’T(gij)’ksw) > E ( n+17§>ksw> * /Z\](g7T(gn),ksw),

v
M)

i < 7’L+17 ksw) (C gn—‘rl?ksw) * E < n+17 Tgna ksw)
- i < Sn+1: S k5w> * i(g’ gﬁj—.klv ksw) * i(Ra Gv ksw)'
Above information implies that,

D(R,G ) = S (k™ )« S(s, T(sk), k),

> (b k) ¢ S(s b k) « SR G k),
Applying to limit as n — oo in the above inequality, we get
S(R,G k™) > 1 lim S(c, T(<H), k™),

n—oo

> 1x1%3(R,G k™).
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That is,

lim (¢, T(M), k™) = (R, G, k™).

n—oo

Therefore, i(g,T (gﬁj) ko) — f](g, G,k*") as n — oo. Since G is approximately

comact with respec to R, there exist £ € Ry (k*“) such that,
2 (€6, k™) = (R, G, k™) = Sy, T(h), k™). (5.12)

We show that ¢ = £. If not, then

(5 (k) (Sc.cem)’

e
2 (& ok k) > A T o
(Z <§ZJ>§Z£1>H§SW>>

taking limit as n — oo gives

S ok 22 (S66xm) > (Serm)

Which is contradiction. Hence £ (¢, Ts, k) = S(R, G, k) = £ (&, T, k*) that is ¢
is the best proximity point. Next, ¢ is the ubpp of Y. Assume, on the contrary, that
0<3 (s,7, k) < 1 for all k*” > 0 and j # < is another bpp of T then from (5.7) we

have

S (6,5, k™) > A((i(g,j,k%)a(i(c,g,ﬂ«%)ﬁ(i(j,j,ksw))l_“_ﬁ),

> (i (s, 7, k%) .

Which is contradiction and hence & (¢,7, k) =1 for all k** > 0, that is¢ =]. =
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5.4 Modified Hardy Rogers type contraction in

fuzzy metric space

5.4.1 Definition

Let (U,f],*) be a cnafms, and R, G C U. A mapping T : R — G is called ihrpc, if 3
a, 3,70 € (0,1)sta++v+0<1,and X € [0,1).
/\AAswo{/\Ak'swﬁAA]’ksw’y
(E(]hh,k )) <Z(]17§jyk )) (Z(JQ,C k ))

S (ki ik 7,sw
S (64, ¢, k) > A R
(266" 1) (S (s 1)

(5.13)
for all ¢*,¢7%5, 5, € R, k* > 0 and ¢; # Ji. © € {1,2} whenever 5 (gkj,le,]ksw) =

2 (R, G, k), 8 (¢F, T, k) = B (R, G, k) and % (s, J, k) > 0.

5.4.2 Example

Let U=R2 5 : U x U x (0,00) — [0,1] by

R . ksw
2 (M5 k) = ‘ ' ’
(§ J ) ks + gd ((g’”,ﬁ) ) (C]k»ﬁ))

where 5d ((gkj7j1) ) (<]k7j2)) - </((jk - gk])Q + <j2 - j1)2 for all (ijajl) ) (gjkm]AQ) €
U. Then <U, f], >|<> is a nafms. Let R,G C U defined by

R = {(0,s")," e R},

G = {(1,gkj) M e R}.

Define S(R, G, k") = sup{S(c",j,k™) : ¥ € R,j € G and k* > 0}. Then

S(R, G, k™) = £ Ry (k™) = R, Gy (k*) = G. Define the mapping T : R — G

kS’LUJ’_l Y
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| 1,¢H) if s € [~1,1]
T (0,6") = (1.s%) :

(1,5"2) otherwise

for all (0,¢*) € R. Then clearly T (R;) C Go. We show that Y is interpolative
Hardy Rogers type contraction. For ¢* = (0,4), j; = (0,2), ¢* = (0,9), j, = (0,3),

a=0.01, 3=0.02, 7y =0.03, § = 0.04, A = 1 then we have

~

i (§kj7leyksw) = X ((074) , T (072) ) 1) )

= 3(R,G, k™),

and

~

2 (%, iy, k™) = £((0,9),7(0,3),1),

= 3 (R,G.k).
This implies that,

(M, M) = £((0,4),(0,9),1),
(S0026)" (8 (0. 09))” (2 (¢ k)

~ . 5/~ A l—a—pf—y—6
(£ 6o ™) (2 Gacbien)

v

A

which yield,
0.4082 > 0.1129.
This shows that T is a interpolative Hardy Rogers type contraction. However, for

i =(0,4), j = (0,2), ¢* = (0,9), Jo = (0,3), A = 0.2 and k™ = 1. We know that

~

i(gkj7leaksw> = E((074)7T(072)71)7

= 2(R,G,k"),
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and,

~

S (8 T k™) = ((0,9),7(0,3),1),

= S(R,G.k™).
Implies,

(MR = £((0,4),(0,9),1),
(£ 613 k)) + (5 (G069, 86%)) + (£ (5, % k) )

+ <§ (jl,gjk,ksw)> n <§ (jQ,Cjk,ksw))

v

A

which yield,

0.1667 ¥ 0.3201.

This is a contradiction.

5.4.3 Theorem

Let <U,§J,>|<> be a cnafms, R,G C U s.t G is a-compact w.r.t R. Let T: R — G
be a interpolative Hardy Rogers type proximal contraction. If Ry C R such that
T (Ry) € Go. Then T admits a bpp.

Proof. Let ¢* € Ry. Since T(s*) € T(Ry) C Gy, there exist ¢<* € Ry such that,
S(M (M), k) = S(R, G, k™).
Also we have Y(¢*7) € T(Ry) C Gy, so there exist (** € Ry such that,
S(¢F, T (M), k) = £(R, G, k™).

S(H L T (M), k) = £(R, G, k), (5.14)
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V n € N. Observe that, if 3n € N s.t ¢% = §n+1 then from (5.14), the point ¢*7 is a

bpp of the mapping Y. If ¢k £ §n+1 V' n € N. Then by (5.14), we have
§(§Zj> T(d?—l)? ksw) = i(Rv Ga ksw),

and
S(H L, (M), k) = S(R, G, k™),

for all n > 1, thus, by (5.13),

~ ~ ) ) AN . . B

> (gn 7§n+1’ ksw) Z A (2 (CZ{D Cﬁ]’ksw» (E (CZ{I’ gij’ksw)> (5.15)
~ . . ~ §

3 (dflj7 gfz{klaksw>>7, (2 (gn ,gkj ksw))

. 1-a—B—v—§
kj sw
Sn—1> n+l7 k )) )

for all distinct ¢* |, ¢k ,§n+1 € R. Since, by (5.15), we have

. a+ AR .
( nj 1S kj km)) < ( ﬁ]a§n+1>ksw>) (Z (gi]—b Sn+1>

B (ackak®) 2 (3
A

~ ) . atpB s~ ) . v
> by <§ZJ_1, §ﬁj,ksw> (Z <§ﬁj,ggﬂrl,ksw>> ,
N . l—a—B—y=6 s/~ ) . 1—a—fB—y—6
<E (gff_l, §ﬁ]’k8w>> <Z <§Zj> <:j+17ksw>> ’
~ . . 1—v—0 /.« . . l—a—pB—06
z A <E (gflj—h §ZJ7 ke ) <Z (gﬁj, Q]ij—&-h ksw)) ’
= a+p+4 ~ 1—y—6
(2 ( Sn ,Cnﬂ,ks“’)) > A (2 (gﬁj 1Sy ks”)) : (5.16)

Letting 6, = 5 (Cﬁj,glxrl,kw), (5.16), we have 0,1 < 0, for all n € N. Now from

l—a—pB—
ksw) )
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(5.16), we have

~ ki ki 1 ~ ki ki 1—y—4§
(kM k) > NaFma N (e | gk sy ageTs

1—vy—46
)a+B+3
Y

2 o~ .
> )\a+ﬁ+62(gn,2,gkj k5

n—1

1—y—4¢

> \aEir 3¢k R ) T

Then 0,,—1 (k*) < 6,, (k*), that is the seq {#,,} is non-decreasing seq for all k** > 0.
Consequently, there exist 0 (k°*) < 1 such that lim, . 8, (k*") = 0 (k*") . Suppose,
0 < 8(ki") <1 for some k§* > 0. Since 0, (k§*) > 6 (k§*), by taking the limit with

k** = k. We obtain
0 (k3" > AT 0 (k5") > 0 (") .
Satisfying the above inequality, that is equivalently,
5 (gfrf(k)qv <Zik)7k8w) >1—g

and so for all k£ we get

= (giﬁ(k)’ gflj(k)’ksw) > (gfrz(k)’ gi{k)aksw> ; (5.17)
> Oy (ko) * (1 =€),

putting limit n — oo in (5.17), we get that

lim & (gg(k),gﬁ{k),kgw> =1—k¢,

n—oo



93

from

[ ki sw & sw o sw
F Cr MRS AT o) i /MRS A - o1 G/ )

(& e
2 (gnjac) Sn(ry 1 Ko >

and

o kj sw o sw = sw
2(%{(1@) 0 Ko > > E<m(k)§ k41> Ko ) 2( n(k)+1’k )

S (K shiey k5"

we get,

lim Z( m(k )+17< (k )+1’k(8)w> =1-—e

n—oo

From equation (5.14), we know that

m(k)+1° n(k )+1°

5 (gk] T, k5w> — (R, G, k) and 2( Tk, kgw) — S (R, G, k),

so by (5.13),

~ . . [ RYPN B
kj sw k k sw k sw
2 ( nf(k)ﬂ’g +1=]k ) E ( (gnf(k)v gn](k)7k )) (E (gni(k) k)+17k >>

5
o kj sw v S kj sw J
b <gnjk)’ Sn(k)+1> Ko )) ’ <2 (gnf(k) k)+17]k >>

—~

Taking lim k£ — oo we get
l—e>A(l—¢€)>1—c¢

Which is contradiction. Then {gflj } is cau seq. Since (U, i *) is a cnafms and R is
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closed subset of U. Then 4 ¢ € R, s.t lim,,_,, 5 (gﬁj, S, ]ks’“’) = 1. Moreover,

(R, G k) = B(H ., T(sH), k),

~ ki ) ~ . .
Z > (gnj—i-la gkjﬁksw> * E(gkj’ T<§ZJ)> ksw)a
Y i . —~ S ~ ki .
Z E (gnj—l—lv gk]’k5w> * E<gk]’ gn]—i—l’ ksw) * Z (gn]‘f'l’ Tgﬁj’ ksw) ’

= 3 <<ff;1, <kj,k5w> « 3(¢M M k)« S(R, G k).
This implies,

SRGE) = S (b, k)« S, T8, k),

> i (gﬁilv gkj’ksw) " i(dﬂj) gZJJ'rl’ksw) * E(R, G’ksw>.
Applying to limit as n — oo in the above inequality, we get

S(R,G k™) > 1 lim (s, T(<H), k™),

n—oo

> 1x1x i(R, G, k).

That is,

lim S(M, T(cM), k™) = (R, G, k™).

Therefore, (%, T (ki) k™) — S(sk, G, k*) as n — oo. Since G is a-compact

w.r.t R, there exist £ € Ry (k*") s.t,
S (€, T k) = B(R, G, k) = S(¢M, T (M), k). (5.18)

We now show that ¢* = ¢£. If not, then

~

~ . ) a s FRPR ' '
Z<€ag7]i]+17]k5w> Z )\< (gygi?,ksw)) <E (C,f,ksw)> <Z <gZJ’gZJ+17ksw>)

5
~ . 6 s~ . 1-a—B—vy—6
(5 (6. i) (2 caem)) .
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on taking limit as n — oo gives

l1—-a—vy—§ l—a—y—4

S(66 k) 22 (S k) > (S6x)

Which is contradiction. Hence 3 (¢, T¢, k) = S(R, G, k™) = 3 (€, T¢,k*) that
is, ¢ is the bpp. We show that ¢ is the ubpp of T. Assume, on the contrary, that
0< (s, 7, k™) < 1 forallk® > 0 and j # < is another bpp of T, i.e., & (¢, T¢, k™) =

S(R, G, k™) = 3 (3, Tj,k*) then from (5.13) we have
<« ~ sw <« ~ sSw @ S sw ﬁ S AN sSw v
2k 2 A(SEkm) (Seak™) (S0.5.k™)
~ R S /o~ R l1—a—B—~—§
(E(g,mksw)) (E(j,<,ksw)) :

> (Beae)

N

Which is contradiction and hence & (6,7, k) =1V k* >0, thatisc=). m

5.5 Conclusion

We have produced several new type of contractive condition that ensures the existence
of bpp in cnafms. According to the nature (linear and nonlinear) of contractions (5.1),
(5.7) and (5.13). The study carried out in this paper generalizes the valuable research

work presented in [25, 38].
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